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ABSTRACT 

There is a large amount of heterogeneity in early inflammatory arthritis, across 

disease presentation, clinical manifestations, and response to treatment. This 

study aimed to capture the heterogeneity seen in tissue morphology and gene 

expression across BEACON, the Birmingham Early Arthritis Cohort, which 

includes patients with short duration rheumatoid arthritis (RA), longer duration 

RA, other persistent inflammatory arthritis, and resolving disease.  

A novel H&E scoring system was developed that allows for stratification based on 

the density and aggregation of the lymphoid infiltrate, resulting in a summary 

pathotype. This correlated with measures of local and systemic inflammation and 

may associate with treatment response in RA. 

Whole tissue RNA sequencing was used to assess gene expression across the 

early inflammatory arthritis cohort and highlighted major sources of variation, 

including the presence of prominent immune cell, adipocyte, and fibroblast 

signatures. Signatures associated with resolution and response to treatment in 

RA were identified, with response to treatment being predominantly associated 

with immune and inflammatory processes. Resolution was associated with 

reduced activation of the adaptive immune response and increased lipid 

synthesis when compared to short duration RA, although the implications of 

these signatures requires further validation.  

Overall, this study extended the knowledge of heterogeneity in early 

inflammatory arthritis and highlights the potential utility of patient stratification 

for predicting response to treatment. Furthermore, some novel mechanisms of 



 
 

resolution were identified that could lead to the identification of new treatment 

targets for RA that drive pro-resolution pathways and inhibit pathways associated 

with persistence.  
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1 INTRODUCTION 

1.1 INFLAMMATORY ARTHRITIS 

Inflammatory arthritis is a collection of conditions that cause inflammation of the 

joint. Rheumatoid arthritis (RA) is the most common inflammatory arthropathy, 

affecting 1% of the population and is around three times more common in 

women (Gorman and Cope, 2008). Other inflammatory arthritides include 

spondyloarthritis (SpA), which is a group of disorders that includes psoriatic 

arthritis (PsA), reactive arthritis (ReA), and ankylosing spondylitis (AS). 

Inflammatory arthritis may also be a presenting feature of connective tissue 

diseases, such as mixed connective tissue disease (MCTD) and systemic lupus 

erythematosus (SLE), and synovitis may be caused by infections such as 

parvovirus. Additionally, some patients present with undifferentiated arthritis 

(UA), meaning they do not meet classification criteria for any specific disease 

(Hazes and Luime, 2011, Stockman et al., 2006, van Aken et al., 2003).  

RA is a chronic inflammatory disease primarily affecting the smaller joints of the 

hands and feet. Risk for RA is built up of both genetic and environmental factors, 

which will be discussed in more detail later in the chapter. If the disease is not 

controlled with appropriate treatment, damage to the joints occurs in most 

patients. This leads to loss of function, pain, and disability, as well as increased 

socioeconomic cost (Smolen et al., 2016a). Autoantibodies are present in 50-

70% of patients, with anti-citrullinated protein antibodies (ACPA) and rheumatoid 

factor (RF) being the most common (Smolen et al., 2016a).  



2 
 

RA is associated with a number of comorbidities which may have a substantial 

impact on patients’ quality of life and reduce life expectancy, as well as 

increasing economic burden and making treatment more challenging (Gabriel 

and Michaud, 2009). The most significant causes of mortality in this respect are 

cardiovascular disease, infection, and malignancy (Dougados et al., 2014). 

However, depression is also a significant problem among RA patients, as with 

most chronic diseases (Gabriel and Michaud, 2009). Some comorbid conditions 

are associated with RA treatment, as well as the disease itself. For example, the 

susceptibility to infection may be due to immunosuppressive treatments or 

modulation of the immune system in RA (Listing et al., 2013).  

As SpA makes up the second largest proportion of patients after RA within the 

cohort for this study, this will generally be discussed in this introduction in 

preference to other inflammatory arthropathies. AS predominantly affects the 

spine, rather than peripheral joints, so is typically less challenging to differentiate 

from RA and other peripheral inflammatory arthropathies in early arthritis 

cohorts (Ebrahimiadib et al., 2021). PsA is the most common SpA in the cohort 

and ReA makes up a proportion of the patients in the cohort with resolving 

disease, so these will be discussed in more detail. PsA has a number of 

manifestation alongside synovitis, including skin and nail disease, and 

cardiovascular disease is a notable comorbidity (Veale and Fearon, 2018). Unlike 

RA, PsA does not have a higher prevalence in women, instead affecting both 

sexes equally (Ocampo and Gladman, 2019).  

ReA typically affects younger populations, around 20-40 years old, and similarly 

to PsA affects both sexes equally (Selmi and Gershwin, 2014). It is initially 

caused by infection, typically of the genitourinary or gastrointestinal tract, but 
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arthritis often does not present until weeks after, meaning tests for infectious 

agents can be negative at the point of arthritis development. Furthermore, not all 

individuals are susceptible to ReA, with less than 15% of infections resulting in 

arthritis, and the genetic allele HLA-B27 increasing risk (Selmi and Gershwin, 

2014).  

Another group of patients falls into a UA group, typically making up around 30% 

of early inflammatory arthritis cohorts (Hazes and Luime, 2011). Patients in this 

group do not have any known cause of their inflammatory arthritis, failing to 

meet classification criteria for any particular condition. An estimated 20-60% of 

these patients spontaneously resolve, however others later fulfil classification 

criteria for another inflammatory arthropathy (Hazes and Luime, 2011). One 

study found that 24% of UA patients are classified as having RA within the first 

year, although this figure can vary greatly between studies, with estimates 

between 13% and 54%, depending on the cohort and classification criteria used 

(Krabben et al., 2012, Hazes and Luime, 2011). This group presents a challenge 

clinically, as uncertainty about future prognosis makes optimal treatment 

unclear. It would therefore be beneficial to be able to classify those who will later 

fulfil criteria for RA, or other persistent inflammatory arthritides, earlier in the 

disease course. 

1.1.1 Classification criteria 

1.1.1.1 Rheumatoid arthritis 

The most commonly used classification criteria for RA currently are the 2010 

ACR/EULAR criteria (Table 1.1), which were designed to attempt to identify early 

RA. The 1987 ACR criteria (Table 1.2) that they superseded, prevented RA from 
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being classified prior to 6 weeks of symptoms, and heavily favoured classification 

of later stage, established RA, with one study suggesting that only 50% of RA 

patients satisfy the criteria one year after symptom onset (Cader et al., 2011, 

Heidari, 2011).  The 2010 ACR/EULAR criteria improved upon this by shifting the 

predominant weighting from the duration of symptoms to joint involvement and 

seropositivity, however over half of RA patients may still fail to be classified 

correctly at first visit (Cader et al., 2011). In addition, the 2010 ACR/EULAR 

criteria result in more false positive classifications and, if used alone for 

treatment decisions, would result in increased unnecessary treatment of patients 

with self-limiting disease (Cader et al., 2011).  
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 Score 

Target population: patients who 

1. Have at least one joint with definite clinical synovitis (swelling) 

2. With the synovitis not better explained by another disease 

Classification criteria for RA (score-based algorithm: add score of categories A–D a 

score of ≥6/10 is needed for classification of a patient as having definite RA) 

A. Joint involvement 

1 large joint 

2−10 large joints 

1−3 small joints (with or without involvement of large joints) 

4−10 small joints (with or without involvement of large joints) 

>10 joints (at least one small joint)†† 

 

0 

1 

2 

3 

5 

B. Serology (at least 1 test result is needed for classification) 

Negative RF and negative ACPA 

Low-positive RF or low-positive ACPA 

High-positive RF or high-positive ACPA 

 

0 

2 

3 

C. Acute-phase reactants (at least one test result is needed for 

classification) 

Normal CRP and normal ESR 0 

Abnormal CRP or normal ESR 1 

 

 

0 

1 

D. Duration of symptoms 

<6 weeks 

≥6 weeks 

 

0 

1 

†† At least one of the involved joints must be a small joint; the other joints can 

include any combination of large and additional small joints. 

Table 1.1: 2010 ACR/EULAR classification criteria (Aletaha et al., 

2010). 
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Prediction rules have also been developed, designed to predict RA in patients 

who do not yet fulfil criteria, with one such example being the Leiden Score 

(Table 1.3). This is based on 9 variables: age, sex, localisation of symptoms, 

morning stiffness, tender joint count, CRP, RF, and ACPA and was developed in 

an UA cohort. These variables were weighted and together used to produce a 

score out of 14 (van der Helm-van Mil et al., 2007). In the test cohort, 84% of 

the patients with high scores (≥8) progressed to RA and 91% of patients with 

scores ≤6 did not develop RA. However, scores between these values, 

accounting for 25% of patients, are unable to make an accurate prediction (van 

Criterion Definition 

1. Morning stiffness Morning stiffness in and around the joints, lasting at least 

1 hour before maximal improvement 

2. Arthritis of 3 or 

more joint areas 

At least 3 joint areas simultaneously have had soft tissue 

swelling or fluid (not bony overgrowth alone) observed by 

a physician. The 14 possible areas are right or left PIP, 

MCP, wrist, elbow, knee, ankle, and MTP joints 

3. Arthritis of hand 

joints 

At least 1 area swollen (as defined above) in a wrist, 

MCP, or PIP joint 

4. Symmetric arthritis Simultaneous involvement of the same joint areas (as 

defined  in 2) on both sides of the body (bilateral 

involvement of PIPS, MCPs, or MTPs is acceptable without  

absolute symmetry) 

5. Rheumatoid  

nodules 

Subcutaneous nodules, over bony prominences, or 

extensor surfaces, or in juxtaarticular regions, observed 

by a physician 

6. Serum rheumatoid 

factor 

Demonstration of abnormal amounts of serum 

rheumatoid factor by any method for which the result has 

been positive in 4% of normal control subjects 

7. Radiographic 

changes 

Radiographic changes typical of rheumatoid arthritis on 

posteroanterior hand and wrist radiographs, which must 

include erosions or unequivocal bony decalcification 

localized in or most marked adjacent to the involved 

joints (osteoarthritis changes alone do not qualify) 

For classification purposes, a patient shall be said to have rheumatoid arthritis if 

he/she has satisfied at least 4 of these 7 criteria. Criteria 1 through 4 must have been 

present for at least 6 weeks. Patients with 2 clinical diagnoses are not excluded.  

Table 1.2: 1987 ACR classification criteria (Arnett et al., 1988b). 
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der Helm-van Mil et al., 2007). For this reason it is unlikely that the Leiden score 

will ever be widely utilised in clinical settings. 

 

Even once a classification has been made, there is still a need for new 

stratification methods, as RA is a heterogeneous disease. Patients show varying 

symptoms, rates of disease progression, and responses to treatment. A number 

of studies have used synovial tissue to stratify patients into subtypes, or 

pathotypes, with each using slightly different methods and classification systems 

(Pitzalis et al., 2013, Orange et al., 2018, van der Pouw Kraan et al., 2003, 

Humby et al., 2019a). Some of these studies have shown some initial success, in 

Variable Points 

Sex 1 

Age 0.02/year 

Localization in small joints hand/feet 0.5 

Symmetric localization 0.5 

Localization in upper extremities 1 

Localization in both upper and lower extremities 1.5 

Morning stiffness score on 100-mm VAS 

0-25 

26-50 

51-90 

>90 

 

- 

1 

1 

2 

Number of tender joints 

0-3 

4-10 

>10 

 

- 

0.5 

1 

Number of swollen joints 

0-3 

4-10 

>10 

 

- 

0.5 

1 

CRP level, mg/litre 

0-4 

5-50 

>50 

 

- 

0.5 

1.5 

RF positivity 1 

Anti-CCP positivity 2 

Table 1.3: Leiden prediction score (van der Helm-van Mil et al., 2007). 
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particular in predicting prognosis and response to treatment (Dennis et al., 2014, 

van Baarsen et al., 2010, Humby et al., 2019a). This will be discussed in more 

detail later in this chapter. 

1.1.1.2 Other inflammatory arthritis 

Early diagnosis has also been associated with better outcomes in PsA and there 

are similar challenges around diagnosis as well, with an estimated 50% of cases 

being missed in some cohorts (Coates and Helliwell, 2017). There are a number 

of clinical features that differ between RA and PsA that can aid in distinguishing 

between them, with skin and nail disease being associated with PsA (present in 

80% and 60% of patients, respectively) but being absent in RA and PsA 

predominantly being seronegative (Coates and Helliwell, 2017). Additionally, the 

number and pattern of joint involvement tends to differ between these two 

diseases (Coates and Helliwell, 2017). 
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There are also classification criteria for PsA, with a commonly used one being the 

Classification Criteria for Psoriatic Arthritis (CASPAR) (Table 1.4). The CASPAR 

criteria were developed using a number of other inflammatory arthritides as 

controls, including RA, AS, UA, and connective tissue disorders, and allow for the 

classification of PsA with high specificity by looking at the presence of psoriasis, 

nail disease, dactylitis, and new bone formation in the absence of RF (Taylor et 

al., 2006).  

Although there are no formal classification criteria for ReA, there are ACR 

guidelines that aim to define ReA, which are described in Table 1.5. This results 

To meet the CASPAR (ClASsification criteria for Psoriatic ARthritis) criteria, a patient 

must have inflammatory articular disease (joint, spine or entheseal) with ≥3 points 

from the following 5 categories: 

1. Evidence of current psoriasis, a personal history of psoriasis, or a family history 

of psoriasis. 

a. Current psoriasis is defined as psoriatic skin or scalp disease present 

today as judged by a rheumatologist or dermatologist.† 

b. A personal history of psoriasis is defined as a history of psoriasis that 

may be obtained from a patient, family physician, dermatologist, 

rheumatologist, or other qualified health care provider. 

c. A family history of psoriasis is defined as a history of psoriasis in a first- 

or second-degree relative according to patient report. 

2. Typical psoriatic nail dystrophy including onycholysis, pitting, and 

hyperkeratosis observed on current physical examination. 

3. A negative test result for the presence of rheumatoid factor by any method 

except latex but preferably by enzyme-linked immunosorbent assay or 

nephelometry, according to the local laboratory reference range. 

4. Either current dactylitis, defined as swelling of an entire digit, or a history of 

dactylitis recorded by a rheumatologist. 

5. Radiographic evidence of juxtaarticular new bone formation, appearing as ill-

defined ossification near joint margins (but excluding osteophyte formation) on 

plain radiographs of the hand or foot. 

† Current psoriasis is assigned a score of 2; all other features are assigned a score of 

1. 

Table 1.4: CASPAR criteria for the classification of PsA. (Taylor et al., 

2006) 
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in a ‘definite’ or ‘probable’ diagnosis of ReA, with both definitions requiring 

evidence of a prior infection (Selmi and Gershwin, 2014). 

 

1.1.2 Treatment 

1.1.2.1 Rheumatoid arthritis 

Earlier treatment of RA results in better long-term outcomes. It has been shown 

that treatment within 3 months of symptom onset results in reduced erosions 

and increased remission rates (Gremese et al., 2013, Bosello et al., 2011). This 

highlights the need for early diagnosis but also raises concerns about the lack of 

specific diagnostic tests.  

 

Major criteria 1. Arthritis with 2 of 3 of the following findings: 

I. Asymmetric 

II. Mono or oligoarthritis 

III. Lower limb involvement 

2. Preceding symptomatic infection with 1 or 2 of the following 

findings: 

I. Enteritis (defined as diarrhoea for at least 1 day, and 3 

days to 6 weeks before the onset of arthritis) 

II. Urethritis (dysuria or discharge for at least 1 day, 3 days 

to 6 weeks before the onset of arthritis) 

Minor criteria At least one of the following: 

1. Evidence of triggering infection: 

I. Positive urine ligase reaction or urethral/cervical swab for 

Chlamydia trachomatis  

II. Positive stool culture for enteric pathogens associated 

with reactive arthritis 

2. Evidence of persistent synovial infection (positive 

immunohistology or PCR for Chlamydia) 

A “definite” diagnosis of reactive arthritis is based on the fulfilment of both major 

criteria and a relevant minor criterion, while a “probable” diagnosis is characterized by 

both major criteria but no relevant minor criterion or one major criterion and one or 

more of the minor criteria. The identification of the trigger infection is also required. 

Table 1.5: Guidelines for the definition of reactive arthritis. (Selmi and 

Gershwin, 2014) 
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Methotrexate, a conventional disease modifying anti-rheumatic drug (cDMARD), 

with initial glucocorticoids (GC) is often considered the first treatment option for 

patients diagnosed with RA, however this approach is unsuccessful in around 

25% of patients (Schneider and Kruger, 2013, Bluett et al., 2018). Treatment 

can also be initiated with, or escalated to, a combination of cDMARDs before a 

biological DMARD (bDMARD or biologic) is considered (Schneider and Kruger, 

2013). However, this approach is currently losing support as biologic and novel 

targeted synthetic DMARDs, such as Jak/Stat inhibitors, become more accessible. 

Treatment options are discussed by, and decided between, patients themselves 

and their rheumatologist after consideration of the individual patient’s risk 

profile, although currently there are challenges around the lack of stratification 

using biomarkers for treatment response (Schneider and Kruger, 2013, Smolen 

et al., 2016b).  

Biologic treatments for RA target specific inflammatory processes, for example 

anti-TNF treatments (including infliximab, etanercept, and adalimumab) target 

the pro-inflammatory cytokine TNF-α, which is elevated in RA and can increase 

the expression of other pro-inflammatory cytokines (Moelants et al., 2013, 

Radner and Aletaha, 2015). Abatacept inhibits T cell activation via the blockade 

of costimulatory signalling, while rituximab reduces the number of B cells by 

targeting CD20 (Abbasi et al., 2019). However, despite these differing 

mechanisms of action currently there are no biomarkers used clinically that 

predict response to a given bDMARD and an estimated 20% of patients fail to 

respond to two dDMARDs (Buch, 2018).  

Treating to target is a concept that has been widely discussed in the literature, 

which is the concept that treatment should be altered regularly until a disease 
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state target has been achieved (Schneider and Kruger, 2013, Bluett et al., 2018, 

Versteeg et al., 2018, Bergstra and Allaart, 2018, Smolen et al., 2016b). What 

that target should be has also been widely discussed, with low disease activity 

(LDA), clinical remission, and radiological remission being among those 

suggested (Bergstra and Allaart, 2018). Smolen et al. (2016b) suggested that 

clinical remission is the best target to aim for, with LDA being a secondary choice 

when this is not possible, however Bergstra and Allaart (2018) favour LDA as a 

target, as they suggested that aiming for remission causes increased treatment 

burden, lower adherence, and no functional improvement compared to LDA 

(Bergstra and Allaart, 2018). Both of these studies highlight the need for direct 

experimental comparisons to find the best treatment strategy, as well as the 

need for personalised decisions for the individual patient.  

Another topic of debate regarding treatment strategies in RA is the decision 

whether or not to taper or discontinue treatment in those patients that achieve 

clinical remission. There are multiple reasons for the interest in tapering as it can 

reduce costs, treatment burden, and side effects (Kuijper et al., 2017, Fautrel, 

2018). Completely ceasing DMARDs tends to result in more flares, which can 

lead to increased joint damage meaning the risk-to-benefit ratio is likely not 

favourable for this strategy (Fautrel, 2018). However, tapering of bDMARD dose 

appears to be successful in a proportion of patients (Fautrel, 2018, Ibrahim et 

al., 2017). More studies are needed to assess the level of treatment reduction 

possible for different treatment types as Ibrahim et al. (2017) showed that too 

large a reduction in anti-TNF treatment can increase the frequency of flares when 

compared to a small reduction or maintained dose (Ibrahim et al., 2017). 

Rheumatologists currently have the decision of whether to taper or not but it has 
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been shown that there is a lack of consistency in this regard (Kuijper et al., 

2017).  

1.1.2.2 Other inflammatory arthritis 

Treatment for PsA typically follows the principal of escalating treatment 

sequentially, starting with non-steroidal anti-inflammatory drugs (NSAIDs) and 

topical therapies before building up to biologics following failure of all other 

treatment options (Coates and Helliwell, 2017, Gossec et al., 2016). Treatments 

overlap significantly with those used for RA, with methotrexate being the first 

DMARD used in PsA and many biologics, including TNF inhibitors, being used in 

both diseases (Coates and Helliwell, 2017). However, the effectiveness of 

methotrexate for the treatment of PsA is not guaranteed, with one study finding 

it was actually ineffective for the treatment of synovitis (Kingsley et al., 2012).  

Similarly to RA, using a treat-to-target approach improves outcomes in PsA 

patients, although there is a question over the cost-benefit ratio due to the 

relatively small improvements seen for a much greater cost and increased 

incidence of adverse events when compared to standard of care (Coates et al., 

2015). 

ReA treatment is different to that of PsA and RA, with treatment for the causal 

infection with antimicrobials sometimes being required. Around 75% of ReA 

spontaneously resolves over time. Treatment of the synovitis typically involves 

the use of NSAIDs and glucocorticoids, with DMARDs, such as sulfasalazine, only 

being used in persistent cases (Selmi and Gershwin, 2014). This difference in 

treatment again highlights the need for early diagnosis in inflammatory arthritis, 
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to ensure the correct treatments are given to the right patients and to avoid 

overtreatment.  

1.1.3 Pathophysiology 

Rheumatoid arthritis is a chronic inflammatory autoimmune disease, with 

features characteristic of this, including the presence of autoantibodies such as 

RF and ACPA. Risk for RA is built up of both genetic and environmental factors, 

with genetic factors estimated to make up 40-50% of risk in seropositive 

individuals (Deane et al., 2017). The largest proportion of genetic risk has been 

associated with the ‘shared epitope’, which is a group of alleles in the major 

histocompatibility complex (MHC) human leukocyte antigen (HLA) region. It is 

thought the shared epitope may increase presentation of citrullinated proteins to 

T cells, thus increasing the risk of developing ACPA and seropositive RA (Deane 

et al., 2017). Another of the strongest genetic risk factors lies in the PTPN22 

gene, with the risk allele thought to lower thresholds for activation of an immune 

response, in particular in T cells (Deane et al., 2017). PTPN22 encodes a protein 

tyrosine phosphatase that modulates signalling in both innate and adaptive 

immune cells. It inhibits T cell activation by inhibiting signalling downstream of 

the T cell receptor and induces type I interferon in myeloid cells by increasing 

downstream pattern recognition receptor signalling (Stanford and Bottini, 2014). 

In addition to genetic polymorphisms, there is now emerging evidence that 

epigenetic changes have influence over RA disease course, with changes in 

synovial fibroblasts being linked to increased disease activity in RA, although it is 

currently unknown at what stage these changes may occur (Deane et al., 2017). 

The largest environmental risk factor for RA is smoking, which makes up an 

estimated 20-30% of the environmental risk (Deane et al., 2017).  
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Even though there are known genetic and environmental risk factors, it is 

unknown exactly how RA is initiated. It is thought it may initiate in the mucosa, 

potentially in the lungs, before spreading to the joints via unknown mechanisms. 

It is hypothesised that the lungs may be involved as there are multiple 

environmental risk factors for RA that predominantly affect lung tissue, such as 

smoking, noxious agents, and silica dust (Guo et al., 2018). Smoking in 

particular has been linked to pathogenesis in the lungs, with high levels of 

citrullinated proteins, which act as autoantigens in RA, being found in bronchiolar 

lavage from smokers (Tracy et al., 2017).  

Another potential site of initiation of RA is the gastrointestinal tract. A number of 

studies have found an altered microbiome in RA patients and those at risk of RA 

(Horta-Baas et al., 2017, Zhang et al., 2015b, Chen et al., 2016, Alpizar-

Rodriguez et al., 2019, Wells et al., 2020, Zaiss et al., 2021). Treatment has 

been shown to have an effect on this, resulting in a transition towards a more 

normal microbiome (Zhang et al., 2015b). In mouse models of RA, actively 

altering the microbiome has been shown to have an impact on disease severity 

and susceptibility, with absence or removal of the microbiome reducing severity 

and colonisation with microbiota from RA patients resulting in increased disease 

incidence in susceptible mice (Jubair et al., 2018, Maeda et al., 2016, Wu et al., 

2010, Zaiss et al., 2021). Furthermore, secretory immunoglobulins that are 

produced at mucosal sites have been found in RA patients, including those 

reactive to autoantigens associated with RA (Zaiss et al., 2021). Diet is thought 

to affect RA risk, with high levels of sugar, salt, and red meat increasing risk and 

vitamin D and antioxidants reducing risk, thus further implicating the gut (Horta-
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Baas et al., 2017, Benito-Garcia et al., 2007, Hu et al., 2017, Pattison et al., 

2004a, Pattison et al., 2004b, Deane et al., 2017).  

The production of autoantibodies alone is not sufficient to cause RA as their 

presence can be detected years before symptom onset in some patients (Tracy 

et al., 2017, Horta-Baas et al., 2017, Guo et al., 2018). However, there is 

evidence to suggest that autoantibodies still play a pathogenic role in the 

disease. Seropositive disease is associated with a more aggressive disease 

course and rituximab, a B cell depleting therapy, is more effective in these 

patients (Derksen et al., 2017). The exact mechanism of pathogenesis is 

unknown, however it may involve Fc receptor binding, complement activation, 

neutrophil extracellular trap formation, or osteoclast activation (Derksen et al., 

2017, Harre et al., 2012).  

Normal synovium is comprised of a thin lining layer that is 1-3 cells thick and a 

sublining layer. The lining layer is composed of fibroblasts and macrophages, 

while the sublining is mostly comprised of adipocytes, blood vessels, fibroblasts 

and resident macrophages (Figure 1.1) (Smith, 2011). Both the lining and 

sublining is greatly expanded in RA and other inflammatory arthropathies. This is 

due to the expansion of both resident fibroblasts and macrophages, and the 

infiltration of immune cells (Figure 1.1) (Smolen et al., 2016a, Bartok and 

Firestein, 2010, Raza et al., 2005b). The immune cell infiltrate predominantly 

consists of T cells, B cells, dendritic cells (DCs), and macrophages (Gorman and 

Cope, 2008). In addition to increased cellularity, which results in thickening, the 

synovium also becomes more vascularised and invasive. The invasive area of the 

synovium is termed the pannus, which mostly consists of fibroblasts and 

macrophages (Gorman and Cope, 2008, Firestein, 2003, Bartok and Firestein, 
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2010). The pannus is sometimes compared to an invasive tumour, as it shares 

many cellular and molecular properties with cancerous tissue, including the 

presence of overlapping somatic mutations (Firestein, 2003, Bartok and 

Firestein, 2010, Guo et al., 2018). The pannus secretes destructive enzymes, 

such as matrix metalloproteinases (MMPs), which degrade surrounding cartilage 

and bone (Gorman and Cope, 2008, Guo et al., 2018).  

 

Synovial fibroblasts, along with resident macrophages, play a key role in 

orchestrating immune responses, with aberrant production of cytokines and 

chemokines leading to chronic inflammation via recruitment and activation of 

both innate and adaptive immune cells (Buckley et al., 2001, Bartok and 

Firestein, 2010, Firestein, 2003). They increase greatly in number during RA 

pathogenesis and it is thought that this is mediated primarily via increased cell 

 

Figure 1.1: Normal vs RA synovium example images. H&E stained 
synovial tissue from normal (left) and early RA (right) joints. Normal tissue 
predominantly contains adipocytes. RA tissue shows an enlarged lining layer 

and infiltrating immune cells. H&E images are from the BEACON cohort and 
were produced as described in Chapter 2.2, with fixing, sectioning, and 

staining being undertaken by the University Hospitals Birmingham pathology 

department and imaging being done by Dr Jennifer Marshall or Dr Triin Major. 
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survival, as cell division in these cell types is relatively rare (Bartok and Firestein, 

2010, Guo et al., 2018). In addition to recruitment, synovial fibroblasts can 

inhibit apoptosis and induce proliferation in a number of immune cell types, 

further increasing the inflammatory infiltrate (Bartok and Firestein, 2010). 

Synovial fibroblasts also produce proangiogenic factors, such as VEGF, which 

helps supports the growing synovium (Bartok and Firestein, 2010). Interestingly, 

proangiogenic factors, including VEGF and Ang2, have been found to be 

increased in PsA compared to RA and increased vascularity and sprouting of 

blood vessels can be seen in SpA compared to RA (Fearon et al., 2003, Baeten et 

al., 2000, Reece et al., 1999).  

T cells interact heavily with synovial fibroblasts and macrophages. This 

interaction inhibits T cell apoptosis, as well as resulting in their sustained 

retention, both of which are resolution mechanisms which can reduce T cell 

numbers back to normal levels (Raza et al., 2005b, Buckley et al., 2001, Bartok 

and Firestein, 2010). It also induces the production of pro-inflammatory 

cytokines (Raza et al., 2005b). T cells comprise around 40% of the inflammatory 

infiltrate, with CD4+ T cells being the predominant subtype, and play a key role 

in disease pathogenesis (Gorman and Cope, 2008, Raza et al., 2005b, Bartok 

and Firestein, 2010). This is supported by MHC class II alleles being strong risk 

factors for RA (Gorman and Cope, 2008, Raza et al., 2005b). It was previously 

thought that Th1 cells were the primary inflammatory T cell mediator, however 

more recently it has been demonstrated that Th17 cells, which produce IL-17, 

may have a more significant contribution to inflammation in RA (Gorman and 

Cope, 2008, Bartok and Firestein, 2010). 
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Immature and mature DCs can both be found within the RA synovium, where 

they help drive a strong T cell response in the presence of inflammation (Gorman 

and Cope, 2008, Firestein, 2003). However, they may also have a role during 

disease initiation as they have been shown to travel to the lymph nodes to 

activate naïve T cells in murine models (Raza et al., 2005b, Gorman and Cope, 

2008).  

The presence of autoantibodies in RA implicates B cells in its pathogenesis 

(Gorman and Cope, 2008). They can also activate T cells and produce cytokines, 

albeit with a less documented significance than other cell types (Gorman and 

Cope, 2008). B cell apoptosis is inhibited in RA synovium and is primarily 

mediated by synovial fibroblasts, resulting in increased B cell survival (Bartok 

and Firestein, 2010). B cells and plasma cells can sometimes be seen in 

aggregates in the RA synovium, although it is unknown whether plasma cells are 

formed within the synovium or if they have migrated from elsewhere (Dörner 

and Lipsky, 2009). Plasma cells and B cells, alongside macrophages, were 

identified in one study as potentially being able to discriminate RA from other 

arthritides, including SpA and OA (Kraan et al., 1999).  

The use of single cell sequencing in recent years has furthered our understanding 

of the cellular composition of the synovium, enabling the characterisation of new 

subtypes of many cell types, including fibroblasts, macrophages, T cells, and B 

cells, with some subtypes being associated with specific disease processes 

(Schonfeldova et al., 2022). For example, two subsets of FAPα+ fibroblasts have 

been found to have separate roles in inflammation (FAPα+ THY1+) and bone and 

cartilage damage (FAPα+ THY1-), showing a role for fibroblasts in driving both 

inflammation and joint destruction in RA (Croft et al., 2019). Four macrophage 
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subtypes were identified in RA synovium, with the MERTK+ subsets being 

identified as upregulated in remission compared to active disease (Alivernini et 

al., 2020). Similarly, four B cell subsets have been identified in the synovium, 

consisting of naïve B cells, memory B cells, autoimmune-associated B cells, and 

plasmablasts, with the autoimmune-associated B cell subtype being more 

prevalent in inflamed than OA synovium (Zhang et al., 2019). Single cell 

investigation of T cells has also uncovered interesting subtypes, with three CD4+ 

and three CD8+ T cell subsets being identified (Zhang et al., 2019). T peripheral 

helper cells were found to be associated with inflammation in RA, increasing the 

production of antibodies by supporting differentiation of B cells (Rao et al., 

2017). Increased exploration of the different cellular subtypes present in 

inflammatory arthritis may help to elucidate further disease mechanisms, 

potentially enabling the specific targeting of responsible subpopulations in future 

therapeutics. 

1.2 BIOMARKERS 

Biomarkers are important tools in the diagnosis and monitoring of disease. They 

can be used to aid diagnosis, prognosis, and inform treatment decisions (Gavrilă 

et al., 2016). Diagnostic biomarkers can aid in the early identification of RA 

patients, allowing for earlier treatment and reduced uncertainty, while prognostic 

markers can aid in decisions on the aggressiveness of initial treatment. There are 

multiple different disease measures that may be considered, including disease 

activity, inflammation, and bone erosion, with the potential for different 

biomarkers predicting prognosis for different disease measures (Kang et al., 

2014, Seror et al., 2016).  
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Biomarkers are also useful for predicting and monitoring response to therapy. 

They may help inform, and potentially speed up, treatment decisions, including 

about when the optimum time is to start a new therapy if the initial one is not 

successful. This may prove particularly useful when using a treat to target 

approach, where regular modification of treatment is often required. However, 

the ideal biomarker for treatment decisions would be one which could predict 

which treatment will be most successful in a particular patient, allowing for 

patient stratification and more informed treatment decisions.  

1.3 DIAGNOSTIC BIOMARKERS 

1.3.1 Imaging biomarkers 

The presence of bone erosion is highly predictive of RA so may be a suitable 

diagnostic biomarker, however is only rarely seen in early disease, particularly 

when using conventional radiography. Ultrasound (US) and magnetic resonance 

imaging (MRI) increase both sensitivity and specificity for RA detection (Rahmani 

et al., 2010). Although MRI is the most sensitive technique of the three it is the 

most expensive and least readily available. Therefore, US may be an option that 

increases the sensitivity of radiography without greatly increasing the cost or 

reducing availability as, although it has lower sensitivity than MRI, there is high 

agreement between them (Rahmani et al., 2010). The use of US would be a 

great improvement as, in the same study, US was able to pick up 28 erosions 

versus the 5 that radiography was able to detect (Rahmani et al., 2010). 

Although US is an improvement upon radiography in this regard, there are still 

only very few patients that present with bone erosion at very early stages, 

meaning that even if all patients with erosions are detected, there would still be 
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a large number of RA patients missed at baseline if this were the sole criterion 

used (Filer et al., 2011).  

US and MRI can also detect swelling and inflammation in joints. Both modalities 

are able to detect subclinical disease, therefore potentially being able to diagnose 

RA earlier than clinical observation allows. Filer et al. (2011) demonstrated that 

scanning of selected joints using US may improve upon the sensitivity and 

specificity of the 2010 ACR/EULAR criteria and a study by Sidhu et al. (2021) 

found that synovitis in small joints detected by MRI could aid in the prediction of 

progression to RA in undifferentiated arthritis affecting large joints.  

The detection of tenosynovitis in specific joints of the hand has also been found 

to aid diagnosis of early RA (Rogier et al., 2020). This is detectable by both MRI 

and US, with a study by Sahbudin et al. (2018) finding that addition of 

tenosynovitis to a model including ACPA positivity and presence of joint 

synovitis, as measured by US, could improve the prediction of RA development 

(Eshed et al., 2009, Sahbudin et al., 2018).  

1.3.2 Peripheral blood biomarkers 

The 2010 ACR/EULAR criteria currently include use of multiple peripheral blood 

markers, namely RF, ACPA, CRP and ESR (Aletaha et al., 2010). Of these, RF 

was the only marker previously used in the 1987 criteria (Arnett et al., 1988b, 

Gavrilă et al., 2016). RF and ACPA have specificities of 85% and 96% 

respectively, with both having sensitivities of less than 70%, meaning they miss 

a significant number of RA patients (Shi et al., 2015). However, using RF and 

ACPA together increases overall sensitivity as positivity is not completely 

overlapping. RF, and to a lesser extent ACPA, can be detected in other conditions 
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including PsA, SLE, and Sjogren’s syndrome, with RF also being associated with 

age and chronic infections, such as tuberculosis (Tseng et al., 2009, 

Renaudineau et al., 2005). CRP and ESR are both systemic markers of 

inflammation, so lack specificity for synovitis but allow for the detection of 

inflammation (Tseng et al., 2009, Mc Ardle et al., 2015).  

Following those included in the 2010 ACR/EULAR criteria, perhaps the next most 

utilised diagnostic biomarker is the 14-3-3η protein, as it is included in tests that 

have been approved for use in the US and Canada (Gavrilă et al., 2016). 14-3-3η 

appears to be a promising candidate for diagnosis of early RA as, when used 

alongside ACPA and RF, 78% of RA patients could be identified (Maksymowych et 

al., 2014).  

Other autoantibodies have been investigated for potential use as diagnostic 

biomarkers. Anti-mutated citrullinated vimentin antibodies (anti-MCV) have been 

found to have similar sensitivity and specificity as ACPA but the two biomarkers 

are independent of each other (Gavrilă et al., 2016, Luime et al., 2010). This 

means anti-MCV may be a useful additional tool in currently seronegative 

patients, who are typically harder to diagnose than their seropositive 

counterparts are.  

Anti-carbamylated protein antibodies and anti-acetylated vimentin antibodies 

have also been investigated. However, Anti-carbamylated protein antibodies 

have lower sensitivity and specificity than RF and ACPA and can also be present 

in a range of other inflammatory joint diseases and anti-acetylated vimentin 

antibodies have high specificity (86%) but low sensitivity for RA (37%) (Shi et 
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al., 2015, Juarez et al., 2016). Therefore, neither of these antibodies add 

diagnostic value compared to currently used markers.  

Low IL-7 levels have been associated with RA and, although this has limited 

standard use due to having lower sensitivity and specificity than ACPA and RF, it 

has limited overlap with ACPA so may aid in the identification of ACPA-negative 

RA patients (Goeb et al., 2013). 

1.3.3 Joint biomarkers 

1.3.3.1 Synovial fluid 

There have been many studies looking at peripheral blood biomarkers in RA as 

they can be tested with minimally invasive techniques. However, there is likely 

an increased chance of identifying specific and sensitive biomarkers in the joints 

of RA patients, as this is where predominant disease pathology occurs. This is 

highlighted by a recent study, which showed that connective tissue growth factor 

(CTGF) has relatively high sensitivity and specificity when measured in the serum 

(86% and 92%, respectively) (Yang et al., 2017). However, this is increased 

further in the synovial fluid, with 96% sensitivity and 91% specificity being 

recorded (Yang et al., 2017).  

Calprotectin has also been studied as both a serum and synovial fluid biomarker. 

In serum, levels correlate with disease activity and are reduced following 

treatment response in both RA and PsA. It is increased in serum of RA patients 

compared to SpA but finding a diagnostic cut-off has proved challenging (Ometto 

et al., 2017). However, calprotectin is more clearly increased in RA above other 

inflammatory arthritis in the synovial fluid, making its use as a diagnostic 

biomarker more feasible in synovial fluid than in serum (Ometto et al., 2017).  
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The synovial fluid cytokine profile has been shown to be discrete in early RA 

compared to other inflammatory arthritis and established RA. In particular IL-13, 

IL-2, IL-4, IL-15, bFGF, and EGF have been shown to be the most important for 

this distinction (Raza et al., 2005b). This may be useful for diagnosis of early RA, 

however due to their transient nature may only be useful within a short window 

of disease duration. It is possible this signature may be associated with the 

‘window of opportunity’ for commencement of treatment, in which remission is 

most successfully induced, which means it could have utility for informing 

treatment decisions.  

PAD2, one of the enzymes responsible for citrullination of proteins, is another 

potential biomarker for RA, being found in 3-fold higher levels in RA compared to 

OA (Damgaard et al., 2016). However, PAD2 is found in higher levels in the 

relatively easier to diagnose ACPA-positive patients compared to ACPA-negative 

patients (Damgaard et al., 2016). In addition, this study compares RA and OA, 

meaning it may not be able to distinguish RA from other inflammatory arthritis 

but rather identify inflammatory disease.  

A number of miRNAs have been shown to distinguish RA from OA when 

measured in synovial fluid. Namely miR-16, miR-146a miR-155 and miR-223 

have all been shown to be significantly increased in RA (Murata et al., 2010). 

However, this study again only included RA, OA, and healthy controls, meaning 

that their utility in distinguishing RA from other inflammatory arthritis is currently 

unknown.  
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1.3.3.2 Synovial tissue 

Synovial tissue is likely to be even more representative than synovial fluid, as it 

is where RA predominantly manifests. It is therefore likely to have the most 

differences between patient groups and hold the most information around 

mechanisms of disease. Synovial tissue is also the most challenging to obtain as 

it requires a relatively more invasive biopsy procedure. However, synovial biopsy 

techniques are generally well tolerated and have even been associated with 

reduced joint pain, swelling, and stiffness after the procedure (Just et al., 2018).  

It has been suggested that there is an activated fibroblast phenotype present in 

early RA (Choi et al., 2017). This may mean that activation markers in synovial 

tissue are able to distinguish early RA from other clinical outcomes. One of these 

such markers is FAP, which was shown to be increased in both the lining and the 

sublining layer, with the sublining expression discriminating between RA and 

other inflammatory arthritis (Choi et al., 2017).  

A study by Yeo et al. (2016) showed that CXCL4 and CXCL7 can differentiate 

early RA from resolving and established disease. They were shown to be 

produced by synovial macrophages, suggesting that this difference may only 

been seen in the synovium and may be missed in peripheral blood. In addition, 

the majority of CXCL4 and CXCL7 was seen outside the vasculature, further 

supporting this hypothesis (Yeo et al., 2016). These markers could potentially be 

useful for differentiating patients with RA from those who will resolve, aiding in 

both diagnosis and treatment decisions.  

Many studies to date have looked at later stage RA, meaning that the biomarkers 

identified are not guaranteed to be applicable in early RA, when it is the most 



27 
 

challenging to diagnose. There is a need for further study of RA-specific 

biomarkers in clinically relevant cohorts including patients with undifferentiated 

arthritis and other inflammatory arthritis. Biomarkers identified in these cohorts 

would be able to aid early diagnosis and allow for early disease-specific 

treatment without over treatment of patients who are destined to resolve.  

1.4 SYNOVIAL TISSUE HETEROGENEITY AND PATIENT 

STRATIFICATION 

Histology has hugely helped develop our understanding of arthritis by enabling 

visualisation of the tissue pathology. This has allowed for the documentation of 

the level of heterogeneity that exists in the synovial tissue of patients with 

inflammatory arthritis, with some studies trying to capture this heterogeneity for 

the stratification of patients, particularly in RA. Heterogeneity exists between 

patients but also within patients, with different areas of a single joint often 

displaying differing phenotypes (Kennedy et al., 1988, Dolhain et al., 1998, 

Boyle et al., 2003). For this reason, investigation of the synovial tissue requires 

multiple different areas to be sampled in order to get an overall picture of the 

whole joint. 

There have been a number of studies looking to score tissue in order to capture 

heterogeneity between patients. Some scoring systems have been developed 

using hematoxylin and eosin (H&E) staining as it is a relatively simple technique 

that can be used to look at the morphology of tissue. Rooney et al. (1988) 

developed such a scoring system that captures the level of synoviocyte 

hypertrophy, fibrosis, proliferating blood vessels, perivascular infiltrates of 
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lymphocytes, focal aggregates of lymphocytes, and diffuse infiltrates of 

lymphocytes, although it was never widely adopted due to its complexity.  

Krenn et al. (2006) later developed another semi-quantitative scoring method, 

also based on H&E staining, that scored the hyperplasia of the lining layer, level 

of inflammatory infiltrate, and density of resident cells and that was able to 

distinguish degenerative and inflammatory arthritis. There was no difference 

between the scores for RA, PsA, and ReA so it is unable to distinguish between 

different inflammatory arthropathies and was developed on later stage disease, 

which generally has more severe inflammation than early disease. However, this 

scoring system was simpler than the score developed by Rooney et al. (1988) so 

has been used more widely.  

Orange et al. (2018) looked at 20 features of synovium, also on later stage 

disease and using H&E, and found that there was a significant amount of 

interrater variability in a number of the features and many were not present in 

any of the samples tested. Therefore, they cut this down to scoring 10 features 

that had fair reproducibility across scorers and that were present in at least 5% 

of samples, resulting in the scoring of plasma cells, binucleate plasma cells, 

Russell bodies, giant cells, neutrophils, fibrin, mucin, detritus, lining hyperplasia, 

and lymphocytes. Alongside histology, they used RNA sequencing to identify 

three patient subgroups based on their transcriptomic profile, comprising low, 

mixed, and high inflammatory subtypes. Those classified as high inflammatory 

had higher clinical inflammatory markers, such as ESR and CRP, although there 

was no correlation with pain, tender or swollen joint counts, or disease duration. 

They then looked to replicate these patient subgroups using their H&E scoring 

and a machine-learning model to allow for cheaper and quicker classification of 
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patients. This showed that both high and low inflammatory subtypes could be 

identified reasonably well but that patients in the mixed inflammatory group 

were harder to identify using H&E alone (Orange et al., 2018).  

A study by Lewis et al. (2019) also integrated histology and transcriptomics but 

on treatment-naïve early RA and identified subgroups, or pathotypes, in 

histology first before exploration in transcriptomics. In this study they used 

immunohistochemistry staining for T cells (CD3), B cells (CD20), macrophages 

(CD68), and plasma cells (CD138) to identify three pathotypes: pauci-immune 

fibroid, which lacks immune infiltrate; diffuse-myeloid, which has sublining 

macrophage infiltration; and lympho-myeloid, which has B cell aggregates. 

Overall, they found that the histology broadly matched the gene expression, with 

scoring for the presence of certain cell types correlating with corresponding gene 

modules for the same cell types. Furthermore, they found that patients with a 

higher inflammatory phenotype at baseline had better response to DMARD 

treatment after 6 months, suggesting potential clinical utility for the stratification 

of patients in this way. Interestingly, analysis of the histological pathotype after 

6 months of DMARD treatment showed that patients who changed to a less 

inflammatory pathotype had larger reductions in disease activity when compared 

to those who changed to a more inflammatory pathotype (Lewis et al., 2019). 

Altogether, this suggests that analysis of histological pathotype when using IHC 

staining has utility for patient stratification and predicting response to treatment 

and that following successful treatment patients can convert to less inflammatory 

pathotypes.  

Other studies have also identified phenotypes that are associated with response 

versus non-response to treatment, with myeloid pathotypes being found to have 
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better response to anti-TNF therapies, while lymphoid pathotypes did not (Dennis 

et al., 2014, Canete et al., 2009). Exploration of gene expression profiles prior to 

treatment identified the presence of T cell and macrophage-related gene 

signatures as being correlated with future response to rituximab, while genes 

associated with remodelling and IFNα were indicative of poor response (Hogan et 

al., 2012). These studies provide a good case for the future use of biomarkers for 

the stratification of patients based on predicted response to specific treatments, 

thereby highlighting potential for a future of personalised medicine in rheumatoid 

arthritis.  

1.5 HYPOTHESES/AIMS 

This study was designed to investigate in detail the histology and gene 

expression of an early inflammatory arthritis cohort. This was intended to build 

upon work carried out by Yeo et al. (2016), in which they used PCR to 

investigate cytokines and identified CXCL4 and CXCL7 as being able to 

distinguish early RA from established RA and resolving disease. It was 

hypothesised that by looking at both histology and whole tissue transcriptomics, 

further biomarkers and mechanisms of disease could be identified that would aid 

in the diagnosis and stratification of early inflammatory arthritis patients and that 

might identify new genes or pathways that could be targeted to drive resolution 

of inflammatory arthritis.  

The overarching aim of this project is to investigate biomarkers of outcome and 

understand mechanisms of disease in early inflammatory arthritis by integrating 

novel methods for classifying H&E stained tissue, including pathotype derivation 

and AI-assisted analysis, with whole tissue RNA sequencing data.  
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I set out to address the following main hypotheses:  

1. Pathotypes, identified from H&E staining alone, will identify early 

inflammatory arthritis patient subtypes and correlate with clinical 

variables, including disease activity, markers of local and systemic 

inflammation, and response to treatment.  

2. Differentially expressed genes or signatures in short duration RA patients 

will distinguish them from other patient groups.  

3. Mechanisms that drive resolution versus persistence can be identified 

using whole tissue RNA sequencing.  

A number of secondary hypotheses were also identified, aiming to answer 

additional questions in the early inflammatory arthritis cohort: 

1. Pathotypes, identified histologically, will correlate with gene expression 

data. 

2. There are genes or pathways that differ between short duration and long 

duration RA that can be identified using whole tissue RNA sequencing.  

3. Biomarkers for good or poor outcomes in RA can be identified in gene 

expression data. 
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2 METHODS 

2.1 PATIENT COHORT AND SAMPLE COLLECTION 

Patient samples were obtained from the Birmingham Early Arthritis Cohort 

(BEACON). Treatment-naïve patients were recruited from either the rapid access 

clinic at Sandwell and West Birmingham Hospitals NHS Trust, the Early Arthritis 

clinic at University Hospitals Birmingham NHS Foundation Trust or the Modality 

primary care consortium rheumatology unit. Patients were categorised into one 

of four different outcomes after 18-month follow up, namely short duration RA 

(sdRA), long duration RA (ldRA), persistent non-RA disease (nonRA) and 

resolving disease (Res) (Figure 2.1). Patients were classified as sdRA if they had 

symptoms for less than 3 months at baseline, and ldRA if they had symptoms for 

6 months or longer at baseline, with both RA groups meeting 2010 ACR/EULAR 

and/or 1987 ACR criteria at 18-month follow up (Arnett et al., 1988a, Aletaha et 

al., 2010). Resolving disease had symptom duration of less than 3 months at 

baseline and was classified by an absence of clinical joint swelling at 18-month 

follow up without the use of DMARD or glucocorticoid treatment in the previous 3 

months. Persistent nonRA also had symptom duration of less than 3 months at 

baseline and included patients with chronic joint inflammation but with a 

diagnosis other than RA at 18-month follow up.   
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Synovial tissue was taken using ultrasound-guided biopsies, as previously 

described (Kelly et al., 2015), and subsequently processed. Tissue was fixed, 

embedded in OCT for frozen sections, and snap frozen as whole tissue in liquid 

nitrogen. Tissue was also placed in formalin and underwent Paraffin embedding, 

sectioning and H&E staining in the University Hospitals Birmingham pathology 

department. For each tissue preservation format, 6-8 representative biopsy 

fragments were processed in order to account for heterogeneity within the joint 

(Kennedy et al., 1988, Dolhain et al., 1998, Boyle et al., 2003).  

Normal control samples were obtained at exploratory arthroscopy from patients 

with joint pain but no imaging, macroscopic or histological synovial 

abnormalities. All patients gave written informed consent and the study had 

ethical approval granted by West Midlands Black Country research ethics 

committee: “Outcomes in patients with inflammatory arthritis (BEACON)”, ethics 

reference: 12/WM/0258; and “Ultrasound guided synovial biopsy in patients with 

arthritis (BEACON biopsy)”, ethics reference: 07/H1203/57. Summaries of 

 

Figure 2.1: Diagram showing the structure of the BEACON cohort.  
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patient characteristics can be found in Chapters 3 and 4 and full characteristics 

can be found in in Appendix 9.1. 

2.1.1 AMP RA Phase II cohort 

The Accelerating Medicines Partnership (AMP) RA phase II cohort was used as an 

external control for the BEACON scoring system. The cohort is a mixed RA cohort 

consisting of treatment naïve or minimally exposed patients, methotrexate 

inadequate responders (≥12 weeks of treatment with stable dose for 4 weeks), 

and patients with inadequate response to one or two TNF-alpha inhibitors (≥12 

weeks of treatment with TNF inhibitors), with a range of disease durations. 

Patients were recruited and samples collected across 15 sites (13 in the US and 2 

in the UK), with clinical data being collected at baseline and after 3 and 6 

months. Synovial tissue was acquired using either ultrasound-guided biopsies or 

surgical procedures and 6-8 fragments were formalin fixed and paraffin 

embedded prior to H&E staining. All patients gave written informed consent and 

the study had ethical approval under the same approvals as the BEACON cohort 

(see above). 

2.2 HISTOLOGY STAINING AND SCORING 

Following paraffin embedding, sectioning and H&E staining, H&E stained slides 

were scanned at x20 magnification using a Zeiss Axio Scan Z1 by Dr Jennifer 

Marshall, Dr Triin Major, Dr Emily Taylor or myself and images stored centrally to 

facilitate reporting by multiple observers using the Zeiss software Zen 2012 (blue 

edition). 

H&E stained images from synovial biopsies were independently scored for four 

characteristics – lining layer thickness, Krenn inflammatory infiltrate score, 



35 
 

BEACON density, and BEACON aggregates. BEACON density and aggregates 

scores are described in Chapter 3.2. The lining layer thickness was recorded as 

an absolute cell number, with the number of cells being manually counted out in 

a straight line from the sublining to the edge of the lining layer. As there were 

multiple fragments per H&E image, fragments were scored individually for each 

section, before a mean or worst-case score was calculated. If a fragment was not 

considered to be synovial tissue, as determined by the absence of both a lining 

layer and a characteristic synovial tissue structure, then it was excluded from 

scoring. 

The Krenn inflammatory infiltrate score was scored as described previously 

(Krenn et al., 2006), and is as follows:  

 0 points – no inflammatory infiltrate  

 1 point – few mostly perivascular situated lymphocytes or plasma cells 

 2 points – numerous lymphocytes or plasma cells, sometimes forming 

follicle-like aggregates 

 3 points – dense band-like inflammatory infiltrate or numerous large 

follicle-like aggregates 

Graphs and statistics were produced using GraphPad Prism v9.0.0, with the 

exception of calculation of intra-class coefficients and weighted Kappa 

coefficients, which were calculated using the irr package in R.  

2.2.1 AMP RA Phase II validation 

Scoring of the AMP RA Phase II cohort was undertaken independently by Prof 

Ellen Gravallese, Prof Brendan Boyce, and Prof Edward DiCarlo for BEACON 

density, aggregate, and pathotype, as described above. A consensus was then 
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determined and used for analysis, using a mean score for density and median for 

aggregates and pathotype. Graphs and statistics were produced by myself using 

GraphPad Prism v9.0.0.  

2.2.2 AI-assisted Scoring 

AI-assisted scoring was carried out using the Visiopharm Integrator System 

(VIS). Initial proof-of-concept trial for the detection of tissue, lining layer, and 

aggregates, with some further Analysis Protocol Packages (APP) development 

was carried out by myself. These APPs where then further developed and 

validated alongside new APPs for the detection of lymphocytes and plasma cells 

by Dr Nasullah Khalid Alham using VIS version 2020.09.0.8195. Identification of 

features for training and validation was carried out using AIDA (Annotation of 

Image Data by Assignments) by Prof Clare Verrill, Dr Andrew Filer, and Prof 

Dagmar Scheel-Toellner. AIDA is an annotation platform developed at the 

University of Oxford by Alan Aberdeen, Dr Nasullah Khalid Alham, Prof Clare 

Verrill, and Prof Jens Rittscher.  

Tissue and aggregate detection APPs were based on threshold classification, 

lining layer was developed using DeepLabv3 in the AI module, and lymphocyte 

and plasma cell detection APPs were developed using the U-Net model also 

within the AI module. Lining layer, plasma cell and lymphocyte APPs were 

developed through two, three, and five rounds of training, respectively, with 

training annotations being accepted where there was agreement between at least 

two of the three annotators. Validation was undertaken using AIDA, with 

reviewers marking annotations as ‘correct’, ‘partially correct’, ‘not sure’, or 

‘incorrect’ for the lining layer and aggregate APPS and with comparison of cell 
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counts within small areas used for the lymphocyte and plasma cell APPs. 

Validation of the plasma cell and lymphocyte APPs is still ongoing. 

2.3 RNA EXTRACTION AND LIBRARY PREPARATION 

Prior to conducting RNA extraction on samples from the BEACON cohort, 6 trial 

runs were undertaken in order to optimise technique and ensure high 

concentrations of good quality RNA could be obtained from tissue. Tonsil samples 

obtained from patients undergoing tonsillectomy were used for initial trial runs 

(n=4), before moving on to synovial tissue from late stage RA patients 

undergoing joint replacement (n=2). These samples were obtained from the 

Royal Orthopaedic Hospital NHS Trust from patients seen by Mr. Andrew Thomas 

under existing ethical permissions. Trial runs (n=4) were also undertaken on 

thick sections (TS) of synovial biopsies from the BEACON cohort to ensure high 

quality RNA could be extracted from these. 

Snap frozen whole tissue (WT) or 40 μm thick sections (TS) (sectioned on a 

cryostat from frozen tissue embedded in OCT) were transferred to a PowerBead 

Tube (Qiagen) containing 2.38 mm metal beads and 300 µl buffer RLT prior to 

homogenisation in a TissueLyser II (Qiagen) for 2 minutes at 30 Hz. RNA was 

extracted from the resulting sample using an RNeasy Fibrous Tissue Mini Kit 

(Qiagen) according to manufacturer’s instructions. Aliquots of RNA samples were 

then sent to Genomics Birmingham for quality control (QC) analysis on an Agilent 

2200 TapeStation system and Qubit, which was carried out according to 

manufacturer’s instructions. An RNA integrity number (RIN) and concentration 

was obtained (Figure 2.2). The RIN is an algorithm that captures the level of RNA 

degradation in a sample by assessing the signal intensity of ribosomal RNA (28S 
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and 18S) compared to the signal from shorter RNA fragments, as visualised on 

an electropherogram (Schroeder et al., 2006). Samples were accepted if they 

had a RIN score over 5, or if the electropherogram showed minimal RNA 

degradation when assessed in collaboration with Genomics Birmingham, despite 

a low RIN score.  

 

Samples were normalised to contain 60ng RNA in 50 μl volume and sent to 

Genomics Birmingham for library preparation and sequencing. Library 

preparation was conducted using the NEBNext Ultra II Directional RNA Library 

Prep Kit for Illumina and the NEBNext Poly(A) mRNA Magnetic Isolation Module 

according to manufacturer’s instructions. A sample with high concentration and 

RIN score was split across all library preparation batches to allow for 

 

Figure 2.2: RIN scores and concentrations of samples for sequencing. 

RIN scores (above) and concentration (below) were measured by Genomics 

Birmingham using a Tapestation and a Qubit, respectively. 
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quantification of batch effect during analyses. Figure 2.3 shows the resulting 

library sizes and concentrations. Twelve samples had lower library concentrations 

than expected (<3 ng/μl). Ten of these were repeated with higher input RNA 

concentration but two had very low initial RNA concentrations so were excluded 

at this stage. Samples were sequenced to a read depth of 25 million reads per 

sample using NextSeq 500/550 v2.5 flow cells on a NextSeq system (Illumina).  

 

2.4 RNA SEQUENCING DATA ANALYSIS 

The sequencing data were prepared for analysis under the supervision of Dr 

Csilla Varnai and Dr Jason Turner using CaStLeS (Compute and Storage for Life 

 

 

Figure 2.3: Library preparation quality control. Library preparation was 
conducted by Genomics Birmingham. Library size (above) and concentration 

(below) are shown. 

B
x
0

0
6

B
X

0
0
8

B
X

0
1
0

B
X

0
1
1

B
X

0
1
2

B
X

0
1
3

B
X

0
1
4

B
X

0
1
7

B
X

0
1
8

B
X

0
2
0

B
X

0
2
3

B
X

0
2
4

B
X

0
2
6

B
X

0
2
8

B
X

0
3
0

B
X

0
3
1

B
X

0
3
8

B
X

0
4
2

B
X

0
4
5

B
X

0
4
8

B
X

0
5
1

B
X

0
5
4

B
X

0
5
6

B
X

0
5
7

B
X

0
6
2

B
X

0
6
3

B
X

0
6
4

B
X

0
6
5

B
X

0
6
6

B
X

0
6
7

B
X

0
7
1

B
X

0
7
3

B
X

0
7
4

B
X

0
7
5

B
X

0
7
7

B
X

0
8
7

B
X

0
9
3

B
X

1
0
1

B
X

1
0
2

B
X

1
0
3

B
X

1
0
4

B
X

1
0
6

B
X

1
0
7

B
X

1
1
0

B
X

1
1
2

B
X

1
1
3

B
X

1
1
5

B
X

1
1
6

B
X

1
1
7

B
X

1
1
8

B
X

1
1
9

B
X

1
2
1

B
X

1
2
3

B
X

1
2
7

B
X

1
3
0

B
X

1
3
1

B
X

1
3
5

B
X

1
3
8

B
X

1
3
9

B
X

1
4
1

B
X

1
5
0

B
X

1
5
1

B
X

1
5
2

B
X

1
5
3

B
X

1
6
0

B
X

1
6
4

B
X

1
6
5

B
X

1
6
6

B
X

1
6
7

B
X

1
6
8

B
X

1
7
3

B
X

1
7
5

B
X

1
7
8

B
X

1
8
8

B
X

1
9
4

B
X

1
9
5

B
X

2
0
1

B
X

2
0
2

B
X

2
1
7

B
X

2
2
1

B
X

2
3
0

B
X

2
4
0

B
X

2
4
2

B
X

2
4
5

B
X

2
4
8

B
X

2
7
2

B
X

2
7
5

B
X

2
7
8

B
X

2
8
1

B
X

2
8
5

B
X

2
8

7
-p

1
B

X
2

8
7
-p

2
B

X
2

8
7
-p

3
B

X
2

8
7
-p

4
B

X
2

9
6

B
X

3
0
3

200

250

300

350

400

L
ib

ra
ry

 S
iz

e

B
x
0

0
6

B
X

0
0
8

B
X

0
1
0

B
X

0
1
1

B
X

0
1
2

B
X

0
1
3

B
X

0
1
4

B
X

0
1
7

B
X

0
1
8

B
X

0
2
0

B
X

0
2
3

B
X

0
2
4

B
X

0
2
6

B
X

0
2
8

B
X

0
3
0

B
X

0
3
1

B
X

0
3
8

B
X

0
4
2

B
X

0
4
5

B
X

0
4
8

B
X

0
5
1

B
X

0
5
4

B
X

0
5
6

B
X

0
5
7

B
X

0
6
2

B
X

0
6
3

B
X

0
6
4

B
X

0
6
5

B
X

0
6
6

B
X

0
6
7

B
X

0
7
1

B
X

0
7
3

B
X

0
7
4

B
X

0
7
5

B
X

0
7
7

B
X

0
8
7

B
X

0
9
3

B
X

1
0
1

B
X

1
0
2

B
X

1
0
3

B
X

1
0
4

B
X

1
0
6

B
X

1
0
7

B
X

1
1
0

B
X

1
1
2

B
X

1
1
3

B
X

1
1
5

B
X

1
1
6

B
X

1
1
7

B
X

1
1
8

B
X

1
1
9

B
X

1
2
1

B
X

1
2
3

B
X

1
2
7

B
X

1
3
0

B
X

1
3
1

B
X

1
3
5

B
X

1
3
8

B
X

1
3
9

B
X

1
4
1

B
X

1
5
0

B
X

1
5
1

B
X

1
5
2

B
X

1
5
3

B
X

1
6
0

B
X

1
6
4

B
X

1
6
5

B
X

1
6
6

B
X

1
6
7

B
X

1
6
8

B
X

1
7
3

B
X

1
7
5

B
X

1
7
8

B
X

1
8
8

B
X

1
9
4

B
X

1
9
5

B
X

2
0
1

B
X

2
0
2

B
X

2
1
7

B
X

2
2
1

B
X

2
3
0

B
X

2
4
0

B
X

2
4
2

B
X

2
4
5

B
X

2
4
8

B
X

2
7
2

B
X

2
7
5

B
X

2
7
8

B
X

2
8
1

B
X

2
8
5

B
X

2
8

7
-p

1
B

X
2

8
7
-p

2
B

X
2

8
7
-p

3
B

X
2

8
7
-p

4
B

X
2

9
6

B
X

3
0
3

0

50

100

150

L
ib

ra
ry

 C
o
n
c
e
n
tr

a
ti
o
n
 (

n
g
/u

l)



40 
 

Sciences), which is a compute and storage resource for life sciences at the 

University of Birmingham (Thompson et al., 2019). Lanes were merged (script in 

Appendix 9.3), contaminating adapter sequences were trimmed using cutadapt 

(Martin, 2011), and QC was undertaken using FastQC (Andrews, 2010). BAM files 

were merged (script in Appendix 9.3), reads were aligned using STAR (Dobin et 

al., 2013) to the NCBI human reference genome GRCh38 (Schneider et al., 

2017) and summarised using Subread featurecounts (Liao et al., 2014). 2 

samples were excluded following FastQC, due to failure of sequence quality and 

GC content checks.  

Subsequent analysis was carried out in R studio version 1.4.1106 using R version 

4.1.0 under the supervision of Dr Csilla Varnai, with help from Dr Jason Turner 

(RStudio Team, 2021, R Core Team, 2021). Packages used for analysis were 

from Comprehensive R Archive Network (https://cran.r-project.org/) or 

Bioconductor (https://www.bioconductor.org/).  

Normalisation and differential expression analysis was undertaken using DESeq2 

(Love et al., 2014), which is based on a negative binomial model and uses the 

Wald test for hypothesis testing. Features with fewer than 50 raw counts across 

all samples were excluded to reduce the size of the dataset. This is an arbitrary 

cut-off to reduce the size of the dataset and decrease processing times, rather 

than to increase statistical power, as DESeq2 performs independent filtering 

based on normalised counts to address this. Stepwise regression analysis that 

was used to test for factors that influence variation in the dataset was done using 

the olsrr package (Hebbali, 2020). Heatmaps of the most variable and 

differentially expressed genes were produced using ComplexHeatmap (Gu et al., 

2016).  
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DESeq2 was also used for variance stabilisation transformation (VST), for 

normalisation prior to visualisation of the data, and for Principal Component 

Analysis (PCA). PCA gene contribution plots and scree plot were produced using 

the factoextra package (Kassambara and Mundt, 2020). UMAP was carried out 

using the umap package (Konopka, 2020) and k-means clustering using the R 

stats package. Tests for optimal number of clusters were conducted using 

factoextra (Kassambara and Mundt, 2020). K-means is a simple algorithm that 

forms clusters around centroids, grouping similar samples together in an 

unsupervised way, given the number of clusters. K-means clustering was 

selected for this analysis as it is simple and gives rapid clustering solutions, and 

because the nature of the dataset meant the limitations of the approach would 

have minimal impact on results. This was due to the lack of outliers in the 

dataset, which can have large affects on the clustering results with this 

algorithm, the clear number of optimal clusters given by clustering tests, and the 

presence of relatively uniform circular clusters. Furthermore, the use of k-means 

clustering on UMAP data has previously been shown to have good performance 

(Hozumi et al., 2021).  

clusterProfiler was used for Gene ontology (GO) pathway analysis (Yu et al., 

2012). GO analysis was only carried out on genes with associated Entrez IDs. 

Scripts for this analysis were adapted from a script developed by Dr Dina 

Abdelmottaleb. The R scripts used for analysis of the RNA sequencing dataset 

can be found in Appendix 9.4.  

Metabolic gene lists used for exploration of metabolic pathways in Chapter 6 

were manually curated using KEGG and relevant literature by Dr Valentina Pucino 
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(Pucino et al., 2019). Genes included in each process can be found in Appendix 

9.7. 
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3 HISTOLOGY SCORING 

3.1 INTRODUCTION 

The histology of the synovium in RA has been an area of study for a long time, 

however there is still a lot that is unknown about the causes and consequences 

of synovial heterogeneity. Furthermore, until recently synovium was 

predominantly obtained during arthroplasty, which is only undertaken in very 

late-stage disease. With the increasing availability of synovium from patients 

with early disease due to the development of less invasive biopsy techniques, 

there is a need to understand how early stage RA differs from both the late-stage 

disease that has been studied previously and from other inflammatory arthritides 

at an early stage. Furthermore, stratification of patients with early inflammatory 

arthritis may enable targeted treatment, making this an important area of 

research. 

There have been a number of scoring systems developed to try to capture some 

of the heterogeneity of the synovium in RA, varying in complexity of the staining 

and expertise required for scoring (Rooney et al., 1988, Krenn et al., 2006, 

Orange et al., 2018, Lewis et al., 2019). An early scoring system by Rooney et 

al. (1988) was developed on H&E stained tissue to capture variation in the 

synovial tissue from late-stage RA patients. In this scoring system six features of 

the synovium are scored on an 11-point scale (0-10), including synoviocyte 

hyperplasia, fibrosis, blood vessels, and three different lymphocyte measures 

(Rooney et al., 1988). However, this scoring system was not widely adopted due 

to its complexity.  
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A scoring system that is commonly used was developed by Krenn et al. (2006) to 

distinguish rheumatic disease from degenerative disease, such as osteoarthritis. 

This system was adopted in favour of the score by Rooney et al. (1988) 

predominantly due to its simplicity. The score is based on readily available H&E 

staining but, having been developed predominantly on late-stage disease, may 

lack the sensitivity required to stratify early stage inflammatory arthritis. In 

addition, the scoring lacks clarity and has minimal example images to support 

reliable, reproducible scoring (Figure 3.1). This system also does not provide a 

way of stratifying into pathotypes and combines the complexity and density of 

inflammatory infiltrate into a single score.  

A more recent approach, developed by Orange et al. (2018), undertook a 

comprehensive exploration of the RA synovium, scoring 20 histological features 

for presence and reliability, again from H&E stained tissue, and relating these to 

subtypes identified from gene expression data, comprising low, mixed, and high 

inflammatory phenotypes. Plasma cell features were found to define the high 

inflammatory subtype, although histological features were less able to separate 

the low and mixed inflammatory subtypes. This scoring approach required 

extensive expertise in synovial histology, making it inaccessible in most research 

settings, and also beyond the reach of most NHS departments in the UK, and 

was developed on tissue from late-stage disease.  

Lewis et al. (2019) also used both histology and gene expression data to identify 

pathotypes in RA but using biopsies from treatment-naïve early RA patients with 

symptom duration of less than 12 months. They identified three pathotypes; 

lympho-myeloid, diffuse-myeloid, and pauci-immune fibroid, but required 
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immunohistochemistry staining for B cells, T cells, macrophages, and plasma 

cells.  

 

This study therefore aimed to improve upon these scoring systems by creating a 

new system that is simple to use, enables pathotype derivation, and is based on 

H&E staining alone. This new scoring system was developed on a mixed 

inflammatory arthritis cohort, rather than solely on RA, making it applicable 

across all inflammatory arthritides. Furthermore, the possibility of developing an 

AI-assisted scoring system was explored, which would allow for automatic 

 

Figure 3.1: Example images provided for the scoring system 
developed by Krenn et al. (2006). This figure is Figure 1 in the Krenn et al. 

paper and shows example images and scoring for lining cell layer, synovial 

stroma, and inflammatory infiltrate.  



46 
 

detection of features of the synovium with more quantitative associated 

measures without the need for relatively time-intensive manual scoring.  

3.2 SCORING DEVELOPMENT 

The BEACON scoring system was formulated to improve upon currently available 

scoring systems by providing a simple system that allows for pathotype 

derivation from H&E stained synovial tissue. It was developed on a cohort of 

treatment-naïve early inflammatory arthritis patients from the BEACON cohort. 

This scoring system involves grading the density of the immune infiltrate and the 

degree of complexity of aggregates, and uses these to calculate a summary 

pathotype for the overall tissue. The aggregate grading system was broadly 

based on aggregate scoring from previous studies developed using staining, 

predominantly the system described by Manzo et al. (2005) and used by Lewis et 

al. (2019) in their pathotype derivation. The density and aggregate grades are 

scored as follows: 

BEACON density grading: 

 Grade 0 – no infiltrate 

 Grade 1 – low density (scarce) infiltrate 

 Grade 2 – medium density infiltrate 

 Grade 3 – high density or band like infiltrate 

BEACON aggregate grading: 

 Grade 0 – no aggregates 

 Grade 1 – low 6-9 radial cell count  

 Grade 2 – medium 10-19 radial count 
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 Grade 3 – high ≥ 20 radial count 

Aggregates are graded on maximum longitudinal diameter of the structure, with 

both lymphocyte and plasma cell aggregates allowed. For each biopsy 6-8 

fragments are obtained to ensure any tissue heterogeneity is captured, so 

fragments are graded independently before summary grades for the whole tissue 

are calculated. Density is reported as a mean of fragment grades and aggregates 

as a worst case of any fragment. An atlas describing the grading was created, 

including representative images whose grades were agreed upon by three 

independent scorers (Appendix 9.2). Representative images for the grading can 

be seen in Figure 3.2.  



48 
 

 

Pathotypes are then assigned based on the density and aggregate grading as 

follows: 

 Lymphoid: presence of significant aggregates 

o Presence of ≥1 grade 1 aggregate in at least two fragments, or any 

grade 2 aggregate, or any grade 3 aggregate. 

 Diffuse: presence of immune infiltrate but absence of significant 

aggregates 

o Does not meet lymphoid criteria, mean fragment density grade ≥1. 

 Pauci-immune: Absence of immune infiltrate 

 

Figure 3.2: Representative images showing varying levels of immune 

infiltrate. (A) An uninflamed section, grade of 0 for both density and 
aggregates. (B) Grade 1 density and no aggregates. (C) Grade 2 density and 

no aggregates. (D) Large aggregate with a grade of 3, grade 3 density. H&E 
images were produced as described in Chapter 2.2, with fixing, sectioning, 
and staining being undertaken by the University Hospitals Birmingham 

pathology department and imaging being done by Dr Jennifer Marshall or Dr 

Triin Major. 
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o Does not meet lymphoid criteria, mean density grade <1. 

Representative images of tissues classified as pauci-immune, diffuse, and 

lymphoid can be seen in Figure 3.3.

 

3.3 RELIABILITY TESTING 

Two rounds of inter-reader reliability testing were undertaken sequentially. 

Firstly, an internal reliability test, conducted by those developing the scoring 

system at the University of Birmingham who had varying levels of experience 

 

Figure 3.3: Representative images of pauci-immune, diffuse, and 

lymphoid tissues. Pathotypes were classified based on density and 
aggregate scores from the BEACON scoring system. (A) The pauci-immune 
tissue lacks immune infiltrate. (B) The diffuse tissue has immune infiltrate but 

it is not organised into aggregates. (C) The lymphoid tissue contains large 
aggregates. H&E images were produced as described in Chapter 2.2, with 

fixing, sectioning, and staining being undertaken by the University Hospitals 
Birmingham pathology department and imaging being done by Dr Jennifer 

Marshall or Dr Triin Major. 
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with synovial histology but who were not trained histopathologists, to assess 

whether those involved in developing the scoring system had good agreement. 

Secondly, an external reliability test, conducted by trained histopathologists from 

outside the University of Birmingham to assess whether external 

histopathologists had good agreement when using the BEACON scoring system.  

Ten representative H&E images were independently scored for three 

characteristics, namely Krenn infiltrate, BEACON infiltrate density, and BEACON 

aggregate size, as shown in Figure 3.4. There was good internal agreement when 

using the BEACON scoring system, with mean density having an ICC of 0.938 

and the aggregate grading having a slightly lower but still good Kappa coefficient 

of 0.769. BEACON density had a very similar ICC to the Krenn infiltrate score 

(0.938 and 0.937, respectively). The summary BEACON pathotype also showed 

good reliability, with a Kappa score of 0.722. This shows that internally the 

BEACON scoring system was reproducible across scorers, therefore external 

validation was sought to test reproducibility across other sites. 
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For the external reliability testing ten representative H&E images were 

independently scored for density and aggregates, this time by four 

histopathologists and members of the Accelerating Medicines Partnership (AMP) 

(https://www.nih.gov/research-training/accelerating-medicines-partnership-

amp) consortium before a pathotype was calculated. The density score showed 

high reliability between scorers, with an ICC of 0.896 (Figure 3.5). However, 

there was lower agreement when grading aggregates, predominantly due to the 

  

  

Figure 3.4: Internal reliability testing. 10 representative H&E samples 
were scored independently by 3 scorers (myself, Dr Andrew Filer and Prof 
Dagmar Scheel-Toellner). Each fragment within a sample was scored for 

Krenn infiltrate (D), BEACON density (A), and BEACON aggregates (B) and a 
mean or worst case score calculated before pathotype derivation (C). 

Pathotypes are shown as numbers, with one being pauci-immune, two being 
diffuse, and three being lymphoid. The Krenn score refers to the Krenn 
infiltrate score alone. Weighted Kappa or Intraclass Correlation Coefficients 

(ICC) are shown. 
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presence of outliers (Kappa = 0.735), resulting in lower agreement on the final 

pathotype score (Kappa = 0.571). 

 

As there was disagreement in the aggregate grading between scorers, the 

exercise was repeated following a consensus exercise and refinement of the 

atlas. Figure 3.6 shows the resulting agreement of the aggregate and pathotype 

scores. The aggregate regrading showed good agreement, with a Kappa score of 

0.862, which resulted in improved agreement for the pathotype score as well, 

with a Kappa of 0.754. 

  

 

Figure 3.5: External reliability testing. 10 representative images were 
independently scored by four individuals in AMP (Prof Brendan Boyce, Prof 

Ellen Gravallese, Prof Edward DiCarlo, and Prof Dagmar Scheel-Toellner) for 
density (A) and aggregates (B) and a pathotype (C) was derived from this. 
Pathotypes are shown as numbers, with one being pauci-immune, two being 

diffuse, and three being lymphoid. Weighted Kappa or ICC are shown. Sample 

5 was excluded from ICC and Kappa calculations due to missing data. 
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Degree of correlation between the density, aggregate, and Krenn infiltrate score 

was assessed. The absence of aggregates (worst-case aggregate grade of 0) was 

associated with a lower mean density grade and Krenn infiltrate score when 

compared to any size of aggregates (p<0.0001). However, there was no 

significant difference between the mean density grades across different 

aggregate sizes (Figure 3.7). There was a strong correlation between BEACON 

density and Krenn infiltrate scores (r=0.92, p<0.0001). 

  

Figure 3.6: External reliability testing: aggregate regrade. Aggregates 

(left) were regraded by the same four scorers and a pathotype score (right) 
was calculated. Weighted Kappa coefficients are shown. Sample 5 was 

excluded from ICC and Kappa calculations due to missing data. 
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3.4 BEACON HISTOLOGY SCORING AND CLINICAL VARIABLES 

Following development and validation, a larger cohort of samples (n=127) were 

then scored for density, aggregates and pathotype and compared to clinical 

variables, including global inflammatory markers, disease activity, and 

ultrasound variables, to test whether the BEACON scoring system may have 

clinical utility. Table 3.1 shows a summary of patient characteristics for this 

cohort and full details can be found in Appendix 9.1. 

 

 

Figure 3.7: Relationship between BEACON density and aggregate 
grades, and the Krenn infiltrate score. (A) BEACON density vs aggregates, 

(B) Krenn infiltrate vs BEACON aggregates, (C) BEACON density vs Krenn 
infiltrate. Krenn score refers to the Krenn inflammatory infiltrate score alone. 

Bars show median values. Kruskal-Wallis with post-hoc Dunn’s multiple 

comparison test; ****p<0.0001. Spearman rank used to assess correlation. 
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Although there might be a tendency towards fewer pauci-immune pathotypes in 

ldRA, there was no significant association between pathotype and clinical group 

(Figure 3.8). There was also no association for the density and aggregate grades 

(Figure 3.9 and Figure 3.10). However, pathotype was significantly associated 

with ultrasound grey scale (US GS) (p=0.001), a measure of synovial 

hypertrophy, and the global inflammatory marker CRP (p<0.001). Interestingly, 

although there was no difference between either DAS28-CRP or DAS28-ESR 

scores across the pathotypes, there was higher patient reported joint pain, 

assessed using a visual analogue scale (VAS), associated with the diffuse 

pathotype than pauci-immune (p=0.003), and higher physician global 

assessment in both the diffuse and lymphoid pathotypes when compared with 

pauci-immune (p=0.01 and 0.04, respectively, Figure 3.8). There were 

insufficient numbers to assess DAS28-ESR response at 12 months statistically, 

due to data only being available for a subset of RA patients, however there was a 

trend towards increased lymphoid pathotype in responders, with the lymphoid 

pathotype making up 69% of responders compared to 23% diffuse and 8% 

pauci-immune, and increased pauci-immune in non-responders, with 50% being 

pauci-immune, 33% diffuse, and 17% lymphoid. 
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Examining the individual grades, density correlated with a number of clinical 

variables, including US GS, CRP, patient VAS, and physician global assessment 

(p=0.0004; r=0.41, p<0.0001; r=0.33, p=0.0009; r=0.31, p=0.004, Figure 

3.9). Significance associated with US PD was lost following Benjamini-Hochberg 

correction for multiple hypothesis testing.  

  

 

  

Figure 3.8: Relationship between pathotype and clinical variables. 

Clinical group (A, n=127), US GS (B, n=100), and DAS28-ESR response (G, 
n=19) show percentages. For CRP (C), DAS28-ESR (D), patient VAS (E), and 

physician global (F) bars show median values. Chi squared or Kruskal-Wallis 
with post-hoc Dunn’s multiple comparison tests; *p<0.05, **p<0.01, 
***p≤0.001. Patient VAS = patient joint pain visual analogue scale, phys 

global = physician global assessment, DAS28-ESR response = EULAR 

response assessed at 12 months, response includes good and moderate. 
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Aggregate worst case, as used in the calculation of pathotype, had insufficient 

numbers for contingency statistics so mean aggregate grade has been used to 

assess association with clinical variables. Mean aggregate grade had a significant 

but weak correlation with CRP (r=0.28, p=0.002), although from the scatter plot 

this does not seem to be a simple linear relationship, and was associated with US 

GS (p=0.002), with lower US GS being associated with lower aggregate grade 

(Figure 3.10). Higher aggregate grade was associated with DAS28-ESR response 

at 12 months in the subset of RA patients with available data (p=0.03), however 

this significance was lost following Benjamini-Hochberg correction.  

 

Figure 3.9: Relationship between BEACON density and clinical 
variables. (A) clinical group, (B) US GS, (C) CRP, (D) patient VAS, (E) 

physicial global. Bars show median values. Kruskal-Wallis with post-hoc 
Dunn’s multiple comparison tests; **p<0.01, ***p≤0.001. Spearman rank 

used to assess correlation. Patient VAS = patient joint pain visual analogue 

scale, phys global = physician global assessment.  
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3.5 EXTERNAL VALIDATION OF THE BEACON SCORING SYSTEM 

To explore the utility of the BEACON scoring system in an external cohort, 

pathotype, density, and aggregate grading was conducted on the AMP RA Phase 

II cohort by Prof Ellen Gravallese, Prof Brendan Boyce, and Prof Edward DiCarlo, 

with consensus scores being used for final classification of each sample (n=103). 

Figure 3.11 shows the relationship between pathotype and clinical variables. 

There were insufficient numbers for statistical testing of association with US GS, 

US PD, and DAS28-ESR response at 6 months. The only variable that was 

significantly associated with pathotype was CRP (p=0.04), with CRP being higher 

in the lymphoid pathotype than pauci-immune. However, this significance was 

lost following Benjamini-Hochberg correction for multiple comparisons.  

 

 

Figure 3.10: Relationship between BEACON aggregate and clinical 

variables. (A) US GS, (B) CRP (C) DAS28-ESR response, (D) clinical group. 
Bars show median values. Kruskal-Wallis with post-hoc Dunn’s multiple 
comparison tests; *p<0.05, **p<0.01. Spearman rank used to assess 

correlation. DAS28-ESR response was not significant following Benjamini-
Hochberg correction. DAS28-ESR response = EULAR response assessed at 12 

months, response includes good and moderate responders. 
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BEACON density associated with US PD (p=0.01) and CRP (r=0.35, p=0.0005) in 

the AMP cohort but not with US GS, patient VAS, or physician global, which were 

associated with density in the BEACON cohort (Figure 3.12). BEACON aggregate 

grading was not significantly associated with any clinical variables in the AMP 

cohort, although there were insufficient numbers to test US GS, US PD, and 

DAS28-ESR response at 6 months (Figure 3.13).  

 

Figure 3.11: Relationship between pathotype and clinical variables in 

the AMP RA Phase II cohort. US GS (A, n=97), US PD (B, n=96), and 
DAS28-ESR response (G, n=41) show percentages. For DAS28-ESR (C), CRP 

(D), patient VAS (E), and physician global (F) bars show median values. Chi 
squared or Kruskal-Wallis with post-hoc Dunn’s multiple comparison tests; 
*p<0.05. Patient VAS = patient joint pain visual analogue scale, phys global = 

physician global assessment, DAS28-ESR response = EULAR response 

assessed at 6 months, response includes good and moderate responders. 
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Figure 3.12: Relationship between BEACON density and clinical 
variables in the AMP RA Phase II cohort. (A) US GS, (B) UD PD, (C) CRP, 
(D) patient VAS, (D) physicial global. Bars show median values. Kruskal-Wallis 

with post-hoc Dunn’s multiple comparison tests; *p<0.05. Spearman rank 
used to assess correlation. Patient VAS = patient joint pain visual analogue 

scale, phys global = physician global assessment. 
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3.6 AI-ASSISTED SCORING 

Although the BEACON scoring system showed good reliability between scorers, it 

was still subject to some differences and could be influenced by human error or 

bias. Furthermore, manual scoring is time-intensive, especially when there are 

large numbers of tissues that require scoring and has limitations in terms of the 

level of accuracy and detail that can be obtained when calculating areas or cell 

numbers. In order to improve on these issues, AI-assisted scoring that allows for 

automatic detection of features of the synovium was explored.  

Initial proof-of-concept APPs (Analysis Protocol Packages) were developed by 

myself to identify tissue, lining layer, and aggregates, before calculating tissue 

 

Figure 3.13: Relationship between BEACON aggregate and clinical 

variables in the AMP RA Phase II cohort. US GS (A, n=98), US PD (B, 
n=97), and DAS28-ESR response (D, n=41) show percentages. CRP (C) bars 
show median values. Chi squared or Kruskal-Wallis with post-hoc Dunn’s 

multiple comparison tests. DAS28-ESR response = EULAR response assessed 

at 6 months, response includes good and moderate responders. 
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area, area and mean thickness of the lining layer, and aggregate area. Figure 

3.14 shows the resulting images with associated results.  

These APPs were then further developed by Dr Nasullah Khalid Alham alongside 

new APPs for the detection of lymphocytes and plasma cells, with manual 

annotation used for training being agreed on with consensus by Prof Clare Verrill, 

Dr Andrew Filer, and Prof Dagmar Scheel-Toellner. Figure 3.15 shows example 

images of the detection of tissue, lining layer, and aggregates and Figure 3.16 

shows the detection of lymphocytes and plasma cells.  

Validation of the lining layer and aggregate detection APPs was completed by 

Prof Clare Verrill, Dr Andrew Filer, and Prof Dagmar Scheel-Toellner. Validation of 

lymphocyte and plasma cell detection APPs is ongoing. 30 out of 41 (73%) 

annotations used as validation for lining layer detection were identified as being 

fully correct by all three reviewers, with a further 8 (93%) being classified as 

either correct or partially correct by all reviewers. Of the three remaining 

annotations, one was classed as incorrect by one reviewer and correct by the 

other two, one was difficult to classify, with reviews classifying it as ‘incorrect’, 

‘not sure’, and ‘partially correct’, and the final one was identified as incorrect by 

two reviewers and partially correct by the final reviewer. There were therefore no 

annotations that all three reviewers identified as incorrect and only a single 

annotation (2%) that two of the three reviewers identified as incorrect.  

37 annotations were used as validation of the aggregate detection APP, of which 

24 (65%) were identified as being correct by all reviewers and 33 (89%) were 

identified as being either correct or partially correct by all reviewers. Of the 

remaining four annotations, one was classified as ‘not sure’ by one reviewer and 
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correct and partially correct by the other two, two failed to reach consensus 

among reviewers, being identified as correct, partially correct, and incorrect, and 

the final annotation was identified as partially correct by two reviewers and 

incorrect by the final reviewer. Overall, validation of the lining layer and 

aggregate detection APPs show that they have good performance and that most 

annotations are deemed fully correct by at least two reviewers (90% and 86%), 

with no annotations for either APP being deemed incorrect by all reviewers.  

Once all APPs are validated, the whole pipeline will be run on tissues from the 

BEACON cohort and results will be compared to the manual BEACON scoring 

system and clinical variables. The use of this pipeline will also be tested in 

another cohort (the AMP RA cohort) to validate its utility outside of the BEACON 

cohort. 
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Figure 3.14: Tissue, lining layer and aggregate detection using 
Visiopharm. Features were detected by AI APPs trained on manual 

annotations. Post-processing was used to calculate the area of the tissue and 
features. (A) The whole process, with tissue detection (green), lining layer 

detection (red) and aggregate detection (yellow). (B) Detection of the lining 
layer in blue. (C) Detection of aggregates in yellow. H&E images were 
produced as described in Chapter 2.2, with fixing, sectioning, and staining 

being undertaken by the University Hospitals Birmingham pathology 

department and imaging being done by Dr Jennifer Marshall or Dr Triin Major. 

A 

B C 
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Figure 3.15: Detection of tissue (green), lining layer (red), and 
aggregates (yellow) using VIS. APPs were developed by Dr Nasullah Khalid 

Alham, by building upon APPs developed by myself in a proof-of-concept trial. 
Annotation for training of APPs and validation was carried out by Prof Clare 
Verrill, Dr Andrew Filer, and Prof Dagmar Scheel-Toellner. H&E images were 

produced as described in Chapter 2.2, with fixing, sectioning, and staining 
being undertaken by the University Hospitals Birmingham pathology 

department and imaging being done by Dr Jennifer Marshall or Dr Triin Major. 
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3.7 DISCUSSION 

The BEACON scoring system represents an alternative to other currently used 

synovial tissue scoring systems, allowing for the stratification of early 

inflammatory arthritis patients into pathotypes according to level and degree of 

organisation of the lymphocytic infiltrate using H&E stained tissue.  

 

Figure 3.16: Detection of lymphocytes (above) and plasma cells 
(below) using VIS. APPs were developed by Dr Nasullah Khalid Alham with 
annotation for training and validation being carried out by Prof Clare Verrill, Dr 

Andrew Filer, and Prof Dagmar Scheel-Toellner. H&E images were produced as 
described in Chapter 2.2, with fixing, sectioning, and staining being 

undertaken by the University Hospitals Birmingham pathology department and 

imaging being done by Dr Jennifer Marshall or Dr Triin Major. 
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The BEACON scoring system showed good reliability between independent 

scorers both internally and externally, as shown by the relatively high Kappa and 

ICC scores achieved. This shows promise that the scoring system is reproducible 

across sites and the associated atlas should help to ensure reproducibility in the 

wider research community.  

As a part of the validation, BEACON density and aggregate grades were 

compared with the Krenn inflammatory infiltrate score (Krenn et al., 2006). 

There was a very strong correlation between the density and infiltrate scores. 

This is likely because both scores are capturing the degree of infiltration of 

immune cells. However, the aggregate grade did not exhibit the same level of 

agreement with the other two scores. In the absence of aggregates there was a 

lower density score when compared to any other aggregate grade, however 

there was no difference in the density grade across different sized aggregates. 

Unsurprisingly, given the degree of similarity, this was also true for the Krenn 

infiltrate score. A plausible explanation for this is that the aggregate score is 

capturing information that the Krenn infiltrate score does not around the degree 

of organisation of the inflammatory infiltrate. However, this could also be due to 

the smaller number of samples that have high aggregate grades reducing the 

statistical power associated with these comparisons, as the majority of samples 

(54%) had an aggregate score of zero.  

Higher BEACON density was associated with increased synovial hypertrophy (US 

GS) and systemic inflammation (CRP), and weakly with physician global 

assessment and patient joint pain (VAS) in the BEACON cohort. This may be due 

to the lymphocytic infiltrate enhancing production of pro-inflammatory mediators 

both directly and indirectly, resulting in increased synovial inflammation and 
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hypertrophy, as well as increased systemic inflammatory markers. One such 

mechanism is via the production of systemic IL-6, predominantly by 

macrophages and fibroblasts, which drives CRP production. Lymphocytes induce 

expression of IL-6 via the production of other pro-inflammatory cytokines, such 

as IL-17 produced by Th17 cells (Noack and Miossec, 2017). Alternatively, it may 

be that production of pro-inflammatory mediators, including chemokines, by 

activated synovial fibroblasts drives both increased CRP production and immune 

cell infiltration. However, activated synovial fibroblasts are likely to be present in 

all inflamed synovial tissue, with the main histological difference between low 

and high density tissues being the presence and intensity of the lymphocytic 

infiltrate. From the current data, this suggests that lymphocytes contribute to the 

increased production of CRP, even if they do not initiate it, although notably this 

does not take into account the presence of different fibroblast subtypes that can 

drive different pathological processes, which are not possible to identify using 

H&E staining alone (Croft et al., 2019). Aggregate grade was also associated 

with US GS and CRP, however the correlation with CRP was weak so may not be 

of biological relevance.  

BEACON pathotype was not different across clinical groups, meaning it would not 

have utility as a diagnostic tool. This was also the case for the density and 

aggregate scores. This suggests that, although there is a large degree of 

heterogeneity, that heterogeneity in tissue structure is seen across different 

inflammatory arthritides. This may allow for the study of common mechanisms 

across diseases, potentially leading to the development of treatments for generic 

processes involved in inflammatory arthritis, regardless of diagnosis. This has 

already been shown to be possible, for example in the case of anti-TNF therapy, 
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which targets a common inflammatory cytokine and is effective in many 

inflammatory arthropathies (Bradley, 2008).  

From this study we cannot confirm whether pathotype remains constant 

throughout disease course or is associated with different disease stages. 

However, the similar proportions of pathotypes in sdRA and ldRA suggest that 

duration of disease may not be the only explanation. It has been shown that 

pathotype can change following 6-month DMARD treatment, with transition to a 

less inflammatory pathotype being associated with response to treatment (Lewis 

et al., 2019). However, whether pathotype remains constant in the absence of 

treatment remains unknown.  

Pauci-immune pathotype was associated with lower CRP and physician global 

assessment compared to diffuse and lymphoid pathotypes, and lower patient 

VAS compared with the diffuse pathotype in the BEACON cohort. There was also 

a greater proportion of pauci-immune pathotype in patients with low US GS. 

Overall, this may suggest a less inflammatory, milder disease in the pauci-

immune group but there was no association with reduced disease activity 

(DAS28). Furthermore, pauci-immune pathotypes have previously been shown to 

be less responsive to treatments, such as TNFα-blockade (Nerviani et al., 2020), 

which may result in poorer long-term outcomes. This could be because distinct 

disease mechanisms are involved in different pathotypes, which may mean that 

they require different targets for successful treatment. 

Pathotype, as described in previous studies, has been shown to have some utility 

in predicting response to treatment in RA, with more inflammatory phenotypes 

generally resulting in better response (Humby et al., 2019b, Dennis et al., 2014, 
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Lewis et al., 2019, Nerviani et al., 2020). In this study, there was a trend 

towards increased lymphoid pathotype in responders and increased pauci-

immune pathotype in non-responders, determined using EULAR DAS28-ESR 

response at 12 months (van Gestel et al., 1996). However, insufficient numbers 

were available to assign statistical significance. Higher mean aggregate score 

was also associated with DAS28-ESR response, although significance was lost 

following correction for multiple comparisons. These data show similar trends to 

previous studies, including those that relied on staining beyond H&E (Nerviani et 

al., 2020, Lewis et al., 2019, Humby et al., 2019b). Differences in response of 

pathotypes could be due to the target mechanisms of treatments for 

inflammatory arthritis. Many treatments for rheumatoid arthritis currently target 

immune and inflammatory processes, so it may be that currently we are not 

targeting the mechanisms driving pauci-immune disease subtypes. Further study 

of this pathotype to identify new treatment targets may improve response rates 

in the future. As disease is likely less driven by immune infiltrate in this patient 

subset, current research efforts into synovial fibroblasts may also find new 

targets that prove to be more effective (Siebert et al., 2020, Croft et al., 2019, 

Montero-Melendez et al., 2020, Diller et al., 2019). 

Validation of the BEACON scoring system was sought in an external cohort, 

namely the AMP RA Phase II cohort. In agreement with the BEACON cohort, both 

pathotype and density were associated with CRP, with lymphoid pathotypes 

having higher CRP than pauci-immune and density positively correlating with 

CRP. However, many of the associations between pathotype, density, and 

aggregate scores and clinical variables seen in the BEACON cohort were not seen 

in the AMP cohort. This was partly be due to insufficient numbers largely 
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preventing the use of contingency statistics in the case of pathotype and 

aggregate scoring, with data on mean aggregate grading not being available to 

overcome this, as was used for the BEACON cohort. Indeed, some similar 

patterns were seen, with pauci-immune pathotype tending to be higher in low US 

GS scores, and increased presence of aggregate grade 0 in patients with low US 

PD scores. However, there were some associations that did not seem to be 

present in the AMP cohort despite this, including patient VAS and physician 

global that showed no relationship with pathotype or density.  

These differences are likely due to the difference in cohort composition, as 

BEACON is an early inflammatory arthritis cohort with a range of disease 

activities whilst the AMP cohort is a mixed RA cohort, including patients at 

different disease stages, but all with high disease activity. The BEACON scoring 

system was developed for use on early disease, so may not capture features of 

more advanced, late stage disease. Furthermore, the AMP cohort includes 

patients who have undergone treatment, which has been shown to have an 

impact on pathotype in previous studies (Lewis et al., 2019). Therefore, it may 

be beneficial to seek validation in another early inflammatory arthritis cohort, to 

confirm utility in these patient groups.  

In summary, the BEACON scoring system represents an alternative to previously 

developed histology scoring systems for inflammatory arthritis. It allows for 

pathotype derivation from H&E stained tissue and captures the level and degree 

of organisation of the lymphocytic infiltrate. This tool shows similar associations 

to other previously developed systems without requiring further staining or 

extensive expertise in synovial histology.  
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Development of an AI-assisted scoring pipeline using VIS is currently underway, 

with APPs for the detection of tissue, lining layer, and aggregates having been 

developed and validated and APPs for lymphocyte and plasma cell detection 

developed and undergoing validation. This should allow for the detection of 

features of the synovium without human bias and allow for more reproducible 

results when compared to more subjective semi-quantitative scoring systems.  

Validation of the lining layer and aggregate APPs showed good performance but 

also highlighted the challenges around reaching a consensus between reviewers. 

This is particularly true in the case of the aggregate score, for which two 

annotations were marked as correct, partially correct, and incorrect by different 

reviewers. This makes it complicated to determine ground truth for APP 

development but also highlights the difference in opinion between scorers, which 

would be overcome when using automatic detection of these features compared 

with manual scoring, resulting in more reproducible results.  

Unfortunately, the pipeline for automatic detection of features has not been fully 

validated or run on the whole cohort, meaning there is not yet data available to 

investigate how this correlates with the manual BEACON scoring system or 

clinical variables. Upon final validation of the APPs, these questions will be 

explored in the BEACON cohort, and validation will be sought in an external 

cohort.  

Overall, the manual BEACON scoring system provides a simple system that is 

easy to use and has good reliability between scorers. It also correlates with 

measures of local and systemic inflammation so has clinical relevance for patient 

stratification. An AI-assisted analysis pipeline is still in development but shows 
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promise for removing human bias and increasing the reproducibility of histology 

scoring in the future, while also allowing for the calculation of quantitative 

measures of features of the synovium.  

 



74 
 

4 RNA SEQUENCING: SOURCES OF VARIATION 

4.1 INTRODUCTION 

Given the inability to distinguish clinical groups from histological scoring alone, 

whole tissue RNA sequencing was undertaken to explore the similarities and 

differences in gene expression across the inflammatory arthritis cohort. The aim 

of this work was to explore pathogenic mechanisms in more detail and see how 

this related to the histological variables explored in the previous chapter. 

Similar studies comparing histology with gene expression have been undertaken 

in RA alone, generally finding subgroups of RA patients with different levels of 

immune infiltrate and varying dominant cell types (Orange et al., 2018, Lewis et 

al., 2019). However, a comprehensive analysis of the heterogeneity across early 

inflammatory arthritides had not yet been undertaken, and should allow for the 

identification of common mechanisms that will increase our understanding of the 

processes driving inflammation in the joint, as well as disease-specific 

mechanisms, which may identify new therapeutic targets. 

This chapter will describe the major sources of variation within the RNA 

sequencing dataset and whether they are associated with any clinical or 

histological variables, while also undertaking quality control (QC) and exploring 

confounding factors that may need to be corrected for in future analyses.  

4.2 PATIENT CHARACTERISTICS 

A summary of patient characteristics for the final cohort used in the analyses can 

be found in Table 4.1 and full details can be found in Appendix 9.1. 
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In order to confirm the disease trajectory of the resolving patients when biopsied 

and as this was not routinely recorded, Prof Karim Raza and Dr Andrew Filer 

explored patients’ clinical notes and blood test results to assess whether they 

were at a stage of worsening or resolving inflammation at the time the samples 

were taken. Patients were categorised as ‘definite improving phase’, ‘likely 

improving phase’, ‘worsening phase’, or ‘unknown’. Of the 14 resolving patients, 

only one was in a worsening phase, eight were in a definite improving phase, 

three were likely improving, and two were unclear from their notes and so 

classified as unknown. Therefore, the majority (79%) of the resolving patients 

were most likely in a phase of actively resolving inflammation at the time of 

biopsy. 

The normal samples were all uninflamed macroscopically, histologically, and on 

imaging when classified as normal prior to the commencement of this study. This 

was confirmed histologically on H&E stained images for the three normal samples 

that had available images in the present study (Figure 4.1).  

 Normal Resolving NonRA sdRA ldRA Total 

Number 5 14 13 18 35 85 

Female (n) 3 (60%) 5 (36%) 7 (54%) 9 (50%) 20 (57%) 44 (52%) 

Age 38 48 45 58 59 54 

DAS28-ESR NA 3.9 4.4 5.4 5.7 5.1 

US GS NA 1.4 1.7 1.9 2.2 1.9 

US PD NA 0.7 1.2 1 1.2 1.1 

Table 4.1: Summary of patient characteristics. Values show mean unless 
otherwise stated. DAS28 = disease activity score, ESR = erythrocyte 

sedimentation rate, US GS = ultrasound greyscale, US PD = ultrasound power 

Doppler. 
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4.3 QC & EXPLORATION OF CONFOUNDERS 

Exploration of the most variable genes in the RNA sequencing dataset was 

conducted to identify outlying samples. One sample was identified as being an 

outlier initially, having high expression of a number of genes that were not 

expressed in other samples. These genes were identified as being highly 

  

 

Figure 4.1: H&E stained images of the normal control samples. A-C are 
H&E images of the three of the normal samples that had images available in 

the present study. These show normal, uninflamed synovial tissue consisting 
predominantly of adipocytes. H&E images were produced as described in 

Chapter 2.2, with fixing, sectioning, and staining being undertaken by the 
University Hospitals Birmingham pathology department and imaging being 

done by Dr Jennifer Marshall or Dr Triin Major. 

A B 

C 
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expressed in skin (KRT1, KRT2, KRT5, KRT14, DSP, FLG, and FLG2), suggesting 

some skin contamination during the biopsy procedure. This sample was therefore 

removed from future analyses to prevent confounding of the results. 13 samples 

also showed exclusive high expression of a number of genes (Figure 4.2), which 

are highly expressed in skeletal muscle. The same samples also separated by 

principal component analysis (PCA) on principal components (PCs) one and two 

(Figure 4.3). These samples were removed from analyses at this stage, however 

will be discussed further later in the chapter.  
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When exploring the top most variable genes and PCA, it became apparent that a 

large amount of variation was attributed to patient sex, with Y-linked genes, 

XIST and TSIX coming up as highly variable and samples being split by sex in 

PC4 (Figure 4.2 and Figure 4.3). After removal of the Y chromosome, XIST and 

TSIX, sex was no longer associated with any PC and no sex-related genes came 

 

Figure 4.2: Heatmap of the top 100 most variable genes. Top 100 most 
variable genes are shown with hierarchical clustering on columns and rows. 

Bar along the top shows clinical group. Labels capture general information 

about the genes. IG = immunoglobulin.  
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up as being highly variable (Figure 4.5 and Figure 4.6). These genes were 

therefore removed from future analyses.  

Another large source of variation was immunoglobulin variable (IGV) genes 

(Figure 4.2). This was likely an overrepresentation of their prevalence as IGV 

genes, that is V-, D-, and J-gene segments, are all counted individually, resulting 

in a large number of genes associated with IGs. IGV genes were removed from 

this and future analyses, with IG constant genes retained to ensure that the 

overall IG signal was not lost.  

To ensure confounders were corrected for in the RNA sequencing differential 

expression design, the impact of potential confounding and important biological 

factors on the variation of the overall RNA sequencing data was explored. Linear 

modelling and stepwise regression were used to test the influence of both 

biological and confounding factors on varying forms of the data, including most 

variable genes and PCs (Table 4.2). Variables that came up most frequently in 

the different tests were RIN, DAS28-ESR, US GS, and a plasma cell score. The 

plasma cell score was a histology-based score that was graded as described in 

the study by Orange et al. (2018). Of these, the only non-biological variable, and 

therefore potential confounding factor, was the RIN score.  

 



80 
 

 

 

Figure 4.3: PCA plots showing muscle separation (A) and extraction 
method (B) on PC1/2 and sex on PC4 (C). PCA based on top 500 most 

variable genes. Extraction method refers to RNA that was extracted from OCT-
embedded frozen block thick sections (TS) or snap-frozen whole tissue (WT). 

F = female, M = male.  

A 
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As RIN score had an impact on the overall variability of the data, we next 

explored its relationship to biologically important factors, such as clinical group, 

ultrasound variables, and BEACON histology variables (Figure 4.4). RIN was not 

variable across clinical group, meaning this should not have an impact on any 

clinical comparisons. However, RIN was associated with histology variables, with 

lymphoid tissues resulting in better RIN scores than pauci-immune tissue 

Design Element PC1 PC2 PC3 PC4 PC1-4 100 genes 1000 genes 

RIN 
  

x x x x x 

DAS28-ESR 
  

x x 
 

x x 

Plasma cell score 
  

x x 
 

x x 

US GS x 
 

x 
  

x x 

Biopsy joint x 
    

x x 

Biopsy side 
 

x 
   

x x 

DAS28-CRP 
   

x 
 

x x 

Density grade x 
    

x x 

Extraction method 
  

x 
  

x x 

Lining layer 
thickness 

 
x 

   
x x 

NSAID therapy 
  

x 
  

x x 

Age x 
     

x 

Aggregate grade 
     

x x 

ACPA 
     

x x 

Diagnosis 
     

x x 

Pathotype 
    

x 
 

x 

Library prep batch 
     

x x 

Pred therapy 
     

x x 

RF 
 

x 
   

x 
 

US PD 
    

x x 
 

Sex 
      

x 

Table 4.2: Factors that were selected during stepwise regression 
analysis. Stepwise regression analysis using forward selection based on p-

value was conducted on the top 100 and 1000 most variable genes, on 
individual PCs, and on combined PCs (PC1-4). ‘x’ indicates the inclusion of the 
variable in the regression model using the corresponding data input. Plasma 

cell score = histology-based score as described in (Orange et al., 2018). 
NSAID therapy = use of non-steroidal anti-inflammatory drugs at baseline. 

Pred therapy = use of Prednisolone at baseline. ACPA = anti-citrullinated 

protein antibodies positivity. RF = Rheumatoid factor positivity. 
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(p=0.005) and RIN correlating with mean density (r=0.41, p=0.0001). RIN also 

weakly correlated with disease activity (DAS28-ESR: r=0.29, p=0.007). Due to 

concern about removing the biologically relevant variation that was associated 

with RIN and the consistency of RIN across clinical groups, RIN was not corrected 

for in the design.  

Another potential confounding factor, which appeared to separate on PC1/2 was 

whether whole tissue (WT) or thick sections (TS) were used for RNA extraction 

(extraction method) (Figure 4.3). Therefore, relationship of extraction method 

with other variables was also explored (Figure 4.4). Interestingly, RIN was 

significantly higher in tissue from TS than from WT, so these two confounding 

factors may be related. However, the extraction method used was not equally 

distributed across clinical group, due to differences in the types of tissue that 

were available. This is particularly the case for the normal samples, for which we 

did not have access to OCT-embedded frozen tissue for TS. There was a 

significant association between extraction method and pathotype (p<0.0001), 

with increased use of TS in lymphoid and WT in pauci-immune, and density was 

higher in tissues from TS (p<0.0001). For some samples, both WT and TS were 

used for RNA extraction, with the best quality RNA then being used for 

sequencing. The difference in RIN between TS and WT (WT RIN – TS RIN) from 

these samples was calculated and Wilcoxon signed rank test performed for each 

pathotype to test for non-zero median values. The diffuse pathotype was the 

only one with a non-zero median value (p=0.008), suggesting an improved RIN 

from TS in diffuse tissue. This may mean that a bias was introduced when 

selecting the best RIN scores from samples that had both tissue types. Again, 

given this link between histology scoring methods and extraction method, to 
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avoid removing biologically relevant signals it was decided that extraction 

method would not be corrected for in the design. 

 

4.4 EXPLORING VARIATION 

After removing the Y chromosome, XIST, TSIX, IGV genes, and the samples 

containing skin or muscle, a more in-depth exploration of the remaining sources 

  

    

Figure 4.4: Relationship between RIN, extraction method, clinical and 
histological variables. (A) RIN vs clinical group, (B) RIN vs pathotype, (C) 

RIN vs BEACON density, (D) extraction method across clinical group, (E) 
extraction method across pathotype, (F) RIN vs extraction method, (G) 
BEACON density vs extraction method, (H) difference in RIN (WT-TS) vs 

pathotype. RIN score was measured by Genomics Birmingham prior to library 
preparation. Extraction method refers to RNA that was extracted from OCT-

embedded frozen block thick sections (TS) or snap-frozen whole tissue (WT). 
Pathotype (n=81) and clinical group (n=95) show percentages. Chi squared, 
Spearman rank or Kruskal-Wallis with post-hoc Dunn’s multiple comparison 

tests; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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of biological variation was undertaken to understand what drives variation in this 

mixed inflammatory arthritis cohort. The most variable genes and PCA were 

explored again to understand what was now driving the majority of the variation 

in the data (Figure 4.5 and Figure 4.6). Although samples did not cluster by 

clinical group, in the heatmap of the top 100 most variable genes, they broadly 

clustered by pathotype, with the majority of the pauci-immune samples 

clustering together. Pauci-immune pathotype also separated from diffuse and 

lymphoid on PC1/2, suggesting that histologically derived pathotype is associated 

with variation in the RNA sequencing data. When exploring the most variable 

genes and the genes that contribute to PC1/2, there was a large signature of 

immune-related genes, including a number of IG genes, and a potentially 

adipose signature, including the genes ADIPOQ, PLIN1, and PLIN4. These may 

reflect the different cell types that are predominant in different pathotypes. 

There were also some genes involved in tissue destruction, including the matrix 

metalloproteinases MMP1 and MMP3.  

A scree plot was produced to show how much variation was accounted for in 

each PC (Figure 4.6). This showed that the vast majority of variation was 

associated with PC1 but that exploration up to PC4 may be worthwhile, after 

which the associated variation dropped to below 5%. Exploration of the gene 

contribution to PC3/4 showed a chemokine signature, including CXCL9, CXCL10, 

and CXCL11, in addition to another signature along PC3 involving genes such as 

SCUBE1, GPR1, and CLIC5. Exploration of these PC3 genes in the publicly 

available AMP RA Phase I dataset (Zhang et al., 2019) suggested they may be 

predominantly expressed in synovial fibroblasts, in particular lining layer 

fibroblasts (Figure 4.7). This potential fibroblast aspect was not captured by 
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BEACON pathotype as there was no clustering by pathotype on PC3/4. To follow 

up on this potential lining layer fibroblast signature, correlation of median lining 

layer thickness and PC3 was explored, with a moderate correlation being shown 

(r=-0.42, p=0.0005). 

 

 

Figure 4.5: Heatmap of top 100 most variable genes after removal of 
samples containing skin or muscle, sex-related genes, and IGV genes. 

Top 100 most variable genes are shown with hierarchical clustering on 

columns and rows. Bars along the top show clinical group and pathotype.  
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Figure 4.6: PCA plots for PC1/2 and PC3/4 and scree plot. Clinical group 
(A & B) and pathotype (C & D) are shown on PCA plots. PCA was conducted on 

top 500 most variable genes. Gene contribution plots (E & F) show the top 20 
genes. Scree plot (G) shows variance associated with each PC. Correlation 

between lining layer thickness and PC3 (H) assessed using Spearman rank. 
LL.median = lining layer median, absolute number of cell thickness of the 

lining layer from histology averaged across biopsy fragments.  
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4.4.1 UMAP clustering 

Uniform Manifold Approximation and Projection (UMAP) for dimension reduction 

was then explored to look the variation captured in the top 1000 genes in one 

 

Figure 4.7: Exploration of genes contributing to PC3 in the AMP Phase 
I RA dataset. Genes from gene contribution plot in Figure 4.6. Single cell 

RNA sequencing data of selected cellular populations (monocytes, fibroblasts, 
B cells & T cells). M1 = IL1B+ pro-inflammatory monocytes, M2 = NUPR1+ 

monocytes, M3 = C1QA+ monocytes, M4 = IFN-activated monocytes, F1 = 
CD34+ sublining fibroblasts, F2 = HLA+ sublining fibroblasts, F3 = DKK3+ 

sublining fibroblasts, F4 = CD55+ lining fibroblasts, B1 = IGHD+ CD270 naive 
B cells, B2 = IGHG3+ CD27- memory B cells, B3 = autoimmune-associated 
cells (ABC), B4 = Plasmablasts, T1 = CCR7+ CD4+ T cells, T2 = FOXP3+ 

Tregs, T3 = PD-1+ Tph/Tfh, T4 = GZMK+ CD8+ T cells, T5 = GNLY+ GZMB+ 
CTLs, T6 = GZMK+/GZMB+ T cells. Data available from 

https://immunogenomics.io/ampra/ (Zhang et al., 2019).  

https://immunogenomics.io/ampra/
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figure (Figure 4.8). Similarly to PCA, clinical group did not cluster on the UMAP, 

while there was some separation by pathotype.  

 

K-means clustering was performed on the UMAP to explore how the samples 

clustered and to aid interpretation. In order to decide how many clusters would 

be most appropriate a number of techniques were used, including elbow, average 

 

Figure 4.8: UMAP plots and k-means clustering. UMAP plots show clinical 

group (A) and pathotype (B). Plots showing elbow (C), average silhouette (D), 
and gap statistic methods (E) for cluster number selection show that three 

clusters are optimum. (F) UMAP plot showing the three clusters from k-means 

clustering.  
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silhouette, and gap statistic methods (Figure 4.8). From this, three clusters were 

identified as being optimal.  

 

Histological and clinical characteristics were then explored within these three 

clusters (Figure 4.9). There was a trend towards increased ldRA in cluster 3 (C3), 

although this was not statistically significant. Pathotypes differed across the 

three clusters (p<0.0001), with C2 being predominantly pauci-immune, C3 being 

 

  

Figure 4.9: Relationship between UMAP clusters, clinical and 
histological variables. Clusters from k-means clustering of UMAP data. 

Clinical group (A, n=74), pathotype (B, n=73), US GS (E, n=69), and DAS28-
ESR response (F, n=18) show percentages of samples. For density (C) and 
aggregates (D) bars show median values. Pathotype, density, and aggregate 

grades are from the BEACON scoring system (described in Chapter 3.2). 
DAS28-ESR response = EULAR DAS28-ESR response at 12 months. Chi 

squared or Kruskal-Wallis with post-hoc Dunn’s multiple comparison tests; 

**p<0.01, ***p<0.001, ****p<0.0001. 
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mostly lymphoid, and C1 being a mixed group. Furthermore, there was a 

difference across density and aggregate grades, with C2 having lower density 

grade compared to C1 and C3 (p=0.003 and p<0.0001) and C3 having higher 

aggregate grade than C1 and C2 (p=0.01 and p<0.0001). US GS also showed a 

similar pattern (p=0.009), with C3 tending towards higher US GS and C2 having 

a larger proportion of grade one. Relationship to EULAR DAS28-ESR response 

(good and moderate versus poor response) at 12 months was also explored 

within a subset of RA patients, with C3 showing a trend towards increased 

response rates but there were insufficient numbers to test this statistically.  

4.4.1.1 Gene exploration 

To explore the genes associated with each cluster, differential expression 

analysis on each cluster compared to the other two was undertaken. Taking the 

genes upregulated in each cluster (padj<0.05, LFC>2) resulted in 876 genes, of 

which 49 were upregulated in C1, 530 in C2, and 297 in C3 (Figure 4.10). 

Exploration of the heatmap of DEGs confirms that C2 and C3 are most distinct, 

with C1 having fewer upregulated DEGs compared to the other two clusters. This 

is further confirmation of C1 being a mixed cluster, as was suggested when 

exploring histological and clinical variables.  

GO biological processes associated with genes upregulated in each cluster were 

then explored, finding skeletal system morphogenesis, extracellular matrix 

organisation, and extracellular structure organisation as the top processes in C1, 

antibiotic metabolic process, oxygen transport, and retinol metabolic process in 

C2, and B cell activation, regulation of lymphocyte activation, and immune 

response-activating cell surface receptor signalling pathway in C3 (Figure 4.11). 
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A list of all significant GO biological processes associated with each cluster can be 

found in Appendix 9.5.1. 

 

This further highlights the strong adaptive immune signature present in C3, 

which is in line with the large proportion of samples in this group with the 

 

Figure 4.10: Heatmap of the DEGs upregulated in each cluster 
compared to the others. Padj<0.05, LFC>2. All upregulated genes shown 
on one plot: 49 genes were upregulated in C1, 530 in C2, and 297 in C3. Bars 

along the top show UMAP cluster, clinical group, and BEACON pathotype.  
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lymphoid pathotype that have high density and aggregate grades. Investigation 

of the 10 top most significant genes upregulated in C3 further confirm this, with 

genes involved in T cell priming (SEMA4A), inflammasomes (GBP5 and AIM2), NK 

cell activation (CALHM6), macrophage polarisation (SNX10), and other 

inflammatory processes (ADAM8) (Koda et al., 2020, Ebihara et al., 2010, 

Shenoy et al., 2012, Lugrin and Martinon, 2018, Bartsch and Schlomann, 2013, 

You et al., 2016). However, three of the most significant genes, namely CD274 

(PDL1), IL4I1, and SILEC10, were immune inhibitory, with CD274 being an 

inhibitor of T cell activation and cytokine secretion, IL4I1 being an inhibitor of T 

cell proliferation and being able to promote Treg differentiation, and SILEC10 

being an inhibitor of the innate immune response (Freeman et al., 2000, 

Boulland et al., 2007, Cousin et al., 2015, Zhang et al., 2015a, Munday et al., 

2001). 

The genes upregulated in C1, which was the mixed cluster, were associated with 

pathways involved in extracellular matrix organisation and a number of the 

genes were collagen genes, with 3 of the top 10 most significant genes encoding 

collagen chains (COL1A1, COL10A1, and COL11A1). Within the top 10 genes, 

there were a number of genes associated with tissue destruction or repair, 

including CTHRC1, ADAM12, POSTN, and CHRDL2, alongside a notable link to 

Wnt signalling, with CTHRC1, ALPK2, POSTN, and KIF26B being found to be 

involved in this pathway (Hofsteen et al., 2018, Myngbay et al., 2019, Zhang et 

al., 2021a, Susman et al., 2017). Overall, this suggests a tissue remodelling 

phenotype in this cluster. 

The genes upregulated in C2, which is predominantly composed of the pauci-

immune pathotype, were associated with multiple metabolic processes, including 



93 
 

antibiotic metabolism, retinol metabolism, and allied processes, such as oxygen 

transport, bicarbonate transport, and cellular detoxification, alongside cell-cell 

adhesion. Cell adhesion was also associated with the low inflammatory subtype 

identified by clustering RNA sequencing data from RA synovial tissue in the study 

by Orange et al. (2018).  



94 
 

 

 

 

 

Figure 4.11: GO biological process analysis on genes upregulated in 
UMAP clusters. Top 10 processes are shown for C1 (top), C2 (middle), and 

C3 (bottom). DEGs from unadjusted p<0.05, LFC>2. A list of all significant 

GO biological processes can be found in Appendix 9.5.1.  
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The top 10 most significant upregulated genes in C2 were explored in the 

literature. CPAMD8 has a potential role in innate immunity, although has not 

been extensively studied to date (Li et al., 2004). LTBP4 is required for TGF-β 

signalling as it stabilises the receptor complex and TGF-β has complex and wide 

reaching impacts on immune processes, having the ability to induce T cell 

tolerance but also having roles in the differentiation of T cell subsets by inhibiting 

Th1 and Th2 cell formation and driving Treg and Th17 cell formation (Su et al., 

2015a, Sanjabi et al., 2017). TGF-β is also a negative regulator of B cells and NK 

and can induce tolerance in DCs (Sanjabi et al., 2017). TGF-β pathways were 

also associated with the low inflammatory subtype in the study by Orange et al. 

(2018).  

MAOA is able to drive oxidative breakdown of amines and has a suggested role in 

M2 anti-inflammatory macrophages, where it may increase production of 

hydrogen peroxide (Cathcart and Bhattacharjee, 2014). DUOX2 also produces 

hydrogen peroxide, a reactive oxygen species (ROS) that causes oxidative stress. 

Oxidative stress has been found to increase cartilage and joint destruction in RA 

(Wruck et al., 2011, Mirshafiey and Mohsenzadegan, 2008).  

CYP4B1 is involved in xenobiotic metabolism, fatty acid oxidation, and has been 

found to be decreased during acute allergic inflammation and increased following 

resolution in a mouse model (Stoilov et al., 2006, Thesseling et al., 2020). 

However, the function of CYP4B1 in humans has been questioned, with it being 

suggested that it may not be as active as it is in animal models (Zheng et al., 

1998, Thesseling et al., 2020).   
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HLF expression has been found to be increased following treatment with 

methotrexate, potentially being involved in methotrexate-induced synovial 

fibroblast apoptosis (Suzuki et al., 2018). However, another study found that 

HLF was able to inhibit apoptosis in mouse epidermal cells and human 

keratinocytes (Waters et al., 2013). The role of HLF is therefore unclear but may 

have differing roles in different cell types or microenvironments.  

RAMP2-AS1 is a lncRNA that has been suggested to increase senescence and 

inhibit sprouting in endothelial cells, potentially via increasing the expression of 

RAMP2 (Lai et al., 2021). Furthermore, roles in angiogenesis, innate immunity, 

and inflammation have been suggested, with inhibition bring pro-inflammatory 

(Lai et al., 2021). 

HIF3A has been described to be a negative regulator of cellular response to 

hypoxia, although has many different splice variants that can have differing roles 

in different tissues (Hara et al., 2001, Maynard et al., 2005, Duan, 2016). It is 

not possible from the current analyses to know which splice variants are 

upregulated in C2. The remaining most significant upregulated genes were a 

pseudogene (HMGN2P15) and an uncategorised gene (ENSG00000280339).  

Exploration of the top 10 most significant genes in the literature did not result in 

a clear gene expression signature for C2, as was the case for the other two 

clusters. However, in the literature many of these genes have been associated 

with broadly anti-inflammatory functions, with some being found to decrease 

during inflammation or increase following treatment.  

Exploring the genes that were downregulated in each cluster compared to the 

other two further highlighted the clear differences between C2 and C3 and the 
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more separate, mixed nature of C1. Downregulated pathways in C2 broadly 

overlapped with the pathways that were upregulated in C3 and visa versa. 

Namely B cell activation, cytokine-mediated signalling pathway, phagocytosis, 

leukocyte migration, and defense response to bacterium were all downregulated 

pathways in C2 and upregulated in C3 and cell-cell adhesion via plasma-

membrane adhesion molecules was downregulated in C3 and upregulated in C2 

(Figure 4.12). Furthermore, 153 of the 266 genes genes downregulated in C3 

were upregulated in C2 and 176 of the 297 genes downregulated in C2 were 

upregulated in C3.  

The pathways that were associated with genes downregulated in C1 were 

predominantly associated with metabolic processes, including lipid catabolic 

processes, glucagon secretion, polyol biosenthetic process, lipid droplet 

organisation, and negative regulation of amine transport (Figure 4.12).  

Exploration of the top 10 most significant downregulated genes in C1 was 

undertaken. Two of these genes, namely C15orf62 and RHOXF1-AS1, have not 

been studied previously so their function is currently unknown. ALDH2 was the 

most significant downregulated gene, which has been found to reduce oxidative 

stress and inhibit inflammation, with this being seen as a potential target for the 

treatment of knee OA (Pan et al., 2021, Cao et al., 2022).  

CHIT1 is expressed by a number of immune cells, predominantly macrophages, 

and is upregulated in fibrotic lung disease but downregulated in ulcerative colitis 

(Mazur et al., 2021). It has been suggested that CHIT1 drives alternative 

macrophage activation, to increase fibrosis, but is not associated with classical 

macrophage activation (Lee et al., 2022b). 
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Figure 4.12: GO biological process analysis on genes downregulated 
in UMAP clusters. Top 10 processes are shown for C1 (top), C2 (middle), 
and C3 (bottom). DEGs from unadjusted p<0.05, LFC>2. A list of all 

significant GO biological processes can be found in Appendix 9.5.1. 
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CEBPA is associated with adipogenesis, increasing the expression of enzymes 

involved in lipid metabolism, and is thought to be required for adipocyte 

development (Kwak et al., 2012, Lee et al., 2022a). PNPLA2 is another 

downregulated gene associated with adipocytes and lipid metabolism, being a 

key enzyme in lipolysis and associated with reduction in lipid droplet 

accumulation (Yang and Mottillo, 2020, de la Rosa Rodriguez and Kersten, 2020). 

CEBPA has also been found to inhibit IL6 expression in chrondrocytes, with it 

being downregulated in OA, and may have a role in osteoclast differentiation 

(Makki and Haqqi, 2017, Chen et al., 2013). FFAR4 (GPR120) has also been 

found to inhibit IL6, as well as IL8 and IL1β, and was found to reduce cartilage 

damage and ECM degradation (Xu et al., 2020).  

SNX10, which was also found to be downregulated in C3, has roles in 

macrophage polarisation and has previously been associated with rheumatoid 

arthritis, increasing bone erosion via osteoclast activation and the increased 

secretion of MMP9 (Zhou et al., 2017). This is perhaps contrary to previous 

findings in this cluster, as tissue remodelling-associated genes are generally 

upregulated.  

BATF2 (SARI) expression is involved in the regulation of immune cells, 

particularly in the activation of dendritic cells and differentiation of T cells, 

driving formation Th1 and Treg cells and inhibiting Th17 differentiation 

(Yokoyama-Kokuryo et al., 2020, Li et al., 2021). It has been associated with 

response to abatacept in RA, is protective in colitis, and has anti-tumour 

suppressive roles (Yokoyama-Kokuryo et al., 2020, Zhang et al., 2020b). In 

ocular disease, BATF2 has been found to inhibit both vascularisation and 

inflammation (Zhang et al., 2020b).  
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SRCIN1 (p140Cap) is associated with good prognosis in many tumours due to 

the reduction of migration and cell growth (Salemme et al., 2021). Silencing 

increases invasiveness and cell spreading, suggesting an inhibitory role in 

metastasis formation (Di Stefano et al., 2007). SRCIN1 has also been found to 

inhibit angiogenesis and proliferation in endoethelial progenitor cells (Wang et 

al., 2019b).  

Overall from the literature, the genes downregulated in C1 are predominantly 

involved in lipid metabolism, inflammation, or destructive tissue remodelling 

processes, with many of them being inhibitory of inflammation and tissue 

remodelling suggesting upregulation of these processes in this cluster. This is 

broadly in agreement with the upregulated genes and processes, although 

highlights a potential downregulation of lipid catabolic processes that was not 

previously highlighted. 

4.5 MUSCLE CORRECTION 

Skeletal muscle is sometimes captured during the biopsy process because of 

proximity (as can be seen in Figure 4.13 image BX201), particularly round the 

knee joint, but is not considered anatomically part of the synovium. As 

previously discussed, upon exploration of the top 100 most variable genes, a 

cluster of skeletal muscle-related genes, including MYH2, MYH7 and ACTA1, were 

highly expressed by 13 samples (Figure 4.2). The same samples also clustered 

separately on PCA (Figure 4.3). H&E sections from these samples were examined 

to see whether muscle could be seen histologically (Figure 4.13). This was the 

case for many of these samples, even though different biopsy pieces were used 

for the RNA sequencing than histology. In two of these samples there was a very 
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high proportion of muscle compared to synovial tissue in the H&E section so 

these were removed from future analyses.  

 

A number of methods were tested to remove or correct for this, including 

removing the remaining 11 samples that were responsible for the muscle signal, 

and labelling these samples as containing muscle to allow for correction in the 

differential expression design. Removal of the samples containing muscle 

reduced numbers within the dataset considerably and so reduced the overall 

statistical power. Additionally, when using both these methods, there were still 

some muscle-related genes and pathways being found in later analyses. It was 

 

Figure 4.13: Representative H&E images showing muscle in synovial 

biopsies. Samples identified as having muscle present in RNA sequencing 
data were explored in H&E stained tissue, with many of them having muscle 

visible in the tissue. Biopsy fragments used for H&E staining are not the same 
as biopsy fragments used for RNA sequencing, although they were taken 
during the same biopsy procedure. H&E images were produced as described in 

Chapter 2.2, with fixing, sectioning, and staining being undertaken by the 
University Hospitals Birmingham pathology department and imaging being 

done by Dr Jennifer Marshall or Dr Triin Major. 
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therefore hypothesised that there may be further lower-level muscle present in 

other samples.  

 

In order to capture all skeletal muscle related gene expression within the 

dataset, a ‘muscle score’ was created. Genes that were most uniquely expressed 

in skeletal muscle tissue were identified using the Human Protein Atlas  (IDI2, 

DUPD1, MYH1, LRRC30, MYH4, SMTNL1, ACTN3, PPP1R27, MYADML2, ANKRD23, 

UCP3, and CHRNA10) (Uhlen et al., 2015, Yu et al., 2015, Fagerberg et al., 

2014, Lindskog et al., 2015). A summary score was calculated that averaged 

skeletal muscle-specific gene expression in each sample using a technique 

 

Figure 4.14: Relationship between skeletal muscle score and genes 
expressed in skeletal muscle, smooth muscle, and unrelated genes. 

Gene expression shown as log values. MYH7 (A), ACTA1 (B) and MYH2 (C) are 
expressed in skeletal muscle. ACTA2 (D) and CNN1 (E) are expressed in 
smooth muscle. MMP13 (F), CPAMD8 (G), HAPLN1 (H) and PNPLA3 (I) are 

unrelated genes. Musc_score refers to a skeletal muscle summary score that 
averages expression of genes that are most selective for skeletal muscle. 

Spearman rank used to assess correlation. 
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developed by Wagle et al. (2018). Figure 4.14 shows how the resulting muscle 

score correlated with muscle genes that had previously been identified in our 

analyses, genes that are expressed in smooth muscle, and unrelated genes of 

interest. This was to ensure the muscle score was specific to skeletal muscle and 

would not remove relevant gene signatures. There was a strong correlation with 

skeletal muscle genes MYH7, ACTA1, and MYH2 (r=0.46, p<0.0001; r=0.52, 

p<0.0001; and r=0.44, p<0.0001, respectively) but no correlation with smooth 

muscle genes (ACTA1 and CNN1) or other genes of interest, suggesting good 

skeletal muscle specificity. This muscle score was therefore included in the 

design for differential expression analysis in order to correct for the presence of 

muscle.  

4.6 DISCUSSION 

In this dataset, there were five normal control samples, which underwent 

exploratory arthroscopy due to the occurrence of joint pain with no evidence of 

synovial abnormalities. This was confirmed by examining the histology images 

available in the present study, where there was no visible inflammation, however 

the presence of joint pain in these patients does raise questions as to whether 

they truly represent normal synovium. Given the ethical implications of taking a 

synovial biopsy from healthy patients, access to uninflamed tissue with no 

perceived abnormalities based on clinical examination, imaging, and microscopy 

is the closest to normal as can reasonably be obtained. However, consideration 

must be given to the potential that the synovium from these controls is not 

entirely normal, particularly if pathways relating to pain are found to be 

significant in analyses.  
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Exploration of the overall variation within the dataset allowed for the 

identification of confounding variables and overrepresented genes. One such 

example is the removal of the IG variable genes to prevent overrepresentation, 

which was also done in a similar study by Orange et al. (2018). In the same 

study they also removed genes from both the X and the Y chromosome to 

remove sex biases. However, in this study we decided to retain the majority of 

the X chromosome, just removing XIST and TSIX, due to there being a sex bias 

in the prevalence of many arthritides, including RA (Buckwalter and Lappin, 

2000). By being less stringent with removing all sex-related differences and not 

including this as a part of the differential expression design it was hoped that 

pathologically relevant sex-related differences would be retained.  

Generally in this study we decided to have a minimal differential expression 

design to avoid over-correcting for potential confounding factors. This was 

because the variables that were identified as potential confounders, RIN and 

extraction method, were both heavily associated with histological variables. 

Correcting for these would have risked masking of biologically relevant signals.  

There are a few potential reasons why RIN is associated with histological 

variables. It may be that absolute cell number in the tissue could have an effect 

on the RIN, as more cells likely results in more total RNA and higher RNA 

concentrations, which may result in better RNA quality overall. Lymphoid and 

diffuse tissues are likely to have increased cell number in the same sized tissue 

due to the presence of large numbers of infiltrating immune cells, and it is highly 

likely that increasing density score, which correlates with RIN, correlates with cell 

number.  
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It may also be that better quality RNA can be obtained from infiltrating immune 

cells than from resident cells. This may particularly be the case for adipocytes, 

which require non-standard methods to ensure good quality RNA extraction 

(Janke et al., 2001). Exploring the relationship between tissue composition and 

RIN may aid future research efforts and ensure that certain tissue types are not 

discriminated against, resulting in a biased view of inflammatory arthritis. 

However, this was beyond the scope of the current study.  

The use of TS from OCT-embedded frozen blocks or snap-frozen WT, termed the 

extraction method, was also identified as a potential confounder. As WT was the 

default source of tissue and TS were added to increase sample numbers and 

improve on RIN scores where possible, this may have introduced a bias in the 

type of tissue used for each method. Extraction method was associated with 

histological variables, with there being a greater use of WT in pauci-immune 

samples. This is likely due to the tissue composition of pauci-immune samples, 

lacking infiltrating immune cells and potentially containing a larger proportion of 

adipocytes. This may mean that there is less RNA within a thick section, resulting 

in a lower RIN score and therefore resulting in the preferential use of WT. This 

hypothesis is supported by the RIN improving in tissues with a diffuse pathotype 

when using TS compared to WT from the same biopsy. Neither the lymphoid nor 

the pauci-immune samples had significantly non-zero medians, although the 

pauci-immune samples did have a negative median, meaning there was a trend 

towards better quality RNA from WT than TS in this group. This difference in 

quality across pathotypes from different sources of tissue for RNA extraction is 

something that should be considered and taken into account going forward to 

avoid creating a bias towards the study of diffuse and lymphoid pathotypes.  
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A considerable number of samples (n=13) were identified as having a skeletal 

muscle signature, which presents a number of challenges in whole tissue RNA 

sequencing data. Interestingly, muscle was also visible in the H&E stained 

sections for most of these samples, despite them being from distinct biopsy 

fragments. This, along with the association of pathotype with overall variability, 

suggests that generally pathotype derived from 6-8 distinct biopsy fragments is 

representative of the overall biopsy joint, thus validating the approach taken. 

This is also supported by previous studies looking at within joint variability, which 

were consulted when developing the original protocol (Kennedy et al., 1988, 

Dolhain et al., 1998, Boyle et al., 2003).  

One potential approach to account for the presence of muscle could have been to 

remove the genes that appeared in the most variable gene analysis that were 

associated with muscle. However, this would be under the assumption that these 

were the only genes that had altered expression due to the presence of skeletal 

muscle, which did not seem like a reasonable assumption. Other approaches 

were therefore explored.  

Samples that had dominant expression of skeletal muscle genes and that 

separated from the main cluster in PCA analysis could be removed, to remove 

the muscle signature altogether. This may result in a cleaner dataset overall but 

also considerably reduces the total number of samples, thus decreasing 

statistical power in later analyses. Moreover, there is a chance other samples 

may also have small amounts of skeletal muscle present in the tissue, which 

would not be taken into account with this method. Highlighting the samples 

containing muscle could also be used to correct for its presence in the differential 
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expression design, however this has the same challenge that any low level 

presence may not be accounted for.  

The approach used in this study was to create a summary muscle score that 

should capture all gene expression associated with skeletal muscle that was used 

in the differential expression design. This was done by selecting genes that are 

most specific for skeletal muscle from the Human Protein Atlas (Uhlen et al., 

2015, Yu et al., 2015, Lindskog et al., 2015, Fagerberg et al., 2014) and 

averaging the gene expression. To confirm this was specific for skeletal muscle, 

the score was correlated against expression of skeletal muscle genes identified in 

the most variable genes, smooth muscle genes, and unrelated genes from the 

dataset. This showed a high level of specificity, correlating with the skeletal 

muscle expressed genes exclusively. However, as this was only tested on a 

subset of genes it is possible there may be correlation with unknown off-target 

genes. In addition, it is unclear exactly what influence correcting for the muscle 

score will have on gene expression in each sample. Although this is the approach 

taken in this study, other approaches may be worth exploring further to test the 

reproducibility of the results. This was done for some of the downstream 

analyses, which suggested that using the muscle score and removing the 

samples largely produced similar results (data not shown). 

Perhaps unsurprisingly, cellular composition had a large impact on overall 

variability within the dataset, with immune-related signatures capturing the bulk 

of variation in PCA, and this broadly being associated with histological pathotype. 

Another dominant signal included adipose related genes, such as ADIPOQ, PLIN1, 

and PLIN4. This signal was predominantly associated with the pauci-immune 

cluster. ADIPOQ encodes the adipokine adiponectin, which is known to have a 
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role in inflammation and is increased in plasma and synovial fluid in RA 

(Szumilas et al., 2020). PLIN1 and PLIN4 encode perilipins, which coat lipid 

droplets in adipocytes (Wolins et al., 2005). PLIN1 has been shown to decrease 

in expression in collagen-induced arthritis (CIA), a mouse model of RA (Arias de 

la Rosa et al., 2018). The presence of adipocytes in the synovium has been 

explored less than the presence of immune cells, despite one study by Wang et 

al. (2019a) suggesting that adipocytes may make up 12.5% of healthy synovial 

tissue, with this percentage decreasing in RA. The presence of a strong adipose 

signal in a mixed inflammatory arthritis dataset suggests this may be worthwhile 

exploring in future studies, as this may highlight new pathogenic mechanisms 

that could be targeted therapeutically.  

After exploration of the genes contributing to PC3 in the publically available AMP 

Phase I RA dataset (Zhang et al., 2019), another signal appeared to be 

associated with lining layer fibroblasts. Furthermore, there was overlap in many 

of the genes associated with the lining layer fibroblast subset identified in the 

study by Croft et al. (2019) (CLIC5, COL22A1, PRG4, and HBEGF). This was not 

associated with any particular pathotype, however PC3 did correlate with 

histological lining layer thickness.  

Clustering of the samples on the UMAP data found three clusters. Although there 

was a slight trend towards more ldRA in one cluster (C3), there was again no 

significant separation by clinical group across the three clusters. However, as 

expected there were no normal samples in C3, which was the cluster with heavy 

immune infiltration. This is similar to the findings in the previous chapter when 

exploring histology and in the PCA, which suggests that broad exploration of 

overall variation in synovial tissue is unable to separate clinical groups.  
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When exploring the three clusters and their relationship to BEACON pathotype, 

there were low, mixed, and high inflammatory clusters, as shown by the 

predominantly lymphoid C3, predominantly pauci-immune C2, and the relatively 

even proportions of the three pathotypes in C1. C3 was defined by the presence 

of aggregates and C2 by the lack of infiltrating immune cells, while C1 had 

infiltrating immune cells but in the absence of large aggregates. This was further 

confirmed by exploration of gene expression, with pro-inflammatory genes being 

associated with C3 and, from exploration of genes in the literature, broadly anti-

inflammatory genes being associated with C2, although gene exploration 

identified a tissue remodelling phenotype and potential downregulation of lipid 

catabolic processes in the mixed cluster C1, which was not identified from clinical 

and histological exploration alone.  

It could be interesting to explore the presence and severity of erosions across 

these clusters, to elucidate whether the tissue remodelling phenotype in C1 is 

associated with increased bone erosion, but this data was not readily available 

for the current study. Exploration of the cell types, if any, that are associated 

with these clusters may help to explain the gene signatures seen, for example 

the presence or absence of adipocytes in C1 compared to the other two clusters 

may help to explain the differences in lipid catabolism, although staining for lipid 

droplets may also help to answer this question if the signature is due to 

expression in other cell types. Identification of the predominant cell types 

present within each cluster could be achieved by exploring where the genes 

associated with each cluster are expressed in a single cell dataset, by staining for 

specific cell types in tissue sections, in particular those that cannot be easily 

identified by H&E staining, such as macrophages, or using techniques such as 
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CIBERSORTx (Newman et al., 2019) to computationally deconvolute cell types in 

the present dataset.  

Interestingly, despite being conducted in a mixed inflammatory arthritis cohort, 

this broadly replicates what has been seen in similar previous studies in RA, with 

high, mixed and low inflammatory phenotypes being identified (Orange et al., 

2018, Lewis et al., 2019). Furthermore, the presence of immune-related 

pathways, including immune cell signalling and chemokine pathways, was found 

in the high inflammatory subtype and cell adhesion and TBF-β signalling were 

found to be associated with the low inflammatory phenotype in the study by 

Orange et al. (2018), in agreement with the present study. Eight of the top ten 

most significant upregulated genes in C3 were also found to be significantly 

differentially expressed between the high inflammatory cluster and the others in 

this study. However, none of top ten genes from C1 or C2 overlapped with the 

mixed or low inflammatory clusters, despite the overlap in pathways seen 

between the low inflammatory subtypes, although the mixed subtype only 

resulted in 3 significantly DEGs in the study by Orange et al. This slight 

difference in agreement is likely due to the mixed cohort of the present study 

compared to the predominantly RA (123 RA and 6 OA) cohort in the Orange et 

al. study, although could also be due to differences in disease stage, as the 

present study includes early inflammatory arthritis and the Orange et al. study 

used samples from arthroplasty at late stage disease (Orange et al., 2018).  

Wnt signalling was identified as being associated with C1, the mixed 

inflammatory cluster, via exploration of the top ten most significantly 

upregulated genes. Interestingly, Wnt pathways were associated with pauci-

immune fibroid and diffuse-myeloid pathotypes in the study by Lewis et al. 
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(2019) suggesting some potential overlap between C1 and their pathotype 

definition. In addition, immune-related processes, in particular B cell activation, 

were found to be associated with C3 in the present study and the lympho-

myeloid pathotype in the Lewis et al. study, as might be expected due to the 

overlap between the definition of the lymphoid pathotype in BEACON scoring and 

lympho-myeloid in the PEAC study, namely the presence of lymphocyte 

aggregates.  

Altogether, overall variation in the dataset was driven predominantly by the cell 

types present within the tissue. However, the level of heterogeneity in cellular 

composition across inflammatory arthritides is, in itself, an interesting 

observation. This may suggest that there are common mechanisms driven by 

specific cell types across clinical groups, rather than one specific cell type causing 

any particular disease. It may also be that broad differences in cell type mask 

any more subtle changes in cellular subtypes or mechanisms across clinical 

groups. Therefore, in the next chapter, specific comparisons will be made to 

explore whether there are any differences that can be uncovered when not 

looking at broad variation within the data. 
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5 RNA SEQUENCING: CLINICAL COMPARISONS 

5.1 INTRODUCTION 

Following exploration of the sources of variation and confounders, specific 

comparisons were undertaken to explore pre-set questions around inflammatory 

arthritis. Five hypotheses were formed at the beginning of the study, which 

detailed questions that have clinical and mechanistic relevance and allow for the 

advancement of knowledge of inflammatory arthritis. These hypotheses were as 

follows: 

1. Tissue biomarkers will discriminate between short duration RA and other 

groups presenting to BEACON at baseline with short duration. 

2. There are genes and pathways that differ between short duration and long 

duration RA.  

3. Biomarkers for good or poor outcomes in RA can be found in gene 

expression data. 

4. There are distinct mechanisms that can be found in gene expression data 

between early RA patients and patients destined to resolve. 

5. Early RA and resolving signatures signature can be identified by 

comparison with normal synovium.  

In this chapter, hypotheses 1-3 will be explored, with the final two hypotheses 

being discussed in the next chapter exploring mechanisms of resolution.  

The first hypothesis was set to explore the potential use of biomarkers to 

distinguish early RA from other clinical groups that present at clinic. This would 
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enable early identification of RA patients that do not yet meet current 

classification criteria and allow for the commencement of DMARD therapy early 

on. Furthermore, biomarkers specific for RA would prevent any other 

inflammatory arthritis patients from receiving RA treatment unnecessarily. This is 

particularly important for patients whose inflammatory arthritis is destined to 

resolve.  

The second hypothesis explores the previously described ‘window of opportunity’ 

for RA treatment, which is the idea that commencement of treatment very early 

on in RA disease course results in better outcomes long term (van Nies et al., 

2015, Monti et al., 2015). We hypothesised that differential gene expression is 

responsible for this difference in treatment response, and that this could be 

utilised to further our understanding of what determines response to treatment 

in RA. This could potentially result in new targets that improve responses in 

longer duration RA, while also increasing our knowledge of very early RA disease 

pathobiology.  

The final hypothesis discussed in this chapter is around treatment response 

specifically in RA, irrespective of disease duration. This aims to explore 

mechanisms that differ between patients who respond following 12 months of 

treatment and those that do not. This may enable new targets to be explored 

that improve response rates in current non-responders, as well as highlight 

potential biomarkers for stratification of patients by response.  

5.2 BIOMARKERS OF EARLY RA 

The aim of exploring biomarkers of early RA (sdRA) was to aid identification of 

early RA patients when they present at clinic. A number of patients initially 
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present with undifferentiated arthritis (UA) who have inflammatory arthritis that 

does not meet classification criteria for any particular disease. In the present 

cohort, just over 10% of sdRA patients (2 out of 18) initially presented with UA 

but later met classification criteria for RA at 18-month follow-up, with 20% of 

patients (17 out of 85) in the whole cohort initially presenting with UA. This can 

result in delayed treatment and uncertainty for the patient. Therefore, it would 

be beneficial to have biomarkers that could distinguish early RA from other early 

inflammatory arthritides, to enable diagnosis of RA patients who initially present 

as UA earlier in the disease course. To explore this, differential expression was 

performed on sdRA compared to resolving and nonRA patients grouped together.  

 

This analysis discovered no significant differentially expressed genes. Cut-offs 

were loosened to include genes with an unadjusted p-value less than 0.05 and 

 

Figure 5.1: Heatmap of DEG from sdRA vs Res and NonRA. Unadjusted 
p<0.05, absolute LFC>1. Bars along the top show clinical group and BEACON 

pathotype.  
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absolute log-fold change greater than 1 both to explore how noisy the data were 

and to potentially allow for the exploration of pathways that could be associated 

with these genes. Figure 5.1 shows the resulting heatmap, including 481 genes 

(166 downregulated and 315 upregulated). Although there does appear to be 

some separation between sdRA and the other groups, the data show significant 

noise. Therefore, this comparison was not explored further. Other methods are 

likely to be required to find biomarkers due to the very heterogeneous nature of 

the groups including resolving and other persistent inflammatory arthritis.  

5.3 MECHANISMS OF SHORT DURATION VS LONG DURATION RA 

We hypothesised that short and long duration RA would be associated with 

different genes and pathways, due to the presence of a treatment ‘window of 

opportunity’ (van Nies et al., 2015, Monti et al., 2015). Therefore, ldRA was 

compared to sdRA using differential expression analysis. Five genes were 

identified as being differentially expressed (Figure 5.2), with four being 

upregulated in ldRA (MTCO3P12, ENSG00000203286, NOS2, and USP43) and 

one being downregulated (RPL3P7). RPL3P7 and MTCO3P12 were both 

predominantly driven by high expression in a single sample, so it is unlikely 

these genes would be biologically relevant. This therefore leaves only three 

genes that are upregulated in ldRA compared to sdRA. This led us to reject our 

hypothesis that differences in gene expression could be found between short and 

long duration RA using bulk, whole tissue RNA sequencing in this cohort.  
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5.4 BIOMARKERS OF RESPONSE 

In order to identify biomarkers that are predictive of response to treatment in 

RA, EULAR DAS28-ESR response (good or moderate) at 12 months was 

compared to those with no response. The treatment regimen followed standard 

of care NICE approved protocols but specific treatment may have differed 

between patients and was not defined by a clinical trial approach so data 

obtained reflected overall response, irrespective of treatment received. These 

data were only available for a subset of RA patients in the cohort (3 sdRA and 15 

ldRA).  

21 genes were found to be significantly differentially expressed, with 10 

upregulated in responders and 11 downregulated (adjusted p<0.05) (Figure 5.3). 

Genes that were upregulated in responders were generally immune-related and, 

from exploration of the genes present in the AMP Phase I RA dataset (Zhang et 

 

Figure 5.2: DEG between ldRA and sdRA. Adjusted p<0.05, LFC>1. Bars 

along the top show clinical group and pathotype. 
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al., 2019), predominantly expressed in monocytes and T cells, while 

downregulated genes were generally expressed in fibroblasts (Figure 5.4). Six of 

the DEGs were not present in this dataset, which may be because they are 

expressed by cell types that were not included or they have too low expression 

for detection by single cell RNA sequencing.  

 

 

Figure 5.3: Heatmap of RA response DEGs. Adjusted p<0.05, absolute 
LFC>1. Bars along the top show EULAR DAS28-ESR response, clinical group, 
and BEACON pathotype. Response includes those with good and moderate 

response.  
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Figure 5.4: Exploration of RA response DEGs in the AMP Phase I RA 
dataset. GIMAP5, B3GAT1, GIMAP7, ZBED, LINC00649, FTCDNL1, CXCL11 
and IFNG are upregulated in response. DUOX2, ELOVL4, PENK, MSMP, 

CGREF1, CILP2, and SERPINE2 are downregulated. Single cell RNA 
sequencing data of selected cellular populations (monocytes, fibroblasts, B 

cells & T cells). M1 = IL1B+ pro-inflammatory monocytes, M2 = NUPR1+ 
monocytes, M3 = C1QA+ monocytes, M4 = IFN-activated monocytes, F1 = 

CD34+ sublining fibroblasts, F2 = HLA+ sublining fibroblasts, F3 = DKK3+ 
sublining fibroblasts, F4 = CD55+ lining fibroblasts, B1 = IGHD+ CD270 naive 
B cells, B2 = IGHG3+ CD27- memory B cells, B3 = autoimmune-associated 

cells (ABC), B4 = Plasmablasts, T1 = CCR7+ CD4+ T cells, T2 = FOXP3+ 
Tregs, T3 = PD-1+ Tph/Tfh, T4 = GZMK+ CD8+ T cells, T5 = GNLY+ GZMB+ 

CTLs, T6 = GZMK+/GZMB+ T cells. Graphs from 

https://immunogenomics.io/ampra/ (Zhang et al., 2019). 

https://immunogenomics.io/ampra/
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As previous work in this study found that response may be associated with 

pathotype (Chapter 3.4) and UMAP clusters (Chapter 4.4.1), average expression 

of DEGs associated with response or non-response was explored across these in 

both RA groups, regardless of availability of treatment response data (Figure 

5.5). In agreement with previous exploration, treatment response genes were 

significantly increased in C3 (high inflammatory) compared to C1 (mixed 

inflammatory/tissue remodelling) and C2 (low inflammatory) (p=0.005 and 

p<0.0001, respectively), with non-response genes being higher in C1 and C2 

compared to C3 (p=0.0002 and p=0.003, respectively). Lymphoid pathotype was 

associated with significantly higher expression of response genes compared to 

pauci-immune (p=0.0008), with the pauci-immune pathotype having higher 

expression of the non-response genes than lymphoid (p=0.01). The diffuse 

pathotype had expression between lymphoid and pauci-immune and was not 

significantly different to either. This is in agreement with previous exploration of 

proportions of responders and non-responders between pathotypes and also with 

expression seen across cell types in the AMP dataset, which does not have 

response data but allows for exploration of gene expression in RA synovial 

monocytes, fibroblasts, B cells, and T cells. 
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DEGs were also explored in the publically available PEAC RNA sequencing dataset 

(Lewis et al., 2019). The interactive website allows for comparison of gene 

expression against histology, including their lympho-myeloid, diffuse-myeloid, 

and pauci-immune fibroid pathotypes, clinical data, radiology, and response. 

Only one of the response DEGs (DUOX2) was found to be associated with EULAR 

DAS28-ESR response at 6 months in the PEAC dataset, with it being increased in 

non-responders in both datasets. However, similarly to the AMP data and current 

study, most of the genes upregulated in responders were increased in the 

lympho-myeloid pathotype and non-response genes were generally decreased in 

lympho-myeloid pathotypes, although expression in diffuse-myeloid and pauci-

 

  
Figure 5.5: Average expression of treatment response and non-
response genes across UMAP clusters and pathotypes. UMAP clusters (A 

& B) were derived in Chapter 4.4.1. Pathotype (C & D) is the histology 
BEACON pathotype score. Genes included in response (A & C, n=10) and non-
response (B & D, n=11) are shown in Figure 5.3. Only sdRA (n=16) and ldRA 

(n=31) samples were included in this analysis (total n=47). 

A B 

C D 
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immune fibroid pathotypes was more variable (Figure 5.6 and Figure 5.7). Of the 

21 DEGs, four were not found in the PEAC dataset. 

 

   

   

 

Figure 5.6: Upregulated DEG exploration in the PEAC dataset. Genes 
upregulated in responders were explored in the PEAC RNA sequencing dataset 
(Lewis et al., 2019) for expression in their pathotypes. Graphs are taken 

directly from the interactive website in the gene view section, accessable at 

https://peac.hpc.qmul.ac.uk/.  

https://peac.hpc.qmul.ac.uk/
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To further explore the differences between responders and non-responders, 

exploration of gene ontology (GO) biological processes that are associated with 

    

   

   

  

Figure 5.7: Downregulated DEG exploration in the PEAC dataset. 

Genes downregulated in responders were explored in the PEAC RNA 
sequencing dataset (Lewis et al., 2019) for expression in their pathotypes. 
Genes were also tested for association with DAS28-ESR EULAR response 

(good & moderate versus poor) at 6 months, DUOX2 was the only gene that 
had an association, so this graph is shown. Graphs are taken directly from the 

interactive website in the gene view section, accessable at 

https://peac.hpc.qmul.ac.uk/. 

https://peac.hpc.qmul.ac.uk/
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the differentially expressed genes (DEGs) was explored. For this a less stringent 

cut-off using an unadjusted p<0.05 and absolute log-fold change greater than 

one (LFC>1) was used, resulting in 1288 genes. Genes that were upregulated 

(n=854) in responders were associated with predominantly immune-related 

processes, with the top processes being T cell activation, leukocyte cell-cell 

adhesion, and lymphocyte mediated immunity (Figure 5.8).  

The processes associated with downregulated genes (n=434) were less clear in 

their biological significance, with ossification, collagen fibril organisation, skeletal 

system morphogenesis, and cartilage development being the most significantly 

associated processes (Figure 5.8). However, upon exploration of the genes 

associated with these processes in the AMP Phase I RA dataset (Zhang et al., 

2019), and similarly to the significant DEGs, the majority of these genes were 

predominantly expressed in synovial fibroblasts, with many of them showing high 

expression across all fibroblast subsets (Appendix 9.6). Therefore, it is likely that 

these genes are representative of a synovial fibroblast signature rather than of 

ossification or collagen processes, as suggested by GO analysis. However, it is 

worth considering that the AMP dataset only includes pre-sorted monocytes, 

fibroblasts, B cells and T cells, and so excludes some cell types that are present 

in the synovium, such as endothelial cells, which may also express these genes. 

A list of all significant GO biological processes can be found in Appendix 9.5.2.  
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5.5 DISCUSSION 

5.5.1 Biomarkers of early RA 

Differential expression analysis was unable to identify any significant DEGs 

between sdRA and other early inflammatory arthritides. Due to the very 

heterogeneous nature of the groups involved in this comparison, other methods 

may be better able to cope with the level of heterogeneity in this comparison. 

Weighted correlation network analysis (WGCNA) allows for the formation of gene 

 

 

Figure 5.8: GO biological process analysis on RA response DEGs. Top 
10 processes are shown. Shows processes from upregulated (A) and 

downregulated (B) genes. DEGs from unadjusted p<0.05, absolute LFC>1.  

A 

B 
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modules, which could be tested for differential expression between these groups 

(Langfelder and Horvath, 2008). This would reduce the number of multiple 

comparisons and increase statistical power, potentially overcoming some of the 

heterogeneity issues associated with this analysis. Another option could be the 

use of machine learning techniques, as was used in a previous study by Yeo et 

al. (2016), which also enables the capture of interactions between genes to 

identify gene expression profiles that distinguish between clinical groups. 

Alternatively, it may be that exploration of a subset of cells or the use of single 

cell RNA sequencing may be able to reduce some of the noise associated with 

whole tissue RNA sequencing and enable identification of biomarkers for very 

early RA.  

5.5.2 Mechanisms of short duration vs longer duration RA 

Exploration of the differential expression between short (symptom duration <3 

months) and longer duration (symptom duration >6 months) RA resulted in 

three significant DEGs that may have biological relevance that were all 

upregulated in ldRA. ENSG00000203286 is a misc RNA, also known as 

AL441992.1. This gene has only been explored in one study, in which it was 

identified as an immune-related prognostic lncRNA for cervical cancer (Chen et 

al., 2020a). USP43, an ubiquitin peptidase, has also not been associated with 

rheumatoid arthritis directly, although a study into breast cancer suggested 

USP43 may be linked to the EGFR/PI3K/AKT pathway, which plays a role in RA 

pathogenesis (He et al., 2018, Yuan et al., 2013, Zhang et al., 2001). NOS2 

(inducible nitric oxide synthase, iNOS), expressed in monocytes, has previously 

been associated with rheumatoid arthritis pathogenic mechanisms. It has been 

found to play a role in pro-inflammatory processes via the production of nitric 
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oxide (NO). NO may be involved in RA pathogenesis via its impact on bone 

erosion and its ability to drive T cells towards Th1 differentiation and IFNγ 

production (Nagy et al., 2010). It is also potentially linked to IL6 expression (Liu 

et al., 2018, Perkins et al., 1998, Grabowski et al., 1997).  

Differential expression analysis did not give a clear separation between short and 

longer duration RA, leading to the conclusion that, from this dataset, we are 

unable to find differential mechanisms between these groups. Some previous 

studies have also not found differences between short duration and longer 

duration RA, finding no difference in the presence of immune cells by histology or 

immunoregulatory cytokines (Tak et al., 1997, Bucht et al., 1996). However, 

other studies were able to find differences in cytokines in both synovial fluid and 

tissue in early RA (Raza et al., 2005a, Yeo et al., 2016).  

These results could suggest that, without the use of treatment, disease 

pathobiology remains fairly constant regardless of symptom duration, with 

similar mechanisms continuing to drive disease progression at both early and 

later stages, and with the predominant disease mechanisms depending more on 

pathotype than disease duration. This is further supported by the lack of 

significant differences between sdRA and ldRA when looking at histological 

variables, including BEACON density, aggregates, and pathotype. This may 

further highlight the potential for pathotype to inform treatment decisions, 

without a requirement for capturing disease at a specific point in time. However, 

there is still the possibility that the same mechanisms drive disease onset in all 

patients prior to symptom presentation, which cannot be elucidated from the 

current study.  
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It is also likely there are some differences between short and longer duration RA 

that have been masked by the noise associated with analysing whole tissue. 

There could also be differences on a level that cannot easily be detected in gene 

expression, such as at the level of protein translation, modification or 

degradation. It may be that other approaches that take a more specific view of 

different cell types or that investigate the proteome are better able to elucidate 

differences.  

5.5.3 Biomarkers of response 

Exploring the differential gene expression between RA responders and non-

responders resulted in more differentially expressed genes and pathways than 

the previous two comparisons, with biological plausibility. There were a total of 

21 significant DEGs. Exploration of these genes in the AMP Phase I RA dataset 

suggested an immune cell signature in responders and a fibroblast signature in 

non-responders. However, there are only selected cell types in this dataset so 

there may be other cells that express these genes that are not accounted for. 

This may also be the reason why six of the DEGs were not found in this dataset, 

although this could also be due to detection limitations for low expression levels 

in single cell RNA sequencing.  

An immune cell versus fibroblast signature was also supported by the average 

expression of the genes increased in responders being significantly higher in the 

lymphoid pathotype compared to pauci-immune and vice versa, although 

fibroblast proportions are not accounted for in pathotype derivation. This was 

also true upon exploration in the PEAC dataset, in which genes increased in 

resolvers were generally increased in their lympho-myeloid pathotype. However, 



128 
 

it would be useful to follow this up in a single cell RNA sequencing dataset that 

includes all cell types found in synovial tissue to ensure no cell types are not 

accounted for and to assign expression more accurately to specific subsets.  

IFNG and CXCL11 were both upregulated in responders. CXCL11 is induced by 

IFNγ, the protein product of IFNG, and binds CXCR3, which is expressed 

predominantly by activated T cells (Metzemaekers et al., 2017). CXCL11 induces 

immune tolerance via the induction of Th2 and Tr1 cells (Zohar et al., 2014). On 

the other hand, IFNγ is pro-inflammatory and generally associated with Th1 cells, 

although expression has also been found in Th17 cells, with IFNγ+ Th17 cells 

being elevated in the synovium and peripheral blood in RA (Paulissen et al., 

2015). IFNγ has been shown to be increased in sera from RA patients compared 

to healthy controls and to correlate with disease activity (Brzustewicz and Bryl, 

2015). Interestingly, CXCL11 has previously been found to predict poor response 

to adalimumab therapy, although this was in patients that had not responded to 

conventional therapy (Badot et al., 2009). Differences may therefore be due to 

prior treatment or may highlight a marker specific to adalimumab, as the present 

study was not solely looking at response to adalimumab. 

GIMAP5 and GIMAP7 were upregulated in future responders, both of which are 

GTPases belonging to the immuno-associated nucleotide (IAN) subfamily. 

GIMAP5 has been linked to type 1 diabetes and systemic lupus erythematosus 

(SLE) and plays a role in lymphocyte survival. There have been conflicting 

studies around the role of GIMAP5 on T cell apoptosis, with some studies 

suggesting a protective role (Patterson et al., 2018, Chen et al., 2015, Pino et 

al., 2009, Chadwick et al., 2010), and another finding that over-expression 

induces apoptosis (Dalberg et al., 2007). It may be that GIMAP5 has differing 
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roles depending on concentration, availability of other factors, or level of T cell 

activation (Dalberg et al., 2007, Chadwick et al., 2010). Although less well 

studied, GIMAP7 has been suggested to be tumour suppressive in multiple recent 

studies, potentially by increasing the anti-tumour immune response (Xi et al., 

2020, Song et al., 2019, Megarbane et al., 2020, Meng et al., 2020, Zhang et al., 

2020a). 

B3GAT1 (CD57) is expressed by subsets of NK cells, CD4+ and CD8+ T cells. 

CD57+CD8+ T cells are replication deficient and thought to be senescent, 

however are still able to produce cytokines and have cytotoxic activity (Kared et 

al., 2016). CD57+CD8+ T cells have been found in higher proportions in PBMCs 

from RA patients compared to healthy controls and decrease following abatacept 

treatment (Wang et al., 1997, Scarsi et al., 2010). In NK cells, CD57 is thought 

to be a marker of terminal differentiation, being expressed in mature NK cells 

(Kared et al., 2016). This subset of CD57+ NK cells was found to be present in 

joints of inflammatory arthritis patients (Dalbeth and Callan, 2002). 

ZBED2, which was also upregulated in responders, is a relatively unknown 

transcription factor. It has been shown in one recent study to be involved in 

pancreatic cancer by repressing IFN response through negative interaction with 

interferon regulatory factor 1 (IRF1) (Somerville et al., 2020). IRF1-deficient CIA 

mice were shown to have less severe disease and blocking of IRF1 reduced IL18, 

a cytokine involved in RA pathogenesis, in RA synovial fibroblasts, suggesting a 

potential role for IRF1 in RA (Tada et al., 1997, Marotte et al., 2011).  

Taken together, this suggests a link between genes related to inflammation and 

response in RA patients. Interestingly, some of these genes have been shown to 
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be anti-inflammatory, with CXCL11 inducing immune tolerance and ZBED2 

inhibiting IFN response via IRF1, although this is not the case for all genes 

identified (Zohar et al., 2014, Somerville et al., 2020, Tada et al., 1997, Marotte 

et al., 2011). These genes are predominantly expressed by T cells and 

monocytes, so this signature may be reflective of the cell types present in the 

tissue.  

Overall, genes downregulated in responders compared to non-responders 

highlight a fibroblast signature, potentially suggesting varying disease 

mechanisms that are driven by different cell types between responders and non-

responders. These findings are broadly in agreement with what was found in a 

previous study by Lewis et al. (2019), which found that gene modules associated 

with CD8+ T cells, mast cells, and TLR signalling were increased in responders 

and that a CD55+ fibroblast module was decreased. Of all the response DEGs, 

DUOX2 was the only gene that was also associated with response in this dataset. 

This may be due to the differing timeframe used for response, with the Lewis et 

al. study looking at EULAR DAS28-CRP response at 6 months and the present 

study using DAS28-ESR response at 12 months. Interestingly, DUOX2 was also 

found to be significantly upregulated in the UMAP cluster C2, which was 

associated with pauci-immune pathotype and low US GS score. 

DUOX2 drives hydrogen peroxide production, a reactive oxygen species (ROS) 

that causes oxidative stress, and has been found to be upregulated in response 

to TLR4 signalling in inflammatory bowel disease, potentially driving an abnormal 

response to the microbiome (Burgueno et al., 2021). Hydrogen peroxide is 

increased in RA and oxidative stress has been suggested to contribute to 

cartilage destruction and joint destruction, even though oxidative stress 
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generally reduces T cell function (Wruck et al., 2011, Mirshafiey and 

Mohsenzadegan, 2008).  

The signature seen in non-responders may be reflective of the current targets of 

RA therapy, which are predominantly focused on controlling inflammation via the 

targeting of immune cells and inflammatory mediators. Given that non-

responders have a fibroblast related gene expression signature, current research 

efforts into synovial fibroblasts may yield new therapeutic targets that prove to 

be more effective for patients who are not responding to current treatment 

options (Siebert et al., 2020, Croft et al., 2019, Montero-Melendez et al., 2020, 

Diller et al., 2019). This further highlights the requirement for patient 

stratification prior to commencement of treatment, to ensure that the 

predominant disease mechanisms in each patient is being targeted and to avoid 

delays in commencement of the most effective treatment. This should also 

reduce the cost of RA treatment overall, avoiding the use of ineffective treatment 

and controlling disease at an earlier stage in those that will not respond to 

current first line treatment.  

Exploration of the average expression of genes involved in response compared to 

non-response was able to provide some validation of previously non-significant 

associations between response, pathotype and UMAP clusters. Addition of all RA 

patients (n=47), rather than only those with available response data (n=19), 

granted increased statistical power. This allowed for the identification of 

significantly increased expression of response genes in lymphoid pathotypes 

compared to pauci-immune and UMAP cluster 3 compared to 1 and 2, with the 

opposite also being true. This further highlights the potential clinical utility of the 

BEACON histology scoring system, which could allow for the prediction of 
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treatment response, although this still requires further validation to confirm. 

Furthermore, this supports the idea that patient stratification using synovial 

tissue will allow for more informed treatment decisions and allow for more 

personalised medicine in RA. 

Overall, the analyses in this chapter highlight some of the challenges associated 

with bulk, whole tissue RNA sequencing in inflammatory arthritis, with the large 

amount of heterogeneity in these patients providing a challenge for traditional 

differential expression analyses. Further exploration of these hypotheses using 

other analysis methods may add to these data. More specific questions 

addressing individual cell types, or the use of single cell RNA sequencing may 

allow for the identification of changes that are not detectable at the whole tissue 

level.  
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6 MECHANISMS OF RESOLUTION 

6.1 INTRODUCTION 

This chapter will explore the final hypotheses that were set at the 

commencement of the study, exploring mechanisms of resolution by comparing 

early RA with resolving disease and both of these groups separately to normal 

synovium. This will allow for characterisation of early RA and resolving 

signatures. Exploration of mechanisms that differ between these groups may 

allow for the identification of genes or pathways that drive resolution versus 

persistence, allowing for future targeting of these to block persistence and drive 

resolution of inflammation.  

Current therapies for RA are able to suppress inflammation and reduce joint 

damage but are not curative and rarely allow for drug-free remission. This 

suggests that there are mechanisms that continually drive the persistence of RA, 

or an absence of mechanisms that actively drive resolution, that are not being 

targeted by current therapeutics. It was hypothesised that by comparing the 

gene expression in synovium of inflammatory arthritis that resolves with that of 

early RA, this would allow for the identification of these mechanisms, potentially 

leading to new therapeutic targets.  

6.2 SHORT DURATION RA SIGNATURE 

To explore the mechanisms involved in short duration RA, synovium from these 

patients was compared to normal tissue without inflammation to build a sdRA 

gene expression signature. Figure 6.1 shows the 689 genes that were identified 
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as being differentially expressed (padj<0.05, absolute LFC>1). Of these genes, 

131 were upregulated in the uninflamed controls and 558 were downregulated so 

associated with sdRA.  

 

As the number of DEGs was too large to explore in depth individually, exploration 

of the top 10 most significantly DEGs and GO pathway analysis on the full list of 

DEGs was undertaken. Figure 6.2 shows the GO biological processes that are 

associated with the DEGs that were downregulated in normal compared to sdRA. 

 

Figure 6.1: Differentially expressed genes between normal 
(uninflamed) control and sdRA. Bars along the top show clinical group and 

pathotype. Adjusted p<0.05, absolute LFC>1. Number of DEGs = 689. 
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This shows an inflammatory phenotype, as would be expected when comparing 

an uninflamed control with RA. The most significant process was T cell activation, 

followed by chemotaxis and chemokine pathways, showing activation and 

recruitment of immune cells, and suggesting the presence of a building or 

persistent activation of an immune response. There were pathways associated 

with both innate and adaptive immune responses, showing a full repertoire of 

immune activation in early RA. There were no pathways that were significantly 

associated with the genes upregulated in normal compared to sdRA samples. A 

list of all significant GO biological processes can be found in Appendix 9.5.3.  

 

6.2.1 Gene exploration 

All of the top 10 most significantly DEGs were upregulated in sdRA compared to 

normal controls. IER3 (IEX-1) is involved in the regulation of Th1 and Th17 cell 

responses, with deficiency resulting in Th1 cell apoptosis and promotion of Th17 

 

Figure 6.2: GO biological process analysis on normal vs sdRA DEGs. 

Top 10 processes are shown. Shows processes from genes upregulated in 
sdRA. DEG input from adjusted p<0.05, absolute LFC>1. Fold change shown 

on heatmap is the fold change of the gene between normal and sdRA. A full 

list of processes with associated genes can be found in Appendix 9.5.3. 
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cell differentiation and survival (Zhi et al., 2012, Ustyugova et al., 2012). IER3 

was previously found to protect from arthritis in mouse models and cultured 

cells, with knockout mice having more severe arthritis and knockdown being 

anti-apoptotic and increasing cytokine production in cultured RA synovial 

fibroblasts (Zhi et al., 2012, Morinobu et al., 2016). However, IER3 expression 

was actually found to be increased in RA synovial fibroblasts compared to OA in 

the same study (Morinobu et al., 2016).  

DUSP2 induces apoptosis in response to oxidative stress and may decrease Th17 

cell differentiation (Yin et al., 2003, Lu et al., 2015). However, the role of DUSP2 

in RA is unclear, with one study finding that knockout mice were resistant to the 

development of an RA model and another finding that DUSP2 expression is pro-

inflammatory (Jeffrey et al., 2006, Lu et al., 2015).  

PIM1 expression in synovial fibroblasts has been found to promote proliferation, 

migration, and joint damage, and expression in CD4+ T cells has been associated 

with Th1 cell differentiation (Ha et al., 2019, Aho et al., 2005). PIM1 has been 

found to be increased in CD4+ T cells in RA compared to other early inflammatory 

arthritis and targeting PIM1 has been suggested to be therapeutic in RA 

(Anderson et al., 2019, Maney et al., 2021). 

IL6, CXCL8, and CXCL2 are cytokines and chemokines that have established 

roles in RA via blockade of the IL6 receptor for the treatment of RA, CXCL8 being 

chemotactic and activating for neutrophils and being expressed by numerous 

immune cell types, and CXCL2 being produced predominantly by monocytes and 

also being chemotactic for neutrophils (Elemam et al., 2020, De Filippo et al., 

2013). 
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Interestingly, SOCS3, which was also found to be differentially expressed, is anti-

inflammatory and has been shown to downregulate IL6 responses, although 

expression of SOCS3 is upregulated in response to IL6, providing negative 

feedback for cytokine responses (Yin et al., 2015). In a mouse model for RA, 

reduction of SOCS3 resulted in more severe disease, with increased T cell and 

macrophage activation, as well as increased bone erosion (Wong et al., 2006).  

LTBP2 encodes an extracellular matrix protein that regulates cell adhesion and is 

anti-angiogenic (Kan et al., 2015). LTBP2 has been found to inhibit maturation 

and increase production of inflammatory cytokines in adipocytes, which are 

reduced in number in RA compared to normal tissue (Srinivasa et al., 2021). A 

study by Nzeusseu Toukap et al. (2007) found that LTBP2 expression was 

reduced in SLE compared to RA and OA, although this could be due to an 

increased expression in RA, as suggested by the present study.  

CR1 is a regulatory complement gene expressed in several immune cells that has 

previously been found to be reduced in RA B cells compared to healthy controls, 

with it inhibiting B cell activation and proliferation (Kremlitzka et al., 2013). 

However, CR1 was found to be increased in monocytes in RA compared to 

healthy controls during active disease (Hepburn et al., 2004). It may be that 

increased expression of CR1 in the present dataset is driven by expression in 

monocytes or other cells in the synovium that have not been previously 

described in relation to CR1 expression in RA. The final gene associated with 

sdRA was ENSG00000224114, which is a pseudogene. 
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6.3 RESOLVING SIGNATURE 

Similarly, the gene expression signature associated with resolving disease was 

explored by comparing tissue from patients whose disease resolved with normal, 

uninflamed tissue (Figure 6.3). This resulted in fewer differentially expressed 

genes in total (n=116) than the comparison with sdRA (n=689). Again, more 

genes were downregulated (n=93) in normal tissues compared to resolvers than 

upregulated (n=23). 
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Exploration of the biological processes associated with the downregulated genes 

in normal compared to resolvers indicated involvement of a number of immune 

processes (Figure 6.4). However, the top pathways, including leukocyte 

chemotaxis, neutrophil activation, and neutrophil mediated immunity, were 

predominantly associated with innate immunity, with there being a relative lack 

of adaptive immune activation processes, although some adaptive immune 

 

Figure 6.3: Differentially expressed genes between normal 
(uninflamed) control and resolving disease. Bars along the top show 

clinical group and pathotype. Adjusted p<0.05, absolute LFC>1. Number of 

DEGs = 116.  
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chemotaxis. This provides an interesting contrast to the sdRA signature, where 

the most significantly associated process was T cell activation. There were again 

no significant processes that were associated with the genes upregulated in 

normal compared to resolving samples. A list of all significant GO biological 

processes can be found in Appendix 9.5.3.  

 

6.3.1 Gene exploration 

The top ten most significant DEGs were explored in the existing literature, eight 

of which were associated with resolving disease. The two genes upregulated in 

normal controls compared to resolving disease were RPL3P7, which is a 

pseudogene, and GRIP1. GRIP1 has been suggested to have a role in 

glucocorticoid signalling, being a cofactor of glucocorticoid receptor, although 

GRIP1 can also activate pro-inflammatory IFN-regulatory factors (Reily et al., 

 

Figure 6.4: GO biological process analysis on normal vs Res DEGs. Top 

10 processes are shown. Shows processes from genes upregulated in Res. 
DEG input from adjusted p<0.05, absolute LFC>1. Fold change shown on 
heatmap is the fold change of the gene between normal and Res. A full list of 

processes with associated genes can be found in Appendix 9.5.3. 
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2006, Flammer et al., 2010). Posttranslational modifications have been shown to 

have an impact on the role of GRIP1, with phosphorylation being suggested to 

increase its interaction with and subsequent activation of glucocorticoid 

receptors, highlighting a drawback of the exploration of gene expression 

(Dobrovolna et al., 2012).  

Of the top DEGs associated with resolving disease, IER3, IL6, PIM1, and CXCL8 

were also included in the top 10 most significant DEGs associated with sdRA. 

BHLHE40, CXCL9, LRRN1, and FCGR3B make up the rest of the top DEGs for 

resolving compared to normal tissue. BHLHE40 regulates a number of processes 

in several different immune cell types, including CD4+ T cells, in which it 

regulates proliferation and increases pro-inflammatory cytokine production while 

reducing production of anti-inflammatory IL-10 (Cook et al., 2020). It has also 

been found to have a role in regulation of mitochondrial metabolism, in particular 

in tissue resident CD8+ cells (Li et al., 2019, Cook et al., 2020).  

CXCL9 is a chemokine that is produced by synovial fibroblasts and is chemotactic 

for activated T cells and plasma cells, having known roles in both RA and PsA 

(Farber, 1997, Tsubaki et al., 2005, Penkava et al., 2020). Furthermore, 

reducing CXCL9 has been found to inhibit the activation of synovial fibroblasts in 

RA, highlighting a role of CXCL9 in inflammatory arthritis (Meng and Qiu, 2020). 

LRRN1 has been found to have a key role in neuronal development and to be 

expressed in cancer but a role in inflammation has not been described to date. In 

cancer, LRRN1 has been found to be anti-apoptotic, with knock down inducing 

apoptosis in gastric cancer and pancreatic ductal adenocarcinoma cells and 
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expression being linked to poor prognosis in some instances (Liu et al., 2019, 

Zhang et al., 2021b).  

FCGR3B has been linked to risk of RA and other inflammatory disease, with low 

copy number and deletion increasing risk (Rahbari et al., 2017, McKinney and 

Merriman, 2012). This may be due to its ability to remove immune complexes 

without the pro-inflammatory formation of neutrophil extracellular traps (Chen et 

al., 2012). However, a recent study by Chen et al. (2020b) identified FCGR3B as 

being upregulated in RA and ulcerative colitis, with a decrease being seen 

following treatment in ulcerative colitis. Hence, the role of FCGR3B in 

inflammatory arthritis is unclear and requires further study. 

6.4 DIFFERENTIAL EXPRESSION 

Differential expression analysis was then undertaken directly comparing resolving 

disease to early RA (sdRA). There was only one significant gene with padj<0.05, 

so genes with an adjusted p<0.2 and absolute LFC>1 were explored. This 

resulted in 15 DEGs, with six being upregulated and nine downregulated in 

resolvers (Figure 6.5). One of these genes was the pseudogene MTND1P2, which 

was predominantly expressed in a single sample so likely lacks biological 

relevance.  

In order to explore pathways associated with DEGs, genes with an unadjusted 

p<0.05 and absolute LFC>1 that had associated Entrez IDs were used as input to 

GO biological process analysis (Figure 6.6). Figure 6.7 shows the biological 

processes that were associated with upregulated and downregulated genes. The 

top processes downregulated in resolvers compared to sdRA included positive 

regulation of leukocyte activation, positive regulation of cell activation, regulation 
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of lymphocyte activation, and regulation of humoral immune response. This 

suggests more prominent persistent immune activation occurring in sdRA than 

resolving disease.  

On the other hand, processes upregulated in resolvers were mostly involved in 

amine transport and fatty acid metabolism, with the top three processes being 

regulation of amine transport, amine transport, and fatty acid derivative 

metabolic process. This may suggest differential metabolic processes occurring 

between these two clinical groups.  

 

 

 

Figure 6.5: Differentially expressed genes between resolving 

inflammatory arthritis and sdRA. Bars along the top show clinical group 

and pathotype. Adjusted p<0.2, absolute LFC>1.  
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Figure 6.6: Differentially expressed genes between resolving 
inflammatory arthritis and sdRA. Bars along the top show clinical group 

and pathotype. Unadjusted p<0.05, absolute LFC>1. Number of DEGs = 665. 
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6.4.1 Gene exploration 

Genes with padj<0.2 and absolute LFC>1 were explored further (n=15). Of 

these, nine were downregulated (MTND1P23, FDCSP, MMP13, CFAP126, CHI3L2, 

GAP43, SPRED3, IGHG4, and EGR2) and six were upregulated 

(ENSG00000258682, ELOVL6, PDCD6-AHRR, PNPLA3, CPAMD8, and GPR15) in 

resolvers. A literature search was undertaken to find similarities and differences 

 

 

Figure 6.7: GO biological process analysis on resolving vs sdRA DEGs. 

All significant processes are shown (p<0.05). Shows processes from 
upregulated (A) and downregulated (B) genes. DEG input from unadjusted 
p<0.05, absolute LFC>1. Fold change shown on heatmap is the fold change of 

the gene between resolving and sdRA. 

A 

B 
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between these genes and to highlight areas where further exploration within the 

dataset may aid interpretation. 

MMP13, a matrix metalloproteinase known to be involved in destruction of the 

joint in RA, was found to be downregulated in resolvers compared to sdRA. This 

finding helped to provide confidence in the results, as MMP13 has been 

extensively linked to RA pathogenesis (Wernicke et al., 1996, Moore et al., 2000, 

Konttinen et al., 1999, Burrage et al., 2006). Furthermore, a recent study by 

Liao et al. identified MMP13 as a marker for RA, although this was exclusive to 

fibroblasts and compared to OA, rather than other inflammatory arthritides (Liao 

et al., 2021). 

FDCSP, also identified as being downregulated in resolvers compared to sdRA, is 

expressed by follicular dendritic cells and is thought to regulate IgA production 

and germinal centre responses (Marshall et al., 2002, Al-Alwan et al., 2007, Hou 

et al., 2014). Interestingly, FDCSP was found to be increased in samples with a 

lymphoid pathotype compared to both diffuse and pauci-immune (p<0.05 and 

p=0.01, respectively), supporting a link between FDCSP and lymphocyte 

aggregation (Figure 6.8A). FDCSP expression also appeared to be higher in the 

lympho-myeloid pathotype in the PEAC RNA sequencing dataset (Lewis et al., 

2019), although statistics were unavailable for this (Figure 6.8B).  
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IGHG4 was also identified as being downregulated in resolving disease. 

Increased serum IgG4 has been shown to be associated with higher disease 

 

  

  

Figure 6.8: Gene exploration across pathotype and clinical group. 
Genes explored were differentially expressed between resolving and sdRA 
(unadj p<0.05, absolute LFC>1) and identified as potentially being linked to 

pathotype or clinical group following a literature search. Graphs B and F are 

copied directly from the PEAC publically available dataset (Lewis et al., 2019). 
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activity and poor response to methotrexate and leflunomide in RA patients, with 

serum levels also correlating with the presence of IgG4+ plasma cells in the 

synovium (Chen et al., 2014). IGHG4 expression was higher in lymphoid 

pathotypes than pauci-immune (p=0.002) but no different from diffuse tissues 

(Figure 6.8C).  

EGR2 can inhibit T cell activation and regulates Th17 differentiation, making it 

broadly anti-inflammatory (Safford et al., 2005, Miao et al., 2013). Contrary to 

the findings in the present study of EGR2 being decreased in resolvers compared 

to early RA, EGR2 has previously been found to be hypermethylated in RA 

synovial fibroblasts, resulting in reduced expression (Park et al., 2013). 

However, this was in cultured synovial fibroblasts alone, which have been found 

to have an altered phenotype compared to fibroblasts in the tissue, was from late 

stage disease, and was in comparison to OA and healthy controls, rather than 

other inflammatory arthritis (Wei et al., 2020, Casnici et al., 2014). Upon 

exploration of EGR2 expression across the clinical groups in the BEACON cohort, 

EGR2 expression was generally higher in early inflammatory arthritis when 

compared to normal tissue, although only sdRA and NonRA had significantly 

higher expression than normal controls (p<0.02 and p<0.05, respectively) 

(Figure 6.8D). One explanation could be that EGR2 is expressed in early RA but 

is switched off later in the disease course but it was not identified as being 

differentially expressed between sdRA and ldRA.  

GAP43 has been found to be increased following nerve injury and in a collagen 

antibody-induced arthritis mouse model (Su et al., 2015b). It is associated with 

sprouting in neurons and may have a role in chronic pain that is not managed by 

anti-inflammatory treatment in RA (Goncalves Dos Santos et al., 2020). 
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Increased expression of GAP43 may suggest more nerve damage in sdRA when 

compared to resolving disease. 

CHI3L2, SPRED3, and CFAP126 have not previously been associated with RA, 

although SPRED3 is expressed in the liver where it has been found to inhibit 

cellular proliferation (King et al., 2006). CHI3L2 has been found to be 

upregulated in OA and a related protein, CHI3L1 has been suggested to be an 

autoantigen in RA (Kzhyshkowska et al., 2007, Mazur et al., 2021).  

Upon exploration of the genes that were upregulated in resolvers, GPR15 was 

identified as being differentially expressed. This is potentially in contrast to a 

previous study that identified GPR15 as being upregulated in RA, although this 

was on late-stage disease that had undergone treatment and was in comparison 

to uninflamed controls (Cartwright et al., 2014). In the same study, GPR15 was 

found to be expressed by monocytes and macrophages but not T or B cells in RA 

synovium but studies in other areas have found GPR15 expression in T cell 

subsets, including Treg cells from inflamed gut (Farzan et al., 1997, Fischer et 

al., 2016, Adamczyk et al., 2017). Unfortunately, there was no expression in the 

AMP phase I RA dataset (Zhang et al., 2019) for exploration of expression of 

GPR15 in specific cell types but expression was higher in tissues with a lymphoid 

pathotype than those with pauci-immune in our dataset (p=0.004, Figure 6.8E) 

and higher in lympho-myeloid than pauci-immune fibroid in the PEAC RNA 

sequencing dataset (Lewis et al., 2019) (p=0.01, Figure 6.8F), suggesting an 

association with lymphocyte infiltration and aggregation. Therefore, this might be 

indicative of increased expression of GPR15 in lymphocytes, potentially Treg 

cells, in resolvers compared to normal controls, although this would require more 

direct validation to explore further. 
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CPAMD8, PDCD6-AHRR and ENSG00000258682 were also upregulated in 

resolving disease. CPAMD8 has a potential role in innate immunity, is involved in 

glaucoma, and is associated with susceptibility for multiple sclerosis but has not 

been associated with inflammatory arthritis to date (Baranzini et al., 2009, Li et 

al., 2004, Wiggs, 2020, Bonet-Fernandez et al., 2020). CPAMD8 was also 

upregulated in the UMAP cluster C2, which was predominantly associated with 

pauci-immune pathotype. PDCD6-AHRR and ENSG00000258682 are both 

lncRNAs with unknown functions that have not yet been studied in any depth.  

PNPLA3, also upregulated in Res, is able to inhibit adipose lipolysis and is 

thought to be involved in triacylglycerol (TAG) synthesis, meaning it broadly 

drives lipid synthesis (Yang and Mottillo, 2020, Yang et al., 2019). Furthermore, 

PNPLA3 has been found to have a role in lipid droplet formation (Chamoun et al., 

2013). ELOVL6, a fatty acid elongase, was also found to be upregulated in 

resolvers compared to sdRA. Taken together, this suggests a difference in lipid 

metabolism between resolving inflammatory arthritis and early RA. Although 

PNPLA3 was upregulated in the pauci-immune pathotype compared to lymphoid 

(p<0.02, Figure 6.8G), there was no difference compared to diffuse, and there 

was no significant association between pathotype and ELOVL6 (Figure 6.8H). 

Therefore, the level and organisation of the lymphocytic infiltrate does not 

necessarily correlate with the difference in lipid metabolism. 

6.5 EXPLORING METABOLISM 

As transcription of genes involved in metabolic processes was identified as being 

potentially different between resolving disease and sdRA, further exploration of 

metabolic genes was undertaken. Genes involved in specific metabolic pathways 
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were curated by Dr Valentina Pucino and used for the exploration of average 

gene expression across different metabolic processes (Figure 6.9) (Pucino et al., 

2019). Samples containing muscle were removed due to the inability to correct 

using the muscle score in this analysis and the distinct metabolic differences 

between muscle and synovium. There were no significant differences between 

resolving disease and sdRA for any of the metabolic processes tested in this way. 

Glucose transporters were higher in Res than sdRA (p=0.01) but significance was 

lost following Benjamini Hochberg correction for multiple comparisons. Even so, 

there was a trend towards increased lipid metabolism, including fatty acid 

synthesis and elongation, glucose metabolism, in particular increased glucose 

transporters, and amino acid metabolism in resolving disease.  
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Heatmaps of the genes involved in these metabolic processes were then 

explored, to explore in more detail the metabolic gene expression between 

resolving disease and sdRA. Figure 6.10 shows the expression of genes involved 

in fatty acid synthesis and fatty acid elongation and Figure 6.11 shows genes 

involved in glycolysis and glucose transporters. Hierarchical clustering of samples 

based on the expression of these genes showed that the majority of resolving 

samples clustered together based on FA synthesis and glucose transporter 

 

Figure 6.9: Relative expression for genes involved in metabolic 
pathways in Res and sdRA. Gene lists manually curated by Dr Valentina 

Pucino and can be found in Appendix 9.7. Relative expression calculated using 
technique developed by Wagle et al. (2018). Samples containing muscle were 

removed for this analysis. 
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genes, with less clear clustering by clinical group based on FA elongation and 

glycolysis genes. These heatmaps also highlight the influence of pathotype, with 

samples with the same pathotype often clustering together, particularly in the 

heatmaps based on FA synthesis and elongation.  
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Figure 6.10: Heatmaps showing expression of genes involved in FA 

synthesis and FA elongation in Res and sdRA. Bars along the top show 
clinical group and pathotype. Samples were clustered using hierarchical 

clustering. Gene lists manually curated by Dr Valentina Pucino and can be 
found in Appendix 9.7. Samples containing muscle were removed for this 

analysis. 
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Figure 6.11: Heatmaps showing expression of genes involved in 

glycolysis and glucose transporters in Res and sdRA. Bars along the top 
show clinical group and pathotype. Samples were clustered using hierarchical 

clustering. Gene lists manually curated by Dr Valentina Pucino and can be 
found in Appendix 9.7. Samples containing muscle were removed for this 

analysis. 
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6.6  DISCUSSION 

There were fewer DEGs identified when comparing resolvers to normal than sdRA 

to normal (n=116 and 689, respectively), which may suggest that patients that 

are destined to resolve have gene expression that is closer to normal synovium 

than those that have early RA. However, this may also be as a result of the fewer 

numbers of resolving patients in the cohort (Res n=14, sdRA n=18) or due to the 

mixed nature of the resolving group containing patients with many different 

diagnoses, rather than a single disease as is the case in the sdRA group, 

introducing more noise to the comparison.  

Interestingly, in both resolving and sdRA exploration compared to normal, there 

were no processes significantly associated with genes downregulated in diseased 

tissue, despite there being a large number of downregulated genes in the sdRA 

comparison. There were only 23 genes downregulated in resolving tissue 

compared to normal, so it is unsurprising that there are no associated processes, 

but the comparison to sdRA resulted in 131 downregulated genes associated with 

a more normal signature. This may be due to bias in research, with disease-

associated processes being better studied and documented than processes 

associated with normal tissue homeostasis.  

Exploration of the genes involved in the sdRA signature resulted in a number of 

genes that are known to have a key role in RA pathogenesis, thus increasing 

confidence in the results. Among these are cytokines that are already being 

targeted by RA therapeutics, such as IL6, which was one of the genes most 

significantly associated with sdRA compared to normal, and matrix 

metalloproteinases, including MMP13 that has a well-documented role in RA 
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pathogenesis (Moore et al., 2000, Konttinen et al., 1999, Singh et al., 2013, 

Burrage et al., 2006, Wernicke et al., 1996).  

Upon exploration of the top 10 most significant genes and pathways associated 

with sdRA or resolving disease when compared to normal, there were a number 

of pro- and anti-inflammatory genes in both signatures, although a relatively 

more prominent T cell signature was observed in sdRA. There were a number of 

cytokines and chemokines associated with the resolving signature, such as IL6 

and CXCL9, that are chemotactic and activating for both innate and adaptive 

immune cells, although GO processes involving lymphocyte activation were less 

evident, potentially suggesting that recruitment of lymphocytes into the 

synovium occurs in both resolving disease and sdRA but that there is a stronger 

activation of these cells occurring in sdRA than resolving tissue.  

Exploration of the pathways associated with downregulated DEGs (unadjusted 

p<0.05, LFC>1) in resolving disease compared to sdRA again revealed a 

potentially adaptive immune response signature, with regulation of lymphocyte 

activation and humoral immune response both being identified as significant 

processes associated with sdRA. When taken alongside the relative absence of 

adaptive immune activation seen in the resolving signature when compared to 

normal, this suggests a less active adaptive immune response in resolving 

disease. This is despite the presence of similar levels of immune cell infiltration 

when measured by histology, with there being no difference in the prevalence of 

pauci-immune, diffuse, or lymphoid pathotypes in resolving compared to sdRA 

(Chapter 3.4).  



158 
 

The presence of an innate immune response signal in resolving disease could be 

due to the upregulation of resolution pathways, which involves the recruitment of 

anti-inflammatory macrophages that phagocytose apoptotic immune cells, in 

particular neutrophils, and mediate tissue repair (Panigrahy et al., 2021). 

However, the presence of neutrophil activation processes in the resolving disease 

signature would suggest that this is not a complete explanation of the differences 

in immune activation, as neutrophils are typically pro-inflammatory and undergo 

apoptosis during resolution of inflammation (Panigrahy et al., 2021). 

Furthermore, a number of broadly pro-inflammatory genes, including IL6, were 

found to be increased in resolving disease compared to normal tissue. Although 

the resolving patients are predominantly in an improving phase, the biopsy joint 

was still inflamed at the time of biopsy, so it is expected that there would still be 

some pro-inflammatory signals. 

Neutrophil chemotaxis and activation pathways were present in both the 

resolving and sdRA signatures, despite neutrophils being largely absent from 

synovial tissue, with them only being found in 15% of RA synovial tissue sections 

in a study by Orange et al. (2020). However, neutrophils are greatly increased in 

RA synovial fluid, and are likely recruited via the synovium to the synovial fluid 

where they produce large amounts of pro-inflammatory cytokines and 

chemokines as well as reactive oxygen species and proteases responsible for 

joint destruction, thus driving pathogenesis (Thieblemont et al., 2016). 

Whether or not the adaptive immune response is ever fully activated in resolving 

inflammatory arthritis is another question that arises from this analysis. It may 

be that adaptive immunity was activated at the initiation of disease but that at 

the time of biopsy activation processes had already been downregulated. 
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Alternatively, it may be that in resolving disease a full adaptive immune response 

is not mounted and instead inflammation is predominantly driven by innate 

immunity. Although the presence of lymphocytes within the resolving tissue may 

support the first hypothesis, it is not possible to answer this definitively from this 

dataset as exploration of the tissue at multiple time points over the course of 

resolution would be required.  

A lipid metabolism signature was also found upon exploration of GO biological 

processes associated with differentially expressed genes (unadjusted p<0.05, 

LFC>1), with fatty acid derivative metabolic process, unsaturated fatty acid 

metabolic process, and fatty-acyl-CoA biosynthetic process all being associated 

with genes upregulated in resolving patients. Lipid metabolism has been 

demonstrated to have association with inflammation, with pro-inflammatory 

immune cells, such as M1 macrophages and effector T cells, having increased 

fatty acid synthesis and anti-inflammatory cells, such as M2 macrophages and 

Treg cells, having increased fatty acid oxidation (Boucher et al., 2021, O'Neill et 

al., 2016, Weyand et al., 2020). Furthermore, T cells in RA have been found to 

have increased expression of genes involved in FA synthesis, including FASN, and 

SCD, compared to normal controls, both of which were found to be upregulated 

in Res compared to sdRA in the current study (Wu et al., 2020). This finding of 

increased lipid synthesis in resolving inflammatory arthritis, where one might 

expect to find more anti-inflammatory cellular subtypes, is therefore broadly 

contrary to existing literature on lipid metabolism in inflammatory disease, 

although with the caveat that the existing literature describes expression in 

immune cell types, which may not be responsible for the signature in resolving 

disease.  
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Another potential source of lipid metabolism differences could be due to the 

presence of lipid droplets. The role of lipid droplets in inflammation is an area of 

increasing interest and the novel finding that PNPLA3, which is involved in lipid 

droplet formation, is increased in resolving patients compared to sdRA suggests 

an interesting potential link between lipid droplets and resolution of inflammatory 

arthritis (Chamoun et al., 2013). This is again unexpected, as lipid droplets 

increase in number during inflammation in many immune cell types, including 

macrophages and activated lymphocytes (Bozza et al., 2009). T cells in RA have 

been found to have increased presence of lipid droplets, which is thought to 

enable the rapid formation of cell membrane required during cell proliferation 

and allow for the hypermobility seen in RA T cells (Weyand et al., 2020, Wu et 

al., 2020).  

However, as healthy synovial tissue contains adipocytes, an increase in lipid 

synthesis and lipid droplets in resolving disease may be independent of 

expression in immune cells and instead could be a sign of increasing adipocyte 

activity, potentially indicating a reversion towards normal tissue. To date there 

has not been systematic study into the presence or function of adipocytes in the 

synovium so it is currently unknown whether restoration of adipocytes is required 

for resolution of disease.  

Alternatively, lipid synthesis may be increased in other cell types that have not 

been well studied in resolving disease, as existing literature predominantly 

focuses on the study of leukocytes in acute and persistent inflammation. For 

example, lipid droplets have been shown to be protective against oxidative stress 

and lipotoxicity, as well as other causes of cellular stress, by sequestering and 

exporting or neutralising toxic lipids, proteins, and reactive oxygen species 
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(Pressly et al., 2022). It could be that in other cell types that have been less well 

studied in this regard, for example fibroblasts, an increase in lipid droplets in 

resolving patients makes them more resilient to these stressors, enabling 

clearance and resolution of inflammation.  

Further exploration of the cell types responsible for the increase in lipid synthesis 

would help to clarify the role of lipid metabolism in resolving inflammatory 

arthritis. In order to address this question, a number of approaches are currently 

ongoing, including spatial transcriptomics using Visium, which allows for 

resolution of gene expression at the level of small groups (10-50) of cells, and 

nanostring GeoMx, which allows for the exploration of gene expression in 

immune pathways within regions of interest of around 100 cells (Stahl et al., 

2016, Merritt et al., 2020). Another approach that is being explored is single-cell 

metabolic regulome profiling (scMEP), which allows for the spatial quantification 

rate-limiting and important metabolic regulators, including transcription factors, 

enzymes, signalling molecules, and transporters, to give a spatial overview of the 

activity of metabolic processes (Hartmann et al., 2021).  

Overall, the differential expression and GO biological process analyses suggest 

differential immune responses and metabolic processes between sdRA and 

resolving disease, with resolvers having increased lipid metabolism and a 

predominantly innate immune response signature and sdRA having a more active 

adaptive immune response. Further exploration and validation of the differences 

in immune response and metabolism between early RA and resolving 

inflammatory arthritis may allow for the identification of targets that could drive 

early RA away from persistence and towards resolution, potentially aiming for 

greater levels of drug free remission or even cure in RA patients.  
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7 DISCUSSION 

The clinical heterogeneity present in RA and other inflammatory arthropathies 

has been widely documented yet still provides a significant challenge for the 

diagnosis and management of these conditions. Many patients are initially 

classified as having UA before later developing a persistent inflammatory arthritis 

and a significant proportion of patients do not respond to first line treatments. 

This study has furthered our understanding of this heterogeneity, exploring the 

similarities and differences between different patient groups, across diagnosis, 

disease severity, response to treatment, and persistence versus resolution of 

inflammatory disease on both a histological and transcriptomic level.  

Firstly, tissue morphology was explored using simple, readily available H&E 

staining, to address the hypothesis that histological pathotypes would stratify 

early inflammatory arthritis patients and correlate with clinical variables. Overall, 

this hypothesis was accepted, as pathotype correlated with local and systemic 

measures of inflammation, including CRP and US GS, even though it was not able 

to separate patients by clinical group.  

Furthermore, pathotype appears to be associated with response to treatment in 

RA. This was suggested by a trend based on EULAR DAS28-ESR response, 

although there were insufficient numbers to test this statistically, and by later 

exploration of the average expression of DEGs associated with response and 

non-response in RA. This exploration was done based on standard of care 

approaches to treatment as opposed to algorithms imposed in a clinical trial, but 

it would be interesting to explore whether different therapies work better on 
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specific pathotypes, as has been previously suggested based on other pathotype 

definitions using more complex staining (Nerviani et al., 2020, Dennis et al., 

2014). To test the clinical utility of the BEACON pathotype, validation with 

greater numbers, exploration in external cohorts, and calculation of the 

specificity and sensitivity of this approach would be required, followed by a 

clinical trial to test association between pathotype and treatment response for 

different therapies prior to clinical use. However, if proven effective at predicting 

treatment response, particularly for specific therapies, this could improve on the 

current trial and error approach to DMARD selection and instead aid more 

informed treatment decisions, using simple staining that is already used in 

clinical settings. This could improve response rates, particularly to first-line 

therapy, and drive down the unnecessary costs, side effects, and increased 

disease burden associated with ineffective treatment. Investigation into 

association with treatment response in the other patient groups would also be 

worthwhile, to test utility in other inflammatory arthritis.  

The utility of the BEACON scoring was explored in the AMP RA Phase II cohort, 

which showed some overlapping clinical associations with the BEACON cohort, 

including associations with CRP, a marker of systemic inflammation. However, a 

number of the associations were not replicated in the AMP cohort. This is likely 

due to the different compositions of these cohorts, with the BEACON cohort 

consisting of patients with mixed diagnoses and disease activities and the AMP 

cohort including patients with RA at different disease stages but all with high 

disease activity, some of whom had undergone DMARD treatment. It would 

therefore be beneficial to test the BEACON scoring system on another treatment-
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naïve early inflammatory arthritis cohort, as the scoring system was developed 

for use in these cohorts.  

Overall, The BEACON scoring system is an improvement on previous scoring 

systems due to its simplicity in both the scoring and in the staining required for 

pathotype derivation but also because it was developed for use in all early 

inflammatory arthritis, rather than RA alone. However, it still comes with the 

challenges associated with manual scoring systems, namely that it is time 

intensive, has the potential to be influenced by human error or bias, and only 

produces semi-quantitative results. AI-assisted scoring is currently in 

development to attempt to overcome these issues, allowing for automatic and 

quantitative investigation of the synovium.  

The heterogeneity seen in early inflammatory arthritis provided a challenge when 

exploring diagnostic biomarkers for early RA, with no significantly DEGs being 

identified when comparing sdRA to resolving and nonRA transcriptomes. On top 

of general heterogeneity seen in early inflammatory arthritis, this is a noisy 

comparison due to the presence of multiple different diagnoses within both the 

resolving and nonRA groups. Filtering of these groups further to include single 

diagnoses in each comparator group could reduce the noise, however would also 

significantly reduce numbers within the comparisons and would reduce utility of 

the results as biomarkers of sdRA in mixed early inflammatory arthritis cohorts.  

Differential expression analysis was also unable to yield any meaningful results 

when looking for mechanisms that differ between short duration and longer 

duration RA, despite the exploration of less noisy groups. This again may be due 

to the large amount of heterogeneity seen within RA or it could be that there are 
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no detectable differences at the gene expression level, with any differences being 

at the protein level. Correcting for pathotype in the differential expression 

analysis could be one solution to overcome this, to remove variation broadly 

based on tissue composition.  

The hypotheses that differentially expressed genes or signatures in short 

duration RA patients will distinguish them from other patient groups and that 

there are genes or pathways that differ between short duration and long duration 

RA that can be identified using whole tissue RNA sequencing were therefore 

rejected in this study. This highlights the need either for larger patient cohorts, 

which may enable the detection of more subtle differences masked by the 

heterogeneity, or for more specific exploration, as bulk RNA sequencing may 

miss changes occurring in specific cell types or tissue areas due to the mixed 

nature of the data. Integrating single cell and bulk RNA sequencing data could be 

useful in this regard, as single cell allows for the detection of changes within 

cellular subtypes, while bulk sequencing is more sensitive for the detection of 

low-level gene expression. 

Other analysis methods that take into account gene correlations or networks may 

enable the reduction of some of the noise, which could achieve more meaningful 

results. Success with a machine learning technique that accounted for gene co-

expression was demonstrated in a previous study by Yeo et al. (2016), which 

identified the cytokines CXCL4 and CXCL7 as being associated with early RA 

when compared to established RA and resolving disease. WGCNA is a similar 

technique that is being explored, which enables the identification of gene 

networks that can be explored across patient groups.  
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Despite working with relatively low sample numbers, the exploration of DEGs 

involved in EULAR DAS28-ESR response compared to non-response at 12 months 

did yield significant genes and allowed for the identification of an immune-related 

signature associated with responders and a fibroblast signature in non-

responders, resulting in the acceptance of the hypothesis that biomarkers for 

good or poor outcomes in RA can be identified in gene expression data.  

This was broadly in agreement with a previous study by Lewis et al. (2019), 

although there was only a single response DEG that was also found to be 

associated with response in their dataset. This may be due to the difference in 

timeframe, with the Lewis et al. study looking at response at 6 months and the 

current study looking at response at 12 months. This means that patients will 

have undergone different treatments, with most patients likely to have only 

received methotrexate at 6 months, while some in the BEACON cohort will have 

moved onto biologics by 12 months. Furthermore, the Lewis et al. study 

excluded patients who had received biologics, confirming this difference in 

treatment approaches between these studies. The non-overlapping differentially 

expressed genes may, therefore, be due to the differences in treatment 

mechanisms, with methotrexate targeting several processes, most notably 

cellular proliferation and apoptosis, and biologic therapies having more targeted 

mechanisms of action, often inhibiting a specific cytokine or pathway (Suzuki et 

al., 2018). Exploration of which treatments were received in both cohorts may 

help to deconvolute these differences and potentially associate differentially 

expressed genes with specific therapeutics, which may allow for patient 

stratification based on response to treatment, however there were not enough 

patients in this study to explore these questions with sufficient statistical power. 
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Nevertheless, the ability to identify a signature between responders and non-

responders in only 18 RA samples that is broadly in agreement with signatures 

found in a similar previous study suggests that it is a strong signal that may be 

easily identified in patient cohorts and therefore would be worth further 

exploration and validation.  

The final hypothesis explored was that mechanisms that drive resolution versus 

persistence can be identified using whole tissue RNA sequencing. Differential 

expression followed by GO biological process analyses was able to find 

differences in immune activation and metabolism between resolving and sdRA 

patients, thus confirming the alternative hypothesis. Differences in immune 

activation were perhaps anticipated, as one might expect pro-inflammatory 

pathways to be higher in sdRA and pro-resolution processes to be found in 

resolving patients. However, the differences in lipid metabolism were not 

expected. Lipid synthesis is generally associated with more pro-inflammatory 

processes, being increased in M1 macrophages and activated effector T cells, so 

the increase of lipid synthesis in resolving patients was surprising. In normal 

synovial tissue there is a large proportion of adipocytes so it may be that during 

resolution of inflammatory arthritis, adipocytes again increase in number, which 

could explain the increase in lipid synthesis. Alternatively, expression in 

fibroblasts or other cells that do not have as well characterised metabolism could 

be driving these differences. It is not possible to confirm this from the currently 

available data but this is an area of ongoing research.  

A potential role for lipid droplets is supported by the presence of PNPLA3 as a 

DEG increased in resolving disease, as this has been found to have a role in lipid 

droplet formation (Chamoun et al., 2013). However, lipid droplets have also been 
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found to be associated with inflammation, being increased in activated immune 

cells, such as T cells and macrophages, in response to pro-inflammatory signals, 

including LPS and some cytokines (Bozza et al., 2009).  

Pauci-immune samples had higher PNPLA3 expression compared to the other 

pathotypes and, from exploration of the PCA gene contributions, also appeared 

to be associated with genes predominantly expressed in adipocytes, including 

ADIPOQ, PLIN1, and PLIN4. Interestingly, PNPLA3, as well as PLIN1, PLIN4, 

PLIN5, and ADIPOQ were also upregulated in UMAP C2, which predominantly 

consisted of pauci-immune samples, compared to the other two clusters. These 

data may suggest that pauci-immune samples have more adipocytes present 

than the other pathotypes. This does not explain why there is a difference in lipid 

metabolism between resolving disease and sdRA, as there was no difference in 

the pathotypes between these groups and other differentially expressed genes 

involved in lipid metabolism, such as ELOVL6, were not associated with any 

particular pathotype. This may suggest that the presence of adipocytes is not 

solely responsible for this signature, although direct quantification of adipocytes 

would be required to confirm this. It may be that there is a combination of cell 

types contributing to this signature, with different signals and cellular 

interactions driving resolution processes and altered metabolism across the 

synovium.  

Further investigation into this area is required to elucidate what is driving the 

metabolic differences between resolving disease and sdRA, whether lipid droplets 

are increased in resolving disease, which cell types are associated with this 

signature, and what the mechanistic role is in resolution.  
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7.1 FUTURE WORK 

To continue and build upon the work completed in this study, there are a number 

of techniques that could be utilised and further areas of study to explore. Firstly, 

work needs to be competed on the Visiopharm APPs. This will involve completion 

of validation of the lymphocyte and plasma cell APPs before the whole pipeline 

can be run on the BEACON cohort. Results from this pipeline can then be 

compared to the manual BEACON scoring and clinical variables to explore the 

utility of these APPs. Validation on the AMP external cohort will then be sought to 

ensure reproducibility on samples outside of the BEACON cohort.  

As adipocyte-related genes drive a large amount of variation in the RNA 

sequencing dataset, expanding the BEACON histology scoring to include an 

adipocyte score or building an AI-assisted APP to detect adipocytes may enable 

for patient stratification based on this, which could have links to different clinical 

variables than the current grading. Furthermore, this would allow for the 

comparison of levels of adipocytes in resolving tissue compared to early RA, 

which could help to explain the difference in lipid metabolism between the two 

groups. Testing for the presence of lipid droplets using staining, such as nile red 

that stains intracellular lipid droplets, alongside cellular markers could also 

enable further exploration of the source of the lipid metabolism differences and 

enable investigation into the cell types that are driving this.  

Integrating the bulk RNA sequencing dataset with single cell RNA sequencing 

data via the exploration of key gene or gene network expression across cell types 

or for use as a map for CIBERSORTx, which allows for computational 

deconvolution of cell types, may allow for identification of the cell types 
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expressing these signatures (Newman et al., 2019). This will also give clues as to 

which cell types to prioritise exploration of in future validation studies.  

Alternatively, spatial transcriptomic techniques, such as 10x Visium or 

Nanostring GeoMx®, may give insights into which tissue areas or cell types are 

driving the expression of gene signatures identified in this study (Stahl et al., 

2016, Merritt et al., 2020). This could be particularly useful for exploring 

differences in immune processes, such as the difference in adaptive immune 

activation between resolvers and sdRA, by allowing for the exploration of gene 

expression specifically within lymphocyte aggregates, which are present in both 

patient groups despite the transcriptional differences identified.  

However, transcriptomic signatures are not always translated into differences in 

protein levels due to variations in protein stability via modification and 

degradation, as well as translational regulation, so validation at the protein level 

is important following transcriptomic-based studies. This could be achieved by 

using immunohistochemistry or immunofluorescence staining for proteins of 

interest. However, to investigate metabolic processes spatially and at the level of 

proteins, use of a technique developed by Dr Felix Hartmann called single-cell 

metabolic regulome profiling (scMEP) is being explored (Hartmann et al., 2021). 

This allows for the spatial profiling of metabolic profiles via the use of 

multiplexed ion beam imaging by time of flight (MIBI-TOF) (Keren et al., 2019) 

for detection of key enzymes, transcription factors, transporters, and other 

important factors involved in metabolic processes, such as glycolysis, fatty acid 

metabolism, and amino acid metabolism. These are detected alongside markers 

for identification of cellular subtypes, to enable identification of the cell types 

utilising different metabolic processes. This will allow for validation of the 
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metabolic signature found in resolving disease in another dataset and at the 

protein level. 
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9 APPENDIX 

9.1 PATIENT CHARACTERISTICS 
Table 9.1: Patient characteristics for the BEACON cohort. Samples from this cohort used for the BEACON scoring in Chapter 3.  

ACPA = Anti-citrullinated protein antibodies, RF = Rheumatoid Factor, SJC28 = Swollen Joint Count 28, TJC28 = Tender Joint Count 28, 

CRP = C Reactive Protein, ESR = Erythrocyte Sedimentation Rate, DAS28-ESR = Disease Activity Score 28, VAS = Visual Analog Scale, 

US GS = Ultrasound Greyscale, US PD = Ultrasound Power Doppler, DAS28-ESR response = EULAR DAS28-ESR response at 12 months, 

response includes good and moderate response, NA = data not available. 

Clinical 
group 

Final 
classification 

Age Sex ACPA RF SJC28 TJC28 CRP ESR DAS28-ESR 
Physician 
global 

Patient 
VAS 

US GS US PD 
DAS28-ESR 
response 12 
months 

Res UA 64 M n n 2 5 15 24 4.5 11 77 1 0 NA 

Res Parvovirus 40 F n n 7 7 0 5 3.9 NA 15 1 1 NA 

sdRA RA 49 F n n 8 9 8 12 4.7 36 40 2 0 NA 

NonRA PsA 41 M n n 4 2 25 50 4.8 NA 37 1 0 NA 

sdRA RA 45 F n n 3 3 12 24 3.8 20 0 2 0 NA 

sdRA RA 63 F n n 5 1 9 104 5.1 48 56 1 0 NA 

sdRA RA 48 F n n 6 8 102 4 3.5 NA 96 2 2 NA 

ldRA RA 46 M p p 16 13 7 34 6.7 NA 42 2 1 NA 

ldRA RA 61 F n n 6 15 9 8 4.9 53 16 1 1 NA 

ldRA RA 69 F n n 7 7 0 11 4.6 17 73 2 1 NA 

sdRA RA 59 M n n 20 4 22 14 5.0 65 78 3 2 NA 

ldRA RA 57 M p p 14 21 16 56 7.1 NA 60 1 2 NA 

ldRA RA 58 M p p 7 7 0 7 4.0 NA 2 3 2 NA 

NonRA PsA 55 F n p 2 0 16 19 3.9 6 23 1 1 NA 

Res ReA 32 M n n 1 1 10 10 2.9 24 100 2 2 NA 

Res UA 33 M n n 9 12 14 51 6.7 64 32 1 1 NA 

Res RA 74 M n n 23 0 13 45 4.8 35 0 1 0 NA 

Res UA 72 M n n 4 7 0 5 3.6 18 0 1 1 NA 
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sdRA RA 43 M n n 4 19 0 58 6.9 17 61 1 0 NA 

ldRA RA 46 F p n 4 10 32 24 5.2 NA 67 2 2 NA 

Res Pseudogout 81 F n n 11 16 52 60 6.7 NA 0 2 2 NA 

Res Parvovirus 45 F n n 5 5 0 4 4.0 9 82 1 1 NA 

sdRA RA 55 M p n 4 0 45 58 3.5 80 79 2 0 NA 

Res ReA 35 M n n 1 1 7 51 4.1 21 64 1 1 NA 

sdRA RA 48 F p p 3 6 0 10 3.9 NA 0 2 0 NA 

NonRA PsA 43 F p n 10 11 70 97 7.1 59 60 2 1 NA 

Res UA 55 M n n 5 4 6 2 3.5 31 2 2 1 NA 

NonRA Sarcoid 39 F n n 0 5 15 27 4.7 9 28 1 0 NA 

sdRA RA 53 F n n 2 7 0 11 4.2 10 34 1 0 NA 

NonRA UA 69 M n n 3 5 38 44 5.6 62 74 1 1 NA 

sdRA RA 74 F p n 3 3 32 20 4.4 46 100 3 2 NA 

Res UA 35 M n n 3 1 9 2 1.6 22 12 2 1 NA 

Res UA 37 F n n 2 8 0 7 4.7 12 100 1 0 NA 

ldRA RA 67 M p p 1 1 48 29 4.2 23 66 3 2 NA 

NonRA AS 34 M n n 1 1 22 21 3.5 17 50 3 2 NA 

Res Parvovirus 41 F n n 2 0 9 5 1.7 13 0 2 0 NA 

Res UA 32 F n n 1 3 0 15 3.6 NA 7 1 0 NA 

sdRA RA 58 F p p 9 5 0 27 4.5 18 7 1 0 NA 

NonRA SLE 33 F n n 17 11 0 79 7.4 35 56 1 0 NA 

ldRA RA 22 F n n 6 6 79 81 6.4 46 90 3 2 NA 

Res ReA 28 M n n 1 2 8 18 4.5 NA 59 2 1 NA 

ldRA RA 72 F n n 16 21 43 53 7.4 85 50 2 3 NA 

Res ReA 27 M n n 2 2 28 37 3.8 NA 77 1 0 NA 

ldRA RA 65 M p p 12 3 81 72 5.3 61 78 3 3 NA 

ldRA RA 51 F p p 4 2 0 9 3.3 52 20 1 0 NA 

NonRA PMR  58 F n n 2 3 13 24 4.7 23 41 1 2 NA 
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ldRA RA 65 F n n 6 4 10 50 5.0 37 33 2 1 NA 

sdRA RA 51 M p p 10 11 97 61 6.7 92 100 2 3 NA 

sdRA RA 63 M n n 1 1 0 2 2.3 NA 81 3 2 NA 

ldRA RA 63 F p p 3 6 0 35 5.2 78 30 1 2 NA 

ldRA RA 64 F p p 11 12 10 46 6.1 65 50 3 3 NA 

sdRA RA 61 M n n 16 14 25 20 5.3 86 75 3 3 NA 

sdRA RA 56 M p n 6 25 25 29 6.7 58 69 1 1 Yes 

ldRA RA 56 F p p 1 7 47 48 5.5 NA 79 2 1 NA 

ldRA RA 60 F n p 10 5 112 70 5.2 69 51 3 0 No 

sdRA RA 61 F n p 1 15 18 43 5.4 24 12 1 0 NA 

NonRA 
Peripheral 
SpA 

24 M n p 1 1 122 44 4.3 63 66 2 2 NA 

NonRA MCTD 23 F n p 4 7 16 6 3.9 48 40 2 0 NA 

NonRA PsA 60 M n n 3 0 5 10 2.5 28 13 2 2 NA 

ldRA RA 77 F n n 4 11 5 4 4.2 62 59 2 3 No 

sdRA RA 59 M  p p 11 22 8 26 6.5 79 40 3 2 NA 

ldRA RA 52 F p p 7 5 13 34 5.6 72 93 3 0 NA 

ldRA RA 33 F p p 6 8 15 48 5.9 56 69 3 1 Yes 

ldRA RA 51 M p p 6 15 113 96 7.3 28 59 2 0 Yes 

ldRA RA 29 F p p 6 24 49 60 6.8 NA NA NA NA NA 

Res UA 45 F n n 2 1 17 8 2.6 NA NA NA NA NA 

NonRA UA 57 F n n 6 8 76 90 6.6 NA NA NA NA NA 

NonRA PsA 39 F n n 1 4 3 27 4.0 39 NA NA NA NA 

sdRA RA 55 M p p 14 13 6 8 5.5 NA 70 3 0 NA 

ldRA RA 54 F n n 6 22 0 6 5.3 NA NA NA NA NA 

ldRA RA 44 M p p 1 10 0 2 3.9 20 69 2 0 Yes 

sdRA RA 53 M n n 12 23 88 58 7.5 92 40 2 0 Yes 

ldRA RA 53 M p p 5 7 21 56 5.8 67 63 3 0 NA 

ldRA RA 63 M n n 10 28 28 27 7.5 61 53 2 0 Yes 
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ldRA RA 62 F p p 7 8 8 39 6.2 45 50 2 0 Yes 

ldRA RA 76 M p p 5 2 11 53 4.2 NA NA NA NA NA 

ldRA RA 53 F n n NA NA NA NA NA NA NA NA NA NA 

ldRA RA 55 F p n 3 15 3 12 5.1 NA NA NA NA NA 

ldRA RA 69 F n n 14 15 66 45 7.1 79 73 2 1 Yes 

ldRA RA 55 F n p 2 2 13 31 4.8 NA NA NA NA NA 

ldRA RA 60 M p p 1 3 5 24 3.9 33 50 2 3 No 

Res UA 37 M n n 0 0 18 37 3.2 7 56 1 0 NA 

ldRA RA 77 M p p 5 2 11 53 4.2 23 0 2 2 NA 

ldRA RA 39 M p n 15 26 58 9 6.9 70 87 1 0 NA 

ldRA RA 55 M p p 4 7 12 39 5.4 NA NA NA NA NA 

ldRA RA 24 F p p 3 20 1 15 NA NA NA 1 0 NA 

sdRA RA 76 F n n 20 19 39 39 7.0 51 35 1 0 NA 

ldRA RA 74 F n n 24 26 25 45 8.1 58 80 3 1 NA 

sdRA RA 54 F p p 3 7 0 21 4.5 NA NA NA NA NA 

ldRA RA 69 M n  n 22 25 7 2 5.1 74 83 2 2 NA 

ldRA RA 57 M p p 4 9 10 21 5.4 45 68 3 1 NA 

ldRA RA 52 F n n 5 23 9 46 6.8 86 86 2 0 No 

Res UA 55 F n n 3 3 4 14 4.3 19 28 2 1 NA 

sdRA RA 70 M p p 16 19 29 56 7.3 NA NA NA NA NA 

ldRA RA 51 M p p 9 12 59 21 5.8 84 77 3 1 NA 

ldRA RA 46 F n n 4 14 10 13 5.6 NA NA NA NA NA 

ldRA RA 58 F p p 0 1 13 31 4.2 NA NA 3 2 NA 

ldRA RA 62 F p p 1 8 6 63 5.3 62 48 3 3 NA 

ldRA RA 69 F n n 5 5 148 51 5.5 69 95 1 1 NA 

ldRA RA 62 M n p 17 18 4 12 5.7 74 48 2 2 Yes 

ldRA RA 49 M p n 7 7 13 14 5.4 49 47 3 1 Yes 

sdRA RA 71 M n n NA NA NA NA NA NA NA NA NA NA 
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ldRA RA 60 F n n 15 14 11 4 5.0 4 7 2 2 NA 

NonRA PsA 64 M n n 2 1 11 2 1.6 11 25 2 3 No 

ldRA RA 18 F p p 11 12 29 35 6.1 64 71 1 0 NA 

sdRA RA 59 F n p 11 12 36 10 5.2 88 90 3 3 Yes 

ldRA RA 45 M p p 4 5 5 na NA 50 50 1 0 NA 

NonRA PsA 41 M n n 16 0 25 18 4.2 75 0 2 0 NA 

ldRA RA 69 M n n 14 19 78 83 7.9 7 94 2 2 NA 

ldRA RA 61 M p n 3 18 0 38 6.0 28 60 1 0 NA 

sdRA RA 74 M p p 10 4 33 25 4.4 56 41 3 2 NA 

ldRA RA 30 F p p 21 28 57 48 8.1 84 93 2 0 Yes 

sdRA RA 68 F n p 7 18 5 34 7.0 NA NA NA NA NA 

Res Parvovirus 60 M p n 1 1 21 22 3.1 NA NA NA NA NA 

ldRA RA 74 M p p 3 10 44 47 5.9 49 71 2 2 Yes 

ldRA RA 68 F p n 5 4 6 38 4.8 NA NA NA NA NA 

Res PsA 56 F n n 6 4 3 9 4.7 21 22 2 1 NA 

ldRA RA 27 F n n 8 12 29 35 6.5 NA NA NA NA NA 

ldRA RA 50 F p p 2 26 2 2 4.6 NA NA NA NA NA 

sdRA RA  F p p 4 11 1 48 6.5 NA NA NA NA NA 

ldRA RA 46 M p p 2 2 22 22 4.8 NA NA NA NA NA 

ldRA RA 66 F p n NA NA NA NA NA NA NA NA NA NA 

ldRA RA 73 F p p 3 1 34 28 4.6 54 NA NA NA NA 

ldRA RA 50 F n n NA NA NA NA NA NA NA NA NA NA 

ldRA RA 58 M p p 15 13 135 37 6.2 76 NA NA NA NA 

sdRA RA 42 F p p 8 8 1 31 6.2 45 NA NA NA NA 

ldRA RA 81 M n p NA NA NA NA NA NA NA NA NA NA 
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Table 9.2: Patient characteristics for the AMP RA Phase II cohort. Samples from this cohort were used for external validation of 

BEACON scoring in Chapter 3. SJC28 = Swollen Joint Count 28, TJC28 = Tender Joint Count 28, CRP = C Reactive Protein, ESR = 

Erythrocyte Sedimentation Rate, DAS28-ESR = Disease Activity Score 28, VAS = Visual Analog Scale, US GS = Ultrasound Greyscale, US 

PD = Ultrasound Power Doppler, DAS28-ESR response = EULAR DAS28-ESR response, response includes good and moderate response, 

NA = data not available. 

Age Sex SJC28 TJC28 CRP ESR DAS28-ESR 
Physician 
global 

Patient VAS US GS US PD 
DAS28-ESR 
response 6 months 

24 F 21 18 1.4 19 5.8 3 5.5 3 NA Y 

73 F 22 25 1.2 65 7.1 6 4.5 2 1 Y 

60 F 22 10 1.0 NA NA 5 3.5 3 1 NA 

67 F 19 12 0.6 NA NA 6 5.5 2 2 NA 

39 F 10 14 0.4 24 5.3 7 9 2 2 Y 

71 M 6 6 1.4 50 4.9 4 5 3 1 N 

67 M 20 27 3.2 64 7.2 5 7 2 1 Y 

28 F 2 9 0.8 25 4.4 5 3.5 NA NA Y 

50 F 18 12 0.2 105 6.5 8 5.5 2 2 NA 

56 F 15 13 5.1 25 5.4 8 5 2 1 N 

61 F 2 6 0.0 27 4.2 5 6.5 3 0 N 

72 F 12 0 0.2 8 2.5 8 3 NA NA Y 

59 F 5 7 0.2 5 3.3 7 4 NA NA NA 

66 F 2 2 2.1 32 3.7 3.5 3 NA NA NA 

69 F 2 2 1.4 42 3.8 3 2 NA NA NA 

67 M 13 18 2.1 22 5.7 7 7.5 3 3 NA 

67 M 6 3 0.3 9 3.3 7 10 2 0 NA 

51 F 4 1 0.7 38 3.8 5 8 3 0 NA 

63 M 17 8 7.8 63 5.7 8 5 3 2 Y 

50 F 6 8 0.1 43 5.0 5 7 2 1 Y 

45 M 2 2 1.4 NA NA 2 3 2 0 NA 

55 M 5 8 0.6 24 4.5 5 4.5 2 2 N 
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70 M 10 9 3.7 39 5.3 5 9 2 1 Y 

56 F 9 12 0.8 59 5.8 6 9 2 2 NA 

41 M 2 2 0.7 13 3.0 7 4 2 1 N 

35 F 5 4 4.5 31 4.2 8.5 6.5 2 3 NA 

63 M 12 24 2.3 87 7.0 8.5 8 3 3 NA 

70 F 7 12 4.3 39 5.3 6.5 5 2 1 NA 

51 F 3 6 1.5 7 3.2 2 2 2 2 Y 

36 M 24 24 1.7 80 7.3 8 6 2 2 NA 

64 F 10 6 1.2 15 4.2 3 3 2 0 NA 

77 F 1 1 1.3 25 3.2 6 7 3 3 NA 

59 M 3 1 0.5 28 3.4 3.5 2 2 2 N 

55 M 3 2 0.4 6 2.6 5 6 3 3 N 

75 F 2 0 0.7 82 3.6 4 5 2 2 Y 

68 F 13 10 0.8 4 3.8 7 5.5 2 1 Y 

62 F 5 8 0.2 3 3.1 6 5.5 3 2 N 

79 F 13 13 0.8 12 4.9 6 6.5 2 1 N 

68 F 7 2 1.2 30 3.9 6 1 3 2 Y 

61 F 7 3 1.3 28 4.1 2 4 1 1 NA 

57 F 9 11 NA NA NA 5.2 3 3 3 NA 

43 F 18 28 2.4 25 6.5 8 10 3 3 NA 

52 F 6 7 NA NA NA 5.5 8 2 2 NA 

27 F 7 12 NA NA NA 4.6 2 3 2 NA 

65 F 14 16 0.3 36 5.9 7 6 2 1 N 

60 F 11 5 NA NA NA 8.4 9 3 2 NA 

64 F 16 6 NA NA NA 7.2 8 3 3 NA 

54 F 10 2 0.2 43 4.4 5.1 5 3 2 Y 

55 M 19 27 NA 33 6.6 6.8 5 2 1 Y 

23 F 11 0 0.0 24 3.2 3 2 2 0 NA 
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66 F 6 21 NA NA NA 6 7 0 0 NA 

68 F 2 2 0.0 14 3.0 4 0.5 2 1 Y 

24 F 16 13 1.9 36 5.7 7 5 3 2 NA 

69 M 14 0 0.7 8 2.6 3 5 3 0 NA 

46 F 14 16 0.7 14 5.2 4 5 2 0 NA 

42 F 4 4 0.0 8 3.2 2.5 6 1 0 NA 

58 F 5 11 0.5 5 3.7 7.5 5.5 2 2 NA 

34 F NA NA 0.0 8 NA 2 6 2 0 NA 

51 F 7 14 0.8 3 3.7 7.8 7 3 2 N 

77 M 16 21 17.4 34 6.2 9 1.5 2 2 Y 

66 F 14 21 9.8 32 6.1 6.6 6 3 2 Y 

69 F 6 2 0.6 19 3.6 2.2 4 2 2 Y 

56 F 2 2 0.0 24 3.5 5.2 5 2 2 N 

45 M 4 4 0.5 NA NA 5 0 1 0 NA 

39 F 9 16 0.0 23 5.3 6.9 4 3 2 NA 

54 F 2 3 0.0 28 3.8 5 6.5 2 2 Y 

61 M 3 18 0.0 38 5.5 2.8 7 1 0 Y 

30 F 21 28 5.7 48 7.1 8.4 7.5 2 0 N 

68 F 7 18 0.5 34 5.7 6.1 6 1 0 N 

62 M 5 14 0.6 52 NA 9 NA 3 1 NA 

44 F 16 24 1.0 12 NA 7 NA 2 0 NA 

36 F 3 6 1.6 107 NA 4.9 NA 2 0 NA 

75 F 5 9 0.8 31 NA 4.3 NA 3 0 NA 

39 F 7 14 2.2 26 NA 7.7 NA 3 2 NA 

74 M 3 10 4.4 47 5.0 4.9 5 2 2 NA 

27 F 8 12 2.9 35 5.4 7.4 9.5 1 0 NA 

30 F 21 28 0.6 19 NA 8.4 NA 2 1 NA 

73 F 3 1 3.4 28 3.5 5.4 8.5 2 2 NA 
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38 M 3 4 1.4 84 4.8 8.8 9 2 2 Y 

70 M 2 5 2.4 30 4.1 3 5 2 2 Y 

55 F 11 22 0.2 43 6.3 3.1 5 3 2 Y 

68 F 15 1 3.5 21 3.9 5.8 6.5 2 0 Y 

30 F 3 10 1.4 36 NA 5.3 NA 2 1 NA 

39 M 5 17 1.6 5 NA 7.4 NA 2 2 NA 

76 F 13 7 0.3 40 5.1 6 5 3 3 NA 

44 F 13 11 4.2 NA NA 7 7 2 2 NA 

51 F 13 17 NA NA NA 6 7 2 2 NA 

82 M 8 5 8.9 NA NA 1.5 6 2 1 NA 

58 F 10 6 0.7 89 5.5 6 7 2 0 NA 

75 F 15 10 0.6 29 5.3 6 6 2 1 NA 

49 F 13 13 3.9 88 6.3 6 10 2 1 NA 

75 F 22 19 5.7 109 7.1 7 7 2 0 Y 

68 M 10 8 0.9 44 5.2 6 7 2 2 NA 

32 F 21 21 0.0 4 4.9 5 6.5 2 0 NA 

63 M 28 28 14.3 130 8.0 9 7 3 1 Y 

47 F 16 16 0.1 12 5.2 6 5 2 0 NA 

68 F 22 22 0.5 80 7.1 7 8.5 2 0 NA 

44 F 23 3 0.8 42 5.0 6 8 2 1 NA 

44 F 22 22 0.4 21 6.2 5 6 2 1 NA 

81 F 24 10 0.8 86 6.4 7 8 2 1 NA 

52 F 26 26 1.0 32 6.8 6 5 2 0 NA 

42 F 3 7 1.1 45 4.7 8 8 2 0 NA 

61 M 14 0 1.1 77 4.2 7 6.5 2 1 NA 
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Table 9.3: Patient characteristics for BEACON cohort samples used in bulk RNA sequencing. Samples from these patients were 

used in Chapters 4, 5 and 6. ACPA = Anti-citrullinated protein antibodies, RF = Rheumatoid Factor, TJC28 = Tender Joint Count 28, SJC28 

= Swollen Joint Count 28, CRP = C Reactive Protein, ESR = Erythrocyte Sedimentation Rate, DAS28-ESR = Disease Activity Score 28, US 

GS = Ultrasound Greyscale, US PD = Ultrasound Power Doppler, DAS28-ESR response = EULAR DAS28 response, response includes good 

and moderate response, NA = data not available.  

Clinical 
group 

Final 
classification 

Age Sex ACPA RF TJC28 SJC28 CRP ESR DAS28-ESR US GS US PD 
DAS28-ESR 
response 12 
months 

Res UA 64 M n n 5 2 15 24 4.5 1 0 NA 

sdRA RA 49 F n n 9 8 8 12 4.7 2 0 NA 

sdRA RA 45 F n n 3 3 12 24 3.8 2 0 NA 

sdRA RA 63 F n n 1 5 9 104 5.1 1 0 NA 

ldRA RA 61 F n n 15 6 9 8 4.9 1 1 NA 

ldRA RA 69 F n n 7 7 0 11 4.6 2 1 NA 

sdRA RA 59 M n n 4 20 22 14 5.0 3 2 NA 

NonRA PsA 55 F n p 0 2 16 19 3.1 1 1 NA 

Res ReA 32 M n n 1 1 10 10 2.9 2 2 NA 

Res UA 33 M n n 12 9 14 51 6.7 1 1 NA 

Res RA 74 M n n 0 23 13 45 4.8 1 0 NA 

Res UA 72 M n n 7 4 0 5 3.6 1 1 NA 

sdRA RA 43 M n n 19 4 0 58 6.9 1 0 NA 

Res Parvovirus 45 F n n 5 5 0 4 4.0 1 1 NA 

sdRA RA 55 M p n 0 4 45 58 3.5 2 0 NA 

Res ReA 35 M n n 1 1 7 51 4.1 1 1 NA 

NonRA PsA 43 F p n 11 10 70 97 7.1 2 1 NA 

Res UA 55 M n n 4 5 6 2 3.5 2 1 NA 

NonRA Sarcoid 39 F n n 5 0 15 27 4.7 1 0 NA 

sdRA RA 53 F n n 7 2 0 11 4.2 1 0 NA 

NonRA UA 69 M n n 5 3 38 44 5.6 1 1 NA 

sdRA RA 74 F p n 3 3 32 20 4.4 3 2 NA 
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Res UA 35 M n n 1 3 9 2 1.6 2 1 NA 

Res UA 37 F n n 8 2 0 7 4.7 1 0 NA 

ldRA RA 67 M p p 1 1 48 29 4.2 3 2 NA 

NonRA AS 34 M n n 1 1 22 21 3.5 3 2 NA 

Res Parvovirus 41 F n n 0 2 9 5 1.7 2 0 NA 

sdRA RA 58 F p p 5 9 0 27 4.5 1 0 NA 

NonRA SLE 33 F n n 11 17 0 79 7.4 1 0 NA 

ldRA RA 22 F n n 6 6 79 81 6.4 3 2 NA 

ldRA RA 72 F n n 21 16 43 53 7.4 2 3 NA 

ldRA RA 65 M p p 3 12 81 72 5.3 3 3 NA 

Norm Norm 53 F n n NA NA NA NA NA NA NA NA 

Norm Norm 44 M n n NA NA NA NA NA NA NA NA 

Norm Norm 48 M n n NA NA NA NA NA NA NA NA 

ldRA RA 51 F p p 2 4 0 9 3.3 1 0 NA 

Norm Norm 22 F n n NA NA NA NA NA NA NA NA 

Norm Norm 24 F n n NA NA NA NA NA NA NA NA 

NonRA PMR  58 F n n 3 2 13 24 4.7 1 2 NA 

ldRA RA 65 F n n 4 6 10 50 5.0 2 1 NA 

sdRA RA 51 M p p 11 10 97 61 6.7 2 3 NA 

ldRA RA 63 F p p 6 3 0 35 5.2 1 2 NA 

ldRA RA 64 F p p 12 11 10 46 6.1 3 3 NA 

sdRA RA 61 M n n 14 16 25 20 NA 3 3 NA 

sdRA RA 56 M p n 25 6 25 29 6.7 1 1 Yes 

ldRA RA 60 F n p 5 10 112 70 5.2 3 0 No 

sdRA RA 61 F n p 15 1 18 43 5.4 1 0 NA 

NonRA Peripheral SpA 24 M n p 1 1 122 44 4.3 2 2 NA 

NonRA MCTD 23 F n p 7 4 16 6 3.9 2 0 NA 

NonRA PsA 60 M n n 0 3 5 10 2.5 2 2 NA 
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ldRA RA 77 F n n 11 4 5 4 4.2 2 3 No 

sdRA RA 59 M  p p 22 11 8 26 6.5 3 2 NA 

ldRA RA 52 F p p 5 7 13 34 5.6 3 0 NA 

ldRA RA 33 F p p 8 6 15 48 5.9 3 1 Yes 

ldRA RA 46 M n p 19 5 4 12 5.6 2 0 NA 

ldRA RA 51 M p p 15 6 113 96 7.3 2 0 Yes 

NonRA PsA 39 F n n 4 1 3 27 4.0 NA NA NA 

ldRA RA 44 M p p 10 1 0 2 3.9 2 0 Yes 

sdRA RA 53 M n n 23 12 88 58 7.5 2 0 Yes 

ldRA RA 53 M p p 7 5 21 56 5.8 3 0 NA 

ldRA RA 63 M n n 28 10 28 27 7.5 2 0 Yes 

ldRA RA 62 F p p 8 7 8 39 6.2 2 0 Yes 

ldRA RA 69 F n n 15 14 66 45 7.1 2 1 Yes 

ldRA RA 60 M p p 3 1 5 24 3.9 2 3 No 

Res UA 37 M n n 0 0 18 37 3.2 1 0 NA 

ldRA RA 77 M p p 2 5 11 53 4.2 2 2 NA 

sdRA RA 76 F n n 19 20 39 39 7.0 1 0 NA 

ldRA RA 74 F n n 26 24 25 45 8.1 3 1 NA 

ldRA RA 52 F n n 23 5 9 46 6.8 2 0 No 

Res UA 55 F n n 3 3 4 14 4.3 2 1 NA 

ldRA RA 62 F p p 8 1 6 63 5.3 3 3 NA 

ldRA RA 69 F n n 5 5 148 51 5.5 1 1 NA 

ldRA RA 62 M n p 18 17 4 12 5.7 2 2 Yes 

ldRA RA 49 M p n 7 7 13 14 5.4 3 1 Yes 

ldRA RA 60 F n n 14 15 11 4 5.0 2 2 NA 

NonRA PsA 64 M n n 1 2 11 2 1.6 2 3 No 

sdRA RA 59 F n p 12 11 36 10 5.2 3 3 Yes 

NonRA PsA 41 M n n 0 16 25 18 4.2 2 0 NA 
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ldRA RA 52 M P P 12 0 1 8 4.1 2 0 No 

ldRA RA 69 M n n 19 14 78 83 7.9 2 2 NA 

ldRA RA 61 M p n 18 3 0 38 6.0 1 0 NA 

sdRA RA 74 M p p 4 10 33 25 4.4 3 2 NA 

ldRA RA 30 F p p 28 21 57 48 8.1 2 0 Yes 

ldRA RA 74 M p p 10 3 44 47 5.9 2 2 Yes 

Res PsA 56 F n n 2 6 3 9 4.3 2 1 NA 
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9.2 BEACON SCORING SYSTEM ATLAS 

 

 

 



211 
 

 

 

 



212 
 

 

 

 



213 
 

 

 

 



214 
 

 

 

 



215 
 

9.3 SCRIPT FOR DATA PREPARATION, ALIGNMENT, AND READ 

SUMMARISATION 
 

#!/bin/sh 

 

# Description 

flowcell=GB120918-AF 

sampledirs=( BX006 BX008 BX010 BX011 BX012 BX013 BX014 BX017 BX018 BX020 BX023 BX024 BX026 

BX028 BX030 BX031 BX038 BX042 BX045 BX048 \ 

    BX051 BX054 BX056 BX057 BX062 BX063 BX064 BX065 BX066 BX067 BX071 BX073 BX074 BX075 BX077 

BX093 BX101 BX102 BX103 BX104 \ 

    BX106 BX107 BX110 BX112 BX113 BX115 BX117 BX118 BX119 BX121 BX123 BX127 BX130 BX131 BX135 

BX138 BX139 BX141 BX150 BX151 \ 

    BX152 BX153 BX160 BX164 BX165 BX166 BX167 BX168 BX173 BX175 BX178 BX188 BX194 BX195 BX201 

BX202 BX217 BX221 BX230 BX240 \ 

    BX242 BX245 BX248 BX272 BX275 BX278 BX281 BX285 BX287-p1 BX287-p2 BX287_p3 BX287_p4 

BX287_p6 BX296 BX303 ) 

 

samples=( BX006 BX008 BX010 BX011 BX012 BX013 BX014 BX017 BX018 BX020 BX023 BX024 BX026 BX028 

BX030 BX031 BX038 BX042 BX045 BX048 \ 

    BX051 BX054 BX056 BX057 BX062 BX063 BX064 BX065 BX066 BX067 BX071 BX073 BX074 BX075 BX077 

BX093 BX101 BX102 BX103 BX104 \ 

    BX106 BX107 BX110 BX112 BX113 BX115 BX117 BX118 BX119 BX121 BX123 BX127 BX130 BX131 BX135 

BX138 BX139 BX141 BX150 BX151 \ 

    BX152 BX153 BX160 BX164 BX165 BX166 BX167 BX168 BX173 BX175 BX178 BX188 BX194 BX195 BX201 

BX202 BX217 BX221 BX230 BX240 \ 

    BX242 BX245 BX248 BX272 BX275 BX278 BX281 BX285 BX287-p1 BX287-p2 BX287-p3 BX287-p4 BX287-

p6 BX296 BX303 ) 

nsamples_minus_1=94 

 

STARindexdir="/castles/nr/projects/f/filera-rheumatoid-arthritis-rna-

seq/sequencing/Genomes/hg38/STAR_indices/sjdb_overhang_100" 

assembly=hg38 

 

for i in `seq 0 ${nsamples_minus_1}` ; do 

 

sampledir=${sampledirs[${i}]} 

sample=${samples[${i}]} 

 

echo $sampledir $sample 

 

if [ ! -d $sampledir ] ; then mkdir $sampledir ; fi 

cd $sampledir 

currentdir=$PWD 

 

# link raw data files 

ln -s ../../../Raw_Data/${flowcell}/${sampledir}/${sample}*.fastq.gz . 

 

# Merge lanes 

if [ ! -s ${sample}_R1.fastq.gz ] ; then 

    echo "...merging files for R1..." 

    zcat ${sample}*L001_R1_*fastq.gz ${sample}*L002_R1_*fastq.gz ${sample}*L003_R1_*fastq.gz 

${sample}*L004_R1_*fastq.gz | gzip -c > ${sample}_R1.fastq.gz 

fi 

if [ ! -s ${sample}_R2.fastq.gz ] ; then 

    echo "...merging files for R2..." 

    zcat ${sample}*L001_R2_*fastq.gz ${sample}*L002_R2_*fastq.gz ${sample}*L003_R2_*fastq.gz 

${sample}*L004_R2_*fastq.gz | gzip -c > ${sample}_R2.fastq.gz 

fi 

 

# Quality control 

module purge 

module load bluebear 

module load FastQC/v0.11.5 

if [ ! -s ${sample}_R1_fastqc.html ] ; then fastqc ${sample}_R1.fastq.gz  ; fi 

if [ ! -s ${sample}_R2_fastqc.html ] ; then fastqc ${sample}_R2.fastq.gz  ; fi 

 

cd .. 

 

done 

# Trim adaptor sequences 
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for i in `seq 0 ${nsamples_minus_1}` ; do 

 

sample=${samples[${i}]} 

 

cd $sample 

currentdir=$PWD 

 

echo $sample 

 

# Trim adaptors from merged R1 and R2 files 

cutadapt -a GATCGGAAGAGCACACGTCTGAACTCCAGTCACACAGTGATGTCGTATGC -o ${sample}_Trim_R1.fastq.gz -

p ${sample}_Trim_R2.fastq.gz ${sample}_R1.fastq.gz ${sample}_R2.fastq.gz -m 5 --pair-

filter=any 

 

cd .. 

 

done 

 

#!/bin/bash 

#SBATCH -J StarMapping                  # A single job name for the array 

#SBATCH -n 8                       # Number of cores 

#SBATCH -N 1                       # All cores on one machine 

#SBATCH --mem 40000                 # in MB 

#SBATCH -t 0-08:00                  # Maximum execution time (D-HH:MM) 

#SBATCH -o job_%A_%a.log        # Standard output 

#SBATCH -e job_%A_%a.log        # Standard error 

####SBATCH --qos bbshort 

####SBATCH --qos bbdefault 

#SBATCH --mail-type ALL         # Send e-mail upon starting/completion/error 

##SBATCH --account=filera-rheumatoid-arthritis-rna-seq 

 

# This is a slurm job submission script for STAR alignment  

 

nThreads=8 

 

STARindexdir="/castles/nr/projects/f/filera-rheumatoid-arthritis-rna-

seq/sequencing/Genomes/Human/GRCh38/STAR_indices/sjdb_overhang_100" 

 

workingdir=$(pwd) 

 

module purge; module load bluebear 

module load apps/star-aligner/v2.5.2a 

module load apps/samtools/1.4 

 

sampledirs=( BX006 BX008 BX010 BX011 BX012 BX013 BX014 BX017 BX018 BX020 BX023 BX024 BX026 

BX028 BX030 BX031 BX038 BX042 BX045 BX048 \ 

    BX051 BX054 BX056 BX057 BX062 BX063 BX064 BX065 BX066 BX067 BX071 BX073 BX074 BX075 BX077 

BX093 BX101 BX102 BX103 BX104 \ 

    BX106 BX107 BX110 BX112 BX113 BX115 BX117 BX118 BX119 BX121 BX123 BX127 BX130 BX131 BX135 

BX138 BX139 BX141 BX150 BX151 \ 

    BX152 BX153 BX160 BX164 BX165 BX166 BX167 BX168 BX173 BX175 BX178 BX188 BX194 BX195 BX201 

BX202 BX217 BX221 BX230 BX240 \ 

    BX242 BX245 BX248 BX272 BX275 BX278 BX281 BX285 BX287-p1 BX287-p2 BX287-p3 BX287-p4 BX287-

p6 BX296 BX303 ) 

 

samples=( BX006 BX008 BX010 BX011 BX012 BX013 BX014 BX017 BX018 BX020 BX023 BX024 BX026 BX028 

BX030 BX031 BX038 BX042 BX045 BX048 \ 

    BX051 BX054 BX056 BX057 BX062 BX063 BX064 BX065 BX066 BX067 BX071 BX073 BX074 BX075 BX077 

BX093 BX101 BX102 BX103 BX104 \ 

    BX106 BX107 BX110 BX112 BX113 BX115 BX117 BX118 BX119 BX121 BX123 BX127 BX130 BX131 BX135 

BX138 BX139 BX141 BX150 BX151 \ 

    BX152 BX153 BX160 BX164 BX165 BX166 BX167 BX168 BX173 BX175 BX178 BX188 BX194 BX195 BX201 

BX202 BX217 BX221 BX230 BX240 \ 

    BX242 BX245 BX248 BX272 BX275 BX278 BX281 BX285 BX287-p1 BX287-p2 BX287-p3 BX287-p4 BX287-

p6 BX296 BX303 ) 

nsamples_minus_1=94 

#nsamples_minus_1=9 

 

for i in `seq 0 ${nsamples_minus_1}` ; do 

 

    sampledir=${sampledirs[${i}]} 

    sample=${samples[${i}]} 

 

    currentdir=${workingdir}/${sampledir} 
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    cd $currentdir 

 

    echo "==================================================" 

 

    echo "Sample: $sample" 

 

    if [ ! -s ${currentdir}/${sample}_Trim_hg38_Aligned.sortedByCoord.out.bam.idxstats ] ; 

then 

        rm -rf ${currentdir}/${sample}_Trim_hg38__STARtmp 

    # align data using STAR 

    echo "$(date): Started STAR alignment. Sample ${sample}" 

    STAR --runThreadN ${nThreads} --runMode alignReads --genomeDir ${STARindexdir} --

readFilesIn ${currentdir}/${sample}_Trim_R1.fastq.gz ${currentdir}/${sample}_Trim_R2.fastq.gz 

--readFilesCommand zcat --outSAMtype BAM Unsorted --outFileNamePrefix 

${currentdir}/${sample}_Trim_hg38_ --chimSegmentMin 20 --quantMode GeneCounts --

outReadsUnmapped Fastx > ${currentdir}/${sample}_Trim_hg38_star.out 2>&1 

    echo "$(date): Finished STAR alignment. Sample ${sample}" 

 

    # sort and index BAM files using samtools 

    echo "$(date): Started sorting the bam file. Sample ${sample}" 

    samtools sort -@${nThreads} ${currentdir}/${sample}_Trim_hg38_Aligned.out.bam > 

${currentdir}/${sample}_Trim_hg38_Aligned.sortedByCoord.out.bam 

    echo "$(date): Finished sorting the bam file. Sample ${sample}" 

 

    echo "$(date): Started indexing the bam file. Sample ${sample}" 

    samtools index ${currentdir}/${sample}_Trim_hg38_Aligned.sortedByCoord.out.bam 

    echo "$(date): Finished indexing the bam file. Sample ${sample}" 

 

    samtools idxstats ${currentdir}/${sample}_Trim_hg38_Aligned.sortedByCoord.out.bam > 

${currentdir}/${sample}_Trim_hg38_Aligned.sortedByCoord.out.bam.idxstats 

     

    else 

    echo "     output files present." 

    fi 

    echo "==================================================" 

    cd - 

 

done 

 

echo "$(date) FINISHED" 

 

#!/bin/sh 

 

# Description 

samples=( BX006 BX008 BX010 BX011 BX012 BX013 BX014 BX017 BX018 BX020 BX023 BX024 BX026 BX028 

BX030 BX031 BX038 BX042 BX045 BX048 \ 

    BX051 BX054 BX056 BX057 BX062 BX063 BX064 BX065 BX066 BX067 BX071 BX073 BX074 BX075 BX077 

BX093 BX101 BX102 BX103 BX104 \ 

    BX106 BX107 BX110 BX112 BX113 BX115 BX117 BX118 BX119 BX121 BX123 BX127 BX130 BX131 BX135 

BX138 BX139 BX141 BX150 BX151 \ 

    BX152 BX153 BX160 BX164 BX165 BX166 BX167 BX168 BX173 BX175 BX178 BX188 BX194 BX195 BX201 

BX202 BX217 BX221 BX230 BX240 \ 

    BX242 BX245 BX248 BX272 BX275 BX278 BX281 BX285 BX287-p1 BX287-p2 BX287-p3 BX287-p4 BX287-

p6 BX296 BX303 ) 

nsamples_minus_1=94 

 

module purge; module load bluebear 

module load apps/samtools/1.4 

 

for i in `seq 3 ${nsamples_minus_1}` ; do 

#for i in `seq 0 2` ; do 

 

sample=${samples[${i}]} 

 

echo $sample 

 

# Merge Runs and sort 

if [ ! -s ${sample}_Trim.bam ] ; then  

    echo "merging files" 

    samtools merge -n ${sample}_Trim.bam ../GB120918-

AF/${sample}/${sample}_Trim_hg38_Aligned.sortedByCoord.out.bam ../GB120918-

AF_01/${sample}*/${sample}_Trim_hg38_Aligned.sortedByCoord.out.bam  

fi 

if [ ! -s ${sample}_Trim_sorted.bam ] ; then 
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    echo "sorting file" 

    samtools sort ${sample}_Trim.bam > ${sample}_Trim_sorted.bam 

fi 

 

done 

 

# Create Read Counts File 

module purge; module load bluebear 

module load Subread/1.5.3 

featureCounts -a /rds/homes/h/hlc711/filera-rheumatoid-arthritis-rna-

seq/sequencing/Genomes/Human/#GRCh38/gencode.v31.annotation.gtf -o readcounts_Trim.txt 

${bam_files} -p -s 2 > readcounts_Trim.out 2>&1 & 

9.4 R SCRIPT FOR ANALYSIS OF THE RNA SEQUENCING DATA 

9.4.1 Setting up of datasets 
library(DESeq2) 

library(gplots) 

library(RColorBrewer) 

library(ggplot2) 

library(pheatmap) 

library(factoextra) 

library(vioplot) 

library(ggpubr) 

library(data.table) 

library(olsrr) 

library(ComplexHeatmap) 

library(circlize) 

library(FSA) 

library(biomaRt) 

 

####Set up data in R#### 

# Set-up and read in counts 

outdir = "U:/R/DESeq2/Output" 

nsamples = 95 

readcounts <- 

read.csv(file="Z:/sequencing/Processed_Data/BAM_files_merged/readcounts_Trim_noY.txt",  

                       header = TRUE, row.names=1, sep = "\t", skip = 1) 

 

# Remove chromosome Y 

ChY <- grepl("chrY", readcounts[,1]) 

readcounts_noY <- readcounts[!ChY,] 

 

# Remove unnecessary columns 

colnames(readcounts_noY)[6:ncol(readcounts_noY)] =  

  gsub("_Trim_sorted.bam","",gsub("...BAM_files.","", 

                         colnames(readcounts_noY[6:ncol(readcounts_noY)]))) 

counts_noY <- readcounts_noY[,6:(nsamples+5)] 

rownames(counts_noY) <- gsub("[[:punct:]].*","",rownames(counts_noY)) 

rownames(readcounts_noY) <- gsub("[[:punct:]].*","",rownames(readcounts_noY)) 

 

# Read in coldata and create factors 

coldata <- read.csv(file="U:/R/DESeq2/coldata.csv", header = TRUE) 

coldata$Diagnosis <- factor(coldata$Diagnosis) 

coldata$sex <- factor(coldata$sex) 

coldata$ccp <- factor(coldata$ccp) 

coldata$rhf <- factor(coldata$rhf) 

coldata$ExMethod <- factor(coldata$ExMethod) 

coldata$Plate <- factor(coldata$Plate) 

coldata$Pathotype <- factor(coldata$Pathotype) 

coldata$joint <- factor(coldata$joint) 

coldata$biopsy_side <- factor(coldata$biopsy_side) 

coldata$therapy.Nsaid <- factor(coldata$therapy.Nsaid) 

coldata$therapy.pred <- factor(coldata$therapy.pred) 

coldata$Muscle <- factor(coldata$Muscle) 

coldata$DAS28ESR_resp_12 <- factor(coldata$DAS28ESR_resp_12) 

 

####Use BiomaRt to get gene names#### 

ensembl = useMart(biomart = "ENSEMBL_MART_ENSEMBL", dataset="hsapiens_gene_ensembl",  

                  host="www.ensembl.org") 
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Attributes <- listAttributes(ensembl) 

 

searchAttributes(mart = ensembl, pattern = "entrezgene") 

 

Filters <- listFilters(ensembl) 

 

searchFilters(mart = ensembl, pattern = "ensembl.*id") 

 

keep <- rowSums(counts_noY) >= 50 

counts_noY_filter <- counts_noY[keep,] 

 

BMimport_counts =getBM(attributes= c("ensembl_gene_id", "hgnc_symbol", "entrezgene_id"),  

values= rownames(counts_noY_filter),filters="ensembl_gene_id", mart= ensembl) 

 

anyDuplicated(rownames(counts_noY_filter)) 

anyDuplicated(BMimport_counts$ensembl_gene_id) 

 

BMimport_nodup_counts <- BMimport_counts[!duplicated(BMimport_counts$hgnc_symbol),] 

BMimport_match_counts <- BMimport_nodup_counts[match(rownames(counts_noY_filter),  

                                BMimport_nodup_counts$ensembl_gene_id),] 

 

counts_gene_names <- counts_noY_filter 

rownames(counts_gene_names)[BMimport_match_counts$hgnc_symbol!="" &  

!is.na(BMimport_match_counts$hgnc_symbol)] <-  

        BMimport_match_counts$hgnc_symbol[BMimport_match_counts$hgnc_symbol!="" & 

!is.na(BMimport_match_counts$hgnc_symbol)] 

 

####Remove XIST, TSIX & IGV genes#### 

# Remove XIST & TSIX 

X <- grepl("XIST", rownames(counts_gene_names)) |  

  grepl(c("TSIX"), rownames(counts_gene_names)) 

 

counts_gene_names <- counts_gene_names[!X,] 

 

# Remove IGV genes 

IGVDJ <- grepl("IGHV", rownames(counts_gene_names)) |  

  grepl(c("IGLV"), rownames(counts_gene_names)) |  

  grepl(c("IGKV"), rownames(counts_gene_names)) | 

  grepl(c("IGHD"), rownames(counts_gene_names)) |  

  grepl(c("IGHJ"), rownames(counts_gene_names)) |  

  grepl(c("IGLJ"), rownames(counts_gene_names)) |  

  grepl(c("IGKJ"), rownames(counts_gene_names)) 

   

counts_noY_noIGV <- counts_gene_names[!IGVDJ,] 

 

####Remove samples that failed QC#### 

# Remove poor quality samples from counts and coldata 

counts_noIGV <- counts_noY_noIGV[,-c(1, 3, 5, 19, 37, 50)] 

coldata <- coldata[-c(1, 3, 5, 19, 37, 50),] 

 

# Remove repeats 

counts_noIGV <- counts_noIGV[,-c(84:87)] 

coldata <- coldata[-c(84:87),] 

 

# Remove samples with muscle contamination - used for analyses  

#where muscle not corrected for 

counts_noIGV_nomusc <- counts_noIGV[,-c(1:2, 5, 11, 22, 24, 37, 42, 49, 69,  

75)] 

coldata_nomusc <- coldata[-c(1:2, 5, 11, 22, 24, 37, 42, 49, 69, 75),] 

 

####Set up DESeq2#### 

#This was also done without muscle to produce dds_nomusc 

dds <- DESeqDataSetFromMatrix(countData=counts_noIGV, colData=coldata, design=~Diagnosis) 

#Filter out genes with low expression 

keep <- rowSums(counts(dds)) >= 50 

dds <- dds[keep,] 

 

dds$Diagnosis <- relevel(dds$Diagnosis, ref = "sdRA") 

 

# Run DESeq2  

dds <- DESeq(dds) 

 

# vst transform data 

vsd <- vst(dds) 
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####Create summary muscle score for use in correction#### 

musc_genes <- c("IDI2", "DUPD1", "MYH1", "LRRC30", "MYH4", "SMTNL1",  

                "ACTN3", "PPP1R27","MYADML2","ANKRD23","UCP3","CHRNA10") 

 

z_score <- t(scale(t(assay(vsd)), center=T, scale=T)) 

 

select <- rownames(z_score)%in%musc_genes  

 

z_score <- z_score[select,] 

 

#Calculate muscle score for each sample 

musc_score <- colSums(z_score)/sqrt(nrow(z_score)) 

 

####Create new DESeq2 dataset that includes muscle score correction#### 

coldata$musc_score <- as.numeric(musc_score) 

 

dds_musc <- DESeqDataSetFromMatrix(countData=counts_noIGV, colData=coldata,  

                                   design=~ musc_score + Diagnosis) 

keep <- rowSums(counts(dds_musc)) >= 50 

dds_musc <- dds_musc[keep,] 

dds_musc$Diagnosis <- relevel(dds_musc$Diagnosis, ref = "sdRA") 

dds_musc <- DESeq(dds_musc) 

vsd_musc <- vst(dds_musc) 

 

9.4.2 QC and data exploration 
####Plot heatmap of top 100 most variable genes#### 

#NOTE: these scripts produce plots after removal of samples containing 

#muscle, this was also run including muscle for original QC plots.  

library(genefilter) 

 

topVarGenes <- head( order( rowVars( assay(vsd_nomusc) ), decreasing=TRUE ), 100 ) 

 

#Create csv file containing list of most variable genes# 

write.csv(assay(vsd_nomusc)[topVarGenes,], file = "Variable_genes_musc.csv") 

 

#Set the colour function for complexheatmap 

col_fun <- colorRamp2(breaks = seq(-3, 3, length.out=101),  

                     colorRampPalette(rev(brewer.pal(n=11, "RdYlBu")))(101)) 

 

#Create pdf containing heatmap 

pdf(file=paste0(outdir,"/Heatmap_Var100.pdf"),width = 15,  

    height = 15, paper = "special", onefile = T, title = "") 

par(mar=c(6,4,2.5,7),mgp=c(4,1,0)) 

Heatmap(t(scale(t(assay(vsd_nomusc)[ topVarGenes,]))), name = "expression",  

        col = col_fun, #border = TRUE, column_title = "Top 100 most variable genes",  

        column_title_gp = gpar(fontsize = 16, fontface = "bold"),  

        row_names_gp = gpar(fontsize = 3), column_names_gp = gpar(fontsize = 10), 

        top_annotation = HeatmapAnnotation(Diagnosis = vsd_nomusc$Diagnosis,  

                        Pathotype = vsd_nomusc$Pathotype, 

                        col = list(Diagnosis = c("Norm"="black", "Res"="gold",  

                        "NonRA"="green3","sdRA"="blue","ldRA"="red"), 

                        Pathotype = c("Pauci_immune" = "palegreen3",  

                        "Diffuse" = "cornflowerblue","Lymphoid" = "tomato2")),  

                        na_col = "darkgrey"), 

        cluster_columns = TRUE, row_dend_reorder = TRUE,  

        column_dend_reorder = TRUE,  

        clustering_distance_rows = function(x) as.dist(1-cor(t(x))),  

        clustering_method_rows = "average", 

        clustering_distance_columns = function(x) as.dist(1-cor(t(x))),  

        clustering_method_columns = "average" 

) 

dev.off() 

 

####PCA plotting#### 

#This script was adapted from source script for plotPCA to create a function 

#for plotting of PC3&4 

library(genefilter) 

library(ggplot2) 

library(ggrepel) 

 

plotPCA.san34 <- function (object, intgroup = "condition", ntop = 500,  
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                            returnData = FALSE)  

{ 

  rv <- rowVars(assay(object)) 

  select <- order(rv, decreasing = TRUE)[seq_len(min(ntop,  

                                                     length(rv)))] 

  pca <- prcomp(t(assay(object)[select, ])) 

  percentVar <- pca$sdev^2/sum(pca$sdev^2) 

  if (!all(intgroup %in% names(colData(object)))) { 

    stop("the argument 'intgroup' should specify columns of colData(dds)") 

  } 

  intgroup.df <- as.data.frame(colData(object)[, intgroup, drop = FALSE]) 

  group <- if (length(intgroup) > 1) { 

    factor(apply(intgroup.df, 1, paste, collapse = " : ")) 

  } 

  else { 

    colData(object)[[intgroup]] 

  } 

   

  ## Select the PCAs and percentVar that you like instead of 1 and 2 

  d <- data.frame(PC3 = pca$x[, 3], PC4 = pca$x[, 4], group = group,  

                  intgroup.df, name = colData(object)[,1]) 

  if (returnData) { 

    attr(d, "percentVar") <- percentVar[3:4] 

    return(d) 

  } 

  ggplot(data = d, aes_string(x = "PC3", y = "PC4", color = "group",  

  label = "name")) + geom_point(size = 3) +  

  xlab(paste0("PC3: ", round(percentVar[3] * 100), "% variance")) +  

  ylab(paste0("PC4: ", round(percentVar[4] * 100), "% variance")) +  

  coord_fixed()  

   

} 

 

#Produce PCA plots into a pdf 

rv <- rowVars(assay(vsd_nomusc)) 

select <- order(rv, decreasing = TRUE)[seq_len(min(500, length(rv)))] 

 

pca <- prcomp(t(assay(vsd_nomusc)[select,])) 

 

pdf(file=paste0(outdir,"/PCA_plots_nomusc.pdf"),width = 15, height = 10,  

    paper = "special",onefile = T, title = "") 

par(mar=c(6,7,2.5,3.5),mgp=c(4,1.5,0)) 

print( plotPCA( vsd_nomusc, "Diagnosis" ) +  

    geom_label(aes(label = vsd_nomusc$sample), label.size = 0.25, size = 4)) 

print( plotPCA( vsd_nomusc, intgroup = c( "Diagnosis") )  +  

        ggtitle("Diagnosis"))  

print( plotPCA( vsd_nomusc, intgroup = c( "sex") ) + ggtitle("Sex") ) 

print( plotPCA( vsd_nomusc, intgroup = c( "age") ) + ggtitle("Age") +  

         scale_color_gradient(low="blue", high="red") ) 

print( plotPCA( vsd_nomusc, intgroup = c( "ExMethod") ) +  

        ggtitle("Extraction Method") +  

         scale_color_discrete(name="ExMethod",breaks=c("TS", "WT"), 

                        labels=c("Thick Section", "Whole Tissue"))) 

print( plotPCA( vsd_nomusc, intgroup = c( "Plate") ) + ggtitle("Plate Number") ) 

print( plotPCA( vsd_nomusc, intgroup = c("Pathotype")) + ggtitle("Pathotype")) 

print( plotPCA( vsd_nomusc, intgroup = c( "ccp") ) + ggtitle("CCP")  +  

         scale_color_discrete(name="ccp", breaks=c("n", "p"), labels=c("CCP-", "CCP+"))) 

print( plotPCA( vsd_nomusc, intgroup = c( "rhf") ) + ggtitle("RHF") +  

         scale_color_discrete(name="rhf",breaks=c("n", "p"),labels=c("RhF-", "RhF+")) ) 

print( plotPCA( vsd_nomusc, intgroup = c( "joint") ) + ggtitle("Joint Biopsied") ) 

print( plotPCA( vsd_nomusc, intgroup = c( "biopsy_side") ) + ggtitle("Biopsy Side") ) 

print( plotPCA( vsd_nomusc, intgroup = c( "RIN") ) + ggtitle("RIN") +  

         scale_color_gradient(low="blue", high="red")) 

print( plotPCA( vsd_nomusc, intgroup = c( "LL.median") ) + ggtitle("Lining layer median") +  

         scale_color_gradient(low="blue", high="red")) 

print( plotPCA( vsd_nomusc, intgroup = c( "Density.mean") ) + ggtitle("Density Median") +  

         scale_color_gradient(low="blue", high="red") ) 

print( plotPCA( vsd_nomusc, intgroup = c( "Agg.worst") ) + ggtitle("Aggregate worst") +  

         scale_color_gradient(low="blue", high="red")) 

print( plotPCA( vsd_nomusc, intgroup = c( "US.GS.worst") ) + ggtitle("US GS worst") +  

         scale_color_gradient(low="blue", high="red")) 

print( plotPCA( vsd_nomusc, intgroup = c( "US.PD.worst") ) + ggtitle("US PD worst") +  

         scale_color_gradient(low="blue", high="red")) 

print( plotPCA( vsd_nomusc, intgroup = c( "DAS28_ESR") ) + ggtitle("DAS28_ESR") +  
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            scale_color_gradient(low="blue", high="red")) 

print( plotPCA( vsd_nomusc, intgroup = c( "DAS28_CRP") ) + ggtitle("DAS28_CRP") +  

            scale_color_gradient(low="blue", high="red")) 

print( plotPCA(vsd_nomusc, intgroup = c("therapy.Nsaid")) + ggtitle("Nsaid therapy")) 

print( plotPCA(vsd_nomusc, intgroup = c("therapy.pred")) + ggtitle("Pred therapy")) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("Diagnosis")) +  

    geom_label(aes(label = vsd_nomusc$sample), label.size = 0.25, size = 4)) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("sex")) + ggtitle("Sex")) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("Diagnosis")) + ggtitle("Diagnosis")) 

print( plotPCA.san34( vsd_nomusc, intgroup = c( "age") ) + ggtitle("Age") +  

         scale_color_gradient(low="blue", high="red") ) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("ExMethod")) + ggtitle("Extraction Method") +  

         scale_color_discrete(name="ExMethod",breaks=c("TS", "WT"), 

                              labels=c("Thick Section", "Whole Tissue"))) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("Plate")) + ggtitle("Plate Number")) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("Pathotype")) + ggtitle("Pathotype")) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("ccp")) + ggtitle("CCP")  +  

         scale_color_discrete(name="ccp",breaks=c("n", "p"),labels=c("CCP-", "CCP+"))) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("rhf")) + ggtitle("RHF") +  

         scale_color_discrete(name="rhf",breaks=c("n", "p"),labels=c("RhF-", "RhF+"))) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("joint")) + ggtitle("Joint Biopsied")) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("biopsy_side")) + ggtitle("Biopsy Side")) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("RIN")) + ggtitle("RIN") +  

         scale_color_gradient(low="blue", high="red")) 

print( plotPCA.san34( vsd_nomusc, intgroup = c( "LL.median") ) +  

        ggtitle("Lining Layer median") +  

         scale_color_gradient(low="blue", high="red")) 

print( plotPCA.san34( vsd_nomusc, intgroup = c( "Density.mean") ) +  

        ggtitle("Density Median") +  

         scale_color_gradient(low="blue", high="red")) 

print( plotPCA.san34( vsd_nomusc, intgroup = c( "Agg.worst") ) + ggtitle("Aggregate worst") +  

         scale_color_gradient(low="blue", high="red")) 

print( plotPCA.san34( vsd_nomusc, intgroup = c( "US.GS.worst") ) + ggtitle("US GS worst") +  

         scale_color_gradient(low="blue", high="red")) 

print( plotPCA.san34( vsd_nomusc, intgroup = c( "US.PD.worst") ) + ggtitle("US PD worst") +  

         scale_color_gradient(low="blue", high="red")) 

print( plotPCA.san34( vsd_nomusc, intgroup = c( "DAS28_ESR") ) + ggtitle("DAS28_ESR") +  

            scale_color_gradient(low="blue", high="red")) 

print( plotPCA.san34( vsd_nomusc, intgroup = c( "DAS28_CRP") ) + ggtitle("DAS28_CRP") +  

            scale_color_gradient(low="blue", high="red")) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("therapy.Nsaid")) + ggtitle("Nsaid Therapy")) 

print( plotPCA.san34(vsd_nomusc, intgroup = c("therapy.pred")) + ggtitle("Pred Therapy")) 

print( plotPCA.san56(vsd_nomusc, intgroup = c("Diagnosis")) +  

    geom_label(aes(label = vsd_nomusc$sample), label.size = 0.25, size = 4)) 

print( plotPCA.san56(vsd_nomusc, intgroup = c("Diagnosis")) + ggtitle("Diagnosis") )  

fviz_pca_var(pca, col.var = "contrib", gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), 

             repel = TRUE, select.var = list(contrib = 20), 

             labelsize = 6) + theme(text = element_text(size=18)) 

fviz_pca_var(pca, axes = c(3,4), col.var = "contrib",  

        gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), 

             repel = TRUE, select.var = list(contrib = 20), 

             labelsize = 6) + theme(text = element_text(size=18)) 

fviz_pca_var(pca, axes = c(5,6),col.var = "contrib",  

        gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), 

             repel = TRUE, select.var = list(contrib = 20),  

             labelsize = 6) + theme(text = element_text(size=18)) 

fviz_eig(pca, ncp = 10) + theme_minimal(base_size = 20) 

dev.off() 

 

####Run stepwise regression analysis for identification of confounders#### 

#Run linear model on top variable genes 

# Extract most variable genes and transpose 

n = 100 #number of genes - analysis repeated for top 1000 

topVarGenes <- head( order( rowVars( assay(vsd_nomusc) ), decreasing=TRUE ), n ) 

topVarGenes <- assay(vsd_nomusc)[ topVarGenes, ] 

topVarGenes <- t(topVarGenes) 

 

# create df containing log(counts)/sd(log(counts)) 

Var.log <- log(topVarGenes) 

Var.sdlog <- Var.log 

colstd <- rep(0, n) 

for (i in 1:n) { 

  colstd[i] <- sd(Var.log[,i]) 

  Var.sdlog[,i] <- Var.log[,i]/colstd[i] 
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} 

 

# Calculate coefficients and create df 

df <- as.data.frame(cbind(coldata_nomusc[,c(1:24,32)],as.numeric(Var.sdlog[,1]))) 

colnames(df)[26] = 'counts' 

for (i in 2:n) { 

  if (i %% 100 == 0) { message(i,'/',n) } 

  dftoadd <- as.data.frame(cbind(coldata_nomusc[,c(1:24)], 

    as.numeric(Var.sdlog[,i]))) 

  colnames(dftoadd)[25] = 'counts' 

  df <- rbindlist(list(df,dftoadd)) 

} 

 

fit <- lm(counts ~ Diagnosis + sex + age + ccp + rhf + ExMethod + Plate +  

            Pathotype + joint + biopsy_side + therapy.Nsaid + therapy.pred +  

            RIN + LL.median + DAS28_ESR + DAS28_CRP + Density.mean +  

            Agg.worst + PC.worst + US.GS.worst + US.PD.worst, df) 

 

ols_step_both_p(fit, pent=0.05) 

 

#Run linear model on sinlge principal component 

ppp <- plotPCA( vsd_nomusc, intgroup = c( "Diagnosis")) 

ppa <- plotPCA.san34( vsd_nomusc, intgroup = c( "Diagnosis") ) 

 

#Example for PC4, the same script was used for PC1-3 

df <- as.data.frame(cbind(coldata_nomusc[,c(1:24)], ppa$data$PC4))  

colnames(df)[25] = 'PC4' 

 

fit <- lm(PC4 ~ Diagnosis + sex + age + ccp + rhf + ExMethod + Plate +  

            Pathotype + joint + biopsy_side + therapy.Nsaid + therapy.pred +  

            RIN + LL.median + DAS28_ESR + DAS28_CRP + Density.mean +  

            Agg.worst + PC.worst + US.GS.worst + US.PD.worst, df) 

 

ols_step_both_p(fit, pent=0.05) 

 

#Run linear model on all principal components 

df <- as.data.frame(cbind(coldata_nomusc[,c(1:24)], ppp$data$PC1,rep("PC1",85))) 

colnames(df)[25] = 'PC_coef' 

colnames(df)[26] = 'PC' 

dftoadd <- as.data.frame(cbind(coldata_nomusc[,c(1:24)],ppp$data$PC2,rep("PC2",85))) 

colnames(dftoadd)[25] = 'PC_coef' 

colnames(dftoadd)[26] = 'PC' 

df <- as.data.frame(rbind(df, dftoadd)) 

dftoadd <- as.data.frame(cbind(coldata_nomusc[,c(1:24)],ppa$data$PC3,rep("PC3",85))) 

colnames(dftoadd)[25] = 'PC_coef' 

colnames(dftoadd)[26] = 'PC' 

df <- as.data.frame(rbind(df, dftoadd)) 

dftoadd <- as.data.frame(cbind(coldata_nomusc[,c(1:24)],ppa$data$PC4,rep("PC4",85))) 

colnames(dftoadd)[25] = 'PC_coef' 

colnames(dftoadd)[26] = 'PC' 

df <- as.data.frame(rbind(df, dftoadd)) 

 

fit <- lm(PC_coef ~ Diagnosis + sex + age + ccp + rhf + ExMethod + Plate +  

            Pathotype + joint + biopsy_side + therapy.Nsaid + therapy.pred +  

            RIN + LL.median + DAS28_ESR + DAS28_CRP + Density.mean +  

            Agg.worst + PC.worst + US.GS.worst + US.PD.worst + PC, df) 

 

ols_step_both_p(fit, pent=0.05) 

 

#UMAP plotting & k-means clustering 

library(umap) 

 

#Normalise data 

orig_count_table = counts(dds_nomusc) 

q3_columns = apply(orig_count_table,2,quantile,probs=0.75) 

column_factor = median(q3_columns) / q3_columns 

count_table <- t(t(orig_count_table) * column_factor) 

sd_rows = apply(count_table,1,sd) 

mean_rows = apply(count_table,1,mean) 

count_table <- (count_table - mean_rows) / sd_rows 

count_table <- count_table[order(sd_rows, decreasing = TRUE),] 

 

#Run UMAP & plot 

set.seed(12) 
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count.table.umap_1000 <- umap(t(count_table[1:1000,])) 

toplot <- cbind(as.data.frame(count.table.umap_1000$layout),  

            coldata_nomusc$Diagnosis, coldata_nomusc$sample) 

colnames(toplot) <- c("x","y","Diagnosis","sample") 

 

#Plot UMAP & create pdf 

toplot <- cbind(as.data.frame(count.table.umap_1000$layout),  

                coldata_nomusc$Diagnosis, coldata_nomusc$sample) 

colnames(toplot) <- c("x","y","Diagnosis","sample") 

 

ggplot(toplot, aes(x,y, color = Diagnosis)) + geom_point( size = 3) + ggtitle("Diffuse") 

 

pdf(file=paste0(outdir,"/UMAP_plots_dds1000_nomusc.pdf"),width = 15, height = 10, paper = 

"special", 

    onefile = T, title = "") 

par(mar=c(6,7,2.5,3.5),mgp=c(4,1.5,0)) 

ggplot(toplot, aes(x,y, color = Diagnosis)) + geom_point( size = 3) 

ggplot(toplot, aes(x,y, color = coldata_nomusc$sex)) +  

    geom_point( size = 3) + scale_color_discrete(name="Sex",  

                        breaks=c("F", "M"), labels=c("Female", "Male")) 

ggplot(toplot, aes(x,y, color = coldata_nomusc$age)) + geom_point( size = 3) +  

  scale_color_continuous(name="Age", type = "viridis") 

ggplot(toplot, aes(x,y, color = coldata_nomusc$ExMethod)) +  

    geom_point( size = 3) + scale_color_discrete(name="Extraction Method",  

            breaks=c("TS", "WT"), labels=c("Thick Section", "Whole Tissue")) 

ggplot(toplot, aes(x,y, color = coldata_nomusc$RIN)) + geom_point( size = 3) +  

  scale_color_continuous(name="RIN", type = "viridis") 

ggplot(toplot, aes(x,y, color = coldata_nomusc$Plate)) +  

    geom_point( size = 3) + scale_color_discrete(name="Plate No.") 

ggplot(toplot, aes(x,y, color = coldata_nomusc$ccp)) +  

    geom_point( size = 3) + scale_color_discrete(name="CCP",  

        breaks=c("p", "n"), labels=c("Positive", "Negative")) 

ggplot(toplot, aes(x,y, color = coldata_nomusc$rhf)) +  

    geom_point( size = 3) + scale_color_discrete(name="RHF",  

        breaks=c("p", "n"), labels=c("Positive", "Negative")) 

ggplot(toplot, aes(x,y, color = coldata_nomusc$joint)) +  

    geom_point( size = 3) + scale_color_discrete(name="Biopsy Joint") 

ggplot(toplot, aes(x,y, color = coldata_nomusc$biopsy_side)) +  

    geom_point( size = 3) + scale_color_discrete(name="Biopsy Side",  

        breaks=c("L", "R"), labels=c("Left", "Right")) 

ggplot(toplot, aes(x,y, color = coldata_nomusc$US.GS.worst)) +  

    geom_point( size = 3) + scale_color_continuous(name="US GS Worst",  

        type = "viridis") 

ggplot(toplot, aes(x,y, color = coldata_nomusc$US.PD.worst)) +  

    geom_point( size = 3) + scale_color_continuous(name="US PD Worst",  

        type = "viridis") 

ggplot(toplot, aes(x,y, color = coldata_nomusc$DAS28_ESR)) +  

    geom_point( size = 3) + scale_color_continuous(name="DAS28-ESR",  

        type = "viridis") 

ggplot(toplot, aes(x,y, color = coldata_nomusc$DAS28_CRP)) +  

    geom_point( size = 3) + scale_color_continuous(name="DAS28-CRP",  

        type = "viridis") 

ggplot(toplot, aes(x,y, color = coldata_nomusc$therapy.Nsaid)) +  

    geom_point( size = 3) + scale_color_discrete(name="Therapy Nsaid",  

        breaks=c("y", "n"), labels=c("Yes", "No")) 

ggplot(toplot, aes(x,y, color = coldata_nomusc$therapy.pred)) +  

    geom_point( size = 3) + scale_color_discrete(name="Therapy Pred",  

        breaks=c("y", "n"), labels=c("Yes", "No")) 

ggplot(toplot, aes(x,y, color = coldata_nomusc$Pathotype)) +  

    geom_point( size = 3) + scale_color_discrete(name="Pathotype",  

        breaks=c("Lymphoid", "Diffuse","Pauci_immune")) 

ggplot(toplot, aes(x,y, color = coldata_nomusc$Density.mean)) +  

    geom_point( size = 3) + scale_color_continuous(name="Mean Density",  

        type = "viridis") 

ggplot(toplot, aes(x,y, color = coldata_nomusc$Agg.worst)) +  

    geom_point( size = 3) + scale_color_continuous(name="Aggregate Worst",  

        type = "viridis") 

ggplot(toplot, aes(x,y, color = coldata_nomusc$LL.median)) +  

    geom_point( size = 3) + scale_color_continuous(name="Lining Layer",  

        type = "viridis") 

dev.off() 

 

#Cluster Identification 

library(tidyverse) 
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library(cluster) 

library(factoextra) 

 

set.seed(12) 

fviz_nbclust(count.table.umap_1000$layout, kmeans, method = "wss")  

clust_test <- fviz_nbclust(count.table.umap_1000$layout, kmeans,  

                            method = "wss")  

ggplot(clust_test$data, aes(as.numeric(clusters), y)) +  

    geom_point(size = 5) + geom_line(size = 2) + geom_vline(xintercept=3,  

        linetype="dashed", size=2) + scale_x_continuous(breaks = c(1:10)) + 

  labs(x="Number of clusters k", y="Total Within Sum of Squares") +  

  theme_classic(base_size = 30) 

 

fviz_nbclust(count.table.umap_1000$layout, kmeans, method = "silhouette") 

clust_test2 <- fviz_nbclust(count.table.umap_1000$layout, kmeans,  

                            method = "silhouette") 

ggplot(clust_test2$data, aes(as.numeric(clusters), y)) +  

    geom_point(size = 5) + geom_line(size = 2) +  

  geom_vline(xintercept=3, linetype="dashed", size=2) +  

  scale_x_continuous(breaks = c(1:10)) + labs(x="Number of clusters k",  

            y="Average silhouette width") + theme_classic(base_size = 30) 

 

set.seed(12) 

gap_stat <- clusGap(count.table.umap_1000$layout, FUN = kmeans, nstart = 25, 

                    K.max = 10, B = 50) 

fviz_gap_stat(gap_stat) 

clust_test3 <- fviz_gap_stat(gap_stat) 

ggplot(clust_test3$data, aes(as.numeric(clusters), gap)) +  

    geom_point(size = 5) + geom_line(size = 2) +  

    geom_errorbar(aes(ymin=gap-SE.sim, ymax=gap+SE.sim),  

                        width = .4, size = 1.5) + 

  geom_vline(xintercept=3, linetype="dashed", size=2) +  

  scale_x_continuous(breaks = c(1:10)) + labs(x="Number of clusters k",  

            y="Gap statistic (k)") + theme_classic(base_size = 30) 

 

#Run k-means clustering & plot 

set.seed(12) 

k3 <- kmeans(count.table.umap_1000$layout, centers = 3, nstart = 25) 

toplot_umap <- cbind(as.data.frame(count.table.umap_1000$layout),  

                coldata_nomusc$Pathotype, coldata_nomusc$sample,  

                coldata_nomusc$Diagnosis) 

colnames(toplot_umap) <- c("x","y","Pathotype","sample", "Diagnosis") 

k3cluster <- factor(k3$cluster) 

toplot_umap <- cbind(toplot_umap, k3cluster) 

 

pdf(file=paste0(outdir,"/UMAP_plots_kmeansclust_nomusc.pdf"),width = 15,  

    height = 10, paper = "special", onefile = T, title = "") 

par(mar=c(6,7,2.5,3.5),mgp=c(4,1.5,0)) 

ggplot(toplot_umap, aes(x,y, color = k3cluster)) + geom_point( size = 3)+  

  scale_color_discrete(name="k3cluster") 

fviz_cluster(list(data = as.data.frame(count.table.umap_1000$layout),  

                cluster = k3cluster)) 

dev.off() 

 

#Add clustering to coldata & produce csv 

coldata_nomusc_clust <- coldata_nomusc 

coldata_nomusc_clust$kmeanclust <- k3cluster 

write.csv(as.data.frame(coldata_nomusc_clust), 

    file="coldata_nomusc_kmeansclust.csv", row.names = FALSE) 

 

#Find differences between clusters using differential expression 

#NOTE adaptation of this script was also used for differential expression analysis of the 

#clinical comparisons 

dds_nomusc_clust <- DESeqDataSetFromMatrix(countData=counts_noIGV_nomusc,  

                        colData=coldata_nomusc_clust, design=~0 + kmeanclust) 

keep <- rowSums(counts(dds_nomusc_clust)) >= 50 

dds_nomusc_clust <- dds_nomusc_clust[keep,] 

dds_nomusc_clust <- DESeq(dds_nomusc_clust) 

vsd_clust <- vst(dds_nomusc_clust) 

 

#Example for finding DEGs associated with single cluster, same 

#script used for the other clusters 

resultsNames(dds_nomusc_clust) # lists the coefficients 

res_clust1 <- results(dds_nomusc_clust,  
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                      contrast=list(c("kmeanclust1"),  

                                    c("kmeanclust2","kmeanclust3")), 

                      listValues=c(1, -1/2)) 

 

# Find significant results 

sum( res_clust1$padj < 0.05, na.rm=TRUE ) #Number of DEGs 

resSig1 <- res_clust1[ which(res_clust1$padj < 0.05 ), ] 

resLog1 <- resSig1[which(abs(resSig1$log2FoldChange) >2),] 

nrow(resLog1) #Number of DEGs with LFC>2 

resOrdered1 <- resLog1[order(resLog1$log2FoldChange),] 

write.csv(as.data.frame(resOrdered1),file="UMAP_kmeansclust1_diffex.csv") 

 

#Same script used to produce resLog2 & resLog3 

resLog1 <- resSig1[which(resSig1$log2FoldChange >2),] 

resLog2 <- resSig2[which(resSig2$log2FoldChange >2),] 

resLog3 <- resSig3[which(resSig3$log2FoldChange >2),] 

resAll <- rbind(resLog1, resLog2, resLog3) 

resOrdered <- resAll[order(resAll$padj),] 

 

vsd_clust$Pathotype <- relevel(vsd_clust$Pathotype, ref = "Diffuse") 

vsd_clust$Pathotype <- relevel(vsd_clust$Pathotype, ref = "Pauci_immune") 

vsd_clust$Diagnosis <- relevel(vsd_clust$Diagnosis, ref = "NonRA") 

vsd_clust$Diagnosis <- relevel(vsd_clust$Diagnosis, ref = "Res") 

vsd_clust$Diagnosis <- relevel(vsd_clust$Diagnosis, ref = "Norm") 

vsd_clust_sort <- vsd_clust[,order(vsd_clust$Pathotype)] 

vsd_clust_sort <- vsd_clust_sort[,order(vsd_clust_sort$Diagnosis)] 

vsd_clust_sort <- vsd_clust_sort[,order(vsd_clust_sort$kmeanclust)] 

 

toplot <- assay(vsd_clust_sort,normalized=TRUE)  

select<- 

  rownames(toplot)%in%rownames(resAll) 

toplot <- toplot[select,] 

 

pdf(file=paste0(outdir,"/kmeansclust_diffex.pdf"),width = 12,  

    height = 14, paper = "special", onefile = T, title = "") 

par(mar=c(3,3,10,6)) 

draw(Heatmap(t(scale(t(toplot))), name = "expression", col = col_fun, 

    column_title = "Genes enriched in UMAP clusters padj<0.05 LFC>2",  

    column_title_gp = gpar(fontsize = 16, fontface = "bold"),  

    row_names_gp = gpar(fontsize = 8), column_names_gp = gpar(fontsize = 8), 

    top_annotation = HeatmapAnnotation(Cluster = vsd_clust_sort$kmeanclust,  

        Diagnosis = vsd_clust_sort$Diagnosis,  

        Pathotype = vsd_clust_sort$Pathotype,  

        col = list(Cluster = c("1" = "lightseagreen", "2" = "orchid3",  

            "3" = "royalblue"), Diagnosis = c("Norm"="darkgrey",  

            "Res"="gold", "NonRA"="green3","sdRA"="darkorchid3", 

            "ldRA"="darkorange"),Pathotype = c("Pauci_immune" = "palegreen3",  

            "Diffuse" = "cornflowerblue","Lymphoid" = "tomato2")),  

            na_col = "darkgrey"), cluster_columns = FALSE,  

    row_dend_reorder = TRUE, 

    clustering_distance_rows = function(x) as.dist(1-cor(t(x))),  

    clustering_method_rows = "average")) 

dev.off() 

 

#GO biological processes analysis on resulting DEGs 

#NOTE this script was also used for GO biological process analysis following differential 

#expression analysis of the clinical comparisons 

library("clusterProfiler") 

library("org.Hs.eg.db") 

library(DOSE) 

library(enrichplot) 

library(ggplot2) 

 

#Shows script for cluster 1 as example 

d <- resLog1 

#Get Entrez IDs for DEGs 

d$entrez <- mapIds(org.Hs.eg.db, 

                   keys=rownames(d), 

                   column="ENTREZID", 

                   keytype="SYMBOL", 

                   multiVals="first") 

geneList <- as.vector(d$log2FoldChange) 

names(geneList) <- as.character(d$entrez) 

geneList <- geneList[na.omit(names(geneList))] 
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geneList <- sort(geneList, decreasing = TRUE) 

 

#Run clusterProfiler 

OrgDb <- org.Hs.eg.db 

edo <- clusterProfiler::enrichGO(gene = names(geneList), 

            OrgDb = OrgDb,ont = "MF",pAdjustMethod = "BH",readable= F) 

 

#simplify removes redundant terms 

edos <- simplify(edo, cutoff=0.5, by="p.adjust", select_fun=min)  

 

##Convert Entrez ID to Symbol so genes are readable & produce  

#table of pathways as output 

edox <- setReadable(edos, 'org.Hs.eg.db', 'ENTREZID') 

pathway_table <- edox[,c("Description", "p.adjust", "geneID", "Count")] 

write.csv(as.data.frame(pathway_table), 

    file="UMAP_cluster_p005LFC2_pathway_table_simplify05_clust1_all.csv")  

 

heatplot.orderCat(edox, foldChange=geneList, showCategory = 10,  

    label_format = 22) + theme(axis.text.y = element_text(size=14),  

    axis.text.x = element_text(size=8)) 

9.4.3 Clinical comparisons & mechanisms of resolution 

Script for differential expression analysis and GO biological process analysis is 

included above for identification of genes associated with each UMAP cluster. The 

same script was used with only small adaptations for the same analyses in both 

the clinical comparisons and mechanisms of resolution chapters so to avoid 

repeats this will not be included again.  

####Testing for average gene expression across groups#### 

#NOTE: Script shown is for average expression of genes associated with  

#response across pathotypes as an example but slightly adapted script is  

#used on multiple occasions, including for the exploration of metabolic  

#gene expression across sdRA and resolving disease. 

 

#resSig is the output from differential expression analysis of responders 

#versus non-responders 

resp_genes <- rownames(resSig[which(resSig$log2FoldChange >1),]) 

 

#Calculate z score & select response genes 

z_score_nomusc <- t(scale(t(assay(vsd_nomusc)), center=T, scale=T)) 

select<- rownames(z_score_nomusc)%in%resp_genes 

z_score_resp <- z_score_nomusc[select,] 

 

#Calculate summary expression for each sample 

resp_summary <- colSums(z_score_resp)/sqrt(nrow(z_score_resp)) 

 

#Set up data 

to_plot <- as.data.frame(cbind(resp_summary, as.data.frame(coldata_nomusc$Pathotype),  

    as.data.frame(coldata_nomusc$Diagnosis))) 

colnames(to_plot)[2] <- "Pathotype" 

colnames(to_plot)[3] <- "Diagnosis" 

to_plot <- to_plot[to_plot$Diagnosis %in% c("sdRA","ldRA"),] 

to_plot$Pathotype = factor(to_plot$Pathotype, levels=c("Pauci_immune", "Diffuse", "Lymphoid")) 

 

#Plot against pathotype 

vioplot(resp_summary ~ Pathotype, data = to_plot,  

        col = c("palegreen3","cornflowerblue","tomato2"), 

        xlab = 'Pathotype', ylab = 'Summary score: response',  

        main = 'Response genes relative expression') 

         

#Test for signficance 

library(FSA) 

Summarize(resp_summary ~ Pathotype, data = to_plot) 

kruskal.test(resp_summary ~ Pathotype, data = to_plot) 

PT <- dunnTest(resp_summary ~ Pathotype, data = to_plot, method="bh") 

PT <- PT$res 

PT 

 

####Exploration of individual gene expression against groups#### 
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#NOTE: this is again an example script and was used to test multiple genes 

#against pathotype as well as clinical group 

EGR2_nc <- counts(dds_musc, normalized = TRUE)["EGR2",] 

EGR2_nc[EGR2_nc==0] <- 1 

EGR2_log <- log(EGR2_nc) 

 

#Combine gene expression & Diagnosis  

to_plot <- as.data.frame(cbind(EGR2_log, as.data.frame(dds_musc$Diagnosis))) 

colnames(to_plot) <- c("EGR2","Diagnosis") 

to_plot$Diagnosis = factor(to_plot$Diagnosis, 

                           levels=c("Norm", "Res", "NonRA", "sdRA", "ldRA")) 

 

vioplot(EGR2 ~ Diagnosis, data = to_plot,  

        col = c("darkgrey","gold","green3","darkorchid3","darkorange"),  

        xlab = 'Clinical group', ylab = 'log EGR2 expression',  

        main = 'Diagnosis EGR2 expression') 

         

Summarize(EGR2 ~ Diagnosis, data = to_plot) 

kruskal.test(EGR2 ~ Diagnosis, data = to_plot) 

PT <- dunnTest(EGR2 ~ Diagnosis, data = to_plot, method="bh") 

PT <- PT$res 

PT 

 

####Creating heatmaps of genes involved in metabolic processes### 

#NOTE: shows example script. Gene lists for other metabolic processes can  

#be found in Appendix 9.7. 

FA_synthesis_genes <- c("ACACA", "ACACB", "ACSF3", "MCAT", "FASN", "OXSM",  

                    "CBR4", "HSD17B8", "HTD2", "MECR", "OLAH", "ACSL6",  

                    "ACSL4", "ACSL1", "ACSL5", "ACSL3", "ACSBG1", "ACSBG2") 

             

#Set up data             

vsd_nomusc$Pathotype <- relevel(vsd_nomusc$Pathotype, ref = "Diffuse") 

vsd_nomusc$Pathotype <- relevel(vsd_nomusc$Pathotype, ref = "Pauci_immune") 

vsd_nomusc$Diagnosis <- relevel(vsd_nomusc$Diagnosis, ref = "Res") 

vsd_test_counts_sort <- vsd_nomusc[,order(vsd_nomusc$Pathotype)] 

vsd_test_counts_sort <- vsd_test_counts_sort[,order(vsd_test_counts_sort$Diagnosis)] 

vsd_test_counts_sort <-  

    vsd_test_counts_sort[,vsd_test_counts_sort$Diagnosis %in% c("Res","sdRA")] 

vsd_test_counts_sort$Diagnosis <- factor(vsd_test_counts_sort$Diagnosis) 

 

col_fun = colorRamp2(breaks = seq(-3, 3, length.out=101), 

colorRampPalette(rev(brewer.pal(n=11, "RdYlBu")))(101)) 

 

toplot <- assay(vsd_test_counts_sort,normalized=TRUE) 

select <- rownames(toplot)%in%FA_synthesis_genes 

toplot <- toplot[select,] 

 

pdf(file=paste0(outdir,"/metabolism_compheatmap_FA_synthesis.pdf"), 

    width = 18, height = 10, paper = "special", onefile = T, title = "") 

par(mar=c(3,3,10,6)) 

draw(Heatmap(t(scale(t(toplot))), name = "expression", col = col_fun,  

    column_title = "FA synthesis genes", column_title_gp = gpar(fontsize = 16,  

        fontface = "bold"),row_names_gp = gpar(fontsize = 8),  

    column_names_gp = gpar(fontsize = 10), 

    top_annotation = HeatmapAnnotation(Diagnosis = vsd_test_counts_sort$Diagnosis,  

        Pathotype = vsd_test_counts_sort$Pathotype,  

        col = list(Diagnosis = c("Norm" = "darkgrey", "Res" = "gold",  

        "NonRA" = "green3","sdRA" = "darkorchid3", "ldRA" = "darkorange"), 

        Pathotype = c("Lymphoid" = "tomato2", "Diffuse" = "cornflowerblue",  

        "Pauci_immune" = "palegreen3")), na_col = "darkgrey"), 

        cluster_columns = TRUE, row_dend_reorder = TRUE,  

        column_dend_reorder = TRUE, 

        clustering_distance_rows = function(x) as.dist(1-cor(t(x))),  

        clustering_method_rows = "average", 

        clustering_distance_columns = function(x) as.dist(1-cor(t(x))),  

        clustering_method_columns = "average", 

)) 

dev.off() 
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9.5 GO BIOLOGICAL PROCESS LISTS 

9.5.1 Processes associated with UMAP clusters 

Table 9.4: GO biological processes associated with DEGs upregulated in UMAP cluster C1. DEGs from padj<0.05, 

LFC>2. 
GO ID Description p.adjust geneID Count 

GO:0048705 skeletal system morphogenesis 0.000121754 COL1A1/PAX1/COL11A1/ACAN/CHAD/SOX11/RFLNA 7 

GO:0030198 extracellular matrix organization 0.000121754 WT1/IBSP/ADAM12/COL1A1/COL11A1/COL10A1/ACAN/POSTN 8 

GO:0043062 extracellular structure organization 0.000121754 WT1/IBSP/ADAM12/COL1A1/COL11A1/COL10A1/ACAN/POSTN 8 

GO:0001503 ossification 0.002106495 IBSP/CHRDL2/COL1A1/CTHRC1/COL11A1/SOX11/RFLNA 7 

GO:0010721 negative regulation of cell 
development 

0.018377648 PAEP/CCL11/POSTN/SOX11/RFLNA 5 

GO:0060231 mesenchymal to epithelial transition 0.018426575 WT1/GDNF 2 

GO:0009612 response to mechanical stimulus 0.018426575 ANKRD1/COL1A1/COL11A1/POSTN 4 

GO:0098743 cell aggregation 0.018426575 COL11A1/ACAN 2 

GO:1903532 positive regulation of secretion by cell 0.019131234 PAEP/ANKRD1/GDNF/POSTN/SOX11 5 

GO:1903510 mucopolysaccharide metabolic 

process 

0.021834447 STAB2/CHST6/ACAN 3 

GO:0071560 cellular response to transforming 
growth factor beta stimulus 

0.021834447 ANKRD1/COL1A1/POSTN/SOX11 4 

GO:0018146 keratan sulfate biosynthetic process 0.021834447 CHST6/ACAN 2 

GO:0071295 cellular response to vitamin 0.025451606 COL1A1/POSTN 2 

GO:0071356 cellular response to tumor necrosis 
factor 

0.030541294 CCL11/ANKRD1/COL1A1/POSTN 4 

GO:0051146 striated muscle cell differentiation 0.030541294 WT1/ALPK2/ANKRD1/ADAM12 4 

GO:0110148 biomineralization 0.040770934 IBSP/COL1A1/RFLNA 3 

Table 9.5: GO biological processes associated with DEGs downregulated in UMAP cluster C1. DEGs from padj<0.05, 
LFC<2. 
GO ID Description p.adjust geneID Count 
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GO:0016042 lipid catabolic process 0.012990623 LIPE/PLIN1/CYP3A4/CIDEA/LEP 5 

GO:0008343 adult feeding behavior 0.012990623 LEP/BRS3 2 

GO:0032275 luteinizing hormone secretion 0.012990623 LEP/CRH 2 

GO:0070091 glucagon secretion 0.012990623 LEP/CRH 2 

GO:0032276 regulation of gonadotropin secretion 0.012990623 LEP/CRH 2 

GO:0046173 polyol biosynthetic process 0.014206175 CYP3A4/LEP/MAS1 3 

GO:0034389 lipid droplet organization 0.030768815 CIDEC/CIDEA 2 

GO:0042738 exogenous drug catabolic process 0.034215169 CYP3A4/CYP4B1 2 

GO:0051953 negative regulation of amine 
transport 

0.034215169 LEP/CRH 2 

GO:0007586 digestion 0.038498682 CHIT1/LEP/CRH 3 

GO:1905952 regulation of lipid localization 0.044031295 CIDEA/LEP/CRH 3 

GO:0044058 regulation of digestive system 

process 

0.044031295 LEP/CRH 2 

GO:0006631 fatty acid metabolic process 0.044031295 LIPE/ACOD1/CYP3A4/LEP 4 

GO:0140353 lipid export from cell 0.044031295 LEP/CRH 2 

GO:0044060 regulation of endocrine process 0.044031295 LEP/CRH 2 

GO:0071466 cellular response to xenobiotic 

stimulus 

0.044031295 CYP3A4/GLYAT/CRH 3 

GO:0008217 regulation of blood pressure 0.044031295 LEP/CRH/BRS3 3 

GO:0043949 regulation of cAMP-mediated 
signaling 

0.044483198 PDE11A/CRH 2 

GO:0007565 female pregnancy 0.044483198 ACOD1/LEP/CRH 3 

Table 9.6: GO biological processes associated with DEGs upregulated in UMAP cluster C2. DEGs from padj<0.05, 

LFC>2. 
GO ID Description p.adjust geneID Count 

GO:0016999 antibiotic metabolic 

process 

3.05E-06 CYP4B1/DUOXA2/DUOX2/ADH4/ADH1A/ADH1B/HBG2/HBA1/PCK1/ 

HBB/AKR1B10/ADH1C/HBQ1/HBZ/HBA2 

15 

GO:0015671 oxygen transport 6.99E-05 HBG2/HBA1/HBB/HBQ1/HBZ/HBA2 6 

GO:0042572 retinol metabolic process 0.000173397 ADH4/ADH1A/ADH1B/CYP3A4/AKR1B15/RBP4/AKR1B10/ADH1C 8 
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GO:0006936 muscle contraction 0.000548104 MYH14/KCNIP2/SPX/ATP1A2/MYOT/SCN7A/ADRA1A/SORBS1/NKX2-5/ 
CRYAB/KCNJ3/PGAM2/MYH2/DES/MYOCD/CTNNA3/SCN4A/CAV3/ 
CASQ2/MYH11 

20 

GO:0098742 cell-cell adhesion via 

plasma-membrane 
adhesion molecules 

0.000589151 ADIPOQ/FAT2/CBLN1/PCDH15/CLDN10/MYOT/CLDN9/CDH22/CDH20/ 

CDH19/PCDH10/CDH7/ANXA3/VSTM2L/MYPN/NLGN1/CLDN2 

17 

GO:0015701 bicarbonate transport 0.000881306 HBA1/HBB/CA3/CA4/HBA2/SLC4A9/SLC4A1 7 

GO:1990748 cellular detoxification 0.002096938 DUOX2/ADH4/HBG2/HBA1/HBB/AKR1B10/HBQ1/MGST1/HBZ/HBA2 10 

GO:0098754 detoxification 0.002096938 DUOX2/ADH4/HBG2/HBA1/MTARC1/HBB/AKR1B10/HBQ1/MGST1/HBZ/ 

HBA2 

11 

GO:0042391 regulation of membrane 
potential 

0.003480157 BEST2/CHRNA4/MYH14/KCNIP2/CBLN1/MYOC/ATP1A2/SCN7A/GRIN2B/ 
ADRA1A/GABRG1/KCNJ3/GABRE/CTNNA3/SCN4A/NLGN1/CAV3/GRIK5/ 
MAPT/CASQ2 

20 

GO:0042593 glucose homeostasis 0.01223055 LEP/MLXIPL/ADIPOQ/PCK1/CRH/RBP4/SSTR5/KLF15/ADCY5/PDK4/CAV3/ 
GRIK5/OPRK1 

13 

GO:0008217 regulation of blood 
pressure 

0.013705943 BRS3/LEP/ADIPOQ/NPY1R/SPX/ATP1A2/HBB/ADRA1A/CRH/NPR3/TAC4 11 

GO:0050804 modulation of chemical 

synaptic transmission 

0.016167233 SHISA9/CHRNA4/SCGN/ADIPOQ/NPY5R/CBLN1/ATP1A2/GRIN2B/ADRA1A/ 

LRRTM1/CALB2/CRH/SORCS3/LGI1/NLGN1/GRIK5/MAPT/LRFN2 

18 

GO:0099177 regulation of trans-
synaptic signaling 

0.016167233 SHISA9/CHRNA4/SCGN/ADIPOQ/NPY5R/CBLN1/ATP1A2/GRIN2B/ADRA1A/ 
LRRTM1/CALB2/CRH/SORCS3/LGI1/NLGN1/GRIK5/MAPT/LRFN2 

18 

GO:0034389 lipid droplet organization 0.019201472 CIDEA/CIDEC/PLIN5/HSD17B13 4 

GO:0046890 regulation of lipid 
biosynthetic process 

0.020607641 LEP/MLXIPL/ACADL/ADIPOQ/PLIN5/HSD17B13/THRSP/SORBS1/BMP5/ 
GPAM/PDK4 

11 

GO:0030539 male genitalia 

development 

0.023348426 LHCGR/BMP5/FGF8/GREB1L 4 

GO:0032868 response to insulin 0.023348426 LEP/OTC/TRARG1/ADIPOQ/GRB14/PFKFB1/PCK1/SORBS1/LPL/KLF15/ 
ACVR1C/PDK4/OPRK1 

13 

GO:0032275 luteinizing hormone 
secretion 

0.023348426 LEP/CRH/OPRK1 3 

GO:0035637 multicellular organismal 
signaling 

0.023348426 MYH14/KCNIP2/ATP1A2/SCN7A/RYR3/NKX2-5/KCNJ3/FXYD3/CTNNA3/ 
SCN4A/CASQ2 

11 

GO:0034284 response to 

monosaccharide 

0.025942419 LEP/MLXIPL/ADIPOQ/PCK1/CRH/LPL/ADCY5/ACVR1C/SLC30A8/GRIK5/ 

OPRK1 

11 

GO:0099054 presynapse assembly 0.028777744 CBLN1/CBLN2/LRRTM1/LRRTM3/NLGN1 5 
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GO:1901379 regulation of potassium 
ion transmembrane 
transport 

0.028777744 DPP10/KCNIP2/DPP6/CAV3/KCNAB1/CASQ2/OPRK1 7 

GO:0060037 pharyngeal system 

development 

0.03178012 NKX2-5/BMP5/FGF8/EYA1 4 

GO:0010889 regulation of sequestering 
of triglyceride 

0.032820458 CIDEA/PLIN5/LPL 3 

GO:0050953 sensory perception of light 
stimulus 

0.035471452 EYS/RORB/PCDH15/ZIC2/MYO3A/RBP4/SFRP5/USH1C/POU6F2/VSX1/ 
SLITRK6 

11 

GO:0016042 lipid catabolic process 0.036337284 LEP/PLIN1/CIDEA/ACADL/LIPE/ADIPOQ/PLIN5/CYP3A4/FABP4/PCK1/ 

LIPH/AKR1B10/LPL/LGALS12 

14 

GO:0050746 regulation of lipoprotein 
metabolic process 

0.036984623 LEP/APOD/ANGPTL8 3 

GO:0060347 heart trabecula formation 0.036984623 NKX2-5/RBP4/CAV3 3 

GO:0042487 regulation of 
odontogenesis of dentin-
containing tooth 

0.040704623 FGF8/DMP1/ENAM 3 

GO:0007626 locomotory behavior 0.041407841 CHRNA4/PAK5/NPY1R/ATP1A2/PPP1R1B/LRRTM1/CRH/ADCY5/OPRK1/ 
SLITRK6 

10 

GO:0014706 striated muscle tissue 
development 

0.045974863 MYH14/MYF6/ADRA1A/TCF21/SGCG/NKX2-5/RBP4/BMP5/FGF8/MYOCD/ 
EYA1/CAV3/HLF/KCNAB1/MYH11 

15 

GO:0061384 heart trabecula 

morphogenesis 

0.045974863 NKX2-5/RBP4/BMP5/CAV3 4 

Table 9.7: GO biological processes associated with DEGs downregulated in UMAP cluster C2. DEGs from padj<0.05, 

LFC<2. 

GO ID Description p.adjust geneID Count 

GO:0042113 B cell activation 6.63E-14 IL6/LAX1/FOXP3/TNFRSF13C/FCRL3/IGLL5/CTLA4/BATF/IGKC/ 

CD19/CXCR5/CD79A/IGHG1/IGHG3/IGHA1/IFNE/IGHM/IGLC2/ 
IGHG4/IGHG2/SLAMF8/MZB1/CR2/IGLC3/IGLC6/IGLC7/IL21/IGHE 

28 

GO:0006959 humoral immune response 6.01E-13 IL6/CXCL8/LTA/IGLL5/CD5L/POU2AF1/IGKC/CD19/CXCL1/CXCL9/ 
IGHG1/IGHG3/IGHA1/IFNE/IGHM/PDCD1/IGLC2/IGHG4/IGHG2/ 
IFNG/CR2/IGLC3/IGLC6/CR1/CXCL13/IGLC7/CXCL6/IGHE 

28 

GO:0042742 defense response to bacterium 8.52E-10 IL6/LTA/IGLL5/HAMP/IGKC/CLEC4E/NLRP10/IGHG1/IGHG3/IGHA1/ 

IFNE/IGHM/IGLC2/IGHG4/IGHG2/SLAMF8/IGLC3/IGLC6/CXCL13/ 
IGLC7/CXCL6/CLEC4D/IGHE 

23 

GO:0006910 phagocytosis, recognition 1.83E-09 IGLL5/IGKC/IGHG1/IGHG3/IGHA1/IGHM/IGLC2/IGHG4/IGHG2/ 13 
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IGLC3/IGLC6/IGLC7/IGHE 

GO:0050900 leukocyte migration 2.71E-09 CCR5/GPR18/IL6/PLA2G7/SLC7A5/ADAM8/CXCL8/ADGRE2/IGKC/ 
CXCR5/CXCL1/CXCL9/IGHA1/IGHM/IGLC2/CCL15/SLAMF8/IGLC3/ 
IGLC6/FCAMR/CXCL13/MMP1/IGLC7/CXCL6/CCL18/CCL11/CCL7 

27 

GO:0070098 chemokine-mediated signaling 
pathway 

3.51E-08 CCR5/CXCL8/CXCR5/CXCR6/CXCL1/CXCL9/CCL15/CXCL13/CXCL6/ 
CCL18/CCL11/CCL7 

12 

GO:0001819 positive regulation of cytokine 
production 

1.51E-06 IL6/FOXP3/TNFRSF13C/KIR2DL4/IRF4/CD80/ADAM8/LTA/CSF2/ 
NLRP2/TIGIT/CLEC4E/NLRP10/CCBE1/GBP5/IDO1/NLRP7/IFNG/ 
AIM2/CLEC6A/IL21/PAEP 

22 

GO:0050727 regulation of inflammatory 

response 

8.26E-05 IL6/PLA2G7/FOXP3/ADAM8/LTA/IL22RA2/SIGLEC10/NLRP10/GBP5/ 

SMPDL3B/IDO1/NLRP7/SLAMF8/IL2RA/MMP3/IL21/CCL18 

17 

GO:0002544 chronic inflammatory response 9.73E-05 FOXP3/LTA/IDO1/CXCL13/CCL11 5 

GO:0032461 positive regulation of protein 

oligomerization 

0.000370541 TCL1A/BIK/AIM2/MMP3/MMP1 5 

GO:0001776 leukocyte homeostasis 0.001817666 TNFRSF17/IL6/FOXP3/TNFRSF13C/GPR174/IL2RA/CXCL6 7 

GO:0002377 immunoglobulin production 0.002221911 IL6/LAX1/FOXP3/TRAV9-2/FCRL3/BATF/IGKC/MZB1/TRDV1/TRDV2 10 

GO:0050715 positive regulation of cytokine 
secretion 

0.004621851 NLRP2/CLEC4E/NLRP10/NLRP7/IFNG/AIM2/CLEC6A/PAEP 8 

GO:0070234 positive regulation of T cell 
apoptotic process 

0.009581431 ADAM8/IDO1/PDCD1 3 

GO:0072503 cellular divalent inorganic 

cation homeostasis 

0.010694635 CCR5/GPR18/GPR174/P2RX2/CD19/CXCR5/CXCR6/CXCL9/MCHR1/ 

NTSR1/MT1H/CCL15/CXCL13/CCL11/CCL7 

15 

GO:0071887 leukocyte apoptotic process 0.019058632 CCR5/IL6/ADAM8/IDO1/PDCD1/IL2RA 6 

GO:0010524 positive regulation of calcium 
ion transport into cytosol 

0.042728414 P2RX2/CD19/CXCL9/NTSR1 4 

Table 9.8: GO biological processes associated with DEGs upregulated in UMAP cluster C3. DEGs from padj<0.05, 

LFC>2. 
GO ID Description p.adjust geneID Count 

GO:0042113 B cell activation 2.07E-15 IGHE/IL21/IGHM/CR2/IGHA1/CD19/SLAMF8/IGLL5/CTLA4/IGLC7/FCRL1/ 
CXCR5/IGHG2/IGHG3/MZB1/MS4A1/FCRL3/FOXP3/IGKC/CD79A/IGHG1/ 

IGLC2/CD27/IGHG4/CD38/BATF/LAX1 

27 

GO:0051249 regulation of lymphocyte 
activation 

2.07E-15 PLA2G2D/IFNG/IDO1/IGHE/IL21/IGHM/CD80/IL27/IGHA1/CD19/PDCD1/ 
SLAMF8/IGLL5/CTLA4/IGLC7/CD274/TIGIT/IGHG2/IGHG3/MZB1/FCRL3/ 
FOXP3/IGKC/LILRB4/IGHG1/IGLC2/CD27/IGHG4/ADAM8/CD38/LAX1/SIRPG 

32 
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GO:0002429 immune response-activating 
cell surface receptor 
signaling pathway 

4.54E-15 CLEC6A/CLEC4D/IGHE/IGHM/CLEC4E/CR2/IGHA1/BTN1A1/CD19/CLEC4C/ 
IGLL5/CTLA4/FCGR1A/IGLC7/IGHG2/IGHG3/MS4A1/FCRL3/FOXP3/TRAV8-4/ 
MUC16/IGKC/LILRB4/CD79A/IGHG1/IGLC2/HLA-DQB2/IGHG4/CD38/ 
LAX1/PAX5 

31 

GO:0002757 immune response-activating 
signal transduction 

4.54E-15 CLEC6A/CLEC4D/IGHE/IGHM/CLEC4E/CR2/IGHA1/BTN1A1/CD19/CLEC4C/ 
IGLL5/CTLA4/FCGR1A/IGLC7/IGHG2/IGHG3/MS4A1/FCRL3/FOXP3/TRAV8-4/ 
MUC16/IGKC/LILRB4/CD79A/IGHG1/IGLC2/HLA-
DQB2/IGHG4/CD38/LAX1/PAX5 

31 

GO:0070098 chemokine-mediated 
signaling pathway 

4.14E-09 CCL7/CXCL9/CXCL10/CXCL13/CXCL11/CCL18/CXCR5/CCL8/CCR8/CCR5/ 
CXCR3/CXCL6 

12 

GO:0006910 phagocytosis, recognition 3.52E-08 IGHE/IGHM/IGHA1/IGLL5/IGLC7/IGHG2/IGHG3/IGKC/IGHG1/IGLC2/IGHG4 11 

GO:0050900 leukocyte migration 1.24E-07 CCL7/CXCL9/CXCL10/CXCL13/CXCL11/FCAMR/IGHM/IGHA1/CCL18/SLAMF8/ 

MMP1/IGLC7/CXCR5/PLA2G7/CCL8/IGKC/IGLC2/CCR5/ADAM8/CXCR3/ 
SIRPG/CXCL6 

22 

GO:0042742 defense response to 
bacterium 

1.49E-07 CXCL13/CLEC4D/IGHE/IGHM/CLEC4E/IGHA1/SLAMF8/IGLL5/IGLC7/IGHG2/ 
IGHG3/LTA/IGKC/IGHG1/IGLC2/IGHG4/LYZ/CXCL6 

18 

GO:0002507 tolerance induction 0.000114 ACOD1/IDO1/PDCD1/CD274/FOXP3 5 

GO:0002831 regulation of response to 
biotic stimulus 

0.000178 CLEC6A/ACOD1/IFNG/GBP5/CLEC4D/IL21/CLEC4E/IL27/AIM2/CLEC4C/ 
SLAMF8/CD274/MUC16/ADAM8/CXCL6 

15 

GO:0070234 positive regulation of T cell 
apoptotic process 

0.000206 IDO1/PDCD1/CD274/ADAM8 4 

GO:0050727 regulation of inflammatory 

response 

0.000321 ACOD1/GBP5/IDO1/IL21/SIGLEC10/CCL18/SLAMF8/IL22RA2/PLA2G7/LTA/ 

SMPDL3B/FOXP3/TLR10/ADAM8 

14 

GO:0002544 chronic inflammatory 

response 

0.0006 CXCL13/IDO1/LTA/FOXP3 4 

GO:0001819 positive regulation of 
cytokine production 

0.000697 CLEC6A/IFNG/GBP5/IDO1/IL21/CD80/CLEC4E/IL27/AIM2/CD274/TIGIT/LTA/ 
FOXP3/NLRP2/ADAM8 

15 

GO:0051281 positive regulation of 
release of sequestered 

calcium ion into cytosol 

0.000742 CXCL9/CXCL10/CXCL11/CD19/NTSR1 5 

GO:0055074 calcium ion homeostasis 0.000797 CCL7/CXCL9/CXCL10/CXCL13/CXCL11/CD19/NTSR1/CXCR5/MS4A1/CCL8/ 
SNX10/CCR8/CCR5/CD38/CXCR3 

15 

GO:0046717 acid secretion 0.002657 PLA2G2D/NTSR1/TRH/KMO/AQP9/SLC22A16/SNX10 7 

GO:0014048 regulation of glutamate 
secretion 

0.005838 NTSR1/TRH/KMO 3 

GO:1903532 positive regulation of 

secretion by cell 

0.005838 CLEC6A/IFNG/SPP1/CLEC4E/AIM2/NTSR1/TRH/CD274/KMO/NLRP2/ 

ADAM8/CD38 

12 
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GO:0050663 cytokine secretion 0.005986 CLEC6A/IFNG/GBP5/CLEC4E/AIM2/CD274/FOXP3/NLRP2/TLR10 9 

GO:0002377 immunoglobulin production 0.006374 TRDV1/TRAV14DV4/MZB1/FCRL3/FOXP3/IGKC/BATF/LAX1 8 

GO:0001894 tissue homeostasis 0.016736 SPP1/IGHA1/IGHG3/IGKC/SNX10/ADAM8/CD38/LYZ 8 

GO:0032461 positive regulation of protein 
oligomerization 

0.018102 TCL1A/AIM2/MMP1 3 

GO:0001773 myeloid dendritic cell 
activation 

0.023657 UBD/CLEC4D/BATF 3 

GO:0009074 aromatic amino acid family 
catabolic process 

0.023657 IL4I1/IDO1/KMO 3 

 

Table 9.9: GO biological processes associated with DEGs downregulated in UMAP cluster C3. DEGs from padj<0.05, 

LFC<2. 

GO ID Description p.adjust geneID Count 

GO:0006936 muscle contraction 0.001663634 DES/MYH11/KCNJ12/CTNNA3/MYOCD/CACNA1S/KCNB2/ 
KCNJ3/NKX2-5/MYOT/SCN7A/MYBPC1/MYL1/MYH1/MYH2 

15 

GO:0042445 hormone metabolic process 0.004906162 CRABP1/LRAT/BMP5/AKR1B10/AKR1B15/DIO3/CHST9/ 
PCSK2/CYP2C9/DUOX2/DUOXA2 

11 

GO:0071772 response to BMP 0.007932764 SOSTDC1/BMP5/SFRP2/TNMD/TBXT/SFRP5/BMPR1B/ 

NKX2-5/VSTM2A 

9 

GO:0071773 cellular response to BMP 
stimulus 

0.007932764 SOSTDC1/BMP5/SFRP2/TNMD/TBXT/SFRP5/BMPR1B/ 
NKX2-5/VSTM2A 

9 

GO:0060562 epithelial tube morphogenesis 0.007932764 SALL1/SOSTDC1/SHROOM3/BMP5/TCF21/SFRP2/ALOX12/ 
ALX1/TBXT/EYA1/NKX2-5/HHIP 

12 

GO:0051965 positive regulation of synapse 
assembly 

0.007932764 LRRTM3/ADGRL3/SLITRK6/CBLN1/GRID2/LRRTM1 6 

GO:1901890 positive regulation of cell 
junction assembly 

0.007932764 LRRTM3/ADGRL3/SLITRK6/CBLN1/GRID2/MYOC/LRRTM1 7 

GO:0007389 pattern specification process 0.009675471 SOSTDC1/SHROOM3/BMP5/SFRP2/PCDH8/ALX1/TBXT/EYA1/ 

TDRD5/MYF6/BMPR1B/NKX2-5/HHIP/PAX1 

14 

GO:0098742 cell-cell adhesion via plasma-
membrane adhesion molecules 

0.024914492 TENM2/ADGRL3/PCDH8/CBLN1/CDH7/GRID2/UNC5D/CDH19/ 
MYOT/PCDH10 

10 

GO:1900452 regulation of long-term 
synaptic depression 

0.028484386 CBLN1/GRID2/SORCS3 3 
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GO:0010002 cardioblast differentiation 0.041313358 MYOCD/TBXT/NKX2-5 3 

GO:0014706 striated muscle tissue 
development 

0.041313358 RBM24/MYH11/BMP5/JPH2/TCF21/MYOCD/EYA1/MYF6/ 
NKX2-5/ANKRD1/MYBPC1 

11 

GO:0050953 sensory perception of light 
stimulus 

0.044197612 CRYBB2/LRAT/MYO3A/SLITRK6/POU6F2/SFRP5/USH1C/ZIC2 8 

GO:0045445 myoblast differentiation 0.04684225 RBM24/SOSTDC1/MYOCD/TBXT/MYF6 5 

GO:0048562 embryonic organ 

morphogenesis 

0.049929453 SALL1/TCF21/MYO3A/ALX1/SLITRK6/TBXT/EYA1/NKX2-5/USH1C 9 

9.5.2 Processes associated with response to treatment 

Table 9.10: GO biological processes associated with DEGs upregulated in responders. DEGs from unadjusted 
p<0.05, absolute LFC>1. 
GO ID Description padj geneID Count 

GO:0042110 T cell activation 2.90E-38 IFNG/IDO1/IL21/PLA2G2D/WNT1/CCL19/CD80/CLEC4E/CD274/PDCD1/ 
EOMES/TNFRSF13C/SIRPG/CTLA4/CCL5/THEMIS/IL2RA/TIGIT/ICOS/ITK/ 
LILRB4/BATF/TBX21/CEACAM1/GPR18/CD3D/CD2/XCL1/CD40LG/CD6/ 

CD8A/CD3E/RASGRP1/LCK/LAG3/SIT1/SIRPB1/IL10/CARD11/IRF1/ 
SLA2/EBI3/CD83/SOCS1/CD3G/GATA3/TNFSF14/CD5/ 
HLA-DOA/PDCD1LG2/NLRC3/RHOH/BCL11B/TESPA1/ZAP70/SEMA4A/ 

ZNF683/IL12RB1/PTPRC/IL18/CD160/CD8B/ITGAL/ICAM1/FUT7/ 
RUNX3/FCER1G/TCF7/PRKCQ/RIPOR2/GRAP2/CORO1A/P2RX7/SASH3/ 
HLA-DPA1/PTPN6/CD74/FZD5/PIK3CD 

79 

GO:0007159 leukocyte cell-cell 
adhesion 

6.16E-27 IFNG/IDO1/IL21/PLA2G2D/CCL19/CD80/CD274/PDCD1/TNFRSF13C/ 
SIRPG/S100A8/CTLA4/CCL5/IL2RA/TIGIT/ICOS/LILRB4/TBX21/CEACAM1/ 
XCL1/TNF/CD40LG/CD6/CD3E/RASGRP1/LCK/LAG3/SIRPB1/IL10/ 
CARD11/IRF1/EBI3/CD83/SOCS1/SKAP1/GATA3/TNFSF14/CD5/PDCD1LG2/ 
TESPA1/ZAP70/IL12RB1/PTPRC/IL18/CD160/ITGAL/SEMA4D/ICAM1/ 
RUNX3/PRKCQ/RIPOR2/GRAP2/CORO1A/SASH3/HLA-DPA1/PTPN6/CD74 

57 

GO:0002449 lymphocyte mediated 
immunity 

1.19E-19 IL21/AICDA/CR2/KIR2DL4/CD19/LTA/NCR3/SH2D1A/BATF/TBX21/ 
CEACAM1/GZMB/XCL1/TNF/CD226/CD40LG/TRBC2/CD8A/RASGRP1/ 
LAG3/IL10/SLA2/TRBC1/GATA3/PRF1/CD96/NCR1/GZMM/CLEC12B/ 
IL12RB1/PTPRC/IL18/CD160/C1QB/ICAM1/FCER1G/C1QC/CORO1A/P2RX7/ 

C1QA/SERPINB9/SASH3/CTSH/C3/PTPN6/CD74/FZD5/HLA-H/CD40 

49 

GO:0001819 positive regulation of 

cytokine production 

3.44E-18 IFNG/IDO1/IL21/CLEC6A/CCL19/GBP5/CD80/CLEC4E/CD274/KIR2DL4/ 

TNFRSF13C/SIGLEC16/LTA/TIGIT/CD2/PYHIN1/XCL1/MCOLN2/TNF/CD226/ 

54 
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CD40LG/CD6/CD3E/RASGRP1/IL10/CARD11/IRF1/EBI3/CD83/BIRC3/ 
GATA3/LTB/STAT1/HTR2B/IL12RB1/PTPRC/IL18/CD160/TLR7/CD244/ 
TLR1/FCER1G/PRKCQ/P2RX7/SASH3/FFAR2/HLA-DPA1/C3/HPSE/CD74/ 
FZD5/CD40/LRRK2/MNDA 

GO:0050851 antigen receptor-
mediated signaling 
pathway 

1.27E-17 FCRL3/PAX5/MS4A1/CD22/CD19/GBP1/BLK/CTLA4/TRBV7-9/THEMIS/ITK/ 
LILRB4/TRAT1/CEACAM1/STAP1/CD3D/UBASH3A/CD247/CD226/TRBC2/ 
CD3E/TRAC/LCK/CARD11/SLA2/TRBC1/CD3G/SKAP1/GATA3/HLA-DQA1/ 
TESPA1/ZAP70/LCP2/PTPRC/CD160/PRKCQ/GRAP2/HLA-DRA/PSMB9/ 
HLA-DPA1/PTPN6/LPXN/PIK3CD/MNDA 

44 

GO:0050900 leukocyte migration 1.46E-12 CXCL11/CXCL9/CXCL10/CCL19/CXCL13/CCL17/CXCR5/VPREB3/GPR15/ 

CNR2/SIRPG/S100A8/CCL4/CCL5/TBX21/CEACAM1/GPR18/CXCR3/STAP1/ 

CD2/CCL8/P2RY12/XCL1/MCOLN2/TNF/LCK/IL10/CD48/GATA3/TNFSF14/ 
XCL2/ZAP70/SDC3/CD244/ITGAL/ICAM1/FUT7/CD84/FCER1G/RIPOR2/ 
TRPM2/CORO1A/FFAR2/PTPN6/CD74/PIK3CD/CSF3R 

47 

GO:0050663 cytokine secretion 1.59E-09 IFNG/CLEC6A/CCL19/GBP5/CLEC4E/NOS2/CD274/GBP1/CD2/MCOLN2/ 
TNF/RASGRP1/IL10/CARD11/SOCS1/GATA3/HTR2B/LCP2/CD160/ 
CD244/TLR1/TNFAIP3/P2RX7/FFAR2/BANK1/ABCA1/FZD5/LRRK2 

28 

GO:0002544 chronic inflammatory 
response 

3.71E-07 IDO1/CXCL13/LTA/S100A8/CCL5/TNF/IL10/TNFAIP3 8 

GO:0007204 positive regulation of 
cytosolic calcium ion 
concentration 

6.56E-07 CXCL11/CXCL9/CXCL10/CCL19/CXCL13/CXCR5/DRD1/MS4A1/CCR8/ 
CD19/GPR18/CXCR3/FASLG/XCL1/GPR174/MCOLN2/LCK/GLP1R/CD52/ 
GPR65/HTR2B/PLCH2/PTPRC/TRPM2/CORO1A/P2RX7/PTPN6/S1PR4 

28 

GO:0071887 leukocyte apoptotic 
process 

1.09E-05 IDO1/CCL19/CD274/PDCD1/CCL5/IL2RA/FASLG/IL10/CD3G/FCER1G/ 
PRKCQ/P2RX7/CD74/PIK3CD 

14 

GO:0001776 leukocyte 
homeostasis 

4.16E-05 TNFRSF13B/TNFRSF13C/IL2RA/GPR174/SIT1/TNFSF14/TNFAIP3/ 
FCER1G/CORO1A/P2RX7/CD74/PIK3CD 

12 

GO:0050731 positive regulation of 

peptidyl-tyrosine 
phosphorylation 

5.25E-05 IFNG/IL21/IL31RA/CD80/DOK7/CCL5/FCGR1A/STAP1/TNF/CD3E/NCF1/ 

PTPRC/IL18/SEMA4D/ICAM1/BANK1/CD74/CD40 

18 

GO:0016444 somatic cell DNA 
recombination 

0.000426 AICDA/BATF/TBX21/CD40LG/IL10/BCL11B/PTPRC/TCF7/CD40 9 

GO:0048525 negative regulation of 
viral process 

0.000845 AICDA/CCL4/CCL5/CCL8/LTF/OASL/TNF/APOBEC3H/TRIM14/STAT1/ 
APOBEC3G 

11 

GO:0098883 synapse pruning 0.001557 C1QB/C1QC/C1QA/C3 4 

GO:0033623 regulation of integrin 
activation 

0.0029 CXCL13/P2RY12/SKAP1/PLEK 4 

GO:0045730 respiratory burst 0.003716 NCF1/CD52/NCF1B/NCF1C/MPO/PIK3CD 6 



238 
 

GO:0051341 regulation of 
oxidoreductase 
activity 

0.004827 IFNG/HP/CNR2/GCH1/GZMA/TNF/HTR2B/APOE/GFI1/LRRK2 10 

GO:0006801 superoxide metabolic 

process 

0.00581 NOS2/GCH1/TNF/NCF1/NCF1B/NCF1C/MPO/ACP5 8 

GO:0010543 regulation of platelet 
activation 

0.010062 CEACAM1/PLEK/APOE/FCER1G/PRKCQ 5 

GO:0045348 positive regulation of 
MHC class II 
biosynthetic process 

0.015561 IFNG/IL10/CIITA 3 

GO:1901739 regulation of myoblast 
fusion 

0.015986 CXCL9/CXCL10/TNFSF14/RIPOR2 4 

GO:2000810 regulation of bicellular 
tight junction 
assembly 

0.015986 OCLN/TNF/GPBAR1/FZD5 4 

GO:0031529 ruffle organization 0.018215 SNX10/STAP1/P2RY12/PLEK/CARMIL2/ICAM1 6 

GO:0043547 positive regulation of 

GTPase activity 

0.018215 CCL19/CXCL13/CCL17/CCL4/CCL5/CCL8/XCL1/RASGRP1/XCL2/ALDH1A1/ 

ADRB1/GPR65/HTR2B/SEMA4D/ICAM1/ARAP2/TBC1D10C/ARHGAP25/ 
ACAP1/CD40/LRRK2 

21 

GO:0051043 regulation of 
membrane protein 
ectodomain 

proteolysis 

0.021254 IFNG/TNF/IL10/APOE 4 

GO:0006216 cytidine catabolic 
process 

0.024465 AICDA/APOBEC3H/APOBEC3G 3 

GO:0009972 cytidine deamination 0.024465 AICDA/APOBEC3H/APOBEC3G 3 

GO:0033700 phospholipid efflux 0.024465 APOC1/APOE/ABCA1 3 

GO:0042368 vitamin D biosynthetic 
process 

0.024465 IFNG/TNF/GFI1 3 

GO:0046087 cytidine metabolic 
process 

0.024465 AICDA/APOBEC3H/APOBEC3G 3 

GO:0006809 nitric oxide 
biosynthetic process 

0.028571 IFNG/NOS2/GCH1/TNF/IL10/ICAM1/ACP5 7 

GO:2000116 regulation of cysteine-
type endopeptidase 
activity 

0.029533 S100A8/FASLG/CASP5/LTF/CST7/TNF/LCK/NAIP/BIRC3/TNFSF14/ 
TP63/PSMB9/SERPINB9/CTSH 

14 
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GO:0001845 phagolysosome 
assembly 

0.029533 RAB39A/CORO1A/P2RX7 3 

GO:0030656 regulation of vitamin 
metabolic process 

0.029533 IFNG/TNF/GFI1 3 

GO:0051851 modulation by host of 
symbiont process 

0.032278 CCL4/CCL5/CCL8/LTF/APOE/IFI27 6 

GO:0045834 positive regulation of 
lipid metabolic 
process 

0.034091 IFNG/CCL19/CD19/P2RY12/TNF/APOC1/HTR2B/APOE/NR1H3/CD74 10 

GO:0014002 astrocyte 

development 

0.036728 IFNG/DRD1/S100A8/TNF/C1QA 5 

GO:0032352 positive regulation of 
hormone metabolic 
process 

0.041036 IFNG/TNF/GATA3 3 

GO:2001057 reactive nitrogen 

species metabolic 
process 

0.042565 IFNG/NOS2/GCH1/TNF/IL10/ICAM1/ACP5 7 

GO:0010875 positive regulation of 
cholesterol efflux 

0.048039 APOE/NR1H3/ABCA1 3 

Table 9.11: GO biological processes associated with DEGs upregulated in non-responders. DEGs from unadjusted 

p<0.05, absolute LFC>1. 
GO ID Description padj geneID Count 

GO:0001503 ossification 6.37E-08 CCN2/ROR2/ENPP1/CLEC11A/COL1A2/WNT3/COL13A1/GJA1/SOX8/ 

SMOC1/BMP8B/COL1A1/ASPN/CREB3L1/SCX/BMP8A/IGSF10/COMP/ 
HAND2/FGF9/SOX11/TAC1/DMP1/PENK/COL2A1/CLEC3A 

26 

GO:0030199 collagen fibril 
organization 

2.88E-06 P3H4/COL1A2/COL12A1/FMOD/COL1A1/SCX/COMP/MMP11/ACAN/COL2A1 10 

GO:0048705 skeletal system 

morphogenesis 

0.000385 CCN2/ROR2/IRX5/COL7A1/COL12A1/COL13A1/COL1A1/SCX/COMP/ 

HOXD10/HHIP/ACAN/CHAD/SOX11/COL2A1 

15 

GO:0051216 cartilage development 0.000385 ADAMTS12/CCN2/ROR2/COL7A1/COL12A1/BMP8B/COL1A1/SCX/BMP8A/ 
COMP/HAND2/ACAN/FGF9/COL2A1 

14 

GO:0018146 keratan sulfate 

biosynthetic process 

0.000545 FMOD/B3GNT4/OGN/KERA/CHST6/ACAN 6 

GO:0050769 positive regulation of 
neurogenesis 

0.001063 SLIT2/ITPKA/WNT3/PTK7/RET/PTPRD/SOX8/PROX1/CNTN1/CHODL/ZNF365/ 
IRX3/VLDLR/NEFL/SERPINE2/DRD2/NKX2-5/PAX6/SOX11/SYT4 

20 
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GO:0055001 muscle cell 
development 

0.001239 FHOD3/UCHL1/RGS4/PROX1/MYOM3/ALPK2/COMP/MEGF10/TNNT1/MYF6/ 
NKX2-5/DNER 

12 

GO:0060562 epithelial tube 
morphogenesis 

0.003598 SLIT2/ADAMTS12/LAMA1/PTK7/GJA1/RET/IRX2/SOX8/PROX1/IRX3/KIF26B/ 
HAND2/HHIP/NKX2-5/SOX11 

15 

GO:0045926 negative regulation of 
growth 

0.003689 SLIT2/ENPP1/WNT3/GJA1/MT1E/MT1A/SEMA3D/RGS4/KCNK2/MT1M/TBX5/ 
SERPINE2/MT1X 

13 

GO:0010273 detoxification of 
copper ion 

0.00413 MT1E/MT1A/MT1M/MT1X 4 

GO:1990169 stress response to 

copper ion 

0.00413 MT1E/MT1A/MT1M/MT1X 4 

GO:0044272 sulfur compound 
biosynthetic process 

0.00524 CHPF/CDO1/FMOD/ELOVL4/UST/B3GNT4/OGN/GSTO2/KERA/CHST6/ACAN 11 

GO:0007409 axonogenesis 0.005336 SLIT2/DOK5/LAMA1/EPHB3/WNT3/UCHL1/RET/SEMA3D/ANK3/CHODL/UST/ 
EFNB3/VLDLR/NEFL/NRTN/DRD2/VSTM2L/PAX6 

18 

GO:0015872 dopamine transport 0.005348 MAPK15/SYT5/DRD2/SYT4/SYT13/SLC6A3 6 

GO:0003333 amino acid 

transmembrane 
transport 

0.008277 LRRC8E/RGS4/SLC7A9/SLC7A4/SLC3A1/SLC38A3/SLC6A20 7 

GO:0032963 collagen metabolic 
process 

0.009535 CCN2/P3H4/COL1A2/COL13A1/COL1A1/CREB3L1/SCX/MMP11 8 

GO:0045109 intermediate filament 
organization 

0.012222 KRT17/NEFM/NEFL/DES 4 

GO:0098743 cell aggregation 0.012222 CCN2/ROR2/ACAN/COL2A1 4 

GO:0051965 positive regulation of 
synapse assembly 

0.015207 THBS2/EPHB3/PTPRD/LRRN1/SYNDIG1/LINGO2 6 

GO:0042271 susceptibility to 
natural killer cell 
mediated cytotoxicity 

0.016662 RAET1E/ULBP2/ULBP1 3 

GO:0071772 response to BMP 0.017887 ADAMTS12/ROR2/BMP8B/SCX/BMP8A/COMP/NKX2-5/SOX11/COL2A1 9 

GO:0071773 cellular response to 

BMP stimulus 

0.017887 ADAMTS12/ROR2/BMP8B/SCX/BMP8A/COMP/NKX2-5/SOX11/COL2A1 9 

GO:0050905 neuromuscular 
process 

0.019651 UCHL1/NEFL/DRD2/COMP/HOXD10/PENK/SLC6A3 7 

GO:0019896 axonal transport of 
mitochondrion 

0.019651 UCHL1/NEFL/MGARP 3 

GO:0070208 protein 
heterotrimerization 

0.019651 COL1A2/C1QTNF6/COL1A1 3 
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GO:0014855 striated muscle cell 
proliferation 

0.022137 GJA1/KCNK2/TBX5/MEGF10/NKX2-5/FGF9 6 

GO:0043200 response to amino 
acid 

0.022269 CCN2/COL16A1/COL1A2/CDO1/CPEB1/COL1A1/F7 7 

GO:0044273 sulfur compound 
catabolic process 

0.022269 CDO1/FMOD/OGN/KERA/ACAN 5 

GO:0007178 transmembrane 
receptor protein 
serine/threonine 
kinase signaling 

pathway 

0.022269 NREP/ROR2/COL1A2/FMOD/BMP8B/ASPN/SCX/BMP8A/CILP/COMP/ 
NKX2-5/FGF9/SOX11 

13 

GO:0002028 regulation of sodium 
ion transport 

0.022876 ANK3/CNTN1/SERPINE2/DRD2/NKX2-5/NKAIN4 6 

GO:0006882 cellular zinc ion 
homeostasis 

0.027655 MT1E/MT1A/MT1M/MT1X 4 

GO:0060047 heart contraction 0.029287 CCN2/IRX5/GJA1/RGS4/HBEGF/APLN/DRD2/DES/TNNT1/NKX2-5/TAC1 11 

GO:0007589 body fluid secretion 0.03015 P2RY2/GJA1/CDO1/APLN/TAC1/SLC6A3 6 

GO:0110148 biomineralization 0.030231 ROR2/ENPP1/COL1A2/GJA1/COL1A1/ASPN/COMP/DMP1 8 

GO:1902742 apoptotic process 
involved in 

development 

0.030853 SLIT2/MEGF10/HAND2/NKX2-5 4 

GO:0072210 metanephric nephron 
development 

0.03417 RET/IRX2/SOX8/KIF26B 4 

GO:0030010 establishment of cell 
polarity 

0.036568 GPSM2/LAMA1/PTK7/UST/ALPK2/KIF26B/PAX6 7 

GO:0009713 catechol-containing 
compound 
biosynthetic process 

0.040345 HAND2/PNMT/SLC6A3 3 

GO:0042423 catecholamine 
biosynthetic process 

0.040345 HAND2/PNMT/SLC6A3 3 

GO:0071467 cellular response to 
pH 

0.048523 GJA1/INSRR/SLC38A3 3 

GO:0050803 regulation of synapse 

structure or activity 

0.048523 ITPKA/THBS2/EPHB3/PTPRD/LRRN1/DRD2/NGEF/SYNDIG1/LINGO2 9 
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9.5.3 Processes associated with sdRA & resolving signatures 

Table 9.12: GO biological processes associated with DEGs upregulated in sdRA compared to normal. DEGs from 
padj<0.05, absolute LFC>1. 
GO ID Description padj geneID Count 

GO:0042110 T cell activation 5.06E-31 CTPS1/MICB/RELB/BCL3/ICAM1/RUNX1/FANCA/RASAL3/CORO1A/GATA3/PTPRC/ 
TNFRSF4/TCF7/MAD1L1/LEF1/TNFSF14/F2RL1/BATF/TFRC/ITGAL/CD6/CD2/ 
SIT1/RHOH/SLA2/ZAP70/CCL2/CAMK4/LCK/CD7/EBI3/CD8B/NLRC3/JAK3/ 
TREML2/SLAMF6/EGR1/CD3D/CD3E/CD5/CD3G/EOMES/CCL5/TNFSF11/ITK/ 

EGR3/CCR7/THEMIS/CD8A/GPR18/RASGRP1/ZNF683/ADAM8/BCL11B/BTLA/ 
IL7R/CLEC4E/TIGIT/FOXP3/CD80/ICOS/PDCD1/IL1B/IL2RA/CR1/IDO1/IFNG/ 

IL6/PLA2G2D/IL21 

70 

GO:0030595 leukocyte chemotaxis 1.48E-22 CORO1A/THBS1/TNFSF14/CXCR4/F2RL1/ADGRE2/CCL2/FFAR2/S100A9/CCL5/ 
TNFSF11/CXCR3/CCR7/CCL8/GPR18/SERPINE1/ADAM8/CCL4/CXCR2/PF4/ 
CH25H/CXCL2/CCL3/FPR2/CXCR1/PPBP/CXCL3/SLAMF8/CXCL10/CXCL1/IL1B/ 
CCL3L1/CXCL11/S100A12/CXCL6/CXCL5/PF4V1/CCL18/IL6/CXCL8/CXCL9/ 
CCL7/CXCL13 

43 

GO:0060326 cell chemotaxis 1.48E-22 CORO1A/SMOC2/THBS1/LEF1/TNFSF14/CXCR4/F2RL1/ADGRE2/CCR4/CCL2/ 
FFAR2/S100A9/CCL5/TNFSF11/EGR3/CXCR3/CCR7/CCL8/GPR18/SERPINE1/ 
ADAM8/CCL4/CXCR2/CXCR6/PF4/CH25H/NR4A1/CXCL2/CCL3/FPR2/CXCR1/ 
PPBP/CXCL3/SLAMF8/CXCL10/CXCL1/IL1B/CCL3L1/CXCL11/S100A12/CXCL6/ 

CXCL5/PF4V1/CCL18/IL6/CXCL8/CXCL9/CCL7/CXCL13 

49 

GO:0070098 chemokine-mediated 
signaling pathway 

6.04E-22 HIF1A/CXCR4/CCR4/CCL2/CCL5/CXCR3/CCR7/CCL8/CCL4/CXCR2/CXCR6/PF4/ 
CXCL2/CCL3/CXCR1/PPBP/CXCL3/CXCL10/CXCL1/CCL3L1/CXCL11/CXCL6/ 
CXCL5/PF4V1/CCL18/CXCL8/CXCL9/CCL7/CXCL13 

29 

GO:0007159 leukocyte cell-cell 
adhesion 

2.94E-16 ICAM1/RUNX1/RASAL3/CORO1A/GATA3/SEMA4D/PTPRC/ITGA4/MAD1L1/ 
ITGB7/TNFSF14/TFRC/ITGAL/CD6/SELL/ZAP70/CCL2/LCK/EBI3/JAK3/CD3E/ 
S100A9/CD5/CCL5/TNFSF11/EGR3/CCR7/RASGRP1/ADAM8/BTLA/IL7R/ 
TIGIT/FOXP3/CD80/ICOS/PDCD1/IL1B/IL2RA/IDO1/IFNG/IL6/PLA2G2D/IL21 

43 

GO:0030198 extracellular matrix 
organization 

1.27E-15 BCL3/ICAM1/COL4A1/TIMP1/COL6A3/ADAMTS9/PXDN/ADAMTS2/TNC/ 
COL5A2/SMOC2/MMP16/LOXL1/MMP17/LOXL2/ITGA4/THBS1/ITGB7/ITGAX/ 
COL3A1/SPOCK2/COL24A1/ITGAL/ADAM19/COL5A1/CRISPLD2/CARMIL2/ 
POSTN/SERPINE1/ADAM8/COL1A1/MMP25/ADAMTS4/CCN1/ADAM12/ 

COL11A1/EGFL6/ACAN/ADAMTS14/MMP3/IL6/MMP1/IBSP/MMP13 

44 

GO:0032496 response to 
lipopolysaccharide 

3.16E-12 SBNO2/TRIB1/ICAM1/ZFP36/JUNB/CD14/LOXL1/NOCT/CD96/CD6/ALPL/CCL2/ 
CCL5/CCR7/PTGS2/SERPINE1/GJB2/PF4/CXCL2/CD80/CCL3/FOS/PPBP/CXCL3/ 
CXCL10/CXCL1/IL1B/CXCL11/GJB6/CXCL6/IDO1/CXCL5/PF4V1/IL6/CXCL8/ 

37 
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CXCL9/CXCL13 

GO:0050727 regulation of 
inflammatory 
response 

2.84E-11 SBNO2/SEMA7A/FANCA/GATA3/LDLR/MEFV/CCN4/PTPRC/LILRA5/CST7/CD6/ 
NLRC3/FFAR2/SOCS3/S100A9/SIGLEC10/CCL5/TNFSF11/CCR7/PTGS2/ 
SERPINE1/ADAM8/TNFAIP6/GBP5/FOXP3/CCL3/FPR2/OSM/SLAMF8/IL1B/ 
CCL3L1/IL2RA/S100A12/IDO1/CCL18/MMP3/IL6/IL21 

38 

GO:0042119 neutrophil activation 1.81E-10 TMC6/PLAU/ARHGAP9/CD14/HSPA6/LILRB3/SLC2A3/PTPRC/SLC2A5/ITGAX/ 

TBC1D10C/QPCT/F2RL1/ITGAL/SELL/CRISPLD2/SERPINA1/S100A9/CCL5/ 
ADAM8/LRG1/MMP25/TNFAIP6/CEACAM3/FPR1/CXCR2/GPR84/FCN1/FPR2/ 
CXCR1/ADGRE3/PPBP/ADGRG3/FCAR/MGAM/CXCL1/S100A12/FCGR3B/ 
CXCL6/CR1/HBB/CXCL8/S100P 

43 

GO:0002446 neutrophil mediated 
immunity 

7.46E-10 TMC6/PLAU/ARHGAP9/CD14/HSPA6/LILRB3/SLC2A3/PTPRC/SLC2A5/ITGAX/ 
TBC1D10C/QPCT/F2RL1/ITGAL/SELL/CRISPLD2/SERPINA1/S100A9/ADAM8/ 

LRG1/MMP25/TNFAIP6/CEACAM3/FPR1/CXCR2/GPR84/FCN1/FPR2/CXCR1/ 
ADGRE3/PPBP/ADGRG3/FCAR/MGAM/CXCL1/S100A12/FCGR3B/CXCL6/CR1/ 
HBB/IL6/S100P 

42 

GO:0001819 positive regulation of 
cytokine production 

4.02E-09 IL27RA/BCL3/SEMA7A/RUNX1/HIF1A/CD14/GATA3/PTPRC/THBS1/LILRA5/ 
F2RL1/CD6/CD2/EBI3/FFAR2/SLAMF6/EGR1/CD3E/POSTN/CCR7/PTGS2/ 
SERPINE1/RASGRP1/ADAM8/CLEC4E/TIGIT/GBP5/FOXP3/PF4/CD80/FCN1/ 

CCL3/OSM/AIM2/IL1B/IDO1/IFNG/IL6/IL21 

39 

GO:0002429 immune response-
activating cell surface 
receptor signaling 

pathway 

1.82E-06 MICB/RELB/RUNX1/CYFIP2/GATA3/PTPRC/MUC3A/CD247/HLA-DQA1/TRAC/ 
SLA2/ZAP70/LCK/UBASH3A/TRAT1/FFAR2/CD3D/CD3E/CD3G/TRBC2/ITK/ 
CCR7/THEMIS/TRBC1/CLEC4E/FPR1/FCGR1A/FOXP3/FCN1/FPR2/FCRL3/CD19/ 

CR1/MUC16 

34 

GO:0002757 immune response-

activating signal 
transduction 

1.82E-06 MICB/RELB/RUNX1/CYFIP2/GATA3/PTPRC/MUC3A/CD247/HLA-DQA1/TRAC/ 

SLA2/ZAP70/LCK/UBASH3A/TRAT1/FFAR2/CD3D/CD3E/CD3G/TRBC2/ITK/CCR7/ 
THEMIS/TRBC1/CLEC4E/FPR1/FCGR1A/FOXP3/FCN1/FPR2/FCRL3/CD19/CR1/ 
MUC16 

34 

GO:0050663 cytokine secretion 1.91E-06 IL27RA/CD14/SRGN/GATA3/CCN4/TNFRSF4/LILRA5/F2RL1/CD2/FFAR2/POSTN/ 
CCR7/RASGRP1/CLEC4E/GBP5/FOXP3/FCN1/CCL3/OSM/AIM2/IL1B/S100A12/IFNG 

23 

GO:0007059 chromosome 
segregation 

1.98E-06 NDC80/CENPN/ECT2/KIF23/CDC6/KIF4A/MAD1L1/HASPIN/KIFC1/HJURP/KNL1/ 
SKA1/CENPF/BUB1B/AURKB/SKA3/BIRC5/TOP2A/NCAPG/BUB1/SPC25/KIF18B/ 
SGO1/KIF14/MKI67/FAM83D/DLGAP5 

27 

GO:0007204 positive regulation of 
cytosolic calcium ion 

concentration 

1.83E-05 CORO1A/S1PR4/PTPRC/CXCR4/F2RL1/CCR4/LCK/CXCR3/CCR7/GPR18/FPR1/ 
CXCR2/CXCR6/P2RX5/CCL3/FPR2/CXCR1/CD19/MCHR1/CXCL10/CXCL11/ 

TRPA1/PROK2/CXCL9/CXCL13 

25 

GO:0015671 oxygen transport 3.30E-05 IPCEF1/HBA2/HBB/HBA1/HBD/HBM 6 
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GO:0048872 homeostasis of 
number of cells 

3.53E-05 ZFP36/HIF1A/PMAIP1/CORO1A/GATA3/EZH2/TNFSF14/INHBA/CCNB2/SIT1/ 
CCR4/JAK3/CCR7/IL7R/CXCR2/FOXP3/IL2RA/CXCL6/KLF1/ALAS2/IL6 

21 

GO:0009612 response to 
mechanical stimulus 

4.68E-05 ANGPT2/JUNB/TNC/PIEZO2/THBS1/COL3A1/TNFSF14/CXCR4/FOSL1/POSTN/ 
PTGS2/COL1A1/CASP5/COL11A1/FOS/CXCL10/IL1B/FOSB/TRPA1 

19 

GO:0071887 leukocyte apoptotic 
process 

5.94E-05 HIF1A/JAK3/AURKB/CD3G/CCL5/CCR7/ADAM8/IL7R/CXCR2/PDCD1/IL2RA/ 
IDO1/IL6 

13 

GO:0001503 ossification 8.55E-05 ECM1/SBNO2/SEMA7A/HIF1A/SNAI1/JUNB/SRGN/TNC/COL5A2/SEMA4D/ 
MMP16/NOCT/CCN4/LEF1/MSX2/ALPL/TNFSF11/PTGS2/COL1A1/PHOSPHO1/ 
CCN1/COL11A1/CCL3/EGR2/IL6/IBSP/MMP13 

27 

GO:0043547 positive regulation of 

GTPase activity 

0.000111 ICAM1/ARAP2/TAGAP/RGS2/ECT2/ARHGAP9/RASAL3/RGS16/RGS18/ 

SEMA4D/EZH2/DEPDC1B/TBC1D10C/F2RL1/CCL2/ACAP1/CCL5/CCR7/CCL8/ 
RASGRP1/CCL4/EPHA1/CCL3/CCL3L1/CCL18/CCL7/CXCL13 

27 

GO:0110148 biomineralization 0.000329 ECM1/SBNO2/SLC20A1/HIF1A/SRGN/MSX2/ALPL/PTGS2/COL1A1/PHOSPHO1/ 
CCN1/CCL3/IBSP/MMP13/AMTN 

15 

GO:0030574 collagen catabolic 

process 

0.000401 ADAMTS2/MMP16/MMP17/MMP25/ADAMTS14/MMP3/MMP1/MMP13 8 

GO:0032352 positive regulation of 
hormone metabolic 
process 

0.000462 HIF1A/GATA3/EGR1/IL1B/IFNG 5 

GO:0019058 viral life cycle 0.000561 ICAM1/KPNA2/LDLR/TNFRSF4/ITGB7/CXCR4/TFRC/APOBEC3H/NUP210/SLAMF1/ 
CCL2/TOP2A/CCL5/CCL8/LAMP3/CXCR6/CD80/FCN1/LRRC15/APOBEC3A/CR1/ 

CXCL8 

22 

GO:0046677 response to antibiotic 0.001364 ICAM1/RGS2/ECT2/CD14/TNC/GATA3/EZH2/ALPL/CCR4/FOSL1/ 
EGR1/TYMS/COL1A1/GJB2/HBA2/NEFL/HBB/HBA1/TRPA1/IL6/CCL7 

21 

GO:0072593 reactive oxygen 
species metabolic 

process 

0.001671 ICAM1/HIF1A/PMAIP1/PXDN/THBS1/F2RL1/FOXM1/PTGS2/CCN1/ 
FPR2/IL1B/CCN6/HBA2/HBB/MMP3/HBA1/HBD/IFNG/HBM 

19 

GO:0032570 response to 
progesterone 

0.001836 THBS1/FOSL1/TYMS/GJB2/FOS/FOSB/CSN1S1 7 

GO:0061430 bone trabecula 
morphogenesis 

0.003107 SBNO2/SEMA4D/MSX2/COL1A1 4 

GO:0032461 positive regulation of 
protein 
oligomerization 

0.004229 PMAIP1/AIM2/TCL1A/MMP3/MMP1 5 

GO:0034501 protein localization to 
kinetochore 

0.007616 NDC80/HASPIN/KNL1/AURKB 4 

GO:0035987 endodermal cell 

differentiation 

0.00875 COL5A2/ITGA4/INHBA/COL5A1/EOMES/COL11A1 6 
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GO:2000116 regulation of cysteine-
type endopeptidase 
activity 

0.010469 CYFIP2/PMAIP1/MEFV/THBS1/LEF1/TNFSF14/CST7/LCK/S100A9/BIRC5/ 
PTGS2/LAMP3/CCN1/CASP5/AIM2 

15 

GO:0007565 female pregnancy 0.010908 ANGPT2/RGS2/TIMP1/JUNB/NAMPT/FOSL1/PTGS2/GJB2/FOS/IL1B/FOSB/ 

KLF1/IDO1 

13 

GO:0033280 response to vitamin D 0.01862 TNC/PIM1/ALPL/PTGS2/CXCL10 5 

GO:0042368 vitamin D biosynthetic 
process 

0.023083 SNAI1/IL1B/IFNG 3 

GO:0030656 regulation of vitamin 
metabolic process 

0.02791 SNAI1/IL1B/IFNG 3 

GO:2000191 regulation of fatty 

acid transport 

0.030996 THBS1/TNFSF11/ERFE/IL1B 4 

GO:0008360 regulation of cell 
shape 

0.032317 ATP10A/ICAM1/CORO1A/SEMA4D/BAMBI/PLXNC1/RHOH/CCL2/CCL3/CCL7 10 

GO:0018146 keratan sulfate 
biosynthetic process 

0.033715 B3GNT3/ACAN/KERA/CHST6 4 

GO:0007596 blood coagulation 0.033731 PAPSS2/PLAU/GATA3/THBS1/COL3A1/F2RL1/LCK/SERPINA1/ 
SERPINE1/COL1A1/H3C10/PF4/P2RX5/HBB/PF4V1/HBD/IL6 

17 

GO:0050974 detection of 
mechanical stimulus 
involved in sensory 
perception 

0.037376 PIEZO2/CXCR4/COL11A1/TRPA1 4 

GO:0051770 positive regulation of 
nitric-oxide synthase 
biosynthetic process 

0.037376 NAMPT/CCL2/IFNG 3 

GO:0000302 response to reactive 
oxygen species 

0.038021 PLK3/ECT2/EZH2/FOSL1/CCR7/COL1A1/FOS/HBA2/HBB/MMP3/HBA1/TRPA1/IL6 13 

GO:0007623 circadian rhythm 0.040803 RELB/BHLHE40/EZH2/NOCT/NAMPT/EGR1/TYMS/TOP2A/EGR3/SERPINE1/ 
RPE65/PROK2 

12 

GO:0110150 negative regulation of 
biomineralization 

0.040845 ECM1/HIF1A/SRGN/CCL3 4 

GO:0044319 wound healing, 
spreading of cells 

0.044878 MSX2/COL5A1/CARMIL2/CCN1 4 

GO:0090505 epiboly involved in 

wound healing 

0.044878 MSX2/COL5A1/CARMIL2/CCN1 4 
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Table 9.13: GO biological processes associated with DEGs upregulated in Res compared to normal. DEGs from 
padj<0.05, absolute LFC>1. 
GO ID Description p.adjust geneID Count 

GO:0030595 leukocyte chemotaxis 3.80E-13 DYSF/CCL2/FFAR2/SERPINE1/CXCL2/CXCL3/ADAM8/IL1B/FPR2/ 
S100A12/CXCR2/SLAMF8/CXCR1/CXCL8/CXCL10/IL6/CXCL9 

17 

GO:0042119 neutrophil activation 2.00E-11 NBEAL2/SLC2A3/QPCT/SLC2A5/FPR1/TNFAIP6/SERPINA1/ADAM8/ 
CEACAM3/MMP25/FPR2/S100A12/CXCR2/FCN1/CXCR1/MGAM/ 

ADGRG3/FCGR3B/CXCL8/S100P 

20 

GO:0002446 neutrophil mediated immunity 2.00E-11 NBEAL2/SLC2A3/QPCT/SLC2A5/FPR1/TNFAIP6/SERPINA1/ADAM8/ 

CEACAM3/MMP25/FPR2/S100A12/CXCR2/FCN1/CXCR1/MGAM/ 
ADGRG3/FCGR3B/IL6/S100P 

20 

GO:0070098 chemokine-mediated signaling 
pathway 

9.18E-07 CCL2/CXCL2/CXCL3/CXCR2/CXCR1/CXCL8/CXCL10/CXCL9 8 

GO:0031349 positive regulation of defense 
response 

2.11E-06 LDLR/MUC3A/FFAR2/SERPINE1/ADAM8/IL1B/CLEC4E/FPR2/GBP5/ 
S100A12/FCN1/IL6/CLEC6A 

13 

GO:0071222 cellular response to 
lipopolysaccharide 

3.31E-05 CCL2/SERPINE1/CXCL2/CXCL3/IL1B/CXCL8/CXCL10/IL6/CXCL9 9 

GO:0061844 antimicrobial humoral immune 

response mediated by antimicrobial 
peptide 

6.98E-05 CXCL2/CXCL3/S100A12/CXCL8/CXCL10/CXCL9 6 

GO:0048143 astrocyte activation 0.000339 LDLR/IL1B/FPR2/IL6 4 

GO:0050663 cytokine secretion 0.000645 DYSF/FFAR2/IL1B/CLEC4E/GBP5/S100A12/FCN1/CLEC6A 8 

GO:0007187 G protein-coupled receptor 
signaling pathway, coupled to cyclic 
nucleotide second messenger 

0.00096 CCL2/FPR1/ADGRE1/FPR2/ADGRG3/MCHR1/CXCL10/CXCL9 8 

GO:0010718 positive regulation of epithelial to 

mesenchymal transition 

0.002963 BAMBI/LOXL2/IL1B/IL6 4 

GO:0006898 receptor-mediated endocytosis 0.003394 LDLR/TFRC/SERPINE1/FPR2/CXCR2/CXCR1/HBA1/CXCL8 8 

GO:0007204 positive regulation of cytosolic 
calcium ion concentration 

0.003719 FPR1/FPR2/CXCR2/CXCR1/MCHR1/CXCL10/PROK2/CXCL9 8 

GO:0051928 positive regulation of calcium ion 
transport 

0.007378 HOMER1/CCL2/MCHR1/CXCL10/CXCL9 5 

GO:0019915 lipid storage 0.007595 DYSF/FFAR2/IL1B/IL6 4 

GO:0045765 regulation of angiogenesis 0.009886 TNFRSF12A/SERPINE1/IL1B/CXCR2/CXCL8/CXCL10/PROK2/IL6 8 

GO:0042542 response to hydrogen peroxide 0.013799 PPIF/ECT2/FOSL1/HBA1/IL6 5 
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GO:0051090 regulation of DNA-binding 
transcription factor activity 

0.019195 PIM1/BHLHE40/FOSL1/ADAM8/IL1B/S100A12/ADGRG3/IL6 8 

GO:0045124 regulation of bone resorption 0.019321 TFRC/ADAM8/IL6 3 

GO:0032147 activation of protein kinase activity 0.019392 ECT2/TPX2/CLSPN/FPR1/KIF14/IL1B/PROK2 7 

GO:0006509 membrane protein ectodomain 
proteolysis 

0.020808 ADAM19/ADAM8/IL1B 3 

GO:0050764 regulation of phagocytosis 0.022843 DYSF/CCL2/IL1B/FPR2 4 

GO:0022409 positive regulation of cell-cell 
adhesion 

0.023078 ADAM19/CCL2/TFRC/ADAM8/IL1B/IL6 6 

GO:0051983 regulation of chromosome 
segregation 

0.025582 ECT2/MAD1L1/CENPF/MKI67 4 

GO:0140014 mitotic nuclear division 0.025945 MAD1L1/TPX2/CENPF/MKI67/KIF14/IL1B 6 

GO:0030198 extracellular matrix organization 0.027466 ADAM19/MMP17/LOXL2/SERPINE1/ADAM8/MMP25/IL6 7 

GO:0045073 regulation of chemokine 
biosynthetic process 

0.035728 IL1B/IL6 2 

GO:0051044 positive regulation of membrane 
protein ectodomain proteolysis 

0.035728 ADAM8/IL1B 2 

GO:0051310 metaphase plate congression 0.038082 MAD1L1/CENPF/KIF14 3 

GO:0001780 neutrophil homeostasis 0.038082 CXCR2/IL6 2 

GO:0051382 kinetochore assembly 0.038082 CENPN/CENPF 2 

GO:0007623 circadian rhythm 0.040548 NOCT/BHLHE40/TYMS/SERPINE1/PROK2 5 

GO:0044409 entry into host 0.046158 LDLR/TFRC/FCN1/CXCL8 4 

GO:0045444 fat cell differentiation 0.047731 DYSF/NOCT/FFAR2/IL6/GDF6 5 

GO:0046677 response to antibiotic 0.049397 PPIF/ECT2/FOSL1/TYMS/HBA1/IL6 6 

GO:0019058 viral life cycle 0.049545 LDLR/CCL2/TFRC/FCN1/APOBEC3A/CXCL8 6 
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9.6 EXPLORATION OF GENES INVOLVED IN GO BIOLOGICAL 

PROCESSES ASSOCIATED WITH NON-RESPONSE 

Figure 9.1: Exploration of genes involved in the top three GO BP that are 

downregulated in EULAR DAS28-ESR responders compared to non-
responders at 12 months in the AMP RA Phase I dataset (Zhang et al., 

2019). Genes identified as downregulated in responders based on unadj p<0.05, 
absolute LFC>1 that are involved in ossification, collagen fibril organisation, 
skeletal system morphogenesis, or cartilage development. Single cell RNA 

sequencing data of selected cellular populations (monocytes, fibroblasts, B cells 
& T cells). M1 = IL1B+ pro-inflammatory monocytes, M2 = NUPR1+ monocytes, 

M3 = C1QA+ monocytes, M4 = IFN-activated monocytes, F1 = CD34+ sublining 
fibroblasts, F2 = HLA+ sublining fibroblasts, F3 = DKK3+ sublining fibroblasts, 
F4 = CD55+ lining fibroblasts, B1 = IGHD+ CD270 naive B cells, B2 = IGHG3+ 

CD27- memory B cells, B3 = autoimmune-associated cells (ABC), B4 = 
Plasmablasts, T1 = CCR7+ CD4+ T cells, T2 = FOXP3+ Tregs, T3 = PD-1+ 

Tph/Tfh, T4 = GZMK+ CD8+ T cells, T5 = GNLY+ GZMB+ CTLs, T6 = 
GZMK+/GZMB+ T cells. Graphs taken directly from 

https://immunogenomics.io/ampra/ (Zhang et al., 2019). 

 

Ossification 

   

     

https://immunogenomics.io/ampra/


249 
 

 

   

   

    

 



250 
 

 

 

 

 

Collagen fibril organization 

    

 

Skeletal system morphogenesis 

    



251 
 

9.7 METABOLIC GENE LISTS 

Glucose Metabolism 
        

Glycolysis ALDOA ALDOB ALDOC BPGM ENO1 ENO2 ENO3 ENO4 GALM GCK 

GPI HK2 HK3 LDHA LDHB LDHC LDHD PFKL PFKM PGAM2 

PGK1 PGK2 PGM1 PGM2 PGM3 PKLR PKM TPI1 FBP1 G6PC 

G6PC3 PDK1 PDK2 PDK3 PDK4 PDP2 PDPR 
   

Glucose transporters SLC2A1 SLC2A10 SLC2A11 SLC2A12 SLC2A13 SLC2A14 SLC2A2 SLC2A3 SLC2A4 SLC2A5 

SLC2A6 SLC2A7 SLC2A8 SLC2A9 SLC5A1 SLC5A10 SLC5A11 SLC5A12 SLC5A2 SLC5A3 

SLC5A4 SLC5A5 SLC5A6 SLC5A7 SLC5A8 SLC5A9 
    

Lactate-pyruvate-citrate SLC16A1 SLC16A2 SLC16A3 SLC16A4 SLC16A5 SLC16A6 SLC16A7 SLC16A8 SLC16A9 SLC16A10 

SLC16A11 SLC16A12 SLC16A13 SLC16A14 SLC13A5 
     

Glycogenolysis GYG1 PYGM PGM1 PGM2 PGM3 PGM5 GBE1 
   

PPP (pentose phosphate 

pathway) 

G6PD H6PD PGLS PRPS1 PRPS2 RBKS RPE RPIA TALDO1 TKT 

Glycogen metabolism PGM1 GYS1 UGP2 PYGM 
      

Glycerol-phophate SLC37A1 SLC37A2 SLC37A3 SLC37A4 
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Lipid Metabolism 
         

FA oxidation ACAT2  ACAT1  ACAA1 ACAA2 HADHB HADH HADHA EHHADH ECHS1 ACOX3 

ACOX1 ACADS ACADM ACADL ACADSB ACADVL GCDH ACSL6 ACSL4 ACSL1 

ACSL5 ACSL3 ACSBG1 ACSBG2 CPT1 CPT1B CPT1C CPT2 ECI1 ECI2 

CYP4A11 CYP4A22 ADH1A ADH1B ADH1C ADH7 ADH4 ADH5 ADH6 ALDH2 

ALDH3A2 ALDH1B1 ALDH7A1 ALDH9A1 
      

FA synthesis ACACA ACACB ACSF3 MCAT FASN OXSM CBR4 HSD17B8 HTD2 MECR 

OLAH ACSL6 ACSL4 ACSL1 ACSL5 ACSL3 ACSBG1 ACSBG2 
  

FA elongation ACAA2 HADHB HADH HADHA ECHS1 MECR PPT1 PPT2 ELOVL1 ELOVL2 

ELOVL3 ELOVL4 ELOVL5 ELOVL6 ELOVL7 HSD17B12 HACD2 HACD1 HACD4 HACD3 

TECR ACOT4 ACOT2 ACOT1 ACOT7 THEM4 THEM5 
   

Choline metabolism PEMT CHPT1 PLD1 PLD2 PLD3 SGMS1 SGMS2 PPAP2A PPA2PB PCYT1A 

PCYT1B PHOSPHO1 PHOSPHO2 SMPD1 SMPD2 SMPD3 SMPD4 SPTLC1 SPTLC2 SPTLC3 

CERK CERKL UGCG SGPP1 SGPP2 SPHK1 SPHK2 ASAH1 ASAH2 ACER1 

ChoK enzymes CHKA CHKB 
        

Choline transporters SLC22A1 SLC22A2 SLC22A3 SLC22A4 SLC44A1 SLC44A2 SLC44A3 SLC44A4 SLC44A5 CHAT 

SLC18A3 
         

Cholesterol metabolism HMGCS2 HMGCR PMVK MVD FDPS SQLE 
    

LPA-DAG metabolism CHDH CEPT1 LPCAT1 LPCAT2 LPCAT3 LPCAT4 DGAT1 DGAT2 PEBP1 PTDSS1 

PLA1A PLA2G10 PLA2G12A PLA2G12B PLA2G15 PLA2G16 PLA2G1B PLA2G2A PLA2G2C PLA2G2D 

PLA2G2E PLA2G2F PLA2G3 PLA2G4A PLA2G4B PLA2G4C PLA2G4D PLA2G4E PLA2G4F PLA2G5 

PLA2G6 PLA2G7 PLCB1 PLCB2 PLCB3 PLCB4 PLCD1 PLCD3 PLCD4 PLCE1 

PLCG1 PLCG2 PLCH1 PLCH2 PLCL1 PLCL2 PLCXD1 PLCXD2 PLCXD3 PLCZ1 

Fatty Acid SLC27A1 SLC27A2 SLC27A3 SLC27A4 SLC27A5 SLC27A6 SLC27A7 SLC27A8 SLC27A9 SLC27A10 

SLC27A11 FFAR1 FFAR2 FFAR3 FFAR4 GPR84 FAPB1 FABP2 FABP3 FABP4 

FABP5 FABP6 FADS1 FADS2 FADS3 FADS6 FAT1 FAT2 FAT3 FAT4 
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Apolipoproteins APOE APOC1 APOL3 APOO APOL4 APOBR APOD APOL2 APOM APOL1 

 

Amino acid metabolism 
       

Amino acid MAT2B MPST GNMT BHMT2 DMGDH CBS GLDC GOT1 SDS AFMID 

TDO2 PHGDH PAH ALDH6A1 GPT GPT2 CPS1 GLS2 ASS1 PRODH 

GLS ASL OAT OTC ARG2 
     

Polyamine ODC1 ALDH18A1 PYCR1 PRODH ODC1 PAOX SMOX APRT SMS SAT1 

AMD1 PRPSAP1 MAT2B 
       

AA transporters SLC7A1 SLC7A2 SLC7A3 SLC7A4 SLC7A5 SLC7A6 SLC7A6OS SLC7A7 SLC7A8 SLC7A9 

SLC7A10 SLC7A11 SLC7A13 SLC7A14 SLC7A15P 
     

Glutaminolysis GLS GDH GLUD1 GOT1 GOT2 GPT GPT2 
   

Glutamine transporters SLC1A1 SLC1A2 SLC1A3 SLC1A4 SLC1A5 SLC1A6 SLC1A7 SLC7A8 SLC7A11 
 

Neutral AA SLC38A1 SLC38A2 SLC38A3 SLC38A4 SLC38A5 SLC38A6 SLC38A7 SLC38A8 SLC38A9 SLC38A10 

SLC38A11 SLC3A1 SLC3A2 
       

AA and monoamines SLC6A1 SLC6A2 SLC6A3 SLC6A4 SLC6A5 SLC6A6 SLC6A7 SLC6A8 SLC6A9 SLC6A10P 

SLC6A11 SLC6A12 SLC6A13 SLC6A14 SLC6A15 SLC6A16 SLC6A17 SLC6A18 SLC6A19 SLC6A20 

SLC6A21P 
         

Monoamines SLC18A1 SLC18A2 SLC18A3 SLC18B1 SLC32A1 SLC33A1 
    

Large neutral AA SLC43A1 SLC43A2 SLC43A3 
       

Peptides SLC15A1 SLC15A2 SLC15A3 SLC15A4 SLC15A5 SLC36A1 SLC36A2 SLC36A3 SLC36A4 
 

 

 


