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Abstract

In this thesis, we provide a framework in which certain configurations in saturated

fusion systems can be characterized via the amalgam method. Along the way,

we identify several rank 2 amalgams involving strongly p-embedded subgroups,

and recognize some finite simple groups as associated completions. In addition, as

an application, we determine all saturated fusion systems supported on a Sylow

p-subgroup of G2(pn) and PSU4(pn) for all primes p and n ∈ N.
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CHAPTER 1

INTRODUCTION

For a finite group G and a prime p dividing the order of G, the p-fusion category of

G provides a means to concisely express properties of the conjugacy of p-elements

within a Sylow p-subgroup S of G. Fusion systems may then be viewed as an

abstraction of fusion categories without the need to specify any enveloping finite

group G, instead focusing only on the conjugacy properties of some fixed p-group

S.

Fusion systems were first introduced by Puig in the 1990s, under the moniker

“Frobenius categories,” as a way to capture properties of the defect group of

a p-block in modular representation theory. These Frobenius categories were

then revived by Broto, Levi and Oliver in [BLO03], where they found purchase

in algebraic topology as a mechanism to investigate p-completions of classifying

spaces. There, they were renamed fusion systems, a terminology which has now

become standard.

More recently, fusion systems have found use in finite group theory, specifically in

revisiting the classification of finite simple groups, through a program initiated by
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Aschbacher (see [Asc19]). Aschbacher’s program aims to classify the finite simple

groups of “component type” using “semisimple” methods from local group theory

which have been translated to fusion systems, and specifically focusing on the

case where p = 2. Indeed, several of the more difficult results in the proof of

the classification of finite simple groups are easier and often have more gratifying

statements in the context of fusion systems.

Alongside the program of Aschbacher, there is another “next generation” scheme to

reprove large parts of the classification. This program, headed by Meierfrankenfeld,

Stellmacher and Stroth and dubbed the “MSS program”, aims to determine the

finite simple groups of “local characteristic p” by using mostly “unipotent” methods

(see [MSS03] for an overview). Pivotal to this approach is the use of amalgams to

identify finite simple groups, a methodology which we utilize heavily in this thesis.

Within the MSS program, there is scope to investigate a larger class of “characteristic

p” groups than in the original proof of the classification. Indeed, it may be possible

here to determine the finite simple groups which are of parabolic characteristic p

(but probably only for the prime 2), and this improvement would substantially

ease the burden on the treatment of component type groups. Because of the

Gorenstein–Walter Dichotomy Theorem, and a suitable analysis of some small

cases, the net result of the union of these two programs should be a shortened

proof of the classification of finite simple groups.

The results in this thesis lie somewhere in between these two programs: applying

unipotent, or characteristic p, methods from group theory to saturated fusion

systems. While some equivalent notion of parabolic characteristic p for fusion

systems is not needed for this work, the results in this thesis would certainly

fit more in this framework. Important to note is the dichotomy theorem for
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saturated fusion systems which says that every saturated fusion system is either of

“characteristic p-type” or of “component type.” Following the proof of this theorem,

due to Aschbacher [AKO11, Theorem II.4.3], it is not hard to generalize to a

dichotomy theorem partitioning fusion systems into “parabolic characteristic p”

and “parabolic component type.”

Within the realm of fusion systems, one of the more active areas of research is

the hunt for exotic fusion systems: those which do not correspond to the p-fusion

categories of finite groups. Notably, when p = 2 there is only one known family of

exotic fusion systems: the Benson–Solomon systems constructed by Oliver and

Levi [LO02]. As for odd primes, there are far more examples to draw from,

and so we will not provide a comprehensive list here. In this work, we uncover

some previously unknown exotic systems supported on a Sylow 3-subgroup of the

sporadic finite simple group F3 (see Section 3.3), and so this work may be viewed

as another contribution to the following research direction suggested by Oliver

[AKO11, III.7.4]:

“Try to better understand how exotic fusion systems arise at odd primes; or (more

realistically) look for patterns which explain how certain large families of them

arise.”

The primary purpose of this thesis is to classify saturated fusion systems F ,

supported on a p-group S, which are generated by automorphisms of two subgroups

of S which satisfy certain properties. The subgroups in question are maximally

essential subgroups of F , and by the Alperin–Goldschmidt fusion theorem, in this

setting the automizers of these essential subgroups completely determine F . Then

the characterization of F is achieved by identifying a rank two amalgam within

the fusion system, via a result of Robinson [Rob07, Theorem 1], and utilizing
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the amalgam method. The amalgam method was first conceived by Goldschmidt

[Gol80], building on earlier work of Sims. In our interpretation, we closely follow

the version of the method developed and refined by Delgado and Stellmacher

[DS85]. Fortunately, given our hypothesis motivated by fusion systems, we can

often prove that the amalgam we obtain is a so called weak BN-pair of rank 2, and

we can directly appeal to [DS85] where such configurations are already classified.

Within this work, we very often use a K-group hypothesis when investigating

automizers of essential subgroups and a local CK-system hypothesis on the fusion

system F . Recall that a K-group is a finite group in which every simple section is

isomorphic to a known finite simple group. A local CK-system is then a saturated

fusion system in which the induced automorphism groups on all p-subgroups are

K-groups. At some stage in the analysis, unfortunately, we make explicit use of

the classification of finite simple groups (CFSG), specifically when F is exotic.

However, up to that point, we are still able to determine the isomorphism type of

the p-group on which F is supported, as well the important local actions, within

a local CK-system hypothesis and only appeal to the classification to prove that

the fusion system is exotic. Thus, we believe this result would still be suitable

for use in any investigation of fusion systems in which induction via a minimal

counterexample is utilized.

The majority of the work in this thesis is in proving the following theorem.

Main Theorem. Let F be a local CK-system on a p-group S such that Op(F) =

{1}. Assume that F has two AutF(S)-invariant maximally essential subgroups

E1, E2 E S with the property F = 〈NF(E1), NF(E2)〉. Then F is one of the

following:
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(i) F = FS(G), where F ∗(G) is isomorphic to a rank 2 simple group of Lie type

in characteristic p;

(ii) F = FS(G), where G ∼= M12,Aut(M12), J2,Aut(J2),G2(3) or PSp6(3) and

p = 2;

(iii) F = FS(G), where G ∼= Co2,Co3,McL, Aut(McL), Suz,Aut(Suz) or Ly and

p = 3;

(iv) F = FS(G), where G ∼= PSU5(2),Aut(PSU5(2)),Ω+
8 (2),O+

8 (2),Ω−10(2),

Sp10(2),PSU6(2) or PSU6(2).2 and p = 3;

(v) F is simple fusion system on a Sylow 3-subgroup of F3 and, assuming CFSG,

F is an exotic fusion system uniquely determined up to isomorphism;

(vi) F = FS(G), where F ∗(G) ∼= Ly,HN,Aut(HN) or B and p = 5; or

(vii) F is a simple fusion system on a Sylow 7-subgroup of G2(7) and, assuming

CFSG, F is an exotic fusion system uniquely determined up to isomorphism.

We include G2(2)′ ∼= PSU3(3), Sp4(2)′ ∼= Alt(6) and the Tits groups 2F4(2)′ as

groups of Lie type in characteristic 2.

In the above classification, where F is realizable by finite group, we provide only

one example of a group which realizes the fusion system. In several instances, this

example is not unique, even amongst finite simple groups. In particular, if F is

realized by a simple group of Lie type in characteristic coprime to p, then there are

lots of examples which realize the fusion system, see for instance [BMO12]. Note

also that we manage to capture a large number of fusion systems at odd primes

associated to sporadic simple groups. Indeed, as can be witnessed in the tables

provided in [AH12], almost all of the p-fusion categories of the Sporadic simple
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groups at odd primes are either constrained, supported on an extraspecial group

of exponent p and so are classified in [RV04], or satisfy the hypothesis of the Main

Theorem.

It is surprising that in the conclusion of the Main Theorem there are so few exotic

fusion systems. It has seemed that, at least for odd primes, exotic fusion systems

were reasonably abundant. Perhaps an explanation for the apparent lack of exotic

fusion systems is that the setup from the Main Theorem somehow reflects some of

the geometry present in rank 2 groups of Lie type. Additionally, we remark that

in the two exotic examples in the classification, the fusion systems are obtained

by “pruning” a particular class of essential subgroups, as defined in [PS21].

Indeed, these essential subgroups, along with their automizers, seem to resemble

Aschbacher blocks, the minimal counterexamples to the Local C(G, T )-theorem

[BHS06]. Most of the exotic fusion systems the author is aware of either have a

set of essentials resembling blocks, or are obtained by pruning a class of essentials

resembling blocks out of the fusion category of some finite group. For instance,

pearls in fusion systems, investigated in [Gra18] and [GP20], are the smallest

examples of blocks in fusion systems.

Given the hypothesis of the Main Theorem, there are some fairly natural questions

and extensions to consider. First, is it necessary to demand that the essential

subgroups E1 and E2 are maximally essential in the fusion system F? It appears

that the truly difficult case here is where the outer automorphism group of the

essential subgroup induced by the fusion system is p-solvable and has a Sylow

p-subgroup of p-rank 1. Outside of these cases, given suitable characterization of

quadratic 2F-modules for groups with strongly p-embedded subgroups, it seems

likely the techniques employed in this thesis could be adapted in order to remove
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the maximality condition on the essential subgroups. Second, is the condition

that the essential subgroups are AutF(S)-invariant truly necessary? This should

be related to notion of “pushing up” in finite groups. Fortunately, there are a

large number of results which may be applicable in this setting. The hope is then

to maintain some control of the automorphisms present in the fusion system so

that the methodology described in this thesis should still be applicable. A final

question to consider is whether we need to restrict to only two classes of essential

subgroups. In the analogous situation in finite group theory, groups of Lie type of

rank n are “controlled” by their rank 2 residues. This indicates that perhaps there

should be an equivalent “Lie theory” of saturated fusion systems. Work towards

this has already been initiated in [Ono11], wherein chamber systems and parabolic

systems for fusion systems are explored.

The work we undertake in the proof of the Main Theorem may be regarded as a

generalization of some of the results in [AOV13], where only certain configurations

at the prime 2 are considered. There, the authors exhibit a situation in which

a pair of subgroups of the automizers of pairs of essential subgroup generate

a subsystem, and then describe the possible actions present in the subsystem,

utilizing Goldschmidt’s pioneering results in the amalgam method. With this in

mind, we provide the following corollary (proved as Corollary 5.5.1) along the same

lines which, at least with regards to essential subgroups, may also be considered

as the minimal situation in which a saturated fusion system satisfies Op(F) = {1}.

Corollary A. Suppose that F is a saturated fusion system on a p-group S such

that Op(F) = {1}. Assume that F has exactly two essential subgroups E1 and

E2. Then NS(E1) = NS(E2) and writing F0 := 〈NF(E1), NF(E2)〉NS(E1), F0 is a

saturated normal subsystem of F and either
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(i) F = F0 is determined by the Main Theorem;

(ii) p is arbitrary, F0 is isomorphic to the p-fusion category of H, where F ∗(H) ∼=

PSL3(pn), and F is isomorphic to the p-fusion category of G where G is the

extension of H by a graph or graph-field automorphism;

(iii) p = 2, F0 is isomorphic to the 2-fusion category of H, where F ∗(H) ∼=

PSp4(2n), and F is isomorphic to the 2-fusion category of G where G is the

extension of H by a graph or graph-field automorphism; or

(iv) p = 3, F0 is isomorphic to the 3-fusion category of H, where F ∗(H) ∼=

G2(3n), and F is isomorphic to the 3-fusion category of G where G is the

extension of H by a graph or graph-field automorphism.

As intimated earlier in this introduction, we utilize the amalgam method to classify

the fusion systems in the statement of the Main Theorem. Here, we work in a

purely group theoretic setting and so, as a consequence of the work in the thesis,

we obtain some generic results concerning amalgams of finite groups which apply

outside of fusion systems. We operate under the following hypothesis, and note

that the relevant definitions are provided in Section 5.1:

Hypothesis B. A := (G1, G2, G12) is a characteristic p amalgam of rank 2 with

faithful completion G satisfying the following:

(i) for S ∈ Sylp(G12), G12 = NG1(S) = NG2(S); and

(ii) writing Gi := Gi/Op(Gi), G12 is a strongly p-embedded subgroup of Gi.

It transpires that all the amalgams satisfying Hypothesis B are either weak

BN-pairs of rank 2; or p 6 7, |S| 6 29 when p = 2, and |S| 6 p7 when p is
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odd. Moreover, in the latter exceptional cases we can generally describe, at least

up to isomorphism, the parabolic subgroups of the amalgam.

What is remarkable about these results is that amalgams produced have “critical

distance” (defined in Notation 5.2.5) bounded above by 5 . In the cases where the

amalgam is not a weak BN-pair of rank 2, the critical distance is bounded above by

2, and when this distance is equal to 2, the amalgam is symplectic and was already

known about by work of Parker and Rowley [PR12]. We present an undetailed

version of the theorem summarizing the amalgam theoretic results below.

Theorem C. Suppose that A = A(G1, G2, G12) satisfies Hypothesis B. Then one

of the following occurs:

(i) A is a weak BN-pair of rank 2;

(ii) p = 2, A is a symplectic amalgam, G1/O2(G1) ∼= Sym(3), G2/O2(G2) ∼=

(3× 3) : 2 and |S| = 26;

(iii) p = 2, Ω(Z(S)) E G2, 〈(Ω(Z(S))G1)G2)〉 6≤ O2(G1), O2′(G1)/O2(G1) ∼=

SU3(2)′, O2′(G2)/O2(G2) ∼= Alt(5) and |S| = 29;

(iv) p = 3, Ω(Z(S)) E G2, 〈(Ω(Z(S))G1)〉 6≤ O3(G2), O3(G1) = 〈(Ω(Z(S))G1)〉 is

cubic 2F -module for O3′(G1/O3(G1)) and |S| 6 37; or

(v) p = 5 or 7, A is a symplectic amalgam and |S| = p6.

Much more information about the amalgams is provided where they arise in the

proofs.

Naturally, an interesting question to ask is whether the results concerning these

amalgams have any direct application to finite group theory, and in particular, in
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classifying certain finite simple groups by their p-local structure. In Section 5.5,

we collect various results already present in the literature which, when augmented

with some additional hypotheses, characterize some finite simple groups from the

garnered amalgam data.

As a first substantial application of the Main Theorem, which we provide before

the proof of the Main Theorem to ease exposition, we approach a slightly different

research problem. Namely, we classify all saturated fusion systems supported on

a p-group isomorphic to a Sylow p-subgroup of G2(pn) or PSU4(pn). This work

has a different flavour to the methods used in the proof of the Main Theorem.

There, the hypothesis enforced restrictions on the global structure of the fusion

system without necessarily demanding any specific structure of the p-group on

which the system is supported whereas in this application, we impose restrictions

on the p-group itself. This work forms part of a program to classify all saturated

fusion systems supported on Sylow p-subgroups of rank 2 groups of Lie type,

complementing the results in [Cle07] and [HS19]. Moreover, we generalize results

already obtained in [PS18], [BFM19] and [Mon20] where only the case where the

field of definition is of order p is considered. Furthermore, we remove some of the

other restrictions in those works, where only fusion systems F satisfying Op(F) =

{1} are considered, at little cost to the exposition. The work here draws heavily

from results and ideas within those papers and most of the ‘interesting’ examples

we uncover occur in this ‘small’ setting.

Although a number of the the results applied to classify these fusion systems

(particularly those results occurring as corollaries of the Main Theorem) rely on

a K-group hypothesis on the local actions, within the restricted setting of an

enforced structure on a the p-group S, we are almost always able to circumvent
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the need for such strong assumptions. Where appropriate, we describe the required

modifications to make these results independent of any K-group hypothesis. In

this way, we are able to almost completely rid ourselves of any reliance on the

classification of finite simple groups, and only make use of it to prove the exoticity

of some fusion systems supported on a Sylow 7-subgroup of G2(7), a check already

completed in [PS18], and to recognize PSL2(q2) acting on a natural Ω−4 (q)-module

to classify fusion systems on supported on a Sylow p-subgroup of PSU4(q), where

q = pn and p is odd. We do, however, make use of some of the results listed in

[GLS98] concerning known facts about known finite simple groups. We present

the main results below.

Theorem D. Let F be a saturated fusion system over a Sylow p-subgroup of

G2(q) where q = pn, and identify Q1 and Q2 with the unipotent radicals of two

non-conjugate maximal parabolic subgroups of G2(q). Then one of the following

holds:

(i) F = FS(S : OutF(S));

(ii) F = FS(Q1 : OutF(Q1)) where Op′(OutF(Q1)) ∼= SL2(q), or OutF(Q1) is

isomorphic to a subgroup of (3× 3) : 2 and p = q = 2, or p = q ∈ {5, 7} and

the possibilities for Op′(OutF(Q1)) are given in [PS18, Lemma 5.2];

(iii) F = FS(Q2 : OutF(Q2)) where Op′(OutF(Q2)) ∼= SL2(q);

(iv) F = FS(M) where M ∼= 23.PSL3(2) is non-split and p = q = 2;

(v) F = FS(M) where M ∼= 53.SL3(5) is non-split and p = q = 5;

(vi) F = FS(G) where G ∼= G2(3) or M12 and p = q = 2;

(vii) F = FS(G) where G ∼= Ly, HN, HN.2 or B and p = q = 5;
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(viii) F = FS(G) where G ∼= M and p = q = 7;

(ix) F is one of the exotic fusion systems listed in [PS18, Table 5.1] and p = q =

7; or

(x) F = FS(G) where F ∗(G) = Op′(G) ∼= G2(pn).

Theorem E. Let F be a saturated fusion system over a Sylow p-subgroup of

PSU4(q) where q = pn, and let X be the preimage in S of J(S/Z(S)). Then

one of the following occurs:

(i) F = FS(S : OutF(S));

(ii) F = FS(X : OutF(X)) where Op′(OutF(X)) ∼= SL2(q), or OutF(X) is

determined in [BFM19] and q = p = 3;

(iii) F = FS(J(S) : OutF(J(S))) where J(S) is a natural Ω−4 (q)-module for

Op′(OutF(J(S)) ∼= PSL2(q2);

(iv) F = FS(Q : OutF(Qx)) where x ∈ S ′ \ Z(S), Qx = CS(x), OutF(Qx) ∼=

Sym(3) and q = p = 2;

(v) F = FS(M) where M ∼= 24 : (Sym(3)× Sym(3)) and q = p = 2;

(vi) F = FS(M) where M ∼= 23 : PSL3(2) and q = p = 2;

(vii) F = FS(G) where G ∼= PSL4(2) and q = p = 2;

(viii) F = FS(G) where G = Co2, McL, McL.2, PSU6(2) or PSU6(2).2 and p =

q = 3; or

(ix) F = FS(G) where F ∗(G) = Op′(G) ∼= PSU4(q).
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Additionally, with a small amount of extra effort, for S a Sylow p-subgroup of

PSU4(pn) or G2(pn), we are able to give a good description of all possible radical,

centric subgroups of a fusion system (or group) containing S as a Sylow p-subgroup.

This has implications beyond the rest of the results in this thesis. For example,

several results concerning weight conjectures for groups and fusion systems rely on

detailed information of the radical, centric subgroups of a Sylow p-subgroup, see

for instance [Kes+19] and [KMS20].

As in the Main Theorem, something interesting to note in Theorem D and Theorem

E is the small number of exotic fusion systems unearthed. The only exotic fusion

systems that arise were already identified in [PS18] and are related to the Monster

sporadic simple group. This gives credence to [PS21, Conjecture 2] that, aside

from a few exceptions in small rank and small prime cases, the structure of a

Sylow p-subgroup of a group of Lie type in characteristic p is too rigid to support

any exotic fusion systems. This is in complete contrast to the case where the fusion

system is supported on a Sylow p-subgroup of a group of Lie type in characteristic

coprime to p, where exotic fusion systems are ubiquitous (see [OR20]).

In terms of progressing towards the goal of determining all fusion systems on Sylow

p-subgroups of rank 2 groups of Lie type, this still leaves PSU5(pn), 3D4(pn) and
2F4(2n), where necessarily p = 2 in the last case. As in this work, a suitable

methodology for classifying fusion systems over the Sylow p-subgroups of these

groups boils down to determining a complete set of essential subgroups and, after

treating small values of n and p separately, applying the Main Theorem.

It feels prudent at this point to mention some important results which play some

part in the proof of the results above, but which should be widely applicable in

other works on saturated fusion systems and amalgams. The first of which involves
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critical subgroups, specified subgroups of p-groups first used by Feit and Thompson

in the “Odd Order” paper. As far as the author is aware, critical subgroups have

not been heavily utilized in fusion systems or in the amalgam method. In an

earlier draft of this work, critical subgroups were used to obtain strong control

of the actions of parabolic subgroups of in the amalgam method when p > 5.

However, we later found methods to treat these cases alongside the cases where

p ∈ {2, 3} and so this approach was abandoned. We still believe that it should be

recorded here for posterity.

Proposition F. Let A = A(G1, G2, G12) be a characteristic p amalgam. Then

writing G := Gi/Op(Gi), for some i ∈ {1, 2} there is a G-module V on which

p′-elements of G act faithfully and a p-subgroup C of G such that [V,C,C,C] =

{1}.

A further result which may have application outside of this thesis is the following

proposition.

Proposition G. Let A = A(G1, G2, G12) be a characteristic p amalgam satisfying

Hypothesis B. Then, writing Qi := Op(Gi), Q1 ∩Q2 6E Gi for i ∈ {1, 2}.

Again, peering into the world of finite groups, given the classification of weak

BN-pairs of rank 2 in [DS85], one hopes to determine higher rank groups of Lie type

in characteristic p using the rank 2 residues to identify their associated building.

In this line of work, Timmesfeld [Tim88] associates a graph using local data, where

two points, corresponding to rank 1 parabolic subgroups Pi and Pj, are joined if

and only if Op(Pi) ∩ Op(Pj) is not normal in Pi or Pj. See [ST98] for how this

method is used to gain control in the rank 3 setting. If one hopes to develop a

theory of fusion systems akin to the notion of parabolic systems in groups, then it
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seems sensible that an “equivalent” result should be proved. The above proposition

provides one direction of such a result.

We now describe the strategy to prove the main results of this thesis.

In Chapter 2, we set up the requisite group and module theoretic results needed

to examine the local actions within a fusion system, and within the amalgam

method. Most importantly, we characterize groups with strongly p-embedded

subgroups, groups with associated FF-modules and 2F-modules, groups which

contain elements which act quadratically, and exhibit situations in which these

phenomena occur. The typical examples of automizers in our investigations are

rank 1 groups of Lie type in characteristic p and, because of this, large parts

of Chapter 2 are devoted to the properties of such groups and their “natural”

modules.

In Chapter 3, we introduce fusion systems and, for the most part, reproduce

definitions and properties associated to fusion systems which may be readily found

in the literature. Importantly, here we describe the necessary tools to describe a

complete set of essential subgroups for a saturated fusion system F and determine

their automizers. Then, using the model theorem, we are able to able to investigate

finite groups whose fusion categories are isomorphic to normalizer subsystems of

the two distinguished essential subgroups. We close this chapter with a discussion

and construction on the unearthed exotic fusion systems supported on a 3-group

isomorphic to a Sylow 3-subgroup of F3.

In Chapter 4, we classify saturated fusion systems F which are supported on S

where S is isomorphic to a Sylow p-subgroup of G2(pn) or PSU4(pn), assuming

the validity the of the Main Theorem which is proved in Chapter 5. The sections
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within this chapter deal with the cases where S is isomorphic to a Sylow p-subgroup

of G2(2n), G2(3n), G2(pn) for p > 5, and PSU4(pn). For G2(pn), the separation

in cases is brought about due to some degeneracies in the Chevalley commutator

formulas when p = 2 or 3, resulting in some exceptional structural properties.

While there are differences when p = 2 and p is odd for PSU4(pn), the differences

are not so drastic to affect the methodology.

In each of the cases, it transpires that, barring some small exceptions, there are only

two potential essential subgroups of F : those which coincide with the unipotent

radicals of maximal parabolic subgroups in G2(pn) and PSU4(pn). Upon deducing

the potential automizers of these subgroups, we then distinguish between the case

where there is at most one essential subgroup (where necessarily Op(F) 6= {1}),

and where both subgroups are essential. In this latter case, we apply the Main

Theorem which identifies a rank 2 amalgam in F and then, with the aid of the

results in [DS85], completely determines the fusion system. Importantly within

this work, since the only exotic fusion systems we engage with are determined in

[PS18], we do not need to concern ourselves with checks on saturation and exoticity

as in other works. As mentioned previously, there is some exceptional behaviour

for small values of p and n where the fusion systems of some other finite simple

groups appear. In these instances, we generally appeal to previous results in the

literature or apply a package in MAGMA [PS21] to determine a list of radical,

centric subgroups and a list of saturated fusion systems supported on S.

In Chapter 5, we first demonstrate how to identify a rank 2 amalgam given certain

hypotheses on a fusion system and begin setting up the group theoretic framework

needed for the amalgam method. We also provide some classification results for

fusion systems based on known amalgam results where it is easy to do so. For
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several arguments, we investigate a minimal counterexample where minimality is

imposed on the order of the models of the normalizers of essential subgroups.

Then, in the amalgam method, the case division separates fairly naturally, and we

follow the divisions used in [DS85]. Then the following sections and subsections

deal with these partitioned cases.

For several of the amalgams we investigate, their completions are unique up to

“local isomorphism” and, as it turns out, this is enough to determine the fusion

system up isomorphism. However, in some cases, at least from a fusion system

perspective, we do not go so far and instead aim only to bound the order of

the p-group on which F is supported and apply a package in MAGMA [PS21]

which identifies the fusion system. In fact, in two instances there are no finite

groups which realize the amalgam appropriately and we uncover two exotic fusion

systems, one of which was known about previously by work of Parker and Semeraro

[PS18], and another which was previously undocumented. With that said, given

the information we gather about the amalgams, it does not seem such a stretch to

at least provide a characterization of these amalgams up to some weaker notion of

isomorphism. Finally, we close this chapter by providing some useful corollaries to

the Main Theorem and provide some identifications of finite simple groups which

satisfy Hypothesis B.

The notation used throughout generally follows the standard conventions, but we

mention some particular practices we adopt. With regards to notation concerning

simple groups, we will generally follow the Atlas [Con+85], with some caveats

regarding the classical groups. We include the prefix “P” to indicate a quotient

by the center, and “S” indicates the subgroup of matrices with determinant 1

e.g. we use PSLn(q) where the Atlas uses Ln(q). In addition, we reserve the
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notations O+
n (q) and O−n (q) for the full orthogonal groups, while Ωε

n(q) denotes

the commutator subgroup of SOε
n(q) for ε ∈ {+,−}. For the sporadic groups, we

follow the Atlas with the exception of Thompson’s sporadic simple group, which

we refer to as F3 instead of the usual Th. We make this choice to emphasize

the connection with “amalgams of type F3” as defined in [DS85] and [Del88]. We

denote by Sym(n) and Alt(n) the symmetric and alternating groups of degree n,

and Dih(n) represents the dihedral group of order n so that n is necessarily even.

The notation Q4n is used for generalized quaternion groups of order 4n. When

p = 2, 21+2n
+ is the extraspecial group obtained by taking the central product of

r groups isomorphic to Dih(8) and n− r groups isomorphic to Q8 where n− r is

even, and 21+2n
− is the extraspecial group obtained by a taking the central product

of r groups isomorphic to Dih(8) and n− r groups isomorphic to Q8 where n− r is

odd. For p an odd prime, we reserve the notation p1+2n
+ and p1+2n

− for extraspecial

p-groups of exponent p and p2 respectively. We will use Atlas notation for the

“shape” of p-groups, often to exhibit the structure of their chief factors in some

enveloping group G e.g. q1+2 is a group of order q3 for q some prime power,

with some grouped collection of G-chief factors having orders q and q2. Where

unambiguous, we will often present cyclic groups uniquely by their order, and

elementary abelian p-groups by their expression as p-powers e.g. r × s is the

direct product of a cyclic group of order r and a cyclic group of order s, and pn

is an elementary group of order pn. Finally, we mention that as the majority of

the modules we study occur “internally”, we will use multiplicative notation for

modules throughout.
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CHAPTER 2

GROUP THEORY, REPRESENTATION
THEORY AND PRELIMINARIES

We reserve this chapter for any general results in group theory or representation

theory which will be useful in proving later results concerning fusion systems and

amalgams. Several are well known or elementary, and where possible, we aim to

give explicit references or rudimentary proofs.

Of particular importance in this chapter is the notion of a group with a strongly

p-embedded subgroup, and we provide some classification results regarding this

class of groups. Since rank 1 groups of Lie type in characteristic p provide the

standard examples of groups with strongly p-embedded subgroups, we devote a

large part of this chapter for recording several facts about such groups and their

associated actions. Finally, of key importance in this work, is the identification

of these groups along with their modules and, because of this, FF-modules,

2F-modules, quadratic action and Hall–Higman type theorems are also a focus

of this chapter.

As background texts, we use [Asc00], [Gor07], [Hup13] and [KS06].
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2.1 Group Theoretic Methods

We first start with concepts and results which are ubiquitous across all of finite

group theory. Set G to be a finite group throughout.

Lemma 2.1.1 (Dedekind Modular Law). Suppose that X, Y, Z ≤ G and X ≤ Y .

Then X(Y ∩ Z) = Y ∩XZ.

Lemma 2.1.2 (Three Subgroup Lemma). Let X, Y, Z ≤ G. If [X, Y, Z] =

[Y, Z,X] = {1}, then [Z,X, Y ] = {1}. Moreover, if N E G and both [X, Y, Z]

and [Y, Z,X] are contained in N , then [Z,X, Y ] ≤ N .

Lemma 2.1.3 (Frattini Argument). Let A E G and T ∈ Sylp(A). Then G =

ANG(T ).

Lemma 2.1.4 (Gaschutz’s Theorem). Let A be an abelian normal subgroup of G

and R ≤ G such that A ≤ R and (|A|, |G : R|) = 1. Then A has a complement in

R if and only if A has a complement in G.

Definition 2.1.5. Let G act on a group A. A G-chief series for A is a normal

series

{1} = A0 E A1 E . . . E An = A

such that Ai is normal in the internal semidirect product A : G and the series

cannot be further refined with respect to this condition i.e. there does not exists

Ai < N < Ai+1 such that N E A : G. The factors Ai/Ai−1 are referred to as the

G-chief factors and a factor is central if [G,Ai] ≤ Ai−1 and non-central otherwise.

We refer to a {1}-chief series as a chief series for A and the {1}-chief factors as

the chief factors of A.
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Remark. In a similar way to composition series, one can show that finite groups

with a G-action always have a G-chief series and that the G-chief factors are

unique up to isomorphism and reordering, independent of the particular G-chief

series constructed. Thus we are justified in describing the chief factors of a group

A.

Of particular importance in this work is coprime action. We will often use the

results described below without explicit reference, and where we do reference, we

will refer to the totality of the techniques as “coprime action.”

Definition 2.1.6. Suppose G acts on a group A. Say the action of G on A is

coprime if (|G|, |A|) = 1 and one of |A| or |G| is solvable. Note that if the first

condition holds, the second automatically does by the Feit–Thompson theorem.

Lemma 2.1.7 (Coprime Action). Suppose that a group G acts on a group A

coprimely, and B is a G-invariant subgroup of A. Then the following hold:

(i) CA/B(G) = CA(G)B/B;

(ii) if G acts trivially on A/B and B, then G acts trivially on A;

(iii) [A,G] = [A,G,G];

(iv) A = [A,G]CA(G) and if A is abelian A = [A,G]× CA(G);

(v) if G acts trivially on A/Φ(A), then G acts trivially on A;

(vi) if p 6= 2, A is a p-group and G acts trivially on Ω(A), then G acts trivially

on A; and

(vii) for S ∈ Sylp(G), if mp(S) > 2 then A = 〈CA(s) | s ∈ S \ {1}〉.
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Proof. See, for instance, [KS06, Chapter 8].

In conclusion (v) in the statement above, one can say a little more. The following

is a classical result of Burnside, but the version we use is [Gor07, (I.5.1.4)]. We

also provide a related result further below.

Lemma 2.1.8 (Burnside). Let S be a finite p-group. Then CAut(S)(S/Φ(S)) is a

normal p-subgroup of Aut(S).

Lemma 2.1.9. Let E be a finite p-group and Q ≤ A where A ≤ Aut(E) and Q

is a p-group. Suppose there exists a normal chain {1} = E0 E E1 E E2 E . . . E

Em = E of subgroups such that for each α ∈ A, Eiα = Ei for all 0 ≤ i ≤ m. If

for all 1 ≤ i ≤ m, Q centralizes Ei/Ei−1, then Q ≤ Op(A).

Proof. See [Gor07, (I.5.3.2)].

The final result we describe here which still falls under the umbrella of “coprime

action” is the A×B-lemma due to Thompson.

Lemma 2.1.10 (A×B-Lemma). Let AB be a finite group which acts on a p-group

V . Suppose that B is a p-group, A = Op(A) and [A,B] = {1} = [A,CV (B)]. Then

[A, V ] = {1}.

Proof. See [Asc00, (24.2)].

We now introduce concepts and techniques more familiar in local group theory,

and which are heavily used in the proof of the classification of finite simple groups.

Definition 2.1.11. A finite group G is a K-group if every simple section of G is

a known finite simple group.
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Definition 2.1.12. Let G be a finite group and p a prime dividing |G|. Then G

is of characteristic p if CG(Op(G)) ≤ Op(G).

Lemma 2.1.13. Let G be a finite group of characteristic p. If H EE G or

Op(G) ≤ H, then H is of characteristic p.

Proof. This is elementary.

Definition 2.1.14. Say a group K is quasisimple if K is perfect and K/Z(K) is

a simple group. A subgroup K ≤ H is a component of H if K is quasisimple and

subnormal in H.

Lemma 2.1.15. Let K be a component of G and H EE G. Then

(i) either K is a component of H, or H centralizes K;

(ii) every component of H is a component of G; and

(iii) for L a component of G not equal to K, [L,K] = {1}.

Proof. See [Asc00, (31.3)-(31.5)].

Definition 2.1.16. We denote by F (G) the Fitting subgroup of G, the largest

normal nilpotent subgroup of G, and by E(G) the layer of G, the subgroup of G

generated by all of its components. Define F ∗(G), the generalized Fitting subgroup

of G, to be the product of F (G) and E(G).

The following results may be found in [Asc00, (31.7)-(31.13)], for example.

Lemma 2.1.17. Let G a finite group. Then

(i) F (G), E(G) and F ∗(G) are characteristic subgroups of G;
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(ii) if G is solvable then F (G) = F ∗(G) and CG(F (G)) ≤ F (G);

(iii) F (G) = ∏
r Or(G) where r ranges over the prime divisors of G;

(iv) E(G) is the central product of the components of G;

(v) F ∗(G) is a central product of E(G) and F (G);

(vi) CG(F ∗(G)) ≤ F ∗(G); and

(vii) G is of characteristic p if and only if F ∗(G) = Op(G).

We now move on to some more specialized results pertaining to the work in this

thesis.

Definition 2.1.18. Let G be a finite group and S ∈ Sylp(G). Then G is p-minimal

if S 6E G and S is contained in a unique maximal subgroup of G.

Lemma 2.1.19 (McBride’s Lemma). Let G be a finite group, S ∈ Sylp(G) and

PG(S) denote the collection of p-minimal subgroups of G over S. Then G =

〈PG(S)〉NG(S). Moreover, Op′(G) = 〈PG(S)〉.

Proof. If G ∈ PG(S) the the result holds trivially so assume that G is

counterexample to the first statement with |G| minimal. Since G is not p-minimal

over S, there are maximal subgroups M1,M2 of G which contain S. But then,

since G was a minimal counterexample, Mi = 〈PMi
(S)〉NMi

(S) for i ∈ {1, 2}.

Since PMi
(S) ⊆ PG(S), NMi

(S) ≤ NG(S) and G = 〈M1,M2〉, the result holds.

Now, let P ∈ PG(S) and x ∈ NG(S). Then for M the unique maximal subgroup

of P containing S, Mx is the unique maximal subgroup of P x containing Sx = S,

and S 6E P x. It follows that NG(S) normalizes 〈PG(S)〉 and by the definition
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of Op′(G) and since G = 〈PG(S)〉NG(S), Op′(G) ≤ 〈PG(S)〉. Now, suppose that

there is P ∈ PG(S) with P 6≤ Op′(G). Then Op′(P ) ≤ P ∩ Op′(G) < P and so

Op′(P ) is contained in the unique maximal subgroup of P which contains S. Since

S is not normal in P , NP (S) is also contained in the unique maximal subgroup of

P containing S. But then, by the Frattini argument, P = Op′(G)NG(S) < P , a

contradiction. Therefore, 〈PG(S)〉 ≤ Op′(G) and the lemma holds.

Lemma 2.1.20. Suppose that H is p-minimal over S and R is a normal p-subgroup

of H. Then H/R is p-minimal.

Proof. This is elementary.

Definition 2.1.21. Let G be a finite group and H < G. Then H is strongly

p-embedded in G if and only if |H|p > 1 and NG(P ) ≤ H for each non-trivial

p-subgroup Q with Q ≤ H.

Lemma 2.1.22. Suppose that G contains a strongly p-embedded subgroup X. Then

the following hold:

(i) X contains a Sylow p-subgroup of G;

(ii) if H ≤ G with H 6≤ X then provided |H ∩ X|p > 1, H ∩ X is strongly

p-embedded in H;

(iii) Op′(G) ∩X is strongly p-embedded in Op′(G); and

(iv) if G 6= XOp′(G), then XOp′(G)/Op′(G) is strongly p-embedded in G/Op′(G).

Proof. See [PStr09, Lemmas 3.2, 3.3].

Lemma 2.1.23. If G has a cyclic or generalized quaternion Sylow p-subgroup T

and Op(G) = 1, then NG(Ω(T )) is strongly p-embedded in G.
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Proof. ForX ≤ T a non-trivial subgroup, X is also cyclic or generalized quaternion

and so also has a unique subgroup of order p. Thus, Ω(X) = Ω(T ) and since

Op(G) 6= 1, we have that NG(X) ≤ NG(Ω(X)) = NG(Ω(T )) < G so that NG(Ω(T ))

is strongly p-embedded in G.

Quite remarkably, possessing a strongly p-embedded subgroup is a surprisingly

limiting condition. In the following two propositions, we roughly determine the

structure of groups with strongly p-embedded subgroups. For p = 2, we refer to

work of Bender [Ben71], while if p is odd we make use of the classification of finite

simple groups. In the application of these results, groups with strongly p-embedded

subgroups will only ever appear in the local analysis of fusion systems. Particularly,

these groups appear as automizers of certain p-subgroups and so would fit into the

framework of any proofs utilizing a “minimal counterexample” hypothesis.

Proposition 2.1.24. Suppose that G = Op′(G) has a strongly p-embedded

subgroup. Let S ∈ Sylp(G) and denote G̃ := G/Op′(G). If mp(S) = 1 then

one of the following holds:

(i) p is an odd prime, S is cyclic, G is perfect and G̃ is a non-abelian finite

simple group;

(ii) S is cyclic, G = SOp′(G) and G is p-solvable; or

(iii) p = 2, S is generalized quaternion and G = O2′(G)CG(Ω(S)).

Moreover, in cases (ii) and (iii), 〈Ω(S)G〉 = Ω(S)[Ω(S), Op′(G)] is the unique

normal subgroup of G which is divisible by p and minimal with respect to this

condition.
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Proof. Since mp(S) = 1, S is either cyclic or generalized quaternion by [Gor07,

I.5.4.10 (ii)]. If S is generalized quaternion, then p = 2 and (iii) follows from

a result of Bender [Ben71]. Moreover, if S is cyclic and p = 2, then G has a

normal 2-complement (see [Gor07, Theorem 7.4.3]) and (ii) holds. Hence, we

may assume from now that S is cyclic and p is odd. Notice that F (G̃) = Op(G̃)

since Op′(G̃) = {1}. If F ∗(G̃) = F (G̃) = Op(G̃), then Op(G̃) is self-centralizing

and as S̃ is abelian, we have that Op(G̃) = S̃ and SOp′(G) E G. In particular,

G = Op′(G) ≤ SOp′(G) ≤ G, G is p-solvable and (ii) holds.

Suppose now that G̃ has a component L̃. If p - |L̃|, then L ≤ Op′(E(G̃)) ≤ Op′(G̃),

a contradiction. Hence, p divides the order of any component of G̃. Since S̃

is cyclic, L̃ has cyclic Sylow p-subgroups. By [Asc00, Lemma 33.14], Z(L̃) is a

p′-prime group, and so Z(L̃) ≤ Op′(E(G̃)) = {1} and L̃ is simple. Notice also

that since each component is simple, E(G̃) is a direct product of components, and

since p divides the order of any component, E(G̃) = L̃ is the unique component

of G̃, else mp(G̃) = mp(G) > 1. Since Op(G̃) ∩ E(G̃) = {1}, we have that

F ∗(G̃) = Op(G̃)× E(G̃) and since mp(G̃) = 1, Op(G̃) = {1}. Therefore, F ∗(G̃) is

a non-abelian simple group.

It remains to prove that S̃ ≤ F ∗(G̃) to show that (i) holds. Form the group

H̃ = F ∗(G̃)S̃ and assume that H̃ 6= F ∗(G̃). Note that by the Frattini

argument, H̃ = F ∗(G̃)N
H̃

(R) for all R ∈ Sylr(F̃ ∗(G̃)). Moreover, for r 6= p

a prime, Sylr(F ∗(G̃)) ⊆ Sylr(H̃). Then for R ∈ Sylr(F ∗(G̃)) with r 6= p, let

P ∈ Sylp(NH̃
(R)) and T ∈ Sylp(H̃) containing P . Then F ∗(H̃) ∩ T < T and as

T is cyclic and H̃ = F ∗(G̃)N
H̃

(R), we deduce that P = T and N
H̃

(R) contains a

Sylow p-subgroup of H̃. Hence, by conjugacy, S̃ normalizes a Sylow r-subgroup

of H̃, for all primes r. But then S̃ normalizes a Sylow r-subgroup of N
H̃

(S̃)
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for all r, and so centralizes a Sylow r-subgroup of N
H̃

(S̃) for all r. Applying

[Gor07, Theorem 7.4.3], H̃ has a normal p-complement, a contradiction since H̃

contains a component of G̃. Thus, S̃ ≤ F ∗(G̃) and since G = Op′(G) it follows

that G̃ is a non-abelian simple group. Hence, G̃′ = G̃ and so S ≤ G′. Then

G = Op′(G) ≤ G′ ≤ G, G is perfect and (i) holds.

Suppose case (ii) or (iii) occurs and let N be a normal subgroup of G whose order

is divisible by p. Then, as mp(S) = 1, Ω(S) ≤ N and so Ω(S)[Ω(S), Op′(G)] =

Ω(S)[Ω(S), G] = 〈Ω(S)G〉 ≤ N , and the result follows.

Remark. Notice that if H is a non-abelian finite simple with cyclic Sylow

p-subgroups, then for S ∈ Sylp(H), NG(Ω(S)) is strongly p-embedded in H by

Lemma 2.1.23. Thus, the description in case (i) is best possible up to a better

understanding of Op′(G). It is also worth noting that every non-abelian finite

simple group has a cyclic Sylow p-subgroup for some odd prime p.

Proposition 2.1.25. Suppose that G = Op′(G) is a K-group with a strongly

p-embedded subgroup X. Let S ∈ Sylp(G) and set G̃ := G/Op′(G). If mp(G) > 2

then G̃ is isomorphic to one of:

(i) PSL2(pa+1) or PSU3(pb) for p arbitrary, a > 1 and pb > 2;

(ii) Sz(22a+1) for p = 2 and a > 1;

(iii) Alt(2p) for p > 3;

(iv) Ree(32a+1),PSL3(4) or M11 for p = 3 and a > 0;

(v) Sz(32) : 5, 2F4(2)′,McL or Fi22 for p = 5; or

(vi) J4 for p = 11.
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Proof. If G 6= XOp′(G), then this follows from [PStr09, (2.5), (3.3)] which in turn

uses [GLS98, Theorem 7.6.1]. So assume that G = XOp′(G). By coprime action,

Op′(G) = 〈COp′ (G)(a)|1 6= a ∈ S〉

since mp(G) > 2 and so Op′(G) ≤ X and G = X, a contradiction.

The final concept in this section is that of critical subgroups, which first arose in the

proof of the Feit–Thompson theorem. Originally in this work, critical subgroups

provided a means to control the automizer of some p-group Q whenever p > 5.

In the context of the amalgam method, they force “cubic action” on some faithful

section of Q and from there, one can apply Hall–Higman type results to deduce

information about Q and its automizer. Where this methodology was previous

employed, we now have methods to treat these cases uniformly across all primes

and so critical subgroups now play a far lesser role in this work. However, we

believe they still provide some interesting consequences in the amalgam method

and we still include some of these consequences (see Corollary 5.2.21). We present

the critical subgroup theorem, due to Thompson, below.

Theorem 2.1.26. Let Q be a p-group. Then there exists C ≤ Q such that the

following hold:

(i) C is characteristic in Q;

(ii) Φ(C) ≤ Z(C) so that C has class at most 2;

(iii) [C,Q] ≤ Z(C);

(iv) CQ(C) ≤ C; and
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(v) C is coprime automorphism faithful.

Proof. This is [Gor07, (I.5.3.11)].

We call such a subgroup C ≤ Q a critical subgroup of Q.

2.2 Properties of Rank 1 Groups Of Lie Type

As witnessed in Section 2.1, the generic examples of groups with a strongly

p-embedded subgroup are rank 1 groups of Lie type in characteristic p. These

are the groups which will appear most often in later work, and so we take this

opportunity to list some of their important properties. While almost all of these

results are well known, we aim to provide explicit references or proofs of these

results.

Lemma 2.2.1. Let G ∼= PSL2(pn) or SL2(pn) and S ∈ Sylp(G). Then the

following hold:

(i) S is elementary abelian of order pn;

(ii) SL2(2) ∼= Sym(3), PSL2(3) ∼= Alt(4) and SL2(3) are all solvable;

(iii) if p = 2, then for U ≤ S with |U | = 4, there is x ∈ G such that G = 〈U, ux〉

for 1 6= u ∈ U ;

(iv) if p = 2, all involutions in S are conjugate and so, for 1 6= u ∈ S an

involution, there is x, y ∈ G such that G = 〈u, ux, uy〉;

(v) if p is odd, then for 1 6= u ∈ S, there is x ∈ G such that G = 〈u, ux〉 unless

pn = 9 in which case there is x ∈ G such that H := 〈u, ux〉 < G is maximal

subgroup of G and H/Z(H) ∼= PSL2(5);
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(vi) NG(S) is a solvable maximal subgroup of G and for K a Hall p′-subgroup of

NG(S), K/Z(G) is cyclic of order (pn − 1)/(pn − 1, 2) and acts fixed point

freely on S \ {1};

(vii) if pn > 4, then G is perfect and if G̃ is a perfect central extension of G by a

group of p′-order, then G̃ ∼= PSL2(pn) or SL2(pn); and

(viii) if x is a non-trivial automorphism of G which centralizes S, then x ∈

AutS(G).

Proof. The proofs of (i)-(vi) are written out fairly explicitly in [Hup13, II.6–II.8].

Detailed information on automorphism groups and Schur multipliers is provided

in [GLS98, Theorem 2.5.12] and [GLS98, Theorem 6.1.2].

Lemma 2.2.2. Let G ∼= PSU3(pn) or SU3(pn) and S ∈ Sylp(G). Then the

following hold:

(i) S is a special p-group of order p3n with |Z(S)| = pn;

(ii) SU3(2) is solvable, a Sylow 2-subgroup of SU3(2) is isomorphic to the

quaternion group of order 8 and SU3(2)′ ∼= 31+2
+ : 2 has index 4 in SU3(2);

(iii) for pn > 2, NG(S) is a solvable maximal subgroup of G and for K a

Hall p′-subgroup of NG(S), |K/Z(G)| = (p2n − 1)/(p2n − 1, 3) and K acts

irreducibly on S/Z(S);

(iv) NG(Z(S)) = NG(S) and for K a Hall p′-subgroup of NG(S), |CK(Z(S))| =

pn + 1 and CK(Z(S)) acts fixed point freely on S/Z(S);

(v) for any x ∈ G \NG(S), 〈Z(S), Z(S)x〉 ∼= SL2(pn) and G = 〈Z(S), Sx〉;
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(vi) for {1} 6= U ≤ Z(S), unless pn = 9 and |U | = 3 or p = 2 and |U | = 2, there

is x, z ∈ G such that G = 〈U,Ux, U z〉;

(vii) for {1} 6= U ≤ Z(S), if pn = 9 and |U | = 3 or p = 2 < pn and |U | = 2, then

there is x, y, z ∈ G such that G = 〈U,Ux, Uy, U z〉;

(viii) for {1} 6= U E S with U 6≤ Z(S), if pn 6= 2 then there is x ∈ G such that

G = 〈U,Ux〉;

(ix) if pn > 2, then G is perfect and if G̃ is a perfect central extension of G by a

group of p′-order, then G̃ ∼= PSU3(pn) or SU3(pn); and

(x) if x is a non-trivial automorphism of G which centralizes S, then x ∈

AutZ(S)(G).

Proof. The proofs of (i)-(v) may be found in [Hup13, II.10]. Again, information

on automorphism groups and Schur multipliers may be found in [GLS98, Theorem

2.5.12, Theorem 6.1.2]. It remains to prove (vi)-(viii).

For (vi) and (vii) suppose that U ≤ Z(S), pn 6= 2 and set H := 〈Z(S), Z(S)x〉 ∼=

SL2(pn) for x ∈ G \ NG(S). By Lemma 2.2.1 (iv), (v), H is generated by two

or three conjugates of U , and by [Mit11], H is contained in a unique maximal

subgroup M ∼= GU2(pn) ∼= (pn + 1).SL2(pn). Since G = 〈UG〉, there is z such that

U z 6≤ M . It then follows from the maximality of M in G that G = 〈H,U z〉 and

(vi) and (vii) are proved.

Suppose now that U 6≤ Z(S), U E S and pn 6= 2. Since U 6≤ Z(S), {1} 6= [U, S] ≤

Z(S) ∩ U . Set C := CNG(S)(Z(S)) and observe that C is irreducible on S/Z(S)

by (iv). Then, since [U, S] ≤ Z(S), [U, S] = [U, S]C = [〈UC〉, 〈SC〉]. By the

irreducibility of C on S/Z(S), (UZ(S)/Z(S))C = S/Z(S) and so [〈UC〉, 〈SC〉] =
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Z(S) = [U, S] ≤ U . Now, there is x ∈ G \ NG(S) such that 〈Z(S), Z(S)x〉 ∼=

SL2(pn) is contained in a unique maximal subgroup M ∼= GU2(pn). Then, as

U > Z(S), |U | > pn, 〈Z(S), Z(S)x〉 < 〈U,Ux〉 and (viii) follows.

Lemma 2.2.3. Let G ∼= Sz(2n) and S ∈ Syl2(G). Then the following hold:

(i) n is odd and 3 does not divide the order of G;

(ii) Sz(2) ∼= 5 : 4 is a Frobenius group, Φ(Sz(2)) ∼= Dih(10), |Sz(2)′| = 5 and a

Sylow 2-subgroup of Sz(2) is cyclic of order 4;

(iii) if n > 1 then Φ(S) = Z(S) = Ω(S) and S/Φ(S) ∼= Φ(S) is elementary

abelian of order 2n;

(iv) NG(S) is a solvable maximal subgroup of G and for K a Hall 2′-subgroup of

NG(S),|K| = 2n − 1 and K acts irreducibly on S/Φ(S) and Φ(S);

(v) there is x ∈ G such that G = 〈Z(S), Z(S)x〉;

(vi) all involutions in S are conjugate and if n > 1, for 1 6= u ∈ Z(S), there is

x, y ∈ G such that G = 〈u, ux, uy〉;

(vii) for U E S with U 6≤ Z(S), there is x ∈ G such that G = 〈U,Ux〉;

(viii) if n > 1 then G is perfect and has trivial Schur multiplier; and

(ix) if x is a non-trivial automorphism of G which centralizes S, then x ∈

AutZ(S)(G).

Proof. Most of the proofs of these facts may be found in [Suz62, Sections 13 - 16],

except the proof of (viii) which may be gleaned from [GLS98, Theorem 6.1.2].

Lemma 2.2.4. Let G ∼= Ree(3n) and S ∈ Syl3(G). Then the following hold:
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(i) n is odd;

(ii) the Sylow 2-subgroups of G are abelian;

(iii) if n = 1, then G ∼= PSL2(8) : 3, G′ ∼= PSL2(8), S ∼= 31+2
− , Z(S) = Φ(S) has

order 3, Ω(S) = S ∩G′ has order 9 and |S| = 27;

(iv) if n > 1, then S has order 33n, Φ(S) = Ω(S) has order 32n, Z(S) = [S,Φ(S)]

has order 3n and S/Φ(S) ∼= Φ(S)/Z(S) ∼= Z(S) is elementary abelian of

order 3n;

(v) NG(S) is a solvable maximal subgroup of G and for K a Hall 3′-subgroup

of NG(S), |K| = 3n − 1 and K acts irreducibly on S/Ω(S), Ω(S)/Z(S) and

Z(S);

(vi) for {1} 6= U E S, if n > 1 then there is x, y ∈ G such that G = 〈U,Ux, Uy〉;

(vii) if n > 1 then G is perfect and has trivial Schur multiplier, and Ree(3)′ is

perfect and has trivial Schur multiplier; and

(viii) if x is a non-trivial automorphism of G which centralizes S, then x ∈

AutZ(S)(G).

Proof. The proofs of (i) to (v) follow from the main theorem of [War66] while (vii)

and (viii) follow from [GLS98, Theorem 2.5.12, Theorem 6.1.2]. We make use of

results in [War66] to prove (vi). Since the results when n = 1 are easily verified,

we assume that n > 1 throughout.

Suppose that U 6≤ Z(S) and U E S. Then U ∩ Z(S) 6= {1} and {1} 6= Ω(U) ≤

Ω(S) ∩ U . Suppose first that there is u ∈ U such that u ∈ Ω(U) \ Z(S). Then

by (v), it follows that CNG(S)(u) = Ω(S)〈i〉, where i ∈ K is an involution. Then
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u ∈ CG(i) and by [War66], CG(i) ∼= 〈i〉 × L, where L ∼= PSL2(3n), and CG(i) is a

maximal subgroup of G (see also [Kle88, Theorem C]). Since n > 1 is odd, there

is x ∈ L such L = 〈u, ux〉 by Lemma 2.2.1 (v). Further, CG(i) ∩ Z(S) = {1} and

since U ∩Z(S) 6= {1} as U E S, L < 〈U,Ux〉 and since CG(i) is maximal, it follows

that G = 〈U,Ux〉.

Suppose now that Ω(U) ≤ Z(S), U 6≤ Z(S) and U E S. Let x ∈ G \ NG(S)

such that Ux 6= NG(S). Since U 6≤ Z(S), it follows that U 6≤ Ω(S). If G 6=

〈U,Ux〉, then 〈U,Ux〉 is contained in a maximal subgroup of G. Since |U | > 9,

U ∩Ω(S) ≤ Z(S) and Ux 6≤ NG(S), comparing with the list of maximal subgroups

in [Kle88, Theorem C], 〈U,Ux〉 lies in a subfield subgroup of G. But then, as K

acts transitively on Z(S), there is y ∈ NG(S) such that for some u ∈ Ω(U), uy is

not represented by elements of a subfield. Hence, G = 〈U,Ux, Uy〉.

Finally, suppose that U ≤ Z(S) with |U | > 9. Again, considering the maximal

subgroup structure of G, since |U | > 9 and there is x ∈ G such that Ux 6≤ NG(S),

we may assume that 〈U,Ux〉 is contained in a subfield subgroup of G. Then, as

K is irreducible on Z(S), there is y ∈ NG(S) such that for some u ∈ U , uy is

not represented by elements of a subfield. Hence, G = 〈U,Ux, Uy〉. Suppose that

|U | = 3 and let x ∈ G such that Ux 6≤ NG(S) and y ∈ G such that Uy ≤ S but

Uy is not in a subfield subgroup. Then 〈U,Uy〉 is elementary abelian of order 9

and contained in some maximal subgroup. Comparing with the list of maximal

subgroups in [Kle88, Theorem C] and using that the centralizer of an involution

in K intersects Z(S) trivially, 〈U,Uy〉 lies in a unique maximal subgroup, namely

NG(S). It follows that 〈U,Ux, Uy〉 is not contained in any maximal subgroup so

that G = 〈U,Ux, Uy〉.

35



Pivotal to the analysis of local actions in the amalgam method and within a fusion

system is recognizing SL2(pn) acting on its modules in characteristic p. Below, we

list the most important modules for this work.

Definition 2.2.5. Let X ∼= SL2(q), q = pn, k = GF(q) and V a faithful

2-dimensional kX-module.

• V |GF(p)X is a natural SL2(q)-module for X.

• A natural Ω3(q)-module for X is the 3-dimensional submodule of V ⊗k V

regarded as a GF(p)X-module by restriction, and is irreducible whenever p

is an odd prime.

• If n = 2a for some a ∈ N, a natural Ω−4 (q 1
2 )-module for X is any non-trivial

irreducible submodule of (V ⊗k V τ )|
GF(q

1
2 )X

, where τ is an automorphism of

GF(q) of order 2, regarded as a GF(p)X-module by restriction.

• If n = 3a for some a ∈ N, a triality module for X is any non-trivial irreducible

submodule of (V ⊗ V τ ⊗ V τ2)|
GF(q

1
3 )X

, where τ is an automorphism of k of

order 3, regarded as a GF(p)X-module by restriction.

Lemma 2.2.6. Suppose G ∼= SL2(pn), S ∈ Sylp(G) and V is natural

SL2(pn)-module. Then the following hold:

(i) [V, S, S] = {1};

(ii) |V | = p2n and |CV (S)| = pn;

(iii) CV (s) = CV (S) = [V, S] = [V, s] = [v, S] for all v ∈ V \CV (S) and 1 6= s ∈ S;

(iv) V = CV (S)× CV (Sg) for g ∈ G \NG(S);
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(v) every p′-element of G acts fixed point freely on V ; and

(vi) V/CV (S) and CV (S) are irreducible GF(p)NG(S)-modules upon restriction.

Proof. See [PR06, Lemma 4.6]

Lemma 2.2.7. Suppose that G ∼= SL2(p) and V is a direct sum of natural two

SL2(p)-modules. If U ≤ CV (S) is NG(S)-invariant and of order p, then |〈UG〉| =

p2.

Proof. By [Gor07, (I.3.5.6)], the number of distinct irreducible submodules of V

is p + 1 = (p2 − 1)/p − 1. For each W an irreducible submodule, CW (S) is

NG(S)-invariant and of order p, and since |CV (S)| = p2, CV (S) has p+1 subgroups

of order p and each subgroup of order p uniquely determines a submodule. Thus,

U uniquely determines a submodule W of order p2 for which W = 〈UG〉.

Lemma 2.2.8. Suppose that G ∼= SL2(pn), p an odd prime, S ∈ Sylp(G) and V

is a natural Ω3(pn)-module for G. Then the following hold:

(i) CG(V ) = Z(G);

(ii) [V, S, S, S] = {1};

(iii) |V | = p3n and |V/[V, S]| = |CV (S)| = pn;

(iv) [V, S] = [V, s] and [V, S, S] = [V, s, s] = CV (s) = CV (S) for all 1 6= s ∈ S;

(v) [V.S]/CV (S) is centralized by NG(S); and

(vi) V/[V, S] and CV (S) are irreducible GF(p)NG(S)-modules upon restriction.

Proof. See [PR06, Lemma 4.7].
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Lemma 2.2.9. Let G ∼= (P)SL2(p2n), S ∈ Sylp(G) and V a natural Ω−4 (pn)-module

for G. Then the following hold:

(i) CG(V ) = Z(G);

(ii) [V, S, S, S] = {1};

(iii) |V | = p4n and |V/[V, S]| = |CV (S)| = pn;

(iv) |CV (s)| = |[V, s]| = p2n and [V, S] = CV (s)× [V, s] for all 1 6= s ∈ S; and

(v) V/[V, S] and CV (S) are irreducible GF(p)NG(S)-modules upon restriction.

Moreover, for {1} 6= F ≤ S, one of the following occurs:

(a) [V, F ] = [V, S] and CV (F ) = CV (S);

(b) p = 2, [V, F ] = CV (F ) has order p2n, F is quadratic on V and |F | 6 pn; or

(c) p is odd, |[V, F ]| = |CV (F )| = p2n, [V, S] = [V, F ]CV (F ), CV (S) = C[V,F ](F )

and |F | 6 pn.

Proof. See [PR06, Lemma 4.8] and [PR12, Lemma 3.15].

We require one miscellaneous result concerning the exceptional 1-cohomology of

PSL2(9) on an Ω−4 (3)-module.

Lemma 2.2.10. Suppose that G ∼= PSL2(p2), p ∈ {2, 3} and S ∈ Sylp(G).

If V is a 5-dimensional GF(p)G-module such that V/CV (G) is isomorphic to a

natural Ω−4 (p)-module, then either V = [V,G] × CV (G); or p = 3 and [V, S, S] is

2-dimensional as a GF(3)S-module.
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Proof. This follows from direct computation in GL5(p).

Lemma 2.2.11. Suppose that G ∼= (P)SL2(p3n), S ∈ Sylp(G) and V is a triality

module for G. Then the following hold:

(i) [V, S, S, S, S] = {1};

(ii) |V | = p8n, |V/[V, S]| = |CV (S)| = |[V, S, S, S]| = pn and |[V, S, S]| = p4n;

(iii) if p is odd then |V/CV (s)| = p5n, while if p = 2 then |V/CV (s)| = p4n, for

all 1 6= s ∈ S; and

(iv) V/[V, S] and CV (S) are irreducible GF(p)NG(S)-modules upon restriction.

Proof. See [PR06, Lemma 4.10].

We are also interested in the natural modules for SU3(pn) and Sz(2n).

Definition 2.2.12. The natural modules for SU3(pn) and Sz(2n) are the unique

irreducible GF(p)-modules of smallest dimension. Equivalently, they may be

viewed as the restrictions of a “natural” SL3(p2n)-module and Sp4(2n)-module

respectively.

Lemma 2.2.13. Suppose G ∼= SU3(pn), S ∈ Sylp(G) and V is a natural module.

Then the following hold:

(i) CV (S) = [V, Z(S)] = [V, S, S] is of order p2n;

(ii) CV (Z(S)) = [V, S] is of order p4n; and

(iii) V/[V, S], [V, S]/CV (S) and CV (S) are irreducible GF(p)NG(S)-modules upon

restriction.
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Proof. See [PR06, Lemma 4.13].

Lemma 2.2.14. Suppose G ∼= Sz(2n), S ∈ Syl2(G) and V is the natural module.

Then the following hold:

(i) [V, S] has order 23n;

(ii) [V,Ω(S)] = CV (Ω(S)) = [V, S, S] has order 22n;

(iii) CV (S) = [V, S,Ω(S)] = [V,Ω(S), S] = [V, S, S, S] has order 2n; and

(iv) V/[V, S], [V, S]/CV (Ω(S)), CV (Ω(S))/CV (S) and CV (S) are all irreducible

GF(p)NG(S)-modules upon restriction.

Proof. This is an elementary calculation in Sp4(2n).

2.3 Module Results, Minimal Polynomials and

FF-Actions

Given the descriptions of rank 1 Lie type groups and their modules in Section 2.2,

we now require ways to identify them. Furthermore, we would like to have ways

to completely determine a group G with a strongly p-embedded subgroup, and

its actions, given reasonably general hypotheses. In this section, we provide

some methods which aid in these goals. Importantly, this is where we introduce

FF-modules, quadratic action and Hall–Higman type arguments. We also take

this opportunity to list some generic module results which will be used throughout

this work.
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Lemma 2.3.1 (Maschke’s Theorem). Let G be a finite group and k a field whose

characteristic does not divide the order of G. If V is a kG-module, then V =

V1 × · · · × Vn, where each Vi is a simple kG-module for i ∈ {1, . . . , n}.

Proof. See [Asc00, (12.9)].

Lemma 2.3.2. Let G be a group and V be a faithful GF(p)G-module. Let T ∈

Sylp(Op(G)) and assume that V = 〈CV (T )G〉. Then V = [V,Op(G)]CV (Op(G)).

Proof. See [Che01, Lemma 1.1].

We require, at least when p is an odd prime, a way to distinguish between SL2(pn)

and PSL2(pn) from a strongly p-embedded hypothesis. Additionally, as can be

seen from the Main Theorem, none of the configurations we are interested in have

Ree groups as their automizers, so we will also have to dispel of this case later on.

Generally, we achieve this using quadratic action.

Definition 2.3.3. Let G be a finite group and V a GF(p)G-module. If A ≤

G satisfies [V,A,A] = {1} 6= [V,A], then A acts quadratically on V and if

[V,A,A,A] = {1} and A is not quadratic or trivial on V , then A acts cubically.

Lemma 2.3.4. Suppose that V is an irreducible GF(p)-module for G ∼= Ree(3n)

or G ∼= PSL2(pn) 6∼= SL2(pn). If there is a non-trivial subgroup A of G with

[V,A,A] = {1}, then [V,A] = [V,G] = {1}.

Proof. Since the Sylow 2-subgroups of PSL2(pn) are either abelian or dihedral and

the Sylow 2-subgroups of Ree(3n) are abelian, this follows from [Gor07, (I.3.8.4)].
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For p > 5, the pairs (G, V ) where G is a group acting faithfully on a module V

such that G is generated by elements which act quadratically on V were classified

by Thompson. Thompson’s results were extended to the prime 3 by work of Ho.

It seems imperative to emphasize that the these works predate the classification of

finite simple groups. For convenience, the version we use here is by Chermak and

utilizes the classification of finite simple groups, although as we stressed earlier,

these groups will only ever appear as local subgroups in any arguments.

Lemma 2.3.5. Suppose G is a K-group which has a strongly p-embedded subgroup

for p an odd prime and V be a faithful, irreducible GF(p)-module for G. Suppose

there is a p-subgroup A ≤ G such that [V,A,A] = {1} and G = 〈AG〉. Then one

of the following occurs:

(i) G ∼= SL2(pn) where p is any odd prime;

(ii) G ∼= (P)SU3(pn) where p is any odd prime;

(iii) G ∼= 2 · Alt(5) ∼= SL2(5) when p = 3; or

(iv) G ∼= 21+4
− .Alt(5) when p = 3.

Proof. This follows from [Che02], [Che04], Lemma 2.3.4 and a comparison with

the groups listed in Proposition 2.1.24, Proposition 2.1.25.

More than just a quadratic module, the natural module for SL2(pn) provides the

minimal example of an FF-module. FF-modules are named due to how they arise

as counterexamples to Thompson factorization (see [Asc00, 32.11]), which aims to

factorize a group into two p-local subgroups. One of these p-local subgroups is the

normalizer of the Thompson subgroup of a fixed Sylow p-subgroup. Independent of
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FF-modules, the Thompson subgroup is incredibly useful in studying the structure

of a p-group and will play an important role in the analysis of subgroups of Sylow

p-subgroups of G2(pn) and PSU4(pn) later.

Definition 2.3.6. Let S be a finite p-group. Set A(S) to be the set of all

elementary abelian subgroups of S of maximal rank. Then the Thompson subgroup

of S is defined as J(S) := 〈A | A ∈ A(S)〉.

Proposition 2.3.7. Let S be a finite p-group. Then the following hold:

(i) J(S) is a non-trivial characteristic subgroup of S;

(ii) for A ∈ A(S), A = Ω(CS(A));

(iii) Ω(CS(J(S))) = Ω(Z(J(S))) = ⋂
A∈A(S) A; and

(iv) if J(S) ≤ T ≤ S, then J(S) = J(T ).

Proof. See [KS06, 9.2.8].

Definition 2.3.8. Let G be a finite group and V a GF(p)-module. If there exists

A ≤ G such that

(i) A/CA(V ) is an elementary abelian p-group;

(ii) [V,A] 6= {1}; and

(iii) |V/CV (A)| 6 |A/CA(V )|

then V is a failure to factorize module (abbrev. FF-module) for G and A is an

offender on V .
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The following proposition describes a fairly natural situation in which one can

identify an FF-module from a group failing to satisfy Thompson factorization.

This result is well known and the proof is standard (see [KS06, 9.2]).

Proposition 2.3.9. Let G be a finite group with S ∈ Sylp(G) and F ∗(G) = Op(G).

Set V := 〈Ω(Z(S))G〉. Then Op(G) = Op(CG(V )) and Op(G/CG(V )) = {1}.

Furthermore, if Ω(Z(S)) < V and J(S) 6≤ CS(V ) then V is an FF-module for

G/CG(V ).

As a counterpoint to the determination of groups with a strongly p-embedded

subgroup, whenever a group with a strongly p-embedded subgroup has an

associated FF-module, we can almost completely determine the group and its

action without the need for a K-group hypothesis. Indeed, the following lemma

relies only on a specific case in the Local C(G, T )-theorem [BHS06].

Lemma 2.3.10. Suppose G = Op′(G) has a strongly p-embedded subgroup and a

faithful FF-module V . Then G ∼= SL2(pn) and V/CV (Op(G)) is the natural module.

Proof. See [Hen10, Theorem 5.6].

Given a way to characterize a natural SL2(pn)-module, it is a natural to ask

whether we can characterize some of the other modules, particularly those

irreducible modules described in Section 2.2.

Lemma 2.3.11. Let G ∼= SL2(pn) and S ∈ Sylp(G). Suppose that V is a module

for G over GF(p) such that [V, S, S] = {1} and such that [V,Op(G)] 6= {1}. Then

[V/CV (Op(G)), Op(G)] is a direct sum of natural modules for G.

Proof. See [Che04, Lemma 2.2].
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Lemma 2.3.12. Let G ∼= SL2(pn), S ∈ Sylp(G) and V an irreducible

GF(p)G-module. If |V | 6 p3n then both CV (S) and V/[V, S] are irreducible as

NG(S)-modules, |CV (S)| = |V/[V, S]| and either

(i) V is natural SL2(pn)-module for G ∼= SL2(pn), |V | = p2n and |CV (S)| = pn;

(ii) V is natural Ω−4 (pn/2), n is even, |V | = p2n and |CV (S)| = pn/2;

(iii) V is natural Ω3(pn), p is odd, |V | = p3n and |CV (S)| = pn; or

(iv) V is a triality module, n = 3r for some r ∈ N, |V | = p8n/3 and |CV (S)| =

pn/3.

Proof. This is [CD91, Lemma 2.6].

We may relax the restrictions in the definition of an FF-module to allow for a

greater class of module setups. An an example, the natural modules for SU3(pn)

and Sz(2n) are not FF-modules but satisfy the ratio |V/CV (A)| 6 |A/CA(V )|2 for

V the module and A an elementary abelian p-group. Such modules are referred to

as 2F-modules.

Definition 2.3.13. Let G be a finite group and V a GF(p)-module. If there exists

A ≤ G such that

(i) A/CA(V ) is an elementary abelian p-group;

(ii) [V,A] 6= {1}; and

(iii) |V/CV (A)| 6 |A/CA(V )|2

then V is 2F-module for G.
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If G is an almost quasisimple group with a 2F module V , then both G and V

are known by work of Guralnick, Lawther and Malle [GM02], [GM04], [GLM07].

Importantly for applications in this work, even when G is not almost quasisimple,

we have good idea of the structure of groups which have a strongly p-embedded

subgroup and a 2F-module which admits a quadratically acting element.

First we introduce two groups that have associated GF(p)-modules which exhibit

2F-action and arise heavily in the local actions in later chapters. In addition, we

provide some “characterizations” of these groups, and some structural properties

of the groups and the associated 2F-module we are interested in.

Lemma 2.3.14. There is a unique group G of shape (3 × 3) : 2 which has a

faithful quadratic 2F-module V , namely the generalized dihedral group of order 18.

Moreover, for S ∈ Syl2(G) and V an associated faithful quadratic 2F-module, the

following hold:

(i) |V | = 24 and G is unique up to conjugacy in GL4(2);

(ii) {G,Dih(18)} = {H | |H| = 18, O2(H) = {1} and H = O2′(H)};

(iii) there are exactly four overgroups of S in G which are isomorphic to Sym(3),

any two of which generate G; and

(iv) CGL4(2)(G) = {1} and |OutGL4(2)(G)| = 4.

Proof. This follows directly from calculations in MAGMA, working explicitly with

matrices in GL4(2) and comparing with the Small Groups Library.

Indeed, in the above lemma G is also isomorphic to PSU3(2)′ and is listed in the

Small Groups Library as SmallGroup(18, 4).
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Lemma 2.3.15. There is a unique group G of shape (Q8 × Q8) : 3 which has a

faithful quadratic 2F-module V . Moreover, for S ∈ Syl3(G) and V an associated

faithful quadratic 2F-module, the following hold:

(i) |V | = 34 and G is determined uniquely up to conjugacy in GL4(3);

(ii) G is the unique group of order 24.3 or 26.3 such that O3(G) = {1}, Z(G) 6=

{1}, G = O3′(G) and, if the order is 26.3, there exists at least two distinct

normal subgroups of G of order 8;

(iii) there are exactly five overgroups of S in G which are isomorphic to SL2(3),

any two of which generate G;

(iv) NO2(G)(S) = Z(G) ∼= 2× 2;

(v) Aut(G) = AutGL4(3)(G), CGL4(3)(G) = Z(G) and |Out(G)| = 22.3; and

(vi) if U < V is NG(S)-invariant and |U | = 3, then |〈UG〉| = 9.

Proof. This follows directly from calculations in MAGMA, working explicitly with

matrices in GL4(3) and comparing with the Small Groups Library.

The above group is listed in the Small Groups Library as SmallGroup(192, 1022).

We now give an important characterization of certain “small” groups which have

an associated non-trivial quadratic 2F-module. The proof of this result will be

broken up over a series of lemmas.

Lemma 2.3.16. Assume that G = Op′(G) is a K-group that has a strongly

p-embedded subgroup, S ∈ Sylp(G), V is a faithful GF(p)-module with

CV (Op(G)) = {1} and V = 〈CV (S)G〉. Furthermore, assume that mp(S) > 2
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and Op′(G) ≤ Z(G). If there is a p-element 1 6= x ∈ S such that [V, x, x] = {1}

and |V/CV (x)| = p2 then either:

(i) p is odd, G = L ∼= (P)SU3(p) and V is the natural module;

(ii) p is arbitrary, G ∼= SL2(p2) and V is the natural module; or

(iii) p = 2, G = L ∼= PSL2(4) and V is a natural Ω−4 (2)-module.

Proof. Applying the characterization in Proposition 2.1.25 and using Lemma 2.3.5

when p is odd, we deduce that G is a quasisimple group and G/Z(G) is isomorphic

to a simple rank 1 group of Lie type. It follows now from Lemma 2.3.4 that

G ∼= SL2(pn+1), (P)SU3(pn) or Sz(22n+1) for n > 1, and by [DS85, (5.10)] we may

assume that x ∈ Ω(Z(S)). Then, applying Lemma 2.2.1 (iv), (v), Lemma 2.2.2

(vi), (vii) and Lemma 2.2.3 (vi), we have that G is generated by three, four or

three conjugates of x respectively and as |V/CV (x)| = p2, we infer that that |V | 6

p6, p8 and 26 respectively. Since the minimal degree of a GF(p)-representation

is 2(n + 1), 6n or 4(2n + 1) respectively, we deduce that G ∼= (P)SU3(p) and

p > 3; or G ∼= SL2(p2). In the former case, since (P)SU3(p) is generated by

three conjugates of x by Lemma 2.2.2 (vi), it follows that |V | 6 p6 so that V is

a natural module and (i) holds. In the latter case, since SL2(p2) is generated by

at most three conjugates, |V | 6 p6 and comparing with Lemma 2.3.12, there is a

unique irreducible constituent within V , and as V is admits quadratic action, this

constituent is a natural SL2(p2)-module, or a natural Ω−4 (2)-module when p = 2.

Then using that CV (Op(G)) = {1}, Lemma 2.3.2 implies that V = [V,Op(G)] is

irreducible, yielding outcomes (ii) and (iii).

Lemma 2.3.17. Assume that G = Op′(G) is a K-group, S ∈ Sylp(G), V is a

faithful GF(p)-module with CV (Op(G)) = {1} and V = 〈CV (S)G〉. Furthermore,
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assume that mp(S) = 1, NG(S) = NG(Ω(Z(S))) is strongly p-embedded in G, and

G is not p-solvable. If there is a p-element 1 6= x ∈ S such that [V, x, x] = {1} and

|V/CV (x)| = p2 then either:

(i) p = 3, G = L ∼= 2 · Alt(5) or 21+4
− .Alt(5) and V is the unique irreducible

quadratic 2F-module of dimension 4; or

(ii) p is arbitrary, G = L ∼= SL2(p) and V is the direct sum of two natural

SL2(p)-modules.

Proof. Suppose first that p = 2. Applying Proposition 2.1.24, we deduce that

S is generalized quaternion and G = O2′(G)CG(Ω(S)). But now, CG(Ω(S)) =

NG(Ω(Z(S))) = NG(S) is solvable so that G itself is solvable, a contradiction

to the initial hypothesis. Hence, p is odd. Applying Lemma 2.3.5 and using

that G is not p-solvable, we deduce that for L := 〈xG〉, L/CL(U) ∼= SL2(p) for

p > 5, 2 · Alt(5) or 21+4
− .Alt(5) for U some non-trivial irreducible constituent

of V |L. Indeed, applying Proposition 2.1.24, G = L and CG(U) is a p′-group.

Now, by coprime action V = CV (CG(U)) × [V,CG(U)] and U ≤ CV (CG(U)).

Applying Lemma 2.3.10, if 2 · Alt(5) or 21+4
− .Alt(5) when p = 3, we have that

|U/CU(s)| = 32 so that [V,CG(U)] ≤ CV (s) so that [V,CG(U)] ≤ CV ((G)) = {1}

and as V is a faithful module, CG(U) = {1}. Indeed, by Lemma 2.3.2 and using

that CV (G) = {1}, V = U is an irreducible module and outcome (i) holds.

Hence, we may assume that G/CG(U) ∼= SL2(p) and p > 5. Then CV (CG(U)) is a

quadratic module for G/CG(U) and Lemma 2.3.11 and using that CV (G) = {1},

CV (CG(U)) is a direct sum of at most two natural SL2(p)-modules. Suppose

first that CV (CG(U)) is a natural SL2(p)-modules so that U = CV (CG(U))

and |U/CU(s)| = p. Then |[V,CG(U)]/C[V,CG(U)](s)| = p and applying

49



Lemma 2.3.10, we deduce that G/CG([V,CG(U)]) ∼= SL2(p) and [V,CG(U)] is a

natural SL2(p)-module. Since [V,CG(U)] is acted upon non-trivially by CG(U)

and CG(U) is a p′−group, we conclude that CG([V,CG(U)])CG(U)/CG(U) =

Z(G/CG(U)), CG([V,CG(U)])CG(U)/CG([V,CG(U)]) = Z(G/CG([V,CG(U)])) and

G/CG([V,CG(U)]) ∩ CG(U) is a central extension of PSL2(p) by a fours group.

Since the 2-part of the Schur multiplier of PSL2(p) has order 2, G is perfect and

G = Op′(G), this is a contradiction. Suppose now that CV (CG(U)) is a direct

sum of two natural SL2(p)-modules. Then |CV (CG(U))/CCV (CG(U))(s)| = p2 and

we deduce that [V,CG(U)] ≤ CV (s) so that [V,CG(U)] ≤ CV ((G)) = {1} and as

V is a faithful module, CG(U) = {1} and outcome (ii) holds.

Lemma 2.3.18. Assume that G = Op′(G), S ∈ Sylp(G), V is a faithful

GF(p)-module with CV (Op(G)) = {1} and V = 〈CV (S)G〉. Furthermore, assume

that mp(S) = 1, NG(S) = NG(Ω(Z(S))) is strongly p-embedded in G, and G

is p-solvable. If there is a p-element 1 6= x ∈ S such that [V, x, x] = {1} and

|V/CV (x)| = p2 then, setting L := 〈xG〉, one of the following holds:

(i) p = 2, L ∼= SU3(2)′, G is isomorphic to a subgroup of SU3(2) which

contains SU3(2)′ and V is a natural SU3(2)-module viewed as an irreducible

GF(2)G-module by restriction;

(ii) p = 2, L ∼= Dih(10), G ∼= Dih(10) or Sz(2) and V is a natural Sz(2)-module

viewed as an irreducible GF(2)G-module by restriction;

(iii) p = 3, G = L ∼= (Q8 × Q8) : 3 and V = V1 × V2 where Vi is a natural

SL2(3)-module for G/CG(Vi) ∼= SL2(3);

(iv) p = 2, G = L ∼= (3 × 3) : 2 and V = V1 × V2 where Vi is a natural

SL2(2)-module for G/CG(Vi) ∼= Sym(3); or
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(v) p = 2, L ∼= (3× 3) : 2, G ∼= (3× 3) : 4, V is irreducible as a GF(2)G-module

and V |L = V1 × V2 where Vi is a natural SL2(2)-module for L/CL(Vi) ∼=

Sym(3).

Proof. Let L := 〈xG〉 so that L = [Ω(S), Op′(G)]Ω(S) by Proposition 2.1.24.

Since NG(S) = NG(Ω(S)), we deduce that G = LS so that Op(L) = Op(G) =

[Ω(S), Op′(G)] and CV (Op(L)) = {1}. Moreover, any element of S centralizes

Ω(Z(S)) ∈ Sylp(L) but does not centralize L, for otherwise, since S contains a

unique subgroup of order p, [Ω(Z(S)), L] = {1} and Ω(Z(S)) E G. Thus, S/Ω(S)

embeds into Out(L). Finally, using Lemma 2.3.2, V = [V,Op(L)] and so both

L and V are determined in [Che01, Lemma 4.3]. We examine each of the cases

individually, using MAGMA for the explicit calculation in Out(L).

First, if L ∼= SL2(p) then it follows from Lemma 2.2.1 (viii) that OutS(L) = {1},

L = G and V is a direct sum of two natural modules. If L ∼= Dih(10) then

Aut(L) ∼= Sz(2) and it follows that G = Dih(10) or Sz(2), and V is the restriction

of a natural Sz(2)-module to G.

Suppose that L ∼= SU3(2)′. Then a Sylow 2-subgroup of Aut(L) is isomorphic

to a semidihedral group of order 16 and since mp(S) = 1, |S| 6 8 and S is

either cyclic or quaternion. Moreover, 54 6 |G| 6 216 and |G| = 54 if and

only if G = L ∼= SU3(2)′. Suppose that |G| = 216 and S is cyclic. Utilizing

the small group library in MAGMA, we identify a unique group H such that

〈Ω(S)H〉 ∼= SU3(2)′. But in such a group, NH(T ) < NH(Ω(T )) for T ∈ Syl2(H),

a contradiction to our hypothesis. Employing similar methods when |G| = 108,

or when |G| = 216 and S is quaternion, gives that G is isomorphic to any index

2 subgroup of SU3(2) resp. G ∼= SU3(2). In all cases, V is the restriction of a
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natural SU3(2)-module to G.

Suppose that L ∼= (Q8 × Q8) : 3. Since G acts faithfully on V , of order 34, G

embeds into GL4(3) and since the embedding of L is uniquely determined up to

conjugacy in GL4(3), it follows that G embeds into its normalizer in GL4(3). For

H the image of L in GL4(3), we have that a Sylow 3-subgroup of NGL4(3)(H) is

elementary abelian of order 9. Since mp(S) = 1, we have that G = L in this case

and V is as described in [Che01, Lemma 4.3].

Finally, suppose that L ∼= (3 × 3) : 2. Since G acts faithfully on V , of order 24,

G embeds into GL4(2) and since the embedding of L is uniquely determined up

to conjugacy in GL4(2), it follows that G embeds into the normalizer of its image.

For H the image of L in GL4(2), we have that a Sylow 2-subgroup of NGL4(2)(H)

is a dihedral group of order 8 and there is a unique proper overgroup of H in

NGL4(2)(H) with a cyclic Sylow 2-subgroup. Moreover, this group is irreducible in

GL4(2), is defined uniquely up to conjugacy in GL4(2) and is isomorphic to any

index 2 subgroup of PSU3(2). We denote this group (3× 3) : 4 and it follows that

either G = L ∼= (3×3) : 2 or G ∼= (3×3) : 4. then V is as given in [Che01, Lemma

4.3].

The following proposition is the summation of the previous three lemmas. This

situation occurs frequently throughout the later sections of this work.

Proposition 2.3.19. Assume that G = Op′(G) is a K-group that has a

strongly p-embedded subgroup, S ∈ Sylp(G), V is a faithful GF(p)-module with

CV (Op(G)) = {1} and V = 〈CV (S)G〉. Furthermore, assume that NG(S) =

NG(Ω(Z(S))) and if mp(S) > 2, assume that Op′(G) ≤ Z(G). Suppose that there

is a p-element 1 6= x ∈ S such that [V, x, x] = {1} and |V/CV (x)| = p2. Setting
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L := 〈xG〉 one of the following holds:

(i) p is odd, G = L ∼= (P)SU3(p) and V is the natural module;

(ii) p is arbitrary, G ∼= SL2(p2) and V is the natural module;

(iii) p = 2, G = L ∼= PSL2(4) and V is a natural Ω−4 (2)-module;

(iv) p = 3, G = L ∼= 2 · Alt(5) or 21+4
− .Alt(5) and V is the unique irreducible

quadratic 2F-module of dimension 4;

(v) p is arbitrary, G = L ∼= SL2(p) and V is the direct sum of two natural

SL2(p)-modules;

(vi) p = 2, L ∼= SU3(2)′, G is isomorphic to a subgroup of SU3(2) which

contains SU3(2)′ and V is a natural SU3(2)-module viewed as an irreducible

GF(2)G-module by restriction;

(vii) p = 2, L ∼= Dih(10), G ∼= Dih(10) or Sz(2) and V is a natural Sz(2)-module

viewed as an irreducible GF(2)G-module by restriction;

(viii) p = 3, G = L ∼= (Q8 × Q8) : 3 and V = V1 × V2 where Vi is a natural

SL2(3)-module for G/CG(Vi) ∼= SL2(3);

(ix) p = 2, G = L ∼= (3 × 3) : 2 and V = V1 × V2 where Vi is a natural

SL2(2)-module for G/CG(Vi) ∼= Sym(3); or

(x) p = 2, L ∼= (3× 3) : 2, G ∼= (3× 3) : 4, V is irreducible as a GF(2)G-module

and V |L = V1 × V2 where Vi is a natural SL2(2)-module for L/CL(Vi) ∼=

Sym(3).
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While most of the groups and modules above have been described earlier in this

section, we list some properties of the groups and modules occurring in (i) and

(ix) above.

Lemma 2.3.20. Suppose that G ∼= 2 · Alt(5) or 21+4
− .Alt(5), S ∈ Syl3(G) and V

is the associated faithful quadratic 2F-module. Then CV (S) = [V, S] has order 32

and V/[V, S] and [V, S] are irreducible as GF(3)NG(S)-modules.

Proof. This follows directly from calculations in MAGMA, working explicitly with

the matrices in Sp4(3).

Lemma 2.3.21. Suppose that G ∼= (3×3) : 4, S ∈ Syl2(G) and V is the associated

faithful quadratic 2F-module. Then the following hold:

(i) [V, S] has order 23;

(ii) [V,Ω(S)] = CV (Ω(S)) = [V, S, S] has order 22; and

(iii) CV (S) = [V, S,Ω(S)] = [V,Ω(S), S] = [V, S, S, S] has order 2.

Proof. This follows directly from calculations in MAGMA, working explicitly with

the matrices in GL4(2).

Lemma 2.3.22. Suppose that (G, V ) satisfies the hypothesis of Proposition 2.3.19.

In addition, assume that V is generated as a GF(p)G-module by an

NG(S)-invariant subspace of order p. Then G ∼= PSL2(4),Dih(10), Sz(2), (3×3) : 2

or (3× 3) : 4 and V is as described in Proposition 2.3.19.

Proof. We apply Proposition 2.3.19 to get the list of candidates for G and V .

By Lemma 2.2.13 (iii), Lemma 2.2.6 (vi) and Lemma 2.3.20, if (G, V ) satisfy (i),
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(ii), (iv) or (vi), then there are no NG(S)-invariant subspaces of order p. By

Lemma 2.2.7 and Lemma 2.3.15 (vi), if (G, V ) satisfy (v) or (viii) then V is not

generated by a subspace of order p. This leaves outcomes (iii), (vii), (ix) and (x),

as required.

We now generalize even further than quadratic or cubic action by investigating the

minimal polynomial of p-elements in a representation, noticing that in quadratic

and cubically acting elements, the minimal polynomial is of degree 2 and 3

respectively. We cannot hope to make such strong statements as in the earlier

cases, but for larger primes and solvable groups, we have decent control due to the

Hall–Higman theorem.

Theorem 2.3.23 (Hall–Higman Theorem). Suppose that G is p-solvable group

with Op(G) = {1} and V a faithful GF(p)-module for G. If x ∈ G has order pn

and [V, x; r] = {1} then one of the following holds:

(i) r = pn;

(ii) p is a Fermat prime, the Sylow 2-subgroups of G are non-abelian and r >

pn − pn−1; or

(iii) p = 2, the Sylow q-subgroups of G are non-abelian for some Mersenne prime

q = 2m − 1 < 2n and r > 2n − 2n−m.

Proof. See [HH56, Theorem B].

Whenever p > 5, applying the Hall–Higman theorem to the situation where the

group G has a strongly p-embedded subgroup and some associated cubic module,

we can characterize G completely. As intimated in Section 2.1, a nice way to
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impose cubic action, particularly in the amalgam method, is through the use of

critical subgroups.

Corollary 2.3.24. Suppose that G = Op′(G) is a K-group which has a strongly

p-embedded subgroup, S ∈ Sylp(G) and V is a faithful GF(p)-module. Suppose

that p > 5 and there is s ∈ S of order pn such that [V, s, s, s] = {1}. Then

G ∼= (P)SL2(pn) or (P)SU3(pn) for any prime p > 5, or p = 5, G ∼= 3 · Alt(6) or

3 · Alt(7) and for W some irreducible constituent of V , |W | > 56.

Proof. Suppose first that mp(S) = 1. Then, by [Gor07, I.5.4.10 (ii)], S is cyclic

and so we may as well assume that [V,Ω(S),Ω(S),Ω(S)] = {1}. Suppose first that

G is p-solvable. Since pn − pn−1 = pn−1(p − 1) > 4, the Hall–Higman theorem

implies that Op(G) 6= {1}, a contradiction since G has a strongly p-embedded

subgroup.

Suppose now that mp(S) = 1 and G is not p-solvable. Since G = Op′(G), by

Proposition 2.1.24 we have that G/Op′(G) is a simple group with a cyclic Sylow

p-subgroup. Form X := Ω(S)Op′(G). Then X is a p-solvable group and V is a

faithful module for X by restriction. Since p > 5, pn − pn−1 = pn−1(p − 1) > 4

and by the Hall–Higman theorem Op(X) 6= {1}. In particular, Ω(S) E X and

[Op′(G),Ω(S)] ≤ Op′(G) ∩ Ω(S) = {1}. But then, since G/Op′(G) is simple,

[Op′(G), G] = [Op′(G), 〈Ω(S)G〉] = {1} and Op′(G) ≤ Z(G). Hence, G is a

quasisimple group with a cyclic Sylow p-subgroup such that the degree of the

minimal polynomial of some p-element is 3. Such groups and their associated

modules are determined in [Zal99].

Suppose that mp(S) > 2 so that G/Op′(G) is determined by Proposition 2.1.25,

and let X = Op′(G)Ω(Z(S)). Unless G/O5′(G) ∼= Sz(32) : 5, we have that for any

56



1 6= s ∈ Ω(S), G = 〈sG〉. In this case, forming X := 〈s〉Op′(G), we have that

X acts faithfully on V with s acting cubically, and by the Hall–Higman theorem,

〈s〉 E X. But then [s,Op′(G)] ≤ 〈s〉 ∩ Op′(G) = {1}. Thus, [G,Op′(G)] =

[〈sG〉, Op′(G)] = [s,Op′(G)]G = {1} and Op′(G) ≤ Z(G). Since G = Op′(G) is

perfect, G is a perfect central extension of G/Op′(G). If G/Op′(G) is isomorphic

to a rank 1 simple group of Lie type in characteristic p, then the result follows

from Lemma 2.2.1 (vii) and Lemma 2.2.2 (ix). If G/Op′(G) ∼= Alt(2p) then, as

p > 5, G has no faithful modules which witness cubic action by [KZ04]. Hence, by

Proposition 2.1.25, we are left with a finite number of perfect p′-central extensions

of simple groups. We verify that none of these groups have a faithful module which

witness cubic action using MAGMA, although there exists results in the literature

which substantiate this claim.

So assume that G/O5′(G) ∼= Sz(32) : 5. Then, for s ∈ Ω(S), we have that for

L := 〈sG〉, L/O5′(L) ∼= Sz(32) and following the reasoning above, we have that

O5′(L) ≤ Z(L). Since the Schur multiplier of Sz(32) is trivial and Sz(32) is perfect,

we have that O5′(L) ∼= Sz(32). But O5′(L) acts faithfully on V , with s ∈ S ∩ L

acting cubically, and since Sz(32) has no cubic modules, we have a contradiction.

Hence, the result.
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CHAPTER 3

FUSION SYSTEMS

In this chapter, we begin by setting up concepts, terminologies and elementary

results related to fusion systems, with an emphasis on saturated fusion systems.

All of these results are available in the literature, and we follow the standard

conventions there. Then, we provide results which aid in determining automizers

of essential subgroups of fusion systems. These results are crucial in the

determination of fusion systems in the Main Theorem, as well as Theorem D and

Theorem E. While these results are probably well known among those working on

fusion systems, some of them do not appear to be formally recorded anywhere

and so we take the opportunity here to write them down, along with proofs.

Finally in this section, we unearth some exotic fusion systems supported on a

Sylow 3-subgroup of the sporadic simple group F3. One of these exotic systems

appears as a configuration when applying the amalgam method later in this work

and so, we take time to construct this system here, as well as proving some results

about it, to ease presentation in later chapters.

58



3.1 An Introduction to Fusion Systems

In this section, we set up notation and terminology, and list some properties

of fusion systems. The standard references for the study of fusion systems are

[AKO11] and [Cra11] and most of what follows may be gleaned from these texts.

Definition 3.1.1. Let G be a finite group with S ∈ Sylp(G). The fusion category

of G over S, written FS(G), is the category with object set Ob(FS(G)) := {Q :

Q ≤ S} and for P,Q ≤ S, MorFS(G)(P,Q) := HomG(P,Q), where HomG(P,Q)

denotes maps induced by conjugation by elements of G. That is, all morphisms in

the category are induced by conjugation by elements of G.

Definition 3.1.2. Let S be a p-group. A fusion system F over S is a category

with object set Ob(F) := {Q : Q ≤ S} and whose morphism set satisfies the

following properties for P,Q ≤ S:

• HomS(P,Q) ⊆ MorF(P,Q) ⊆ Inj(P,Q); and

• each φ ∈ MorF(P,Q) is the composite of an F -isomorphism followed by an

inclusion,

where Inj(P,Q) denotes injective homomorphisms between P and Q. To motivate

the group analogy, we write HomF(P,Q) := MorF(P,Q) and AutF(P ) :=

HomF(P, P ).

Two subgroups of S are said to be F-conjugate if they are isomorphic as objects

in F . We write QF for the set of all F -conjugates of Q. We say a fusion system

is realizable if there exists a finite group G with S ∈ Sylp(G) and F = FS(G).

Otherwise, the fusion system is said to be exotic.
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Definition 3.1.3. Let F be a fusion system on a p-group S. ThenH is a subsystem

of F , written H ≤ F , on a p-group T if T ≤ S, H ⊆ F as sets and H is itself a

fusion system. Then, for F1,F2 subsystems of F , write 〈F1,F2〉 for the smallest

subsystem of F containing F1 and F2.

Following are the most important concepts concerning p-subgroups of a fusion

system F , at least for the purposes of this thesis.

Definition 3.1.4. Let F be a fusion system over a p-group S and let Q ≤ S. Say

that Q is

• fully F-normalized if |NS(Q)| ≥ |NS(P )| for all P ∈ QF ;

• fully F-centralized if |CS(Q)| ≥ |CS(P )| for all P ∈ QF ;

• fully F-automized if AutS(Q) ∈ Sylp(AutF(Q));

• receptive in F if for each P ≤ S and each φ ∈ IsoF(P,Q), setting

Nφ = {g ∈ NS(P ) : φcg ∈ AutS(Q)},

there is φ ∈ HomF(Nφ, S) such that φ|P = φ;

• S-centric if CS(Q) = Z(Q) and F-centric if P is S-centric for all P ∈ QF ;

• S-radical if Op(Out(Q)) ∩OutS(Q) = {1};

• F-radical if Op(OutF(Q)) = {1}; or

• F-essential if Q is F -centric, fully F -normalized and OutF(Q) contains a

strongly p-embedded subgroup.
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If it is clear which fusion system we are working in, we will refer to subgroups as

being fully normalized (centralized, centric etc.) without the F prefix.

For a fusion system F , we set E(F) to be the set of essential subgroups of F and

note that essential subgroups of S are fully F -normalized, F -centric, F -radical

subgroups by definition. We also remark that any F -radical subgroup is also

S-radical.

We mostly care about saturated fusion systems as they most closely parallel groups

and have the most interesting applications.

Definition 3.1.5. Let F be a fusion system over a p-group S. Then F is saturated

if the following conditions hold:

(i) Every fully F -normalized subgroup is also fully F -centralized and fully

F -automized.

(ii) Every fully F -centralized subgroup is receptive in F .

By a theorem of Puig [Pui76], the fusion category of a finite group FS(G) is a

saturated fusion system.

From this point on, we implicitly assume that the fusion systems we study are

saturated, although some of the results we describe apply in wider contexts and

can even be used to determine whether or not a fusion system is saturated.

Definition 3.1.6. A local CK-system is a saturated fusion system F on a p-group

S such that AutF(P ) is a K-group for all P ≤ S.

Local CK-systems provides a means to apply the results from Chapter 2 which

relied on aK-group hypothesis. This allows for minimal counterexample arguments
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in fusion systems and provides a link between fusion systems and the classification

of finite simple groups. That is, if G is a finite group which is a counterexample

to the classification with |G| minimal subject to these constraints, then FS(G) is

a local CK-system for S ∈ Sylp(G).

We now present arguably the most important tool in classifying saturated fusion

systems. Because of this, we need only investigate the local action on a relatively

small number of p-subgroups to obtain a global characterization of a saturated

fusion system.

Theorem 3.1.7 (Alperin – Goldschmidt Fusion Theorem). Let F be a saturated

fusion system over a p-group S. Then

F = 〈AutF(Q) | Q is essential or Q = S〉.

Proof. See [AKO11, Theorem I.3.5].

Along these lines, another important notion is for a p-subgroup to be normal in a

saturated fusion system.

Definition 3.1.8. Let F be a fusion systems over a p-group S and Q ≤ S. Say

that Q is normal in F if Q E S and for all P,R ≤ S and φ ∈ HomF(P,R), φ

extends to a morphism φ ∈ HomF(PQ,RQ) such that φ(Q) = Q.

It may be checked that the product of normal subgroups is itself normal. Thus,

we may talk about the largest normal subgroup of F which we denote Op(F) (and

occasionally refer to as the p-core of F). Further, it follows immediately from the

saturation axioms that any subgroup normal in S is fully normalized and fully

centralized.
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Definition 3.1.9. Let F be a fusion system over a p-group S and let Q be a

subgroup. The normalizer fusion subsystem of Q, denoted NF(Q), is the largest

subsystem of F , supported over NS(Q), in which Q is normal.

It is clear from the definition that if F is the fusion category of a group G i.e.

F = FS(G), then NF(Q) = FNS(Q)(NG(Q)). The following result is originally

attributed to Puig [Pui06].

Theorem 3.1.10. Let F be a saturated fusion system over a p-group S. If Q ≤ S

is fully F-normalized then NF(Q) is saturated.

Proof. See [AKO11, Theorem I.5.5].

Definition 3.1.11. Let F be a fusion system over a p-group S and P ≤ Q ≤ S.

Say that P is F-characteristic in Q if AutF(Q) ≤ NAut(Q)(P ).

Plainly, if Q E F and P is F -characteristic in Q, then P E F .

A slightly weaker notion of normality in fusion systems in strong closure.

Definition 3.1.12. Let F be a fusion system over a p-group S. Then Q is strongly

closed in F if xα ≤ Q for all α ∈ HomF(x, S) whenever x ∈ Q.

We now present a link between normal subgroups of a saturated fusion system F

and its essential subgroups.

Proposition 3.1.13. Let F be a saturated fusion system over a p-group S. Then

Q is normal in F if and only if Q is contained in each essential subgroup, Q is

AutF(E)-invariant for any essential subgroup E of F and Q is AutF(S)-invariant.

Proof. See [AKO11, Proposition I.4.5].
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As for finite groups, we desire a more global sense of normality in fusion systems,

not just restricted to p-subgroups. That is, we are interested in subsystems of a

fusion system F which are normal.

Definition 3.1.14. Let F be a saturated fusion system over a p-group S. A fusion

system E is weakly normal in F if the following conditions hold:

(i) E is a saturated subsystem of F over T ≤ S;

(ii) T is strongly F -closed in S;

(iii) αE = E for all α ∈ AutF(T ); and

(iv) for each P ≤ T and each φ ∈ HomF(P, T ) there are α ∈ AutF(T ) and

φ0 ∈ HomE(P, T ) such that φ = α ◦ φ0.

A fusion system E is normal in F , denoted E E F , if E is weakly normal in F and

each α ∈ AutE(T ) extends to some α ∈ AutF(TCS(T )) which fixes every coset of

Z(T ) in CS(T ).

Conditions (iii) and (iv) are referred to as the invariance condition and Frattini

condition respectively. As one would hope, for a p-subgroup Q, if Q E F , then

FQ(Q) E F . As is the case with groups, we refer to a saturated fusion system as

simple if it contains no proper non-trivial normal subsystems.

We shall describe some important subsystems associated to a saturated fusion

which have a natural analogues in finite group theory. More details on the

construction of such subsystems may be found in Section I.7 of [AKO11].

Definition 3.1.15. Let F be a saturated fusion system on a p-group S. Say a
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subsystem E has index prime to p in F if E is a fusion system on S and AutE(P ) ≥

Op′(AutF(P )) for all P ≤ S.

Moreover, by [AKO11, Theorem I.7.7], there is a unique minimal saturated fusion

system of index prime to p in F denoted by Op′(F) and Op′(F) is a normal

subsystem of F .

Definition 3.1.16. Let F be a saturated fusion system on a p-group S. Then the

hyperfocal subgroup hyp(F) of F is defined as

hyp(F) := 〈g−1α(g) | g ∈ P ≤ S, α ∈ Op(AutF(P ))〉.

A subsystem E has p-power index in F if E is a fusion system on T ≥ hyp(F) and

AutE(P ) ≥ Op(AutF(P ) for all P ≤ S.

Moreover, by [AKO11, Theorem I.7.4], there is a unique minimal fusion subsystem

of p-power index in F denoted by Op(F), over hyp(F), and Op(F) is a normal

subsystem of F .

Definition 3.1.17. A saturated fusion system is reduced if Op(F) = {1} and

F = Op(F) = Op′(F).

Naturally, an important consideration in fusion systems is the notion of

isomorphism. After defining what isomorphism means in the context of fusion

systems, it follows readily that the “sensible” properties hold, which we state

below.

Definition 3.1.18. Let F be a fusion system on a p-group S and E a fusion system

on a p-group T . A morphism φ : F → E is a tuple (φS, φP,Q | P,Q ≤ S) such that

φS : S → T is a group homomorphism and φP,Q : HomF(P,Q) → HomE(Pφ,Qφ)
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is such that αφS = φS(αφP,Q) for all α ∈ HomF(P,Q).

Say that φ is injective if φS : S → T is injective, and φ is surjective if φS is surjective

and, for all P,Q ≤ S, φP0,Q0 : HomF(P0, Q0)→ HomE(Pφ,Qφ) is surjective, where

P0, Q0 denote the preimages in S of Pφ,Qφ. Then, φ is an isomorphism of fusion

systems if φ : F → E is an injective, surjective morphism.

Lemma 3.1.19. Let G ∼= H be finite groups with S ∈ Sylp(G) and T ∈ Sylp(H).

Then FS(G) ∼= FT (H).

Lemma 3.1.20. Let F = FS(G) be a saturated fusion system and set G =

G/Op′(G). Then FS(G) ∼= FS(G).

In order to investigate the local actions in a saturated fusion system, and in

particular in its normalizer subsystems, it will often be convenient to work in

a purely group theoretic context. The model theorem guarantees that we may do

this for a certain class of p-subgroups of a saturated fusion system F .

Theorem 3.1.21 (Model Theorem). Let F be a saturated fusion system over a

p-group S. Fix Q ≤ S which is F-centric and normal in F . Then the following

hold:

(i) There are models for F .

(ii) If G1 and G2 are two models for F , then there is an isomorphism φ : G1 →

G2 such that φ|S = IdS.

(iii) For any finite group G containing S as a Sylow p-subgroup such that Q ≤ G,

CG(Q) ≤ Q and AutG(Q) = AutF(Q), there is β ∈ Aut(S) such that β|Q =

IdQ and FS(G) = βF . Thus, there is a model for F which is isomorphic to

G.
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Proof. See [AKO11, Theorem I.4.9].

Fusion systems satisfying the hypothesis of the above theorem are referred to as

constrained fusion systems. It is clear that if E is an essential subgroup of F , E is

a centric normal subgroup of NF(E), NF(E) is constrained and there is a model

G for NF(E) with Op(G) = E.

We record two further results regarding the saturation of fusion systems. The first

describes a situation in which a certain class of essentials are excised out. This

has been referred to as “pruning” in the literature.

Lemma 3.1.22. Suppose that F is a saturated fusion system on S and P is an

F-essential subgroup of S. Let C be a set of F-class representatives of F-essential

subgroups with P ∈ C. Assume that if Q < P then Q is not S-centric. Letting

HF(P ) be the subgroup of AutF(P ) which is generated by F-automorphisms of P

which extend to F-isomorphisms between strictly larger subgroups of S, if HF(P ) ≤

K ≤ AutF(P ), then G = 〈AutF(S), K,AutF(E) | E ∈ C \ {P}〉 is saturated.

Proof. See [PS21, Lemma 6.4].

We now provide the results promising the opposite situation, where one can append

suitably small essential subgroups to a saturated fusion system, while maintaining

saturation.

Theorem 3.1.23. Let F0 be a saturated fusion system on a finite p-group S. Let

V ≤ S be a fully F0-normalized subgroup, set H = OutF0(V ) and let ∆̃ ≤ Out(V )

be such that H is a strongly p-embedded subgroup of ∆̃. For ∆ the full preimage

of ∆̃ in Aut(V ), write F = 〈F0,∆〉. Assume further that
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(i) V is F0-centric and minimal under inclusion amongst all F-centric

subgroups; and

(ii) no proper subgroup of V is F0-essential.

Then F is saturated.

Proof. See [Sem14, Theorem C].

3.2 Controlling Automizers of Essential

Subgroups

With the aim of applying the Alperin–Goldschmidt fusion theorem, we present the

following lemmas which provide the main tools for determining whether a p-group

is an essential subgroup of saturated fusion system F .

Lemma 3.2.1. Let S be a p-group, E ≤ S and A ≤ Aut(E). Set {1} = E0 E

E1 E E2 E . . . E Em = E such that, for all 0 ≤ i ≤ m, Eiα = Ei for each α ∈ A.

Let Q ≤ AutS(E) with the property [Q,Ei] ≤ Ei−1 for all 1 ≤ i ≤ m.

(i) If A = Aut(E) and E is S-radical, then Q ≤ Inn(E).

(ii) If F is a saturated fusion system on S, E is F-radical and AutF(E) ≤ A,

then Q ≤ Inn(E).

Proof. We apply Lemma 2.1.9 to E, Q and A to deduce that in both (i) and (ii),

Q ≤ Op(A) ∩ AutS(E). In (i), since E is S-radical, it follows directly from the

definition that Q ≤ Inn(E). In (ii), we have that Op(A) ≤ AutS(E) and Op(A) is
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normalized by AutF(E). Thus, Q ≤ Op(A) ≤ Op(AutF(E)) = Inn(E) since E is

F -radical, and the result holds.

Lemma 3.2.2. Suppose that F is a saturated fusion system and E is an essential

subgroup. Assume that AutF(E) is a K-group. Then |E/Φ(E)| > |OutS(E)|2.

Proof. This is [PS21, Proposition 4.8 (4)].

Now that we have a way to determine whether a subgroup is essential, in order to

make use of the Alperin–Goldschmidt fusion theorem, we must also determine the

induced automorphism group by F . The first result along these lines determines

the potential automizer AutF(E) of an essential subgroup E whenever some

non-central chief factor of E is an FF-module. It is important to note that this

theorem does not rely on a K-group hypothesis, and it is essentially the fusion

theoretic equivalent of Lemma 2.3.10.

Theorem 3.2.3. Suppose that E is an essential subgroup of a saturated fusion

system F over a p-group S, and assume that there is an AutF(E)-invariant

subgroup V ≤ Ω(Z(E)) such that V is an FF-module for G := OutF(E). Then,

writing L := Op′(G), we have that L/CL(V ) ∼= SL2(pn), CL(V ) is a p′-group and

V/CV (Op(L)) is a natural SL2(q)-module.

Proof. This is [Hen10, Theorem 1.2].

Armed with the analysis of groups with strongly p-embedded subgroups from

Chapter 2, we now investigate the limitations of OutF(E) for E an essential

subgroup of F . In our analysis, the most important case of study is that where E

is maximally essential.
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Definition 3.2.4. Suppose that F is a saturated fusion system on a p-group S.

Then E ≤ S is maximally essential in F if E is essential and, if F ≤ S essential

in F and E ≤ F , then E = F .

Coupled with saturation arguments and the Alperin–Goldschmidt theorem, this

definition further limits the possibilities for OutF(E).

Lemma 3.2.5. Let F be a saturated fusion systems on a p-group S with

E a maximally essential subgroup of F . Then NOutF (E)(OutS(E)) is strongly

p-embedded in OutF(E).

Proof. Let T ≤ NS(E) with E < T . Now, since E is receptive, for all

α ∈ NAutF (E)(AutT (E)), α lifts to a morphism α̂ ∈ HomF(Nα, S) with Nα > E.

Since E is maximally essential, applying the Alperin–Goldschmidt theorem, α̂ is

the restriction of a morphism α ∈ AutF(S). But then, α normalizes AutS(E)

and so NAutF (E)(AutT (E)) ≤ NAutF (E)(AutS(E)).This induces the inclusion

NOutF (E)(OutT (E)) ≤ NOutF (E)(OutS(E). Since this holds for all T ≤ NS(E) with

E < T , we infer that NOutF (E)(OutS(E)) is strongly p-embedded in OutF(E), as

required.

As in the earlier analysis of groups with strongly p-subgroups, we divide into two

cases, where mp(OutS(E)) = 1 or mp(OutS(E)) > 2.

Proposition 3.2.6. Let F be a saturated fusion systems on a p-group S with E

a maximally essential subgroup of F , and set G = OutF(E). If mp(G) = 1 then

either
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(i) OutS(E) is cyclic or generalized quaternion and

Op′(G) = OutS(E)[Op′(Op′(G)),Ω(OutS(E))]

= OutS(E)〈Ω(OutS(E))Op
′ (G)〉

is p-solvable; or

(ii) Op′(G)/Op′(Op′(G)) is a non-abelian simple group, p is odd and OutS(E) is

cyclic.

Proof. Since G has a strongly p-embedded subgroup, so does Op′(G) and we

apply Proposition 2.1.24 and (ii) follows immediately. In the other cases of

Proposition 2.1.24, since Ω(OutS(E))[Op′(Op′(G)),Ω(OutS(E))] E Op′(G), by the

Frattini argument,

Op′(G) = NOp′ (G)(Ω(OutS(E)))[Op′(Op′(G)),Ω(OutS(E))]

= NOp′ (G)(Ω(OutS(E)))〈Ω(OutS(E))Op
′ (G)〉.

Since E is maximally essential, applying Lemma 3.2.5, NOp′ (G)(Ω(OutS(E))) ≤

NG(Ω(OutS(E))) so that NOp′ (G)(Ω(OutS(E))) = NG(OutS(E)). But then

OutS(E)[Op′(Op′(G)),Ω(OutS(E))] E Op′(G) and by the definition of Op′(G), we

have that Op′(G) = OutS(E)[Op′(Op′(G)),Ω(OutS(E))].

Proposition 3.2.7. Let F be a local CK-system on a p-group S and let E be

an essential subgroup of F . Suppose further that E is maximal by inclusion

with respect to this property. Set G = OutF(E). If mp(G) > 2 then Op′(G) is

isomorphic to a central extension by a group of p′-order of one of the following

groups:
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(i) PSL2(pa+1) or PSU3(pb) for p arbitrary, a > 1 and pb > 2;

(ii) Sz(22a+1) for p = 2 and a > 1;

(iii) Ree(32a+1),PSL3(4) or M11 for p = 3 and a > 0;

(iv) Sz(32) : 5, 2F4(2)′ or McL for p = 5; or

(v) J4 for p = 11.

Furthermore, either Op′(G) is a perfect central extension, or Op′(G) ∼= Ree(3) resp.

Sz(32) : 5 and p = 3 resp. p = 5.

Proof. Set G̃ = G/Op′(G) and K = Op′(G). By Lemma 3.2.5, NG(OutS(E))

is strongly p-embedded in G. In particular, we deduce that NK(OutS(E)) is

strongly p-embedded in K. Let A ≤ OutS(E) be elementary abelian of order

p2. By coprime action, Op′(K) = 〈COp′ (K)(a) | a ∈ A#〉. Since NK(OutS(E))

is strongly p-embedded in K, we have that Op′(K) ≤ NK(OutS(E)) so that

[Op′(K),OutS(E)] = {1}. Then

[Op′(K), K] = [Op′(K), 〈OutS(E)K〉] = [Op′(K),OutS(E)]K = {1}

and Op′(K) ≤ Z(K).

Now, K̃ ∼= K/Op′(K) is determined as in Proposition 2.1.25. Moreover,
˜NK(OutS(E)) = N

K̃
( ˜OutS(E))) is strongly p-embedded in K̃ and applying

[GLS98, Theorem 7.6.2], K̃ 6∼= Alt(2p) or Fi22. Unless K̃ ∼= Ree(3) or Sz(32) : 5,

using that K̃ is simple and K = Op′(K), K is perfect central extension of

K̃ by a group of p′-order. If K̃ ∼= Ree(3) or Sz(32) : 5 then Op′(Op(K)) is

a perfect central extension of Ree(3)′ ∼= PSL2(8) resp. Sz(32) by a p′-group

72



so that Op′(Op(K)) ∼= PSL2(8) resp. Sz(32). Since Op′(K) ≤ NK(OutS(E))

and K = Op′(Op(K))Op′(K)OutS(E), we conclude that Op′(K) = {1} and

K = Op′(K) = Op′(Op(K))OutS(E) ∼= Ree(3) resp. Sz(32) : 5.

As intimated in the introduction, a valid question to consider is whether the

requirement that E be maximally essential in the Main Theorem is truly

necessary. Observe that this condition implies that NOutF (E)(OutS(E)) is strongly

p-embedded in OutF(E). We begin this discussion with a somewhat trivial

example.

Example 3.2.8. Let V be a 4-dimensional vector space over GF(2) and let Dih(10)

act irreducibly on it. In its embedding in GL4(2), Dih(10) is centralized by a

3-element and so we may form a subgroup of GL4(2) of shape Dih(10) × 3. This

group is normalized by an element t of order 4 such that 〈Dih(10), t〉 ∼= Sz(2),

t2 ∈ Dih(10) and t inverts the 3-element which centralizes Dih(10). Thus, we may

construct a group H of shape Dih(10).Sym(3) in GL4(2). Form the semidirect

product G := V o H and consider the 2-fusion category of G over some Sylow

2-subgroup S. Since H has cyclic Sylow 2-subgroups and O2(H) = {1}, we have

that V is essential in the 2-fusion category of G. Moreover, for s the unique

involution in H∩S, we have that E := V 〈s〉 has order 25 and NG(E)/E ∼= Sym(3).

Therefore, E is also an essential subgroup which properly contains another essential

subgroup V .

It is easy to construct other examples in which smaller essentials are contained in

some larger essential, even when imposing the condition the the essential subgroups

are AutF(S)-invariant. But it is reasonable to ask whether such examples actually

occur in an amalgam setting motivated by the hypothesis of the Main Theorem.
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To this end, let E be an AutF(S)-invariant essential subgroup of a saturated

fusion system F on a p-group S, let G be a model for NF(E) and suppose that

Ω(Z(S)) 6E G. In the midst of the amalgam method, to determine OutF(E) and

its actions, we work “from the bottom up” by determining OutF(E)-chief factors of

E, starting with those in 〈Ω(Z(S))G〉 and taking progressively larger subgroups of

E, so working “up.” Taking the above example as inspiration, one might imagine a

situation in which OutF(E) induces a Sym(3)-action on almost all OutF(E)-chief

factors in E. Without examining an ever increasing sequence of subgroups and

chief factors, it may be hard to eventually uncover a chief factor which witnesses

non-trivial action by a 5-element (although this would probably only happen for

amalgams with large “critical distance”, see Notation 5.2.5, and even then it seems

unlikely). It seems some additional tricks and techniques (or perhaps an even more

granular case division) are required to treat these types of examples.

3.3 Exotic Fusion Systems on a Sylow

3-subgroup of F3

In this section, we describe some exotic fusion systems supported on a Sylow

3-subgroup of F3. One of these systems appear in the conclusion of the Main

Theorem, and we focus effort on constructing this system and proving its exoticity

here so as to not impede the exposition later. Throughout, we require some

Lie theoretic terminology and refer to [Car89] or [GLS98] for the appropriate

definitions.

For some structural results concerning S and its internal actions, we appeal to the

Atlas [Con+85]. We begin by noting the following 3-local maximal subgroups of
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F3:

M1 ∼= 32+3+2+2 : GL2(3)

M2 ∼= 31+2+1+2+1+2 : GL2(3)

M3 ∼= 35 : SL2(9).2

remarking that |S| = 310. We set Ei = O3(Mi) and compute (e.g. using MAGMA)

that E1 = CS(Z2(S)) = J(S) and E2 = CS(Z3(S)/Z(S)) are characteristic

subgroups of S, and so are AutF(S)-invariant in any fusion system F on S. Indeed,

the above list exhausts all essential subgroups of the 3-fusion category of F3.

Proposition 3.3.1. Let F = FS(F3). Then Ffrc = {E1, E2, E
S
3 , S}. In

particular, E(F) = {E1, E2, E
S
3 }.

Proof. This follows from [Wil88].

Lemma 3.3.2. Every G-conjugate of E3 is contained in E1 and not contained in

E2.

Proof. Since {EF3 } = {ES
3 } and both E1 and E2 are normal in S, it suffices to

show that E3 ≤ E1 and E3 6≤ E2. To this end, we note that [Z2(S), E3] = {1}.

One can see this in the 3-fusion category of F3 for otherwise, since E3 is elementary

abelian, we would have that Z2(S) 6≤ E3 and [Z2(S), E3] ≤ Z(S), a contradiction

since OutF3(E3) ∼= SL2(9).2 has no non-trivial modules exhibiting this behaviour.

If E3 ≤ E2, then since E2 E S, we would have that E1 = 〈ES
3 〉 ≤ E2, a clear

contradiction. Thus, E3 6≤ E2.
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Throughout the remainder of this section, we set G to be the 3-fusion category

of F3 so that E(G) = {E1, E2, E
S
3 }. Set H = 〈AutG(E1),AutG(E2)〉 and D =

〈AutG(E1),AutG(E3)〉.

We now prove that the fusion system H is exotic. There is no known way to do

this without invoking the classification of finite simple groups. This is also the

case for the fusion systems supported on a Sylow 7-subgroup of G2(7) mentioned

in the Main Theorem and Theorem D.

Proposition 3.3.3. H is a saturated simple exotic fusion system with Hfrc =

{E1, E2, S}.

Proof. That H is saturated follows immediately from Lemma 3.1.22. Since H is a

subsystem of G, the deduction ofHfrc is straightforward. Assume thatN E H and

N is supported on T . Then T is a strongly closed subgroup of H and we calculate

using MAGMA that S = T and N has index prime to 3 in H by [AKO11, Lemma

I.7.6]. Since AutH(S) is generated by lifted morphisms from O3′(AutH(E1)) and

O3′(AutH(E2)), applying [AKO11, Lemma I.7.6], we have that H = N is simple.

Suppose that H = FS(G) for some finite group G with S ∈ Syl3(G). We may as

well assume that O3(G) = O3′(G) = {1} so that F ∗(G) = E(G) is a direct product

of non-abelian simple groups, all divisible by 3. Furthermore, since |Ω(Z(S))| = 3,

we deduce that F ∗(G) is simple and G is an almost simple group. Since Ω(Z(S)) ≤

F ∗(G), the action of AutG(E1) and AutG(E2) implies that S ≤ 〈Ω(Z(S))G〉 ≤

F ∗(G). In particular, we reduce to searching for simple groups with a Sylow

3-subgroup of order 310 and 3-rank 5. Since E3 is not normal in S, S does not

have a unique elementary abelian subgroup of maximal rank.

If F ∗(G) ∼= Alt(n) for some n then m3(Alt(n)) = bn3 c by [GLS98, Proposition
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5.2.10] and so n < 18. But a Sylow 3-subgroup of Alt(18) has order 38 and

so F ∗(G) 6∼= Alt(n) for any n. If F ∗(G) is isomorphic to a group of Lie type

in characteristic 3, then comparing with [GLS98, Table 3.3.1], we see that the

groups with a Sylow 3-subgroup which has 3-rank 5 are PSL2(35), Ω7(3), 3D4(3)

and PSU5(3), and only PSU5(3) has a Sylow 3-subgroup of order 310 of these

examples. If G is a 3′-extension of PSU5(3), the unipotent radicals of parabolic

subgroups of PSU5(3) are essential subgroups and since neither has index 3 in

a Sylow 3-subgroup, we have shown that F ∗(G) is not a group of Lie type of

characteristic 3.

Assume now that F ∗(G) is a group of Lie type in characteristic r 6= 3. By [GLS98,

Theorem 4.10.3], S has a unique elementary abelian subgroup of 3-rank 5 unless

F ∗(G) ∼= G2(ra), 2F4(ra), 3D4(ra),PSU3(ra) or PSL3(ra). Moreover, by [GLS98,

Theorem 4.10.2], there is a normal abelian subgroup ST of S such that S/ST is

isomorphic to a subgroup of the Weyl group of F ∗(G). But |ST | 6 35 so that

|S/ST | > 35. All of the candidate groups above have Weyl group with 3-part

strictly less than 35 and so F ∗(G) is not isomorphic to a group of Lie type in

characteristic r.

Finally, checking the orders of the Sporadic groups, we have that F3 is the unique

Sporadic simple group with a Sylow 3-subgroup of order 310. Since F3 has trivial

outer automorphism group and the 3-fusion category of F3 has 3 classes of essential

subgroups, F ∗(G) 6∼= F3 and H is exotic.

Taking Gi to be the model for NG(Ei), in the above situation the induced amalgam

is parabolic isomorphic to an F3-type amalgam. This general idea forms the

fundamental concept of this thesis and we refer to Section 5.1 for its initial

77



treatment.

In the following, we calculate normal closures of certain 3-subgroups of S by

particular groups of automorphisms induced by D. All of these actions come

from G and the calculations may be performed using MAGMA and the necessary

maximal subgroups of F3.

Lemma 3.3.4. E1 is the unique proper non-trivial strongly closed subgroup of D.

Proof. Since every essential subgroup of D is contained in E1, and since E1 is

characteristic in S, we deduce that E1 is strongly closed in D. Assume that T

is any proper non-trivial strongly closed subgroup of D. Then T E S and so

Z(S) ≤ T and Z2(S) = 〈Z(S)AutD(E1)〉 ≤ T . Suppose first that T ∩ Φ(E1) =

Z2(S). Since Φ(E1) E S we have that [Φ(E1), T ] = Z2(S) so that T ≤ E1. But

then [E1, T ] ≤ Φ(E1) ∩ T = Z2(S) = Z(E1) and T ≤ Z2(E1) = Φ(E1) so that

T = Z2(S). However, then T < 〈TAutD(E3)〉, a contradiction.

Thus, T ∩ Φ(E1) > Z2(S) and since OutD(E1) acts irreducibly on Φ(E1)/Z2(S),

we must have that Φ(E1) ≤ T . But now E3 = 〈(Φ(E1) ∩ E3)AutD(E3)〉 ≤ 〈(T ∩

E3)AutD(E3)〉 ≤ T . Finally, since E1 = 〈ES
3 〉 ≤ T , we deduce that T = E1, as

desired.

Proposition 3.3.5. D is a saturated simple exotic fusion system, and Dfrc =

{E1, E
D
3 , S}.

Proof. In the statement of Theorem 3.1.23, letting F0 = NG(E1), V = E3 and ∆ =

AutG(E3) we have that D is saturated. Again, the deduction of Dfrc is clear from

the inclusion D ≤ G. Let K be a Sylow 2-subgroup of NO3′ (AutD(E3))(AutS(E3))

which is cyclic of order 8. Then, by saturation, the morphisms in K lift to
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morphisms of larger subgroups of S and as E1 is AutD(S)-invariant, and applying

the Alperin–Goldschmidt theorem, we deduce that the morphisms in K lift to

morphisms in AutD(E1). Hence, OutD(E1) contains a cyclic group of order 8.

Since OutD(E1) ∼= GL2(3), applying [AKO11, Lemma I.7.6] we must have that

O3′(D) = D.

IfD is not simple withN E D then by Lemma 3.3.4 we have thatN is supported on

E1. Then by [AKO11, Proposition I.6.4], AutN (E1) E AutD(E1) so that OutN (E1)

is isomorphic to a normal 3′-subgroup of OutD(E1) ∼= GL2(3). In particular,

E3 is not essential in N for otherwise we could again lift a cyclic subgroup of

order 8 to AutN (E1), using saturation. Then, performing the explicit calculations

in MAGMA, we deduce that E(N ) = ∅ and E1 = O3(N ), and so E1 E D, a

contradiction by Proposition 3.1.13.

Suppose that there is a finite group G with F = FS(G). Since O3(F) = {1},

we may as well assume that O3′(G) = O3(G) = {1}. Furthermore, since D is a

simple fusion system, we infer that S ≤ F ∗(G) for otherwise FS∩F ∗(G)(F ∗(G)) is a

proper normal subsystem of G. As in Proposition 3.3.3, using that |Ω(Z(S))| = 3,

we deduce that F ∗(G) is simple group containing S as a Sylow 3-subgroup. The

remainder of the proof is the same as in Proposition 3.3.3, and we conclude that

D is exotic.

Using MAGMA [PS21] we see that there are three fusion systems supported on S

with O3(F) = {1}, namely D,G and H. It would be desirable prove this result

without using MAGMA.
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CHAPTER 4

FUSION SYSTEMS ON A SYLOW
p-SUBGROUP OF G2(pn) OR PSU4(pn)

In this chapter we classify all saturated fusion systems supported on p-groups

isomorphic to a Sylow p-subgroup of G2(pn) or PSU4(pn). We strive to achieve

this without the need for a K-group hypothesis. Indeed, barring an identification

of PSL2(q2) acting on a natural Ω−4 (q)-module, the only real point of contact we

have with the classification of finite simple groups is in proving that the exotic

fusion systems supported on a Sylow 7-subgroup of G2(7) are exotic.

Additionally, we do not assume that Op(F) = 1 for the fusion system F under

consideration as in other works and so we obtain some generalizations of results

already in the literature (see [PS18], [Mon20] and [BFM19]), although we often

lean on these works for convenience. Often, at least for small values of q, we

make use of MAGMA to ease some of the exposition although, with some minor

alterations, we remark that the techniques we employ could also be used in these

small cases.

Finally, in all the situations considered, we also provide a list of all S-centric,
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S-radical subgroups of Sylow p-subgroups of G2(pn) or PSU4(pn), which may be

of independent interest.

4.1 Sylow p-subgroups of G2(p
n) and PSU4(p

n)

In this section we construct Sylow p-subgroups of G2(pn) and PSU4(pn) and

describe some of their basic properties. We refer to [Car89] for constructions and

properties of G2(q) and PSU4(q), as well as generic properties and terminology

regarding the simple groups of Lie type.

We present the root system of type G2 below. We follow the choices of roots as

in [Ree61, p. 443] and depict a slightly altered root system than what is given in

that paper [Ree61, Figure 1].

β

α + β

3α + 2β

2α + β

3α + β

α

-β

−(α + β)

−(3α + 2β)

−(2α + β)

−(3α + β)

−α

In this way, we can arrange that our six positive roots are

Φ+ = {α, β, α + β, 2α + β, 3α + β, 3α + 2β}.
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For ε ∈ Φ+ we set Xε := 〈xε(t) | t ∈ K〉, where K is a field of order q = pn. Thus,

we have that

S = 〈Xα, Xβ, X3α+β, Xα+β, X2α+β, X3α+2β〉 ∈ Sylp(G2(q))

is of order q6.

Using results from [Ree61, (3.10)], we have the following Chevalley commutator

formulas for the root subgroups:

[xα(t), xβ(u)] = xα+β(−tu)x2α+β(−t2u)x3α+β(t3u)x3α+2β(−2t3u2)

[xα(t), xα+β(u)] = x2α+β(−2tu)x3α+β(3t2u)x3α+2β(3tu2)

[xα(t), x2α+β(u)] = x3α+β(3tu)

[xβ(t), x3α+β(u)] = x3α+2β(tu)

[xα+β(t), x2α+β(u)] = x3α+2β(3tu).

We remark that the coefficients in the commutator formulas showcase obvious

degeneracies when p = 2 or 3. This is one of the reasons we treat these cases

separately.

Lemma 4.1.1. Suppose that S is isomorphic to a Sylow p-subgroup of G2(pn).

Then the following holds:

(i) if p = 2, then S has exponent 8;

(ii) if p ∈ {3, 5}, then S has exponent p2; and

(iii) if p > 7, then S has exponent p.
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Proof. Set q = pn. Since G2(q) has a 7 dimensional representation over GF(q)

when p is odd, and G2(q) has a 6 dimensional representation over GF(q) when

p = 2, we can find an upper bound for the exponent of S by calculating the

exponent of a Sylow p-subgroup of GLr(q), where r = 7 when p is odd and r = 6

if p = 2. But a Sylow p-subgroup of GLr(pn) has exponent pa with a minimal such

that pa > r − 1. Thus, S has exponent p when p > 7 and the exponent of S is

bounded above by p2 or 8 when p ∈ {3, 5} or p = 2 respectively. One can compute

directly that a Sylow p-subgroup of G2(p) has exponent 8, 9 or 25 when p = 2,3

or 5 respectively, and so the result follows.

We now proceed with the construction of a Sylow p-subgroup S of PSU4(pn). Let

Φ+ = {a, b, c, a+ b, a+ c, b+ c, a+ b+ c} be a choice of positive roots for the root

system A3. In particular, under the symmetry of A3, we may partition the positive

roots into equivalence classes {a, c}, {b}, {a+ b, b+ c} and {a+ b+ c}. Following

[GLS98, Theorem 2.4.1] and setting K̂ to be a finite field of order q2, and K the

subfield of order q, we may choose a set of fundamental roots {α, β} for 2A3 as

xα(t) = xa(t)xc(tq),

xβ(u) = xb(u),

where t, u ∈ K̂ and u = uq ∈ K. We then retrieve a full set of positive roots and

root subgroups for PSU4(q)

xα(t) = xa(t)xc(tq),

xβ(u) = xb(u),

xα+β(t) = xa+b(t)xb+c(tq),
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x2α+β(u) = xa+b+c(u)

where t, u ∈ K̂ and u = uq ∈ K. Hence, we infer that

|Xα| = q2, |Xβ| = q, |Xα+β| = q2, |X2α+β| = q

and S = 〈Xα, Xβ, Xα+β, X2α+β〉 is of order q6.

We reproduce the Chevalley commutator formulas for PSU4(q) and as, before, set

K to be a field of order q. For more details, see [GLS98, Theorem 2.4.5].

[xα(t), xβ(u)] = xα+β(εtu)x2α+β(ε′N(t)u)

[xα(t), xα+β(u)] = x2α+β(ε′′Tr(tu))

where t, u ∈ K̂ and u = uq, and Tr and N denote the field trace and norm

from K̂ down to K. Moreover, ε, ε′, ε′′ ∈ {1,−1} depend only on the roots in the

commutators they are involved in. It then follows that

S ′ = Xα+βX2α+β, Z(S) = X2α+β.

For the purposes of this thesis, the exact values of ε, ε′ and ε′′ are not important

and all we require is that commutators with single elements generate entire GF(q)

spaces of root subgroups e.g. [xα(t), S ′] = Z(S) and |[xα(t), XβXα+βX2α+β]| = q2

for all t 6= 0.

In the analysis of S ∈ Sylp(PSU4(pn)), it will often be more useful to work with

local subgroups of PSU4(pn), recognizing the internal modules within these local

subgroups and obtaining information about S from its embedding in these groups.
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In this way, we work with the elements as matrices explicitly, recognizing the

isomorphism 2A3(q2) ∼= PSU4(q) ≤ PSL4(q2) ([Car89, Theorem 14.5.1]). However,

for some arguments, we still reference the commutator formulas.

Lemma 4.1.2. Suppose that S is isomorphic to a Sylow p-subgroup of PSU4(pn).

Then the following holds:

(i) if p = 2, then S has exponent 4;

(ii) if p = 3, then S has exponent 9; and

(iii) if p > 5, then S has exponent p.

Proof. This proof is much the same as Lemma 4.1.1. Set q = pn. Since PSU4(q)

is a subgroup of PSL4(q2), we can find an upper bound for the exponent of S

by calculating the exponent of a Sylow p-subgroup of GL4(q2), which is pa with a

minimal such that pa > 3. Thus, S has exponent p when p > 5 and the exponent of

S is bounded above by 4 or 9 when p = 2 or p = 3 respectively. One can compute

directly that a Sylow p-subgroup of PSU4(p) has exponent p2 when p ∈ {2, 3}, and

so the result follows.

For identification arguments later in this chapter, we record the outcomes from the

Main Theorem where S is isomorphic to either a Sylow p-subgroup of G2(pn) or

PSU4(pn). Although the proof of the Main Theorem is the contents of Chapter 5,

we assume its validity throughout this chapter.

Corollary 4.1.3. Suppose the hypothesis of the Main Theorem and assume that

S is isomorphic to a Sylow p-subgroup of G2(pn) for some n ∈ N. Then either

(i) F = FS(G), where F ∗(G) = Op′(G) ∼= G2(pn);
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(ii) p = 2 and F = FS(G) where G ∼= M12 or G2(3); or

(iii) p = 7, F is a uniquely determined simple fusion system on a Sylow

7-subgroup of G2(7) and, assuming the classification of finite simple groups,

F is exotic.

Corollary 4.1.4. Suppose the hypothesis of the Main Theorem and assume that

S is isomorphic to a Sylow p-subgroup of PSU4(pn) for some n ∈ N. Then

F = FS(G), where F ∗(G) = Op′(G) ∼= PSU4(pn); or p = 3 and G ∼=

PSU6(2),PSU6(2).2, McL, Aut(McL) or Co2.

It is worth mentioning that aside from the above two corollaries, the methods

utilized in this chapter are independent of Chapter 5 and the only concept which

is relevant to the work in this chapter which has not been considered is that of a

weak BN-pair of rank 2 (see Definition 5.1.7).

4.2 Fusion Systems on a Sylow 2-subgroup of

G2(2
n)

In this section, we let q = 2n, K = GF(q) and S be isomorphic to a Sylow

2-subgroup of G2(q). Assume throughout that F is a saturated fusion system on

S.

We deal with the q = 2 case separately in order to streamline some of the

arguments later in this section. Fortunately, since |S| = 26 is small, we can

directly determine the list of S-centric, S-radical subgroups and their automizers.

We employ MAGMA to do this, although remark that lemmas and propositions in

the remainder of this section all apply when q = 2 and their proofs could adapted
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with minor alternations.

Proposition 4.2.1. Let S be isomorphic to a Sylow 2-subgroup of G2(2). The

S-centric, S-radical subgroups of S are S,CS(Z3(S)/Z(S)), CS(Z2(S)) and the

maximal elementary abelian subgroups of S of order 23.

Proposition 4.2.2. Let F be a saturated fusion system over a Sylow 2-subgroup

of G2(2). Set Q1 := CS(Z3(S)/Z(S)) and Q2 = CS(Z2(S)). Then one of the

following holds:

(i) F = FS(S);

(ii) F = FS(Q1 : OutF(Q1)) where OutF(Q1) is isomorphic to a subgroup of

(3× 3) : 2;

(iii) F = FS(Q2 : OutF(Q2)) where OutF(Q2) ∼= Sym(3);

(iv) F = FS(M) where M ∼= 23.PSL3(2);

(v) F = FS(G) where G ∼= G2(2);

(vi) F = FS(G) where G ∼= G2(3); or

(vii) F = FS(G) where G ∼= M12.

Remark. In case (iv) of the above theorem, one can take M to be a maximal

subgroup of G2(3).

We continue the analysis when p = 2 and suppose throughout the remainder of

this section that q > 2. We may reduce the commutator formulas from Section 4.1

to the following:
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[xα(t), xβ(u)] = xα+β(tu)x2α+β(t2u)x3α+β(t3u)

[xα(t), xα+β(u)] = x3α+β(t2u)x3α+2β(tu2)

[xα(t), x2α+β(u)] = x3α+β(tu)

[xβ(t), x3α+β(u)] = x3α+2β(tu)

[xα+β(t), x2α+β(u)] = x3α+2β(tu).

It follows that

Z3(S) = 〈Xα+β, X2α+β, X3α+β, X3α+2β〉

Z2(S) = 〈X3α+β, X3α+2β〉

Z(S) = 〈X3α+2β〉

are characteristic subgroups of S of orders q4, q2 and q respectively.

We define

Q1 := CS(Z3(S)/Z1(S)) = 〈Xβ, Xα+β, X2α+β, X3α+β, X3α+2β〉

Q2 := CS(Z2(S)) = 〈Xα, Xα+β, X2α+β, X3α+β, X3α+2β〉

both of order q5 and characteristic in S. Moreover, we can identify Q1 and Q2

with unipotent radicals of two maximal parabolic subgroups in G2(q). Therefore,

Φ(Q1) = Z(Q1) = Z(S) and Φ(Q2) = Z2(S) = Z(Q2).

The following lemma gives detailed information on involutions in S, their

normalizers and the maximal elementary abelian subgroups of S.
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Lemma 4.2.3. Every involution in S is conjugate in S to one of the following:

xα(t1), xβ(t2)x2α+β(t′2), x2α+β(t3), xα+β(t4), x3α+β(t5) or x3α+2β(t6), for ti ∈ K×

and t′2 ∈ K. Moreover, each has centralizer of order q3, q4, q4, q4, q5 or q6

respectively. As a consequence, every maximal elementary abelian subgroup is

conjugate in S to one of

T := XαX3α+βX3α+2β,

U := XβX2α+βX3α+2β,

V := XβXα+βX3α+2β,

W := X2α+βX3α+βX3α+2β, or

X := Xα+βX3α+βX3α+2β.

All are of order q3 and have normalizers in S equal to Q2, Q1, Q1, S and S

respectively.

Proof. See [Tho69, (3.6)-(3.10)].

Throughout this section, we retain the notation from the lemma and remark that

WX = Z3(S), T ≤ Q2 \Q1 and U, V ≤ Q1 \Q2.

We can now begin to determine to the possible essential subgroups of F . The

primary technique used is Lemma 3.2.1 which, more generally, aids in proving

that a candidate subgroup E is not an F -radical subgroup of S. Moreover, if we

can prove that a chain of characteristic subgroups of E is centralized by some

p-group not contained in E, then E will be not be S-radical. For large parts of

this section, we can operate in this more general setting, assuming only that E is

S-centric and S-radical.
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Proposition 4.2.4. Let E be an S-centric and S-radical subgroup of S and

suppose Z3(S) ≤ E. Then E ∈ {Q1, Q2, S}.

Proof. Since Z3(S) ≤ E, W,X ≤ E and so A(E) ⊆ A(S). Suppose first that

Qi < E for some i ∈ {1, 2}. Then, W,X are the unique normal elementary abelian

subgroups of maximal rank in E and so Z3(S) = WX is characteristic in E. Hence,

Z2(S) = Z(Z3(S)) is also a characteristic subgroup. If Q1 6≤ E and Q2 6≤ E, then

A(E) = {W,X}, J(E) = Z3(S) and again, Z3(S) and Z2(S) are characteristic

subgroups of E. Thus, we have shown in either case that Z2(S) and Z3(S) are

characteristic subgroups of E.

Now, if Q2 6≤ E, Q2 centralizes the chain {1} E Z2(S) E Z3(S) E E and E is

not S-radical by Lemma 3.2.1, a contradiction. So Q2 < E. But then, it follows

from the commutator formulas that Z(E) = Z(S). Hence, Q1 centralizes the chain

{1} E Z(S) E Z2(S) E Z3(S) E E, and since E is S-radical, we conclude that

E = S, as required.

Lemma 4.2.5. Let E be an S-centric, S-radical subgroup of S and suppose that

Z3(S) 6≤ E. Then Z(S) < Z(E) and if Z(S) < Z(E) ∩ Z2(S), then Z2(S) < E

and E < Q2. In particular Z(E) 6≤ Z2(S).

Proof. Suppose first that Z(S) = Z(E). Since WX = Z3(S) 6≤ E, there exists Y ∈

{W,X} with Y 6≤ E. Notice that Z2(S) centralizes the chain {1} E Z(E) E E so

that, as E is S-radical, Z2(S) ≤ E and Z2(S) ≤ Z2(E). Suppose that Ω(Z2(E)) ≤

Q1. Then, as Y E S, Y centralizes the chain {1} E Z(E) E Ω(Z2(E)) E E, a

contradiction since Y 6≤ E. Therefore, by Section 4.2, there exists an involution

e ∈ Z2(E) which is conjugate in S to xα(t), for some t ∈ K×. Since [E, e] ≤

Z(E) = Z(S) it follows from the commutator formulas that elements of E are
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conjugate to elements of Q2, and since Q2 E S we deduce that E ≤ Q2. But then

Z(S) < Z2(S) ≤ Z(E), a contradiction. Hence, Z(S) < Z(E).

Suppose now that Z(S) < Z(E) ∩ Z2(S) and let e ∈ (Z(E) ∩ Z2(S)) \ Z(S).

Then CS(e) = Q2 by Section 4.2 and E ≤ CS(e) = Q2. Because E is S-centric,

Z2(S) ≤ E from which it follows that Z2(S) ≤ Z(E). Assume that Z(E) = Z2(S).

Then, Q2 centralizes the chain {1} E Z(E) E E and since E is S-radical, Q2 ≤ E.

But then Z3(S) ≤ E, a contradiction. Hence, if Z(S) < Z(E) ∩ Z2(S) we deduce

that Z(E) > Z2(S) and E < Q2.

Proposition 4.2.6. Let E be an S-centric, S-radical subgroup of S and suppose

that Z3(S) 6≤ E. Then E is maximal elementary abelian, so is conjugate in S to

W,X, T, U or V .

Proof. By Lemma 4.2.5, we may assume that Z(E) 6≤ Z2(S). Suppose first that

Ω(Z(E)) ≤ Z2(S). By Lemma 4.2.5, either Ω(Z(E)) = Z(S); or that Z2(S) <

Z(E) and E < Q2. Suppose the latter and, since Z3(S) 6≤ E, choose Y ∈ {W,X}

with Y 6≤ E. Since Ω(Z(E)) ≤ Z2(S) < Z(E), E is centric and Z2(S) has

exponent 2, we have that Ω(Z(E)) = Z2(S) and Y centralizes the chain, {1} E

Ω(Z(E)) E E, a contradiction since E is S-radical and Y 6≤ E. Hence, we assume

that Ω(Z(E)) = Z(S) = Z(E) ∩ Z2(S) and E 6≤ Q2.

Since Z2(S) centralizes the chain {1} E Ω(Z(E)) E E, Z2(S) ≤ E and Z(E) ≤ Q2.

Furthermore, [Z3(S), E] ≤ Z2(S) ≤ E and so Z3(S) ≤ NS(E) ≤ NS(Z(E)). In

particular, [Z3(S), Z(E)] ≤ Z(E)∩[Z3(S), Q2] = Z(E)∩Z2(S) = Ω(Z(E)) = Z(S)

and so Z(E) ≤ CS(Z3(S)/Z(S)) = Q1. Therefore, Z(E) ≤ Z3(S). Let e ∈ E be

an involution and suppose that e 6≤ Q1. Then, by Section 4.2, e is conjugate in

S to xα(t) for some t ∈ K× by Section 4.2. Then Z(E) ≤ CS(e) ≤ T s for some
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s ∈ S and since Z(E) ≤ Z3(S) E S, it follows that Z(E) ≤ X3α+βX3α+2β = Z2(S).

But then Z(E) has exponent 2 and Z(E) = Ω(Z(E)) = Z(S), a contradiction.

Therefore, Ω(E) ≤ E∩Q1. In particular, Z2(S) ≤ Ω(E) so that [E,Z3(S)] ≤ Ω(E)

and Z3(S) centralizes the chain {1} E Ω(Z(E)) E Ω(E) E E, a contradiction since

E is S-radical.

Hence, there exists an involution e ∈ Z(E)\Z2(S) such that e is conjugate in S to

xα(t1), xβ(t2)x2α+β(t′2), x2α+β(t3) or xα+β(t4) for ti ∈ K× and t′2 ∈ K by Section 4.2.

Suppose first that e is conjugate to xα(t), some t ∈ K×. Then E ≤ CS(e) = T s

for some s ∈ S and since E is S-centric, E = T s.

Suppose now that e is conjugate to x2α+β(t), t ∈ K×. Then E ≤ CS(e) = WU s ≤

Q1 for some s ∈ S and Z(CS(e)) = (U ∩ W )s ≤ Z(E). If Z(CS(e)) = Z(E),

then CS(e) centralizes the series {1} E Z(E) E E and E = CS(e). But now, X

centralizes the series {1} E E ′ E E and since E is S-radical and X 6≤ E, we have

a contradiction. Thus, Z(CS(e)) < Ω(Z(E)) and CS(Ω(Z(E))) is an elementary

abelian subgroup of order q3. Since E is S-centric, it follows that |E| = q3 and

E = W or U s for some s ∈ S, as required. If e is conjugate to xα+β(t), we obtain

E ≤ CS(e) = XV s for some s ∈ S by Section 4.2. Arguing as before, we obtain

that E is conjugate to either V or X in S.

Finally, we suppose that e is conjugate in S to some xβ(t)x2α+β(t′), for t ∈ K× and

t′ ∈ K. Then, using the commutator formulas, one can calculate that |CS(e)| = q4,

E ≤ CS(e) ≤ Q1 and Z(S)Xs
β = Z(CS(e)) ≤ Ω(Z(E)) for some s ∈ S. If

Ω(Z(E)) = Z(CS(e)) then CS(e) centralizes the series {1} E Z(E) E E and

since E is S-radical, E = CS(e). But then, E ′ = Z(S) and Q1 centralizes the

series {1} E E ′ E E, a contradiction since E is S-radical and Q1 6≤ E. Hence,

Z(CS(e)) < Ω(Z(E)), |Ω(Z(E))| > q2 and since Ω(Z(E))Z3(S) ≤ Q1, there is
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some ẽ ∈ (Ω(Z(E)) ∩ Z3(S)) \ Z(S). Indeed, ẽ is not contained in Z2(S), for

otherwise E ≤ Q1 ∩ Q2 = Z3(S), a contradiction since e 6≤ Z3(S). Therefore, ẽ

is conjugate in S to some x2α+β(t) or xα+β(t) and by the above, E is elementary

abelian. Moreover, since there is e ∈ E conjugate to some xβ(t)x2α+β(t′), we have

that E is conjugate to U or V .

We have shown that the S-centric, S-radical subgroups of S are S, Q1, Q2

or maximal elementary abelian subgroups of S. At this point, we restrict our

attention to a saturated fusion system F on S and its essential subgroups. We make

use of Lemma 3.2.2, and as stated, this appears to rely on a K-group hypothesis

on AutF(E), where E is a candidate essential subgroup. Following the proof

in [PS21, Proposition 4.8], the K-group condition is only used to provide a list

of candidates for groups with a strongly 2-embedded subgroup along with their

Sylow 2-subgroups. Fortunately, when p = 2 a result of Bender [Ben71] classifies

all such groups and so, we can determine the essential subgroups of F without the

need to employ a K-group hypothesis.

In addition, the proof of Proposition 3.2.7 relies on a K-group hypothesis for the

same reason as Lemma 3.2.2 and so when p = 2, utilizing Bender’s result with the

acknowledgment that q > 2, O2′(OutF(E)) is isomorphic to a central extension of a

rank 1 group of Lie type in characteristic 2, independent of any K-group hypothesis

on AutF(E). A final consideration is that we intend to use Corollary 4.1.3 which

relies on the Main Theorem which again uses a K-group hypothesis. Following the

proof of that theorem, the determination of F from a rank 2 amalgam relies only

on the work in [DS85] which is, again, independent of any K-group hypothesis.

Hence, when p = 2, we can apply all the necessary results to determine F without

the need to enforce a K-group hypothesis on AutF(E).
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Theorem 4.2.7. Let F be a saturated fusion system over a Sylow 2-subgroup of

G2(2n) for n > 1. Then one of the following holds:

(i) F = FS(S : OutF(S));

(ii) F = FS(Qi : OutF(Qi)) where O2′(OutF(Qi)) ∼= SL2(2n); or

(iii) F = FS(G), where F ∗(G) = O2′(G) ∼= G2(2n).

Proof. Let E ∈ E(F) and suppose that E is elementary abelian. Then, in all cases,

we deduce that q3 = |E| < q4 6 |OutS(E)|2, a contradiction by Lemma 3.2.2.

Therefore, E(F) ⊆ {Q1, Q2}. If neither Q1 nor Q2 are essential then outcome (i)

holds, and if E(F) = {Qi} for some i ∈ {1, 2} then since Qi is AutF(S)-invariant

and maximally essential, outcome (ii) holds upon comparing with the list in

Proposition 3.2.7. Thus, E(F) = {Q1, Q2}. Since Qi is AutF(S)-invariant for

i ∈ {1, 2}, if O2(F) = {1} we apply Corollary 4.1.3 and the result follows.

Suppose that Q := O2(F) 6= {1}. By Proposition 3.1.13, Q ≤ Q1 ∩ Q2 = Z3(S)

and so, Φ(Q) ≤ Z(S). Now, Z2(S) is normalized by AutF(Q2) and OutS(Q2)

centralizes Z(S) which has index q in Z2(S), which is itself of order q2. Moreover,

since S does not centralize Z2(S), OutS(Q2) acts non-trivially on Z2(S) and, by

Theorem 3.2.3, Z2(S) is an FF-module for O2′(OutF(Q2)) ∼= SL2(2n) and Z2(S)

is irreducible. Since Φ(Q) ≤ Z(S) ≤ Z2(S), we conclude that Φ(Q) = {1}, Q is

elementary abelian and Z2(S) ≤ Q.

If Q = Z2(S), then Z2(S) is AutF(Q1)-invariant and so is Z3(S) = CQ1(Z2(S)).

But then S centralizes the chain {1} E Z(S) E Z2(S) E Z3(S) E Q1, a

contradiction since Q1 is F -radical. Hence, Z2(S) < Q < Z3(S) and there is

an involution x ∈ Q which is conjugate in S to x2α+β(t) or xα+β(t) for some
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t ∈ K×. But then CS(Q) ≤ Q1 ∩ Q2 and so CS(Q) is AutF(Qi)-invariant

for i ∈ {1, 2}. It follows from Proposition 3.1.13 that CS(Q) E F so that

Q = CS(Q) is self-centralizing in S, Q ∈ {W,X} and F is satisfies the hypothesis

of Theorem 3.1.21.

By Theorem 3.1.21, there is a finite group G such that F ∗(G) = Q and F = FS(G).

Moreover, Op′(OutG(Qi)) ∼= SL2(q) and OutF(Qi) acts faithfully on Qi/Q for

i ∈ {1, 2}. Set G := G/O2(F) and notice that Q1 and Q2 are self-centralizing in

G. Moreover, G = 〈NG(Q1), NG(Q2)〉, and Qi is AutG(S)-invariant for i ∈ {1, 2}.

It follows that G has a weak BN-pair of rank 2 in the sense of Definition 5.1.7.

Moreover, since Q2 centralizes Z2(S) which has index q in Q and Q2/Q is

elementary abelian of order q2, we infer that Q is an FF-module for G. Then,

comparing with the completions in [DS85] and applying [CD91, Theorem A], Q is

a “natural module” for Op′(G) ∼= PSL3(q). Notice that if S splits over Q, then S is

isomorphic to a Sylow 2-subgroup of PSL4(q). Then by [GLS98, Theorem 3.3.3],

the 2-rank of S is 4n, a contradiction to Section 4.2. Therefore, S is non-split

and it follows by [Bel78, Table I], that q = 2, a contradiction to the original

hypothesis.

Combined with the classification provided in Proposition 4.2.2, this completely

determines all saturated fusion systems on a Sylow 2-subgroup of G2(2n) for any

n.
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4.3 Fusion Systems on a Sylow 3-subgroup of

G2(3
n)

Throughout this section, we suppose that p = 3, q = 3n, K is a finite field of

order q and S is isomorphic to a Sylow 3-subgroup of G2(q). We may reduce the

commutator formulas from Section 4.1 to the following:

[xα(t), xβ(u)] = xα+β(−tu)x2α+β(−t2u)x3α+β(t3u)x3α+2β(t3u2)

[xα(t), xα+β(u)] = x2α+β(tu)

[xβ(t), x3α+β(u)] = x3α+2β(tu).

Additionally, Z(S) = 〈X2α+β, X3α+2β〉 is a characteristic subgroup of S of order

q2.

We let

Q1 = 〈Xβ, X3α+β, Xα+β, X2α+β, X3α+2β〉

Q2 = 〈Xα, Xα+β, X3α+β, X3α+2β, X2α+β〉

and by removing one root subgroup at a time from Qi, starting from the left, we

get a chain of subgroups Q1 ∩Q2 → Z(Qi)→ Z(S)→ Φ(Qi)→ {1} e.g.

Z(Q1) = 〈Xα+β, X2α+β, X3α+2β〉.

Before determining the essential subgroups of a saturated fusion system F on S,
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we state and prove some important properties of S,Q1 and Q2 which may be of

interest in their own right.

Lemma 4.3.1. The subgroup X := 〈Xβ, X3α+β, X3α+2β〉 ≤ Q1 is a subgroup of

shape q1+2 and is isomorphic to a Sylow 3-subgroup of SL3(q).

Proof. Since the groups Xβ and X3α+β commute modulo X3α+2β, it follows that

every element may be written as x3α+β(t1)xβ(t2)x3α+2β(t3). Then, using the

commutator formulas, we calculate that the map θ : X → SL3(q) such that

(x3α+β(t1)xβ(t2)x3α+2β(t3))θ =


1 0 0

t1 1 0

t3 t2 1



is an injective homomorphism, from which it follows that X is isomorphic to a

Sylow 3-subgroup of SL3(q).

Remark. By symmetry, the subgroup 〈Xα, Xα+β, X2α+β〉 ≤ Q2 is also isomorphic

to a Sylow 3-subgroup of SL3(q).

As Q1 = Z(Q1)X, we observe that Q1 and Q2 are isomorphic groups of shape

q2× q1+2, where q1+2 denotes a special group of order q3. We may identify Q1, Q2

with the radical subgroups of maximal parabolic subgroups of G2(q) of shape

(q2 × q1+2) : GL2(q).

Lemma 4.3.2. Let i ∈ {1, 2}. Then S/Z(Qi) is isomorphic to a Sylow 3-subgroup

of SL3(q).

Proof. Since XαZ(Q1), XβZ(Q1) commute modulo X3α+βZ(Q1)/Z(Q1) we may

write any element of S/Z(Q1) as xβ(t1)xα(t2)x3α+β(t3)Z(Q1). Then the map θ1 :

97



S/Z(Q1)→ SL3(q) such that

(xβ(t1)xα(t2)x3α+β(t3)Z(Q1))θ =


1 0 0

t1 1 0

t3 t32 1



is an injective homomorphism, from which it follows that S/Z(Q1) is isomorphic

to a Sylow 3-subgroup of SL3(q).

Similarly, since XαZ(Q2)/Z(Q2), XβZ(Q2)/Z(Q2) commute modulo

Xα+βZ(Q2)/Z(Q2) we may write any element of S/Z(Q2) as

xα(t1)xβ(t2)xα+β(t3)Z(Q2). Then the map θ2 : S/Z(Q2) → SL3(q) such

that

(xα(t1)xβ(t2)xα+β(t3)Z(Q2))θ2 =


1 0 0

t1 1 0

t3 t2 1


is an injective homomorphism, from which it follows that S/Z(Q2) is isomorphic

to a Sylow 3-subgroup of SL3(q).

We summarize some further structural results concerning S,Q1 and Q2. Some

are easily calculated using the commutator formulas, while others are lifted from

[PR06, Definition 2.1] and [PR06, Lemma 6.5].

Lemma 4.3.3. For i ∈ {1, 2}, we have the following:

(i) Q1 ∩Q2 = Z(Q1)Z(Q2) ∈ A(S) has order q4;

(ii) S has nilpotency class 3;

(iii) CS(Z(Qi)) = Qi, |Z(Qi)| = q3, Z(Q1) ∩ Z(Q2) = Φ(Q1)× Φ(Q2) = Z(S) is
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of order q2 and Φ(Qi) is of order q;

(iv) [Qi, Z(Q3−i)] = Φ(Qi);

(v) for x ∈ S \ Qi we have that [x,Qi]Z(Qi) = Q1 ∩ Q2 and [x, Z(Qi)]Φ(Qi) =

Z(S);

(vi) Qi is of exponent 3, S is of exponent 9, Ω(S) = S and f(S) = Z(S);

(vii) if z ∈ S is of order 3 then z ∈ Q1 ∪Q2; and

(viii) if x ∈ Q1 \Q2 and y ∈ Q2 \Q1 then [y, x, x] 6= 1 6= [x, y, y].

Lemma 4.3.4. Suppose R ≤ S has exponent 3. Then R ≤ Q1 or R ≤ Q2.

Proof. As R has exponent 3, R ⊂ Q1 ∪ Q2 by Lemma 4.3.3 (vii). If R 6≤ Q1 and

R 6≤ Q2, then there exists r ∈ R \ Q1 and s ∈ R \ Q2. But then rs 6∈ Q1 ∪ Q2,

which is impossible.

Lemma 4.3.5. Let S be isomorphic to a Sylow 3-subgroup of G2(3n). Then Q1∩Q2

is characteristic in S, NAut(S)(Q1) = NAut(S)(Q2) has index at most 2 in Aut(S)

and for α ∈ Aut(S) with non-trivial image in Aut(S)/NAut(S)(Qi), Qiα = Q3−i for

i ∈ {1, 2}.

Proof. By Lemma 4.3.4, Q1 and Q2 are the only subgroups of S of order q5 and

exponent 3. Therefore Aut(S) permutes {Q1, Q2}. As Q1 and Q2 are exchanged in

Aut(S), NAut(S)(Q1) has index at most 2 in Aut(S) and NAut(S)(Q1) = NAut(S)(Q2).

Furthermore, it follows that Q1 ∩Q2 is a characteristic subgroup of S.

Proposition 4.3.6. Let S be isomorphic to a Sylow 3-subgroup of G2(3n). Then

Aut(S) = CH where C is a normal 3-subgroup and H = NAut(G2(q))(S).
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Proof. We have that |NAut(G2(q))(S)| = q6.(q − 1)2.2n where q = 3n, and so

|Aut(S)|3′ > (q − 1)2.2n. Note that NAut(S)(Q1) = NAut(S)(Q2) normalizes Z(Q1)

and Z(Q2) and so acts on both S/Z(Q1) and S/Z(Q2). Let α ∈ NAut(S)(Q1). If α

acts trivially on S/Z(Q1) and S/Z(Q2), then α acts trivially on S/Z(S) and since

Z(S) ≤ Φ(S), α acts trivially on S/Φ(S). By Lemma 2.1.8, all such automorphism

form a normal 3-subgroup of Aut(S). Now, every other automorphism acts

non-trivially on S/Z(Qi) for some i ∈ {1, 2} and so embeds in Aut(S/Z(Qi)).

Without loss of generality, let i = 1. By Lemma 4.3.2, S/Z(Q1) is isomorphic to a

Sylow 3-subgroup of SL3(q), and by [PR06, Proposition 5.3], Aut(S/Z(Q1)) =

A.ΓL2(q) where A is a normal 3-subgroup of Aut(S/Z(Q1)) which centralizes

S/Q1∩Q2. In particular, setting C = CAut(S)(S/Q1∩Q2), C is a normal 3-subgroup

of Aut(S) and Aut(S)/C has an index 2 subgroup which normalizes Q1 and

is isomorphic to a subgroup of ΓL2(q). Specifically, NAut(S/Z(Q1))(Q1/Z(Q1)) =

NAut(S/Z(Q1))(T ) where T ∈ Syl3(Aut(S/Z(Q1))). Therefore, |Aut(S)|3′ 6 (q −

1)2.2n and it follows that |Aut(S)|3′ = |NAut(G2(q))(S)|3′ and Aut(S) = CH where

C = CAut(S)(S/Q1 ∩Q2) and H = NAut(G2(q))(S).

Lemma 4.3.7. Let x ∈ Qi \ Z(Qi). Then |CQi(x)| = q4 and A(Qi) = {CQi(x) |

x ∈ Qi \ Z(Qi)}.

Proof. By symmetry, we may as well suppose that i = 1. Then Lemma 4.3.1

implies that Q1 = Z(Q1)X. Moreover, for x ∈ Q1 \Z(Q1), CQ1(x) = Z(Q1)CX(x)

and an easy calculation in X shows that CX(x) has order q2. Hence CQ1(x) is

elementary abelian of order q4. Since the maximal elementary abelian subgroups

of X have order q2, the result follows.

We now determine the set of essential subgroups of a saturated fusion system F

on S over a series of lemmas and propositions. As in the case where p = 2, it is
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enough to assume that a candidate essential is S-radical and S-centric and so we

perform the analysis in this more general setting.

Lemma 4.3.8. Let E be an S-centric, S-radical subgroup of S and suppose that

Q1 ∩Q2 < E. Then Q1 ≤ E or Q2 ≤ E or E = S.

Proof. Suppose that E is an S-centric, S-radical subgroup with Q1 ∩ Q2 < E,

Q1 6≤ E and Q2 6≤ E. Note that E E S as S ′ ≤ Q1 ∩Q2 < E. Since all elements

of S of order 3 are contained in Q1∪Q2 we deduce that Ω(E) = (Q1∩E)(Q2∩E).

Let α ∈ Aut(E) and notice that Ω(E) is characteristic in E, so is normalized by

α. Suppose also that (Q1 ∩ E)α 6= (Q1 ∩ E). We follow the same argument as

Proposition 4.3.6 to see that (Q1 ∩ E)α = (Q2 ∩ E) and (Q2 ∩ E)α = (Q1 ∩ E)

so that α fixes (Q1 ∩ Q2 ∩ E). Therefore, in all cases, at least one of (Q1 ∩ E),

(Q2 ∩ E) or (Q1 ∩Q2 ∩ E) = Q1 ∩Q2 is characteristic in E.

Suppose Q1 ∩ Q2 is characteristic in E. If E ≤ Qi for some i ∈ {1, 2}, then as

E is S-centric, Z(Qi) ≤ Z(E). If Z(Qi) = Z(E) then Qi centralizes the chain

{1} E Z(E) E E, a contradiction since Qi 6≤ E and E is S-radical. Hence,

there is e ∈ Z(E) \ Z(Q1) and since Q1 ∩ Q2 is a maximal elementary abelian

subgroup of S which centralizes Z(E), by Lemma 4.3.7, we conclude that E ≤

CS(Z(E)) = Q1 ∩ Q2, a contradiction. Therefore, E 6≤ Qi for i ∈ {1, 2}. We

have that [E, S] ≤ [S, S] = S ′ ≤ Q1 ∩ Q2 and since E 6≤ Qi, we have that

[Q1 ∩Q2, E] = [Z(Q1), E][Z(Q2), E] = Z(S) = [Q1 ∩Q2, S]. But [Q1 ∩Q2, E] is a

commutator of two characteristic subgroups of E, so is characteristic in E. Thus,

S centralizes the characteristic chain {1} E [Q1∩Q2, E] E Q1∩Q2 E E, and since

E is S-radical, we conclude that E = S.

Suppose now that Q1 ∩ E is characteristic in E and Q1 ∩ Q2 ≤ E is not
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characteristic. Then Q1 ∩ Q2 ≤ Q1 ∩ E and Z(Q1 ∩ E) centralizes Q1 ∩ Q2.

Since Q1 ∩ Q2 is maximal elementary abelian, Z(S) ≤ Z(Q1 ∩ E) ≤ Q1 ∩ Q2. If

there is x ∈ Z(Q1 ∩ E) \ Z(Q1) then by Lemma 4.3.7, CQ1(x) = Q1 ∩ Q2. But

then Q1 ∩ E obviously centralizes x so that Q1 ∩ E = Q1 ∩ Q2 is characteristic

in E, a contradiction. Therefore, we deduce that Z(Q1 ∩ E) = Z(Q1). But now

[Q1, E] ≤ Q1 ∩ E, [Q1, Q1 ∩ E] ≤ Q′1 ≤ Z(Q1 ∩ E) and [Q1, Z(Q1 ∩ E)] = {1}

so that Q1 centralizes the chain {1} E Z(Q1 ∩ E) E Q1 ∩ E E E and since E is

S-radical, Q1 = Q1 ∩ E is a characteristic subgroup of E. The argument when

Q2 ∩ E is characteristic in E is similar.

Proposition 4.3.9. Let E be an S-centric, S-radical subgroup of S such that

Q1 ∩Q2 < E < S. Then E = Qi.

Proof. By Lemma 4.3.8, we may assume that Q1 ≤ E or Q2 ≤ E. Without loss of

generality, suppose that Q1 < E but Q2 6≤ E. By the proof of Lemma 4.3.8, Q1

is characteristic in E. By the Dedekind modular law, E = E ∩ S = E ∩ Q1Q2 =

Q1(E ∩ Q2) so that there exists x ∈ (E ∩ Q2) \ Q1. As a consequence, using

the commutator formulas, we deduce that E ′Z(Q1) = Q1 ∩ Q2 is a characteristic

subgroup of E and Z(E) = Z(S). But then Q2 centralizes the chain {1} E Z(E) E

Q1∩Q2 E E, a contradiction since Q2 6≤ E and E is S-radical. Therefore, E = Q1,

as required.

Proposition 4.3.10. Let E ≤ S be an S-centric, S-radical subgroup of S such

that Q1 ∩ Q2 6≤ E. Then for some i ∈ {1, 2}, E ∈ A(Qi) is of order q4 and

NS(E) = Qi.

Proof. Suppose that Q1 ∩ Q2 6≤ E. If Z(E) ≤ Q1 ∩ Q2, since [E,Q1 ∩ Q2] ≤

[S,Q1 ∩ Q2] = Z(S) ≤ Z(E), Q1 ∩ Q2 centralizes the chain {1} E Z(E) E E, a
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contradiction since E is S-radical. Thus, Z(E) 6≤ Q1∩Q2. Since Q1∩Q2 6≤ E, and

Q1∩Q2 = Z(Q1)Z(Q2), we may assume without loss of generality that Z(Q1) 6≤ E.

If Ω(Z(E)) ≤ Q1 then, since [E,Z(Q1)] ≤ [S,Z(Q1)] = Z(S) ≤ Ω(Z(E)), Z(Q1)

centralizes the chain {1} E Ω(Z(E)) E E, a contradiction.

Hence, Ω(Z(E)) 6≤ Q1 and so, Ω(Z(E)) ≤ Q2 by Lemma 4.3.4. Since E centralizes

Ω(Z(E)), it follows from the commutator formulas that E ≤ Q2 and since E is

S-centric, we conclude Z(Q2) ≤ Ω(Z(E)). Moreover, since Z(E) 6≤ Q1∩Q2, there

exists e ∈ Z(E) \Z(Q2) and therefore E ≤ CS(e) ∈ A(Q2) by Lemma 4.3.1. Since

E is S-centric, E = CS(e) is elementary abelian of order q4 and calculating using

the commutator formulas, it follows that NS(E) = Q2. A similar argument when

Z(Q2) 6≤ E completes the proof.

Having identified the S-centric, S-radical subgroups we now turn our attention to a

fixed saturated fusion system F on S and its essential subgroups. In the following,

to restrict the list of centric, radical subgroups, we make use of Lemma 2.3.10,

again stressing that this result does not rely on K-group hypothesis. Moreover, we

use some results in [PS18] and even though the hypothesis there includes O3(F) =

{1}, the results we use are independent of this. Thus, we can still operate in a

completely general setting.

Lemma 4.3.11. Let E be an essential subgroup of a saturated fusion system F

on S. Then Q1 ∩Q2 ≤ E.

Proof. By Proposition 4.3.10, without loss of generality, we assume that E is a

maximal elementary abelian subgroup of NS(E) = Q2, E ∩ Q1 = Z(Q2) and

E(Q1 ∩Q2) = Q2. Since Z(Q2) is an index q subgroup of E centralized by Q2, it

follows by Lemma 2.3.10 thatO3′(OutF(E)) ∼= SL2(q) and E/CE(O3′(OutF(E))) is
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a natural SL2(q)-module. Set ZE := CE(O3′(OutF(E))) ≤ Z(Q2) and let 1 6= tE ∈

Z(O3′(OutF(E))). By Proposition 4.3.9 and Proposition 4.3.10, every essential

subgroup is contained in either Q1 or Q2. In particular, Q2 is the only possible

essential subgroup E is contained in. Since tE normalizes OutS(E), using that

E is receptive, and applying the Alperin–Goldschmidt theorem, we conclude that

tE lifts to some automorphism of S or Q2, and since Q2 = NS(E), the lift of tE

normalizes Q2 in both cases.

Suppose that tE lifts to some automorphism of S and call this morphism t∗E. Since

t∗E normalizes Q2, by Lemma 4.3.5 t∗E normalizes Q1. Moreover, t∗E centralizes

Z(Q1)/Z(S) = Z(Q1)/(Z(Q1)∩E) ∼= Q2/E. Since t∗E normalizes Φ(Q2), either t∗E
inverts Φ(Q2) or centralizes Φ(Q2). If t∗E centralizes Φ(Q2), then [Q1∩Q2, Q2, t

∗
E] =

{1}. But t∗E centralizes (Q1 ∩ Q2)/Z(Q2) = (Q1 ∩ Q2)/(Q1 ∩ Q2 ∩ E) ∼= Q2/E

so that [t∗E, Q1 ∩ Q2, Q2] = {1}. Then, the three subgroup lemma yields

[t∗E, Q2, Q1 ∩ Q2] = {1} so that [t∗E, Q2] ≤ E ∩ Q1 ∩ Q2 = Z(Q2), a contradiction

since ZE ≤ Z(Q2). Thus, t∗E inverts Φ(Q2) and since ZE ≤ Q2 has order q2, it

follows that t∗E centralizes Z(Q2)/Φ(Q2) and (Q1 ∩ Q2)/Φ(Q2) = CQ2/Φ(Q2)(t∗E).

Again, t∗E either inverts S/Q2 or centralizes S/Q2. Suppose the latter. Then

t∗EQ2 is normalized by S so that [Q2/Φ(Q2), t∗E] is normalized by S. But

Z(S/Φ(Q2)) ≤ (Q1 ∩ Q2)/Φ(Q2) = CQ2/Φ(Q2)(t∗E) from which it follows that

[Q2/Φ(Q2), t∗E] = {1}, a clear contradiction. Thus, t∗E inverts S/Q2. Now,

[t∗E, Q1 ∩ Q2, Q1] = [Φ(Q2), Q1] = {1} and [Q1, (Q1 ∩ Q2), t∗E] = [Φ(Q1), t∗E] =

{1}, since Φ(Q1) ∩ Φ(Q2) = {1}. Therefore, by the three subgroup lemma,

[t∗E, Q1, Q1 ∩ Q2] = {1} and t∗E centralizes Q1/Q1 ∩ Q2, a contradiction since t∗E
inverts S/Q2 ∼= Q1/(Q1 ∩Q2).

Suppose that tE does not lift to a morphism of S. In particular, we may assume
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that Q2 is essential. Note that S acts non-trivially on Z(Q2)/Φ(Q2) and centralizes

Z(S)/Φ(Q2). By Lemma 2.3.10, setting L2 := O3′(OutF(Q2)), we have that V :=

Z(Q2)/Φ(Q2) is a natural SL2(q)-module for L2/CL2(V ) ∼= SL2(q) and CL2(V )

is a 3′-group. Then, independently of a K-group hypothesis, provided q > 3,

Proposition 3.2.7 implies that L2 is a central extension of SL2(q) by a group of

p′-order, and so L2 ∼= SL2(q). If q = 3, then [PS18, Lemma 7.8] implies that

L2 ∼= SL2(3) and V is a natural SL2(3)-module. Since S acts non-trivially and

quadratically on Q2/Z(Q2), Q2/Z(Q2) is also a natural SL2(q)-module for L2. But

then, L2 is transitive on subgroups of Q2/Z(Q2) of order q and there is α ∈ L2 such

that Eα = Q1 ∩ Q2, a contradiction since E is fully normalized. This completes

the proof.

As with the case when p = 2, we can circumvent the need for a K-group hypothesis.

As in the above, we only make use of Lemma 2.3.10 to identify the automizer of

an essential subgroup, and this is enough to show that for E an essential subgroup

under consideration, O3′(OutF(E)) ∼= SL2(3r) for some r. Moreover, as intimated

when p = 2, under such circumstances the proof of Corollary 4.1.3 boils down to

recognizing a weak BN-pair of rank 2 whose completion is completely determined

using [DS85] which does not rely on any inductive hypothesis. In our application,

we identify a specified subsystem of F within the fusion category of G2(q) using

this methodology, and then identify F using the relationship between Aut(S) and

Aut(G2(q)) demonstrated in Proposition 4.3.6.

Theorem 4.3.12. Let F be a saturated fusion system over a Sylow 3-subgroup of

G2(3n) . Then one of the following occurs:

(i) F = FS(S : OutF(S));
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(ii) F = FS(Qi : OutF(Qi)) where O3′(OutF(Qi)) ∼= SL2(3n); or

(iii) F = FS(G) where F ∗(G) = O3′(G) ∼= G2(3n).

Proof. By Proposition 4.3.9 and Lemma 4.3.11, E(F) ⊆ {Q1, Q2, Q1 ∩ Q2}.

Suppose that Q1 ∩ Q2 is essential. Since S/Q1 ∩ Q2 is elementary abelian and

of order q2 and Z(S) is of index q2 in Q1 ∩Q2 and centralized by S, it follows by

Theorem 3.2.3 that Q1∩Q2 is a natural SL2(q2)-module for L12 := O3′(OutF(Q1∩

Q2)) ∼= SL2(q2). But then |NL12(OutS(Q1 ∩ Q2))| = q2 − 1 and since Q1 ∩ Q2

is receptive, each morphism φ ∈ NL12(OutS(Q1 ∩ Q2)) lifts to some morphism in

AutF(S). Since NAutF (S)(Q1) has index at most 2 in AutF(S), it follows that upon

restriction there is a group of index at most 2 in NL12(OutS(Q1∩Q2)) normalizing

OutQ1(Q1 ∩ Q2), a contradiction unless q = 3. If q = 3, then Q1 ∩ Q2 is not

essential in F by [PS18, Lemma 7.4].

We have reduced to the case where the set of essentials is contained in {Q1, Q2}.

If neither Q1 nor Q2 is essential then outcome (i) holds. If Qi is essential then

following an argument in Lemma 4.3.11, we deduce that O3′(OutF(Qi)) ∼= SL2(q)

and both Qi/Z(Qi) and Z(Qi)/Φ(Qi) are natural SL2(q)-modules. In particular,

if only one of Q1, Q2 is essential then by Lemma 4.3.5 AutF(S) = NAutF (S)(Qi)

and outcome (ii) holds.

Assume that both Q1 and Q2 are essential and suppose Q := O3(F) 6= {1}. By

Proposition 3.1.13, Q ≤ Q1 ∩ Q2. Then Q ∩ Z(S) 6= {1} and the irreducibility

of Z(Qi)/Φ(Qi) under the action of O3′(OutF(Qi)) implies that Z(Q1)Z(Q1) ≤

Q1∩Q2 ≤ Q ≤ Q1∩Q2 and Q = Q1∩Q2. Then, the irreducibility of O3′(OutF(Qi))

on Qi/Z(Qi) gives a contradiction. Therefore, O3(F) = {1}.

Set F0 = 〈NF(Q1), NF(Q2)〉 so that AutF0(S) has index at most 2 in AutF(S). It
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follows by [AKO11, Lemma I.7.6(b)] that F0 is a saturated subsystem of F and

so F0 has index 2 in F . In particular, by [AKO11, Theorem I.7.7(c)], F0 is a

normal subsystem of F and O3′(F) ≤ O3′(F0). Now, F0 satisfies the hypothesis

of Corollary 4.1.3 and comparing with the list there, it follows that O3′(F0) is

isomorphic to the 3-fusion system of G2(3n) and since O3′(F0) is simple, we deduce

that O3′(F0) = O3′(F). By Proposition 4.3.6, we have that Aut(S) = CH, where

C is a 3-group and H = NAut(G2(3n))(S), and so choices of AutF(S) correspond

exactly to G ≤ Aut(G2(q)) such that F ∗(G) = O3′(G) ∼= G2(q), as required.

4.4 Fusion Systems on a Sylow p-subgroup of

G2(p
n) for p >>> 5

Suppose now that p > 5, q = pn and S is isomorphic to a Sylow p-subgroup of

G2(q). Again, we set K to be a finite field of order q and recall the Chevalley

commutator formulas from Section 4.1:

[xα(t), xβ(u)] = xα+β(−tu)x2α+β(−t2u)x3α+β(t3u)x3α+2β(−2t3u2)

[xα(t), xα+β(u)] = x2α+β(−2tu)x3α+β(3t2u)x3α+2β(3tu2)

[xα(t), x2α+β(u)] = x3α+β(3tu)

[xβ(t), x3α+β(u)] = x3α+2β(tu)

[xα+β(t), x2α+β(u)] = x3α+2β(3tu).
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It then follows that

Z4(S) = S ′ = 〈Xα+β, X2α+β, X3α+β, X3α+2β〉,

Z3(S) = S ′′ = 〈X2α+β, X3α+β, X3α+2β〉,

Z2(S) = S ′′′ = 〈X3α+β, X3α+2β〉, and

Z(S) = S
′′′′ = S(2) = 〈X3α+2β〉

are characteristic subgroups of S of orders q4, q3, q2 and q respectively. In

particular, the lower and upper central series for S coincide.

We define

Q1 := CS(Z3(S)/Z1(S)) = 〈Xβ, Xα+β, X2α+β, X3α+β, X3α+2β〉

Q2 := CS(Z2(S)) = 〈Xα, Xα+β, X2α+β, X3α+β, X3α+2β〉

both of order q5 and characteristic in S. Observe that we may identify Q1 and Q2

with the unipotent radical subgroups of maximal parabolic subgroups in G2(q).

Additionally, Φ(Q1) = Z(Q1) = Z(S) and Φ(Q2) = Z3(S).

We first record some useful structural properties of S, Q1 and Q2. There is much

more to be said here but we only present the results required to prove Theorem

D.

Lemma 4.4.1. Q1 is isomorphic to X1 ∗X2 where Z(S) = Z(X1) = Z(X2) and

Xi
∼= T ∈ Sylp(SL3(pn)) for i ∈ {1, 2}.

Proof. Let X1 = XβX3α+βX3α+2β ≤ Q1. Since the groups Xβ and X3α+β
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commute modulo X3α+2β, it follows that every element may be written as

x3α+β(t1)xβ(t2)x3α+2β(t3) for ti ∈ K. Then, using the commutator formulas, we

calculate that the map θ1 : X1 → SL3(q) such that

(x3α+β(t1)xβ(t2)x3α+2β(t3))θ1 =


1 0 0

t1 1 0

t3 t2 1



is an injective homomorphism, from which it follows that X1 is isomorphic to

a Sylow 3-subgroup of SL3(q). Similarly, letting X2 = X2α+βXα+βX3α+2β ≤ Q1.

Then every element of X2 may be written as x2α+β(t1)xα+β(t2)x3α+2β(t3) for ti ∈ K.

Then, using the commutator formulas, we calculate that the map θ2 : X2 → SL3(q)

such that

(x2α+β(t1)xα+β(t2)x3α+2β(t3))θ2 =


1 0 0

t1 1 0

t3 3t2 1


is an injective homomorphism, from which it follows that X2 is isomorphic to a

Sylow 3-subgroup of SL3(q). Thus, Q1 is a central product (over Z(S) = X3α+2β)

of two groups isomorphic to a Sylow p-subgroup of SL3(q).

In the literature, Q1 is referred to as an ultraspecial group. The properties of such

groups are well known. See, for example, [Bei77].

Lemma 4.4.2. Let x ∈ Z3(S) \ Z2(S). Then x is S-conjugate to x2α+β(u) for

some u ∈ K×.

Proof. Let x ∈ Z3(S) \ Z2(S) so that x = x2α+β(t1)x3α+β(t2)x3α+2β(t3) for some

t1, t2, t3 ∈ K with t1 6= 0. Then the element xβ(t3t−1
2 )xα(3−1t2t

−1
1 ) conjugates x

109



to x2α+β(t1) if t2 6= 0 and the element xα+β(3−1t3t
−1
1 ) conjugates x to x2α+β(t1) if

t2 = 0.

As in the cases where p = 2 or 3, the main tool we use to determine whether a

subgroup of S is essential is Lemma 3.2.1 and so for a large number of arguments

in this section, we need only assume that any essential candidate is S-radical and

S-centric.

Lemma 4.4.3. Suppose that E is an S-centric, S-radical subgroup of S with Q1 ≤

E or Q2 ≤ E. Then E ∈ {Q1, Q2, S}.

Proof. Suppose that Q1 < E. Then there is e = xα(t1) ∈ E with t1 6= 0, applying

the commutator formulas, it follows that Z(E) = Z(S), Z2(E) = Z2(S), Z3(E) =

Z3(S) and E ′ = S ′. But then Q2 centralizes the chain {1} E Z2(E) E Z3(E) E

E ′ E E, and since E is S-radical, E = S. In a similar manner, if Q2 < E then

there is e = xβ(t1) ∈ E with t1 6= 0. Again, from the commutator formulas,

Z(E) = Z(S) and E ′ = S ′. Now, Q1 centralizes the chain {1} E Z(E) E E ′ E E

and since E is S-radical, E = S.

Lemma 4.4.4. Suppose that E ≤ S is an S-centric, S-radical subgroup of S with

Z3(S) = S ′′ ≤ E. Then E = Z3(S) or Z(E) ≤ Z2(S). Moreover, if E is essential,

then E 6= Z3(S).

Proof. Since Z3(S) ≤ E is self-centralizing, we have that Z(E) ≤ Z3(S). By

Lemma 4.4.2, if Z(E) 6≤ Z2(S) then there is e ∈ Z(E) \ Z2(S) with e conjugate

in S to some x2α+β(u). Thus, Z3(S) ≤ E ≤ CS(e) = Z3(S)(Xβ)s for some s ∈ S.

Suppose that E > Z3(S). Since E is self centralizing Z(CS(e)) = Z(S)(X2α+β)s ≤

Z(E) and so Z(E) = Z(CS(e)). Therefore, CS(e) centralizes the series {1} E
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Z(E) E E so that E = CS(e) ≤ Q1. But now, Q1 centralizes the series {1} E

E ′ = Z(S) = Q′1 E E, a contradiction.

Suppose that E = Z3(S) is an essential subgroup of F . Then Q2/E is elementary

abelian of order q2 and centralizes Z2(S) which has index q in Z3(S). Then

Lemma 2.3.10 provides a contradiction.

Lemma 4.4.5. Suppose that E is an S-centric, S-radical subgroup of S with

Z3(S) = S ′′ ≤ E and Z(E) = Z(S). Then E ∈ {Q1, S}.

Proof. Since Z(E) = Z(S), we infer that E 6≤ Q2. Moreover, if E ≤ Q1, then

[E,Q1] ≤ Q′1 = Z(S) = Z(E) and Q1 centralizes the chain {1} E Z(E) E E.

Since E is S-radical, it follows that E = Q1 in this case. Hence, we may assume

throughout that E 6≤ Q1 or Q2 and so there is e := xα(t1)xβ(t2)xα+β(t3) ∈ E with

t1 6= 0 6= t2. Then, [e, Z2(S)] = Z(S) ≤ E ′ and [e,X2α+β]Z(S) = Z2(S) ≤ E ′.

Therefore, CE(E ′) ≤ E ∩Q2.

Suppose first that [Z3(S), E ′] = {1}. Since Z3(S) is self-centralizing, we have that

Z2(S) ≤ E ′ ≤ Z3(S). If E ′ 6= Z2(S), then Z3(S) = CE(E ′) is a characteristic

subgroup of E. Then E ∩ Q1 = CE(Z3(S)/Z(S)) = CE(Z3(S)/Z(E)) is also

characteristic in E. Then, since S ′ normalizes E, S ′ centralizes the chain {1} E

Z(E) E E ∩ Q1 E E and since E is radical, S ′ ≤ E by Lemma 3.2.1. But

then E E S and Q1 centralizes the chain {1} E Z(E) E E ∩ Q1 E E and so

Q1 ≤ E. Then by Lemma 4.4.3, E = Q1 or E = S and since Z2(S) ≤ E ′ and

[E ′, Z3(S)] = {1}, we have a contradiction in either case. Therefore, E ′ = Z2(S)

and E ∩Q2 = CE(E ′) is characteristic in E.

If E ∩ S ′ > Z3(S), as E ′ = Z2(S), it follows from the commutator formulas that

E ∩ Q2 = E ∩ S ′. But then S ′ centralizes the chain {1} E Z(E) E E ∩ S ′ E E
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and since E is S-radical, S ′ ≤ E, E E S and S ′ is characteristic in E. Now, Q1

centralizes the chain {1} E Z(E) E S ′ E E so that Q1 ≤ Eand, by Lemma 4.4.3,

E = S or E = Q1. Since E ′ = Z2(S), we have a contradiction in either case. Thus,

E ∩ S ′ = Z3(S). If E ∩ Q2 = Z3(S), then S ′ centralizes the chain {1} E Z(E) E

Z3(S) E E and since E is S-radical, S ′ ≤ E. Since E ∩ S ′ = Z3(S), this is an

obvious contradiction. Thus, Z3(S) = E ∩ S ′ < E ∩ Q2. Since E 6≤ Q2, there is

e := xα(t1)xβ(t2)xα+β(t3) ∈ E with t2 6= 0 and ẽ := xα(t̃1)xα+β(t̃2) ∈ E ∩Q2 with

t̃1 6= 0. But then, [e, ẽ] 6≤ Z2(S) = E ′, a contradiction.

Suppose now that [Z3(S), E ′] 6= {1}. Since Z2(S) ≤ E ′, it follows that there is

x := xα+β(t1)x2α+β(t2) ∈ E ′ with t1 6= 0. In particular, S ′ ∩ E ≤ CE(E ′/Z(E)) ≤

Q1∩E and so S ′ centralizes the chain {1} E Z(E) E CE(E ′/Z(E)) E E and since

E is S-radical, S ′ ≤ E. Therefore, S ′ ≤ CE(E ′/Z(E)), E E S and Q1 centralizes

the chain {1} E Z(E) E CE(E ′/Z(E)) E E. Since E is S-radical, Q1 ≤ E and

since [Z3(S), E ′] 6= {1}, it follows from Lemma 4.4.3 that E = S.

Lemma 4.4.6. Suppose that E is an S-centric, S-radical subgroup of S with

Z3(S) = S ′′ < E and Z(E) 6= Z(S). Then E = Q2; or E ≤ Q2 has order

q4, Φ(E) < Z2(S) = Z(E), |Φ(E)| = q and NS(E) = Q2. Moreover, if E is

essential then E = Q2.

Proof. By Lemma 4.4.4, Z(S) < Z(E) ≤ Z2(S). Then E ≤ Q2 and Z(E) = Z2(S)

is characteristic in E. If S ′ = E then Q1 centralizes the chain {1} E E ′ E E, a

contradiction since E is assumed to be S-radical; and if S ′ < E, by the commutator

formulas, it follows that Z2(E) = Z3(S) = Q′2 is characteristic in E and so Q2

centralizes the chain {1} E Z(E) E Z2(E) E E and as E is S-radical, E = Q2 in

this case. Hence, S ′ 6≤ E. Moreover, if E ≤ S ′ then S ′ centralizes the series {1} E

Z(E) E E so E 6≤ S ′. Suppose there exists x ∈ (S ′∩E)\Z3(S) and let e ∈ E \S ′.
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Since Z3(S) ≤ S ′ ∩ E, we may take x = xα+β(t1). Then Z(S) = [x, Z3(S)] ≤ E ′

and Z2(S) = Z(S)[e, Z3(S)] ≤ E ′. Thus, Z2(S) < Z2(S)[e, x] ≤ E ′ ≤ Z3(S),

CE(E ′) = Z3(S) is characteristic in E and S ′ centralizes the chain {1} E Z(E) E

CE(E ′) E E, a contradiction since E is S-radical. Hence, S ′ ∩ E = Z3(S) and

since S ′E ≤ Q2, |E| 6 q4. Moreover, comparing with commutator formulas, it

follows that NS(E) = Q2.

Now, analyzing Q2 within G2(q), we see that Q2/Z3(S) is a natural SL2(q) module

for Op′(OutG2(q)(Q2)) ∼= SL2(q). In particular, E is contained in some subgroup X

of order q4 such that X is conjugate in Op′(OutG2(q)(Q2)) to S ′. Since S(2) = Z(S),

and Z2(S) is also a natural SL2(q) module for Op′(OutG2(q)(Q2)) ∼= SL2(q), it

follows that Φ(X) is a group of order q contained in Z2(S) = Z(E). In particular,

if E < X, then X centralizes the chain {1} E Z(E) E E, a contradiction since E

is S-radical. Therefore, E = X is of order q4 and satisfies the required properties.

Assume now that E is essential. By the results in [PS18, Lemma 4.4], we may

assume that q > p else the result holds. Note that Q2 centralizes Z2(S) and

since Q2 = NS(E), Op′(OutF(E)) centralizes Z2(S) = Z(E). Moreover, since

Φ(E) ≤ Z2(S), |Q2/E| = q,|E/Z3(S)| = q and [Q2, Z3(S)] = Z2(S), it follows by

a similar argument to Lemma 2.3.10 that E/Z(E) is a natural SL2(q)-module for

Op′(OutF(E)) ∼= SL2(q).

Suppose first that Q2 is essential in F . Moreover, by Lemma 4.4.3, Q2 is maximally

essential. Since Φ(Q2) = Z3(S) and [S, S ′] ≤ Z3(S), by Lemma 2.3.10 we ave

that Q2/Φ(Q2) is a natural SL2(q)-module for Op′(OutF(Q2)) ∼= SL2(q). But

then, Op′(OutF(Q2)) acts transitively on subgroups of Q2 of order q4 containing

Φ(Q2) = Z3(S) so that E is conjugate in F to S ′. Since E was assumed to be

fully F -normalized, this is a contradiction.
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Hence, we may assume that Q2 is not essential. Note that as any essential

containing E contains S ′′, we may as well assume that E is not properly

contained in any essential subgroup and so E is maximally essential. Let tE be

a non-trivial element in Z(Op′(OutF(E))). Using that tE normalizes OutS(E),

E is receptive and applying the Alperin–Goldschmidt theorem, tE lifts to some

morphism in AutF(S) and so normalizes Z3(S) and S ′. Moreover, since E/Z(E)

is natural SL2(q)-module, tE inverts Z3(S)/Z(E), centralizes Z(E) and centralizes

Q2E/E ∼= S ′/Z3(S). But now, [tE, S ′, Z3(S)] = {1} since Z3(S) is abelian, and

[S ′, Z3(S), tE] = {1}. By the three subgroup lemma, [tE, Z3(S), S ′] = {1} and so

[tE, Z3(S)] ≤ Z(S ′) = Z2(S) = Z(E), a contradiction.

Lemma 4.4.7. Suppose that E is an S-centric, S-radical subgroup of S with

Z3(S) 6≤ E but Z2(S) ≤ E. Then E ∩ Z3(S) = Z2(S).

Proof. Since Z2(S) ≤ E, we deduce that Z(E) ≤ Q2. Suppose that E ∩ Z3(S) >

Z2(S). Since Z(E) centralizes E ∩ Z3(S) and Z3(S) is self-centralizing in S, it

follows that Z(E) ≤ Z3(S). If Z(E) ∩ Z2(S) > Z(S), then E ≤ Q2 and Z2(S) ≤

Z(E) ≤ Z3(S). Moreover, if Z2(S) < Z(E) then, again using that Z3(S) is

self-centralizing, it follows that E ≤ Z3(S) and since E is S-centric, E = Z3(S),

a contradiction. Hence, if Z2(S) ∩ Z2(S) > Z(S) then Z(E) = Z2(S). But now,

Z3(S) centralizes the chain {1} E Z(E) E E, a contradiction since E is S-radical

and Z3(S) 6≤ E. Therefore, if E ∩ Z3(S) > Z2(S), then Z(E) ∩ Z2(S) = Z(S).

Suppose that Z(E) ∩ Z3(S) > Z(S) and let e ∈ (Z3(S) ∩ Z(E)) \ Z(S). By

Lemma 4.4.2, e is conjugate in S to some element x2α+β(t) with t 6= 0. Moreover,

it follows from the commutator formulas that the centralizer of such an element

is contained in Q1 and intersects S ′ only in Z3(S). Since Q1, S ′ and Z3(S) are

normal in S, the centralizer of e is contained in Q1 and intersects S ′ only in Z3(S).
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But E centralizes e ≤ Z(E) and so if E ≤ S ′, then E ≤ Z3(S) and since E is

S-centric, we have a contradiction. Therefore, E ≤ Q1 and there is x ∈ E \ S ′.

Since Z2(S) ≤ E, Z(S) = [x, Z2(S)] ≤ E ′ ≤ Q′1 = Z(S) and so Z(S) = E ′.

But then Q1 normalizers the chain {1} E E ′ E E, and since E is S-radical, we

conclude that Z3(S) ≤ Q1 ≤ E, a contradiction.

Hence, we have shown that if E∩Z3(S) > Z2(S), then Z(E) = Z(S). In particular,

E 6≤ Q2 since Z2(S) 6≤ Z(E) and E 6≤ Q1, for otherwise Q1 centralizes the

chain {1} E Z(E) E E, a contradiction for then Z3(S) ≤ Q1 ≤ E since E is

S-radical. Now, Z2(S) ≤ Z2(E) and since E ∩ Z3(S) > Z2(S), it follows from the

commutator formulas that Z2(E) ≤ E ∩ Q1. But then [Z3(S), Z2(E)] ≤ Z(S) =

Z(E), [Z3(S), E] ≤ Z2(S) ≤ Z2(E) and Z3(S) centralizes the chain {1} E Z(E) E

Z2(E) E E, a contradiction since E is S-radical.

Lemma 4.4.8. Suppose that ES is an S-centric, S-radical subgroup of S with

Z3(S) 6≤ E but Z2(S) ≤ E. Then either E ≤ S ′ is elementary abelian of order q3,

NS(E) = Q1 and E is not an essential subgroup of any saturated fusion system F

on S; or E ∩ S ′ = Z2(S).

Proof. By Lemma 4.4.7, we may assume that E ∩ Z3(S) = Z2(S). Suppose that

E ∩S ′ > Z2(S). It then follows from the commutator formulas that Z(E) ≤ S ′. If

Z(E)∩Z2(S) > Z(S), then E ≤ Q2. But then Z2(S) ≤ Z(E) and since Z3(S) 6≤ E

and E is S-radical, we conclude that Z2(S) < Z(E) for otherwise, Z3(S) centralizes

the chain {1} E Z(E) E E. But then, there is e ∈ (Z(E) ∩ S ′) \ Z3(S) and

it follows from the commutator formulas that E ≤ S ′ and since E ∩ Z3(S) =

Z2(S), |E| 6 q3. We may set e := xα+β(t1)x2α+β(t2)x, where x ∈ Z2(S) and

t1 ∈ K×. Then for y := xα(−t22−1t−1), ey = xα+β(t1)x′ for some x′ ∈ Z2(S).

Then CS(eyZ2(S)) = Xα+βZ2(S) and it follows that E ≤ CS(e) is conjugate
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to a subgroup of Xα+βZ2(S). Moreover, since E is S-centric and Xα+βZ2(S) is

elementary abelian, E is conjugate to Xα+βZ2(S) and a calculation using the

commutator formulas gives that NS(E) = Q1.

Suppose that E is essential. Since Z3(S)E/E is elementary abelian of order q and

Z3(S) centralizes Z2(S) which has index q in E, by Lemma 2.3.10 we deduce that

E/CE(Op′(OutF(E))) is a natural SL2(q)-module for Op′(OutF(E)) ∼= SL2(q) and

OutZ3(S)(E) ∈ Sylp(OutF(E)). But Q1 ≤ NS(E) and we have a contradiction.

Hence, if E ∩S ′ > Z2(S), then Z(E)∩Z2(S) = Z(S). If Z(E) 6= Z(S), then there

is e ∈ (Z(E) ∩ S ′) \ Z(S) and it follows from the commutator formulas that the

centralizer of such an element is contained in Q1. Therefore, E ≤ Q1 and E ′ ≤

Q′1 = Z(S). Moreover, if there is x ∈ E \ S ′, then Z(S) = [x, Z2(S)] ≤ E ′ = Z(S)

and so, Q1 centralizes the chain {1} E E ′ E E, a contradiction since Q1 6≤ E

and E is radical. Therefore, E ≤ S ′, which yields another contradiction for then

Z2(S) ≤ Z(E).

Finally, we suppose that E ∩ S ′ > Z2(S), E ∩ Z3(S) = Z2(S) and Z(E) = Z(S).

In particular, E 6≤ Q2 and since Z2(S) ≤ E, for x ∈ E \Q2, Z(S) = [x, Z2(S)] ≤

E ′. Now, for e ∈ (E ∩ S ′) \ Z3(S), [e, Z2(E)] = Z(E) and it follows from the

commutator formulas that Z2(S) ≤ Z2(E) ≤ Q1. In particular, Z3(S) centralizes

the chain {1} E Z(E) E Z2(E) E E, a contradiction since E is S-radical and

Z3(S) 6≤ E.

Lemma 4.4.9. Suppose that E is an S-centric, S-radical subgroup of S with E ∩

S ′ = Z2(S). Then either

(i) E ≤ Q2 is elementary abelian of order q3, E 6≤ S ′ and NS(E) = EZ3(S) has

order q4; or
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(ii) E ∼= q1+2, Z2(S) = E ∩ Q1 = E ∩ Q2, Z(S) = Z(E) = Φ(E) and NS(E) =

EZ3(S) has order q4.

Moreover, in both cases E is not essential in any saturated fusion system F on S.

Proof. Suppose that E ≤ Q2. Then Z2(S) ≤ Z(E) and |E| 6 q3. If Z(E) = Z2(S),

then Z3(S) centralizes the chain {1} E Z(E) E E, a contradiction since E is

S-radical. Therefore, there is e ∈ Z(E)\S ′ and write e = xα(t1)xα+β(t2)x3α+β(t3)x

for some x ∈ Z2(S) and t1 ∈ K×. Then for y := xβ(t−1
1 t2)xα+β(2−1t1

1(t3 − t1t2)),

we have that ey = xα(t1)x′ for some x′ ∈ Z2(S). Then CS(eyZ2(S)) = XαZ2(S)

and by conjugation, E ≤ CS(e) is conjugate to a subgroup of XαZ2(S). Moreover,

since E is S-centric and XαZ2(S) is elementary abelian, we conclude that E is

conjugate to XαZ2(S) and a calculation using the commutator formulas gives that

NS(E) = EZ3(S), as required.

Suppose now that E is essential in a saturated fusion system F on S. Then

Z3(S)E/E is elementary abelian of order q and Z3(S) centralizes Z2(S) which has

index q in E. By Lemma 2.3.10, E/CE(Op′(OutF(E))) is a natural SL2(q)-module

for Op′(OutF(E)) ∼= SL2(q) and OutZ3(S)(E) ∈ Sylp(OutF(E)). Since E 6≤ Q1, we

may assume by Lemma 4.4.5 and Lemma 4.4.6 that the only possible essential E

is properly contained in is Q2.

If Q2 is essential then using that S centralizes S ′/Z3(S) = S ′/Φ(Q2) and S ′/Z3(S)

has index q in Q2/Z3(S), it follows by Theorem 3.2.3 that Q2/Z3(S) is a natural

SL2(q)-module for Op′(OutF(Q2)) ∼= SL2(q). But then, Op′(OutF(Q2)) is transitive

on subgroup of order q in Q2/Φ(Q2) and so Eφ ≤ S ′ for some φ ∈ Op′(OutF(Q2)).

Therefore, [Eφ,Q1] ≤ Z(S) ≤ Z2(S) ≤ Eφ and Q1 ≤ NS(Eφ). Since |NS(E)| =

q4, E is not fully normalized, a contradiction.
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Hence, we may assume that Q2 is not essential in F and for a non-trivial element

tE ∈ Z(Op′(OutF(E))), using that E is receptive, tE lifts to some t∗E ∈ AutF(S).

Moreover, by coprime action, E = [E, t∗E]× CE(t∗E) and either Z(S) = CE(t∗E) or

Z(S) ∩ CE(t∗E) = {1}. Since Z2(S) = CE(Z3(S)), it follows in the latter case that

t∗E centralizes Z2(S)/Z(S) and since Z3(S)E/E ∼= Z3(S)/Z2(S), coprime action

yields [Z3(S), t∗E] = Z(S). Then, [Z3(S), S, t∗E] = Z(S), [t∗E, Z3(S), S] = {1} and

the three subgroup lemma yields, [S, t∗E, Z3(S)] ≤ Z(S) and t∗E centralizes S/Q1 ∼=

Q2/S
′ = ES ′/S ′ ∼= E/Z2(S), a contradiction. Thus, t∗E centralizes Z(S) and

inverts Z2(S)/Z(S). Moreover, t∗E centralizes Z3(S)/Z2(S) and inverts E/Z2(S) =

E/E ∩ S ′ ∼= Q2/S
′. Now, since [S ′, Z3(S)] ≤ Z(S) is centralized by t∗E and

[Z3(S), t∗E] ≤ Z2(S) is centralized by S ′, it follows from the three subgroup lemma

that [t∗E, S ′, Z3(S)] = {1} and since Z3(S) is self-centralizing, [t∗E, S ′] ≤ Z3(S).

Indeed, coprime action implies that [t∗E, S ′] ≤ Z2(S). But then [t∗E, S ′, Q2] = {1},

[S ′, Q2, t
∗
E] ≤ Z2(S) and another application of the three subgroup lemma gives

[t∗E, Q2, S
′] ≤ Z2(S). But t∗E inverts Q2/S

′ and a contradiction follows from the

commutator formulas.

Assume now that E 6≤ Q2 and since Z2(S) ≤ E, for x ∈ E \ Q2, we have that

Z(S) = [x, Z2(S)] ≤ E ′ ≤ E ∩ S ′ = Z2(S). If Z(S) < E ′, then CE(E ′) = E ∩ Q2

is characteristic in E. Moreover, Z2(S) < CE(E ′) for otherwise Z3(S) centralizes

the chain {1} E Z2(S) E E, a contradiction since Z3(S) 6≤ E and E is S-radical.

Furthermore, Z(E) ∩Q2 ≤ S ′ ∩E = Z2(S), otherwise E ≤ Q2. But then Z(E) =

Z(S) and since there is e ∈ E ∩ Q2 \ Z2(S), Z2(S) ≤ Z2(E) ≤ E ∩ Q1 and so

Z2(S) = Z2(E) ∩ E ∩ Q2 is characteristic in E and Z3(S) centralizes the chain

{1} E Z2(S) E E, a contradiction.

Finally, we suppose that E∩S ′ = Z2(S), E 6≤ Q2 and Z(S) = E ′. If E∩Q2 > Z2(S)
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then, as E 6≤ Q2, there is e ∈ E\Q2, with [e, E∩Q2] 6≤ Z(S) = E ′. Hence, E∩Q2 =

Z2(S) and |E| 6 q3. Notice that if E ≤ Q1, then [E,Q1] ≤ Q′1 = Z(S) = E ′ and

Q1 centralizes the chain {1} E E ′ E E, a contradiction since Z3(S) 6≤ E and

E is S-radical. Hence, there is e ∈ E \ (Q1 ∪ Q2) and since [e, E ∩ Q1] ≤ E ′ =

Z(S), it follows from the commutator formulas that E ∩ Q1 = Z2(S). Note that

EQ1/Q1 ∼= E/Z2(S) is elementary abelian and so, Φ(E) ≤ Z2(S). If Z(S) < Φ(E),

then Z2(S) = CE(Φ(E)) is characteristic in E, a contradiction for then Z3(S)

centralizes then {1} E Z2(S) E E. Therefore, Φ(E) = Z(E) = Z(S), |E| = q3

and the commutator formulas imply that NS(E) = Z3(S)E, as required.

Suppose that E is essential on some saturated fusion system F supported on

S. Since E 6≤ Q1, Q2, it follows by Lemma 4.4.5 and Lemma 4.4.6 that E

is maximally essential. Moreover, Z3(S)E/E is elementary abelian of order q

and Z3(S) centralizes Z2(S) which has index q in E. Then by Lemma 2.3.10,

E/Z(E) is a natural SL2(q)-module, Op′(OutF(E)) ∼= SL2(q) and OutZ3(S)(E) ∈

Sylp(OutF(E)).

Let λ ∈ NOp′ (OutF (E)(OutS(E)) be an element of order q − 1, isomorphic to a

generator of a torus in SL2(q). We can choose λ to act as the scalars µ−1 on

E/Z2(S) and as µ on Z2(S)/Z(S), for µ ∈ K×. Since E is essential, it is receptive,

so we may extend λ to some λ̂, and by the Alperin – Goldschmidt Theorem and

since E is maximally essential, we may take λ̂ ∈ AutF(S) so that λ̂ acts on S ′, Q1

and Q2. Since E/Z2(S) ∼= ES ′/S ′, it follows that λ̂ acts as µ−1 on ES ′/S ′. Let

xα(t1), xβ(t2) be transversals in S/S ′ such that xα(t1)xβ(t2)S ′ ∈ ES ′/S ′. We have

that

xα(t)λ̂ = (xα(t)xβ(u)λ̂)(xβ(−u)λ̂) = (xα(µ−1t)xβ(µ−1u)(xβ(−u)λ̂)
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and comparing coefficients, we have that λ̂ acts as µ−1 on both Q1/S
′ and Q2/S

′.

Then, by the commutator formula

[xα(t), xα+β(u)] = x2α+β(−2tu)x3α+β(3t2u)x3α+2β(3tu2)

and using that λ̂ acts as µ2 on NS(E)/E ∼= Z3(S)/Z2(S), we deduce that λ̂ acts as

µ3 on S ′/Z3(S). Using the commutator relation [xα+β(t), x2α+β(u)] = x3α+2β(3tu)

we get that λ̂ acts as µ5 on Z(S). But since Z(S) = CE(Op′(OutF(E))) and since

λ was of order q − 1, it follows that q = 6, a contradiction.

Given Lemma 4.4.5, Lemma 4.4.6 and Lemma 4.4.9, we finally assume that

Z2(S) 6≤ E. This is a particular interesting case as there is some exceptional

behaviour when q = p = 7 related to the 7-fusion system of the Monster sporadic

simple group. Indeed, this exceptional behaviour produces a distinct class of

essentials and with it, a large number of exotic fusion systems. This phenomena

was already known about by the work in [PS18].

Lemma 4.4.10. Suppose that E is an S-centric, S-radical subgroup of S with

Z2(S) 6≤ E. Then either

(i) E ≤ Q1 is elementary abelian of order q3, E 6≤ S ′ and NS(E) = Q1; or

(ii) p > 7, E is elementary abelian of order q2, E ∩ Q1 = E ∩ Q2 = Z(S) and

NS(E) = Z2(S)E.

Proof. We may suppose Z(E) 6≤ Q2 for otherwise Z2(S) centralizes the chain {1} E

Z(E) E E, a contradiction since Z2(S) 6≤ E and E is S-radical. In particular, it

follows by the commutator formulas that E ∩Q2 ≤ S ′ and E ∩ Z2(S) = Z(S).
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Suppose that E ∩Q1 6= Z(S). Then a calculation using the commutator formulas

reveals that Z(E) ≤ Q1. Then, Z(E) 6≤ S ′ for otherwise Z2(S) centralizes the

chain {1} E Z(E) E E, and another calculation yields E ≤ Q1. Recall from

Lemma 4.4.1 that Q1 ∼= q1+2 ∗ q1+2. Then, mp(Q1) = 3n and for any element of

order x ∈ Q1 \ Z(S) of order p, we have that |CQ1(x)| = q4, |Z(CS(e))| = q2 and

CS(e)′ = Z(S). Since Z(E) 6≤ Q2, there is e ∈ Z(E) such that E ≤ CS(e) where

CS(e) has order at most q4. Then, as E is S-centric, Z(CS(e)) ≤ Z(E). Now, if

Z(E) = Z(CS(e)), then CS(e) centralizes the chain {1} E Z(E) E E, and since

E is S-radical, E = CS(e). But then Q1 centralizes the chain {1} E E ′ E E, a

contradiction since Z2(S) 6≤ E.

So assume that Z(CS(e)) < Z(E). It follows that there is e′ ∈ (Z(E)∩ S ′) \Z(S)

so that E ≤ CS(e′) and again Z(CS(e′)) ≤ Z(E). Thus, Z(CS(e′))Z(CS(e)) is

elementary abelian of order q3 and contained in Z(E). But mp(Q1) = 3n and

so E = Z(E) = Z(CS(e′))Z(CS(e)) is elementary abelian of order q3. It follows

directly from the commutator formulas that NS(E) = Q1.

Thus, we have shown that Z(S) = E∩Q1 = E∩Q2 and |E| 6 q2. If p > 7, then as

S has exponent p and E is centric, we can explicitly construct elementary abelian

subgroups of order q completing Z(S) in E so that E = Ω(Z(E)) is of order q2. If

p = 5, then S has exponent 25 and it follows that f(E) = E∩S ′ = Z(S) and Z2(S)

centralizes the chain {1} E f(E) E E, a contradiction since E is S-radical.

Lemma 4.4.11. Suppose that E ≤ S is an essential subgroup of F and Z2(S) 6≤ E.

Then q = p = 7 and E = 〈Z(S), x〉 for some x ∈ S \ (Q1 ∪Q2).

Proof. By Lemma 4.4.10, we may assume that E is elementary abelian of order q3

and contained in Q1; or E is elementary abelian of order q2 and intersects Q1 only
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in Z(S). In the former case, Z2(S)E/E is elementary abelian of order q and Z2(S)

centralizes E ∩ S ′ which has index q in E. Then by Lemma 2.3.10, it follows that

E/CE(Op′(OutF(E))) is a natural SL2(q)-module for Op′(OutF(E)) ∼= SL2(q). But

NS(E) = Q1 and |Q1/E| = q2, a contradiction.

Thus, E is elementary abelian of order q2 and E ∩ Q1 = E ∩ Q2 = Z(S). Since

Z2(S) centralizes Z(S) which has index q in E, by Lemma 2.3.10, E is a natural

SL2(q)-module for Op′(OutF(E)) ∼= SL2(q) and OutZ2(S)(E) = OutS(E). By

Lemma 4.4.5, Lemma 4.4.6 and Lemma 4.4.9 and since E 6≤ Q1, Q2, we assume

that E is maximally essential.

Let λ ∈ NOp′ (OutF (E))(OutS(E)) be an element of order q − 1, isomorphic to a

generator of a torus in SL2(q). Since E is a natural SL2(q)-module, for some

µ ∈ K× of order q− 1, we can choose λ to acts as µ on Z(S) and µ−1 on E/Z(S).

Since E is receptive, and by the Alperin–Goldschmidt Theorem, λ extends to

λ̂ ∈ AutF(S). Since Q1, Q2, S
′ are characteristic in S, λ acts on Q1/S

′, Q2/S
′

and ES ′/S ′ ∼= E/Z(S). Let xα(t) be a transversal of Q2/S
′. Then xα(t)λ̂ =

(xα(t)xβ(u)xβ(−u))λ̂ for all u ∈ K×. But, for some u, xα(t)xβ(u) is a transversal

of ES ′/S ′ and xβ(−u) is a transversal of Q1/S
′ and λ̂ acts on ES ′/S ′ as µ−1.

Thus,

xα(t)λ̂ = (xα(t)xβ(u)λ̂)(xβ(−u)λ̂) = (xα(µ−1t)xβ(µ−1u)(xβ(−u)λ̂)

and by comparing coefficients, λ̂ acts as µ−1 on both Q1/S
′ and Q2/S

′. Using the

commutator formulas on various elements on S, one has that λ̂ acts as µ−2, µ−3,

µ−4 and µ−5 on S ′/Z3(S), Z3(S)/Z2(S), Z2(S) and Z(S) respectively. But since λ̂

acts on Z(S) as λ does, µ−5 = µ and µ6 = 1. Since µ was of order q−1, we conclude
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that q = p = 7. In this case, S has exponent 7 and there is x ∈ E \ (Q1 ∪ Q2) of

order 7 such that E = 〈Z(S), x〉, as required.

Before determining all possible saturated fusion systems on S, we sum up the

results concerning S-centric, S-radical subgroups of S.

Proposition 4.4.12. Suppose that E is an S-centric, S-radical subgroup of S.

Then one of the following holds:

(i) E ∈ {Q1, Q2, S};

(ii) E ≤ Q2 has order q4, Φ(E) < Z2(S) = Z(E), |Φ(E)| = q and NS(E) = Q2;

(iii) E ≤ S ′ is elementary abelian of order q3 with E E S if E = Z3(S); and

NS(E) = Q1 otherwise;

(iv) E ≤ Q2 is elementary abelian of order q3, E 6≤ S ′ and NS(E) = EZ3(S) has

order q4;

(v) E ∼= q1+2, Z2(S) = E ∩Q1 = E ∩Q2, Z(S) = Z(E) = Φ(E);

(vi) E ≤ Q1 is elementary abelian of order q3, E ∩ Z2(S) = Z(S) and NS(E) =

Q1; or

(vii) E is elementary abelian of order q2, Z(S) = E ∩ Q1 = E ∩ Q2 = Z(S) and

NS(E) = EZ2(S) has order q3.

We now analyze the automizers of the potential essential subgroups of a saturated

fusion system F over S. That is, Q1, Q2 and if q = p = 7, some conjugacy class of

elementary abelian subgroups of order 72. For the latter class of essentials, we refer

to [PS18] to determine the fusion system, where a large number of exotic fusion
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systems are uncovered. We analyze the automizer of Q2 via Lemma 2.3.10, noting

that this result is independent of a K-group hypothesis. Analyzing the automizer

of Q1 is more complicated and, with the help of some supporting results, we

conclude that Op′(OutF(Q1)) is isomorphic to a subgroup of Sp4(q). Since the

maximal subgroups of Sp4(q) are known by [Mit14], we compute the candidates

for Op′(OutF(Q1)) independent of any K-group hypothesis. We omit the details

here, and instead appeal to Proposition 3.2.7 and a result in [PS18].

Finally, we wish to apply Corollary 4.1.3 to determine F . Except in the case

where q = p ∈ {5, 7}, we have that Q1, Q2 are the only possible essentials

and Op′(OutF(Qi)) ∼= SL2(q) for i ∈ {1, 2}. In particular, the application of

Corollary 4.1.3 via the Main Theorem relies only on the classification of weak

BN-pairs of rank 2 provided in [DS85] and again, is independent of any K-group

hypothesis. We remark that there is currently no known way of determining

whether a fusion system is exotic without appealing to the classification of finite

simple groups, and instead appeal to [PS18, Theorem 6.2] for a proof of the

exoticity of the fusion systems listed in (vii).

Theorem 4.4.13. Let F be a saturated fusion system over a Sylow p-subgroup of

G2(pn) with p > 5. Then one of the following holds

(i) F = FS(S : OutF(S));

(ii) F = FS(Q1 : OutF(Q1)) where Op′(OutF(Q1)) ∼= SL2(q) or q = p ∈ {5, 7}

and the possibilities for Op′(OutF(Q1)) are given in [PS18, Lemma 5.2];

(iii) F = FS(Q2 : OutF(Q2)) where Op′(OutF(Q2)) ∼= SL2(q);

(iv) F = FS(M) where M ∼= 53.SL3(5), p = 5 and n = 1;
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(v) F = FS(G) where G ∼= Ly, HN, HN.2 or B, p = 5 and n = 1;

(vi) F = FS(G) where G ∼= M, p = 7 and n = 1;

(vii) F is one of the exotic fusion systems listed in [PS18, Table 5.1], p = 7 and

n = 1; or

(viii) F = FS(G) where F ∗(G) = Op′(G) ∼= G2(pn).

Proof. Suppose first that there is an essential E 6∈ {Q1, Q2}. By Lemma 4.4.11,

p = q = 7 and the action of O7′(OutF(E)) is irreducible on E. In particular,

since O7(F) is normal in S and contained in each essential subgroup by

Proposition 3.1.13, O7(F) = {1}. Then the hypothesis of [PS18, Theorem 5.1]

are satisfied and F is one of the fusion systems described in [PS18, Table 5.1].

Hence, we may assume that E(F) ⊆ {Q1, Q2}. Suppose that Q2 is essential

and notice that Z3(S) = Φ(Q2). Since [S, S ′] ≤ Z3(S) and S ′ has index q in

Q2, it follows in a similar manner to Lemma 2.3.10 that Q2/Φ(Q2) is a natural

SL2(q)-module for Op′(OutF(Q2)) ∼= SL2(q). Moreover, since S does not centralize

Z2(S) = Z(Q2) but acts quadratically on Z(Q2), it follows Z(Q2) is also a

natural SL2(q)-module for Op′(OutF(Q2)) and since S centralizes Z3(S)/Z2(S),

Op′(OutF(Q2)) centralizes Z3(S)/Z2(S). In particular, if Q1 is not essential then

(iii) is satisfied.

Suppose that Q1 is essential. Notice that Op′(OutG2(q)(Q1)) ∼= SL2(q) acts

irreducibly on Q1/Φ(Q1) and it follows that 〈OutS(Q1)Out(Q1)〉 acts irreducibly on

Q1/Φ(Q1) and centralizes Φ(Q1). Then by [PR12, Lemma 2.73], 〈OutS(Q1)Out(Q1)〉

is isomorphic to an irreducible subgroup of Sp4(q) and so Op′(OutF(Q1)) is

isomorphic to a subgroup of Sp4(q) with a strongly p-embedded subgroup.

125



Applying Proposition 3.2.7, it follows thatOp′(OutF(Q1)) is isomorphic to a central

extension of PSL2(q); or q = p ∈ {5, 7} and the possibilities are determined in

[PS18, Lemma 5.2].

If both Q1 and Q2 are essential, then since Op(F) ≤ Q1∩Q2 by Proposition 3.1.13

and Op′(OutF(Q2)) is irreducible on Z2(S) and Q2/Z3(S), we have that Z2(S) ≤

Op(F) ≤ Z3(S) or Op(F) = {1}. If Op(F) = {1}, then F is determined by

Corollary 4.1.3, and the result holds. So suppose that Z2(S) ≤ Op(F) ≤ Z3(S).

If Z2(S) = Op(F), then CQ1(Z2(S)) = S ′ is AutF(Q1)-invariant and since Q2

centralizes Z2(S), Q1/S
′ and Z3(S)/Z2(S), it follows from Lemma 2.3.10 that

S ′/Z2(S) is a natural module for Op′(OutF(Q1)) ∼= SL2(q), and both Z2(S) and

Q1/S
′ are centralized by Op′(OutF(Q1)). Letting 1 6= t ∈ Z(Op′(OutF(Q1))),

by coprime action we have that for V := Q1/Z(S), V = [V, t] × CV (t) and

[V, t] is normalized by S. Since Z2(S) is centralized by t, we deduce that

[V, t] ∩ Z(S/Z(S)) = {1} so that [V, t] = {1} and t centralizes V , a contradiction.

Therefore, Z2(S) < Op(F) ≤ Z3(S) so that Z3(S) = CS(Op(F)) ≤ Q1 ∩Q2. Then

by Proposition 3.1.13, CS(Op(F)) E F and since Z3(S) is elementary abelian,

Op(F) = Z3(S).

Setting L1 := Op′(OutF(Q1)), we have that L1/CL1(Q1/Z3(S) ∼= SL2(q) and

L1/CL1(Z3(S)/Z(S)) ∼= SL2(q), and either CL1(Q1/Z3(S) = CL1(Z3(S)/Z(S))

and L1 ∼= SL2(q); or L1 is isomorphic to a central extension of PSL2(q) by an

elementary group of order 4. Since p > 5, PSL2(q) is perfect and has the p′-part

of its Schur multiplier of order 2 by Lemma 2.2.1 (vii), and as L1 = Op′(L1), we

have a contradiction in the latter case. Therefore, L1 ∼= SL2(q) ∼= Op′(OutF(Q2)).

Now, Z3(S) is a normal, S-centric subgroup of F . By Theorem 3.1.21, there

is a finite group G such that F ∗(G) = Z3(S) and F = FS(G). Moreover,
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Op′(OutG(Qi)) ∼= SL2(q) and OutF(Qi) acts faithfully on Qi/Z3(S) for i ∈ {1, 2}.

Set G := G/Z3(S) and notice that Q1 and Q2 are self-centralizing in G. Moreover,

G = 〈NG(Q1), NG(Q2)〉, and Qi is AutG(S)-invariant for i ∈ {1, 2}. It follows that

G has a weak BN-pair of rank 2 in the sense of Definition 5.1.7. Moreover, since Q2

centralizes Z2(S) which has index q in Z3(S) and Q2/Z3(S) is elementary abelian of

order q2, we deduce that Z3(S) is an FF-module for G by Proposition 2.3.9. Then,

comparing with the completions in [DS85] and applying [CD91, Theorem A], we

conclude that Op′(G) ∼= SL3(q) and Z3(S) is a natural module for Op′(G). As in

the case when p = 2, we observe that if S splits over Z3(S), then S is isomorphic

to a Sylow p-subgroup of SL4(q), which has p-rank 4n by [GLS98, Theorem 3.3.3],

whereas S has p-rank 3n. Therefore, S is non-split and by [Bel78, Table I], it

follows that q = p = 5. One can check that there is a unique fusion system up to

isomorphism on S with O5(F) = Z3(S).

Remark. In case (iv) of the above theorem, one can take M to be a maximal

subgroup of Ly.

4.5 Fusion Systems on a Sylow p-subgroup of

PSU4(p
n)

We set S to be a Sylow p-subgroup of PSU4(q) where q = pn and F to be a

saturated fusion system supported on S. Again, let K be the finite field of order

q and recall the commutator formulas from Section 4.1.

Proposition 4.5.1. Suppose that S is isomorphic to a Sylow p-subgroup of

PSU4(pn). Then J(S) = XβXα+βX2α+β is the unique elementary abelian subgroup

of S of order p4n.
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Proof. Let X := XβXα+βX2α+β, q = pn, G := PSU4(q) and S ∈ Sylp(G) with

X ≤ S. Then Op′(AutG(Q2)) ∼= PSL2(q2) by [BHR13]. Suppose there is A ∈ A(S)

with A 6= X and note that CS(X) = X so that A ∩X ≤ CS(AX) ≤ X. Then by

Lemma 2.2.9, |CX(AX)| ∈ {q, q2} so that |A ∩X| 6 q2. Then, since |S/X| = q2,

q2 > |AX/X| = |A/A∩X| > q4/q2 = q2 so that S = AX, |A| = q4 and |A∩X| =

q2. But A ∩ X ≤ Z(AX) = Z(S) and as |Z(S)| = q, we have a contradiction.

Hence, A(S) = {X} and the result holds.

Lemma 4.5.2. There exists a unique subgroup X := XαXα+βX2α+β ≤ S of order

q5 such that X ′ = Z(S), |X| > q4, S ′ = X ∩ J(S) and X is maximal by inclusion

with respect to these properties. In particular, X is characteristic in S.

Proof. By the definition of X, |X| = q5 > q4 and X ∩ J(S) = S ′. Moreover,

it follows from the commutator relations that X ′ = Z(S). Thus, X satisfies the

required properties. Suppose there is Y 6≤ X such that Y also satisfies the required

properties. Since Y 6≤ X and Y ∩ J(S) = S ′, there is y := xα(t1)xβ(t2) ∈ Y with

t1 6= 0 6= t2. By the requirements, [Y, y] ≤ Y ′ = Z(S) and since [y, xα(t)] 6≤ Z(S)]

is follows that Y ∩X = S ′. However, |Y | > q4 so that |XY | = |X||Y |/|X ∩ Y | >

q6 = |S|, a clear contradiction.

Remark. We may uniquely define X as the preimage in S of J(S/Z(S)). Moreover,

X is an ultraspecial special group with Z(X) = X ′ = Z(S) of order q, but we will

not require this fact.

We set Q1 := X and Q2 := J(S) with the intention of proving E(F) ⊆ {Q1, Q2}.

As it turns out, this is true except when q = p = 2 where S is coincidentally

isomorphic to a Sylow 2-subgroup of PSL4(2). In this case, since |S| = 26, we can

directly compute that S-radical, S-centric subgroups of S and classify all saturated
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fusion systems on S with the aid of MAGMA.

Proposition 4.5.3. Let S be isomorphic to a Sylow 2-subgroup of PSU4(2). The

S-centric, S-radical subgroups of S are as S, Q1, Q2, CS(x) for any x ∈ S ′ \Z(S)

so that |CS(x)| = 25; and A ∈ A(Q1) with A 6≤ Q2 so that |A| = 23.

Proposition 4.5.4. Let F be a saturated fusion system over a Sylow 2-subgroup

of PSU4(2). Then one of the following holds:

(i) F = FS(S : OutF(S));

(ii) F = FS(Q2 : OutF(Q2)) where OutF(Q2) ∼= PSL2(4);

(iii) F = FS(Q1 : OutF(Q1)) where OutF(Q1) is isomorphic to a subgroup of

Sym(3)× 3;

(iv) F = FS(Qx : OutF(Qx)) where Qx = CS(x) for any x ∈ S ′ \ Z(S), and

OutF(Qx) ∼= Sym(3);

(v) F = FS(M) where M ∼= 24 : (Sym(3)× Sym(3));

(vi) F = FS(M) where M ∼= 23 : PSL3(2);

(vii) F = FS(G) where G ∼= PSU4(2); or

(viii) F = FS(G) where G ∼= PSL4(2).

Henceforth, we suppose that q > 2. Consider Q1, Q2 and their normalizers as

subgroups of PSU4(q). By [PR06, Definition 2.1], as GF(p)-modules, Q2 is a

natural Ω−4 (q)-module for Op′(AutPSU4(q)(Q2)) ∼= PSL2(q2) while Q1/Z(Q1) is the

direct sum of two natural SL2(q)-modules for Op′(OutPSU4(q)(Q1)) ∼= SL2(q). With

this information, we can properly analyze the centralizers of elements in S.
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Lemma 4.5.5. Let F ≤ S be such that F 6≤ Q2. Then of the following occurs:

(i) [Q2, F ] = [Q2, S] = S ′ and CQ2(F ) = CQ2(S) = Z(S);

(ii) p = 2, [Q2, F ] = CQ2(F ) has order q2 and |FQ2/Q2| 6 q; or

(iii) p is odd, |[Q2, F ]| = |CQ2(F )| = q2, S ′ = [Q2, F ]CQ2(F ), Z(S) = C[Q2,F ](F )

and |FQ2/Q2| 6 q.

Proof. This is a restatement of Lemma 2.2.9.

Lemma 4.5.6. Let x ∈ S ′ \ Z(S). Then Q2 ≤ CS(x), |CS(x)| = q5, Z(CS(x)) =

CQ2(CS(x)) has order q2 and CS(x)′ = [Q2, CS(x)] has order q2.

Proof. Let x ∈ S ′ \ Z(S). Then since x ∈ Q2, and Q2 is elementary abelian,

Q2 ≤ CS(x) so that Q2 = J(S) = J(CS(x)) is characteristic in CS(x). Moreover,

since x ∈ Q1 \ Z(Q1), we have that |CQ1(x)| = q4. Then CQ1(x)Q2 ≤ CS(x)

and so |CS(x)| > q5. Suppose |CS(x)| > q5. Then q6 < |CS(x)||Q1|/|CQ1(x)| =

|CS(x)Q1| 6 |S| = q6, a contradiction.

Since Q2 is self-centralizing and Q2 ≤ CS(x), we have that Z(CS(x)) = CQ2(CS(x))

may be determined from the information provided in Lemma 4.5.5. Indeed, since

x ∈ Z(CS(x)) \ Z(S), we have that |[Q2, CS(x)]| = |Z(CS(x))| = q2. Finally, it is

clear from the commutator formulas that CS(x)′ = [Q2, CS(x)], as required.

Lemma 4.5.7. Let x ∈ Q2 \ S ′. Then CS(x) = Q2.

Proof. Let x ∈ Q2 \ S ′. Since Q2 is abelian, Q2 ≤ CS(x) and |CS(x)| > q4. We

have that S ′ ≤ CQ1(x) so that CQ1/Z(S)(x) is of order at least q2. But Q1/Z(S) is

a direct sum of natural SL2(q)-modules so that |CQ1/Z(S)(x)| = q2 from which it
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follows that S ′ = CQ1(x). Then q6 = |S| > |CS(x)Q1| = |CS(x)||Q1|/|S ′| > q6 so

that S = CS(x)Q1, |CS(x)| = q4 and CS(x) = Q2.

Lemma 4.5.8. Let x ∈ S \ Q2 be of order p. Then CS(x) ≤ Q1, |CS(x)| = q4,

|CS(x) ∩Q2| = q2, mp(CS(x)) 6 3n, CS(x)′ = Z(S) and |Z(CS(x))| = q2.

Proof. Upon demonstrating that CS(x) ≤ Q1, the results follow from the structure

of Q1. Since CS(x) is centralized by x 6∈ Q2, it follows that CS(x) ∩ Q2 ≤ S ′ and

CS(x)S ′ has order q5 and intersects Q2 in S ′. Hence, if (CS(x)S ′)′ = Z(S), then

CS(x)S ′ = Q1 by Lemma 4.5.2. It is clear from Lemma 4.5.5 that [S ′, CS(x)] =

Z(S) and so it remains to show that CS(x)′ ≤ Z(S). Indeed, since S splits over

Q2, CS(x) splits over S ′ and since CS(x)S ′/S ′ is elementary abelian, we need only

show that [CS(x) ∩ S ′, CS(x)] = Z(S). But this follows from Lemma 4.5.5, and

the result is proved.

With this information, we can determine the S-centric, S-radical subgroups of S,

which we do over the following two propositions.

Proposition 4.5.9. Suppose that E is an S-centric, S-radical subgroup of S and

S ′ 6≤ E. Then E is elementary abelian of order q3, E ≤ Q1 and either

(i) p = 2, E E S and |E ∩ S ′| = q2;

(ii) p is odd, NS(E) = Q1 and |E ∩ S ′| = q2; or

(iii) p is arbitrary, NS(E) = Q1 and E ∩ S ′ = Z(S).

Moreover, in all cases, E is not essential in any saturated fusion system F over

S.
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Proof. Suppose that S ′ 6≤ E. Since [E, S ′] ≤ [S, S ′] ≤ Z(S) ≤ Ω(Z(E)), we

must have that [S ′,Ω(Z(E))] 6= {1} for otherwise S ′ centralizes the chain {1} E

Ω(Z(E)) E E, a contradiction by Lemma 3.2.1 since S-radical. Since S ′ centralizes

Q2, there is x ∈ Ω(Z(E)) with x ∈ S \ Q2 and E ≤ CS(x). In particular,

Z(CS(x)) ≤ Z(E), |Z(E)Q2/Q2| > q and E ≤ Q1 by Lemma 4.5.8.

Suppose first that E ∩ S ′ > Z(S). Then for e ∈ (E ∩ S ′) \ Z(S), Z(E) ≤ CS(e).

In particular, |Z(E)Q2/Q2| = q. Moreover, CS′(Ω(Z(E))) = Z(CS(e)) has order

q2 and centralizes the chain {1} E Ω(Z(E)) E E so that CS′(Ω(Z(E))) = E ∩ S ′

has order q2. Suppose that |EQ2/Q2| > q. Then by Lemma 4.5.5, we have

Z(S) = [E,E ∩ S ′] ≤ E ′ and either E ′ = Z(S) and Q1 centralizes the chain

{1} E E ′ E E, a contradiction since E is S-radical and S ′ 6≤ E; or Z(S) < E ′ ≤

E ∩ S ′, CE(E ′) = E ∩ CS(e) = Z(E)(E ∩ S ′) has order q3 and [E,CE(E ′)] =

[E, S ∩E ′] = Z(S) is characteristic in E and again, Q1 centralizes a characteristic

chain. Thus, |EQ2/Q2| = q and E = Z(E)(E ∩ S ′) is elementary abelian of order

q3. Since E ≤ Q1 and Q′1 = Z(S) ≤ E, we deduce that E E Q1. Moreover, when

p = 2, it follows from Lemma 4.5.5 that [CS(e), E] ≤ CS(e)′ = (S ′ ∩ E) and so

E E S = Q1CS(e).

Suppose now that E ∩ S ′ = Z(S). Since E ≤ Q1, it follows that E ∩ Q2 = Z(S)

and |E| 6 q3. If Ω(Z(E)) ≤ Q2, then Ω(Z(E)) = Z(S) and so Q1 centralizes the

chain {1} E Ω(Z(E)) E E, a contradiction since E is S-radical. Hence, there is

e ∈ Ω(Z(E)) \ Q2 and so, E ≤ CS(e). Since E is S-centric, we must have that

Z(CS(e)) ≤ Ω(Z(E)). If Ω(Z(E)) = Z(CS(e)), then as CS(e)′ = Z(S), CS(e)

centralizes the chain {1} E Ω(Z(E)) E E, and since E is S-radical, E = CS(e).

But then Q1 centralizes the chain {1} E E ′ E E, a contradiction. So there is

e′ ∈ Ω(Z(E)) \ (Q2CS(e)) with Z(CS(e′)) ∩ Z(CS(e)) = Z(S) and Z(CS(e′)) ≤
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Ω(Z(E)). In particular, Z(CS(e′))Z(CS(e)) is an elementary abelian subgroup of

E of order q3, and since E itself has order at most q3, we conclude that E =

Z(CS(e))Z(CS(e′)). Then for any y ∈ Q2 \ S ′, [E, y] 6≤ Z(S) and so NQ2(E) = S ′.

Since E ≤ Q1 and Q′1 = Z(S) ≤ E, we have that NS(E) = Q1.

Suppose that for any of the E considered, E is essential is some saturated fusion

system F supported on S. Suppose first that we are in case (i) or (ii). Then

S ′ centralizes E ∩ S ′ and since |S ′/E ∩ S ′| = |E/E ∩ S ′| = q, it follows from

Lemma 2.3.10 that Op′(OutF(E)) ∼= SL2(q) and OutS′(E) ∈ Sylp(E). But

|NS(E)/E| > q2 in either case, a contradiction. Hence, we may assume that

we are in case (iii) and E ∩ S ′ = Z(S). Let e ∈ E \ Q2 so that E ≤ CS(e),

where |CS(e)| = q4. Then Z(CS(e)) is a subgroup of E of index q centralized

by CS(e) where |CS(e)E/E| = q and CS(e) ≤ NS(E) = Q1. By Lemma 2.3.10,

Op′(OutF(E)) ∼= SL2(q) and OutCS(e)(E) ∈ Sylp(E), and since |NS(E)/E| = q2,

we have another contradiction.

Proposition 4.5.10. Suppose that E is an S-centric, S-radical subgroup of S,

S ′ ≤ E and q > 2. Then E ∈ {Q1, Q2, S}.

Proof. Since S ′ ≤ E, we have that Z(E) ≤ Q2. Moreover, if E ≤ Q2, then using

that E is S-centric, we conclude that E = Q2. So we may suppose throughout the

remainder of this proof that there is e ∈ E \Q2.

Suppose first that Z(E) = Z(S) so that S ′ ≤ Z2(E). Indeed, if E ∩Q2 > S ′, then

it follows from the commutator formulas that Z2(E) = S ′ and S centralizes the

chain {1} E Z(E) E Z2(S) E E, and since E is S-radical, we deduce that E = S.

So if Z(E) = Z(S), then E ∩Q2 = S ′.

In addition, suppose that E ′ = Z(S). Consider A ∈ A(E). Since S ′ ≤ E and S ′ is
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elementary abelian, we infer that |A| > 3n. Moreover, there is a ∈ A with a 6≤ Q2,

else S ′ = J(E) and Q2 centralizes the chain {1} E J(E) E E, a contradiction since

E is S-radical. It follows that A ≤ CS(a) ≤ Q1, |A| = q3 and |A ∩ S ′| = q2. Then

either E = AS ′ ≤ Q1; or |E| > q4. In either case, it follows from Lemma 4.5.2 that

E ≤ Q1 and then Q1 centralizes the chain {1} E Z(E) E E. Since E is S-radical,

Q1 ≤ E. Since E∩Q2 = S ′, it follows from a consideration of orders that E = Q1.

Suppose that Z(S) = Z(E) < E ′. By Lemma 4.5.6, CE(E ′) ≤ CS(x) for some

x ∈ E ′ \ Z(E) and it follows that either CE(E ′) = S ′; or CE(E ′) 6≤ Q2 and

Z(CE(E ′)) ≤ S ′ has order q2. In the former case, S centralizes the chain {1} E

Z(E) E CE(E ′) E E, and since E is S-radical, E = S, a contradiction since

E ∩Q2 = S ′. Therefore, CE(E ′) 6≤ Q2 and since CE(E ′) ∩Q2 ≤ E ∩Q2 = S ′, we

conclude that |CE(E ′)| 6 q4.

Let A ∈ A(CE(E ′)) and suppose that A ∩ S ′ > Z(CE(E ′)). Comparing with

the commutator formulas, it follows that A ≤ CS(A ∩ S ′) = S ′ and so A = S ′.

Notice that if S ′ = J(CE(E ′)), then Q2 centralizes the chain {1} E S ′ E E,

a contradiction since E is S-radical. Thus, we may assume that there is A ∈

A(CE(E)) with A ∩ S ′ = Z(CE(E ′)) and |A| > q3. In particular, CE(E ′) = AS ′

and |A| = q3. Then for a ∈ A \ A ∩ S ′, we infer that A ≤ CS(a) ≤ Q1 and so

CE(E ′) ≤ Q1. But now, since S ′ ≤ CE(E ′), Q1 centralizes the chain {1} E Z(E) E

CE(E ′) E E, a contradiction since |E| 6 q5, E is S-radical and E ′ > Z(S).

Suppose now that Z(S) < Z(E). Since E 6≤ Q2, Z(E) ≤ S ′ and E ≤ CS(x) for

some e ∈ Z(E) \Z(S). Since E is S-centric, Z(CS(x)) ≤ Z(E) and since E 6≤ Q2,

it follows from Lemma 4.5.6, that Z(CS(x)) = Z(E). Indeed, if p = 2, then

Z(E) = CQ2(E) = [Q2, E] and Q2 centralizes the chain {1} E Z(E) E E. Since

E is S-radical, Q2 = J(E) is characteristic in E. Then, [CS(x), E] ≤ J(E) and
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Z(E) = [J(S), CS(x)] and CS(x) centralizes the chain {1} E Z(E) E J(E) E E,

and since E is S-radical, E = CS(x). Now, assuming q > 2, both Z(S) and S ′

are characteristic subgroups of E by [Par76, Lemma 3.13]. Then S centralizes the

chain {1} E Z(S) E S ′ E E, a contradiction since E was assumed to be S-radical.

Suppose now that p is odd and Z(CS(x)) = Z(E). Let A ∈ A(E) such that

A 6≤ Q2. Then, there is a ∈ A such that |CS(a)| = q4, A ≤ CS(a) ∩ CS(x),

CS(a) ≤ Q1 and Z(E) = CS(a) ∩ S ′. Now, |CS(x) ∩ CS(a)| = q3 and it follows

that any elementary abelian subgroup of E not contained in Q2 has order at most

q3. Since E ∩Q2 is elementary abelian, it follows that either J(E) = E ∩Q2 ≥ S ′,

or E ∩ Q2 = S ′ and there is A ∈ A(E) with |A| = q3 and A ∩ S ′ = Z(E). In the

latter case, it follows that E = AS ′ has order q4 and since A ≤ CS(a) ≤ Q1, we

have that E ≤ Q1. Moreover, E ′ = [A, S ′] = Z(S) and Q1 centralizes the chain

{1} E E ′ E E, a contradiction since E is S-radical. Thus, J(E) = E∩Q2 and soQ2

centralizes the chain {1} E J(E) E E, and since E is S-radical, Q2 = J(E). But

then, since p is odd, S ′ = [Q2, E]Z(E), Z(S) = [Q2, E] ∩ Z(E) and S centralizes

the chain {1} E Z(S) E S ′ E E, a contradiction since Z(E) > Z(S) and E is

S-radical.

We now complete the classification of saturated fusion systems supported on a

Sylow p-subgroup of PSU4(pn). When q = p we get some exceptional behaviour,

particularly when p = 3, and refer to [BFM19] and [Mon20] where these cases have

already been treated. Hence, by Proposition 4.5.10, we may as well assume that

E(F) ⊆ {Q1, Q2}.

As in earlier sections in this chapter, we endeavor to classify saturated fusion

systems on S without the need for a K-group hypothesis. When p = 2, since
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m2(S/Qi) > 1, [Ben71] provides a list of groups with a strongly embedded

subgroups, and so we focus more than the case where p is odd. Here, Q1/Φ(Q1)

witnesses quadratic action by S, and we rely on results of Ho (although we

believe it should be possible to find a more elementary proof) to show that

Op′(OutF(Q1)) ∼= SL2(q). With regards to Q2, we come up short and rely on

K-group hypothesis to identify Op′(OutF(Q2)) with PSL2(q2). We believe this can

be achieved without using a K-group hypothesis as follows:

By the conditions on G := Op′(OutF(Q2), we see quickly that Sylp(G) is a TI-set

for G. Then, using some appropriately chosen minimality condition, we should

be able to prove that G = 〈S, T 〉 and CQ2(S) ∩ CQ2(T ) = {1} for any S, T ∈

Sylp(G). Even better, CQ2(S) ∩ [Q2, T ] = {1} for all such S and T . Noticing

that |Q2/CQ2(S)| = q3, we strive to show that Q2/CQ2(S) = [Q2/CQ2(S), S] ∪⋃
s∈S CQ2(T s)CQ2(S)/CQ2(S), where the intersection of any of the two subgroups

in the union is CQ2(S). Finally, we aim to show that CQ2(S) and CQ2(T ) are the

only centralizers of a Sylow p-subgroup of G contained in CQ2(T )CQ2(S), for then

we have a correspondence between Sylow p-subgroups of G and certain subgroups

of Q2 of order q. We are then in a position to recognize PSL2(q2) via a result of

Hering, Kantor and Seitz which recognizes a split BN-pair of rank 1 in G [HKS72].

Finally, in the classification of fusion systems supported on S, we apply

Corollary 4.1.4 using the Main Theorem when Q1 and Q2 are both essential and,

as in earlier cases, we remark that this reduces to applying the main result from

[DS85], which is independent of any K-group hypothesis.

Theorem 4.5.11. Let F be a saturated fusion system over a Sylow p-subgroup of

PSU4(q) for q > 2. Then one of the following occurs:
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(i) F = FS(S : OutF(S));

(ii) F = FS(Q1 : OutF(Q1)) where Op′(OutF(Q1)) ∼= SL2(q), or q = p = 3 and

OutF(Q1) is determined in [BFM19];

(iii) F = FS(Q2 : OutF(J(S))) where Q2 is an Ω−4 (q)-module for

Op′(OutF(J(S)) ∼= PSL2(q2);

(iv) F = FS(G) where G = Co2, McL, Aut(McL), PSU6(2) or PSU6(2).2 and

q = 3; or

(v) F = FS(G) where F ∗(G) = Op′(G) ∼= PSU4(q).

Proof. If neither Q1 nor Q2 are essential then F = FS(S : OutF(S)) and (i) holds.

Suppose that Q1 is essential and assume first that q = p. If p = 3, then the action

of OutF(Q1) on Q1 is determined completely in [BFM19] while if p > 5, then the

action of Op′(OutF(Q1)) is determined by [Mon20].

Suppose now that Q1 is essential and q > p. If p = 2, then as mp(S/Q1) > 1,

it follows from Proposition 3.2.7 that Op′(OutF(Q1)) ∼= SL2(q). So suppose that

p is odd. Let T, P ∈ Sylp(Op′(OutF(Q1))) and suppose that 1 6= x ∈ T ∩ P .

Notice that Z(Q1) = Z(S) so that Op′(OutF(Q1)) acts trivially on Z(Q1). Then

[Q1, T ]Z(Q1) = [Q1, x]Z(Q1) = [Q1, P ]Z(Q1) and [Q1, T, T ] ≤ Z(Q1) ≥ [Q1, P, P ].

It follows that 〈P, T 〉 centralizes a series {1} E Z(Q1) E [Q1, T ]Z(Q1) E Q1 and

by Lemma 2.1.9, 〈T, P 〉 is a p-group. Since T, P ∈ Sylp(Op′(OutF(Q1))), we must

have that T = P . Moreover, T acts quadratically on Q1/Z(Q1) = Q1/Φ(Q1)

and so, by [Ho79, Theorem 1], Op′(OutF(Q1)) is isomorphic to a p′-central

extension of PSL2(q). Then eliminating PSL2(q) by Lemma 2.3.4 since T acts

quadratically, we deduce that Op′(OutF(Q1)) ∼= SL2(q). By Lemma 2.3.11 and
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since T ∈ Sylp(Op(Op′(OutF(Q1)))), we conclude that Q1/Z(Q1) is a direct sum

of two natural SL2(q)-modules.

Suppose that Q2 is essential. Since S/Q2 is elementary abelian of order q2, it

follows from Proposition 3.2.7 that O2′(OutF(Q2)) ∼= PSL2(q2). Then, since S

does not act quadratically on Q2 and Q2 contains a non-central chief factor, by

Lemma 2.3.12, we conclude that Q2 is a natural Ω−4 (q)-module for O2′(OutF(Q2)),

as required.

If both Q1 and Q2 are essential, then by Proposition 3.1.13, Op(F) ≤ Q1∩Q2 and

Op(F) is normalized by Op′(OutF(Q2)). Thus, Op(F) = {1} and since Q1 and Q2

are characteristic in S and we satisfy the hypotheses of Corollary 4.1.4.
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CHAPTER 5

RANK 2 AMALGAMS AND FUSION
SYSTEMS

In this chapter, we introduce amalgams and manufacture a situation in which one

may identify a rank 2 amalgam within a saturated fusion system. This amalgam

data provides strong information about the fusion system and we observe that, in

certain circumstances, proving uniqueness of the amalgam completely determines

the fusion system. The majority of the work in this chapter is in investigating

these rank 2 amalgams via the amalgam method. Although this analysis is in a

purely group theoretic setting, the hypothesis we assume is motivated by fusion

systems and determines a limited list of amalgams, all of which were previously

recorded in the literature. This information is reflected in Theorem C, and then the

Main Theorem and Corollary A are proved as consequences of Theorem C. Along

the way, Proposition F and Proposition G are also proved and used as tools in

the amalgam method. The chapter concludes with several identifications of finite

simple groups from the garnered amalgam data provided in previous sections.
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5.1 Amalgams in Fusion Systems

In this section, we introduce amalgams and demonstrate their connections with

and applications to saturated fusion systems. We will only make use of elementary

definitions and facts regarding amalgams as can be found in [DS85, Chapter 2].

Definition 5.1.1. An amalgam of rank n is a tuple A =

A(G1, . . . , Gn, B, φ1, · · · , φn) where B is a group, each Gi is a group and

φi : B → Gi is an injective group homomorphism. A group G is a faithful

completion of A if there exists injective group homomorphisms ψi : Gi → G

such that for all i, j ∈ {1, . . . , n}, φiψi = φjψj, G = 〈Im(ψi)〉 and no

non-trivial subgroup of Bφiψi is normal in G. Under these circumstances,

we identify G1, . . . , Gn, B with their images in G and opt for the notation

A = A(G1, . . . , Gn, B).

For almost all the work in this thesis, we reduce to the case where the amalgam

is of rank 2 and the groups G1 and G2 are finite groups. In this setting, we may

always realize A in a faithful completion, namely the free amalgamated product of

G1 and G2 over B, denoted G1 ∗B G2. This completion is universal in that every

faithful completion occurs as some quotient of this free amalgamated product.

Generally, whenever we work in the setting of rank 2 amalgams we will opt to

work in this free amalgamated product which we will often denote G and, in an

abuse of terminology, refer to G as an amalgam. In particular, we may as well

assume the following:

1. G = 〈G1, G2〉, Gi is a finite group and Gi < G for i ∈ {1, 2};

2. no non-trivial subgroup of B is normal in G; and
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3. B = G1 ∩G2.

Definition 5.1.2. Let A = A(G1, G2, B, φ1, φ2) and B = B(H1, H2, C, ψ1, ψ2) be

two rank 2 amalgams. Then A and B are isomorphic if, up to permuting indices,

there are isomorphisms θi : Gi → Hi and ξ : B → C such that the following

diagram commutes for i ∈ {1, 2}:

G1 B G2

H1 C H2

θ1

φ1 φ2

ξ θ2

ψ1 ψ2

Often, for some finite group H arising as a faithful completion of some rank 2

amalgam B, we will often say a completion G of A is locally isomorphic to H, by

which we mean A is isomorphic to B.

An important observation in this definition is that the faithful completions of

two isomorphic amalgams coincide. In fact, two amalgams being isomorphic is

equivalent to demanding that G1 ∗B G2 ∼= H1 ∗C H2.

Say that A = A(G1, G2, B) and B = B(H1, H2, C) are parabolic isomorphic if, up

to permuting indices, Gi
∼= Hi and B ∼= C as abstract groups.

We provide the following elementary example with regard to isomorphisms of

amalgams.

Example 5.1.3. For G = J2, there are two maximal subgroups M1,M2 containing

NG(S) for S ∈ Syl2(G). Furthermore, M1/O2(M1) ∼= SL2(4), M2/O2(M2) ∼=

Sym(3) × 3 and |NG(S)/S| = 3. Thus, G gives rise to the amalgam A :=

A(M1,M2, NG(S)).

141



For H = J3 and T ∈ Syl2(H), S ∼= T and H contains two maximal subgroups

N1, N2 containing NG(T ) such that Ni
∼= Mi for i ∈ {1, 2}. Thus, H gives rise to

the amalgam B := B(N1, N2, NH(T )).

Then A is isomorphic to B.

Definition 5.1.4. Let A = A(G1, G2, B) be an amalgam of rank 2. Then A is a

characteristic p amalgam of rank 2 if the following hold for i ∈ {1, 2}:

(i) Gi is a finite group;

(ii) Sylp(B) ⊆ Sylp(G1) ∩ Sylp(G2); and

(iii) Gi is of characteristic p.

An important consideration for applications later in this thesis is whether

Sylp(B) ⊆ Sylp(G) where G is some faithful completion of some characteristic

p amalgam of rank 2. This motivates the following definition.

Definition 5.1.5. Suppose that G is a faithful completion of the characteristic p

amalgam A(G1, G2, B). Then G is a Sylow completion of A if Sylp(B) ⊆ Sylp(G).

In the above definition, since G is not necessarily a finite group, we must define

generally what a Sylow p-subgroup is. We say that P is a Sylow p-subgroup of a

group G if every finite p-subgroup of G is conjugate in G to some subgroup of P .

The following theorem provides the connection between amalgams and fusion

systems. Indeed, the original application of this theorem demonstrates that any

saturated fusion system may be realized by a (possibly infinite) group.
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Theorem 5.1.6. Let p be a prime, G1, G2 and G12 be groups with G12 ≤ G1∩G2.

Assume that S1 ∈ Sylp(G1) and S2 ∈ Sylp(G12) ∩ Sylp(G2) with S2 ≤ S1. Set

G = G1 ∗G12 G2

to be the free amalgamated product of G1 and G2 over G12. Then S1 ∈ Sylp(G)

and

FS1(G) = 〈FS1(G1),FS2(G2)〉.

Proof. This is [Rob07, Theorem 1].

In other words, the above theorem implies that given two fusion systems which

give rise to two rank 2 amalgams, and the data from these amalgams “generate”

the fusion system, then provided that the amalgams are isomorphic, the fusion

systems are isomorphic.

However, there are some key differences in the group theoretic applications of

amalgams, and the fusion theoretic applications. Consider the configurations from

Example 5.1.3. The two amalgams there, A and B, are isomorphic. In this way, we

can actually embed a copy of the 2-fusion system of J2 inside the 2-fusion system

of J3, but the J2 is certainly not a subgroup of J3. Indeed, the 2-fusion system of J3

contains an additional class of essential subgroups arising from different maximal

subgroups of J3 of shape 24 : (3× SL2(4)) not involved in the amalgams.

Thus, there are some important considerations demonstrated in Example 5.1.3 that

one should be aware of. One is that for a group G with two maximal subgroups

M1 and M2 containing a Sylow p-subgroup of G, even though G = 〈M1,M2〉 there

are situations in which FS(G) 6= 〈FS(M1),FS(M1)〉. The second is that one must
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be very careful in choosing the “correct” completion when working with amalgams

in the context of fusion systems. Indeed, most of the time, this often requires

knowledge of the fusion systems, and in particular the essential subgroups, of the

completions of the amalgam.

We now collect some results using the amalgam method which are relevant to this

work. With the application to fusion systems in mind, we are particular interested

in the case where the local action involves strongly p-embedded subgroups.

Definition 5.1.7. Let A := A(G1, G2, G12) be a characteristic p amalgam of rank

2 such that there is G∗i E Gi satisfying the following for i ∈ {1, 2}:

(i) Op(Gi) ≤ G∗i and Gi = G∗iG12;

(ii) G∗i ∩G12 is the normalizer of a Sylow p-subgroup of G∗i ; and

(iii) G∗i /Op(Gi) ∼= PSL2(pn), SL2(pn),PSU3(pn), SU3(pn), Sz(2n),Dih(10),Ree(3n)

or Ree(3)′.

Then A is a weak BN-pair of rank 2. For G a faithful completion of A, we say

that G is a group with a weak BN-pair of rank 2.

We define the set of groups

∧
= {PSL3(q),PSp4(q),PSU4(q),PSU5(q),G2(q), 3D4(q), 2F4(2n),

G2(2)′, 2F4(2)′,M12, J2,F3 | q = pn, p a prime}

and associate a distinguished prime in each case. For
2F4(2n),G2(2)′, 2F4(2)′,M12, J2 the prime is 2, for F3 the prime is 3 and for

the other cases, the prime is p where q = pn.
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For X ∈ ∧, let Aut0(X) = Aut(X) unless X = PSL3(q),PSp4(2n),G2(3n) in which

case Aut0(X) is group generated by all inner, diagonal and field automorphisms of

X so that Aut0(X) is of index 2 and Aut(X) = 〈Aut0(X), φ〉 where φ is a graph

automorphism. Finally, define

∧0 = {Y | Inn(X) ≤ Y ≤ Aut0(X), X ∈
∧
}.

For the remainder of this work, whenever we describe a group as being locally

isomorphic to Y ∈ ∧0, we will always mean that Y is a faithful completion of

the rank 2 amalgam given by amalgamating two non-conjugate maximal parabolic

subgroups of Y which share a common Borel subgroup. It is straightforward to

check that this amalgam is a weak BN-pair of rank 2.

Theorem 5.1.8. Suppose that G is a group with a weak BN-pair of rank 2. Then

one of the following holds:

(i) G is locally isomorphic to Y for some Y ∈ ∧0;

(ii) G is parabolic isomorphic to G2(2)′, J2, Aut(J2), M12, Aut(M12) or F3.

Proof. This follows from [DS85, Theorem A], [Del88] and [Fan86].

For the following corollary, recall the model theorem Theorem 3.1.21 from

Chapter 3.

Corollary 5.1.9. Suppose that F = 〈F1,F2〉 is a fusion system over the p-group

S and assume that Fi is constrained and supported on S for i ∈ {1, 2}, and Fi =

NF(Op(Fi)). Let Gi be a model for Fi arranged such that S ∈ Sylp(Gi), and let

G12 be the model for F1 ∩F2. If the amalgam A := A(G1, G2, G12) extracted from
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F has a faithful completion which is locally isomorphic to Y for some Y ∈ ∧0 then

either:

(i) F ∼= FS(Y ); or

(ii) A is of type F3.

Proof. Suppose that A is not of type F3. By Robinson’s result, it is enough to

show that FS(Y ) = 〈FS(G1),FS(G2)〉 where G1, G2 are the relevant “maximal

parabolic subgroups” of the groups described in Y . This follows immediately from

the Alperin–Goldschmidt theorem and [GLS98, Corollary 3.1.6] when F ∗(Y ) is

a rank 2 group of Lie type, and we may employ the results in [AOV17] for the

remaining cases when p = 2.

Notice that all the candidates for G∗i /Op(Gi) in the definition of a weak BN-pair

of rank 2 have strongly p-embedded subgroups. Indeed, the fusion categories of

groups which possess a weak BN-pair of rank 2 form the majority of the examples

stemming from the hypothesis in the Main Theorem.

Another important class of amalgams which provide examples in the Main

Theorem and Theorem C are symplectic amalgams.

Definition 5.1.10. Let A := A(G1, G2, G12) be a characteristic p amalgam of

rank 2. Then A is a symplectic amalgam if, up to interchanging G1 and G2, the

following hold:

(i) Op′(G1)/Op(G1) ∼= SL2(pn);

(ii) for W := 〈((Op(G1) ∩Op(G2))G1)G2〉, G2 = G12W and Op(Op′(G2)) ≤ W ;
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(iii) for S ∈ Sylp(G12), G12 = NG1(S);

(iv) Ω(Z(S)) = Ω(Z(Op′(G2))) for S ∈ Sylp(G12); and

(v) for Z1 := 〈Ω(Z(S))G1〉, Z1 ≤ Op(G2) and there is x ∈ G2 such that Zx
1 6≤

Op(G1).

Theorem 5.1.11. Suppose that A := A(G1, G2, G12) is a symplectic amalgam

such that G2/Op(G2) has a strongly p-embedded subgroup and for S ∈ Sylp(G12),

G12 = NG1(S) = NG2(S). Assume further than Gi is a K-group for i ∈ {1, 2}.

Then one of the following holds, where Ak corresponds to the listing given in [PR12,

Table 1.8]:

(i) A has a weak BN-pair of rank 2 of type 3D4(pn) (A27), G2(pn) (A2, A6 and

A26 when p 6= 3), G2(2)′ (A1), J2 (A41) or Aut(J2) (A1
41);

(ii) p = 2, A = A4, |S| = 26, O2(L2) ∼= 21+4
+ and L2/O2(L2) ∼= (3× 3) : 2;

(iii) p = 5, A = A20, |S| = 56, O5(L2) ∼= 51+4
+ and L2/O5(L2) ∼= 21+4

− .5;

(iv) p = 5, A = A21, |S| = 56, O5(L2) ∼= 51+4
+ and L2/O5(L2) ∼= 21+4

− .Alt(5);

(v) p = 5, A = A46, |S| = 56, O5(L2) ∼= 51+4
+ and L2/O5(L2) ∼= 2 · Alt(6); or

(vi) p = 7, A = A48, |S| = 76, O7(L2) ∼= 71+4
+ and L2/O7(L2) ∼= 2 · Alt(7).

Proof. We apply the classification in [PR12] and upon inspection of the tables

there, we need only rule out A3, A5 and A45 when p = 3; and A42 when p = 2.

Set Qi := O3(Gi) and Li := O3′(Li). With regards to A45, it is proved in [PR12,

Theorem 11.4] that NG2(S) 6≤ G1. In A3, we have that L2/O3(L2) ∼= SL2(3) and

|S| = 36. In particular, if G12 = NG1(S) = NG2(S) then G has a weak BN-pair

but comparing with the configurations in [DS85], we have a contradiction.
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Suppose that we are in the situation of A5 so that L2 is of shape 3.((32 : Q8)×(32 :

Q8)) : 3. Furthermore, by [PR12, Lemma 6.21], we have that Q2 = 〈Ω(Z(Q1))G2〉.

Let K2 be a Hall 2′-subgroup of L2∩NG(S). Then K2 is elementary abelian of order

4. By hypothesis, K2 normalizesQ1 and soK2 normalizes Ω(Z(Q1)). Moreover, K2

centralizes Ω(Z(S)) = Ω(Z(L2)) = Φ(Q2) and since |Ω(Z(Q1))/Ω(Z(L2))| = 3 by

[PR12, Lemma 6.21], it follows that there is k ∈ K an involution which centralizes

Ω(Z(Q1)). Since 〈kQ2〉 E G2, we infer that Ω(Z(S)) = [〈kQ2〉,Ω(Z(Q1))]G2 =

[〈kQ2〉, 〈Ω(Z(Q1))G2〉]. But Q2 = 〈Ω(Z(Q1))G2〉 by [PR12, Lemma 6.21] so that k

centralizes Q2/Φ(Q2), a contradiction since G2 is of characteristic 3.

In the situation of A42 when p = 2, we have that L2/Q2 ∼= Alt(5) ∼= SL2(4) so

that G has a weak BN-pair of rank 2. Since |S| = 29 in this case, comparing with

[DS85], we have a contradiction.

Remark. The symplectic amalgams A3, A5 and A45 where G2/O3(G2) has a

strongly p-embedded subgroup have as example completions Ω+
8 (2) : Sym(3), F4(2)

and HN. Indeed, in these configurations |S| is bounded and one can employ [PS21]

to get a list of candidate fusion systems supported on S. It transpires that the

only appropriate fusion systems supported on S are exactly the fusion categories

of the above examples, but in each case there are three essentials, all normal in S,

one of which is AutF(S)-invariant while the other two are fused under the action

of AutF(S).

Remark. In a later section, we come across an amalgam which satisfies almost all

of the properties of A42. Indeed, this amalgam contains A42 as a subamalgam and

we show that the fusion system supported from this configuration is the 2-fusion

system of PSp6(3). Indeed, PSp6(3) is listed as an example completion of A42 in

[PR12] and in PSp6(3) itself, there is a choice of generating subgroups G1, G2 such
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that (G1, G2, G1 ∩ G2) is a symplectic amalgam. However, the fusion subsystem

generated by the fusion systems of the groups G1 and G2 fails to generate the

fusion system of PSp6(3). In fact, such a subsystem fails to be saturated.

We now state the main hypothesis of this thesis with regard to fusion systems.

Hypothesis 5.1.12. F is a local CK-system with Op(F) = {1} and there are

two AutF(S)-invariant maximally essential subgroups E1, E2 E S such that F =

〈NF(E1), NF(E2)〉.

We now recognize a characteristic p amalgam of rank 2 in F . Namely, we take the

models G1, G2 and G12 of NF(E1), NF(E2) and NF(S) and by Theorem 5.1.6, we

have that F = FS(G) where G = G1∗G12G2, and we take the liberty of recognizing

G1, G2 and G12 as subgroups of G.

We now have a hypothesis in purely amalgam theoretic terms. Indeed, G is a

characteristic p amalgam of rank 2 such that, for Li := Op′(Gi), i ∈ {1, 2} and

Li := Li/Ei, applying Proposition 3.2.6 and Proposition 3.2.7, one of the following

holds:

(i) Li is isomorphic to rank 1 group of Lie type in characteristic p;

(ii) (Li, p) is one of (Z · PSL3(4), 3), (M11, 3), (Sz(32) : 5, 5), (2F4(2)′, 5), (Z ·

McL, 5) or (J4, 11), where Z = Z(Li) is a p′-group; or

(iii) S is cyclic or generalized quaternion and either Li = NLi
(S)[Op′(Li),Ω(S)] =

NLi
(S)〈Ω(S)Li〉 is p-solvable; or Li/Op′(Li) is a non-abelian simple group, p

is odd and S is cyclic.
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Using the classifications of weak BN-pairs and symplectic amalgams, and treating

the small cases using MAGMA (see [PS21]), we can identify a large proportion of

the fusion systems under investigation. In an abuse of terminology, we will often

say that F “has a weak BN-pair of rank 2” by which we mean that the amalgam

determined by F is a weak BN-pair of rank 2.

In the following proposition, to verify that two of the fusion systems uncovered

are exotic, the classification is invoked (see Section 3.3 and [PS18]). This is the

only occasion in this work where we apply the classification in its full strength and

not in an inductive context. Without the classification, outcome (iii) below would

instead read “F is a simple fusion system on a Sylow 3-subgroup of F3 which is

not isomorphic to the 3-fusion category of F3” and outcome (v) would read “F is

a simple fusion system on a Sylow 7-subgroup of G2(7) which is not isomorphic to

7-fusion category of G2(7) or M.”

Proposition 5.1.13. Suppose that F satisfies Hypothesis 5.1.12. If the induced

amalgam A = A(G1, G2, G12) is a weak BN-pair of rank 2 or a symplectic amalgam

satisfying the hypothesis of Theorem 5.1.11, then one of the following holds:

(i) F = FS(H), where F ∗(H) is isomorphic to a rank 2 simple group of Lie type

in defining characteristic;

(ii) F = FS(H), where F ∗(H) ∼= M12 or J2 and p = 2;

(iii) F = FS(H), where H ∼= G2(3) and p = 2;

(iv) F is a uniquely determined exotic system on a Sylow 3-subgroup of F3;

(v) F = FS(H), where F ∗(H) ∼= Ly,HN or B and p = 5; or

(vi) F is a uniquely determined exotic system on a Sylow 7-subgroup of G2(7).
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Proof. Let A be the amalgam determined by F and G be the associated free

amalgamated product. If A has a weak BN-pair of rank 2 which is determined

up to local isomorphism then by Corollary 5.1.9, F satisfies part (i). If p ∈ {5, 7}

and A satisfies (iii)-(vi) of Theorem 5.1.11, then |S| 6 p6 and Op(F) = F . Then

the result follows from the tables provided in [PS21] and the proof that F is

exotic in outcome (v) is proved in [PS18]. Suppose that p = 2 and A is parabolic

isomorphic to G2(2)′, M12 or J2. Then S = (S∩O2(G1))(S∩O2(G2)) and it follows

that O2(F) = F . Moreover, by [AOV17] we have that that O2′(F) is isomorphic

to G2(2)′, M12 or J2 and these groups tamely realize O2′(F) in each case. In this

context, this implies that F = FS(H) where F ∗(H) ∼= G2(2)′, M12 or J2.

If A is parabolic isomorphic to Aut(M12) or Aut(J2), then there is a subamalgam

parabolic isomorphic to M12 or J2 respectively. Moreover, considering this

subamalgam in G, we obtain a subgroup H E G such that H is parabolic

isomorphic to M12 or J2. Applying the above, there exists a normal subsystem

H = FS∩H(H) E F such that H is isomorphic to the 2-fusion system of M12 or

J2. Utilizing the tameness of the 2-fusion systems of M12 or J2 gives the result.

Thus, we are left with the case where A is a symplectic amalgam with |S| = 26.

It follows from [PR12, Lemma 6.21] that S = (O2(G1) ∩ S)(O2(G2) ∩ S) so that

O2(F) = F by [AKO11, Theorem I.7.4], and checking against the lists provided

in [AOV17, Theorem 4.1], F is isomorphic to the 2-fusion system of G2(3).

Finally, suppose that A is parabolic isomorphic to F3. In particular, S is

determined up to isomorphism. Then comparing with Section 3.3, we conclude

that F is an simple exotic fusion system supported on a 3-group isomorphic to a

Sylow 3-subgroup of F3.
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The bulk of configurations identified in the Main Theorem arise from groups which

are completions of weak BN-pairs of rank 2 or symplectic amalgams. Indeed, the

remaining cases are all “small” in various senses e.g. by the order of S, their

“critical distance.” Further to this, by [PS21] and [AOV17], the reduced fusion

systems supported on S for (ii), (iii), (iv) and (v) and (vi) above are known; and

the fusion systems supported on T ∈ Sylp(F ∗(G)) in (i) are known in the case

where F ∗(G) ∼= PSL3(pn),PSp4(pn),G2(pn), or PSU4(pn) by [Cle07], [HS19] and

the work in Chapter 4.

5.2 The Amalgam Method

Hypothesis 5.1.12 along with Proposition 3.2.6 and Proposition 3.2.7 imply the

following hypothesis, listed as Hypothesis B in the introduction, which we assume

for the remainder of this chapter.

Hypothesis 5.2.1. A := (G1, G2, G12) is a characteristic p amalgam of rank 2

with faithful completion G satisfying the following:

(i) for S ∈ Sylp(G12), G12 = NG1(S) = NG2(S);

(ii) for Li := Op′(Gi), Li := Li/Op(Gi) has one of the following forms:

(a) Li is isomorphic to rank 1 group of Lie type in characteristic p;

(b) (Li, p) is one of (Z · PSL3(4), 3), (M11, 3), (Sz(32) : 5, 5), (2F4(2)′, 5),

(Z ·McL, 5) or (J4, 11), where Z = Z(Li) is a p′-group; or

(c) S is cyclic or generalized quaternion and either Li = S[Op′(Li),Ω(S)]

is p-solvable; or Li/Op′(Li) is a non-abelian simple group, p is odd and

S is cyclic.
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From this point, our methodology is completely based in group theory and we

only return to techniques in fusion systems for some identification arguments later.

Indeed, for the amalgams considered, we can usually go as far as identifying the

“shapes” of G1 and G2. We describe this below in the following theorem, presented

in the introduction as Theorem C.

Theorem 5.2.2. Suppose that A = A(G1, G2, G12) satisfies Hypothesis 5.2.1.

Then one of the following occurs:

(i) A is a weak BN-pair of rank 2;

(ii) p = 2, A is a symplectic amalgam, |S| = 26 , G1/O2(G1) ∼= Sym(3) and

G2/O2(G2) ∼= (3× 3) : 2;

(iii) p = 2, Ω(Z(S)) E G2, 〈(Ω(Z(S))G1)G2)〉 6≤ O2(G1), |S| = 29 ,

O2′(G1)/O2(G1) ∼= SU3(2)′ and O2′(G2)/O2(G2) ∼= Alt(5);

(iv) p = 3, Ω(Z(S)) E G2, 〈(Ω(Z(S))G1)〉 6≤ O2(G2), |S| 6 37 and O3(G1) =

〈(Ω(Z(S))G1)〉 is cubic 2F -module for G1/O3(G1); or

(v) p = 5 or 7, A is a symplectic amalgam and |S| = p6.

The aim is to prove Theorem 5.2.2 and then a combination of Proposition 5.1.13,

[PS21] and [AOV17] yields the Main Theorem. Indeed, more information is given

about the amalgams listed in (i)-(v) where they arise in the case analysis. It seems

that more information may be extracted than what we have provided here, but

with the application of fusion systems in mind and the available results classifying

fusion systems supported on p-groups of small order, we stop short of completely

describing G1 and G2 up to isomorphism, although this seems possible in most

cases.
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At various stages of the analysis, we refer to F , A or G as being a minimal

counterexample to the Main Theorem or Theorem 5.2.2 respectively. By this, we

mean a counterexample in each case chosen such that |G1| + |G2| is as small as

possible.

We assume Hypothesis 5.2.1 and fix the following notation for this chapter. We

let G = G1 ∗G12 G2 and Γ be the (right) coset graph of G with respect to G1 and

G2, with vertex set V (Γ ) = {Gig | g ∈ G, i ∈ {1, 2}} and (Gig,Gjh) an edge if

Gig 6= Gjh and Gig ∩ Gjh 6= ∅ for {i, j} = {1, 2}. It is clear that G operates on

Γ by right multiplication. Throughout, we identify Γ with its set of vertices, let

d(·, ·) to be the usual distance on Γ and observe the following notations.

Notation 5.2.3. • For δ ∈ Γ , ∆(n)(δ) = {λ ∈ Γ | d(δ, λ) 6 n}. In particular,

we have that ∆(0)(δ) = {δ} and we write ∆(δ) := ∆(1)(δ).

• For δ ∈ Γ and λ ∈ ∆(δ), we let Gδ be the stabilizer in G of δ and Gδ,λ be

the stabilizer in G of the edge {δ, λ}.

• For δ ∈ Γ , G(n)
δ is the largest normal subgroup of Gδ which fixes ∆(n)(δ)

element-wise. In particular, Gδ = G
(0)
δ .

The following propositions are elementary and their proofs may be found in [DS85,

Chapter 3].

Proposition 5.2.4. The following facts hold:

(i) GGig = Gg
i so that every vertex stabilizer is conjugate in G to either G1 or

G2. In particular, G has finite vertex stabilizers.

(ii) Each edge stabilizer of Γ is conjugate in G to G12 in its action on Γ .
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(iii) Γ is a tree.

(iv) G acts faithfully and edge transitively on Γ , but does not act vertex

transitively.

(v) For each edge {λ1, λ2}, G = 〈Gλ1 , Gλ2〉.

(vi) For δ ∈ Γ such that Gδ = Gg
i , we have that ∆(δ) and Gδ/G

g
12 are equivalent

as Gδ-sets. In particular, Gδ is transitive on ∆(δ) \ {δ}.

(vii) Gδ is of characteristic p for all δ ∈ Γ .

(viii) If δ and λ are adjacent vertices, then Sylp(Gδ,λ) ⊆ Sylp(Gδ) ∩ Sylp(Gλ).

(ix) If δ and λ are adjacent vertices, then for S ∈ Sylp(Gδ,λ), Gδ,λ = NGδ(S) =

NGλ(S).

The following notations will be used extensively throughout the rest of this work.

Notation 5.2.5. Set δ ∈ Γ to be an arbitrary vertex and S ∈ Sylp(Gδ).

• Lδ := Op′(Gδ).

• Qδ := Op(Gδ) = Op(Lδ).

• Lδ := Lδ/Qδ.

• Zδ := 〈Ω(Z(S))Gδ〉.

• For n ∈ N, V (n)
δ := 〈Zλ | d(λ, δ) 6 n〉 E Gδ, with the additonal conventions

V
(0)
δ = Zδ and Vδ := V

(1)
δ .

• bδ := minλ∈Γ{d(δ, λ) | Zδ 6≤ G
(1)
λ }.

• b := minδ∈Γ{bδ}.
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We refer to b as the critical distance of the amalgam. Indeed, as G acts edge

transitively on Γ it follows that b = min{bδ, bλ} where δ and λ are any adjacent

vertices in Γ . A critical pair is any pair (δ, λ) such that Zδ 6≤ G
(1)
λ and d(δ, λ) = b.

This definition is not symmetric and so (λ, δ) is not necessarily a critical pair in

this case.

It is clear from the definition that symplectic amalgams have critical distance 2.

It is remarkable that in all the examples we uncover, b 6 5 and if G does not have

a weak BN-pair, then b 6 2.

Proposition 5.2.6. The following facts hold:

(i) b > 1 is finite.

(ii) We may choose {α, β} such that {Gα, Gβ} = {G1, G2} and Gα,β = G12 =

NG(S).

(iii) If N ≤ Gα,β, NGα(N) operates transitively on ∆(α) and NGβ(N) operates

transitively on ∆(β), then N = 1.

(iv) For δ ∈ Γ , λ ∈ ∆(δ) and T ∈ Sylp(Gδ,λ), no subgroup of T is normal in

〈Lδ, Lλ〉.

(v) For δ ∈ Γ and λ ∈ ∆(δ), there does not exist a non-trivial element g ∈ Gδ,λ

with gQδ/Qδ ∈ Z(Lδ/Qδ) and gQλ/Qλ ∈ Z(Lλ/Qλ).

(vi) For δ ∈ Γ and λ ∈ ∆(δ), V (i)
λ = 〈(V (i−1)

δ )Gλ〉.

For the remainder of this work, we will often fix a critical pair (α, α′). As Γ is a

tree, we may set β to be the unique neighbour of α with d(β, α′) = b−1. Then we

label each vertex along the path from α to α′ additively e.g. β = α+1, α′ = α+ b.
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In this way we also see that β may be written as α′−b+1 and so we will often write

vertices on the path from α′ to α subtractively with respect to α′. The following

diagram better explains the situation.

α− 1αβα + 2α′ − 2α′ − 1α′α′ + 1

Lemma 5.2.7. Let δ ∈ Γ , (α, α′) be a critical pair, T ∈ Sylp(Gα) and S ∈

Sylp(Gα,β). Then

(i) Qδ ≤ G
(1)
δ ;

(ii) Zα′ ≤ Gα, Zα ≤ Gα′ and [Zα, Zα′ ] ≤ Zα ∩ Zα′;

(iii) Zα 6= Ω(Z(T )); and

(iv) if Ω(Z(S)) is centralized by L ≤ Gβ such that L acts transitively on ∆(β),

then Z(Lα) = {1}.

Proof. For all λ ∈ ∆(δ), we have that Qδ ≤ Tλ ∈ Sylp(Gλ ∩ Gδ) and Qδ ≤ Gλ.

Since Qδ E Gδ, it follows immediately that Qδ ≤ G
(1)
δ . By the minimality of b,

we have that Zα′ ≤ G
(1)
β ≤ Gα and similarly Zα ≤ G

(1)
α′−1 ≤ Gα′ . In particular, Zα

normalizes Zα′ and vice versa, so that [Zα, Zα′ ] ≤ Zα ∩ Zα′ .

Suppose that Zα = Ω(Z(T )). Then Zα = Ω(Z(S)) by the transitivity of Gα.

By definition and minimality of b, Zα ≤ Zβ ≤ G
(1)
α′ , a contradiction. Finally,

suppose that Ω(Z(S)) is centralized by L ≤ Gβ such that L acts transitively on

∆(β). Since Qα is self-centralizing, it follows that Z(Lα) is a p-group and so

Ω(Z(Lα)) ≤ Ω(Z(S)) and L centralizes Ω(Z(Lα)). Then Proposition 5.2.6 (iii)

implies that Ω(Z(Lα)) = {1}, and so Z(Lα) = {1}.
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Lemma 5.2.8. Suppose that N E Gδ with N not p-closed and set S ∈ Sylp(Gδ).

Then the following holds:

(i) If Lδ is not p-solvable, then Op(Lδ) ≤ N .

(ii) If Lδ is p-solvable, then K ≤ NQδ, where K is the unique normal subgroup

of Lδ which is divisible by p and minimal with respect to this constraint.

(iii) Gδ = NNGδ(S) and N is transitive on ∆(δ).

(iv) For U/V any non-central chief factor for Lδ inside of Qδ, we have that

Qδ ∈ Sylp(CLδ(U/V )) .

Proof. Suppose Lδ is not p-solvable and let A ∈ Sylp(N). Notice that as N

is not p-closed, A 6≤ Qδ and since Lδ has a strongly p-embedded subgroup, by

Hypothesis 5.2.1 we have that L̃δ := Lδ/Op′(Lδ) is isomorphic to a non-abelian

simple group; Sz(32) : 5 or Ree(3). Suppose that either of the two latter cases

occur. Then by Proposition 3.2.7, Lδ ∼= Sz(32) : 5 or Ree(3). It follows that

Lδ = 〈ALδ〉S and so L/〈ALδ〉 is a p-group. Hence, Op(Lδ) ≤ 〈ALδ〉 ≤ N .

If L̃δ is a non-abelian simple group then L̃δ = 〈ÃL̃δ〉. In particular, S ≤ 〈ALδ〉 and

so S ≤ 〈ALδ〉Qδ ≤ Lδ and since Lδ = Op′(Lδ), Lδ = 〈ALδ〉Qδ. It then follows that

Op(Lδ) ≤ 〈ALδ〉 ≤ N . Thus, we have proved (i).

By the Frattini argument Gδ = LδNGδ(S) = Op(Lδ)NGδ(S) = 〈AGδ〉NGδ(S). Since

〈AGδ〉 ≤ N , (iii) follows whenever Lδ is not p-solvable.

Suppose now that Lδ is p-solvable and let K be the unique minimal normal

subgroup of Lδ divisible by p. Again, we let A ∈ Sylp(N) and remark that since

N is not p-closed A 6≤ Qδ. Hence, p
∣∣∣ |N | so that K ≤ N and K ≤ NQδ,
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completing the proof of (ii). By Proposition 3.2.6, Lδ = SK ≤ NGδ(S)N so that

Gδ = LδNGδ(S) ≤ NGδ(S)N ≤ Gδ, completing the proof of (iii).

For (iv), choose any non-central chief factor U/V for Lδ inside Qδ. Then U/V is

a faithful, irreducible module for Lδ/CLδ(U/V ). Since [Qδ, U ] E Lδ and [Qδ, U ] <

U , Qδ ≤ CLδ(U/V ). Moreover, as CLδ(U/V ) is normal in Lδ, we deduce that

Op(CLδ(U/V )) = Qδ. If CLδ(U/V ) is not p-closed, then Lδ = CLδ(U/V )NLδ(S)

and it follows that U/V is irreducible for NLδ(S). But then [U/V, S] = {1} from

which it follows that {1} = [U/V, 〈SLδ〉] = [U/V, Lδ], a contradiction. Hence,

(iv).

Proposition 5.2.9. For all δ ∈ Γ and λ ∈ ∆(δ), Qδ 6≤ Qλ.

Proof. Suppose that there is δ ∈ Γ and λ ∈ ∆(δ) with Qδ ≤ Qλ and let S ∈

Sylp(Gδ,λ). Then J(Qλ) 6≤ Qδ for otherwise, by Proposition 2.3.7 (iv), J(Qλ) =

J(Qδ) E 〈Gλ, Gδ〉. Furthermore, since CS(Qδ) ≤ Qδ, Ω(Z(Qλ)) < Ω(Z(Qδ)). Let

V := 〈Ω(Z(Qλ))Gδ〉 ≤ Ω(Z(Qδ)) and choose A ∈ A(Qλ) \ A(Qδ). If Qδ < CS(V ),

then by Lemma 5.2.8 (iii), Gδ = 〈CS(V )Gδ〉NGδ(S) = CGδ(V )NGδ(S) normalizes

Ω(Z(Qλ)), a contradiction. Hence, Qδ = CS(V ).

By the choice of A, |A| > |CA(V )V | = |CA(V )||V |/|V ∩CA(V )| = |CA(V )||V |/|V ∩

A|. SinceA = Ω(CS(A)), we have thatA∩V = CV (A) and rearranging we conclude

that |A|/|CA(V )| > |V |/|CV (A)| and A/CA(V ) ∼= AQδ/Qδ is an offender on the

FF-module V . By Lemma 2.3.10, Lδ/CLδ(V ) ∼= SL2(pn) and V/CV (Op(Lδ)) is a

natural SL2(q)-module. But Qλ/Qδ < S/Qδ is a Gλ,δ-invariant subgroup of S/Qδ,

a contradiction by Lemma 2.2.1 (vi).

Lemma 5.2.10. Let δ ∈ Γ , (α, α′) be a critical pair and S ∈ Sylp(Gα,β). Then
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(i) Qδ ∈ Sylp(G
(1)
δ ) and G(1)

δ /Qδ is centralized by Lδ/Qδ;

(ii) either Qδ ∈ Sylp(CLδ(Zδ)) or Zδ = Ω(Z(Lδ));

(iii) Zα 6≤ Qα′; and

(iv) CS(Zα) = Qα, and CGα(Zα) is p-closed and p-solvable.

Proof. By Lemma 5.2.7 (i), we assume that Qδ < T for T ∈ Sylp(G
(1)
δ ). Since

G
(1)
δ E Gδ it follows that Op(G(1)

δ ) = Qδ and so G
(1)
δ is not p-closed. But by

Lemma 5.2.8 (iii), then G
(1)
δ would be transitive on ∆(δ), a clear contradiction.

Thus, Qδ ∈ Sylp(G
(1)
δ ). Letting P ∈ Sylp(Gδ), [P,G(1)

δ ] ≤ P ∩ G(1)
δ = Qδ so that

[Lδ, G(1)
δ ] ≤ Qδ, and so (i) holds.

If Qδ 6∈ Sylp(CLδ(Zδ)) then by Lemma 5.2.8 (iii), Gδ = CLδ(Zδ)NGδ(S) and so Zδ =

〈Ω(Z(S))Gδ〉 = Ω(Z(S)). But then {1} = [Zδ, S]Gδ = [Zδ, Lδ] and so Zδ ≤ Z(Lδ).

Since Qδ is self-centralizing, Z(Lδ) is a p-group and Zδ = Ω(Z(S)) = Ω(Z(Lδ)),

so that (ii) holds.

If Zα ≤ Qα′ then Zα ≤ G
(1)
α′ a contradiction and so (iii) holds. Since Zα 6= Ω(Z(S))

by Lemma 5.2.7 (iii), CS(Zα) = Qα E CGα(Zα) so that CGα(Zα) is p-closed and

p-solvable.

By the above lemma, we can reinterpret the minimal distance b as b = minδ∈Γ{bδ}

where bδ := minλ∈Γ{d(δ, λ) | Zδ 6≤ Qλ}.

Lemma 5.2.11. Let (α, α′) be a critical pair. Then

(i) if Zα′ ≤ Z(Lα′) then α is not conjugate to α′; and
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(ii) CZα(Zα′) 6= Zα ∩ Qα′ if and only if Zα′ = Ω(Z(Lα′)) and (α′, α) is not a

critical pair.

Proof. Suppose Zα′ ≤ Z(Lα′). By Lemma 5.2.10 (ii), Zα′ = Ω(Z(Lα′)). If α and

α′ were conjugate, then Zα = Ω(Z(Lα)), a contradiction to Lemma 5.2.7 (iii).

Suppose that Zα′ = Ω(Z(Lα′)). Since Zα 6≤ Qα′ but Zα ≤ Lα′ , we infer that

Zα = CZα(Zα′) 6= Zα ∩ Qα′ . Suppose conversely that CZα(Zα′) 6= Zα ∩ Qα′ .

Then CLα′ (Zα′) is not p-closed and by Lemma 5.2.10 (ii), we have that Zα′ =

Ω(Z(Lα′)).

Lemma 5.2.12. Suppose that b > 2n. Then V
(n)
δ is abelian for all δ ∈ Γ .

Proof. Since b > 2n, for all λ, µ ∈ ∆(n)(δ) we have that Zλ ≤ G(1)
µ by the

minimality of b. Thus, Zλ ≤ Qµ, Zλ centralizes Zµ and since V (n)
δ = 〈Zµ | µ ∈

∆(n)(δ)〉, it follows that V (n)
δ is abelian.

Lemma 5.2.13. V (n)
λ /[V (n)

λ , Qλ] contains a non-central chief factor for Lλ for all

n > 1 such that V (n)
λ ≤ Qλ.

Proof. Set V (0)
µ = Zµ for all µ ∈ Γ and suppose that Op(Lλ) centralizes

V
(n)
λ /[V (n)

λ , Qλ]. Observe that V
(n)
λ = 〈(V (n−1)

µ )Lλ〉 for µ ∈ ∆(λ) so that

V (n−1)
µ 6≤ [V (n)

λ , Qλ] < V
(n)
λ . Moreover, V (n−1)

µ [V (n)
λ , Qλ] E Lλ so that V (n)

λ =

V (n−1)
µ [V (n)

λ , Qλ]. Set Vi := [V (n)
λ , Qλ; i]. In particular, V0 = V

(n)
λ and V1 =

[V0, Qλ] = [V (n−1)
µ , Qλ]V2. Notice that V

(n)
λ 6= V (n−1)

µ and let k be maximal

such that V
(n)
λ = V (n−1)

µ Vk. Then V1 = [V (n−1)
µ , Qµ]Vk+1 ≤ V (n−1)

µ Vk+1. But

V
(n)
λ = V (n−1)

µ V1 = V (n−1)
µ Vk+1, contradicting the maximal choice of k. Thus,

Op(Lλ) does not centralize V (n)
λ /[V (n)

λ , Qλ], as required.
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We will use the following lemma often in the amalgam method and without

reference. Recall also that if U, V E G with V < U then, in our setup and

using coprime action, U/V does not contain a non-central chief factor for G if and

only if Op(G) centralizes U/V .

Lemma 5.2.14. For any λ ∈ Γ , V (n)
λ /V

(n−2)
λ contains a non-central chief factor

for Lλ for all n > 2 such that V (n)
λ ≤ Qλ.

Proof. Assume that V (n)
λ /V

(n−2)
λ contains only central chief factors for Lλ so that

Op(Lλ) centralizes V (n)
λ /V

(n−2)
λ . Since V (n−2)

λ < V (n−1)
µ < V

(n)
λ for all µ ∈ ∆(λ),

we have that V (n−1)
µ E Op(Lλ)Gλ,µ = Gλ by a Frattini argument. But then

V (n−1)
µ E 〈Gµ, Gλ〉, a contradiction. Thus, V (n)

λ /V
(n−2)
λ contains a non-central

chief factor, as required.

We now introduce some notation which is non-standard in the amalgam method

and is tailored for our purposes.

Notation 5.2.15. • If Zδ 6= Ω(Z(Lδ)), then Rδ = CLδ(Zδ).

• If Zδ = Ω(Z(Lδ)) and b > 1, then Rδ = CLδ(Vδ/CVδ(Op(Lδ)).

• If Zδ = Ω(Z(Lδ)) and b > 1, then Cδ = CQδ(Vδ).

Lemma 5.2.16. Suppose that Zδ = Ω(Z(Lδ)), b > 1 and let T ∈ Sylp(Gδ). Then

Rδ ∩ T ≤ Qδ and CT (Vδ) = Cδ.

Proof. Suppose for a contradiction, that Rδ ∩ T 6≤ Qδ. Then Rδ is not p-closed so

that by Lemma 5.2.8 (iii), Gδ = RδNGδ(T ). Let µ ∈ ∆(δ) with T ∈ Sylp(Gδ,µ).

Then Zµ ≤ Vδ so that Zµ E 〈Gδ, Gµ〉, a contradiction.
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Suppose now that CT (Vδ) > Qδ so that CGδ(Vδ) is not p-closed and is normal in Gδ.

As above, by Lemma 5.2.8 (iii), we quickly get that Gδ = CGδ(Vδ)Gδ,µ normalizes

Zµ for µ ∈ ∆(δ) with T ∈ Sylp(Gδ,µ). Hence, the result.

Lemma 5.2.17. Suppose that Lδ/Rδ
∼= SL2(pn), Qδ ∈ Sylp(Rδ) and Rδ ≤ Gδ,λ

for some λ ∈ ∆(δ). Then Lδ ∼= SL2(pn).

Proof. Since Rδ ≤ Gδ,λ, we have that [Rδ, Lδ] ≤ [Rδ, T ]Lδ ≤ 〈(Rδ ∩ T )Lδ〉 = Qδ for

T ∈ Sylp(Gδ,λ). Hence, Rδ ≤ Z(Lδ) is a p′-group. If pn > 3, then as Lδ = Op′(Lδ),

it follows from Lemma 2.2.1 (vii) that Lδ ∼= SL2(pn).

If Lδ/Rδ
∼= Sym(3) and Rδ 6= Qδ, then Rδ is a non-trivial 3-group since Lδ =

O2′(Lδ) and for any prime r 6= 2, 3, Or(Rδ) is complemented in Lδ. But now,

since Rδ is maximal and central in O3(Lδ), O3(Lδ) is abelian. By coprime action,

O3(Lδ) = [O3(Lδ), S]×CO3(Lδ)(S) and Rδ is complemented in Lδ by [O3(Lδ), S]S ∼=

Sym(3). Since Lδ = O2′(Lδ) the result follows.

If Lδ/Rδ
∼= SL2(3) then Rδ is a non-trivial 2-group since Lδ = O3′(Lδ) and for any

prime r 6= 2, 3, Or(Rδ) is complemented in Lδ. Let A be a maximal subgroup of

Rδ. Then |O2(Lδ)/A| = 16. By Gaschutz’ theorem, we may assume that Rδ/A is

not complemented in O2(Lδ)/A. We see that O2(Lδ)/A is a non-abelian group of

order 16 with center of order at most 4. Checking the Small Groups Library in

MAGMA for groups of order 48 with a quotient by a central involution isomorphic

to SL2(3) and a Sylow 2-subgroup satisfying the required properties, we have a

contradiction.

Lemma 5.2.18. Suppose that δ ∈ Γ , Zδ−1 = Zδ+1, Qδ ∈ Sylp(Rδ) and i ∈ N. If

Qδ−1Qδ ∈ Sylp(Lδ), Lδ/Rδ is generated by any two distinct Sylow p-subgroups and

Op(Rδ) normalizes V (i−1)
δ−1 , then V

(i−1)
δ−1 = V

(i−1)
δ+1 .
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Proof. Since Qδ−1Qδ ∈ Sylp(Lδ), if Qδ−1Rδ 6= Qδ+1Rδ, then Zδ+1 = Zδ−1 E

Lδ = 〈Rδ, Qδ−1, Qδ+1〉, a contradiction. Thus, Qδ−1Rδ = Qδ+1Rδ. As Qδ−1Qδ ∈

Sylp(Qδ−1Rδ), there is r ∈ Rδ such that Qr
δ−1Qδ = (Qδ−1Qδ)r = (Qδ+1Qδ) =

Qδ+1Qδ. Since Qδ−1Qδ is the unique Sylow p-subgroup of Gδ−1,δ, it follows that

Gr
δ,δ−1 = Gδ,δ+1 = NGδ(QδQδ+1). Set θ = (δ − 1) · r ∈ ∆(δ). Then by properties

of the graph, Gδ,δ+1 = Gr
δ,δ−1 = Gδ,δ−1·r = Gδ,θ and so (δ − 1) · r = δ + 1. Since

r acts as a graph automorphism on Γ , r preserves i neighbourhoods of vertices in

the graph and it follows immediately that V (i−1)
δ−1·r = (V (i−1)

δ−1 )r so that, as V (i−1)
δ−1 is

normalized by Rδ = Op(Rδ)Qδ, V (i−1)
δ+1 = V

(i−1)
δ−1 , completing the proof.

We record one further generic lemma concerning the action of Rγ for γ ∈ Γ .

Lemma 5.2.19. Let γ ∈ Γ and fix δ ∈ ∆(γ). Then for n < b, 〈V (n)
µ | Zµ =

Zδ, µ ∈ ∆(γ)〉 E RγQδ.

Proof. Set Uγ := 〈V (n)
µ | Zµ = Zδ, µ ∈ ∆(γ)〉 and let r ∈ RγQδ. Since r is a

graph automorphism, for µ ∈ ∆(γ) such that Zµ = Zδ, (V (n)
µ )r = V (n)

µ·r . But now,

Zµ·r = Zr
µ = Zr

δ = Zδ and so (V (n)
µ )r ≤ Uγ. Thus, Uγ E RγQδ, as required.

As described in Section 2.1, we can guarantee cubic action on a faithful module

for Lδ for δ at least one of α, β. We use critical subgroups to achieve this and

refer to Theorem 2.1.26 for their properties. The following proposition is listed as

Proposition F in the introduction, and it is worth pointing out that it holds in

much greater generality than in the hypotheses of this thesis.

Proposition 5.2.20. There is λ ∈ Γ such that there is a Gλ-module V on which

p′-elements of Gλ act faithfully and a p-subgroup C of Gλ such that [V,C,C,C] =

{1}.
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Proof. Let (α, . . . , α′) be a path in Γ with (α, α′) a critical pair. For each λ ∈

(α, . . . , α′), set Kλ to be a critical subgroup of Qλ. Since Zα ≤ Kα, we must have

that Kα 6≤ Qα′ . Set c := {min(d(µ, λ)) | Kµ 6≤ Qλ, µ, λ ∈ (α, . . . , α′)}. Choose

a pair (µ, λ) such that Kµ 6≤ Qλ and d(µ, λ) = c. Then, by minimality of c,

Kµ ≤ Gλ but Kµ 6≤ Qλ and from the definition of a critical subgroup, p′-elements

of Gλ act faithfully on the Gλ-module Kλ/Φ(Kλ). Moreover, again by minimality,

Kλ normalizes Kµ so that [Kλ, Kµ, Kµ, Kµ] ≤ [Kµ, Kµ, Kµ] = {1}, as required.

Under the assumption that Rδ is p-solvable group which does not normalize a

Sylow p-subgroup of Lδ, we are in a good position to apply Hall–Higman style

arguments whenever p > 5. We get the following fact almost immediately from

Corollary 2.3.24.

Corollary 5.2.21. Suppose that p > 5, and Lα and Lβ have strongly p-embedded

subgroups. Then, for some λ ∈ {α, β}, one of the following holds:

(i) p > 5 is arbitrary and Lλ ∼= PSL2(pn), SL2(pn),PSU3(pn) or SU3(pn) for

n ∈ N; or

(ii) p = 5 and Lλ ∼= 3 · Alt(6) or 3 · Alt(7).

Proof. By Proposition 5.2.20, there is a p-element x ∈ Lλ which acts cubically on

Kλ/Φ(Kλ). Suppose there is y ∈ Lλ such that [y,Kλ] ≤ Φ(Kλ). Since Kλ is a

critical subgroup, by coprime action, y is a p-element so that CLλKλ/Φ(Kλ) is a

normal p-subgroup. In particular, Lλ acts faithfully on Kλ/Φ(Kλ) and so we may

apply Corollary 2.3.24 and the result holds.

We now deal with the so called “pushing up” case of the amalgam method. The

proof breaks up over a series of lemmas, culminating in Proposition 5.2.25 which
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was given as Proposition G in the introduction. Throughout, let λ ∈ Γ , µ ∈ ∆(λ)

and S ∈ Sylp(Gλ,µ).

Lemma 5.2.22. Suppose that Qλ∩Qµ E Gλ. Then, writing L := 〈QGλ
µ 〉, we have

that Qµ ∈ Sylp(L), Op(L) = Qµ ∩ Qλ, Zλ/Z(Lλ) is a natural SL2(q)-module for

Lλ/Rλ and no non-trivial characteristic subgroup of Qµ is normal in L.

Proof. Set L := 〈QGλ
µ 〉 E Lλ and let V := Zλ if Zλ 6= Ω(Z(S)), and V :=

Vλ/CVλ(Op(Lλ)) if Zλ = Ω(Z(S)) and b > 1. Since L E Lλ, we have that

CL(Op(L)) ≤ Op(L) and since Qµ 6≤ Qλ, it follows by Lemma 5.2.8 that L/Op(L)

has a strongly p-embedded subgroup and Lλ = LS by Hypothesis 5.2.1. If

J(Qµ) ≤ Op(L), then J(Qµ) ≤ Qµ ∩ Qλ ≤ Qµ and so, by Proposition 2.3.7

(iv), J(Qµ) = J(Qµ ∩Qλ) E Lλ, a contradiction.

Suppose first that b = 1 and Zλ = Ω(Z(S)). Then Zλ ≤ Qµ and we may as well

assume that Zµ 6≤ Qλ. But then Zµ centralizes Qλ/Op(L) and Op(L). Since 〈ZGλ
µ 〉

contains elements of p′-order, using coprime action and that Gλ is of characteristic

p, we have a contradiction. Now, if V := Zλ, then Op(L) = CS∩L(V ) and by

Proposition 2.3.9 and Lemma 2.3.10, L/CL(V ) ∼= SL2(q). If Zλ = Ω(Z(S)), then

Qλ ∩ Qµ = Cλ and we may assume that µ belongs to a critical pair (µ, µ′) with

d(λ, µ) = b − 1. Then b is odd, otherwise µ′ − 1 ∈ λG and Zµ ≤ Qµ′−1 ∩ Qµ′−2 =

Qµ′−1 ∩ Qµ′ ≤ Qµ′ . Thus, Vµ′ ∩ Qλ ≤ Cλ and Vλ ∩ Qµ′ ≤ Cµ′ . Without loss

of generality, assume that |Vµ′/(Vµ′ ∩ Qλ)| 6 |Vλ/(Vλ ∩ Qµ′)|. A straightforward

calculation ensures that VλQµ′/Qµ′ is an offender on Vµ′/[Vµ′ , Qµ′ ], [Vµ′ , Qµ′ ] ≤

CVµ′ (O
p(Lµ′)) and by Lemma 2.3.10, Lµ′/CLµ′ (Vµ′/CVµ′ (O

p(Lµ′))) ∼= SL2(q).

Either way, it follows from Lemma 2.2.1 (vi) that Lλ/CLλ(V ) ∼= L/CL(V ) ∼=
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SL2(q), S = QλQµ and

QµOp(L) = Qµ(Qλ ∩ L) = QλQµ ∩ L = S ∩ L ∈ Sylp(L).

Since [Op(L), Qµ] ≤ [Qλ, Qµ] ≤ Qλ ∩ Qµ ≤ Op(L) it follows that [Op(L), L] =

[Op(L), 〈QLλ
µ 〉] = [Op(L), Qµ]Lλ ≤ Qλ ∩ Qµ and so L̂ := L/(Qλ ∩ Qµ) is a central

extension of L/Op(L) by Ôp(L). But Qµ ∩ Op(L) = Qµ ∩ Qλ and so Q̂µ is

complement to Ôp(L) in Ŝ ∩ L. It follows by Gaschutz’ theorem that there is

a complement in L̂ to Ôp(L). Now, letting Kλ be a Hall p’-subgroup of NL(S∩L),

unless q ∈ {2, 3}, we deduce that Q̂µ ≤ [Ŝ ∩ L,Kλ] is contained in a complement

to Ôp(L) and since L = 〈QGλ
µ 〉, it follows that Ôp(L) = {1} and Qµ ∈ Sylp(L). If

q ∈ {2, 3}, then L̂ ∼= p× SL2(p), |Q̂µ| = p and one can check that 〈Q̂µ

L̂
〉 ∼= SL2(p),

contradicting the initial definition of L. Thus Qµ ∈ Sylp(L) and Op(L) = Qµ∩Qλ.

Since Lλ = LQλ, there is no non-trivial characteristic subgroup of Qµ which is

normal in L, for such a subgroup would then be normal in 〈Gλ, Gµ〉.

It remains to show that V := Zλ so suppose that Zλ = Ω(Z(S)) and V =

Vλ/CVλ(Op(Lλ)). Moreover, Z(Lµ) = {1} by Lemma 5.2.7 (iv), Op(L) = Cλ,

b > 1 is odd and Vλ is abelian. Let RL be the preimage in L of Op′(L/Op(L)) and

suppose that RL is not a p-group. Then Vλ = [Vλ, RL]×CVλ(RL) is an S-invariant

decomposition, and since Zλ = Ω(Z(S)) ≤ CVλ(RL), Vλ is centralized by RL. Since

Vλ is an FF-module for L/Op(L), unless q = 2n > 2, using coprime action and

Lemma 2.2.6 (v) we infer that CVλ(RL) = CVλ(Op(L)) so that Zµ is centralized by

L and normalized by 〈L,Gµ〉, a contradiction.

Thus, we may reduce to the case where p = 2, RL = O2(L) and L/O2(L) ∼= SL2(2n)

for n > 1. Since S ≤ NGµ(O2(L)), [Gµ : NGµ(O2(L))] is odd and applying [Ste86,

Theorem 3], Vµ E G = 〈L,Gµ〉, a contradiction. Therefore, Zλ 6= Ω(Z(S)) and
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V = Zλ.

Lemma 5.2.23. Suppose that Qλ∩Qµ E Lλ. Then b > 1 and, writing L := 〈QLλ
µ 〉,

L/Op(L) ∼= Lλ/Qλ
∼= SL2(q), b = 2 and Op(L) contains a unique non-central chief

factor for L. Moreover, there is λ′ ∈ ∆(µ) such that both (λ, λ′) and (λ′, λ) are

critical pairs.

Proof. Suppose that b = 1. Then Ω(Z(S)) ≤ Qλ∩Qµ = Op(L) E Gλ and it follows

from the definition of Zλ that Zλ ≤ Op(L) ≤ Qµ. Thus, we may as well assume

that Zµ 6≤ Qλ. But then Zµ centralizes Op(L) and so Op(L) centralizes Op(L), a

contradiction since L is of characteristic p. Thus, we conclude that b > 1.

Suppose that (λ, δ) is not a critical pair for any δ ∈ Γ . Then there is some µ′

such that (µ, µ′) is a critical pair and d(λ, µ′) = b− 1. Then Zµ 6= Ω(Z(S)) 6= Zλ,

CGµ′ (Zµ′) is p-closed and Zµ′ ≤ Qµ+2∩Qλ = Qλ∩Qµ. But then, [Zµ, Zµ′ ] = {1}, a

contradiction for then Zµ ≤ Qµ′ . Thus, we may assume λ belongs to a critical pair

(λ, λ′) with d(µ, λ′) = d(λ, λ′) − 1. Suppose that b is odd. Then Zλ ≤ Qλ′−1 and

λ′ − 1 ∈ λG. But then Zλ ≤ Qλ′−1 ∩ Qλ′−2 = Qλ′−1 ∩ Qλ′ ≤ Qλ′ , a contradiction.

Thus, b is even. Moreover, since CS(Zλ)Qλ ∈ Sylp(G
(1)
λ ) and [Zλ, Zλ′ ] 6= {1},

(λ′, λ) is also a critical pair. Suppose that b > 4. Then V (2)
λ ≤ Op(L) and V (2)

λ /Zλ

contains a non-central chief factor. Thus, if Op(L) contains a unique non-central

chief factor for L then b = 2.

Suppose that Op(L) contains more than one non-central chief factor within Op(L)

and assume that p is odd. If b = 2, then O2(L) = Qλ ∩Qµ = Zλ(Qλ ∩Qµ ∩Qλ′), a

contradiction since Op(L) contains more than one non-central chief factor. Thus,

we may assume that b > 4 and b is even. Set Tλ to be a Hall p′-subgroup of

the preimage in Lλ of Z(Lλ/Rλ). Note also that since p is odd, we may apply
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coprime action along with Lemma 2.2.6 (v) so that Zλ = [Zλ, Tλ] × CZλ(Tλ) =

[Zλ, Lλ]× Z(Lλ).

Choose λ − 1 ∈ ∆(λ) such that Ω(Z(Lλ−1)) 6= Ω(Z(Lµ)) and set U =

〈Vγ|Ω(Z(Lλ−1)) = Ω(Z(Lγ)), γ ∈ ∆(λ)〉. Let r ∈ RλQλ−1 ≤ CLλ(Ω(Z(Lλ−1))).

Since r is an automorphism of the graph, it follows that for Vγ ≤ U , V r
γ = Vγ·r.

But Ω(Z(Lγ·r)) = Ω(Z(Lγ))r = Ω(Z(Lλ−1))r = Ω(Z(Lλ−1)) and so V r
γ ≤ U

and U E RλQλ−1. Note that if U ≤ Qλ′−2 then U ≤ Qλ′−2 ∩ Qλ′−3 =

Qλ′−2 ∩ Qλ′−1 ≤ Qλ′−1 and so, U = Zλ(U ∩ Qλ′). Thus, Zλ′ centralizes U/Zλ

and since Lλ = 〈Rλ, Zλ′ , Qλ−1〉, it follows that Op(Lλ) centralizes U/Zλ and so

normalizes Vλ−1, a contradiction.

Therefore, U 6≤ Qλ′−2 so that there is some λ−2 ∈ ∆(2)(λ) such that (λ−2, λ′−2)

is also a critical pair. Since Zλ = [Zλ, Lλ] × Ω(Z(Lλ)), it suffices to prove that

[Zλ, Zλ′ ] = Ω(Z(Lµ)) = Ω(Z(Lλ′−1)) and that this holds for any critical pair,

since then, as there λ − 2 ∈ ∆(λ − 1) with (λ − 2, λ′ − 2) a critical pair, Zλ =

Ω(ZLλ′−1)× Zλ′−3 × Ω(Z(Lλ)) which is contained in Qλ′ since b > 2.

Suppose that Zµ = Ω(Z(S)) = Ω(Z(Lµ)). In particular, Z(Lλ) = {1} and Zλ

is irreducible. Since Zλ is a natural SL2(q)-module, Zλ′−1 = [Zλ, Zλ′ ] = Zµ, as

required.

Assume now that Zµ 6= Ω(Z(S)). Then Zλ = [Zλ, Tλ]×CZλ(Tλ), [Zλ, Tλ] = [Zλ, Lλ]

and CZλ(Tλ) = Ω(Z(Lλ)). Moreover, [Zλ, Zλ′ ] = C[Zλ,Lλ](S) = Ω(Z(S)) ∩ [Zλ, Lλ].

Since Ω(Z(S)) = Ω(Z(Lλ))×Ω(Z(Lµ)) and Tλ normalizes Ω(Z(Lµ)), we have that

Ω(Z(Lµ)) > [Ω(Z(Lµ)), Tλ] = [Ω(Z(S)), Tλ] = Ω(Z(S)) ∩ [Zλ, Lλ]. Comparing

orders, we conclude that Ω(Z(Lµ)) = [Ω(Z(S)), Tλ] = [Zλ, Zλ′ ]. By symmetry, we

have that Z(Lλ′−1) = [Zλ, Zλ′ ], as required.
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Suppose now that p = 2 and O2(L) contains more than one non-central chief factor

within O2(L). Choose 1 < m < b/2 minimal such that V (2m)
λ ≤ Qλ′−2m. Notice

by the minimal choice of m that V (2(m−k))
λ Qλ′−2(m−k) ∈ Sylp(Lλ′−2(m−k)) for all

k 6 m.Then V
(2m)
λ ≤ Qλ′−2m ∩ Qλ′−2m−1 ≤ Qλ′−2m+1 and, extending further,

V
(2m)
λ = V

(2m−2)
λ (V (2m)

λ ∩ Qλ′). But then, Op(Lλ) centralizes V
(2m)
λ /V

(2m−2)
λ ,

a contradiction. Thus, no such m exists. Even still an index q subgroup of

V
(2k)
λ /V

(2k−2)
λ is centralized by Zλ′ for all k < b/2 and it follows that for all

1 < m < b/2, V (2m)
λ /V

(2m−2)
λ contains a unique non-central chief factor and this

factor is an FF-module for Lλ/Qλ. Note that for R1, R2 the centralizers in L/O2(L)

of distinct non-central chief factors in V
(2m)
λ for 1 < m < b/2, we deduce that

R1R2/Ri is an odd order normal subgroup of Li/Ri
∼= SL2(q) for i ∈ {1, 2}. Thus,

unless q = 2, we have that L/O2(L)CL(V (2m)
λ ) ∼= SL2(q) and an application of the

three subgroup lemma ensures that L/O2(L) ∼= SL2(q).

Since no non-trivial characteristic subgroup of Qβ is normal in L, we may apply

pushing up arguments from [Nil79, Theorem B] when L/O2(L) ∼= SL2(q). Thus,

Qµ has class 2 and there is a unique non-central chief factor for L within O2(L).

It is clear that Zλ/Z(Lλ) is the unique non-central chief factor for L inside O2(L)

and is isomorphic to the natural module for L/O2(L) ∼= SL2(q). Thus, q = p = 2

and since no non-trivial characteristic subgroup of Qβ is normal in L, we may

apply [Gla71, Theorem 4.3] to see that Qµ has nilpotency class 2 and exponent 4.

Notice that if b > 4, then V (2)
λ is contained in Qµ and [V (2)

λ , Qµ] ≤ Ω(Z(Qµ)). But

〈(Ω(Z(Qµ))L)〉 is an FF-module for L/O2(L) by Proposition 2.3.9, and contains

[Zλ, Lλ] as its unique non-central chief factor. Thus, it follows that [V (2)
λ , L] ≤ Zλ

and Vµ E 〈L,Gµ〉, a contradiction. Hence, we conclude that b = 2 so that O2(L)

contains a unique non-central chief factor, as required.

Lemma 5.2.24. Suppose that Qλ ∩Qµ E Lλ. Then Zµ 6= Ω(Z(S)).
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Proof. We suppose throughout that there is a unique non-central chief factor for

Lλ contained in Qµ∩Qλ and, as a consequence, that L/Op(L) ∼= Lλ/Qλ
∼= SL2(q).

Additionally, assume that Zµ = Ω(Z(S)) = Ω(Z(Lµ)). Then Z(Lλ) = {1} by

Lemma 5.2.7 (iv). Hence, Zλ is the unique non-central chief factor within Qλ∩Qµ.

In particular, Zλ is isomorphic to a natural SL2(q)-module and [Op(Lλ), Qλ] = Zλ.

If Φ(Qλ) 6= {1}, then the irreducibility of Zλ implies that Zλ ≤ 〈(Φ(Qλ) ∩

Ω(Z(S)))Lλ〉 ≤ Φ(Qλ). But thenOp(L) acts trivially onQλ/Φ(Qλ), a contradiction

by coprime action. Thus, Φ(Qλ) = {1} and Qλ is elementary abelian. If p

is odd or q = 2, then for Tλ the preimage in Lλ of Op′(Lλ), we have that

Qλ = [Qλ, Tλ] × CQλ(Tλ) = Zλ × CQλ(Tλ) is an S-invariant decomposition and

since Ω(Z(S)) ≤ Zλ, we have that CQλ(Tλ) = {1} and Qλ = Zλ. But then

Zµ = Zλ ∩Qµ = Qλ ∩Qµ E Lλ, a contradiction.

If q > 2 is even, then since S ≤ NGµ(O2(L)), we have that [G : NGµ(O2(L))] is

odd, applying [Ste86, Theorem 3], Vµ E G = 〈L,Gµ〉, a contradiction.

Proposition 5.2.25. Let S ∈ Sylp(Gλ ∩ Gµ) for λ ∈ Γ and µ ∈ ∆(λ). Then

Qλ ∩Qµ is not normal in Lλ. Moreover, if ZλZµ E Lλ then Zµ = Ω(Z(S)) ≤ Zλ.

Proof. Suppose that ZλZµ E Lλ but Zµ 6= Ω(Z(S)). By Lemma 5.2.10 (ii), we

have that CS(Zµ) = Qµ and so CQλ(ZλZµ) = Qλ ∩ CS(Zµ) = Qλ ∩ Qµ and it

follows that Qλ ∩Qµ E Lλ. Thus, we may suppose that Qλ ∩Qµ E Lλ, and derive

a contradiction to complete the proof.

Under this assumption, Zλ contains the unique non-central chief factor for L inside

Qµ ∩ Qλ and Zµ 6= Ω(Z(S)). Moreover, b = 2 and there is λ′ ∈ ∆(µ) such that

Zλ 6≤ Qλ′ and Zλ′ 6≤ Qλ. Since Lλ/Qλ
∼= SL2(qλ) and Zλ/Z(Lλ) is a natural

module, we get that Qµ = (Qλ′ ∩ Qµ ∩ Qλ)ZλZλ′ and Qλ ∩ Qµ = (Qλ′ ∩ Qµ ∩

171



Qλ)Zλ. Then (Qλ ∩ Qµ)/Φ(Qλ′ ∩ Qµ ∩ Qλ) is elementary abelian and it follows

that Φ(Qλ ∩Qµ) = Φ(Qλ′ ∩Qµ) = Φ(Qλ′ ∩Qµ ∩Qλ). Set F := Φ(Qλ ∩Qµ). Since

Qλ contains a unique non-central chief factor for Lλ, we infer that F is centralized

by Op(L) and as Qµ has class 2, F ≤ Z(L). Let Z∗µ be the preimage in Qµ of

Z(Qµ/F ). Since F is normal in both Gλ and Gλ′ , we have that Z∗µ E 〈Gλ,µ, Gµ,λ′〉.

Moreover, since Qµ = (Qλ′∩Qµ∩Qλ)ZλZλ′ , we have that Qµ∩Qλ∩Qλ′ ≤ Z∗µ. Since

[Z∗µ, Zλ] ≤ F ≤ Z(L), we have that Z∗µ ≤ Qλ and by symmetry, Z∗µ = Qµ∩Qλ∩Qλ′ .

Suppose that p is odd and let Hλ,µ be a Hall p′-subgroup of Gλ,µ ∩ Lλ. By

Lemma 2.2.1 (vi), Hλ,µ is cyclic of order qλ − 1. Furthermore, Hλ,µ normalizes

Qµ, F and Z∗µ and acts non-trivially on Qµ/Z
∗
µ. Now, for tλ the unique involution

in Hλ,µ, tλ centralizes Qµ/Qλ ∩ Qµ and inverts Qλ ∩ Qµ/Z
∗
µ = ZλZ

∗
µ/Z

∗
µ. By

coprime action, Qµ/Z
∗
µ = ZλZ

∗
µ/Z

∗
µ × CQµ/Z∗µ(tλ) is a Qµ-invariant decomposition.

Since [S, tλ] ≤ Qλ ∩ Qµ the previous decomposition is S-invariant. But then

[Qλ, CQµ/Z∗µ(tλ)] ≤ (Qµ ∩ Qλ)/Z∗µ = ZλZ
∗
µ/Z

∗
µ and we deduce that Qλ centralizes

Qµ/Z
∗
µ. Hence, Qλ normalizes Qλ′ ∩Qµ. Let M = 〈Qλ, Qλ′ , Qµ〉 ≤ Gµ. Then there

is an m ∈ M such that (QλQµ)m = Qλ′Qµ and since Qλ′Qµ is the unique Sylow

p-subgroup of Gµ,λ′ , it follows that λ ·m = λ′. But then (Qλ ∩ Qµ)m = Qλ′ ∩ Qµ

and as M normalizes Qλ′ ∩ Qµ, we have that Qµ ∩ Qλ = Qλ ∩ Qµ, absurd since

Zλ ≤ Qλ ∩Qµ.

Suppose that p = 2. Since (Qλ∩Qµ)/F and (Qµ∩Qλ′)/F are elementary abelian,

by [PR12, Lemma 2.29], every involution in Qµ/F is contained in (Qλ ∩ Qµ)/F

or (Qµ ∩ Qλ′)/F . Indeed, for A any other elementary abelian subgroup of Qµ/F

and B the preimage of A in Qµ, we must have that B = (B ∩Qλ) ∪ (B ∩Qλ′). If

B 6≤ Qλ, then F ∩ Zλ = CZλ(B) = Zλ ∩ B and it follows that B ∩ Qλ = F . By

symmetry, we have shown that A(Qµ/F ) = {(Qλ ∩Qµ)/F, (Qµ ∩Qλ′)/F}.
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Set M = 〈Qλ, Qλ′ , Qµ〉 ≤ Gµ so that M normalizes Qµ, Z∗µ and F . Thus, all

elements of M which do not normalize Qµ ∩ Qλ, conjugate Qµ ∩ Qλ to Qµ ∩ Qλ,

and vice versa. Thus all odd order elements normalize Qµ∩Qλ. There is an m ∈M

such that (QλQµ)m = Qλ′Qµ and since Qλ′Qµ is the unique Sylow 2-subgroup of

Gµ,λ′ , it follows that λ · m = λ′. Since M = Op(M)QλQ)µ, we may as well

choose m of order coprime to p. But then (Qλ ∩ Qµ)m = Qλ′ ∩ Qµ and as m

normalizes Qλ′ ∩ Qµ, we conclude that Qµ ∩ Qλ = Qλ ∩ Qµ, a final contradiction

since Zλ ≤ Qλ ∩Qµ.

We can now prove a result analogous to Lemma 5.2.14, instead working “down”

through chief factors. Again, we will apply this lemma often and without reference

throughout this chapter.

Lemma 5.2.26. Let λ ∈ Γ and µ ∈ ∆(λ), b > 1 and n > 2. If V (n)
λ ≤ Qλ, then

CQλ(V (n−2)
λ )/CQλ(V (n)

λ ) contains a non-central chief factor for Lλ.

Proof. Observe that as V
(n)
λ ≤ Qλ, we have that Z(Qλ) ≤ CQλ(V (n)

λ ) ≤

CQλ(V (n−1)
µ ) ≤ CQλ(V (n−2)

λ ). In particular, CQλ(V (n−1)
µ ) is non-trivial. If

CQλ(V (n−2)
λ )/CQλ(V (n)

λ ) contains only central chief factors for Lλ, Op(Lλ)

centralizes CQλ(V (n−2)
λ )/CQλ(V (n)

λ ) and normalizes CQλ(V (n−1)
µ ). Thus,

CQλ(V (n−1)
µ ) E Op(Lλ)Gλ,µ) = Gλ. In order to force a contradiction, we need

only show that CQλ(V (n−1)
µ ) = CQµ(V (n−1)

µ ).

Let S ∈ Sylp(Gλ,µ). Since n > 2, Zλ ≤ V
(n−2)
λ is centralized by CS(V (n−1)

µ )

and unless n = 2 and V
(n−2)
λ = Zλ = Ω(Z(S)), applying Lemma 5.2.10 (ii)

and Lemma 5.2.16, we have that CS(V (n−1)
µ ) ≤ Qλ ∩ Qµ and CQλ(V (n−1)

µ ) =

CQµ(V (n−1)
µ ), as desired. If V (n−2)

λ = Ω(Z(S)), then V (n−1)
µ = Zµ and CS(Zµ) = Qµ.

But then, CQλ(Zµ) = Qλ ∩Qµ E Gλ, a contradiction by Proposition 5.2.25.
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We will also makes use of the qrc-lemma, although where it is applied there are

certainly more elementary arguments which would suffice. In this way, we do not

use the lemma in its full capacity and instead, it serves as a way to reduce the

length of some of our arguments. This lemma first appeared in [Ste92] but only

for the prime 2. We use the extension to all primes presented in [Str06, Theorem

3].

Theorem 5.2.27 (qrc Lemma). Let (H,M) be an amalgam such that both H,M

are of characteristic p and contain a common Sylow p-subgroup. Set QX := Op(X)

for X ∈ {H,M}, Z = 〈Ω(Z(S))H〉 and V := 〈ZM〉. Suppose that M is p-minimal

and QH = CS(Z). Then one of the following occurs:

(i) Z 6≤ QM ;

(ii) Z is an FF-module for H/CH(Z);

(iii) the dual of Z is an FF-module for H/CH(Z);

(iv) Z is a 2F-module with quadratic offender and V contains more than one

non-central chief factor for M ; or

(v) M has exactly one non-central chief factor in V , QH ∩ QM E M ,

[V,Op(M)] ≤ Z(QM) and contains some non-trivial p-reduced module.

Notice that case (v) of the qrc-lemma is ruled out in our analysis by

Proposition 5.2.25 and in cases (ii) and (iii), Lemma 2.3.10 implies that

H/CH(Z) ∼= SL2(q), for q some power of p.

We will require some results on FF-modules for weak BN-pairs and other pushing

up configurations in subamalgams.
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Theorem 5.2.28. Suppose that G satisfies Hypothesis 5.2.1 where Lα and Lβ are

p-solvable and let S ∈ Sylp(Lα) ∩ Sylp(Lβ). Assume that G = 〈SG〉 and V is an

FF-module for G such that CS(V ) = {1}. Then G has a weak BN-pair of rank 2

and is locally isomorphic to one of SL3(p), Sp4(p), or G2(2). Moreover, if G is

locally isomorphic to G2(2), then G/CG(V ) ∼= G2(2).

Proof. If G has a weak BN-pair of rank 2 then this follows from [CD91, Theorem A,

Theorem B, Corollary 1]. If G does not have a weak BN-pair of rank 2, comparing

with Theorem 5.2.2, we see that p = b = 2, Lα/Qα
∼= Sym(3) and Lβ/Qβ

∼= (3×3) :

2. Moreover, there is Pβ ≤ Lβ such that Pβ contains S, Pβ/Qβ
∼= Sym(3) and Qβ

contains two non-central chief factors for Pβ. Indeed, no non-trivial subgroup of S

is normalized by both Lα and Pβ and by [Fan86], (Lα, Pβ, S) is locally isomorphic

to M12. Setting X := 〈Lα, Pβ〉 and applying [CD91], V is an FF-module for X

upon restriction and applying [CD91, Lemma 3.12], we have a contradiction.

Lemma 5.2.29. Suppose that G is a minimal counterexample to Theorem 5.2.2,

{λ, δ} = {α, β} and the following conditions hold:

(i) Z(Qα) = Zα is of order q2 and Z(Qβ) = Zβ = Ω(Z(S)) is of order q;

(ii) Lα/Rα
∼= SL2(q) ∼= Lβ/Rβ, and Zα and Vβ/CVβ(Op(Lβ)) are natural

SL2(q)-modules; and

(iii) there is a non-central chief factor U/W for Gλ such that, as an Lλ-module,

U/W is an FF-module, CLλ(U/W ) 6= Rλ, and CLλ(U/W ) ∩ Rλ normalizes

Qα ∩Qβ.

Then q ∈ {2, 3} and one of the following holds:
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(a) there is Hλ ≤ Gλ containing Gα,β such that (Hλ, Gδ, Gα,β) is a weak BN-pair

of rank 2, b 6 5 and if b > 3, then (Hλ, Gδ, Gα,β) is parabolic isomorphic to

F3 and V (2)
α /Zα is not acted on quadratically by S;

(b) p = 3, λ = α, neither CLα(U/W ) nor Rα normalizes Qα∩Qβ and there does

not exist Pα ≤ Lα such that S(CLα(U/W )∩Rα) ≤ Pα, Pα is Gα,β-invariant,

Pα/CLα(U/W ) ∩Rα
∼= SL2(p), Lα = PαRα = PαCLα(U/W ) and Qα ∩Qβ 6E

Pα;

(c) λ = β and neither Rβ nor CLβ(U/W ) normalizes V (2)
α ; or

(d) there is Hλ ≤ Gλ containing Gα,β such that for X := 〈Hλ, Gδ〉 and V :=

〈ZX
β 〉, we have that Vβ ≤ V ≤ S, CS(V ) E X and for X̃ := X/CX(V ),

X̃ is locally isomorphic to SL3(p), Sp4(p) or G2(2); or p = 3 and there is

an involution x in Gα,β such that X̃/〈̃x〉 is locally isomorphic to PSp4(3).

Moreover, if Q̃µ contains more than one non-central chief factor for L̃µ where

µ ∈ {α, β}, then Q̃µ contains two non-central chief factors and Q̃ν contains a

unique non-central chief factor for L̃ν where µ 6= ν ∈ {α, β}, and X̃ ∼= G2(2).

Proof. It follows from (ii), (iii) and Lemma 2.3.10 that Lλ/CLλ(U/W ) ∼= Lλ/Rλ
∼=

SL2(q) and Sylp(CLλ(U/W )) = Sylp(Rλ) = {Qλ}. Thus, CLλ(U/W )Rλ/Qλ

is a non-trivial normal p′-subgroup of Lλ/Qλ. Assume that that q > 4 and

CLλ(U/W ) 6= Rλ. Then CLλ(U/W )Rλ/CLλ(U/W ) = Z(Lλ/CLλ(U/W )) and

CLλ(U/W )Rλ/Rλ = Z(Lλ/Rλ). In particular, p is odd and Lλ/CLλ(U/W ) ∩ Rλ

is isomorphic to a central extension of PSL2(q) by an elementary abelian group of

order 4. Since Op′(Lλ) = Lλ and the p′-part of the Schur multiplier of PSL2(q) is of

order 2 by Lemma 2.2.1 (vii), we have a contradiction. Thus, we may assume that

q ∈ {2, 3} throughout so that Gα and Gβ are p-solvable. By Lemma 2.3.14 (ii) and
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Lemma 2.3.15 (ii), Lλ/(CLλ(U/W ) ∩Rλ) ∼= (3× 3) : 2 if p = 2, or (Q8 ×Q8) : 3 if

p = 3.

Suppose that p = 2. By Lemma 2.3.14 (iii), there are P1, . . . , P4 ≤ Lλ such that

S(CLλ(U/W )∩Rλ) ≤ Pi and Pi/(CLλ(U/W )∩Rλ) ∼= Sym(3). Indeed, CLλ(U/W )S

and RλS are non-equal and satisfy this condition. Moreover, Pi is Gα,β-invariant

for all i. Since any two Pi generate Lλ, we may choose Pλ = Pj 6= RλS such

that Qα ∩ Qβ 6E Pλ and O2(Pλ) does not centralize U/W . Set Hλ := PλGα,β,

X := 〈Hλ, Gδ〉 and V := 〈ZX
β 〉. By (i) and (ii), we have that Vβ ≤ V .

Suppose that p = 3. By Lemma 2.3.15 (iii), there is P1, . . . , P5 ≤ Lλ such that

S(CLλ(U/W )∩Rλ) ≤ Pi and Pi/(CLλ(U/W )∩Rλ) ∼= SL2(3). Again, CLλ(U/W )S

and RλS are non-equal and satisfy this condition, and for any i 6= j, Lλ = 〈Pi, Pj〉.

Since CLλ(U/W )S and RλS are Gα,β-invariant there is at least one other Pi which

is Gα,β-invariant. Notice that RβS normalizes Qα∩Qβ and as any two Pi generate,

by Proposition 5.2.25 if λ = β there is a choice of Pλ = Pi such that Qα∩Qβ 6E Pλ,

Pλ is Gα,β-invariant and O3(Pλ) does not centralize U/W or Vβ. If λ = α, then

unless outcome (c) holds, we may choose Pλ = Pj 6= RλS such that Qα ∩Qβ 6E Pλ

and O3(Pλ) does not centralize U/W . Again, we set Hλ := PλGα,β, X := 〈Hλ, Gδ〉

and V := 〈ZX
β 〉, remarking that Vβ ≤ V .

For p = 2 or 3, Op(Pλ) = Qλ and Pλ/Qλ has a strongly p-embedded subgroup.

Moreover, Pλ is of characteristic p, CS(V ) ≤ Cβ ≤ Qα ∩ Qβ so that CS(V ) =

CQα(V ) = CQβ(V ) E X. If no non-trivial subgroup of Gα,β is normal in X, then X

satisfies Hypothesis 5.2.1 and since both Hλ and Gδ are p-solvable, by minimality,

(Hλ, Gδ, Gα,β) is a weak BN-pair of rank 2; or that p = 2, X is a symplectic

amalgam, |S| = 26 and exactly one of Hλ and Gδ is isomorphic to (3 × 3) : 2. In

the latter case, we get that Qλ and Qδ are non-abelian subgroups of order 25 and
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Gδ and Gλ are isomorphic to subgroups of GL4(2). Moreover, for some γ ∈ {λ, δ},

|Qγ/Φ(Qγ)| = 23 so that Gγ is isomorphic to a subgroup of GL3(2). One can check

that this implies that G = X, a contradiction. If (Hλ, Gδ, Gα,β) is a weak BN-pair

then we may associate a critical distance to it. Since 〈(V (n)
δ )Hλ〉 ≤ 〈(V (n)

δ )Gλ〉,

it follows that the critical distance associated to (Hλ, Gδ, Gα,β) is greater than

or equal to b. Comparing with the results in [DS85], we have that b 6 5 and

b 6 3 unless b = 5, b is equal to the critical distance associated to (Hλ, Gδ, Gα,β)

and (Hλ, Gδ, Gα,β) is parabolic isomorphic to F3. That V (2)
α /Zα is not acted on

quadratically by S is a consequence of the structure of an F3-type amalgam.

Hence, we may assume that some non-trivial subgroup of Gα,β is normal in X. Let

K be the largest subgroup by inclusion satisfying this condition. Since S is the

unique Sylow p-subgroup of Gα,β, K normalizes S so that Op(K) = S ∩K E X.

If Op(K) = {1}, then K is a p′-group which is normal in Gδ, impossible since

F ∗(Gδ) = Qδ is self-centralizing in Gδ. Thus, there is a finite p-group which is

normal in X. Since Op(K) E S, Zβ ≤ Op(K). Then, by definition, V ≤ Op(K).

Indeed, as [Op(K), V ] = [Op(K), 〈ZX
β 〉] = {1}, we conclude that V ≤ Ω(Z(Op(K)))

and Op(K) ≤ CS(V ). By an earlier observation, CS(V ) E X so that CS(V ) =

Op(K).

Set X̃ := X/CX(V ) so that X̃ = 〈H̃λ, G̃δ〉 and H̃λ
∼= Hλ/CHλ(V ) is a finite group.

Additionally, G̃δ
∼= Gδ/CGδ(V ) is a finite group. Since CS(V ) ∈ Sylp(CHλ(V ) ∩

CGδ(V )), CS(V ) ≤ Cβ and Hλ does not normalize Qα ∩Qβ, we deduce that Q̃λ =

Op(H̃λ) and H̃λ/Q̃λ has a strongly p-embedded subgroup. Similarly, Q̃δ = Op(G̃δ)

and G̃δ/Q̃δ has a strongly p-embedded subgroup.

In order to show that the triple (H̃λ, G̃δ, G̃α,β) satisfies Hypothesis 5.2.1, we need to

show that H̃λ and G̃δ are of characteristic p, G̃α,β = H̃λ ∩ G̃δ = N
H̃λ

(S̃) = N
G̃δ

(S̃)
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and no non-trivial subgroup of G̃α,β is normal in both H̃λ and G̃δ. In the following,

we often examine the “preimage in Hλ” of some subgroup of H̃λ, by which we mean

the preimage in Hλ of the isomorphic image in Hλ/CHλ(V ).

Notice that if H̃λ is not of characteristic p then F ∗(H̃λ) 6= Q̃λ. Then, as H̃λ is

p-solvable, H̃λ is not of characteristic p then Op′(H̃λ) 6= {1} so that for Cλ the

preimage in Hλ of Op′(H̃λ), [Cλ, Qλ, V ] = {1}. For r ∈ Cλ of order coprime to p, it

follows from the A×B-lemma that if r centralizes CV (Qλ), then r̃ = 1. Since Qλ

is self-centralizing in S, we have that CV (Qλ) ≤ Z(Qλ). Similarly, if G̃δ is not of

characteristic p, defining Cδ analogously, by the A×B-lemma we need only show

Cδ centralizes CV (Qδ) ≤ Z(Qδ).

Suppose that λ = β. Then |Z(Qβ)| = p and so, either H̃β is of characteristic

p; or p = 3, |C̃β| = 2 and Cβ acts non-trivially on Zβ. In the latter case, C̃β ≤

Z(H̃β) so that [Cβ, S] ≤ CHβ(V ). Moreover, by coprime action, we have that

V = [V, Cβ]×CV (Cβ) is an S-invariant decomposition and as C̃β acts non-trivially

on Zβ, it follows that V = [V, Cβ] is inverted by C̃β. By the Frattini argument,

CβS = CHβ(V )S(Gα,β ∩Cβ) and we may as well assume that there is x ∈ Gα,β ∩Cβ

such that 〈̃x〉 = C̃β. But then [x,Qα] ≤ [x, S] ≤ CS(V ) and as x ∈ Gα,β ≤ Gα, G̃α

is not of characteristic p.

Consider Cα, the preimage in Gα of Op′(G̃α). If G̃α is not of characteristic p, then

applying the A×B-lemma, Cα ∩ CGα(Zα) ≤ CGα(V ) and C̃α is isomorphic to a

normal p′-subgroup of GL2(p).

Suppose that |C̃α| = 3 if p = 2, or C̃α ∼= Q8 if p = 3. Noticing that [S,CG(Zα)] ≤

[Lα, CGα(Zα)] ≤ Rα, by the Frattini argument, CGα(Zα)Gα,β = RαGα,β and Gα =

RαGα,βCα. By Proposition 5.2.25, since CαGα,β normalizes Qα ∩Qβ, it remains to
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prove that Rα normalizes Qα ∩Qβ to get a contradiction.

Assume that Rα does not normalize Qα ∩Qβ and let Mα := CGα(Zα)Gα,β. Then,

CGα(Zα) 6≤ Gα,β so that Qα = Op(Mα). Reapplying the A×B-lemma yields

M̃α ∩ Cα = {1} if p = 2 and |M̃α ∩ Cα| 6 2 if p = 3. In the latter case, suppose

that M̃α ∩ Cα is non-trivial and choose x ∈ Mα ∩ Cα with [x, V ] 6= {1}. Indeed,

〈̃x〉 = M̃α ∩ Cα is central in M̃α. It follows that [x, S] ≤ CMα(V ). Now, by the

Frattini argument, (Cα∩Mα)S = CMα(V )S(Gα,β ∩Cα) and we may as well assume

that x ∈ Gα,β so that [x, S] ≤ CS(V ). But then [x,Qβ] ≤ CX(V ) and so H̃β is not

of characteristic 3. Indeed, we can arrange that 〈x〉CHβ(V ) = Cβ.

Now, we may form M∗
α := CGα(Zα)(Lβ ∩ Gα,β) and H∗β := (Hβ ∩ Lβ)(M∗

α ∩ Gα,β)

and arguing as above, we infer that M̃∗
α and H̃∗β are both of characteristic p.

Moreover, by construction and since Rα does not normalize Qα ∩ Qβ, we deduce

that Q̃α = Op(M̃∗
α) and M̃∗

α/Q̃α has a strongly p-embedded subgroup. Similarly,

Q̃β = Op(H̃∗β) and H̃∗β/Q̃β also has a strongly p-embedded subgroup. Set Y :=

〈M∗
α, H

∗
β〉 and write G∗α,β := M∗

α ∩Gα,β

Since S̃ = Q̃αQ̃β, it is easily checked that G̃∗α,β = N
M̃∗α

(S̃) = N
H̃∗
β

(S̃) = M̃∗
α ∩ H̃∗β.

Suppose there exists K∗ ≤ G̃∗α,β such that K∗ E 〈M̃∗
α, H̃

∗
β〉 = Ỹ . Since M̃∗

α and H̃∗β
are both of characteristic p, we may assume that K∗ is not a p′-group, and since

K∗ ≤ G̃∗α,β, Op(K∗) = K∗ ∩ S̃ 6= {1}. Let Kα denote the preimage of Op(K∗)

in M∗
α and Kβ denote the preimage of Op(K∗) in H∗β. Then, Tα := Qα ∩Kα is a

normal p-subgroup of M∗
α and, likewise, Tβ := Qβ ∩Kβ is a normal p-subgroup of

H∗β. Since T̃αTβ = T̃α = T̃β, a comparison of orders yields TαTβ = Tα = Tβ E Y .

Moreover, Tα > CS(V ) and as Y is normalized by Gα,β, Tα is normalized by Gα,β.

But now, Gα = Gα,βCαM∗
α and as Cα centralizes Qα/CS(V ), Tα E 〈Gα, Hβ〉 = X,

a contradiction since CS(V ) is the largest p-subgroup of Gα,β which is normalized
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by X. Hence, the triple (M̃∗
α, H̃

∗
β, G̃

∗
αβ) satisfies Hypothesis 5.2.1.

Since CS(V ) ≤ Qα ∩ Qβ and CS(V ) is the largest subgroup of S which is normal

in Y , we have that J(S) 6≤ CS(V ) and a elementary calculation yields that

Ω(Z(CS(V ))) is an FF-module for Ỹ . Moreover, by construction, Y = 〈SY 〉 and,

by minimality and since M̃∗
α and H̃∗β are p-solvable, Ỹ is locally isomorphic to one

of SL3(p), Sp4(p) or G2(2). Moreover, V (2)
α ≤ V so that CS(V ) ≤ CQα(V (2)

α ). If

Ỹ is locally isomorphic to SL3(p), then Cβ is the largest normal subgroup of Hβ

contained in Qα ∩ Qβ, it follows that Cβ ≤ CS(V ) ≤ CQα(V (2)
α ), a contradiction

for then Cβ E 〈Gα, Gβ〉.

If Ỹ is locally isomorphic to Sp4(p), then it follows that |C̃β| 6 p. We may

as well assume that CS(V ) = CQα(V (2)
α ) has index p in Cβ, else we obtain a

contradiction as before. Since CS(V ) E X and Gβ = 〈Hβ, Rβ〉 = 〈Hβ, CLβ(U/W )〉,

it follows that neither Rβ nor CLβ(U/W ) normalizes V (2)
α and conclusion (c) holds.

If Ỹ ∼= G2(2), then one can calculate in a similar manner that CS(V ) = CQα(V (2)
α )

and again we retrieve outcome (c).

Therefore, if λ = β and G̃α is not of characteristic p, then p = 3 and |C̃α| = 2.

Then [S̃, C̃α] = {1} and, again applying the Frattini argument, we have that

CαS = CGα(V )S(Gα,β ∩ Cα). Choose x ∈ Gα,β ∩ Cα with [x, V ] 6= {1} so that

〈̃x〉 = C̃α. Indeed, [x, S] ≤ CS(V ) and it follows that H̃β is not of characteristic 3.

Hence, we may have that H̃β is not of characteristic 3 if and only if G̃α is not of

characteristic 3. Moreover, there is x ∈ Gα,β such that 〈̃x〉 = C̃α = C̃β.

If G̃α is not of characteristic p, then set X̂ := X̃/〈̃x〉 so that both Ĥβ and Ĝα are

of characteristic 3. Moreover, L̂α/R̂α
∼= PSL2(3) and Ôp′(Hβ)/ ̂(Rβ ∩Op′(Hβ)) ∼=

SL2(3). As in the construction of Ỹ above, it is easily checked that Ĝα,β =
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N
Ĝα

(Ŝ) = N
Ĥβ

(Ŝ) = Ĝα ∩ Ĥβ and no non-trivial subgroup of Ĝα,β is normal

in X̂. Thus, by minimality, the triple (Ĝα, Ĥβ, Ĝα,β) is a weak BN-pair. Indeed,

L̂α = O3′(Ĝα) and L̂α ∼= PSL2(3) or SL2(3). If L̂α ∼= SL2(3), then a Sylow

2-subgroup of L̂α is of order 16, and arguing as in Lemma 5.2.17, we force a

contradiction. Thus, L̂α ∼= PSL2(3) and X̂ is locally isomorphic to PSp4(3).

Then, using that Cβ is the largest normal subgroup of Hβ which is contained

in Qα ∩ Qβ and CQα(V (2)
α ) is the largest subgroup of Cβ normal in Gα, it follows

that CS(V ) = CQα(V (2)
α ) E X. Since Gβ = 〈Hβ, Rβ〉 = 〈Hβ, CLβ(U/W )〉, it follows

that neither Rβ nor CLβ(U/W ) normalizes V (2)
α and conclusion (c) holds. Thus,

we may as well assume that whenever λ = β, X̃ satisfies Hypothesis 5.2.1 and acts

faithfully on V .

Suppose now that λ = α so that Hα/CHα(Zα) is isomorphic to a subgroup of

GL2(p). If H̃α is not of characteristic p then, by the A×B-lemma, Cα 6≤ CHα(Zα)

and so CαCHα(Zα)/CHα(Zα) is isomorphic to a normal p′-subgroup of GL2(p). If

p = 2 or |CαCHα(Zα)/CHα(Zα)| > 2 and p = 3, using the Frattini argument it

follows that Hα = CPα(Zα)CαGα,β = (Rα ∩ CLα(U/W ))CαGα,β which normalizes

Qα ∩ Qβ, a contradiction. Thus, p = 3 and |C̃α| = 2 so that [Cα, S] ≤ CX(V ).

Additionally, by coprime action, V = [V, Cα]×CV (Cα) and as C̃α does not centralize

Zβ we deduce that V = [V, Cα] is inverted by C̃α. Then, by the Frattini argument,

SCα = SCHα(V )(Gα,β ∩ Cα) and we may choose x ∈ Gα,β ∩ Cα with [x, V ] 6= {1}

so that 〈̃x〉 = C̃α and [x, S] ≤ CS(V ). It follows that G̃β is not of characteristic 3.

If G̃β is not of characteristic p then, by the A×B-lemma, Cβ does not centralize Zβ.

In particular, p = 3 and |C̃β| = 2. Then applying coprime action, C̃β inverts V and

we see that there is x ∈ Gα,β with 〈̃x〉 = C̃α = C̃β. Hence, H̃α is of characteristic p

if and only if G̃β is of characteristic p.
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If G̃β is not of characteristic p, then set X̂ := X̃/〈̃x〉 so that Ĥα and Ĝβ are both of

characteristic 3, Ôp′(Hα)/ ̂Op′(Hα ∩Rα
∼= PSL2(3) and L̂β/R̂β

∼= SL2(3). As in the

above, it quickly follows that X̂ satisfies Hypothesis 5.2.1 and by minimality, the

triple (Ĥα, Ĝβ, Ĝα,β) is a weak BN-pair of rank 2. Indeed, Ôp′(Hα) ∼= PSL2(3) and

X̂ is locally isomorphic to PSp4(3), and the outstanding case in (d) is satisfied.

We may as well assume that whenever λ = α, X̃ has satisfies Hypothesis 5.2.1 and

acts faithfully on V .

Finally, for either λ = α or λ = β, X̃ satisfies Hypothesis 5.2.1 and acts faithfully

on V . Moreover, since J(S) 6≤ CS(V ) an elementary argument (as in the proof

of Proposition 2.3.9) implies that V is an FF-module for X̃. By minimality, X̃

satisfies Hypothesis 5.2.1 and since both H̃λ and G̃δ are p-solvable, X̃ is determined

by Theorem 5.2.28. Counting the number of non-central chief factors in amalgams

locally isomorphic to SL3(p), Sp4(p) or G2(2) (as can be gleaned from [DS85]),

outcome (d) is satisfied.

The hypothesis of Lemma 5.2.29 exhibit a common situation we encounter in

the work ahead: where Zβ = Z(Qβ) is of order p, and both Z(Qα) = Zα and

Vβ/CVβ(Op(Lβ)) are natural SL2(p)-modules for Lα/Rα
∼= SL2(p) ∼= Lβ/Rβ. Upon

first glance, it seems that we have very little control over the action of Rλ for

λ ∈ {α, β}. Throughout this chapter we strive to force situations in which the

full hypotheses of Lemma 5.2.29 are satisfied. In applying Lemma 5.2.29, the

outcomes there will often force contradictions and the conclusion we draw is that

Op(Rλ) centralizes U/W , as described in Lemma 5.2.29 (iii). In this situation,

Lemma 5.2.18 becomes a powerful tool in dispelling a large number of cases.

Motivated by this, we make the following hypothesis and record a large number

of lemmas controlling the actions of Rλ for λ ∈ Γ .
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Hypothesis 5.2.30. The following conditions hold:

(i) Z(Qα) = Zα is of order p2 and Z(Qβ) = Zβ = Ω(Z(S)) is of order p; and

(ii) Lα/Rα
∼= SL2(p) ∼= Lβ/Rβ, and Zα and Vβ/CVβ(Op(Lβ)) are natural

SL2(p)-modules.

As a first consequence of this hypothesis, we make the following observation,

gaining control over the order of Vβ and the number of non-central chief factors in

V (2)
α .

Lemma 5.2.31. Suppose that b > 2 and Hypothesis 5.2.30 is satisfied. Then, for

λ ∈ αG and δ ∈ ∆(λ), exactly one of the following occurs:

(i) |Vδ| = p3 and [V (2)
λ , Qλ] = Zλ; or

(ii) CVδ(Op(Lδ)) 6= Zδ, |Vδ| = p4 and for V λ := 〈CVδ(Op(Lδ))Gλ〉, both V
(2)
λ /V λ

and V λ/Zλ contain a non-central chief factor for Lλ, [V λ, Qλ] = Zλ,

[V (2)
λ , Qλ] = V λ and V λVδ 6E Lδ. Moreover, whenever Zδ+1CVδ(Op(Lδ)) =

Zδ−1CVδ(Op(Lδ)) for δ ∈ ΓG, we have that Zδ+1 = Zδ−1.

Proof. Suppose first that |Vδ| = p3. Then [Qλ, V
(2)
λ ] = [Qλ, Vδ]Gλ = Zλ and

the result holds. So assume now that CVδ(Op(Lδ)) 6= Zδ. In particular, since

Zδ = Z(Qδ), Qδ does not centralize CVδ(Op(Lδ)). By coprime action, Vδ/Zδ =

[Vδ/Zδ, Op(Lδ)]×CVδ/Zδ(Op(Lδ)). Set V δ to be the preimage in Vδ of [Vδ/Zδ, Op(Lδ)]

so that V δ/Zδ is a natural SL2(p)-module and |V δ| = p3. Notice that ZλV δ is

normalized by Lδ and from the definition of Vδ, Vδ = ZλV
δ has order p4 and

|CVδ(Op(Lδ))| = p2. Letting V λ := 〈CVδ(Op(Lδ))Gλ〉, we have that [Qλ, V
λ] ≤ Zλ.
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If Qλ centralizes V λ, then Qλ ∩Qδ = CQδ(CVδ(Op(Lδ))) E Lδ, a contradiction by

Proposition 5.2.25. Thus, [Qλ, V
λ] = Zλ < V λ ≤ V

(2)
λ .

Assume that [V (2)
λ , Qλ] = Zλ. This is the case whenever Vδ ≤ V λ. Then Zδ ≤

[Vδ, Qλ] = [V δ, Qλ] ≤ Zλ and since Op(Lδ) acts non-trivially on V δ/Zδ, it follows

that Zλ ≤ V δ so that Vδ = V δ, a contradiction. Thus, we conclude that Vδ 6≤ V λ,

Vδ ∩ V λ = [Vδ, Qλ]Zλ = CVδ(Op(Lδ))Zλ and [V (2)
λ , Qλ] = V λ.

Suppose that V λ/Zλ does not contain a non-central chief factor for Lλ.

Then Lλ normalizes ZλCVδ(Op(Lδ)) and [Qλ, ZλCVδ(Op(Lδ))] E Lλ. But

[Qλ, ZλCVδ(Op(Lδ))] ≤ Zδ and so Qλ centralizes CVδ(Op(Lδ)). Hence, Qλ ∩ Qδ =

CQδ(CVδ(Op(Lδ))) E Lδ, a contradiction by Proposition 5.2.25. Thus, V λ/Zλ

contains a non-central chief factor for Lλ. Since [V (2)
λ , Qλ] = V λ, it follows

immediately from Lemma 5.2.13 that V (2)
λ /V λ contains a non-central chief factor

for Lλ.

Suppose that ZλCVδ(Op(Lδ)) = ZµCVδ(Op(Lδ)) for some µ ∈ ∆(δ). Since

|ZλCVδ(Op(Lδ))| = p3 and Zλ| = p2, if Zλ 6= Zµ, then ZλCVδ(Op(Lδ)) = ZλZµ.

Suppose that Zλ 6= Zµ, so that ZλZµ = ZλCVδ(Op(Lδ)) = ZµCVδ(Op(Lδ)) is

normalized by QλRδ and QµRδ. If QλRδ 6= QµRδ then ZλCVδ(Op(Lδ)) E Lδ =

〈Qλ, Qµ, Rδ〉, and from the definition of Vδ, Vδ = ZλCVδ(Op(Lδ)) is centralized

by Qλ, a contradiction by Lemma 5.2.16. Thus, QλRδ = QµRδ. Then, there is

r ∈ Rδ such that Qr
λQδ = (QλQδ)r = (QµQδ)r = Qr

µQδ and we may as well pick

r of order coprime to p. Moreover, since Op(Rδ) centralizes Qδ/Cδ, it follows that

Qλ ∈ Sylp(QλO
p(Rδ)). But then Qµ ∈ Sylp(QλO

p(Rδ)). Since r centralizes Qδ/Cδ

we conclude that Qλ ∩ Qδ = Qµ ∩ Qδ = CQδ(CVδ(Op(Lδ))) E Lδ, a contradiction

by Proposition 5.2.25.
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It remains to prove that V λVδ 6E Lδ so suppose for a contradiction that V λVδ E

Lδ. Since Qλ ∩ Qδ 6E Lδ by Proposition 5.2.25, there is µ ∈ ∆(µ) such that

Qδ = (Qλ ∩Qδ)(Qµ ∩Qδ). Moreover, as V λVδ E Lδ, V λVδ = V µV δ. Now,

Zδ ≤ [Qδ, V
λVδ] = [Qλ ∩Qδ, V

λV δ][Qµ ∩Qδ, V
µV δ] ≤ ZλZµ

and [Qδ, V
λVδ] E Lδ. If [Qδ, V

λVδ] = Zδ, then [Qδ, V
λ] ≤ Zλ and V λ/Zλ does

not contain a non-central chief factor, a contradiction. If ZλZµ E Lδ, then Vδ =

ZλZµ is of order p3, another contradiction. Thus, [Qδ, V
λVδ] is of order p2 and

it follows from the structure of Vδ that [Qδ, V
λVδ] = CVδ(Op(Lδ)) ≤ ZµZλ. But

then ZλZµ = ZλCVδ(Op(Lδ)) = ZµCVδ(Op(Lδ)) so that Zλ = Zµ. But then Qδ =

(Qλ ∩Qδ)(Qµ ∩Qδ) centralizes Zλ, a contradiction by Lemma 5.2.10 (iv).

Lemma 5.2.32. Suppose that b > 3 and Hypothesis 5.2.30 is satisfied. If

Zα, V α/Zα and V (2)
α /V α are FF-modules or trivial modules for Lα, then Rα =

CLα(V (2)
α )Qα.

Proof. Of the configurations described in Theorem 5.2.2 which satisfy b > 2,

all satisfy Rα = Qα and so we may assume throughout that G is a minimal

counterexample to Theorem 5.2.2 such that Rα 6= CLα(V (2)
α )Qα.

Suppose first that |Vβ| 6= p3 so that V α/Zα contains a non-central chief factor for

Lα. Since Lα/Rα
∼= SL2(p) and Qα ∈ Sylp(Rα), |S/Qα| = p and by Lemma 2.3.10,

Lα/CLα(V α/Zα) ∼= Lα/CLα(V (2)
α )/V α) ∼= SL2(p). Thus, if CLα(V α/Zα) 6= Rα

a standard calculation yields Lα/CLα(V α)Qα is a central extension of PSL2(p)

by a fours group, or that p ∈ {2, 3}. Since Lα = Op′(Lα) and the 2-part

of the Schur multiplier has order 2 when p > 5, we deduce that p ∈ {2, 3}.

Moreover, if p = 3 and RαCLα(V α/Zα)S < Lα, then |RαCLα(V α/Zα)/Rα| = 2,
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|Lα/CLα(V α)Qα| = 24.3 and Lemma 2.3.15 (ii) gives a contradiction. Hence, if

CLα(V α/Zα) 6= Rα then Lα = RαCLα(V α/Zα)S. But now, CLα(V α/Zα) normalizes

ZαCVβ(Op(Lβ)) and so normalizes [ZαCVβ(Op(Lβ)), Qα] = Zβ, a contradiction for

then Zβ E Lα. Thus, CLα(V α/Zα) = Rα. Similarly, considering CLα(V (2)
α /V α),

we have that VβV
α E CLα(V (2)

α /V α) and so ZαCVβ(Op(Lβ)) = Zα[Vβ, Qα] =

[VβV α, Qα] E CLα(V (2)
α /V α). Then [ZαCVβ(Op(Lβ)), Qα] = Zβ is normalized by

CLα(V (2)
α /V α) and, as above, we conclude that CLα(V (2)

α /V α) = Rα and the result

holds.

Hence, we may assume that |Vβ| = p3 throughout. Since Hypothesis 5.2.30 is

satisfied, V (2)
α /Zα is an FF-module and CLα(V (2)

α /Zα)∩Rα = CLα(V (2)
α ) centralizes

Qα/CQα(V (2)
α ) and so normalizes Qα ∩ Qβ > CQα(V (2)

α , we apply Lemma 5.2.29,

taking λ = α. As b > 3 and V (2)
α /Zα is an FF-module (so admits quadratic action),

so that outcome (a) does not hold. Since λ = α outcome (c) does not hold.

Suppose (d) holds. Then, by construction, 〈V Hα
β 〉 = 〈V Gα

β 〉 = V (2)
α from which it

follows that V (3)
β ≤ V := 〈ZX

β 〉 and the images of both Qβ/Cβ and Cβ/CQβ(V (3)
β )

in L̃β contain a non-central chief factor for L̃β. By Lemma 5.2.29, X̃ ∼= G2(2). It

follows from the structure of G2(2) that |Qα/Cβ| = 22 and |Qα/CQα(V (2)
α )| = 24

and | ˜
CQα(V (2)

α )| = 2. Then, CS(V ) = CQβ(V (3)
β ) E X. By Lemma 2.3.14 (iii),

there are four non-equal subgroups of Lα/CLα(V (2)
α )Qα

∼= (3 × 3) : 2 isomorphic

to Sym(3), and so there is H∗α 6= Hα such that S ∈ H∗α, O2(H∗α) acts non-trivially

on V (2)
α /Zα and Zα and Gα = 〈Hα, H

∗
α〉. If H∗α does not normalize Qα ∩ Qβ,

then setting X∗ for the subgroup of G obtained from employing the method in

Lemma 5.2.29 with H∗α instead of Hα, it follows from the work above that X∗

also satisfies outcome (d) and for V ∗ := 〈ZX∗
β 〉, CS(V ) = CS(V ∗) = CQβ(V (3)

β ) E

〈Hα, H
∗
α〉 = Gα, a contradiction. Hence, H∗α normalizes Qα ∩ Qβ. Choose τ in
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CLα(V (2)
α /Zα) \ CLα(V (2)

α ). Then τ normalizes Vβ so normalizes Cβ = CQα(Vβ),

and Gα = 〈τ,H∗α〉. If τ centralizes Qα/Cβ, then τ normalizes Qα ∩ Qβ so that

Gα normalizes Qα ∩ Qβ, a contradiction by Proposition 5.2.25. Thus, τ acts

non-trivially on Qα/Cβ. Now, [O2(H∗α), τ ] ≤ CGα(V (2)
α ) and as O2(H∗α) normalizes

Qα∩Qβ, O2(H∗α) normalizes (Qα∩Qβ)τ . But thenH∗α normalizes Cβ = Qα∩Qβ∩Qτ
β

and so Gα = 〈τ,H∗α〉 normalizes Cβ, another contradiction.

Thus, we may assume that outcome (b) of Lemma 5.2.29 holds so that p = 3

and neither Rα nor CLα(V (2)
α /Zα) normalizes Qα ∩ Qβ. Indeed, for the subgroup

Hα as constructed in Lemma 5.2.29, we have that Qα ∩ Qβ E Hα. Now,

CLα(V (2)
α /Zα) normalizes Cβ and we may assume that it acts non-trivially on

Qα/Cβ for otherwise Qα ∩ Qβ E Gα = 〈Hα, CLα(V (2)
α /Zα)〉, a contradiction by

Proposition 5.2.25. Furthermore, [O3(O3′(Hα)), CLα(V (2)
α /Zα)] ≤ CLα(V (2)

α )G(1)
α

and as Hα normalizes Qα∩Qβ and O3(CLα(V (2)
α )) centralizes Qα/Cβ, it follows that

for any r ∈ CLα(V (2)
α /Zα) of order coprime to p which does not normalize Qα∩Qβ,

O3(O3′(Hα)) normalizes (Qα∩Qβ)r and Hα normalizes Cβ = Qα∩Qβ ∩Qr
β, a final

contradiction for then Cβ E Gα = 〈Hα, CLα(V (2)
α /Zα)〉.

Lemma 5.2.33. Suppose that b > 5 and Hypothesis 5.2.30 is satisfied. If Op(Rα)

centralizes V (2)
α and V (4)

α /V (2)
α contains a unique non-central chief factor which, as

a GF(p)Lα-module, is an FF-module then Op(Rα) centralizes V (4)
α .

Proof. Since none of the configurations described in Theorem 5.2.2 have b > 5,

we may assume that G is a minimal counterexample such that Op(Rα) does

not centralize V (4)
α /V (2)

α , V (4)
α /V (2)

α contains a unique non-central chief factor

and Op(Rα) centralizes V (2)
α . Since Op(Rα) centralizes V (2)

α , an application of

the three subgroup lemma implies that Op(Rα) centralizes Qα/CQα(V (2)
α ) and

CQα(V (2)
α ) ≤ Qα ∩Qβ, Qα ∩Qβ E Rα.
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We may apply Lemma 5.2.29 with λ = α. Since b > 5, (a) is not satisfied. Indeed,

as λ = α and Rα normalizes Qα ∩Qβ, we suppose that conclusion (d) is satisfied.

For X as constructed in Lemma 5.2.29, we have that V (5)
β ≤ V := 〈ZX

β 〉 and

the images in L̃β of Qβ/Cβ, Cβ/CQβ(V (3)
β ) and CQβ(V (3)

β )/CQβ(V (5)
β ) all contain a

non-central chief factor for L̃β, a contradiction by Lemma 5.2.29.

Lemma 5.2.34. Suppose that b > 3 and Hypothesis 5.2.30 is satisfied. If V (3)
β /Vβ

contains a unique non-central chief factor which, as a GF(p)Lβ-module, is an

FF-module, then Op(Rβ) centralizes V (3)
β .

Proof. Since the only configuration in Theorem 5.2.2 which satisfies b > 3 (where

G is parabolic isomorphic to F3) satisfies [Op(Rβ), V (3)
β ] = {1}, we may assume that

G is a minimal counterexample such that Op(Rβ) does not centralize V (3)
β . Since

Op(Rβ) centralizes Vβ, the three subgroup lemma implies that Op(Rβ) centralizes

Qβ/Cβ so that Rβ normalizes Qα∩Qβ. Thus, the hypotheses of Lemma 5.2.29 are

satisfied with λ = β. Since CLβ(V (3)
β /Vβ) normalizes V (2)

α and λ = β, conclusions

(b) and (c) are not satisfied. As b > 3, if outcome (a) is satisfied then b = 5 and

(Gα, Hβ, Gα,β) is parabolic isomorphic to F3 and Hβ/Qβ
∼= GL2(3). Then S is

determined up to isomorphism. Indeed, as Vβ = 〈ZGβ
α 〉 = 〈ZHβ

α 〉 = Z3(S), Qβ =

CS(Z3(S)/Z(S)) is uniquely determined in S, and so is uniquely determined up to

isomorphism. But then one can check (e.g. employing MAGMA) that Φ(Qβ) = Cβ

has index 9 in Qβ, and as Gβ acts faithfully on Qβ/Φ(Qβ), Gβ = Hβ
∼= GL2(3)

and Gβ = Hβ, a contradiction.

Hence, we are left with conclusion (d). But then V (4)
α ≤ V := 〈ZX

β 〉 and the images

of Qα/CQα(V (2)
α ) and CQα(V (2)

α )/CQα(V (4)
α ) in L̃α both contain a non-central chief

factor for L̃α. Moreover, the images of Qβ/Cβ and Cβ/CQβ(V (3)
β ) also a contain

non-central chief factor for L̃β, and we have a contradiction.
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Lemma 5.2.35. Suppose that b > 5 and Hypothesis 5.2.30 is satisfied. If V (5)
β /V

(3)
β

contains a unique non-central chief factor which, as a Lβ-module, is an FF-module

and Op(Rβ) centralizes V (3)
β , then [Op(Rβ), V (5)

β ] = {1}.

Proof. Since none of the configurations in Theorem 5.2.2 satisfy b > 5, we may

assume the G is a minimal counterexample to Theorem 5.2.2 with [Op(Rβ), V (3)
β ] =

{1} and [Op(Rβ), V (5)
β ] 6= {1}. Since Op(Rβ) centralizes Vβ, Op(Rβ) centralizes

Qβ/Cβ so that Rβ normalizes Qα ∩ Qβ we may apply Lemma 5.2.29 with λ = β.

Since Op(Rβ) normalizes V (2)
α and b > 5, we are in case (d) of Lemma 5.2.29.

Then, V (6)
α ≤ V := 〈ZX

β 〉 and the image of Qα/CQα(V (6)
α ) in L̃α contains at least

three non-central chief factors for L̃α, a contradiction.

5.3 Zα′ 6≤ Qα

Throughout this section, we assume Hypothesis 5.2.1. In addition, within this

section we suppose that Zα′ 6≤ Qα for a chosen critical pair (α, α′). By

Lemma 5.2.10 (iv), this condition is equivalent to [Zα, Zα′ ] 6= {1}. We set

S ∈ Sylp(Gα,β) throughout.

Lemma 5.3.1. (α′, α) is also a critical pair, CZα(Zα′) = Zα∩Qα′ and CZα′ (Zα) =

Zα′ ∩Qα.

Proof. Since Zα′ 6≤ Qα we have that both (α, α′) and (α′, α) are critical pairs. In

particular, all the results we prove in this section hold upon interchanging α and

α′. By Lemma 5.2.11, CZα(Zα′) = Zα ∩Qα′ .

Lemma 5.3.2. For λ ∈ {α, α′}, Zλ/Ω(Z(Lλ)) is natural SL2(q)-module for

Lλ/Rλ
∼= SL2(q). Moreover, S = Zα′Qα ∈ Sylp(Gα,β), ZαQα′ ∈ Sylp(Gα′,α′−1)
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and if q > p, then Rλ = Qλ.

Proof. Without loss of generality, assume that |ZαQα′/Qα′| 6 |Zα′Qα/Qα|. By

Lemma 5.3.1, we have that

|Zα/CZα(Zα′)| = |Zα/Zα ∩Qα′ | = |ZαQα′/Qα′ |

6 |Zα′Qα/Qα| = |Zα′/Zα′ ∩Qα| = |Zα′/CZα′ (Zα)|.

Thus, Zα′ is a non-trivial offender on Zα, and Zα is an FF-module for Lα/CLα(Zα).

Since Lα has a strongly p-embedded subgroup, by Lemma 2.3.10, we conclude that

Lα/Rα
∼= SL2(q) and Zα/Ω(Z(Lα)) is a natural SL2(q)-module.

Since Lα/Rα
∼= SL2(q) and Zα/Ω(Z(Lα)) is a natural SL2(q)-module, we

infer that q = |Zα/CZα(Zα′)| 6 |Zα′/CZα′ (Zα)| = |Zα′Qα/Qα| 6 q. In

particular, by a symmetric argument, Zα′/Ω(Z(Lα′)) is also a natural module

for Lα′/Rα′
∼= SL2(q). It follows immediately that Zα′Qα ∈ Sylp(Gα,β) and

ZαQα′ ∈ Sylp(Gα′,α′−1). By Proposition 3.2.7, whenever q > p and λ ∈ {α, α′},

Rλ ≤ Z(Lλ) and since PSL2(q) is perfect and the p′-part of its Schur multiplier is

order 2 whenever q > 4, using Lλ = Op′(Lλ) gives Lλ ∼= SL2(q) and Rλ = Qλ.

In the following proposition, we divide the analysis of the case [Zα, Zα′ ] 6= {1} into

two subcases. The remainder of this section is split into two subsections dealing

with each of these subcases individually.

Proposition 5.3.3. One of the following holds:

(i) b is even and Zβ = Ω(Z(S)) = Ω(Z(Lβ)); or
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(ii) Zβ 6= Ω(Z(S)) and for λ ∈ {α, β}, Zλ/Ω(Z(Lλ)) is a natural SL2(qλ)-module

for Lλ/Rλ.

Proof. Notice that if Zβ = Ω(Z(S)) then {1} = [Zβ, S]Gβ = [Zβ, 〈SGβ〉] = [Zβ, Lβ]

so that Zβ = Ω(Z(Lβ)). Since Zα′ is not centralized by Zα ≤ Lα′ , it follows

immediately in this case that b is even.

Suppose that Zβ 6= Ω(Z(S)). If b = 1, the result follows immediately from

Lemma 5.3.2 replacing α′ by β and so we may assume that b > 1. Assume

that Vα ≤ Qα′−1. In particular, Vα ≤ ZαQα′ ∈ Sylp(Lα′) by Lemma 5.3.2.

Thus, [Vα, Zα′ ] ≤ [Zα, Zα′ ] ≤ Zα so that [Vα, Op(Lα)] ≤ Zα and ZαZβ E Lα,

a contradiction by Proposition 5.2.25. Thus, there is α − 1 ∈ ∆(α) with

Zα−1 6≤ Qα′−1. Then (α−1, α′−1) is a critical pair and since Zα 6= Ω(Z(S)) 6= Zβ,

by Lemma 5.2.10 (ii), we conclude that [Zα−1, Zα′−1] 6= {1} and Lemma 5.3.2 gives

the result.

5.3.1 Zβ 6= Ω(Z(S))

We first consider the case where [Zα, Zα′ ] 6= {1} and Zβ 6= Ω(Z(S)). Under these

hypotheses, and using the symmetry in α and α′, it is not hard to show that every

γ ∈ Γ belongs to some critical pair . The main work in this subsection is then to

show that Rγ = Qγ and Lγ ∼= SL2(q), for then, all examples we obtain arise from

weak BN-pairs of rank 2 and G is determined by [DS85].

As hinted at in Lemma 5.3.2, there is a clear distinction between the cases where

p ∈ {2, 3} and p > 5 due to solvability of SL2(p) when p ∈ {2, 3}. Throughout this

subsection, and the subsections to come, this dichotomy will become a prominent

theme.
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Lemma 5.3.4. Suppose that Zβ 6= Ω(Z(S)), b > 1 and for λ ∈ {α, β},

Zλ/Ω(Z(Lλ)) is a natural SL2(qλ)-module for Lλ/Rλ. Then the following hold:

(i) Vα 6≤ Qα′−1 and there is a critical pair (α−1, α′−1) with [Zα−1, Zα′−1] 6= {1}

and Vα−1 6≤ Qα′−2;

(ii) Vλ/Zλ and Zλ are FF-modules for Lλ;

(iii) qα = qβ; and

(iv) unless qλ ∈ {2, 3}, Rλ = CLλ(Vλ/Zλ) and Lλ/CLλ(Vλ)Qλ
∼= SL2(qλ).

Proof. By the minimality of b, Vα ≤ Qα′−2. Suppose that Vα ≤ Qα′−1 ≤ ZαQα′ .

Then [Vα, Zα′ ] = [Zα, Zα′ ] ≤ Zα. In particular, since Zα′ 6≤ Qα, [Vα, Op(Lα)] ≤ Zα.

Hence, ZβZα E Lα, a contradiction to Proposition 5.2.25. Thus, we assume that

Vα 6≤ Qα′−1. In particular, there is some α − 1 ∈ ∆(α) such that (α − 1, α′ − 1)

is a critical pair with [Zα−1, Zα′−1] 6= {1}. We may assume that Vα−1 6≤ Qα′−2 else

we arrive at a similar contradiction as the above. Hence (i) holds.

Suppose first that b was odd. Then, by Lemma 5.3.2, Proposition 5.3.3 and as α′

is conjugate to β, Lβ/Rβ
∼= SL2(qβ) and qβ = qα′ = qα and (iii) holds in this case.

Now suppose that b is even so α′ − 1 is conjugate to β. In either case, we observe

that Vα ∩ Qα′−1 = Zα(Vα ∩ Qα′) has index at most qβ in Vα and is centralized,

modulo Zα, by Zα′ . Furthermore, since ZαZβ 6E Lα, it follows from Lemma 5.2.8

(iii) that Qα ∈ Sylp(CLα(Vα/Zα)) and by Lemma 2.3.10, we have that qα 6 qβ. But

then (α− 1, α′ − 1) is also a critical pair with Vα−1 ∩Qα′−2 = Zα−1(Vα−1 ∩ Zα′−1)

a subgroup of Vα−1 of index at most qα and applying the same reasoning as before

alongside Lemma 5.2.8 (iii), we deduce that Qβ ∈ Sylp(CLβ(Vβ/Zβ)) and using
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Lemma 2.3.10 we see that qα−1 = qβ 6 qα. Thus, qα = qβ and Vλ/Zλ is an

FF-module for Lλ for all λ ∈ Γ , and (ii) and (iii) hold.

It remains to prove (iv). By Lemma 2.3.10, for all λ ∈ Γ , Lλ/CLλ(Vλ/Zλ) ∼=

Lλ/Rλ
∼= SL2(qλ). Suppose that qλ 6∈ {2, 3} and assume that CLλ(Vλ/Zλ) 6=

Rλ. Since {Qλ} = Sylp(CLλ(Vλ/Zλ)) = Sylp(Rλ), we infer that RλCLλ(Vλ/Zλ)

is a group of order coprime to p and we see immediately that p is

odd, CLλ(Vλ/Zλ)Rλ/Rλ = Z(Lλ/Rλ) and CLλ(Vλ/Zλ)Rλ/CLλ(Vλ/Zλ) =

Z(Lλ/CLλ(Vλ/Zλ)). Thus, Lλ/(CLλ(Vλ/Zλ) ∩ Rλ) is isomorphic to a central

extension of PSL2(qλ) by an elementary abelian group of order 4. Since Lλ =

Op′(Lλ) and the 2-part of the Schur multiplier of PSL2(q) is of order 2 by

Lemma 2.2.1 (vii) when p is odd, we have a contradiction. Thus, we shown that,

unless qλ ∈ {2, 3}, CLλ(Vλ/Zλ) = Rλ and (iv) is proved.

Lemma 5.3.5. Suppose that for Zβ 6= Ω(Z(S)) and for λ ∈ {α, β}, Zλ/Ω(Z(Lλ))

is a natural SL2(qλ)-module for Lλ/Rλ. Then b 6 2.

Proof. Assume throughout that b > 2 so that Vλ is abelian for all λ ∈ Γ . For δ ∈ Γ

and ν ∈ Γ , set Sδ,ν ∈ Sylp(Gδ,ν) and Zδ,ν := Ω(Z(Sδ,ν)). Choose µ ∈ ∆(α′ − 1)

such that Zµ,α′−1 6= Zα′−1,α′−2. Thus we know, Zα′−1 = Zµ,α′−1Zα′−1,α′−2. Then,

using Lemma 5.3.4 (i), as Vα 6≤ Qα′−1 and Vα centralizes Zα′−1,α′−2, we have that

Lα′−1 = 〈Qµ, Rα′−1, Vα〉.

Set Uα′−1,µ := 〈Zδ | Zµ,α′−1 = Zδ,α′−1, δ ∈ ∆(α′ − 1)〉. Let r ∈ Rα′−1Qµ. Since r

is an automorphism of the graph, it follows that for Zδ with Zµ,α′−1 = Zδ,α′−1 and

δ ∈ ∆(α′−1), we have that Zr
δ = Zδ·r and {δ, α′−1}·r = {δ ·r, α′−1}. Since Sδ,α′−1

is the unique Sylow p-subgroup of Gδ,α′−1, it follows that Zr
δ,α′−1 = Zδ·r,α′−1. Since

Rα′−1Qµ normalizes Zδ,α′−1, we have that Zδ·r,α′−1 = Zµ,α′−1 so that Zδ·r ≤ Uα′−1,µ.
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Thus, Uα′−1,µ E Rα′−1Qµ.

Suppose that Uα′−1,µ ≤ Qα. By Lemma 5.3.4 (i), there is α − 1 ∈ ∆(α)

such that Zα−1 6≤ Qα′−1 and Zα′−1 6≤ Qα−1. Moreover, we have that Lα′−1 =

〈Qµ, Rα′−1, Zα−1〉. Then, Uα′−1,µ = Zα′−1(Uα′−1,µ ∩ Qα−1) is centralized, modulo

Zα′−1, by Zα−1 so that Uα′−1,µ E Lα′−1 = 〈Qµ, Rα′−1, Zα−1〉. Since Zα−1

centralizes Uα′−1,µ/Zα′−1, Op(Lα′−1) centralizes Uα′−1,µ/Zα′−1 and ZµZα′−1 E

Lα′−1, a contradiction by Proposition 5.2.25. Thus, Uα′−1,µ 6≤ Qα.

Hence, there is δ ∈ ∆(α′ − 1) with Zδ,α′−1 = Zµ,α′−1 6= Zα′−1,α′−2, Lα′−1 =

〈Qδ, Rα′−1, Vα〉 and (α, δ) a critical pair. We may as well assume that δ = α′ and

Zα′,α′−1 6= Zα′−1,α′−2. By Lemma 5.3.1, Lemma 5.3.4 applies to α′ in place of α.

Then Vα′ 6≤ Qβ and there is α′+1 ∈ ∆(α′) with (α′+1, β) a critical pair satisfying

Zα′+1 6≤ Qβ and Zβ 6≤ Qα′+1. Choose µ∗ ∈ ∆(α′) such that Zµ∗,α′ 6= Zα′,α′−1 so that

Zα′ = Zµ∗,α′Zα′,α′−1. Then, as Zα 6≤ Qα′ and Zα centralizes Zα′,α′−1, we have that

Lα′ = 〈Zα, Qµ∗ , Rα′〉. Forming Uα′,µ∗ in an analogous way to Uα′−1,µ, we see that

Uα′,µ∗ E Rα′Qµ∗ and Uα′,µ∗ 6≤ Qβ. Thus, there is some δ∗ with Zδ∗,α′ 6= Zα′,α′−1,

Lα′ = 〈Qδ∗ , Rα′ , Zα〉 and (β, δ∗) a critical pair. We may as well take µ∗ = α′ + 1

so that Lα′ = 〈Zα, Qα′+1, Rα′〉 and Zα′+1,α′ 6= Zα′,α′−1

Now, let R := [Zβ, Zα′+1] ≤ Zβ ∩ Zα′+1. Then R is centralized by ZβQα′+1 ∈

Sylp(Gα′+1,α′) so that R ≤ Zα′+1,α′ . Since b > 1, Zα centralizes R ≤ Zβ and

so R is centralized by Lα′ = 〈Qα′+1, Rα′ , Zα〉 and R ≤ Z(Lα′) ≤ Zα′,α′−1. But

R ≤ Zβ ≤ Vα and since b > 2, Vα is abelian so centralizes R. In particular,

R is centralized by Lα′−1 = 〈Vα, Rα′−1, Qα′〉. But then R E 〈Lα′ , Lα′−1〉, a final

contradiction.

Proposition 5.3.6. Suppose that Zβ 6= Ω(Z(S)), b = 2 and for λ ∈ {α, β},

Zλ/Ω(Z(Lλ)) is a natural SL2(qλ)-module for Lλ/Rλ
∼= SL2(qλ). Then p = 3 and
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G is locally isomorphic to H where F ∗(H) ∼= G2(3n).

Proof. Since b > 1, by Lemma 5.3.4 (iii), we have that qα = qβ and Vα 6≤ Qβ.

But then Qα = Vα(Qα ∩ Qα′) and it follows that Op(Lα) centralizes Qα/Vα.

In particular, Vα contains all non-central chief factors for Lα within Qα, and

consequently CLα(Vα) is a p-group. By Lemma 5.3.4 (i), there is α−1 ∈ ∆(α) such

that (α − 1, β) is a critical pair with [Zα−1, Zβ] 6= {1} and applying Lemma 5.3.4

(ii) again, CLα−1(Vα−1) is a p-group. By Lemma 5.3.4 (iv), unless qα ∈ {2, 3}, we

conclude that Lα ∼= Lβ ∼= SL2(qα) and G has a weak BN-pair of rank 2. Comparing

with [DS85], the result holds.

Hence, we assume that qα = qβ ∈ {2, 3} and for λ ∈ {α, β}, Vλ/Zλ and Zλ are

FF-modules for Lλ. Moreover, for some δ ∈ {α, β}, we assume that CLδ(Vδ/Zδ) 6=

Rδ and Lδ 6∼= SL2(p). By Lemma 2.3.14 (ii) and Lemma 2.3.15 (ii), Lδ ∼= (3×3) : 2

or (Q8 × Q8) : 3 for p = 2 or 3 respectively. Since Op(Lδ) centralizes Qδ/Vδ we

have that CLδ(Vδ/Zδ) normalizes Qα ∩Qβ.

If p = 2, by Lemma 2.3.14 (iii), we may choose Pα ≤ Lα such that Pα ∼= Sym(3),

Ω(Z(S)) 6E Pα and Qα ∩ Qβ 6E Pα. If Lα ∼= Sym(3) then Lα = Pα, and if

Lα ∼= (3 × 3) : 2, then as there are two choices for Pα, both are Gα,β-invariant

and neither normalizes Qα ∩ Qβ. For such a Pα, set Hα = PαGα,β. We make an

analogous choice for Hβ ≤ Gβ and observe that Pλ = O2′(Hλ) for λ ∈ {α, β}.

If p = 3, by Lemma 2.3.15 (iii), we may choose Pα ≤ Lα such that Pα ∼= SL2(3),

Ω(Z(S)) 6E Pα and Qα ∩ Qβ 6E Pα. If Lα ∼= SL2(3) then Lα = Pα, and if Lα ∼=

(Q8 ×Q8) : 3, then there are three choices for Pα. Since all contain S, there is at

least one choice such that Pα is Gα,β-invariant and does not normalize Qα ∩ Qβ.

For this Pα, set Hα = PαGα,β and choose Hβ in a similar fashion. Again, observe
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that Pλ = O2′(Hλ) for λ ∈ {α, β}.

Set X := 〈Hα, Hβ〉 and suppose that there is {1} 6= Q ≤ S with Q E X.

Then Q ≤ Op(Hα) ∩ Op(Hβ) = Qα ∩ Qβ. Suppose Ω(Z(S)) 6≤ Q. Then

Vβ = 〈〈Ω(Z(S))Hα〉Hβ〉 centralizes Q and since Q is normal in Hα, [Op(Pα), Q] ≤

[Vβ, Q]Hα = {1}. Considering the action of Vα = 〈〈Ω(Z(S))Hβ〉Hα〉 on Q yields

[Op(Pβ), Q] = {1}. But Q E S and so Q ∩ Ω(Z(S)) is non-trivial and centralized

by G = 〈Hα, Rα, Hβ, Rβ〉, a contradiction. Hence, Ω(Z(S)) ≤ Q. But then

Q ≥ Vβ = 〈〈Ω(Z(S))Hα〉Hβ〉 6≤ Qα, a contradiction.

Thus, any subgroup of Gα,β which is normal in X is a p′-group. Such a subgroup

would be contained in Hλ and so would centralize Qλ for λ ∈ {α, β}. Since

S ≤ Hλ ≤ Gλ, we have that Hλ is of characteristic p, CHλ(Qλ) ≤ Qλ and no

non-trivial subgroup of Gα,β is normal in X. Moreover, Pα ∼= Pα ∼= SL2(p) and

X has a weak BN-pair of rank 2. For λ ∈ {α, β}, since Qλ contains precisely two

non-central chief factors for Pλ, and neither Pα nor Pβ normalizes Ω(Z(S)), by

[DS85], X is locally isomorphic to G2(3) and S is isomorphic to a Sylow 3-subgroup

of G2(3). Then Qα and Qβ are distinguished up to isomorphism. Noticing that

[PS18, Lemma 7.8] applies in this situation independent of any fusion system

hypothesis, it follows that for λ ∈ {α, β}, Gλ is isomorphic to a subgroup of

GL2(3), a contradiction to the assumption that Lδ 6∼= SL2(p). Thus, we conclude

that G has a weak BN-pair of rank 2 and the result follows upon comparison with

[DS85].

Remark. The graph automorphism of G2(3) normalizes S ∈ Syl3(G2(3)) and fuses

Qα and Qβ, and so Hypothesis 5.2.1 only allows for groups locally isomorphic to

G2(3n) decorated by field automorphisms.

Proposition 5.3.7. Suppose that Zβ 6= Ω(Z(S)) and for λ ∈ {α, β}, Zλ/Ω(Z(Lλ))
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is a natural SL2(qλ)-module for Lλ/Rλ. Then G is locally isomorphic to H where

(F ∗(H), p) is one of (PSL3(pn), p), (PSp4(2n), 2) or (G2(3n), 3).

Proof. By Lemma 5.3.5 and Proposition 5.3.6, we may suppose that b = 1. Then,

Zα 6≤ Qβ, Zβ 6≤ Qα, Qα = Zα(Qα ∩ Qβ) and Qβ = Zβ(Qα ∩ Qβ). In particular,

Φ(Qα) = Φ(Qα ∩ Qβ) = Φ(Qβ) is trivial and so both Qα and Qβ are elementary

abelian. For λ ∈ {α, β}, by coprime action we have thatQλ = [Qλ, Rλ]×CQλ(Rλ) is

an S-invariant decomposition. But Ω(Z(S)) ≤ Zλ ≤ CQλ(Rλ) and since [Qα, Rλ] E

S, we must have that [Qα, Rλ] = {1}. It follows that Rλ centralizes Qλ and, as

Gλ is of characteristic p, Qλ = Rλ. Thus, G has a weak BN-pair of rank 2 and is

determined by [DS85], hence the result.

Remark. Similarly to the G2(3n) example, the graph automorphisms for PSL3(pn)

and PSp4(2n) fuse Qα and Qβ and are not permitted by the hypothesis.

5.3.2 Zβ = Ω(Z(S))

Given Proposition 5.3.3, we may assume in this subsection that b is even and

Zβ = Ω(Z(S)). The general aim will be to demonstrate that b = 2 and Lα ∼= SL2(q)

for then, it will quickly follow that the amalgam is symplectic and we may apply

the classification in [PR12]. We are able to show that, in all the cases considered,

b = 2. However, at the end of this section we uncover a configuration where

Rα 6= Qα.

Lemma 5.3.8. Let α − 1 ∈ ∆(α) \ {β} with Zα−1 6= Zβ. Then Ω(Z(Lα)) = {1},

Zα = Zβ × Zα−1 is a natural SL2(q)-module, Qβ ∈ Sylp(Rβ) and [Zα, Zα′ ] =

Zα′−1 = Zα ∩Qα′ = Zβ = [Vβ, Qβ].

Proof. Since Lβ is transitive on ∆(β) and centralizes Zβ = Ω(Z(S)), by
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Lemma 5.2.7 (iv), we have that Z(Lα) = {1}. Then, by Lemma 5.3.2, Zα is a

natural SL2(q)-module for Lα/Rα
∼= SL2(q).

Now, [Zα, S] = [Zα, Zα′Qα] = [Zα, Zα′ ] = Ω(Z(S)) = Zβ. Thus, [Vβ, Qβ] =

[〈ZGβ
α 〉, Qβ] = Zβ ≤ CVβ(Op(Lβ)) and so Qβ ≤ Rβ. By Lemma 5.2.16, we have

that Qβ ∈ Sylp(Rβ).

By considering [Zα′ , ZαQα′ ] and again employing Lemma 5.3.2, we deduce that, for

T ∈ Sylp(Gα′,α′−1), [Zα′ , Zα] = Ω(Z(T )) = Zα′−1. Then Zβ = Zα′−1 ≤ Qα′ and it

follows immediately that Zβ = Zα∩Qα′ . By properties of natural SL2(q)-modules,

Zα = Zβ×Zx
β = Zβ×Zβ·x for x ∈ Lα\Gα,βRα. In particular, we may choose α−1 ∈

∆(α) conjugate to β by an element of Lα \Gα,βRα so that Zα = Zβ × Zα−1.

Proposition 5.3.9. Suppose that b > 2. Then Lβ/Rβ
∼= SL2(p) ∼= Lα/Rα and

both Zα and Vβ/CVβ(Op(Lβ)) are natural modules.

Proof. Suppose first that mp(S/Qα) > 2 so that Rα = Qα and Lα ∼= SL2(q) for

q > p. If b = 4 then Lα+2 = 〈Qβ, Qα′−1〉 normalizes Zβ = Zα′−1, a contradiction.

Hence, b > 4 and V (2)
α is abelian. If V (2)

α 6≤ Qα′−2, then there is a critical pair

(α−2, α′−2) and by Lemma 5.3.8, Zα′−3 = Zα−1. But then Zα = Zα−1×Zβ = Zα′−2

and since b > 2, we have a contradiction. If V (2)
α ≤ Qα′−1, then since ZαQα′ ∈

Sylp(Lα′), V (2)
α = Zα(V (2)

α ∩ Qα′) and Zα′ centralizes V (2)
α /Zα. But then Op(Lα)

centralizes V (2)
α /Zα and Vβ E Lα, a contradiction. Hence, there is α − 1 ∈ ∆(α)

such that Vα−1 acts non-trivially on Vα′−1/Zα′−1. Notice that [Vα′−1, Vα−1, Vα−1] ≤

[V (2)
α , V (2)

α ] = {1}. Hence, Vα′−1/Zα′−1 is a quadratic module and by Lemma 2.3.5,

we may assume that mp(S/Qβ) = 1, else applying Lemma 2.3.5, Lβ is a rank 1

group of Lie type, G has a weak BN-pair of rank 2 and a comparison with [DS85]

gives a contradiction. But since b > 2, we have that V (2)
α ∩Qα′−1 = Zα(V (2)

α ∩Qα′)

199



is an index p subgroup of V (2)
α which is centralized by Zα′ , modulo Zα, and as

mp(S/Qα) > 2 and V (2)
α /Zα is not centralized by Op(Lα), we have a contradiction.

Hence, mp(S/Qα) = 1, Lα/Rα
∼= SL2(p) and Zα is a natural SL2(p)-module.

Set Uα,α−1 := 〈Vλ | Zλ = Zα−1, λ ∈ ∆(α)〉 for a fixed subgroup Zα−1 6= Zβ.

Then by Lemma 5.2.19, Uα,α−1 E RαQα−1. If Uα,α−1 6≤ Qα′−2, there there

is some Vα−1 with (α − 2, α′ − 2) a critical pair and Zα−1 6= Zβ. But then

Zα = Zα−1 × Zβ ≤ Vα′−1 ≤ Qα′ , a contradiction since b > 2. Suppose that

Uα,α−1 ≤ Qα′−1 so that [Zα′ , Uα,α−1] = [Zα′ , Zα(Uα,α−1∩Qα′)] ≤ Zα ≤ Uα,α−1. Then

Uα,α−1 E Lα = 〈Rα, Zα′ , Qα−1〉. Since Zα′ centralizes Uα,α−1/Zα, [Op(Lα), Vα−1] ≤

[Op(Lα), Uα,α−1] = Zα ≤ Vα−1. In particular, Vα−1 E 〈Gα, Gα−1〉, a contradiction.

Thus, Uα,α−1 ≤ Qα′−2, Uα,α−1 6≤ Qα′−1 and we may choose Vα−1 6≤ Qα′−1 with

Zα−1 6= Zβ. Notice that [Vα′−1, Vα−1, Vα−1] ≤ [V (2)
α , V (2)

α ] ≤ Zα since b > 4. Since

Zα 6≤ Vα′−1, we must have that [Vα′−1, Vα−1, Vα−1] ≤ Zβ = Zα′−1. In particular,

Vα−1 acts quadratically on Vα′−1/Zα′−1. If Vα′−1 ∩ Qα ≤ Qα−1, then [Vα′−1 ∩

Qα, Vα−1] ≤ Zα−1. But if Zα−1 ≤ Vα′−1, then Zα ≤ Vα′−1 ≤ Qα′ and so [Vα′−1 ∩

Qα, Vα−1] = {1}. Since mp(S/Qα) = 1, Vα−1 centralizes an index p subgroup

of Vα′−1 and the result holds. So assume that Vα′−1 ∩ Qα 6≤ Qα−1. Notice that

[Vα−1, Vα′−1 ∩ Qα, Vα′−1 ∩ Qα] ≤ [Vα′−1, Vα′−1] = {1}, and so Vα′−1 ∩ Qα acts

quadratically on Vα−1.

Observe that Z(Qα) ≤ Qα′−1 else Z(Qα) centralizes Vα′−1 ∩Qα, Vα′−1/Zα′−1 is an

FF-module and the result holds by Lemma 2.3.10. Then Z(Qα) = Zα(Z(Qα) ∩

Qα′) and Op(Lα) centralizes Z(Qα)/Zα. Then, by coprime action and using that

Zβ ≤ Zα = [Z(Qα), Op(Lα)], it follows that Z(Qα) = Zα. Define Uα,α−1 :=

[Uα,α−1, Qα; i]Zα with i chosen minimally so that [Uα,α−1, Qα; i + 1] ≤ Zα. Then

[Vα′−1∩Qα,Uα,α−1] ≤ Zα∩Qα′ = Zβ = Zα′−1 since Zα 6≤ Vα′−1. If Uα,α−1 6≤ Qα′−1,
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then Vα′−1/Zα′−1 is an FF-module, and the result follows. Thus, Uα,α−1 ≤ Qα′−1 so

that Uα,α−1 = Zα(Uα,α−1 ∩Qα′) and, as Uα,α−1 is normalized by RαQα−1, Uα,α−1 E

Lα = 〈Rα, Zα′ , Qα−1〉 and [Uα,α−1, Qα] = Zα. But Zα′ centralizes Uα,α−1/Zα, so

that Op(Lα) centralizes Uα,α−1/Zα and Uα,α−1 = [Vα−1, Qα; i]Zα = [Vλ, Qα; i]Zα for

λ ∈ ∆(α).

Suppose first that mp(S/Qβ) > 2, so that by Lemma 2.3.5 and Proposition 3.2.7,

Lα′−1 is a central extension of a rank 1 group of Lie type. Since Vα′−1 ∩ Qα acts

quadratically on Vα−1, Vα′−1 ∩ Qα ∩ Qα−1 has index at most pqβ in Vα′−1, where

qβ := |Ω(Z(S/Qβ))| by [DS85, (5.9)]. Since Vα′−1 ∩ Qα ∩ Qα−1 is centralized by

Vα−1, we have that |Vα′−1/CVα′−1(Op(Lα′−1))| 6 (pqβ)d where d is the number

of conjugates of Vα−1Qα′−1/Qα′−1 required to generate Lα′−1. By Lemma 2.3.4,

Lα′−1 6∼= Ree(3n) and if p is odd, then Lα′−1 6∼= PSL2(pn).

If Lα′−1 ∼= Sz(2n) then by Lemma 2.2.3 (iii), (vi), d = 3, qβ = 2n > 2 and

|Vα′−1/CVα′−1(Op(Lα′−1))| 6 23+3n. Since the minimal degree of a non-trivial

GF(2)-representation for Sz(2n) is 4n, as n > 1 is odd by Lemma 2.2.3 (i), we

deduce that n = 3, |(Vα′−1 ∩ Qα)Qα−1/Qα−1| = 8 and Vα′−1/CVα′−1(Op(Lα′−1)) is

a natural Sz(8)-module. By conjugacy, Vα−1/CVα−1(Op(Lα−1)) is also a natural

Sz(8)-module and as Vα−1 ∩Qα′−1 has index at most 8 and [Vα−1 ∩Qα′−1, Vα′−1 ∩

Qα] = Zα′−1 = Zβ is of order 2, one can calculate (e.g. using MAGMA) that we

have a contradiction.

If Lα′−1 ∼= (P)SU3(pn) then by Lemma 2.2.2 (i),(ii), (vi) and (vii), d = 4,

qβ = pn > 2 and |Vα′−1/CVα′−1(Op(Lα′−1))| 6 p4+4n. Since the minimal degree

of a non-trivial GF(p)-representation for (P)SU3(pn) is 6n, we deduce that n 6 2.

Moreover, unless pn ∈ {4, 9} we have that d = 3 by Lemma 2.2.2 (vi) so that

|Vα′−1/CVα′−1(Op(Lα′−1))| 6 p3+3n. In this scenario, we conclude that n = 1 and
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Vα′−1/CVα′−1(Op(Lα′−1)) is a natural SU3(p)-module for Lα′−1 ∼= SU3(p). But

then, Zα′CVα′−1(Op(Lα′−1))/CVα′−1(Op(Lα′−1)) is a Gα′,α′−1-invariant subgroup of

order p, and we have a contradiction by Lemma 2.2.13 (iii). If pn ∈ {4, 9}

then Vα′−1/CVα′−1(Op(Lα′−1)) is a natural SU3(p2)-module of order p12. Again,

Zα′CVα′−1(Op(Lα′−1))/CVα′−1(Op(Lα′−1)) is a Gα′,α′−1-invariant subgroup of order

p, and we have a contradiction by Lemma 2.2.13 (iii).

If Lα′−1 ∼= SL2(pn), then n > 1. If, in addition, (Vα′−1 ∩ Qα)Qα−1 ∈

Sylp(Lα−1) then, by Lemma 2.3.11, Vα−1/CVα−1(Op(Lα−1)) is a direct sum of

natural SL2(pn)-modules. Since ZαCVα−1(Op(Lα−1))/CVα−1(Op(Lα−1)) has order p

and is Gα,α−1-invariant, comparing with Lemma 2.2.6 (vi), we have a contradiction.

Thus, we may assume that Lα′−1 ∼= SL2(pn), n > 1 and (Vα′−1 ∩ Qα)Qα−1 6∈

Sylp(Lα−1). Then Vα′−1 ∩ Qα ∩ Qα−1 has index at most qβ in Vα′−1 and

is centralized by Vα−1. Unless pn = 9 or |Vα−1Qα′−1/Qα′−1| = 2, by

Lemma 2.2.1 (iii), (iv), Lα′−1 is generated by two conjugates of Vα−1Qα′−1/Qα′−1

and so |Vα′−1/CVα′−1(Op(Lα′−1))| 6 q2
β. Since Vα′−1/CVα′−1(Op(Lα′−1)) contains a

non-central chief factor, Vα′−1/CVα′−1(Op(Lα′−1)) is a quadratic irreducible module

of order q2
β. Since |Zα′/Zα′−1| = p and Zα′ 6≤ CVα′−1(Op(Lα′−1)), there is

a Gα′,α′−1-invariant subgroup of Vα′−1/CVα′−1(Op(Lα′−1)) of order p. Then by

Lemma 2.3.12 and writing V := Vα′−1/CVα′−1(Op(Lα′−1)), we have that CV (S)

has order p and V admits quadratic action so that V is natural Ω−4 (p)-module.

Moreover, applying Lemma 2.2.9 (b) and observing that Vα−1 acts quadratically on

Vα′−1/Zα′−1, we infer that p = 2. But then, |Vα−1Qα′−1/Qα′−1| = 2, a contradiction

to the assumption.

We now suppose that pn = 9 or |Vα−1Qα′−1/Qα′−1| = 2 so that three conjugates

of Vα−1Qα′−1/Qα′−1 generate Lα′−1 and |Vα′−1/CVα′−1(Op(Lα′−1))| 6 q3
β. Using
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that Zα′/Zα′−1 is Gα,β-invariant and of order p and Vα−1 acts quadratically,

again applying Lemma 2.3.12 we deduce that Vα′−1/CVα′−1(O2(Lα′−1)) is a

natural Ω−4 (2)-module for Lα′−1 ∼= PSL2(4). Then, for V := Vα′−1/Zα′−1, by

Lemma 2.2.10 V = [V,O2(Lα′−1)]×CV (O2(Lα′−1)) where [V,O2(Lα′−1)] is a natural

Ω−4 (2)-module. By conjugacy and applying Lemma 2.2.9 (ii), [Vα−1, Qα, Qα, Qα] ≤

Zα−1. If [Vα−1, Qα, Qα, Qα] = Zα−1 then Uα,α−1 = [Vα−1, Qα, Qα]Zα is normal in

Lα. But then Zα−1 = [Uα,α−1, Qα] E Lα, a contradiction. Thus, [Vα−1, Qα, Qα] ≤

Z(Qα) ∩ Vα−1 = Zα and Uα,α−1 = [Vα−1, Qα]Zα E Lα. Then, by conjugacy,

[Vα′−1, Qα′−2]Zα′−2 E Lα′−2 and [Vα′−1, Qα′−2]Zα′−2 = [Vα′−3, Qα′−2]Zα′−2 ≤

Qα−1. Since Zα−1 6≤ [Vα′−1, Qα′−2]Zα′−2, we conclude that [Vα′−1, Qα′−2]Zα′−2 is

centralized by Vα−1, a contradiction to the structure of Vα′−1/CVα′−1(O2(Lα′−1))

by Lemma 2.2.9 (iii), (iv).

Thus, we have shown that mp(S/Qα) = mp(S/Qβ) = 1. Since Vα′−1∩Qα∩Qα−1 has

index p2 and is centralized by Vα−1, Lα′−1/Rα′−1 and Vα′−1/CVα′−1(Op(Lα′−1)) are

determined by Proposition 2.3.19. Since Zα′CVα′−1(Op(Lα′−1))/CVα′−1(Op(Lα′−1))

has order p and is Gα′,α′−1-invariant, and Vα′−1 = 〈ZLα′−1
α′ 〉, by Lemma 2.3.22 we

have that Lα′−1/Rα′−1 ∼= Sz(2),Dih(10), (3 × 3) : 2 or (3 × 3) : 4. In particular,

using coprime action, it follows that for V := Vα′−1/Zα′−1, V = [V,O2(Lα′−1)] ×

CV (O2(Lα′−1)) where [V,O2(Lα′−1)] is irreducible and |CV (O2(Lα′−1))| = 2.

Suppose that Lα′−1/Rα′−1 ∼= Sz(2) or (3× 3) : 4. Then, by Lemma 2.2.14 (iii) and

Lemma 2.3.21 (iii), [V,Qα′ ; 3] 6= {1} = [V,Qα′ ; 4] and, by conjugacy, we infer that

[Vα−1, Qα; 4] ≤ Zα−1. Then, as above, it quickly follows that [Vα−1, Qα; 4] = {1},

Uα,α−1 = [Vα−1, Qα, Qα]Zα and Zα = [Vα−1, Qα; 3]. Moreover, we deduce that

[Uα,α−1, Qα] 6≤ Qα′−1, else [Uα,α−1, Qα] = Zα([Uα,α−1, Qα] ∩ Qα′) is centralized,

modulo Zα, by Zα′ from which we have that [Vα−1, Qα]Zα E Lα. But then,
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by conjugacy, [Vα′−1, Qα′−2]Zα′−2 = [Vα′−3, Qα′−2]Zα′−2 is centralized by Vα−1,

contradicting Lemma 2.2.14 (ii) and Lemma 2.3.21 (ii). If [V (2)
α , Qα] 6≤ Qα′−2,

then as Φ(V (2)
α ) ≤ Zα ≤ Qα′−1, V (2)

α ∩ Qα′−2 = [Uα,α−1, Qα](V (2)
α ∩ Qα′−2 ∩ Qα′−1)

so that V (2)
α = [V (2)

α , Qα](V (2)
α ∩Qα′) and V (2)

α /[V (2)
α , Qα] is centralized by Op(Lα),

a contradiction by Lemma 5.2.13. Thus, as Φ(Uα,α−1) ≤ Φ(V (2)
α ) ≤ Zα ≤ Qα′−1,

Uα,α−1[V (2)
α , Qα] = [V (2)

α , Qα](Uα,α−1[V (2)
α , Qα] ∩ Qα′) and Uα,α−1[V (2)

α , Qα] E Lα.

In particular, V (2)
α = Vα−1[V (2)

α , Qα] from which it follows that [Qα−1, V
(2)
α ] ≤

[V (2)
α , Qα] and Op(Lα) centralizes V (2)

α /[V (2)
α , Qα], and a contradiction is again

provided by Lemma 5.2.13.

Suppose that Lα′−1/Rα′−1 ∼= Dih(10) or (3× 3) : 2. Then, applying Lemma 2.2.14

(ii) and Lemma 2.3.14 (v), and using that P/Qα−1 = Ω(P/Qα−1) where P ∈

Syl2(Gα,α−1), [Vα−1, Qα, Qα] ≤ Zα−1. If [Vα−1, Qα] ≤ Z(Qα), then as |Zα/Zβ| =

2, Zα 6= Z(Qα) and we have a contradiction. Thus, [V (2)
α , Qα, Qα] = Zα

and Uα,α−1 = [Uα,α−1, Qα]. In particular, since Zα 6≤ Vα′−1, it follows that

Uα,α−1 = [Uα,α−1, Qα] ≤ Qα′−1, else [Uα,α−1, Qα, Vα′−1 ∩ Qα] = Zβ = Zα′−1 and

Vα′−1/Zα′−1 is an FF-module. Thus, Uα,α−1 = [Vα−1, Qα]Zα E Lα. But then

Zα−1 = [Vα−1, Qα, Qα] E Lα, a final contradiction.

Before continuing, observe that we may now assume that whenever b > 2, both

Lα/Rα and Lβ/Rβ are isomorphic to SL2(p). Throughout this section, under these

conditions and given a module V on which Lγ acts, for any γ ∈ Γ , we will often

utilize coprime action. By this, we mean that when p > 5, taking Tγ to be the

preimage in Lγ of Z(Lγ/Rγ), we have that V = [V, T ] × CV (T ). Indeed, if V

is an FF-module for Lγ, then this leads to a splitting V = [V, Lγ] × CV (Lγ).

If p ∈ {2, 3}, since Lγ is solvable, we automatically have the conclusion V =

[V,Op(Lγ)] × CV (Op(Lγ)). Without explaining this each time it is used, we will
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generally just refer to “coprime action” and hope that it is clear in each instance

where the conclusions we draw come from.

Lemma 5.3.10. Suppose that b > 2. Then Zβ = Z(Qβ) and Zα = Z(Qα).

Proof. By minimality of b, and using that b is even, we infer that Z(Qα) ≤ Qλ

for all λ ∈ ∆(b−2)(α). In particular, Z(Qα) ≤ Qα′−2. If Z(Qα) 6≤ Qα′−1 then

as [Z(Qα), Vα′−1, Vα′−1] ≤ [Vα′−1, Vα′−1] = {1}, [Z(Qα), Vα′−1] is centralized by

Vα′−1Qα ∈ Sylp(Lα) and has exponent p. Thus, [Z(Qα), Vα′−1] ≤ Ω(Z(S)) =

Zβ = Zα′−1, a contradiction for otherwise Op(Lα′−1) centralizes Vα′−1. Thus,

Z(Qα) ≤ Qα′−1 so that Z(Qα) = Zα(Z(Qα) ∩Qα′), Zα′ centralizes Z(Qα)/Zα and

Op(Lα) centralizes Z(Qα)/Zα. Since Zβ ≤ Zα an application of coprime action

yields Z(Qα) = [Z(Qα), Op(Lα)] = Zα, as desired. As a consequence, using that

Qα is self-centralizing, Z(S) has exponent p.

Let α−1 ∈ ∆(α) such that Zα−1 6= Zβ, Vα−1 ≤ Qα′−2 and Vα−1 6≤ Qα′−1, as chosen

in Proposition 5.3.9. By minimality of b, and using that b is even, we have that

Z(Qα′−1) ≤ Qλ for all λ ∈ ∆(b−1)(α). In particular, Z(Qα′−1) ≤ Qα.

If Z(Qα′−1) 6≤ Qα−1 then Z(Qα′−1)Qα−1 ∈ Sylp(Lα−1). Again, using

minimality of b, we infer that Z(Qα−1) ≤ Qα′−2 so that [Z(Qα′−1), Z(Qα−1)] ≤

Z(Qα′−1)∩Z(Qα−1). Thus, [Z(Qα′−1), Z(Qα−1)] is centralized by Z(Qα′−1)Qα−1 ∈

Sylp(Lα−1). Then, [Z(Qα′−1), Z(Qα−1)] ≤ Zα−1 and as Zα−1 6≤ Z(Qα′−1),

[Z(Qα′−1), Z(Qα−1)] = {1} and Z(Qα−1) is centralized by Z(Qα′−1)Qα−1 ∈

Sylp(Lα−1). But then Z(Qα−1) = Zα−1 and by conjugacy, Z(Qα′−1) = Zα′−1 ≤

Zα′−2 ≤ Qα−1, a contradiction.

Thus, Z(Qα′−1) ≤ Qα−1 and so, [Z(Qα′−1), Vα−1] ≤ Zα−1 ∩ Z(Qα′−1). Since Zα−1

does not centralize Zα′ , we deduce that [Z(Qα′−1), Vα−1] = {1}. But then Z(Qα′−1)
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is centralized by Vα−1Qα′−1 ∈ Sylp(Lα′−1) and Z(Qα′−1) = Zα′−1, as required.

Combining Proposition 5.3.9 and Lemma 5.3.10, we now satisfy Hypothesis 5.2.30.

Thus, whenever b and the non-central chief factors in V
(n)
λ satisfy the necessary

requirements for λ ∈ {α, β} and various values of n, we may freely apply the

results contained between Lemma 5.2.31 and Lemma 5.2.35.

Lemma 5.3.11. Suppose that b > 2. Then |Vβ| = p3 and [V (2)
α , Qα] = Zα.

Proof. If V (2)
α ≤ Qα′−2, then Zα(V (2)

α ∩Qα′) has index p in V (2)
α so that V (2)

α /Zα has

a unique non-central chief factor. Then the result holds by Lemma 5.2.31. Thus,

we suppose that V (2)
α 6≤ Qα′−2. Then there is α − 2 such that (α − 2, α′ − 2) is

a critical pair and by Lemma 5.3.8, we have that Zα−1 = Zα′−3. Since b > 2

and ZβZα−1 ≤ Zα ∩ Zα′−2, it follows that Zβ = Zα−1 = Zα′−3 = Zα′−1. If

|Vβ| 6= p3, since Zα(V (2)
α ∩ Qα′−2 ∩ Qα′−1) has index at most p2 in V (2)

α and by

Lemma 5.2.32, Op(Rα) centralizes V (2)
α . By Lemma 5.2.18, Zα−2 ≤ Vα−1 = Vβ ≤

Qα′−2, a contradiction.

Lemma 5.3.12. b 6= 4.

Proof. Since none of the conclusions of Theorem 5.2.2 have b = 4, we may suppose

that G is a minimal counterexample with b = 4. Suppose that V (2)
α ≤ Qα′−2. Then

V (2)
α ∩Qα′−1 = Zα(V (2)

α ∩Qα′) is an index p subgroup of V (2)
α which is centralized,

modulo Zα, by Zα′ . Thus, V (2)
α /Zα is an FF-module for Lα. Then Lemma 5.2.32

implies that Op(Rα) centralizes V (2)
α and since Zα′−1 = Zβ, Lemma 5.2.18 implies

that Zα ≤ Vβ = Vα′−1 ≤ Qα′ , a contradiction. We have a similar contradiction if

V (2)
α ∩Qα′−2 ≤ Qα′−1.
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Thus, V (2)
α 6≤ Qα′−2 and V (2)

α ∩ Qα′−2 6≤ Qα′−1. In particular, V (2)
α is non-abelian

and Zα ≤ Φ(Qα). Suppose that r ∈ Lα is of order coprime to p and centralizes

V (2)
α . Then, by the three subgroup lemma, r centralizes Qα/CQα(V (2)

α ). Since

CQα(V (2)
α ) ≤ Qα′−2 and V (2)

α ∩ Qα′−2 6≤ Qα′−1, we have that Zα′ centralizes

CQα(V (2)
α )V (2)

α /V (2)
α so that Op(Lα) centralizes CQα(V (2)

α )V (2)
α /V (2)

α . By coprime

action, r centralizes Qα, and so r = 1. Thus, every p′-element of Lα acts faithfully

on V (2)
α /Φ(V (2)

α ).

Now, Zα(V (2)
α ∩ · · · ∩Qα′) has index p2 in V (2)

α so that V (2)
α /Zα is a 2F-module for

Lα. Furthermore,

[V (2)
α , Vα′−1, Vα′−1] ≤ [V (2)

α , V
(2)
α′−2, Vα′−1] ≤ [Qα′−1, Vα′−1] = Zα′−1 = Zβ

and V (2)
α /Zα is a faithful quadratic 2F-module for Lα. Then Lα is determined by

Lemma 2.3.10 and Proposition 2.3.19 and since Lα has a quotient isomorphic to

SL2(p), we have that Lα ∼= SL2(p), SU3(2)′, (3×3) : 2 or (Q8×Q8) : 3. Notice that

Vβ/Zα is of order p and is not contained in C
V

(2)
α /Zα

(Op(Lα)). Setting V := V (2)
α /Zα

there is a Gα,β-invariant subgroup of V/CV (Op(Lα)) of order p which generates V

and by Lemma 2.3.22, we have that Lα ∼= (3 × 3) : 2. Moreover, since V (2)
α /Zα

contains two non-central chief factors for Lα, for Uα := [V (2)
α , Lα], we have that

Zα′−2 = Zα′−1[Uα∩Qα′−2, Vα′−1] ≤ Uα so that Vβ ≤ Uα, V (2)
α = Uα and |V (2)

α /Zα| =

24.

Let Pα ≤ Lα with S ≤ Pα, Pα/Qα
∼= Sym(3), Lα = PαRα and O3(Pα) E Lα.

Then Pα is Gα,β-invariant and upon showing that no non-trivial subgroup of

S is normalized by both Pα and Gβ, then triple (PαGα,β, Gβ, Gα,β) satisfies

Hypothesis 5.2.1. To this end, suppose that Q is non-trivial subgroup of S

normalized by Pα and Gβ. Then Zβ ≤ Q so that Zβ ≤ Ω(Z(Q)). Taking
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consecutive normal closure, we deduce that Vβ ≤ Ω(Z(Q)) and Ω(Z(Q))/Zα

contains of the non-central Lα-chief factors contained in V (2)
α /Zα. Write W for

the preimage in V (2)
α of this non-central chief factor, noting that by the definition

of V (2)
α , W ∩ Vβ = Zα. However, WVβ ≤ Ω(Z(Q)) and [W,Vβ] = {1} so that

W ≤ Qα′−2 and [W,Vα′−2] ≤ Zα′−2∩W = Zβ = Zα′−1 andW = Zα(W∩Qα′). Then

W contains no non-central chief factor for Lα, a contradiction. Thus, Q = {1}

and (PαGα,β, Gβ, Gα,β) satisfies Hypothesis 5.2.1. Assuming that G is a minimal

counterexample to Theorem 5.2.2, we conclude that Pα/Qα
∼= Sym(3) ∼= Lβ and

(PαGα,β, Gβ, Gα,β) is a weak BN-pair of rank 2. By [DS85], |S| 6 27 and since

|V (2)
α | = 26 and Qα/V

(2)
α contains a non-central chief factor for Lα, we have a

contradiction.

Lemma 5.3.13. Suppose that b > 2. Then the following hold:

(i) V (2)
α ≤ Qα′−2 but V (2)

α 6≤ Qα′−1;

(ii) [V (2)
α , Qα] = Zα and |Vβ| = p3;

(iii) Op(Rα) centralizes V (2)
α and V (2)

α /Zα is a faithful FF-module for Lα/Rα
∼=

SL2(p);

(iv) b > 8; and

(v) Zα′−2 ≤ V (2)
α ≤ Z(V (4)

α ).

Proof. By Lemma 5.3.12, we have that b > 4 so that V (2)
α is abelian. Moreover,

(ii) holds by Lemma 5.3.11. Suppose first that V (2)
α 6≤ Qα′−2 so that there is a

critical pair (α − 2, α′ − 2) such that [Zα−2, Zα′−2] = Zα−1 = Zα′−3. Since b > 2,

Zα 6= Zα′−2 and Zα−1 = Zβ. Now, [V (2)
α ∩ Qα′−2, Vα′−1] ≤ Zα′−2 ∩ V (2)

α . Since

V (2)
α is abelian and V (2)

α 6≤ Qα′−2, Zα′−2 6≤ V (2)
α . But Zα′−1 ≤ V (2)

α and so it
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follows that [V (2)
α ∩Qα′−2, Vα′−1] ≤ Zα′−1 and V (2)

α ∩Qα′−2 ≤ Qα′−1. Then V (2)
α /Zα

is an FF-module and by Lemma 5.2.32, Op(Rα) centralizes V (2)
α . But then by

Lemma 5.2.18, Zα−2 ≤ Vα−1 = Vβ ≤ Qα′−2, a contradiction since (α− 2, α′ − 2) is

a critical pair.

Thus, V (2)
α ≤ Qα′−2. If V (2)

α ≤ Qα′−1, then V (2)
α = Zα(V (2)

α ∩ Qα′) and Op(Lα)

would centralize V (2)
α /Zα, a contradiction, and so (i) holds. Now, it follows that

V (2)
α /Zα is an FF-module and by Lemma 5.2.32, Op(Rα) centralizes V (2)

α and (iii)

holds.

Since V (2)
α 6≤ Qα′−1, we infer that Zα′−2 = [V (2)

α , Vα′−1]Zα′−1 ≤ V (2)
α . If b > 8, then

V (2)
α ≤ Z(V (4)

α ) and (v) holds, and so we may assume that b = 6 for the remainder

of the proof. Notice that if Zα′−1 = Zα′−3, it follows from Lemma 5.2.18 that

Zα′ ≤ Vα′−1 = Vα′−3 ≤ Qα, a contradiction. Since Zβ = Zα′−1 6= Zα′−3 and b = 6,

we have that Zα′−2 = Zα+2. Let α − 1 ∈ ∆(α) such that Vα−1 6≤ Qα′−1 and

Zα−1 6= Zβ, chosen as in Proposition 5.3.9. We have that V (3)
α′−1 ≤ Qα+2 since V (3)

α′−1

centralizes Zα+2 = Zα′−2 ≤ Vα′−1. Then V
(3)
α′−1 ∩Qβ = Vα′−1(V (3)

α′−1 ∩Qα) and

[Vα−1, V
(3)
α′−1 ∩Qα] ≤ [V (2)

α , V
(3)
α′−1 ∩Qα] ≤ Zα ∩ V (3)

α′−1 = Zβ = Zα′−1.

In particular, V (3)
α′−1/Vα′−1 contains a unique non-central chief factor Lα′−1, which

as a GF(p)Lα′−1-module is isomorphic to a natural SL2(p)-module. Thus, we may

apply Lemma 5.2.34 so that Op(Rα′−1) acts trivially on V
(3)
α′−1. Since Zα+2 =

Zα′−2, it follows from Lemma 5.2.18 that Zα ≤ V
(2)
α′−2 = V

(2)
α+2 ≤ Qα, an obvious

contradiction. Thus, b > 8 and the lemma holds.

Lemma 5.3.14. b = 2.

Proof. We may suppose that b > 8 by Lemma 5.3.13. Suppose first that V (4)
α 6≤
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Qα′−4. Since Zα′−3 ≤ Zα′−2 ≤ Z(V (4)
α ) is centralized by V (4)

α , it follows that

Zα′−3 = Zα′−5 and by Lemma 5.2.18, we have that Vα′−3 = Vα′−5. Now, [V (4)
α ∩

Qα′−4, Vα′−3] = [V (4)
α ∩Qα′−4, Vα′−5] ≤ Zα′−5 = Zα′−3 and so V (4)

α ∩Qα′−4 ≤ Qα′−3.

Since V (4)
α centralizes Zα′−2, we deduce that V (4)

α ∩ Qα′−4 = V (2)
α (V (4)

α ∩ Qα′−4 ∩

Qα′−1) and so V (4)
α /V (2)

α contains a unique non-central chief factor for Lα. Now,

by Lemma 5.2.33 and Lemma 5.2.18, since Zα′−3 = Zα′−5 we conclude that Zα′ ≤

V
(3)
α′−3 = V

(3)
α′−5 ≤ Qα, a contradiction.

Therefore, we continue assuming that V (4)
α ≤ Qα′−4. Then V (4)

α ∩Qα′−3 centralizes

Zα′−2 and we may assume that V (4)
α 6≤ Qα′−3, else V (4)

α = V (2)
α (V (2)

α ∩ Qα′−1)

and Op(Lα) centralizes V (4)
α /V (2)

α . Since |Vα′−3| = p3, V (4)
α 6≤ Qα′−3 and V (4)

α

centralizes Zα′−2, by Lemma 5.2.16 Vα′−3 6= Zα′−2Zα′−4 and so, Zα′−2 = Zα′−4.

If Op(Rβ) centralizes V (3)
β then applying Lemma 5.2.18 to Zα′−2 = Zα′−4 yields

Zα′ ≤ V
(2)
α′−2 = V

(2)
α′−4 ≤ Qα, a contradiction. Thus, to obtain a final contradiction,

by Lemma 5.2.34, it suffices to show that V (3)
α′−1/Vα′−1 contains a unique non-central

chief factor for Lα′−1 which, as a GF(p)Lα′−1-module, is an FF-module.

By the symmetry in the hypothesis of (α, α′) and (α′, α), we may assume that

Zα+2 = Zα+4. Let α − 1 ∈ ∆(α) such that Vα−1 6≤ Qα′−1 and Zα−1 6= Zβ, as in

Proposition 5.3.9. Then V (3)
α′−1 centralizes Zα+2 so that V (3)

α′−1 ≤ Qα+2, V (3)
α′−1∩Qβ =

Vα′−1(V (3)
α′−1 ∩Qα) and

[Vα−1, V
(3)
α′−1 ∩Qα] ≤ [V (2)

α , V
(3)
α′−1 ∩Qα] ≤ Zα ∩ V (3)

α′−1 = Zβ = Zα′−1.

In particular, either Op(Lα′−1) centralizes V (3)
α′−1/Vα′−1 or V (3)

α′−1/Vα′−1 contains a

unique non-central chief factor for Lα′−1, and the result holds.

Proposition 5.3.15. Suppose p > 5. Then Rα = Qα, G is a symplectic amalgam
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and one of the following holds:

(i) G is locally isomorphic to H where F ∗(H) ∼= G2(pn);

(ii) G is locally isomorphic to H where F ∗(H) ∼= 3D4(pn);

(iii) p = 5, |S| = 56, Qβ
∼= 51+4

+ and Lβ ∼= 21+4
− .5;

(iv) p = 5, |S| = 56, Qβ
∼= 51+4

+ and Lβ ∼= 21+4
− .Alt(5);

(v) p = 5, |S| = 56, Qβ
∼= 51+4

+ and Lβ ∼= 2 · Alt(6); or

(vi) p = 7, |S| = 76, Qβ
∼= 71+4

+ and Lβ ∼= 2 · Alt(7).

Proof. By Lemma 5.3.14, we have that b = 2. Note that Qα ∩ Qβ = Zα(Qα ∩

Qβ ∩ Qα′). Since Zα′ ≤ Qβ, it follows that [Qα, Zα′ , Zα′ , Zα′ ] = {1} and by the

Hall–Higman Theorem, Op(Rα) centralizes Qα and since Qα is self-centralizing,

Rα = Qα and Lα ∼= SL2(q).

We now intend to show that the amalgam is symplectic. We immediately

satisfy condition (i) in the definition of a symplectic amalgam. We have that

W := 〈(Qα ∩ Qβ)Lα〉 6≤ Qβ, for otherwise W = Qα ∩ Qβ E Lα, a contradiction

by Proposition 5.2.25. Therefore, by Lemma 5.2.8 (iii), we have that Gβ =

〈WLβ〉NGβ(S), satisfying condition (ii). From our hypothesis, we automatically

satisfy condition (iii). By Proposition 5.3.3, we satisfy condition (iv). Since

b = 2 and d(α, β) = 1, we have that Zα ≤ Qβ. Moreover, by hypothesis and

the symmetry between α and α′ we have that Zα 6≤ Qα′ = Qx
α for some x ∈ Gβ.

Hence, G is a symplectic amalgam and the result holds by Theorem 5.1.11.

Thus, we have reduced to the case where b = 2 and p ∈ {2, 3}. Since

Proposition 5.3.9 only applied to the cases where b > 2, we have no knowledge of
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the structure of Lβ or Vβ. As intimated earlier, we attempt to show that Rα = Qα

and apply the results in [PR12]. Then Proposition 5.1.13 completes the analysis

of this case for fusion systems.

Proposition 5.3.16. Suppose that p ∈ {2, 3}, b = 2 and mp(S/Qβ) = 1. Then

Rα = Qα, |S| 6 26, G is a symplectic amalgam and one of the following holds:

(i) G has a weak BN-pair of rank 2 and G is locally isomorphic to H where

F ∗(H) ∼= G2(2)′; or

(ii) p = 2, |S| = 26, Qβ
∼= 21+4

+ and Lβ ∼= (3× 3) : 2.

Proof. If Rα = Qα, then Lα ∼= SL2(q) and similarly to Proposition 5.3.15, G is a

symplectic amalgam and the result holds after comparing with the tables listed

in [PR12] and an application of [DS85] and [Fan86]. Hence, Lα 6∼= SL2(q) so that

Rα 6= Qα and by Lemma 5.3.2, Lα/Rα
∼= SL2(p). If Qα is elementary abelian, then

applying coprime action, we have that Qα = [Qα, Rα]×CQα(Rα) is an S-invariant

decomposition. But Zβ ≤ Zα ≤ CQα(Rα) from which it follows thatQα = CQα(Rα)

and Rα = Qα, a contradiction. Thus, [Vβ, Qβ] = Zβ ≤ Zα ≤ Φ(Qα).

If S/Qβ is cyclic then Φ(Qα)(Qα ∩ Qβ) is an index p subgroup of Qα and since

Vβ 6≤ Qα and [Vβ, Qα ∩ Qβ] ≤ Zα ≤ Φ(Qα), it follows that Qα/Φ(Qα) contains

a unique non-central chief factor for Lα which is isomorphic to an FF-module for

Lα ∼= SL2(p), a contradiction.

Hence, we may assume that p = 2 and S/Qβ is generalized quaternion. Set L :=

〈Vβ, V x
β 〉Qα with x ∈ Lα chosen such that Zx

β 6= Zβ and x2 ∈ Gα,β. In particular,

LRα = Lα. Write α− 1 = βx. Then, as [Qβ, Vβ] = Zβ ≤ Zα, (Qβ ∩Qα∩Qα−1)/Zα

is centralized by O2(O2′(L)). Since S = VβQα normalizes Qβ ∩ Qα ∩ Qα−1, if
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Qβ ∩ Qα ∩ Qα−1 is not elementary abelian then Zβ ≤ Φ(Qβ ∩ Qα ∩ Qα−1) and

the choice of L yields that Zα ≤ Φ(Qβ ∩ Qα ∩ Qα−1), a contradiction. Thus,

Qβ ∩Qα ∩Qα−1 is elementary abelian.

Suppose that Vβ ∩ Qα ≤ Qα−1. Then Vβ ∩ Qα is an elementary abelian subgroup

of Vβ of index 2. As Vβ is non-abelian, |Vβ/Z(Vβ)| = 4 and since |S/Qβ| 6= 2, we

must have that [O2(Lβ), Vβ] ≤ Z(Vβ). But then ZαZ(Vβ) E Lβ and it follows from

the definition of Vβ that Vβ = ZαZ(Vβ) is abelian, a contradiction.

Let V ≤ Qβ be a normal subgroup of S which does not contain Zα. Since

O2(O2′(L)) centralizes (Qβ ∩ Qα ∩ Qα−1)/Zα and S = VβQα, O2′(L) normalizes

(V ∩ Qα ∩ Qα−1)Zα. Then [Qα, V ∩ Qα ∩ Qα−1] = [Qα, (V ∩ Qα ∩ Qα−1)Zα] E

O2′(L). If Zβ ≤ [Qα, V ∩ Qα ∩ Qα−1], then by the construction of L, Zα ≤

[Qα, V ∩ Qα ∩ Qα−1] ≤ V , a contradiction. Thus, [Qα, V ∩ Qα ∩ Qα−1] = {1}

and V ∩ Qα ∩ Qα−1 ≤ Z(Qα). Now, if Z(Qα) 6≤ Qβ, then Z(Qα) centralizes

Qα ∩ Qβ, an index 2 subgroup of Qβ. Since |S/Qβ| 6= 2, this is a contradiction,

and so Z(Qα) = Zα(Z(Qα) ∩ Qα′) and since Zβ ≤ Zα = [Z(Qα), O2(O2′(L))],

it follows from coprime action that Z(Qα) = Zα. Therefore, since Zα 6≤ V ,

V ∩Qα ∩Qα−1 = Zβ.

Now, [Vβ, Vβ] = Zβ ≤ Qα−1 and so (Vβ ∩ Qα)Qα−1/Qα−1 is elementary abelian

and since mp(S/Qβ) = 1, |(Vβ ∩ Qα)Qα−1/Qα−1| = 2. By coprime action,

Vβ/Zβ = [Vβ/Zβ, O2(Lβ)] × CVβ/Zβ(O2(Lβ)) and for V β the preimage in Vβ of

[Vβ/Zβ, O2(Lβ)], we deduce that Vβ = V βZα. In particular, V β has index at most

2 in Vβ.

Suppose first that V β 6= Vβ. Since Zα 6≤ V β, we have that V β ∩Qα ∩Qα−1 = Zβ.

Since V β has index 2 in Vβ, Zβ has index 2 in Vβ∩Qα∩Qα−1, from which it follows
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that Vβ ∩ Qα ∩ Qα−1 = Zα. In particular, Vβ/Zβ has order at most 8 and Lβ/Rβ

embeds into GL3(2). But a Sylow 2-subgroup of GL3(2) is dihedral of order 8, and

so we have a contradiction.

Suppose that V β = Vβ. Since Z(Vβ) centralizes Zα, Z(Vβ) ≤ Qα and since Zα 6≤

Z(Vβ), Zβ = Z(Vβ)∩Qα−1 has index at most 2 in Z(Vβ). Again, O2(Lβ) centralizes

Z(Vβ) and as Vβ = V β, we have that Z(Vβ) = Zβ. In particular, Vβ is extraspecial

and since Vβ ∩Qα ∩Qα−1 has index 4 in Vβ and is elementary abelian, Vβ ∼= 21+4
+ .

Comparing with [Win72], we conclude that Out(Vβ) ∼= Sym(3) o 2 and as Lβ/Rβ

acts faithfully on Vβ and has generalized quaternion Sylow 2-subgroups, we have

a contradiction.

Proposition 5.3.17. Suppose that p ∈ {2, 3}, b = 2 and mp(S/Qβ) > 1. Then

one of the following holds:

(i) Rα = Qα, G has a weak BN-pair of rank 2, and either G is locally isomorphic

to H where (F ∗(H), p) is (G2(2n), 2) or (3D4(pa), p), or p = 2 and G is

parabolic isomorphic to J2 or Aut(J2); or

(ii) p = 2, |S| = 29, Lβ ∼= Alt(5), Qβ
∼= 21+6

+ , Vβ = O2(Lβ), Vβ/Zβ is a natural

Ω−4 (2)-module for Lβ, Lα ∼= SU3(2)′, Qα is a special 2-group of shape 22+6

and Qα/Zα is a natural SU3(2)-module.

Proof. Suppose that Rα = Qα. Then, as in Proposition 5.3.15, G is a symplectic

amalgam and the result follows from Theorem 5.1.11 and Proposition 5.1.13.

Indeed, the amalgams presented in [PR12] satisfying the above hypothesis are

either weak BN-pairs of rank 2 (and (i) holds by [DS85]); or A42 when p = 2. In

the latter case, PSp6(3) is listed as an example completion. But comparing with the

list of maximal subgroups in [Con+85], for G ∼= PSp6(3), Lα ∼= 22+6 : SU3(2)′ and

214



from the perspective of this work, Rα 6= Qα. Either way, we assume throughout

this proof that Rα 6= Qα with the goal of showing that G has “the same” structural

properties as A42 in [PR12] in order to satisfy outcome (ii).

Since Rα 6= Qα, we have that Lα/Rα
∼= SL2(p). As in Proposition 5.3.16, if Qα is

elementary abelian then an application of coprime action implies that Rα = Qα,

a contradiction to the initial assumption. Again, as in Proposition 5.3.16, we set

L := 〈Vβ, V x
β 〉Qα with x ∈ Lα chosen such that LRα = Lα and x2 ∈ Gα,β and write

α − 1 = βx. Then Qβ ∩ Qα ∩ Qα−1 is elementary abelian, Vβ ∩ Qα 6≤ Qα−1 and

for any V ≤ Qβ which is normal in S and does not contain Zα, we must have that

V ∩Qα ∩Qα−1 = Zβ.

Now, Vβ ∩ Qα ∩ Qα−1 contains Zα so is normalized by L. By construction, Vβ ∩

Qα∩Qα−1 = Vα−1∩Qα∩Qβ = Vβ ∩Qα∩Vα−1. In particular, Vβ ∩Qα∩Vα−1 is an

elementary abelian subgroup of index rβp in Vβ, where rβ = |(Vβ∩Qα)Qα−1/Qα−1|.

Since Zα ≤ Vβ, we have that Z(Vβ) ≤ Qα and as Zα 6≤ Z(Vβ), we have that

Z(Vβ) ∩ Qα−1 = Zβ. Choose V β minimally with respect to inclusion such that

V β E Lβ and V β/Zβ contains a non-central chief factor for Lβ. If Vβ 6= V β, then

Zα 6≤ V β and V β ∩Qα ∩Qα−1 = Zβ. Then, by conjugacy, [V β ∩Qα, V
α−1 ∩Qα] ≤

V β ∩Qα∩V α−1 ≤ Zβ ∩Zα−1 = {1}. But V β contains a non-central chief factor for

Lβ and as mp(S/Qβ) > 1 and V β∩Qα has index p in V β, we must have that V α−1∩

Qα ≤ Qβ. Thus, [V α−1, Qα] ≤ V α−1 ∩ Qα ∩ Qβ = Zα−1 ≤ Zα. Since Zα ≤ Φ(Qα)

and L contains elements of p′-order, Op(L) does not centralize Qα/Zα and we infer

that V α−1 ≤ Qα so that V α−1 = Zα−1, a contradiction since V α−1/Zα−1 contains

a non-central chief factor for Lα−1. Thus, V β = Vβ = [Vβ, Op(Lβ)] ≤ Op(Lβ),

Z(Vβ) contains no non-central chief factors so that CVβ(Op(Lβ)) = Z(Vβ) and by

Lemma 2.3.2, Vβ/Z(Vβ) is irreducible as an Lβ-module.

215



Again, we remark that Zβ = Φ(Vβ) ≤ Qα. We aim to show that Z(Vβ) ≤ Qα−1 so

that [Vβ, Vβ] = Φ(Vβ) = Z(Vβ) = Zβ is of order p and Vβ is an extraspecial group.

Towards this, we suppose that Z(Vβ) 6≤ Qα−1. Then the action of L implies that

Z(Vα−1) 6≤ Qβ. Set V := Vβ/Z(Vβ) throughout.

Suppose that Lα−1 ∼= M11,Ree(3) or a central extension of PSL3(4) and p =

3. It follows that Z(Vβ)(Vβ ∩ Qα ∩ Vα−1) has index at most p2 in Vβ and is

centralized by Z(Vα−1). If Lβ ∼= M11 then there is x ∈ Lβ such that for J :=

〈Z(Vα−1), Z(Vα−1)x, Qβ〉, J ∼= PSL2(11) and J centralizes a subgroup of V of index

at most 34. Since 11 does not divide |GL4(3)|, J centralizes V , a contradiction

since J contains a non-trivial 3-element. If Lβ ∼= PSL3(4), then there is x ∈ Lβ

such that Lβ = 〈Z(Vα−1), Z(Vα−1)x, Qβ〉 so that |V | 6 34. Since 7 divides |Lβ| but

|GL4(3)| is not divisible by 7, we have that Lβ centralizes V , another contradiction.

Suppose now that Lα−1 ∼= Sz(2n) for n > 3. Since Zβ ≤ Qα−1, (Vβ∩Qα)Qα−1/Qα−1

is elementary abelian and it follows that rβ ≤ 2n and that the index of Z(Vβ)(Vβ ∩

Qα∩Vα−1) in Vβ is at most rβ. Moreover, Lβ may be generated by three conjugates

of an involution by Lemma 2.2.3 (vi) from which it follows that V has order at

most r3
β 6 23n. Since the minimal degree of a non-trivial GF(2)-representation of

Sz(2n) is 4n, we have a contradiction.

Thus, Lα−1 ∼= (P)SU3(pn), (P)SL2(pn) or Ree(3n). Suppose that

|Z(Vβ)Qα−1/Qα−1| > p2. Using the action of L, we infer that |Z(Vα−1)Qβ/Qβ| >

p2. Then by Lemma 2.2.1 (iv), (v), Lemma 2.2.2 (viii) and Lemma 2.2.4 (vi), Lβ is

generated by 3, 2 or 3 conjugates of Z(Vα−1)Qβ/Qβ for (P)SU3(pn), (P)SL2(pn) or

Ree(3n) respectively. Moreover, rβ ≤ p2n, pn or 32n respectively and so the index of

Z(Vβ)(Vβ∩Qα∩Vα−1) in Vβ is strictly less than p2n, pn or 32n. Applying a similarly

methodology as above, we conclude that V has order strictly less than p6n, p2n
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or 36n and since the relevant minimal degrees of non-trivial GF(p)-representations

are 6n, 2n and 7n, we have a contradiction.

Thus, we deduce that |Z(Vβ)Qα−1/Qα−1| = p so that |Z(Vβ)| = p2. In particular,

CS(Z(Vβ)) has index p in S so that Vα−1∩CQα(Z(Vβ)) has index at most p2 in Vα−1

and is centralized by Z(Vβ). Suppose that Lα−1 ∼= (P)SU3(pn). Then Lemma 2.2.2

(vi), (vii) implies that Lβ is generated by four conjugates of Z(Vα−1)Qβ/Qβ from

which we conclude that |V | 6 p8. Since the minimal degree of a GF(p)-module is

6n, the only possibility is that pn = 3. In this case, Lemma 2.2.2 (vi) implies that

Lβ is generated by three conjugates of Z(Vα−1)Qβ/Qβ so that |V | = 36 and V is

a natural SU3(3)-module. But Vβ ∩Qα is Gα,β-invariant, contains Z(Vβ) and has

index 3 in Vβ contradicting Lemma 2.2.13 (iii).

Suppose now that Lα−1 ∼= Ree(3n) for n > 1 and |Z(Vβ)Qα−1/Qα−1| = 3. Then by

Lemma 2.2.4 (vi), Lβ is generated by at most three conjugates of Z(Vα−1)Qβ/Qβ

from which it follows that |V | ≤ 36. Since the minimal degree of a non-trivial

GF(3)-representation for Ree(3n) is 7n, we have a contradiction.

Assume that Lα−1 ∼= (P)SL2(pn) for n > 1 and |Z(Vβ)Qα−1/Qα−1| = p. Then

Lemma 2.2.1 (iv), (v) implies that Lβ is generated by three conjugates of

Z(Vα−1)Qβ/Qβ from which it follows that |V | ≤ p6. It follows from Lemma 2.3.12

that n = 2, V is irreducible and V is either a natural SL2(p2)-module, a

natural Ω3(p2)-module, or a natural Ω−4 (p)-module. Using that Vβ ∩ Qα is a

Gα,β-invariant subgroup of Vβ of index p which contains [Vβ, S]Z(Vβ), V is a

natural Ω−4 (p)-module. Moreover, as Qβ = Vβ(Qβ ∩Qα−1) and [Qα−1, Z(Vα−1)] ≤

Zα−1 ≤ Vβ, it follows that Op(Lβ) centralizes Qβ/Vβ so that V contains the

unique non-central chief factor for Lβ within Qβ, and Lβ ∼= PSL2(p2). Applying

Lemma 2.2.10 to Vβ/Zβ, if p = 2 then it follows that V β 6= Vβ, a contradiction;
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while if p = 3, then by Lemma 2.2.10, [Vβ/Zβ, S, S] is 2-dimensional as a

GF(3)S-module and it follows from the structure of a natural Ω−4 (3)-module

described in Lemma 2.2.9 that ZαZ(Vβ) = [Vβ, S, S] = [Vβ, Vα−1∩Qα, Vα−1∩Qα] ≤

Vα−1, a contradiction.

Thus, Z(Vβ) ≤ Qα−1 and by a previous observation, Z(Vβ) = Zβ = Φ(Vβ) is of

order p and Vβ is an extraspecial group. Moreover, Vβ ∩Qα ∩Qβ has index prβ in

Vβ and is elementary abelian. Suppose that |Vβ| = p2r+1. Then |Vβ ∩Qα ∩Qβ| =

p2r+1/prβ and since the maximal abelian subgroups of Vβ have order pr+1, we

deduce that p2r/rβ 6 pr+1 and pr−1 6 rβ. We reiterate that if Vβ/Zβ contains a

unique non-central chief factor, then Vβ/Zβ is irreducible.

Suppose that Lβ ∼= (P)SU3(pn) so that rβ ≤ p2n. In particular, r − 1 6 2n and

so |Vβ| 6 p4n+3. But then |Vβ/Zβ| 6 p4n+2 and since the minimal degree of a

GF(p)-representation on Lβ is 6n, we conclude that n = 1, p = 3 and Vβ/Zβ is a

natural module for Lβ. But then Vβ ∩Qα is a Gα,β-invariant subgroup of index 3,

and we have a contradiction by Lemma 2.2.13 (iii). Suppose that Lβ ∼= Ree(3n).

Then r− 1 6 2n and so |Vβ/Zβ| 6 p4n+2, a contradiction since the minimal degree

of a GF(3)-representation on Lβ is 7n. If Lβ ∼= Sz(2n), then rβ ≤ pn and so

r − 1 6 n and |Vβ| 6 22n+3. Then |Vβ/Zβ| 6 22n+2, a contradiction since the

minimal degree of a GF(2)-representation on Lβ is 4n and n > 1.

Hence, we may suppose that S/Qβ is elementary abelian of order pn and n > 1.

Then |Vβ/Zβ| 6 p2n+2. If n > 3, then Lβ ∼= PSL2(pn) or SL2(pn). Moreover,

|Vβ/Zβ| < p3n and so Vβ/Zβ is irreducible and described by Lemma 2.3.12.

In particular, Vβ/Zβ is not a natural Ω3(pn)-module. Since Vβ ∩ Qα is a

Gα,β-invariant subgroup of index p, Vβ/Zβ is not a natural SL2(pn)-module or a

natural Ω−4 (pn/2)-module. If Vβ/Zβ is a triality module, then n = 3a for some a > 1.
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Then |Vβ/Zβ| = p6a+2 > p8a from which it follows that a = 1, Vβ/Zβ is irreducible

and |Vβ| = p9. Now, Cβ ≤ Qα. Moreover, since Cα−1(Vβ ∩Qα ∩Vα−1) has index at

most p4 in Cα−1Vα−1 and is centralized by Cβ, Cβ ≤ Qα−1 by Lemma 2.2.11 (iii).

Since Zα 6≤ Cβ, we have that Cβ = Zβ, Qβ = Vβ and |S| = p12. We may assume

thatG is a minimal counterexample to Theorem 5.2.2 and we letX = 〈RαGα,β, Gβ〉

and Q be the largest subgroup of S normal in X, so that Zβ ≤ Q as Zβ E X.

Note that if Rα ≤ Gα,β then by Lemma 5.2.17, Rα = Qα, a contradiction. Thus,

RαGα,β/Qα has a strongly p-embedded subgroup and Q ≤ Qα. Then, as Q E Lβ

and Q ≤ Qα ∩ Qβ, we have that Zβ ≤ Q ≤ Cβ = Zβ. Now, X/Q satisfies

Hypothesis 5.2.1 and is a b = 1 type amalgam with |S/Q| = p11. Comparing

with Theorem 5.2.2, since G was an assumed minimal counterexample, no such

examples exist.

Hence, we may suppose that S/Qβ is elementary abelian of order p2 so that

|Vβ/Zβ| 6 p6. Then O3(Lβ) 6∼= PSL2(8) since the minimal degree of a

GF(3)-representation is 7. If Lβ is isomorphic to a central extension of PSL3(4)

then Vβ/Zβ is irreducible and one can check that since Zα/Zβ is Gα,β-invariant and

of order 3, and Vβ ∩ Qα is Gα,β-invariant and index 3, we get a contradiction. If

Lβ ∼= M11, then using that Vβ/Zβ is irreducible, we conclude that |Vβ/Zβ| = 35,

and |Vβ| = 36, a contradiction since Vβ is extraspecial.

Thus, Lβ ∼= SL2(p2) or PSL2(p2) and Vβ/Zβ is described by Lemma 2.3.12. Since

Vβ ∩ Qα is a Gαβ-invariant subgroup of index p containing [Vβ, S] Lemma 2.3.12

implies that Vβ/Zβ is a natural Ω−4 (p)-module and |Vβ| = p5. Now, as Lβ/Cβ

embeds in the automorphism group of Vβ, we infer that Qβ = VβCβ. Moreover,

using [Win72], if p = 2 then Lβ ∼= Out(Vβ) ∼= Ω−4 (2) and Vβ ∼= Q8 ∗D8 ∼= 21+4
− ; and

if p = 3 then Vβ has exponent 3 and Lβ is isomorphic to a subgroup of Sp4(3).
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Suppose that p = 3 and let K ∈ Syl2(Lβ). Since Lβ ∼= PSL2(9), K ∼= Dih(8).

Letting 1 6= i ∈ Z(K), we have that |CVβ/Zβ(i)| = 9 and by coprime action Vβ =

CVβ(i)[Vβ, i]. Since [Vβ, Vβ] ≤ CVβ(i) it follows from the three subgroup lemma that

[[Vβ, i], CVβ(i)] = {1} and since |[Vβ, i]| 6 33, it follows that Zβ = CVβ(i) ∩ [Vβ, i]

and CVβ(i) ∼= [Vβ, i] ∼= 31+2
+ . Since i ≤ Z(K), K normalizes [Vβ, i] and since

Zβ = Z(Lβ), K acts trivially on Zβ = Z([Vβ, i]) and by [Win72], K embeds into

Sp2(3) ∼= SL2(3). But SL2(3) has quaternion Sylow 2-subgroups, a contradiction.

Thus, we have shown that p = 2. Now, Zα 6≤ Cβ and so Zβ = Cβ ∩ Qα−1 has

index at most 4 in Cβ and |Cβ| 6 8. Since Z(Cβ) is centralized by Lβ = O2(Lβ)Cβ

and Qα is self centralizing, Z(Cβ) ≤ Z(Qα) = Zα. Thus, Z(Cβ) = Zβ and as

|Cβ| 6 8, either Cβ = Zβ, or Cβ ∼= Q8 or Dih(8). If Cβ = Zβ then we have that

Qβ = Vβ ∼= 21+4
− , |S| = 27 and |Qα| = 26. Since Zα ≤ Φ(Qα) and Rα 6= Qα,

we have that Zα = Φ(Qα) and Qα/Zα is a faithful quadratic 2F-module for Lα.

As Lα/Rα
∼= Sym(3), using Lemma 2.3.10 and Proposition 2.3.19, it follows that

Lα ∼= (3 × 3) : 2. Now, for every subgroup Z of Zα of order 2, is easy to check

that Qα/Z is an extraspecial group. In the language of Beisiegel [Bei77], Qα is an

ultraspecial 2-group of order 26. Checking in MAGMA utilizing the Small Groups

library, the automorphism groups of all such groups have 3-part at most 9. Since

there is r ∈ (Lβ∩Gα,β) a 3-element centralizing Zα by Lemma 2.2.9 (v), r ∈ Gα\Lα

and a Sylow 3-subgroup of Gα has order at least 27, and as Gα acts faithfully on

Qα, we have a contradiction.

Thus, Cβ is non-abelian of order 8. Furthermore, |S| = 29 and if Qα/Zα is a

natural SU3(2)-module for Lα ∼= SU3(2)′, then since Cβ is Gα,β-invariant, there

is a 3-element in Lα ∩ Gα,β which acts non-trivially on Cβ so that Cβ ∼= Q8 and

Qβ = 21+6
+ . Thus, to complete the proof, it suffices to show that Qα/Zα is a natural
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SU3(2)-module. Now, Qα ∩ Qβ = Zα(Qα ∩ Qα′) has index 4 in Qα and, modulo

Zα, is centralized by Zα′ . It is clear that Zα′ acts quadratically on Qα/Zα and,

since Zα ≤ Φ(Qα) and Rα 6= Qα, Lα is determined by Proposition 2.3.19. Since

Lα/Rα
∼= Sym(3), we need only rule out the case where Lα ∼= (3× 3) : 2.

Assume that Lα ∼= (3 × 3) : 2 and |Cβ| = 8. Observe that Qα = (Qα ∩ Qβ)(Qα ∩

Qα−1) = (Vβ ∩ Qα)(Vα−1 ∩ Qβ)(Qβ ∩ Qα ∩ Qα−1). Then, Vβ ∩ Qα ∩ Qα−1 =

Vα−1∩Qα∩Qβ = Zα, and it follows that Zα = Φ(Qα). By coprime action, we have

that Qα/Zα = [Qα/Zα, O
2(Lα)] × CQα/Zα(O2(Lα)) where |[Qα/Zα, O

2(Lα)]| = 24.

Taking Q∗α to be the preimage in Qα of [Qα/Zα, O
2(Lα)], form S∗ = VβQ

∗
α and

L∗λ = 〈(S∗)Lλ for λ ∈ {α, β}. It is clear that S∗ ∈ Syl2(L∗λ), Vβ = O2(L∗β)

and Q∗α = O2(L∗α), and L∗λ/O2(L∗λ) ∼= Lλ for λ ∈ {α, β}. Then for K a Hall

2′-subgroup of Gα,β, we conclude that (L∗αK,L∗βK,S∗K) satisfies Hypothesis 5.2.1

and since G is a minimal counterexample, comparing with Theorem 5.2.2, we have

a contradiction.

Corollary 5.3.18. Suppose that outcome (ii) in Proposition 5.3.17 holds and G is

obtained from a fusion system satisfying Hypothesis 5.1.12. Then F is isomorphic

to the 2-fusion system of PSp6(3).

Proof. Since Qα ∈ Syl2(O2(Lα)) and Vβ ≤ S ∩ O2(Lβ) is not contained in Qα, it

follows that O2(O2′(F)) = O2′(F) so O2′(F) is reduced. Comparing with the lists

in [AOV17], it follows that O2′(F) is isomorphic to the 2-fusion system of PSp6(3).

Furthermore, by [AOV17, Proposition 6.4], the only fusion system supported on a

Sylow 2-subgroup of PSp6(3) with O2(F) = {1} is the fusion category of PSp6(3).

Thus, F = O2′(F) and the result holds.

In summary, in this section we have proved the following:
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Theorem 5.3.19. Suppose that A = A(Gα, Gβ, Gα,β) is an amalgam satisfying

Hypothesis 5.2.1. If Zα′ 6≤ Qα, then one of the following holds:

(i) A is a weak BN-pair of rank 2;

(ii) A is a symplectic amalgam; or

(iii) p = 2, |S| = 29, Lβ ∼= Alt(5), Qβ
∼= 21+6

− , Vβ = O2(Lβ), Vβ/Zβ is a natural

Ω−4 (2)-module for Lβ, Lα ∼= SU3(2)′, Qα is a special 2-group of shape 22+6

and Qα/Zα is a natural SU3(2)-module.

Consequently, if A is obtained from a fusion system satisfying Hypothesis 5.1.12,

then F is not a counterexample to the Main Theorem.

5.4 Zα′ ≤ Qα

We now begin the second half of our analysis, where Zα′ ≤ Qα so that [Zα, Zα′ ] =

{1}.

Lemma 5.4.1. The following hold:

(i) Zβ = Ω(Z(S)) = Ω(Z(Lβ)) and b is odd; and

(ii) Z(Lα) = {1}.

Proof. Since Zα′ ≤ Qα we have that {1} = [Zα, Zα′ ]. Then, for T ∈ Sylp(Gα′,α′−1),

as Zα 6≤ Qα′ , Qα′ < CT (Zα′) and by Lemma 5.2.10 (ii), we get that Zα′ =

Ω(Z(T )) = Ω(Z(Lα′). By Lemma 5.2.7 (iii), Zα 6≤ Ω(Z(Lα)) and so α and α′

are not conjugate. Thus, α′ is conjugate to β, b is odd and Zβ = Ω(Z(S)) =
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Ω(Z(Lβ))). Since Lβ acts transitively on ∆(β), by Lemma 5.2.7 (iv), we conclude

that Z(Lα) = {1}.

Lemma 5.4.2. Suppose that b > 1. Then Vβ is abelian, {1} 6= [Vβ, Vα′ ] ≤ Vα′ ∩Vβ

and Vβ acts quadratically on Vα′.

Proof. Since Zα ≤ Vβ and Zα 6≤ Qα′ it follows that that Vβ 6≤ CLα′ (Vα′). By

minimality of b, Vβ ≤ Qα′−1 ≤ Lα′ and so {1} 6= [Vβ, Vα′ ] ≤ Vα′ . Again, by

minimality of b, Vα′ ≤ Qα+2 ≤ Lβ and so [Vβ, Vα′ ] ≤ Vα′ ∩ Vβ. Since Vβ is abelian,

[Vα′ , Vβ, Vβ] = {1}, completing the proof.

Lemma 5.4.3. Suppose that b > 1 and let U/V to be any non-central chief factor

for Lα′ inside of Vα′. If p is an odd prime then for L̃α′ := Lα′/CLα′ (U/V ), we have

one of the following:

(i) p = 3, L̃α′ ∼= 2 · Alt(5) and T = ZαQα′ ∈ Sylp(Lα′);

(ii) p = 3, L̃α′ ∼= 21+4
− · Alt(5) and T = ZαQα′ ∈ Sylp(Lα′);

(iii) p > 3 is arbitrary, L̃α′ ∼= SL2(p) and T = ZαQα′ ∈ Sylp(Lα′);

(iv) p > 3 is arbitrary and Lα′ ∼= SL2(pa+1) or (P)SU3(pa) for a > 1.

Proof. Suppose that p is an odd prime. Since [Vα′ , Vβ, Vβ] = {1} and Zα 6≤ Qα′

we deduce that [U/V, Zα, Zα] = {1} 6= [U/V, Zα], so 〈(Z̃α)Lα′ 〉 is as determined in

Lemma 2.3.5. In particular, if mp(T/Qα′) > 2, then 〈(Z̃α)Lα′ 〉 = L̃α′ ∼= SL2(pa+1)

or (P)SU3(pa) for a > 1. Additionally, in this case, by Proposition 3.2.7, we have

that Op′(Lα′) ≤ Z(Lα′) and so L̃α′ = Lα′ . If mp(T/Qα′) = 1 and 〈(Z̃α)Lα′ 〉 is

not p-solvable then L̃α′ is not p-solvable and by Lemma 2.3.5, 〈(Z̃α)Lα′ 〉 = L̃α′ ∼=

2 · Alt(5) or 21+4
− .Alt(5) if p = 3; or SL2(p) if p > 5.
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Finally, suppose that mp(T/Qα′) = 1 and 〈(Z̃α)Lα′ 〉 is p-solvable. Then p = 3,

S̃ is cyclic and Ñ := 〈(Z̃α)Lα′ 〉 ∼= SL(2, 3). Then S̃ normalizes Ñ and centralizes

a Sylow 3-subgroup of Ñ , from which it follows that S̃ centralizes Ñ . Thus,

S ∼= S̃ = (S̃ ∩ Ñ) × C
S̃
(Ñ). Since S is cyclic, C

S̃
(Ñ) = {1}, |S| = 3 and

L̃α′ = 〈(Z̃α)Lα′ 〉 ∼= SL2(3).

Lemma 5.4.4. Suppose that b > 1, CVβ(Vα′) = Vβ ∩ Qα′ and Vα′ ≤ Qβ. Then

both Zα and Vβ/CVβ(Op(Lβ)) are natural SL2(p)-modules for Lα/Rα
∼= SL2(p) and

Lβ/Rβ
∼= SL2(p) respectively. Moreover, [Qβ, Vβ] = Zβ = [Vα′ , Vβ] ≤ Vα′ ∩ Vβ and

Qβ ∈ Sylp(Rβ).

Proof. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and Vα′ ≤ Qβ. Note, that if Vα′ ≤ Qα,

then [Zα, Vα′ ] = {1} and Zα ≤ Qα′ , a contradiction. Additionally, [Zα, Vα′ , Vα′ ] ≤

[Vβ, Vα′ , Vα′ ] = {1} and it follows that both Zα and Vα′ admit quadratic action.

Hence, by Lemma 2.3.5, if mp(S/Qβ) > 1 < mp(S/Qα) then both Lα and Lβ are

groups of Lie type and G has a weak BN-pair. Then G is determined by [DS85],

and no configurations occur.

Notice that Zα ∩Qα′ = CZα(Vα′) and that Vα′ ∩Qα ≤ CVα′ (Zα). If mp(S/Qβ) = 1,

then it follows that an index p subgroup of Zα is centralized by Vα′ . Then by

Lemma 2.3.10 and as Z(Lα) = {1}, Zα is a natural SL2(p)-module for Lα/Rα
∼=

SL2(p) and |S/Qα| = p. But then an index p subgroup of Vα′ is centralized by

Zα and Vα′/CVα′ (O
p(Lα′)) is natural SL2(p)-module for Lα′/Rα′

∼= SL2(p). We

reach a similar conclusion assuming that mp(S/Qα) = 1. Then [Zα, Qβ] = Zβ so

that [Vβ, Qβ] = Zβ is of order p, and by Lemma 5.2.16, Qβ ∈ Sylp(Rβ). Since

{1} 6= [Vα′ , Vβ] ≤ [Qβ, Vβ], we conclude that Zβ = [Vα′ , Vβ] ≤ Vα′ ∩ Vβ.

Lemma 5.4.5. Suppose that b > 1, CVβ(Vα′) = Vβ ∩ Qα′ and Vα′ 6≤ Qβ. Then

Qβ ∈ Sylp(Rβ), Lα/Rα
∼= SL2(p) ∼= Lβ/Rβ and both Zα and Vβ/CVβ(Op(Lβ)) are
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natural SL2(p)-modules.

Proof. Assume that CVβ(Vα′) = Vβ ∩ Qα′ and Vα′ 6≤ Qβ. Suppose first that

|Vβ/CVβ(Vα′)| = |VβQα′/Qα′| = p. Then by Lemma 2.3.10, Vβ/CVβ(Op(Lβ))

is a natural SL2(p)-module for Lβ/Rβ
∼= SL2(p). Since Qα ∩ Qβ 6E Lβ by

Proposition 5.2.25, Qβ ∩ Op(Lβ) 6≤ Qα and Zα ∩ CVβ(Op(Lβ)) is centralized

by Qβ ∩ Op(Lβ). Now, Vβ 6= ZαCVβ(Op(Lβ)), for otherwise Qα centralizes

VβCVβ(Op(Lβ)) and Op(Lβ) centralizes Vβ, and so Zα∩CVβ(Op(Lβ)) has index p in

Zα. Thus, Zα is an FF-module and by Lemma 2.3.10, using that Z(Lα) = {1}, Zα

is a natural SL2(p)-module for Lα/Rα
∼= SL2(p). Then, [Qβ, Vβ] = [Qβ, Zα]Gβ =

Zβ ≤ CVβ(Op(Lβ)) and by Lemma 5.2.16, Qβ ∈ Sylp(Rβ) and the result holds.

Thus, |VβQα′/Qα′| > p2 and as Vβ is elementary abelian, mp(S/Qβ) > 2. If

G has weak BN-pair of rank 2, then comparing with [DS85], we have that

mp(S/Qβ) = {1} whenever b > 2. Hence, we may assume that mp(S/Qα) = {1}

by Proposition 3.2.7 and Lemma 2.3.5. Since Vβ is a quadratic module for Lβ, by

Lemma 2.3.5, Lβ is a rank 1 group of Lie type, but not a Ree group. In particular,

Lβ is p-minimal and applying the qrc lemma, we either deduce that Zα is (dual

to) an FF-module for Lα/Rα
∼= SL2(p) so that Zα is a natural SL2(p)-module for

Lα/Rα
∼= SL2(p); or Vβ contains more than one non-central chief factor for Lβ.

Suppose first that |Vα′Qβ/Qβ| > p2. If Lβ ∼= (P)SL2(pn) or Sz(2n), then by

Lemma 2.2.1 (iv),(v) and Lemma 2.2.3 (vi), at most three conjugates of Vα′Qβ/Qβ

generate Lβ and as VβQα′/Qα′ is of exponent p, we infer that |Vβ/CVβ(Op(Lβ))| 6

p3n. Since the minimal degree of a GF(2) representation for Sz(2n) is 4n, we

deduce that Lβ ∼= (P)SL2(pn), and in this case, two conjugates suffice to generate

and |Vβ/CVβ(Op(Lβ))| 6 p2n. Then by Lemma 2.3.12, |Vβ/CVβ(Op(Lβ))| = p2n,
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|VβQα′/Qα′| = pn and VβQα′ ∈ Sylp(Lα′). But Vβ acts quadratically on Vα′ and

by Lemma 2.3.11, Vβ/CVβ(Op(Lβ)) is a natural SL2(pn)-module. Since n > 2 and

ZαCVβ(Op(Lβ))/CVβ(Op(Lβ)) is a Gα,β-invariant subgroup of order p, we have a

contradiction by Lemma 2.2.6 (vi).

If Lβ ∼= SU3(pn) then, by Lemma 2.2.2 (vi), three conjugates of Vα′Qβ/Qβ generate

Lβ and as Vβ is elementary abelian, |VβQα′/Qα′| 6 p2n. But the minimal degree

of a GF(p) representation for Lβ is 6n and so Vβ/CVβ(Op(Lβ)) is a natural

SU3(pn)-module of order p6n and |VβQα′/Qα′| = p2n, impossible since Vβ acts

quadratically on Vα′ .

Finally, we assume that |Vα′Qβ/Qβ| = p. If CVα′ (Vβ) = Vα′ ∩ Qβ then by

Lemma 2.3.10, Lα′/Rα′
∼= SL2(p), impossible since |VβQα′/Qα′| > p2. Since

Vβ ∩Qα′ centralizes Vα′ , we may as well assume that Vα′ ∩Qβ 6≤ Qα and Vα′ ∩Qβ

acts quadratically on Zα. Thus, mp(S/Qα) = 1, for otherwise, as Zα is a quadratic

module, by Lemma 2.3.5 and Proposition 3.2.7, Lα would be isomorphic to a rank

1 group of Lie type and G would have a weak BN-pair of rank 2. Then G would

be determined by [DS85], wherein there are no examples.

Thus, Vα′ ∩Qβ ∩Qα is an index p2 subgroup of Vα′ which is centralized by Zα. If

Lα′ ∼= (P)SL2(pn) or Sz(2n), then by Lemma 2.2.1 (iv), (v) and Lemma 2.2.3 (vi),

at most three conjugates of ZαQα′/Qα′ generate Lα′ and |Vα′/CVα′ (O
p(Lα′))| 6 p6.

Considering minimal degrees of representations, we infer that Lβ ∼= (P)SL2(pn)

where n ∈ {2, 3} and, by conjugacy, Vβ/CVβ(Op(Lβ)) contains a unique non-central

chief factor for Lβ. But now, |VβQα′/Qα′ | > p2 and acts quadratically on Vα′

and applying Lemma 2.3.12, Vβ/CVβ(Op(Lβ)) is a natural SL2(p2)-module for Lβ.

Applying the qrc lemma since Lβ is p-minimal, outcome (ii) or (iii) holds so that

Zα is (dual to) an FF-module and by Lemma 2.3.10, Zα is natural SL2(p)-module
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for Lα/Rα
∼= SL2(p). But then ZαCVβ(Op(Lβ))/CVβ(Op(Lβ)) is a Gα,β-invariant

subgroup of order p in Vβ/CVβ(Op(Lβ)), impossible by Lemma 2.2.6 (vi).

Assume now that Lβ ∼= SU3(pn) so that by Lemma 2.2.2 (vi), (vii), at most four

conjugates generate ZαQα′/Qα′ generate Lα′ and |Vα′/CVα′ (O
p(Lα′))| 6 p8. Using

that mp(S/Qβ) > 2 and the minimal degree of a GF(p) representation for Lα′ is

6n, we infer that Lβ ∼= SU3(p) for p an odd prime. But in this case, again applying

Lemma 2.2.2 (vi), three conjugates suffice to generate and so Vα′/CVα′ (O
p(Lα′))

is a natural SU3(p)-module of order p6. Now, |VβQα′/Qα′| = p2 and as Vβ acts

quadratically on Vα′ , and we have a final contradiction.

We now prove the “converse” to the above statements.

Lemma 5.4.6. If b > 1 and both Vβ/CVβ(Op(Lβ)) and Zα are natural

SL2(p)-modules, then CVβ(Vα′) = Vβ ∩Qα′.

Proof. Since |Zα| = p2 and Vβ = [Vβ, Op(Lβ)]Zα, as in the proof of Lemma 5.2.31,

we may assume that |Vβ| = p3 or |Vβ| = p4. Suppose first that |Vβ| = p3. Then

Zα+2 = Vβ ∩Qα′ centralizes Vα′ and the result holds. Hence, we may assume that

|Vβ| = p4.

If Vα′ 6≤ Qβ, then [Vα′ , Vβ] 6≤ Zα+2 for otherwise Zα+2Z
g
α+2 is of order p3 and

normalized by Lβ = 〈Vα′ , V g
α′ , Rβ〉 for some appropriately chosen g ∈ Lβ, contrary

to the definition of Vβ. Thus, Zα+2[Vα′ , Vβ] = Vβ∩Qα′ is of order p3 and centralizes

Vα′ , as desired.

Assume now that Vα′ ≤ Qβ so that [Vα′ , Vβ] = Zβ. Then, if [Vβ ∩ Qα′ , Vα′ ] 6=

{1}, [Vβ ∩ Qα′ , Vα′ ] ≤ Zβ ∩ Zα′ so that Zβ = Zα′ . But then, Vβ 6≤ Qα′ and Vβ

centralizes Vα′/Zα′ , a contradiction since Op(Lα′) acts non-trivially on Vα′ . Hence,
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[Vβ ∩Qα′ , Vα′ ] = {1} and CVβ(Vα′) = Vβ ∩Qα′ , as desired.

Lemma 5.4.7. If b > 1 and Vβ/CVβ(Op(Lβ)) is a natural SL2(p)-module for

Lβ/Rβ
∼= SL2(p), then CVβ(Vα′) = Vβ ∩Qα′.

Proof. Suppose that Vβ/CVβ(Op(Lβ)) is a natural SL2(p)-module. Since Qα ∩

Qβ 6E Lα, Qβ ∩ Op(Lβ) is not contained in Qα. Since Zα 6≤ CVβ(Op(Lβ)) either

Qβ ∩ Op(Lβ) centralizes an index p subgroup of Zα so that Lα/Rα
∼= SL2(p) with

Zα the natural module; or Vβ = ZαCVβ(Op(Lβ)). In the former case, the result

follows from Lemma 5.4.6 while in the latter case, [Vβ, Qα] ≤ CVβ(Op(Lβ)) so that

Vβ is centralized by Op(Lβ), a contradiction.

5.4.1 CVβ
(Vα′) < Vβ ∩Qα′

The hypothesis for this subsection is b > 1 and CVβ(Vα′) < Vβ ∩Qα′ . Notice that

as CT (Vα′) ≤ Qα′ , this condition is equivalent to [Vβ ∩ Qα′ , Vα′ ] 6= {1}. Thus, for

some α′ + 1 ∈ ∆(α′), we have that [Vβ ∩ Qα′ , Zα′+1] 6= {1}. We fix a particular

α′ + 1 ∈ ∆(α′) for the remainder of this subsection. Since b is odd, α′ + 1 is

conjugate to α and Vβ ∩Qα′ 6≤ Qα′+1. Furthermore, [Zα′+1, Vβ ∩Qα′ , Vβ ∩Qα′ ] ≤

[Vα′ , Vβ, Vβ] = {1} so that both Zα′+1 and Vα′ admit quadratic action. Throughout,

we set H := [Vβ ∩Qα′ , Vα′ ].

Lemma 5.4.8. Suppose that CVβ(Vα′) < Vβ ∩Qα′. Then mp(S/Qβ) = 1; or G is

locally isomorphic to H where F ∗(H) ∼= 2F4(22a+1) and a > 1.

Proof. Suppose that mp(S/Qβ) > 1. Since Vα′ admits quadratic action by Vβ, we

have that Lβ ∼= Lα′ ∼= Sz(22a+1), SL2(pa+1) or (P)SU3(pr) for a > 1 and pr > 2. If

mp(S/Qα) 6= 1, since Zα′+1 admits quadratic action by Vβ∩Qα′ and Lα ∼= Lα′+1, it
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follows that both Lα and Lβ are isomorphic to groups of Lie type of rank 1. Thus,

G has a weak BN-pair and, using the results in [DS85], no configurations exists for

p odd and G is locally isomorphic to some automorphism group of 2F4(q) for q > 2,

whenever p = 2. Thus, we assume that mp(S/Qα) = 1. Now, Lβ is p-minimal and

the hypotheses of the qrc lemma are satisfied. If case (v) of the qrc lemma occurs,

then Qα∩Qβ E Lβ. But then, upon conjugating, Vβ∩Qα′ ≤ Qα′−1∩Qα′ = Qλ∩Qα′

for all λ ∈ ∆(α′) and so H = {1}. Since b > 1, case (i) of the qrc lemma is not

satisfied.

Now, Vα′ acts quadratically on Vβ so that qα′ := |Vα′Qβ/Qβ| 6 |Ω(Z(S/Qβ))| by

[DS85, (5.10)], and so, Vα′∩Qβ∩Qα has index at most pqα′ in Vα′ and is centralized

by Zα. Then |Vα′/CVα′ (O
p(Lα′))| 6 (pqα′)d where d is the number of conjugates of

ZαQα′/Qα′ required to generate Lα′ .

If Lα′ ∼= Sz(2n) then by Lemma 2.2.3 (iii), (vi), d = 3, qα′ = 2n > 2

and |Vα′/CVα′ (O
p(Lα′))| 6 23+3n. Since the minimal degree of a non-trivial

GF(2)-representation for Sz(2n) is 4n, as n > 1 is odd by Lemma 2.2.3 (i), we have

that n = 3, |Vα′Qβ/Qβ| = 8 and Vα′/CVα′ (O
p(Lα′)) is a natural Sz(8)-module. In

particular, Vα′ contains a unique non-central chief factor for Lα′ so that outcomes

(ii) or (iii) of the qrc lemma holds and Zα is (dual to) an FF-module for Lα/Rα.

By Lemma 2.3.10, Zα is a natural SL2(p)-module for Lα/Rα
∼= SL2(p). But then,

ZαCVβ(Op(Lβ))/CVβ(Op(Lβ)) is of order 2 and normalized by Gα,β, a contradiction

by Lemma 2.2.14 (iv).

If Lα′ ∼= (P)SU3(pn) then by Lemma 2.2.2 (i),(ii), (vi) and (vii), d = 4,

qα′ = pn > 2 and |Vα′/CVα′ (O
p(Lα′))| 6 p4+4n. Since the minimal degree of a

non-trivial GF(p)-representation for (P)SU3(pn) is 6n, we infer that n 6 2 and

Vα′ contains a unique non-central chief factor for Lα′ . Then, outcomes (ii) or
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(iii) of the qrc lemma holds and Zα is (dual to) an FF-module for Lα/Rα. By

Lemma 2.3.10, Zα is a natural SL2(p)-module for Lα/Rα
∼= SL2(p). If pn 6∈ {4, 9}

we have that d = 3 by Lemma 2.2.2 (vi) so that |Vα′/CVα′ (O
p(Lα′))| 6 p3+3n.

In this scenario, n = 1 and Vα′/CVα′ (O
p(Lα′)) is a natural SU3(p)-module for

Lα′ ∼= SU3(p). But then, Zα′−1CVα′ (O
p(Lα′))/CVα′ (O

p(Lα′)) is a Gα′,α′−1-invariant

subgroup of order p, and we have a contradiction by Lemma 2.2.13 (iii). If

pn ∈ {4, 9} then Vα′/CVα′ (O
p(Lα′)) is a natural SU3(p2)-module of order p12.

Again, Zα′−1CVα′ (O
p(Lα′))/CVα′ (O

p(Lα′)) is a Gα′,α′−1-invariant subgroup of order

p, and we have a contradiction by Lemma 2.2.13 (iii).

Thus, Lα′ ∼= SL2(q) so that Lα′ is generated by at most 3 conjugates of ZαQα′/Qα′

from which it follows that |Vα′/CVα′ (O
p(Lα′))| 6 p3q3

α′ . Note that if qα′ = q then

by Lemma 2.3.11, Vβ/CVβ(Op(Lβ)) is a direct sum of natural SL2(q)-modules, and

as an index pq subgroup of Vα′ is centralized by Zα with p < q, Vα′/CVα′ (O
p(Lα′))

is a natural SL2(q)-module for Lα′ . As above, outcome (ii) or (iii) in the statement

of the qrc lemma holds, Zα is a natural SL2(p)-module for Lα/Rα
∼= SL2(p) and

we have a contradiction as ZαCVβ(Op(Lβ))/CVβ(Op(Lβ)) is of order p < q and

normalized by Gα,β. Thus, |Vα′/CVα′ (O
p(Lα′))| 6 q3

α′ and applying Lemma 2.3.12,

we have that Vα′ contains a unique non-central chief factor for Lα′ and outcome (ii)

or (iii) of the qrc lemma holds. Again, Zα is a natural SL2(p)-module for Lα/Rα

and ZαCVβ(Op(Lβ))/CVβ(Op(Lβ)) is of order p < q and normalized by Gα,β. Since

q > p and Vβ acts quadratically on Vα′ , again by Lemma 2.3.12, we see that

Vα′/CVα′ (O
p(Lα′)) is a natural Ω−4 (2)-module for Lα′ ∼= PSL2(4). Notice that as

Zα is a natural SL2(p)-module, [Vβ, Qβ] = [Zα, Qβ]Gβ = Zβ.

Suppose that b > 3. Then V
(3)
β centralizes Zα′ = [Vβ ∩ Qα′ , Vα′ ] ≤ Vβ and if

Zα′ 6= Zα′−2, then V
(3)
β centralizes Zα′−1 = Zα′ × Zα′−2. But then, V (3)

β ≤ Qα′−2,
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for otherwise Lα′−2 = 〈V (3)
β , Qα′−1, Qα′−2〉 normalizes Zα′−1, a contradiction. It

follows that V
(3)
β ≤ Qα′−1 and Vβ(V (3)

β ∩ Qα′) has index at most p in V
(3)
β .

Since Lβ ∼= PSL2(4) and [V (3)
β ∩ Qα′ , Vα′ ] = Zα′ ≤ Vβ, we deduce that O2(Lβ)

centralizes V (3)
β /Vβ, a contradiction. Thus, we conclude that Zα′ = Zα′−2. Using

Lemma 5.4.4 and Lemma 5.4.5, we may assume that every critical pair satisfies the

same hypothesis as (α, α′). Suppose that V (3)
β 6≤ Qα′−2 so that there is a critical

pair (β − 3, α′ − 2). Arguing as above, we have that Zα′−2 = Zα′−4. Continuing

along the critical path, this would eventually imply that Zα′ = · · · = Zβ. But

then [Vβ ∩ Qα′ , Vα′ ] = Zβ and since Vβ ∩ Qα′ has index 2 in Vβ, this yields

a contradiction. We may as well assume that (α, α′) is a critical pair with

V
(3)
β ≤ Qα′−2 and Zα′ = Zα′−2. If b > 5, then V

(3)
β is elementary abelian

so that [Vα′ , V (3)
β ∩ Qα′−1, V

(3)
β ∩ Qα′−1] ≤ [V (3)

β , V
(3)
β ] = {1}. It follows that

V
(3)
β ∩Qα′−1 = Vβ(V (3)

β ∩Qα′) has index 2 in V (3)
β and as Zα′ ≤ Vβ and Lβ ∼= PSL2(4),

we have that O2(Lβ) centralizes V (3)
β /Vβ, a contradiction. If b = 5, then using that

(α′ + 1, β) is a critical pair, by the above, we conclude that Zβ = Zα+3 = Zα′−2 so

that Zβ = Zα′ , and we obtain a contradiction as before.

Thus, we may assume that b = 3. By Lemma 2.2.10, we have that

Vβ/Zβ = [Vβ/Zβ, O2(Lβ)] × CVβ/Zβ(O2(Lβ)). Set V β to be the preimage in Vβ

of [Vβ/Zβ, O2(Lβ)] so that V β contains a non-central chief factor for Lβ. It follows

that Zα′ = [V β ∩ Qα′ , Vα′ ] ≤ V β so that Zα′−1 = Zβ × Zα′ ≤ V β. Since

Vβ is the normal closure of Zα′−1 in Gβ, we deduce that V β = Vβ, Vβ/Zβ is

irreducible and |Vβ| = 25. Then, |[Vβ, Vα′ ]| = 8 and Zα′−1 = [Vβ, Qα′−1, Qα′−1] ≤

[Vβ, Vα′ ] = Vβ ∩ Vα′ . In addition, it follows from Lemma 2.2.9 (v) that a

Sylow 3-subgroup of Lβ ∩ Gβ,α′−1 acts irreducibly on [Vβ, Qα′−1]/Zα′−1 so that

[Vβ, Vα′ ]Lβ∩Gβ,α′−1 = [Vβ, Qα′−1]. In particular, since [Vβ, Vα′ ] ≤ [V (2)
α′−1, V

(2)
α′−1] and

[V (2)
α′−1, V

(2)
α′−1] is Gβ,α′−1-invariant, we must have that [V (2)

α′−1, V
(2)
α′−1] = [V (2)

α′−1, Qα′−1],

231



and the same holds for α upon conjugating.

Suppose that [V (2)
α′−1, V

(2)
α′−1]/Zα′−1 does not contain a non-central chief factor for

Lα′−1. Then [V (2)
α′−1, V

(2)
α′−1] = [Vβ, Qα′−1] = [Vα′ , Qα′−1] ≤ Vβ ∩ Vα′ , a contradiction,

since [Vβ, Vα′ ] is of order 8. Thus, [V (2)
α′−1, V

(2)
α′−1]/Zα′−1 contains a non-central chief

factor and again, the same result holds upon conjugating to α. Notice that if

Zα′ ≤ [V (2)
α , V (2)

α ], then Zα′−1 ≤ [V (2)
α , V (2)

α ]. Since Lβ ∼= PSL2(4), |∆(β) \ {β}| = 5

and S/Qβ acts transitively on ∆(β) \ {α, β}. Then Vβ = Zα〈ZS
α′−1〉 ≤ [V (2)

α , V (2)
α ],

a contradiction to the definition of V (2)
α .

Now, |[Vα′ , Qα′−1]| = 24 and [Vα′ , Qα′−1] ≤ [Qα′−1, Qα′−1] ≤ Qβ from which it

follows that [Vα′ , Qα′−1] = Vα′ ∩ Qβ. Thus, [V (2)
α , V (2)

α ] ≤ Qβ and [[V (2)
α , V (2)

α ] ∩

Qα′−1, Vα′ ∩ Qβ] ≤ Zα′−1 ∩ [V (2)
α , V (2)

α ] = Zβ. Hence, [V (2)
α , V (2)

α ]/Zα is an

FF-module for Lα. By coprime action, and writing V := [V (2)
α , V (2)

α ], we have that

V/Zα = [V/Zα, O2(Lα)]×CV/Zα(O2(Lα)) and by Lemma 2.3.10, [V/Zα, O2(Lα)] is

a natural SL2(2)-module for Lα/CLα(V/Zα) ∼= SL2(2). Moreover, (Vβ ∩ V )/Zα

is of order 4 and since V/Zα 6= CV/Zα(O2(Lα))((Vβ ∩ V )/Zα), otherwise Qβ

centralizes V/CV/Zα(O2(Lα)), and (Vβ ∩ V )/Zα 6≤ CV/Zα(O2(Lα)), we must have

that Vβ/Zα ∩ CV/Zα(O2(Lα)) is of order 2. Taking the preimage in Vβ and

quotienting by Zβ, it follows that there is a Gα,β-invariant subgroup of [Vβ/Zβ, Qα]

which contains Zα/Zβ and is of order 4. Since the 3-element in Lβ ∩ Gα,β acts

irreducibly on [Vβ, Qα]/Zα by Lemma 2.2.9 (v), we have a contradiction.

From this point on, we assume that mp(S/Qβ) = 1. In particular, if p is odd then

by Lemma 2.3.5, |S/Qβ| = p. The following lemma, along with its proof, appeared

earlier as Proposition 2.3.19 and Lemma 2.3.22. We recall it here as it will be

applied liberally throughout this subsection.
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Lemma 5.4.9. For γ ∈ Γ , G := Lγ and S ∈ Sylp(G), assume that V is a faithful

GF(p)G-module with CV (Op(G)) = {1} and V = 〈CV (S)G〉. If there is a p-element

1 6= x ∈ G such that [V, x, x] = {1} and |V/CV (x)| = p2 then, setting L := 〈xG〉,

one of the following holds:

(i) p is odd, G = L ∼= (P)SU3(p) and V is the natural module;

(ii) p is arbitrary, G ∼= SL2(p2) and V is the natural module;

(iii) p = 2, G = L ∼= PSL2(4) and V is a natural Ω−4 (2)-module;

(iv) p = 3, G = L ∼= 2 · Alt(5) or 21+4
− .Alt(5) and V is the unique irreducible

quadratic 2F-module of dimension 4;

(v) p is arbitrary, G = L ∼= SL2(p) and V is the direct sum of two natural

SL2(p)-modules;

(vi) p = 2, L ∼= SU3(2)′, G is isomorphic to a subgroup of SU3(2) which

contains SU3(2)′ and V is a natural SU3(2)-module viewed as an irreducible

GF(2)G-module by restriction;

(vii) p = 2, L ∼= Dih(10), G ∼= Dih(10) or Sz(2) and V is a natural Sz(2)-module

viewed as an irreducible GF(2)G-module by restriction;

(viii) p = 3, G = L ∼= (Q8 × Q8) : 3 and V = V1 × V2 where Vi is a natural

SL2(3)-module for G/CG(Vi) ∼= SL2(3);

(ix) p = 2, G = L ∼= (3 × 3) : 2 and V = V1 × V2 where Vi is a natural

SL2(2)-module for G/CG(Vi) ∼= Sym(3); or

(x) p = 2, L ∼= (3× 3) : 2, G ∼= (3× 3) : 4, V is irreducible as a GF(2)G-module

and V |L = V1 × V2 where Vi is a natural SL2(2)-module for L/CL(Vi) ∼=

Sym(3).
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Moreover, if V is generated by a NG(S)-invariant subspace of order p then (G, V )

satisfies outcome (iii), (vii) (ix) or (x).

Lemma 5.4.10. Suppose that CVβ(Vα′) < Vβ ∩ Qα′. Then Lα/Rα 6∼= SL2(p2),

Vα′ 6≤ Qβ and either:

(i) Lα/Rα
∼= SL2(p) and Zα is a natural SL2(p)-module; or

(ii) Zα ∩ Qα′ 6≤ Qα′+1 and Zα′+1 ∩ Qβ 6≤ Qα, and there is x ∈ S \ Qα such that

[V, x, x] = {1}, |Zα/CZα(x)| = p2 and both Lα/Rα and Zα are determined by

Lemma 5.4.9.

Proof. Suppose that Vα′ ≤ Qβ. If Zα′+1 is a natural SL2(q)-module then Zα′ =

[Zα′+1, Vβ ∩ Qα′ ] = H ≤ [Vβ, Vα′ ] ≤ Zβ and Zα′ = Zβ. But then [Vβ, Vα′ ] = Zα′

and Op(Lα′) centralizes Vα′/Zα′ , a contradiction. Thus, as Z(Lα′+1) = {1}, Zα′+1

is not an FF-module for Lα′+1 and, by conjugation, Zα is not an FF-module for

Lα. If [Zα ∩ Qα′ , Vα′ ] = {1} then, as mp(S/Qβ) = 1, |Zα/CZα(Vα′)| 6 |Zα/Zα ∩

Qα′ | = p and Zα is an FF-module, a contradiction. Without loss of generality

we may assume that Zα ∩Qα′ 6≤ Qα′+1. Suppose that |(Zα ∩Qα′)Qα′+1/Qα′+1| >

|Zα′+1Qα/Qα|. Then,

|Zα′+1/CZα′+1(Zα ∩Qα′)| 6 |Zα′+1/CZα′+1(Zα)|

= |Zα′+1Qα/Qα|

6 |(Zα ∩Qα′)Qα′+1/Qα′+1|

= |(Zα ∩Qα′)/CZα∩Qα′ (Zα′+1)|,

a contradiction since Zα′+1 was assumed not to be an FF-module. So assume now

that |(Zα∩Qα′)Qα′+1/Qα′+1| < |Zα′+1Qα/Qα|. In particular, since mp(S/Qα′) = 1,
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we deduce that |Zα/Zα ∩ Qα′+1| 6 |Zα′+1Qα/Qα| and by a similar calculation

as before, Zα′+1Qα/Qα is an offender on Zα, a contradiction since Zα is not an

FF-module. Thus, Vα′ 6≤ Qβ.

Suppose that Vα′ ∩ Qβ ≤ Qα. Since mp(S/Qβ) = 1, it follows that Vα′ ∩ Qβ is

of index p in Vα′ and is centralized by Zα. In particular, Vα′ contains a unique

non-central chief factor, Lα′/Rα′
∼= SL2(p) and Vα′/CVα′ (O

p(Lα′)) is a natural

SL2(p)-module. Since Zα 6≤ CVβ(Op(Lβ)), it follows that Zα/CZα(Op(Lβ)) is of

order p. Since Qα ∩Qβ 6E Lβ by Proposition 5.2.25, Qβ ∩Op(Lβ) is not contained

in Qα and centralizes a subgroup of index p in Zα. It follows that Zα is the natural

module for Lα/Rα
∼= SL2(p).

Hence, Vα′∩Qβ 6≤ Qα. If Zα∩Qα′ ≤ Qλ for all λ ∈ ∆(α′), then [Zα∩Qα′ , Vα′ ] = {1}

and since Vα′ ∩ Qβ acts non-trivially on Zα and mp(S/Qα′) = 1, as above, Zα is

a natural module for Lα/Rα
∼= SL2(p) and (i) is satisfied. Suppose now that

Zα ∩ Qα′ 6≤ Qδ for some δ ∈ ∆(α′) and Zδ ∩ Qβ ≤ Qα. Then p 6 |Zδ/CZδ(Zα ∩

Qα′)| 6 |Zδ/Zδ ∩ Qβ ∩ Qα| = |ZδQβ/Qβ| = p and Zδ is an FF-module. By

conjugation, Zα is a natural SL2(p)-module and Zα ∩Qα′ = Zβ centralizes Zδ and

so Zα ∩Qα′ ≤ Qδ, a contradiction.

Thus, we now suppose that Zα ∩Qα′ 6≤ Qδ and Zδ ∩Qβ 6≤ Qα. Since Zα ∩Qα′ ≤

Vβ∩Qα′ 6≤ Qδ, without loss of generality, we may as well relabel α′+1 and assume

that δ = α′ + 1. Thus, Zα ∩Qα′ 6≤ Qα′+1 and Zα′+1 ∩Qβ 6≤ Qα.
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Now,

|Zα/CZα(Zα′+1 ∩Qβ)| 6 |Zα/CZα(Zα′+1)|

6 p|(Zα ∩Qα′)Qα′+1/Qα′+1|

= p|(Zα ∩Qα′)/CZα∩Qα′ (Zα′+1)|

and

|Zα′+1/CZα′+1(Zα ∩Qα′)| 6 |Zα′+1/CZα′+1(Zα)|

6 p|(Zα′+1 ∩Qβ)Qα/Qα|

= p|(Zα′+1 ∩Qβ)/CZα′+1∩Qβ(Zα)|.

If |Zα/CZα(Zα′+1 ∩ Qβ)| 6= |Zα′+1/CZα′+1(Zα ∩ Qα′)|, then, by conjugacy, one can

calculate that Zα is an FF-module for Lα/Rα
∼= SL2(q). But then, |Zα/CZα(Zα′+1∩

Qβ)| = |S/Qα| = |Zα′+1/CZα′+1(Zα∩Qα′)|, a contradiction. Thus, |Zα/CZα(Zα′+1∩

Qβ)| = |Zα′+1/CZα′+1(Zα ∩ Qα′)|. If mp(S/Qα) = 1, then we may as well assume

that |Zα/CZα(Zα′+1 ∩Qβ)| = p2 and the result holds by Lemma 5.4.9. So suppose

that mp(S/Qα) > 2. Then, as Zα is a quadratic module, Lα is a group of Lie type.

By [DS85, (5.12)], unless |Zα/CZα(Zα′+1 ∩Qβ)| 6 p2, Lα ∼= SL2(q) for some q > p

and Zα is a natural SL2(q)-module. But then, as q > p, we conclude that [Zα′+1 ∩

Qβ, Zα ∩Qα′ ] = Zβ = Zα′ = H. But then, by Lemma 2.3.10, Vβ/CVβ(Op(Lβ)) is a

natural module for Lβ/Rβ
∼= SL2(p) and since |Zα/CZα(Op(Lβ))| = |Zα/Zβ| > p,

we have a contradiction.

Thus,|Zα/CZα(Zα′+1 ∩ Qβ)| = p2 and Zα is determined by Lemma 5.4.9. To

complete the proof we need only show that Lα 6∼= SL2(p2). We obtain

contradiction as above in the case that Lα ∼= SL2(p2) with Zα an associated
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natural SL2(p2)-module. Hence, p = 2 and Zα is a natural Ω−4 (2)-module for

Lα ∼= PSL2(4). Since Qα ∩ Qβ 6E Lβ by Proposition 5.2.25, Qβ ∩ O2(Lβ) 6≤ Qα

so that S = Qα(Qβ ∩ O2(Lβ)). In particular, Zα ∩ CVβ(O2(Lβ)) = Zβ. Now,

Vα′ ∩ Qβ, acts quadratically on Zα and so |(Vα′ ∩ Qβ)Qα/Qα| = 2. Moreover,

|[Zα′+1, Qα′ ]| = 23 and since |Zα ∩ Qβ ∩ Qα| = 4 and Vα′/[Vα′ , Qα′ ] contains

a non-central chief factor by Lemma 5.2.13, we have that |S/Qβ| = 2 and

Vα′/[Vα′ , Qα′ ] is an FF-module for Lα′ . Since Zα ∩ CVβ(O2(Lβ)) = Zβ, we may

as well assume that [Vα′ , Qα′ ]/Zα′ has a non-central chief factor, and so it too

is an FF-module. But then, again since Zα ∩ CVβ(O2(Lβ)) = Zβ, we conclude

that [Vα′ , Qα′ ] = [Zα′+1, Qα′ ]C[Vα′ ,Qα′ ](O
2(Lα′)), a contradiction for then Qα′+1

centralizes [Vα′ , Qα′ ]/C[Vα′ ,Qα′ ](O
2(Lα′)). Hence, the result.

Lemma 5.4.11. Suppose that CVβ(Vα′) < Vβ ∩ Qα′. Then either Zα is a natural

module for Lα/Rα
∼= SL2(p) or the following holds:

(i) S = QαQβ;

(ii) |S/Qα| = p;

(iii) Lα/Rα ∈ {SL2(p), SU3(2)′,Dih(10), (3 × 3) : 2, (Q8 × Q8) : 3, 2 ·

Alt(5), 21+4
− .Alt(5)};

(iv) H = [Qα′ , Vα′ ] ≤ Zα′;

(v) Qβ ∈ Sylp(Rβ);

(vi) |Zα/Zβ| = p2; and

(vii) unless Lα/Rα
∼= SU3(2)′ and H < Zα′, we have that H = Zα′ and Zα =

Zβ × Zα−1 for some α− 1 ∈ ∆(α− 1).
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Proof. Since this result holds in all the relevant cases in Theorem 5.2.2, we may

assume that G is a minimal counterexample to the lemma. We assume throughout

that Zα is not a natural module for Lα/Rα
∼= SL2(p) and so Zα is determined by

Lemma 5.4.10 (ii). Suppose first that S 6= QαQβ. Since mp(S/Qβ) = 1 and Vβ

admits quadratic action, it follows from Lemma 2.3.5 that p = 2, and then by

Lemma 5.4.9 and Lemma 5.4.10, m2(S/Qα) = 1. For µ ∈ {α, β}, let Oµ be the

preimage in Lµ of O2′(Lµ) and L∗µ := OµQαQβ. Then L∗µ E Lµ and L∗µ has index

at least 2 and at most 4 in Lµ. Set K to be a Hall 2′-subgroup of Gα,β and set

G∗µ := L∗µK. Then G∗µ has index at least 2 and at most 4 in Gµ, and is normal

in Gµ. Moreover, for X = 〈G∗α, G∗β〉, X is normalized by Gα,β and G = 〈X,Gα,β〉.

Thus, the subgroup of S which is normal in X is also normal in G and so is trivial.

Hence, any subgroup of Gα,β ∩X which is normal in X is a p′-group and we can

arrange that it is contained in K ≤ G∗µ, a contradiction since G∗µ is of characteristic

p. Thus, the amalgam (G∗α, G∗β, KQαQβ) satisfies Hypothesis 5.2.1. Since G∗α and

G∗β are solvable, by minimality, (G∗α, G∗β, KQαQβ) is a weak BN-pair; or X is a

symplectic amalgam with |S| = 26. In all cases, for some µ ∈ {α, β}, we infer that

L∗µ
∼= Sym(3). But then, it follows that Lµ ∼= Sym(3) × R, where R is a 2-group,

a contradiction since mp(S/Qµ) = 1. Hence, S = QαQβ and (i) is proved.

Since mp(S/Qβ) = 1 and Vβ ∩ Qα′ acts quadratically on Zα′+1, by [DS85, (5.9)],

we deduce that Vβ ∩ Qα′ ∩ Qα′+1 has index at most p2 in Vβ and Vβ contains at

most two non-central chief factors for Lβ. By Lemma 5.2.13, Vβ/[Vβ, Qβ] contains

a non-central chief factor. Suppose that [Vβ, Qβ] also contains a non-central chief

factor. Then it follows that U := Vβ/[Vβ, Qβ] is an FF-module for Lβ and so

Vβ/C is a natural SL2(p)-module for Lβ/CLβ(U), where C is the preimage in Vβ

of CU(Op(Lβ)). Since C E Lβ, it follows from the definition of Vβ that Zα 6≤ C.

If Vβ = ZαC then [Qα, Vβ] ≤ C and Op(Lβ) centralizes U , a contradiction. Since
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Vβ/C has order p2, Zα ∩ C is Gα,β-invariant of index p in Zα. In particular,

Lα/Rα 6∼= (P)SU3(p), SU3(2)′ or SU3(2)′.2.

Since [Vβ, Qβ] contains a non-central chief factor, [Vβ, Qβ] 6≤ Zβ and it follows

from Lemma 5.4.10 that Lα/Rα
∼= Sz(2) or (3 × 3) : 4. Then [Zα, Qβ, Qβ] 6= Zβ.

Since [Vβ, Qβ] contains only one non-central chief factor, either [Vβ, Qβ, Qβ] ≤

CVβ(O2(Lβ)) or that O2(Lβ) centralizes [Vβ, Qβ]/[Vβ, Qβ, Qβ]. Suppose the latter.

Since Vβ = 〈ZLβ
α 〉, it follows that [Vβ, Qβ] = [Zα, Qβ][Vβ, Qβ, Qβ]. But then

[Vβ, Qβ, Qβ] = [Zα, Qβ, Qβ][Vβ, Qβ, Qβ, Qβ] = [Zα, Qβ, Qβ]Zβ = [Zα, Qβ, Qβ].

Then Qα centralizes [Vβ, Qβ, Qβ] and so O2(Lβ) centralizes [Vβ, Qβ] = [Zα, Qβ],

a contradiction.

Suppose now that [Vβ, Qβ, Qβ] ≤ CVβ(O2(Lβ)). Then [Vβ, Qβ, Qβ] = [Zγ, Qβ, Qβ]

for all γ ∈ ∆(β). Let L∗β := CLβ([Vβ, Qβ, Qβ]). Since |Qβ/Qβ∩Qα| = 4, Qα∩Qβ 6E

Lβ, S = QαQβ and 〈Qγ | γ ∈ ∆(β)〉 ≤ L∗β, L∗β has index at most 2 in Lβ and

L∗β/O2(L∗β) ∼= Lβ/Qβ. Set S∗ = L∗β ∩S so that Qα ≤ S∗ and notice that if S = S∗,

then L∗β = Lβ and S centralizes [Zα, Qβ, Qβ], contradicting the structure of Zα.

Thus, L∗β and S∗ have index exactly 2 in Lβ and S respectively. Set L∗α := 〈(S∗)Gα〉.

Then, L∗α has index 2 in Lα and L∗α/Rα
∼= (3×3) : 2 or Dih(10). Setting K to be a

Hall 2′-subgroup of Gα,β and G∗µ := L∗µK for µ ∈ {α, β}, we have that G∗µ has index

2 in Gµ and the amalgam X∗ := (G∗α, G∗β, KS∗) satisfies Hypothesis 5.2.1. Since

L∗α/Rα
∼= Dih(10) or (3× 3) : 2, comparing with the amalgams in Theorem 5.2.2,

we have a contradiction.

Hence, we assume that [Vβ, Qβ, O
p(Lβ)] = {1} and Qβ ≤ Rβ. Then by

Lemma 5.2.16, Qβ ∈ Sylp(Rβ). Moreover, by Lemma 5.4.7, Vβ/[Vβ, Qβ] is a

2F-module for Lβ, but not an FF-module. Since Qβ ∩ Op(Lβ) 6≤ Qα, it follows

that Qβ ∩Op(Lβ) centralizes [Zγ, Qβ] = [Vβ, Qβ] for all γ ∈ ∆(β).
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Suppose first that |S/Qα| > p. Since S = QαQβ and Qβ ∩ Op(Lβ) centralizes

[Zα, Qβ], Lα/Rα 6∼= Sz(2) or (3 × 3) : 4. Set Q∗β := 〈(Qα ∩ Qβ)Gβ〉. Then Q∗β

centralizes [Zα, Qβ]. If S = Q∗βQα then S centralizes [Zα, Qβ]. However, since

|S/Qα| > p, comparing with the list in Lemma 5.4.9, we have a contradiction.

So Q∗β < Qβ and Q∗βQα < S. Then, Q∗βQα is a proper Gα,β-invariant subgroup

of S/Qα, from which it follows that Lα/Rα
∼= (P)SU3(p) or SU3(2)′.2. Since Q∗β

centralizes [Zα, Qβ], |Q∗βQα/Qα| = p.

If p = 2, then as m2(S/Qβ) = 1, Lβ is solvable. Set L∗β := CLβ([Vβ, Qβ]).

Then, Q∗β ≤ O2(L∗β) and since O2(L∗β) is Gα,β-invariant and centralizes [Zα, Qβ],

|O2(L∗β)Qα/Qα| = 2 and Q∗β = O2(L∗β). Moreover, S∗ := QαQ
∗
β = S ∩ L∗β ∈

Syl2(L∗β). Setting L∗α := 〈(S∗)Gα〉, we have that L∗α E Gα and S∗ ∈ Syl2(L∗α).

For µ ∈ {α, β}, set G∗µ := L∗µK, where K is a Hall 2′-subgroup of Gα,β. Then

the amalgam X := (G∗α, G∗β, S∗K) satisfies Hypothesis 5.2.1 and since Lα∗/Rα is

isomorphic to a proper subgroup of SU3(2), we have a contradiction.

Thus, p is odd and Lα/Rα
∼= (P)SU3(p). But then mp(S/Qα) = 2 so that Rα =

Qα by Proposition 3.2.7, and H = Zα′ ≤ Vβ. Moreover, since Vβ/[Vβ, Qβ] is a

2F-module for Lβ and mp(S/Qβ) = 1, by Lemma 5.4.9, we deduce that Lβ/Rβ
∼=

SL2(p), (Q8×Q8) : 3, 2 ·Alt(5) or 21+4
− .Alt(5) with the latter three only occurring

when p = 3. In particular, |S/Qβ| = p.

Suppose first that b > 3. If V (2)
α ∩ Qα′−2 6≤ Qα′−1, then as Zα′ is centralized

by Qα′ , Qα′−1 and V (2)
α , we have that Zα′ ≤ Z(Lα′−1), a contradiction. Thus,

V (2)
α ∩ Qα′−2 = Zα(V (2)

α ∩ · · · ∩ Qα′) has index at most p in V (2)
α . Moreover,

Zα′+1 ∩Qβ normalizes V (2)
α and [Zα′+1 ∩Qβ, V

(2)
α , V (2)

α ] = {1}. But Zα′+1 ∩Qβ has

order p5 and it follows that V (2)
α ∩ · · · ∩Qα′ = (Zα ∩Qα′)(V (2)

α ∩ · · · ∩Qα′+1) and

Zα′+1 ∩ Qβ centralizes an index p subgroup of V (2)
α /Zα. Since Lα ∼= (P)SU3(p),
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this is a contradiction.

Suppose now that b = 3. Then Lα′−1 = 〈Qα′ , Qβ, Qα′−1〉 centralizes Zα′ ∩ Zβ and

so, Zα′ ∩ Zβ = {1}. Then [Zα′+1 ∩ Qβ, Zα ∩ Qα′ ] ≤ Zα′ ∩ Zβ = {1} and since

mp(S/Qβ) = 1, an index p subgroup of Zα is centralized and Zα is an FF-module,

a contradiction.

Thus, |S/Qα| = p and, as Qα ∩ Qβ 6E Lβ by Proposition 5.2.25, Qβ = (Qα ∩

Qβ)(Qγ ∩Qβ) for some γ ∈ ∆(β). Thus, Lβ = 〈Qγ | γ ∈ ∆(β)〉 centralizes [Vβ, Qβ]

and [Vβ, Qβ] ≤ Zβ. The remaining properties follow from Lemma 5.4.9 and may

be checked in MAGMA.

Lemma 5.4.12. Suppose that CVβ(Vα′) < Vβ ∩ Qα′. If Zα is a natural

SL2(p)-module for Lα/Rα
∼= SL2(p) then for V := Vβ/CVβ(Op(Lβ)) either:

(i) V is a natural Sz(2)-module for Lβ/Rβ
∼= Dih(10) or Sz(2); or

(ii) V is a 2F-module for Lβ/Rβ
∼= (3× 3) : 2 or (3× 3) : 4.

Proof. By Lemma 5.4.7, V is not an FF-module and so, as V is a quadratic

2F-module and mp(S/Qβ) = 1, the structure of V and Lβ/Rβ follows from

Lemma 5.4.9. Since ZαCVβ(Op(Lβ))/CVβ(Op(Lβ)) is of order p and Gα,β-invariant

and Vβ = 〈ZLβ
α 〉, by Lemma 5.4.9, we conclude that Lβ/Rβ

∼= Sz(2),Dih(10),

(3× 3) : 2 or (3× 3) : 4, as required.

Lemma 5.4.13. Suppose that CVβ(Vα′) < Vβ ∩ Qα′, Zα is not a natural

SL2(p)-module and V (2)
α /Zα contains a unique non-central chief factor U/V for

Lα. Then U/V is not an FF-module for Lα.

Proof. Suppose that U/V is an FF-module for Lα. By Lemma 5.2.13,
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V (2)
α /[V (2)

α , Qα] contains a non-central chief factor for Lα. Set C to be the

preimage in V (2)
α of C

V
(2)
α /Zα

(Op(Lα)). Then [V (2)
α , Qα] ≤ C and since U/V is an

FF-module and |S/Qα| = p, by Lemma 2.3.10, V (2)
α /C is isomorphic to a natural

SL2(p)-module. In particular, as Vβ 6≤ C, VβC/C is of order p for otherwise Qβ

centralizes V (2)
α /C. But now, Vβ∩C has index p in Vβ and is normalized by Lα. By

conjugacy, an index p subgroup of Vβ is normalized by Lα+2, and by transitivity,

this subgroup is contained in Vα+3 so that Vβ ∩ Vα+3 is of index p in Vβ. But

then, as Vβ 6≤ Qα′ , Vβ ∩ Qα′ = Vβ ∩ Vα+3 = Vβ ∩ Cα′ and [Vβ ∩ Qα′ , Vα′ ] = {1},

contradicting the initial assumption.

Lemma 5.4.14. Suppose that CVβ(Vα′) < Vβ ∩Qα′. Then b = 3.

Proof. Suppose that b > 3 and Zα is not a natural SL2(p)-module. Then Zα is

as described in Lemma 5.4.11. If V (2)
α ≤ Qα′−2 or V (2)

α ∩ Qα′−2 ≤ Qα′−1, then as

|S/Qα| = p, mp(S/Qβ) = 1 and V (2)
α is elementary abelian, Zα(V (2)

α ∩Qα′) has index

at most p in V (2)
α . Moreover, since Zα is not the natural module, V (2)

α ∩ Qα′ =

(Zα ∩ Qα′)(V (2)
α ∩ Qα′+1) and it follows that there is a unique non-central chief

factor in V (2)
α /Zα for Lα, and that it is an FF-module for Lα, a contradiction by

Lemma 5.4.13. Thus, V (2)
α 6≤ Qα′−2 and V (2)

α ∩Qα′−2 6≤ Qα′−1.

Suppose first that Lα/Rα
∼= SU3(2)′. Then H = [Vβ ∩ Qα′ , Vα′ ] = [Vα′ , Qα′ ] is of

order 4 and strictly contained in Zα′ . Moreover, since b > 3, H is centralized by

Xα′−1 := 〈V (2)
α ∩Qα′−2, Rα′−1, Qα′〉 and so either Qα′Qα′−1 is conjugate to Qα′Qα′−2

by an element of Rα′−1; or Xα′−1/CXα′−1(Zα′−1) ∼= Sym(3). In the latter case, it

follows that H is invariant under the action of a subgroup of index 3 in Lα′−1, a

contradiction to structure of Zα′−1. In the former case, it follows that [Vα′ , Qα′ ] =

[Vα′−2, Qα′−2] and since V (2)
α 6≤ Qα′−2, we may iterate backwards through critical

pairs (α − 2k, α′ − 2k) for k > 0 so that H = [Vα′ , Qα′ ] = [Vβ, Qβ] ≤ Zβ and so
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an index p subgroup of Vβ/Zβ is centralized by Vα′ . We have a contradiction by

Lemma 5.4.7.

Now, Zα′ = H ≤ Vβ, so that V (2)
α ∩Qα′−2 is not contained in Qα′−1 and centralizes

Zα′Zα′−2. It follows that Zα′ = Zα′−2. Moreover, since V (2)
α 6≤ Qα′−2 there is some

α − 2, with (α − 2, α′ − 2) a critical pair. By Lemma 5.4.6, we may assume that

(α − 2, α′ − 2) satisfies the same hypothesis as (α, α′). Iterating through critical

pairs, we conclude that Zα′ = · · · = Zβ. But then H = [Vβ ∩ Qα′ , Vα′ ] = Zβ

and Vβ/CVβ(Op(Lβ)) is a natural SL2(p)-module for Lβ/Rβ, a contradiction by

Lemma 5.4.7. Hence, whenever b > 3, Zα is a natural SL2(p)-module for Lα/Rα
∼=

SL2(p).

By Lemma 5.4.12, Lβ/Rβ
∼= (3×3) : 4 or Sz(2) and so |S/Qβ| 6= p. Moreover, since

Vβ is centralized by V (3)
β we deduce that [Vα′ , Vβ, V (3)

β ] = {1}, V (3)
β ∩Qα′−2∩Qα′−1 =

Vβ(V (3)
β ∩ · · · ∩ Qα′) and [V (3)

β ∩ · · · ∩ Qα′ , Vα′ ] = [Vα′ , Qα′ ] = Zα′ = H ≤ Vβ by

Lemma 5.4.11. Since |S/Qβ| 6= p, any non-central chief factor within V
(3)
β /Vβ is

not an FF-module for Lβ and so V
(3)
β 6≤ Qα′−2 and V

(3)
β ∩ Qα′−2 6≤ Qα′−1. But

V
(3)
β ∩ Qα′−2 centralizes Zα′−2 and Zα′ ≤ Vβ and since V (3)

β ∩ Qα′−2 6≤ Qα′−1, we

deduce that Zα′ = Zα′−2. Since V (3)
β 6≤ Qα′−2 there is a critical pair (β − 3, α′ −

2) satisfying the same hypothesis as (α, α′) by Lemma 5.4.6, and iterating back

through critical pairs, we conclude that [Vβ ∩ Qα′ , Vα′ ] = H = Zα′ = Zβ and

Vβ/CVβ(O2(Lβ)) is a natural SL2(p)-module, a contradiction by Lemma 5.4.7.

Lemma 5.4.15. Suppose that CVβ(Vα′) < Vβ ∩ Qα′ and b = 3. Then Lα/Rα
∼=

Sym(3), Zα is natural SL2(2)-module, O2(Lβ) centralizes Cβ/Vβ and one of the

following holds:

(i) Lβ ∼= Sz(2) and Vβ/Zβ is a natural module Sz(2)-module; or
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(ii) Lβ ∼= (3× 3) : 4 and Vβ/Zβ is an irreducible 2F-module.

In particular, Lβ is 2-minimal and Lβ ∩Gα,β = S in either case.

Proof. Suppose that Lα/Rα
∼= SU3(2)′ and Zα is the restriction of a natural

SU3(2)-module. Since Qα is non-abelian, by the irreducibility of Zα, Zα ≤

〈(Zβ ∩ Φ(Qα))Gα〉 ≤ Φ(Qα).

If |S/Qβ| = 2, then Qα ∩Qβ ∩Qα′−1 = Zα(Qα ∩ · · · ∩Qα′+1) and since Qα/Φ(Qα)

is not an FF-module, Lα ∼= SU3(2)′ and Qα/Φ(Qα) contains a unique non-central

chief factor, U/V say. Moreover, U/V is isomorphic to Zα and U 6≤ Qβ. But

U ∩Qβ is Gα,β-invariant subgroup of index 2 in U , a contradiction.

Applying Lemma 5.4.9, we see that Lβ/Rβ
∼= Sz(2), (3×3) : 4, SU3(2)′.2 or SU3(2).

Now Vβ(Qβ ∩ Qα′−1 ∩ Qα′) has index at most 8 in Qβ and since |S/Qβ| 6= 2, no

non-central chief factor is an FF-module for Lβ and so Qβ/Vβ contains a unique

non-central chief factor for Lβ, and this chief factor lies in Qβ/Cβ. Then, an

application of the three subgroup lemma implies that Rβ = Qβ. Suppose that

Lβ ∼= SU3(2)′.2 or SU3(2). Since Vβ(Qβ ∩Qα′) has index at most 8 in Qβ, one can

compute that the non-central chief factor for Lβ within Qβ/Cβ is not an irreducible

8-dimensional GF(2)-module for Lβ, and so it must be a natural SU3(2)-module.

But Qα∩Qβ is a Gα,β subgroup of index 2, and we have a contradiction, as before.

Thus, Lβ ∼= Sz(2) or (3 × 3) : 4. However, from the structure of Zα, we conclude

that Zβ = Zα ∩ CVβ(Op(Lβ)) has index 4 in Zα so that a subgroup of order 4 of

Vβ/CVβ(O2(Lβ)) is centralized by S = QαQβ, contradicting the structure of the

2F-modules associated to Sz(2) and (3× 3) : 4. Hence, Lα/Rα 6∼= SU3(2)′.

By Lemma 5.4.11, we may now assume that Zα = Zβ×Zα−1 for some α−1 ∈ ∆(α).
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Then [Vβ ∩ Qα′ , Vα′ ∩ Qβ] ≤ Zα′ ∩ Zβ. But Zα′Zβ ≤ Zα′−1 and by Lemma 5.4.11,

either Zα′ = Zβ, or Zα′∩Zβ = {1}. If Zα′ = Zβ, then H = [Vβ∩Qα′ , Vα′ ] = Zβ and

so Vβ/CVβ(Op(Lβ)) is a natural SL2(p)-module, a contradiction by Lemma 5.4.7.

Hence, [Zα ∩ Qα′ , Zα′+1 ∩ Qβ] ≤ [Vβ ∩ Qα′ , Vα′ ∩ Qβ] ≤ Zα′ ∩ Zβ = {1} and by

Lemma 2.3.10, Zα is an FF-module. Then, as Z(Lα) = {1}, we have that Zα is a

natural SL2(p)-module and Lβ/Rβ is determined by Lemma 5.4.12.

Suppose that |S/Qβ| = 2 so that Lβ/Rβ
∼= Dih(10) or (3 × 3) : 2. Then Cβ ≤

Qα′−1 and Cβ = Vβ(Cβ ∩ Qα′). Since [Vα′ , Qα′ ] = Zα′ ≤ Vβ, we deduce that

O2(Lβ) centralizes Cβ/Vβ. Then for r ∈ Rβ of odd order, if [r,Qβ, Vβ] = {1} then

[r, Vβ, Qβ] = {1} by the three subgroup lemma, and so r centralizes Qβ. But now,

Qβ∩Qα′−1 = Vβ(Qβ∩Qα′), and so Qβ/Vβ contains a unique non-central chief factor

for Lβ, which is a faithful FF-module for Lβ, and Lβ ∼= Sym(3) by Lemma 2.3.10

by Lemma 2.3.10.

Thus, |S/Qβ| = 4 and by Lemma 2.3.10, no non-central chief factor within Qβ is

an FF-module for Lβ. Since Cβ ≤ Qα′−1, Vβ(Cβ ∩Qα′) has index at most 2 in Cβ

and since [Qα′ , Vα′ ] = Zα′ ≤ Vβ, Vα′ centralizes Cβ/Vβ so that O2(Lβ) centralizes

Cβ/Vβ. Now, applying the three subgroup lemma, any p′-element of Rβ centralizes

Qβ/Cβ and Vβ so centralizes Qβ, and we deduce that Rβ = Qβ. By Lemma 5.4.12,

Lβ ∼= Sz(2) or (3×3) : 4 and Vβ/CVβ(O2(Lβ)) is as described in Lemma 5.4.9. Since

Lβ is solvable, applying coprime action, we have that Vβ/Zβ = [Vβ/Zβ, O2(Lβ)]×

CVβ/Zβ(O2(Lβ)) where [Vβ/Zβ, O2(Lβ)] is irreducible. Letting V β be the preimage

in Vβ of [Vβ/Zβ, O2(Lβ)], we must have that [V β ∩ Qα′ , Vα′ ] = Zα′ ≤ V β so that

Zα′−1 = Zα′×Zβ ≤ V β. But then, by definition, V β = Vβ and Vβ/Zβ is irreducible,

as required.

Proposition 5.4.16. Suppose that CVβ(Vα′) < Vβ ∩ Qα′ and b > 1. Then G is
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locally isomorphic to 2F4(2) or 2F4(2)′.

Proof. By Lemma 5.4.14 and Lemma 5.4.15, we have that b = 3, Lα/Rα
∼= Sym(3),

Zα is natural SL2(2)-module and either Lβ ∼= Sz(2) or Lβ ∼= (3 × 3) : 4. Suppose

first that Lα is also 2-minimal group. Then the amalgam is determined in [Hay92],

G has a weak BN-pair of rank 2 and the result follows by [DS85] and [Fan86].

Hence, to complete the proof, we assume that Lα is not 2-minimal and derive a

contradiction. We may choose Pα < Lα such that Pα is 2-minimal. Better, by

McBride’s lemma (Lemma 2.1.19), we may choose Pα such that Pα 6≤ Rα and

Lα = PαRα. Moreover, we may assume that G is a minimal counterexample to

Theorem 5.2.2. Form X := 〈Pα, Lβ(Gα,β ∩Pα)〉 and let Q be the largest subgroup

of S which is normal in X.

If Q = {1}, then it follows that any non-trivial normal subgroup of X which

is contained in Gα,β ∩ Pα is a 2′-group, a contradiction for then Qλ is not self

centralizing in Gλ, where λ ∈ {α, β}. Thus, no non-trivial normal subgroup of

Gα,β ∩ Pα is normal in X and the triple (Pα, Lβ(Gα,β ∩ Pα), Gα,β ∩ Pα) satisfies

Hypothesis 5.2.1. Then, by minimality and comparing with the list of amalgams

in Theorem 5.2.2, it follows that X is locally isomorphic to 2F4(2) or 2F4(2)′. In

particular, Pα/Qα
∼= Sym(3), Gβ/Qβ

∼= Sz(2) and S is isomorphic to a Sylow

2-subgroup of 2F4(2) or 2F4(2)′. But then 22 6 |Qα/Φ(Qα)| 6 23 and so, Lα is

isomorphic to a subgroup of GL3(2) which has a strongly 2-embedded subgroup.

An elementary calculation, that may be performed in MAGMA, yields Lα ∼= Pα ∼=

Sym(3) and Lα is 2-minimal, a contradiction.

Thus, Q 6= {1} and since Pα does not centralize Zβ and Q E S, we deduce that

Zα ≤ Q and so Vβ ≤ Q. Moreover, since Q ≤ Qα ∩ Qβ and Q E Lβ, Q ≤ Cβ.
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If Φ(Q) 6= {1} then Zβ ≤ Φ(Q) and arguing as above, Vβ ≤ Φ(Q). But then

O2(Lβ) centralizes Q/Φ(Q), a contradiction. Thus, Q is elementary abelian and

since CS(Q) ≤ Cβ, CS(Q) = CQα(Q) = CQβ(Q) E X and CS(Q) = Q.

Suppose that there is r ∈ Pα such that [r,Qα] ≤ Q. If r centralizes CQ(Qα),

then by the A×B-lemma, r centralizes Q. But then r centralizes Qα, and so

r is trivial. Now, since Qα is self centralizing in S, CQ(Qα) ≤ Z(Qα). But

Vα′ ∩ Qα is of index 4 in Vα′ , contains Zα′−1 and is centralized by Z(Qα) from

which it follows that Z(Qα) = Zα(Z(Qα) ∩ Qα′). Since Zα′ 6≤ Z(Qα), otherwise

Zα′−1 = Zα′ × Zβ would be normalized by Lβ = 〈Qβ, Qα, Qα′−1〉, it follows that

Vα′ ∩ Qβ centralizes Z(Qα)/Zα and so O2(Lα) centralizes Z(Qα)/Zα. Since Zβ ≤

Zα = [Z(Qα), O2(Lα)], it follows from coprime action that Z(Qα) = Zα. Hence,

for r of odd order such that [r,Qα] ≤ Q, we have that r 6≤ Rα and it follows that

r is of order 3 and 〈r〉Q/Q = O2′(Pα/Q). Then, by coprime action and as r acts

non-trivially on Zα, we have that Q = [Q, r]. But now, Q is elementary abelian and

contains Vβ, it follows that Q∩Qα′ ∩Qα′+1 is has index p2 in Q and is centralized

by Zα′+1 ∩ Qβ 6≤ Qα. In particular, Q contains at most two non-central chief

factors for Pα and Q is acted upon quadratically Vα′ ∩ Qβ. Note that Q/[Q,Qα]

is not centralized by r, and neither is [Q,Qα]. But then [Q,Qα] ≤ Z(Qα) = Zα

and Q/[Q,Qα] is an FF-module, absurd for then the action of r implies that

25 = |Vβ| < |Q| = 24. Thus, Pα/Q is of characteristic 2.

Suppose that there is s ∈ Lβ(Pα ∩ Gα,β) such that [s,Qβ] ≤ Q. Since

Lβ/Qβ
∼= Sz(2) it follows that Lβ(Pα ∩ Gα,β)/Qβ = Lβ/Qβ × (Pα ∩ Gα,β)/Qβ.

Since Q ≤ Cβ and Qβ/Cβ is an irreducible module for Lβ, s 6≤ Lβ. Hence, s

centralizes S/Qβ and so centralizes S/Q. Then s ∈ Pα and centralizes Qα/Q, and

by the previous paragraph, s = 1. Thus, Lβ(Pα ∩ Gα,β)/Q is of characteristic 2.
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Moreover, no subgroup of S properly containing Q is normal in X and since Pα/Q

is of characteristic 2, it follows that no non-trivial subgroup of (Gα,β ∩ Pα)/Q

is normal in X/Q. Then the triple (Pα/Q, (Lβ(Gα,β ∩ Pα))/Q, (Gα,β ∩ Pα)/Q)

satisfies Hypothesis 5.2.1. By minimality and since Lβ/Qβ
∼= Sz(2), X/Q is locally

isomorphic to 2F4(2) or 2F4(2)′. But there is only one non-central chief factor in

Qβ/Q for Lβ, and we have a contradiction.

5.4.2 CVβ
(Vα′) = Vβ ∩Qα′

We continue with the analysis of the case [Zα, Zα′ ] = {1}, this time with the

additional assumptions that b > 1 and [Vβ ∩ Qα′ , Vα′ ] = {1}. Recall from

Lemma 5.4.4 and Lemma 5.4.5 that this hypothesis implies that Lα/Rα
∼=

Lβ/Rβ
∼= SL2(p) and Zα and Vβ/CVβ(Op(Lβ)) are natural SL2(p)-modules.

Throughout this section, we fix the notation V λ := 〈(CVµ(Op(Lµ)))Gλ〉 whenever

λ ∈ αG, µ ∈ ∆(λ) and |Vβ| 6= p3, and we remark that when |Vβ| 6= p3 and b > 5,

for γ ∈ βG and some fixed δ ∈ ∆(γ), the subgroup 〈V µ | Zµ = Zδ, µ ∈ ∆(γ)〉 is

normal in RγQδ by essential the same argument as Lemma 5.2.19. Throughout, we

set R := [Vα′ , Vβ] so that R ≤ Zα+2CVβ(Op(Lβ)) ∩ Zα′−1CVα′ (O
p(Lα′)) ≤ Vβ ∩ Vα′

and, in particular, if |Vβ| = p3, then R ≤ Zα+2 ∩ Zα′−1. By the work done in

Section 5.4.1, we may assume in this section that every critical pair (α, α′) satisfies

the condition CVβ(Vα′) = Vβ ∩Qα′ .

As in Section 5.3.2, we intend to control the action of Op(Rα) and Op(Rβ)

using the methods in Lemma 5.2.31-Lemma 5.2.35 in the expectation of applying

Lemma 5.2.18 to force contradictions. In the following lemmas, we demonstrate

that we satisfy Hypothesis 5.2.30, required for the application of these lemmas.

Also, as in Section 5.3.2, since Lα/Rα
∼= Lβ/Rβ

∼= SL2(p), we will often make
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a generic appeal to coprime action, utilizing that Lλ is solvable when p = 2 for

λ ∈ {α, β}, and that there is a central involution tλ ∈ Lλ/Rλ which acts fixed

point freely on natural modules.

Lemma 5.4.17. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and Vα′ ≤ Qβ. Then Zα =

Z(Qα) and Zβ = Z(Qβ).

Proof. Suppose that Vα′ ≤ Qβ. We aim to show that if the conclusion of the

lemma fails to hold then R = Zβ = Zα′ for then, as Vβ 6≤ Qα′ , Op(Lα′) centralizes

Vα′ , a contradiction.

Suppose that Vα′ ≤ Qβ and Zα 6= Z(Qα). By minimality of b, and using that b is

odd, we have that Vλ ≤ Qα and Z(Qα) ≤ Qλ for all λ ∈ ∆(b−1)(α). In particular,

Z(Qα) ≤ Qα′−1 and Z(Qα) = Zα(Z(Qα) ∩ Qα′). If [Vα′ , Z(Qα) ∩ Qα′ ] = {1}, it

follows that Op(Lα) centralizes Z(Qα)/Zα and an application of coprime action,

observing that Zβ ≤ Zα = [Z(Qα), Op(Lα)], gives a contradiction. If [Vα′ , Z(Qα)∩

Qα′ ] 6= {1}, then Zα′ = [Vα′ , Z(Qα) ∩ Qα′ ] ≤ Z(Qα) and so Zα′ is centralized by

Vα′Qα ∈ Sylp(Lα) from which it follows that Zα′ = Zβ, a contradiction. Thus,

Zα = Z(Qα). Since Z(S) ≤ Z(Qα) we conclude that Z(S) = Ω(Z(S)) = Zβ is of

exponent p.

Since Vλ ≤ Qα′ for all λ ∈ ∆(b−2)(α′), again using the minimality of b and

that b is odd, we argue that Z(Qα′) ≤ Qα+2. If Z(Qα′) 6≤ Qβ then, as

Z(S) = Zβ, {1} 6= [Z(Qα′), Z(Qβ)] ≤ Z(Qα′) ∩ Z(Qβ), for otherwise Z(Qβ) is

centralized by Z(Qα′)Qβ ∈ Sylp(Lβ) and the result holds. Then, [Z(Qα′), Z(Qβ)] is

centralized by Z(Qα′)Qβ ∈ Sylp(Lβ) and since Z(S) = Zβ, [Z(Qα′), Z(Qβ)] = Zβ.

Moreover, since [Z(Qα′), Z(Qβ)] 6= {1}, Z(Qβ) 6≤ Qα′ , and by a similar reasoning,

[Z(Qα′), Z(Qβ)] = Zα′ . But then Zβ = Zα′ , a contradiction. Hence, Z(Qα′) ≤ Qβ.

249



Observe that Z(Qα′) 6≤ Qα, else Z(Qα′) is centralized by ZαQα′ ∈ Sylp(Lα′) and

Z(Qα′) = Zα′ , as desired. Then Zβ = [Z(Qα′), Zα] ≤ Ω(Z(Qα′)) so that Zβ is

centralized by ZαQα′ ∈ Sylp(Lα′) and Zβ = Zα′ , again a contradiction. Therefore,

if Vα′ ≤ Qβ, we have shown that Z(Qβ) = Zβ.

Lemma 5.4.18. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and Vα′ 6≤ Qβ. Then Zα =

Z(Qα) and Zβ = Z(Qβ).

Proof. Suppose that Vα′ 6≤ Qβ and Z(Qα′) ≤ Qβ. In addition, assume first that

Z(Qα′) ≤ Qα so that Z(Qα′) is centralized by ZαQα′ ∈ Sylp(Lα′). Set Y β :=

〈Z(Qλ) | Zλ = Zα, λ ∈ ∆(β)〉 and let r ∈ RβQα. Since r is a graph automorphism,

for λ ∈ ∆(β) such that Zλ = Zα, Z(Qλ)r = Z(Qλ·r). But now, Zλ·r = Zr
λ = Zr

α =

Zα and so Z(Qλ)r ≤ Y β. Thus, Y β E RβQα. Now, observe that by minimality

of b, and using that b is odd, Vδ ≤ Qλ and Z(Qλ) ≤ Qδ for all λ ∈ ∆(β) with

Zλ = Zα and δ ∈ ∆(b−1)(λ) by Lemma 5.2.16. In particular, Z(Qα) ≤ Y β ≤ Qα′−1.

Thus, Z(Qα) = Zα(Z(Qα) ∩Qα′) and Y β = Zα(Y β ∩Qα′).

Since Z(Qα) ∩ Qα′ is a maximal subgroup of Z(Qα) not containing Zα, we must

have that Zα 6≤ Φ(Z(Qα)). But then, by the irreducibility of Zα under the action

of Gα, Zβ ∩Φ(Z(Qα)) = Ω(Z(S))∩Φ(Z(Qα)) = {1} so that Φ(Z(Qα)) = {1} and

Z(Qα) = Ω(Z(Qα)) is elementary abelian.

Assume first that [Y β ∩Qα′ , Vα′ ] = Zα′ so that Y β 6≤ Vβ and there is some α′+ 1 ∈

∆(α′) with Y β∩Qα′ 6≤ Qα′+1. Again, using the minimality of b and that b is odd, we

deduce that Z(Qα′+1) ≤ Qα+2. Write Yβ = 〈Z(Qα)Gβ〉 so that Y β ≤ Yβ E Gβ and,

as b > 2, Yβ is abelian. Then Z(Qα′+1) normalizes Yβ, [Z(Qα′+1), Y β ∩ Qα′ , Y
β ∩

Qα′ ] ≤ [Z(Qα′+1), Yβ, Yβ] = {1} and Z(Qα′+1) is quadratic module for Lα′+1.

Moreover, by coprime action, Z(Qα′+1) = [Z(Qα′+1), Rα′+1] × CZ(Qα′+1)(Rα′+1)
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is invariant under T ∈ Sylp(Gα′,α′+1) and as Zα′ ≤ Zα′+1 ≤ CZ(Qα′+1)(Rα′+1),

we infer that Z(Qα′+1) = CZ(Qα′+1)(Rα′+1) and Z(Qα′+1) is a faithful module for

Lα′+1/Rα′+1 ∼= SL2(p). But then by Lemma 2.3.11, Z(Qα′+1) is a direct sum of

natural SL2(p)-modules. Now, since [Z(Qα′+1), Y β ∩ Qα′ ] is of exponent p and

centralized by (Y β ∩ Qα′)Qα′+1 ∈ Sylp(Gα′,α′+1), we have that [Z(Qα′+1), Y β ∩

Qα′ ] = Zα′ is of order p from which it follows that Z(Qα′+1) contains a unique

summand. Hence, Z(Qα′+1) = Zα′+1 and by conjugacy, Zα = Z(Qα). But then

Y β ≤ Vβ, and we have a contradiction.

Suppose now that [Y β ∩Qα′ , Vα′ ] = {1}. Then [Vα′ , Y β] ≤ Vβ and, as Zα 6= Zα+2,

we conclude that Y βVβ E Lβ = 〈Vα′ , Rβ, Qα〉. But Vα′ centralizes Y βVβ/Vβ so

that Op(Lβ) centralizes Y βVβ/Vβ and it follows that Y βVβ = Z(Qα)Vβ E Lβ.

Then [Z(Qα), Qβ] E Lβ and since Qα ∩ Qβ centralizes [Z(Qα), Qβ] and Qα ∩

Qβ 6E Lβ by Proposition 5.2.25, we must have that [Z(Qα), Qβ] ≤ Z(S) and

[Z(Qα), Qβ, Lβ] = {1}. Now, [Op(Lβ), Z(Qα), Qβ] ≤ [Vβ, Qβ] = Zβ and by the

three subgroup lemma [Qβ, O
p(Lβ), Z(Qα)] ≤ Zβ ≤ Zα. Since [Qβ, O

p(Lβ)] 6≤ Qα,

it follows that Op(Lα) centralizes Z(Qα)/Zα and coprime action yields Z(Qα) =

[Z(Qα), Op(Lα)]×CZ(Qα)(Op(Lα)). But Zβ ≤ Zα = [Z(Qα), Op(Lα)] and Z(Qα) =

Zα. Since Z(Qα′) ≤ Z(T ), for T ∈ Sylp(Lα′ ∩ Lα′−1), we have that Z(Qα′) = Zα′

and Z(Qα) = Zα, as required.

Thus, throughout this subsection, whenever we assume the necessary values of b,

we are able to apply Lemma 5.2.31 through Lemma 5.2.35. That the hypotheses

of these lemmas are satisfied will often be left implicit in proofs.

The first goal in the analysis of the case CVβ(Vα′) = Vβ ∩Qα′ will be to show that

b 6 5. Then the methods for b = 5 differ slightly from the techniques employed
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for lager values of b and so, for the most part, we treat the case when b = 5

independently from the the other cases. The case when b = 3 is different again

and so this case is also treated separately.

The following lemma is also valid whenever b = 3 but, as mentioned above, since

the techniques we apply when b = 3 are somewhat disparate from the rest of this

subsection, we only prove it here whenever b > 3.

Lemma 5.4.19. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b > 3. If V (2)
α ≤ Qα′−2

and Vα′ ≤ Qβ then R = Zβ ≤ Zα′−1, |Vβ| = p3, V (2)
α /Zα is an FF-module for Lα

and one of the following holds:

(i) V (2)
α ≤ Qα′−1 and [V (2)

α ∩Qα′ , Vα′ ] = Zα′ ≤ V (2)
α ; or

(ii) V (2)
α 6≤ Qα′−1 and [V (2)

α ∩Qα′ , Vα′ ] = {1}.

Proof. Suppose first that V (2)
α ≤ Qα′−1. Then V (2)

α = Zα(V (2)
α ∩ Qα′) and since

V (2)
α /Zα contains a non-central chief factor for Lα, [V (2)

α ∩ Qα′ , Vα′ ] = Zα′ 6≤ Zα.

Then, for α′ + 1 ∈ ∆(α′) with Zα′+1 6≤ Qα it follows that [Zα′+1, V
(2)
α ∩ Qα′ ∩

Qα′+1] = {1} and V (2)
α /Zα contains a unique non-central chief factor which is

an FF-module for Lα. Then by Lemma 5.2.31, |Vβ| = p3, [V (2)
α , Qα] = Zα and

Zβ = R ≤ Zα′−1 ∩ Zα+2.

Suppose now that V (2)
α 6≤ Qα′−1 and CVβ(Op(Lβ)) 6= Zβ so that by Lemma 5.2.31,

|Vβ| = p4. Then, again by Lemma 5.2.31, both V α/Zα and V (2)
α /V α contain a

non-central chief factor for Lα. If V α 6≤ Qα′−1, then V (2)
α = V α(V (2)

α ∩ Qα′) and

so Zα′ ≤ V (2)
α but Zα′ 6≤ V α. Then, since b > 3, V (2)

α is elementary abelian and

V (2)
α 6≤ Qα′−1, Zα′ = Zα′−2 = [V α, Zα′−1] ≤ V α, a contradiction. Thus, V α ≤ Qα′−1

and since V α/Zα contains a non-central chief factor, it follows that [V α∩Qα′ , Vα′ ] =
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Zα′ ≤ V α and V α/Zα is an FF-module for Lα. Since V (2)
α 6≤ Qα′−1 and V (2)

α is

abelian, Zα′ = Zα′−2, (V (2)
α ∩ Qα′−1)/V α is centralized by Vα′ and V (2)

α /V α is

also an FF-module for Lα. Then, applying Lemma 5.2.32 and Lemma 5.2.18 to

Zα′ = Zα′−2, we conclude that Vα′ = Vα′−2 ≤ Qα, a contradiction.

Thus, we assume now that CVβ(Op(Lβ)) = Zβ, |Vβ| = p3 and Zβ = R ≤ Zα′−1 ∩

Zα+2. If [V (2)
α ∩Qα′ , Vα′ ] = Zα′ ≤ V (2)

α , then Zα′−1 = Zβ×Zα′ is centralized by V (2)
α

and V (2)
α ≤ Qα′−1, a contradiction. Thus, [V (2)

α ∩Qα′ , Vα′ ] = {1}, (V (2)
α ∩Qα′−1)/Zα

is centralized by Vα′ and V (2)
α /Zα is an FF-module for Lα.

Lemma 5.4.20. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b > 5. If Vα′ 6≤ Qβ and

V (2)
α ≤ Qα′−2, then |Vβ| = p3.

Proof. Suppose that |Vβ| 6= p3 so that both V α/Zα and V (2)
α /V α contain a

non-central chief factor for Lα. Choose α′ + 1 ∈ ∆(α′) with Zα′+1 6≤ Qβ. In

particular, (α′+1, β) is a critical pair and we may assume that CVα′ (Vβ) = Vα′∩Qβ.

Set Uβ := 〈V λ | λ ∈ ∆(β), Zλ = Zα〉 so that RβQα normalizes Uβ by

Lemma 5.2.19. Setting Uα′ := 〈V µ | µ ∈ ∆(α′), Zµ = Zα′+1〉, it follows similarly

that Uα′ E Rα′Qα′+1. Throughout, for µ ∈ βG, we set Uµ := 〈(V µ+1)Lµ〉 where

µ+ 1 ∈ ∆(µ). In particular, Uβ ≤ Uβ E Lβ.

Notice throughout that if R ≤ Zα′−1, then Zα′−1Z
g
α′−1 is normalized by Lα′ =

〈Vβ, (Vβ)g, Rα′〉 for some suitable g ∈ Lα′ . Then, from the definition of Vα′ , we

conclude that Vα′ = Zα′−1Z
g
α′−1 is of order p3, as required. A similar conclusion

follows if R ≤ Zα+2.

Suppose first that Uβ 6≤ Qα′−2 and so there is some λ ∈ ∆(β) with V λ 6≤ Qα′−2

and Zλ = Zα. In particular, since Vα′−2 ≤ Qλ and Zα 6≤ Vα′−2, we deduce that

[Vα′−2, V
λ] = Zβ ≤ Vα′−2 and Zα′−2 6= Zβ. If, in addition, Uα′−2 6≤ Qβ, then there
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is δ ∈ ∆(α′−2) with [V δ, Vβ] ≤ Zδ. In particular, it follows that R ≤ [V δ, Vβ] ≤ Zδ

and since R 6≤ Zα′−1, otherwise |Vα′ | = p3, it follows that Zδ = R×Zα′−2 centralizes

V λ. But V λ 6≤ Qα′−2 and since V λ centralizes Zα′−3CVα′−2(Op(Lα′−2)) we have

that Zδ = Zα′−3 by Lemma 5.2.31. But now, Zα′−3 ≤ Vα′−2 ∩ Vα′ and again by

Lemma 5.2.31, we conclude that R ≤ Zα′−3 = Zα′−1, a contradiction.

If Uα′−2 ≤ Qβ, then for any δ ∈ ∆(α′− 2), [V δ, Vβ] ≤ Zβ ∩Zδ by Lemma 5.2.31. If

Zβ ≤ Zδ for some δ, then [V λ, Vα′−2] ≤ Zβ ≤ Zδ and |Vα′−2| = p3, a contradiction.

Thus, [Uα′−2, Vβ] = {1} and Uα′−2 ≤ Qλ so that [Uα′−2, V
λ] = Zλ ∩ Uα′−2 =

Zα ∩ Uα′−2 ≤ Zβ ≤ Vα′−2 by Lemma 5.2.31, and V λ centralizes Uα′−2/Vα′−2. But

then Op(Lα′−2) centralizes Uα′−2/Vα′−2, a contradiction by Lemma 5.2.31, for then

V α′−1Vα′−2 E Lα′−2. Thus, Uβ ≤ Qα′−2. Notice that V (2)
α is not involved in the

above arguments and so we may repeat the above arguments to conclude that

Uα′ ≤ Qα+3.

Assume now that Uβ ≤ Qα′−2 but Uβ 6≤ Qα′−1. Then, as Zα′−1 ≤ Qα, it follows

by Lemma 5.2.31 that Zα′−2 = [Uβ, Zα′−1] ≤ Zα and Zα′−2 = Zβ since Zα 6≤ Qα′ .

Then [V α′−1, Vβ] ≤ Zα′−1 ∩ Vβ and since VβUβ ≤ V
(3)
β is abelian, it follows that

[V α′−1, Vβ] ≤ Zα′−2 = Zβ and V α′−1 ≤ Qβ. If V α′−1 ≤ Qα, then [V α′−1, V λ] ≤

Zα for λ ∈ ∆(β) with Zλ = Zα and V λ 6≤ Qα′−1. Since Zα 6≤ V
(2)
α′−1 ≤ Qα′ ,

[V α′−1, V λ] ≤ Zλ ∩ Qα′ = Zα ∩ Qα′ = Zβ = Zα′−2 ≤ Zλ, a contradiction since

V λ 6≤ Qα′−1. Therefore V α′−1 6≤ Qλ and as

[V λ ∩Qα′−1, V
α′−1] ≤ Zα′−1 ∩ V λ = CZα′−1(Uβ) = Zα′−2 = Zβ ≤ Zα = Zλ,

V λ/Zλ is an FF-module for Lλ. Moreover, V (2)
λ ∩ Qα′−2 = V λ(V (2)

λ ∩ Qα′−1) and

V
(2)
λ /V λ is also an FF-module for Lλ. Then Lemma 5.2.32 implies that Op(Rλ)

centralizes V
(2)
λ . By Lemma 5.2.18, Zα+3 6= Zβ = Zα′−2 and so V

(3)
α′ ∩ Qα+3
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centralizes Zα+2 and V
(3)
α′ ∩ Qα+3 = Vα′(V (3)

α′ ∩ Qβ). Since Zβ ≤ Vα′ , have that

V
(3)
α′ /Vα′ contains a unique non-central chief factor and by Lemma 5.2.34, Op(Rβ)

centralizes V (3)
β .

By Lemma 5.2.18, Zα = Zλ implies that V α = V λ = Uβ and V (2)
α = V

(2)
λ . Thus,

V α 6≤ Qα′−1 and since V (2)
α ≤ Qα′−2, we have that V (2)

α = V α(V (2)
α ∩Qα′−1). Since

Zα′−1 6≤ V (2)
α , we conclude that [V α′−1, V (2)

α ∩Qα′−1] = Zα′−2 ≤ V α so that Op(Lα)

centralizes V (2)
α /V α, a contradiction.

Thus, we may assume for the remainder of this proof that Uβ ≤ Qα′−1. If

[Uβ ∩ Qα′ , Vα′ ] ≤ VβU
β, then Vα′ normalizes VβUβ and so Uβ = VβU

β E Lβ =

〈Vα′ , Rβ, Qα〉. But then [Qα, VβU
β] ≤ Zα[Qα, Vβ] ≤ Vβ and so, Op(Lβ) centralizes

Uβ/Vβ, V αVβ E Lβ and a contradiction is provided by Lemma 5.2.31. Thus,

Zα′ ≤ Uβ, Zα′ 6≤ VβU
β and [Uβ ∩ Qα′ , Zα′+1] = Zα′ . Furthermore, we have

that Uα′ ≤ Qα+3. If Uα′ 6≤ Qα+2, then as Zα+2 ≤ Cα′ , we deduce that

Zα+3 = [Zα+2, U
α′ ] ≤ Zα′+1 ∩ Qβ = Zα′ , a contradiction for then Zα′ ≤ Vβ.

Thus, Uα′ ≤ Qα+2.

If V α′+1 ∩Qβ ≤ Qα, [V α′+1 ∩Qβ, U
β ∩Qα′ ] ≤ Zα ∩ V α′+1 and since Zα 6≤ Qα′ and

V α′+1/Zα′+1 contains a non-central chief factor, we have that [V α′+1 ∩ Qβ, U
β ∩

Qα′ ] = Zβ ≤ Uα′ . But Uα′ = Zα′+1(Uα′ ∩ Qβ) and Vβ normalizes Uα′Vα′ so

that Uα′ = Uα′Vα′ E Lα′ = 〈Vβ, Qα′+1, Rα′〉. Thus, [Qα′+1, U
α′Vα′ ] ≤ Vα′ so

that Op(Lα′) centralizes Uα′/Vα′ from which it follows that V α′+1Vα′ E Lα′ , a

contradiction by Lemma 5.2.31.

Suppose now that V α′+1 ∩Qβ 6≤ Qα. Then [Uβ ∩Qα′+1, V
α′+1 ∩Qβ] ≤ Zα′+1 ∩Uβ

and since (α′+1, β) is critical, [Uβ∩Qα′+1, V
α′+1∩Qβ] ≤ Zα′∩Uβ. Since Zα′ 6≤ Uβ,

[Uβ ∩Qα′+1, V
α′+1 ∩Qβ] = {1}. In particular, it follows that [V α ∩Qα′+1, V

α′+1 ∩
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Qβ] = {1} and since V α/Zα contains a non-central chief factor, V α ∩Qα′ 6≤ Qα′+1

and V α/Zα is an FF-module for Lα. Since Zα′ ≤ Uβ, we either have that Zα′ =

Zα′−2; or Zα′ 6= Zα′−2 and V
(3)
β centralizes Zα′−1.

Assume first that Zα′ = Zα′−2. Since Zα′ 6≤ Uβ, Zα′−2 6≤ V α. In particular, since

V (2)
α ≤ Qα′−2, [Vα′−2, V

(2)
α ] ≤ Zα′−2∩V α = {1} and V (2)

α = V α(V (2)
α ∩Qα′+1). Since

V (2)
α /V α contains a non-central chief factor, we have that [V (2)

α ∩ Qα′+1, V
α′+1 ∩

Qβ] = Zα′ ≤ V (2)
α , Zα′ 6≤ V α and V (2)

α /V α is an FF-module for Lα. But now, by

Lemma 5.2.32, Op(Rα) centralizes V (2)
α and Lemma 5.2.18 applied to Zα′ = Zα′−2

gives Vα′ = Vα′−2 ≤ Qβ, a contradiction.

We assume that Zα′ 6= Zα′−2 for the remainder of this proof. If R ≤

Vα′−2, then as R 6≤ Zα′−1, |RZα′−1| = p3 and RZα′−1 = Vα′ ∩ Vα′−2 =

Zα′−1CVα′ (O
p(Lα′). Since V α/Zα is an FF-module, the proof of Lemma 5.2.32

implies that Op(Rα′−1) centralizes R. Then [R,Qα′ ] ≤ Zα′ and [R,Qα′−2] ≤

Zα′−2 and so Zα′−1CVα′ (O
p(Lα′)) = RZα′−1 E Lα′−1 = 〈Qα′ , Qα′−2, O

p(Rα′−1)〉.

But then, by definition, V α′−1 = RZα′−1 and V α′−1/Zα′−1 does not contain a

non-central chief factor for Lα′−1 and we have a contradiction by Lemma 5.2.31.

Thus, R 6≤ Vα′−2 and as Vβ ≤ Cα′−2, we conclude that R 6≤ [Vβ, Uα′−2] ≤ Vα′−2.

If Uβ 6≤ Qα′−2, then as Zα′ ≤ Uβ and V
(3)
β centralizes Zα′−1 = Zα′ × Zα′−2, V (3)

β =

Uβ(V (3)
β ∩Qα′) and Vα′ centralizes V (3)

β /Uβ. Then, Op(Lβ) centralizes V (3)
β /Uβ and

V
(3)
β = V (2)

α Uβ. But then, by conjugacy Vα′ ≤ V
(3)
α′−2 = V

(2)
α′−3Uα′−2 and since Vβ

centralizes V (2)
α′−3, R = [Vβ, Vα′ ] ≤ [Vβ, Uα′−2], a contradiction. Thus, Uβ ≤ Qα′−2

and as Zα′−1 = Zα′×Zα′−2 is centralized by Uβ, Uβ ≤ Qα′−1. Then, as V αVβ 6E Lβ

by Lemma 5.2.31, Uβ/Vβ contains a unique non-central chief factor. Moreover,

by a similar argument, V (3)
β ∩ Qα′−2 ≤ Qα′−1 and V

(3)
β /Uβ contains exactly one

non-central chief factor too, otherwise Op(Lβ) centralizes V (3)
β /Uβ and we arrive
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at a contradiction as before. In both cases, the non-central chief factor is an

FF-module for Lβ.

Set R1 := CLβ(Uβ/Vβ) and R2 := CLβ(V (3)
β /Uβ). Since the non-central chief factor

within V
(3)
β /Uβ is an FF-module, it follows that either R2Qβ = Rβ; or Lβ =

〈R2, Rβ, S〉 and p ∈ {2, 3} by Lemma 2.3.14 (iii) and Lemma 2.3.15 (ii), (iii).

In the former case, since V (2)
α ≤ Qα′−1, V (3)

β = V (2)
α Uβ E Lβ = 〈Vα′ , Rβ, Qα〉.

But Vα′ centralizes V (2)
α Uβ/Uβ so that Op(Lβ) centralizes V (3)

β /Uβ, a contradiction.

In the latter case, V (2)
α Uβ E R2S and if [Cβ, V (2)

α Uβ] ≤ Vβ, then [Cβ, V (2)
α Uβ] is

centralized by Op(Rβ) and so [Cβ, V (2)
α Uβ] E Lβ = 〈R1, Rβ, S〉. Thus, [Cβ, V (3)

β ] =

[Cβ, V (2)
α Uβ] ≤ Vβ and by conjugacy, R ≤ [V (3)

α′−2, Vβ] ≤ [V (3)
α′−2, Cα′−2] ≤ Vα′−2,

a contradiction. Thus, [Cβ, V (2)
α ] ≤ V α but [Cβ, V (2)

α ] 6≤ Vβ. If R1Qβ = R2Qβ

then, assuming that G is a minimal counterexample to Theorem 5.2.2, we may

apply Lemma 5.2.29 with λ = β. Since b > 5, R1Qβ normalizes V (2)
α and λ = β,

conclusion (d) holds. Then, V (4)
α ≤ V := 〈ZX

β 〉 and the images of Qα/CQα(V (2)
α

and CQα(V (2)
α )/CQα(V (4)

α ) resp. Qβ/Cβ and Cβ/CQβ(V (3)
β ) contain a non-central

chief factor for L̃α resp. L̃β, and we have a contradiction.

Thus, we may assume that R1Qβ 6= R2Qβ and again by Lemma 2.3.14 (iii) and

Lemma 2.3.15 (ii), (iii), we deduce that Lβ = 〈R2, R2, S〉. Then V (2)
α Uβ E R2S so

that V αVβ ≥ [Cβ, V (2)
α Uβ]Vβ E R2S. Furthermore, as Op(R1) centralizes Uβ/Vβ,

[Cβ, V (2)
α Uβ]Vβ E R1S so that [Cβ, V (2)

α Uβ]Vβ E Lβ. Since V αVβ 6E Lβ, we may

assume that [Cβ, V (2)
α ]Vβ < V αVβ. Now, V α/Zα is an FF-module generated

CVβ(Op(Lβ))/Zα of order p so that by Lemma 2.3.10, p2 6 |V α/Zα| 6 p3

and p4 6 |V α| 6 p5. Hence, p5 6 |V αVβ| 6 p6, accordingly. But now, as

[Cβ, V (2)
α Uβ]Vβ > Vβ, |[Cβ, V (2)

α Uβ]Vβ| > p5 and as [Cβ, V (2)
α ]Vβ < V αVβ, we get

that |V α| = p5, |V αVβ| = p6 and [Qβ, V
α] 6≤ ZαCVβ(Op(Lβ)).
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Writing Cα for the preimage in V α of CV α/Zα(Op(Lα)), we have that |Cα| = p3,

Cα ∩ Vβ = Zα, |Qα/CQα(Cα)| 6 p2 and a calculation using the three subgroup

lemma yields [Rα, Qα] ≤ CQα(Cα). Since Z(Qα) = Zα, calculating in GL3(p), we

infer that Qα/CQα(Cα) is a non-central chief factor of order p2 for Lα. Hence,

Qα/CQα(Cα) is a natural SL2(p) module for Lα/Rα.

Now, by Lemma 5.2.13, Uβ/([Uβ, Qβ]Vβ) contains the unique non-central chief

factor within Uβ/Vβ and so Op(Lβ) centralizes [Uβ, Qβ]Vβ/Vβ. Thus, [V α, Qβ]Vβ E

Lβ from which it follows that Zα ≥ [V α, Qβ, Qβ] E Lβ and [V α, Qβ, Qβ] = Zβ. But

Cα ≤ ZαCVβ(Op(Lβ))[V α, Qβ] so that [Qβ, C
α] = Zβ. In particular, CQα(Cα) ≤ Qβ

for otherwise Zβ = [Cα, Qα ∩Qβ] = [Cα, Qα] E Lα, a contradiction.

If V α′−1 6≤ Qβ, then RZβ ≤ [V α′−1, Vβ]Zβ ≤ Zα′−1Zβ. Then, as R 6≤ Zα′−1, we

get that Zβ ≤ RZα′−1 ≤ Vα′ . If V α′−1 ≤ Qβ but Vβ 6≤ Cβ, we deduce that Zβ =

[V α′−1, Vβ] ≤ Zα′−1. In either case, since Op(Rα) centralizes V (2)
α , by Lemma 5.2.18,

Zβ 6= Zα+3 and so V
(3)
α′ centralizes Zα+2 = ZβZα+3. But then V

(3)
α′ ∩ Qα+3 =

Vα′(V (3)
α′ ∩Qβ) and since Zβ ≤ Zα′−1 ≤ Vα′ , V (3)

α′ /Vα′ contains a unique non-central

chief factor, a contradiction. Thus, [Vβ, V α′−1] = {1} and Vβ ≤ CQα′−1(Cα′−1) ≤

Qα′ , a final contradiction.

Lemma 5.4.21. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b > 5. If Vα′ 6≤ Qβ

and V (2)
α ≤ Qα′−2, then Zα′−1 ≤ V

(3)
β ≤ Qα′−1, Zα′ 6≤ V (2)

α , V (3)
β /Vβ contains a

unique non-central chief factor for Lβ which, as a Lβ-module, is an FF-module

and Op(Rβ) centralizes V (3)
β .

Proof. By Lemma 5.4.20, |Vβ| = p3 so that R = [Vβ, Vα′ ] ≤ Zα′−1 ∩Zα+2. Suppose

first that V (2)
α 6≤ Qα′−1. Then Zα′−2 = [V (2)

α , Vα′−2] ≤ Zα, so that Zβ = Zα′−2. But

Zβ 6= R ≤ Zα′−1 and so Zα′−1 = R×Zβ ≤ Vβ, a contradiction since V (2)
α is abelian.
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Thus, we may assume throughout that V (2)
α ≤ Qα′−1.

Suppose that V (3)
β ∩ Qα′−2 ≤ Qα′−1. If V (3)

β ≤ Qα′−2, then V
(3)
β = Vβ(V (3)

β ∩ Qα′).

Since Op(Lβ) does not centralize V (3)
β /Vβ, Zα′ = [V (3)

β ∩Qα′ , Vα′ ] ≤ V
(3)
β . Even still,

V
(3)
β /Vβ contains a unique non-central chief factor for Lβ which is an FF-module

and by Lemma 5.2.34, Op(Rβ) centralizes V (3)
β . If Zα′ ≤ V (2)

α or [V (2)
α ∩Qα′ , Vα′ ] =

{1}, then V (2)
α E Lβ = 〈Vα′ , Qα, Rβ〉, a contradiction. The lemma follows in this

case so we may assume that V (3)
β 6≤ Qα′−2 and Zα′ = [V (3)

β ∩Qα′ , Vα′ ] ≤ V
(3)
β .

Continuing under the assumption that V (3)
β 6≤ Qα′−2 and V

(3)
β ∩ Qα′−2 ≤ Qα′−1,

since Zα′−1 = Zα′ ×R ≤ V
(3)
β and b > 5, we deduce that Zα′−1 = Zα′−3, otherwise

V
(3)
β centralizes Vα′−2. By Lemma 5.2.18, Op(Rβ) does not centralize V (3)

β and so

by Lemma 5.2.34, either V (3)
β /Vβ contains more than one non-central chief factor,

or a non-central chief factor within V (3)
β /Vβ is not an FF-module. Hence, we infer

that Zα′−1 = [V (3)
β ∩Qα′−2, Vα′ ] 6≤ Vβ. Moreover, since b > 5, [V (3)

β , Zα′+1, Zα′+1] ≤

[V (3)
β , V

(3)
α′−2, V

(3)
α′−2] = {1} and V

(3)
β admits quadratic action. In particular, if p > 5

then the Hall–Higman theorem implies that Op(Rβ) centralizes V (3)
β and so p = 2

or 3.

Notice that Zα′−1 = Zα′−3 ≤ V
(3)
β ≤ Z(V b−4

β ). Suppose that b > 7 and let

n 6 b−5
2 be chosen minimally such that V (2n+1)

β ≤ Qα′−2n. Since V (3)
β 6≤ Qα′−2,

if such an n exists then n > 2. Notice V
(5)
β centralizes Zα′−3 ≤ V

(3)
β so that

either Zα′−3 = Zα′−5 ≤ V
(3)
β or V (5)

β ≤ Qα′−4 and n = 2. Extending through

larger subgroups, it is clear that for a minimally chosen n, Zα′−1 = Zα′−3 =

· · · = Zα′−2n+1 ≤ V
(3)
β is centralized by V (2n+1)

β so that V (2n+1)
β ≤ Qα′−2n+1. Then

V
(2n+1)
β = V

(2(n−1)+1)
β (V (2n+1)

β ∩ Qα′−2n+2). Moreover, Zα′−1 = · · · = Zα′−2n+1,

V
(2n+1)
β ∩Qα′−2a ≤ Qα′−2a+1 and V (2n+1)

β ∩Qα′−2a = V
(2(a−2)+1)
β (V (2n+1)

β ∩Qα′−2a+2)

from which it follows that V (2n+1)
β = V

(2(n−1)+1)
β (V (2n+1)

β ∩ Qα′) so that Op(Lβ)
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centralizes V (2n+1)
β /V

(2(n−1)+1)
β , a contradiction. Thus, no such n exists for n 6 b−5

2

and it follows that V (b−4)
β 6≤ Qα′−b+5 = Qα+5 and Zα′−1 = · · · = Zα+6 = Zα+4. If

b = 7, then Zα′−1 = Zα′−3 = Zα+4 by definition. Since Zα′−1 6≤ Vβ, to obtain a

contradiction, we need only show that Zα+2 = Zα+4.

If Zβ is centralized by V (3)
α′ , then V (3)

α′ centralizes Zα+2 = R×Zβ and if Zα+2 6= Zα+4,

then V
(3)
α′ centralizes Vα+3 and V

(3)
α′ = Vα′(V (3)

α′ ∩ Qβ) so that V (3)
α′ /Vα′ contains a

unique non-central chief factor which is an FF-module and by Lemma 5.2.34,

Op(Rα′) centralizes V (3)
α′ . By conjugacy, Op(Rβ) centralizes V (3)

β , a contradiction.

Thus, V (3)
α′ does not centralize Zβ. Since V (3)

α′ centralizes Zα+3 × R ≤ Zα+2, we

may assume that R = Zα+3. Furthermore, since b > 5 and V
(3)
α′ is abelian, V (3)

α′ ∩

Qα+3 ∩Qα+2 ∩Qβ ≤ Cβ.

Now, Vβ ≤ Cα′−2 and since [Qλ, V
(2)
λ ] = Zλ for all λ ∈ ∆(α′ − 2), we have that

R ≤ [Vβ, V (3)
α′−2] ≤ Zα+2∩Vα′−2. If Zα+2 ≤ Vα′−2, then Zα+2 = Zα′−3 = Zα′−1 ≤ Vβ,

a contradiction and so [Vβ, V (3)
α′−2] = R and [Vβ, V (3)

α′−2 ∩Qβ] = R ∩Zβ = {1}. Then

V
(3)
α′−2 ∩ Qβ ≤ Cβ so that [V (3)

β , V
(3)
α′−2 ∩ Qβ] ≤ Vβ ∩ V (3)

α′−2. Since b > 5, Vβ 6≤ V
(3)
α′−2

and since R ≤ Vα′−2, Zα+2 ≤ V
(3)
α′−2 and Zβ ≤ V

(3)
α′−2 but Zβ 6≤ Vα′−2. If b > 7, V (3)

α′

centralizes Zβ, a contradiction by the above.

Thus, we assume that b = 7, V (3)
β 6≤ Qα′−2, V (3)

β ∩ Qα′−2 ≤ Qα′−1, Zα′−1 =

Zα′−3 6= Zα+2 and [Zβ, V (3)
α′ ] 6= {1}. Set W β = 〈V (2)

δ | Zδ = Zα, δ ∈ ∆(β)〉 so that

[Cβ,W β] = [Cβ, V (2)
α ] ≤ Zα. Then [W β, Vα′−2] ≤ Zα′−3∩Zα and by Lemma 5.2.19,

W β E RβQα. If Zβ ≤ Zα′−3 = Zα′−1, then Zα′−1 = Zβ × R = Zα+2 ≤ Vβ,

a contradiction. Thus, W β = Vβ(W β ∩ Qα′). If [W β ∩ Qα′ , Vα′ ] ≤ W β, then

V (2)
α ≤ W β E Lβ = 〈Vα′ , Qα, Rβ〉 and V

(3)
β = W β ≤ Qα′−2, a contradiction. Thus,

W β ∩ Qα′ 6≤ Qα′+1 for some α′ + 1 ∈ ∆(α′) and since Zα′+1Zα′−1 = Vα′ 6≤ Qβ,

(α′ + 1, β) is a critical pair.
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Since Vα+3 ≤ Qα′+1, [V (2)
α′+1 ∩ Qα+3, Vα+3] ≤ Zα′+1 ∩ Zα+3. If Zα+3 ≤ Zα′+1, then

Zα+3 = Zα′ 6= R so that Zα+2 = R × Zα′ = Zα′−1 ≤ Vβ, a contradiction. Thus,

[V (2)
α′+1 ∩ Qα+3, Vα+3] = {1} and V

(2)
α′+1 ∩ Qα+3 = Zα′+1(V (2)

α′+1 ∩ Cβ). Furthermore,

[V (2)
α′+1 ∩ Cβ,W β ∩ Qα′ ] ≤ V

(2)
α′+1 ∩ Zα and since Zβ 6≤ V

(3)
α′ , we have that W β ∩

Qα′ centralizes (V (2)
α′+1 ∩ Qα+3)/Zα′+1. Thus, V (2)

α′+1 6≤ Qα+3 and V
(2)
α′+1/Zα′+1 is an

FF-module. By Lemma 5.2.32, Op(Rα) centralizes V (2)
α and since V (3)

β does not

centralize Vα′−2, it follows from Lemma 5.2.18 that Zα′−2 6= Zα′−4 = R.

Suppose that ([V (3)
β , Qβ]Vβ)/Vβ contains a non-central chief factor for Lβ. In

particular, [Qβ, V
(2)
α ] 6≤ Vβ, and since V (2)

α /Zα is an FF-module, |V (2)
α | = p5. The

non-central chief factor, U/V say, is an FF-module for Lβ and Lβ/CLβ(U/V ) ∼=

SL2(p). Set R1 := CLβ(U/V ) and R2 := CLβ(V (3)
β /([V (3)

β , Qβ]Vβ)), noticing that

also Lβ/R2 ∼= SL2(p). If R1 6= Rβ, and employing Lemma 2.3.15 (iii) when p = 3,

we conclude that Lβ = 〈R1, Rβ, S〉. Similarly, if R2 6= Rβ then Lβ = 〈R2, Rβ, S〉.

Suppose that R1 6= Rβ. Then [V (2)
α , Qβ]Vβ E R1 and [V (2)

α , Qβ, Qβ] ≤ Vβ so

that [V (2)
α , Qβ, Qβ] E Lβ = 〈R1, Rβ, S〉. Since [V (2)

α , Qβ, Qβ] ≤ Zα, we have that

[V (2)
α , Qβ, Qβ] = Zβ. Setting Cα to be the preimage in V (2)

α of C
V

(2)
α /Zα

(Op(Lα)),

we have that Cα ≤ Vβ[V (2)
α , Qβ] and so [Cα, Qβ] = Zβ. As in Lemma 5.4.20

(where Cα is defined slightly differently), we see that |Qα/CQα(Cα)| = p2 and

CQα(Cα) ≤ Qβ. Now, Vβ ≤ Qα′−2 and so [Vβ, Cα′−1] ≤ Zα′−2 ∩ Zα+2 = {1}, for

otherwise Zα+2 = Zα′−1. But then, Vβ ≤ CQα′−1(Cα′−1) ≤ Qα′ , a contradiction.

Thus, R1 = Rβ.

Suppose that R2 6= Rβ. Then V (2)
α [V (3)

β , Qβ] E R2 and so [V (2)
α , Qβ][V (3)

β , Qβ, Qβ] E

Lβ = 〈R1, R2, S〉. Since [V (2)
α , Qβ, Qβ] ≤ Zα, we have that [V (3)

β , Qβ, Qβ] ≤ Vβ and

so [V (2)
α , Qβ]Vβ E Lβ. But then [V (3)

β , Qβ]Vβ = [V (2)
α , Qβ]Vβ is centralized by Qα,

modulo Vβ, and so ([V (3)
β , Qβ]Vβ)/Vβ does not contain a non-central chief factor for

261



Lβ. Thus, R2 = Rβ. But now Op(Rβ) centralizes V (3)
β and Lemma 5.2.18 applied

to Zα′−1 = Zα′−3 gives Vα′ ≤ V
(2)
α′−1 = V

(2)
α′−3 ≤ Qβ, a contradiction.

Therefore, we may assume that ([V (3)
β , Qβ]Vβ)/Vβ does not contain a non-central

chief factor for Lβ and [V (2)
α , Qβ]Vβ E Lβ. As before, since [V (2)

α , Qβ, Qβ] ≤ Zα,

we have that [V (2)
α , Qβ, Qβ] = Zβ and either |V (2)

α | = p4; or [Cα, Qβ] = Zβ for

Cα as defined above. In the latter case, we again see that Vβ ≤ CQα′−1(Cα′−1) ≤

Qα′ , a contradiction. Thus, |V (2)
α | = p4, [V (2)

α , Qβ] ≤ Vβ and [V (3)
β , Qβ] = Vβ.

Since Op(Rβ) does not centralize V (3)
β , by Lemma 5.2.34, V (3)

β /Vβ is a quadratic

2F -module for Lβ. Moreover, since V (2)
α generates V (3)

β , is Gα,β-invariant and has

order p modulo Vβ, comparing with Lemma 2.3.22 and using that |S/Qβ| = p, it

follows that p = 2 and Lβ/CLβ(V (3)
β /Vβ) ∼= Dih(10) or (3× 3) : 2.

Now, CLβ(V (3)
β /Vβ) normalizes V (2)

α so that [V (2)
α , Cβ] ≤ Zα is also normalized

by CLβ(V (3)
β /Vβ). Since Rβ normalizes Zα, if Lβ = 〈S,Rβ, CLβ(V (3)

β /Vβ)〉 then

[V (2)
α , Cβ] = Zβ and [V (3)

β , Cβ] = Zβ. But then R = [Vα′ , Vβ] ≤ [V (3)
α′−2, Vβ] =

Zα′−2, a contradiction. Thus Lβ/CLβ(V (3)
β /Vβ) ∼= (3 × 3) : 2 and CLβ(V (3)

β /Vβ) ≤

Rβ. Then V
(2)
α′−1 < 〈(V

(2)
α′−3)RβS〉 =: W and |W/Vβ| = 4. But now, [W,V (3)

β ] ≤

[W,Qα′−3] ≤ Zα′−3 and [V (3)
α′−2∩Qβ, Vβ] ≤ Zβ∩Vα′−2 = {1} and [V (3)

α′−2∩Qβ, V
(3)
β ] ≤

Vβ ∩ V (3)
α′−2 = Zα+2 ≤ V

(2)
α′−3. Therefore, [V (3)

β , V
(3)
α′−2] ≤ V

(2)
α′−3, a contradiction since

V
(3)
β /Vβ is not dual to an FF-module.

Hence, V (3)
β ∩ Qα′−2 6≤ Qα′−1. Since R ≤ Zα′−1 and R 6= Zα′ , it follows that

V
(3)
β does not centralize Zα′ . Hence, as b > 5 and V

(3)
β is abelian, we conclude

that [V (3)
β ∩ · · · ∩ Qα′ , Vα′ ] = {1}. In particular, [V (2)

α ∩ Qα′ , Vα′ ] = {1} and so

[Vα′ , V (2)
α ] = R ≤ V (2)

α . Additionally, since V (3)
β centralizes Zα′−2, we have that

R = Zα′−2 6= Zβ.
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Again, we set W β = 〈V (2)
δ | Zλ = Zα, λ ∈ ∆(β)〉 noting that W β E RβQα by

Lemma 5.2.19. For such a λ ∈ ∆(β), (λ, α′) is a critical pair. Suppose that

V
(2)
λ 6≤ Qα′−2. Then {1} 6= [Vλ−1, Vα′−2] ≤ Zλ ∩ Zα′−3 = Zα ∩ Zα′−3 so that

Zβ ≤ Zα′−3 and so Zα′−3 = Zα′−2 × Zβ = Zα+2. Now, there is α′ + 1 ∈ ∆(α′)

such that (α′ + 1, β) is a critical pair. As in the above steps, if V (2)
α′+1 6≤ Qα+3

then Zα′ = [Vα′+2, Vα+3] ≤ Vα+3, a contradiction as Vα+3 is centralized by V
(3)
β .

Thus, V (2)
α′+1 ≤ Qα+2 and since V (3)

α′ ∩ Qα+3 ≤ Qα+2, applying the previous results

in this proof, Op(Rα′) centralizes V (3)
α′ . But then V (2)

α E Lβ = 〈Vα′ , Qα, Rβ〉, a

contradiction.

Thus, W β ≤ Qα′−1, [W β, Zα′−1] = Zα′−2 6= Zβ and W β = Vβ(W β ∩Qα′). Then Vα′

centralizes W β/Vβ so that W β E Lβ = 〈Vα′ , Rβ, Qα〉. Since Vα′ centralizes W β/Vβ,

it follows that V (2)
α E Lβ, a final contradiction.

Lemma 5.4.22. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b > 5. If V (2)
α 6≤ Qα′−2

and |Vβ| 6= p3, then we may assume that [V (2)
α , Zα′−1] 6= {1}.

Proof. Suppose that |Vβ| 6= p3. By Lemma 5.4.19 and Lemma 5.4.20, we may

assume that for any critical pair (α∗, α∗′), V (2)
α∗ 6≤ Qα∗′−2. In particular, there is an

infinite path (α′, α′−1, α′−2, . . . , β, α, α−1, α−2, . . . ) such that (α−2k, α′−2k)

is a critical pair for all k > 0. For 2k > b, we have that Zα′−2k−1 6= Zα′−2k−3 and so

we can arrange that for our chosen critical pair (α, α′) we have that Zα′−1 6= Zα′−3.

If [V (2)
α , Zα′−1] = {1}, then V (2)

α centralizes Zα′−1Zα′−3 and since V (2)
α 6≤ Qα′−2, it

follows that Zα′−1Zα′−3 = CVα′−2(Op(Lα′−2))Zα′−1 = CVα′−2(Op(Lα′−2))Zα′−3. But

then, by Lemma 5.2.31 using that |Vβ| 6= p3, we conclude that Zα′−1 = Zα′−3, a

contradiction.

Notice that by Lemma 5.4.19 and Lemma 5.4.20, whenever |Vβ| 6= p3 we have
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that V (2)
λ 6≤ Qλ+b−2 for any critical pair (λ, λ + b) with λ ∈ Γ . Moreover, as

demonstrated in Lemma 5.4.22, we may iterate backwards through critical pairs

far enough that the conclusion of Lemma 5.4.22 holds for all critical pairs beyond a

certain point. The net result of this that whenever |Vβ| 6= p3, we may assume that

we have a critical pair (α, α′) with V (2)
α 6≤ Qα′−2 and [V (2)

α , Zα′−1] 6= {1}, and for

all k > 0 we also have that (α−2k, α′−2k) is a critical pair with V (2)
α−2k 6≤ Qα′−2−2k

and [V (2)
α−2k, Zα′−1−2k] 6= {1}. We will use the fact in the following two lemmas.

Lemma 5.4.23. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b = 7. If V (2)
α 6≤ Qα′−2,

then |Vβ| = p3.

Proof. Suppose that b = 7. By Lemma 5.4.19 and Lemma 5.4.20, we may consider

a critical pair (α, α′) iterated backwards so that (α+2, α′+2) is also a critical pair.

Suppose first that V α 6≤ Qα′−2. Then [V α, Vα′−2] ≤ Zα and so [V α, Vα′−2] = Zβ.

Since Zα+2 6≤ Qα′+2 and b > 5, we have that Zβ = Zα+3 6= Zα′−2. But now,

Zα+3Z
g
α+3Zα′−2 = Zα′−3Z

g
α′−3 is normalized by Lα′−2 = 〈V α, (V α)g, Rα′−2〉 for some

appropriately chosen g ∈ Lα′−2, so that Vα′−2 = Zα′−3Z
g
α′−3 is of order p3, a

contradiction. Thus, we may assume that V α ≤ Qα′−2.

If V α 6≤ Qα′−1, then Zα′−2 = [V α, Vα′−2] ≤ Zα and Zα′−2 = Zβ. Moreover, for

some α−2 ∈ ∆(2)(α) with (α−2, α′−2) a critical pair, V (2)
α−2 centralizes Zα′−2 and

Zα′−2 = Zα+3 = Zβ. Now, [V α′−1, Vβ] ≤ Zα′−1 and since V α does not centralize

Zα′−1, [V α′−1, Vβ] ≤ Zβ and V α′−1 ≤ Qβ. If V α′−1 ≤ Qα, then [V α′−1, V α] ≤ Zα

so that [V α′−1, V α] = Zβ = Zα′−2 and V α centralizes V α′−1/Zα′−1, a contradiction

since V α′−1/Zα′−1 contains a non-central chief factor for Lα′−1. Thus, V α′−1 6≤ Qα

and V
(2)
α′−1 ∩ Qβ = V α′−1(V (2)

α′−1 ∩ Qα). Since Zα 6≤ V
(2)
α′−1, [V (2)

α′−1 ∩ Qα, V
α] =

Zβ = Zα′−2 and it follows that V (2)
α′−1/V

α′−1 is an FF-module for Lα′−1. Similarly,

[V α′−1 ∩ Qα, V
α] = Zα′−2 and V α′−1/Zα′−1 is an FF-module for Lα′−1. Then
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Lemma 5.2.32 and Lemma 5.2.18 applied to Zβ = Zα+3 implies that Vβ = Vα+3 ≤

Qα′ , a contradiction.

Thus, V α = Zα(V α ∩ Qα′). Suppose that Vα′ ≤ Qβ and again let (α − 2, α′ − 2)

be a critical pair. Since V α/Zα contains a non-central chief factor, Zα′ ≤ V α

and Zα′ 6≤ Zα. Then Zα′ = Zα′−2, otherwise [V (2)
α , Zα′−1] = {1}. But now, since

b > 5, V (2)
α−2 centralizes Zα′−2 ≤ V α and since [V (2)

α−2, Zα′−3] 6= {1}, it follows that

Zα′−2 = Zα′−4 = Zα+3. Since R = [Vα′ , Vβ] = Zβ ≤ Vα′ , as Zα+2 6≤ Qα′+2, we must

have that Zα+3 = Zβ . But then R = Zβ = Zα′ , a contradiction.

Finally, we have that V α ≤ Qα′−1 and Vα′ 6≤ Qβ. Set Uβ = 〈V δ | Zδ = Zα, δ ∈

∆(β)〉. Then (δ, α′) is a critical pair for all such δ ∈ ∆(β) and so V δ ≤ Qα′−1 for

all such δ. By Lemma 5.2.19, RβQα normalizes Uβ. Now, UβVβ = Vβ(Uβ ∩ Qα′)

and either Zα′ ≤ V
(3)
β ; or Vα′ centralizes UβVβ/Vβ. In the former case, since V (3)

β

does not centralize Zα′−1, Zα′ = Zα′−2. Iterating backwards through critical pairs,

this eventually implies that Zα′ = Zβ and again, Vα′ centralizes UβVβ/Vβ. Thus,

in all cases, UβVβ E Lβ = 〈Vα′ , Rβ, Qα〉 and since Vα′ centralizes UβVβ/Vβ, Op(Lβ)

centralizes UβVβ/Vβ. Then V αVβ E Lβ, a contradiction by Lemma 5.2.31.

Lemma 5.4.24. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b > 5. If V (2)
α 6≤ Qα′−2,

then |Vβ| = p3.

Proof. By Lemma 5.4.23, we may assume that b > 7. In the following, the aim will

be to prove that Zα′−2 = Zα′−4 for then extending far enough backwards along the

critical path, by Lemma 5.4.22, we can manufacture a situation in which (α, α′) is a

critical pair, Zα′−1−2k 6= Zα′−3−2k for all k > 0 and Zα′ = Zα′−2 = · · · = Zα+3 = Zβ.

Throughout we consider a critical pair (α, α′) iterated backwards far enough so

that (α + 2, α′ + 2) is also a critical pair.
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Suppose first that V (3)
β ∩Qα′−2 6≤ Qα′−1. Then Zα′−2 = [V (3)

β ∩Qα′−2, Zα′−1] ≤ V
(3)
β

is centralized by V
(2)
α−2 since b > 7. Since V

(2)
α−2 does not centralizes Zα′−3, we

have that Zα′−2 = Zα′−4, as desired. Thus, V (3)
β ∩ Qα′−2 = Vβ(V (3)

β ∩ Qα′). If

Zα′ = [V (3)
β ∩ Qα′ , Vα′ ] ≤ V

(3)
β then, as V (3)

β does not centralize Zα′−1, we deduce

that Zα′ = Zα′−2 ≤ V
(3)
β . Similarly to the above, using b > 7, we have that

Zα′−2 = Zα′−4, as desired. Thus, [V (3)
β ∩Qα′ , Vα′ ] = {1}.

Suppose that Vα′ ≤ Qβ. Then, by the above, V (2)
α ∩ Qα′−2 = Zα(V (2)

α ∩ Qα′) and

[V (2)
α ∩ Qα′ , Vα′ ] = {1}, a contradiction since both V (2)

α /V α and V α/Zα contain a

non-central chief factor. Thus, Vα′ 6≤ Qβ and V (3)
β /Vβ contains a unique non-central

chief factor which is an FF-module for Lβ. By Lemma 5.2.34, Op(Rβ) centralizes

V
(3)
β . If V α ≤ Qα′−2, then V αVβ = Vβ(V αVβ ∩ Qα′) and it follows that V αVβ E

Lβ = 〈Vα′ , Qα, Rβ〉, a contradiction by Lemma 5.2.31. Therefore, V α 6≤ Qα′−2 and

since Vα′−2 ≤ Qα, we have that [V α, Vα′−2] = Zβ 6= Zα′−2.

Suppose that b = 9 and consider the critical pair (α− 2, α′− 2). Then, as Vα′−4 ≤

Qα−2, we have that [V α−2, Vα′−4] ≤ Zα−1. Suppose that Zα−1 = [V α−2, Vα′−4] ≤

Vα′−4. Since Zα, Zα+2 6≤ Vα′−4, we must have that Zα−1 = Zβ = Zα+3 = Zα′−6.

But then, [V α−2, Vα′−4] = Zα′−6 and Zα′−5Z
g
α′−5 E Lα′−4 = 〈V α−2, (V α−2)g, Rα′−4〉

for some appropriately chosen g ∈ Lα′−4. Then Vα′−4 = Zα′−5Z
g
α′−5 is of order p3,

a contradiction. Thus, [V α−2, Vα′−4] = {1} so that V α−2Vα−1 = Vα−1(V α−2Vα−1 ∩

Qα′−2) and since V α−1Vα−1 6E Lα−1, it follows that Zα′−2 ≤ V
(3)
α−1. Then V

(2)
α−2

centralizes Zα′−2 and so Zα′−2 = Zα′−4, as desired.

Thus, we may assume that b > 9. Since Vα′ 6≤ Qβ, there is λ ∈ ∆(α′) such

that (λ, β) is a critical pair with Vβ 6≤ Qα′ and V
(2)
λ 6≤ Qα+3. In particular,

since b > 5, V (2)
λ centralizes Zβ ≤ Vα′−2 and Zβ = Zα+3. Then [V λ, Vα+3] ≤ Zα′

since Vα+3 ≤ Qλ. If Zα′ ≤ Vα+3, since b > 5, Zα′ is centralized by V (2)
α , so
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that Zα′ = Zα′−2. Since b > 7, Zα′−2 ≤ Vα+3 is centralized by V
(2)
α−2 and so

Zα′−2 = Zα′−4, as desired. Thus, [V λ, Vα+3] = {1} and V λVα′ = Vα′(V λVα′ ∩ Qβ).

Since V λVα′ 6E Lα′ by Lemma 5.2.31, we intend to force a contradiction by showing

that Zβ ≤ V λVα′ .

By construction there is a critical pair (α + 2, α′ + 2) and we set α′ + 1 ∈

∆(α′ + 2) ∩ ∆(α′) noting that (α′ + 1, β) is not necessarily a critical pair. Since

Vα′ ≤ Qα+2, we infer that [Vα′ , V α+2] ≤ Zα+3 ∩ Vα′ = Zβ ∩ Vα′ . We may assume

that [Vα′ , V α+2] = {1}. Then V α+2Vα+3 = Vα+3(V α+2Vα+3 ∩ Qα′+2) and either

[V α+2Vα+3 ∩ Qα′+2, Vα′+2] = {1}, a contradiction for then V α+2Vα+3 E Lα+3; or

Zα′+2 = [V α+2Vα+3 ∩Qα′+2, Vα′+2] ≤ V
(3)
α+3. If Zα′+1 6≤ Qβ then as b > 7, it follows

that Zα′+2 = Zα′ . But, as b > 7, Zα′ is centralized by V (2)
α , so that Zα′ = Zα′−2.

Indeed, as b > 9, Zα′−2 ≤ V
(3)
α+3 is centralized by V

(2)
α−2 and so Zα′−2 = Zα′−4, as

desired. Thus, by Lemma 5.2.31, Zα′+1 = Zα′−1. Since Zα′+2 ≤ V
(3)
α+3 is centralized

by V (2)
α , Zα′+2 = Zα′−2, otherwise Zα′−1 is centralized by V (2)

α . Then as b > 9 and

Zα′−2 ≤ V
(3)
α+3 is centralized by V (2)

α−2, we get that Zα′−2 = Zα′−4, as desired.

In all cases we have reduced to the case where Zα′−2 = Zα′−4. By a previous

observation we may now assume that (α, α′) is a critical pair such that Zα′ =

Zα′−2 = · · · = Zβ = Zα−1 = . . . and Zα′−1−2k 6= Zα′−3−2k for any k > 0. Now,

[Vα′−2, V
α] ≤ [Qα, V

α] ≤ Zα so that [Vα′−2, V
α] = Zβ = Zα′−2 and V α ≤ Qα′−2.

Moreover, Vα′ 6≤ Qβ, otherwise R = Zβ = Zα′ and Op(Lα′) centralizes Vα′ .

Suppose that V α 6≤ Qα′−1. Now, Vβ ≤ Qα′−1 and so [Vβ, V α′−1] ≤ Zα′−1 and

since V α 6≤ Qα′−1, [V α′−1, Vβ] = Zα′−2 = Zβ and V α′−1 ≤ Qβ. Moreover,

V α′−1 6≤ Qα, else [V α, V α′−1] = Zβ = Zα′−2 ≤ Zα′−1 and V α ≤ Qα′−1. Thus,

[V (2)
α ∩ Qα′−2, V

α′−1] = [V α(V (2)
α ∩ Qα′−1), V α′−1] ≤ V αZα′−2 = V α. It follows

that both V (2)
α /V α and V α/Zα are FF-modules for Lα and by Lemma 5.2.32 and
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Lemma 5.2.18, we conclude that Zβ = Zα−3 implies that Vβ = Vα+3 ≤ Qα′ , a

contradiction.

Thus, V αVβ = Vβ(V αVβ ∩ Qα′). As in the b = 7 case, again set Uβ = 〈V δ |

Zλ = Zα, λ ∈ ∆(β)〉 E RβQα so that (λ, α′) is a critical pair for all such λ

and, by the above, V λ ≤ Qα′−1. Then, UβVβ E Lβ = 〈Vα′ , Rβ, Qα〉 and since Vα′

centralizes UβVβ/Vβ, Op(Lβ) centralizes UβVβ/Vβ and VβV α E Lβ. A contradiction

is provided by Lemma 5.2.31.

As a consequence of Lemma 5.4.24, we may assume that whenever b > 5, we have

that |Vβ| = p3.

Lemma 5.4.25. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b > 5. If V (2)
α 6≤ Qα′−2

then either:

(i) R = Zα′−2 ≤ Zα+2 ∩ Zα′−1; or

(ii) Zα′−1 = Zα′−3 and Vα′ ≤ Qβ.

Proof. By Lemma 5.4.24, we have that |Vβ| = p3, so that R = [Vα′ , Vβ] ≤ Zα′−1 ∩

Zα+2. Suppose that R 6= Zα′−2. Then Zα′−1 = R×Zα′−2 is centralized by V (2)
α and

since V (2)
α 6≤ Qα′−2, we deduce that Zα′−1 = Zα′−3. Now, if Vα′ 6≤ Qβ, then R 6= Zβ

and since [Vα′−2, V
(2)
α ] ≤ Zα, we must have that Zβ = [Vα′−2, V

(2)
α ] ≤ Zα′−3 = Zα′−1

and Zα′−1 = R×Zβ ≤ Vβ. Thus, V (3)
β ∩Qα′−2 ≤ Qα′−1, V (3)

β ∩Qα′−2 = Vβ(V (3)
β ∩Qα′)

and since Zα′ ≤ Zα′−1 ≤ Vβ, V (3)
β /Vβ contains a unique non-central chief factor for

Lβ which is an FF-module. Then, by Lemma 5.2.34 and Lemma 5.2.18, Zα′−1 =

Zα′−3 implies that Vα′ ≤ V
(2)
α′−1 = V

(2)
α′−3 ≤ Qα, a contradiction.

Lemma 5.4.26. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b > 5. Then there exists

a critical pair (α∗, α∗′) such that V (2)
α∗ ≤ Qα∗′−2.
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Proof. Since V (2)
α 6≤ Qα′−2, there is another critical pair (α−2, α′−2) and we may

assume recursively, that there is a path (α′, α′ − 1, . . . , α, α − 1, α − 2, α − 3, . . . )

such that (α − 2k, α′ − 2k) is a critical pair satisfying V
(2)
α−2k 6≤ Qα′−2k−2 for all

k > 0. Set Rk := [Vα−2k+1, Vα′−2k] for each critical pair (α − 2k, α′ − 2k). In

particular, R = R0.

Choose k > (b−1)/2 and suppose that Zα′−2k−1 = Zα′−2k−3. Then as k > (b−1)/2,

2k + 3 > b + 2 and so, by assumption, (α′ − 2k − 3, α′ − 2k − 3 + b) is a critical

pair, a contradiction. Thus, for k > (b − 1)/2, we may assume that for every

critical pair (α − 2k, α′ − 2k), we have that Rk = Zα′−2k−2 ≤ Zα−2k+2. Now,

if Rk 6= Zα−2k+3, then Zα−2k+2 = Rk × Zα−2k+3 ≤ Qα′−2k+2 a contradiction as

k > 1 and (α − 2k + 2, α′ − 2k + 2) is a critical pair. Thus, we may assume

that Zα′−2k−2 = Zα−2k+3 for sufficiently large k. Then, Rk = Rk+1 for otherwise

Zα−2k+2 = Rk ×Rk+1 ≤ Qα′−2k+2 since b > 5. In particular, Zβ−2k = Zα−1−2k and

(α−(b−1)−2k, β−2k) is a critical pair with R b−1
2 −k

= Zβ−2k−2 = Zα−1−2k = Zβ−2k.

But then Op(Lβ−2k) centralizes Vβ−2k/Zβ−2k, a contradiction.

We aim to show that b 6 5, and by Lemma 5.4.26, we can fix some pair (α, α′)

with V (2)
α ≤ Qα′−2. We start with the case where Vα′ ≤ Qβ.

Lemma 5.4.27. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b > 5. Assume that

Vα′ ≤ Qβ and V (2)
α ≤ Qα′−2. Then V (2)

α ≤ Qα′−1.

Proof. Suppose for a contradiction that V (2)
α 6≤ Qα′−1. Then, as R ≤ Zα′−1, we

conclude that R = Zα′−2. Let α − 1 ∈ ∆(α) such that Vα−1 6≤ Qα′−1. If Zα′−1 ≤

Qα−1, then Zα′−2 = [Vα−1, Zα′−1] = Zα−1 from which it follows that Zα−1 = Zβ.

Then, recalling that Op(Rα) centralizes V (2)
α by Lemma 5.4.19, by Lemma 5.2.18

we have that Vα−1 = Vβ ≤ Qα′−1, a contradiction. Thus, (α′−1, α−1) is a critical
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pair and Zα−1 6= Zβ.

Note that if Zα′−2 = Zα′−4, then Zα′−1 ≤ Vα′−2 = Vα′−4 is centralized by V (2)
α ,

a contradiction. Thus, Zα′−3 is centralized by V (4)
α and either Zα′−3 = Zα′−5

or Zα′−3 6= Zα′−5 and V (4)
α ≤ Qα′−3. Assume that Zα′−3 = Zα′−5. Notice that

Zα′−1 ≤ V
(2)
α′−3 and [V (2)

α , V
(2)
α′−5] = {1}, and so by Lemma 5.2.18 and Lemma 5.2.34,

there is not a unique non-central chief factor within V
(3)
α−1/Vα−1 which is an

FF-module. Suppose that V (3)
α−1 ≤ Qα′−4. Then V (3)

α−1∩Qα′−2 = Vα−1(V (3)
α−1∩Qα′−1),

a contradiction. Thus, there is α − 4 ∈ ∆(3)(α − 1) such that (α − 4, α′ − 4) is

a critical pair. Then {1} 6= [Vα′−4, Vα−3] ≤ Zα−2 ∩ Zα′−5. If [Vα′−4, Vα−3] 6= Zα−1

then, as b > 5, Zα−2 = Zα−1 × [Vα′−4, Vα−3] ≤ Qα′−1, a contradiction. Thus, again

as b > 5, Zα = [Vα′−4, Vα−3]× Zβ ≤ Qα′ , a contradiction.

Thus, Zα′−3 6= Zα′−5 and V (4)
α ≤ Qα′−3. It follows that Zα′−2 ≤ [V (4)

α , Vα′−2] ≤

Zα′−3. If Zα′−2 = [V (4)
α , Vα′−2], then V (4)

α = V (2)
α (V (4)

α ∩ Qα′) and since Zα′ 6≤

V (4)
α , otherwise V (2)

α centralizes Zα′−1 = Zα′ × R, it follows that Vα′ centralizes

V (4)
α /V (2)

α , a contradiction. Thus, [V (4)
α , Vα′−2] = Zα′−3. Since V (4)

α ∩ Qα′−2 =

V (2)
α (V (4)

α ∩Qα′), we have that V (4)
α /V (2)

α contains a unique non-central chief factor

and by Lemma 5.2.33, Op(Rα) centralizes V (4)
α . Furthermore, since V (3)

α−1 6≤ Qα′−2,

otherwise Zα′−1 centralizes V (3)
α−1/Vα−1, we may suppose that Zα′−3 = [V (3)

α−1, Vα′−2].

Suppose first that b > 9. Then, V (6)
α centralizes Zα′−3 ≤ V

(3)
α−1 and so centralizes

Zα′−4Zα′−6. If Zα′−4 = Zα′−6, then by Lemma 5.2.18 we have that Zα′−1 ≤ V
(3)
α′−4 =

V
(3)
α′−6 is centralized by V (2)

α , a contradiction. Thus, V (6)
α centralizes Zα′−5 and so

either Zα′−5 = Zα′−7 or V (6)
α centralizes Zα′−3Zα′−5Zα′−7 = Vα′−6Vα′−4. In the latter

case, V (6)
α = V (4)

α (V (6)
α ∩ Qα′−2) and since Zα′ 6≤ V (6)

α , we conclude that Op(Lα)

centralizes V (6)
α /V (4)

α , a contradiction. Thus, Zα′−5 = Zα′−7 and as Zα′−1 ≤ V
(4)
α′−5

and V (2)
α centralizes V (4)

α′−7, by Lemma 5.2.18, Lemma 5.2.34 and Lemma 5.2.35,
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we need only show that both V
(5)
β /V

(3)
β and V

(3)
β /Vβ contain a unique non-central

chief factor which is an FF-module for Lβ. We may prove it for any λ ∈ βG

and, following the steps in an earlier part of this proof, we infer that V (3)
β /Vβ

satisfies the required condition. By the steps above, V (3)
α−1 6≤ Qα′−2. Then, as

Vα′−4 = Zα′−3Zα′−7 is centralized by V (5)
α−1, V (5)

α−1 ∩Qα′−6 = V
(3)
α−1(V (3)

α−1 ∩Qα′−2) and

since Vα′−2 6≤ Qα−1 and Zα′−2 ≤ V
(3)
α−1, V (5)

α−1/V
(3)
α−1 contains a unique non-central

chief factor and satisfies the required conditions. This provides the contradiction.

Suppose that b = 7. Then CQα(V (4)
α ) ≤ Qα+4 = Qα′−3. Thus, V (4)

α CQα(V (4)
α ) =

V (4)
α (V (4)

α CQα(V (4)
α ) ∩ Qα′) and since Zα′ 6≤ CQα(V (2)

α ) ≥ CQα(V (4)
α ), Op(Lα)

centralizes V (4)
α CQα(V (4)

α )/V (4)
α . Then for r ∈ Op(Rα) of order coprime to p,

[r,Qα, V
(4)
α ] = {1} by the three subgroup lemma and so [Qα, r] = [Qα, r, r, r] ≤

[CQα(V (4)
α ), r, r] ≤ [V (4)

α , r] = {1} so that Rα = Qα and Lα ∼= SL2(p). We

may assume that V (3)
α−1 ≤ Qα′−4, V (3)

α−1 6≤ Qα′−2 and Op(Rα−1) centralizes V (3)
α−1.

Moreover, Zα′−3 = [Vα′−2, V
(3)
α−1] ≤ V

(3)
α−1 and so Zα′−3 is centralized by CQα−1(V (3)

α−1).

Since Zα′−3 6= Zα+2, otherwise by Lemma 5.2.18, Zα ≤ V
(2)
α+2 = V

(2)
α′−3 ≤ Qα′ ,

we have that CQα−1(V (3)
α−1) centralizes Vα+3. It follows that CQα−1(V (3)

α−1) =

V
(3)
α−1(CQα−1(V (3)

α−1) ∩ Qα′−2) and so Op(Lα−1) centralizes CQα−1(V (3)
α−1)/V (3)

α−1. Now,

letting r ∈ Op(Rα−1) of order coprime to p, [r,Qα−1, V
(3)
α−1] = {1} by the three

subgroup lemma and [Qα−1, r] = [Qα−1, r, r, r] = [CQα−1(V (3)
α−1), r, r] = [V (3)

α−1, r] =

{1} so that Rα−1 = Qα−1 and Lα−1 ∼= SL2(p). Thus, G has a weak BN-pair of

rank 2 and by [DS85], no examples exist.

Suppose that b = 9. Then CQα(V (4)
α ) ≤ Qα+4 = Qα′−5. Moreover, Zα′−5 6=

Zα′−3 ≤ V (4)
α so that CQα(V (4)

α ) ≤ Qα′−3 and CQα(V (4)
α ) = V (4)

α (CQα(V (4)
α )∩Qα′−2)

and it follows that Op(Lα) centralizes CQα(V (4)
α )/V (4)

α . As in the b = 7 case,

we get that Lα ∼= SL2(p). Since Zα′−3 ≤ V
(3)
α−1, Zα′−4 is centralized by
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CQα−1(V (3)
α−1) and Zα′−6 = Zα+3 is centralized by CQα−1(V (3)

α−1) from which it

follows that CQα−1(V (3)
α−1) centralizes Zα+4 = Zα′−5. Continuing as above, we

see that CQα−1(V (3)
α−1) = V

(3)
α−1(CQα−1(V (3)

α−1) ∩ Qα′−2) and Op(Lα−1) centralizes

CQα−1(V (3)
α−1)/V (3)

α−1 and an application of the three subgroup lemma and coprime

action yields that Lα−1 ∼= SL2(p) and G has a weak BN-pair of rank 2. By [DS85],

no examples exist and the proof is complete.

Lemma 5.4.28. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b > 5. If Vα′ ≤ Qβ then

V (4)
α 6≤ Qα′−4.

Proof. By Lemma 5.4.27, we may suppose that V (2)
α ≤ Qα′−1. Note that by

Lemma 5.4.19, Zα′−1 = Zα′ × Zβ ≤ V (2)
α ≤ Z(V (4)

α ). Suppose that V (4)
α ≤ Qα′−4

throughout. If Zα′−1 6= Zα′−3, then V (4)
α ∩ Qα′−3 = V (2)

α (V (4)
α ∩ Qα′) and since

Zα′ ≤ V (2)
α , V (4)

α does not centralize Zα′−3. But Zα′−2 ≤ Zα′−1 so that Zα′−2Zα′−4

is centralized by V (4)
α and Zα′−2 = Zα′−4. Now, both V (4)

α /V (2)
α and V (2)

α /Zα

contain unique non-central chief factors and by Lemma 5.2.32 and Lemma 5.2.33,

we deduce that Op(Rα) centralizes V (4)
α . Therefore, applying Lemma 5.2.18 to

Zα′−2 = Zα′−4, we conclude that Vα′ ≤ V
(3)
α′−2 = V

(3)
α′−4 is centralized by Zα, a

contradiction.

Thus, Zα′−1 = Zα′−3 and V (4)
α 6≤ Qα′−2. In particular, it follows again by

Lemma 5.2.33 that Op(Rα) centralizes V (4)
α and so, similarly to the above,

Zα′−2 6= Zα′−4. Moreover, by Lemma 5.2.18, since Vα′ ≤ V
(2)
α′−1 and V

(2)
α′−3 ≤ Qα,

Op(Rβ) does not centralize V
(3)
β . In particular, Zα′−1 6= Zα+2 for otherwise

V
(3)
α′ ∩ Qα+3 ≤ Qα+2, [V (3)

α′−3 ∩ Qα+3, Vβ] ≤ Zα+2 = Zα′−1 ≤ Vα′ and V
(3)
α′ /Vα′

contains a unique non-central chief factor which is an FF-module, and we would

have a contradiction by Lemma 5.2.34.
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Suppose first that b = 7. Then ZβZα+3 ≤ Zα+2 ∩ Zα′−3 and so either Zβ = Zα+3

or Zα′−1 = Zα′−3 = Zα+2. The latter case yields an immediate contradiction,

while in the former case, Lemma 5.2.18 implies that Vβ = Vα+3 ≤ Qα′ , another

contradiction. Thus, we may assume b > 7 throughout.

Assume that for α − 4 ∈ ∆(4)(α), whenever Zα−4 6≤ Qα′−2 we conclude that

Zβ = Zα−1. Choose δ ∈ ∆(α) such that Zδ 6= Zβ so that V (3)
δ ≤ Qα′−2. Moreover,

V
(3)
δ centralizes Zα′−1 ≤ V (2)

α and [V (3)
δ , Vα′ ] = [V (2)

α , Vα′ ][V (3)
δ ∩ Qα′ , Vα′ ] ≤ V (2)

α .

Thus, V (3)
δ E Lα = 〈Vα′ , Rα, Qδ〉, a contradiction. Thus, we may assume that there

exists α− 4 ∈ ∆(4)(α) with Zα−4 6≤ Qα′−2 and Zβ 6= Zα−1.

Suppose that Vα′−2 6≤ Qα−1. Since V (2)
α ≤ Qα′−2, it follows that Zα′−2 =

[V (2)
α , Vα′−2] = Zβ. Moreover, there is λ ∈ ∆(α′ − 2) such that (λ, α − 1)

is a critical pair with Vα−1 ≤ Qα′−2. If V (2)
λ ≤ Qβ, then by Lemma 5.4.27

V
(2)
λ ≤ Qα and Zα ≤ V

(2)
λ , a contradiction since b > 5. Thus, V (2)

λ 6≤ Qβ and

(λ + 2, β) is also a critical pair. Moreover, {1} 6= [Vβ, Vλ+1] ≤ Zα+2 ∩ Zλ. Since

Zλ 6≤ Qα−1 and Zα′−2 ≤ V (2)
α , it follows that [Vβ, Vλ+1] = Zα′−2 = Zβ. But

then Vλ+1 ≤ Qβ, a contradiction. Thus, Vα′−2 ≤ Qα−1 and [Vα′−2, Vα−1] = {1},

otherwise Zα−1 = [Vα′−2, Vα−1] = Zα′−2 and since Zα 6≤ Vα′−2, Zα−1 = Zβ, a

contradiction. Therefore, Vα′−2 ≤ Qα−2.

Suppose that [Vα′−2, Vα−3] = Zβ so that Zα′−2 6= Zβ. As Zβ ≤ Zα−2 and Zβ 6= Zα−1,

Zα = Zα−2. Immediately, we have that [V (2)
α , Vα′−2] ≤ Zα′−2 ∩ Zα = {1} so that

V (2)
α ≤ Cα′−2.

Choose λ ∈ ∆(α′ − 2) such that Zλ 6= Zα′−1 and set Wα′−2 := 〈V (2)
δ | Zδ =

Zλ, δ ∈ ∆(α′ − 2)〉. Then, for δ ∈ ∆(α′ − 2) with Zδ = Zλ, since V (2)
α ≤ Cα′−2,

we have that [Vβ, V (2)
δ ] ≤ Zδ ∩ Zα+2. Since Zα+2 ≤ Z(V (4)

α ), Zδ ∩ Zα+2 ≤ Zα′−2,
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otherwise V (4)
α centralizes Vα′−2 = ZδZα′−1. But now [Vβ, V (2)

δ ] = {1}, otherwise

Zα+2 = Zα′−2 × Zβ = Zα′−1, and we have a contradiction. Now, [V (2)
α , V

(2)
λ ] ≤

Zλ ∩ Zα and for a similar reason as before, [V (2)
α , V

(2)
λ ] = {1}. It follows that

Wα′−2 ≤ Qα−2 and Zβ ≤ [Wα′−2, Vα−3] ≤ Zα−2 = Zα. Since Zα 6≤ V
(3)
α′−2, we

have that [Wα′−2, Vα−3] = Zβ ≤ Vα′−2 and Vα−3 centralizes Wα′−2/Vα′−2. But

now, by Lemma 5.2.19, Wα′−2 E Lα′−2 = 〈Vα−3, Rα′−2, Qλ〉. Since Vα−3 centralizes

Wα′−2/Vα′−2, it follows that V (2)
λ E Lα′−2, a contradiction.

Suppose now that Zβ 6= [Vα′−2, Vα−3] ≤ Zα−2 ∩ Zα′−3. Then Zα 6= Zα−2, else

Zα = Zβ × [Vα′−2, Vα−3] ≤ Zα′−3, an obvious contradiction. Still, Zα′−3 = Zα′−1 =

Zβ[Vα′−2, Vα−3] so that Vα−1 = ZαZα′−1. As Vβ ≤ Cα′−2, it follows that Zβ ≤

[Vβ, V (3)
α′−2] ≤ Zα+2 ∩ Vα′−2. Since Zα+2 6= Zα′−1, Zα+2 6≤ Vα′−2, otherwise Vα′−2 =

Zα′−1Zα+2 ≤ V (2)
α would be centralized by V (4)

α . Thus, [Vβ, V (3)
α′−2] = Zβ and V (3)

α′−2 ≤

Qβ. Then V (3)
α′−2∩Qα centralizes Vα−1 = ZαZα′−1 and so V (3)

α′−2∩Qα ≤ Qα−2. Then

[Vα′−2, Vα−3] ≤ [V (3)
α′−2∩Qα, Vα−3] ≤ Zα−2. If [V (3)

α′−2∩Qα, Vα−3] = [Vα′−2, Vα−3], then

V
(3)
α′−2/Vα′−2 contains a unique non-central chief factor which is an FF-module. By

Lemma 5.2.34, Op(Rα′−2) centralizes V (3)
α′−2 and Lemma 5.2.18 applied to Zα′−1 =

Zα′−3 implies that Vα′ ≤ V
(2)
α′−1 = V

(2)
α′−3 ≤ Qα, a contradiction. Thus, Zα−1 ≤

Zα−2 ≤ V
(3)
α′−2 and since b > 5, we have that Zβ = Zα−1, a final contradiction by

the choice of α− 4.

By Lemma 5.4.28, whenever b > 5 and Vα′ ≤ Qβ, we may assume that there is a

critical pair (α− 4, α′ − 4). In the following lemma, we let (α− 4, α′ − 4) be such

a pair and and investigate the action of Vα′−4 on Vα−3 and vice versa.

Lemma 5.4.29. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b > 5. If Vα′ ≤ Qβ then

b > 7, Zα 6= Zα−2, Op(Rβ) centralizes V (3)
β and setting R† = [Vα′−4, Vα−3], either:
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(i) R† = Zα−1 = Zβ; or

(ii) R† 6= Zα−1.

Proof. By Lemma 5.4.27, V (2)
α ≤ Qα′−1, Zα′−1 = Zα′ × Zβ ≤ V (2)

α ≤ Z(V (4)
α ),

V (4)
α 6≤ Qα′−4 and there is a critical pair (α− 4, α′ − 4). Set R† := [Vα′−4, Vα−3] ≤

Zα′−5 ∩ Zα−2. By assumption R† 6= Zα′−4.

Suppose first that R† = Zα−1 ≤ Zα′−5. Then, as b > 5, Zα−1 = Zβ so that by

Lemma 5.2.18, Vα−1 = Vβ. Then [V (3)
α′−4, Vα−1] = [V (3)

α′−4, Vβ] = {1} and so V (3)
α′−4 ≤

Qα−2. Moreover, Vα′−4 6≤ Qα−3, else Zα−3 = R† = Zα−1 and by Lemma 5.2.18,

Vα−3 = Vα−1 ≤ Qα′−4, a contradiction as (α − 4, α′ − 4) is a critical pair. Then

Vα′−4(V (3)
α′−4 ∩Qα′−3 ∩Qα′−4) is an index p subgroup of V (3)

α′−4 which is centralized,

modulo Vα′−4, by Zα−4 and so, V (3)
α′−4/Vα′−4 contains a unique non-central chief

factor and by Lemma 5.2.34, and conjugacy, Op(Rβ) centralizes V (3)
β and subject

to proving Zα 6= Zα−2, (i) holds.

Assume now that R† 6= Zα−1 so that Zα−2 = Zα−1 ×R† is centralized by V (3)
α′−4. If

Zα 6= Zα−2 then it follows that V (3)
α′−4 centralizes Vα−1 and V

(3)
α′−4 ∩Qα−3 ∩Qα−4 is

an index p2 subgroup of V (3)
α′−4 centralized by Zα−4. Hence, V (3)

α′−4 contains only two

non-central chief factors for Lα′−4, one in Vα′−4 and one in V (3)
α′−4/Vα′−4. Moreover,

both non-central chief factors are FF-modules for Lα′−4 and by Lemma 5.2.34,

and conjugacy, we have that Op(Rβ) centralizes V (3)
β and again, subject to proving

Zα 6= Zα−2, (ii) holds.

It remains to prove that b > 7 and Zα 6= Zα−2. Observe that if Zα = Zα−2 and

Op(Rβ) centralizes V (3)
β then by Lemma 5.2.18, Zα−4 ≤ V

(2)
α−2 = V (2)

α ≤ Qα′−4, a

contradiction since (α− 4, α′ − 4) is a critical pair. Now, if b > 7 and Zα = Zα−2,

then V (3)
α′−4∩Qα−1 centralizes Zα−2 and [V (3)

α′−4∩Qα−1, Vα−3] ≤ Zα−2∩V (3)
α′−4 ≤ Zα∩
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Qα′ = Zβ. Thus, there is a p-element in Vα−3\Qα′−4 which commutates a maximal

subgroup of V (3)
α′−4 to a subgroup of order p. But then such an element centralizes

an index p2 subgroup of V (3)
α′−4 and as before, V (3)

α′−4 contains only two non-central

chief factors for Lα′−4, both being FF-modules for Lα′−4 and by Lemma 5.2.34,

and conjugacy, we have that Op(Rβ) centralizes V (3)
β , a contradiction. We may

assume that b = 7 for the remainder of the proof.

Suppose first that R = Zβ = Zα′−2. Since Zβ 6= Zα+3 = Zα′−4, for otherwise

by Lemma 5.2.18, Vβ = Vα+3 ≤ Qα′ , we may assume that Zα+2 = Zβ × Zα+3 =

Zα′−2 × Zα′−4 = Zα′−3. If Op(Rβ) centralizes V (3)
β then Lemma 5.2.18 applied to

Zα+2 = Zα′−3 implies that Zα ≤ V
(2)
α+2 = V

(2)
α′−3 ≤ Qα′ , a contradiction. But now,

V
(3)
α′ ∩ Qα+3 centralizes Zα+2 = Zα′−3 and [V (3)

α′ ∩ Qα+3, Vβ] ≤ Zα+2 = Zα′−3. In

particular, we deduce that Zα′−3 6= Zα′−1 for otherwise V (3)
α′ /Vα′ contains a unique

non-central chief factor for Lα′ and by Lemma 5.2.34, Op(Rα′) centralizes V (3)
α′ .

But then, recalling from Lemma 5.4.19 that Zα′−1 ≤ V (2)
α , we have that Vα′−2 =

Zα′−1Zα′−3 = Zα′−1Zα+2 ≤ V (2)
α . Since Vα′−2 ≤ Qα′ , Zα 6≤ Vα′−2 and so ZαVα′−2 is

a subgroup of V (2)
α of order p4. Now, V (2)

α /Zα is a FF-module for Lα and Vβ/Zα

has order p and generates V (2)
α /Zα, we infer that p4 6 |V (2)

α | 6 p5. If |V (2)
α | = p4,

then [V (2)
α , Vα′ ] = [Vα′−2Zα, Vα′ ] = Zβ, a contradiction by Lemma 5.4.19. Thus,

|V (2)
α | = p5 and the preimage of C

V
(2)
α /Zα

(Op(Lα)) in V (2)
α , which we write as Cα,

has order p3. By the action of Qβ on V (2)
α , we must have that CαVβ ≤ [V (2)

α , Qβ]Vβ.

Moreover, since Zα = Z(Qα), we must have that [Qα, C
α] = Zα

If [V (3)
β , Qβ]Vβ/Vβ is centralized by Op(Lβ) then we have that CαVβ E Lβ. But

then Zβ ≤ [CαVβ, Qβ] ≤ Zα so that [CαVβ, Qβ] = Zβ. Then, we deduce that

CQα(Cα) ≤ Qβ for otherwise Zα = [Qα, C
α] = [Qα∩Qβ, C

α] ≤ Zβ, a contradiction.

But now, as Cα′−1Vα′−2 E Lα′−2, Vβ centralizes Cα′−1 ≤ Cα′−3Vα′−2 so that Vβ ≤
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CQα′−1(Cα′−1) ≤ Qα′ , a contradiction.

Thus, [V (3)
β , Qβ]Vβ/Vβ contains a non-central chief factor for Lβ. Moreover, since

V
(3)
α′ ∩ Qα+3 ≤ Qα+2, an index p2 subgroup of V (3)

α′ /Vα′ is centralized by Zα

and we conclude that V (3)
β /Vβ contains two non-central chief factors for Lβ, one

in V
(3)
β /[V (3)

β , Qβ]Vβ by Lemma 5.2.13 and one in [V (3)
β , Qβ]Vβ/Vβ, and both are

FF-modules for Lβ. Notice that [V (2)
α , Qβ, Qβ] ≤ Zα so that [V (3)

β , Qβ, Qβ] ≤ Vβ

and write R1 := CLβ([V (3)
β , Qβ]Vβ/Vβ) and R2 := CLβ(V (3)

β /[V (3)
β , Qβ]Vβ) so

that Lβ/R1 ∼= Lβ/R2 ∼= Lβ/Rβ
∼= SL2(p). Indeed, either p ∈ {2, 3} and

Lβ = 〈R1, R2, S〉 by Lemma 2.3.15 (ii) or R1 = R2. In the former case, we have that

V (2)
α [V (3)

β , Qβ]Vβ E R2S so that [V (2)
α [V (3)

β , Qβ]Vβ, Qβ]Vβ = [V (2)
α , Qβ]Vβ E R2S.

But [V (2)
α , Qβ]Vβ E R1S so that [V (3)

β , Qβ]Vβ = [V (2)
α , Qβ]Vβ E Lβ, impossible as

then [V (3)
β , Qβ]Vβ/Vβ is centralized by Qα, and so centralized by Op(Lβ). Thus,

R1 = R2 and as Op(Rβ) does not centralize V
(3)
β and Rβ normalizes Qα ∩ Qβ,

we satisfy the hypothesis of Lemma 5.2.29 with λ = β. Since b > 7, outcome of

Lemma 5.2.29 holds and we have that V (4)
α ≤ 〈ZX

β 〉 ≤ Z(Op(X)). IN particular,

V (4)
α is abelian, and by conjugacy Vα′ , Zα ≤ V

(4)
α′−3, impossible since [Zα, Vα′ ] 6= {1}.

Thus, we have that Zα′−2 6= Zβ so that Zα′−1 = Zα′−2 × Zβ. If Zα′−2 6≤ Zα+2,

then Vα+3 = Vα′−4 = Zα+2Zα′−2 ≤ V (2)
α is centralized by V (4)

α , a contradiction by

Lemma 5.4.28. Thus, Zα+2 = Zα′−2×Zβ = Zα′−1. Now, [V (3)
α′ ∩Qα+3, Vβ] ≤ Zα+2 ≤

Vα′ and by Lemma 5.2.34, Op(Rα′) centralizes V (3)
α′ . In particular, Zα 6= Zα−2

and Zα′−1 6= Zα′−3, else by Lemma 5.2.18, Zα−4 ≤ V
(2)
α−2 = V (2)

α ≤ Qα′−4 and

Vα′ ≤ V
(2)
α′−1 = V

(2)
α′−3 ≤ Qα respectively. Since Zα′−2Zα′−4 ≤ Zα+2 ∩ Zα′−3, we get

that Zα′−2 = Zα′−4.

We will show that whenever (α−4, α′−4) is a critical pair, we have that Zβ = Zα−1.

Choose α − 4 such that Zα−4 6≤ Qα′−4. By the above, since Zα 6= Zα−2, assuming
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Zβ 6= Zα−1, we deduce that (ii) holds and R† := [Vα−3, Vα′−4] 6= Zα−1. Then

Zα−2 = R† × Zα−1. But R† ≤ Zα+2 ≤ Vβ and Vβ = ZαZα−2 = Vα−1. Then, if

Zβ 6= Zα−1, Vβ E Lα = 〈Qβ, Qα−1, Rα〉, a contradiction. Therefore, we have shown

that whenever Zα−4 6≤ Qα′−4, Zβ = Zα−1.

Choose δ ∈ ∆(α) such that Zδ 6= Zβ so that V (3)
δ ≤ Qα′−4. Suppose that V (3)

δ 6≤

Qα′−3. There is δ − 2 ∈ ∆(2)(δ) such that Zα′−4 = [Vδ−2, Zα′−3] ≤ Zδ−1 and since

Zα′−2 = Zα′−4 = Zα+3, Zα′−2 ≤ Vβ ∩ Vδ. If Zα′−2 ≤ Zα, then Zα = Zβ × Zα′−2 =

Zα′−1, a clear contradiction. Thus, Vβ = Zα′−2Zα = Vδ. But Zβ 6= Zδ so that

Vβ E Lα = 〈Qβ, Qδ, Rα〉, a contradiction.

Hence, V (3)
δ ≤ Qα′−3 and since Zα′−3 6= Zα′−1 = Zα+2, V (3)

δ centralizes Vα′−2 and

V
(3)
δ ≤ Qα′−1. Setting Wα := 〈V (3)

λ | Zλ = Zδ, λ ∈ ∆(α)〉, we have that Wα =

V (2)
α (Wα∩Qα′) and as Zα′ ≤ V (2)

α , Vα′ centralizes Wα/V (2)
α . Moreover, since RαQδ

normalizes Wα by Lemma 5.2.19, Wα E Lα = 〈Vα′ , Qδ, Rα〉. Since Vα′ centralizes

Wα/V (2)
α , Op(Lα) centralizes Wα/V (2)

α and V
(3)
δ E Lα, a final contradiction.

Lemma 5.4.30. Suppose that CVβ(Vα′) = Vβ ∩Qα′ and b > 5. Then Vα′ 6≤ Qβ.

Proof. Since Vα′ ≤ Qβ, by Lemma 5.4.29, we may assume that b > 7 throughout.

Recall from Lemma 5.4.19 that Zα′−1 ≤ V (2)
α ≤ Z(V (4)

α . Notice that by

Lemma 5.4.29, we have that Op(Rβ) centralizes V (3)
β and by Lemma 5.2.18, if

Zα′−1 = Zα′−3 then Vα′ ≤ V
(2)
α′−1 = V

(2)
α′−3 ≤ Qα, a contradiction. Hence, we

may assume that Zα′−1 6= Zα′−3 throughout the remainder of the proof. We fix

α− 4 ∈ ∆(4)(α) with (α− 4, α′ − 4) a critical pair.

Suppose first that Zα′−2 6= Zα′−4 so that Zα′−3 = Zα′−2 × Zα′−4 is centralized by

V (4)
α . Then, Vα′−2 = Zα′−1Zα′−3 is centralized by V (4)

α so V (4)
α ∩Qα′−4 = V (2)

α (V (4)
α ∩

Qα′) and since Zα′ ≤ V (2)
α , it follows from Lemma 5.2.33 that Op(Rα) centralizes
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V (4)
α . In particular, we deduce that Zβ 6= Zα−1, otherwise by Lemma 5.2.18 we have

that Vα−3 ≤ V
(3)
α−1 = V

(3)
β ≤ Qα′−4, a contradiction. Furthermore, as V (4)

α 6≤ Qα′−4

we have that Zα′−3 = Zα′−5.

By Lemma 5.4.29, Zα 6= Zα−2, Op(Rβ) centralizes V (3)
β and as Zα−1 6= Zβ, and

again setting R† := [Vα′−4, Vα−3], we have that Zα−1 < R†Zα−1 ≤ Zα−2 and R†Zα−1

is centralized by V (3)
α′−4. Thus, V (3)

α′−4 ≤ Qα−2. Notice that, as b > 7, if Zα−2 ≤ V
(3)
α′−4

then Zα−1 ≤ V
(3)
α′−4 ≤ Qα′ and we conclude that Zα−1 = Zβ, a contradiction. Thus,

Zα−2 6≤ V
(3)
α′−4.

If Vα′−4 6≤ Qα−3 then R† 6= Zα−3 and V
(3)
α′−4 = Vα′−4(V (3)

α′−4 ∩ Qα−3). Then Zα−3 =

[Vα−3, (V (3)
α′−4 ∩ Qα−3)] for otherwise, Op(Lα′−4) centralizes V (3)

α′−4/Vα′−4. But then

Zα−2 = R† × Zα−3 ≤ V
(3)
α′−4, a contradiction. Thus, Vα′−4 ≤ Qα−3, R† = Zα−3

and Zα−3 ≤ [V (3)
α′−4, Vα−3] ≤ Zα−2 ∩ V (3)

α′−4 = Zα−3 so that [V (3)
α′−4, Vα−3] = Zα−3 and

V
(3)
α′−4 = Vα′−4(V (3)

α′−4 ∩Qα−4). But then Op(Lα′−4) centralizes V (3)
α′−4/Vα′−4, another

contradiction.

Therefore, Zα′−2 = Zα′−4 and by Lemma 5.2.18, Vα′−2 = Vα′−4 so that V (4)
α ∩

Qα′−4 ∩Qα′−3 ≤ Qα′−2. Since Zα′−1 is centralized by V (4)
α , V (4)

α ∩Qα′−4 ∩Qα′−3 =

V (2)
α (V (4)

α ∩ Qα′). If V (4)
α /V (2)

α contains a unique non-central chief factor which

is an FF-module for Lα, then by Lemma 5.2.18, Vα′ ≤ V
(3)
α′−2 = V

(3)
α′−4 ≤ Qα, a

contradiction. Thus, V (4)
α 6≤ Qα′−4 and V (4)

α ∩Qα′−4 6≤ Qα′−3.

Since b > 7, Zα′−4 = Zα′−2 ≤ Zα′−1 ≤ V (2)
α ≤ Z(V (6)

α ). If Zα′−4 = Zα′−6, then

by Lemma 5.2.18, Vα′−4 = Vα′−6 is centralized by V (4)
α , a contradiction. Thus,

Zα′−5Zα′−7 is centralized by V (6)
α . If Zα′−5 6= Zα′−7 then V (6)

α ≤ Qα′−5 and

V (6)
α = V (4)

α (V (6)
α ∩ Qα′). But then Op(Lα) centralizes V (6)

α /V (4)
α , and we have

a contradiction. Thus, Zα′−5 = Zα′−7. But now, as Op(Rβ) centralizes V (3)
β by
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Lemma 5.4.29, by Lemma 5.2.18 we have that Vα′−4 ≤ V
(2)
α′−5 = V

(2)
α′−7 is centralized

by V (4)
α , a final contradiction.

Lemma 5.4.31. Suppose that CVβ(Vα′) = Vβ ∩Qα′. Then b 6 7.

Proof. By Lemma 5.4.30, Vα′ 6≤ Qβ and V (3)
β ≤ Qα′−1. By Lemma 5.4.21, we have

that Zα′−1 ≤ V
(3)
β and Op(Rβ) centralizes V (3)

β . In particular, if Zα′−1 = Zα′−3,

then Vα′ ≤ V
(2)
α′−1 = V

(2)
α′−3 is centralized by Zα, a contradiction. Hence, Vα′−2 =

Zα′−1Zα′−3. Suppose throughout that b > 7.

Suppose first that V (5)
β ≤ Qα′−4. Then, V (5)

β ∩ Qα′−3 centralizes Vα′−2 and so

V
(5)
β ∩ Qα′−3 = V

(3)
β (V (5)

β ∩ Qα′). Since Zα′ ≤ V
(3)
β , V (5)

β 6≤ Qα′−3. Moreover by

Lemma 5.2.35, we have that Op(Rβ) centralizes V (5)
β and so V (4)

α 6≤ Qα′−3, else

V (4)
α E Lβ = 〈Vα′ , Qα, Rβ〉. Thus, there is α − 4 ∈ ∆(4)(α) such that Zα′−4 =

[Zα−4, Zα′−3] and since Zα′−2 ≤ Zα′−1 ≤ V
(3)
β , we deduce that Zα′−2 = Zα′−4.

Suppose that Zα′−3 6≤ Qα−3. Then (α′ − 3, α − 3) is a critical pair with

Vα−3 ≤ Qα′−4. By Lemma 5.4.30, V (2)
α′−3 6≤ Qα−1 and either Zα = Zα−2 or

Zα−1 = [Vα′−4, Vα−3] = Zα′−4. In the former case it follows from Lemma 5.2.18

that Zα−4 ≤ V
(2)
α−2 = V (2)

α ≤ Qα′−3, a contradiction. In the latter case, we have that

Zβ = Zα−1 = Zα′−4 = Zα′−2. Then R 6= Zα′−2, so that Zα′ ≤ Zα′−1 = R×Zα′−2 ≤

Vβ and Vα′ centralizes V (3)
β /Vβ, a contradiction.

Thus, Zα′−3 ≤ Qα−3 and Zα′−4 = Zα−3. If Zα−3 ≤ Zα, then Zα−3 = Zβ = Zα′−4 =

Zα′−2. But then R 6= Zα′−2 and Zα′−1 = R × Zβ so that Zα′−1 ≤ Vβ and Vα′

centralizes V (3)
β /Vβ, a contradiction. Thus, Vα−1 = ZαZα−3 is centralized by V (2)

α′−3

so that V (2)
α′−3 ≤ Qα−2. Then, Zα−3 ≤ [V (2)

α′−3, Vα−3] ≤ Zα−2 and since Vα−3 does

not centralize V
(2)
α′−3/Zα′−3, we may assume that Zα−2 ≤ V

(2)
α′−3. Still, [V (2)

α′−3 ∩

Qα−3, Vα−3] ≤ Zα′−3 and it follows from Lemma 5.2.32 then Op(Rα) centralizes
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V (2)
α . Since Zα′−2 = Zα′−4, Lemma 5.2.18 implies that Vα′−2 = Vα′−4. Moreover,

since Vα′−4 is not centralized by V
(5)
β , but Zα′−1Zα′−5 ≤ Vα′−4 is centralized, it

follows that Zα′−1 = Zα′−5.

Now, if Zα′−4 = Zα′−6 then Lemma 5.2.18 implies that Zα′−3 ≤ Vα′−4 = Vα′−6 is

centralized by V (4)
α , a contradiction. Thus Zα′−5 = Zα′−4 × Zα′−6 is centralized

by V
(2)
α−4 since Zα′−4 = Zα−3. Moreover, Zα′−5 6= Zα′−7, otherwise Lemma 5.2.18

implies that Zα′−3 ≤ V
(2)
α′−5 = V

(2)
α′−7 is centralized by V (4)

α , so that V (2)
α−4 centralizes

Vα′−6 and V
(2)
α−4 ≤ Qα′−5. If V (2)

α−4 ≤ Qα′−4, then V
(2)
α−4 = Zα−4(V (2)

α−4 ∩ Qα′−3)

is centralized, modulo Zα−4, by Zα′−3 so that Op(Lα−4) centralizes V (2)
α−4/Zα−4,

a contradiction. Then V
(2)
α−4 6≤ Qα′−4 and [V (2)

α−4, Vα′−4] 6≤ Zα′−4. Since Zα′−4 =

Zα−3 ≤ V
(2)
α−4, we assume that Zα′−5 ≤ V

(2)
α−4.

Now, V (4)
α−4 centralizes Zα′−6 ≤ Zα′−5 and either Zα′−6 = Zα′−8; or V (4)

α−4 centralizes

Zα′−5Zα′−7. In the latter case, we may assume that Zα′−5 6= Zα′−7 for the same

reason as above, and so either V (4)
α−4 ≤ Qα′−5 and Op(Lα−4) centralizes V (4)

α−4/V
(2)
α−4,

a contradiction; or Zα′−7 = Zα′−9, Op(Rβ) centralizes V (5)
β and Zα′−3 ≤ V

(4)
α′−7 =

V
(4)
α′−9 is centralized by V (4)

α , another contradiction. Thus, Zα′−6 = Zα′−8 so that

Vα′−6 = Vα′−8. Suppose that V (4)
α−4 ≤ Qα′−8. Then [V (4)

α−4 ∩ Qα′−7, Vα′−6] = [V (4)
α−4 ∩

Qα′−7, Vα′−8] = Zα′−8 = Zα′−6 and V
(4)
α−4 ∩ Qα′−7 ≤ Qα′−6. But V (4)

α−4 ∩ Qα′−7

centralizes Zα′−5 so that V (4)
α−4∩Qα′−7 = V

(2)
α−4(V (4)

α−4∩Qα′−4) and by Lemma 5.2.33,

Op(Rα−4) centralizes V (4)
α−4. But now, Lemma 5.2.18 applied to Zα′−2 = Zα′−4

implies that Vα′ ≤ V
(3)
α′−2 = V

(3)
α′−4 ≤ Qα, a contradiction.

Thus, we have shown that there is a critical pair (α − 8, α′ − 8), Zα′−2 = Zα′−4,

Zα′−6 = Zα′−8 and Vα′−6 = Vα′−8. Since Zα′−5Zα′−9 ≤ Vα′−8 is centralized by V (4)
α−4,

we get that Zα′−1 = Zα′−5 = Zα′−9. We claim that the pair (α− 8, α′− 8) satisfies

the same initial hypothesis as (α, α′). By Lemma 5.4.30, V (2)
α−8 6≤ Qα′−10. But
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Zα′−9 = Zα′−5 ≤ V
(2)
α−4 is centralized by V

(2)
α−8 since b > 7, so that Zα′−9 = Zα′−11.

Then applying Lemma 5.2.18 gives Vα′−8 ≤ V
(2)
α′−9 = V

(2)
α′−11 is centralized by V (4)

α−4,

a contradiction.

Suppose now that V (5)
β 6≤ Qα′−4. Since Zα′−2 ≤ Zα′−1 is centralized by V

(5)
β , it

follows that either Zα′−2 = Zα′−4; or Zα′−3 = Zα′−5. In the latter case, we have

that V (5)
β ∩ Qα′−4 centralizes Vα′−2 so that V (5)

β ∩ Qα′−4 = V
(3)
β (V (5)

β ∩ · · · ∩ Qα′)

and Lemma 5.2.35 implies that Op(Rβ) centralizes V (5)
β . But then Lemma 5.2.18

applied to Zα′−3 = Zα′−5 gives Vα′ ≤ V
(4)
α′−3 = V

(4)
α′−5 ≤ Qα, a contradiction. Thus,

Zα′−2 = Zα′−4. If Op(Rα) centralizes V (2)
α , then using Lemma 5.2.18 and Zα′−2 =

Zα′−4, we have that Zα′−1Zα′−5 ≤ Vα′−4 is centralized by V
(5)
β and we conclude

that Zα′−1 = Zα′−5.

We have demonstrated, regardless of the hypothesis on V
(5)
β , that Zα′−2−4k =

Zα′−4−4k for k > 0, and there are suitable critical pairs to iterate upon. Suppose

that b = 9. Applying the above, we infer that Zα′−2 = Zα′−4 and Zα′−6 = Zα+3 =

Zβ. Since Vα′ 6≤ Qβ, there is a critical pair (α′ + 1, β) with Vβ 6≤ Qα′ . Moreover,

V
(2)
α′+1 ≤ Qα+3, else by Lemma 5.4.25, R = Zα+3 = Zβ, a clear contradiction. Thus,

(α′+1, β) satisfies the same hypothesis as (α, α′). But then Zα′−6 = Zα+3 = Zα+5 =

Zα′−4 so that Zα′−2 = · · · = Zβ. But then R 6= Zα′−2, Zα′−1 = Zα′−2 × R = Zα+2

and [Vα′ , V (3)
β ] = Zα′−1 ≤ Vβ, a contradiction for then Op(Lβ) centralizes V (3)

β /Vβ.

In fact, this applies whenever b = 4k + 1 for k > 2 but we will only require this

when b = 9.

Suppose that V (5)
β 6≤ Qα′−4 and b > 7. Then b > 11 and V

(7)
β centralizes Zα′−4 ≤

Zα′−1 ≤ V
(3)
β and so, unless Zα′−4 = Zα′−6, [V (7)

β , Zα′−5] = {1}. Notice that if

Zα′−5 = Zα′−7, then Lemma 5.2.18 implies that Vα′−4 ≤ V
(2)
α′−5 = V

(2)
α′−7 is centralized

by V
(5)
β , a contradiction. Thus, V (7)

β centralizes Vα′−6 = Zα′−5Zα′−7. But then
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V
(7)
β = V

(5)
β (V (7)

β ∩Qα′−4) and V
(5)
β ∩Qα′−4 ≤ Qα′−3, otherwise V (7)

β = V
(5)
β (V (7)

β ∩

Qα′) so that Op(Lβ) centralizes V (7)
β /V

(5)
β , another contradiction. Then, V (5)

β ∩

Qα′−4 = V
(3)
β (V (5)

β ∩ · · · ∩Qα′) and Lemma 5.2.35 implies that Op(Rβ) centralizes

V
(5)
β . In particular, V (4)

α 6≤ Qα′−4 for otherwise V (4)
α E Lβ = 〈Vα′ , Qα, Rβ〉, a

contradiction.

We have shown that, if b > 7 and Op(Rα) centralizes V (2)
α then Zα′−1 = Zα′−1−4k

for all k > 0. Moreover, we can arrange that α lies along the infinite path (α′, α′−

1, . . . , α′−5, . . . ); or for some critical pair (α∗, α∗′) we have that Zα∗′−2 = Zα∗′−4 =

Zα∗′−6 and V (5)
β∗ 6≤ Qα∗′−4. In this latter case, Lemma 5.2.18 implies that Vα∗′−4 =

Vα∗′−6 and V
(5)
β∗ centralizes Vα∗′−4, a clear contradiction. Now, since Zα 6= Zα′−1,

Zα′−1 = Zα+2 = Zα−2. But then [V (3)
β , Vα′ ] = Zα′−1 ≤ Vβ and Op(Lβ) centralizes

V
(3)
β /Vβ, a contradiction. In particular, if we ever arrive at a critical pair (α∗, α∗′)

such that V (4)
α∗ ≤ Qα∗′−4, then Op(Rα) centralizes V (2)

α and we have a contradiction.

Thus, whenever b > 7, we may assume that for every critical pair (α∗, α∗′), we

have that Vα∗′ 6≤ Qβ∗ , V (3)
β∗ ≤ Qα∗′−1, V (5)

β∗ 6≤ Qα∗′−4 and Zα∗′−2 = Zα∗′−4. Also,

whenever Zα∗′−4 6= Zα∗′−6, V (4)
α∗ 6≤ Qα∗′−4 and V

(2)
α∗−4 ≤ Qα∗′−6

Suppose that Zα′−4 6= Zα′−6 so that there is a critical pair (α − 4, α′ − 4) and

Op(Rβ) centralizes V (5)
β . We may also assume that Op(Rα) does not centralize

V (2)
α . Since Vα′ 6≤ Qβ, there is α′ + 1 ∈ ∆(α′) such that (α′ + 1, β) is a critical

pair. Suppose that V (2)
α′+1 centralizes Zβ. Since Zα+2 = Zβ × R 6= Zα+4, we

have that V (2)
α′+1 centralizes Vα+3 and V

(2)
α′+1 = Zα′+1(V (2)

α′+1 ∩ Qβ). In particular,

V
(2)
α′+1 ∩ Qβ 6≤ Qα, otherwise V (2)

α′+1 is normalized by Lα′ = 〈Vβ, Qα′+1, Rα′〉. But

now, [V (2)
α ∩ Qα′ ∩ Qα′+1, V

(2)
α′+1 ∩ Qβ] ≤ Zα′+1 ∩ V (2)

α and since Zα′ 6≤ V (2)
α by

Lemma 5.4.21, [V (2)
α ∩Qα′ ∩Qα′+1, V

(2)
α′+1∩Qβ] = {1} and V (2)

α /Zα is an FF-module

for Lα, a contradiction by Lemma 5.2.32. Thus, it suffices to prove that Zβ is
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centralized by V
(3)
α′ . Since V (4)

α 6≤ Qα′−4, {1} 6= [Vα−3, Vα′−4] ≤ Zα−2 ∩ Vα′−4. If

[Vα−3, Vα′−4] = Zα−1, then Zα−1 = Zβ ≤ Vα′−4, for otherwise Zα ≤ Qα′ . Since

b > 7, this leads to a contradiction. Thus, Zα−2 = [Vα−3, Vα′−4]× Zα−1 and V
(3)
α′−4

centralizes Vα−1 = Zα−2Zα. Thus, since V (3)
α′−4/Vα′−4 contains a non-central chief

factor, [Vα−3, Vα′−4] < [Vα−3, V
(3)
α′−4] ≤ Zα−2 so that Zα−2 ≤ V

(3
α′−4. In particular,

Zα−1 ≤ V
(3)
α′−4 and since b > 7, we have that Zα−1 = Zβ ≤ V

(3)
α′−4. Since b > 9, V (3)

α′

centralizes V (3)
α′−4 so that V (2)

α′+1 centralizes Zβ, as required.

Thus, we have shown that whenever b > 7, Zα′−2 = Zα′−4 = Zα′−6 and there is

a critical pair (β − 5, α′ − 4). Then, as [Vβ−4, Vα′−4] 6= Zα′−6 and Zα′−5 6= Zα′−7,

V
(2)
β−5 ≤ Qα′−6 and by Lemma 5.4.30, we have that Vα′−4 6≤ Qβ−4. In particular,

(β − 5, α′ − 4) satisfies the same hypothesis as (α, α′) and applying the same

methodology as above, we infer that Zα′−6 = Zα′−8 = Zα′−10. Applying this

iteratively, we deduce that Zα′−2 = · · · = Zβ. In particular, Zα′−2 = Zβ 6= R ≤

Zα′−1 ∩Zα+2 so that Zα′−1 = Zα+2. But then [V (3)
β , Vα′ ] = Zα′−1 = Zα+2 ≤ Vβ and

Op(Lβ) centralizes V (3)
β /Vβ, a final contradiction.

Lemma 5.4.32. Suppose that CVβ(Vα′) = Vβ ∩Qα′. Then b 6= 7.

Proof. By Lemma 5.4.30 and Lemma 5.4.31, we have that Vα′ 6≤ Qβ and b = 7.

Since Vα′−2 = Zα′−1Zα′−3 ≤ V
(3)
β and V

(3)
β is abelian, we have that CQβ(V (3)

β ) =

V
(3)
β (CQβ(V (3)

β )∩Qα′) and since Zα′ ≤ V
(3)
β , Op(Lβ) centralizes CQβ(V (3)

β )/V (3)
β . In

particular, Op(Rβ) centralizes CQβ(V (3)
β ). But now, by the three subgroup lemma,

for r ∈ Op(Rβ) of order coprime to p, [r,Qβ, V
(3)
β ] = {1} and r centralizes Qβ.

Thus, Rβ = Qβ and Lβ ∼= SL2(p).

Let α′+ 1 ∈ ∆(α′) such that Zα′+1 6≤ Qβ. Then, V (2)
α ∩Qα′ 6≤ Qα′+1, for otherwise

Vα′ normalizes V (2)
α , a contradiction for then Lβ = 〈Vα′ , Qα, Qβ〉 normalizes V (2)

α .
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Notice that [V (2)
α′+1, Vα+3] ≤ Zα+4 ∩ Zα′+1. Since (α′ + 1, β) is a critical pair, we

have that Zα+4 ∩ Zα′+1 = Zα′−3 ∩ Zα′+1 ≤ Zα′ . But if Zα′ ≤ Zα′−3, since Zα′−1 6=

Zα′−3, we deduce that Zα′ = Zα′−2 6= R. Then R 6= Zα+3 for otherwise Zα′−1 =

Zα′−2R = Zα′−2Zα′−4 = Zα′−3, and so V (2)
α′+1 centralizes Zα+2 = Zα+3R and since

Zα+2 6= Zα+4, we have that [V (2)
α′+1, Vα+3] = {1}. Thus, whether Zα′ ≤ Zα+4

or not, V (2)
α′+1 ≤ Qα+2 and V

(2)
α′+1 = Zα′+1(V (2)

α′+1 ∩ Qβ) and since V (2)
α′+1 6E Lα′ =

〈Vβ, Qα′+1, Qα′〉, we may assume that V (2)
α′+1 ∩Qβ 6≤ Qα and Zβ 6≤ V

(2)
α′+1. But now,

[V (2)
α′+1 ∩ Qβ, V

(2)
α ∩ Qα′ ∩ Qα′+1] ≤ Zα′+1 ∩ V (2)

α and since Zα′ 6≤ V (2)
α , [V (2)

α′+1 ∩

Qβ, V
(2)
α ∩ Qα′ ∩ Qα′+1] = {1} and V (2)

α /Zα is an FF-module for Lα. Then by

Lemma 5.2.32, Op(Rα) centralizes V (2)
α .

It follows from the arguments above, that if Zα+3 = R 6= Zα′−2, then Zα′−1 =

Zα′−3 and we have a contradiction. Similarly, Zα′−2 = R 6= Zα+3 yields Zα+2 =

Zα+4, another contradiction. Suppose that Zα+3 6= R 6= Zα′−2. In particular,

R 6≤ Zα′−3. But now, Vα′−2 = RZα′−3 = Vα′−4. If Zα′−2 6= Zα′−4 then Lα′−3 =

〈Rα′−3, Qα′−2, Qα′−4〉 normalizes Vα′−2, a contradiction. Thus, Zα′−2 = Zα′−4 =

Zα+3 so that Zα′−1 = RZα′−2 = RZα+3 = Zα+2 ≤ Vβ from which it follows that

Vα′ centralizes V (3)
β /Vβ, a contradiction. Thus, R = Zα′−2 = Zα′−4 = Zα+3 and by

Lemma 5.2.18, we conclude that Vα′−2 = Vα′−4.

We may assume that V (4)
α does not centralize Zα′−3, for otherwise V (4)

α centralizes

Vα′−2 = Vα′−4 = Zα′−3Zα+2, V (4)
α = V

(3)
β (V (4)

α ∩ Qα′) and V (4)
α E Lβ = 〈Vα′ , Qα〉.

Choose α − 4 ∈ ∆(4)(α) such that [Zα−4, Zα′−3] 6= {1}. If Zα′−3 ≤ Qα−3, then

Zα−3 = [Zα−4, Zα′−3] ≤ Zα+2. Then, if Zα−3 = Zβ, either Zα = Zα−2, a

contradiction for then Lemma 5.2.18 implies that Zα−4 ≤ V
(2)
α−2 = V (3)

α ≤ Qα′−3;

or Zβ = Zα−1 = Zα−3 and by Lemma 5.2.18, Zα−4 ≤ Vα−3 = Vβ ≤ Qα′−3, another

contradiction. Still, Zα−3 ≤ Vα−1 ∩ Vβ and since Zα+2 = Zβ × Zα−3 6= Zα, we
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have that Vβ = Vα−1. Since Op(Rα) centralizes V (2)
α , Zα−1 = Zβ, for otherwise

Vβ E Lα = 〈Rα, Qα−1, Qβ〉.

Suppose that Zα′−3 6≤ Qα−3 so that (α′ − 3, α − 3) is a critical pair. By

Lemma 5.4.30, we may assume that (α′ − 3, α − 3) satisfies the same hypothesis

as (α, α′), in which case Zα−1 = Zβ; or V (2)
α′−3 6≤ Qα−1 and by Lemma 5.4.25,

either [Vα′−4, Vα−3] = Zα−1 ≤ Zα+2, and again Zα−1 = Zβ, or Zα−2 = Zα, and by

Lemma 5.2.18, we have a contradiction.

Thus, whenever there is Zα−4 such that Zα−4 does not centralizes Zα′−3, we have

Zα−1 = Zβ. Choose λ ∈ ∆(α) such that Zλ 6= Zβ so that V (3)
λ centralizes Zα′−3.

Then V (3)
λ centralizes Vα′−4 = Vα′−2 so that V (3)

λ = Vβ(V (3)
λ ∩Qα′). Then, V (3)

λ V
(3)
β E

Lβ = 〈Qα, Vα′〉. In particular, [Cβ, V (3)
λ V

(3)
β ] is a normal subgroup Lβ contained in

[Cβ, V (3)
β ][Qα, V

(3)
λ ]. Noticing that [Vα′+1∩Qβ, V

(2)
α ] = [Vα′+1∩Qβ, Vβ(V (2)

α ∩Qα′)] =

ZβR = Zα+2, we have that [S, V (2)
α ] ≤ Vβ and |V (2)

α | = p4. But then [Qβ, V
(3)
β ] = Vβ

and since [Vα′ , V (3)
β ] = Zα′−1 ≤ Vα+3 ≤ V

(2)
α+2, we must have that |V (3)

β | = p5

and [Qα, V
(3)
β ] = V (2)

α . Thus, Vβ 6≥ [Cβ, V (3)
λ V

(3)
β ] ≤ V (2)

α and it follows that

V (2)
α = Vβ[Cβ, V (3)

λ V
(3)
β ] E Lβ, a contradiction.

Combining all the results in this subsection thus far, we have the following result.

Proposition 5.4.33. Suppose that CVβ(Vα′) = Vβ ∩Qα′. Then b 6 5.

In conjunction with the results proved in earlier sections, we have now proved

that Hypothesis 5.2.1 implies that b 6 5. In the next lemmas and proposition,

we show this bound is tight by witnessing an example with b = 5. In [DS85] and

[Del88], this configuration is shown to be parabolic isomorphic to F3. In our case,

we have demonstrated in Section 3.3 that this leads to an exotic fusion system.
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The presence of this fusion system may go some way to explaining why it is so

difficult to uniquely determine F3 from a purely 3-local perspective.

Lemma 5.4.34. Suppose that CVβ(Vα′) = Vβ ∩Qα′ and b = 5. Then Vα′ 6≤ Qβ.

Proof. Assume that Vα′ ≤ Qβ. If V (2)
α ≤ Qα′−2, then it follows from Lemma 5.4.19

that |Vβ| = p3 and Op(Rα) centralizes V (2)
α . Now, Zβ = R ≤ Zα′−1 and since Vβ 6=

Vα′−2, by Lemma 5.2.18, we may assume that Zβ 6= Zα′−2 so that Zα′−1 = Zα+2.

But now, V (3)
α′ ∩Qα′−2 ≤ Qα+2 so that [V (3)

α′ ∩Qα′−2, Vβ] ≤ Zα+2 = Zα′−1 ≤ Vα′ . By

Lemma 5.2.34, Op(Rα′) centralizes V (3)
α′ and Lemma 5.2.18 applied to Zα′−1 = Zα+2

implies that Vβ ≤ V
(2)
α+2 = V

(2)
α′−1 ≤ Qα′ , a contradiction.

Suppose now that Vα′ ≤ Qβ, |Vβ| = p3 and V (2)
α 6≤ Qα′−2. If Zβ = R 6= Zα′−2

then, as above, Zα′−1 = Zα+2 and [V (3)
α′ ∩ Qα′−2, Vβ] ≤ Zα+2 = Zα′−1 ≤ Vα′ .

Then Op(Rα′) centralizes V (3)
α′ and Lemma 5.2.18 provides a contradiction. Thus,

Zβ = Zα′−2 6= Zα′ . But now, [Vα′−2, V
(2)
α ] ≤ Zα ∩ Zα+2 = Zβ = Zα′−2 and

V (2)
α ≤ Qα′−2, a contradiction.

Thus, if Vα′ ≤ Qβ then |Vβ| 6= p3. Notice that if Zα′−2 = Zβ, then ZβZ
g
βZα′ =

Zα′−1Z
g
α′−1 is of order p3 and normalized by Lα′ = 〈Vβ, V g

β , Rα′〉, for some

appropriately chosen g ∈ Lα′ , a contradiction. Now, if Zα′−2 ≤ V α, then

Vβ = Zα+2ZαCVβ(Op(Lβ)) ≤ V α. But then V α = V (2)
α and we have a contradiction.

Since [Qα, V
(2)
α ] ≤ V α and Vα′−2 ≤ Qα, it follows that V (2)

α ∩ Qα′−2 centralizes

Vα′−2 and V (2)
α ∩Qα′−2 ≤ Qα′−1. Since both V (2)

α /V α and V α/Zα have non-central

chief factors, [V (2)
α ∩ Qα′ , Vα′ ] = Zα′ ≤ V (2)

α and both V (2)
α /V α and V α/Zα are

FF-modules for Lα. Then by Lemma 5.2.32, we have that Op(Rα) centralizes V (2)
α

and by Lemma 5.2.18, Zα′ 6= Zα′−2 and Zα′−1 ≤ V (2)
α . Since V (2)

α 6≤ Qα′−2, and

V (2)
α centralizes Zα′−1Zα+2. By Lemma 5.2.31, we may assume that Zα′−1 = Zα+2.
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But now [Vβ, Vα′ ] = Zβ ≤ Zα′−1 and Zα′−1Z
g
α′−1 is of order p3 and normalized by

Lα′ = 〈Vβ, V g
β , Rα′〉, a contradiction.

Lemma 5.4.35. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b = 5. Then |Vβ| = p3,

R = Zα′−2 6= Zβ 6= Zα′ 6= R and Zα′−1 6= Zα+2.

Proof. By Lemma 5.4.34, we have that Vα′ 6≤ Qβ for all critical pairs (α, α′).

Suppose that |Vβ| 6= p3 and fix α′ + 1 ∈ ∆(α′) such that Zα′+1 6≤ Qβ. In particular,

(α′ + 1, β) is a critical pair satisfying the same hypothesis as (α, α′).

We suppose first that Zβ 6= Zα′−2. As in Lemma 5.4.34, this implies that Zα′−2 6≤

V α so that V (2)
α ∩Qα′−2 ≤ Qα′−1. Moreover, [V α, Vα′−2] ≤ Zα ∩ Vα′−2 = Zβ and if

V α 6≤ Qα′−2, then ZβZg
βZα′−2 = Zα+2Z

g
α+2 is of order p3 and normalized by Lα′−2 =

〈V α, (V α)g, Rα′−2〉 for some appropriately chosen g ∈ Lα′−2, a contradiction. Thus,

V α = Zα(V α ∩Qα′).

Set Uβ := 〈(V α)Gβ〉. Then [Uβ, Vα′−2] ≤ [Uβ, Cβ] ∩ Vα′−2 ≤ Vα′−2 ∩ Vβ. Notice

that if Vα′−2 ∩ Vβ > Zα+2 then, as Vα′−2 ∩ Vβ is centralized by Vα′ , Vα′−2 ∩ Vβ =

Zα+2CVβ(Op(Lβ)) = Zα+2CVα′−2(Op(Lα′−2)) and Zβ = [Qα+2, Vα′−2 ∩ Vβ] = Zα′−2,

a contradiction. Thus, Uβ ≤ Qα′−2 for otherwise Zα+2Z
g
α+2 is of order p3

and normalized by Lα′−2 = 〈Uβ, U g
β , Rα′−2〉, for some appropriate g ∈ Lα′−2,

another contradiction. Since Zα′−2 6= Zβ, it follows from a similar argument

to above that V α′−1 ≤ Cβ. Suppose that V µ 6≤ Qα′−1 for some µ ∈ ∆(β).

Then {1} 6= [V µ, V α′−1] ≤ Zµ ∩ V α′−1. Notice that Zβ 6≤ V α′−1 for otherwise

Vα′−2 = Zα′−1Zα+2CVα′ (O
p(Lα′−2)) ≤ V α′−1. Thus, Zµ = [V α′−1, V µ] × Zβ

centralizes Vα′ and since R 6= {1}, it follows that Zµ = Zα+2. Since Zα′−2 ≤ V α′−1

and Zβ 6≤ V α′−1, we have that [V µ, V α′−1] = Zα′−2 ≤ Zα′−1, a contradiction

since V µ 6≤ Qα′−1. Thus, Uβ ≤ Qα′−1. Since V αVβ 6E Lβ, we conclude
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that [Uβ ∩ Qα′ , Vα′ ] = Zα′ ≤ Uβ and Zα′ 6≤ Vβ. But now Zα′−2 6= Zα′ and

Vα′−2 = Zα′−1Zα+2CVα′−2(Op(Lα′−2)) ≤ Uβ.

Suppose that [V (2)
α , Zα′−1] 6= {1}. Then there is α − 1 ∈ ∆(α) such that

[Vα−1, Zα′−1] 6= {1}. If Zα′−1 ≤ Qα−1, then Zα−1 = [Zα′−1, Vα−1] ≤ [Vα′−2, V
(2)
α ].

Since Zα 6≤ Vα′−2, it follows that Zα−1 = Zβ. But then [Vα′−2, V
(2)
α ] ≤ ZβZα′−2

and if V (2)
α 6≤ Qα′−2, then Zα+2Z

g
α+2 is of order p3 and normalized by Lα′−2 =

〈V (2)
α , (V (2)

α )g, Rα′−2〉 for some appropriately chosen g ∈ Lα′−2, a contradiction.

Thus, Zα−1 = [Zα′−1, Vα−1] = Zα′−2 and Zα = Zα′−2×Zβ = Zα+2, a contradiction.

Thus, Zα′−1 6≤ Qα−1 and (α′ − 1, α − 1) is a critical pair. Since Zα′−2 6= Zβ,

(α′−1, α−1) satisfies the same hypothesis as (α, α′) and so we see that Vβ ≤ Uα′−2.

But then R = [Vβ, Vα′ ] ≤ [Uα′−2, Cα′−2] ≤ Vα′−2 and R ≤ Vβ ∩ Vα′−2 ≤ Zα+2.

Similarly to before, this implies that |Vβ| = p3, and we have a contradiction.

Thus, [V (2)
α , Zα′−1] = {1} and since Zα′−1 6= Zα′−3, it follows that V (2)

α centralizes

Vα′−2 and V (2)
α ≤ Qα′−1. In particular, this holds for any λ ∈ ∆(β) with

Zλ = Zα. Forming W β := 〈V (2)
λ | Zλ = Zα, λ ∈ ∆(β)〉, we have that W βUβ/Uβ

is centralized by Vα′ , and by Lemma 5.2.19, normalized by RβQα. But then

W βUβ E Lβ = 〈Vα′ , Rβ, Qα〉 and since Vα′ centralizes W βUβ/Uβ we deduce that

V
(3)
β = V (2)

α Uβ E Lβ. Now, R = [Vβ, Vα′ ] ≤ [Vβ, V (2)
α′−1Uα′−2] = [Vβ, V (2)

α+2Uα′−2] =

[Vβ, Uα′−2] and since Vβ ≤ Cα′−2, it follows that R ≤ Vβ ∩ Vα′−2 = Zα+2, which

again implies that |Vβ| = p3, a contradiction.

Suppose now that Vα′ 6≤ Qβ, |Vβ| 6= p3 and Zβ = Zα′−2. Since (α′ + 1, β) is also

a critical pair, by the above, we may assume that Zα′ = Zα′−2 and Zα′ = Zβ.

Set Uβ := 〈V λ | Zλ = Zα, λ ∈ ∆(β)〉 so that (λ, α′) is a critical pair for every

such λ. For such a λ, [V λ, Vα′−2] ≤ Zα ∩ Vα′−2 and since Zβ = Zα′−2, it follows

that V λ ≤ Qα′−2. If V λ 6≤ Qα′−1, then using that [V α′−1, Vβ] ≤ Zα′−1 and Vβ
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is centralized by V λ, it follows that [V α′−1, Vβ] = Zα′−2 = Zβ so that V α′−1 ≤

Qβ. Then [V α′−1 ∩ Qλ, V
λ] ≤ Zλ = Zα and since Zα 6≤ V

(2)
α′−1, we have that

[V α′−1 ∩ Qλ, V
λ] = Zβ ≤ Zα′−1. Since V α′−1/Zα′−1 contains a non-central chief

factor, V α′−1 6≤ Qλ and V α′−1/Zα′−1 is an FF-module for Lα′−1. Then V (2)
α′−1∩Qβ =

V α′−1(V (2)
α′−1 ∩ Qλ) and since Zλ = Zα 6≤ V

(2)
α′−1, V (2)

α′−1/V
α′−1 is also an FF-module

for Lα′−1. Then Lemma 5.2.32 and Lemma 5.2.18 applied to Zβ = Zα′−2 = Zα′

gives Vα′ = Vβ, a contradiction. Thus Uβ ≤ Qα′−1 and UβVβ/Vβ is centralized by

Vα′ . Since Uβ E RβQα by Lemma 5.2.19, Uβ E Lβ = 〈Vα′ , Rβ, Qα〉 and since Vα′

centralizes Uβ/Vβ we have that V αVβ E Lβ, a contradiction by Lemma 5.2.31.

Thus, we have shown that |Vβ| = p3, R ≤ Zα′−1 ∩ Zα+2 and Vα′ 6≤ Qβ. Suppose

that Zα′−1 = Zα+2. Then V (3)
β ∩Qα′−2 ≤ Qα′−1 and [V (3)

β ∩Qα′−2, Vα′ ] ≤ Zα′−1 ≤ Vβ

and it follows that V (3)
β /Vβ contains a unique non-central chief factor for Lβ which

is an FF-module. Then, Lemma 5.2.34 and Lemma 5.2.18 applied to Zα′−1 = Zα+2

gives Vα′ ≤ V
(2)
α′−1 = V

(2)
α+2 ≤ Qβ, a contradiction. Now, R ≤ Zα′−1 ∩ Zα+2 and so

R = Zα′−2, otherwise Zα′−1 = Zα+2. This completes the proof.

Lemma 5.4.36. Suppose that CVβ(Vα′) = Vβ ∩Qα′ and b = 5. If [V (3)
β , Qβ]Vβ/Vβ

contains no non-central chief factor for Lβ then [V (3)
β , Qβ]Vβ ≤ Z(V (3)

β ) and Vα′

acts quadratically on V
(3)
β /Vβ. If, in addition, V (2)

α /Zα is an FF-module for Lα,

then |V (2)
α | = p4 and [V (3)

β , Qβ] = Vβ.

Proof. Suppose that [V (3)
β , Qβ]Vβ/Vβ contains no non-central chief factor for Lβ.

Then Op(Lβ) centralizes [V (3)
β , Qβ]Vβ/Vβ and so [V (2)

λ , Qβ]Vβ E Lβ for any λ ∈

∆(β). It follows that [V (3)
β , Qβ]Vβ = [V (2)

λ , Qβ]Vβ for any λ ∈ ∆(β). But V (2)
λ is

elementary abelian and so [V (3)
β , Qβ]Vβ ≤ Z(V (3)

β ). Moreover, [V (3)
β , Qβ, V

(3)
β ] = {1}

and it follows from the three subgroup lemma that [V (3)
β , V

(3)
β , Qβ] = {1} so that

[V (3)
β , V

(3)
β ] ≤ Z(Qβ) = Zβ. Since Vβ, Vα′ ≤ V

(3)
α′−2, it follows by conjugacy that V (3)

β
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is non-abelian and so [V (3)
β , V

(3)
β ] = Zβ. Then [V (3)

β , Vα′ , Vα′ ] ≤ [V (3)
β , V

(3)
α′−2, V

(3)
α′−2] ≤

Zα′−2 ≤ Vβ, as required.

Suppose now, in addition, that V (2)
α /Zα is an FF-module for Lα. Set Cα to be

the preimage of C
V

(2)
α /Zα

(Op(Lα)). Then by Lemma 2.3.10, V (2)
α /Cα is a natural

SL2(p)-module and since |Vβ| = p3, we may assume that |Cα| = p3, |V (2)
α | =

p5 and Cα ∩ Vβ = Zα. In particular, if Op(Lβ) centralizes [V (3)
β , Qβ]Vβ/Vβ then

CαVβ = [V (2)
α , Qβ]Vβ E Lβ and Cα ≤ Z(V (3)

β ). Furthermore, as Zα = Z(Qα), we

must have that [Cα, Qα] = Zα and calculating in GL3(p) and applying the three

subgroup lemma, we infer that |Qα/CQα(Cα)| = p2 and Qα/CQα(Cα) is a natural

SL2(p)-module for Lα/Rα
∼= SL2(p).

Now, as CαVβ E Lβ, [Cβ, Cα] is normal in Lβ and contained in Zα. Note that Cβ

has index p2 in Qα and so [Cβ, Cα] = {1} implies that Cβ = CQα(Cα) E 〈Gα, Gβ〉,

a contradiction. Thus, [Cβ, Cα] = [Qβ, C
α] = Zβ so that CQα(Cα) ≤ Qβ, for

otherwise Qα = (Qα ∩ Qβ)(CQα(Cα)) and Zβ = [Qα, C
α] E Lα. But now, since

Cα+2 ≤ Z(V (3)
α′−2), Vα′ ≤ CQα+2(Cα+2) ≤ Qβ, a contradiction. Thus, Cα = Zα,

|V (2)
α | = p4 and [V (3)

β , Qβ] = Vβ, as required.

Lemma 5.4.37. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b = 5. Then we may

assume that V (2)
α 6≤ Qα′−2.

Proof. Since Lβ/Rβ = SL2(p), we can arrange that there is g ∈ Lβ such that

g 6≤ Gβ,α+2Rβ but g2 ≤ Gβ,α+2Rβ. Then Zg
α+2 6= Zα+2 but Zg2

α+2 = Zα+2 and

so we label α = (α + 2)g so that (α, α′) is still a critical pair. It then follows

that RβQ
g
α+2 = RβQα and RβQ

g
α = RβQα+2. Moreover, as Vα′ 6≤ Qβ, there is

α′ + 1 ∈ ∆(α′) such that Zα′+1 6≤ Qβ and (α′ + 1, β) is a critical pair. We arrange

also that there is h ∈ Lα′ with h 6≤ Gα′,α′−1Rα′ but h2 ∈ Gα′,α′−1Rα′ such that
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(α′ + 1)h = α′ − 1, Rα′Q
h
α′+1 = Rα′Qα′−1 and Rα′Q

h
α′−1 = Rα′Qα′+1.

Set W β := 〈V (2)
λ | λ ∈ ∆(β) , Zλ = Zα〉 so that by Lemma 5.2.19, W β E RβQα.

Set Wα′ = 〈V (2)
µ | µ ∈ ∆(α′) , Zµ = Zα′+1〉 E Rα′Qα′+1. Finally, we set Uβ :=

〈V (2)
δ | µ ∈ ∆(β) , Zδ = Zα+2〉 E RβQα+2. In particular, UβW β E Rβ and for

g ∈ Lβ such that g 6≤ Gβ,α+2Rβ, g2 ≤ Gβ,α+2Rβ and α = (α + 2)g, we have that

(Uβ)g = W β and (W β)g = Uβ.

For λ ∈ ∆(β) with Zλ = Zα, Zα′−1 ≤ Qλ and so [Zα′−1, V
(2)
λ ] ≤ Zλ. Thus,

[W β∩Qα′−2, Zα′−1] ≤ Zλ∩Zα′−2 = {1} since Zβ 6= Zα′−2. Therefore, W β∩Qα′−2 ≤

Qα′−1. Similarly, Wα′ ∩Qα′−2 ≤ Qα+2.

Suppose that W β ≤ Qα′−2 so that V (2)
α ≤ Qα′−2 and W β = Vβ(W β ∩ Qα′). If

[W β ∩ Qα′ , Vα′ ] ≤ W β, then V
(3)
β = W β E Lβ = 〈Rβ, Vα′ , Qα〉, and V

(3)
β ≤ Qα′−1.

Then Vβ(V (3)
β ∩ Qα′+1) is an index p subgroup of V (3)

β centralized, modulo Vβ, by

Zα′+1 and V (3)
β /Vβ contains a unique non-central chief factor which is an FF-module

for Lβ. By Lemma 5.2.34, Op(Rβ) centralizes V (3)
β . But then, for λ ∈ ∆(β) with

Zλ = Zα, it follows by Lemma 5.2.18 that V (2)
λ = V (2)

α and V
(3)
β = W β = V (2)

α , a

clear contradiction. Thus, if W β ≤ Qα′−2, then [W β ∩ Qα′ , Vα′ ] = Zα′ ≤ V
(3)
β but

Zα′ 6≤ W β.

Now, still assuming that W β ≤ Qα′−2, [W β∩Qα′∩Qα′+1,W
α′∩Qβ] ≤ Zα′+1∩W β =

{1}. In particular, [V (2)
α ∩ Qα′ ∩ Qα′+1,W

α′ ∩ Qβ] = {1} and if Wα′ ∩ Qβ 6≤ Qα

then as V (2)
α = Zα(V (2)

α ∩Qα′), it follows that V (2)
α /Zα is an FF-module for Lα and

V (2)
α ∩Qα′ 6≤ Qα′+1. If Wα′ ∩Qβ ≤ Qα, then Wα′ 6≤ Qα′−2 otherwise we obtain the

contradiction V
(3)
α′ = V

(2)
α′+1 in the same manner as the case where W β ≤ Qα′−2.

We may as well assume that V (2)
α′+1 6≤ Qα′−2 so that V (2)

α′+1 does not centralize Zα+2

and since V (2)
α′+1 is abelian, Zβ 6≤ V

(2)
α′+1. Then V

(2)
α′+1 ∩ Qα′−2 = Zα′+1(V (2)

α′+1 ∩ Qα)
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and [V (2)
α′+1 ∩Qα,W

β ∩Qα′ ] ≤ V
(2)
α′+1 ∩ Zβ = {1} and V

(2)
α′+1/Zα′+1 is an FF-module

for Lα′+1.

Therefore, if W β ≤ Qα′−2 then V (2)
α /Zα is an FF-module for Lα. Moreover,

[W β, Vα′ ] ≤ Zα′−1 ≤ V
(2)
α+2 ≤ Uβ and so Vα′Rβ = Qα+2Rβ normalizes W βUβ.

But then (Qα+2Rβ)g = QαRβ normalizes (W βUβ)g = W βUβ and V
(3)
β = W βUβ E

Lβ = 〈Qα+2, Rβ, Qα〉. If Uβ 6≤ Qα′−2, then there is a critical pair with (β−3, α′−2)

such that Zα+2 = Zβ−1, a contradiction by Lemma 5.4.35; and so we conclude that

V
(3)
β ≤ Qα′−2.

Suppose that V (3)
β 6≤ Qα′−1. Since Zα′−1 ≤ V

(3)
β , we have that Zα′−2 ≤ [V (3)

β , V
(3)
β ] =

Vβ and it follows from Lemma 5.4.36 that [V (3)
β , Qβ]/Vβ contains a non-central chief

factor Lβ. Moreover, by Lemma 5.2.13, V (3)
β /[V (3)

β , Qβ] contains a non-central chief

factor for Lβ. Notice that if Zα′ ≤ [V (3)
β , Qβ], then [V (3)

β , Qβ] ≤ Qα′−1, for otherwise

Vα′ would centralize V
(3)
β /[V (3)

β , Qβ]. But then V
(3)
β = W β[V (3)

β , Qβ] E Lβ and

V
(3)
β ≤ Qα′−1, a contradiction. Thus, Zα′ 6≤ [V (3)

β , Qβ] and since [V (3)
β , Qβ]/Vβ

contains a non-central chief factor, we infer that [V (3)
β , Qβ] 6≤ Qα′−1. Now,

since W β ≤ Qα′−1, we have that [W β, Qβ] ≤ Qα′−1 and as Zα′ 6≤ [V (3)
β , Qβ],

[[W β, Qβ], Vα′ ] ≤ Vβ so that [W β, Qβ]Vβ E Lβ = 〈Vα′ , Rβ, Qα〉. But then

[V (3)
β , Qβ] = [W β, Qβ]Vβ ≤ Qα′−1, a contradiction.

Thus, V (3)
β ≤ Qα′−1 and it follows that Vβ(V (3)

β ∩ Qα′) has index at most p in

V
(3)
β . Then by Lemma 5.2.34, Op(Rβ) centralizes V

(3)
β and by Lemma 5.2.18,

W β = V (2)
α and Uβ = V

(2)
α+2. Furthermore, by Lemma 5.4.36, |V (2)

α | = p4. But then

V
(3)
β = V (2)

α V
(2)
α+2 and since V (2)

α centralizes Vα′−2Vβ = V
(2)
α+2, V (3)

β is abelian. Upon

conjugating, V (3)
α′−2 is abelian, impossible since [Vβ, Vα′ ] 6= {1}. Thus, W β 6≤ Qα′−2.

Using the symmetry in the critical pairs (α, α′) and (α′ + 1, β), we may assume
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that Wα′ 6≤ Qα′−2. We may as well arrange that for the critical pairs (α, α′) and

(α′+ 1, β) we have that V (2)
α 6≤ Qα′−2 and V (2)

α′+1 6≤ Qα′−2, and the result holds.

Throughout the next lemmas and propositions, by the above work, we assume

that Vα′ 6≤ Qβ, Zα′−1 6= Zα+2, R = Zα′−2 6= Zβ 6= Zα′ 6= R, V (2)
α 6≤ Qα′−2 and for

α′ + 1 ∈ ∆(α′) with (α′ + 1, β) a critical pair, V (2)
α′+1 6≤ Qα′−2. In particular, V (2)

α

does not centralize Zα′−1 and so Zα′ 6≤ CQα(V (2)
α ). Similarly, Zβ 6≤ CQα′+1(V (2)

α′+1).

We set W β := 〈V (2)
λ | λ ∈ ∆(β) , Zλ = Zα〉 E RβQα throughout.

Lemma 5.4.38. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b = 5. Then Op(Lβ)

centralizes [V (3)
β , Qβ]Vβ/Vβ.

Proof. Suppose that [V (3)
β , Qβ]Vβ/Vβ contains a non-central chief factor for Lβ. In

addition, suppose that Zα′ 6≤ [V (3)
β , Qβ]Vβ. Notice that [W β, Qβ] = [W β, (Qα ∩

Qβ)][W β, (Qα ∩ Qα+2)] ≤ Zα[Qα+2, Qα+2] ≤ Qα′−2. Now, [W β ∩ Qα′−2, Zα′−1] ≤

Zα′−2∩ [W β, Zα′−1] ≤ Zα′−2∩Zα = {1} and so [W β, Qβ, Vα′ ] ≤ Zα′−1∩ [V (3)
β , Qβ] ≤

Zα′−2 ≤ Vβ. In particular, it follows that [W β, Qβ]Vβ E Lβ = 〈Vα′ , Qα, Rβ〉 and

[W β, Qβ]Vβ = [V (3)
β , Qβ]Vβ. But then, [[V (3)

β , Qβ]Vβ, Qα] ≤ Vβ, a contradiction

since [V (3)
β , Qβ]Vβ/Vβ contains a non-central chief factor.

Thus, Zα′ ≤ [V (3)
β , Qβ]Vβ. But then Vα′−2 = Zα′Zα+2 ≤ [V (3)

β , Qβ]Vβ. Now, since

V (2)
α 6≤ Qα′−2, then is some α− 2 ∈ ∆(2)(α) with Zα−2 6≤ Qα′−2 and (α− 2, α′− 2)

a critical pair. But [V (3)
β , Qβ]Vβ ≤ [Qβ, Qβ]Vβ ≤ Qα−1 since Qβ ∩ Qα−1 has index

p2 in Qβ. Therefore, Vα′−2 ≤ Qα−1, a contradiction by Lemma 5.4.37.

Lemma 5.4.39. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b = 5. Then p ∈ {2, 3}

and for V := V (2)
α /Zα either:

(i) V is a quadratic module determined by Proposition 2.3.19;
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(ii) V = [V,Rα]; or

(iii) V = CV (Rα).

Moreover, Lβ ∼= SL2(p).

Proof. By Lemma 5.4.38, [V (3)
β , Qβ]Vβ/Vβ is centralized by Op(Lβ). Then

[V (2)
α , Qβ]Vβ ≤ V

(2)
α+2. Now, [V (3)

β , Qβ]Vβ ≤ Z(V (3)
β ) so that [V (3)

β , V
(3)
β ] ≤

Ω(Z(Qβ)) = Zβ by the three subgroup lemma. Moreover, Cβ = V
(3)
β (Cβ ∩

Qα′−2) and [Cβ ∩ Qα′−2, V
(3)
α′−2] ≤ [V (3)

α′−2, Qα′−2] ≤ V
(2)
α+2 ≤ V

(3)
β so that Op(Lβ)

centralizes Cβ/V (3)
β . But then Op(Rβ) centralizes Qβ/V

(3)
β . Indeed, V (3)

β /Zβ =

[V (3)
β /Zβ, O

p(Rβ)]× C
V

(3)
β

/Zβ
(Op(Rβ)). Now, [Op(Rβ), V (3)

β , Qβ] ≤ Zβ by the three

subgroup lemma, and [Vβ, Op(Rβ), CVβ(Op(Rβ))] = {1}. If [Vβ, Op(Rβ)] 6≤ Qα′−2,

then [V (3)
α′−2 ∩ Qβ, [Vβ, Op(Rβ)]] ≤ Zβ ≤ Vα′−2 and we deduce that V (3)

α′−2/Vα′−2

contains a unique non-central chief factor. Then Lemma 5.2.34 implies thatOp(Rβ)

centralizes V (3)
β . It is straightforward to show that CQβ(V (3)

β )/Vβ is centralized by

Op(Lβ) and a final application of the three subgroup lemma yields that Op(Rβ)

centralizes Qβ and Lβ ∼= SL2(p). Thus, [Vβ, Op(Rβ)] ≤ Qα′−2. Moreover,

Zα′−2 ≤ Vβ ≤ C
V

(3)
β

(Op(Rβ)) so that [Vβ, Op(Rβ)] ≤ Cα′−2. If Zα′ ≤ [Vβ, Op(Rβ)],

then C
V

(3)
β

(Op(Rβ)) centralizes Vα′−2 = Zα+2Zα′ and V (3)
β ≤ Cα′−2, a contradiction.

Thus, [Vβ, Op(Rβ), V (3)
α′−2] ≤ Vα′−2 ∩ [Vβ, Op(Rβ)] = Zβ so that Op(Lβ) centralizes

[Vβ, Op(Rβ)]. Hence, Op(Rβ) centralizes V (3)
β and the three subgroup lemma yields

that Rβ = Qβ and Lβ ∼= SL2(p).

Now, writing Q := Qβ ∩Op(Lβ), we have that [V (2)
α , Q,Q] ≤ [V (3)

β , Q,Q] ≤ Vβ. By

coprime action, and setting V := V (2)
α /Zα, we have that V = [V,Rα] × CV (Rα)

and either Vβ/Zα ≤ [V,Rα] or Q acts quadratically on [V,Rα]. Similarly, either

Vβ/Zα ≤ CV (Rα) or Q acts quadratically on CV (Rα). Since both [V,Rα] and

295



CV (Rα) are normalized by Lα, and Vβ/Zα generates V , we have shown that either

Q acts quadratically on V , V = [V,Rα] or V = CV (Rα).

In all cases, Q acts cubically on V and so if p > 5 the Hall-Higman theorem yields

that Op(Rα) centralizes V (2)
α . Since Q centralizes Cβ/V (3)

β , [CQα(V (2)
α , Q,Q] ≤

[Cβ, Q,Q] ≤ [V (3)
β , Q] ≤ V (2)

α and a standard argument implies that Op(Rα)

centralizes CQα(V (2)
α and a final application of the three subgroup lemma yields

that Op(Rα) centralizes Qα, G has a weak BN-pair of rank 2 and [DS85] provides

a contradiction. Hence, p ∈ {2, 3}.

Proposition 5.4.40. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b = 5. Then p = 3

and G is parabolic isomorphic to F3.

Proof. Let Pα be a Gα,β-invariant subgroup of Lα such that S ≤ Pα and Lα =

PαCLα(V ), and form X := 〈Gβ, Pα〉. Let T be the largest subgroup of S which is

normalized by X. Suppose that T 6= {1}. Then 〈ZX
β 〉 ≤ Z(T ) and by construction,

Zα 6≤ T , otherwise V (3)
β ≤ 〈ZX

α 〉 is abelian, a contradiction. Even still, [T, Zα] =

{1} and taking normal closures under X, we deduce that T ≤ CQβ(V (3)
β ). But

Op(Lβ) centralizes CQβ(V (3)
β )/Vβ and so Gβ/T is of characteristic p. Assume that

Pα/T is not of characteristic p so that Op(Pα) acts non-trivially on T . Since

Zα 6≤ T , T is not self-centralizing and we may assume that CS(T ) ≤ Qα and

CS(T ) 6≤ Qβ. If CS(T )x ∩ Qβ 6≤ Qα for some x ∈ Lβ, then [CS(T )x ∩ Qβ, T ] =

{1} so that [Op(Pα), T ] ≤ [〈(CS(T )x ∩ Qβ)Pα〉, T ] = {1}, a contradiction. Thus,

〈(CS(T ) ∩ Qβ)Lβ〉 ≤ Qα and so [O2(Lβ), Qβ] ≤ [〈CS(T )Lβ〉, Qβ] ≤ 〈(CS(T ) ∩

Qβ)Lβ〉 ≤ Qα and Qα ∩Qβ E Lβ, a contradiction by Proposition 5.2.25. Thus, the

triple (Gβ/T, Pα/T,Gα,β/T ) satisfies Hypothesis 5.2.1 and assuming that G is a

minimal counterexample to Theorem 5.2.2, we conclude that Pα/Qα
∼= (3× 3) : 2

and |S/T | = 26. But Qβ contains three non-central chief factors for Lβ and we
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have a contradiction. Hence, for every subgroup of P of Lα which contains S

and is normalized by Gα,β, Lα = PCLα(V ) implies that Lα = P . In particular,

applying Lemma 5.2.32 and Lemma 2.3.15 (iii) when p = 3, we deduce that if V is

an FF-module then Rα ≤ CLα(CQα(V (2)
α ))S and the three subgroup lemma yields

that Rα = Qα and G has a weak BN-pair of rank 2. Then [DS85] gives that V is

not an FF-module, and we have a contradiction.

Note that V
(3)
β /[V (3)

β , Qβ] is a quadratic 2F-module for Lβ ∼= SL2(p)

by Lemma 5.4.39. Hence, applying Lemma 2.3.11, we have that

[V (3)
β /[V (3)

β , Qβ], Op(Lβ)] is a direct sum of at most two natural modules for Lβ.

Assume that [V (3)
β /[V (3)

β , Qβ], Op(Lβ)] contains two natural modules. Then Vα′−2

projects as a subgroup of order p in [V (3)
β /[V (3)

β , Qβ], Op(Lβ)]. Indeed, we have

that V (3)
β /[V (3)

β , Qβ] = [V (3)
β /[V (3)

β , Qβ], Op(Lβ)]. Since Cβ/V (3)
β is centralized by

Op(Lβ), [CQα(V (2)
α ), Q] ≤ V (2)

α and so Op(Lα) centralizes CQα(V (2)
α . Then the

three subgroup lemma yields that Rα ∩ CLα(V ) = Qα. By Lemma 2.2.7, for

W := 〈V Lβ
α′−2〉[V

(3)
β , Qβ], V

(3)
β /W is a natural module for Lβ ∼= SL2(p).Then

W ≤ Cα′−2 for otherwiseW 6≤ Qα′−2, V (3)
β = W (V (3)

β ∩Cα′−2) so that [V (3)
β , V

(3)
α′−2] ≤

W , a contradiction since V
(3)
β /W contains a non-central chief factor. Hence,

[W,Vα′−2] = {1} so that W is abelian. Then W = Vβ(W ∩ Qα′) and since W/Vβ

contains a non-central chief factor for Lβ, W∩Qα′ 6≤ Qα′+1 for some α′+1 ∈ ∆(α′).

Since W is abelian, W ∩ Qα′ acts quadratically on V
(2)
α′+1. Hence, V is also a

quadratic module. Since Vβ/Zα has order p and generates V , by Lemma 2.3.22,

p = 2 and Lα/CLα(V ) ∼= Dih(10) or (3 × 3) : 2. Then RαS is a maximal

subgroup of Lα containing S which is normalized by Gα,β and we deduce that

Lα/Qα
∼= (3 × 3) : 2. Let P i

α ≤ Lα with S ≤ P i
α, Lα = P i

αRα, P i
α/Qα

∼= Sym(3)

and Qα ∩ Qβ 6E P i
α for i ∈ {1, 2}. Then the triple (Lβ, P 1

α, P
2
α) satisfies the

hypothesis of [Che86, Theorem B] and as Sym(4) is not a homomorphic image of
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(3× 3) : 2, we have a contradiction.

Hence, [V (3)
β /[V (3)

β , Qβ], Op(Lβ)] contains a unique non-central chief factor for Lβ.

Moreover, V (2)
α /Vβ∩CV (3)

β
/Vβ

(Op(Lβ)) has index p in V (2)
α . SettingQ := Qβ∩Op(Lβ)

there is an index p subgroup U of V (2)
α such that [U,Q] ≤ Vβ. It follows that there

is an index p2 subgroup U∗ of V (2)
α with [U∗, Q] ≤ Zα so that V is a 2F-module for

Lα/CLα(V ).

Suppose now that V is a quadratic module for Lα. Then, since Vβ/Zα has order p

and generates V , by Lemma 2.3.22, p = 2 and Lα/CLα(V ) ∼= Dih(10) or (3×3) : 2.

Since RαS is a maximal subgroup of Lα containing S which is normalized by Gα,β,

we deduce that Lα/Qα
∼= (3 × 3) : 2. Let Pα ≤ Lα with Lα = PαRα, S ≤ Pα,

PαQα
∼= Sym(3) and O3(Pα/Qα) E Lα/Qα. Let T be the largest normal subgroup

of S which is normalized by both Lβ and Pα, and assume that T 6= {1}. Then

〈V Pα
β 〉 ≤ Z(T ) and 〈V Pα

β 〉 6≤ Z(V (3)
β so that V (3)

β ≤ (Z(T ) ∩ V (3)
β )Z(V (3)

β ). But

then V (3)
β is abelian, a contradiction. Thus, the triple (PαGα,β, Gβ, Gα,β)) satisfies

Hypothesis 5.2.1. Assuming that G is a minimal counterexample to Theorem 5.2.2,

we deduce that |S| 6 27. But V (3)
β > 27 and we have a contradiction. Thus, V is

not a quadratic module.

Since whenever p = 2, |S/Qα| = 2 and there is always an element x ∈ S/ \ Qα

which acts quadratically on V . Thus, for the remainder of this proof, we may

assume that p = 3 and V = [V,Rα]. Moreover, V (2)
α projects with order p in

[V (3)
β /[V (3)

β , Qβ], O3(Lβ)]. Let Zα < U < V (2)
α with U E Lα. Then U/Zα contains a

non-central chief factor for Lα and as U < V (2)
α , U∩Vβ = Zα. Then V (2)

α = U(V (2)
α ∩

[V (3)
β , Qβ]) for otherwise, [Q,U ] ≤ U∩Vβ = Zα, a contradiction since U/Zα contains

a non-central chief factor. But now, [V (2)
α , Q,Q] = [U,Q,Q] ≤ Vβ ∩ U = Zα, a

contradiction since V is not quadratic. Hence, we conclude that V is an irreducible
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2F-module for Lα/CLα(V ).

Note that by Lemma 5.2.17, Rα does not normalize S so that for L := O3′(RαS),

L/Qα has a strongly 3-embedded subgroup and O3(L/Qα) = O3′(L/Qα).

By coprime action, V = [V,O3′(L/Qα)] × CV (O3′(L/Qα)) is an S-invariant

decomposition. Using that [V,Q,Q] = Vβ/Zα, in a similar manner to

Lemma 5.4.39, either V = [V,O3′(L/Qα)] or V = CV (O3′(L/Qα)). In the latter

case, we have that O3′(L/Qα) ≤ Rα/Qα ∩ CLα(V )/Qα = {1}, a contradiction.

Hence, V = [V,O3′(L/Qα)].

Suppose that there is Zα < U < V (2)
α with U E L. Since CV (O3′(L/Qα)) = {1},

U contains a non-central chief factor for L. If U ≤ Z(V (3)
β ) then [U,Q] = Vβ so

that U is dual to an FF-module for L/CL(U/Zα) ∼= SL2(3) by Lemma 2.3.10.

But then an index 3 subgroup of V (2)
α /U is centralized by Q so that by

Lemma 2.3.10 L/CL(V (2)
α /U) ∼= SL2(3) and V (2)

α /U is an FF-module. Since

CV (O3′(L/Qα)) = {1}, we conclude that |V | = 34. Similarly, if U 6≤ Z(V (3)
β ),

then we may assume that Vβ 6≤ U , otherwise V (2)
α /U is centralized by Q, a

contradiction since CV (O3′(L/Qα)) = {1}. Hence, an index 3 subgroup of U is

centralized modulo Zα by Q and U is an FF-module for L/CL(U/Zα) ∼= SL2(3) by

Lemma 2.3.10. Moreover, [V (2)
α , Q] = [U,Q]Vβ and V (2)

α /U is dual to an FF-module

for L/CL(V (2)
α /U) ∼= SL2(3) and again we deduce that |V | = 34. In either case,

by Lemma 2.3.15 (ii), L/Qα
∼= SL2(3) or (Q8 × Q8) : 3. In the latter case, for

two distinct central involutions t1, t2 in L/Qα, we have that V = [V, t1] × [V, t2]

and so V is a quadratic module, a contradiction. Thus, L/Qα
∼= SL2(3). Now, V

is an irreducible module of dimension 4 for Lα/CLα(V ) and Lα/CLα(V ) contains

a subgroup of 3′-index isomorphic to SL2(3). Considering irreducible subgroups

of SL4(3) which have strongly 3-embedded subgroups and which do not have
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a 3-element which acts quadratically, we calculate (e.g. using MAGMA) that

Lα/CLα(V ) is of order 25.3, V is the unique irreducible module of dimension

4 for Lα/CLα(V ) and L = RαS. Hence, |RαCLα(V )/Rα| = Z(Lα/Rα) so that

|CLα(V )/Qα| = 2 = |Z(Rα/Qα)|, |Lα| = 26, Z(Lα) = CLα(V )/Qα × Z(Rα/Qα).

Once again, calculating in MAGMA we conclude that Lα ∼= Q8 × Q8) : 3. But

then, since Lβ ∼= SL2(3), there is t ≤ Lα such that T ≤ Z(Lα) and t centralizes

Lβ, a contradiction by Proposition 5.2.6.

Thus, V is irreducible for L/Qα so that 〈V RαS
β 〈= V (2)

α . Let T be the largest

subgroup of S normalized by both Lβ and RαS. Suppose that T 6= {1}. Then

Zα 6≤ T , for otherwise, Zα ≤ Z(T ) and taking respective normal closures yields

V
(3)
β ≤ Z(T ) is abelian, a contradiction. Since Zα centralizes T , we infer that

[T, V (3)
β ] = {1} and T ≤ CQβ(V (3)

β ). Since coprime elements of O3(Lβ) act faithfully

Qβ/Cβ, we conclude that Lβ/T is of characteristic 3. Assume that RαS/T is not

of characteristic 3 so that O3(L) acts non-trivially on T . Since Zα 6≤ T , T is

not self-centralizing and we may assume that CS(T ) ≤ Qα and CS(T ) 6≤ Qβ.

If CS(T )x ∩ Qβ 6≤ Qα for some x ∈ Lβ, then [CS(T )x ∩ Qβ, T ] = {1} so that

[O3(L), T ] ≤ [〈(CS(T )x ∩ Qβ)RαS〉, T ] = {1}, a contradiction. Thus, 〈(CS(T ) ∩

Qβ)Lβ〉 ≤ Qα and so [O3(Lβ), Qβ] ≤ [〈CS(T )Lβ〉, Qβ] ≤ 〈(CS(T ) ∩ Qβ)Lβ〉 ≤ Qα

and Qα ∩ Qβ E Lβ, a contradiction by Proposition 5.2.25. Thus, the triple

(Gβ/T,RαGαβ/T,Gα,β/T ) satisfies Hypothesis 5.2.1 and assuming that G is a

minimal counterexample to Theorem 5.2.2, we conclude that L/Qα
∼= SL2(3).

Since V is an irreducible non-quadratic 2F-module for SL2(3), CL(V ) 6= {1}

a contradiction. Thus, T = {1} and the triple (Gβ, RαGαβ, Gα,β) satisfies

Hypothesis 5.2.1. As before, this implies that L/Qα
∼= SL2(3) and since V

is an irreducible module for L/Qα, we deduce that CL(V ) 6= {1}, a final

contradiction.
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Now, we may assume that b = 3. Unfortunately, most of the techniques introduced

earlier in this section are not applicable in this setting and so the methodology for

this case is different from the rest of this subsection. The aim throughout will be

to show that Rβ = Qβ and Rα = Qα for then an appeal to [DS85] yields p = 2

and G is parabolic isomorphic to M12 or Aut(M12).

Lemma 5.4.41. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b = 3. Then Rβ = Qβ,

Lβ ∼= SL2(p) and Op(Lβ) centralizes Cβ/Vβ.

Proof. Notice that RZα+2 ≤ Vβ ∩ Vα′ . If Zα+2 = Vα′ ∩ Vβ ≥ R, then

Zα+2Z
g
α+2 E Lα′ = 〈Vβ, V g

β , Rα′〉 for some appropriately chosen g ∈ Lα′ , and

|Vβ| = p3. Otherwise, RZα+2 = Vα′ ∩ Vβ is of order p3 and |Vβ| = p4.

Indeed, it follows that Zα+2CVα′ (O
p(Lα′)) = RZα+2 = Zα+2CVβ(Op(Lβ)) so that

Zβ = [RZα+2, Qα+2] = Zα′ .

Now, if Vα′ ≤ Qβ, then R = Zβ ≤ Zα+2 and |Vβ| = p3. Then [Cα′ , Vβ] ≤ Zα+2 ≤ Vα′

and Op(Lα′) centralizes Cα′/Vα′ . By conjugation, Op(Lβ) centralizes Cβ/Vβ. If

Vα′ 6≤ Qβ, then [Cα′ , Vβ] = [Vα′(Cα′ ∩ Qβ), Vβ] ≤ RZβ ≤ Vα′ and again, by

conjugation, Op(Lβ) centralizes Cβ/Vβ. Thus, in all cases Op(Lβ) centralizes

Cβ/Vβ. In particular, for r ∈ Rβ of order coprime to p, the three subgroup lemma

implies that [r,Qβ] ≤ Cβ so that [r,Qβ] = {1} and r = 1. Thus, Rβ = Qβ and

Lβ ∼= SL2(p).

Lemma 5.4.42. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b = 3. Then Zα′ 6= Zβ,

|Vβ| = p3 and Φ(V (2)
α ) = Zα. Moreover, if [Cβ, Cβ] ≤ Vβ and Rα 6= Qα, then

[Cβ, Cβ] ≤ Zβ and p ∈ {2, 3}.

Proof. Assume now that whenever (α, α′) is a critical pair we have that Zβ = Zα′ .

In particular, Vα′ 6≤ Qβ for any critical pair. Since Zβ 6E Lα+2, there is λ ∈ ∆(α+2)
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such that Zλ 6= Zβ. Moreover, by assumption, Vλ ≤ Qβ and Vβ ≤ Qλ so that

[Vλ, Vβ] ≤ Zβ ∩ Zλ = {1}. Then, [Cβ ∩ Qλ, Vλ] ≤ [Cβ, Cβ] ∩ Zλ. If Zλ ≤ Φ(Cβ),

then Zα+2 = Zλ × Zβ ≤ Φ(Cβ) and Vβ ≤ Φ(Cβ). But Op(Lβ) centralizes Cβ/Vβ, a

contradiction by coprime action. Therefore, Cβ ∩Qλ = Cβ ∩Cλ is of index at most

p in Cβ and Cλ. By the same reasoning, Cα′ ∩Qλ = Cα′ ∩ Cλ and since Vα′ ≤ Cλ

and Vα′ 6≤ Cβ, Cβ 6≤ Qλ and Cβ ∩ Cλ is proper in Cβ.

Since Vβ ≤ Cβ∩Cλ, Cβ∩Cλ 6= Cα′∩Cλ so that Cλ = (Cβ∩Cλ)(Cα′∩Cλ). Moreover,

since VβVλ ≤ Cβ ∩Cλ, we have that Cβ ∩Cλ E 〈Qα+2, O
p(Lλ), Op(Lβ)〉 = 〈Lβ, Lλ〉

and Cλ is non-abelian. It follows that either Zα+2 = Zβ×Zλ ≤ Φ(Cβ∩Cλ) ≤ Φ(Cβ)

and Vβ ≤ Φ(Cβ), a contradiction for then Op(Lβ) centralizes Cβ/Vβ; or Cβ ∩Cλ is

elementary abelian. Then Ω(Z(Cλ)) = Cλ ∩ Cβ ∩ Cα′ and Cλ = VβVα′Ω(Z(Cλ)).

But then [Cλ, Cλ] = [Vβ, Vα′ ] = R so that Zα+2 = ZλZβ ≤ [Cλ, Cλ]Zβ ≤ RZβ

and since |RZβ| = p2, we have that R ≤ Zα+2 so that R = Zλ. Now, there is

µ ∈ ∆(α + 2) such that Zβ 6= Zµ 6= Zλ and we may repeat the above arguments

with µ in place of λ. But then Zµ = R = Zλ, a contradiction.

Thus, there is a critical pair (α, α′) with Zα′ 6= Zβ and by an argument in the

proof of Lemma 5.4.41, we infer that |Vβ| = p3. Thus, [V (2)
α , Vβ] ≤ Zα and since

V (2)
α is non-abelian, otherwise by conjugacy Vα′ ≤ V

(2)
α+2 centralizes Vβ, we have

that [V (2)
α , V (2)

α ] = Zα. But now, V (2)
α is generated by Vλ for λ ∈ ∆(α) and since

Vλ/Zα is of order p, V (2)
α /Zα is elementary abelian and Φ(V (2)

α ) = Zα.

Suppose now that [Cβ, Cβ] ≤ Vβ. We have that [Cβ, Cβ] 6= Vβ, otherwise Op(Lβ)

centralizes Cβ/Φ(Cβ). Thus, [Cβ, Cβ] ≤ Zβ. Notice that if V (2)
α ∩ Qβ 6≤ Cβ,

then [Cβ, V (2)
α ∩ Qβ] ≤ [Qα, V

(2)
α ] ≤ Zα and since Qβ = Cβ〈(V (2)

α ∩ Qβ)Lβ〉 and

[Cβ, Cβ] = Zβ, it follows that [Qβ, Qβ] ≤ Vβ and Qβ acts cubically on Qα/Zα.

If V (2)
α ∩ Qβ ≤ Cβ, then as [Qβ, O

p(Lβ), Cβ] ≤ Vβ by the three subgroup lemma,
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settingQ := [Qβ, O
p(Lβ)] and noticing thatQ 6≤ Qα, we have that [V (2)

α , Q,Q,Q] ≤

[V (2)
α ∩ Qβ, Q,Q] ≤ [Cβ, Q,Q] ≤ Zβ and Q acts cubically on V (2)

α /Zα. Moreover,

since [Q,Q] ≤ Cβ, [Q,Q,Q] ≤ Vβ ≤ V (2)
α and Q acts at most cubically on Qα/V

(2)
α .

Therefore, if p > 5, an application of the Hall–Higman theorem implies that Rα =

Qα, andG has a weak BN-pair of rank 2. Then [DS85] provides a contradiction.

Lemma 5.4.43. Suppose that CVβ(Vα′) = Vβ ∩Qα′ and b = 3. Then both Vβ(Cα′ ∩

Cβ) and Vα′(Cα′ ∩ Cβ) are elementary abelian, and Vα′ 6≤ Qβ.

Proof. By Lemma 5.4.42, there is a critical pair (α, α′) such that Zα′ 6= Zβ.

Moreover, by Lemma 5.4.41, Vβ(Cα′ ∩ Cβ) E Lβ = Op(Lβ)Qα+2 from which it

follows that Φ(Cα′ ∩ Cβ) = Φ(Vβ(Cα′ ∩ Cβ)) E Lβ. If Cα′ ∩ Cβ is not elementary

abelian, then Zβ ≤ Φ(Cα′ ∩ Cβ) and by a similar argument, Zα′ ≤ Φ(Cα′ ∩ Cβ)

from which it follows that Zα+2 ≤ Φ(Cα′ ∩Cβ) ≤ Φ(Cβ). But then Vβ ≤ Φ(Cβ), a

contradiction since Op(Lβ) centralizes Cβ/Vβ. Thus, Cα′∩Cβ is elementary abelian

so that both Vβ(Cα′ ∩ Cβ) and Vα′(Cα′ ∩ Cβ) are elementary abelian.

Suppose that Vα′ ≤ Qβ. Then, by Lemma 5.4.42, |Vβ| = p3, Cβ = Qα ∩Qβ ∩Qα+2

has index p2 in both Qβ and Qα, and Vβ(Cβ ∩ Cα′) is elementary abelian and

has index at most p in Cβ. Similarly, Vα′(Cα′ ∩ Cβ) is elementary abelian of

index at most p in Cα′ . Assume first that Cα′ is elementary abelian so that by

Lemma 5.4.42, p ∈ {2, 3}. If Cα′ ∩ Cβ has index p2 in Cβ then Qα+2 = CβCα′ and

Cβ∩Cα′ ≤ Ω(Z(Qα+2)) = Zα+2. In particular, |Qα+2/Zα+2| 6 p4. Let λ ∈ ∆(α+2)

with Zβ 6= Zλ 6= Zα′ . Then we again deduce that |Qα+2/Zα+2| 6 p4 if Cα′ ∩ Cλ

or Cβ ∩ Cλ has index p2 in Cλ; or Cλ ∩ Cα′ and Cλ ∩ Cβ have index p in Cλ,

Qα+2 = CβCα′Cλ and, as before, we conclude that |Qα+2/Zα+2| 6 p4. Checking

p-solvable subgroups of GL4(p) with an SL2(p) quotient, we deduce that Rα = Qα;

or Lα ∼= (3× 3) : 2 when p = 2 or Lα ∼= (Q8 ×Q8) : 3 when p = 3. In the former
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case, since Vα′ ≤ Qβ, [DS85, (9.6)] provides a contradiction.

Assume now that Cβ is not elementary abelian so that Vβ(Cβ ∩Cα′) has index p in

Cβ. Hence, Φ(Cβ) 6= {1} and since Vβ contains the unique non-central chief for Lβ

inside Cβ, we have that Φ(Cβ)∩Vβ = Zβ. Note that Cβ∩Qα′ contains Cα′∩Cβ and is

distinct from Vβ(Cβ ∩Cα′) from which it follows that Cβ/(Cβ ∩Cα′) is elementary

abelian of order p2. In particular, Φ(Cβ) ≤ Cα′ so that Lα′ = Op(Lα′)Qα+2

normalizes Φ(Cβ)Vα′ . But then Φ(Cβ) ≥ [Φ(Cβ), Cα′ ] = [Φ(Cβ)Vα′ , Cα′ ] E Lα′ and

since Zα′ 6≤ Φ(Cβ), we deduce that Φ(Cβ) ≤ Z(Cα′). Now, as Cα′ ∩ Cβ has index

p2 in Cβ and Cβ has index p2 in Qα+2, we have that Qα+2 = CβCα′ . Then, there

is x ∈ (Lα+2 ∩ Gα′,α+2) \ Rα+2 such that Zx
β 6= Zβ. Applying a similar argument

as for α′, we see that Φ(Cβ) is centralized by Cx
β and so Φ(Cβ) is centralized by

Qα+2 = Cα′C
x
β . Thus, Φ(Cβ ≤ Zα+2 so that Φ(Cβ) = [Cβ, Cβ] = Zβ. Now, for

any x ∈ Cβ \ Vβ(Cβ ∩ Cα′), CVβ(Cβ∩Cα′ )(x) = Z(Cβ) so that Z(Cβ) is the kernel

of the homomorphism θ : Vβ(Cβ ∩ Cα′) → Vβ(Cβ ∩ Cα′) such that vθ = [v, x] for

v ∈ Vβ(Cβ ∩Cα′). Then, the image of θ is [Cβ, Cβ] = Zβ from which it follows that

|Vβ(Cβ ∩ Cα′)/Z(Cβ)| = p and Z(Cβ) is elementary abelian of index p2 in Cβ.

Since Cβ is not elementary abelian, Ω(Z(Cβ)) ∩ Qα′ ≤ Cα′ , for otherwise Cβ =

Ω(Z(Cβ))(Cβ ∩Cα′). Thus, Ω(Z(Cβ)) ∩Cα′ ∩Cg
α′ has index at most p4 in Cβ and

is centralized by Qβ = CβVα′V
g
α′ for some appropriately chosen g ∈ Lβ. Hence

Zβ = Ω(Z(Cβ)) ∩ Cα′ ∩ Cg
α′ has index at most p4 in Cβ so that |Cβ| 6 p5. In

particular, [Cβ, Cβ] ≤ Vβ, |Qα/Zα| 6 p5 and we may assume that p ∈ {2, 3} by

Lemma 5.4.42.

For any r ∈ Op(Lα) of p′-order, by the three subgroup lemma and coprime action,

if r centralizes V (2)
α /Zα, then r centralizes V (2)

α and Qα/CQα(V (2)
α ). Notice that

CQα(V (2)
α ) ≤ Cβ ≤ Qα+2 and so [Vα′ , CQα(V (2)

α )] ≤ Zα+2 and since Vβ 6≤ Z(V (2)
α ),
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we have that Vα′ centralizes CQα(V (2)
α )/Zα and so Op(Lα) centralizes CQα(V (2)

α )/Zα.

In particular, if r centralizes V (2)
α /Zα, then r centralizes Qα and r = 1. Therefore,

V (2)
α /Zα is a faithful Lα-module and |V (2)

α /Zα| 6 p5 with equality if and only if

Qα = V (2)
α . For the remainder of this proof, set V := V (2)

α /Zα. Additionally, set

Q := 〈V Lβ
α′ 〉 so that Q ∩ Cβ = Vβ, Qβ = QCβ and [Q,Q] ≤ Vβ.

Let Uα E Lα chosen minimally such that Zα < Uα ≤ V (2)
α and Lα acts faithfully

on U∗ := Uα/Zα. Set U := U∗/CU∗(Lα). If U is irreducible for Lα then Lα is

isomorphic to an irreducible subgroups of GLr(p) for r 6 5 which is p-solvable,

contains a strongly p-embedded subgroup and has some quotient isomorphic to

SL2(p). We deduce, using MAGMA, that Rα = Qα, and a contradiction is provided

by [DS85] since Vα′ ≤ Qβ. Thus, U contains two non-trivial composition factors

and |U | > p4. By the restrictions on Lα, Lα acts as SL2(p) on factors of order

p2, and as PSL2(3) or 13 : 3 on factors of order p3 where necessarily p = 3.

In the latter cases, we may choose a p′-element r such that U splits as a direct

sum of two Lα-modules, one of order p2 and one of order p3. Then, Q does not

act quadratically on U and for U1 the factor of order p3, [U,Q,Q] = [U1, Q,Q] =

Vβ/Zα, a contradiction for then U1 = U is irreducible. Thus, U has two non-trivial

factors, both of order p2 and, assuming thatRα 6= Qα, it follows from Lemma 2.3.14

(ii) and Lemma 2.3.15 (iii) that Lα ∼= (3× 3) : 2 or (Q8 ×Q8) : 3. Thus, whether

Cβ is elementary abelian or not, we have deduced the isomorphism type of Lα.

If p = 2, then by Lemma 2.3.14 there is Pα with Lα = PαRα, Pα/Qα
∼= Sym(3)

and neither Vβ nor Cβ normal in Pα. Note that if there is {1} 6= Q ≤ S with

Q E Pα and Q E Lβ, then Vβ < Z(Q) < Cβ and since Qα+2/Zα+2| 6 p4, we

have a contradiction. Hence, (Pα, Lβ, S) satisfies Hypothesis 5.2.1. Since we could

have chosen G minimally, and as |S| = 27, we deduce that (Pα, Lβ, S) is parabolic
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isomorphic to Aut(M12). But then one can calculate, e.g. using MAGMA, that

|Aut(Qα)|3 = 3, a contradiction. If p = 3, then there is t ∈ Lα ∩ Gα,β an

involution with [t, Lα] ≤ Qα and, since Lβ ∼= SL2(3), [t, Lβ] ≤ Qβ, a contradiction

by Proposition 5.2.6 (v).

Lemma 5.4.44. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b = 3. Then Cβ is

elementary abelian.

Proof. Suppose throughout that Cβ is not elementary abelian. Notice that if

Cβ ∩ Qα′ ≤ Cα′ , then as Vβ 6≤ Qα′ and Cβ ∩ Cα′ is elementary abelian, Cβ =

Vβ(Cβ ∩ Cα′) is elementary abelian. Additionally, if Ω(Z(Cβ)) ∩ Qα′ 6≤ Cα′ , then

as Vβ ≤ Ω(Z(Cβ)) 6≤ Qα′ , Cβ = Ω(Z(Cβ))(Cβ ∩ Cα′) is elementary abelian.

Thus, we may suppose that Cβ ∩ Qα′ 6≤ Cα′ and Ω(Z(Cβ)) ∩ Qα′ ≤ Cα′ . Since

Vβ(Cβ∩Cα′) has index p in Cβ, arguing as in Lemma 5.4.43 we have that Ω(Z(Cβ))

has index p2 in Cβ and [Cβ, Cβ] = Φ(Cβ) = Zβ. By Lemma 5.4.42, we may assume

that p ∈ {2, 3}.

Since Ω(Z(Cβ))∩Qα′ ≤ Cβ ∩Cα′ , it follows that Ω(Z(Cβ))∩Ω(Z(Cα′)) has index

at most p4 in Cβ. But Ω(Z(Cβ)) ∩ Ω(Z(Cα′)) is centralized by Qα+2 = CβCα′

and so Ω(Z(Cβ)) ∩ Ω(Z(Cα′)) = Zα+2 has index at most p6 in Qα+2. Note that

[Qβ ∩ Op(Lβ), Cβ] ≤ [Op(Lβ), Cβ] = Vβ and since CQα(V (2)
α ) ≤ Cβ and Vβ 6≤

Z(V (2)
α ), we have that Op(Lα) centralizes CQα(V (2)

α )/Zα. Moreover, since Zα =

Φ(Qα), applying the three subgroup lemma, we see that Op(Lα) acts faithfully on

V (2)
α Φ(Qα)/Φ(Qα). As in Lemma 5.4.43, we know the suitable subgroups of GL4(p)

which contain strongly p-embedded subgroups and obtain contradictions in much

the same way. Thus, we may as well assume that V (2)
α Φ(Qα)/Φ(Qα) has order at

least p5. Since Qα/Zα has order at most p6 and Φ(V (2)
α ) = Zα, we conclude that
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Φ(Qα) = Zα.

Let Wα be chosen minimally such that Wα E Lα, Zα < Wα ≤ V (2)
α and Op(Lα)

acts non-trivially on Wα/Zα. Set V := V (2)
α /Zα. Then, for R := CLα(Wα), V :=

CV (R)× [V,R] by coprime action. Moreover, Vβ/Zα 6≤ [V,R], for otherwise CV (R)

is centralized by Op(Lα), a contradiction since Wα/Zα ≤ CV (R).

Suppose that [Qβ, Qβ] ≤ Vβ. Then [[V,R]∩(Qβ/Zα), Qβ] = {1} and either Vβ/Zα ≤

CV (R) or [CV (R)∩ (Qβ/Zα), Qβ] = {1}. If both CV (R) and [V,R] are FF-modules

for Lα then applying Lemma 2.3.14 (ii) and Lemma 2.3.15 (ii), we get that Lα ∼=

(3× 3) : 2 or (Q8×Q8) : 3. As in Lemma 5.4.43, using generation properties of V

when p = 2 and Proposition 5.2.6 (v) when p = 3 yield contradictions. Thus, we

may assume that Vβ/Zα ≤ CV (R) and since V (2)
α = 〈V Lα

β 〉, CV (R) = V admits Lα

faithfully and R is p-group. We may as well assume that Lα acts irreducibly on

Wα/Zα. We appeal to MAGMA to see that if Lα is isomorphic to some irreducible

subgroups of GLr(p) for r 6 5 which is p-solvable, contains a strongly p-embedded

subgroup and has some quotient isomorphic to SL2(p), then Rα = Qα, G has

a weak BN-pair of rank 2 and [DS85] implies that Cβ is elementary abelian, a

contradiction. Thus, we may as well assume that Wα = Qα = V (2)
α and V is an

irreducible module of order p6.

Now, if [Qβ, Qβ] 6≤ Vβ then using that both (Qα ∩ Qβ)/Vβ and (Qα+2 ∩ Qβ)/Vβ

are elementary abelian of index p in Qβ/Vβ, we deduce that Cβ/Vβ = Z(Qβ/Vβ).

Now, for any x ∈ Qβ/Vβ \ (Qα ∩ Qβ)/Vβ, we have that Z(Qβ/Vβ) is the kernel

of the homomorphism θ : (Qα ∩ Qβ)/Vβ → (Qα ∩ Qβ)/Vβ such that vθ = [v, x]

for v ∈ (Qα ∩ Qβ)/Vβ. Then, [Qβ, Qβ]Vβ/Vβ is the image of θ and has order p.

Similarly, since (Qα ∩ Qβ)/Zα is an abelian subgroup of index p in Qβ/Zα, we

conclude that [Qβ, Qβ]Zα/Zα ∼= ((Qα ∩ Qβ)/Zα)/Z(Qβ/Zα) has order at most p2,
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and Z(Qβ/Zα) ≤ Cβ/Zα.

If Cβ = Z(Qβ/Zα), then |[Qβ, Qβ]Zα/Zα| = p and observing that [Cβ, Qβ] E Lβ, we

have that [Cβ, Qβ] = Zβ. By the three subgroup lemma, [Qβ, Qβ] ≤ Z(Cβ) ≤ Cα′

so that [Qβ, Qβ]Vα′ E Lβ. But then, either [Qβ, Qβ] is centralized by Qα+2 = Cα′Cβ

so that [Qβ, Qβ] ≤ Zα+2, a contradiction; or Zα′ ≤ [Qβ, Qβ] so that Vβ ≤ [Qβ, Qβ].

Since |[Qβ, Qβ]Zα/Zα| = p and [Qβ, Qβ] 6≤ Vβ, we have another contradiction.

Thus, Z(Qβ/Zα) < Cβ/Zα < (Qα ∩ Qβ)/Zα and Vβ index p in [Qβ, Qβ]. Now,

Qβ/[Qβ, Qβ] splits by coprime action and we may set Q ≤ (Qβ ∩O2(Lβ))[Qβ, Qβ]

such that Q/[Qβ, Qβ] is elementary abelian of order p2 and Qβ = QCβ. Then Q/Vβ

is non-abelian of order p3 and (Q ∩ Qα)/Vβ is an elementary abelian subgroup of

order p2. Moreover, Lβ ∼= SL2(p) acts faithfully on Q/Vβ and so we may assume

that p = 3 and Q/Vβ ∼= 31+2
+ . But now, |Q/Zα| = 34, |[Q/Zα, Q/Zα]| = 9,

Z(Q/Zα) = Vβ/Zα is of order 3, (Q/Zα)/Z(Q/Zα) ∼= 31+2
+ and m3(Q/Zα) = 3. One

can check that the only group satisfying these properties is 3 o 3. But then, every

normal subgroup of Q/Zα contained in [Q/Zα, Q/Zα] contains Z(Q/Zα) = Vβ/Zα.

Now, [[V,R], Q/Zα, Q/Zα] E Q/Zα and since Vβ/Zα 6≤ [V,R] we have that

[[V,R], Q/Zα] ≤ Z(Q/Zα) = Vβ/Zα. Finally, this implies that [[V,R], Q] = {1}

and since Q 6≤ Qα, it follows that Op(Lα) centralizes [V,R], R centralizes V and

Lα acts faithfully on Wα/Zα. Again, we may as well assume that Wα = Qα = V (2)
α

and V is an irreducible module of order p6.

We appeal to MAGMA for a list of solvable irreducible subgroups of GL6(p) for

p ∈ {2, 3}. We investigate groups H such that for P ∈ Sylp(H), |P | = p and

H = 〈PH〉. Moreover, H contains a normal p′-subgroup N with H/N ∼= SL2(p).

Notice that a Hall p′-subgroup of the preimage of Z(Lα) lies in Gα,β and so acts on
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Lβ ∼= SL2(p). In particular, it follows by Proposition 5.2.6 (v) that Z(Lα) = {1}

if p = 2; and |Z(Lα)| 6 2 if p = 3. Imposing these conditions on the candidate

subgroup H ≤ GL6(p), we reduce to three possibilities when p = 2, and four

possibilities when p = 3. Suppose that p = 2. Then the candidates for H are

{Dih(18), 31+2
+ : Sym(3), 72 : Sym(3)}. If Lα ∼= Dih(18), then we appeal to [Hay92]

to obtain a contradiction. If Lα ∼= 31+2
+ : Sym(3) then S is isomorphic to a

Sylow 3-subgroup of Sym(9) and we identify a subgroup Pα ≤ Lα such that Pα is

isomorphic to Dih(18). Since GL5(2) does not have any elements of order 9, this

group acts irreducibly on Qα/Zα. If Lα ∼= 72 : Sym(3), then we define Pα to be

the preimage in Lα of SO3(Lα) so that Pα ∼= Sym(3). Then, in either case, Pα

acts faithfully on Zα. Forming X := 〈Lβ, Pα〉 and assuming that G is a minimal

counterexample to Theorem 5.2.2, since |S| = 29 and all suitable examples in

Theorem 5.2.2 have |S| 6 27, some subgroup of Gα,β is normal in X. Indeed, since

Lβ is of characteristic p, some subgroup of S is normal in X. Call this subgroup

Q and observe that as Q E S, Zβ ≤ Q ≤ Qα ∩ Qβ. Indeed, by the choice of

Pα, Vβ ≤ Q ≤ Cβ. If Φ(Q) 6= {1}, then as Φ(Q) E S, Zβ ≤ Φ(Q) so that

Vβ ≤ Φ(Q) ≤ Q ≤ Cβ, a contradiction for then O2(Lβ) acts trivially on Vβ ≤ Q.

Thus, Φ(Q) = {1} and Q is elementary abelian.

When Pα ∼= Dih(18), taking consecutive closures of Zβ under Pα and Gβ gives

Qα ≤ Q, a clear contradiction. Thus, we may assume that Lα ∼= 72 : Sym(3) and

Pα ∼= Sym(3), and we have that Vβ < 〈ZX
β 〉 and X/Q satisfies Hypothesis 5.2.1.

Moreover, in this case the 3-element in Pα acts fixed point freely on Qα/Zα. Since

|S/Q| 6 25, Qα/Q is elementary abelian and J(S) 6≤ Q, we have by Theorem 5.2.28

that X/CX(〈ZX
β 〉) is locally isomorphic to PSL3(2) or Sp4(2) and Q = CS(〈ZX

β 〉).

If X/CX(〈ZX
β 〉) is locally isomorphic to PSL3(2), then |S/Q| = 8 and as Q ≤ Cβ,

we have that Q = Cβ, a contradiction since Cβ is not elementary abelian. Thus,
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X/CX(〈ZX
β 〉) is locally isomorphic to Sp4(2) and using that Cβ 6= 〈ZX

β 〉, applying

[CD91, Theorem A] we must have that |S/Q| = 24, |Q| = 25, X/CX(〈ZX
β 〉) ∼=

Sp4(2) and 〈ZX
β 〉 is a natural Sp4(2)-module. But then |Q/〈ZX

β 〉| = 2 so that X

centralizes Q/〈ZX
β 〉, a contradiction since a 3-element of Pα acts fixed point freely

on Qα/Zα.

Suppose that p = 3. We briefly describe the four candidates. First, there is a

group of shape (Q8 × 22) : 3 which occurs as a product of SL2(3) and PSL2(3)

with their Sylow 3-subgroup identified, which we refer to as H1. Next, there is a

group of shape 22.SL2(3) where the extension is non-split, which we refer to as H2.

Then, there is a group of shape (Q8 × 13) : 3 which occurs as a product of SL2(3)

and the Frobenius group 13 : 3 with their Sylow 3-subgroups identified, which

we refer to as H3. Finally, we have a group 21+2+2.SL2(3) where the extension is

non-split. Indeed, the center of the Sylow 2-subgroup in this case has order 23 and

the quotient by this center is isomorphic to H2. We refer to this group as H4.

Suppose that Lα is isomorphic to H1 or H3. In the latter case, we have that

SO2(Lα) ∼= SL2(3), while in the former case, while in the former case, there are

four subgroups isomorphic to SL2(3). Letting Lα be isomorphic to H1 and tβ ∈

Lβ ∩ Gα,β be an involution, we infer that tβ inverts S/Qα and centralizes Z(Lα).

Then O2(Lα/Z(Lα)) splits as a direct sum of two non-trivial modules for tβS ∼=

Sym(3). Then by [Gor07, (I.3.5.6)], there are three submodules of O2(Lα/Z(Lα)),

one of which corresponds to the image of Rα, while the others correspond to

Gα,β-invariant subgroups of Lα isomorphic to Q8. Thus, whether Lα is isomorphic

to H1 or H3, we have a Gα,β-invariant subgroup of Lα, call it Pα, such that O3(Pα)

acts non-trivially on Zα and Pα ∼= SL2(3).

In either scenario, form X := 〈Lβ(Gα,β∩Pα), Pα(Gα,β∩Lβ)〉. Assuming that G is a
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minimal counterexample to Theorem 5.2.2, if no non-trivial subgroup of Gα,β ∩X

is normal in X, then X is described in Theorem 5.2.2. Since no configurations

described there have |S| = 39 and satisfy the requirements, we have a contradiction.

Thus, some subgroup of Gα,β is normal in X. Indeed, we may as well suppose that

a non-trivial subgroup of S is normal in X, calling this group Q. By the choice

of Pα, we have that Vβ < 〈ZX
β 〉 ≤ Q ≤ Cβ and X/Q satisfies Hypothesis 5.2.1.

Then, Theorem 5.2.28 implies that X/CX(〈ZX
β 〉) is locally isomorphic to SL3(3).

By [CD91, Theorem A], and since Vβ < 〈ZX
β 〉, it follows that Q = 〈ZX

β 〉 is a

direct sum of two natural SL3(3) modules and Q = Cβ is elementary abelian, a

contradiction.

If Lα is isomorphic to H2 or H4 then set Pα to be the subgroup generated by the

unique normal subgroup of Lα of order 4 and S. Then Pα ∼= PSL2(3) and Pα is

normalized by Gα,β. Moreover, Pα ≤ RαS. Setting X := 〈Pα(Gα,β ∩Lβ), Lβ〉, and

writing Q for the largest subgroup of S which is normal in X, we have that Q ≤ Cβ

and both Pα/Q and Lβ/Q are of characteristic 3. In particular, if G is a minimal

counterexample to Theorem 5.2.2, then by minimality, X/Q is locally isomorphic

to PSp4(3) and |Q| = 35. If Zα ≤ Q, then 〈ZX
α 〉 is a non-trivial module forX/Q and

since Zβ is centralized by X, Q = 〈ZX
α 〉. But Q < Cβ and [Cβ, Q] ≤ [Cβ, Cβ] = Zβ

from which it follows that O3(Lβ) centralizes Q, a contradiction. Thus, Zα 6≤ Q

and is follows that Q ∩ Vβ = Zβ. But then, Qβ/Q contains two non-central chief

factors for Lβ, a final contradiction.

Proposition 5.4.45. Suppose that CVβ(Vα′) = Vβ ∩ Qα′ and b = 3. Then p = 2

and G is parabolic isomorphic to M12 or Aut(M12).

Proof. Suppose first that that G has a weak BN-pair of rank 2. Then by [DS85],

p = 2 and G is parabolic isomorphic to M12 or Aut(M12). Since Lα/Rα
∼= Lβ/Rβ

∼=
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SL2(p), to prove the proposition it suffices to prove that Rβ = Qβ and Rα = Qα.

We assume throughout that (α, α′) is a critical pair with Vα′ 6≤ Qβ, Zα′ 6= Zβ.

Moreover, R ≤ Zα+2, |Vβ| = p3, Cβ is elementary abelian and has index p2 in both

Qα+2 and Qβ, and Op(Lβ) centralizes Cβ/Vβ.

Suppose first that there is λ, µ ∈ ∆(α + 2) with Qα+2 = CλCµ. Then Zα+2 =

Ω(Z(Qα+2)) = Cλ ∩ Cµ has index p4 in Qα+2.

Suppose now that Cα′Cβ has index p in Qα+2. If Cα′Cβ E Lα+2 then Op(Lα+2) ∩

Qα+2 ≤ Cα′Cβ. Moreover, V (2)
α+2 ≤ Cα′Cβ so that Cα′ ∩ Cβ = Ω(Z(Cα′Cβ)) is

normal in Lα+2 and centralizes V (2)
α+2. In particular, Cα′Cβ = V

(2)
α+2Ω(Z(Cα′Cβ)). By

coprime action Ω(Z(Cα′Cβ)) = [Ω(Z(Cα′Cβ)), Op(Rα+2)]×CΩ(Z(Cα′Cβ))(Op(Rα+2))

and since Zβ ≤ CΩ(Z(Cα′Cβ))(Op(Rα+2)), it follows that [Ω(Z(Cα′Cβ)), Op(Rα+2)] =

{1}. Now, for any p′-element r ∈ Op(Lα+2), if [r, V (2)
α+2] ≤ Ω(Z(Cα′Cβ)), then

[r, V (2)
α+2, V

(2)
α+2] = {1}. By the three subgroup lemma, such an r centralizes

[V (2)
α+2, V

(2)
α+2] = Zα so that r ∈ Op(Rα+2). But then r centralizes Cα′Cβ =

V
(2)
α+2Ω(Z(Cα′Cβ)) and so r = 1. Thus, every p′-element acts faithfully on

V (2)
α /(V (2)

α ∩Ω(Z(Cα′Cβ))) which has order p2. Since Lα+2/Rα+2 ∼= SL2(p) and by

conjugacy, Rα = Qα, as required.

Thus, we may assume that Cα′Cβ 6E Lα+2 and so there is µ ∈ ∆(α + 2) such that

Qα+2 = Cα′CβCµ. If Qα+2 = CµCβ, then Cµ ∩ Cβ = Zα+2 has index p4 in Qα+2

and |Cβ/Vβ| = p. We get a similar result if Qα+2 = CµCα′ . Thus, we may assume

that Cα′ ∩Cβ ∩Cµ = Zα+2 has index p2 in Cβ and so, again, Zα+2 has index p4 in

Qα+2.

Thus, we have reduced to the case where |Cβ/Vβ| = p, |Qβ/Zβ| = p5 and |Qα/Zα| =

p4. By Lemma 5.4.42, we may assume that p ∈ {2, 3} and we may as well assume
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that Φ(Qα) = Zα. Then Lα is isomorphic to a subgroup of GL4(p) which has

a strongly p-embedded subgroup and some quotient isomorphic to SL2(p). It

follows that Rα = Qα, or Lα ∼= (3 × 3) : 2 or (Q8 × Q8) : 3. If p = 2, then

by Lemma 2.3.15, there is Pα ≤ Lα such that Pα/Qα
∼= Sym(3), Lα = PαRα

and we may choose Pα such that neither Vβ nor Cβ are normal in Pα. It follows

that no subgroup of S is normal in both Pα and Lβ so that (Pα, Lβ, S) satisfies

Hypothesis 5.2.1. Since we could have chosen G minimally, and as |S| = 27, we

deduce that (Pα, Lβ, S) is parabolic isomorphic to Aut(M12). But then one can

calculate, e.g. using MAGMA, that |Aut(Qα)|3 = 3, a contradiction. If p = 3,

then Z(Lα) is elementary abelian of order 4 and since Lβ ∼= SL2(3), it follows that

there is t ∈ Gα,β such that [t, Lβ] ≤ Qβ and tQα ≤ Z(Lα), a contradiction by

Proposition 5.2.6 (v).

5.4.3 b = 1

From this point on, restating Lemma 5.4.1, we may assume the following:

• b = 1 so that Zα 6≤ Qβ;

• Ω(Z(S)) = Zβ = Ω(Z(Lβ)); and

• Z(Lα) = {1}.

Proposition 5.4.46. Suppose that p > 5. Then Lβ ∼= SL2(q) or (P)SU3(q).

Proof. Since [Qβ, Zα, Zα] = {1} the result follows immediately from Lemma 2.3.5.

Proposition 5.4.47. Suppose that p > 5. Then G has a weak BN-pair of rank 2

and is locally isomorphic to H where F ∗(H) = PSp4(pn), PSU4(pn) or PSU5(pn).
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Proof. Let Kβ be a critical subgroup of Qβ. By Theorem 2.1.26, Op(Lβ) acts

faithfully on Kβ/Φ(Kβ). Assume that Kβ ≤ Qα. Since Lβ ∼= SL2(q) or (P)SU3(q),

we have that [Kβ, O
p(Lβ)] ≤ [Kβ, 〈Z

Lβ
α 〉] = {1}, a contradiction. Hence, Kβ 6≤ Qα,

[Qα, Kβ, Kβ, Kβ] = {1} and Kβ acts cubically on Qα.

Since Qα/Φ(Qα is a faithful Lα-module which admits cubic action, we may apply

Corollary 2.3.24 so that Lα ∼= (P)SL2(q) or (P)SU3(q), or p = 5 and Lα ∼= 3 ·Alt(6)

or 3·Alt(7) and forW some irreducible constituent ofQα/Φ(Qα), |W | > 56. If Lα ∼=

(P)SL2(q) or (P)SU3(q) then G has a weak BN-pair of rank 2 and is determined

in [DS85]. Therefore, G is locally isomorphic to H where F ∗(H) = PSp4(pn+1),

PSU4(pn) or PSU5(pn) for n > 1. Thus it remains to check that Lα 6∼= 3 ·Alt(6) or

3 · Alt(7) and so have that p = 5 and |S/Qα| = 5. Since Qβ is not centralized by

Zα, else Zα ≤ Ω(Z(S)), Lβ ∼= SL2(5) and Qβ contains exactly one non-central chief

factor for Lβ, which is isomorphic to a natural SL2(5)-module. Since Z(Lα) = {1},

Zα contains a non-central chief factor for Lα and admits cubic action, Zα is also a

faithful Lα-module and |Zα| > 56, so that Rα = Qα.

Suppose that Zα ∩ Qβ ≤ Qλ for all λ ∈ ∆(β). Since Lβ = 〈Zλ, Qβ | λ ∈ ∆(β)〉,

it follows that Zα ∩ Qβ is centralized by Op(Lβ). Since Qα ∩ Qβ 6E Lβ, Op(Lβ) ∩

Qβ 6≤ Qα and so [Zα, Qβ, Qβ ∩ Op(Lβ)] = {1} and Zα is a quadratic module, a

contradiction to Lemma 2.3.5. Thus, Zα ∩ Qβ 6≤ Qα+2 for some α + 2 ∈ ∆(β)

and Zα ∩ Qβ ∩ Qα+2 has index at most 25 in Zα. If Zα+2 ∩ Qβ ≤ Qα then

[Zα+2, Zα, Zα] = {1} and so, Zα∩Qβ acts quadratically on Zα+2 and since α+ 2 is

conjugate to α, we have a contradiction. Thus, Zα+2 ∩Qβ 6≤ Qα. But now, Lα is

generated by two conjugates of (Zα+2 ∩Qβ)Qα/Qα, and as an index 25 subgroup

of Zα is centralized by Zα+2 ∩ Qβ and Z(Lα) = {1}, we have that |Zα| 6 54, a

contradiction
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Given the above proposition, we suppose that p ∈ {2, 3} for the remainder of this

subsection. We introduce some notation specific to the case where b = 1.

Notation 5.4.48. • Fβ is a normal subgroup of Gβ which satisfies

[Fβ, Op(Lβ)] 6= {1} and is minimal by inclusion with respect to adhering

to these conditions.

• Wβ := 〈(Zα ∩Qβ)Gβ〉.

• Dβ := CQβ(Op(Lβ)).

Lemma 5.4.49. The following hold:

(i) Fβ 6≤ Qα;

(ii) Fβ = [Fβ, Op(Lβ)] ≤ Op(Lβ); and

(iii) for any p-subgroup U E Lα with U 6≤ Qβ, [Fβ, Qβ] ≤ U .

Proof. We have that [Fβ, Op(Lβ)] ≤ Op(Lβ) and by coprime action

[Fβ, Op(Lβ), Op(Lβ)] = [Fβ, Op(Lβ)]. By minimality of Fβ, Fβ = [Fβ, Op(Lβ)].

If Fβ ≤ Qα, then [Fβ, S] is strictly contained in Fβ and normalized by Lβ =

〈ZLβ
α 〉(Gα,β ∩ Lβ) and, by minimality, [Fβ, S] ≤ Dβ. But then [Fβ, Lβ] ≤ Dβ, a

contradiction.

Let Hβ := 〈(U ∩ Fβ)Gβ〉 E Gβ. By minimality of Fβ, either Hβ = Fβ or Hβ ≤ Dβ.

Suppose the latter. Then [Fβ, U ] ≤ Fβ ∩ U ≤ Hβ ≤ Dβ so that [Fβ, 〈UGβ〉] ≤ Dβ.

Now, Fβ = [Fβ, Op(Lβ)] ≤ [Fβ, 〈UGβ〉(Gα,β ∩ Lβ)] ≤ Dβ[Fβ, Gα,β ∩ Lβ]. Then, by

minimality of Fβ, Fβ/Fβ ∩ Dβ is an irreducible Gα,β ∩ Lβ so that [S, Fβ] ≤ Dβ.

As above, this implies that [Fβ, Lβ] ≤ Dβ, a contradiction. Thus, Hβ = Fβ. Now,
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[U ∩ Fβ, Qβ] ≤ [Fβ, Qβ] ≤ Dβ and so [U ∩ Fβ, Qβ] E Gβ. But then [U ∩ Fβ, Qβ] =

[U ∩ Fβ, Qβ]Gβ = [〈(U ∩ Fβ)Gβ , Qβ] = [Fβ, Qβ] and U ≥ [U ∩ Fβ, Qβ] = [Fβ, Qβ],

completing the proof.

Lemma 5.4.50. Suppose that mp(S/Qα) = 1. Then p = 3, Lβ ∼= SL2(3), Zα is

an irreducible 2F -module for Lα and Qα is elementary abelian.

Proof. Assume that mp(S/Qα) = 1. Since Wβ is generated by elements of order

p and mp(S/Qα) = 1, |WβQα/Qα| = p and Zα centralizes an index p subgroup of

Wβ. Since [Zα, Qβ] ≤ Wβ, Wβ contains all non-central chief factors for Lβ in Qβ

and so, Wβ/CWβ
(Op(Lβ)) is the unique non-central chief factor for Lβ inside Qβ.

Moreover, Wβ/CWβ
(Op(Lβ)) is a natural SL2(p)-module for Lβ ∼= SL2(p) and Lβ =

〈Qα, Qβ, Zα+2〉 for some α+2 ∈ ∆(β). Then Zα∩Qβ ≤ (Zα∩Wβ)(Zα+2∩Wβ) E Lβ

and so Wβ = (Zα ∩Wβ)(Zα+2 ∩Wβ).

Suppose first that Wβ is abelian. Then, as Zα ∩Qβ ≤ Wβ, an index p subgroup of

Zα is centralized by Wβ and Zα is a natural SL2(p)-module. But then Zα∩Qβ = Zβ

and Wβ = Zβ, a contradiction.

Since Wβ is non-abelian, and Wβ ∩ Qα ∩ Qα+2 has index p2 in Wβ, Wβ ∩ Qα ∩

Qα+2 = Ω(Z(Wβ)) = CWβ
(Op(Lβ)). Notice that every element of Wβ lies in

(Zλ ∩ Wβ)Ω(Z(Wβ)) for some λ ∈ ∆(β), and that (Zλ ∩ Wβ)Ω(Z(Wβ)) is of

exponent p, from which it follows that Wβ is of exponent p. In particular, since

Wβ is not elementary abelian, p 6= 2. Therefore, Ω(Z(Wβ)) has index 9 in Zα, Zα

is 2F-module and since [Zα,Wβ] 6≤ Ω(Z(Wβ)) and S/Qα has a unique element of

order 3, Zα does not admit quadratic action by any element x ∈ S \Qα.

Now, by minimality of Fβ, Φ(Fβ) ≤ Qα so that Fβ(Qα∩Qβ) = Wβ(Qα∩Qβ) since

S/Qα has a unique subgroup of order p. Then [Fβ, Zα] = [Wβ, Zα]. Moreover,
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Fβ = [Fβ, Op(Lβ)] ≤ [Fβ, Zα]Lβ ≤ Wβ and since Fβ contains a non-central chief

factor, Wβ = FβZ(Wβ). Then, since [Fβ, Qα] = [Fβ, Zα(Qα ∩ Qβ)] ≤ Zα by

Lemma 5.4.49, it follows that O3(Lα) centralizes Qα/Zα. In particular, every

p′-element of Lα acts non-trivially on Zα.

Let U < Zα be a non-trivial subgroup of Zα which is normal in Lα. If CS(U) 6≤ Qα,

then O3(Lα) centralizes U and as U E S, U ∩ Zβ 6= {1} and Z(Lα) 6= {1},

a contradiction. If U 6≤ Qβ, then Zα = U(Zα ∩ Qβ) and by Lemma 5.4.49, it

follows that [Fβ, Zα] ≤ U so that [O3(Lα), Zα] ≤ U and CZα(O3(Lα)) 6= {1} by

Lemma 2.3.2. But then Z(Lα) ≥ Zβ ∩CZα(O3(Lα)) 6= {1}, a contradiction. Thus,

U ≤ Qβ and as Zα is 2F, we may assume that both Zα/U and U are FF-modules for

Lα and by Lemma 2.3.15 (ii), either Lα ∼= SL2(3) or (Q8×Q8) : 3. If Lα ∼= SL2(3),

then G has a weak BN-pair of rank 2 and by [DS85], we have a contradiction. If

Lα ∼= (Q8 × Q8) : 3, since |Out(Lβ)| = 2 and a Hall 3′-subgroup of Lα ∩ Gα,β is

isomorphic to an elementary abelian group of order 4, it follows that that there is

an involution t ∈ Gα,β such that [Lα, t] ≤ Qα and [Lβ, t] ≤ Qβ, a contradiction by

Proposition 5.2.6 (v).

Thus, we may now assume that Zα is an irreducible 2F-module. Since Zα is

irreducible and Zα 6≤ Φ(Qα), we have that Zα ∩ Φ(Qα) = Zβ ∩ Φ(Qα) = {1} so

that Φ(Qα) = {1} and Qα is elementary abelian.

Proposition 5.4.51. Suppose that mp(S/Qα) = 1 and p ∈ {2, 3}. Then p = 3,

Zα = Qα is an irreducible GF(3)Lα-module and one of the following holds:

(i) G has a weak BN-pair of rank 2 and G is locally isomorphic to H where

F ∗(H) ∼= PSp4(3);

(ii) |S| = 35, Lα ∼= Alt(5), Zα is the restriction of the permutation module,

317



Lβ ∼= SL2(3) and Qβ
∼= 3× 31+2

+ ;

(iii) |S| = 35, Lα ∼= O3′(2 o Sym(4)), Zα is a reflection module, Lβ ∼= SL2(3) and

Qβ
∼= 3× 31+2

+ ; or

(iv) |S| = 36, Lα ∼= O3′(2 o Sym(5)), Zα is a reflection module, Lβ ∼= SL2(3) and

Qβ
∼= 3× 3× 31+2

+ .

Consequently, if G is a completion of an amalgam determined by a fusion system F

satisfying Hypothesis 5.1.12, then F = FS(H) where H ∼= PSp4(3), Aut(PSp4(3)),

PSU5(2), Aut(PSU5(2)), Ω+
8 (2), O+

8 (2),, Ω−10(2) or Sp10(2).

Proof. By Lemma 5.4.50, Zα is the unique non-central chief factor for Lα in Qα and

Qα is elementary abelian. Moreover, Wβ/CWβ
(Op(Lβ)) is the unique non-central

chief factor for Lβ inside Qβ, and is a natural SL2(3)-module for Lβ ∼= SL2(3).

Suppose first that |Zα| = 33. Then Lα is isomorphic to a subgroup X of GL3(3)

which has a strongly 3-embedded subgroup. One can check that the only groups

which satisfy X = O3′(X) are PSL2(3), SL2(3) and 13 : 3. In the first two

cases, G has a weak BN-pair of rank 2 and comparing with [DS85], we have that

Lα ∼= PSL2(3) andG to locally isomorphic toH, where F ∗(H) ∼= PSp4(3). Suppose

that Lα ∼= 13 : 3 and let tβ ∈ Lβ∩Gα,β be an involution. Then tβ ∈ Gα and writing

tβ := tβQα/Qα, tβ acts on Lα and inverts S = QβQα/Qα, a contradiction since

any involutary automorphism of 13 : 3 centralizes a Sylow 3-subgroup.

Thus, we may assume that |Zα| > 33. Again, let tβ ≤ Gα,β ∩ Lβ be an involution.

Then, using coprime action, [tβ, Qα] ≤ Wβ and [tβ, CWβ
(O3(Lβ))] = {1}. In

particular, it follows that tβ centralizes an index 3 subgroup of Qα. Let L∗ := 〈tGαβ 〉

and L∗ = L∗Qα/Qα ≤ Gα. Since L∗ E Gα, we have that [L∗, Lα] ≤ L∗. Note
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that tβ inverts WβQα/Qα
∼= Wβ/Wβ ∩ Qα and so WβQα/Qα = [WβQα/Qα, tβ] ≤

[Lα, L∗] ≤ L∗. If Gα is not 3-solvable, then Lα/O3′(Lα) is a non-abelian finite

simple group and since L∗ E Gα, we have that Lα ≤ L∗.

If Gα is 3-solvable, let Oα be the preimage of O3′(Lα) in Lα. By coprime action,

we have that Qα = [Qα, Oα]×CQα(Oα) is an S-invariant decomposition. Since Zα

is irreducible, we infer that [Qα, Oα] = [Zα, Oα] = Zα and as Zβ ≤ Zα, it follows

that CQα(Oα) = {1} and Qα = Zα. If |S/Qα| > 3, then Wβ ≤ Φ(Qβ)(Zα ∩ Qβ)

and it follows from the Dedekind modular law that Wβ = Φ(Qβ)(Zα∩Qβ)∩Wβ =

(Zα ∩ Qβ)(Φ(Qβ) ∩ Wβ). Since Wβ contains all non-central chief factors for Lβ

inside Qβ, Φ(Qβ) ∩Wβ ≤ Z(Qβ so that Wβ = (Zα ∩ Qβ)Z(Wβ), a contradiction.

Thus, |S/Qα| = 3 and, again, Lα ≤ L∗.

Since S/Qα does not act quadratically on Zα, L∗ is not generated by transvections

and as |Zα| > 34, we may apply the main result of [ZS81]. Using that S/Qα

is cyclic, we have that L∗ is isomorphic to the reduction modulo 3 of a finite

irreducible reflection group of degree n in characteristic 0, and 34 6 |Zα| 6 35.

Suppose that there is tα ∈ L∗∩Gα,β an element of order 4 with t2αQα ∈ Z(L∗). Then

tα ∈ Gβ and tα acts on Lβ. We may assume that t2α acts non-trivially on Lβ for

otherwise t2αQα is centralized by Lα and t2αQβ is centralized by Lβ, a contradiction

by Proposition 5.2.6 (v). But tα normalizes S/Qβ and so either tα inverts S/Qβ or

centralizes S/Qβ. In either case, t2α centralizes S/Qβ and by Lemma 2.2.1 (viii),

t2α acts trivially on Lβ, a contradiction.

Upon comparing the groups listed in [ZS81] and the orders of GL4(3) and

GL5(3) we are left with the groups G(1, 1, 5), G(2, 1, 4), G(2, 2, 4), G(2, 1, 5) and

G(2, 2, 5) (in the Todd-Shepherd enumeration convention) as candidates for L∗. In
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particular, |S/Qα| = 3. If L∗ ∼= G(1, 1, 5) ∼= Sym(5), then Lα ∼= Alt(5). Then G is

determined in [JJS89] and outcome (ii) follows in this case. Thus, O2(L∗) 6= {1}

and writing Oα for the preimage of O2(L∗) in Gα, we have by coprime action that

Qα = [Qα, Oα]×CQα(Oα) and since Zα is irreducible and is the unique non-central

chief factor within Qα, Qα = [Qα, Oα] = Zα. In particular, Wβ = Qβ, |Qβ| 6 35

and Qβ/Zβ is a natural SL2(3)-module for Lβ.

Now, G(2, 1, 4) ∼= 2 o Sym(4) and G(2, 2, 4) is isomorphic to an index 2 subgroup

of G(2, 1, 4). Therefore, if |Zα| = 34, Lα ∼= O3′(2 o Sym(4)) and the possible

actions of Lα are determined up to conjugacy in GL4(3). Indeed, it follows in

this case that S is isomorphic to a Sylow 3-subgroup of Alt(12). Furthermore, Qβ

has exponent 3, is of order 34 and Z(Qβ) = Zβ is elementary abelian of order 9.

Indeed, Qβ
∼= 31+2

+ × 3.

Finally, G(2, 1, 5) ∼= 2 oSym(5) and G(2, 2, 5) is isomorphic to an index 2 subgroup

of G(2, 1, 5). Therefore, if |Zα| = 35, Lα ∼= O3′(2 oSym(5)) and the possible actions

of Lα are determined up to conjugacy in GL5(3). Indeed, it follows in this case that

S is isomorphic to a Sylow 3-subgroup of Alt(15). Furthermore, Qβ has exponent

3, is of order 35 and Z(Qβ) = Zβ is elementary abelian of order 27. Indeed,

Qβ
∼= 31+2

+ × 3× 3.

If G is obtained from a fusion system F then as |S| 6 36, and S ∈ Syl3(O3(Lα))

or G has a weak BN-pair of rank 2, we may assume that O3(F) = F and use the

results in [PS21] to completely determine F .

Lemma 5.4.52. Suppose that mp(S/Qα) > 2 and mp(S/Qβ) = {1}. Then there

is α + 2 ∈ ∆(β) such that Zα ∩ Qβ 6≤ Qα+2 and Zα+2 ∩ Qβ 6≤ Qα. Moreover,

|(Zα ∩Qβ)Qα+2/Qα+2| = |(Zα+2 ∩Qβ)Qα/Qα|.
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Proof. Suppose that Zα ∩Qβ ≤ Qλ for all λ ∈ ∆(β). Then Zα ∩Qβ is centralized

by 〈ZGβ
α 〉. In particular, as Gβ = 〈ZGβ

α 〉Gα,β by Lemma 5.2.8 (iii), Zα ∩Qβ E Gβ.

But then, Zα centralizes Qβ/(Qβ ∩Zα and Qβ ∩Zα, impossible as Zα 6≤ Qβ. Thus,

we may choose α+ 2 ∈ ∆(β) such that Zα ∩Qβ 6≤ Qα+2. If Zα+2 ∩Qβ ≤ Qα, then

an index p subgroup of Zα+2 is centralized by Zα ∩ Qβ 6≤ Qα+2 and as α + 2 is

conjugate to α and mp(S/Qα) > 1, by Lemma 2.3.10 we have a contradiction.

Observe that Zα ∩Qβ ∩Qα+2 ≤ CZα(Zα+2 ∩Qβ). Set rα = |(Zα ∩Qβ)Qα+2/Qα+2|

and define rα+2 similarly. If rα+2 > rα, then

|Zα/CZα(Zα+2 ∩Qβ)| 6 prα 6 rα+2 = (Zα+2 ∩Qβ)/CZα+2∩Qβ(Zα)

and Zα+2 ∩Qβ is an offender on Zα. Then, by Lemma 2.3.10, Zα is an FF-module

for Lα/Rα
∼= SL2(pn) and Lα = QαO

p(Lα). In particular, since Z(Lα) = {1},

CZα(Op(Lα)) = {1} and Zα is irreducible of order p2n. But then, we have that

[Zα, Fβ] ≤ Zβ, a contradiction since Fβ contains a non-central chief factor for Lβ.

Hence, rα+2 6 rα and by a symmetric calculation, rα 6 rα+2 so that rα = rα+2

and the result holds.

Lemma 5.4.53. Suppose that mp(S/Qα) > 2. Then S/Qα is elementary abelian.

Proof. Assume that mp(S/Qα) > 2 and S/Qα is not elementary abelian. In

particular, Lα ∼= PSU3(pn), SU3(pn), Sz(2n) or Ree(3n). If mp(S/Qβ) > 2, since

Zα acts quadratically on Qβ, by Lemma 2.3.5 we have that Lβ is isomorphic to a

central extension of a simple group of Lie type by a p′-group. In particular, G has

a weak BN-pair and is determined in [DS85]. No examples occur. Thus, we may

assume that mp(S/Qβ) = 1 throughout. By Lemma 5.4.52, there is α + 2 ∈ ∆(β)

such that an index rαp subgroup of Zα is centralized by (Zα+2∩Qβ)Qα/Qα, where
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rα = |(Zα+2 ∩Qβ)Qα/Qα|. Since Z(Lα) = {1}, CZα(Op(Lα)) and so, if Op(Lα) is

generated by d conjugates of (Zα+2 ∩Qβ)Qα/Qα, it follows that |Zα| 6 (rαp)d.

Suppose that S 6= QαQβ. Since S/Qα is not elementary abelian and QαQβ is

a Gα,β-invariant, it follows that S/QαQβ is elementary abelian of order strictly

greater than 4, unless Lα ∼= Ree(3). Since S/Qβ is cyclic or generalized quaternion,

the largest elementary abelian quotient of S/Qβ has order at most 4 and we have

a contradiction unless Lα ∼= Ree(3) and |S/QαQβ| = 3.

If Lα ∼= Ree(3) then O3(Lα) ∼= PSL2(8) is generated by two conjugates of (Zλ ∩

Qβ)Qα/Qα. Since the minimal degree of a GF(3)-representation of PSL2(8) is

7, and O3(Lα) does not centralize Zα, we have that 37 6 |Zα| 6 r2
α32 6 36, a

contradiction. Thus, S = QαQβ. Notice also that (Zα+2 ∩Qβ)Qα E QαQβ = S.

Suppose that Lα ∼= SU3(pn) or PSU3(pn). If (Zα+2 ∩Qβ)Qα/Qα 6≤ Z(S/Qα) then

it follows from Lemma 2.2.2 (viii) that two conjugates generate Lα and |Zα| 6

r2
αp

2. Since |S/Qα| = p3n, |Z(S/Qα)| = pn and Zα+2 is abelian, we have that

(Zα+2 ∩ Qβ)Qα/Qα has index at least p2 in S/Qα and |Zα| < p6n unless perhaps

p = 3 and n = 1 in which case |Zα| 6 36 anyway. Since the minimal degree of

a GF(p)-representation of Lα is 6n it follows that p = 3, n = 1 and Zα is the

natural module. But now, Zα ∩Qβ is a Gαβ-invariant subgroup of index 3 in Zα,

a contradiction by Lemma 2.2.13 (iii). Assume now that (Zα+2 ∩ Qβ)Qα/Qα ≤

Z(S/Qα) so that rα 6 pn. By Lemma 2.2.2 (vi), (vii), Lα is generated by at

most 4 conjugates of (Zα+2 ∩ Qβ)Qα/Qα 6≤ Z(S/Qα) and so |Zα| 6 p4n+4. If

n > 2, then |Zα| < p6n and since the minimal degree of a GF(p)-representation

of Lα is 6n, we have a contradiction. Suppose that n = 2. If rα = p2, then

(Zα+2 ∩ Qβ)Qα/Qα = Z(S/Qα) and by Lemma 2.2.2 (vi), three conjugates of

(Zα+2 ∩ Qβ)Qα/Qα generate Lα and |Zα| 6 p9 < p12, a contradiction. If rα = p,
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then |Zα| 6 p8 < p12, another contradiction. Suppose finally that n = 1 so

that p = 3. Then (Zα+2 ∩ Qβ)Qα/Qα = Z(S/Qα) and Lα is generated by three

conjugates of (Zα+2 ∩Qβ)Qα/Qα. Then |Zα| 6 36 and the only possibility is that

Zα is the natural module. As above, Zα∩Qβ is a Gα,β-invariant subgroup of index

3 in Zα, and we have a contradiction.

Suppose that Lα ∼= Sz(2n) with n > 3. If (Zα+2 ∩ Qβ)Qα/Qα 6≤ Z(S/Qα) then it

follows from Lemma 2.2.3 (vii) that two conjugates generate and |Zα| 6 r2
α22. Since

|S/Qα| = 22n, |Z(S/Qα)| = 2n, n > 3 and Zα+2 is abelian, we have that (Zα+2 ∩

Qβ)Qα/Qα has index at least p2 and |Zα| < p4n. Since the minimal degree of a

GF(p)-representation of Lα is 4n, we have a contradiction. If (Zα+2∩Qβ)Qα/Qα ≤

Z(S/Qα) then it follows from Lemma 2.2.3 (vi) that three conjugates generate and

|Zα| 6 r3
α23 6 23n+3. Since the minimal degree of a GF(p)-representation of Lα is

4n and n > 3, we have that n = 3 and rα = 8. But then (Zα+2 ∩ Qβ)Qα/Qα =

Z(S/Qα) and only two conjugates are required to generate Lα from which it follows

that |Zα| 6 28 < 212, a contradiction.

Suppose that Lα ∼= Ree(3n). By the above, n > 3. By Lemma 2.2.4 (vi), we

infer that Lα is generated by three conjugates of (Zα+2 ∩ Qβ)Qα/Qα and since

the minimal degree of a GF(3)-representation of Lα is 7n, we deduce that 37n 6

|Zα| 6 r3
αp

3. Since Zα+2 is elementary abelian and |Ω(S/Qα)| = 32n, we have

that r3
αp

3 6 36n33 and since n > 3, we conclude that n = 3, Lα ∼= Ree(27)

and (Zα+2 ∩ Qβ)Qα/Qα = Ω(S/Qα). But then, it may be checked that Lα is

generated by two conjugates of (Zα+2 ∩Qβ)Qα/Qα and 321 6 31233 = 315, a clear

contradiction.

Proposition 5.4.54. Suppose that mp(S/Qα) > 2, mp(S/Qβ) > 2 and p ∈ {2, 3}.

Then one of the following holds:
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(i) G has a weak BN-pair of rank 2 and G is locally isomorphic to H where

F ∗(H) ∼= PSU4(pn+1),PSU5(2n+1),PSU5(3n) or PSp4(3n+1) for n > 1; or

(ii) p = 3, |S| = 37, Lα ∼= M11, Zα = Qα is the “code” module for Lα, Lβ ∼=

SL2(9) and Qβ
∼= 31+4

+ .

Moreover, if G is obtained from a fusion system F satisfying Hypothesis 5.1.12

then one of the following holds:

(i) p = 2 and F = FS(H) where F ∗(H) ∼= PSU4(2n) or PSU5(2n) and n > 2;

or

(ii) p = 3 and F = FS(H) where F ∗(H) ∼= PSp4(3n+1), PSU4(3n+1), PSU5(3n)

for n > 1; or

(iii) p = 3 and F = FS(H) where H ∼= Co3.

Proof. Assume that mp(S/Qα) > 2 so that S/Qα is elementary abelian by

Lemma 5.4.53. Then by Proposition 3.2.7, Lα ∼= SL2(pn) or PSL2(pn) for n > 2

and p ∈ {2, 3}; or Lα ∼= M11 or 3′-central extension of PSL3(4) and p = 3. In

particular, (Gα,β∩Lα)/Qα acts irreducibly on S/Qα and so Qβ = Fβ(Qβ∩Qα) and

Fβ contains all non-central chief factors for Lβ. Further, Dβ ≤ Qα for otherwise

Qβ = Dβ(Qα ∩Qβ) and Op(Lβ) centralizes Qβ, a contradiction.

If both Lα and Lβ are isomorphic to central extensions of Lie type groups, then

G has a weak BN-pair of rank 2 and G is determined up to local isomorphism in

[DS85]. Comparing with the amalgams determined there, we have that G is locally

isomorphic to H where F ∗(H) ∼= PSU4(pn),PSU5(pn) or PSp4(3n) for n > 2, or

PSU5(3). Hence, p = 3. Since Qβ admits quadratic action, by Lemma 2.3.5,
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Lβ ∼= SL2(3a+1) or (P)SU3(3a) for a > 1; and Lα ∼= M11 or a central extension

of PSL3(4). Set rα := |(Zα ∩ Qβ)Qα+2/Qα+2| and d the number of conjugates of

(Zα∩Qβ)Qα+2/Qα+2 required to generate Lα+2. In a similar way to Lemma 5.4.52,

we see that rα = rα+2 and the value of d is consistent for both Lα and Lα+2.

If Lβ ∼= (P)SU3(3a), then since Fβ ∩Qα is index 9 in Fβ and is centralized by Zα,

we have that Lβ ∼= SU3(3) and Fβ/Fβ ∩ Dβ is a natural module. Then, |Zα| 6

(rα3)d. One can check that for Lα ∼= M11 or a central extension of PSL3(4), Lα is

generated by two conjugate Sylow 3-subgroups, or three conjugates 3-elements and

so |Zα| 6 36, S = (Zα+2 ∩Qβ)Qα and Zβ = Zα ∩Qβ ∩Qλ is index 33 in Zα. Since

the minimal degree of a GF(3)-representation of M11 is 5 and the minimal degree of

a GF(3)-representation of a central extension of PSL3(4) is 6, Zα contains a unique

non-trivial irreducible constituent and rα = 9. Since CZα(Op(Lα)) = Z(Lα) = {1},

it follows from Lemma 2.3.2 that Zα = [Zα, Lα] is irreducible. Since S = QαQβ

and S/Qβ is non-abelian, it follows that Zα ≤ 〈(Zβ ∩ Φ(Qα))Gα〉 ≤ Φ(Qα). But

then Zα(Qα ∩ Qβ ∩ Qα+2) has index 32 in Qα and there is an index 34 subgroup

of Qα/Φ(Qα) which is centralized by O3(Lα). A consideration of the minimal

degrees of GF(3)-representations of Lα yields that O3(Lα) centralizes Qα/Φ(Qα),

a contradiction.

If Lβ ∼= SL2(3a+1), then Lβ = 〈Qβ, Zα, Zα+2〉 and Qβ ∩Qα is an index 9 subgroup

of Qβ which is centralized by Zα. It follows that Lβ ∼= SL2(9) and Qβ contains

one non-central chief factor, which is isomorphic to the natural module. Suppose

that Lα ∼= M11. Then the amalgam is described in [Pap97] and we have (v) as

a conclusion in this case. If G is obtained from a fusion system F satisfying

Hypothesis 5.1.12, then since S ∈ Syl3(O3(Gα)), it follows that O3(F) = F and

we may apply the results in [PS21]. Indeed, F is isomorphic to the 3-fusion system
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of Co3.

Let Tβ be the preimage in Lβ of Z(Lβ). Then, by coprime action, Qβ/Φ(Qβ) =

[Qβ/Φ(Qβ), Tβ] × CQβ/Φ(Qβ)(Tβ) where |[Qβ/Φ(Qβ), Tβ]| = 34. Since S/Qα is

elementary abelian, Φ(Qβ) ≤ Qα and so [Zα,Φ(Qβ)] = {1} and Φ(Qβ) ≤ Dβ.

It follows that Dβ is index 34 in Qβ and Qβ = FβDβ.

We may assume that Lα is isomorphic to a central extension of PSL3(4) so that

|Zα| 6 (rα32)d 6 (34)d = 38. Thus, Zα contains a unique irreducible constituent

and, as above, Zα is an irreducible module and |Zα| = 36 or 38. SinceQα = Zα(Qα∩

Qβ) and [Qβ, Fβ] ≤ Zα by Lemma 5.4.49, it follows that Zα contains all non-central

chief factors for Lα and the irreducibility of Zα implies that Φ(Qα) = {1} and Qα

is elementary abelian. Since the minimal degree of a GF(3)-representation of

PSL3(4) is 15, Z(Lα) acts non-trivially on Zα and since Zα is irreducible, for Tα

the preimage in Lα of Z(Lα), Zα = [Zα, Tα]. Since Qα is abelian, it follows from

coprime action that Qα = [Qα, Tα]×CQα(Tα) = Zα ×CQα(Tα) and since CQα(Tα)

is normalized by S and intersects Zβ trivially, CQα(Tα) = {1} and Qα = Zα. Now,

Dβ is centralized by S = ZαFβ and so Zβ = Dβ has index 34 in Qβ. If |Zα| = 38,

then Zβ has order 9 and so |S| = 32.|Qβ/Zβ||Zβ| = 38, a contradiction. Thus,

|Zα| = 36. Then, one can check that for either irreducible module of dimension 6,

S splits over Zα and since Zα is self-centralizing, |Z(Lα)| = 2. Moreover, S is of

order 38 and is isomorphic to a Sylow 3-subgroup of Suz or PSp4(9). In the former

case, Zβ is of order 3, so that |S| = 32.|Fβ/Zβ||Zβ| = 37, a clear contradiction.

When S is isomorphic to a Sylow 3-subgroup of PSp4(9), we apply [HS19, Theorem

3.13] to see that Gα embeds as a subgroup of 2 · PSL3(4).22 and for any element

x ∈ Gα of order 8, [x4, Zα] 6≤ [S,Zα] = Zα ∩Qβ. Let tβ ∈ Lβ ∩Gα,β be an element

of order 8, so that t4βQβ ≤ Z(Lβ). But then [t4β, Zα] ≤ Zα ∩Qβ and since tβ ≤ Gα,
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we have a contradiction.

Proposition 5.4.55. Suppose that mp(S/Qα) > 2, mp(S/Qβ) = 1 and p ∈ {2, 3}.

Then one of the following holds:

(i) G has a weak BN-pair of rank 2 and G is locally isomorphic to H where

F ∗(H) ∼= PSU4(p) or PSU5(2);

(ii) p = 3, |S| = 36, Lα ∼= PSL2(9), Zα = Qα is a natural Ω−4 (3)-module,

Lβ ∼= (Q8 ×Q8) : 3 and Qβ
∼= 31+4

+ ;

(iii) p = 3, |S| = 36, Lα ∼= PSL2(9), Zα = Qα is a natural Ω−4 (3)-module,

Lβ ∼= 2 · Alt(5) and Qβ
∼= 31+4

+ ;

(iv) p = 3, |S| = 36, Lα ∼= PSL2(9), Zα = Qα is a natural Ω−4 (3)-module,

Lβ ∼= 21+4
− .Alt(5) and Qβ

∼= 31+4
+ ;

(v) p = 3, |S| = 37, Lα ∼= M11 and Zα = Qα is the “cocode” module for Lα,

Lβ ∼= SL2(3) and Qβ
∼= 31+1+4 ∼= T ∈ Syl3(SL3(9)); or

(vi) p = 3, |S| = 37, Lα ∼= M11 and Zα = Qα is the “cocode” module for Lα,

Lβ ∼= SL2(5) and Qβ
∼= 31+1+4 ∼= T ∈ Syl3(SL3(9)).

Moreover, if G is obtained from a fusion system F satisfying Hypothesis 5.1.12

then one of the following holds:

(i) p = 2 and F = FS(H) where H ∼= PSU4(2), Aut(PSU4(2)), PSU5(2) or

Aut(PSU5(2));

(ii) p = 3 and F = FS(H) where F ∗(H) ∼= PSU4(3); or
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(iii) p = 3 and F = FS(H) where H ∼= McL, Aut(McL), Co2, Ly, Suz, Aut(Suz),

PSU6(2) or PSU6(2).2.

Proof. Suppose that mp(S/Qα) > 2 and mp(S/Qβ) = 1. Then by Lemma 5.4.53,

S/Qα is elementary abelian and as in Proposition 5.4.54, we have that if Op(Lα)

is generated by d conjugates of (Zα+2 ∩Qβ)Qα/Qα, then |Zα| 6 (rα|ZαQβ/Qβ|)d,

where rα = |(Zα+2∩Qβ)Qα/Qα|. In particular, since mp(S/Qβ) = 1, |Zα| 6 (rαp)d.

Suppose that Lα ∼= SL2(pn) or PSL2(pn) for any n > 1. Applying Lemma 2.2.1

(iii),(iv), (v), unless rα = p we have that |Zα| 6 r2
αp

2 6 p2n+2 and if rα = p, then

|Zα| 6 p6. Since the minimal degree of a GF(p)-representation of Lα is 2n and

n > 2, rα > pn−1 and it follows that there is at most one non-trivial irreducible

constituent within Zα. Since CZα(Op(Lα)) = Z(Lα) = {1}, by Lemma 2.3.2,

Zα = [Zα, Lα] is irreducible. Setting K to be Hall p′-subgroup of Lα ∩ Gα,β,

it follows from Smith’s theorem ([GLS98, Theorem 2.8.11]) that Zβ = CZα(S)

and Zα/[Zα, S] are irreducible and 1-dimensional as FK-modules, where F is an

algebraically closed field of characteristic p. But [Zα, S] = [Zα, Qβ] ≤ Zα∩Qβ and

since Zα ∩ Qβ has index p in Zα, [Zα, S] = Zα ∩ Qβ and |Zβ| = |Zα/[Zα, S]| = p.

If n > 2, then |Zα| 6 p2n+2 < p3n and Lemma 2.3.12 implies that Zα is a triality

module for Lα ∼= SL2(p3) and |Zα| = p8. Since |Zα| 6 r2
αp

2, we have that rα = p3

and S = (Zα+2∩Qβ)Qα centralizes Zα∩Qβ∩Qα+2. But then Zβ = Zα∩Qβ∩Qα+2

is index p4 in Zα. Since |Zβ| = p, p5 = |Zα| = p8, a contradiction.

Thus, we may assume that |S/Qα| = p2 for the remainder of the proof. Then

Fβ/Fβ ∩Dβ is a quadratic 2F -module and so, by Proposition 2.3.19, both Lβ and

Fβ/Fβ ∩Dβ are determined. If Lβ ∼= SU3(2), then since p = 2, Lα ∼= PSL2(4) and

G has a weak BN-pair of rank 2 and by [DS85], G is locally isomorphic to H where
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F ∗(H) ∼= PSU5(2). Hence, we may assume that S/Qβ is abelian.

We have that Lα is isomorphic to PSL2(p2), SL2(p2),M11 or a 3′-central extension

of PSL3(4). Since M11 and central extensions of PSL3(4) are generated by two

conjugate Sylow 3-subgroups, or three conjugates elements of order 3, we see that

|Zα| 6 36 and by the above, in all cases we conclude that |Zα| 6 36. Checking

against the degrees of the minimal GF(p)-representations of the candidates for Lα,

we see that Zα contains a unique irreducible constituent and since CZα(Op(Lα)) =

Z(Lα) = {1}, it follows from Lemma 2.3.2, that Zα = [Zα, Lα] is irreducible.

If |S/Qβ| > p, then p = 2 and Φ(Qα) 6= {1} and it follows from the irreducibility

of Zα, that Zα ≤ Φ(Qα). But then Φ(Qα)(Qα ∩ Qβ) is an index 2 subgroup of

Qα and [Φ(Qα)(Qα ∩ Qβ), Fβ] ≤ Φ(Qα) by Lemma 5.4.49. Since mp(S/Qα) > 2,

it follows that O2(Lα) centralizes Qα/Φ(Qα), a contradiction. Thus, we have that

|S/Qβ| = p. Then, Qα = Zα(Qα ∩Qβ) and by Lemma 5.4.49, [Op(Lα), Qα] ≤ Zα.

Then the irreducibility of Zα implies that Φ(Qα) = {1} and Qα is elementary

abelian.

Now, checking against the list of groups provided in Proposition 2.3.19, either

Lβ is p-solvable or has a non-trivial center, and for Tβ the preimage in Lβ of

Op′(Lβ), we have by coprime action Qβ/Φ(Qβ) = [Qβ/Φ(Qβ), Tβ]×CQβ/Φ(Qβ)(Tβ)

where [Qβ/Φ(Qβ), Tβ] contains all non-central chief factors in Qβ/Φ(Qβ) and

CQβ/Φ(Qβ)(Tβ) = CQβ/Φ(Qβ)(Op(Lβ)). In particular, FβΦ(Qβ)/Φ(Qβ) =

[Qβ/Φ(Qβ), Tβ]. Since Φ(Qβ) ≤ Qα, [Φ(Qβ), Zα] = {1} and it follows that

Φ(Qβ) ≤ Dβ so that Qβ = FβDβ. Since Dβ ≤ Qα is elementary abelian and

Fβ ≤ Op(Lβ), S = FβQα centralizes Dβ so that Dβ = Zβ.

Suppose that Lα is isomorphic to a central extension of PSL3(4). Then p = 3
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and comparing with the modules in Proposition 2.3.19, |Qβ/Zβ| = 34 so that

|S/Zβ| = 35. Since |Zα| = 36, we have that |S| > 38 and |Zβ| > 33. Checking the

relevant irreducible GF(3)-modules associated to Lα, we have that |Zβ| 6 32, a

contradiction.

Suppose that Lα ∼= M11. Then p = 3, |Zα| = 35 and Lβ ∼= 2 · Alt(5), 21+4
− .Alt(5),

SL2(3) or (Q8×Q8) : 3 by Proposition 2.3.19. In the first three cases, the structure

of Lα and Lβ is determined in [Pap97] and outcomes (vi) and (vii) follow in these

cases. Suppose that Lβ ∼= (Q8 × Q8) : 3 with |Qβ/Zβ| = p4 and let Kβ be a

Hall 2′-subgroup of Gα,β ∩ Lβ. Then Kβ ≤ Gα and so Kβ acts on Lα/Qα. Since

M11 has no outer automorphisms, if Kβ 6≤ Lα, then there is an involution t ∈ Kβ

such that [t, Lα] ≤ Qα and [t, Lβ] ≤ Qβ, a contradiction by Proposition 5.2.6 (v).

Thus, Kβ ≤ Lα so that Lα = Gα. Since [Kβ, Zα] ≤ Zα ∩ Qβ and Kβ centralizes

Zβ it follows that |CZα(Kβ)| = 33, and one can check (e.g. using MAGMA) that

this provides a contradiction. If G is obtained from a fusion system F satisfying

Hypothesis 5.1.12, then since S ∈ Syl3(O3(Gα)), it follows that O3(F) = F and

we may apply the results in [PS21]. Indeed, F is isomorphic to the 3-fusion system

of Suz, Aut(Suz) or Ly.

Finally, suppose that Lα ∼= PSL2(p2) or SL2(p2). Then, again by Smith’s theorem,

|Zβ| = p so that Fβ = Qβ. By the minimality of Fβ, it follows that Z(Qβ) =

Φ(Qβ) = Zβ is of order p and Qβ is extraspecial. Since Qβ ∩Qα is an elementary

abelian subgroup of index p2 in Qβ, we have that |Qβ| = p5. In particular, |S| = p6

and Zα = Qα is of order p4.

If p = 2, then Lβ ∼= Dih(10), Sym(3) or (3 × 3) : 2 since SU3(2)′ does not embed

in Aut(QβΦ(Qβ)) ∼= GL4(2). In the first two cases, G has a weak BN-pair and so

comparing with [DS85], we have that Lβ ∼= Sym(3) and G is locally isomorphic to
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H where F ∗(H) ∼= PSU4(2). Since Qβ is extraspecial, comparing with [Win72],

Lβ is isomorphic to a subgroup of O+
4 (2) if Qβ

∼= 21+4
+ ; or O−4 (2) if Qβ

∼= 21+4
− .

Note that 9 does not divide |O−4 (2)| and so, we deduce that Qβ
∼= 21+4

+ . Let K be

a Sylow 3-subgroup of Lα ∩Gα,β. Then K acts non-trivially on Qβ and so K also

embeds into O+
4 (2) while normalizing Lβ ∼= (3 × 3) : 2. But for H ≤ O+

4 (2) with

H ∼= (3× 3) : 2 we have that |NO+
4 (2)(H)/H| = 2, a contradiction.

Thus, we may assume that p = 3 and Lβ ∼= SL2(3), (Q8 × Q8) : 3, 2 · Alt(5)

or 21+4
− .Alt(5). Since |Zα| = 34, Zα is a faithful Lα-module and Zα is not a

quadratic module, we have that Lα ∼= PSL2(9) and Zα is a natural Ω−4 (3)-module.

If Lβ ∼= SL2(3) then G has a weak BN-pair and comparing with [DS85], G is locally

isomorphic to H where F ∗(H) ∼= PSU4(3). If Lβ ∼= 2 · Alt(5) or 21+4
− .Alt(5) then

the structure of Lα and Lβ is determined in [Pap97] and we obtain conclusions (iii)

and (iv). If G is obtained from a fusion system F satisfying Hypothesis 5.1.12,

then applying the results in [PS21], F is isomorphic to the 3-fusion system of

McL, Aut(McL) or Co2. Finally, suppose that Lβ ∼= (Q8 × Q8) : 3. Since Qβ

is extraspecial of order 35 and Lβ embeds in the automorphism group of Qβ, it

follows from [Win72] that Qβ
∼= 31+4

+ . If S acted quadratically on Zα, then Zα

is a natural SL2(9)-module, a contradiction since CZα(S) = Zβ is of order 3. It

follows that Zα is a natural Ω−4 (3)-module for Lα and since Zα is self-centralizing,

Lα ∼= PSL2(9) and we have (ii) as a conclusion. If G is obtained from a fusion

system F satisfying Hypothesis 5.1.12, then applying the results in [PS21], F is

isomorphic to the 3-fusion system of PSU6(2) or PSU6(2).2.

We conclude this section by summarizing what has been shown:

Theorem 5.4.56. Suppose that A = A(Gα, Gβ, Gα,β) is an amalgam satisfying

Hypothesis 5.2.1. If Zα′ ≤ Qα, then one of the following holds:
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(i) A is a weak BN-pair of rank 2; or

(ii) p = 3, b = 1, |S| 6 37 and the shapes of Lα and Lβ are known.

Consequently, if A is obtained from a fusion system satisfying Hypothesis 5.1.12,

then F is not a counterexample to the Main Theorem.

5.5 Some Further Classification Results

We first prove Corollary A. That is, we classify saturated fusion systems in which

there are exactly two essentials.

Corollary 5.5.1. Suppose that F is a saturated fusion system on a p-group S

such that Op(F) = {1}. Assume that F has exactly two essential subgroups E1

and E2. Then NS(E1) = NS(E2) and writing F0 := 〈NF(E1), NF(E2)〉NS(E1), F0

is a saturated normal subsystem of F and either

(i) F = F0 is determined by the Main Theorem;

(ii) p is arbitrary, F0 is isomorphic to the p-fusion category of H, where F ∗(H) ∼=

PSL3(pn), and F is isomorphic to the p-fusion category of G where G is the

extension of H by a graph or graph-field automorphism;

(iii) p = 2, F0 is isomorphic to the 2-fusion category of H, where F ∗(H) ∼=

PSp4(2n), and F is isomorphic to the 2-fusion category of G where G is the

extension of H by a graph or graph-field automorphism; or

(iv) p = 3, F0 is isomorphic to the 3-fusion category of H, where F ∗(H) ∼=

G2(3n), and F is isomorphic to the 3-fusion category of G where G is the

extension of H by a graph or graph-field automorphism.
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Proof. Note that if both E1 and E2 are AutF(S)-invariant then, appealing to

Proposition 5.2.9 to verify that E1 and E2 are maximally essential, F = F0

is determined by the Main Theorem. Assume throughout that at least one of

E1 and E2 is not AutF(S)-invariant, and without loss of generality, E1 is not

AutF(S)-invariant. Then NS(E1)α ≤ NS(E1α) and since E1 is fully F -normalized,

it follows that NS(E1)α = NS(E1α). Moreover, E1α is also essential in F and so

E1α = E2. By a similar reasoning, E2α = E1, α2 ∈ NF(E1)∩NF(E2) and both E1

and E2 are maximally essential. Suppose first that p is odd. Then S = NS(E1) =

NS(E2) and by [AKO11, Lemma I.7.6(b)] and the Alperin–Goldschmidt theorem,

F0 is a saturated subsystem of F of index 2 and by [AKO11, Theorem I.7.7],

F0 is normal in F . Hence, Op(F0) is normalized by F and as Op(F) = {1},

Op(F0) = {1} and F0 is determined by the Main Theorem.

Since there is α ∈ AutF(S) such that E1α = E2, we must have that E1 ∼= E2 as

abstract p-groups. Thus, comparing with the Main Theorem, F0 is isomorphic to

the p-fusion category of H where F ∗(H) is one of PSL3(pn) or G2(3n) (where p > 2

is arbitrary or p = 3 respectively). Indeed, since F0 E F , there is F0 E F with F0

is isomorphic to the p-fusion category of F ∗(H) and supported on S. At this point,

we can either apply [BMO19, Theorem A]; or recognize that the possible fusion

systems correspond exactly to overgroups G of F ∗(H) such that F ∗(G) = F ∗(H)

by applying [AKO11, Theorem I.7.7].

Suppose now that p = 2. Then NS(E1) = NS(E2) = E1E2 has index 2 in S. Let

Gi be a model for NF(Ei) for i ∈ {1, 2}. Note that if there is Q ≤ NS(E1) with Q

normal in both NF(E1) and NF(E2), then Qα = Q is normal in F . Since O2(F) =

{1}, we deduce that Q is trivial. Moreover, applying [Asc10, (2.2.4)], NG1(E2) =

NG1(NS(E2)) is isomorphic to NG2(E1) = NG2(NS(E2) by an isomorphism fixing
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NS(E1).

Hence, suppressing the necessary inclusion maps, we form the rank 2 amalgam

A := A(G1, G2, G
∗
12) writing G∗12 for the group gained by identifying NG1(NS(E1))

with NG2(NS(E2)) in the previously described isomorphism. Then F0 =

〈FNS(E1)(G1),FNS(E2)(G2)〉 = FNS(E1)(G1∗G∗12
G2) by Theorem 5.1.6, and O2(F0) =

{1}. Moreover, A satisfies Hypothesis 5.2.1 and since E2 = E1α, E1 and E2 are

isomorphic as abstract 2-groups. Then G1 ∗G∗12
G2 is locally isomorphic to H

where H ∈ ∧0 is as described after Definition 5.1.7, and F ∗(H) ∼= PSL3(2n) or

PSp4(2n). Then by Corollary 5.1.9, F0 is isomorphic to the 2-fusion category

of Y and so F0 is saturated. Moreover, applying [AKO11, Theorem I.7.4] and

the Alperin–Goldschmidt theorem, F0 is a normal subsystem of index 2 in F .

Again, there is F0 E F with F0 isomorphic to the p-fusion category of F ∗(H) and

supported on NS(E1) and we can either apply [BMO19, Theorem A]; or recognize

that the possible fusion systems correspond exactly to overgroups G of F ∗(H) such

that F ∗(G) = F ∗(H) by applying [AKO11, Theorem I.7.4] and [AKO11, Theorem

I.7.7].

We now turn our attention to identifying some finite simple groups from a situation

motivated by Hypothesis 5.2.1. In Theorem 5.2.2, when a group has a weak

BN-pair and is determined up to local isomorphism, then almost all the groups

occurring as appropriate Sylow completions are known (see [PR06]). Thus, we

investigate the cases where the amalgam is described up to some weaker form

of isomorphism. For this, we make use of several identification results already

present in the literature, and often implicitly use MAGMA and the list of maximal

subgroups in the Atlas [Con+85] for computations. Moreover, we assume all the

details regarding the amalgams which were collected in earlier sections.
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It is worth pointing out that a consistent theme in these identification results is

that the centralizer of an element of the center of a Sylow p-subgroup, for some

appropriate prime p, is of characteristic p. Recall that a finite group G is of

parabolic characteristic p if the normalizers of p-subgroups which contain some

Sylow p-subgroup of G are of characteristic p. One can prove, using some balance

arguments, that it suffices to check that the centralizers of elements of order p which

contain some Sylow p-subgroup of G are constrained. In most of our examples, for

an appropriate S ∈ Sylp(G), |Z(S)| = p and so the condition G has a parabolic

characteristic p is equivalent to demanding that NG(Z(S)) is of characteristic p,

which in the cases listed here is equivalent to CG(Z(S)) being of characteristic p.

First, recall that an element x ∈ S ∈ Sylp(G), where G is some finite group, is

weakly closed in S with respect to G if xG∩S = {x}. Throughout, for S ∈ Sylp(G)

as specified, we let Z := Z(S), N := NG(Z) and C := CG(Z).

Theorem 5.5.2. Suppose that G is a finite group and H,M ≤ G such that

(i) there is H1, H2 E H with H1 ∼= H2 ∼= SL2(3), |H : H1H2| = 2, |H1∩H2| = 2,

and H = CG(H1 ∩H2); and

(ii) H1 ∩H2 ≤ V EM with V ∼= 23 and M/V ∼= PSL3(2).

Then G ∼= G2(3).

Proof. This is the main theorem of [Asc02].

Corollary 5.5.3. Suppose that G is a finite group such that C is of characteristic

2 and G is a Sylow completion of the amalgam described in Proposition 5.3.16 (ii).

Then G ∼= G2(3).
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Proof. Since Gβ ≤ C and O2(C) is self-centralizing in C, we have that O2(C) =

Qβ. But Φ(Qβ) = Zβ and by Lemma 2.1.8, C/Qβ embeds as a subgroup of

GL4(2). We search for subgroups Y of GL4(2) such |Y |2 = 2, O2(Y ) = {1} and, as

Gβ/Qβ ≤ C/Qβ, some subgroup of Y is isomorphic to (3× 3) : 2. One can check

(e.g. using MAGMA) that this implies that C = Gβ.

Let H = Gβ so that Z = Z(H) and H/O2(H) ∼= (3 × 3) : 2. Choose r1, r2

3-elements in H such that |CO2(H)/Z(ri)| = 4. Then Hi := O2(S〈ri〉) ∼= SL2(3),

Hi E H, |H : H1H2| = 2 and H1∩H2 = Z. Thus, G satisfies (i) of Theorem 5.5.2.

Set V = ⋂
λ∈∆(α)(Qα ∩ Qλ) so that V is elementary abelian of order 8 and

contains Zα. Moreover, |H : NH(V )| = 3 and NH(V )/O2(H) ∼= Sym(3). Setting

M := 〈Gα, NH(V )〉, we have that V = O2(M) and M/V has weak BN-pair locally

isomorphic to PSL3(2). Since J(S) 6≤ V and Z 6E M , we have that V is an

FF-module for M . It follows from [CD91, Theorem A], that M/V ∼= PSL3(2) and

so G satisfies (ii) of Theorem 5.5.2. Thus, G ∼= G2(3), as required.

Theorem 5.5.4. Let G be a finite group, z an involution in G, H = CG(z),

Q = O2(H) and X ∈ Syl3(H). Assume that

(i) Q is extraspecial of order 32;

(ii) H/Q ∼= Sym(3) and CQ(X) = 〈z〉; and

(iii) z is not weakly closed in Q w.r.t G.

Then one of the following holds:

(i) There is V E G such that V is elementary abelian of order 8 and G/V ∼=

PSL3(2).
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(ii) G ∼= Alt(8) or Alt(9) and the two Q8-subgroups of Q are not normal in H.

(iii) G ∼= M12 and the two Q8-subgroups of Q are normal in H.

Proof. This is [Asc03].

Corollary 5.5.5. Suppose that G is a finite group such that CG(Z) is of

characteristic 2 and G is a Sylow completion of an amalgam parabolic isomorphic

to M12. Then G ∼= M12 or G2(3).

Proof. Note that Gβ ≤ C and since C is of characteristic 2, we either have that

O2(C) = Qβ, or O2(C) is elementary abelian of order 8. In the latter case, it

follows that C/O2(C) embeds into a subgroup of the automorphism group of O2(C)

which fixes Z. But such a subgroup is isomorphic to 22 : Sym(3) and so C =

Gβ and O2(C) = Qβ, a contradiction. Thus, we have that O2(C) = Qβ and

Φ(Qβ) = Zβ. Since O2(C/Qβ) = {1}, by Lemma 2.1.8, C/Qβ embeds faithfully

into Aut(Qβ/Φ(Qβ)) ∼= GL4(2). We search for subgroups Y of GL4(2) such |Y |2 =

2, O2(Y ) = {1} and, as Gβ/Qβ ≤ C/Qβ, some subgroup of Y is isomorphic to

Sym(3). Thus, Y ∈ {Sym(3), (3× 3) : 2, Sym(3)× 3}.

If C/Qβ
∼= (3 × 3) : 2, then in a similar manner to Corollary 5.5.3, we have

that G satisfies the hypothesis of Theorem 5.5.2 and G ∼= G2(3). If C/Qβ
∼=

Sym(3)×3 then a Sylow 3-subgroup of NC(S) normalizes Qα = CS(Ω(Z2(S))). But

|Qα/Φ(Qα)| = 23 and by Lemma 2.1.8, NG(Qα)/Qα is isomorphic to a subgroup of

GL3(2) with Sylow 2-subgroup of order 2, no non-trivial normal 2-subgroups and

contains a subgroup isomorphic to Sym(3), so that NG(Qα)/Qα
∼= Sym(3) and as

NC(S) ≤ NG(Qα), we arrive at a contradiction.

If C/Q ∼= Sym(3) then letting H := C and z ∈ Zβ so that 〈z〉 = Z = Z(H), G
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satisfies (i) and (ii) of the hypothesis of Theorem 5.5.4. Moreover, since Zβ is not

normalized by Gα, G also satisfies (iii). Since O2(G) = {1}, it remains to show

that outcome (ii) of Theorem 5.5.4 does not occur. Since the M12 amalgam is

determined up to parabolic isomorphism, S is determined up to isomorphism. In

particular, m2(S) = 3. However, for T ∈ Syl2(Alt(8)), m2(T ) = 4 and so outcome

(ii) does not occur.

We remark that, by work of Fan [Fan86], when G is parabolic isomorphic to M12,

then G is locally isomorphic to M12 and so this case is reasonably well understood

without the need for Aschbacher’s result.

Theorem 5.5.6. Suppose that G is a finite group and S ∈ Syl2(G). Further

assume that G has an involution z such that

(i) CG(z) is of characteristic 2;

(ii) O2(CG(z)) ∼= 21+4
− ;

(iii) CG(z)/O2(CG(z)) ∼= Alt(5); and

(iv) Z is not weakly closed in S w.r.t G.

Then either G has two classes of involutions and G ∼= J2; or G has a unique class

of involutions and G ∼= J3.

Proof. See [Asc94, Section 47] for the uniqueness of J2 and [Fro83] for the

uniqueness of J3.

Corollary 5.5.7. Suppose that G is a finite group such that C is of characteristic

2 and G is a Sylow completion of an amalgam parabolic isomorphic to J2. Then

G ∼= J2 or J3.
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Proof. Since Gβ ≤ C, Gβ is irreducible on Qβ/Zβ and C is of characteristic 2, we

deduce that Qβ = O2(C) and (ii) of Theorem 5.5.6 is satisfied. By Lemma 2.1.8,

using that O2(C/Qβ) = {1}, we have that C/Qβ embeds as a subgroup of GL4(2)

with Sylow 2-subgroup of order 4 and contains a subgroup isomorphic to PSL2(4) ∼=

Gβ/Qβ. It transpires that either C = Gβ or C/Qβ
∼= PSL2(4)× 3.

In the latter case, for y the 3-element in CC(S/Qβ), we have that y normalizes

S so normalizes Qα = CS(Z2(S)). But Zα = Φ(Qα) and |Qα/Zα| = 24 so that,

again by Lemma 2.1.8, NG(Qα)/Qα embeds as a subgroup of GL4(2) and as in

Corollary 5.5.5, we have that NG(Qα)/Qα is isomorphic to one of Sym(3), (3× 3) :

2 or Sym(3) × 3). Moreover, since y ∈ NG(S) ≤ NG(Qα) we must have that

NG(Qα)/Qα
∼= Sym(3) × 3. But then, the index of CGλ(y) in Gλ is a 2-group for

λ ∈ {α, β} and as Zβ ≤ CG(y), the actions of Gλ/Qλ implies that S ≤ CG(y),

impossible since y acts non-trivially on Qβ/Zβ.

Thus, C = Gβ and (iii) of Theorem 5.5.6 is satisfied. Moreover, since Z is not

normalized by Gα, G also satisfies (iv) and the result follows.

For the next characterization, we define a K-proper finite group to be a finite group

in which every proper subgroup is a K-group.

Theorem 5.5.8. Let G be a finite K-proper group with S ∈ Syl3(G). Suppose

that:

(i) Z has order 3 and Z2(S) has order 9;

(ii) NG(Z2(S)) ∼ 32+3+2+2 : 2.Sym(4) is of characteristic 3;

(iii) N ∼ 31+2+1+2+1+2 : 2.Sym(4) is of characteristic 3; and
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(iv) G = 〈N,NG(Z2(S))〉 and O3(G) = {1}.

Then G ∼= F3.

Proof. This is the main result of [Fow07].

Corollary 5.5.9. Suppose that G is a finite K-proper group such that C is of

characteristic 3 and G is a Sylow completion of an amalgam parabolic isomorphic

to F3-amalgam. Then G ∼= F3.

Proof. From the structure of the F3-amalgam, in order to apply Theorem 5.5.8 it

suffices to show, in the language of Section 5.4.2, that N = Gβ and NG(Z2(S)) =

Gα, remarking that Z = Zβ and Z2(S) = Zα. Notice that Gα/Qα
∼= Aut(Z2(S))

and so NG(Z2(S)) = GαCG(Z2(S)) ≤ GαCCG(Z(S))(Z2(S)). In particular, upon

demonstrating that NG(Z(S)) = Gβ, we have that NG(Z2(S)) ≤ GαCGβ(Z2(S)) ≤

Gα. We shall adopt the language of Section 5.4.2 throughout. We first aim to

show that Qβ = O3(N) and as O3(C) E N , we may as well demonstrate that

Qβ = O3(C).

Since G is of parabolic characteristic 3, we have that O3(C) is self-centralizing and

properly contains Zβ. In particular, O3(C) is normal in S and so (O3(C)/Zβ) ∩

Z(S/Zβ) 6= {1}. Then, as Zα = Z2(S) and Lβ ≤ C, Vβ ≤ O3(C). Suppose first

that Ω(Z(O3(C)) = Zβ. Then O3(C) 6≤ Cβ and Qβ = O3(C)Cβ. Furthermore,

[V (3)
β , O3(C)]Vβ = Ω(Z(V (3)

β )) ≤ O3(C) and [Cβ, O3(C)]Ω(Z(V (3)
β )) = V

(3)
β ≤

O3(C). If Cβ ≤ O3(C), then O3(C) = Qβ and the result holds and so, we

may assume that O3(C) ∩ Cβ = V
(3)
β . Note that Ω(Z(V (3)

β )) = [O3(C), V (3)
β ] ≤

Φ(O3(C)) and so V (3)
β is equal to one of the characteristic subgroups Φ(O3(C)) or

CO3(C)(Φ(O3(C))), and so Ω(Z(V (3)
β )) is also characteristic in O3(C). But then Cβ
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centralizes the chain {1} E Zβ E Ω(Z(V (3)
β )) E V

(3)
β E O3(C) and by Lemma 2.1.9,

Cβ ≤ O3(C), a contradiction.

If Zβ < Ω(Z(O3(C))), Vβ ≤ Ω(Z(O3(C))) then O3(C) ≤ Cβ. Moreover, it

follows that Vβ ≤ Ω(Z(O3(C))) ≤ Ω(Z(V (3)
β )). Then [O3(C),Ω(Z(V (3)

β ))] ≤ Zβ ≤

Ω(Z(O3(C))) and by Lemma 2.1.9, Ω(Z(V (3)
β )) ≤ O3(C). If Vβ = Ω(Z(O3(C))),

then V (3)
β centralizes the chain {1} E Ω(Z(O3(C))) E O3(C) and by Lemma 2.1.9,

V
(3)
β ≤ O3(C) so that Cβ = O3(C). Now, Φ(O3(C)) = Vβ and so, C/O3(C) acts

faithfully on Cβ/Vβ and so embeds into GL4(3). Moreover, CC(Vβ/Zβ) is a normal

subgroup of C which has Qβ as its Sylow 3-subgroup. Thus, we turn our attention

to subgroups H of GL4(3) such that |H|3 = 33, O3(H) = {1} and H has a normal

subgroup N such that |N |3 = 32. One can calculate, using MAGMA, that no

groups satisfy this property, providing a contradiction.

Finally, if Ω(Z(O3(C))) = Ω(Z(V (3)
β )), then O3(C) ≤ V

(3)
β and since O3(C) is

normalized by Lβ and is self-centralizing, we have that O3(C) = V
(3)
β . But then,

Cβ centralizes the chain {1} E Zβ E Ω(Z(O3(C))) E O3(C), a contradiction by

Lemma 2.1.9.

Thus, we have shown that Qβ = O3(C). Furthermore, one can compute that

Φ(Qβ) = Cβ has index 9 in Qβ, and by Lemma 2.1.8, N/Qβ is isomorphic to a

subgroup of GL2(3). Since Gβ/Qβ
∼= GL2(3), we have that N = Gβ, as required.

This completes the proof.

Theorem 5.5.10. Suppose that G is a group and S ∈ Syl3(G). Further assume

that

(i) |N | = 27.36;

(ii) O3(N) is extraspecial of order 35;
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(iii) O2(N) = {1};

(iv) O2(N/O3(N)) ∼= Q8 ×Q8;

(v) |N/O2(N)| = 2; and

(vi) O3(N)/Z(O3(N)) is an N-chief factor.

Then either Z is weakly closed in S or G ∼= PSU6(2).

Proof. See [Par06, Theorem 1].

Corollary 5.5.11. Suppose that G is a finite group such that C is of characteristic

3 and G is a Sylow completion of the amalgam described in Proposition 5.4.55 (ii).

Then G ∼= PSU6(2).

Proof. From the structure of the amalgam in Proposition 5.4.55 (ii), we may choose

t ∈ Lα ∩ Gα,β of order 4, such that t ∈ NG(Z) and t2 ∈ C. Moreover, since Zα

is isomorphic to an Ω−4 (3)-module, t acts irreducibly on Zα ∩ Qβ/Z and t inverts

S/Qβ
∼= Zα/Zα ∩ Qβ. Then, one can calculate that t2 ∈ Lβ, Qβ/Z is irreducible

as a Lβ〈t〉-module and Gβ = Lβ〈t〉.

In order to apply Theorem 5.5.10, we need only show that N = Gβ. Since C is of

characteristic 3, we have that Zβ < O3(C) ≤ O3(N) and since Gβ ≤ N , O3(N) =

Qβ. Thus, N/Qβ embed into the automorphism group of Qβ and so by [Win72],

N/Qβ is isomorphic to a subgroup of Sp4(3) : 2. Moreover, |N/Qβ|3 = 3 and N/Qβ

contains a subgroup isomorphic to Gβ/Qβ which has order 27.3 and a comparison

with the maximal subgroups of Sp4(3) : 2 yields N = Gβ, as required.

Theorem 5.5.12. Suppose that G is a finite group, S ∈ Syl3(G) and J is an

elementary abelian subgroup of S of order 34. Further assume that
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(i) O3′(N) ∼= 31+4
+ .2.Alt(5);

(ii) O3′(NG(J)) ∼= 34.Alt(6); and

(iii) C is of characteristic 3.

Then G ∼= McL or Aut(McL).

Proof. See [PStr14, Theorem 1.1].

Corollary 5.5.13. Suppose that G is a finite group such that C is of characteristic

3 and G is a Sylow completion of the amalgam described in Proposition 5.4.55 (iii).

Then G ∼= McL or Aut(McL).

Proof. By Proposition 5.4.55 (iii), in order to apply Theorem 5.5.12, taking

J = Zα, it suffices to show that N = Gβ and O3′(NG(J)) = Lα. Since C is of

characteristic 3, O3(C) is self-centralizing. Moreover, Lβ ≤ C and acts irreducibly

on Qβ/Z from which it follows that O3(C) = Qβ, and as C E N , we have that

Qβ = O3(N). Thus, N/Qβ embeds into the automorphism group of Qβ and

so again by [Win72], N/Qβ is isomorphic to a subgroup of Sp4(3) : 2. Moreover,

|N/Qβ|3 = 3 and N/Qβ contains a subgroup isomorphic to Gβ/Qβ, remarking that

|Gβ| = 2|Lβ| and Lβ/Qβ
∼= SL2(5). Computing in Sp4(3), we have that N = Gβ,

as desired. Now, NG(J)/Zα embeds as a subgroup of GL4(3), |NG(J)/Zα| = 9 and

NG(J)/Zα contains a subgroup isomorphic to Lα/Zα ∼= PSL2(9). But for all such

subgroups, the normal closure of a Sylow 3-subgroup is isomorphic to PSL2(9), as

desired.

Theorem 5.5.14. Suppose that G is a finite group and S ∈ Syl3(G). Further

assume that
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(i) O3(C) is extraspecial of order 35;

(ii) O2(C/O3(C)) is extraspecial of order 25; and

(iii) C/O3,2(C) ∼= Alt(5).

Then either Z is weakly closed in S or G ∼= Co2.

Proof. See [PR10, Theorem 1.1].

Corollary 5.5.15. Suppose that G is a finite group such that C is of characteristic

3 and G is a Sylow completion of the amalgam described in Proposition 5.4.55 (iv).

Then G ∼= Co2.

Proof. By Proposition 5.4.55 (iv), and since Z is not normalized by Gα, to apply

Theorem 5.5.14, it suffices to show that C = Lβ. Since O3(C) is self-centralizing

and Lβ ≤ C is irreducible on Qβ/Z, we have that O3(C) = Qβ. Now, C/Qβ embeds

into the automorphism group of Qβ and again by [Win72], C/Qβ is isomorphic to a

subgroup of Sp4(3). Moreover, |C/Qβ|3 = 3, C/Qβ contains a subgroup isomorphic

to Lβ/Qβ
∼= 21+4

− .Alt(5) and computing in Sp4(3), we have that C = Lβ, as

required.

Theorem 5.5.16. . Suppose that G is a finite group, S ∈ Syl3(G) and J ≤ S.

Further assume that

(i) N ∼ 3+
1+4.2.2.PSL2(9).2; and

(ii) NG(J) ∼ 35 : (2×M11).

Then G ∼= Co3.
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Proof. This is [KPR07, Theorem 1].

Corollary 5.5.17. Suppose that G is a finite group such that CG(Z) is of

characteristic 3 and G is a Sylow completion of the amalgam described in

Proposition 5.4.54 (iv). Then G ∼= Co3.

Proof. Comparing with proofs in [KPR07], to apply Theorem 5.5.16 it is enough

in the context of Proposition 5.4.54 (iv) to show that N = Gβ and NG(J) = Gα.

Since O3(C) is self-centralizing, and Lβ ≤ C and acts irreducibly on Qβ/Z, we

have that O3(C) = Qβ. Since C E N , we have that Qβ = O3(N). Thus, N/Qβ

embeds into the automorphism group of Qβ and by [Win72], we have that N/Qβ

is isomorphic to a subgroup of Sp4(2) : 2. Furthermore, |N/Qβ|3 = 3 and N/Qβ

contains a subgroup isomorphic to Lβ/Qβ
∼= SL2(9). Computing in Sp4(3), we

infer that N = Gβ, as required. Now, NG(J)/Zα embeds as a subgroup of GL5(3),

|NG(J)/Zα| = 9 and NG(J)/Zα contains a subgroup isomorphic to Lα/Zα ∼= M11,

remarking that |Gα| = 2|Lα|. Since M11 is a maximal subgroup of SL5(3) and

|GL5(3)/SL5(3)| = 2, we conclude that NG(J) = Gα, as required.

Recall that a group is of local characteristic p if the normalizers of non-trivial

p-subgroups are of characteristic p. Thus, groups of local characteristic p are of

parabolic characteristic, but not necessarily the other way about. As in the case

of parabolic characteristic p, it suffices to check the normalizers of elements of

order p. Here, we set L to be the amalgam described in Proposition 5.3.15 (v) and

define a K2-group to be a finite group in which the normalizer of every non-trivial

2-subgroup is a K-group.

Theorem 5.5.18. Suppose that G is a K2-group of local characteristic 5 which is

a finite faithful completion of L. If Lα ∩Lβ ∈ Syl5(G), then there is an involution
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t in G such that CG(t) ∼= 2.Alt(11) and G ∼= Ly.

Proof. This is [PR04, Theorem 1.1].

Theorem 5.5.19. Suppose that G is a K-proper finite group, S ∈ Syl7(G), Z(S)

has order 7, Z2(S) has order 49 and

(i) NG(Z2(S)) ∼ 72+1+2.GL2(7) is of characteristic 7;

(ii) NG(Z) ∼ 71+4
+ .2.Alt(7).6 is of characteristic 7; and

(iii) G = 〈NG(Z), NG(Z2(S))〉 and O7(G) = {1}.

Then G ∼= M.

Proof. See [PW05, Theorem 1.1].

Corollary 5.5.20. Suppose that G is a K-proper finite group such that C is

of characteristic 7 and G is a Sylow completion of the amalgam described in

Proposition 5.3.15 (vi). Then G ∼= M.

Proof. By Proposition 5.3.15 (vi), to apply Theorem 5.5.19, it suffices to prove

that N = Gβ and NG(Z2(S)) = Gα. Note that since C is of characteristic 7, Z <

O7(C) ≤ O3(N) and since Lβ ≤ C acts irreducibly on Qβ/Z, we have that Qβ =

O7(C) = O7(N) and N is of characteristic 7. Now Gα/Qα
∼= GL2(7)Aut(Z2(S))

and so NG(Z2(S)) = GαCG(Z2(S)) = GαCC(Z2(S)),and upon demonstrating that

C = Lβ, we have that GαCC(Z2(S)) = GαCLβ(Z2(S)) = Gα. Hence, we need only

show that N = Gβ. Note that N/Qβ embeds into Aut(Qβ) so that by [Win72],

N/Qβ is isomorphic to a subgroup of Sp4(7) : 6. Since Lβ/Qβ
∼= 2.Alt(7) and
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2.Alt(7) is a maximal subgroup of Sp4(7), and asGβ = |Lβ|6, we have thatN = Gβ,

as required.

We are left with the amalgams coinciding with Proposition 5.3.17 (ii) when p = 2;

Proposition 5.4.51 (ii), (iii) and (iv) when p = 3; Proposition 5.4.55 (v) and (vi)

when p = 3 and Proposition 5.3.15 (iii),(iv) when p = 5. These have example

completions PSp6(3), PSU5(2), O+
8 (2), Ω−10(2), Suz, Ly, HN and B respectively.

In Proposition 5.3.17 (ii), taking X := 〈RαGα,β, Gβ〉, we have that Cβ E X,

Lβ/Cβ ∼= 24.PSL2(4) and O2′(RαS)/Cβ ∼= 21+2+2.Sym(3). Thus, X/Cβ is locally

isomorphic to PSU4(2) ∼= PSp4(3). Indeed, it seems likely that in the finite groups

which occur as suitable completions of the amalgam described in Proposition 5.3.17

(ii), there is a component in the centralizer of Ω(Z(S)) which is isomorphic to

a central extension of PSU4(2) and so this type of configuration belongs in the

analysis of groups or fusion systems which are of component type. Indeed, in the

group PSp6(3), the centralizer of Z(S) for S a Sylow 2-subgroup is isomorphic to

2 · (Alt(4)× PSU4(2)). We will not say much more about this case.

In the situation of Proposition 5.4.51 (ii), and taking the stabilizer of a point in

the action of Alt(5) on Zα, we retrieve the group Alt(4) ∼= PSL2(3). Indeed, one

can choose the stabilized point, x say, to lie in Zβ. Then letting L ≤ Lα such

that S ≤ L and L/Zα ∼= Alt(4), we get that for X := 〈LGα,β, Gβ〉, we have that

Q := 〈x〉 E X and X/Q is locally isomorphic to PSp4(3). As above, it seems

likely that in the finite groups which occur as suitable completion of the amalgam

described in Proposition 5.4.51 (ii), there is a component in the centralizer of some

central element of a Sylow 3-subgroup which is isomorphic to PSp4(3) ∼= PSU4(2).

This occurs in the group PSU5(2).
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In the situation of Proposition 5.4.51 (iii) or (iv), and taking the stabilizer of point

in the action of Lα/Zα on Zα, we have a group L such that O3′(L)/Zα ∼= PSL2(3)

or 23.Alt(4) respectively. In the latter case, the group coincides with Lα/Zα in

the former case. As above, one can choose the point x to lie in Zβ. Forming

an appropriate X, we have that Q := 〈x〉 E X, and X/Q is locally isomorphic

to PSp4(3) or X/Q has the form of an amalgam satisfying Proposition 5.4.51 (iii)

respectively. Again, it seems likely that finite groups occurring as good completions

of these amalgams have some component in the centralizer of an element of order

3 which is central in a Sylow 3-subgroup, which is isomorphic to PSp4(3) or O+
8 (2)

respectively. Indeed, O+
8 (2) and Ω−10(2) have such a structure.

In Proposition 5.4.55 (v) and (vi), we again consider the stabilizer of a point in

the action of Lα/Zα on Zα where this time Lα/Zα ∼= M11. We obtain a group

L containing S such that L/Qα
∼= M10 ∼= PSL2(9).2. Choosing this point in

x ∈ Z(S) and making an appropriate X we get that Q := 〈x〉 E X and X/Q is

locally isomorphic to PSU4(3) in Proposition 5.4.55 (v); or, in Proposition 5.4.55

(vi), is of the same type as in amalgam in Proposition 5.4.55 (iii) which had

example completion McL. Again it seems likely that in any good finite group

completion of these amalgams this subgroup corresponds to a component in the

centralizer of some central element of a Sylow 3-subgroup. This is the case in the

groups Suz and Ly.

It seems to it should be possible to characterize the finite groups occurring as

parabolic characteristic 5 completions of the amalgams in Proposition 5.3.15 (iii)

and (iv). It appears that the simple groups HN and B are the “unique” appropriate

completions. This result is not available in the literature yet, but see [PW04,

Theorem 2.1, Theorem 2.2].
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Glossary of Notations

GF(q) The field of order q, where q = pn for some prime p.

Ωi(P ) If P is a p-group, the subgroup generated by all elements of order

pi in P , with convention Ω(P ) = Ω1(P ).

fi(P ) If P is a p-group, the subgroup generated by the pi-powers of all

elements in P , with convention f(P ) = f1(P ).

[A,B] For two subgroups A,B ≤ G, the group generated by all elements

of the form a−1b−1ab for a ∈ A, b ∈ B.

[A,B; i] For A,B ≤ G, the group [[A,B], B], . . . , B︸ ︷︷ ︸
i times

].

G′ G′ := [G,G], referred to as the commutator subgroup, or derived

subgroup, of G.

[V,G] The module generated by all elements of the form x·v−v, x ∈ G,

v ∈ V , where V is a module acted on by G.

[V,G; i] For V a G-module, the submodule [[V,G], G], . . . , G︸ ︷︷ ︸
i times

].

G(i) The subgroup of G such that G(i) = [G(i−1), G] chosen so that

G(1) = G′.

CA(B) All elements a ∈ A such that ab = ba for all b ∈ B, for subgroups

A,B ≤ G. We use the notation CA(b) := CA(〈b〉) where b ∈ B.

This forms a subgroup of A.
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CV (G) All elements v ∈ V which are fixed under the action of G, where

V is a module acted on by G. This forms a submodule of V .

NA(B) The largest subgroup of A ≤ G which normalizes B ≤ G.

Aut(G) The automorphism group of G.

Inn(G) The inner automorphism group of G, that is, all automorphisms

induced by the conjugation action of G on itself.

Out(G) The outer automorphism group of G, explicitly the quotient

Aut(G)/Inn(G).

HomG(A,B) The group of homomorphisms from a group A to a group B

induced by conjugation by elements of G.

AutG(B) The group of automorphisms of B induced by conjugation by

elements of G on B.

〈AG〉 The smallest subgroup containing A which is normal in G,

referred to as the normal closure of A in G.

Z(G) The center of G.

Zi(G) The subgroups of G satisfying Zi/Zi−1 = Z(G/Zi−1) chosen so

that Z1(G) := Z(G). The ordered set {Z1(G), Z2(G), . . . } is

referred to as the upper central series of G.

Φ(G) The intersection of all maximal subgroups of G, known as the

Frattini subgroup of G. If G is a p-group, then Φ(G) = [G,G]Gp

is the smallest normal subgroup in which G has an elementary

abelian quotient.
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Oπ(G) The largest normal π-group of a group G, for π a set of primes.

If π = {p}, then referred to as the p-core of G.

Oπ(G) The smallest normal subgroup of a group G such that the

quotient is a π-group, for π a set of primes. Equivalently, Oπ(G)

is the normal subgroup generated by all elements whose orders

are coprime to all the primes in π.

|G|p The largest prime power pn dividing the order of G.

Sylp(G) For a prime p, the set of all Sylow p-subgroups of G. That is, all

subgroups P of G such that |P | = |G|p.

mp(G) For a prime p, the maximum rank of an elementary abelian

p-subgroup of G.

A(P ) For P a p-group, the collection of elementary abelian subgroups

Q of P such that |Q| = pmp(P ).

J(P ) For P a p-group, the subgroup of P generated by all subgroups

in A(P ), referred to as the Thompson subgroup of P .

F (G) The largest normal nilpotent subgroup of G, referred to as the

Fitting subgroup of G

E(G) The normal subgroup of G generated by all components of G,

referred to as the layer of G.

F ∗(G) The normal subgroup generated by the Fitting subgroup and the

layer, referred to as the generalized Fitting subgroup of G.
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A : B The semidirect product of A and B, where A is normalized by

B.

A.B An arbitrary extension of B by A. That is, A is a normal

subgroup of A.B such that the quotient of A.B by A is isomorphic

to B.

A ·B A central extension of B by A.

A ∗B The central product of A and B, where the intersection of A and

B will be clear whenever this arises.
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