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Abstract

In this thesis, we provide a framework in which certain configurations in saturated
fusion systems can be characterized via the amalgam method. Along the way,
we identify several rank 2 amalgams involving strongly p-embedded subgroups,
and recognize some finite simple groups as associated completions. In addition, as
an application, we determine all saturated fusion systems supported on a Sylow

p-subgroup of Go(p™) and PSU4(p") for all primes p and n € N.
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CHAPTER 1

INTRODUCTION

For a finite group GG and a prime p dividing the order of G, the p-fusion category of
G provides a means to concisely express properties of the conjugacy of p-elements
within a Sylow p-subgroup S of G. Fusion systems may then be viewed as an
abstraction of fusion categories without the need to specify any enveloping finite

group G, instead focusing only on the conjugacy properties of some fixed p-group

S.

Fusion systems were first introduced by Puig in the 1990s, under the moniker
“Frobenius categories,” as a way to capture properties of the defect group of
a p-block in modular representation theory. These Frobenius categories were
then revived by Broto, Levi and Oliver in [BLOO03|, where they found purchase
in algebraic topology as a mechanism to investigate p-completions of classifying
spaces. There, they were renamed fusion systems, a terminology which has now

become standard.

More recently, fusion systems have found use in finite group theory, specifically in

revisiting the classification of finite simple groups, through a program initiated by



Aschbacher (see [Asc19]). Aschbacher’s program aims to classify the finite simple
groups of “component type” using “semisimple” methods from local group theory
which have been translated to fusion systems, and specifically focusing on the
case where p = 2. Indeed, several of the more difficult results in the proof of
the classification of finite simple groups are easier and often have more gratifying

statements in the context of fusion systems.

Alongside the program of Aschbacher, there is another “next generation” scheme to
reprove large parts of the classification. This program, headed by Meierfrankenfeld,
Stellmacher and Stroth and dubbed the “MSS program”, aims to determine the
finite simple groups of “local characteristic p” by using mostly “unipotent” methods
(see [MSS03] for an overview). Pivotal to this approach is the use of amalgams to

identify finite simple groups, a methodology which we utilize heavily in this thesis.

Within the MSS program, there is scope to investigate a larger class of “characteristic
p” groups than in the original proof of the classification. Indeed, it may be possible
here to determine the finite simple groups which are of parabolic characteristic p
(but probably only for the prime 2), and this improvement would substantially
ease the burden on the treatment of component type groups. Because of the
Gorenstein-Walter Dichotomy Theorem, and a suitable analysis of some small
cases, the net result of the union of these two programs should be a shortened

proof of the classification of finite simple groups.

The results in this thesis lie somewhere in between these two programs: applying
unipotent, or characteristic p, methods from group theory to saturated fusion
systems. While some equivalent notion of parabolic characteristic p for fusion
systems is not needed for this work, the results in this thesis would certainly

fit more in this framework. Important to note is the dichotomy theorem for



saturated fusion systems which says that every saturated fusion system is either of
“characteristic p-type” or of “component type.” Following the proof of this theorem,
due to Aschbacher [AKO11, Theorem II.4.3], it is not hard to generalize to a
dichotomy theorem partitioning fusion systems into “parabolic characteristic p”

and “parabolic component type.”

Within the realm of fusion systems, one of the more active areas of research is
the hunt for exotic fusion systems: those which do not correspond to the p-fusion
categories of finite groups. Notably, when p = 2 there is only one known family of
exotic fusion systems: the Benson—Solomon systems constructed by Oliver and
Levi [LO02]. As for odd primes, there are far more examples to draw from,
and so we will not provide a comprehensive list here. In this work, we uncover
some previously unknown exotic systems supported on a Sylow 3-subgroup of the
sporadic finite simple group Fj3 (see Section 3.3), and so this work may be viewed

as another contribution to the following research direction suggested by Oliver

[AKO11, T11.7.4]:

“Try to better understand how exotic fusion systems arise at odd primes; or (more
realistically) look for patterns which explain how certain large families of them

arise.”

The primary purpose of this thesis is to classify saturated fusion systems F,
supported on a p-group S, which are generated by automorphisms of two subgroups
of S which satisfy certain properties. The subgroups in question are mazimally
essential subgroups of F, and by the Alperin—Goldschmidt fusion theorem, in this
setting the automizers of these essential subgroups completely determine /. Then
the characterization of F is achieved by identifying a rank two amalgam within

the fusion system, via a result of Robinson [Rob07, Theorem 1], and utilizing



the amalgam method. The amalgam method was first conceived by Goldschmidt
[Gol80], building on earlier work of Sims. In our interpretation, we closely follow
the version of the method developed and refined by Delgado and Stellmacher
[DS85]. Fortunately, given our hypothesis motivated by fusion systems, we can
often prove that the amalgam we obtain is a so called weak BN-pair of rank 2, and

we can directly appeal to [DS85] where such configurations are already classified.

Within this work, we very often use a K-group hypothesis when investigating
automizers of essential subgroups and a local C/C-system hypothesis on the fusion
system F. Recall that a K-group is a finite group in which every simple section is
isomorphic to a known finite simple group. A local CK-system is then a saturated
fusion system in which the induced automorphism groups on all p-subgroups are
IC-groups. At some stage in the analysis, unfortunately, we make explicit use of
the classification of finite simple groups (CFSG), specifically when F is exotic.
However, up to that point, we are still able to determine the isomorphism type of
the p-group on which F is supported, as well the important local actions, within
a local CIC-system hypothesis and only appeal to the classification to prove that
the fusion system is exotic. Thus, we believe this result would still be suitable
for use in any investigation of fusion systems in which induction via a minimal

counterexample is utilized.

The majority of the work in this thesis is in proving the following theorem.

Main Theorem. Let F be a local CK-system on a p-group S such that Oy(F) =
{1}. Assume that F has two Autz(S)-invariant mazimally essential subgroups
Ey,Ey < S with the property F = (Ng(E1), Nz(E3)). Then F is one of the

following:



(i) F = Fs(G), where F*(G) is isomorphic to a rank 2 simple group of Lie type

in characteristic p;

(ii) F = Fs(G), where G = Mg, Aut(Mis), Jo, Aut(Js), Go(3) or PSps(3) and

p=2;

(iii) F = Fs(G), where G = Coy, Cos, McL, Aut(McL), Suz, Aut(Suz) or Ly and

p=3;

(iv) F = Fs(G), where G = PSU5(2), Aut(PSUs(2)), Q4 (2), OF (2), Q16(2),
Sp10(2), PSUg(2) or PSUg(2).2 and p = 3;

(v) F is simple fusion system on a Sylow 3-subgroup of Fs and, assuming CFSG,

F is an exotic fusion system uniquely determined up to isomorphism;
(vi) F = Fs(G), where F*(G) = Ly, HN, Aut(HN) or B and p = 5; or

(vii) F is a simple fusion system on a Sylow T-subgroup of Go(7) and, assuming

CFSG, F is an exotic fusion system uniquely determined up to isomorphism.

We include Go(2)" = PSU3(3), Sp,(2)" = Alt(6) and the Tits groups 2F4(2) as

groups of Lie type in characteristic 2.

In the above classification, where F is realizable by finite group, we provide only
one example of a group which realizes the fusion system. In several instances, this
example is not unique, even amongst finite simple groups. In particular, if F is
realized by a simple group of Lie type in characteristic coprime to p, then there are
lots of examples which realize the fusion system, see for instance [BMO12]. Note
also that we manage to capture a large number of fusion systems at odd primes
associated to sporadic simple groups. Indeed, as can be witnessed in the tables

provided in [AH12], almost all of the p-fusion categories of the Sporadic simple
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groups at odd primes are either constrained, supported on an extraspecial group
of exponent p and so are classified in [RV04], or satisfy the hypothesis of the Main

Theorem.

It is surprising that in the conclusion of the Main Theorem there are so few exotic
fusion systems. It has seemed that, at least for odd primes, exotic fusion systems
were reasonably abundant. Perhaps an explanation for the apparent lack of exotic
fusion systems is that the setup from the Main Theorem somehow reflects some of
the geometry present in rank 2 groups of Lie type. Additionally, we remark that
in the two exotic examples in the classification, the fusion systems are obtained
by “pruning” a particular class of essential subgroups, as defined in [PS21].
Indeed, these essential subgroups, along with their automizers, seem to resemble
Aschbacher blocks, the minimal counterexamples to the Local C(G,T)-theorem
[BHS06]. Most of the exotic fusion systems the author is aware of either have a
set of essentials resembling blocks, or are obtained by pruning a class of essentials
resembling blocks out of the fusion category of some finite group. For instance,
pearls in fusion systems, investigated in [Gral8] and [GP20], are the smallest

examples of blocks in fusion systems.

Given the hypothesis of the Main Theorem, there are some fairly natural questions
and extensions to consider. First, is it necessary to demand that the essential
subgroups F; and FE, are maximally essential in the fusion system F7 It appears
that the truly difficult case here is where the outer automorphism group of the
essential subgroup induced by the fusion system is p-solvable and has a Sylow
p-subgroup of p-rank 1. Outside of these cases, given suitable characterization of
quadratic 2F-modules for groups with strongly p-embedded subgroups, it seems

likely the techniques employed in this thesis could be adapted in order to remove



the maximality condition on the essential subgroups. Second, is the condition
that the essential subgroups are Autz(S)-invariant truly necessary? This should
be related to notion of “pushing up” in finite groups. Fortunately, there are a
large number of results which may be applicable in this setting. The hope is then
to maintain some control of the automorphisms present in the fusion system so
that the methodology described in this thesis should still be applicable. A final
question to consider is whether we need to restrict to only two classes of essential
subgroups. In the analogous situation in finite group theory, groups of Lie type of
rank n are “controlled” by their rank 2 residues. This indicates that perhaps there
should be an equivalent “Lie theory” of saturated fusion systems. Work towards
this has already been initiated in [Onol1], wherein chamber systems and parabolic

systems for fusion systems are explored.

The work we undertake in the proof of the Main Theorem may be regarded as a
generalization of some of the results in [AOV13], where only certain configurations
at the prime 2 are considered. There, the authors exhibit a situation in which
a pair of subgroups of the automizers of pairs of essential subgroup generate
a subsystem, and then describe the possible actions present in the subsystem,
utilizing Goldschmidt’s pioneering results in the amalgam method. With this in
mind, we provide the following corollary (proved as Corollary 5.5.1) along the same
lines which, at least with regards to essential subgroups, may also be considered

as the minimal situation in which a saturated fusion system satisfies O,(F) = {1}.

Corollary A. Suppose that F is a saturated fusion system on a p-group S such
that Op(F) = {1}. Assume that F has exactly two essential subgroups Ey and
Ey. Then Ng(Ei) = Ng(Ey) and writing Fo := (Nx(E1), Ne(E2))Ng(By), Fo 15 a

saturated normal subsystem of F and either



(i) F = Fo is determined by the Main Theorem;

(i) p is arbitrary, Fo is isomorphic to the p-fusion category of H, where F*(H) =
PSL;(p™), and F is isomorphic to the p-fusion category of G where G is the

extension of H by a graph or graph-field automorphism;

(i) p = 2, Fo is isomorphic to the 2-fusion category of H, where F*(H) =
PSp,(2"), and F is isomorphic to the 2-fusion category of G where G is the

extension of H by a graph or graph-field automorphism; or

(iv) p = 3, Fy is isomorphic to the 3-fusion category of H, where F*(H) =
Go(3™), and F is isomorphic to the 3-fusion category of G where G is the

extension of H by a graph or graph-field automorphism.

As intimated earlier in this introduction, we utilize the amalgam method to classify
the fusion systems in the statement of the Main Theorem. Here, we work in a
purely group theoretic setting and so, as a consequence of the work in the thesis,
we obtain some generic results concerning amalgams of finite groups which apply
outside of fusion systems. We operate under the following hypothesis, and note

that the relevant definitions are provided in Section 5.1:
Hypothesis B. A := (G1, Gy, G12) is a characteristic p amalgam of rank 2 with
faithful completion G satisfying the following:

(1) for S € Sylp(G12), G12 = NGl(S) = NGQ(S>, and

(ii) writing G; := G;/O,(G;), Gia is a strongly p-embedded subgroup of G;.

It transpires that all the amalgams satisfying Hypothesis B are either weak

BN-pairs of rank 2; or p < 7, |S| < 2° when p = 2, and |S| < p” when p is
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odd. Moreover, in the latter exceptional cases we can generally describe, at least

up to isomorphism, the parabolic subgroups of the amalgam.

What is remarkable about these results is that amalgams produced have “critical
distance” (defined in Notation 5.2.5) bounded above by 5 . In the cases where the
amalgam is not a weak BN-pair of rank 2, the critical distance is bounded above by
2, and when this distance is equal to 2, the amalgam is symplectic and was already
known about by work of Parker and Rowley [PR12]. We present an undetailed

version of the theorem summarizing the amalgam theoretic results below.

Theorem C. Suppose that A = A(G1, Gy, G12) satisfies Hypothesis B. Then one
of the following occurs:
(i) A is a weak BN-pair of rank 2;

(ii) p = 2, A is a symplectic amalgam, G1/O02(G1) = Sym(3), Ga/02(Gy) =
(3x3):2 and |S| = 2°;

12

(i) p = 2, QZ(9)) < Gy, ((QAZ(9))%)) £ 0(G1), O%(G1)/05(Gh)
SU4(2)!, 0% (Ga)/O2(G) = Alt(5) and |S] = 2%;

(iv) p=3, Q(Z(5)) D G2, (AZ(5))7)) £ 05(Ga), O3(G1) = ((AUZ(S5))5)) is
cubic 2F-module for O¥ (G1/0s(G1)) and |S| < 37; or

(v) p=5 orT, A is a symplectic amalgam and |S| = p°.
Much more information about the amalgams is provided where they arise in the

proofs.

Naturally, an interesting question to ask is whether the results concerning these

amalgams have any direct application to finite group theory, and in particular, in

9



classifying certain finite simple groups by their p-local structure. In Section 5.5,
we collect various results already present in the literature which, when augmented
with some additional hypotheses, characterize some finite simple groups from the

garnered amalgam data.

As a first substantial application of the Main Theorem, which we provide before
the proof of the Main Theorem to ease exposition, we approach a slightly different
research problem. Namely, we classify all saturated fusion systems supported on
a p-group isomorphic to a Sylow p-subgroup of Go(p") or PSUy(p™). This work
has a different flavour to the methods used in the proof of the Main Theorem.
There, the hypothesis enforced restrictions on the global structure of the fusion
system without necessarily demanding any specific structure of the p-group on
which the system is supported whereas in this application, we impose restrictions
on the p-group itself. This work forms part of a program to classify all saturated
fusion systems supported on Sylow p-subgroups of rank 2 groups of Lie type,
complementing the results in [Cle07] and [HS19]. Moreover, we generalize results
already obtained in [PS18], [BFM19] and [Mon20] where only the case where the
field of definition is of order p is considered. Furthermore, we remove some of the
other restrictions in those works, where only fusion systems F satisfying O,(F) =
{1} are considered, at little cost to the exposition. The work here draws heavily
from results and ideas within those papers and most of the ‘interesting’ examples

we uncover occur in this ‘small’” setting.

Although a number of the the results applied to classify these fusion systems
(particularly those results occurring as corollaries of the Main Theorem) rely on
a IC-group hypothesis on the local actions, within the restricted setting of an

enforced structure on a the p-group S, we are almost always able to circumvent
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the need for such strong assumptions. Where appropriate, we describe the required
modifications to make these results independent of any KC-group hypothesis. In
this way, we are able to almost completely rid ourselves of any reliance on the
classification of finite simple groups, and only make use of it to prove the exoticity
of some fusion systems supported on a Sylow 7-subgroup of Go(7), a check already
completed in [PS18], and to recognize PSLy(¢?) acting on a natural 2 (¢)-module
to classify fusion systems on supported on a Sylow p-subgroup of PSU,(q), where
g = p" and p is odd. We do, however, make use of some of the results listed in
[GLS98] concerning known facts about known finite simple groups. We present

the main results below.

Theorem D. Let F be a saturated fusion system over a Sylow p-subgroup of
Ga(q) where g = p", and identify Q1 and Qo with the unipotent radicals of two
non-conjugate maximal parabolic subgroups of Go(q). Then one of the following

holds:

(i) F = Fs(S: Outz(9));

(ii) F = Fs(Q1 : Outx(Q1)) where O (Outx(Q1)) = SLy(q), or Outx(Q1) is
isomorphic to a subgroup of (3x3):2 andp=q=2, orp=gq€ {57} and
the possibilities for OY (Outx(Q,)) are given in [PS18, Lemma 5.2];

(iii) F = Fs(Q2 : Outz(Q2)) where O” (Outz(Q2)) = SLa(q);

(iv) F = Fo(M) where M = 23.PSLy(2) is non-split and p — q — 2;
(v) F = Fs(M) where M = 53.SL3(5) is non-split and p = q = 5;
(vi) F = Fs(G) where G = Go(3) or My and p = q = 2;

(vii) F = Fs(G) where G = Ly, HN, HN.2 or B and p = ¢ = 5;

11



(viii) F = Fs(G) where G =M andp=q=7;

(ix) F is one of the exotic fusion systems listed in [PS18, Table 5.1] and p = q =

7 or
(x) F = Fs(G) where F*(G) = OP' (G) = Gy(p").

Theorem E. Let F be a saturated fusion system over a Sylow p-subgroup of
PSU4(q) where ¢ = p™, and let X be the preimage in S of J(S/Z(S)). Then

one of the following occurs:

(i) F = Fs(S: Outx(9));

(i) F = Fs(X : Outz(X)) where OY (Outz(X)) = SLy(q), or Outz(X) is
determined in [BFM19] and g = p = 3;

(i) F = Fs(J(S) : Outg(J(S))) where J(S) is a natural 2y (q)-module for
07 (Outx(J(S5)) = PSLa(q?);

(iv) F = Fs(Q : Outx(Q,)) where x € 8"\ Z(S), Q. = Cs(z), Outx(Q.) =

Sym(3) and ¢ = p = 2;
(v) F = Fs(M) where M = 2% : (Sym(3) x Sym(3)) and ¢ = p = 2;
(vi) F = Fs(M) where M = 23 : PSL3(2) and ¢ = p = 2;
(vii) F = Fs(G) where G = PSL4(2) and ¢ =p = 2;

(viii) F = Fs(G) where G = Coq, McL, McL.2, PSUg(2) or PSUs(2).2 and p =

q=3; or

(ix) F = Fs(G) where F*(G) = OP'(G) = PSUy(q).

12



Additionally, with a small amount of extra effort, for S a Sylow p-subgroup of
PSU4(p™) or Ga(p™), we are able to give a good description of all possible radical,
centric subgroups of a fusion system (or group) containing S as a Sylow p-subgroup.
This has implications beyond the rest of the results in this thesis. For example,
several results concerning weight conjectures for groups and fusion systems rely on
detailed information of the radical, centric subgroups of a Sylow p-subgroup, see

for instance [Kes+19] and [KMS20].

Asin the Main Theorem, something interesting to note in Theorem D and Theorem
E is the small number of exotic fusion systems unearthed. The only exotic fusion
systems that arise were already identified in [PS18] and are related to the Monster
sporadic simple group. This gives credence to [PS21, Conjecture 2| that, aside
from a few exceptions in small rank and small prime cases, the structure of a
Sylow p-subgroup of a group of Lie type in characteristic p is too rigid to support
any exotic fusion systems. This is in complete contrast to the case where the fusion
system is supported on a Sylow p-subgroup of a group of Lie type in characteristic

coprime to p, where exotic fusion systems are ubiquitous (see [OR20]).

In terms of progressing towards the goal of determining all fusion systems on Sylow
p-subgroups of rank 2 groups of Lie type, this still leaves PSUs(p"), *D4(p™) and
2F4(2"), where necessarily p = 2 in the last case. As in this work, a suitable
methodology for classifying fusion systems over the Sylow p-subgroups of these
groups boils down to determining a complete set of essential subgroups and, after

treating small values of n and p separately, applying the Main Theorem.

It feels prudent at this point to mention some important results which play some
part in the proof of the results above, but which should be widely applicable in

other works on saturated fusion systems and amalgams. The first of which involves

13



critical subgroups, specified subgroups of p-groups first used by Feit and Thompson
in the “Odd Order” paper. As far as the author is aware, critical subgroups have
not been heavily utilized in fusion systems or in the amalgam method. In an
earlier draft of this work, critical subgroups were used to obtain strong control
of the actions of parabolic subgroups of in the amalgam method when p > 5.
However, we later found methods to treat these cases alongside the cases where
p € {2,3} and so this approach was abandoned. We still believe that it should be

recorded here for posterity.

Proposition F. Let A = A(Gy,Gs,G12) be a characteristic p amalgam. Then
writing G == G;/O,(G;), for some i € {1,2} there is a G-module V' on which
p'-elements of G act faithfully and a p-subgroup C of G such that [V,C,C,C]| =
{1}.

A further result which may have application outside of this thesis is the following

proposition.

Proposition G. Let A = A(G1,Ga, G12) be a characteristic p amalgam satisfying
Hypothesis B. Then, writing Q; = Oy(G;), Q1N Q2 4 G; fori € {1,2}.

Again, peering into the world of finite groups, given the classification of weak
BN-pairs of rank 2 in [DS85], one hopes to determine higher rank groups of Lie type
in characteristic p using the rank 2 residues to identify their associated building.
In this line of work, Timmesfeld [Tim88| associates a graph using local data, where
two points, corresponding to rank 1 parabolic subgroups F; and P;, are joined if
and only if O,(FP;) N O,(P;) is not normal in P, or P;. See [ST98] for how this
method is used to gain control in the rank 3 setting. If one hopes to develop a

theory of fusion systems akin to the notion of parabolic systems in groups, then it

14



seems sensible that an “equivalent” result should be proved. The above proposition

provides one direction of such a result.
We now describe the strategy to prove the main results of this thesis.

In Chapter 2, we set up the requisite group and module theoretic results needed
to examine the local actions within a fusion system, and within the amalgam
method. Most importantly, we characterize groups with strongly p-embedded
subgroups, groups with associated FF-modules and 2F-modules, groups which
contain elements which act quadratically, and exhibit situations in which these
phenomena occur. The typical examples of automizers in our investigations are
rank 1 groups of Lie type in characteristic p and, because of this, large parts
of Chapter 2 are devoted to the properties of such groups and their “natural”

modules.

In Chapter 3, we introduce fusion systems and, for the most part, reproduce
definitions and properties associated to fusion systems which may be readily found
in the literature. Importantly, here we describe the necessary tools to describe a
complete set of essential subgroups for a saturated fusion system F and determine
their automizers. Then, using the model theorem, we are able to able to investigate
finite groups whose fusion categories are isomorphic to normalizer subsystems of
the two distinguished essential subgroups. We close this chapter with a discussion
and construction on the unearthed exotic fusion systems supported on a 3-group

isomorphic to a Sylow 3-subgroup of Fj.

In Chapter 4, we classify saturated fusion systems F which are supported on S
where S is isomorphic to a Sylow p-subgroup of Ga(p™) or PSUy(p™), assuming

the validity the of the Main Theorem which is proved in Chapter 5. The sections
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within this chapter deal with the cases where S is isomorphic to a Sylow p-subgroup
of G2(2"), Go(3™), Go(p™) for p > 5, and PSU(p"). For Go(p™), the separation
in cases is brought about due to some degeneracies in the Chevalley commutator
formulas when p = 2 or 3, resulting in some exceptional structural properties.
While there are differences when p = 2 and p is odd for PSU4(p"), the differences

are not so drastic to affect the methodology.

In each of the cases, it transpires that, barring some small exceptions, there are only
two potential essential subgroups of F: those which coincide with the unipotent
radicals of maximal parabolic subgroups in Go(p™) and PSU,(p"). Upon deducing
the potential automizers of these subgroups, we then distinguish between the case
where there is at most one essential subgroup (where necessarily O,(F) # {1}),
and where both subgroups are essential. In this latter case, we apply the Main
Theorem which identifies a rank 2 amalgam in F and then, with the aid of the
results in [DS85], completely determines the fusion system. Importantly within
this work, since the only exotic fusion systems we engage with are determined in
[PS18], we do not need to concern ourselves with checks on saturation and exoticity
as in other works. As mentioned previously, there is some exceptional behaviour
for small values of p and n where the fusion systems of some other finite simple
groups appear. In these instances, we generally appeal to previous results in the
literature or apply a package in MAGMA [PS21] to determine a list of radical,

centric subgroups and a list of saturated fusion systems supported on S.

In Chapter 5, we first demonstrate how to identify a rank 2 amalgam given certain
hypotheses on a fusion system and begin setting up the group theoretic framework
needed for the amalgam method. We also provide some classification results for

fusion systems based on known amalgam results where it is easy to do so. For
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several arguments, we investigate a minimal counterexample where minimality is
imposed on the order of the models of the normalizers of essential subgroups.
Then, in the amalgam method, the case division separates fairly naturally, and we
follow the divisions used in [DS85]. Then the following sections and subsections

deal with these partitioned cases.

For several of the amalgams we investigate, their completions are unique up to
“local isomorphism” and, as it turns out, this is enough to determine the fusion
system up isomorphism. However, in some cases, at least from a fusion system
perspective, we do not go so far and instead aim only to bound the order of
the p-group on which F is supported and apply a package in MAGMA [PS21]
which identifies the fusion system. In fact, in two instances there are no finite
groups which realize the amalgam appropriately and we uncover two exotic fusion
systems, one of which was known about previously by work of Parker and Semeraro
[PS18], and another which was previously undocumented. With that said, given
the information we gather about the amalgams, it does not seem such a stretch to
at least provide a characterization of these amalgams up to some weaker notion of
isomorphism. Finally, we close this chapter by providing some useful corollaries to
the Main Theorem and provide some identifications of finite simple groups which

satisfy Hypothesis B.

The notation used throughout generally follows the standard conventions, but we
mention some particular practices we adopt. With regards to notation concerning
simple groups, we will generally follow the Atlas [Con+85], with some caveats
regarding the classical groups. We include the prefix “P” to indicate a quotient
by the center, and “S” indicates the subgroup of matrices with determinant 1

e.g. we use PSL,(q) where the Atlas uses L,(q). In addition, we reserve the
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notations O, (q) and O (q) for the full orthogonal groups, while Q¢ (q) denotes
the commutator subgroup of SO¢(q) for € € {+, —}. For the sporadic groups, we
follow the Atlas with the exception of Thompson’s sporadic simple group, which
we refer to as Fg instead of the usual Th. We make this choice to emphasize
the connection with “amalgams of type F3” as defined in [DS85] and [Del88]. We
denote by Sym(n) and Alt(n) the symmetric and alternating groups of degree n,
and Dih(n) represents the dihedral group of order n so that n is necessarily even.
The notation @4, is used for generalized quaternion groups of order 4n. When
p =2, 23r+2” is the extraspecial group obtained by taking the central product of
r groups isomorphic to Dih(8) and n — r groups isomorphic to Qs where n — r is
even, and 21727 is the extraspecial group obtained by a taking the central product
of r groups isomorphic to Dih(8) and n — r groups isomorphic to Qg where n—r is

1+2n

odd. For p an odd prime, we reserve the notation pi"*" and pl*2"

for extraspecial
p-groups of exponent p and p? respectively. We will use Atlas notation for the
“shape” of p-groups, often to exhibit the structure of their chief factors in some

2 is a group of order ¢* for ¢ some prime power,

enveloping group G e.g. ¢'f
with some grouped collection of G-chief factors having orders ¢ and ¢?. Where
unambiguous, we will often present cyclic groups uniquely by their order, and
elementary abelian p-groups by their expression as p-powers e.g. r X s is the
direct product of a cyclic group of order r and a cyclic group of order s, and p"
is an elementary group of order p”. Finally, we mention that as the majority of

the modules we study occur “internally”, we will use multiplicative notation for

modules throughout.
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CHAPTER 2

GROUP THEORY, REPRESENTATION
THEORY AND PRELIMINARIES

We reserve this chapter for any general results in group theory or representation
theory which will be useful in proving later results concerning fusion systems and
amalgams. Several are well known or elementary, and where possible, we aim to

give explicit references or rudimentary proofs.

Of particular importance in this chapter is the notion of a group with a strongly
p-embedded subgroup, and we provide some classification results regarding this
class of groups. Since rank 1 groups of Lie type in characteristic p provide the
standard examples of groups with strongly p-embedded subgroups, we devote a
large part of this chapter for recording several facts about such groups and their
associated actions. Finally, of key importance in this work, is the identification
of these groups along with their modules and, because of this, FF-modules,
2F-modules, quadratic action and Hall-Higman type theorems are also a focus

of this chapter.

As background texts, we use [Asc00], [Gor07], [Hupl3] and [KSO06].
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2.1 Group Theoretic Methods

We first start with concepts and results which are ubiquitous across all of finite

group theory. Set G to be a finite group throughout.

Lemma 2.1.1 (Dedekind Modular Law). Suppose that X,Y,Z < G and X <Y
Then X(Y N Z) =Y N XZ.

Lemma 2.1.2 (Three Subgroup Lemma). Let X,Y,Z < G. If [X,Y,Z] =
Y, Z, X] = {1}, then [Z,X,Y] = {1}. Moreover, if N < G and both [X,Y, Z]
and [Y, Z, X| are contained in N, then [Z, X,Y] < N.

Lemma 2.1.3 (Frattini Argument). Let A < G and T € Syl,(A). Then G =
ANg(T).

Lemma 2.1.4 (Gaschutz’s Theorem). Let A be an abelian normal subgroup of G
and R < G such that A < R and (|A],|G : R|) = 1. Then A has a complement in

R if and only if A has a complement in G.

Definition 2.1.5. Let G act on a group A. A G-chief series for A is a normal
series

{1}=A4, <A <...94, =4

such that A; is normal in the internal semidirect product A : G and the series
cannot be further refined with respect to this condition i.e. there does not exists
A; < N < A;;q such that N < A : G. The factors A;/A;_; are referred to as the
G-chief factors and a factor is central if [G, A;] < A;_; and non-central otherwise.
We refer to a {1}-chief series as a chief series for A and the {1}-chief factors as

the chief factors of A.
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Remark. In a similar way to composition series, one can show that finite groups
with a G-action always have a G-chief series and that the G-chief factors are
unique up to isomorphism and reordering, independent of the particular G-chief
series constructed. Thus we are justified in describing the chief factors of a group

A.

Of particular importance in this work is coprime action. We will often use the
results described below without explicit reference, and where we do reference, we

will refer to the totality of the techniques as “coprime action.”

Definition 2.1.6. Suppose G acts on a group A. Say the action of G on A is
coprime if (|G|, |A]) = 1 and one of |A| or |G] is solvable. Note that if the first

condition holds, the second automatically does by the Feit-Thompson theorem.

Lemma 2.1.7 (Coprime Action). Suppose that a group G acts on a group A

coprimely, and B is a G-invariant subgroup of A. Then the following hold:
(i) Cap(G) = Ca(G)B/B;

(ii) of G acts trivially on A/B and B, then G acts trivially on A;

(iii) [A,G] =[A4,G,G;

(iv) A=[A,G|CA(G) and if A is abelian A = [A, G| x Cx(G);
(v) if G acts trivially on AJ/P(A), then G acts trivially on A;

(vi) if p# 2, A is a p-group and G acts trivially on Q(A), then G acts trivially

on A; and

(vii) for S € Syl,(G), if my(S) = 2 then A= (Ca(s)|s € S\{1}).
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Proof. See, for instance, [KS06, Chapter 8|. ]

In conclusion (v) in the statement above, one can say a little more. The following
is a classical result of Burnside, but the version we use is [Gor07, (1.5.1.4)]. We

also provide a related result further below.

Lemma 2.1.8 (Burnside). Let S be a finite p-group. Then Cayys)(S/®(S)) is a

normal p-subgroup of Aut(S).

Lemma 2.1.9. Let E be a finite p-group and Q < A where A < Aut(E) and Q
is a p-group. Suppose there exists a normal chain {1} = Ey S B} < Ey <... 4
E,, = E of subgroups such that for each o € A, E;oo = E; for oll 0 <1 < m. If

for all 1 < i <m, Q centralizes E;/E;_1, then Q < O,(A).

Proof. See [Gor07, (1.5.3.2)]. O

The final result we describe here which still falls under the umbrella of “coprime

action” is the A xB-lemma due to Thompson.

Lemma 2.1.10 (AxB-Lemma). Let AB be a finite group which acts on a p-group
V. Suppose that B is a p-group, A = OP(A) and [A, Bl = {1} = [A,Cy(B)|. Then
[A, V] ={1}.

Proof. See [Asc00, (24.2)]. O

We now introduce concepts and techniques more familiar in local group theory,

and which are heavily used in the proof of the classification of finite simple groups.

Definition 2.1.11. A finite group G is a C-group if every simple section of G is

a known finite simple group.
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Definition 2.1.12. Let G be a finite group and p a prime dividing |G|. Then G
is of characteristic p if Ca(Op(GQ)) < O,(G).

Lemma 2.1.13. Let G be a finite group of characteristic p. If H < G or

0,(G) < H, then H is of characteristic p.

Proof. This is elementary. ]

Definition 2.1.14. Say a group K is quasisimple if K is perfect and K/Z(K) is
a simple group. A subgroup K < H is a component of H if K is quasisimple and

subnormal in H.

Lemma 2.1.15. Let K be a component of G and H < G. Then

(i) either K is a component of H, or H centralizes K ;

(ii) every component of H is a component of G; and

(iii) for L a component of G not equal to K, [L, K] = {1}.

Proof. See [Asc00, (31.3)-(31.5)]. O

Definition 2.1.16. We denote by F(G) the Fitting subgroup of G, the largest
normal nilpotent subgroup of G, and by E(G) the layer of G, the subgroup of G

generated by all of its components. Define F*(G), the generalized Fitting subgroup
of G, to be the product of F(G) and E(G).

The following results may be found in [Asc00, (31.7)-(31.13)], for example.

Lemma 2.1.17. Let G a finite group. Then

(i) F(G), E(G) and F*(G) are characteristic subgroups of G;
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(ii) if G is solvable then F(G) = F*(G) and Cq(F(G)) < F(G);
(iii) F(G) =TI, O,(G) where r ranges over the prime divisors of G,
(iv) E(QG) is the central product of the components of G;

(v) F*(Q) is a central product of E(G) and F(G);

(vi) Ce(F*(G)) < F*(G); and

(vii) G is of characteristic p if and only if F*(G) = O,(G).

We now move on to some more specialized results pertaining to the work in this

thesis.

Definition 2.1.18. Let G be a finite group and S € Syl (G). Then G is p-minimal

if S 4 G and S is contained in a unique maximal subgroup of G.

Lemma 2.1.19 (McBride’s Lemma). Let G be a finite group, S € Syl (G) and
Pa(S) denote the collection of p-minimal subgroups of G over S. Then G =
(Pa(9))Na(S). Moreover, OF (G) = (Pa(S)).

Proof. If G € Pg(S) the the result holds trivially so assume that G is
counterexample to the first statement with |G| minimal. Since G is not p-minimal
over S, there are maximal subgroups M, My of G which contain S. But then,
since G was a minimal counterexample, M; = (Py;,(S)) Ny, (S) for i € {1,2}.
Since Py, (S) C Pa(S), N, (S) < Ng(S) and G = (M, Ms), the result holds.

Now, let P € Pg(S) and o € Ng(S). Then for M the unique maximal subgroup

of P containing S, M?" is the unique maximal subgroup of P* containing S* = .5,

and S 4 P*. Tt follows that Ng(S) normalizes (Pg(S)) and by the definition

24



of O (G) and since G = (Pg(S))Na(S), OP(G) < (Pg(S)). Now, suppose that
there is P € Pg(S) with P £ OY(G). Then OY (P) < PN OP(G) < P and so
OP'(P) is contained in the unique maximal subgroup of P which contains S. Since
S is not normal in P, Np(S) is also contained in the unique maximal subgroup of
P containing S. But then, by the Frattini argument, P = O (G)Ng(S) < P, a

contradiction. Therefore, (Pg(S)) < O (G) and the lemma holds. O

Lemma 2.1.20. Suppose that H is p-minimal over S and R is a normal p-subgroup

of H. Then H/R is p-minimal.

Proof. This is elementary. O]

Definition 2.1.21. Let GG be a finite group and H < G. Then H is strongly
p-embedded in G if and only if |H|, > 1 and Ng(P) < H for each non-trivial

p-subgroup @ with QQ < H.
Lemma 2.1.22. Suppose that G' contains a strongly p-embedded subgroup X. Then
the following hold:

(i) X contains a Sylow p-subgroup of G;

(ii) of H < G with H £ X then provided |H N X|, > 1, HN X is strongly
p-embedded in H;

(iii) O (G) N X is strongly p-embedded in O (G); and

(iv) if G # XOp(G), then XOp(G) /Oy (G) is strongly p-embedded in G/Oy(G).

Proof. See [PStr09, Lemmas 3.2, 3.3]. O

Lemma 2.1.23. If G has a cyclic or generalized quaternion Sylow p-subgroup T'
and Oy(G) = 1, then Ng(UT)) is strongly p-embedded in G.
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Proof. For X < T anon-trivial subgroup, X is also cyclic or generalized quaternion
and so also has a unique subgroup of order p. Thus, Q(X) = Q(T) and since
0,(G) # 1, we have that Ng(X) < Ng(2(X)) = Ne(A(T)) < G so that Ng(Q(T))

is strongly p-embedded in G. O

Quite remarkably, possessing a strongly p-embedded subgroup is a surprisingly
limiting condition. In the following two propositions, we roughly determine the
structure of groups with strongly p-embedded subgroups. For p = 2, we refer to
work of Bender [Ben71], while if p is odd we make use of the classification of finite
simple groups. In the application of these results, groups with strongly p-embedded
subgroups will only ever appear in the local analysis of fusion systems. Particularly,
these groups appear as automizers of certain p-subgroups and so would fit into the

framework of any proofs utilizing a “minimal counterexample” hypothesis.

Proposition 2.1.24. Suppose that G = OP(G) has a strongly p-embedded
subgroup. Let S € Syl (G) and denote G = G/Oy(G). If my(S) = 1 then

one of the following holds:
(i) p is an odd prime, S is cyclic, G is perfect and G is a non-abelian finite
simple group;
(ii) S is cyclic, G = SO, (G) and G is p-solvable; or
(iii) p =2, S is generalized quaternion and G = Oy (G)Cq(2(S)).
Moreover, in cases (ii) and (iii), (Q(S)Y) = Q(S)[QS),0p(G)] is the unique

normal subgroup of G which is divisible by p and minimal with respect to this

condition.
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Proof. Since m,,(S) = 1, S is either cyclic or generalized quaternion by [Gor(7,
[.5.4.10 (ii)]. If S is generalized quaternion, then p = 2 and (iii) follows from
a result of Bender [Ben71]. Moreover, if S is cyclic and p = 2, then G has a
normal 2-complement (see [Gor07, Theorem 7.4.3]) and (ii) holds. Hence, we

may assume from now that S is cyclic and p is odd. Notice that F(G) = O,(G)
since O,(G) = {1}. If F*(G) = F(G) = 0,(G), then O,(G) is self-centralizing
and as S is abelian, we have that O,(G) = S and SO, (G) < G. In particular,

G =0"(G) < SO, (G) < G, G is p-solvable and (ii) holds.

Suppose now that G has a component L. If p |L|, then L < O, (E(G)) < O,(G),
a contradiction. Hence, p divides the order of any component of G. Since S
is cyclic, L has cyclic Sylow p-subgroups. By [Asc00, Lemma 33.14], Z(L) is a
p/-prime group, and so Z(L) < Oy (E(G)) = {1} and L is simple. Notice also
that since each component is simple, £ (G) is a direct product of components, and
since p divides the order of any component, F (é) — L is the unique component

of G, else m,(G) = my(G) > 1. Since O,(G) N E(G) = {1}, we have that

F*(G) = 0,(G) x E(G) and since m,(G) = 1, O,(G) = {1}. Therefore, F*(G) is

a non-abelian simple group.

It remains to prove that S < F*(G) to show that (i) holds. Form the group
H = F*(@)S and assume that H # F*(G). Note that by the Frattini

argument, H = F*(C:’)Nﬁ(R) for all R € Syl (F*(G)). Moreover, for 7 # p

a prime, Syl (F*(G)) C Syl (H). Then for R € Syl (F*(G)) with r # p, let
P € Syl (Nz(R)) and T' € Sylp(ﬁ) containing P. Then F*(H)NT < T and as
T is cyclic and H = F*(é)Nﬁ(R), we deduce that P =T and Nz(R) contains a

Sylow p-subgroup of H. Hence, by conjugacy, S normalizes a Sylow r-subgroup

of H, for all primes r. But then S normalizes a Sylow r-subgroup of N ﬁ(g)
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for all 7, and so centralizes a Sylow 7-subgroup of Nz(S) for all 7. Applying
[Gor07, Theorem 7.4.3], H has a normal p-complement, a contradiction since H
contains a component of G. Thus, S < F*(G) and since G = O (G) it follows
that G is a non-abelian simple group. Hence, G’ = G and so S < G'. Then
G =0"(G) < G' <G, G is perfect and (i) holds.

Suppose case (ii) or (iii) occurs and let N be a normal subgroup of G whose order
is divisible by p. Then, as m,(S) = 1, Q(S) < N and so (5)[Q(5), 0y (G)] =
Q(9)[QS),G] = (2(S)F) < N, and the result follows. O

Remark. Notice that if H is a non-abelian finite simple with cyclic Sylow
p-subgroups, then for S € Syl (H), Ng(S2(S)) is strongly p-embedded in H by
Lemma 2.1.23. Thus, the description in case (i) is best possible up to a better
understanding of O, (G). It is also worth noting that every non-abelian finite

simple group has a cyclic Sylow p-subgroup for some odd prime p.
Proposition 2.1.25. Suppose that G = O (G) is a K-group with a strongly
p-embedded subgroup X. Let S € Syl,(G) and set G = G/0y(G). If m,(G) > 2
then G is isomorphic to one of:

(i) PSLy(p**t) or PSU3(pP) for p arbitrary, a > 1 and p* > 2;

(i) Sz(22¢tY) forp =2 and a > 1;

(iii) Alt(2p) for p > 3;

(iv) Ree(3%1) PSL3(4) or My for p=3 and a > 0;

(v) Sz(32) : 5,2F4(2)",McL or Fiy for p=>5; or

(vi) Jy for p=11.
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Proof. If G # XO,(G), then this follows from [PStr09, (2.5), (3.3)] which in turn

uses [GLS98, Theorem 7.6.1]. So assume that G = XO,(G). By coprime action,

Op(G) = (Co,,(c)(a)|]1 # a € S)

since m,(G) > 2 and so O, (G) < X and G = X, a contradiction. O

The final concept in this section is that of critical subgroups, which first arose in the
proof of the Feit-Thompson theorem. Originally in this work, critical subgroups
provided a means to control the automizer of some p-group () whenever p > 5.
In the context of the amalgam method, they force “cubic action” on some faithful
section of ) and from there, one can apply Hall-Higman type results to deduce
information about ) and its automizer. Where this methodology was previous
employed, we now have methods to treat these cases uniformly across all primes
and so critical subgroups now play a far lesser role in this work. However, we
believe they still provide some interesting consequences in the amalgam method
and we still include some of these consequences (see Corollary 5.2.21). We present

the critical subgroup theorem, due to Thompson, below.

Theorem 2.1.26. Let ) be a p-group. Then there exists C < ) such that the

following hold:

(i) C is characteristic in Q;
(il) ®(C) < Z(C) so that C has class at most 2;
(iif) [C, Q] < Z(C);

(iv) Co(C) < C; and
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(v) C is coprime automorphism faithful.
Proof. This is [Gor07, (1.5.3.11)]. O

We call such a subgroup C' < Q a critical subgroup of Q).

2.2 Properties of Rank 1 Groups Of Lie Type

As witnessed in Section 2.1, the generic examples of groups with a strongly
p-embedded subgroup are rank 1 groups of Lie type in characteristic p. These
are the groups which will appear most often in later work, and so we take this
opportunity to list some of their important properties. While almost all of these
results are well known, we aim to provide explicit references or proofs of these

results.

Lemma 2.2.1. Let G = PSLy(p”) or SLo(p") and S € Syl ,(G). Then the
following hold:

(i) S is elementary abelian of order p";
(ii) SLa(2) = Sym(3), PSLy(3) = Alt(4) and SLy(3) are all solvable;

(iii) of p = 2, then for U < S with |U| = 4, there is x € G such that G = (U, u®)
for1#ueU;

(iv) if p = 2, all involutions in S are conjugate and so, for 1 # u € S an

involution, there is x,y € G such that G = (u,u”,u¥);

(v) if p is odd, then for 1 # u € S, there is x € G such that G = (u,u”) unless
p" =9 in which case there is x € G such that H := (u,u”) < G is mazimal

subgroup of G and H/Z(H) = PSLy(5);

30



(vi) Ng(S) is a solvable maximal subgroup of G and for K a Hall p'-subgroup of
Na(9), K/Z(G) is cyclic of order (p" —1)/(p™ — 1,2) and acts fixed point

freely on S\ {1};

(vii) if p™ > 4, then G is perfect and if G is a perfect central extension of G by a

group of p'-order, then G = PSLy(p™) or SLa(p™); and
(viii) if = is a non-trivial automorphism of G which centralizes S, then x €

Auts(G).

Proof. The proofs of (i)-(vi) are written out fairly explicitly in [Hup13, 11.6-11.8].
Detailed information on automorphism groups and Schur multipliers is provided

in [GLS98, Theorem 2.5.12] and [GLS98, Theorem 6.1.2]. O

Lemma 2.2.2. Let G = PSU3(p") or SUs(p") and S € Syl,(G). Then the
following hold:

V2

(i) S is a special p-group of order p*" with |Z(S)| = p";

(ii) SU3(2) is solvable, a Sylow 2-subgroup of SU3(2) is isomorphic to the

quaternion group of order 8 and SUs(2)" = 3172 : 2 has index 4 in SU3(2);

(iii) for p™ > 2, Ng(S) is a solvable maximal subgroup of G and for K a
Hall p'-subgroup of Ng(S), |K/Z(G)| = (p** — 1)/(p* — 1,3) and K acts
irreducibly on S/Z(S);

(iv) Ng(Z(5)) = Ng(S) and for K a Hall p'-subgroup of Ng(S), |Cx(Z(S))| =
p"+ 1 and Cx(Z(S)) acts fized point freely on S/Z(S);

(v) for any x € G\ Ng(9), (Z(9),Z(S)*) = SLa(p") and G = (Z(5), S%);
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(vi) for {1} #U < Z(S), unless p* =9 and |U| =3 or p =2 and |U| = 2, there
is x,z € G such that G = (U, U", U?);

(vii) for {1} U < Z(S), if p" =9 and |U| =3 orp=2 < p™ and |U| = 2, then
there is x,y,z € G such that G = (U, U*,UY,U?);

(viii) for {1} # U < S with U £ Z(S5), if p" # 2 then there is v € G such that
G = (U,U");

(ix) if p™ > 2, then G is perfect and if G is a perfect central extension of G by a

group of p'-order, then G = PSUs(p™) or SUs(p™); and

(x) if = is a non-trivial automorphism of G which centralizes S, then x €

Autz(s)(G>.

Proof. The proofs of (i)-(v) may be found in [Hupl3, I1.10]. Again, information
on automorphism groups and Schur multipliers may be found in [GLS98, Theorem

2.5.12, Theorem 6.1.2]. It remains to prove (vi)-(viii).

For (vi) and (vii) suppose that U < Z(S5), p" # 2 and set H := (Z(S), Z(S5)*) =
SLy(p™) for x € G\ Ng(S). By Lemma 2.2.1 (iv), (v), H is generated by two
or three conjugates of U, and by [Mitll], H is contained in a unique maximal
subgroup M = GUy(p") = (p" + 1).SLy(p"). Since G = (UY), there is z such that
U? £ M. It then follows from the maximality of M in G that G = (H,U?) and

(vi) and (vii) are proved.

Suppose now that U £ Z(S), U <9 S and p" # 2. Since U £ Z(S), {1} # [U, S] <
Z(S)NU. Set C = Cyys)(Z(S)) and observe that C is irreducible on S/Z(S)
by (iv). Then, since [U,S] < Z(S), [U,S] = [U,S]¢ = [(U°),(SC)]. By the
irreducibility of C' on S/Z(S), (UZ(S)/Z(S))C = S/Z(S) and so [(UC), (S)] =
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Z(S) = [U,S] < U. Now, there is z € G \ Ng(S) such that (Z(S), Z(5)*) =

SLy(p™) is contained in a unique maximal subgroup M = GUs(p"). Then, as

U>Z(S), |U|>p" (Z(S),Z(S)*) < (U,U") and (viii) follows. O

Lemma 2.2.3. Let G = Sz(2") and S € Syl,(G). Then the following hold:

(i)
(i)

(iii)

(iv)

n is odd and 3 does not divide the order of G;

Sz(2) = 5 : 4 is a Frobenius group, ®(Sz(2)) = Dih(10), |Sz(2)'| = 5 and a

Sylow 2-subgroup of Sz(2) is cyclic of order 4;

if n > 1 then ®(S) = Z(S) = Q(S) and S/P(S) = ®(S) is elementary

abelian of order 2" ;

Ng(S) is a solvable maximal subgroup of G and for K a Hall 2'-subgroup of
Ng(S),|K| =2"—1 and K acts irreducibly on S/®(S) and ®(S);

there is x € G such that G = (Z(S), Z(S)*);

all involutions in S are conjugate and if n > 1, for 1 # u € Z(S), there is

x,y € G such that G = (u,u”,u¥);

(vii) for U <S5 with U £ Z(S), there is © € G such that G = (U, U");

(viii)

if n > 1 then G is perfect and has trivial Schur multiplier; and

if © is a non-trivial automorphism of G which centralizes S, then x €

Autz(s)(G).

Proof. Most of the proofs of these facts may be found in [Suz62, Sections 13 - 16],

except the proof of (viii) which may be gleaned from [GLS98, Theorem 6.1.2]. [

Lemma 2.2.4. Let G = Ree(3") and S € Syly(G). Then the following hold:
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(i) n is odd;
(ii) the Sylow 2-subgroups of G' are abelian;

(iii) if n =1, then G = PSLy(8) : 3, G’ = PSL,(8), S = 32 Z(S) = ®(9) has
order 3, Q(S) =SNG has order 9 and |S| = 27;

(iv) ifn > 1, then S has order 3°", ®(S) = Q(S) has order 3**, Z(S) =[S, ®(9)]
has order 3" and S/®(S) = ®(S)/Z(S) = Z(S) is elementary abelian of

order 3";

(v) Ng(S) is a solvable mazimal subgroup of G and for K a Hall 3'-subgroup
of Na(S), |K| =3" =1 and K acts irreducibly on S/Q2(S), Q(S)/Z(S) and
Z(S);

(vi) for {1} #U 9 S, if n > 1 then there is v,y € G such that G = (U, U*,UY);

(vii) if n > 1 then G is perfect and has trivial Schur multiplier, and Ree(3)" is

perfect and has trivial Schur multiplier; and

(viii) if @ is a non-trivial automorphism of G which centralizes S, then x €

AutZ(S)(G).

Proof. The proofs of (i) to (v) follow from the main theorem of [War66] while (vii)
and (viii) follow from [GLS98, Theorem 2.5.12, Theorem 6.1.2]. We make use of
results in [War66] to prove (vi). Since the results when n = 1 are easily verified,

we assume that n > 1 throughout.

Suppose that U £ Z(S) and U <9 S. Then U N Z(S) # {1} and {1} # Q(U) <
Q(S)NU. Suppose first that there is u € U such that u € Q(U) \ Z(S). Then

by (v), it follows that C,(s)(u) = (S5)(i), where i € K is an involution. Then
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u € Cg(i) and by [War66], Cs(i) = (i) x L, where L = PSLy(3"), and Cg(7) is a
maximal subgroup of G (see also [K1e88, Theorem C]). Since n > 1 is odd, there
is € L such L = (u,u”) by Lemma 2.2.1 (v). Further, Cs(i) N Z(S) = {1} and
since UNZ(S) # {1} asU < S, L < (U,U*) and since Cg(i) is maximal, it follows
that G = (U, U®).

Suppose now that Q(U) < Z(S), U £ Z(S) and U < S. Let x € G\ Ng(9)
such that U* # Ng(S). Since U £ Z(S), it follows that U £ Q(S). If G #
(U,U"), then (U,U*) is contained in a maximal subgroup of G. Since |U| > 9,
UNQS) < Z(S) and U* £ Ng(S), comparing with the list of maximal subgroups
in [Kl1e88, Theorem C], (U, U") lies in a subfield subgroup of G. But then, as K
acts transitively on Z(5), there is y € Ng(S) such that for some u € Q(U), u? is

not represented by elements of a subfield. Hence, G = (U, U*, UY).

Finally, suppose that U < Z(S) with |U| > 9. Again, considering the maximal
subgroup structure of G, since |U| > 9 and there is € G such that U* £ Ng(S),
we may assume that (U, U®) is contained in a subfield subgroup of G. Then, as
K is irreducible on Z(95), there is y € Ng(S) such that for some v € U, u? is
not represented by elements of a subfield. Hence, G = (U, U*,UY). Suppose that
|U| = 3 and let © € G such that U* £ Ng(S) and y € G such that UY < S but
UY is not in a subfield subgroup. Then (U, UY) is elementary abelian of order 9
and contained in some maximal subgroup. Comparing with the list of maximal
subgroups in [Kle88, Theorem C] and using that the centralizer of an involution
in K intersects Z(S) trivially, (U, UY) lies in a unique maximal subgroup, namely
Ng(S). Tt follows that (U, U*, UY) is not contained in any maximal subgroup so
that G = (U, U*,UY). O
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Pivotal to the analysis of local actions in the amalgam method and within a fusion
system is recognizing SLy(p™) acting on its modules in characteristic p. Below, we

list the most important modules for this work.

Definition 2.2.5. Let X = Sly(q), ¢ = p", £k = GF(¢q) and V a faithful

2-dimensional kX-module.

o Vl]grp)x is a natural SLy(q)-module for X.

o A natural Q3(q)-module for X is the 3-dimensional submodule of V ®; V
regarded as a GF(p)X-module by restriction, and is irreducible whenever p

is an odd prime.

o If n = 2a for some a € N, a natural QZ(Q%)—module for X is any non-trivial

irreducible submodule of (V ®; V)] where 7 is an automorphism of

GF(q%)X’
GF(q) of order 2, regarded as a GF(p)X-module by restriction.

o Ifn = 3a for some a € N, a triality module for X is any non-trivial irreducible

submodule of (V@ V7™ @ V7™))| where 7 is an automorphism of &k of

N
GF(¢3)X

order 3, regarded as a GF(p)X-module by restriction.

Lemma 2.2.6. Suppose G = SLy(p"), S € Syl,(G) and V is natural

SLo(p™)-module. Then the following hold:

(i) [v,5,5] = {1},
(i) [V|=p* and |Cv(S)| = p";
(iii) Cy(s) =Cy(S)=[V,S] =1[V,s] =[v,5] for allv € V\Cy(S) and1 # s € S;

(iV) V= O\/(S) X Cv<Sg) forge G\Ng(S),
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(v) every p'-element of G acts fized point freely on 'V ; and

(vi) V/Cy(S) and Cy(S) are irreducible GF(p)Ng(S)-modules upon restriction.

Proof. See [PR06, Lemma 4.6] O

Lemma 2.2.7. Suppose that G = SLy(p) and V is a direct sum of natural two
SLo(p)-modules. If U < Cy(S) is Ng(S)-invariant and of order p, then |[(US)| =

P’

Proof. By [Gor07, (1.3.5.6)], the number of distinct irreducible submodules of V'
isp+1 = (p>—1)/p— 1. For each W an irreducible submodule, Cy(S) is
N¢(S)-invariant and of order p, and since |Cy(S)| = p?, C/(S) has p+1 subgroups
of order p and each subgroup of order p uniquely determines a submodule. Thus,

U uniquely determines a submodule W of order p? for which W = (U%). O

Lemma 2.2.8. Suppose that G = SLy(p"), p an odd prime, S € Syl (G) and V

is a natural Q3(p™)-module for G. Then the following hold:
(i) Ca(V) = Z(G);
(i) [V, S, 8,8 = {1};
(iif) [V[=p® and |[V/[V, S]] = |Cv(S)| = p";
(iv) [V,S] = [V,s] and [V, S, S] = [V, s, s] = Cy(s) = Cy(S) for all1 £ s € S;
(v) [V.S]/Cy(S) is centralized by Ne(S); and

(vi) V/[V,S] and Cy(S) are irreducible GF(p)Ng(S)-modules upon restriction.

Proof. See [PR06, Lemma 4.7]. O
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Lemma 2.2.9. Let G = (P)SL,(p*"), S € Syl (G) and V a natural Q7 (p")-module
for G. Then the following hold:
(i) Ca(V)=Z(G);
(i) [V,S,S,S] = {1};
(iit) [V[=p" and |V/[V,S]| = |Cv(S)| = p";
(iv) [Cy(s)| = |[V, 8] = p** and [V, S] = Cy(s) x [V, s] for all 1 # s € S; and

(v) V/[V,S] and Cy(S) are irreducible GF(p) N (S)-modules upon restriction.

Moreover, for {1} # F < S, one of the following occurs:

(a) [V, F] = [VY, S] and Cv(F) = Cv(S),
(b) p=2, [V, F] = Cy(F) has order p*, F is quadratic on'V and |F| < p"; or
(c) pis odd, |[V. F| = |Cy(F)| = p*, [V, 8] = [V, FICv(F), Cv(5) = Cv,p(F)
and |F| < p".
Proof. See [PR06, Lemma 4.8] and [PR12, Lemma 3.15]. O
We require one miscellaneous result concerning the exceptional 1-cohomology of
PSLy(9) on an €24 (3)-module.

Lemma 2.2.10. Suppose that G = PSLy(p®), p € {2,3} and S € Syl,(G).
If V' is a 5-dimensional GF(p)G-module such that V/Cy(G) is isomorphic to a
natural Q0 (p)-module, then either V = [V,G] x Cy(G); or p = 3 and [V, S, 5] is
2-dimensional as a GF(3)S-module.
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Proof. This follows from direct computation in GL5(p). O

Lemma 2.2.11. Suppose that G = (P)SL,(p*"), S € SyL,(G) and V is a triality

module for G. Then the following hold:

(i) [V,S,S,8,5] ={1};
(i) [V]=p™, [V/IV.S]| = |Cv(S)| = [[V. 8,5, 8]l = p" and |[V, S, S]| = p™;

(iii) if p is odd then |V/Cy(s)| = p°", while if p = 2 then |V/Cy(s)| = p*", for
all1# s € S; and

(iv) V/[V,S] and Cy(S) are irreducible GF(p)Ng(S)-modules upon restriction.

Proof. See [PR06, Lemma 4.10]. O

We are also interested in the natural modules for SU5(p™) and Sz(2").

Definition 2.2.12. The natural modules for SU;(p™) and Sz(2") are the unique
irreducible GF(p)-modules of smallest dimension. Equivalently, they may be
viewed as the restrictions of a “natural” SLs(p**)-module and Sp,(2")-module

respectively.

Lemma 2.2.13. Suppose G = SUs(p"), S € Syl,(G) and V is a natural module.
Then the following hold:

(i) Cy(S)=1[V,Z(S)] =V, S,S] is of order p*";
(i) Cv(Z(S)) = [V, S] is of order p*"; and

(iii) V/[V,S], [V, S]/Cy(S) and Cy(S) are irreducible GF(p) N (S)-modules upon

restriction.
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Proof. See [PR06, Lemma 4.13]. O

Lemma 2.2.14. Suppose G = Sz(2"), S € Syl,(G) and V' is the natural module.

Then the following hold:

(i) [V, S] has order 257
(ii) [V,S)] = Cv(US)) = [V, S, S] has order 22";
(i) Cy(S) = [V, S, Q(S)] = [V,(S), ] = [V, 5,5, 5] has order 2"; and
(iv) V/[V,S], [V, 8]/Cy((S)), Cy((S))/Cv(S) and Cy(S) are all irreducible

GF(p)Ng(S)-modules upon restriction.

Proof. This is an elementary calculation in Sp,(2"). O

2.3 Module Results, Minimal Polynomials and

FF-Actions

Given the descriptions of rank 1 Lie type groups and their modules in Section 2.2,
we now require ways to identify them. Furthermore, we would like to have ways
to completely determine a group G with a strongly p-embedded subgroup, and
its actions, given reasonably general hypotheses. In this section, we provide
some methods which aid in these goals. Importantly, this is where we introduce
FF-modules, quadratic action and Hall-Higman type arguments. We also take
this opportunity to list some generic module results which will be used throughout

this work.
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Lemma 2.3.1 (Maschke’s Theorem). Let G be a finite group and k a field whose
characteristic does not divide the order of G. If V' is a kG-module, then V =

Vi X -+ XV, where each V; is a simple kG-module fori € {1,... n}.

Proof. See [Asc00, (12.9)]. O

Lemma 2.3.2. Let G be a group and V be a faithful GF(p)G-module. Let T €
SyL,(OP(G)) and assume that V = (Cy(T)¢). Then V = [V, O07(G)]Cy(O"(G)).

Proof. See [Che01, Lemma 1.1]. O

We require, at least when p is an odd prime, a way to distinguish between SLy(p™)
and PSLy(p™) from a strongly p-embedded hypothesis. Additionally, as can be
seen from the Main Theorem, none of the configurations we are interested in have
Ree groups as their automizers, so we will also have to dispel of this case later on.

Generally, we achieve this using quadratic action.

Definition 2.3.3. Let G be a finite group and V' a GF(p)G-module. If A <
G satisfies [V, A, A] = {1} # [V, A], then A acts quadratically on V and if

[V, A, A, A] = {1} and A is not quadratic or trivial on V', then A acts cubically.

Lemma 2.3.4. Suppose that V is an irreducible GF(p)-module for G = Ree(3")
or G = PSLy(p") 2 SLao(p"). If there is a non-trivial subgroup A of G with
[V, A4, A] = {1}, then [V, 4] = [V,G] = {1}.

Proof. Since the Sylow 2-subgroups of PSLy(p™) are either abelian or dihedral and
the Sylow 2-subgroups of Ree(3") are abelian, this follows from [Gor07, (1.3.8.4)].
O
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For p > 5, the pairs (G,V) where G is a group acting faithfully on a module V'
such that G is generated by elements which act quadratically on V' were classified
by Thompson. Thompson’s results were extended to the prime 3 by work of Ho.
It seems imperative to emphasize that the these works predate the classification of
finite simple groups. For convenience, the version we use here is by Chermak and
utilizes the classification of finite simple groups, although as we stressed earlier,

these groups will only ever appear as local subgroups in any arguments.

Lemma 2.3.5. Suppose G is a K-group which has a strongly p-embedded subgroup
for p an odd prime and V be a faithful, irreducible GF(p)-module for G. Suppose
there is a p-subgroup A < G such that [V, A, A] = {1} and G = (A%). Then one

of the following occurs:

(i) G = SLy(p™) where p is any odd prime;
(i) G = (P)SU,(p™) where p is any odd prime;
(i) G =2 - Alt(5) = SLy(5) when p = 3; or
(iv) G = 21 Alt(5) when p = 3.

Proof. This follows from [Che02], [Che04], Lemma 2.3.4 and a comparison with

the groups listed in Proposition 2.1.24, Proposition 2.1.25. O]

More than just a quadratic module, the natural module for SLy(p™) provides the
minimal example of an FF-module. FF-modules are named due to how they arise
as counterexamples to Thompson factorization (see [Asc00, 32.11]), which aims to
factorize a group into two p-local subgroups. One of these p-local subgroups is the

normalizer of the Thompson subgroup of a fixed Sylow p-subgroup. Independent of
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FF-modules, the Thompson subgroup is incredibly useful in studying the structure
of a p-group and will play an important role in the analysis of subgroups of Sylow

p-subgroups of Gy(p™) and PSU,(p™) later.

Definition 2.3.6. Let S be a finite p-group. Set A(S) to be the set of all
elementary abelian subgroups of S of maximal rank. Then the Thompson subgroup

of S is defined as J(S) := (A ] A € A(9)).

Proposition 2.3.7. Let S be a finite p-group. Then the following hold:

(i) J(S) is a non-trivial characteristic subgroup of S;
(ii) for Ae A(S), A=Q(Cs(A));
(i) CS(I(S) = AZ(I(S)) = Nacags) Ai and

(iv) if J(S) <T < S, then J(S) = J(T).

Proof. See [KS06, 9.2.8]. O
Definition 2.3.8. Let G be a finite group and V' a GF(p)-module. If there exists
A < G such that
(i) A/C4(V) is an elementary abelian p-group;
(i) [V, A] #{1}; and
(iii) [V/Cv(A)] < |A/Ca(V)]

then V' is a failure to factorize module (abbrev. FF-module) for G and A is an

offender on V.
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The following proposition describes a fairly natural situation in which one can
identify an FF-module from a group failing to satisfy Thompson factorization.

This result is well known and the proof is standard (see [KS06, 9.2]).

Proposition 2.3.9. Let G be a finite group with S € Syl (G) and F*(G) = O,(G).
Set V := (QZ(5)Y). Then O,(G) = 0,(Cs(V)) and O,(G/Ca(V)) = {1}.
Furthermore, if UZ(S)) < V and J(S) £ Cs(V) then V is an FF-module for
G/Cq(V).

As a counterpoint to the determination of groups with a strongly p-embedded
subgroup, whenever a group with a strongly p-embedded subgroup has an
associated FF-module, we can almost completely determine the group and its
action without the need for a IC-group hypothesis. Indeed, the following lemma

relies only on a specific case in the Local C(G,T)-theorem [BHS06].

Lemma 2.3.10. Suppose G = Op/(G) has a strongly p-embedded subgroup and a
faithful FF-module V.. Then G = SLy(p") and V/Cy(OP(Q)) is the natural module.

Proof. See [Henl0, Theorem 5.6]. O

Given a way to characterize a natural SLo(p™)-module, it is a natural to ask
whether we can characterize some of the other modules, particularly those

irreducible modules described in Section 2.2.

Lemma 2.3.11. Let G = SLy(p") and S € Syl,(G). Suppose that V' is a module
for G over GF(p) such that [V, S, S] = {1} and such that [V,OP(G)| # {1}. Then
[V/Cy(OP(G)), 0P(G)] is a direct sum of natural modules for G.

Proof. See [Che04, Lemma 2.2]. O
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Lemma 2.3.12. Let G = SLy(p"), S € Syl (G) and V an irreducible
GF(p)G-module. If |V| < p*" then both Cy(S) and V/[V,S] are irreducible as
N¢(S)-modules, |Cy(S)| = |V/[V,S]| and either

(i) V is natural SLy(p™)-module for G = SLy(p"), |V| = p** and |Cy(S)| = p";
(ii) V is natural Q5 (p™/?), n is even, |V| = p* and |Cy(S)| = p™/?;
(iii) V' is natural Q3(p"), p is odd, |V| = p*" and |Cy(S)| = p"; or

(iv) V is a triality module, n = 3r for some r € N, |V| = p*/3 and |Cy(5)| =

pn/?”

Proof. This is [CD91, Lemma 2.6]. O

We may relax the restrictions in the definition of an FF-module to allow for a
greater class of module setups. An an example, the natural modules for SU3(p™)
and Sz(2") are not FF-modules but satisfy the ratio |V/Cy(A)| < |A/Ca(V)|?* for
V' the module and A an elementary abelian p-group. Such modules are referred to

as 2F-modules.
Definition 2.3.13. Let G be a finite group and V' a GF(p)-module. If there exists
A < G such that

(i) A/C4(V) is an elementary abelian p-group;

(i) [V, A] # {1}; and

(iii) [V/Cv(A)| < [A/Ca(V)[?

then V is 2F-module for G.
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If G is an almost quasisimple group with a 2F module V', then both G and V'
are known by work of Guralnick, Lawther and Malle [GMO02], [GMO04], [GLMO07].
Importantly for applications in this work, even when G is not almost quasisimple,
we have good idea of the structure of groups which have a strongly p-embedded

subgroup and a 2F-module which admits a quadratically acting element.

First we introduce two groups that have associated GF(p)-modules which exhibit
2F-action and arise heavily in the local actions in later chapters. In addition, we
provide some “characterizations” of these groups, and some structural properties

of the groups and the associated 2F-module we are interested in.

Lemma 2.3.14. There is a unique group G of shape (3 x 3) : 2 which has a
faithful quadratic 2F-module V', namely the generalized dihedral group of order 18.
Moreover, for S € Syly(G) and V' an associated faithful quadratic 2F-module, the

following hold:

(i) |V] =2* and G is unique up to conjugacy in GL4(2);
(i) {G,Dih(18)} = {H | |H| = 18,05(H) = {1} and H = O% (H)};

(iii) there are exactly four overgroups of S in G which are isomorphic to Sym(3),

any two of which generate G; and

(IV) CGL4(2)<G) = {1} and |OutGL4(2)(G)| = 4

Proof. This follows directly from calculations in MAGMA, working explicitly with

matrices in GL4(2) and comparing with the Small Groups Library. O

Indeed, in the above lemma G is also isomorphic to PSU3(2)" and is listed in the

Small Groups Library as SmallGroup(18,4).
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Lemma 2.3.15. There is a unique group G of shape (Qg X Qg) : 3 which has a
faithful quadratic 2F-module V.. Moreover, for S € Syls(G) and V' an associated
faithful quadratic 2F-module, the following hold:

(i) |V| = 3" and G is determined uniquely up to conjugacy in GL4(3);

(i) G is the unique group of order 2*.3 or 2.3 such that O3(G) = {1}, Z(G) #
{1}, G = O¥(G) and, if the order is 25.3, there exists at least two distinct

normal subgroups of G of order 8;

(iii) there are exactly five overgroups of S in G which are isomorphic to SLy(3),

any two of which generate G;
(iv) Noyc)(S) = Z(G) =2 x 2;
(v) Aut(G) = Auter,s)(G), CorLy3)(G) = Z(G) and |Out(G)| = 22.3; and
(vi) if U <V is Ng(S)-invariant and |U| = 3, then |(U%)| = 9.

Proof. This follows directly from calculations in MAGMA, working explicitly with

matrices in GL4(3) and comparing with the Small Groups Library. O

The above group is listed in the Small Groups Library as SmallGroup(192,1022).

We now give an important characterization of certain “small” groups which have
an associated non-trivial quadratic 2F-module. The proof of this result will be

broken up over a series of lemmas.

Lemma 2.3.16. Assume that G = OP(G) is a K-group that has a strongly
p-embedded subgroup, S € Syl,(G), V s a faithful GF(p)-module with
Cy(OP(G)) = {1} and V = (Cy(S)Y). Furthermore, assume that m,(S) > 2
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and Oy (G) < Z(G). If there is a p-element 1 # x € S such that [V, z,z] = {1}
and |V/Cy(z)| = p? then either:

(i) p is odd, G = L = (P)SU,(p) and V is the natural module;
(ii) p is arbitrary, G = SLy(p?) and V is the natural module; or

(iii) p=2, G =L = PSLy(4) and V is a natural Qy (2)-module.

Proof. Applying the characterization in Proposition 2.1.25 and using Lemma 2.3.5
when p is odd, we deduce that G is a quasisimple group and G/Z(G) is isomorphic
to a simple rank 1 group of Lie type. It follows now from Lemma 2.3.4 that
G = SLy(p"*), (P)SU,(p™) or Sz(2***1) for n > 1, and by [DS85, (5.10)] we may
assume that z € Q(Z(S5)). Then, applying Lemma 2.2.1 (iv), (v), Lemma 2.2.2
(vi), (vii) and Lemma 2.2.3 (vi), we have that G is generated by three, four or
three conjugates of x respectively and as |V/Cy (x)| = p?, we infer that that |V| <
p%, p® and 2° respectively. Since the minimal degree of a GF(p)-representation
is 2(n 4+ 1), 6n or 4(2n + 1) respectively, we deduce that G = (P)SU,(p) and
p = 3; or G = SLy(p?). In the former case, since (P)SU,(p) is generated by
three conjugates of z by Lemma 2.2.2 (vi), it follows that |V| < p° so that V is
a natural module and (i) holds. In the latter case, since SLy(p?) is generated by
at most three conjugates, |V| < p® and comparing with Lemma 2.3.12, there is a
unique irreducible constituent within V', and as V is admits quadratic action, this
constituent is a natural SLy(p?)-module, or a natural € (2)-module when p = 2.
Then using that Cy(OP(G)) = {1}, Lemma 2.3.2 implies that V' = [V, OP(G)] is

irreducible, yielding outcomes (ii) and (iii). O
Lemma 2.3.17. Assume that G = OP(G) is a K-group, S € Syl,(G), V is a
faithful GF (p)-module with Cy(OP(G)) = {1} and V = (Cy(S)%). Furthermore,
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assume that m,(S) =1, Ng(S) = Na(Q(Z(S))) is strongly p-embedded in G, and
G is not p-solvable. If there is a p-element 1 # x € S such that [V, z,x] = {1} and
|V/Cy(z)| = p? then either:

(i) p=3,G=L=2-Alt(5) or 2™ Alt(5) and V is the unique irreducible

quadratic 2F-module of dimension 4; or

(ii) p is arbitrary, G = L = SLy(p) and V is the direct sum of two natural
SLy(p)-modules.

Proof. Suppose first that p = 2. Applying Proposition 2.1.24, we deduce that
S is generalized quaternion and G = O« (G)Cg(€2(S)). But now, C(2(S)) =
Na(2Z(S))) = Ng(9S) is solvable so that G itself is solvable, a contradiction
to the initial hypothesis. Hence, p is odd. Applying Lemma 2.3.5 and using
that G is not p-solvable, we deduce that for L := (z%), L/CL(U) = SLy(p) for
p = 5, 2 Alt(5) or 2174 Alt(5) for U some non-trivial irreducible constituent
of V|r. Indeed, applying Proposition 2.1.24, G = L and Cg(U) is a p’-group.
Now, by coprime action V' = Cy(Cg(U)) x [V,Cq(U)] and U < Cy(Cq(U)).
Applying Lemma 2.3.10, if 2 - Alt(5) or 214 Alt(5) when p = 3, we have that
\U/Cy(s)] = 32 so that [V, Cq(U)] < Cy(s) so that [V,Cq(U)] < Cv((G)) = {1}
and as V' is a faithful module, Cs(U) = {1}. Indeed, by Lemma 2.3.2 and using

that Cy(G) = {1}, V = U is an irreducible module and outcome (i) holds.

Hence, we may assume that G/Cq(U) = SLy(p) and p > 5. Then Cy(Cs(U)) is a
quadratic module for G/Cs(U) and Lemma 2.3.11 and using that Cy(G) = {1},
Cy(Cg(U)) is a direct sum of at most two natural SLs(p)-modules. Suppose
first that Cy(Cg(U)) is a natural SLy(p)-modules so that U = Cy(Cg(U))
and |U/Cy(s)] = p.  Then [[V,Ce(U)]/Ccqwy(s)] = p and applying
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Lemma 2.3.10, we deduce that G/Cq([V,Cq(U)]) = SLy(p) and [V,Cq(U)] is a
natural SLy(p)-module. Since [V, Cq(U)] is acted upon non-trivially by Cg(U)
and Cg(U) is a p'—group, we conclude that Cg([V,Ce(U)]))Ce(U)/Ca(U) =
Z(G/Ca(U)), Ca([V,Ca(U))Ca(U)/Ca([V,Ca(U)]) = Z(G/Ce(]V, Ca(U)])) and
G/Cq([V,Ce(U)]) N Cg(U) is a central extension of PSLy(p) by a fours group.
Since the 2-part of the Schur multiplier of PSLy(p) has order 2, G is perfect and
G = OY(Q@), this is a contradiction. Suppose now that Cy (Cg(U)) is a direct
sum of two natural SLs(p)-modules. Then |Cy(Cq(U))/Cey(cqwy(s)| = p* and
we deduce that [V, Cq(U)] < Cy(s) so that [V,Cq(U)] < Cy((G)) = {1} and as
V is a faithful module, C¢(U) = {1} and outcome (ii) holds. O

Lemma 2.3.18. Assume that G = OV(G), S € SylL(G), V is a faithful
GF(p)-module with Cy(OP(G)) = {1} and V = (Cy(S)Y). Furthermore, assume
that m,(S) = 1, Ng(S) = Na(Q(Z(S))) is strongly p-embedded in G, and G
is p-solvable. If there is a p-element 1 # x € S such that [V,z,z] = {1} and

\V/Cy(x)| = p? then, setting L := (z), one of the following holds:

(i) p = 2, L = SU3(2), G is isomorphic to a subgroup of SUs(2) which
contains SU3(2)" and V' is a natural SU3(2)-module viewed as an irreducible

GF(2)G-module by restriction;

(ii) p =2, L = Dih(10), G = Dih(10) or Sz(2) and V is a natural Sz(2)-module

viewed as an irreducible GF(2)G-module by restriction;

(iii) p =3, G =L = (Qs xQs) : 3 and V = Vi x Vo where V; is a natural
SLy(3)-module for G/Cq(V;) = SLa(3);

(iv)p =2, G=L=3x%x3):2andV =V, xVy where V; is a natural
SLy(2)-module for G/Cq(V;) = Sym(3); or
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(v) p=2,L=(3x%x3):2, G=(3x3):4,V isirreducible as a GF(2)G-module
and V|, = Vi x Vo where V; is a natural SLy(2)-module for L/Cp(V;) =

Sym(3).

Proof. Let L := (z%) so that L = [Q(S),0,(G)]Q(S) by Proposition 2.1.24.
Since Ng(S) = Ng(2(S)), we deduce that G = LS so that OP(L) = OP(G) =
[€2(S),0,(G)] and Cy(OP(L)) = {1}. Moreover, any element of S centralizes
Q(Z(S)) € Syl,(L) but does not centralize L, for otherwise, since S contains a
unique subgroup of order p, [2(Z(95)), L] = {1} and Q(Z(S)) < G. Thus, S/Q(S)
embeds into Out(L). Finally, using Lemma 2.3.2, V' = [V,OP(L)] and so both
L and V are determined in [Che0l, Lemma 4.3]. We examine each of the cases

individually, using MAGMA for the explicit calculation in Out(L).

First, if L = SLay(p) then it follows from Lemma 2.2.1 (viii) that Outg(L) = {1},
L = G and V is a direct sum of two natural modules. If L = Dih(10) then
Aut(L) = Sz(2) and it follows that G = Dih(10) or Sz(2), and V' is the restriction

of a natural Sz(2)-module to G.

Suppose that L = SU3(2)’. Then a Sylow 2-subgroup of Aut(L) is isomorphic
to a semidihedral group of order 16 and since m,(S) = 1, |[S| < 8 and S is
either cyclic or quaternion. Moreover, 54 < |G| < 216 and |G| = 54 if and
only if G = L = SUj3(2)". Suppose that |G| = 216 and S is cyclic. Utilizing
the small group library in MAGMA, we identify a unique group H such that
(Q(S)) = SU3(2)". But in such a group, Ng(T) < Nx(UT)) for T € Syl,(H),
a contradiction to our hypothesis. Employing similar methods when |G| = 108,
or when |G| = 216 and S is quaternion, gives that G is isomorphic to any index

2 subgroup of SU3(2) resp. G = SUj3(2). In all cases, V is the restriction of a
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natural SUs(2)-module to G.

Suppose that L = (Qg x Qg) : 3. Since G acts faithfully on V, of order 3%, G
embeds into GL4(3) and since the embedding of L is uniquely determined up to
conjugacy in GL4(3), it follows that G embeds into its normalizer in GL4(3). For
H the image of L in GL4(3), we have that a Sylow 3-subgroup of Ngr,3)(H) is
elementary abelian of order 9. Since m,,(S) = 1, we have that G = L in this case

and V is as described in [Che01, Lemma 4.3].

Finally, suppose that L = (3 x 3) : 2. Since G acts faithfully on V, of order 2*,
G embeds into GL4(2) and since the embedding of L is uniquely determined up
to conjugacy in GL4(2), it follows that G embeds into the normalizer of its image.
For H the image of L in GL4(2), we have that a Sylow 2-subgroup of Ny, 2)(H)
is a dihedral group of order 8 and there is a unique proper overgroup of H in
Ngr,2)(H) with a cyclic Sylow 2-subgroup. Moreover, this group is irreducible in
GL4(2), is defined uniquely up to conjugacy in GL4(2) and is isomorphic to any
index 2 subgroup of PSU3(2). We denote this group (3 x 3) : 4 and it follows that
either G = L = (3x3):2o0r G = (3x3):4. then V is as given in [Che01, Lemma
4.3]. 0

The following proposition is the summation of the previous three lemmas. This

situation occurs frequently throughout the later sections of this work.

Proposition 2.3.19. Assume that G = OY(G) is a K-group that has a
strongly p-embedded subgroup, S € Syl (G), V is a faithful GF(p)-module with
Cy(OP(@)) = {1} and V = (Cy(S)¥). Furthermore, assume that Ng(S) =
Na(QUZ(9))) and if my(S) = 2, assume that Oy (G) < Z(G). Suppose that there

is a p-element 1 # x € S such that [V,z,x] = {1} and |V/Cy(z)| = p?. Setting
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L = (z%) one of the following holds:

(i) pis odd, G = L = (P)SU,(p) and V is the natural module;
(ii) p is arbitrary, G = SLy(p®) and V is the natural module;
(iii) p=2, G =L = PSLy(4) and V is a natural Qy (2)-module;

(iv) p=3, G =L =2 Alt(5) or 2" Alt(5) and V is the unique irreducible

quadratic 2F-module of dimension 4;

(v) p is arbitrary, G = L = SLa(p) and V is the direct sum of two natural

SLo(p)-modules;

(vi) p = 2, L = SU3(2)', G is isomorphic to a subgroup of SUs(2) which
contains SU3(2)" and V' is a natural SU3(2)-module viewed as an irreducible

GF(2)G-module by restriction;

(vii) p =2, L = Dih(10), G = Dih(10) or Sz(2) and V is a natural Sz(2)-module

viewed as an irreducible GF(2)G-module by restriction;

(viii) p =3, G = L = (Qs xQs) : 3 and V = Vi x Vu where V; is a natural
SLy(3)-module for G/Cq(V;) = SLy(3);

(ix) p =2, G=L=3x%x3):2andV =V, xVy where V; is a natural
SLs(2)-module for G/Cq(V;) = Sym(3); or

(x) p=2,L=(3x3):2, G=(3x%x3):4,V isirreducible as a GF(2)G-module
and V] = Vi x Vo where V; is a natural SLy(2)-module for L/Cp(V;) =

Sym(3).
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While most of the groups and modules above have been described earlier in this
section, we list some properties of the groups and modules occurring in (i) and

(ix) above.

Lemma 2.3.20. Suppose that G = 2 - Alt(5) or 2. Alt(5), S € Syl;(G) and V
is the associated faithful quadratic 2F-module. Then Cy(S) = [V, S] has order 3
and V/[V,S] and [V, S| are irreducible as GF(3)Ng(S)-modules.

Proof. This follows directly from calculations in MAGMA , working explicitly with

the matrices in Sp,(3). O

Lemma 2.3.21. Suppose that G = (3x3) : 4, S € Syl,(G) and V is the associated

faithful quadratic 2F-module. Then the following hold:

(i) [V, S] has order 23;

(i) [V,Q(9)] = Cv(2(S)) = [V, S, S] has order 2%; and

(iii) Cy(S) =[V,S,Q9)] = [V,Q(S),S] =1V, S,S,S] has order 2.
Proof. This follows directly from calculations in MAGMA, working explicitly with
the matrices in GL4(2). O

Lemma 2.3.22. Suppose that (G, V') satisfies the hypothesis of Proposition 2.3.19.
In addition, assume that V is generated as a GF(p)G-module by an
N¢(S)-invariant subspace of order p. Then G = PSLy(4), Dih(10), Sz(2), (3%x3) : 2

or (3x3):4 andV is as described in Proposition 2.3.19.

Proof. We apply Proposition 2.3.19 to get the list of candidates for G and V.

By Lemma 2.2.13 (iii), Lemma 2.2.6 (vi) and Lemma 2.3.20, if (G, V) satisfy (i),
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(ii), (iv) or (vi), then there are no Ng(S)-invariant subspaces of order p. By
Lemma 2.2.7 and Lemma 2.3.15 (vi), if (G, V) satisfy (v) or (viii) then V is not
generated by a subspace of order p. This leaves outcomes (iii), (vii), (ix) and (x),

as required. O

We now generalize even further than quadratic or cubic action by investigating the
minimal polynomial of p-elements in a representation, noticing that in quadratic
and cubically acting elements, the minimal polynomial is of degree 2 and 3
respectively. We cannot hope to make such strong statements as in the earlier
cases, but for larger primes and solvable groups, we have decent control due to the

Hall-Higman theorem.

Theorem 2.3.23 (Hall-Higman Theorem). Suppose that G is p-solvable group
with O,(G) = {1} and V a faithful GF(p)-module for G. If v € G has order p"
and [V, z;r] = {1} then one of the following holds:

(ii) p is a Fermat prime, the Sylow 2-subgroups of G are non-abelian and r >

n n—1.
p —D ; or

(iii) p = 2, the Sylow q-subgroups of G are non-abelian for some Mersenne prime

q=2"—-1<2"andr >2"—-2""",

Proof. See [HH56, Theorem B]. O

Whenever p > 5, applying the Hall-Higman theorem to the situation where the
group G has a strongly p-embedded subgroup and some associated cubic module,

we can characterize G completely. As intimated in Section 2.1, a nice way to
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impose cubic action, particularly in the amalgam method, is through the use of

critical subgroups.

Corollary 2.3.24. Suppose that G = O (G) is a K-group which has a strongly
p-embedded subgroup, S € Syl,(G) and V is a faithful GF(p)-module. Suppose
that p > 5 and there is s € S of order p" such that [V,s,s,s|] = {1}. Then
G = (P)SL,(p™) or (P)SU,(p™) for any prime p > 5, orp =5, G = 3 - Alt(6) or

3 - Alt(7) and for W some irreducible constituent of V, |W| > 5°.

Proof. Suppose first that m,(S) = 1. Then, by [Gor07, 1.5.4.10 (ii)], S is cyclic
and so we may as well assume that [V, Q(S), Q(5),Q2(S)] = {1}. Suppose first that
G is p-solvable. Since p" — p"~! = p"}(p — 1) > 4, the Hall-Higman theorem
implies that O,(G) # {1}, a contradiction since G has a strongly p-embedded

subgroup.

Suppose now that m,(S) = 1 and G is not p-solvable. Since G = O¥(G), by
Proposition 2.1.24 we have that G/O,,(G) is a simple group with a cyclic Sylow
p-subgroup. Form X := Q(S)O,(G). Then X is a p-solvable group and V is a
faithful module for X by restriction. Since p > 5, p" —p» ! = p"(p—-1) > 4
and by the Hall-Higman theorem O,(X) # {1}. In particular, Q(S) < X and
[Oy(G),2S)] < O,(G)NQS) = {1}. But then, since G/Oy(G) is simple,
0,(G),G] = [0y(G),(2(S5)%)] = {1} and O,(G) < Z(G). Hence, G is a
quasisimple group with a cyclic Sylow p-subgroup such that the degree of the
minimal polynomial of some p-element is 3. Such groups and their associated

modules are determined in [Zal99].

Suppose that m,(S) > 2 so that G/O,(G) is determined by Proposition 2.1.25,

and let X = 0, (G)Q(Z(S)). Unless G/O5(G) = Sz(32) : 5, we have that for any
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1 # s € QS), G = (s%. In this case, forming X := (s)O,(G), we have that
X acts faithfully on V' with s acting cubically, and by the Hall-Higman theorem,
(s) < X. But then [s,0,(G)] < (s) N Oy(G) = {1}. Thus, [G,0,(G)] =
[(s9),0,(@)] = [5,0,(G)]¢ = {1} and O,(G) < Z(G). Since G = O¥(G) is
perfect, G is a perfect central extension of G/O,(G). If G/O,(G) is isomorphic
to a rank 1 simple group of Lie type in characteristic p, then the result follows
from Lemma 2.2.1 (vii) and Lemma 2.2.2 (ix). If G/Oy(G) = Alt(2p) then, as
p > 5, G has no faithful modules which witness cubic action by [KZ04]. Hence, by
Proposition 2.1.25, we are left with a finite number of perfect p’-central extensions
of simple groups. We verify that none of these groups have a faithful module which
witness cubic action using MAGMA, although there exists results in the literature

which substantiate this claim.

So assume that G/O5(G) = Sz(32) : 5. Then, for s € (5), we have that for
L = (s%), L/Os(L) = Sz(32) and following the reasoning above, we have that
Os (L) < Z(L). Since the Schur multiplier of Sz(32) is trivial and Sz(32) is perfect,
we have that O% (L) = Sz(32). But O% (L) acts faithfully on V, with s € SN L
acting cubically, and since Sz(32) has no cubic modules, we have a contradiction.

Hence, the result. O
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CHAPTER 3

FUSION SYSTEMS

In this chapter, we begin by setting up concepts, terminologies and elementary
results related to fusion systems, with an emphasis on saturated fusion systems.
All of these results are available in the literature, and we follow the standard
conventions there. Then, we provide results which aid in determining automizers
of essential subgroups of fusion systems. These results are crucial in the
determination of fusion systems in the Main Theorem, as well as Theorem D and
Theorem E. While these results are probably well known among those working on
fusion systems, some of them do not appear to be formally recorded anywhere
and so we take the opportunity here to write them down, along with proofs.
Finally in this section, we unearth some exotic fusion systems supported on a
Sylow 3-subgroup of the sporadic simple group F3. One of these exotic systems
appears as a configuration when applying the amalgam method later in this work
and so, we take time to construct this system here, as well as proving some results

about it, to ease presentation in later chapters.
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3.1 An Introduction to Fusion Systems

In this section, we set up notation and terminology, and list some properties
of fusion systems. The standard references for the study of fusion systems are

[AKO11] and [Crall] and most of what follows may be gleaned from these texts.

Definition 3.1.1. Let G be a finite group with S € Syl (G). The fusion category
of G over S, written Fs(G), is the category with object set Ob(Fs(G)) = {Q :
Q < S} and for P,Q < S, Morg, ) (P, Q) := Homg(P,Q), where Homg(P, Q)
denotes maps induced by conjugation by elements of G. That is, all morphisms in

the category are induced by conjugation by elements of G.

Definition 3.1.2. Let S be a p-group. A fusion system F over S is a category
with object set Ob(F) := {@ : @ < S} and whose morphism set satisfies the

following properties for P,Q < S:

e Homg(P,Q) C Morz(P,Q) C Inj(P,Q); and

o each ¢ € Morz(P, Q) is the composite of an F-isomorphism followed by an

inclusion,

where Inj(P, Q) denotes injective homomorphisms between P and (). To motivate
the group analogy, we write Homz(P, Q) := Morr(P,Q) and Autz(P) :=
Homz (P, P).

Two subgroups of S are said to be F-conjugate if they are isomorphic as objects
in F. We write Q7 for the set of all F-conjugates of Q. We say a fusion system
is realizable if there exists a finite group G with S € Syl (G) and F = Fs(G).

Otherwise, the fusion system is said to be exotic.
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Definition 3.1.3. Let F be a fusion system on a p-group S. Then H is a subsystem
of F, written H < F, on a p-group T if T' < S, H C F as sets and H is itself a
fusion system. Then, for Fi, F, subsystems of F, write (Fi, F2) for the smallest

subsystem of F containing F; and Fs.

Following are the most important concepts concerning p-subgroups of a fusion

system JF, at least for the purposes of this thesis.
Definition 3.1.4. Let F be a fusion system over a p-group S and let ) < S. Say
that @ is

o fully F-normalized if |[Ns(Q)| > |Ns(P)| for all P € Q7;

o fully F-centralized if |Cs(Q)| > |Cs(P)| for all P € Q”;

o fully F-automized if Auts(Q) € Syl,(Autx(Q));

o receptive in F if for each P < S and each ¢ € Isox(P, @), setting

Ny ={g € Ng(P) : ¢cg € Auts(Q)},

there is ¢ € Homz(Ny, S) such that ¢|p = ¢;
o S-centric if C5(Q) = Z(Q) and F-centric if P is S-centric for all P € Q”;
o S-radical if O,(Out(Q)) N Outs(Q) = {1};
e F-radical it O,(Outz(Q)) = {1}; or

o F-essential if Q) is F-centric, fully F-normalized and Outz(Q) contains a

strongly p-embedded subgroup.
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If it is clear which fusion system we are working in, we will refer to subgroups as

being fully normalized (centralized, centric etc.) without the F prefix.

For a fusion system F, we set £(F) to be the set of essential subgroups of F and
note that essential subgroups of S are fully F-normalized, F-centric, F-radical
subgroups by definition. We also remark that any JF-radical subgroup is also

S-radical.

We mostly care about saturated fusion systems as they most closely parallel groups

and have the most interesting applications.

Definition 3.1.5. Let F be a fusion system over a p-group S. Then F is saturated

if the following conditions hold:

(i) Every fully F-normalized subgroup is also fully F-centralized and fully

F-automized.

(ii) Every fully F-centralized subgroup is receptive in F.

By a theorem of Puig [Pui76], the fusion category of a finite group Fg(G) is a

saturated fusion system.

From this point on, we implicitly assume that the fusion systems we study are
saturated, although some of the results we describe apply in wider contexts and

can even be used to determine whether or not a fusion system is saturated.

Definition 3.1.6. A local CK-system is a saturated fusion system F on a p-group
S such that Autz(P) is a K-group for all P < S.

Local CKC-systems provides a means to apply the results from Chapter 2 which

relied on a K-group hypothesis. This allows for minimal counterexample arguments
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in fusion systems and provides a link between fusion systems and the classification
of finite simple groups. That is, if G is a finite group which is a counterexample
to the classification with |G| minimal subject to these constraints, then Fg(G) is

a local CK-system for S € Syl (G).

We now present arguably the most important tool in classifying saturated fusion
systems. Because of this, we need only investigate the local action on a relatively
small number of p-subgroups to obtain a global characterization of a saturated

fusion system.

Theorem 3.1.7 (Alperin — Goldschmidt Fusion Theorem). Let F be a saturated

fusion system over a p-group S. Then

F = (Aut£(Q) | Q is essential or Q = S).

Proof. See [AKO11, Theorem 1.3.5]. O

Along these lines, another important notion is for a p-subgroup to be normal in a

saturated fusion system.

Definition 3.1.8. Let F be a fusion systems over a p-group S and @ < S. Say
that @ is normal in F if Q < S and for all P,R < S and ¢ € Homxz(P, R), ¢
extends to a morphism ¢ € Homz(PQ, RQ) such that ¢(Q) = Q.

It may be checked that the product of normal subgroups is itself normal. Thus,
we may talk about the largest normal subgroup of F which we denote O,(F) (and
occasionally refer to as the p-core of F). Further, it follows immediately from the
saturation axioms that any subgroup normal in S is fully normalized and fully

centralized.
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Definition 3.1.9. Let F be a fusion system over a p-group S and let ) be a
subgroup. The normalizer fusion subsystem of @), denoted Nx(Q), is the largest

subsystem of F, supported over Ng(@), in which @ is normal.

It is clear from the definition that if F is the fusion category of a group G i.e.
F = Fs(G), then Nz(Q) = Fny)(Ne(Q)). The following result is originally
attributed to Puig [Pui06].

Theorem 3.1.10. Let F be a saturated fusion system over a p-group S. If QQ < S

is fully F-normalized then Nx(Q) is saturated.

Proof. See [AKO11, Theorem 1.5.5]. O

Definition 3.1.11. Let F be a fusion system over a p-group S and P < Q < S.

Say that P is F-characteristic in Q if Autz(Q) < Nawo)(P).

Plainly, if @ < F and P is F-characteristic in @), then P < F.

A slightly weaker notion of normality in fusion systems in strong closure.

Definition 3.1.12. Let F be a fusion system over a p-group S. Then @ is strongly

closed in F if zao < @ for all @« € Homg(z, S) whenever z € Q.

We now present a link between normal subgroups of a saturated fusion system F

and its essential subgroups.

Proposition 3.1.13. Let F be a saturated fusion system over a p-group S. Then
Q@ is normal in F if and only if Q) is contained in each essential subgroup, Q) is

Autz(E)-invariant for any essential subgroup E of F and Q is Aut£(S)-invariant.

Proof. See [AKO11, Proposition 1.4.5]. O
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As for finite groups, we desire a more global sense of normality in fusion systems,
not just restricted to p-subgroups. That is, we are interested in subsystems of a

fusion system F which are normal.

Definition 3.1.14. Let F be a saturated fusion system over a p-group S. A fusion

system & is weakly normal in F if the following conditions hold:

(i) & is a saturated subsystem of F over T' < S
(ii) T is strongly F-closed in S;
(iii) *€ = €& for all @ € Autz(T); and

(iv) for each P < T and each ¢ € Homxz(P,T) there are o € Autz(7T) and
¢o € Homg(P, T) such that ¢ = « o ¢y.

A fusion system &£ is normal in F, denoted & < F, if £ is weakly normal in F and
each a € Autg(T) extends to some @ € Autx(T'Cs(T)) which fixes every coset of

Z(T) in Cs(T).

Conditions (iii) and (iv) are referred to as the invariance condition and Frattini
condition respectively. As one would hope, for a p-subgroup @, if @ < F, then
Fo(Q) < F. As is the case with groups, we refer to a saturated fusion system as

simple if it contains no proper non-trivial normal subsystems.

We shall describe some important subsystems associated to a saturated fusion
which have a natural analogues in finite group theory. More details on the

construction of such subsystems may be found in Section 1.7 of [AKO11].

Definition 3.1.15. Let F be a saturated fusion system on a p-group S. Say a
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subsystem & has index prime to p in F if £ is a fusion system on S and Autg(P) >
O” (Autz(P)) for all P < S.

Moreover, by [AKO11, Theorem 1.7.7], there is a unique minimal saturated fusion
system of index prime to p in F denoted by O (F) and O¥ (F) is a normal

subsystem of F.

Definition 3.1.16. Let F be a saturated fusion system on a p-group S. Then the

hyperfocal subgroup hyp(F) of F is defined as

byp(F) = (g~'alg) | g € P < S,a € OF(Autz(P))).

A subsystem & has p-power index in F if £ is a fusion system on T' > hyp(F) and
Autg(P) > OP(Autz(P) for all P < S.

Moreover, by [AKO11, Theorem 1.7.4], there is a unique minimal fusion subsystem
of p-power index in F denoted by OP(F), over hyp(F), and OP(F) is a normal

subsystem of F.

Definition 3.1.17. A saturated fusion system is reduced if O,(F) = {1} and
F = OP(F) = O¥(F).

Naturally, an important consideration in fusion systems is the notion of
isomorphism. After defining what isomorphism means in the context of fusion
systems, it follows readily that the “sensible” properties hold, which we state

below.

Definition 3.1.18. Let F be a fusion system on a p-group S and £ a fusion system
on a p-group I. A morphism ¢ : F — £ is a tuple (¢s, ¢pg | P,Q < S) such that

¢s : S — T is a group homomorphism and ¢pg : Homz(P, Q) — Homg (P, Qo)
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is such that agps = ¢ps(appg) for all @ € Homz(P, Q).

Say that ¢ is injective if ¢pg: S — T is injective, and ¢ is surjective if ¢g is surjective
and, for all P,Q < S, ¢p,.0,: Homz(Fy, Qo) — Home(P¢, Qo) is surjective, where
Py, Qy denote the preimages in S of P¢, Q¢. Then, ¢ is an isomorphism of fusion

systems if ¢ : F — &£ is an injective, surjective morphism.

Lemma 3.1.19. Let G = H be finite groups with S € Syl (G) and T' € Syl,(H).
Then fs(G) = .FT(H)

Lemma 3.1.20. Let F = Fg(G) be a saturated fusion system and set G =

G/Op/(G) Then fs(G) = fg(é)

In order to investigate the local actions in a saturated fusion system, and in
particular in its normalizer subsystems, it will often be convenient to work in
a purely group theoretic context. The model theorem guarantees that we may do

this for a certain class of p-subgroups of a saturated fusion system F.

Theorem 3.1.21 (Model Theorem). Let F be a saturated fusion system over a
p-group S. Fiz QQ < S which is F-centric and normal in F. Then the following
hold:

(i) There are models for F.

(ii) If Gy and Go are two models for F, then there is an isomorphism ¢ : G1 —

Go such that ¢|s = Ids.

(iii) For any finite group G containing S as a Sylow p-subgroup such that Q < G,
Ce(Q) < Q and Auts(Q) = Autxz(Q), there is f € Aut(S) such that Blg =
Idg and Fs(G) = PF. Thus, there is a model for F which is isomorphic to
G.
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Proof. See [AKO11, Theorem 1.4.9]. O

Fusion systems satisfying the hypothesis of the above theorem are referred to as
constrained fusion systems. It is clear that if £ is an essential subgroup of F, E is

a centric normal subgroup of Nz(FE), Nx(E) is constrained and there is a model

G for Nx(F) with O,(G) = E.

We record two further results regarding the saturation of fusion systems. The first
describes a situation in which a certain class of essentials are excised out. This

has been referred to as “pruning” in the literature.

Lemma 3.1.22. Suppose that F is a saturated fusion system on S and P is an
F-essential subgroup of S. Let C be a set of F-class representatives of F-essential
subgroups with P € C. Assume that if Q < P then @ is not S-centric. Letting
Hz(P) be the subgroup of Autz(P) which is generated by F-automorphisms of P
which extend to F-isomorphisms between strictly larger subgroups of S, if Hx(P) <
K < Autz(P), then G = (Autx(S), K, Autz(E) | E € C\ {P}) is saturated.

Proof. See [PS21, Lemma 6.4]. O

We now provide the results promising the opposite situation, where one can append
suitably small essential subgroups to a saturated fusion system, while maintaining

saturation.

Theorem 3.1.23. Let Fy be a saturated fusion system on a finite p-group S. Let
V < S be a fully Fo-normalized subgroup, set H = Outz, (V) and let A < Out(V))
be such that H is a strongly p-embedded subgroup of A. For A the full preimage
of A in Aut(V), write F = (Fy, A). Assume further that
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(i) V' is Fo-centric and minimal under inclusion amongst all F-centric

subgroups; and

(ii) no proper subgroup of V' is Fy-essential.
Then F is saturated.

Proof. See [Sem14, Theorem CJ. O

3.2 Controlling  Automizers of Essential

Subgroups

With the aim of applying the Alperin—Goldschmidt fusion theorem, we present the
following lemmas which provide the main tools for determining whether a p-group

is an essential subgroup of saturated fusion system F.

Lemma 3.2.1. Let S be a p-group, E < S and A < Aut(E). Set {1} = Ey <
E, < Ey,d... < E, = FE such that, for all 0 < i <m, F,a = E; for each o € A.

Let Q < Autg(FE) with the property [Q, E;] < E;—y for all 1 <i < m.

(i) If A= Aut(F) and E is S-radical, then Q) < Inn(E).

(ii) If F is a saturated fusion system on S, E is F-radical and Autz(FE) < A,
then @ < Inn(E).

Proof. We apply Lemma 2.1.9 to E, @ and A to deduce that in both (i) and (ii),
Q < O,(A) N Autg(E). In (i), since E is S-radical, it follows directly from the

definition that ) < Inn(E). In (ii), we have that O,(A) < Autg(E) and O,(A) is
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normalized by Autz(E). Thus, @ < O,(A) < O,(Autz(F)) = Inn(E) since E is
F-radical, and the result holds. O

Lemma 3.2.2. Suppose that F is a saturated fusion system and E is an essential

subgroup. Assume that Autz(E) is a K-group. Then |E/®(E)| > |Outs(E)[*.

Proof. This is [PS21, Proposition 4.8 (4)]. O

Now that we have a way to determine whether a subgroup is essential, in order to
make use of the Alperin—-Goldschmidt fusion theorem, we must also determine the
induced automorphism group by F. The first result along these lines determines
the potential automizer Autz(E) of an essential subgroup E whenever some
non-central chief factor of E is an FF-module. It is important to note that this
theorem does not rely on a K-group hypothesis, and it is essentially the fusion

theoretic equivalent of Lemma 2.3.10.

Theorem 3.2.3. Suppose that E is an essential subgroup of a saturated fusion
system F over a p-group S, and assume that there is an Autz(E)-invariant
subgroup V- < Q(Z(E)) such that V is an FF-module for G := Outz(FE). Then,
writing L := OP' (G), we have that L/C(V) = SLy(p"), CL(V) is a p'-group and
V/Cy(OP(L)) is a natural SLy(q)-module.

Proof. This is [Hen10, Theorem 1.2]. O

Armed with the analysis of groups with strongly p-embedded subgroups from
Chapter 2, we now investigate the limitations of Outz(E) for E an essential
subgroup of F. In our analysis, the most important case of study is that where F

is mazximally essential.
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Definition 3.2.4. Suppose that F is a saturated fusion system on a p-group S.
Then E < S is maximally essential in F if E is essential and, if F' < S essential

in F and F < F, then £ = F.

Coupled with saturation arguments and the Alperin—Goldschmidt theorem, this

definition further limits the possibilities for Outz(E).

Lemma 3.2.5. Let F be a saturated fusion systems on a p-group S with
E a mazimally essential subgroup of F. Then Now,g)(Outg(E)) is strongly

p-embedded in Outz(FE).

Proof. Let T < Ng(F) with E < T. Now, since E is receptive, for all
a € Nauey(p)(Autr(E)), a lifts to a morphism & € Homg(N,, S) with N, > E.
Since E is maximally essential, applying the Alperin—Goldschmidt theorem, & is
the restriction of a morphism @ € Autz(S). But then, a normalizes Autg(E)
and 50 Nautr(p)(Autr(E)) < Naw,r)(Autg(£)). This induces the inclusion
Nout»(£)(Outr(E)) < Nowx(g)(Outg(E). Since this holds for all 7' < Ng(E) with
E < T, we infer that Noy,(g)(Outs(F)) is strongly p-embedded in Outrz(E), as

required. O

As in the earlier analysis of groups with strongly p-subgroups, we divide into two

cases, where m,(Outg(E)) =1 or m,(Outg(E)) > 2.

Proposition 3.2.6. Let F be a saturated fusion systems on a p-group S with E
a mazimally essential subgroup of F, and set G = Outz(E). If my(G) = 1 then

either
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(i) Outg(F) is cyclic or generalized quaternion and

O¥ (@) = Outg(E)[0, (0¥ (@), Q(Outs(E))]

— Outg(E)(Q(Outs(E))°” @)

is p-solvable; or

(ii) OY(G)/Oy (0¥ (@) is a non-abelian simple group, p is odd and Outs(F) is

cyclic.

Proof. Since G has a strongly p-embedded subgroup, so does O (G) and we
apply Proposition 2.1.24 and (ii) follows immediately. In the other cases of
Proposition 2.1.24, since Q(Outg(E))[0, (0P (G)), 2(Outs(FE))] < OP (G), by the

Frattini argument,

/

0”(G) = Now () (2Outs(E)))[O0y (07 (G)), 2Outs(E)))

= Now ¢ (Q(Outs(E))) ((Outs (E))°" ().

Since E is maximally essential, applying Lemma 3.2.5, Noy )(Q2(Outs(E))) <
Ne(Q(Outs(E))) so that Npy ) (2(Outs(£))) = Ng(Outg(£)). But then
Outs(E)[O, (0P (G)),2(Outs(E))] < OF(G) and by the definition of OP (G), we
have that OF' (G) = Outs(E)[O, (O (G)), 2(Outs(E))]. O

Proposition 3.2.7. Let F be a local CIC-system on a p-group S and let E be
an essential subgroup of F. Suppose further that E is maximal by inclusion
with respect to this property. Set G = Outz(FE). If m,(G) > 2 then O (G) is
isomorphic to a central extension by a group of p'-order of one of the following

groups:
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(i) PSLa(p*™) or PSU3(p®) for p arbitrary, a > 1 and p® > 2;
(ii) Sz(2%*) forp=2 and a > 1;
(iii) Ree(3%¢t1), PSL3(4) or My for p =3 and a > 0;
(iv) Sz(32) : 5,2F4(2)" or McL for p=>5; or

(v) Jy for p=11.

Furthermore, either OP (G) is a perfect central extension, or OP (G) = Ree(3) resp.

Sz(32) : 5 and p = 3 resp. p=>5.

Proof. Set G = G/Oy(G) and K = OF(G). By Lemma 3.2.5, Ng(Outg(E))
is strongly p-embedded in G. In particular, we deduce that Ng(Outg(F)) is
strongly p-embedded in K. Let A < Outg(E) be elementary abelian of order
p®. By coprime action, Oy (K) = (Co, x)(a) | a € A#). Since Ng(Outg(E))
is strongly p-embedded in K, we have that Oy (K) < Ng(Outg(E)) so that
Oy (K),Outg(E)] = {1}. Then

Oy (K), K] = [0y (K), (Outs(E)*)] = [0y (K), Outs(E)]* = {1}

and O (K) < Z(K).

Now, K = K/Oy(K) is determined as in Proposition 2.1.25. Moreover,
NK(EIR;(E)) = NK(OM))) is strongly p-embedded in K and applying
[GLS98, Theorem 7.6.2], K % Alt(2p) or Fiy. Unless K = Ree(3) or Sz(32) : 5,
using that K is simple and K = Op/(K ), K is perfect central extension of
K by a group of p-order. If K = Ree(3) or Sz(32) : 5 then OP (O?(K)) is

a perfect central extension of Ree(3) = PSLy(8) resp. Sz(32) by a p'-group
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so that OP (OP(K)) = PSLy(8) resp. Sz(32). Since Oy (K) < Ng(Outg(E))

and K = OP(OP(K))Oy(K)Outg(E), we conclude that Oy (K) = {1} and
K = OV (K) = O” (O"(K))Outg(E) = Ree(3) resp. Sz(32) : 5. O

As intimated in the introduction, a valid question to consider is whether the
requirement that E be maximally essential in the Main Theorem is truly
necessary. Observe that this condition implies that Noue,(r)(Outg(E)) is strongly
p-embedded in Outz(E). We begin this discussion with a somewhat trivial

example.

Example 3.2.8. Let V' be a 4-dimensional vector space over GF(2) and let Dih(10)
act irreducibly on it. In its embedding in GL4(2), Dih(10) is centralized by a
3-element and so we may form a subgroup of GL4(2) of shape Dih(10) x 3. This
group is normalized by an element t of order 4 such that (Dih(10),t) = Sz(2),
t? € Dih(10) and t inverts the 3-element which centralizes Dih(10). Thus, we may
construct a group H of shape Dih(10).Sym(3) in GL4(2). Form the semidirect
product G :=V x H and consider the 2-fusion category of G over some Sylow
2-subgroup S. Since H has cyclic Sylow 2-subgroups and Os(H) = {1}, we have
that V' is essential in the 2-fusion category of G. Moreover, for s the unique
involution in HNS, we have that E := V (s) has order 2° and Ng(FE)/E = Sym(3).

Therefore, E is also an essential subgroup which properly contains another essential

subgroup V.

It is easy to construct other examples in which smaller essentials are contained in
some larger essential, even when imposing the condition the the essential subgroups
are Autxz(S)-invariant. But it is reasonable to ask whether such examples actually

occur in an amalgam setting motivated by the hypothesis of the Main Theorem.
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To this end, let E be an Autz(S)-invariant essential subgroup of a saturated
fusion system F on a p-group S, let G be a model for Nx(E) and suppose that
Q(Z(S)) 4 G. In the midst of the amalgam method, to determine Outxz(£) and
its actions, we work “from the bottom up” by determining Outz(E)-chief factors of
E, starting with those in (Q(Z(5))%) and taking progressively larger subgroups of
E, so working “up.” Taking the above example as inspiration, one might imagine a
situation in which Outz(E) induces a Sym(3)-action on almost all Outz(E)-chief
factors in £. Without examining an ever increasing sequence of subgroups and
chief factors, it may be hard to eventually uncover a chief factor which witnesses
non-trivial action by a 5-element (although this would probably only happen for
amalgams with large “critical distance”, see Notation 5.2.5, and even then it seems
unlikely). It seems some additional tricks and techniques (or perhaps an even more

granular case division) are required to treat these types of examples.

3.3 Exotic Fusion Systems on a Sylow

3-subgroup of F3

In this section, we describe some exotic fusion systems supported on a Sylow
3-subgroup of F3. One of these systems appear in the conclusion of the Main
Theorem, and we focus effort on constructing this system and proving its exoticity
here so as to not impede the exposition later. Throughout, we require some
Lie theoretic terminology and refer to [Car89] or [GLS98] for the appropriate

definitions.

For some structural results concerning S and its internal actions, we appeal to the

Atlas [Con+85]. We begin by noting the following 3-local maximal subgroups of
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Fgl

]\/[1 o~ 32+3+2+2 . GL2(3)
]\4’2 o~ 31+2+1+2+1+2 . GL2<3)

M3 = 35 : SL2(9)2

remarking that |S| = 3'°. We set E; = O3(M;) and compute (e.g. using MAGMA)
that By, = Cg(Z5(S)) = J(S) and Ey = Cs(Z5(S)/Z(S)) are characteristic
subgroups of S, and so are Autx(S)-invariant in any fusion system J on S. Indeed,

the above list exhausts all essential subgroups of the 3-fusion category of Fs.

Proposition 3.3.1. Let F = Fg(F3). Then F/™ = {E\, Ey,EJ,S}. In
particular, E(F) = {E, Ey, E5 }.

Proof. This follows from [Wil88§]. O

Lemma 3.3.2. Fvery G-conjugate of Fs is contained in Fy and not contained in

Es.

Proof. Since {E]} = {EJ} and both E; and F, are normal in S, it suffices to
show that F3 < E; and E3 £ E,. To this end, we note that [Z5(S5), E5] = {1}.
One can see this in the 3-fusion category of F3 for otherwise, since Ej3 is elementary
abelian, we would have that Z5(S) £ E3 and [Z5(5), E3] < Z(S), a contradiction
since Outp, (F3) = SL2(9).2 has no non-trivial modules exhibiting this behaviour.
If B3 < Es, then since Fy, < S, we would have that E; = (E3) < E,, a clear

contradiction. Thus, F3 £ FEs. O
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Throughout the remainder of this section, we set G to be the 3-fusion category
of F3 so that £(G) = {Ey, By, E5}. Set H = (Autg(E)), Autg(E,)) and D =
(Autg(Ey), Autg(Es)).

We now prove that the fusion system H is exotic. There is no known way to do
this without invoking the classification of finite simple groups. This is also the
case for the fusion systems supported on a Sylow 7-subgroup of G(7) mentioned

in the Main Theorem and Theorem D.

Proposition 3.3.3. H is a saturated simple exotic fusion system with H/™ =

{E17E27 S}

Proof. That H is saturated follows immediately from Lemma 3.1.22. Since H is a
subsystem of G, the deduction of H/" is straightforward. Assume that A" < H and
N is supported on T'. Then T is a strongly closed subgroup of H and we calculate
using MAGMA that S = T and N has index prime to 3 in H by [AKO11, Lemma
1.7.6]. Since Auty(S) is generated by lifted morphisms from O (Auty(F))) and
O% (Auty(E,)), applying [AKO11, Lemma 1.7.6], we have that H = N is simple.

Suppose that H = Fg(G) for some finite group G with S € Syl;(G). We may as
well assume that O3(G) = O3 (G) = {1} so that F*(G) = E(G) is a direct product
of non-abelian simple groups, all divisible by 3. Furthermore, since |2(Z(.5))| = 3,
we deduce that F*(G) is simple and G is an almost simple group. Since Q(Z(5)) <
F*(G), the action of Autg(E;) and Autg(Es,) implies that S < (Q(Z(S))%) <
F*(G). In particular, we reduce to searching for simple groups with a Sylow

3-subgroup of order 3! and 3-rank 5. Since Es is not normal in S, S does not

have a unique elementary abelian subgroup of maximal rank.

If F*(G) = Alt(n) for some n then ms(Alt(n)) = [%] by [GLS98, Proposition
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5.2.10] and so n < 18. But a Sylow 3-subgroup of Alt(18) has order 3® and
so F*(G) 2 Alt(n) for any n. If F*(G) is isomorphic to a group of Lie type
in characteristic 3, then comparing with [GLS98, Table 3.3.1], we see that the
groups with a Sylow 3-subgroup which has 3-rank 5 are PSLy(3%), Q7(3), 3D4(3)
and PSU;(3), and only PSU;(3) has a Sylow 3-subgroup of order 3!° of these
examples. If G is a 3'-extension of PSU;(3), the unipotent radicals of parabolic
subgroups of PSU;(3) are essential subgroups and since neither has index 3 in
a Sylow 3-subgroup, we have shown that F*(G) is not a group of Lie type of

characteristic 3.

Assume now that F*(G) is a group of Lie type in characteristic r # 3. By [GLS98,
Theorem 4.10.3], S has a unique elementary abelian subgroup of 3-rank 5 unless
F*(G) = Gy(r?),2F4(r®),3Dy(r*), PSU3(r*) or PSL3(r*). Moreover, by [GLS98,
Theorem 4.10.2], there is a normal abelian subgroup Sr of S such that S/Sr is
isomorphic to a subgroup of the Weyl group of F*(G). But |Sy| < 3° so that
|S/Sr| = 35 All of the candidate groups above have Weyl group with 3-part
strictly less than 3° and so F*(G) is not isomorphic to a group of Lie type in

characteristic r.

Finally, checking the orders of the Sporadic groups, we have that F3 is the unique
Sporadic simple group with a Sylow 3-subgroup of order 3!°. Since F3 has trivial
outer automorphism group and the 3-fusion category of F3 has 3 classes of essential

subgroups, F*(G) % F3 and H is exotic. O

Taking G; to be the model for Ng(E;), in the above situation the induced amalgam
is parabolic isomorphic to an Fs-type amalgam. This general idea forms the

fundamental concept of this thesis and we refer to Section 5.1 for its initial
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treatment.

In the following, we calculate normal closures of certain 3-subgroups of S by
particular groups of automorphisms induced by D. All of these actions come
from G and the calculations may be performed using MAGMA and the necessary

maximal subgroups of Fj.

Lemma 3.3.4. E; is the unique proper non-trivial strongly closed subgroup of D.

Proof. Since every essential subgroup of D is contained in F;, and since E; is
characteristic in S, we deduce that F; is strongly closed in D. Assume that T’
is any proper non-trivial strongly closed subgroup of D. Then T < S and so
Z(S) < T and Zy(S) = (Z(S)A»(E)) < T. Suppose first that T N ®(E;) =
Z5(S). Since ®(E;) < S we have that [®(E),T| = Z3(S) so that T' < E;. But
then [E1,T] < ®(Ey) NT = Zy(S) = Z(Ey) and T < Zy(E,) = ®(E) so that

T = Zy(S). However, then T < (TA"2(Es)) 4 contradiction.

Thus, T'N ®(Ey) > Z(S) and since Outp(E,) acts irreducibly on ®(Ey)/Z,(S),
we must have that ®(F;) < T. But now E3 = ((®(E;) N E3)AuoE))y < (TN
Es)Ato(Es))y < T Finally, since By = (F5) < T, we deduce that T = E), as

desired. O

Proposition 3.3.5. D is a saturated simple exotic fusion system, and D/™ =

(E,, EP, S},

Proof. In the statement of Theorem 3.1.23, letting Fo = Ng(F1), V = E3 and A =
Autg(E3) we have that D is saturated. Again, the deduction of D™ is clear from
the inclusion D < G. Let K be a Sylow 2-subgroup of Npw(auip(m,) (Auts(E3))

which is cyclic of order 8. Then, by saturation, the morphisms in K lift to
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morphisms of larger subgroups of S and as E; is Autp(S)-invariant, and applying
the Alperin—Goldschmidt theorem, we deduce that the morphisms in K lift to
morphisms in Autp(£;). Hence, Outp(FE;) contains a cyclic group of order 8.
Since Outp(F1) = GLy(3), applying [AKO11, Lemma I.7.6] we must have that
0% (D) =D.

If D is not simple with A/ < D then by Lemma 3.3.4 we have that \ is supported on
E;. Then by [AKOL11, Proposition 1.6.4], Auty (E;) < Autp(E;) so that Outy (E;)
is isomorphic to a normal 3'-subgroup of Outp(E;) = GL2(3). In particular,
Es5 is not essential in N for otherwise we could again lift a cyclic subgroup of
order 8 to Auty(E}), using saturation. Then, performing the explicit calculations
in MAGMA, we deduce that E(N) = 0 and Ey = O3(N), and so E; < D, a

contradiction by Proposition 3.1.13.

Suppose that there is a finite group G with F = Fg(G). Since O3(F) = {1},
we may as well assume that Oz (G) = O3(G) = {1}. Furthermore, since D is a
simple fusion system, we infer that S < F*(G) for otherwise Fgnp+(q)(F*(G)) is a
proper normal subsystem of G. As in Proposition 3.3.3, using that [Q2(Z(S))| = 3,
we deduce that F*(G) is simple group containing S as a Sylow 3-subgroup. The
remainder of the proof is the same as in Proposition 3.3.3, and we conclude that

D is exotic. O

Using MAGMA [PS21] we see that there are three fusion systems supported on S
with O3(F) = {1}, namely D,G and #H. It would be desirable prove this result
without using MAGMA.
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CHAPTER 4

FUSION SYSTEMS ON A SYLOW
p-SUBGROUP OF Go(p") OR PSU,4(p")

In this chapter we classify all saturated fusion systems supported on p-groups
isomorphic to a Sylow p-subgroup of Ga(p™) or PSU,(p™). We strive to achieve
this without the need for a K-group hypothesis. Indeed, barring an identification
of PSLy(¢?) acting on a natural €} (¢)-module, the only real point of contact we
have with the classification of finite simple groups is in proving that the exotic

fusion systems supported on a Sylow 7-subgroup of G,(7) are exotic.

Additionally, we do not assume that O,(F) = 1 for the fusion system F under
consideration as in other works and so we obtain some generalizations of results
already in the literature (see [PS18], [Mon20] and [BFM19]), although we often
lean on these works for convenience. Often, at least for small values of ¢, we
make use of MAGMA to ease some of the exposition although, with some minor
alterations, we remark that the techniques we employ could also be used in these

small cases.

Finally, in all the situations considered, we also provide a list of all S-centric,
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S-radical subgroups of Sylow p-subgroups of Go(p™) or PSU4(p™), which may be

of independent interest.

4.1 Sylow p-subgroups of G4(p") and PSU,(p")

In this section we construct Sylow p-subgroups of Ga(p") and PSUy(p") and
describe some of their basic properties. We refer to [Car89| for constructions and
properties of Go(q) and PSUy(q), as well as generic properties and terminology

regarding the simple groups of Lie type.

We present the root system of type Gy below. We follow the choices of roots as
in [Ree61, p. 443] and depict a slightly altered root system than what is given in

that paper [Ree61, Figure 1].

B
—« a+pf
—(3a+p8) 3a+ 28
—(20+p) ¢ > 20+ f
—(3a+2p) 3a+f
—(a+B) a
-B

In this way, we can arrange that our six positive roots are

" = {a, 8,0+ B,200 + B, 30 + 8,3 + 20}
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For ¢ € &1 we set X, := (z.(t) | t € K), where K is a field of order ¢ = p". Thus,

we have that

S - <Xa7 Xﬁa X304+B7 Xa+57 X2a+57 X3a+26> € Sylp(G2(Q>)

is of order ¢°.

Using results from [Ree61, (3.10)], we have the following Chevalley commutator

formulas for the root subgroups:

[za(t), 25(w)] = Tats(—t1)Toars(—t"1)T3045(1)Taar2s (—26°0")
[za(t), Tats(u)] = Taa+5(—260)Taas 5(3 1) T30 426 (30”)
[a(t), Z2a45(u)] = T3045(3tu)
[25(t), T3a+p(w)] = T30425(tu)

[Tat8(t); T2015(1)] = Taa+25(3tu).

We remark that the coefficients in the commutator formulas showcase obvious
degeneracies when p = 2 or 3. This is one of the reasons we treat these cases

separately.
Lemma 4.1.1. Suppose that S is isomorphic to a Sylow p-subgroup of Ga(p™).
Then the following holds:

(i) if p=2, then S has exponent 8;

(ii) if p € {3,5}, then S has exponent p?; and

(iii) if p > 7, then S has exponent p.
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Proof. Set ¢ = p". Since Go(q) has a 7 dimensional representation over GF(q)
when p is odd, and Gs(q) has a 6 dimensional representation over GF(q) when
p = 2, we can find an upper bound for the exponent of S by calculating the
exponent of a Sylow p-subgroup of GL,(¢), where r = 7 when p is odd and r = 6
if p = 2. But a Sylow p-subgroup of GL,.(p™) has exponent p* with @ minimal such
that p* > r — 1. Thus, S has exponent p when p > 7 and the exponent of S is
bounded above by p? or 8 when p € {3,5} or p = 2 respectively. One can compute
directly that a Sylow p-subgroup of Gs(p) has exponent 8, 9 or 25 when p = 2,3

or b respectively, and so the result follows. O

We now proceed with the construction of a Sylow p-subgroup S of PSU,(p™). Let
ot = {a,b,c,a+b,a+c,b+c,a+ b+ c} be a choice of positive roots for the root
system As. In particular, under the symmetry of A3, we may partition the positive
roots into equivalence classes {a, c}, {b}, {a +b,b+ ¢} and {a + b+ c}. Following
[GLS98, Theorem 2.4.1] and setting K to be a finite field of order ¢2, and K the

subfield of order ¢, we may choose a set of fundamental roots {a, 3} for 2A3 as

xa@) = xa(t)xc(tq),

zp(u) = mp(u),

where t,u € K and v = u? € K. We then retrieve a full set of positive roots and

root subgroups for PSUy(q)

To(t) = wq(t) (1),
zg(u) = xp(u),

Tatp(t) = Tars(t)Torc(t?),
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T20+(U) = Tatpie(w)

where t,u € K and u = u? € K. Hence, we infer that

Xl =¢*, | X5 =q, | Xassl = ¢, | Xoarsl =4

and S = (X,, X, Xots, Xoarp) is of order ¢°.

We reproduce the Chevalley commutator formulas for PSUy(¢) and as, before, set

K to be a field of order ¢q. For more details, see [GLS98, Theorem 2.4.5].

[7a(t), 75(u)] = Tats(et)Toars(e' N (t)u)

[#a(t), Tarp(u)] = T2asp(e"Tr(tu))

where t,u € K and v = u?, and Tr and N denote the field trace and norm
from K down to K. Moreover, ¢,&,&" € {1,—1} depend only on the roots in the

commutators they are involved in. It then follows that

S'= Xot+sXoats, Z(S) = Xoarp.

For the purposes of this thesis, the exact values of ¢,&’ and &’ are not important
and all we require is that commutators with single elements generate entire GF(q)
spaces of root subgroups e.g. [z,(t),S’] = Z(S) and |[z4(t), X5 X0t sXoa1s]| = ¢
for all ¢t # 0.

In the analysis of S € Syl (PSUy4(p")), it will often be more useful to work with
local subgroups of PSU4(p"), recognizing the internal modules within these local

subgroups and obtaining information about S from its embedding in these groups.
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In this way, we work with the elements as matrices explicitly, recognizing the
isomorphism ?A3(¢?) = PSUy,(q) < PSLy(¢*) ([Car89, Theorem 14.5.1]). However,

for some arguments, we still reference the commutator formulas.

Lemma 4.1.2. Suppose that S is isomorphic to a Sylow p-subgroup of PSU4(p").
Then the following holds:

(i) if p=2, then S has exponent 4;
(ii) if p =3, then S has exponent 9; and

(iii) if p = b, then S has exponent p.

Proof. This proof is much the same as Lemma 4.1.1. Set ¢ = p". Since PSUy(q)
is a subgroup of PSL4(¢?), we can find an upper bound for the exponent of S
by calculating the exponent of a Sylow p-subgroup of GL,(¢?), which is p® with a
minimal such that p® > 3. Thus, S has exponent p when p > 5 and the exponent of
S is bounded above by 4 or 9 when p = 2 or p = 3 respectively. One can compute
directly that a Sylow p-subgroup of PSUy(p) has exponent p* when p € {2,3}, and

so the result follows. O

For identification arguments later in this chapter, we record the outcomes from the
Main Theorem where S is isomorphic to either a Sylow p-subgroup of Gy(p™) or
PSU4(p™). Although the proof of the Main Theorem is the contents of Chapter 5,

we assume its validity throughout this chapter.

Corollary 4.1.3. Suppose the hypothesis of the Main Theorem and assume that

S is isomorphic to a Sylow p-subgroup of Go(p™) for some n € N. Then either

(i) F = Fs(@), where F*(G) = OP(G) = Gy (p™);
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(ii) p=2 and F = Fs(GQ) where G = My or Go(3); or

(iii) p = 7, F is a uniquely determined simple fusion system on a Sylow
7-subgroup of Go(7) and, assuming the classification of finite simple groups,

F is exotic.

Corollary 4.1.4. Suppose the hypothesis of the Main Theorem and assume that
S is isomorphic to a Sylow p-subgroup of PSUyu(p"™) for some n € N. Then
F = Fs(@), where F*(G) = O(G) = PSUy(p"); or p = 3 and G =
PSUg(2), PSUg(2).2, McL, Aut(McL) or Co,.

It is worth mentioning that aside from the above two corollaries, the methods
utilized in this chapter are independent of Chapter 5 and the only concept which
is relevant to the work in this chapter which has not been considered is that of a

weak BN-pair of rank 2 (see Definition 5.1.7).

4.2 Fusion Systems on a Sylow 2-subgroup of
G2(2™)

In this section, we let ¢ = 2", K = GF(q) and S be isomorphic to a Sylow
2-subgroup of Ga(g). Assume throughout that F is a saturated fusion system on
S.

We deal with the ¢ = 2 case separately in order to streamline some of the

6 is small, we can

arguments later in this section. Fortunately, since |S| = 2
directly determine the list of S-centric, S-radical subgroups and their automizers.
We employ MAGMA to do this, although remark that lemmas and propositions in

the remainder of this section all apply when ¢ = 2 and their proofs could adapted
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with minor alternations.

Proposition 4.2.1. Let S be isomorphic to a Sylow 2-subgroup of Ga(2). The
S-centric, S-radical subgroups of S are S,Cs(Z5(5)/Z(S)),Cs(Z2(S)) and the

maximal elementary abelian subgroups of S of order 23.

Proposition 4.2.2. Let F be a saturated fusion system over a Sylow 2-subgroup
of Go(2). Set Q1 = Cs(Z5(S)/Z(S)) and Qo = Cs(Z2(S)). Then one of the
following holds:

(i) F = Fs(S);

(ii) F = Fs(Q1 : Outx(Qq)) where Outx(Qy) is isomorphic to a subgroup of
(3 x3):2

(ili) F = Fs(Qs : Outr(Qa)) where Out=(Qs) = Sym(3);
(iv) F = Fs(M) where M = 2% PSLy(2);
(v) F = Fs(G) where G = Go(2);
(vi) F = Fs(G) where G = Gy(3); or
(vii) F = Fs(G) where G 2 Mys.

Remark. In case (iv) of the above theorem, one can take M to be a maximal

subgroup of Ga(3).

We continue the analysis when p = 2 and suppose throughout the remainder of
this section that ¢ > 2. We may reduce the commutator formulas from Section 4.1

to the following:
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[za(t), 25(w)] = Tatp(tu)aasrs(t*u)Tsars(tu)
[2a(t), Tats(u)] = Taa+s(t ) T30-125(tu’)
[a(t), Z2a45(u)] = T3045(tu)
[25(£), 23045(1)] = 30425 (t0)

[Tat8(t), T2at5(0)] = T3a125(tu).

It follows that

Z3(S) = (Xa+s, Xoa+s, X3a+8: Xsat28)
Z2(S) = <X3a+[37X3a+25>
Z<S) = <X3a+2,8>
are characteristic subgroups of S of orders ¢*, ¢*> and ¢ respectively.

We define

Q1 := Cs(Z3(9)/21(5)) = (Xp, Xa+s, X2a+6, Xza+p: X3a+28)

QQ = CS(ZQ(S)) - <Xa>Xa+ﬁ7X2a+ﬁvX3a+ﬁaX3a+26>

both of order ¢° and characteristic in S. Moreover, we can identify @, and Q-

with unipotent radicals of two maximal parabolic subgroups in Gs(q). Therefore,

O(Q1) = Z(Q1) = Z(5) and ®(Q2) = Z2(5) = Z(Qa).

The following lemma gives detailed information on involutions in S, their

normalizers and the maximal elementary abelian subgroups of S.
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Lemma 4.2.3. Every involution in S is conjugate in S to one of the following:
Ta(t1), T(t2)T2a45(th), T2a45(ts3), Tats(ts), T3atp(ls) or Tsatas(ts), for ti € KX
and t, € K. Moreover, each has centralizer of order ¢, ¢*, ¢*, ¢*, ¢® or ¢°
respectively. As a consequence, every maximal elementary abelian subgroup is
conjugate in S to one of

T = X0 X30+8X30+28,
U = XpXoa48X30+28,
V= XpXotsX3a+28,
W= Xoa X304 5X3a428, 0T
X = Xo+pX30+5X30+28-
All are of order ¢ and have normalizers in S equal to Qa, Q1, Q1, S and S
respectively.

Proof. See [Tho69, (3.6)-(3.10)]. 0

Throughout this section, we retain the notation from the lemma and remark that

WX = Zg(S), T S QQ\Ql and U,V S Ql\QQ.

We can now begin to determine to the possible essential subgroups of F. The
primary technique used is Lemma 3.2.1 which, more generally, aids in proving
that a candidate subgroup F is not an F-radical subgroup of S. Moreover, if we
can prove that a chain of characteristic subgroups of E is centralized by some
p-group not contained in E, then F will be not be S-radical. For large parts of
this section, we can operate in this more general setting, assuming only that F is

S-centric and S-radical.

89



Proposition 4.2.4. Let E be an S-centric and S-radical subgroup of S and
suppose Z3(S) < E. Then E € {Q1,Q2,S}.

Proof. Since Z3(S) < E, W, X < E and so A(F) C A(S). Suppose first that
Q; < E for some i € {1,2}. Then, W, X are the unique normal elementary abelian
subgroups of maximal rank in F and so Z3(S) = W X is characteristic in £. Hence,
Zy(S) = Z(Z5(9)) is also a characteristic subgroup. If Q1 £ E and Q2 £ E, then
A(E) = {W, X}, J(E) = Z5(S) and again, Z3(S) and Z,(S) are characteristic
subgroups of E. Thus, we have shown in either case that Z5(S) and Z3(S) are

characteristic subgroups of E.

Now, if Qs £ E, @y centralizes the chain {1} < Z5(S) < Z3(S) < F and E is
not S-radical by Lemma 3.2.1, a contradiction. So )2 < E. But then, it follows
from the commutator formulas that Z(E) = Z(S). Hence, 1 centralizes the chain
{1} S Z(S) < Z5(S) < Z5(S) < E, and since E is S-radical, we conclude that

E =S, as required. O

Lemma 4.2.5. Let E be an S-centric, S-radical subgroup of S and suppose that
Z3(S) £ E. Then Z(S) < Z(E) and if Z(S) < Z(E) N Zy(S), then Zy(S) < E
and E < Qy. In particular Z(E) £ Zs(S).

Proof. Suppose first that Z(S) = Z(E). Since WX = Z3(S5) £ E, there exists Y €
{W, X} with Y £ E. Notice that Z5(S) centralizes the chain {1} < Z(E) < E so
that, as E is S-radical, Z5(S) < E and Z5(S) < Zy(F). Suppose that Q(Z(F)) <
Q1. Then, as Y < S, Y centralizes the chain {1} < Z(F) < Q(Z»(F)) < E, a
contradiction since Y £ E. Therefore, by Section 4.2, there exists an involution
e € Zy(E) which is conjugate in S to x,(t), for some t € K*. Since [EF,e] <

Z(E) = Z(S) it follows from the commutator formulas that elements of E are
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conjugate to elements of ()5, and since ()2 < S we deduce that £ < ()5. But then

Z(S) < Zy(S) < Z(E), a contradiction. Hence, Z(S) < Z(E).

Suppose now that Z(S) < Z(E) N Zy(S) and let e € (Z(E) N Zy(S)) \ Z(S).
Then Cg(e) = Q2 by Section 4.2 and E < Cg(e) = Q2. Because E is S-centric,
Z5(S) < E from which it follows that Z5(S) < Z(FE). Assume that Z(E) = Z5(5).
Then, () centralizes the chain {1} < Z(E) < E and since E is S-radical, @y < E.
But then Z3(S) < E, a contradiction. Hence, if Z(S) < Z(E) N Zy(S) we deduce
that Z(E) > Z5(5) and F < Q. O

Proposition 4.2.6. Let E be an S-centric, S-radical subgroup of S and suppose
that Z3(S) £ E. Then E is maximal elementary abelian, so is conjugate in S to

W, X, T,U orV.

Proof. By Lemma 4.2.5, we may assume that Z(FE) £ Z5(S). Suppose first that
Q(Z(E)) < Z5(S). By Lemma 4.2.5, either Q(Z(FE)) = Z(S); or that Z5(S) <
Z(E) and E < Q2. Suppose the latter and, since Z3(S) £ E, choose Y € {W, X'}
with Y £ E. Since Q(Z(F)) < Zy(S) < Z(E), E is centric and Z(S) has
exponent 2, we have that Q(Z(F)) = Z3(S) and Y centralizes the chain, {1} <
Q(Z(F)) < E, a contradiction since E is S-radical and Y £ E. Hence, we assume

that Q(Z(E)) = Z(S) = Z(E) N Zo(S) and E £ Qs.

Since Z(S) centralizes the chain {1} < Q(Z(E)) < E, Z5(S) < Fand Z(E) < Qs.
Furthermore, [Z5(5), E] < Z3(S) < E and so Z3(S) < Ng(E) < Ng(Z(E)). In
particular, [Z3(S), Z(E)] < Z(E)N[Z5(S), Q2] = Z(E)NZy(S) = QZ(E)) = Z(S)
and so Z(E) < Cg(Z3(5)/Z(5)) = Q1. Therefore, Z(E) < Z3(S). Let e € E be
an involution and suppose that e £ ;. Then, by Section 4.2, e is conjugate in

S to x4(t) for some t € K* by Section 4.2. Then Z(E) < Cgs(e) < T* for some
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s € Sand since Z(E) < Z3(S5) < S, it follows that Z(E) < Xs3n15X3a428 = Z2(5).
But then Z(E) has exponent 2 and Z(E) = Q(Z(FE)) = Z(5), a contradiction.
Therefore, Q(F) < ENQ;. In particular, Z(S5) < Q(FE) so that [E, Z5(5)] < Q(E)
and Z3(S) centralizes the chain {1} < Q(Z(E)) < Q(E) < E, a contradiction since

FE is S-radical.

Hence, there exists an involution e € Z(E)\ Z(S) such that e is conjugate in S to
Zalt1), 5(t2)Taa+8(th), Taats(ts) or Taip(ts) for t; € K* and ¢, € K by Section 4.2.
Suppose first that e is conjugate to z,(t), some t € K*. Then E < Cg(e) = T*

for some s € S and since FE is S-centric, £ = T".

Suppose now that e is conjugate to zaq4+5(t), t € K*. Then £ < Cg(e) = WU?® <
Q1 for some s € S and Z(Cg(e)) = (UNW)* < Z(E). It Z(Cs(e)) = Z(E),
then Cg(e) centralizes the series {1} < Z(F) < E and F = Cg(e). But now, X
centralizes the series {1} < E' < E and since E is S-radical and X £ FE, we have
a contradiction. Thus, Z(Cg(e)) < Q(Z(FE)) and Cs(Q(Z(F))) is an elementary
abelian subgroup of order ¢®. Since F is S-centric, it follows that |E| = ¢* and
E =W or U? for some s € S, as required. If e is conjugate to z,45(t), we obtain
E < Cg(e) = XV?* for some s € S by Section 4.2. Arguing as before, we obtain

that E is conjugate to either V or X in S.

Finally, we suppose that e is conjugate in S to some x3(t)xoq+5(t'), for t € K* and
t" € K. Then, using the commutator formulas, one can calculate that |Cs(e)| = ¢*,
E < Cs(e) < @ and Z(S)X5 = Z(Cs(e)) < Q(Z(E)) for some s € S. If
Q(Z(E)) = Z(Cs(e)) then Cg(e) centralizes the series {1} < Z(F) < E and
since E is S-radical, E = Cg(e). But then, ' = Z(S) and Q) centralizes the
series {1} < E' < E, a contradiction since E is S-radical and @1 € E. Hence,

Z(Cs(e)) < QZ(E)), |AZ(E))| > ¢* and since Q(Z(E))Z3(S) < Qy, there is
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some ¢ € (QUZ(E)) N Z3(S)) \ Z(S). Indeed, € is not contained in Z5(S), for
otherwise £ < @1 N Qy = Z3(5), a contradiction since e £ Z3(S). Therefore, €
is conjugate in S to some za445(t) or x444(t) and by the above, E is elementary
abelian. Moreover, since there is e € E conjugate to some x3(t)xaqa+5(t'), we have

that E' is conjugate to U or V. O

We have shown that the S-centric, S-radical subgroups of S are S, @1, Qs
or maximal elementary abelian subgroups of S. At this point, we restrict our
attention to a saturated fusion system J on S and its essential subgroups. We make
use of Lemma 3.2.2, and as stated, this appears to rely on a /C-group hypothesis
on Autz(F), where E is a candidate essential subgroup. Following the proof
in [PS21, Proposition 4.8], the K-group condition is only used to provide a list
of candidates for groups with a strongly 2-embedded subgroup along with their
Sylow 2-subgroups. Fortunately, when p = 2 a result of Bender [Ben71]| classifies
all such groups and so, we can determine the essential subgroups of F without the

need to employ a K-group hypothesis.

In addition, the proof of Proposition 3.2.7 relies on a K-group hypothesis for the
same reason as Lemma 3.2.2 and so when p = 2, utilizing Bender’s result with the
acknowledgment that ¢ > 2, 0¥ (Out#(E)) is isomorphic to a central extension of a
rank 1 group of Lie type in characteristic 2, independent of any C-group hypothesis
on Autz(E). A final consideration is that we intend to use Corollary 4.1.3 which
relies on the Main Theorem which again uses a KC-group hypothesis. Following the
proof of that theorem, the determination of F from a rank 2 amalgam relies only
on the work in [DS85] which is, again, independent of any K-group hypothesis.
Hence, when p = 2, we can apply all the necessary results to determine F without

the need to enforce a K-group hypothesis on Autz(E).
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Theorem 4.2.7. Let F be a saturated fusion system over a Sylow 2-subgroup of

Go(2") for n > 1. Then one of the following holds:

(i) F = Fs(S: Outz(9));
(ii) F = Fs(Q; : Out£(Q;)) where O (Outr(Q;)) = SLy(27); or

(iii) F = Fs(G), where F*(G) = O%(G) = G,(2").

Proof. Let E € E(F) and suppose that F is elementary abelian. Then, in all cases,
we deduce that ¢* = |E| < ¢* < |Outg(F)|?, a contradiction by Lemma 3.2.2.
Therefore, £(F) C {Q1,Q2}. If neither 1 nor Qs are essential then outcome (i)
holds, and if £(F) = {Q;} for some i € {1,2} then since Q; is Autx(S)-invariant
and maximally essential, outcome (ii) holds upon comparing with the list in
Proposition 3.2.7. Thus, &(F) = {Q1,Q2}. Since Q; is Autz(S)-invariant for

i€ {1,2}, if Oo(F) = {1} we apply Corollary 4.1.3 and the result follows.

Suppose that @ := O(F) # {1}. By Proposition 3.1.13, Q < Q1 N Q2 = Z3(5)
and so, ®(Q) < Z(S). Now, Z5(S) is normalized by Autz(Qs2) and Outg(Q>)
centralizes Z(S) which has index ¢ in Zo(S), which is itself of order ¢?. Moreover,
since S does not centralize Z5(S), Outg(Q2) acts non-trivially on Z5(S) and, by
Theorem 3.2.3, Z»(S) is an FF-module for O (Outx(Q3)) = SLy(2") and Z5(S)
is irreducible. Since ®(Q) < Z(S) < Z5(S5), we conclude that ®(Q) = {1}, @ is

elementary abelian and Z5(S) < Q.

If Q@ = Z5(S), then Z5(S) is Autz(Q1)-invariant and so is Z3(S) = Cg,(Za(95)).
But then S centralizes the chain {1} < Z(S) 9 Zy(S) < Z3(5) < Q, a
contradiction since @)y is F-radical. Hence, Z5(S) < @ < Z3(S) and there is

an involution x € @ which is conjugate in S to Zan1s(t) or xaips(t) for some
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t € K*. But then Cs(Q) < Q1 N Q2 and so Cs(Q) is Autx(Q;)-invariant
for i € {1,2}. It follows from Proposition 3.1.13 that Cg(Q) < F so that
Q = Cs(Q) is self-centralizing in S, @ € {W, X} and F is satisfies the hypothesis
of Theorem 3.1.21.

By Theorem 3.1.21, there is a finite group G such that F*(G) = Q and F = Fs(G).
Moreover, O (Outg(Q;)) = SLy(q) and Outz(Q;) acts faithfully on @Q;/Q for
i € {1,2}. Set G := G/Oy(F) and notice that Q; and Q) are self-centralizing in
G. Moreover, G = (N5(Q1), N5(Qs)), and Q; is Autz(S)-invariant for ¢ € {1,2}.
It follows that G has a weak BN-pair of rank 2 in the sense of Definition 5.1.7.
Moreover, since () centralizes Z5(S) which has index ¢ in @ and @Qy/Q is
elementary abelian of order ¢?, we infer that @ is an FF-module for G. Then,
comparing with the completions in [DS85] and applying [CD91, Theorem A}, @ is
a “natural module” for O”' (G) = PSL3(q). Notice that if S splits over @, then S is
isomorphic to a Sylow 2-subgroup of PSL,(¢). Then by [GLS98, Theorem 3.3.3],
the 2-rank of S is 4n, a contradiction to Section 4.2. Therefore, S is non-split
and it follows by [Bel78, Table I], that ¢ = 2, a contradiction to the original

hypothesis. [l

Combined with the classification provided in Proposition 4.2.2, this completely
determines all saturated fusion systems on a Sylow 2-subgroup of Go(2") for any

n.
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4.3 Fusion Systems on a Sylow 3-subgroup of

G2(3")

Throughout this section, we suppose that p = 3, ¢ = 3", K is a finite field of
order ¢ and S is isomorphic to a Sylow 3-subgroup of Ga(gq). We may reduce the

commutator formulas from Section 4.1 to the following:

[2alt), 25(0)] = Tars s (—t0) 2015 (—20) 3015 () 025 (1)
[Zalt), Tarp(w)] = Taass(tu)

[25(1), T3a15(w)] = T30125(tu).

Additionally, Z(S) = (Xoa+s, X3a+2s) is a characteristic subgroup of S of order

¢

We let

Ql = <Xﬁ7 XSoH-ﬁa on-i—ﬁa X2a+,37 X3o¢+25>
QQ = <Xaa XaJrﬁa X3a+57 X3a+2ﬁa X20<+B>

and by removing one root subgroup at a time from @);, starting from the left, we

get a chain of subgroups Q1 N Qs — Z(Q;) — Z(S) — ¢(Q;) — {1} e.g.

Z(Ql) = <Xa+ﬁaX2a+BaX3a+2ﬁ>-

Before determining the essential subgroups of a saturated fusion system F on .S,
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we state and prove some important properties of S, ); and ) which may be of

interest in their own right.

Lemma 4.3.1. The subgroup X := (Xg, X30+8, Xsat2s) < Q1 is a subgroup of

2

shape ¢**% and is isomorphic to a Sylow 3-subgroup of SLs(q).

Proof. Since the groups Xg and X3,45 commute modulo X3,424, it follows that
every element may be written as 3ais(t1)xs(t2)Tsa+25(t3). Then, using the

commutator formulas, we calculate that the map 6 : X — SL3(q) such that

1 0 0
(30+8(t1)xs(ta)T3a428(t3))0 = | t; 1 0

t3 1o 1

is an injective homomorphism, from which it follows that X is isomorphic to a

Sylow 3-subgroup of SL3(q). ]

Remark. By symmetry, the subgroup (Xa, Xo+s, Xoats) < Q2 is also isomorphic

to a Sylow 3-subgroup of SL3(q).

As Q1 = Z(Q1)X, we observe that ); and Q2 are isomorphic groups of shape
q* x ¢'72, where ¢'*? denotes a special group of order ¢®. We may identify Q, Q-
with the radical subgroups of maximal parabolic subgroups of Gy(q) of shape

(¢* x ¢*™%) : GLay(q).

Lemma 4.3.2. Leti € {1,2}. Then S/Z(Q;) is isomorphic to a Sylow 3-subgroup

Proof. Since X,Z(Q1), X3Z(Q1) commute modulo Xs,452(Q1)/Z(Q1) we may

write any element of S/Z(Q1) as x5(t1)xa(t2)T30+5(t3)Z(Q1). Then the map 6 :
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S/Z(Q1) — SLs(q) such that

1 00
(xﬂ(tl)xa(t2)$3a+ﬂ(t3)Z(Q1))9: ty 1 0
ty t3 1

is an injective homomorphism, from which it follows that S/Z(Q;) is isomorphic

to a Sylow 3-subgroup of SLs(q).

Similarly, since X,Z(Q2)/Z(Q2), XpZ(Q2)/Z(Q2) commute modulo
Xot8Z(Q2)/Z(Q2) we may write any element of S/Z(Q2) as
Zo(t1)xp(te)Tarp(ts)Z(Q2). Then the map 6y : S/Z(Q2) — SLs(q) such

that
1 0 0
(xa<t1)xﬁ(t2>$a+6(t3)Z(Q2>)82 =1t 1 0
t3 tQ 1

is an injective homomorphism, from which it follows that S/Z(Qs) is isomorphic

to a Sylow 3-subgroup of SL3(q). ]

We summarize some further structural results concerning S, @, and ()5. Some
are easily calculated using the commutator formulas, while others are lifted from

[PRO6, Definition 2.1} and [PR06, Lemma 6.5].

Lemma 4.3.3. For i € {1,2}, we have the following:

1) @QiNQ2=Z(Q1)Z(Q2) € A(S) has order ¢*;
(ii) S has nilpotency class 3;

(i) Cs(Z(Qi) = @i, 12(Qi)] = ¢, Z(Q1) N Z(Q2) = 2(Q1) x B(Q2) = Z(S) is
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of order ¢* and ®(Q;) is of order q;
(iv) [Qi Z(Qs-i)] = (Qs);

(v) for x € S\ Q; we have that [z, Q] Z(Q;) = Q1 N Q2 and [z, Z(Q;)|P(Q:) =
Z(5);

(vi) Q; is of exponent 3, S is of exponent 9, Q(S) =S and B(S) = Z(S5);
(vii) if z € S is of order 3 then z € Q1 U Q2; and

(vili) if z € Q1 \ Q2 and y € Q2 \ Q1 then [y, z,z] # 1 # [z,y,y].

Lemma 4.3.4. Suppose R < S has exponent 3. Then R < Q1 or R < ()s.

Proof. As R has exponent 3, R C ()1 U @y by Lemma 4.3.3 (vii). If R £ @; and
R £ @2, then there exists r € R\ @1 and s € R\ Q2. But then rs ¢ Q1 U @,

which is impossible. [

Lemma 4.3.5. Let S be isomorphic to a Sylow 3-subgroup of Go(3"™). Then Q1NQ2
is characteristic in S, Nauws)(Q1) = Naur(s)(Q2) has index at most 2 in Aut(S)
and for o € Aut(S) with non-trivial image in Aut(S)/Naus)(Qi), Qi = Q3—; for
ie{1,2}.

Proof. By Lemma 4.3.4, Q; and Q, are the only subgroups of S of order ¢° and
exponent 3. Therefore Aut(S) permutes {Q1, @2}. As Q1 and ()5 are exchanged in
Aut(S), Nau(s)(Q1) has index at most 2 in Aut(S) and Naye(s)(Q1) = Naus(s)(@2)-

Furthermore, it follows that Q1 N Q)2 is a characteristic subgroup of S. O

Proposition 4.3.6. Let S be isomorphic to a Sylow 3-subgroup of G2(3"™). Then
Aut(S) = CH where C is a normal 3-subgroup and H = Nau(G,(q))(S)-
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Proof. We have that |Naw(cag)(S)] = ¢°.(¢ — 1)%.2n where ¢ = 3", and so
|Aut(S)|s > (¢ — 1)%.2n. Note that Nays)(Q1) = Naug(s)(Q2) normalizes Z(Q1)
and Z(Q2) and so acts on both S/Z(Q1) and S/Z(Q2). Let a € Naus)(@1). If a
acts trivially on S/Z(Q1) and S/Z((Q)), then « acts trivially on S/Z(S) and since
Z(S) < ®(9), v acts trivially on S/®(S). By Lemma 2.1.8, all such automorphism
form a normal 3-subgroup of Aut(S). Now, every other automorphism acts
non-trivially on S/Z(Q;) for some i € {1,2} and so embeds in Aut(S/Z(Q;)).
Without loss of generality, let ¢ = 1. By Lemma 4.3.2, S/Z((Q)) is isomorphic to a
Sylow 3-subgroup of SL3(¢q), and by [PR06, Proposition 5.3], Aut(S/Z(Q1)) =
A.I'Ly(q) where A is a normal 3-subgroup of Aut(S/Z(Q1)) which centralizes
S/Q1NQ2. In particular, setting C' = Caus)(S/Q1MQ2), C is a normal 3-subgroup
of Aut(S) and Aut(S)/C has an index 2 subgroup which normalizes ); and
is isomorphic to a subgroup of I'La(q). Specifically, Nauy(s/z(,)(@Q1/Z(Q1)) =
Nauses/z@)(T) where T € Syly(Aut(S/Z(Q1))). Therefore, [Aut(S)]sy < (¢ —
1)2.2n and it follows that [Aut(S)]s = |Naut(ca(q)(S)|s and Aut(S) = CH where
C = Cruys)(S/Q1 N Q2) and H = Nau(aa(q)) (S)- L
Lemma 4.3.7. Let x € Q; \ Z(Q;). Then |Co,(z)| = ¢* and A(Q;) = {Co,(z) |
T €Qi\ Z(Qi)}-

Proof. By symmetry, we may as well suppose that ¢ = 1. Then Lemma 4.3.1
implies that Q1 = Z(Q1)X. Moreover, for z € Q1 \ Z(Q1), Co,(z) = Z(Q1)Cx (x)
and an easy calculation in X shows that Cx(z) has order ¢*>. Hence Cg,(z) is
elementary abelian of order ¢*. Since the maximal elementary abelian subgroups

of X have order ¢?, the result follows. O

We now determine the set of essential subgroups of a saturated fusion system F

on S over a series of lemmas and propositions. As in the case where p = 2, it is
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enough to assume that a candidate essential is S-radical and S-centric and so we

perform the analysis in this more general setting.

Lemma 4.3.8. Let E be an S-centric, S-radical subgroup of S and suppose that
QiNQy< E. Then Q1 < F or@Qy < FE or E=2S5.

Proof. Suppose that E is an S-centric, S-radical subgroup with @1 N Qs < E,
@1 £ E and Q3 £ E. Note that £ < S as S’ < Q1N Qs < E. Since all elements
of S of order 3 are contained in @; U@y we deduce that Q(E) = (Q1NE)(Q2NE).
Let a € Aut(E) and notice that Q(FE) is characteristic in E, so is normalized by
a. Suppose also that (Q; N E)a # (@1 N E). We follow the same argument as
Proposition 4.3.6 to see that (Q1 N E)a = (Q2 N E) and (Q2 N E)a = (Q1 N E)
so that « fixes (Q1 N Q2 N E). Therefore, in all cases, at least one of (Q; N E),

(Q2NE)or (Q1NQ2NE)= Q1 Ny is characteristic in F.

Suppose @1 N @y is characteristic in E. If E < @; for some i € {1,2}, then as
E is S-centric, Z(Q;) < Z(E). If Z(Q;) = Z(E) then @); centralizes the chain
{1} € Z(E) < E, a contradiction since @); £ F and E is S-radical. Hence,
there is e € Z(F) \ Z(Q1) and since @1 N ()2 is a maximal elementary abelian
subgroup of S which centralizes Z(FE), by Lemma 4.3.7, we conclude that F <
Cs(Z(E)) = Q1 N Q2, a contradiction. Therefore, £ £ @Q; for i € {1,2}. We
have that [E,S] < [5,5] = S < Q1 N Qy and since £ £ Q;, we have that
[Q1NQ2, E] = [Z(Q1), E][Z(Q2), E] = Z(S) = [@1 N Q2,5]. But [Q1NQ2, E] is a
commutator of two characteristic subgroups of E, so is characteristic in £. Thus,
S centralizes the characteristic chain {1} < [Q1NQ2, F] < Q1NQ2 < E, and since

FE is S-radical, we conclude that £ = S.

Suppose now that ()1 N E is characteristic in F and Q1 N Q> < FE is not
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characteristic. Then Q1 N Q2 < Q1 N E and Z(Q; N E) centralizes 1 N Qs.
Since ()1 N ()7 is maximal elementary abelian, Z(S) < Z(Q1 N E) < Q1 N Qq. If
there is © € Z(Q1 N E) \ Z(Q)1) then by Lemma 4.3.7, Cg,(z) = Q1 N Q2. But
then Q1 N E obviously centralizes x so that 1 N E = Q1 N Q) is characteristic
in E, a contradiction. Therefore, we deduce that Z(Q, N E) = Z(Q;). But now
[Q,E] < NE, [Q,Q1NE]l <@ < Z(QiNE)and [Q1, Z(Q, N E)] = {1}
so that Q)1 centralizes the chain {1} < Z(Q1 N E) QN E < E and since F is
S-radical, Q1 = Q1 N E is a characteristic subgroup of E. The argument when

()2 N E is characteristic in £ is similar. O

Proposition 4.3.9. Let E be an S-centric, S-radical subgroup of S such that
QlﬂQg <E<S. CT?L@TLEJIQ2

Proof. By Lemma 4.3.8, we may assume that Q)1 < F or (o < E. Without loss of
generality, suppose that )1 < E but Q)2 £ E. By the proof of Lemma 4.3.8, (),
is characteristic in E. By the Dedekind modular law, £ = ENS = ENQ1Q2 =
Q1(E N Q2) so that there exists x € (E N Q) \ Q1. As a consequence, using
the commutator formulas, we deduce that E'Z(Q1) = Q1 N Q2 is a characteristic
subgroup of E and Z(E) = Z(5). But then @2 centralizes the chain {1} < Z(£) <
@Q1NQ2 < E, a contradiction since Qo £ E and F is S-radical. Therefore, F = @1,

as required. O

Proposition 4.3.10. Let E < S be an S-centric, S-radical subgroup of S such
that Q1 N Qy £ E. Then for some i € {1,2}, E € A(Q;) is of order ¢* and

Ns(E) = Q;.

Proof. Suppose that Q1 N Qs £ E. If Z(FE) < Q1 N @y, since [F, Q1 N Q3] <
[S,Q1 N Q) = Z(S) < Z(E), Q1 N Q2 centralizes the chain {1} < Z(F) < E, a
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contradiction since F is S-radical. Thus, Z(E) € Q1NQ2. Since Q1NQy £ E, and
Q1NQs = Z(Q1)Z(Q2), we may assume without loss of generality that Z(Q,) £ E.
If Q(Z(E)) < @1 then, since [E, Z(Q1)] < [5,2(Q1)] = Z(5) < Q(Z(E)), Z(Q1)

centralizes the chain {1} < Q(Z(FE)) < E, a contradiction.

Hence, Q(Z(E)) £ @, and so, Q(Z(FE)) < Q)3 by Lemma 4.3.4. Since F centralizes
Q(Z(E)), it follows from the commutator formulas that F < () and since E is
S-centric, we conclude Z(Q3) < Q(Z(FE)). Moreover, since Z(F) £ 1 N Qs, there
exists e € Z(E) \ Z(Q2) and therefore £ < Cg(e) € A(Q2) by Lemma 4.3.1. Since
E is S-centric, E = Cg(e) is elementary abelian of order ¢* and calculating using

the commutator formulas, it follows that Ng(E) = Q2. A similar argument when

Z(Q2) £ E completes the proof. ]

Having identified the S-centric, S-radical subgroups we now turn our attention to a
fixed saturated fusion system JF on S and its essential subgroups. In the following,
to restrict the list of centric, radical subgroups, we make use of Lemma 2.3.10,
again stressing that this result does not rely on K-group hypothesis. Moreover, we
use some results in [PS18] and even though the hypothesis there includes O3(F) =
{1}, the results we use are independent of this. Thus, we can still operate in a

completely general setting.

Lemma 4.3.11. Let E be an essential subgroup of a saturated fusion system F

on S. Then Q1 NQy < E.

Proof. By Proposition 4.3.10, without loss of generality, we assume that E is a
maximal elementary abelian subgroup of Ng(F) = @2, EN Q1 = Z(Q2) and
E(Q1NQ2) = Qs. Since Z(Q)3) is an index ¢ subgroup of E centralized by Qo, it
follows by Lemma 2.3.10 that O% (Outz(E)) = SLy(q) and E/Cg(O¥ (Outz(E))) is
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a natural SLy(g)-module. Set Zp := Cx(O% (Outx(E))) < Z(Q,) and let 1 # tp €
Z(0¥ (Outz(E))). By Proposition 4.3.9 and Proposition 4.3.10, every essential
subgroup is contained in either )7 or (). In particular, ()5 is the only possible
essential subgroup E is contained in. Since tr normalizes Outg(F), using that
E' is receptive, and applying the Alperin—Goldschmidt theorem, we conclude that
tg lifts to some automorphism of S or ()2, and since Q2 = Ng(FE), the lift of tg

normalizes ()5 in both cases.

Suppose that tg lifts to some automorphism of S and call this morphism ¢},. Since
1} normalizes ()2, by Lemma 4.3.5 t}, normalizes ();. Moreover, tj, centralizes
Z(@Q1)/Z(S)=Z(Q1)/(Z(Q1)NE) = @Qy/E. Since t}, normalizes ®(Qs), either t3;
inverts ®(Q2) or centralizes ®(Q2). If ¢}, centralizes ®(Q2), then [Q1NQ2, Qo, L] =
{1}. But t}; centralizes (Q1 N Q2)/Z(Q2) = (Q1 N Q2)/(Q1 NQ2NE) = Qy/FE
so that [th,, @1 N Q2,Q2] = {1}. Then, the three subgroup lemma yields
[t5:, Q2, Q1 N Qs] = {1} so that [t3, Q2] < ENQ1N Qs = Z(Q2), a contradiction
since Zp < Z(Qy). Thus, t% inverts ®(Qs) and since Zg < @, has order ¢?, it
follows that t}; centralizes Z(Q2)/®(Q2) and (Q1 N Q2)/P(Q2) = Co,/a(0.)(th)-
Again, t3, either inverts S/Qy or centralizes S/Qs. Suppose the latter. Then
t5Q2 is normalized by S so that [Q2/P(Q2),t}] is normalized by S. But
Z(S/P(Q2)) < (Q1 N Q2)/P(Q2) = Cgyya(.)(ty) from which it follows that
[Q2/P(Q2),t5] = {1}, a clear contradiction. Thus, ¢}, inverts S/Qs. Now,
[, @1 N Q2, Q1] = [®(Q2),@1] = {1} and [Q1, (@1 N Q2), 1] = [P(Q1), k] =
{1}, since ®(Q1) N ®(Q2) = {1}. Therefore, by the three subgroup lemma,

[t5, Q1,Q1 N Q2] = {1} and ¢}, centralizes Q1/Q1 N Q2, a contradiction since t};

inverts S/QQ = Ql/(Ql N QQ)

Suppose that tg does not lift to a morphism of S. In particular, we may assume
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that (), is essential. Note that S acts non-trivially on Z(Q2)/®(Q)2) and centralizes
Z(8)/®(Q,). By Lemma 2.3.10, setting Lo := O¥ (Out£(Q3)), we have that V :=
Z(Q2)/P(Q2) is a natural SLy(g)-module for Ly/Cp, (V) = SLy(q) and Cr,(V)
is a 3’-group. Then, independently of a IC-group hypothesis, provided ¢ > 3,
Proposition 3.2.7 implies that Lo is a central extension of SLy(q) by a group of
pl-order, and so Ly = SLy(q). If ¢ = 3, then [PS18, Lemma 7.8] implies that
Ly = SLy(3) and V is a natural SLy(3)-module. Since S acts non-trivially and
quadratically on Q2/Z(Q2), Q2/Z(Q-) is also a natural SLy(g)-module for Ly. But
then, Ly is transitive on subgroups of Q2/Z(Q)s) of order ¢ and there is o € Ly such
that Fa = @)1 N @2, a contradiction since E is fully normalized. This completes

the proof. O

As with the case when p = 2, we can circumvent the need for a K-group hypothesis.
As in the above, we only make use of Lemma 2.3.10 to identify the automizer of
an essential subgroup, and this is enough to show that for £ an essential subgroup
under consideration, O% (Outz(E)) = SLy(3") for some r. Moreover, as intimated
when p = 2, under such circumstances the proof of Corollary 4.1.3 boils down to
recognizing a weak BN-pair of rank 2 whose completion is completely determined
using [DS85] which does not rely on any inductive hypothesis. In our application,
we identify a specified subsystem of F within the fusion category of Gy(q) using
this methodology, and then identify F using the relationship between Aut(S) and

Aut(Gsy(q)) demonstrated in Proposition 4.3.6.

Theorem 4.3.12. Let F be a saturated fusion system over a Sylow 3-subgroup of

G2(3™) . Then one of the following occurs:

(i) F = Fs(S: Outx(9));
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(i) F = Fs(Q; : Out#(Q;)) where O (Outr(Q;)) = SLy(3"); or

(iii) F = Fs(G) where F*(G) = O% (G) = Go(3").

Proof. By Proposition 4.3.9 and Lemma 4.3.11, &(F) C {Q1,Q2, Q1 N Q2}.
Suppose that 1 N Q9 is essential. Since S/Q1 N @)y is elementary abelian and
of order ¢? and Z(S) is of index ¢* in Q1 N @y and centralized by S, it follows by
Theorem 3.2.3 that Q; N Q5 is a natural SLy(¢?)-module for L5 := O% (Out#(Q1 N
Q2)) = SLy(¢?). But then |Np,,(Outs(Q1 N Q2))] = ¢* — 1 and since Q; N Qo
is receptive, each morphism ¢ € Ny, (Outg(Q1 N Q7)) lifts to some morphism in
Autz(S). Since Naus,(s)(@Q1) has index at most 2 in Autx(.S), it follows that upon
restriction there is a group of index at most 2 in Ny, (Outs(Q1 N Q2)) normalizing
Outg, (Q1 N Q2), a contradiction unless ¢ = 3. If ¢ = 3, then @1 N Q2 is not

essential in F by [PS18, Lemma 7.4].

We have reduced to the case where the set of essentials is contained in {Q1, @2}
If neither @1 nor Qs is essential then outcome (i) holds. If Q; is essential then
following an argument in Lemma 4.3.11, we deduce that O% (Outz(Q;)) = SLy(q)
and both Q;/Z(Q;) and Z(Q;)/®(Q;) are natural SLy(¢)-modules. In particular,
if only one of @1, is essential then by Lemma 4.3.5 Autrz(S) = Nautr(s)(Qi)

and outcome (ii) holds.

Assume that both ¢ and @), are essential and suppose @ := O3(F) # {1}. By
Proposition 3.1.13, @ < Q1 N Q2. Then @ N Z(S) # {1} and the irreducibility
of Z(Q;)/®(Q;) under the action of O¥ (Outx(Q;)) implies that Z(Q,)Z(Q:1) <
Q1NQy < Q < Q1NQs and Q = Q1NQ,. Then, the irreducibility of O* (Out#(Q;))
on Q;/Z(Q;) gives a contradiction. Therefore, O3(F) = {1}.

Set Fo = (Nr(Q1), Nx(Q2)) so that Autg,(S) has index at most 2 in Autz(S). It
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follows by [AKO11, Lemma 1.7.6(b)] that Fy is a saturated subsystem of F and
so Fp has index 2 in F. In particular, by [AKO11, Theorem 1.7.7(c)], Fo is a
normal subsystem of F and O% (F) < O%(F,). Now, F; satisfies the hypothesis
of Corollary 4.1.3 and comparing with the list there, it follows that O (F) is
isomorphic to the 3-fusion system of G4(3") and since O (Fy) is simple, we deduce
that O%(F,) = O% (F). By Proposition 4.3.6, we have that Aut(S) = CH, where
C is a 3-group and H = Nayg(c,3n))(S5), and so choices of Autz(S) correspond
exactly to G < Aut(Gy(q)) such that F*(G) = O (G) = G4(q), as required. [

4.4 Fusion Systems on a Sylow p-subgroup of

Ga(p") for p 2 5

Suppose now that p > 5, ¢ = p" and S is isomorphic to a Sylow p-subgroup of
Ga(q). Again, we set K to be a finite field of order ¢ and recall the Chevalley

commutator formulas from Section 4.1:

(20 (t), 25 (1)) = Tarp(—tu)Taasrs(—1*1)T3015(80) T30 405 (—26"07)
[2a(t), Tatp(u)] = Taa+5(—2tU) T304 5(38*1)T30425 (31?)
[7a(t), T2a45(u)] = T3045(3tu)
[25(t), T3a+p(w)] = T30425(tu)

[Tt (1), T2015 ()] = T30125(3t0).
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It then follows that

Zy(S) = 5" = (Xats: Xoa+8, Xsats X3at+28)

Z3(S) = S” = <X2a+ﬁa X3a+ﬂ7X3a+25>7
ZQ(S) = S/” = <X3a+[3,X3a+25>, and
= 5@ = (X30125)

are characteristic subgroups of S of orders ¢*, ¢®, ¢* and ¢ respectively. In

particular, the lower and upper central series for S coincide.

We define

Q1 := Cs(Z3(9)/21(5)) = (X5, Xatp, X2a+6, X3a+p: X3a+28)

QQ = CS(Z2(S)) = <Xa7Xa+ﬁ7X2a+ﬁvX3a+ﬂaX3a+26>

both of order ¢° and characteristic in S. Observe that we may identify @, and Q-
with the unipotent radical subgroups of maximal parabolic subgroups in Gs(q).

Additionally, ®(Q1) = Z(Q1) = Z(S) and ®(Q2) = Z5(S).

We first record some useful structural properties of S, ()1 and ()5. There is much

more to be said here but we only present the results required to prove Theorem

D.

Lemma 4.4.1. Q; is isomorphic to X, * Xy where Z(S) = Z(X1) = Z(X3) and
X; =T € Syl,(SLs(p")) fori € {1,2}.

Proof. Let X1 = XpX3045X3a128 < 1. Since the groups Xz and Xs,ip
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commute modulo X3,i05, it follows that every element may be written as
Z3048(t1)T5(t2)T3a125(t3) for t; € K. Then, using the commutator formulas, we

calculate that the map 6, : X7 — SL3(q) such that

1 0 O
(T3atp(t1)zs(ta)T3ar25(t3))01 = |t; 1 0

i3 1o 1

is an injective homomorphism, from which it follows that X; is isomorphic to
a Sylow 3-subgroup of SL3(g). Similarly, letting Xo = Xon4sXa1sXs0+28 < Q1.
Then every element of Xy may be written as xon1(t1)Ta1s(t2)T3a+25(ts) fort; € K.
Then, using the commutator formulas, we calculate that the map 65 : X5 — SL3(q)

such that
1 0 0

(T2016(t1)Tars(t2)T3ar2s(t3))02=|t; 1 0

ts 3ty 1
is an injective homomorphism, from which it follows that X, is isomorphic to a
Sylow 3-subgroup of SL3(¢). Thus, @; is a central product (over Z(S) = X34423)

of two groups isomorphic to a Sylow p-subgroup of SLs(q). m

In the literature, ), is referred to as an ultraspecial group. The properties of such

groups are well known. See, for example, [Bei77].

Lemma 4.4.2. Let v € Z3(S) \ Z2(S). Then x is S-conjugate to xaa4s5(u) for

some u € K*.

Proof. Let © € Z3(S) \ Z2(S) so that = xon15(t1)T30+5(t2)T3a-+25(t3) for some

t1,t2,t3 € K with t; # 0. Then the element xg(tst; "), (3712t ") conjugates x
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to Toasp(t1) if t2 # 0 and the element x4 5(371t3t7 ") conjugates z to waa,s(t1) if

tQZO. D

As in the cases where p = 2 or 3, the main tool we use to determine whether a
subgroup of S is essential is Lemma 3.2.1 and so for a large number of arguments
in this section, we need only assume that any essential candidate is S-radical and

S-centric.

Lemma 4.4.3. Suppose that E is an S-centric, S-radical subgroup of S with Q1 <
E orQy < E. Then E € {Q1,Q,S}.

Proof. Suppose that @)1 < E. Then there is e = z,(t;) € E with t; # 0, applying
the commutator formulas, it follows that Z(E) = Z(5), Z2(E) = Zs(S), Z3(F) =
Z3(S) and E' = S’. But then @)y centralizes the chain {1} 9 Zy(FE) < Z3(F) <
E’" < FE, and since E is S-radical, F = S. In a similar manner, if () < E then
there is e = x3(t;) € E with ¢t # 0. Again, from the commutator formulas,
Z(E)=Z(S)and E' = 5'. Now, @, centralizes the chain {1} 9 Z(EF) 9 E' JFE
and since F is S-radical, £ = S. n

Lemma 4.4.4. Suppose that E < S is an S-centric, S-radical subgroup of S with
Z5(S) =S" < E. Then E = Z3(S) or Z(E) < Z(S). Moreover, if E is essential,
then E # Z3(S5).

Proof. Since Z3(S) < E is self-centralizing, we have that Z(E) < Z3(S). By
Lemma 4.4.2, if Z(E) £ Z5(S) then there is e € Z(E) \ Z(S) with e conjugate
in S to some xan4p(u). Thus, Z3(5) < E < Cs(e) = Z3(5)(Xp)*® for some s € S.
Suppose that £ > Z3(S). Since E is self centralizing Z(Cg(e)) = Z(5)(Xaatp)® <

Z(E) and so Z(E) = Z(Cs(e)). Therefore, Cs(e) centralizes the series {1} <
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Z(E) 4 E so that E = Cs(e) < Q. But now, @) centralizes the series {1} <

E' = Z7(S) = Q) < E, a contradiction.

Suppose that E = Z3(S) is an essential subgroup of F. Then @3/ FE is elementary
abelian of order ¢? and centralizes Z5(S) which has index ¢ in Z3(S). Then

Lemma 2.3.10 provides a contradiction. O

Lemma 4.4.5. Suppose that E is an S-centric, S-radical subgroup of S with
Z3(S)=S" < FE and Z(F) = Z(S). Then E € {Q4,S}.

Proof. Since Z(E) = Z(95), we infer that E £ Q5. Moreover, if £ < @, then
[E, Q1] < Q) = Z(S) = Z(F) and @ centralizes the chain {1} < Z(E) < E.
Since E is S-radical, it follows that £ = ()7 in this case. Hence, we may assume
throughout that E' £ Q)1 or Q2 and so there is e 1= x,(t1)r5(t2)Tars(ts) € E with
ty # 0 # to. Then, [e, Z2(S)] = Z(S) < E' and [e, Xan15|Z2(S) = Z5(S) < E'.
Therefore, Cg(E') < EN Q.

Suppose first that [Z3(5), '] = {1}. Since Z3(95) is self-centralizing, we have that
Zy(S) < E' < Z3(S). If B # Zy(9), then Z3(S) = Cg(E') is a characteristic
subgroup of E. Then E N Q1 = Cg(Z3(5)/Z(S)) = Cr(Z3(S)/Z(F)) is also
characteristic in F. Then, since S’ normalizes F, S’ centralizes the chain {1} <
Z(F) < EN@; < F and since E is radical, S < E by Lemma 3.2.1. But
then £ < S and @, centralizes the chain {1} < Z(F) < EN@; < E and so
@1 < E. Then by Lemma 4.4.3, E = ; or F = S and since Z,(S) < E’ and
[E', Z3(S)] = {1}, we have a contradiction in either case. Therefore, E' = Z,(S)

and F'N Qe = Cg(E') is characteristic in F.

If ENS > Z3(9), as E' = Zy(9), it follows from the commutator formulas that

ENQy=ENS. But then S’ centralizes the chain {1} < Z(E) < ENS < FE
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and since F is S-radical, ' < E, E < S and S’ is characteristic in E. Now, ()
centralizes the chain {1} < Z(E) < S’ < E so that @); < Fand, by Lemma 4.4.3,
E = Sor E=Q. Since E' = Z5(5), we have a contradiction in either case. Thus,
ENS =27Z3(5). f ENQy = Z3(5), then S centralizes the chain {1} < Z(FE) <
Z3(S) < E and since E is S-radical, S’ < E. Since E NS = Z3(9), this is an
obvious contradiction. Thus, Z3(5) = ENS < EN Q2. Since E £ @, there is
e = 14(t)1s(t2)Tars(ts) € E with ty # 0 and € := 14 (t)Tars(ts) € ENQy with

t; # 0. But then, [e,&] £ Z5(S) = E', a contradiction.

Suppose now that [Z3(5), E'] # {1}. Since Z5(S) < FE’, it follows that there is
T = Tatp(t1)Taasp(te) € E' with t; # 0. In particular, S'NE < Cg(E'/Z(E)) <
Q1N E and so S’ centralizes the chain {1} < Z(F) < Cg(E'/Z(E)) < E and since
E is S-radical, 8" < E. Therefore, S' < Cg(E'/Z(E)), E QS and Q) centralizes
the chain {1} < Z(F) < Cp(E'/Z(E)) < E. Since E is S-radical, @Q; < E and
since [Z3(S5), E'] # {1}, it follows from Lemma 4.4.3 that F = S. O

Lemma 4.4.6. Suppose that E is an S-centric, S-radical subgroup of S with
Z3(S) = S" < E and Z(E) # Z(S). Then E = Qq; or E < @y has order
qt, ®(F) < Zy(S) = Z(E), |®(FE)| = q and Ns(E) = Qa. Moreover, if E is

essential then & = Q5.

Proof. By Lemma 4.4.4, Z(S) < Z(E) < Z3(S). Then E < @y and Z(E) = Z5(S5)
is characteristic in E. If S" = E then (); centralizes the chain {1} < E' < E, a
contradiction since E is assumed to be S-radical; and if " < E, by the commutator
formulas, it follows that Zy(E) = Z3(S) = @) is characteristic in F and so Qs
centralizes the chain {1} < Z(F) 9 Zy(E) < FE and as E is S-radical, £ = ()3 in
this case. Hence, S” £ E. Moreover, if E < S then S’ centralizes the series {1} <

Z(E) 4 Eso E £S5’ Suppose there exists x € (S'NE)\ Z3(S) and let e € E\ S".
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Since Z3(S) < S’ N E, we may take & = x,15(t1). Then Z(S) = [z, Z5(5)] < E'
and Zy(S) = Z(9)[e, Z3(5)] < E'. Thus, Z3(S) < Zy(S)[e,x] < E' < Z3(S),
Cg(E') = Z3(5) is characteristic in £ and S’ centralizes the chain {1} 9 Z(E) <
Cg(E') < E, a contradiction since £ is S-radical. Hence, S’ N E = Z3(S) and
since S’E < @, |E| < ¢*. Moreover, comparing with commutator formulas, it

follows that Ng(E) = Q.

Now, analyzing Q2 within Go(q), we see that QQ2/Z3(S) is a natural SLy(¢) module
for O (Outg, () (Q2)) = SLa(q). In particular, E is contained in some subgroup X
of order ¢* such that X is conjugate in OP (Outg,(y)(Q2)) to S’. Since S& = Z(S),
and Z,(9) is also a natural SLy(g) module for OP' (Outg,(,)(Q2)) = SLa(q), it
follows that ®(X) is a group of order ¢ contained in Z,(S) = Z(E). In particular,
if £ < X, then X centralizes the chain {1} 9 Z(E) < E, a contradiction since £

is S-radical. Therefore, E = X is of order ¢* and satisfies the required properties.

Assume now that F is essential. By the results in [PS18, Lemma 4.4], we may
assume that ¢ > p else the result holds. Note that (), centralizes Z5(S) and
since Qy = Ng(E), O”(Outz(FE)) centralizes Z5(S) = Z(FE). Moreover, since
O(E) < Z5(5), |Q2/E| = q,|E/Z5(5)| = q and [Q2, Z3(5)] = Z2(S), it follows by
a similar argument to Lemma 2.3.10 that F/Z(F) is a natural SLy(¢)-module for
O”(Outz(E)) = SLy(q).

Suppose first that (), is essential in . Moreover, by Lemma 4.4.3, ()5 is maximally
essential. Since ®(Q2) = Z3(S5) and [S,S5] < Z3(5), by Lemma 2.3.10 we ave
that Q2/®(Q3) is a natural SLy(¢)-module for OF (Outr(Q)) = SLy(g). But
then, O (Outx(Q,)) acts transitively on subgroups of Qy of order ¢* containing
®(Q)2) = Z3(S) so that E is conjugate in F to S’. Since E was assumed to be

fully F-normalized, this is a contradiction.
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Hence, we may assume that (); is not essential. Note that as any essential
containing FE contains S”, we may as well assume that E is not properly
contained in any essential subgroup and so E is maximally essential. Let tg be
a non-trivial element in Z(OP (Outz(E))). Using that ¢z normalizes Outg(FE),
E' is receptive and applying the Alperin—Goldschmidt theorem, tg lifts to some
morphism in Autz(S) and so normalizes Z3(S) and S’. Moreover, since E/Z(E)
is natural SLy(q)-module, tg inverts Z5(S)/Z(E), centralizes Z(FE) and centralizes
QE/E = 5'/Z5(S). But now, [tg, S, Z3(S5)] = {1} since Z3(S) is abelian, and
1S, Z3(S),tg] = {1}. By the three subgroup lemma, [tg, Z3(S),S"] = {1} and so
[te, Z3(9)] < Z(5") = Z5(S) = Z(F), a contradiction. O

Lemma 4.4.7. Suppose that E is an S-centric, S-radical subgroup of S with
Z5(S) £ E but Zy(S) < E. Then EN Z3(S) = Zy(S).

Proof. Since Z5(S) < E, we deduce that Z(F) < Q2. Suppose that E'N Z3(S) >
Z5(S). Since Z(E) centralizes E'N Z3(S5) and Z5(S) is self-centralizing in S, it
follows that Z(E) < Zs(S). If Z(E) N Zy(S) > Z(S), then E < @y and Zy(5) <
Z(E) < Z3(S). Moreover, if Z3(S) < Z(F) then, again using that Z3(S) is
self-centralizing, it follows that £ < Z3(S) and since E is S-centric, E = Z3(S5),
a contradiction. Hence, if Z5(S) N Zy(S) > Z(S) then Z(E) = Z5(S). But now,
Z5(S) centralizes the chain {1} < Z(F) < E, a contradiction since E is S-radical

and Z3(S) £ E. Therefore, if EN Z5(S) > Z5(S), then Z(E) N Zy(S) = Z(S).

Suppose that Z(E) N Z3(S) > Z(S) and let e € (Z5(S) N Z(E)) \ Z(S). By
Lemma 4.4.2, e is conjugate in S to some element o, 5(t) with ¢ # 0. Moreover,
it follows from the commutator formulas that the centralizer of such an element
is contained in (); and intersects S’ only in Z5(S). Since @i, S" and Z3(S) are

normal in S, the centralizer of e is contained in (), and intersects S only in Z5(S).
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But E centralizes e < Z(F) and so if E < S5, then F < Z3(S5) and since E is
S-centric, we have a contradiction. Therefore, F < () and there is z € E'\ S'.
Since Z(S) < E, Z(S) = [v,25(S)] < ' < Q) = Z(S5) and so Z(S) = £
But then @7 normalizers the chain {1} < E' < E, and since E is S-radical, we

conclude that Z3(S) < @ < E, a contradiction.

Hence, we have shown that if ENZ3(S) > Z5(S), then Z(E) = Z(S). In particular,
E £ @, since Zy(S) £ Z(E) and E £ @, for otherwise (); centralizes the
chain {1} 9 Z(F) < E, a contradiction for then Z3(S) < @1 < E since E is
S-radical. Now, Z5(S) < Z5(E) and since E N Z3(S) > Z,(S), it follows from the
commutator formulas that Zy(F) < ENQ;. But then [Z3(5), Z2(F)] < Z(5) =
Z(E), [Z3(S), E] < Zy(S) < Zy(F) and Z3(S) centralizes the chain {1} < Z(E) <

U

Zy(E) 9 E, a contradiction since E is S-radical.

Lemma 4.4.8. Suppose that ES is an S-centric, S-radical subgroup of S with
Z3(S) £ E but Zo(S) < E. Then either E < S’ is elementary abelian of order ¢,
Ng(FE) = @y and E is not an essential subgroup of any saturated fusion system F

on S; or ENS" = Zy(S).

Proof. By Lemma 4.4.7, we may assume that E N Z3(S) = Z5(S). Suppose that
ENS' > Zy(S). It then follows from the commutator formulas that Z(E) < S’. If
Z(EYNZy(S) > Z(S), then E < Q9. But then Z,(5) < Z(F) and since Z3(S) € E
and F is S-radical, we conclude that Z5(S) < Z(F) for otherwise, Z3(S) centralizes
the chain {1} 9 Z(E) < E. But then, there is e € (Z(E) N S’) \ Z5(S) and
it follows from the commutator formulas that £ < S” and since £ N Z3(S) =
Z5(S), |E| < ¢®. We may set e := x,y5(t1)T2015(t2)z, where z € Z5(S) and
t; € K*. Then for y := zo(—t227 1), €¥ = z415(t1)2’ for some 2/ € Z(S).

Then Cg(e¥Z2(S)) = XaipZ2(S) and it follows that £ < Cg(e) is conjugate
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to a subgroup of X,1575(S). Moreover, since E is S-centric and X,437Z5(5) is
elementary abelian, E is conjugate to X,322(S) and a calculation using the

commutator formulas gives that Ng(F) = Q.

Suppose that F is essential. Since Z3(S)E/E is elementary abelian of order ¢ and
Z5(S) centralizes Z5(S) which has index ¢ in E, by Lemma 2.3.10 we deduce that
E/Cp(O” (Outz(E))) is a natural SLy(g)-module for O” (Out£(E)) = SLy(q) and

Outz,(s)(E) € Syl,(Outz(E)). But Q1 < Ng(E) and we have a contradiction.

Hence, if ENS' > Z,5(S), then Z(E)NZy(S) = Z(5). If Z(E) # Z(S), then there
isee (Z(E)NnS')\ Z(S) and it follows from the commutator formulas that the
centralizer of such an element is contained in );. Therefore, £ < Q; and E' <
Q) = Z(S). Moreover, if there is x € E '\ &', then Z(5) = [z, Z2(S)] < E' = Z(S)
and so, @1 centralizes the chain {1} < E’ < E, a contradiction since ; £ E
and E is radical. Therefore, £ < S’, which yields another contradiction for then

Z>(S) < Z(EB).

Finally, we suppose that £ N S" > Z5(S), EN Z3(S) = Z3(S) and Z(E) = Z(S).
In particular, £ € Q) and since Z5(S) < E, for x € E'\ Qq, Z(S) = [z, Z3(95)] <
E'. Now, for e € (ENS')\ Z3(9), e, Z2(F)] = Z(F) and it follows from the
commutator formulas that Z5(S) < Zy(E) < Q;. In particular, Z3(S) centralizes
the chain {1} < Z(E) < Zy(E) < E, a contradiction since E is S-radical and
Zy(S) £ E. O

Lemma 4.4.9. Suppose that E is an S-centric, S-radical subgroup of S with E N
S" = Z5(S). Then either

(i) E < Qy is elementary abelian of order ¢, E £ S’ and Ng(FE) = EZ3(S) has

order ¢*; or
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(i) E = g™, Z(S) = ENQs = EN Qs Z(S) = Z(E) = ®(E) and Ns(E) —
EZ3(S) has order q*.

Moreover, in both cases E is not essential in any saturated fusion system F on S.

Proof. Suppose that E < Qy. Then Zy(S) < Z(E) and |E| < ¢3. It Z(E) = Zy(S),
then Z3(S) centralizes the chain {1} < Z(E) < E, a contradiction since E is
S-radical. Therefore, thereise € Z(E)\ S’ and write e = 4 (t1)Ta15(t2)T30+5(t3)x
for some x € Z5(S) and t; € K*. Then for y := x5(t] 't2)ars(27 1t (t3 — tits)),
we have that eV = x,(t1)2’ for some 2’ € Z5(S). Then Cg(e¥Z5(S)) = Xo0Za(S)
and by conjugation, £ < Cg(e) is conjugate to a subgroup of X,Z5(S). Moreover,
since F is S-centric and X,Z5(S5) is elementary abelian, we conclude that E is
conjugate to X,Z»(S) and a calculation using the commutator formulas gives that

Ng(E) = EZ5(S), as required.

Suppose now that F is essential in a saturated fusion system F on S. Then
Z3(S)E/E is elementary abelian of order ¢ and Z3(S) centralizes Z»(S) which has
index ¢ in E. By Lemma 2.3.10, E/Cg(O” (Outz(E))) is a natural SLy(g)-module
for O” (Outz(E)) = SLy(g) and Outz,s)(E) € Syl,(Outz(E)). Since E £ Qy, we
may assume by Lemma 4.4.5 and Lemma 4.4.6 that the only possible essential £

is properly contained in is Q5.

If @), is essential then using that S centralizes S’/Z3(S) = S'/®(Q2) and S"/Z3(S)
has index ¢ in Q2/Z5(S), it follows by Theorem 3.2.3 that (Q2/Z3(S) is a natural
SLy(g)-module for OP' (Out£(Q3)) = SLa(g). But then, O (Out#(Qy)) is transitive
on subgroup of order ¢ in Q3/®(Qs) and so E¢ < S’ for some ¢ € O (Out+(Q3)).
Therefore, [E¢, Q1] < Z(S) < Z3(S) < E¢ and @1 < Ng(E¢). Since |Ng(E)| =

¢*, E is not fully normalized, a contradiction.
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Hence, we may assume that (), is not essential in F and for a non-trivial element
tg € Z(OP (Outx(E))), using that E is receptive, tp lifts to some t% € Autz(9).
Moreover, by coprime action, E = [E,t};] x Cg(t};) and either Z(S) = Cg(t};) or
Z(S)NCg(ty) = {1}. Since Z5(S) = Cr(Z3(95)), it follows in the latter case that
t3, centralizes Z5(S)/Z(S) and since Z3(S)E/E = Z3(S)/Z5(S), coprime action
yields [Z3(S),t5] = Z(S). Then, [Z5(S),S,t5] = Z(9), [t}, Z3(S),S] = {1} and
the three subgroup lemma yields, [S,t};, Z5(S)] < Z(S) and t}; centralizes S/, =
Q2/S" = ES'/S" = E/Zy(S), a contradiction. Thus, t}, centralizes Z(S) and
inverts Zy(S5)/Z(S). Moreover, t}, centralizes Z3(S)/Z2(S) and inverts E/Z5(S) =
E/ENS = @Q./5. Now, since [S,Z5(5)] < Z(S) is centralized by t}, and
[Z5(S),t5] < Za(S) is centralized by 5, it follows from the three subgroup lemma
that [t};, S, Z3(S)] = {1} and since Z3(S) is self-centralizing, [t};,S'] < Z3(95).
Indeed, coprime action implies that [t};, S'] < Z5(S). But then [t;, 5", Q2] = {1},
[S7,Qa,t5] < Z5(S) and another application of the three subgroup lemma gives
(5, Q2,S"] < Z5(S). But t}, inverts QQ2/S’ and a contradiction follows from the

commutator formulas.

Assume now that E £ Q9 and since Zy(S) < FE, for x € E \ @2, we have that
Z(S) =[x, Z2(9)] < E < ENS = 7Zy(S). If Z(S) < F’, then Cg(E") = EN Q2
is characteristic in E. Moreover, Z5(S) < Cg(E’) for otherwise Z3(S) centralizes
the chain {1} < Z5(S) < E, a contradiction since Z3(S) £ E and F is S-radical.
Furthermore, Z(E) N Q2 < S'NE = Z5(S5), otherwise E < (). But then Z(F) =
Z(S) and since there is e € EN Q2 \ Za2(S), Z2(S) < Zy(E) < EN @y and so
Z5(S) = Zy(F) N E N Q9 is characteristic in F and Z3(S) centralizes the chain

{1} < Z5(S) < E, a contradiction.

Finally, we suppose that ENS’ = Z5(S), E £ Qyand Z(S) = E'. If ENQ9 > Z5(5)
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then, as E' € Qa, thereis e € E\Qs, with [e, ENQs| £ Z(S) = E'. Hence, ENQy =
Z5(S) and |E| < ¢3. Notice that if F < @y, then [E,Q,] < Q) = Z(S) = E’ and
@1 centralizes the chain {1} < E’ < FE, a contradiction since Z3(S) £ E and
E is S-radical. Hence, there is e € E'\ (Q1 U (Q)2) and since [e, EN Q4] < E' =
Z(9), it follows from the commutator formulas that £ N ¢y = Z3(S). Note that
EQ1/Q1 = E/Zy(S) is elementary abelian and so, ®(F) < Zy(S). If Z(S) < ®(F),
then Z5(S) = Cg(®(F)) is characteristic in E, a contradiction for then Z3(S)
centralizes then {1} < Zy(S) < E. Therefore, ®(E) = Z(E) = Z(S), |E| = ¢*

and the commutator formulas imply that Ng(E) = Z35(S)E, as required.

Suppose that E is essential on some saturated fusion system F supported on
S. Since E £ @Q1,Q, it follows by Lemma 4.4.5 and Lemma 4.4.6 that E
is maximally essential. Moreover, Z3(S)E/E is elementary abelian of order ¢
and Z3(S) centralizes Z5(S) which has index ¢ in E. Then by Lemma 2.3.10,
E/Z(E) is a natural SLy(g)-module, O (Outz(E)) = SLy(g) and Outz,s)(F) €
Syl,(Outz(E)).

Let A € Now ouy(m)(Outs(E)) be an element of order ¢ — 1, isomorphic to a
generator of a torus in SLy(q). We can choose \ to act as the scalars p=*

E/Zy(S) and as p on Zy(S)/Z(S), for u € K*. Since E is essential, it is receptive,
so we may extend \ to some ), and by the Alperin — Goldschmidt Theorem and
since E is maximally essential, we may take A € Aut 7(5) so that X acts on S, Q;
and Q,. Since E/Z,(S) = ES'/S', it follows that X acts as ' on ES'/S’. Let
Za(t1), x5(t2) be transversals in S/S’ such that z,(t1)xs(t2)S" € ES'/S’. We have

that

Za(t)A = (a(z(wN) (@s(—w)X) = (za(p D)2 (1™ u) (25(~u)})
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and comparing coefficients, we have that \ acts as =t on both Q,/S" and Q/S5".

Then, by the commutator formula

[Za(t), Tatp(u)] = Taa15(—20) T3045(3"1) T30425 (3tu”)

and using that A acts as p2 on Ng(E)/E = Z5(S)/Z,(S), we deduce that X acts as
w? on S'/Z3(S). Using the commutator relation [z 5(t), Toats(u)] = T30425(3tu)
we get that A acts as 1° on Z(S). But since Z(S) = Cg(O¥ (Out#(E))) and since

A was of order ¢ — 1, it follows that ¢ = 6, a contradiction. n

Given Lemma 4.4.5, Lemma 4.4.6 and Lemma 4.4.9, we finally assume that
Zy(S) £ E. This is a particular interesting case as there is some exceptional
behaviour when ¢ = p = 7 related to the 7-fusion system of the Monster sporadic
simple group. Indeed, this exceptional behaviour produces a distinct class of
essentials and with it, a large number of exotic fusion systems. This phenomena

was already known about by the work in [PS18].
Lemma 4.4.10. Suppose that E is an S-centric, S-radical subgroup of S with
Z5(S) £ E. Then either

(i) E < Q is elementary abelian of order ¢, E £ S" and Ng(E) = Q; or

(ii) p = 7, E is elementary abelian of order ¢*, EN Q1 = ENQy = Z(S) and

Ns(E) = Zs(S)E.

Proof. We may suppose Z(FE) £ @ for otherwise Z(.S) centralizes the chain {1} <
Z(E) < E, a contradiction since Z5(S) £ E and E is S-radical. In particular, it

follows by the commutator formulas that ENQy < 5" and E N Zy(S) = Z(9).
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Suppose that EN Q1 # Z(S). Then a calculation using the commutator formulas
reveals that Z(E) < @y. Then, Z(E) £ S’ for otherwise Z5(S) centralizes the
chain {1} < Z(F) < E, and another calculation yields £ < ;. Recall from
Lemma 4.4.1 that Q1 = ¢'™ % ¢**2. Then, m,(Q1) = 3n and for any element of
order z € Q; \ Z(95) of order p, we have that |Co, (z)| = ¢*, |Z(Cs(e))| = ¢* and
Cs(e) = Z(S). Since Z(E) £ Qo, there is e € Z(F) such that £ < Cg(e) where
Cs(e) has order at most ¢*. Then, as E is S-centric, Z(Cs(e)) < Z(E). Now, if
Z(E) = Z(Cs(e)), then Cg(e) centralizes the chain {1} < Z(E) < E, and since
E is S-radical, E = Cg(e). But then @); centralizes the chain {1} < E' < E, a

contradiction since Z5(S) £ E.

So assume that Z(Cg(e)) < Z(E). It follows that there is ¢’ € (Z(E)NS")\ Z(95)
so that £ < Cg(¢') and again Z(Cg(e’)) < Z(E). Thus, Z(Cs(e'))Z(Cs(e)) is
elementary abelian of order ¢* and contained in Z(E). But m,(Q;) = 3n and
so B = Z(F) = Z(Cs(e'))Z(Cs(e)) is elementary abelian of order ¢3. Tt follows

directly from the commutator formulas that Ng(E) = Q;.

Thus, we have shown that Z(S) = ENQ; = ENQy and |E| < ¢*. If p > 7, then as
S has exponent p and FE is centric, we can explicitly construct elementary abelian
subgroups of order ¢ completing Z(S) in F so that £ = Q(Z(F)) is of order ¢*. If
p = 5, then S has exponent 25 and it follows that G(E) = FNS’ = Z(S) and Z3(5)

centralizes the chain {1} < U(E) < E, a contradiction since £ is S-radical. [

Lemma 4.4.11. Suppose that E < S is an essential subgroup of F and Zy(S) £ E.
Then q=p="T and E = (Z(S),x) for some x € S\ (Q1 U Q2).

Proof. By Lemma 4.4.10, we may assume that £ is elementary abelian of order ¢*

and contained in ();; or E is elementary abelian of order ¢ and intersects Q; only

121



in Z(S). In the former case, Z5(S)E/E is elementary abelian of order ¢ and Z,(S)
centralizes £ NS’ which has index ¢ in E. Then by Lemma 2.3.10, it follows that
E/Cg(0O” (Outz(E))) is a natural SLy(¢)-module for O” (Out#(E)) = SLy(q). But
Ns(E) = Q; and |Q1/FE| = ¢?, a contradiction.

Thus, F is elementary abelian of order ¢ and ENQ, = ENQy, = Z(S). Since
Z5(S) centralizes Z(S) which has index ¢ in E, by Lemma 2.3.10, E' is a natural
SLs(g)-module for OF (Outz(E)) = SLy(q) and Outz,s)(E) = Outg(E). By
Lemma 4.4.5, Lemma 4.4.6 and Lemma 4.4.9 and since £ £ Q1,Q2, we assume

that F is maximally essential.

Let A € Now ouiy(m))(Outs(E)) be an element of order ¢ — 1, isomorphic to a
generator of a torus in SLy(g). Since E is a natural SLy(¢)-module, for some
p € K* of order ¢ — 1, we can choose A to acts as g on Z(S) and p~! on E/Z(S).
Since FE is receptive, and by the Alperin—Goldschmidt Theorem, A\ extends to
= Autz(S). Since Qq,Q2,S" are characteristic in S, A acts on @Q1/S5’, Q2/5’
and ES'/S" = E/Z(S). Let 24(t) be a transversal of Q3/S". Then z,(t)A =

(2o (t)zs(u)zs(—u))A for all u € K*. But, for some u, zq(t)zs(u) is a transversal

of £S'/S" and x5(—u) is a transversal of Q;/5" and X acts on ES’/S" as ju~".

Thus,

Lol = (@a(Dzs(wN) (@s(~u)R) = (20l Ds(u u)(a5(~u)R)

and by comparing coefficients, A acts as ! on both Q,/5" and Q,/S’. Using the
commutator formulas on various elements on S, one has that \ acts as p2, s,
p~tand 17 on S'/Z5(S), Z3(S)/Z(S), Z5(S) and Z(S) respectively. But since A

actson Z(S) as A does, u™° = pand pu® = 1. Since p was of order ¢—1, we conclude

122



that ¢ = p = 7. In this case, S has exponent 7 and there is x € E \ (Q1 U Q) of

order 7 such that £ = (Z(S), z), as required. O

Before determining all possible saturated fusion systems on S, we sum up the

results concerning S-centric, S-radical subgroups of S.

Proposition 4.4.12. Suppose that E is an S-centric, S-radical subgroup of S.
Then one of the following holds:

(i) E€{Q1,Q2,5};
(ii) E < Qg has order ¢*, ®(E) < Zy(S) = Z(E), |®(E)| = q and Ns(E) = Qo;

(iii) £ < S is elementary abelian of order ¢* with E < S if E = Z3(S); and

Ns(E) = Q1 otherwise;

(iv) E < Q9 is elementary abelian of order ¢3, E £ S" and Ng(FE) = EZ3(S) has

order q*;

(v) E=q'™ Z5(S)=ENQ,=ENQ,y, Z(S)=Z(FE) = ®(F);

(vi) E < Q is elementary abelian of order ¢*, E N Zy(S) = Z(S) and Ns(E) =
@1, or

(vii) E is elementary abelian of order ¢*, Z(S) = ENQ1 = ENQy = Z(S) and
Ns(E) = EZy(S) has order ¢®.

We now analyze the automizers of the potential essential subgroups of a saturated
fusion system F over S. That is, 1, Q)2 and if ¢ = p = 7, some conjugacy class of
elementary abelian subgroups of order 72. For the latter class of essentials, we refer

to [PS18] to determine the fusion system, where a large number of exotic fusion
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systems are uncovered. We analyze the automizer of ()5 via Lemma 2.3.10, noting
that this result is independent of a K-group hypothesis. Analyzing the automizer
of )1 is more complicated and, with the help of some supporting results, we
conclude that O (Outz(Q;)) is isomorphic to a subgroup of Sp,(q). Since the
maximal subgroups of Sp,(q) are known by [Mit14], we compute the candidates
for O (Out#(Q;)) independent of any K-group hypothesis. We omit the details

here, and instead appeal to Proposition 3.2.7 and a result in [PS18].

Finally, we wish to apply Corollary 4.1.3 to determine F. Except in the case
where ¢ = p € {5,7}, we have that Q;,Q> are the only possible essentials
and O (Outz(Q;)) = SLy(q) for i € {1,2}. In particular, the application of
Corollary 4.1.3 via the Main Theorem relies only on the classification of weak
BN-pairs of rank 2 provided in [DS85] and again, is independent of any KC-group
hypothesis. We remark that there is currently no known way of determining
whether a fusion system is exotic without appealing to the classification of finite
simple groups, and instead appeal to [PS18, Theorem 6.2] for a proof of the

exoticity of the fusion systems listed in (vii).
Theorem 4.4.13. Let F be a saturated fusion system over a Sylow p-subgroup of
Go(p™) with p = 5. Then one of the following holds

(i) F = Fs(S : Outz(9));

(ii) F = Fs(Qy : Outz(Qy)) where O (Outx(Q1)) = SLy(q) or ¢ = p € {5,7}
and the possibilities for OY (Outz(Q,)) are given in [PS18, Lemma 5.2];

(iii) F = Fs(Q2 : Outx(Q2)) where O (Out#(Qs)) = SLy(q);

(iv) F = Fs(M) where M = 53.SL3(5), p=>5 and n = 1;
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(v) F = Fs(G) where G = Ly, HN, HN.2 or B, p=5 and n = 1;
(vi) F =Fs(G) where G=M, p=T7andn =1;

(vii) F is one of the exotic fusion systems listed in [PS18, Table 5.1], p =7 and

n=1; or

(viii) F = Fs(G) where F*(G) = OY(G) = Gy(p").

Proof. Suppose first that there is an essential £ ¢ {Q1,@Q2}. By Lemma 4.4.11,

= ¢ = 7 and the action of O” (Outx(E)) is irreducible on E. In particular,
since O7(F) is normal in S and contained in each essential subgroup by
Proposition 3.1.13, O;(F) = {1}. Then the hypothesis of [PS18, Theorem 5.1]

are satisfied and F is one of the fusion systems described in [PS18, Table 5.1].

Hence, we may assume that E(F) C {Q,Q2}. Suppose that @)y is essential
and notice that Z3(S) = ®(Q3). Since [S,S’] < Z3(S) and S" has index ¢ in
@2, it follows in a similar manner to Lemma 2.3.10 that Q2/®(Q2) is a natural
SLs(g)-module for OP' (Out#(Q3)) = SLy(q). Moreover, since S does not centralize
Zy(S) = Z(Q2) but acts quadratically on Z(Q-), it follows Z(Q2) is also a
natural SLy(q)-module for O (Outz(Q3)) and since S centralizes Z5(S)/Zs(9),
O (Out£(Q,)) centralizes Z3(S)/Z(S). In particular, if Q; is not essential then

(i) is satisfied.

Suppose that @Q; is essential. Notice that O (Outg,)(@1)) = SLa(q) acts
irreducibly on Q;/®(Q;) and it follows that (Outg(Q;)°"(@)) acts irreducibly on
Q1/®(Q,) and centralizes ®(Q;). Then by [PR12, Lemma 2.73], (Outg(Q;)°"@1))
is isomorphic to an irreducible subgroup of Sp,(q) and so O (Outx(Q:)) is

isomorphic to a subgroup of Sp,(¢) with a strongly p-embedded subgroup.
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Applying Proposition 3.2.7, it follows that O (Out #(Q;)) is isomorphic to a central
extension of PSLy(q); or ¢ = p € {5,7} and the possibilities are determined in
[PS18, Lemma 5.2].

If both @1 and Q)5 are essential, then since O,(F) < Q1 N Q2 by Proposition 3.1.13
and OP (Out#(Q5)) is irreducible on Z5(S) and Q3/Z3(S), we have that Z,(S) <
O,(F) < Zs(S) or O,(F) = {1}. If O,(F) = {1}, then F is determined by
Corollary 4.1.3, and the result holds. So suppose that Z5(S) < O,(F) < Z3(S).
If Z5(S) = Oy(F), then Cg,(Z2(S)) = S is Autz(Q1)-invariant and since Qo
centralizes Zy(S), Q1/5" and Z3(S)/Z2(S), it follows from Lemma 2.3.10 that
S'/Z(S) is a natural module for O” (Outz(Q;)) = SLy(q), and both Z,(S) and
Q1/S" are centralized by O (Outz(Q;)). Letting 1 # t € Z(O” (Outz(Q,))),
by coprime action we have that for V = Q,/Z(S), V = [V,t] x Cy(t) and
[V,t] is normalized by S. Since Z5(S) is centralized by ¢, we deduce that
(V,t) N Z(S/Z(S)) = {1} so that [V,t] = {1} and ¢ centralizes V, a contradiction.
Therefore, Z5(S) < O,(F) < Z3(S) so that Z3(S) = Cs(O,(F)) < Q1N Q2. Then
by Proposition 3.1.13, Cs(O,(F)) < F and since Z3(5) is elementary abelian,
0,(F) = 7(5).

Setting L; := O (Outx(Q,)), we have that L;/Cr, (Q1/Z5(S) = SLy(q) and
L1/Cr,(Z3(S)/Z(S)) = SLa(q), and either C1,(Q1/Z3(S) = CL,(Z3(5)/Z(S))
and L; = Sly(q); or Ly is isomorphic to a central extension of PSLs(g) by an
elementary group of order 4. Since p > 5, PSLy(q) is perfect and has the p/-part
of its Schur multiplier of order 2 by Lemma 2.2.1 (vii), and as L; = OP' (L), we

have a contradiction in the latter case. Therefore, L; = SLy(q) = OP (Out£(Q2)).

Now, Z3(S) is a normal, S-centric subgroup of F. By Theorem 3.1.21, there
is a finite group G such that F*(G) = Z3(S) and F = Fs(G). Moreover,
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O” (Outg(Q;)) = SLa(q) and Outz(Q;) acts faithfully on Q;/Z3(S) for i € {1,2}.
Set G := G/Z3(S) and notice that Q; and Q, are self-centralizing in G. Moreover,
G = (Ng(Q1), N5(Q2)), and Q; is Autz(S)-invariant for i € {1,2}. It follows that
G has a weak BN-pair of rank 2 in the sense of Definition 5.1.7. Moreover, since (Qy
centralizes Z5(S) which has index ¢ in Z3(5) and @QQ2/Z5(.S) is elementary abelian of
order ¢%, we deduce that Z3(.9) is an FF-module for G by Proposition 2.3.9. Then,
comparing with the completions in [DS85] and applying [CD91, Theorem A], we
conclude that OP (G) = SLs(q) and Z5(S) is a natural module for O” (G). As in
the case when p = 2, we observe that if S splits over Z3(5), then S is isomorphic
to a Sylow p-subgroup of SL(¢), which has p-rank 4n by [GLS98, Theorem 3.3.3],
whereas S has p-rank 3n. Therefore, S is non-split and by [Bel78, Table I], it
follows that ¢ = p = 5. One can check that there is a unique fusion system up to

isomorphism on S with Os(F) = Z3(5). O

Remark. In case (iv) of the above theorem, one can take M to be a maximal

subgroup of Ly.

4.5 Fusion Systems on a Sylow p-subgroup of

We set S to be a Sylow p-subgroup of PSUy(q) where ¢ = p" and F to be a
saturated fusion system supported on S. Again, let K be the finite field of order

¢ and recall the commutator formulas from Section 4.1.

Proposition 4.5.1. Suppose that S is isomorphic to a Sylow p-subgroup of
PSU4(p™). Then J(S) = XpXotpXoatp is the unique elementary abelian subgroup

of S of order p*".
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Proof. Let X := XpXai3Xoa4p, ¢ = p", G := PSUy(q) and S € Syl,(G) with
X < S. Then O (Autg(Qs)) = PSLy(¢?) by [BHR13]. Suppose there is A € A(S)
with A # X and note that Cs(X) = X so that AN X < Cg(AX) < X. Then by
Lemma 2.2.9, |Cx(AX)| € {q,¢*} so that |[A N X| < ¢® Then, since |S/X| = ¢,
¢ > |AX/X| = |A/JANX]| > ¢*/¢* = ¢* so that S = AX, |A| =¢* and |[ANX| =
. But AN X < Z(AX) = Z(S) and as |Z(S)| = ¢, we have a contradiction.
Hence, A(S) = {X} and the result holds. O

Lemma 4.5.2. There ezists a unique subgroup X := X, Xo15Xoa+5 < S of order
q° such that X' = Z(S), | X| > ¢*, 8" = X N J(S) and X is mazimal by inclusion

with respect to these properties. In particular, X is characteristic in S.

Proof. By the definition of X, |X| = ¢® > ¢* and X N J(S) = S’. Moreover,
it follows from the commutator relations that X’ = Z(S). Thus, X satisfies the
required properties. Suppose there is Y £ X such that Y also satisfies the required
properties. Since Y £ X and Y N J(S) = &', there is y := x,(t1)zs(t2) € Y with
t1 # 0 # to. By the requirements, [Y,y| < Y’ = Z(S) and since [y, x4 (t)] £ Z(5)]
is follows that Y N X = S’. However, |Y| > ¢* so that | XY| = |X||Y]/|X NY]| >

q® = |9], a clear contradiction. O

Remark. We may uniquely define X as the preimage in S of J(S/Z(S)). Moreover,
X is an ultraspecial special group with Z(X) = X' = Z(.9) of order ¢, but we will

not require this fact.

We set @1 := X and @ := J(S) with the intention of proving £(F) C {Q1, @2}
As it turns out, this is true except when ¢ = p = 2 where S is coincidentally
isomorphic to a Sylow 2-subgroup of PSL4(2). In this case, since |S| = 25, we can

directly compute that S-radical, S-centric subgroups of S and classify all saturated
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fusion systems on S with the aid of MAGMA.

Proposition 4.5.3. Let S be isomorphic to a Sylow 2-subgroup of PSU4(2). The
S-centric, S-radical subgroups of S are as S, Q1, Qa, Cs(z) for any x € S"\ Z(9)
so that |Cs(z)| = 2°; and A € A(Q) with A £ Qs so that |A| = 23.

Proposition 4.5.4. Let F be a saturated fusion system over a Sylow 2-subgroup

of PSU4(2). Then one of the following holds:

(i) F = ]:5(5 . Out]:(S));
(ii) F = Fs(Q2 : Out£(Q2)) where Outz(Q2) = PSLy(4);

(iii) F = Fs(Q1 : Outx(Q1)) where Outz(Qq) is isomorphic to a subgroup of
Sym(3) x 3;

(iv) F = Fs(Q, : Outz(Qy)) where Q. = Cs(x) for any x € S\ Z(S), and
Outz(Q,) = Sym(3);

(v) F = Fs(M) where M = 2% : (Sym(3) x Sym(3));

(vi) F = Fs(M) where M = 23 : PSL3(2);

(vii) F = Fs(G) where G = PSU4(2); or
(viii) F = Fs(G) where G = PSL,(2).
Henceforth, we suppose that ¢ > 2. Consider ()1, Q2 and their normalizers as
subgroups of PSU4(q). By [PR06, Definition 2.1}, as GF(p)-modules, Qs is a
natural Q; (¢)-module for O (Autpsy,(g)(Q2)) = PSLy(¢?) while Q1/Z(Q,) is the

direct sum of two natural SLs(g)-modules for OP (Outpsu, () (Q1)) = SLa(q). With

this information, we can properly analyze the centralizers of elements in S.

129



Lemma 4.5.5. Let F' < S be such that F £ Qo. Then of the following occurs:

(i) [Q27F] - [Q275] = 5" and CQ2<F) - CQz(‘S) - Z(S)>
(i) p=2, [Q2, F] = Cq,(F) has order ¢* and |FQ2/Q2| < ¢; or

(iii) p is odd, |[Q2, F]| = |Co,(F)| = ¢*, §" = [Q2, F]Cq,(F), Z(S) = Cig,,r)(F)
and |FQ2/Qa| < q.

Proof. This is a restatement of Lemma 2.2.9. m

Lemma 4.5.6. Let v € S"\ Z(S). Then Qs < Cs(x), |Cs(x)| = ¢*, Z(Cs(x)) =
Cq,(Cs(z)) has order ¢* and Cg(z) = [Q2, Cs(x)] has order ¢*.

Proof. Let x € S\ Z(S). Then since x € @2, and @) is elementary abelian,
Q2 < Cs(z) so that Qs = J(S) = J(Cgs(z)) is characteristic in Cs(z). Moreover,
since z € @1\ Z(Q1), we have that |Cg,(x)| = ¢*. Then Cg,(7)Q:> < Cs(z)
and so |Cs(x)| > ¢°. Suppose |Cs(z)] > ¢°. Then ¢° < |Cs(2)]|Q1]/|Cq, (z)| =

|Cs(z)Q1] < |S| = ¢5 a contradiction.

Since Q) is self-centralizing and ()3 < Cs(z), we have that Z(Cs(z)) = Co,(Cs(z))
may be determined from the information provided in Lemma 4.5.5. Indeed, since
z € Z(Cs(x)) \ Z(5), we have that |[Qq, Cs(z)]| = |Z(Cs(z))| = ¢*. Finally, it is

clear from the commutator formulas that Cs(z) = [@Q2, Cs(x)], as required. [

Lemma 4.5.7. Let v € Q2 \ S". Then Cs(z) = Q2.

Proof. Let x € Q5 \ S’ Since @y is abelian, Qy < Cg(x) and |Cs(z)| = ¢*. We
have that 5" < C, (z) so that Co, z(s)(z) is of order at least ¢*. But Q1/Z(9S) is

a direct sum of natural SLy(g)-modules so that |Co, /z(s)(x)| = ¢* from which it
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follows that S" = Cg,(z). Then ¢® = |S| = |Cs(x)Q1] = |Cs(2)]|Q1]/]S'| = ¢° so
that S = Cs(2)Q1, |Cs(z)| = ¢* and Cs(x) = Qs. O

Lemma 4.5.8. Let x € S\ Q2 be of order p. Then Cs(z) < Q1, |Cs(z)] = ¢*,
|Cs(x) N Q2| = ¢*, mp(Cs(x)) < 3n, Cs(x)' = Z(S) and |Z(Cs(x))| = ¢*.

Proof. Upon demonstrating that Cs(z) < ()1, the results follow from the structure
of Q1. Since Cg(x) is centralized by x & Qs, it follows that Cs(z) N Qs < 5" and
Cs(x)S" has order ¢° and intersects Qo in S’. Hence, if (Cs(z)S") = Z(S), then
Cs(z)S" = @1 by Lemma 4.5.2. It is clear from Lemma 4.5.5 that [S’, Cs(x)] =
Z(S) and so it remains to show that Cg(z) < Z(S). Indeed, since S splits over
Q2, Cs(x) splits over S” and since Cg(x)S’/S" is elementary abelian, we need only
show that [Cs(x) N S", Cs(x)] = Z(S). But this follows from Lemma 4.5.5, and

the result is proved. O
With this information, we can determine the S-centric, S-radical subgroups of .S,
which we do over the following two propositions.

Proposition 4.5.9. Suppose that E is an S-centric, S-radical subgroup of S and

S" £ E. Then E is elementary abelian of order ¢, E < Q, and either

(i) p=2, E<S and |[ENS'| = ¢
(ii) p is odd, Ns(E) = Q) and |[ENS'| = ¢; or

(iii) p is arbitrary, Ns(E) = Q1 and ENS" = Z(S).

Moreover, in all cases, E is not essential in any saturated fusion system F over

S.
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Proof. Suppose that S £ E. Since [E,S] < [S,5'] < Z(S) < Q(Z(FE)), we
must have that [, Q(Z(F))] # {1} for otherwise S’ centralizes the chain {1} <
Q(Z(F)) < E, a contradiction by Lemma 3.2.1 since S-radical. Since S’ centralizes
()2, there is v € Q(Z(E)) with z € S\ Q2 and E < Cg(z). In particular,
Z(Cs(x)) < Z(E), |Z(E)Q2/Q2| = q and E < @; by Lemma 4.5.8.

Suppose first that £ NS" > Z(S). Then for e € (ENS")\ Z(5), Z(E) < Cs(e).
In particular, |Z(E)Q2/Q2| = q. Moreover, Cs/(Q(Z(E))) = Z(Cs(e)) has order
¢ and centralizes the chain {1} < Q(Z(FE)) < E so that Cs/(QZ(E))) = EN S’
has order ¢°. Suppose that [EQ2/Qs| > ¢q. Then by Lemma 4.5.5, we have
Z(S) = [E,ENS'] < E' and either £’ = Z(S) and @) centralizes the chain
{1} 9 E' < E, a contradiction since E is S-radical and S’ € E; or Z(S) < E' <
ENS, Cg(E) = EnNCs(e) = Z(E)(ENS') has order ¢* and [E,Cg(E')] =
[E,SNE'| = Z(S) is characteristic in £ and again, (); centralizes a characteristic
chain. Thus, |EFQ2/Q2| = ¢ and E = Z(E)(ENS’) is elementary abelian of order
¢>. Since F < @Q; and Q) = Z(S) < E, we deduce that F < Q,. Moreover, when
p = 2, it follows from Lemma 4.5.5 that [Cgs(e), E] < Cs(e)’ = (S’ N E) and so
E <485 =0Q:1Cs(e).

Suppose now that E NS = Z(S). Since E < @1, it follows that E N Qy = Z(5)
and |[E| < ¢ If Q(Z(E)) < @, then Q(Z(F)) = Z(S) and so Q; centralizes the
chain {1} < Q(Z(F)) < E, a contradiction since E is S-radical. Hence, there is
e € QZ(E))\ Q2 and so, E < Cg(e). Since E is S-centric, we must have that
Z(Cs(e)) < QZ(E)). If Q(Z(E)) = Z(Cs(e)), then as Cs(e) = Z(S), Cs(e)
centralizes the chain {1} < Q(Z(FE)) < E, and since F is S-radical, E = Cs(e).
But then @) centralizes the chain {1} < E’ < E, a contradiction. So there is

¢ € QZ(E))\ (Q2Cs(e)) with Z(Cs(e))) N Z(Cs(e)) = Z(S) and Z(Cs(e')) <
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Q(Z(E)). In particular, Z(Cg(€e'))Z(Cs(e)) is an elementary abelian subgroup of
E of order ¢, and since F itself has order at most ¢*, we conclude that £ =
Z(Cs(e))Z(Cs(€')). Then for any y € Q2 \ S', [E,y] £ Z(S) and so Ng,(E) = 5"
Since F' < @, and Q) = Z(5) < E, we have that Ng(E) = Q;.

Suppose that for any of the E considered, FE is essential is some saturated fusion
system JF supported on S. Suppose first that we are in case (i) or (ii). Then
S" centralizes E N S" and since |S'/ENS'| = |E/ENS'| = ¢, it follows from
Lemma 2.3.10 that OP (Outr(E)) = SLy(¢q) and Outg/(E) € Syl,(E). But
INs(E)/E| > ¢* in either case, a contradiction. Hence, we may assume that
we are in case (iii) and E NS = Z(S). Let e € E\ @2 so that E < Cs(e),
where |Cs(e)| = ¢*. Then Z(Cgs(e)) is a subgroup of E of index ¢ centralized
by Cs(e) where |Cs(e)E/E| = q and Cg(e) < Ng(E) = Q1. By Lemma 2.3.10,
O¥ (Outz(E)) = SLa(g) and Outcye)(E) € Syl,(E), and since |Ng(E)/E| = ¢2,

we have another contradiction. O

Proposition 4.5.10. Suppose that E is an S-centric, S-radical subgroup of S,
S"<FE and q > 2. Then E € {Q1,Q,S}.

Proof. Since S" < E, we have that Z(E) < (3. Moreover, if E' < @), then using
that E is S-centric, we conclude that E = (5. So we may suppose throughout the

remainder of this proof that there is e € F'\ Qs.

Suppose first that Z(E) = Z(S) so that S" < Zy(F). Indeed, if ENQy > S’ then
it follows from the commutator formulas that Zy(E) = S and S centralizes the
chain {1} Q Z(E) < Z5(S) < E, and since E is S-radical, we deduce that £ = S.
So if Z(F) = Z(S), then ENQy, = 5".

In addition, suppose that E' = Z(S). Consider A € A(E). Since S’ < E and 5’ is
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elementary abelian, we infer that |A| > 3n. Moreover, there is a € A with a € @,
else §' = J(F) and Q) centralizes the chain {1} < J(E) < E, a contradiction since
E is S-radical. Tt follows that A < Cs(a) < Q1, |A] = ¢® and |[ANS'| = ¢>. Then
either £ = AS’ < Qq; or |E| > ¢*. In either case, it follows from Lemma 4.5.2 that
E < @ and then @ centralizes the chain {1} < Z(F) < E. Since E is S-radical,

Q1 < E. Since ENQ, = 5, it follows from a consideration of orders that F = ).

Suppose that Z(S) = Z(F) < E’. By Lemma 4.5.6, Cg(E’) < Cg(z) for some
x € F'\ Z(E) and it follows that either Cg(E’') = S5'; or Cg(E') £ @y and
Z(Cg(E")) < S has order ¢>. In the former case, S centralizes the chain {1} <
Z(E) < Cr(F') 9 FE, and since E is S-radical, E = S, a contradiction since
ENQy= 25" Therefore, Cx(E") £ Qs and since Cx(E") N Qs < ENQs =5, we

conclude that |Cx(E")| < ¢*.

Let A € A(Cg(E')) and suppose that AN S > Z(Cg(E')). Comparing with
the commutator formulas, it follows that A < Cg(ANS") = 5" and so A = 5.
Notice that if S’ = J(Cg(E")), then Qo centralizes the chain {1} < 5" J FE,
a contradiction since F is S-radical. Thus, we may assume that there is A €
A(Cg(E)) with AN S" = Z(Cg(F")) and |A] > ¢*. In particular, Cr(E') = AS’
and |A| = ¢*>. Then for a € A\ AN S, we infer that A < Cg(a) < @ and so
Cg(E") < Q4. But now, since §" < Cg(FE’), Q1 centralizes the chain {1} < Z(FE) <

Cg(E") < E, a contradiction since |E| < ¢°, E is S-radical and E' > Z(5).

Suppose now that Z(S) < Z(FE). Since E £ Qq, Z(E) < 5" and E < Cg(x) for
some e € Z(F)\ Z(95). Since E is S-centric, Z(Cgs(z)) < Z(F) and since E £ @,
it follows from Lemma 4.5.6, that Z(Cs(x)) = Z(F). Indeed, if p = 2, then
Z(E) = Cq,(E) = [Q2, E] and ()3 centralizes the chain {1} < Z(E) < E. Since
E is S-radical, Q2 = J(F) is characteristic in E. Then, [Cs(z), E] < J(E) and
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Z(E) = [J(5),Cs(x)] and Cg(z) centralizes the chain {1} < Z(E) < J(F) < E,
and since F is S-radical, ' = Cg(z). Now, assuming g > 2, both Z(S) and S’
are characteristic subgroups of E by [Par76, Lemma 3.13]. Then S centralizes the

chain {1} < Z(S) 98" < E, a contradiction since £ was assumed to be S-radical.

Suppose now that p is odd and Z(Cs(x)) = Z(E). Let A € A(FE) such that
A £ Q. Then, there is a € A such that |Cs(a)] = ¢*, A < Cs(a) N Cs(x),
Cs(a) < Q) and Z(E) = Cs(a) N S’. Now, |Cs(z) N Cs(a)] = ¢* and it follows
that any elementary abelian subgroup of E not contained in ()5 has order at most
¢3. Since E N Qs is elementary abelian, it follows that either J(E) = ENQy > 5,
or ENQy = 5" and there is A € A(F) with |A] = ¢* and ANS' = Z(E). In the
latter case, it follows that F = AS’ has order ¢* and since A < Cs(a) < Qy, we
have that £ < @);. Moreover, E' = [A,S"] = Z(S) and @ centralizes the chain
{1} 9 E’ < E, a contradiction since F is S-radical. Thus, J(F) = ENQy and so Q2
centralizes the chain {1} < J(FE) 9 E, and since F is S-radical, Q2 = J(E). But
then, since p is odd, S’ = [Qq, E|Z(F), Z(S) = [Q2, E] N Z(FE) and S centralizes
the chain {1} < Z(S) < S’ < E, a contradiction since Z(F) > Z(S) and F is
S-radical. O

We now complete the classification of saturated fusion systems supported on a
Sylow p-subgroup of PSU,(p™). When ¢ = p we get some exceptional behaviour,
particularly when p = 3, and refer to [BFM19] and [Mon20] where these cases have

already been treated. Hence, by Proposition 4.5.10, we may as well assume that

E(F) C{Q1,Qa}-

As in earlier sections in this chapter, we endeavor to classify saturated fusion

systems on S without the need for a KC-group hypothesis. When p = 2, since
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mo(S/Q;) > 1, [BenT7l] provides a list of groups with a strongly embedded
subgroups, and so we focus more than the case where p is odd. Here, Q1/®(Q)
witnesses quadratic action by S, and we rely on results of Ho (although we
believe it should be possible to find a more elementary proof) to show that
OP (Outr(Q,)) = SLy(q). With regards to @y, we come up short and rely on
K-group hypothesis to identify OP' (Outz(Qs)) with PSLy(g?). We believe this can

be achieved without using a K-group hypothesis as follows:

By the conditions on G := O (Out#(Q;), we see quickly that Syl,(G) is a Tl-set
for G. Then, using some appropriately chosen minimality condition, we should
be able to prove that G = (5,7) and Cg,(S) N Cy,(T) = {1} for any S,T €
Syl,(G). Even better, Cq,(S) N [Q,T] = {1} for all such S and T Noticing
that |Q2/Co,(S)| = ¢, we strive to show that Q2/Cq,(S) = [Q2/Co,(S),S] U
Uses Co,(T°)Co,(S)/Cq,(S), where the intersection of any of the two subgroups
in the union is Cg,(S). Finally, we aim to show that Cg,(S) and Cg,(T) are the
only centralizers of a Sylow p-subgroup of G contained in Cg, (17')Cq,(S), for then
we have a correspondence between Sylow p-subgroups of GG and certain subgroups
of Q4 of order q. We are then in a position to recognize PSLy(¢?) via a result of

Hering, Kantor and Seitz which recognizes a split BN-pair of rank 1 in G [HKS72].

Finally, in the classification of fusion systems supported on S, we apply
Corollary 4.1.4 using the Main Theorem when @; and ()2 are both essential and,
as in earlier cases, we remark that this reduces to applying the main result from

[DS85], which is independent of any K-group hypothesis.

Theorem 4.5.11. Let F be a saturated fusion system over a Sylow p-subgroup of

PSU4(q) for ¢ > 2. Then one of the following occurs:
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(i) F = ]:5(5 . Out]:(S));

(ii) F = Fs(Q1 : Outz(Q1)) where OP (Outz(Q1)) = SLy(q), or ¢ = p = 3 and
Outz(Q1) is determined in [BFM19);

(ii) F = Fs(Qa : Outz(J(S))) where Q2 is an €y (q)-module for
O (Outx(J(S)) = PSLy(q?);

(iv) F = Fs(G) where G = Coy, McL, Aut(McL), PSUg(2) or PSUg(2).2 and

q=3; or

(v) F = Fs(G) where F*(G) = O (G) = PSU4(q).

Proof. 1f neither ()1 nor @)y are essential then F = Fg(S : Outz(S)) and (i) holds.
Suppose that () is essential and assume first that ¢ = p. If p = 3, then the action
of Outz(Q1) on @ is determined completely in [BEM19] while if p > 5, then the

action of OP' (Out#(Q;)) is determined by [Mon20].

Suppose now that ) is essential and ¢ > p. If p = 2, then as m,(S/Q1) > 1,
it follows from Proposition 3.2.7 that O (Outx(Q;)) = SLy(q). So suppose that
pis odd. Let T, P € Syl (O”(Outz(Q1))) and suppose that 1 # = € TN P.
Notice that Z(Q,) = Z(S) so that O (Outz(Q;)) acts trivially on Z(Q;). Then
QuTIZ(Q1) = [Qu,2)2(Q) = (@1, PIZ(Q1) and (@1, T, T] < Z(Q1) > [Qu, P, P).
It follows that (P,T) centralizes a series {1} < Z(Q1) < [Q1,T]Z(Q1) < @1 and
by Lemma 2.1.9, (T, P) is a p-group. Since T, P € Sylp(Op/(Outf(Ql))), we must
have that 7" = P. Moreover, T" acts quadratically on Q1/Z(Q1) = Q1/P(Q1)
and so, by [Ho79, Theorem 1], O (Outx(Q,)) is isomorphic to a p'-central
extension of PSLy(g). Then eliminating PSLy(q) by Lemma 2.3.4 since T' acts

quadratically, we deduce that O (Outz(Q;)) = SLy(q). By Lemma 2.3.11 and
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since T € Syl,(OP(O¥ (Out#(Q1)))), we conclude that Q1/Z(Q1) is a direct sum

of two natural SLy(g)-modules.

Suppose that @, is essential. Since S/Q, is elementary abelian of order ¢?, it
follows from Proposition 3.2.7 that O (Outz(Qs)) = PSLy(¢?). Then, since S
does not act quadratically on () and ()2 contains a non-central chief factor, by
Lemma 2.3.12, we conclude that Q, is a natural € (¢)-module for O (Out#(Q3)),

as required.

If both @1 and @, are essential, then by Proposition 3.1.13, O,(F) < @1 N Q3 and
O,(F) is normalized by OF (Outz(Q3)). Thus, O,(F) = {1} and since Q; and Q,

are characteristic in S and we satisfy the hypotheses of Corollary 4.1.4. O]
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CHAPTER 5

RANK 2 AMALGAMS AND FUSION
SYSTEMS

In this chapter, we introduce amalgams and manufacture a situation in which one
may identify a rank 2 amalgam within a saturated fusion system. This amalgam
data provides strong information about the fusion system and we observe that, in
certain circumstances, proving uniqueness of the amalgam completely determines
the fusion system. The majority of the work in this chapter is in investigating
these rank 2 amalgams via the amalgam method. Although this analysis is in a
purely group theoretic setting, the hypothesis we assume is motivated by fusion
systems and determines a limited list of amalgams, all of which were previously
recorded in the literature. This information is reflected in Theorem C, and then the
Main Theorem and Corollary A are proved as consequences of Theorem C. Along
the way, Proposition F and Proposition G are also proved and used as tools in
the amalgam method. The chapter concludes with several identifications of finite

simple groups from the garnered amalgam data provided in previous sections.
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5.1 Amalgams in Fusion Systems

In this section, we introduce amalgams and demonstrate their connections with
and applications to saturated fusion systems. We will only make use of elementary

definitions and facts regarding amalgams as can be found in [DS85, Chapter 2].

Definition 5.1.1. An amalgam of rank n is a tuple A =
A(Gy,...,G,,B,¢1,-++ ,¢,) where B is a group, each G; is a group and
¢; : B — G, is an injective group homomorphism. A group G is a faithful
completion of A if there exists injective group homomorphisms v¢; : G; — G
such that for all 4,57 € {l,...,n}, ¢y = ¢;¢;, G = (Im(¢;)) and no
non-trivial subgroup of B¢;1; is normal in G. Under these circumstances,
we identify Gi,...,G,, B with their images in G and opt for the notation
A=A(Gy,...,G,, B).

For almost all the work in this thesis, we reduce to the case where the amalgam
is of rank 2 and the groups G; and G5 are finite groups. In this setting, we may
always realize A in a faithful completion, namely the free amalgamated product of
G1 and Gy over B, denoted GGy *g (G3. This completion is universal in that every
faithful completion occurs as some quotient of this free amalgamated product.
Generally, whenever we work in the setting of rank 2 amalgams we will opt to
work in this free amalgamated product which we will often denote GG and, in an
abuse of terminology, refer to G as an amalgam. In particular, we may as well

assume the following:

1. G = (G1,Gs), G is a finite group and G; < G for i € {1,2};

2. no non-trivial subgroup of B is normal in G; and
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3. B=G1NG,.

Definition 5.1.2. Let A = A(Gy, G, B, ¢1,¢2) and B = B(Hy, Hy, C,11,105) be
two rank 2 amalgams. Then A and B are isomorphic if, up to permuting indices,
there are isomorphisms 6; : G; — H; and £ : B — (' such that the following

diagram commutes for i € {1,2}:

Gl ¢1 B ¢2 G2

01 13 02

H U1 ¢ P2 Hy

Often, for some finite group H arising as a faithful completion of some rank 2
amalgam B, we will often say a completion G of A is locally isomorphic to H, by

which we mean A is isomorphic to B.

An important observation in this definition is that the faithful completions of
two isomorphic amalgams coincide. In fact, two amalgams being isomorphic is

equivalent to demanding that G| xp G5 = H; *¢ Ho.

Say that A = A(G1, G, B) and B = B(H;, Hs, C) are parabolic isomorphic if, up

to permuting indices, G; = H; and B = (' as abstract groups.

We provide the following elementary example with regard to isomorphisms of

amalgams.

Example 5.1.3. For G = J,, there are two maximal subgroups My, My containing
Ng(S) for S € Syly(G). Furthermore, My/Oo(My) = Slo(4), Ms/Oo(My) =
Sym(3) x 3 and |Ng(S)/S| = 3. Thus, G gives rise to the amalgam A :=
A(My, My, Ng(95)).
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For H =1J; and T € Syly,(H), S = T and H contains two mazximal subgroups
N1, Ny containing Ng(T) such that N; = M; fori € {1,2}. Thus, H gives rise to

the amalgam B := B(Ny, No, Ng(T))).
Then A is isomorphic to B.

Definition 5.1.4. Let A = A(G4, Ge, B) be an amalgam of rank 2. Then A is a

characteristic p amalgam of rank 2 if the following hold for i € {1, 2}:

(i) G, is a finite group;

(iii) G; is of characteristic p.

An important consideration for applications later in this thesis is whether
Syl,(B) € Syl,(G) where G is some faithful completion of some characteristic

p amalgam of rank 2. This motivates the following definition.

Definition 5.1.5. Suppose that G is a faithful completion of the characteristic p
amalgam A(G1, G2, B). Then G is a Sylow completion of A if Syl (B) C Syl (G).

In the above definition, since G is not necessarily a finite group, we must define
generally what a Sylow p-subgroup is. We say that P is a Sylow p-subgroup of a

group G if every finite p-subgroup of G is conjugate in G to some subgroup of P.

The following theorem provides the connection between amalgams and fusion
systems. Indeed, the original application of this theorem demonstrates that any

saturated fusion system may be realized by a (possibly infinite) group.
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Theorem 5.1.6. Let p be a prime, Gy, Gy and G5 be groups with G1o < G1NG,.

Assume that Sy € Syl,(G1) and Sy € Syl,(G12) N Syl,(Ga) with Sy < Sy. Set

G=G *Gia Go

to be the free amalgamated product of Gy and Gy over Gia. Then Si € Syl (G)
and

'FS1(G) = <f51(G1>7]:52<G2)>'

Proof. This is [Rob07, Theorem 1]. O

In other words, the above theorem implies that given two fusion systems which
give rise to two rank 2 amalgams, and the data from these amalgams “generate”
the fusion system, then provided that the amalgams are isomorphic, the fusion

systems are isomorphic.

However, there are some key differences in the group theoretic applications of
amalgams, and the fusion theoretic applications. Consider the configurations from
Example 5.1.3. The two amalgams there, A and B, are isomorphic. In this way, we
can actually embed a copy of the 2-fusion system of J, inside the 2-fusion system
of J3, but the Js is certainly not a subgroup of J3. Indeed, the 2-fusion system of J3
contains an additional class of essential subgroups arising from different maximal

subgroups of J3 of shape 2% : (3 x SLy(4)) not involved in the amalgams.

Thus, there are some important considerations demonstrated in Example 5.1.3 that
one should be aware of. One is that for a group G with two maximal subgroups
M, and M, containing a Sylow p-subgroup of G, even though G = (M, M,) there
are situations in which Fs(G) # (Fs(M;), Fs(M;)). The second is that one must
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be very careful in choosing the “correct” completion when working with amalgams
in the context of fusion systems. Indeed, most of the time, this often requires
knowledge of the fusion systems, and in particular the essential subgroups, of the

completions of the amalgam.

We now collect some results using the amalgam method which are relevant to this
work. With the application to fusion systems in mind, we are particular interested

in the case where the local action involves strongly p-embedded subgroups.

Definition 5.1.7. Let A := A(G1, Gy, G12) be a characteristic p amalgam of rank

2 such that there is G < G| satisfying the following for i € {1, 2}:
(1) Op(Gz) S G;k and GZ = G:Glg;
(ii) G} N Gye is the normalizer of a Sylow p-subgroup of G}; and
(iii) G7/0p(Gi) = PSLy(p"), SLa(p"), PSUs(p™), SUs(p"), S2(2"), Dih(10), Ree(3")

or Ree(3)".

Then A is a weak BN-pair of rank 2. For G a faithful completion of A, we say

that G is a group with a weak BN-pair of rank 2.

We define the set of groups

/\ = {PSLS(Q)a PSp4(Q)> PSU4(Q)7 PSUS(Q)a GQ((])a 3D4(Q)a 2F4(2n)a

Ga(2),%F4(2), My, Jo, F3 | ¢ = p", p a prime}

and associate a  distinguished prime in each case. For
2F4(2"), Go(2),2F4(2)', My, Jo the prime is 2, for F3 the prime is 3 and for

the other cases, the prime is p where ¢ = p".
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For X € A, let Aut’(X) = Aut(X) unless X = PSL3(q), PSp,(2"), Go(3") in which
case Aut’(X) is group generated by all inner, diagonal and field automorphisms of
X so that Aut’(X) is of index 2 and Aut(X) = (Aut’(X), ¢) where ¢ is a graph

automorphism. Finally, define

A’ ={V | Imn(X) <V < Aunt’(X), X € A}

For the remainder of this work, whenever we describe a group as being locally
isomorphic to Y € A, we will always mean that Y is a faithful completion of
the rank 2 amalgam given by amalgamating two non-conjugate maximal parabolic
subgroups of Y which share a common Borel subgroup. It is straightforward to

check that this amalgam is a weak BN-pair of rank 2.

Theorem 5.1.8. Suppose that G is a group with a weak BN-pair of rank 2. Then
one of the following holds:

(i) G is locally isomorphic to Y for someY € N\°;

(ii) G is parabolic isomorphic to Go(2)', Jo, Aut(Js), M1z, Aut(Mis) or Fs.
Proof. This follows from [DS85, Theorem A}, [Del88] and [Fan86]. O

For the following corollary, recall the model theorem Theorem 3.1.21 from

Chapter 3.

Corollary 5.1.9. Suppose that F = (Fyi, Fa) is a fusion system over the p-group
S and assume that F; is constrained and supported on S fori € {1,2}, and F; =
Nz(Op(F)). Let G; be a model for F; arranged such that S € Syl,(G;), and let
G2 be the model for Fy N Fy. If the amalgam A := A(G1, Gs, G12) extracted from
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F has a faithful completion which is locally isomorphic to Y for someY € A\° then

either:

(i) F =2 Fs(Y); or

(ii) A is of type Fj.

Proof. Suppose that A is not of type F3. By Robinson’s result, it is enough to
show that Fg(Y) = (Fs(G1), Fs(Gz)) where G, Go are the relevant “maximal
parabolic subgroups” of the groups described in Y. This follows immediately from
the Alperin—Goldschmidt theorem and [GLS98, Corollary 3.1.6] when F*(Y) is
a rank 2 group of Lie type, and we may employ the results in [AOV17] for the

remaining cases when p = 2. O

Notice that all the candidates for G}/O,(G;) in the definition of a weak BN-pair
of rank 2 have strongly p-embedded subgroups. Indeed, the fusion categories of
groups which possess a weak BN-pair of rank 2 form the majority of the examples

stemming from the hypothesis in the Main Theorem.

Another important class of amalgams which provide examples in the Main

Theorem and Theorem C are symplectic amalgams.

Definition 5.1.10. Let A := A(G1, G2, Gi2) be a characteristic p amalgam of
rank 2. Then A is a symplectic amalgam if, up to interchanging G; and G, the

following hold:
(i) OP(G1)/0p(G1) = SLa(p™);
(ii) for W := (((O,(G1) N O,(G2))1)), Gy = G1oW and OP(O¥ (Gy)) < W;
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(iii) for S € Sylp(Gm), G12 = Ng, (5);
(iv) Q(Z(S)) = Q(Z(0¥(G2))) for S € Syl (G12); and

(v) for Zy == (Q(Z(9))"), Z; < O,(Gy) and there is © € Gy such that Z§¥ £
OP<G1)'
Theorem 5.1.11. Suppose that A = A(G1, G2, G12) is a symplectic amalgam
such that Go/O,(G2) has a strongly p-embedded subgroup and for S € Syl,(G12),
G1a = Ng,(S) = Ng,(S). Assume further than G; is a K-group for i € {1,2}.

Then one of the following holds, where Ay corresponds to the listing given in [PR12,
Table 1.8):

(i) A has a weak BN-pair of rank 2 of type 3Dy(p") (A2z7), Ga(p™) (A2, Ag and
Ass when p # 3), Ga(2)" (A1), Jo (An) or Aut(J2) (AL);

(ii) p=2, A= Ay, |S| = 2% Os(Ly) =21 and Ly/Oy(Ly) = (3 x 3) : 2;

(111) p = 5, A= A20, ’S‘ - 56, 05([/2) = 5}|_+4 and L2/O5<L2) = 21;‘_4.5,'

(lV) P = 5, .A = .A21, |S| = 56, O5(L2) = 5}:'_4 and L2/05(L2) = 21_+4.A1t(5);

(v) p=5, A= Ay, |S| =5°% Os(Ly) = 5 and Ly/Os(Ly) =2 2 - Alt(6); or

(Vi) p=17, A= A, |S| =75, O7(Lo) 2 74 and Ly/O(Ly) = 2 - Alt(7).
Proof. We apply the classification in [PR12] and upon inspection of the tables
there, we need only rule out Ajs, As and Ay when p = 3; and Ay when p = 2.
Set Q; := 03(G;) and L; :== O%(L;). With regards to Ays, it is proved in [PR12,
Theorem 11.4] that Ng,(S) £ Gy. In Aj, we have that Ly/O3(Ls) = SLy(3) and

|S| = 3%. In particular, if G5 = Ng,(S) = Ng,(S) then G has a weak BN-pair

but comparing with the configurations in [DS85], we have a contradiction.
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Suppose that we are in the situation of Aj so that Ly is of shape 3.((3? : Qg) X (3% :
Qs)) : 3. Furthermore, by [PR12, Lemma 6.21], we have that Qs = (Q(Z(Q1))¢?).
Let K3 be a Hall 2'-subgroup of LoNNg(.S). Then K is elementary abelian of order
4. By hypothesis, K5 normalizes () and so K, normalizes Q(Z(Q;)). Moreover, K5
centralizes Q(Z(S)) = Q(Z(Ls)) = ®(Q2) and since |2(Z(Q1))/UZ(Ls))| = 3 by
[PR12, Lemma 6.21], it follows that there is k € K an involution which centralizes
Q(Z(Q,)). Since (kQ2) < Go, we infer that Q(Z(S)) = [(kQ2), QU Z(Q1))]? =
[(kQ2), (UZ(Q1))%?)]. But Q2 = (Q2(Z(Q1))“?) by [PR12, Lemma 6.21] so that k

centralizes QQ2/P(Q2), a contradiction since Gy is of characteristic 3.

In the situation of Ay when p = 2, we have that Ly/Qs = Alt(5) = SLy(4) so
that G has a weak BN-pair of rank 2. Since |S| = 2% in this case, comparing with

[DS85], we have a contradiction. O

Remark. The symplectic amalgams Az, As and Ay; where G5/O03(G3) has a
strongly p-embedded subgroup have as example completions QF (2) : Sym(3), F4(2)
and HN. Indeed, in these configurations |S| is bounded and one can employ [PS21]
to get a list of candidate fusion systems supported on S. It transpires that the
only appropriate fusion systems supported on S are exactly the fusion categories
of the above examples, but in each case there are three essentials, all normal in S,

one of which is Autz(S)-invariant while the other two are fused under the action

of Autz(S).

Remark. In a later section, we come across an amalgam which satisfies almost all
of the properties of A4o. Indeed, this amalgam contains A4 as a subamalgam and
we show that the fusion system supported from this configuration is the 2-fusion
system of PSpg(3). Indeed, PSpy(3) is listed as an example completion of Ay in

[PR12] and in PSpgy(3) itself, there is a choice of generating subgroups Gy, G such
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that (G1,Ge,G1 N Gy) is a symplectic amalgam. However, the fusion subsystem
generated by the fusion systems of the groups G; and Gy fails to generate the

fusion system of PSpg(3). In fact, such a subsystem fails to be saturated.

We now state the main hypothesis of this thesis with regard to fusion systems.

Hypothesis 5.1.12. F is a local CK-system with O,(F) = {1} and there are

two Autx(S)-invariant maximally essential subgroups E;, Es < S such that F =

(NF(E1), Np(Ey)).

We now recognize a characteristic p amalgam of rank 2 in F. Namely, we take the
models Gy, Go and G5 of Nx(FE1), Nz(E;) and Nx(S) and by Theorem 5.1.6, we
have that F = Fs(G) where G = G1*g,, Ga, and we take the liberty of recognizing

G, Gy and G1s as subgroups of G.

We now have a hypothesis in purely amalgam theoretic terms. Indeed, G is a
characteristic p amalgam of rank 2 such that, for L; := O (G;), i € {1,2} and
L; := L;/E;, applying Proposition 3.2.6 and Proposition 3.2.7, one of the following
holds:

(i) L; is isomorphic to rank 1 group of Lie type in characteristic p;

(ii) (L;,p) is one of (Z - PSL3(4),3), (My1,3), (Sz(32) : 5,5), (*F4(2)',5), (Z -
McL, 5) or (J4,11), where Z = Z(L;) is a p’-group; or

(iii) S is cyclic or generalized quaternion and either L; = Nz-(5)[Op (L;), (S)] =

N7(S)(Q(S)") is p-solvable; or L;/Oy(L;) is a non-abelian simple group, p

is odd and S is cyclic.
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Using the classifications of weak BN-pairs and symplectic amalgams, and treating
the small cases using MAGMA (see [PS21]), we can identify a large proportion of
the fusion systems under investigation. In an abuse of terminology, we will often
say that F “has a weak BN-pair of rank 2”7 by which we mean that the amalgam

determined by F is a weak BN-pair of rank 2.

In the following proposition, to verify that two of the fusion systems uncovered
are exotic, the classification is invoked (see Section 3.3 and [PS18]). This is the
only occasion in this work where we apply the classification in its full strength and
not in an inductive context. Without the classification, outcome (iii) below would
instead read “F is a simple fusion system on a Sylow 3-subgroup of F3 which is
not isomorphic to the 3-fusion category of F3” and outcome (v) would read “F is
a simple fusion system on a Sylow 7-subgroup of Gy(7) which is not isomorphic to

7-fusion category of Go(7) or M.”

Proposition 5.1.13. Suppose that F satisfies Hypothesis 5.1.12. If the induced
amalgam A = A(G1, Ge, G12) is a weak BN-pair of rank 2 or a symplectic amalgam

satisfying the hypothesis of Theorem 5.1.11, then one of the following holds:
(i) F = Fs(H), where F*(H) is isomorphic to a rank 2 simple group of Lie type
in defining characteristic;
(ii) F = Fs(H), where F*(H) = My or Jo and p = 2;
(iii) F = Fs(H), where H = Go(3) and p = 2;
(iv) F is a uniquely determined exotic system on a Sylow 3-subgroup of Fs;
(v) F = Fs(H), where F*(H) = Ly,HN or B and p = 5; or

(vi) F is a uniquely determined exotic system on a Sylow T-subgroup of Go(7).
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Proof. Let A be the amalgam determined by F and G be the associated free
amalgamated product. If A has a weak BN-pair of rank 2 which is determined
up to local isomorphism then by Corollary 5.1.9, F satisfies part (i). If p € {5,7}
and A satisfies (iii)-(vi) of Theorem 5.1.11, then |S| < p% and OP(F) = F. Then
the result follows from the tables provided in [PS21] and the proof that F is
exotic in outcome (v) is proved in [PS18]. Suppose that p = 2 and A is parabolic
isomorphic to Gg(2)’, M5 or Jo. Then S = (SNO?*(G4))(SNO?*(Ge)) and it follows
that O%(F) = F. Moreover, by [AOV17] we have that that O (F) is isomorphic
to Go(2)', Myg or J, and these groups tamely realize O% (F) in each case. In this
context, this implies that F = Fg(H) where F*(H) = Gy(2)’, Mj5 or Js.

If A is parabolic isomorphic to Aut(Mis) or Aut(Js), then there is a subamalgam
parabolic isomorphic to My or Js respectively. Moreover, considering this
subamalgam in G, we obtain a subgroup H < G such that H is parabolic
isomorphic to Mis or Jo. Applying the above, there exists a normal subsystem
H = Fsnu(H) < F such that H is isomorphic to the 2-fusion system of My or
Jo. Utilizing the tameness of the 2-fusion systems of M5 or J, gives the result.
Thus, we are left with the case where A is a symplectic amalgam with |S| = 25.
It follows from [PR12, Lemma 6.21] that S = (O*(Gy) N S)(0*(G2) N S) so that
O?*(F) = F by [AKO11, Theorem 1.7.4], and checking against the lists provided

in [AOV17, Theorem 4.1], F is isomorphic to the 2-fusion system of Gy(3).

Finally, suppose that A is parabolic isomorphic to Fs3. In particular, S is
determined up to isomorphism. Then comparing with Section 3.3, we conclude
that F is an simple exotic fusion system supported on a 3-group isomorphic to a

Sylow 3-subgroup of Fj. m
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The bulk of configurations identified in the Main Theorem arise from groups which
are completions of weak BN-pairs of rank 2 or symplectic amalgams. Indeed, the
remaining cases are all “small” in various senses e.g. by the order of S, their
“critical distance.” Further to this, by [PS21] and [AOV17], the reduced fusion
systems supported on S for (ii), (iii), (iv) and (v) and (vi) above are known; and
the fusion systems supported on T' € Syl (F*(G)) in (i) are known in the case
where F*(G) = PSLs(p™), PSpy(p™), G2(p™), or PSUy(p™) by [Cle07], [HS19] and

the work in Chapter 4.

5.2 The Amalgam Method

Hypothesis 5.1.12 along with Proposition 3.2.6 and Proposition 3.2.7 imply the
following hypothesis, listed as Hypothesis B in the introduction, which we assume

for the remainder of this chapter.

Hypothesis 5.2.1. A := (G1,G2,G12) is a characteristic p amalgam of rank 2

with faithful completion G satisfying the following:

(i) for S € Syl,(G12), G12 = Ng, (S) = Ng,(5);

(ii) for L; := OP (@), L; := L;/O,(G;) has one of the following forms:

(a) L; is isomorphic to rank 1 group of Lie type in characteristic p;

(b) (Ls,p) is one of (Z - PSL3(4),3), (My1,3), (Sz(32) : 5,5), (2F4(2)',5),

(Z - McL,5) or (Jy,11), where Z = Z(L;) is a p’-group; or

(c) S is cyclic or generalized quaternion and either L; = S[Oy(L;), Q(S)]
is p-solvable; or L;/O,(L;) is a non-abelian simple group, p is odd and

S is cyclic.
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From this point, our methodology is completely based in group theory and we
only return to techniques in fusion systems for some identification arguments later.
Indeed, for the amalgams considered, we can usually go as far as identifying the
“shapes” of G; and G5. We describe this below in the following theorem, presented

in the introduction as Theorem C.

Theorem 5.2.2. Suppose that A = A(G1,Gy, Gi2) satisfies Hypothesis 5.2.1.

Then one of the following occurs:

(i) A is a weak BN-pair of rank 2;

(i) p = 2, A is a symplectic amalgam, |S| = 25 , G1/02(G,) = Sym(3) and
GQ/OQ(GQ) = (3 X 3) . 2,‘

(i) p = 2, QZ(9) D G2 ((UZ(S))9)7) £ 0Gy), |S] = 27,
02 (G1)/05(G1) 22 SU3(2)! and O (Gs)/Os(Ga) = Alt(5);

(iv) p =3, QZ(5)) D G2, (AZ(9))%)) £ 02(Ga), |S] < 37 and O3(G1) =
(QZ(S))E)) is cubic 2F-module for G1/03(G1); or

(v) p=5 or7, Ais a symplectic amalgam and |S| = p°.

The aim is to prove Theorem 5.2.2 and then a combination of Proposition 5.1.13,
[PS21] and [AOV17] yields the Main Theorem. Indeed, more information is given
about the amalgams listed in (i)-(v) where they arise in the case analysis. It seems
that more information may be extracted than what we have provided here, but
with the application of fusion systems in mind and the available results classifying
fusion systems supported on p-groups of small order, we stop short of completely
describing (G; and G, up to isomorphism, although this seems possible in most

cases.
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At various stages of the analysis, we refer to F, A or G as being a minimal
counterexample to the Main Theorem or Theorem 5.2.2 respectively. By this, we
mean a counterexample in each case chosen such that |G1| + |Gs] is as small as

possible.

We assume Hypothesis 5.2.1 and fix the following notation for this chapter. We
let G = Gy *¢,, G2 and I" be the (right) coset graph of G with respect to G; and
Gy, with vertex set V(I') = {G,g | g € G,i € {1,2}} and (G,g,G,h) an edge if
Gig # G;h and G;g N G;h # 0 for {i,j} = {1,2}. It is clear that G operates on
I’ by right multiplication. Throughout, we identify I" with its set of vertices, let

d(-,-) to be the usual distance on I" and observe the following notations.

Notation 5.2.3. « For§ € I, AM™(§) = {\ € I" | d(§,\) < n}. In particular,
we have that A (§) = {§} and we write A(d) := AD(§).

o For § € I" and A € A(§), we let G5 be the stabilizer in G of § and G5 be
the stabilizer in G of the edge {0, A}.

e« For § € I, G((;n) is the largest normal subgroup of Gs which fixes A (4)
element-wise. In particular, Gs = G((;O).
The following propositions are elementary and their proofs may be found in [DS85,

Chapter 3].

Proposition 5.2.4. The following facts hold:

(i) Gg,g = GY so that every vertex stabilizer is conjugate in G to either Gy or

Gy. In particular, G has finite vertex stabilizers.

(ii) Each edge stabilizer of I' is conjugate in G to Gia in its action on I'.
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(iii) I" is a tree.

(iv) G acts faithfully and edge transitively on I', but does not act vertex

transitively.
(v) For each edge {1, Ao}, G = (G, Gy,).

(vi) For ¢ € I' such that Gs = G, we have that A(0) and Gs/GY, are equivalent

as Gg-sets. In particular, Gs is transitive on A(J) \ {0}.
(vii) Gy is of characteristic p for all 6 € I'.
(viii) If 6 and X are adjacent vertices, then Syl,(Gsx) € Syl,(Gs) N Syl,(Gx).
(ix) If 6 and X are adjacent vertices, then for S € Syl (Gsx), Gsx = Ng;(S) =

Ne, (S).

The following notations will be used extensively throughout the rest of this work.

Notation 5.2.5. Set § € I' to be an arbitrary vertex and S € Syl (Gs).

® L(; = Opl(Gg).

o Qs = Op(Gs) = Oy(Ls).

« ForneN, 1/5(") = (Z\ | d(\,6) < n) < Gs, with the additonal conventions

Vi = Z; and Vs := VY.
e bs = minyep{d(5, ) | Z5 £ GV}

e b:= mingep{bg}.
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We refer to b as the critical distance of the amalgam. Indeed, as G acts edge
transitively on I" it follows that b = min{bs, by} where 6 and A are any adjacent
vertices in I'. A critical pair is any pair (9, A) such that Zs £ Gf\l) and d(, ) = b.
This definition is not symmetric and so (A, d) is not necessarily a critical pair in

this case.

It is clear from the definition that symplectic amalgams have critical distance 2.
It is remarkable that in all the examples we uncover, b < 5 and if G does not have

a weak BN-pair, then b < 2.

Proposition 5.2.6. The following facts hold:

(i) b= 1 is finite.
(ii) We may choose {«a, 5} such that {G.,Gs} = {G1,Ga} and Gop = Gz =
Na(S).
(iii) If N < Gap, Na,(N) operates transitively on A(a) and Ng,(N) operates

transitively on A(S), then N = 1.

(iv) For 6 € I', A € A(6) and T € Syl,(Gsx), no subgroup of T' is normal in
(Ls, Ly).

(v) Ford eI and A € A(), there does not exist a non-trivial element g € G\
with gQs/Qs € Z(Ls/Qs) and gQx/Qx € Z(Lr/Q»)-

(vi) Ford € T and A € A(S), Vi = (V)G

For the remainder of this work, we will often fix a critical pair (o, /). As " is a
tree, we may set (5 to be the unique neighbour of « with d(,a’) = b—1. Then we

label each vertex along the path from a to o/ additively e.g. 5 =a+1,a = a+b.
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In this way we also see that 5 may be written as o’ —b+1 and so we will often write
vertices on the path from o’ to a subtractively with respect to o’. The following

diagram better explains the situation.

Lemma 5.2.7. Let § € I', (o, ') be a critical pair, T € Syl (G,) and S €
Syl,(Ga,3). Then

() Qs < GV;

(11) ZO/ S Ga, Za S GO/ and [Za, Za/] S Za N Za/,'

(i) Zo # QUZ(T)); and

(iv) if Q(Z(S)) is centralized by L < Gz such that L acts transitively on A(f),
then Z(L,) = {1}.

Proof. For all A € A(d), we have that Q; < T\ € Syl,(Gx N G;s) and Q5 < G.
Since Qs J Gg, it follows immediately that Qs < Ggl). By the minimality of b,
we have that Z, < Gg) < G, and similarly Z, < GS,)_I < Gy . In particular, Z,

normalizes Z, and vice versa, so that [Z,, Zy] < Zo N Zy.

Suppose that Z, = Q(Z(T")). Then Z, = Q(Z(S)) by the transitivity of G,.
By definition and minimality of b, Z, < Zz < G(l), a contradiction. Finally,
suppose that Q(Z(95)) is centralized by L < Gj such that L acts transitively on
A(B). Since @, is self-centralizing, it follows that Z(L,) is a p-group and so
QZ(Ly)) < QZ(9)) and L centralizes 2(Z(L,)). Then Proposition 5.2.6 (iii)
implies that Q(Z(L,)) = {1}, and so Z(L,) = {1}. O
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Lemma 5.2.8. Suppose that N < Gs with N not p-closed and set S € Syl,(Gs).

Then the following holds:

(i) If Ls is not p-solvable, then OP(Ls) < N.

(ii) If Ls is p-solvable, then K < NQs, where K is the unique normal subgroup

of Ls which is divisible by p and minimal with respect to this constraint.
(i) Gs = NNg,(S) and N is transitive on A(0).

(iv) For U/V any non-central chief factor for Ls inside of Qs, we have that

Qs € Syl (CL; (U/V)) .

Proof. Suppose Ls is not p-solvable and let A € Syl (N). Notice that as N
is not p-closed, A £ Qs and since L; has a strongly p-embedded subgroup, by
Hypothesis 5.2.1 we have that Ls := Ls/O,(Ls) is isomorphic to a non-abelian
simple group; Sz(32) : 5 or Ree(3). Suppose that either of the two latter cases

occur. Then by Proposition 3.2.7, Ls = Sz(32) : 5 or Ree(3). It follows that

Ls = (ALs)S and so L/(AL%) is a p-group. Hence, OP(Ls) < (AFs) < N.

If Ls is a non-abelian simple group then Ls = (AZ“>. In particular, S < (ALs) and
so S < (A)Qs < Ls and since Ls = O (Ls), Ls = (A*)Q;. It then follows that
OP(Ls) < (A%) < N. Thus, we have proved (i).

By the Frattini argument G5 = LsNg,(S) = OP(Ls)Ng,(S) = (A%)Ng,(S). Since

(A% < N, (iii) follows whenever Ls is not p-solvable.

Suppose now that Ls is p-solvable and let K be the unique minimal normal
subgroup of Ls divisible by p. Again, we let A € Syl,(N) and remark that since
N is not p-closed A £ Qs. Hence, p ’ IN| so that K < N and K < NQj,
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completing the proof of (ii). By Proposition 3.2.6, Ls = SK < Ng,(S)N so that
Gs = LsNg,(S) < Ng;(S)N < Gy, completing the proof of (iii).

For (iv), choose any non-central chief factor U/V for Ls inside Q5. Then U/V is
a faithful, irreducible module for Ls/Cp,(U/V). Since [Qs, U] < Ls and [Qs, U] <
U, Qs < Cp,(U/V). Moreover, as Cr,(U/V) is normal in Ls, we deduce that
O,(Cr,(U/V)) = Qs. If CL,(U/V) is not p-closed, then Ls = Cp,(U/V )N, (S)
and it follows that U/V is irreducible for N, (S). But then [U/V,S] = {1} from
which it follows that {1} = [U/V,(SL%)] = [U/V, Ls], a contradiction. Hence,
(iv). O

Proposition 5.2.9. For allé € I' and XA € A(6), Qs £ Q.

Proof. Suppose that there is 6 € I" and A € A(6) with Qs < Qy and let S €
Syl,(Gsa). Then J(Q)) £ Qs for otherwise, by Proposition 2.3.7 (iv), J(Qx) =
J(Qs) < (G, Gs). Furthermore, since Cs(Qs) < Qs, UZ(Qn)) < AZ(Qs)). Let
V= (Q(Z(Q))7) < AZ(Q5)) and choose A € A(Qx) \ A(Qs)- If Q5 < Cs(V),
then by Lemma 5.2.8 (iii), G5 = (Cs(V)9)Ng,(S) = Cq,(V)Ng,(S) normalizes
Q(Z(Q,)), a contradiction. Hence, Q5 = C(V).

By the choice of A, [A| > [C4a(V)V] = [Ca(V)|[V]/[VNCa(V)] = [Ca(M)[[VI/IVN
A|. Since A = Q(Cg(A)), we have that ANV = Cy (A) and rearranging we conclude
that |A|/|Ca(V)| = |V|/|Cv(A)] and A/C4(V) = AQs/Qs is an offender on the
FF-module V. By Lemma 2.3.10, Ls/CL,(V) = SLs(p™) and V/Cy(OP(Ls)) is a
natural SLy(¢)-module. But Q,/Qs < S/Qs is a G s-invariant subgroup of S/Qs,

a contradiction by Lemma 2.2.1 (vi). O

Lemma 5.2.10. Let § € I', (o, ') be a critical pair and S € Syl,(Ga,3). Then
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(i) Qs € Sylp(Ggl)) and G((;I)/Q(; is centralized by Ls/Qs;
(i) either Qs € Syl,(C1,(Zs)) or Zs = Q(Z(Ls));
(i) Zy £ Qur; and

(iv) Cs(Za) = Qu, and Cq,(Z,) is p-closed and p-solvable.

Proof. By Lemma 5.2.7 (i), we assume that Qs < T for T' € Sylp(Ggl)). Since
G((;l) < Gy it follows that Op(G((;l)) = (s and so Ggl) is not p-closed. But by
Lemma 5.2.8 (iii), then Ggl) would be transitive on A(), a clear contradiction.
Thus, Qs € Syl,(GS"). Letting P € Syl (Gs), [P,GS"] < PN G = Qs so that
[Ls, Ggl)] < @s, and so (i) holds.

If Qs & Syl,(C;(Zs)) then by Lemma 5.2.8 (iii), G's = C;(Z5) Ne; (S) and so Zs =
(Q(Z(8))%) = Q(Z(S)). But then {1} = [Z;, 5] = [Zs, Ls] and so Zs < Z(Ls).
Since Qs is self-centralizing, Z(Ls) is a p-group and Zs; = Q(Z(S)) = QZ(Ls)),
so that (ii) holds.

If Z, < Qu then Z, < GS,) a contradiction and so (iii) holds. Since Z, # Q(Z(S))
by Lemma 5.2.7 (iii), Cs(Z,) = Qo I Cq,(Zs) so that Cg, (Z,) is p-closed and

p-solvable. O

By the above lemma, we can reinterpret the minimal distance b as b = minge{bs}

where bs := minyer{d(d, \) | Zs £ Qr}.

Lemma 5.2.11. Let (o, ') be a critical pair. Then

1) if Zy < Z(Ly) then a is not conjugate to o ; and
(i) f jug ;
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(il) Cz,(Zot) # Za N Qu if and only if Zo = QUZ(Ly)) and (¢!, @) is not a

critical pair.

Proof. Suppose Z, < Z(L,). By Lemma 5.2.10 (ii), Zoy = Q(Z(Ly)). If a and

o’ were conjugate, then Z, = Q(Z(L,)), a contradiction to Lemma 5.2.7 (iii).

Suppose that Z, = Q(Z(Ly)). Since Z, £ Qu but Z, < L., we infer that
Zy = Cy.(Zo) # Zo N Qu. Suppose conversely that Cy (Zy) # Za N Qur-
Then Cr_,(Zu) is not p-closed and by Lemma 5.2.10 (ii), we have that Z, =

O(Z(Lo)). O

Lemma 5.2.12. Suppose that b > 2n. Then V;;(n) is abelian for all 6 € I'.

Proof. Since b > 2n, for all \,u € AM™(§) we have that Z, < Gﬁ) by the
minimality of b. Thus, Z), < @, Z centralizes Z,, and since V;;(”) =(Z, | p€
AM(8)), it follows that V™ is abelian. O

Lemma 5.2.13. V/\n)/[VA(n), Q] contains a non-central chief factor for Ly for all

n > 1 such that V/\(”) < Qx.

Proof. Set V{9 = Z, for all p € I' and suppose that OP(L,) centralizes
Vv Q). Observe that Vi = (VD)) for € A(M) so that

M
v« Vi, Q, < V™. Moreover, VJ"fl)[V)\(n),Qk] < Ly so that V™ =
Vu"_l)[V)\(n),QA]. Set V; = [V/\n),Q,\;i]. In particular, V5 = V)\(n) and V} =
[Vo,Qx] = [V"™D,Q,]Va. Notice that v o V=1 and let k be maximal
such that V\") = V" UV, Then V; = [V, QVipr < V" UViyr. But
V)\(n) = Vu(”_l)Vl = Vu(”_l)VkH, contradicting the maximal choice of k. Thus,

OP(L,) does not centralize V/\(n) / [V/\(n) , @], as required. O
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We will use the following lemma often in the amalgam method and without
reference. Recall also that if U,V < G with V < U then, in our setup and
using coprime action, U/V does not contain a non-central chief factor for G if and

only if OP(G) centralizes U/V .

Lemma 5.2.14. For any A € I, an)/V)\(n_Q) contains a non-central chief factor

for Ly for all n > 2 such that V/\(n) < Q.

Proof. Assume that V/\n)/ VA("J) contains only central chief factors for Ly so that
OP(L,) centralizes V™ /V."™®_ Since V"™ < Vi < Vi for all p e A(N),
we have that Vu(”_l) < OP(L))Gy, = G, by a Frattini argument. But then
Vu("*l) < (G, G)y), a contradiction. Thus, VA(") /V)\(H_Q) contains a non-central

chief factor, as required. n

We now introduce some notation which is non-standard in the amalgam method
and is tailored for our purposes.
Notation 5.2.15. o If Zs # Q(Z(Ls)), then Rs = Cp,(Zs).
o It Zs = Q(Z(Ls)) and b > 1, then Rs = Cr,(V5/Cy,(OP(Ls)).
o If Zs = Q(Z(Ls)) and b > 1, then C5 = Cg,(Vs).
Lemma 5.2.16. Suppose that Zs; = Q(Z(Ls)), b > 1 and let T € Syl (Gs). Then

R§ NnT S Q(s and OT(%) = 05.

Proof. Suppose for a contradiction, that Rs NT £ Qs. Then Ry is not p-closed so
that by Lemma 5.2.8 (iii), Gs = RsNg;(T). Let p € A(6) with T' € Syl (Gs,.).

Then Z,, < Vs so that Z, < (G5, G,,), a contradiction.
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Suppose now that Cr(Vs) > Qs so that Cg, (V5) is not p-closed and is normal in Gj.
As above, by Lemma 5.2.8 (iii), we quickly get that G5 = Cg,(V5)Gs,, normalizes
Z,, for p € A(0) with T' € Syl (Gs,). Hence, the result. O

Lemma 5.2.17. Suppose that Ls/Rs = SLy(p"), Qs € Syl,(R;) and Rs; < Gs
for some X\ € A(0). Then Ls = SLy(p™).

Proof. Since Rs; < Gs, we have that [Rs, Ls] < [Rs, T)" < ((RsNT)%) = Qs for
T € Syl,(Gs,). Hence, Rs < Z(Ls) is a p-group. If p” > 3, then as Ls = O (L),

it follows from Lemma 2.2.1 (vii) that Ls = SLy(p™).

If Ls/Rs = Sym(3) and R; # Qs, then Rs is a non-trivial 3-group since L; =
0% (Ls) and for any prime r # 2,3, O,(R;) is complemented in Ls. But now,
since R is maximal and central in O3(Ls), O3(Ls) is abelian. By coprime action,

Os3(Ls) = [0s(Ls), S| x Coy(Tr) (S) and Rs is complemented in Ls by [O3(L;s), S|S =
Sym(3). Since Ls = O (Ls) the result follows.

If L;/Rs = SLy(3) then Rj is a non-trivial 2-group since Ls = O (L;) and for any
prime r # 2,3, O,(Rs) is complemented in L;. Let A be a maximal subgroup of
Rs. Then |Oy(Ls)/A| = 16. By Gaschutz’ theorem, we may assume that Rs/A is
not complemented in Oy(Ls)/A. We see that O9(Ls)/A is a non-abelian group of
order 16 with center of order at most 4. Checking the Small Groups Library in
MAGMA for groups of order 48 with a quotient by a central involution isomorphic
to SLy(3) and a Sylow 2-subgroup satisfying the required properties, we have a

contradiction. O

Lemma 5.2.18. Suppose that 6 € I', Zs 1 = Zsy1, Qs € Syl,(Rs) and i € N. If
Qs-1Qs € Syl (Ls), Ls/Rs is generated by any two distinct Sylow p-subgroups and

OP(Rs) normalizes V;;(i_ll), then Vd(i;l) = ;j&l).
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A

Proof. Since Q5-1Qs € Syl (Ls), if Qs_1Rs # Qs41Rs, then Zs, = Zs_,
Ls = (Rs,Qs_1,Qs+1), a contradiction. Thus, Qs_1Rs = Qs11Rs. As Qs_1Qs €
Syl,(Qs-1R;s), there is r € R; such that Q5 Qs = (Q5-1Qs5)" = (Qs+1Qs) =
Qs5+1Qs. Since Qs_1Q)s is the unique Sylow p-subgroup of Gs_1 4, it follows that

551 = Gsor1 = Ng;(QsQs41). Set 0 = (6 — 1) -r € A(d). Then by properties
of the graph, G551 = G55 1 = Gss5-1+ = Gsg and so (6 —1) -7 = 0 + 1. Since
r acts as a graph automorphism on I, r preserves ¢ neighbourhoods of vertices in
the graph and it follows immediately that V(;(:.lr) = ( 5(:1))7' so that, as V;;(i_ll) is

normalized by Rs = OP(Rs)Qs, Vé(i_ll) = V(S(i_ll), completing the proof. ]

We record one further generic lemma concerning the action of R, for v € I'.

Lemma 5.2.19. Let v € I" and fit 6 € A(y). Then for n < b, (V" | Z, =

Zs, b € A(y)) 2 Ry Qs.

Proof. Set U" := (V" | Z, = Zs,p € A(7)) and let r € R,Qs. Since 7 is a
graph automorphism, for ;o € A(y) such that Z, = Zs, (V)" = V). But now,

Zyw = 2y, = Z§ = Zs and so (VM(”))T < U". Thus, U" < R,(Q)s, as required. ]

As described in Section 2.1, we can guarantee cubic action on a faithful module
for Ls for § at least one of a, 3. We use critical subgroups to achieve this and
refer to Theorem 2.1.26 for their properties. The following proposition is listed as
Proposition F in the introduction, and it is worth pointing out that it holds in

much greater generality than in the hypotheses of this thesis.

Proposition 5.2.20. There is A\ € I" such that there is a Gy-module V' on which
p'-elements of Gy act faithfully and a p-subgroup C' of Gy such that [V,C,C,C]| =

{1},
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Proof. Let (a,...,a’) be a path in I" with (o, ') a critical pair. For each \ €
(c,...,a), set K, to be a critical subgroup of @,. Since Z, < K,, we must have
that Ko, £ Qu. Set ¢ := {min(d(p, \)) | K, £ Qx,p, X € (a,...,a’)}. Choose
a pair (u,A) such that K, £ @, and d(p, A) = c¢. Then, by minimality of c,
K, <G, but K, £ @, and from the definition of a critical subgroup, p’-elements
of Gy act faithfully on the Gy-module Ky /®(K)). Moreover, again by minimality,
K normalizes K, so that [K), K, K,,, K,| < [K,, K,, K,| = {1}, as required. [

Under the assumption that Rj is p-solvable group which does not normalize a
Sylow p-subgroup of Ls, we are in a good position to apply Hall-Higman style
arguments whenever p > 5. We get the following fact almost immediately from

Corollary 2.3.24.

Corollary 5.2.21. Suppose that p > 5, and L, and Lz have strongly p-embedded

subgroups. Then, for some \ € {a, B}, one of the following holds:

(i) p = 5 is arbitrary and Ly = PSLy(p"), SLa(p"), PSUs(p™) or SUs(p") for

n € N; or

(i) p=>5 and Ly = 3 - Alt(6) or 3 - Alt(7).

Proof. By Proposition 5.2.20, there is a p-element x € Ly which acts cubically on
K,/®(K)). Suppose there is y € Ly such that [y, K] < ®(K,). Since K is a
critical subgroup, by coprime action, y is a p-element so that Cr, K,/®(K)) is a
normal p-subgroup. In particular, L, acts faithfully on Ky/®(K)) and so we may

apply Corollary 2.3.24 and the result holds. O

We now deal with the so called “pushing up” case of the amalgam method. The

proof breaks up over a series of lemmas, culminating in Proposition 5.2.25 which
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was given as Proposition G in the introduction. Throughout, let A € I'; € A(\)
and S € Syl (G ).

Lemma 5.2.22. Suppose that QxNQ,, < Gx. Then, writing L := <Qf*>, we have
that Q, € Syl(L), Op(L) = Qu, N Qx, Zx/Z(Ly) is a natural SLy(q)-module for

Ly/Ry and no non-trivial characteristic subgroup of Q,, is normal in L.

Proof. Set L := (QS*) 4 Ly and let V := Zy if Zy # Q(Z(S)), and V :=
Va/Cy, (OP(Ly)) if Zy = Q(Z(S)) and b > 1. Since L < Ly, we have that
CL(Op(L)) < Oy(L) and since @, £ @y, it follows by Lemma 5.2.8 that L/O,(L)
has a strongly p-embedded subgroup and L, = LS by Hypothesis 5.2.1. If
J(Qu) < Op(L), then J(Q,) < @, N Qx < @, and so, by Proposition 2.3.7
(iv), J(Qu) = J(Q,.NQx) < Ly, a contradiction.

Suppose first that b = 1 and Z) = Q(Z(S)). Then Z, < @, and we may as well
assume that Z, £ Q. But then Z, centralizes Q/O,(L) and O,(L). Since (Z5>)
contains elements of p’-order, using coprime action and that GG is of characteristic
p, we have a contradiction. Now, if V := Z,, then O,(L) = Csnr(V) and by
Proposition 2.3.9 and Lemma 2.3.10, L/Cy(V) = SLy(q). If Z, = Q(Z(S)), then
Q)N Q, = Cy\ and we may assume that ;1 belongs to a critical pair (u, 4') with
d(\, 1) = b— 1. Then b is odd, otherwise ¢/ —1 € X\ and Z, < Qv_1 N Qu_o =
Qu-1NQr < Qu. Thus, Vyn@y < Cyand ViNQy < Cp. Without loss
of generality, assume that |V, /(V, NQx)| < [VA/(VANQ,)]. A straightforward
calculation ensures that V,Q,/Q,s is an offender on V,/[V,y, Qu], [V, Qu] <

Cv,,(OP(L,y)) and by Lemma 2.3.10, L/ /Cy ,(V,y/Cv,,(OF(Ly))) = SLa(g).

Either way, it follows from Lemma 2.2.1 (vi) that L,/CL, (V) = L/CL(V) =
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SLQ((]), S = Q)\QH and
QuOp(L) = Qu(@xN L) = @QxQuNL=SNLe Syl,(L).

Since [Op(L), Q] < [Qx, Qu) < QxNQ, < Opy(L) it follows that [O,(L), L] =

[0p(L), (QE)] = [0,(L), Q)" < QxNQ, and so L := L/(Qx N Q,) is a central
extension of L/O,(L) by O/p(\L). But Q, NO,(L) = Q, N Q) and so @; is
complement to O/p(\L) in SN L. Tt follows by Gaschutz’ theorem that there is
a complement in L to O/p(\L). Now, letting K be a Hall p’-subgroup of Ny (SNL),
unless ¢ € {2, 3}, we deduce that @; < [m, K,] is contained in a complement
to O/p(\L) and since L = (Q5*), it follows that O/p(T) = {1} and Q, € Syl (L). If
q € {2,3}, then L>px SLa(p), @;] = p and one can check that (@\ME> = SLs(p),
contradicting the initial definition of L. Thus @, € Syl,(L) and Op(L) = Q,NQx.

Since Ly = LQ,, there is no non-trivial characteristic subgroup of ), which is

normal in L, for such a subgroup would then be normal in (G, G,,).

It remains to show that V := Z, so suppose that Z, = Q(Z(S)) and V =
VA/Cv,(OP(Ly)). Moreover, Z(L,) = {1} by Lemma 5.2.7 (iv), O,(L) = C,,
b > 1is odd and V) is abelian. Let R, be the preimage in L of O,/(L/O,(L)) and
suppose that Ry, is not a p-group. Then V) = [V}, R.] x Cy, (Ry) is an S-invariant
decomposition, and since Zy = Q(Z(S)) < Cy, (Ry), Vi is centralized by Ry,. Since
V) is an FF-module for L/O,(L), unless ¢ = 2" > 2, using coprime action and
Lemma 2.2.6 (v) we infer that Cy, (Ry) = Cy, (OP(L)) so that Z, is centralized by

L and normalized by (L,G,,), a contradiction.

Thus, we may reduce to the case where p = 2, R, = Oy(L) and L/O4(L) = SLy(2")
for n > 1. Since S < Ng,(02(L)), [G, : Ng,(O2(L))] is odd and applying [Ste86,
Theorem 3], V,, < G = (L,G,,), a contradiction. Therefore, Z, # Q(Z(S)) and
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V=12, [l

Lemma 5.2.23. Suppose that Q\NQ,, < Ly. Then b > 1 and, writing L := <Q£A>,
L/O,(L) = Ly/Qx = SLa(q), b =2 and O,(L) contains a unique non-central chief
factor for L. Moreover, there is X' € A(u) such that both (A, X') and (N, \) are

critical pairs.

Proof. Suppose that b = 1. Then Q(Z(S5)) < Q\NQ, = Oy(L) < G, and it follows
from the definition of Zy that Z, < O,(L) < Q,. Thus, we may as well assume
that Z, £ Qx. But then Z, centralizes O,(L) and so OP(L) centralizes O,(L), a

contradiction since L is of characteristic p. Thus, we conclude that b > 1.

Suppose that (A,0) is not a critical pair for any 6 € I'. Then there is some p/
such that (u, ') is a critical pair and d(\, p/) = b — 1. Then Z,, # Q(Z(S)) # Z,,
Ca, (Zy) is p-closed and Zy < Q2 NQx = QxN Q. But then, [Z,, Z/] = {1}, a
contradiction for then Z, < @,,. Thus, we may assume A belongs to a critical pair
(A, N) with d(p, \') = d(\, N) — 1. Suppose that b is odd. Then Z, < Qy_; and
N —1€ X% But then Z, < Qy_1NQy_s=0Qx_1NQx < Qy, a contradiction.
Thus, b is even. Moreover, since Cs(Z))Qx € Sylp(Gf\l)) and [Zy, Zx] # {1},
(N, ) is also a critical pair. Suppose that b > 4. Then V)\(Q) < Opy(L) and V/\(Q)/ZA
contains a non-central chief factor. Thus, if O,(L) contains a unique non-central

chief factor for L then b = 2.

Suppose that O,(L) contains more than one non-central chief factor within O,(L)
and assume that p is odd. If b = 2, then O5(L) = QxNQ, = Zx(QxNQ,NQx), a
contradiction since O, (L) contains more than one non-central chief factor. Thus,
we may assume that b > 4 and b is even. Set T) to be a Hall p/-subgroup of

the preimage in Ly of Z(L,/R,). Note also that since p is odd, we may apply
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coprime action along with Lemma 2.2.6 (v) so that Z, = [Z),T)\] x Cz (1)) =
[Z)\,L,\] X Z(L)\>

Choose A — 1 € A(X) such that Q(Z(Lx—1)) # QZ(L,)) and set U =
(VLIQUZ(Lr=1)) = QUZ(Ly)),y € A(N)). Let r € RyQa—1 < CL, (UZ(Lr-1))).
Since r is an automorphism of the graph, it follows that for V,, < U, V' =V, .
But Q(Z(L,..)) = QZ(L,))" = QUZ(Lx1))" = QZ(Lr—1)) and so VI < U
and U < R),Q,_1. Note that if U < Qn_o then U < Qn_o N Qrn_3 =
Qx-—oNQyx_1 < Qn_y and so, U = Z,(U N Qy). Thus, Z, centralizes U/Z,
and since Ly = (Ry, Zy,Qx_1), it follows that OP(L,) centralizes U/Z, and so

normalizes V)_1, a contradiction.

Therefore, U £ Qo so that there is some A —2 € A®()) such that (A —2, N —2)
is also a critical pair. Since Z) = [Zy, L] x Q(Z(L,)), it suffices to prove that
Zx, Zy] = QUZ(L,)) = QAZ(Ly-1)) and that this holds for any critical pair,
since then, as there A — 2 € A(A — 1) with (A — 2, X — 2) a critical pair, Z, =

WZp,, ) x Zy—3 x Q(Z(Ly)) which is contained in @y since b > 2.

Suppose that Z, = Q(Z(S)) = QZ(L,)). In particular, Z(Ly) = {1} and 2,

is irreducible. Since Z, is a natural SLy(q)-module, Zy_y = [Z),Zyv] = Z

> as

required.

Assume now that Z, # Q(Z(S)). Then Zy = [Zx, Tx] xCz, (T3), [Zx, Ts] = [Z, Ly
and Cyz, (T)) = Q(Z(Ly)). Moreover, [Z, Zy] = Ciz,.1.(S) = Q(Z(S)) N [Zy, Ly].
Since Q(Z(S)) = Q(Z(Ly)) x A(Z(L,)) and Ty normalizes Q(Z(L,,)), we have that
QZ(L,)) 2 [UZ(L). T = [AZ(S), T = AZ(S)) N [Zy, L) Comparing
orders, we conclude that Q(Z(L,)) = [AZ(S)), Ta] = [Zx, Zy]. By symmetry, we

have that Z(Ly_1) = [Zx, Zy], as required.
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Suppose now that p = 2 and Os(L) contains more than one non-central chief factor
within Oy(L). Choose 1 < m < b/2 minimal such that V>\(2m) < @y —2m- Notice
by the minimal choice of m that V)\(Q(m_k))Q,\/,Q(m,k) € Syl,(Lx—a(m-r)) for all
k < m.Then V/\@m) < Qx—om N Qn—omo1 < Qyx_omy1 and, extending further,
vEm = By q Q). But then, OP(Ly) centralizes V2™ /V,*™2),
a contradiction. Thus, no such m exists. Even still an index ¢ subgroup of
V)\(%) / V)\(%_?) is centralized by Zy for all k < b/2 and it follows that for all
1 <m < b/2, V/\(Qm) / V/\(Qm_Q) contains a unique non-central chief factor and this
factor is an FF-module for L, /Q,. Note that for Ry, Rs the centralizers in L/Oy(L)
of distinct non-central chief factors in V/\(2m) for 1 < m < b/2, we deduce that
R1Ry/R; is an odd order normal subgroup of L;/R; = SLs(q) for i € {1,2}. Thus,
unless ¢ = 2, we have that L/OQ(L)C’L(V,\(M)) = SLs(¢) and an application of the

three subgroup lemma ensures that L/Oy(L) = SLy(q).

Since no non-trivial characteristic subgroup of ()3 is normal in L, we may apply
pushing up arguments from [Nil79, Theorem B] when L/Os(L) = SLs(q). Thus,
@), has class 2 and there is a unique non-central chief factor for L within O,(L).
It is clear that Z,/Z(L,) is the unique non-central chief factor for L inside Oy(L)
and is isomorphic to the natural module for L/O4(L) = SLy(q). Thus, ¢ =p =2
and since no non-trivial characteristic subgroup of ()g is normal in L, we may
apply [Gla71, Theorem 4.3] to see that (), has nilpotency class 2 and exponent 4.
Notice that if b > 4, then V/\(Q) is contained in @), and [V/\(Q), Qu <QZ(Q,)). But
(QZ(Qu))")) is an FF-module for L/Oz(L) by Proposition 2.3.9, and contains
[Z, L] as its unique non-central chief factor. Thus, it follows that [V/\(Q), L < Z,
and V, < (L,G,), a contradiction. Hence, we conclude that b = 2 so that Oy(L)

contains a unique non-central chief factor, as required. O]

Lemma 5.2.24. Suppose that QN Q, < L. Then Z, # Q(Z(95)).
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Proof. We suppose throughout that there is a unique non-central chief factor for
L) contained in (), N @ and, as a consequence, that L/O,(L) = Ly/Qx = SLa(q).
Additionally, assume that Z, = Q(Z(5)) = Q(Z(L,)). Then Z(L,) = {1} by
Lemma 5.2.7 (iv). Hence, Z, is the unique non-central chief factor within Q,N@Q,,.

In particular, Z, is isomorphic to a natural SLy(g)-module and [OP(L,), Q] = Z,.

If (Q)) # {1}, then the irreducibility of Z, implies that Z, < ((®(Q\) N
Q(Z(9)))) < ®(Q,). But then OP(L) acts trivially on Q,/®(Q,), a contradiction
by coprime action. Thus, ®(Q,) = {1} and Q) is elementary abelian. If p
is odd or ¢ = 2, then for Ty the preimage in Ly of O, (L)), we have that
Qx = [Qr,T)] x Co,(T)) = Z\ x Cq, (1)) is an S-invariant decomposition and
since Q(Z(S)) < Z,, we have that Cg, (7)) = {1} and Q\ = Z,. But then

Z,=2NQ,=QxNQ, < Ly, a contradiction.

If ¢ > 2 is even, then since S < Ng,(O2(L)), we have that [G : Ng,(O2(L))] is

odd, applying [Ste86, Theorem 3|, V,, < G = (L, G,,), a contradiction. ]

Proposition 5.2.25. Let S € Syl,(Gx N G,) for A € I' and pp € A()). Then
Q)N Q, is not normal in Ly. Moreover, if ZyZ,, < Ly then Z,, = Q(Z(S)) < Z,.

Proof. Suppose that Z,Z,, < Ly but Z, # Q(Z(S)). By Lemma 5.2.10 (ii), we
have that Cg(Z,) = Q, and so Co,(2,Z,) = QxNCs(Z,) = Qx N Q, and it
follows that @\ N @, < Ly. Thus, we may suppose that QN @, < Ly, and derive

a contradiction to complete the proof.

Under this assumption, Z, contains the unique non-central chief factor for L inside
Q.NQy and Z, # Q(Z(S)). Moreover, b = 2 and there is A € A(u) such that
Zy £ Qn and Zy £ Qy. Since L)/Qx = Sls(qy) and Z,/Z(L,) is a natural

module, we get that Q, = (Qyv N Q, N Q\)ZxZy and Qrx N Q, = (Qx N QL N
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Q))Zy. Then (QxNQL)/P(Qx N QLN Q) is elementary abelian and it follows
that (QxNQ,) = Qv NQL) = P(QvNQLNQN). Set F:=P(QrNQ,). Since
() contains a unique non-central chief factor for L), we infer that F' is centralized
by OP(L) and as @, has class 2, F' < Z(L). Let Z be the preimage in @, of
Z(Q/F). Since F is normal in both G and G/, we have that Z; < (G, Gx).
Moreover, since @, = (QxNQ,NQx)ZxZy, we have that Q,NQ\NQx < Z7. Since

[Z;j, Z)] < F < Z(L), we have that 77, < Qx and by symmetry, Z; = Q,NQ\NQx.

Suppose that p is odd and let H,, be a Hall p’-subgroup of G, N Ly. By
Lemma 2.2.1 (vi), H), is cyclic of order gy — 1. Furthermore, H) , normalizes
Qu, F and Z}; and acts non-trivially on @,/Z;;. Now, for ¢, the unique involution
in Hy,, ta centralizes Q,/Qx N Q, and inverts Qx N Q,/Z; = Z\Z:/Z. By
coprime action, Q,./Z = Z\Z; | Z} X Cq,/z; (ty) is a Q,-invariant decomposition.
Since [S,ty] < @\ N @, the previous decomposition is S-invariant. But then
[Qx; Cq,/z: ()] < (QuNQN)/Z; = Z)Z};/Z}; and we deduce that @, centralizes
Q,/Z;. Hence, @y normalizes Qx NQ,,. Let M = (Qx, Qx,Qu) < G Then there
is an m € M such that (Q,\Q,)™ = QvQ, and since Qx (@), is the unique Sylow
p-subgroup of G, v, it follows that A - m = X. But then (QxNQ,)" = Qv NQ,
and as M normalizes Qy N @, we have that @), N Qx = Qx N Q,, absurd since

Z)\ S Q)\ mQ,u-

Suppose that p = 2. Since (QxNQ,)/F and (Q,NQx)/F are elementary abelian,
by [PR12, Lemma 2.29], every involution in @, /F is contained in (Qx N Q,)/F
or (Q,NQy)/F. Indeed, for A any other elementary abelian subgroup of @, /F
and B the preimage of A in @), we must have that B = (BN Qx) U (BNQy). If
B £ @), then FNZ\, = Cyz (B) = ZyN B and it follows that BN Q\ = F. By

symmetry, we have shown that A(Q,/F) = {(QxNQ.)/F,(Q.NQx)/F}.
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Set M = (Qx, Qx, Q) < G, so that M normalizes Q),, Z; and F. Thus, all
elements of M which do not normalize @), N @, conjugate @, N Qx to Q, N Q»,
and vice versa. Thus all odd order elements normalize Q),N@Q . There isanm € M
such that (Q\Q,)™ = Qv Q, and since Qy (@), is the unique Sylow 2-subgroup of
Gy, it follows that A -m = X. Since M = OP(M)Q\Qyu, we may as well
choose m of order coprime to p. But then (Q\ N Q,)" = Qx N Q, and as m
normalizes Qy N @, we conclude that @, N Qy = @\ N @, a final contradiction

since Zy < QN Q. O

We can now prove a result analogous to Lemma 5.2.14, instead working “down”
through chief factors. Again, we will apply this lemma often and without reference

throughout this chapter.

Lemma 5.2.26. Let A € I and p € A(N), b> 1 andn > 2. If V") < Q,, then

C’QA(V)\(TL—”)/C'QA(V/\(H)) contains a non-central chief factor for L.

Proof. Observe that as VA(") < @), we have that Z(Q,) < C’QA(V/\(”)) <
CQA(VM("_I)) < CQA(V/\(WZ)). In particular, C’QA(VM(”_I)) is non-trivial. If
C’QA(V)\(n_m)/C’QA(V/\(n)) contains only central chief factors for L), OP(L,)
centralizes Cp, (V" ?)/Co, (Vi) and normalizes Co, (V1) Thus,
Co, (VD) 4 OP(Ly)Gy,) = Gi. In order to force a contradiction, we need

w

only show that C’QA(VPE”—U) — (]Q“(v#(n—l))_

Let S € Syl (G»y,). Since n > 2, Z) < V" is centralized by Cs(V{n=Y)
and unless n = 2 and V\""? = Z, = Q(Z(S)), applying Lemma 5.2.10 (i)
and Lemma 5.2.16, we have that Cs(V{"™V) < Qy N Q, and Cq, (V") =
C’QM(VH("*”), as desired. If V/\(”_Q) = Q(Z(9)), then Vﬂ(”*l) =Z,and Cs(Z,) = Q.

But then, Cg,(Z,) = QxNQ, < Gy, a contradiction by Proposition 5.2.25. [
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We will also makes use of the qrc-lemma, although where it is applied there are
certainly more elementary arguments which would suffice. In this way, we do not
use the lemma in its full capacity and instead, it serves as a way to reduce the
length of some of our arguments. This lemma first appeared in [Ste92] but only

for the prime 2. We use the extension to all primes presented in [Str06, Theorem

3).

Theorem 5.2.27 (qrc Lemma). Let (H, M) be an amalgam such that both H, M
are of characteristic p and contain a common Sylow p-subgroup. Set Qx := Oy(X)
for X e {H,M}, Z = (Q(Z(S))) and V := (ZM). Suppose that M is p-minimal

and Qu = Cs(Z). Then one of the following occurs:
(ii) Z is an FF-module for H/Cy(Z);

(iii) the dual of Z is an FF-module for H/Cy(Z);

(iv) Z is a 2F-module with quadratic offender and V contains more than one

non-central chief factor for M ; or

(V) M has exactly one non-central chief factor in V, Qg N Qyn < M,

[V,OP(M)] < Z(Qn) and contains some non-trivial p-reduced module.

Notice that case (v) of the qre-lemma is ruled out in our analysis by
Proposition 5.2.25 and in cases (ii) and (iii), Lemma 2.3.10 implies that
H/Cu(Z) = SLy(q), for ¢ some power of p.

We will require some results on FF-modules for weak BN-pairs and other pushing

up configurations in subamalgams.
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Theorem 5.2.28. Suppose that G satisfies Hypothesis 5.2.1 where L, and Lg are
p-solvable and let S € Syl (L) N Syl,(Lg). Assume that G = (S¢) and V is an
FF-module for G such that Cs(V') = {1}. Then G has a weak BN-pair of rank 2
and is locally isomorphic to one of SLs(p), Spu(p), or Go(2). Moreover, if G is
locally isomorphic to Go(2), then G/Cq(V') = Go(2).

Proof. If G has a weak BN-pair of rank 2 then this follows from [CD91, Theorem A,
Theorem B, Corollary 1]. If G does not have a weak BN-pair of rank 2, comparing
with Theorem 5.2.2, we see that p = b = 2, L, /Q, = Sym(3) and Lg/Qs = (3x3) :
2. Moreover, there is P3 < Lg such that Ps contains S, P3/Qs = Sym(3) and @3
contains two non-central chief factors for Ps. Indeed, no non-trivial subgroup of S
is normalized by both L, and Ps and by [Fan86], (L, P3, S) is locally isomorphic
to Mye. Setting X := (L,, P3) and applying [CD91], V is an FF-module for X

upon restriction and applying [CD91, Lemma 3.12], we have a contradiction. [
Lemma 5.2.29. Suppose that G is a minimal counterezample to Theorem 5.2.2,
{\, 0} ={a, B} and the following conditions hold:

(i) Z(Qu) = Z4 is of order ¢* and Z(Qg) = Zs = Q(Z(S)) is of order ¢;

(ii) Lo/Ra = SLa(q) = Lg/Rg, and Z, and V3/Cy,(OP(Lg)) are natural
SLa(q)-modules; and

(iii) there is a non-central chief factor U/W for Gy such that, as an Ly-module,
U/W is an FF-module, Cp,(U/W) # Ry, and Cr,(U/W) N Ry normalizes
Qa N Qﬁ'

Then q € {2,3} and one of the following holds:

175



(a) there is Hy < G\ containing G such that (Hx, Gs, Go ) is a weak BN-pair
of rank 2, b < 5 and if b > 3, then (Hy, Gs, Gy ) is parabolic isomorphic to

Fs and V\?)/Z,, is not acted on quadratically by S;

(b) p=3, A= «, neither Cr (U/W) nor R, normalizes Qo N Qg and there does
not exist P, < Lo such that S(CL, (U/W)NRy) < P,, Py, is G, g-invariant,
P,/CL., (U/W)N R, = SLa(p), Lo = PaRo = P,CpL (U/W) and Qo N Qp &
P.;

(¢) A =B and neither Rz nor Cp,,(U/W) normalizes V?; or

(d) there is Hy < G\ containing G, such that for X = (Hy,Gs) and V :=
(%), we have that V3 <V < S, Cg(V) < X and for X = X/Cx(V),
X is locally isomorphic to SL3(p), Spa(p) or Go(2); or p = 3 and there is
an involution x in Gap such that )?/(f:vj is locally isomorphic to PSp,(3).
Moreover, if Qu contains more than one non-central chief factor for f/# where
w € {a,p}, then @u contains two non-central chief factors and Q, contains a

unique non-central chief factor for L, where u # v € {a, B}, and X = G4(2).

Proof. 1t follows from (ii), (iii) and Lemma 2.3.10 that L,/CL, (U/W) = L\/R\ =
SLy(q) and Syl,(Cp,(U/W)) = Syl,(Rx) = {@x}. Thus, Cr,(U/W)Rx/Qx
is a non-trivial normal p’-subgroup of L,/Q,. Assume that that ¢ > 4 and
Cr,(U/W) # Ry. Then CL, (U/W)R,/Cp,(U/W) = Z(Lx/CL,(U/W)) and
Cr,(UW)Ry/Ryx = Z(Ly/Ry). In particular, p is odd and L,/Cr, (U/W) N R,
is isomorphic to a central extension of PSLy(¢) by an elementary abelian group of
order 4. Since O (Ly) = Ly and the p’-part of the Schur multiplier of PSLy(q) is of
order 2 by Lemma 2.2.1 (vii), we have a contradiction. Thus, we may assume that

q € {2, 3} throughout so that G, and G are p-solvable. By Lemma 2.3.14 (ii) and
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Lemma 2.3.15 (ii), Ly /(Cp, (U/W)NRy) = (3 x3) : 2if p =2, or (Qs x Qs) : 3 if

p=3.

Suppose that p = 2. By Lemma 2.3.14 (iii), there are Py,..., Py < Ly such that
S(Cr, (U/W)NRy) < Pyand P;/(Cr, (U/W)NRy) = Sym(3). Indeed, Cr, (U/W)S
and R,S are non-equal and satisfy this condition. Moreover, P; is G, g-invariant
for all . Since any two F; generate L), we may choose Py, = P; # R,S such
that Q. N Qg £ Py and O?(Py) does not centralize U/W. Set Hy := P\Gp,
X = (H),G5) and V := (Z). By (i) and (ii), we have that V3 < V.

Suppose that p = 3. By Lemma 2.3.15 (iii), there is Py,..., P; < Ly such that
S(Cpr, (U/W)NRy) < P;and P,/(CL,(U/W)NRy) = SLy(3). Again, Cp,, (U/W)S
and RS are non-equal and satisfy this condition, and for any ¢ # j, Ly = (D, ;).
Since Cp, (U/W)S and R, S are G, g-invariant there is at least one other P; which
is G g-invariant. Notice that RgS normalizes (), N Q)3 and as any two P; generate,
by Proposition 5.2.25 if A = 3 there is a choice of Py = P, such that Q,NQs 4 Pi,
Py is G, g-invariant and O®(Py) does not centralize U/W or V. If A\ = «, then
unless outcome (c) holds, we may choose Py = P; # R)S such that Q, N Qs & Py
and O3(Py) does not centralize U/W. Again, we set Hy := P\Gop, X := (Hy, Gs)

and V := (Z), remarking that Vz < V.

For p = 2 or 3, O,(Py) = @ and P,/Q), has a strongly p-embedded subgroup.
Moreover, P, is of characteristic p, Cs(V) < Cs < Qo N Qs so that Cg(V) =
Cq. (V) = Cq,(V) < X. If no non-trivial subgroup of G 3 is normal in X, then X
satisfies Hypothesis 5.2.1 and since both Hy and G§ are p-solvable, by minimality,
(Hy,Gs,Go ) is a weak BN-pair of rank 2; or that p = 2, X is a symplectic
amalgam, |S| = 2% and exactly one of Hy and G is isomorphic to (3 x 3) : 2. In

the latter case, we get that @, and s are non-abelian subgroups of order 2° and
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G5 and G, are isomorphic to subgroups of GL,(2). Moreover, for some v € {\, 6},
1Q,/P(Q,)| = 2% so that G, is isomorphic to a subgroup of GL3(2). One can check
that this implies that G = X, a contradiction. If (Hy, Gs, G4 ) is a weak BN-pair
then we may associate a critical distance to it. Since (V™)) < ((V™)Gx),
it follows that the critical distance associated to (Hy,Gs,Gap) is greater than
or equal to b. Comparing with the results in [DS85], we have that b < 5 and
b < 3 unless b = 5, b is equal to the critical distance associated to (Hy,Gs, Gap)
and (Hy,Gs,Gap) is parabolic isomorphic to F3. That V®/Z, is not acted on

quadratically by S is a consequence of the structure of an Fs-type amalgam.

Hence, we may assume that some non-trivial subgroup of G, g is normal in X. Let
K be the largest subgroup by inclusion satisfying this condition. Since S is the
unique Sylow p-subgroup of G, s, K normalizes S so that O,(K) = SN K < X.
If O,(K) = {1}, then K is a p’-group which is normal in G, impossible since
F*(Gs) = Qs is self-centralizing in Gs. Thus, there is a finite p-group which is
normal in X. Since O,(K) < S, Zz < O,(K). Then, by definition, V < O,(K).
Indeed, as [O,(K), V] = [0,(K), (Z5)] = {1}, we conclude that V' < Q(Z(0,(K)))
and O,(K) < Cs(V). By an earlier observation, Cs(V) <9 X so that Cg(V) =
O,(K).

Set X := X/Cx(V) so that X = (H,,G;) and Hy = H,/Cy, (V) is a finite group.
Additionally, Gs = G5/Cq, (V) is a finite group. Since Cg(V) € SyL,(C, (V) N
Ce, (V)), Cs(V) < Cy and Hy does not normalize Q, N Qg, we deduce that Qy =
Op(ﬁ ) and H, / Q, has a strongly p-embedded subgroup. Similarly, Qs = Op(ég)

and G / Qs has a strongly p-embedded subgroup.

In order to show that the triple (ﬁ A, C~¥5, éav 3) satisfies Hypothesis 5.2.1, we need to

show that H, and Gy are of characteristic p, Gq 5 = Hy NG5 = NﬁA(g) = Néé(g)
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and no non-trivial subgroup of éav 3 is normal in both H, and Gj. In the following,
we often examine the “preimage in H,” of some subgroup of H,, by which we mean

the preimage in H) of the isomorphic image in H)/Cy, (V).

Notice that if H) is not of characteristic p then F*(ﬁ,\) =+ Q,. Then, as H, is
p-solvable, H, is not of characteristic p then O, (H,) # {1} so that for C, the
preimage in H) of Op/(ﬁ,\), [Cx, @, V] = {1}. For r € C, of order coprime to p, it
follows from the AxB-lemma that if r centralizes Cy (@), then 7 = 1. Since Q)
is self-centralizing in S, we have that Cy (Qy) < Z(Q,). Similarly, if G is not of
characteristic p, defining Cs analogously, by the A xB-lemma we need only show

Cs centralizes Cy (Qs) < Z(Qs).

Suppose that A = . Then |Z(Qp)| = p and so, either ﬁg is of characteristic
p; or p = 3, \EH = 2 and Cs acts non-trivially on Zs. In the latter case, CN@» <
Z(Hp) so that [Cs, 5] < Cr, (V). Moreover, by coprime action, we have that
V = [V,Cs] x Cy(Cp) is an S-invariant decomposition and as Cz acts non-trivially
on Zg, it follows that V' = [V,Cs] is inverted by (,Z; By the Frattini argument,
CsS = Cp,(V)S(GapNCs) and we may as well assume that there is v € G, 5N Cp
such that (.qcv) — Cs. But then [z,Q.] < [2,5] < Cs(V) and as = € Go 3 < Gq, Ga

is not of characteristic p.

Consider C,, the preimage in GG, of Op/(C:’a). If G, is not of characteristic p, then
applying the AxB-lemma, C, N Cq,(Z,) < Cg, (V) and C,, is isomorphic to a

normal p’-subgroup of GLy(p).

Suppose that |[C,| = 3 if p = 2, or Cq = Qg if p = 3. Noticing that [S, C(Za)] <
(Lo, Ci,(Za)] < Ra, by the Frattini argument, Cq, (Z,)Gaps = RaGap and G, =

R.G, C,. By Proposition 5.2.25, since C,G 3 normalizes (), N (@3, it remains to
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prove that I, normalizes ), N Q3 to get a contradiction.

Assume that R, does not normalize @, N Qs and let M, := Cq, (Zy)Ga,p. Then,
Ca,(Zy) £ Gap so that Q, = O,(M,). Reapplying the AxB-lemma yields
MzE/Ca = {1} if p = 2 and ]MZE/C,I] < 2 if p = 3. In the latter case, suppose
that M/a\ﬂ/Ca is non-trivial and choose z € M, NC, with [z, V] # {1}. Indeed,
(Ax/> = MZ?W/CQ is central in M,. It follows that [z,S] < Ch (V). Now, by the
Frattini argument, (C,NM,)S = Ch, (V)S(GapNC,) and we may as well assume
that z € Go g so that [z, 5] < Cs(V). But then [z, Q5] < Cx (V) and so Hy is not

of characteristic 3. Indeed, we can arrange that (x)Cp, (V) = Cs.

Now, we may form M} := Cq,(Za)(Ls N Gap) and Hj := (Hz N Lg)(M; N Gap)
and arguing as above, we infer that ]\7:’; and ?[E are both of characteristic p.
Moreover, by construction and since R, does not normalize (), N (g, we deduce
that Qo = O,(M;) and M*/Q, has a strongly p-embedded subgroup. Similarly,
@ﬁ = Op(ﬁg) and ﬁg/ Qg also has a strongly p-embedded subgroup. Set Y :=
(M, Hg) and write G}, 5 := M3 N Gap

Since S = Q,Qj, it is easily checked that C/?—Zvﬁ = Nﬁa<§> = Nﬁ;(g) = M:nN Hj.
Suppose there exists K* < égﬁ such that K* < (M, f—]vg) — Y. Since M7 and f—[vg
are both of characteristic p, we may assume that K* is not a p’-group, and since
K* < é’zvﬁ, O,(K*) = K*N S # {1}. Let K, denote the preimage of O,(K*)
in M} and Kz denote the preimage of O,(K*) in Hj. Then, T, := Q, N K, is a
normal p-subgroup of M} and, likewise, T := Q3 N K3 is a normal p-subgroup of
Hj. Since 7/10[\1:5 = T; = T/;», a comparison of orders yields 1,13 =T, =13 < Y.
Moreover, T, > Cg(V) and as Y is normalized by G, 3, T, is normalized by G, 3.
But now, G, = G, C, M} and as C, centralizes Q,/Cs(V), T, < (Gq, Hg) = X,

a contradiction since Cs(V') is the largest p-subgroup of G, 3 which is normalized
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by X. Hence, the triple (]\/43, /HVE, /;;vﬁ) satisfies Hypothesis 5.2.1.

Since Cs(V) < Qo N Qs and Cg(V) is the largest subgroup of S which is normal
in Y, we have that J(S) £ Cg(V) and a elementary calculation yields that
Q(Z(Cs(V))) is an FF-module for Y. Moreover, by construction, ¥ = (S¥) and,
by minimality and since MV; and f[vg are p-solvable, Y is locally isomorphic to one
of SL3(p), Spy(p) or Ga(2). Moreover, V(2 < V so that Cs(V) < Cq, (V). If
Y is locally isomorphic to SLs (p), then Cjp is the largest normal subgroup of Hg
contained in Q, N Qp, it follows that Cs < Cs(V) < Cp, (V.?), a contradiction

for then Cﬁ < <GQ,G5>.

If Y is locally isomorphic to Sp,(p), then it follows that |CV'/3| < p. We may
as well assume that Cs(V) = Cq, (V{?) has index p in Cj, else we obtain a
contradiction as before. Since Cs(V) < X and G = (Hg, Rg) = (Hg, Cr,(U/W)),
it follows that neither Rg nor Cp,(U/W) normalizes V2 and conclusion (c) holds.
If Y 22 Gy(2), then one can calculate in a similar manner that Cs(V) = Cq_ (V)

and again we retrieve outcome (c).

Therefore, if A = g and G, is not of characteristic p, then p = 3 and ]é;] = 2.
Then [S ,(,f;] = {1} and, again applying the Frattini argument, we have that
CoS = Cg,(V)S(Gap NCy). Choose z € Gop NC, with [z,V] # {1} so that

() = C,. Indeed, [z, 5] < Cs(V) and it follows that Hy is not of characteristic 3.
Hence, we may have that /];Tg is not of characteristic 3 if and only if G, is not of

characteristic 3. Moreover, there is & € G g such that (z) = C, = Cs.

If G, is not of characteristic p, then set X := Y/@ so that both f-l\g and G, are

of characteristic 3. Moreover, Lq/Rq = PSLy(3) and O (Hy)/(Rs N O¥ (Hg)) =

SLy(3). As in the construction of Y above, it is easily checked that Ga s =

181



~

Ng=(5) = Nﬁ\(g) = G, N Hy and no non-trivial subgroup of 6;6 is normal
in X. Thus, by minimality, the triple (é:, f{\g, GT; 3) is a weak BN-pair. Indeed,
L, = O%(G,) and L, = PSLy(3) or SLy(3). If L, = SLy(3), then a Sylow
2-subgroup of L, is of order 16, and arguing as in Lemma 5.2.17, we force a
contradiction. Thus, L, = PSLsy(3) and X is locally isomorphic to PSp,(3).
Then, using that Cj is the largest normal subgroup of Hz which is contained
in Q, N Qs and Cg, (V) is the largest subgroup of Cs normal in Gy, it follows
that Cs(V) = Cq, (V?) < X. Since G = (Hg, Rg) = (Hg, Cp,(U/W)), it follows
that neither Rz nor Cy,,(U/W) normalizes V? and conclusion (c) holds. Thus,

we may as well assume that whenever A = (3, X satisfies Hypothesis 5.2.1 and acts

faithfully on V.

Suppose now that A = « so that H,/Cpy_(Z,) is isomorphic to a subgroup of
GLy(p). If H, is not of characteristic p then, by the AxB-lemma, Co Z Ch. (Za)
and so C,Ch,(Z4)/Ch,(Z,) is isomorphic to a normal p’-subgroup of GLy(p). If
p=2or |CaCh,(Z4)/Cu,(Zy)| > 2 and p = 3, using the Frattini argument it
follows that H, = Cp, (Z4)CaGaps = (Roa N CL, (U/W))CaGaps which normalizes
Qa N Qp, a contradiction. Thus, p = 3 and |Cqa| = 2 so that [C,, S] < Cx (V).
Additionally, by coprime action, V' = [V, C,]| x Cy(C,) and as C., does not centralize
Zg we deduce that V = [V,C,] is inverted by C,. Then, by the Frattini argument,
SCy = SCx, (V)(Gap NCy) and we may choose x € Gy 3N C, with [z, V] # {1}

so that @ — C, and [, 5] < Cg(V). Tt follows that G is not of characteristic 3.

If é’g is not of characteristic p then, by the AxB-lemma, Cs does not centralize Zj.
In particular, p = 3 and |CN5| = 2. Then applying coprime action, (z inverts V' and

we see that there is © € G, 5 with (z) = Co = @ Hence, H, is of characteristic p

if and only if G 3 is of characteristic p.
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If G4 is not of characteristic p, then set X=X/ <?) so that H, and é; are both of
characteristic 3, OP/'(E)/OP'(TI;\H Ro, = PSLy(3) and L/Rs = SLy(3). As in the
above, it quickly follows that X satisfies Hypothesis 5.2.1 and by minimality, the
triple (Hqy, G, Gap) is a weak BN-pair of rank 2. Indeed, OP/'(F&) = PSLy(3) and
X is locally isomorphic to PSp,(3), and the outstanding case in (d) is satisfied.
We may as well assume that whenever A = «, X has satisfies Hypothesis 5.2.1 and

acts faithfully on V.

Finally, for either A = a or A = f3, X satisfies Hypothesis 5.2.1 and acts faithfully
on V. Moreover, since J(S) £ Cg(V) an elementary argument (as in the proof
of Proposition 2.3.9) implies that V' is an FF-module for X. By minimality, X
satisfies Hypothesis 5.2.1 and since both H, and G; are p-solvable, X is determined
by Theorem 5.2.28. Counting the number of non-central chief factors in amalgams
locally isomorphic to SLs(p), Sp,(p) or Ga(2) (as can be gleaned from [DS85]),

outcome (d) is satisfied. O

The hypothesis of Lemma 5.2.29 exhibit a common situation we encounter in
the work ahead: where Zg = Z(Qp) is of order p, and both Z(Q,) = Z, and
V3/Cy,(OP(Lg)) are natural SLy(p)-modules for L, /R, = SLy(p) = Lg/Rs. Upon
first glance, it seems that we have very little control over the action of R, for
A € {a,B}. Throughout this chapter we strive to force situations in which the
full hypotheses of Lemma 5.2.29 are satisfied. In applying Lemma 5.2.29, the
outcomes there will often force contradictions and the conclusion we draw is that
OP(R,) centralizes U/W, as described in Lemma 5.2.29 (iii). In this situation,
Lemma 5.2.18 becomes a powerful tool in dispelling a large number of cases.
Motivated by this, we make the following hypothesis and record a large number

of lemmas controlling the actions of Ry for A € I
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Hypothesis 5.2.30. The following conditions hold:

(i) Z(Qa) = Zq is of order p? and Z(Qg) = Zg = Q(Z(9)) is of order p; and

(ii) Lo/Ra = SLao(p) = Lg/Rg, and Z, and V3/Cy,(OP(Lg)) are natural
SLy(p)-modules.

As a first consequence of this hypothesis, we make the following observation,
gaining control over the order of V3 and the number of non-central chief factors in

Ve,

«

Lemma 5.2.31. Suppose that b > 2 and Hypothesis 5.2.30 is satisfied. Then, for

A€ a% and 6 € A(N), exactly one of the following occurs:

(i) |Vs| = p* and [V\P, Q)] = Zy; or

(i) Cv,(OP(Ls)) # Zs, |Vs| = p* and for V> := (Cy,(0"(Ls))®), both V¥ /v
and V*/Zy contain a non-central chief factor for Ly, [V}, Q) = Z,,
[V/\(Q),Q)\] = V* and V*V; A4 Ls. Moreover, whenever Zs,Cy,(OP(Ls)) =
Zs 1Oy, (OP(Ls)) for § € 'S, we have that Zsyy = Zs_.

Proof. Suppose first that |Vs| = p?. Then [Qx, V7] = [Qx, V5]% = Z, and
the result holds. So assume now that Cy,(OP(Ls)) # Zs. In particular, since
Zs = Z(Qs), Qs does not centralize Cy,(OP(Ls)). By coprime action, V5/Z; =
[Vs/Zs, OP(Ls)|x Cy; 2;,(OP(Ls)). Set V° to be the preimage in V; of [Vs/Zs, OP(Ls)]
so that V°/Z; is a natural SLy(p)-module and |V?| = p®. Notice that Z,V? is
normalized by Ls and from the definition of Vs, V5 = Z,V?° has order p* and

|Cy, (OP(Ls))| = p?. Letting VA := (Cy, (OP(Ls))%*), we have that [Qy, V] < Z,.
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If Q) centralizes V*, then Q) N Qs = Cg,(Cy;(OP(Ls))) < Ls, a contradiction by

Proposition 5.2.25. Thus, [Qy, V] = Z), < V} < V,\(Q)-

Assume that [VA@),Q,\] = Z,. This is the case whenever V5 < V*. Then Z; <
Vs, Q)] = [V?,Q,] < Zy and since OP(Ls) acts non-trivially on V°/Z;, it follows
that Z, < V? so that Vz = V?, a contradiction. Thus, we conclude that Vs £ V?*,

Vs NV = [V, Qi) 2y = Oy, (07(Ls)) 2y and [V, Qa] = V.

Suppose that V*/Z, does not contain a non-central chief factor for Ly.
Then L, normalizes Z,Cy,(OP(Ls)) and [@Qx, Z\Cy;(OP(Ls))] < L. But
[Qx, Z)Cy, (OP(Ls))] < Zs and so @y centralizes Cy, (OP(Ls)). Hence, Q\ N Qs =
Co,(Cy;(OP(Ls))) < Ls, a contradiction by Proposition 5.2.25. Thus, V*/Z),
contains a non-central chief factor for L. Since [V)\@),Q,\] = V*, it follows
immediately from Lemma 5.2.13 that V)\@) /V?* contains a non-central chief factor

for L>\.

Suppose that Z,Cy,(OP(Ls)) = Z,Cy,(OP(Ls)) for some p € A(S). Since
|Z\Cy,(OP(Ls))| = p* and Z,| = p?, if Z\ # Z,, then Z\Cy,(OF(Ls)) = Z\Z,,.
Suppose that Zy # Z,, so that Z,Z, = Z,Cy,(O"(Ls)) = Z,Cy,(OP(Ls)) is
normalized by Q \Rs and Q,R;. If Q\Rs # Q,Rs then Z,Cy,(OP(Ls)) < Ls =
(Qxr, Qu, Rs), and from the definition of Vs, Vs = Z,Cy,(OP(Ls)) is centralized
by @, a contradiction by Lemma 5.2.16. Thus, QyRs = Q,Rs. Then, there is

r € R; such that Q5Q; = (QrQs)" = (Q.Qs)" = Q,Qs and we may as well pick

r of order coprime to p. Moreover, since OP(Ry) centralizes Q5/Cs, it follows that
Qx € SyL,(QA\OP(Rs)). But then @, € Syl (Q\OP(Rs)). Since r centralizes Qs/Cs
we conclude that Q\ N Qs = Q, N Qs = Cq,(Cy;(OP(Ls))) < Ly, a contradiction

by Proposition 5.2.25.
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It remains to prove that V*Vs; # Ls so suppose for a contradiction that VAV <
Ls. Since QN Qs 4 Ls by Proposition 5.2.25, there is p € A(u) such that
Qs = (Qx N Q5)(Q, N Q5). Moreover, as VAVs < Ls, VAV = VAV?, Now,

Zs < [Qs, V3] = [Qx N Qs, VIV[Qu N Qs, VIV < 2,2,

and [Qs, VAVs] < Ls. If [Qs5,V V5] = Zs, then [Qs, V] < Z) and V*/Z) does
not contain a non-central chief factor, a contradiction. If Z,Z,, < Ls, then V5 =
7,7, is of order p*, another contradiction. Thus, [Qs, V*V;] is of order p* and
it follows from the structure of V; that [Qs, V V5] = Cy,(OP(Ls)) < Z,Z\. But
then Z,Z, = Z\Cy,(OP(Ls)) = Z,Cy,(OP(Ls)) so that Z, = Z,,. But then Q5 =

(Qx N Qs)(Qu N Qs) centralizes Zy, a contradiction by Lemma 5.2.10 (iv). ]

Lemma 5.2.32. Suppose that b > 3 and Hypothesis 5.2.30 1is satisfied. If
Zoy VO Zo and V2 |V are FF-modules or trivial modules for Ly, then R, =

CLa <v052))Qa .

Proof. Of the configurations described in Theorem 5.2.2 which satisfy b > 2,
all satisfy R, = @, and so we may assume throughout that G is a minimal

counterexample to Theorem 5.2.2 such that R, # Cr_ (V.?)Q,.

Suppose first that |Vj| # p® so that V*/Z, contains a non-central chief factor for
Le. Since Lo/ Rq = SLy(p) and Qq € Syl (Ra), |S/Qa| = p and by Lemma 2.3.10,
Lo/Cr. (VO] Zy) = Lo/Cr, (V) V) = SLy(p). Thus, if Cp (V*/Z,) # Ra
a standard calculation yields L,/CL, (V*)Q. is a central extension of PSLy(p)
by a fours group, or that p € {2,3}. Since L, = O"(L,) and the 2-part
of the Schur multiplier has order 2 when p > 5, we deduce that p € {2,3}.
Moreover, if p = 3 and R,Cy, (VY/Z,)S < L, then |R,Cr, (V*/Zy)/Ra| = 2,
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|Lo/CrL,(V)Qs| = 2%.3 and Lemma 2.3.15 (ii) gives a contradiction. Hence, if
Cr,(V*/Z,) # Ry then L, = R,Cy,(V*/Z,)S. But now, Cr_(V*/Z,) normalizes
ZoCy, (OP(Lg)) and so normalizes [Z,Cy, (OP(Lg)), Qa] = Z3, a contradiction for
then Z5 < L,. Thus, C1 (V*/Z,) = R,. Similarly, considering Cy, (V/?/V),
we have that VzV* < Cp (VP /V®) and so Z,Cv,(OP(Lg)) = Za[Vs,Qa] =
[VaV, Qo] < Cp, (V2 V). Then [Z,Cy,(0P(Lg)),Qa] = Zs is normalized by
Cr. (V2 /V*) and, as above, we conclude that Cy_ (V.2 /V*) = R, and the result
holds.

Hence, we may assume that |Vz| = p® throughout. Since Hypothesis 5.2.30 is
satisfied, V(?) /Z, is an FF-module and Cy,_ (V¥ /Z,)N R, = Oy, (V?) centralizes
Qa/Cq. (V?) and so normalizes Q, N Qs > Coq, (V.? we apply Lemma 5.2.29,
taking A\ = a. Asb > 3 and V\?)/Z, is an FF-module (so admits quadratic action),

so that outcome (a) does not hold. Since A = o outcome (c) does not hold.

Suppose (d) holds. Then, by construction, (V5'®) = (Vy*) = V{? from which it
follows that VB(S) <V := (ZF) and the images of both Q3/Cjs and C’ﬁ/C’Qﬂ(Vﬁ(?’))
in Lj contain a non-central chief factor for Lg. By Lemma 5.2.29, X 2 G5(2). It
follows from the structure of Gy(2) that |Q,/Cs| = 2% and |Q./Cq. (VP)| = 24
and |C’Qj(7/32))| = 2. Then, Cs(V) = C’Qﬁ(Vﬂ(g)) < X. By Lemma 2.3.14 (iii),
there are four non-equal subgroups of L,/Cy (V.?)Q, = (3 x 3) : 2 isomorphic
to Sym(3), and so there is H* # H, such that S € H*, O*(H}) acts non-trivially
on V@/Z, and Z, and G, = (H,, H). If H} does not normalize Q, N Qg,
then setting X* for the subgroup of G' obtained from employing the method in
Lemma 5.2.29 with H} instead of H,, it follows from the work above that X*
also satisfies outcome (d) and for V* := (Zf"), Cs(V) = Cg(V*) = C’QB(VBB)) <

(Ho, H) = G,, a contradiction. Hence, H} normalizes ), N Q3. Choose T in
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Cr, (V2 /Z )\ Cr,.(V{?). Then 7 normalizes V5 so normalizes C5 = Cq_(Vj),
and G, = (1, H}). If 7 centralizes Q),/Cp, then 7 normalizes @, N Qs so that
G, normalizes Qo N (), a contradiction by Proposition 5.2.25. Thus, 7 acts
non-trivially on Q,/Cs. Now, [O?(H*), 7] < Cg, (V{?) and as O%(H}) normalizes
QaNQp, O*(H}) normalizes (QuNQp)". But then H} normalizes Cs = Q.NQsNQ%

and so G, = (7, H}) normalizes Cjp, another contradiction.

Thus, we may assume that outcome (b) of Lemma 5.2.29 holds so that p = 3
and neither R, nor Cy_(V.?/Z,) normalizes Q, N Qp. Indeed, for the subgroup
H, as constructed in Lemma 5.2.29, we have that @, N Qs < H,. Now,
Cr, (V{2 /Z,) normalizes Cs and we may assume that it acts non-trivially on
Qa/Cjs for otherwise Q, N Qs < G, = (H,,Cr, (VP /Z,)), a contradiction by
Proposition 5.2.25. Furthermore, [03(O%(H,)),Cr, (V) /Z,)] < Cp. (V)G
and as H,, normalizes Q,NQz and O*(Cy (V.?)) centralizes Q. /Cj, it follows that
for any r € Cp, (V¥ /Z,) of order coprime to p which does not normalize Q, N Q3,
0%*(0% (H,)) normalizes (Q,NQp)" and H, normalizes Cs = Q,NQsNQ%, a final

contradiction for then C5 < G, = (H,,Cr (VY /Z,)). O

Lemma 5.2.33. Suppose that b > 5 and Hypothesis 5.2.30 is satisfied. If OP(R,)
centralizes V.2 and VI /V 2 contains a unique non-central chief factor which, as

a GF(p)Lo-module, is an FF-module then OP(Ry) centralizes VY.

Proof. Since none of the configurations described in Theorem 5.2.2 have b > 5,
we may assume that G is a minimal counterexample such that OP(R,) does
not centralize V. /V(2  V® /12 contains a unique non-central chief factor
and OP(R,) centralizes V.?). Since OP(R,) centralizes V/?), an application of

the three subgroup lemma implies that OP(R,) centralizes Q,/Cq,(V.?) and
CQa(VoEQ)) S Qa N QB; Qa N Qﬁ ﬁ Ra-
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We may apply Lemma 5.2.29 with A = «. Since b > 5, (a) is not satisfied. Indeed,
as A = a and R, normalizes (), N Qp, we suppose that conclusion (d) is satisfied.
For X as constructed in Lemma 5.2.29, we have that Vé‘r’) <V = (ZF) and
the images in Lg of Qg/Cj, Oﬂ/CQB(VIB(?))) and CQE(Vég))/CQﬁ (VB(5)> all contain a

non-central chief factor for Eg, a contradiction by Lemma 5.2.29. m

Lemma 5.2.34. Suppose that b > 3 and Hypothesis 5.2.30 is satisfied. If Vﬁ(?’)/VB
contains a unique non-central chief factor which, as a GF(p)Lg-module, is an

FF-module, then OP(Rg) centralizes Vﬁ(?’).

Proof. Since the only configuration in Theorem 5.2.2 which satisfies b > 3 (where
G is parabolic isomorphic to F3) satisfies [OP(Rg), Vﬁ(s)] = {1}, we may assume that
G is a minimal counterexample such that OP(Rg) does not centralize Vﬁ(‘g). Since
OP(Rg) centralizes V3, the three subgroup lemma implies that OP(Rgz) centralizes
(Qp/Cp so that Rg normalizes ), N Q. Thus, the hypotheses of Lemma 5.2.29 are
satisfied with A = 8. Since Cp, (Vﬁ(?’) /V3) normalizes V.2 and A = 3, conclusions
(b) and (c) are not satisfied. As b > 3, if outcome (a) is satisfied then b = 5 and
(Ga, Hp,Gop) is parabolic isomorphic to F3 and Hp/Qp = GL2(3). Then S is
determined up to isomorphism. Indeed, as Vs = ( Sy = (280 = 75(8), Q4 =
Cs(Z3(5)/Z(9)) is uniquely determined in S, and so is uniquely determined up to
isomorphism. But then one can check (e.g. employing MAGMA) that ®(Q3) = Cj
has index 9 in Qp, and as Gz acts faithfully on Qz/®(Qs), Gz = Hs = GLy(3)

and Gz = Hg, a contradiction.

Hence, we are left with conclusion (d). But then V{* <V := (Z) and the images
of Qu/Co.. (V) and Cq, (V.?)/Co. (VY) in L, both contain a non-central chief
factor for L,. Moreover, the images of Qz/Cjs and Cﬁ/C’Qﬁ(Vﬁ(?’)) also a contain

non-central chief factor for Eg, and we have a contradiction. n
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Lemma 5.2.35. Suppose thatb > 5 and Hypothesis 5.2.30 is satisfied. If Vﬁ(g’)/Vég)
contains a unique non-central chief factor which, as a Lg-module, is an FF-module

and OP(Rg) centralizes Vﬁ(g), then [OP(Rg), Vﬁ(5)] = {1}.

Proof. Since none of the configurations in Theorem 5.2.2 satisfy b > 5, we may
assume the G is a minimal counterexample to Theorem 5.2.2 with [OP(Rjg), Vﬁ(?’)] =
{1} and [Op(Rg),Vé5)] # {1}. Since OP(Rp) centralizes V3, OP(Rg) centralizes
Qp/Cp so that Rg normalizes ), N () we may apply Lemma 5.2.29 with A = f.
Since OP(Rg) normalizes V(?) and b > 5, we are in case (d) of Lemma 5.2.29.
Then, V® < V := (Z) and the image of Qu/Cq, (V?) in L, contains at least

three non-central chief factors for L,, a contradiction. O

53 Zy £ Qa

Throughout this section, we assume Hypothesis 5.2.1. In addition, within this
section we suppose that Z, € Q. for a chosen critical pair (a,a’). By
Lemma 5.2.10 (iv), this condition is equivalent to [Z,, Z.] # {1}. We set

S € Syl,(Gq,p) throughout.

Lemma 5.3.1. (o/, @) is also a critical pair, Cz (Zy) = ZoNQu and Cz_ ,(Zy) =

Zo/ N ch-

Proof. Since Z, £ @, we have that both («, ') and (¢, «) are critical pairs. In
particular, all the results we prove in this section hold upon interchanging o and

o/. By Lemma 5.2.11, Cz, (Zy) = Zo N Qu- O

Lemma 5.3.2. For A € {«a,d'}, Z,/QUZ(Ly)) is natural SLs(q)-module for
Ly/Rx = SLa(q). Moreover, S = ZyQo € Syl (Gagp), ZaQo € Syl(Garor-1)
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and if ¢ > p, then Ry = Q.

Proof. Without loss of generality, assume that |Z,Q. /Qu| < |ZaQa/Qa|- By

Lemma 5.3.1, we have that

‘Za/CZa(Za’)’ = ‘Za/Za N Qa” = ‘ZaQa’/Qa”

< ’Za’Qa/Qa‘ = ’Za’/Za’ N Qal = ’Zo//CZa/(Za)"

Thus, Z, is a non-trivial offender on Z,, and Z, is an FF-module for L, /C1_(Z,).
Since L, has a strongly p-embedded subgroup, by Lemma 2.3.10, we conclude that
Lo/R, = SLa(q) and Z,/Q(Z(L,)) is a natural SLy(g)-module.

Since L,/R, = Slo(q) and Z,/QUZ(L,)) is a natural SLs(g)-module, we
infer that ¢ = |Zu/Cr(Za)| < |Zur/Cry(Za)] = |Z0Qu/Qul < ¢ In
particular, by a symmetric argument, Z, /2(Z (L)) is also a natural module
for Lor/Ror = Sla(q). It follows immediately that Z, Q. € Syl,(Gapg) and
ZoQor € Syl,(Garar—1). By Proposition 3.2.7, whenever ¢ > p and A € {a, '},
Ry < Z(L,) and since PSLy(q) is perfect and the p/-part of its Schur multiplier is
order 2 whenever ¢ > 4, using Ly = O (Ly) gives Ly = SLy(q) and Ry = Q,. O

In the following proposition, we divide the analysis of the case [Z,, Z./| # {1} into
two subcases. The remainder of this section is split into two subsections dealing

with each of these subcases individually.

Proposition 5.3.3. One of the following holds:

(i) bis even and Zg = Q(Z(S)) = Q(Z(Lg)); or
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(i) Zg # QUZ(S)) and for A € {«, B}, Z\/QUZ(Ly)) is a natural SLa(qy)-module
for Lyx/R)y.

Proof. Notice that if Zg = Q(Z(S)) then {1} = [Zg, 5] = [Zs, (S9)] = [Zs, L]
so that Zz = Q(Z(Lg)). Since Z, is not centralized by Z, < L., it follows

immediately in this case that b is even.

Suppose that Zg # Q(Z(S)). If b = 1, the result follows immediately from
Lemma 5.3.2 replacing o’ by § and so we may assume that b > 1. Assume
that V, < Qu_1. In particular, V, < Z,Qn € Sylp(La/) by Lemma 5.3.2.
Thus, [Va, Zo] < [Za, Zo] < Z, so that [V,,OP(L,)] < Z, and Z,Zs < L,,
a contradiction by Proposition 5.2.25. Thus, there is o — 1 € A(«a) with
Zo-1 £ Quo—1. Then (a—1,a’'—1) is a critical pair and since Z, # Q(Z(S5)) # Zz,
by Lemma 5.2.10 (ii), we conclude that [Z,_1, Zo—1] # {1} and Lemma 5.3.2 gives

the result. 0

5.3.1 Zz#Q(Z(S))

We first consider the case where [Z,, Zn] # {1} and Zz # Q(Z(S)). Under these
hypotheses, and using the symmetry in a and «’, it is not hard to show that every
~v € I" belongs to some critical pair . The main work in this subsection is then to

show that R, = @, and L, = SLy(q), for then, all examples we obtain arise from

weak BN-pairs of rank 2 and G is determined by [DS85].

As hinted at in Lemma 5.3.2, there is a clear distinction between the cases where
p € {2,3} and p > 5 due to solvability of SLy(p) when p € {2,3}. Throughout this
subsection, and the subsections to come, this dichotomy will become a prominent

theme.
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Lemma 5.3.4. Suppose that Zz # Q(Z(S)), b > 1 and for A € {a,fS},
Z)/SUZ(Ly)) is a natural SLa(gy)-module for Ly/Ry. Then the following hold:

(i) Vo £ Qu—1 and there is a critical pair (a«—1,a" —1) with [Zg_1, Zo—1] # {1}
and Voc—l ﬁ Qa’—?;.

(ii) Va/Zx and Zy are FF-modules for Ly;
(ili) g = q; and

(iV) unless Q) € {2,3}, Ry = CLA(V,\/Z)\) and L)\/CLA(V)\)Q)\ = SL2(q)\)

Proof. By the minimality of b, V, < Q. _2. Suppose that V, < Qn_1 < Z,Qu .
Then [Vy, Zot| = [Zu, Zar] < Zo. In particular, since Zo £ Qq, [Va, OP(Lo)] < Za.
Hence, ZsZ, < L,, a contradiction to Proposition 5.2.25. Thus, we assume that
Vo £ Qu—1. In particular, there is some o« — 1 € A(«) such that (a — 1,0/ — 1)
is a critical pair with [Z,_1, Zo—1] # {1}. We may assume that V, 1 £ Q.2 else

we arrive at a similar contradiction as the above. Hence (i) holds.

Suppose first that b was odd. Then, by Lemma 5.3.2, Proposition 5.3.3 and as o’
is conjugate to 3, Lg/Rz = SLa(qs) and ¢s = qo = ¢, and (iii) holds in this case.
Now suppose that b is even so o/ — 1 is conjugate to 8. In either case, we observe
that V, N Qu—1 = Za(Va N Qu) has index at most gg in V, and is centralized,
modulo Z,, by Z,. Furthermore, since Z,Zs 4 L,, it follows from Lemma 5.2.8
(iii) that Q, € Syl,(Cr, (Va/Za)) and by Lemma 2.3.10, we have that g, < gg. But
then (o — 1,0/ — 1) is also a critical pair with Vo1 NQu—2 = Zo—1(Var1 N Zy—1)
a subgroup of V,,_; of index at most ¢, and applying the same reasoning as before

alongside Lemma 5.2.8 (iii), we deduce that Q3 € Syl (Cr,(V3/Zs)) and using
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Lemma 2.3.10 we see that ¢o,—1 = ¢s < ¢o. Thus, ¢, = gg and V) /Z, is an
FF-module for Ly for all A € I, and (ii) and (iii) hold.

It remains to prove (iv). By Lemma 2.3.10, for all A\ € I', L\/CL,(Vi/Z)) =
Ly/Ry = SLa(qn). Suppose that ¢y ¢ {2,3} and assume that Cpr,(Vy/Z)) #

Ry. Since {Qx} = Syl (CL,(Va/Z)\)) = Syl,(Ry), we infer that R\Cpr,(Vi/Z))
is a group of order coprime to p and we see immediately that p is
odd, CL,(VW/Z\)Rx/Rx = Z(L\/R)) and CL,(VA/Z\)R»\/CL,(VA/Z)) =
Z(Lx/CL,(Va/Zy)). Thus, Lx/(Cr,(Va/Zx) N Ry) is isomorphic to a central
extension of PSLy(gy) by an elementary abelian group of order 4. Since L) =
O (Ly) and the 2-part of the Schur multiplier of PSLy(g) is of order 2 by
Lemma 2.2.1 (vii) when p is odd, we have a contradiction. Thus, we shown that,

unless g\ € {2,3}, Cp, (VA/Z\) = Ry and (iv) is proved. O

Lemma 5.3.5. Suppose that for Zg # Q(Z(S)) and for A € {a, 5}, Zx/UZ(L)))

is a natural SLs(gy)-module for Ly/Ry. Then b < 2.

Proof. Assume throughout that b > 2 so that V), is abelian forall A € I'. For € I
and v € I', set S5, € Syl,(Gs,) and Zs, := Q(Z(S;,)). Choose u € A(a’ — 1)
such that 7, v_1 # Zo—1,0—2. Thus we know, Zy_1 = Z, ov-1Zo/—1,0/—2. Then,
using Lemma 5.3.4 (i), as V,, € Qu—1 and V,, centralizes Z, _1 . _2, we have that

La’fl = <Qu7 Ra’fly Voz>'

Set Up—1y = (Zs | Zyor-1 = Zsor—1,0 € Ao/ —1)). Let r € Ryy_1Q,. Since r
is an automorphism of the graph, it follows that for Zs with 7, o1 = Z5 -1 and
d € A(o/—1), we have that Z§ = Z;, and {0,a'—1}-r = {§-r,a’—1}. Since S5q—1
is the unique Sylow p-subgroup of G ./_1, it follows that Z§or1= Losrar—1- Since

R, —1Q, normalizes Zs o1, we have that Zs., 1 = Z,, o—1 so that Zs, < Uy _1 .
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Thusa an’—l,u S] RO/—IQM‘

Suppose that Uy_1, < @, By Lemma 5.3.4 (i), there is a« — 1 € A(a)
such that Z, 1 £ Qu_1 and Zy_1 £ Qn_1. Moreover, we have that L, | =
(Qus Rar—1,Zo—1). Then, Uy_1, = Zor—1(Up—1,, N Qa—1) is centralized, modulo
Zoy-1, by Zg_1 so that Uy_1, < Ly_1 = (Qu, Ro-1,Za-1). Since Z,_4
centralizes Uy _1,/Z0—1, OP(Ly—1) centralizes Uy_1,/Zo—1 and Z,Zy_; <

Lo -1, a contradiction by Proposition 5.2.25. Thus, Uy —1,, £ Qa-

Hence, there is § € A(o/ — 1) with Zso—1 = Z,w-1 # Zo—10—-2, Lo—1 =
(Qs, Ro—1,V,) and («, d) a critical pair. We may as well assume that § = o/ and
Zot =1 # Zor—1,00—2. By Lemma 5.3.1, Lemma 5.3.4 applies to o' in place of a.
Then V. £ Qp and there is o/ +1 € A(a/) with (o/ +1, §) a critical pair satisfying
Zys1 £ Qpand Zg £ Qur41. Choose p* € A(a’) such that Z,» o # Zys o—1 s0 that
Zo = Zyr v Loy oo—1- Then, as Z, £ Qo and Z, centralizes Z,/ o1, we have that
Ly = (Zy,Qu, Ry). Forming Uy .~ in an analogous way to Uy_; ,, we see that
Uy p» < RyQu and Uy o £ Qp. Thus, there is some 6* with Zs« o # Zo o1,
Lo = (Qs+, Ry, Zo) and (B, 0%) a critical pair. We may as well take u* = o/ + 1

so that La/ = <Za, Qo/Jrla Ro/> and Za’+l,a’ 7£ Za’,o/fl

Now, let R := [Z3, Zor41] < Zsg N Zyi1. Then R is centralized by ZzQu41 €
Syl (Gar41,0r) 80 that R < Zyyq 4. Since b > 1, Z, centralizes R < Zg and
so R is centralized by Lo = (Qu+1, Rary Za) and R < Z(Ly) < Zy o—1. But
R < Zg <V, and since b > 2, V,, is abelian so centralizes R. In particular,
R is centralized by Lo 1 = (Vi, Rar—1,Q«). But then R < (L, Ly—1), a final

contradiction. O

Proposition 5.3.6. Suppose that Zz # QZ(S)), b = 2 and for X € {«a, 5},
Z)/SUZ(Ly)) is a natural SLay(gx)-module for Ly/Ry = SLa(qn). Then p =3 and
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G is locally isomorphic to H where F*(H) = Go(3").

Proof. Since b > 1, by Lemma 5.3.4 (iii), we have that ¢, = ¢ and V,, £ Q3.
But then Q, = V,(Qs N Qu) and it follows that OP(L,) centralizes Q./V.,.
In particular, V,, contains all non-central chief factors for L, within )., and
consequently C, (V,) is a p-group. By Lemma 5.3.4 (i), there is « —1 € A(a) such
that (o — 1, ) is a critical pair with [Z,_;, Z3] # {1} and applying Lemma 5.3.4
(ii) again, Cr_ ,(V,—1) is a p-group. By Lemma 5.3.4 (iv), unless ¢, € {2, 3}, we
conclude that L, = Lz = SLy(q,) and G has a weak BN-pair of rank 2. Comparing
with [DS85], the result holds.

Hence, we assume that ¢, = ¢3 € {2,3} and for A € {a, 5}, V3/Z, and Z, are
FF-modules for L. Moreover, for some § € {«, 3}, we assume that Cr,(Vs/Zs) #
Rs and Ls % SLa(p). By Lemma 2.3.14 (ii) and Lemma 2.3.15 (ii), Ls = (3 x 3) : 2
or (Qs x Qs) : 3 for p = 2 or 3 respectively. Since OP(Ls) centralizes Qs/Vs we
have that Cp,(Vs/Zs) normalizes Q, N Q3.

If p =2, by Lemma 2.3.14 (iii), we may choose P, < L, such that P, = Sym(3),
QZ(S)) 4 P, and Qu N Qg A P,. If L, = Sym(3) then L, = P,, and if
Lo = (3% 3) : 2, then as there are two choices for P,, both are G, sg-invariant

and neither normalizes @), N Q3. For such a P,, set H, = P,G,3. We make an

analogous choice for Hz < G5 and observe that Py = O% (H,) for A € {a, 3}.

If p = 3, by Lemma 2.3.15 (iii), we may choose P, < L, such that P, = SLy(3),
QZ(S)) 4 Pyand Q,NQs 4 P,. If L, = SLy(3) then L, = P,, and if L, =
(Qs x Qsg) : 3, then there are three choices for P,. Since all contain S, there is at
least one choice such that P, is G, g-invariant and does not normalize Qo N ()g.

For this P,, set H, = P,G, 3 and choose Hz in a similar fashion. Again, observe
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that Py = O%(H,) for \ € {a, 3}.

Set X := (H,, Hp) and suppose that there is {1} # @ < S with @ < X.
Then @ < O,(H,) N O,(Hz) = Qa N Qp. Suppose Q(Z(S)) £ Q. Then
Vs = ((Q(Z(S))H=)Hs) centralizes @ and since @ is normal in H,, [OP(P,),Q] <
[V, Q)= = {1}. Considering the action of V,, = ((Q(Z(9))7#)H) on Q yields
[OP(P3), Q] = {1}. But @ < .5 and so Q@ NQ(Z(S)) is non-trivial and centralized
by G = (Ha, Ra. Hs, Rs), a contradiction. Hence, Q(Z(S)) < @. But then
Q > Vs = ((Q(Z(S))H)He) £ Q,, a contradiction.

Thus, any subgroup of G, s which is normal in X is a p’-group. Such a subgroup
would be contained in H, and so would centralize @) for A\ € {«,3}. Since
S < H, < G,, we have that H, is of characteristic p, C, (@) < @i and no
non-trivial subgroup of G, s is normal in X. Moreover, P, = P, = SLy(p) and
X has a weak BN-pair of rank 2. For A € {a, §}, since (), contains precisely two
non-central chief factors for Py, and neither P, nor Ps normalizes Q(Z(S)), by
[DS85], X is locally isomorphic to G2(3) and S is isomorphic to a Sylow 3-subgroup
of G2(3). Then @, and @4 are distinguished up to isomorphism. Noticing that
[PS18, Lemma 7.8] applies in this situation independent of any fusion system
hypothesis, it follows that for A € {a,3}, G, is isomorphic to a subgroup of
GLy(3), a contradiction to the assumption that Ls % SLy(p). Thus, we conclude
that G has a weak BN-pair of rank 2 and the result follows upon comparison with

[DS85). O

Remark. The graph automorphism of Gy(3) normalizes S € Syl;(Go(3)) and fuses
R« and @, and so Hypothesis 5.2.1 only allows for groups locally isomorphic to
G2(3™) decorated by field automorphisms.

Proposition 5.3.7. Suppose that Zz # QUZ(S)) and for A € {o, B}, Zx/UZ(L)))

197



is a natural SLy(qy)-module for Ly/Ry. Then G is locally isomorphic to H where
(F*(H),p) is one of (PSL3(p™),p), (PSp,(2"),2) or (G2(3"), 3).

Proof. By Lemma 5.3.5 and Proposition 5.3.6, we may suppose that b = 1. Then,
Zo £ Qpy Zg £ Qa, Qo = Zo(Qa NQp) and Qs = Zz(Qn N Qp). In particular,
P(Qn) = P(Qa NQp) = P(Qp) is trivial and so both @, and @4 are elementary
abelian. For A € {a, }, by coprime action we have that Q\ = [Qx, R)\]xCo, (R)) is
an S-invariant decomposition. But Q(Z(S5)) < Zy < Cg, (R)) and since [Qq, R)] <
S, we must have that [Q,, Ry] = {1}. It follows that R, centralizes @) and, as
G is of characteristic p, @, = Ry). Thus, G has a weak BN-pair of rank 2 and is
determined by [DS85], hence the result. O

Remark. Similarly to the Go(3™) example, the graph automorphisms for PSL3(p™)

and PSp,(2") fuse @, and @3 and are not permitted by the hypothesis.

5.3.2 Zz=Q(Z(9))

Given Proposition 5.3.3, we may assume in this subsection that b is even and
Zs = Q(Z(S)). The general aim will be to demonstrate that b = 2 and L,, = SLy(q)
for then, it will quickly follow that the amalgam is symplectic and we may apply
the classification in [PR12]. We are able to show that, in all the cases considered,

b = 2. However, at the end of this section we uncover a configuration where

R, # Q..

Lemma 5.3.8. Let a — 1 € A(a) \ {8} with Zo—1 # Zg. Then Q(Z(L,)) = {1},
Zo = Zg X Za-1 is a natural SLy(q)-module, Qs € Syl (Rg) and [Zu, Zo] =

Za’—l = Za N Qa’ = Zﬁ - [V57Q5]'

Proof. Since Lg is transitive on A(f) and centralizes Zz = Q(Z(S)), by
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Lemma 5.2.7 (iv), we have that Z(L,) = {1}. Then, by Lemma 5.3.2, Z, is a
natural SLy(¢)-module for L, /R, = SLa(q).

NOW, [ZQ,S] == [Za,Za/Qa] = [Za,Za/] = Q(Z(S)) = Zﬁ. Thus, [V,BaQﬁ] =
[{ fﬁ),Qg] = Zs < Cy,(OP(Lg)) and so Qs < Rg. By Lemma 5.2.16, we have
that Qs € Syl,(Rp).

By considering [Z./, Z,Q«] and again employing Lemma 5.3.2, we deduce that, for
T € Syl (Gorav—1), [Zery Za) = SUZ(T)) = Zor—1. Then Zg = Zp 1 < Qo and it
follows immediately that Z5 = Z,N Q.. By properties of natural SLs(g)-modules,
Zo = ZgX 7§ = ZgX Zgy for v € Ly\GapRs. In particular, we may choose a—1 €

A(a) conjugate to S by an element of L, \ Go R, so that Z, = Zg X Z,—1. O

Proposition 5.3.9. Suppose that b > 2. Then Lg/Rg = SLs(p) = L,/R, and
both Zs and Vs /Cy,(OP(Lg)) are natural modules.

Proof. Suppose first that m,(S/Q,) = 2 so that R, = Q, and L, = SLy(q) for
q>p. lfb=4then Lo = (Qp, Qo—1) normalizes Zz = Z,_;, a contradiction.
Hence, b > 4 and V/? is abelian. If V2) £ Q. _o, then there is a critical pair
(a—2,a'—2) and by Lemma 5.3.8, Z,_3 = Z,_1. Butthen Z, = Z,_1xXZ3 = Zyy_»
and since b > 2, we have a contradiction. If VCSQ) < Qo —1, then since Z,Q, €
Syl,(Lar), VI = Zo (VP N Qu) and Zy centralizes V2 /Z,. But then OP(Ly)
centralizes V.?)/Z,, and V3 < L,, a contradiction. Hence, there is a — 1 € A(a)
such that V,,_; acts non-trivially on V,,»_1/Z, 1. Notice that [V, _1, Vo1, Vo] <
(V2 V2] = {1}. Hence, Voy_1/Z4_1 is a quadratic module and by Lemma 2.3.5,
we may assume that m,(S/Qg) = 1, else applying Lemma 2.3.5, Ls is a rank 1
group of Lie type, G has a weak BN-pair of rank 2 and a comparison with [DS85]

gives a contradiction. But since b > 2, we have that VP NQu_1 = Z,(VP NQu)
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is an index p subgroup of V?) which is centralized by Z,, modulo Z,, and as

m,(S/Qa) = 2 and V.?)/Z,, is not centralized by OP(L,,), we have a contradiction.

Hence, m,(S/Qs) = 1, Lo/Rs = SLa(p) and Z, is a natural SLy(p)-module.
Set Upa-1 = (Vi | Zx = Zo—1, A € A(w)) for a fixed subgroup Z,—1 # Zs.
Then by Lemma 5.2.19, Uyo-1 < RoQo—1. If Uya—1 € Qu—2, there there
is some V,_; with (o — 2,0/ — 2) a critical pair and Z,_y # Zs. But then
Zo = Zoq X Zg < Vo1 < Qu, a contradiction since b > 2. Suppose that
Una—1 < Qu—1s0that [Zy, Upa-1] = [Zas Za(Una-1NQu)] < Zp < Uga—1. Then
Usna-1 9 Lo = (Ro, Zoy, Qa—1). Since Zy centralizes Uy a—1/Za, [OP(La), Va-1] <

[OP(Ly), Una—1] = Zo < V1. In particular, V,—1 < (G, Go—1), a contradiction.

Thus, Uya-1 < Qu—2, Upa-1 £ Q-1 and we may choose V,_1 £ Qu_1 with
Za1 # Zg. Notice that [V _1, Va1, V1] < [VP VD] < Z, since b > 4. Since
Zo £ Vo1, we must have that [V 1, Vo1, Vao1] < Zs = Zy—1. In particular,
Va—1 acts quadratically on Vo 1/Zy—1. If Voooy N Qa < Qa—1, then [Vy_1 N
QosVa1] < Zyq. Butif Z, 1 < V,_y, then Z, < Vy_1 < Qu and so [Vy_1 N
Qas Va—1] = {1}. Since m,(S/Q,) = 1, Vo1 centralizes an index p subgroup
of V1 and the result holds. So assume that V1 N Q, £ Q,_1. Notice that
Va1, Vi1 0 Qay Vr1 N Qa] < Vw1, Vw1l = {1}, and so V1 N Q, acts

quadratically on V,_;.

Observe that Z(Q,) < Qa1 else Z(Q,) centralizes V1 N Qy, Vir_1/Zor—1 is an
FF-module and the result holds by Lemma 2.3.10. Then Z(Q.) = Z.(Z(Qa) N
Qo) and OP(L,) centralizes Z(Q.)/Zs. Then, by coprime action and using that
Zg < Zo = [Z(Qa),0P(Ly)], it follows that Z(Q.) = Z,. Define Uy o1 =
Un,a-1, Qa1 Zs with i chosen minimally so that [Uya—1,Qa; + 1] < Z,. Then

[Va’—l mQaaUa,a—l] < Zocho/ = ZB = Zg—1 since Z, ﬁ Var—1. If ua,oz—l ﬁ Qo/—l;
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then V,y_1/Z,_1 is an FF-module, and the result follows. Thus, Uy o—1 < Qu—1 SO
that Upa—1 = Zo(Un,a—1 N Qw) and, as U, 41 is normalized by RyQu—1, Una-1 <
Ly = (Ro, Zy, Qu—1) and [Una-1,Qa) = Zo. But Z, centralizes Uy o—1/Za, SO
that OP(L,) centralizes Uy a—1/Z and Uy a—1 = [Va-1, Qa; 1] Za = [V, Qa; 1] Z, for
A€ Ala).

Suppose first that m,(S/Qs) > 2, so that by Lemma 2.3.5 and Proposition 3.2.7,
Lo _1 is a central extension of a rank 1 group of Lie type. Since Vy_1 N Q. acts
quadratically on V,_1, Voro1 N Qa N Q-1 has index at most pgz in V1, where
g5 = |QUZ(S/Qp))| by [DS85, (5.9)]. Since Vy—1 N Qn N Qa—1 is centralized by
Va—1, we have that |Vo_1/Cyv, (OP(Ly-1))| < (pgs)? where d is the number
of conjugates of V,_ 1Qu _1/Qu 1 required to generate Lo ;. By Lemma 2.3.4,
Lo—1 % Ree(3") and if p is odd, then L, % PSLy(p").

If Ly—1 = Sz(2") then by Lemma 2.2.3 (iii), (vi), d = 3, ¢ = 2" > 2 and
Var—1/Cv,, (OP(Loy—1))] < 2°73". Since the minimal degree of a non-trivial
GF(2)-representation for Sz(2") is 4n, as n > 1 is odd by Lemma 2.2.3 (i), we
deduce that n = 3, |(Vor—1 N Qa)Qa—1/Qa-1| = 8 and Vo1 /Cv.,  (OP(Ly—1)) is
a natural Sz(8)-module. By conjugacy, V,_1/Cy,_,(OP(Ls—1)) is also a natural
Sz(8)-module and as V,,_1 N Qu 1 has index at most 8 and [V, 1 N Qu—1, Var_1 N
Qo) = Zo—1 = Zg is of order 2, one can calculate (e.g. using MAGMA) that we

have a contradiction.

If Loy = (P)SU4(p") then by Lemma 2.2.2 (i),(ii), (vi) and (vii), d = 4,
g = p" > 2 and |Vy_1/Cy, (OP(La—1))| < p***". Since the minimal degree
of a non-trivial GF(p)-representation for (P)SU,(p") is 6n, we deduce that n < 2.
Moreover, unless p" € {4,9} we have that d = 3 by Lemma 2.2.2 (vi) so that

[Var—1/Cv.,  (OP(Las—1))| < p***". In this scenario, we conclude that n = 1 and
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Va-1/Cv,,_(OP(Ly—1)) is a natural SUs(p)-module for Lo —; = SUs(p). But
then, ZCy, (OP(Ly-1))/Cv, ,(OP(La—1)) is a Gor o—1-invariant subgroup of
order p, and we have a contradiction by Lemma 2.2.13 (iii). If p® € {4,9}
then Voy_1/Cv., (OP(Ly-1)) is a natural SUs(p®)-module of order p'. Again,
ZoCv,, (OP(Ly-1))/Cv, (OP(Ly—1)) is a Garor—1-invariant subgroup of order

p, and we have a contradiction by Lemma 2.2.13 (iii).

If Loow = SLo(p"), then n > 1. If, in addition, (Vo1 N Qu)Qa—1 €
Syl,(La-1) then, by Lemma 2.3.11, V,_1/Cy,_,(OP(Ls-1)) is a direct sum of
natural SLy(p")-modules. Since Z,Cy, ,(O?(La-1))/Cv,_,(OP(Ls-1)) has order p

and is G o—1-invariant, comparing with Lemma 2.2.6 (vi), we have a contradiction.

Thus, we may assume that Lo = SLo(p"), n > 1 and (Vy 1 N Qa)Qa1 &
Syl,(La-1).  Then Vo1 N Qu N Q-1 has index at most gz in Vy_; and
is centralized by V., ;. Unless p" = 9 or |Vo1Quw_1/Qu_1| = 2, by
Lemma 2.2.1 (iii), (iv), L1 is generated by two conjugates of Vi, 1Qu—1/Qu 1
and so |Vo_1/Cv,,  (OP(Los—1))| < q3. Since Vor_1/Cy,  (OP(Las—1)) contains a
non-central chief factor, V1 /Cy,  (OP(Ly—1)) is a quadratic irreducible module
of order ¢3. Since |Zy/Zy-1| = p and Zy £ Cy, (OP(Ly-1)), there is
a Gy o —1-invariant subgroup of Vi_1/Cy, (OP(Lq—1)) of order p. Then by
Lemma 2.3.12 and writing V' := Vy_1/Cy,  (OP(Ly—1)), we have that Cy(S)
has order p and V admits quadratic action so that V' is natural €, (p)-module.
Moreover, applying Lemma 2.2.9 (b) and observing that V,,_; acts quadratically on
Vr—1/Zar—1, we infer that p = 2. But then, |V, 1Qn—_1/Qu—1| = 2, a contradiction

to the assumption.

We now suppose that p" = 9 or |V,_1Qua—1/Qa—1] = 2 so that three conjugates
of Vo1Qu—1/Qu—1 generate Loy and [Vo_1/Cy,  (OP(Lo—1))| < g3. Using
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that Z, /Zy_1 is G, p-invariant and of order p and V,_; acts quadratically,
again applying Lemma 2.3.12 we deduce that Vo_1/Cy, (O*(La—1)) is a
natural € (2)-module for L, _; = PSLy(4). Then, for V := Vy_1/Zy_4, by
Lemma 2.2.10 V = [V, 0?(Ly 1) X Cy(O*(Lor—1)) where [V, O?(Ly_1)] is a natural
7 (2)-module. By conjugacy and applying Lemma 2.2.9 (ii), [Va-1, Qa, Qa, Qal <
Zo—1. I [Vori,Qa, Qa, Qa] = Za—1 then Uy o1 = [Vao1, Qay QalZs is normal in
L,. But then Z,_1 = [Upa-1,Qa] < Ly, a contradiction. Thus, [V,—1, Qa, Qa] <
Z(Qa) N Voot = Zy and Uy a1 = [Va—1,QulZa < L,. Then, by conjugacy,
Va1, Qar—2]Zar—2 < Lar—g and [Vy_1,Qu—2]Za—2 = [Vw_3,Qu—2]Za—2 <
Qa—1. Since Z, 1 £ [Vw_1,Qu—2|Zu—2, we conclude that [V _1,Qu 2] Zo—2 is
centralized by V,_1, a contradiction to the structure of Vo1 /Cy., (O*(La—1))

by Lemma 2.2.9 (iii), (iv).

Thus, we have shown that m,(S/Q.) = m,(S/Qs) = 1. Since Vy_1NQaNQa—1 has
index p* and is centralized by V,_1, Lor—1/Ro—1 and Vo_1/Cy,  (OP(Lai—1)) are
determined by Proposition 2.3.19. Since Z,Cy., (OP(La—1))/Cv.,  (OP(Lar—1))

has order p and is Gy o —1-invariant, and Vy_; = (ZL“"1>, by Lemma 2.3.22 we

have that Lo —1/Ra—1 = Sz(2),Dih(10), (3 x 3) : 2 or (3 x 3) : 4. In particular,
using coprime action, it follows that for V := V1 /Zy 1, V = [V,0*(Ly—1)] X

Cy(O*(La—1)) where [V, O*(Ly _1)] is irreducible and |Cy (O?(Ly—1))| = 2.

Suppose that Ly —1/Ra—1 = Sz(2) or (3 x 3) : 4. Then, by Lemma 2.2.14 (iii) and
Lemma 2.3.21 (iii), [V, Qu; 3] # {1} = [V, Qu; 4] and, by conjugacy, we infer that
Va1, Qa; 4] < Zo—1. Then, as above, it quickly follows that [V,_1,Q; 4] = {1},
Uno-1 = [Va1,Qa, QulZo and Z, = [Vao_1,Qu;3]. Moreover, we deduce that
Una-1,Qa) £ Qu—1, €lse [Una-1,Q0] = Za([Una-1,Qa) N Qu) is centralized,
modulo Z,, by Z, from which we have that [V,_1,Q.]Z, < L,. But then,
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by conjugacy, [Vu_1,Qu—2|Z0—2 = [Var_3,Qu—2]Zo—2 is centralized by V,_ i,
contradicting Lemma 2.2.14 (i) and Lemma 2.3.21 (ii). If [V{?, Qa] € Qu—2,

then as ®(V?) < Z, < Qur—1, VI N Qw2 = [Una—1, Q] (V) N Qa2 N Qur1)
so that V. = [V Q,](V) N Q) and V[V Q,] is centralized by OP(L,),
a contradiction by Lemma 5.2.13. Thus, as ®(Uya1) < (V1Y) < Z, < Qu1,
Una-1[V?, Qal = [V, Qal(Uaa1 [V, Qa] N Q) and Uno1[V?, Qu] < L.
In particular, V2 = V, [V @Q,] from which it follows that [Q,_1, V.?)] <
(V2 Q.] and OP(L,) centralizes V,?)/[V(? Q,], and a contradiction is again

provided by Lemma 5.2.13.

Suppose that Ly _1/Ry—1 = Dih(10) or (3 x 3) : 2. Then, applying Lemma 2.2.14
(ii) and Lemma 2.3.14 (v), and using that P/Qn—1 = Q(P/Qa-1) where P €
Syl (Gaa-1)s [Va-1,Qas Qo) < Za—1. I [Vao1,Qu) < Z(Qa), then as |Z,/Z5| =
2, Zo # Z(Q.) and we have a contradiction. Thus, V¥ Q,, Q. = Z,
and Upn-1 = [Usa-1,Qa). In particular, since Z, £ Vi1, it follows that
Uno—1 = [Una-1,Qa] < Qu—1, €else [Una—1,Qus Va1 N Qo] = Zsg = Zy_1 and
Vr—1/Zo—1 is an FF-module. Thus, Uy a1 = [Va-1,Qa]Za I L,. But then
Zo-1=1Va1,Qu, Qa] I Ly, a final contradiction. H

Before continuing, observe that we may now assume that whenever b > 2, both
L,/R, and Lg/Rg are isomorphic to SLy(p). Throughout this section, under these
conditions and given a module V' on which L, acts, for any v € I', we will often
utilize coprime action. By this, we mean that when p > 5, taking 7', to be the
preimage in L., of Z(L,/R,), we have that V = [V,T] x Cy(T). Indeed, if V
is an FF-module for L., then this leads to a splitting V' = [V,L,] x Cy(L,).

If p € {2,3}, since L, is solvable, we automatically have the conclusion V =

[V,0P(L,)] x Cy(OP(L,)). Without explaining this each time it is used, we will
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generally just refer to “coprime action” and hope that it is clear in each instance

where the conclusions we draw come from.

Lemma 5.3.10. Suppose that b > 2. Then Zs = Z(Qg) and Z, = Z(Qa).

Proof. By minimality of b, and using that b is even, we infer that Z(Q,) < Q\
for all A € ACY(a). In particular, Z(Qu) < Qu 2. If Z(Qn) £ Qa1 then
as [Z(Qa), Var—1, Var—1] < [Vw—1, Vi) = {1}, [Z(Qa), Vr—1] is centralized by
Var—1Qa € Syl,(La) and has exponent p. Thus, [Z(Qa), Var—1] < QZ(S5)) =
Zg = Zuy—1, a contradiction for otherwise OP(L,_1) centralizes V,_;. Thus,
Z(Qu) < Qur—1 s0 that Z(Qn) = Zo(Z(Qa) N Qu ), Zo centralizes Z(Qy)/Zs and
OP(L,) centralizes Z(Qa)/Zs. Since Zz < Z, an application of coprime action
yields Z(Qa) = [Z(Qa), OP(Ly)] = Za,, as desired. As a consequence, using that

Q. is self-centralizing, Z(.S) has exponent p.

Let a—1 € A(a) such that Z,—1 # Zg, Va1 < Qu—2 and Vi1 £ Qu/—1, as chosen
in Proposition 5.3.9. By minimality of b, and using that b is even, we have that

Z(Qu—1) < Qy for all A € AP~ (q). In particular, Z(Qu_1) < Q-

If Z(Quw-1) % Qa1 then Z(Quw-1)Qa—1 € Syl(La—1). Again, using
minimality of b, we infer that Z(Qa—1) < Qu—2 so that [Z(Quw—1), Z(Qa—1)] <
Z(Qu—1)NZ(Qu_1). Thus, [Z(Qu_1), Z(Qu_1)] is centralized by Z(Qu—_1)Qa_1 €
Syl,(La—1).  Then, [Z(Qu-1),Z(Qa-1)] < Za—1 and as Zo1 £ Z(Quw-1),
(Z(Qu-1), Z(Qa1)] = {1} and Z(Qu_1) is centralized by Z(Qu—_1)Qa_1 €
Syl,(La—1). But then Z(Qa—1) = Za—1 and by conjugacy, Z(Qu—1) = Zw—1 <

Zo—2 < Qa—_1, a contradiction.

Thusa Z(Qa’—l) < Qa—l and S0, [Z(Qa’—l)7voc—1] < Zoc—l N Z(ro’—l)- Since Za—l
does not centralize Z,/, we deduce that [Z(Quw_1), Va_1] = {1}. But then Z(Q. 1)
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is centralized by Vo 1Qa -1 € Syl,(Lo—1) and Z(Qu—1) = Zy_1, as required. [

Combining Proposition 5.3.9 and Lemma 5.3.10, we now satisfy Hypothesis 5.2.30.
Thus, whenever b and the non-central chief factors in V/\(n) satisfy the necessary
requirements for A € {a, 3} and various values of n, we may freely apply the

results contained between Lemma 5.2.31 and Lemma 5.2.35.

Lemma 5.3.11. Suppose that b > 2. Then |V3| = p* and [VY,Q,] = Z..

Proof. If V) < Qu_s, then Z,(VPNQ, ) has index p in V2 so that V(2 /Z, has
a unique non-central chief factor. Then the result holds by Lemma 5.2.31. Thus,
we suppose that V2 £ Qu_o. Then there is a — 2 such that (o — 2,0/ — 2) is
a critical pair and by Lemma 5.3.8, we have that Z, 1 = Z,_3. Since b > 2
and ZgZy1 < Zy N Zy_o, it follows that Z3 = Z,1 = Zy_3 = Zy—y. It
[Vs| # p?, since Zo(V® N Qu_2 N Qu_1) has index at most p? in V.2 and by
Lemma 5.2.32, OP(R,,) centralizes VCSQ). By Lemma 5.2.18, Z, 2 < V,_1 = V3 <

Qo —2, a contradiction. [

Lemma 5.3.12. b #£ 4.

Proof. Since none of the conclusions of Theorem 5.2.2 have b = 4, we may suppose
that G is a minimal counterexample with b = 4. Suppose that V() < Q./_5. Then
VO NQuw 1= Zo(VP NQu) is an index p subgroup of V,{?) which is centralized,
modulo Z,, by Z,.. Thus, Va(Q)/Za is an FF-module for L,. Then Lemma 5.2.32
implies that OP(R,,) centralizes V.2 and since Z,_; = Z3, Lemma 5.2.18 implies
that Z, < V3 = Vy_1 < Qu, a contradiction. We have a similar contradiction if

VOE2) N QO/—Q S Qa’—l'
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Thus, V? £ Qu—2 and V.2 N Qu_s £ Qu—1. In particular, V.?) is non-abelian
and Z, < ®(Q,). Suppose that r € L, is of order coprime to p and centralizes
V{2). Then, by the three subgroup lemma, 7 centralizes Q,/Co, (V. ?). Since
Co.(VP) < Qu_o and V¥ N Quw_2 £ Quw_1, we have that Z, centralizes
Co. (VYVR )V g0 that OP(L,) centralizes Cq, (V{2)V.? V(2. By coprime

67

action, r centralizes (Q, and so r = 1. Thus, every p’-element of L, acts faithfully

on V.2 /®(V(2).

Now, Zo(VP NN Qu) has index p? in V2 so that V(¥ /Z, is a 2F-module for

L. Furthermore,
[VOSQ)v Vo/—lu Va’—l] < [VCS2)7 VOE12227 Va’—l] < [Qa’—lv vo/—l] = Za’—l = ZB

and V2 /Z, is a faithful quadratic 2F-module for L,. Then L, is determined by
Lemma 2.3.10 and Proposition 2.3.19 and since L, has a quotient isomorphic to
SLy(p), we have that L, = SLy(p), SU3(2)’, (3% 3) : 2 or (Qg x Qg) : 3. Notice that

Vi/Z, is of order p and is not contained in C (OP(Ly)). Setting V := V2 /7,

Vi? ) Za
there is a G, g-invariant subgroup of V/Cy (OP(L,,)) of order p which generates V'
and by Lemma 2.3.22, we have that L, = (3 x 3) : 2. Moreover, since V.2/Z,
contains two non-central chief factors for Ly, for U, := [V/{?, L,], we have that

Zo—2 = Zor 1[UsNQur—2, Var_1] < U, so that V3 < U, V{2 = U, and |V?/Z,| =
24,

Let P, < L, with S < P,, P,/Q, = Sym(3), Ly = PR, and O3(P,) < L,.
Then P, is G, pg-invariant and upon showing that no non-trivial subgroup of
S is normalized by both P, and Gp, then triple (P,Ga,Gp,Gap) satisfies
Hypothesis 5.2.1. To this end, suppose that () is non-trivial subgroup of S

normalized by P, and Gg. Then Zz < @ so that Zz < Q(Z(Q)). Taking
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consecutive normal closure, we deduce that V3 < Q(Z(Q)) and Q(Z(Q))/Za
contains of the non-central L,-chief factors contained in V.?)/Z,. Write W for
the preimage in V{2 of this non-central chief factor, noting that by the definition
of VO W NVs = Z,. However, WV; < Q(Z(Q)) and [W, V3] = {1} so that
W < Qu—sand [W,Vy_o| < Zy oNW = Zg = Zy_yand W = Z,(WNQy ). Then
W contains no non-central chief factor for L,, a contradiction. Thus, @ = {1}
and (PyGap,Gs, Go ) satisfies Hypothesis 5.2.1. Assuming that G is a minimal
counterexample to Theorem 5.2.2, we conclude that P,/Q, = Sym(3) = Lg and
(PaGap,Gp,Gap) is a weak BN-pair of rank 2. By [DS85], |S| < 27 and since
V| = 26 and Q,/V? contains a non-central chief factor for L,, we have a

contradiction. O

Lemma 5.3.13. Suppose that b > 2. Then the following hold:

(1) Vogz) S QO/—Q bUt Vog2) ﬁ Qa’—lf'
(i) [Vi?,Qul = Za and |Vj| = p*;

(iii) OP(Ry) centralizes V. and V\?) /Z, is a faithful FF-module for L./R, =

SLa(p);
(iv) b>8; and

(V) Zor—2 S VB < Z(VIY).

Proof. By Lemma 5.3.12, we have that b > 4 so that V(2 is abelian. Moreover,
(ii) holds by Lemma 5.3.11. Suppose first that V.2 £ Q. _, so that there is a
critical pair (o — 2,0’ — 2) such that [Z,_2, Zos—2] = Zo—1 = Zg—3. Since b > 2,
Zo # Zog and Zy 1 = Zg. Now, [V N Qu 2,V 1] < Zo 2NV, Since
V® is abelian and V.2 £ Qu_ 2, Zo_o £ V. But Zy_, < V2 and so it

«
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follows that [V N Qu—2, Var—1] € Ze—1 and VI NQu_y < Qu—1. Then V2 /7,
is an FF-module and by Lemma 5.2.32, OP(R,) centralizes V(). But then by
Lemma 5.2.18, Z,_5 < V,_; = V3 < Qu—_2, a contradiction since (o — 2,0/ — 2) is

a critical pair.

Thus, V2 < Qu_o. I V¥ < Qu_y, then V2 = Z,(VP N Q) and OP(L,)
would centralize V,(?)/Z,, a contradiction, and so (i) holds. Now, it follows that
V? /7, is an FF-module and by Lemma 5.2.32, OP(R,) centralizes V,(?) and (iii)

holds.

Since V2 £ Qur_1, we infer that Zy_o = [V.2 Vo 1] Z01 < VP, If b > 8, then
V2 < Z(V®) and (v) holds, and so we may assume that b = 6 for the remainder
of the proof. Notice that if Z,_1 = Z,_3, it follows from Lemma 5.2.18 that
Zo < Vo1 = Vy_3 < Qa, a contradiction. Since Zg = Zy_1 # Zy—_3 and b = 6,
we have that Z, o = Z,19. Let « — 1 € A(«a) such that V, ;1 £ Qu—1 and
Zo—1 # Zg, chosen as in Proposition 5.3.9. We have that VOE,?’EI < Qaq2 since Vof?ll
centralizes Zn 0 = Zy_o < Vy_1. Then VCS?ZI NQp = Va/_l(Va(?zl N Q) and

Vot V2. NQu < VO VP NQul < Za NV, = Zg = Zo_y.

«

In particular, Vf’ll /Va—1 contains a unique non-central chief factor L,/ 1, which
as a GF(p) Ly _1-module is isomorphic to a natural SLy(p)-module. Thus, we may
apply Lemma 5.2.34 so that OP(R,_1) acts trivially on Va(,?’ll. Since Zyio =
Lo _o, it follows from Lemma 5.2.18 that Z, < VOE?EQ = 053)2 < ., an obvious

contradiction. Thus, b > 8 and the lemma holds. ]

Lemma 5.3.14. b = 2.

Proof. We may suppose that b > 8 by Lemma 5.3.13. Suppose first that V(Y £
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Qo—g. Since Zy 3 < Zy_ o < Z(VIP) is centralized by VW, it follows that
Zer_3 = Zeo_s and by Lemma 5.2.18, we have that V3 = V_5. Now, [V4 N
Qo1 Ver 3] = VI N Qu s, Vi 5| € Zoy5 = Zp_3and 50 VI NQu_4 < Qur_3.
Since V. centralizes Zn_o, we deduce that VY N Qu_y = VAVH N Qu_yN
Qo—1) and so VW /V(2) contains a unique non-central chief factor for L,. Now,
by Lemma 5.2.33 and Lemma 5.2.18, since Z, _3 = Z,_5 we conclude that Z, <

Va(f??) = VOE/?’ZE, < @4, a contradiction.

Therefore, we continue assuming that V. < Qu_4. Then VW N Q3 centralizes
Za—5 and we may assume that V.3 £ Qu 3, else VI = VOWVE N Q. )
and OP(L,) centralizes V.Y /V(2)  Since |Vy_3| = p*, VY £ Qu_3 and VW
centralizes Z,_9, by Lemma 5.2.16 V_3 # Zy _oZy_4 and so, Zy_o = Zy_4.
If OP(Rg) centralizes Vég) then applying Lemma 5.2.18 to Zy_9 = Zy_4 yields
Ly < VQ(?EZ = VOE,2 ) 1 < Qq, a contradiction. Thus, to obtain a final contradiction,
by Lemma 5.2.34, it suffices to show that Vof?ll / V-1 contains a unique non-central

chief factor for L, 1 which, as a GF(p)L, _i-module, is an FF-module.

By the symmetry in the hypothesis of (a,a’) and (¢/,a), we may assume that
Zoroa = Zora. Let a —1 € A(a) such that V1 € Qu—1 and Z,_4 ;zé Zﬂ, as in
Proposition 5.3.9. Then V(,)l centralizes Z, o so that V(, 71 < Qaxt2, V. , 21 ﬁQﬂ
Vo1 (VP N Q,) and

Vo, VO 0 Qu) < VO VY NQu < Za VP | = Zy = Zor .

In particular, either OP(L,/ _1) centralizes VOE?ZI /Var—1 or VCS?L /Va—1 contains a

unique non-central chief factor for L. _1, and the result holds. O

Proposition 5.3.15. Suppose p > 5. Then R, = Q., G is a symplectic amalgam
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and one of the following holds:

(i) G is locally isomorphic to H where F*(H) = Go(p");
(ii) G is locally isomorphic to H where F*(H) = 3D4(p");
1) p =09, = s = (M’Lig_.;

5 S 56 5 ~ 5:}—4 d L,B 21+4 5
(iv) p=5, |S| = 5% Qs = 5 and Ls = 214 Alt(5);

(¥) p=5. 15| =5, Qs 2 55 and L; = 2- Alt(6); or

(Vi) p=17,1S| =7, Qs 2 7\ and Ly = 2- Alt(7).

Proof. By Lemma 5.3.14, we have that b = 2. Note that Q, N Qs = Zao(Qu N
Qp N Q). Since Z, < Qp, it follows that [Qu, Zo, Zars Zo] = {1} and by the
Hall-Higman Theorem, OP(R,) centralizes @), and since @, is self-centralizing,

R, = Q. and L, = SLy(q).

We now intend to show that the amalgam is symplectic. We immediately
satisfy condition (i) in the definition of a symplectic amalgam. We have that
W = ((Qa N Qp)*) £ Qp, for otherwise W = Q, N Qp < Ly, a contradiction
by Proposition 5.2.25. Therefore, by Lemma 5.2.8 (iii), we have that Gy =
(Wks )Na, (S), satisfying condition (ii). From our hypothesis, we automatically
satisfy condition (iii). By Proposition 5.3.3, we satisfy condition (iv). Since
b = 2 and d(a, ) = 1, we have that Z, < Q3. Moreover, by hypothesis and
the symmetry between « and o we have that Z, € Qn = Q% for some z € Gg.

Hence, GG is a symplectic amalgam and the result holds by Theorem 5.1.11. [

Thus, we have reduced to the case where b = 2 and p € {2,3}. Since

Proposition 5.3.9 only applied to the cases where b > 2, we have no knowledge of
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the structure of Lg or V3. As intimated earlier, we attempt to show that R, = Q,
and apply the results in [PR12]. Then Proposition 5.1.13 completes the analysis

of this case for fusion systems.

Proposition 5.3.16. Suppose that p € {2,3}, b = 2 and m,(S/Qs) = 1. Then

Ry = Qq, |S] < 2%, G is a symplectic amalgam and one of the following holds:

(i) G has a weak BN-pair of rank 2 and G is locally isomorphic to H where
F*(H) = Ga(2)'; or

(i) p=2, 19| =2% Qs =2 and Ly = (3 x 3): 2.

Proof. If R, = Q,, then L, = SLy(q) and similarly to Proposition 5.3.15, G is a
symplectic amalgam and the result holds after comparing with the tables listed
in [PR12] and an application of [DS85] and [Fan86]. Hence, L, % SLa(q) so that
R, # Q. and by Lemma 5.3.2, L, /R, = SLy(p). If Q, is elementary abelian, then
applying coprime action, we have that Q, = [Qa, Ra] X Cg, (R4) is an S-invariant
decomposition. But Z3 < Z, < Cg,, (R,) from which it follows that @), = Cg, (Ra)

and R, = Q., a contradiction. Thus, [V3, Qs] = Z5 < Z, < P(Qa).

If S/Qp is cyclic then ®(Q,)(Qa N Qp) is an index p subgroup of @, and since
Vs £ Qo and [V3,Q0 N Qp] < Z, < P(Q.), it follows that Q,/P(Q,) contains
a unique non-central chief factor for L, which is isomorphic to an FF-module for

Lo = SLy(p), a contradiction.

Hence, we may assume that p = 2 and S/Qj is generalized quaternion. Set L :=
(V3,V§)Qq with = € L chosen such that Z§ # Zg and 2% € Go5. In particular,
LR, = L,. Write a« —1 = 3%. Then, as [Qp, V3| = Zs < Z,, (QsNQaNQa-1)/Za
is centralized by O*(O%(L)). Since S = V3Q, normalizes Qs N Qy N Qu_1, if
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Qs N Qo N Qu_1 is not elementary abelian then Zg < ®(Qz N Qo N Qu—1) and
the choice of L yields that Z, < ®(Qp N Qu N Qu-1), a contradiction. Thus,

Qs N QN Qa1 is elementary abelian.

Suppose that Vs N Qn < Qu—1. Then V3 N Q, is an elementary abelian subgroup
of V3 of index 2. As Vj is non-abelian, |V3/Z(V3)| = 4 and since |S/Qg| # 2, we
must have that [O?(Lg), V3] < Z(V3). But then Z,Z(V3) < Lg and it follows from

the definition of Vj that V3 = Z,Z(V3) is abelian, a contradiction.

Let V' < @3 be a normal subgroup of S which does not contain Z,. Since
O*(0O% (L)) centralizes (Qs N Qo N Qa_1)/Zs and S = V3Q,, O (L) normalizes
(VA Qu N Qa1)Za. Then [Qu,V N Qo N Qat] = [Qas (VN Qu N Qu1)Za] <
O¥(L). If Zs < [Qa,V N Qa N Qu_1], then by the construction of L, Z, <
(Qa, VN QuNQa1] <V, a contradiction. Thus, [Qn,V N Qu N Qu-1] = {1}
and VN Qu N Qa1 < Z(Qn). Now, if Z(Q,) £ Qp, then Z(Q,) centralizes
Qo N Qp, an index 2 subgroup of Qp. Since |S/Qg| # 2, this is a contradiction,
and 50 Z(Qa) = Zu(Z(Qa) N Qu) and since Zy < Zo = [Z(Qu), 00 (L)),
it follows from coprime action that Z(Q.) = Z,. Therefore, since Z, £ V,

Vﬂ@aﬂQa,1 - Zﬁ

Now, [V3,Vs] = Zs < Qu-1 and so (V3 N Qa)Qa—1/Qa—1 is elementary abelian
and since m,(S/Qs) = 1, [(Vs N Qa)Qa-1/Qa-1] = 2. By coprime action,
Vs/Zs = [V3/Zs,0%(Lg)] x Cv,7,(0*(Lg)) and for VP the preimage in Vg of
[Vs/Z3,0%(Lg)], we deduce that Vs = VFZ,. In particular, VV? has index at most

2 in V/B‘

Suppose first that V# # Vj. Since Z, £ V, we have that V/ N Qu N Qa1 = Zs.

Since V¥ has index 2 in V3, Z3 has index 2 in V3N Q,NQa_1, from which it follows
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that V3 N Qa N Qu—1 = Z,. In particular, V3/Z3 has order at most 8 and Lgz/Rg
embeds into GL3(2). But a Sylow 2-subgroup of GL3(2) is dihedral of order 8, and

so we have a contradiction.

Suppose that V# = Vj. Since Z(Vj3) centralizes Z,, Z(V3) < Q, and since Z, %
Z(V), Zs = Z(V5)NQa-1 has index at most 2 in Z(V3). Again, O*(Lgs) centralizes
Z(Vg) and as V3 = VP, we have that Z(V3) = Z5. In particular, Vj is extraspecial
and since V3 N Qq N Qo—1 has index 4 in Vj and is elementary abelian, V3 = 2?4.
Comparing with [Win72], we conclude that Out(V3) = Sym(3) 2 and as Lz/Rg
acts faithfully on Vs and has generalized quaternion Sylow 2-subgroups, we have

a contradiction. O

Proposition 5.3.17. Suppose that p € {2,3}, b = 2 and m,(S/Qs) > 1. Then

one of the following holds:

(i) Ro = Qu, G has a weak BN-pair of rank 2, and either G is locally isomorphic
to H where (F*(H),p) is (G2(2"),2) or (®Dy4(p),p), or p = 2 and G is

parabolic isomorphic to Jo or Aut(Jy); or

(i) p=2,|S] =2° Lz = Alt(5), Qs = 211°, Vs = O*(Ls), Vs/Zs is a natural
Qy (2)-module for Lg, L, = SU3(2), Q. is a special 2-group of shape 2>T6

and Qo /Zy is a natural SUs(2)-module.

Proof. Suppose that R, = (.. Then, as in Proposition 5.3.15, GG is a symplectic
amalgam and the result follows from Theorem 5.1.11 and Proposition 5.1.13.
Indeed, the amalgams presented in [PR12] satisfying the above hypothesis are
either weak BN-pairs of rank 2 (and (i) holds by [DS85]); or A4z when p = 2. In
the latter case, PSpg(3) is listed as an example completion. But comparing with the

list of maximal subgroups in [Con+385], for G = PSpg(3), L, = 2276 : SU3(2)" and
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from the perspective of this work, R, # Q.. Either way, we assume throughout
this proof that R, # (), with the goal of showing that G has “the same” structural

properties as Ay in [PR12] in order to satisfy outcome (ii).

Since R, # Qa, we have that L,/R, = SLa(p). As in Proposition 5.3.16, if @, is
elementary abelian then an application of coprime action implies that R, = Q,,
a contradiction to the initial assumption. Again, as in Proposition 5.3.16, we set
L := (V3,V§)Qq with x € Lq chosen such that LR, = L, and 2° € G, and write
a—1= % Then Qg N Qq N Qu_1 is elementary abelian, V3 N Q, £ Qn—1 and
for any V' < @ which is normal in S and does not contain Z,, we must have that

VﬂQa ﬂQa_l - Z/g

Now, V5 N Q4 N Qa—1 contains Z, so is normalized by L. By construction, V3 N
QaNQo—1 =Vou1NQaNQp =VsNQaNV,_q. In particular, VsNQ,NV,_1 is an

elementary abelian subgroup of index rgp in Vi, where 73 = |(V3NQa)Qa—1/Qa-1]-

Since Z, < V3, we have that Z(V3) < Q, and as Z, £ Z(Vp), we have that
Z(V5) N Qa1 = Zg. Choose V# minimally with respect to inclusion such that
VP Q Ls and VP /Z3 contains a non-central chief factor for Lg. If Vi # VA then
Zo 2 VP and VPN QWN Qa1 = Zs. Then, by conjugacy, [VPNQ., V1NQ,.] <
ViNQ.NVet < ZynZ, 1 = {1}. But V¥ contains a non-central chief factor for
Lg and as m,(S/Qs) > 1 and VPNQ,, has index p in V#| we must have that V*=1n
Qo < Qp. Thus, [V 1,Q.) <V I1NQ,NQs = Zy1 < Z,. Since Z, < P(Q,)
and L contains elements of p’-order, OP(L) does not centralize @, /Z, and we infer
that Vo1 < @Q, so that V! = Z,_;, a contradiction since V*~!/Z,_; contains
a non-central chief factor for L, ;. Thus, V# = V5 = [V3,0P(Lg)] < OP(Lp),
Z(Vp) contains no non-central chief factors so that Cy,(OP(Lg)) = Z(V3) and by

Lemma 2.3.2, V3/Z(Vj) is irreducible as an Lg-module.
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Again, we remark that Zz = ®(Vj3) < Q,. We aim to show that Z(Vj3) < Qu—1 so
that [V, V] = ©(Vs) = Z(V3) = Zg is of order p and Vj is an extraspecial group.
Towards this, we suppose that Z(V3) € Qa—1. Then the action of L implies that

Z(Va_l) ﬁ ng. Set V .= VB/Z<V5) throughout.

Suppose that L, ; = M;j;, Ree(3) or a central extension of PSL3(4) and p =
3. Tt follows that Z(V3)(Vs N Qs N V,_1) has index at most p® in Vj and is
centralized by Z(V,_1). If Lg = My, then there is # € Lg such that for J :=
(Z(Vae1), Z(Va—1)*, Qg), J = PSLy(11) and J centralizes a subgroup of V' of index
at most 3%. Since 11 does not divide |GL4(3)], J centralizes V, a contradiction
since J contains a non-trivial 3-element. If Ly = PSL3(4), then there is x € Lg
such that Lg = (Z(Va-1), Z(Va-1)®, Qp) so that |V| < 3% Since 7 divides |Lg| but

|GL4(3)] is not divisible by 7, we have that Lg centralizes V', another contradiction.

Suppose now that L,_; = Sz(2") for n > 3. Since Z5 < Qu-1, (V5NQa)Qa-1/Qa-1
is elementary abelian and it follows that rz < 2" and that the index of Z(Vj)(VzN
QaNV,_1) in V3 is at most r5. Moreover, Lg may be generated by three conjugates
of an involution by Lemma 2.2.3 (vi) from which it follows that V' has order at
most Tg < 23", Since the minimal degree of a non-trivial GF(2)-representation of

Sz(2") is 4n, we have a contradiction.

Thus, L,—1 = (P)SU,(p"), (P)SL,(p™) or Ree(3"). Suppose that
|Z(V3)Qa-1/Qa-1] = p*. Using the action of L, we infer that |Z(V,_1)Qp/Qs| =
p?. Then by Lemma 2.2.1 (iv), (v), Lemma 2.2.2 (viii) and Lemma 2.2.4 (vi), Lg is
generated by 3,2 or 3 conjugates of Z(V,_1)Q3/Qp for (P)SU,(p"), (P)SL,(p") or
Ree(3") respectively. Moreover, 15 < p?™, p" or 3*" respectively and so the index of
Z(V3)(VsNQaNV,_1) in Vj is strictly less than p?™, p™ or 3*". Applying a similarly

methodology as above, we conclude that V has order strictly less than pb7, p?"
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or 3°" and since the relevant minimal degrees of non-trivial GF(p)-representations

are 6n, 2n and 7n, we have a contradiction.

Thus, we deduce that |Z(V3)Qu—1/Qa-1| = p so that |Z(V3)| = p?. In particular,
Cs(Z(V3)) has index p in S so that V,,_1NCq, (Z(V3)) has index at most p* in V,,_;
and is centralized by Z(Vj). Suppose that L,—1 = (P)SU,(p"). Then Lemma 2.2.2
(vi), (vii) implies that Lg is generated by four conjugates of Z(V,_1)Qz/Qs from
which we conclude that |V| < p8. Since the minimal degree of a GF(p)-module is
6n, the only possibility is that p" = 3. In this case, Lemma 2.2.2 (vi) implies that
Ly is generated by three conjugates of Z(V,_1)Qs/Qps so that |[V]| = 3% and V is
a natural SU3(3)-module. But V3 N Q, is G, g-invariant, contains Z(Vj3) and has

index 3 in Vj contradicting Lemma 2.2.13 (iii).

Suppose now that L,_; = Ree(3") for n > 1 and |Z(V3)Qa-1/Qa—1| = 3. Then by
Lemma 2.2.4 (vi), Lg is generated by at most three conjugates of Z(V,_1)Qs/Qs
from which it follows that |V| < 3% Since the minimal degree of a non-trivial

GF(3)-representation for Ree(3") is 7n, we have a contradiction.

Assume that L,—1 = (P)SLy(p") for n > 1 and |Z(V3)Qa-1/Qa—1] = p. Then
Lemma 2.2.1 (iv), (v) implies that Ls is generated by three conjugates of
Z(Va1)Qp/ Qs from which it follows that |V| < p°. Tt follows from Lemma 2.3.12
that n = 2, V is irreducible and V is either a natural SLy(p?)-module, a
natural Q3(p?)-module, or a natural Q; (p)-module. Using that V3 N Q, is a
G g-invariant subgroup of Vs of index p which contains [V, S|Z(Vs), V is a
natural € (p)-module. Moreover, as Q3 = V3(Qs N Qa—1) and [Qu—1, Z(Va-1)] <
Zo—1 < Vp, it follows that OP(Lg) centralizes QQ3/Vs so that V' contains the
unique non-central chief factor for Ls within Qg, and L = PSLy(p?). Applying

Lemma 2.2.10 to Vz/Zg, if p = 2 then it follows that Vi £ V3, a contradiction;
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while if p = 3, then by Lemma 2.2.10, [V3/Zs,S,S] is 2-dimensional as a
GF(3)S-module and it follows from the structure of a natural j(3)-module
described in Lemma 2.2.9 that Z,Z (V) = [V, 5. 5] = [V3, Vac1NQas Var1NQ4u] <

V,._1, a contradiction.

Thus, Z(V3) < Qa1 and by a previous observation, Z (V) = Zg = ®(V3) is of
order p and Vj is an extraspecial group. Moreover, Vs N Q), N Q3 has index prg in
V5 and is elementary abelian. Suppose that [Vs| = p* ™. Then [V3 N Q. N Qs| =
p**1/prg and since the maximal abelian subgroups of V; have order p"*', we
deduce that p* /rg < p"™ and p"~! < rg. We reiterate that if V3/Z contains a

unique non-central chief factor, then V3/Z3 is irreducible.

Suppose that Lg = (P)SU,(p") so that rg < p*". In particular, » — 1 < 2n and
so |V5| < p*™. But then |V3/Zs] < p**2 and since the minimal degree of a
GF (p)-representation on Lg is 6n, we conclude that n =1, p = 3 and V3/Z3 is a
natural module for Lg. But then V3N Q, is a G, g-invariant subgroup of index 3,
and we have a contradiction by Lemma 2.2.13 (iii). Suppose that Ls = Ree(3").
Then r — 1 < 2n and so |V3/Z5| < p*™ 2, a contradiction since the minimal degree
of a GF(3)-representation on Lg is Tn. If Lg = Sz(2"), then rg < p"” and so
r—1 < nand |V < 2% Then |V3/Zs < 2°"2, a contradiction since the

minimal degree of a GF(2)-representation on Lg is 4n and n > 1.

Hence, we may suppose that S/Qp is elementary abelian of order p” and n > 1.
Then |V3/Z5] < p*™*2. If n > 3, then Ly = PSLy(p™) or SLy(p™). Moreover,
\Vs/Zs| < p*™ and so Vj/Zs is irreducible and described by Lemma 2.3.12.
In particular, V3/Zsz is not a natural Qs(p")-module. Since V3 N Q, is a
G p-invariant subgroup of index p, V3/Zs is not a natural SLy(p™)-module or a

natural 2 (p/2)-module. If V3/Z3 is a triality module, then n = 3a for some a > 1.

218



Then |V3/Zs| = p®**2? > p®® from which it follows that a = 1, V3/Z3 is irreducible
and |V3| = p°. Now, C5 < Q,. Moreover, since Cy_1(V3N Q4N V,_1) has index at
most p* in C,,_;V,_1 and is centralized by Cs, C3 < Qo—1 by Lemma 2.2.11 (iii).
Since Z, £ Cj, we have that Cs = Z5, Qg = V; and |S| = p'2. We may assume
that G is a minimal counterexample to Theorem 5.2.2 and we let X = (R,Ga. 5, Gs)
and @ be the largest subgroup of S normal in X, so that Zg < @ as Zg < X.
Note that if R, < G, then by Lemma 5.2.17, R, = @, a contradiction. Thus,
R,G, 3/Qq has a strongly p-embedded subgroup and ) < (),. Then, as Q < Lg
and Q < Q. N Qp, we have that Zz < Q < C3 = Zz. Now, X/Q satisfies
Hypothesis 5.2.1 and is a b = 1 type amalgam with |S/Q| = p''. Comparing
with Theorem 5.2.2, since G was an assumed minimal counterexample, no such

examples exist.

Hence, we may suppose that S/Qp is elementary abelian of order p? so that
\Vs/Zs] < p°  Then O3(Lg) % PSLy(8) since the minimal degree of a
GF(3)-representation is 7. If L is isomorphic to a central extension of PSL3(4)
then Vj3/Z3 is irreducible and one can check that since Z,/Z3 is G, g-invariant and
of order 3, and V3 N @, is G, g-invariant and index 3, we get a contradiction. If
Ls = My, then using that Vj3/Zs is irreducible, we conclude that |Vs/Zs| = 3°,

and |V3| = 3%, a contradiction since Vj is extraspecial.

Thus, L = SLy(p?) or PSLy(p?) and V3/Zs is described by Lemma 2.3.12. Since
Vs N Qq is a Gap-invariant subgroup of index p containing [V3, S| Lemma 2.3.12
implies that V3/Zs is a natural  (p)-module and |V3| = p°. Now, as Lg/Cj
embeds in the automorphism group of Vg, we infer that () = V3Cjs. Moreover,
using [Win72], if p = 2 then Lg = Out(V3) = Q5 (2) and V3 = Qg+ Dg = 24 and

if p =3 then Vj has exponent 3 and Lg is isomorphic to a subgroup of Sp,(3).
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Suppose that p = 3 and let K € Syly(Lg). Since Lg = PSLy(9), K = Dih(8).
Letting 1 # i € Z(K), we have that |Cy,,z,(i)| = 9 and by coprime action Vs =
Cv, (1)[V3,1]. Since [Vg, V] < Cy,(4) it follows from the three subgroup lemma that
[[Vs, 1], Oy, (i)] = {1} and since |[V3,1]| < 3?, it follows that Zz = Cy, (i) N [V, 1]
and Cy, (i) = [Vg,i] = 31*%. Since i < Z(K), K normalizes [Vj,i] and since
Zsz = Z(Lg), K acts trivially on Zg = Z([Vs,1]) and by [Win72], K embeds into

Sp,(3) = SLy(3). But SLa(3) has quaternion Sylow 2-subgroups, a contradiction.

Thus, we have shown that p = 2. Now, Z, £ Cs and so Zg = Cg N Q41 has
index at most 4 in C3 and |Cs| < 8. Since Z(Cj) is centralized by Lg = O?(Lg)Cj
and @, is self centralizing, Z(Cp) < Z(Qo) = Z,. Thus, Z(Cs) = Zs and as
|Cs] < 8, either C3 = Zz, or Cg = Qs or Dih(8). If C3 = Z3 then we have that
Qs = Vg =2 |S| = 27 and |Q.| = 2°. Since Z, < ®(Q.) and R, # Q.,
we have that Z, = ®(Q,) and Q./7Z, is a faithful quadratic 2F-module for L.
As L,/R, = Sym(3), using Lemma 2.3.10 and Proposition 2.3.19, it follows that
Lo = (3% 3) : 2. Now, for every subgroup Z of Z, of order 2, is easy to check
that Q,/Z is an extraspecial group. In the language of Beisiegel [Bei77], @, is an
ultraspecial 2-group of order 26. Checking in MAGMA utilizing the Small Groups
library, the automorphism groups of all such groups have 3-part at most 9. Since
thereis r € (LgNGy ) a 3-element centralizing Z, by Lemma 2.2.9 (v), r € G4\ Lo
and a Sylow 3-subgroup of G, has order at least 27, and as G, acts faithfully on

(o, we have a contradiction.

Thus, Cj is non-abelian of order 8. Furthermore, |S| = 22 and if Q,/Z, is a
natural SU3(2)-module for L, = SUs3(2)’, then since Cj is G, g-invariant, there
is a 3-element in L, N G, which acts non-trivially on Cjs so that Cz = Qg and

Qs = 2170 Thus, to complete the proof, it suffices to show that Q,/Z, is a natural
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SU3(2)-module. Now, Qo N Qs = Zn(Qa N Qu) has index 4 in @, and, modulo
Z, is centralized by Z,. It is clear that Z, acts quadratically on Q,/Z, and,

since Z, < ®(Q,) and R, # Qu, L, is determined by Proposition 2.3.19. Since

Lo/Rs = Sym(3), we need only rule out the case where L, = (3 X 3) : 2.

Assume that L, = (3 x 3) : 2 and |Cs| = 8. Observe that Q, = (Qa N Qs)(Qu N
Qa-1) = (V3N Qa)(Var1 N Qp)(Qs N Qa N Qa-1). Then, V3N QyN Qa1 =
Var1NQaNQp = Z,, and it follows that Z, = ®(Q,). By coprime action, we have
that Qu/Zo = (Qu/Zar O(La)] X Conyz.(0*(La)) where [[Qu/Za, O*(Ly)]| = 2.
Taking Q% to be the preimage in Q, of [Qn/Zs, O*(Ly)], form S* = VQ% and
Ly = ((5%)" for A € {a,B}. It is clear that S* € Syly(L3), Vs = O(L})
and Qf = Oo(L%), and L}/Oo(L3) = Ly for A € {a,3}. Then for K a Hall
2'-subgroup of G, 3, we conclude that (L} K, L3 K, S*K) satisfies Hypothesis 5.2.1
and since G is a minimal counterexample, comparing with Theorem 5.2.2, we have

a contradiction. O

Corollary 5.3.18. Suppose that outcome (ii) in Proposition 5.5.17 holds and G is
obtained from a fusion system satisfying Hypothesis 5.1.12. Then F is isomorphic

to the 2-fusion system of PSpg(3).

Proof. Since Q, € Syl,(O*(L,)) and Vi < SN O?%*(Lg) is not contained in Q,, it
follows that O%(O? (F)) = O% (F) so O? (F) is reduced. Comparing with the lists
in [AOV17], it follows that O% (F) is isomorphic to the 2-fusion system of PSpy(3).
Furthermore, by [AOV17, Proposition 6.4], the only fusion system supported on a
Sylow 2-subgroup of PSpg(3) with Oy(F) = {1} is the fusion category of PSpg(3).
Thus, F = O%(F) and the result holds. O

In summary, in this section we have proved the following:
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Theorem 5.3.19. Suppose that A = A(G.,Gs,Gap) is an amalgam satisfying
Hypothesis 5.2.1. If Zo £ Q, then one of the following holds:

(i) A is a weak BN-pair of rank 2;

(ii) A is a symplectic amalgam; or

(iii) p =2, |S| =29, Ly = Alt(5), Qs = 21, Vi = O*(Lg), V3/Zs is a natural
Q5 (2)-module for Lg, L, = SU3(2), Q. is a special 2-group of shape 2>%6

and Qun/Zy is a natural SU3(2)-module.

Consequently, if A is obtained from a fusion system satisfying Hypothesis 5.1.12,

then F is not a counterexample to the Main Theorem.

54 Z.< Q.
We now begin the second half of our analysis, where Z,, < @, so that [Z,, Z,] =
{1}.

Lemma 5.4.1. The following hold:

(i) Zg =QZ(9)) =QZ(Lg)) and b is odd; and

(i) Z(La) = {1}.
Proof. Since Zy < Qq we have that {1} = [Z, Zo|. Then, for T' € Syl (Goror-1),
as Zy £ Qu, Qu < Cp(Z,) and by Lemma 5.2.10 (ii), we get that Z, =

QUZ(T)) = QUZ(Ly). By Lemma 5.2.7 (iii), Z, £ Q(Z(L,)) and so « and o/

are not conjugate. Thus, ' is conjugate to 3, b is odd and Zz = Q(Z(9)) =
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QUZ(Lg))). Since Lg acts transitively on A(f), by Lemma 5.2.7 (iv), we conclude
that Z(L,) = {1}. O

Lemma 5.4.2. Suppose that b > 1. Then Vy is abelian, {1} # [V3, Vo] < Vo NVj

and Vg acts quadratically on V.

Proof. Since Z, < Vg and Z, £ Q« it follows that that V3 £ Cp (V). By
minimality of b, V3 < Q-1 < Lo and so {1} # [Vs, V] < V. Again, by
minimality of b, Viy < Qat2 < Lg and so [V3, Viy] < Voy N V. Since Vj is abelian,

[Var, Vi, V] = {1}, completing the proof. ]

Lemma 5.4.3. Suppose that b > 1 and let U/V to be any non-central chief factor
for Lo inside of V. If p is an odd prime then for Ly = Lo /CL,,(U/V), we have

one of the following:

(i) p=3, Lo 22 Alt(5) and T = Z4Qu € Syl,(Lo);

(ii) p=3, Loy 2 2141 Alt(5) and T = ZoQu € Syl,(Lar);

(iii) p > 3 is arbitrary, Lo = SLa(p) and T' = ZoQu € Syl,(Los);

(iv) p = 3 is arbitrary and Lo = SLy(p*™) or (P)SU,(p*) for a > 1.

Proof. Suppose that p is an odd prime. Since [V,, V3, V3] = {1} and Z, £ Qu
we deduce that [U/V, Zy, Zo] = {1} # [U/V, Z,], so ((Za)" ') is as determined in
Lemma 2.3.5. In particular, if m,(T/Qy) = 2, then ((Zy)"') = Ly = SLy(p**™)
or (P)SU,(p?) for a > 1. Additionally, in this case, by Proposition 3.2.7, we have
that Oy (L) < Z(Ly) and 50 Lot = Lo, If my(T/Qu) = 1 and ((Z,)%') is

not p-solvable then L,/ is not p-solvable and by Lemma 2.3.5, ((Za)La’> = Ly

2 - Alt(5) or 2174 Alt(5) if p = 3; or SLa(p) if p > 5.
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Finally, suppose that m,(T/Qu) = 1 and ((Z4)*') is p-solvable. Then p = 3,
S is cyclic and N := ((Z,)%') = SL(2,3). Then S normalizes N and centralizes
a Sylow 3-subgroup of N, from which it follows that S centralizes N. Thus,
S~ S = (SNN)x CzN). Since S is cyclic, C5(N) = {1}, [S| = 3 and

Zo/ = <<Zoz)La,> = SLy(3). [

Lemma 5.4.4. Suppose that b > 1, Cy, (Vo) = V3 N Qu and Vo < Q. Then
both Zy and Vg /Cy,(OP(Lg)) are natural SLy(p)-modules for Lo/ R = SLa(p) and
Ls/Rsz = SLo(p) respectively. Moreover, [Qs, Vs = Zg = [V, V3] < Vo NV and

Qp € Syl,(Rg).

Proof. Suppose that Cy, (V) = V3N Qo and Vo < Qp. Note, that if Vo < Q,
then [Z,, V] = {1} and Z, < Q., a contradiction. Additionally, [Z,, Vo, V] <
Vs, Var, Vo] = {1} and it follows that both Z, and V,, admit quadratic action.
Hence, by Lemma 2.3.5, if m,(S/Qs) > 1 < m,(S/Qq) then both L, and Lg are
groups of Lie type and G has a weak BN-pair. Then G is determined by [DS85],

and no configurations occur.

Notice that Z, N Qu = Cz, (Vo) and that Vo N Qy < Oy, (Za). TE m,y(S/Qp) =1,
then it follows that an index p subgroup of Z, is centralized by V... Then by
Lemma 2.3.10 and as Z(L,) = {1}, Z, is a natural SLy(p)-module for L,/R, =
SLy(p) and |S/Q.| = p. But then an index p subgroup of V., is centralized by
Zo and Vi /Cy,(OP(Ly)) is natural SLo(p)-module for Lo /Ry = SLy(p). We
reach a similar conclusion assuming that m,(S/Q.) = 1. Then [Z,,Qs] = Zs so
that [V3,Qs] = Zs is of order p, and by Lemma 5.2.16, Qs € Syl,(Rg). Since
{1} # [V, Vi3] < [Qp, V3], we conclude that Zz = [V, V5] <V, N V5. O

Lemma 5.4.5. Suppose that b > 1, Cy, (Vo) = Vg N Qo and Vor £ Qp. Then
Qp € Syl,(Rg), La/Ra = SLy(p) = Lg/Rs and both Z, and Vs/Cy,(OP(Lg)) are
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natural SLy(p)-modules.

Proof. Assume that Cy,(Vy) = Vs N Qo and Vo £ Q. Suppose first that
Vs/Cv, (V)| = [VsQur/Qu| = p. Then by Lemma 2.3.10, V3/Cy,(OP(Lg))
is a natural SLs(p)-module for Lg/Rs = SLo(p). Since Qn N Qs & Ls by
Proposition 5.2.25, Qg N OP(Lg) £ Qo and Z, N Cy,(OP(Lg)) is centralized
by Qs N OP(Lg). Now, Vi # Z,Cy,(OP(Lg)), for otherwise Q. centralizes
VsCy, (OP(Lg)) and OP(Lg) centralizes Vg, and so Z, NCy, (OP(Lg)) has index p in
Zy. Thus, Z, is an FF-module and by Lemma 2.3.10, using that Z(L,) = {1}, Z,
is a natural SLy(p)-module for L,/R, = SLy(p). Then, [Qg, V5] = [Qs, Za]? =
Zg < Oy, (OP(Lg)) and by Lemma 5.2.16, Qg € Syl (Rg) and the result holds.

Thus, |V3Qu/Qu| = p* and as Vj is elementary abelian, m,(S/Qg) > 2. If
G has weak BN-pair of rank 2, then comparing with [DS85], we have that
my(S/Qp) = {1} whenever b > 2. Hence, we may assume that m,(S/Q,) = {1}
by Proposition 3.2.7 and Lemma 2.3.5. Since Vj is a quadratic module for Lg, by
Lemma 2.3.5, Lg is a rank 1 group of Lie type, but not a Ree group. In particular,
Lg is p-minimal and applying the qrc lemma, we either deduce that Z, is (dual
to) an FF-module for L,/R, = SLs(p) so that Z, is a natural SLy(p)-module for

L,/R, = SLy(p); or V contains more than one non-central chief factor for Lg.

Suppose first that |V, Qs/Qps| = p*. If Lg = (P)SL,(p") or Sz(2"), then by
Lemma 2.2.1 (iv),(v) and Lemma 2.2.3 (vi), at most three conjugates of V,,Qs/@3
generate L and as V3Qu/Qu is of exponent p, we infer that [Vs/Cy, (OF(Ls))| <
p®*. Since the minimal degree of a GF(2) representation for Sz(2") is 4n, we

deduce that Lz = (P)SL,(p™), and in this case, two conjugates suffice to generate
and |V3/Cy,(OP(Lg))| < p*". Then by Lemma 2.3.12, [V3/Cy, (OP(Lg))| = p*",
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VsQo /Qu| = p" and V3Qu € Syl,(Lar). But Vj acts quadratically on Vs and
by Lemma 2.3.11, V3/Cy, (OP(Lg)) is a natural SLy(p")-module. Since n > 2 and
ZoCy, (OP(Lg))/Cy, (OP(Lg)) is a G4 p-invariant subgroup of order p, we have a

contradiction by Lemma 2.2.6 (vi).

If Ly = SU3(p™) then, by Lemma 2.2.2 (vi), three conjugates of V,,Qz/Qs generate
Lg and as Vj is elementary abelian, [V3Qu/Qn| < p*™. But the minimal degree
of a GF(p) representation for Lg is 6n and so Vj/Cy,(OP(Lg)) is a natural
SU;(p")-module of order p° and |V3Qu/Qu| = p**, impossible since Vj acts

quadratically on V.

Finally, we assume that [V,Qs/Qs| = p. If Cy ,(V3) = Vo N Qp then by
Lemma 2.3.10, Lo /Ry = SLo(p), impossible since |V3Qu /Qua| = p?. Since
Vs N Qy centralizes V,,, we may as well assume that V, N Qs £ Q, and Vy N Qg
acts quadratically on Z,. Thus, m,(S/Qa) = 1, for otherwise, as Z, is a quadratic
module, by Lemma 2.3.5 and Proposition 3.2.7, L, would be isomorphic to a rank
1 group of Lie type and G would have a weak BN-pair of rank 2. Then G would

be determined by [DS85], wherein there are no examples.

Thus, Vo N Qs N Q, is an index p? subgroup of V,, which is centralized by Z,. If
L, = (P)SL,(p") or Sz(2"), then by Lemma 2.2.1 (iv), (v) and Lemma 2.2.3 (vi),
at most three conjugates of Z,Qa/Qu generate Ly and |V, /Cy ,(OP(Ly))| < p°.
Considering minimal degrees of representations, we infer that Lg = (P)SL,(p")
where n € {2, 3} and, by conjugacy, V3/Cy,(OP(Lg)) contains a unique non-central
chief factor for Lg. But now, |V3Quw/Quw| = p* and acts quadratically on V.,
and applying Lemma 2.3.12, V3/Cy,(O?(Lg)) is a natural SLy(p®)-module for L.
Applying the qrc lemma since Lg is p-minimal, outcome (ii) or (iii) holds so that

Zg is (dual to) an FF-module and by Lemma 2.3.10, Z, is natural SLy(p)-module
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for Lo/Ra = SLy(p). But then Z,Cy,(OP(Lg))/Cv,(OP(Lg)) is a G4 g-invariant

subgroup of order p in Vj/Cy, (OP(Lg)), impossible by Lemma 2.2.6 (vi).

Assume now that Lg = SU3(p") so that by Lemma 2.2.2 (vi), (vii), at most four
conjugates generate Z,Qu/Qu generate Lo and |V /Cy,(OP(Lgy))| < p®. Using
that m,(S/Qp) > 2 and the minimal degree of a GF(p) representation for L,/ is
6n, we infer that Lz = SU3(p) for p an odd prime. But in this case, again applying
Lemma 2.2.2 (vi), three conjugates suffice to generate and so Vo /Cy,(OP(Ly))
is a natural SUz(p)-module of order p°. Now, |V3Qu/Qu| = p* and as Vj acts

quadratically on V.., and we have a final contradiction. O

We now prove the “converse” to the above statements.

Lemma 5.4.6. If b > 1 and both V3/Cy,(O(Lg)) and Z, are natural
SLa(p)-modules, then Cy, (Vo) = Vg N Q.

Proof. Since |Z,| = p? and V = [V, OP(Lg)]Z,, as in the proof of Lemma 5.2.31,
we may assume that [Vz| = p® or |V3| = p*. Suppose first that |Vs| = p*. Then
Zatva = V3N Qy centralizes V,, and the result holds. Hence, we may assume that

V| = p*.

If Vo £ Qp, then [V, V3] £ Zyio for otherwise Z,,222,, is of order p* and
normalized by Lg = (V,,, V%, Rg) for some appropriately chosen g € Lg, contrary
to the definition of V. Thus, Z,42[Var, V3] = V3N Q. is of order p* and centralizes

V., as desired.

Assume now that V, < Qg so that [V, Vs] = Zs. Then, if [Vz N Qu, V] #
{1}, [Vg N Qa/,Va/] S Zﬁ N Za/ so that Zﬂ = Za/. But then, Vﬁ ﬁ Qo/ and V/@

centralizes V,, /Z,s, a contradiction since OP(L,/) acts non-trivially on V,,,. Hence,
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Vs N Qur, Vo] = {1} and Cy, (Vo) = V3 N Qq, as desired. O

Lemma 5.4.7. If b > 1 and V3/Cy,(OP(Lg)) is a natural SLy(p)-module for
Lg/Rg = SLQ(]?), then Cvﬁ(va/) = Vg N Qa/.

Proof. Suppose that Vjz/Cy,(OP(Lg)) is a natural SLy(p)-module. Since Qq N
Qp A La, Qs N OP(Lg) is not contained in Q,. Since Z, £ Cy,(OP(Lg)) either
Qp N OP(Lg) centralizes an index p subgroup of Z, so that L,/R, = SLy(p) with
Zo the natural module; or V3 = Z,Cy,(OP(Lg)). In the former case, the result
follows from Lemma 5.4.6 while in the latter case, [V, Q4] < Cy,(OP(Lg)) so that

Vp is centralized by OP(Lg), a contradiction. O

5.4.1 Cy,(Vy) < V3N Qu

The hypothesis for this subsection is b > 1 and Cy;, (Vo) < Vs N Qo . Notice that
as Cr(Vay) < Qu, this condition is equivalent to [Vz N Qu, Viy] # {1}. Thus, for
some o +1 € A(a), we have that [Vz N Qu/, Zo11] # {1}. We fix a particular
o +1 € A(d') for the remainder of this subsection. Since b is odd, o/ + 1 is
conjugate to o and V3 N Qu £ Qury1. Furthermore, [Zy 11, Vs N Qu, Vs N Q] <
[Var, Vi, V] = {1} so that both Z,/ 4, and V,, admit quadratic action. Throughout,
we set H := [V3 N Qu, Vil

Lemma 5.4.8. Suppose that Cy, (Vo) < V3N Qur. Then my(S/Qg) = 1; or G is

locally isomorphic to H where F*(H) = 2F4(22°*) and a > 1.

Proof. Suppose that m,(S/Qs) > 1. Since V,, admits quadratic action by V3, we
have that Lg = Lo = Sz(22*t!), SLy(p™) or (P)SU,(p") for @ > 1 and p" > 2. If

my(S/Qa) # 1, since Z,, 1 admits quadratic action by VsNQu and Ly = Ly, it
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follows that both L, and L are isomorphic to groups of Lie type of rank 1. Thus,
G has a weak BN-pair and, using the results in [DS85], no configurations exists for
p odd and G is locally isomorphic to some automorphism group of 2F4(q) for ¢ > 2,
whenever p = 2. Thus, we assume that m,(S/Q.) = 1. Now, Ls is p-minimal and
the hypotheses of the qrc lemma are satisfied. If case (v) of the qrc lemma occurs,
then Q,NQs < L. But then, upon conjugating, V3NQy < Qu-1NQy = QrxNQw
for all A € A(o’) and so H = {1}. Since b > 1, case (i) of the qrc lemma is not

satisfied.

Now, V,, acts quadratically on Vj so that ¢ := |V Qs/Qs| < |Q2(Z(S/Qs))| by
[DS85, (5.10)], and so, V,yNQsNEQ, has index at most pg, in V., and is centralized
by Zo. Then |V /Cy,(OP(Ly))| < (pgor)® where d is the number of conjugates of

ZoQa /| Qo required to generate L.

If Ly = Sz(2") then by Lemma 2.2.3 (iii), (vi), d = 3, ¢qw = 2" > 2
and |V, /Cy ,(OP(Ly))| < 23" Since the minimal degree of a non-trivial
GF(2)-representation for Sz(2") is 4n, as n > 1 is odd by Lemma 2.2.3 (i), we have
that n = 3, |VwQp/Qs| = 8 and Vo /Cy,(OP(Ly)) is a natural Sz(8)-module. In
particular, V,, contains a unique non-central chief factor for L, so that outcomes
(ii) or (iii) of the qrc lemma holds and Z, is (dual to) an FF-module for L,/R,.
By Lemma 2.3.10, Z, is a natural SLy(p)-module for L, /R, = SLy(p). But then,
ZoCy, (OP(Lg))/Cy, (OP(Lg)) is of order 2 and normalized by G, s, a contradiction

by Lemma 2.2.14 (iv).

If Ly = (P)SU,(p") then by Lemma 2.2.2 (i),(ii), (vi) and (vii), d = 4,
go = p" > 2 and |V, /Cy,(OP(Ly))| < p***". Since the minimal degree of a
non-trivial GF(p)-representation for (P)SU,(p") is 6n, we infer that n < 2 and

Vy contains a unique non-central chief factor for L,,. Then, outcomes (ii) or
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(iii) of the qrc lemma holds and Z, is (dual to) an FF-module for L,/R,. By
Lemma 2.3.10, Z, is a natural SLo(p)-module for L,/R, = SLa(p). If p" & {4,9}
we have that d = 3 by Lemma 2.2.2 (vi) so that |V, /Cy ,(OP(Ly))| < p*™".
In this scenario, n = 1 and V,/Cy ,(OP(Ly)) is a natural SUs(p)-module for
Lo = SU3(p). But then, Zy_1Cyv, (O (Ly))/Cv, (O (Lar)) is & Gor or—1-invariant
subgroup of order p, and we have a contradiction by Lemma 2.2.13 (iii). If
p" € {4,9} then V,/Cy ,(OP(Ly)) is a natural SUs(p?)-module of order p'2.
Again, Zy_1Cy. ,(OP(Ly))/Cy,(OP(Ly)) is a G o o —1-invariant subgroup of order

p, and we have a contradiction by Lemma 2.2.13 (iii).

Thus, Lo = SLy(q) so that L, is generated by at most 3 conjugates of Z,Qu / Qo
from which it follows that |V, /Cy,(OP(La))| < p*¢2,. Note that if go = ¢ then
by Lemma 2.3.11, V3 /Cy;, (OP(Lg)) is a direct sum of natural SLy(g)-modules, and
as an index pq subgroup of V., is centralized by Z, with p < ¢, Vv /Cy,(OP(Ly))
is a natural SLy(q)-module for L. As above, outcome (ii) or (iii) in the statement
of the qrc lemma holds, Z, is a natural SLy(p)-module for L,/R, = SLy(p) and
we have a contradiction as Z,Cly,(OP(Lg))/Cy,(OP(Lg)) is of order p < ¢ and
normalized by Ga,. Thus, |V./Cy,(OP(La))| < g2/ and applying Lemma 2.3.12,
we have that V,, contains a unique non-central chief factor for L, and outcome (ii)
or (iii) of the qrc lemma holds. Again, Z, is a natural SLy(p)-module for L,/R,
and Z,Cy;,(OP(Lg))/Cy,(OP(Lg)) is of order p < ¢ and normalized by G, 3. Since
g > p and V3 acts quadratically on V., again by Lemma 2.3.12, we see that
Vo /Cy.,(OP(Ly)) is a natural Qj (2)-module for Lo = PSLy(4). Notice that as
Z,, is a natural SLy(p)-module, [Vi, Q] = [Za, Q5] = Zs.

Suppose that b > 3. Then Vﬁ(g) centralizes Z, = [V3 N Qu, Vo] < Vi and if

Lor # Lo 9, then Vég) centralizes Z, 1 = Zo X Zy_o. But then, Vﬁ(‘g) < Qu_o,
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for otherwise Lo _9 = (Vﬁ(?’),@a/,l,@a/,g) normalizes Z, _1, a contradiction. It
follows that Vég < Qaz_l and Vﬁ( N (o) has index at most p in Vég').
Since Ly = PSLy(4) and [ "N Quw, V| = Zw < Vi, we deduce that O%(Ly)
centralizes Vﬁ(g) /Vs, a contradiction. Thus, we conclude that Z, = Z,_. Using
Lemma 5.4.4 and Lemma 5.4.5, we may assume that every critical pair satisfies the
same hypothesis as («, a’). Suppose that Vﬁ(?’) L Qo2 so that there is a critical
pair (8 — 3,/ — 2). Arguing as above, we have that Z,_o = Z,_4. Continuing
along the critical path, this would eventually imply that Z,, = --- = Zz. But
then [V N Qu,Vw] = Zsz and since V3 N @y has index 2 in Vj, this yields
a contradiction. We may as well assume that (o, ') is a critical pair with
Vﬂ(g) < Qoo and Zy = Zy_o. If b > 5, then Vﬁ(g) is elementary abelian
so that [Va, VA¥ 0 Qu1, Vi N Qua] < VAP, V] = {1}. 1t follows that
Vi 0Qu—1 = Va(ViNQu) has index 2in V¥ and as Z, < Vg and Ly = PSLy(4),
we have that O?(Lg) centralizes VB(S) /Vs, a contradiction. If b = 5, then using that
(o/ +1, /) is a critical pair, by the above, we conclude that Zg = Z,15 = Zy_2 so

that Zs = Z,/, and we obtain a contradiction as before.

Thus, we may assume that b = 3. By Lemma 2.2.10, we have that
Vis/Zs = (Va/Zs, O*(Lg)| x Cy,/z,(0*(Lg)). Set VP to be the preimage in Vg
of [V3/Zs,0%(Lg)] so that V# contains a non-central chief factor for Lg. It follows
that Zo = [VP N Qu, V] < VP so that Zy .y = Zg x Zoy < VP Since
Vs is the normal closure of Z, _; in G, we deduce that V# = Vj, V3/Z;5 is
irreducible and |Vj3| = 2°. Then, |[Vs, V]| = 8 and Zy—1 = [Vi, Qu—1, Qu—1] <
Vs, V] = V3 N Vy. In addition, it follows from Lemma 2.2.9 (v) that a
Sylow 3-subgroup of Lz N Gpg -1 acts irreducibly on [Vi, Qu—1]/Za—1 so that
[V, Vi) 2#0C6.0' 1 = [Vi3, Qur—1]. In particular, since [V3, Vo] < < v 1,V(,231] and

[VOE,QL, vof?ll] is G 3 —1-invariant, we must have that [V 1 V 7] = [ a,_l, Qur—1),
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and the same holds for o upon conjugating.

Suppose that [ch?zl, Va(,Qzl] /Zo—1 does not contain a non-central chief factor for
Lo —1. Then [VOE?Zl,V;?ll] = [V, Qu-1] = [Va, Qu—1] < V3NV, a contradiction,
since [Vj, V] is of order 8. Thus, [Va(?zl, ch?zl] /Z 1 contains a non-central chief
factor and again, the same result holds upon conjugating to a. Notice that if
Zo <[V V] then Zy 4 < VP, VD] Since Lg = PSLy(4), |A(B)\ {8} =5
and S/Qj acts transitively on A(B) \ {a, 8}. Then Vj = Z,(Z5 ) < [V.?, V2],

07

a contradiction to the definition of V(2.

Now, [[Var, Qu—1]| = 2* and [V, Qu-1] < [Qu—1,Qu-1] < Qp from which it
follows that [V, Qu—1] = Ve N Qg. Thus, [V VP] < Q4 and [V, V] N

[e%

Qu—1,Ver NQs] < Zy 1 N[VA V] = Z; Hence, [V? VP]/Z, is an

FF-module for L,. By coprime action, and writing V' := [V.(?), V(2] we have that
V/Zy = V] Zy,O*(La)| % Cvyz,(0*(Ls)) and by Lemma 2.3.10, [V/Z,, O*(Ly)] is
a natural SLo(2)-module for L,/CL, (V/Z,) = SLs(2). Moreover, (V3 NV)/Z,
is of order 4 and since V/Z, # Cyz,(0*(La))((Vs N V)/Z,), otherwise Qg
centralizes V/Cy,z.(0*(Ly,)), and (V3 NV)/Zy £ Cvyz.(0*(L,)), we must have
that V/Zy N Cyz,(0*(Ly)) is of order 2. Taking the preimage in Vs and
quotienting by Zg, it follows that there is a G, g-invariant subgroup of [V3/Zs, Q4]
which contains Z,/Z3 and is of order 4. Since the 3-element in Lg N G, 5 acts

irreducibly on [V, Qa]/Z by Lemma 2.2.9 (v), we have a contradiction. O

From this point on, we assume that m,(S/Qs) = 1. In particular, if p is odd then
by Lemma 2.3.5, |S/Qgs| = p. The following lemma, along with its proof, appeared
earlier as Proposition 2.3.19 and Lemma 2.3.22. We recall it here as it will be

applied liberally throughout this subsection.
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Lemma 5.4.9. Forye ', G:=L, and S € Syl,(G), assume that V' is a faithful
GF(p)G-module with Cy (OP(G)) = {1} and V = (Cy(S)%). If there is a p-element
1 # 2z € G such that [V,z,z] = {1} and |V/Cy(z)| = p? then, setting L := (z%),

one of the following holds:

(i) p is odd, G = L = (P)SU,(p) and V is the natural module;
(ii) p is arbitrary, G = SLy(p*) and V is the natural module;
(iii) p=2, G =L = PSLy(4) and V is a natural Qy (2)-module;
(iv) p=3, G =L =2 Alt(5) or 2"7.Alt(5) and V is the unique irreducible
quadratic 2F-module of dimension 4;

(v) p is arbitrary, G = L = SLao(p) and V is the direct sum of two natural

SLy(p)-modules;

(vi) p = 2, L = SU3(2), G is isomorphic to a subgroup of SU3(2) which
contains SU3(2)" and V' is a natural SU3(2)-module viewed as an irreducible

GF(2)G-module by restriction;

(vii) p =2, L = Dih(10), G = Dih(10) or Sz(2) and V is a natural Sz(2)-module
viewed as an irreducible GF(2)G-module by restriction,
(viii) p =3, G =L = (Qs x Qs) : 3 and V = Vi x Vo where V; is a natural
SLy(3)-module for G/Cq(V;) = SLy(3);
(ix) p=2 G=L=B3x3):2andV =V, x Vo where V; is a natural
SLy(2)-module for G/Cq(V;) = Sym(3); or
(x) p=2,L=(3x3):2, G=(3x%x3):4,V isirreducible as a GF(2)G-module
and V| = Vi x Vo where V; is a natural SLy(2)-module for L/Cp(V;) =
Sym(3).
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Moreover, if V' is generated by a Ng(S)-invariant subspace of order p then (G, V)

satisfies outcome (iii), (vii) (ix) or (z).

Lemma 5.4.10. Suppose that Cy,(Vo) < V3N Qu. Then Lo/Ro % SLy(p?),
Vo £ Qp and either:

(i) Lo/Rs = Sla(p) and Z,, is a natural SLa(p)-module; or

(i) ZoNQu £ Qu1 and Zy1 N Qg £ Qu, and there is x € S\ Qn such that
V,x,x] = {1}, | Za/Cz,(z)| = p* and both L,/R, and Z, are determined by

Lemma 5.4.9.

Proof. Suppose that V,, < Q. If Z,; is a natural SLy(¢)-module then Z, =
(Zr1, Vs N Qo] = H < [Vs,Vi] < Zs and Zw = Zs. But then [V, Vi] = Zu
and OP(L,) centralizes V,/Z,/, a contradiction. Thus, as Z (Lo 11) = {1}, Za41
is not an FF-module for L., and, by conjugation, Z, is not an FF-module for
Lo If [Zo N Qu, Vo] = {1} then, as m,(S/Qp) = 1, |Za/Cz, (V)| < |Za)Za N
Q| = p and Z, is an FF-module, a contradiction. Without loss of generality
we may assume that Z, N Qun £ Quv1. Suppose that [(Z, N Qu)Qur+1/Qurs1| =
| Zar+1Qa/Qal- Then,

|Za’+1/CZa/+1(Za N Qa’)| < |Za’+1/CZa/+1(Z"‘>|
- |Za’+1Qa/Qa|
< |(Za N Qo) Qurs1/Qur+1

= |(Za M Qa’)/CZaﬁQa/(Za’+1>|’

a contradiction since Z,/1 was assumed not to be an FF-module. So assume now

that ’(ZaﬂQO/)Qa’+1/Qa’+1| < ‘ZCY/+1Q(1/QCM" In partiCUIar7 since mp(S/Qa’) = 17
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we deduce that |Z,/Zo N Qui1] < [Za11Qa/Qu] and by a similar calculation
as before, Z, 11Q./Qq is an offender on Z,, a contradiction since Z, is not an

FF-module. Thus, V,, £ Q3.

Suppose that Vi, N Qs < Q4. Since m,(S/Qp) = 1, it follows that V,, N Qs is
of index p in V, and is centralized by Z,. In particular, V,, contains a unique
non-central chief factor, Lo/Ro = SLy(p) and Vi /Cy,(OP(Ly)) is a natural
SLy(p)-module. Since Z, £ Cy,(OP(Lg)), it follows that Z,/Cyz,(OP(Lg)) is of
order p. Since Q, N Qs & Lg by Proposition 5.2.25, Q3 N OP(Lg) is not contained
in (), and centralizes a subgroup of index p in Z,. It follows that Z, is the natural

module for L,/ R, = SLy(p).

Hence, V,yNQp £ Qo If Z,NQuw < @y forall X € A(d), then [Z,NQw, V] = {1}
and since V,y N Qs acts non-trivially on Z, and m,(S/Qu) = 1, as above, Z, is
a natural module for L,/R, = SLs(p) and (i) is satisfied. Suppose now that
Zo N Qo £ Qs for some 6 € A(d/) and Zs N Qs < Qn. Then p < |Z5/Cz,(Za N
Qo) < Zs/Zs N Qs N Qu|l = |ZsQs/Qp| = p and Zs is an FF-module. By
conjugation, Z, is a natural SLy(p)-module and Z, N Q. = Zz centralizes Z5 and

SO0 Zo N Qo < Qs, a contradiction.

Thus, we now suppose that Z, N Qn € Qs and Zs N Qs £ Q. Since Z, N Qyn <
VsNQu £ Qs, without loss of generality, we may as well relabel o’ 41 and assume

that 6 =o'+ 1. Thus, Z, N Qu £ Qw1 and Zy11 N Qs £ Qa-
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Now,

120/ C2.(Zars1 N Qp)| < 1 Za/C0(Zar 1)
< pl(Za N Qur)Qur 1/ Qur 1|

= p|(Zoz N Qa’)/CZaﬁQa/ (Za’+1)|

and

1 Zar+1/C7,,(Za N Qu)| < | Zar11/C,,,,(Za))
< p‘(Za’—i—l N Q/B)Qa/Qa‘

= Pl(Zort1 N Qp)/Cz,, 1005 (Za)-

I Z0/Cz,(Zars1 N Qp)| # | Zear11/Cz,,,,(Za N Qur)], then, by conjugacy, one can
calculate that Z, is an FF-module for L, /R, = SLy(q). But then, |Z,/Cz (Zy 11N
Qp)| =15/Qul = |Zua41/Cz,,,,(ZaNQuw )|, a contradiction. Thus, |Z,/Cz,(Za+1N
Qp)| = |ZO/+1/C’ZQ,+1(ZQ NQu)|. I my(S/Qn) = 1, then we may as well assume
that |Z,/Cz,(Zow+1 N Qp)| = p* and the result holds by Lemma 5.4.9. So suppose
that m,(S/Q) = 2. Then, as Z, is a quadratic module, L, is a group of Lie type.
By [DS85, (5.12)], unless |Z,/Cz,(Zor+1 N Qp)| < p*, Lo = SLa(q) for some ¢ > p
and Z, is a natural SLy(¢)-module. But then, as ¢ > p, we conclude that [Z, 1 N
Qp, Za NQu)| = Zg = Zy = H. But then, by Lemma 2.3.10, V3/Cy,(OP(Lg)) is a
natural module for Lg/Rs = SLo(p) and since |Z,/Cyz, (OP(Lg))| = |Za/Zs| > p,

we have a contradiction.

Thus,|Z,/Cz.(Ze+1 N Qp)| = p* and Z, is determined by Lemma 5.4.9. To
complete the proof we need only show that L, % SLy(p?). We obtain

contradiction as above in the case that L, = SLy(p?) with Z, an associated
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natural SLy(p?)-module. Hence, p = 2 and Z, is a natural Qj (2)-module for
Lo = PSLy(4). Since Q, N Qg 4 Lg by Proposition 5.2.25, Qs N O*(Lg) £ Qu
so that S = Qu(Qs N O*(Lg)). In particular, Z, N Cy,(0*(Lg)) = Zs. Now,
Vi N Qp, acts quadratically on Z, and so |(Vo N Qp)Qa/Qal = 2. Moreover,
[Zars1, Q]| = 2° and since |Z, N Qs N Qo] = 4 and V,//[V.,Qu] contains
a non-central chief factor by Lemma 5.2.13, we have that |S/Qg| = 2 and
Vor /[Var, Q] is an FF-module for L. Since Z, N Cy,(O*(Lg)) = Zg, we may
as well assume that [V, Qw]/Z+ has a non-central chief factor, and so it too
is an FF-module. But then, again since Z, N Cy,(0*(Lg)) = Zs, we conclude
that [V, Q] = [Za/H,Qa/]C[Va,,Qa,](OQ(La/)), a contradiction for then Q1
centralizes [V, Qu]/Clv., 0.,1(0%(Las)). Hence, the result. O

Lemma 5.4.11. Suppose that Cy,(Vor) < V3N Qur. Then either Z, is a natural
module for L,/R, = SLa(p) or the following holds:

(i) S = QaQB;
(i) [5/Qal =p;

(iii) La/Rs € {SLa(p),SUs3(2)",Dih(10),(3 x 3) : 2,(Qs x Qs) : 3,2 -
Alt(5), 214 Al(5) };

(1V) H = [Qa% Va’] < Za’;
(v) Qp € Syl,(Rp);
(Vi) |Za/Z5| = p*; and

(vii) wnless Lo/Ro = SU3(2) and H < Z,, we have that H = Z, and Z, =

Zg X Zo-1 for some o —1 € Ala —1).
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Proof. Since this result holds in all the relevant cases in Theorem 5.2.2, we may
assume that GG is a minimal counterexample to the lemma. We assume throughout
that Z, is not a natural module for L,/R, = SLy(p) and so Z, is determined by
Lemma 5.4.10 (ii). Suppose first that S # Q.Qp. Since m,(S/Qz) = 1 and Vj
admits quadratic action, it follows from Lemma 2.3.5 that p = 2, and then by
Lemma 5.4.9 and Lemma 5.4.10, ms(S/Q,) = 1. For p € {a, 5}, let O, be the
preimage in L, of Oy (L,) and L}, := 0,Q,Qp. Then L} < L, and L has index
at least 2 and at most 4 in L,. Set K to be a Hall 2’-subgroup of G, 3 and set
G}, = Ly K. Then G} has index at least 2 and at most 4 in G, and is normal
in G,,. Moreover, for X = (G}, G%), X is normalized by G, and G = (X, Gap).
Thus, the subgroup of S which is normal in X is also normal in G and so is trivial.
Hence, any subgroup of G, N X which is normal in X is a p’-group and we can
arrange that it is contained in K < (5}, a contradiction since G}, is of characteristic
p. Thus, the amalgam (G}, G, KQ.Qp) satisfies Hypothesis 5.2.1. Since G, and
G are solvable, by minimality, (G}, G5, KQaQp) is a weak BN-pair; or X is a
symplectic amalgam with |S| = 2. In all cases, for some p € {a, 3}, we infer that
L¥ = Sym(3). But then, it follows that L, = Sym(3) x R, where R is a 2-group,

a contradiction since m,(S/Q,) = 1. Hence, S = Q,Qs and (i) is proved.

Since m,(S/Qs) = 1 and V3 N Qu acts quadratically on Z,.1, by [DS85, (5.9)],
we deduce that V3 N Qu N Qa1 has index at most p? in V3 and Vj contains at
most two non-central chief factors for Lg. By Lemma 5.2.13, Vj3/[Vj3, Q| contains
a non-central chief factor. Suppose that [V3, Qg] also contains a non-central chief
factor. Then it follows that U := Vj3/[V3, Q] is an FF-module for L and so
V/C is a natural SLy(p)-module for Lg/Cpr,(U), where C' is the preimage in Vj
of Cy(OP(Lg)). Since C' < Lg, it follows from the definition of Vj that Z, £ C.

If Vs = Z,C then [Q,, V3] < C and OP(Lg) centralizes U, a contradiction. Since

238



V3/C has order p?, Z, N C is G, g-invariant of index p in Z,. In particular,
L./R, % (P)SU,(p),SUs(2)" or SU3(2)".2.

Since [Vj,Qp] contains a non-central chief factor, [V, Q3] € Zs and it follows
from Lemma 5.4.10 that L,/R, = Sz(2) or (3 x 3) : 4. Then [Z,, Qs, Q] # Zs.
Since [Vj,Qp] contains only one non-central chief factor, either [Vz, Qg, Qs <
Cv,(O*(Lg)) or that O*(Lg) centralizes [V, Qs]/[Vs, @, @p). Suppose the latter.
Since V3 = (Z&*), it follows that [Vs, Qs] = [Za, Qsl[Vs, @5, Qs). But then
Vs, Qs Qsl = [Za,Qp,Qp][Vs, Q5. Qs Q3] = [Za,Qp, Q825 = [Za,Qp,Qs]-
Then @, centralizes [V, Qs, Q3] and so O*(Lg) centralizes [Vs, Qs] = [Za, Qsl,

a contradiction.

Suppose now that [Vs, Qs, Q3] < Cv,(0*(Lg)). Then [V3, Qp, Q] = [Z;, Qs, Q]
for all v € A(B). Let L := Cp,([Vs, Qs, Qpl). Since [Qs/QsNQal =4, QuNQp A
Lg, S = QuoQp and (Q | v € A(B)) < Lj, L} has index at most 2 in Lz and
L5/05(L) = Lg/Qp. Set S* = L5N.S so that @, < S* and notice that if S = S*,
then L = Lg and S centralizes [Z,, Q3, @], contradicting the structure of Z,.
Thus, Lj and S* have index exactly 2 in L and S respectively. Set L, := ((5*)%).
Then, L} has index 2 in L, and L} /R, = (3 x3) : 2 or Dih(10). Setting K to be a
Hall 2"-subgroup of G, g and Gy =L K forp € {a, B}, we have that G, has index
2 in G, and the amalgam X* := (G}, G, KS*) satisfies Hypothesis 5.2.1. Since
L} /R, = Dih(10) or (3 x 3) : 2, comparing with the amalgams in Theorem 5.2.2,

we have a contradiction.

Hence, we assume that [V3,Qs,OP(Lg)] = {1} and Qs < Rz. Then by
Lemma 5.2.16, Q3 € Syl,(Rg). Moreover, by Lemma 54.7, V3/[V3,Qp] is a
2F-module for Lg, but not an FF-module. Since Qg N OP(Lg) £ Q., it follows
that Q3 N OP(Lg) centralizes [Z,, Qs] = [V, Qp] for all v € A(S).
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Suppose first that |S/Q.| > p. Since S = Q.Qp and Qs N OP(Lg) centralizes
[Za,Qp), La/Ra 2 Sz(2) or (3 x3) : 4. Set Q% = ((Qa N Q)?). Then Qj
centralizes [Z,,Qp]. If S = Q3Q, then S centralizes [Z,,Qp]. However, since
|S/Qu| > p, comparing with the list in Lemma 5.4.9, we have a contradiction.
So Qf < Qp and Q3Q, < S. Then, Q3Q, is a proper G, g-invariant subgroup
of §/Qa, from which it follows that L,/R, = (P)SU,(p) or SU3(2)".2. Since Q}

centralizes [Z,, Qgl, |Q5Qa/Qul = .

If p = 2, then as my(S/Qp) = 1, Lg is solvable. Set Lj := Cr,([Vs,Qgs]).
Then, Qj < O(Lj3) and since Oy(L}) is G p-invariant and centralizes [Z,, Qg],
|O2(L5)Qa/Qal = 2 and Qf = Oy(Lj). Moreover, S* := Q.Q5 = SN Lj €
Syly(L3). Setting L7, := ((S*)9), we have that L} < G, and S* € Syly(L7).
For € {a, B}, set G}, := L; K, where K is a Hall 2"-subgroup of G, 3. Then
the amalgam X := (G}, G}, S*K) satisfies Hypothesis 5.2.1 and since L /R, is

isomorphic to a proper subgroup of SU3(2), we have a contradiction.

Thus, p is odd and L,/R, = (P)SU;(p). But then m,(S/Q.) = 2 so that R, =
Qo by Proposition 3.2.7, and H = Z,, < Vz. Moreover, since V3/[V3, Q5] is a
2F-module for Lz and m,(S/Qs) = 1, by Lemma 5.4.9, we deduce that Lg/Rs =
SLa(p), (Qs X Qg) = 3, 2+ Alt(5) or 271 Alt(5) with the latter three only occurring

when p = 3. In particular, |S/Qs| = p.

Suppose first that b > 3. If VOEQ) NQu_2 £ Qu_1, then as Z, is centralized
by Qur, Qu—1 and V2, we have that Zy < Z(Ly_;), a contradiction. Thus,
VP N Quos = Zo(VP N---NQy) has index at most p in V2. Moreover,
Za+1 M Qg normalizes V. and [Zy 41 N Qp, V2, VD] = {1}. But Zy11 N Qg has
order p° and it follows that V.2 N---NQuy = (Za N Qu)(VP N N Quy1) and

Za+1 N Qs centralizes an index p subgroup of V(?/Z,. Since L, = (P)SU,(p),
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this is a contradiction.

Suppose now that b = 3. Then Ly 1 = (Qu, @p, Qu—1) centralizes Z, N Zz and
80, Zo N Zg = {1}. Then [Zy41 N Qp, Zoa N Qu| < Zy N Zg = {1} and since
m,(S/Qp) = 1, an index p subgroup of Z, is centralized and Z, is an FF-module,

a contradiction.

Thus, |S/Q.] = p and, as Qo N Qs & Lg by Proposition 5.2.25, Qs = (Qa N

Qp)(Q,NQp) for some v € A(S). Thus, Lg = (Q. | v € A(B)) centralizes [V3, Qg]

and [V3, Q] < Zs. The remaining properties follow from Lemma 5.4.9 and may

be checked in MAGMA. O

Lemma 5.4.12. Suppose that Cy,(Vo) < Vg N Qu. If Z, is a natural

SLo(p)-module for Lo/ Rs = SLy(p) then for V .= Vy/Cy,(OP(Lg)) either:

(i) V is a natural Sz(2)-module for Lg/Rz = Dih(10) or Sz(2); or

(ii) V is a 2F-module for Lg/Rs = (3 x 3) : 2 or (3 x 3) : 4.

Proof. By Lemma 5.4.7, V' is not an FF-module and so, as V is a quadratic
2F-module and m,(S/Qp) = 1, the structure of V and Lg/Rs follows from
Lemma 5.4.9. Since Z,Cy, (OP(Lg))/Cy,(OP(Lg)) is of order p and G, g-invariant
and Vs = (Z&), by Lemma 5.4.9, we conclude that Ls/Rs = Sz(2),Dih(10),
(3x3):2o0r (3 x3):4, as required. O

Lemma 5.4.13. Suppose that Cy,(Vo) < V3 N Qu, Z, is not a natural
SLy(p)-module and V.?)/Z, contains a unique non-central chief factor U/V  for
Le. Then UJV is not an FF-module for L.

Proof. Suppose that U/V is an FF-module for L,. By Lemma 5.2.13,
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V2 /[V® Q,] contains a non-central chief factor for L,. Set C to be the

«

preimage in V2 of C OP(Lg)). Then [V® Q,] < C and since U/V is an

v 2.
FF-module and |S/Q.| = p, by Lemma 2.3.10, V(¥ /C is isomorphic to a natural
SLy(p)-module. In particular, as Vg £ C, V3C/C is of order p for otherwise Qg
centralizes V.2 /C. But now, V3NC has index p in Vj and is normalized by L,. By
conjugacy, an index p subgroup of Vj is normalized by L2, and by transitivity,
this subgroup is contained in Vi3 so that Vs N V,43 is of index p in V3. But
then, as Vs € Qu, Vs N Qo = V3N Vars = V3N Cy and [Vs N Qu, V| = {1},

contradicting the initial assumption. O]

Lemma 5.4.14. Suppose that Cy, (Vo) < Vg N Qur. Then b= 3.

Proof. Suppose that b > 3 and Z, is not a natural SLy(p)-module. Then Z, is
as described in Lemma 5.4.11. If V2 < Qu_s or V2 N Qu_y < Qu—_1, then as
1S/Qal = p, m,y(S/Qp) = 1 and V.2 is elementary abelian, Z, (V. ¥NQ,) has index
at most p in V2. Moreover, since Z, is not the natural module, V() N Q, =
(Zo N Qur) (VP N Quy1) and it follows that there is a unique non-central chief
factor in VOEQ) /Z4 for L, and that it is an FF-module for L, a contradiction by

Lemma 5.4.13. Thus, V? £ Qu_s and V. N Qu_s £ Qu—1.

Suppose first that L,/R, = SU3(2)". Then H = [V3 N Qu, V] = [V, Q] is of
order 4 and strictly contained in Z,,. Moreover, since b > 3, H is centralized by
X1 := (VINQu_2, Ry_1, Qo) and so either Qu Qa1 is conjugate to Qu Qoo
by an element of Ry _1; or Xo—1/Cx_, (Zo—1) = Sym(3). In the latter case, it
follows that H is invariant under the action of a subgroup of index 3 in L,/ _1, a
contradiction to structure of Z, _;. In the former case, it follows that [V, Q] =
Va2, Qur—»] and since V2 £ Q. _o, we may iterate backwards through critical
pairs (a — 2k, o/ — 2k) for k > 0 so that H = [V, Qu] = [V3,Qs] < Zs and so
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an index p subgroup of V3/Z3 is centralized by V,,. We have a contradiction by

Lemma 5.4.7.

Now, Z, = H < V3, so that V) N Qa3 is not contained in Q4 _; and centralizes
Lo Zor—o. 1t follows that 7, = Z,_o. Moreover, since Va(2) L Qoo there is some
a — 2, with (o — 2,0/ — 2) a critical pair. By Lemma 5.4.6, we may assume that
(v — 2,/ — 2) satisfies the same hypothesis as («, /). Iterating through critical
pairs, we conclude that Z, = --- = Zz. But then H = [V3 N Qu, V] = Zs
and V3/Cy,(OP(Lg)) is a natural SLy(p)-module for Lg/Rgs, a contradiction by
Lemma 5.4.7. Hence, whenever b > 3, Z, is a natural SLs(p)-module for L, /R, =

SLa(p).

By Lemma 5.4.12, Lg/Rz = (3x3) : 4 or Sz(2) and so |S/Qg| # p. Moreover, since
Vs is centralized by Vﬁ(‘g) we deduce that [V, V3, Vﬁ(g)] = {1}, Vﬁ(S)ﬂQal_zﬂQa/_l =
VsV 00 Qo) and [V 0 N Q. Ve = Vi, Qo] = Zow = H < V by
Lemma 5.4.11. Since |S/Qg| # p, any non-central chief factor within VB(B) /Vp is
not an FF-module for Lg and so Vﬁ(g) L Qq 2 and Vﬁ(g) NQu—2 £ Qu_1. But
VB(?’) N Qu—2 centralizes Z, _» and Z, < V3 and since Vﬁ(g) NQuy_2 £ Qu_1, We
deduce that Z,, = Z,_s. Since Vﬁ(g) £ Qu—o there is a critical pair (8 — 3,0/ —
2) satisfying the same hypothesis as (a, ') by Lemma 5.4.6, and iterating back
through critical pairs, we conclude that [V3 N Qu,Vw] = H = Zy = Zs and

V/Cy,(O*(Lg)) is a natural SLy(p)-module, a contradiction by Lemma 5.4.7. [

Lemma 5.4.15. Suppose that Cy,(Vw) < Vs N Qo and b = 3. Then Lo/Ry =
Sym(3), Z, is natural SLy(2)-module, O*(Lg) centralizes C5/Vs and one of the

following holds:

(i) Lg = Sz(2) and Vi/Zs is a natural module Sz(2)-module; or
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(ii) L = (3 x 3):4 and V3/Zs is an irreducible 2F-module.

In particular, Lg is 2-minimal and Lg NG, = S in either case.

Proof. Suppose that L,/R, = SU3(2)" and Z, is the restriction of a natural

SUs(2)-module.  Since @, is non-abelian, by the irreducibility of Z,, Z, <

((Zs N 2(Qa))"") < ©(Qa)-

If [S/Qs| =2, then Qo N Qs N Q-1 = Zo(Qua N -+ - NQu41) and since Qn/P(Qq)
is not an FF-module, L, = SU3(2)" and Q,/®(Q.) contains a unique non-central
chief factor, U/V say. Moreover, U/V is isomorphic to Z, and U £ (Qg. But

U N Qg is G, p-invariant subgroup of index 2 in U, a contradiction.

Applying Lemma 5.4.9, we see that Lg/Rp = Sz(2), (3x3) : 4, SU3(2)".2 or SU3(2).
Now V3(Qs N Qw—1 N Qo) has index at most 8 in @z and since |S/Qs| # 2, no
non-central chief factor is an FF-module for Lz and so Q/Vj contains a unique
non-central chief factor for Lg, and this chief factor lies in Qz/Cjs. Then, an
application of the three subgroup lemma implies that Rg = (Jg. Suppose that
Ls = SU3(2)".2 or SU3(2). Since V3(Qs N Q) has index at most 8 in g, one can
compute that the non-central chief factor for Lg within ()3/C} is not an irreducible
8-dimensional GF(2)-module for Lg, and so it must be a natural SU3(2)-module.
But Q,NQ3 is a G4 g subgroup of index 2, and we have a contradiction, as before.
Thus, Ls = Sz(2) or (3 x 3) : 4. However, from the structure of Z,, we conclude
that Zg = Z, N Cy,(OP(Lg)) has index 4 in Z, so that a subgroup of order 4 of
Vs/Cy,(O*(Lg)) is centralized by S = QnQps, contradicting the structure of the

2F-modules associated to Sz(2) and (3 x 3) : 4. Hence, L,/R, % SU3(2)".

By Lemma 5.4.11, we may now assume that Z, = Z3x Z,_ for some a—1 € A(«).
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Then [V N Qu, Vo N Qs < Zow N Zg. But ZyZs < Zy—1 and by Lemma 5.4.11,
either Z, = Zg, or ZyNZg = {1}. If Zoy = Zg, then H = [V3NQu, V] = Zs and
so V/Cy,(OP(Lg)) is a natural SLy(p)-module, a contradiction by Lemma 5.4.7.
Hence, [Zo N Qu, Zo+1 N Q5] < [V N Qu, Vo N Q] < Zoyw N Zg = {1} and by
Lemma 2.3.10, Z, is an FF-module. Then, as Z(L,) = {1}, we have that Z, is a

natural SLy(p)-module and Lg/Rp is determined by Lemma 5.4.12.

Suppose that |S/Qsz| = 2 so that Lg/Rz = Dih(10) or (3 x 3) : 2. Then Cs <
Qo—1 and Cs = V3(Cs N Qu). Since Vo, Qu] = Zo < Vi, we deduce that
O?%(Lg) centralizes C3/Vs. Then for r € Rg of odd order, if [r,Qg, V5] = {1} then
[, Vs, Q] = {1} by the three subgroup lemma, and so r centralizes (). But now,
QsNQu—1 = V3(QsNQw), and so Q3/Vj contains a unique non-central chief factor
for Lg, which is a faithful FF-module for Lg, and Lg = Sym(3) by Lemma 2.3.10

by Lemma 2.3.10.

Thus, |S/Qs| = 4 and by Lemma 2.3.10, no non-central chief factor within Qs is
an FF-module for L. Since Cs < Qu—1, V3(Cs N Qu) has index at most 2 in Cjg
and since [Qu, Vo] = Zo < Vj, Vi centralizes Cj/V3 so that O?(Lg) centralizes
C3/Vs. Now, applying the three subgroup lemma, any p’-element of Rg centralizes
(Qp/Cp and Vj so centralizes ()3, and we deduce that Rs = Q3. By Lemma 5.4.12,
Ly = 82(2) or (3x3) : 4and V3/Cy,(0*(Lg)) is as described in Lemma 5.4.9. Since
Lg is solvable, applying coprime action, we have that Vs/Zs = [V3/Z5, O*(Lg)| x
Cv,/z,(0*(Lg)) where [V5/Zg,0(Lg)] is irreducible. Letting V* be the preimage
in Vi of [V3/Zs,0?%(Lg)], we must have that [VZ N Qu, V] = Zo < VP so that
Zo-1 =Ly XLz < V8. But then, by definition, V? = Vg and Vj/Z3 is irreducible,

as required. O

Proposition 5.4.16. Suppose that Cy, (V) < Vg N Qo and b > 1. Then G is
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locally isomorphic to *F4(2) or 2F4(2)".

Proof. By Lemma 5.4.14 and Lemma 5.4.15, we have that b = 3, L,/R, = Sym(3),
Z,, is natural SLy(2)-module and either Lg = Sz(2) or Lg = (3 x 3) : 4. Suppose
first that L, is also 2-minimal group. Then the amalgam is determined in [Hay92],
G has a weak BN-pair of rank 2 and the result follows by [DS85] and [Fan86].
Hence, to complete the proof, we assume that L, is not 2-minimal and derive a
contradiction. We may choose P, < L, such that P, is 2-minimal. Better, by
McBride’s lemma (Lemma 2.1.19), we may choose P, such that P, £ R, and
L, = P,R,. Moreover, we may assume that GG is a minimal counterexample to
Theorem 5.2.2. Form X := (P,, Lg(G, N P,)) and let @ be the largest subgroup

of S which is normal in X.

If @ = {1}, then it follows that any non-trivial normal subgroup of X which
is contained in G, 3 N P, is a 2'-group, a contradiction for then @) is not self
centralizing in G, where A € {a,}. Thus, no non-trivial normal subgroup of
Gap N P, is normal in X and the triple (P, Lg(Gap N Pa), Gaps N P,) satisfies
Hypothesis 5.2.1. Then, by minimality and comparing with the list of amalgams
in Theorem 5.2.2, it follows that X is locally isomorphic to 2F4(2) or 2F4(2)". In
particular, P,/Q, = Sym(3), Gz/Qp = Sz(2) and S is isomorphic to a Sylow
2-subgroup of 2F4(2) or 2F4(2)’. But then 2? < |Q./®(Q.)| < 23 and so, L, is
isomorphic to a subgroup of GL3(2) which has a strongly 2-embedded subgroup.
An elementary calculation, that may be performed in MAGMA, yields L, = P, =

Sym(3) and L, is 2-minimal, a contradiction.

Thus, @ # {1} and since P, does not centralize Zz and @ < S, we deduce that

Zy < @ and so Vg < Q). Moreover, since ) < @, N Qs and Q < Lg, @ < Cp.
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If ®(Q) # {1} then Zz < ®(Q) and arguing as above, V3 < ®(Q). But then

O?(Lg) centralizes Q/®(Q), a contradiction. Thus, @ is elementary abelian and

since Cs(Q) < Cs, C5(Q) = Ca, (Q) = Co, (@) < X and C5(Q) = Q.

Suppose that there is r € P, such that [r,Q,] < Q. If r centralizes Cg(Q.),
then by the AxB-lemma, r centralizes (). But then r centralizes @,, and so
r is trivial. Now, since @), is self centralizing in 5, Cp(Q.) < Z(Q,). But
Vor N Q4 is of index 4 in V,,, contains Z, _; and is centralized by Z(Q,) from
which it follows that Z(Q.) = Za(Z(Qa) N Qu ). Since Z, £ Z(Q,), otherwise
Zo—1 = Zo x Zg would be normalized by Lz = (Qs, Qu, Qur—1), it follows that
Vi N Qp centralizes Z(Qy)/Za and so O%(L,) centralizes Z(Qa)/Zy. Since Zg <
Zo = [Z(Qa), 0*(Ly)], it follows from coprime action that Z(Q.) = Z,. Hence,
for r of odd order such that [r, Q.| < @, we have that r € R, and it follows that
r is of order 3 and (r)Q/Q = O (P,/Q). Then, by coprime action and as r acts
non-trivially on Z,, we have that @ = [@, r]. But now, @ is elementary abelian and
contains Vj, it follows that Q@ N Q. N Q11 is has index p? in @ and is centralized
by Zo11 N Qs £ Qo. In particular, () contains at most two non-central chief
factors for P, and @ is acted upon quadratically V., N Q. Note that Q/[Q, Qa)
is not centralized by r, and neither is [@, Q,]. But then [Q,Q.] < Z(Q.) = Za
and Q/[Q,Q,] is an FF-module, absurd for then the action of r implies that

25 = |V3| < |Q| = 2*. Thus, P,/Q is of characteristic 2.

Suppose that there is s € Lg(P, N G,p) such that [s,Qs] < Q. Since
Ls/Qps = Sz(2) it follows that Lg(Py N Gup)/Qs = Lg/Qp X (Py N Gup)/Qps-
Since @ < Cs and Qs/Cj is an irreducible module for Lg, s € Lg. Hence, s
centralizes S/Qs and so centralizes S/Q. Then s € P, and centralizes Q,/Q, and

by the previous paragraph, s = 1. Thus, Lg(P, N G, p)/Q is of characteristic 2.
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Moreover, no subgroup of .S properly containing () is normal in X and since P, /Q
is of characteristic 2, it follows that no non-trivial subgroup of (Ga s N P,)/Q
is normal in X/Q. Then the triple (P,/Q, (Lg(Gap N Pn))/Q, (Gaps N Py)/Q)
satisfies Hypothesis 5.2.1. By minimality and since Lg/Qs = Sz(2), X/Q is locally
isomorphic to ?F4(2) or 2F4(2)’. But there is only one non-central chief factor in

Qp/Q for Lg, and we have a contradiction. O

5.4.2 Cy,(Vy) = V5N Qu

We continue with the analysis of the case [Z,,Z,] = {1}, this time with the
additional assumptions that b > 1 and [V3 N Qu,Vw] = {1}. Recall from
Lemma 5.4.4 and Lemma 5.4.5 that this hypothesis implies that L,/R, =

Lg/Rz = SLy(p) and Z, and Vs /Cy, (OP(Lg)) are natural SLy(p)-modules.

Throughout this section, we fix the notation V* := ((Cy, (OP(L,)))“*) whenever
A€ a% pe A(N) and |Vp] # p3, and we remark that when [V3] # p* and b > 5,
for v € B¢ and some fixed § € A(v), the subgroup (V* | Z, = Zs,u € A(y)) is
normal in R,()s by essential the same argument as Lemma 5.2.19. Throughout, we
set R := [V, V3] so that R < Z, 150y, (OP(Lg)) N Zar—1Cy ,(OP(Lo)) < VN Vy
and, in particular, if |V3| = p? then R < Z,,o N Zy_;. By the work done in
Section 5.4.1, we may assume in this section that every critical pair (a, /) satisfies

the condition Cy, (V) = V3N Qu.

As in Section 5.3.2, we intend to control the action of OP(R,) and OP(Rp)
using the methods in Lemma 5.2.31-Lemma 5.2.35 in the expectation of applying
Lemma 5.2.18 to force contradictions. In the following lemmas, we demonstrate
that we satisfy Hypothesis 5.2.30, required for the application of these lemmas.

Also, as in Section 5.3.2, since L,/R, = Lg/Rz = SLa(p), we will often make
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a generic appeal to coprime action, utilizing that L, is solvable when p = 2 for
A € {«, 5}, and that there is a central involution ¢, € L,/R, which acts fixed

point freely on natural modules.

Lemma 5.4.17. Suppose that Cy, (V) = Va3 N Qo and Voo < Q. Then Z, =

Z(Qa) and Zﬂ = Z(Qﬁ)

Proof. Suppose that V,y < Q3. We aim to show that if the conclusion of the
lemma fails to hold then R = Z3 = Z,, for then, as V3 £ Qn, OP(Ly) centralizes

V., a contradiction.

Suppose that V,, < Qs and Z, # Z(Q),). By minimality of b, and using that b is
odd, we have that V) < Q, and Z(Q,) < Qy for all A € A=Y (q). In particular,
2(Qu) < Qur and Z(Qu) = Za(Z(Qu) 0 Qu). 1 [V, Z(Qu) N Qu] = {1}, it
follows that OP(L,) centralizes Z(Q,)/Zs and an application of coprime action,
observing that Zs < Z, = [Z(Qa), OP(L4)], gives a contradiction. If [V, Z(Q4) N
Qo] # {1}, then Z, = [V, Z(Qa) N Qu] < Z(Qn) and so Z, is centralized by
VarQo € Syl,(La) from which it follows that Z, = Zgs, a contradiction. Thus,
Zy = Z(Q,). Since Z(S) < Z(Q,) we conclude that Z(S) = Q(Z(5)) = Zg is of

exponent p.

Since Vy < Qu for all A € A®=2(a/), again using the minimality of b and
that b is odd, we argue that Z(Quw) < Qui2. If Z(Quw) £ @p then, as
2(8) = Zs, {1} £ [7(Qu), Z(@5)] < Z(Qu) N Z(Qs), for otherwise Z(Qp) is
centralized by Z(Q.)Qp € Syl,(Lg) and the result holds. Then, [Z(Qu), Z(Qps)] is
centralized by Z(Qu.)Qp € Syl,(Lg) and since Z(S) = Zg, [Z(Qu), Z(Qp)] = Zs.
Moreover, since [Z(Qu), Z(Qp)] # {1}, Z(Qs) £ Qu, and by a similar reasoning,
Z(Qu), Z(Qp)] = Zy. But then Zg = Z,, a contradiction. Hence, Z(Qq) < Qp.
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Observe that Z(Qu) £ Qa, else Z(Qu) is centralized by Z,Qu € Syl,(Lqa) and
Z(Qu) = Zy, as desired. Then Zz = [Z(Quw), Za) < UZ(Qu)) so that Zg is
centralized by Z,Qu € Syl,(Lo) and Zg = Z,, again a contradiction. Therefore,
if Vor < Qp, we have shown that Z(Qg) = Zs. O

Lemma 5.4.18. Suppose that Cy, (V) = Vs N Qu and Vor £ Q. Then Z, =

Z(Qa) and Zg = Z(Qp).

Proof. Suppose that Vy £ Q3 and Z(Qn) < @Qs. In addition, assume first that
Z(Qu) < Qq so that Z(Qu) is centralized by Z,Qu € Syl,(La). Set Y7 :=
(Z(QN) | Zx = Zap, A € A(B)) and let 7 € RpQ,. Since r is a graph automorphism,
for A € A(B) such that Z), = Z,, Z(Q\)" = Z(Qx.r). But now, Z,., = Z} = Z! =
Zo and so Z(Q))" < YP. Thus, Y? < RgQ,. Now, observe that by minimality
of b, and using that b is odd, V5 < Q) and Z(Q,) < Qs for all A € A(S) with
Zy = Zy and § € A®"D()\) by Lemma 5.2.16. In particular, Z(Q,) < Y? < Qu_1.
Thus, Z(Qa) = Zo(Z(Qa) N Qu) and YP = Z,(YP N Qu).

Since Z(Q4) N Qu is a maximal subgroup of Z(Q),) not containing Z,, we must
have that Z, £ ®(Z(Q,)). But then, by the irreducibility of Z, under the action
of Go, ZsNP(Z(Qn)) =Z(S))NP(Z(Qa)) = {1} so that ®(Z(Q,)) = {1} and
Z(Qu) = QZ(Q.,)) is elementary abelian.

Assume first that [Y? N Qu, Vo] = Zo so that YP £ Vj and there is some o +1 €
A(a') with YPNQuy £ Q1. Again, using the minimality of b and that b is odd, we
deduce that Z(Qur11) < Qara. Write Y5 = (Z(Q,)%") so that YP < Yz < Gj and,
as b > 2, Yj is abelian. Then Z(Qu41) normalizes Y3, [Z(Qu11), Y N Qu,Y? N
Qu] < [Z(Qu1),Ys, Y5 = {1} and Z(Qu 1) is quadratic module for L.

Moreover, by coprime action, Z(Qu+1) = [Z(Qu+1), Rar+1] X CZ(QQ,H)(RQ/H)
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is invariant under T € Syl,(Ga or41) and as Zy < Zo1 < Cgq,,, ) (Rart1),
we infer that Z(Qu41) = CZ(QQ,H)(RO/H) and Z(Qu+1) is a faithful module for
Loy1/Ro+1 = SLa(p). But then by Lemma 2.3.11, Z(Q4/41) is a direct sum of
natural SLy(p)-modules. Now, since [Z(Qu41),Y? N Qu] is of exponent p and
centralized by (Y N Qu)Qu+1 € Syl,(Garar41), we have that [Z(Qay1),Y? N
Q] = Z, is of order p from which it follows that Z(Q. ;1) contains a unique
summand. Hence, Z(Qu 1) = Zo 11 and by conjugacy, Z, = Z(Q,). But then

Y# < Vj, and we have a contradiction.

Suppose now that [Y? N Qu, Vo] = {1}. Then [V, Y?] < Vj and, as Z, # Zay2,
we conclude that YPVy < Lg = (Vo, Rg, Qa). But V. centralizes YPV3/Vj so
that OP(Lg) centralizes Y?V3/V; and it follows that YV = Z(Q.)Vs < Lg.
Then [Z(Q.),Qs] < Lg and since Q, N Qs centralizes [Z(Qn), Qs] and Q, N
Qs A Lg by Proposition 5.2.25, we must have that [Z(Q,),Qs] < Z(S) and
[Z(Qa), Qs, Lg] = {1}. Now, [OP(Lg), Z(Qa),Qs] < [Vs,Qs] = Zs and by the
three subgroup lemma [Qg, O”(Ls), Z(Qa)] < Zs < Z,. Since [Qp, OP(Lp)] £ Qa,
it follows that OP(L,) centralizes Z(Q,)/Zs and coprime action yields Z(Q,) =
[Z(Qa), O (La)] X Cz(Qu) (07 (La))- But Zs < Zy = [Z(Qa), O"(La)] and Z(Qa) =
Zo. Since Z(Qu) < Z(T), for T € Syl,(Lar N Lor—1), we have that Z(Qu) = Zu
and Z(Q.) = Z,, as required. ]

Thus, throughout this subsection, whenever we assume the necessary values of b,
we are able to apply Lemma 5.2.31 through Lemma 5.2.35. That the hypotheses

of these lemmas are satisfied will often be left implicit in proofs.

The first goal in the analysis of the case Cvﬁ(Va/) = V3N Qy will be to show that

b < 5. Then the methods for b = 5 differ slightly from the techniques employed
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for lager values of b and so, for the most part, we treat the case when b = 5
independently from the the other cases. The case when b = 3 is different again

and so this case is also treated separately.

The following lemma is also valid whenever b = 3 but, as mentioned above, since
the techniques we apply when b = 3 are somewhat disparate from the rest of this

subsection, we only prove it here whenever b > 3.

Lemma 5.4.19. Suppose that Cy, (Vo) = Vg N Qo and b > 3. If V® < Qus
and Vy < Qg then R = Zs < Zoy_1, |Vs| = p*, V¥ /Z, is an FF-module for L,

and one of the following holds:

(i) V2 < Quoy and [V N Qo Vi) = Zo <V or

(ii) VOE2) ﬁ Qo/—l and [VOS2) N Qa/, Va/] = {1}

Proof. Suppose first that V.2 < Qu_;. Then V? = Z,(V® N Q) and since
VOEQ) /Z,, contains a non-central chief factor for Ly, [V\? N Qu, V] = Zow £ Z,.
Then, for o/ +1 € A(/) with Zy1 £ Q, it follows that [Zuy1, ViI? N Qu N
Qu11] = {1} and V¥ /Z, contains a unique non-central chief factor which is
an FF-module for L,. Then by Lemma 5.2.31, |V5| = p?, [V Q.] = Z, and
Zy =R < Zory N Zago.

Suppose now that V{? £ Q. _1 and Cy,(OP(Lg)) # Zg so that by Lemma 5.2.31,
V5| = p*. Then, again by Lemma 5.2.31, both V*/Z, and V.2 /V* contain a
non-central chief factor for L,. If V* £ Qu_1, then V2 = VoV N Q,) and
S0 Zor < V. but Z, £ V. Then, since b > 3, V2 is elementary abelian and
VO L Qui—y Zay = Zoy—g = [V, Zoy_1] <V, a contradiction. Thus, V < Qu_;

and since V*/Z,, contains a non-central chief factor, it follows that [V*NQu, V] =
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Zoy <V and V*/Z, is an FF-module for L,. Since VOEQ) L Qq—1 and VOEQ) is
abelian, Zo = Zo_o, (V2 N Qu_1)/V* is centralized by V,, and V.2 /V* is
also an FF-module for L,. Then, applying Lemma 5.2.32 and Lemma 5.2.18 to

Lo = Zo_9, we conclude that V,, =V, _o < @), a contradiction.

Thus, we assume now that Cy,(OP(Lg)) = Zs, |V3| = p* and Zg = R < Zy_1 N
Zaia HVONQu, Vo] = Zo <V then Z, 1 = Zg X Zy is centralized by V(2
and V.? < Qu 1, a contradiction. Thus, [V NQu, V] = {1}, V2 NQuw_1)/Za
is centralized by V, and VOSQ)/ Z, is an FF-module for L. O

Lemma 5.4.20. Suppose that Cy, (V) = Vg N Qo and b > 5. If Voo £ Qp and

V2 < Qua, then |Vj| = p*.

Proof. Suppose that |V5| # p® so that both V/Z, and V?/V* contain a
non-central chief factor for L,. Choose o/ +1 € A(¢/) with Zyy1 € Q. In
particular, (o/+1, ) is a critical pair and we may assume that Cy. ,(Vs) = VN Q.
Set UP = (VA | X € A(B),Zy = Z,) so that RgQ, normalizes U? by
Lemma 5.2.19. Setting U := (V# | p € A(a'), Z, = Zur11), it follows similarly
that U* < RyQu41. Throughout, for p € B¢, we set U, = ((V#*1)E) where

p+ 1€ A(p). In particular, UP < Uz < Lg.

Notice throughout that if R < Z,_4, then Z, 1729, , is normalized by L, =
(Vs, (V3)9, Ry) for some suitable g € L,. Then, from the definition of V,,, we
conclude that V,, = Z,_1Z% | is of order p3, as required. A similar conclusion

follows if R < Z,.19.

Suppose first that U® £ Q.o and so there is some A\ € A(S) with V* £ Qu_»
and Z\ = Z,. In particular, since V,_o < @, and Z, £ V,_o, we deduce that

Va0,V = Zg < Vg and Zy 5 # Zg. If, in addition, Uy 5 £ Qp, then there
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is 6 € A(a/—2) with [V°, V] < Z;. In particular, it follows that R < [V? V3] < Zs
and since R £ Z,_1, otherwise |V,/| = p?, it follows that Z; = Rx Z,_, centralizes
VA But V* £ Qo and since V? centralizes Zo—3Cy., ,(OP(Ly—3)) we have
that Zs = Z,_3 by Lemma 5.2.31. But now, Z,_3 < Vy_o NV, and again by

Lemma 5.2.31, we conclude that R < Z,_3 = Z,_1, a contradiction.

If Uy_o < Qp, then for any § € A(a’ —2), [V°, V5] < ZsN Zs by Lemma 5.2.31. If
Zg < Zs for some 6, then [V*, Vo] < Z5 < Zs and |Vy_s| = p?, a contradiction.
Thus, [Uy_2,Vs] = {1} and Uy < Qy so that [Uy o, V] = Z\ N Uy 9 =
ZoaNUy—g < Zg < Vy_o9 by Lemma 5.2.31, and V* centralizes Uy —2/Va_o. But
then OP(L,_5) centralizes Uy _o/V,/_2, a contradiction by Lemma 5.2.31, for then
VYW _9 < Lo, Thus, U? < Qu_y. Notice that V.?) is not involved in the
above arguments and so we may repeat the above arguments to conclude that

UO/ S ro—l—?r

Assume now that U? < Qu_s but U? £ Qu_1. Then, as Zy_1 < Qa, it follows
by Lemma 5.2.31 that Zy_o = [U®, Zy 1] < Zy and Zy o = Zg since Zy £ Qur.
Then [V*'~', V3] < Zow—1 N Vs and since VzU? < Vi¥ is abelian, it follows that
VU VE] < Zyo = Zg and VY1 < Qg. If V¥~ < Q,, then [V~ V] <
Zy for X € A(B) with Z, = Z, and V* £ Qu_1. Since Z, % ch?ll < Qu,
VYTV < 20N Qo = Zo NQy = Zg = Zyw—o < Z, a contradiction since

V> £ Qa—1. Therefore V=1 £ Q) and as
[v)\ N Qa’_b Va,_l] S Za/_]_ N VA - CZO/_1 (Uﬁ) = ZO/—Q = ZB S ZO‘ = Z’\’

V*/Zy is an FF-module for Ly. Moreover, V/\(Q) NQu_s = VA(V/\(Z) N Qu—1) and
V¥ /V* s also an FF-module for L. Then Lemma 5.2.32 implies that OP(R,)

centralizes V/\(2). By Lemma 5.2.18, Zy43 # Zg = Zy—2 and so VCS?) N Qaxts
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centralizes Zo4s and V& N Qays = Var (VP N Q). Since Zs < Vv, have that
VOE/?’ )/ Vs contains a unique non-central chief factor and by Lemma 5.2.34, OP(Rp)

centralizes Vﬁ(g) .

By Lemma 5.2.18, Z, = Z, implies that V* = V* = U® and V% = V)\(2). Thus,
Ve £ Qu—1 and since V2 < Qu_y, we have that V2 = V*(V N Q,_;). Since
-2

Zo_1 £ VP we conclude that [V VO NQu_1] = Zy_s <V so that OP(Ly,)

centralizes V(?) /V®  a contradiction.

Thus, we may assume for the remainder of this proof that U? < Q. _;. If
[UP N Qur, Vo] < V3UP, then V,y normalizes VzU? and so Ug = VzUP < Ly =
(Var, Rg, Qo). But then [Qq, VaU?] < Z,[Qa, V5] < Vs and so, OP(Lg) centralizes
Us/Vs, V*Vg < Lg and a contradiction is provided by Lemma 5.2.31. Thus,
Zo < Usy Zy % VsUP and [UP N Qury Zeys1] = Zo. Furthermore, we have
that U* < Qoys. If U L Qua2, then as Z,.o < C,, we deduce that

Zors = [Zar2,U*] < Zoyy1 N Qp = Zy, a contradiction for then Z, < V.

Thus, UY < Qaqo.

IFVY T NQs < Qu, [V N Qs UPNQu] < Zo NV H! and since Z, £ Qn and
Ve'+1/Z 1 contains a non-central chief factor, we have that [+ N Qg U? N
Qu) = Zs < U®. But U¥ = Za/H(U"‘/ N Q) and Vs normalizes U~V so
that Uy = U%Vy < Ly = (Vi,Qari1, Re). Thus, [Quy1, U V] < Vi so
that OP(Ly) centralizes U, /Vy from which it follows that V¥ +'V,, < Ly, a

contradiction by Lemma 5.2.31.

Suppose now that V¥ N Qs £ Q. Then [UP N Quy1, VYT NQp| < Zoy 1 NUP
and since (o/+1, B) is critical, [UPNQu 41, VENQ4] < ZuwNUP. Since Z,, £ UP,

[UP N Quy1, V¥ N Qp] = {1}. In particular, it follows that [V N Qu1, VAN
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Q] = {1} and since V*/Z, contains a non-central chief factor, V* N Qn € Qa1
and V*/Z, is an FF-module for L,. Since Z, < Up, we either have that Z, =

Zoy_2; 0T Loy # Zo_o and Vﬁ(3) centralizes Z,/_1.

Assume first that Z, = Z,_s. Since Zy £ UP, Zy_o £ V. In particular, since
V2 < Quio, [Var2, VI < Zy 9NV = {1} and V) = VH(VE NQu,,). Since
V(2) /V® contains a non-central chief factor, we have that [V.® N Qu1, Ve N
Qs = Zow < VP Z £ V* and VP /V is an FF-module for L,. But now, by
Lemma 5.2.32, OP(R,,) centralizes V.?) and Lemma 5.2.18 applied to Zo = Zo/_o

gives Vy = Viy_o < (Y, a contradiction.

We assume that Z, # Z,_ o for the remainder of this proof. If R <
Vi_o, then as R € Zy_ 1, |RZy_1| = p* and RZy_ 1 = Vy N Vy y =
Zo1Cv ,(OP(Ly). Since V/Z, is an FF-module, the proof of Lemma 5.2.32
implies that OP(R,_1) centralizes R. Then [R,Qu] < Zy and [R,Qu—2] <
Zo—g and 80 Zy_1Cy ,(OP(Ly)) = RZy—1 4 Loo1 = (Qur, Qor—2, OP(Rur—1)).
But then, by definition, V! = RZ,_; and V"‘/*I/Zaz_l does not contain a

non-central chief factor for L, _; and we have a contradiction by Lemma 5.2.31.

Thus, R £ V9 and as Vi < Cy_g, we conclude that R £ [V, Uy —a] < Vy_o.

If Us £ Qu—2. then as Zy < Ug and V") centralizes Zo 1 = Zoy X Zor—a, V§? =
Ug(Vﬁ(g) N Q. ) and V., centralizes VB(S) /Ug. Then, OP(Lg) centralizes Vﬁ(g) /U and
Vﬁ(g) = V3JU;. But then, by conjugacy V., < VCE?EQ = VOE/QESUO/_Q and since Vjp
centralizes VCE,223, R = [V, V] < [Vs,Uyx—2], a contradiction. Thus, Uz < Qu—2
and as Zy 1 = Zy X Zy_9 is centralized by Ug, Us < Qo—1. Then, as V*Vs 4 Ly
by Lemma 5.2.31, Uz/Vj contains a unique non-central chief factor. Moreover,

by a similar argument, Vég) NQu—2 < Qu_1 and Vﬁ(g) /Up contains exactly one

non-central chief factor too, otherwise OP(Lg) centralizes Vﬂ(?’) /Us and we arrive
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at a contradiction as before. In both cases, the non-central chief factor is an

FF-module for fﬁ

Set Ry := Cp,(Up/Vs) and Ry := C’Lﬁ(Vég)/Uﬂ). Since the non-central chief factor
within Vﬂ(?’) /Up is an FF-module, it follows that either RoQs = Rg; or Lg =
(Ra, Rg,S) and p € {2,3} by Lemma 2.3.14 (iii) and Lemma 2.3.15 (ii), (iii).
In the former case, since V) < Qu_1, Vﬁ(?’) = VAUs; < Lg = (Vr, Rp, Qu).
But Vs centralizes V.2Us/Up so that OP(Lg) centralizes VB(B) /Us, a contradiction.
In the latter case, VOU; < RyS and if [Cp, V2 Ug] < V3, then [Cs, VDU, is
centralized by OP(Rs) and so [Cy, V.PUs] < Ls = (Ry, Rg, S). Thus, [Cj, Vﬁ(s)] =
[Cs, VU < Vs and by conjugacy, B < [Vi2, Vi) < [V, Cus] < Vs,
a contradiction. Thus, [Cs, V?] < V@ but [C5, VO] £ Vs If RiQs = RaQp
then, assuming that G is a minimal counterexample to Theorem 5.2.2, we may
apply Lemma 5.2.29 with A = 8. Since b > 5, R;()s normalizes V® and A = 3,
conclusion (d) holds. Then, V) <V := (Zf) and the images of Q./Cq, (V?
and Cq, (V!?)/Cq. (VIY) resp. Qs/Cs and Cy/Cq, (VB(S)) contain a non-central

chief factor for L, resp. f/g, and we have a contradiction.

Thus, we may assume that R1Qs # R2Qp and again by Lemma 2.3.14 (iii) and
Lemma 2.3.15 (ii), (iii), we deduce that Ly = (Rg, Ry, S). Then V2Ujs < RyS so
that VoV, > [Cy, V.OUsVs < RyS. Furthermore, as OP(R;) centralizes Uy /Vj,
[Cs, VDUV < Ry S so that [Cg, VDUV < Lg. Since VeV A Ls, we may
assume that [Cs, VD]V5 < VeV Now, V/Z, is an FF-module generated
Cv,(OP(Lg))/Za of order p so that by Lemma 2.3.10, p* < [V*/Z,] < p?
and p* < [V < p°. Hence, p° < |[V*V3| < p% accordingly. But now, as
[Cs, VAUV > Vg, [[Cs, VAU V| = p° and as [Cy, VIV < VOV, we get
that Vo] = %, [VoV3| = p° and [Qs, V] £ ZuCy, (O(Ly)).
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Writing C® for the preimage in V* of Cya,z, (OP(L,)), we have that |[C% = p?,
C*NVg = Zy, |Qa/Co,(C%)| < p? and a calculation using the three subgroup
lemma yields [R,, Qa] < Co,(C). Since Z(Qn) = Z,, calculating in GL3(p), we
infer that Q,/Cg,(C®) is a non-central chief factor of order p* for L,. Hence,
Qa/Co, (C%) is a natural SLy(p) module for L,/R,.

Now, by Lemma 5.2.13, Ug/([Us, Qs]V3) contains the unique non-central chief
factor within Usz/Vj and so OP(Lg) centralizes [Ug, Qp|V3/Vp. Thus, [V*, Qs]Vs <
Lg from which it follows that Z, > [V*, Qp, Q] < Lg and [V, Qs, Qs] = Zs. But
C* < Z,Cy, (OP(Lp)) [V, Qs so that [Qg, C] = Zg. In particular, Cq, (C*) < Qp

for otherwise Zz = [C*, Qo N Qp] = [C*, Qu] < L,, a contradiction.

If VO'1 £ Qp, then RZs < [V "1, V3|Zs < Zow1Z5. Then, as R £ Zo_1, we
get that Zg < RZy 1 < V. If V=1 < Qg but Vi £ Cj, we deduce that Zz =
(V' =1 V3] < Zo—1. In either case, since OP(R,) centralizes V(%) by Lemma 5.2.18,
Zs # Zors and so V. centralizes Zois = ZsZass. But then VO N Quys =
Va/(VCS,?’ ) NQgs) and since Zg < Zy_1 < Vi, VOS,?’ )/ V. contains a unique non-central
chief factor, a contradiction. Thus, [V, V7] = {1} and V3 < Cg_, (C¥71) <

Q. a final contradiction. u

Lemma 5.4.21. Suppose that Cy,(Vor) = V3N Qo and b > 5. If Voo £ Qg
and VOEQ) < Qu9, then Zy_1 < Vég) < Qu-1, Zo & VCS2), Vﬁ(g)/VB contains a
unique non-central chief factor for Lg which, as a Lg-module, is an FF-module

and OP(Rg) centralizes Vﬁ(?’).

Proof. By Lemma 5.4.20, |V3| = p® so that R = [V3, V] < Zo—1 N Zyy2. Suppose
first that V() £ Qu_1. Then Zy_o = [V¥ V5] < Z,, so that Z5 = Z,_. But

Zs# R< Zy_1andso Zy_ | = Rx Zz < Vj, a contradiction since V,(?) is abelian.
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Thus, we may assume throughout that V2 < Qu_;.

Suppose that Vﬁ(g) NQuw—2 < Qu_1. If Vﬁ(B) < Qu/—2, then Vﬁ(?’) = Vg(Vﬂ@) NQu)-
Since OP(Lg) does not centralize Vﬂ(?’)/V/g, Ly = [V 'NQw, V. W] < V . Even still,
Vﬂ(?’) /Vj contains a unique non-central chief factor for Lg which is an FF-module
and by Lemma 5.2.34, OP(Rp) centralizes VB If Zo <V or [V NQu, V] =
{1}, then V® < Lg = (Voy, Qa, Rs), a contradiction. The lemma follows in this

case so we may assume that Vﬁ(g) L Qoo and Z, = [Vég) NQu, Vo] < V(?’).

Continuing under the assumption that V, (3) L Quo—2 and Vﬂ NQu—2 < Qu_1,
since Zy_1 =2y X R < VB(S) and b > 5, we deduce that Z, 1 = Z,/_3, otherwise
Vﬁ(g) centralizes V,/_o. By Lemma 5.2.18, OP(R3) does not centralize Vﬁ(?’) and so
by Lemma 5.2.34, either V5(3) /Vj contains more than one non-central chief factor,
or a non-central chief factor within Vﬁ(g) /Vp is not an FF-module. Hence, we infer
that Z, 1 = [ 9N Quo—2, Vor] £ V. Moreover, since b > 5, [Vﬁ(g), Zori1s Zory1] <
[V,B Va,?’ 9, VCS 7] = {1} and Vﬁ admits quadratic action. In particular, if p > 5

then the Hall-Higman theorem implies that OP(Rg) centralizes V/B and so p =2

or 3.

Notice that Z,_1 = Zy_3 < Vég) < Z(Vé)_4). Suppose that b > 7 and let
S Qo/—QTL' Since Vﬁ(g) ﬁ Qo/—27

if such an n exists then n > 2. Notice VB(S) centralizes 7,/ _3 V(g) so that

n < 5’775 be chosen minimally such that VB(MH)

either Z,_3 = Zy_5 < Vﬁ(g) or Vﬁ(5) < Qu_4 and n = 2. Extending through
larger subgroups, it is clear that for a minimally chosen n, Z, 1 = Z,_ 3 =

v = Zor—opi1 < Vﬁ(g) is centralized by Vﬁ(znﬂ) so that VB(%H) < Qu—2n+1- Then
VB(QnH) = VéQ(n_l)H)(Vﬂ(%H) N Qur—ony2). Moreover, Zy_ 1 = +++ = Zo_ony1,
V™ 1 Qur20 < Qursar1 and ViV NQu a0 = VIV 1 Q a01)

from which it follows that V(271+1 = Vﬁ(z(n_l)ﬂ)( v Qo) so that OP(Lpg)
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centralizes V(Qn+1 / Vﬁ@(”*l)“), a contradiction. Thus, no such n exists for n < b;—‘r’
and it follows that V(b B L Qu_pis = Qaus and Zy 1 =+ = Ly = Zasg. If
b=7, then Zy_1 = Zy_3 = Zyta by definition. Since Z,_; £ V3, to obtain a

contradiction, we need only show that Z, o = Z,4.

If Z3 is centralized by VOE? ), then Vof,s ) centralizes Zovo = RxZgandif Z, 19 # Zoya,
then VOE,?’ ) centralizes V3 and VCE,?’ ) = VO/(VOE,3 e ()p) so that VCS,S ) /Va contains a
unique non-central chief factor which is an FF-module and by Lemma 5.2.34,
OP(R,) centralizes VOE? ). By conjugacy, OP (Rp) centralizes Vﬁ(s), a contradiction.
Thus, VOE/?’ ) does not centralize Zg. Since Va(,3 ) centralizes Zorz X R < Zyyo, we

may assume that R = Z,;3. Furthermore, since b > 5 and VOE,3 ) is abelian, VOE? 'n

Qat3 N Qa2 N Qs < Cp.

Now, V3 < C,_2 and since [Q,\,V/\(z)] = Z, for all A € A(«/ — 2), we have that
R< Vs, V) < Zaia Vg I Zoin < va,,g, then Zoss = Zor—g = Zor—1 < Vp,
a contradiction and so [V, V( Y ] R and [V, V, 2 NQs] = RNZz = {1}. Then
VP, NnQs < Oy so that [V VP, n Qs < VNV, Since b > 5, Vs 2 VI,

and since R < V9, Zya < Va,72 and Zg < Va,72 but Zg £ Voo If b > 7, VOE,3

centralizes Z3, a contradiction by the above.

Thus, we assume that b = 7, Vég) L Qo —2, Vﬁ(g) NQu-o < Qu_1, Zo_1 =
Zr—3 # Zowo and [Z5, V] £ {1}. Set WP = (VP | Zs = Z,.6 € A(B)) so that
[Cs, W8] = [Cs, VP < Z,. Then WP Vo] < Zo_3NZ, and by Lemma 5.2.19,
W5 9 RyQa. If Zs < Zur—y = Zar—1, then Za—y = Zg X R = Zoso < Vi,
a contradiction. Thus, W? = V3(WP N Qu). If WP N Qu, V] < WH then
V2 < WP A Lg = (Vo,Qq, Rg) and VB(S) = W? < Qu_s, a contradiction. Thus,
WP N Qu % Qa1 for some o +1 € A(e) and since Zy 11201 = Vi £ Qp,

(o/ 4+ 1, P) is a critical pair.
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Since Va+3 < Qa’+17 [Vag?j-l N Qa+37 Va+3] < Zo/Jrl N Za+3- If Za+3 < Za’+17 then
Zotrs = Zoy # R so that Z,y9 = R X Zy = Zy—1 < Vp, a contradiction. Thus,
[V(?—?—l N Qa+3, Va+3] = {1} and VOE/Z_,')_l N Qa+3 = Za/+1(VOE,2J)rl N Cg) Furthermore,

[0}

VP N Cs, WP N Qo] < VL N Z, and since Z5 £ V., we have that W N
Q). centralizes (Va(,%)rl N Qatr3)/Zar+1. Thus, Va(,%)rl L Qa3 and Vof?ll/Za/H is an
FF-module. By Lemma 5.2.32, OP(R,) centralizes V.?) and since Vﬂ(?’) does not

centralize Vo, it follows from Lemma 5.2.18 that Z, o # Zy_4 = R.

Suppose that ([VBB),Qg]Vg) /Vp contains a non-central chief factor for Lg. In
particular, [Qs, V{?] £ V3, and since V.?)/Z, is an FF-module, [V.?| = p®. The
non-central chief factor, U/V say, is an FF-module for Lz and Lg/Cp,(U/V) =
SLa(p). Set Ry := Cp,(U/V) and Ry == O, (VA”/([Vs”, Qs]Vs)), noticing that
also Lg/ Ry = SLy(p). If Ry # Rp, and employing Lemma 2.3.15 (iii) when p = 3,
we conclude that Lg = (Ry, Rg, S). Similarly, if Ry # R then Lg = (Rs, Rg, S).

Suppose that Ry # Rg. Then [V.¥ Q4]Vs < Ry and [V?,Q4,Q5] < Vs so
that [V.? Qs,Q5] < Lg = (Ry, Rg, S). Since [V.¥,Qs, Q5] < Z,, we have that
V2. Qp,Qp) = Zs. Setting C* to be the preimage in V2 of Cvém/za(Op(La)),
we have that C° < V3[V{¥ Q4] and so [C*,Qp] = Zz. As in Lemma 5.4.20
(where C* is defined slightly differently), we see that |Q./Cq,(C®)] = p* and
Co, (C*) < Q. Now, Vi < Qo and so [V, 0¥ < Zy 9N Zyyy = {1}, for
otherwise Z,19 = Zo_1. But then, V5 < C’Qa,fl(Co‘/_l) < Q., a contradiction.

Thus, Ry = Rg.

Suppose that Ry # Rg. Then V[VEY, Q5] < Ry and so V2, Q4][VAY, Qs, Q5] <
Lg = (R1, Ry, S). Since V), Qg, Q5] < Za, we have that [Vi”, Qs, Q5] < Vj and
so [V? Qs]Vs < L. But then [VB(S), Qs)Vs = [V\¥,Q4]V is centralized by Q,,

modulo V3, and so ([Vﬁ(?’), Q5]V;3)/Vs does not contain a non-central chief factor for
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Lg. Thus, Ry = Rg. But now OP(Rg) centralizes VB( and Lemma 5.2.18 applied

t0 Zo—1 = Zy_3 gives V < VOE,QE1 = VOE,223 < (), a contradiction.

Therefore, we may assume that ([VB(S), Q5]V3)/Vs does not contain a non-central
chief factor for Lz and [V.?, Qs]Vs < Ls. As before, since [V.Y, Q3,Q5] < Za,
we have that [V.? Qg,Qs] = Zs and either V2| = p*; or [CY, Q5] = Zs for
C* as defined above. In the latter case, we again see that V3 < C’QQ,_I(CO‘/_l) <
Qo a contradiction. Thus, |[VH| = p, [VI? Q5] < V; and [Vﬁ(s),Qﬂ] = Vs
Since OP(Rg) does not centralize Vﬁ(?’), by Lemma 5.2.34, Vﬁ(?’) /Vp is a quadratic
2F-module for Lg. Moreover, since V2 generates Vég), is G g-invariant and has
order p modulo V3, comparing with Lemma 2.3.22 and using that |S/Qs| = p, it
follows that p = 2 and Lg/CLB(Vﬁ(S)/Vﬁ) = Dih(10) or (3 x 3) : 2.

Now, OL@<VB(3) /V3) normalizes V(2 so that [V?) Cs] < Z, is also normalized

by CLB(VB(B)/VQ). Since Rp normalizes Z,, if Lg = (S, RB,CLB(Vé3)/V5)> then
V?,C5) = Zs and [V, Cs] = Zs. But then R = [Vo, V3] < VIV, V3] =

Zy 2, a contradiction. Thus Lg/C’LB(VB /Vg) (3x3):2and C’LB(VB(?’)/Vg) <
Rs. Then V.3, < ((VP,)RsS) = W and |[W/Vj| = 4. But now, [W,VV] <
(W, Qur—s] < Zor—s and [V, ,NQp, Vi) < Z5N Vs = {1} and [V, nQs, VAV <

Vs N V Vo = Lot < V, 5. Therefore, [VB ,V,)Q] < Va,_3, a contradiction since

Vﬁ(g) /Vp is not dual to an FF-module.

Hence, Vﬁ(?’) N Qo2 £ Qu_1. Since R < Z,y_1 and R # Z,, it follows that
Vﬁ(g) does not centralize Z,. Hence, as b > 5 and Vﬁ(?’) is abelian, we conclude
that [VA” N+ N Qu, V] = {1}. In particular, [V® N Qu/, Va] = {1} and so
[V, V@] = R < V. Additionally, since Vﬁ(g) centralizes Z,_5, we have that

R — Zo/_g 7£ Zﬁ
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Again, we set W# = (V{? | Z, = Z,, A € A(B)) noting that W# < RzQ, by
Lemma 5.2.19. For such a A € A(fB), (A, o) is a critical pair. Suppose that
Vi & Qu_o. Then {1} # Vi1, Vo] < Zx N Zo—3 = Za N Zar_g so that
Zg < Zy_gand s0 Zy_3 = Zo_9 X Zg = Zyio. Now, there is o/ + 1 € A(a/)
such that (o/ + 1,3) is a critical pair. As in the above steps, if Va(a)rl L Qors
then Zy = [Vi2, Vass] < Viais, a contradiction as V.3 is centralized by Vﬁ(g).
Thus, Va(,%)rl < Qa2 and since Va(,?’ 'n Qo3 < Qaia, applying the previous results
in this proof, OP(R,) centralizes VOE,?’). But then V? < Ly = (Vo Qa, Rs), a

contradiction.

Thus, W’B S Qa’—la [W’B, Za’—l] = ZO/_Q 7é Zlg and WB = VB(WB ﬂQa/). Then VO/
centralizes W7 /Vj so that W8 < Lg = (V,/, Rg, Q). Since V,, centralizes W¥ /Vj,

it follows that V.2 <1 L, a final contradiction. O

Lemma 5.4.22. Suppose that Cy, (Vo) = Vg N Qu and b > 5. If V2 L Qu s

and |Vs| # p®, then we may assume that [V{?), Zo 4] # {1}.

Proof. Suppose that |V3| # p®. By Lemma 5.4.19 and Lemma 5.4.20, we may
assume that for any critical pair (o*, a*), VOEQ ) L Qu+—2. In particular, there is an
infinite path (o/,0/ — 1,0/ —2,...,8,a,a—1,a—2,...) such that (a«— 2k, o/ —2k)
is a critical pair for all £ > 0. For 2k > b, we have that Z,, 9,1 # Zy _or_3 and so
we can arrange that for our chosen critical pair (o, ') we have that Z, 1 # Zy_3.
If V2, Zy_1] = {1}, then V) centralizes Z, _1Z,_3 and since V2 £ Qu_o, it
follows that Zy_1Zy—3 = Cyv, ,(OP(Ly—2))Zar—1 = Cv,, ,(OP(Lar—2))Zaor—3. But
then, by Lemma 5.2.31 using that |Vs| # p?, we conclude that Zy_; = Zy_3, a

contradiction. O

Notice that by Lemma 5.4.19 and Lemma 5.4.20, whenever |V3| # p* we have
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that V,\(Q) £ Qxryp—o for any critical pair (A, A + b) with A € I'. Moreover, as
demonstrated in Lemma 5.4.22, we may iterate backwards through critical pairs
far enough that the conclusion of Lemma 5.4.22 holds for all critical pairs beyond a
certain point. The net result of this that whenever V3| # p?, we may assume that
we have a critical pair (a, /) with V2 £ Q5 and [V Z, 1] # {1}, and for
all £ > 0 we also have that (a—2k, o’ —2k) is a critical pair with Vﬁ)zk L Qur—2_2k

and [Vﬁ)zk, Zor—1-9k) # {1}. We will use the fact in the following two lemmas.

Lemma 5.4.23. Suppose that Cy, (Vo) = Vg N Qo and b = 7. If VE L Qo o,

then |V = p.

Proof. Suppose that b = 7. By Lemma 5.4.19 and Lemma 5.4.20, we may consider
a critical pair («, /) iterated backwards so that (a+2, o’ +42) is also a critical pair.
Suppose first that V¢ £ Q. Then [V, Vo] < Z, and so [V, Vo] = Zs.
Since Zy1o £ Quy2 and b > 5, we have that Zgz = Z,13 # Zy—_2. But now,
Zo4328 32 —9 = Lo 3245, is normalized by Ly—o = (V*, (V*)9, Ry_o) for some
appropriately chosen g € Ly, so that Vo = Zy 379 5 is of order p?, a

contradiction. Thus, we may assume that V¢ < Qy/_s.

If V¥ £ Qu—1, then Zy—o = [V, Vy_o] < Z, and Z,_» = Zz. Moreover, for
some a —2 € A®(a) with (a—2,a’ —2) a critical pair, V%), centralizes Zy_» and
Zor—g = Zorz = Zg. Now, [V¥1 V5] < Z,_; and since V* does not centralize
Zo—1, VYL V5] < Zg and V7L < Q. If VYL < Q,, then VYL VY] < Z,
so that [V~ V] = Z3 = Z,_o and V® centralizes V™' /Z,_;, a contradiction
since Vo‘/_l/ Z.s_1 contains a non-central chief factor for Lo_;. Thus, V' ! L Qq
and V2, N Qs = VO I(VP, N Qa). Since Zy, £ VP, VP, N Qs Vo] =
Zg = Zy_o and it follows that Vog?ll JV¥~1is an FF-module for L, ;. Similarly,

VY 1N Qa V] = Zy_y and V¥1/Z,_, is an FF-module for Ly _;. Then
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Lemma 5.2.32 and Lemma 5.2.18 applied to Zg = Z,,3 implies that V3 = V3 <

Qo , a contradiction.

Thus, V* = Z,(V* N Qo). Suppose that V,, < Qs and again let (o — 2,0/ — 2)
be a critical pair. Since V/Z, contains a non-central chief factor, Z, < V¢
and Z, £ Z,. Then Z, = Z, _5, otherwise [VOEQ),ZO/_l] = {1}. But now, since
b > 5, V%, centralizes Zo_o < V and since [V\%,, Zo_3] # {1}, it follows that
Zor—o = Zor—y = Zays. Since R = [V, V| = Z3 <V, as Zpio £ Qu12, we must

have that Z,,3 = Z3 . But then R = Zg = Z,/, a contradiction.

Finally, we have that V* < Q1 and Vy € Q. Set UP = (V° | Z; = Z,,0 €
A(B)). Then (6,a’) is a critical pair for all such § € A(3) and so V° < Q. for
all such 6. By Lemma 5.2.19, RzQ, normalizes U°. Now, UV = V3(U” N Qu)
and either Z, < Vﬁ(‘g); or Vs centralizes U°V;/V3. In the former case, since V5(3)
does not centralize Z, 1, Z, = Z,_o. Iterating backwards through critical pairs,
this eventually implies that Z, = Zz and again, V. centralizes U?V;/Vj. Thus,
in all cases, UV < Lg = (V.y, Rg, Q,) and since V,, centralizes UPVj/Vs, OP(Lg)

centralizes U°V;/Vs. Then V*V3 < Lg, a contradiction by Lemma 5.2.31. []

Lemma 5.4.24. Suppose that Cy, (Vo) = Vg N Qo and b > 5. If VR L Qu_s,

then |V = p.

Proof. By Lemma 5.4.23, we may assume that b > 7. In the following, the aim will
be to prove that Z, o = Z,_4 for then extending far enough backwards along the
critical path, by Lemma 5.4.22, we can manufacture a situation in which (o, /) is a
critical pair, Zy_1_of # Zo—s—or forallk > 0and Zy = Zy 9 = -+ = Zyi3 = Zp.
Throughout we consider a critical pair (a,a’) iterated backwards far enough so

that (a+ 2,0’ +2) is also a critical pair.
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Suppose first that VB(B’) NQu -2 £ Qu—1. Then Z,_5 = [Vf’) NQu—2, Zor—1] < Vé?’)
is centralized by VQ(E)Q since b > 7. Since VO% does not centralizes Z, _3, we
have that Zy_ = Zu_4, as desited. Thus, V5" N Q2 = V3(V" N Qu). If
Zy = [Vﬁ(?’) NQu, Vo] < Vﬁ(g) then, as Vﬁ(3) does not centralize Z,,_;, we deduce
that Zy = Zy_o < Vﬁ(?’). Similarly to the above, using b > 7, we have that

Zo—9 = Zy—y, as desired. Thus, [V5(3) NQur, Vo] = {1}

Suppose that V., < Q3. Then, by the above, V. N Qw2 = Z,(V{? N Qu) and
V2 N Qu,Vy] = {1}, a contradiction since both V() /V* and V*/Z, contain a
non-central chief factor. Thus, V,, £ Qg and Vé?’) / Vs contains a unique non-central
chief factor which is an FF-module for Ls. By Lemma 5.2.34, OP(Rjg) centralizes
Vﬁ(g). If V* < Qu—2, then VV3 = V3(VV3 N Qy) and it follows that V*V; <
Lg = (Voy,Qa, Ra), a contradiction by Lemma 5.2.31. Therefore, V¢ £ ), _2 and
since Vy—o < Qa, we have that [V, Vo] = Zg # Zy_o.

Suppose that b = 9 and consider the critical pair (o — 2,a’ —2). Then, as V,,_4 <
Qu_2, we have that [V 2V, 4] < Z, 1. Suppose that Z, | = [V 2V, 4] <
Var—a. Since Zy, Zoro £ Vor—a, we must have that Z,_1 = Zg = Zy13 = Zo—s.
But then, [Ve2, Viy_y] = Zu_g and Za_52% . < Ly_y = (Vo2 (VO2)9, Ry_y)
for some appropriately chosen g € Ly 4. Then Vg = Z, 579, . is of order p?,
a contradiction. Thus, [V* 2V, 4] = {1} so that V2V, ; =V, 1(V* 2V, N
Qo —2) and since VOV, | 4 L, 4, it follows that Z, 5 < Vof?i)l. Then Vo@g

centralizes Z,_o and so Zy_o = Z,_4, as desired.

Thus, we may assume that b > 9. Since Vy € @g, there is A € A(a’) such
that (A, ) is a critical pair with V3 £ Q. and V/\(z) £ Qays. In particular,
since b > 5, V>\(2) centralizes Zs < Voo and Zs = Zay3. Then [V, Vi3] < Zy

since Voig < Qn. If Zy < V.3, since b > 5, Z, is centralized by Va@), SO
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that Z, = Zy_9. Since b > 7, Zy_o < V,.3 is centralized by V2)2 and so
Zey—g = Zgr—4, as desired. Thus, [V*, Vi3] = {1} and V*V, = Vo (V VY N Qp).
Since V*V,, 4 L, by Lemma 5.2.31, we intend to force a contradiction by showing
that Z5 <V V.

By construction there is a critical pair (o + 2,0/ + 2) and we set o/ + 1 €
Ao’ +2) N A(c’) noting that (o/ + 1, 5) is not necessarily a critical pair. Since
Vir < Qay2, we infer that [Vo,, V2| < Z,13NVy = ZzNV,. We may assume
that [V, Ver? = {1}. Then Vo2V 3 = Voi3(V2V,,3 N Quy2) and either
[Vor2V, 3 N Qursa, Varse] = {1}, a contradiction for then Vo2V, 3 < L,,3; or
Zoryo = [VO2Voi3N Qursa, Varga] < 17ASY s I Zo1 £ Qp then as b > 7, it follows
that Zy4o = Zo. But, as b > 7, Z, is centralized by V¥, so that Zn = Za_s.
Indeed, as b > 9, Z,_9 < e +3 is centralized by V “y and SO Zy_o = Loy, as
desired. Thus, by Lemma 5.2.31, Z 1 = Zy 1. Since Zy 19 < AR wr3 is centralized
by V.?| Zyi9 = Zo_o, otherwise Z,_; is centralized by V.?). Then as b > 9 and

L9 < v +3 is centralized by V( 5, we get that Z, o = Zy_4, as desired.

In all cases we have reduced to the case where Z, o = Z,_4. By a previous
observation we may now assume that (a,a’) is a critical pair such that Z, =
Ly—g = =2 =1Us1 = ... a0d Zy_1_9k # Zo—3—2r for any k > 0. Now,
Var—2, V] < [Qa, V] < Z, so that [Vy_2, V| = Zg = Zy_9 and V* < Qu_o.
Moreover, V,y £ Qg, otherwise R = Zz = Z,» and OP(L,/) centralizes V.

Suppose that V* £ Qu—1. Now, V3 < Qu—1 and so [Vﬁ,Va/’l] < Z,_; and
since VO £ Qu_1, [V L, V3] = Zwo = Zg and V¥~ < Qs. Moreover,
VOl L Qg else VOV = Zy = Zy g < Zy g and VO < Q1. Thus,
VN Qu_o, VO = [VO(VE N Qu_1), V¥ < VOZy_ o = V. Tt follows
that both V() /V and V*/Z, are FF-modules for L, and by Lemma 5.2.32 and
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Lemma 5.2.18, we conclude that Zg = Z,_3 implies that V3 = V13 < Qu, a

contradiction.

Thus, VoV = V3(VV3 N Qu). As in the b = 7 case, again set U? = (V° |
Zy = Zay A € A(P)) < RpQ, so that (A, o) is a critical pair for all such A
and, by the above, VA < Q1. Then, UPV5 < Lg = (V,, R, Q,) and since V,,
centralizes U’V /Vj, OP(Lg) centralizes UPV;/Vz and V3V < Lg. A contradiction

is provided by Lemma 5.2.31. O]

As a consequence of Lemma 5.4.24, we may assume that whenever b > 5, we have

that V3| = p*.

Lemma 5.4.25. Suppose that Cy, (Vo) = Vg N Qo and b > 5. If V2 L Qo

then either:

(1) R= Za’—2 < Zcx+2 N Za’—l;' or

(11) Za’—l = Za/_3 and Va/ S Qg.

Proof. By Lemma 5.4.24, we have that [Vz| = p?, so that R = [V, V3] < Zy1 N
Zea. Suppose that R # Z,_y. Then Zy_1 = RX Zy_y is centralized by V,(2) and
since V2 £ Qu_o, we deduce that Z, | = Zy_3. Now, if Vo, £ Qp, then R # Zg
and since [Vy_o, VP < Z,,, we must have that Zs = [V o, V| < Zy 3= Zy 4
and Zo 1 = RxZg < V. Thus, V2NQu—2 < Qu—1, V¥ NQu—2 = V5(V¥ NQu)
and since Z, < Zy 1 < Vj, Vﬁ(g) /Vp contains a unique non-central chief factor for
L which is an FF-module. Then, by Lemma 5.2.34 and Lemma 5.2.18, Z,_; =

Zy —g implies that V,, < vof?ll = VOS?E?) < Qa, a contradiction. O

Lemma 5.4.26. Suppose that Cy, (Vo) = Vs N Qo and b > 5. Then there exists

a critical pair (a*,a*') such that V.2 < Qger_s.
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Proof. Since V{?) £ Q. _s, there is another critical pair (o —2,a’ —2) and we may

"—1,...,aq,a—1l,a—2,a—3,...)

assume recursively, that there is a path (o, «
such that (o — 2k,a’ — 2k) is a critical pair satisfying VOEE)% £ Qu_on_o for all
k > 0. Set Ry := [Va_oks1, Var_ax] for each critical pair (o — 2k, o/ — 2k). In

particular, R = Ry.

Choose k > (b—1)/2 and suppose that Z, _op 1 = Zo_2r—3. Thenask > (b—1)/2,
2k + 3 > b+ 2 and so, by assumption, (o/ — 2k — 3,a’ — 2k — 3+ b) is a critical
pair, a contradiction. Thus, for £ > (b — 1)/2, we may assume that for every
critical pair (o — 2k, o’ — 2k), we have that Ry = Zy _op2 < Zg_okro. Now,
it Ry # Zo_opi3, then Z, op10 = R X Zo op13 < Qu_okso a contradiction as
k> 1and (o« — 2k + 2,0’ — 2k + 2) is a critical pair. Thus, we may assume
that Zy _op_o = Z4_ 913 for sufficiently large k. Then, Ry = Ry for otherwise
Zo—opro = R X Rpy1 < Qu—2p42 since b > 5. In particular, Zg_ o = Z,_1_9x and
(v—(b—1)—2k, 5—2k) is a critical pair with Rblefk =Zg_op—9=Zo-1-21 = Zp—ok.

But then OP(Lg_g) centralizes Vs_ox/Zs ok, a contradiction. O

We aim to show that b < 5, and by Lemma 5.4.26, we can fix some pair («, ')

with V2 < Q. _o. We start with the case where V,, < Q3.

Lemma 5.4.27. Suppose that C’Vﬁ(Va/) = V3N Qy and b > 5. Assume that

Vo <Qp and V) < Qu_y. Then VP < Qu_y.

Proof. Suppose for a contradiction that V() £ Q. _;. Then, as R < Zy_,, we
conclude that R = Z, 5. Let « — 1 € A(«) such that V, 1 £ Qo 1. If Zoy 1 <
Qa-1, then Zy_o = [Vo1, Zoy—1] = Zy—1 from which it follows that Z,_1 = Zs.
Then, recalling that OP(R,,) centralizes V,(?) by Lemma 5.4.19, by Lemma 5.2.18

we have that V,—1 = V3 < Qu—1, a contradiction. Thus, (o/ —1,a—1) is a critical
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pair and Z,_1 # Zs.

Note that if Zo_ o = Zy_4, then Zy_y < Viy_y = Viy_y is centralized by V.,
a contradiction. Thus, Z, _3 is centralized by VOE4) and either Z,_3 = Zy_5
OF Zor_g # Zor_s and VY < Qu_3. Assume that Z,_3 = Z,_5. Notice that
Zo_1 <V, and [V@ VP ] = {1}, and so by Lemma 5.2.18 and Lemma 5.2.34,
there is not a unique non-central chief factor within Vofi)l /Va—1 which is an
FF-module. Suppose that Va(i)l < Qu—4. Then Vﬁ)lﬁQa/,g = Va,l(VC@l NQu—1),
a contradiction. Thus, there is @ — 4 € A®(a — 1) such that (o — 4,0/ — 4) is
a critical pair. Then {1} # [V 4, Vo3| < ZooNZy—5. I Va4, Vo s] # Zo
then, as b > 5, Zo_9 = Zo_1 X [Vay—4, Va—3] < Qu—1, a contradiction. Thus, again

as b > 5, Zy = [Var—a, Va—3] X Zz < Qu, a contradiction.

Thus, Zo—3 # Zo—5 and VW < Qu_3. Tt follows that Zy o < [V Vo o] <
Zr—3. I Zoy_g = [V Vo], then VW = VOV N Q,) and since Z, £
VI otherwise V(2 centralizes Zo_1 = Zo x R, it follows that Vi, centralizes

07

VW V2 a contradiction. Thus, [V, Vi o] = Zy_3. Since VI N Qu_o =
VAWVHNQ,), we have that V%) /V/(2) contains a unique non-central chief factor
and by Lemma 5.2.33, OP(R,) centralizes V.. Furthermore, since VO L Quis,

otherwise Z,/_; centralizes Vof?j)l/Va_l, we may suppose that Z,_3 = [Vofi)l, Vi _a).

Suppose first that b > 9. Then, VOEG) centralizes Z, _3 < Va(?i)l and so centralizes
Lot 4Ly 6. If Zoy_4 = Zo_g, then by Lemma 5.2.18 we have that Z,_; < VOE,BLL =
VOE?O’26 is centralized by V¥ a contradiction. Thus, V(%) centralizes Z, 5 and so
either Z,_5 = Z,_7 or VO@ centralizes Z,_3Z o540 —7 = Vo_¢Vor—4. In the latter
case, V19 = VBV N Q,_5) and since Z, £ VIO we conclude that OP(L,,)
centralizes V(9 /V(4) a contradiction. Thus, Zy_5 = Zo_7 and as Zy_; < Voffll5

and VOEQ) centralizes Va(flz77 by Lemma 5.2.18, Lemma 5.2.34 and Lemma 5.2.35,
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we need only show that both Vﬁ(5) / Vﬁ(?’) and Vﬁ(g) /Vp contain a unique non-central
chief factor which is an FF-module for Ls. We may prove it for any A € 8¢
and, following the steps in an earlier part of this proof, we infer that Vﬂ(3) /Vs
satisfies the required condition. By the steps above, V(i) L Quo—2. Then, as
Vo4 = Zo 3447 is centralized by V )1, ﬂQ g = ( 3 (V(3 NQu—2) and
since Viy_9 £ Q-1 and Z,_o < Va_l, Va_l /VO[_1 contains a unique non-central

chief factor and satisfies the required conditions. This provides the contradiction.

Suppose that b = 7. Then Cq (VW) < Qui4 = Qu—3. Thus, VIWCq (VW) =
VOWVINCO,, (VD) N Qy) and since Zy £ Co. (V) > Co, (VD) OP(Ly)
centralizes VW Cq, (VW)/V#®. Then for r € OP(R,) of order coprime to p,
[, Qa, VY] = {1} by the three subgroup lemma and so [Qu,7] = [Qa, 7,7, 7] <

[0

[Con (VW) ror] < [VW r] = {1} so that R, = Q, and L, = SLy(p). We
may assume that chi)l < Quor—4, Vofi)l £ Qu—2 and OP(R,_1) centralizes chi)l
Moreover, Z, 3 = [V _a, VCS‘?l] < V¥ and so Zu_s is centralized by C’Qa_l(Va(i)l).
Since Z,_3 # Zgia, otherwise by Lemma 5.2.18, Z, < Va(_?Q = Va(?zg < Qus
we have that Cp, L (V®)) centralizes V3. It follows that CQa_l(V(i)l) =

[e7

v 1(Co.,_ 1(V 1) N Qu—2) and so OP(L,_1) centralizes C’Qa_l(Va(?i)l)/VOEi)l. Now,

letting r € OP(R4—1) of order coprime to p, [r, Qa_l,vf’)l] = {1} by the three
subgroup lemma and [Qq_1,7] = [Qa_1,7,7,7] = [C’Qa_l(Vﬁ)l),r, r] = V&, r] =
{1} so that R,—1 = Q-1 and L,_1 = SLs(p). Thus, G has a weak BN-pair of

rank 2 and by [DS85], no examples exist.

Suppose that b = 9. Then CQa( M) < Qags = Qu—s. Moreover, Zo_5 #
Zo—3 <V so0 that Cg, (VY) < Qw3 and Cq_ (VD) = VD (Co. (VD) N Qur—2)
and it follows that OP(L,) centralizes Cq, (V)/V¥. As in the b = 7 case,

«

we get that L, = SLy(p). Since Zy_3 < V(g)l, Zy_4 is centralized by

= a—
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CQa_l(Va(i)l) and Zy_¢ = Za4s is centralized by C’Qa_l(Vﬁ)l) from which it
follows that C’Q&_I(V(g)l) centralizes Z,y4 = Zo_5. Continuing as above, we

oa—

see that Cg, (v = v® (Co., (V) N Qus) and OP(L,_y) centralizes
Co._ 1( ) / V(3)1 and an application of the three subgroup lemma and coprime
action yields that L, 1 = SLy(p) and G has a weak BN-pair of rank 2. By [DS85],

no examples exist and the proof is complete. O

Lemma 5.4.28. Suppose that Cy,(Vy) = Vs N Qo and b > 5. If Vy < Qg then
4 g Qa’—4-

Proof. By Lemma 5.4.27, we may suppose that V.2) < Q._;. Note that by
Lemma 5.4.19, Zy_ 1 = Zoy x Zg < V2 < Z(V®). Suppose that V. < Q4
throughout. If Zy_ 1 # Zy_3, then VW N Qu_s = VA (VW N Q) and since
Zo <V VW does not centralize Zy_3. But Zo_y < Zo_1 50 that Zy_oZa_y
is centralized by V¥ and Zy,_y = Zy_4. Now, both VW /V® and V) /7,
contain unique non-central chief factors and by Lemma 5.2.32 and Lemma 5.2.33,
we deduce that OP(R,) centralizes V(). Therefore, applying Lemma 5.2.18 to
Lo—o = ZLo—y4, we conclude that V, < Vog?lz = VOE?’Z4 is centralized by Z,, a

contradiction.

Thus, Zy_1 = Zy_3 and VOE4) L Qa—2. In particular, it follows again by
Lemma 5.2.33 that OP(R,) centralizes V¥ and so, similarly to the above,
Zor—9 # Zo_4. Moreover, by Lemma 5.2.18, since V,, < V;?Zl and Va(?l?) < Qa,
OP(Rg) does not centralize Vﬂ(?’). In particular, Z, 1 # Z,.o for otherwise
VP N Qars € Qasos [V N Quis Vs < Zavs = Zwy < Vi and VOV,
contains a unique non-central chief factor which is an FF-module, and we would

have a contradiction by Lemma 5.2.34.
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Suppose first that b = 7. Then ZgZ,y3 < Z,19 N Zy_3 and so either Zg = Z,. 5
or oy 1 = ZLor—3 = Zgyo. The latter case yields an immediate contradiction,
while in the former case, Lemma 5.2.18 implies that V3 = V13 < @)y, another

contradiction. Thus, we may assume b > 7 throughout.

Assume that for a — 4 € A@W(a), whenever Z,_4y £ Q. _2 we conclude that
Zg = Zy-1. Choose 6 € A(a) such that Zs # Z3 so that 1/5(3) < Qur—2. Moreover,
V¥ centralizes Zy_; < V. and VP V] = [V, Vo[V 0 Qur, V] < V.
Thus, \/5(3) < Lo = (Vy, Ry, Qs), a contradiction. Thus, we may assume that there

exists a — 4 € AW (a) with Z, 4 £ Qw2 and Zs # Z, ;.

Suppose that Vo £ Q,_1. Since Va(z) < Qo _2, it follows that Z, o =
V2 V5] = Zs. Moreover, there is A € A(a/ — 2) such that (A\,a — 1)
is a critical pair with V,_1 < Qu_o. If V)\(2) < @g, then by Lemma 5.4.27
VA(Q) < Qo and Z, < VA@), a contradiction since b > 5. Thus, V/\@) £ Qs and
(A +2,0) is also a critical pair. Moreover, {1} # [V, Vay1] < Zapa N Zy. Since
Zy % Qa1 and Zy_o < V2 it follows that Vs, Vas1] = Zy—o = Zsz. But
then Vi1 < @p, a contradiction. Thus, Vo < Qa1 and [Vy_o, Vo1] = {1},
otherwise Z,_1 = [Vw_2,Va-1] = Zy—2 and since Z, £ Vy_o, Zy1 = Zs, a

contradiction. Therefore, V_s < Qp_s.

Suppose that [V o, Vo_3] = Zgsothat Zy_o # Zg. As Zg < Z, 9and Zg # Z,_1,
Zo = Zo_o. Immediately, we have that [V.2) Vi, ] < Zy N Z, = {1} so that

V2 < Cyp_y.

Choose A € A(o/ — 2) such that Zy # Zy_; and set W' =2 .= (V(;(Q) | Zs =
7,8 € A(a’ —2)). Then, for § € Ao’ — 2) with Z; = Zy, since V2 < Cy_s,
we have that [V, Vi?] < Zs N Zaso. Since Zawo < Z(VD), Zs N Zors < Zurs,
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otherwise V.Y centralizes Viy_o = ZsZ,_1. But now Vs, V ] = {1}, otherwise
Zoys = Zor—9 X Zg = Zy_1, and we have a contradiction. Now, (V@ V(z)] <
Zy N Z, and for a similar reason as before, [VOSQ),V)\@)] = {1}. It follows that
W2 < Qu_p and Zg < WY 2, Vo s] < Zoy = Za. Since Z, £ VP,

have that [We 2V, 3] = Zg < Vy_9 and V,_3 centralizes We'=2/V,_,. But
now, by Lemma 5.2.19, W2 < Ly_y = (Vio_s, Ry_5, @»). Since V,,_3 centralizes

Wwe'—2 [V o, it follows that VA(Q) < Ly/—o, a contradiction.

Suppose now that Zg # [Va_2,Va-s] < Za—o N Zy_3. Then Z, # Z, o, else
Zo = Zg X [Voy—2, Va—s] < Zy_3, an obvious contradiction. Still, Z,_3 = Zy_; =
Z5[Var—2, Vas] so that Vo1 = ZyZy—1. As Vi < Cyu_og, it follows that Zg <
Vs, V] < Zaso N Vo, Since Zoys # Zar—1, Zoga £ Var—a, otherwise Vy_y =
Zor-1Z0ro < V2 would be centralized by V(Y. Thus, [V, V(,?’Z o] = Zg and V(,SZQ <
Q3. Then V 79N Qy centralizes V,,_1 = Z,Z, -1 and so V, "5NQa < Quo—2. Then
Vo, Vas] < VP ,NQ0, Vas] < Zao. IV ,NQu, Vars] = [Viw_a, Va_s], then
VOE?EQ / Vi —2 contains a unique non-central chief factor which is an FF-module. By
Lemma 5.2.34, OP(R,/ _2) centralizes V o and Lemma 5.2.18 applied to Z, 1 =
Zy 3 implies that V, < Voﬁ?ll = Va,73 < Qa, a contradiction. Thus, Z, ;1 <
Lo < VOS?EQ and since b > 5, we have that Zz = Z,_1, a final contradiction by

the choice of v — 4. O

By Lemma 5.4.28, whenever b > 5 and V,y < ()g, we may assume that there is a
critical pair (v — 4,0’ — 4). In the following lemma, we let (« — 4, ' — 4) be such

a pair and and investigate the action of V,,_4, on V,_3 and vice versa.

Lemma 5.4.29. Suppose that Cy, (V) = Vg N Qo and b > 5. If Vy < Qg then
b>7, Zy# Zo_o, OP(Rg) centralizes Vﬁ(g) and setting RY = [Vy_4, Vo3|, either:

274



(i) R' = Z,_1 = Zs; or

(i) RT # Zo 1.

Proof. By Lemma 5.4.27, V2 < Qu_1, Zo1 = Zo x Zg < VO < Z(VW),
Y £ Qu_4 and there is a critical pair (o — 4,0/ —4). Set Rt := [Vy_4, V3] <

Zo—5 N Zo_y. By assumption RT # Z,_4.

Suppose first that Rt = 7,1 < Zy_5. Then, as b > 5, Zo_1 = Zg so that by
Lemma 5.2.18, Vo1 = Vs. Then [V, Vo 1] = [VIP,, V4] = {1} and so VI, <
Qa—2. Moreover, Vy_y £ Qq_s, €lse Zo_3 = R = Z,_; and by Lemma 5.2.18,
Vars = Va1 < Qu—4, a contradiction as (o — 4,a’ — 4) is a critical pair. Then
Va/,4(V 1N Qu—3NQu—4) is an index p subgroup of V ”, which is centralized,
modulo V,/_4, by Z,_4 and so, Va,74/ V. _4 contains a unique non-central chief
factor and by Lemma 5.2.34, and conjugacy, OP(Rp) centralizes Vﬁ(g) and subject
to proving Z, # Z,—2, (i) holds.

Assume now that RY # Z,_; so that Z,_o = Z,_1 x R is centralized by vcff”l4. If
Zo # Z4_o then it follows that V ;4 centralizes V,,_; and V Ta N Qa3 N Qg is

an index p? subgroup of VOE

.~ 4 centralized by Z,_4. Hence, V(/_ 4 contains only two
non-central chief factors for L. _4, one in V,,_4 and one in V(, ? 1/ Vear—4. Moreover,
both non-central chief factors are FF-modules for L, 4 and by Lemma 5.2.34,

and conjugacy, we have that OP(Rjg) centralizes Vﬂ(s) and again, subject to proving

Zo # Zo—a, (ii) holds.

It remains to prove that b > 7 and Z, # Z,_5. Observe that if Z, = Z,_5 and
OP(Rg) centralizes Vﬁ(g) then by Lemma 5.2.18, Z,_4 < Vﬁé = V@ < Qu_y4, a
contradiction since (o — 4, o’ —4) is a critical pair. Now, if b > 7 and Z, = Z,_o,

thenV, 71N Qq_1 centralizes Z, gand[ T 4(7@& 1, Vars] < Zo- QHV, 1< ZyN
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Qo = Zg. Thus, there is a p-element in V,,_3\ Qo —4 which commutates a maximal
subgroup of VCS?E 4 to a subgroup of order p. But then such an element centralizes
an index p? subgroup of Vof,324 and as before, Va(,324 contains only two non-central
chief factors for L,_4, both being FF-modules for L, _, and by Lemma 5.2.34,
and conjugacy, we have that OP(Rs) centralizes V(g), a contradiction. We may

assume that b = 7 for the remainder of the proof.

Suppose first that R = Zg = Zy_9. Since Zg # Zoy3 = Zy—4, for otherwise
by Lemma 5.2.18, V3 = Vo453 < Qu, we may assume that Z,0 = Zg X Zoy3 =
Zor—9 X Loy = Zo—3. 1f OP(Rp) centralizes Vﬁ(?’) then Lemma 5.2.18 applied to
Lo = Zo—3 implies that 7, < Va(ig = VOE/QE:,, < @, a contradiction. But now,
VOE,?’) N Qa3 centralizes Zo 0 = Zy_3 and [VOE,S) N Qat3, Vs < Zoya = Zoy—3. In
particular, we deduce that Z, _3 # Z,_; for otherwise VOE,?’ ) / Vo contains a unique
non-central chief factor for L, and by Lemma 5.2.34, OP(R,/) centralizes VOE,?' ).
But then, recalling from Lemma 5.4.19 that Z,_; < VCSQ), we have that V,_o =
Tt 1 Zp—3 = Zop 1 Zoguyr < V2. Since Viy_9 < Qury Zo £ Viw—o and 50 Zo Vg is
a subgroup of V.2 of order p*. Now, V.¥/Z, is a FF-module for L, and V3/Z,
has order p and generates V.2 /Z,,, we infer that p* < |[V2| < p°. If V)| = p,
then (V2 V] = [V_2Z4, V| = Zs, a contradiction by Lemma 5.4.19. Thus,

V2| = p> and the preimage of C (OP(Ly,)) in V@ which we write as C,

Vo) ) Za
has order p®. By the action of Qg on V{?)| we must have that C*V; < [V.2), Q4]Vj.

Moreover, since Z, = Z(Q,), we must have that [Q.,C°®| = Z,

If [Vﬁ(g),Qﬁ]Vﬁ/V/j is centralized by OP(Lg) then we have that C*Vz <9 Lg. But
then Zz < [C*V3,Q5] < Z, so that [C*Vs,Qs] = Zs. Then, we deduce that
Co, (CY) < Qg for otherwise Z, = [Qa, C?] = [QuNQs, C*] < Zs, a contradiction.

But now, as C* 'V, _5 < Ly, Vi centralizes O ' < C* =3V, _, so that Vj <
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CQD,,I(CW%) < Q., a contradiction.

Thus, [Vﬁ(g), Qp]V3/ Vs contains a non-central chief factor for Lg. Moreover, since
Va(,g) N Qatrsz < Qas2, an index p* subgroup of VOE,?’)/VQ/ is centralized by Z,
and we conclude that VB(S) /Vj contains two non-central chief factors for Lg, one
in Vé?’)/[v(g),Qﬁ]Vﬁ by Lemma 5.2.13 and one in [Vf'), Qp]V3/Vs, and both are
FF-modules for Lg. Notice that [V.? Qg,Qs] < Z, so that [Vé3),Q5,QB] < Vs
and write Ri = Cp,([Va”,QsVs/Vs) and Ry = Cp, (V" /[VSY,Qs]Vs) so
that Lg/R; = Lg/Ry = Lg/Rs = SLy(p). Indeed, either p € {2,3} and
Ls = (Ry, Ry, S) by Lemma 2.3.15 (ii) or Ry = Ry. In the former case, we have that
VAWV, QslVs 9 RaS so that [VRVEY, QslVi, QlVs = [V, QslVs < RaS.
But [V?,Qs]Vs < RyS so that [VB(?’),QL;]VB = [V.?,Qp]Vs < Lg, impossible as
then [Vé?’),Qﬁ]Vg /Vs is centralized by @, and so centralized by OP(Lg). Thus,
Ry = R, and as OP(Rg) does not centralize Vég) and R normalizes (o N @3,
we satisfy the hypothesis of Lemma 5.2.29 with A = . Since b > 7, outcome of
Lemma 5.2.29 holds and we have that V{* < (Z) < Z(0,(X)). IN particular,

V4 is abelian, and by conjugacy Vi, Z, < VOE,4_)3, impossible since [Z,, V] # {1}.

Thus, we have that Z,_o # Zg so that Zy_1 = Zy_o X Zg. If Zy_9 £ Zoyo,
then Voys = Vy_y = ZoyoZy o < Va@) is centralized by VCS4), a contradiction by
Lemma 5.4.28. Thus, Zy10 = Zy—aXZg = Zy—1. Now, [VOE?)OQQH, V] < Zpya <
Vo and by Lemma 5.2.34, OP(R,/) centralizes Va(,3 ). In particular, Z, # Z,_ o
and Zy_1 # Zy_3, else by Lemma 5.2.18, Z, 4 < VOEE)Z = chz) < Quo—4 and
Vo < Vé?ll = VCE,223 < @, respectively. Since Zy oZy 4 < Zoyo N Zy_3, we get

that Za/_g = Za/_4.

We will show that whenever (a—4, o’ —4) is a critical pair, we have that Z3 = Z,_;.

Choose a — 4 such that Z, 4 £ Q. _4. By the above, since Z, # Z,_», assuming
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Zg # Zn_1, we deduce that (ii) holds and R' := [V, 3,V _4] # Zs_1. Then
Zooog = RN X Zy_y. But RV < Z,,» < Vg and Vg = Z,Zy—9 = Vo_1. Then, if
Zg # Zo-1, Vs < Ly = (Qp, Qa—1, Ra), a contradiction. Therefore, we have shown

that whenever Z, 4 £ Qu—4, Zp = Zo_1.

Choose § € A(a) such that Zs # Zs so that ‘/;;(3) < Qu—4. Suppose that V(;(?’) £
Qu—3. Thereis § —2 € A®(4) such that Zy_4 = [Vs_o, Zo—_3] < Zs_; and since
Zo—g = Zot—g = Lo, Zor—2 < VN V5. If Zyy_9 < Z,, then Z, = Zg X Zy_9 =
Zo—1, a clear contradiction. Thus, Vg = Zy_2Z, = V5. But Zz # Z; so that

Vs < L, = (Qp, Qs, Ra), a contradiction.

Hence, V(;(B) < Quo_3 and since Zy_3 # Zo 1 = Layo, ‘/;;(3) centralizes V, _o and
‘/5(3) < Qu—1. Setting W = (V/\(?’) | Z\n = Zs, A € A(«)), we have that W* =
VO(W*NQy) and as Zy < V), V. centralizes W /V.). Moreover, since R,Qs
normalizes W< by Lemma 5.2.19, W* < L, = (V,s, Qs, R,). Since V,, centralizes
We V@ OP(Ly,) centralizes Wo/V.® and V;¥) < L., a final contradiction. [

Lemma 5.4.30. Suppose that Cy, (Vo) = Vs N Qo and b > 5. Then Vi £ Qp.

Proof. Since V < @, by Lemma 5.4.29, we may assume that b > 7 throughout.
Recall from Lemma 5.4.19 that Z, ; < V& < Z(V®. Notice that by
Lemma 5.4.29, we have that OP(Rj) centralizes Vﬁ(g) and by Lemma 5.2.18, if
Loy—1 = ZLy_3 then V, < Vof,zll = VOE,QZ?) < ., a contradiction. Hence, we
may assume that Z, | # Z,_3 throughout the remainder of the proof. We fix

a—4 € AW(a) with (o — 4,0’ — 4) a critical pair.

Suppose first that Z, o # Z, 4 so that Z, 3 = Zy_9 X Zy_4 is centralized by
VOE4). Then, V9 = Zy_1Z,_3 is centralized by VCS4) SO VOE4) NQu 4 = VCSQ)(VOE‘U N

Qo) and since Z, < V(2 it follows from Lemma 5.2.33 that OP(R,) centralizes
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V) In particular, we deduce that Z 3 # Zq-1, otherwise by Lemma 5.2.18 we have
that V,_3 < Vﬁ)l = VB(B') < Qo —4, a contradiction. Furthermore, as V0S4) L Qo4

we have that Z,_3 = Z,/_s.

By Lemma 5.4.29, Z, # Z,_2, OP(Rs) centralizes VB(S) and as Z,_1 # Zg, and
again setting R" := [Vy_4, V3], we have that Z, | < R'Z, y < Z, sand R'Z,
is centralized by VOE,SLL. Thus, VOE?’14 < Qq—2. Notice that,asb > 7,if Z,_5 < VOE,SZ4

then Z,_1 < Va(,g’zél < @ and we conclude that Z,_; = Zg, a contradiction. Thus,

If Vorg £ Qa_s then RY # Zy 3 and V., = Vo4 (VP , N Qa_s). Then Z,_5 =
Vaes, (VP N Qa_3)] for otherwise, OP(Las_4) centralizes V.7, /Vi_4. But then
Zoo =R x Z, 5 < VCS?L;’ a contradiction. Thus, Vy_y < Qu_3, Rl = Z,_4
and Z,_3 < [Va(,?il, Vas] < Zy—aN Va(,?’z4 = Z,_3 so that [Vcﬁ?l4, Va—s] = Za—3 and
V. =V a(V, N Qas). But then OP(Ly_y) centralizes V., /Vo_y, another

contradiction.

Therefore, Z_o = Zy_4 and by Lemma 5.2.18, Vo = V4 so that VCS“) N
Qa4 N Qu—3 < Qu_y. Since Zy_; is centralized by VW, VW N Qu_sNQu_3 =
VIV N Qy). If VW/VD contains a unique non-central chief factor which

is an FF-module for L, then by Lemma 5.2.18, V, < Vof?lg = VOE/:?L; < Qa, a
contradiction. Thus, VY £ Qu_4 and VY N Qu_y £ Qu—s.

Since b > 7, Zoy = Zop—o < Zoy_y < VO < Z(VO), If Zy_y = Zu_g, then
by Lemma 5.2.18, V4 = V,_g is centralized by VOS‘*), a contradiction. Thus,
Lo 5447 is centralized by VCSG). If Zy_5 # Zy_7 then Va(ﬁ) < Qo -5 and
VO = V(WO N Q.). But then OP(L,) centralizes V¥ /V®  and we have

a contradiction. Thus, Z,_5 = Zy_7. But now, as OP(Rg) centralizes Vﬁ(‘g) by
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Lemma 5.4.29, by Lemma 5.2.18 we have that V,,_4 < VCS,225 = V(1(,227 is centralized

by V¥ a final contradiction. O

Lemma 5.4.31. Suppose that Cy, (Vo) = Vs N Qu. Then b < 7.

Proof. By Lemma 5.4.30, V,y £ Q3 and Vﬁ(?’) < Qu-1- By Lemma 5.4.21, we have
that Z,_1 < VB(?’) and OP(Rp) centralizes Vﬁ(?’). In particular, if Zy_1 = Zy_s,
then V,, < Vof?ll = Va(?lg is centralized by Z,, a contradiction. Hence, V,_o =

Lo 14 3. Suppose throughout that b > 7.

Suppose first that Vﬁ(‘%) < Qu—4. Then, Vﬁ(s) N Q. _3 centralizes V,,_5 and so
VB(E)) NQu—3 = Vﬂ(?))(Vﬂ(s) N Qu). Since Z, < Vﬂ(g), VB(E)) L Qo —3. Moreover by
Lemma 5.2.35, we have that OP(Rz) centralizes Vﬁ(s’) and so VM £ Qu_s, else
VW <4 Lg = (Var,Qu, Rg). Thus, there is a — 4 € A®(a) such that Z, 4 =

(Za—a, Zor—3] and since Zy o < Zp 1 < Vﬁ(s), we deduce that Z,_9 = Zy_4.

Suppose that Z,_3 € Qa—3. Then (¢/ — 3,a — 3) is a critical pair with
Vars < Qu—4. By Lemma 5.4.30, VOE?E?) L Qq_1 and either Z, = Z, 5 or
Zo-1 = [Va—a,Va—s] = Zy—_4. In the former case it follows from Lemma 5.2.18
that Z,_4 < VOEE)Q = V2 < Qu_3, a contradiction. In the latter case, we have that

Zﬁ = Za,1 = Za/,4 = Za'72- Then R 7£ Za/72, so that Za/ S Zo/fl =R x Za/,Q S

Vs and V., centralizes Vés) / Vs, a contradiction.

Thus, Zy—3 < Qa-s and Zy_y = Zo-3. f Z_3 < Z,, then Z, 3 =25 =Zy_4 =
Zo—o. But then R # Z,_5 and Z,_y = R x Zg so that Z,_1 < Vs and Vi
centralizes Vﬁ(3)/ V3, a contradiction. Thus, V,—; = Z,Z,_3 is centralized by vcf?l?,
so that VOE?L,) < Qa-2. Then, Z,_3 < [Va(,ng,Va,g] < Z.,_o and since V,_3 does
not centralize VOE,QLS/ZO/_g, we may assume that Z, o < Va(,zzg. Still, [ch?ls N

Qao-3,Va 3] < Zy_3 and it follows from Lemma 5.2.32 then OP(R,,) centralizes
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VOEQ). Since Zy_o = Zy_4, Lemma 5.2.18 implies that V,,_o = V,,_4. Moreover,

since V4 is not centralized by VB(E’), but Zy 124 _5 < Vo4 is centralized, it

follows that Z,_1 = Zy_s.

Now, if Z,_4 = Z,_g then Lemma 5.2.18 implies that Z,_3 < Vy_y = Vy_g is
centralized by VOS4), a contradiction. Thus Z,_5 = Zy_4 X Z,_g is centralized
by Vo@zx since Zy_4 = Zq_3. Moreover, Z, _5 # Zo_7, otherwise Lemma 5.2.18
implies that Z, _3 < VCS,QZ5 = VCE,227 is centralized by V.Y, so that VCSZ centralizes
Vg and V.2, < Quos. If V., < Qu_4, then V%, = Z, 4(V®, N Qu_3)
is centralized, modulo Z, 4, by Z, _3 so that OP(L,_4) centralizes VOEE)4/ZQ,4,
a contradiction. Then VOEZ L Qu—4 and [VCSZ,VQI_Z;] L Zo_4. Since Zy_y =

Lo-3 < Vo@@ we assume that Z, _5 < VO@ZL.

Now, VCE4_)4 centralizes Z, _¢ < Z,_5 and either Z,_¢ = Z,/_g; or chﬂ centralizes
Zo_52q_7. In the latter case, we may assume that Z, _5 # Z,_7 for the same
reason as above, and so either VOE4_)4 < Qu—5 and OP(L,_4) centralizes Va(4_)4 / Vﬁ{l,
a contradiction; or Z, _7 = Zy_g, OP(Rg) centralizes VB(E)) and Z,_3 < Vogflz7 =
Vofflzg is centralized by V¥ another contradiction. Thus, Z, ¢ = Zu_g so that
Vo _¢ = Viw_g. Suppose that Va(4_)4 < Qu—s. Then [VCSZ& NQu—7, Var_g) = [VOE4_)4 N
Qw1 Vors] = Zars = Zor— and V.Y N Qo7 < Qus. But VYN Qus
centralizes Z, _5 so that VCS4_)4 NQu—7= VCEE)4(VC@4 NQa—4) and by Lemma 5.2.33,
OP(R,—4) centralizes VOSAL)4. But now, Lemma 5.2.18 applied to Zy_o = Zy_4

implies that V,,, < VOE,?’EQ = VOE,BLL < Qa, a contradiction.

Thus, we have shown that there is a critical pair (o« — 8,0/ — 8), Zy_o2 = Zy_4,
Lo = ZLo_gand Vy_g =V, _g. Since Zy_5Z,_9 < Vo _g is centralized by VOE4_)4,
we get that Zy 1 = Zo—5 = Zo—9. We claim that the pair (o — 8, o/ — 8) satisfies

the same initial hypothesis as («,a’). By Lemma 5.4.30, VOEE)S L Qu—10. But
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Lot—g = L5 < Vﬁ)4 is centralized by Va(i)g since b > 7, so that Z_9 = Zo_11.
Then applying Lemma 5.2.18 gives Vg < VOE,QZQ = ch?ln is centralized by Vcﬁ‘i,

a contradiction.

Suppose now that Vﬁ(‘:’) L Qu—g. Since Zy o < Zy 1 is centralized by Vb@’ it
follows that either Z,_o = Z,_4; or Zy_3 = Zy_5. In the latter case, we have
that Vés) N Qu—4 centralizes V,_o so that Vﬁ(S) NQu—s = Vég)(Vﬁ(s) N-NQuy)
and Lemma 5.2.35 implies that OP(Rz) centralizes V/3(5) . But then Lemma 5.2.18
applied to Z,_3 = Zy_5 gives Vi < VOS,423 = VOE}ZS < Qa, a contradiction. Thus,
Tty = Zor_y. If OP(R,) centralizes V%), then using Lemma 5.2.18 and Zy_o =
Zo 4, We have that Z, 1 Z,_5 < V,_4 is centralized by Vﬁ(5) and we conclude

that Za/,1 = Za/,5.

We have demonstrated, regardless of the hypothesis on Vﬂ(5), that Zy/_o_ap =
Zor—4—gr for k > 0, and there are suitable critical pairs to iterate upon. Suppose
that b = 9. Applying the above, we infer that Z, o = Zy 4 and Zy_¢ = Zyi13 =
Zg. Since V,y £ Qp, there is a critical pair (o + 1, 8) with V3 € Q.. Moreover,
VOE/QJ)FI < Qa+s, else by Lemma 5.4.25, R = Z,,3 = Zg, a clear contradiction. Thus,
(o/+1, 8) satisfies the same hypothesis as («, ’). But then Z, ¢ = Zp13 = Zoss =
Zo—gsothat Zy o =---=Zg. But then R# Zy_o, Zoy1 = Zy—a X R=Z, 19
and [V, Vég)] = Zy—1 < V3, a contradiction for then OP(Lg) centralizes Vﬁ(g) /Vs.
In fact, this applies whenever b = 4k + 1 for k£ > 2 but we will only require this
when b = 9.

Suppose that Vﬁ@ L Quo—g4 and b > 7. Then b > 11 and Vﬂm centralizes Z,_4 <
o1 < V5(3) and so, unless Zy_y = Zo_s, [Vﬁm,Za/,g)] = {1}. Notice that if
Zo—5 = Lo_7, then Lemma 5.2.18 implies that V4 < Vof?lg, = VOE/QE7 is centralized

by VB(E)), a contradiction. Thus, Vﬁm centralizes V¢ = Zo—5Zo—7. But then
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ViD= VP (VI 1 Qur—s) and V) N Qur—y < Qur_s, otherwise Vi~ = VP (V47
Qo) so that OP(Lg) centralizes Vén / Vﬁ(5), another contradiction. Then, Vﬁ@
Qor—a = V5(3)(VB(5) M-+ NQy) and Lemma 5.2.35 implies that OP(Rz) centralizes
VB(E’). In particular, V4 £ Q.4 for otherwise VW < Ly = Vi, Qa, Rp), a

contradiction.

We have shown that, if b > 7 and OP(R,,) centralizes V.(?) then Zp_1 = Zo_1_ai
for all £ > 0. Moreover, we can arrange that « lies along the infinite path (o/, o/ —
1,...,a’—=5,...); or for some critical pair (a*, o*') we have that Z,« o = Zp_y =
Zos_g and v® L Qo—4. In this latter case, Lemma 5.2.18 implies that V.4 =
Vo+_g and V) centralizes Vi _4, a clear contradiction. Now, since Z, # Z,_1,
Zoy—1 = Layo = Zo_9. But then [Vﬁ(g), V] = Zo—1 < Vi and OP(Lg) centralizes
Vﬁ(g) / Vs, a contradiction. In particular, if we ever arrive at a critical pair (*, o)
such that V%) < Qu-r_4, then OP(R,) centralizes V,{?) and we have a contradiction.
Thus, whenever b > 7, we may assume that for every critical pair (a*, a*'), we
have that V.- £ Qp-, Vﬂ(f’) < Qurr—1, Ve L Qurr—y and Zpwr_og = Zowr_y. Also,
whenever Z,«_4 # Zyw_g, Va(f‘) L Qorr—4 and VOEE)_4 < Qo

Suppose that Z, 4 # Z._¢ so that there is a critical pair (o — 4,o/ — 4) and
OP(Rg) centralizes Vé“r’). We may also assume that OP(R,) does not centralize
V2. Since Vo £ Qp, there is o/ +1 € A(c’) such that (o/ 4+ 1,) is a critical
pair. Suppose that V 4, centralizes Zg. Since Zoyo = Zg X R # Zagy, We
have that V 1 centralizes V3 and V 1 = Lo H(chal N Qp). In particular,
Va’+1 NQp £ Qu, otherwise V( r41 is normalized by Lo = (V3, Qo 41, Rar). But
now, [V.2 N Quy N Qa/+1,Va,+1 N Qs < Zoy1 NVP and since Z, £ V2 by
Lemma 5.4.21, [V NQuwNQuy1,V, ,HﬂQﬁ] = {1} and V(¥ /Z, is an FF-module

for L,, a contradiction by Lemma 5.2.32. Thus, it suffices to prove that Zj is
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centralized by VOE,?’). Since VW £ Qu_y, {1} # [Vaes, V—s] < Zao N Vy_y. If
Vaes, Var—a] = Zo1, then Z, 1 = Zg < V4, for otherwise Z, < Q.. Since
b > 7, this leads to a contradiction. Thus, Z, o = [V,_3, Vay_4| X Z4_1 and VOE§14
centralizes V,,_1 = Z,_27,. Thus, since Va(,ng /Var—4 contains a non-central chief
factor, [Vi_3, Var_4] < [Va_g,VOE?Z4] < Z,_o s0 that Z,_5 < VOE,?’_4. In particular,
Zoq < VCE?14 and since b > 7, we have that Z,_; = Z < Va(,?’l4. Since b > 9, Va(,?’)

centralizes V;?24 so that VOE,2 J)rl centralizes Z3, as required.

Thus, we have shown that whenever b > 7, Z,_o = Zy_4 = Zy_g and there is
a critical pair (5 — 5,0’ —4). Then, as [Va_4, Var—a] # Zo—s and Zy_5 # Zy_7,
Vﬁ(i < Quw—¢ and by Lemma 5.4.30, we have that Voy_y £ Qs_4. In particular,
(B — 5,0’ — 4) satisfies the same hypothesis as (a,a’) and applying the same
methodology as above, we infer that Z,_ ¢ = Zy_3 = Zo_10. Applying this
iteratively, we deduce that Z, _o = --- = Zg. In particular, Z,_» = Zg # R <
Zor—1 N Zosg 80 that Zo_1 = Zays. But then [V, Vo] = Zy_y = Zors < Vs and

OP(Lg) centralizes Vﬂ(?’) /Vs, a final contradiction. O

Lemma 5.4.32. Suppose that Cy, (Vo) = Vs N Qur. Then b # 7.

Proof. By Lemma 5.4.30 and Lemma 5.4.31, we have that V,, £ Qs and b = 7.
Since Viy_o = Zy 1 Zy_3 < Vﬁ(?’) and VB(S) is abelian, we have that C’QB(Vé?’)) =
Vﬁ(g)(C’Qﬁ(Vﬁ(?’)) NQ« ) and since Z, < VB(S), OP(Lg) centralizes C’QB(Vﬂ(?’))/VBB). In
particular, OP(Rpg) centralizes Cg B(Vﬂ(?’)). But now, by the three subgroup lemma,
for r € OP(Rg) of order coprime to p, [r, Qﬁ,Vﬁ(3)] = {1} and r centralizes Q3.
Thus, Rs = Qs and Lg = SLy(p).

Let o/ +1 € A(a’) such that Z, 1 £ Q. Then, VI NQu £ Qu11, for otherwise

Vr normalizes V(2| a contradiction for then Ls = (Vor, Qq, Q) normalizes V(2.
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Notice that [VOE,ZJ)FI, Vots] < Zoya N Zy41. Since (o 4+ 1,3) is a critical pair, we
have that Z, 4N Zy11 = Zo 3N Loy < Zo. But if Z < Z,_3, since Zy_1 #
Zo 3, we deduce that Z,, = Z,_o # R. Then R # Z,.3 for otherwise Z,_1 =
Loy—oR =2y _o9Zy_4 = Zy_3, and so VOE,QJ)FI centralizes Z,,9 = Z,13R and since
Zorvo F# Zars, we have that [VOE,QJ)Fl,Va+3] = {1}. Thus, whether Z, < Z,.4
or not, Va(?ll < Qa+2 and VCS?J)A = Za/+1(Va(,2J)rl N @p) and since Va(,zll A Ly =
(Vs, Qar+1, Quor), we may assume that VOE/QJ)rl NQs £ Qn and Zs £ Va(,zll. But now,
VL N Qs VN Quw N Quit] < Zuwyr NVE and since Zo £ VO, [V N
Qs, VP N Qo N Quii] = {1} and V?/Z, is an FF-module for L,. Then by

Lemma 5.2.32, OP(R,,) centralizes V.(?).

It follows from the arguments above, that if Z,,3 = R # Z, 5, then Z, | =
Zo—3 and we have a contradiction. Similarly, Z, o = R # Z,3 yields Z, o =
Zos4, another contradiction. Suppose that Z,,3 # R # Z,_5. In particular,
R L Zy 3. But now, Voy 9o = RZy 3 = Vy g If Zoyy o # Zy 4 then Ly 3 =
(Rey—3, Qur—2, Quor—g) normalizes Vo, a contradiction. Thus, Z, o = Zy 4 =
Zots so that Zy 1 = RZy_9 = RZy3 = Zgtro < Vg from which it follows that
Vs centralizes Vég)/V/g, a contradiction. Thus, R = Z, 9 = Zy_4 = Z,13 and by

Lemma 5.2.18, we conclude that V_o = V_4.

We may assume that VCS4) does not centralize Z,/_3, for otherwise VOE4) centralizes

Voo = Viroa = Zor-3Zay2, VY = VIP(VD N Qu) and VY < Ly = (Var, Qu).
Choose a — 4 € AW (a) such that [Z,_4, Zo_s] # {1}. If Zy_3 < Qu_3, then
Zo-s = [Za-a,Zo—3] < Zaro. Then, it Z, 3 = Zs, either Z, = Z, 5, a
contradiction for then Lemma 5.2.18 implies that Z, 4 < Vﬁ)Q = VB < Qu_s;
or Zg = L1 = Za-3 and by Lemma 5.2.18, Z,_4 < V,_3 = Vg < Q4 _3, another

contradiction. Still, Z,_3 < V,_1 N V3 and since Z,1o = Zg X Zo—g # Lo, We
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have that V3 = V,_;. Since OP(R,) centralizes V.?| Z, | = Zg, for otherwise

Vﬁ ﬂ La - <Ra7Qa—17 Qﬁ)

Suppose that Z, 3 £ Q.3 so that (o/ — 3, — 3) is a critical pair. By
Lemma 5.4.30, we may assume that (o/ — 3, — 3) satisfies the same hypothesis
as (o, '), in which case Z,_1 = Zs; or V 73 £ Qu-1 and by Lemma 5.4.25,
either [V _4, Vo3| = Zo—1 < Zato, and again Z, 1 = Zs, or Zo_o9 = Z,, and by

Lemma 5.2.18, we have a contradiction.

Thus, whenever there is Z,_4 such that Z,_4 does not centralizes Z, _3, we have
Zo-1 = Zz. Choose A € A(a) such that Z, # Zg so that V/\(S) centralizes Z,/_s.
Then V/\(g) centralizes Vo4 = Vo/_9 so that V)\( VB( ?1Q.). Then, V/\(?’)VB

Ls = (Qq, Vo). In particular, [Cj, V/\(S)Vﬁ(g)] is a normal subgroup Lg contained in
(C5, ViV ][Qus VIP]. Noticing that [Vars1NQp, VP = Vars1 NQp, Vs (V2 NQu)] =
Z3R = Z, 2, we have that [S, V)] < Vs and |[V,®)| = p*. But then [Qs, Vi”] = V5
and since [V ,V(B)] = Zoy-1 < Voyg < V+2, we must have that \VB \ = p°
and [Qa, Vﬁ(g)] = V@, Thus, V3 % [Cs, V)\ V53)] < V{2 and it follows that

V052) = V;3[Ch, VA V(?’)] < Lg, a contradiction. [

Combining all the results in this subsection thus far, we have the following result.

Proposition 5.4.33. Suppose that Cy, (Vo) = Va3 N Qu. Then b < 5.

In conjunction with the results proved in earlier sections, we have now proved
that Hypothesis 5.2.1 implies that b < 5. In the next lemmas and proposition,
we show this bound is tight by witnessing an example with b = 5. In [DS85] and
[Del88], this configuration is shown to be parabolic isomorphic to F3. In our case,

we have demonstrated in Section 3.3 that this leads to an exotic fusion system.
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The presence of this fusion system may go some way to explaining why it is so

difficult to uniquely determine F3 from a purely 3-local perspective.

Lemma 5.4.34. Suppose that Cy, (V) = Vs N Qo and b= 5. Then Vo £ Qp.

Proof. Assume that V., < Q. If V/2) < Qu_», then it follows from Lemma 5.4.19
that |V3| = p® and OP(R,,) centralizes V). Now, Z3 = R < Z,_; and since Vj #
Var—2, by Lemma 5.2.18, we may assume that Zg # Z, _o so that Z,_1 = Z,49.
But now, VCE,?’) NQu—2 < Quua so that [Va(,:s) NQu—2, V3] < Zoyo = Zo—1 < V. By
Lemma 5.2.34, OP(R,,) centralizes VOE,?’) and Lemma 5.2.18 applied to Z,—1 = Z412

implies that V3 < Vofi)g = VOE,ZZl < Qo , a contradiction.

Suppose now that Vo < Qp, [Vs| = p* and VP £ Qu o, If Zg = R # Zu 5
then, as above, Z,_ 1 = Z,12 and [VCS,?’) N Qu-2,Vs] < Zoyos = Zy—1 < Vg
Then OP(R,) centralizes VOE,?' ) and Lemma 5.2.18 provides a contradiction. Thus,
Zs = Zorn # Zo. But now, [V o, V] < ZyN Zoro = Zsg = Zy_5 and

V2 < Qu_s, a contradiction.

Thus, if Voo < Qg then V] # p?. Notice that if Zo_p = Zg, then Z3Z5Z, =
Zo1Z%_y is of order p® and normalized by Lo = (Vj,V§,Ry), for some
appropriately chosen ¢ € L., a contradiction. Now, if Z,_ o < V< then
Vi = Za122aCy, (OP(Lg)) < V. But then V* = V2 and we have a contradiction.
Since [Qa, VY] < V* and Vy_y < Q, it follows that V) N Q. _» centralizes
Voo and VP N Qw9 < Qu—. Since both V.2 /V and V*/Z, have non-central
chief factors, [V{? N Qu, V] = Zo < V2 and both V2 /V* and V*/Z, are
FF-modules for L,. Then by Lemma 5.2.32, we have that OP(R,,) centralizes V(2
and by Lemma 5.2.18, Zy # Zy_5 and Zy_1 < V. Since V2 £ Q. _y, and

VOE2) centralizes Z, _1Z,12. By Lemma 5.2.31, we may assume that Z,_1 = Z,9.
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But now [V, V] = Zs < Zy_q and Zy 179, is of order p® and normalized by

Lo = (V3, V3, Ror), a contradiction. ]

Lemma 5.4.35. Suppose that Cy, (Vo) = Vs N Qo and b = 5. Then |Va] = p?,
R = Za/_Q 7§ Zg 7é Zo/ 7§ R and Za’—l 7& Za+2.

Proof. By Lemma 5.4.34, we have that V,, £ Qg for all critical pairs («, ).
Suppose that |V3] # p?® and fix o/ + 1 € A(a/) such that Z, 11 £ Q. In particular,

(o 4+ 1, B) is a critical pair satisfying the same hypothesis as («, ).

We suppose first that Zg # Z,_5. As in Lemma 5.4.34, this implies that Z,_o £
Ve s0 that VO N Qu 9 < Qu—1. Moreover, [V Vi o] < Z, NV g = Z5 and if
Ve L Quz,then ZgZ3 20 9 = Zay2Zy.o is of order p? and normalized by Ly _o =
(Ve (V)9 R, _g) for some appropriately chosen g € L,/ 9, a contradiction. Thus,
Ve = Z, (Vo Qu).

Set Ug := ((V*)9). Then [Ug, Viy_s] < [Us, Cs] N Vi_o < Voo N V. Notice
that if Voy_o NV > Z, 19 then, as Vy_5 N V3 is centralized by Vi, Voo NV =
Za2Cv,(OP(Lg)) = Zay2Cv, ,(OP(Lar—2)) and Zg = [Qata, Var—2 N V3] = Zar o,
a contradiction. Thus, Uz < Qu_2 for otherwise Z,,277,, is of order p?
and normalized by Lo = (Us, U§, Ry —2), for some appropriate g € Lo,
another contradiction. Since Z,_o # Zs, it follows from a similar argument
to above that V*~! < (4. Suppose that V* £ Q. _; for some p € A(B).
Then {1} # [V*, V71 < Z,N V™l Notice that Zg £ V! for otherwise
Vares = Zoy-1Za42Cy ,(OP(Loy—z)) < V71 Thus, Z, = [V L, VH] x Zg
centralizes V,, and since R # {1}, it follows that Z, = Z,15. Since Zy_5 < Y-l
and Zs £ V! we have that [V* V" = Z, 5 < Zy_1, a contradiction

since V# £ Qu—1. Thus, Ug < Qu—_1. Since V*Vz 4 Lg, we conclude
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that [Uﬂ N QO/,Va/] = Za/ S Uﬂ and Za/ ﬁ VB. But now Za/_g 7é Za/ and
Var—a = Za/fIZa+2CVa/_2 (OP<L0/72)) < Uﬁ

Suppose that [V?) Z,_1] # {1}. Then there is « — 1 € A(a) such that
Vart, Zar—1] # {1} I Zo 1 < Qae1, then Zy 1 = [Zo1, V1] < [Var_2, VY]
Since Z, % Vg, it follows that Z, | = Zs. But then [V o, VY] < Z5Z. 4
and if V% £ Qu s, then Z,,977., is of order p* and normalized by Lo o =
(V@ (V)9 Ry _5) for some appropriately chosen g € Lo/_s, a contradiction.
Thus, Zo—1 = [Zo-1,Va-1] = Zo—2 and Z, = Zy_9 X Zg = Za19, a contradiction.
Thus, Zy—1 € Q-1 and (o/ — 1, — 1) is a critical pair. Since Z,_o # Zg,
(o/ —1,—1) satisfies the same hypothesis as (o, ') and so we see that Vs < Uy _s.
But then R = [Vi, Vir] < [Uw—2,Cors] < Vig and B < Vs N Vi < Zaso.
Similarly to before, this implies that V3| = p®, and we have a contradiction.
Thus, [V?), Zy 1] = {1} and since Z,_1 # Za_3, it follows that V(2 centralizes
Var—o and V2 < Qu_;. In particular, this holds for any A € A(B) with
Zy = Zy. Forming W8 := (V\? | Zy = Za, A € A(B)), we have that WAU, /U,
is centralized by V., and by Lemma 5.2.19, normalized by Rz(),. But then
WhUs < Lg = (Var, Rg, Q) and since V., centralizes WUz /Uy we deduce that
Vi) = VU, 2 Ly, Now, R = [V, Var] < [V, V2 U o] = [V, ViioUr o] =
[V, Up—2] and since Vi < Cyi_g, it follows that R < V3N Vg = Z,4o, which

again implies that |V3| = p?, a contradiction.

Suppose now that Vi, € Qg, |Vs| # p* and Zg = Z, 5. Since (o’ 4+ 1, ) is also
a critical pair, by the above, we may assume that Z,, = Z,_5 and Z, = Zs.
Set UP := (V* | Z\ = Z,, A € A(B)) so that (), ') is a critical pair for every
such \. For such a \, [V} Vi o] < Z, NV 5 and since Zg = Zy_o, it follows

that V* < Qu_o. If V} £ Qu_y, then using that [V~ Vs3] < Z,; and Vj
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is centralized by V?, it follows that [V ™' Vs3] = Zy_ o = Z so that V=1 <
Qp. Then [V¥1NQy VY < Zy = Z, and since Z, % VOE?Zl, we have that
V1N Q\ VA = Zs < Zy_y. Since V¥ ~1/Z,_, contains a non-central chief
factor, V=1 £ Qy and V*'~1/Z,_, is an FF-module for Ly/—;. Then VOE?ZlﬂQg =
VoL (VP nQ,) and since Z, = Z, £ VP, VP, /V¥'1 is also an FF-module
for Lo—1. Then Lemma 5.2.32 and Lemma 5.2.18 applied to Zg = Lo—g = Ly
gives V,y = V3, a contradiction. Thus U? < Q. and UPV;/Vj is centralized by
V. Since U < R3Q,, by Lemma 5.2.19, UP < Ls = (Vy, Rs, Q,) and since V,,

centralizes U® /Vj; we have that V*Vj; < Lg, a contradiction by Lemma 5.2.31.

Thus, we have shown that [V3| = p*, R < Zy_1 N Zyye and V,y £ Q. Suppose
that Zw—1 = Zato. Then ViV NQu s < Qu—1 and [V NQu—2, Vir] € Zo—1 < Vj
and it follows that VB(S) / Vs contains a unique non-central chief factor for L which
is an FF-module. Then, Lemma 5.2.34 and Lemma 5.2.18 applied to Z, 1 = Zy10
gives V, < Vof,zll = VOE_?Q < s, a contradiction. Now, R < Z,/_; N Z,12 and so

R = Z, 5, otherwise Z, 1 = Z,9. This completes the proof. O

Lemma 5.4.36. Suppose that Cy,(Vy) = Va N Qu and b= 5. If [VB(?’), QslVs/Vs
contains no non-central chief factor for Lg then [Vég),Qﬁ]Vg < Z(Vﬁ(g)) and Vi
acts quadratically on Vﬂ(s)/Vg. If, in addition, V?)/Z, is an FF-module for L,

then V2| = p* and [Vﬁ(g), Qs] = V.

Proof. Suppose that [Vég), Qs]V3/Vp contains no non-central chief factor for Lg.
Then OP(Lg) centralizes [Vés),Qﬁ]Vﬁ/VB and so [V)\(z),Qﬁ]Vg < Lg for any A €
A(pB). It follows that [V(?’),QB]VB = [V/\(z),Qg]Vg for any A € A(f). But V/\(2) is
elementary abelian and so [Vé?’), QplVs < Z(Vé?’)). Moreover, [Vﬁ(?’), Qs VB(S)] ={1}
and it follows from the three subgroup lemma that [Vﬂ(g), V5(3), Qp] = {1} so that

[Vﬂ(?’), Vﬁ(s)] < Z(Qp) = Zg. Since Vi,V < VOE,?’EQ, it follows by conjugacy that Vﬂ(g)
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is non-abelian and so [Vﬁ(?’), Vﬁ(B)] = Zg. Then [Vﬁ(g), Var, V] < [Vﬁ(g), VCS,SEZ, vﬁﬂ <

Zo—9 < V3, as required.

Suppose now, in addition, that V(?)/Z, is an FF-module for L,. Set C® to be

the preimage of C OP(L,)). Then by Lemma 2.3.10, V,{?) /C® is a natural

v /za<
SLy(p)-module and since V3| = p?®, we may assume that |C% = p?, |[V?)| =
p® and C* NVy = Z,. In particular, if OP(Lg) centralizes [Vﬁ(g) ,Qp]V3/Vs then
CVy = [V Qs]Vs < Lg and C* < Z(Vﬂ(?’)). Furthermore, as Z, = Z(Q,), we
must have that [C*, Q,] = Z, and calculating in GL3(p) and applying the three
subgroup lemma, we infer that |Q,/Cq, (C*)| = p* and Q,/Cq, (C*) is a natural

SLy(p)-module for L,/ R, = SLa(p).

Now, as C*V3 9 Lg, [Cz,C?] is normal in Lg and contained in Z,. Note that Cj
has index p? in Q, and so [Cs, C*] = {1} implies that Cs = Cq, (C*) < (Ga, Gg),
a contradiction. Thus, [Cs, C*] = [Qs, CY] = Zz so that Cp, (C*) < Qp, for
otherwise Qn = (Qu N Qs)(Co, (CY)) and Zs = [Qa, C*] < L,. But now, since
Ccot? < Z(VCS?EQ), Vo < Cg,.,»,(C*T?) < Qp, a contradiction. Thus, C* = Z,,

|V052)‘ = p* and [Vﬁ(?’), Qs] = Vs, as required. L

Lemma 5.4.37. Suppose that Cy, (Vo) = V3 N Qu and b = 5. Then we may

assume that V.2 £ Qu_s.

Proof. Since Lg/Rz = SLo(p), we can arrange that there is ¢ € Lg such that
g % GpasaRs but ¢* < GgaiaRs. Then Z9. # Zaws but 2%y = Zaps and
so we label a = (a + 2)9 so that (a,a’) is still a critical pair. It then follows
that RsQY.y = RsQs and RpQY = RzQa+2. Moreover, as Vo € Qp, there is
o' +1 e A(d’) such that Z, 11 £ Qp and (o/ + 1, ) is a critical pair. We arrange

also that there is h € Lo with b € G o1 Ro but h* € Gy o1 Ry such that
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(O/ + 1)h =a - 1, RO/QZ’-H = Ra’Qa’—l and Ra’QZ’_l = Ra’Qa’+1-

Set W8 = (V% | A € A(B), Zy = Z,) so that by Lemma 5.2.19, W# < RsQ..
Set We' = (VA | pe M), Zy = Zyi1) 4 RyQu1. Finally, we set UP :=
(‘/5(2) | 1€ AB),Zs = Zaya) < RsQoyro. In particular, UPW? < R and for
g € Lg such that g £ GgaraRp, 9* < GgaroRs and a = (a + 2)9, we have that

(UP)9 = WPF and (WF)9 = UP.

For A\ € A(B) with Z), = Z,, Zo—1 < @, and so [Za/—l,V,\(2)] < Z\. Thus,
(WENQu 9, Zor—1) < Z\NZg_o = {1} since Zg # Zo_o. Therefore, WPNQu o <

Qalfl. Slmllarly, Wa, N Qo/fQ S QOtJrQ'

Suppose that W# < Qu_s so that V2 < Qu_o and W8 = V(WP N Qu). If
(WO O Qur, Vir] < WP, then V¥ = W8 < Ly = (Rg, Vi, Qu), and V¥ < Q1.
Then Vﬁ(Vﬁ(g) N Qu+1) is an index p subgroup of Vﬁ(?’) centralized, modulo V3, by
Zori1 and Vﬁ(?’) / Vs contains a unique non-central chief factor which is an FF-module
for Ls. By Lemma 5.2.34, OP(Rpg) centralizes Vﬂ(‘g). But then, for A € A(f) with
Zy = Za, it follows by Lemma 5.2.18 that V\” = V® and V;”) = W# = V), a

clear contradiction. Thus, if W# < Qu o, then (WP N Qu, Vo] = Zo < Vﬁ(?’) but

Zoy £ WE.

Now, still assuming that W? < Qu_a, [WPNQuwNQu11, WY NQp] < Zor 1 NWPE =
{1}. In particular, [V, N Qu N Qary1, W NQs] = {1} and if W N Qs £ Q.
then as V(2 = Z, (V{2 NQu), it follows that V(¥ /Z, is an FF-module for L, and
VONQw £ Qo1 W NQs < Q, then W £ Qu_5 otherwise we obtain the
contradiction Va(,?’ ) — Va(,%)rl in the same manner as the case where W# < Q. _s.

We may as well assume that Vé?}rl L Qa2 SO that Va(,zll does not centralize Z, o

and since Va(al is abelian, Zg £ VOE/QJ)FI. Then Va(,zJ)rl NQu—2 = ZO/Jrl(Va(,zl1 NQa)
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and [ a+1 NQu, WPNQy] < V(2 11N Zg={1} and V, CS?J)FI/ZQ/H is an FF-module

for Lyyq.

Therefore, if W8 < Qu_» then V.?/Z, is an FF-module for L,. Moreover,
WE V] < Zpy < Va% < U? and so VyRs = Qui2Rs normalizes WAUP,
But then (Qat2Rs)? = QuRp normalizes (WPUP)9 = WAUP and V¥ = WPUS <
Lg = (Qara, Rp, Qo). U £ Qu_o, then there is a critical pair with (8—3, o/ —2)

such that Z,2 = Z3_1, a contradiction by Lemma 5.4.35; and so we conclude that

5) < Qa/fQ-

Suppose that Vﬁ(‘g) L Qur—1. Since Zy 1 < Vﬁ(3), we have that Z, 5 < [Vﬁ(g), Vﬁ(‘g)] =
V5 and it follows from Lemma 5.4.36 that [Vﬂ(g) ()s]/ V5 contains a non-central chief
factor Lg. Moreover, by Lemma 5.2.13, Vﬁ(g) /Vs v® , Q] contains a non-central chief
factor for Lg. Notice that if Z,, < [Vﬁ(g), (Q)g], then [VB ,Qg] < Qu 1, for otherwise
Vo would centralize Vég) / [Vﬁ(g),QB]. But then Vﬁ(g) = W# [VB(B),Qg] < Lg and
Vﬁ(g) < Qu-1, a contradiction. Thus, Z, £ [V(?’),Qg] and since [Vﬁ(?’),Qﬁ]/V[g
contains a non-central chief factor, we infer that [VB(?’),Qg] L Quo—1. Now,
since WP < Qu_1, we have that [W# Q5] < Qu_1 and as Z, & [Vé?’)aQ/B]’
[[WP8,Qp], V] < Vp so that WP QslVs < Lg = (Vu,Rs,Q,). But then
[Vé?’), Qs = WP, Qs]Vs < Qu—1, a contradiction.

Thus, Vﬁ(?’) < Qo1 and it follows that Vs(Vjy v N Qo) has index at most p in
Vﬂ(g). Then by Lemma 5.2.34, OP(Rg) centralizes VB3 and by Lemma 5.2.18,
WP =V and U° = VOE?Q. Furthermore, by Lemma 5.4.36, |V{?)| = p*. But then

VB(?’) V V(+2 and since V centralizes Va’—2vﬂ = Va+27 Vﬂ(s) is abelian. UpOIl

conjugating, V( )2 is abelian, impossible since [V3, V] # {1}. Thus, W# £ Q.

Using the symmetry in the critical pairs (o, a’) and (o/ + 1, 3), we may assume
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that W £ Qu—s. We may as well arrange that for the critical pairs (o, o) and
(o’ +1,8) we have that V.2 £ Qu_o and Va(,zll £ Qo —2, and the result holds. [

Throughout the next lemmas and propositions, by the above work, we assume
that Voy € Qp, Zor1 # Zasa, R=Zo 9 # Zg # Zeoy # R, VP £ Qu_» and for
o'+ 1€ A(d) with (o + 1, 3) a critical pair, VOEZ)L1 £ Qu—o. In particular, V(2
does not centralize Z,_; and so Zo £ Cq,(V?). Similarly, Zs £ Cq_, +1(Va(,z}rl).

We set W# := (VA(Q) | A€ A(B), Z\ = Za) < RpQ, throughout.

Lemma 5.4.38. Suppose that Cy,(Vw) = V3N Qu and b = 5. Then OP(Lg)
centralizes [Vﬂ(?)) ,Qs|Vs/ V3.

Proof. Suppose that [Vﬁ(?’), Q5]V3/ Vs contains a non-central chief factor for Lg. In
addition, suppose that Z, <« [Vﬁ(?’),Qg]VB. Notice that [W? Qs] = [W?,(Qa N
Q)I[WP (Qa N Qas2)] < Za[Qarz; Qasa] < Qu—z. Now, WP N Qu_s, Zor—1] <
T3 N[WP, Zoy 1] < Zor—20Zo = {1} and s0 [W5,Qs, Ver] < Zar 1 O[VAY, Qp) <
Zo—3 < Vs, In particular, it follows that [W# Qs]Vs < Ls = (Vir, Qu, Rg) and
W8,QslVs = [VAY,Qs]Vs. But then, [V, Q4]Vis, Qa] < Vp, a contradiction

since V(B),Q Vs/V35 contains a non-central chief factor.
B BlvB/ VB

Thus, Zo < [VA¥,Q]Vs. But then Vo = ZoZays < [VA¥,Q5]Vs. Now, since
V2 L Qur_s, then is some a — 2 € A®(a) with Z4_9 £ Qo2 and (o — 2,0’ — 2)
a critical pair. But [Vﬂ(?’),QB]Vg < [Qp, Qp]Vs < Qq-1 since Qg N Q1 has index

p* in Qp. Therefore, V5 < Q,_1, a contradiction by Lemma 5.4.37. O

Lemma 5.4.39. Suppose that Cy,(Var) = Vs N Qo and b =5. Then p € {2,3}
and for V :=V® /7, cither:

(i) V is a quadratic module determined by Proposition 2.3.19;

294



(ii) V = [V, Ra]; or

(i) V = Oy (Ra).
Moreover, Lg = SLy(p).

Proof. By Lemma 5.4.38, [VA” Qs]Vs/Vs is centralized by OP(Lg). Then
V®,QsVs < VI Now, VI¥,QsVs < Z(VY) so that [ViV, VY] <
Q(Z(Qs)) = Zg by the three subgroup lemma. Moreover, Cs = Vﬁ(‘g)(C’ﬁ N
Qo) and [C5 N Qurs, V5] < [V, Quoa) < V%) < V¥ 50 that O7(Ly)
centralizes Cp/ Vﬂ(?’). But then OP(Rpg) centralizes Qﬁ/VB@). Indeed, Vﬁ(?’) /Zs =
Vi) 25,0"(Bo)]  Cyo 1,

subgroup lemma, and [Vs, OP(Rg), Cv,(OP(Rg))] = {1}. If [V, OP(Rp)] £ Qur—2,

(O"(Rg)). Now, [07(Rg), Vi, Q5] < Zs by the three

then [V, N Qp, [V, 0P(Rp)]] < Zg < Vy_o and we deduce that VS Vs
contains a unique non-central chief factor. Then Lemma 5.2.34 implies that OP(Rp)
centralizes Vﬁ(‘g). It is straightforward to show that CQB(Vﬁ(g)) /Vp is centralized by
OP(Lg) and a final application of the three subgroup lemma yields that O?(Rp)
centralizes Qs and Lg = SLg(p). Thus, [Vs,OP(Rg)] < Qu—2. Moreover,
Zo—9 < V3 < CVB@)(OP(Rg)) so that [V, OP(Rg)] < Co—a. If Z, < [V, O0P(Rg)],
then C’Vég)(Op(Rg)) centralizes Vi _o = Z,127, and Vpa(3) < Cy_o, a contradiction.
Thus, [V3, OP(Rg), VCE,?’Q] < Vw2 N[V, OP(Rg)] = Zs so that OP(Lg) centralizes
Vs, OP(Rp)]. Hence, OP(Rp) centralizes Vﬁ(g) and the three subgroup lemma yields

that Rg = Qg and Lg = SLay(p).

Now, writing Q := Q3 NOP(Lg), we have that [V(?, Q, Q] < [V(3), Q,Q] <Vs. By
coprime action, and setting V := V.3)/Z, we have that V = [V, R,] x Cy(R,)
and either V3/Z, < [V, R,| or ) acts quadratically on [V, R,|. Similarly, either

Vs/Zo < Cy(R,) or @ acts quadratically on Cy(R,). Since both [V, R,] and
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Cv(R,) are normalized by L,, and V3/Z, generates V', we have shown that either
@ acts quadratically on V', V = [V, R,] or V = Cy(R,).

In all cases, @ acts cubically on V' and so if p > 5 the Hall-Higman theorem yields
that OP(R,) centralizes V?). Since @ centralizes Cj/ VB(?’), [Co. (V2.Q,Q] <
[Cs,Q,Q] < [Vﬁ(g),Q] < V) and a standard argument implies that OP(R,)
centralizes Cg, (V? and a final application of the three subgroup lemma yields
that OP(R,,) centralizes @, G has a weak BN-pair of rank 2 and [DS85] provides

a contradiction. Hence, p € {2,3}. O

Proposition 5.4.40. Suppose that Cy, (Vo) = Vs N Qu and b =5. Then p =3

and G s parabolic isomorphic to Fs.

Proof. Let P, be a G, g-invariant subgroup of L, such that S < P, and L, =
P,Cr. (V), and form X := (Gg, P,). Let T be the largest subgroup of S which is
normalized by X. Suppose that T # {1}. Then (Z5) < Z(T') and by construction,
Zo £ T, otherwise Vﬂ(?’) < (ZX) is abelian, a contradiction. Even still, [T, Z,] =
{1} and taking normal closures under X, we deduce that 7" < CQ/B(V;?’)). But
OP(Lg) centralizes CQ/z(V,@gS)) /Vs and so G/T is of characteristic p. Assume that
P, /T is not of characteristic p so that OP(P,) acts non-trivially on 7. Since
Zo £ T, T is not self-centralizing and we may assume that Cs(T) < @, and
Cs(T) £ Qp. If Cs(T)* NQp £ Qn for some x € Lg, then [Cs(T)* N Qp,T| =
{1} so that [OP(P,),T] < [{(Cs(T)* N Qp)™),T] = {1}, a contradiction. Thus,
(C5(T) N Qa)H) < Qu and so [0%(Ly), Q4] < [Cs(T)™), Q4] < ((Cs(T) N
Qs)¢) < Q. and Q,N Qs < Lg, a contradiction by Proposition 5.2.25. Thus, the
triple (Gg/T, P,/T,G.p/T) satisfies Hypothesis 5.2.1 and assuming that G is a
minimal counterexample to Theorem 5.2.2, we conclude that P,/Q, = (3 x 3) : 2

and |S/T| = 25. But Qs contains three non-central chief factors for L and we
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have a contradiction. Hence, for every subgroup of P of L, which contains S
and is normalized by G, s, L, = PCp, (V) implies that L, = P. In particular,
applying Lemma 5.2.32 and Lemma 2.3.15 (iii) when p = 3, we deduce that if V' is
an FF-module then R, < Cr_(Cq, (V{?))S and the three subgroup lemma yields
that R, = @, and G has a weak BN-pair of rank 2. Then [DS85] gives that V is

not an FF-module, and we have a contradiction.

Note that Vég)/[Vég),Qg] is a quadratic 2F-module for Lz = SLy(p)
by Lemma 5.4.39. Hence, applying Lemma 2.3.11, we have that
[Vﬂ(?’) / [Vﬁ(?)), Qgs), OP(Lg)] is a direct sum of at most two natural modules for L.
Assume that [Vég) / [Vﬁ(‘g), Qs], OP(Lg)] contains two natural modules. Then V/_
projects as a subgroup of order p in [VB(?’)/[Vf),Qg],OP(LB)]. Indeed, we have
that Vﬁ(g)/[Vég),Qﬁ] = [VB(Z)’)/[VB(S),Qg],Op(Lg)]. Since Cg/Vﬁ(S) is centralized by
OP(Lg), [Co.(VP),Q] < V. and so OP(L,) centralizes Cg, (V). Then the
three subgroup lemma yields that R, N Cr (V) = Q.. By Lemma 2.2.7, for
W = <Val;€2>[vﬁ(3),@ﬁ], Vﬂ(:})/W is a natural module for Ls = SLy(p).Then
W < Cy_s for otherwise W £ Qo _o, Vﬁ(3) = W(Vﬁ(g)ﬂCa/_ﬁ so that [V(3), chf”lz] <
W, a contradiction since Vﬁ(s) /W contains a non-central chief factor. Hence,
(W, Vy_a] = {1} so that W is abelian. Then W = V3(W N Q) and since W/Vp
contains a non-central chief factor for Lg, WNQy £ Qa1 for some o/ +1 € A().
Since W is abelian, W N Q. acts quadratically on Vof?ll. Hence, V' is also a
quadratic module. Since V3/Z, has order p and generates V, by Lemma 2.3.22,
p = 2 and L,/CL, (V) = Dih(10) or (3 x 3) : 2. Then R,S is a maximal
subgroup of L, containing S which is normalized by G, 3 and we deduce that
Lo/Quo = (3% 3): 2. Let Pi < Ly with S < P!, Ly = PIR,, P1/Qa = Sym(3)
and Q, N Qg A P! for i € {1,2}. Then the triple (Lg, P!, P?) satisfies the

hypothesis of [Che86, Theorem B| and as Sym(4) is not a homomorphic image of
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(3 x 3) : 2, we have a contradiction.

Hence, [Vﬁ(?’) / [Vﬁ(g), Qp], OP(Lg)] contains a unique non-central chief factor for Lg.

Moreover, V.?)/ VsnC,,

(3)/V5(OP(L6)) has index pin V(2. Setting Q := Q3NOP(Lg)
8

there is an index p subgroup U of V.2 such that [U, Q] < Vj. It follows that there
is an index p? subgroup U* of V,\?) with [U*, Q] < Z, so that V is a 2F-module for
L,/Cp, (V).

Suppose now that V is a quadratic module for L,. Then, since Vj3/Z, has order p
and generates V', by Lemma 2.3.22, p = 2 and L, /Cp_ (V) = Dih(10) or (3x 3) : 2.
Since R,S is a maximal subgroup of L, containing S which is normalized by G, s,
we deduce that L,/Q, = (3 x 3) : 2. Let P, < L, with L, = P,R., S < P,,
P,Q, = Sym(3) and O3(P,/Qs) < Lo/Qu. Let T be the largest normal subgroup
of S which is normalized by both Lgz and P,, and assume that 7" # {1}. Then
(VIy < Z(T) and (VI®) £ Z(VSY so that Vi < (2(T) n Vi) Z(V). But
then V5(3) is abelian, a contradiction. Thus, the triple (PyGa 3, G, Gap)) satisfies
Hypothesis 5.2.1. Assuming that G is a minimal counterexample to Theorem 5.2.2,
we deduce that |S] < 27. But Vﬁ(3) > 27 and we have a contradiction. Thus, V is

not a quadratic module.

Since whenever p = 2, |S/Q,| = 2 and there is always an element z € S/ \ Q.
which acts quadratically on V. Thus, for the remainder of this proof, we may
assume that p = 3 and V = [V, R,]. Moreover, V.2) projects with order p in
[Vﬂ(g)/[Vé?’), Qs), O*(Lp)]. Let Z, < U < V.2 with U < L,. Then U/Z, contains a
non-central chief factor for L, and as U < V.2, UNV; = Z,. Then V2 = U(V.?n
[VB(?’), Qs]) for otherwise, [Q, U] < UNVj = Z,, a contradiction since U/Z, contains
a non-central chief factor. But now, [V{?, Q,Q] = [U,Q,Q] < V3 NU = Z,, a

contradiction since V' is not quadratic. Hence, we conclude that V' is an irreducible
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2F-module for L,/Cr, (V).

Note that by Lemma 5.2.17, R, does not normalize S so that for L := O%(R,S),
L/Q, has a strongly 3-embedded subgroup and O3*(L/Q.) = O3(L/Q.).
By coprime action, V' = [V,03(L/Q.)] x Cy(O3(L/Q,)) is an S-invariant
decomposition.  Using that [V,Q,Q] = V3/Z,, in a similar manner to
Lemma 5.4.39, either V' = [V, O3(L/Q,)] or V = Cy (O3 (L/Q,)). In the latter
case, we have that O3 (L/Q,) < Ra/Qa NCr, (V)/Qs = {1}, a contradiction.
Hence, V = [V, 03/(L/Q.)]-

Suppose that there is Z, < U < V.2 with U < L. Since Oy (Ox(L/Q.)) = {1},
U contains a non-central chief factor for L. If U < Z (Vﬁ(g)) then [U, Q] = V3 so
that U is dual to an FF-module for L/CL(U/Z,) = SL2(3) by Lemma 2.3.10.
But then an index 3 subgroup of V(2 /U is centralized by @ so that by
Lemma 2.3.10 L/Cp(V?/U) = SLy(3) and V,? /U is an FF-module. Since
Cv(03(L/Qa)) = {1}, we conclude that [V| = 3% Similatly, if U £ Z(Vi”),
then we may assume that V3 £ U, otherwise V@ /U is centralized by Q, a
contradiction since Cy(O3(L/Q,)) = {1}. Hence, an index 3 subgroup of U is
centralized modulo Z,, by @ and U is an FF-module for L/CL(U/Z,) = SLy(3) by
Lemma 2.3.10. Moreover, [V{?, Q] = [U, Q]V; and V.2 /U is dual to an FF-module
for L/C(V? /U) = SLy(3) and again we deduce that |[V| = 3*. In either case,
by Lemma 2.3.15 (ii), L/Q, = SLy(3) or (Qs x Qs) : 3. In the latter case, for
two distinct central involutions t,ts in L/Q,, we have that V' = [V 1] x [V, 5]
and so V' is a quadratic module, a contradiction. Thus, L/Q, = SLy(3). Now, V/
is an irreducible module of dimension 4 for L,/Cr, (V) and L,/Cr, (V) contains
a subgroup of 3’-index isomorphic to SLy(3). Considering irreducible subgroups

of SL4(3) which have strongly 3-embedded subgroups and which do not have
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a 3-element which acts quadratically, we calculate (e.g. using MAGMA) that
Lo/Cr, (V) is of order 2°.3, V is the unique irreducible module of dimension
4 for L,/Cp, (V) and L = R,S. Hence, |R,Cr. (V)/Rs| = Z(Lo/Rs) so that
C1.(V)/Qal = 2 = |Z(Ra/Qa)l, [Lal = 2°, Z(La) = CL,(V)/Qa X Z(Ra/Qa).
Once again, calculating in MAGMA we conclude that L, = Qg x Qg) : 3. But
then, since Lg = SLy(3), there is ¢t < L, such that 7' < Z(L,) and ¢ centralizes

Lg, a contradiction by Proposition 5.2.6.

Thus, V is irreducible for L/Q, so that (Vj *5(= V. Let T be the largest
subgroup of S normalized by both Lz and R,S. Suppose that T # {1}. Then
Zo £ T, for otherwise, Z, < Z(T) and taking respective normal closures yields
Vﬁ(?’) < Z(T) is abelian, a contradiction. Since Z, centralizes T, we infer that
7T, VB(S)] ={1}and T < Cy B(Vﬁ(g’)). Since coprime elements of O3(Lg) act faithfully
Qp/Cp, we conclude that Lg/T is of characteristic 3. Assume that R,S/T is not
of characteristic 3 so that O3(L) acts non-trivially on T. Since Z, £ T, T is
not self-centralizing and we may assume that Cs(7) < @, and Cs(T) £ Qp.
If Cs(T)" N Qs £ Qq for some z € Lg, then [Cs(T)" N Qp,T] = {1} so that
[O3(L), T] < [{((Cs(T)* N Qp)E5), T] = {1}, a contradiction. Thus, ((Cs(T) N
Q5)") < Qu and so [0%(Ls), Q5] < [(Cs(T)), Q5] < {(Cs(T) N Qs)") < Qu
and @, N Qs < Lg, a contradiction by Proposition 5.2.25. Thus, the triple
(Gg/T,RoGop/T,Gop/T) satisfies Hypothesis 5.2.1 and assuming that G is a
minimal counterexample to Theorem 5.2.2, we conclude that L/Q, = SLy(3).
Since V is an irreducible non-quadratic 2F-module for SLs(3), CL(V) # {1}
a contradiction. Thus, T" = {1} and the triple (Gg, RaGap,Gap) satisfies
Hypothesis 5.2.1.  As before, this implies that L/Q, = SLy(3) and since V
is an irreducible module for L/Q,, we deduce that CL(V) # {1}, a final

contradiction. O
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Now, we may assume that b = 3. Unfortunately, most of the techniques introduced
earlier in this section are not applicable in this setting and so the methodology for
this case is different from the rest of this subsection. The aim throughout will be
to show that Rg = Qs and R, = @, for then an appeal to [DS85] yields p = 2

and G is parabolic isomorphic to Mjy or Aut(M;s).

Lemma 5.4.41. Suppose that Cy, (Vo) = V3N Qo and b = 3. Then Rg = Qg,
Lg = SLy(p) and OF(Lg) centralizes Cg/V.

Proof. Notice that RZ,1o < VgNVy. If Zyto = Vuo NV > R, then
ZayoZays I Lo = (V, Vi, Ry) for some appropriately chosen g € L, and
|Vs| = p®.  Otherwise, RZ,2 = Vo NV is of order p* and |V5| = po.
Indeed, it follows that Z,,»Cv ,(OP(La)) = RZay2 = Zat2Cv, (OP(Lg)) so that

Zg = [RZOH—Q: QOH-Q] = Zo.

Now, if Vy < Qp, then R = Zg < Z,. 9 and |V3| = p*. Then [Cor, V3| < Zoyo < Vi
and OP(L,) centralizes C, /V,. By conjugation, OP(Lg) centralizes C/Vp. If
Vo £ Qp, then [Co, Vi = [Vu(Cow N Qp),Vs] < RZs < V, and again, by
conjugation, OP(Lg) centralizes Cz/V3. Thus, in all cases OP(Lg) centralizes
Cj3/Vs. In particular, for 7 € Rs of order coprime to p, the three subgroup lemma
implies that [r, Qg] < Cj so that [r,Qg] = {1} and r = 1. Thus, Rz = @3 and

Lp = SLy(p). o

Lemma 5.4.42. Suppose that Cy, (V) = V3N Qo and b = 3. Then Zo # Zg,
\Vs| = p* and ®(V?) = Z,. Moreover, if [Cs,Cs] < Vi and Ry # Qa, then
[Cs,Cs] < Zg and p € {2,3}.

Proof. Assume now that whenever («, ) is a critical pair we have that Zg = Z,.

In particular, V., £ Qg for any critical pair. Since Zg 4 Lq2, thereis A € A(a+2)
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such that Z, # Zg. Moreover, by assumption, V) < Qg and V3 < @, so that
Vi, V] < Zgn Zy = {1}. Then, [CsNQx, V)] < [Cs,Csl N Zyx. If Zy < O(Cp),
then Z,19 = Z) x Z3g < ®(Cp) and V3 < &(Cs). But OP(Lg) centralizes Cz/Vj3, a
contradiction by coprime action. Therefore, CsNQy = CsNC} is of index at most
p in Cg and C). By the same reasoning, C,y N Qy = Cy N Cy and since V,, < C)
and V £ Cs, Cz £ Q5 and Cg N C), is proper in Cp.

Since Vi < CsNCy, CsNCH # CoyyNCy so that Cy = (CsNCYy)(CoyNC,). Moreover,
since V3V) < C3NCy, we have that CgNCy\ < (Qata, OP(Ly), OP(Lg)) = (Lg, Ly)
and C), is non-abelian. It follows that either Z, 9 = Zsx Z) < &(C3NC)) < O(Cp)
and V3 < ®(Cj), a contradiction for then OP(Lg) centralizes Cj/Vs; or CzNC) is
elementary abelian. Then Q(Z(C))) = C\x N Cs N Cy and Cy\ = V3V, Q(Z(C))).
But then [Cy,C)\] = [V, V] = R so that Z,,o = Z\Zs < [C\,C)\|Zs < RZg
and since |RZg| = p?, we have that R < Z,,» so that R = Z,. Now, there is
p € Ala+ 2) such that Zg # Z, # Z, and we may repeat the above arguments

with p in place of A. But then 7, = R = Z), a contradiction.

Thus, there is a critical pair (o, o) with Z, # Zs and by an argument in the
proof of Lemma 5.4.41, we infer that |V5| = p®. Thus, [V{?, V5] < Z, and since

V? is non-abelian, otherwise by conjugacy V, < V@ wyo centralizes V3, we have

that [V V()] = Z,. But now, V?) is generated by Vj for A\ € A(a) and since

Vi/Z, is of order p, V.?)/Z, is elementary abelian and ®(V,?) = Z,,.

Suppose now that [Cjs, Cs] < V3. We have that [Cp, Cs] # V3, otherwise OP(Lg)
centralizes Cg/(I)(Cg). Thus, [Cs,Cs] < Zs. Notice that if VOE2) NQs £ Cg,
then [Cs, V2 N Qp] < [Qa, VI?] < Z, and since Qs = C((V{? N Qp)*#) and
[Cs,Cy] = Zg, it follows that [Qs, Qs] < Vs and Qs acts cubically on Q,/Z,.

If VU N Qs < Cs, then as [Qg,OP(Ls), Cs] < Vi by the three subgroup lemma,
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setting @ := [Qg, OP(Lg)] and noticing that Q £ Q,, we have that [V.?) Q, Q, Q] <
V2 NQsQ,Q] < [CsQ,Q] < Zs and Q acts cubically on V.¥/Z,. Moreover,
since [Q, Q] < Cs, [Q,Q, Q] < Vs < V¥ and Q acts at most cubically on Q,/V.?.
Therefore, if p > 5, an application of the Hall-Higman theorem implies that R, =

Qa, and G has a weak BN-pair of rank 2. Then [DS85] provides a contradiction. [

Lemma 5.4.43. Suppose that Cy, (V) = VaNQu and b= 3. Then both Vz(Cor N

Cs) and Vo (Co N Cy) are elementary abelian, and Vi £ Qg.

Proof. By Lemma 5.4.42, there is a critical pair (a,a’) such that Z, # Zs.
Moreover, by Lemma 5.4.41, V3(Cy N Cg) < Lg = OP(Lg)Qat2 from which it
follows that ®(C, N Cp) = ®(V3(Co N Cp)) < Lg. If Cy N Cy is not elementary
abelian, then Zz < ®(C, N C3) and by a similar argument, Z, < ®(Cy N Cp)
from which it follows that Z,1o < ®(Co N Cs) < @(Cp). But then Vi < &(Cp), a
contradiction since OP(Lg) centralizes Cz/Vjs. Thus, CyyNCj is elementary abelian

so that both V3(C, N Cy) and V., (Cy N Cg) are elementary abelian.

Suppose that V,» < Q. Then, by Lemma 5.4.42, [V3]| = p?, Cs = Qa N Qs N Qa2
has index p? in both Qs and Q,., and V3(Cs N Cy) is elementary abelian and
has index at most p in Cg. Similarly, V,/(Cy N Cp) is elementary abelian of
index at most p in C,. Assume first that C, is elementary abelian so that by
Lemma 5.4.42, p € {2,3}. If C,y N Cp has index p? in Cj then Qui2 = C3C, and
CsNCor < UZ(Qus2)) = Zaro. In particular, |Qui2/Zayr2] < p. Let A € A(a+2)
with Zg # Z\ # Z,. Then we again deduce that |Qui2/Za+2| < p* if Cop N C)
or Cz N Cy has index p? in Cy; or Cy N Cy and C\ N Cs have index p in C},
Qur2 = C3C,C)y and, as before, we conclude that |Qa12/Zas2] < p*. Checking
p-solvable subgroups of GL4(p) with an SLs(p) quotient, we deduce that R, = Qq;

or Ly, = (3% 3):2whenp=2or L, = (Qs x Qg) : 3 when p = 3. In the former
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case, since V, < Qg, [DS85, (9.6)] provides a contradiction.

Assume now that Cjp is not elementary abelian so that V3(CsNC,y) has index p in
Cj. Hence, ®(Cp) # {1} and since Vj contains the unique non-central chief for L
inside C', we have that ®(Cj3)NVz = Zs. Note that CsNQ, contains C,yNCs and is
distinct from V3(Cs N Cy) from which it follows that Cg/(Cs N Cy ) is elementary
abelian of order p?. In particular, ®(Cs) < C, so that Ly = OP(Ly)Qasz
normalizes ®(Cjs)V,,. But then ®(Cp) > [@(Cp), C] = [®(Cs)Va, Cor] < Ly and
since Z, £ ®(Cp), we deduce that ®(Cs) < Z(Cy). Now, as C, N Cp has index
p* in Cz and Cj has index p? in Q,12, we have that Q42 = C3C,. Then, there
is ¥ € (Lay2 N Garata) \ Rata such that Z§ # Zz. Applying a similar argument
as for o/, we see that ®(Cp) is centralized by C§ and so ®(Cp) is centralized by
Qar2 = CyC§. Thus, ®(Cs < Zsyp so that &(Cp) = [Cp,Cs] = Zs. Now, for
any v € Cg \ V3(Cs N Cu), Cvycsnc,(x) = Z(Cp) so that Z(Cp) is the kernel
of the homomorphism 0 : V3(Cs N Cy) — V3(Cs N C,) such that v0 = [v, z] for
v € V3(CzNCy). Then, the image of 0 is [Cp, Cs] = Z from which it follows that

\V3(Cs N Cy)/Z(Cp)| = p and Z(Cp) is elementary abelian of index p? in Cj.

Since Cjp is not elementary abelian, Q(Z(Cs)) N Qu < Cy, for otherwise Cz =
Q(Z(C3))(C5N Cy). Thus, Q(Z(Cp)) N Cy NCY, has index at most p* in C and
is centralized by Qs = CsV,y/ VY for some appropriately chosen g € Lg. Hence
Zs = QUZ(Cp)) N Coy N CY, has index at most p* in Cy so that |Cs| < p°. In
particular, [Cg, Cs] < Vi, |Qa/Zal < p° and we may assume that p € {2,3} by

Lemma 5.4.42.

For any r € OP(L,,) of p’-order, by the three subgroup lemma and coprime action,
if 7 centralizes V%) /Z,, then r centralizes V.?) and Q,/Cq, (V{?). Notice that

C’QQ(VQ(Z)) < Op < Quy2 and so [Va/,C’Qa(Va@))] < Zgy4o and since Vg £ Z(VCSQ)),
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we have that Vs centralizes Cg, (V,\?)/Z,, and so OP(L,,) centralizes Cq_(V.?)/Z,.
In particular, if 7 centralizes V,\?) /Z,,, then r centralizes Q, and r = 1. Therefore,
V2 /7, is a faithful L,-module and |V{?/Z,| < p° with equality if and only if
Qo = V2. For the remainder of this proof, set V := V.?)/Z,. Additionally, set

Q :

(Voo?) so that Q N Cg = Vs, Qs = QCs and [Q, Q] < V.

&%

Let U, < L, chosen minimally such that Z, < U, < V{?) and L, acts faithfully
on U* := U,/Z,. Set U := U*/Cy~(L,). If U is irreducible for L, then L, is
isomorphic to an irreducible subgroups of GL,(p) for » < 5 which is p-solvable,
contains a strongly p-embedded subgroup and has some quotient isomorphic to
SLs(p). We deduce, using MAGMA, that R, = @,, and a contradiction is provided
by [DS85] since Vo < Q. Thus, U contains two non-trivial composition factors
and |U] > p*. By the restrictions on L,, L, acts as SLy(p) on factors of order
p?, and as PSLy(3) or 13 : 3 on factors of order p*® where necessarily p = 3.
In the latter cases, we may choose a p’-element r such that U splits as a direct
sum of two L,-modules, one of order p? and one of order p*. Then, ) does not
act quadratically on U and for U! the factor of order p?, [U,Q, Q] = [U',Q,Q] =
Vs/Zy, a contradiction for then U' = U is irreducible. Thus, U has two non-trivial
factors, both of order p? and, assuming that R, # Q., it follows from Lemma 2.3.14
(ii) and Lemma 2.3.15 (iii) that L, = (3 x 3) : 2 or (Qs x Qg) : 3. Thus, whether

Cj is elementary abelian or not, we have deduced the isomorphism type of L,.

If p = 2, then by Lemma 2.3.14 there is P, with L, = P,R,, P./Qs = Sym(3)
and neither V3 nor Cz normal in P,. Note that if there is {1} # @ < S with
Q < P, and Q < Lg, then V3 < Z(Q) < Cs and since Qui2/Za42| < p*, we
have a contradiction. Hence, (P,, Lg, S) satisfies Hypothesis 5.2.1. Since we could

have chosen G minimally, and as |S| = 27, we deduce that (P,, Lg, S) is parabolic
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isomorphic to Aut(M;p3). But then one can calculate, e.g. using MAGMA, that
|Aut(Q.)|s = 3, a contradiction. If p = 3, then there is ¢t € L, N G,p an
involution with [t, L,] < Q. and, since Lg = SLy(3), [t, Lg] < Qs, a contradiction

by Proposition 5.2.6 (v). O

Lemma 5.4.44. Suppose that Cy,(Vo) = V3N Qo and b = 3. Then Cy is

elementary abelian.

Proof. Suppose throughout that Cj is not elementary abelian. Notice that if
CsNQu < Cy, then as Vg £ Qn and Cz N Cy is elementary abelian, Cy =
Vs(Cs N Cy) is elementary abelian. Additionally, if Q(Z(Cjs)) N Qun £ Cau, then
as Vi <Q(Z(Cp)) £ Qu, Cs =Q(Z(Cp))(Cs N Cy) is elementary abelian.

Thus, we may suppose that Cs N Qn £ Cy and Q(Z(Cp)) N Qo < C,. Since
Vs(C3NCy ) has index p in Cp, arguing as in Lemma 5.4.43 we have that Q(Z(Cj))
has index p? in C and [Cj, C5] = ®(Cj) = Zs. By Lemma 5.4.42, we may assume
that p € {2, 3}.

Since Q(Z(Cs)) N Qo < CsN Cy, it follows that Q(Z(Cp)) NQ(Z(Cy)) has index
at most p* in Cs. But Q(Z(Cs)) N QZ(Cy)) is centralized by Qui2 = CsCl
and so Q(Z(Cp)) N QZ(Cw)) = Zayo has index at most p® in Q, 2. Note that
[Qs N OP(Lg),C5] < [OP(Lg),Cs] = Vs and since Cop, (V?) < Cs and Vs £
Z(V?), we have that OP(L,) centralizes Cq_(V.?)/Z,. Moreover, since Z, =
®(Q.), applying the three subgroup lemma, we see that OF(L,,) acts faithfully on
V2(Q,)/®(Qy,). Asin Lemma 5.4.43, we know the suitable subgroups of GL,(p)
which contain strongly p-embedded subgroups and obtain contradictions in much

the same way. Thus, we may as well assume that V.2 ®(Q,)/®(Q,) has order at

least p°. Since Q,/Z, has order at most p® and ®(V.?)) = Z,, we conclude that
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D(Qn) = Za.

Let W, be chosen minimally such that W, < L, Z, < W, < Vofz) and OP(L,)
acts non-trivially on W, /Z,. Set V := V¥ /Z,. Then, for R := Cr_ (W,), V :=
Cv(R) x [V, R] by coprime action. Moreover, V3/Z, £ [V, R], for otherwise Cy (R)

is centralized by OP(L,), a contradiction since W, /Z, < Cy(R).

Suppose that [Qg, Qp] < Vs. Then [[V, R|N(Qp/Za), Qp] = {1} and either V3/Z, <
Cv(R) or [Cv(R)N(Qs/Zs), Qp] = {1}. If both Cy(R) and [V, R] are FF-modules
for L, then applying Lemma 2.3.14 (ii) and Lemma 2.3.15 (ii), we get that L, =
(3x3):2o0r (Qs x Qs) : 3. As in Lemma 5.4.43, using generation properties of V'
when p = 2 and Proposition 5.2.6 (v) when p = 3 yield contradictions. Thus, we
may assume that Vz/Z, < Cy(R) and since V2 = (Vy*), Cy(R) =V admits L
faithfully and R is p-group. We may as well assume that L, acts irreducibly on
Wo/Z,. We appeal to MAGMA to see that if L, is isomorphic to some irreducible
subgroups of GL,(p) for » < 5 which is p-solvable, contains a strongly p-embedded
subgroup and has some quotient isomorphic to SLs(p), then R, = @, G has
a weak BN-pair of rank 2 and [DS85] implies that Cj is elementary abelian, a
contradiction. Thus, we may as well assume that W, = Q, = Vf) and V is an

irreducible module of order p°.

Now, if [Qs,Qp] £ Vs then using that both (Qn N Qp)/Vs and (Qut2 N Qp)/ Vs
are elementary abelian of index p in Qg/Vs, we deduce that Cs/Vs = Z(Qp/V3).
Now, for any = € Q3/Vs \ (Qa N Qp)/Vs, we have that Z(Qs/Vp) is the kernel
of the homomorphism 6 : (Q, N Qp)/Vs — (Qa N Qp)/Vs such that v0 = [v, z]
for v € (Qa N Qp)/Vs. Then, [Qs,Qs]V3/Vs is the image of § and has order p.
Similarly, since (Qo N Qs)/Zs is an abelian subgroup of index p in Q3/Z,, we
conclude that [Qg, Q5] Za/Z0 = (Qa N Qs)/Za)/Z(Qs/Z,) has order at most p?,
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and Z(Qs/Za) < Cs/Za.

IfCs = Z(Qp/Zs), then |[Qs, Qp|Za/Zs| = p and observing that [Cs, Qp] < Lg, we
have that [Cg, Q3] = Zs. By the three subgroup lemma, [Qg, Q] < Z(Cp) < Cy
so that [Qg, Qs]Var I Lg. But then, either [Qs, Q] is centralized by Qu42 = CorCp
so that [Qp, Qs] < Z,19, a contradiction; or Z, < [Qg, Qs so that Vi < [Qg, Qg

Since |[Qs, Q5] Za/Za| = p and [Qs, Q] £ V3, we have another contradiction.

Thus, Z(Qs/Zs) < Cs/Zy < (Qu N Qp)/Zs and Vs index p in [Qs, Qs]. Now,
Qs/]Qs, Qp] splits by coprime action and we may set Q < (Qs N O?*(Lg))[Qs, Q5]
such that Q/[Qs, Qg] is elementary abelian of order p? and Qs = QCjs. Then Q/Vj
is non-abelian of order p? and (Q N Q,)/Vj is an elementary abelian subgroup of
order p?. Moreover, L = SLy(p) acts faithfully on Q/Vs and so we may assume
that p = 3 and Q/Vz = 312 But now, |Q/Z.| = 3%, |[Q/Z4, Q/Zs)| = 9,
Z(Q)Zy) = V3 /Zy is of order 3, (Q/Z,)/Z(Q/)Zs) = 312 and m3(Q/Z,) = 3. One
can check that the only group satisfying these properties is 31 3. But then, every
normal subgroup of Q)/Z, contained in [Q/Z,, Q/Z,] contains Z(Q/Z,) = V3/Z,.

Now, [[V,R]|,Q/Z.,Q/Z.] < Q/Z, and since Vz/Z, £ [V,R] we have that
[V,R],Q/Z,] < Z(Q/Z,) = V3/Z,. Finally, this implies that [[V, R],Q] = {1}
and since Q@ £ Q.,, it follows that OP(L,) centralizes [V, R], R centralizes V' and
L, acts faithfully on W, /Z,. Again, we may as well assume that W, = Q,, = VOEQ)

and V is an irreducible module of order pS.

We appeal to MAGMA for a list of solvable irreducible subgroups of GLg(p) for
p € {2,3}. We investigate groups H such that for P € Syl (H), |[P| = p and
H = (PH). Moreover, H contains a normal p’-subgroup N with H/N = SLy(p).

Notice that a Hall p’-subgroup of the preimage of Z(L,,) lies in G, g and so acts on
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Lg = SLy(p). In particular, it follows by Proposition 5.2.6 (v) that Z(L,) = {1}
if p=2; and |Z(L,)| < 2 if p = 3. Imposing these conditions on the candidate
subgroup H < GLg(p), we reduce to three possibilities when p = 2, and four
possibilities when p = 3. Suppose that p = 2. Then the candidates for H are
{Dih(18), 34" : Sym(3), 7% : Sym(3)}. If L, = Dih(18), then we appeal to [Hay92)
to obtain a contradiction. If L, = 32 : Sym(3) then S is isomorphic to a
Sylow 3-subgroup of Sym(9) and we identify a subgroup P, < L, such that P, is
isomorphic to Dih(18). Since GL5(2) does not have any elements of order 9, this
group acts irreducibly on Qu./Z,. If Lo, = 7% : Sym(3), then we define P, to be
the preimage in L, of SO3(L,) so that P, = Sym(3). Then, in either case, P,
acts faithfully on Z,. Forming X := (Lg, P,) and assuming that G is a minimal
counterexample to Theorem 5.2.2, since |S| = 2° and all suitable examples in
Theorem 5.2.2 have |S| < 27, some subgroup of G, s is normal in X. Indeed, since
L is of characteristic p, some subgroup of S is normal in X. Call this subgroup
() and observe that as Q < S, Zg < Q < Qo N Qp. Indeed, by the choice of
P, Vs < Q < Cs If Q) # {1}, then as &(Q) I S, Zz < &(Q) so that
Vs < ®(Q) < Q < (s, a contradiction for then O%(Lg) acts trivially on Vi < Q.

Thus, ®(Q) = {1} and @ is elementary abelian.

When P, = Dih(18), taking consecutive closures of Z5 under P, and Gz gives
Q. < Q, a clear contradiction. Thus, we may assume that L, = 72 : Sym(3) and
P, = Sym(3), and we have that V3 < (Z5) and X/Q satisfies Hypothesis 5.2.1.
Moreover, in this case the 3-element in P, acts fixed point freely on @, /Z,. Since
1S/Q| < 2°, Q./Q is elementary abelian and J(S) £ @, we have by Theorem 5.2.28
that X/Cx((Z5)) is locally isomorphic to PSL3(2) or Sp,(2) and Q = Cs((Z5)).
If X/Cx((Z5)) is locally isomorphic to PSLs(2), then [S/Q| = 8 and as Q < Cj,

we have that () = Cjp, a contradiction since Cjp is not elementary abelian. Thus,
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X/Cx((ZF)) is locally isomorphic to Spy(2) and using that C # (Z5'), applying
[CD91, Theorem A] we must have that |S/Q| = 2%, |Q| = 2°, X/Cx((Z])) =
Sp,4(2) and (Z5) is a natural Sp,(2)-module. But then |Q/(Zf)| = 2 so that X

centralizes Q/(Z5'), a contradiction since a 3-element of P, acts fixed point freely

on Qn/Z,.

Suppose that p = 3. We briefly describe the four candidates. First, there is a
group of shape (Qg x 2?) : 3 which occurs as a product of SLy(3) and PSLy(3)
with their Sylow 3-subgroup identified, which we refer to as H;. Next, there is a
group of shape 22.SL,(3) where the extension is non-split, which we refer to as Ho.
Then, there is a group of shape (Qg x 13) : 3 which occurs as a product of SLy(3)
and the Frobenius group 13 : 3 with their Sylow 3-subgroups identified, which
we refer to as Hs. Finally, we have a group 2'72%2.SLy(3) where the extension is
non-split. Indeed, the center of the Sylow 2-subgroup in this case has order 23 and

the quotient by this center is isomorphic to Hy. We refer to this group as Hy.

Suppose that L, is isomorphic to H; or Hs. In the latter case, we have that
SO,(Ly) = SLy(3), while in the former case, while in the former case, there are
four subgroups isomorphic to SLy(3). Letting L, be isomorphic to H; and 5 €
Ls N G, p be an involution, we infer that tg inverts S/Q, and centralizes Z(L,).
Then Oy(L./Z(L,)) splits as a direct sum of two non-trivial modules for ¢55 =
Sym(3). Then by [Gor07, (1.3.5.6)], there are three submodules of Oy(L,/Z(L,)),
one of which corresponds to the image of R,, while the others correspond to
G, g-invariant subgroups of L,, isomorphic to Qs. Thus, whether L, is isomorphic

to Hy or Hs, we have a G, g-invariant subgroup of L,, call it F,, such that O3(P,)

acts non-trivially on Z,, and P, = SLy(3).
In either scenario, form X := (Lg(GosNP,), Pa(GasNLs)). Assuming that G is a
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minimal counterexample to Theorem 5.2.2, if no non-trivial subgroup of G, 5N X
is normal in X, then X is described in Theorem 5.2.2. Since no configurations
described there have |S| = 3% and satisfy the requirements, we have a contradiction.
Thus, some subgroup of G, g is normal in X. Indeed, we may as well suppose that
a non-trivial subgroup of S is normal in X, calling this group (). By the choice
of P,, we have that V3 < (Z5) < Q < Cj and X/Q satisfies Hypothesis 5.2.1.
Then, Theorem 5.2.28 implies that X/Cx((Z3")) is locally isomorphic to SLs(3).
By [CD91, Theorem A], and since V3 < (Z5), it follows that Q@ = (Z5) is a
direct sum of two natural SL3(3) modules and @) = Cj is elementary abelian, a

contradiction.

If L, is isomorphic to Hy or Hy then set P, to be the subgroup generated by the
unique normal subgroup of L, of order 4 and S. Then P, = PSLy(3) and P, is
normalized by G, 3. Moreover, P, < R,S. Setting X := (P,(Ga3MNLg), L), and
writing () for the largest subgroup of S which is normal in X, we have that ) < Cjp
and both P,/Q and Lg/Q are of characteristic 3. In particular, if G is a minimal
counterexample to Theorem 5.2.2; then by minimality, X/@ is locally isomorphic
to PSp,(3) and |Q| = 3°. If Z, < @, then (ZX) is a non-trivial module for X/Q and
since Zg is centralized by X, Q = (ZX). But Q < Cs and [Cs, Q] < [Cs,Cs] = Zs
from which it follows that O3(Lg) centralizes @, a contradiction. Thus, Z, £ Q
and is follows that @ NV = Zz. But then, ()3/Q contains two non-central chief

factors for Lg, a final contradiction. O

Proposition 5.4.45. Suppose that Cy, (V) = Vs N Qu and b = 3. Then p = 2

and G is parabolic isomorphic to Mis or Aut(Mis).

Proof. Suppose first that that G has a weak BN-pair of rank 2. Then by [DS85],

p = 2 and G is parabolic isomorphic to Mjs or Aut(M;js). Since L,/R, = Lg/Rz =
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SLsy(p), to prove the proposition it suffices to prove that Rz = Qg and R, = Q.
We assume throughout that («,a’) is a critical pair with V,, € Qp, Zo # Zs.
Moreover, R < Z,2, |V3| = p?, Cjs is elementary abelian and has index p? in both
Qa+2 and Qg, and OP(Lg) centralizes Cg/Vj.

Suppose first that there is A\, p € A(a + 2) with Qaq2 = C\C,,. Then Z,;o =
QZ(Qas2)) = Cy N C,, has index p* in Quyo-

Suppose now that C,Cp has index p in Qpto. If CpCs < Lyt then OP(Lyio) N
Qat+2 < CyCs. Moreover, V+2 < CyCs so that Cy N Cy = QUZ(CwCp)) is
normal in L, and centralizes V> wro. In particular, Cy Cs = VOE?QQ( (CwCs)). By
coprime action Q(Z(CoCs)) = [ Z(CC5)), O (Ras2)] X Cazic, e (OM(Ras2))
and since Zg < Coz(c,,04)) (0P (Ray2)), it follows that [Q(Z(CwCp)), O (Ray2)] =
{1}. Now, for any p'-element r € OP(Lg2), if [, Vcﬁ)z] < Q(Z(CyCp)), then
[, Va(iQ, A +2] = {1}. By the three subgroup lemma, such an r centralizes
[V(i)Q,Va(i)Q] = Z, so that r € OP(R44+2). But then r centralizes CyCp =

[0}

v LUZ(CyCp)) and so r = 1. Thus, every p'-element acts faithfully on

V2 (VD NQ(Z(CowCp))) which has order p?. Since L2/ Rats = SLy(p) and by

conjugacy, R, = ., as required.

Thus, we may assume that CoyCs 4 Lo and so there is u € A(a + 2) such that
Qa2 = CyCsC,. It Qoyo = C,C3, then C, N Cg = Zy42 has index ptin Quyo
and |Cg/Vs| = p. We get a similar result if Qn12 = C,C,. Thus, we may assume
that Coy N Cs N Cy = Zyy2 has index p? in O and so, again, Z,» has index p* in
Qa2

Thus, we have reduced to the case where |Cs/V3| = p, |Qs/Zs| = p° and |Qa/Zs| =

p*. By Lemma 5.4.42, we may assume that p € {2,3} and we may as well assume
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that ®(Q,) = Z,. Then L, is isomorphic to a subgroup of GL4(p) which has
a strongly p-embedded subgroup and some quotient isomorphic to SLy(p). It
follows that R, = Qa, or Ly = (3 x3) : 2 or (Qg x Qg) : 3. If p = 2, then
by Lemma 2.3.15, there is P, < L, such that P,/Q, = Sym(3), L, = P,R.
and we may choose P, such that neither V3 nor Cs are normal in F,. It follows
that no subgroup of S is normal in both P, and Lg so that (P,, Lg, S) satisfies
Hypothesis 5.2.1. Since we could have chosen G minimally, and as |S| = 27, we
deduce that (P,, Lg, S) is parabolic isomorphic to Aut(M;2). But then one can
calculate, e.g. using MAGMA, that |Aut(Q,)|s = 3, a contradiction. If p = 3,
then Z(L,) is elementary abelian of order 4 and since L = SLy(3), it follows that
there is t € G, such that [t, Ls] < Qs and tQ, < Z(L,), a contradiction by

Proposition 5.2.6 (v). O

543 b=1

From this point on, restating Lemma 5.4.1, we may assume the following:

e b=1so that Z, £ Qg;
« QZ(S)) = Zs = QUZ(Lg)); and
« Z(L) ={1}.

Proposition 5.4.46. Suppose that p > 5. Then Lz = SLsy(q) or (P)SU,(q).

Proof. Since [Qs, Zo, Zo| = {1} the result follows immediately from Lemma 2.3.5.
[

Proposition 5.4.47. Suppose that p > 5. Then G has a weak BN-pair of rank 2
and is locally isomorphic to H where F*(H) = PSp,(p™), PSU4(p") or PSU;(p™).

313



Proof. Let Kz be a critical subgroup of Q. By Theorem 2.1.26, OP(Lg) acts
faithfully on Kj3/®(Kj). Assume that K3 < Q,. Since Lz = SLy(q) or (P)SU,(q),
we have that [Kg, OP(Lg)] < [K3, ( £ﬁ>] = {1}, a contradiction. Hence, K3 £ Q.,
[Qa, Kp, K5, K5] = {1} and Kj acts cubically on @Q,.

Since Qo/P(Q, is a faithful L,-module which admits cubic action, we may apply
Corollary 2.3.24 so that L, = (P)SL,(q) or (P)SU,(g), or p =5 and L, = 3- Alt(6)
or 3-Alt(7) and for W some irreducible constituent of Q,/®(Q.), |W| > 5°. If L, =
(P)SL,(g) or (P)SU,(g) then G has a weak BN-pair of rank 2 and is determined
in [DS85]. Therefore, G is locally isomorphic to H where F*(H) = PSp,(p"*),
PSU,(p") or PSU5(p™) for n > 1. Thus it remains to check that L, % 3- Alt(6) or

3 - Alt(7) and so have that p = 5 and |S/Q.| = 5. Since @3 is not centralized by
Za, else Z, < Q(Z(8)), Lg = SLy(5) and Q5 contains exactly one non-central chief
factor for Lg, which is isomorphic to a natural SLy(5)-module. Since Z(L,) = {1},
Z, contains a non-central chief factor for L, and admits cubic action, Z, is also a

faithful L,-module and |Z,| > 5%, so that R, = Q..

Suppose that Z, N Qg < @, for all A € A(S). Since Lg = (Z),Qp | X € A(P)),
it follows that Z, N Qg is centralized by OP(Lg). Since Q, N Qs A Lg, OP(Lg) N
Qs £ Qa and so [Z,,Qp, Qs N OP(Lg)] = {1} and Z, is a quadratic module, a
contradiction to Lemma 2.3.5. Thus, Z, N Qp £ Qat2 for some a +2 € A(p)
and Z, N Qs N Qa2 has index at most 25 in Z,. If Zy1o N Qs < Qn then
(Zat2, Zay Zo| = {1} and so, Z, N Qg acts quadratically on Z, s and since o+ 2 is
conjugate to a, we have a contradiction. Thus, Z,2 N Qp £ Qu. But now, L, is
generated by two conjugates of (Z,42 N Q3)Qa/Qn, and as an index 25 subgroup
of Z, is centralized by Z,,2 N Qs and Z(L,) = {1}, we have that |Z,| < a

contradiction ]
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Given the above proposition, we suppose that p € {2,3} for the remainder of this

subsection. We introduce some notation specific to the case where b = 1.

Notation 5.4.48. « [ is a normal subgroup of Gp which satisfies
[F3,0P(Lg)] # {1} and is minimal by inclusion with respect to adhering

to these conditions.
o Ws:={((ZaNQp)%).
o Dg = Cq,(OF(Lg)).

Lemma 5.4.49. The following hold:

(i) F,B ﬁ Qou'
(ii) Fy = [Fp, O"(Lg)] < O(Lp); and

(ili) for any p-subgroup U 9 L, with U £ Qp, [F3,Qs < U.

Proof. We have that [Fjs,OP(Lg)] < OP(Lg) and by coprime action

[F5, OP(Lg), OP(Lg)] = [Fs, OP(Lg)]. By minimality of Fj, Fyg = [Fj, OP(Lg)].

If F5 < Qa, then [Fj,S] is strictly contained in Fj and normalized by Lz =
<Z55>(GQ,B N Lg) and, by minimality, [Fs, S] < Ds. But then [Fj, Lg] < Dg, a

contradiction.

Let Hg := ((U N F3)%) <4 G5. By minimality of Fj, either Hz = Fj or Hs < Dg.
Suppose the latter. Then [Fs, U] < F;NU < Hg < Dg so that [Fp, (U%)] < Dg.
Now, Fj = [F3,0P(Lg)] < [F5,(U%)(Gap N Lg)] < Dg[Fs,Gaps N Lg). Then, by
minimality of Fj, F3/Fs N Dg is an irreducible G, 5 N Lg so that [S, F5] < Dg.

As above, this implies that [Fj, Lg] < Dpg, a contradiction. Thus, Hz = Fj. Now,
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[UﬂFg,Qﬁ] S [Fg,Q/g] S D,B and so [UQFB,Qg] S] Gg. But then [UﬂFg,Qﬁ] =

[U N Fz,Qp]% = [((UN F3)%%,Qp] = [Fp,Qp] and U > [U N Fp, Q] = [F3,Qp],

completing the proof. O

Lemma 5.4.50. Suppose that m,(S/Q.) = 1. Then p = 3, Lg = SLy(3), Z, is

an irreducible 2F-module for L, and Q. is elementary abelian.

Proof. Assume that m,(S/Q,) = 1. Since Wy is generated by elements of order
p and m,(S/Qa.) = 1, |[WsQu/Qa| = p and Z, centralizes an index p subgroup of
Wjs. Since [Z,, Qs) < Wp, Ws contains all non-central chief factors for Lg in Qg
and so, W;s/Cyw,(OP(Lg)) is the unique non-central chief factor for Lg inside Q.
Moreover, W3 /Cy,(OP(Lg)) is a natural SLy(p)-module for L = SLy(p) and Lg =
(Qa, Qp, Zoy2) for some a+2 € A(f). Then Z,NQp < (ZoNW3)(ZayaNWp) < Lg
and so Wi = (Zo N Wp)(Zasa N Wp).

Suppose first that Wj is abelian. Then, as Z, N Q3 < W3, an index p subgroup of
Z, is centralized by W and Z,, is a natural SLy(p)-module. But then Z,NQs = Z3

and W3 = Zg, a contradiction.

Since Wy is non-abelian, and Wz N Q, N Qu42 has index p? in Ws, W5 N Qy N
Qa2 = UZ(Wp)) = Cw,(OP(Lg)). Notice that every element of Wj lies in
(Zx N W3)Q(Z(Wp)) for some X € A(S), and that (Z), N Ws)QZ(Wp)) is of
exponent p, from which it follows that W3 is of exponent p. In particular, since
W3 is not elementary abelian, p # 2. Therefore, 2(Z(Wj3)) has index 9 in Z,, Z,
is 2F-module and since [Z,, W3] £ Q(Z(W3)) and S/Q, has a unique element of

order 3, Z, does not admit quadratic action by any element z € S\ Q.

Now, by minimality of Fj, ®(Fj) < Q4 so that Fs(QaNQs) = W3(QaNQp) since

S/Q. has a unique subgroup of order p. Then [Fj, Z,| = [W3, Z,]. Moreover,
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Fs = [F5,0P(Lg)] < [F3,Za|"* < Ws and since Fj contains a non-central chief
factor, W3 = F3Z(Wp). Then, since [F3,Qa] = [Fp, Za(Qa N Qp)] < Z, by
Lemma 5.4.49, it follows that O3(L,) centralizes Q,/Z,. In particular, every

p'-element of L, acts non-trivially on Z,.

Let U < Z, be a non-trivial subgroup of Z,, which is normal in L,. If C5(U) € Q,,
then O3(L,) centralizes U and as U < S, UN Zz # {1} and Z(L,) # {1},
a contradiction. If U £ Qg, then Z, = U(Z, N Qp) and by Lemma 5.4.49, it
follows that [F3, Z,] < U so that [0*(L,), Zs] < U and Cyz, (0*(L,)) # {1} by
Lemma 2.3.2. But then Z(L,) > ZzNCyz, (0O3(L,)) # {1}, a contradiction. Thus,
U < Qg and as Z, is 2F, we may assume that both Z,/U and U are FF-modules for
L, and by Lemma 2.3.15 (ii), either L, = SLy(3) or (Qs x Qg) : 3. If L, = SLy(3),
then G has a weak BN-pair of rank 2 and by [DS85], we have a contradiction. If
Lo, = (Qs x Qs) : 3, since |[Out(Lg)| = 2 and a Hall 3'-subgroup of L, N G, g is
isomorphic to an elementary abelian group of order 4, it follows that that there is
an involution ¢ € G, g such that [L,,t] < Q, and [Lg,t] < @3, a contradiction by

Proposition 5.2.6 (v).

Thus, we may now assume that Z, is an irreducible 2F-module. Since Z, is
irreducible and Z, £ ®(Q,), we have that Z, N ®(Q,.) = Zz N P(Q.) = {1} so
that ®(Q,) = {1} and @, is elementary abelian. O

Proposition 5.4.51. Suppose that m,(S/Q.) =1 and p € {2,3}. Then p = 3,
Zy = Qq is an irreducible GF(3)Ly-module and one of the following holds:

(i) G has a weak BN-pair of rank 2 and G is locally isomorphic to H where
F*(H) = PSpy(3);

(i) |S| = 3% L, = Alt(5), Z, is the restriction of the permutation module,
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Ls = SLy(3) and Qp = 3 x 3412,

(iii) |S| = 3°, Lo = O¥(21Sym(4)), Z, is a reflection module, Ls = SLy(3) and

Qp =3 x 32, or

(iv) |S] = 3%, Ly = O¥(21Sym(5)), Z, is a reflection module, Lg = SLy(3) and

Qs =3 x 3 x 312

Consequently, if G is a completion of an amalgam determined by a fusion system F
satisfying Hypothesis 5.1.12, then F = Fs(H) where H = PSp,(3), Aut(PSp,(3)),
PSU5(2), Aut(PSU5(2)), 2 (2), O5 (2),, 219(2) or Spyy(2).-

Proof. By Lemma 5.4.50, Z, is the unique non-central chief factor for L, in @, and
Qq is elementary abelian. Moreover, Wy /Cyy, (OP(Lg)) is the unique non-central

chief factor for Lg inside Qg, and is a natural SLy(3)-module for Lz = SLy(3).

Suppose first that |Z,| = 3%. Then L, is isomorphic to a subgroup X of GLj3(3)
which has a strongly 3-embedded subgroup. One can check that the only groups
which satisfy X = O¥(X) are PSLy(3), SLy(3) and 13 : 3. In the first two
cases, G has a weak BN-pair of rank 2 and comparing with [DS85], we have that
Lo = PSLy(3) and G to locally isomorphic to H, where F*(H) = PSp,(3). Suppose
that L, = 13 : 3 and let tg € LsNG, s be an involution. Then t5 € G, and writing
ls = t3Qu/Qu, I acts on L, and inverts S = Q3Q4/Qq, a contradiction since

any involutary automorphism of 13 : 3 centralizes a Sylow 3-subgroup.

Thus, we may assume that |Z,| > 3%. Again, let t53 < G, 5N Lg be an involution.
Then, using coprime action, [t3,Qa] < W3 and [tg, Cw,(0*(Lg))] = {1}. In
particular, it follows that ¢5 centralizes an index 3 subgroup of @),. Let L* := (tg”‘>

and [* = L*Q,/Qs < G4. Since L* <4 G, we have that [L* L,] < L*. Note
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that tg inverts WsQa/Qa = Ws/Ws N Qn and so WsQo/Qo = [W5Qa/Qa,ts] <
[L.,L*] < L*. If G, is not 3-solvable, then L,/Os(L,) is a non-abelian finite

simple group and since L* < G, we have that L, < L*.

If G, is 3-solvable, let O, be the preimage of O3 (L,) in L,. By coprime action,
we have that Q, = [Qa, Oa] X Cg,(0O,) is an S-invariant decomposition. Since Z,
is irreducible, we infer that [Qa, Ou] = [Za, Ou] = Z, and as Zg < Z,, it follows
that Cg,(On) = {1} and Q, = Z,. If [S/Qu| > 3, then W5 < ®(Qs)(Zs N Qp)
and it follows from the Dedekind modular law that W3z = ®(Q3)(Z.NQs) N W5 =
(Za N Qp)(P(Qp) N Ws). Since Wy contains all non-central chief factors for Lg
inside Q3, ®(Qp) N W5 < Z(Qs so that Wi = (Z, N Q) Z(Wp), a contradiction.
Thus, |S/Q.| = 3 and, again, L, < L*.

Since S/Q, does not act quadratically on Z,, L* is not generated by transvections
and as |Z,| > 3%, we may apply the main result of [ZS81]. Using that S/Q.,
is cyclic, we have that L* is isomorphic to the reduction modulo 3 of a finite

irreducible reflection group of degree n in characteristic 0, and 3% < |Z,| < 3°.

Suppose that there is t, € L*NG,, 5 an element of order 4 with t2Q), € Z(L*). Then
to € Gg and t,, acts on Lg. We may assume that t? acts non-trivially on Lg for
otherwise t2Q, is centralized by L, and t2Qg is centralized by Lg, a contradiction
by Proposition 5.2.6 (v). But t, normalizes S/@)3 and so either ¢, inverts S/Qg or
centralizes S/Qs. In either case, t2 centralizes S/Qz and by Lemma 2.2.1 (viii),

t2 acts trivially on Lg, a contradiction.

Upon comparing the groups listed in [ZS81] and the orders of GL4(3) and
GL5(3) we are left with the groups G(1,1,5), G(2,1,4), G(2,2,4), G(2,1,5) and

G(2,2,5) (in the Todd-Shepherd enumeration convention) as candidates for L*. In
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particular, |S/Q,| = 3. If L* = G(1,1,5) = Sym(5), then L, = Alt(5). Then G is
determined in [JJS89] and outcome (ii) follows in this case. Thus, Oy(L*) # {1}
and writing O, for the preimage of Oy(L*) in G, we have by coprime action that
Qo = [Qa, Oa] X Cq,,(0,) and since Z, is irreducible and is the unique non-central
chief factor within Qq, Qu = [Qu, Ou] = Z,. In particular, W5 = Qp, |Qs| < 3°
and Q3/Zs is a natural SLy(3)-module for Lg.

Now, G(2,1,4) = 2 Sym(4) and G(2,2,4) is isomorphic to an index 2 subgroup
of G(2,1,4). Therefore, if |Z,| = 3, Lo = O%(21Sym(4)) and the possible
actions of L, are determined up to conjugacy in GL4(3). Indeed, it follows in
this case that S is isomorphic to a Sylow 3-subgroup of Alt(12). Furthermore, ()
has exponent 3, is of order 3* and Z(Qs) = Z3 is elementary abelian of order 9.

Indeed, Q5 =2 3172 x 3.

Finally, G(2,1,5) = 2:Sym(5) and G(2,2,5) is isomorphic to an index 2 subgroup
of G(2,1,5). Therefore, if |Z,| = 3°, L, = O%(2:Sym(5)) and the possible actions
of L, are determined up to conjugacy in GL5(3). Indeed, it follows in this case that
S is isomorphic to a Sylow 3-subgroup of Alt(15). Furthermore, Q)5 has exponent
3, is of order 3° and Z(Qs) = Zs is elementary abelian of order 27. Indeed,

Qp =3 x 3 x 3.

If G is obtained from a fusion system F then as [S| < 3% and S € Syl;(O*(L,))
or G has a weak BN-pair of rank 2, we may assume that O3(F) = F and use the

results in [PS21] to completely determine F. O

Lemma 5.4.52. Suppose that m,(S/Q.) = 2 and m,(S/Qsz) = {1}. Then there
is a+2 € A(B) such that Z, N Qs £ Qara and Zyio N Qp £ Qo. Moreover,

|(Za N Qp)Qut2/Qata| = |(Zatz N Qp)RQa/Qul.
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Proof. Suppose that Z, N Qs < Q) for all A € A(3). Then Z, N Qg is centralized
by <Z§ﬁ>. In particular, as Gy = <Z§5>Gaﬁ by Lemma 5.2.8 (iii), Z, N Qp < Gp.
But then, Z, centralizes Q)g/(Qs N Z, and QN Z,, impossible as Z, £ Q3. Thus,
we may choose o+ 2 € A(f) such that Z, NQp £ Qase. If Zp120NQp < Qq, then
an index p subgroup of Z,, is centralized by Z, N Q3 £ Qat2 and as o + 2 is

conjugate to a and m,(S/Q,) > 1, by Lemma 2.3.10 we have a contradiction.

Observe that Z, N Qs N Qa2 < Cz, (Zara N Q). Set 1o = [(Za N Qp)Qat2/Qaxt2|

and define r,, o similarly. If roo > 74, then

|Za/CZa(Zoz+2 N Q,B)| S Pra K Tate = (Zoz+2 N Qﬁ)/CZawﬁQg(Za)

and Z,42N Qg is an offender on Z,. Then, by Lemma 2.3.10, Z, is an FF-module
for Lo/R, = SLa(p™) and L, = Q,OP(L,). In particular, since Z(L,) = {1},
Cz.(0P(L,)) = {1} and Z, is irreducible of order p*". But then, we have that
[Z4, F3] < Zg, a contradiction since Fs contains a non-central chief factor for Lg.
Hence, 7,12 < 7, and by a symmetric calculation, r, < roy2 so that ro, = roio

and the result holds. O

Lemma 5.4.53. Suppose that m,(S/Qa) = 2. Then S/Q, is elementary abelian.

Proof. Assume that m,(S/Q.) > 2 and S/Q), is not elementary abelian. In
particular, L, = PSUs(p"), SU3(p"), Sz(2") or Ree(3"). If m,(S/Qs) > 2, since
Z, acts quadratically on Qg, by Lemma 2.3.5 we have that Lz is isomorphic to a
central extension of a simple group of Lie type by a p’-group. In particular, G has
a weak BN-pair and is determined in [DS85]. No examples occur. Thus, we may
assume that m,(S/Q3) = 1 throughout. By Lemma 5.4.52, there is a + 2 € A(f)

such that an index r,p subgroup of Z, is centralized by (Za42 N Q3)Qn/Qq, where
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To = |(Zar2 N Q5)Qa/Qal. Since Z(L,) = {1}, Cz,(0P(L,)) and so, if OP(L,) is

generated by d conjugates of (Z,12 N Qp)Qa/Qua, it follows that | Z,| < (rap)?.

Suppose that S # Q,Qs. Since S/Q, is not elementary abelian and Q,Qs is
a G, p-invariant, it follows that S/Q.Qs is elementary abelian of order strictly
greater than 4, unless L, = Ree(3). Since S/Qj is cyclic or generalized quaternion,

the largest elementary abelian quotient of S/Qs has order at most 4 and we have

a contradiction unless L, = Ree(3) and |S/Q.Qs| = 3.

If L, = Ree(3) then O3(L,) = PSLy(8) is generated by two conjugates of (Z, N
Qp)Qu/Qq- Since the minimal degree of a GF(3)-representation of PSLy(8) is
7, and O3(L,) does not centralize Z,, we have that 37 < |Z,| < 723% < 35, a

contradiction. Thus, S = Q,Qps. Notice also that (Zo12 N Qp)Qa I QuQs =S5

Suppose that L, = SU3(p") or PSU3(p"). If (Z412NQs)Qu/Qu % Z(S/Q.,) then
it follows from Lemma 2.2.2 (viii) that two conjugates generate L, and |Z,| <
r2p*. Since |S/Q.| = p**, |Z(S/Q.)| = p" and Z,,, is abelian, we have that
(Za2a N Qp)Qa/Qs has index at least p? in S/Q, and |Z,| < p®" unless perhaps
p =3 and n = 1 in which case |Z,| < 3% anyway. Since the minimal degree of
a GF(p)-representation of L, is 6n it follows that p = 3, n = 1 and Z, is the
natural module. But now, Z, N Qg is a G,p-invariant subgroup of index 3 in Z,,
a contradiction by Lemma 2.2.13 (iii). Assume now that (Z,42 N Qp)Qa/Qa <
Z(S/Q,) so that r, < p". By Lemma 2.2.2 (vi), (vii), L, is generated by at
most 4 conjugates of (Zy12 N Qs)Qu/Qu £ Z(S/Q.) and so |Z,| < p™T. 1If
n > 2, then |Z,| < p® and since the minimal degree of a GF(p)-representation
of L, is 6n, we have a contradiction. Suppose that n = 2. If r, = p?, then

(Zat2 N Qp)Qa/Qa = Z(S/Qs) and by Lemma 2.2.2 (vi), three conjugates of

(Zos2 N Qp)Qa/Qa generate L, and |Z,| < p? < p'?, a contradiction. If r, = p,

322



then |Z,| < p® < p'?, another contradiction. Suppose finally that n = 1 so
that p = 3. Then (Zy42 N Q5)Q0/Q0 = Z(S/Q.) and L, is generated by three
conjugates of (Zat2 N Qp)Qun/Qu. Then |Z,| < 3% and the only possibility is that
Zg is the natural module. As above, Z, N Qg is a G, g-invariant subgroup of index

3 in Z,, and we have a contradiction.

Suppose that L, = Sz(2") with n > 3. If (Za12 N Qs)Qa/Qu £ Z(S/Q.) then it
follows from Lemma 2.2.3 (vii) that two conjugates generate and | Z,| < r22%. Since
1S/Qu| = 2%, 1Z(S/Qs)| = 2", n > 3 and Z,, is abelian, we have that (Z,,2 N
Q3)Qa/Q. has index at least p? and |Z,| < p*". Since the minimal degree of a
GF(p)-representation of L, is 4n, we have a contradiction. If (Z,12NQ5)Qa/Qa <
Z(S/Q4) then it follows from Lemma 2.2.3 (vi) that three conjugates generate and
|Z,| < 1323 < 2373, Since the minimal degree of a GF(p)-representation of L, is
4dn and n > 3, we have that n = 3 and r, = 8. But then (Z,12 N Qp)Qa/Qa =
Z(5/Q4) and only two conjugates are required to generate L,, from which it follows

that | Z,| < 2% < 22, a contradiction.

Suppose that L, = Ree(3"). By the above, n > 3. By Lemma 2.2.4 (vi), we
infer that L, is generated by three conjugates of (Zai2 N Qp)Qa/Qs and since
the minimal degree of a GF(3)-representation of L, is 7n, we deduce that 3™ <
|Z,| < r3p®. Since Z,y5 is elementary abelian and [Q(S/Q.)| = 3*", we have
that r2p3 < 3%"3% and since n > 3, we conclude that n = 3, L, = Ree(27)
and (Zy42 N Q5)Q0/Qa = Q2(S/Q,). But then, it may be checked that L, is
generated by two conjugates of (Z,42 N Qp)Qa/Qa and 3*' < 31233 = 315 a clear

contradiction. O

Proposition 5.4.54. Suppose that m,(S/Q.) = 2, m,(S/Qs) = 2 and p € {2, 3}.

Then one of the following holds:
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(i) G has a weak BN-pair of rank 2 and G is locally isomorphic to H where
F*(H) =2 PSU,(p"™), PSU5(2"), PSU5(3") or PSpy(3™*Y) forn > 1; or

(i) p =3, |S| =37, Lo & Myy, Z, = Q, is the “code” module for L,, Ls =
SLy(9) and Qs = 31

Moreover, if G is obtained from a fusion system F satisfying Hypothesis 5.1.12

then one of the following holds:

(i) p =2 and F = Fs(H) where F*(H) = PSU4(2") or PSU5(2") and n > 2;

or

(i) p =3 and F = Fs(H) where F*(H) = PSp,(3"™!), PSU4(3"*1), PSU5(3")

form >1; or

(ili) p =3 and F = Fs(H) where H = Cos.

Proof. Assume that m,(S/Q.) > 2 so that S/Q, is elementary abelian by
Lemma 5.4.53. Then by Proposition 3.2.7, L, = SLy(p™) or PSLy(p") for n > 2
and p € {2,3}; or L, = Mj; or 3-central extension of PSL3(4) and p = 3. In
particular, (G,,5MNLa)/Qa acts irreducibly on S/Q, and so Q3 = F3(QsNQ,) and
Fp contains all non-central chief factors for Lg. Further, Dg < @), for otherwise

Qp = Ds(Qa N Qp) and OP(Lg) centralizes ()g, a contradiction.

If both L, and Lg are isomorphic to central extensions of Lie type groups, then
G has a weak BN-pair of rank 2 and G is determined up to local isomorphism in
[DS85]. Comparing with the amalgams determined there, we have that G is locally
isomorphic to H where F*(H) = PSUy(p"), PSU5(p™) or PSp,(3") for n > 2, or

PSU5(3). Hence, p = 3. Since ()3 admits quadratic action, by Lemma 2.3.5,
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Lg = SLy(3°t) or (P)SU,(3%) for a > 1; and L, = My, or a central extension
of PSL3(4). Set rq := [(Za N Qp)Qat2/Qa+2| and d the number of conjugates of
(ZoaNQp)Qat2/Qato required to generate Lyio. In a similar way to Lemma 5.4.52,

we see that r, = 7449 and the value of d is consistent for both L, and L.

If Ls = (P)SU,(3%), then since F3 N Q, is index 9 in Fj and is centralized by Z,,
we have that Lg = SU;(3) and Fj/Fs N Dg is a natural module. Then, |Z,| <
(143)%. One can check that for L, = My, or a central extension of PSL3(4), L, is
generated by two conjugate Sylow 3-subgroups, or three conjugates 3-elements and
80 |Zo| 35,8 = (Zas2aNQp)Qa and Zs = Z, N Qs N Q) is index 3 in Z,. Since
the minimal degree of a GF(3)-representation of My, is 5 and the minimal degree of
a GF(3)-representation of a central extension of PSL3(4) is 6, Z, contains a unique
non-trivial irreducible constituent and r, = 9. Since Cz_ (OP(L,)) = Z(La) = {1},
it follows from Lemma 2.3.2 that Z, = [Z,, L,] is irreducible. Since S = Q,Q3
and S/Qp is non-abelian, it follows that Z, < ((Z5 N ®(Q.))%) < ®(Q,). But
then Z,(Qa N Qp N Qar2) has index 32 in Q, and there is an index 3* subgroup
of Qa/®(Q,) which is centralized by O*(L,). A consideration of the minimal
degrees of GF(3)-representations of L, yields that O3(L,) centralizes Qu/®(Qa),

a contradiction.

If Lg = SLy(3%), then Lg = (Qp, Zu, Zas2) and Qs N Q, is an index 9 subgroup
of Qg which is centralized by Z,. It follows that Lg = SLy(9) and Qg contains
one non-central chief factor, which is isomorphic to the natural module. Suppose
that L, = Mj;. Then the amalgam is described in [Pap97] and we have (v) as
a conclusion in this case. If GG is obtained from a fusion system F satisfying
Hypothesis 5.1.12, then since S € Syl;(0?*(G,)), it follows that O*(F) = F and

we may apply the results in [PS21]. Indeed, F is isomorphic to the 3-fusion system
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of Cos.

Let T be the preimage in Lg of Z(Lg). Then, by coprime action, Qz/®(Qg) =
[Q5/®(Qp), Tp] x Cq,/a(q,(Tp) where [[Qs/®(Qp), T5]| = 3. Since S/Qq is
elementary abelian, ®(Q3) < Q, and so [Z,, ®(Qs)] = {1} and ®(Qs) < Ds.
It follows that Dg is index 3* in Qs and Qp = F3Dg.

We may assume that L, is isomorphic to a central extension of PSL3(4) so that
|Za] < (ra3?)? < (3%)¢ = 3%, Thus, Z, contains a unique irreducible constituent
and, as above, Z,, is an irreducible module and |Z,| = 3% or 3%. Since Q, = Z,(QaN
Qp) and [Qg, F] < Z, by Lemma 5.4.49, it follows that Z, contains all non-central
chief factors for L, and the irreducibility of Z, implies that ®(Q,) = {1} and Q,
is elementary abelian. Since the minimal degree of a GF(3)-representation of

PSL3(4) is 15, Z(L,) acts non-trivially on Z, and since Z, is irreducible, for T,
the preimage in L, of Z(La), Zo = [Za,T,]. Since @, is abelian, it follows from
coprime action that Q, = [Qu, Tn] X Cq,(Tn) = Za x Co,(T,,) and since Co, (T,,)
is normalized by S and intersects Zz trivially, Cg,(T,) = {1} and Q, = Z,. Now,
Dg is centralized by S = Z,Fs and so Zg = Dg has index 3* in Q. If |Z,| = 35,
then Zs has order 9 and so |S| = 32.|Qs/Zs]|Zs| = 3%, a contradiction. Thus,
|Z,| = 3°%. Then, one can check that for either irreducible module of dimension 6,
S splits over Z, and since Z, is self-centralizing, |Z(L,)| = 2. Moreover, S is of

order 3% and is isomorphic to a Sylow 3-subgroup of Suz or PSp,(9). In the former

case, Zg is of order 3, so that |S| = 3%.|F3/Zs||Zs| = 37, a clear contradiction.

When S is isomorphic to a Sylow 3-subgroup of PSp,(9), we apply [HS19, Theorem
3.13] to see that G, embeds as a subgroup of 2 - PSL3(4).2? and for any element
x € G, of order 8, [2*, Z,] €[S, Zo] = Zo NQp. Let tg € LgN G, be an element

of order 8, so that t%Q/g < Z(Lg). But then [t‘é, Zs) < ZoNQp and since t5 < G,,
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we have a contradiction. O

Proposition 5.4.55. Suppose that m,(S/Qa.) = 2, m,(S/Qs) =1 and p € {2,3}.
Then one of the following holds:

(i) G has a weak BN-pair of rank 2 and G is locally isomorphic to H where
F*(H) = PSU,4(p) or PSU;5(2);

(i) p = 3, |S] = 3%, L, = PSLy(9), Zo, = Q. is a natural 2 (3)-module,

Ls = (Qg x Qg) : 3 and Qs = 311,

(iii) p = 3, |S] = 35, L, = PSLy(9), Z, = Q. is a natural Q2 (3)-module,
Ls =2 Alt(5) and Qs = 341,

(iv) p = 3, |S| = 3%, L, = PSLy(9), Zo = Q. is a natural 0 (3)-module,
Ls = 2% Alt(5) and Qs = 31

(v) p =3, S| = 3, Tu = My and Zo = Qu is the “cocode” module for T,
L5 = SLy(3) and Qp = 3141+ = T € Syl (SLy(9)); or

(vi) p =3, |S| =37, Ly & My and Z, = Q, is the “cocode” module for L,

L 2 SLy(5) and Qg = 3714 =2 T ¢ Syl,(SLs(9)).

Moreover, if G is obtained from a fusion system F satisfying Hypothesis 5.1.12

then one of the following holds:

(i) p = 2 and F = Fs(H) where H = PSU4(2), Aut(PSU4(2)), PSU5(2) or
Aut(PSU5(2));

(ii) p =3 and F = Fs(H) where F*(H) = PSU4(3); or
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(i) p =3 and F = Fs(H) where H = McL, Aut(McL), Co,y, Ly, Suz, Aut(Suz),
PSU4(2) or PSUg(2).2.

Proof. Suppose that m,(5/Qs) = 2 and m,,(S/Qp) = 1. Then by Lemma 5.4.53,
S/Q, is elementary abelian and as in Proposition 5.4.54, we have that if OP(L,)
is generated by d conjugates of (Za12 N Qp)Qua/Qu, then |Z,| < (14| Z.Q5/Qs])%,

where 7, = [(Za12NQp)Qa/Qal. In particular, since m,(S/Qs) = 1, | Za| < (rap)®.

Suppose that L, = SLy(p") or PSLy(p") for any n > 1. Applying Lemma 2.2.1
(iii),(iv), (v), unless r, = p we have that |Z,| < r2p? < p*"™2 and if r, = p, then
|Z,] < p®. Since the minimal degree of a GF(p)-representation of L, is 2n and

"1 and it follows that there is at most one non-trivial irreducible

n=2,re=2p
constituent within Z,. Since Cz (OP(L,)) = Z(L,) = {1}, by Lemma 2.3.2
Zo = [Zay Lo is irreducible. Setting K to be Hall p/-subgroup of L, N Ga.s,
it follows from Smith’s theorem ([GLS98, Theorem 2.8.11]) that Zz = Cy, (S)
and Z,/|Z,, S] are irreducible and 1-dimensional as F'K-modules, where F' is an
algebraically closed field of characteristic p. But [Z,, S] = [Za, Qp] < Z,N Qs and
since Z, N Qp has index p in Z,, [Z,, S| = Zo N Qp and |Zs| = |Z4/[Za, S]] = p.
If n > 2, then |Z,| < p?™ < p*" and Lemma 2.3.12 implies that Z, is a triality
module for L, = SLy(p?) and |Z,| = p®. Since |Z,| < r2p?, we have that r, = p?
and S = (Zo12NQp) Q. centralizes Z,NQsNQqre. But then Zg = Z,NQsNQaq2

is index p* in Z,. Since |Zs| = p, p° = |Z.| = p®, a contradiction.

Thus, we may assume that |S/Q,| = p? for the remainder of the proof. Then
F3/F3N Dg is a quadratic 2F-module and so, by Proposition 2.3.19, both Lsz and
F3/F3N Dg are determined. If L = SU3(2), then since p = 2, L, = PSLy(4) and

G has a weak BN-pair of rank 2 and by [DS85], G is locally isomorphic to H where
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F*(H) =2 PSU;(2). Hence, we may assume that S/Qg is abelian.

We have that L, is isomorphic to PSLy(p?), SLy(p?), My; or a 3'-central extension
of PSL3(4). Since Mj; and central extensions of PSL3(4) are generated by two
conjugate Sylow 3-subgroups, or three conjugates elements of order 3, we see that
|Z,| < 3% and by the above, in all cases we conclude that |Z,| < 35 Checking
against the degrees of the minimal GF(p)-representations of the candidates for L,
we see that Z, contains a unique irreducible constituent and since Cyz, (OP(L,)) =

Z(Ly) = {1}, it follows from Lemma 2.3.2, that Z, = [Z,, L,] is irreducible.

If |S/Qp| > p, then p = 2 and ®(Q,) # {1} and it follows from the irreducibility
of Z,, that Z, < ®(Q,). But then ®(Q,)(Qs N Qp) is an index 2 subgroup of
Qo and [P(Qn)(Qa N Qp), F] < &(Qn) by Lemma 5.4.49. Since m,(S/Qa) = 2,
it follows that O%(L,) centralizes Q,/®(Q.,), a contradiction. Thus, we have that
|S/Qs| = p. Then, Q, = Z,(Qa N Qp) and by Lemma 5.4.49, [OP(L,), Qn] < Z,.
Then the irreducibility of Z, implies that ®(Q,) = {1} and @Q, is elementary

abelian.

Now, checking against the list of groups provided in Proposition 2.3.19, either
Lg is p-solvable or has a non-trivial center, and for Tj the preimage in Lg of
Oy (Lg), we have by coprime action Qs/®(Qp) = [Qs/P(Qp). T5] x Cq, /a4 (T5)
where [Qg/P(Qs), 5] contains all non-central chief factors in Qg/®(Qs) and
Couro@n(Ts) = Cqua@n(0¥(Lg)).  In particular, Fp®(Qs)/P(Qs) =
Qp/P(Qp),T5]. Since P(Qs) < Qa, [P(Qp),Zs] = {1} and it follows that
®(Qp) < Dg so that Q3 = FsDg. Since Dg < (@), is elementary abelian and

Fz < OP(Lg), S = FpQ, centralizes Dg so that Dy = Z.

Suppose that L, is isomorphic to a central extension of PSLs(4). Then p = 3
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and comparing with the modules in Proposition 2.3.19, |Qz/Zs] = 3* so that
|S/Zs| = 35. Since |Z,| = 3%, we have that |S| > 3% and |Z4| > 3%. Checking the
relevant irreducible GF(3)-modules associated to L,, we have that |Z5| < 37, a

contradiction.

Suppose that L, = My;. Then p =3, |Z,] = 3% and Lg = 2 - Alt(5), 2174 Alt(5),
SLy(3) or (Qs x Qs) : 3 by Proposition 2.3.19. In the first three cases, the structure
of L, and Lg is determined in [Pap97] and outcomes (vi) and (vii) follow in these
cases. Suppose that Ls = (Qs x Qs) : 3 with |Qs/Zs| = p* and let Kz be a
Hall 2’-subgroup of G, 3 N Lg. Then K < G, and so Kz acts on L,/Q,. Since
M;; has no outer automorphisms, if Kg £ L,, then there is an involution t € Kz
such that [t, L,] < Q, and [t, Lg] < Qs, a contradiction by Proposition 5.2.6 (v).
Thus, Kz < L, so that L, = G,. Since [K3,Z,| < Z, N Qp and Kz centralizes
Zgs it follows that |Cz, (K3)| = 3%, and one can check (e.g. using MAGMA) that
this provides a contradiction. If G is obtained from a fusion system F satisfying
Hypothesis 5.1.12, then since S € Syl;(0?*(G,)), it follows that O*(F) = F and
we may apply the results in [PS21]. Indeed, F is isomorphic to the 3-fusion system
of Suz, Aut(Suz) or Ly.

Finally, suppose that L, = PSLy(p?) or SLy(p?). Then, again by Smith’s theorem,
|Zs| = p so that Fz = Q. By the minimality of Fj, it follows that Z(Qz) =
®(Qp) = Zp is of order p and (Y is extraspecial. Since Q3 N @, is an elementary
abelian subgroup of index p? in Q3, we have that |Qs| = p°. In particular, |S| = p°

and Z, = Q. is of order p*.

If p =2, then Lz = Dih(10), Sym(3) or (3 x 3) : 2 since SU3(2)’ does not embed
in Aut(QpP(Qp)) = GL4(2). In the first two cases, G has a weak BN-pair and so

comparing with [DS85], we have that Lg = Sym(3) and G is locally isomorphic to
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H where F*(H) = PSU4(2). Since @3 is extraspecial, comparing with [Win72],
Ly is isomorphic to a subgroup of Of (2) if Qs = 21 or O; (2) if Qg = 21+
Note that 9 does not divide |O; (2)| and so, we deduce that Qs = 217 Let K be
a Sylow 3-subgroup of L, NGy g. Then K acts non-trivially on () and so K also
embeds into OF (2) while normalizing Lg = (3 x 3) : 2. But for H < Of (2) with

H = (3 x 3) : 2 we have that |No4+(2)(H)/H| = 2, a contradiction.

Thus, we may assume that p = 3 and Lg = SLy(3), (@s x Qs) : 3,2 - Alt(5)
or 2174 Alt(5). Since |Z,] = 31, Z, is a faithful L,-module and Z, is not a
quadratic module, we have that L, = PSL,(9) and Z,, is a natural Qj (3)-module.
If Ly = SLy(3) then G has a weak BN-pair and comparing with [DS85], G is locally
isomorphic to H where F*(H) = PSU4(3). If Lg = 2 Alt(5) or 2171 Alt(5) then
the structure of L, and Lg is determined in [Pap97] and we obtain conclusions (iii)
and (iv). If G is obtained from a fusion system F satisfying Hypothesis 5.1.12,
then applying the results in [PS21], F is isomorphic to the 3-fusion system of
McL, Aut(McL) or Co,. Finally, suppose that Lg = (Qg x Qs) : 3. Since Qg
is extraspecial of order 3% and Lg embeds in the automorphism group of Qg, it
follows from [Win72] that Qs = 3. If S acted quadratically on Z,, then Z,
is a natural SLy(9)-module, a contradiction since Cy, (S) = Zg is of order 3. It
follows that Z, is a natural Q; (3)-module for L, and since Z, is self-centralizing,
L, = PSLy(9) and we have (ii) as a conclusion. If G is obtained from a fusion
system F satisfying Hypothesis 5.1.12, then applying the results in [PS21], F is
isomorphic to the 3-fusion system of PSUg(2) or PSUg(2).2. O

We conclude this section by summarizing what has been shown:

Theorem 5.4.56. Suppose that A = A(Ga,Gg, Gag) is an amalgam satisfying
Hypothesis 5.2.1. If Zo < Q., then one of the following holds:
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(i) A is a weak BN-pair of rank 2; or

(i) p=3, b=1, |S| < 3" and the shapes of L, and Lg are known.

Consequently, if A is obtained from a fusion system satisfying Hypothesis 5.1.12,

then F is not a counterexample to the Main Theorem.

5.5 Some Further Classification Results

We first prove Corollary A. That is, we classify saturated fusion systems in which

there are exactly two essentials.

Corollary 5.5.1. Suppose that F is a saturated fusion system on a p-group S
such that O,(F) = {1}. Assume that F has exactly two essential subgroups Ey
and E,. Then Ng(Ey) = Ns(E>) and writing Fo := (Nz(E1), Ne(E2))Ng(), Fo

is a saturated normal subsystem of F and either

(i) F = Fy is determined by the Main Theorem;

~

(ii) p is arbitrary, Fo is isomorphic to the p-fusion category of H, where F*(H)
PSL3(p™), and F is isomorphic to the p-fusion category of G where G is the

extension of H by a graph or graph-field automorphism;

~Y

(i) p = 2, Fo is isomorphic to the 2-fusion category of H, where F*(H)
PSp,(2"), and F is isomorphic to the 2-fusion category of G where G is the

extension of H by a graph or graph-field automorphism; or

~

(iv) p = 3, Fo is isomorphic to the 3-fusion category of H, where F*(H)
G2(3"), and F is isomorphic to the 3-fusion category of G where G is the

extension of H by a graph or graph-field automorphism.
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Proof. Note that if both E; and Fy are Autz(S)-invariant then, appealing to
Proposition 5.2.9 to verify that E; and FE, are maximally essential, F = Fy
is determined by the Main Theorem. Assume throughout that at least one of
E; and E, is not Autg(S)-invariant, and without loss of generality, E; is not
Aut z(S)-invariant. Then Ng(E;)a < Ng(Eia) and since E; is fully F-normalized,
it follows that Ng(E)a = Ng(Eja). Moreover, Eja is also essential in F and so
Eia = E,. By asimilar reasoning, Fya = Ey, a? € Nx(E,)N Nx(FE,) and both E,
and F, are maximally essential. Suppose first that p is odd. Then S = Ng(E;) =
Ng(FE2) and by [AKO11, Lemma 1.7.6(b)] and the Alperin—Goldschmidt theorem,
Fo is a saturated subsystem of F of index 2 and by [AKO11, Theorem 1.7.7],
Fo is normal in F. Hence, O,(F) is normalized by F and as O,(F) = {1},
O,(Fo) = {1} and Fy is determined by the Main Theorem.

Since there is @ € Aut#(S) such that Fio = FEy, we must have that F; = Fy as
abstract p-groups. Thus, comparing with the Main Theorem, Fy is isomorphic to
the p-fusion category of H where F*(H) is one of PSL3(p") or Go(3") (where p > 2
is arbitrary or p = 3 respectively). Indeed, since Fy < F, there is F° < F with F°
is isomorphic to the p-fusion category of F'*(H) and supported on S. At this point,
we can either apply [BMO19, Theorem A]; or recognize that the possible fusion
systems correspond exactly to overgroups G of F*(H) such that F*(G) = F*(H)

by applying [AKO11, Theorem 1.7.7].

Suppose now that p = 2. Then Ng(E)) = Ng(FE>) = E1FE5 has index 2 in S. Let
G; be a model for Nx(E;) for i € {1,2}. Note that if there is Q@ < Ng(F;) with @
normal in both Nz(E;) and Nz(F,), then Qo = @ is normal in F. Since Oy(F) =
{1}, we deduce that @ is trivial. Moreover, applying [Ascl0, (2.2.4)], Ng, (Es) =

N¢,(Ns(E»)) is isomorphic to Ng,(E1) = Ng,(Ng(E2) by an isomorphism fixing
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Ns(Ey).

Hence, suppressing the necessary inclusion maps, we form the rank 2 amalgam
A = A(Gy, Gy, G7,) writing G, for the group gained by identifying Ng, (Ns(E4))
with Ng,(Ng(F2)) in the previously described isomorphism. Then F, =
(Fns(en)(G1); Fns(i:)(G2)) = Fnge) (Gr¥gs, Ga) by Theorem 5.1.6, and Oq(Fy) =
{1}. Moreover, A satisfies Hypothesis 5.2.1 and since Ey = Fia, E; and E; are
isomorphic as abstract 2-groups. Then Gy g, G2 is locally isomorphic to H
where H € A° is as described after Definition 5.1.7, and F*(H) = PSL3(2") or
PSp,(2™). Then by Corollary 5.1.9, Fy is isomorphic to the 2-fusion category
of Y and so Fy is saturated. Moreover, applying [AKO11, Theorem 1.7.4] and
the Alperin—Goldschmidt theorem, Fy is a normal subsystem of index 2 in F.
Again, there is F* < F with F° isomorphic to the p-fusion category of F*(H) and
supported on Ng(F;) and we can either apply [BMO19, Theorem A}; or recognize
that the possible fusion systems correspond exactly to overgroups G of F*(H) such
that F*(G) = F*(H) by applying [AKO11, Theorem 1.7.4] and [AKO11, Theorem
1.7.7). O

We now turn our attention to identifying some finite simple groups from a situation
motivated by Hypothesis 5.2.1. In Theorem 5.2.2, when a group has a weak
BN-pair and is determined up to local isomorphism, then almost all the groups
occurring as appropriate Sylow completions are known (see [PR06]). Thus, we
investigate the cases where the amalgam is described up to some weaker form
of isomorphism. For this, we make use of several identification results already
present in the literature, and often implicitly use MAGMA and the list of maximal
subgroups in the Atlas [Con+85] for computations. Moreover, we assume all the

details regarding the amalgams which were collected in earlier sections.
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It is worth pointing out that a consistent theme in these identification results is
that the centralizer of an element of the center of a Sylow p-subgroup, for some
appropriate prime p, is of characteristic p. Recall that a finite group G is of
parabolic characteristic p if the normalizers of p-subgroups which contain some
Sylow p-subgroup of G are of characteristic p. One can prove, using some balance
arguments, that it suffices to check that the centralizers of elements of order p which
contain some Sylow p-subgroup of GG are constrained. In most of our examples, for
an appropriate S € Syl (G), |Z(S)| = p and so the condition G has a parabolic
characteristic p is equivalent to demanding that Ng(Z(S)) is of characteristic p,

which in the cases listed here is equivalent to Cg(Z(S)) being of characteristic p.

First, recall that an element z € S € Syl (G), where G is some finite group, is
weakly closed in S with respect to G if z“NS = {«}. Throughout, for S € Syl (G)
as specified, we let Z := Z(S), N := Ng(Z) and C := Cg(2).

Theorem 5.5.2. Suppose that G is a finite group and H, M < G such that
(1) there is Hl,HQ S‘ H with H1 = H2 = SL2(3), |H . H1H2| = 2, |H1ﬂH2| = 2,
and H = Ce(Hy N Hy); and

(i) HHNHy <V < M with V = 2% and M)V = PSL;(2).

Then G = Gy(3).

Proof. This is the main theorem of [Asc02]. O

Corollary 5.5.3. Suppose that G is a finite group such that C is of characteristic
2 and G is a Sylow completion of the amalgam described in Proposition 5.5.16 (ii).

Then G = Gy(3).
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Proof. Since Gg < C and O(C) is self-centralizing in C, we have that Oy(C) =
Qp. But ®(Qp) = Zs and by Lemma 2.1.8, C'/Qs embeds as a subgroup of
GL4(2). We search for subgroups Y of GL4(2) such |Y|s =2, O5(Y) = {1} and, as
Gp/Qs < C/Qgs, some subgroup of Y is isomorphic to (3 x 3) : 2. One can check

(e.g. using MAGMA) that this implies that C' = G3.

Let H = Gp so that Z = Z(H) and H/Oy(H) = (3 x 3) : 2. Choose ry,rs
3-elements in H such that [Co,myz(r;)| = 4. Then H; := O*(S(r;)) = SLy(3),
H; < H,|H: HHy| =2and H NHy = Z. Thus, G satisfies (i) of Theorem 5.5.2.

Set V' = Miea()(Qa N Qx) so that V is elementary abelian of order 8 and
contains Z,. Moreover, |H : Ng(V)| = 3 and Ng(V)/O2(H) = Sym(3). Setting
M = (Go, Ng(V)), we have that V = O9(M) and M/V has weak BN-pair locally
isomorphic to PSL3(2). Since J(S) £ V and Z 4 M, we have that V is an
FF-module for M. It follows from [CD91, Theorem A, that M/V = PSL3(2) and

so G satisfies (ii) of Theorem 5.5.2. Thus, G = Gy(3), as required. O
Theorem 5.5.4. Let G be a finite group, z an involution in G, H = Cg(2),

Q = 05(H) and X € Syl;(H). Assume that

(i) @ is extraspecial of order 32;
(ii) H/Q = Sym(3) and Co(X) = (2); and

(iii) z is not weakly closed in Q w.r.t G.

Then one of the following holds:

(i) There is V. < G such that V is elementary abelian of order 8 and G|V =
PSL3(2).
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(ii) G = Alt(8) or Alt(9) and the two Qg-subgroups of Q are not normal in H.

(iii) G = Myy and the two Qg-subgroups of QQ are normal in H.

Proof. This is [Asc03]. O

Corollary 5.5.5. Suppose that G is a finite group such that Cg(Z) is of
characteristic 2 and G is a Sylow completion of an amalgam parabolic isomorphic

to Mis. Then G = Mis or Go(3).

Proof. Note that Gg < C and since C' is of characteristic 2, we either have that
02(C) = Qp, or O2(C) is elementary abelian of order 8. In the latter case, it
follows that C'/O4(C') embeds into a subgroup of the automorphism group of Oy(C)
which fixes Z. But such a subgroup is isomorphic to 2% : Sym(3) and so C' =
Gp and O5(C) = Qp, a contradiction. Thus, we have that Oy(C) = @ and
®(Qp) = Zs. Since O5(C/Qp) = {1}, by Lemma 2.1.8, C'/Q3 embeds faithfully
into Aut(Qp/P(Qp)) = GL4(2). We search for subgroups Y of GL4(2) such |Y]; =
2, 02(Y) = {1} and, as G/Qp < C/Qg, some subgroup of Y is isomorphic to

Sym(3). Thus, Y € {Sym(3), (3 x 3) : 2, Sym(3) x 3}.

[

If C/Qp = (3 x3) : 2, then in a similar manner to Corollary 5.5.3, we have
that G satisfies the hypothesis of Theorem 5.5.2 and G = Gy(3). If C/Qp =
Sym(3) x 3 then a Sylow 3-subgroup of N¢(S) normalizes @, = Cs(€2(Z5(S5))). But
|Qa/P(Qn)] = 2° and by Lemma 2.1.8, Ng(Q,)/Q. is isomorphic to a subgroup of
GL3(2) with Sylow 2-subgroup of order 2, no non-trivial normal 2-subgroups and
contains a subgroup isomorphic to Sym(3), so that Ng(Q.)/Qa = Sym(3) and as

Ne(S) < Ng(Q.), we arrive at a contradiction.
If C/Q = Sym(3) then letting H := C' and z € Zg so that (2) = Z = Z(H), G
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satisfies (i) and (ii) of the hypothesis of Theorem 5.5.4. Moreover, since Zz is not
normalized by G, G also satisfies (iii). Since O9(G) = {1}, it remains to show
that outcome (ii) of Theorem 5.5.4 does not occur. Since the M, amalgam is
determined up to parabolic isomorphism, .S is determined up to isomorphism. In
particular, my(S) = 3. However, for 7' € Syl,(Alt(8)), ma(T") = 4 and so outcome

(ii) does not occur. O

We remark that, by work of Fan [Fan86], when G is parabolic isomorphic to Mjs,
then G is locally isomorphic to M5 and so this case is reasonably well understood

without the need for Aschbacher’s result.

Theorem 5.5.6. Suppose that G is a finite group and S € Syl,(G). Further

assume that G has an involution z such that

(i) Cg(2) is of characteristic 2;
(i) Oa(Co(2)) =214,
(iii) Cu(2)/02(Ca(2)) = Alt(5); and

(iv) Z is not weakly closed in S w.r.t G.

Then either G has two classes of involutions and G = Jo; or G has a unique class

of involutions and G = J3.

Proof. See [Asc94, Section 47| for the uniqueness of Jo and [Fro83] for the

uniqueness of Js. O]

Corollary 5.5.7. Suppose that G is a finite group such that C is of characteristic
2 and G is a Sylow completion of an amalgam parabolic isomorphic to Jo. Then

Gng OTJg.

338



Proof. Since Gz < C, Gp is irreducible on Q3/Zs and C is of characteristic 2, we
deduce that Qs = O2(C') and (ii) of Theorem 5.5.6 is satisfied. By Lemma 2.1.8,
using that O5(C/Qs) = {1}, we have that C/Q)3 embeds as a subgroup of GL4(2)
with Sylow 2-subgroup of order 4 and contains a subgroup isomorphic to PSLy(4) =

Gp/Qp. It transpires that either C' = G or C/Qs = PSLy(4) % 3.

In the latter case, for y the 3-clement in Cx(S/Qp), we have that y normalizes
S so normalizes Q, = Cs(Z»(5)). But Z, = ®(Q,) and |Q./Z.| = 2* so that,
again by Lemma 2.1.8, Ng(Q.)/Q. embeds as a subgroup of GL4(2) and as in
Corollary 5.5.5, we have that Ng(Q4)/Q, is isomorphic to one of Sym(3), (3 x 3) :
2 or Sym(3) x 3). Moreover, since y € Ng(S) < Ng(Qn) we must have that
Ne(Qa)/Qa = Sym(3) x 3. But then, the index of Cg, (y) in G, is a 2-group for
A € {a, B} and as Zs < Cg(y), the actions of G,/Q, implies that S < Cq(y),

impossible since y acts non-trivially on Qg/Zs.
Thus, C' = G and (iii) of Theorem 5.5.6 is satisfied. Moreover, since Z is not
normalized by G,, G also satisfies (iv) and the result follows. O
For the next characterization, we define a IC-proper finite group to be a finite group
in which every proper subgroup is a C-group.
Theorem 5.5.8. Let G be a finite KC-proper group with S € Syls(G). Suppose
that:

(i) Z has order 3 and Z5(S) has order 9;

(i) Ng(Zo(S)) ~ 3*T31212 . 2.Sym(4) is of characteristic 3;

(iii) N ~ 321214229 Sym(4) is of characteristic 3; and
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(iv) G = (N, Na(Z(S))) and O5(G) = {1}.
Then G = Fj.

Proof. This is the main result of [Fow07]. O

Corollary 5.5.9. Suppose that G is a finite K-proper group such that C' is of
characteristic 3 and G is a Sylow completion of an amalgam parabolic isomorphic

to Fs-amalgam. Then G = F3.

Proof. From the structure of the Fs-amalgam, in order to apply Theorem 5.5.8 it
suffices to show, in the language of Section 5.4.2, that N = Gz and Ng(Z2(95)) =
G, remarking that Z = Zz and Z5(S) = Z,. Notice that G,/Qq = Aut(Z2(S5))
and so Ng(Z2(S5)) = GoCq(Z2(S)) < GaCeyz(s))(Z2(5)). In particular, upon
demonstrating that No(Z(S)) = G, we have that Ng(Z>(5)) < GoCa,(Z2(S)) <
G.. We shall adopt the language of Section 5.4.2 throughout. We first aim to

show that Q3 = O3(N) and as O3(C) < N, we may as well demonstrate that

Qs = O3(C).

Since G is of parabolic characteristic 3, we have that O3(C') is self-centralizing and
properly contains Zg. In particular, O3(C) is normal in S and so (O3(C)/Z3) N
Z(S/Zg) # {1}. Then, as Z, = Z(S) and Lz < C, V3 < O3(C). Suppose first
that Q(Z(03(C)) = Zg. Then O3(C) £ Cs and Qs = O3(C')Cs. Furthermore,
Vi, 05(C)IVs = QZ(VEY)) < 05(C) and [Cp, 05(CNQUZ(VSY)) = V5" <
O3(C). If Cs < 0O3(C), then O3(C) = @Qp and the result holds and so, we
may assume that O3(C) N Cy = Vﬁ(g). Note that Q(Z(VB(?’))) = [Og(C),Vég)] <
®(03(C)) and so Vﬂ(?’) is equal to one of the characteristic subgroups ®(O3(C)) or

Coy(c)(®(03(C))), and so Q(Z(Vﬁ(?’))) is also characteristic in O3(C'). But then Cjp
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centralizes the chain {1} < Z;5 < Q(Z(VB(B))) < VB(S) < 03(C) and by Lemma 2.1.9,

Cs < O5(C), a contradiction.

If Zg < QZ(05(C))), Vg < Q(Z(03(C))) then O5(C) < Cyz. Moreover, it
follows that Vs < Q(Z(03(0))) < QZ(VAY)). Then [03(C), AZ(Vi?))] < Z5 <
Q(Z(05(C))) and by Lemma 2.1.9, Q(Z(VsY)) < 05(C). If V5 = Q(Z(05(0))),
then VB(S) centralizes the chain {1} < Q(Z(03(C))) < O3(C) and by Lemma 2.1.9,
Vﬁ(g) < 03(C) so that Cz = O5(C). Now, ®(03(C)) = V3 and so, C/O3(C) acts
faithfully on Cj/V3 and so embeds into GL4(3). Moreover, C(Vjs/Z5) is a normal
subgroup of C' which has ()3 as its Sylow 3-subgroup. Thus, we turn our attention
to subgroups H of GL4(3) such that |H|3 = 3%, O3(H) = {1} and H has a normal
subgroup N such that |N|3 = 3% One can calculate, using MAGMA, that no

groups satisfy this property, providing a contradiction.

Finally, if Q(Z(03(C))) = QZ(VS")), then 05(C) < V¥ and since 03(C) is
normalized by Lg and is self-centralizing, we have that O3(C) = Vég). But then,
Cj centralizes the chain {1} < Zz < Q(Z(03(C))) < O3(C), a contradiction by

Lemma 2.1.9.

Thus, we have shown that Qs = O3(C). Furthermore, one can compute that
®(Q)p) = Cs has index 9 in QJp, and by Lemma 2.1.8, N/Q)g is isomorphic to a
subgroup of GLy(3). Since G/Qs = GL3(3), we have that N = G, as required.

This completes the proof. n

Theorem 5.5.10. Suppose that G is a group and S € Syly(G). Further assume

that

(i) |N|=2".35;
(ii) O3(N) is extraspecial of order 3°;
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(iii) Ox(N) = {1},
(iv) O2(N/O3(N)) = Qs x Qs;
(v) [NJOXN)| = 2 and

(vi) O3(N)/Z(O3(N)) is an N-chief factor.

Then either Z is weakly closed in S or G = PSUs(2).

Proof. See [Par06, Theorem 1]. O

Corollary 5.5.11. Suppose that G is a finite group such that C' is of characteristic
3 and G is a Sylow completion of the amalgam described in Proposition 5.4.55 (ii).

Then G = PSU(2).

Proof. From the structure of the amalgam in Proposition 5.4.55 (ii), we may choose
t € Lo NG, p of order 4, such that ¢ € Ng(Z) and t* € C. Moreover, since Z,
is isomorphic to an €, (3)-module, t acts irreducibly on Z, N Qs3/Z and t inverts
S/Qp = Zo/Zy N Qp. Then, one can calculate that ¢* € Lg, Qg/Z is irreducible
as a Lg(t)-module and Gg = Lg(t).

In order to apply Theorem 5.5.10, we need only show that N = G3. Since C is of
characteristic 3, we have that Zz < O3(C) < O3(N) and since Gg < N, O3(N) =
Qp. Thus, N/Qp embed into the automorphism group of )3 and so by [Win72],
N/Qjp is isomorphic to a subgroup of Sp,(3) : 2. Moreover, |[N/Qsls = 3 and N/Qp
contains a subgroup isomorphic to G/Qs which has order 27.3 and a comparison

with the maximal subgroups of Sp,(3) : 2 yields N = G, as required. ]

Theorem 5.5.12. Suppose that G is a finite group, S € Syly(G) and J is an

elementary abelian subgroup of S of order 3*. Further assume that
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(i) O¥(N) = 3172, Alt(5);
(ii) O%(Ng(J)) = 3*.Alt(6); and

(iii) C is of characteristic 3.

Then G = McL or Aut(McL).

Proof. See [PStr14, Theorem 1.1]. O

Corollary 5.5.13. Suppose that G is a finite group such that C' is of characteristic
3 and G is a Sylow completion of the amalgam described in Proposition 5.4.55 (iii).

Then G = McL or Aut(McL).

Proof. By Proposition 5.4.55 (iii), in order to apply Theorem 5.5.12, taking
J = Z,, it suffices to show that N = Gy and O* (Ng(J)) = L,. Since C is of
characteristic 3, O3(C) is self-centralizing. Moreover, Lz < C and acts irreducibly
on Q3/Z from which it follows that O3(C) = @Qs, and as C I N, we have that
Qp = O3(N). Thus, N/Qp embeds into the automorphism group of @)z and
so again by [Win72], N/Qp is isomorphic to a subgroup of Sp,(3) : 2. Moreover,
IN/Qsls = 3 and N/Qs contains a subgroup isomorphic to Gg/@Q 3, remarking that
|Gg| = 2|Lg| and Lg/Qs = SLy(5). Computing in Sp,(3), we have that N = G,
as desired. Now, N¢(J)/Z, embeds as a subgroup of GL4(3), |Ng(J)/Za| = 9 and
N¢(J)/Zs contains a subgroup isomorphic to L, /Z, = PSLy(9). But for all such
subgroups, the normal closure of a Sylow 3-subgroup is isomorphic to PSL3(9), as

desired. O

Theorem 5.5.14. Suppose that G is a finite group and S € Syly(G). Further

assume that
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(i) O3(C) is extraspecial of order 3°;
(i) O2(C/03(C)) is extraspecial of order 2°; and

(ili) C/O35(C) = Alt(5).

Then either Z is weakly closed in S or G = Cos.

Proof. See [PR10, Theorem 1.1]. O

Corollary 5.5.15. Suppose that G is a finite group such that C' is of characteristic
3 and G is a Sylow completion of the amalgam described in Proposition 5.4.55 (iv).

Then G = Cos.

Proof. By Proposition 5.4.55 (iv), and since Z is not normalized by G, to apply
Theorem 5.5.14, it suffices to show that C' = Lg. Since O3(C) is self-centralizing
and L < C'isirreducible on 3/Z, we have that O3(C) = Q3. Now, C'//Q)s embeds
into the automorphism group of Q3 and again by [Win72], C'//Qg is isomorphic to a
subgroup of Sp,(3). Moreover, |C/Qg|3 = 3, C'/Qs contains a subgroup isomorphic
to Lg/Qp = 27 Alt(5) and computing in Spy(3), we have that C' = Lg, as

required. O

Theorem 5.5.16. . Suppose that G is a finite group, S € Syly(G) and J < S.

Further assume that

(i) N ~ 3{,.2.2.PSLy(9).2; and

(i) Ng(J) ~ 35 : (2 x Myy).

Then G = Cos.
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Proof. This is [KPR07, Theorem 1]. O

Corollary 5.5.17. Suppose that G is a finite group such that Cg(Z) is of
characteristic 3 and G is a Sylow completion of the amalgam described in

Proposition 5.4.54 (iv). Then G = Cos.

Proof. Comparing with proofs in [KPRO07], to apply Theorem 5.5.16 it is enough
in the context of Proposition 5.4.54 (iv) to show that N = Gz and Ng(J) = G,.
Since O3(C) is self-centralizing, and Lz < C' and acts irreducibly on Qp/Z, we
have that O3(C) = Qg. Since C' I N, we have that Qs = O3(N). Thus, N/Qp
embeds into the automorphism group of @z and by [Win72], we have that N/Qg
is isomorphic to a subgroup of Sp,(2) : 2. Furthermore, |[N/Qg|3s = 3 and N/Q3
contains a subgroup isomorphic to Lg/Qs = SLy(9). Computing in Sp,(3), we
infer that N = Gp, as required. Now, Ng(J)/Z, embeds as a subgroup of GL5(3),
INa(J)/Za| =9 and Ng(J)/Z, contains a subgroup isomorphic to L,/Z, = My,
remarking that |G,| = 2|L,|. Since Mj; is a maximal subgroup of SLs(3) and
|GL5(3)/SL5(3)| = 2, we conclude that Ng(J) = G, as required. O

Recall that a group is of local characteristic p if the normalizers of non-trivial
p-subgroups are of characteristic p. Thus, groups of local characteristic p are of
parabolic characteristic, but not necessarily the other way about. As in the case
of parabolic characteristic p, it suffices to check the normalizers of elements of
order p. Here, we set £ to be the amalgam described in Proposition 5.3.15 (v) and
define a ICy-group to be a finite group in which the normalizer of every non-trivial

2-subgroup is a IC-group.

Theorem 5.5.18. Suppose that G is a Ko-group of local characteristic 5 which is

a finite faithful completion of L. If L, N Lg € Syl;(G), then there is an involution
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t in G such that Cg(t) = 2.Alt(11) and G = Ly.

Proof. This is [PR04, Theorem 1.1]. O

Theorem 5.5.19. Suppose that G is a K-proper finite group, S € Syl.(G), Z(S)
has order 7, Zs(S) has order 49 and

(i) Ng(Za(S)) ~ 7*12.GLy(7) is of characteristic 7;
(ii) Na(Z) ~ 74.2.A14(7).6 is of characteristic 7; and

(iii) G = (Na(Z), Na(Z:(5))) and O7(G) = {1}.

Then G = M.

Proof. See [PW05, Theorem 1.1]. O

Corollary 5.5.20. Suppose that G is a K-proper finite group such that C' is
of characteristic 7 and G is a Sylow completion of the amalgam described in

Proposition 5.3.15 (vi). Then G = M.

Proof. By Proposition 5.3.15 (vi), to apply Theorem 5.5.19, it suffices to prove
that N = G and Ng(Z2(S)) = G,. Note that since C' is of characteristic 7, Z <
07(C) < O3(N) and since Lz < C acts irreducibly on Q3/Z, we have that Qg =
0:(C) = O7(N) and N is of characteristic 7. Now G,/Q, = GL2(7)Aut(Z,(S))
and so Ng(Z5(S5)) = GoCq(Z2(S)) = GoCo(Z2(S)),and upon demonstrating that
C = Lg, we have that G,C¢(Z2(5)) = GoCL,(Z2(S)) = Go. Hence, we need only
show that N = Gjz. Note that N/Qsz embeds into Aut(Q)z) so that by [Win72],
N/Qjp is isomorphic to a subgroup of Sp,(7) : 6. Since Lg/Qp = 2.Alt(7) and
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2.Alt(7) is a maximal subgroup of Sp,(7), and as Gg = |Ls|6, we have that N = Gg,

as required. O

We are left with the amalgams coinciding with Proposition 5.3.17 (ii) when p = 2;
Proposition 5.4.51 (ii), (iii) and (iv) when p = 3; Proposition 5.4.55 (v) and (vi)
when p = 3 and Proposition 5.3.15 (iii),(iv) when p = 5. These have example

completions PSpg(3), PSU5(2), OF (2), Q15(2), Suz, Ly, HN and B respectively.

In Proposition 5.3.17 (ii), taking X := (R.Gap,Gs), we have that Cs 9 X,
Lg/Cs = 2*.PSLy(4) and O? (R,S)/Cp = 217242 Sym(3). Thus, X/Cj is locally
isomorphic to PSU4(2) = PSp,(3). Indeed, it seems likely that in the finite groups
which occur as suitable completions of the amalgam described in Proposition 5.3.17
(ii), there is a component in the centralizer of Q(Z(S)) which is isomorphic to
a central extension of PSU,(2) and so this type of configuration belongs in the
analysis of groups or fusion systems which are of component type. Indeed, in the
group PSpg(3), the centralizer of Z(.S) for S a Sylow 2-subgroup is isomorphic to

2 - (Alt(4) x PSU4(2)). We will not say much more about this case.

In the situation of Proposition 5.4.51 (ii), and taking the stabilizer of a point in
the action of Alt(5) on Z,, we retrieve the group Alt(4) = PSLy(3). Indeed, one
can choose the stabilized point, = say, to lie in Zg. Then letting L < L, such
that S < L and L/Z, = Alt(4), we get that for X := (LG, g, Gg), we have that
Q = (r) < X and X/Q is locally isomorphic to PSp,(3). As above, it seems
likely that in the finite groups which occur as suitable completion of the amalgam
described in Proposition 5.4.51 (ii), there is a component in the centralizer of some
central element of a Sylow 3-subgroup which is isomorphic to PSp,(3) = PSU4(2).

This occurs in the group PSU;(2).
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In the situation of Proposition 5.4.51 (iii) or (iv), and taking the stabilizer of point
in the action of L,/Z, on Z,, we have a group L such that O¥(L)/Z, = PSLy(3)
or 23.Alt(4) respectively. In the latter case, the group coincides with L,/Z, in
the former case. As above, one can choose the point x to lie in Zg. Forming
an appropriate X, we have that @ := (z) < X, and X/Q is locally isomorphic
to PSp,(3) or X/@Q has the form of an amalgam satisfying Proposition 5.4.51 (iii)
respectively. Again, it seems likely that finite groups occurring as good completions
of these amalgams have some component in the centralizer of an element of order
3 which is central in a Sylow 3-subgroup, which is isomorphic to PSp,(3) or Of (2)

respectively. Indeed, OF (2) and ;,(2) have such a structure.

In Proposition 5.4.55 (v) and (vi), we again consider the stabilizer of a point in
the action of L,/Z, on Z, where this time L,/Z, = M;;. We obtain a group
L containing S such that L/Q, = Mjy = PSLy(9).2. Choosing this point in
x € Z(S) and making an appropriate X we get that @ := (z) 9 X and X/Q is
locally isomorphic to PSUy(3) in Proposition 5.4.55 (v); or, in Proposition 5.4.55
(vi), is of the same type as in amalgam in Proposition 5.4.55 (iii) which had
example completion McL. Again it seems likely that in any good finite group
completion of these amalgams this subgroup corresponds to a component in the
centralizer of some central element of a Sylow 3-subgroup. This is the case in the

groups Suz and Ly.

It seems to it should be possible to characterize the finite groups occurring as
parabolic characteristic 5 completions of the amalgams in Proposition 5.3.15 (iii)
and (iv). It appears that the simple groups HN and B are the “unique” appropriate
completions. This result is not available in the literature yet, but see [PW04,

Theorem 2.1, Theorem 2.2].
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Glossary of Notations

[A, B; il

G/

IV, G

G®

Ca(B)

The field of order ¢, where ¢ = p™ for some prime p.

If P is a p-group, the subgroup generated by all elements of order
p’ in P, with convention Q(P) = Q(P).

If P is a p-group, the subgroup generated by the p‘-powers of all

elements in P, with convention U(P) = U'(P).

For two subgroups A, B < G, the group generated by all elements

of the form a=tb~tab fora € A, b € B.

For A, B < G, the group [[A, B|,B], ..., B].
—_——

7 times
G’ := |G, G], referred to as the commutator subgroup, or derived

subgroup, of G.

The module generated by all elements of the form z-v—v, z € G,

v € V, where V is a module acted on by G.

For V' a G-module, the submodule [[V,G],G],...,G].
%ﬁ#

The subgroup of G such that G® = [GU~V G] chosen so that

G =@,

All elements a € A such that ab = ba for all b € B, for subgroups
A, B < G. We use the notation Cy(b) := C4((b)) where b € B.

This forms a subgroup of A.
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Out(Q)

HOIIlg(A, B)

All elements v € V' which are fixed under the action of G, where

V' is a module acted on by G. This forms a submodule of V.
The largest subgroup of A < G which normalizes B < G.
The automorphism group of G.

The inner automorphism group of GG, that is, all automorphisms

induced by the conjugation action of G' on itself.

The outer automorphism group of G, explicitly the quotient
Aut(G)/Inn(G).

The group of homomorphisms from a group A to a group B

induced by conjugation by elements of G.

The group of automorphisms of B induced by conjugation by

elements of G on B.

The smallest subgroup containing A which is normal in G,

referred to as the normal closure of A in G.
The center of G.

The subgroups of G satisfying Z;/Z; 1 = Z(G/Z;_1) chosen so
that Z,(G) := Z(G). The ordered set {Z,(G), Z2(G),...} is

referred to as the upper central series of G.

The intersection of all maximal subgroups of G, known as the
Frattini subgroup of G. If G is a p-group, then ®(G) = [G, G]G?
is the smallest normal subgroup in which G has an elementary

abelian quotient.
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|Gy

Syl (G)

The largest normal m-group of a group G, for 7 a set of primes.

If 7 = {p}, then referred to as the p-core of G.

The smallest normal subgroup of a group G such that the
quotient is a m-group, for 7 a set of primes. Equivalently, O™ (G)
is the normal subgroup generated by all elements whose orders

are coprime to all the primes in 7.
The largest prime power p" dividing the order of G.

For a prime p, the set of all Sylow p-subgroups of G. That is, all
subgroups P of G such that |P| = |G|,.

For a prime p, the maximum rank of an elementary abelian

p-subgroup of G.

For P a p-group, the collection of elementary abelian subgroups

Q of P such that |Q| = p™ ().

For P a p-group, the subgroup of P generated by all subgroups

in A(P), referred to as the Thompson subgroup of P.

The largest normal nilpotent subgroup of G, referred to as the

Fitting subgroup of G

The normal subgroup of G generated by all components of G,

referred to as the layer of G.

The normal subgroup generated by the Fitting subgroup and the

layer, referred to as the generalized Fitting subgroup of G.
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A.B

Ax B

The semidirect product of A and B, where A is normalized by
B.

An arbitrary extension of B by A. That is, A is a normal
subgroup of A.B such that the quotient of A.B by A is isomorphic
to B.

A central extension of B by A.

The central product of A and B, where the intersection of A and

B will be clear whenever this arises.
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