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Abstract

In this thesis, we investigate global nonlinear Brascamp–Lieb inequalities and some related

problems in multilinear harmonic analysis. The body of this thesis is split into three

parts, the first is concerning the near-monotonicity properties of nonlinear Brascamp–

Lieb functionals under heat-flow. We establish a global nonlinear analogy to the heat-

flow monotonicity property enjoyed by linear Brascamp–Lieb inequalities, which we use

to prove a slight improvement of the local nonlinear Brascamp–Lieb inequality due to

Bennett, Bez, Buschenhenke, Cowling, and Flock, as well as a global stability property

of the finiteness of nonlinear Brascamp–Lieb inequalities. In the second part we prove

a diffeomorphism-invariant weighted nonlinear Brascamp–Lieb inequality for maps that

admit a certain structure that generalises the class of polynomial maps. Like polynomials,

they have a well-defined notion of degree, and the best constant in this inequality depends

explicitly on only the degree of these maps, as well as the underlying dimensions and

exponents. Lastly, we refine an induction-on-scales method due to Bennett, Carbery, and

Tao to prove a global multilinear L2 estimate on oscillatory integral operators in general

dimensions.



This thesis is dedicated to my cats Ellie, Charlie, and Betty, who

every day teach me the value of persistence, be it in pursuit

of a difficult Lp bound or a shoelace on a stick.
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Chapter 1

Background and Context

In this chapter, we will introduce the ideas and results that we will refer to over the

course of this thesis. Many central problems of interest to harmonic analysis, such as the

restriction conjecture for example, involve operators whose functional-analytic properties

depend on the geometric properties of some underlying manifold. Generally speaking,

in multilinear settings, inequalities of interest are expected to hold provided that a col-

lection of underlying manifolds are sufficiently ‘transversal’ in a suitable sense. As will

become clear, one may view the Brascamp–Lieb inequalities as a fundamental manifes-

tation of this type of transversality in multilinear analysis, that exist at the conceptual

base of a hierarchy of related inequalities, including the celebrated multilinear Kakeya and

Restriction inequalities. Indeed, the suitable notion of transversality required to access

high-dimensional generalisations of Kakeya and restriction inequalities is itself formulated

in terms of the optimal constant for an associated Brascamp–Lieb inequality; in this sense,

Brascamp–Lieb inequalities serve to quantify a certain higher-order notion of transver-

sality, their best constants acting as generalised wedge products. We begin with some

background in their linear theory.
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1.1 Linear Brascamp–Lieb Inequalities

For each j P t1, ...,mu, let Lj : Rn Ñ Rnj be a linear surjection and pj P r0, 1s. The

Brascamp–Lieb inequality associated with the pair pL,pq :“ ppLjq
m
j“1, ppjq

m
j“1q is the fol-

lowing:

ż

Rn

m
ź

j“1

pfj ˝ Ljq
pj ď C

m
ź

j“1

ˆ
ż

Rnj

fj

˙pj

@fj P L1
pRnjq, fj ě 0. (1.1.1)

Using the notation of [14], we refer to the pair pL,pq as a Brascamp–Lieb datum (we shall

often abuse this terminology and refer to L as a datum as well, given that p may often be

regarded as fixed). We define the Brascamp–Lieb constant, BL(L,p), to be the infimum

over all constants C P p0,8s for which the above inequality holds. For a given m-tuple

of non–zero, non–negative functions f “ pfjq
m
j“1 P L1pRn1q ˆ ... ˆ L1pRnmq, we define the

Brascamp–Lieb functional as

BLpL,p; fq :“

ş

Rn

śm
j“1pfj ˝ Ljq

pj

śm
j“1

`ş

Rnj fj
˘pj . (1.1.2)

We may then write BLpL,pq “ supf BLpL,p; fq. The Brascamp–Lieb inequalities are a

natural generalisation of many classical multilinear inequalities that commonly arise in

analysis, examples of which include Hölder’s inequality, Young’s convolution inequality,

and the somewhat lesser-known Loomis–Whitney inequality, which we shall now define.

Let πj : Rn Ñ Rn´1 denote the projection map onto the hyperplane xejy
K, where xejy

denotes the span of the jth standard unit vector ej. The Loomis–Whitney inequality

states that the following holds for all non-negative fj P L1pRn´1q.

ż

Rn

n
ź

j“1

fj ˝ π
1

n´1

j ď

n
ź

j“1

ˆ
ż

Rn´1

fj

˙
1

n´1
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The Brascamp–Lieb inequalities have had a significant impact on a broad range of areas

of mathematics. It was developments in the study of Brascamp–Lieb inequalities that led

to the resolution of the century-old Vinagradov mean value conjecture [21], which is now a

celebrated theorem in analytic number theory. Other deep number-theoretic connections

were established by Christ et al. [31], who proved that the algorithmic construction of

the set of Brascamp–Lieb data whose associated constant is finite is equivalent to the

affirmative solution of Hilbert’s tenth problem for rational polynomials. It should also

be noted that Gowers norms, which have become an object of great interest in additive

combinatorics [19,42,67], may be estimated from above via a suitable discrete version of a

Brascamp–Lieb inequality. Furthermore, the Brascamp–Lieb inequalities have been found

to arise in convex geometry as generalisations of Brunn-Minkowski type inequalities [2],

in the study of entropy inequalities for many-body systems of particles [30], and have

been used as a framework for finding effective solution algorithms for a broad class of

optimisation problems arising in computer science [41].

The most immediate question in the theory of linear Brascamp–Lieb inequalities is of

course that of finding the necessary and sufficient conditions for BL(L,p) to be finite. We

begin with the observation that, by an elementary scaling argument, the following is a

necessary condition for finiteness:

m
ÿ

j“1

pjnj “ n. (1.1.3)

It was first proved by Barthe, later reproved by Carlen, Lieb, and Loss in [30], that this

condition together with a spanning condition on the surjections Lj forms a necessary

and sufficient condition for finiteness in the rank-one case, i.e. when nj “ 1 for all

j P t1, ...,mu [2].

Another important and related question is that of finding necessary and sufficient con-
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ditions for the extremisability of Brascamp–Lieb inequalities, and to find a characterisa-

tion of the extremisers should they exist. As we shall discuss later on, if a Brascamp–Lieb

inequality admits an extremiser, then it must admit a gaussian extremiser, a result that

is related to the following theorem due to Lieb. Given the importance of gaussians in the

context of Brascamp–Lieb inequalities, it shall at times be useful to tailor our notation

specifically for them. Let pL,pq be a Brascamp–Lieb datum and let G “ pGjq
m
j“1 be an

m-tuple of gaussians of the form Gjpxq :“ expp´πxAjx, xyq, where each Aj P Rnjˆnj is in

the cone of real-valued nj ˆ nj symmetric positive-definite matrices, which we denote by

Sym`pRnjq. We shall refer to such an m-tuple of symmetric positive definite matrices as

a gaussian input, and we let G :“ Sym`pRn1qˆ ...ˆSym`pRnmq denote the set of all gaus-

sian inputs. Using the above definitions, we then define BLgpL,p;Aq :“ BLpL,p;Gq.

Of course, since integrals of gaussians may be computed in terms of their underlying

matrices, we have access to the following explicit formula:

BLgpL,p;Aq “

śm
j“1 detpAjq

pj{2

det
´

řm
j“1 pjL

˚
jAjLj

¯1{2

Theorem 1.1.4 (Lieb’s Theorem [55]) Given any Brascamp–Lieb datum pL,pq, the

associated Brascamp–Lieb inequality is exhausted by gaussians, that is to say

sup
APG

BLgpL,p;Aq “ BLpL,pq.

Only needing to test on gaussians makes the problem of establishing whether or not

BL(L,p) is finite significantly more tractable, and based upon this result, necessary

and sufficient conditions for finiteness were proved by Bennett, Carbery, Christ, and

Tao in [14]. They also establish necessary and sufficient conditions for both gaussian-
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extremisability and for when such a gaussian extremiser is unique up to rescaling. Before

we give a statement of their theorem, we shall need to state some preliminary definitions.

Definition 1.1.5 Let pL,pq be a Brascamp–Lieb datum. We say that the datum pL,pq

is feasible if it satisfies the scaling condition (1.1.3), and that for all subspaces V ď Rn,

dimpV q ď

m
ÿ

j“1

pj dimpLjV q. (1.1.6)

Definition 1.1.7 Given pL,pq, we say that a proper non-trivial subspace V ď Rn is

critical if it satisfies (1.1.6) with equality, and that the datum pL,pq is simple if it admits

no critical subspaces.

The significance of critical subspaces is that, if we were to restrict the domains of the

surjections Lj to a critical subspace V , and their codomains to LjV , then we would

obtain a restricted datum that is itself feasible. Moreover, the orthogonal complement

of a critical subspace is itself critical [14]. As a result, the Brascamp–Lieb datum, in

the presence of critical subspaces, exhibits a certain splitting phenomenon, where it may

be decomposed along orthogonal pairs of critical subspaces; and so, in a certain sense,

similarly to the role that simple groups play in group theory, simple Brascamp–Lieb data

may be treated as algebraically fundamental objects, from which one may build larger

classes of Brascamp–Lieb data. An in-depth discussion of such structural considerations

can be found in [14] and [72]. The most immediate such construction is via taking term-

wise direct sums of simple data, and leads to the concept of ‘semi-simple’ data.

Definition 1.1.8 We say that a Brascamp–Lieb datum pL,pq is semi-simple if and only

if there exist invertible matrices C P GLnpRq, and Cj P GLnj
pRq for each j P t1, ...,mu,

as well as simple Brascamp–Lieb data pLp1q,pq, ..., pLpkq,pq where Lprq
“ pL

prq

j qmj“1 and

5



L
prq

j : Rnprq

Ñ Rn
prq

j , such that for each j P t1, ...,mu, Lj may be written as

Lj “ C´1
j L

p1q

j ‘ ... ‘ L
pkq

j C.

Semi-simple data arise quite naturally, indeed Hölder’s inequality, the Loomis–Whitney

inequality, and certain cases of Young’s convolution inequality are important examples of

Brascamp–Lieb inequalities associated with semi-simple data.

Theorem 1.1.9 (Bennett, Carbery, Christ, Tao (2007) [14]) The following three state-

ments are true for all Brascamp–Lieb data pL,pq.

1. BLpL,pq ă 8 if and only if pL,pq is feasible.

2. BLpL,p; ¨q is gaussian-extremisable if and only if pL,pq is semi-simple,

3. BLpL,p; ¨q is uniquely gaussian-extremisable up to rescaling if and only if pL,pq is

simple.

The qualititative questions of finiteness and extremisability now largely settled, we shall

now turn our attention to the regularity properties of the Brascamp–Lieb constant. This

subject enjoys its own surprisingly rich theory in the literature; it was Bennett, Bez, Flock

and Lee who first established that the Brascamp–Lieb constant was locally bounded [11]

on the set of m-tuples L “ pLjq
m
j“1 such that pL,pq is feasible, which we denote by F ,

from the analysis of which it may be observed that F is open in Rn1ˆn ˆ ... ˆ Rnmˆn.

Theorem 1.1.10 (Bennett, Bez, Cowling, Flock (2017) [10]) The mapping BLp¨,pq :

F Ñ R is continuous, but not differentiable.

Later, Buschenhenke and the above authors further refine this statement in [9], where

they prove that the Brascamp–Lieb constant is locally Hölder continuous on the set of
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feasible data. Let S denote the set of m-tuples L “ pLjq
m
j“1 such that pL,pq is simple,

then in light of the third part of Theorem 1.1.9, we know there exists a unique map

Y : S Ñ G such that BLgpL,p;YpLqq “ BLpL,pq and such that each component YjpLq

has unit determinant (we impose this constraint for the sake of uniqueness).

Theorem 1.1.11 (Valdimarsson (2010) [73]) The set S is open in F , and the map

Y is smooth, whence the Brascamp–Lieb constant is also smooth on S.

The above result will be crucial to the analysis in Chapter 2, as this will allow us to

construct a system of ‘local extremisers’ in the nonlinear regime that varies smoothly

over the domain, although for the general case we treat in Chapter 3 we shall need to

construct a substitute to Theorem 1.1.11, since in general Brascamp–Lieb inequalities

are not extremisable. We do however know, due to Lieb’s theorem, that for any δ ą 0

and any feasible datum pL,pq there exists a gaussian input A such that BLgpL,p;Aq ě

p1´ δqBLpL,pq (we shall refer to such a g as a δ-near extremiser for pL,pq), however we

do not have any a priori information about the norms of its defining matrices or whether

or not this choice may be made smoothly in L. As we shall be dealing with data that

is in general non-extremisible, we shall be interested in proving a well-quantified version

of Lieb’s theorem. More specifically, for each δ ą 0, we shall need to construct a map

Yδ : F Ñ G that sends a given feasible Brascamp–Lieb datum to an associated δ-near

gaussian extremiser, and is such that }Yδ}W 1,8 does not blow up too quickly as δ Ñ 0

(the rationale for this choice of norm shall become clear later on). The construction of

this map shall be the content of the forthcoming Theorem 3.1.15.

Our exposition of the linear theory now complete, in the next section we turn our

attention to the main focus of this thesis, this being nonlinear Brascamp–Lieb inequalities.
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1.2 Nonlinear Brascamp–Lieb Inequalities

Nonlinear Brascamp–Lieb inequalities are a relatively recent further generalisation of the

linear Brascamp–Lieb inequalities, where the linear surjections Lj are allowed to be gen-

eral submersions Bj : M Ñ Mj between Riemannian manifolds. Given an m-tuple of

exponents p “ ppjq
m
j“1, we shall consider the corresponding inequality:

ż

M

m
ź

j“1

pfj ˝ Bjq
pj ď C

m
ź

j“1

˜

ż

Mj

fj

¸pj

.

We shall refer to the pair pB,pq as a nonlinear Brascamp–Lieb datum. Inequalities of

this type arise quite naturally in PDE and Fourier restriction contexts, as evidenced

in [4,5,53] and [6,10,16] respectively. Early results of significance include a Sobolev variant

of the nonlinear Brascamp–Lieb inequality [12] and a nonlinear C1,θ perturbation of the

Loomis–Whitney inequality [16], which was later extended to the C1 case by Carbery,

Hänninen, and Valdimarsson via multilinear factorisation [25]. Significant progress in

this area was made recently by Bennett, Bez, Buschenhenke, Cowling, and Flock in [9],

where they employ a tight induction-on-scales method that utilises techniques from convex

optimisation to prove the following very general local nonlinear Brascamp–Lieb inequality.

Theorem 1.2.1 (Local Nonlinear Brascamp–Lieb Inequality (2018) [9]) Let ε ą

0, and suppose that pB,pq is a C2 nonlinear Brascamp–Lieb datum defined over some

neighbourhood rU of a point x0 P Rn. There exists a neighbourhood U Ă rU of x0 such that

the following inequality holds for all fj P L1pRnjq:

ż

U

m
ź

j“1

fj ˝ Bjpxq
pjdx ď p1 ` εqBLpdBpx0q,pq

m
ź

j“1

ˆ
ż

Rnj

fj

˙pj

. (1.2.2)

It has been shown in a preprint of Bennett and Bez, to appear in the publications of
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the Research Institute of Mathematical Sciences (RIMS) [8], that Theorem 1.2.1 implies

an equivalence between three statements that are, while at first glance unrelated, each

manifestations of an underlying Brascamp–Lieb type notion of higher-order transversality.

Theorem 1.2.3 Let S1, ..., Sm be a collection of compact submanifolds of Rn, each equipped

with their natural volume measures σ1, ..., σm respectively. Suppose that q1, ..., qm P r1,8q

are Lebesgue exponents satisfying the following scaling condition,

m
ÿ

j“1

dimpSjq

qj
“ n (1.2.4)

then, the following statements are equivalent.

• (Transversality) For all V ď Rn and all px1, ..., xmq P S1 ˆ ... ˆ Sm,

dimpV q ď

m
ÿ

j“1

dimpV X TxjSjq

qj
.

• (Convolution) For all fj P LqjpSjq,

}f1dσ1 ˚ ... ˚ fmdσm}L8pRnq À

m
ź

j“1

}fj}Lqj .

• (Restriction) For all ε ą 0 and gj P L2pSjq,

ż

Bp0,Rq

m
ź

j“1

| zgjdσj|
2{qj Àε R

ε
m

ź

j“1

}gj}
2{qj
L2 .

We refer to operators of the form Eg :“ ygdσ, where σ is a singular measure supported

on a submanifold of Rn as a Fourier extension operator, see [46, 62, 66, 69] for further

reading on this topic. It is natural to ask the question of whether or not there is a

more general formulation of Theorem 1.2.1 that does not include an ε-loss, since we know

9



that certain sharp results hold on the sphere, as established by Carlen, Lieb and Loss

in [30], which were later generalised to the setting of compact homogeneous spaces by

Bramati in [23]; we discuss conjectural sharp Brascamp–Lieb inequalities more generally

in Section 6.2. Some other interesting results for compact domains depart from the usual

transversality assumptions of the aforementioned authors, instead requiring some sort

of bracket-spanning type curvature condition. This includes Lp-improving estimates for

multilinear Radon-like transforms, explored by Tao and Wright in the bilinear setting

in [70] then generalised by Stovall to the fully multilinear setting in [65]. We shall not

investigate curvature considerations of this type in this thesis.

While some of the central questions of the local theory of nonlinear Brascamp–Lieb

inequalities have been addressed, in the global setting many interesting questions remain

open, and progress is largely still at the early stage of the analysis of special cases.

Examples include inequalities for certain homogeneous data of degree one [13], a global

weighted nonlinear Loomis–Whitney inequality in R3 [53], and some results in the context

of integration spaces [29]. This thesis in part represents a small step towards a general

theory of global nonlinear Brascamp–Lieb inequalities. In particular, the main results

of Chapters 2 and 3 may be viewed as global nonlinear alternatives to the heat-flow

monotonicity properties of the linear Brascamp–Lieb inequality, which we shall discuss in

the next section.

1.3 Heat-flow Monotonicity

Establishing that an inequality enjoys some sort of monotonicity property under heat-

flow has been shown to be the basis of an effective proof strategy in a variety of contexts.

Schematically, the manner in which such a strategy works is that if one wishes to prove

an inequality of the form Apfq ď Bpfq for all f in some class of functions, where A and

B are functionals defined on this class, it is enough to prove that there exists a semigroup
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St acting on this class such that Apfq ď lim inf
tÑ0

ApStfq, ApStfq is increasing in t, and

that lim suptÑ8 ApStfq ď Bpfq. Carlen, Lieb and Loss exploit heat-flow monotonicity

to great effect in their proof of the rank-one case of the Brascamp–Lieb inequality [30],

generalisations of which can be found in [14, 23]. Heat-flow techniques were also used by

Bennett, Carbery and Tao to great effect in their treatment of the multilinear Kakeya and

restriction problems [15], later generalised by Tao in [68]. Methods that exploit heat-flow

monotonicity are often referred to as ‘semigroup interpolation’ methods (see an article of

Ledoux for further reading [54]), and a systematic study of the generation of monotone

quantities for the heat equation can be found in [7]. An interesting manifestation of heat-

flow monotonicity for the Brascamp–Lieb functional arises from the following inequality

due to Keith Ball.

Lemma 1.3.1 (Ball’s inequality [3, 6]) Let pL,pq be a Brascamp–Lieb datum and let

f “ pfjq
m
j“1,g “ pgjq

m
j“1 P L1pRn1q ˆ ... ˆ L1pRnmq. Given x P Rn, we define hx :“

pfjp¨qgjpLjpxq ´ ¨qqmj“1. For all choices of inputs f and g, the following inequality holds.

BLpL,p; fqBLpL,p;gq ď sup
xPRn

BLpL,p;hxqBLpL,p; f ˚ gq

If we assume that BLpL,pq ă 8 and that g is an extremising input, i.e. BLpL,p;gq “

BLpL,pq, then this inequality implies the following two statements:

BLpL,p; fq ď BLpL,p; f ˚ gq (1.3.2)

BLpL,p; fq ď sup
xPRn

BLpL,p;hxq (1.3.3)

An important consequence is that, if we further suppose that f is an extremiser, then

(1.3.2) implies that the set of extremisers is closed under convolution. This, along with

11



the the topological closure of extremisers, guarantees the existence of a gaussian extremiser

given the existence of at least one extremiser, as we may convolve a given extremiser with

itself iteratively and apply the central limit theorem to the resulting sequence to find that

the limiting extremiser must be gaussian [14].

Suppose that g is a gaussian extremiser, and define its associated family of rescalings

as gτ :“ pτ´nj{2gjpτ
´1{2xqqmj“1 where τ ą 0. By the scale-invariance of the Brascamp–Lieb

inequality, each gτ is also an extremiser, hence if we now substitute gτ into (1.3.2) then

we see that (1.3.2) then states that the Brascamp–Lieb functional is monotone increasing

as the inputs flow under the following diffusion equation:

Btfj “ ∇ ¨ pA´1
j ∇fjq

where Aj is the positive definite matrix such that gj :“ expp´πxAjx, xyq. We shall now

run the scheme outlined at the beginning of this section to derive the sharp finiteness

and extremisability of the Brascamp–Lieb inequality from (1.3.2), as was carried out in a

special case in [14].

Lemma 1.3.4 Let pL,pq be a Brascamp–Lieb datum and assume that (1.1.3) holds.

Let gpxq :“ pgjpxqqmj“1 :“ pexpp´πxAjx, xyqqmj“1 for all x P Rn, where Aj P Rnjˆnj is

positive definite. If (1.3.2) holds for all inputs f , then BLpL,pq ă 8, furthermore g

extremises the Brascamp–Lieb functional BLpL,p; ¨q.

Proof. By homogeneity and scale-invariance of the Brascamp–Lieb functional, we may

assume without loss of generality that
ş

Rnj fj “ 1 and
ş

Rnj gj “ 1 for each j P t1, ...,mu.

Given τ ą 0, we may define an m-tuple of anisotropic heat kernels gτ :

gτ pxq :“ pgj,τ pxqq
m
j“1 “ pτ´nj expp´πτ´1{2

xAjx, xyqq
m
j“1.

12



Observe that for all τ ą 0,

τnj{2fj ˚ gτ,jpLjpτ
1{2xqq “

ż

Rnj

fjpzq expp´πτ´1
xAjpτ

1{2Ljpxq ´ zq, τ 1{2Ljpxq ´ zyqdz

“

ż

Rnj

fjpzq expp´π|A
1{2
j Ljpxq|

2
` 2πτ´1{2

xAjLjpxq, zy ´ πτ´1
|z|

2
qdz

ÝÑ
τÑ8

expp´π|A
1{2
j Ljpxq|

2
q

ż

Rnj

fjpzqdz “ gj ˝ Ljpxq.

Combining this limit with (3.1.3) via the dominated convergence theorem then gives us

that

BLpL,p; fq “

ż

Rn

m
ź

j“1

fj ˝ Ljpxq
pjdx ď

ż

Rn

m
ź

j“1

pfj ˚ gj,τ q ˝ Ljpxq
pjdx

“

ż

Rn

m
ź

j“1

pfj ˚ gj,τ q ˝ Ljpτxq
pjτn{2dx

“

ż

Rn

m
ź

j“1

τ pjnj{2
pfj ˚ gj,τ q ˝ Ljpτxq

pjdx

ÝÑ
τÑ8

ż

Rn

m
ź

j“1

gj ˝ Ljpxq
pjdx

“ BLpL,p;gq. ˝

Taking the supremum in all f with unit mass, then implies that

BLpL,pq “ sup
f

BLpL,p; fq ď BLpL,p;gq ď BLpL,pq,

hence g is an extremiser, whence we may read off the sharp constant.

BLpL,pq “ det

˜

m
ÿ

j“1

L˚
jAjLj

¸´1{2

Observing this equivalence between heat-flow monotonicity and extremisability, it is then

13



natural to consider whether or not, for some suitable choice of nonlinear Brascamp–Lieb

datum, there exists a variable coefficient heat-flow for which the associated nonlinear

Brascamp–Lieb functional is monotone, and if so whether or not this would imply that

the inequality holds with finite constant. Indeed, this is the approach that was taken in

both [23] and [30] to prove nonlinear Brascamp–Lieb inequalities in certain geometrically

symmetric settings, so it is then plausible to suppose that a generalisation of such a

monotonicity property could hold in a broader class of contexts. The inequalities (1.3.2)

and (1.3.3) express an amenability of the linear Brascamp–Lieb functional to two distinct

processes, the former being smoothing via heat-flow and the latter being localisation via

gaussian extremisers, as we may think of hxj as an essentially truncated version of fj,

whose essential support is contained within a ball centred at Ljpxq. The proof strategy

of [9] was to find a nonlinear version of (1.3.3) that would serve as a way to bound the

left-hand side of (1.2.2) above by a supremum of similar integrals over smaller domains,

so that if used recursively this would form the engine of an induction-on-scales argument.

In Chapters 2 and 3 we establish a corresponding nonlinear version of (1.3.2), although

admittedly we only establish heat-flow near-monotonicity for small times. At its core it is

still an induction-on-scales argument, where we tightly bound the possible error between

times that are close to one another so that when we string these inequalities together we

are left with an error that is well-controlled.

1.4 Nonlinear Multilinear Kakeya Inequalities

In this thesis, the notation ‘A À B’ shall denote that there exists a C ą 0 depending

only on the underlying dimensions, manifolds, and exponents such that A ď CB, and

‘A » B1 shall denote that A À B À A. Any additional dependence shall be indicated by

a subscript.

The tools we will be using in Chapter 4 trace their lineage back to the multilinear Kakeya
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inequality, proved with an ε-loss by Bennett, Carbery, and Tao in [15], later established

without losses by Guth in [45].

Theorem 1.4.1 (Guth [45]) For each 1 ď j ď n, let Tj be a collection of straight

doubly infinite tubes Tj Ă Rn of unit width. Denote the direction of a tube Tj P Tj

by epTjq, and suppose that there exists θ ą 0 such that, for any configuration of tubes

pT1, ..., Tnq P T1 ˆ ... ˆ Tn, we have the uniform transversality bound |
Źn

j“1 epTjq| ą θ,

then the following inequality holds:

ż

Rn

¨

˝

n
ź

j“1

ÿ

TjPTj

χTj

˛

‚

1
n´1

dx À θ´ 1
n´1

n
ź

j“1

p#Tq
1

n´1 (1.4.2)

Remarkably, the proof of this theorem relies heavily on sophisticated techniques from

algebraic topology. If we suppose that each Tj P Tj is parallel to the j-th axis, then

we may interpret the tubes Tj as preimages of balls Vj Ă Rn´1 under the projection

πj onto the orthogonal complement of the j-th coordinate axis, as such we may write
ř

TjPTj
χTj “

ř

VjPVj
χVj ˝ πj for some collection Vj of unit balls Vj in Rn´1, from which

we recover the Loomis–Whitney inequality via rescaling and applying a standard density

argument.

Similar statements hold for collections of nonlinear tubes, these being δ-neighbourhoods

of smooth curves in Rn, although admittedly with an δ´ε-loss at the endpoint. The

transversality condition that such statements require generalises the linear case, in that

we require that the tangent vectors to the central curves of these tubes to always be

sufficiently transversal, a property we shall now define concretely.

Definition 1.4.3 Fix δ, ν ą 0 and let T1, ...,Tn each be collections of δ-neighbourhoods

of smooth curves (a 1-dimensional submanifold) in Rn. For each Tj P Tj, let cpTjq denote

the central curve of Tj, and let epTjqpxq be a unit tangent vector to cpTjq at xj P cpTjq.
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We say that T1, ...,Tn are ν-transversal if and only if, for any configuration of points

px1, ..., xnq P cpT1q ˆ ... ˆ cpTmq, the uniform transversality bound |
Źn

j“1 epTjqpxjq| ą ν

holds.

Theorem 1.4.4 (Bennett-Carbery-Tao [15]) Let ε, δ ą 0, and if T1, ...,Tn are ν-

tranversal collections of δ-neighbourhoods of smooth curves in Rn, then, for all q ą 2n
n´1

the following estimate holds:

ż

Rn

n
ź

j“1

¨

˝

ÿ

TjPTj

χTj

˛

‚

q{n

À δn
n

ź

j“1

#Tq{n
j (1.4.5)

Moreover, for q “ 2n
n´1

, we have that

ż

Rn

n
ź

j“1

¨

˝

ÿ

TjPTj

χTj

˛

‚

q{n

Àε δ
n´ε

n
ź

j“1

#Tq{n
j (1.4.6)

Motivated by seeking a more simple proof of Theorem 1.4.1, Carbery and Valdimarsson

established the following affine-invariant generalisation via the Borsuk–Ulam theorem [27].

Theorem 1.4.7 (Carbery-Valdimarsson (2013) [27]) Let 1 ď m ď n. For each

1 ď j ď m, let Tj be a collection of straight doubly infinite tubes Tj of unit width. Then,

the following inequality holds:

ż

Rn

¨

˝

ÿ

pT1,...,TmqPT1ˆ...ˆTm

|

m
ľ

j“1

epTjq|χT1X...XTm

˛

‚

1
m´1

dx À

m
ź

j“1

p#Tjq
1

m´1 (1.4.8)

If we can uniformly bound the weight |
Źm

j“1 epTjq| below by some θ ą 0, then this will

allow us to factorise the integrand on the left-hand side of p1.4.8q in such a manner that

we then recover Theorem 1.4.1.
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Given the existence of affine-invariant versions of multilinear Kakeya inequalities, these

being Theorem 1.7.1 and Theorem 1.4.7 respectively, it is then reasonable to suppose that

there might hold a nonlinear affine-invariant multilinear Kakeya inequality that generalises

Theorem 1.4.7. Most such variants substitute straight tubes, i.e. neighbourhoods of

lines, with neighbourhoods of algebraic varieties, which are sets that are, while in general

nonlinear, still defined using the algebraic structure of Rn.

Definition 1.4.9 Let Rrx1, ..., xns denote the ring of polynomials over the reals with vari-

ables x1, ..., xm. A subset H Ă Rn is an algebraic variety in Rn if and only if there exists

a finite collection of polynomials P Ă Rrx1, ..., xns such that

H “ tx P Rn : ppxq “ 0 @p P Pu (1.4.10)

We then define the degree of H to be the minimum of the quantity maxpPP deg p as P

ranges over all collections of polynomials such that (1.4.10) holds.

For instance, any finite set of points is an algebraic variety, and its degree is equal to

its cardinality. By the implicit function theorem, if M admits a defining vector-valued

polynomial p “ pp1, ..., pn´dq : Rn Ñ Rn´d whose derivative has full rank at a point

x P M , then M is locally a d-dimensional manifold near x, and we refer to such x as

non-singular points of M . If the non-singular points of M form an open and dense subset

of M , we shall refer to M as a d-dimensional algebraic variety. We remark that, while

being perfectly suitable for our purposes, this is a restricted definition of an algebraic

variety, and would be more widely referred to as the definition of a real affine variety. A

more general definition of an algebraic variety can be found in [49] for example. An early

example of nonlinear multilinear Kakeya inequalities involving varieties was offered by

Bourgain and Guth in [22], where they proved a trilinear inequality for algebraic curves

(1-dimensional algebraic varieties) in R4.
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Theorem 1.4.11 (Bourgain-Guth 2011 [22]) Suppose that Γi Ă R4 is an algebraic

curve restricted to the unit 4-ball with degree À 1 and C2 norm À 1. Let Ti denote the

δ-neighbourhood of an algebraic curve Γi and let T be an arbitrary finite set of such Ti.

For each x P Ti P T, define an approximate tangent vector vipxq P R4 by choosing a point

x1 P Γi X Uδpxq and setting vipxq equal to a unit vector tangent to Γi at x
1. The following

estimate holds:

ż

U1p0q

¨

˝

ÿ

pTi,Tj ,TkqPT3

|vipxq ^ vjpxq ^ vkpxq|χTiXTjXTkpxq

˛

‚

1
2

dx À δ4p#Tq
3
2 (1.4.12)

There are higher-dimensional generalisations of this inequality due to Zhang and Zorin-

Kranich, but before we state them, we remark that any higher-dimensional analogue

of (1.4.12) must involve some suitable generalisation of the wedge term in the integrand

that tracks the transversality of the varieties in a similar manner. One such generalisation

involves a weight that takes the form of a ‘wedge product’ of the tangent spaces of the

varieties, which we shall now define.

Definition 1.4.13 Let W1, ...,Wm be a collection of subspaces of Rn, and for each Wj

choose an orthonormal basis wj1, ..., w
j
kj
. Observing that the

řm
j“1 kj-dimensional volume

of the parallelepiped generated by the union of these bases, given by |
Źm

j“1

Źki
i“1w

j
i |, does

not depend on the choice of bases, we denote this quantity by |
Źm

j“1Wj|.

Theorem 1.4.14 (kj-variety theorem, Zhang 2015 [76]) Assume that
řm
j“1 kj “ n.

For each j P t1, ...,mu, let Hj be an open subset of a kj-dimensional algebraic subvariety

in Rn, and let σj denote the kj-dimensional Hausdorff measure on Hj, then,

ż

Rn

˜

ż

H1XU1pxqˆ...ˆHmXU1pxq

|

m
ľ

i“1

TyjHj|dσ1py1q...dσmpymq

¸
1

m´1

dx À

m
ź

j“1

degpHjq
1

m´1

(1.4.15)
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While at first glance this inequality appears to have a very different form to (1.4.8) and

(1.4.12), one may view the inner integral as a weighted bump function supported in the

intersection of the unit neighbourhoods of the varieties H1, ..., Hm, where this weight is

a higher-dimensional generalisation of the wedge of tangent vectors arising in (1.4.12).

We should remark that, in the same paper, Zhang does prove a stronger theorem than

the above that accounts for more general configurations of dimensions and exponents,

wherein the weight explicitly takes the form of a Brascamp–Lieb constant. Later, Zorin-

Kranich devised a reformulation of this generalised theorem that makes use of Fremlin

tensor product norms, and this is the version we shall be using to prove Theorem 4.1.3.

Definition 1.4.16 Given measure spaces X1, ..., Xm and pj P r1,8s, define the Fremlin

tensor product norm }F }
Ď

Âm
j“1L

pj pXjq of a measurable function F : X1 ˆ ... ˆ Xm Ñ R by

}F }
Ď

Âm
j“1L

pj pXjq :“ inf

#

m
ź

j“1

}Fj}Lpj pXjq : Fj P LpjpXjq, |F | ď |F1| b ... b |Fm|

+

We define the Fremlin tensor product space Ď

Âm

j“1L
pjpXjq to be the completion of the

normed space of all measurable functions F such that }F }
Ď

Âm
j“1L

pj pXjq ă 8.

The Fremlin tensor product norm is indeed a norm, as the subadditive property was proved

in Theorem 2.2 of [60], and the reader may quickly verify that the point separation and

absolute homogeneity axioms follow trivially from its definition. Zorin-Kranich also makes

use of a non-standard regime for defining Brascamp–Lieb inequalities that takes, as data,

collections of subspaces as opposed to linear maps, one that we shall now define. Given

a collection of subspaces W1, ...,Wm ď Rn such that dimpWjq “ kj, with a corresponding

collection of exponents p1, ..., pm ą 0, the associated ‘Brascamp–Lieb inequality’ is defined
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as follows over all fj P L1pRn{Wjq:

ż

Rn

m
ź

j“1

fjpx ` Wjq
pjdx ď C

m
ź

j“1

˜

ż

Rn{Wj

fj

¸pj

(1.4.17)

Following the notation of [77], we then write
ÝÑ
Wj “ pW1, ...,Wmq, p :“ pp1, ..., pmq, and

denote the best constant C ą 0 in the above inequality by BLp
ÝÑ
Wj,pq; to be explicit, in

this thesis we shall always use italics to refer to this subspace formulation of Brascamp–

Lieb constants, and non-italics to refer to the standard one. In his paper, Zorin-Kranich

makes use of local versions of the Brascamp–Lieb constants, which allows for exponents

to lie outside of the polytope defined by the scaling condition
řm
j“1 pjnj “ n. We shall

however state a version of Zorin-Kranich’s theorem that assumes such a scaling condition,

but nonetheless is more general than Theorem 1.4.14.

Theorem 1.4.18 (Zorin-Kranich 2017 [77]) Let Q :“ Zn`r0, 1qn be a decomposition

of Rn into unit cubes and for each 1 ď j ď m, let Hj Ă Rn be an open subset of a kj-

dimensional algebraic variety and pj P r0, 1s be chosen such that
řm
j“1 pjpn ´ kjq “ n.

Suppose that P :“
řm
j“1 pj ě 1, then the following inequality holds:

ÿ

QPQ
}BLp

ÝÝÝÑ
TxjHj,pq

´ 1
P }

P
Ď

Âm
j“1L

P {pj
xj

pHjXQq
À

m
ź

j“1

degpHjq
pj (1.4.19)

Consequently, averaging over all translations of Q and rescaling by a factor of 2 via the

forthcoming Lemma 4.3.1, we obtain the following inequality under the same conditions:

ż

Rn

}BLp
ÝÝÝÑ
TxjHj,pq

´ 1
P }

P
Ď

Âm
j“1L

P {pj
xj

pHjXU1pxqq
dx À

m
ź

j“1

degpHjq
pj , (1.4.20)

where Urpxq Ă Rn denotes the open ball of radius r around x P Rn. This integral re-

formulation is the form we shall be using in this thesis. In analogy with the discussion
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following the statement of Theorems 1.4.1 and 1.4.7, it is natural to suppose heuristi-

cally that one might be able to derive a corresponding Brascamp–Lieb inequality from

Theorems 1.4.14 or 1.4.18 by formally running the same argument as in the linear case;

viewing the left-hand side as an integral of a weighted product of indicator functions asso-

ciated to tubular neighbourhoods of varieties in Rn, which we would then want to write as

pullbacks of indicator functions associated to balls under some suitable nonlinear submer-

sions, thereby obtaining a Brascamp–Lieb form that would extend to general functions

via density. However, given a submersion B : M Ñ N between Riemannian manifolds

M and N , the preimage under Bj of a ball cannot in general be written directly as, for

some z P M , a tubular neighbourhood of a set of the form B´1ptzuq, which we refer to

as a fibre of Bj, hence we cannot immediately run the same density argument as before.

We therefore need to use a more detailed construction, where we cover these preimages

by a union of many very thin tubular neighbourhoods of fibres, paying careful attention

to how they overlap (see figure 4.3, Section 4.2.3); addressing these issues forms the main

content of Chapter 4.

1.5 The Linear Theory of Oscillatory Integrals

In Chapter 5, we shall investigate multilinear Lebesgue estimates on generalisations of

what Stein refers to as ‘oscillatory integrals of the second kind’ [62], which we shall

put in context by first discussing some of their linear theory. Let n P N, and let ϕ, ψ :

Rn´1ˆRn Ñ R be C2 functions. Consider the following one-parameter family of operators

mapping functions on Rn´1 to functions on Rn:

Sλfpξq :“

ż

Rn´1

eiλϕpx,ξqψpx, ξqfpxqdx, λ ą 1. (1.5.1)
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We refer to Sλ as an oscillatory integral operator, to ϕ as a phase function, and to ψ

as an amplitude function or cut-off function, usually having compact support in one or

more variables. In the special case where ϕpx, ξq “ ρpxq ¨ ξ, Sλ coincides with the Fourier

extension operator associated to the graph of ρ. In general, oscillatory integral operators

enjoy good Lp mapping properties, provided that they satisfy a certain non-vanishing

curvature condition due to Hörmander.

Definition 1.5.2 We say that Sλ is a Hörmander-type operator, or is of Hörmander

type, if the following holds.

1. supppψq is contained in the unit ball in Rn´1 ˆ Rn.

2. For all px, ξq P Rn´1 ˆ Rn, the matrix ∇x∇ξϕpx, ξq is of full rank n ´ 1.

3. Given that this is the case, we may define the associated (non-normalised) Gauss

map G : Rn´1 ˆ Rn Ñ Λn´1pRnq – Rn as follows:

Gpx, ξq :“
n´1
ľ

j“1

Bxj∇ξϕpx, ξq (1.5.3)

We require that, for all px, ξq P Rn´1 ˆ Rn,

det∇2
ξξpxBξϕpx, ξq, Gpx, ξqyq ‰ 0. (1.5.4)

One may interpret the condition (1.5.4) in the above definition as a generalised non-

vanishing curvature condition, for the reason that, in the extension case, this condition

may be interpreted as requiring that the underlying manifold has non-vanishing sectional

curvature.

Theorem 1.5.5 (Stein [63], Bourgain-Guth [22]) Let Sλ be a Hörmander type op-
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erator, and suppose that the exponent p P r1,8s falls within the following range:

p ě
2pn ` 1q

n ´ 1
if n is odd (1.5.6)

p ě
2pn ` 2q

n
if n is even (1.5.7)

Then, for all ε ą 0, the following estimate is satisfied uniformly in λ ě 1

}Sλf}LppRnq Àε λ
ε´n´1

p }f}Lp (1.5.8)

In fact, Stein proved that the even dimensional case holds without an ε-loss. The matter

of the Lp-mapping properties of Hörmander-type operators in the case when (1.5.4) is

positive was later setted by Guth, Hickman, and Iliopoulou, who established Lp bounds

for all p outside the range for which there are known counterexamples [47]. This does

not however settle the restriction conjecture for positively curved hypersurfaces, as the

restriction conjecture enjoys a larger range of exponents than general Hörmander operators

do, due to a family of counterexamples discovered by Bourgain [20].

1.6 The Wavepacket Decomposition for Oscillatory

Integrals

There is a deep connection between oscillatory integrals and nonlinear Kakeya inequalities

that generalises a well-known connection between the Fourier restriction and Kakeya

problems. This is that we may view Sλf as a superposition of modulated cut-off functions

adapted to curvilinear tubes, which we refer to as ‘wavepackets’. Hence, we may then view

nonlinear Kakeya inequalities as non-oscillatory versions of estimates of the form (1.5.8)

(see [74, 75] for further reading on this topic). In order to understand this connection,
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we must first define a wavepacket decomposition for the oscillatory integral operators we

consider. Heuristically, what this involves is splitting an arbitrary L2 function f into

pieces that are essentially orthogonal and localised in both space and frequency, albeit to

reciprocal scales due to uncertainty principle related phenomena.

Fix λ ą 1 and let Q be a boundedly overlapping cover of Rn´1 via open cubes of size

λ´1{2, say for instance Q :“ p9λ´1{2{10qZn´1 ` p0, λ´1{2qn´1. Let tψQuQPQ be a partition

of unity subordinate to Q such that }∇kψQ}L8pQq À λk{2 for all k P N. We shall give

an explicit construction of such a partition of unity for our specific choice of Q. Let

s : R Ñ r0, 1s be a smooth bump function that attains 1 on the interval r1{10, 9{10s

and attains 0 outside of the interval p0, 1q. Given Q “ 9λ´1{2v{10 ` p0, λ´1{2q where

v P Zn´1, Define the function rψQ : Rn´1 Ñ R by rψQpx1, ..., xn´1q :“
śn´1

i“1 spvi ` λ1{2xiq,

and let ψQpxq :“ p
ř

Q
rψQpxqq´1

rψQpxq. Differentiating ψQpxq we see that |∇kψQpxq| “

λk{2|∇kpψQpλ´1{2¨qqrλ1{2xs| À λk{2. Given ω P λ1{2Zn´1, we then let aQ,ω P C be the ωth

Fourier coefficient in the Fourier series of fψQ, hence, defining eQ,ωpxq :“ e´2πix¨ωψQpxq,

we then have that

f “
ÿ

QPQ
fψQ “

ÿ

QPQ

ÿ

ωPλ1{2Zn´1

aQ,ωeQ,ω,

Note that, by the bounded overlap of the supports of the functions eQ,ω in Q and their

L2-orthogonality in ω, we have that

}f}L2 »
ÿ

QPQ

ÿ

ωPλ1{2Zn´1

|aQ,ω|
2λ´n´1

2 .

We refer to a function of the form SλeQ,ω as a wavepacket, and to the following as a
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wavepacket decomposition of Sλf :

Sλf “
ÿ

QPQ

ÿ

ωPλ1{2Zn´1

aQ,ωS
λeQ,ω

We now consider the support of a given wavepacket, the geometry of which is determined

by the phase ϕ. First of all, fix a small δ ą 0, then, given a pair pQ,ωq P Q ˆ λ1{2Zn´1,

we define an associated tube:

T λQ,ω :“ tξ P Rn : |∇xϕpx, ξq ´ ω| ď λδ´1{2
px, ξq P supppψqu

We raise the exponent in the definition of T λQ,ω by δ in order to ensure that }SλeQ,ω}L8pRnzTλ
Q,ωq

has good decay as λ Ñ 8. Via a standard stationary phase argument, one may show

that SλeQ,ω is essentially supported in T λQ,ω, and that |SλeQ,ω| Á 1 on T λQ,ω. One is

therefore justified in viewing an Lp bound on Sλ as, in some sense, a ‘modulated’ non-

linear Kakeya inequality, where rather than bounding an Lp norm of a sum of indicator

functions associated to tubes, we instead are interested in bounding an Lp norm of a

sum of modulated indicator functions associated to tubes. In fact, via a now standard

Rademacher function argument, one may derive nonlinear Kakeya inequalities from os-

cillatory integral inequalities. Naturally, this relationship between oscillatory integrals

and nonlinear Kakeya transfers into the multilinear setting, and so we shall find that an

improved understanding of multilinear Kakeya-type inequalities of the type discussed in

Section 1.4 leads to an improvement in the corresponding oscillatory problem, in fact this

is the content of the main theorem of Chapter 5, Theorem 5.1.1.
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1.7 The Multilinear Theory of Oscillatory Integrals

In recent years, there has been much interest in multilinear versions of inequalities of the

type discussed in the previous section, in no small part due to the fact that approaches to

these problems via a suitable multilinear version have proved to be highly effective [22,69].

They are in some ways easier to work with than the linear version because they, similarly

to the multilinear Kakeya inequality, often benefit from transversality hypotheses. In fact,

under such transversality hypotheses, curvature hypotheses such as (1.5.4) may even be

disregarded altogether, as in such a case we do not need each contribution to the product

to even be integrable in order for their product to be well-behaved.

Let ϕ1, ..., ϕm : Rn´1 ˆ Rn Ñ R be a collection of phases, and let ψ1, ..., ψm : Rn´1 ˆ

Rn Ñ R be a collection of amplitudes with compact support in both variables. Define the

following oscillatory integral operators

Sλj fjpξq :“

ż

Rn

eiλϕjpx,ξqψjpx, ξqfjpxqdx

For each j P t1, ...,mu, let Gjpx, ξq denote the non-normalised Gauss map (as defined

in (1.5.3)) associated to the phase ϕj. We say that the collection of oscillatory integral

operators Sλ1 , ..., S
λ
n is ν-transversal if, for all x1, ..., xn P Rn´1 and ξ P Rn such that

pxj, ξq P supppψjq,

detpG1px1, ξq, ..., Gnpxn, ξqq ą ν

Theorem 1.7.1 (Bennett-Carbery-Tao) Suppose that Sλ1 , ..., S
λ
n are ν-transversal, then
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the following inequality holds uniformly in λ ą 1 for p ě 2
n´1

and q1 ď ppn ´ 1q.

›

›

›

›

›

n
ź

j“1

Sλj fj

›

›

›

›

›

LppRnq

Àε λ
ε´n

p

n
ź

j“1

}fj}LqpRn´1q (1.7.2)

In fact they prove that this statement holds without an ε-loss away from the endpoint.

The proof of this theorem centres around the multilinear Kakeya theorem they prove

in the same paper, stated earlier in this chapter as Theorem 1.4.4. The argument is

fundamentally an induction-on-scales, where they first apply a wavepacket decomposition

to Sλj fj for each j P t1, ..., nu, so that they then have a corresponding collection of tubes Tλj

on which the wavepackets of Sλj fj are supported. One may show that the ν-transversality

hypothesis on the collection Sλ1 , ...., S
λ
n implies that the families of tubes Tλ1 , ...,Tλn are

themselves mutually ν-transversal. They then partition the domain Rn into cubes of scale

λ1{2, such that the contribution from each can be bounded by an inductive hypothesis,

and then observe that, since the contributions to any given cube can only arise from the

wavepackets that pass through it, one may therefore interpret the resulting upper bound

on each of the cubes as a product of sums of indicator functions associated to these tubes.

In which case, one may then view the sum of these upper bounds over all of the cubes

as the left-hand side of the multilinear Kakeya inequality associated to the families Tλj of

underlying tubes on which the wavepackets are essentially supported.

They then apply a suitable curvilinear multilinear Kakeya inequality to these tubes,

and obtain a restriction estimate that improves on our inductive hypothesis, but with an

ε-loss in the exponent of λ that is roughly half of that of the hypothesis. Hence, iterating

this argument we then may make this loss arbitrarily small, thus proving the theorem. In

Chapter 5, we globalise this argument and extend it to higher-dimensional regimes using a

framework that generalises both nonlinear multilinear Kakeya inequalities and nonlinear

Brascamp–Lieb inequalities.
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1.8 Guide to the Thesis

Chapters 2 and 3 are about a certain heat-flow near-monotonicity property enjoyed by

nonlinear Brascamp–Lieb inequalities. In the former, we study what we refer to as the

‘simple’ case, which serves to introduce some of the techniques we use in the latter chapter

to prove the theorem in general. In Chapter 4, we prove a global nonlinear Brascamp–Lieb

inequality for what we refer to as ‘quasialgebraic’ nonlinear data, incorporating a natural

weight that dampens local degeneracies, which in doing so imparts a diffeomorphism-

invariance property to the inequality. We also use similar techniques to prove two alter-

nate multilinear Kakeya versions of this statement. We depart from the main theme of

nonlinear Brascamp–Lieb inequalities to the related topic of multilinear oscillatory inte-

grals in Chapter 5, where we prove a global L2 multilinear oscillatory integral estimate in

general dimensions. Lastly, in Chapter 6 we discuss some of the further research topics

and conjectures that lead on from the results in this thesis.
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Chapter 2

A Nonlinear Variant of Ball’s

Inequality: The Simple Case

In this chapter, we shall prove a near-monotone global nonlinear version of the heat-flow

monotonicity property enjoyed by simple linear Brascamp–Lieb data. The most natu-

ral nonlinear candidate to consider would be nonlinear Brascamp–Lieb data pB,pq that

is both suitably smooth and ‘locally simple’, in the sense that pdBpxq,pq is a simple

Brascamp–Lieb datum for each x in the domain of B. The reason why this is the most

natural case to first consider is that, by Theorem 1.1.9, each simple Brascamp–Lieb datum

has a unique extremiser up to rescaling, thus our nonlinear datum comes ready equipped

with ‘local extremisers’ from which we may construct our heat-flow. Although a similar

near-monotonicity statement holds for general nonlinear Brascamp–Lieb data on Rieman-

nian manifolds, the core argument for both is essentially the same, so it is instructive to

first consider just the simple case in the euclidean setting.
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2.1 Preliminaries

We say that a nonlinear Brascamp–Lieb datum pB,pq over U is a simple nonlinear

Brascamp–Lieb datum over U if dBpuq P S for all u P U , where S denotes the set of

simple Brascamp–Lieb data as in Section 1.1. By Theorem 1.1.9, for each simple non-

linear datum there then exists a unique (up to rescaling) family of extremising gaussian

inputs tgu :“ pgu,jq
m
j“1uuPU such that, for each u P U , gu is an extremiser for the in-

equality associated to the datum pdBpuq, pq. Moreover, by scale-invariance of the linear

inequality, each of its L1-rescalings gu,δpxq :“ pgu,δ,jpxqqmj“1 :“ pδ´njgu,jpδ
´1xqqmj“1 are also

extremisers for pdBpxq,pq. We shall think of these rescaled gaussians as heat kernels,

even though strictly speaking a genuine heat kernel would have δ1{2 in the place of where

we have written δ. Each gu,j may be written explicitly as

gu,j :“ e´πxAjpuqx,xy
“ e´π|x|2u,j

where Aj : U Ñ Rnjˆnj assigns to each u a symmetric positive-definite matrix and

| ¨ |u,j :“ xAjpuq¨, ¨y. There is another symmetric positive-definite matrix-valued function

M : U Ñ Rnˆn that shall be of importance to us, defined as

Mpuq “

m
ÿ

j“1

pjdBjpuq
˚AjpuqdBjpuq

From this definition we have the identity

1

BLpdBpuq,pq

m
ź

j“1

gu,j ˝ dBjpuqpxq
pj “ pdetMpuqq

1{2e´π|x|2u (2.1.1)

where | ¨ |u :“ xMpuq¨, ¨y
1
2 [14].

We shall need to impose some additional uniformity conditions on the nonlinear datum
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B, in particular we need the associated family of gaussian extremisers to have bounded

eccentricity and obey a uniform Hölder continuity property.

Definition 2.1.2 Given an open set U Ă Rn, we say that a function f : U Ñ Rk is

uniformly C1,θ over U if and only if for all ε ą 0 there exists δ ą 0 such that, if |x´y| ď δ

and x ‰ y, then |fpxq ´fpyq| ` |∇fpxq ´∇fpyq||x´y|´θ ď ε. Let SθpUq denote the set of

uniformly C1,θ simple nonlinear Brascamp–Lieb data pB,pq over U such that the closure

of the set tpdBpxq,pq : x P Uu is contained in S.

For example, S Ă SθpUq, and moreover, by openness of S, all sufficiently small C1,θ

perturbations of a member of S is also in SθpUq, the reader is encouraged to bear this

example in mind over the course of this chapter.

Part of the reason for imposing uniform Hölder regularity on the nonlinear datum

pB,pq is that our argument requires that the associated matrix-valued functions Aj andM

are also uniformly Hölder continuous. Fortunately, this follows in a fairly straightforward

manner from the regularity of B.

Proposition 2.1.3 For any open U Ă Rn and p P r0, 1sm, if B P SθpUq, then we may

choose the corresponding matrix-valued functions Aj, M such that they are uniformly C0,θ

bounded on U , and that moreover, A´1
j :“ Ajp¨q´1 and M´1 :“ Mp¨q´1 are L8 bounded.

Proof. Let K :“ dBpUq, and recall the map G in Theorem 1.1.11 that sends a simple

datum to its unique (up to rescaling) associated gaussian extremiser; we may therefore

write pAjq
m
j“1 “: A “ G ˝ dB. Since K Ă S and K is compact, by the extreme value

theorem 0 ă infLPK |GpLq| ď |Ajpxq| ď supLPK |GpLq| ă 8, hence Aj and A´1
j are L8

bounded, and therefore since M is then a sum of products of L8 functions, M is L8

bounded. By smoothness of G and the fundamental theorem of calculus, we know that

there for any x, y P U , and let dKpL1,L2q denote the infimum of the lengths of piecewise
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C1 contained in K with endpoints L1 P K and L2 P K. It is clear that dK : K ˆ K Ñ R

defines a metric on K and that it is continuous with respect to the ambient euclidean

metric, so by compactness of K, dKpL1,L2q À |L1 ´ L2|.

|Ajpxq ´ Ajpyq| “ |G ˝ dBpxq ´ G ˝ dBpyq| (2.1.4)

ď }dG}L8pKqdKpdBpxq,dBpyqq (2.1.5)

À |dBpxq ´ dBpyq| À |x ´ y|
θ (2.1.6)

hence Aj is uniformly C0,θ, and therefore so is M , as it is a sum of products of C0,θ

functions. ˝

It is this result that shall give us the necessary uniform control to obtain a near-monotonicity

property for the functional
ş

Rn

śm
j“1 fj ˝Bjpxqpjdx under a certain regularisation process

that, although akin to heat-flow, includes some truncation in the kernel and dependence

upon the variable y, as we shall need to pointwise adapt this process to the local behaviour

of the submersions Bj.

2.2 Notation

Before we state the main result of this chapter we shall need to introduce some notation.

In this chapter, we shall use the notation x À y to denote x ď Cy where C ą 0 depends

only on the underlying Brascamp–Lieb datum B P SθpUq, as well as the underlying

dimensions and exponents. We will find that we need to truncate the gaussians gu,τ,j

outside of a certain ball depending on τ in order to address local-constancy issues arising

from the rapid decay in their tails. Let τ ą 0, y P Rn, w P Rnj , and define the following

families of balls.

Vτ pxq :“

"

y P Rn : |x ´ y| ď τ log

ˆ

1

τ

˙*

,
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Vτ,jpzq :“

"

y P Rnj : |y ´ z| ď ||dBj||L8τ log

ˆ

1

τ

˙*

,

We find that this logarithmic radius is perfectly suitable for the purposes of this chapter,

however in Chapter 3 the setup is a lot more sensitive to truncation and so we shall need to

use a polynomial factor instead, being careful to select an appropriate exponent. Letting

κ ą 0, we shall denote the centred dilate of Vτ pxq and Vτ,jpzq by a factor of κ as κVτ pxq

and κVτ,jpzq respectively. We include the factor of }dBj}L8 in the definition of Vτ,jpzq so

that we impose the convenient property that, for all x P Rn, dBjpxqpVτ p0qq Ă Vτ,jp0q.

2.3 Statement of the Theorem

We are now in a position to state our main theorem.

Theorem 2.3.1 For each B P SθpRnq and any α P p0, θq, there exists a ν »α 1 such that,

for all τ P p0, νq the following inequality holds over all fj P L1pRnjq.

ż

Rn

m
ź

j“1

fj ˝ Bjpxq
pjdx ď p1 ` ταq

ż

Rn

m
ź

j“1

fj ˚ pgx,τ,j1Vτ,jp0qq ˝ Bjpxq
pjdx. (2.3.2)

We may think of this as a heat-flow near-monotonicity statement, since the one-parameter

family of linear operators Hx,t,j defined by Hx,t,jfj :“ fj ˚gx,t1{2,j is the solution semi-group

of the Cauchy problem for the anisotropic heat equation Btupy, tq “ ∇ ¨ pA´1
j pxq∇upy, tqq

with initial data upy, 0q “ fjpyq. A benefit of the truncation built into Theorem 2.3.1 is

that it allows one to impose some local-constancy on arbitrary fj P L1pRnq, a notion that

we now define explicitly.

Definition 2.3.3 Let X be a metric space and f : X Ñ p0,8q. Given κ, µ ą 0, we say

that f is κ-constant at scale µ if and only if fpxq ď κfpyq for all x, y P X such that

dpx, yq ď µ.
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The lack of local-constancy of arbitrary L1 functions is a central difficulty in the study

of nonlinear Brascamp–Lieb inequalities. Many proofs for known nonlinear Brascamp–

Lieb inequalities are based around addressing this issue in some manner, for instance, the

induction-on-scales arguments used in [17] and [9] are inductions on the scale of constancy

of the input functions fj. Some authors even dispense with arbitrary L1 functions entirely,

instead imposing some a priori local constancy as in [56,77], or Sobolev regularity as in [12].

The regularised inputs fj ˚ g̃y,τ,jpzq enjoy a local-constancy property uniform both in y

and z, this being the content of Lemmas 2.5.8 and 2.5.9 respectively. It is unfortunate

therefore that gaussians are not locally constant at any scale, due to their rapid decay.

This means that in general fj ˚gy,τ,j will also not be locally constant at any scale, however

we remedy this by truncating these gaussians outside of a sufficiently large ball centred

at the origin. From now on, the truncated gaussians we shall be using shall be denoted

by, given τ ą 0 and u P Rn,

g̃u,τ,j :“ gu,τ,j1Vτ,jp0q.

2.4 Outline of the proof of Theorem 2.3.1

The proof of Theorem 2.3.1 has similar features to an induction-on-scales type argument,

in the sense that we bound the best constant associated to a weaker inequality above

in a self-similar manner, then iterate to obtain a bound on the best constant associated

to (2.3.2), taking care to show that the resulting bounds are well controlled under this

iteration. Let pB,pq P SθpRnq and consider the following inequality for some 0 ă s ă t.

ż

Rn

m
ź

j“1

fj ˚ g̃x,s,j ˝ Bjpxq
pjdx ď C

ż

Rn

m
ź

j“1

fj ˚ g̃x,t,j ˝ Bjpxq
pjdx (2.4.1)
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Define Cps, tq to be the infimum over all constants C P p0,8s such that (2.4.1) is satisfied

by all non-negative fj P L1pRnjq. Notice that for all 0 ă r ă s ă t,

ż

Rn

m
ź

j“1

fj ˚ g̃x,r,j ˝ Bjpxq
pjdx ď Cpr, sq

ż

Rn

m
ź

j“1

fj ˚ g̃x,s,j ˝ Bjpxq
pjdx

ď Cpr, sqCps, tq

ż

Rn

m
ź

j“1

fj ˚ g̃x,t,j ˝ Bjpxq
pjdx. (2.4.2)

The inequality (2.4.2) yields the following simple yet important statement which will

serve to bound the constant in the self-similar manner alluded to earlier, which, although

immediate, we refer to as a proposition for structural reasons.

Proposition 2.4.3 For all 0 ă r ă s ă t,

Cpr, tq ď Cpr, sqCps, tq. (2.4.4)

The idea will be to use Proposition 2.4.3 to break down the constant in (2.4.1) into a

product of constants for times that are much closer together. If we take these times to be

sufficiently close, then we have an explicit tight bound on the associated constant.

Proposition 2.4.5 Given β P p0, θq, there exists ν̃ »β 1 such that for all 0 ă τ ă ν̃.

Cpτ,
?
2τq ď p1 ` τβq. (2.4.6)

Along with some minor technical considerations, these two propositions are the only

ingredients we need to prove Theorem 2.3.1, as we shall now demonstrate.

Proof of Theorem 2.3.1 given Proposition 2.4.5. Let β P pα, θq, ν ą 0, and 0 ă τ ă ν,

where for now we only require that ν ď
?
2ν̃. Define the geometric sequence τk :“ 2´ k

2 τ

and let K P N. By repeatedly applying Proposition 2.4.3, we split the constant CpτK , τq
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into pieces that can be dealt with by Proposition 2.4.5.

CpτK , τq ď CpτK , τK´1qCpτK´1, τq

ď CpτK , τK´1qCpτK´1, τK´2qCpτK´2, τq

ď ... ď

K
ź

k“1

Cpτk, τk´1q ď

K
ź

k“1

p1 ` τβk q

Taking logarithms of the above inequality, we obtain that

logpCpτK , τqq ď

K
ÿ

k“1

logp1 ` τβk q

ď

8
ÿ

k“1

τβk “
τβ

2β{2 ´ 1
.

It then follows, by a routine application of Taylor’s theorem to the exponential map,

absorbing constants and making ν accordingly smaller if necessary, that CpτK , τq ď

expp τβ

2β{2´1
q ď p1 ` ταq. Having obtained a bound on CpτK , τq uniform in K, we then

complete the proof by considering (2.4.1) with s “ τK and t “ τ and taking the limit as

K Ñ 8, since Fatou’s lemma then implies that

ż

Rn

m
ź

j“1

fj ˝ Bjpxq
pjdx ď lim

KÑ8

ż

Rn

m
ź

j“1

fj ˚ g̃x,τK ,j ˝ Bjpxq
pjdx

ď lim
KÑ8

CpτK , τq

ż

Rn

m
ź

j“1

fj ˚ g̃x,τ,j ˝ Bjpxq
pjdx

ď p1 ` ταq

ż

Rn

m
ź

j“1

fj ˚ g̃x,τ,j ˝ Bjpxq
pjdx. ˝

Now, all that remains to prove Theorem 2.3.1 is to prove Proposition 2.4.5, but before we

do that we need to understand more about the properties of the various gaussian kernels

involved.
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2.5 Gaussian Lemmas

Here we shall state and prove the technical results concerning the gaussians gy,τ,j that

we require to prove Proposition 2.4.5. Throughout this section, we shall assume that

B P SθpRnq. We will make use of the parameter η P pβ, θq, which we shall regard as

fixed, and, in light of Proposition 2.1.3, we shall denote the Hölder seminorms of M

and Aj by µ and µj respectively. We shall denote the induced 2-norm of a matrix S by

|S| :“ sup|v|“1 |Sv|.

Lemma 2.5.1 (General Truncation of Gaussians) Let n P N and A P Rnˆn be a

positive definite matrix. For each τ ą 0, define gτ : Rn Ñ R to be the gaussian gτ pxq :“

τ´n expp´πτ´2xAx, xyq. Let c, κ ą 0, and suppose that |A´1| ď c. Given γ ą 0, there

exists a ν ą 0 depending only on n, κ, γ, and c such that for all τ P p0, νq

ż

Rn

gτ ď p1 ` τ γq

ż

κVτ p0q

gτ (2.5.2)

Proof. In this proof we shall break from our convention and the relation À shall denote

that the implicit constant depends only upon c, n, and m. We shall first prove the claim

assuming κ “ 1, then use a rescaling argument to obtain the general result. If we assume

that gu,τ is L1-normalised, then it suffices to show that there exists ν ą 0 such that, for

all τ P p0, νq,

ż

RnzVτ p0q

gτ À τ 2γ (2.5.3)

This is because then there would then exist a c1 » 1 such that

ż

Vτ p0q

gτ “ 1 ´

ż

RnzVτ p0q

gτ ě 1 ´ c1τ 2γ ě p1 ` τ γq
´1

37



provided that τ is sufficiently small. To estimate the left hand side of (2.5.3), we shall

partition the domain of integration RnzVτ p0q into annuli, and bound the resulting infinite

sum above by a lacunary series. We take τ P p0, νq, where ν P p0, 1q is chosen such that

π
2
c´2 logp 1

ν
q2 ě 2γ.

ż

RnzVτ p0q

gτ “

ż

|x|ělogp1{τq

expp´π|Ax|
2
qdx

“

8
ÿ

k“0

ż

2k logp1{τqď|x|ď2k`1 logp1{τq

expp´π|Ax|
2
qdx

ď

8
ÿ

k“0

sup
2k logp1{τq“|x|

pexpp´π|Ax|
2
qqV olpt2k logp1{τq ď |x| ď 2k`1 logp1{τquq

ď logp1{τq
n

8
ÿ

k“0

2nk expp´π|A´1
|
´222k logp1{τq

2
q

À logp1{τq
n

8
ÿ

k“0

2nkτπc
´222k logp1{τq

À

8
ÿ

k“0

τπc
´222k´1 logp1{τq

À

8
ÿ

k“0

τ 2γ2
2k

À τ 2γ

Above we removed a factor of 2´1 from the exponent to absorb the logarithmic and

geometric factors. Now we turn our attention to the case when κ ‰ 1. By what has been

established, for all κ ą 0 there exists a ν »γ,κ 1 such that for all τ P p0, νq,

1 ď p1 ` τ γq

ż

Vτκ p0q

gτκ .

Rescaling the right-hand side we obtain the desired result.

1 ď p1 ` τ γqτnp1´κq

ż

|x|ďτ1´κτκ logp1{τκq

gτκpτκ´1xqdx “ p1 ` τ γq

ż

κVτ p0q

gτ (2.5.4)

˝

We now apply this result to the families of gaussians gx,τ,j and
śm

j“1 gx,τ,j ˝ dBjpxqpj

Lemma 2.5.5 (Truncation of extremising Gaussians) There exists ν1 »η 1 such
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that for all τ P p0, ν1q and x P Rn,

ż

Rn

m
ź

j“1

gx,τ,j ˝ dBjpxqpy ´ xq
pjdy ď p1 ` τ ηq

ż

0.1Vτ pxq

m
ź

j“1

gx,τ,j ˝ dBjpxqpy ´ xq
pjdy

and that for each j P t1, ...,mu,

ż

Rnj

gy,τ,jpzqdz ď p1 ` τ ηq

ż

Vτ,jp0q

gy,τ,jpzqdz

Proof. This follows from (2.1.1), observing that Lemma 2.5.1 may be applied in a uniform

manner to each gaussian, taking c “ }A´1
j }L8 and c “ }M´1}L8 for the respective cases.˝

The reader should observe that if we instead work with balls of radius » τ rather than

» τ logp1{τq we are only able to obtain a uniform bound on the left hand side of (2.5.3),

hence tightness requires that we work with these non-standard radii.

Lemma 2.5.6 (Local switching of Gaussians) There exists a ν2 »η 1 such that given

τ P p0, ν2q, v P Rn, and x, y P Rn such that y P Vτ pxq

1

BLpdBpyq,pq

m
ź

j“1

gy,τ,j ˝ dBjpyqpx ´ yq
pj ď

1 ` τ η

BLpdBpxq,pq

m
ź

j“1

gx,τ,j ˝ dBjpxqpx ´ yq
pj

Proof. Let 0 ă τ ă ν2, where ν2 is to be later determined, and y P κVτ pxq. It follows

from the definition of M that we may write

1

BLpdBpyq,pq

m
ź

j“1

gy,τ,j ˝ dBjpyqpvq
pj “ detpMpyqq

1{2τ´n exp
´

´
π

τ 2
|v|

2
y

¯

. (2.5.7)

For reasons that will become clear, we shall now prove the claim that log ˝ det ˝M is

uniformly Hölder continuous. By Proposition 2.1.3, M is uniformly Hölder continuous
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and M´1 is bounded so, for all x, y P Rn,

|MpxqMpyq
´1

´ I| ď }M´1
}L8 |Mpxq ´ Mpyq| À |x ´ y|

θ

Because log ˝ det is smooth, we may take its first order Taylor expansion around I to find

that there exist δ » 1 such that for |x ´ y| ă δ,

| log ˝ detpMpxqq ´ log ˝ detpMpyqq| “ | log ˝ detpI ` pMpxqMpyq
´1

´ Iqq| À |x ´ y|
θ,

The condition that |x´y| ď δ can then be dropped by observing that by the fact that |M |

and |M´1| are bounded above implies that | det ˝M | is both bounded above and bounded

away from zero, hence log ˝ det ˝M is bounded, so the claim holds for all x, y P Rn provided

we enlarge the implicit constant in the above inequality. Taking the logarithm of the ratio

of (2.5.7) and itself with y replaced with x, then applying the Hölder continuity of M and

log ˝ det ˝M , we obtain that, provided x ‰ y.

log

˜

BLpdBpxq,pq
śm

j“1 gy,τ,j ˝ dBjpyqpx ´ yqpj

BLpdBpyq,pq
śm

j“1 gx,τ,j ˝ dBjpxqpx ´ yqpj

¸

“ log

˜

detpMpyqq1{2 exp
`

´ π
τ2

|x ´ y|2y

˘

detpMpxqq1{2 exp
`

´ π
τ2

|x ´ y|2x

˘

¸

ď logpdetpMpyqMpxq
´1

q `
π

τ 2
px ´ yq

T
pMpyq ´ Mpxqqpx ´ yq

Àκ τ
θ logp1{τq

2`θ.

The above implies an upper bound exppcτ θ logp1{τq2`θq on the error factor for some c »κ 1,

hence, for a sufficiently small choice of ν2, this error is at most p1 ` τ ηq. ˝

Lemma 2.5.8 (Stability of heat-flow under local switching) There exists ν3 »η 1,

such that for all τ P p0, ν3q and x, y P Rn such that y P Vτ pxq,

g̃y,τ,j ď p1 ` τ ηqg̃x,τ,j.
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hence, for each non-negative fj P L1pRnjq and 0 ă τ ă ν3

fj ˚ g̃y,τ,j ď p1 ` τ ηqfj ˚ g̃x,τ,j.

Proof. Let τ ą 0 and y P Vτ pxq. First of all, for each j P t1, ...,mu and w P Rnj ,

gy,τ,jpwq “ exp
´

´
π

τ 2
xpAjpyq ´ Ajpxqqw,wy

¯

gx,τ,jpwq

Using the Hölder continuity of Au,j, it then follows that for all w P Vτ,jp0q and τ ď ν3 » 1,

gy,τ,jpwq ď exp
´ π

τ 2
|Ajpyq ´ Ajpxq|}dBj}

2
L8τ 2 logpτ´1

q
2
¯

gx,τ,jpwq

ď exp
`

πµj}dBj}
2
L8τ θ logpτ´1

q
2`θ

˘

gx,τ,jpwq

ď p1 ` τ ηqgx,τ,jpwq ˝

The need for truncated gaussians within our setup is made apparent in the proof of the pre-

vious lemma, as we may observe that we cannot obtain a similar result for non-truncated

gaussians, since the tails of the gaussians gx,τ,j and gy,τ,j decay so rapidly that their ratios

will diverge exponentially as we move away from the origin. Thankfully, truncating the

gaussians outside of an appropriately sized ball, small enough to obtain sufficient local

constancy, but large enough for the truncation error to decay polynomially as τ Ñ 0,

solves these issues. It should also be said that truncating the gaussians is required in

order for them to be suitable cutoff functions for the partition of unity argument that we

will ultimately use to prove Proposition 2.4.5.

For the final lemma, we shall need to dilate the radius of truncation of g̃x,τ,j by a small

factor slightly larger than one. In general, given κ ą 0, we shall denote the gaussian
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truncated to the ball κVτ,jp0q by

g̃κy,τ,j :“ gy,τ,j1κVτ,jp0q

Lemma 2.5.9 (Improvement of local constancy under heat flow) Let γ P p0, θq,

then there exists a ν4 »η,γ 1 such that for all τ P p0, ν4q, x P Rn and z P Vτ,jp0q,

g̃x,τ,jpzq ď p1 ` τ ηqg̃1.1x,τ,jpz̃q for all |z ´ z̃| ď τ 1`γ

Hence, it follows that for each non-negative fj P L1pRnjq, 0 ă τ ă ν4, x P Rn and

z, z̃ P Rnj ,

fj ˚ g̃x,τ,jpzq ď p1 ` τ ηqfj ˚ g̃1.1x,τ,jpz̃q for all |z ´ z̃| ď τ 1`γ

Proof. Let 0 ă τ ă ν3, where ν3 is yet to be determined. Firstly, for each j P t1, ...,mu,

x P Rn, and z, z̃ P Rnj

gx,τ,jpz̃q “ expp´πτ´2
p|z|

2
x,j ` 2xz, z ´ z̃yx,j ` |z ´ z̃|

2
x,jqq

ě expp´πτ´2
p|z|

2
x,j ` 2|z|x,j|z ´ z̃|x,j ` |z ´ z̃|

2
x,jqq

ě gx,τ,jpzq expp´3πτ´2
|z|x,j|z ´ z̃|x,jq.

Now suppose that z P Vτ,jp0q and |z´ z̃| ď τ 1`γ, then, choosing ν4 to be sufficiently small,

|z̃| ď |z| ` |z ´ z̃| ď 1.1}dBj}L8τ log

ˆ

1

τ

˙
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so z̃ P 1.1Vτ,jp0q “ supp
`

g̃1.1x,τ,j
˘

, hence

g̃x,τ,jpzq “ gx,τ,jpzq ď expp3πτ´2
|z|x,j|z ´ z̃|x,jqgx,τ,jpz̃q

ď exp
`

3π||Aj||L8τ´1 logp1{τq|z ´ z̃|
˘

gx,τ,jpz̃q

ď exp p3π||Aj||L8τ γ logp1{τqq gx,τ,jpz̃q

ď p1 ` τ ηqgx,τ,jpz̃q “ p1 ` τ ηqg̃1.1x,τ,jpz̃q ˝

2.6 Proof of Proposition 2.4.5

This proof shall draw heavily from that of Ball’s linear inequality. We introduce the

truncated gaussians that we want to convolve our inputs with as a partition of unity.

This partition will also conveniently serve to split up the integral into a continuum of

localised pieces, which will allow us to exploit local constancy and Holder regularity to

perturb the Bj to an affine approximation on each of those pieces. We may then apply

the linear Brascamp–Lieb inequality piecewise, and in doing so, obtain the desired form

on the right-hand side.

Proof. Let ν̃ ď mintν1, ν2, ν3, ν4u and take some 0 ă τ ă ν̃. Later on we will retrospec-

tively impose some trivially stricter assumptions on the size of ν̃, a statement of which

we omit here for the sakes of readability. For all y P U , by definition of gy,τ , and Lemma

2.5.5,

BLpdBpyq,pq ď p1 ` τ ηq

ż

0.1Vτ pyq

m
ź

j“1

g̃y,τ,j ˝ dBjpyqpx ´ yq
pjdx.

We may then multiply the left-hand-side of (2.4.1) by the right-hand-side of the above

inequality, then exchange orders of integration, to obtain that for every non-negative
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fj P L1pRnjq,

ż

Rn

m
ź

j“1

fj ˚ g̃y,τ,j ˝ Bjpyq
pjdy

ď p1 ` τ ηq

ż

Rn

1

BLpdBpyq,pq

ż

0.1Vτ pyq

m
ź

j“1

fj ˚ g̃y,τ,j ˝ Bjpyq
pjgy,τ,j ˝ dBjpyqpx ´ yq

pjdxdy

ď p1 ` τ ηq

ż

Rn

ż

0.1Vτ pxq

1

BLpdBpyq,pq

m
ź

j“1

fj ˚ g̃y,τ,j ˝ Bjpyq
pjgy,τ,j ˝ dBjpyqpx ´ yq

pjdydx

ď p1 ` τ ηq

ż

Rn

ż

0.1Vτ pxq

1

BLpdBpyq,pq

m
ź

j“1

fj ˚ g̃y,τ,j ˝ Bjpyq
pjgy,τ,j ˝ dBjpyqpx ´ yq

pjdydx.

Having truncated appropriately, we may now apply Lemma 2.5.6 and Lemma 2.5.8 to

interchange some of the instances of the variables x and y in the integrand, incurring an

error factor of at most p1 ` τ ηq1`σ, where σ “
řm
j“1 pj.

ż

Rn

m
ź

j“1

fj ˚ g̃y,τ,j ˝ Bjpyq
pjdy

ď p1 ` τ ηq2`σ

ż

Rn

1

BLpdBpxq,pq

ż

0.1Vτ pxq

m
ź

j“1

fj ˚ g̃x,τ,j ˝ Bjpyq
pjgx,τ,j ˝ dBjpxqpx ´ yq

pjdydx

By the C1,θ regularity of the data, |Bjpxq ´ Bjpyq ´ dBjpyqpx ´ yq| ď µ|x ´ y|1`θ ď

µp0.1τ logp1{τqq1`θ, so for a perhaps smaller choice of ν̃, |Bjpxq ´ Bjpyq ´ dBjpyqpx ´

yq| ď τ 1`γ for all y P 0.1Vτ pxq. We may then apply Lemma 2.5.9, and replace each

Bjpyq with its first-order affine approximation centred at x, which we shall denote by

Lxj :“ Bjpxq ` dBjpxqpy´ xq, at the cost of an error factor of p1` τ ηqσ and a fattening of
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the support of g̃x,τ,j.

ż

U`Vτ p0q

m
ź

j“1

fj ˚ g̃y,τ,j ˝ Bjpyq
pjdy

ď p1 ` τ ηq2`2σ

ż

U`V?
2τ p0q

ş

0.1Vτ pxq

śm
j“1 fj ˚ g̃1.1x,τ,j ˝ Lxj pyqpjgx,τ,j ˝ dBjpxqpx ´ yqpjdy

BLpdBpxq,pq

“ p1 ` τ ηq2`2σ

ż

U`V?
2τ p0q

ş

0.1Vτ p0q

śm
j“1 fj ˚ g̃1.1x,τ,jpBjpxq ´ dBjpxqyqpjgx,τ,j ˝ dBjpxqpyqpjdy

BLpdBpxq,pq
dx

ď p1 ` τ ηq2`2σ

ż

U`V?
2τ p0q

ş

Rn

śm
j“1 fj ˚ g̃1.1x,τ,jpBjpxq ´ dBjpxqyqpj g̃0.1x,τ,j ˝ dBjpxqpyqpjdy

BLpdBpxq,pq
dx

The last line follows from the observation that 0.1Vτ p0q Ă
Şm
j“1 dBjpxq´1p0.1Vτ,jp0qq for

all x P Rn. We are now in a position to apply the linear inequality.

ď p1 ` τ ηq2`2σ

ż

Rn

m
ź

j“1

ˆ
ż

Rnj

fj ˚ g̃1.1x,τ,jpBjpxq ´ zqg̃0.1x,τ,jpzqdz

˙pj

dx

ď p1 ` τ ηq2`2σ

ż

Rn

m
ź

j“1

fj ˚ g̃1.1x,τ,j ˚ g̃0.1x,τ,j ˝ Bjpxq
pjdx

We need to prove the claim that, if ν̃ is chosen to be sufficiently small, then g̃1.1x,τ,j ˚ g̃0.1x,τ,j ď

g̃x,
?
2τ,j for each j P t1, ...,mu. Since 1.2 ď

?
2, if τ is sufficiently small, then 1.1τ logp1{τq`

0.1τ logp1{τq “ τ logp1{τ 1.2q ď
?
2τ logp1{τ 1.2{

?
2q ď

?
2τ logp1{

?
2τq, which implies that

supp
`

g̃1.1x,τ,j ˚ g̃0.1x,τ,j
˘

Ă supp
`

g̃1.1x,τ,j
˘

` supp
`

g̃0.1x,τ,j
˘

“ 1.1Vτ,jp0q ` 0.1Vτ,jp0q Ă V?
2τ,jp0q.

By the semigroup property for heat equations, gy,τ,j ˚ gy,τ,j “ gx,
?
2τ,j, hence the claim

follows from combining (8) and the pointwise bound g̃1.1x,τ,j ˚ g̃0.1x,τ,j ď gx,τ,j ˚ gx,τ,j “ gx,
?
2τ,j.

At this point, we are essentially done, provided that we have chosen ν̃ to be small enough
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for p1 ` τ ηq2`2σ ď p1 ` τβq to hold over all τ P p0, ν̃q.

ż

Rn

m
ź

j“1

fj ˚ g̃y,τ,j ˝ Bjpyq
pjdy ď p1 ` τ ηq2`2σ

ż

Rn

m
ź

j“1

`

fj ˚ g̃x,
?
2τ,j ˝ Bjpxq

˘pj dx

ď p1 ` τβq

ż

Rn

m
ź

j“1

`

fj ˚ g̃x
?
2τ,j ˝ Bjpxq

˘pj dx ˝

46



Chapter 3

A Nonlinear Variant of Ball’s

Inequality: The General Case

This chapter is a re-edited version of the preprint ‘A Nonlinear Version of Ball’s Inequality’

[40].

3.1 Setup and Notation

In this chapter, we shall consider fixed complete Riemannian manifolds (without bound-

ary)M , M1,...,Mm of dimensions n, n1,...,nm. We require at least a Riemannian manifold

structure for a number of reasons, for instance so that the notion of a gaussian defined

on a tangent space make sense. We shall refer to the exponential map based at a point

x on a manifold ex : TxN Ñ N . The injectivity radius of a point x P N is the largest

number ρx ą 0 such that ex restricts to a diffeomorphism on the ball of radius ρx around

0 P TxN . We shall assume that the manifolds we consider have bounded geometry, by

which we mean that they have injectivity radii uniformly bounded below, by a number

ρ ą 0 which we now fix, and also that both the Riemannian curvature and its covariant

derivative are uniformly bounded above. These are standard conditions for the type of
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global setting we shall be considering that exist to ensure that we may apply exponential

maps in a uniform manner. For further reading about analysis on manifolds with bounded

geometry, see [50,61].

We shall refer to a ball centred at a point x P M of radius r ą 0 on a manifold M

by Urpxq, and refer to a ball centred at a point v P TxM of radius r ą 0 by Vrpvq (the

tangent space that this ball belongs to should always be clear from context, if it is not

stated explicitly). We shall consider submersions Bj : M Ñ Mj pj P t1, ...,muq that

may be viewed as fixed for the entirety, and are assumed to have at least L8 bounded

derivative maps. Noting this, we shall denote a ball centred at z P Mj of radius r}dBj}L8

by Ur,jpzq, and similarly a ball centred at w P TzMj of radius r}dBj}L8 by Vr,jpwq, simply

for the technical reason that then
Şm
j“1 dBjpxq´1pVr,jp0qq Ă Vrp0q, a property that shall

prove to be useful later on. Similarly to the linear case, we refer to the pair pB,pq as a

nonlinear Brascamp–Lieb datum. We shall also make use of a fixed parameter γ P p0, 1q

close to 1, The exact choice of value here is not particularly important, the reader may

take γ to be 0.9, say, however we refrain from doing this for the sakes of clarity and good

book-keeping.

We shall always use a single bar to denote a finite dimensional norm, usually a 2-norm,

and double bars to denote an infinite dimensional norm, which we shall always specify

with a subscript. In the case where we are taking a norm of a matrix, we shall assume that

this is the induced 2-norm unless stated otherwise. Furthermore, if y is some variable, Q

is a normed space valued function of y, and f is a real valued function of y, then we shall

use the the notation Qpyq “ Opfpyqq to denote that }Qpyq} À fpyq.

3.1.1 Statements of Results

Before we state our nonlinear version of (1.3.2), we must first preliminarily define our

‘heat-flow’. The construction thereof is rather involved, however the resulting flow oper-
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ator Hx,τ,j may nonetheless be written essentially as a convolution with a gaussian kernel

Gx,τ,j : TBjpxqMj Ñ R, the key properties of which we now state as a proposition.

Proposition 3.1.1 Suppose that pB,pq is a nonlinear Brascamp–Lieb datum such that

each Bj :M Ñ Mj is C
2 and that there exists C ą 0 such that }dB}W 1,8 , }BLpdB,pq}L8 ď

C. Then, there exists an ε ą 0 such that, for τ ą 0 sufficiently small, there exists a

smooth family of gaussian inputs Gx,τ :“ pGx,τ,jq
m
j“1 parametrised by x P M satisfying the

following properties:

1. Each gaussian Gx,τ,j is of unit mass and is defined by a corresponding τ -dependent

positive definite matrix Aτ,jpxq, in the sense that

Gx,τ,jpzq :“ τ´nj detpAτ,jpxqq
1{2 expp´πτ´2

xAτ,jpxqz, zyq.

2. Gx,τ is a τ ε-near extremiser for the datum pdBpxq,pq.

3. }Aτ,j}W 1,8pMq, } detAτ,j}W 1,8pMq ď τ´ε for all j P t1, ...,mu.

The construction of this Gx,τ,j is carried out in detail in Section 3.1.3, whence (1) auto-

matically follows, see the end of Section 3.1.4 and the remark after Lemma 3.2.1 for the

proof of properties (2) and (3) respectively. We may now define the corresponding flow

operator, wherein we include some truncation to allow us to map locally to the tangent

space on which Gx,τ,j is defined.

Hx,τ,j : L
1
pMjq Ñ L1

pUρ´τγ pBjpxqqq

Hx,τ,jfjpzq :“

ż

Uτγ,jpzq

fjpwqGx,τ,jpe
´1
Bjpxq

pzq ´ e´1
Bjpxq

pwqqdw

We now state our near-monotonicity result, which is the main theorem of this chapter.
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Theorem 3.1.2 (Nonlinear Ball’s Inequality) Suppose that pB,pq is a nonlinear

Brascamp–Lieb datum such that each Bj :M Ñ Mj is a twice continuously differentiable

submersion, and that there exists C ą 0 such that }dB}W 1,8 , }BLpdB,pq}L8 ď C.

Then, there exists a β ą 0 such that for τ ą 0 sufficiently small, for all non-negative

fj P L1pMjq,

ż

M

m
ź

j“1

fj ˝ Bjpxq
pjdx ď p1 ` τβq

ż

M

m
ź

j“1

Hx,τ,jfj ˝ Bjpxq
pjdx. (3.1.3)

Of course, in the euclidean case we may identify our domain with every tangent space, so

(3.1.3) then takes the following more familiar form:

ż

Rn

m
ź

j“1

fj ˝ Bjpxq
pjdx ď p1 ` τβq

ż

Rn

m
ź

j“1

fj ˚ pGx,τ,jχUτγ,jp0qq ˝ Bjpxq
pjdx.

which of course implies a non-truncated, genuine heat-flow near-monotonicity statement.

ż

Rn

m
ź

j“1

fj ˝ Bjpxq
pjdx ď p1 ` τβq

ż

Rn

m
ź

j“1

fj ˚ Gx,τ,j ˝ Bjpxq
pjdx.

Often nonlinear Brascamp–Lieb inequalities exhibit sufficient diffeomorphism invariance

that to prove them in manifold settings it suffices to only consider the euclidean one. We

should therefore make clear that in order to obtain an inequality at the level of generality

of (3.1.3), it is vital for our analysis that we work in the manifold setting at every stage

in the proof, as this inequality is not sufficiently diffeomorphism-invariant to be reducible

to the euclidean case, even in the case where M – Rn.

Example 3.1.4 (Multilinear Radon-like transforms) Given functions f1, ..., fm P L1pRnq,
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we may write their n-fold convolution as an integral over an affine subspace.

f1 ˚ ... ˚ fnpyq :“

ż

tx1`x2`...`xm“yu

m
ź

j“1

fjpxjqdσpx1, ..., xmq (3.1.5)

We may be generalise this notion by nonlinearly perturbing this subspace. Let ϕ : Rn1 ˆ

...ˆRnm Ñ Rn be a smooth function and suppose that y P Rn is a regular value of ϕ, and

consider the following multilinear operator T .

T pf1, ..., fmqpyq :“

ż

ϕ´1ptyuq

m
ź

j“1

fjpxjqdσpx1, ..., xmq (3.1.6)

Let N :“
řm
j“1 nj and pj :“ pN ´ nq{N , for all j P t1, ...,mu and denote the natural

projection map from Txϕ
´1ptyuq Ă RN “ Rn1 ˆ...ˆRnm to Rnj by Lxj . Then, provided that

ϕ satisfies the condition that BLpLx,pq À 1 for all y P Rn, and all px1, ..., xmq P ϕ´1ptyuq,

then there exists a β ą 0 and a family of gaussians pGx,τ,jq
m
j“1 as in Proposition 3.1.1

such that for all fj P L1pRnjq and τ ą 0 sufficiently small,

T pf
N´n
N

1 , ..., f
N´n
N

m qpyq ď p1 ` τβq

ż

ϕ´1ptyuq

m
ź

j“1

pfj ˚ Gx,τ,jq
N´n
N pxjqdσpx1, ..., xmq. (3.1.7)

The main upshot of Theorem 3.1.2 is that one may use the local-constancy of Hx,τ,jfj

to perturb the argument in the right-hand side of (3.1.3), either at small scales as in

Corollary 3.1.8, which yields a slightly improved version of the local nonlinear Brascamp–

Lieb inequality first proved in [9] that better quantifies the relationship between the ε-loss

in the constant and the size of the domain on the left-hand side, or at large scales as in

Corollary 3.1.9, which states that finiteness is stable under L8 perturbations.

Corollary 3.1.8 Let pB,pq be a nonlinear Brascamp–Lieb datum satisfying the same

conditions as in Theorem 3.1.2, then there exists a β ą 0 such that for each x0 P M and
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all τ ą 0 sufficiently small,

ż

Uτ px0q

m
ź

j“1

fj ˝ Bjpxq
pjdx ď p1 ` τβqBLpdBpx0q,pq

m
ź

j“1

˜

ż

Mj

fj

¸pj

Corollary 3.1.9 Suppose that Bj, rBj : Rn Ñ Rnj for all j P t1, ...mu and pB,pq is a

nonlinear datum satisfying the conditions of Theorem 3.1.2, that the inequality associated

with prB,pq holds with finite constant, and that }B ´ rB}L8 ă 8, then the inequality

associated with pB,pq holds with finite constant.

In particular, this corollary implies that any inequality associated with a nonlinear L8

perturbation of a feasible linear datum, provided that it satisfies the conditions of Theorem

3.1.2, must hold with finite constant. It would be reasonable to suggest that a similar

result would hold in the non-euclidean setting, however, due to certain technical geometric

complications, this appears to fall beyond the scope of this thesis.

3.1.2 Reduction of Theorem 3.1.2

Let Cps, tq denote the best constant C P p0,8s for the following inequality.

ż

M

m
ź

j“1

Hx,s,jfj ˝ Bjpxq
pjdx ď Cps, tq

ż

M

m
ź

j“1

Hx,t,jfj ˝ Bjpxq
pjdx (3.1.10)

It is easy to see that Cps, tq enjoys the submultiplicative property Cpr, tq ď Cpr, sqCps, tq.

We claim that this together with the following proposition is sufficient to prove Theorem

3.1.2.

Proposition 3.1.11 There exist β, ν ą 0 such that, for all τ P p0, νq,

Cpτ,
?
2τq ď p1 ` τβq.
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Proof of Theorem 3.1.2 given Proposition 3.1.11. Setting τ0 “ τ , define the geometric

sequence τk :“ 2´k{2τ0 and let K P N. We can split the constant CpτK , τq into pieces that

can be dealt with by Proposition 3.1.11.

CpτK , τq ď CpτK , τK´1qCpτK´1, τq

ď CpτK , τK´1qCpτK´1, τK´2qCpτK´2, τq

ď ... ď

K
ź

k“1

Cpτk, τk´1q ď

K
ź

k“1

p1 ` τβk q

Taking logarithms of the above inequality, we obtain that

logpCpτK , τqq ď

K
ÿ

k“1

logp1 ` τβk q

ď

8
ÿ

k“1

τβk “
τβ

2β{2 ´ 1

It then follows that, making τ accordingly smaller if necessary, that CpτK , τq ď expp τβ

2β{2´1
q ď

p1 ` τβ{2q. For each j P t1, ...,mu, let fj P C8
0 pMjq be a non-negative function. By the

forthcoming Lemma 3.2.11, we know that Hx,τ,jfj ˝ Bjpxq Ñ fj ˝ Bjpxq as τ Ñ 0 for all

x P M , hence we may apply Fatou’s lemma and consider (3.1.10) with s “ τK and t “ τ ,

taking the limit as K Ñ 8.

ż

M

m
ź

j“1

fj ˝ Bjpxq
pjdx ď lim inf

KÑ8

ż

M

m
ź

j“1

Hx,τK ,jfj ˝ Bjpxq
pjdx

ď lim inf
KÑ8

CpτK , τq

ż

M

m
ź

j“1

Hx,τ,jfj ˝ Bjpxq
pjdx

ď p1 ` τβ{2
q

ż

M

m
ź

j“1

Hx,τ,jfj ˝ Bjpxq
pjdx (3.1.12)

This implies the theorem since we may extend this inequality by density to general non-

negative fj P L1pMjq. ˝
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This initial reduction complete, we now turn our attention to the task of constructing

the family of near-extremising gaussians Gx,τ,j, but, as we briefly discussed at the end of

Section 1.1, in order to do this we shall first need to establish a slight improvement of the

effective version of Lieb’s theorem (Theorem 1.1.4) first proved in [9].

3.1.3 A Regularised Effective Lieb’s Theorem

An issue with constructing a suitable heat-flow outside of the case where pdBpxq,pq is

simple is that we do not then have a natural choice of gaussian extremiser to use as our

heat kernel, in fact, generally speaking pdBpxq,pq may not admit a gaussian extremiser

at all. While Lieb’s theorem does guarantee the existence of a δ-near gaussian extrem-

iser for any δ ą 0, i.e. there exists a gaussian input A such that BLgpdBpxq,p;Aq ě

p1 ´ δqBLpdBpxq,pq, it does not offer any quantitative information about this gaussian.

The authors of [9] overcame these problems by establishing an effective version of Lieb’s

theorem that tracks how the family of δ-near extremisers for a given Brascamp–Lieb

datum degenerates as δ Ñ 0. We now state a simplified version of their result.

Theorem 3.1.13 (Effective Lieb’s theorem [9]) There exists N P N depending only

on the dimensions and exponents such that the following holds: For any given D ą 0

there exists δ0 ą 0 such that for every δ P p0, δ0q and any feasible datum pL,pq such that

BLpL,pq, |L| ď D,

sup
|A|,|A´1|ďδ´N

BLgpL,p;Aq ě p1 ´ δqBLpL,pq. (3.1.14)

This theorem, in other words, establishes the existence of a function Yδ from the set

of feasible Brascamp–Lieb data to the set of gaussian inputs such that YδpLq is a δ-

near extremiser for pL,pq and both }Yδ}L8 and }Y´1
δ }L8 are bounded above by δ´N (to

clarify, Y´1
δ pLq refers to the gaussian input whose jth entry is the inverse of the jth entry
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of YδpLq). It says nothing however about the existence of a smooth, let alone continuous,

function with such properties. Unfortunately, we require Yδ to be W 1,8 bounded for our

analysis, moreover, we require that its W 1,8 norm is bounded polynomially in δ.

Theorem 3.1.15 Recall the definition of F and G from Section 1.1. There exists an

N P N depending only on the dimensions and exponents such that the following holds:

For all open Ω Ť F there exists a ν ą 0 such that for all δ P p0, νq, there exists

a smooth function Yδ : Ω Ñ G such that detpYδpLqjq “ 1 for all j P t1, ...,mu,

}Yδ}W 1,8pΩq, }Y
´1
δ }L8pΩq ď δ´N and, for each L P Ω, YδpLq is a δ-near extremiser for

pL,pq, i.e., that BLgpL,p;YδpLqq ě p1 ´ δqBLpL,pq.

Fortunately, the authors of [9] in the same paper establish the Hölder continuity of the

Brascamp–Lieb constant as a consequence of their effective Lieb’s theorem, which, as it

shall turn out, is an essential ingredient for proving Theorem 3.1.15.

Proposition 3.1.16 ( [9]) There exists a number θ P p0, 1q and a constant C0 depending

on the dimensions pnjq
m
j“1 and exponents ppjq

m
j“1 such that the following holds: Given data

L,L1 such that |L|, |L1
| ď C1 and BLpL,pq,BLpL1,pq ď C2, we then have

|BLpL,pq ´ BLpL1,pq| ď C0C
n`θpn´1q

1 C3
2 |L ´ L1

|
θ. (3.1.17)

Proof of Theorem 3.1.15. The proof strategy is to locally average the potentially discon-

tinuous function given by Theorem 3.1.13 in such a way that we both preserve its good

properties and impose on it some additional regularity. We will be averaging via a discrete

cover of Ω, which we shall now define. Let θ P p0, 1q be an exponent to be determined

later, and let E Ă Ω be the following discrete grid of points:

E :“ Ω X

˜

ˆ

δ

100

˙
1
θ

Zn1ˆn
ˆ ... ˆ Znmˆn

¸

. (3.1.18)
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Now, let I be an indexing set for E so that we may write E “ tLiuiPI , then letQ :“ tQiuiPI

be a cover of Ω via axis-parallel cubes of width equal to pδ{10q
1
θ , with each Qi centred at

Li. One should note as a matter of technicality that we may need to take δ to be very

small for Q to genuinely be a cover of Ω.

By Theorem 3.1.13, there exists an N P N such that for sufficiently small δ ą 0 there

exists a function Y0
δ : Ω Ñ G such that }Y0

δ}L8pΩq, }pY0
δq

´1}L8pΩq ď δ´N and Y0
δpLq is a

δ{2-near extremiser for pL,pq P Ω. We begin by showing that, for a suitable choice of θ

and provided that δ is chosen to be sufficiently small, for all i P I, Y0
δpLiq is also a δ-near

extremiser for any pL,pq such that L P Qi X Ω. By compactness of Ω and smoothness of

the Brascamp–Lieb functional in L on F , there exists a ν1 P p0, 1q such that for η P p0, ν1q

and all L,L1
P Ω satisfying |L ´ L1

| ď η2, we have

BLgpL
1,p;Y0

δpLqq ě p1 ´ ηqBLgpL,p;Y
0
δpLqq. (3.1.19)

The presence of exponent in the bound η2 here is merely for absorbing constants. By

Proposition 3.1.16, we may choose θ P p0, 1{2q such that the following holds: There exists

ν2 P p0, 1q such that for η P p0, ν2q and |L ´ L1
| ď η

1
θ , we have that

BLpL,pq ě p1 ´ ηqBLpL1,pq. (3.1.20)

Again we have used some freedom in our choice in θ to absorb the constants that arise in

(3.1.17). Choose δ such that 0 ă δ ď mintν1, ν2, 1u, then for all i P I and all L P Qi X Ω,

since |L ´ Li| ă δ
1
θ {10

1
θ ď δ2{100, we may apply (3.1.19) and (3.1.20) together with the
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fact that Y0
δpLiq is a δ{2-near extremiser for pLi,pq to prove the claim.

BLgpL,p;Y
0
δpLiqq ě p1 ´ δ{10qBLgpLi,p;Y

0
δpLiqq

ě p1 ´ δ{2qp1 ´ δ{10qBLgpLi,pq

ě p1 ´ δ{2qp1 ´ δ{10q
2BLgpL,pq

ě p1 ´ δqBLpL,pq (3.1.21)

Now, let tρiuiPI be a smooth partition of unity subordinate to Q with indexing set I such

that }dρi}L8 À δ´ 1
θ (we may use a similar construction to that in section 1.6), and define

the function Y1
δ : Ω Ñ G.

Y1
δpLq :“

˜

ÿ

iPI
ρipLqY0

δpLiq
´1

¸´1

(3.1.22)

Again, we clarify that inversions are defined component-wise. We claim that, for any

L P Ω, Y1
δpLq is an Opδq-near extremiser for pL,pq. Firstly, by the homogeneity of the

Brascamp–Lieb functional and (3.1.21), each ρipLq´1Y0
δpLiq is a δ-near extremiser for all

pL,pq such that L P Qi X Ω. Consider now a generic δ1-near and δ2-near extremiser,

call them A1 and A2 respectively, for some generic linear datum pL,pq, then by Ball’s

inequality,

BLgpL,p;A1qBLgpL,p;A2q ď BLpL,pqBLgpL,p; pA´1
1 ` A´1

2 q
´1

q

ùñ p1 ´ δ1qp1 ´ δ2qBLpL,pq
2

ď BLpL,pqBLgpL,p; pA´1
1 ` A´1

2 q
´1

q

ùñ p1 ´ δ1qp1 ´ δ2qBLpL,pq ď BLgpL,p; pA´1
1 ` A´1

2 q
´1

q

ùñ p1 ´ δ1 ´ δ2qBLpL,pq ď BLgpL,p; pA´1
1 ` A´1

2 q
´1

q (3.1.23)

hence pA´1
1 ` A´1

2 q´1 is a pδ1 ` δ2q-near extremiser for pL,pq. Since we are pointwise
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only ever summing boundedly many (by which we mean À 1) contributions in (3.1.22),

by iterating (3.1.23), we find that Y1
δpLq is an Opδq-near extremiser for pL,pq (similar

observations about the closure of extremisers under harmonic addition were made in [14]).

We may of course remove the implicit constant here by a simple substitution, so we shall

proceed assuming that Y1
δpLq is a δ-near extremiser for pL,pq, for all L P Ω.

It remains to prove that Y1
δ satisfies the necessary L8 and W 1,8 bounds. We shall

start with the L8 bounds. One bound is trivial, namely that

|Y1
δpLq

´1
| ď max

α:LPQα

|Y0
δpLiq

´1
| ď δ´N .

The other requires the elementary fact that, for all symmetric positive definite matrices

A,B P Rnˆn, |pA´1 `B´1q´1| À |A| ` |B|, which follows from the fact that, for all |v| “ 1,

|pA´1
` B´1

qv| ě p|A´1v|
2

` |B´1v|
2
q
1{2

ě |A|
´2

` |B|
´2

Á p|A| ` |B|q
´1 (3.1.24)

which then gives us that

|Y1
δpLq| À max

i:LPQi

|Y0
δpLiq| ď δ´N .

It remains to prove the L8 bound on the derivative dY1
δ . We use the chain rule to deal

with the matrix inversions, apply the above established bounds on |Y1
δpLq|, then apply

the triangle inequality to show that the derivative is at most polynomially bounded. Let
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W P Rn1ˆn ˆ ... ˆ Rnmˆn be some unit vector, then

|dY1
δrLspW q| “ |Y1

δpLqdppY1
δq

´1
qrLspW qY1

δpLq|

ď δ´2N
|dppY1

δq
´1

qrLspW q|

ď δ´2N
ÿ

iPI
|∇ρipLq||Y0

δpLiq|

À δ´3N´ 1
θ .

Changing our choice of N and absorbing constants as appropriate, we may assume for

the rest of the proof that }dY1
δ}L8 ď δ´N . Finally, we obtain the desired function

Yδ by renormalising the determinant, which, by the homogeneity of the Brascamp–Lieb

functional, does not affect the property of being a δ-near extremiser. We shall use the

polynomial bounds for Y1
δ “: pY 1

δ,jq
m
j“1 to help us establish polynomial bounds for Yδ “:

pYδ,jq
m
j“1, which we define below.

YδpLq :“ pdetpY 1
δ,jpLqq

´1{njY 1
δ,jpLqq

m
j“1

Since the 2-norm of a real symmetric matrix is its maximal eigenvalue, and the de-

terminant of a matrix is the product of its eigenvalues, we know that detY1
δpLq ď

|Y1
δpLq|nj ď δ´njN , similarly, detY1

δpLq´1 ď |Y1
δpLq´1|nj ď δ´njN . Finally, we must

bound the derivative dYδrLs. Now, in the case when nj “ 1, detpY 1
δ,jq “ Y 1

δ,j, so Yδ,j

is identically one, hence the claim of the theorem is trivial, so shall proceed assuming

that nj ą 1. Letting L P Ω, by the chain rule and Jacobi’s formula, we know that

dpdetY 1
δ,jqrLspW q “ adjpY 1

δ,jpLqq˚ : dY 1
δ,jrLspW q, where adj denotes an adjugate and the
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colon denotes the frobenius inner product A : B :“
ř

ij AijBij, so, taking some |W | “ 1,

|dYδrLspW q| ď |dpdetpY 1
δ,jq

´1{njqqrLspW qYδpLq| ` | detpY 1
δ,jrLsq

´1{njdY 1
δ,jrLspW q|

ď δ´N
`

|dpdetpY 1
δ,jq

´1{njqrLs| ` δ´2N
˘

ď δ´N

ˆ

1

nj
|dpdetY 1

δ,jqrLs|
1´1{nj ` δ´2N

˙

ď δ´N

ˆ

1

nj
|adjpY 1

δ,jq|
1´1{nj

Frob |dpY1
δqjrLs|

1´1{nj

Frob ` δ´2N

˙

À δ´N

ˆ

1

nj
|Y 1
δ,j|

pnj´1qp1´1{njq
|dpY1

δqjrLs|
1´1{nj ` δ´2N

˙

À δ´cN .

For some c » 1. Above we used the fact that the adjugate is a homogeneous polynomial

of degree nj ´ 1 to obtain the bound |adjpY 1
δ,jq|Frob À |adjpY 1

δ,jq|8 À |Y 1
δ,j|

nj´1. ˝

3.1.4 Definition of Gx,τ,j

We shall now define the gaussian arising in the statement of Theorem 3.1.2 using Theorem

3.1.15. In order to do this, we need to find a way of globally applying Theorem 3.1.15 to

our manifold context, and to this end, we define BLx to be the set of feasible Brascamp–

Lieb data with domain TxM and codomains TB1pxqM1, ..., TBmpxqMm, and we consider the

following set

Ωx :“ tL P BLx : |L|,BLpL,pq ă Cu

We remark that BLM :“
Ů

xPM BLx then defines a fibre bundle over M , with natural

projection map πBL : BLM Ñ M and ΩM :“
Ů

xPM Ωx defines a fibre subbundle of BLM

containing
Ů

xPMtdBpxqu, although we do not rigorously justify these claims as it is not

necessary for the proof. Let U be a boundedly overlapping cover ofM via small balls of the

same radius, let tϕU : U Ñ RnuUPU be a normal atlas and tϕBjpUq : BjpUq Ñ RnjuBjpUqPU

be an atlas for BjpMq consisting of restrictions of normal charts. We may use them to
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define define a system of local trivialisations for BLM .

ψU : π´1
BLpUq Ñ U ˆ BL

ψUpx,Lq :“ px, pdϕBjpUqrBjpxqs ˝ Lj ˝ dϕU rxs
´1

q
m
j“1q

By our bounded geometry assumptions, the forthcoming Lemma 3.2.4 implies that the

exponential map has has bounded first and second derivatives, hence our normal atlases

may be chosen such that
Ť

xPM ψUpπ´1
BLpUq X ΩMq Ă U ˆ Ω, where Ω :“ tL P BL :

|L|,BLpL,pq ă 2Cu. The set Ω is open and relatively compactly contained in BL, there-

fore there exists a Yδ : Ω Ñ G as in Theorem 3.1.15 for this choice of Ω. Let tρUuUPU be

a partition of unity subordinate to M with uniformly bounded derivatives, and define the

following gaussian input-valued function:

aτ pxq :“

˜

ÿ

UPU
ρUpxq pCUpxq

˚Yτα ˝ π2 ˝ ψUpx,dBpxqqCUpxqq
´1

¸´1

, (3.1.25)

where π2 denotes projection onto the second component, CUpxq :“ pdϕBjpUqpBjpxqqqmj“1,

and α P p0, 1q is a small exponent to be later determined, which we shall use to control the

blow-up of aτ under various norms. By scale-invariance of the Brascamp–Lieb inequality

and the closure of δ-near extremisers under invertible linear changes of co-ordinates, each

term of the form CUpxq˚Yτα ˝π2 ˝ψUpx,dBpxqqCUpxq in (3.1.25) is a τα-near extremiser

for pdBpxq,pq, therefore iterating (3.1.23) implies that aτ pxq is a Opταq-near extremiser

for pdBpxq,pq. Moreover, following the same reasoning as in the proof of Theorem 3.1.15,

we may derive that }aτ}L8pMq, }a
´1
τ }L8pMq À τ´αN . In both instances, we may ignore

the implicit constants that arise by simply raising the exponent α a qualitatively small
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amount. We may then define a gaussian gx,τ,j : TBjpxqMj Ñ R as

gx,τ,jpzq “ τ´nj exp
´

´
π

τ 2
xaτ,jpxqz, zy

¯

.

Implicitly, we may view this gaussian as the fundamental solution of the following anisotropic

heat equation at time t “ τ 2.

Btupz, tq “ ∇z ¨ paτ,jpxq
´1∇zupz, tqq

At last, we define our gaussian kernel Gx,τ,j as the following infinite convolution.

Gx,τ,j :“ ˚8
k“1gx,2´k{2τ,j

We shall now show that Gx,τ,j is well-defined if α ă 2N´1, where this N P N is the one

that arises in Theorem 3.1.15. To see this, we consider the partial convolution

G
pKq

x,τ,j :“ gx,2´1{2τ,j ˚ ... ˚ gx,2´K{2τ,j “ τ´nj detpCKq
1{2 expp´πτ 2xCKv, vyq,

where CK :“ p
řk“K
k“1 2´ka2´k{2τ,jpxq´1q´1 (this formula may be checked by an application

of the Fourier transform). We now just need to show that CK converges as K Ñ 8,

since then G
pKq

x,τ,j converges pointwise. Let l P N, then by the fact that }a´1
2´k{2τ,j

}L8pMq ď

2kαN{2τ´αN for all k ą 0,

|C´1
K`l ´ C´1

K | ď

K`l
ÿ

k“K`1

2´k
|a2´k{2τ,jpxq

´1
|

ď

K`l
ÿ

k“K`1

2´k2kαN{2τ´αN

ď 2pαN{2´1qKτ´αN
l

ÿ

k“1

2pαN{2´1qk
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By our choice of α, |C´1
K`l ´ C´1

K | Ñ 0 as K Ñ 8 uniformly in l, so C´1
K is a Cauchy

sequence, and therefore converges. By continuity of matrix inversion, the limit of CK then

exists provided that limKÑ8pC´1
K q P GLnj

pRq, otherwise CK must be unbounded, since

if it were not it must admit a convergent subsequence, which would have to converge to

the inverse of the limit of C´1
K , resulting in a contradiction. We therefore only need to

check that CK is bounded, whence G
pKq

x,τ,j Ñ Gx,τ,j pointwise, which follows from applying

(3.1.24) and the L8 bound on aτ .

|CK | À

K
ÿ

k“1

2´k
|a2´k{2τ,jpxq| ď

8
ÿ

k“1

2pαN{2´1qkτ´αN
Àα,N τ´αN

ă 8,

If we denote the limit of CK by Aτ,jpxq, then we may write Gx,τ,jpzq explicitly as

Gx,τ,jpzq “ τ´nj detpAτ,jpxqq
1{2 expp´πτ´2

xAτ,jpxqz, zyq.

It is worth noting that by using infinitely many applications of (3.1.23), we see that

Aτ pxq :“ pAτ,jpxqqmj“1 is an Opταq-near extremiser for pdBpxq,pq, establishing property

(2) of Proposition 3.1.1.

BLgpdBpxq,p;Aτ pxqq

BLpL,pq
ě 1 ´ τα

8
ÿ

k“1

2´kα{2
“ 1 ´ ταp2α{2

´ 1q
´1

Observe that in the case where pdBpxq,pq is simple, we may forego Theorem 3.1.15 and

use an exact extremiser for our definition of gx,τ,j, in which case aτ is constant in τ ą 0,

and we would then have the identifications Aτ “ aτ and Gx,τ,j “ gx,τ,j. Of course, if the

reader wanted to run our argument in the simple case with exact extremisers, then they

would need to take care to ensure that these exact extremisers satisfy appropriate W 1,8

boundedness of the type we shall prove for our near-extremisers in the next section.
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3.2 Gaussian Lemmas

This section is, for the most part, dedicated to establishing the properties we require of our

gaussians Gx,τ,j and gx,τ,j in order to prove Proposition 3.1.11, which, as we have shown

in Section 3.1.2, implies Theorem 3.1.2. We need to quantify how these gaussians behave

under small perturbations in a number of variables, and for this purpose we shall first

need to prove various bounds on norms the underlying gaussian input-valued functions

aτ and Aτ .

Lemma 3.2.1 For any ε ą 0, provided α is chosen such that α ă mint 2
3N
, ε
N

u, there

exists a ν ą 0 such that for every τ P p0, νq, }Aτ}W 1,8 , } detAτ}W 1,8 , }A´1
τ }L8 ď τ´ε.

Proof. The proof is similar to that of Lemma 3.1.15, as it amounts to a straightforward

application of the triangle inequality and an application of the bounds on a2´k{2τ,jpxq that

immediately follow from Theorem 3.1.15, taking ν ą 0 small enough so that we may

bound any constants that arise from above by ταN´ε, for all τ P p0, νq.

|Aτ,jpxq
´1

| ď

8
ÿ

k“1

2´k
|a2´k{2τ,jpxq

´1
| ď

8
ÿ

k“1

2pαN{2´1qkτ´αN
ď τ´ε

|Aτ,jpxq| À

8
ÿ

k“1

2´k
|a2´k{2τ,jpxq| ď

8
ÿ

k“1

2pαN{2´1qkτ´αN
ď τ´ε

Now, take W P TBjpxqMj such that |W | “ 1, then the bound on dAτ,jpxq follows from the
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L8 boundedness of Y´1
δ and the W 1,8 boundedness of Yδ

|dAτ,jpxqpW q| “ |Aτ,jpxqdpA´1
τ,jqpxqpW qAτ,jpxq|

ď τ´2ε

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“1

2´kdpa2´k{2τ,jq
´1

pxqpW q

ˇ

ˇ

ˇ

ˇ

ˇ

À τ´2ε
8
ÿ

k“1

2´k
}dpY´1

2´αk{2τα
q}L8}d2B}L8

À τ´2ε
8
ÿ

k“1

2´k
}Y´1

2´αk{2τα
}
2
L8}dY2´αk{2τα}L8

ď τ´2ε
8
ÿ

k“1

2kp3αN{2´1qτ´2αN
À τ´4ε

We now turn our attention to theW 1,8 bound for detpAτ,jpxqq. First of all, | detAτ,jpxq| ď

|Aτ,jpxq|nj ď τ´εnj for all τ P p0, νq, so we have the bound |Aτ,jpxq| ď τ´ε, similarly

|Aτ,jpxq´1| ď τ´2ε for all such τ . all that remains is to establish the L8 bound on

dpdetAτ,jq. The case when nj “ 1 has already been established, since then detAτ,j “ Aτ,j,

so suppose then that nj ą 1. Taking any x P M and w P TxM such that |w| “ 1, then

by Jacobi’s formula, the chain rule, the Cauchy-Schwarz inequality, and the equivalence

of finite dimensional norms, we have that

|dpdetAτ,jqrxspW q| “ |adjpAτ,jpxqq
˚ : dAτ,jpxqpwq|

À |Aτ,jpxq|
nj´1

|dAτ,jpxq| À τ´2pnj´1qε

This proves the claim, since we may adjust ε accordingly. ˝

We shall henceforth consider ε P p0, p1 ´ γq{2q and α P p0, ε{2Nq as fixed parameters,

and we also note at this point that we have now proved property (3) of Proposition 3.1.1,

completing its proof.

Lemma 3.2.2 For all η P p0,mintγ ´ 2ε, 0.9γ ´ ε, 3γ ´ 2´ εuq, there exists a ν ą 0 such
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that the following holds: for all τ P p0, νq and x, y P M such that dpx, yq ď τ γ, and z P Mj

such that dpz,Bjpxqq ď τ γ, for all fj P L1pMjq,

Hy,τ,jfjpzq ď p1 ` τ ηqHx,τ,jfjpzq (3.2.3)

In order to prove this statement, we shall need a geometric lemma, the proof of which

may be found in the appendix.

Lemma 3.2.4 Suppose that M is a Riemannian manifold with bounded geometry, then

given x P M , then the norms of the covariant derivatives (up to second order) of the

exponential map based at p P M may be bounded above uniformly in p in the open unit

ball.

Proof of Lemma 3.2.2. Let τ ą 0 be small, let x, y P M satisfy dpx, yq ď τ γ, and take

some z P Mj such that dpz, Bjpxqq ď τ γ. First of all, by the chain rule, for any v P TxM ,

dpe´1
Bjpyq

˝eBjpxqqrvs “ dpe´1
Bjpyq

qreBjpxqpvqsdeBjpxqrvs. Given w P Uτ,jpzq, by Taylor’s theorem,

we may approximate vy :“ e´1
Bjpyq

pzq ´ e´1
Bjpyq

pwq in terms of vx :“ e´1
Bjpxq

pzq ´ e´1
Bjpxq

pwq in

the following manner:

vy “ e´1
Bjpyq

˝ eBjpxq ˝ e´1
Bjpxq

pzq ´ e´1
Bjpyq

˝ eBjpxq ˝ e´1
Bjpxq

pwq

“ dpe´1
Bjpyq

˝ eBjpxqqre´1
Bjpxq

pzqspvxq ` Op|vx|
2
q

“ dpe´1
Bjpyq

qrzsdeBjpxqre
´1
Bjpxq

pzqspvxq ` Op|vx|
2
q. (3.2.5)

Above, we use Lemma 3.2.4 to uniformly bound the higher derivatives. Define the linear

map Tx,y :“ dpe´1
Bjpyq

qrzsdeBjpxqre
´1
Bjpxq

pzqs, then it follows that

|Aτ,jpyq
1{2vy|

2
“ |Aτ,jpyq

1{2
pTx,yvx ` Op|vx|

2
qq|

2

ď |Aτ,jpyq
1{2

pTx,yvxq|
2

` τ 2.9γ´ε, (3.2.6)
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for sufficiently small τ ą 0. Now, by the uniform bounds on detAτ,j established in Lemma

3.2.1, we have that

| logpdetAτ,jpxqq ´ logpdetAτ,jpyqq| ď
| detAτ,jpxq ´ detAτ,jpyq|

mint| detAτ,jpxq|, | detAτ,jpyq|u

ď τ´ε
}dpdetAτ,jq}L8dpx, yq

ď τ γ´2ε.

Together with (3.2.6), this implies the bound Gy,τ,jpvyq ď p1`τ ηqGx,τ,jpvxq for sufficiently

small τ ą 0.

Gy,τ,jpvyq

Gx,τ,jpvxq
“

detpAτ,jpyqq

detpAτ,jpxqq
exppπτ´2

p|Aτ,jpxq
1{2vx|

2
´ |Aτ,jpyq

1{2vy|qq

ď exppτ γ´2ε
` πτ 0.9γ´ε

` πτ´2
p|Aτ,jpxq

1{2vx|
2

´ |Aτ,jpyq
1{2Tx,yvx|

2
qq

ď exppτ γ´2ε
` πτ 0.9γ´ε

` πτ´2
xpAτ,jpxq ´ T ˚

x,yAτ,jpyqTx,yqvx, vxyq

ď exppτ γ´2ε
` πτ 0.9γ´ε

` πτ´2
|Aτ,jpxq ´ T ˚

x,yAτ,jpyqTx,y||vx|
2
q

ď exppτ γ´2ε
` πτ 0.9γ´ε

` 2πτ´2
}dAτ,j}L8τ 3γq

ď exppτ γ´2ε
` πτ 0.9γ´ε

` 2πτ 3γ´2´ε
q ď 1 ` τ η

In the penultimate line we applied the mean value theorem in to obtain |Aτ,jpxq ´

T ˚
x,yAτ,jpyqTx,y| ď 2}dAτ,j}L8dpx, yq. The claim then easily follows from the definition

of Hx,τ,j.

Hy,τ,jfjpzq :“

ż

Uτ,jpzq

fjpwqGx,τ,jpe
´1
Bjpxq

pzq ´ e´1
Bjpxq

pwqqdw

ď p1 ` τ ηq

ż

Uτ,jpzq

fjpwqGx,τ,jpe
´1
Bjpxq

pzq ´ eBjpxq´1pwqdw “ p1 ` τ ηqHy,τ,jfjpzq

(3.2.7)

˝
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Lemma 3.2.8 (General Truncation of Gaussians) Let m,n P N, κ » 1, and for

each τ ą 0 let Aτ P Rnˆn be a positive definite matrix. Define gτ : Rn Ñ R to be the gaus-

sian gτ pxq :“ τ´n expp´πτ´2xAτx, xyq. Let γ ą 0, and suppose that | detpAτ q|´1, |A´1
τ | ď

τ´ε for some ε P p0, p1 ´ γq{2q. There exists a ν ą 0 depending only on n, m, ε, and γ

such that for all τ P p0, νq

detpAτ q
´1{2

“

ż

Rn

gτ ď p1 ` τ εq

ż

Uκτγ p0q

gτ . (3.2.9)

Proof. By the freedom of choice we have in γ, if the claim holds for κ “ 1 and we let

γ1 “ γ ´ η for some small η ą 0, we obtain the general result by enlarging the domain of

integration on the right-hand side of (3.2.9) from Uτγ to Uκτγ1 p0q, taking τ ď κ´1{η. It is

sufficient to show that there exists ν ą 0 such that, for all τ P p0, νq,

ż

RnzUτγ p0q

gτ ď cτ 2ε. (3.2.10)

for some c » 1. To see this we simply split the integral of gτ into Uτγ p0q and RnzUτγ p0q.

detpAτ q
´1{2

“

ż

RnzUτγ p0q

gτ `

ż

Uτγ p0q

gτ

ď cτ 2ε `

ż

Uτγ p0q

gτ

detpAτ q
´1{2

´ cτ 2ε ď

ż

Uτγ p0q

gτ

detpAτ q
´1{2

ď p1 ´ c detpAτ q
´1{2τ 2εq´1

ż

Uτγ p0q

gτ ď p1 ´ cτ 3ε{2
q

´1

ż

Uτγ p0q

gτ

Which of course implies (3.2.9) if τ is taken to be sufficiently small. To estimate the left

hand side of (3.2.10), we shall partition the domain of integration RnzUτ p0q into annuli,

and bound the resulting infinite sum above by a lacunary series. We take τ P p0, νq, where
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ν P p0, 1q is chosen such that π
2
ν2ε`γ´1 ě 2ε.

ż

RnzUτ p0q

gτ “

ż

|x|ěτγ´1

expp´π|A1{2
τ x|

2
qdx

“

8
ÿ

k“0

ż

2kτγ´1ď|x|ď2k`1τγ´1

expp´π|A1{2
τ x|

2
qdx

ď

8
ÿ

k“0

sup
2k logp1{τq“|x|

pexpp´π|Aτx|
2
qqV olpt2kτ γ´1

ď |x| ď 2k`1τ γ´1
uq

ď σn´1τ
np1´γq

8
ÿ

k“0

2nk expp´π|A´1
τ |

´222kτ 2pγ´1q
q

À

8
ÿ

k“0

τ
π
2
τ2ε22kτγ´1

À

8
ÿ

k“0

τ
π
2
ν2ε`γ´122k

À

8
ÿ

k“0

τ 2ε2
2k

À τ 2ε, ˝

We may now prove the pointwise convergence to initial data for Hx,τ,jfj ˝ Bj, a fact the

reader will recall that we needed to prove that Proposition 3.1.11 implied Theorem 3.1.2.

Lemma 3.2.11 (Pointwise convergence to initial data) For each j P t1, ...,mu, let

fj P C0pMjq and x P M , then,

lim
τÑ0

Hx,τ,jfj ˝ Bjpxq “ fj ˝ Bjpxq. (3.2.12)

We give a proof of this lemma in the appendix.

Lemma 3.2.13 (Switching) For all η P p0, αq, there exists ν ą 0 such that for τ P p0, νq

and x, y P M such that dpx, yq ď τ γ,

1

BLpdBpyq,pq

m
ź

j“1

gy,τ,j ˝ dBjpyqpe´1
y pxqq

pj ď
1 ` τ η

BLpdBpxq,pq

m
ź

j“1

gx,τ,j ˝ dBjpxqpe´1
x pyqq

pj .

(3.2.14)

Proof. Let 0 ă τ ă ρ{10, and define the positive-definite symmetric matrix field Mτ P
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Γ pTM b T ˚Mq.

Mτ pxq :“
m
ÿ

j“1

pjdBjpxq
˚aτ,jpxqdBjpxq

It follows from the definition of Mτ that

m
ź

j“1

gx,τ,j ˝ dBjpxqpvq
pj “

m
ź

j“1

expppjxaτ,jpxqdBjpxqv, dBjpxqvyq

“ expp´πτ´2
|Mτ pxq

1{2v|
2
q

Hence, by the fact that aτ,jpxq is a τα-near extremiser for pdBpxq,pq,

p1 ´ ταqBLpdBpxq,pq ď BLgpdBpxq,p; aτ,jpxqq “ detpMτ pxqq
´1{2

ď BLpdBpxq,pq,

hence

p1 ´ ταq detpMτ pxqq
1{2τ´n exp

´

´
π

τ 2
|Mτ pxq

1{2v|
2
¯

ď

śm
j“1 gx,τ,j ˝ dBjpxqpvqpj

BLpdBpxq,pq

ď detpMτ pxqq
1{2τ´n exp

´

´
π

τ 2
|Mτ pxq

1{2v|
2
¯

Taking logarithms of the ratio of the two quantities arising on either side of (3.2.14) reveals

that the logarithm of the error factor in (3.2.14) is polynomial in τ .

log

˜

BLpdBpxq,pq
śm

j“1 gy,τ,j ˝ dBjpyqpe´1
y pxqqpj

BLpdBpyq,pq
śm

j“1 gx,τ,j ˝ dBjpxqpe´1
x pyqqpj

¸

ď log

˜

exp
`

´πτ´2|Mτ pyq1{2e´1
y pxq|2

˘

detpMτ pyqq1{2

p1 ´ ταq exp p´πτ´2|Mτ pxq1{2e´1
x pyq|2q detpMτ pxqq1{2

¸

ď πτ´2
`

|Mτ pyq
1{2e´1

y pxq|
2

´ |Mτ,jpxq
1{2e´1

x pyq|
2
˘

` logpdetpMτ pyqMτ pxq
´1

qq ´ logp1 ´ ταq

Let σ : I Ñ M be a geodesic such that σp0q “ x and σp1q “ y. Let Pσ : TxM Ñ TyM
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denote parallel transport along σ. It is straightforward to check that e´1
y pxq :“ ´Pσe

´1
x pyq,

hence we may collate the two squares in the first term, allowing us to bound the resulting

quantity using the mean value theorem.

log

˜

BLpdBpxq,pq
śm

j“1 gy,τ,j ˝ dBjpyqpe´1
y pxqqpj

BLpdBpyq,pq
śm

j“1 gx,τ,j ˝ dBjpxqpe´1
x pyqqpj

¸

ď πτ´2
xpP´1

σ Mτ pyqPσ ´ Mτ pxqqe´1
x pyq, e´1

x pyqy ` logpdetpMτ pyqMτ pxq
´1

qq ´ logp1 ´ ταq

À τ γ´2
}dMτ}L8 |e´1

x pyq|
2

` τ γ´2ε
` τα À τ 3γ´2´ε

` τ γ´2ε
` τα À τα.

Hence, provided τ is taken to be sufficiently small, we obtain the desired upper bound.

BLpdBpxq,pq
śm

j“1 gy,τ,j ˝ dBjpyqpe´1
y pxqqpj

BLpdBpyq,pq
śm

j“1 gx,j,τ ˝ dBjpxqpe´1
x pyqqpj

ď exppcταq ď 1 ` τ η,

where c » 1. ˝

The next lemma ensures that the we may perturb the operators Hx,τ,j in x at the expense

of a quantitatively small multiplicative error, and it will be a key tool not only for proving

our theorem but also for proving Corollaries 3.1.8 and 3.1.9. It shall become clear why, like

in the previous chapter, it is essential that we truncate the gaussians Gx,τ,j, as gaussians

are not locally constant at any scale unless restricted to a ball of suitable size with respect

to the scale of mollification, and the choice of τ γ is well suited to our purposes, unlike the

radius of τ logp1{τq of the previous chapter, which is too large to cope with the blow-up

in eccentricity of the gaussians as τ Ñ 0 that we have introduced here.

Again, like the previous chapter, in order to perturb to a nearby gaussian the radius

of truncation needs to be slightly increased, and so we therefore shall need to define a

minor modification of Hx,τ,j, where the radius of the domain of integration is multiplied

by a factor of 1.1. This factor is of course chosen arbitrarily, but since this consideration
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is a minor technicality we simply choose a value for the sakes of concreteness.

H1.1
x,τ,j : L

1
pMjq Ñ L1

pUρ´1.1τγ pBjpxqqq

H1.1
x,τ,jfjpzq :“

ż

U1.1τγ,jpzq

fjpwqGx,τ,jpe
´1
Bjpxq

pzq ´ e´1
Bjpxq

pwqqdw

Lemma 3.2.15 (Local-constancy) For any η P p0, γ ´ εq, there exists a ν ą 0 such

that the following holds for all τ P p0, νq: Let x P M , then given z, z̃ P Uτ,jpBjpxqq such

that dpz, z̃q À τ 2 we have that for all fj P L1pMjq,

Hx,τ,jfjpzq ď p1 ` τ ηqH1.1
x,τ,jfjpz̃q (3.2.16)

Proof. First of all we need to prove a similar claim for the kernel Gx,τ,j. Suppose that

v, w P TBjpxqMj are such that |v ´ w| ď κτ 2 for some κ » 1 and v, w P Vτγ ,jp0q.

Gx,τ,jpvq

Gx,τ,jpwq
“ exppπτ´2

p|Aτ,jpxq
1{2v|

2
´ |Aτ,jpxq

1{2w|
2
qq

“ exppπτ´2
xAτ,jpxqpv ´ wq, v ` wyq

ď exppπτ´2
}Aτ,j}|v ´ w||v ` w|q

ď expp2C2κπτ´2τ´ετ 2τ γq

“ expp2C2κπτ γ´ε
q

Hence it follows that, for all τ ą 0 sufficiently small, dpz, z̃q À τ 2, and w P Uτ,jpzq,

Gx,τ,jpe
´1
Bjpxq

pzq ´ e´1
Bjpxq

pwqq ď p1 ` τ ηqGx,τ,jpe
´1
Bjpxq

pz̃q ´ e´1
Bjpxq

pwqq.
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The lemma then follows from applying this bound directly to the definition of H1.1
x,τ,jfj.

Hx,τ,jfjpzq “

ż

Uτγ,jpzq

fjpwqGx,τ,jpe
´1
Bjpxq

pzq ´ e´1
Bjpxq

pwqqdw

ď p1 ` τ ηq

ż

U1.1τγ,jpzq

fjpwqGx,τ,jpe
´1
Bjpxq

pz̃q ´ e´1
Bjpxq

pwqqdw

“ p1 ` τ ηqH1.1
x,τ,jfjpz̃q ˝

3.3 Proof of Proposition 3.1.11

Our proof strategy is to use the near-extremising gaussians gx,τ,j to construct a partition

of unity for the integral on the left-hand side of (3.1.3), subordinate to balls of scale

τ γ. At this scale, we may apply our lemmas from the previous section to perturb the

integral, so that we may then apply the linear Brascamp–Lieb inequality locally, thereby

obtaining the desired form on the right-hand side. Gaussian partitions of unity were also

used in [9], and, notably, more recently in the context of decoupling for the parabola by

Guth, Maldague, and Wang [48].

Proof. For each j P t1, ...,mu, take some arbitrary fj P L1pMjq. Let η P p0,mintα, 0.9γ ´

ε, γ ´ 2ε, 3γ ´ 2 ´ εuq and choose ν ą 0 such that (3.2.3), (3.2.9), (A.9), (3.2.14), and

(3.2.16) hold for τ P p0, νq. Consider the following collection of truncated gaussians.

#

χV0.1τγ p0q

śm
j“1 gy,τ,j ˝ dBjpyqpj

BLpdBpyq,pq

+

yPM

(3.3.1)

By Lemma 3.2.8 and the fact that aτ pyq is a τα-near extremiser for pdBpyq,pq, we know
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that for τ ą 0 sufficiently small,

BLgpdBpyq,p; aτ pyqq ď p1 ` τ ηq

ż

V0.1τγ p0q

m
ź

j“1

gy,τ,j ˝ dBjpyqpvq
pj

BLpdBpyq,pq ď p1 ` τ ηq2
ż

V0.1τγ p0q

m
ź

j“1

gy,τ,j ˝ dBjpyqpvq
pj ,

hence we may continuously split up the integral on the left-hand side of (3.1.3) by intro-

ducing (3.3.1) as one might a partition of unity.

ż

M

m
ź

j“1

Hy,τ,jfj ˝ Bjpyq
pjdy

ď p1 ` τ ηq2
ż

M

ż

V0.1τγ pyq

m
ź

j“1

Hy,τ,jfj ˝ Bjpyq
pjgy,τ,j ˝ dBjpyqpvq

pjdv
dy

BLpdBpyq,pq

ď p1 ` τ ηq3
ż

M

ż

U0.1τγ pyq

m
ź

j“1

Hy,τ,jfj ˝ Bjpyq
pjgy,τ,j ˝ dBjpyqpe´1

y pxqq
pjdx

dy

BLpdBpyq,pq

“ p1 ` τ ηq3
ż

M

ż

U0.1τγ pxq

m
ź

j“1

Hy,τ,jfj ˝ Bjpyq
pjgy,j,τ ˝ dBjpyqpe´1

y pxqq
pj

dy

BLpdBpyq,pq
dx

We want to perturb the inner integral to a linear Brascamp–Lieb inequality in y. To

do this, we first apply Lemma 3.2.2 and Lemma 3.2.13 to remove some of the unwanted

y-dependence. Let P :“
řm
j“1 pj, then

ż

M

m
ź

j“1

Hy,τ,jfj ˝ Bjpyq
pjdy

ď p1 ` τ ηq3`P

ż

M

ż

U0.1τγ pxq

m
ź

j“1

Hx,τ,jfj ˝ Bjpyq
pjgy,τ,j ˝ dBryspe´1

y pxqq
pj

dy

BLpdBpyq,pq
dx

ď p1 ` τ ηq3`2P

ż

M

ż

U0.1τγ pxq

m
ź

j“1

Hx,τ,jfj ˝ Bjpyq
pjgx,τ,j ˝ dBrxspe´1

x pyqq
pjdy

dx

BLpdBpxq,pq

ď p1 ` τ ηq3`3P

ż

M

ż

V0.1τγ pxq

m
ź

j“1

Hx,τ,jfj ˝ Bjpexpvqq
pjgx,τ,j ˝ dBrxspvq

pjdv
dx

BLpdBpxq,pq
.
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We may then use Lemma 3.2.15 to replace the instance of Bjpexpvqq with its affine ap-

proximation around x, given by Lxj pvq :“ eBjpxqpdBjpxqvq.

ď p1 ` τ ηq3`4P

ż

M

ż

V0.1τγ pxq

m
ź

j“1

H1.1
x,τ,jfj ˝ Lxj pvq

pjgx,τ,j ˝ dBjpxqpvq
pjdv

dx

BLpdBpxq,pq

ď p1 ` τ ηq3`4P

ż

M

ż

TxM

m
ź

j“1

H1.1
x,τ,jfj ˝ Lxj pvq

pjgx,τ,jχV0.1τγ,jp0q ˝ dBjpxqpvq
pjdv

dx

BLpdBpxq,pq
.

Above we used the fact that, for all x P M V0.1τγ p0q Ă
Şm
j“1 dBjpxq´1V0.1τγ ,jp0q. At this

point we may apply the linear Brascamp–Lieb inequality pdBpxq,pq to the inner integral.

ď p1 ` τ ηq3`4P

ż

M

m
ź

j“1

˜

ż

V0.1τγ,jp0q

H1.1
x,τ,jfjpeBjpxqpvjqqgx,τ,jpvjqdvj

¸pj

dx (3.3.2)

The resulting integrals in (3.3.2) may be then be bounded by a convolution.

ż

V0.1τγ,jp0q

H1.1
x,τ,jfjpeBjpxqpvjqqgx,τ,jpvjqdvj

“

ż

V0.1τγ,jp0q

ż

U1.1τγ,jpBjpxqq

fjpzqGx,τ,jpvj ´ e´1
Bjpxq

pzqqgx,τ,jpvjqdzdvj

ď p1 ` τ ηq

ż

V0.1τγ,jp0q

ż

V1.1τγ,jpBjpxqq

fj ˝ eBjpxqpwqGx,τ,jpvj ´ wqgx,τ,jpvjqdwdvj

“ Gx,τ,jχV1.1τγ p0q ˚ gx,τ,jχV0.1τγ p0q ˚ fj ˝ eBjpxqp0q (3.3.3)

Now, Gx,τ,j ˚gx,τ,j “ Gx,21{2τ,j by definition of Gx,τ,j, and the support of χV1.1τγ p0q ˚χV0.1τγ p0q

is the ball around the origin of radius 1.2τ γ, which is less than 2γ{2τ γ provided that γ ě

2 log2p1.2q « 0.526.... This implies that supppGx,τ,jχV1.1τγ p0q ˚ gx,τ,jχV0.1τγ p0qq Ă V2γ{2τγ p0q,

hence

Gx,τ,jχV1.1τγ p0q ˚ gx,τ,jχV0.1τγ p0q ď pGx,τ,j ˚ gx,τ,jqχV2γτγ p0q “ Gx,21{2τ,jχV
2γ{2τγ

p0q
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We may then bound (3.3.3) as follows:

ż

V0.1τγ,jp0q

H1.1
x,τ,jfjpeBjpxqpvjqqgx,τ,jpvjqdvj ď Hx,21{2τ,jfj ˝ Bjpxq. (3.3.4)

Finally, we complete the proof by combining (3.3.2) with (3.3.4) and taking β P p0, ηq. ˝

3.4 Proof of Corollaries 3.1.8 and 3.1.9

Proof of Corollary 3.1.8. Take some arbitrary fj P L1pMjq for all j P t1, ...,mu. By

Theorem 3.1.2, there exists a β ą 0 such that for τ ą 0 sufficiently small

ż

Uτγ px0q

m
ź

j“1

fj ˝ Bjpxq
pjdx ď

ż

M

m
ź

j“1

fjχUτγ,jpx0q ˝ Bjpxq
pjdx

ď p1 ` τβq

ż

M

m
ź

j“1

Hx,τ,jpfjχUτγ,jpx0qq ˝ Bjpxq
pjdx

ď p1 ` τβq

ż

U2τγ px0q

m
ź

j“1

Hx,τ,jfj ˝ Bjpxq
pjdx

Take η and ν as in the proof of Proposition 3.1.11, if we take τ P p0, νq, then we may

apply Lemma 3.2.13 to perturb Hx,τ,j to Hx0,τ,j and Lemma 3.2.15 to perturb Bjpxq to

Lx0j pxq, at which point we may apply the linear inequality to complete the proof.

ď p1 ` τβqp1 ` τ ηqP
ż

U2τγ px0q

m
ź

j“1

Hx0,τ,jfj ˝ Bjpxq
pjdx

ď p1 ` τβqp1 ` τ ηq2P
ż

U2τγ px0q

m
ź

j“1

H1.1
x0,τ,j

fj ˝ Lx0j pxq
pjdx

ď p1 ` τβqp1 ` τ ηq2PBLpdBpx0q,pq

m
ź

j“1

˜

ż

U2τγ,jp0q

H1.1
x0,τ,j

fj ˝ eBjpxq

¸pj

ď p1 ` τβqp1 ` τ ηq3PBLpdBpx0q,pq

m
ź

j“1

˜

ż

Mj

fj

¸pj

˝
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Proof of Corollary 3.1.9. Fix some τ ą 0 small enough so that (3.1.3) holds for the non-

linear datum pB,pq. Let R :“ }B ´ rB}L8pRnq and take some v P Vτγ pBjpxqq, then

Gx,τ,jpBjpxq ´ vq

Gx,τ,jp rBjpxq ´ vq
ď exppπτ´2

}Aτ,j}| rBjpxq ´ Bjpxq|| rBjpxq ` Bjpxq ´ 2v|q

ď exppπRτ´2´ε
| rBjpxq ` Bjpxq ´ 2v|q

ď exppπRτ´2´ε
p2|Bjpxq ´ v| ` | rBjpxq ´ Bjpxq|qq

ÀR,τ 1. (3.4.1)

Define the following convolution operator:

Hτ,jfjpyq :“

ż

Rn

fjpzq expp´πτ ε´2
|y ´ z|

2
qdz. (3.4.2)

Since Gx,τ,jpzq ď expp´πτ ε´2|z|2q by Lemma 3.2.1, Hx,τ,jfj ď Hτ,jfj, so combining this

with (3.4.1), we may bound Hx,τ,jfj ˝ Bjpxq as follows,

Hx,τ,jfj ˝ Bjpxq “

ż

Vτγ pBjpxqq

fjpzqGx,τ,jpBjpxq ´ zqdz

ÀR,τ

ż

Vτγ pBjpxqq

fjpzqGx,τ,jp rBjpxq ´ zqdz

ď τ´nj

ż

Rn

fjpzq expp´πτ ε´2
| rBjpxq ´ z|

2
qdz

“ Hτ,jfj ˝ rBjpxq.
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The finiteness of pB,pq then follows easily from (3.1.3) and the finiteness of prB,pq.

ż

Rn

m
ź

j“1

fj ˝ Bjpxq
pjdx ď p1 ` τβq

ż

Rn

m
ź

j“1

Hx,τ,jfj ˝ Bjpxq
pjdx

Àτ

ż

Rn

m
ź

j“1

Hτ,jfj ˝ rBjpxq
pjdx

À
rB

m
ź

j“1

ˆ
ż

Rnj

Hτ,jfj

˙pj

À

m
ź

j“1

ˆ
ż

Rnj

fj

˙pj

˝
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Chapter 4

An Algebraic Brascamp–Lieb

Inequality

This chapter is a re-edited version of the article ‘An Algebraic Brascamp–Lieb inequality’

[39].

4.1 Introduction

As stated at the beginning of the thesis, a common feature of many problems studied

in modern harmonic analysis is the presence of some underlying geometric object, ex-

amples including Kakeya inequalities, Fourier restriction theory, and generalised Radon

transforms. Usually, this object is equipped with a measure that does not detect geomet-

ric features such as curvature or transversality, properties that are often highly relevant

in the contexts we are considering. It has many times been found that incorporating

a weight that tracks these geometric features in a suitable manner yields inequalities

that require few geometric hypotheses and exhibit additional uniformity properties (in

the context of generalised Radon-transforms and convolution with measures supported

on submanifolds, see for example [32, 36, 37, 43, 44, 57, 64], or in the context of Fourier
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restriction [1, 18, 26,28,35,38,51,58]). In particular, one often finds that if the geometric

object in question may be parametrised by polynomials or rational functions, then the

associated bounds will usually only depend on their degree, as observed in [32,35–37,64].

The main theorem of this chapter is another instance of this phenomenon, and is set

in the context of a global nonlinear Brascamp–Lieb inequality. The underlying object in

question is a collection of maps that have a certain algebraic structure that generalises that

enjoyed by polynomial, rational, and algebraic maps. Like polynomials, these maps have a

well-defined notion of degree, and the bounds for the corresponding nonlinear Brascamp–

Lieb inequalities we obtain depend only on these degrees, the underlying dimensions, and

exponents.

It was first suggested in [16] that a global Brascamp–Lieb inequality should include

an appropriate weight factor in order to compensate for local degeneracies, and it is

upon this suggestion that we include a weight factor of the form BLpdBpxq,pq´1 in our

inequality. It was also discussed in the same paper that even with an appropriate weight

factor one cannot expect a global nonlinear Brascamp–Lieb inequality to hold with only

local hypotheses, due to reasons relating to infinite failure of injectivity. We address this

issue by imposing that our nonlinear maps are quasialgebraic, a property we define in the

following section, which entails that the fibres of our maps can only intersect one another

boundedly often, thereby precluding such injectivity-related counterexamples.

4.1.1 Preliminary Definitions and Notation

Definition 4.1.1 Let M Ă Rn be an open subset of a d-dimensional algebraic variety and

let N be a Riemannian manifold. We say that a map F :M Ñ N that is C8 on an open

dense subset of M is quasialgebraic if its fibres are open subsets of algebraic varieties. We

define the degree of F to be the maximum degree of its fibres (this may be infinite).
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The author is not aware of this notion of a quasialgebraic map being discussed anywhere

in the literature, however this is not to pretend that it is an innovative concept, merely one

that is very much tailored to our purposes. As remarked earlier, the class of quasialgebraic

maps encompasses many important classes of maps, as ordered below.

tpolynomial mapsu Ă trational mapsu Ă talgebraic mapsu Ă tquasialgebraic mapsu

As one would hope, the notion of degree in Definition 4.1.1 coincides with the conventional

notion of degree for each of the above classes. It is easy to check that, unlike the classes

of polynomial, rational, and algebraic maps, the class of quasialgebraic maps is ‘closed’

under diffeomorphism, in the sense that given a quasialgebraic map F : M Ñ N , and a

diffeomorphism ϕ : N Ñ N 1, the map F 1 :“ ϕ ˝ F : M Ñ N 1 is a quasialgebraic map of

the same degree as F .

Given a manifold X, We let Urpxq denote an open ball of radius r ą 0 centred at

a point x P X, and we denote the centred dilate of a ball V by a factor c ą 0 by cV .

Notice that at some points either dBj will not be defined or will fail to be surjective; in

such cases we set BLpdBpxq,pq “ 8. Given a Brascamp–Lieb datum pL,pq such that

Lj : V Ñ Vj and a subspace W ď V , we let BLW pL,pq denote the best constant C ą 0

in the following ‘restricted’ Brascamp–Lieb inequality.

ż

W

m
ź

j“1

fj ˝ Ljpxq
pjdλW pxq ď C

m
ź

j“1

˜

ż

LjW

fjpxjqdλLjW pxjq

¸pj

. (4.1.2)

Lastly, we shall denote the zero-set of a polynomial map p : Rn Ñ Rk by Zppq :“ tx P

Rn : ppxq “ 0u.
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4.1.2 Main Results

We shall now state our main theorem.

Theorem 4.1.3 (Quasialgebraic Brascamp–Lieb Inequality) Let d,m, n P N and,

for each 1 ď j ď m, let nj P N and pj P r0, 1s. Assume that the scaling condition
řm
j“1 pjnj “ d is satisfied. Let M Ă Rn be an open subset of a d-dimensional algebraic

variety, and for each j P t1, ...,mu, let Mj be an nj-dimensional Riemannian manifold.

We consider quasialgebraic maps Bj :M Ñ Mj that extend to quasialgebraic maps on

some open set A Ă Rn. Setting p :“ pp1, ..., pmq and equipping each Mj with the measure

µj induced by its Riemannian metric, the following inequality holds for all non-negative

fj P L1pMjq:

ż

M

m
ź

j“1

fj ˝ Bjpxq
pj

dσpxq

BLTxMpdBpxq,pq
À degpMq

m
ź

j“1

˜

degpBjq

ż

Mj

fjpxjqdµjpxjq

¸pj

,

(4.1.4)

where σ is the induced d-dimensional Hausdorff measure on M .

The reader should note the similar thrust shared by this theorem and Theorem 1 of [43].

We also remark that if M is not an algebraic variety then the notion of degree no longer

makes sense in this context, and therefore this structural condition is necessary. On the

other hand, while the Riemannian structure onMj is a convenient setting for our analysis,

as it immediately gives us suitable notions of differentiability, measure, and distance, it

is however plausible that one might be able to generalise this inequality to some broader

class of topological spaces for which these notions may be defined, although we shall not

pursue this level of generality in this thesis. Unsurprisingly, Theorem 4.1.3 immediately

gives us a less powerful, but more concisely stated weighted nonlinear Brascamp–Lieb

inequality for polynomial maps.
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Corollary 4.1.5 (Polynomial Brascamp–Lieb Inequality) Let the dimensions and

exponents be as in Theorem 4.1.3, and let Bj : Rd Ñ Rnj be polynomial maps. The

following inequality holds over all non-negative fj P L1pRnjq:

ż

Rd

m
ź

j“1

fj ˝ Bjpxq
pj

dx

BLpdBpxq,pq
À

m
ź

j“1

ˆ

degpBjq

ż

Rnj

fjpxjqdxj

˙pj

. (4.1.6)

Notice that we impose no local condition on the maps Bj, not even that they are sub-

mersions. This is allowed because the weight we have incorporated on the left-hand side

vanishes when the maps Bj degenerate, hence we do not have to worry about counterex-

amples such as where the functions fj concentrate at critical values of Bj. In this sense,

despite the rigidity of the algebraic structure required by Theorem 4.1.3, in applications

the lack of uniform boundedness requirements, of the kind specified by Theorem 3.1.2, in

some aspects make it very robust by comparison. We shall now demonstrate this flexibility

with a concrete example.

Example 4.1.7 Let Sd Ă Rd`1 denote the unit d-sphere, let V1, ..., Vm ď Rd`1 be a col-

lection of subspaces of Rd`1 such that
řm
j“1 codimpVmq “ d, let ω :“

Źm
j“1

ŹcodimpVjq

k“1 ej,k P

ΛdpRd`1q, where tej,ku
codimpVjq

k“1 is an orthogonal basis of V K
j for each j P t1, ...,mu, and

let Lj : Rd`1 Ñ Vj denote the projection onto Vj. Letting p :“
`

1
m´1

, ..., 1
m´1

˘

, by

Proposition 1.2 of [6] and the forthcoming Lemma 4.2.2, we know that BLTxSdpL,pq “

BLppL, πpTxSdqKq, pp, 1qq “ |x ^ ω|
´1

m´1 , where πpTxSdqK : Rd`1 Ñ pTxSdqK denotes the natu-

ral projection map, so then applying Theorem 4.1.3 yields the following inequality for all

fj P L1pVjq:

›

›

›

›

›

˜

m
ź

j“1

fj ˝ Ljpxq

¸

|x ^ ω|

›

›

›

›

›

L
1

m´1 pSdq

À

m
ź

j“1

}fj}L1pVjq

Notice that way in which Theorem 4.1.3 is stated means we do not need to remove the
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points x P Sn that lie in one of the subspaces Vj, these being the points at which the

corresponding projection Lj fails to be a submersion when restricted to Sd.

Brascamp–Lieb inequalities were first studied as a generalisation of Young’s convolution

inequality on Rn in [24], it is therefore fitting that one may view Theorem 4.1.3 as a

generalisation of Young’s convolution inequality on algebraic groups, those being algebraic

varieties equipped with a group structure such that the associated multiplication and

inversion maps are ‘morphisms’ of varieties, i.e. restrictions of polynomial maps.

Corollary 4.1.8 Let G be an algebraic group, with left-invariant Haar measure dµ. We

let ∆ : G Ñ p0,8q be the modular character associated to pG, µq, which is the unique

homomorphism such that for all measurable f : G Ñ R,

ż

G

fpxqdµpxq “ ∆pgq

ż

G

fpxgqdµpxq.

We define left-convolution as follows:

f ˚ gpxq :“

ż

G

fpxy´1
qgpyqdµpyq

The inequality (4.1.9) holds for all p1, ..., pm, r P r1,8s such that 1
r1 “

řm
j“1

1
p1
j
, and all

fj P LpjpGq,

›

›

›

›

˚m
j“1fj∆

řj´1
l“1

1
p1
l

›

›

›

›

LrpGq

À degpGq degpmGq
σ

m
ź

j“1

}fj}Lpj pGq (4.1.9)

where mG : G ˆ G Ñ G is the multiplication operation, and σ :“
řm
j“1

1
pj
.

We give a proof of this corollary in the appendix. It is important to note that since the

best constant for Young’s inequality on locally compact topological groups is always less
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than or equal to one [71], Corollary 4.1.8 does not offer any improvement to the theory,

however it is nonetheless included in this chapter for the sake of context; we refer the

reader to [34,52,59,71] for further details on Young’s inequality in abstract settings. We

remarked earlier on that Theorem 4.1.3 is an example of an affine-invariant inequality, in

the sense that the left-hand side is invariant under the natural action A : Bj ÞÑ Bj ˝A of

GLnpRq on the class of quasialgebraic data, however this inequality in fact exhibits a more

general diffeomorphism-invariance property, as described by the following proposition.

Proposition 4.1.10 Let the dimensions and exponents be as in Theorem 4.1.3. Let M

and ĂM be d-dimensional Riemannian manifolds equipped with induced measures µ and

rµ, and, for each 1 ď j ď m, let Mj be an nj-dimensional Riemannian manifold. Let

Bj :M Ñ Mj be a.e. C1, and ϕ : ĂM Ñ M be a diffeomorphism. Defining rB “ pB̃jq
m
j“1 “

pBj ˝ ϕqmj“1, the following then holds for all fj P L1pMjq:

ż

ĂM

m
ź

j“1

fj ˝ rBjpxq
pj

drµpxq

BLTx ĂMpdrBpxq,pq
“

ż

M

m
ź

j“1

fj ˝ Bjpxq
pj

dµpxq

BLTxMpdBpxq,pq

Proof. By the chain rule and Lemma 3.3 of [14], for almost every x P M ,

BLTx ĂMpdrBpxq,pq “ BLTx ĂMpdBpϕpxqqdϕpxq,pq “ BLTϕpxqMpdBpϕpxqq,pq detpdϕpxqq
´1.

Hence, by changing variables we obtain that

ż

ĂM

m
ź

j“1

fj ˝ rBjpxq
pj

dx

BLTx ĂMpdrBpxq,pq
“

ż

ĂM

m
ź

j“1

fj ˝ rBjpxq
pj

detpdϕpxqqdx

BLTϕpxqMpdBpϕpxqq,pq

“

ż

M

m
ź

j“1

fj ˝ Bjpxq
pj

dx

BLTxMpdBpxq,pq
. ˝

In light of Proposition 4.1.10, one may extend Theorem 4.1.3 to any m-tuple of maps

pBjq
m
j“1 that may each be written as a composition of a quasialgebraic map with a common
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diffeomorphism ϕ, however we shall leave this as a remark. The proof strategy for Theorem

4.1.3 will be to appeal to a generalised endpoint multilinear curvilinear Kakeya inequality,

which we will view as a discrete version of (4.1.4), and run a limiting argument in order

to recover the full inequality.

4.2 Setup for the Proof of Theorem 4.1.3

4.2.1 Reductions

We shall assume for the remainder of the chapter without loss of generality that the

maps Bj have finite degree, since the case of infinite degree holds vacuously, and that

BLTxMpdBpxq,pq ă 8 for all x P M , in particular that Bj is a submersion on M . We

may do this firstly because we may remove the set of non-smooth points harmlessly since

it is closed and null, so M is still an open subset of an algebraic variety, and secondly we

may remove the set of smooth points at which the weight arising in (4.1.3) vanishes, i.e.

those x P M such that BLpdBpxq,pq “ 8, since this set is closed by continuity of the

reciprocal of the Brascamp–Lieb constant (Theorem 5.2 of [9]).

We shall begin by reducing to the case where d “ n, i.e. where M is an open subset

of Rn. We begin with a standard geometric lemma.

Lemma 4.2.1 Let N be an pn´dq-dimensional Riemannian manifold and let χδ : N Ñ R

be the normalised characteristic function associated to the δ-ball centred at some fixed

z0 P N , defined by χδpzq :“ δn´dχUδpz0q. Given an open set A Ă Rn and a submersion

B : A Ñ N , then for any continuous and integrable f : A Ñ R the following holds:

ż

A

fpxqχδ ˝ Bpxqdx
δÑ0
ÝÑ

ż

AXB´1ptz0uq

fpxq detpdBpxqdBpxq
˚
q

´ 1
2dσpxq,

where dσ denotes the induced d-dimensional Hausdorff measure.

86



We also require the following identity of Brascamp–Lieb constants, which may be

regarded as a crude example of a Brascamp–Lieb constant splitting through a critical

subspace, a phenomenon that was studied in its full generality in [14].

Lemma 4.2.2 Let d, n,m P N, n1, ..., nm P N and write nm`1 “ n´d. For 1 ď j ď m`1,

we consider linear surjections Lj : Rn Ñ Rnj such that, for 1 ď j ď m, Lj restricts to a

surjection on the subspace V :“ kerpLm`1q. Let pj P r0, 1s for 1 ď j ď m and pm`1 “ 1,

and assume that the scaling condition
řm`1
j“1 pjnj “ n is satisfied. Let rL :“ pLjq

m`1
j“1 and

rp :“ ppjq
m`1
j“1 . Then, the scaling condition d “

řm
j“1 pjnj holds. Furthermore, if we let

L :“ pL|V qmj“1 and p :“ ppjq
m
j“1, we then have the following identity:

BLprL, rpq “ detpLm`1L
˚
m`1q

´ 1
2BLpL,pq.

The proofs of these lemmas are given in the appendix. Combining them with Theorem

4.1.3 in the euclidean case then yields the general case.

Proposition 4.2.3 If Theorem 4.1.3 holds for d “ n, then Theorem 4.1.3 holds for

general d.

Proof. Let Bm`1 : Rn Ñ Rn´d be a polynomial map such that M is an open subset of

ZpBm`1q, and that degpBm`1q “ degpMq. Let A Ă Rn be any bounded open set such

that Bm`1 restricts to a submersion on A X M . Recall the definition of χδ from Lemma

4.2.1. By Lemmas 4.2.1 and 4.2.2, we know that given any fj P C8
0 pMjq,

ż

AXM

m
ź

j“1

fj ˝ Bjpxq
pj

dσpxq

BLTxMpdBpxq,pq

“

ż

AXM

m
ź

j“1

fj ˝ Bjpxq
pj
detpdBm`1pxqdBm`1pxq˚q´ 1

2dσpxq

BLp ĂdBpxq, rpq

“ lim
δÑ0

ż

A

m
ź

j“1

fj ˝ Bjpxq
pj
χδ ˝ Bm`1pxqdx

BLp ĂdBpxq, rpq
.
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Applying Theorem 4.1.3 inside the limit on the right-hand side we then obtain

ż

AXM

m
ź

j“1

fj ˝ Bjpxq
pj

dx

BLTxMpdBpxq,pq

À degpBm`1qlim
δÑ0

ˆ
ż

Rn´d

χδpzqdz

˙ m
ź

j“1

˜

degpBjq

ż

Mj

fjpxjqdµjpxjq

¸pj

» degpMq

m
ź

j“1

˜

degpBjq

ż

Mj

fjpxjqdµjpxjq

¸pj

,

which yields the desired inequality, since the right-hand side is uniform in the choice of

A, and extends to arbitrary fj P L1pMjq via density. ˝

We shall henceforth assume that our domain is of full dimension, and to emphasise

this, for the remainder of the proof we shall denote the domain of Bj by U Ă Rn instead

of M .

Having reduced Theorem 4.1.3 to the euclidean case, we shall further reduce Theorem

4.1.3 to a more discrete inequality, where the domain U is replaced with a compact subset

Ω Ă U , and the arbitrary L1 functions fj are specifically sums of characteristic functions

associated to small balls on Mj.

Proposition 4.2.4 For every compact set Ω Ă U , there exists a ν ą 0 such that, for all

δ P p0, νq and all collections Vj (allowing duplicates) of δ-balls in Mj, the following holds:

ż

Ω

m
ź

j“1

¨

˝

ÿ

VjPVj

χVj ˝ Bjpxq

˛

‚

pj

dx

BLpdBpxq,pq
À

m
ź

j“1

pdegpBjqδ
nj#Vjqpj . (4.2.5)

We shall now derive Theorem 4.1.3 from Proposition 4.2.4 via a standard limiting

argument.

Proof of Theorem 4.1.3 given Proposition 4.2.4. The idea of this proof is to take an in-

creasing sequence of compact domains Ωk whose union is U , and for each term in the
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sequence apply (4.2.5), choosing the collections of balls Vj such that the sums of their in-

dicator functions approximate fj from below, up to a constant, from which (4.1.4) follows

by the monotone convergence theorem.

For each k P N, let Ωk Ť U be compact subset such that Ωk Ă Ωk`1 and
Ť8

k“1Ωk “ U .

Let Qpkq

j be an essentially disjoint cover of Mj such that for each Qj there exists a δk-ball

V pQjq containing Qj and |Q| » δ
nj

k . For each j P t1, ...,mu, let fj P C8
0 pMjq XL1pMjq be

a non-negative function and, for each Qj P Qpkq

j , let c
pkq

j pQjq P N be chosen such that for

all z P Mj

inf
zPQj

fjpzqk ´ 1 ď c
pkq

j pQjq ď inf
zPQj

fjpzqk.

At least one such choice exists since the upper and lower bounds are separated by 1. By

construction, we have the pointwise limit 1
k

ř

QjPQpkq

j
c

pkq

j pQjqχQj
Õ
kÑ8

fj, so in particular,

for all x P Rn, by the monotone convergence theorem,

ż

Ωk

m
ź

j“1

¨

˚

˝

1

k

ÿ

QjPQpkq

j

c
pkq

j pQjqχQj
˝ Bjpxq

˛

‹

‚

pj

dx

BLpdBpxq,pq

ÝÑ
kÑ8

ż

U

m
ź

j“1

fj ˝ Bjpxq
pj

dx

BLpdBpxq,pq
(4.2.6)

On the other hand, provided that each δk is chosen to be sufficiently small with respect to

Ωk, we may apply (4.2.5) to the multiset consisting of c
pkq

j pQjq copies of each ball V pQjq
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for each Qj P Qpkq

j .

ż

Ωk

m
ź

j“1

¨

˚

˝

1

k

ÿ

QjPQpkq

j

c
pkq

j pQjqχQj
˝ Bjpxq

˛

‹

‚

pj

dx

BLpdBpxq,pq

ď
1

kP

ż

Ωk

m
ź

j“1

¨

˚

˝

ÿ

QjPQpkq

j

c
pkq

j pQjqχV pQjq ˝ Bjpxq

˛

‹

‚

pj

dx

BLpdBpxq,pq

À
1

kP

m
ź

j“1

¨

˚

˝

degpBjqδ
nj

k

ÿ

QjPQpkq

j

c
pkq

j pQjq

˛

‹

‚

pj

ÝÑ
kÑ8

m
ź

j“1

˜

degpBjq

ż

Mj

fjpxjqdµjpxjq

¸pj

. (4.2.7)

The last line is also a consequence of the monotone convergence theorem. Theorem 4.1.3

then follows by combining (4.2.6) with (4.2.7), since by density this argument improves

to arbitrary fj P L1pMjq. ˝

4.2.2 Central Constructions

The strategy for proving Proposition 4.2.4 is based on appealing to Theorem 1.4.18,

in particular finding a collection of open subsets H1, ..., Hm of algebraic varieties such

that, if substituted into (1.4.20), then the resulting inequality would yield (4.2.5). These

manifolds may be thought of as the unions of ‘discrete foliations’ of the preimages B´1
j pVjq

via the fibres of Bj.

We shall now carry out this construction. Fix Ω and let δ ą 0 and Vj be a finite

collection of δ-balls in Mj. Let α ą 1, for each Vj P Vj let xVj denote the centre of Vj,

and choose an orthonormal basis B1, ..., Bnj
P TxVjMj. Given ε ą 0, we define the discrete

ε-grid ΛεVj :“
Ànj

i“1 εZBi, and we consider the intersection of a dilation of Vj with the
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image of this grid under the exponential map:

Γ pVjq :“ expxVj

´

Λδ
α

Vj

¯

X 2Vj.

We have dilated the balls Vj by a factor of 2 for technical reasons that will become

Figure 4.1: The specific case when Vj “ tV
p1q

j , V
p2q

j , V
p3q

j u

apparent in the proof of Lemma 4.3.9, the reader is encouraged to ignore it upon first

reading. In order to track multiplicities, it shall be important that for each Vj, V
1
j P Vj, we

have Γ pVjq XΓ pV 1
j q “ H, however this is not guaranteed by our construction as it stands,

hence if there exists z P Γ pVjq X Γ pV 1
j q, then we shall remedy this by simply translating

one of these discrete sets by a negligible non-zero distance of, say, δα
100
.

We shall now use the assumption that Bj is quasialgebraic. For each z P Mj there

exists a polynomial map pzj : Rn Ñ Rnj such that B´1
j ptzuq is an open subset of Zppzjq

and degppzjq ď degpBjq. Define the following polynomial map:

Sj :“
ź

VjPVj

ź

zPΓ pVjq

pzj ,

and let ZpSjq be its zero-set. By our assumption that Bj is a submersion, we may assume
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that ZpSjq is an pn´njq-dimensional variety, and contains the following open subset that

will serve as our aforementioned ‘discrete’ foliation:

Hj :“
ď

VjPVj

B´1
j pΓ pVjqq Ă ZpSjq.

Observe that if δ ą 0 is chosen to be sufficiently small, then #Γ pVjq » δ´αnj |Vj| »

δp1´αqnj , hence we may bound the degree of ZpSjq as follows:

degpZpSjqq ď
ÿ

VjPVj

ÿ

zPΓ pVjq

degppzjq ď degpBjq
ÿ

VjPVj

#Γ pVjq » degpBjqδ
p1´αqnj#Vj (4.2.8)

Figure 4.2: Picture of Hj

4.2.3 Heuristic Explanation of Proof Strategy

Let fj :“
ř

VjPVj
χVj , and observe that the right-hand side of (4.2.8) is equal to

degpBjqδ
´αnj

ş

Rnj fj, so provided we cancel the factor of δαnj at some stage, it then seems

promising to substitute H1, ..., Hm into (1.4.20), and try to obtain (4.2.5) from that.
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Morally, we may view the left-hand side of (1.4.20) as measuring the size of the inter-

sections of tubular neighbourhoods of the varieties Hj of unit thickness, weighted by their

mutual transversality. By rescaling we may reduce the size of these neighbourhoods to

an arbitrarily small scale, for technical reasons we will reduce the thickness of the tubes

to near δβ-scale, where α ă β ă 1.

If we now substitute the varieties H1, ..., Hm into (1.4.20), assuming our meshes Γ pVjq are

sufficiently fine with respect to the size of Vj, then the left-hand side would essentially be

measuring the size of the set

m
č

j“1

ď

VjPVj

ď

zPΓ pVjq

pB´1
j ptzuq ` Uδβp0qq. (4.2.9)

which we claim contains
Şm
j“1

Ť

VjPVj
B´1
j pVjq X Ω, and it is this set that the left-hand

side of (4.2.5) is measuring, so all we need to make sure of is that the two measures in

question essentially coincide.

The measure being applied to (4.2.9) is the Lebesgue measure weighted not only by

the transversality of the leaves B´1
j ptzuq comprising Hj, as imparted by the integrand

BLp
ÝÝÝÑ
TxjHj,pq, but also, for each j, by a combinatorial factor that counts, given x P

Şm
j“1

Ť

VjPVj
B´1
j pVjq XΩ, the number of δβ–neighbourhoods that x lies in, and this factor

is given by
ř

zPΓ pVjq
χB´1

j ptzuq`U
δβ

p0qpxq. As the forthcoming Lemma 4.3.9 demonstrates,

this factor itself splits into two factors: one counts the number of preimages B´1
j pVjq that

x lies in, which is exactly given by
ř

VjPVj
χVj ˝Bjpxq, and the other is a factor that counts

the amount of overlap between tubes associated with the same ball Vj at a point x P U .

This factor will be large when the tubes are tightly packed, and low when the tubes

are more spaced out. These situations correspond to the derivative map dBjpxq having

respectively large and small ‘volume’, which is quantified by the function |Rjpxq|, which

we define in the next section. It is due to the content of Lemma 4.3.4 that these additional
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Figure 4.3: overlapping δβ-tubes

|Rjpxq|-factors will allow us to move from BL-factors to BL-factors, which finally gives

us the left-hand side of (4.2.5).

4.3 Lemmas

Here we shall prove the results that form the ingredients we need to prove Proposition

4.2.4. First of all, we shall investigate how Fremlin tensor product norms behave under

rescaling.

Lemma 4.3.1 Let X1, .., Xm Ă Rn be smooth submanifolds such that dimpXjq “ kj, let

q1, ..., qm ě 1, and let F P
Âm

j“1 L
qjpXjq. Then, for all ε ą 0,

}BLp
ÝÝÝÑ
TxjXj,pq}

Ď

Âm
j“1L

qj
xj

pXjq
“ ε

ř

kj{qj}BLp
ÝÝÝÝÝÝÝÑ
Txjpε

´1Xjq,pq}
Ď

Âm
j“1L

qj
xj

pε´1Xjq
. (4.3.2)

Proof. First of all, since dilation is a conformal mapping, it must preserve tangent spaces

of submanifolds, so in particular TεxjXj “ Txjpε
´1Xjq. For each j P t1, ...,mu, let Fj P

LqjpXjq be an arbitrary function satisfying Fj ě 0 and BLp
ÝÝÝÑ
TxjXj,pq ď F1px1q...Fmpxmq
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a.e. pointwise. By the definition of a Fremlin tensor product norm, it then suffices that

m
ź

j“1

}Fj}Lqj pXjq “ ε
ř

kj{qj

m
ź

j“1

}Fjpε¨q}Lqj pε´1Xjq, (4.3.3)

which follows immediately from rescaling the Lqj norms. ˝

A necessary ingredient for proving Proposition 4.2.4 is a formula relating the standard

BL-constants with the nonstandard BL-constants arising in (1.4.20). We find that we

may derive an explicit factorisation that makes explicit the dual role that the BL-constant

plays, in both measuring the mutual transversality of the kernels of the Lj and measuring

how close the maps Lj come to being non-surjective.

Lemma 4.3.4 Let pL,pq be a Brascamp–Lieb datum such that each map Lj : V Ñ Vj is

surjective, and let Rj P ΛnjpV q denote the nj-fold wedge product of the rows of Lj, then

BLpL,pq “ BLp
ÝÝÝÝÑ
kerpLjq,pq

m
ź

j“1

|Rj|
´pj . (4.3.5)

Proof. For the sakes of concreteness, we shall assume that the domains of the surjections

Lj is Rn equipped with the standard inner product. By the first isomorphism theorem,

for each j P t1, ...,mu there exists an isomorphism ϕj : Rn{ kerpLjq Ñ Vj such that

Lj “ ϕj ˝ πj, where πj : Rn Ñ Rn{ kerpLjq is the canonical projection map.

First of all, we claim that | detpϕjq| “ |Rj|. To see this, observe that |Ljr0, 1sn| “

|ϕj˝πjr0, 1sn| “ | detpϕq|, so the claim then follows provided we can show that |Ljr0, 1sn| “

|Rj|.

|Ljr0, 1s
n
| “ |pLjr0, 1s

n
q ˆ r0, 1s

n´nj | “ |MJ
r0, 1s

n
| “ | detpMq|,

where M P Rnˆn is the matrix whose first nj rows are the rows of Lj and the last n´ nj
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rows are enj`1, ..., en, where e1, ..., en is an orthonormal basis of Rn such that e1, ..., enj

span kerpLjq
K and enj`1, ..., en spans kerpLjq. Since Rj “ ˘|Rj|

Źnj

j“1 ej, the claim then

quickly follows:

|Ljr0, 1s
n
| “ | detM | “ |Rj ^ p

n
ľ

j“nj`1

ejq| “ |Rj||

n
ľ

j“1

ej| “ |Rj|.

Now, let fj P L1pVjq be arbitrary and rfj :“ fj ˝ ϕj. We may then change variables and

rewrite the left-hand side of the Brascamp–Lieb inequality associated to pL,pq as follows.

ż

Rn

m
ź

j“1

fj ˝ Ljpxq
pjdx “

ż

Rn

m
ź

j“1

rfj ˝ πjpxq
pjdx “

ż

Rn

m
ź

j“1

rfjpx ` kerpLjqq
pjdx (4.3.6)

Moreover,
ş

Rn{ kerpLjq
rfj “ | detpϕjq|´1

ş

Hj
fj “ |Rj|

´1
ş

Hj
fj, hence combining this with

(4.3.6) we obtain that

ż

Rn

m
ź

j“1

fj ˝ Ljpxq
pjdx ď BLp

ÝÝÝÝÑ
kerpLjq,pq

m
ź

j“1

˜

|Rj|
´1

ż

Hj

fj

¸pj

. (4.3.7)

Therefore BLpL,pq ď BLp
ÝÝÝÝÑ
kerpLjq,pq

śm
j“1 |Rj|

´pj . Furthermore, observing that (4.3.7)

is sharp, by the definitions of BL and BL, this automatically improves to the desired

formula BLpL,pq “ BLp
ÝÝÝÝÑ
kerpLjq,pq

śm
j“1 |Rj|

´pj . ˝

We remark that |Rj| may also be written as detpLjL
˚
j q1{2, since |Rj|

2 “ xRj, RjyΛnj pRnq “

detpprj,k ¨ rj,lq
n
k,l“1q “ detpLjL

˚
j q, where rj,k is the k

th row of Lj. As one would expect, the

formula (4.3.6) also allows us to carry stability properties from the standard BL-constants

to the BL-constants arising in (1.4.20), which we state more precisely in the following

corollary.

Corollary 4.3.8 Let Ω Ă U be compact. Writing x :“ px1, ..., xmq, the weight function
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g : Ωm Ñ R defined by

gpxq :“ BLp
ÝÝÝÝÝÝÝÝÑ
ker dBjpxjq,pq

´1

is uniformly continuous and locally constant at a sufficiently small scale, that is to say for

ε ą 0 sufficiently small depending on Ω, for all x,y P Ωm,

|x ´ y| ă ε ùñ gpxq À gpyq.

Proof. For each xj P Ω, let Π
xj
j : Rn Ñ kerpdBjpxjqqK denote the projection map onto

kerpdBjpxjqqK, and let ϕ
xj
j : Rnj Ñ kerpdBjpxjqqK be a family of isometric isomor-

phisms that varies continuously in xj. Define the family of surjections L
xj
j : Rn Ñ Rnj

by L
xj
j :“ pϕ

xj
j q´1 ˝ Π

xj
j , and let Lx :“ pL

xj
j qmj“1. By Lemma 4.3.4, BLpLx,pq´1 “

gpxq´1
śm

j“1 | detpϕ
xj
j q|pj “ gpxq, hence continuity of g follows from the continuity of

the reciprocal of the Brascamp–Lieb constant over Ω, which was established in [10]. By

compactness of Ω and the positivity of g, g b g´1 is then uniformly continuous on pΩmq2,

so because gb g´1px;xq “ 1 for all x P Ωm, there exists ε ą 0 such that for all x,y P Ωm,

g b g´1px;yq ă 2 provided that |x ´ y| ă ε, completing the proof. ˝

The next proposition will allow us to simultaneously cover the preimages B´1
j pVjq of

the Balls Vj by tubular neighbourhoods of the varieties comprising Hj, and account for

the missing factor in the weight BLpdBpxq,pq´1, as alluded to in Section 4.2.3.

Lemma 4.3.9 Let Ω Ă U be compact and fix j P t1, ...,mu. Let Rjpxq P ΛnjpRnq denote

the nj-fold wedge product of the rows of dBjpxq, then for a sufficiently small choice of

δ ą 0 depending on Ω, over all x P Ω,

|Rjpxq|χVj ˝ Bjpxq À δpα´βqnj

ÿ

zPΓ pVjq

χB´1
j ptzuq`U

δβ
p0qpxq. (4.3.10)
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To prove this lemma, we shall need to establish the following intuitive geometric fact that

shall allow us to deal with the nonlinearity present in the quasialgebraic maps Bj.

Lemma 4.3.11 Given the same hypotheses as Lemma 4.3.9, for a sufficiently small

choice of δ ą 0 depending on Ω, Lxj pUδ{2pxqq Ă BjpUδpxqq for all x P Ω, where Lxj pyq :“

expBjpxqpdBjpxqpy´xqq is the first-order approximation of Bj about x (not to be confused

with the notation used in Corollary 4.3.8).

We give the proof of this lemma in the appendix.

Proof of Lemma 4.3.9. We immediately have that for each x P Ω,

ÿ

zPΓ pVjq

χB´1
j ptzuq`U

δβ
p0qpxq “ #tz P Γ pVjq : dpx,B´1

j ptzuqq ď δβu

“ # pΓ pVjq X BjpUδβpxqqq

“ #
´

expxVj

´

Λδ
α

Vj

¯

X 2Vj X BjpUδβpxqq

¯

.

By Lemma 4.3.11 we then, for δ ą 0 sufficiently small, have the bound

ÿ

zPΓ pVjq

χB´1
j ptzuq`U

δβ
p0qpxq ě #

´

expxVj

´

Λδ
α

Vj

¯

X 2Vj X Lxj pUδβ{2pxqq

¯

. (4.3.12)

Recall that we denote the centre of Vj by xVj P Mj. |dBjpxq| is uniformly bounded

over x P Ω, so provided that x P B´1
j pVjq, then for all y P Uδβ{2pxq, dpLxj pyq, xVjq ď

dpBjpxq, xVjq ` }dBjpxq}L8pΩq|y ´ x| ď δ ` }dB}δβ{2 ă 2δ, if we take δ ą 0 to be suf-

ficiently small. This implies that if x P B´1
j pVjq X Ω, then for δ ą 0 sufficiently small,
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Lxj pUδβ{2pxqq Ă 2Vj, which together with (4.3.12) yields that

ÿ

zPΓ pVjq

χB´1
j ptzuq`U

δβ
p0qpxq ě #

´

expxVj

´

Λδ
α

Vj

¯

X Lxj pUδβ{2pxqq

¯

χB´1
j pVjqpxq

» #
´

expxVj

´

Λδ
α´β

Vj

¯

X Lxj pU1pxqq

¯

χB´1
j pVjqpxq. (4.3.13)

Given ε ą 0, define Qε
j to be the cubic decomposition of TxVjMj into ε-cubes whose sides

are axis parallel and whose corresponding set of centres is ΛεVj , and recall the definition

of c ą 0 from the proof of Lemma 4.3.11. If we take δα´β ă c{10, then for all x P Ω

and Q P Qδα´β

j such that Q X Lxj pU1{2pxqq ‰ H, we must have that Q Ă Lxj pU1pxqq,

since otherwise there would exist a point outside of Lxj pU1pxqq within a distance c{2 of

Bjpxq, which implies that dBjpxq|ker dBjpxqK has an eigenvalue with absolute value less

than c, which is of course a contradiction. Since the map that takes a cube in Qδα´β

j to

its centre then defines an injection from D :“ tQ P Qδα´β

j : Q X Lxj pU1{2pxqq ‰ Hu to

expxVj

´

Λδ
α´β

Vj

¯

X Lxj pU1pxqq, we obtain the following bound:

ÿ

zPΓ pVjq

χB´1
j ptzuq`U

δβ
p0qpxq ě p#DqχB´1

j pVjqpxq

“
ˇ

ˇ

ď

QPD

Q
ˇ

ˇ

ˇ

ˇr0, δα´β
s
nj

ˇ

ˇ

´1
χB´1

j pVjqpxq

ě |Lxj pU1{2pxqq|δpβ´αqnjχB´1
j pVjqpxq

» |dBjpxqr0, 1s
n
|δpβ´αqnjχB´1

j pVjqpxq.

Since χB´1
j pVjq “ χVj ˝ Bj, the claim then follows from the fact that |dBjpxqr0, 1sn| “

|Rjpxq|, which follows from an inspection of the proof that |Ljr0, 1sn| “ |Rj| in Lemma

4.3.4. ˝

Finally, we need a technical lemma that will allow us to bound the volumes of intersections

99



of balls with varieties below by the characteristic functions arising on the right-hand side

of (4.3.10).

Lemma 4.3.14 Let Ω Ă U be compact, and fix j P t1, ...,mu. Then, for a sufficiently

small choice of δ ą 0 depending on Ω, the following holds for all x P Ω and z P Mj:

δβpn´njqχB´1
j ptzuq`U

δβ
p0qpxq À |B´1

j ptzuq X U2δβpxq|. (4.3.15)

Proof. We shall begin with some reductions. First of all, we fix z P Mj, making sure

in what comes after that our choice δ ą 0 does not depend on this particular choice of

z P Mj. Suppose that for each choice of x0 P Ω, there exists a corresponding choice

of δx0 ą 0 such that (4.3.15) holds for each x P Uδ2x0 px0q and 0 ă δ ď δx0 . The set

tUδ2x0 px0q : x0 P Ωu is then an open cover of Ω, so by compactness of Ω we may take a

finite subcover U . The minimal radius among the balls in U , which we shall denote by

δ̃, is such that (4.3.15) holds for all δ P p0, δ̃q and x P Ω, so the lemma would then hold.

It therefore suffices to fix x0 P Ω and prove the claim that there exists a δx0 such that

(4.3.15) holds for each x P Uδ2x0 px0q and 0 ă δ ď δx0 .

Furthermore, we may assume that Mj is an open subset of Rnj . To justify this, by

compactness of Ω and continuity of Bj, we may choose a δ ą 0 sufficiently small such that

expx is a diffeomorphism on Uδp0q Ă TyMj for each y P BjpΩq. We then restrict Bj to

B´1
j pUδpzqq and prove that the claim holds with Bj replaced with rBj :“ exp´1

z ˝Bj, and

z replaced with 0 P Rnj , since in this case rB´1
j pt0uq “ B´1

j ptzuq, hence we would obtain

the claim for our original choice of Bj.

Fix x0 P Ω, recall the definition of Lx0j from Lemma 4.3.9 and let A P SOpnq be a

rotation such that A ker dBjpx0q “ Rn´nj ˆ t0unj . Since Bj is a submersion on Ω, dBjpx0q

is surjective, hence it admits a right inverse, call it S. Let ψ :“ Bj ´ dBjpx0q. We define
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the function ϕ : Rn Ñ Rn by

ϕpyq :“ Apy ` Sψpyqqq.

For all y P B´1
j ptzuq, z “ Bjpyq “ dBjpx0qy`ψpyq “ dBjpx0qpy`Sψpyqq “ dBjpx0qpA´1ϕpyqq,

so A´1ϕpyq P dBjpx0q
´1ptzuq, hence A´1ϕpyq´Sz P ker dBjpx0q, so ϕpyq P Rn´nj ˆt0unj `

ASz. We have now shown that ϕpB´1
j ptzuqq Ă Rn´nj ˆt0unj `ASz. Moreover, one quickly

verifies that dϕpx0q “ ApI ` Sdψpx0qq “ A, hence ϕ is a diffeomorphism in a sufficiently

small ball around x0, therefore by taking δ to be sufficiently small, we may assume that,

for all x P Uδ2βpx0q, U 3δβ

2

pϕpxqq Ă ϕpU2δβpxqq and detpdϕ|B´1
j ptzuqpyqq » 1 for all y P Uδpxq,

from which it follows that, for all x P Uδ2βpx0q,

|B´1
j ptzuq X U2δβpxq| “

ż

pRn´nj ˆt0u`ASzqXϕpU
2δβ

pxqq

detpdϕ|B´1
j ptzuqpyqq

´1dy

» |pRn´nj ˆ t0u
nj ` ASzq X ϕpU2δβpxqq| (4.3.16)

ě |pRn´nj ˆ t0u
nj ` ASzq X U 3δβ

2

pϕpxqq|

ě |pRn´nj ˆ t0u
nj ` ASzq X U 3δβ

2

pϕpxqq|χB´1
j ptzuq`U

δβ
p0qpxq.

(4.3.17)

Since ϕ is smooth and dϕpx0q “ A is an isometry, if x0 P B´1
j ptzuq ` Uδβp0q and

δ is sufficiently small then by Taylor’s theorem we know that for all x P Uδ2βpx0q,

ϕpxq P ϕpB´1
j ptzuqq ` U 5δβ

4

p0q “ pRn´nj ˆ t0unj ` ASzq ` U 5δβ

4

p0q. In other words,

distpϕpxq, pRn´nj ˆ t0unj `ASzqq ď 5δβ

4
, hence pRn´nj ˆ t0unj `ASzq XU 3δβ

2

pϕpxqqq is an

pn ´ njq-disc of radius at least
b

9δ2β

4
´ 25δ2β

16
» δβ, therefore

|pRn´nj ˆ t0u
nj ` ASzq X U 3δβ

2

pϕpxqqq|χB´1
j ptzuq`U

δβ
p0qpxq Á δβpn´njqχB´1

j ptzuq`U
δβ

p0q.

(4.3.18)
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This bound together with (4.3.17) then yields the claim. ˝

4.4 Proof of Proposition 4.2.4

Proof. Let Ω Ă U and choose δ ą 0 so that we may apply Corollary 4.3.8, Lemma

4.3.9, and Lemma 4.3.14 to Ω. After first applying Lemma 4.3.4, they yield the following

pointwise estimate for all x P Ω,

BLpdBpxq,pq
´1

m
ź

j“1

¨

˝

ÿ

VjPVj

χVj ˝ Bjpxq

˛

‚

pj

“ BLp
ÝÝÝÝÝÝÝÑ
ker dBjpxq,pq

´1
m

ź

j“1

¨

˝

ÿ

VjPVj

|Rjpxq|χVj ˝ Bjpxq

˛

‚

pj

À BLp
ÝÝÝÝÝÝÝÑ
ker dBjpxq,pq

´1
m

ź

j“1

δpα´βqpjnj

¨

˝

ÿ

VjPVj

ÿ

zPΓ pVjq

χB´1
j ptzuq`U

δβ
p0qpxq

˛

‚

pj

“ δpα´βqnBLp
ÝÝÝÝÝÝÝÑ
ker dBjpxq,pq

´1
m

ź

j“1

¨

˝

ÿ

VjPVj

ÿ

zPΓ pVjq

χB´1
j ptzuq`U

δβ
p0qpxq

˛

‚

pj

À δpα´βqnBLp
ÝÝÝÝÝÝÝÑ
ker dBjpxq,pq

´1
m

ź

j“1

δ´βpjpn´njq

¨

˝

ÿ

VjPVj

ÿ

zPΓ pVjq

|B´1
j ptzuq X U2δβpxq|

˛

‚

pj

“ δpα´βP qnBLp
ÝÝÝÝÝÝÝÑ
ker dBjpxq,pq

´1
m

ź

j“1

|Hj X U2δβpxq|
pj . (4.4.1)

Above we used the scaling condition
ř

j“1 pjnj “ n to pull out the power of δ from the

product. By Corollary 4.3.8, for all x P Ω and x1, ..., xm P Hj X U2δβpxq,

BLp
ÝÝÝÝÝÝÝÑ
ker dBjpxq,pq

´ 1
P » BLp

ÝÝÝÑ
TxjHj,pq

´ 1
P . (4.4.2)

To speak in general terms momentarily, for each j P t1, ...,mu let qj P r1,8s and let Xj

be a finite measure space. Suppose that a function F P Ď

Âm

j“1L
qjpXjq satisfies |F | ď C for
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some C ą 0 pointwise almost everywhere, then since constant functions are elementary

tensors, it is immediate from the definition of the Fremlin tensor product, discussed in

Section 1.4, that }F }
Ď

Âm
j“1L

qj pXjq ď C
śm

j“1 |Xj|
1{qj . Now returning to our specific case, we

may therefore average (4.4.2) via the Fremlin tensor product norm to find that find that

BLp
ÝÝÝÝÝÝÝÑ
ker dBjpxq,pq

´1
m

ź

j“1

|Hj X U2δβpxq|
pj » }BLp

ÝÝÝÑ
TxjHj,pq

´1
P }

P
Ď

Âm
j“1L

P {pj
xj

pHjXU
2δβ

pxqq
.

(4.4.3)

We then integrate the inequality (4.4.1) combined with (4.4.3) with respect to x over Ω.

ż

Ω

m
ź

j“1

¨

˝

ÿ

VjPVj

χVj ˝ Bjpxq

˛

‚

pj

dx

BLpdBpxq,pq

À δpα´βP qn

ż

Ω

}BLp
ÝÝÝÑ
TxjHj,pq

´1
P }

P
Ď

Âm
j“1L

P {pj
xj

pHjXU
2δβ

pxqq
(4.4.4)

At this point we then apply Lemma 4.3.1 to rescale the inner integral so that we may

then apply Theorem 1.4.18. Finally, using the bound on the degree of ZpSjq Ą Hj 4.2.8,
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we obtain (4.2.5), completing the proof.

ż

Ω

m
ź

j“1

¨

˝

ÿ

VjPVj

χVj ˝ Bjpxq

˛

‚

pj

dx

BLpdBpxq,pq

À δβ
řm

j“1 pjpn´njqδpα´βpP´1qqn

ż

δ´β

2
Ω

}BLp

ÝÝÝÝÝÝÝÝÝÑ

Txj

´

δ´β

2
Hj

¯

,pq
´1
P }

P

Ď

Âm
j“1L

P {pj
xj

ˆ

δ´β

2
HjXU1pxq

˙dx

ď δαn
ż

Rn

}BLp

ÝÝÝÝÝÝÝÝÝÑ

Txj

´

δ´β

2
Hj

¯

,pq
´1
P }

P

Ď

Âm
j“1L

P {pj
xj

ˆ

δ´β

2
HjXU1pxq

˙dx

ď δαn
ż

Rn

}BLp

ÝÝÝÝÝÝÝÝÝÝÝÑ

Txj

´

δ´β

2
ZpSjq

¯

,pq
´1
P }

P

Ď

Âm
j“1L

P {pj
xj

ˆ

δ´β

2
ZpSjqXU1pxq

˙dx

À δαn
m

ź

j“1

pdegZpSjqq
pj

À δαn
m

ź

j“1

`

degpBjqδ
p1´αqnj#Vj

˘pj
“

m
ź

j“1

pdegpBjqδ
nj#Vjqpj ˝

4.5 Two Kakeya–Brascamp–Lieb Versions

In this section, we shall apply the same techniques we used to prove Theorem 4.1.3 to

prove two distinct Kakeya–Brascamp–Lieb inequalities. Let d,m, n P N and, for each

1 ď j ď m, let nj P N and pj P r0, 1s. Assume that the scaling condition
řm
j“1 pjnj “ d

is satisfied. Let M Ă Rn be an open subset of a d-dimensional algebraic variety, and for

each j P t1, ...,mu, let Mj be an nj-dimensional Riemannian manifold.

We consider collections Bj “ tBju of quasialgebraic maps Bj : M Ñ Mj that ex-

tend to quasialgebraic maps on some open set A Ă Rn. Setting p :“ pp1, ..., pmq where
řm
j“1 pj dimpMjq “ dimpMq and equipping each Mj with the measure µj induced by its

Riemannian metric, then we have two Kakeya–Brascamp–Lieb versions of Theorem 4.1.3.

The first of which, like Theorem 4.1.3, is also a geometrically invariant inequality, however

we can only formulate it when each exponent pj is equal to
1

m´1
.

104



Theorem 4.5.1 (Invariant Quasialgebraic Kakeya–Brascamp–Lieb) If each pj “

1
m´1

, then the following inequality holds for all fBj
P L1pMjq:

ż

M

¨

˝

ÿ

pB1,...,BmqPB1ˆ...ˆBm

śm
j“1 fBj

˝ Bjpxq

BLpdBpxq,pqm´1

˛

‚

1
m´1

dσpxq

À degpMq

m
ź

j“1

¨

˝

ÿ

BjPBj

degpBjq

ż

Mj

fBj
pxjqdµjpxjq

˛

‚

1
m´1

(4.5.2)

where σ is the induced d-dimensional Hausdorff measure on M .

One may run a similar argument to Proposition 4.1.10 in order to show that this integral

satisfies appropriate diffeomorphism-invariance properties. The second applies to any

configuration of dimensions and exponents that satisfy the appropriate scaling condition,

however this is at the expense of removing the invariant weight factor, and therefore

require some additional uniformity asssumptions.

Theorem 4.5.3 (Non-invariant Quasialgebraic Kakeya–Brascamp–Lieb) If there

exists C ą 0 such that |dBjpxq|,BLpdBpxq,pq » C for all x P M and j P t1, ...,mu, then

the following inequality holds for all fBj
P L1pMjq:

ż

M

m
ź

j“1

¨

˝

ÿ

BjPBj

fBj
˝ Bjpxq

˛

‚

pj

dσpxq ÀC degpMq

m
ź

j“1

¨

˝

ÿ

BjPBj

degpBjq

ż

Mj

fBj
pxjqdµjpxjq

˛

‚

pj

,

(4.5.4)

We shall use this theorem later in Chapter 5 to prove a corollary of the forthcoming

Theorem 5.1.1. Given the dichotomy between Theorems 4.5.1 and 4.5.3, it is natural

to suppose that there exists an invariant Kakeya–Brascamp–Lieb inequality for general

exponents that generalises both (4.5.2) and (4.5.4), however it is not clear yet what such

an inequality would look like, although we discuss this line of enquiry in Section 6.4.
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4.5.1 Setup

We need to modify our definition of the varieties H1, ..., Hm to suit the more geometrically

complex inequalities (4.5.2) and (4.5.4). We now consider the collections of quasialgebraic

maps Bj to be fixed. For each Bj P Bj, let VBj
be a collection of δ-balls in Mj, and

given Vj P Vj, recall the definition of Γ pVjq, from Section 3.1. Similarly to the earlier

construction, if two Γ pVjq happen to have non-empty intersection, then we may translate

them by some qualitatively small amount without affecting the rest of the proof. Now

define the following algebraic varieties for each j P t1, ...,mu:

Hj :“
ď

BjPBj

ď

VjPVBj

B´1
j pΓ pVjqq

Similarly to before, since #pΓ pVjqq » δp1´αqnj for each Vj P VBj
, then we see that

degpHjq “ deg

¨

˝

ď

BjPBj

ď

VBj
PVBj

B´1
j pΓ pVBj

qq

˛

‚“
ÿ

BjPBj

ÿ

VBj
PVBj

degpB´1
j pΓ pVBj

qqq

ď degpBjq
ÿ

BjPBj

ÿ

VBj
PVBj

#pΓ pVBj
qq

À degpBjqδ
p1´αqnj

ÿ

BjPBj

#VBj
(4.5.5)

4.5.2 Reduction to a discrete inequality

First of all, we need to show that the following proposition is sufficient to prove Theorem

4.5.1.

Proposition 4.5.6 Let Bj be as in Theorem 4.5.1. For all compact Ω Ť U , there exists

a δΩ ą 0 such that, for δ P p0, δΩq, for all collections (allowing duplicates) VBj
of δ-balls
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VBj
Ă VBj

, the following inequality holds:

ż

Ω

¨

˝

ÿ

pB1,...,BmqPB1ˆ...ˆBm

śm
j“1

ř

VBj
PVBj

χVBj
˝ Bjpxq

BLpdBpxq,pq

˛

‚

1
m´1

dx

À degpMq

m
ź

j“1

¨

˝

ÿ

BjPBj

degpBjqδ
nj#VBj

˛

‚

1
m´1

, (4.5.7)

Proof of Theorem 4.5.1 given Proposition 4.5.6. Recall the definition of Ωpkq, Qpkq

j , and

V pQjq from Section 4.2.1. For each Bj P Bj, let fBj
P C8

0 pMjq be a non-negative function

and, for each Qj P Qpkq

j , let c
pkq

Bj
pQjq P N be chosen such that

inf
zPQj

fBj
pzqk ´ 1 ď c

pkq

Bj
pQjq ď inf

zPQj

fBj
pzqk.

By construction, we have the pointwise limit 1
k

ř

QjPQpkq

j
cpQjqχQj

Õ
kÑ8

fBj
, so in particular,

for all x P Rn, by the monotone convergence theorem,

ż

Ωk

¨

˝k´m
ÿ

BPB1ˆ...ˆBm

śm
j“1

ř

VjPVj
c

pkq

Bj
pQjqχVBj

˝ Bjpxq

BLpdBpxq,pqm´1

˛

‚

1
m´1

dx

ÝÑ
kÑ8

ż

U

m
ź

j“1

˜

ÿ

BPB

śm
j“1 fBj

˝ Bjpxq

BLpdBpxq,pqm´1

¸
1

m´1

dx (4.5.8)

On the other hand, provided that δk ă δΩk
for each k P N, we may apply (4.5.7) to the

107



multiset Vpkq

Bj
consisting of cBj

pVBj
q copies of each ball V pQjq for each Qj P Qpkq

j .

ż

Ωk

¨

˝k´m
ÿ

BPB1ˆ...ˆBm

śm
j“1

ř

QjPQpkq

j
c

pkq

Bj
pQjqχQj

˝ Bjpxq

BLpdBpxq,pqm´1

˛

‚

1
m´1

dx

ď

ż

Ωk

¨

˝k´m
ÿ

BPB1ˆ...ˆBm

śm
j“1

ř

QjPQpkq

j
c

pkq

Bj
pQjqχV pQjq ˝ Bjpxq

BLpdBpxq,pqm´1

˛

‚

1
m´1

dx

À k´ m
m´1

m
ź

j“1

¨

˝δnj

ÿ

BjPBj

degpBjq
ÿ

QjPQj

c
pkq

Bj
pQjq

˛

‚

1
m´1

»

m
ź

j“1

¨

˚

˝

1

k

ÿ

BjPBj

degpBjq

ż

Mj

ÿ

QjPQpkq

j

c
pkq

Bj
pQjqχQj

pxjqdµjpxjq

˛

‹

‚

1
m´1

ÝÑ
kÑ8

m
ź

j“1

¨

˝

ÿ

BjPBj

degpBjq

ż

Mj

fBj
pxjqdµjpxjq

˛

‚

1
m´1

. (4.5.9)

The last line follows from the monotone convergence theorem, and combining it with

(4.5.8) then yields Theorem 4.5.1. ˝

We shall now reduce Theorem 4.5.3 to its corresponding discrete version in a similar

manner.

Proposition 4.5.10 Let Bj be as in Theorem 4.5.3. For all compact Ω Ť U , there exists

a δΩ ą 0 such that, for δ P p0, δΩq, for all collections (allowing duplicates) VBj
of δ-balls

VBj
Ă VBj

, the following inequality holds:

ż

Ω

m
ź

j“1

¨

˝

ÿ

BjPBj

ÿ

VBj
PVBj

χVBj
˝ Bjpxq

˛

‚

pj

dσpxq ÀC degpMq

m
ź

j“1

¨

˝

ÿ

BjPBj

degpBjqδ
nj#VBj

˛

‚

pj

,

(4.5.11)
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Proof of Theorem 4.5.3 given Proposition 4.5.10. Take V pQjq, Ωk, Qpkq, and cBj
as before

inf
zPQj

fBj
pzqk ´ 1 ď c

pkq

Bj
pQjq ď inf

zPQj

fBj
pzqk.

By construction, we have the pointwise limit 1
k

ř

QjPQpkq

j
cBj

pQjqχQj
Õ
kÑ8

fBj
, so in partic-

ular, for all x P Rn, by the monotone convergence theorem,

ż

Ωk

m
ź

j“1

¨

˚

˝

1

k

ÿ

BjPBj

ÿ

QjPQpkq

j

c
pkq

Bj
pQjqχQj

˝ Bjpxq

˛

‹

‚

pj

dx ÝÑ
kÑ8

ż

U

m
ź

j“1

¨

˝

ÿ

BjPBj

fBj
˝ Bjpxq

˛

‚

pj

dx

(4.5.12)

On the other hand, provided that δk ă δΩk
for each k P N, we may apply (4.5.11) to the

multiset consisting of c
pkq

Bj
pQjq copies of each ball V pQjq for each Qj P Qpkq

j to obtain the

desired bound.

ż

Ωk

m
ź

j“1

¨

˚

˝

1

k

ÿ

BjPBj

ÿ

QjPQpkq

j

c
pkq

Bj
pQjqχQj

˝ Bjpxq

˛

‹

‚

pj

dx

ď

ż

Ωk

m
ź

j“1

¨

˚

˝

1

k

ÿ

BjPBj

ÿ

QjPQpkq

j

c
pkq

Bj
pQjqχV pQjq ˝ Bjpxq

˛

‹

‚

pj

dx

ÀC
1

kP

m
ź

j“1

¨

˚

˝

δnj

ÿ

BjPBj

degpBjq
ÿ

QjPQpkq

j

c
pkq

Bj
pQjq

˛

‹

‚

pj

»

m
ź

j“1

¨

˚

˝

1

k

ÿ

BjPBj

degpBjq

ż

Mj

ÿ

QjPQpkq

j

c
pkq

Bj
pQjqχQj

pxjqdµjpxjq

˛

‹

‚

pj

ÝÑ
kÑ8

m
ź

j“1

¨

˝

ÿ

BjPBj

degpBjq

ż

Mj

fBj
pxjqdµjpxjq

˛

‚

pj

. (4.5.13)

Again, the last line is also a consequence of the monotone convergence theorem. Combin-
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ing this with (4.5.12) yields Theorem 4.5.3. ˝

4.5.3 Proof of Propositions 4.5.6 and 4.5.10

Proof of Proposition 4.5.6. This proof follows a very similar argument to the proof of

Proposition 4.2.4, where we apply Lemma 4.3.9 followed by Lemma 4.3.14 to dominate

the left-hand-side of 4.5.7 by an integral that takes the form of a δβ-scale version the

left-hand side of (1.4.15).

ÿ

pB1,...,BmqPB1ˆ...ˆBm

śm
j“1

ř

VjPVj
χVj ˝ Bjpxq

BLpdBpxq,pqm´1

À δpα´βqN
ÿ

pB1,...,BmqPB1ˆ...ˆBm

śm
j“1 |dBjpxqdBjpxq˚|1{2

ř

VjPVj

ř

zjPΓ pVjq
χB´1

j ptzjuq`U
δβ

p0qpxq

BLpdBpxq,pqm´1

À δpα´βqN
ÿ

pB1,...,BmqPB1ˆ...ˆBm

śm
j“1

ř

VjPVj

ř

zjPΓ pVjq
χB´1

j ptzjuq`U
δβ

p0qpxq

BLp
ÝÝÝÝÝÝÝÝÑ
kerpdBjpxqq,pqm´1

À δαN´βmn
ÿ

pB1,...,BmqPB1ˆ...ˆBm

śm
j“1

ř

VjPVj

ř

zjPΓ pVjq
|Bjptzjuq ` U2δβp0q|

BLp
ÝÝÝÝÝÝÝÝÑ
kerpdBjpxqq,pqm´1

À δαN´βmn
ÿ

pB1,...,BmqPB1ˆ...ˆBm

śm
j“1 |HBj

X U2δβpxq|

BLp
ÝÝÝÝÝÝÝÝÑ
kerpdBjpxqq,pqm´1

(4.5.14)

By the continuity of the Brascamp–Lieb constant, for sufficiently small δ ą 0 depending

on Ω, for all x P Ω, we may estimate the summand above by a locally averaged version

śm
j“1 |HBj

X U2δβpxq|

BLp
ÝÝÝÝÝÝÝÝÑ
kerpdBjpxqq,pqm´1

»

ż

HB1
XU

2δβ
pxqˆ...ˆHBmXU

2δβ
pxq

dσ1px1q...dσmpxmq

BLp
ÝÝÝÝÑ
TxjHBj

,pqm´1
(4.5.15)
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We then integrate this inequality over Ω to obtain a δβ-scale version of the left-hand side

of (1.4.15)

À δαN´βmn
ÿ

pB1,...,BmqPB1ˆ...ˆBm

ż

HB1
XU

2δβ
pxqˆ...ˆHBmXU

2δβ
pxq

dσ1px1q...dσmpxmq

BLp
ÝÝÝÝÑ
TxjHBj

,pqm´1

“ δαN´βmn

ż

H1XU
2δβ

pxqˆ...ˆHmXU
2δβ

pxq

dσ1px1q...dσmpxmq

BLp
ÝÝÝÑ
TxjHj,pqm´1

To bring everything up to unit scale, we then rescale the inner and outer integrals, using

the fact that dilation is a conformal mapping.

ż

Ω

¨

˝

ÿ

pB1,...,BmqPB1ˆ...ˆBm

śm
j“1

ř

VjPVj
χVj ˝ Bjpxq

BLpdBpxq,pqm´1

˛

‚

1
m´1

dx

À δαn´β mn
m´1

ż

Ω

˜

ż

H1XU
δβ

pxqˆ...ˆHmXU
δβ

pxq

dσ1px1q...dσmpxmq

BLp
ÝÝÝÑ
TxjHj,pqm´1

¸
1

m´1

dx

“ δαn´β mn
m´1 δ

řm
j“1

n´nj
m´1

ż

Ω

˜

ż

δ´βpH1XU
δβ

pxqˆ...ˆHmXU
δβ

pxqq

dσ1px1q...dσmpxmq

BLp
ÝÝÝÝÝÝÝÝÑ
Txjpδ

´βHjq,pqm´1

¸
1

m´1

dx

“ δαn´βn

ż

Ω

˜

ż

pδ´βH1qXU1pδ´βxqˆ...ˆpδ´βHmqXU1pδ´βxqq

dσ1px1q...dσmpxmq

BLp
ÝÝÝÝÝÝÝÝÑ
Txjpδ

´βHjq,pqm´1

¸
1

m´1

dx

“ δαn
ż

δ´β

2
Ω

˜

ż

pδ´βH1qXU1pxqˆ...ˆpδ´βH1qXU1pxq

dσ1px1q...dσmpxmq

BLp
ÝÝÝÝÝÝÝÝÑ
Txjpδ

´βHjq,pqm´1

¸
1

m´1

dx

Proposition 1.2 of [6] gives us that

BLp
ÝÝÝÝÝÝÝÝÝÝÝÑ
Txj

`

δ´β
{2

˘

Hjq,pq “ |

m
ľ

j“1

Txjpδ
´βHjq|

´ 1
m´1 .
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Hence, we may then apply (1.4.15) followed by (4.5.5) to obtain the desired bound.

δαn
ż

Rn

˜

ż

pδ´βH1qXU1pxqˆ...ˆpδ´βH1qXU1pxq

|

m
ľ

j“1

Txjpδ
´βHjq|dσ1px1q...dσmpxmq

¸
1

m´1

dx

À δαn
m

ź

j“1

degpHjq
1

m´1 À

m
ź

j“1

¨

˝

ÿ

BjPBj

degpBjqδ
nj#VBj

˛

‚

1
m´1

˝

We now turn our attention to Proposition 4.5.10, which again follows a similar proof

strategy to Proposition 4.2.4.

Proof of Proposition 4.5.10. Again, we apply Lemma 4.3.9 and Lemma 4.3.14, each time

absorbing the derivative-dependent contributions into the implicit constant.

m
ź

j“1

¨

˝

ÿ

BjPBj

ÿ

VBj
PVBj

χVBj
˝ Bjpxq

˛

‚

pj

ÀC δ
pα´βqn

m
ź

j“1

¨

˝

ÿ

BjPBj

ÿ

VBj
PVBj

ÿ

zjPΓ pVBj
q

χB´1
j ptzjuq`U

δβ
p0qpxq

˛

‚

pj

À δpα´βqnδ´β
řm

j“1 pjpn´njq

m
ź

j“1

¨

˝

ÿ

BjPBj

ÿ

VBj
PVBj

ÿ

zjPΓ pVBj
q

|Bjptzjuq X U2δβpxq|

˛

‚

pj

“ δpα´βP qn
m

ź

j“1

|Hj X U2δβpxq|
pj

We now may rescale these volumes by a factor of δ´β{2 to bring them up to unit scale.

“ δpα´βP qnδβ
řm

j“1 pjpn´njq

m
ź

j“1

ˇ

ˇ

ˇ

ˇ

ˆ

δ´β

2
Hj

˙

X U1

ˆ

δ´β

2
x

˙ˇ

ˇ

ˇ

ˇ

pj

“ δpα´βqn
m

ź

j“1

ˇ

ˇ

ˇ

ˇ

ˆ

δ´β

2
Hj

˙

X U1

ˆ

δ´β

2
x

˙
ˇ

ˇ

ˇ

ˇ

pj
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Integrating in x, we may then apply (1.4.20) and (4.2.8) to obtain the desired bound.

ż

Rn

m
ź

j“1

¨

˝

ÿ

BjPBj

ÿ

VBj
PVBj

χVj ˝ Bjpxq

˛

‚

pj

ÀC δ
pα´βqn

ż

Rn

m
ź

j“1

ˇ

ˇ

ˇ

ˇ

ˆ

δ´β

2
Hj

˙

X U1

ˆ

δ´β

2
x

˙ˇ

ˇ

ˇ

ˇ

pj

dx

“ δαn
ż

Rn

m
ź

j“1

ˇ

ˇ

ˇ

ˇ

ˆ

δ´β

2
Hj

˙

X U1pxq

ˇ

ˇ

ˇ

ˇ

pj

dx

ÀC δ
αn

m
ź

j“1

degpHjq

À

m
ź

j“1

¨

˝

ÿ

BjPBj

degpBjqδ
nj#VBj

˛

‚

pj

˝
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Chapter 5

Global L2-bounds for Multilinear

Oscillatory Integrals

In this chapter, we will prove a global generalisation of an L2 multilinear integral es-

timate due to Bennett, Carbery, Tao [15], stated earlier as Theorem 1.7.1. The proof

methodology draws heavily from their induction-on-scales approach, dealing with the fine

scale oscillation by induction and organising the resulting cube-wise bounds using a more

general version of the multilinear Kakeya inequality, which we now define.

Definition 5.0.1 (Nonlinear Kakeya–Brascamp–Lieb Inequality) Let M be an n-

dimensional manifold and, for each j P t1, ...,mu, let Mj be an nj-dimensional Rie-

mannian manifold. For each j P t1, ...,mu, let Bj be a finite collection of submersions

Bj :M Ñ Mj, and for each Bj, let fBj
P L1pMjq, then the associated nonlinear Kakeya–

Brascamp–Lieb inequality is as follows:

ż

M

m
ź

j“1

¨

˝

ÿ

BjPBj

fBj
˝ Bjpξq

˛

‚

pj

dξ ď NKBLpB,pq

m
ź

j“1

¨

˝

ÿ

BjPBj

ż

Mj

fBj

˛

‚

pj

, (5.0.2)

where B :“ pBjqmj“1, and NKBLpB,pq P p0,8s is the optimal constant.
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The reader should note that throughout this chapter, like the previous one, the nota-

tion A À B will denote that A ď CB, where C depends only on the underlying dimensions

and exponents, and any additional dependence will denoted by a subscript.

5.1 Statement of Results

Our theorem states that, provided the operators Sλ1 , ..., S
λ
m are suitably ‘transverse’ in the

sense that the geometry of their wavepackets may be organised by a nonlinear Kakeya–

Brascamp–Lieb inequality, then we can obtain multilinear estimates, although admittedly

with an ε-loss in the exponent of λ and requiring some polynomial decay in the amplitude.

Before we state our theorem, we shall clarify that, given some Ω Ă Rn the differential

operator ∇k : C8pΩq Ñ C8pΩ; pRn b ... b Rnq˚q sends a function f to the pk, 0q-tensor

that maps a k-tuple pv1, ..., vkq to the kth order directional derivative Bv1 ...Bvkf . Given a

pk, 0q-tensor T , we denote its operator norm by sup|vi|“1,1ďiďk |T pv1, ..., vkq|.

Theorem 5.1.1 (Multilinear L2 Oscillatory Integral Estimate) Let ε ą 0. For

each j P t1, ...,mu, let ϕj : Rnj ˆ Rn Ñ R be a smooth phase and ψj : Rnj ˆ Rn Ñ R such

that supppψjq Ă Kj ˆ Rn for some compact Kj Ă Rnj with |Kj| À 1. Assume that the

exponents p1, ..., pm P p0, 1s satisfy the scaling condition
řm
j“1 pjnj “ n. We consider the

following one-parameter family of oscillatory integral operators:

Sλj fpξq :“

ż

Rnj

eiλϕjpx,ξqψjpx, ξqfpxqdx, λ ą 1 (5.1.2)

Let Nε :“ rn2ε´1minjPt1,...,muppjq
´1s ` 1 »ε 1, and suppose that the following conditions

hold for some a ą 0:

1. (Regularity) For all px, ξq P Kj ˆ Rn and 1 ď k ď Nε ` rnj{2s ` 1:

• |∇k
xϕjpx, ξq| À xξya.
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• |∇x∇ξϕjpx, ξq| À 1 and |∇k
x∇ξϕjpx, ξq| À xξya for k ě 2.

• |∇k
xψjpx, ξq| À xξy´pNε`2akq.

Here xξy :“ p1 ` |ξ|2q1{2 denotes the Japanese bracket.

2. (Transversality) Given a finite subset Aj Ă Rnj for each j P t1, ...,mu, set

Bj “ tBj : Rn
Ñ Rnj | Bjpξq :“ ∇xϕjpx, ξq, x P Aju

and B :“ pBjqmj“1, then NKBLpB,pq À 1.

Then, the following inequality holds for all fj P L2pRnjq:

ż

Rn

m
ź

j“1

|Sλj fj|
2pj Àε λ

ε´n
m

ź

j“1

}fj}
2pj
L2 , (5.1.3)

Observe that the exponents here coincide with those of the endpoint case of Theorem 1.7.1,

and therefore this Theorem is indeed a generalisation of Theorem 1.7.1, where the condi-

tion that ψ must be compactly supported in ξ has been relaxed to only requiring poly-

nomial decay. Essentially, Theorem 5.1.1 states that every nonlinear Kakeya–Brascamp–

Lieb inequality implies a related class of multilinear oscillatory integral inequalities; for

example, Theorem 4.5.3 implies that bounds of the form (5.1.3) hold if the phase admits

a quasialgebraic structure.

Corollary 5.1.4 Fix some ε ą 0. For each j P t1, ...,mu, suppose that ϕj is a phase and

that ψj is an amplitude function satisfying the regularity conditions of Theorem 5.1.1, with

the additional properties that BLpp∇ξ∇xϕpxj, ξqqmj“1,pq » 1 for all pxj, ξq P supppψjq, and

that the mapping ξ ÞÑ ∇xψjpx, ξq is quasialgebraic of bounded degree for all x P Rnj , then,

(5.1.3) holds for all fj P L2pRnjq.
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Proof. For each j P t1, ...,mu, let Aj Ă Rnj be a finite subset, and define BA as in Theorem

5.1.1. By the uniform boundedness assumptions of the corollary, Theorem 4.5.3 implies

that NKBLpBA,pq À 1, therefore the transversality condition holds. Since the regularity

condition holds by assumption, (5.1.3) follows by the Theorem 5.1.1. ˝

The proof of Theorem 5.1.1 is a refined version of the proof of Proposition 6.9 in [15], and

where it deviates from [15] is in the much more careful treatment of the tail contributions.

In [15], they do not pose any issues since they have negligible mass, so Hölder’s inequality

will suffice, however in the global setting that we consider, due to the noncompact support

of ψj in the second variable, the tails are possibly not even integrable, so we need to use

something more sophisticated to bound them. First of all, rather than bounding the

pointwise contributions from each tail of each wavepacket separately, we bound the tail

contributions simultaneously, exploiting the cancellation between them in order to obtain

some additional decay. Secondly, we have to use the transversality of the supports of the

tails in order to obtain even a finite bound, and the only way of doing that is by appealing

to a Kakeya–Brascamp–Lieb inequality, as we do to organise the main contributions.

The multilinearity of the problem however means that the tails cannot in general be

‘disentangled’ from the main contributions, so we have to change the inductive hypothesis

itself to a hybridised form that generalises both (5.0.2) and (5.1.3) in order to deal with

the terms that are mixtures of both tails and main contributions.

5.2 Stationary Phase

First of all, we may assume that λ ą C, for some large C » 1, since we may then derive

the case when λ P p1, Cq by considering the phase C´1ϕj. Using a similar construction

to the one used in Section 1.6, for each j P t1, ...,mu, let Qj be a boundedly overlapping

open cover of the closure of
Ť

ξPRn supppψjp¨, ξqq by cubes with centre xQ of diameter
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less than λ´1{2, and let tχQj
u be a corresponding smooth partition of unity such that

|∇kχQj
| À λk{2 for all k P N. Taking the Fourier series of each fjχQj

and summing them

together, we then obtain a wavepacket decomposition for fj:

fj :“
ÿ

QjPQj

ÿ

ωjPλ´1{2Znj

aQj ,ωj
eQj ,ωj

where aQj ,ωj
P C and eQj ,ωj

:“ e´2πiλx¨ωjχQj
. We now want to show that the essential

support of each Sλj eQj ,ωj
lies in a certain tube, namely, fixing some small δ ą 0, and

letting xQj
denote the centre of Qj,

T λQj ,ωj
:“ tξ P Rn : |∇xϕjpxQj

, ξq ´ 2πωj| ď λδ´1{2 and pxQj
, ξq P supppψjqu.

Let U be a boundedly overlapping cover of Rn via λ´1{2 balls. Given U P U , let WU
j :“

tpQj, ωjq : T λQj ,ωj
X U ‰ Hu, let fUj :“

ř

pQj ,ωjqPWU
j
aQj ,ωj

eQj ,ωj
and fU

c

j :“ fj ´ fUj .

We view the former term as the dominant term, and it is the content of the following

proposition that we may treat the latter as a tail term for ξ P U .

Proposition 5.2.1 For each Qj P Qj, let BQj
pξq :“ ∇xϕjpxQj

, ξq, and for given ωj P

λ´1{2Znj and λ ą 1, define the following continuous function:

ρλωj
: Rnj Ñ R

ρλωj
pxq :“

$

’

’

&

’

’

%

λδ´1{2|x ´ 2πωj|
´1 if |x ´ 2πωj| ě λδ´1{2

1 otherwise

For all ξ P U P U , we have the following pointwise bound for all N ď Nε:

|Sλj f
Uc

j pξq| ÀN λ´δN´nj{4

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2ρλωj

˝ BQj
pξq

2N

˛

‚

1{2

(5.2.2)

118



We shall need to use a vector calculus lemma in order to prove this proposition, a proof

of which is given in the appendix. Given a multi-index α P Nd we write |α| :“
řd
i“1 αi.

Lemma 5.2.3 Let d P N and W : Rdzt0u Ñ Rd be the vector field with mapping

W pzq :“ |z|´2z, then for all multi-indices α P Nd, each component of |z|2p|α|`1qBαW pzq is

a homogeneous polynomial of degree |α| ` 1. It follows that for all k P N and z P Rmzt0u,

|∇kW pzq| À |z|
´pk`1q. (5.2.4)

Proof of Proposition 5.2.1. The proof of this claim is a non-standard stationary phase

argument, where bound the whole tail contribution simultaneously via integration by

parts, exploiting the cancellation between them. First of all, given ξ P Rn and ωj, define

Kξ,ωj
:“ Kjztx P Kj : ∇xϕjpx, ξq “ 2πωju. We claim that for any Qj such that pQj, ωjq R

WU
j , Qj Ă Kξ,ωj

. To see this, we show that the following quantity is bounded from below

in x P Qj:

log

ˆ

|∇xϕjpx, ξq ´ 2πωj|
2

|∇xϕjpxQj
, ξq ´ 2πωj|2

˙

To do this we simply apply Taylor’s theorem and use the regularity condition of Theorem

5.1.1 to bound the higher-order derivatives that arise.

ˇ

ˇ

ˇ

ˇ

log

ˆ

|∇xϕjpx, ξq ´ 2πωj|
2

|∇xϕjpxQj
, ξq ´ 2πωj|2

˙ˇ

ˇ

ˇ

ˇ

“ | logp|∇xϕjpx, ξq ´ 2πωj|
2
q ´ logp|∇xϕjpxQj

, ξq ´ 2πωj|
2
q|

À
|∇2

xϕjpx, ξq||x ´ xQj
|

|∇xϕjpx, ξq ´ 2πωj|
À xξy

aλ´δ

Now, consider the following linear first-order differential operator:

Dξ,ωj
:C8

pKξ,ωj
q Ñ C8

pKξ,ωj
q

Dξ,ωj
gpxq : “

´i∇ϕjpx, ξq ´ 2πωj
λ|∇ϕjpx, ξq ´ 2πωj|2

¨ ∇gpxq
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Differentiating eiλpϕjpx,ξq´2πx¨ωjq we see that this phase function is a fixed point for Dξ,ωj
,

hence it is also a fixed point for DN
ξ,ωj

, for all N ď Nε. We may then substitute this fixed

point equation into the definition of Sλj f
Uc

j and take the L2-adjoint of DN
ξ,ωj

to move the

derivatives onto ψQj
px, ξq :“ ψjpx, ξqχQj

pxq.

|Sλj f
Uc

j pξq| :“

ˇ

ˇ

ˇ

ˇ

ż

Rnj

eiλϕjpx,ξqψpx, ξqfU
c

j pxqdx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

pQj ,ωjqRWU
j

aQj ,ωj

ż

Rnj

eiλpϕjpx,ξq´2πx¨ωjqψQj
px, ξqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

Qj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ωj :pQj ,ωjqRWU
j

aQj ,ωj

ż

Qj

eiλpϕjpx,ξq´2πx¨ωjqψQj
px, ξqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

Qj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ωj :pQj ,ωjqRWU
j

aQj ,ωj

ż

QjXKξ,ωj

DN
ξ,ωj

eiλpϕjpx,ξq´2πx¨ωjqψQj
px, ξqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

Qj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ωj :pQj ,ωjqRWU
j

aQj ,ωj

ż

Qj

eiλpϕjpx,ξq´2πx¨ωjq
pD˚

ξ,ωj
q
NψQj

px, ξqdx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(5.2.5)

Here, D˚
ξ,ωj

refers to the formal L2 adjoint of Dξ,ωj
, and integration by parts reveals that

D˚
ξ,ωj

gpxq “ ´iλ´1∇x ¨ pvωj
px, ξqgpxqq, where vωj

is defined as the following vector field,

vωj
px, ξq :“

∇xϕjpx, ξq ´ ωj
|∇xϕjpx, ξq ´ ωj|2

.

Let ψ
pNq

Qj ,ωj
px, ξq :“ pD˚

ξ,ωj
qNψQj

px, ξq. We then apply the Cauchy-Schwarz inequality and
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rescale to bring the integral up to unit scale.

|Sλj f
Uc

j pξq| :“
ÿ

Qj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Qj

eiλϕjpx,ξq

¨

˝

ÿ

ωj :pQj ,ωjqRWU
j

e´2πiλx¨ωjaQj ,ωj
ψ

pNq

Qj ,ωj
px, ξq

˛

‚dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď λ´nj{4
ÿ

Qj

›

›

›

›

›

›

ÿ

ωj :pQj ,ωjqRWU
j

e´2πiλx¨ωjaQj ,ωj
ψ

pNq

Qj ,ωj
px, ξq

›

›

›

›

›

›

L2
xpQjq

“ λ´nj{2
ÿ

Qj

›

›

›

›

›

›

ÿ

ωj :pQj ,ωjqRWU
j

e´2πiλ1{2x¨ωjaQj ,ωj
ψ

pNq

Qj ,ωj
pλ´1{2x, ξq

›

›

›

›

›

›

L2
xpλ1{2Qjq

ď λ´nj{2
ÿ

Qj

›

›

›

›

›

›

ÿ

ωj :pQj ,ωjqRWU
j

e´2πiλ1{2x¨ωjaQj ,ωj
ψ

pNq

Qj ,ωj
pλ´1{2y, ξq

›

›

›

›

›

›

L2
xL

8
y pλ´1{2Qjq

By the Sobolev embedding of W k,2pλ1{2Qjq in L8pλ1{2Qjq, where k “ rn{2s ` 1, we then

have that

|Sλj f
Uc

j pξq| À λ´nj{2
ÿ

Qj

›

›

›

›

›

›

ÿ

ωj :pQj ,ωjqRWU
j

e´2πiλx¨ωjaQj ,ωj
ψ

pNq

Qj ,ωj
pλ´1{2y, ξq

›

›

›

›

›

›

L2
xW

k,2
y pλ1{2Qjq

» λ´k{2´nj{2
ÿ

Qj

¨

˝

ż

λ1{2Qj

ż

λ1{2Qj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ωj :pQj ,ωjqRWU
j

e´2πiλ1{2x¨ωjaQj ,ωj
∇kψ

pNq

Qj ,ωj
pλ´1{2y, ξq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dydx

˛

‚

1{2

“ λ´k{2´nj{2
ÿ

Qj

¨

˝

ż

λ1{2Qj

ż

λ1{2Qj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

ω̃jPZnj

e´2πix¨ω̃j ãQj ,ω̃j
∇kψ

pNq

Qj ,ω̃j
pλ´1{2y, ξq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

dxdy

˛

‚

1{2

where ãQj ,ω̃j
:“ aQj ,λ´1{2ω̃j

for pQj, λ
´1{2ω̃jq R WU

j and vanishes otherwise. We may then
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apply Plancharel’s theorem to the inner integral to obtain

|Sλj f
Uc

j pξq| À λ´k{2´nj{2
ÿ

Qj

¨

˝

ż

λ1{2Qj

ÿ

ω̃jPZnj

|ãQj ,ω̃j
|
2
|∇k

yψ
pNq

Qj ,ω̃j
pλ´1{2y, ξq|

2dy

˛

‚

1{2

“ λ´k{2´nj{4

¨

˝

ÿ

pQj ,ωqRWU
j

|aQj ,ωj
|
2
}∇k

yψ
pNq

Qj ,ωj
pλ´1{2y, ξq}

2
L2
ypλ1{2Qjq

˛

‚

1{2

“ λ´k{2

¨

˝

ÿ

pQj ,ωqRWU
j

|aQj ,ωj
|
2
}∇k

yψ
pNq

Qj ,ωj
py, ξq}

2
L2
ypQjq

˛

‚

1{2

To prove the proposition it is therefore sufficient to show that

|∇k
xψ

pNq

Qj ,ωj
px, ξq| À λk{2´δNρλωj

˝ BQj
pξq

N
xξy

´pNε´N`2akq

for all px, ξq P Qj ˆ U . We shall proceed by induction on N , and prove the claim for

general 0 ď k ď Nε ´ N ` rnj{2s ` 1. For the base case N “ 0, the claim holds for

all 0 ď k ď Nε ` rnj{2s ` 1 by the regularity hypothesis of Theorem 5.1.1 and the

definition of ρλωj
˝ BQj

, so now assume for inductive hypothesis that the claim holds for

all 0 ď k ď Nε ´ N ` rnj{2s ` 1 for some N ď Nε. Before proceeding with the proof of

the inductive step, we shall need to briefly define some notation related to multi-indices.

Given multi-indices α, β P Nnj , we say that β ď α if for each i P t1, ..., nju, βi ď αi, and

we let
`

α
β

˘

:“
śnj

i“1

`

αi

βi

˘

. Let α P Nnj be a multi-index such that |α| “ k. By definition of

ψ
pNq

Qj ,ωj
we have the recurrence relation

B
α
xψ

pN`1q

Qj ,ωj
px, ξq “ B

α
xD

˚
ξ,ωj

ψ
pNq

Qj ,ωj
px, ξq

“ ´iλ´1
B
α
x p∇x ¨ pvωj

px, ξqψ
pNq

Qj ,ωj
px, ξqqq.
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By the product rule, for any Ck`1 functions v : Rn Ñ Rn and f : Rn Ñ R,

B
α∇ ¨ pvfq “

ÿ

βďα

ˆ

α

β

˙

`

pB
β∇ ¨ vqB

α´βf ` B
βv ¨ B

α´β∇f
˘

,

hence, by the triangle inequality we have that

|B
α
xψ

pN`1q

Qj ,ωj
px, ξq|

ď λ´1
ÿ

βďα

ˆ

α

β

˙

´

|B
β
x∇x ¨ vωj

px, ξqB
α´β
x ψ

pNq

Qj ,ωj
px, ξq| ` |B

β
xvωj

px, ξq ¨ B
α´β
x ∇xψ

pNq

Qj ,ωj
px, ξq|

¯

À λ´1
k

ÿ

l“0

|∇l
xvωj

px, ξq||∇k´l
x ψ

pNq

Qj ,ωj
px, ξq| ` |∇l

xvωj
px, ξq||∇k´l`1

x ψ
pNq

Qj ,ωj
px, ξq|

ď λ´1´δNρλωj
˝ BQj

pξq
N

k
ÿ

l“0

|∇l`1
x vωj

px, ξq|λpk´lq{2
xξy

´pNε´N`2apk´lqq

` |∇l
xvωj

px, ξq|λpk´l`1q{2
xξy

´pNε´N`2apk´l`1qq

where above we used the inductive hypothesis. The claim therefore holds provided that

|∇lvωj
px, ξq| À λpl`1q{2´δρλωj

˝Bx
j pξqxξy2l for all l ď Nε. The case l “ 0 holds vacuously, so

without loss of generality assume that l ě 1. Let W : Rnjzt0u Ñ Rnj denote the vector

field with the mapping W pzq :“ z
|z|2

and, suppressing the implicit dependence on ξ and

ωj, let Φ : Qj Ñ Rnj denote the map Φpzq :“ ∇xϕjpz, ξq´2πωj. Then, vωj
“ W ˝Φ, so by

the multivariate version of Faa di Bruno’s theorem [33], we know that for a multi-index

α, the derivatives of vωj
take the form

B
α
xvωj

px, ξq “
ÿ

βďα,β‰0

B
βW ˝ Φpxqyα,βpxq

where yα,β is a sum of Op1q terms of the form
ś|β|

i“1 BγiΦki , where 1 ď γi ď β for each
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i P t1, ..., |β|u. We may then use this formula to bound |∇lvωj
px, ξq|.

|∇lvωj
px, ξq| À max

1ďrďl
|∇rW ˝ Φjpxq|}∇xΦpx, ξq}

r
Cr´1

x

By Lemma 5.2.3, we know that for all r P N and z P Rnjzt0u, |∇rW pzq| À |z|´pr`1q, hence

|∇lvωj
px, ξq| À max

1ďrďl
|Φpxq|

´pr`1q
}∇xΦpx, ξq}

r
Cr´1

x

ď max
1ďrďl

|Φpxq|
´pr`1q

xξy
ar

ď |∇xϕjpx, ξq ´ ωj|
´1

xξy
al (5.2.6)

We now want to bound |∇xϕjpx, ξq ´ ωj| from below by |∇xϕjpxQj
, ξq ´ ωj|. By the

Taylor’s theorem, we have that

|∇xϕjpxQj
, ξq ´ ωj|

2
´ |∇xϕjpx, ξq ´ ωj|

2
À |∇xϕjpxQj

, ξq ´ ωj||∇2
xϕjpx, ξq||x ´ xQj

|

|∇xϕjpxQj
, ξq ´ ωj|

2

|∇xϕjpx, ξq ´ ωj|2
ď 1 `

λ´1{2xξya

|∇xϕjpx, ξq ´ ωj|
ď 1 ` λ´δ

xξy
a,

hence |∇xϕjpx, ξq ´ ωj|
´1 À λ1{2´δρωj

˝ BQj
pξqxξya{2. Combining this with (5.2.6) then

yields the desired bound.

|∇lvωj
px, ξq| ď λ1{2´δρωj

˝ BQj
pξqxξy

apl`1{2q
ď λpl`1q{2´δρωj

˝ BQj
pξqxξy

2al

This closes the induction, completing the proof. ˝

5.3 Induction-on-Scales

We shall now set up our central induction-on-scales argument. We need to use a slightly

stronger, hybridised version of (5.1.3) as our inductive hypothesis, which is that there
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exists an α ą 0 such that, for any ϕj and ψj satisfying the hypotheses of our theorem,

for all J0 Ă t1, ...,mu, the following inequality holds uniformly in all choices of finite sets

Aj Ă Rnj for j R J0, letting Bj :“ tBj :“ ∇xϕjpx, ξq, x P Aju.

ż

Rn

ź

jPJ0

|Sλj fjpξq|
2pj

ź

jRJ0

¨

˝

ÿ

BjPBj

gBj
˝ Bjpxq

˛

‚

pj

dξ Àα λ
α´PJ0

ź

jPJ0

}fj}
2pj
L2

ź

jRJ0

¨

˝

ÿ

BjPBj

ż

Rnj

gBj

˛

‚

pj

.

(5.3.1)

Our theorem of course coincides with the case when J0 “ t1, ...,mu, and with (5.0.2)

when J0 “ H. The reason for incorporating the non-oscillatory terms is that we may

use Proposition 5.2.1 to absorb the tail contribution into them, as we now demonstrate.

We shall abbreviate the non-oscillatory part of the left-hand-side of (5.3.1) by GJ0pξq :“
ś

jRJ0

´

ř

BjPBj
gBj

˝ Bjpξq

¯pj

ż

Rn

ź

jPJ0

|Sλj fj|
2pjGJ0pξqdξ ď

ÿ

UPU

ż

U

ź

jPJ0

|Sλj fj|
2pjGJ0

ď
ÿ

UPU

ż

U

ź

jPJ0

p|Sλj f
U
j | ` |Sλj f

Uc

j |q
2pjGJ0

Now, for a given U P U and J Ă J0, let UJ :“ tξ P U : |Sλj f
U
j pξq| ě |Sλj f

Uc

j pξq| @j P Ju.

The collection tUJuJĂJ0 defines a cover of U , hence we may write

ż

Rn

ź

jPJ0

|Sλj fj|
2pjGJ0 ď

ÿ

JĂJ0

ÿ

UPU

ż

UJ

ź

jPJ0

p|Sλj f
U
j | ` |Sλj f

Uc

j |q
2pjGJ0

À
ÿ

JĂJ0

ÿ

UPU

ż

UJ

ź

jPJ

|Sλj f
U
j |

2pj
ź

jPJ0zJ

|Sλj f
Uc

j |
2pjGJ0

ď
ÿ

JĂJ0

ÿ

UPU

ż

U

ź

jPJ

|Sλj f
U
j |

2pjGJ0 .
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Proposition 5.2.1 then yields the following upper bound, for all N ď Nε.

ż

Rn

ź

jPJ0

|Sλj fj|
2pjGJ0 ÀN

ÿ

JĂJ0

λ´PJ0zJ {2´2δN
ř

jPJ0zJ pj
ÿ

UPU

ż

U

ź

jPJ

|Sλj f
U
j |

2pj
rGU
J , (5.3.2)

where, for a given subset S Ă t1, ...,mu, PS :“
ř

jPS pjnj, and we have summarised the

non-oscillatory terms as

rGU
J pξq :“

ź

jRJ,jPJ0

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2ρλωj

˝ BQj
pξq

2Ndx

˛

‚

pj

GJ0pξq.

We shall from now on assume that N ą nj{2 for each j P J0, so that pρλωj
q2N is integrable

and in particular
ş

Rnj pρλωj
q2N À λpδ´1{2qnj . Now, suppose that there exists β ą 0 such that

for each U P U and J Ă J0,

ż

U

ź

jPJ

|Sλj f
U
j |

2pj
rGU
J

Àβ λ
β´PJ

ź

jPJ

}fUj }
2pj
L2

ź

jPJ0zJ

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2

ż

BQj
pUq

pρλωj
q
2N

˛

‚

pj
ź

jRJ0

¨

˝

ÿ

BjPBj

ż

BQj
pUq

gBj

˛

‚

pj

(5.3.3)

By the almost orthogonality of the eQj ,ωj
, we know that

}fUj }
2
L2 »

ÿ

pQj ,ωjqPWU
j

|aQj ,ωj
|
2
}eQj ,ωj

}
2
L2 » λ´nj{2

ÿ

pQj ,ωjqPWU
j

|aQj ,ωj
|
2 (5.3.4)

126



Take an pQj, ωjq P WU
j , then there exists a ξ1 P TQj ,ωj

X U . By the triangle inequality,

|∇xϕpxQj
, ξUq ´ ωj| ď |∇xϕpxQj

, ξUq ´ ∇xϕpxQj
, ξ1

q| ` |∇xϕpxQj
, ξ1

q ´ ωj|

ď λ´1{2
|∇ξ∇xϕpxQj

, ξUq| ` λδ´1{2

ď 2λδ´1{2

where applied the fact that ∇ξ∇xϕj is L
8 bounded and the fact that we may assume that

λ is large. It therefore follows that for all pQj, ωjq P WU
j , ρ

λ{10
ωj ˝ BjpξUq “ 1, provided

that δ is sufficiently small. Applying this to 5.3.4 we obtain the inequality

}fUj }
2
L2 ď λ´nj{2

ÿ

pQj ,ωjq

|aQj ,ωj
|
2ρλ{10
ωj

˝ BQj
pξUq.

The mean-value theorem and the L8 boundedness of ∇ξ∇xϕ implies that BQj
pUq Ă

Ucλ´1{2pBQj
pξUqq for some c » 1. Let ρ̃λωj

pzq :“ λnj{2
ş

U
2λ´1{2 pzq

pρλωj
q2N , and g̃Bj

pzq :“

λnj{2
ş

U
2λ´1{2 pzq

gBj
. Summing (5.3.3) over U and averaging, we obtain a Kakeya–Brascamp–
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Lieb form, which is bounded by the transversality hypothesis.

ÿ

U

ż

U

ź

jPJ

|Sλj f
U
j |

2pjGU
J

Àβ λ
β´PJ

ÿ

U

ź

jPJ

}fUj }
2pj
L2

ź

jPJ0zJ

¨

˝

ÿ

pQj ,ωjqPWU
j

|aQj ,ωj
|
2

ż

BQj
pUq

pρλωj
q
2N

pξqdx

˛

‚

pj
ź

jRJ0

¨

˝

ÿ

BjPBj

ż

BQj
pUq

gBj

˛

‚

pj

À λβ´PJ´n{2
ÿ

U

ź

jPJ

¨

˝

ÿ

pQj ,ωjqPWU
j

|aQj ,ωj
|
2ρλωj

˝ B
xQj

j pξUq
2N

˛

‚

pj

ˆ
ź

jPJ0zJ

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2ρ̃λωj

˝ BQj
pξUq

˛

‚

pj
ź

jRJ0

¨

˝

ÿ

BPBj

g̃Bj
˝ BjpξUq

˛

‚

pj

À λβ´PJ

ż

Rn

ź

jPJ

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2ρλωj

˝ B
xQj

j pξq
2N

˛

‚

pj

ˆ
ź

jPJ0zJ

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2ρ̃λωj

˝ BQj
pξq

˛

‚

pj
ź

jRJ0

¨

˝

ÿ

BPBj

g̃Bj
˝ Bjpξq

˛

‚

pj

dξ

À λβ´PJ

ź

jPJ

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2λpδ´1{2qnj

˛

‚

pj
ź

jPJ0zJ

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2λpδ´1{2qnj

˛

‚

pj
ź

jRJ0

¨

˝

ÿ

BjPBj

ż

Rnj

g̃Bj

˛

‚

pj

À λβ`δPJ0
´PJ

ź

jPJ0

}fj}
2pj
L2

ź

jRJ0

¨

˝

ÿ

BjPBj

ż

Rnj

gBj

˛

‚

pj

Combining this with (5.3.2) then yields (5.3.1), provided that N may be chosen such that

N ě nδ´1minppjq
´1{2.

ż

Rn

ź

jPJ0

|Sλj fj|
2pj

ź

jRJ0

¨

˝

ÿ

BjPBj

g̃xj ˝ Bjpξq

˛

‚

pj

ď
ÿ

JĂJ0

λ´n{2´2δN
ř

jPJ0zJ pj

ż

U

ź

jPJ

|Sλj f
U
j |

2pj
rGU
J

Àβ

ÿ

JĂJ0

λβ`δpPJ0
´2N

ř

jPJ0zJ pjq´PJ0zJ {2´PJ
ź

jPJ0

}fj}
2pj
L2

ź

jRJ0

¨

˝

ÿ

BjPBj

ż

Rnj

gBj

˛

‚

pj

ÀN λβ`δn´PJ0

ź

jPJ0

}fj}
2pj
L2

ź

jRJ0

¨

˝

ÿ

BjPBj

ż

Rnj

gBj

˛

‚

pj

(5.3.5)
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In summary, we have now shown that if (5.3.3) holds for some β, then (5.3.1) holds for

α “ β ` δn. We now want to show that there exists at least one β “ β0 such that that

(5.3.3) holds, which we refer to as the ‘base case’, and that if (5.3.1) holds for some α

then (5.3.3) holds for β “ α{2, which we refer to as the ‘inductive step’. Iterating this

chain of implications we find that (5.3.1) holds for α “ 2´kβ0 `
řk
r“0 2

´rδn for all k P N,

hence (5.3.1) holds for all α ą 2δn. Choosing δ ă ε{2n sufficiently close to ε{2n so that

nδ´1minppjq
´1{2 ă Nε then proves the theorem.

5.4 The Remaining Proof

All that remains now to prove Theorem 5.1.1 is to establish the two inequalities that

we referred to at the end of the last section as the base case and the inductive step

respectively.

Proof of Theorem 5.1.1. The base case follows from a crude size estimate on the oscilla-

tory part, followed by an application of the transversality assumption. For each j P J ,

choose any Bj “ ∇xϕjpx, ξq

ż

U

ź

jPJ

|Sλj f
U
j |

2pj
rGU
J ď

ż

U

ź

jPJ

ˆ
ż

Rnj

|ψjpx, ξq||fUj pxq|dx

˙pj
rGU
J pξqdξ

À
ź

jPJ

}fUj }
2pj
L2

ż

U

rGU
J pξqdξ

“
ź

jPJ

}fUj }
2pj
L2

ż

U

ź

jPJ

χBjpUq ˝ Bjpξq
pj

rGU
J pξqdξ

À λ´PJ {2
ź

jPJ

}fUj }
2pj
L2

ź

jPJ0zJ

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2

ż

BQj
pUq

pρλωj
q
2N

˛

‚

pj
ź

jRJ0

¨

˝

ÿ

BjPBj

ż

BjpUq

gBj

˛

‚

pj

This shows that (5.3.3) holds for β “ n{2, establishing the base case.

The inductive step involves rescaling the integral over each U by a factor of λ1{2, so

that they are up to unit scale, at which point we then apply the inductive hypothesis
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but now with a scaling parameter of value λ1{2, thereby halving the resulting exponent as

desired. First of all, let χλ1{2U denote a smooth bump function that takes the value 1 in

λ1{2U and 0 outside of 2λ1{2U . Since the ball λ1{2U is at unit scale, we may further assume

that the derivatives of χλ1{2U are uniformly bounded in λ. Denoting the centre of U by ξU ,

we then define the rescaled versions of the phase and cut-off functions to which we shall

be applying the inductive hypothesis, ϕλj px, ξq :“ λ1{2ϕjpx, λ
´1{2ξq ´ λ1{2ϕjpx, ξUq and

ψλj px, ξq :“ ψjpx, λ
´1{2ξqχλ1{2Upξq. We need to check that the hypotheses of our theorem

hold for phases ϕλj and amplitudes ψλj uniformly in λ ą 0. First of all, the transversality

condition holds by invariance of (5.0.2) under translation and rescaling, so we just need

to check the regularity condition. Let ξ P 2λ1{2U , x P Rnj , and k ď 2Nε.

• |∇k
xϕ

λ
j px, ξq| “ λ1{2|∇k

xϕjpx, λ
´1{2ξq ´ ∇k

xϕjpx, ξUq| À λ1{2|∇k
x∇ξϕpx, ξUq||λ´1{2ξ ´

ξU | À xξya

• |∇k
x∇ξϕ

λ
j px, ξq| “ λ´1{2|∇k

x∇ξpϕjpx, λ
´1{2ξqq| “ |∇k

x∇ξϕjpx, λ
´1{2ξq| À xξya for k ě

2, and this also means that |∇x∇ξϕ
λ
j px, ξq| À 1.

• |∇k
xψ

λ
j px, ξq| “ |∇k

xψjpx, λ
´1{2ξq| À 1

Now, suppose that the inductive hypothesis (5.3.1) holds for α “ β. We have shown

that ϕλ1 , ...ϕ
λ
m and ψλ1 , ..., ψ

λ
m satisfy the hypotheses of Theorem 5.1.1, so we may apply the

inductive hypothesis uniformly in λ to each of their corresponding one-parameter families

of oscillatory integral operators, namely,

Sµ,λj fj :“

ż

Rnj

eiµϕ
λ
j px,ξqψλj px, ξqfjpxqdx µ ą 1.

We also need to define corresponding rescaled terms for the non-oscillatory parts,

Let Bλ
j pξq :“ λ1{2Bjpλ

´1{2ξq and BQj
pξq :“ ∇xϕ

λ
j pxQj

, ξq. We then have the following
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identities for all λ ą 1 and ξ P λ1{2U :

Sλj f
U
j pξq “ Sλ

1{2,λ
j peiλϕjpx,ξU qfUj qpλ1{2ξq

ρλωj
˝ BQj

pξq “ ρλωj
pλ´1{2

pBλ
Qj

pλ1{2ξq ` ∇xϕjpxQj
, ξUqq

We may substitute these identities into the left-hand side of (5.3.3) and rescale out the

factors of λ1{2 from the argument, bringing the integral up to unit scale.

ż

U

ź

jPJ

|Sλj f
U
j |

2pjFU
J “

ż

U

ź

jPJ

ˇ

ˇ

ˇ
Sλ

1{2,λ
j peiλϕjpx,ξU qfUj qpλ1{2ξq

ˇ

ˇ

ˇ

2pj ź

jRJ0

¨

˝

ÿ

BjPBj

gBj
pλ´1{2Bλ

j pλ1{2ξqq

˛

‚

pj

ˆ
ź

jRJ,jPJ0

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2ρλωj

pλ´1{2
pBλ

Qj
pλ1{2ξq ` ∇xϕjpxQj

, ξUqq
2N

˛

‚

pj

dξ

“ λ´n{2

ż

λ1{2U

ź

jPJ

ˇ

ˇ

ˇ
Sλ

1{2,λ
j peiλϕjpx,ξU qfUj qpξq

ˇ

ˇ

ˇ

2pj ź

jRJ0

¨

˝

ÿ

BjPBj

gBj
pλ´1{2Bλ

j pξqq

˛

‚

pj

ˆ
ź

jRJ,jPJ0

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2ρλωj

pλ´1{2Bλ
Qj

pξq ` ∇xϕjpxQj
, ξUqq

2N
q

˛

‚

pj

dξ

Applying the inductive hypothesis (5.3.1) to Sλ
1{2,λ

1 , ..., Sλ
1{2,λ

m , we then obtain the desired
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estimate.

ż

U

ź

jPJ

|Sλj f
U
j |

2pjFU
J

ď λ´n{2

ż

2λ1{2U

ź

jPJ

ˇ

ˇ

ˇ
Sλ

1{2,λ
j peiλϕjpx,ξU qfUj qpξq

ˇ

ˇ

ˇ

2pj ź

jRJ0

¨

˝

ÿ

BjPBj

gBj
pλ´1{2Bλ

j pξqq

˛

‚

pj

ˆ
ź

jRJ,jPJ0

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2ρλωj

pλ´1{2Bλ
Qj

pξq ` ∇xϕjpxQj
, ξUqq

2N
q

˛

‚

pj

dξ

Àα λ
α{2´PJ {2´n{2

ź

jPJ

}fUj }
2pj
L2

ź

jRJ0

¨

˝

ÿ

BjPBj

ż

Rnj

gBj
pλ´1{2zqdz

˛

‚

pj

ˆ
ź

jRJ,jPJ0

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2

ż

Rnj

ρλωj
pλ´1{2z ` ∇xϕjpxQj

, ξUqq
Ndz

˛

‚

pj

“ λα{2´PJ {2´n{2`PJc{2
ź

jPJ

}fUj }
2pj
L2

ź

jRJ,jPJ0

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2

ż

Rnj

pρλωj
q
2N

˛

‚

pj
ź

jRJ0

¨

˝

ÿ

BjPBj

ż

Rnj

gBj

˛

‚

pj

“ λα{2´PJ

ź

jPJ

}fUj }
2pj
L2

ź

jRJ,jPJ0

¨

˝

ÿ

Qj ,ωj

|aQj ,ωj
|
2

ż

Rnj

pρλωj
q
2N

˛

‚

pj
ź

jRJ0

¨

˝

ÿ

BjPBj

ż

Rnj

gBj

˛

‚

pj

This establishes the inductive step, completing the proof. ˝
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Chapter 6

Further Research

In this chapter, we shall discuss some of the questions that lead on from the results of

this thesis and offer some speculative conjectures.

6.1 Exact Heat-flow Monotonicity

In this thesis, we do not achieve exact heat-flow monotonicity statements for nonlinear

Brascamp–Lieb functionals, however such statements do hold in certain geometrically

symmetric regimes, such as those considered by Carlen, Lieb, and Loss [30], later gen-

eralised by Bramati [23]. The following unpublished result of Hong Duong as we shall

discuss is another such statement.

Theorem 6.1.1 Let n, n1, ..., nm P N, p “ pp1, ..., pmq P r0, 1sm be an m-tuple of expo-

nents such that
řm
j“1 pjnj “ n, and for each j P t1, ...,mu, let Bj : Rn Ñ Rnj be a smooth

submersion such that there exists a uniformly positive definite matrix valued function

A : Rn Ñ Rnˆn, and for each j P t1, ...,mu, a uniformly positive-definite matrix-valued
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function Aj : Rn Ñ Rnjˆn satisfying

Apxq “

m
ÿ

j“1

dBjpxq
˚AjpxqdBjpxq

A´1
j pxq “ dBjpxqA´1

pxqdBjpxq
˚

Let L :“ ∇ ¨ pA´1∇q and fj : Rnj Ñ R. Let uj : Rnj ˆ p0,8q Ñ R and suppose that there

exists a smooth supersolution to L of the form u
ptq
j ˝ Bj, i.e.

Btpu
ptq
j ˝ Bjq ě Lpu

ptq
j ˝ Bjq (6.1.2)

Then
śm

j“1pu
ptq
j ˝ Bjq

pj is also a supersolution to L.

The proof of this statement follows very similar reasoning to the proof of heat-flow mono-

tonicity in the linear geometric case found in [14], and analogously to the linear case

implies heat-flow monotonicity under certain reasonable integrability conditions.

Corollary 6.1.3 Let u :“
śm

j“1pu
ptq
j ˝ Bjq, and assume that divpA∇uq P L1pRnq is in-

tegrable, ∇u Ñ 0 as |x| Ñ 8, and Btu is uniformly bounded. Then, under the same

assumptions as the above theorem, the quantity Qptq :“
ş

Rn u is monotone increasing for

all t ą 0.

Proof. By uniform boundedness of the time derivative we may exchange orders of differ-

entiation and integration as follows

d

dt
Qptq “ Bt

ż

Rn

uptq
“

ż

Rn

Btu
ptq

ě

ż

Rn

divpA∇uptq
q

“ lim
RÑ8

ż

Bp0,Rq

divpA∇uptq
q

“ lim
RÑ8

ż

BBp0,Rq

A∇uptq
¨ dn “ 0 ˝
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This result poses a difficult question, this being that of when there exist supersolutions

of the form u
ptq
j ˝ Bj, i.e. supersolutions whose fibre structure coincides with that of the

maps Bj, however the existing theory of supersolutions to diffusion equations cannot yet

provide any immediate answers to this question. It is appealing to think that they may

be constructed as solutions to some other variable coefficient diffusion equation, as then

by our uniformity assumptions it is reasonable to suppose that these supersolutions may

be written as utj ˝ Bjpxq “
ş

Rn Ptpx, yjqfj ˝ Bjpyjqdyj for some integral kernel Pt, which

of course is the case if they may be constructed explicitly as solutions to some related

diffusion equation. Using the co-area formula, we would then obtain a formal bound for

the nonlinear Brascamp–Lieb inequality.

ż

Rn

m
ź

j“1

fj ˝ Bjpxq
pjdx ď lim sup

tÑ8

ż

Rn

m
ź

j“1

utj ˝ Bjpxq
pjdx

“ lim sup
tÑ8

ż

Rn

m
ź

j“1

ˆ
ż

Rnj

Ptpx, yjqfj ˝ Bjpyjqdyj

˙pj

dx

“ lim sup
tÑ8

ż

Rn

m
ź

j“1

˜

ż

Rnj

ż

B´1
j ptzjuq

Ptpx, yjq
dσpyjq

| detpdBjpyjqdBjpyjq˚q|
fjpzjqdzj

¸pj

dx

ď lim sup
tÑ8

˜

ż

Rn

m
ź

j“1

sup
zj

˜

ż

B´1
j ptzjuq

Ptpx, yjq
dσpyjq

| detpdBjpyjqdBjpyjq˚q|

¸pj

dx

¸

m
ź

j“1

ˆ
ż

Rnj

fj

˙pj

6.2 Sharp Nonlinear Brascamp–Lieb Inequalities

It is natural to ask the question of whether or not there is a version of Theorem 1.2.1

that does not include a p1 ` εq error term in the constant on the right-hand side. This

constant would then need to at least track the Brascamp–Lieb constant over the whole

of the domain of integration on the left-hand side. This leads us to the following natural

conjecture:

Conjecture 6.2.1 (Sharp Local Nonlinear Brascamp–Lieb) Suppose that pB,pq is
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a C2 nonlinear Brascamp–Lieb datum defined over some neighbourhood rU of a point

x0 P Rn. There exists a neighbourhood U Ă rU of x0 such that the following inequal-

ity holds for all fj P L1pRnjq:

ż

U

m
ź

j“1

fj ˝ Bjpxq
pjdx ď sup

xPU
BLpdBpxq,pq

m
ź

j“1

ˆ
ż

Rnj

fj

˙pj

(6.2.2)

One may also view this as a consequence of a related conjecture about the existence of

localising extremising sequences.

Conjecture 6.2.3 Given submersions Bj : M Ñ Mj and pj P r0, 1s, then there ex-

ists a collection of points xj P Mj and an extremising sequence of inputs f pkq such that

supppf
pkq

j q Ă U1{kpxjq.

We shall now give a heuristic for why Conjecture 6.2.1 would follow from Conjecture 6.2.3.

Conjecture 6.2.3 suggests that in order to find the sharp constant for the local nonlinear

Brascamp–Lieb inequality, it suffices to test on functions fj with arbitrarily small support,

i.e., given any non-extremal fj P L1pRnjq of unit mass, for δ ą 0 sufficiently small there

exists an f δj of unit mass and a δ-ball V δ
j Ă U such that supppf δj q Ă V δ

j and

ż

U

m
ź

j“1

fj ˝ Bjpxq
pjdx ď

ż

U

m
ź

j“1

f δj ˝ Bjpxq
pjdx “

ż

Uδ

m
ź

j“1

f δj ˝ Bjpxq
pjdx, (6.2.4)

where Uδ :“
Şm
j“1B

´1
j pV δ

j q. By transversality of the maps Bj, we may assume that Uδ is

contained in some ball of radius ÀB δ, and since δ can be taken to be arbitrarily small

we may apply the local nonlinear Brascamp–Lieb inequality (Theorem 1.2.1) to find that,

given any ε ą 0, there exists some choice of δ such that, denoting the centre of Uδ by xUδ
,

ż

Uδ

m
ź

j“1

f δj ˝ Bjpxq
pjdx ď p1 ` εqBLpdBpxUδ

,pq ď p1 ` εqmax
xPU

BLpdBpx,pq. (6.2.5)
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Combining this with (6.2.4) and taking the limit as ε Ñ 0 implies Conjecture 6.2.1.

Of course, we may try to run a similar argument in a global setting, where now each

Bj : M Ñ Mj is a submersion between Riemannian manifolds of dimension n and nj

respectively, and we assume that BLpdBpxq,pq, |dBpxq|, and |dBpxq|´1 are uniformly

bounded above, whence transversality yields that Uδ is contained in, not just one, but a

union of balls with radius ÀB δ, centred at the intersection points of the fibres associated

to the centres xV δ
j
of the balls V δ

j , this being
Şm
j“1B

´1
j pxV δ

j
q. Nonetheless, by uniformity

of Theorem 1.2.1, we may apply the local Brascamp–Lieb inequality to each of these balls

simultaneously and take the limit as ε Ñ 0 as before, implying the following conjecture:

Conjecture 6.2.6 (Sharp Global Nonlinear Brascamp–Lieb) Suppose that

M,M1, ...,Mm are Riemannian manifolds and that Bj : M Ñ Mj are submersions such

that |dBjpxq| is uniformly bounded above and below for each j P t1, ...,mu, then the fol-

lowing inequality holds,

ż

M

m
ź

j“1

fj ˝ B
pj
j ď sup

zjPMj ,jPt1,...,mu

¨

˝

ÿ

xPM :Bjpxq“zj

BLpdBpxq,pq

˛

‚

m
ź

j“1

˜

ż

Mj

fj

¸pj

(6.2.7)

6.3 Scale-Dependent Nonlinear Brascamp–Lieb In-

equalities

Throughout this thesis, we have adhered to scaling conditions of the form
řm
j“1 pjnj “ n,

since this usually imparts some essential scale-invariance required for the problems we

are considering to be tractable, and as a result much of the existing literature carries

an assumption of this form; there is however reason to believe that at least some of the

inequalities of the type we consider may be feasible outside of this polytope. In the linear

Brascamp–Lieb setting, the scaling condition is necessitated by the presence of certain
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trivial rescaling counterexamples, however they may be avoided if we truncate the domain

of integration on the left-hand side and introduce some control to the level of constancy

of the functions fj, in which case we may then obtain Brascamp–Lieb type inequalities

with a broader range of exponents.

Let r, R ą 0, and let L1
rpRnjq denote the cone of non-negative functions fj P L1pRnjq

such that fpxq » fpyq whenever |x´y| ď r, we then define the scale-dependent Brascamp–

Lieb inequality as

ż

BRp0q

m
ź

j“1

fj ˝ Ljpxq
pjdx ď C

m
ź

j“1

ˆ
ż

Rnj

fj

˙pj

@fj P L1
rpRnjq. (6.3.1)

and we define BLlocpL,p; r, Rq as the optimal constant C P p0,8s such that (6.3.1) holds.

Maldague recently showed that BLlocpL,p; r, Rq » rαRβ, where α, β ą 0 are the following

exponents [56]:

α :“ inf
V ďRn

˜

codimpV q ´

m
ÿ

j“1

pjcodimpLjV q

¸

(6.3.2)

β :“ sup
V ďRn

˜

dimpV q ´

m
ÿ

j“1

pj dimpLjV q

¸

(6.3.3)

This generalises the well-known finiteness characterisation for the classical Brascamp–

Lieb inequality, which in this context is that α ě 0 and β ď 0. It also more generally

implies that BLlocpL,pq :“ limrÑ0 BLlocpL,p; r, 1q is finite if and only if α ě 0. Given

the local nature of the inequality (1.2.2) it would make sense to conjecture the following

generalisation:

Conjecture 6.3.4 Let ε ą 0, and suppose that pB,pq is a C2 nonlinear Brascamp–Lieb

datum defined over some neighbourhood of a point x0 P Rn. There exists a δ ą 0 such
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that the following inequality holds for all fj P L1pRnjq:

ż

Bδpx0q

m
ź

j“1

fj ˝ Bjpxq
pjdx ď p1 ` εqBLlocpdBpx0q,pq

m
ź

j“1

ˆ
ż

Rnj

fj

˙pj

. (6.3.5)

Given that Theorem 1.2.3 is a consequence of Theorem 1.2.1, it is plausible that Conjec-

ture 6.3.4 might, given some appropriate additional curvature assumptions to compensate

for the lack of scale-invariance, imply similar multilinear convolution and restriction esti-

mates, but for the broader range of exponents and geometries that the condition β ď 0

allows.

6.4 Invariant Inequalities in Multilinear Harmonic

Analysis

Currently the tools we have to prove invariant Brascamp–Lieb and Kakeya-type inequal-

ities rely on the use of auxiliary algebraic varieties [27, 77]. The theorems that use such

methods require that the underlying geometry interacts favourably with these varieties,

hence we typically require that they have an algebraic structure of some kind. How-

ever, there is no evidence to suggest that these somewhat rigid hypotheses are necessary,

since the role that the algebraic condition on the fibres plays appears heuristically to be

purely combinatorial in nature, in that it is there simply so that Bézout’s theorem pro-

hibits unboundedly many intersections of fibres. If we are to follow this heuristic, then, it

would suggest that a more general theorem might hold that does not require any algebraic

assumptions on the underlying maps.

Conjecture 6.4.1 LetM,M1, ...,Mm be Riemannian manifolds of dimensions n, n1, ..., nm

respectively, and take some exponents pj P r0, 1s satisfying
řm
j“1 pjnj “ n. Fix some

D ą 0, and for each j P t1, ...,mu, let Bj : M Ñ Mj be a C1 map. Suppose that for all
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configurations pz1, ..., zmq P M1 ˆ ... ˆ Mm,

#
m
č

j“1

B´1
j ptzjuq ď D.

Then, the following inequality holds for all nonnegative fj P L1pMjq,

ż

M

m
ź

j“1

fj ˝ Bjpxq
pj

dσMpxq

BLpdBpxq,pq
ÀD

m
ź

j“1

˜

ż

Mj

fj

¸pj

One may devise some similar Kakeya analogue of the form (4.5.2) with a similar combi-

natorial assumption in place of an algebraic one.

Conjecture 6.4.2 TakeM,M1, ...,Mm as in Conjecture 6.4.1, and for each j P t1, ...,mu,

let Bj be a finite collection of almost everywhere C1 maps Bj : M Ñ Mj. Suppose that

there exists a D ą 0 such that for any configuration of maps pB1, ..., Bmq P B1 ˆ ...Bm and

points pz1, ..., zmq P M1 ˆ ... ˆ Mm, we have that

#
m
č

j“1

B´1
j ptzjuq ď D.

Then, the following inequality holds for all fBj
P L1pMjq:

ż

M

¨

˝

ÿ

pB1,...,BmqPB1ˆ...ˆBm

śm
j“1 fBj

˝ Bjpxq

BLpdBpxq,pqm´1

˛

‚

1
m´1

dx ÀD

m
ź

j“1

¨

˝

ÿ

BjPBj

ż

Mj

fBj

˛

‚

1
m´1

We shall now discuss the issue of formulating invariant Kakeya–Brascamp–Lieb inequali-

ties with general exponents. First, observe that if the exponents pj are rationals written

with numerator rj and common denominator q, then, denoting an arbitrary rj-tuple of
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maps in Bj by Bj :“ pBj,kjq
rj
k“1 P Brjj , we may write the left-hand side of (4.5.4) as

ż

M

¨

˝

ÿ

pB1,...,BmqPBr1
1 ˆ...ˆBrm

m

m
ź

j“1

rj
ź

kj“1

fBj,kj
˝ Bj,kjpxq

˛

‚

1
q

dx

The upshot of this formulation is that we may then introduce an invariant weight factor

as in (4.5.4). Given k “ pkjq
m
j“1 P

śm
j“1t1, ..., rju, let Bk :“ pBj,kjq

m
j“1,

ż

M

¨

˝

ÿ

pB1,...,BmqPBr1
1 ˆ...ˆBrm

m

m
ź

j“1

rj
ź

kj“1

fBj,kj
˝ Bj,kjpxq

BLpdBkpxq,pq
q

mrj

˛

‚

1
q

dx

Again, this integral satisfies diffeomorphism-invariance properties akin to Proposition

4.1.10. It is then natural to ask the question of what the appropriate form is for irrational

exponents. One suggestion is that this could be formulated using the calculus of virtual

integration, developed by Tao in [68], in order to make sense of summing over a cartesian

product of non-integer powers of the sets Bj, where we would then reinterpret the weight

as a ‘virtual function’, however this avenue is as of yet unexplored.

Another possible route could be via the Fremlin tensor product technique of Zorin-

Kranich as in [77], where we consider each term of the form
śm

j“1 fj˝Bjpxq
pj

BLpdBpxq,pq
as a real-valued

function on B1 ˆ ... ˆ Bm, and therefore may be considered as an element of the Fremlin

tensor product space
Âm

j“1L
1{pjpBjq for each x P M . We may then formulate the following

nonlinear Kakeya–Brascamp–Lieb inequality:

ż

M

›

›

›

›

›

śm
j“1 fBj

˝ Bjpxqpj

BLpdBpxq,pq

›

›

›

›

›

Âm

j“1L
1{pj pBjq

dx À

m
ź

j“1

¨

˝

ÿ

BjPBj

ż

Mj

fBj

˛

‚

pj

(6.4.3)

While this formulation has the advantage of being able to access irrational exponents and
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is somewhat more succinct that (6.4), unfortunately, unlike (6.4), it does not coincide with

(6.4.2) in the case when each pj “ 1
m´1

. It is therefore unclear, outside of the context of

a given application, exactly which of these generalisations is the most elegant or natural.

Given Theorem 5.1.1, it would be reasonable to conjecture that if Conjecture 6.4.2

holds, then a corresponding oscillatory version might follow. We shall now formulate a

candidate invariant version of the multilinear oscillatory integral estimate (5.1.3). For

each j P t1, ...,mu, let ϕj : Rnj ˆ Rn Ñ R be a C2 phase function and ψ : Rnj ˆ Rn Ñ

R a smooth cutoff function that is compactly supported in the first variable. Setting

RN :“ Rn1 ˆ ... ˆ Rnm , Let ϕ : RN ˆ Rn Ñ R denote the direct sum of the phases ϕj,

i.e. ϕpx, ξq :“
řm
j“1 ϕjpxj, ξq, and ψ : RN ˆ Rn Ñ R the tensor product of the cut-

off functions ψj, i.e. ψpx, ξq :“
śm

j“1 ψjpxj, ξq. We shall also define the collection of

maps Bϕj : RN ˆ Rn Ñ Rnj as Bϕjpx, ξq :“ ∇xjϕjpxj, ξq, and denote their m-tuple as

Bϕ :“ pBϕjq
m
j“1. Consider the following one-parameter family of multilinear oscillatory

integral operators:

T λϕ,ψpf1, ..., fmq :“

ż

RN

eiλϕpx,ξqψpx, ξqf1 b ... b fmpxq
dx

BLpdξBϕpx, ξq,pq
m´1

2

(6.4.4)

Observe that if there exists w : Rn Ñ R such that BLpdξBϕpx, ξq,pq “ wpξq for all x P RN ,

then |T λϕ,ψpf1, ..., fmq| “ ωpξq
śm

j“1 |Sλj fj|, where S
λ
j is defined as in Theorem 5.1.1. In this

sense, we may view the following conjecture as an invariant version of Theorem 5.1.1.

Conjecture 6.4.5 (Invariant Multilinear L2 Oscillatory Integral Estimate)

Suppose that (6.4.2) holds uniformly for all collections of maps Bj of the form

Bj :“ tBjpy, ¨q : y P Yu, where Y Ă RN is some finite set of points. Then, the following

estimate holds for all fj P L2pRnjq:

}T λϕ,ψpf1, ..., fmq}
L

2
m´1 pRnq

Àε λ
ε´

npm´1q

2

m
ź

j“1

}fj}L2pRnj q (6.4.6)
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Finally, we observe that the optimal constant in this inequality is invariant under the

action of diffeomorphism on the underlying phase and amplitude.

Proposition 6.4.7 (Diffeomorphism-Invariance) Let ϕj and ψj be phase and cut-off

functions respectively for j P t1, ...,mu satisfying the conditions of Conjecture 6.4.5. Let

H : M Ñ ĂM and, for each j P t1, ...,mu, Gj : Nj Ñ rNj be diffeomorphisms, and define

rϕjpξq :“ ϕjpGjpxjq, Hpξqq, rψjpxj, ξq :“ ψjpGjpxjq, Hpξqq, then,

}T λϕ,ψ}
Âm

j“1 L
2pNjqÑL

2
m´1 pMq

“ }T λ
rϕ, rψ

}
Âm

j“1 L
2p rNjqÑL

2
m´1 p ĂMq

Proof. For each j P t1, ...,mu, let fj P C8
0 pNjq be a compactly supported smooth function,

define rfj :“ detpdGjq
1{2fj˝Gj. For brevity, write N “ N1ˆ...ˆNm F :“ f1b...bfm, rF :“

rf1b ...b rfm, and let G : N Ñ N denote the diffeomorphism Gpxq :“ pG1px1q, ..., Gmpxmqq.

We first of all apply the change of variables ξ ÞÑ Hpξq and xj ÞÑ Gjpxjq.

}T λϕ,ψpf1, ..., fmq}
2

m´1

L
2

m´1 pMq

“

ż

M

ˇ

ˇ

ˇ

ˇ

ˇ

ż

N

eiλϕpx,ξqψpx, ξqF pxq
dx

BLpdξBϕpx, ξq,pq
m´1

2

ˇ

ˇ

ˇ

ˇ

ˇ

2
m´1

dξ

“

ż

ĂM

ˇ

ˇ

ˇ

ˇ

ˇ

ż

N

eiλϕpx,Hpξqqψpx,HpξqqF pxq
dx

BLpdξBϕpx, ξq,pq
m´1

2

ˇ

ˇ

ˇ

ˇ

ˇ

2
m´1

detpdHpξqqdξ

“

ż

ĂM

ˇ

ˇ

ˇ

ˇ

ˇ

ż

rN

eiλϕpGpxq,HpξqqψpGpxq, HpξqqF ˝ Gpxq
detpdHpξqq

m´1
2

śm
j“1 detpdGjpxjqqdx

BLpdξBϕpx, ξq,pq
m´1

2

ˇ

ˇ

ˇ

ˇ

ˇ

2
m´1

dξ

“

ż

ĂM

ˇ

ˇ

ˇ

ˇ

ˇ

ż

rN

eiλ
rϕpx,ξq

rψpx, ξq rF pxq
detpdHpξqq

m´1
2 detpdGpxqdGpxq˚q

1
2dx

BLpdξBϕpx, ξq,pq
m´1

2

ˇ

ˇ

ˇ

ˇ

ˇ

2
m´1

dξ

By the chain rule, dξBrϕj
pxj, ξq “ dξ∇xj

rϕjpxj, ξq “ dGjpxjqdξ∇xj
rϕjpGjpxjq, HpξqqdHpξq,

so pdξBϕpx, ξq,pq and pdξBrϕpx, ξq,pq are equivalent Brascamp–Lieb data, moreover by

Lemma 3.3 of [14], BLpdξBrϕpx, ξq,pq “ detpdHpxqq´1
śm

j“1 detpdGjpxjqq
´1

m´1BLpdξBϕpx, ξq,pq “
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detpdHpxqq´1 detpdGpxqq
´1

m´1BLpdξBϕpx, ξq,pq, hence,

}T λϕ,ψpf1, ..., fmq}
2

m´1

L
2

m´1 pRnq

“

ż

ĂM

ˇ

ˇ

ˇ

ˇ

ˇ

ż

rN

eiλ
rϕpx,ξq

rψpx, ξq rF pxq
dx

BLpdξBrϕpx, ξq,pq
m´1

2

ˇ

ˇ

ˇ

ˇ

ˇ

2
m´1

dξ

“ }T λ
rϕ, rψ

p rf1, ..., rfmq}
2

m´1

L
2

m´1 p ĂMq

ď }T λ
rϕ, rψ

}
2

m´1
Âm

j“1 L
2p rNjqÑL

2
m´1 p ĂMq

m
ź

j“1

} rfj}
2

m´1

L2p rNjq

Note that }fj}L2pNjq “ } rfj}L2p rNjq
, hence, by density of C8

0 pNjq in L2pNjq, }T λ
rϕ, rψ

}op ď

}T λϕ,ψ}op, and so by symmetry the converse inequality also holds, proving the claim. ˝
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Appendix

Chapter 3

Proof of Lemma 3.2.4 We should first clarify that, in this proof, double bars shall always
denote an L8 norm. We first prove the case for derivatives of order 1. Let p P M and let
X, Y P TpM , and |X|, |Y | ď 1. We consider the following vector field Jptq : p0,8q Ñ TM
defined over the curve parametrised by γptq :“ expptXq:

Jptq :“ Bs exppptpX ` sY qq|s“0.

By definition of the exponential map, J is a Jacobi field with initial data Jp0q :“ 0 and
J 1p0q “ Y , hence it satisfies the Jacobi equation:

J2
` RpJ, γ1

qγ1
“ 0 (A.8)

Here R denotes the Riemannian curvature endomorphism. Now, define the following
quantity F ptq :“ |Jptq|2 ` |J 1ptq|2. We shall aim to bound this quantity via bounding its
derivative using (A.8) and the AM-GM inequality.

F 1
“ 2xJ, J 1

y ` 2xJ 1, J2
y

“ 2pxJ, J 1
y ` 2xJ 1, RpJ, γ1

qγ1
yq

ď 2p|J ||J 1
| ` |J 1

|}R}|J ||X|
2
q

ď p1 ` }R}qF

Hence F ptq ď etp1`}R}qF p0q, and so

|d expppXqY | “ Jp1q ď F p1q
1{2

ď ep1`}R}q{2F p0q
1{2

“ ep1`}R}q{2
|Y |.

We then bootstrap to the second order case via a similar method. Let Z P TpM , |Z| ď 1,
and consider the following family of variations of J :

Jεptq :“ Bs exppptpX ` sY ` εZqq|s“0
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Each such Jε is a Jacobi field for all ε ą 0, so we may then differentiate (A.8) in ε to find
that

BεJ
2
ε ` BJRpJεptq, γ

1
qpγ1, BεJεq “ 0, @t, ε ą 0.

Where BJR refers to the partial covariant derivative of the Riemannian curvature tensor
in the first argument. We now consider the quantity Gptq :“ |BεJ0ptq|2 ` |BεJ

1
0ptq|2, and

apply a similar argument to last time

G1
“ 2xBεJ0, BεJ

1
0y ` 2xBεJ

1
0, BεJ

2
0 y

“ 2pxBεJ0, BεJ
1
0y ` 2xJ 1

0, BJRpJ0, γ
1
qpγ1, BεJ0qy

ď 2p|BεJ0||BεJ
1
0| ` |BεJ

1
0|}BJR}|J0||BεJ0||X|

2
q

ď p1 ` }BεR}|J0|
2
qG

Hence Gptq ď etp1`}BJR}psup0ălăt |J0|2plqqqGp0q ď etp1`}BJR}etp1`}R}q|Y |qGp0q, therefore,

|d2 exppXqpY, Zq| “ BεJ0p1q ď Gp1q
1{2

ď etp1`}BJR}etp1`}R}qq{2Gp0q
1{2

“ ep1`}BJR}ep1`}R}q{2q{2
|Z|

By symmetry, we also have that |d2 exppXqpY, Zq| ď ep1`}BJR}etp1`}R}q{2q{2|Y |, so we are
done. ˝

Proof of Lemma 4.2.1 Let wpxq :“ detpdBpxqdBpxq˚q´ 1
2 . The lemma follows from the

co-area formula and the continuity of the quantity
ş

B´1ptzuq
fpxqwpxqdσpxq in z P N , since

we then have that
ˇ

ˇ

ˇ

ˇ

ż

A

fpxqχδ ˝ Bpxqdx ´

ż

B´1ptz0uq

fpxqwpxqdσpxq

ˇ

ˇ

ˇ

ˇ

“ δd´n

ˇ

ˇ

ˇ

ˇ

ż

Uδp0q

ˆ
ż

AXB´1ptzuq

fpxqwpxqdσpxq ´

ż

AXB´1ptz0uq

fpxqwpxqdσpxq

˙

dz

ˇ

ˇ

ˇ

ˇ

À

›

›

›

›

ż

AXB´1ptzuq

fpxqwpxqdσpxq ´

ż

AXB´1ptz0uq

fpxqwpxqdσpxq

›

›

›

›

L8
z pUδpz0qq

ÝÑ
δÑ0

0. ˝

Proof of Lemma 3.2.11 Let τ ą 0 be small. Since fj is uniformly continuous, given ε ą 0,
there exists a δ ą 0 such that for all z, z1 P M such that dpz, z1q ď δ, we have that |fjpzq´

fjpz
1q| ď ε. Therefore, provided Cτ γ ď δ, we may bound |fj ˝Bjpxq ´Hx,τ,jfj ˝Bjpxq| in
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the following way:

|fj ˝ Bjpxq ´ Hx,τ,jfj ˝ Bjpxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

fj ˝ Bjpxq ´

ż

Uτγ,jp0q

fjpwqGx,τ,jpe
´1
Bjpxq

pwqqdw

ˇ

ˇ

ˇ

ˇ

ˇ

ďfj ˝ Bjpxq

˜

1 ´

ż

Uτγ,jpBjpxqq

Gx,τ,j ˝ e´1
Bjpxq

¸

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Vτγ,jp0q

pfj ˝ Bjpxqq ´ fjpwqqGx,τ,jpe
´1
Bjpxq

pwqqdw

ˇ

ˇ

ˇ

ˇ

ˇ

.

By the uniform boundedness of the second derivative of the exponential map eBjpxq es-
tablished in Lemma 3.2.4, provided that τ ą 0 is sufficiently small, for all x P M ,
j P t1, ...,mu, and v P Vτγ ,jp0q Ă TBjpxqMj, we have

p1 ` τ ηq´1
ď detpdeBjpxqqrvs ď 1 ` τ η. (A.9)

We may then apply Lemma 3.2.4 to bound the first term by a power of τ . For the second
term, we apply the triangle inequality and bound the resulting gaussian integral similarly.

|fj ˝ Bjpxq ´ Hx,τ,jfj ˝ Bjpxq|

ď fj ˝ Bjpxq

˜

1 ´ p1 ` τ ηq´1

ż

Vτγ,jp0q

Gx,τ,j

¸

`

ż

Uτγ,jpBjpxqq

|fj ˝ Bjpxq ´ fjpwq|Gx,τ,j ˝ e´1
Bjpxq

pwqdw

ď p1 ` τ ηq´1
pfj ˝ Bjpxqτ η ` εq

This of implies the claim of the lemma. ˝

Chapter 4

Proof of Lemma 4.2.2 The fact that the scaling condition is satisfied is trivial. As for the
second claim, we shall first prove that BLpL,pq ď detpLm`1L

˚
m`1q

1
2BLprL, rpq. If we let

χδ : Rn´d Ñ R be as in Lemma 4.2.1, with z0 “ 0, and we take arbitrary fj P L1pRnjq,
then by Lemma 4.2.1, we have that

ż

V

m
ź

j“1

fj ˝ Ljpxq
pjdx “ detpLm`1L

˚
m`1q

1
2 lim
δÑ0

ż

Rn

˜

m
ź

j“1

fj ˝ Ljpxq
pj

¸

χδ ˝ Lm`1pxqdx

ď detpLm`1L
˚
m`1q

1
2BLprL, rpq

m
ź

j“1

˜

ż

Mj

fj

¸pj

,
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which establishes that BLpL,pq ď detpLm`1L
˚
m`1q

1
2BLprL, rpq. We shall now prove the

converse inequality. For each 1 ď j ď m` 1, let fj P C8pRnjq be a smooth function with
unit mass. The claim quickly follows upon decomposing Rn into V ‘ V K and applying
the Brascamp-Lieb inequality associated to the datum pL,pq to the integral over V :

ż

Rn

m`1
ź

j“1

fj ˝ Ljpxq
pjdx “

ż

V K

˜

ż

V

m
ź

j“1

fjpLjpxq ` Ljpyqq
pjdx

¸

fm`1 ˝ Lm`1pyqdy

ď BLpL,pq

ż

V K

fm`1 ˝ Lm`1pyq

m
ź

j“1

˜

ż

Mj

fjpz ` Ljpyqqdz

¸pj

dy

“ BLpL,pq detpLm`1L
˚
m`1q

´ 1
2 . ˝

Proof of Lemma 4.3.11 Fix some x P Ω. Let T :“ expBjpxq ˝pdBjpxqdBjpxq˚q´1{2˝exp´1
Bjpxq

,

then for δ ą 0 smaller than the minimal injectivity radius among z P BjpΩq.

Lxj pUδ{2pxqq Ă BjpUδpxqq ðñ TLxj pUδ{2pxqq Ă TBjpUδpxqq

Hence we may assume without loss of generality that dBjpxq is a projection, in the
sense that dBjpxqdBjpxq˚ “ ITBjpxqMj

, and thus we may also assume that LjpUδ{2pxqq “

Uδ{2pBjpxqq. It then suffices to show that for δ ą 0 sufficiently small, BBjpUδpxqq X

Uδ{2pBjpxqq “ H, in other words that for all z P BBjpUδpxqq, dpz, Bjpxqq ą δ{2. First of
all, BBjpUδpxqq “ BpBUδpxqq, so for a given z P BBjpUδpxqq, there exists a y P BUδpxq such
that expBjpxq ˝dBjpxqpyq “ z. By Taylor’s theorem, there exists a c ą 0 depending on Ω
such that, for δ ą 0 sufficiently small,

dpz, Bjpxqq “ |dBjpxqpy ´ xq| ` Op|y ´ x|
2
q

ě δ ´ cδ2 ą δ{2 ˝

Proof of Corollary 4.1.8 By duality, (4.1.9) is equivalent to the bound

ż

G

ϕpxq

ˆ

˚m
j“1fj∆

řj´1
l“1

1
p1
l

˙

pxqdµpxq À degpGq}ϕ}Lr1
pGq

m
ź

j“1

}fj}Lpj pGq. (A.10)

For 1 ď j ď m, define the nonlinear maps Bj : G
m Ñ G, Bjpx1, ..., xmq :“ xj, and Bm`1 :

Gm Ñ G, Bm`1px1, ..., xmq :“
śm

j“1 xj. Deleting the null set of singular points from
their ranges, these maps are quasialgebraic of degree 1 for 1 ď j ď m, and degpBm`1q ď

degpmGq, hence by Theorem 4.1.3 we know that

ż

Gm

ϕ

˜

m
ź

j“1

xj

¸

m
ź

j“1

fjpxjq
dσ1px1q...dσmpxmq

BLTxGmpdBpxq,pq
À degpGq degpmgq

σ
}ϕ}Lr1

pGq

m
ź

j“1

}fj}Lpj pGq
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where x :“ px1, ..., xmq, which is equivalent to (A.10) provided we have the identity

BLTxGmpdBpxq,pq “ Bp,n

m
ź

j“1

ωpxjq
´1∆pxjq

´
řj´1

l“1
1
p1
j (A.11)

at all configurations of smooth points x1, ..., xm of G, where dµpxq “ ωpxqdσpxq, and
Bp,n is the best constant for the n-dimensional euclidean multilinear Young’s inequality
associated to the exponents p :“ pp1, ..., pmq. Let x1, ..., xm P G be smooth points, the
left-hand side of (A.11) is by definition the best constant C ą 0 in the inequality

ż

śm
j“1 TxjG

ϕ

˜

m
ÿ

j“1

x1...xj´1vjxj`1...xm

¸

m
ź

j“1

fjpvjqdvj ď C}ϕ}Lr1
pTx1...xmGq

m
ź

j“1

}fj}Lpj pTxjGq,

(A.12)

where the Lebesgue measure on the left-hand side is induced by the Lebesgue measure
on the ambient euclidean space, and the Lebesgue measures defining the norms on the
right-hand side are induced by the left-invariant Riemannian metric on G.

First of all, we multiply the measure on the left by the constant
śm

j“1 ωpxjq for conve-
nience. We then apply the linear transformation from the Lie algebra g to TxjG defined by
the mapping vj ÞÑ x1...xmpx1...xj´1q

´1vjpxj`1...xmq´1, this is to turn the left-hand side of
(A.12) into an integral to which we may directly apply the euclidean Young’s inequality:

ż

śm
j“1 TxjG

ϕ

˜

m
ÿ

j“1

x1...xj´1vjxj`1...xm

¸

m
ź

j“1

fjpxjqωpxjqdvj

“

ż

gm
ϕ

˜

x1...xm

m
ÿ

j“1

vj

¸

m
ź

j“1

fjppx1...xj´1q
´1x1...xmvjpxj`1...xmq

´1
qdxj∆pxj`1...xmq

´1dvj

ď Bp,n}ϕpx1...xmvq}Lr1
v pgq

m
ź

j“1

∆pxj`1...xmq
´1

}fjppxj`1...xmq
´1x1...xmvjpxj`1...xmq

´1
q}
L
pj
vj

pgq

“ Bp,n}ϕ}Lr1
pTx1...xmGq

m
ź

j“1

∆pxj`1...xmq
1
pj

´1
}fj}Lpj pTxjGq

“ Bp,n}ϕ}Lr1
pTx1...xmGq

m
ź

j“1

∆pxjq
´

řj´1
l“1

1
p1
l }fj}Lpj pTxjGq.

Since this inequality is sharp by definition of Bp,n, we have established (A.11), thus
completing the proof. ˝
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Chapter 5

Proof of Lemma 5.2.3. We proceed by induction on |α|. The claim holds trivially for
|α| “ 0, so suppose for inductive hypothesis that, for some k P Nzt0u, |z|2kBαW pzq is a
homogenous polynomial of degree k for all α P Nd such that |α| “ k ´ 1. Take such an
α and some i P t1, ..., du, denote the multi-index whose ith entry is 1 and all others are 0
by ei. Consider BxiB

αW pzq. By the inductive hypothesis, for a given j P t1, ..., du, there
exist coefficients cβ P R such that,

pBxiB
αW pzqqj :“ Bxi

¨

˝|z|
´2k

ÿ

|β|“k

cβz
β

˛

‚

“ ´2kzi|z|
´2pk`1q

ÿ

|β|“k

cβz
β

` |z|
´2k

ÿ

|β|“k
βią0

βicβz
β´ei

“ |z|
2pk`1q

¨

˚

˚

˝

´2kzi
ÿ

|β|“k

cβz
β

` |z|
2

ÿ

|β|“k
βią0

βicβz
β´ei

˛

‹

‹

‚

We then may observe that |z|2pk`1qBxiB
αW pzq is a homogeneous polynomial of degree

k ` 1, closing the induction. The inequality (5.2.4) then follows from the fact that,
given a vector-valued homogeneous polynomial p : Rd Ñ Rd, provided that |cβ| À 1 for
each component cβ of p, we have |ppzq| À |z|degppq, hence |∇kW pzq| À |z|´2pk`1q|z|k`1 “

|z|´pk`1q. ˝
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