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ABSTRACT 

Aims: Microsatellite instability is a recognised marker for determining the efficacy 

of immunotherapy in colorectal cancer (CRC). However, other immunogenomic 

markers could also drive the anti-tumour immune response. This thesis explores 

the hypothesis that both germline and somatic factors are significant in shaping 

the immune microenvironment in CRC.  Associations were studied between 

germline immune gene expression quantitative trait loci (eQTLs) and a 

phenotypic marker of the tumour immune environment – the Immunoscore®. The 

somatic component focused on the contributions of tumour mutational burden, 

neoantigen clonality and the microbiome to the immune microenvironment.  

Methods: This in silico analysis utilised genomic data and tumour samples from 

200 patients with CRC enrolled in the 100 000 Genomes Project. From germline 

data, a panel of eQTLs was correlated with the Immunoscore using logistic 

regression. Somatic whole genome sequencing data was used to correlate 

tumour mutational burden (TMB) and neoantigen clonality with the Immunoscore. 

Metagenomic analysis was also performed on somatic data. Finally, RNA 

sequencing and immunohistochemistry on formalin-fixed tumour tissue were 

performed to corroborate these results. 

Results: eQTLs associated with differences in the Immunoscore included TCF7, 

BCL11B, CCR1, CSK, IL19, IL23R and BCL10. While TMB was not significantly 

associated with the Immunoscore, a combination of neoantigen burden and 

neoantigen clonality (intratumoral heterogeneity) was strongly associated with 

the Immunoscore and clinical outcomes, independent of microsatellite status. 



 
 

RNA sequencing confirmed that the expression of major histocompatibility 

complex Class II genes, gut-bacteria-associated chemokines, and a T-helper 

centric metagene, were also all strongly associated with the Immunoscore.   

Conclusions: Germline factors contribute to variability in the colorectal tumour 

immune contexture, particularly in MSS CRC. These effects are modulated by 

the contributions of somatic determinants, particularly the combination of 

neoantigen burden and clonality, which point to potential new biomarkers for 

determining the response to immunotherapy in colorectal cancer. 
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1.1. Background 

Colorectal cancer (CRC) is the fourth commonest cancer diagnosed but the 

second commonest cause of cancer death worldwide [1]. Considerable research 

has been done in understanding carcinogenesis [2], early detection [3] and risk 

factor modification [4, 5] in CRC. The progression from normal colorectal mucosa 

to adenoma and then carcinoma is well studied [2, 6, 7]. The first hit is usually a 

mutation in a key tumour suppressor gene (often the adenomatous polyposis coli 

(APC) gene, mutations of which are present in approximately 80% of CRCs [8]), 

which induce a selective growth advantage in a clone of cells. Subsequent 

accumulation of mutations in other driver genes (most notably the Kirsten ras 

sarcoma (KRAS) oncogene) drive carcinogenesis (Figure 1.1). Although a 

notably simplified paradigm, this is the accepted pathway for colorectal 

tumorigenesis in the majority of patients, as it has proved to be a useful model in 

understanding the pathogenesis of CRC. CRC has a significant genetic 

component, with an estimated 35% heritability [9, 10], aside from the hereditary 

forms including familial adenomatous polyposis, hereditary non-polyposis colon 

cancer (Lynch syndrome), juvenile polyposis and Peutz-Jeghers syndrome, 

which account for less than 5% of cases [11].  

 

1.2. The treatment of colorectal cancer 

The majority of patients undergo surgical treatment along with adjuvant or neo-

adjuvant therapies (chemotherapy and radiotherapy) [12]. The Union for 

International Cancer Control (UICC) tumour-node-metastasis (TNM) 
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classification [13] (Table 1.1), provides key prognostic information and guides 

therapeutic decisions including the rationale for neo/adjuvant therapy [14]. 

However, there is significant variability in outcomes within disease stages [15], 

and the TNM classification does not provide sufficient information on response to 

therapies, or on additional risk factors that increase the risk of relapse after 

treatment.  

There is some divergence in the treatment of tumours arising in the colon 

compared with those arising in the rectum. For both colon and rectal tumours, 

patients with early stage (Stage 1 and 2) tumors usually have surgery with 

curative intent. For locally advanced tumours (Stage 3), those with rectal cancer 

usually undergo neo-adjuvant chemo-radiotherapy, with the aim of downstaging 

the tumour, prior to surgery with curative intent. For those with colon tumours, 

surgery is offered, followed by adjuvant chemotherapy [16]. Some promising 

clinical trials are underway [17], analysing the viability and benefits of neo-

adjuvant chemotherapy in this group, in particular, the Fluoropyrimidine, 

Oxaliplatin and Targeted Receptor Pre-Operative Therapy: a Controlled Trial in 

High-Risk Operable Colon Cancer (FOxTROT) trial [18, 19]. 

Despite advances in screening and early detection of CRC, about 21% of patients 

have metastatic (Stage 4) disease at initial presentation of which 80 to 90% are 

not curable with surgical resection. Furthermore, up to 50 to 60% of patients with 

earlier stage disease eventually develop metastases [20]. For these patients, 

prognosis is usually poor. Isolated and surgically-resectable metastatic lesions 

can be treated with curative intent, but for the majority the mainstay of treatment 

is the use of chemotherapy or targeted radiotherapy, with modest survival benefit 
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[21]. In the past decade, some biologic and targeted therapies have emerged, 

which add little survival benefit at high cost and toxicity [20] [22].  

Immunotherapy has emerged in the past decade as a promising therapy. 

However, it is currently licensed for use only in patients with metastatic CRC due 

to deficient DNA mismatch repair (dMMR), also termed microsatellite instability 

(MSI)-high CRC, following failure of other systemic treatment. These patients only 

represent 3-4% of the total patient cohort [23], in comparison to those with 

mismatch repair proficient (pMMR) CRC who represent the majority. This 

severely limits the wider application and integration of immunotherapy into the 

standard treatment pathway for CRC.  

A significant recent exploratory study, the Nivolumab, Ipilimumab and COX2-

inhibition in Early Stage Colon Cancer (NICHE) trial, reported the results of neo-

adjuvant immunotherapy in earlier stage (I to III) pMMR and dMMR CRC [24]. 

There were significant pathological responses to therapy both in patients with 

dMMR CRC and in some patients with pMMR CRC who had high levels of 

infiltration with effector T cells. Their results suggest that neo-adjuvant and 

adjuvant immunotherapy could have true potential in expanding the treatment 

options for patients with CRC at all disease stages.
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Figure 1.1: Simplified adenoma-carcinoma sequence illustrating progressive accumulation of mutations in colorectal cancer. APC – 
adenomatous polyposis coli. RAS – Kirsten ras oncogene. PIK3CA – phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha. 
SMAD4 – Mothers against decapentaplegic homolog 4 gene. TGF-β – transforming growth factor beta gene. Adapted from [7]. 
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Table 1.1. The UICC TNM classification of CRC  

Adapted from [13] and [14]. T – tumour, N – node, M – metastasis.  
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1.3. Colorectal cancer immuno-genomics 

The immune response has been known to play a significant role in cancer 

outcomes for over a century. William Coley treated a range of sarcomas and 

carcinomas with a bacterial vaccine in the late 1800s [25]. Building on his 

observation in a patient with sarcoma whose tumour spontaneously regressed 

following development of a bacterial infection, he hypothesised that the infection 

caused tumour regression. He developed a vaccine called “Coley’s toxins”, 

containing two killed bacteria (Streptococcus pyogenes and Serratia 

marcescens). With this, he successfully treated hundreds of patients with 

advanced sarcomas. Coley’s toxins were also used to treat lymphomas, 

melanomas, myelomas and carcinomas.  

However, in the early 20th century, this treatment fell out of favour. First, due to 

the widespread acceptance of aseptic techniques, cancer surgery became 

sterile, and deliberately inducing infection in patients in order to cure cancer was 

seen as regressive. Secondly, surgery, chemotherapy and radiotherapy emerged 

as the primary treatment modalities for most cancer types. They could be 

standardised, and had great promise as potential cures for cancer [25]. The 

potential for harnessing the immune system to target cancer treatment was 

overlooked. 

However, in the past decade the emergence of immunotherapy with immune 

checkpoint blockade (ICB) agents has transformed the treatment landscape of 

some cancers, most strikingly in cutaneous melanoma [26] [27] and lung cancer 
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[28]. Primarily, their mode of action is by potentiating the immune response to 

tumour antigens [29].  

Thus far, the role of immunotherapy in the treatment of CRC has been limited to 

the 3-4% of patients with metastatic disease whose tumours demonstrate 

microsatellite instability [23, 30]. Improved insights into the mechanisms 

underpinning the immune microenvironment in CRC are helping to develop the 

role of immunotherapy and suggest potential targeted approaches to its 

management in a wider patient cohort. 

1.3.1. Targeted therapies in cancer immunotherapy 

Proposed advantages of targeted cancer immunotherapy include increased 

efficacy and specificity in targeting cancer rather than normal tissue, resulting in 

lower toxicity than current treatments. The focus of therapeutic targeting is either 

boosting the T cell response to tumour neoantigens, for example, adoptive cell 

transfer, chimeric antigen receptor T-cell (CAR-T) therapy and ICB, or altering 

the antigen landscape to favour the expression of those which are highly 

immunogenic [31]. The potential for use in solid tumours, such as breast cancer 

[32] is under exploration. 

1.3.1.1. Adoptive cell transfer and CAR-T therapy 

Adoptive cell transfer of T cells recognising certain tumour antigens has been 

shown to induce tumour regression in some trials, most notably in melanoma [33]. 

For lymphoid malignancies, particularly diffuse large B cell lymphoma and acute 

lymphoblastic lymphoma, CAR-T therapy has offered a new treatment option for 

those with refractory disease. The current therapeutic regimen involves the use 
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of the patient’s autologous T cells, which are collected and genetically modified 

by using a lentivirus or retrovirus vector to transduce a chimeric antigen receptor 

fusion protein, which is specific for a tumour antigen (usually CD19). These 

modified T cells are expanded ex vivo, and then re-infused into the patient 

following a leukodepletion conditioning regimen [34]. Current CARs consist of a 

single-chain variable fragment, an antigen-recognition domain, a CD3-derived T-

cell activation domain, and a co-stimulatory domain. The results have been 

impressive, with some trials showing complete responses in up to 80% of patients 

with acute lymphoblastic leukaemia [35, 36] and 40% to 60% of patients with 

aggressive lymphomas [34, 37]. In one study, high serum interleukin (IL)-15 

levels correlated with peak CAR-T levels and remission of lymphoma [37].  

However, these trials have had small patient numbers, and significant toxicity, 

particularly cytokine release syndrome and neurotoxicity are reported in between 

10% and 50% of trial participants [34]. Cytokine release syndrome is likely due to 

the targeting of antigens which are also expressed to some degree on normal 

tissue as well as tumour tissues, and mimics a systemic inflammatory response 

syndrome with fever, haemodynamic instability and end-organ dysfunction  [38]. 

There are also significant logistical challenges with delivery of adoptive cell 

therapy, not the least of which is the cost involved [39]. Finally, translation to solid 

malignancies has been hampered by therapeutic barriers, including challenges 

in determining which specific tumour antigens to target, variability in the trafficking 

of T cells into solid tumours and the fate and effectiveness of these cells within 

the tumour environment [33]. 
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1.3.1.2. Immune checkpoint blockade 

ICB with cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell 

death protein 1 (PD-1) and programmed cell death protein ligand 1 (PD-L1) 

antibodies have been shown to reactivate in vivo tumour infiltrating T cells leading 

to objective anti-tumour responses – specifically, tumour regression – in some 

cancers. This has been most marked in tumours with high mutation rates such 

as melanoma and lung cancer, but has also been seen in renal cancer (which 

has a low mutation rate) [40].  

In CRC, initial Phase I studies showed poor or no objective clinical benefit in 

patients with advanced disease [41, 42]. However, when Le et al. compared 

outcomes in patients with or without dMMR who were given Pembrolizumab, an 

anti PD-1 antibody, there were immune-related objective response rates (ORR) 

and progression-free survival (PFS) of 40% and 78% respectively in patients with 

dMMR; compared to 0% and 11% respectively in patients without dMMR. This 

was associated with a significantly reduced hazard ratio (HR) for death or disease 

progression (HR = 0.10, p <0.001) in the dMMR group, and a mean rate of 1782 

somatic mutations per tumour compared with 73 per tumour in pMMR, or 

microsatellite stable (MSS) tumours. Furthermore, high levels of somatic 

mutations correlated with improved survival [43]. This provided the rationale for 

the licensing of Pembrolizumab for use in dMMR/MSI-high CRC. There are 

several ongoing clinical trials assessing checkpoint blockade agents. These are 

predominantly in advanced or metastatic disease (MSI-high and MSS) in patients 

who have been heavily pre-treated (Table 1.2).  
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Dual ICB blockade has some supporting evidence. The NICHE trial of neo-

adjuvant immunotherapy in non-metastatic CRC used combined anti-CTLA-4 

(ipilimumab) and anti-PD-1 (nivolumab) therapy  [24]. In 20 of 20 patients with 

dMMR tumours, pathological response was observed, with major responses in 

19 of 20. Follow-up at data cut-off was for a median of approximately 9 months 

in both groups. In pMMR tumours, 4 of 15 patients (27%) showed pathological 

responses. These patients’ tumours showed higher levels of CD8+PD-1+ T cell 

infiltration but not increased tumour mutational burden (TMB), compared with 

non-responders. On the other hand, the Canadian Cancer Trials Group CO.26 

study assessed the effect of combined immune checkpoint inhibition with anti-

CTLA-4 (tremelimumab) and anti-PD-L1 (durvalumab) blockade compared with 

best supportive care alone in patients with advanced CRC [44]. Median overall 

survival (OS) was 6.6 months in those who had dual checkpoint blockade and 

4.1 months in those who had best supportive care (HR 0.72; 90% CI, 0.54-

0.97; P = 0.07). They found that the OS was significantly improved with dual 

checkpoint blockade in MSS CRC, particularly in those with TMB of 28 variants 

per megabase or more.  

These apparently conflicting results suggest that other parameters separate from 

TMB are driving this response, which are prime targets for further investigation. 

Although long-term survival data is not yet available, this is encouraging data and 

further supports the rationale for neo-adjuvant immunotherapy not only in patients 

with dMMR CRC, but also selected patients with pMMR CRC, whose tumours 

show high markers of immune infiltration. 
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Table 1.2. Clinical trials of immunotherapy in CRC [45] 
Phase Reference (Trial 

name) 
Regimen Subgroups Outcomes Follow-up 

duration 

Phase II Le et al. 2015 [43] PD-1 inhibitor 
(pembrolizumab) 

dMMR/MSI-high vs MSS 
CRC 

Immune-related ORR 

PFS 

20 weeks 

Phase II Overman et al. 2018 
[23] 

(CheckMate 142) 

PD-1 inhibitor (nivolumab) 
+/- CTLA-4 inhibitor 
(ipilimumab) 

Metastatic pre-treated 
dMMR/MSI-high CRC 

Immune-related ORR 

PFS 

OS 

12 months 

Phase II Mettu et al. 2018 
[46] 

(BACCI) 

Capecitabine/ 
bevacizumab +/- PD-L1 
inh bitor (atezolizumab) 

Metastatic CRC PFS 

OS 

Ongoing 

Phase III Hoffmann-La Roche 
[47] (COTEZO 
Imblaze370) 

Cobimetinib + PD-L1 
inh bitor (atezolizumab) vs 
atezolizumab vs 
regorafenib 

Heavily pre-treated locally 
advanced or metastatic CRC 

(>95% MSS) 

OS 

PFS 

3 years 

Phase III Diaz et al. 2017 [48] 

(KEYNOTE-177) 

PD-1 inhibitor 
(pembrolizumab) vs 
standard chemotherapy 

dMMR/MSI-high Stage 4 
CRC 

PFS 

OS 

57 months 

Phase III Asan Medical 
Center [49] (POLE-
M) 

Standard 5-FU-based 
adjuvant chemotherapy 
+/-sequential PD-L1 
inh bitor (avelumab) 

Resected stage 3 
dMMR/MSI-high or POLE-
mutant colon cancer 

DFS 5 years 

Phase III Sinicrope et al. 2017 
[50] 

(ATOMIC, 
Alliance A021502)  

Combined chemotherapy 
+/- PD-L1 inhibitor 
(atezolizumab) as 
monotherapy for 
additional 6 months  

Resected stage 3 
dMMR/MSI-high colon 
carcinomas 

DFS 

OS 

Adverse events 

5 years 

Phase I Tabernero et al. 
2017 [51] 

CEA-TCB antibody +/- 
PD-L1 inhibitor 
(atezolizumab) 

Heavily pre-treated 
metastatic CRC (majority 
MSS) 

Adverse events  

Anti-tumour activity 
(RECIST v1.1 criteria 
[52]) 

PFS 

40 months 

Phase I 
(explorator
y) 

Chalabi et al. 2020 
[24] (NICHE) 

Combined PD-1 inhibitor 
(nivolumab), CTLA-4 
inh bitor (ipilimumab) +/- 
COX2-inhibition 

dMMR and pMMR CRC, 
neo-adjuvant, stage 1 to 3 
disease only 

Adverse events 

Immune activating 
capacity 

RFS 

3-5 years 
(ongoing) 

Phase II Antoniotti et al. 2020 
[53] (AtezoTRIBE) 

Combined 5-FU-based 
chemotherapy + 
bevacizumab + PD-L1 
inh bitor (atezolizumab) vs 
combination treatment 

Unresected and previously 
untreated metastatic CRC, 
irrespective of MMR status 

PFS 

Overall toxicity rate 

ORR 

24 months 
(ongoing) 

Phase II Chen et al. 2020 
[44] (Canadian 
Cancer Trials Group 
CO.26) 

Combined PD-L1 
(durvalumab) and CTLA-4 
inh bitor (tremelimumab) 
with based supportive 
care vs best supportive 
care  

Pre-treated metastatic 
dMMR and pMMR CRC  

OS 
PFS 

ORR 

 

15.2 months 

5-FU – 5-fluorouracil. CEA-TCB – carcinoembryonic antigen-T cell bispecific. COX2 – cyclo-oxygenase 2. 
CRC – colorectal cancer. CTLA-4 - cytotoxic T-lymphocyte-associated protein 4. DFS – disease-free 
survival. dMMR / MSI-high – deficient mismatch repair / microsatellite instability high. MSS – microsatellite 
stable. PD-1 – programmed cell death protein 1. PD-L1 – programmed cell death protein ligand 1. PFS – 
progression-free survival. POLE-M – mutated DNA polymerase epsilon. RECIST – Response Evaluation 
Criteria in Solid Tumours. RFS – recurrence-free survival. ORR – objective response rate. OS – overall 

survival. 
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Mouse studies using cancer vaccines – injection of specially prepared candidate 

neoantigen peptides designed to stimulate an immunological response to cancer 

– show that the type of neoantigen is of importance. So far, the role of cancer 

vaccines in solid tumours in humans remains at the experimental stage. In a 

clinical trial of three patients with melanoma, WES was used to identify the 

highest binding epitope peptides and these patients were vaccinated with 

autologous dendritic cells, which had been pulsed with the top 7 highest binding 

peptides identified from each tumour [54]. This led to an increase in the breadth 

and diversity of neoantigen specific T cells from all patients, with no adverse 

autoimmune events. However, there was no demonstrated objective clinical 

benefit. It remains uncertain if cancer vaccination is potent enough to induce 

remission in solid tumours. One issue is that for a neoantigen to induce an 

immune response, the T cell receptor (TCR) repertoire of the patient needs to 

contain a TCR that specifically recognises the peptide bound to a specific human 

leucocyte antigen (HLA) allele. While the TCR repertoire in any individual is 

sufficiently diverse that, in theory, it should be capable of recognising virtually any 

pathogen, mutated cancer peptides typically differ from innate peptides only 

slightly, often by a single amino-acid [55]. Another significant limiting factor is that 

neoantigens may be polyclonal due to intratumoral heterogeneity, thus hindering 

their identification [56]. Other limiting factors include the potential high cost, and 

the possibility of significant adverse reactions. 

Neoantigens represent ideal targets for cancer immunotherapy, as they are 

expressed only in tumour cells and so are less likely to induce either 
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immunological tolerance or toxicity from targeted therapy. However, in silico 

neoantigen prediction tools have some challenges to overcome.  

 

1.3.2. The major histocompatibility complex (MHC) 

Most prediction tools target major histocompatibility complex (MHC) Class I 

epitopes only, but the role of MHC Class II expression in the anti-cancer response 

is likely to be of great significance.  

The MHC gene complex is found in all higher vertebrates, and encodes proteins 

that are expressed on the cell surface. In humans, it is known as the HLA 

complex. The HLA gene complex is found on chromosome 6, is comprised of an 

expanding number of genes (more than 200 have been discovered), and is highly 

polymorphic [57]. 

The MHC (or HLA) complex has a significant role in destroying pathogens, by 

presenting antigens to T cells to enable direct killing of virus-infected cells, 

activation of B cells to produce antibodies to neutralise extracellular pathogens 

and activation of macrophages to kill bacteria within their intracellular vesicles. 

The MHC complex is also critical in the priming the recognition of self-antigens 

within the thymus, and the prevention of targeting of these [58]. There is strong 

selection pressure in favour of pathogens and tumour antigens that have mutated 

in a way that they can evade presentation by MHC molecules [57]. MHC Class I 

proteins are found on the surface of nearly every cell, and can present antigens 

to CD8+ T lymphocytes for direct cytotoxic cell killing. However, Class II proteins 

are only found on specialised antigen-presenting cells such as dendritic cells, B 
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cells and macrophages. They present antigens to CD4+ T cells, which then 

activate B cell and macrophages responses to these antigens (Figure 1.2). Due 

to the highly polymorphic nature of the MHC gene complex, every person has a 

set of MHC molecules with wide and differing ranges of peptide-binding 

specificities. 
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Figure 1.2.  Illustration of the major histocompatibility complex (MHC) and its presentation of peptides to T cell receptors. The MHC Class 

I molecule has an α polypeptide and β2 microglobulin chain. It is expressed on all nucleated cells. The MHC Class II molecule is present 

only on antigen-presenting cells. It has an α and β polypeptide chain. MHC Class I molecules present antigens to CD8+ effector T cells, 

and MHC Class II molecules present antigens to CD4+ helper T cells.
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1.3.2.1. MHC Class II expression in colorectal cancer 

Class II expression is usually absent in normal colonic mucosal epithelium [59], 

however, it can be induced in other cell types, including tumours, particularly 

when stimulated by inflammatory signals such as interferon-gamma (IFN-γ).  

In studies where CIITA, the master transcriptional activator of Class II, was 

transfected into poorly immunogenic Class II-negative murine adenocarcinoma 

cell lines, tumour elimination occurred [60, 61]. CIITA-transfected cancer cells 

developed robust antigen processing function, and CD4+ and CD8+ cells 

massively infiltrated CIITA-transfected tumours. In particular, the CD4+ cells took 

on the function of Th1 cells and produced IFNγ. Class II expression is seen in 25 

to 50% of CRC [59, 62] . Class II expression is higher in well-differentiated and 

less invasive cancer. MHC Class II loss correlates with reduced TIL density and 

increased incidence of regional metastases [59].  

In a study by Kreiter et al. using three different murine tumour models, mutated 

MHC Class II epitopes were more immunogenic than Class I epitopes [63]. 

Alspach et al. demonstrated in a mouse sarcoma model that co-expression of 

MHC Class I and II neoantigens were necessary for a response to ICB [64]. This 

was particularly striking in MHC Class II non-expressing tumours. In melanoma, 

tumour membrane Class II negative patients had lower response rate, PFS and 

OS when treated with PD-1/PD-L1 blockade than Class II positive patients. Class 

I expression and T cell density were not significantly predictive [65].  

Abelin et al. [66] show that Class II-dependent antigen presentation depends 

mainly on autophagy i.e. phagocytosis of apoptotic tumour cells or absorption of 
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secreted tumour proteins, by antigen presenting cells. These peptides are then 

processed and presented on MHC molecules. CD4+ T cells appear to play mainly 

supportive roles in the TME, although direct tumour cell killing is possible. The 

mechanism of action is most likely through secretion of cytokines and 

chemokines that drive the trafficking and activation of other immune cells. This 

has the advantage of bypassing common tumour immune escape mechanisms, 

such as MHC Class I loss [67].  

Prediction of MHC Class II epitopes is particularly challenging due to the high 

degree of polymorphism at this locus and length and variability of potential 

binding peptides compared with MHC Class I epitopes [68]. In addition, Class II 

epitopes appear to be rarely expressed directly on the surface of tumour cells, 

and are more typically expressed on antigen presenting cells infiltrating along 

with T lymphocytes [55]. In a mouse study, the Class II epitopes determined did 

not appear to be immunogenic [69]. 

Thus far, the finding of immunogenic neoantigens has rarely translated into 

tumour remission or clinical benefit. In both mouse and human studies, despite 

identified neoantigens eliciting strong T cell responses, this does not lead to 

complete or significant tumour rejection in the majority [55, 69]. One hypothesis 

is that MHC loss or downregulation in tumour cells reduces the likelihood of 

presentation of neoantigens to immune cells for recognition and killing. The other 

is that polyclonal tumours have different populations of neoantigens, and these 

undergo significant selection pressures that favour those tumour antigens that 

have escaped processing and presentation on the surface of MHC molecules to 

T cells. 
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1.3.3. Colorectal cancer sub-classification 

Although colon and rectal cancer are treated differently, data from The Cancer 

Genome Atlas (TCGA) show that they are genomically indistinguishable [8]. CRC 

is instead better sub-classified genomically by microsatellite status and 

consensus molecular subtypes.  

1.3.3.1. Microsatellite status  

Approximately 15% of patients with CRC have tumours that demonstrate 

microsatellite instability (MSI) secondary to mutations in DNA mismatch repair 

(dMMR) genes.  MSI-high tumours are characterised by a high mutational burden 

and the generation of large numbers of neo-antigens, which are believed to 

trigger powerful anti-cancer host immune responses [70-72]. In contrast, the 85% 

of CRC that develops due to chromosomal instability, termed microsatellite stable 

(MSS) [73], usually has a much lower mutational burden and lower numbers of 

neoantigens.  

Three variants of MSI-high CRC have been demonstrated [74, 75]. Hereditary 

non-polyposis colon cancer or Lynch syndrome is found in 3% of CRC. It is 

caused by an inactivating germline mutation of one or more of the MMR genes 

(MLH1, MSH2, MSH6 and PMS2), with a second hit from a sporadic mutation, 

loss of heterozygosity or epigenetic silencing of a second MMR gene [75]. These 

patients have a 50-70% lifetime risk of CRC, as well as significant lifetime risks 

of endometrial cancer (in women), other intestinal and urothelial cancers [76]. 

More commonly, MSI-high tumours have no underlying germline mutations, and 
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arise as a consequence of epigenetic silencing of the MMR gene MLH1 by 

hypermethylation of its promoter region [77]. Sporadic MSI-high CRC is 

frequently associated with the v-raf murine sarcoma viral oncogene homolog B1 

(BRAF)-V600E mutation, through its association with the CpG island methylator 

phenotype.  

BRAF is a downstream molecule in the Rat sarcoma protein-mitogen associated 

protein kinase (Ras-MAPK) signalling pathway, which is critical for cell survival 

and proliferation [78]. BRAF mutations are present in both sporadic MSI-high and 

MSS CRC but mostly absent in Lynch syndrome, and thus the presence of a 

BRAF mutation, in conjunction with MLH1 methylation analysis, reliably 

distinguishes between sporadic MSI-high CRC and Lynch syndrome [79]. A third 

variant, Lynch-like syndrome is less well characterised. Lynch-like CRC tumours 

have no germline MMR gene mutations or hypermethylation of the MLH1 

promoter [80]. However, germline mutations in the DNA polymerase epsilon 

(POLE) and DNA polymerase delta (POLD1) genes also drive carcinogenesis in 

CRC [81] and have been linked to the Lynch-like  syndrome [82]. POLE and 

POLD1 mutated tumours are associated with high TMB and also independently 

predict responses to immunotherapy [83, 84]. 

MSI-high CRC tumours have distinctive clinico-pathological features including an 

increased incidence in female patients, more proximal colonic location, high 

lymphocyte infiltration levels, lower incidence of metastasis, with better clinical 

prognosis at Stage 1 to 3 [71, 85]. A nationwide study of 6,692 patients by the 

Danish Colorectal Cancer Group revealed a reduced risk of synchronous 

metastases, specifically liver metastases, in patients with dMMR CRC (8.0% vs 
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15.8%, Odds Ratio = 0.54) [86]. There was also noted an inverse association 

between dMMR status and lymph node metastasis and venous invasion. The 

situation is reversed in metastatic (Stage 4) disease, where MSI appears to 

confer a worse prognosis [87].  

MMR loss is associated with the rapid accumulation of mutations. MSI tumours 

typically have an order of magnitude more non-synonymous somatic mutations, 

compared with MSS tumours (with approximately 50-100 mutations per 

megabase for MSI CRC compared with 1-10 mutations per megabase for MSS 

CRC) [29, 88]. In addition to base substitutions, large numbers of insertions and 

deletions occur [79]. These may lead to frameshifts, which if occurring in tumour 

suppressor genes, can drive tumorigenesis. High mutation rates generate large 

numbers of neoantigens, which are not recognised as self and thus are strongly 

immunogenic. Neoantigens contribute to a better prognosis in MSI CRC due to 

the increased infiltration of effector cells (primarily effector T lymphocytes [89]) 

into the tumour environment [71, 85]. 

Patients with dMMR metastatic CRC have been shown to have significant clinical 

responses to immunotherapy with anti-programmed cell death 1 (PD-1)/anti-

programmed cell death ligand 1 (PD-L1) treatment in Phase II trials [23, 43], in 

stark contrast to those in the MSS CRC subgroup where there is no objective 

response to immunotherapy [43]. Yarchoan et al. demonstrated in a study across 

a range of human cancer subtypes a strong correlation between tumour somatic 

mutation frequency (and therefore neoantigen burden) and the response to 

immunotherapy [29].  
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However, MSI-status and neoantigen burden do not sufficiently explain the 

variability in the colorectal tumour environment. The ORR for patients with 

refractory MSI-high CRC treated with immunotherapy (ICB) across studies 

ranges from about 30% to over 50%, compared with 0% to 5% for MSS CRC [90]. 

This illustrates that within the MSI-high subgroup about half of the patients do not 

benefit from ICB. This may be related to patient selection criteria, including 

variations in how microsatellite status is determined. These are currently 

undergoing standardisation, and involve one of either a polymerase chain 

reaction (PCR)–based assay of instability, or an immunohistochemical test to 

detect expression of the mismatch repair protein [91] . Furthermore, the majority 

are early phase trials, with patients with refractory heavily pre-treated disease. 

However, it is certain that other genomic and somatic factors are implicated in 

this resistance.   

Immunogenic data show that approximately 20% of patients in the MSS CRC 

subgroup develop an immune signature similar to MSI-high CRC, despite low 

mutational burden [92]. This signature, termed the co-ordinate immune response 

cluster (CIRC) is strongly Th1 driven, with a high preponderance of major 

histocompatibility complex (MHC) Class II genes. There is evidence that 

activating mutations in Ras-MAPK pathway are associated with lower expression 

of this immune gene cluster and immune pathway downregulation [93-95]. 

Finally, lymphocytic infiltration, particularly of effector and memory T cells into the 

tumour, which is a key indicator of prognosis in CRC [89, 96] appears to be 

independent of MSI status [97].  
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1.3.3.2. Consensus molecular subtypes 

CRC can alternatively be divided into four consensus molecular subtypes, each 

with distinguishing pathological features [98]. The MSI-high group represents 

CMS1, showing hypermutation and strong immune activation. CMS2 

(“canonical”) shows chromosomal instability with marked Wnt and myc signalling; 

CMS3 (“epithelial”) shows metabolic dysregulation; and CMS4 (“mesenchymal”) 

shows prominent transforming growth factor β activation, stromal invasion, and 

angiogenesis. This subtype is also characterised by strong immune cell 

infiltration, most likely by mechanisms independent of neoantigen presentation 

[92].   

In a study using a T helper-1 centric immune metagene as a marker of the 

immune contexture, 20% of patients in the MSS CRC subgroup had an immune 

signature very similar to MSI-high CRC, despite low numbers of mutations and 

fewer neoantigens [92]. This group segregated to the CMS4 subtype. The KRAS  

mutation, especially in the CMS2 and 3 subtypes, is associated with a 

downregulation of immune pathways and reduced immune cell infiltration [93]. 

KRAS mutation, apart from predicting non-response to anti-epidermal growth 

factor receptor (EGFR) chemotherapy, is independently associated with a worse 

prognosis in CRC [99].  

Disappointingly, a recent trial of the use of bintrafusp alfa, a dual anti-PD-L1 

antibody/TGFβ trap, in patients with metastatic CMS4 CRC was discontinued 

after the first stage due to futility. Of 13 patients, 2 showed stable disease and 11 

had disease progression during treatment. Median PFS and OS were only 1.6 

months and 5.0 months respectively [100]. However, the researchers noted that 
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in paired samples, treatment with bintrafusp alfa led to an increase in IFNγ 

expression signatures in non-irradiated metastatic tissue, which they state could 

provide a signal for refining potential therapeutic strategies. Further results are 

awaited.   

1.4. The colorectal tumour immune microenvironment 

A variety of mechanisms leads to immunosuppression of the tumour environment 

in CRC. Recruitment of immunoregulatory cells [101], upregulation of inhibitory 

molecules (including myeloid-derived suppressor cells (MDSCs), regulatory T 

(Treg) cells and type 2 macrophages amongst other cancer-associated cell-types 

[102-104]) and down-regulation of antigen presentation represent methods of 

immune evasion [105]. The alteration of metabolic pathways to favour glycolysis, 

even in the presence of sufficient oxygen has been well-studied and is termed 

the “Warburg effect” [106]. This, along with the upregulation of anabolic pathways 

which favour rapid tumour cell survival and proliferation, often leads to the 

generation of an environment that is hostile to T cells due to increased acidity, 

low oxygen levels, competition for nutrients and the generation of waste 

substrates [105, 107]. Immune infiltration in MSI-high tumours is often 

accompanied by the upregulation of immune checkpoint ligands [104]. T cell 

exhaustion, defined as the presence of T cells with decreased cytokine 

expression and effector function in the tumour environment, also occurs [108, 

109].  

The finding of selective upregulation of immune checkpoints (including PD-1, PD-

L1, CTLA-4, LAG-3, Tim-3, IDO and others) in MSI-high tumours suggests that a 
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counterbalancing inhibitory process occurs in the presence of high levels of 

tumour infiltrating lymphocytes (TIL) and a highly active Th1 environment [110]. 

This may explain why MSI-high tumours are not naturally eliminated despite high 

immune activation, and why checkpoint blockade is effective in these tumours 

(Figure 1.3) [45].  
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Figure 1.3. Immune regulatory pathways in the tumour microenvironment [45]. MHC Class I and II present on tumour cells and antigen 
presenting cells present antigens (red triangles) to T cells. Interactions with immune checkpoints and regulatory T cells modulate this 
process.  CD – cluster of differentiation. CTLA-4 – cytotoxic T lymphocyte-associated protein 4. FoxP3 – forkhead box P3. IFN-γ – interferon 
γ. IL-10 – interleukin 10. KIR – killer immunoglobulin-like receptor. LAG-3 – lymphocyte -activation gene 3. MHC I – major histocompatibility 
complex Class I. MHC II – major histocompatibility complex Class II. NK – natural killer cell. NKG2D – natural killer G2D receptor. PD-1 – 
programmed cell death 1 protein. PD-L1 – programmed cell death 1 ligand. TCR – T cell receptor complex. TIM-3 – T cell immunoglobulin 
mucin 3. TNF – tumour necrosis factor. Treg – regulatory T cell. UL16BP – UL16 binding proteins. 
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In addition, other pathways may drive immunogenicity in MSI-high CRC tumours. 

Constitutive activation of the viral response cyclic GMP-AMP/synthase- 

stimulator of interferon genes (cGAS-STING) pathway with associated T cell 

infiltration in tumours is noted in DNA damage response-deficient breast cancers 

[111]. cGAS is activated by DNA damage and localises to micronuclei which form 

in the context of the genomic instability which occurs during tumorigenesis or 

autoimmunity [112]. This triggers a pro-inflammatory response, which is notably 

absent in STING-knockdown cell lines. STING knockdown mice also do not 

demonstrate the abscopal effect, which is tumour regression outside the 

irradiated field, usually observed following combined ionising radiation and 

immune checkpoint blockade therapy [113]. Deficiency in the DNA damage repair 

protein, MLH1, which is often mutated in dMMR CRC, has also been shown to 

be associated with deficient DNA double strand break repair and increased 

micronuclei formation [114], which may also trigger the cGAS-activated 

inflammatory response. 

Emerging immunogenomic data show that the strength of the microenvironmental 

immune response, even in MSS CRC, is highly variable. Approximately 20% of 

MSS patients have similar levels of immune activation to MSI CRC and yet like 

the rest of the MSS cancer population have a low non-synonymous mutational 

burden and low neoantigen levels [92]. Thus, there are other factors that influence 

this immune response, which warrant further investigation.  

Hitherto unexplored germline and tumour-specific factors are likely to contribute 

significantly to these differences and form the basis of exploration in this thesis.  
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1.4.1. Quantification of the colorectal tumour immune microenvironment  

Galon et al. developed the Immunoscore®, an immunocytochemical score of the 

CRC immune microenvironment [115, 116]. This was based on the finding that 

the infiltration of cytotoxic (CD8+) and memory (CD45RO+) T cells was 

associated with increased expression of Th1 and CD8-cytotoxicity-related genes. 

The densities of CD45RO+ and CD8+ cells in the centre of the tumour (CT) and 

invasive margin (IM) could be used to stratify the patients into distinct populations 

with significantly different clinical outcomes at all disease stages [117]. In 

multivariate analysis, after adjusting for tumour invasion, differentiation, lymph 

node invasion and other tumour molecular biomarkers including MSI and BRAF 

mutation status, T cell infiltration (CD3CT/CD3IM) remained an independent 

prognostic factor in disease-free survival (DFS) analysis, and only CD3CT/CD3IM 

density was an independent parameter associated with overall survival. This has 

been independently validated by the Society for Immunotherapy of Cancer 

(SITC)-supported worldwide consortium study [118] [119]. The Immunoscore is 

currently the only independently validated marker of the immune contexture in 

CRC, with key prognostic information. 

The Immunoscore is calculated by counting two lymphocyte populations 

(CD3/CD45RO and either CD3/CD8 or CD8/CD45RO) in the centre of the tumour 

(CT) and the invasive margin (IM). This yields a score of 0 to 4, where 0 

designates low densities of both populations in both areas of the cancer, and 4 

designates high densities in both areas (Figure 1.4, Figure 1.5). I used the 

Immunoscore as the principal read-out of the immune contexture in this analysis 

for four main reasons. 
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a        

   

b 

 

Figure 1.4. The Immunoscore®. Staining is performed for two markers (CD3 and CD8) 
in two regions (the centre of the tumour (CT) and invasive margin (IM)). Digital 
quantification of cell density is performed (cells/mm3) and a score is assigned from 0 to 
4 to delineate immune reactivity. (a). An example of CD3 stain on a formalin-fixed tissue 
slide. (b). A zoomed image of the same slide. 
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levels of microenvironmental immunity and 30% are Im4, with a strong anti-

cancer response [120]. The outcomes of these two groups are markedly different, 

with 31.6% and 52.8% 5-year DFS for Im0 and Im1 respectively and 85.4% for 

Im4 (HR = 0.19).  

1.4.1.3. The Immunoscore is clinically and biologically relevant.  

The Immunoscore is performed on either colorectal tumour biopsies or surgically 

resected specimens. Low Immunoscores are significantly over-represented in 

patients presenting with or subsequently developing metastatic disease, thus 

showing the crucial importance of primary immunobiology for the metastatic 

process [121]. In patients with metastatic disease, whilst Im4 patients have a 65% 

5-year OS, all Im0 patients have died by 40 months. In a comprehensive 

multivariate analysis including stage, grade, venous emboli, lymphatic and 

perineural invasion of cancer (VELIPI), mucinous histology, perforation, 

obstruction and microsatellite status, only the Immunoscore was independently 

associated with all three endpoints of disease-specific survival (DSS), DFS and 

OS [97]. 

1.4.1.4. The Immunoscore is fully validated.  

The SITC supported a large worldwide consortium study, in a multi-centre, multi-

national context (14 centres from 13 countries). Over 3000 patients were 

recruited and 2681 samples were passed to final analysis, which confirmed that 

the Immunoscore is a reliable and reproducible prognostic biomarker in CRC 

[118]. This was confirmed by data from 559 patients with stage 3 CRC in the 

Phase III leucovorin, fluorouracil, and oxaliplatin (FOLFOX) +/- cetuximab trial 

[122, 123]. Low versus high Immunoscore was associated with lower DFS (HR = 
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1.69, 95% CI = 1.22 to 2.33, p = 0.001). In T1-T3 and N1 disease, the 

Immunoscore was the only statistically significant variable associated with DFS. 

1.4.1.5. The Immunoscore has predictive value. 

The Phase III International Duration Evaluation of Adjuvant Therapy (IDEA) 

France cohort study investigated 3 months versus 6 months of oxaliplatin-based 

adjuvant chemotherapy in Stage 3 CRC. It showed overall superiority of the 6-

month compared with the 3-month regime, particularly in ‘higher risk’ (T4 and N2) 

groups. 

Analysis of validated Immunoscore results in the modified intention to treat 

population showed that the Immunoscore was predictive for treatment duration 

for those with Intermediate and High Immunoscores (IS Int + High). [124]. For 

patients treated with the modified FOLFOX regime, 6 months of treatment was 

associated with significantly increased DFS compared with 3 months of treatment 

(HR = 0.53, 95% CI = 0.37 – 0.75, p = 0.0004). Of interest, this effect was present 

in both clinically low and high-risk Stage 3 disease. Conversely, those with low 

Immunoscore (representing 46.4% of the cohort) did not have significant benefit 

from the 6-month compared with the 3-month duration of therapy. The authors 

hypothesise that oxaliplatin-based agents drive immunogenic cell death, which is 

reduced or absent in IS Low tumours. 5-fluorouracil decreases MDSCs and 

increases cytotoxic T cell function. The potential benefits of this immunological 

boost are lost in the IS Low environment.   

The main drawbacks to routine clinical use of the Immunoscore include cost and 

availability, as HalioDx®, based in Marseille, France, currently owns all rights to 
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perform the test in its laboratories, at a cost [125].  It would be beneficial to assess 

the predictive value of the Immunoscore in determining the effect of neo-/adjuvant 

immunotherapy, independent of MMR status. 

1.4.2. Immune checkpoint expression in the tumour environment 

The role of expression of immune checkpoint molecules (such as PD-L1 as 

markers of probable response to ICB remains controversial. Strong PD-L1 

expression (as determined by IHC) is noted in 37% of MSS (pMMR) and 29% of 

MSI-high (dMMR) CRC and correlates with better clinical outcomes [126]. Strong 

PD-L1 expression in pMMR tumours was associated with high CD8+ T cell 

infiltration into tumours. Early phase trials of nivolumab (an anti-PD-1 monoclonal 

antibodies) in solid tumours including melanoma, renal, prostate, lung cancer and 

CRC suggest that PD-L1 expression may serve as a marker for objective 

responses to ICB [41, 127], as patients with PD-L1 negative tumours showed no 

responses. However, the association is weak, and although PD-L1 expression 

appears to correlate with the infiltration of TILs, the link to clinical responses is 

borderline [128]. In these trials, microsatellite status was not universally reported 

for the CRC patients, who showed universally poor responses. In addition, there 

is a lack of standardised measures for PD-L1 expression, with different 

antibodies, diagnostic tools, scoring systems and cut-off expression values used 

in the studies.  

In lung cancer, the association of PD-L1 expression with response to ICB appears 

more robust. In a meta-analysis of randomised controlled trials of anti-PD-1/anti-

PD-L1 immunotherapy in non-small cell lung cancer (NSCLC), subgroup 

analyses showed greater OS with immunotherapy compared with chemotherapy 
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at cut-off levels of PD-L1 expression of ≥1%, ≥5%, ≥10% and ≥ 50%. ORR rates 

were greater with PD-L1 expression ≥50% compared with the <1% and 1-49% 

groups [28].  

PD-L1 expression is different in tumour and immune cells. Valentini et al. [129], 

in a study of 63 CRC specimens from 61 patients, found differential expression 

of PD-L1 in tumour cells (NCs) and tumour-infiltrating immune cells (IICs). They 

obtained three cancer groups: group A (NCs-/ IICs-); group B (NCs-/ IICs+) and 

group C (NCs+/IICs+). Group A tumours were poorly immunogenic. Group B had 

more immunogenic CRCs but with upregulation of PD-L1 only on IICs, and group 

C was characterised by a large tumor neoantigen burden resulting in both 

lymphocytic infiltration and PD-L1 upregulation. Tumours with MSI-high status 

were more likely to be found in group C than either group A or group B.  

A recent meta-analysis of the association of PD-L1 expression in CRC showed 

that high PD-L1 expression in tumour cells is associated with worse clinical 

outcomes, in particular reduced OS and DFS [130]. This study also found that 

PD-L1 expression was independent of tumour stage or microsatellite status, but 

high PD-LI expression is associated with right-sided, more poorly differentiated 

tumours. Similar findings have been noted with another immune checkpoint, Tim-

3, the upregulation of which is associated with increased regional metastases 

and poorer prognosis in CRC [131, 132]. However, currently, no conclusions can 

be drawn on the use of expression of these immune checkpoints as biomarkers 

for determining the likely efficacy of ICB. Microsatellite status remains the only 

established biomarker for stratification of patients for immunotherapy in CRC.    
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1.5. Inherited differences in immune gene expression  

Differences in gene expression levels are believed to be responsible for most of 

the phenotypic variation observed among individuals in natural populations [133]. 

Next generation sequencing (NGS) techniques have aided genome wide 

association studies (GWAS), which reveal that many of genetic variants 

associated with phenotypic variation (e.g. disease risk, protein expression) are 

found in non-coding or intronic parts of the genome and therefore are likely to be 

involved in gene regulation [134-136]. In addition, advances in RNA sequencing 

and expression microarrays have made it possible to quantify gene expression 

levels accurately [133, 137-140]. 

1.5.1. Expression quantitative trait loci 

Expression quantitative trait loci (eQTLs) are single nucleotide polymorphisms 

(SNPs) usually found in non-coding regions of the genome, which influence gene 

expression. These are cis-, (in close proximity to the genes they affect) or trans- 

(at a distance away from the genes they affect, or on separate chromosomes) 

[134, 141, 142] (Figure 1.6). Trans-eQTLs may exert their effects due to 

conformational changes, leading to differential transcription factor binding across 

different chromosomes that may be genomically distant but in close proximity due 

to the spatial organisation of DNA [143, 144]. Cis- variants are conventionally 

accepted as those within 1 megabase (Mb) of the transcription start site (TSS) on 

either side of the gene. Those more than 5 Mb on either side of the TSS or on 

another chromosome are considered trans- acting [145]. 
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Figure 1.6. Schematic representation of cis- and trans-eQTL effects on targeted genes. (a) illustrates a cis-eQTL SNP effect on Gene A 
and (b) illustrates a trans-eQTL effect on Gene B on a different chromosome. eQTL – expression quantitative trait locus. SNP – single 
nucleotide polymorphism. TSS – transcription start site [45]
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1.5.2. eQTL data repositories 

eQTL studies were first carried out in model organisms where the whole genome 

could be rapidly sequenced [146], and then expanded to human studies [141, 

147]. Gene expression levels are typically measured in hundreds of people, and 

analysis involves an association test between markers of genetic variation [145]. 

The mainstay of eQTL analysis is robust statistical analysis, aiming for sufficient 

statistical power to detect the relevant variants while accounting for the multiple 

testing burden [148]. Correction for multiple testing is performed by one of several 

approaches [148-150]. The Bonferroni correction is widely used. However, it is 

conservative and does not account for linkage disequilibrium (LD) in the genome. 

LD refers to the non-random association of alleles at two or more loci in a 

population, which leads to haplotypes occurring at frequencies that are more or 

less than expected. Haplotypes are groups of SNPs in close proximity on a 

chromosome that tend to be inherited together, such as the HLA alleles in the 

MHC on chromosome 6. The Bonferroni method penalises those regions of the 

genome with strongly linked variants and reduces the statistical power to detect 

variants [148, 149].  

The permutation test [149] accounts for LD but is cumbersome, computationally 

expensive and gives truncated p values to a level of significance determined by 

the number of permutations [148, 150]. The false discovery rate (FDR) method, 

devised by Benjamini and Hochberg [151, 152], is designed to control the 

expected proportion of false discoveries, that is, the expected proportion of 

rejected null hypotheses that are false. It provides greater statistical power to 

detect differences, albeit at a cost of increased Type 1 errors. The FDR method 
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has become a key method in eQTL studies, usually set at 0.05 [153]. SNPs with 

low minor allele frequency (MAF) (usually <5%) are filtered out from analysis 

[141, 154]. 

eQTL data repositories such as the Multiple Tissue Human Expression 

(MuTHER) study [155] and the Genotype-Tissue Expression Project (GTEx) 

[156, 157] help to provide insights into how eQTLs determine the expression of 

phenotypes of interest, including complex diseases and cancer (Table 1.3). Most 

human eQTL studies are performed using peripheral blood-derived cell lines, 

likely due to ease of sampling access. Data from studies assessing more than 

one tissue type show that regulation of gene expression is partially cell type-

independent, with variable degrees of eQTL sharing across tissues [147, 155].  

The GTEx pilot [147] reported cis-eQTL yields from 54 distinct body sites from 

237 post-mortem donors. More than 50% of eQTLs were shared across all nine 

tissues studied. Only 7 – 21% of eQTLs were tissue-specific, with the effect 

strongest when closer to the TSS. The MuTHER study [154] compared cis-eQTLs 

in tissues from lymphoblastoid cell lines (LCLs), skin and adipose tissue in female 

adult twins from the United Kingdom (UK) Twins registry. 56 – 83% of cis eQTLs 

were calculated to be shared across the three tissues studied. However, the 

tissue-independent effect was stronger closer to the TSS in this analysis. In 

addition, several trans-eQTLs were discovered at a low false discovery rate 

(FDR). They were found to be mainly tissue-type dependent, with smaller effect 

sizes and often associated with multiple transcripts, suggesting their role as 

multiple-gene regulators. 
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Table 1.3. Human eQTL repositories 

Project name Data repository eQTL Tissue 
subtypes  

Sample 
size 

MuTHER http://www.muther.ac.uk/Data.html  cis LCL, skin, 
adipose 

856 

GTEx https://www.gtexportal.org/home/  cis multiple 237 

Childhood 
asthma studies 
[90, 91] 

http://csg.sph.umich.edu/liang/imputation/  cis and 
trans 

EBVL 2642 

International 
HapMap 
Project [68] 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6536 cis and 
trans 

LCL 270 

Gilad/ 

Pritchard Group 

http://eqtl.uchicago.edu/Home.html  cis and 
trans 

LCL, liver, 
brain 

 n/a 

Pickrell Lab [92] http://gwas-browser.nygenome.org  cis and 
trans 

multiple Combined 
sources  

Geuvadis 
Project 

https://www.ebi.ac.uk/Tools/geuvadis-das/  cis LCL 465 

Blood eQTL [93] https://genenetwork.nl/bloodeqtlbrowser/  cis and 
trans 

Peripheral 
blood 

5311 

 

EBVL – Epstein-Barr virus-transformed cell lines. eQTL – expression quantitative trait locus. GTEx – Genotype-Tissue Expression Project. 
LCL – lymphoblastoid cell lines. MuTHER – Multiple Tissue Human Expression Resource Project. n/a – not applicable. Adapted from [45]. 
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1.5.3. eQTLs and cancer genomics 

The contribution of eQTL SNPs in cancer susceptibility has been studied in many 

cancer types including breast [158], prostate [159] and ovarian cancer [160]. 

Although the study of germline determinants of gene expression in cancer is 

complex, due to the accumulation of mutations which increase the complexity of 

transcript regulation, this can be mitigated by using matched tumour and normal 

samples [158].    

Vogelsang et al. [161] utilised data from the MuTHER project to identify immune 

gene eQTL SNPs and correlate these with outcomes in cutaneous melanoma, a 

strongly immunogenic cancer. Of the 382 immunomodulatory genes selected by 

interrogating the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) databases, SNP genotyping of the 50 top most significant cis 

eQTLs in the MuTHER LCL database was performed and the top 40 SNPs for 

which genotype-expression associations were obtained were correlated with 

outcome (DFS and OS).  

Of interest, their gene list includes 22 of 28 genes included in the CIRC signature 

[92]. Sixteen of these had statistically significant sequence-based expression 

variation, including STAT1, a key Th1 module, IFN and some MHC Class II 

genes [162]. Two SNPs identified were highly correlated with OS – one affecting 

IL-19 expression and the other BATF3 expression. Similarly, a study in breast 

cancer patients [163] revealed that the expression of MHC Class I and II genes 

was associated with SNPs in 100 genes. Comparison with a matched healthy 

cohort revealed specific associations with genes associated with immune system 

processes.  
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1.6. Neoantigens 

Tumour-specific antigens (neoantigens) arise as a result of somatic mutations 

during tumour evolution. These may be driver mutations which cause the 

transformations required for tumorigenesis and tumour propagation, or 

passenger mutations which are passively acquired along with the driver 

mutations as by-products of the genomic instability that occurs during 

tumorigenesis [7]. Neoantigens generated from this process are less likely to 

undergo immunological tolerance as they are foreign to the individual. Mutations 

may be clonal (expressed in all tumour cells) or subclonal (expressed in a 

proportion of tumour cells) leading to the expansion of cell populations with 

different genomic and therefore phenotypic signatures [56, 164]. Tumour-

associated antigens on the other hand, which are aberrantly expressed normal 

proteins, are less likely to be antigenic unless mechanisms of immunological 

tolerance are circumvented. Germline proteins which are usually tissue-

restricted, may become antigenic when expressed in cancer cells [7].  

Work on cutaneous melanoma shows that the most potent T cell responses are 

against neoantigens [165]. As the pattern of mutations is highly variable, and the 

cancer genome is unique to each individual, identification of these neoantigens 

was initially challenging. With the development of NGS techniques and 

bioinformatics strategies for in silico prediction, it is now possible to rapidly 

identify and filter neoantigens [40, 166, 167]. Whole exome sequencing (WES) 

and/or whole genome sequencing (WGS) of tumour samples allows identification 

of somatic mutations. Mutation calling is done by aligning the sequencing reads 

against the reference genome to identify variants, which are then compared 
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against data from matched normal tissue DNA to identify tumour-unique 

mutations. These are then modelled using a protein prediction algorithm such as 

the Variant Effect Predictor [168] and fed into an MHC-binding predictor to model 

the MHC binding capacity (Class I and II binding) [68, 169, 170]. On the other 

hand, structural variants (such as gene fusions) are more difficult to identify from 

WES data unless RNA sequencing data is available [31]. 

1.6.1. Neoantigen clonality 

Intratumoral heterogeneity (ITH) is of key significance in tumour immune escape 

mechanisms. Subclonal neoantigens are expressed in only a proportion of 

tumour cells. Consequently, non-expressing cells can avoid surveillance by 

antigen specific T cells and these sub-clones can multiply and metastasise. 

McGranahan et al., in a series of lung cancers for which multi-region sequencing 

was available, showed that an average of 44% of neoantigens were found 

heterogeneously in a subset of regions [164]. The authors analysed clonality from 

both single and multi-region sample WES data from lung cancer samples in The 

Cancer Genome Atlas. The combination of neoantigen ITH and neoantigen 

burden was more predictive of outcome than either measure alone. High clonal 

neoantigen burden was characterised by an inflamed microenvironment 

(assessed by RNA expression).  

This approach was also applied to WES data from a recent study demonstrating 

the predictive power of non-synonymous TMB for response to Pembrolizumab in 

lung cancer. The efficacy of PD-1 blockade was found to be dependent on clonal 

architecture. Tumours with similar numbers of neoantigens responded 

significantly more favourably if those neoantigens were clonal than if they were 
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subclonal [171]. These findings are supported by a study in melanoma in which 

ITH and TMB were uncoupled using a mouse model [172]. Mutations were 

introduced in a melanoma cell line using ultraviolet B irradiation. Mice inoculated 

with the heterogeneous cancer cell population showed more aggressive tumour 

growth compared with those inoculated with single cell clones. Rejection of the 

single cell clone was associated with higher infiltration of effector T cells into the 

immune environment. This effect was independent of mutational burden, and 

absent in immunocompromised mice.  

Neoantigens are derived from proteins translated from non-synonymous 

mutations. These proteins undergo several steps prior to presentation at the cell 

surface on MHC Class I and II molecules, for presentation to T lymphocytes. 

Predicting binding affinity to MHC requires the determination of patient-specific 

HLA alleles. Determination of neoantigen clonality requires a series of in silico 

steps, including identification of non-synonymous variants by comparing matched 

tumour and normal WES or WGS data, determination of HLA haplotypes, peptide 

processing, MHC binding prediction, and cross-referencing of neoantigens with 

known epitopes [173, 174] (Figure 1.7). Following this, clonality can be 

determined from multi- or single-region WES or WGS data using mathematical 

modelling. Pipelines typically call Class I epitopes only, with high rates of 

accuracy [173]. Current Class II typing algorithms are less reliable, although there 

is significant development and improvement in progress [55, 175].   
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Figure 1.7. Bioinformatics pipelines for neoantigen prediction and examples of some 
tools devised for each stage. Adapted from [174] and [173] (Athlates [176], HLAscan 
[177], MHCnuggets [175], MuTect [178], netMHCpan [169], PeptideMatch [179], 
Polysolver [180], Strelka [181], VarScan2 [182], VAtools[183] and VEP [168]). 
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1.6.2. Determining neoantigen clonality 

Methods for determining neoantigen clonality are currently experimental. Ideally, 

multi-region sequencing data should be available to determine the prevalence of 

mutations in all sequenced regions of a tumour. However, this is not readily 

available in many patient data sets and extrapolation and modelling from single 

region sequencing data is more commonly used. All methods rely on a series of 

mathematical and genomic assumptions, and their reliability is variable.  

For example, in a pan-cancer analysis of ITH using PyClone [184], Morris et al. 

showed marked associations between ITH and poorer survival outcomes in many 

cancer types, notably head and neck squamous cell carcinoma (HNSCC) and 

renal clear cell carcinoma [185]. However, there was no association noted in lung 

adenocarcinoma or squamous cell carcinoma, or bladder urothelial carcinoma. 

Colorectal carcinoma was also excluded from this analysis.  

An analysis of six methods of estimating ITH using TCGA data from breast, 

urothelial and HNSCC samples showed marked differences in the estimation of 

ITH, depending on the method used [186]. Methods that employed both 

estimation of single nucleotide variants (SNVs), copy number alterations (CNAs), 

and tumour purity such as PyClone and PhyloWGS [187] had similar results in all 

three cancer types, compared with the mutant allele heterogeneity (MATH) score 

[188], which does not analyse CNAs, but is a single quantitative measure based 

on differences in the mutant allele fractions among mutated loci [184]. In the 

comparison of six methods, the MATH score had the best success rate (100%), 

which is defined as the fraction of samples for which the method produced an 

error-free output.   
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These methods thus far have not been convincingly been shown to be superior 

to other clinic-pathological markers for determining prognosis [186]. They also 

are dependent on the accuracy of variant calling, which can be challenging [189]. 

In addition, most methods require estimation of copy number and tumour purity. 

Three methods are discussed below and two were used in this thesis. 

1.6.2.1 Modified PyClone  

McGranahan et al. demonstrated techniques for determining neoantigen clonality 

on both multi-region and single-region WES [164]. For multi-region WES data, for 

each patient sample, a mutation was deemed clonal only if it was present in all 

tumour regions sequenced. For single-region data, the observed mutation copy 

number was calculated using a combination of the variant allele frequency (VAF), 

tumour purity and local copy number. The expected mutation copy number was 

calculated using the VAF and assigning a mutation to one of the possible copy 

numbers using maximum likelihood. Finally, the mutations were clustered using 

the PyClone Dirichlet process clustering, which allowed clustering to group clonal 

and subclonal mutations based on their cancer cell fraction estimates. ITH was 

set using thresholds of 0.00, 0.01 and 0.05, and in all cases, there was statistically 

significant increased survival in those patients with samples calculated to have 

low ITH (that is, those with clonal neoantigens).  

1.6.2.2 Neopredpipe 

In the Genomics England 100 000 Genomes Project [190], which provided the 

bulk of samples and data for this project, neoantigen burden and clonality were 

assessed using the Neopredpipe pipeline [174]. This calls single nucleotide 

variants (SNVs), as well as insertions-deletions (indels) and frameshift mutations. 
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HLA typing was performed for Class I alleles (HLA-A, -B and -C). ANNOVAR 

[191] was used to annotate variants to identify non-synonymous variants, with the 

prioritisation of exonic variants. HLA haplotypes were provided separately and 

netMHCpan 4.0 was used for primary neoantigen identification [169]. For each 

variant, all peptides of length 9 to 10 amino acids that contained mutated amino 

acids were evaluated. Strong binders (SB) and weak binders (WB) were reported, 

using netMHCpan 4.0’s criterion of having a binding rank prediction of less than 

2.0 (for WB), or less than 0.5 (for SB).   

Clonality was determined by obtaining the cancer cell fraction and mutation 

clustering using DPClust [56] which uses a Dirichlet process based approach to 

estimate the number of mutation clusters in the data.  

Clonality can then be estimated by filtering the DPClust output against the 

neoantigen data available from Neopredpipe. The most important caveat in this 

process is that Class II neoantigen data is not available for Neopredpipe, thus 

leaving out a potential substantial contribution to heterogeneity. 

1.6.2.3. The Mutant-Allele Heterogeneity score 

The MATH score [188] is another method for determining ITH, from mutant allele 

frequency data. For a tumour, the MATH score is a ratio of the width to the centre 

of the distribution of mutant-allele fractions, among mutated loci. This is 

calculated as a percentage of the ratio of the median absolute deviation (MAD) 

to the median of mutant allele fractions at tumour-specific mutated loci. 

Mroz et al. [188], who described the MATH score, interrogated the relationship 

between the MATH score and prognosis in 74 HNSCC cases. They showed that 
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the MATH score was not related to overall mutation rate, and that the MATH 

score is higher in poorer outcome HNSCC (including those with disruptive tumour 

protein 53 (TP53) mutations). The authors note that MATH is calculated from 

single sample reads, and its precision depends on sampling of loci and of mutant 

versus reference alleles. The precision of the score is also higher in samples with 

higher mutation rates. They discuss the possibility that higher mutation rates 

could lead to higher MATH scores, but this was not the case in their data set.  

They also showed that copy number differences did not have a significant impact 

on the MATH score. A linear comparison of the CNA-adjusted MATH score with 

the raw MATH showed an almost exact correlation between these two values.  

The MATH score was used to quantify heterogeneity in a sample of over 2500 

cancers from the International Cancer Genome Consortium (ICGC) and The 

Cancer Genome Atlas (TCGA) Pan-Cancer Analysis of Whole Genomes 

(PCAWG) variant data set [192, 193]. In this data set, there was lower mutational 

heterogeneity among high-impact putative passenger mutations for both coding 

and non-coding regions. Greenbaum et al.[194], in a sample of 21 locally 

advanced rectal cancers, showed a correlation between higher MATH score and 

poorer responses to neo-adjuvant chemoradiotherapy (p=0.0039).  

In summary, the MATH score provides a simple solution to the problem of 

determining Class I versus Class II neoantigens, and effectively determines ITH 

from TMB data.  

 

1.7 Metagenomic determinants of the colorectal immune environment 
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The role of commensal microbiota in gut development, maintaining integrity, 

metabolism and immunity is critical [195]. There are over 1013 commensals in 

the human gut. Although the majority (99%) of species are bacterial, with 

Bacteroides and Firmicutes predominating [196], there are also viruses, archaea 

and eukarya. There is significant diversity in microbiota amongst healthy 

individuals, as well as between healthy people and those with some diseases, 

such as inflammatory bowel disease [197]. 

1.7.1. Gut microbiota and tumorigenesis 

There is convincing evidence that gut microbiota modulate colorectal 

tumorigenesis. In animal models, specific microbes associated with colonic 

inflammation can drive carcinogenesis [198]. Bacteroides fragilis rapidly induces 

colitis and colon tumours in mice heterozygous for the APC gene, with marked 

downregulation of effector T cell responses and upregulation of Treg responses 

[198] [199] . In humans, gut microbiota differ significantly between patients with 

CRC and healthy controls [200]. In particular, certain bacterial strains, most 

notably Fusobacterium nucleatum, Escherichia coli, Bacteroides 

fragilis and Salmonella enterica, are detected in human biopsies in 

gastrointestinal cancers, and could be considered high risk factors for 

carcinogenesis [201]. Moreover, there is a large degree of heterogeneity in 

microbiota composition in CRC patients, with differences between faecal and 

mucosal samples, and between proximal and distal tumours [200].  

1.7.2. Gut microbiota and the anti-tumour immune response 

Routy et al. demonstrated that abnormal gut microbiome composition could be 

responsible for non-response to anti-PD-1 immunotherapy in patients with a 
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range of epithelial cancers, predominantly NSCLC and renal cell carcinoma [202]. 

They used quantitative metagenomics, with shotgun sequencing obtaining 

greater than 20 million short DNA reads per sample, which was analysed using 

a reference catalogue of the human microbiome genome [203]. In this cohort of 

100 patients, administration of systemic antibiotic treatment just prior to 

commencing immunotherapy led to worsened PFS and OS than in a comparable 

non-treated group. This was postulated to be due to the alteration of the gut 

microbiome by antibiotic therapy. Responders to immunotherapy had differencing 

microbe profiles from non-responders, with the abundance of Akkermansia 

municiphilia, Enterococcus hirae and Alistipes indistinctus in responders. 

Furthermore, faecal mucosal transplantation (FMT) from responders into germ-

free or antibiotic-treated mouse tumour models led to significant anti-tumour 

responses, with upregulation of dendritic cell and effector T cell responses. This 

did not occur with FMT from non-responders [202].  

Using 16S ribosomal RNA (rRNA) gene amplicon sequencing, Matson et al. 

showed that stool samples from patients with metastatic melanoma who 

responded to immunotherapy had an abundance of certain bacterial species, 

notably Bifidobacterium longum, Collinsella aerofaciens and Enterococcus 

faecium, while non-responders had an abundance of Ruminococcus 

obeum and Roseburia intestinalis [204]. Flow cytometry and cytokine assays 

from patients showed that those with high abundance of favourable microbes 

(including Clostridiales, Ruminococcaceae and Faecalibacterium) had higher 

densities of effector T cells (CD4+ and CD8+) in the systemic circulation, while 

those with higher frequencies of Bacteroidiales species had more Tregs and 
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MDSCs. A similar germ-free mouse tumour model also demonstrated similar 

responses to FMT from responders [204].  

Finally, exposure to bacterial species enriched in colonic tissues, notably 

Fusobacterium nucleatum, Bacteroides fragilis and Escherichia coli, stimulates 

chemokine production which drives T cell tracking into the tumour 

microenvironment both in vitro and in an in vivo CRC mouse model [205].  

1.7.3. Metagenomic sequencing of tumour whole genome data  

Associations between differences in the gut microbiome and responses to 

immunotherapy in patients with CRC have been relatively underexplored and is 

an area of significant interest. Tumour WGS data can be used to explore the 

associations between metagenomic factors and the immune response in CRC, 

using Kraken2, a taxonomic sequence classifier which is able to assign 

taxonomic labels to DNA sequences [206]. WGS has been demonstrated to have 

many advantages over 16S rRNA sequencing, including increased detection of 

bacterial species, species diversity and increased accuracy of species detection, 

likely due to the longer read length with WGS compared with amplicon 

sequencing [207]. This information was available to explore the associations 

between the microbiome and the Immunoscore.  

 

1.8. Project aims 

Immunotherapy has revolutionised the treatment of some cancer types. However, 

the benefits are yet to be realised in CRC, the majority of which appears to be 

refractory to current immunotherapeutic regimens. For patients with relapsed or 
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metastatic disease there has been relatively little progress in the development of 

new therapeutic options.  

A better understanding of the drivers of immunogenicity, particularly the germline, 

somatic and epigenetic factors, will provide the necessary breakthroughs to 

improve the efficacy of immunotherapy in CRC. It will generate novel biomarkers, 

which could expand the current pool of patients able to benefit from 

immunotherapy and provide novel options to harness the immune response to 

facilitate tumour rejection and better clinical outcomes. 

This thesis explores germline, somatic and metagenomic determinants of the 

immune response in CRC. The germline component hypothesised that there is 

an association between immune gene eQTLs and the CRC immune environment, 

with the aim of establishing specific eQTL SNPs as potential biomarkers for 

immunotherapy. The somatic component hypothesised that neoantigen clonality 

(the inverse of intratumoral heterogeneity) is a stronger driver of the CRC immune 

environment than tumour mutational or neoantigen burden. This could serve as 

a more effective biomarker for targeting immunotherapy in CRC than 

microsatellite status. The final component explored the role of the gut microbiome 

in driving immune expression in CRC. These insights provide further support for 

targeted clinical trials exploring the role of neo-adjuvant and adjuvant 

immunotherapy in both dMMR and pMMR CRC at all disease stages. 

I was fortunate to have access to the unique resources, tools and skills provided 

by the Genomics England 100 000 Genomes Project and the project 

collaborators, to drive this work [190]. 
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Chapter 2: Materials and Methods 
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2.1. Sample collection  

2.1.1. Data and sample access 

2.1.1.1. The 100 000 Genomes Project 

Patient data and samples were obtained primarily from the 100 000 Genomes 

Project (100KGP) [190]. The 100KGP is a publicly funded genomics project with 

the aim of creating a genomic medicine service for the UK National Health 

Service (NHS). It is coordinated by Genomics England (GeL), which was set up 

by the UK Department of Health in July 2013. The 100KGP enrolled, collected 

and sequenced 100 000 genomes from 70 000 patients and their families, with 

cancer and rare diseases. The Genomics England Clinical Interpretation 

Partnerships (GeCIPs) co-ordinate the research activity. They are made of 

thousands of UK and international scientists and clinicians, organised into 

domains formed around related conditions. The Colorectal Cancer GeCIP 

domain studies data from patients with CRC. Clinical and WGS data from tumour 

tissue (resected specimens) and whole blood (germline DNA) are available within 

the GeL Research Environment. Sequencing of samples was reported to be at 

least to a read depth of 100x.  

The West Midlands Genomic Medicine Centre (WMGMC), led by the University 

Hospitals Birmingham (UHB) NHS Foundation Trust was integral in recruiting and 

obtaining samples from patients in the West Midlands. The University of 

Birmingham’s Human Biomaterials Resource Centre (HBRC) (Birmingham, UK) 

has tumour and normal colon samples for over 400 patients with CRC enrolled in 

the 100KGP in its Biorepository (Research Tissue Bank ethical approval from 
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National Research Ethics Service Committee North West – Haydock, reference 

number15/NW/0079). With appropriate permissions and ethical approval (see 

Appendix 2 and Appendix 3), WGS and clinical data, along with formalin fixed 

tissue blocks from resected specimens on these patients were available for 

performing the Immunoscore, RNA expression profiling and 

immunohistochemical analysis.  

2.1.1.2. Patient data sets  

Prior to obtaining data from the 100KGP, a pilot analysis was performed. The 

pilot analysis consisted of a local cohort of 50 patients with both colon and rectal 

tumours who had previously been recruited, and for whom germline and somatic 

WGS data and FFPE tumour samples were available [208].  

Subsequently, genomic data and surgical resection specimens were obtained 

from 188 patients who had been recruited to the 100KGP. See Appendix 2 for 

the Intellectual Property Agreement from GeL. These patients had been treated 

at the UHB NHS Trust (Birmingham, UK) and formalin-fixed samples of their 

surgical resection specimens were available at the Biorepository. WGS data for 

the pilot cohort was accessed via the University of Birmingham’s secure High 

Performance Computing (HPC) Linux-based interface, BlueBEAR (Birmingham 

Environment for Academic Research, http://www.birmingham.ac.uk/bear [209]). 

WGS data for the 100KGP cohort was accessed via the GeL Research 

Environment (https://re.extge.co.uk/ovd/). Both interfaces are user-restricted and 

encrypted. 
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Patients selected for inclusion included those with surgically resected CRC, with 

Stage 1 to 4 but predominantly Stage 2 and 3 tumours at the time of excision. 

Sampling was performed in real time as patients were being recruited to the 

100KGP and their samples were made available in the Biorepository. Patients 

who had pre-operative radiotherapy were excluded, as this was shown to make 

the tumour tissue unsuitable for the Immunoscore. Radiotherapy induces 

significant tissue changes including fibrosis, mucus secretion and tumour 

regression, which preclude precise delineation of the tumour core and invasive 

margin, which are crucial for the Immunoscore [210]. Recruitment for this study 

stopped when samples for 208 patients were retrieved.  

Data on clinical outcomes was available via the Clinical Portal at the UHB NHS 

Trust and corroborated with information available within the GeL Research 

Environment. Clinico-pathological criteria assessed included age at surgery, sex, 

ethnicity, primary tumour location, type of surgery performed, mucinous histology, 

tumour T stage, nodal status, extramural venous invasion (EMVI), disease stage, 

microsatellite status, RAS and BRAF mutation status, neo-/adjuvant treatment 

(predominantly chemotherapy and radiotherapy), recurrence-free survival (RFS) 

and overall survival (OS) at the time of analysis. All samples were anonymised 

by the HBRC to maintain non-traceability of patient information.  

 

2.1.2. Tissue preparation 

For each patient, FFPE specimen sections were prepared from tumour tissue 

blocks fixed in either Formal saline 10% (VWR International, Radnor, Penn, USA) 
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or Neutral Buffered Formalin (Fisher Scientific, Hampton, NH, USA) at the HBRC. 

For RNA extraction and 3’ sequencing, 8µm thick specimen scrolls were prepared 

in Eppendorf tubes. Eight scrolls each of FFPE per patient specimen were 

available. For the Immunoscore, 4µm thick unstained slides were prepared 

according to specifications from HalioDx (see below). The FFPE scrolls were 

stored in Eppendorf tubes at room temperature, and fixed slides were stored in 

secure boxes with desiccants, at 4oC.  

 

2.2. Sample processing and sequencing 

2.2.1. FFPE RNA extraction  

RNA extraction was performed using the Covaris® total NA extraction protocol 

(Covaris, Inc., Woburn, MA, USA), using column-based purification. For each 

sample, two 8µm thick FFPE scrolls were emulsified in Tissue Lysis Buffer and 

proteinase K. Using adaptive focused ultrasonication with the Covaris E220 

Evolution, each sample was processed for 300 seconds at 20oC, with Peak 

Incident Power 175 Watts, at 200 cycles per Burst. Following incubation at 56°C 

for 30 minutes to release the RNA, and centrifugation to separate the RNA-

containing supernatant from the DNA-containing tissue, the RNA-containing 

supernatant was de-crosslinked at 80°C and purified over a spin column. 

Removal of contaminant DNA was performed by incubation with the Invitrogen 

TURBO-DNA™ free kit (ThermoFisher Scientific, MA, USA) on the spin column 

for 30 minutes at room temperature. Following further column purification, 30μL 

of RNA was eluted for each specimen, and stored at -80oC to minimise 

degradation. RNA quantification (ng/µL) was performed on the QuBit Fluorometer 
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(Thermofisher Scientific, MA, USA). The RNA integrity number (RIN) for each 

sample was assessed using the Agilent 4200 TapeStation Bioanalyzer system 

(Agilent Technologies, Santa Clara, USA). 

 

2.2.2. 3’ RNA library preparation 

Following normalisation of samples to 20ng/µL, RNA library preparation was 

performed using the QuantSeq 3’ mRNA-Seq Library Prep Kit FWD for Illumina 

by Lexogen® (Lexogen GmbH, Vienna, Austria). As this is a QuantSeq protocol 

using total RNA, no prior poly(A) enrichment or rRNA depletion was required. 

This protocol was chosen as it is able to generate Illumina-compatible libraries, 

even from very degraded or FFPE RNA. Library generation began with reverse 

transcription (with oligo (dT) priming containing the Illumina-specific Read 2 linker 

sequence). After first strand synthesis, the RNA was removed and second strand 

synthesis initiated by random priming and a DNA polymerase. The random primer 

contains the Illumina-specific Read 1 linker sequence. Second strand synthesis 

was followed by a magnetic bead-based purification step, after which the library 

was amplified by polymerase chain reaction (PCR) for 17-20 cycles each. 

External barcodes (with a combination of i5 and i7 indices) were introduced 

during the PCR amplification step. Following a second purification step, library 

quality control (QC) was performed on the Agilent TapeStation Bioanalyzer and 

DV200 values, representing the percentage of fragments with greater than 200 

nucleotides, were obtained for each sample. Samples were stored at -20oC for 

sequencing. Library preparation was performed both manually and using the 
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Hamilton Microlab® Star™ robot (Hamilton Company, Reno, Nevada, USA), with 

equivalent results. 

2.2.3. 3’ RNA sequencing 

RNA sequencing was performed in three batches due to the large sample size. 

The prepared libraries were pooled and quantified to 4nM. The libraries were 

subsequently denatured in 0.2 N sodium hydroxide (NaOH) (Sigma-Aldrich, St 

Louis, Missouri, USA) with Tris hydrochloric acid (HCl) at pH 7.0 (Sigma-Aldrich). 

Denatured libraries were diluted to 1.6pM concentration in Illumina hybridisation 

buffer (HT1; Illumina, San Diego, CA, USA) at 4oC, and spiked with 1% Illumina 

PhiX control (Illumina) at 20pM. PhiX is derived from a bacteriophage genome. It 

is available as a concentrated library (10nM in 10µL), with an average size of 500 

bp and a balanced base composition of approximately 45% G and C and 55% A 

and T. At a low concentration, it serves as sequencing control to monitor run 

quality (including cluster generation, sequencing, and alignment) [211].  

Each prepared library was loaded into a separate Illumina NextSeq™ 500/550 

Reagent Cartridge at room temperature. The Illumina NextSeq™ 500/550 High 

Output Flow Cell Cartridge and Reagent cartridge were loaded into the Illumina 

NextSeq™ 500 system. Sequencing was performed on the NextSeq to a read 

length of 75bp per sample. Reads were generated towards the poly(A) tail and 

directly correspond to the messenger RNA (mRNA) sequence. Information was 

stored in the Illumina BaseSpace Sequence Hub 

(https://basespace.illumina.com). Sequence data in bcl file format was 

transferred to the BlueBEAR Linux platform, where the files were converted to 

fastq format using the bcl2fastq application [212]. The fastq files were transferred 
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to the Partek Flow® (Partek Inc, St Louis, Missouri, USA) server for downstream 

analysis in our local server (http://fuggle.bham.ac.uk:8080/flow/login.xhtml). 

2.2.4. Partek Analysis 

The Lexogen QuantSeq unique molecular identifier (UMI) 0604 pipeline on 

Partek was used to align the reads to obtain both gene and transcript counts 

(Figure 2.1). First, the unaligned reads were trimmed and quality controlled. The 

transcript fragments in the Lexogen QuantSeq pipeline arise at the 3’ end of 

mRNA sequence, so the Partek pipeline includes trimming of the poly(A) tails and 

low-quality adapter sequences. The fragments were then aligned using the STAR 

aligner [213], to the reference genome hg19/GrCh37 

(https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.13/) and Ensembl 

release 75 (https://grch37.ensembl.org/index.html), with post-alignment QC 

statistics provided. The aligned reads were transferred for gene counting, using 

HTSeq-count [214] to count the number of reads per gene.  Mapped reads were 

only counted if they uniquely mapped to the exons of the gene body.   

Gene and transcript counts were normalised in the Partek suite (as counts per 

million). The normalisation equation involves multiplication of the raw read of 

each sample on each feature (gene) by 10e6 and division by the total mapped 

reads of that sample, and addition of 10e-04 to each result. The principal 

components analysis (PCA) node was used to visualise the samples. As there 

was a batch effect visible in the normalised reads, a correction for batch effect 

was performed by selecting the ‘batch’ and ‘Immunoscore’ factors and 

interactions, and the PCA node was once again used to determine that the batch 

effect had been eradicated.  
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To determine associations between the Immunoscore and gene counts, after 

filtering out ribosomal and mitochondrial genes, the Gene Set Analysis (GSA) 

module in the Differential Analysis node was used to compare patients with low 

and high Immunoscores. This generated statistical associations and a 

hierarchical clustering/heat map. 

Gene and transcript count information for specific genes and groups was 

downloaded from the Partek Genomics suite in .txt format for more detailed 

analysis. 
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Figure 2.1. The Partek Lexogen QuantSeq pipeline. E/M – expectation/maximisation algorithm. QA – quality alignment. QC – quality control. 
STAR – Spliced Transcripts Alignment to a Reference [213]. UMI – unique molecular identifier.  
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2.3. Immunohistochemical analysis 

2.3.1. The Immunoscore®   

For the Immunoscore, from each formalin-fixed tumour tissue block, four 

unstained slides at 4µm thick were prepared according to instructions from 

HalioDx® (Luminy, Marseille,France)(https://www.immunoscore-

colon.com/fileadmin/Documentation Colon/EU CLIA et CEIVD/Material Requ

irements Instructions CE-IVD MRS MG.pdf).  

Tumour tissue was fixed according to the standard HBRC laboratory protocol, cut 

to 4µm thick sections, mounted on positively charged glass slides and dried 

at 56°C overnight. The slides were placed in secured slide boxes and stored at 

4°C, with desiccants, until transfer by shipping to HalioDx®. The Immunoscore 

was performed according to the internationally validated and patented protocol, 

which is described below [118]. All samples were shipped for analysis within 

twelve weeks of preparation. 

The Immunoscore protocol is briefly described. Two prepared slides from each 

patient were processed. After overnight incubation at 56oC, the slides were 

stained with monoclonal antibodies against CD3 and CD8 (rabbit anti-human 

CD3 (clone HDx2, HalioDx) and mouse anti-human CD8 (clone HDx1, HalioDx)), 

using the Ventana Benchmark XT (Roche Diagnostics, Basel, Switzerland). 

Revelation was with the Ultraview Universal DAB IHC Detection Kit (Ventana, 

Tucson, AZ, USA), and counterstaining with Mayer's haematoxylin. After 

incubation for 3.5hr and washing with ethanol and washing with de-ionised water, 

the slides were scanned on the Nanozoomer XR (Hamamatsu Photonics K.K., 
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Hamamatsu City, Shizuoka, Japan). Digital images of the stained tissue sections 

were obtained at 20× magnification and 0·45 μm/pixel resolution. A specially 

developed Immunoscore module integrated into the image-analysis system of a 

Developer XD digital pathology software (Definiens, Munich, Germany) was used 

to determine the densities of CD3+ and CD8+ T cells in colon tumour and invasive 

margin regions. 

The mean and distribution of the staining intensities were monitored to obtain an 

internal QC of each slide. Slides that failed QC were rejected and the staining 

protocol repeated with an alternate pair of slides. Samples that failed repeat 

staining and QC, or for which an insufficient margin was found were removed 

from further analysis. 

For each case, CD3+ and CD8+ cell densities in the centre of the tumour (CT) 

and invasive margin (IM) regions were converted into percentiles. The mean of 

four percentiles (two markers, two regions) was calculated and converted into an 

Immunoscore value. For the three-group classification, a 0–25% density was 

scored as low, a density between 25% and 70% was scored as intermediate, and 

a density between 70% and 100% density was scored as high. For the five-group 

classification, the mean percentiles were scored as 0-10% (score 0), >10 to 25% 

(score 1), >25 to 70% (score 7), >70 to 90% (score 3) and >90 to 100% (score 4) 

[124]. 

I was privileged to collaborate with Professor Jérôme Galon, who pioneered the 

Immunoscore technique, and is a co-founder of HalioDx and the Chairman of its 

Scientific Advisory Board. I visited the HalioDx laboratory to learn the techniques 
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and participate in performing the Immunoscore on the first batch of samples that 

were analysed. 

2.3.2. Antibody staining and expression analysis  

MHC Class II staining was performed in collaboration with Dr Phillipe Taniere at 

the UHB NHS Trust Pathology Laboratories. The  MHC class II (HLA DR + DP + 

DQ) antibody CR3/43 (ab17101)) (Abcam, Cambridge, UK), which is clinically 

validated for the ANICCA-Class II trial (a phase II trial assessing nivolumab in 

strong class II expressing microsatellite stable colorectal cancer) [215] was used. 

An expert pathologist (Dr Phillipe Taniere, at the UHB) reviewed the slides, and 

a Class II expression percentage score was given following an internal MHC 

Class II colorectal pathology interpretation guide. 

 

2.4. Bioinformatics analyses 

2.4.1. eQTL analysis 

2.4.1.1. Selection of candidate eQTL genes 

Vogelstein et al.[161] used data from the Multiple Tissue Human Expression 

(MuTHER) Project [155] (www.muther.ac.uk) and interrogated the Gene 

Ontology (www.geneontology.org) and Kyoto Encyclopedia of Genes and 

Genomes (www.genome.jp/kegg/) databases to derive a list of 385 

immunomodulatory genes. They mined the list of top cis- eQTLs per probe in 

lymphoblastic cell lines (LCLs) from the MuTHER database for all the probes 

representing this panel of immunomodulatory genes. 50 SNPs with the most 

significant cis-eQTL activity (ranked with p values less than 4.46x10−8) in cells of 
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the immune system were selected for genotyping. Confirmation genotype-

expression associations for the 50 probe-SNP pairs was done using publicly 

available expression data from ArrayExpress (accession no. E-TABM-1140 

[216]). Access to the genotype data set was obtained from the Department of 

Twin Research, King’s College London. Twins (339 twin-pairs) from the same 

pair were separated into two twin sets and independent eQTL analyses were 

performed for each twin set using Spearman Rank Correlation. Genotype-

expression correlations were assessed in 777 participants (including 339 twin-

pairs) under three genetic models of inheritance (i.e. genotypic, dominant, and 

recessive) using Spearman Rank Correlation test. They successfully genotyped 

40 SNPs which were passed to association analyses. The gene list is below 

(Table 2.1). 
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Table 2.1. List of top 40 eQTL SNPs (reproduced from Vogelsang et al. [161]) 

 

SNP 

 

GENE 

 

PROBE 

LCL-combined 

Beta P value 

rs4577037 IL16 ILMN_2290628 0.65 2.14E-58 

rs7574070 STAT4 ILMN_1785202 0.48 2.19E-57 

rs841718 STAT6 ILMN_1763198 0.26 1.36E-53 

rs8101605 LILRB1 ILMN_1708248 0.44 2.13E-47 

rs2071304 SPI1 ILMN_1696463 -0.20 2.24E-44 

rs11569345 CD40 ILMN_2367818 0.54 3.21E-38 

rs17001247 CXCL10 ILMN_1791759 -0.77 3.78E-35 

rs11919943 CCR1 ILMN_1678833 0.34 9.39E-29 

rs4500045 PAG1 ILMN_1736806 0.17 3.25E-27 

rs6673928 IL19 ILMN_1799575 0.12 5.66E-23 

rs10760142 C5 ILMN_1746819 0.12 4.82E-22 

rs859 IL16 ILMN_1813572 0.15 1.09E-21 

rs4500045 PAG1 ILMN_2055156 0.20 6.45E-21 

rs9921791 MLST8 ILMN_1789240 0.17 2.52E-20 

rs6692729 PSEN2 ILMN_2404512 -0.10 5.71E-20 

rs7584870 SOCS5 ILMN_2350970 -0.08 2.50E-19 

rs2701652 IRAK3 ILMN_1661695 0.27 2.96E-19 

rs4848306 IL1B ILMN_1775501 0.27 4.68E-19 

rs1551565 CAMK4 ILMN_1767168 0.10 2.78E-18 

rs11203203 UBASH3A ILMN_2338348 0.14 3.16E-18 

rs1049337 CAV1 ILMN_1687583 0.06 6.31E-17 

rs4808137 UBA52 ILMN_2368576 -0.12 5.69E-16 

rs1149901 GATA3 ILMN_2406656 -0.12 1.17E-15 

rs6692729 PSEN2 ILMN_1714417 -0.10 2.97E-15 

rs7036417 SYK ILMN_2059549 0.14 1.75E-14 

rs3807383 GIMAP5 ILMN_1769383 -0.27 2.38E-14 

rs1378940 CSK ILMN_1754121 0.09 1.27E-13 

rs12401573 SEMA4A ILMN_1702787 -0.15 1.97E-13 

rs9863627 PAK2 ILMN_1659878 0.17 2.17E-13 
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SNP 

 

GENE 

 

PROBE 

LCL-combined 

Beta P value 

rs4500045 PAG1 ILMN_1673640 0.07 4.81E-13 

rs4402765 IL1A ILMN_1658483 -0.22 3.31E-12 

rs13331952 CKLF ILMN_2414027 0.37 7.64E-12 

rs2291299 CCL5 ILMN_2098126 -0.20 1.35E-11 

rs4796105 CCL5 ILMN_1773352 -0.21 2.44E-11 

rs13331952 CKLF ILMN_1712389 0.47 3.83E-11 

rs2295359 IL23R ILMN_1734937 -0.14 2.26E-10 

rs665241 FYB ILMN_1796537 0.09 5.89E-10 

rs6695772 BATF3 ILMN_1763207 -0.16 6.93E-10 

rs7720838 PTGER4 ILMN_1795930 -0.07 1.78E-09 

rs2276645 ZAP70 ILMN_1719756 -0.15 6.38E-09 

rs4469949 CD27 ILMN_1688959 -0.19 8.48E-09 

rs10422141 TICAM1 ILMN_1724863 -0.08 1.24E-08 

rs11161590 BCL10 ILMN_1716446 0.08 3.67E-08 

rs152112 ITK ILMN_1699160 0.05 4.26E-08 

eQTL = expression quantitative trait loci, SNPs = single nucleotide polymorphisms 
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SNP chromosomal positions were confirmed using the UCSC Genome Browser 

(http://genome.ucsc.edu/) [217] with reference genome GRCh38/hg38 

(https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.39).  

The extended eQTL SNP list from MuTHER was also interrogated and filtered for 

all LCL immune gene cis-eQTLs with expression p values <0.05. This provided a 

list of 385 eQTL SNPs for 269 genes (Appendix 4). 

2.4.1.2. Variant calling  

The computations described below were performed using the HPC service within 

the GeL Research Environment and the University of Birmingham’s BlueBEAR 

Linux interface. Sequencing was performed by Genomics England using the 

Genomics England (GeL) v4 pipeline [218]. Downstream analyses by colleagues 

in the 100KGP showed that variant allele frequencies (VAFs) computed using the 

Isaac pipeline [219] are potentially biased, due to the preferential soft-clipping of 

semi-aligned reads [220]. The Isaac “–clip” parameter soft clips read ends until 

five consecutive bases are matched with the reference genome. This results in 

loss of support for alternate alleles occurring within five bases of each read end. 

FixVAF was developed and used to reduce the allelic bias, by soft clipping all 

reads by five bases at each end regardless of their status [220].  

The Strelka germline and somatic variant caller [181] was used for variant calling.  

Germline and tumour whole genome sequencing Variant Call Format (vcf) files, 

in compressed format (.vcf.gz) were accessed within the GeL Research 

Environment’s password protected LabKey server.  
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2.4.1.3. SNP extraction/filtering  

SNP filtering was performed using the VCFtools module 

(vcftools.sourceforge.net) for each chromosome and SNP position. The RefSeq 

IDs of the top 40 eQTL SNPs explored by Vogelsang et al. were obtained and 

uploaded into the Bluebear Linux platform and the GeL Research Environment 

.txt format. Germline VCF files for each sample were filtered against these SNPs 

using VCFtools. The resultant .vcf.gz files were indexed using the samtools 

“tabix” function [221] and the genotypes were extracted in R. SNPs were coded 

as both additive (1,2, and 3 representing wild-type, heterozygous variant and 

homozygous variants) and dominant (1,2, and 2 representing wild-type, 

heterozygous variant and homozygous variants). 

SNP-Immunoscore associations were performed using ordinal logistic regression 

with the “MASS”, “caret” and “tidyverse” packages in R (https://www.r-

project.org/). The main analysis was performed on the SNPs using the additive 

genotypic model. Supplementary analysis was also performed using the 

dominant model. The stepAIC function (“forward”) was used for stepwise 

selection and subsequently the “train” function in the “caret” package was used 

to generate a predictive model with the best fit. Finally, p values were corrected 

for multiple testing using both the Bonferroni and false discovery rate (FDR) 

techniques. To examine the effect of gene expression of those SNPs in human 

cancer, the Human Protein Atlas (www.proteinatlas.org) [222] was consulted. 
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2.4.1.3. a. Quality control and principal components analysis  

As a method of quality control, joint genotype files for each chromosome were 

interrogated to ensure that variants were called in all samples and in all 

chromosomes to an accuracy of ≥ 95%.  

Finally, principal components analysis (PCA) of the significant SNPs by ethnicity 

was performed in R using the packages “stats” and “ggfortify”. The prevalence of 

each SNP by ethnicity was compared to determine any potential confounding 

impact of this on the SNP-Immunoscore associations. 

2.4.2 Estimation of intratumoral heterogeneity 

2.4.2.1 Neoantigen prediction  

Neoantigen prediction was performed using the Neopredpipe pipeline [174] in 

collaboration with Professor Trevor Graham and Dr Eszter Lakatos at the Queen 

Mary University, London, United Kingdom. Neopredpipe predicts only Class I 

peptides but can generate both SNVs and indels. HLA typing was performed 

using HLAtyper [223] as part of Illumina’s sequencing panel procedure. Peptide 

binding prediction is incorporated into the pipeline using netMHCpan 4.0 [169], 

and neoantigen prediction with POLYSOLVER [180]. Predicted neoantigens 

were cross-referenced with normal peptides using PeptideMatch [179], which 

assesses for novelty of candidate epitopes by searching against a reference 

proteome, for example from Uniprot or Ensembl. 

TMB data was obtained from LabKey within the Research Environment server 

and from the BlueBEAR interface. TMB is calculated per Mb by dividing the 

number of non-synonymous SNVs by genome size. For the Pilot samples, the 
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Illumina TruSight Oncology 500 (TSO500) panel was used to profile the samples 

and generate a TMB, using a panel size (genome size) of 1.85Mb [224] . For the 

100KGP samples, the panel size was taken as the whole genome (3000Mb). We 

have shown that the estimation of TMB using the TSO500 panel is highly 

accurate and strongly correlated with the WGS TMB (R2 = 0.9) [224]. Comparison 

plots of TMB and neoantigen and indel burden were created in R. 

2.4.2.2. Neoantigen clonality and intra-tumoral heterogeneity  

2.4.2.2. a. Estimation of intratumoral heterogeneity using DPClust 

As only single region sequencing data was available for each sample, copy 

number alterations (CNAs), tumour purity and cancer cell fraction (CCF) 

estimates were required to determine the proportion of each mutation within the 

sample. CNA calculation was performed in the RE by Dr David Wedge’s team at 

the University of Oxford, using ASCAT (allele-specific copy number analysis of 

tumors, version 2.2 [225]), as described by Bolli et al. [226]. ASCAT was shown, 

in samples from multiple myeloma, to reliably identify clonal and subclonal copy 

number changes in tumours using WES data [225].   

Calculation of the cancer cell fraction and mutation clustering were performed 

with DPClust [56], which uses a Dirichlet process based approach to estimate the 

number of mutation clusters in the data. This method accounts for the effects of 

sample purity and copy number aberrations on allele frequency [226]. Class I 

neoantigen burden data was obtained from Neopredpipe, and filtered against the 

DPClust data, which selected out all neoantigens per sample. The proportion of 

each neoantigen in each tumour was calculated as a proportion from 0 to 1.  
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Some neoantigens were present at a proportion of greater than 1, for three main 

reasons. First, random sampling of reads can lead to substantial variation in allele 

frequency distributions. This is particularly so for mutations with low coverage 

and low purity samples. Secondly, some SNPs may be miscalled as somatic 

SNVs, and therefore have higher allele frequency than expected due to being 

present in both normal and tumour cells in the samples. Finally, copy number 

callers have small errors in copy number calling, and may miss small CNAs, 

leading to incorrect adjustment of allele frequencies in these regions.  

Neoantigens present at a proportion of 1 (or above) were coded as ‘clonal’. To 

determine the degree of intratumoral heterogeneity (ITH), the total number of 

subclonal neoantigens was divided by the total number of neoantigens, to derive 

a score as a proportion ranging from 0 to 1. A score closer to 1 represents a more 

heterogeneous tumour. This score was correlated with the Immunoscore. 

2.4.2.2. b. Estimation of intratumoral heterogeneity using the MATH score 

The MATH score [188] is a percentage score of the ratio of the width to the centre 

of the distribution of mutant allele fractions. As this incorporates all tumour 

mutations, and therefore includes both Class I and II neoantigens. For each 

tumour, it is calculated as a percentage of the median absolute deviation (MAD) 

and the median of its mutant allele fractions at tumour-specific mutated loci.  

The equation is as follows: 100 * MAD / median. 

The BCFtools “query” command [221] was used to filter out the per SNP read 

depth (the “DP” field) and the tumour mutant reads (the “ID/TAR”) fields from the 

tumour WGS variant call files (vcf.gz).  The median and MAD of these tumour-
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specific mutated loci was calculated for each tumour and a MATH score was 

derived. 

The authors of the MATH score note the possibility that tumours with high 

mutation rates could have greater heterogeneity. Their data did not show any 

association between number of mutations and the MATH score. In this data set, 

a comparison of the MATH score with the TMB was also performed to determine 

if any linear association existed.  

2.4.3. Metagenomic analysis 

Metagenomic sequencing was performed using Kraken2 [206], and the results 

were visualised with Pavian [227]. Kraken is a fast and accurate program, which 

assigns taxonomic labels to metagenomics DNA sequences. It uses exact k-mer 

matches to a database, rather than inexact alignment of sequences, which vastly 

improves its accuracy [228]. The database of microbial genomes is large and 

growing, and the accuracy continues to improve.  

First, the reads in each tumour WGS BAM (binary alignment map) file were 

extracted using samtools [221]. This generated bam files, of size ranging from 

10GB to 20GB. The bam files were sorted using samtools. Sorted bam files were 

converted to compressed fastq files using picard tools (version 2.10.1-Java-1.8.0-

131) [229]. Finally, the minikraken database was uploaded from the kraken2 

website (http://ccb.jhu.edu/software/kraken/). The kraken2 command was used 

to match the compressed fastq files to the kraken2 database, generating out test 

and report files for each sample.  



74 
 

The report files were uploaded into the Pavian browser in R 

(pavian::runApp(port=5500)), where visualisation was performed for each 

sample. Pavian generates Sankey plots for each sample. Sankey diagrams 

display the flow of reads for each sample from the root of the taxonomy (the 

domain) to more specific ranks (the species). The width of each flow is 

proportional to the number of reads [227]. Information on the percentages of 

classified compared with unclassified reads, and percentages of reads by domain 

(chordate, bacterial, viral, fungal and protozoan) were also available to download 

in text csv format. 

Finally, detailed data on the number of raw reads by domain, phylum, class, 

order, family, genus and species for each sample was generated and available 

to download in text csv format, where they could be filtered for downstream 

analysis. 

 

2.5 Statistical analysis 

2.5.1. Sample size considerations 

Statistical analyses were performed using ordinal logistic regression to identify 

associations between genotypes for MuTHER eQTLs and the corresponding 

tumour Immunoscore levels. We adjusted for potential confounders including 

ethnicity, sex, and background genetic context using principal components 

analysis of common SNP genotype matrices.  
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Power calculations were performed using both R (R Foundation for Statistical 

Computing, Vienna, Austria, https://www.r-project.org/) and G*Power statistical 

packages (http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/). In 

statistical analysis, effect sizes are conventionally grouped into small (0.1), 

medium (0.25) and large (0.4) [230]. 

For eQTL analysis, the “MASS” and “ordinal” packages in R were used, and 

simulations were run using a range of sample sizes from 50 to 300. Assuming a 

range of MAFs (0.1 to 0.4), a range of effect sizes (mean shift in Immunoscore, 

from 0.2 to 2.0) and an additive genomic model (1, 2 and 3), adequate statistical 

power (1-β, in the region of 0.8) could be obtained at a range of effect sizes with 

a sample size between 150 and 200 (see Results Chapter 3.2.1).  

Naive whole genome scans are subject to significant high false discovery issues 

due to multiple testing; however, this was addressed by correcting for multiple 

testing using the Bonferroni and FDR method. As the data generated was unique, 

independent cohort replication was not possible (for example, using an openly 

available data set). Cross-validation testing was used to test robustness within 

our cohort. 

For power analysis of the RNAseq data, the G*Power package was used. With 

three Immunoscore categories (Low, Intermediate and High) and a range of gene 

expression level effect sizes (0.2 to 1.0 in in increments of 0.05), a priori and post-

hoc analyses of sample size requirements were performed using a one-way 

ANOVA with fixed effects.  



76 
 

2.5.2. Statistical tests 

Statistical analysis was performed using R. Patient demographics and disease 

characteristics were compared across Immunoscore categories using the 

“ggpubr” package with the appropriate non-parametric tests (Kruskal-Wallis and 

Wilcoxon’s tests).  The Immunoscore ranked categories – “Low”, “Intermediate” 

and “High” – were used for these comparisons.  

Associations between the Immunoscore and eQTL SNPs were performed by 

ordinal logistic regression, using the “MASS” and “caret” packages in R.  Survival 

data analysis (OS and RFS) was also performed in R using the “survival” and 

“survminer” packages.  

Finally, metagenomic analysis was performed, after uploading the read counts in 

txt format from pavian, using both the “rcorr” and “ggpubr” packages in R for 

comparison across Immunoscore and microsatellite status categories, with 

correction for multiple testing using FDR. The results were presented in both 

tabular and figure formats. 

 

2.6. Contributions of the author and collaborators to the study 

Patient recruitment to the 100KGP was performed by the WMGMC under the 

directorship of Professor Dion Morton. With the Research Ethics Committee 

approval, patients diagnosed with CRC in the elective setting, and deemed 

suitable for surgical resection were counselled and recruited to the study. The 

author collected anonymised data on recruited patients, and added patients from 

the UHB site with tumour samples available at the HBRC to this project. 
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Germline and somatic WGS, and somatic TMB analysis were performed by the 

100KGP research collaborative, and genomic data in the form of BAM and VCF 

file formats were uploaded to the Research Environment for the use of individual 

researchers. The author used these data to perform germline SNP extraction, 

PCA and logistic regression analysis. 

DPClust estimation was performed by Dr Wedge and his team and the results 

were made available in the Research Environment. Neoantigen burden 

estimation was performed using Neopredpipe by Professor Trevor Graham’s 

team in the Research Environment. The author used both pipelines to determine 

neoantigen clonality, and also replicated these pipelines on the local cohort 

samples which were outside the research environment. Close advice and 

supervision were provided by Dr Eszter Lakatos. Neoantigen clonality 

calculations with the MATH score were performed by the author, using the 

available somatic WGS data. 

Class II immunohistochemistry staining and scoring was performed by Professor 

Phillipe Taniere and his team at the UHB Pathology Department.  

Metagenomic analysis of somatic WGS data using kraken2 was performed by the 

author using the available bioinformatics tools within the Research Environment. 

Finally, statistical power calculations were performed with support from Dr 

Christopher Yau at the University of Birmingham Centre for Computational 

Biology. 
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Chapter 3: Clinico-pathological data results 
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3.1. Introduction 

This chapter presents the clinical and pathological information derived from the 

patient data set used for the analyses in this thesis. It compares the data set with 

the wider CRC patient population. This is necessary to determine that the 

conclusions drawn are reliable, valid, potentially reproducible, and applicable to 

the wider patient population. It clarifies that the sample size provides sufficient 

statistical power to perform the analyses that follow. It accounts for any data 

attrition and discusses the possible consequences they may have for the validity 

of the analyses that follow.  

Secondly, the Immunoscore results are displayed. The distribution of the 

Immunoscore results in this data set is shown to be statistically identical to that 

in the international validation study by Pages et al. [118]. Survival analysis 

confirms that the Immunoscore has significant prognostic value in the research 

patient population, and that it is significantly associated with other pathological 

makers including microsatellite status and disease stage at diagnosis.  

3.2 Results 

3.2.1. Statistical power calculations 

Power calculations were performed using both R and G*Power. For the eQTL 

analysis, the “MASS” and “ordinal” packages in R were used, and simulations 

were run using a range of sample sizes from 50 to 300, and a range of effect 

sizes (defined as the mean shift in the numerical Immunoscore value, between 0 

and 4). The results show sufficient statistical power at sample sizes between 150 

and 200, with MAFs ranging from 0.1 to 0.4 (Table 3.1, Figure 3.1).  
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Table 3.1. Power calculations at a range of minor allele frequencies and sample sizes 

MAF Sample size Effect size Power 

0.1 50 1.1359059 0.81 

0.1 100 0.8070501 0.83 

0.1 150 0.6932246 0.87 

0.1 200 0.5782351 0.80 

0.1 250 0.4625765 0.79 

0.1 300 0.4625765 0.82 

0.2 50 1.0633364 0.87 

0.2 100 0.6740935 0.75 

0.2 150 0.5397450 0.79 

0.2 200 0.5397450 0.85 

0.2 250 0.5397450 0.98 

0.2 300 0.4046508 0.82 

0.3 50 0.9196502 0.77 

0.3 100 0.7695889 0.82 

0.3 150 0.6168103 0.84 

0.3 200 0.4626365 0.81 

0.3 250 0.4626365 0.87 

0.3 300 0.4626365 0.88 

0.4 50 1.0315736 0.83 

0.4 100 0.6937726 0.75 

0.4 150 0.6937726 0.91 

0.4 200 0.5206101 0.88 

0.4 250 0.5206101 0.95 

0.4 300 0.5206101 0.95 

MAF = minor allele frequency. A range of power calculations for sample sizes 50 to 300 
in increments of 50, showing the required effect sizes at MAFs 0.1 to 0.4 to give statistical 
power >0.75.  
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Figure 3.1. Boxplots illustrating the simulated differences in Immunoscore levels (0 to 
4), with genotypes displayed as 0, 1 and 2. 0 = wild type. 1 = heterozygous mutant. 2 = 
homozygous mutant. 

 

For power analysis of the RNAseq data, the G*Power package was used. With 

three Immunoscore categories (Low, Intermediate and High), an estimated range 

of gene expression level effect sizes (0.2 to 1.0 in in increments of 0.05), sufficient 

statistical power was achievable with a sample size of less than 200 (Figure 3.2). 
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Table 3.2. Number and percentage of cases of colorectal cancer by sex. Comparison of 
national [231] and research data set  

 Male Female 

National data (n/%) 22844 (55.4) 18421 (44.6) 

Research data (n/%) 145 (60.9) 93 (39.1) 

There is no statistically significant difference between the national and local data sets. 

Pearson’s χ2 test, p = 0.098. n = number. 

 

The mean and median age at diagnosis were 68 years and 69 years respectively, 

with a range from 31 to 88. In national data, mean age at diagnosis was 69.4 

years [232], with peak incidence of diagnosis at ages 85 to 89 for men and women 

[231] (one-sample t-test, p = 0.031). 

Disease stage was determined using the UICC-TNM classification of colorectal 

cancer [13]. Most patients had Stage 1 to 3 disease (92.9%) (Table 3.3). Patients 

in the national data set [233] had more advanced disease (Stage 4 = 23.3% 

compared with 7.1% in the research data set, Pearson’s χ2 test, p <2.2e-16). As 

most patients with metastatic disease do not have surgical resection [20], this 

difference reflects the selection of patients deemed suitable for surgical resection 

of the primary tumour. 

Table 3.3. Number and percentage of cases of colorectal cancer by stage at diagnosis. 
Comparison of national [233] and research data set 

 Stage 1 Stage 2 Stage 3 Stage 4 Unknown 

National data 

(n/%) 

5782 (16.6) 8041 (23.1) 9490 (27.3) 8122 (23.3) 3390 (9.7) 

Research data 

(n/%) 

27(11.3) 99 (41.6) 95 (39.9) 17 (7.1) 0 (0) 

The research data set was more likely to have earlier stage disease. χ2 test, p <2.2e-16. 

n = number. 
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Data on self-described ethnicity at diagnosis was collected for all patients and 

compared with available national data for patients diagnosed with CRC in 2015 

[234]. Patients were grouped into five categories for simplicity of analysis. Most 

patients identified as White (87.8%) (Table 3.4). This was lower than for patients 

identified as White in the national data set (92.4%). This difference was 

statistically significant (Pearson’s χ2 test, p = 2.2e-13). However, compared with 

the general West Midlands population, which has a higher Black and Minority 

Ethnic population than the wider UK population [235], there was a higher 

proportion of patients who identified as White recruited to this study (88% 

compared with 79.2%, Pearson’s χ2 test, p = 0.001). Unfortunately, regional data 

on the ethnicity at diagnosis of patients with CRC was not available to make 

further comparisons.  

Table 3.4. Number and percentage of cases of colorectal cancer by ethnicity at 
diagnosis. Comparison of national [234] and research data set  

 Asian (all) Black (all) White Other Unknown 

National data (n/%) 2366 (1.5) 1803 (1.1) 149149 (92.4) 1201 (0.7) 6899 (4.3) 

Research data (n/%) 11 (4.6) 6 (2.5) 209 (87.8) 10 (4.2) 2 (0.8) 

There was a lower percentage of self-described White patients in the research data set. 

Pearson’s χ2 test, p = 2.2e-13. n = number. 

 

50% of patients had left sided-tumours (n = 119), with 23.1% occurring in the 

rectum or recto-sigmoid junction. While this is a lower proportion than national 

data, in which 27.8% of cases occur in the rectum [231], it is not statistically 

significant (Pearson’s χ2 test, p = 0.123). All tumours were adenocarcinomas.  
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Microsatellite status was determined by either immunohistochemical staining for 

DNA mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2) or polymerase 

chain reaction (PCR) amplification. Data was available for 81.9% of patients, of 

which 24.1% were microsatellite unstable (MSI-high, defined as loss of 

expression of at least one mismatch repair protein or high expression of 

microsatellites by PCR). This proportion is higher than quoted in scientific 

literature (15%, Pearson’s χ2 test, p = 8.1e-06) [71]. This discrepancy is most 

likely due to the recruitment of patients into the study who were having resections. 

These are more likely to have earlier stage disease, and MSI-high CRC is likely 

to be overrepresented in this cohort due to its generally more favourable 

prognosis [85]. Similarly, the overrepresentation of BRAF-mutated CRC in this 

dataset is most likely due to the association of the BRAF V600E mutation with 

sporadic MSI-high CRC, and possibly targeted BRAF testing in this cohort.  

47.9% of patients had evidence of extramural venous invasion (EMVI). This was 

higher than figures reported in the literature, with an expected average of 30% 

[236, 237]. This is likely to reflect variations in the detection of venous invasion 

across different centres due to differences in the case mix, tissue sampling, use 

of special stains and the reporting pathologists’ diligence [238]. EMVI under-

reporting is more common outside specialist and research centres [239]. The 

mean number of lymph nodes retrieved per patient was 23.2, of which a mean of 

1.6 nodes were positive. Other clinicopathological data is illustrated in Table 3.5. 
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Table 3.5. Clinico-pathological data available for research and national data sets 

Criterion Research 
data 

National data  p value 

Age (years) 
- Range 
- Median 
- Mean 

  
31 to 88  
69 
68 

 
5 to 90+ 
n/a 
69.4 

 
 
n/a 
0.031^*  

Sex  
- M  
- F  

  
145 (60.9%) 
93 (39.1%) 

 
55.4% 
44.6% 

 
 
0.098o 

Ethnicity (self-described)  
- Asian  
- Black  
- White  
- Other/unknown 

  
11 (4.6%) 
6 (2.5%) 
209 (87.8%) 
12 (5.0%) 

 
1.5% 
1.1% 
92.4% 
5.0% 

 
 
 
 
2.2e-13o* 

Primary tumour location 
- Colon 
- Rectum  

  
183 (76.9%) 
55 (23.1%) 

 
72.2% 
27.8% 

 
 
0.123o 

Pathological T stage  
- 1  
- 2 
- 3 
- 4 

  
6 (2.5%) 
32 (13.4%) 
140 (58.8%) 
60 (25.2%) 

 
n/a 

 

EMVI  
- Positive 
- Negative 

 
114 (47.9%) 
124 (52.1%) 

 
Variable (~30%) 
 

 
0.014o* 

Disease stage  
- 1 
- 2 
- 3 
- 4 

  
27 (11.3%) 
99 (41.6%) 
95 (39.9%) 
17 (7.1%) 

 
16.6% 
23.1% 
27.3% 
23.3% 

 
 
 
 
<2.2e-16o* 

MMR status (available in 81.9%) 
- MSS 
- MSI-high 
- n/a 

 
148 (75.9%) 
47 (24.1%) 
43 

 
85% 
15% 

 
 
8.1e-06o* 

BRAF V600E (available in 50.2%) 
- Mutant   

 
25.4% 

 
9.4% [8] 

 
0.005o* 

KRAS (available in 82.4%) 
- Mutant  

 
36.7% 

 
42.0% [8] 

 
0.534o 

BRAF = v-raf murine sarcoma viral oncogene homolog B1. EMVI = extramural venous 

invasion. KRAS = Kirsten rat sarcoma virus oncogene. MMR = mismatch repair status. 

MSI-high = microsatellite instability high. MSS = microsatellite stable. n/a = not available. 

^ = one-sample t-test. o = Pearson χ-squared test. * = statistically significant p value. 
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Patients who had pre-operative radiotherapy to sites other than the primary 

tumour (for example, ablative radiotherapy for hepatic metastases), were 

included. 15 patients (6.3%) had neo-adjuvant therapy. Of these, 12 had 

chemotherapy only, and three (3) patients received chemotherapy and 

radiotherapy to metastases. There was no statistically significant difference in 

disease stage at diagnosis in patients who had neo-adjuvant treatment compared 

with those who did not (Wilcoxon rank sum test, p = 0.1).  

109 (45.8%) patients had adjuvant treatment, of which the majority received 

chemotherapy only (n = 82, 34.5%). Patients who had adjuvant treatment were 

more likely to have advanced disease (Wilcoxon rank sum test, p < 2.2e-16).  

Of the 17 patients with Stage 4 (metastatic) disease, one had MSI-high CRC. No 

patient received immunotherapy, and 9 patients received targeted therapy post-

operatively (cetuximab or bevacizumab). 

 

3.2.3 The Immunoscore 

The Immunoscore was completed for 197 specimens (82.8%). Samples were 

excluded if they failed QC checks. 20 samples from the pilot set, and 21 from the 

100KGP were excluded for this reason. The reasons for sample exclusion were 

predominantly due to poor cell detection (n=20) or lack of tumour detection (n=11) 

(Table 3.6). 
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Table 3.6. Reasons for sample exclusion from Immunoscore analysis 

 Number of samples excluded 

QC failed – bad cell detection 20 

QC failed – no invasive margin detected 4 

QC failed – no centre of the tumour 1 

QC failed – low staining intensity 2 

Invasive margin too small 3 

No invasive tumour detected 11 

Total 41 

QC = quality control. 

 

The exclusion of these samples leads to the possibility of bias in patient 

outcomes. Those samples with no tumour may represent patients with earlier 

stage or better prognosis disease, and those with poor cell detection may have 

represented those with necrotic or more poorly differentiated tumours and 

therefore likely poorer prognosis disease [240]. There was also the possibility that 

samples with failed Immunoscore could be overrepresented by patients who had 

a pathological response to neoadjuvant therapy. However, only three patients of 

the 41 excluded had neo-adjuvant therapy (7.1%). A comparison of demographic 

and clinico-pathological analysis in the total sample set when compared with 

those in which the Immunoscore was completed showed no significant 

differences between the data sets (Table 3.7). 
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Table 3.7. Comparison of clinico-pathological markers before and after sample exclusion 
for the Immunoscore 

 

100KGP = 100 000 Genomes Project participants. EMVI = extramural venous invasion. 

MSI-MSI-high = microsatellite instability high. ^ = Kruskal-Wallis test. o = Pearson χ-
squared test. n = number. 

 

  

Criterion Full data set 

(n = 238) 

Immunoscore 

complete (n = 197) 

100KGP set 

(n = 168) 

p value 

Age (years) 

- Median 

- Mean 

  

69 

68 

 

69 

67 

 

69 

68 

 

0.973^ 

Sex (%) 

- M  

  

145 (60.9) 

 

119 (60.4) 

 

102 (60.7) 

 

0.994 o 

Ethnicity (n/%) 

- White  

  

209 (87.8) 

 

173 (87.8) 

 

146 (86.9) 

 

0.955 o 

Disease stage 

(n/%) 

- I-III 

  

221 (92.9) 

 

183 (92.9) 

 

156 (92.9) 

 

0.98 o 

Primary 

tumour side 

(n/%) 

- Left  

- Right 

  

 

119 (50.0) 

117 (49.2) 

 

 

96 (48.7) 

99 (50.3) 

 

 

76 (45.2) 

90 (53.6) 

 

 

0.911 o 

Primary 

tumour 

location 

- Rectum 

 

55 (23.8) 

 

43 (21.8) 

 

35 (20.8) 

 

0.858 o 

EMVI (n/%) 

- Positive 

 

114 (47.9) 

 

96 (48.7) 

 

85 (50.6) 

 

0.939o 

Nodes 

- Total  

- Positive 

 

23.2 

1.6 

 

23.3 

1.7 

 

22.6 

1.6 

 

0.805^ 

0.927^ 

Microsatellite 

status (n/%) 

- MSI-high 

- N/A 

  

 

47 (19.7) 

43 (18.1) 

 

 

39 (19.8) 

28 (14.2) 

 

 

35 (20.8) 

13 (7.7) 

 

 

0.064o 

Neo-adjuvant 

treatment 

- Yes 

- No 

 

 

15 

223 

 

 

12 

185 

 

 

11 

157 

 

 

0.984o 
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Analysis of the associations between clinico-pathological factors and the 

Immunoscore showed no associations between age (Figure 3.5), sex (Figure 

3.6), primary tumour side (Figure 3.7), EMVI (Figure 3.8) and the Immunoscore. 

Patients with lower tumour T stage had higher Immunoscores (Pearson’s χ2 test, 

p= 0.0003, Figure 3.9). There was a trend towards patients with lower disease 

stage having higher Immunoscores, but this was not statistically significant 

(Pearson’s χ2 test, p= 0.096, Figure 3.10).  Patients with MSI-high CRC had 

higher Immunoscores (Pearson’s χ2 test p = 0.016, Figure 3.11). 
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Figure 3.5.  Boxplots illustrating the associations between age and the Immunoscore 
(Low, Int, High). There is no significant association between patient age at surgery and 
the Immunoscore. Kruskal-Wallis test, p = 0.66. Int = Intermediate. 

 

Figure 3.6. Pie charts illustrating the association between sex and the Immunoscore. 
There is no significant association between sex (female or male) and the Immunoscore. 
Pearson’s χ2 test, p = 0.232. IS=Immunoscore. Int=Intermediate. 



94 
 

 

Figure 3.7. Pie charts illustrating the association between primary tumour side (left and 
right) and the Immunoscore. There is no significant association between primary tumour 
side and the Immunoscore. Pearson’s χ2 test, p = 0.504. IS=Immunoscore. 
Int=Intermediate. 

 

Figure 3.8. Pie charts illustrating the association between extramural venous invasion 
and the Immunoscore. There is no significant association between EMVI and the 
Immunoscore. Pearson’s χ2 test, p = 0.192. EMVI = extramural venous invasion. 
IS=Immunoscore. Int=Intermediate.  
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Figure 3.9. Pie charts illustrating the association between tumour T stage (T1/T2 and 
T3/T4) and the Immunoscore. Patients with lower tumour T stage (T1/T2) had higher 
Immunoscores. Pearson’s χ2 test, p = 0.0003. IS=Immunoscore. Int=Intermediate. 

 

Figure 3.10. Pie charts illustrating the association between disease stage (1/2 and 3/4) 
and the Immunoscore. Patients with lower disease stage (1/2) had higher 
Immunoscores. Pearson’s χ2 test, p = 0.097. IS=Immunoscore. Int=Intermediate. 
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Figure 3.11. Pie charts illustrating the association between microsatellite status and the 
Immunoscore. Patients with MSI-high CRC had higher Immunoscores. Pearson’s χ2 test, 
p = 0.016. CRC = colorectal cancer. IS=Immunoscore. Int=Intermediate. MSI = 
microsatellite instability-high. MSS = microsatellite stable. 
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3.2.4. Survival analyses 

3.2.4.1. Clinico-pathological markers and survival  

Survival analyses were performed on patients for whom the Immunoscore was 

successfully performed. The pilot data set consisted of patients who had surgery 

between October 2010 and October 2013, and the 100KGP data set had surgery 

between September 2011 and September 2018. Clinical data was not available 

for 1 patient, who was excluded from further analysis. Clinical follow-up for the 

data set was completed in April 2021, and thus the shortest duration of follow-up 

was 32.1 months (2.7 years). The median follow-up period for the pilot set was 

113.8 months, and for the combined data set was 56.6 months. The median 

recurrence-free survival (RFS) was 46.5 months and median overall survival (OS) 

was 49.6 months.  

 

Associations between clinical and pathological markers and OS and RFS were 

determined. OS and RFS were strongly correlated with disease stage (Figure 

3.12, Figure 3.13), tumour T stage (Figure 3.14, Figure 3.15), and the presence 

of EMVI (Figure 3.16, Figure 3.17). OS, but not RFS was strongly correlated with 

age (Figure 3.18, Figure 3.19). RFS, but not OS was correlated with mismatch 

repair status (Figure 3.20, Figure 3.21), and ethnicity (with Black patients showing 

a trend towards lower RFS than other ethnic groups, hazard ratio (HR) = 3.9, 95% 

confidence interval (CI) = 0.9 – 16.4, p = 0.063, Figure 3.22, Figure 3.23). There 

was no association with either OS or RFS with anatomical sex (Figure 3.24) or 

disease side (Figure 3.25). 
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Figure 3.12. Kaplan-Meier estimate of overall survival (OS) stratified by disease stage 
for all patients. OS decreases with increasing disease stage. Hazard ratio Stage 1 vs 
Stage 4 disease = 1.9 (95% CI 1.3 – 2.8, p = 0.0004), Stage 1 vs Stage 3 disease = 1.6 
(95% CI 0.96 – 2.6, p = 0.072). 

 

Figure 3.13. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by 
disease stage for all patients. RFS decreases with increasing disease stage. Hazard 
ratio Stage 1 vs Stage 3 disease = 2.2 (95% CI 1.3 – 3.7, p = 0.001). 
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Figure 3.14. Kaplan-Meier estimate of overall survival (OS) stratified by pathological 
tumour stage for all patients. OS decreases with increasing T stage. Hazard ratio T1 vs 
T4 disease = 2.4 (95% CI 1.6 – 3.9, p = 0.0001). 

 

Figure 3.15. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by 
pathological tumour stage for all patients. RFS decreases with increasing T stage. 
Hazard ratio T1 vs T4 disease = 2.1 (95% CI 1.4 – 3.3, p = 0.0003). 
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Figure 3.16.  Kaplan-Meier estimate of overall survival (OS) stratified by the presence 
or absence of extramural venous invasion (EMVI). OS decreases where EMVI is present. 
Hazard ratio for EMVI positive disease = 3.5 (95% CI 1.9 – 6.5, p < 0.0001). 

 

Figure 3.17. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by the 
presence or absence of extramural venous invasion (EMVI). RFS decreases where 
EMVI is present. Hazard ratio for EMVI positive disease = 6.5 (95% CI 3.4 – 12.5, p < 
0.0001). 
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Figure 3.18. Kaplan-Meier estimate of overall survival (OS) stratified by age in three 
categories. OS is greatest in the lowest age categories. Hazard ratio 80 years and over 
compared with 15 to 59 years = 4.3 (95% CI = 1.6 – 11.1, p = 0.003). 

 

Figure 3.19. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by age 
in three categories. No difference is observed across the three age categories. 
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Figure 3.20. Kaplan-Meier estimate of overall survival (OS) stratified by DNA mismatch 
repair status, where information available. There is no difference in OS between the two 
groups, p = 0.13. MSI-high = microsatellite unstable. MSS = microsatellite stable. 

 

 

Figure 3.21. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by DNA 
mismatch repair status, where information available. RFS is increased patients with MSI-
high colorectal cancer. Hazard ratio MSS CRC 2.7 (95% CI = 1.2 – 6.4, p = 0.021). MSI-
high = microsatellite unstable. MSS = microsatellite stable. 
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Figure 3.22. Kaplan-Meier estimate of overall survival (OS) stratified by ethnicity. There 
are no significant differences in OS between ethnic groups. 

 

 

Figure 3.23. Kaplan-Meier estimate of recurrence-free survival (RFS) by ethnicity. RFS 
trends towards lower for patients identified as Black than other ethnic groups, hazard 
ratio = 3.9, 95% CI = 0.9 – 16.4, p = 0.063. 
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Figure 3.24.  Kaplan-Meier estimate of overall survival (OS) and recurrence-free survival 
(RFS) stratified by sex. There is no difference in OS or RFS between male and female 
patients. 

 

 

Figure 3.25. Kaplan-Meier estimate of overall survival (OS) and recurrence-free survival 
(RFS) stratified by side of primary tumour. There is no difference in OS or RFS between 
groups. 
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3.2.4.2. Adjuvant treatment and survival  

Those who had adjuvant treatment had reduced RFS compared with those who 

did not (Figure 3.26, Figure 3.27). However, as expected, patients who had 

adjuvant therapy had higher stage disease (median Stage 3 compared with Stage 

2 in those who had no adjuvant treatment, Wilcoxon test, p <2.2e-16). However, 

when the data was further stratified, patients with Stage 3 (that is, locally 

advanced disease) had increased OS and a trend to increased RFS with adjuvant 

treatment (Figure 3.28, Figure 3.29). Only 6.3% of patients had neo-adjuvant 

treatment. No difference in OS or RFS was seen with neo-adjuvant treatment 

(Figure 3.30). There appeared to be a trend towards lower RFS in those who 

received neo-adjuvant treatment. This could represent a higher disease stage in 

these patients. However, when compared, there was not a statistically significant 

difference in disease stage between the two groups (Wilcoxon test, p = 0.25). 

This is likely because only a small proportion received neo-adjuvant treatment (n 

= 12, 6.1%), with insufficient statistical power to detect a difference between the 

groups.  
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Figure 3.26. Kaplan-Meier estimate of overall survival (OS) stratified by adjuvant 
treatment. No difference in OS is observed between those who received and those who 
did not receive adjuvant treatment. 

 

 

Figure 3.27. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by 
adjuvant treatment. RFS is lower in the group who received adjuvant treatment.  

 



107 
 

 

Figure 3.28. Kaplan-Meier estimate of overall survival (OS) stratified by adjuvant 
treatment in patients with Stage 3 disease. OS is higher in the group who received 
adjuvant treatment. 

 

Figure 3.29. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by 
adjuvant treatment in patients with Stage 3 disease. There is a trend towards higher RFS 
in the group who received adjuvant treatment. 
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Figure 3.30. Kaplan-Meier estimate of overall survival (OS) and recurrence-free survival 
(RFS) stratified by neo-adjuvant treatment. There is no difference in OS and RFS 
between those who received and those who did not receive neo-adjuvant treatment. 
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3.2.4.3. The Immunoscore and survival 

In line with data from Pages et al. [118], the Immunoscore was strongly prognostic 

of RFS, but not OS (Figure 3.31, Figure 3.32). The hazard ratio for Low vs High 

Immunoscore was 5.7 (95% CI 2.0 – 12.1, p = 0.0005). This difference in 

prognostic value remained when stratified by patients with Disease Stage 1 to 3 

(that is, excluding those with metastatic disease) (Figure 3.33) and in patients 

with MSS CRC (Figure 3.34).  
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Figure 3.31. Kaplan-Meier estimate of overall survival (OS) stratified by Immunoscore 
treatment. Although there is a trend to increasing OS with Immunoscore “High”, this is 
not statistically significant. p = 0.095. Int = Intermediate. 

 

 

Figure 3.32. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by 
Immunoscore. There is a clear association between the Immunoscore and RFS. Hazard 
ratio Low vs High Immunoscore = 4.9 (95% CI 2.0 – 12.1, p = 0.0005). 
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Figure 3.33. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by 
Immunoscore, patients with Disease Stage 1 to 3. There is a clear association between 
the Immunoscore and RFS. Hazard ratio Low vs High Immunoscore = 4.5, 95% CI =1.7 
to 12.1, p = 0.003). 

 

Figure 3.34. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by 
Immunoscore, patients with microsatellite stable colorectal cancer only (n = 130). The 
clear association between the Immunoscore and RFS persists.  
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Combining the effects of mismatch repair status and the Immunoscore showed 

clear differences in RFS, with patients with MSS/Low Immunoscore having the 

lowest RFS, and those with MSI/High Immunoscore having the highest RFS 

(Figure 3.35). 

 

 

Figure 3.35. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by 
Immunoscore. Intermediate and High Immunoscores combined into category IS Hi. 
Hazard ratio MSS IS Lo compared with MSI IS Hi = 6.6 (95% CI 2.3 to 19.6, p = 0.0006). 
IS = Immunoscore. Hi = High. Lo = Low. MSS = microsatellite stable. MSI = microsatellite 
instability high. 
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3.2.4.4. Multivariate analysis 

A stratified multivariate Cox proportional hazards model was used to assess the 

associations between these factors RFS. The Immunoscore, disease stage and 

EMVI and were the strongest predictors of RFS (Figure 3.36). These associations 

remained when stratified for patients with UICC TNM Stage 1 to 3 disease (Figure 

3.37). 
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Figure 3.36. Forest plot showing hazard ratios for recurrence-free survival, all disease stages. Reference = Immunoscore High. EMVI = 
extramural venous invasion. IS3 = Three-category Immunoscore. MMR = mismatch repair status. MSI = microsatellite instability high. MSS 
= microsatellite stable. T = tumour T stage.
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Figure 3.37. Forest plot showing hazard ratios for recurrence-free survival, UICC- TNM stage 1 to 3 disease. Reference = Immunoscore 
High. EMVI = extramural venous invasion. IS3 = Three-category Immunoscore. MMR = mismatch repair status. MSI = microsatellite 
instability high. MSS = microsatellite stable. T = tumour T stage.
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3.3 Discussion 

3.3.1. The sample population is clinicopathologically representative. 

To determine the reliability and applicability of downstream analyses on this data 

set, it was important to determine the similarities between information available 

on these patients and those from nationwide cancer registries. The data set is 

shown to be representative of the wider population, but with two key differences. 

The first is that the results are skewed towards earlier stage disease, reflecting 

the sampling of patients having resections. The second is that the data set is 

skewed towards having an increased proportion of patients from a minority ethnic 

background. This will be discussed further below.  

3.3.2. The Immunoscore is a valid marker of the colorectal immune 

environment. 

The Immunoscore is used as the primary proxy marker of the immune contexture 

in this project. This preliminary analysis confirms its reliability, validity, and 

robustness as a key intermediate phenotype of the immune response to CRC in 

this patient set. The distribution of scores is shown to replicate the international 

validation study, and it strongly correlates with RFS.   
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3.3.3. The sample size is sufficiently powered for this study. 

Determining the optimum sample size for a project of this nature required careful 

analysis and an awareness of the potential challenges and pitfalls. Some 

statistical and mathematical assumptions were made to make the computations 

possible. These included estimating MAF ranges for eQTL SNPs based on public 

databases, assuming no linkage or linkage disequilibrium, that is, that there are 

no non-random associations between alleles. Effect sizes were also assumed to 

be equally distributed. In addition, there can be significant differences in gene 

expression variation, both in cis and trans, between different population groups, 

as explored within the International HapMap3 project [141, 241]. The potential 

confounding effects of ethnicity on SNP MAFs is further explored in Chapter 2, 

and outliers in the data set which could confound the results have been excluded.  

With adequate statistical power being obtained at a range of MAFs and effect 

sizes at sample sizes 150 to 200, patients were recruited in two cohorts with the 

aim to reach a sample size of at least 200. This also provided the advantage of 

providing cross-validation to test the robustness of data within the cohort. In future 

studies, increasing the sample size in each cohort will be important to verify the 

robustness of this data. 
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3.3.4. Potential sources of sample bias 

3.3.4.1. Sample attrition 

Due to the strict QC involved in generating the Immunoscore, and the 

requirement for completed WGS and RNA sequencing on  the samples in which 

the Immunoscore was successfully completed, some sample attrition was 

inevitable. Although this represented a small fraction of the total, there were 

sufficient samples retained in each analysis to maintain statistical power to detect 

clinically meaningful effect sizes in post hoc analysis. However, this attrition may 

have introduced bias in the data set. This was addressed by performing a clinico-

pathological analysis for the subset of samples in which the Immunoscore was 

successfully performed, and separately in the 100KGP samples. These showed 

no significant population differences.  

3.3.4.2. Recruitment bias 

The profile of patients who are recruited to clinical trials is often different from 

both the target population and the wider real-world patient population [242]. This 

is usually due to recruitment biases. Age biases in patient recruitment are well-

recognised [243], as well as sex and ethnicity biases [244, 245]. This may have 

significant consequences in limiting the application of conclusions to the general 

patient population, particularly for randomised clinical trials.  
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Patient recruitment to the 100KGP and for this data set was done chronologically 

and opportunistically. Patients for whom tissue was not found in the Biorepository 

were excluded. The samples are also biased towards patients with earlier stage 

disease due to the recruitment of those having resections (usually curative), and 

the exclusion of those who had local field radiotherapy (which is reserved for 

locally advanced rectal cancer). 

This data set does not appear significantly biased from national data sets 

regarding age or sex. However, the presence of a higher proportion of patients 

defined as being from a minority ethnic background could be a potential strength 

in this study given the highlighted long-standing and persistent deficiencies in 

recruitment of patients from these backgrounds to clinical trials.  

3.3.4.3. Reference bias 

In genomics research, reference bias is a pervasive issue. NGS techniques 

require mapping to a reference genome, which is itself being population-biased, 

and is being refined and continually updated [246]. Sequencing reads carrying 

alternate alleles will have mismatches when aligned against the reference 

genome and therefore lower mapping scores. This introduces problems with 

variant calling and can lead to alternative alleles being missed or wrongly called, 

influencing estimates of allele frequencies and heterozygosity [247]. Some of the 

strategies to overcome this including analysis of joint genotype VCFs and 

principal components analysis are explored in Chapter 2. 
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3.3.4.4. Exclusion bias 

Finally, exclusion of samples that failed the Immunoscore QC checks could have 

introduced further bias by excluding patients either with smaller, earlier stage 

tumours, or necrotic, more poorly differentiated, or advanced cancers. The effect 

of these exclusions is more difficult to define. However, following further analysis 

of the data (Table 3.7), there were no significant alterations in the data profile 

after the Immunoscore was completed. 
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Chapter 4: Immune gene expression 

quantitative trait loci (eQTL) single 

nucleotide polymorphism (SNP) analysis 
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4.1 Introduction 

Genome-wide association studies (GWAS) have shown associations between 

germline differences in gene expression and cancer risk in many cancer types 

[158, 248]. Evidence of associations between germline differences in immune 

gene expression (cis- or trans-eQTLs) and cancer outcomes is growing. Notably, 

Vogelsang et al. observe strong correlations between the germline eQTL SNPs 

rs6673928 impacting IL19 expression and rs6695772, impacting BATF3 

expression and overall survival in cutaneous melanoma [161]. In breast cancer, 

an enrichment of germline eQTL SNPs influencing the expression of MHC class 

I and II genes was observed in breast cancer survivors compared with healthy 

controls [163].  

While somatic determinants of the immune response in CRC are being 

extensively studied, the role of germline determinants is significantly less so. This 

is partly due to the predominance of studies utilising WES databases which limits 

the exploration of eQTL associations and the bioinformatics complexity of eQTL 

studies, particularly trans-eQTLs.  

However, it is reasonable to hypothesise that germline differences in immune 

gene expression contribute at least a part to the differences in the CRC immune 

environment. The WGS data provided by the 100KGP made investigating this 

feasible, and ready access to large eQTL databases such as MuTHER [155], and 

the initial identification of key immune gene SNPs by Vogelsang et al. provided 

helpful lynchpins to perform the requisite analysis. 
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4.2. eQTL analysis 

4.2.1. Study population 

eQTL SNP filtering was performed on patients for whom both the Immunoscore 

and germline VCFs were available in the GeL Research Environment and 

Bluebear. Data for 20 patients was not available within the Research 

Environment. 7 patients had been excluded due to failures in sample collection 

or processing. For 13 patients, data was not yet available in the Research 

Environment at the time of analysis in October 2020. In total, germline data was 

available for 177 patients. These comprised 30 from the pilot set and 147 from 

the 100KGP set. Analysis of the data was combined to obtain sufficient statistical 

power to detect a difference (Figure 4.1). 

 

Figure 4.1. Flow diagram showing the number of patients recruited and included in the 
study population for the germline expression quantitative trait loci analysis. 238 patients 
were included, comprised of 50 in the pilot and 188 in the 100 000 Genomes Project. A 
total of 177 patients had both the Immunoscore and whole genome sequencing data 
available for analysis. 100KGP = 100000 Genomes Project, QC = quality control, WGS 
= whole genome sequencing. 
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4.2.2. eQTL SNP correlation with the Immunoscore  

4.2.2.1. The Vogelsang top 40 SNP panel 

The top 40 immune gene eQTL SNPs derived from Vogelsang et al. were 

correlated with the Immunoscore using ordinal logistic regression in R, using the 

additive genotypic model, with SNPs coded as 1, 2 and 3. Six SNPs had 

statistically significant correlations with the Immunoscore in initial analysis. These 

findings, as well as the SNP reference and alternative alleles and population 

minor allele frequencies from the Genome Aggregation Database (gnomAD) data 

set [249] are presented in Table 4.1. 

 

Table 4.1. eQTL SNPs significantly associated with the Immunoscore 
 

Alt = alternative allele. CI = confidence interval. eQTL = expression quantitative trait loci. 

Ref = reference allele. RefSNP ID = Reference SNP identity. MAF = minor allele 

frequency. p = statistical significance. SNP = single nucleotide polymorphism.  

 

RefSNP ID  Gene Ref Alt MAF[249] p  Odds 

ratio 

95% 

CI 

Variant 

effect 

rs6673928  IL19 G T 0.20 0.037 2.41 1.06-

5.56 

Increases 

Immunoscore 

rs2295359  IL23R G A 0.32 0.007 0.19 0.05-

0.63 

Decreases 

Immunoscore 

rs11919943  CCR1 T C 0.17 0.002 0.16 0.05-

0.52 

Decreases 

Immunoscore 

rs11161590  BCL10 A G 0.40 0.020 0.54 0.32-

0.90 

Decreases 

Immunoscore 

rs11203203  UBASH3A G A 0.27 0.006 3.04 1.39-

6.74 

Increases 

Immunoscore 

rs10760142  C5 T C 0.36 0.057 2.73 0.97-

7.82 

Increases 

Immunoscore 
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After stepwise selection with the stepAIC function (“forward”), the “train” function 

in the “caret” package was used to generate a predictive model with the best fit. 

The eQTL SNP rs11919943 (CCR1) had the strongest correlation with the 

Immunoscore. 

4.2.2.1.a. CCR1, IL23R and UBASH3A eQTL SNPs are moderately 

associated with the Immunoscore  

To correct for multiple testing, both the Bonferroni approach (which is 

conservative) and false discovery rate (FDR) and were used. As expected, the 

Bonferroni approach did not yield any significant results after correction for 

multiple testing. While the FDR correction similarly gave revised p values that 

were non-significant (greater than 0.05), there were three eQTL SNPs with 

revised p values closest to significant. These were rs22953593 (IL23R, p = 

0.067), rs11919943 (CCR1, p = 0.067) and rs11203203 (UBASH3A, p = 0.067). 

 

Using the dominant genotypic model, similar results were obtained. There were 

6 eQTL SNPs most strongly associated with the Immunoscore. These were 

rs22953593 (IL23R, p = 0.007), rs11161590 (BCL10, p = 0.020), rs6673928 

(IL19, p = 0.036), rs1378940 (CSK, p = 0.015), rs11919943 (CCR1, p = 0.002) 

and rs11203203 (UBASH3A, p = 0.006).  

The results after correction for multiple testing were very similar to the additive 

model, with no SNPs remaining significant using the Bonferroni approach. Using 

the FDR approach, the three SNPs with revised p values closest to significant 

were rs22953593 (IL23R, p = 0.099), rs11919943 (CCR1, p = 0.086) and 

rs11203203 (UBASH3A, p = 0.099), as with the additive model. This is likely a 
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function of the statistical power of detection, as the relatively wide confidence 

intervals show. 

 

4.2.2.2. The extended MuTHER SNP panel 

The comparison was expanded to the wider list of immune gene eQTL SNPs with 

significant cis-eQTL activity from the MuTHER data, as this was likely to glean 

addition associations to this data set. The additive genotypic model was used. Of 

the 385 MuTHER eQTL SNPs analysed, 33 had significant associations with the 

Immunoscore (with p values less than 0.05, Table 4.2).  

Table 4.2. MuTHER eQTL SNPs associated with the Immunoscore 

RefSNP ID Gene p value 

rs2305740 IL12RB1 0.030 

rs2369006 AXL 0.045 

rs10422141 TICAM1 0.004 

rs9938225 NOD2 0.046 

rs9929191 IL17C 0.016 

rs9903464 NCOR1 0.025 

rs11650283 UBB 0.043 

rs159279 CCL7 0.021 

rs17558532 RARA 0.021 

rs7151065 IL25 0.012 

rs1951635 RNF31 0.016 

rs214267 PSEN1 0.019 

rs1152788 BCL11B 0.00005 

rs4145039 BCL11B 0.048 

rs2582559 AKT1 0.018 

rs4077582 CYP11A1 0.029 
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eQTL = expression quantitative trait loci, ID = identification number, MuTHER = Multiple 

Tissue Human Expression Resource Project, SNP = single nucleotide polymorphism. 

 
 
  

rs37831 PDPK1 0.027 

rs1642026 LAT 0.047 

rs13439094 STAR 0.006 

rs4963452 CD5 0.032 

rs9668139 PTPN6 0.022 

rs478829 KLRK1 0.004 

rs6581061 IL23A 0.010 

rs10473354 CCL28 0.004 

rs256208 TCF7 0.0002 

rs17517511 IL4 0.009 

rs889009 DOCK2 0.025 

rs2705777 CCL26 0.0003 

rs6978354 CAV1 0.048 

rs1519550 IL15 0.048 

rs13424201 CXCR1 0.012 

rs1381016 CXCL1 0.019 

rs2377856 LCK 0.031 
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4.2.2.2.a. The TCF7 eQTL SNP is the most significant gene associated with 

the Immunoscore 

When these results were corrected for multiple testing using the Bonferroni 

approach, only two SNPs remained strongly associated with the Immunoscore: 

rs256208 (TCF7) and rs1152788 (BCL11B). rs2705777 (CCL26) was marginally 

associated with the Immunoscore (p = 0.068). Using the FDR method, the same 

three SNPs remained strongly associated with the Immunoscore: rs256208 

(TCF7), rs2705777 (CCL26) and rs1152788 (BCL11B) (Table 4.3). 
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Table 4.3. False discovery rate-corrected eQTL SNPs significantly associated with the Immunoscore 

 

Alt = alternative allele. CI = confidence interval. eQTL = expression quantitative trait loci. FDR = false discovery rate. Ref = reference allele. 

RefSNP ID = Reference SNP identity. P = statistical significance. SNP = single nucleotide polymorphism

RefSNP ID Gene Ref Alt MAF 

[249] 

p  Bonferroni-
corrected p 

FDR-
corrected p 

Odds 
Ratio 

95% CI Variant effect 

rs256208 TCF7 C G 0.28 0.0002 0.032 0.032 2.77 1.64-4.76 Increases 
Immunoscore 

rs2705777 CCL26 A G 0.41 0.0003 0.068 0.034 0.39 0.23-0.64 Decreases 
Immunoscore 

rs1152788 BCL11B G A 0.26 0.00005 0.012 0.012 0.30 0.16-0.53 Decreases 
Immunoscore 
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These results were also corroborated using the dominant genotypic model. After 

correction for multiple testing using the FDR, only one SNP showed significant 

association with the Immunoscore: rs256208 (TCF7, p = 0.018). Two other SNPs 

showed associations with a trend toward significant values: rs17517511 (IL4, p = 

0.071) and rs2705777 (BCL11B, p = 0.076).  

The finding of the rs256208, the TCF7 (Transcription Factor 7) SNP, as the most 

strongly associated SNP with the Immunoscore is particularly interesting, as 

TCF7 has an essential role in Wnt signalling through its interaction with β-catenin 

[250].  

 

4.2.3. eQTL SNP correlation with gene expression in tumour tissue 

Determining the effects of these variants on gene expression requires 

quantification of the expression of each immune gene. Ideally, total RNA from 

LCLs derived from whole blood would provide transcript levels to compare gene 

expression across the genotypes, as shown by Vogelsang et al., who 

demonstrated a direct correlation between the rs6673928 alternative alleles (GG 

versus GT and TT) and IL19 mRNA expression in circulating CD4+ T cells [161].  

I was unable to perform a similar analysis as whole blood and total RNA from the 

patients were not available at the time of this analysis. However, transcriptomic 

data from 3’ RNA sequencing of fixed tumour tissue was available, and this was 

correlated with the genotypic data. The gene expression levels were normalised 

(as described in Chapter 3) and are stated as counts per million. Genotypes were 

correlated with RNA expression levels, using the genotypic model (with wild-type 
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genotypes labelled “1” and variants labelled “2” and “3”). Those eQTL SNPs 

correlated with the Immunoscore were compared with RNA expression levels. 

This approach is justified as the cis-eQTL SNP effects were found to be largely 

tissue-independent and shared across the three tissue types analysed in the 

MuTHER study [154]. 

The rs6673928 (IL19) and rs11919943 (CCR1) SNPs appeared to show 

increasing expression in tumour tissue when compared with the genotypes, 

however, these did not reach statistical significance (Figure 4.2).  

The other SNPs compared (rs256208 (TCF7), rs2705777 (CCL26), rs1152788 

(BCL11B), rs2295359 (IL23R), rs11161590 (BCL10) and rs10760142 (C5)) did 

not show correlations with RNA expression levels in tumour tissue (Figure 4.3).   
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Figure 4.2. Boxplots illustrating the associations between germline genotypes and 
tumour RNA expression levels for (a) rs6673928 and IL19 and (b) rs11919943 and 
CCR1. Genotypes 1 = wild-type, 2 = heterozygous variant, 3 = homozygous variant. In 
(a) there is a rise in IL19 expression between the wild-type and heterozygous variant 
SNP, p = 0.017. In (b) there is an association with a rise in CCR1 expression between 
the wild-type and homozygous variant, p = 0.049. 
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Figure 4.3. Boxplots illustrating the associations between germline genotypes and 
tumour RNA expression levels for six eQTL SNPs (TCF7, CCL26, BCL11B, IL23R, 
BCL10 and C5). Genotypes 1 = wild-type, 2 = heterozygous variant, 3 = homozygous 
variant. There are not significant associations between genotypes and tumour RNA 
expression levels. 
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These weak associations between germline genotypic variations and RNA 

expression in tumour tissue may suggest that there is more tissue specificity in 

these specific eQTLs than the MuTHER data suggest. Also, the tumour 

microenvironment is known to be extremely complex. Modulatory effects on 

immune cells may alter their ability to infiltrate and thrive within the tumour, which 

could obliterate any effects of increased expression of particular genes [105], 

while differential gene expression in tumour cells or adjacent cells may also be 

significantly modulated by metabolic suppressive effects [105, 107]. 

 

4.2.4. eQTL SNP association with patient survival 

Further analysis was performed to determine if there was an association between 

these SNP variants and clinical outcomes. In particular, the associations with 

recurrence-free survival (RFS) were examined as this is more directly relevant to 

cancer outcomes than overall survival (OS).  

SNPs were classified into wild-type and variant (combining both heterozygous 

and homozygous variants) to increase the size of each group and the likelihood 

of achieving statistical power. One sample was removed (from the pilot set) as 

clinical data was not available. Kaplan-Meier curves showed apparent survival 

differences for just the rs11203203 variant (UBASH3A), which was associated 

with both increased RFS and OS (Figure 4.4, Figure 4.5). 
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Figure 4.4. Kaplan-Meier estimate of overall survival (OS) stratified by rs11203203 
(UBASH3A) eQTL SNP variant. There is increased survival with the variant allele (p = 
0.017). Hazard ratio for variant allele = 0.57 (95% confidence interval = 0.32 – 1.00). 

 

 

Figure 4.5. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by 
rs11203203 (UBASH3A) eQTL SNP variant. There is increased survival with the variant 
allele (p = 0.016). Hazard ratio for variant allele = 0.57 (95% confidence interval = 0.33 
– 0.97). 
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Despite a strong association with the Immunoscore, the rs256208 (TCF7) SNP 

was not associated with a difference in either OS or RFS (Figure 4.6, Figure 4.7). 

 

Figure 4.6. Kaplan-Meier estimate of overall survival (OS) stratified by rs256208 (TCF7) 
eQTL SNP variant. There is no significant difference in OS between the groups.  

 

 

 

Figure 4.7. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by 
rs256208 (TCF7) eQTL SNP variant. There is no significant difference in RFS between 
the groups.  
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These results suggest that the SNP effects may not be of sufficient magnitude to 

cause significant differences in clinical outcomes in a small data set. Further 

analysis showed no associations of these SNPs with other factors such as age, 

sex, primary tumour location, MMR status or disease stage (see Appendix 5). For 

the most SNPs there were also no associations with patient ethnicity, tumour T 

stage and EMVI. However, there was a significant association between the 

rs255208 SNP and patient ethnicity, which is discussed and interrogated further 

below. There were also associations between EMVI and the rs1152768 SNP, and 

tumour T stage and the rs250577 SNP. 

 

4.2.5. Principal components analysis of SNP MAFs by ethnicity 

SNP incidences are influenced by population demographics such as, for 

example, ethnicity. This could potentially skew the conclusions derived from 

comparing SNP differences. Data from the 100KGP suggest that self-declared 

ethnicity of participants in this project ties very closely with the haplotypes in 

population SNP panels, as determined by the HapMap Project [136]. To 

interrogate the possibility that the eQTL SNP differences could be influenced by 

ethnic differences in the patient cohort, the patient ethnicity data was compared 

with the genotypes. For simplicity of analysis, patients were divided into four 

ethnic groups. The majority were described as White British or Irish (taken as the 

“European” population), comprising 88% of participants. 
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Principal components analysis (PCA) of the top 40 immune gene SNPs was 

performed in R using the packages “stats” and “ggfortify”. The highest five 

proportions of the variances (eigenvalues) in the principal components were 

5.78%, 5.38%, 5.15%, 4.73% and 4.33%, while the lowest value was 0.28%. The 

first 13 components contributed to 50.4% of the variances (Figure 4.8). 

 

Figure 4.8. Cumulative variance plot of the principal components of the 40 individual 
SNPs. Most components contribute significantly to the data variability. 
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The first two components (PC1 and PC2) were plotted, with a focus on any 

outliers in the ethnicity distribution of the eQTL SNPs (Figure 4.9). These showed 

significant overlap in the distribution of the SNPs between all ethnic groups 

without significant outliers. 

 

 

 

Figure 4.9. Principal components analysis of SNPs by ethnicity. PC1 = principal 
component 1, PC2 = principal component 2. The probability ellipses show clustering by 
ethnicity. There is significant overlap between all ethnicity categories. 
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However, when the PCA was expanded to include the extended SNP panel (385 

SNPs), there was a clear difference in the distribution of SNPs amongst Black 

patients, in comparison to the other groups (Figure 4.10). 

 

 

Figure 4.10. Principal components analysis of SNPs by ethnicity. PC1 = principal 
component 1, PC2 = principal component 2. The probability ellipses show clustering by 
ethnicity. There is significant discrepancy between the ellipses for Black patients 
compared with those of other ethnicities. 
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When the only top nine significant SNPs were compared, this discrepancy was 

less pronounced (Figure 4.11). The highest proportions of the variances 

(eigenvalues) in the principal components were 15.9% and 10.2%.  

 

 

Figure 4.11. Principal components analysis of SNPs by ethnicity for nine SNPs 
(rs256208, rs2705777, rs17517511, rs6673928, rs2295359, rs11919943, rs11161590, 
rs11203203 and rs10761042). PC1 = principal component 1, PC2 = principal component 
2. The probability ellipses show clustering by ethnicity. There is significant overlap 
between all ethnicity categories. 
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Analysis of differences in genotypes by ethnicity were performed individually for 

the significant nine SNPs. There were differences in the SNP genotypes primarily 

for Black patients compared with other patients. Particularly, differences were 

noted for Black patients compared with White patients with the SNPs rs256208 

(Kruskal-Wallis test, p = 0.0057, Figure 4.12), rs2705777 (Kruskal-Wallis test, p 

= 0.034, Figure 4.12), rs11919943 (Kruskal-Wallis test, p = 0.002, Figure 4.13) 

and rs10760142 (Kruskal-Wallis test, p = 0.044, Figure 4.13). The discrepancies 

for Asian patients compared with other patients (primarily White patients) were 

only noted for one SNP, rs10760142 (Kruskal-Wallis test, p = 0.049, Figure 4.13). 

 

 

Figure 4.12. Boxplots illustrating the associations between the three SNP genotypes ((a) 
rs256208, (b) rs2705777 and (c) rs1152788) and patient ethnicity. Significant differences 
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between genotypes in Black patients compared with other patients are noted for 
rs256208 (a) and rs2705777 (b). 

 

 

Figure 4.13. Boxplots illustrating the associations between six SNP genotypes ((a) 
rs6673928, (b) rs2295359, (c) rs11919943, (d) rs11161590, (e) rs11203203 and (f) 
rs10761042) and patient ethnicity. Significant differences between genotypes in Black 
patients compared with White patients are noted for rs11919943 (c) and rs10760142 (f), 
and significant differences between genotypes in Asian patients compared with White 
patients are noted for rs10760142 (f). 
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4.2.5.1. Filtered eQTL-Immunoscore associations by ethnicity 

Black patients make up 3.5% of the study population in this assessment (6 of 177 

patients). The eQTL SNP-genotype analysis was filtered by ethnicity and 

specifically details of the patients identified as Black were removed from the 

analysis. For the top 40 SNPs, following correction for multiple testing, using the 

Bonferroni approach there were no significant SNPs. Using the FDR approach, 

the three SNPs with p values closest to significant were almost identical to 

previous results: rs2295359 (IL23R, p = 0.092), rs11919943 (CCR1, p = 0.092) 

and rs11203203 (UBASH3A, p = 0.092). When this was similarly applied to the 

extended MUTHER SNP panel, once again, the results were similar (Table 4.4), 

confirming that the significant results seen are not influenced by the population 

SNP differences. 

 

Table 4.4. False discovery rate-corrected eQTL SNPs significantly associated with the 
Immunoscore 
 

 

 

 

 

 

 
FDR = false discovery rate, ID = identification number, SNP = single nucleotide 
polymorphism. 
 

  

RefSNP ID Gene p value Bonferroni  

p value 

FDR  

p value 

rs256208 TCF7 0.0002 0.088 0.044 

rs2705777 CCL26 0.0003 0.041 0.041 

rs1152788 BCL11B 0.00005 0.050 0.051 
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4.4. Discussion 

In this chapter, an exploratory, in silico analysis of potential germline drivers of 

the immune environment in colorectal cancer was made. I found that there are 

germline eQTL SNPs that are associated with differences in the immune 

environment in CRC. These warrant validation in a larger sample set and an 

exploration of the biological mechanisms underpinning their likely mechanisms of 

action. In addition, in this sample set, there were no patients who received 

immunotherapy, so an exploration of the predictive value of these eQTL SNPs in 

determining the response to immunotherapy was not possible. 

 

4.4.1. There are associations between the key eQTL SNPs and RNA 

expression levels and survival  

The results obtained reveal some complexities. The rs11203203 (UBASH3A) 

variant alleles are associated with both increasing Immunoscore and increased 

RFS, which suggests that patients with these alleles are more likely to have “hot” 

immune environments, and could potentially be ideal candidates for 

immunotherapy. However, the effects of these alleles on gene expression levels 

was not determined. On the other hand, while the rs256208 (TCF7) variants are 

associated with increasing Immunoscore, there were no associations with 

survival. The rs11919943 (CCR1) variants appear to be associated with both 

decreasing Immunoscore and potentially lower RFS.  

These associations suggest that the SNP effects may not be of sufficient 

magnitude to cause significant differences in clinical outcomes in a small data 

set. It would be of particular interest to determine the predictive value of these 
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SNPs in determining responses to immunotherapy, but as no patients received 

immunotherapy, this was not possible in this data set.  

 

4.4.2. Potential biological mechanisms 

The genes found to be most significantly associated with the Immunoscore have 

plausible biological mechanisms of activity in colorectal cancer. Among the top 

40 SNPs used in the initial analysis, exploration of the Human Protein Atlas [222] 

revealed that some of the relevant genes have expression levels associated with 

differential outcomes in different cancer types. 

For example, BCL10 expression is a prognostic marker in colorectal cancer, with 

increased expression associated with improved survival. CCR1 expression is 

also known to be a prognostic marker in renal cancer, with increased expression 

of this marker linked to unfavourable outcomes. C5 expression is associated with 

favourable outcomes in liver cancer. The rs6673928 SNP driving IL19 expression 

has been shown to be linked with better survival in cutaneous melanoma [161]. 

Of the wider SNP panel, BCL11B expression is known to be a favourable 

prognostic marker in urothelial cancer. TCF7 expression is thought to be linked 

to worsened outcomes in gastric and a range of cancers including prostate, 

breast, adrenal and pancreatic cancer [251]. Its role in CRC is particularly 

interesting, as the TCF family of genes has a significant role in Wnt signalling. 
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4.4.1.1. The TCF/LEF pathway in colorectal tumour biology 

Wnt/β-catenin signalling is critical in colorectal carcinogenesis. It is a global 

regulator of embryonic development, and subsequently is necessary for ongoing 

homeostatic tissue renewal. In intestinal crypt cells, pathway activity is necessary 

to maintain stem cells. Pathway mutations are the main drivers of colorectal 

carcinogenesis. Most notably, loss-of-function mutations in the APC  gene drive 

over 80% of most sporadic colorectal tumours [8], by leading to β-catenin 

accumulation and subsequent activation of one of the TCF/ lymphoid enhancer-

binding (LEF) family of transcriptional activators [252]. 

The TCF/LEF family has 4 members, with heterogeneous effects. All are subject 

to alternate splicing and their function is isoform-dependent, but mainly 

functioning as Wnt signalling effectors [251]. TCF7 has both a high-mobility group 

DNA-binding domain and a β-catenin-binding domain. The role of TCF7 in 

colorectal cancer tumorigenesis and progression appears to be contradictory.  

For genes whose expression is induced by Wnt/β-catenin signalling, TCF/LEF 

appears to repress transcription in the absence of signalling, but is converted to 

an activator by association with β-catenin.  

In CRC, loss-of-function mutations in TCFL2 are extremely common [8]. In 

addition, in a pre-clinical model of CRC, TCF7/TCF1 signalling was required for 

stimulating a CD8+ T cell effector response in the tumour environment in 

response to a combination of anti-Tim3 and anti-PD-1 blockade [253]. Tang et al. 

show that knockout of TCF7 in mice produces adenomas in the intestine, 

whereas knockout of TCF7 in colon cancer cell lines slows their growth [252]. 

This is likely explained by a switch in its isoform expression from a Wnt-opposing 
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dominant negative in normal cells, to a Wnt-promoting full-length isoform in 

cancer cells [250]. The positive association of TCF7 variants with the 

Immunoscore in this data set suggest an overall tumour-suppressing role of TCF7 

expression in CRC tumour biology. 

 

4.4.3. Limitations and future development 

Further validation of this data is warranted, requiring a larger sample set for which 

both germline WGS data and the Immunoscore (as the validated marker of the 

CRC immune environment) are available. The associations between these SNPs 

and gene expression also requires corroboration with RNA and protein 

expression from immune cells, best derived from patient whole blood. This 

requires access to these samples in large numbers in real-time. 

Mechanistic explanations for these eQTL SNP effects are also not available. This 

requires exploration of the effects of inducing and downregulation of these genes 

in a CRC model to determine the effects on the immune contexture in these cells, 

and will form the basis for further work.  

Finally, exploration of the predictive values of particular SNP, for example 

rs256208, requires identification of a population of patients who have undergone 

immune checkpoint blockade therapy, ideally in the neoadjuvant or early disease 

stage setting. Preliminary trials of immunotherapy in neoadjuvant settings are 

underway [24], and will provide greater clarity about germline markers of clinical 

efficacy. 
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Chapter 5: Somatic determinants of the 

immune environment and the Immunoscore 
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5.1. Introduction 

Tumour mutations and neoantigens are the main drivers of immune activation in 

the tumour environment of most cancer types that have been studied [7]. In 

particular, differences in tumour mutational burden (TMB) have been thought to 

explain the key differences in the immune environment observed in MSI-high 

versus MSS CRC [29]. In particular, there are suggestions that TMB may be 

predictive of the response to immunotherapy in MSI-high CRC [254]. However, 

this relationship does not appear to hold for MSS CRC [29]. 

It is increasingly clear that clonal neoantigens are more immunogenic than 

subclonal neoantigens [67, 185], and that the effect of clonality in determining 

outcomes and responses to immunotherapy may be more significant than the 

role of neoantigen burden [164]. Determining neoantigen burden involves 

prediction of MHC Class I (and increasingly Class II) epitopes. Further 

determination of clonality can be performed using a variety of strategies, of which 

the most promising are a modified Dirichlet process clustering approach [184] 

and the Mutant Allele Heterogeneity (MATH) score [188].  

The first part of this chapter explores the associations between the Immunoscore 

and a series of somatic markers including the TMB, neoantigen burden and 

neoantigen clonality (as determined by the MATH and the modified DPClust 

approach). It also explores the associations between these somatic markers and 

clinical (survival) outcomes. 

The second part of this chapter examines in detail the correlations between the 

expressions of several immune gene signatures, obtained from 3’ transcriptomic 
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sequencing data, and the Immunoscore. The most notable of this is the co-

ordinate immune response cluster (CIRC), a Th-1 gene signature shown to be 

highly enriched in strongly immunogenic CRC immune environments [92]. Other 

markers and signatures studied were MHC Class II gene expression, which is 

known to be independently a marker of immune responsivity in CRC [61, 63, 64], 

gut bacteria chemokine-associated signatures [205], lymphangiogenic markers, 

which could promote the tracking of T cells into tumour tissue and paradoxically 

be associated with increased immunogenicity and better outcomes [255], and 

finally wnt-signalling-associated markers [256].  

In the final part, immunohistochemical analysis of fixed tumour tissue was used 

to corroborate these results, to create a comprehensive picture of the effects of 

these somatic determinants on the CRC immune response. 

 

5.2. Tumour mutational burden and the Immunoscore 

Data on TMB, defined as the number of somatic coding non-synonymous 

mutations per megabase, was obtained from somatic WGS samples within the 

GeL Research Environment, and from the pilot data set. Of the 238 patients 

recruited, TMB data was available for 200 (29 from the pilot set and 171 from the 

100KGP set). Of these, combined TMB and Immunoscore data were available 

for 177 patients. 

TMB ranged from 0 mutations/Mb to 577.91 mutations/Mb (median = 4.39 

mutations/Mb). Median TMB was significantly greater in MSI-high than MSS 

tumours (Wilcoxon test, p = 2.8e-15, Table 5.1). 
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Table 5.1. Comparison of tumour mutational burden in microsatellite stable and 
microsatellite unstable colorectal cancer 

 Median TMB (mut/Mb) 

MSS CRC (n = 121) 3.6 

MSI-high CRC (n = 38) 68.3 

Patients with mismatch repair status available, n = 159. Wilcoxon test, p = 2.8e-15. CRC 
= colorectal cancer, MSI-high= microsatellite instability high, MSS = microsatellite stable, 
Mut/Mb = somatic coding non-synonymous mutations per megabase, n = number, TMB 
= tumour mutational burden.  

 

However, there was no significant association between TMB and the 

Immunoscore (IS) (Kruskal-Wallis test, p = 0.26, Figure 5.1). Median TMB across 

Immunoscore ranked categories was 3.74/ Mb for IS Low, 4.44/ Mb for IS Int, and 

4.68 /Mb for IS High. 

 

Figure 5.1. Comparison of TMB across Immunoscore categories. Int = Intermediate. 
IS3 = Immunoscore categories. mut/Mb = somatic coding non-synonymous mutations 
per megabase, TMB = tumour mutational burden. 
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As patients with MSI-high CRC had higher TMB scores, this could be a potential 

confounder. To assess this, analysis of TMB and Immunoscore in patients with 

MSS CRC only was performed. This confirmed a lack of a significant association 

between TMB and the Immunoscore (Figure 5.2). 

 

 

Figure 5.2. Comparison of TMB across Immunoscore categories (microsatellite stable 
colorectal cancer only). Int = Intermediate, IS3 = Immunoscore categories, mut/Mb = 
somatic coding non-synonymous mutations per megabase, TMB = tumour mutational 
burden. 

 

The TMB was averaged across the data set and the samples were divided into 

“high” and “low” TMB depending on whether the TMB was higher or lower than 

the median. Survival analysis did not show a significant association between the 

TMB rank and either OS or RFS (Figure 5.3).    
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Figure 5.3. Kaplan-Meier estimate of overall survival (OS) and recurrence-free survival 
(RFS) stratified by tumour mutational burden. High = greater than median. Low = less 
than median. There is no difference in OS (Cox proportional hazards ratio, p = 0.39) or 
RFS (Cox proportional hazards ratio, p = 0.71) between the groups.  
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5.2.1. Neoantigen burden and the Immunoscore 

Although TMB is not significantly associated with the Immunoscore in this data 

set, it is recognised that several mutations have no functional consequences, or 

do not lead to the generation of neoantigens, which are the primary targets of the 

T-cell-mediated anti-tumoral immune response [55]. 

The association between neoantigen burden and the Immunoscore was analysed 

to review specifically the impact of neoantigens on the colorectal tumour 

microenvironment. Neoantigen burden was calculated for tumours within the 

100KGP RE using Neopredpipe [174]. The Neopredpipe pipeline uses 

netMHCpan to predict neoantigen binding, and as a result, only predicts MHC 

Class I neoantigens.  

The Neopredpipe work was carried out in collaboration with Professor Graham’s 

team. In Neopredpipe, peptides binding more than one HLA could be counted 

several times, and frame shift mutations could theoretically produce hundreds of 

neoantigens. As the aim was to count each peptide only once, in the pipeline, a 

filter for unique neoantigens, both single nucleotide variants (SNVs) and 

insertions and deletions (indels), was used to generate this information for each 

tumour. The pipeline was also completed on the pilot data set samples for 30 

patients from the pilot set for whom the Immunoscore had been completed.  

The 100KGP samples were not all available for analysis at the of completion of 

the pipeline, so that, in total, neoantigen burden data was available 113 of the 

167 100KGP samples (67.7%) and 24 of the 30 pilot samples (80.0%). 137 

samples were available for analysis (69.5%). This data attrition could introduce a 
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source of bias to the results and conclusions drawn, but the sample size is 

sufficiently large to support statistical comparisons, and the clinico-pathological 

features of this data set were not different from the larger data set (Appendix 6).  

The identical pipeline was performed on both data sets. However, the number of 

unique neoantigen SNVs was significantly higher in the pilot data set than in the 

100KGP data set (median 7119 vs 83 neoantigens per tumour, Wilcoxon test p 

<2.2e-16). The number of unique indels was also higher in the pilot data set 

(median 10841 vs 5 indels per tumour, Wilcoxon test p <2.2e-16). The reasons 

for this discrepancy are unclear.  

For the 100KGP data set, the number of unique neoantigen SNVs ranged from 1 

to 1713 per tumour, and for indels from 0 to 1040 per tumour. For the pilot set, 

SNVs ranged from 5130 to 13160 per tumour, and indels ranged from 6837 to 

15984 per tumour. In both sets, the distribution of neoantigen values was 

positively skewed (Shapiro-Wilk test, p <2.2e-16). As with the TMB, MSI-high 

tumours had significantly higher numbers of neoantigens than MSS tumours 

(Table 5.2).  
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Table 5.2. Comparison of neoantigen burden in microsatellite stable and microsatellite 
unstable colorectal cancer 

 Median SNVs per tumour Median indels per tumour 

MSS CRC (n = 95) 53 4 

MSI-high CRC (n = 29) 5968 * 400** 

MSI-high tumours have greater neoantigen burden than MSS tumours. Wilcoxon rank 
sum test. *p = 2.0e-12. **p=1.6e-12. CRC = colorectal cancer, Indels = insertions and 
deletions, MSI-high = microsatellite instability high, MSS = microsatellite stable, SNVs = 
single nucleotide variants. 

 

As there were differences between the two sets, the 100KGP data set was 

analysed separately. Neoantigen burden (both for SNVs and indels) was highly 

correlated with TMB (R = 0.98, Figure 5.4). However, unlike the TMB, SNV 

neoantigen burden correlated with the Immunoscore for Low compared with 

Intermediate and High Immunoscores (Figure 5.5).  

 

Figure 5.4. Scatterplots comparing tumour mutational burden with neoantigen burden 
for both single nucleotide variants (a, “Unique neoantigens”) and insertions and 
deletions (b, “Unique indels”). Unique neoantigens and indels are illustrated as some 
peptides bind to more than one HLA and may be counted more than once in 
Neopredpipe. TMB = tumour mutational burden, mut/Mb = number of mutations per 
megabase. 
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Figure 5.5. Boxplots illustrating the associations between neoantigen burden and the 
Immunoscore (Low, Int, High). a. SNVs are correlated with the Immunoscore, Kruskal-
Wallis test IS Low vs High p = 8.7e-05 and Low vs Int Immunoscore p = 0.0002. b. 
SNVs are correlated with the Immunoscore, Wilcoxon test IS Low vs Int+Hi p = 0.0019. 
Hi = High, Int = Intermediate, IS = Immunoscore, IS3 = Immunoscore categories, SNV 
= single nucleotide variant. 

 

Of key significance, these associations were not driven by microsatellite status, 

as they remained when patients with MSS CRC only were examined (Figure 5.6). 
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Figure 5.6. Boxplots illustrating the associations between neoantigen burden and the 
Immunoscore (Low, Int+Hi) for microsatellite stable cancers in the cohort. a. SNVs are 
correlated with the Immunoscore, Wilcoxon test Low vs High Immunoscore p = 0.0011 
and Low vs Int Immunoscore = 0.016. b. Insertions and deletions show no significant 
correlation with the Immunoscore. Hi = High, Int = Intermediate. SNV = single 
nucleotide variant. IS3 = Immunoscore categories. 

 

A possible explanation for this discrepancy could be the impact of structural 

variants (including indels and frameshift mutations) within the TMB, and SNVs do 

not account for this. Information on indel burden was also available from 

Neopredpipe, so this comparison was made with the Immunoscore. It was 

observed that for indel neoantigens, the association was weaker and not 

statistically significant (for Low compared with Intermediate and High 

Immunoscores, p = 0.057, Figure 5.7). The differences between the associations 

of SNVs and indels with the Immunoscore (Table 5.3) suggest that these 

structural variants are represented within the TMB. 
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Figure 5.7. Boxplots illustrating the associations between indel burden and the 
Immunoscore (Low, Int, High). a. Indels are not significantly correlated with the 
Immunoscore, Kruskal-Wallis test IS Low vs High p = 0.057. b. Indels are not 
significantly correlated with the Immunoscore, Wilcoxon test IS Low vs Int+Hi p = 
0.059. Hi = High, Int = Intermediate, IS = Immunoscore, IS3 = Immunoscore 
categories, Indels = insertions and deletions. 

 

 

Table 5.3. Median neoantigens per tumour by Immunoscore category 

Immunoscore Median (SNVs) Median (Indels) 

Low (n = 24) 53 4 

Intermediate (n = 60) 89 5 

High (n = 29) 101 6 

Summary of median neoantigens per tumour ranked by Immunoscore category. The 
difference in neoantigen burden (SNVs) between Immunoscore categories is significant 
(p=0.0037). The difference in Indel burden is not (p=0.15). Indel = insertion and deletion, 
SNV=single nucleotide variant. 
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As with TMB, there was no significant difference in OS in patients with high 

neoantigen burden (labelled as above the median of all values) compared with 

those with low neoantigen burden. There was a slight trend towards higher RFS 

in patients with high neoantigen burden, but this was not statistically significant 

(Figure 5.8). 

 

Figure 5.8. Kaplan-Meier estimate of overall survival (OS) and recurrence-free survival 
(RFS) stratified by neoantigen burden. High = greater than median, Low = less than 
median. There is no difference in OS or RFS between the groups.  
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5.3 Neoantigen clonality and the Immunoscore 

The importance of neoantigen clonality in predicting responses to immunotherapy 

has been demonstrated, notably in a series of lung cancer samples by 

McGranahan et al. [164]. They showed that a combination of neoantigen burden 

and neoantigen clonality was most informative in determining the response to 

immunotherapy in lung cancer. In this analysis, TMB and neoantigen burden did 

not correlate reliably with the Immunoscore and clinical outcomes. Therefore, it 

was crucially important to compute neoantigen clonality in this patient set to 

determine its potential significance. Two methods were used for this. The first 

involved the use of a modified Dirichlet-based clustering approach (DPClust [56]). 

The second involved calculation of the MATH (mutant allele tumour 

heterogeneity) score. Associations between these results and the Immunoscore 

were performed. 

5.3.1 DPClust 

Copy number analysis (CNA) was performed using DPClust [56]. Neoantigen 

burden was filtered against the DPClust data, which selected out all neoantigens 

per sample. The proportion of each neoantigen in each tumour was calculated as 

a proportion from 0 to 1. Intratumoral heterogeneity (ITH) was determined as the 

proportion of subclonal neoantigens compared with the total burden. 

After filtering, ITH values were obtained for 120 patients in the 100KGP cohort. 

Ongoing clustering work is being performed on an additional 30 patients in the 

pilot cohort for whom the neoantigen burden is available and will be presented 

when available. For the 100KGP samples, values ranged from 0 (with every 
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neoantigen being clonal) to 1 (representing every neoantigen being subclonal). 

There was a significant skew towards high ITH, with a mean of 0.9 and a median 

of 1.0. Many samples had an ITH value of 1 (Figure 5.9). The median ITH for 

MSS CRC was 1.0 and for MSI-high CRC it was 0.98. This difference was small 

but significant (Wilcoxon rank sum test, p = 0.006). 

 

Figure 5.9. The distribution of ITH in the data set. The sample was markedly skewed 
towards a high ITH, with 54.7% of samples having an ITH of 1. Skewness = -2.71. 

 

ITH was correlated with the Immunoscore. Due to calculation errors within the 

pipeline, results for 14 samples were unavailable, bringing the total number to 

106 samples.  For these, there was a trend towards an inverse correlation 

between ITH and the Immunoscore, with decreasing ITH as the Immunoscore 

increased. However, this was not statistically significant (linear regression R = -

0.16, Pearson's product-moment correlation p = 0.102, Figure 5.10). When 

grouped into the Immunoscore Low and Intermediate combined with High 

categories, the median Immunoscore for median ITH in the Low group was 1.00 
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and in the Intermediate and High combined groups was 0.991 (Wilcoxon test, p 

= 0.31). MSS and MSI-high samples were analysed separately. An inverse 

association between the Immunoscore and ITH was noted for MSI-high samples 

but did not reach statistical significance for MSS CRC samples (Figure 5.11).  
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Figure 5.10. Distribution of intratumoral heterogeneity (ITH) by Immunoscore for 
samples in the 100KGP GeL environment (n=106). The Immunoscore is only slightly 
negatively correlated with ITH by linear regression analysis. 

 

 

 

 

Figure 5.11. Distribution of intratumoral heterogeneity (ITH) by Immunoscore for MSS 
(a) and MSI-high (b) CRC. The Immunoscore is negatively correlated with ITH for MSI-
high CRC by linear regression analysis. MSI = microsatellite instability. MSS = 
microsatellite stable. 

 



167 
 

A comparison of survival outcome by ITH (stratified into “Low” and “High” based 

on the average) was performed. No significant difference in either RFS or OS 

was observed (Figure 5.12).  It is most likely that the significant skew towards 

high ITH reduced the ability to detect a difference between the groups. 

 

Figure 5.12. Kaplan-Meier estimate of overall survival (OS) and recurrence-free 
survival (RFS) stratified by intratumoral heterogeneity. High = greater than average, 
Low = less than average. There is no difference in OS between the groups. There is a 
trend towards a higher RFS in the low ITH burden group but this is not statistically 
significant. ITH = intratumoral heterogeneity. 
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5.3.2. Combined effects of neoantigen burden and ITH on the Immunoscore 

A combination of neoantigen burden and neoantigen clonality was shown to be a 

better predictor of patient outcomes after immunotherapy in lung cancer [164]. To 

assess this in my patient group, a combination of ITH and neoantigen burden was 

performed in this study, and the patients were stratified into three groups. Those 

with High neoantigen burden and Low ITH were deemed to have a “Good” score. 

Those with either High neoantigen burden and High ITH, or Low neoantigen 

burden and Low ITH, were deemed to have an “Intermediate” score. Those with 

a “Low” neoantigen burden and “High” ITH were deemed to have a “Poor” score. 

The Immunoscore was highly correlated with the combined rank (Kruskal-Wallis 

test, p = 0.004, Figure 5.13). 
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Figure 5.13. Boxplots illustrating the associations between the combined neoantigen 
burden and intratumoral heterogeneity, stratified into three groups, and the 
Immunoscore. The combined rank (stratified into “Poor”, “Intermediate” and “Good”) is 
highly correlated with the Immunoscore. Kruskal-Wallis test, p = 0.004. Int = 
Intermediate, ITH = intratumoral heterogeneity. 

 

When this combined rank was compared with survival data, the association with 

RFS was not statistically significant (Figure 5.14). However, the trends seen imply 

that this is likely to be due to a small sample size and would likely be significant 

in a larger cohort. 
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Figure 5.14. Kaplan-Meier estimates recurrence-free survival (RFS) stratified by 
combined ITH and neoantigen burden ranking for all patients. Those with “Poor” and 
“Int” scores appear to have lower RFS than those with “Good” scores, although this is 
not statistically significant. 

 

While these results show moderate associations, the combination of clonality and 

neoantigen burden is highly compelling. It is probable that with cross-validation 

in a larger sample set, the results would be even more robust. 

Furthermore, the DPClust approach, while meticulous, only examines the impact 

of Class I neoantigens. The role of Class II neoantigens and structural variants 

could also be highly significant, and a method to examine this was sought. 
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5.3.3. The MATH score 

The data from the modified DPClust approach showed a trend towards a negative 

association between the Immunoscore and ITH. However, there were some 

weaknesses including data attrition and the compounding of errors in copy 

number and allele frequency estimations during the calculations.  

Therefore, a second method was examined, using the mutant allele tumour 

heterogeneity (MATH) score, which measures the distribution of all mutant alleles 

by obtaining a percentage of the ratio of the median to the MAD. This incorporates 

all mutations and therefore both Class I and II neoantigens. The MATH score has 

the significant advantage of having demonstrated prognostic [188] and predictive 

value [194] in a variety of tumour subtypes. 

MATH score results were obtained as described in the Methods (Chapter 2.4.2.2. 

b). Results were available for 145 samples, incorporating both the pilot and 

100KGP data sets. The median MATH score was 31.3, with a range from 20.1 to 

148.3 (Figure 5.15).  

 

Figure 5.15. The MATH (mutant allele tumour heterogeneity score) distribution, which 
is negatively skewed.  



172 
 

The median MATH score was higher in the MSI-high CRC subset (36.8), 

compared with the MSS CRC subset (29.2, Wilcoxon rank sum test, p = 0.0005). 

This raised the possibility that tumours with high mutation rates simply have 

greater heterogeneity. However, the MATH score was not significantly associated 

with the TMB, increasing confidence that the MATH score is not influenced by the 

number of mutations (R = 0.09, Pearson's product-moment correlation p = 0.3, 

Figure 5.16). 

 

Figure 5.16. Comparison of the distribution of the tumour mutational burden (TMB, 
non-synonymous coding mutations per Mb) and the mutant allele heterogeneity 
(MATH) score. The MATH score is not influenced by tumour mutational burden.  

 

When four outlying values were removed, the MATH score was significantly 

inversely correlated with the Immunoscore (R = -0.28, Pearson's product-moment 

correlation p = 0.0024, Figure 5.17).  
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Figure 5.17. Distribution of the mutant allele heterogeneity (MATH) score by 
Immunoscore (outliers excluded). The Immunoscore is significantly negatively 
correlated with the MATH score by linear regression analysis, p = 0.0024. 

 

This difference was striking when the Immunoscore samples were grouped into 

Low and combined Intermediate and High groups. The median MATH for IS Low 

was 36.0, and IS Int + High was 29.7 (Wilcoxon test, p = 0.015). Filtering out the 

four outlier samples further emphasised this association (Figure 5.18). 
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Figure 5.18. Comparison of the mutant allele heterogeneity (MATH) score by 
Immunoscore (IS Low vs IS Int+Hi). The MATH score is significantly inversely 
correlated with the Immunoscore, (a) for all samples and (b) with outlying samples 
removed (MATH score >130) excluded.  

 

However, when MSS and MSI-high samples were analysed separately, this 

association was not significant. In the case of MSI-high CRC, this is most likely 

due to sample size reduction after filtering (Figure 5.19).  
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Figure 5.19. Distribution of the mutant allele heterogeneity (MATH) score by 
Immunoscore for MSS (a) and MSI-high (b) CRC. The Immunoscore is not significantly 
correlated with the MATH score when the data set is subdivided. MSI = microsatellite 
instability. MSS = microsatellite stable. 

 

Associations with survival were plotted. The samples were categorised as either 

“High” or “Low” MATH scores, with a cut-off value taken as the median score, as 

performed by Mroz et al. [257]. The median MATH score was 30.4. There was no 

association seen between the MATH score ranking and either OS or RFS (Figure 

5.20).  
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Figure 5.20. Kaplan-Meier estimates of (a) overall survival (OS) and (b) recurrence-
free survival (RFS) stratified by MATH score ranking for all patients. There is no 
association between either OS or RFS and the MATH score in this data set. MATH = 
mutant allele tumour heterogeneity score.  

+++++++ +++++ ++++++++++++++
+ ++++++++ +++++ +++

+ +++++++ +++++++++++ +++++++++++++++ + + ++
+ + +

p = 0.34

0%

25%

50%

75%

100%

0 30 60 90 120

Time in months

O
v
e

ra
ll 

s
u

rv
iv

a
l

MATH + +High Low

61 47 25 17 0
58 36 9 2 0Low

High

Number at risk

+
+++++ ++++ +++++++++++++++ + +++++++ +++++ ++

+
+++ ++++++ ++++++++++ +++++++++++++ + + ++ + + +

p = 0.66

0%

25%

50%

75%

100%

0 30 60 90 120

Time in monthsR
e

c
u

rr
e

n
c
e

-f
re

e
 s

u
rv

iv
a

l MATH + +High Low

61 40 23 15 0
58 32 7 1 0Low

High

Number at risk



177 
 

This may have been influenced by other confounding parameters, for example, 

patient age. However, analysis of multiple confounders showed no significant 

association between the MATH score and patient age (Pearson's product-

moment correlation, p = 0.44), gender (Wilcoxon test, p = 0.58), ethnicity 

(Kruskal-Wallis test, p = 0.82), disease stage (Kruskal-Wallis test, p = 0.9), 

tumour T stage (Kruskal-Wallis test, p = 0.67), presence of EMVI (Wilcoxon test, 

p = 0.34), disease site (Kruskal-Wallis test, p = 0.33), or whether they had 

neoadjuvant therapy (Wilcoxon test, p = 0.41). 

Dissecting the MATH score to consider separately the numbers of clonal and 

non-clonal mutations per tumour showed strong association between the number 

of clonal mutations and the Immunoscore, and inverse association between the 

number of non-clonal mutations and the Immunoscore (Pearson's product-

moment correlation for both, Figure 5.21). 

 

Figure 5.21. Comparison of number of mutations with the Immunoscore. (a) Number of 
clonal mutations is correlated with the Immunoscore, p = 0.02. (b) Number of non-
clonal mutations is inversely associated with the Immunoscore, p = 0.02. 
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5.4 Somatic immune gene expression and the immune environment 

It was important to corroborate the associations found with transcriptomic data. 

To this end, 3’ RNA sequencing was performed using RNA extracted from 

formalin fixed tissue. Of the 197 patients, combined Immunoscore samples and 

RNAseq data were available for 190 patients. Analysis was performed in Partek® 

Flow©. 

5.4.1. Gene set analysis 

Mitochondrial and ribosomal genes were filtered out and a correction for batch 

effect was made using the Partek algorithm (Figure 5.22).  
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Figure 5.22. Principal components analysis of data nodes before and after adjustment 
for batch effect. (a) Raw data (b) following adjustment for Batch and 
Batch*Immunoscore.  
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Analysis of the association of gene expression against the Immunoscore by gene 

set analysis (GSA) showed several genes with expression differences most 

strongly correlated with the Immunoscore. A filter was applied to assess genes in 

the extended MuTHER eQTL list (Figure 5.23). When Low versus High 

Immunoscores were compared, the top gene associated was STAT-1, with 

increased expression associated with a higher Immunoscore (Kruskal-Wallis test, 

p = 8.37e-11).  

 

Figure 5.23. Gene set analysis of immune gene expression by the Immunoscore. The 
top gene associated with the Immunoscore was STAT1, with other genes, notably 
CD247, CTLA4, CCL5, CXCL10, CD4, LAG3, ICOS, IRF1 and IFNG also significantly 
associated with the Immunoscore. 

 

 

Hierarchical clustering showed other genes showing strong associations with the 

Immunoscore, notably STAT-1, TGFβ1, TRAC, PARP14, GBP1, APOL6, 

PSMB9, CMC1, KHL18, CD3D, DCAF17, CD27, DUS2 and QSERP (Figure 

5.24).  
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Figure 5.24. Heatmap showing differential gene expression by Immunoscore (y axis 0 
to 4). Increased expression of PSMB9, PARP14, STAT1, GBP1, APOL6, DUS2, 
CD3D, TRAC and CD27 are seen at high Immunoscores (bottom left, emphasised by 
red square) while increased expression of TGFβ1 is seen at low Immunoscores (top 
left). 

 

5.4.2. The co-ordinate immune response cluster (CIRC) 

Data on expression of the 28 genes that make up the co-ordinate immune 

response cluster was collated (Table 5.4). The expression of each gene was log 

transformed, and the mean cluster expression z score was calculated for each 

sample as described by Lal et al. [92] (Figure 5.25). 
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Table 5.4. The co-ordinate immune response cluster genes 

Gene ID 

CCL5 

CD247 

CD274 

CD4 

CD80 

CTLA4 

CXCL10 

CXCL9 

GNLY 

HAVCR2 

HLA-DMA 

HLA-DMB 

HLA-DOA 

HLA-DPA1 

HLA-DPB1 

HLA-DQA1 

HLA-DQA2 

HLA-DRA 

HLA-DRB5 

ICAM1 

ICOS 

IFNG 

IL18RAP 

IRF1 

LAG3 

PDCD1LG2 

STAT1 

TBX21 

From Lal et al. 2015 [92]. 
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Figure 5.25. The distribution of the co-ordinate immune response cluster (CIRC) gene 
expression values for all samples. Log transformed and z scored, skewness = -0.62, 
Shapiro-Wilk normality test p = 0.0004.  

 

The median CIRC score was higher for MSI (median z score = 0.35) than MSS 

tumours (median z score = -0.07, Wilcoxon rank sum test, p = 2.18e-06). 

The CIRC score was correlated with the Immunoscore (Table 5.5). The median 

CIRC increased with Immunoscore category (Figure 5.26). When the IS Low was 

compared with the combined IS Int and Hi categories, this difference was 

markedly significant (Kruskal-Wallis test, p = 0.0006, Figure 5.27). 

  



184 
 

Table 5.5. Distribution of median and mean z scores for the CIRC by the Immunoscore 

Immunoscore 

(number) 

Median Interquartile 

range 

Mean Standard 

deviation 

Low (n=45) -0.11 0.52 -0.22 0.49 

Intermediate 

(n=100) 

0.09 0.48 0.03 0.41 

High (n=45) 0.12 0.51 0.13 0.36 

The mean z score for the CIRC rises with each Immunoscore category. CIRC = co-

ordinate immune response cluster 

 

Figure 5.26. Boxplots illustrating the associations between the CIRC (co-ordinate 
immune response cluster) score and the Immunoscore (Low, Int, High). The CIRC 
score is correlated with the Immunoscore for Low compared with the Intermediate and 
High categories. Kruskal-Wallis test, p = 0.001. Int = Intermediate, IS3 = Immunoscore 
categories. 
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Figure 5.27. Boxplots illustrating the associations between the CIRC (co-ordinate 
immune response cluster) score and the Immunoscore (Low, Int + Hi). The CIRC score 
is correlated with the Immunoscore for Low compared with the Intermediate and High 
categories. Kruskal-Wallis test, p = 0.00063. Hi = High, Int = Intermediate, IS = 
Immunoscore categories 

 

The CIRC score principally incorporates Th1- centric genes, such as TBX21, 

IFNG, IRF1 and STAT1, which are known to drive anti-cancer immunity. The 

score also incorporates immune checkpoint genes which are also upregulated in 

the presence of strong constitutive Th1 expression, so this is an expected finding. 

The association between the CIRC score and the Immunoscore persisted even 

when filtered out for MSS tumours only (Figure 5.28).  
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Figure 5.28. Boxplots illustrating the associations between the CIRC (co-ordinate 
immune response cluster) score and the Immunoscore (Low, Int, High) for 
microsatellite stable tumours only (n=118). The CIRC score is correlated with the 
Immunoscore for Low compared with the Intermediate and High categories. Kruskal-
Wallis test, p = 0.017. Int = Intermediate, IS3 = Immunoscore categories. 

 

The CIRC score was compared with survival outcomes in all patients (both MSS 

and MSI-high). The threshold for a ‘High’ CIRC score was defined as the median 

of the score in the MSI-high group. There was a trend towards an increased RFS 

in the group defined as a ‘High’ CRC, although this was not statistically significant 

(Cox proportional hazards model, p = 0.075, Figure 5.29). There was no 

association seen for OS (p = 0.202, Figure 5.30). 
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Figure 5.29. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by 
CIRC z score (high or low) for all patients. There is a trend towards increased RFS with 
a High CIRC score, but this is not statistically significant. Cox proportional hazards, p = 
0.075. Hazard ratio Low vs High CIRC = 1.90 (95% CI 0.93 – 3.90). CI = confidence 
interval, CIRC = co-ordinate immune response cluster. 

 

Figure 5.30. Kaplan-Meier estimate of overall survival (OS) stratified by CIRC z score 
(high or low). There is no significant difference in OS between those with High and Low 
CIRC scores. Cox proportional hazards, p = 0.202. CIRC = co-ordinate immune 
response cluster. 
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5.4.3. MHC Class II gene expression 

MHC Class II (HLA-DP -DQ and -DR) expression signatures were also 

calculated, log transformed and normalised to z scores. The CIRC includes Class 

II genes amongst its other signatures. Therefore, as expected, Class II RNA 

expression correlated with the Immunoscore (Figure 5.31). Class II expression 

was higher in MSI-high tumours than MSS tumours, with median z score for MSI-

high tumours 0.33 compared with median z score for MSS tumours of -0.04, 

Wilcoxon test p = 0.0006. This association however disappeared when filtered 

out for MSS tumours only (Figure 5.32). 

  



189 
 

 

Figure 5.31. Boxplots illustrating the associations between the MHC Class II gene 
expression (HLA-DP, -DQ, and -DR) score and the Immunoscore (Low, Int, High). This 
is correlated with the Immunoscore for Low compared with High tumours, Kruskal-
Wallis test, p = 0.035. Int = Intermediate. IS3 = Immunoscore categories. 

 

Figure 5.32. Boxplots illustrating the associations between the MHC Class II gene 
expression (HLA-DP, -DQ, and -DR) score and the Immunoscore (Low, Int, High) for 
microsatellite stable tumours only (n=118). There is not a statistically significant 
association with the Immunoscore. Wilcoxon test, p = 0.12. Hi = High. Int = 
Intermediate. IS = Immunoscore categories. 
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5.4.4. Chemokine expression 

Other immune signatures and their correlation with the Immunoscore were 

explored. In particular, the signatures of a panel of gut bacteria-stimulated 

chemokines shown to drive T cell recruitment into tumour tissues [205] were 

analysed.  

These chemokines were in four groups: those associated with cytotoxic/Th-1 

function (CCL5, CXCL9 and CXCL10), those associated with regulatory T-

cell/Th-1 functions (CCL17, CCL22 and CXCL12), those associated with follicular 

Th cells (CXCL13) and those associated with IL-17-producing Th cells (CCL20 

and CCL17) [205].  

Of these, the cytotoxic (Th-1)-associated signatures showed the strongest 

associations with the Immunoscore (Kruskal-Wallis p = 0.00032, Figure 5.33), 

with increased combined z score in the Intermediate and High combined 

Immunoscore group compared with the Low Immunoscore group. 
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Figure 5.33. Boxplots illustrating the associations between Th-1 associated 
chemokines (the combined z score of CCL5, CXCL9 and CXCL10 expression) and the 
Immunoscore (Low, Int, High). (A) Shows the differences in gene expression scores 
when the Immunoscore categories are grouped into Low, Intermediate and High. (B) 
Shows the differences in gene expression scores when the Immunoscore categories 
are grouped into Low versus Intermediate and High. Kruskal-Wallis test p = 7e-05. Int = 
Intermediate. IS3 = Immunoscore categories. IS = Immunoscore. 

 

The follicular T-cell-associated chemokines showed lower gene expression levels 

in the low Immunoscore group but no differences in gene expression between the 

Intermediate and High Immunoscore groups, suggesting that the differences 

were apparent only when comparing the completely ‘cold’ tumours (IS Low) with 

‘warm’ or ‘hot’ tumours (IS Int and IS Hi) (Figure 5.34). 
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Figure 5.34. Boxplots illustrating the associations between follicular Th cell-associated 
chemokines (the CXCL13 z score) and the Immunoscore. Differences in expression 
are seen in the IS Low compared with Int and High categories for both, Wilcoxon test, p 
= 0.0016. Hi = High. Int = Intermediate. IS = Immunoscore categories. Treg = 
regulatory T cell. 

 

In contrast, there were no apparent differences amongst Immunoscore 

categories in gene expression of the regulatory T cell or IL-17-associated 

chemokines (Figure 5.35). 
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Figure 5.35. Boxplots illustrating the associations between (A) T-reg-associated 
chemokines (combined z score of CCL17, CCL22 and CXCL12 expression) and the 
Immunoscore. Wilcoxon test p = 0.27 and (B) IL17-associated chemokines (combined 
z score of CCL20 and CCL17 expression) and the Immunoscore, Wilcoxon test p = 
0.32. Hi = High. Int = Intermediate. IS = Immunoscore categories. T-reg = regulatory T 
cells. 
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5.4.5. Wnt signalling pathway-associated markers 

Data from Grasso et al. [256] showed that activated wnt/β-catenin signalling was 

correlated with the absence of T-cell infiltration in CRC. This is a key/canonical 

signalling pathway in CRC tumorigenesis. Inactivating mutations in APC drive 

wnt-signalling and APC loss was associated with reduced T cell infiltration in their 

study. They also found that nuclear β-catenin (CTNNB1) expression was 

inversely correlated with immune cell infiltration. Mouse melanoma studies have 

shown that activation of β-catenin intrinsic to tumour cells prevents tumour 

infiltration with T cells and causes tumour cell resistance to ICB [258]. 

Hypomethylation of AXIN2, a key wnt-signalling gene, leads to increased AXIN2 

expression, which is inversely associated T cell infiltration in CRC [256].   

However, in this data set, although APC2 expression was lower in IS Low 

tumours, there was no clear association between the Immunoscore and the 

expression of the other wnt signalling markers, including WNT7B, CTNNB1 and 

AXIN2 (Figure 5.36).
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Figure 5.36. Box plots showing the association between wnt signalling markers and the Immunoscore (a) APC2 expression is lower in IS 
Low tumours, Kruskal-Wallis test, p = 0.021. (b) WNT7B expression is not correlated with the Immunoscore, p = 0.44. (c) CTNNB1 
expression is not correlated with the Immunoscore, p = 0.88. (d) AXIN2 expression is not correlated with the Immunoscore, p = 0.94. IS = 
Immunoscore, IS3 = Immunoscore categories. 
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5.4.5. Lymphangiogenic markers  

The associations between a panel of lymphangiogenic markers and the 

Immunoscore were also analysed. Tumour-associated lymphatic vessels may 

serve two opposing roles. They are potential routes for metastatic spread, but 

they may aid tracking of anti-tumour immune cells into the immune environment. 

Lymphatic endothelial cells may also release immunomodulatory cytokines and 

act as antigen presenting cells [259]. Fankhauser et al. showed that VEGFC 

signalling enhanced the response to immunotherapy in mouse melanoma models 

[260]. They also showed that, in human metastatic melanoma, VEGFC 

expression correlates strongly with T cell inflammation. VEGFC induces the 

upregulation of CCL21 on lymphatic endothelial cells, which tracks CCR7+ 

immune cells into immune environments.  

The associations between VEGFC, CCL21 and CCR7 expression and the 

Immunoscore were assessed. The distribution of VEGFC z scores was bimodal. 

There was no difference in the distributions of MSS compared with MSI-high CRC 

(Wilcoxon test, p = 0.537, Figure 5.37).  
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Figure 5.37. (a) Distribution of VEGFC expression across the sample data set, n = 
190. This is bimodal. (b) This division is not due to differences in microsatellite status 
(MSS vs MSI-high CRC, Wilcoxon test, p = 0.531). 

 

Both CCR7 and CCL21 expression were correlated with the Immunoscore, 

especially when IS Low samples were compared with IS Intermediate and High 

samples. However, VEGFC expression was not correlated with the Immunoscore 

in this data set (Figure 5.38). 
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Figure 5.38. Boxplots comparing (a) VEGFC (b) CCR7 and (c) CCL21 expression z scores with the Immunoscore. Expression levels of 
CCR7 and CCL21 but not VEGFC are higher in the IS Int+Hi categories compared with the IS Low categories. Int+Hi = Intermediate and 
High categories. IS = Immunoscore. 
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VEGFC expression levels were low in most samples and may account for the 

lack of an association. No association of VEGFC expression levels with other 

confounding variables such as age (ANOVA, p= 0.89), disease stage (Kruskal-

Wallis test, p = 0.74), or primary tumour location (Kruskal-Wallis test, p = 0.85) 

was present. 

 

5.5 Immunohistochemical analysis 

5.5.1. MHC Class II expression  

Immunohistochemical tests were performed on fixed tumour slides. Staining for 

Class II expression was performed using the ANICCA Class II clinical trial 

protocol and technique [215], by Dr Phillipe Taniere at the UHB Department of 

Histopathology. Class II staining was completed in 186 samples. Class II 

expression was quantified as a percentage for each slide, using the Pathologist 

guide from the ANICCA trial. 

Class II expression was generally very low in the samples, with only 26.3% 

showing any Class II expression (Table 5.6). Samples with expression less than 

1% were considered Class II negative, while those with expression of 1% and 

greater were considered Class II positive. 

 

Table 5.6. Distribution of Class II expression in the data set 

Class II expression (%)  <1% 1-50% >50% 

Number (%) 137 (73.7) 37 (19.9)  12 (6.5) 

Class II = Major histocompatibility complex Class II antibody staining. 
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Class II IHC expression was correlated with the Immunoscore (Table 5.7). There 

was a greater proportion of samples with positive Class II expression in the 

Immunoscore “High” category compared with the “Intermediate” and “Low” 

categories (Pearson’s χ2 test, p = 0.041). 

 

Table 5.7. Comparison of Class II expression by Immunoscore category 

  IS Low IS Int IS high 

Class II expression <1% (n/%) 37 (21.4) 74 (54.0) 26 (19.0) 

Class II expression 1-100% (n/%) 9 (19.6) 23 (46.9) 17 (34.7) 

Int = Intermediate. IS = Immunoscore. There was a greater proportion of Class II 

expressing samples in the Immunoscore High category, Pearson’s χ2 test, p = 0.041). 

 

Class II expression was generally low (74% of samples had less than 1% 

expression). There was a positive association between the Immunoscore and 

Class II expression (Kruskal-Wallis test, p = 0.028, Figure 5.39). 
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Figure 5.39. Boxplots illustrating the associations between MHC Class II percentage 
expression and the Immunoscore (Low, Int, High). Kruskal-Wallis difference in 
Immunoscore in Low vs High Immunoscore, p = 0.028. Int = Intermediate, IS3 = 
Immunoscore categories. 

 

Class II IHC expression was also compared with Class II RNA expression to 

deduce the correlation between mRNA transcripts and protein expression in 

tissue. As most samples are Class II IHC negative, the association seen was 

small, but it was a positive and statistically significant correlation between Class 

II protein expression and the RNA z score (R = 0.15, p = 0.049, Figure 5.40). 
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Figure 5.40. Comparison of MHC Class II protein expression (IHC percentage) and 
RNA expression in colorectal tumour samples. N = 180.  IHC = immunohistochemistry. 

 

Class II IHC expression was also compared with the CIRC z score. There was a 

significant positive association between the Class II IHC expression and the CIRC 

score (R = 0.22, p = 0.0027, Figure 5.41). 
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Figure 5.41. Comparison of MHC Class II protein expression (IHC percentage) and the 
CIRC score in colorectal tumour samples. N = 180, CIRC = co-ordinate immune 
response cluster. IHC = immunohistochemistry. 

 

Associations between Class II expression and OS and RFS were also analysed. 

Samples were split into Class II negative (less than 1% expression) and Class II 

positive (greater than 1% expression). While there was no association between 

Class II expression and OS (Figure 5.42), there was a trend towards greater RFS 

in Class II positive patients (Figure 5.43). 
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Figure 5.42. Kaplan-Meier estimate of overall survival (OS) stratified by MHC Class II 
expression in formalin-fixed colorectal tumour tissue. No difference is observed in 
Class II negative compared with Class II positive samples. 

 

 
Figure 5.43. Kaplan-Meier estimate of recurrence-free survival (RFS) stratified by MHC 
Class II expression in formalin-fixed colorectal tumour tissue. There is a trend towards 
increased RFS is Class II positive patients compared with Class II negative patients. 
Cox proportional hazards model, p = Hazard ratio Class II positive versus Class II 
negative = 0.55 (95% CI = 0.27 – 1.1, p = 0.05). 
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5.6. Discussion 

This chapter has analysed in significant detail the relative contributions of some 

somatic genomic determinants to the colorectal immune environment, using the 

Immunoscore as the key outcome. Comparisons with survival data have also 

been performed. In particular, the contributions of tumour mutational and 

neoantigen burden and intratumoral heterogeneity to the immune contexture and 

clinical outcomes were explored. Somatic immune gene expression analysis 

emphasised the key roles of MHC Class II expression and a Th-1 centric metric, 

the CIRC to the immune environment. These results are supported by 

immunohistochemical analysis of expression of a set of markers including Class 

II, PD-1/CD8 and lymphatic endothelial proteins. 

 

5.6.1. Intratumoral heterogeneity is a greater determinant of the immune 

response in CRC than tumour mutational burden 

TMB was found to have no association with the Immunoscore or patient survival. 

However, there was an association between neoantigen burden and the 

Immunoscore. TMB and neoantigen burden were highly correlated, so this 

discrepancy could be due to the other factors present within the TMB calculation, 

such as structural variants and Class II neoantigens. The impact of structural 

variants was partially analysed by the indel burden, which was shown to have no 

association with the Immunoscore. Class II neoantigens were not analysed in this 

data set due to difficulties with importing and utilising the available Class II 
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neoantigen prediction tools within the restricted and encrypted Research 

Environment.  

On the other hand, intratumoral heterogeneity (as measured independently by 

the MATH score and modified DPClust approaches) is inversely associated with 

the Immunoscore. This correlation appears to be greater in the MSI-high 

samples, but due to a small sample size this could not be conclusively 

determined. However, a combination of neoantigen burden and ITH showed a 

stronger correlation with the Immunoscore and survival than either factor alone. 

This corresponds with lung cancer data by McGranahan et al. [164] and highlights 

the key role that clonal neoantigens also play in determining the immune 

response in CRC. 

 

5.6.2. MHC Class II expression is strongly correlated with the immune 

response in CRC 

Class II expression by mRNA and immunohistochemistry (protein) expression 

were associated with the Immunoscore. Class II expression is generally low in 

CRC (found in 26% of this data set), and may also identify a subset of patients 

with potentially potent anti-cancer immune responses. Antigen processing and 

presentation through both MHC Class I and Class II-mediated mechanisms is 

required for anti-cancer responses to clonal neoantigens. While Class II is 

constitutively expressed on professional APCs, these may be excluded from the 

tumour environment. Therefore, the induction of Class II expression on tumour 

cells becomes more significant. In CRC, the absence of Class II expression is 
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associated with reduced lymphocyte infiltration into tumours and a higher 

incidence of lymph node metastases [59]. Most established neoantigen 

determination pipelines only call Class I neoantigens [169], which is a significant 

draw back in assessing the role of Class II-restricted neoantigens in CRC. There 

are increasingly sophisticated Class II calling algorithms, including netMHCIIpan 

[261], MHCnuggets [175] and neonMHC2 [66], but was not possible to use these 

for the purposes of this thesis. When available, Class II neoantigen determination 

will further corroborate these results and consolidate the understanding of the 

mechanism through which clonal neoantigens induce the immune response. 

 

5.6.3. Differential gut bacteria-derived chemokine expression correlates 

with the immune response in CRC 

I found strong associations between Th1-centric gut bacteria-derived chemokines 

and the Immunoscore, which suggests a contribution of the gut microbiome to 

differential immune responses in cancer in addition to its established role in 

carcinogenesis [198]. Cremonesi et al. [205] demonstrated the induction of 

expression of these chemokines in tumour cells both in vitro and in vivo on 

exposure to gut bacterial cultures composed predominantly of Fusobacterium 

nucleatum, Bacteroides fragilis and Escherichia coli. 16s ribosomal RNA (rRNA) 

metagenomic sequencing showed associations between particular bacteria 

families and the expression of pro-inflammatory chemokines, particularly CCL5, 

CXCL9 and CXCL10, in tumour cells. In addition, variation in the gut microbiome 

composition appears to influence the response to immune checkpoint blockade 

in melanoma [202]. I was keen to explore the potential metagenomic implications 
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of these results, including the potential for confounding effects of germline and 

tumour-related factors on the microbiome in CRC. The CIRC, which is also a Th1-

centric metagene, is also strongly associated with the Immunoscore, therefore it 

is possible that the role of gut microbiota may be secondary. Full metagenomic 

sequencing was performed on these samples, and the results are presented in 

Chapter 6.  

 

5.6.4. There are no associations between wnt-driven markers or 

lymphangiogenic markers and the Immunoscore 

A surprising finding was the lack of association between wnt signalling markers 

and the Immunoscore. This was contrary to other studies that suggest an inverse 

correlation between nuclear β-catenin expression by immunohistochemistry and 

T cell infiltration in colorectal tumours [256]. This may represent a discrepancy 

between β-catenin mRNA expression and immunohistochemical staining, or may 

be due to lower statistical power in this data set. Grasso et al. studied 1,150 

samples of which the majority had high levels of β-catenin staining [256], while 

this data set has a smaller number (n = 190). Lymphangiogenic markers also did 

not show convincing associations with the Immunoscore. Lymphangiogenesis 

has potentially conflicting effects in cancer progression, by either facilitating 

metastatic progression through trafficking tumour cells to draining lymph nodes, 

or suppressing tumour progression by providing conduits through which anti-

tumour immune cells can be more effectively trafficked to the tumour site [259]. 

It is possible that these effects negate each other and lead to no direct association 

with immune cell infiltration in CRC. 



209 
 

5.6.5. Limitations  

This analysis supports the hypothesis presented, that neoantigen clonality has a 

stronger impact on the immune environment than mutational burden. Additional 

findings included the significant impacts of MHC Class II expression and the 

expression of Th-1 driven markers on the immune environment. 

There were some limitations to this analysis. First, it was exploratory. Due to 

bioinformatics pipeline artefacts, there was sample loss during the data analysis 

process, thus potentially reducing statistical power to detect differences between 

patient groups. Secondly, although correlations were established between 

somatic factors and the Immunoscore, the potential causal mechanisms are 

unknown. There are good precedents from other solid tumours adding support to 

the conclusion that these associations are valid and causal. Finally, it was not 

possible to determine the predictive value of these somatic factors in determining 

the response to immune therapies, as no patient in this analysis received 

immunotherapy. It is of critical importance that subsequent clinical trials of 

immunotherapy in CRC also analyse neoantigen burden, clonality and 

metagenomic factors to assess their predictive value. 
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Chapter 6: Metagenomic determinants and 

the Immunoscore 
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6.1. Introduction 

The gut microbiome is hypothesised to play a crucial role in the development of 

colorectal cancer (CRC). In particular, Fusobacterium nucleatum is shown to be 

highly associated with the development of CRC [262], and has been shown to 

cause tumorigenesis in animal models [263]. Meta-analysis of faecal microbiota 

studies shows global microbial signatures associated with CRC, including genera 

including 

Fusobacterium, Porphyromonas, Parvimonas, Peptostreptococcus, Gemella,  

Prevotella, and Solobacterium amongst others [264]. 

Differences in gut microbiota have been shown to be associated with differential 

responses to anti-PD1 immunotherapy in some epithelial cancers, with 

Akkermansia and Enterococcus species predominating in responders [202]. In 

addition, stimulation of production of Th1-chemokines by gut microbiota including 

Fusobacterium nucleatum, Bacteroides fragilis and Escherichia coli appear to 

drive T cell tracking the colorectal cancer environment, in both in cancer cell 

models and mouse models [205].  

Thus, it is important to explore the contribution of the gut microbiome to the 

immune contexture in our CRC cohort. Although most metagenomics analysis is 

performed using 16S rRNA amplicon sequencing of material from stool samples, 

whole genome sequencing (WGS) approaches have advantages including 

greater genomic diversity and less risk of biases associated with the PCR 

required for amplifying the marker genes in 16s rRNA sequencing [207, 265]. It 

is however, a slower process and analysis is more complex. This dataset had the 
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advantage of access to somatic WGS data directly from gut mucosa. 

Metagenomic sequencing was performed using the Kraken2 pipeline [206], which 

assigns taxonomic labels to DNA sequences. While stool metagenomic data was 

not available, mucosal somatic WGS provided a rich source of data for analysis 

and comparison with the Immunoscore and the other immunogenomic 

information available, to derive interesting conclusions about the role of the 

microbiome in differential immune responses in colorectal cancer. 

 

6.2. Metagenomic data generation 

Following extraction and sorting of the reads from somatic whole genome bam 

files within the Genomics England Research Environment, the kraken2 pipeline 

was used to generate taxonomic outputs for each sample. Tumour bam files were 

available within the Research Environment for 168 of 177 patients for whom the 

Immunoscore was available, and the pipeline was successfully completed in 164 

patients. In the pilot data set, the same procedure was performed, but outside the 

Research Environment. The pipeline was successfully completed on 26 of 30 

patients for whom the Immunoscore was available. Both data sets were combined 

to give a total number of 190 patients. Sequencing results were visualised in 

Pavian, which provides the data in both text csv format and in Sankey diagrams. 

Sankey diagrams display the flow of reads, with the width proportional to the 

number of reads [227]. The reason for non-availability of results in eight patients 

was due to inability of the pipeline to generate sorted bam files from the WGS 

inputs. 
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6.2.1. Classification and distribution of microbial reads 

The number of microbial reads per sample varied from 29,043,075 to 

250,107,348 (with a single outlying sample that only had 114,885 reads). The 

median read count was 97,533,904. There were differences in the numbers of 

reads and percentages of classified reads and proportion of bacterial reads per 

sample between the GeL dataset and the pilot dataset, most likely reflecting the 

two different populations sampled at different timepoints.  

The median read count in the pilot data set was higher than in the GeL data set 

(99,842,676 compared with 88,267,042; Wilcoxon test p = 0.003). A median of 

73.6% of reads per sample were classified in the GeL dataset. However, most of 

these reads were chordate reads, accounting for a median of 65.5% of reads per 

sample. These are not relevant for the metagenomics analysis and so were 

excluded, giving a median of 5.1% classified reads per sample. In contrast, in the 

pilot dataset, there was a median of 3.5% reads were classified per sample 

(Wilcoxon test, p = 4.04e-05).  

The median percentage of bacterial reads per sample was 0.7% in the GeL 

dataset (ranging from 0.04% to 26.1%) and 3.0% in the pilot dataset (ranging 

from 2.2% to 20.5%) (Figure 6.1).  
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Figure 6.1. Median distribution of bacterial reads by percentage in the Genomics 
England dataset compared with the pilot dataset. The median percentage of reads is 
higher in the pilot data set (3.0% compared with 0.7%, Wilcoxon test p = 2.17e-07). 
geL = Genomics England sample set. 

 

In order to maximise the sample size, the datasets were combined for further 

analysis. However, when analysing the associations between bacterial reads and 

the Immunoscore, sub-group testing was also performed to determine if the 

differences in bacterial reads between the pilot and GeL datasets could bias the 

conclusions drawn. 

 

6.2.1.1. Microsatellite status and read counts 

After exclusion of samples for which data on microsatellite status/DNA mismatch 

repair (MMR) status was not available, associations between microsatellite status 

and total read count and bacterial read percentages were studied. Data was 
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available for 151 patients. Median total read count per sample was higher in 

microsatellite unstable (MSI-high) when compared with microsatellite stable 

(MSS) CRC, however this difference was not significant (107,978,542 versus 

97,533,904, Wilcoxon test, p = 0.12) (Figure 6.2). 

 

 

Figure 6.2. Comparison of number of raw reads per sample in microsatellite instability 
high (MSI) compared with microsatellite stable (MSS) colorectal samples. N = 151. The 
median number of reads is higher in MSI tumours but this is not statistically significant 
(Wilcoxon test, p = 0.12). 

 

However, the percentage of bacterial reads was significantly higher in MSI-high 

samples compared with MSS CRC (2.44% versus 0.70%, Wilcoxon test, p = 

0.0002, Figure 6.3). 
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Figure 6.3. Comparison of number of bacterial reads per sample in microsatellite 
instability high (MSI) compared with microsatellite stable (MSS) colorectal samples. N = 
151. The median number of reads is higher in MSI tumours (Wilcoxon test, p = 
0.00016). 

 

This raises the interesting possibility that microsatellite unstable tumours have a 

different microbiome from microsatellite stable tumours, and this may be one 

mechanism through which there are differential immune responses in the tumour 

environment.  

 

6.2.2. Determination of bacterial operational taxonomic units 

Metagenomics sequencing analysing small subunit 16S/18S rRNA marker gene 

sequence datasets utilise operational taxonomic units (OTUs), which are clusters 

of organisms grouped by DNA sequence similarity of specific taxonomic markers. 

This clustering is based on sequencing similarity thresholds and they have been 

shown to correspond roughly to microbial phylogeny [266].  
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To determine the taxonomic units for detailed analysis of these samples, the 

Sankey diagrams of the taxonomic outputs were examined. The Sankey 

diagrams for two individual samples are shown below for illustrative purposes. In 

Figure 6.4, this sample has a clear preponderance of Bacteroides reads in 

comparison to other genera such as Pseudomonas and Prevotella. In contrast, 

in Figure 6.5, Pseudomonas predominates while Bacteroides reads are relatively 

absent. Based on these outputs, bacterial genera were taken as the OTUs for 

further analysis. 

 

 

Figure 6.4. Sankey visualisation of metagenomic outputs from patient sample labelled 
LP3000375-DNA_C02. The flows show that there is clear preponderance of 
Bacteroides genera reads while other genera such as Pseudomonas are less 
represented. D = domain, P = phylum, C = class, O = order, F = family, G = genus, S = 
species. 
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Figure 6.5. Sankey visualisation of metagenomic outputs from patient sample labelled 
LP3000381-DNA_D03. The flows show that there is clear preponderance of 
Pseudomonas genera reads while Bacteroides are clearly less represented. D = 
domain, P = phylum, C = class, O = order, F = family, G = genus, S = species. 

 

6.3. Bacterial taxonomic unit association with the Immunoscore  

For the combined dataset, Kraken2 generated 944 OTUs at genus level at the 

initial analysis. These were filtered to remove all non-bacterial genera 

(particularly viruses and fungi), leaving 606 bacterial genera.  

Two separate analyses were performed using the Immunoscore result. In the first, 

the samples were divided into two groups. Those with IS 0 and 1 were coded as 

“Low” and those with IS 2, 3, and 3 were coded as “Int+Hi”. Differences in 

bacterial OTU reads between these two groups was determined. To generate 

correlation coefficients, these groups were given numerical values of 1 and 2. In 

the second analysis, samples with IS 0 and 1 (“Low”) were compared with 
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samples with IS 3 and 4 (“High”), and those with “Intermediate” scores were 

excluded. This reduced the sample size to 77. 

 

6.3.1 Low compared with combined Intermediate and High Immunoscore 

There were significant associations between the Immunoscore when divided into 

two groups (“Low” vs “Int+Hi”) and the number of reads per sample in 166 

bacterial genera (OTUs). These included positive associations in groups such as 

Halobacterium, Rhizobiales, Xanthomonas, Roseovarius, Corynebacterium and 

Nocardiopsis amongst others (Table 6.1), but inverse associations between the 

Immunoscore and the number of reads per sample in genera such as Klebsiella, 

Borrelia, Enterobacter, Neisseria, Pasteurella, Vibrio, Yersinia, Bacillus and 

Legionella (Table 6.2).  
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Table 6.1. Positive associations between the number of bacterial reads per sample and 
the Immunoscore (Low vs Int+High) by bacterial operational taxonomic unit 

Bacterial OTU Correlation coefficient 

(r) 

P value 

Halobacterium 0.28 0.0002 

Nitrosopumilus 0.26 0.0005 

Streptosporangium 0.22 0.0035 

Rathayibacter 0.22 0.0035 

Rhizobiales 0.22 0.0043 

Xanthomonas 0.22 0.0044 

Salinimonas 0.21 0.0060 

Kosmotoga 0.21 0.0067 

Planctomycetaceae 0.21 0.0068 

Actinotignum 0.21 0.0074 

Gemmata 0.20 0.0080 

Myxococcus 0.20 0.0087 

Sulfitobacter 0.20 0.0089 

Halorubrum 0.20 0.0091 

DHEV2 Aciduliprofundum 0.20 0.010 

Kitasatospora 0.20 0.010 

Caulobacter 0.19 0.010 

Dolichospermum 0.19 0.0132 

Mycolicibacterium 0.19 0.0132 

Tsukamurellacaeae 0.19 0.0147 

Omnithinimicrobium 0.19 0.0152 

Saccharothrix 0.19 0.0160 

Ectothiorhodospira 0.18 0.0171 

Massilia 0.18 0.0176 

Leifsonia 0.18 0.0181 

Actinomadura 0.18 0.0199 

Pyrobaculum 0.18 0.0199 

Methylibium 0.18 0.0203 

Bosea 0.18 0.0206 

Cellulomonas 0.18 0.0209 

Nocardiopsis 0.18 0.0223 

Desulfurococcaceae Aeropyrum 0.18 0.0229 

Natronolimnobius 0.17 0.0238 

Roseovarius 0.17 0.0240 

Microbulbiferaceae 0.17 0.0241 

Methanocellales 0.17 0.0242 

Ketogulonicigenium 0.17 0.0246 

Curtobacterium 0.17 0.0248 

Celeribacter 0.17 0.0260 

Thermococcus 0.17 0.0297 

Brevundimonas 0.17 0.0323 
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Bacterial OTU Correlation coefficient 

(r) 

P value 

Halorhabdus 0.16 0.0331 

Dyella 0.16 0.0340 

Haloplanus 0.16 0.0364 

Actinoplanes 0.16 0.0364 

Porphyrobacter 0.16 0.0374 

Hydrogenophaga 0.16 0.0374 

Natromonas 0.16 0.0392 

Anaeromyxobactereceae 0.16 0.0414 

Sphingomonas 0.16 0.0443 

Serinicoccus 0.16 0.0443 

Thermocrinis 0.16 0.0445 

Desulfosarcina 0.15 0.0460 

Methanoregulaceae 0.15 0.0463 

Chloroflexineae 0.15 0.0468 

Actinosynnema 0.15 0.0480 

Brachybacterium 0.15 0.0481 

Nocardioides 0.15 0.0491 

OTU = operational taxonomic unit. Int+Hi = combined Intermediate and High 
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Table 6.2. Inverse associations between the number of bacterial reads per sample and 
the Immunoscore (Low vs Int+High) by bacterial operational taxonomic unit 

Bacterial OTU Correlation coefficient (r) P value 
Klebsiella -0.26 0.0005 
Marinomonas -0.25 0.0009 
Calothrix -0.25 0.0011 
Cellulomonadaceae -0.24 0.0014 
Gemmataceae -0.24 0.0014 
Pectobacterium -0.24 0.0014 
Borreliella -0.24 0.0015 
Borrelia -0.23 0.0022 
Xylella -0.23 0.0022 
Anabaena -0.23 0.0022 
Hydrogenothermaceae -0.23 0.0024 
Enterobacter -0.23 0.0024 
Dickeya -0.23 0.0024 
Scytonemataceae -0.23 0.0024 
Brachyspirales -0.23 0.0027 
Neisseria -0.23 0.0027 

Pasteurella -0.23 0.0029 
Fervidobacteriaceae 
Fervidobacterium 

-0.23 0.0029 

Halorubraceae -0.23 0.0032 
Liberibacter -0.22 0.0036 
Bukholderia -0.22 0.0038 
Prosthecochloris -0.22 0.0043 
Aliivibrio -0.22 0.0043 
Plantactinospora -0.22 0.0043 
Rahnella -0.22 0.0044 
Anaplasma -0.22 0.0044 
Methanosarcina -0.22 0.0046 
Vibrio -0.22 0.0046 
Planococcus -0.22 0.0046 
Oenococcus -0.22 0.0046 
Halanaerobiaceae -0.22 0.0048 
Sulfolobus -0.22 0.0048 
Ehrlichia -0.22 0.0049 
Thermodesulfobiaceae -0.22 0.0050 
Yersinia -0.22 0.0050 
Marinitoga -0.22 0.0050 
Acidithiobacillia -0.21 0.0051 
Chlamydiales -0.21 0.0052 
Colwelliaceae -0.21 0.0056 
Mycoplasma -0.21 0.0058 
Glaesserella -0.21 0.0058 
Helicobacter -0.21 0.0058 
Acholeplasma -0.21 0.0061 
Flavobacterium -0.21 0.0063 
Luteimonas -0.21 0.0063 
Bacillus -0.21 0.0064 
Ureaplasma -0.21 0.0064 
Microcoleaceae -0.21 0.0065 
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Bacterial OTU Correlation coefficient (r) P value 
Leptospira -0.21 0.0069 
Mycobacterium -0.21 0.0071 
Micromonospora -0.20 0.0080 
Listeriaceae -0.20 0.0080 
Mycobacteroides -0.20 0.0081 
Thermoanaerobacter -0.20 0.0083 
Mesoplasma -0.20 0.0083 
Frondihabitans -0.20 0.0084 
Winogradskyella -0.20 0.0089 
Spiroplasmataceae -0.20 0.0089 
Cyanothecaceae -0.20 0.0090 
Anoxybacillus -0.20 0.0090 
Aquimarina -0.20 0.0090 
Pseudoarcobacter -0.20 0.0097 
Chroococcaceae -0.20 0.0097 
Blattabacteriaceae -0.20 0.0099 
Halomonas -0.20 0.0106 
Methanococcus -0.20 0.0112 
Bordetella -0.20 0.0112 
Runella -0.20 0.0113 
Paenibacillus -0.19 0.0116 
Caldicellulosiruptor -0.19 0.0118 
Shewanellaceae -0.19 0.0121 
Fervidobacteriaceae 
Thermosipho 

-0.19 0.0121 

Geobacillus -0.19 0.0123 
Moraxella -0.19 0.0144 
Dokdonia -0.19 0.0146 
Tolekusaellitidae -0.18 0.0167 
Seratia -0.18 0.0180 
Haloferax -0.18 0.0180 
Sphingorhabdus -0.18 0.0183 
Photorhabdus -0.18 0.0187 
Rickettsia -0.18 0.0190 
Francisella -0.18 0.0191 
Entomoplasma -0.18 0.0191 
Xenorhabdus -0.18 0.0200 
Psychromonadaceae -0.18 0.0204 
Herminiimonas -0.18 0.0204 
Legionella -0.18 0.0209 
Hydrogenobaculum -0.18 0.0214 
Pandoraea -0.18 0.0221 
Methanobacterium -0.17 0.0240 
Hyphomonadaceae -0.17 0.0249 
Aminobacter -0.17 0.0259 
Streptomyces -0.17 0.0260 
Frankiales -0.17 0.0270 
Thermoanaerobacterium -0.17 0.0270 
Vagococcus -0.17 0.0270 
Nitrosopumilales -0.17 0.0292 
Malacobacter -0.16 0.0328 
Pleurocapsales -0.16 0.0402 
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Bacterial OTU Correlation coefficient (r) P value 
Pedobacter -0.16 0.0406 
Aliiarcobacter -0.16 0.0417 
Phascolarctobacterium -0.15 0.0458 
Methyloceanibacter -0.15 0.0471 

OTU = operational taxonomic unit. Int+Hi = combined Intermediate and High 

 

When correction for multiple testing was performed using both the Bonferroni and 

False Discovery Rate (FDR) approaches, no genus had an association with a p 

value less than 0.05. However, associations with significance (p) values less than 

0.1 were present for 57 genera using the FDR method. These included 

Halobacterium and Salmonella amongst other genera (Table 6.3). 
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Table 6.3. FDR-corrected associations between the number of bacterial reads per 
sample and the Immunoscore (Low vs Int+High) by bacterial operational taxonomic unit 

Bacterial OTU p value 

Acidaminococcales 0.080 

Sphingorhabdus 0.080 

Hyphomonadaceae 0.080 

Calothrix 0.080 

Cellulomonadaceae 0.080 

Prevotellaceae 0.080 

Verrucomicrobiaceae 0.080 

Gemmataceae 0.080 

Thermodesulfobiaceae 0.080 

Colwelliceae 0.080 

Runella 0.080 

Frankiales 0.080 

Fervidobacteriaceae 
Fervidobacterium 

0.080 

Hydrogenothermaeceae 0.080 

Merismopediaceae 0.080 

Scytonemataceae 0.080 

Corynebacteriaceae 0.080 

Frondihabitans 0.080 

Salmonella 0.080 

Winogradskyella 0.080 

Plantactinospora 0.080 

Halanaerobiaceae 0.080 

Shewanellaceae 0.080 

Sinorhizobium 0.080 

Halorubraceae 0.080 

Aquimarina 0.080 

Herminiimonas 0.080 

Oscillospiraceae 0.080 

Pseudoarcobacter 0.080 

Marinitoga 0.080 

Luteimonas 0.080 

Vibrio 0.080 

Leptospira 0.080 

Halobacterium 0.080 

Spiroplasmataceae 0.080 

Listeriaceae 0.080 

Cyanothecaceae 0.080 

Hydrogenobaculum 0.080 

Yersinia 0.080 

Prosthecochloris 0.080 

Microcoleaceae 0.080 
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FDR = false discovery rate. OTU = operational taxonomic unit 

 

The top twelve positive associations and top twelve negative associations with 

the Immunoscore were visualised in a correlation matrix (Figure 6.6). This 

showed that the bacterial OTUs positively correlated with the Immunoscore and 

those inversely correlated with the Immunoscore were also inversely correlated 

with each other.   

Bacterial OTU p value 

Xylella 0.080 

Fervidobacteriaceae 
Thermosipho 

0.080 

Rhodoluna 0.080 

Malacobacter 0.080 

Streptomyces 0.080 

Nitrosopumilales 0.083 

Alliarcobacter 0.083 

Aurantimonadaceae 0.083 

Psychromonadaceae 0.088 

Serratia 0.090 

Thermoproteales 0.096 

Melaminivora 0.096 

Salegentibacter 0.096 

Sphaerochaeta 0.096 

Entomoplasma 0.096 
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Figure 6.6. Correlation matrix showing correlations between bacterial operational taxonomic units and the Immunoscore (top and left). 
Blue = positive associations, red = inverse associations. Correlation gradient illustrated. 
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6.3.2. Low compared with High Immunoscore 

The presence of the Intermediate Immunoscore group may also have reduced 

the ability to detect a difference between groups. To interrogate this, a sub-

analysis of patients with either Low or High Immunoscore was performed. 

Although this reduced the sample size (n = 77), the effect size was hypothesised 

to be larger between the groups. The majority (n = 65) were within the 100KG 

dataset. Of these, there were 109 bacterial OTUs with significant associations 

with the Immunoscore. The top ten results are shown in Table 6.4. 

 

Table 6.4. Associations between the Immunoscore and number of reads for each 
bacterial genus (Immunoscore Low versus High) 

Bacterial genus Association with Immunoscore (corr) p value 

Thaumarchaeota 

Candidatus 

+0.36 0.0009 

Halobacterium +0.37 0.0024 

Dolichospermum +0.32 0.0035 

Microvirga +0.21 0.0040 

Flaviflexus +0.09 0.0041 

Pelosinus +0.11 0.0043 

Borreliella -0.32 0.0045 

Nitrosopumilus +0.28 0.0047 

Cyanobium -0.09 0.0050 

Streptosporangium +0.30 0.0064 

100KG = 100 000 genomes. corr = correlation coefficient. + = positive correlation. - = 

inverse correlation. 

 

These were modest associations, and after correction for multiple testing, none 

of these had a significant association, and there were no associations with a p 
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value <0.1. This suggests that the effect size remains modest even between Low 

and High Immunoscore samples, and simple size reduction reduced the power 

to detect a difference. Thus, further analysis was performed using the entire data 

set to maximise the sample size. 

 6.4. Bacterial OTU association with patient survival  

Survival data was compared with the expression of bacterial reads per sample. 

There was no association seen between the median number of bacterial reads 

per sample and either OS or RFS (Figure 6.7). 

 

 

Figure 6.7. Kaplan-Meier estimate of overall survival (OS) and recurrence-free survival 
(RFS) stratified by bacterial read count. High = greater than median, Low = less than 
median. There is no difference in OS or RFS between the groups. 
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When analysis of specific bacterial taxonomic units was performed, one bacterial 

genus Halobacterium, showed significant associations with OS. Patients with a 

High median read count had greater OS (Figure 6.8). 

 

Figure 6.8. Kaplan-Meier estimate of overall survival (OS) Halobacterium read count. 
High = greater than median, Low = less than median. There is no difference in OS (Cox 
proportional hazards ratio, p = 0.45) or RFS (Cox proportional hazards ratio, p = 0.48) 
between the groups. 

 

This leads to the conclusion that differences in bacterial OTU read counts are 

generally not significantly associated with survival differences. 

This weak association with survival data despite the association with the 

Immunoscore may be due to small effect size of differences in bacterial read 

counts. They may also reflect the complexities in stratifying samples by read 

count, and in determining bacterial taxonomic units.   
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6.5. Bacterial orders and the Immunoscore 

Grouping bacteria by order rather than genera also supported these findings. 

Using the Sankey classification to stratify results into read counts by order 

generated 79 orders. Analysis of their association with the Immunoscore, 

grouped into “Low” vs “Int+Hi” revealed that 13 of these had significant 

associations with the Immunoscore (Table 6.5). These were all inverse 

associations, with median counts higher in the “Low” group. However, after 

correcting for multiple testing using both the Bonferroni and FDR-approaches, 

none of these was significant, confirming that the effect size is likely to be small. 

Table 6.5. Bacterial orders with significant associations with the Immunoscore 

Bacterial order p value 

Enterobacterales 0.005 

Desulfurococcales 0.006 

Nostocales 0.009 

Fusobacteria 0.010 

Aquificae 0.010 

Planctomycetia 0.010 

Chloroflexia 0.013 

Oscillatoriales 0.017 

Pelagibacteriales 0.019 

Myxococcales 0.022 

Oceanospirillales 0.022 

Lactobacillales 0.030 

Corynebacteriales 0.049 
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6.6. Bacterial OTU associations with microsatellite status 

It was previously noted that the median percentage of bacterial read counts was 

higher in MSI-high than in MSS tumours. Further analysis was performed to 

determine if particular bacterial genera were more predominantly expressed in 

MSI-high tumours. Of the 151 patients for whom MMR status was available, 39 

were MSI-high (25.8%). Statistically significant differences in median read counts 

were seen between MSI-high and MSS tumours in 8 bacterial genera (Table 6.6). 

Table 6.6. Bacterial genera with significant differences in median read counts per 
sample by mismatch repair status 

 MSS CRC median 

read count 

MSI-high CRC 

median read count 

p value 

Thermodesulfobiaceae 3.0 4.5 9.1e-05 

Sinorhizobium 43.0 58.0 0.010 

Vibrio 234.0 258.5 0.024 

Halobacterium 0.0 0.0 0.026 

Spiroplasmataceae 46.0 58.0 0.019 

Yersinia 51.0 62.0 0.032 

Serratia 99.0 134.5 0.028 

Salengentibacter 5.0 8.5 0.010 

MSS = microsatellite unstable. MSI-high = microsatellite instability high. 

 

Of interest, six of these show positive associations with the Immunoscore 

(Thermodesulfobiaceae, Sinorhizobium, Vibrio, Spiroplasmataceae, Yersinia and 

Serratia), while Halobacterium read count is associated with overall survival. This 

interaction between microsatellite status and the microbiome is highly interesting 

and warrants further evaluation.  
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6.3. Discussion 

6.6.1. Differential microbiome profiles are associated with differences in the 

colorectal immune environment 

These results suggest that differential gut bacterial profiles are linked to 

differences in the colorectal tumour environment. Bacterial genera such as 

Halobacterium are enriched in High Immunoscore samples, whilst others 

including Klebsiella, Enterobacter and Neisseria, are enriched in Low 

Immunoscore samples. There is the possibility that these could distinguish 

immunotherapy responders and non-responders. It may be possible to boost the 

response to immunotherapy by either targeted anti-microbial therapy to deplete 

the metagenomic signatures associated with a more unfavourable tumour 

environment, or to boost the positively associated microbes through techniques 

including faecal mucosal transplantation (FMT) and selective microbial therapy 

[202]. 

While the bacterial genera found to be enriched in the Intermediate/High 

Immunoscore cohorts in these samples were not the same as those found to be 

associated with CRC risk (Fusobacterium) or non-response to immunotherapy in 

patients with lung cancer and renal cancer (including Enterococcus, 

Staphylococcus and Corynebacterium)[202], this may be due to specificity of 

microbiome signatures for different cancer types. 

 



234 
 

6.6.2. Microsatellite status appears to have an association with gut 

microbiome 

MSI-high tumours had higher total read counts and bacterial percentages than 

MSS tumours. As MSI-high tumours generally have more lymphocyte infiltration 

into the tumour environment, this suggests that increased bacterial amounts (and 

possibly, by inference, diversity), is associated with a more inflamed tumour 

environment. It is not possible to determine the causal relationship between the 

microbiome and microsatellite status in this study. However, it is possible that 

microbiota assert their effects through epigenetic mechanisms. For example, it is 

known that the most sporadic MSI-high CRC tumours have evidence of 

epigenetic MLH-1 silencing [77]. Data in Chapter 5 confirms that certain gut 

bacteria-derived chemokine signatures (particularly CCL5, CXCL9 and CXCL10 

which are induced in a mouse model on exposure to cultures rich in F. 

nucleatum, B. fragilis and E. coli) [205] are positively associated with the 

Immunoscore and therefore a more inflamed tumour environment. A mechanism 

through which exposure to gut microbiota can induce epigenetic changes leading 

to microsatellite instability can similarly be explored, both in an in vitro colorectal 

tumour model or in induced tumours in a mouse model.   

 

6.6.3 Implications and future study 

This study utilised the availability of somatic WGS data to analyse the effects of 

differential microbiome signatures in the colorectal tumour immune 

microenvironment. There are associations between specific bacterial genera and 

the Immunoscore, which leads to the hypothesis that these bacteria may also 
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induce colorectal tumour immune activation or suppression through a different 

mechanism from the previously explored somatic (neoantigen-driven) or germline 

(differences in immune gene expression) mechanisms. Of particular note was the 

association between the microbiome density and microsatellite instability in the 

sample set.  

A limitation of this data was the non-availability of genomic material from faecal 

samples in addition to somatic WGS data. There is a difference in faecal and 

mucosal microbiota composition [200], which may have implications for the 

conclusions reached. Comparison of the findings of this analysis with those in the 

literatures is also hampered by the use of varied techniques, with the majority of 

literature having used 16s rRNA amplicon sequencing approaches.  

Thus far, metagenomic data has not been used in clinical practice to generate 

predictive biomarkers for treatment. This is largely due to the novel but rapidly 

increasing understanding of the role of the microbiome in tumorigenesis. 

Technical challenges with analysis of data generated and determination of the 

microbiome phylogeny of interest also leave the possibility of bias. This can be 

lessened with somatic WGS [207]. However, it requires significantly 

computational resources and bioinformatics skills for data analysis and 

interpretation. 

Notwithstanding these challenges, the possibility of FMT as a method of 

increasing the response to certain immune therapies is an exciting one and 

worthy of future endeavour [202]. 
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Chapter 7: Discussion 
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This thesis has determined the contributions of germline and somatic 

immunogenomic factors to the immune contexture in colorectal cancer (CRC). 

The finding that there are immunogenomic differences in the immune response 

amongst patients has significant implications in determining the factors that 

predict a good response to immunotherapy. In particular, these findings provide 

the rationale for increasing the number of patients who can be recruited into 

clinical trials of immunotherapy in CRC, using stratifying markers beyond 

microsatellite status, which is currently the main marker in clinical use [267].  

Emphasis has been placed on examining the determinants of the immune 

response in microsatellite stable CRC, which is currently not eligible for 

immunotherapy with immune checkpoint blockade agents, based on results from 

clinical trials of immunotherapy in metastatic disease. However, it is clear from 

my findings that MSS CRC is not uniformly poorly immunogenic as once thought. 

Using the Immunoscore as my primary marker of immune infiltration in colorectal 

tumours, there are significant variations in immunogenicity in both MSS and MSI-

high CRC. I conclude that the principal determinants of immunogenicity are not 

limited to microsatellite status and tumour mutational burden as previously 

thought. I have shown that specific germline immune gene expression 

quantitative trait loci are associated with differences in the immune environment 

in both MSS and MSI-high CRC. I have also established a stronger relationship 

between a combination of neoantigen burden and neoantigen clonality and the 

immune response in CRC, than either marker alone. Despite the finding of lower 

neoantigen burden in MSS CRC, these tumours are not universally 
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immunologically “cold”, and therefore some of these patients could respond 

effectively to immune checkpoint blockade therapy. 

A new important finding is the role of metagenomic factors, particularly the 

correlation of expression levels of gut microbiota with differential immune 

responses in CRC.  These findings are persuasive in the context of the significant 

role the microbiome is known to play in the evolution and manifestation of many 

bowel disorders, notably inflammatory bowel disease and bowel cancer. 

This therefore provides further support for expanding clinical trials of 

immunotherapy to patients with both MSS and MSI-high CRC, based on a panel 

of germline, somatic and epigenetic markers, such as in the NICHE trial [24]. In 

addition, they drive the potential for the use of immune therapies in earlier stage 

disease, as adjuncts to the established modalities (surgery, chemotherapy and 

radiotherapy). 

 

7.1. Germline determinants of the colorectal cancer immune response 

Most studies exploring SNP associations in cancer are genome wide association 

studies, targeted panel sequencing, or whole exome sequencing studies, such 

as in The Cancer Genome Atlas [8]. These have therefore not been able to 

explore the roles of intronic genomic regions of significance in determining clinical 

outcomes. In particular, the role of expression quantitative trait loci (eQTL) SNPs, 

which are found in non-coding regions of the genome, and which determine gene 

expression differences, had not previously been explored in colorectal cancer. 
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In this thesis, with access to high quality whole genome sequencing data, I have 

shown that germline eQTL SNPs contribute to differences in the immune 

response as determined by the Immunoscore. The eQTL SNPs discovered all 

have strong biological bases for their potential effects. Due to the large number 

of SNPs tested, some of these may represent statistical findings and may not 

reveal a causal link to the immune response in CRC. As this is a preliminary 

study, the effects of these eQTL SNPs can be further studied, first, by in silico 

analysis using larger datasets, with cross-validation. The biological effects of 

these can then be determined by performing in vitro assays to simulate the effects 

of each SNP on gene expression levels and the immune environment in a CRC 

model. These findings can finally be transferred to an early phase clinical trial of 

immunotherapy, targeting patients with favourable genotypes as determined by 

WGS.  

7.1.1. Significant eQTL SNP correlations 

The rs256208 eQTL SNP, which influences TCF7 expression, was most strongly 

associated with differences in the Immunoscore in this dataset. The variant alleles 

were associated with increasing Immunoscore. This SNP is common in the 

population, with an estimated frequency of 26.4% in the International HapMap 

Project [136] and highly prevalent in the dataset. Although the correlation of the 

germline variants with tumour mRNA transcript levels was not statistically 

significant, both the homozygous and heterozygous variants appeared to be 

associated with increased transcript counts, suggesting that the TCF7 variants 

could be associated with a better immune response in CRC. 
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Inactivating mutations and fusions of TCF7L1 and TCFL2 are known to be 

common in CRC, with The Cancer Genome Atlas (TCGA) dataset reporting a 

frequency of TCF7L2 mutations of 11.2% [8]. The TCF/LEF gene family is a 

critical part of the Wnt/β-catenin signalling pathway, mutations in which are 

canonical in colorectal tumorigenesis [268]. The overall function of TCF appears 

to be as a tumour suppressor [252]. It is reasonable to hypothesise that patients 

with the variant alleles could have better responses to immunotherapy.  

Of the other eQTL SNPs which were associated with the Immunoscore, 

rs11161590, which determines BCL10 expression was of interest, as tumour 

BCL10 expression has been found to be associated with a favourable prognosis 

in colorectal cancer in TCGA [222, 269]. The other significant SNPs are not yet 

known to have any specific outcomes in CRC, but increased CCR1 expression 

has an unfavourable association with outcomes in renal cancer [222]. In my 

dataset, the rs11919943 (CCR1) variant is shown to be inversely associated with 

the Immunoscore, and to have a not-statistically-significant trend towards 

increased CCR1 transcript counts, suggesting that CCR1 may have a similar role 

in CRC as in renal cancer. Finally, variants of the rs6673928 SNP, which drives 

IL19 expression, are associated with increased overall survival in cutaneous 

melanoma.  

These are compelling findings that require further exploration, first by validation 

with a larger dataset for which the Immunoscore is available, and then by 

determination of a clear association between the immune gene eQTLs and 

mRNA transcript or protein expression of these genes, and finally by 

determination of the biological basis for the association. In an in vitro colorectal 
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model, this would potentially involve induction of these eQTLs using an 

expression vector, and establishing a co-culture model with autologous 

peripheral blood mononuclear cells or purified effector (CD8+ or CD4+) T cells 

and colorectal cancer organoids [270] to replicate the immune microenvironment. 
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7.2. Somatic determinants of the colorectal cancer immune response 

7.2.1. A combination of neoantigen burden and neoantigen clonality 

correlates strongly with the colorectal immune response 

Somatic whole genomic sequencing and 3’ RNA sequencing of fixed tumour 

tissue yielded significant findings.  

There was a positive association between neoantigen burden (single nucleotide 

variants) and the Immunoscore. Neoantigen clonality estimation involved in silico 

analysis, using both the mutant allele heterogeneity (MATH) score and a 

DPClust-based filtering algorithm, for the purposes of comparison. The MATH 

score is a whole mutation-based algorithm, which has been used to assess for 

the effects of intratumoral heterogeneity in head and neck tumours [188], while 

the DPClust algorithm which involves a modified Dirichlet clustering approach is 

much more computationally complex and relies on a number of assumptions, 

including that tumour mutational evolution is a linear process [56].  

A combined categorisation of the samples, into ‘good’, ‘intermediate’ and ‘poor’, 

derived from uniting neoantigen burden and neoantigen clonality) yielded results. 

The combination was found to be better correlated both with the Immunoscore 

and recurrence-free survival than either neoantigen burden or neoantigen 

clonality separately. This corroborates the findings in lung adenocarcinoma [164], 

and confirms my hypothesis in CRC. 
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7.2.2. Several immune gene expression signatures are associated with the 

Immunoscore 

My data showed striking associations between the coordinate immune response 

cluster (CIRC), a Th1-centric immune gene cluster, previously shown to 

distinguish CRC into four subsets, and the Immunoscore. A high CIRC 

expression is known to be correlated with microsatellite instability and strong 

immune expression, using TCGA whole exome data [92]. In my dataset, although 

the MSI-high CRC samples had higher CIRC signatures, the association of the 

CIRC score with the Immunoscore was independent of microsatellite status, 

which provides further evidence that microsatellite status is not the only driver of 

the immune response in CRC. 

Other expression signatures that were found to be associated with the 

Immunoscore include MHC Class II gene expression (HLA-DP, -DQ and –DR), 

and cytotoxic T cell-associated gut bacteria-stimulated chemokine expression. 

While it has not been proved that these associations are causal, they are in 

keeping with previously published work. MHC Class II-dependent antigen 

presentation is known to be a driver of the anti-cancer immune response [66]. 

The chemokines CCL5, CXCL9 and CXCL10 are known to be associated with 

the trafficking of effector T cells into the CRC immune environment [205]. These 

particular chemokines are known to be upregulated by specific gut bacteria 

families including Enterococcaceae, Lachnospiraceae, Methylobacteriaceae and 

Ruminococcaceae [205]. These relationships were explored further by 

metagenomics analysis and discussed in section 7.3. 
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7.2.3. MHC Class II expression by immunohistochemistry is associated with 

the Immunoscore 

The important role of MHC Class II expression in driving the immune response to 

CRC is supported by the finding of associations between MHC Class II 

expression by immunohistochemical analysis, and the Immunoscore. While 

Class II expression is generally low in CRC, where present, it was strikingly 

associated with Th1-associated immune markers, as well as the coordinate 

immune response cluster. Class II expression was also highly correlated with the 

Immunoscore. This further supports the accumulating evidence that Class II 

expression in CRC is a key determinant of patient outcomes.  

Class II expression is induced by IFNγ in cancer cells, a process which is 

mediated by the transcriptional master regulator class II transactivator (CIITA). 

This leads to autophagy of cancer antigens and presentation to infiltrating T 

lymphocytes [271]. MHC Class II expression is rarely noted in metastatic CRC, 

and it is higher in well-differentiated than poorly differentiated tumours [59]. MHC 

Class II downregulation occurs as a mechanism of immune escape through a 

variety of mechanisms, including genomic alterations in CIITA and epigenetic 

silencing of MHC Class II induction pathways [272].  

Class II expression in this cohort was 26%, which is slightly lower than has been 

observed in other datasets (quoted as ranging between 21% and 55%[62]). 

However, these results are reliable and robust, as the antibody staining and 

interpretation protocols were clinically validated for the ANICCA-Class II trial 

[215], with expert pathological interpretation of the slide results. The Class II 

expression results also showed good correlation with Class II mRNA expression.  
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The link between Class II expression and neoantigen clonality is less clear, 

primarily because this thesis did not explore Class II neoantigen burden and 

clonality. Class II neoantigen prediction is much more challenging than Class I 

prediction for several reasons. Class II endosomal peptide processing is complex 

and not well understood, predicting binding affinity of peptides is more 

complicated than in Class I, as the peptide-binding groove is open rather than 

closed, and Class II peptide-binding motifs have a longer amino acid length range 

(typically 11 to 20 amino acids) than Class I (usually 8 to 11 amino acids) [55]. 

Although in silico pipelines for determining Class II neoantigen burden are 

available, they are much more complex to manipulate than Class I pipelines [175]. 

This is a consideration for exploration in subsequent work.  

  

7.3. Metagenomic associations with the colorectal cancer immune 

response 

Analysis of the microbiome using somatic whole genome sequencing data also 

supported the findings from RNA expression of gut-bacteria-associated 

chemokines. In line with data from Cremonesi et al. [205] total bacterial read 

counts had no association with the Immunoscore or clinical outcomes, but 

specific bacterial genera did. In particular, there were clear differential expression 

patterns between MSI-high and MSS tumours. Specific taxonomic units were 

found to be more enriched in Immunoscore Intermediate/High (that is, more 

inflamed tumour environments) than in Immunoscore Low tumours. 
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The predictive value of these metagenomic signatures is yet to be fully elucidated, 

but can be performed readily as part of a clinical trial, distinguishing the 

signatures[202] of non-responders from responders.  

Finally, the possibility that the microbiome could exert epigenetic selection 

pressures on the colorectal tumour environment leads to the prospect of 

modulation of the microenvironment by alteration of the microbiome to favour a 

more immunogenic one. This could be accomplished through simple, established 

means including faecal mucosal transplantation [273, 274] and selective 

antibiotic therapy.  

 

7.4. Future directions 

The findings of this thesis are compelling, and require corroboration using a larger 

dataset. A publicly available database such as the TCGA [192] could fulfil this 

role, although it would require the Immunoscore to have been performed on the 

samples. This is a significant financial challenge in the research setting due to 

the current test cost (a research cost of £200.00 per test at the time of the 

analysis), but it is anticipated there will be widening of this access to the 

Immunoscore, as there is a drive to incorporate it into clinical practice [124, 125]. 

In particular, the eQTL associations would be supported by work in a tissue model 

to interrogate the biological basis of the in silico associations found. Simulating 

the colorectal tumour microenvironment using a three-dimensional lymphocyte 

and colorectal organoid model has been successful in studying these interactions 

and generating tumour-specific T cells [270]. Induction of specific SNPs in a 
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colorectal model can be used to determine the downstream anti-tumour immune 

responses, and is an area of work which is currently being explored in our 

laboratory. 

Finally, the aim of this thesis is to provide the rationale for early phase clinical 

trials of immunotherapy in CRC, expanding its current limited role. Although no 

patients in this study population received immunotherapy, there is convincing 

evidence to consider an early phase trial of neoadjuvant immunotherapy in 

patients with combined high neoantigen clonality and neoantigen burden, even in 

those with MSS CRC. Reverse translated studies, assessing immunogenomic 

and metagenomic features of responders and non-responders were crucial in 

determining the importance of microsatellite status in the early studies [267]. With 

improved access to WGS data, these will be able to further interrogate the 

interplay between metagenomic factors and the key germline and somatic factors 

found to be key determinants in this thesis. 
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Appendix 4. Extended SNP list from www.muther.ac.uk  

Chromosome Gene PROBE SNP LCL p value 

12 A2M ILMN_1745607 rs4883116 0.0124 

20 ADA ILMN_1803686 rs6031753 0.0023 

4 ADD1 ILMN_1759252 rs1203808 0.0038 

4 ADD1 ILMN_2356786 rs10454801 0.0037 

14 AKT1 ILMN_1748661 rs941475 0.0095 

14 AKT1 ILMN_2388507 rs879448 0.0184 

14 AKT1 ILMN_2410909 rs2582559 0.0057 

1 APOA2 ILMN_1688543 rs983494 0.0021 

1 ARF1 ILMN_1661458 rs4074668 7.68E-04 

1 ARF1 ILMN_1802203 rs10916180 0.0019 

1 ARF1 ILMN_2330948 rs4653503 0.0074 

19 AXL ILMN_1701877 rs268691 0.0016 

19 AXL ILMN_2364521 rs2369006 9.34E-04 

14 BATF ILMN_1668822 rs12147331 5.12E-04 

11 BATF2 ILMN_1690241 rs7115071 3.82E-04 

1 BATF3 ILMN_1763207 rs6695772 6.93E-10 

16 BCAR1 ILMN_1672596 rs7195938 0.0011 

1 BCL10 ILMN_1716446 rs11161590 3.67E-08 

14 BCL11B ILMN_1665761 rs1152788 0.0012 

14 BCL11B ILMN_1667885 rs4145039 0.0078 

19 BCL3 ILMN_1710514 rs2927488 2.95E-04 

3 BCL6 ILMN_1737314 rs3917109 0.001 

3 BCL6 ILMN_1746053 rs4686838 0.0025 

19 BST2 ILMN_1723480 rs7507441 0.0037 

23 BTK ILMN_1662026 rs7066006 0.0097 

3 BTLA ILMN_1778536 rs13079706 1.01E-04 

3 BTLA ILMN_2099528 rs1282731 0.0135 

6 BTN3A1 ILMN_1802708 rs4712990 2.00E-06 

9 C5 ILMN_1746819 rs10760142 4.82E-22 

12 CACNB3 ILMN_2195482 rs7975385 1.94E-16 

2 CACNB4 ILMN_1673503 rs10172230 0.0015 

2 CACNB4 ILMN_1685164 rs4664227 0.0039 

2 CACNB4 ILMN_2257652 rs11687663 0.0031 

5 CAMK4 ILMN_1767168 rs1551565 2.78E-18 

5 CAMK4 ILMN_2166582 rs10478077 0.0062 

7 CARD11 ILMN_1721978 rs1713920 0.0019 

7 CAV1 ILMN_1687583 rs1049337 6.31E-17 

7 CAV1 ILMN_2149226 rs6978354 2.55E-05 

3 CBLB ILMN_1685580 rs3772515 9.67E-08 

3 CCBP2 ILMN_1763127 rs2290973 0.0013 

17 CCL11 ILMN_1725519 rs16969946 0.0047 

17 CCL13 ILMN_1783593 rs9912511 0.0028 

17 CCL15 ILMN_1669034 rs11868806 9.50E-04 
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17 CCL15 ILMN_1670658 rs1634524 9.39E-04 

17 CCL15 ILMN_1740609 rs747979 0.0036 

17 CCL16 ILMN_2045324 rs8079109 0.0137 

16 CCL17 ILMN_1710186 rs247615 8.43E-04 

17 CCL18 ILMN_1654411 rs2239998 7.63E-04 

17 CCL2 ILMN_1720048 rs1982706 0.0025 

2 CCL20 ILMN_1657234 rs2063021 4.49E-06 

9 CCL21 ILMN_1677505 rs276671 0.0046 

16 CCL22 ILMN_2160476 rs170361 4.46E-08 

17 CCL23 ILMN_1686109 rs4796056 0.0113 

17 CCL23 ILMN_1764030 rs17571920 0.0072 

7 CCL24 ILMN_1653766 rs2302009 0.0099 

19 CCL25 ILMN_1737817 rs1104768 3.51E-08 

19 CCL25 ILMN_1782596 rs1104768 5.52E-05 

7 CCL26 ILMN_1659601 rs2705777 0.0832 

5 CCL28 ILMN_1701347 rs10473354 0.0125 

5 CCL28 ILMN_1774087 rs6860696 0.0125 

17 CCL5 ILMN_1773352 rs4796105 2.44E-11 

17 CCL5 ILMN_2098126 rs2291299 1.35E-11 

17 CCL7 ILMN_1683456 rs159279 0.0033 

17 CCL8 ILMN_1772964 rs1471616 0.0045 

3 CCR1 ILMN_1678833 rs11919943 9.39E-29 

17 CCR7 ILMN_1715131 rs4890093 1.13E-06 

1 CD247 ILMN_1676924 rs3108156 1.44E-05 

12 CD27 ILMN_1688959 rs4469949 8.48E-09 

9 CD274 ILMN_1701914 rs4740830 0.0044 

7 CD36 ILMN_1665132 rs17154948 0.0138 

7 CD36 ILMN_1784863 rs10486816 0.0029 

11 CD3D ILMN_2261416 rs7103514 0.001 

11 CD3D ILMN_2325837 rs12419365 0.0036 

11 CD3E ILMN_1739794 rs551662 0.0055 

12 CD4 ILMN_1727284 rs11064391 2.84E-06 

20 CD40 ILMN_1779257 rs2050111 0.0072 

20 CD40 ILMN_2367818 rs11569345 3.21E-38 

11 CD5 ILMN_1753112 rs4963452 0.0063 

19 CD70 ILMN_1760247 rs3763046 0.0143 

5 CD74 ILMN_1736567 rs2042249 0.006 

5 CD74 ILMN_1761464 rs375396 0.0056 

5 CD74 ILMN_2379644 rs4705094 0.0048 

3 CD80 ILMN_1716736 rs624035 1.34E-04 

3 CD86 ILMN_1672097 rs13058991 0.0056 

3 CD86 ILMN_1714602 rs11714406 1.89E-06 

3 CD86 ILMN_1782560 rs2681411 3.31E-04 

2 CD8A ILMN_1760374 rs10167259 0.0081 

2 CD8A ILMN_1768482 rs10167259 0.038 

2 CD8A ILMN_2353732 rs1518987 0.051 
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2 CD8B ILMN_1669005 rs17509413 0.0117 

1 CDC42 ILMN_1675156 rs2794278 0.0024 

1 CDC42 ILMN_1696041 rs876685 3.20E-04 

1 CDC42 ILMN_2408139 rs10917281 0.0069 

10 CHUK ILMN_1677041 rs11190688 0.0037 

16 CKLF ILMN_1712389 rs13331952 3.83E-11 

16 CKLF ILMN_2298051 rs2344574 0.0105 

16 CKLF ILMN_2414027 rs13331952 7.64E-12 

5 CSF2 ILMN_1661861 rs2158939 0.0052 

15 CSK ILMN_1754121 rs1378940 1.27E-13 

2 CTLA4 ILMN_1763487 rs1861764 0.0018 

2 CTLA4 ILMN_2261627 rs10932017 0.0114 

16 CX3CL1 ILMN_1654072 rs11866053 0.0055 

4 CXCL1 ILMN_1787897 rs1381016 0.0037 

4 CXCL10 ILMN_1791759 rs17001247 3.78E-35 

4 CXCL11 ILMN_2067895 rs4859956 0.0078 

10 CXCL12 ILMN_1689111 rs12772980 0.0034 

10 CXCL12 ILMN_1791447 rs7080655 0.0034 

10 CXCL12 ILMN_1803825 rs870957 0.0026 

4 CXCL13 ILMN_1718552 rs4859688 0.0062 

5 CXCL14 ILMN_1748323 rs2652085 0.001 

17 CXCL16 ILMN_1672278 rs1805429 1.96E-04 

17 CXCL16 ILMN_1728478 rs3744700 4.06E-06 

4 CXCL2 ILMN_1682636 rs7679277 0.0024 

4 CXCL3 ILMN_1709350 rs2091588 0.0021 

4 CXCL5 ILMN_1752562 rs872914 0.0012 

4 CXCL5 ILMN_2171384 rs12644965 0.0024 

4 CXCL6 ILMN_1779234 rs7658970 0.0307 

4 CXCL6 ILMN_2161577 rs2126207 0.0271 

4 CXCL9 ILMN_1745356 rs884304 1.87E-06 

2 CXCR1 ILMN_1662524 rs13424201 0.0084 

23 CXCR3 ILMN_1797975 rs4986622 0.0182 

15 CYP11A1 ILMN_1768820 rs4077582 2.35E-07 

1 DARC ILMN_1723684 rs11265248 2.89E-04 

14 DHRS2 ILMN_1725726 rs7157021 0.0029 

14 DHRS2 ILMN_2384857 rs222717 0.0215 

5 DOCK2 ILMN_1799725 rs889009 1.40E-04 

2 DPP4 ILMN_1692535 rs1861978 4.68E-05 

17 DUSP3 ILMN_1797522 rs1662744 0.0079 

13 ELF1 ILMN_1664010 rs2039281 0.0017 

1 ENAH ILMN_1716552 rs3219110 0.0021 

1 ENAH ILMN_1727036 rs10915993 0.015 

1 ENAH ILMN_2370296 rs7524430 0.002 

23 FLNA ILMN_1687335 rs11156600 0.0037 

13 FLT3 ILMN_1766363 rs1231051 0.0148 

23 FOXP3 ILMN_1768049 rs12559480 0.0073 
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5 FYB ILMN_1796537 rs665241 5.89E-10 

5 FYB ILMN_2280548 rs3849776 2.05E-05 

6 FYN ILMN_1686555 rs9487724 6.01E-06 

6 FYN ILMN_1781207 rs2182644 8.15E-05 

6 FYN ILMN_2249920 rs9487724 3.61E-05 

6 FYN ILMN_2380801 rs1409837 4.41E-07 

13 GAS6 ILMN_1779558 rs7338868 2.78E-04 

13 GAS6 ILMN_1781614 rs7997328 0.0154 

13 GAS6 ILMN_1784749 rs7338868 0.0025 

23 GATA1 ILMN_1797251 rs2977591 8.68E-04 

10 GATA3 ILMN_2406656 rs1149901 1.17E-15 

7 GIMAP5 ILMN_1769383 rs3807383 2.38E-14 

22 GRAP2 ILMN_1778143 rs3788560 0.0024 

17 GRB2 ILMN_1742521 rs4542691 8.22E-05 

17 GRB2 ILMN_1748797 rs939540 0.005 

6 HLA-DPA1 ILMN_1772218 rs2395309 1.70E-07 

6 HLA-DPB1 ILMN_1749070 rs7772134 3.97E-66 

6 HLA-DQB2 ILMN_1741648 rs9276024 4.03E-04 

6 HLA-DRA ILMN_1689655 rs13208583 2.77E-04 

6 HLA-G ILMN_1656670 rs2517681 7.35E-11 

1 HLX ILMN_1686862 rs17491176 0.0017 

1 HLX ILMN_2087646 rs796486 0.0012 

22 HMOX1 ILMN_1800512 rs929026 4.37E-04 

2 HSPD1 ILMN_1774410 rs1440086 0.0189 

2 HSPD1 ILMN_1784367 rs4349341 0.0046 

19 ICAM1 ILMN_1812226 rs7256672 0.008 

2 ICOS ILMN_1669927 rs10197319 8.35E-07 

21 ICOSLG ILMN_1675671 rs3737435 2.71E-05 

9 IFNA2 ILMN_1698186 rs10964734 1.91E-04 

9 IFNB1 ILMN_1682245 rs1379217 2.69E-04 

12 IFNG ILMN_2207291 rs2069727 0.0012 

8 IKBKB ILMN_1727142 rs9694574 3.49E-04 

8 IKBKB ILMN_2172588 rs2304297 0.002 

1 IL10 ILMN_1674167 rs6673928 1.88E-04 

19 IL11 ILMN_1788107 rs3745913 0.0019 

5 IL12B ILMN_1681132 rs17056092 0.0013 

19 IL12RB1 ILMN_1699908 rs2305740 1.27E-06 

19 IL12RB1 ILMN_1815890 rs436857 1.67E-05 

4 IL15 ILMN_1724181 rs1519550 3.53E-06 

4 IL15 ILMN_1785312 rs17464397 0.0019 

4 IL15 ILMN_2273053 rs17343501 0.0018 

4 IL15 ILMN_2369221 rs2874763 0.0016 

15 IL16 ILMN_1813572 rs859 1.09E-21 

15 IL16 ILMN_2290628 rs4577037 2.14E-58 

6 IL17A ILMN_1774983 rs667173 0.0011 

5 IL17B ILMN_1766707 rs10434720 8.70E-04 
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16 IL17C ILMN_1788109 rs9929191 0.0011 

13 IL17D ILMN_1753823 rs9509780 0.01 

1 IL19 ILMN_1682592 rs6673928 0.0018 

1 IL19 ILMN_1799575 rs6673928 5.66E-23 

2 IL1A ILMN_1658483 rs4402765 3.31E-12 

2 IL1B ILMN_1775501 rs4848306 4.68E-19 

12 IL22 ILMN_1735208 rs11177548 8.44E-04 

12 IL23A ILMN_1715603 rs6581061 0.001 

1 IL23R ILMN_1734937 rs2295359 2.26E-10 

1 IL24 ILMN_1774685 rs12119983 0.005 

1 IL24 ILMN_2407799 rs6701713 0.0109 

14 IL25 ILMN_1720243 rs445754 0.0018 

14 IL25 ILMN_2401883 rs7151065 0.0018 

12 IL26 ILMN_2123182 rs6581826 4.38E-05 

16 IL27 ILMN_1753758 rs11646047 0.0026 

5 IL3 ILMN_1766320 rs803054 0.0028 

12 IL31 ILMN_2201866 rs7964127 0.0131 

16 IL32 ILMN_1778010 rs10431961 5.08E-05 

16 IL32 ILMN_2368530 rs10431961 9.38E-05 

9 IL33 ILMN_1809099 rs10975728 0.0023 

9 IL33 ILMN_2052924 rs10739077 0.0012 

16 IL34 ILMN_1713686 rs7196917 0.0053 

5 IL4 ILMN_1669174 rs7702076 0.0018 

5 IL4 ILMN_2389080 rs17517511 6.59E-04 

16 IL4R ILMN_1652185 rs205413 8.37E-04 

16 IL4R ILMN_1691881 rs2520120 0.0059 

5 IL5 ILMN_1709300 rs4705959 6.52E-04 

5 IL5 ILMN_2207190 rs4705943 0.0144 

7 IL6 ILMN_1699651 rs4279506 8.27E-04 

8 IL7 ILMN_2059744 rs16907025 0.0019 

4 IL8 ILMN_1666733 rs11728915 0.007 

4 IL8 ILMN_2184373 rs2457996 0.0181 

5 IL9 ILMN_1653704 rs17716310 0.0089 

2 INPP5D ILMN_1744212 rs4511711 3.08E-04 

12 IRAK3 ILMN_1661695 rs2701652 2.96E-19 

5 IRF1 ILMN_1708375 rs154735 0.0021 

16 ITGAL ILMN_1749591 rs7196129 6.43E-04 

5 ITK ILMN_1699160 rs152112 4.26E-08 

19 JAK3 ILMN_1739667 rs2305767 0.0019 

19 KCNN4 ILMN_1709937 rs346064 0.0011 

4 KIT ILMN_1790160 rs12647373 5.76E-08 

12 KLRK1 ILMN_2222443 rs478829 0.004 

12 LAG3 ILMN_1813338 rs10431363 0.0033 

16 LAT ILMN_1691539 rs1364184 0.0075 

16 LAT ILMN_1750188 rs9923341 0.0292 

16 LAT ILMN_2281320 rs1641996 0.0493 
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16 LAT ILMN_2404625 rs1642026 0.0337 

1 LCK ILMN_2277426 rs10914471 0.0275 

1 LCK ILMN_2279844 rs942242 4.95E-04 

1 LCK ILMN_2377109 rs2377856 0.0023 

5 LCP2 ILMN_1658962 rs33368 0.0012 

4 LEF1 ILMN_1679185 rs7698367 0.0065 

22 LGALS1 ILMN_1723978 rs4820294 4.46E-08 

1 LGALS8 ILMN_1669930 rs602550 4.56E-05 

1 LGALS8 ILMN_2353358 rs12076055 0.0025 

1 LGALS8 ILMN_2356654 rs12076055 4.31E-05 

13 LIG4 ILMN_1680714 rs1224177 7.34E-04 

13 LIG4 ILMN_1693758 rs157014 0.0038 

13 LIG4 ILMN_2373073 rs11618532 0.0029 

19 LILRB1 ILMN_1708248 rs8101605 2.13E-47 

19 LILRB2 ILMN_2312340 rs7246537 3.05E-05 

20 LIME1 ILMN_2183687 rs6122248 0.0033 

8 LYN ILMN_1781155 rs10504214 7.60E-04 

18 MALT1 ILMN_1730986 rs6567030 4.23E-04 

18 MALT1 ILMN_2387791 rs17761871 0.0016 

17 MAP3K14 ILMN_1724070 rs4792847 4.45E-05 

6 MAP3K7 ILMN_1810176 rs711264 5.56E-04 

10 MAP3K8 ILMN_1741159 rs2247081 1.69E-04 

22 MAPK1 ILMN_1706677 rs2330029 9.28E-04 

22 MAPK1 ILMN_1767320 rs178255 0.0046 

22 MAPK1 ILMN_2235283 rs2298432 0.0014 

9 MAPKAP1 ILMN_1691526 rs12554306 0.0038 

9 MAPKAP1 ILMN_2268068 rs2416993 0.0094 

9 MAPKAP1 ILMN_2360229 rs2026133 0.0038 

16 MLST8 ILMN_1789240 rs9921791 2.52E-20 

6 MYB ILMN_1711894 rs6902048 0.0052 

3 MYD88 ILMN_1738523 rs11928949 3.56E-06 

3 NCK1 ILMN_1698001 rs3772388 0.0013 

17 NCOR1 ILMN_2186369 rs9903464 1.62E-04 

16 NOD2 ILMN_1762594 rs9938225 2.75E-04 

8 PAG1 ILMN_1673640 rs4500045 4.81E-13 

8 PAG1 ILMN_1736806 rs4500045 3.25E-27 

8 PAG1 ILMN_2055156 rs4500045 6.45E-21 

11 PAK1 ILMN_1767365 rs3758780 1.40E-04 

3 PAK2 ILMN_1659878 rs9863627 2.17E-13 

3 PAK2 ILMN_1676385 rs7623871 3.99E-04 

12 PAWR ILMN_1806907 rs17045871 0.0097 

2 PDK1 ILMN_1670256 rs7608097 0.0021 

17 PDK2 ILMN_1705397 rs2078864 2.44E-05 

16 PDPK1 ILMN_1773758 rs3810801 0.0171 

16 PDPK1 ILMN_1810554 rs37831 0.0031 

4 PF4V1 ILMN_1745522 rs4859662 0.0086 
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9 PHPT1 ILMN_1676611 rs3739943 3.75E-06 

20 PLCG1 ILMN_1740160 rs17179419 1.25E-11 

20 PLCG1 ILMN_2382906 rs5009525 0.0014 

16 PLCG2 ILMN_1815719 rs4888181 5.96E-07 

23 PLP2 ILMN_1738767 rs5906754 0.0022 

10 PRKCQ ILMN_1733421 rs693088 0.0013 

1 PRKCZ ILMN_1662155 rs10907174 3.22E-04 

1 PRKCZ ILMN_2253286 rs16824948 0.0153 

1 PRKCZ ILMN_2386982 rs12403214 0.002 

19 PRKD2 ILMN_1753805 rs2694542 0.0028 

8 PRKDC ILMN_1769517 rs1983000 0.0131 

8 PRKDC ILMN_2253648 rs3750259 0.0057 

20 PRNP ILMN_1737988 rs2422986 2.42E-04 

20 PRNP ILMN_2360415 rs2095639 0.0053 

14 PSEN1 ILMN_1744267 rs214267 7.67E-04 

14 PSEN1 ILMN_1808548 rs177392 0.0193 

14 PSEN1 ILMN_1809193 rs177378 8.99E-04 

1 PSEN2 ILMN_1714417 rs6692729 2.97E-15 

1 PSEN2 ILMN_2404512 rs6692729 5.71E-20 

5 PTGER4 ILMN_1795930 rs7720838 1.78E-09 

1 PTPN22 ILMN_1695640 rs4839348 0.0161 

1 PTPN22 ILMN_1780108 rs12730318 0.0052 

12 PTPN6 ILMN_1664122 rs9668139 0.0025 

12 PTPN6 ILMN_1716578 rs11064498 2.91E-04 

12 PTPN6 ILMN_1738675 rs10849479 0.004 

1 PTPRC ILMN_1730842 rs12087648 0.0057 

1 PTPRC ILMN_1804279 rs12085890 0.0042 

11 PTPRJ ILMN_1731589 rs4752829 0.0104 

7 RAC1 ILMN_1652445 rs2108783 0.0039 

7 RAC1 ILMN_1761938 rs17136059 0.0042 

7 RAC1 ILMN_2359789 rs12536544 8.95E-08 

17 RARA ILMN_1659206 rs2015561 0.0062 

17 RARA ILMN_1677197 rs4890100 2.84E-04 

17 RARA ILMN_1716176 rs907092 0.0108 

17 RARA ILMN_1791902 rs17558532 0.0063 

11 RELA ILMN_1705266 rs2285346 0.0068 

19 RELB ILMN_1811258 rs16979873 0.0015 

5 RICTOR ILMN_1705828 rs1428246 2.67E-04 

8 RIPK2 ILMN_1758939 rs10094579 0.0087 

14 RNF31 ILMN_1758831 rs1951635 6.19E-04 

1 RORC ILMN_1651792 rs3007684 0.0059 

1 RORC ILMN_1734366 rs12030667 2.98E-04 

1 RORC ILMN_1771126 rs3828054 0.0103 

1 RORC ILMN_2275399 rs771204 0.0177 

2 RSAD2 ILMN_1657871 rs6745308 8.92E-05 

11 SART1 ILMN_1680145 rs677740 0.0016 
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23 SASH3 ILMN_1697554 rs7882525 0.0318 

1 SEMA4A ILMN_1702787 rs12401573 1.97E-13 

15 SEMA7A ILMN_1756312 rs8041642 6.29E-04 

17 SKAP1 ILMN_1751400 rs9895554 9.29E-06 

2 SLC11A1 ILMN_1735737 rs3791978 0.0128 

2 SLC11A1 ILMN_1741165 rs7561119 0.0015 

6 SNX9 ILMN_1726366 rs12193949 0.0085 

2 SOCS5 ILMN_1715584 rs6720535 0.0014 

2 SOCS5 ILMN_1785286 rs6740102 0.0021 

2 SOCS5 ILMN_2262749 rs441327 0.004 

2 SOCS5 ILMN_2350970 rs7584870 2.50E-19 

11 SPI1 ILMN_1696463 rs2071304 2.24E-44 

11 SPI1 ILMN_2392043 rs2291119 6.34E-07 

16 SPN ILMN_1658017 rs1064524 0.018 

16 SPN ILMN_1660315 rs3764276 0.0135 

16 SPN ILMN_1801040 rs11574941 0.0087 

20 SRC ILMN_1685898 rs6097304 0.0039 

20 SRC ILMN_1729987 rs2144509 6.25E-04 

20 SRC ILMN_1778253 rs6017916 0.0086 

8 STAR ILMN_1689702 rs10958728 0.0076 

8 STAR ILMN_2391176 rs13439094 0.0251 

2 STAT1 ILMN_1691364 rs4853546 4.18E-04 

2 STAT1 ILMN_1777325 rs11695339 1.32E-04 

12 STAT2 ILMN_1690921 rs11171806 0.0016 

17 STAT3 ILMN_1663618 rs1474040 1.89E-04 

17 STAT3 ILMN_2401978 rs17500235 2.21E-04 

17 STAT3 ILMN_2410986 rs1474040 2.20E-04 

2 STAT4 ILMN_1785202 rs7574070 2.19E-57 

12 STAT6 ILMN_1763198 rs841718 1.36E-53 

9 STOML2 ILMN_1663002 rs950048 7.45E-04 

9 SYK ILMN_2059549 rs7036417 1.75E-14 

5 TCF7 ILMN_1676470 rs729800 2.93E-05 

5 TCF7 ILMN_1677846 rs651764 3.89E-04 

5 TCF7 ILMN_1683986 rs4958129 0.0061 

5 TCF7 ILMN_1707005 rs256208 2.02E-04 

5 TCF7 ILMN_2367141 rs152402 2.14E-04 

4 TEC ILMN_1666969 rs2071027 2.22E-04 

19 TGFB1 ILMN_2129668 rs2052080 0.0023 

1 TGFB2 ILMN_1812526 rs12760500 0.0039 

3 TGFBR2 ILMN_1744862 rs11129420 0.0039 

3 TGFBR2 ILMN_2384241 rs12495646 3.15E-06 

11 THY1 ILMN_1779875 rs1073636 6.87E-05 

19 TICAM1 ILMN_1724863 rs10422141 1.24E-08 

19 TICAM1 ILMN_1815079 rs11668223 2.10E-04 

4 TLR2 ILMN_1772387 rs6536024 5.14E-04 

4 TLR3 ILMN_1689578 rs13141650 1.09E-04 
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4 TLR3 ILMN_2155708 rs4862522 0.0033 

9 TLR4 ILMN_1706217 rs1927914 2.82E-05 

7 TMEM176A ILMN_1791511 rs10231216 4.59E-04 

6 TNF ILMN_1728106 rs3749946 0.0077 

22 TNFRSF13C ILMN_1731742 rs2269661 1.89E-05 

1 TNFRSF14 ILMN_1697409 rs2147905 0.0041 

13 TNFSF13B ILMN_1758418 rs9559216 0.0015 

13 TNFSF13B ILMN_2066858 rs1575476 0.0025 

1 TNFSF4 ILMN_1746175 rs6686744 1.56E-04 

1 TNFSF4 ILMN_2089875 rs2205960 3.75E-04 

9 TRAF2 ILMN_1691487 rs2784092 8.02E-04 

11 TRAF6 ILMN_1700353 rs262410 0.0058 

11 TRAF6 ILMN_1783910 rs596684 0.0048 

11 TRAF6 ILMN_2392143 rs996977 8.73E-05 

3 TRAT1 ILMN_1684943 rs9879707 0.0047 

3 TRAT1 ILMN_2124833 rs7640727 0.0401 

7 TRIL ILMN_1778755 rs6943689 0.0054 

19 TRPM4 ILMN_1679401 rs7250766 9.25E-04 

4 TXK ILMN_1741143 rs3805184 2.77E-11 

19 UBA52 ILMN_2368576 rs4808137 5.69E-16 

21 UBASH3A ILMN_1684450 rs915837 1.03E-04 

21 UBASH3A ILMN_2338348 rs11203203 3.16E-18 

17 UBB ILMN_1762436 rs11650283 0.0034 

12 UBC ILMN_2252160 rs10082832 0.0107 

6 UBD ILMN_1678841 rs2021723 2.80E-04 

12 UBE2N ILMN_1793651 rs832517 9.48E-04 

20 UBE2V1 ILMN_1665862 rs932905 1.08E-05 

19 VASP ILMN_1743646 rs10995 7.73E-55 

19 VAV1 ILMN_1717334 rs1422403 4.74E-05 

3 WNT5A ILMN_1800317 rs9849795 0.0046 

2 ZAP70 ILMN_1674838 rs12477450 0.0057 

2 ZAP70 ILMN_1719756 rs2276645 6.38E-09 

19 ZFP36 ILMN_1720829 rs12986299 0.0034 

16 ZFPM1 ILMN_1651438 rs10163412 2.75E-08 
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Appendix 5. Associations between eQTL SNPs and clinico-pathological 

markers 

RefSNP  

ID 

Age Sex Primary 

tumour 

location 

T 

stage 

EMVI Mismatch 

repair 

Disease 

stage 

Ethnicity 

rs256208 0.154 0.450 0.432 0.759 0.150 0.580 0.290 <0.001* 

rs2505777 0.345 0.532 0.884 0.029* 0.540 0.171 0.418 0.089 

rs1152788 0.933 0.120 0.797 0.899 0.033* 0.313 0.288 0.508 

rs2295359 0.360 0.972 0.450 0.156 0.392 0.131 0.117 0.572 

rs11161590 0.144 0.652 0.257 0.224 0.368 0.326 0.605 0.114 

rs6673928 0.396 0.525 0.965 0.840 0.337 0.754 0.735 0.204 

rs10760142 0.527 0.944 0.436 0.936 0.058 0.067 0.564 0.639 

rs11919943 0.335 0.306 0.375 0.452 0.768 0.899 0.226 0.622 

rs11203203 0.171 0.369 0.058 0.727 0.981 0.405 0.484 0.941 

 

Comparison of clinic-pathological data points with SNP frequencies using ordinal logistic 

regression. Sex = M vs F, Ethnicity = Black vs Other, Side = Right vs Left, EMVI = Yes 

vs No. EMVI = extramural venous invasion. P values, * denotes significant difference. 
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Appendix 6. Comparison of clinico-pathological markers before and after 

neoantigen analysis 
 
 

100KGP = 100 000 Genomes Project participants. EMVI = extramural venous invasion. 

MSI-MSI-high = microsatellite instability high. ^ = Kruskal-Wallis test. o = Pearson χ-
squared test. n = number. 
 

Criterion Full data set 
(n = 238) 

Immunoscore 
complete (n = 197) 

Neoantigen 
data (n = 137) 

p value 

Age (years) 
- Median 
- Mean 

  
69 
68 

 
69 
67 

 
71 
68 

 
0.815^ 

Sex (%) 
- M  

  
145 (60.9) 

 
119 (60.4) 

 
82 (59.9) 

 
0.979 o 

Ethnicity (n/%) 
- White  

  
209 (87.8) 

 
173 (87.8) 

 
119 (86.9) 

 
0.997 o 

Disease stage 
(n/%) 

- I-III 

  
221 (92.9) 

 
183 (92.9) 

 
130 (94.9) 

 
0.711 o 

Primary tumour 
side (n/%) 

- Left  
- Right 

  
 
119 (50.0) 
117 (49.2) 

 
 
96 (48.7) 
99 (50.3) 

 
 
67 (48.9) 
69 (50.4) 

 
 
0.962 o 

Primary tumour 
location 

- Rectum 

 
55 (23.8) 

 
43 (21.8) 

 
27 (19.7) 

 
0.745 o 

EMVI (n/%) 
- Positive 

 
114 (47.9) 

 
96 (48.7) 

 
68 (49.6) 

 
0.948o 

Nodes 
- Total  
- Positive 

 
23.2 
1.6 

 
23.3 
1.7 

 
22.0 
1.6 

 
0.354^ 
0.877^ 

Microsatellite 
status (n/%) 

- MSI-high 
- N/A 

  
 
47 (19.7) 
43 (18.1) 

 
 
39 (19.8) 
28 (14.2) 

 
 
26 (19.0) 
16 (11.7) 

 
 
0.513o 




