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ABSTRACT 

 Haematological cancers are heterogenous diseases caused by a series of 

events which drive cells to uncontrolled proliferation and tumour progression. 

Nowadays, our understanding is that one hallmark of cancer cells is to reprogram 

their normal cellular metabolism to sustain their anabolic requirements for 

continuous cell growth and proliferation. Despite the remarkable progress in 

cancer metabolism, the exact mechanisms behind cancer metabolic 

reprogramming are not yet fully understood. The work presented in this thesis aims 

to provide novel biological insights into the metabolic reprogramming of 

haematological cancers and highlight potential metabolic vulnerabilities for 

therapeutic targeting approached to be investigated in future studies. A multi-

Omics data integration approach was selected to achieve such ambitious aims. 

Herein, recent computational methodologies were applied to integrate and analyse 

transcriptomic with metabolomic profiles derived from cancer patients, as well as 

cell lines, mostly from mature B-cell neoplasms.   

 Mature B-cell neoplasms, such as Chronic Lymphocytic Leukaemia (CLL) 

and Non-Hodgkin Lymphomas (NHL), rise from the clonal expansion of mature B-

cells and they are responsible for most newly diagnosed cases of haematological 

cancers worldwide. The second chapter of this thesis presents an investigation 

into the transcriptome profile of CLL patients characterised by a distinct clinical 
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response. Deregulated metabolic genes and pathways were identified between 

rare CLL cases that have undergone spontaneous regression versus CLL cases 

with poor clinical outcome. CLL cells from cases with poor outcome presented a 

differential reliance on oxidative phosphorylation and mitochondrial respiration 

compared to spontaneous regressed CLL cells. Going beyond traditional gene 

expression analysis, we performed an integration of transcriptomics profiles with 

Genome Scale Metabolic Models to identify metabolic genes as potential 

vulnerabilities in CLL. Our findings emphasise the important role of metabolic 

reprogramming in CLL and suggest the possibility of targeting metabolism for 

future studies and therapeutic approaches. 

 The third chapter of this thesis describes a study exploring cancer 

metabolism in aggressive NHL associated with germinal centre development,  

focusing on endemic Burkitt Lymphoma (BL) and the germinal-centre–like subtype 

Diffuse Large B-cell Lymphomas (DLBCL). Analysis of the transcriptome of 

primary tumours revealed that BL cases possessed a distinct gene expression 

profile compared to DLBCL cases. This BL profile is suggestive of altered function 

of metabolism with elevated expression in serine metabolic genes, the c-Myc and 

mTORC1 pathways. On the opposite, DLBCL cases appeared to be dependent on 

extracellular signals from cytokines (INFγ response) or inflammation, possibly to 

trigger activation of intracellular signalling pathways that impact metabolism. 

Furthermore, integrative analysis at the pathway level between transcriptomic and 

metabolomic datasets from cell lines, indicated a dependency of BL cells on non-
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essential amino acid metabolism and particularly on the alanine, aspartate and 

glutamine metabolic pathways. These results not only highlighted key metabolic 

regulators in NHL, but most importantly, demonstrated the necessity of 

understanding and monitoring metabolic properties in these lymphomas. 

 Finally, chapter four describes work undertaken to explore the 

transcriptomic and metabolic diversity of cancer cell lines. Machine learning 

approaches were applied to integrate and analyse Omics datasets retrieved from 

the Cancer Cell Line Encyclopaedia (CCLE) database. Unsupervised analysis 

highlighted the distinct transcriptomic and metabolomic profile of haematopoietic 

cell lines compared to other tumours. Taking a supervised approach enabled us to 

associate gene expression changes in cytoskeleton and cell adhesion molecules 

with aberrant metabolites levels, such as xanthine and creatinine. Together, these 

observations provide proof of concept for the highly dynamic variations between 

transcriptome and metabolome in different cancers.  

 In summary, this work portrays the power of multi-Omics data integration to 

unveil key elements in metabolic reprogramming of haematological cancers and 

raises numerous questions and new hypotheses for future metabolic studies.  
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CHAPTER 1 

INTRODUCTION 
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1.1. Hallmarks of cancer 

Cancer, just like cardiovascular disease, diabetes and chronic respiratory 

disease, is considered a noncommunicable disease (NCD), i.e. a condition that is 

not transmit from person to person. In 2016, NCDs were responsible for  41.0 

million deaths (71%) of the overall 57 million deaths globally, with cancer being 

accountable for 9 million of those (15.7%) (World Health Organization, 2018). 

Cancer is a disease with great diversity, characterised by cells uncontrolled 

proliferation and tumour progression. The transformation of normal cells to 

malignant derivatives involves a series of events that disrupt the normal tissue 

architecture and create tumours (or else malignant neoplasms), in a process that 

is called tumourigenesis. Cancer has captured the scientific and public interest in 

the latest century, which saw the beginning of the “war on Cancer”. Historically, 

the first medical record of this disease lies in a 4500 years old Egyptian papyrus, 

written by the great Egyptian physician Imhotep. Around 160 AC, another great 

physician the Greek Claudius Galen accused the black bile to be the cause of 

cancer, based on Hippocrates’ humoral theory. This theory dominated in medicine 

for several centuries (Figure 1.1) (Mukherjee, 2011). By the second half of the 19th 

century, Hilário de Gouvêa, a Brazilian doctor, was the first to propose that an 

inherited intrinsic factor might be accountable for retinoblastoma, a rare eye cancer 

(Monteiro and Waizbort, 2007). For almost a century, it has been known that 

cancer has genetic and environmental causes. However, it was in 1971 with Alfred 
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G. Knudson’s “two-hit hypothesis” when scientists focused on the genetic basis of 

cancer and started to realise that disruption of normal growth is caused by 

mutations in oncogenes or tumour suppressor genes (Figure 1.1) (Knudson, 1971). 

In 1990, Bert Vogelstein with his discoveries in colorectal cancer, demonstrated 

cancer’s genetic diversity and suggested that cancer arises from accumulation of 

sequential mutations in a cell (Fearon and Vogelstein, 1990). 

 

Figure 1.1. Cancer metabolism, an emerging hallmark of cancer. The arrow 

represents the most significant events and discoveries, overtime, that led to 

considered metabolism as a hallmark of cancer. 
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At the turn of the new millennium, Hanahan and Weinberg published one of 

the most cited papers in Cell scientific journal, where they highlighted six hallmark 

capabilities (Figure 1.2) that normal cells can acquire in order to become 

cancerous (Hanahan and Weinberg, 2000). The most essential of these is the 

ability of cancer cells to maintain chronic proliferation by disrupting growth-

promoting signals and cell cycle. A second hallmark is the inactivation of tumour 

suppressor genes (e.g. RB, TP53) that act as gatekeepers for cell proliferation. 

Another feature of some cancer cells is an ability to resist cell death, such as 

apoptosis. Moreover, cancer cell capability to avoid senescence and gain 

immortalization is also a hallmark.  Cellular senescence is the loss of proliferative 

ability of normal cells due to the shortening of their telomeric DNA. The capacity of 

a tumour to induce angiogenesis in order to maintain neoplastic progression, is 

also consider another hallmark of cancer. The final trait is the invasion of other 

tissues and the metastatic mechanisms that cancer cells develop in the later 

stages of tumourigenesis. The same authors in 2011, proposed that the 

reprogramming of cellular metabolism in cancer, together with the capability of 

cancer cells to evade immune destruction, are also two new emerging hallmarks 

(Hanahan and Weinberg, 2011).  Since then, cancer research achieved 

remarkable progress to understand and elaborate the mechanisms that establish 

cancer metabolism as a hallmark of cancer. 
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Figure 1.2. The first six hallmark capabilities acquired of cancer (Hanahan 

and Weinberg, 2000). 
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1.2. Cancer Metabolism, a hallmark of cancer 

1.2.1. Deregulated bioenergetic profile 

1.2.1.1. Glycolysis and the Warburg Effect 

 Cancer cells reprogram their normal cellular metabolism to fulfil their high 

energy demands and anabolic requirements for continuous cell growth and 

proliferation. Otto Warburg in the 1920s was the first to observe this metabolic 

deregulation in cancer. He reported that tumours consumed more glucose 

compared to other normal tissues (Warburg, 1924; Warburg et al., 1927). Glucose 

is the most profuse monosaccharide in human body, which is catabolised to 

generate energy in the form of adenosine triphosphate (ATP), in a process that is 

called cellular respiration. Generally, cells import glucose through GLUT protein 

transporters and extract energy via glycolysis by convert it into two three-carbon 

molecules called pyruvates. Glycolysis consists of ten enzyme-catalysed reactions 

which generate ten primary metabolites: glucose-6-phosphate, fructose-6-

phosphate, fructose-1,6-bisphosphate, dihydroxyacetone-phosphate, 

glyceraldehyde-3-phopshate, 1,3-bisphosphoglycerate, 3-phosphoglycerate, 2-

phosphoglycerate, phosphoenolpyruvate and pyruvate. Glycolysis is distinguished 

into an energy-requiring phase followed by an energy-releasing phase. During the 

energy-requiring phase, two ATP molecules are required to breakdown glucose 
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through a series of reactions into glyceraldehyde-3-phopshate. At the energy 

releasing phase, two ATP molecules and one NADH molecule is produced when 

glyceraldehyde-3-phospate is converted ultimately into pyruvate. Since this phase 

is required twice to convert one molecule of glucose into two molecules of pyruvate, 

the net products of glycolysis are two molecules of ATP and two molecules of 

NADH. Pyruvate then degrades in mitochondria with the consumption of oxygen 

via the tricarboxylic acid cycle (TCA) and the electron transport chain (ETC), where 

oxidative phosphorylation (OXPHOS) produce ample amount of ATP (Figure 1.3). 

Alternatively, pyruvate can also be converted to lactate under anaerobic conditions, 

in almost an 18-fold less productive way for energy. Warburg later discovered that 

even under aerobic conditions, cancers cells convert pyruvate to lactate, which 

has been termed as aerobic glycolysis or “Warburg Effect” (Warburg, 1956). This 

less energetically efficient metabolic reprogramming of cancer cells has puzzled 

scientists for several decades and even today the main reasons remain not fully 

understood. Still, this knowledge laid the foundation for the successful clinical use 

of radiolabelled glucose analogues (e.g. 18F-FDG), as radiotracers in positron 

emission tomography (PET) to diagnose and monitor several different types of 

cancer (Duhaylongsod et al., 1995). 

  

  



 

 

 

 

Figure 1.3Key metabolic pathways in a cancer cell. Intrinsic and extrinsic factors that alter the bioenergetic and 

biosynthetic metabolic profile of a cancer cell to sustain tumour growth and proliferation. Bold arrows represent changes 

in metabolic fluxes in a cancer cell compared to a non-cancer cell.  

  



 

 

 Today, our understanding is that cancer cells rely on both intrinsic and 

extrinsic oncogenic signalling factors to reprogram metabolism and sustain tumour 

growth and proliferation (Vander Heiden and DeBerardinis, 2017). Intrinsic factors 

involve any intracellular activities and effectors, such as genetic alterations in 

metabolic enzymes or elevated expression in transcriptional targets (MYC, KRAS 

and mTORC1), that carry out conventional metabolic tasks like supporting 

energetics, generating macromolecules and maintaining redox state for tumour 

progression. An example are mutations in succinate dehydrogenase (SDH) 

enzymes that result in the accumulation of succinate, which acts at high levels as 

an oncometabolite and interferes with dioxygenase function (Selak et al., 2005). 

Extrinsic factors involve processes outside of the cell membrane, such as access 

to nutrients and oxygen, attachment to extracellular matrix, interactions with 

stromal cells and exposure to radiation or chemotherapy. Examples of how cell 

metabolism is affected by extrinsic factors are presented in section 1.2.4.   

The Warburg Effect not only fuels part of cancer cell’s energy metabolism, 

but also activates and supplies the essential substrates for several conjoining 

biosynthetic pathways through upregulation of glycolysis (Lunt and Vander Heiden, 

2011); contributes to the NAD+ pool with the use of lactate dehydrogenase A 

(LDHA); exports lactate, which influences the tumour microenvironment promoting 

metastasis (Gottfried et al., 2006; Walenta et al., 2000); and assists cancers cells 

to regulate redox homeostasis in tumours’ hypoxic environment by decreasing 

OXPHOS dependency (Gwangwa et al., 2018). Nevertheless, there are some 

normal cells and tissues, such as activated T-cells or the embryonic tissues, that 
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are also using the Warburg Effect to support rapid proliferation (Cham and 

Gajewski, 2005). Notably, the expression of numerous glycolytic enzymes, that are 

involved in this mechanism is controlled by oncoproteins such as c-Myc, HIF-1 and 

NEK2 (Kim et al., 2004). Therefore, overexpression of these transcription factors 

in several cancers alters the cellular metabolism and elevates glycolysis. More 

importantly, constitutive activation of tyrosine kinase signalling results in the 

activation of Warburg Effect by the constant phosphorylation of many glycolytic 

enzymes such as the LDHA, the phosphoglycerate mutase 1 (PGAM1), and the 

pyruvate kinase M2 isoform (PKM2) (Wiese and Hitosugi, 2018). 

1.2.1.2. Alternative energy sources and mitochondrial respiration 

 Enhanced glycolysis with the Warburg Effect is one way for cancer cells to 

generate energy. However, several other catabolic reactions are also 

reprogrammed in cancer to fuel tumour cells with the appropriate energy and 

sustain survival and proliferation. It is now well established that cancer cells obtain 

part of their cellular energy from the oxidation of glucose, glutamine and from other 

nutrients that produce the precursors to initiate the TCA cycle and OXPHOS  (Kim, 

2018; Koppenol et al., 2011). Glutamine is the most abundant non-essential amino 

acid in the human body (Vinnars et al., 1975). After entering the cells through the 

SLC1A5 (or ASCT2) transporter, glutamine is converted to glutamate (GLU) and 

ammonia (NH4+) by glutaminases (GLS1/2). Then, the glutamate dehydrogenase 

enzyme (GDH) metabolise glutamate to α-ketoglutarate (αKG), which is 
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channelled into the TCA cycle and produce NADH and FADH2, the intermediates 

for ATP production from the ETC (Figure 1.3). This anaplerosis of the TCA cycle, 

or else, the replenishing of TCA cycle intermediates from glutamine catabolism 

(also known as glutaminolysis), is one of the major metabolic reprogramming 

events in several cancers  (McKeehan, 1982). 

 Furthermore, recent studies suggest that the production of abundant 

cytosolic NADH can be used as an electron source for the ETC from cancer cells 

(Kang et al., 2016; Lee et al., 2016). NADH is generated in the cytoplasm as a by-

product from several catabolic reactions and enters into mitochondria where 

OXPHOS occurs through the malate-aspartate shuttle (MAS). MAS is a multi-step 

procedure, in which the high energy electrons from the NADH are using malate as 

a “vehicle” to enter mitochondria. In TCA cycle, malate is converted to oxaloacetate, 

giving rise to NADH and thus ATP through the ETC (Greenhouse and Lehnlnger, 

1976). 

 Another theory relies on a symbiotic model in tumours in which some cancer 

cells secrete lactate (that derives from the consumption of glucose) for 

neighbouring cells to consume (Faubert et al., 2017; Sonveaux et al., 2008). 

Lactate enters the cells through the monocarboxylate transporters (MCT1/4) and 

it is converted back to pyruvate by the LDHA enzyme. Pyruvate can then generate 

acetyl-CoA for fatty acids synthesis or fuels the TCA cycle. An alternative source 

that contributes in cytosolic acetyl-CoA pool is the catabolism of acetate. It is found 

that several cancer tissues upregulate the enzyme acetyl-CoA synthetase 2 
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(ACSS2) under hypoxia or nutrient-limiting conditions (Kamphorst et al., 2014; 

Mashimo et al., 2014). The ACSS2 synthesise acetyl-CoA from the ligation of 

acetate and CoA to support biomass production or to produce energy (Figure 1.3) 

(Schug et al., 2015). 

 Finally, fatty acids oxidation (FAO; or β-oxidation) also serves as an energy 

source in different cancer types. Fatty acids are required for membrane synthesis 

in cells and thus are necessary for cell growth and proliferation. They can be 

synthesised de novo from acetyl-CoA, imported from extracellular matrix, or by the 

degradation of intracellular lipid droplets, an autophagic process that is called 

lipophagy (Singh et al., 2009). Elevated uptake of fatty acids in cancer cells is used 

not only to maintain lipid homeostasis and prevent lipotoxicity, but also through 

FAO provide an extra source of ATP during conditions of metabolic stress 

(Koundouros and Poulogiannis, 2020). The FAO pathway is a cycle that generates 

NADH and FADH2 by removing two carbons from fatty acids in each round. As 

mentioned before, NADH and FADH2 enter in ETC to produce ATP (Carracedo et 

al., 2013). Recent evidence demonstrate that activation of FAO is essential for 

cancer cell survival and proliferation, particularly in haematological cancers (Monti 

et al., 2005; Samudio et al., 2010). 
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1.2.2. Biosynthetic reprogramming 

The ability of cells to uptake nutrients not only covers the cellular energy 

demands but also provides the metabolic precursors for biosynthesis of proteins, 

lipids and nucleotides. Cells are using amino acids to build proteins, acetyl-CoA 

for lipids, and purines and pyrimidines for nucleotides, which are the building 

blocks for the nucleic acids (DNA and RNA). Multitudinous anabolic reactions are 

involved in the de novo synthesis of these essential molecules to support cell 

growth and proliferation. Glucose, besides a major energy supplier is also a carbon 

provider for biosynthesis. Along glycolysis, glucose is metabolised in several 

metabolic precursors used by other branching biosynthetic pathways (Figure 1.3). 

The glucose 6-phosphate (G6P), an intermediate metabolite in the steps of 

glycolysis, is utilised from the pentose phosphate pathway (PPP) for the formation 

of ribose 5-phosphate and ultimately the synthesis of nucleotides. During this 

process NADPH is generated and it is used for reductive biosynthesis reactions or 

to prevent cells from oxidative stress (Wamelink et al., 2008). The 3-

phosphoglycerate (3PG) also derives from glycolysis and it is used for the de novo 

production of serine, a non-essential amino acid. Following, serine can convert to 

glycine by the serine hydromethylotransferases (SHMT1 and SHMT2), in a 

reaction that contributes the most in the one-carbon pool for nucleotide synthesis 

and methylation (Labuschagne et al., 2014). 

In cancer cells, the part of pyruvate that is not converted to lactate, passes 

in the mitochondria and in the form of acetyl-CoA, fuels the TCA cycle both for 
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bioenergetic and other anabolic purposes. The TCA cycle generates citrate, αKG, 

succinate, fumarate, malate, and oxaloacetate (Figure 1.3). The isocitrate 

dehydrogenase (IDH) enzyme is responsible for converting citrate to αKG. Cancer 

cells with mutations in IDH genes, disrupt the normal enzymatic activity and result 

in the production of a “new” metabolite that is called 2-hydroxyglutarate (2HG) 

(Dang et al., 2009). The 2HG together with succinate and fumarate are 

characterised as onco-metabolites and they can regulate the epigenome by 

inhibiting histone or DNA demethylases (Nowicki and Gottlieb, 2015). Alternatively, 

acetyl-CoA and citrate can export from mitochondria to support fatty acids and 

cholesterol biosynthesis (Kato et al., 2018). Moreover, glutaminolysis is also a 

major contributor in multiple biosynthetic pathways in cancer. Metabolism of 

glutamine enriches cell’s nitrogen pools for the synthesis of purines and 

pyrimidines, to detoxify ammonia, and to activate mTOR signalling (Bott et al., 

2019). In mitochondria, the anaplerosis of the TCA cycle via glutaminolysis 

produces malate that generates pyruvate and NAPDH, oxaloacetate (which can 

be converted to aspartate), and asparagine (via the aspartate transaminases 

GOT1 and GOT2) (Vazquez et al., 2016), and citrate (for lipid synthesis) (Figure 

1.3) (Kato et al., 2018). 

The rapid proliferation of cancer cells and the mitochondrial metabolism 

enhance the intracellular levels of reactive oxygen species (ROS) (Murphy, 2009). 

The production of ROS such as hydrogen peroxide (H2O2), a major by-product of 

mitochondrial oxidative phosphorylation, quickly oxidise nucleotides, proteins and 
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lipids leading the cell to apoptosis. To avoid this, cancer cells increase their 

antioxidant capacity through glutathione (GSH) oxidation-reduction and generation 

of NADPH from PPP and one carbon metabolism. GSH is synthesized from 

cysteine, glutamate, and glycine. The enzymes glutathione peroxidases (GPXs) 

can detoxify H2O2 to H2O by generating glutathione disulphide (GSSG), which 

interacts with NADPH back to glutathione in a reaction catalysed by glutathione 

reductase (GR) (Figure 1.3) (Cox et al., 2009). Therefore, ROS detoxification 

through the reduction of GSSG back to GSH coupled to NADPH oxidation requires 

a constant supply of NADPH. As stated previously, various pathways contribute to 

NADPH production from NADP+. The main source of NADPH comes from glucose 

at the first step of PPP, by glucose-6-phosphate dehydrogenase (G6PDH). Other 

sources can be serine via one carbon metabolism or the malate dehydrogenase 

enzyme, which oxidizes malate to pyruvate, while NADP+ is reduced to NADPH. 

Similar to malate dehydrogenase, the isocitrate dehydrogenase (IDH) and the 

glutamate dehydrogenase (GDH) also generate NADPH. Besides ROS 

detoxification, NADPH contributes in many biosynthetic reactions and anabolic 

pathways, such as cholesterol synthesis, fatty acid synthesis, ascorbic acid 

synthesis or steroid synthesis. 

Overall, it is becoming apparent that the role of mitochondria in malignant 

cells is altered to serve more as a producer of the anabolic intermediates for 

biosynthesis and redox homeostasis than a power generator of ATP. 



 

37 

 

1.2.3. Nutrients’ acquisition 

As the tumour expands, it creates areas with insufficient nutrients supply 

due to the limited vascularity. Cancer cells in these areas maintain survival by 

enabling autophagy (Guo et al., 2011; Yang et al., 2011). This mechanism is also 

used by normal cells to degrade and recycle the malfunctioning organelles via 

recruitment of the autophagosome and their fusion in the lysosomes, providing 

precursors to support the bioenergetic and biosynthetic cellular needs (Settembre 

and Ballabio, 2014). However, this process is not sufficient to maintain proliferation. 

For this purpose, cancer cells are using alternative mechanisms to obtain the 

necessary nutrients from their environment. As stated previously, small molecules 

such as glucose or glutamine are imported through the upregulation of membrane 

transporters. On the other hand, larger molecules such as proteins are recovered 

via endocytic mechanisms involving the micropinocytosis, the phagocytosis, and 

the entosis (Commisso et al., 2013; Krajcovic et al., 2013). These mechanisms are 

using the cellular membrane to engulf large amounts of nutrients or even cells and 

transfers them inside the cell. In the cell the lysosomes are responsible to break 

them down into their building blocks and fuel cell’s metabolism (Figure 1.3). The 

oncogenic Ras proteins and the mTORC1 signalling pathways are associated with 

the regulation of these mechanisms, particularly in micropinocytosis. However, the 

exact mechanism behind this regulation remains poorly understood (Commisso et 

al., 2013; Kamphorst et al., 2015; Palm et al., 2015). Remarkably, even under 

limited nutrients delivery conditions, tumours utilise both intracellular and 
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extracellular macromolecules, to gain the advantage and sustain survival and 

proliferation. 

1.2.4. Tumour microenvironmental factors 

 Tumours consist of diverse and heterogenic populations of cancer cells, 

creating areas with poor angiogenesis and blood supply as they expand. As a 

result, limited oxygenation occurs, thus generating a hypoxic environment, 

particularly in the core of the tumour. Consequently, most cancer cells survive in a 

hypoxic environment in between 1% to 2% oxygen concentration,  whilst most 

normal tissues require a range between 4.6% to 9.5% (Muz et al., 2015). 

Consequently, several biosynthetic reactions that are using the molecular oxygen 

as an electron acceptor are suppressed in tumour cells. The metabolic response 

system in hypoxia activates HIF-1A and triggers the Warburg effect by inducing 

the expression of GLUTs and several other glycolytic enzymes, such as the 

pyruvate dehydrogenase kinase (PDK) (causing the phosphorylation and 

inactivation of the PDH) (Lu et al., 2002; Papandreou et al., 2006). The high 

production and secretion of lactate, as a result of elevated glycolysis, increases 

the levels of this metabolite extracellularly and creates an acidic microenvironment 

that impacts the extracellular matrix (ECM) and nearby cells. However, high levels 

of lactate and hypoxia promote immunosuppression by decreasing the activation 

and function of several immune cells, such as the dendritic and T cells (Fischer et 
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al., 2007; Gottfried et al., 2006). To this end, the release of glutamate from cancer 

cells, as a response to elevated glutaminolysis, is also found to regulate T-cell 

activation (Pacheco et al., 2006). Additionally, lactate efforts to sustain 

angiogenesis by stabilizing the HIF-1A expression and stimulating the expression 

of the vascular endothelial growth factor (VEGF), a pro-angiogenic molecule to 

promote vascularisation, in the neighbour endothelial cells (Sonveaux et al., 2012; 

Tang et al., 2004). The acidic niche in tumours is also enhanced by the release of 

intracellular H+ and HCO3
- derived from the catalysis of CO2 (generated from PPP 

pathway) with H2O to produce H2CO3 (Swietach et al., 2007). Among the carbonic 

anhydrases (CAs) that are responsible for this reaction, the CAIX isoform is 

elevated in several cancers and it is associated with hypoxia and tumour invasion 

(İlie et al., 2010; Yang et al., 2015). Altogether, several tumour microenvironment 

factors are contributing in the tumour niche, which also influence the metabolism 

of the surrounding cells to promote tumour survival, progression and metastasis. 

1.2.5. Targeting cancer metabolism 

The metabolic reprogramming of cancer cells is an emerging field for cancer 

therapy. The most promising therapeutic interventions on metabolic enzymes that 

are currently being accessed for their effectiveness and toxicity in clinical trials are 

highlighted in Figure 1.3. Research in cancer metabolism aims to find and target 

unique metabolic elements of tumours, such as the production of lactate, to 
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increase the specificity of a new therapeutic approach. To this direction, the AT-

101 (Gossypol) molecule, which is an LDHA inhibitor, has demonstrated little 

efficiency in clinical trials to date (Fiveash et al., 2009; Sacco et al., 2014; 

Schelman et al., 2015). Another target is the MCT1 transporter, that is regulated 

by c-Myc and can facilitate both import and export of lactate. This transporter is 

inhibited by the AZD3965 agent, which is currently in phase I of clinical trials for 

Non-Hodgkin lymphoma (NHL), with an estimated completion date of May 2021 

(NCT01791595). Pre-clinical studies have demonstrated the anti-tumour activity of 

the AZD3965 in vitro and in vivo in xenograft models (Curtis et al., 2017; Noble et 

al., 2017). However, Beloueche-Babari et al. have shown that inhibition with 

AZD3965 increases the mitochondrial metabolism in cancer cells and they 

suggested the combined use of AZD3965 with metformin or with the mitochondrial 

pyruvate carrier inhibitor UK5099 (PF-1005023), as a more effective cancer-

targeted therapy (Beloueche-Babari et al., 2017). Metformin is a commonly used 

drug in type 2 diabetes, acting by reducing hepatic gluconeogenesis and regulating 

insulin levels in the blood stream. Interestingly, numerous studies highlighted the 

antitumorigenic effects of metformin (Dowling et al., 2012; Evans et al., 2005; 

Storozhuk et al., 2013). Beside regulating the circulating glucose and insulin levels, 

it was proven that metformin decreases the mitochondrial ATP production by 

inhibiting the mitochondrial ETC complex I (Owen et al., 2000; Wheaton et al., 

2014). Currently, several clinical trials are evaluating the combined use of 

metformin with conventional cancer treatment as an improved therapeutic strategy 

(Saraei et al., 2019). 
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The bioenergetic profile of cancer cells, mainly supported from elevated 

glycolysis and glutaminolysis, is another popular target. In human cells, fluxes in 

the glycolytic pathway are regulated mostly by three regulatory enzymes 

(hexokinase, phosphofructokinase, and pyruvate kinase), as a response to 

intracellular and extracellular signals. The first step of glycolysis is to convert the 

intracellular glucose to G6P by utilizing the hexokinase (HK2) enzyme. In HIF1-A 

and c-Myc driven cancer cells, several glycolytic enzymes including the HK2 are 

upregulated to promote glycolysis (Kim et al., 2007). HK2 is inhibited by a glucoses 

mimetic, the 2-deoxy-D-glucose (2DG). Although, it is known since 1958 that the 

2DG molecule is able to reduce the number of leukemic cells in patients, this 

molecule failed to proceed further than phase 1 of clinical trials (Landau et al., 

1958; Stein et al., 2010). This is because the 2DG is antagonizing glucose, which 

has a concentration of 60-fold more (7 to 10 mg/ml) than the concentration (0.116 

mg/ml) of the maximum tolerated dose of 2DG (Raez et al., 2013). Still, the use of 

2DG alone or in combination with other cancer treatments, appears to provide a 

clinical benefit in cancers with elevated glycolysis. Other important enzymes 

involved in the regulation of glycolysis are the phosphofructokinase and the 

pyruvate kinase. Phosphorylation of these enzymes, as a response to intracellular 

signals, can drive either glycolysis or gluconeogenesis. 

To target glutaminolysis, inhibitors for the GLSs enzymes have been 

developed and tested in glutamine-addicted cancers. The bis-2-(5-

phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulphide (BIPTES) and the CB-839 
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(Telaglenastat) are two promising molecules that are inhibiting the action of the 

GLS1 protein. Studies with the CB-839 molecule have shown that this agent can 

reduce tumour cell growth in patient derived xenografts and it is now being 

assessed in phase I clinical trials for advance/metastatic solid tumours and 

haematological malignancies (Gross et al., 2014; NCT02071888; NCT03875313). 

Similarly, the BIPTES molecule is also found to suppress tumour growth in IDH1 

mutant cancer cells and in xenografts (Le et al., 2012; Seltzer et al., 2010; Xiang 

et al., 2015). Cancers with IDH mutations are also being investigated with inhibitors 

that aim to suppress the production of 2HG oncometabolite by blocking the mutant 

IDH enzymes (Golub et al., 2019). Recently, the IDH1 inhibitor AT-120 (Ivosidenib) 

and the IDH2 inhibitor AG-221 (Enasidenib) have been FDA-approved for 

treatment of patients with relapsed/refractory acute myeloid leukaemia (AML) 

(Dhillon, 2018; Dugan and Pollyea, 2018). Additionally, preliminary results from a 

phase I clinical study with another inhibitor the AG-881 (Vorasidenib, targets both 

mutated IDH1 or IDH2 enzyme) demonstrate 2HG suppression with >90% 

reduction in patients with glioma tumours (NCT02481154). Despite the significant 

progress of the above pharmaceutical inhibitors, targeting cancer metabolisms 

requires a much better understanding of the involved metabolic and signalling 

pathways to avoid cytotoxicity in the normal proliferative tissues and increase the 

survival rate of cancer patients.  
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1.3 Haematological malignancies 

1.3.1 Overview and classification 

Haematological malignancies or blood cancers are tumours derived from 

the haematopoietic system. This system contains organs and tissues, including 

the bone marrow, spleen, thymus and lymph nodes, involved in the production of 

blood and lymph cellular components. Blood contains red blood cells 

(erythrocytes), white blood cells (leukocytes), platelets (thrombocytes) and plasma, 

and it is responsible for tissue oxygenation, immunity and haemostasis (wound 

healing). Lymph consists of interstitial fluid (or tissue fluid) with high number of 

lymphocytes (types of white blood cells), such as natural killer (NK) cells, B-cells 

and T-cells. Most of the blood and lymph cells are generated from haematopoietic 

stem cells in the bone marrow, a spongy tissue in the centre of bones. In the bone 

marrow, haematopoietic stem cells reproduce themselves and  differentiate into 

myeloid or lymphoid precursor cells in a process known as haematopoiesis 

(Jagannathan-Bogdan and Zon, 2013). Several haematopoietic growth factors 

(such as interleukins) regulate the differentiation of these myeloid and lymphoid 

precursors into any/all forms of mature blood cells. Myeloid precursors develop to 

erythrocytes, granulocytes and platelets, while lymphoid precursors mostly 

generate NK, B-cells and T-cells (Figure 1.4).  



 

 

 

Figure 1.4 Haematopoiesis. The formation of all forms of mature blood cells derived from pluripotent haematopoietic 

stem cells that originate in the bone marrow (Jagannathan-Bogdan and Zon, 2013).  



 

 

In general, haematological malignancies refers to cancers of white blood 

cells and they are divided into leukaemia, lymphoma and myeloma. Leukaemia 

and myeloma are cancers that derive mainly from blood cells in the bone marrow, 

while lymphoma are cancers of lymphocytes in the lymphatic system. According 

to the National Cancer Registration and Analysis Service, there were 33,719 cases 

and 12,767 deaths of haematological cancers reported within 2017 in England 

alone (NCRAS, 2017). Although new developments in therapeutics have 

decreased the morality rates of haematological cancers, the incidence rates for 

most of these diseases are rising or remain the same (NCIN report, 2014). The 

Haematological Malignancy Research Network expects that 44,160 new cases 

occur in the UK each year (HMRN, 2019). 

The classification of haematological malignancies is a complex procedure 

because of the great biological and clinical diversity that these tumours present. In 

the recent International Classification of Diseases 11th revision (ICD-11, version 

04/2019) (WHO, 2019), haematological cancers are subcategorised as 

“Neoplasms of haematopoietic and lymphoid tissues” under the broad group of 

“Neoplasms”. Within this thesis, emphasis is given to diseases  that belong to the 

“Mature B-cell neoplasms” (BL, DLBCL and CLL) category as highlighted in Figure 

1.5.   
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Figure 1.5. Haematological cancers classification. Disease groups are 

separated on the basis of the International Classification of Diseases 11th revision 

(WHO, 2019). Fonts with blue color indicate the disease groups that are examined 

in this thesis.  
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1.3.2 Mature B-cell neoplasms 

Mature B-cell neoplasms are a broad category of haematological 

malignancies that rise from the clonal expansion of mature B-cells in the blood, 

bone marrow and secondary lymphoid organs, such as the spleen or the lymph 

nodes. B-cells are white blood cells with a pivotal role in the defence mechanism 

of the human body against diseases (Alberts et al., 2002). They are responsible 

for the secretion of high affinity antibodies, which recognise pathogens and trigger 

more advanced defence actions, known as adaptive immune responses. Naïve B-

cells are produced in the bone marrow from lymphoid progenitor cells that derive 

from the haematopoietic stem cells. They move to secondary lymphoid organs, 

where their selection and differentiation occur in lymphoid follicle sites, known as 

the germinal centres (GCs). In GCs, B-cells development, selection and rapid 

proliferation involves multitudinous and complex procedures, such as somatic 

hypermutation and class-switch recombination (Mesin et al., 2016). This results in 

the production of antigen-secreting plasma cells and memory B-cells that exit the 

GCs to support adaptive immunity. Any disruptions in DNA damage and cell 

transformation checkpoints during B-cell maturation can cause lymphomagenesis 

and generate mature B-cell neoplasms. 

The majority of mature B-cell neoplasms are lymphomas, such as NHL that 

represent the larger group of lymphoid neoplasms. According to the Global Cancer 

Observatory, in 2018 NHL were responsible for 509,590 new cancer cases 

worldwide, making it the leading cause of haematological cancers (WHO, 2018). 
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NHL consist of several subtypes with different morphologic, immunophenotypic, 

genetic and clinical characteristics. Based on the progress of the disease, they can 

be separated as indolent or aggressive lymphomas. The indolent lymphomas, 

such as the Follicular lymphomas (FL) or the Marginal Zone lymphomas, show few 

symptoms and evolve slowly. Inversely, the aggressive NHL like Diffuse large B-

cell lymphoma (DLBCL) or the Burkitt lymphoma (BL), tend to spread quickly with 

serious symptoms and rapidly become fatal if remain untreated (Armitage et al., 

2017). Another common characteristic between FL, BL and DLBCL is that all of 

them originate from GCs malignant B cells and therefore these lymphomas are 

also known as GC-derived B-cell lymphomas (Mlynarczyk et al., 2019). GC-

derived B-cell lymphomas are highly diverse tumours with a broad spectrum of 

genomic, epigenetic and metabolic profiles. This thesis investigates the aggressive 

NHL that are also GC-derived B-cell lymphomas and hence it describes works on 

BL and DLBCL cases. 

Although NHL represent the majority of haematological malignancies, 

leukaemia are still the most lethal, being accountable for 309,006 deaths in 2018 

globally (WHO, 2018).  Lymphoid leukaemia, such as the Chronic Lymphocytic 

Leukaemia (CLL) or the Hairy Cell Leukaemia, also rise during the maturation 

procedure of B-cells, thus sharing common characteristics during malignant 

transformation with other mature B-cell neoplasms. Herein, lymphoid leukaemia 

tumours were also investigated by examining CLL cases. 
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1.3.2.1 Burkitt Lymphoma 

 Burkitt Lymphomas (BL) are highly aggressive NHL that derive from the 

GCs development and most commonly occur in children. Three main types of BL 

exist: endemic, sporadic and immunodeficiency-associated. BL are generally 

characterised by a monotonous infiltrate of medium-sized blastic lymphoid cells 

that display round nuclei with clumped chromatin and multiple nucleoli. These 

tumour cells are characterised by high proliferation rate (95% or higher with Ki-65 

staining) and high rate of cell death or apoptosis leading to a morphological pattern 

termed ‘starry sky’ (Rosenwald and Ott, 2008). The BL cells immunophenotypic 

profile shows similarities with GC cells being positive for CD20, CD10, BCL6 and 

negative for Mum-1, CD44, CD138 and BCL2 antibodies (Schmitz et al., 2014). 

Positivity for Epstein-Barr virus (EBV) infection is a hallmark of BL, as it is found in 

98% of the endemic and 20% of sporadic BL cases (Dave et al., 2006). At the 

genetic level, several translocations involving the oncogenic transcription factor c-

Myc (translocation t(8;14)(q24;q32)) are common to all subtypes of BL (Bellan et 

al., 2009; Gerbitz et al., 1999). c-Myc influences several cell functions such as cell 

cycle, DNA damage, protein synthesis and metabolism. Additionally, genome 

sequence studies have linked BL with cells in the dark zone of GCs by identifying 

mutation in the transcription factor 3 (TCF3) and in ID3 gene (but not in DLBCL) 

(Schmitz et al., 2012; the ICGC MMML-Seq Project, 2012). 
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1.3.2.2 Diffuse Large B-cell Lymphoma 

 One in two NHL cases in the UK is caused by a Diffuse large B-cell 

lymphoma (DLBCL) tumour (HMRN, 2019). Most DLBCL cases are curable with 

chemotherapy (such as CHOP) or combined chemotherapy with immunotherapy 

(such as R-CHOP) (Armitage et al., 2017). The diagnosis of DLBCL occurs by the 

presence of large neoplastic B-cells comprising centroblastic, immunoblastic, T-

cell/histiocyte-rich and anaplastic morphological variants (Liu and Barta, 2019). 

Studies have shown that 5 to 15% of DLBCL cases are positive for EBV infection, 

while others have associated 5 to 10% of DLBCL cases with translocations in c-

Myc (Castillo et al., 2016; Rosenwald and Ott, 2008). Many DLBCL cases with c-

Myc translocations and either BCL2 or BCL6 mutations present a more aggressive 

clinical behaviour. High expression of BCL2 protein, usually due to translocation 

t(14;18), can inhibit apoptosis, giving a survival advantage to affected B-cells. In 

addition, BCL6 acts as a transcription repressor, protecting the cell from apoptosis 

(Rosenthal and Younes, 2017). Gene expression profiles (GEP) studies have 

classified DLBCL into two molecular subtypes: the germinal centre like group 

(GCB) and the activated B-cell like group (ABC), reflecting the derivation of B-cells 

based on their cell-of-origin when first oncogenesis occurred. Genetic alterations, 

molecular signalling pathways, and different clinical outcomes are associated with 

these subtypes (Campo et al., 2011).  However, 10-15% of DLBCL cases do not 

classify with GEP into these two subgroups (Swerdlow et al., 2016). The GCB 

subgroup shows similar GEP with normal GC B-cells and is associated with a good 
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clinical outcome (Rosenwald et al., 2002). Moreover, several genetic alterations 

have been related with this subgroup. The most common chromosomal 

translocations in GCB-DLBCL cases involve the BCL2 and c-Myc translocations 

(Lenz et al., 2008; Rosenwald et al., 2002), whilst BCL6 translocations and 

inactivation of acetyltransferases genes CREBBP and EP300  can be found in both 

subgroups (Pasqualucci et al., 2011). Somatic mutations in histone-modifying 

genes and mutations of the EZH2 methyltransferase are also observed in GCB 

(Morin et al., 2010, 2011). In contrast, the more severe ABC DLBCL subtype of 

DLBCL seems to derive from post germinal centre B-cells that are arrested during 

plasmacytic differentiation. Among the most common genetic alterations in ABC 

group, are genetic defects in B-cell antigen receptor (BCR) and mutations in genes 

(TNFAIP3, CARD11, CD79B and MYD88) that enhance activation of the NF-kB 

pathway (Pasqualucci et al., 2011). 

1.3.2.3 Chronic Lymphocytic Leukaemia 

Chronic Lymphocytic Leukaemia (CLL) is the most common type of 

leukaemia in the Western world with around 3.800 new cases and 990 deaths in 

the UK every year (Cancer Research UK, 2015). The disease is characterised by 

the clonal proliferation of small mature-appearing B-cells (more than 5x109/L) and 

mostly affects people over the age of 60 (Watson et al., 2008). At an early stage, 

the disease is usually asymptomatic, and it can be detected by a routine full (or 

complete) blood count test. This is a common blood test which evaluates the types 
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and quantities of cells in patients’ blood, gives an indication about patients’ general 

health and detects eventual signs of health problems. For example, a very high 

white blood cells counts can be a sign of leukaemia, like CLL, and can help early 

diagnosis of the disease. However, more specific cancer blood tests need to be 

applied at a second stage to fully characterise the type of cancer through detection 

of specific cancer biomarkers. In later stages, more severe symptoms such as 

lymphadenopathy, cytopenia, hepatomegaly or splenomegaly occur (Hallek et al., 

2008). The time from diagnosis to disease progression can vary from months to 

decades.  

 CLL as a disease presents a wide clinical and biological heterogeneity. The 

clinical status varies from common indolent or progressive cases to rare regress 

cases. The disease prognosis is associated with the expression of CD38 or ZAP70 

proteins, and with the mutational status of immunoglobulin heavy chain (IgHV) 

genes (Boonstra et al., 2006; Orchard et al., 2004; Stevenson et al., 2011). The 

genomic landscape in CLL includes several chromosomal aberrations (e.g. 

deletions in 13q, 17p, 11q or trisomy 12), recurrent mutations and somatic copy 

number variations that are affecting genes including ATM, TP53, NOTCH1, 

MYD88, SF3B1, FBXW7, POT1, CHD2, RPS15, IKZF3, ZNF292, ZMYM3, 

ARID1A and PTPN11 (Hallek, 2017; Puente et al., 2011; Stankovic and 

Skowronska, 2014). Survival of CLL cells putatively relies on resistance in 

apoptosis. Microenvironment signals and B-cell receptor signalling block pro-

apoptotic factors or stimulate anti-apoptotic factors of BCL-2 and the IAP family 
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proteins, such as BCL-2, MCL-1, and BCL-XL (Billard, 2014). 

 Although, remarkable progress has been made to reveal the molecular and 

cellular mechanisms of CLL, the cell-of-origin status of CLL remains controversial. 

Seifert et al. utilized GEP in a study, suggesting that the IgHV mutated CLL cases 

are associated with the GC B-cells, while the unmutated CLL cases are associated 

with naïve B-cells (Seifert et al., 2012). Moreover, 2 to 8% of CLL cases tend to 

transform into DLBCL, known as “Richter’s syndrome” (Parikh et al., 2013). Similar 

to DLBCL, the main therapeutic strategy for CLL are pathway inhibitors (PIs), such 

as inhibitors of Bruton tyrosine kinase (BTK), phosphatidylinositol 3 kinase (PI3K) 

and BCL2 (Dreger et al., 2018), and CHOP-R for Richter’s syndrome. 

1.4 Molecular Omics 

 Ample revolutionary innovations in both biomedicine and informatics have 

set the foundations for Computational Biology that combines the knowledge and 

the technologies of these two scientific disciplines. Utilizing Computational Biology 

methods can assist researchers in understanding biological systems and fighting 

diseases, such as cancer. Scientists are now using advanced computational and 

mathematical approaches to analyse, integrate and interpret large biological 

datasets that derive from Omics technologies such as genomics, transcriptomics, 

proteomics and metabolomics. Genomics is the systematic study of the whole 
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deoxyribonucleic acid (DNA) of an organism, the genome, whereas the 

transcriptomics is the study of the complete ribonucleic acid (RNA), the 

transcriptome. Similarly, proteomics investigates the total number of proteins in 

cells, tissues and biofluids, while metabolomics focusses on the metabolome, 

which is the sum of small molecules called metabolites. Today these are the most 

prevalent Omics studied, however this field is constantly expanding with new areas 

of biomedical sciences entering the field and gaining more attention such as 

epigenomics, fluxomics, microbiomics and drugomics. Today’s challenge for 

Computational Biology is to utilise, and develop when necessary, the most 

sophisticated bioinformatics tools and biostatistics methods to integrate all the 

available Omics (or else multi-Omics) datasets and build a holistic picture of the 

biological mechanisms under investigation. This integrative multi-Omics approach 

is now sometimes referred to as integromics or panomics (Manzoni et al., 2018). 

Nevertheless, most Omics datasets are still generated independently rather than 

as an integrated concept and they require multi-disciplinary expertise for the 

analysis. Consequently, several issues are affecting the analysis, such as 

incomplete sampling across the datasets, missing features within the samples, and 

different types of experimental noise and error. Moreover, each datatype contains 

thousands or even up to a million features which comes with challenges to extract 

the most important biological information out of such high-dimensional data. For 

instance, biological and technical variation can contribute to unrelated features 

which antagonise (or dominate) the important features in high-dimensional space  

(Ronan et al., 2016). Then, multi-Omics integration of such data introduces an 
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extra layer of large variation that needs to be considered. Therefore, the integration 

of multi-Omics datasets is a complex and challenging task (discussed further in 

section 5.5). The emphasis of this thesis is on the integration of transcriptomics 

and metabolomics data derived from B-cell neoplasms with a focus on cancer 

metabolic reprogramming. 

1.4.1 Transcriptomics 

 The transcriptome consists of categories of coding and non-coding RNA. 

The coding RNA derives from the transcription of genomic DNA (coding regions in 

genes) to messenger RNA (mRNA) and then to proteins. This represents only 

1~4% of total RNA in a eukaryotic cell. The rest (>95%) is the non-coding RNA, 

with the most abundant forms being ribosomal RNA (rRNA) and transfer RNA 

(tRNA). Several other RNAs with catalytic functions, such as the small nuclear 

RNA (snRNA), the microRNA, the long non-coding (lncRNA) and the small 

interfering RNA (siRNA) are also members of the non-coding RNA category 

(Pevsner, 2015). 

 In recent decades, the need to identify the expression of genes, usually by 

comparing two or more conditions (i.e. disease vs healthy or control vs drug), has 

developed gene expression profile (GEP) studies, which in most cases are 

measuring the cytoplasmic mRNA transcript levels under a defined condition. Most 

GEP studies are employing the high-throughput technologies of RNA microarrays 
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or next generation sequencing (NGS) methods, such as RNA sequencing 

(RNAseq) and single-cell RNA sequencing (scRNAseq) to measure transcriptomic 

profiles. These technologies provide a broad picture of gene expression by 

extracting the total RNA from samples and converting it to complementary DNA 

(cDNA) before subsequent sequencing. In RNA microarrays, the cDNA is 

hybridized to a collection of probes (biochip) that are specific for a defined number 

of genes, whilst the NGS methods are based on cDNA fragmentation and library 

preparation, followed by sequencing and alignment to a reference genome 

(Pevsner, 2015). Although an RNA microarrays approach is a robust and economic 

option, it is limited to measuring only the expression of genes of a pre-designed 

biochip that is used. On the contrary, the RNAseq technology can provide a more 

comprehensive picture of RNA expression, allowing the identification of new 

transcript isoforms or even gene fusion events (Manzoni et al., 2018). Single-cell 

transcriptomic sequencing provides the advantage of also uncovering the cell-cell 

heterogeneity of expression between tissues or even cell types. Thus, the NGS 

methods have become established as the most preferential strategy on the 

generation and analysis of transcriptomics data for the latest GEP studies. All the 

transcriptomic profiles analysed in this thesis were generated with the RNAseq 

technology. 
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1.4.2 Metabolomics 

 As mentioned in the previous section, metabolomics is the systematic study 

of the metabolome in cells, tissues, biofluids or even in geo-climatic environments. 

The metabolome is defined as the complete set of metabolites, which are 

molecules that are the end products of enzymatic chemical reactions.  Measuring 

the metabolome reveals the biochemical activity of an organism and assist to 

understand the effect of several environmental factors. Metabolomics is now 

increasingly used in biomedicine to identify prognostic biomarkers, discover new 

drug targets or even predict treatment responses (Alonso et al., 2015). Currently, 

the most common technologies to measure the metabolic profile of a biological 

sample are nuclear magnetic resonance (NMR) and mass spectroscopy (MS). 

NMR is a highly reproducible spectroscopy, which detects the electromagnetic 

signal arising from the spin of certain atomic nuclei (1H, 13C and 31P) during or after 

a radiofrequency pulse inside a strong magnetic field. Most metabolomics studies 

are using the one-dimensional NMR (1D-NMR) to identify compounds and quantify 

their concentrations, while 2D-NMR is mainly used to obtain additional information 

of the structural variation of metabolites (Alonso et al., 2015; Dumas, 2012). In 

contrast, MS is a technique that is based on the ionisation of the biological sample, 

which is coupled to a chromatographic separation of metabolites in either liquid 

(LC-MS) or gas (GC-MS) chromatographic columns. MS gives the advantage of 

studying hundreds of known metabolites in biofluids or tissue samples. 

Metabolomics studies are using both these technologies in untargeted and 
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targeted approaches with the untargeted studies to aim in the discovery or 

generation of a hypothesis and the targeted studies on testing these specific 

hypothesis (Misra et al., 2019). Despite the major advances in these high-

throughput technologies, at the current time only 15% of all 300,000 known 

metabolites can be identified, which restricts the information acquired compared 

to other Omics technologies. However, studying the metabolome allows deeper 

insights into the bio-molecular mechanisms behind disease pathogenesis and 

reveals new vulnerabilities for novel therapeutic strategies. To achieve this, 

metabolomic data from NMR were analysed in chapter 3 and data from LC-MS in 

chapter 4. 

1.4.3 Transcriptomics-metabolomics integration 

Metabolites are linked with enzymes into biochemical reactions which form 

biochemical pathways and create metabolic networks. These networks are 

regulated by various genetic and signalling interactions, as a response to several 

environmental factors. To analyse and understand these interactions, several web-

based, GUI, or command-line computational tools have been developed based on 

statistical, machine learning, pathway-based or even Genome Scale Metabolic 

Modelling approaches. These tools provide well established workflows for pre-

processing, visualization and integrative analysis of Omics data (Table 1.1). 

Following the success of several other integrative studies (Brial et al., 2019; Cazier 
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et al., 2012; Dumas et al., 2016), the integration of transcriptomics with 

metabolomics datasets unveils the role of metabolic malfunctions in human 

diseases and suggests novel therapeutic approaches. However, the integration 

between transcriptomics and metabolomics is quite complex. This is because there 

is no direct association between transcript and metabolite, due to post-

transcriptional modifications and protein expression (Auslander et al., 2017). 

Overall, linking known metabolites with gene expression via their common 

metabolic reactions and pathways is a powerful tool to understand the role of 

metabolism in tumour progression and identify new metabolic drug targets. 
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Table 1.1. Selection of tools for Omics integration with metabolomics data.  

Tools Approach Interface 
Programmin
g languages 

Reference 

MetaboAnalyst 
Statistical/Pa
thway-based Web-based Java, R (Xia et al., 2009) 

integrOmics Statistical Command line R (Lê Cao et al., 2009) 

PathVisio Statistical GUI Java (Kutmon et al., 2015) 

IMPaLA Statistical Web-based 
Python, 

SOAP/WSDL (Kamburov et al., 2011) 

MetScape Statistical 
GUI/Cytoscape 

app) Java (Gao et al., 2010) 

MassTRIX Statistical Web-based Perl (Wägele et al., 2012) 

COVAIN Statistical Command line MATLAB, C (Sun & Wolfram, 2012) 

MeltDB Statistical Web-based Perl (Neuweger et al., 2008) 

MetaMapp Statistical Command line Javascript, R (Barupal et al., 2012) 

PiMP Statistical Web-based Python (Gloaguen et al., 2017) 
MarVis-
Pathway Statistical GUI MATLAB (Kaever et al., 2015) 

Metabox Statistical Command line R 
(Wanichthanarak et al., 
2017) 

INIT GSMM Command line MATLAB (Agren et al., 2012) 

iMAT GSMM Command line MATLAB (Zur et al. 2010) 

GIMME GSMM Command line MATLAB 
(Becker & Palsson, 
2008) 

MetDisease 
Pathway-

based 
GUI/Cytoscape 

app Java (Duren et al., 2014) 

rMTA GSMM Command line MATLAB 
(Valcárcel et al., 
2019a) 

MetFlow Statistical Web-based Java (Shen and Zhu, 2019) 

3Omics Statistical Web-based Perl, PHP (Kuo et al., 2013) 

SyNDI Statistical 
GUI/Cytoscape 

app Java (Lindfors et al., 2018) 

MetaBridge Statistical 
Web-based, 

Command line Javascript, R (Hinshaw et al., 2018) 
Pathway 
Commons 

Pathway-
based Web-based Java 

(Rodchenkov et al., 
2019) 

mQTL.NMR Statistical Command line R (Hedjazi et al., 2015) 

OmicsNet 
Pathway-

based Web-based Javascript (Zhou and Xia, 2018a) 

MetaboSignal 
Pathway-

based Command line R 
(Rodriguez-Martinez et 
al., 2017) 

mixOmics/DIA
BLO 

Statistical/Ma
chine-

Learning Command line R (Rohart et al., 2017) 

MapMan 
Pathway-

based GUI Java (Thimm et al., 2004) 
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1.4.3.1 Genome scale metabolic modelling 

Advances in the field of Systems Biology has enabled the development of 

in silico models to reconstruct the metabolism of different species, known as 

Genome Scale Metabolic Models (GSMMs). The use of GSMMs is now one of the 

most common approaches to simulate metabolism in industrial or medical research. 

These computational models are built by gene-protein-reaction (GPR) 

associations to create a stoichiometric matrix of metabolites and mass-balanced 

metabolic reactions for the whole metabolic network of an organism (Gu et al., 

2019). Linear programming with flux balance analysis (FBA) is utilizing GSMMs 

with kinetic data for constrain-based modelling, in order to calculate the metabolic 

fluxes by maximizing a specific cellular process, such as the biomass reaction 

(Kauffman et al., 2003). Apart from the traditional FBA, GSMMs are also integrated 

with omics data to reconstruct metabolism in a condition of interest (Machado and 

Herrgård, 2014). Due to the widespread use of NGS datasets, most of the current 

computational tools (INIT, GIMMIE, iMAT) can now integrate transcriptomic data 

with GSMMs. This novelty, together with the development of human GSMMs, such 

as the Recon series (Duarte et al., 2007), allowed the reconstruction of condition-

specific GSMMs to investigate metabolic alterations in various cancers or viral 

infections (Aller et al., 2018; Asgari et al., 2018; Bidkhori et al., 2018). More 

specifically, the Metabolic Transformation Algorithm (MTA), a computational 

method based on condition-specific GSMMs, has been developed and validated 

across numerous published perturbation experiments (Yizhak et al., 2013a). MTA 



 

62 

 

was firstly applied in cellular ageing to predict lifespan-extending genes in yeast 

(BY4741 strains) or to predict metabolic drug targets in human muscle tissue that 

can transform it back to its young state (Yizhak et al., 2013a). Besides ageing, 

MTA predicted metabolic drug targets for Alzheimer’s disease (Stempler et al., 

2014a) and colorectal cancer (Auslander et al., 2017a). Here, we have applied a 

robust version of MTA, named as rMTA (Valcárcel et al., 2019b), to predict 

metabolic vulnerabilities in CLL. As an example of this utility, rMTA was 

successfully applied with publicly available gene expression data from prostate 

cancer to highlight the regulatory role of PGC1α gene in tumour progression 

(Valcárcel et al., 2019b).     

1.4.3.2 Pathway or network - based integration approaches 

There are a wide range of statistical tools that provide normalization, 

statistical analysis and integration of metabolomics data. A common approach to 

integrate metabolomics with transcriptomics data is the pathway based-integration 

method. This approach is using the existing biological knowledge stored within 

online databases such as the Kyoto Encyclopaedia of Genes and Genomes 

(KEGG), to map metabolites and genes on duly annotated metabolic pathways. 

Most of the available tools are using either over representations analysis (ORA) or 

enrichment analysis to map metabolites in metabolic pathways. The enrichment 

methods are mostly based on gene set enrichment analysis (GSEA) (Subramanian 

et al., 2005), a quite popular method to analyse genomic data. GSEA is a 
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computational method where a set of genes is preferentially associated with known 

gene sets (e.g. a specific signalling pathway) and statistically significant 

differences between two biological conditions can be computed. More advanced 

tools are combining the expression of genes, proteins and metabolites with 

topological features in order to calculate the expression of significant biological 

pathways (Rodriguez-Martinez et al., 2016; Simillion et al., 2017; Zhou and Xia, 

2018). Visualization of these significant pathways are usually demonstrated with 

networks, graphically represented with metabolites as nodes and the edges as the 

reactions involved. These graphs are highly informative to researchers to interpret 

transcriptional, translational and post-translational modifications that affect 

metabolism in a study condition. Pathway based integration approaches were used 

in this thesis to investigate key metabolic differences in NHL lymphomas. 

1.4.3.3 Machine-learning approaches for multi-Omics data integration 

 The rapidly growing and accessible computational power enhanced the 

development and implementation of machine learning (ML) algorithms in a wide 

range of applications. Most of these algorithms rely on the utilization of the 

train/validate/test strategy to build a model that learns from the data and gives 

solutions to a particular problem. ML can handle classification and regression 

problems in a supervised, semi-supervised and unsupervised learning approach. 

Supervised learning depends on the collection of labelled samples to train a model 

which can then predict a label for a novel input sample. In contrast, unsupervised 
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learning approaches use mostly unlabelled samples to commonly perform 

dimensionality reduction or clustering (Burkov, 2019). To deal with large datasets 

or else big data, ML approaches also incorporate artificial neural network 

architectures, known as deep learning (DL). These DL algorithms can utilise both 

labelled and unlabelled samples (semi-supervised learning) to identify predictable 

relationships and interaction in diverse forms of data (Bagherzadeh and Asil, 2019).  

 Both ML and DL methods are employed in computational biological studies, 

especially for Omics analysis and integration. However, the small sample size of 

biological experiments or the low signal-to-noise in Omics data restrict their 

application usually to data visualization, or to build more interpretable models with 

dimensionality reduction techniques such as the Principal Component Analysis 

(PCA). Despite these limitations, an increasing number of studies are taking 

advantage of the unique opportunities of ML and DL approaches to integrate multi-

Omics datasets for patient classification (Alakwaa et al., 2018), drug sensitivity 

modelling (Ali and Aittokallio, 2019), and biomarker discovery (Grapov et al., 2018), 

making great strides towards precision medicine.     

 Herein, both supervised and unsupervised machine learning approaches 

were applied for single Omics analysis (chapter 3) and for multi-Omics data 

integration analysis (chapter 4). 
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1.5 Aims 

The overall aim of this work is to uncover novel biological insights into the 

metabolic reprogramming of haematological cancers and identify metabolic 

vulnerabilities for future therapeutic studies. This is achieved by integrating 

transcriptomic with metabolomic datasets from cancer patients or cell lines, 

derived mostly from mature B-cell neoplasms such as Burkitt Lymphoma, DLBCL 

and CLL. This category of haematological cancers includes both leukaemia and 

lymphomas and it is responsible for the majority of neo-diagnosed cases of 

haematological cancers worldwide (WHO, 2018). All the datasets presented in this 

thesis have been acquired to explain hypotheses from different collaborative 

projects. Therefore, comparisons within or between the datasets are driven by the 

availability of the datasets, the need to answer several biological questions, and to 

highlight the advantages and limitations of Omics integration strategies. Hence, 

the power of multi-Omics data integration approach is highlighted here using 

different methodologies to accomplish the additional following aims: 

1) Gene expression analysis and Genome Scale Metabolic modelling 

predict metabolic vulnerabilities in CLL (chapter 2). The transcriptomic profile 

of CLL patients with different clinical outcome is used to investigate cancer 

metabolism in this type of mature B-cell neoplasms with leukaemic characteristics. 
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Our aim is to identify key differences in the expression of metabolic genes between 

spontaneous regressed and non-regressed CLL cases. Finally, integration of 

transcriptomic data with GSMMs aims to identify metabolic genes that can act as 

potential metabolic drug targets in CLL for future functional studies. 

2) Metabolic features and pathways underpin the Germinal Centre-

derived B-cell lymphomagenesis (chapter 3). GC-derived B-cell lymphomas 

comprise a range of multi-factorial diseases, our aim is to understand the metabolic 

regulation in aggressive NHL that derived from GC development – focusing on 

endemic Burkitt lymphoma and germinal centre –like subtype of DLBCL. This work 

not only explores the key metabolome regulators in GC-derived B-cell lymphomas 

but it is also aiming to highlight potential metabolic drug targets for these 

lymphomas. 

3) Explore the transcriptomic and metabolic diversity of cancers cell 

lines (chapter 4). Cancer metabolism is now one of the hallmarks of cancer, 

however the metabolic profile for each cancer type demonstrates a broad variety. 

Our aim is to integrate publicly available transcriptomic and metabolomic datasets 

from the Cancer Cell Line Encyclopaedia (CCLE) database to explore cancer’s 

metabolic diversity and identify key associations between genes and metabolites 

that separate haematological cancers from the other types.  
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CHAPTER 2 

METABOLIC MODELLING 

INTEGRATION TO REVEAL 

METABOLIC VULNERABILITIES 

IN CLL 
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2.1 Introduction 

In CLL, most of the patients experience an indolent or a progressive status 

of the disease. In those patients an elevated number of CLL cells in the blood tends 

either to remain stable or slowly increase in time. Surprisingly, in less than 2% of 

CLL cases, the disease spontaneously regresses in the absence of any treatment 

(Giudice et al., 2009; Thomas et al., 2002).  These spontaneous regression CLL 

cases are usually CD38, ZAP70 negative and they have mutated IgHV genes 

(Giudice et al., 2009). Our work highlighted the genetic and microenvironmental 

factors that underpin the clonal attrition in spontaneous CLL regression machinery, 

revealing the important role of metabolism as well. Results from unsupervised 

hierarchical clustering analysis of the entire RNAseq dataset, which also included 

age-matched untreated progressive CLL case, IgHV unmutated CLL cases and 

healthy controls, revealed that most of the spontaneously regressed CLL 

segregated into a distinct cluster adjacent to the indolent CLL cluster (Figure 2.1). 

This is consistent with spontaneously regressed CLL cases having a unique 

transcriptomic profile that bears the closest resemblance to indolent CLL cases 

and is different from healthy controls (Figure 2.1). More importantly, RNAseq 

analysis of spontaneously regressed CLL cases highlighted downregulation of 

several metabolic genes (such as c-Myc gene) and other metabolic pathways that 

indicated a low metabolic, quiescent state (Kwok et al., 2019). In addition, previous 

studies have also associated remissions in CLL with increased mitochondrial mass 
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and mitochondrial ROS production (Carew et al., 2004; Jones et al., 2018). 

Although new therapeutic approaches are targeting metabolism in CLL (Adekola 

et al., 2015; Galicia-Vázquez and Aloyz, 2019), the mechanisms of CLL metabolic 

reprograming remain poorly understood. 
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Figure 2.1. Gene expression profile of CLL cases and healthy donors. 

Dendrogram in hierarchical clustering analysis was produced with Ward.D2 

method and distance: 1 – Spearman‘s rank correlation. Heatmap represents 

expression values of 39,297 genes converted to a Z-score scale along the rows 

for case comparisons between: 3 healthy controls (Healthy, yellow), 13 

spontaneously regressed CLL (Spon Reg, green), 1 relapsed CLL (Relapsed, 

purple), 16 indolent CLL (Indol, blue), 11 progressive CLL (Prog, red) and 10 IgHV 

unmutated CLL cases (UnMutant, grey) (Kwok et al., 2019).  
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In this chapter we have used RNAseq data to interrogate the role of 

metabolism in groups of CLL patients having different clinical outcomes. We 

looked for differences in expression of metabolic genes and pathways between 

spontaneous regression and non-regression CLL cases. Finally, we integrated 

these results with Genome Scale Metabolic Modelling (GSMM), by utilizing 

independently the Robust Metabolic Transformation Algorithm (rMTA) and the 

genetic Minimal Cut Sets (gMCSs) computational approaches to predict metabolic 

genes as vulnerabilities in CLL (Figure 2.2). 
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Figure 2.2. The study flowchart. Schematic representation illustrating the steps 

of the analysis in CLL cases. 
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2.2 Materials and methods 

2.2.1. Transcriptomic data from CLL patients 

All the analyses described in this chapter were performed with data that 

derived from primary CLL samples. The transcriptomic dataset was obtained from 

our collaborators (Institute of Cancer and Genomic Sciences, University of 

Birmingham) and derived from the largest cohort of spontaneous CLL regression 

cases worldwide. According to our initial study, data derived from patients with 

untreated CLL who attended 4 haemato-oncology centres in the United Kingdom 

between 2010 and 2016 (records of 1425 CLL patients were reviewed). The design, 

selection and data generation of the CLL cohort was performed by Dr Marwan 

Kwok and is fully described in his recent publication (Kwok et al., 2019). For this 

study, he identified subjects with complete spontaneous CLL regression on the 

basis of a sustained reduction in absolute lymphocyte count (ALC) to below 4 x 

109/L, with complete resolution of CLL-related symptoms, anaemia (<100g/L), 

thrombocytopenia (<100 x 109/L) and clinically detectable adenopathy that may be 

present at diagnosis. He also identified subjects with partial spontaneous 

regression based on sustained reduction of lymphocytosis by ≥50% from the 

highest level, with regressing nodal disease. Individuals with a potential 

explanation for disease regression were excluded. These include patients with 
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concurrent infections or second malignancies and those receiving 

myelosuppressive or immunosuppressive therapies, including systemic 

corticosteroids, for any indication immediately preceding or coinciding with the 

onset of CLL regression. Subjects diagnosed with a second malignancy following 

the onset of CLL regression were not excluded but were categorized separately if 

the subsequent malignancy was diagnosed within 5 years of the onset of CLL 

regression. For comparison purposes, untreated CLL cases with indolent disease 

were recruited locally, progressive cases were sourced from multicentre trials and 

three healthy controls were recruited. Indolent CLL was defined as Binet stage A 

disease with a lymphocyte doubling time of ≥2 years monitored over ≥5 years. 

Peripheral blood samples were obtained after the clinically characterization of the 

regression state with written consent from participating subjects and with prior 

institutional ethical approval. For progressive cases, a sample obtained 

immediately before treatment was used. The dataset is also publicly available at 

the Sequence Read Archive (SRA) with Bioproject accession no. PRJNA535508; 

URL: https://www.ncbi.nlm.nih.gov/bioproject/ PRJNA535508  (Kwok et al., 2019). 

From the initial cohort we have selected the data from 46 CLL cases with 13 cases 

categorised as spontaneously regressed and 33 cases as non-regressed 

(Appendix 1). These 33 non-regression cases include 16 indolent IgHV mutated 

cases, 8 progressive IgHV mutated and 9 IgVH unmutated cases. In CLL, both 

progressive IgHV mutated and unmutated cases are related to unfavourable 

clinical prognosis compared to the other CLL groups. All spontaneous regression 

cases were IgHV mutated. 
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All immunophenotyping analyses were performed by Dr Marwan Kwok on 

fresh blood. For immunophenotyping, red blood cells contained within the sample 

were lysed using ammonium chloride prior to antibody incubation. Antibody 

staining was carried out for 30 minutes at 4°C on cells resuspended in FACSFlow 

(BD Biosciences) with 2% bovine serum albumin. For antibody panels where 

intracellular markers were included, Intrasure and FACSLyse reagents (BD 

Biosciences) were used to fix, lyse and permeabilize the cells prior to incubation 

with intracellular antibodies. 

 Following acquisition of a minimum of 200,000 events per sample using 

FACSCanto or LSR II flow cytometers (BD Biosciences), the mononuclear cell 

population was gated on the FSC vs SSC plot and doublets were excluded. For 

CLL immunophenotyping, events were displayed on a CD19 vs CD20 plot. CD20 

provides the single best discriminator between the CLL cells and normal B cells. A 

gate was applied to include all CD19+ CD20-low CLL cells but exclude normal B 

cells that would be CD19+ CD20-high. For T cell immunophenotyping, events were 

displayed on a CD3 vs SSC plot, and a third gate was applied on the CD3+ T cell 

population, with further gating to differentiate between CD3+ CD4+ and CD3+ 

CD8+ T cells. The gated singlet CLL or T cell population was then analysed for the 

expression of various markers. Biological controls were used to determine the 

setting of gates which demarcate the positive vs negative populations. A CLL 

phenotype of a residual monoclonal B lymphocyte population (CD19, CD5, CD23 

and CD43 positive, CD20, CD79b and CD81 weak, CD10 negative and Igl/λ-
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restricted) was identified by multiparameter flow cytometry in the regressed CLL 

cases. To distinguish from normal B cell population, the CLL population was 

quantified on the basis that normal B cells have high expression levels of CD20, 

CD79b and CD81 and low expression levels of CD43, CLL cells typically have high 

expression levels of CD43 and low expression levels of CD20, CD79b and CD81. 

Thus, it was determined that residual CLL cells accounted for a median of 92.5% 

of B cells (range 71.6-99.8%) at the time of regression. 

 For cell sorting, mononuclear cells were isolated from peripheral blood 

(PBMCs) by Dr Marwan Kwok using density gradient centrifugation with 

Lymphoprep solution (Axis-Shield). The isolation of CD19+ CD5+ CLL cells from 

PBMCs was carried out using a two-step magnetic-activated cell sorting (MACS) 

process. This involves first isolating CD19+ B lymphocytes by depleting all other 

cell types using the human B-CLL cell isolation kit (Miltenyl Biotec). The sorted 

CD19+ B lymphocyte population was then enriched for CD19+ CD5+ CLL cells by 

positive sorting for CD5+ cells using human CD5-biotin antibody (clone UCHT2; 

Miltenyl Biotec) and anti-biotin microbeads (Miltenyl Biotec). The sorted cell 

fraction was confirmed to be >95% CD19+ CD5+ by flow cytometry prior to DNA 

and RNA extraction as well as their use in the telomerase and β-galactosidase 

assays. 

 RNA was extracted by Dr Marwan Kwok from sorted CLL cells using the 

RNeasy Mini or Micro kit (Qiagen) respectively according to the manufacturer’s 

instructions. Nucleic acid samples were quantified and their purity confirmed using 
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a NanoDrop spectrophotometer (Thermo Fisher Scientific). For samples prepared 

for RNA sequencing, the nucleic acid concentration was further verified by a Qubit 

2.0 fluorometer (Thermo Fisher Scientific). 

Qubit-quantified RNA from sorted CLL cells was quality assessed using 

TapeStation 2200 (Agilent Technologies), with an RNA integrity number (RIN) of 

≥7 being considered acceptable. Library preparation was performed using the 

TruSeq Stranded mRNA Library Prep Kit for NeoPrep (Illumina), with 16 RNA 

samples being pooled into a single library. In brief, RNA purification beads were 

added to 50 ng of each RNA sample, which were subsequently heated in a Veriti 

thermal cycler at 65°C for 5 minutes. Each sample was then loaded onto a 

NeoPrep library card, alongside their corresponding index adaptors and other 

reagents required for library preparation. Subsequent cDNA synthesis, A-tailing, 

adaptor ligation, hybridization, enrichment, PCR amplification, library quantification 

and pooling steps were automated upon loading of the library card onto the 

NeoPrep system (Illumina). Transcriptome sequencing (RNAseq) was performed 

on the prepared cDNA libraries using NextSeq 500/550 High Output Kit v2 

(Illumina). Altogether, 16 RNA samples were sequenced within a single flow cell, 

allowing an average of 25 million reads per sample.  
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2.2.2. Transcriptomic analysis for CLL dataset 

The RNAseq data for the CLL study were analysed with the Kallisto-Sleuth 

computational approach. First, quality control of the paired-end RNAseq read 

counts was performed for every sample using FastQC 0.11.7 software (Andrews, 

2010). Diagnostic plots generated via FastQC were examined for per base 

sequence distribution, GC%, per sequence quality distribution and vector or 

adapter contamination. RNAseq data with both R1 and R2 read-pair were selected 

for further analysis based on: the per base sequence quality score with median for 

any base was ≥25; the averaged quality score per read was ≥20 (this equates to a 

1% error rate); and the absence of adapter contamination. Then, we used Kallisto 

0.43.0 (Bray et al., 2016) to pseudo-align reads to the human reference genome 

GRCh38 cDNA index and quantify the transcripts abundances for every sample. 

Next, differential expression analysis (DEA) was performed with Sleuth 0.30.0 R 

package (Pimentel et al., 2017), comparing the spontaneous regressed CLL cases 

to the non-regressed CLL cases. Significantly altered gene expression was 

identified with the “Wald” parametric statistical test to perform DEA. The test 

calculates “beta” values to demonstrate the gene expression under each condition. 

False discovery rate (FDR) was calculated to correct for multiple comparisons 

problem with the Benjamini-Hochberg method, using a threshold of 10% (q values 

< 0.1). Heatmaps were generated using the log2TPM+1 normalised values with 

gplot v3.01.1 R package (Warnes et al., 2019). Hierarchical clustering was 
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performed with the internal hclust R function, using the “Ward.D2” method with 

distance: 1 – Spearman’s rank correlation.  Finally, rather than focusing only on 

significant genes, we have used gene set enrichment analysis with the SetRank 

v1.1.0 R software package (Simillion et al., 2017) to identify statistically significant 

pathways and we built gene set networks and interactome maps with Cytoscape 

v3.7.2  (Shannon et al., 2003). 

2.2.3. Genome Scale Metabolic Modelling approaches 

2.2.3.1. robust Metabolic Transformation Algorithm (rMTA) 

We applied the rMTA algorithm (Valcárcel et al., 2019) from COBRA 

Toolbox v3.0 MATLAB software (Heirendt et al., 2017) to integrate genome scale 

metabolic models with the expression profile of non-regression CLL cases as a 

“source” metabolic state and the spontaneous regression cases as a “target” 

metabolic state. The human metabolic network Recon 2.v04 (Thiele et al., 2013) 

was used as a starting genome scale metabolic reconstruction. First, a mean flux 

distribution for the source state was computed from 2000 integration Metabolic 

Analysis (iMAT). In the mean flux distribution, a closed loop formed by reactions 

r0170 and r0575, both of which being catalysed by FDFT1, was identified. Because 

such loop could lead to overestimating the importance of this gene, this was 

corrected by constraining Recon 2.v04 to make r0575 irreversible and repeating 
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the sampling step. Such inconsistencies are mostly related with gaps in reactions 

or metabolites (Orth and Palsson, 2010; Ponce-de-Leon et al., 2015) and they are 

one of the vast limitations in the use of rMTA. Additional limitations are fully 

described in section 5.2 of chapter 5. Then, the results from DEA between non-

regression and spontaneous regression cases (false discovery rate at 10%) were 

used as an input to rMTA with the alpha parameter set to 0.99 value. Finally, 

perturbations were simulated for the 33 genes that were significantly upregulated 

in non-regression CLL cases (Table 2.2) and an rTS score was assigned to each 

gene based on the ability to transform the source to the target state. 

2.2.3.2. genetic Minimal Cut Sets (gMCSs) 

Genetic minimal cut sets were calculated for every significant upregulated 

gene in non-regression CLL cases. We used the gMCSs (Apaolaza et al., 2017) 

function from COBRA Toolbox v3.0 MATLAB software (Heirendt et al., 2017) to 

define a set of genes, whose removal would block proliferation (biomass 

production) in the Recon 2.v04 model. Next, the differential expression analysis 

results were mapped in every gMCSs, selecting as the most important ones those 

where only a single gene is having higher expression in non-regression CLL cases 

with the rest being lowly expressed (Apaolaza et al., 2017). 
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2.3. Results 

2.3.1. Differentially expressed genes 

Our first goal in this study was to investigate the transcriptomic profile of 13 

spontaneous regressed and 33 non-regressed CLL cases (Figure 2.2, Appendix 

1) using the RNA-seq data from the largest cohort study of spontaneous regression 

cases (Kwok et al., 2019). Transcripts abundances were quantified for 17,051 

genes and then DEA with Wald-test identified 530 differentially expressed genes 

(208 upregulated; 322 downregulated; q value < 0.1) between the two CLL groups 

(Figure 2.3A). Furthermore, unsupervised hierarchical clustering separated most 

of spontaneous regression cases from the non-regression ones, which suggests a 

distinct expression profile between them (Figure 2.3A). Moreover, Dr. Marwan 

Kwok highlighted specific phenotypic features in spontaneous regressed CLL 

cases compared to non-regressed CLL cases. Immunophenotypic analysis 

revealed low or absence of CLL proliferation or a lack of recently proliferated cells, 

as evidenced by low Ki-67 and high CXCR4 expression in spontaneous regressed 

CLL cases (Calissano et al.; Coelho et al., 2013; Kwok et al., 2019). Another 

feature of spontaneous regressed CLL cases was the reduced CD49d and ROR1 

expression, and increased CD95/FasR expression (Kwok et al., 2019). Together 

these findings highlight that spontaneous CLL regression status presents a unique 

transcriptome profile with distinct phenotypic features.



 

 

 
 Figure 2.3. Differential expression analysis for RNAseq data from CLL patients. A)  Heatmap representing the 530 

differentially expressed genes between spontaneous regression (blue colour) and non-regression CLL cases (red colour) 

with FDR at 10% (q value < 0.1). Rows with purple colour indicate the 56 metabolic genes identified from Recon 2.v04 

model. B) Expression of these 56 differentially expressed metabolic genes in Recon 2.v04. Gene expression values have 

been converted to a Z-score scale along the rows for case comparisons. Dendrogram in hierarchical clustering analysis 

was produced with Ward.D2 method and distance: 1 – Spearman‘s rank correlation.



 

 

However, two of the spontaneous regressed CLL cases (CLL14 and CLL16) 

clustered between the non-regressed CLL cases (Figure 2.3A). These two cases 

also presented a sustained reduction of lymphocytosis by 50% from the peak level 

with regressing nodal disease. This evidence resulted in their characterization as 

partial spontaneous disease regression cases, which separated them from other 

complete spontaneous regressed CLL cases. Furthermore, resemblance of their 

expression profile with non-regressed CLL cases may suggests the possibility of 

these cases to progress in the future. In addition, SNP array analysis performed 

by Dr Marwan Kowk and our collaborators associated these two cases with 

deletion in 13q14.2-q14.3 region and the loss of the microRNA miR15a/16-1 (Kwok 

et al., 2019). Deletions of the 13q14 region are a frequent event in CLL and the 

loss of miR15a/16-1 cluster is suggested to be associated with BCL-2 

overexpression and CLL cell proliferation (Calin et al., 2008; Cimmino et al., 2005; 

Klein et al., 2010).    

To assess the role of metabolism we examined the expression of the 2140 

metabolic genes that are present in Recon 2.v04 metabolic reconstruction. We 

identified 56 metabolic genes as significantly altered, with 33 genes showed higher 

expression in non-regressed CLL cases and 23 genes elevated in spontaneous 

regressed cases (Figure 2.3B, Table 2.1). Importantly, we observed that most of 

these upregulated genes in non-regression cases have a key role in the electron 

transport chain (NDUFB9, NDUFA7, ATP5AF1, COX6A1, COX8A, COX7A2L, 

UQCRQ, UQCRFS1 and UQCRH). Similarly, the mitochondrial inner membrane 

transporter SLC25A6, which is responsible for exporting ATP to the cytosol, was 
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enriched in non-regressed cases. Transcriptomic differences in these metabolic 

genes may indicate a highly active role of energy metabolism in non-regressed 

cases compare to regressed ones. To clarify this issue, we next performed gene 

set enrichment analysis (GSEA).   
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Table 2.1. Statistically significant metabolic genes that are included in Recon 

2.v04 model as calculated by DEA. 

Gene symbols Ensembl ID Entrez ID pval qval 
beta 
value 

CA2 ENSG00000104267 760 0.00007 0.013 1.26 
HS3ST3B1 ENSG00000125430 9953 0.00002 0.006 0.90 
IPMK ENSG00000151151 253430 0.00014 0.019 0.82 
CD36 ENSG00000135218 948 0.00114 0.057 0.79 
ACSM1 ENSG00000166743 116285 0.00118 0.058 0.73 
ATP8A1 ENSG00000124406 10396 0.00063 0.040 0.67 
CPOX ENSG00000080819 1371 0.00073 0.042 0.64 
GALNT6 ENSG00000139629 11226 0.00150 0.067 0.62 
LCAT ENSG00000213398 3931 0.00081 0.045 0.59 
SLC16A3 ENSG00000141526 9123 0.00002 0.006 0.59 
CHSY1 ENSG00000131873 22856 0.00312 0.094 0.56 
PDE7A ENSG00000205268 5150 0.00003 0.008 0.56 
SLC5A3 ENSG00000198743 6526 0.00334 0.097 0.53 
HS6ST1 ENSG00000136720 9394 0.00146 0.066 0.49 
B3GAT2 ENSG00000112309 135152 0.00173 0.072 0.48 
SLC24A1 ENSG00000074621 9187 0.00183 0.075 0.48 
DHODH ENSG00000102967 1723 0.00193 0.076 0.46 
RRM2B ENSG00000048392 50484 0.00143 0.066 0.42 
ACADSB ENSG00000196177 36 0.00275 0.090 0.41 
MLYCD ENSG00000103150 23417 0.00178 0.074 0.39 
AGPAT3 ENSG00000160216 56894 0.00288 0.091 0.33 
PIGB ENSG00000069943 9488 0.00311 0.094 0.31 
PIGN ENSG00000197563 23556 0.00289 0.091 0.30 
GNE ENSG00000159921 10020 0.00315 0.094 -0.30 
ATP5MC2 ENSG00000135390 517 0.00242 0.085 -0.30 
UQCRH ENSG00000173660 7388 0.00145 0.066 -0.32 
COX6A1 ENSG00000111775 1337 0.00148 0.066 -0.32 
NDUFA7 ENSG00000267855 4701 0.00303 0.093 -0.33 
PIGS ENSG00000087111 94005 0.00211 0.079 -0.34 
GUK1 ENSG00000143774 2987 0.00066 0.040 -0.34 
ANAPC11 ENSG00000141552 51529 0.00322 0.096 -0.35 
COX7A2L ENSG00000115944 9167 0.00045 0.032 -0.36 
ATP5F1A ENSG00000152234 498 0.00031 0.026 -0.36 
C1GALT1 ENSG00000106392 56913 0.00124 0.060 -0.36 
PTPMT1 ENSG00000110536 114971 0.00078 0.044 -0.36 
SAT1 ENSG00000130066 6303 0.00197 0.077 -0.36 
FDFT1 ENSG00000079459 2222 0.00026 0.024 -0.37 
SLC25A6 ENSG00000169100 293 0.00017 0.020 -0.37 
UQCRFS1 ENSG00000169021 7386 0.00019 0.020 -0.38 
COX8A ENSG00000176340 1351 0.00012 0.016 -0.39 
UQCRQ ENSG00000164405 27089 0.00061 0.039 -0.39 
ATP6V0C ENSG00000185883 527 0.00023 0.023 -0.39 
ST6GALNAC6 ENSG00000160408 30815 0.00003 0.008 -0.41 
MVD ENSG00000167508 4597 0.00312 0.094 -0.45 
NDUFB9 ENSG00000147684 4715 0.00001 0.005 -0.45 
ACP5 ENSG00000102575 54 0.00262 0.088 -0.47 
AK1 ENSG00000106992 203 0.00218 0.081 -0.49 
SLC15A3 ENSG00000110446 51296 0.00008 0.014 -0.49 
ATP6V0B ENSG00000117410 533 0.00005 0.010 -0.49 
GAPDH ENSG00000111640 2597 0.00031 0.027 -0.50 
UCP2 ENSG00000175567 7351 0.00110 0.056 -0.50 
BLVRB ENSG00000090013 645 0.00302 0.093 -0.51 
ATP6V1F ENSG00000128524 9296 0.00006 0.012 -0.52 
PI4K2A ENSG00000155252 55361 0.00002 0.006 -0.52 
SLC26A1 ENSG00000145217 10861 0.00092 0.048 -0.57 
B4GALT2 ENSG00000117411 8704 0.00180 0.074 -0.84 
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2.3.2. Gene set enrichment analysis in CLL dataset 

To further determine the role of the most essential metabolic pathways, we 

used an advanced method of GSEA with SetRank by utilizing 979 annotated gene 

sets from the KEGG database (Kanehisa et al., 2019). These gene sets represent 

the majority of biological processes and pathways in the cell. Results from GSEA 

identified 31 significantly enriched gene sets (SetRank parameters thresholds: 

setPCutoff = 0.01 and fdrCutoff = 0.05) (Simillion et al., 2017) with the most 

significant gene sets being: the ribosome in eukaryotes, the transcriptional mis-

regulation in cancer and the oxidative phosphorylation (OXPHOS) pathway 

(Figure 2.4, Appendix 2). These findings are in accordance with a previous study 

that has also associated spontaneous regression CLL cases with ribosomal genes, 

signal transduction and transcription regulators (Giudice et al., 2009). Moreover, 

despite that OXPHOS pathway was under investigation in CLL (Bruno et al., 2015; 

Galicia-Vázquez and Aloyz, 2019), its role in CLL spontaneous regression remains 

unclear. 

  



 

 

 

Figure 2.4 .                k                                   . The network highlights the intersections between 

the 31 significant altered gene sets from GSEA with SetRank. The node fill colour reflects the corrected p-value, going 

from blue to red with decreasing p-value (increasing significance, pp denotes the negative logarithm of the p-value). The 

node border colour reflects the SetRank p-value using the same colouring coding. Edge thickness reflects the size of the 

interactions between two gene sets. The edge arrows point from least significant gene set to more significant one.  



 

 

To further explore the genes involved in OXPHOS and their interactions, we 

constructed a gene interaction network with interactions from the STRING 

database (Szklarczyk et al., 2019). Interestingly, we observed that the most 

important nodes in the network represent genes that are significantly upregulated 

in non-regressed CLL cases (Figure 2.5). Overall, our findings suggested that non-

regressed CLL cells depend more on mitochondrial metabolism compared to 

spontaneous regressed cases. 

  



 

 

 

Figure 2.5. Gene interactome network for OXPHOS pathway from SetRank. The node colour reflects the beta scores 

from DEA of spontaneous regressed vs non-regressed CLL cases; the size of the node labels reflects the significance of 

difference in expression; node label colour reflects the gene rank when sorted by p-value (rank of 1.0 means the lowest 

p-value). The node border colour reflects the log-ratio between the local and global betweenness.  



 

 

2.3.3. Genome Scale Metabolic Modelling results 

An extension of our work was to integrate the CLL transcriptomic profiles 

with the Recon 2.v04 Genome-Scale Metabolic Model to predict metabolic genes 

as metabolic vulnerabilities. We applied independently two different computational 

approaches: the rMTA and the gMCSs. First, we employed the rMTA to identify 

metabolic gene knockouts that revert metabolism of a given metabolic state 

(source state) to another (target state) (Auslander et al., 2017; Stempler et al., 

2014; Yizhak et al., 2013). We defined as a source metabolic state the expression 

status of non-regressed CLL cases and as a target state the status of spontaneous 

regressed cases. The algorithm calculated the robust transformation score (rTS) 

for every significantly upregulated gene in non-regressed CLL cases, which 

indicates the ability of gene perturbation to alter/transform metabolism closer to 

the regression metabolic state. The highest scoring gene was the SLC26A1, which 

encodes a sulfate anion transporter (rTS=7.07, Table 2.2). The GUK1 gene 

showed the second highest score (rTS=2.7, Table 2.2) followed by the SLC25A6 

gene (rTS=1.9, Table 2.2) and GNE gene (rTS=0.7, Table 2.2). Thus, according 

to rMTA prediction those are the best putative targets for inhibition to revert the 

non-regressed CLL cases to the status of spontaneous regressed cases. Prior of 

any future inhibition study, it is important to confirm and validate for any changes 

of these genes at mRNA and protein level using RT-PCR and Western Blot 

analysis. 
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Table 2.2. rMTA results for upregulated genes in non-regression CLL cases. 

A unified score (rTS) was calculated, considering a best-case (bTS), a worst-case 

(wTS) scenario and a Minimization of Metabolic Adjustment score (mTS) to 

achieve robustness. 

Gene 
symbols 

Entrez 
ID 

Description bTS mTS wTS rTS 

SLC26A1 10861 solute carrier family 26 member 1 0.173 0.234 -0.129 7.080 

GUK1 2987 guanylate kinase 1 0.127 0.111 -0.116 2.701 

SLC25A6 293 solute carrier family 25 member 6  0.100 0.101 -0.096 1.970 

GNE 

10020 
glucosamine (UDP-N-acetyl)-2-epimerase/N-

acetylmannosamine kinase  
0.081 0.057 -0.048 0.735 

PTPMT1 
114971 protein tyrosine phosphatase, mitochondrial 1  0.047 0.026 -0.016 0.165 

MVD 4597 mevalonate diphosphate decarboxylase 0.038 0.025 -0.024 0.155 

COX6A1 1337 cytochrome c oxidase subunit 6A1 -0.003 0.005 0.003 0.005 

COX8A 1351 cytochrome c oxidase subunit 8A -0.003 0.005 0.003 0.005 

COX7A2L 9167 cytochrome c oxidase subunit 7A2 like -0.003 0.005 0.003 0.005 

UQCRQ 
27089 

ubiquinol-cytochrome c reductase complex III 
subunit VII 

0.003 0.004 -0.002 0.002 

UQCRFS1 
7386 

ubiquinol-cytochrome c reductase, Rieske iron-
sulfur polypeptide 1 

0.003 0.004 -0.002 0.002 

UQCRH 
7388 

ubiquinol-cytochrome c reductase hinge 
protein 

0.003 0.004 -0.002 0.002 

ST6GALNAC6 
30815 

ST6 N-acetylgalactosaminide alpha-2,6-
sialyltransferase 6 

0.003 -0.001 0.073 -0.001 

ANAPC11 51529 anaphase promoting complex subunit 11 0.001 -0.003 0.075 -0.003 

FDFT1 
2222 farnesyl-diphosphate farnesyltransferase 1 0.001 -0.003 0.075 -0.003 

C1GALT1 

56913 
core 1 synthase, glycoprotein-N-

acetylgalactosamine 3-beta-
galactosyltransferase 1 

0.001 -0.003 0.075 -0.003 

PIGS 
94005 

phosphatidylinositol glycan anchor 
biosynthesis class S 

0.001 -0.003 0.075 -0.003 

NDUFA7 
4701 NADH:ubiquinone oxidoreductase subunit A7 0.001 -0.003 0.076 -0.003 

NDUFB9 
4715 NADH:ubiquinone oxidoreductase subunit B9 0.001 -0.003 0.076 -0.003 

ATP5A1 

498 
ATP synthase, H+ transporting, mitochondrial 
F1 complex, alpha subunit 1, cardiac muscle 

[Source:HGNC Symbol;Acc:HGNC:823] 
-0.482 -0.003 0.490 -0.003 

ATP6V0C 527 ATPase H+ transporting V0 subunit c 0.010 -0.004 0.028 -0.004 

ATP6V0B 533 ATPase H+ transporting V0 subunit b 0.010 -0.004 0.028 -0.004 

ATP6V1F 9296 ATPase H+ transporting V1 subunit F 0.010 -0.004 0.028 -0.004 
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Furthermore, we utilised independently the computational method of 

gMCSs to identify synthetic lethality metabolic genes by targeting proliferation in 

Recon 2.v04 model. This algorithm predicted metabolic candidates by calculating 

minimal cut sets for all the upregulated genes in non-regressed cases. We 

identified minimal cuts sets for the FDF1, PIGS, AK1, PTPMT1, GADPH, ATP5G2, 

GUK1, ATP5A1, GNE, MVD and SLC25A6 genes. Table 2.3 presents the 49 most 

important gMCSs out of a total 29034 gMCSs. The selection criteria were a 

maximum number of 20 genes in each cut set and up to two upregulated genes in 

non-regressed cases (beside the gene of interest), while all the other genes are 

downregulated or lowly expressed. Both AK1 and GUK1 genes seemed to be 

promising candidates for single or combined targeted strategies, since they both 

identified with several important cut sets (Table 2.3). In addition, gMCSs results 

indicated that proliferation can be blocked either if the FDFT1 or the MVD gene is 

simultaneously knocked out with the PLPP3 and the SGPP1 genes (Table 2.3). 

Similar effect is predicted for a combined targeting of the PTPMT1 gene with the 

CTPS2 and the UCK1 genes. Lastly, combined inhibition of the GNE enzyme and 

the equilibrative nucleoside transporters (SLC29A1 and SLC29A2) will possibly 

have a synthetic lethality effect in non-regressed CLL cells.  

Overall, findings derived from these two independent GSMM approaches 

are complementary, suggesting a number of genes as potential metabolic 

vulnerabilities in CLL. In brief, rMTA unveiled putative genes associated to non-

regressed CLL phenotype and gMCSs analysis highlighted genes that can be 

targeted to kill CLL cells displaying the non-regressed CLL phenotype. 



 

 

Table 2.3. The 49 most important gMCSs calculated for significant upregulated genes in non-regressed CLL 

cases. Colour scale represents the beta values from DEA results with red colour indicating genes that show higher gene 

expression in non-regression CLL cases and blue colour higher gene expression in spontaneous regression CLL cases. 

gMCSs gene_1 gene_2 gene_3 gene_4 gene_5 gene_6 gene_7 gene_8 gene_9 gene_10 gene_11 gene_12 gene_13 gene_14 gene_15 gene_16 gene_17 gene_18 gene_19 gene_20

FDFT1 CRAT FASN FDFT1 HMGCL PLPP1 PLPP2 PLPP3 SGPL1 SLC27A5 SLC27A4 SLC27A3 COQ2 HMGCLL1 MCCC1 SGPP1 SGPP2 SLC27A1

FDFT1 AUH CRAT FASN FDFT1 HMGCL PLPP1 PLPP2 PLPP3 SGPL1 COQ7 SLC27A5 SLC27A4 SLC27A3 HMGCLL1 SGPP1 SGPP2 SLC27A1

AK1 AK1 AK2 AK4 TXNRD1 AK5 RRM2B AK7 LOC100507855

AK1 AK1 AK2 AK4 RRM2 TXNRD1 AK5 AK7 LOC100507855

AK1 AK1 AK2 AK4 RRM2 AK5 RRM2B AK7 LOC100507855

AK1 AK1 AK2 AK4 RRM1 TXNRD1 AK5 AK7 LOC100507855

AK1 AK1 AK2 AK4 RRM1 AK5 RRM2B AK7 LOC100507855

AK1 AK1 AK2 AK4 DGUOK TXNRD1 AK5 CMPK1 AK7 LOC100507855

AK1 AK1 AK2 AK4 DCK DCTD DGUOK TXNRD1 AK5 AK7 LOC100507855

AK1 AK1 AK2 AK4 DTYMK GUK1 TXNRD1 AK5 CMPK1 AK7 LOC100507855

AK1 AK1 AK2 AK4 DCK DCTD DTYMK GUK1 TXNRD1 AK5 AK7 LOC100507855

AK1 AK1 AK2 AK4 SLC29A2 PNP TXNRD1 SLC28A2 AK5 CMPK1 SLC28A3 AK7 LOC100507855

AK1 AK1 AK2 AK4 DCTD DGUOK SLC29A2 TXNRD1 SLC28A1 AK5 SLC28A3 AK7 LOC100507855

AK1 AK1 AK2 AK4 DGUOK SLC29A2 TXNRD1 UPP1 SLC28A1 AK5 SLC28A3 AK7 UPP2 LOC100507855

AK1 AK1 AK2 AK4 DCK DCTD SLC29A2 PNP TXNRD1 SLC28A2 AK5 SLC28A3 AK7 LOC100507855

AK1 AK1 AK2 AK4 DPYD TYMP GUK1 SLC29A2 UPP1 SLC28A2 SLC28A1 AK5 SLC28A3 RBKS AK7 UPP2 LOC100507855

AK1 AK1 AK2 AK4 DPYD TYMP GUK1 SLC29A2 UPP1 SLC28A2 SLC28A1 AK5 PGM2 SLC28A3 AK7 UPP2 LOC100507855

AK1 AK1 AK2 AK4 DPYD DPYS GUK1 SLC29A2 UPP1 SLC28A2 SLC28A1 AK5 SLC28A3 RBKS AK7 UPP2 LOC100507855

AK1 AK1 AK2 AK4 DPYD DPYS GUK1 SLC29A2 UPP1 SLC28A2 SLC28A1 AK5 PGM2 SLC28A3 AK7 UPP2 LOC100507855

AK1 AK1 AK2 AK4 DCTD NME1 NME3 PKLR TK1 TK2 TXNRD1 NME6 AK5 NME7 CMPK1 AK7 LOC100507855

AK1 AK1 AK2 AK4 DCK NME1 NME3 PKLR TK1 TK2 TXNRD1 NME6 AK5 NME7 CMPK1 AK7 LOC100507855

AK1 ACAA1 AK1 AK2 ABCD1 AMPD1 AMPD2 AMPD3 FASN PNP SLC27A5 NT5C2 AK5 NT5C NT5C3A NT5C1A NT5C1B AK7 SLC27A1

AK1 ACAA1 AK1 AK2 ABCD1 AMPD1 AMPD2 AMPD3 ACSL1 FASN PNP SLC27A5 NT5C2 AK5 NT5C NT5C3A NT5C1A NT5C1B AK7

AK1 ACOX1 AK1 AK2 ABCD1 AMPD1 AMPD2 AMPD3 ABCC2 ACSL1 FASN PNP NT5C2 AK5 NT5C NT5C3A NT5C1A NT5C1B AK7

AK1 ACAA1 AK1 AK2 ABCD1 AMPD1 AMPD2 AMPD3 ACSL1 FASN SLC27A5 NT5C2 QPRT AK5 NT5C NT5C3A NT5C1A NT5C1B NAPRT AK7

PTPMT1 CTPS1 RRM1 UCK2 CDIPT CTPS2 UCK1 PTPMT1

PTPMT1 CTPS1 UCK2 CDIPT RRM2B CTPS2 UCK1 PTPMT1

PTPMT1 CTPS1 RRM2 UCK2 CDIPT CTPS2 UCK1 PTPMT1

GUK1 GUK1 SLC25A19

GUK1 GUK1 RRM2

GUK1 GUK1 RRM2B

GUK1 DGUOK GUK1

GUK1 GUK1 RRM1

GUK1 GUK1 SLC29A2 PNP SLC28A2 SLC28A3

GUK1 DCTD DTYMK GUK1 SLC29A2 PNP TXNRD1 SLC28A1 SLC28A3

GUK1 DTYMK GUK1 SLC29A2 PNP TXNRD1 SLC28A1 AK5 CMPK1 SLC28A3

GUK1 AK1 AK2 AK4 DTYMK GUK1 TXNRD1 AK5 CMPK1 AK7 LOC100507855

GUK1 DTYMK DUT GUK1 SLC29A2 ITPA PNP TXNRD1 SLC28A1 SLC28A3 UPP2

GUK1 GUK1 SLC29A2 NME2 NME3 PNP PKLR TK1 TK2 NME6 NME7 CMPK1 UPP2

GUK1 GUK1 SLC29A2 NME1 NME3 PNP PKLR TK1 TK2 NME6 NME7 CMPK1 UPP2

GUK1 DPYD GUK1 SLC29A2 NME1 NME3 PKLR TK1 TK2 UPP1 NME6 NME7 CMPK1 UPP2

GUK1 DPYD GUK1 SLC29A2 NME2 NME3 PKLR TK1 TK2 UPP1 NME6 NME7 CMPK1 UPP2

GUK1 DPYD GUK1 SLC29A2 NME2 NME3 PNP PGM1 PKLR TK1 TK2 NME6 NME7 CMPK1 PGM2

GUK1 DPYD GUK1 SLC29A2 NME1 NME3 PNP PGM1 PKLR TK1 TK2 NME6 NME7 CMPK1 PGM2

GNE CDA SLC29A1 GALNS GALT SLC29A2 TXNRD1 UGP2 UMPS SLC28A2 SLC28A1 GNE RRM2B A4GNT CMPK1 AICDA SLC28A3

GNE CDA SLC29A1 GALT SLC29A2 NAGA RRM1 TXNRD1 UGP2 UMPS SLC28A2 SLC28A1 GNE A4GNT CMPK1 AICDA SLC28A3

MVD CRAT FASN HMGCL MVD PLPP1 PLPP2 PLPP3 SGPL1 SLC27A5 SLC27A4 SLC27A3 HMGCLL1 MCCC1 SGPP1 SGPP2 SLC27A1

MVD CRAT FASN HMGCL MVD SLC22A5 PLPP1 PLPP2 PLPP3 SGPL1 SLC27A5 SLC27A4 SLC27A3 HMGCLL1 SGPP1 SGPP2 SLC27A1

MVD AUH CRAT FASN HMGCL MVD PLPP1 PLPP2 PLPP3 SGPL1 SLC27A5 SLC27A4 SLC27A3 HMGCLL1 SGPP1 SGPP2 SLC27A1



 

 

2.4. Discussion 

We started our investigation with an effort to explore metabolism in CLL and 

identify metabolic vulnerabilities by comparing spontaneous regressed CLL cases 

with non-regressed cases. As shown in Figure 2.1, the transcriptomic profile of 

CLL cases was distinct from those of healthy donors, which indicates that data 

derived mostly from CLL cells. This is consistent with flow cytometry data whereby 

CLL cells are distinguished based on high expression of levels of CD43 and low 

expression levels of CD20, CD79b and CD81, whereas normal B-cells present 

high expression levels of CD20, CD79b and CD81. Although, normal B-cells and 

CLL cells are both CD19 positive, the expression of CD20 provides the single best 

discriminator between the CLL cells and normal B-cells as previously highlighted 

by Rawstron et al. (Rawstron et al., 2016). Despite our effort to isolate pure CLL 

cells, the acquired RNAseq data may also contain RNA from normal B-cells. This 

limitation could be overcome in future studies with the generations of single cell 

RNAseq data.  

Results from DEA and GSEA showed that non-regressed CLL cases have 

a differential reliance on OXPHOS compared to spontaneous regressed cases. 

These findings are in accordance with recent studies that target OXPHOS in CLL 

using metformin (NCT01750567), a mitochondrial Complex 1 inhibitor (Bruno et 

al., 2015; Galicia-Vázquez and Aloyz, 2018). Another study has also reported that 

leukemic stem cells (LSC) depend on OXPHOS and amino acids catabolism to 
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support proliferation (Jones et al., 2018). Nevertheless, we highlighted here 

upregulation of OXPHOS pathway associated to the non-regressed CLL cases, 

which has not previously been reported. However, further experiments should be 

performed to prove functional upregulation of OXPHOS in non-regressed CLL cells. 

Results from our collaborators Kwok et al. suggest a model in which clonal anergy, 

reduced CLL trafficking and possibly underpin as a mechanism spontaneous 

regression in CLL (Kwok et al., 2019).  It will be of importance to investigate the 

role of mitochondrial metabolism in CLL clonal anergy and its contribution in the 

activation process of CLL cells in relapsed CLL cases. Glycolysis and OXPHOS 

activity can be quantified with the Seahorse extracellular flux analyser (Agilent, CA, 

USA) by measuring the extracellular acidification rate (ECAR) for glycolysis, and 

the oxygen consumption rate (OCR) for OXPHOS. Complementary, enzymatic 

assays activities can be measured in cellular extracts from CLL cells to determine 

glycolytic and mitochondrial metabolism. In addition, it will be of interest to examine 

if mitochondrial fusion and/or mitochondrial mass is associated with upregulation 

of OXPHOS in CLL cells, as it was reported in other cell types (Wai and Langer, 

2016; Youle and van der Bliek, 2012). Mitochondrial fusion in CLL cells can be 

assessed with immunofluorescence microscopy using antibodies against 

manganese superoxide dismutase to visualize mitochondria.  

Analysing gene expression is mostly limited to identification of 

transcriptional alterations. Our goal was to go beyond these alterations and try to 

elucidate the metabolic changes in CLL by integrating with GSMM. Our results 
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demonstrated that rMTA can be applied to identify genes that are putative key 

drivers to revert non-regressed CLL phenotype and highlighted the SLC26A1 gene, 

which encodes the human sulfate anion transporter 1 (or SAT1), as the most 

promising metabolic vulnerability, which opens a new perspective on CLL therapy 

to be further explored and validated experimentally. Although, SAT1 is a key 

regulator of both oxalate and sulfate homeostasis (Dawson et al., 2010), its role in 

CLL metabolism remains undetermined. Therefore, it is important to confirm, firstly, 

for any differences in mRNA level of the SLC26A1 gene using RT-PCR analysis. 

Protein levels of the sulfate anion transporter 1 can also be compared with Western 

Blot analysis, while protein concentrations can be determined with assays such as 

the Bio-Rad protein assay (BioRad, Hercules, CA, USA). Further transcriptomic 

analysis comparing RNAseq data from CLL cases and healthy donors will highlight 

for any differences in the expression of SLC26A1 gene in normal B-cells and CLL 

cells. Following knock-out experiments of this gene either in CLL cell lines or in 

vivo models, such as with the CRISPR-Cas method (Ishibashi et al., 2020), can 

reveal important aspects of its metabolic role in CLL. It is noteworthy that when 

initially applying rMTA, we identified the need for curation of reaction catalysed by 

FDFT1 as the actual implementation in Recon 2.v04 generate a closed loop 

formed by the reactions r0170 and r0575 (both of which are catalysed by FDFT1). 

We corrected such loop by constraining Recon 2.v04 to make r0575 irreversible 

and we verified that the problem was solved. Such inconsistencies are well known 

in Genome Scale Metabolic Models and they are mostly related with gaps in 

reactions or metabolites (Orth and Palsson, 2010; Ponce-de-Leon et al., 2015). 



 

97 

 

In parallel, the second approach of gMCSs proposed the combined 

inhibition of FDFT1, PLPP3 and SGPP1 genes in synthetic lethality strategy. In 

particular relevance to the present study, cholesterol metabolism has been shown 

to contribute to chemotherapy resistance in several other cancers (Benakanakere 

et al., 2014; Montero et al., 2008; Storch et al., 2007). A previous study has also 

showed enhanced chemoimmuno-sensitivity in MEC-2 CLL cells when targeting 

squalene synthase with YM-5360 or TAK-475 inhibitors (Benakanakere et al., 

2014). More importantly, both GSMM approaches examine changes in mRNA 

levels and infer changes in protein and metabolome level. However, the 

expression and the activity of metabolic enzymes is affected by post-translational 

and metabolic regulations. As previously mentioned, the mRNA and protein levels 

for gMCSs finding should be validated with RT-PCR and Western Blot analysis. 

Moreover, our results allow us to hypothesise that non-regressed CLL 

cases depend on mitochondrial respiration, particularly on OXPHOS, and 

cholesterol metabolism to support cell growth and proliferation, which seems to 

enhance the aggressive status of the disease. Further experimental functional and 

drug target studies, such as those described in the previous paragraphs, using 

either CLL cell lines or primary samples will be needed to investigate the 

contribution of mitochondrial metabolism in CLL and validate the therapeutic 

contribution of these GSMM putative targets.  
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CHAPTER 3 

PATHWAY INTEGRATION TO 

CHARACTERISE METABOLIC 

VARIATIONS IN GC-DERIVED 

LYMPHOMAS 
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3.1. Introduction 

 Germinal centres (GCs) are the sites of lymph nodes where B-cells undergo 

proliferation and selection on the basis of affinity antigen (Basso and Dalla-Favera, 

2015). Firstly, B-cells enter and pass from the structure of GCs known as the dark 

zone, where immunoglobulin somatic hypermutation and proliferation occur. Next, 

they transfer to another region of GCs the so-called light zone, where processes 

such as B-cells activation and selection (based on their affinity for antigen) is taking 

place. Then either B-cells exit the GCs as plasma or memory B-cells, or they 

recycle back to the dark zone (Figure 3.1). The transit of B-cells from the GCs 

requires a series of signalling and transcriptional events and any disruption during 

these procedures can lead to malignant transformation. Thus, lymph nodes are 

also the histological structures where most mature B-cell lymphomas arise. As 

mentioned before, Burkitt Lymphoma (BL) and Diffuse Large B-cell Lymphoma 

(DLBCL) are both GCs mature aggressive B-cell Non Hodgkin Lymphomas (NHL) 

that tend to spread quickly with serious symptoms (WHO, 2014). BL cases derive 

from malignant B-cells of the dark zone and they are grouped in sporadic, endemic 

and HIV-associated cases. The main characteristics in BL cells are the c-Myc 

translocations and the EBV positivity, specifically in the endemic cases (Schmitz 

et al., 2014). DLBCL is categorised in the germinal centres like (GCB) and the 

activated B-cell like (ABC) groups (Alizadeh et al., 2000). GCB-DLBCL cases 

originate from the light zone malignant B-cells, whilst ABC-DLBCL cases contain 
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malignant arrested B-cells in the plasmablast stage (or else “immature plasma B-

cells”). Although, BL and DLBCL are genetically, phenotypically and clinically 

distinct, the available treatment methods are mostly based on chemotherapy, 

radiotherapy and autologous stem cell transplantation. Occasionally, GC-derived 

B-cells cases present morphological, immunophenotypic and cytogenetic 

intermediate features between BL and DLBCL, making these cases difficult to 

classify in diagnosis level. In addition, gene expression profiling studies have also 

illustrated a common transcriptomic profile between BL and DLBCL (Campo et al., 

2011). Furthermore, several GCB-DLBCL cases present c-Myc translocations 

similar to those that characterise the aggressive BL cases. The absence of any 

biomarker or specific therapeutic target in GC-derived lymphomas justifies the 

need to investigate further the molecular differences at the transcriptional or 

metabolic level.  
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Figure 3.1. The germinal centres (GCs) structure and response. The 

maturation steps occurring in B-cells during their transit through the GCs (Stebegg 

et al., 2018). 
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 Cancer as mentioned previously is beginning to be recognised as a 

metabolic disorder, suggesting new metabolic molecular targets that reprogram 

metabolism and enhance carcinogenesis. Alterations along glycolysis and other 

metabolic pathways such as the reductive metabolism of glutamine are now 

considered essential for malignant transformation (Dong et al., 2017). Significant 

progress has also been made in identifying the role of metabolism in different 

stages of GCs lymphomagenesis. A previous metaboproteomics study has 

demonstrated downregulation of glycolysis and pyruvate metabolism, while one 

carbon metabolism was upregulated in BL compared to DLBCL (Schwarzfischer 

et al., 2017). Deregulated expression of c-Myc has been associated with the 

upregulation of glutamine catabolism especially in BL (Le et al., 2012; Wise et al., 

2008). These are only a few examples of metabolic alterations that accelerate 

lymphomagenesis in these types of lymphomas. 

 Given the significance of metabolism in GCs lymphomagenesis and driven 

by Mrs Zuhal Eraslan’s complementary work and hypothesis on the role of serine 

in BL, we sought to better define the fundamental aspects of these complex 

metabolic regulations in GC-derived lymphomas and try to identify new molecules 

as potential metabolic targets. In this chapter, we performed transcriptomic 

analysis in publicly available RNAseq NHL datasets generated from primary 

tumours. A pathway-based computational approach was then followed to integrate 

transcriptomics (RNAseq data) with metabolomics (untargeted 1D 1H-NMR data) 

profiles from our in-house NHL cell lines to explore interactions between metabolic 
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genes that co-expressed with metabolites. 

3.2. Materials and methods 

3.2.1. NHL transcriptome sequencing profiles 

 Publicly available RNAseq data from BL (Abate et al., 2015) and DLBCL 

(Teater et al., 2018) primary tumours were retrieved from the Sequence Read 

Archive (SRA) database (Leinonen et al., 2011). The accession numbers for BL 

dataset is SRP062178 and for DLBCL is SRP100105. The raw data for BL cases 

is available online (https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP062178) 

and for DLBCL (https://trace.ncbi.nlm.nih.gov.Traces/sra/?study=SRP100105). 

Raw data from BL cases was generated from formalin-fixed and paraffin-

embedded (FFPE) samples to investigate the mutational and viral landscape of 

endemic BL. All BL cases were consistent with BL diagnosis: t(8;14)-positive 

CD20+, CD10+ BCL-6+, Ki67>98% and BCL-2- (Abate et al., 2015), however the 

extend of non-tumour cell contamination or tumour purity in the samples was not 

reported. The authors validated the RNAseq results from BL cases using two 

distinct series of cases of which matched normal controls were available. The data 

from DLBCL cases were generated from frozen solid tissue sections with tumour 

purity above 80-90% based on histological observation to investigate epigenetic 
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heterogeneity in DLBCL (Teater et al., 2018). Tumour purity is a confounding factor 

in transcriptomic analysis because tissue samples represent a mixture of RNA 

transcripts of tumour and non-tumour cells (Aran et al., 2015). So far, studies have 

used deconvolution methods to estimate the relative proportion between tumour-

infiltrating lymphocytes and other immune cells in transcriptomic data (Li et al., 

2016a; Newman et al., 2015). However, it remains unclear how to estimate the 

impact of tumour purity on gene expression or which gene pairs are associated 

with purity adjustment. In addition, comparison of data derived from FFPE samples 

versus data from frozen samples have an impact on the results of the 

transcriptomic analysis. It is well known that FFPE tissues are partially degraded, 

resulting in fragmentation of RNA transcripts and low quality of RNA data (Chung 

et al., 2008). However, the absence of publicly available dataset derived from 

fresh/frozen tissues of endemic BL cases, which are mostly detected in Africa, lead 

us to the use of data from FFPE samples. Furthermore, several studies have 

reported consistent and robust results for combined analyses across FFPE/frozen 

samples and platforms (Bossel Ben-Moshe et al., 2018; Newton et al., 2020; 

Turnbull et al., 2020). Here, we analysed datasets where both studies have 

generated paired-end RNAseq data, using the Illumina HiSeq2000 platform 

(IIlumina, San Diego, USA). In total, 19 endemic BL cases and 12 GCB-DLBCL 

cases were used further for gene expression analysis (Appendix 3). 
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3.2.2. In-house cell lines transcriptome profiles 

 RNAseq data from in-house NHL cell lines were generated using 4 BL (BL-

31, Ezema, SAV and Glor) and 4 DLBCL (Farage, SUDHL-4, SUDHL-5, SUDHL-

6) cell lines to perform integrative analysis (Appendix 5). Cell lines arise from long-

standing work in Dr. Farhat Khanim’s group (University of Birmingham) under 

whose supervision the data was generated. All the cell lines were purchased from 

DSMZ (Braunschweig, Germany) and cultured in RPMI 1640 media (Gibco-

Invitrogen Ltd, Paisley, U.K.) with 10% FBS (FBS, Gibco-Invitrogen) supplemented 

with penicillin (100 U/ml) and streptomycin (100μg/ml). The cultures were routinely 

passaged every 2 days to maintain exponential phase by Mrs Zuhal Eraslan. Cells 

were authenticated regularly to control variation with NorthGene service for STR 

profiling. Mycoplasma test was performed with DAPI stain (Sigma Aldrich).  

Two biological replicates from each cell line were cultured at 37oC with 5% 

CO2 to generate the RNAseq data. The TruSeq Stranded mRNA Sample prep kit 

(IIlumina, San Diego, USA) was used for library preparation. Following, cDNA 

synthesis, hybridization, PCR amplification and library quantification were 

performed by our partners. The prepared cDNA libraries were sequenced 

(RNAseq) by the Theragen Etex (Theragen Co Ltd, Suwon, Korea) using the 

Illumina HiSeq2500 platform (IIlumina, San Diego, USA). All the work presented in 
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this section was undertaken by Mrs Zuhal Eraslan and supervised by Dr. Farhat 

Khanim and Prof. Ulrich Günther. Lastly, the raw data were analysed by the author 

of this thesis as explained in section 3.2.4. Transcriptomic data from NHL cell lines 

were analysed independently by comparing data from BL and DLBCL cell lines, 

while no comparison between transcriptomic data from cell lines and primary 

tumours was performed in this study.  
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3.2.3. In-house cell lines metabolomic signatures 

 Metabolomic data were generated by Mrs Zuhal Eraslan from the same 

exponentially growing in-house cell lines (4 BL and 4 DLBCL) under the same 

media conditions (RPMI1640 and 10% FBS) that were used for the RNAseq 

experiment. Six technical replicates per cell line were taken from each flask, where 

every cell line was cultured separately, to measure the intracellular metabolites 

with NMR spectroscopy. Data derived from replicates were analysed 

independently and they are presented in section 3.3.4 of this chapter. Technical 

replicates for the NMR experiments were taken at a different time point than those 

for the RNAseq experiment and not pooled together. A total number of 5x107 cells 

for each replicate, were used to perform cell extraction. Cell suspensions were 

centrifuged in falcon tubes at 1500 rpm for 5 minutes at 21°C. 10 ml of the 

supernatant was stored for media analysis and the remaining supernatant was 

disposed of. Cell pellets were then washed once with 1 ml of pre-warmed PBS and 

transferred to Eppendorf tubes. Supernatants were discarded after centrifugation 

at 14000 rpm for 20 seconds. After this, 400 μl of HPLC grade methanol were 

rapidly added. Cell pellets were resuspended in methanol on dry ice and vortexed 

for 10 seconds before storing at −80 °C until extraction. For the extraction, cell 

pellets in methanol were transferred into the Wheaton™ clear glass sample vials 

(MERK). 325 μl of distilled HPLC grade H2O and 400 μl of chloroform, pre-chilled 

on wet ice, were added. Samples were vortexed for 40 seconds and then 

incubated on the bench for 5 minutes. After centrifugation at 4000 rpm, for 10 
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minutes at 4°C, polar and nonpolar samples were transferred to Eppendorf tubes 

and the Wheaton™ clear glass sample vials, respectively. Polar samples were 

dried using a vacuum dryer.  

All polar extracts were dissolved in 50 μl of 100 mM sodium phosphate 

buffer (pH 7.0) prepared with 90%H2O/10% D2O or 100% D2O (99.9% pure; 

GOSS Scientific Instruments Ltd.), 3 mM sodium azide (NaN3) and 0.5 mM 

timethylsilyl-propanoic acid (TMSP, Cambridge Isotope Laboratories) as a 

chemical shift reference. Samples were sonicated for 15 minutes and vortexed for 

10 seconds. 35 ml of sample was transferred into 1.7 mm NMR tubes. Samples 

that were dissolved in sodium phosphate buffer containing 90% H2O/10% D2O 

were transferred into 1.7 mm NMR tubes using the GILSON sample preparation 

unit, while samples that were prepared with 100% D2O buffer were manually 

transferred. For preparation of media samples for NMR, 162 μl of the previously 

saved media was resuspended in 18 μl of metabolomics buffer made from 1 M 

phosphate buffer (pH 7.0) prepared with D2O, 0.5 mM TMSP and 3 mM NaN3. 

Then the samples were transferred to 3.0 mm NMR tubes. All samples were kept 

at 4°C until measurement. 

All 1D 1H-NOESY spectra for cell extracts were acquired at 300 K using a 

Bruker 600 MHz spectrometer, equipped with a 1.7-mm TCI probe and a cooled 

Bruker SampleJet autosampler. The 1H 1D spectra were obtained using the 1D 

NOESY pulse sequence (noesygppr1d) with water pre-saturation. Key parameters 

were as follows: spectral width 7183.9 Hz; complex points, TD 32768; interscan 

delay, d1=4 seconds; NOE mixing time, d8=10 milliseconds; number of transient, 
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ns = 128; steady state transient, ds = 8. Total acquisition time was 14 minutes. For 

the 1H 1D spectra of media samples, Bruker 600 76 MHz spectrometer with a 5-

mm TXO cryogenic probe with a cooled Bruker SampleJet autosampler was used. 

The standard Bruker pulse sequence noesygppr1d was used to obtain 1H 1D 

spectra. The key parameters used were as follows: spectral width: 7183,9 Hz; 

TD=32768; d1=5 seconds; NOE mixing time, d8=10 milliseconds; ns=32; ds=8. 

Total acquisition time was 5 minutes. All spectra were measured once. 
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Figure 3.2. Flow diagram of the analyses and the experimental procedures in 

chapter 3. (A) Transcriptomic analysis performed with SRA datasets derived from 

primary tissue samples. (B) Pathway-based Omics integration analysis performed 

with Omics datasets from inhouse cell lines.  
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3.2.4. Transcriptome sequencing data analysis 

The transcriptomic datasets were analysed with the Kallisto-Sleuth 

computational workflow (Yalamanchili et al., 2017). For the public datasets, the 

raw RNAseq data were downloaded in sra format from the SRA database and they 

were converted to fastq format with the SRA Toolkit 2.9.2 (Leinonen et al., 2011). 

Quality control metrics were obtained with the FastQC 0.11.7 software (Andrews, 

2010); reads were aligned to the GRCh38 human reference genome cDNA index 

(Ensembl rel.99) and counted to quantify for transcripts abundances with the 

Kallisto 0.43.0 software (Bray et al., 2016). Gene-level differential expression 

analysis was performed with the Sleuth 0.30.0 R statistical package (Pimentel et 

al., 2017), comparing BL to DLBCL cases. Differentially expressed genes (DEGs) 

were calculated with the Wald statistical test, correcting for multiple comparisons 

with the Benjamini-Hochberg method using a false discovery rate (FDR) threshold 

of 1% (q values < 0.01). Ensembl gene transcripts were annotated with Entrez IDs, 

official gene symbols and KEGG enzymes with the BioMart 2.40.3 R statistical 

package (Durinck et al., 2009). Transcripts per million (TPM) expression values 

were calculated to normalise for sequencing depth and gene length (Li et al., 2010). 

Log2TPM+1 values were used in the unsupervised method Principal Component 

Analysis (PCA) with the PCAtools 1.0.0 R statistical package (Blighe and Lun, 

2019) to identify clusters and outliers within the data. Furthermore, a list of 2,552 

metabolic enzymes was retrieved from the global KEGG metabolic network for 

human (map01100 KEGG pathway: https://www.genome.jp/dbget-
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bin/get_linkdb?-t+enzyme+path: map01100) (Kanehisa et al., 2019) to study 

metabolic genes in PCA. The log2TPM+1 expression values were also used in 

heatmaps generation and in hierarchical clustering with the Ward method and 

distance: 1 – Spearman’s rank correlation. Finally, Gene Set Enrichment Analysis 

(GSEA) was performed with the fgsea 1.10.0 R statistical package (Korotkevich et 

al., 2016) to study a collection of hallmark gene sets from Molecular Signature 

Database (Subramanian et al., 2005), using as a significance level the FDR 

threshold of 5% (q values <0.05). 

3.2.5. Metabolome NMR data analysis 

 The NMR concept design, data acquisition and analysis presented in this 

section came jointly from Mrs Zuhal Eraslan, Dr. Farhat Khanim and Prof. Ulrich 

Günther. All 1D 1H NMR spectra were measured once and they were manually 

phase corrected and chemical shift referenced to TMSP at δ 0.00 ppm, and they 

were aligned on the TMSP signal using MetaboLab (Ludwig and Günther, 2011), 

a MatLab version R2017a (MathWorks, Massachusetts, USA) based program. 

MetaboLab was also used to pre-processed all the NMR spectra by performing 

Fourier Transformation and baseline correction. The free induction decay (FID) 

signal was zero filled to 32768 points once and Fourier transformed using an 

exponential line broadening of 0.3 Hz. Additionally, the region between 4.5 to 5.15 

ppm was deleted with the same tool for water suppression. The spectra were 
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scaled to a probabilistic quotient normal normalization (PQN-scaling). Then, 

segmental alignment (using icoshift tool) was performed in order to align several 

metabolite. A total number of 21 Metabolites were identified manually by using the 

Chenomx NMR Suit 7.6 software (Chenomx Inc., Edmonton, Canada). Metabolite-

intensity data from the 1D 1H NMR spectra were generated for further statistical 

and integrative analysis. The intensity of metabolites was determined by semi-

manual integration (ITN tool) in MetaboLab within MatLab. Metabolite intensities 

are normalised according to cell number as follows: 

normalised signal intensity value=signal intensity x normalization factor,  with 

normalisation factor=
1X10

6

cell density
 . 

 Data were transformed by the author with generalised logarithm (log)  and 

row-wise normalised with quantile normalization to make features more 

comparable between the two diseases. The normalised data were analysed using 

the metabolomic data processing server MetaboAnalyst 4.0 (Chong et al., 2018). 

First, hierarchical cluster analysis was performed with the hclust R function using 

the Ward’s clustering method and Euclidean distances to determine clusters 

between the data. Following, univariate analysis tested for changes in metabolites 

intensities that are significant to discriminate the two conditions. Normality was 

tested with the Shapiro-Wilk test, which compares whether the sample distribution 

of the data deviates from a normal distribution. We assumed normality for those 

metabolites that had p-value > 0.05, which implies that the distribution of the data 

was not significantly different from the normal distribution (Appendix_6). P-values 
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for univariate analysis were calculated with the t-test for metabolites with normal 

distribution or the non-parametric Wilcoxon Mann Whitney for metabolites with 

non-normal distribution of the data. Additionally, fold change was calculated to 

detect which metabolites are increased or decreased in each condition. The goal 

of fold change is to compare the absolute values of changes between two group 

means. Because log transformation significantly changes the absolute values, fold 

change was calculated as the ratios between the two groups means using data 

before log transformation. However, fold changes were calculated in this study to 

examine changes (either up or down) in metabolites between the two conditions. 

Therefore, no threshold value was applied to highlight significant metabolites with 

the fold change. As a result, metabolites with very low fold changes close to value 

1, which is the minimum value for fold change indicating no change, are reported 

in Appendix 6. Finally, to adjust the p-values for multiple testing corrections in 

univariate analysis, the FDR values were determined for each metabolite with 

Benjamini-Hochberg approach (Appendix 6). Metabolites with an FDR threshold 

of 5% (q values < 0.05) were considered statistically significant and selected for 

pathway analysis. 

3.2.6. Pathway-based Omics integration 

 A pathway-based integration approach was implemented using the “Joint-

Pathway Analysis” module from the MetaboAnalyst 4.0 toolbox to map and 
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visualise both metabolomic and transcriptomic data. This module provides 

integration using both pathway topological analysis combined with enrichment 

analysis. Both tables with significant altered metabolites and common significant 

genes (primary and cell lines transcriptomic data) together with their expression 

values (fold changes or beta values, Appendix 6 and 7) were uploaded and 

matched to the information gathered from KEGG, HMDB and STITCH databases 

for metabolites and gene annotations. Data were mapped to 31 metabolic 

pathways from KEGG database that include both metabolic genes and metabolites. 

Moreover, an integration analysis for both 180 metabolic and regulatory pathways 

was also examined (Appendix 8). Pathway topology analysis evaluated the 

importance of a molecule based on its position within a pathway by measuring the 

Degree centrality, which is the number of links that connect to a node and 

calculating pathway impact values. Enrichment analysis was also performed with 

the integration method of combine queries, in which genes and metabolites are 

pooled into a single query. Finally, metabolic pathway results were visualised in 

the KEGG global metabolic network to explore interaction between metabolomic 

and gene expression data between BL and DLBCL tumours. 
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3.3. Results  

3.3.1. Dimensionality reduction in NHL primary tumours 

Our investigation began with the analysis of the transcriptome profile of 19 

endemic BL and 12 GCB-DLBCL cases, by examining publicly available RNAseq 

datasets from the SRA database as described in the materials and methods 

section of this chapter. Firstly, 39,320 transcripts abundances were quantified for 

17,048 genes in both datasets. The TPM expression values were used with PCA 

for dimensionality reduction to explore any transcriptomic associations between 

the two diseases. PCA aims to define directions that explain the maximum 

variance in a dataset by summarizing the data into much fewer variables called 

scores and weighting profiles of the original variables, which called loadings. The 

results from PCA highlights that cumulatively the first 20 principal components 

(PCs) represent more than 90% of the explained variation (Figure 3.3A). The first 

component (PC1) which explains 37.65% of the variation, is the optimal 

component to segregate the two cancers (Figure 3.3B), as tested by performing 

a t-test between BL and DLBCL cases (p value = 4,96e-13, q value = 5e-13). 

Unfortunately, the available clinical characteristics for BL and DLBCL cases was 

not informative enough to clearly explain the separation in PC2 or PC3 (Appendix 

4 and 9). Together, the PC1 and PC2 separated the transcriptomic profile of BL 
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from that of DLBCL cases, suggesting that the two diseases are transcriptionally 

distinct. However, the BL60, BL15 and BL22 cases, which derive from jaw and 

neck BL tumours, presented an intermediate expression profile between BL and 

DLBCL cases. Both these three cases were from male patients with stage C 

cancer, similar to 8 other BL cases. All BL cases were EBV positive and HIV 

negative except BL15, which status did not record (NR) for these viruses. 

Moreover, BL15 was lost in the follow up, while BL22 had a complete response to 

treatment and no relapse in contrast to BL60, which did not respond to treatment. 

Similar to the BL60 case, BL20 and BL35 did not respond to treatment and 8 other 

cases were lost in follow up. A common clinical characteristic that potentially is 

associated with the intermediate profile of all these three BL cases was their 

positivity in human cytomegalovirus (CMV) (Appendix 4). Although, endemic 

Burkitt lymphoma is strongly associated with EBV infection, the synergistic role of 

CMV and other human herpes viruses in the development of lymphoma still 

remains unclear. For feature selection, we explored the loading values of every 

gene in the PCA. Out of the total 17048 genes, the top 3 genes that were most 

responsible for variation along PC1 were KRT13, PSPHP1 and FCRL5. The 

KRT13 gene, which was significantly upregulated in BL cases (beta = 6.12, q value 

= 3.87E-05), encodes a structural intermediate filament protein responsible for the 

maintenance of the integrity of epithelial cells. Although KRT13 demonstrates a 

diverse expression profile in cancer, several studies have associated KRT13 with 

regulatory roles in cancer invasion, migration, and metastasis (König et al., 2013; 

Li et al., 2016c; Sihto et al., 2011). More specifically, Hamakawa et al. reported an 



 

118 

 

increased gene expression of KRT13 in micrometastases in the lymph nodes of 

cervical cancer (Hamakawa et al., 2000). In our study, it is unclear whether higher 

gene expression of KRT13 was related to metastatic or aggressive BL cases. Like 

the KRT13 gene, PSPHP1 was significantly upregulated in BL cases (beta = 5.19, 

q value = 2.59E-27). PSPHP1 is a pseudogene, a non-functional gene, which 

possibly arises from the phosphoserine phosphate (PSPH) gene. PSPH is involved 

in serine biosynthesis (Figure 3.5C), which was considered upregulated in BL 

cases, as explained next in section 3.4. By contrast, the FCRL5 gene was 

upregulated in DLBCL cases (beta = -3.29, q value = 1.11E-08). The FCRL5 gene 

express a member of the FC receptor like family that previously found upregulated 

in post-GC cells of the marginal zone and was suggested that is responsible for B-

cell development and regulation of human immune system (Polson, 2006). Now, 

given our interest on metabolism, we examined the metabolic genes retrieved from 

the KEGG database (as mentioned in the methods section). The loading values 

showed that the PYCR1, PHGDH, PSAT1, IDO1 and CHIT1 were the most 

important metabolic genes driving the variation along PC1 (Figure 3.3C). Along 

PC2, the CDA gene of the pyrimidine salvage pathway, which is essential for 

DNA/RNA synthesis, was the most extreme among metabolic genes that drives 

the variation (Figure 3.3C).  



 

 

 
Figure 3.3. Principal component analysis performed on transcriptome profile of primary tumours. (A) The first 20 principal components 

(PCs) account for more than 90% of explained variation. (B) Scatter plot with the first and second principal components are contributing to 37.65% 

and 9.96% of the total explained variation, respectively. The red colour circles represent the BL cases, and the blue colour circles the DLBCL 

cases. The marker shapes represent the origin of isolated malignant B-cells: abdomen (circle), bone marrow (BM, triangle), jaw (square), lymph 

nodes (LN, cross), neck (square X) and pelvic (star). (C) PC1 and PC2 loadings values for every gene, highlighting the most important genes 

that drive the variation along PC1 and PC2. The metabolic genes in scatterplot and density plots are demonstrated with magenta colour.



 

 

3.3.2. Differential expression analysis 

 To further clarify the role of metabolic genes in GCs-derived lymphomas we 

performed differential gene expression analysis with the Wald-test, which 

calculates the β-coefficient on every gene (beta values). Our analysis identified 

6475 significantly altered genes with 3892 upregulated and 2583 downregulated 

(q value <0.01) in BL compared to DLBCL cases (Figure 3.4A). Like in the 

previous section, we focused on metabolic genes with 182 genes presenting 

significantly (q value <0.01) higher expression in BL compared to 82 genes, which 

were significantly overexpressed in DLBCL. To test whether the relative 

proportions of metabolic and other genes were the same in two diseases, a 

contingency table was created. The two-sided Fisher’s exact test was applied and 

revealed that there was a significant difference (p value = 0.0025, odds ratio = 

0.66) in BL/DLBCL between metabolic and other significant genes (Figure 3.4B). 

These findings highlighted the key role of metabolic reprogramming in GCs derived 

lymphomas.  
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Figure 3.4. Differentially expressed genes between BL and DLBCL cases. (A) 

The 6475 statistically significant altered genes (FDR <0.01) from differential 

expression analysis are visualised in a heatmap. Gene expression values have 

been converted to a Z-score scale along the rows for case comparisons. 

Dendrogram in hierarchical clustering analysis was produced with Ward method 

and distance 1- Spearman’s rank correlation. (B) Contingency table used for two-

sided Fisher’s Exact test to compare the relative proportions of significant genes 

between the BL and DLBCL.  
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3.3.3. Gene set enrichment analysis 

To access the role of biological processes and pathways, we performed 

gene set enrichment analysis (GSEA) using the hallmark gene sets from Molecular 

Signature Database. The analysis was performed by ranking all the genes based 

on their beta values from differential expression analysis and identifying the rank 

positions of all the members of the gene set in the ranked data. Next, an 

enrichment score was calculated to represent the difference of the observed 

rankings with an assuming random rank distribution; and normalised to the mean 

enrichment of random sample of the same size, known as normalised enrichment 

score (NES). Taking into consideration these NES values with an FDR threshold 

at 5% (q value <0.05) we identified 30 significant gene sets with 16 gene sets 

upregulated and 14 downregulated in BL compared to DLBCL (Figure 3.5A). 

GSEA results for BL cases showed upregulation of gene sets related to 

metabolism (e.g. Glycolysis, Oxidative Phosphorylation and MYC targets) relative 

to DLBCL cases. Importantly, we observed that the mTORC1 signalling pathway, 

which is associated with PHGDH and PSAT1 genes, was also upregulated in BL. 

Moreover, the CDA gene which showed higher expression in BL cases was 

associated with upregulation of the DNA repair mechanism in BL. 

In contrast, the DLBCL cases have demonstrated upregulation of several 

cellular signalling pathways such as the NF-kB, the JAK-STAT and the KRAS, as 

a response to inflammation, TNF and interferon gamma (INFγ) signals (Figure 

3.5A). More specifically, the IDO1 metabolic gene, which presented higher 
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expression in DLBCL compare to BL, belongs to the interferon gamma response 

gene set. Together, GSEA findings suggested that DLBCL cases likely alter their 

metabolism as a result to inflammation and other extracellular signals.  
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Figure 3.5. Altered genes and pathways between BL and DLBCL. (A) GSEA 

results identified 30 significant altered gene sets with an FDR threshold of 5%. (B) 

Significant altered differentially expressed genes (DEG) with an FDR threshold of 

1%, selected from PCA. (C) Schematic representation of the genes involved in the 

serine pathway. 
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3.3.4. Statistical analysis of NMR metabolomic data 

 Untargeted 1D 1H NMR metabolomic data were generated by Mrs Zuhal 

Eraslan using cell extraction samples from 4 BL and 4 DLBCL cell lines. 

Metabolites peak intensities were generated as described in the material and 

methods section for exploratory data analysis between the two diseases. Firstly, 

hierarchical clustering analysis was utilised to determine clusters between the 

samples. The Ward’s linkage clustering algorithm, which minimises the sum of 

squares of any two clusters, clearly demonstrated an unsupervised separation 

between BL and DLBCL (Figure 3.6A). To explore further which metabolites are 

significantly altered and discriminate the two lymphomas, I preformed univariate 

analysis. Normally distributed metabolites were analysed with t-test, while others 

with the nonparametric Wilcoxon Mann Whitney test to compare BL and DLBCL 

cell lines. P-values were calculated for each metabolite and corrected for multiple 

testing, setting the FDR threshold at 5% (q values < 0.05). Nine metabolites were 

considered as significantly altered (Appendix 6). The metabolites L-Alanine, 

phosphorylcholine (CHoP), glycine, myoinositol and D-Glutamic acid were up-

regulated in BL, while taurine, creatine, UDP-N-acetyl-D-glucose and L-Glutamine 

were down-regulated (Figure 3.6B). These significantly altered metabolites were 

used next as an input list for integrative pathway analysis.  
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Figure 3.6. Hierarchical clustering and univariate analysis with metabolomic 

data. (A) Hierarchical clustering analysis was applied with Ward clustering method 

and euclidean distance measuring to determine clusters between the data. Results 

were visualised in the form of a dendrogram. (B) Significant metabolites selected by 

univariate analysis with FDR threshold of 5% are presented in the volcano plot. Both 

fold changes and p-values are log transformed. 
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3.3.5. Integrative analysis between BL and DLBCL 

 The NMR metabolomic data were used for integrative pathway analysis 

together with the transcriptomic data that we retrieved from the same NHL cell 

lines. RNAseq data were generated and analysed using the same pipeline as for 

the RNAseq data from primary tumours. Differential expression analysis identified 

39226 transcripts corresponding to 14,421 genes of which 335 genes were 

statistically significant altered (q values < 0.1). We identified 113 of these genes 

shared common expression with the 6,475 significant differentially expressed 

genes from the primary tumours, (61 upregulated and 52 downregulated in BL 

compared to DLBCL) (Appendix 7). 

 We looked from a pathway perspective to integrate both lists with common 

significantly altered genes and metabolites to explore any interactions in the 

network between metabolism and gene expression. Enrichment and topology 

analysis revealed 31 metabolic pathways from KEGG database (Appendix 8). The 

first 6 metabolic pathways were nominally significant (p-values < 0.05) (Figure 

3.8A). However, correcting for multiple testing with an FDR threshold of 10% none 

of them could be considered significantly altered. Still, these pathways together 

with the next 4 metabolic pathways (to contain the pathway of interest glycine, 

serine and threonine metabolism) were visualised in the KEGG global metabolic 

network to explore any associations (Figure 3.7). The alanine, aspartate and 

glutamine pathway had the lowest p-value (p-value = 0.0013) and contained the 

most mapped features (4 genes and metabolites out of 61) compared to the other 
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metabolic pathways. The non-essential amino acid L-alanine (fold change = 1.03, 

q value < 0.001) together with the metabolic genes ALDH5A1 (beta = 1.61, q value 

= 0.022) and RIMKLB (beta = 4.48, q values < 0.001) were upregulated in BL, 

while glutamine (fold change = -1.05, q value < 0.0014) was downregulated 

(Figure 3.8B). Moreover, integrative analysis with KEGG metabolic and regulatory 

pathways also identified the alanine, aspartate and glutamate metabolism as the 

most significant pathway (p-value = 0.0004, q value = 0.107) among the 180 KEGG 

pathways (Appendix 10). Other metabolic genes that mapped together with 

metabolites were the PCCA (beta = -2.03, q values = 0.0017) in glyoxylate and 

dicarboxylate metabolism; and the MBOAT2 (beta = 2.84, q values < 0.001) and 

LPIN1 (beta = -0.99, q values < 0.073) in glycerophospholipid metabolism (Figure 

3.8A). Pathways that mapped only significant genes or metabolites were not 

examined any further in this study.  



 

 

 

 

Figure 3.7. Pathway based integration analysis with metabolomic and transcriptomics data between BL and 

DLBCL cell lines. Integration pathway results were mapped in the KEGG global metabolic network.



 

 

 

Figure 3.8. Details of integration pathway results. (A) Top 10 matched 

pathways from integration pathway analysis with p-values from the pathway 

enrichment analysis and pathway impact values from pathway topology analysis. 

(B) The integration network of the alanine, aspartate and glutamate metabolism 

pathway, as retrieved from MetaboAnalyst module. 
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3.4. Discussion 

 Metabolic research began to unveil the key regulatory roles in GCs 

lymphomagenesis and other haematological cancers. To date, there has been no 

therapeutic metabolic targets or metabolic biomarkers widely available for GCs-

derived lymphomas. To bridge this gap, we started by exploring the transcriptomic 

profile of 19 endemic BL and 12 GCB-DLBCL primary tumours for any 

transcriptomic differences in these complex metabolic regulations. Dimensionality 

reduction results with PCA suggested a transcriptomic distinction (t-test for PC1: 

p-value = 4,96e-13, q value = 5e-13) between BL and DLBCL tumours (Figure 

3.3B). These findings are in line with previous gene expression profile studies 

(Dave et al., 2006; Schmitz et al., 2012). However, we additionally report genes 

related to cytoskeleton structure (KRT13) and to Fc receptors (FCRL5) as the even 

more important ones compared to the other studies to drive this separation. 

Although metabolic genes did not seem to contribute the most in the separation of 

the two diseases, the PYCR1 in proline metabolism and genes involved in 

biosynthesis of serine (PHGDH and PSAT1) are the most extreme metabolic 

genes to drive the variation along the first principal component which explains 

37.65% of the variance. Nevertheless, differential expression analysis and two-

sided Fisher exact test revealed significant difference (p value = 0.0025, odds ratio 

= 0.66) in BL/DLBCL between the number of significant metabolic genes and the 

rest of regulatory significant genes (Figure 3.4B). These findings highlight the 
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necessity of understanding and monitoring metabolic properties in these two 

lymphomas. We also showed that the previously reported serine genes PHGDH 

and PSAT1 had a significant higher expression in BL compared to DLBCL cases, 

which was not observed in transcriptomic data from our in-house NHL cell lines. 

More emphasis was given in the results from transcriptomic analysis of data from 

primary tumours rather than those from cell lines. Although, immortalized cell lines 

are a valuable in vitro model for cancer research, several inherent limitations are 

related from their use and might have affected our analysis. Most important of them 

are the possible misidentification of cell lines, the cross contamination, and the 

genotypic instability that impacts cells phenotype (Mirabelli et al., 2019). 

Immortalized cell lines are artificial systems that have adapted/changed many 

biological processes to sustain proliferation in vitro compared to the initial tumour 

from which they are derived from. Nevertheless, transcriptomic data from cell lines 

represent RNA transcripts from pure tumour cells, while primary tumour samples 

contain a mixture of RNA transcripts between tumour and non-tumour cells (as 

previously explained in section 3.2.1). The extend of non-tumour cell 

contamination is another limitation that affects our transcriptomic analysis, 

especially for BL primary tumours of which tumour purity was not reported. it 

remains unclear, the impact of tumour purity on gene expression or which gene 

pairs are associated with purity adjustment. In BL cases the upregulation of 

metabolic genes in the de novo biosynthesis of serine is potentially important, 

since a) serine has a major role in tumour cell growth and proliferation as a 

precursor for protein and amino acid biosynthesis; b) serine contributes one-
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carbon units to folate cycle and thus is essential for synthesis of nucleic acids and 

NADPH regeneration (Fan et al., 2014; Yang and Vousden, 2016); and c) recent 

evidence points to support antioxidant activity via the production of glutathione to 

protect from ROS (Mehrmohamadi et al., 2014; Wang et al., 2017b; Ye et al., 2014). 

Altogether, we propose that elevated expression of serine genes combining with 

findings from Mrs Zuhal Eraslan work can contribute to key functional properties 

of metabolic regulation of GCs lymphomagenesis in BL. However, additional 

investigation is needed using knockout mouse models for PHGDH to reveal key 

properties of the serine metabolism in these types of lymphomas.  

To examine this concept in more detail I performed GSEA with the aim to 

elucidate the role of metabolic and signalling gene-sets/pathways. As expected, 

BL cases showed upregulation in gene sets relative to c-Myc gene (MYC targets 

V1 and MYC targets V2). More importantly though, this showed upregulation in BL 

of the mTORC1 signalling pathway, which is known to control cell growth and 

metabolism (Laplante and Sabatini, 2012; Valvezan and Manning, 2019). Of 

particular relevance to the previous results, mTORC1 regulates the serine/glycine 

de novo synthesis via gene expression of glycolysis and serine biosynthesis 

pathway (Wang et al., 2017b). Furthermore, GSEA results suggested that the 

DLBCL cases upregulated cellular signalling pathways such as the NFkB, the JAK-

STAT and the KRAS pathways, possibly as a response to inflammation, TNF and 

INFγ signals. Most of these pathways are associated with metabolic readjustments 

in cancer cells facilitated by the tumour microenvironment (Habtetsion et al., 2018; 
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Londhe et al., 2018; Son et al., 2013). Moreover, higher expression of the IDO1 

gene, which is involved in interferon gamma response pathway, possibly protects 

DLBCL tumours from immune response. Evidence suggested that the IDO1 gene 

is responsible for the depletion of the essential amino acid tryptophan in 

kynurenine pathway, leading to immunosuppression (van Baren and Van den 

Eynde, 2015). More importantly, the IDO1 enzyme plays a key role in cancer 

immunosurveillance. When the first malignant cells arise, activated dendritic cells 

(DCs) can secret low levels of the IDO1 enzyme and inhibit tumour growth by 

depleting tryptophan from the tumour microenvironment. In the phase when 

tumour growth escapes from the control of immune system, tumour cells produce 

high levels of IDO1 (Hornyák et al., 2018). The depletion of tryptophan and the 

accumulation of kynurenine, caused by the IDO1 enzyme, lead to 

immunosuppression and immunological tolerance by inhibiting effector T-cell and 

NK cell functions and stimulating regulatory T-cells (Zhao et al., 2012). IDO1 also 

regulates the activation of myeloid-derived suppressor cells (MDSCs), which 

supress the activity of antitumour effector T-cells function (Holmgaard et al., 2015). 

Increased kynurenine levels activate the aryl hydrocarbon receptor (AhR) that 

regulates DCs from immunogenic to tolerogenic (Mellor et al., 2002). Godin-Ethier 

et al. also showed that elevated expression of IDO1 gene in different cancer types 

is associated with unfavourable clinical outcome (Godin-Ethier et al., 2011). 

Overall, the transcriptomic data recapitulate that the BL cases possessed a distinct 

gene expression profile compared to DLBCL, suggestive of altered function of 

metabolism, such as the serine metabolic genes mediated by the mTORC1 
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pathway. On the opposite, DLBCL cases were more dependant to extracellular 

signals either from cytokines (INFγ response) or inflammations that triggers 

activation of cellular signalling pathways to support tumour resistance and 

proliferation (Chen et al., 2018). 

Going beyond the transcriptional differences, multi-Omics integration at the 

pathway level was employed to explore any interactions between genes and 

metabolites in gene metabolic pathways. In analysing the untargeted 1D 1H NMR 

data from the NHL cell lines (from Dr. Farhat Khanim’s lab, prepared by Mrs Zuhal 

Eraslan) we were able to assign and eventually examine 21 metabolites (Appendix 

6). Although, this small number of assigned metabolites restricted the total network 

interactions, we were still able to extract some useful observations contributing to 

the generation of a new experimental hypothesis. Results from these metabolites 

of the NMR data showed an unsupervised separation between the two diseases 

(Figure 3.6A) similar to the one observed with the transcriptomic data. Moreover, 

we found that BL cell lines upregulated non-essential amino acids, possibly 

synthesised from glycolytic intermediates, such as the L-alanine (FDR < 0.001, 

Fold Change = 1.03) and the glycine (FDR < 0.001, Fold Change = 1.02). Cells 

can either import non-essential amino acids from microenvironment or they can 

synthesise them de novo. Glycine uses serine as a precursor for biosynthesis and 

thus elevated glycine in BL may indicate upregulation of serine biosynthesis. As 

mentioned previously, upregulation of serine biosynthetic metabolic genes was 

observed in BL primary tumours but not in BL cell lines. Of relevance to these 
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findings, elevated serine biosynthesis possibly increased glycolysis and 

suppressed OXPHOS (Samanta and Semenza, 2016). In contrast, we observed 

that DLBCL cell lines depended more on L-Glutamine (FDR = 0.0014, Fold Change 

= -1.05) and taurine (FDR < 0.001, Fold Change = -1.04) to increase cell growth 

and modulate inflammatory pathways (Cluntun et al., 2017; Hensley et al., 2013; 

Sartori et al., 2018). 

The integration analysis for both metabolomic and transcriptomic data 

highlighted the alanine, aspartate and glutamine metabolism as the most 

significant pathway (p-value = 0.0013) with the most mapped features. However, 

no direct interactions between significant genes and metabolites were identified in 

this network (Figure 3.8B). Surprisingly, the RIMKLB gene which encodes the 

enzyme β-citrylglutamate synthase B and catalyses the synthesis of β-citryl-L-

glutamate (BCG) metabolite, was upregulated (beta = 4.48, q values < 0.001) in 

BL. The BCG is a dipeptide mostly detected in central nervous system (CNS) and 

in testis, with studies to suggest that act as an iron (Fe) and copper (Cu) chelator 

(Hamada-Kanazawa et al., 2010; Narahara et al., 2010). Both these two metals 

are essential for rapid cellular proliferation and chelators related to them are 

compounds responsible to bind, regulate and detoxify the cells from these metals. 

To date, chelators are under investigation as potential anti-tumour targets for 

cancer therapy (Fryknäs et al., 2016; Gaur et al., 2018; Lee et al., 2016; Lui et al., 

2015). Similar expression to the RIMKLB gene in BL showed the acetaldehyde 

dehydrogenase (ALDH5A1) gene (beta = 1.61, q value = 0.022), which encodes 
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the succinate-semialdehyde dehydrogenase enzyme to produce succinate from 

succinate semialdehyde and NADH. In general, high levels of aldehydes 

dehydrogenases enzymes (ALDHs) were found in several cancers (Dollé et al., 

2012; Kahlert et al., 2012; Kang et al., 2016; Tomita et al., 2016). Although, ALDHs 

detoxify the cells from aldehyde substrates, increasing evidence revealed their key 

role in mitochondrial redox homeostasis regulating the NAD+/NADH ratio 

(Missihoun et al., 2018; Wang et al., 2017a). In BL cells the reduction of NAD+ to 

NADH partially from the activity of the ALDH5A1 is likely to be associated with the 

increased expression of the PYCR1 gene (beta = 2.56, q values < 0.001). As 

previously mentioned, the PYCR1 gene which was found as the most essential 

metabolic gene in PCA, encodes a mitochondrial NADH-oxidising enzyme in 

biosynthesis of proline. This finding is important as it has been recently suggested 

that upregulation of PYCR1 in cancer cell lines lower the NADH/NAD+ which 

retains the TCA cycle activity when ETC flux is limiting (Hollinshead et al., 2018). 

Thus, we suggested that inhibition of the PYRC1 or the ALDH5A1 enzyme may 

act to disturb the mitochondrial redox homeostasis and consequently make these 

BL tumours more vulnerable to current available treatments.  
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CHAPTER 4 

MULTI-OMICS DATA 

INTEGRATION FOR CANCER 

CELL LINES WITH MACHINE 

LEARNING 
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4.1. Introduction 

 So far, we have described multi-Omics data integration to highlight novel 

metabolic genes and pathways related to CLL and Non-Hodgkin lymphomas. Our 

next step was to determine which features (genes and/or metabolites) have a 

predictive value to classify new cases into haematological cancers. However, such 

classification models cannot be constructed from the methods used so far, namely 

Genome Scale Metabolic Modelling nor pathway-based approaches. Nowadays, 

Machine Learning (ML) algorithms have the ability to get trained (or “learn”) from 

the data and build models that are able to accurately assign new cases into a 

specified class. 

 We have also seen that transcriptomics and metabolomics high-throughput 

technologies generate distinct data that capture and explain the biological 

information at different stages of the transition from the genome to the phenotype. 

The integration and analysis of such Omics modalities is not only affected by the 

inherently different biological nature of the data, but it is also influenced by any 

limitations of each Omics platform that generate the data (Leek et al., 2010). An 

additional complexity is that Omics modalities measure millions or tens of 

thousands of features (as known as variables, or dimensions) per sample and thus 

these features have to be combined and analysed in high dimensional spaces. The 

expression “curse of dimensionality”, was introduced to describe the pitfalls of 

analysing data in high dimensional space (Bellman, 2010). Working with such data 
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is demanding for most statistical significance approaches, since these try to extract 

statistical inference from a large number of supposedly independent variables 

when some of these may not be independent (multicollinearity). Furthermore, it is 

also challenging for data visualization, as humans are able to interpret up to three 

dimensions plots. Most ML algorithms can extract the most informative variables 

from high dimensional Omics data that are not always statistically associated with 

the phenotype. Thus, ML approaches are now widely used with Omics datatypes 

to perform dimensionality reduction, feature selection or construct 

classification/regression models. 

 The application of metabolomics in cancer research significantly contributed 

to the understanding of cancer development and progression. However, to date, 

there has been no systematic metabolomic profiling for primary cancer and 

matched normal samples, similar to “The Cancer Genome Atlas Program” (TCGA, 

https://www.cancer.gov/tcga) for Genomics, which has characterized genomic, 

epigenomic, transcriptomic and proteomic data for over 80,000 primary cancer 

samples. The absence of such systematic effort to characterize the metabolic 

profile of primary samples, together with difficulties associated with identifying 

metabolites from NMR and MS spectra, restricts most metabolic studies to use 

cancers cell lines as a model to investigate cancer metabolism. In cancer research, 

several studies have already used machine learning approaches to integrate 

Omics data from cancer cell lines and construct computational models for 

biomarker discovery or for drug response predictive models (Garnett et al., 2012; 
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Geeleher et al., 2014; Stransky et al., 2015). Cancer cell lines have served as a 

valuable tool for in vitro modelling since 1951, when the first cancer cell line 

established from patient’s tumour cells that were capable to grow in vitro for 

prolonged periods (Scherer et al., 1953). Today, thousands of human and animal 

cell lines have been formed with Omics profile data acquired and stored in well-

organised databases. One of the most significant efforts to collect the profile for 

1457 cell lines is the Cancer Cell Line Encyclopaedia (CCLE) project (Barretina et 

al., 2012). The CCLE provides public access to datasets on gene expression, 

mutation, miRNA, copy number variations and drug sensitivity for most cell lines 

and thus it is an ideal source of well-structured and complete datasets for multi-

Omics integration studies. So far, studies have explored CCLE datasets with a 

diversity of  machine learning algorithms, such as elastic net regression (Jang et 

al., 2013), random forest (Berlow et al., 2014), support vector machine (Dong et 

al., 2015) and dual layer network (Zhang et al., 2015). In addition, deep learning 

approaches were also used with these datasets to integrate Omics data with drug 

sensitivity measurements (Ding et al., 2018; Li et al., 2019b; Zhao et al., 2019). 

Most of these studies depend on multi-Omics integration to build prediction models 

for drug response, however none of them has used machine learning approaches 

to explore metabolism. A recent study has released the metabolic profile of 928 

CCLE cell lines, which contains measurements for 225 metabolites with liquid 

chromatography-mass spectrometry (LC-MS) (Li et al., 2019a). Li et al. have 

effectively applied the statistical method of linear regression analysis to identify 

associations between genetic (mutation, copy number variation and RNAseq data) 
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and metabolic features. 

 These high-quality, comprehensive metabolomic data can highlight the 

metabolic diversity between haematological and other cancer types and reveal 

association dependencies across the cell lines, which can lead to the discovery of 

new anti-cancer metabolomic targets. Therefore, we integrated transcriptomic and 

metabolomic data from CCLE using ML approaches to explore associations 

between gene expression and metabolites that are related to haematopoietic 

cancer cell lines. Taking into consideration the impact of environmental factors in 

cell’s metabolic response, we have selected only 427 cell lines which grow under 

the same media condition. We started by performing dimensionality reduction in 

both unique and integrated Omics datasets with popular unsupervised ML 

approaches to explore the heterogeneity of cancer cell lines. After revealing the 

distinct transcriptomic and metabolic profiles of haematopoietic cell lines, we 

utilised a supervised learning approach to integrate Omics data and construct a 

classification model that identifies highly correlated or co-expressed genes and 

metabolites associated with haematopoietic cell lines.  
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4.2. Materials and methods 

4.2.1. Omics datasets 

 Publicly available transcriptomic and metabolomic data were retrieved from 

the CCLE database (https://portals.broadinstitute.org/ccle/data). Out of the 1,457 

cancer related cell lines in the database, 891 cell lines were chosen for having both 

transcriptomic (1019 cell lines) and metabolomic (928 cell lines) profiles. From 

those a total number of 427 cell lines were selected based on their ability to grow 

under common culture media conditions (RPMI1640 plus 10% foetal bovine serum 

(FBS)). 90 cell lines were classified as haematopoietic cell lines (leukaemia, 

lymphomas, and multiple myeloma) and the rest as other tumour cell lines 

belonging to 15 different cancer types, including lung, skin and colon cancers to 

name a few (Appendix 11). Despite transcriptomic profiles from microarrays and 

RNAseq data were available, we retrieved only the RNAseq data due to higher 

sensitivity and specificity of the method (Zhao et al., 2014). Then, the 

corresponding transcripts per million (TPM) values for 52,173 genes were quantile 

normalised with the affy 1.66 R statistical package and log transformed. Similarly, 

LC-MS metabolomic data with intensities for 124 polar and 101 lipid metabolites 

were used for the integration analysis with the RNAseq data. The curated LC-MS 

data (Li et al., 2019a) were used here, meaning that these data had already been 

normalised by median, log transformed and scaled. For scaling raw metabolomic 
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data across samples, pooled 20 samples composed of mixed metabolites from 11 

cell lines (NCIH446, DMS79, NCIH460, DMS53, NCIH69, HCC1954, CAMA1, 

KYSE180, NMCG1, UACC257 and AU565) were used as a reference. The peak 

area for each metabolite in each sample was standardized by computing the ratio 

between the value observed in the sample and the value observed in the “nearest 

neighbour” pooled sample. These ratios were then multiplied by the mean value of 

all reference samples for each analyte to obtain standardized peak areas. To 

concatenate the Omics data for the integration analysis both datasets were 

organised in matrices with the rows being the cell lines samples (in the same order 

and number of rows) and the columns the features (either genes or metabolites) 

measured from each individual Omics technology. Concatenation of the two Omics 

datasets by columns was done in Python 3.7.4 scripting language using the 

np.concatenation function of numpy library.  

4.2.2. Dimensionality reduction with machine learning 

 We applied unsupervised learning to reduce dimensions and explore each 

Omics datatype separately as well as in an integrative multi-Omics fashion (Figure 

4.1A). For comparison reasons, three commonly used dimensionality reduction 

techniques were employed: Principal Component Analysis (PCA) (Tipping and 

Bishop, 1999), t-Distributed Stochastic Neighbor Embedding (tSNE) (van der 

Maaten and Hinton, 2008) and Uniform Manifold Approximation and Projection 
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(UMAP) (McInnes et al., 2018). These analyses were performed in Python 3.7.4 

scripting language. Multi-Omics integration of the data itself was achieved by 

concatenating the RNAseq with the LC-MS matrices into a big matrix. Then, the 

linear dimension reduction method of PCA was first implemented with the 

sklearn.decomposition.PCA class from the python library scikit-learn 0.21.3. 

Similarly, the class sklearn.decomposition.tSNE was used for the non-linear 

method tSNE and the python library umap 0.4 for the UMAP method, which is also 

a non-linear dimension reduction approach.  
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Figure 4.1. Overview of Omics integration analysis with CCLE datasets. Two 

independent approaches (unsupervised and supervised learning) were applied to 

explore each Omics datatype separately and in an integrative multi-Omics concept. 
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4.2.3. Supervised Omics integration with sPLS-DA 

4.2.3.1. Principle of sPLS-DA 

 So far, we have used PCA as a method to reduce data’s dimensions but 

also retain the most vital information. We can achieve this with PCA by projection 

into linear combination of new variables, known as latent variables or components. 

Similar to PCA, the Partial Least Squares Discriminant analysis (PLS-DA), which 

is based on the Partial Least Squares (PLS) regression method, also projects the 

data into PLS-components. However, instead of maximizing the variance of 

components like PCA does, PLS-DA maximises the covariance between PLS- 

components from two datasets (Wold et al., 2001). Thus, PLS-DA is often used in 

a supervised manner by combining quantitative with qualitative matrices. To define 

PLS-components, PLS-DA calculates coefficients for each data variable, known 

as loading vectors. Loading vectors demonstrate the importance of each variable 

in PLS-components and they can be used for feature selection and classification. 

An extension of PLS-DA is the sparse PLS-DA (sPLS-DA) which introduce the 

LASSO penalties (or else L1 regularization) (Lê Cao et al., 2011) to loading vectors. 

It enables the generation of a sparse model (a simpler model that shrinks loading 

vectors defining the PLS-components to zero) that selects simultaneous features 

from Omics datasets discriminating for classes (Singh et al., 2016). Here, we have 

used the sPLS-DA method to integrate Omics data and extract the most important 

features that discriminate haematopoietic cell lines from the other tumour cell lines. 
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4.2.3.2. Pre- select essential features from Omics datasets. 

 Prior to the use of sPLS-DA, each Omics dataset needs to be filtered in 

order to select the most informative features and consequently reduce the 

variables building a less complex model, which is more interpretable and 

computationally efficient during the next step of tuning parameters (Rohart et al., 

2017; Singh et al., 2016). Dealing with the high dimensional RNAseq data, the 

elastic net regularization method (a combination of L1 and L2 regularization) from 

glmnet 4.0 R statistical package (Simon et al., 2011) was applied to select 81 

genes as the most essential variables/features for the integration analysis 

(Appendix 12). Furthermore, univariate feature selection was applied to the LC-

MS metabolomic data with the R function cor.test for the non-parametric Spearman 

correlation method. Correcting for multiple testing with False Discovery Rate, a 

cut-off of 0.05 (FDR < 0.05) was used to select 188 metabolites as the most 

significant related to haematopoietic cell lines (Appendix 13). 

4.2.3.3. Construction process of the predictive multi-Omics model 

 Omics data were concatenate into a matrix X and used as an input to a typical 

machine learning setup: Y=f(X). The Y vector is the class label for haematopoietic 

or other cancer cell line and the function f() is the classification rule learnt from the 

sparse PLS-DA algorithm (Figure 4.1B). The DIABLO method from the mixOmics 

6.10.9 R package (Rohart et al., 2017; Singh et al., 2016) was employed to 



 

149 

 

implement sPLS-DA as previously described. DIABLO is partly based on the 

Generalised Canonical Correlation Analysis (Tenenhaus et al., 2014) to multiple 

match datasets. Firstly, the initial dataset of 427 cell lines was split into a training 

set (60 haematopoietic and 224 other tumours cell lines) and a testing set (30 

haematopoietic cell lines and 114 other tumours cell lines). A five-fold cross-

validation with 50 repeats was performed without variable selection to assess the 

overall performance of the model and select the best hyperparameters. 

Hyperparameters are parameters set to configure the structure of the model prior 

to the training. PLS-DA requires an optimal number of PLS components and an 

optimal number of features to be extracted from the loading vectors of each PLS-

components. The classification error rates with both Mahalanobis and maximum 

classification distances were computed to select the number of optimal 

components for the final model as suggested by the tool authors (Rohart et al., 

2017; Singh et al., 2019 and their tutorial: https://mixomicsteam.github.io/ 

Bookdown/plsda.html#tuning:sPLSDA). The Balanced error rate (BER) represents 

the average proportion of wrongly classified samples, weighted by the total number 

of samples in each class and thus is suitable for our study since the number of 

haematopoietic cell lines is much lower than the other tumour cell lines. Once 

again, we run a five-fold cross validation repeated 50 times under the assumption 

of a strong correlation between features and cancer types to extract the average 

number of features on each component across all folds and repeats as the optimal 

number of features to be extracted from the final model. After selecting the 

hyperparameters, the final and tuned sparse PLS-DA model was constructed. The 



 

150 

 

LASSO algorithm selected the most essential features from the loading vectors of 

the selected components in each Omics data. Results were displayed with a 

relevance network, which represents the correlation structure between genes and 

metabolites. Finally, the data testing set was utilised to assess the classification 

performance of the final PLS-DA model with a confusion matrix and the area under 

the ROC (Receiver Operating Characteristic) curve method. 

4.3. Results 

4.3.1. Reducing dimension in Omics datasets 

 We first employed the most common unsupervised algorithms for 

dimensionality reduction to visualise any interesting aspects in single and 

integrated Omics data. We started with the PCA approach as fully presented in 

chapter 3. Results from PCA showed the first principal component (PC1), which 

contains most of the data variation in RNAseq (13%), LC-MS (24%) and integrated 

Omics data (16%), to clearly separate the haematopoietic cell lines from the other 

types (Figure 4.2A1-A3). However, PCA performs poorly when integrating 

unbalanced scaled datasets, where the features of one dataset are measured on 

a different scale (or range of values) than the features of the other. As a 

consequence, the datasets do not contribute equally to the model fitting, where the 
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higher values dominate in PCA over the other dataset, such as in our case where 

the RNAseq data dominates over the LC-MS data. One method to overcome this 

limitation is to re-scale the distributions by using the ratio of the distance of each 

value from the minimum value in each dataset to the range of values in each 

dataset: (x – min) / (max – min). This feature scaling approach fits the distribution 

of each dataset on a scale between 0 to 1, however such an approach was not 

applied in our analysis. Thus, performing PCA for integrative Omics datasets 

serves mostly for illustration purposes. Due to PCA limitation in preserving any 

non-linear structure of the data and tendency to select samples with large pairwise 

differences to maximise the variance, the tSNE approach was also applied here 

as an alternative to PCA. As expected, tSNE achieved clearer separation and more 

dense groups between different types of cell lines compared to the PCA method. 

This is because tSNE is primarily designed to preserve small pairwise differences 

by bringing together the neighbouring samples. In other words, tSNE preserved 

the local structure of the data which resulted in clearer groups and visualised better 

in 2D-plots the heterogeneity of single and integrated Omics data (Figure 4.2B1-

B3). More specifically, both in RNAseq and integrated Omics datasets tSNE not 

only separated the haematopoietic cell lines, like PCA did, but also distinguished 

groups among leukaemia, lymphomas and multiple myelomas cell lines (Figure 

4.2B1, B3). However, tSNE is designed to preserve the distance within rather than 

between the groups, known as the global structure of the data. To tackle this issue, 

the recent dimension reduction method of UMAP was also applied. UMAP not only 

captures the local structure of the data similar to tSNE, but it preserves non-linear 
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distances on a global scale (Becht et al., 2019; McInnes et al., 2018). Here, UMAP 

was used for exploratory data analysis and it was also compared visually against 

PCA and tSNE. Consequently, plotting UMAP components showed even more 

distinct and tight groups between cancer types of the cell lines compared to 

previous methods (Figure 4.2C1-C3). Furthermore, UMAP strongly highlighted 

that haematopoietic cancer cell lines were dissimilar from the other types both in 

transcriptome and metabolome level. 



 

 

 

Figure 4.2. Dimensionality reduction in CCLE Omics datasets. Dimensionality reduction applied with a series of 

unsupervised algorithms: PCA, tSNE and UMAP for single and integrated Omics data.



 

 

4.3.2. Supervised analysis for Omics integration 

 We have previously shown that haematopoietic cell lines possess a distinct 

transcriptomic and metabolic profiles compared to other types of cancer cell lines. 

We then turned to apply multi-Omics integration using a supervised approach, as 

reported in previous studies (Gromski et al., 2015; Koenig et al., 2018; Lê Cao et 

al., 2011; Singh et al., 2019), to identify highly correlated genes and metabolites 

related to haematological cancer cell lines. As a pre-processing step, feature 

selection was applied to each Omics datatype individually to address the issues of 

curse of dimensionality and multicollinearity. Feature selection significantly 

reduced the variance from the high-dimensional RNAseq data by selecting the 81 

most essentially expressed genes to be used for the integration analysis. Similarly, 

the non-parametric Spearman correlation test was used with the LC-MS data to 

evaluate the relationship between each individual metabolite against the types of 

cancer cell lines and identified 188 metabolites related to the haematopoietic cell 

lines. 

 The reduced RNAseq and LC-MS datasets were concatenated into a matrix 

X and used as an input to the sPLS-DA method together with a class vector Y 

representing the cancer types (Figure 4.1B). Due to the relatively low number of 

samples, input data were split into a training set (284 cell lines) to build the PLS-

DA classification model and a testing set (143 cell lines) to evaluate the 

classification performance of this model. Tuning hyperparameters for the final 

model with cross validation the algorithm predicted the first 9 PLS-components 
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(n=9) as the optimal number of components for the final model. As shown in Figure 

4.3A, both classification distances for BER seems to reach a plateau/low error rate 

(BER=0.055 for Mahalanobis distance) at the 9th PLS-component to achieve good 

performance for the model. Furthermore, the table in Figure 4.3B summarises the 

average number of features across all folds and repeats for each pair of selected 

PLS-component to be used downstream in the final model.   
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Figure 4.3. Tuning hyperparameters. (A) The overall and Balanced classification 

error rate were calculated with Mahalanobis and maximum classification distances 

from a five-fold cross-validation with 50 repeats to select the optimal number of 

PLS- components. (B) Similarly, a five-fold cross validation with 50 repeats 

calculated the average number of featured per PLS-component for each datatype 

to be extracted from the final model. 
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Selecting these hyperparameters, we run the final sPLS-DA to identify strong 

relationships between genes and metabolites based on constrains with the PLS-

components (Figure 4.1). sPLS-DA generates a pair of components each 

associated to each Omics dataset. Each individual Omics datatype was examined 

to assess for any similarities between the sample cell lines in the reduced 

dimensional space spanned by the first two PLS-components. As illustrated with 

other unsupervised methods (Figure 4.2), sPLS-DA also discriminated the 

haematopoietic cell lines from the other cancer cell lines on the 1st PLS-component 

both in RNAseq and LC-MS data (Figure 4.4A). Both RNAseq and LC-MS features 

with the highest loading scores for the 1st PLS-components drive the separation 

between haematopoietic cell lines and other tumour cell lines. The selected genes 

for the 1st PLS-component based on their loading scores in the RNAseq data were: 

AC004687.1, WAS, IKZF1, CD53 and GMFG. Likewise, the loading scores for the 

1st PLS-component from the LC-MS data highlighted the metabolites: xanthine, 

creatine, C20:4 CE, oxalate, C16:0CE and phosphocreatine; as the most important 

metabolites to maximise the correlation between Omics and the separation 

between classes (Figure 4.4B). Interestingly, all the selected genes for the 1st 

PLS-component were highly expressed in haematological cancers. By observing 

the metabolites, only oxalate was upregulated in haematological cancers, while all 

the other metabolites for the 1st PLS-component of the LC-MS data were highly 

abundant in other cancer types. Interestingly, two cholesterol esters (CEs) the 

C20:4CE (also among the top 3 metabolites with Spearman correlation, Appendix 
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13) and the C16:0CE were among the most important metabolites related to solid 

tumours based on the loadings scores of the 1st PLS-component.   
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Figure 4.4. Omics integration at PLS-components level. (A) Cell lines are 

plotted for the first two PLS-components in different Omics datasets. (B) 

Expression of features as presented from the loading scores of the firsts PLS-

components. 

 Moreover, the final sPLS-DA model extracted the most informative features 

from all the 9 PLS-components that we set as optimal prior to modelling. The 

algorithm computes similarity scores (González et al., 2012) that are analogous to 

Pearson correlation coefficients to represent correlations within features of 

different Omics. Here, we examined the 66 most essential correlations between 

the extracted genes and metabolites using a correlation cut-off of r > |0.7| as 

previously used in other studies (Rohart et al., 2017; Singh et al., 2016), and we 

presented them together with the average expression value of each feature 

(Figure 4.5A). In general, we observe that 24 genes with higher expression in 

haematopoietic cell lines were negatively correlated with 8 metabolites (Appendix 

12). The AMOTL2 gene, which showed higher expression in other tumour cell lines, 

was positively correlated with xanthine and negatively correlated with C36:1PC 

lipid metabolite. Furthermore, the xanthine, creatinine and betaine, which 

presented lower levels in haematopoietic cell lines, were positively correlated with 

14 genes that were also downregulated in haematopoietic cell lines (Appendix 14). 

 Figure 4.5A is quite informative about correlation within features and 

between Omics, however it is still hard to interpret associations between features 

with more than one pair of correlations. An alternative representation of the same 
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results is with a relevance network (Figure 4.5B), which visualises correlations of 

the extracted features in a pairwise fashion. To simplify the network and highlight 

the strongest associations between genes and metabolites we generated a second 

relevance network setting the correlation cut-off at r >|0.8| (Figure 4.5C). We 

identified strong negative correlations among the genes WAS, AC004687.1, CD53, 

IKZF1, RHOH, DOCK2 and GMFG with creatinine and xanthine metabolites. 

Strong positive correlations were calculated between xanthine and the FKBP9 and 

TJP1 genes separately. The TJP1 gene was also strongly positive correlated with 

the creatinine metabolite. Similar strong correlation was observed between the 

lipid metabolite C46:2TAG and the AL161932.3 and OR4C7P pseudogenes.  
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Figure 4.5. Correlations among the most informative features. (A) Important 

correlations (r>0.7) between all the extracted features from the pairs of the 13 PLS-

components. (B) Relevance network depicting correlated (r>0.7) genes and 

metabolites. (C) Relevance network presenting stronger correlations (r>0.8). 
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 After training the final sPLS-DA model, we used the testing set of the 143 

cell lines to independently evaluate the classification performance of the final 

model by predicting which of these cell lines derived from haematological cancers. 

The confusion matrix outlined in Figure 4.6A summarises the number of cell line 

in each class as predicted from the 1st PLS-component of the final sPLS-DA model. 

Out of the 30 haematopoietic cell lines in the testing set, the model correctly 

classified 27 (27 true positives), none were incorrectly classified (0 false negative) 

and for 3 cell lines (WSUDLCL2, KMS34, L1236) the classes were not predicted 

(NA) by the model. Similarly, out of the 113 cell lines that derive from other tumours 

98 were correctly classified (98 true negatives), again none of them were 

incorrectly classified (0 false negatives) and 15 cell lines could not be determined 

(15 NA: NCIH2291, HCC1187, NCIH146, NCIH82, NCIH508, GSS, SNU283, 

NCIH2347, CADOES1, NCIH1930, SNU878, SNU1214, CORL24, NCIH2444 and 

HCC2218). Overall, the final model generalises well as it showed a good 

classification performance with the testing set of the data achieving an accuracy 

(true positives + true negatives / total number of cell line samples) of 87% and a 

BER of 11%. 

 Finally, to assess the predictive performance of the extracted genes and 

metabolites from the 1st PLS-component in each Omics, the area under the ROC 

curve (AUC) was calculated individually. Both the selected genes and metabolites 

seemed to be good classifiers (AUR = 0.99 and AUR=0.91, Figure 4.6B,C) for 

predicting haematological cancers. 
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Figure 4.6. Prediction performance of the final PLS-DA model. (A) A confusion 

matrix compares the real with the predicted classes in the testing set. (B) and (C) 

the area under the ROC curve (AUC) was computed to assess the prediction 

performance of the extracted features for the 1st PLS-component in each Omics.  
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4.4. Discussion 

 In previous chapters we showed that a critical feature of CLL and NHL cells 

is alterations along metabolism to sustain lymphomagenesis. However, it did not 

address how different these metabolic alterations were compared to other tumours. 

To investigate the metabolic diversity between cancer types, we analysed the 

transcriptomic and metabolic profiles from cancer cell lines retrieved from the 

CCLE database. High-dimensional RNAseq and LC-MS data were explored by 

analysing them separately and integrating them together. Firstly, we reduced 

dimensions to address for data complexity and highlight the main source of data’s 

variation. We applied a series of well-established unsupervised machine learning 

methods for dimensionality reduction and explore the linear (with PCA) or non-

linear combination (with tSNE or UMAP) in each datatype, by preserving either the 

local (with tSNE or UMAP) or global structure (with PCA or UMAP) of the data. We 

have avoided considering one method better than the other, since mapping a high-

dimensional data into low dimensions significantly reduces with each method 

differently the whole structure of the data. There is always a trade-off of with 

different methods having different advantage/drawbacks, therefore we have 

decided to explore and visualize the data with all common approaches. Confirming 

observations of the initial study (Li et al., 2019a), all our methods revealed that 

haematopoietic cell lines were the major source of variation in both RNAseq and 

LC-MS datasets (Figure 4.2), suggesting that haematological cancers are 
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transcriptionally and metabolically distinct from the other cancer types. In line with 

literature, the majority of cancer cells tend to form solid tumours mostly affected by 

the tumour microenvironment  (Paolicchi et al., 2016; Pires et al., 2012; Zhao et 

al., 2018). On the contrary, haematological malignant cells derive from the highly 

dynamic environments of the bone marrow or the lymph nodes and most of them 

are circulating in the circulatory system (Gharbaran et al., 2014; Mulder et al., 

2019; Pedersen et al., 2013; Scott and Gascoyne, 2014). Moreover, despite 

contrasting opinions on whether tSNE or UMAP is the most preferable method to 

preserve the global structure of the data (Becht et al., 2019; Kobak and Linderman, 

2019), here both methods clearly separated groups of distinct cancer types, 

separating even different types of haematological cancers (Figure 4.2B,C). 

However, visualizing UMAP results in 2D scatter plots were more easily interpreted 

than tSNE results, since UMAP achieved more distinct groups compared to tSNE, 

even for the integrative datasets. Therefore, UMAP is suggested here to better 

segregate clusters both in biological and integrated datasets. This observation is 

in accordance with Kobak and Linderman findings, where UMAP produced denser 

and more compact clusters than t-SNE, with more white space in between (Kobak 

and Linderman, 2021). They have computed Pearson correlation between 

pairwise Euclidean distances in three different datasets to quantify preservation of 

global structure, like Becht et al. (Becht et al., 2019). This quantification was used 

as a default metric to measure the distance between two points without considering 

correlated variables, such in our case between LC-MS and RNAseq data, and 

therefore was not computed in our analysis. Further machine learning analyses 
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are needed in combination with functional experiments to highlight the 

mathematical and algorithmic difference of all methods and prove which one is 

more informative for the biological data. Although, such comparison is quite 

challenging to be measured, the Mahalanobi’s distances can be used in future 

studies as a metric to quantify preservation of global structure in correlated 

datasets. In general, we observed that dimensionality reduction with integrated 

multi-Omics data, independently of the method applied, seemed to be more 

informative visually than analysing the LC-MS data alone, but not from the RNAseq. 

After illustrating the transcriptomic and metabolic heterogeneity of cancer 

cell lines, we focused on the identification of key associations between the most 

essential genes and metabolites that were responsible to discriminate the 

haematopoietic cell lines from the other tumours. Hence, we applied the 

supervised method of sPLS-DA, which selects and calculates correlations 

between the most important features by maximizing the separation between 

classes in the reduced dimensional PLS space. We identified a pattern of genes 

and metabolites (Figure 4.4B) discriminating haematopoietic cancer cell lines from 

the other tumours on the 1st PLS-component. By examining the expression of the 

selected genes, we observed that all of them showed higher expression in the 

haematopoietic cell lines. Most of these genes (WAS, CD53, IKZF1 and GMFG) 

are proven to predominantly be normally expressed in haematopoietic cells 

(Greenberg et al., 2020; Marke et al., 2018; Shi et al., 2006; Sun et al., 2019). An 

interesting finding is the elevated expression of the AC004687.1 transcript in 
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haematopoietic cell lines. Although, expression in haematopoietic cell lines has not 

previously been reported, the regulatory role of this novel lncRNA is undefined. 

Next, focusing on the selected metabolites, oxalate was elevated in 

haematopoietic cell lines, while all the rest of the metabolites were more abundant 

in other tumours. Oxalate is a metabolic end product, primarily of hepatic 

metabolism, which is excreted into the urine (Greger et al., 1978). Oxalate has an 

important role regulating the homeostasis of divalent ions, which are structural and 

functional co-factors for many biochemical interactions. Evidence in immune cells 

revealed signalling functions, as secondary messengers, for divalent ions, such as  

Ca2+,  the Mg2+ and the ZN2+ (Chaigne-Delalande and Lenardo, 2014; Kaltenberg 

et al., 2010; Li et al., 2011). In addition, Castellaro et al. have associated oxalate 

with carcinogenic effects in breast epithelial cells (Castellaro et al., 2015). However, 

questions still remain whether oxalate, as an ion, or calcium oxalate, which is more 

abundant in the human body, is responsible for inducing breast cancer. Taken 

together, it will be of importance to examine the role of oxalate, as a second 

messenger, to promote cancer in haematopoietic/immune cells. As a start, 

treatment with both calcium oxalate and potassium oxalate (highly soluble) 

separately, can be compared by measuring proliferation (with cell proliferation 

assays) in haematopoietic cell lines. In vivo experiments in mouse models are also 

required to demonstrate oxalate’s capacity to induce haematopoietic cancers in 

such models. In contrast, higher levels of creatinine and phosphocreatine found in 

several other tumours, especially in oesophagus cells, indicated a potential 

dependency of these cell lines on creatine metabolism to fuel their energy 
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demands. Both these metabolites are derived from creatine, which is well known 

to be a high energy metabolite for fast production of ATP (Wyss and Kaddurah-

Daouk, 2000). Similarly, xanthine accumulated mostly in endometrial, ovarian and 

other cancer cell lines and presented lower levels in haematopoietic cell lines. 

Xanthine is involved in purine catabolism and it is metabolised to uric acid by the 

xanthine oxidoreductase enzyme. High levels of this enzyme are normally 

expressed in tissues, where cell lines with abundant levels of xanthine derive from 

(liver, breast, colon and kidney) (Battelli et al., 2016). Most importantly, both 

xanthine and creatinine were strongly associated with genes related to cellular 

cytoskeleton, presenting negative correlations with actin remodelling genes (WAS, 

GMFG and DOCK2) and positive correlations with cell adhesion genes (TJP1, 

AMOTL2 and CTNND1). Moreover, two cholesterol esters (CEs), the C20:4CE and 

the C16:0CE were elevated in solid tumours compared to haematopoietic cell lines. 

CEs are formed by the esterification of cholesterol with long chain fatty acids linked 

to a hydroxyl group, as a mean either to store cholesterol intracellularly or to 

transport cholesterol trough the blood stream (Tosi and Tugnoli, 2005). Cholesterol 

is a critical component of the plasma membrane and intracellular levels of 

cholesterol are regulated by several metabolic processes, whose equilibrium is 

altered in cancer (as previously discussed in section 2.4 of chapter 2). Here, our 

observation of elevated CEs in solid tumours is in accordance with several studies 

that have reported increased levels of CEs in breast cancer (de Gonzalo-Calvo et 

al., 2015), pancreatic cancer (Li et al., 2016b) and prostate cancer (Lee et al., 

2018; Yue et al., 2014). All of them suggest targeting cholesterol esterification as 
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a strategy to supress tumour growth. Overall, all these findings generate several 

questions for future studies to investigate the regulatory role of metabolism in 

cancer cells cytoskeletal rearrangements. As a first step, validation of gene 

expression results is required with RT-PCR analysis and examination for protein 

expression with Western Blot Analysis, as previously described in section 2.4. It 

will be of importance to investigate primary tumour samples for similar association 

dependencies in transcriptome and metabolome level among cancer types. 

Although, transcriptomic data are available in TCGA, the unavailability of 

metabolomic profiling data for primary tumour samples restricts such investigation. 

Finally, despite the fact that this pattern of features presented a good classification 

performance (accuracy 87%) with the current datasets (testing set), additional 

studies are also needed to demonstrate their predictive ability in primary tumours 

and clarify their role as potential biomarkers.  
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CHAPTER 5 

CONCLUSION 
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5.1. Multi-Omics integration in haematological 

cancers 

This thesis presents work undertaken to highlight aspects on the expanding 

field of cancer metabolic reprogramming in haematological cancers. It is driven by 

the computational approach on multi-Omics data integration with practical 

application to CLL (chapter 2), GC-derived lymphomas (chapter 3), and cancer cell 

lines (chapter 4). Finally, we unveil the power of integrative methodologies based 

on Genome Scale Metabolic Modelling (GSMM), pathway level, and Machine 

Learning approaches to identify novel biological insights and predict metabolic 

vulnerabilities in these cancers. 

5.2. Omics integration with GSMM in CLL. 

CLL is a disease with a wide clinical and biological heterogeneity that 

putatively relies on resistance of malignant CLL cells in apoptosis. The clinical 

outcome of CLL patients ranges from progressive CLL cases, where the malignant 

cells vastly proliferate and do not die; to indolent CLL cases, where the malignant 

cells are in a quiescent state; or rare spontaneous regression cases, where the 

high number of malignant cells decrease over time. Although, extracellular signals 

and BCR signalling is highly responsible for the malignant transformation and the 
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transition of CLL cells across these phenotypes, in chapter 2 we revealed with 

Differential Expression Analysis and Metabolic modelling the contribution of 

metabolic reprogramming in CLL towards these regulations. Results from 

differential expression analysis showed deregulated expression of metabolic 

genes and pathways between spontaneous regression cases versus non-

regression CLL cases. Non-regressed CLL cells presented a differential reliance 

on oxidative phosphorylation and mitochondrial respiration compared to 

spontaneous regressed cells. Going beyond gene expression results, we 

simulated the metabolic fluxes by integrating the CLL transcriptome profiles with 

GSMMs using two independent computational approaches. The rMTA method 

highlighted the sulfate anion transporter SLC26A1 as highly responsible to 

transform the non-regression metabolic flux state to a regression state (see 2.3.3). 

Additionally, the second method of gMCSs identified several genes (AK1, GUK1, 

FDFT1, MVD, PTPMT1 and GNE) in CLL as potential metabolic targets. The 

gMCSs method selects elevated genes which belong to a minimum subset with 

lowly expressed genes, whose simultaneous knockout blocks biomass production. 

Although, both approaches have predicted several genes as a metabolic 

vulnerabilities in CLL, each one provides unique opportunities to investigate 

metabolism. In this context, the main advantage of using the rMTA approach, is 

the metabolic reconstruction and comparison of two different metabolic states 

(regression versus non-regression state). Instead, the gMCSs approach gives the 

opportunity to extract subset of genes related to a given metabolic task, such as 

the biomass production in our study to explore synthetic lethality in CLL. 
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These findings highlighted the key role of metabolic reprogramming and 

suggested the possibility of targeting several metabolic genes in CLL. Further 

experiments and functional analyses, discussed in more details in section 2.4, will 

be required to validate these metabolic targets. However, several limitations 

affected the results of this study. Firstly, we examined only alterations in gene 

expression profiles, and we inferred that any changes in mRNA levels may 

resemble changes in protein and metabolite levels. However, several post-

translational modifications and other metabolic regulations appear to affect the 

expression and activity of metabolic enzymes, which need to be further explored 

in future studies. Therefore, it is important to acquire proteomics and metabolomics 

datasets and integrate them with the transcriptomic to better understand metabolic 

alterations in CLL. Secondly, additional limitations are inherent to the integration 

analysis with GSMMs. As described in paragraph 1.4.3.1, GSMMs are 

computational models constructed based on gene-protein-reaction (GPR) 

associations and thus are limited in the established scientific knowledge of their 

time. Therefore, any GSMM approach is unable to detect and examine any new 

interactions or associations between metabolic features that are not present in the 

initial model. Therefore, both rMTA and gMCSs analyses should be repeated in 

the future using the current or a new CLL dataset with the updated GSMM model 

of human metabolism to explore novel interactions that will be included in the 

updated model. Moreover, the next step will be to prove our predictions and 

validate any changes in the mRNA and protein expression level, such as the 

expression of the sulfate anion transporter SLC26A1. To achieve this, functional 
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experiments with the RT-PCR and the Western blot technology, highlighted also 

in section 2.4, are required to be performed in malignant cells from the same CLL 

patients and be compared with cells from normal hematopoietic tissues from 

donors. However, such additional experimental step would add a complexity to 

track and recruit the same patients again. Although, we have used here the largest 

cohort of spontaneous regressed CLL cases for our analysis, a study with a larger 

cohort of CLL cases could provide a more powerful validation. 

Despite these limitations, we believe that by understanding the metabolic 

reprogramming in indolent, progressive and regression CLL status, novel 

metabolic targets will emerge for new therapeutic interventions, such as those 

described in subsection 1.2.5. 
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5.3. Pathway based integration in GC-derived 

lymphomas. 

Non-Hodgkin Lymphoma (NHL) represent most of the mature B-cell 

neoplasms with the aggressive subtypes being rapidly fatal if remain untreated. 

Both Burkitt Lymphomas (BL) and Diffuse Large B-cell Lymphomas (DLBCL) are 

aggressive NHL that originate from germinal centres (GCs) malignant B-cells and 

display a broad spectrum of genomic, epigenetic and metabolic profiles.  In chapter 

3 we highlighted metabolic properties in NHL related to the germinal centres’ 

development. Although, a q-value threshold of 5% is commonly used in 

transcriptomic analyses, a stricter threshold (less than 1%) was selected for the 

differential expression analysis in chapter 3 and a weaker threshold (less than 

10%) in chapter 2. By comparing two different cancers types of the same cell origin, 

such as BL and DLBCL, results in a relatively large number of differentially 

expressed genes. Therefore, a threshold of 1% was applied to minimize false 

positive results and try to capture the most significant transcriptomic differences 

between the two cancers. On the contrary, the less strict threshold of 10% was 

applied in chapter 2, where different conditions of the CLL diseases were analysed. 

Thus, we decided to investigate more differentially expressed genes with even less 

significant differences between the CLL conditions. More specifically, in chapter 3 

we suggested that BL cells rely more on the mTORC1/serine/glycine axis probably 

to enhance the cells’ antioxidant ability and support their growth and proliferation. 
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DLBCL cases on the other hand, seemed to be more dependent on extracellular 

signals to alter their metabolism and escape immune response. Furthermore, to 

explore any interactions between genes and metabolites in gene metabolic 

pathways, integration analysis at the pathway level was applied with Omics 

datasets from cell lines. Pathway-based integration analysis provides a useful 

visual interface to explore features not only in metabolic pathways, like GSMM 

methods do, but also investigate signalling and drug related biological pathways. 

As explained in subsection 3.3.5, results from integrative analysis suggested that 

BL cells may depend more on non-essential amino acids to support and maintain 

the mitochondrial redox homeostasis compared to DLBCL cells. In line with this 

current work, Mrs Zuhal Eraslan (Dr. Farhat Khanim and Prof. Ulrich Günther) 

findings highlighted the serine production and uptake in NHL cell lines. More 

specifically, Mrs Zuhal Eraslan implemented a tracer-based approach to examine 

the role of serine by the presence of asparagine. Next, inhibition of the serine 

PHGDH enzyme was performed in combination with asparaginase (ASNase) to 

examine the impact of this intervention in cell viability assays. Preliminary results 

indicate that BL cell lines are more sensitive in this combined inhibition compared 

to DLBCL. Together, these findings set an example of the numerous opportunities 

that our work in NHL provides. 

Similarly, to the CLL study, several limitations influenced the investigation 

in NHL. To begin with, the small number of available in-house NHL cell lines 

restricted the power of the study and limited to the comparison of only the endemic 
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BL subtype versus the GCB-DLBCL. A study with a larger number of NHL cell lines 

can provide more accurate results and confirm (or contradict to) our findings in 

other subtypes of BL and DLBCL. Secondly, any observed transcriptomic and 

metabolomic alterations in cell lines do not necessarily represent in primary 

tumours. Results from PCA analysis of RNAseq data from primary tumours and 

cell lines, clearly highlighted that cell lines have separated from primary tumours 

in PC1 (Figure 5.1). This indicates differences in transcriptomic profile between 

cell lines and primary tumours. It is well known now that cell lines have adapted 

their phenotype to sustain survival and proliferation in vitro. As described in section 

3.4, BL primary tumours presented elevated expression of serine genes, which 

was not observed in BL cell lines. To emphasize these differences between 

primary tumours and inhouse cell lines in PCA, we have also included data from 

BL and DLBCL cell lines from the CCLE dataset used in chapter 4. Inhouse cell 

lines, in Figure 5.1, clustered closer to CCLE cell lines, which implies a more 

similar transcriptomic profile. However, despite the transcriptomic differences 

between cell lines and primary tumours, the use of cell lines gave us the 

opportunity to reach an adequate number of cells for the NMR experiments and 

acquire metabolomic data, which was not the case for primary tumours. 

  



 

 

 

Figure 5.1 Unsupervised principal component analysis with transcriptomic data from BL/DLBCL cell lines and 

primary tumours. The first and second principal components are contributing to 24.74% and 11.16% of the total 

explained variation, respectively. The marker shapes represent inhouse cell lines (triangle) and primary tumours (square) 

from chapter 3 and CCLE cell lines (circle) from chapter 4. The purple circle includes only cell lines samples, while the 

yellow circle only primary tumours samples. 



 

 

Furthermore, another limitation lies in the small number of metabolites that 

were identified manually with untargeted 1D 1H NMR. A bias in selection occurs 

because some metabolites are easier to identify than others. This bias affects 

pathway-based integration analysis, by causing pathways, which includes the 

measured metabolites, to be always significantly over-represented and enriched. 

An alternative is either to deconvolute NMR peaks and automatically assign a 

possibly larger number of metabolites or perform univariate analysis to select the 

most significant NMR peaks. A final limitation is that the acquired metabolic profiles 

of the cell lines were measured at a steady-state condition, meaning that we 

assumed that the examined metabolites reached an equilibrium. A study with time 

courses can provide the opportunity to examine metabolic fluxes and understand 

network dynamics by using GSMM and Flux Balanced Analysis. 

Altogether, our analysis combined with pathway-based multi-Omics 

integration highlighted useful insights into metabolic reprogramming of NHL. 

Several new hypotheses emerged from our findings, which can be experimentally 

tested, as recommended in section 3.4, to identify biomarkers or metabolic targets 

either in BL or DLBCL. Though, the limitations and biases of this study should be 

also considered prior to any experimental testing. 

  



 

180 

 

5.4. Machine Learning for multi-Omics data 

integration in cancer cell lines 

Reprogramming cellular metabolism is now considered a hallmark of cancer, 

however the metabolic profile of each cancer type is quite distinct. In chapter 4 we 

explored cancer’s transcriptomic and metabolic heterogeneity in cell lines datasets 

from the Cancer Cell Line Encyclopaedia (CCLE) database. In addition, we 

identified key associations between genes and metabolites that separated 

haematological cancers from the other tumours. To achieve this, Machine Learning 

approaches analysed and combined Omics data by constructing classification 

models that were not able to be constructed with the previous applied integrative 

methods. As stated in section 4.1, most Machine Learning methods provide the 

advantage to “learn” from the data and highlight informative associations that are 

not necessarily statistically linked with the phenotype. Results from dimensionality 

reduction methods: PCA, tSNE, and UMAP revealed the heterogenous 

transcriptomic and metabolomic profiles of haematopoietic cell lines compared to 

other tumours (subsection 4.3.1). Next, the sPLS-DA method identified gene 

expression changes related to cellular cytoskeleton and cell adhesion with 

deregulated metabolites, such as the xanthine and the creatinine (subsection 

4.3.2). Thus, it will be of importance to assess in future studies, such as those 

described in section 4.4, the role of these metabolic features, highlighted by our 

integrative analysis, into the regulation of cancer cellular metabolism. 
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Again, several limitations should be considered in this study. Firstly, the use 

of public datasets was a convenient approach for our analysis, but many concerns 

can be raised about the quality of the data. For example, LC-MS data were 

acquired from only one biological replicate for most of the cell lines samples. This 

increases the likelihood for several error types and biases. Despite the quality 

control checked by the authors (Li et al., 2019), a study with more replicates can 

provide better statistical power and minimise errors. Furthermore, as highlighted 

previously, cell lines may have altered many biological functions compared to the 

primary tumours where they derived from. Thus, it will be of interest to examine 

data from primary cells for any of the alterations observed here. Similar to the NMR 

experiments, the assigned metabolites in the LC-MS spectra represent only a few 

biochemical pathways and not the full range of cellular metabolic processes. 

Therefore, a study on a larger number of metabolites can reveal information on 

more metabolic pathways. Moreover, this study is limited in performing 

transcriptomic and metabolomic data integration. Nowadays, there are available 

additional Omics datasets in CCLE, such as DNA methylation, miRNA expression 

or CNV data, that can be integrated with the same methodology. Such 

investigation is necessary since it will link metabolism with even more genetic and 

epigenetic features. Nevertheless, this integration can be complex since the 

additional Omics datasets introduce more technical and biological limitations.        

 In summary, multi-Omics data integration with Machine Learning 

approaches highlighted the highly dynamic transcriptomic and metabolomic 
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variations between haematopoietic cancers cells and other tumours. Regardless 

of the limitations, our findings generated several interesting questions which 

provide new hypotheses for future work. 

5.5. Challenges in multi-Omics data integration 

strategy 

 

Integration of multi-Omics data is a challenging task and a ‘golden standard’ 

approach still does not exist. As stated in section 1.4, Computational Biology aims 

to provide a holistic picture of the biological mechanisms under study by integrating 

multi-Omics datasets with the most sophisticated bioinformatics tools and 

biostatistics methods. Therefore, various computational methodologies were 

applied here to integrate and analyse transcriptomic with metabolomic profiles 

based on the research questions and the sample availability in each study. 

So far, many methods have been proposed to integrate Omics datasets 

measured either on the same samples or on independent samples from different 

studies. Most of these methods have relied on statistical, pathway-based, Machine 

Learning, and Metabolic modelling approaches. Despite the advantages of each 

unique approach, common challenges need to be addressed for a successful 

multi-Omics integration analysis. Firstly, in most integrative studies the combined 

Omics datasets are still generated independently rather than an integrated concept 
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(unified extraction). Consequently, several issues are affecting the analysis, such 

as incomplete sampling across the datasets, missing features within the samples, 

and different types of experimental noises and errors. Thus, it is important to 

consider the experimental design and the sample collection strategy before the 

integration analysis to achieve robustness and reproducibility. A second challenge 

is handling and processing of the individual datasets successfully. This requires 

biological knowledge and experience on data cleaning, annotation, filtering, and 

data normalization. These steps are quite diverse in each data type and strongly 

related with the high-throughput platforms from which the data were generated. In 

addition, further issues emerge at the integration level. Each data type deals with 

unique biases, which can further mitigate when data combined and should be 

taken into account. Furthermore, each platform literally generates Big Data with 

thousands or even up to millions of features which comes with its own practical 

challenges of data handling. Moreover, as already described in section 4.1, dealing 

with such high-dimensional data is challenging to extract the most important 

biological information related to the examined phenotype. For instance, biological 

and technical variation can contribute to unrelated features which antagonise (or 

dominate) the important ones in high-dimensional space  (Ronan et al., 2016). 

Consequently, interpreting the results from an integration analysis of such data is 

even more complex since each data type introduces an extra layer of large 

variation. To tackle this, dimensionality reduction methodologies are usually 

applied, such as demonstrated in chapters 3 and 4. Truly, applying multi-Omics 

data integration requires a strong biological knowledge of the system under study 
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combined with computational and analytical skills.       

Despite all these challenges that need addressing, multi-Omics data 

integration with its extensive applications allows the identification of key features 

of the dynamic biological networks that are usually non-obvious in individual Omics 

data analysis. Therefore, it becomes an asset when working closely with 

computational biologists to identify the molecular relationships that associate 

genetic, epigenetic, and metabolic variation with the phenotype. By revealing these 

relationships scientists are able to better understand malignancies and develop 

novel therapeutic strategies for treatment.  
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APPENDICES 

Appendix 1 (Chapter 2, section 2.2.1): The RNAseq data 

from CLL primary samples. Table presents clinical features 

of the CLL cases of which the data were generated. Results 

from the alignment of processed reads from each sample with 

the GRCh38 human reference genome cDNA index are also 

highlighted in this table.



 

 

 

Cases Group Clinical status 
Processed 

reads 
Pseudoaligned 

reads 
% mapped 

reads 
averaged frag. 

length 

CLL01 Regression Complete spontaneous regression 30943705 21616435 69.86 171.26 

CLL03 Regression Complete spontaneous regression 36527963 28327583 77.55 173.17 

CLL05 Regression Complete spontaneous regression 30048891 22305966 74.23 172.45 

CLL06 Regression Complete spontaneous regression 35622729 25881842 72.66 182.16 

CLL07 Regression Complete spontaneous regression 26148321 21073875 80.59 161.67 

CLL10 Regression Complete spontaneous regression 30565307 18970445 62.07 169.97 

CLL11 Regression Complete spontaneous regression 30785248 21912374 71.18 178.07 

CLL14 Regression Partial spontaneous regression 38669608 30232432 78.18 172.46 

CLL15 Regression Partial spontaneous regression 28716128 20901237 72.79 164.80 

CLL16 Regression Partial spontaneous regression 25791319 19992820 77.52 175.42 

CLL18 Regression Complete spontaneous regression 37505477 26462638 70.56 172.57 

CLL19 Regression Partial spontaneous regression 29291895 18831836 64.29 172.21 

INDOL01 Non-regression Indolent IGHV mutated 35945164 27992348 77.88 179.06 

INDOL02 Non-regression Indolent IGHV mutated 38980529 29335691 75.26 176.37 

INDOL03 Non-regression Indolent IGHV mutated 28932077 21854524 75.54 175.59 

INDOL04 Non-regression Indolent IGHV mutated 31063099 25015139 80.53 168.70 

INDOL05 Non-regression Indolent IGHV mutated 30254604 21232739 70.18 161.39 

INDOL06 Non-regression Indolent IGHV mutated 28638109 22118156 77.23 169.37 

INDOL07 Non-regression Indolent IGHV mutated 35244033 28152754 79.88 169.66 

INDOL08 Non-regression Indolent IGHV mutated 34771283 27464527 78.99 175.53 

INDOL09 Non-regression Indolent IGHV mutated 29340625 23269717 79.31 169.10 

INDOL10 Non-regression Indolent IGHV mutated 54384370 37590872 69.12 185.69 

INDOL11 Non-regression Indolent IGHV mutated 35535158 26407816 74.31 168.06 

INDOL12 Non-regression Indolent IGHV mutated 40883910 31997134 78.26 189.45 

INDOL13 Non-regression Indolent IGHV mutated 26186150 19677182 75.14 164.03 
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Cases Group Clinical status 
Processed 

reads 
Pseudoaligned 

reads 
% mapped 

reads 
averaged frag. 

length 

INDOL14 Non-regression Indolent IGHV mutated 36596740 29440931 80.45 172.17 

INDOL15 Non-regression Indolent IGHV mutated 31950052 22500620 70.42 176.24 

INDOL16 Non-regression Indolent IGHV mutated 36801963 28818446 78.31 177.83 

PROG01 Non-regression Progressive IGHV mutated 28950500 22171926 76.59 176.21 

PROG03 Non-regression Progressive IGHV mutated 33482176 26009568 77.68 182.24 

PROG04 Non-regression Progressive IGHV mutated 29758319 20270659 68.12 180.07 

PROG05 Non-regression Progressive IGHV mutated 30731201 23549922 76.63 188.91 

PROG06 Non-regression Progressive IGHV mutated 28859177 23110222 80.08 183.10 

PROG08 Non-regression Progressive IGHV mutated 30355668 24018284 79.12 176.14 

PROG09 Non-regression Progressive IGHV mutated 27190300 20165190 74.16 188.51 

PROG12 Non-regression Progressive IGHV mutated 32741757 25978940 79.34 182.88 

UnM01 Non-regression IGHV Unmutated 32780244 25729318 78.49 167.73 

UnM02 Non-regression IGHV Unmutated 27610284 17571877 63.64 181.08 

UnM03 Non-regression IGHV Unmutated 34836801 27907967 80.11 177.48 

UnM04 Non-regression IGHV Unmutated 38010111 29553844 77.75 180.41 

UnM05 Non-regression IGHV Unmutated 29048322 23478370 80.83 179.56 

UnM07 Non-regression IGHV Unmutated 34293057 24142725 70.40 181.51 

UnM08 Non-regression IGHV Unmutated 31351804 23997920 76.54 188.28 

UnM09 Non-regression IGHV Unmutated 27978904 20713517 74.03 173.89 

UnM10 Non-regression IGHV Unmutated 36790532 25819707 70.18 181.24 

  



 

 

Appendix 2 (Chapter 2, section 2.3.2): Statistically 
significant gene sets from GSEA with SetRank 
(parameters thresholds: setPCutoff = 0.01 and fdrCutoff = 
0.05). Table presents details of the KEGG disease gene sets, 
such as the KEGG name, the description, and the size of gene 
set. The setRank value, the associated p-value and adjusted 
p-value are also presented in this table. The pp denotes for 
the negative logarithm of the p-value. 

KEGG 
name 

Description size setRank 
p-value 
SetRank 

corrected 
p-value 

adjusted 
p-value 

pp 

M00177 Ribosome, eukaryotes 89 0.019 1 5.84E-35 7.01E-34 34.23 

hsa05202 
Transcriptional 

misregulation in cancer 
129 0.148 0.26237 6.37E-09 7.01E-08 8.20 

hsa00190 
Oxidative 

phosphorylation 
111 0.044 1 2.88E-07 7.01E-08 6.54 

hsa05132 Salmonella infection 68 0.051 1 2.84E-05 7.01E-08 4.55 

hsa05034 Alcoholism 130 0.049 1 0.0006998 7.01E-08 3.16 

M00147 
NADH dehydrogenase 

(ubiquinone) 1 beta 
subcomplex 

13 0.019 1 0.0009362 7.01E-08 3.03 

M00160 
V-type ATPase, 

eukaryotes 
20 0.019 1 0.001251 7.01E-08 2.90 

hsa00604 
Glycosphingolipid 

biosynthesis - ganglio 
series 

12 0.019 1 0.0014319 0.014319 2.84 

hsa04216 Ferroptosis 35 0.019 1 0.0016068 0.014461 2.79 

hsa04022 
cGMP-PKG signaling 

pathway 
112 0.034 1 0.0017403 7.01E-08 2.76 

M00412 ESCRT-III complex 12 0.019 1 0.0018315 7.01E-08 2.74 

hsa05110 Vibrio cholerae infection 45 0.019 1 0.0019041 7.01E-08 2.72 

hsa00770 
Pantothenate and CoA 

biosynthesis 
16 0.019 1 0.0021073 0.016858 2.68 

hsa04141 
Protein processing in 

endoplasmic reticulum 
156 0.019 1 0.0029436 0.020605 2.53 

hsa00514 
Other types of O-glycan 

biosynthesis 
21 0.019 1 0.003034 0.020605 2.52 

hsa04932 
Non-alcoholic fatty liver 

disease (NAFLD) 
131 0.019 1 0.0032068 7.01E-08 2.49 

hsa04144 Endocytosis 231 0.019 1 0.0033851 7.01E-08 2.47 

M00351 Spliceosome, U1-snRNP 10 0.019 1 0.0046049 0.023024 2.34 

hsa04611 Platelet activation 100 0.034 1 0.0048242 7.01E-08 2.32 

hsa05166 HTLV-I infection 225 0.046 1 0.0053498 7.01E-08 2.27 

M00051 
Uridine monophosphate 
biosynthesis, glutamine 

(+ PRPP) => UMP 
3 0.019 1 0.0054388 0.023024 2.26 

M00070 

Glycosphingolipid 
biosynthesis, lacto-
series, LacCer => 

Lc4Cer 

4 0.019 1 0.0054427 0.023024 2.26 

hsa04640 
Hematopoietic cell 

lineage 
67 0.027 1 0.0056124 7.01E-08 2.25 
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KEGG 
name 

Description size setRank 
p-value 
SetRank 

corrected 
p-value 

adjusted 
p-value 

pp 

M00400 p97-Ufd1-Npl4 complex 3 0.019 1 0.0058753 0.020605 2.23 

hsa05206 MicroRNAs in cancer 130 0.032 1 0.0062573 7.01E-08 2.20 

hsa00740 Riboflavin metabolism 7 0.019 1 0.0072449 0.023024 2.14 

hsa05145 Toxoplasmosis 102 0.019 1 0.007551 7.01E-08 2.12 

hsa00360 
Phenylalanine 

metabolism 
10 0.019 1 0.0076842 0.023024 2.11 

hsa05200 Pathways in cancer 305 0.052 1 0.0076936 7.01E-08 2.11 

hsa05164 Influenza A 146 0.025 1 0.0093294 7.01E-08 2.03 

hsa04810 
Regulation of actin 

cytoskeleton 
169 0.054 1 0.0097915 7.01E-08 2.01 
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Appendix 3 (Chapter 3, section 3.2.1):  NHL primary 
tumours RNAseq data. Table presents clinical features of 
the NHL primary tumours of which the data were generated. 
Results from the alignment of processed reads from each 
sample with the GRCh38 human reference genome cDNA 
index are also highlighted in this table. 

Sample 
ID 

SRA GEO condition 
processed 

reads 
aligned 
reads 

% 
mapped 

reads 

DLBCL10 SRR6033228 GSM2782656 GCB-DLBCL 28824118 22989325 79.76 

DLBCL11 SRR6033229 GSM2782657 GCB-DLBCL 28411571 23726207 83.51 

DLBCL12 SRR6033230 GSM2782658 GCB-DLBCL 73331478 57769946 78.78 

DLBCL13 SRR6033231 GSM2782659 GCB-DLBCL 30515523 25094935 82.24 

DLBCL14 SRR6033232 GSM2782660 GCB-DLBCL 49357055 35099019 71.11 

DLBCL15 SRR6033233 GSM2782661 GCB-DLBCL 77697531 58539509 75.34 

DLBCL16 SRR6033234 GSM2782662 GCB-DLBCL 35639754 28928846 81.17 

DLBCL17 SRR6033235 GSM2782663 GCB-DLBCL 39714656 31439509 79.16 

DLBCL18 SRR6033236 GSM2782664 GCB-DLBCL 48996527 41076006 83.83 

DLBCL19 SRR6033237 GSM2782665 GCB-DLBCL 44856565 34153244 76.14 

DLBCL28 SRR6033246 GSM2782674 GCB-DLBCL 38789171 32080797 82.71 

DLBCL29 SRR6033247 GSM2782675 GCB-DLBCL 33675412 27137265 80.58 

BL30 SRR2149954 PRJNA292327 endemic BL 25130506 21839237 86.90 

BL84 SRR2149952 PRJNA292327 endemic BL 50426015 41484253 82.27 

BL81 SRR2149951 PRJNA292327 endemic BL 40113517 34667346 86.42 

BL80 SRR2149950 PRJNA292327 endemic BL 50426015 41484253 82.27 

BL62 SRR2149948 PRJNA292327 endemic BL 46828468 40844565 87.22 

BL60 SRR2149947 PRJNA292327 endemic BL 42232435 36136846 85.57 

BL50 SRR2149946 PRJNA292327 endemic BL 50070622 45594231 91.06 

BL49 SRR2149945 PRJNA292327 endemic BL 32488327 29058864 89.44 

BL45 SRR2149943 PRJNA292327 endemic BL 27181627 21996400 80.92 

BL43 SRR2149942 PRJNA292327 endemic BL 35583467 31548435 88.66 

BL40 SRR2149940 PRJNA292327 endemic BL 50697844 45567388 89.88 

BL35 SRR2149938 PRJNA292327 endemic BL 52731358 40169925 76.18 

BL27 SRR2149937 PRJNA292327 endemic BL 41949475 36930032 88.03 

BL23 SRR2149936 PRJNA292327 endemic BL 36708639 31707933 86.38 

BL22 SRR2149935 PRJNA292327 endemic BL 62743675 53280821 84.92 

BL20 SRR2149897 PRJNA292327 endemic BL 45746442 40939102 89.49 

BL19 SRR2149896 PRJNA292327 endemic BL 31988648 26564908 83.04 

BL15 SRR2149844 PRJNA292327 endemic BL 39765484 34950090 87.89 

BL69 SRR2149949 PRJNA292327 endemic BL 41045846 37456160 91.25 



 

 

Appendix 4 (Chapter 3, section 3.3.1):   Clinical characteristics of BL cases, including 

positivity to EBV, HIV, CMV, KSHV and HTLV-1 viruses. 

Sample 
ID 

Age Sex Site 
EBV 

status 
HIV 

status 
CMV 

status 
KSHV 
status 

HTLV-
1 

status 
Stage 

Response to 
COM 

Relapse 

BL30 NR NR NR NR NR Neg Neg Neg NR NR NR 

BL84 9 F Abdomen Pos Neg Neg Neg Neg C Complete Res Yes 

BL81 7 M Abdomen Pos Neg Neg Neg Neg C Complete Res No 

BL80 9 F LN Pos Neg Neg Neg Neg C Complete Res No 

BL62 9 M Jaw Pos Neg Neg Neg Neg D Complete Res No 

BL60 7 M Jaw Pos Neg Pos Neg Neg C Not Res NR 

BL50 8 F Pelvic Pos Neg Neg Neg Neg D Lost to Follow up NR 

BL49 7 M Jaw Pos Neg Neg Pos Neg C Lost to Follow up NR 

BL45 3 M Jaw Pos Neg Neg Neg Neg B Lost to Follow up NR 

BL43 5 M Jaw Pos Neg Neg Pos Neg C Lost to Follow up NR 

BL40 7 M Jaw Pos Neg Neg Neg Neg C Lost to Follow up NR 

BL35 7 M Jaw Pos Neg Neg Neg Neg C NR NR 

BL27 3 M Abdomen Pos Neg Neg Pos Neg C Lost to Follow up NR 

BL23 7 M Jaw Pos Neg Neg Neg Neg A Lost to Follow up NR 

BL22 6 M Jaw Pos Neg Pos Neg Neg C Complete Res No 

BL20 10 M Jaw Pos Neg Neg Neg Neg B NR NR 

BL19 3 M Abdomen Pos Neg Neg Neg Neg C Complete Res No 

BL15 4 M Neck NR NR Pos Pos Pos C Lost to Follow up NR 

BL69 4.5 M Jaw Pos Neg Pos Neg Neg C Complete Res Yes 

 



 

 

Appendix 5 (Chapter 3, section 3.2.2): RNAseq data 

generated from in-house BL and DLBCL cell lines. Results 

from the alignment of processed reads from each sample with 

the GRCh38 human reference genome cDNA index are also 

highlighted in this table. 

Sample ID condition 
processed 

reads 
aligned 
reads 

% mapped 
reads 

1_GLOR-A endemic BL 24654695 17929733 72.72 

2_GLOR_B endemic BL 30108460 21951413 72.91 

5_BL31-A endemic BL 31937202 11003289 34.45 

6_BL31-Β endemic BL 27333697 15349264 56.16 

7_FARAGE-A DLBCL 27789843 17479248 62.90 

8_FARAGE-B DLBCL 27640976 12137971 43.91 

9_SAV-A endemic BL 27221016 19659432 72.22 

10_SAV-B endemic BL 32245534 22314849 69.20 

11_EZEMA-A endemic BL 24086465 15745497 65.37 

12_EZEMA-B endemic BL 21894206 14371981 65.64 

13_SUDHL4-A DLBCL 30691199 21780609 70.97 

14_SUDHL4-B DLBCL 26730704 18823174 70.42 

15_SUDHL5-A DLBCL 28585297 19561390 68.43 

16_SUDHL5-B DLBCL 29363646 20217535 68.85 

17_SUDHL6_A DLBCL 29720828 16548266 55.68 

18_SUDHL6_B DLBCL 42923524 27822614 64.82 
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Appendix 6 (Chapter 3, section 3.2.5): Univariate analysis 

results of the NMR metabolomic data. Table presents the 

p-value, the false discovery rate (FDR) and the fold change 

value for each metabolite. P-values from the Shapiro-Wilk test 

are also highlighted to test for normality. 

Name p-value 
q-value 
(FDR) 

Fold 
Change 

BL/DLBCL 
Shapiro-
Wilk p-
value 

UDP-GlcNAc 
< 0.0001 

(W) 
<0.001 -1.05 Down 4.66E-08 

Creatine 
< 0.0001 

(W) 
<0.001 -1.08 Down 2.28E-06 

Taurine < 0.0001  <0.001 -1.04 Down 0.1054 

L-Alanine 
< 0.0001 

(W) 
<0.001 1.03 Up 8.10E-06 

Phosphorylcholine 
< 0.0001 

(W) 
<0.001 1.06 Up 1.59E-05 

Glycine 
< 0.0001 

(W) 
<0.001 1.02 Up 3.74E-07 

Myoinositol 
< 0.0001 

(W) 
<0.001 1.05 Up 1.04E-05 

L-Glutamine 0.0005 (W) 0.0014 -1.05 Down 1.17E-07 

D-Glutamic acid 0.0148 (W) 0.0347 1.02 Up 2.53E-05 

Uridine diphosphate 
glucose 

0.0563 0.1182 -1.01 Down 0.06514 

L-Tyrosine 0.1055 (W) 0.2014 -1.01 Down 3.45E-06 

L-Asparagine 0.1247 (W) 0.2183 -1.01 Down 1.02E-06 

Fumaric acid 0.1708 (W) 0.2759 1.01 Up 1.53E-06 

Nicotinuric acid 0.2067 (W) 0.3101 1.02 Up 0.009 

Succinic acid 0.2300 (W) 0.322 1 Up 0.0015 

L-Leucine 0.6325 (W) 0.7813 -1 Down 0.0001 

L-Valine 0.6190 (W) 0.7813 1.03 Up 1.55E-09 

Formic acid 0.6912 (W) 0.8064 -1.01 Down 0.0015 

L-Isoleucine 0.7405 (W) 0.8184 1.01 Up 1.15E-06 

Acetic acid 0.8214 (W) 0.8624 -1.01 Down 3.27E-06 

L-Aspartic acid 0.9914 (W) 0.9914 1 Up 0.0013 



 

 

Appendix 7 (Chapter 3, section 3.3.5): Table presents the 113 common significantly 
altered genes (q-value < 0.1) as identified from differential expression analyses in both 
primary tumours and cell lines. 

 Primary tumours dataset Cell lines dataset    Primary tumours dataset Cell lines dataset 

Gene ID Entrez ID 
p-

value 
q-

value 
beta 

p-
value2 

q-
value2 

beta2  Gene ID 
Entrez 

ID 
p-

value 
q-

value 
beta 

p-
value2 

q-
value2 

beta2 

SCN4A 6329 
0.0004

6 
0.0014

6 
0.97 

0.0005
96 

0.0385
75 

1.96 
 SLCO5A1 81796 

1.80E-
05 

7.97E-
05 

-2.18 
1.80E-

10 
1.14E-

07 
-3.82 

E2F2 1870 
2.28E-

15 
6.58E-

14 
1.68 

4.57E-
06 

0.0007
26 

1.10 
 SQOR 58472 

0.0010
3 

0.0029
7 

-1.16 
0.0021

96 
0.0900

8 
-2.81 

CYB561 1534 
0.0017

1 
0.0046

5 
-0.94 

0.0005
97 

0.0385
75 

-1.97 
 DUSP6 1848 

0.001 0.0029 -1.07 
0.0014

48 
0.0712

6 
-3.65 

GRAMD1
B 

10012824
2 

4.88E-
10 

5.34E-
09 

-1.89 
4.60E-

05 
0.0050

17 
-3.78 

 RHOF 54509 

6.85E-
10 

7.34E-
09 

-1.51 
0.0002

3 
0.0195

1 
-2.25 

RNASET2 8635 
2.03E-

06 
1.11E-

05 
-1.02 

2.30E-
06 

0.0004
57 

-1.99 
 CMTM3 

12392
0 

0.0017
3 

0.0047 -0.84 
0.0007

13 
0.0431

5 
-2.83 

LZTS1 11178 
1.97E-

06 
1.08E-

05 
2.34 

1.69E-
07 

5.16E-
05 

4.70 
 

SH3BGRL
3 83442 

0.0002
9 

0.0009
7 

-0.56 
0.0007

86 
0.0468

4 
-1.24 

CASP8 841 
0.0033

8 
0.0084

3 
-0.41 

0.0024
64 

0.0972
28 

-0.72 
 MBOAT2 

12964
2 

1.37E-
07 

9.51E-
07 

1.36 
3.66E-

07 
9.98E-

05 
2.84 

RAB27A 5873 
9.62E-

06 
4.54E-

05 
-0.79 

0.0006
38 

0.0407
3 

-1.97 
 AFF3 3899 

0.0003
5 

0.0011
3 

1.02 
3.51E-

07 
9.72E-

05 
3.92 

STK10 6793 
1.07E-

05 
5.01E-

05 
-0.62 

3.46E-
06 

0.0006
28 

-1.44 
 ST14 6768 

0.0001
7 

0.0005
8 

1.57 
0.0008

6 
0.0495

1 
4.79 

ACAP1 9744 
0.0013

6 
0.0037

9 
-0.40 

3.96E-
05 

0.0046
78 

-0.95 
 FADS1 3992 

0.0009
4 

0.0027
4 

-1.01 
2.80E-

06 
0.0005

2 
-2.87 

STXBP2 6813 
0.0003

5 
0.0011

3 
-0.43 

0.0019
29 

0.0835
95 

-0.74 
 MTMR12 54545 

0.0034
3 

0.0085
4 

0.53 
0.0010

6 
0.0582 0.85 

APBB1IP 54518 
7.49E-

08 
5.48E-

07 
0.89 

0.0019
84 

0.0848
01 

0.90 
 TRIM36 55521 

1.58E-
05 

7.09E-
05 

-1.40 0.0009 
0.0514

3 
-2.19 

PPP2R5C 5527 
0.0003

1 
0.0010

1 
0.47 

0.0003
15 

0.0250
5 

0.79 
 BMP3 651 

2.13E-
08 

1.73E-
07 

3.47 
0.0019

04 
0.0832 5.12 

TESC 54997 
2.10E-

06 
1.15E-

05 
-1.75 

0.0023
65 

0.094 -3.76 
 RAD17 5884 

4.49E-
11 

5.97E-
10 

1.03 
8.03E-

05 
0.0078

5 
3.14 

JAK2 3717 
8.44E-

09 
7.46E-

08 
-1.57 

0.0004
39 

0.0315
46 

-2.61 
 MSI2 

12454
0 

0.0003
3 

0.0010
8 

0.63 
6.66E-

06 
0.0010

1 
1.07 

CEP128 1E+05 
3.26E-

05 
0.0001

4 
0.88 

0.0006
18 

0.0396
16 

1.33 
 TBRG1 84897 

3.54E-
09 

3.34E-
08 

-0.73 
0.0015

66 
0.0742

2 
-0.73 

RASSF2 9770 
0.0019

2 
0.0051

4 
-0.39 

0.0006
76 

0.0423
21 

-1.48 
 FAM167A 83648 

1.65E-
06 

9.16E-
06 

2.25 
2.33E-

05 
0.0030

3 
4.38 
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 Primary tumours dataset Cell lines dataset    Primary tumours dataset Cell lines dataset 

Gene ID Entrez ID 
p-

value 
q-

value 
beta 

p-
value2 

q-
value2 

beta2  Gene ID 
Entrez 

ID 
p-

value 
q-

value 
beta 

p-
value2 

q-
value2 

beta2 

HCK 3055 
3.59E-

06 
1.86E-

05 
-1.17 

0.0012
16 

0.0631
21 

-3.90 
 SH3RF1 57630 

0.0040
4 

0.0098
4 

-1.08 
2.32E-

16 
4.43E-

13 
-4.83 

E2F1 1869 
3.42E-

12 
5.53E-

11 
0.90 

0.0024
77 

0.0974
16 

0.60 
 PLCL2 23228 

2.01E-
15 

5.89E-
14 

1.52 
8.76E-

16 
1.21E-

12 
1.95 

PON2 5445 
0.0001

2 
0.0004

3 
-0.93 

3.80E-
05 

0.0045
6 

-2.88 
 BATF 10538 

2.12E-
08 

1.72E-
07 

-1.93 
0.0001

7 
0.0152

1 
-4.20 

PLEKHA8 84725 
0.0030

8 
0.0077

7 
0.46 

0.0006
58 

0.0416
28 

0.86 
 PRXL2C 

19582
7 

0.0001
3 

0.0004
8 

-1.05 
7.49E-

11 
5.61E-

08 
-3.04 

AHR 196 
0.0028

1 
0.0071

6 
-0.93 

4.55E-
16 

7.71E-
13 

-4.52 
 THEM4 

11714
5 

0.0012
8 

0.0035
8 

-0.71 
0.0007

92 
0.0468

9 
-2.49 

TNFSF8 944 
1.70E-

14 
4.18E-

13 
2.01 

0.0009
49 

0.0534
17 

4.29 
 ZYX 7791 

3.16E-
05 

0.0001
3 

-1.05 
0.0005

44 
0.0365

7 
-4.24 

ZMIZ1 57178 
0.0011

2 
0.0032

1 
-0.56 

0.0004
98 

0.0343
59 

-2.30 
 ZNF382 84911 

2.11E-
06 

1.15E-
05 

-1.35 
0.0008

12 
0.0474 -1.91 

MFSD10 10227 
1.90E-

06 
1.04E-

05 
-0.58 

1.56E-
07 

4.85E-
05 

-1.28 
 

ARHGAP2
5 9938 

1.81E-
17 

7.41E-
16 

-1.25 
0.0011

18 
0.0596

5 
-1.34 

TCIRG1 10312 
2.31E-

17 
9.35E-

16 
-1.27 

0.0013
15 

0.0663
15 

-0.96 
 EOMES 8320 

3.44E-
07 

2.20E-
06 

-1.55 
5.22E-

11 
4.19E-

08 
-3.41 

PTPN6 5777 
4.00E-

05 
0.0001

6 
-1.15 

0.0007
93 

0.0468
87 

-2.00 
 SMIM14 

20189
5 

0.0037
9 

0.0093 1.45 
0.0010

91 
0.0592

5 
3.78 

AICDA 57379 
2.86E-

10 
3.26E-

09 
2.97 

2.65E-
06 

0.0005
13 

3.51 
 WNK2 65268 

6.99E-
07 

4.18E-
06 

2.64 
1.41E-

09 
7.42E-

07 
5.04 

BACH2 60468 
1.27E-

12 
2.22E-

11 
2.60 

4.40E-
10 

2.58E-
07 

4.62 
 RIMKLB 57494 

1.13E-
07 

7.98E-
07 

1.41 
9.85E-

09 
4.17E-

06 
4.48 

ALDH5A1 7915 
9.35E-

09 
8.18E-

08 
1.34 

0.0002
73 

0.0221
26 

1.61 
 TMC8 

14713
8 

3.30E-
11 

4.51E-
10 

-0.97 
0.0011

15 
0.0596

5 
-0.77 

EPM2A 7957 
1.86E-

06 
1.03E-

05 
0.72 

0.0021
37 

0.0883
68 

0.82 
 VPREB1 7441 

3.59E-
06 

1.86E-
05 

3.19 
4.20E-

13 
4.27E-

10 
4.63 

GMDS 2762 
0.0034

9 
0.0086

6 
-0.60 

3.53E-
05 

0.0042
75 

-1.25 
 TAPT1 

20201
8 

0.0001
8 

0.0006
2 

0.63 
2.69E-

05 
0.0034

2 
1.11 

TFDP2 7029 
2.63E-

14 
6.19E-

13 
1.87 

0.0021
3 

0.0883
68 

1.63 
 TCEA2 6919 

0.0001
7 

0.0005
9 

0.64 0.0017 
0.0788

5 
0.88 

KDM5B 10765 
3.53E-

06 
1.83E-

05 
-1.26 

0.0019
41 

0.0838
3 

-3.62 
 BCL2 596 

1.27E-
12 

2.22E-
11 

-2.16 
5.38E-

07 
0.0001

4 
-2.95 

ID3 3399 
7.97E-

08 
5.79E-

07 
1.57 

1.32E-
06 

0.0003
15 

4.44 
 ISG20 3669 

1.30E-
06 

7.41E-
06 

1.03 
7.27E-

05 
0.0072

7 
2.13 

CXCR4 7852 
1.70E-

06 
9.45E-

06 
0.90 

0.0018
66 

0.0818
02 

2.00 
 NADSYN1 55191 

1.03E-
11 

1.53E-
10 

-0.83 
0.0008

46 
0.0489

2 
-0.79 

BHLHE41 79365 
6.36E-

10 
6.86E-

09 
-2.37 

0.0023
33 

0.0936
71 

-2.07 
 SPTBN2 6712 

0.0004
8 

0.0015
1 

1.50 
0.0021

32 
0.0883

7 
2.93 

BATF3 55509 
3.17E-

06 
1.67E-

05 
-1.62 

0.0014
89 

0.0723
62 

-3.36 
 FAM241A 

13272
0 

9.09E-
11 

1.14E-
09 

1.25 
4.00E-

05 
0.0046

9 
1.24 
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 Primary tumours dataset Cell lines dataset    Primary tumours dataset Cell lines dataset 

Gene ID Entrez ID 
p-

value 
q-

value 
beta 

p-
value2 

q-
value2 

beta2  Gene ID 
Entrez 

ID 
p-

value 
q-

value 
beta 

p-
value2 

q-
value2 

beta2 

GNAZ 2781 
0.0001

3 
0.0004

6 
1.76 

5.29E-
05 

0.0055
65 

2.54 
 PCCA 5095 

2.72E-
05 

0.0001
2 

-1.13 
0.0017

09 
0.0789

3 
-2.03 

ACKR4 51554 
0.0015

7 
0.0043 1.36 

8.65E-
11 

6.00E-
08 

4.36 
 RMI2 

11602
8 

1.55E-
05 

6.96E-
05 

1.02 
0.0015

18 
0.0730

6 
0.85 

SLC44A2 57153 
0.0005

4 
0.0016

9 
0.54 

0.0010
79 

0.0587
68 

1.12 
 ACBD7 

41414
9 

0.0001
1 

0.0004 1.06 
0.0015

82 
0.0745 1.79 

SNX9 51429 
0.0003

6 
0.0011

7 
-1.10 

2.72E-
05 

0.0034
31 

-3.07 
 GNG7 2788 

6.65E-
13 

1.22E-
11 

2.78 
1.27E-

15 
1.61E-

12 
2.46 

ENAM 10117 
4.36E-

06 
2.23E-

05 
1.64 

0.0003
96 

0.0291
53 

3.20 
 KCNA3 3738 

0.0029
5 

0.0074
8 

0.62 
3.46E-

07 
9.72E-

05 
4.94 

JCHAIN 3512 
8.37E-

08 
6.05E-

07 
3.04 

5.91E-
05 

0.0060
48 

5.16 
 MAGEF1 64110 

3.14E-
05 

0.0001
3 

0.69 
8.92E-

07 
0.0002

3 
1.15 

LARGE1 9215 
2.81E-

06 
1.49E-

05 
1.69 

6.25E-
05 

0.0063
13 

1.95 
 TAF7 6879 

5.08E-
09 

4.68E-
08 

0.70 
0.0022

55 
0.0910

5 
0.86 

E2F5 1875 
8.10E-

07 
4.78E-

06 
1.28 

0.0001
4 

0.0128
81 

1.84 
 UBE2E2 7325 

3.12E-
07 

2.01E-
06 

0.98 
6.19E-

06 
0.0009

5 
1.30 

ARNTL 406 
3.42E-

06 
1.78E-

05 
-1.38 

8.30E-
05 

0.0080
1 

-2.33 
 LHFPL6 10186 

2.19E-
06 

1.19E-
05 

1.05 
0.0025

6 
0.0996

5 
2.38 

LPIN1 23175 
1.50E-

17 
6.26E-

16 
-1.47 

0.0015
09 

0.0730
05 

-0.99 
 CRELD2 79174 

0.0012
5 

0.0035
3 

-0.41 
1.74E-

05 
0.0023

7 
-1.24 

FHOD3 80206 
1.39E-

10 
1.68E-

09 
3.18 

3.84E-
09 

1.67E-
06 

5.71 
 ROR1 4919 

1.06E-
06 

6.13E-
06 

1.88 
4.37E-

08 
1.59E-

05 
4.76 

FADS2 9415 
5.74E-

05 
0.0002

3 
-1.39 

4.67E-
05 

0.0050
58 

-3.77 
 ZNF626 

19977
7 

0.0001
2 

0.0004
4 

0.87 
0.0012

11 
0.0631

2 
2.16 

HRK 8739 
2.99E-

07 
1.93E-

06 
2.32 

0.0011
4 

0.0603
95 

2.56 
 NUGGC 

38964
3 

5.27E-
05 

0.0002
1 

1.67 
0.0019

45 
0.0838

3 
1.52 

MDFIC 29969 
1.15E-

06 
6.62E-

06 
-1.69 

1.24E-
18 

3.15E-
15 

-5.05 
 SIRPA 

14088
5 

4.56E-
05 

0.0001
8 

-1.17 
8.67E-

20 
4.41E-

16 
-6.69 

LMO2 4005 
3.14E-

11 
4.31E-

10 
-2.57 

2.65E-
05 

0.0034 -4.40 
 RCSD1 92241 

0.0008
9 

0.0026
2 

0.62 
0.0003

52 
0.0267

3 
1.82 

HEY2 23493 
3.30E-

11 
4.51E-

10 
3.06 

4.13E-
05 

0.0048
09 

3.97 
 NAP1L4 4676 

2.34E-
09 

2.29E-
08 

1.04 
0.0019

09 
0.0832 1.46 

VILL 50853 
1.16E-

05 
5.38E-

05 
-0.90 

1.62E-
09 

7.98E-
07 

-3.67 
 TUBB3 10381 

7.55E-
07 

4.48E-
06 

2.76 
8.21E-

05 
0.0079

8 
3.99 

RNF144B 3E+05 
6.97E-

05 
0.0002

7 
0.94 

0.0006
86 

0.0423
57 

4.37 
         



 

 

Appendix 8 (Chapter 3, section 3.2.6):  Pathway-based 

integration analysis with the 31 mapped KEGG metabolic 

pathways for the NHL datasets. Impact values represent the 

degree centrality from topology analysis. 

Metabolic pathways Total Expected Hits Raw p 
-log(p-
value) 

q-
value 

Impact 

Alanine, aspartate and 
glutamate metabolism 

61 0.50 4 0.0013 6.67 0.107 0.233 

D-Glutamine and D-glutamate 
metabolism 

10 0.08 2 0.0028 5.89 0.116 0.333 

Glyoxylate and dicarboxylate 
metabolism 

56 0.46 3 0.0099 4.62 0.277 0.109 

Aminoacyl-tRNA biosynthesis 74 0.61 3 0.0211 3.86 0.442 0.041 

Glycerophospholipid 
metabolism 

86 0.70 3 0.0312 3.47 0.452 0.129 

Glycerolipid metabolism 35 0.29 2 0.0323 3.43 0.452 0.147 

Nitrogen metabolism 10 0.08 1 0.0792 2.54 0.950 0.111 

Ascorbate and aldarate 
metabolism 

13 0.11 1 0.1017 2.29 0.967 0.083 

Glycine, serine and threonine 
metabolism 

68 0.56 2 0.1054 2.25 0.967 0.284 

Taurine and hypotaurine 
metabolism 

16 0.13 1 0.1237 2.09 0.967 0.267 

Amino sugar and nucleotide 
sugar metabolism 

79 0.65 2 0.1352 2.00 0.967 0.051 

Sulfur metabolism 18 0.15 1 0.1382 1.98 0.967 0.118 

alpha-Linolenic acid 
metabolism 

22 0.18 1 0.1663 1.79 1.000 0.095 

Primary bile acid biosynthesis 92 0.75 2 0.1726 1.76 1.000 0.044 

Arginine biosynthesis 27 0.22 1 0.2002 1.61 1.000 0.077 

Butanoate metabolism 29 0.24 1 0.2134 1.54 1.000 0.071 

Mannose type O-glycan 
biosynthesis 

30 0.25 1 0.2200 1.51 1.000 0.138 

Selenocompound metabolism 35 0.29 1 0.2518 1.38 1.000 0.029 

Fructose and mannose 
metabolism 

40 0.33 1 0.2824 1.26 1.000 0.051 

Nicotinate and nicotinamide 
metabolism 

42 0.34 1 0.2944 1.22 1.000 0.049 

Propanoate metabolism 48 0.39 1 0.3290 1.11 1.000 0.043 

Galactose metabolism 51 0.42 1 0.3457 1.06 1.000 0.040 

Porphyrin and chlorophyll 
metabolism 

53 0.43 1 0.3566 1.03 1.000 0.019 
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Metabolic pathways Total Expected Hits Raw p 
-log(p-
value) 

q-
value 

Impact 

Glutathione metabolism 56 0.46 1 0.3726 0.99 1.000 0.091 

Inositol phosphate metabolism 69 0.57 1 0.4379 0.83 1.000 0.074 

Phosphatidylinositol signaling 
system 

74 0.61 1 0.4612 0.77 1.000 0.055 

Fatty acid elongation 75 0.61 1 0.4658 0.76 1.000 0.014 

Arginine and proline 
metabolism 

78 0.64 1 0.4792 0.74 1.000 0.026 

Valine, leucine and isoleucine 
degradation 

88 0.72 1 0.5217 0.65 1.000 0.023 

Pyrimidine metabolism 99 0.81 1 0.5647 0.57 1.000 0.010 

Purine metabolism 166 1.36 1 0.7570 0.28 1.000 0.006 

  



 

 

Appendix 9 (Chapter 3, section 3.3.1): Scatter plots of the first 5 principal 
components from PCA with the NHL primary tumours RNAseq data. The red colour circles 

representing the BL cases and the blue colour circles the DLBCL cases. The marker shapes represent the origin of 
isolated malignant B-cells: abdomen (circle), bone marrow (BM, triangle), jaw (square), lymph nodes (LN, cross), neck 
(square X) and pelvic (star).



 

 

Appendix 10 (Chapter 3, section 3.3.5): Top 50 (out of 180) 

KEGG metabolic and regulatory pathways with the NHL 

data integration analysis. Impact values represent the 

degree centrality from topology analysis.  

Pathways Total Expected Hits Raw p -log(pval.) q value Impact 

Alanine, aspartate and 
glutamate metabolism 

64 0.36 4 0.000427 7.76 0.107 0.311 

Kaposi sarcoma-associated 
herpesvirus infection 

191 1.06 6 0.000644 7.35 0.107 0.053 

PD-L1 expression and PD-1 
checkpoint pathway in cancer 

93 0.52 4 0.001741 6.35 0.171 0.138 

Hepatitis B 163 0.90 5 0.002065 6.18 0.171 0.058 

ABC transporters 183 1.02 5 0.003408 5.68 0.226 0.000 

D-Glutamine and D-glutamate 
metabolism 

18 0.10 2 0.004383 5.43 0.233 0.188 

Cell cycle 124 0.69 4 0.004922 5.31 0.233 0.091 

Human cytomegalovirus 
infection 

231 1.28 5 0.009025 4.71 0.341 0.079 

Pathways in cancer 562 3.12 8 0.012084 4.42 0.341 0.074 

Mineral absorption 87 0.48 3 0.012415 4.39 0.341 0.000 

Apoptosis - multiple species 32 0.18 2 0.013517 4.30 0.341 0.152 

Taurine and hypotaurine 
metabolism 

33 0.18 2 0.014339 4.24 0.341 0.138 

Circadian rhythm 33 0.18 2 0.014339 4.24 0.341 0.550 

Glyoxylate and dicarboxylate 
metabolism 

92 0.51 3 0.014425 4.24 0.341 0.080 

Small cell lung cancer 95 0.53 3 0.015714 4.15 0.347 0.039 

Central carbon metabolism in 
cancer 

106 0.59 3 0.020984 3.86 0.351 0.000 

Bladder cancer 41 0.23 2 0.021646 3.83 0.351 0.031 

Prostate cancer 108 0.60 3 0.022034 3.82 0.351 0.032 

Endocrine resistance 108 0.60 3 0.022034 3.82 0.351 0.057 

Chemokine signaling pathway 194 1.08 4 0.022539 3.79 0.351 0.313 

Sulfur metabolism 43 0.24 2 0.023669 3.74 0.351 0.070 

Tuberculosis 197 1.09 4 0.023686 3.74 0.351 0.086 

Toxoplasmosis 115 0.64 3 0.025933 3.65 0.351 0.098 

Epstein-Barr virus infection 204 1.13 4 0.026499 3.63 0.351 0.048 

Pathogenic Escherichia coli 
infection 

204 1.13 4 0.026499 3.63 0.351 0.064 

Aminoacyl-tRNA biosynthesis 118 0.66 3 0.027711 3.59 0.353 0.031 

Cholinergic synapse 124 0.69 3 0.031457 3.46 0.371 0.180 

Human immunodeficiency virus 
1 infection 

217 1.20 4 0.032239 3.43 0.371 0.104 

Intestinal immune network for 
IgA production 

51 0.28 2 0.03249 3.43 0.371 0.019 

Human papillomavirus infection 333 1.85 5 0.037141 3.29 0.410 0.063 
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Pathways Total Expected Hits Raw p -log(pval.) q value Impact 

Apoptosis 140 0.78 3 0.042677 3.15 0.451 0.186 

Protein digestion and 
absorption 

142 0.79 3 0.044204 3.12 0.451 0.000 

Dopaminergic synapse 143 0.79 3 0.044978 3.10 0.451 0.139 

PI3K-Akt signaling pathway 358 1.99 5 0.048169 3.03 0.452 0.078 

Primary bile acid biosynthesis 64 0.36 2 0.049079 3.01 0.452 0.042 

Glycerophospholipid 
metabolism 

149 0.83 3 0.04976 3.00 0.452 0.295 

Breast cancer 150 0.83 3 0.050581 2.98 0.452 0.058 

Gastric cancer 153 0.85 3 0.053082 2.94 0.462 0.019 

Hepatitis C 157 0.87 3 0.056509 2.87 0.471 0.052 

Non-small cell lung cancer 72 0.40 2 0.060509 2.81 0.471 0.018 

p53 signaling pathway 72 0.40 2 0.060509 2.81 0.471 0.061 

JAK-STAT signaling pathway 162 0.90 3 0.060938 2.80 0.471 0.306 

Melanoma 73 0.41 2 0.061997 2.78 0.471 0.030 

Cellular senescence 165 0.92 3 0.063672 2.75 0.471 0.026 

Cushing syndrome 168 0.93 3 0.066463 2.71 0.471 0.026 

Platinum drug resistance 76 0.42 2 0.066534 2.71 0.471 0.200 

Chronic myeloid leukemia 77 0.43 2 0.068071 2.69 0.471 0.018 

Pancreatic cancer 78 0.43 2 0.069619 2.66 0.471 0.018 

Necroptosis 172 0.95 3 0.07027 2.66 0.471 0.085 

Glioma 79 0.44 2 0.071179 2.64 0.471 0.027 

 



 

 

Appendix 11 (Chapter 4, section 4.2.1): Names and origin of the CCLE cell lines. 

NAME ORIGIN NAME ORIGIN NAME ORIGIN NAME ORIGIN NAME ORIGIN NAME ORIGIN 

22RV1 Others 
HCC11

87 
Breast KPNSI9S Others 

NCIH1
792 

Lung 
P12ICHIK

AWA 
Leukemia SNU503 

Large 
intestine 

697 Leukemia 
HCC11

95 
Lung KPNYN Others 

NCIH1
838 

Lung P31FUJ Leukemia SNU520 Stomach 

5637 
Urinary 

tract 
HCC13

59 
Lung KU1919 

Urinary 
tract 

NCIH1
869 

Lung 
PANC020

3 
Pancreas SNU601 Stomach 

2313287 Stomach 
HCC13

95 
Breast KU812 Leukemia 

NCIH1
915 

Lung 
PANC050

4 
Pancreas SNU61 

Large 
intestine 

769P Others 
HCC14

19 
Breast 

KURAMOCH
I 

Ovary 
NCIH1

930 
Lung PC14 Lung SNU620 Stomach 

786O Others 
HCC14

28 
Breast KYSE140 Esophagus 

NCIH1
944 

Lung PEER Leukemia SNU626 CNS 

A2780 Ovary 
HCC14

38 
Lung KYSE180 Esophagus 

NCIH1
96 

Lung PF382 Leukemia SNU668 Stomach 

A3KAW 
Lymphom

a 
HCC15 Lung KYSE270 Esophagus 

NCIH1
963 

Lung 
PFEIFFE

R 
Lymphoma SNU685 

Endometr
ium 

A4FUK 
Lymphom

a 
HCC15

00 
Breast KYSE410 Esophagus 

NCIH1
975 

Lung PK1 Pancreas SNU719 Stomach 

ACCME
SO1 

Others 
HCC15

69 
Breast KYSE510 Esophagus 

NCIH2
030 

Lung PK45H Pancreas SNU738 CNS 

ALLSIL Leukemia 
HCC15

88 
Lung KYSE520 Esophagus 

NCIH2
052 

Others PK59 Pancreas SNU761 Liver 

ASPC1 Pancreas 
HCC15

99 
Breast KYSE70 Esophagus 

NCIH2
073 

Lung PSN1 Pancreas SNU8 Ovary 

AU565 Breast 
HCC18

06 
Breast L1236 Lymphoma 

NCIH2
09 

Lung QGP1 Pancreas SNU81 
Large 

intestine 

BCPAP Others 
HCC18

33 
Lung L33 Pancreas 

NCIH2
11 

Lung RAJI Lymphoma SNU840 Ovary 

BDCM Leukemia 
HCC19

37 
Breast L428 Lymphoma 

NCIH2
110 

Lung REC1 Lymphoma SNU869 Others 

BL41 
Lymphom

a 
HCC19

54 
Breast LAMA84 Leukemia 

NCIH2
122 

Lung REH Leukemia SNU878 Liver 

BL70 
Lymphom

a 
HCC20

2 
Breast LC1F Lung 

NCIH2
170 

Lung 
RERFGC

1B 
Stomach SNU886 Liver 

BT549 Breast 
HCC21

08 
Lung LCLC103H Lung 

NCIH2
172 

Lung 
RERFLC

AD1 
Lung SNU899 UAT 



 

233 

 

NAME ORIGIN NAME ORIGIN NAME ORIGIN NAME ORIGIN NAME ORIGIN NAME ORIGIN 

BXPC3 Pancreas 
HCC22

18 
Breast LI7 Liver 

NCIH2
228 

Lung 
RERFLC

AD2 
Lung SNUC1 

Large 
intestine 

CA46 
Lymphom

a 
HCC22

79 
Lung LK2 Lung 

NCIH2
26 

Lung 
RERFLC

KJ 
Lung SNUC4 

Large 
intestine 

CADOES
1 

Bone 
HCC29

35 
Lung 

LNCAPCLO
NEFGC 

Others 
NCIH2

286 
Lung 

RERFLC
SQ1 

Lung SNUC5 
Large 

intestine 
CCFSTT

G1 
CNS 

HCC36
6 

Lung LOUCY Leukemia 
NCIH2

291 
Lung RH30 Others SQ1 Lung 

CHAGO
K1 

Lung HCC38 Breast LOXIMVI Skin 
NCIH2

3 
Lung RH41 Others ST486 

Lymphom
a 

CMLT1 Leukemia 
HCC40

06 
Lung LS1034 

Large 
intestine 

NCIH2
347 

Lung RI1 Lymphoma SU8686 Pancreas 

COLO20
1 

Large 
intestine 

HCC44 Lung LS411N 
Large 

intestine 
NCIH2

405 
Lung 

RPMI822
6 

multiple 
myeloma 

SUDHL1 Leukemia 

COLO32
0 

Large 
intestine 

HCC56 
Large 

intestine 
LS513 

Large 
intestine 

NCIH2
444 

Lung 
RPMI840

2 
Leukemia SUDHL5 

Lymphom
a 

COLO66
8 

Lung HCC70 Breast LU65 Lung 
NCIH2

452 
Others RS411 Leukemia SUPT1 Leukemia 

COLO67
8 

Large 
intestine 

HCC78 Lung LU99 Lung 
NCIH2

8 
Others RT112 

Urinary 
tract 

SUPT11 Leukemia 

COLO67
9 

Skin 
HCC82

7 
Lung LUDLU1 Lung 

NCIH2
92 

Lung RVH421 Skin SW1088 CNS 

COLO68
0N 

Esophag
us 

HCC95 Lung M07E Leukemia 
NCIH3

22 
Lung SET2 Leukemia SW1353 Bone 

COLO68
4 

Endometr
ium 

HCT15 
Large 

intestine 
MDAMB157 Breast 

NCIH3
255 

Lung SF295 CNS SW1463 
Large 

intestine 
COLO74

1 
Skin HDLM2 Lymphoma 

MDAMB175
VII 

Breast 
NCIH3

58 
Lung SH10TC Stomach SW1783 CNS 

COLO78
3 

Skin HDMYZ Lymphoma MDAMB231 Breast 
NCIH4

41 
Lung SHP77 Lung SW1990 Pancreas 

COLO79
2 

Skin HEL Leukemia 
MDAMB435

S 
Skin 

NCIH4
46 

Lung SIMA Others SW837 
Large 

intestine 
COLO80

0 
Skin 

HEL921
7 

Leukemia MDAMB453 Breast 
NCIH4

60 
Lung SJSA1 Bone T47D Breast 

COLO82
9 

Skin HH Leukemia ME1 Leukemia 
NCIH5

08 
Large 

intestine 
SKMEL30 Skin TALL1 Leukemia 

CORL10
5 

Lung HMC18 Breast MEG01 Leukemia 
NCIH5

20 
Lung SKMEL5 Skin 

TCCPA
N2 

Pancreas 

CORL23 Lung 
HPBAL

L 
Leukemia MELHO Skin 

NCIH5
22 

Lung SNU1 Stomach TE1 
Esophag

us 
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NAME ORIGIN NAME ORIGIN NAME ORIGIN NAME ORIGIN NAME ORIGIN NAME ORIGIN 

CORL24 Lung HT Lymphoma MELJUSO Skin 
NCIH5

24 
Lung SNU1033 

Large 
intestine 

TE10 
Esophag

us 
CORL27

9 
Lung 

HUCCT
1 

Others MHHES1 Bone 
NCIH5

26 
Lung SNU1040 

Large 
intestine 

TE11 
Esophag

us 
CORL31

1 
Lung HUG1N Stomach MHHNB11 Others 

NCIH5
96 

Lung SNU1041 UAT TE14 
Esophag

us 

CORL47 Lung HUH28 Others MKN1 Stomach 
NCIH6

47 
Lung SNU1066 UAT TE15 

Esophag
us 

CORL88 Lung 
IGROV

1 
Ovary MKN45 Stomach 

NCIH6
61 

Lung SNU1076 UAT TE4 
Esophag

us 

CORL95 Lung IPC298 Skin MKN7 Stomach 
NCIH6

9 
Lung SNU1077 

Endometriu
m 

TE5 
Esophag

us 

COV434 Ovary JMSU1 
Urinary 

tract 
MKN74 Stomach 

NCIH7
16 

Large 
intestine 

SNU1079 Others TE6 
Esophag

us 

CW2 
Large 

intestine 
JURKA

T 
Leukemia MM1S 

multiple 
myeloma 

NCIH7
27 

Others SNU1105 CNS TE8 
Esophag

us 

DANG Pancreas 
JURLM

K1 
Leukemia MOLT3 Leukemia 

NCIH7
47 

Large 
intestine 

SNU119 Ovary TE9 
Esophag

us 

DAUDI 
Lymphom

a 
JVM2 Lymphoma MONOMAC1 Leukemia 

NCIH8
2 

Lung SNU1196 Others TF1 Leukemia 

DB 
Lymphom

a 
JVM3 Lymphoma MONOMAC6 Leukemia 

NCIH8
38 

Lung SNU1214 UAT THP1 Leukemia 

DBTRG0
5MG 

CNS K029AX Skin MORCPR Lung 
NCIH8

54 
Lung SNU1272 Others 

TOLED
O 

Lymphom
a 

DEL Leukemia K562 Leukemia MSTO211H Others 
NCIH8

89 
Lung SNU16 Stomach 

TUHR10
TKB 

Others 

DKMG CNS KALS1 CNS NALM6 Leukemia 
NCIH9

29 
multiple 

myeloma 
SNU175 

Large 
intestine 

TUHR14
TKB 

Others 

DMS79 Lung 
KASUM

I2 
Leukemia NAMALWA Lymphoma 

NCIN8
7 

Stomach SNU182 Liver U937 
Lymphom

a 

DND41 Leukemia KCL22 Leukemia NB1 Others NCO2 Leukemia SNU201 CNS 
UACC25

7 
Skin 

DOHH2 
Lymphom

a 
KE37 Leukemia NB4 Leukemia 

NOMO
1 

Leukemia SNU213 Pancreas UACC62 Skin 

DU4475 Breast KE39 Stomach NCIH1048 Lung 
NUGC

3 
Stomach SNU216 Stomach 

WM179
9 

Skin 

DV90 Lung KE97 
multiple 

myeloma 
NCIH1184 Lung 

NUGC
4 

Stomach SNU245 Others WM793 Skin 

EB1 
Lymphom

a 
KELLY Others NCIH1299 Lung OC314 Ovary SNU283 

Large 
intestine 

WM88 Skin 
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NAME ORIGIN NAME ORIGIN NAME ORIGIN NAME ORIGIN NAME ORIGIN NAME ORIGIN 

ECC10 Stomach KHM1B 
multiple 

myeloma 
NCIH1373 Lung OE19 Esophagus SNU308 Others 

WM983
B 

Skin 

ECC12 Stomach KIJK Leukemia NCIH1385 Lung OE21 Esophagus SNU324 Pancreas 
WSUDL

CL2 
Lymphom

a 

EFE184 
Endometr

ium 
KMH2 Lymphoma NCIH1395 Lung OE33 Esophagus SNU349 Others YAPC Pancreas 

EFM19 Breast KMM1 
multiple 

myeloma 
NCIH1435 Lung 

ONCO
DG1 

Ovary SNU387 Liver YD10B UAT 

EHEB 
Lymphom

a 
KMS20 

multiple 
myeloma 

NCIH1437 Lung ONS76 CNS SNU398 Liver YD15 Others 

EM2 Leukemia 
KMS21

BM 
multiple 

myeloma 
NCIH146 Lung OPM2 

multiple 
myeloma 

SNU407 
Large 

intestine 
YD38 UAT 

EOL1 Leukemia KMS26 
multiple 

myeloma 
NCIH1563 Lung 

OSRC
2 

Others SNU410 Pancreas YD8 UAT 

GA10 
Lymphom

a 
KMS27 

multiple 
myeloma 

NCIH1568 Lung 
OVCA

R4 
Ovary SNU423 Liver ZR751 Breast 

GDM1 Leukemia 
KMS28

BM 
multiple 

myeloma 
NCIH1623 Lung 

OVCA
R8 

Ovary SNU449 Liver ZR7530 Breast 

GSS Stomach KMS34 
multiple 

myeloma 
NCIH1650 Lung OVISE Ovary SNU46 UAT    

GSU Stomach KOPN8 Leukemia NCIH1703 Lung 
OVKAT

E 
Ovary SNU466 CNS     

HARA Lung KP2 Pancreas NCIH1734 Lung 
OVMA

NA 
Ovary SNU475 Liver    

HCC114
3 

Breast KP3 Pancreas NCIH1755 Lung 
OVSA

HO 
Ovary SNU478 Others     

HCC117
1 

Lung 
KPNRT

BM1 
Others NCIH1781 Lung 

OVTO
KO 

Ovary SNU489 CNS     

  



 

 

Appendix 12 (Chapter 4, section 4.2.3.2): Feature 

selection in CCLE RNAseq dataset with the Elastic net 

regularization method. 

  

# Gene name 
Elastic 

net 
score 

# Gene name 
Elastic 

net 
score 

# Gene name 
Elastic 

net 
score 

1 OR4C7P -41.42 31 IL21R -0.05 61 CORO1B 0.01 

2 OR8X1P -1.46 32 SAMSN1 -0.05 62 SH3D19 0.01 

3 AL161932.3 -0.65 33 ST8SIA4 -0.04 63 NCKAP1 0.01 

4 AC022601.1 -0.48 34 CSTF3-DT -0.04 64 MEF2C-AS1 -0.01 

5 ABCB10P3 -0.13 35 NCKAP1L -0.04 65 FERMT3 -0.01 

6 IKZF1 -0.12 36 TRGV4 -0.04 66 DDAH1 0.01 

7 AC004687.1 -0.11 37 ATP1B1 0.04 67 GNA11 0.01 

8 WAS -0.11 38 RCSD1 -0.04 68 LAIR1 -0.01 

9 PLEKHG3 0.09 39 MAP4K1 -0.04 69 SEPTIN10 0.01 

10 PIK3CG -0.09 40 ARHGAP30 -0.04 70 LCP2 -0.01 

11 LINC00528 -0.09 41 CHMP3 0.03 71 CD48 -0.01 

12 CARD8-AS1 -0.09 42 SPN -0.03 72 ASAP2 0.01 

13 SH3BP4 0.08 43 CXorf21 -0.03 73 SELPLG -0.01 

14 KLHL6 -0.08 44 RHOH -0.03 74 CKAP4 0.01 

15 TSPAN6 0.08 45 JAK3 -0.03 75 PDE1B -0.01 

16 TJP1 0.08 46 PTPRF 0.03 76 ANKLE1 -0.01 

17 FKBP9 0.07 47 CTNND1 0.03 77 LAMB2 0.01 

18 PTPN22 -0.07 48 WASL 0.03 78 FAM78A -0.01 

19 RASAL3 -0.07 49 ARPIN-AP3S2 0.03 79 DAGLA 0 

20 MANBAL 0.07 50 AMOTL2 0.03 80 AC008957.1 0 

21 COL6A4P2 -0.06 51 AK1 0.02 81 ATP9A 0 

22 RRN3P2 -0.06 52 DDR1 0.02  
   

23 PLEKHA1 0.06 53 ARPIN 0.02       

24 TSPOAP1-AS1 -0.06 54 PTPRC -0.02  
   

25 GMFG -0.06 55 CTBP2 0.02       

26 PARVA 0.06 56 CD276 0.02  
   

27 AGAP2-AS1 0.06 57 CSF2RB -0.02       

28 PIM2 -0.06 58 ARHGAP15 -0.02  
   

29 CD53 -0.05 59 IL2RG -0.01       

30 PTPN7 -0.05 60 DOCK2 -0.01       

  



 

 

Appendix 13 (Chapter 4, section 4.2.3.2): Feature selection in CCLE LC-MS dataset 

with rho values calculated with Spearman correlation. 

# Metabolite name rho p.value FDR # Metabolite name rho p.value FDR # Metabolite name rho p.value FDR 

1 
xanthine 

0.56 
5.54E-

36 
1.25E-

33 
64 

3-
phosphoglycerate 

0.38 
5.33E-

16 
1.88E-

15 
127 

heptanoylcarnitine 
-0.23 

1.88E-
06 

3.33E-
06 

2 
creatinine 

0.54 
1.37E-

33 
1.03E-

31 
65 

C54:7 TAG 
-0.38 

8.19E-
16 

2.83E-
15 

128 
lactate 

0.23 
2.15E-

06 
3.78E-

06 

3 
C20:4 CE 

0.54 
1.37E-

33 
1.03E-

31 
66 

cytidine 
-0.37 

1.16E-
15 

3.95E-
15 

129 
glucuronate 

0.22 
4.06E-

06 
7.08E-

06 

4 
C20:5 CE 

0.53 
1.84E-

32 
1.04E-

30 
67 

C40:6 PC 
-0.37 

1.18E-
15 

3.96E-
15 

130 
C18:1 SM 

-0.22 
4.18E-

06 
7.18E-

06 

5 
taurodeoxycholate 

0.53 
3.73E-

32 
1.68E-

30 
68 

C56:4 TAG 
-0.37 

1.57E-
15 

5.20E-
15 

131 
alanine 

0.22 
4.18E-

06 
7.18E-

06 

6 
phosphocreatine 

0.52 
6.74E-

31 
2.53E-

29 
69 

F1P/F6P/G1P/G6P 
0.37 

2.37E-
15 

7.73E-
15 

132 
C46:1 TAG 

-0.22 
5.48E-

06 
9.34E-

06 

7 
thiamine 

0.52 
9.47E-

31 
3.04E-

29 
70 

C54:5 TAG 
-0.37 

3.63E-
15 

1.17E-
14 

133 
C50:0 TAG 

-0.22 
6.25E-

06 
1.06E-

05 

8 
carnosine 

0.51 
3.39E-

30 
9.55E-

29 
71 

hippurate 
0.36 

6.81E-
15 

2.16E-
14 

134 
niacinamide 

0.22 
6.43E-

06 
1.08E-

05 

9 
C18:2 CE 

0.51 
1.64E-

29 
4.10E-

28 
72 

C38:6 PC 
-0.36 

1.08E-
14 

3.38E-
14 

135 
malonylcarnitine 

0.21 
1.08E-

05 
1.79E-

05 

10 
oxalate 

-0.51 
1.87E-

29 
4.20E-

28 
73 

urate 
0.36 

1.12E-
14 

3.46E-
14 

136 
C16:0 SM 

-0.21 
1.45E-

05 
2.40E-

05 

11 
C16:0 CE 

0.51 
2.34E-

29 
4.78E-

28 
74 

C58:7 TAG 
-0.36 

1.74E-
14 

5.29E-
14 

137 
C36:2 PC 

-0.21 
1.66E-

05 
2.73E-

05 

12 
kynurenic acid 

0.5 
5.49E-

29 
1.03E-

27 
75 

carnitine 
0.36 

1.77E-
14 

5.31E-
14 

138 
butyrobetaine 

0.21 
1.82E-

05 
2.96E-

05 

13 
leucine 

0.5 
1.70E-

28 
2.93E-

27 
76 

acetylglycine 
-0.35 

7.47E-
14 

2.21E-
13 

139 
C38:2 PC 

-0.2 
2.02E-

05 
3.27E-

05 

14 
isoleucine 

0.5 
2.10E-

28 
3.37E-

27 
77 

C22:1 SM 
-0.35 

8.29E-
14 

2.42E-
13 

140 
C18:0 SM 

-0.2 
3.22E-

05 
5.17E-

05 

15 
methionine 

0.5 
3.91E-

28 
5.86E-

27 
78 

C54:6 TAG 
-0.35 

9.06E-
14 

2.61E-
13 

141 
C36:2 DAG 

-0.2 
3.68E-

05 
5.87E-

05 

16 
C16:1 CE 

0.49 
1.53E-

27 
2.15E-

26 
79 

betaine 
0.35 

2.12E-
13 

6.05E-
13 

142 
C52:2 TAG 

-0.2 
4.02E-

05 
6.36E-

05 

17 
C18:1 CE 

0.49 
1.65E-

27 
2.18E-

26 
80 

C32:0 PC 
-0.34 

2.51E-
13 

7.05E-
13 

143 
C24:1 SM 

-0.2 
4.31E-

05 
6.78E-

05 

18 
uracil 

0.49 
2.28E-

27 
2.85E-

26 
81 

C18:0 CE 
0.34 

6.99E-
13 

1.94E-
12 

144 
C20:4 LPC 

0.2 
4.57E-

05 
7.15E-

05 

19 
C18:3 CE 

0.49 
7.97E-

27 
9.44E-

26 
82 

cotinine 
-0.34 

9.58E-
13 

2.63E-
12 

145 
alpha-
ketoglutarate 

0.2 
4.61E-

05 
7.16E-

05 
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# Metabolite name rho p.value FDR # Metabolite name rho p.value FDR # Metabolite name rho p.value FDR 

20 
pyroglutamic acid 

0.49 
1.17E-

26 
1.32E-

25 
83 

C34:1 PC 
-0.34 

1.17E-
12 

3.17E-
12 

146 
pipecolic acid 

-0.19 
6.51E-

05 
0.0001 

21 
tyrosine 

0.49 
1.25E-

26 
1.34E-

25 
84 

C18:1 LPC 
0.33 

1.51E-
12 

4.05E-
12 

147 
guanosine 

-0.19 
6.79E-

05 
0.0001 

22 
allantoin 

0.48 
5.11E-

26 
5.22E-

25 
85 

DHAP/glyceraldeh
yde 3P 

0.33 
3.88E-

12 
1.03E-

11 
148 

C18:2 LPC 
-0.19 

7.21E-
05 

0.0001
1 

23 
hexoses (HILIC 
neg) 

0.48 
8.71E-

26 
8.52E-

25 
86 

succinate/methylm
alonate 

0.33 
4.40E-

12 
1.15E-

11 
149 

isocitrate 
0.19 

8.21E-
05 

0.0001
2 

24 
lysine 

0.48 
1.26E-

25 
1.18E-

24 
87 

C36:4 PC-B 
-0.32 

6.54E-
12 

1.69E-
11 

150 
glutathione 
reduced 

0.19 
9.63E-

05 
0.0001

4 

25 
phenylalanine 

0.47 
4.18E-

25 
3.76E-

24 
88 

3-
methyladipate/pim
elate 

-0.32 
1.16E-

11 
2.97E-

11 
151 

serine 
0.19 0.0001 

0.0001
6 

26 
methionine 
sulfoxide 

0.47 
5.65E-

25 
4.89E-

24 
89 

citrulline 
0.32 

1.77E-
11 

4.48E-
11 

152 
asparagine 

0.19 
0.0001

1 
0.0001

6 

27 
C20:3 CE 

0.46 
2.81E-

24 
2.34E-

23 
90 

C54:4 TAG 
-0.32 

2.48E-
11 

6.19E-
11 

153 
erythrose-4-
phosphate 

0.18 
0.0002

1 
0.0003 

28 
UMP 

-0.46 
8.00E-

24 
6.43E-

23 
91 

aconitate 
0.31 

3.33E-
11 

8.23E-
11 

154 
C50:1 TAG 

-0.18 
0.0002

4 
0.0003

5 

29 
thyroxine 

0.45 
1.76E-

22 
1.37E-

21 
92 

GMP 
-0.31 

4.50E-
11 

1.10E-
10 

155 
adenosine 

0.18 
0.0002

7 
0.0004 

30 
dCMP 

-0.45 
2.19E-

22 
1.65E-

21 
93 

C36:1 DAG 
-0.31 

7.36E-
11 

1.78E-
10 

156 
choline 

-0.17 
0.0003

1 
0.0004

5 

31 
trimethylamine-N-
oxide 

-0.45 
2.32E-

22 
1.68E-

21 
94 

C18:2 SM 
-0.31 

7.62E-
11 

1.82E-
10 

157 
2-deoxyadenosine 

0.17 
0.0003

4 
0.0004

9 

32 
NMMA 

0.45 
3.03E-

22 
2.13E-

21 
95 

5-HIAA 
-0.31 

9.82E-
11 

2.33E-
10 

158 
acetylcarnitine 

0.17 
0.0004

1 
0.0005

8 

33 ribose-5-
P/ribulose5-P 

0.44 
5.16E-

22 
3.52E-

21 
96 

5-
adenosylhomocyst
eine 

-0.3 
1.64E-

10 
3.83E-

10 
159 

aspartate 
0.17 

0.0004
2 

0.0005
9 

34 
dimethylglycine 

0.44 
5.79E-

22 
3.83E-

21 
97 

C46:0 TAG 
-0.3 

4.38E-
10 

1.02E-
09 

160 
C32:2 PC 

0.17 0.0005 
0.0007

1 

35 
CMP 

-0.44 
9.34E-

22 
6.00E-

21 
98 

C54:1 TAG 
-0.29 

7.01E-
10 

1.61E-
09 

161 
C48:1 TAG 

-0.17 0.0006 
0.0008

4 

36 
AMP 

-0.44 
3.34E-

21 
2.09E-

20 
99 

C22:6 LPC 
0.29 

8.33E-
10 

1.89E-
09 

162 
C22:0 SM 

-0.16 
0.0007

8 
0.0010

9 

37 
histidine 

0.43 
8.97E-

21 
5.45E-

20 
10
0 C56:2 TAG 

-0.29 
9.69E-

10 
2.18E-

09 
163 

adipate 
-0.16 

0.0008
9 

0.0012
3 

38 
SDMA/ADMA 

0.43 
9.45E-

21 
5.60E-

20 
10
1 hypoxanthine 

-0.29 
1.08E-

09 
2.41E-

09 
164 

C48:0 TAG 
-0.16 0.001 

0.0013
7 

39 
C58:6 TAG 

-0.43 
1.05E-

20 
6.06E-

20 
10
2 ornithine 

0.29 
1.26E-

09 
2.78E-

09 
165 

PEP 
0.16 

0.0010
6 

0.0014
4 

40 
arachidonyl_carniti
ne 

-0.43 
2.24E-

20 
1.26E-

19 
10
3 C18:1 LPE 

-0.28 
2.34E-

09 
5.12E-

09 
166 

C14:0 CE 
0.16 

0.0011
1 

0.0015
1 
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41 
sorbitol 

0.43 
2.65E-

20 
1.45E-

19 
10
4 glutamate 

-0.28 
3.28E-

09 
7.10E-

09 
167 

C18:0 LPE 
-0.15 

0.0014
6 

0.0019
7 

42 
C22:6 CE 

0.42 
6.32E-

20 
3.39E-

19 
10
5 cAMP 

-0.28 
5.71E-

09 
1.22E-

08 
168 

C16:0 LPC 
0.15 

0.0017
7 

0.0023
7 

43 
glycodeoxycholate 

0.42 
1.33E-

19 
6.98E-

19 
10
6 

glutathione 
oxidized 

0.28 
5.92E-

09 
1.26E-

08 
169 

C46:2 TAG 
-0.14 

0.0026
9 

0.0035
9 

44 
anserine 

0.42 
2.13E-

19 
1.09E-

18 
10
7 C52:4 TAG 

-0.28 
6.49E-

09 
1.36E-

08 
170 

C54:3 TAG 
-0.14 0.0029 

0.0038
4 

45 
C58:8 TAG 

-0.41 
3.81E-

19 
1.91E-

18 
10
8 C34:2 DAG 

-0.27 
1.06E-

08 
2.21E-

08 
171 

taurocholate 
0.14 0.0037 

0.0048
7 

46 
alpha-
glycerophosphate 

-0.41 
5.20E-

19 
2.54E-

18 
10
9 anthranilic acid 

0.27 
1.16E-

08 
2.39E-

08 
172 

2-
hydroxyglutarate 

-0.14 
0.0044

9 
0.0058

8 

47 
C56:5 TAG 

-0.41 
5.97E-

19 
2.86E-

18 
11
0 C36:3 PC 

-0.27 
1.44E-

08 
2.95E-

08 
173 

glycine 
-0.14 

0.0047
5 

0.0061
8 

48 
arginine 

0.41 
9.52E-

19 
4.46E-

18 
11
1 adenine 

-0.27 
1.48E-

08 
3.01E-

08 
174 

C34:4 PC 
-0.14 0.0049 

0.0063
3 

49 
alpha-
hydroxybutyrate 

-0.41 
9.90E-

19 
4.55E-

18 
11
2 NADP 

0.27 
1.73E-

08 
3.48E-

08 
175 

propionylcarnitine 
0.13 

0.0067
2 

0.0086
4 

50 
lactose 

0.41 
1.23E-

18 
5.53E-

18 
11
3 inosine 

-0.26 
3.03E-

08 
6.04E-

08 
176 

C34:1 DAG 
-0.12 

0.0101
8 

0.0130
1 

51 
hexoses (HILIC 
pos) 

0.41 
1.69E-

18 
7.46E-

18 
11
4 C54:2 TAG 

-0.26 
4.23E-

08 
8.36E-

08 
177 

homocysteine 
0.12 0.0142 

0.0180
5 

52 
xanthosine 

0.4 
2.79E-

18 
1.21E-

17 
11
5 C14:0 LPC 

-0.25 
1.02E-

07 
2.00E-

07 
178 

thymine 
-0.12 

0.0144
3 

0.0182
4 

53 
C56:6 TAG 

-0.4 
4.03E-

18 
1.71E-

17 
11
6 C56:3 TAG 

-0.25 
1.55E-

07 
3.01E-

07 
179 

cystathionine 
-0.12 

0.0147
4 

0.0185
3 

54 
C56:8 TAG 

-0.4 
9.64E-

18 
4.02E-

17 
11
7 C52:1 TAG 

-0.25 
1.75E-

07 
3.36E-

07 
180 

sucrose 
0.12 

0.0149
6 

0.0187 

55 
tryptophan 

0.4 
1.92E-

17 
7.86E-

17 
11
8 C16:0 LPE 

-0.24 
3.26E-

07 
6.21E-

07 
181 

palmitoylcarnitine 
-0.12 

0.0155
9 

0.0193
8 

56 
valine 

0.39 
2.45E-

17 
9.85E-

17 
11
9 citrate 

0.24 
3.31E-

07 
6.21E-

07 
182 

C24:0 SM 
-0.12 

0.0157
6 

0.0194
8 

57 
C56:7 TAG 

-0.39 
5.61E-

17 
2.21E-

16 
12
0 C16:1 SM 

0.24 
3.31E-

07 
6.21E-

07 
183 

taurine 
-0.11 

0.0252
8 

0.0310
8 

58 
creatine 

0.39 
7.67E-

17 
2.97E-

16 
12
1 C20:4 LPE 

-0.24 
3.53E-

07 
6.57E-

07 
184 

hexanoylcarnitine 
0.11 

0.0280
6 

0.0341
3 

59 
1-
methylnicotinamide 

0.39 
9.64E-

17 
3.68E-

16 
12
2 C36:1 PC 

-0.24 
4.76E-

07 
8.78E-

07 
185 

butyrylcarnitine 
-0.11 

0.0280
6 

0.0341
3 

60 
C52:5 TAG 

-0.39 
1.03E-

16 
3.87E-

16 
12
3 4-pyridoxate 

-0.24 
5.08E-

07 
9.29E-

07 
186 

beta-alanine 
0.11 

0.0295
5 

0.0357
4 

61 
C36:4 PC-A 

-0.39 
1.26E-

16 
4.63E-

16 
12
4 C22:6 LPE 

-0.24 
5.13E-

07 
9.31E-

07 
187 

malondialdehyde 
-0.1 

0.0360
1 

0.0433
3 

62 
C38:4 PC 

-0.38 
3.87E-

16 
1.41E-

15 
12
5 glutamine 

0.24 
8.14E-

07 
1.46E-

06 
188 

lauroylcarnitine 
-0.1 

0.0374
1 

0.0447
7 

63 
C38:5 PC 

-0.38 
4.80E-

16 
1.71E-

15 
12
6 threonine 

0.23 
1.08E-

06 
1.92E-

06 
  

  
      



 

 

Appendix 14 (Chapter 4, section 4.3.2): Lists of genes and 

metabolites involved in positive and negative 

correlations as identified with the sPLS-DA modelling. 

  Negative correlations Positive correlations 

No. Genes 
Gene 

expr in 
HC 

Metabolites 

Met 
expr 

in 
HC 

Genes 
Gene 
expr 
in HC 

Metabolites 

Met 
expr 

in 
HC 

1 OR4C7 up xanthine down TJP1 down xanthine down 

2 
AL161932.
3 

up 
creatinine 

down 
FKBP9 

down 
creatinine 

down 

3 
AC022601
.1 

up 
C20:4CE 

down 
SH3BP4 

down 
betain 

down 

4 
ABCB10P
3 

up 
C16:0CE 

down 
TSPAN6 

down 
   

5 
MEF2C-
AS1 

up 
betain 

down 
PTPRF 

down 
   

6 CXorf21 up C46:2TAG up PARVA down    

7 SELPLG up C36:1PC up GNA11 down    

8 SAMSN1 up C18:0CE up AMOTL2 down    

9 RRN3P2 up    LAMB2 down    

10 
CARD8-
AS1 

up 
 

  
ATP1B1 

down 
   

11 
AC008957
.1 

up 
 

  
CTNND1 

down 
   

12 LCP2 up    CHMP3 down    

13 FERMT3 up    AK1 down    

14 PTPN22 up    DDAH1 down    

15 TRGV4 up         

16 LAIR1 up         

17 IL2RG up         

18 DOCK2 up         

19 RHOH up         

20 GMFG up         

21 CD53 up         

22 
AC004687
.1 

up 
 

  
     

23 WAS up         

24 IKZF1 up         

25 AMOTL2 down         
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SCRIPTS 

Table with the available scripts and repositories for each 

computational method presented in this thesis 

 

Method Interface Approach Chapter GitHub repository

Sleuth in CLL R DEA 2 https://github.com/GrigoriosPapatzikas/Thesis_CLL.git

SetRank R GSEA 2 https://github.com/GrigoriosPapatzikas/Thesis_CLL.git

rMTA MATLAB GSMM 2 https://github.com/GrigoriosPapatzikas/Thesis_CLL.git

gMCSs MATLAB GSMM 2 https://github.com/GrigoriosPapatzikas/Thesis_CLL.git

Sleuth in NHL R DEA 3 https://github.com/GrigoriosPapatzikas/Thesis_NHL.git

PCA in NHL R ML 3 https://github.com/GrigoriosPapatzikas/Thesis_NHL.git

fgsea R GSEA 3 https://github.com/GrigoriosPapatzikas/Thesis_NHL.git

PCA in CCLE Python ML 4 https://github.com/GrigoriosPapatzikas/Thesis_CCLE.git

tSNE Python ML 4 https://github.com/GrigoriosPapatzikas/Thesis_CCLE.git

UMAP Python ML 4 https://github.com/GrigoriosPapatzikas/Thesis_CCLE.git

sPLS-DA R ML 4 https://github.com/GrigoriosPapatzikas/Thesis_CCLE.git


