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“Do not go gentle into that good night,
Old age should burn and rave at close of day;

Rage, rage against the dying of the light.

Though wise men at their end know dark is right,
Because their words had forked no lighting they

Do not go gentle into that good night. ”

D. M. Thomas
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Topics in Bayesian Population inference for Gravitational Wave Astronomy

by Riccardo Buscicchio

The first detection of a gravitational wave by LIGO and Virgo is a milestone for the
study of compact objects in the Universe. Since it took place in 2015, a few tens of
detections have been confirmed by the LIGO Virgo Collaboration (LVC). Afterwards,
other collaborations have confirmed and extended such catalogues with independent
analysis on the same datasets. Through exquisite experimental devices, sophisticated
data analysis algorithms, and an accurate interpretational effort, these observations
constitutes now an invaluable body of knowledge, and are a key piece of observational
evidence for our understanding of the astrophysical population of binary systems.
The science case is set to continuously expand as detections increase, and space-based
gravitational–wave observatories are going to complement current ones with an otherwise
inaccessible window to the “gravitational-wave sky”.

In this thesis I report on my contributions on a few scientific investigations, including:
(i) the development of statistical tools for the simultaneous inference on multiple sources
and multiple populations of compact binaries; (ii) the development of a framework for
parameter estimation on space-based detector observations, focusing on stellar mass
binary black–holes and binary white dwarfs systems; (iii) the predictions of yet unob-
served phenomena (e.g. gravitational lensing of gravitational waves) or specific signals
(e.g. the stochastic foreground of gravitational waves) and their mutual connections;

While developing the tools above I have had the opportunity to provide some insight
on: (i) the astrophysical population of binary black hole masses and spins, and their
distribution across redshift, therefore providing observational evidence in support of
different formation channels; (ii) the future detectability of binary white dwarfs in
satellites galaxies of the Milky Way with space-based detectors, with implications on
the assembly history of satellite galaxies.
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Contributions overview

In Chapter 1 I provide the foundational material for subsequent Chapters. A basic

summary of gravitational waves (GWs) emission in the context of general relativity (GR)

is followed by a brief introduction to the coupling of metric perturbations to ground-

based (e.g. Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo

interferometer (Virgo)) and space-based (e.g. Laser Interferometer Space Antenna

(LISA)) detectors.

In Chapter 2 I introduce some relevant concepts for an accurate understanding of

BBHs, BNSs, and double white dwarf s (DWDs) GW signals. This leads naturally to the

description of a hierarchical inference framework using catalogue of events. Following, I

summarize the current knowledge on the population of individual sources presented

above. All the above is established material in scientific literature. Here I provide an

overview for context, insofar it serves as a background for the original work presented

in the following Chapters.

In Chapter 3 I describe the identifiability constraint for multimodal likelihoods in

two different scenarios: simultaneous parameter estimation of multiple DWDs with

LISA; non-parametric hierarchical inference on BBH component masses with LIGO-

Virgo Collaboration (LVC) catalogues. I’ve led both studies, in collaboration with

the co-authors of the paper enclosed [1]. The population inference code is entirely

developed by me, under the guidance of Dr. Chris Moore. The code for the parameter

estimation of LISA sources is part of an ongoing group work carried out by members of
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the University of Birmingham Institute for Gravitational Wave Astronomy. I’ve made

substantial contributions to its development as part of my PhD research activity.

In Chapter 4 I present a study on the detectability of DWDs through GWs in Milky

Way (MW) satellite galaxies. I’ve co-authored the paper [2], lead a significant fraction

of the parameter estimation campaign, and contributed to the statistical analysis to

assess the discovery potential of new satellites through LISA. The code used for this

campaign is the same of Chapter 3.

In Chapter 5 I present a study on the detectability of stellar-mass binary black

Holes (SmBBHs) through GWs with gravitational wave detectors in space. I’ve lead

the study presented in the paper [3], and the parameter estimation campaign associated.

The code used for the campaign is a significantly evolved version of the one used in

Chapter 3, with major contributions of Dr. Antoine Klein.

In Chapter 6 I introduce the gravitational lensing of GWs, and enclose two short-

author papers addressing the implications of a stochastic gravitational wave background

(SGWB) non-detection to the expected rate of lensed observations of BBHs (Section

6.1) and BNSs (Section 6.2), respectively. I’ve led both studies, in collaboration with

the co-authors of the papers enclosed [4, 5]. Subsequently, I have performed a similar

analysis within the LVC, providing up-to-date constraints using public data from the

LVC third observing run (O3) [6].

In Chapter 7 we draw conclusions and future prospects of my research activity,

According to the University regulations, a more detailed contribution summary is

also prepended at the start of each Chapter.
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Chapter 1

Introduction

Chapter 1 is a review Chapter (following closely [8] in Section 1.1), and no original

work is presented.

1.1 Linearized gravity

Gravitational waves can be thought of as travelling waves of space-time perturbations.

They are a straightforward consequence of the existence a speed limit for the propagation

of physical influences, when their geometric interpretation is contextualized in GR.

Starting from the metric gµν , it must be a solution of Einstein’s fields equation [9]

Gµν = Rµν −
1

2
gµνR =

8πG

c4
Tµν (1.1)

where Ricci tensor Rµν and scalar curvature R involve up to second order derivatives

of gµν . The energy-momentum tensor Tµν is associated to matter and radiation distri-

bution of the system. The non-linear nature of such equations makes it challenging to

find exact solutions. However, we are interested in a perturbative solution of (1.1), with

respect to the one in absence of matter and radiation (i.e. Tµν = 0), the flat space-time
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metric ηµν

gµν = ηµν + hµν (1.2)

|hµν | � 1 (1.3)

As a consequence, GR invariance under diffeomorphisms F

xµ → x′µ = F µ (x) (1.4)

is restricted to an appropriate set of reference frames, everyone exhibiting small hµν .

The result is the Poincarè group, with the addition of small diffeomorphisms

xµ → x′µ = xµ + ξµ (x) (1.5)

The resulting classical field theory degree of freedom is hµν , and its gauge invariance

is

h′µν = hµν − (∂νξµ + ∂µξν) (1.6)

The differential operator Gµν is linearized through the expansion for gµν , and (1.1)

becomes a gauge invariant equations of motion for hµν

�h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πG

c4
Tµν (1.7)

h̄µν = hµν −
1

2
hαα (1.8)

In the so-called Lorenz gauge

∂µh̄µν = 0 (1.9)
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the three terms on the left-hand side (LHS) in (1.7) vanish, and �h̄µν satisfies a

4-dimensional tensor wave equation

�h̄µν = −16πG

c4
Tµν (1.10)

By separating the background metric from the freely propagating waves, we recover

the energy-momentum tensor conservation, as a gauge-consistency condition

∂µTµν = − c4

16πG
∂α∂α∂

µh̄µν = 0 (1.11)

By contrast, in full GR we have a non-conserved energy-momentum tensor, as shown

with the introduction of covariant derivatives

DµTµν = ∂µTµν − ΓλµνT
µ
λ + ΓµµλT

λ
ν = 0 (1.12)

This is because in non-linear regime matter and radiation exchange energy and momen-

tum with the gravitational field, too.

In summary, the linearization in (1.2) —and subsequent conservation in (1.11)—

prescribes that GW sources interact and evolve in a reference spacetime ηµν through a

well-defined and conserved energy-momentum tensor. It is a known result in literature

(see, e.g., [8] or [10] for extensive discussions on the topic) that the background metric

does not have to be necessarily flat. Analogue results to the above hold in the presence

of additional large-scale low-frequency background gravitational fields, too. They

effectively decouple in the linearized theory, and act purely as a background metric

which hµν propagates through. This is an important feature of this framework, since

both cosmological expansion and gravitational-wave lensing (relevant mechanisms for
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the following sections) can be described as such.

Far from the emitting sources, test masses are affected by the metric perturbation

gµν = ηµν + hµν satisfying

�h̄µν = 0 (1.13)

whose solutions are free waves propagating at light speed. They originate as prescribed

by the integral of the inhomogeneous (1.10) over the source volume V

h̄µν (x, t) =
4G

c4

∫

V

1

|x− x′|Tµν
(
x′, t− |x− x

′|
c

)
d3x′ (1.14)

in that values on the domain boundary ∂V fix the propagating fluctuations. Since

Lorenz gauge in (1.9) is only a partial gauge fixing, it is usually convenient to remove

the remaining degrees of freedom. Under a small diffeomorphism (1.5), the tensor hµν

transforms as follows

h̄µν → h̄′µν = h̄µν − (∂νξµ + ∂µξν − ηµν∂ρξρ)

≡ h̄µν −Dµνρξρ (1.15)

and we can use the four independent arbitrary fields ξµ to rearrange the physical

content of a GW into the hµν components, by means of (1.15). The most suitable for

our purposes is the transverse traceless (TT) gauge. They are implicitly defined by a

set of equations for the resulting hTT tensor hTTµν

hTT0µ = 0
(
hTT

)i
i

= 0 ∂jhTTij = 0 (1.16)
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However, this set of equation admit solution only in vacuum. If �h̄µν 6= 0 (i.e. in

the presence of matter or radiation), Lorenz gauge imposes

∂µh̄′µν = 0 ⇒ �ξµ = 0 (1.17)

⇒ �Dµνρξρ = 0 (1.18)

So we cannot set to zero any further component of h̄µν without falling into contradiction

�hµν = −16πG

c4
Tµν 6= 0 = �Dµνρξρ (1.19)

hµν 6= Ξµν (1.20)

Being traceless, the trace-removal is redundant (i.e. hTTµν = hTTµν ), and the linearized

vacuum equation reads

�hTTij = 0 (1.21)

and —being hTTij also symmetric— the most general solution can be cast in the form of

tensor plane–waves with wavevector kµ =
(

2πf
c
,k
)

hij (x, k) =
∑

A=+,×

hA(k) exp(ikµxµ)(eA)ij (1.22)

with eA=1,2 corresponding to a basis for TT 3–tensors eij orthogonal to the propagation

direction. This is again imposed by Lorenz gauge condition kieij(k) = 0. In the

particular case of a 3–vector k in the z–direction, the two required tensors could be
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chosen as

e+ ≡ e1 =




1 0 0

0 −1 0

0 0 0




e× ≡ e2 =




0 1 0

1 0 0

0 0 0




(1.23)

Polarization Polarization

x

z

y

x

z

y

Figure 1.1: Polarization tensors plus e+ (ẑ) (left) and cross e×(ẑ) (right), depicted
via the linear maps ṙ = eAr along the z−axis.

Therefore, a GW propagating along a direction n̂ can be decomposed in a superpo-

sition of plane modes

hTTij (t,x) =
∑

A=+,×

eAij(n̂)

∫ +∞

−∞
dfh̃A(f) exp(−2πıf(t− n̂ · x/c)) (1.24)

An important distinction is necessary here. If a detector is most sensitive to GWs

with wavelength much bigger than the typical detector size, the retarded time is uniform

over it and the term |x|f/c is negligible. Such an approximation holds for ground-based

detectors (|x| � 105–107m), while it’s not satisfied for space-based detectors across

their whole sensitivity band (|x| � 109–1012m). Proposed satellites configuration are

expected to be as large as 2.5× 109m.
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When the long-wavelength approximation holds, it is possible to introduce strain

scalar timeseries h+, h×, defined by the inverse Fourier transforms

hA(t) =

∫ +∞

−∞
dfh̃A(f) exp(−2πıft) (1.25)

through which (1.22) becomes

hTTij (t) =
∑

A=+,×

eAij(n̂)hA(t) (1.26)

1.2 Detectors and Observables

The tensor signal in (1.22) is coupled to each observatory through a given exper-

imental setup, resulting in one (or more) observable. A single detector is therefore

specified by a tensor Dij(t) whose contraction with hij(t) gives a time-series h(t):

h(t) = Dij(t)hij(t) (1.27)

The functional form and dependencies of the detector tensor are tied to the physical

phenomena used to probe the gravitational field. In the following, Section 1.2.1 and 1.2.2,

we will characterize the instrument response of ground-based and space-based detectors,

respectively. The target in both setups is to construct observables compatible with

GR (i.e. whose outcome is invariant upon change of reference system), involving light

propagation, mirrors, and leading order perturbations of a background, slowly evolving

metric over cosmological timescales and distances).
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Figure 1.2: Advanced Virgo noise budget represented as strain amplitude spectral
density. Seismic motions, Brownian noise, and quantum fluctuations of laser source
are dominant in the low- (∼ 10Hz), mid- (∼ 100Hz), and high- (∼ 0.5kHz) frequency,
respectively. Additional subdominant contributions are described in [11], which this

plot is adapted from.

1.2.1 Ground-based interferometers

We will focus here on interferometric measurements, where beams of coherent laser

light are set to travel along multiple paths, bounce on test masses suspended from

the environment and ultimately recombine through interference at specific locations,

where a photodiode samples the readout data. In Figure 1.4 a simplified layout of

a Michelson interferometer, sufficient to characterize the detector response, is shown:

the laser emitted is split into two coherent beams along two orthogonal paths; then,

it circulates along each of LIGO’s 4km (3km for Virgo) arms, and is stored through

multiple bounces in a Fabry-Perot cavity, providing an effective armlength of 1200km

and thus accumulating the effect of GW on light travel times up to the required target

sensitivity.

Passive suspensions and actuators (not represented in the layout) isolate the whole
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setup from external mechanical disturbances within the target frequency band (∼

10Hz−1kHz), while additional optical elements and coatings are put in place to suppress

thermal and opto-mechanical noise sources, as well as to mitigate laser amplitude and

phase quantum fluctuations. In Figure 1.2 we illustrate a number of noise sources (as

equivalent strain amplitude spectral densities [12]) for Advanced Virgo, as originally

presented in [11]. Readily identifiable, three main components dominate current

interferometers’ noise budget: typically below 10Hz, seismic noise originates from micro-

seismic activity effectively causing a displacement of the test-masses by µm; from 10Hz

up to 100Hz thermal noise caused by thermo-kinetic excitations of suspensions and

mirrors; above 100Hz shot noise arising from the inherent quantum nature of the laser

beam photons. For a detailed description of LIGO and Virgo optical layouts, noise

contributions and mitigation strategies, refer to [11, 13]. For the interested reader, we

plot in Figure 1.3 strain sensitivity plots from the first three observing runs of LIGO and

Virgo (the most recent ended in March 2020), alongside projected target sensitivities

for the next two observing runs, O4 and O5 (expected to start by the end of 2022 and

2024, respectively) [14].

Going back to the detector coupling with a GW signal, the tensor structure of the

metric perturbation is encapsulated in the two polarization tensors, therefore we can

conveniently define two antenna pattern functions

FA(n̂) = DijeAij(n̂) (1.28)

The detector orientation with respect to the wavevector −n̂ drives the functional

form of the pattern functions. Solving the geodesic equation for rigid and equal–

arm interferometers (oriented with respect to the GW polarization axis as described
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Figure 1.3: Past and upcoming observing runs strain noise spectral densities,
for LIGO Hanford, Livingston(left), and Virgo (right) interferometers [14]. Among
others, latest improvements before the start of O3 to mirror coatings, test-masses
suspension silica fibers, higher input laser power, and the use of squeezed vacuum
states brought both interferometers sensitivities down to best-to-date performances
for LIGO Livingston (green, left), LIGO Hanford (orange, left) and Virgo (green,

right)

in Figure 1.4), one obtains the instantaneous response [15]:

F+(n̂, ψ) =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ (1.29)

F×(n̂, ψ) =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ (1.30)

where we have also included a generic rotation by an angle ψ of the detector axes

with respect to the polarization tensors basis. The typical duration of a signal for

ground based detectors is much shorter (10ms 6 T 6 1min) than any appreciable

time-evolution of the antenna pattern (1h 6 T ). Therefore the instantaneous response

is also a good approximation for the whole duration of an event observation.
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Figure 1.4: Simplified layout of ground-based gravitational wave detectors (left
panel). The basic equal-arm Michelson interferometer is enhanced by the insertion
of two Fabry-Perot cavities, one for each arm. The relative orientation of the
interferometer arms (aligned with unit vectors u, v) with respect to the incoming
waves (with polarization angle ψ) defines the detector istantaneous response through

a suitable combination of angles (right panel), as in (1.28)

1.2.2 Space-based interferometers

We now turn our attention to the coupling of a GW signal to space-based detectors:

current design of the LISA mission [16] (and similarly for other proposed missions,

e.g. TianQin [17]) involves three identical spacecrafts, flying in equilateral triangular

formation on Keplerian orbits around the Sun.

The constellation center of mass trails the Earth’s orbit1 while the satellites rotate

at constant inclination with respect to the orbital plane (see Figure 1.5).

As a consequence of (i) the constellation orbital motion, (ii) the signals durations

being comparable to the orbit timescale, and (iii) the satellites not being locked at fixed

equal distances between each other further dependences would be introduced with respect

to ground-based interferometers in the detector response function, resulting in amplitude,

phase, and frequency modulations. Current LISA optical setup is not constituted by
1no trailing is involved for the TianQin mission, whose center of mass is centered on the Earth itself
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r12r21
r13r31

Figure 1.5: (Left) Satellite motion cartwheeling along the Earth orbit, with a
constant offset angle of π/9 on the orbital plane. (Right) Simplified schematics
(adapted from [18]) of the companion optical benches aboard each of the three
spacecraft satellites. The two local lasers are used to construct intra-spacecraft
and inter-spacecraft phase difference observables, the fundamental components to

construct the virtual interferometric variables (i.e. TDIs).

phase–locked laser signals (alike LIGO and Virgo) across multiple spacecrafts. Instead,

each satellite is comprised of two optical benches, following the motion of free falling test

masses, thus providing insulation from environmental disturbances. In the simplified

picture in Figure 1.5, each optical bench is equipped with a local laser used to (i)

measure phase differences with respect to intra-spacecraft (i.e. between optical benches,

through optical fibers connecting them) and inter-spacecraft (i.e. between satellites)

incoming beams. Similarly, each local laser beam is sent out to perform analogous

measurements on the other benches [18, 19].

The fundamental datum is therefore the phase difference between the signal Φij(tj)

travelling from spacecraft i to j and the reference signal onboard of spacecraft j,

evaluated at time tj. This signal is our probe of changes in path–lengths (either due

to the satellites motion ∆lij(ti), or to the transit of a GW δlij(ti)), however it is

contaminated by laser phase noises C(t), shot noises ns(t) and relative acceleration
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noises na(t)

Φij(tj) = ωl[δlij(ti) + ∆lij(ti)]

+ Ci(ti)− Cj(tj) + nsij(tj)− r̂ij(ti)(naij(tj)− naji(ti)) (1.31)

where r̂ij(ti) is a unit vector connecting the space coordinates of emission and reception

events on i-th and j-th detector, respectively2. We could in principle, following closely

the observable definition in the context of ground-based detectors, define three Michelson–

like variables by accumulating phases from the four one-way paths combined at each

satellite

MX(t) = Φ12(t21) + Φ21(t)− Φ13(t31)− Φ31(t) (1.32)

MY (t) = Φ23(t32) + Φ32(t)− Φ21(t12)− Φ12(t) (1.33)

MZ(t) = Φ31(t13) + Φ13(t)− Φ32(t23)− Φ23(t) (1.34)

with suitable delays

tij = t− lij(ti) (1.35)

and inter–satellites path lengths defined by the null–geodesic [20]:

lij(ti) =

∫ j

i

√
gµνdxµdxν (1.36)

2We reserve latin indices for constellation spacecrafts (they do not obey to any tensorial structure),
and greek indices for space-time tensors, wherever needed. Alternatively, when convenient for readability,
we use boldface fonts to denote space-time tensors.
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For equal and constant armlengths, Equations (1.32),(1.33),(1.34) are sufficient to

cancel the laser noise dominating the individual Φij’s [21, 22].

For the sake of completeness, we report here an expression for the full LISA response

in the rigid adiabatic approximation (RAA): the natural timescale separation for this

model is the round–trip light travel time between two spacecrafts, or equivalently

c/2πL ∼ 19× 10−3 mHz. Using the Fourier decomposition in (1.24) one can write a

generic time and frequency dependent detector tensor [19] defined implicitly by the

time-dependent perturbation to the relative path-length between two spacecrafts

δlij(t)

L
=
∑

n

Tr
[
T
(
fn, t, k̂

)
hn

]
(1.37)

where the sum is performed over the relevant frequencies satisfying the RAA approxima-

tion, while the trace Tr is over the space-time indices of the matrix product between the

detector tensor T and the strain signal hn. Physically, this is equivalent to describe the

phase measurements, in presence of a GW, while keeping the satellites at fixed positions

and evolving them adiabatically through a rigid constellation orbit. Consistently, the

sources’ frequency evolution is required to be “slow enough” (i.e. f/ḟ � 2πL/c) to

not evolve appreciably over the round–trip travel-time of a photon between the two

spacecrafts. For all sources we will be focusing on in the following Chapters, i.e. quasi-

monochromatic or slowly chirping detached binaries, we will assume this approximation

[23]. Any additional modelling assumption will be explicitly stated (e.g. in Eq. (5.8) in

Chapter 5).

From Equation (1.37) it is clear that to write explicitly a response, we need an

expression for δij . Every LISA one–arm phase observable Φij(tj) in (1.31) is affected by
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an incoming GW through the pathlength variation δlij

δlij(t) =
1

2
Tr
[
r̂ij(t)⊗ r̂ij(t)
1− n̂ · r̂ij(t)

∫ sj

si

hTT (s)ds

]
(1.38)

with: s denoting the retarded time introduced in Equation (1.22); si denoting the

retarded time evaluated on the i-th spacecraft on the corresponding event (either the

photon emission or its reception); t denoting the event of reception on spacecraft j; Tr

and ⊗ denoting the trace and the tensor product over space-time indices. Equation (1.38)

is the time domain single-arm response to a GW, the building block for more complex

observable responses. By defining the strain Fourier transform

h̃(f) =

∫ ∞

−∞
h(u)e−2πifudu (1.39)

one can obtain the equivalent response in frequency domain

δlij(t)

L0

=
1

2
r̂a(t)r̂b(t)

∫ ∞

−∞
h̃ab(f)T (f, t, k̂)e2πif(t−∆t)df (1.40)

with the transfer function T (f, t, k̂)

T (f, t, k̂) = sinc
[
πfL0

(
1− k̂ · r̂(t)

)]
(1.41)

where ∆t is the light-travel time of a photon propagating from the Solar system

baricenter to halfway along the LISA arm under consideration.

Going beyond the equal-arm treatment above, more realistic LISA satellites configu-

rations must take into account unequal and time-varying armlengths. More complex

combinations of phase measurements, a procedure commonly known as Time–delay

interferometry (TDI), must be introduced to suppress phase noises whilst keeping the



18 Chapter 1. Introduction

GW signal unaffected. The construction of such variables (which are known themselves

as TDIs) is a crucial modelling step towards realistic full LISA response to an arbitrary

GW signal [24, 19, 25]. For constant unequal arm configurations, delays for different

arms will be different. Following notation choices in literature [21], we slightly enhance

the one introduced so far, defining individual inter-spacecraft distance measurements as

yijk or yij′k: i and k refers to sender and receiver spacecrafts respectively, while j and j′

emphasize the propagation arm of the laser beam. We will label the oriented arm from

i-th to k-th detector as j if (ijk) is an even permutation of (123) or j′ if it’s an odd

permutation. Accordingly, we define each delay operator with a comma subscript index

f,j(t) = Djf(t) = f (t− Lj) (1.42)

With the above convention, we have sufficient flexibility to construct laser phase noise-

cancelling Michelson variables X, Y, Z, as follows:

X = y231 + y13′2,3 + y32′1,3′3 + y123,2′3′3 − y32′1 − y123,2′ − y231,22′ − y13′2,322′ (1.43)

Y = y312 + y21′3,1 + y13′2,1′1 + y231,3′1′1 − y13′2 − y231,3′ − y312,33′ − y21′3,133′ (1.44)

Z = y123 + y32′1,2 + y21′3,2′2 + y312,1′2′2 − y21′3 − y312,1′ − y123,11′ − y32′1,211′ (1.45)

which are known in literature as first generation TDIs (1.0-g). Similar definitions can

be made to take into account LISA constellation rotation during its motion around

the Sun and armlenghts time-dependence. The interested reader is encouraged to

consult exhaustive reviews for further details [26]. Finally, it is worth mentioning that

in Chapter 5 we will make use of an additional set of variables, usually referred to as

noise-orthogonal variables. They are obtained by linearly combining X,Y and Z as
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follows:

A =
1√
2

(Z −X) (1.46)

E =
1√
6

(X − 2Y + Z) (1.47)

T =
1√
3

(X + Y + Z) (1.48)

in such a way that the acceleration and shot noise cross-correlations [21] cancel, therefore

speeding up likelihood evaluations.
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Chapter 2

Sources modelling and inference

Chapter 2 is a review Chapter, and no original work is presented.

2.1 Compact binary coalescences

In Chapter 1 we introduced the elementary observable (the “signal”) in the context of

ground– and space–based interferometry, focusing on the propagation of a gravitational-

wave in vacuum and its coupling to interferometric detectors. Here we instead focus on

the relevant sources for the studies presented in the following Chapters. Throughout

the rest of the thesis we will be focusing on binary systems. It is a standard textbook

result (originally derived in [27]) that, to the lowest order in the source velocity v/c and

in the radiation zone, the emission is completely described by the quadrupole formula

h =
2G

c4dL
Q̈ (2.1)

Q =

∫

S
d3rρ(r)

(
r⊗ r− 1

3
r2

)
(2.2)

where dL is the luminosity distance from the source to the point where the strain

tensor h is probed, ρ(r) is the mass density (as a function of position r, with r = ||r||),
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and the integration is performed over its entire support domain S. With a simple

dimensional analysis argument, e.g. approximating Q in Eq. (2.2) with its typical

domain lengthscale R, mass M and motion timescale 1/f , we obtain for the metric

perturbation in Eq. (2.1)

h ∼ GMR2f 2

c4dL
(2.3)

which for systems governed by Keplerian dynamics can be further simplified to

h ∼ (GM)5/3f 2/3

c4dL
(2.4)

Targeting a strain amplitude h ∼ 10−21 at around either 1 mHz or 100 Hz (i.e. the

frequencies of highest sensitivity for space- and ground- based detectors, respectively)

is possible with close inspiralling astrophysical binary systems. We provide here three

examples

h ∼ 1× 10−21

(
M

100M�

)5/3(
650Mpc

dL

)(
f

100Hz

)2/3

(2.5)

∼ 1× 10−21

(
M

5M�

)5/3(
4Mpc

dL

)(
f

100Hz

)2/3

(2.6)

∼ 1× 10−21

(
M

1M�

)5/3(
400pc

dL

)(
f

5mHz

)2/3

(2.7)

These are indeed representative cases for tight orbiting galactic DWDs (M ∼

0.5− 1M�) in Chapter 3 and 4, BNSs M ∼ 1− 3M� in Chapter 6 , and stellar mass

(M ∼ 1− 100M�) black–holes in Chapter 3,5,6 .
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2.2 Waveforms, parameter estimation

The GW emission from compacts sources is typically observed through noisy de-

tectors. As a consequence, stringent and robust detection and parameter estimation

criteria are required to extract astrophysical information. For a “modelled” search of

GW signals —of interest in this thesis— a characterization of detector noise spectral

shape and an accurate description of expected waveform based on general relativity

are crucial. Therefore, we must go beyond the simplest quadrupolar description of a

circular non-spinning binary system emission.

2.2.1 Signal morphology

Depending on the spectral sensitivity of a given detector, we might be able to observe

the quasi-monochromatic signals of very early inspirals (e.g. DWD for LISA), the early

inspiral of moderately chirping sources (e.g. SmBBH for LISA), or the final stages of the

binary undergoing late inspiral, merger, and ringdown into a remnant compact object

(neutron star black hole (NSBH) or BBH in LIGO and Virgo). Orbit circularization

restrict the observability of eccentricity to the early inspiral of sources [29, 30, 31]. On

the contrary, merger and ringdown excite higher order modes [32, 33, 34], and exhibit

tangible, degeneracies-breaking, waveform signatures from unequal masses, aligned

or precessing spins [35, 36]. This motivates the significant effort to construct highly

detailed and fast to evaluate waveforms extending in frequency domain from a fraction

of mHz (the lowest frequencies accessible to LISA) up to a few hundred Hz (the highest

frequencies accessible to LIGO and Virgo).

The waveform models used currently by ground-based detectors data-analysis

pipelines are focused mainly on two different approaches: (i) inspiral-merger-ringdown
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[37] and effective one body formalism [38, 39]. Within the former, the GW emission

is decomposed into three separate phases: the early inspiral, where perturbative post-

newtonian (e.g. in powers of v/c) waveforms are employed to high degree of accuracy;

the merger, which is characterized by strong non-linear gravity effects between the

binary’s compact objects and therefore involves an hybrid modelling with analytical

techniques and numerical relativity simulations; the ringdown, which describes the

excitation (and subsequent relaxation) of the remnant object into its equilibrium state.

The three stages are then smoothly connected [40] into a single one for the whole source

evolution. On the contrary, the latter formalism describes the two bodies as a single

object evolving through an effective gravitational potential. Both approaches, initially

developed for the quadrupolar emission of circular aligned–spin binaries, have subse-

quently been tailored to achieve higher accuracy in many specific scenarios, through

the introduction of higher modes and precessing spins [41, 42, 43]. Such improvements

come at a non-negligible computational cost, therefore a compromise is required be-

tween accuracy and speed, and we will specify our choice in each chapter based on

the scientific question addressed therein. For the sake of exposition, a GW-emission

“model”, described here in frequency domain, is comprised of an amplitude and a phase,

parameterized by the source parameters. To the zero-th post-Newtonian order it reads:

h̃+(f) = AeiΨ+(f) c

r

(
GM
c3

)5/6
1

f 7/6

(
1 + cos2 ι

2

)
(2.8)

h̃×(f) = AeiΨ×(f) c

r

(
GM
c3

)5/6
1

f 7/6
cos ι (2.9)

where A = 1
π2/3

(
5
24

)1/2, r is the source-detector distance,M is the binary chirp mass

parameter

M =
(m1m2)3/5

(m1 +m2)1/5
(2.10)
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ι is the source angular momentum inclination with respect to the line-of-sight, and

Ψ+(f) (Ψ×(f)) is the phasing associated to the plus (cross) polarization,

Ψ+(f) = 2πf (tc + r/c)− Φ0 −
π

4
+

3

4

(
GM
c3

8πf

)−5/3

(2.11)

Ψ× = Ψ+ + (π/2) (2.12)

This is the fundamental building block of any Bayesian inference on modelled signals.

In Section 2.2.2 we outline the steps required to perform it, while in Section 2.3 we show

how a collection of reconstructed event parameters can be used to infer the population

distribution of different sources.

2.2.2 Single event inference

In all studies focusing on individual detections presented in this thesis a well-defined

set of “events” is assumed, characterized by a certain definition of significance: a

“catalogue”. Depending on the problem at hand, we will provide different definitions

(either frequentist or Bayesian) of the probability of a signal being astrophysical in

origin versus being a noise instrumental artifact, e.g. the signal-to-noise ratios (SNRs)

used in Chapters 4 and 5. Any such classifier relies on our knowledge of noise statistical

properties across the detector network (e.g. its amplitude spectral density as described

in Chapter 1, stationarity, uncorrelatedness, gaussianity) and a parameterized model

of GW signals that might be present in the datastream. In a Bayesian context, the

inference is carried out by updating a prior assumption with information provided

by the data, which then gets incorporated into a posterior. With the language of

probabilities, we want to compute our posterior belief of a source (with parameters θ,

e.g. component masses, spins, etc.) generating the observed, noise contaminated data
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~d, given some prior belief on the source parameters π(θ). The latter can be modulated

into the former using the Bayes theorem

p(A | B) =
p(B | A)p(A)

p(B)
(2.13)

which, in our specific context reads

p(θ | ~d ) =
L(~d | θ)π(θ)

p(~d )
=

L(~d | θ)π(θ)∫
dθL(~d | θ)π(θ)

(2.14)

The expression in (2.14) contains the likelihood L which (thanks to the Gaussianity

and uncorrelatedness of the noise across different detectors) can be written as

logL(~d | θ) = −1

2

Nd∑

α=1

|dα − hα(θ)|2α + const. (2.15)

where the sum runs over each detector datastream dα and signal sα, which might differ

due to the strain tensor coupling as described in (1.27), and the constant is independent

on θ and therefore it does not affect the posterior. The norm |·|α is induced by the

weighted scalar product by each detector noise one-sided power spectral density [12], a

statistical measure of the average level of noise present in the data

〈a | b〉(α) ≡ 4<
{∫ ∞

0

df
ã(f)b̃(f)

Sα(f)

}
(2.16)

|a|2α ≡ 〈a | a〉(α) (2.17)

There is an important distinction to be made here: in the context of ground-based

detectors, GWs from bright binary coalescences are expected to be either individually

present or absent in any given data chunk (i.e. very rarely two GWs will overlap).
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Therefore, leveraging its approximate stationarity, the noise power spectral density is

usually estimated from data segments neighbouring the ones containing signal. Through

averaging over many such chunks the statistical uncertainty on the power spectrum is

significantly reduced. This is not the case for proposed space-based detectors: multiple

sources, frequently of multiple classes (e.g. SmBBHs and DWDs), will be overlapping

in the datastream in time and frequency domain. Therefore estimating the noise will be

more complex, taking into account the presence of other sources while estimating the

parameters of a given one. This is the case, for example, of the population of unresolved

galactic DWDs that will pile up in the mid-low frequency range (∼ 0.2 ÷ 3 mHz) of

LISA sensitivity band, or the problem of joint inference on multiple sources presented

in Chapter 3. Studies are ongoing to characterize the statistical properties of confused

sources (see e.g. [44] and reference therein) and how they affect individual inference.

The methodology described above is an overview on how one can infer on sources’

parameters in a Bayesian framework. This allows us to isolate chunks of data, either

in frequency domain (e.g. the DWDs discussed in Chapters 3, 4) or time domain (e.g.

BBHs detections from the first two observing runs [45, 46] used in Chapter 3, and

BBHs and BNSs catalogues from the first half of the third observing run [47] used in

Chapter 6), and identify parameters of resolvable astrophysical signals emerging from

the noise. A collection of N such data chunks is denoted in the context of population

inference as data
{
~di, i = 1, . . . , N

}
.
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2.3 Hierarchical inference

Once the data are identified, their probabilistic relation with the astrophysical

population must be established. The posterior probability (or, equivalently, the like-

lihood) of a population given some data is constructed by combining into a single

posterior [48, 49, 50, 51]

p
(
~λ |
{
~di

})
=

π
(
~λ
)

p
({

~di

})
N∏

i=1

∫
d~θp

(
~di | ~θ

)
ppop

(
~θ | ~λ

)

∫
d~θpdet(~θ)ppop

(
~θ | ~λ

) (2.18)

the prior belief on the population parameter π
(
~λ
)
, the likelihood of the observed

“detections” originating from a set of astrophysical sources, sampled from the population

ppop(~θ | ~λ). The latter can be further broken down into the parameters describing

the signal, each with likelihood p
(
~di | ~θ

)
of having individual parameters

{
~θi

}
. As

each population is in principle not entirely detectable for a given detector network,

a re-weighting factor pdet(~θ) accounting for selection effects is inserted to normalize

each population according to its overall detectability. Finally an overall normalization

factor is given by the evidence of the observed data. The equation presented here is

the fundamental component of all population level inference in what follows, with the

exception of Chapter 3, where we focus on the “observed” mass distribution of BBHs,

therefore we set pdet(~θ) = 1 for every ~λ.

2.4 Binary populations

This thesis deals with several observational scenarios of stellar-mass binaries of

compact objects in the mass range 0.1 − 100M�. They comprise a wide variety of

binaries (DWDs, BNSs, BBHs) that depending on their evolutionary stage may or may
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not be observable both from the ground and from space. A wide variety of formation

channels for the binary components have been proposed in literature. The astrophysics

governing those is beyond the scope of the thesis, however we shortly, non-exhaustively,

summarise here the main formation paths and the imprint they leave on the sources’

parameters distribution (see, e.g., Sec. 1 in [52] for a more comprehensive list).

BBHs binaries may form in the galactic field and evolve as isolated dynamical

systems, primarily governed by the interaction between the individual black-holes

progenitors. Such evolutionary pathway requires a number of modelling assumptions to

be introduced determining, among others, the specifics of common envelope evolution

and the occurrence of mass transfer episodes [53, 54, 55].

Alternatively, young clusters, globular clusters, nuclear star clusters, or accretion

disks in active galactic nuclei can host the formation and evolution of the binaries [56,

57, 58, 59, 60, 61, 62, 63, 64].

In all the above scenarios the black holes form from the collapse of stellar objects at

the end of their lifetime. A somewhat specific sequence of interactions –e.g. including

common envelope phase [65, 66, 67] or chemically homogeneous evolution [68, 69, 70]–

may be involved in the formation of compact binaries endproducts. In addition,

environmental and dynamical factors like metallicity and supernovae kicks play an

essential role regulating the formation and stability of those systems [71, 67, 72, 66, 73].

It is also worth noting that binaries might originate from the dynamical evolution of

triple systems [74, 75, 76], the coagulation from repeated hierarchical mergers (see [77]

and reference therein for a comprehensive review) or the evolution of an initial population

of primordial black-holes [78, 79].

The formation channels listed above leave a potential imprint on the distribution of

sources populating the Universe, and subsequently on the events observable by current
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and future GW detectors [80]. The evidence for a gap in the BBH component mass

distribution in the range 40− 120M� –with current detector being most sensitive to

its lowest end–, moderately small mass ratios, and evidence in favour of aligned spins

or orbital precession [81] could all be confirmations of one or more of the proposed

formation mechanisms [55, 82, 83, 84, 85, 86, 87, 88, 89].

Similarly, on the lowest end of the black holes mass spectrum (i.e. in the range

between ∼ 2M� and 5M�) observations of galactic neutron stars and black holes hint

at the presence of another gap [90, 91, 92, 93]. However, the detection of gravitational-

waves from two BNS mergers [94, 95, 96] and three compact binary mergers with the

secondary mass in the same mass range [97, 98] has provided fresh insight on previous

assumptions about the existence of such a gap [99, 100, 101, 102].

On the other end of the “low” mass gap, the observed binary neutron stars constitute

a powerful testbed for a wide variety of questions: it’s been suggested that BNS mergers

observed through GW belong to a population similar to the one in our Galaxy [103];

similarly, there is growing evidence that recycled and non-recycled neutron stars belong

to different sub-populations [104, 105]; finally, the isolated binary evolution channel, the

accretion mechanisms and supernovae explosion models have been challenged together

with other plausible formation scenarios [106, 107, 108, 109].

While the statistics for BNSs observed by LIGO and Virgo is low, the prospects for

a detection of a population of double white dwarfs by LISA are outstanding. DWDs

are by far the most numerous resolvable sources expected in the LISA sensitivity

band [110, 111], ranging from thousands to a few tens of thousands.

With such a vast catalogue of sources, studies of the Milky Way morphology [112],

its star formation history [113] and gravitational potential will be possible [114]. In

addition, binary dynamics (e.g. common envelope and mass-transfer episodes) and
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internal WD structure [115, 116] will be observationally constrained, furthering synergies

with electromagnetic observation [117], population synthesis models and cosmological

simulation (see e.g. [118] and reference therein).

It is also worth noting that all the populations introduced here have been thought

of as sets containing individually resolvable sources –for a given detector network–

whose properties contributes to the population model evidence (see e.g. the mathe-

matical structure of Equation 2.18). In principle, BBHs [119], BNSs [120], and DWDs

populations are all characterized by a certain number of sources piling up in a stochas-

tic signal [121]. Even if stochastic –without a deterministically predictable temporal

structure– its statistic properties (isotropic, gaussian, unpolarized) are leveraged to

detect it in presence of noise [122], thanks to detection algorithms tailored to the specific

signal and detector network (see [123] for a comprehensive review of the formalism).

Tentative searches for a SGWB have so far provided only upper limits [124, 125]. They

constitute an important piece of data, since they affect modelling required in other fields

of observational GW astrophysics [126, 127, 128]. This is for example the approach

followed in the studies presented in Chapter 6.
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Chapter 3

The Label Switching Problem

Contribution summary

This Chapter is a partially edited and reformatted version of [1]:

R. Buscicchio, E. Roebber, J.M. Goldstein, and C.J. Moore. Label switching problem

in Bayesian analysis for gravitational wave astronomy, published in Physical Review D,

100(8):084041, (2019).

At the time of publication of [1], the number of detections available from the LVC

collaboration where substantially less then today (10 BBHs and 1 BNS, as mentioned

in 3.4.1). Since the analysis presented therein is performed using those detections only,

I kept the exposition unaltered. For a comprehensive up-to-date list of detections,

see [129].

I conceived the study, carried out the original analytical formulation, and developed

the code supporting the two numerical simulations presented with the support of the

co-authors. In particular, results presented in Sec. 3.4.2 rely on a long-term development

of a codebase which all co-authors have contributed significantly to. I’ve produced all

plots shown in this Chapter, and finalized the draft with the help of the co-authors.
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3.1 Introduction

It sometimes occurs in Bayesian inference problems that the target distribution

depends on several parameters whose ordering is arbitrary. Three examples are imme-

diately apparent from the field of gravitational wave (GW) astronomy alone. Firstly,

when describing a compact binary with component masses m1 and m2, the likelihood is

symmetric under exchange of the labels 1 and 2 (provided all other relevant parameters

are suitably adjusted simultaneously). Secondly, when analysing GW time series data

containing two or more overlapping sources of the same type, the likelihood is invariant

under exchanging all of the parameters of any pair of sources. And thirdly, when

analysing the parameters of a population of observed GW events, mixture models can

be used to model the population and/or to infer the presence of distinct astrophysical

populations. In this case the hyper-likelihood for the population parameters may be

invariant under exchanging the parameters of the population components.

Sometimes a simple reparametrisation and restricting the parameter range is enough

to remove the degeneracy arising from the arbitrary ordering. In the first case of

the binary with two component masses, it is possible to define, say, the total mass

M = m1 + m2 and mass ratio q = m2/m1 and to sample these over the restricted

ranges M > 0 and q ≤ 1. This covers only the restricted portion of the parameter space

m1 ≥ m2, thereby removing the symmetry from the likelihood.

The second and third examples are more problematic as they are not restricted to

just 2 degrees of freedom. In each case the target distribution has a high degree of

symmetry and is invariant under permutations of some number of labels, K. A great

deal of literature is devoted to this label switching problem in the context of mixture

models [130, 131, 132, 133, 134, 135, 136]. The invariance of the target distribution

under permutations means that if the posterior has a peak (or mode) at a particular
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point in parameter space it will necessarily have peaks at all K! points related by

symmetry. The extreme scaling of this multimodality poses a serious obstacle to any

sampling algorithm in moderate or high dimensional problems.

The most natural way to solve the label switching problem is to impose an artificial

identifiability constraint. Searching over the restricted region m1 ≥ m2 of the binary

component mass space is an example of such a constraint in 2 dimensions. In the K

dimensional problem this can be generalised by demanding a certain ordering of the

parameters; see, for example, [131, 133, 134, 135]. Restricting to this small region of

parameter space avoids all symmetries and removes the excess multimodality. It is also

obvious that if one can adequately explore the restricted parameter space satisfying the

artificial identifiability constraint then, by symmetry, this is equivalent to exploring the

full space.

It remains to implement a suitable artificial identifiability constraint in practical

inference problems. This problem can be approached in several ways. For example, when

using an Markov chain Monte Carlo (MCMC) to explore the target distribution the

proposal can be augmented by composing with a sorting function; i.e. propose a point

then reorder the parameters such that the constraint is satisfied [136]. Alternatively,

the log-prior distribution can be crudely modified so that it returns −∞ for any point

not satisfying the constraint. Either of these will ensure the chain never leaves the

desired region of parameter space. However, if not accompanied by tailored proposal

distribution, the former method might introduce biases in regions of parameter space

where ordering between variables changes (i.e. close to the hypersurfaces where two or

more parameters take equal values). Similarly, the latter method would be significantly

penalized, in terms of proposal acceptance rate, as the number of parameters to order

increases.
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While undoubtedly simple, neither of these approaches are completely satisfactory.

The former approach requires the user to modify their MCMC proposal distribution and

it is difficult to apply when using other stochastic sampling algorithms which don’t have

a user-accessible proposal distribution (such as nested sampling [137]). For this reasons

such an approach is not compatible with the modern approach of treating the sampler,

as far as possible, as a black box to which the user must only provide a likelihood and a

prior. The latter approach is easy to implement for all samplers, but has the significant

drawback of being extremely inefficient in high numbers of dimensions. This is because

the sampler only proposes useful points satisfying the identifiability constraint a tiny

fraction 1/K! of the time.

This paper presents a solution to the label switching problem. Our approach follows

that of [138] (see, in particular, Eq. A13; however, this equation contains a typographical

error as pointed out by [139]). This solution to the label switching problem has been

implemented in [140] and has been widely used extensively in the astronomical and

cosmological literature [141, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150]. Here we

describe the solution in detail, including proofs of certain important properties of the

solution. This solution is mathematically elegant, efficient in high dimensions, and can

be easily integrated with any sampling algorithm while treating it as a black box.

In Sec. 3.2 the label switching problem is described in detail and the idea behind

our proposed solution is illustrated in 2 dimensions. Our solution, for an arbitrary

number of dimensions, is presented in Sec. 3.3. In Sec. 3.4 the efficacy of our proposed

solution is demonstrated by applying it to the second (Sec. 3.4.1) and third (Sec. 3.4.2)

example problems described in the opening paragraph of this section. These example

applications are drawn from the field of GW astronomy, but we stress that this method

has been more generally applied to inference in astronomy already.
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3.2 The Label Switching Problem

We wish to treat problems containing multiple indistinguishable components. Each

of the K components is modeled by some parameters Λk ∈ U , where the parameter

space U is an open set of Rn and k ∈ {1, 2, . . . , K}. We will choose to distinguish

components based on the values of one of these parameters, xk ≡ Λ1
k ∈ I where I is an

set of R. For simplicity, in this section we will consider xk ∈ (0, 1) and use a flat prior

on each xk, although these restrictions can be relaxed later.

In the case where there are two components, K = 2, our full parameter space is

U × U . However we will mainly be interested in the subspace spanned by ~x = (x1, x2),

which covers the unit square I × I (in the general K-dimensional case this will be a

hypercube which will be denoted C). For the remainder of this section we suppress the

other components of Λk from our notation for clarity.

Since the two components are indistinguishable, the points (x1, x2) and (x2, x1)

are equivalent; both the likelihood, L(~x), and prior distributions are symmetric under

interchange of the labels 1 and 2 (provided we also remember to relabel all the other

components of Λ1 and Λ2 simultaneously). As a result, the parameter space is twice

as large as it needs to be. Evaluating L(~x) over the square will typically lead to a

distribution with two global maxima (an exception occurs when the true maximum is on

the boundary x1 = x2); secondary peaks, ridges and other structures in the likelihood

are also duplicated. In higher dimensions this duplication and multimodality increases

in proportion to K! and becomes a serious obstacle to sampling the target distribution.

To avoid sampling multiple identical copies of the same likelihood modes we will

enforce the identifiability constraint x2 ≥ x1. This amounts to labelling the component

with the smallest x as #1, the component with the next largest x as #2, and so on in

higher dimensions. In two dimensions, this restricts the parameter space to the triangle
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x2 ≥ x1 (see the off principal diagonal panels in Fig. 3.1). In higher dimensions, the

parameter space is restricted to the region xK ≥ xK−1 ≥ · · · ≥ x1, which is hereafter

referred to as the hypertriangle and denoted T .

Samplers naturally propose points in a hypercube. To avoid modifying the sampler

itself, we wish to map points in the hypercube to points in the hypertriangle (following

the strategy first introduced in the astronomy literature by [151]):

φ : C → T . (3.1)

Naively, we might try to choose φ to be the sorting function. Unfortunately, although

it does map into the hypertriangle, it doesn’t solve the multimodality problem, since

sorting is a many-to-one map. If the sampler proposes a point ~x = (x1, x2) in the

hypercube and then the user applies the sorting function ~x′ = sort(~x) before evaluating

the likelihood L(~x′), nothing restricts the sampler from searching over the full hypercube.

In fact, this procedure is identical to sampling the original hypercube with no sorting.

This is to be distinguished from the procedure of sorting inside the proposal distribu-

tion, as referenced in the introduction, which does restrict sampling to the hypertriangle.

This is because the newly sorted points are kept by the sampler and used for generating

the next set of proposed points. However, this approach violates our desire to treat

samplers as black boxes.

To solve the problem we seek a function, φ, which is one-to-one. One possibility, in

2 dimensions, is to leave the x1 coordinate invariant and shift/rescale the x2 coordinate
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such that it lies in the desired range:

x′1 = x1 (3.2)

x′2 = x′1 + (1− x′1)x2 .

To see that points are indeed mapped to T it is sufficient to note that the correct

ordering is enforced by adding a positive quantity to x′1 to get a larger value for x′2. The

range x′2 ∈ (0, 1) is in turn ensured by scaling x2 with the factor 1− x′1. This map is a

indeed one-to-one map from the square to the triangle, thereby removing the problem

of multiple modes. However, this map has the unfortunate property that it distorts the

prior on the x2 component, favoring larger values (see the red distribution in Fig. 3.1).

The map in Eq. 3.2 can be “fixed” by revising the x1 coordinate downwards, before

shifting/rescaling x2:

x′1 = 1−
√

1− x1 (3.3)

x′2 = x′1 + (1− x′1)x2 .

The new map in Eq. 3.3 solves the problem in 2 dimensions (see the blue distribution in

Fig. 3.1). The sampler can propose points ~x = (x1, x2) uniformly in the square. These

points are mapped to the triangle ~x′ = φ(~x). Finally, the likelihood is evaluated at the

mapped points, L(~x′). This procedure correctly covers the parameter space just once

with the desired flat prior. To prove that the proposed map does indeed maintain the

desired flat prior on the individual components one can evaluate the Jacobian of the

transformation ~x′ = φ(~x) and show that is constant. This is done in the next section

for the K-dimensional case. Because the Jacobian is constant, this transformation will
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correctly preserve the flat prior that is imposed on the original xk. 1

To state the problem formally: to solve the label-switching problem, we seek

a bijection (a “one-to-one” and “onto” map) φ : C → T , for an arbitrary number of

dimensions, with components x′κ = φκ(xk), such that the determinant J = det J of the

Jacobian matrix Jκk ≡ ∂x′κ/∂xk is a constant.
1For an extension of our solution to the wider class of separable priors, see Sec. 3.3.3.
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Figure 3.1: Two overlaid corner plots, one in the lower-left triangle (blue) and the
other in the upper-right triangle (red). Points ~x = (x1, x2) were drawn uniformly in
the unit square 105 times. Histograms of the points ~x′ = φ(~x) are plotted for both
the map in Eq. 3.2 (red) and the map in Eq. 3.3 (blue). Both maps correctly move
points from the square to the triangle, but only Eq. 3.3 does so while preserving the
correct uniform prior. The arrows illustrate how points in the square move under the

action of the two maps.
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3.3 The hypertriangle map in arbitrary dimensions

Our proposed generalization of the 2-dimensional map in Eq.3.3, x′ = φ(x), is

defined recursively as

x′i = x′i−1 + (1− x′i−1)
[
1− (1− xi)

1
K+1−i

]
, (3.4)

where i ∈ 1, . . . , K and x′0 = 0 by definition. This closely resembles Equation (A13) of

[138], although here we have corrected a typographical error. Eq. 3.4 can be expressed

non-recursively as:

x′i = 1−
i∏

j=1

(1− xj)
1

K+1−j . (3.5)

If the inputs are in the correct range xj ∈ (0, 1), i.e. xj ∈ C, it can be shown that the

output falls in T (the logic as outlined in Sec. 3.2 for Eq. 3.2 still applies). It can also

be shown that this map is a bijection by inverting Eq. 3.5.

In the remainder of the section, we will first prove that Eq.3.5 is equivalent to Eq.3.4,

and then that the Jacobian of Eq.3.5 is constant.

3.3.1 Equivalent Representations of φ

Starting with the recursive version of the map given in Eq.3.4, we rearrange it as

follows:

x′i = x′i−1 +
(
1− x′i−1

) [
1− (1− xi)

1
K+1−i

]

=
[
1− (1− xi)

1
K+1−i

]
− x′i−1

[
1− (1− xi)

1
K+1−i − 1

]

=
[
1− (1− xi)

1
K+1−i

]
+ (1− xi)

1
K+1−i x′i−1

= 1− (1− xi)
1

K+1−i
(
1− x′i−1

)
. (3.6)
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This procedure can be repeated for the x′i−1 term inside the final set of parentheses, and

then for x′i−2 and so on down to x′1. This gives the equivalent representation to Eq. 3.5;

x′i = 1− (1− xi)
1

K+1−i

[
(1− xi−1)

1
K+1−(i−1)

(
1− x′i−2

) ]

= . . .

= 1−
i∏

j=1

(1− xj)
1

K+1−j . (3.7)

3.3.2 The Jacobian of φ

As discussed in Sec. 3.2, to maintain the correct prior on the hypertriangle, it

is necessary that the map φ has a constant Jacobian. To prove that our proposed

hypertriangle map has this property, we start with the form of the map in Eq.3.5. The

Jacobian matrix Jij for this specific transformation is lower-triangular because the

component x′i depends only on xj with j ≤ i. Its determinant J is therefore equal to

the product of the diagonal terms:

J =
K∏

i=1

Jii

=
K∏

i=1

∂x′i
∂xi

=
K∏

i=1

1

K + 1− i (1− xi)
1

K+1−i
−1

i−1∏

j=1

(1− xj)
1

K+1−j

=
1

K!

K∏

i=1

1

(1− xi)
(1− xi)

1
K+1−i

i−1∏

j=1

(1− xj)
1

K+1−j

=
1

K!

K∏

i=1

1

(1− xi)
i∏

j=1

(1− xj)
1

K+1−j , (3.8)
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where in the final step a factor has been moved inside of the second product and the

upper limit of the product has been changed accordingly. Writing out the products

explicitly gives

J =
1

K!

× 1

(1− x1)

[
(1− x1)

1
K+1−1

]

× 1

(1− x2)

[
(1− x1)

1
K+1−1 (1− x2)

1
K+1−2

]

× . . .

× 1

(1− xK)

[
(1− x1)

1
K+1−1 . . . (1− xK)

1
K+1−K

]
(3.9)

Careful counting of all the terms reveals that everything cancels and we are left with

J =
1

K!
. (3.10)

The Jacobian is equal to one over the number of times the original parameter space

was covered by the hypercube.

3.3.3 Extension to separable priors

The above derivation considered only flat priors on the xk. Here we consider the

applicability of our hypertriangulation map to separable priors of the form

Π(x1, . . . , xK) =
K∏

k=1

π(xk) (3.11)

In such cases it is first necessary to transform to new coordinates such that the prior is

flat before proceeding to apply the hypertriangulation map as before.
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In order to find the new coordinates with flat priors, first evaluate the cumulative

distribution function

F (x) =

∫ x

0

π(s)ds . (3.12)

Then define new coordinates yk = F (xk) which lie in the range [0, 1]. The prior on

these new coordinates is now flat and the hypertriangulation map may now be applied

to the yk.

3.3.4 Implementation of φ

For concreteness, we provide here a pseudo-code implementation of Eq. 3.5. The

input x = (x1, . . . , xK) (in C) and output x′ = (x′1, . . . , x
′
K) (in T ) are arrays where

all values are in the prior range (0, 1). The values of x may be in any order whilst

the values of x′ are, by construction, in ascending order. If a different prior range is

needed then the input and output must be shifted and rescaled as appropriate. A full

Python implementation (including the shifting and rescaling) is provided at the GitHub

repository [152].

3.4 Example GW Applications

In this section we present two applications of our hypertriangle method to two rather

different Bayesian inference problems drawn from the field of GW astronomy.

The first example in Sec. 3.4.1 is a Gaussian mixture model; models of this type

have been studied extensively in the context of the label switching problem [135, 132,

134, 136, 133, 131, 130].

The second example in Sec. 3.4.2 involves the identification of multiple overlapping

signals in time series data. The label switching problem has not often been explicitly
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Algorithm Pseudo-code Implementation of Eq. 3.5
1: function φ(x):
2: K ← length(x)
3: i← 1
4: for i ≤ K do
5: j ← 1
6: p← 1
7: for j ≤ i do
8: p← p(1− xj)

1
K+1−j

9: j ← j + 1
10: end for
11: x′i ← 1− p
12: i← i+ 1
13: end for
14: return x′1, . . . , x

′
K

considered in this context. However [153] discuss it when fitting multiple damped

sinusoids to time series data.

3.4.1 The Observed Mass Function of LIGO/Virgo Binary Black

Holes

LIGO and Virgo [13, 11] are ground-based GW detectors operating in the (101 −

104) Hz frequency range. The network has been operating since September 2015 and has

so far confidently detected 10 binary black hole (BBH) mergers and 1 binary neutron

star merger [154]. The third observation run is ongoing and low latency pipelines

[155, 156, 157, 158, 159] have produced a number of public alerts associated with event

candidates [160, 161]. It is likely that by the end of the current run dozens more

detections will be available [162] for further investigation 2.
2The statements in this introductory paragraph refer to the time of publication of the manuscript,

which Chapter 3 is adapted from. We keep it unaltered, since it motivates the set of detections we
considered in the study.
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Detailed waveform models for BBH signal calibrated against numerical relativity are

now available [163, 164, 165, 42, 166]. These are used in the LALInference Bayesian

analysis software package [167] to construct posterior distributions on the parameters of

each event. These include both intrinsic (component masses, spins, angular momentum,

etc) and extrinsic (sky position, distance, inclination) parameters.

Of these parameters, the best measured and most astrophysically interesting are the

individual black hole masses. Parameter reconstruction is crucial from an astrophysical

perspective, because it allows both for in-depth studies of individual objects [154, 168,

169, 170, 171, 172] and of populations masses [46, 173, 174].

From a statistical point of view, Bayesian inference on a population of events with

imperfect measurements has a well established formalism [50, 49]. A residual freedom

remains in the choice of parameterization for the population. Previous studies have

used astrophysically motivated functional dependencies [46, 174, 173, 175, 176, 177].

For example, one parameter in such models might be the location of a mass gap in the

black hole population [178, 179]. Other studies have used a broader family of somewhat

non-parametric models [180, 181, 182, 183, 184].

Within the latter formalism, greater flexibility can be achieved by fitting the observed

data with an unknown number of sub-components. No a priori physical meaning is

necessarily associated with these components, and they are usually sampled from a

common hyper-parameter space. The lack of any hierarchy among these components

naturally introduces a symmetry under permutations and leads to the label switching

problem.

Here we apply our hypertriangle approach to inference on the population of observed

BBH component masses, m1 ≥ m2. We model the observed distribution of source frame

[185] component black hole masses (in solar mass units) as a mixture ppop(logm1, logm2)
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of K bivariate Gaussians;




logm1

logm2


 ∼

K∑

k=1

wkN






µ

(logm1)
k

µ
(logm2)
k


 ,Σk


 . (3.13)

Each component has a pair of means, µ(logm1)
k and µ(logm2)

k , a symmetric 2×2 covariance

matrix, Σk, and a weight, wk. The covariance matrix is described by its two eigenvalues,

λ1
k and λ2

k, and a rotation angle φk. Overall, each component is fully described by the

parameter vector

Λk =
(
µ

(logm1)
k , µ

(logm2)
k , λ1

k, λ
2
k, φk, wk

)
. (3.14)

We choose to enforce the artificial identifiability constraint µ(logm1)
k+1 ≥ µ

(logm1)
k . This

is done by applying our map φ from Eq. 3.5 to the vector of components µ(m1)
k with

k = 1, 2, . . . , K. We can sample on the modified parameter space covered by

Λk =
(
χk, µ

(logm2)
k , λ1

k, λ
2
k, φk, wk

)
. (3.15)

where µ(m1)
k = φ(χk). In the language of Sec. 3.2, sampling on the parameter space in

Eq. 3.14 covers C (with multimodality) while sampling on Eq. 3.15 covers T .

The priors are taken to be flat on all of the components in Eqs. 3.14 and 3.15, except

for the λ1
k, λ

2
k which we take log-uniformly distributed within their ranges.

The ranges for χk, µ
(logm1)
k , µ(logm2)

k are (0, 2), with the additional constraint of

µ
(logm1)
k > µ

(logm2)
k . The range on the angle φk is (0, π/2) and the ranges on λ1

k and

λ2
k are (0.01, 4). Finally, the weights wk were sampled in the range (0, 1) and then

normalized such that
∑

k wk = 1. Prior choices on mixture parameters is summarized
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in Table 3.1.

µ
(logm1)
k µ

(logm1)
k λ1

k λ2
k φk [rad] wk

(0, 2) (0, 2) (0.01, 4) (0.01, 4) (0, π/2) (0, 1)

Table 3.1: Prior ranges for the BBH observed population parameters.

We adopt a fully Bayesian hierarchical approach. At the lowest level there are the

short segments of time series data {d} surrounding each of the Nobs events. Each event

is described by some parameters θ (e.g. masses, spins, etc). The likelihood that we wish

to sample from is the probability of all the observed data given a certain value of the

population parameters Λ = {Λk|k = 1, 2, . . . , K}:

p ({d} | Λ) =

Nobs∏

i=1

∫
dθ p(d | θ) ppop(θ | Λ)∫

dθ ppop(θ | Λ)
. (3.16)

Using Bayes theorem, the above likelihood can be turned into a posterior on the

population parameters Λ. This in turn can be expressed in terms of the Ni posterior

samples on θ from each individual event [50]:

p (Λ | {d}) = $(Λ)

Nobs∏

i=1

1
Ni

∑Ni

j=1

ppop(θji | Λ)

π(θji )∫
dθ ppop(θ | Λ)

, (3.17)

where the posterior samples for each event are denoted θji (i labels the event and j

labels the sample in the posterior chain), and $(Λ) and π(θ) respectively denote the

priors on the population and individual event parameters. We will consider only the

component masses as event parameters, θ = (m1,m2). Note that the normalization

integral in the denominator of Eq. 3.17 is evaluated over the constrained prior range
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Figure 3.2: Two overlaid corner plots, one in the lower-left triangle (blue) and the
other in the upper-right triangle (red). The red posterior is obtained by sampling
in the parameter space of Eq. 3.14; this space covers the hypercube C and has a
multimodal posterior. The blue posterior is obtained by sampling in the parameter
space of Eq. 3.15 and then transforming to µ(m1)

k = φ(χk); this only covers the
hypertriangle T and has a single posterior mode. The grey dotted line marks equality

between the two components.

logm1 > logm2. We use the publicly available posterior samples [186] for the 10 BBH

events described in [154].

As our focus here is on the label switching problem, and its solution using the

hypertriangle map, for simplicity we do not consider selection effects [189, 190]. Rather,

we model the distribution of observed black hole masses. We defer a full treatment,

including selection effects, to future work.

We model the observed mass distribution using K = 1, . . . , 4 Gaussian components.

We sample the distribution in Eq. 3.17 using the nested sampling algorithm [137] as

implemented in CPNest [191]. The primary output of the algorithm is the model
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K logZT logZC

1 −74.76± 0.09

2 −78.37± 0.05 −78.30± 0.05

3 −81.82± 0.09 −81.66± 0.08

4 −84.58± 0.06 −84.2± 0.1

Table 3.2: Log-evidences for mixtures with different number of components K. The
variables ZT and ZC denote the evidences obtained by sampling on the hypertriangle
parameter space in Eq. 3.14 and the (multimodal) hypercube parameter space in
Eq. 3.15 respectively. Mathematically we have already proved that these parameter
spaces are equivalent and therefore the two evidences are equal; these two columns
serve to demonstrate this numerically. For the K = 1 component case there is no
distinction between the two parameter spaces (the map φ reduces to the identity in this
case). The errors on the CPNest evidence integrals were estimated by a combination
of the internal CPNest error estimate (as described in [137]) and examination of
the spread of results from multiple runs. The ZT and ZC evidences are broadly
consistent; however for large K there is some tension. We think this is due to CPNest
systematically underestimating the ZC evidence which comes from a high dimensional
and highly multimodal posterior. Alternative nested samplers [151, 138, 187, 188]
have been shown to reliably estimate evidences for problems of similar complexity.

evidence, which we use to determine which K is favored; we find that the data favors

a description using a 1-component Gaussian mixture. Additionally, the algorithm

produces samples from the posterior in Eq. 3.17. The log-evidences for different K

are presented in Table 3.2, while the posterior samples for K = 2 (K = 3) on the

~µ(logm1) parameters are shown in Fig. 3.2 (Fig. 3.4). Median a posteriori values of

p(logm1, logm2) are shown in Fig. 3.5 for one and two mixture components. The full

posterior chain on all of the parameters is provided at [192].

Because this is a relatively low-dimensional problem (we consider K ≤ 4 ) the

analysis can be performed both with and without the hypertriangle map. If the map

is not used then the posterior has K! degenerate modes. If the map is used then

there is just a single mode and, importantly, no information is lost. The elimination

of the excess multimodality is shown for two dimensions in Fig.3.2. More impressive



3.4. Example GW Applications 51

0.0

0.5

1.0

p(
lo

g
m

1
) median

68%

95%

0.0 0.5 1.0 1.5 2.0 2.5 3.0
logmi

0.0

0.5

1.0

p(
lo

g
m

2
) median

68%

95%

Figure 3.3: . The recovered marginal mass distributions on the observed component
masses in source frame. The red (blue) curves show the marginal distribution on
logm1 (logm2). All masses are measured in solar mass units. The central line in
each case corresponds to the a posteriori median values of p(logmi | Λ). The shaded
regions denote the 1σ and 2σ confidence regions associated. These posteriors are
obtained by marginalizing over K. The two dimensional mass distribution is shown

in Fig. 3.5.

demonstrations of the elimination of the excess multimodality are possible in higher

numbers of dimensions; a plot in 3 dimensions for K = 3 component mixture is shown in

Fig. 3.4. The preservation of information is demonstrated by the fact that the evidence

in unchanged. This fact can be shown analytically and is a consequence of the Jacobian

for our transformation in Eq. 3.10; it is also demonstrated numerically for this specific

problem in Table 3.2.

We can now use the posteriors on Λ to plot the observed black hole mass distribution.

This can be done using the posterior on the Λ from either of Eqs. 3.14 or 3.15 with

identical results. Although, the single mode posterior from Eq. 3.15 is naturally easier

to sample from. The marginalised mass distributions on m1 and m2 are plotted in

Fig. 3.3. As shown by the evidences in Table 3.2 a one component mass distribution is

favoured. We stress again that we have not included selection effects; including these is

expected to suppress the high mass tail (this is because high mass BBHs can be seen

out to greater distances than lower mass systems) and therefore our results are not
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Figure 3.4: Posteriors on mixture parameters
(
µ

(logmi)
1 , µ

(logmi)
2 , µ

(logmi)
3

)
, assum-

ing K = 3. The bottom-left and top-right triangles show the corner plots for the
analysis performed the with and without applying the hypertriangulation map, re-
spectively hypertriangulation map. Along the diagonal the 1-dimensional samples
histograms are overlaid with both configurations. Dashed gray lines denote equal

mixture components primary mass means.

incompatible with the presence of a mass gap.

The hypertriangle map has demonstrated its utility. It eliminated the excess

multimodality in the description of the observed BBH mass distribution. This renders

the target posterior easier to sample. There is no loss in information incurred by
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Figure 3.5: p(logm1, logm2) a posteriori median values. Posterior samples from
the one and two component mixtures are combined, according to their evidence in
Table 3.2, into a single set of posterior samples. Lines denote the 1σ, 2σ and 3σ

contour levels, respectively.

sampling this remapped parameter space compared to sampling the full original space.

3.4.2 Overlapping Galactic White-Dwarf

Binaries in LISA

LISA [16] is a planned space-based mission which will observe GWs in the (0.1–

100) mHz frequency range. The LISA band is source-rich, with many signals overlapping

in both time and frequency. In particular, galactic white dwarf binaries (GBs) [111]

are so numerous at low frequencies that they form a confusion noise foreground for

LISA. Several GBs have already been identified electromagnetically and will serve as

verification sources for LISA [193].

The label-switching problem arises in the analysis of multiple sources, since the

parameters of any pair of sources are interchangeable. In this section we will show
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how the application of the hypertriangle map allows for efficient Bayesian recovery of

multiple GB signals without ambiguity arising from label switching.

The GWs emitted by a distant source are observed in the solar system as plane

waves. There are two GW polarization components denoted + and ×. Under the

assumption that each source is monochromatic, these components are given by

h+(t; Λ) = A (1 + cos2 ι) cos(2πft− Φ) ,

h×(t; Λ) = −2A cos ι sin(2πft− Φ) , (3.18)

where f is the GW frequency, ι is the inclination angle between the binary’s orbital

angular momentum and the line of sight, and Φ is a phase offset.

The LISA detector response additionally depends on the ecliptic longitude and

latitude {λ, β} of the source and a polarization angle ψ. The GW amplitude A can be

further expressed in terms of physical quantities of the GB system (e.g. the component

masses and the luminosity distance); however, these quantities are highly degenerate

and are therefore not considered.

Each of the K sources is described by seven parameters:

Λk = {log10Ak, fk, λk, sin βk, cos ιk, ψk,Φk} . (3.19)

We use flat priors on all parameters with ranges given in Table 3.4. The log-likelihood

is given by

logL(Λk) ∝ −
1

2

∑

α

∣∣∣∣∣sα −
K∑

k=1

hα(Λk)

∣∣∣∣∣

2

(α)

, (3.20)

where k labels the various GBs, and where sα denotes two approximately independent
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f−f? log10A ι [rad] λ [rad] β [rad] ψ [rad] φ [rad] ρ

0 -22.15 0.246 -0.096 0.218 1.640 1.795 10
2/yr -22.13 0.403 0.091 0.294 1.066 4.249 10
4/yr -22.13 0.376 -0.055 0.359 0.794 4.760 10
6/yr -22.15 0.284 0.031 0.248 1.127 2.078 10
8/yr -22.13 0.390 0.006 0.223 0.775 4.537 10
10/yr -22.12 0.428 0.091 0.296 1.088 5.765 10

Table 3.3: The parameters of the six injected GBs, with f? = 1 mHz. The
amplitudes were chosen such that the signal-to-noise ratio is 10 in each case.

LISA output channels, with α ∈ {A,E} (see, for example, [194]). The model hα is the

LISA response to sinusoidal signals of the form in Eq. 3.18. The line brackets indicate

a norm with respect to the usual signal inner product

〈a|b〉(α) = 4<
{∫ ∞

0

df
ã(f)b̃(f)

Sα(f)

}
, (3.21)

where ã(f) is the Fourier transform of a(t). Each output channel is assumed to contain

additive stationary Gaussian noise with a one-sided power spectral density Sα(f).

We simulate one year of mock LISA noise using LISA code [195]. For simplicity, we

estimate the power spectral densities from these signal-free noise realizations using the

Welch periodogram [196, 197].

We inject K = 6 sources, each with a signal-to-noise ratio ρk = 10 defined with

respect to the inner product in Eq. 3.21. The six sources were chosen to have regularly

spaced frequencies; other source parameters were chosen randomly and are given in

Table 3.3. For simplicity, we perform a noise-free analysis.

The simulated data has a cadence of 5 s and a total duration of 1 yr, resulting in

arrays of length 6.3× 106. This data was heterodyned, filtered, and downsampled to

isolate a narrow range of frequencies f ∈ (f?−1/yr, f? + 11/yr), where f? = 1 mHz. For
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Figure 3.6: The 1-D marginalized posterior distributions on the physical frequencies
fk of the six GBs. Vertical lines mark the injected frequencies. As we used a zero
noise injection, we expect the posteriors to be peaked at the injected values. We
observe that some neighboring sources (notably 4 and 5) show some correlation .
This effect is not an artifact of the hypertriangle map or the sampling. Rather, it is
a genuine feature of the posterior caused by the non-zero overlap between sources
closely spaced in frequency. A systematic study of such cross-contamination, and its

dependence upon the sources’ parameters is subject of ongoing investigation.

a one-year observation period, the expected frequency resolution of LISA is ∼ 1/1 yr,

so this frequency range covers 12 bins.

We assume the number of sources K is already known by other means; we do not

address the problem of searching for an unknown number of sources (see, for example,

[198, 199, 200]).

This is a 6 × 7 = 42-dimensional Bayesian inference problem. The likelihood in

Eq. (3.20) is invariant under permutations of the index k (i.e. relabelling the GBs

numbered 1 to 6). Naively sampling this distribution in the specified prior ranges

will return a posterior distribution with (at least) 6! = 720 peaks. To remove this

problem we enforce the artificial identifiability constraint fk+1 ≥ fk by sampling on the

parameters

Λk = {log10Ak, χk, cos ιk, λk, sin βk, ψk, φk} . (3.22)

Here fk = φ(χk) (see Eq. 3.5), and the prior on χk is the same as the prior on fk. In
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(f − f?)[yr−1] log10A λ [rad] sin β cos ι ψ [rad] Φ [rad]
(−1, 11) (−23.0,−21.8) (0, 1) (−0.75, 0.75) (0, 1) (0, π) (0, 2π)

Table 3.4: Prior ranges on the GB parameters. The frequency prior spans twelve
bins around f? = 1 mHz. Priors are taken to be uniform over the respective ranges.

Table 3.4 we list the prior boundaries for each of the seven parameters, which are taken

to be uniformly distributed over the respective ranges.

The sampler explores the space of χk ∈ C which is mapped to the physical frequencies

fk ∈ T . The resultant distribution has a single global maximum and is therefore

relatively easy to sample from (albeit in 42 dimensions).

We use CPNest [191] to sample the distribution and correctly recover all sources.

We note that without applying our hypertriangle map, it would be excessively difficult

to sample from this 720-fold degenerate distribution.

In Fig. 3.6 we focus on the the 1D marginalized posteriors on the physical frequencies

fk.

The full posterior parameters are publicly available [192]. A selection of these

parameters are plotted in Fig. 3.7, for the subset of parameters corresponding to the

third source tabulated in Table 3.3.

3.5 Discussion

We discussed a general solution to the label switching problem which allows the

sampler to be treated as a black box, and is therefore widely applicable. To enforce the

identifiability constraint, we map the sampled points from a hypercube with the desired

prior to a hypertriangle, taking care to preserve the prior. We have successfully used this

for two real-world problems from gravitational wave astrophysics. The hypertriangle
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transformation has the potential to greatly simplify a wide class of highly-degenerate

Bayesian inference problems, with no loss of information.
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Figure 3.7: Posteriors on selected parameters from the third galactic binary.
Vertical lines show the true injected values.
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Chapter 4

Binary White Dwarfs in Milky Way

Satellites

Contribution summary

This Chapter is a partially edited and reformatted version of [2]:

E. Roebber, R. Buscicchio, A. Vecchio, C.J. Moore, A. Klein, V. Korol, S. Toonen,

D. Gerosa, J.M. Goldstein, S.M. Gaebel, T.E. Woods - Milky Way satellites shining

bright in gravitational waves - published in Astrophysical Journal Letters, Volume 894

Issue 2:L15, (2020)

I contributed to conceive the study, to design and perform the parameter estimation

campaign, and to produce the content reported in all sections except Section 4.2, which

was led by the co-author V. Korol. Results presented rely on a long-term development

of a codebase which all co-authors have contributed to. The code used for performing

parameter estimation is not publicly available, yet. Injected source parameters and

posterior samples are released in [201].. I’ve produced all plots shown in this Chapter,

drafted and finalized the draft in collaboration with the co-authors.
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4.1 Introduction

The identification and characterization of Milky Way (MW) satellite galaxies lie

at the intersection of several outstanding problems in cosmology, astrophysics and

fundamental physics [202]. These include the nature of dark matter, the formation and

evolution of the faintest galaxies, and their reionization history. Faint satellites also

offer us the opportunity to study star formation in low-metallicity environments and

systems chemically different compared to the MW, which may be relevant for the origin

of r-process and heavy elements.

Following the serendipitous discovery of the Sculptor dwarf galaxy [203], only a

dozen other MW satellites were known up until approximately 2010. The Sloan Sky

Digital Survey (SSDS) (and subsequently DECam, DES and Pan-STARRS, with the

recent addition of Gaia [204]) has transformed the field raising the number to around 60;

however, at least twice as many satellites are thought to exist, and the number could

be nearly an order of magnitude higher [205]. The observational effort to complete

the census of the MW satellites is made particularly arduous by the need to detect

galaxies with luminosities down to ∼ 105 L�. The next leap is expected with the Large

Synoptic Survey Telescope [206]. By the end of the decade, LSST should provide a

complete sample for distances up to ∼ 1 Mpc and luminosities down to ∼ 2× 103 L�,

and could detect any novae and supernovae in faint dwarf galaxies out to much greater

volumes [207]. The spectroscopic characterization of these satellites will remain a major

challenge, probably requiring 30m class telescopes, and no survey will be able to observe

within ∼ ±10◦ of the galactic plane [205].

The Laser Interferometer Space Antenna [208] is a millihertz gravitational-wave

(GW) observatory planned for launch in 2034. LISA will survey the entire sky with

a depth of a few hundred kpc for double white dwarfs (DWDs) and other solar-mass
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binary compact objects with orbital periods . 10 min [209].

In this Letter we show that LISA could provide new and complementary information

about MW satellites using populations of short-period DWDs as tracers of these dwarf

galaxies, and as markers of the astrophysical processes and conditions within their

unusual (compared to the MW) environments. We will also show that LISA will observe

tens of DWDs within the Large and Small Magellanic Clouds (LMC and SMC) and

will unambiguously place them within specific regions of the Clouds. A handful of

short-period DWDs should also be observable in other satellites. If located above ∼ 30◦

of the galactic plane, they can be easily associated to their host, since galactic DWD

foreground sources are rare. At frequencies above a few mHz, LISA can also probe the

zone of avoidance around the galactic plane.

4.2 Expected DWD population

To date no undisputed DWD is known in MW satellites. An X-ray source, RX

J0439.8-6809, has been tentatively identified as a compact accreting WD system with

a He WD donor in the LMC [210, 211], although later spectral modeling suggests

this object may also be consistent with an unusually hot WD in the MW halo [212].

This lack of observational evidence is due to the faintness of these systems. They

are undetectable by optical telescopes at the distance at which satellites are typically

found—the median distance of known satellites is ∼ 85 kpc, see [205].

4.2.1 Astrophysical modeling

A companion paper by [215] investigates the population of DWDs radiating in the

LISA sensitivity band in MW satellite galaxies (see also [118]). In that paper, a suite of
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LMC SMC Sagittarius Fornax Sculptor

Stellar Mass (M�) 1.5× 109 4.6× 108 2.1× 107 2.0× 107 2.3× 106

Distance (kpc) 50.0 60.6 26.7 139 86
Ecliptic latitude β -85.4◦ -64.6◦ -7.6◦ -46.9◦ -36.5◦
Galactic latitude b -32.9◦ -44.3◦ -14.2◦ -65.7◦ -83.2◦
Galaxy area (deg2) 77 13 37 0.17 0.076

Foreground sources 1 0.2 20 10−3 3× 10−4

Expected sources (optimistic) >100 >25 10 0.2 0.07
Expected sources (pessimistic) 70 15 3 0.1 <0.04
Sky localization (deg2) 2.1 3.1 2.3 – 9.3

Table 4.1: Promising satellites for GW detection. Mass, distance, and sky location
are taken from [213, 214, 205]. The expected number of LISA sources is estimated
using the models of [215]. The sky localization is the 90% area recovered for the
fiducial DWD described in Section 4.4 for each host satellite. We assume a 4 year

mission duration and the SciRD noise spectral density [216].

models that span metallicity, star formation history (SFH) and unstable mass transfer

phase are constructed using the population synthesis code SeBa and calibrated against

state-of-the-art observations of DWDs [217, 110, 218, 219] . Here we summarize the

main assumptions and results, and we refer the reader to the companion paper for

details.

Despite the many uncertainties surrounding the composition and formation history of

these satellites, the parameters crucial for determining the number of sources detectable

by LISA are: (i) the total stellar mass M?, which sets the fuel supply used to generate

stars and (ii) the star formation history (SFH), which controls the mass and frequency

distribution of DWDs within the LISA sensitivity band at the present time.

Star formation histories in MW dwarf satellites vary greatly, ranging from purely

old populations (formed over 12 Gyr ago) to constantly star forming [220, 221, 222]. To

cover the range of possible SFHs we consider a constant star formation rate of 1M� yr−1

and an exponentially decaying one with characteristic timescale τSF = 5Gyr [221], as
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optimistic and pessimistic star formation models, respectively.

By setting the metallicity to Z = 0.01, the binary fraction to 50% and the initial mass

function to [223], the optimistic (pessimistic) SFH model predicts 0.2 (0.1) detectable

sources for a satellite withM? = 107M� at the distance of 100 kpc. Results scales linearly

with the mass of the satellite. Other unconstrained parameters, such as metallicity,

binary fraction and unstable mass transfer have very minor impacts on the detectable

DWD rate and, together, affect predictions by only a factor of a few.

4.2.2 Known satellites

Table 4.1 summarizes the properties of selected known MW satellites and the

expected number of DWDs that can be observed by LISA according to the population

synthesis models. We assume a mission duration Tobs = 4 yr and a noise spectral density

corresponding to the LISA Science Requirements Document [216]. The choice of noise

spectral density has a significant effect on the number of sources expected—the SciRD

sensitivity curve is a factor 1.15, 1.4, and 1.5 worse than the original LISA noise curve

(see Figure 1 in [208]) at 3, 5, and & 10 mHz, respectively. Using the more optimistic

noise curve of [208], as in many previous studies [224, 225, 226], would roughly double

the expected number of sources.

The number of DWDs that we expect to see in a particular satellite depends strongly

on the mass of the satellite, on its SFH, and on its distance. It depends somewhat less

strongly on the ecliptic latitude of the satellite via the weakly directional “pointing” of

the LISA instrument. The Magellanic Clouds and the Sagittarius, Fornax, and Sculptor

dwarf spheroidal galaxies are promising systems to host detectable LISA sources [215].

The LMC and SMC are by far the most massive known satellites of the MW. They

are expected to contain 102–103 detectable DWDs [215]. Sagittarius is expected to host
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several detectable sources, even for a pessimistic SFH model. The rates for Fornax,

Sculptor, and smaller galaxies are lower, but these predictions depend on the specific

details of the SFH.

Other satellites can be reached by LISA, but may already have exhausted their

reservoir of observable DWDs. LISA is thus in a position to study details of the

LMC/SMC, detect a handful of DWDs in some of the more massive satellites, and identify

systems in other satellites if they have undergone recent star formation. Furthermore,

LISA has the unique opportunity to discover new MW satellites.

(a) Masses

m1 (M�) m2 (M�) M (M�)

He WDs 0.4 0.35 0.33
Typical WDs 0.6 0.55 0.5
Heavier WDs 0.7 0.65 0.59
Extremely low-mass 0.7 0.2 0.31
Type Ia SN progenitors 0.9 0.85 0.79

(b) Frequencies (c) Inclinations

f0 (mHz) ι (rad)

2 face-on 0
3 intermediate π/3

4 edge-on π/2

5
10

Table 4.2: Parameters used in our 4200 runs. We grid over these parameters as
well as our sample of 56 dwarf galaxies.
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4.3 LISA signal recovery

Having established that LISA can and will observe DWDs hosted by MW satellite

galaxies, we need to consider whether it will be possible to associate these DWDs with

the actual host satellite. The challenge is further exacerbated by the fact that LISA will

observe ten to fifty thousand galactic DWDs, in addition to the unresolved stochastic

foreground produced by ∼ 106 DWDs. Making these associations will depend on LISA’s

ability to measure source sky locations and distances for these sources. We investigate

this by performing full parameter estimation analyses on mock LISA data which we

generate for a range of plausible sources within the satellites.

We consider a number of DWD systems that we expect to populate these satellites,

spanning mass, frequency and binary inclination (see Table 4.2). For each choice of

these parameters (75 combinations in total) we place a binary randomly within each of

the 54 satellites in [205], together with the LMC and SMC. The distance and angular

size of these satellites are taken from [213] and [214].

We generate mock LISA data sets lasting Tobs = 4 yr and containing the individual

DWDs with zero noise. We recover the sources using the conservative LISA SciRD noise

power spectral density [216] generated with LISACode [227], with an estimation of the

galactic confusion noise taken from [228]. Gravitational radiation from the DWDs is

treated as a quasi-monochromatic signal with linear drifts in frequency:

fGW(t) = f0 + ḟ0(t− t0). (4.1)

We model the effect of these GW signals on the three noise-orthogonal channels A, E

and T [229, 194], and process the resulting data using a coherent Bayesian analysis.



66 Chapter 4. Binary White Dwarfs in Milky Way Satellites

Each of the signals is described by 8 unknown parameters:

{A, f0, ḟ0, λ, β, ι, ψ, φ0} , (4.2)

where A is the GW amplitude, (λ, β) are the ecliptic longitude and latitude, respectively,

ι is the inclination angle, ψ is the polarization angle, and φ0 is an arbitrary initial phase.

The GW amplitude is given by

A =
2(GM)5/3

c4D
(πf0)2/3. (4.3)

This is set by the source’s distance D and chirp mass

M =
(m1m2)3/5

(m1 +m2)1/5
, (4.4)

for component masses m1 and m2.

For each signal injection, the GW amplitude, frequency, sky position, and inclination

are chosen from our grid defined in Table 4.2. The polarization and initial phase

are chosen randomly with a flat distribution. Finally, ḟ0 is chosen according to the

gravitational radiation reaction:

ḟ0 =
96

5

(GM)5/3

πc5
(πf0)11/3. (4.5)

During parameter estimation, we treat ḟ0 as an unknown parameter which can take

either positive or negative values to account for the possibility of accretion affecting the

period evolution of the system [230]. Population synthesis studies predict that < 10%

of DWD systems in this frequency range will be in mass-transfer states [231]. Priors

are chosen to be flat in logA, sin β, cos ι, and flat in all other parameters in Eq. (4.2).
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Our grid over parameters and satellites covers a range of sources from the very

quiet to the very loud. We consider a source to be detected if the coherent signal-

to-noise ratio exceeds 7. This is a conservative threshold with respect to previous

ones [232] and [233], where detection thresholds of 5 and 5.7 were chosen, respectively,

for monochromatic sources. A more accurate choice of detection threshold will be

informed by the distribution of false alarms originating from noise in the real data, once

available. Of our 4200 injected sources, 1954 are detected. For all satellites, at least

one combination of the parameters produces a detectable DWD. For nearby satellites,

a large range of parameters produce detectable systems.

To help summarize our results, hereafter we will focus on the following five satellites:

the LMC, SMC, Sagittarius, Sculptor, and Fornax (see Table 4.1). These satellites

span a broad range in distance, ecliptic latitude, and angular scale and are the most

likely to host detectable DWDs [215]. We will also focus our discussion on a fiducial

source with a chirp mass of M = 0.5M�, radiating at f0 = 5 mHz, and with an

intermediate inclination of ι = π/3. The detectability of such a source for the complete

set of satellites is shown in Figure 4.1. If any such system is present within ∼120 kpc,

it will be detectable by LISA. This represents roughly half the known MW satellites,

including all our highlighted satellites except Fornax, which is at a distance of 139 kpc.

4.4 Host satellite identification

We have shown that LISA will be sensitive to DWDs radiating at a few mHz in

the MW satellites. However, it is not immediately obvious that these sources can be

robustly associated with their host satellites. In this section, we will consider three

pieces of information to solve this problem: the source sky localization, the anisotropic
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Figure 4.1: LISA sensitivity to a fiducial source withM = 0.5M�, f = 5 mHz,
and ι = π/3 in each satellite. Light blue dots are ‘undetected’ sources (ρ < 7). Stars
are ‘detected’ sources (ρ > 7), and are color-coded according to the quality of their
sky localizations. For a fixed frequency, this is largely governed by distance and
ecliptic latitude. The largest sky uncertainty, for a source with ρ = 7.6, D = 118 kpc,
and β = −0.3◦, is 75 deg2. The smallest, for a source with ρ = 36, D = 22 kpc, and
β = 77◦, is 0.3 deg2. Satellites of interest are highlighted with blue circles. In this
case, LISA is sensitive to systems at distances of . 120 kpc, which excludes Fornax.
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distribution of foreground MW DWDs, and measurements of the source distance.

At mHz frequencies, LISA’s angular resolution is good. Most injections of our

fiducial source can be located to within .10 deg2 (see Figure 4.1); the exceptions are

low-SNR sources near the ecliptic. This means that sources inside the LMC, SMC, and

Sagittarius (all of which are larger than 10 deg2), can potentially be localized to specific

regions of the satellites. The sky uncertainty depends strongly on the SNR and GW

frequency (∝ ρ−2f−2
0 ), and also on the ecliptic latitude (a source on the ecliptic has an

order of magnitude more uncertainty than a source at the poles).

Equally important to the sky localization is the foreground of MW DWDs for each

satellite. At frequencies & 3 mHz, MW DWDs become resolvable [228], so the stochastic

MW foreground is not a significant concern here. We model the MW sources following

[234], including a stellar halo generated with a single burst SFH, a power law density

distribution according to [235], and a total mass of 1.4× 109 M� [236]. The resulting

foreground is strongly anisotropic, closely following the galactic plane (see Figure 4.1).

Most known satellites are well away from the galactic plane, in regions with a foreground

density of ∼ 0.01/deg2. For a sky localization of ∼ 1–10 deg2, this corresponds to

∼ 0.01–0.1 contaminating foreground sources . For known satellites (as well as unknown

ones with similar sky positions and DWD source densities) this in turns corresponds to

a typical false alarm probability between ∼ 5× 10−5 and ∼ 5× 10−3. At lower (higher)

frequencies, the sky localization is worse (better) and the false alarm rate rises (falls).

In addition to associations based on the sky localization, the frequency evolution

for sources above 3–4 mHz will be measurable. Our 90% fractional errors on ḟ are

distributed according to:

Σḟ ≈ 0.07
( ρ

10

)−1
(

f

5 mHz

)−11/3( M
0.5M�

)−5/3

. (4.6)
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Assuming the inspiral is driven by radiation reaction (Equation 4.5), measurements of

ḟ and A permit the measurement of the distance to the satellite with a precision of

∼ 30%. Stellar interactions within DWDs will reduce, not increase, the total ḟ [230].

This implies that a lower limit can safely be set on the distance (see Figure 4.2), thereby

further reducing the chance of a false positive.

Let us examine some cases in detail. The LMC and SMC are large satellites with

many expected sources (∼ 100 and ∼ 20, respectively). Both galaxies have large angular

extents (77 deg2 and 13 deg2,respectively) and high ecliptic latitudes, so sub-galaxy

localizations of sources are likely, with typical source localization of a few degrees

squared. The SMC is in a region of the sky with very few foreground sources, so

statistical associations can be readily made , with a false alarm probability of 4% within

the source sky localization uncertainty. This is also true for the LMC, but its situation is

complicated by a partial degeneracy in the LISA response at extreme ecliptic latitudes.

This may result in a larger foreground than stated in Table 4.1, due to the presence of

MW DWD sources at the other ecliptic pole. Distances for sources in the Magellanic

clouds should be well-measured with 40% to 50% fractional error, and will help make

associations robust.

Sagittarius is a relatively massive and nearby dwarf spheroidal galaxy, so several

detectable sources are expected. Its unusual SFH means that the ‘optimistic’ case

of 10 sources from Table 4.1 is quite plausible [215]. Unfortunately, its location near

the galactic bulge and its large angular scale lead to a large number of foreground

sources (although note that the foreground varies from 0.1 to 1 per squared degree

across the satellite, with false alarm probabilities that can be as low as 0.2.). Frequency

measurements can be used to partially remove the foreground. If we consider only

sources with f > 3 mHz, the foreground drops from 20 to 5. Distances for this satellite
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Figure 4.2: Distance lower limits and sky localizations for all “detected” runs
in Sagittarius (circles), the SMC (triangles), and Fornax (squares). Dashed lines
mark the true distance of each satellite. For a given frequency, the sky localization
is primarily affected by the source’s mass, and the lower limit on the distance is
primarily affected by the source’s inclination. Lower limits on the sky localization
are given for one source which does not have a well-defined 90% sky area, but does

have a well-defined area at lower confidence.
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are likely to be well-measured, but as Sagittarius is well within the MW halo, their

additional constraining power will be somewhat reduced. Robust associations with

Sagittarius will be non-trivial, but careful modelling of the MW population should

make it possible.

Fornax, Sculptor, and the other dwarf satellites are too small or too distant to be

likely hosts of LISA sources. However, it is possible that uncertainties in the SFH,

perhaps combined with a more optimistic LISA noise curve will produce detectable

DWDs. In this case, the sources will be readily identifiable as the foregrounds are

small, with false alarm probabilities of 1% for pessimistic sky localizations of 10 deg2.

Moreover distance lower limits (particularly in the case of Fornax) would provide strong

evidence for the satellite association.

4.5 Discovering hidden satellites of the Milky Way

Unlike light, GWs are not impeded by dust and gas. Moreover, above a few mHz,

DWDs become individually resolvable and the MW no longer acts as a GW confusion-

noise foreground. This gives LISA an advantage over EM telescopes in that it can peer

through the galactic plane and possibly make discoveries on the far side. Currently, the

best example of a satellite near the galactic plane is the recently discovered Antlia 2

which has a galactic latitude of ∼ 11◦ [237]. However, at lower latitudes dust extinction

increases dramatically; therefore, even objects as large as the LMC could have remained

undetected.

If such an object exists, LISA could potentially detect high-frequency DWDs from it.

The question is then whether these detections are sufficient to infer the presence of the

hidden satellite. This task is complicated by the high density of resolvable foreground
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DWD sources in the galactic plane.

To illustrate the discovery potential of LISA, consider a hypothetical satellite, similar

to the LMC, at a distance of 50 kpc behind the disk of the MW. We assume that it has

an angular diameter of 10◦, a mass of 1.5× 109M�, a fixed metallicity of Z = 0.005,

a constant star formation rate, and an age of 13.5 Gyr [215]. This object could be

completely covered by the galactic disk.

The foreground density of DWD sources in the disk is ∼ 100/deg2 (see Figure 4.1).

If galactic sources are distributed uniformly throughout the disk, which has a total area

of ∼ 3000 deg2, then a simple Poisson counting argument suggests that an excess of

∼ 100 sources in an 80 deg2 patch of the sky would be a significant overdensity at the

90% level.

Based on previous studies (see e.g. Fig.4 in [215]) we expect ∼ 100 detectable

sources in our hypothetical satellite, so an LMC-like satellite at . 50 kpc should appear

as a statistically significant overdensity. At greater distances, it would have too few

sources to overcome the foreground. This calculation assumes a similar stellar density to

the LMC; a denser (sparser) satellite would be detectable at a greater (lower) maximum

distance. Furthermore, we assume a uniform, Poissonian distribution of DWDs in the

galactic disk—a more realistic non-uniform distribution will require a larger overdensity

to be significant.

However, we have not yet considered distance measurements. Section 4.4 suggests

that the majority of detectable extragalactic sources will be chirping, meaning that

lower bounds can be placed on their distances. This will allow us to distinguish them

from the foreground and detect satellites out to greater distances. We assume that

chirping sources allow us to place a lower limit on the distance of ∼ 60% of the true

value (although many sources do considerably better—see Figure 4.2). A satellite at
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50 kpc with multiple detected sources can be confidently placed at & 30 kpc, which is

greater than the distance to any DWD in the galactic disk. At 150 kpc (200 kpc) we

expect to detect ∼ 10 (∼ 3) sources from our hypothetical satellite which can likewise

be distinguished from disk foreground sources (although a small number of halo sources

remain as contaminants).

The galactic plane obscures ∼ 10% of the sky. For the first time, LISA will be

able to survey this region for major MW satellites out to astrophysically interesting

distances of . 200 kpc.

4.6 Conclusions

We have shown that if a population of DWDs emitting GWs at & 3 mHz exists in

the MW satellites, LISA will be able to detect them. Although the exact rate depends

on the star formation history of each satellite, it is probable that many such DWDs

will be detected in several different satellites. Moreover, in this frequency band, LISA

will provide sky localizations of ∼ 10 deg2 and distance measurements with errors of

∼ 30%. This means that LISA should be able to associate these DWDs to their host

satellites. Finally, at frequencies above a few mHz, the galactic confusion noise clears,

and LISA can see through the galactic disk and bulge. This fact, combined with the

arguments above, suggests that LISA might be capable of discovering hidden satellites

of the MW, provided they are sufficiently massive.

Observations of short-period extragalactic DWDs will naturally occur as part of the

LISA survey of the galactic DWD population. These observations will complement those

of large optical surveys, since the selection effects are very different. The possibility of

detecting short-period DWDs in MW satellites highlights the discovery space opened



4.6. Conclusions 75

up by a GW observatory and its potential impact on a wide range of open questions

in astrophysics and cosmology, from low-metallicity star formation history and heavy

element nucleosynthesis to small-scale cosmology in the nearby Universe.





77

Chapter 5

Stellar-mass Binary Black Holes with

LISA

Contribution summary

This Chapter is a partially edited and reformatted version of [3]:

R. Buscicchio, A. Klein, E. Roebber, C.J. Moore, D. Gerosa, E. Finch, and A. Vec-

chio - Bayesian parameter estimation of stellar-mass black-hole binaries with LISA -

published in Physical Review D, Volume 104(4):044065, (2021).

I contributed to conceive the study, performed the parameter estimation campaign,

and produced the results reported in all sections. Results presented rely on a long-term

development of a codebase which all co-authors have contributed to. A. Klein is the

major contributor to the code required for the results presented in this Chapter. I’ve

produced all plots shown in this Chapter, drafted and finalized the text incorporating

comments and suggestions from A. Klein and the other co-authors.
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5.1 Introduction

The Laser Interferometer Space Antenna (LISA) [16] is a gravitational-wave (GW)

observatory targeted at the discovery and precise study of compact binary systems

ranging from white dwarfs of masses ∼ 0.1–1M� to black holes with masses up to

∼ 107M�. Cosmological phenomena with characteristic timescale between ∼ 1 hr and

∼ 10 sec might also be detectable.

One of the sources of great interest are stellar-mass binary black holes (hereafter

SmBBHs, also referred to as stellar-origin binary black holes, SOBBHs1) in the mass

range∼ 10–100M� which populate LISA’s sensitivity window at frequencies f & 10 mHz.

These systems are now routinely observed merging at ∼ 100 Hz by the ground-based

laser interferometers LIGO and Virgo [238, 239]. LISA is expected to observe ∼ 1–10

SmBBHs during the whole mission [240, 241, 242, 243], an estimate that crucially

depends on the upper-mass cutoff of SmBBHs, the detection strategy, as well as the

LISA performance at high frequencies. Each of these systems will contain valuable

information in terms of both astrophysical formation channels [31, 244, 245, 246]

and fundamental physics constraints [247, 248, 249, 250]. The subset of sources that

merge on a timescale of O(10) yr will be even more unique, allowing for its multiband

characterization using GWs from both space and the ground [251], as well as advanced

planning of electromagnetic follow-up campaigns [240, 252].

Because of the long duration and complex morphology of their signals, detecting

and characterizing the physics of SmBBHs with LISA is a highly nontrivial challenge.

Previous work has been carried to study parameter estimation for circular precessing

systems [253]. In this context, we tackle for the first time the effects of orbital eccentricity
1We prefer to use SmBBHs instead of SOBBHs to acknowledge that the problem of detecting and

characterizing these sources is independent of the (astro)physics that determines their formation.
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coupled with spin precession.

The importance of SmBBHs for the LISA science case is well recognized. To this

end, a set of LISA data challenges (LDCs) are in progress under the auspices of the

LISA consortium as part of the core preparation activities for the mission adoption (see

lisa-ldc.lal.in2p3.fr). The first set of these challenges (LDC–1) contains mock datasets

populated with SmBBHs. The analyzed systems from LDC–1 are illustrated in Fig. 5.1.

Most of the sources appear as quasimonochromatic. However, a few of them merge

within the observing time (which in LDC–1 was set to 2.5 yr), thus allowing a finer

characterization of their parameters through the chirping morphology.

Here we report on the results of the analysis of all SmBBHs in LDC–1 using the

generic Bayesian codebase we are developing, hereafter referred to as Balrog. While

the LDC–1 sources were injected assuming quasicircular binaries with aligned spins,

we also present preliminary results on the more general problem of analyzing systems

with orbital eccentricity and spin precession. Overall, this paper quantifies how well

SmBBHs can be characterized with LISA once they have been detected.

This paper is organized as follows. In Sec. 5.2, we describe our data analysis strategy

and outline its technical implementation. In Sec. 5.3, we present the challenge dataset

we analyzed and our inference results. In Sec. 5.4, we provide our conclusions and

pointers to future work. Throughout the paper we use G = c = 1.

5.2 Analysis approach

5.2.1 Inspiralling stellar-mass black-hole binaries

SmBBHs in the early inspiral region probed by LISA are long-lived sources radiating

for most or all of the mission duration, depending on their masses and orbital period at

https://lisa-ldc.lal.in2p3.fr/
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low-frequency approximation of the LISA response [254]. The solid black line denotes

the LISA characteristic noise spectral amplitude [255, 12].
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the start of the mission. In fact, for a binary with component masses m1 and m2 at

redshift z, the leading Newtonian order time to coalescence is [29, 256]

τ ≈ 4.1

(
ν

1/4

)−1(
f

20 mHz

)−8/3(
Mz

50M�

)−5/3

yr , (5.1)

where Mz = (1 + z)(m1 + m2) is the redshifted total mass, ν = m1m2/(m1 + m2)
2 is

the symmetric mass ratio, and f is the GW frequency. During this period the (leading

Newtonian order) number of wave cycles to merger is

N ≈4.1×106

(
ν

1/4

)−1(
f

20 mHz

)−5/3(
Mz

50M�

)−5/3

. (5.2)

Consequently, if the source merges in a few years, i.e. unless ḟTobs� f , most of the

wave cycles are accumulated in the LISA band. These cycles need to be matched by

the analysis, in sharp contrast with the current LIGO–Virgo observations, for which

only a few or tens of cycles are in band.

The signal will also have complex features induced by spin-precession and the effects

of eccentricity. This adds complexity to the waveform and to the structure of the

likelihood function, and increases the dimensionality of the parameter space.

If the black-hole spins are misaligned with the orbital angular momentum, this will

induce a precession of the orbital plane around the axis of the total angular momentum

characterized by a number of spin-precession cycles before merger [257, 258]

Nspin ≈ 1.9× 103

(
1− δµ2

7

) (
ν

1/4

)−1

(5.3)

×
(

f

20 mHz

)−1(
Mz

50M�

)−1

,

where δµ = (m1 −m2)/(m1 +m2) is the dimensionless mass difference.
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Eccentricity may also be non-negligible in the LISA band, and an important param-

eter to measure as it is a tracer of the environment in which these binaries reside and

the formation channel(s) of these systems. The number of periastron precession cycles

before merger is [29, 30]

Necc≈6.4×103

(
ν

1/4

)−1(
f

20 mHz

)−1(
Mz

50M�

)−1

. (5.4)

Note that these estimates are valid in the low-eccentricity limit.

It is therefore clear that to accurately reconstruct the physics of SmBBHs, one needs

to deal with the full complexity of the 17 dimensions parameter space that describes

GWs radiated by a binary system in general relativity. The morphology of these SmBBH

signals is very different from both those currently observed by LIGO and Virgo as well

as the supermassive BBH merger signals expected in LISA. In fact, these signals have

more in common with the extreme-mass-ratio inspiral (EMRI) signals also expected

in LISA which also contain 105 − 106 wave cycles in band and can exhibit strong

relativistic precession effects. The data analysis challenges presented by this source type

are well-known [259, 260, 261]. In addition, EMRI present a severe modelling challenge,

see e.g. [262, 263, 264].

5.2.2 Statistical inference

In this paper we are not concerned with the (significant) challenge of actually

searching for SmBBHs [243], but we restrict ourselves to the problem of measuring

the source parameters once candidates have been initially identified through a first

search stage. We will therefore assume that a preceding pipeline provides an initial,

possibly poor guess of the source parameters on which we can deploy our Bayesian
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parameter-estimation approach.

Our analysis is performed using the three noise-orthogonal time-delay-interferometry

(TDI) outputs that are generated by combining the readouts of the LISA phase-

meters [265]. This stage suppresses by a factor ≈ 108 the laser noise leaving the

data stream only affected by the secondary noise sources and GWs. The details

of this complex procedure are under active investigation and development, see e.g.

Refs. [266, 267, 268, 269].

We employ a coherent analysis of the full LISA TDI outputs, d = {dk; k = A,E, T},

by means of Bayesian inference. The likelihood, L(d|θ), of the data d given the

parameters θ of the source is [270]

lnL(d|θ) = −
∑

k

〈dk − hk(θ)|dk − hk(θ)〉k
2

+ const, (5.5)

where hk is the TDI output k produced by the GW h(t;θ), or, equivalently, in the

Fourier domain, h̃(f ;θ). The inner-product is defined as

〈a|b〉k = 2

∫ +∞

0

df
ã(f)b̃∗(f) + ã∗(f)b̃(f)

Sk(f)
, (5.6)

where ã(f) is the Fourier transform of the time series a(t), Sk(f) is the noise power

spectral density of the kth data stream, and the extrema [flow, fhigh] corresponds to

the frequency range spanned by a GW with parameters θ over the duration of the

observation.

Once a prior p(θ) is specified, we compute the joint posterior probability density

function (PDF) on the parameters of the source

p(θ|d) ∝ L (d|θ) p(θ) (5.7)
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through stochastic sampling. Balrog is designed to work with different sampler

flavors and implementations. For the analysis presented here we use a nested sampling

algorithm based on CPNest [271].

We model the gravitational waveforms h(t;θ) in their adiabatic inspiral regime

through a post-Newtonian (PN) expansion, using two different waveform models. One

of them is a new implementation under active development [258] which includes both

spin precession and orbital eccentricity. Improving upon previous work [272], the new

formulation is substantially more efficient in terms of computational requirements,

making the analysis presented here possible. We also use a 3.5PN TaylorF2 waveform

(see e.g. [273, 274]) restricted to aligned spins and quasicircular orbits when analyzing

the LDC–1 dataset, in agreement with the signals injected in it. The full set of waveforms

we use are computed at sufficiently high PN order to ensure that no systematic effect is

introduced in the analysis [275]. We describe the TDI outputs from such a model as

in Ref. [276], which allows us to fully reproduce the waveforms used in LDC–1. Each

source is described by 17 (11) parameters in the precessing and eccentric (spin-aligned

and circular) case.

5.2.3 Implementation

The noise-orthogonal TDI outputs d on which the LISA GW analysis is based

need to be computed from intermediate TDI data products, e.g. the TDI Michelson

observables X, Y , and Z [277, 18]. Note that the noise-orthogonal data channels A, E,

and T first introduced in the literature [265] were constructed from the Sagnac variables

α, β, and γ and are therefore slightly different from the ones we are using here. Here

for concreteness and to consistently interface with the data currently generated within

the LDCs, we start from X, Y , and Z. This step will need to be revised in the future as
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the interplay between the raw phase-meter data and the actual GW analysis becomes

clearer.

In order to improve our computational efficiency, we use a rigid adiabatic ap-

proximation (RAA) of the TDI variables [278], that is approximately related to the

1.5-generation variables injected into the datasets as

X̃1.5-g(f) ≈
(
1− e−4πifL

)
X̃RAA(f), (5.8)

where L = 2.5× 109 m is the mean LISA armlength, and similarly for the other two

TDI variables Y and Z. We note that SmBBH sources accumulate most of their SNR at

the high frequency end of the LISA bandwidth (f & 5 mHz, where fL & 1; see Fig. 5.1).

Therefore, a long-wavelength approximation to the detector response is not appropriate.

We note that the RAA is not faithful to the full TDI response at very high frequencies.

Since we recover source parameters from full TDI signals with RAA signals, this study

also serves as a test of the RAA for SmBBH signals.

In order to compute inner products [cf. Eq. (5.6)] involving a discrete time series, we

use a hybrid method based on Clenshaw-Curtis quadrature [279]. In its simplest form,

this numerical integration technique consists of approximating an integrand (e.g. 5.6)

by its Chebishev polynomial, and obtaining the integral value from those of a Fourier

series of periodic functions, which are fast to compute and accurate to an extent under

control by the Chebishev polynomial truncation.

In this work, we hybridize the method above as follows: first, the time series

representing the data (having a cadence of 5 s in the LDC–1 case) is related through a

discrete Fourier transform to a frequency series from fmin = 0 to fmax = 0.1 Hz, with a

resolution of ∆f = 1/Tobs ≈ 1.27× 10−8 Hz. This defines a finite set of data points in

the Fourier domain fDFT
i with fmin ≤ fDFT

i ≤ fmax. We transform the frequency interval
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into a log-frequency interval, and split the latter into ten subintervals of equal length.

In each of them, we compute a 21-point Clenshaw-Curtis quadrature rule, resulting

overall in a set of N = 201 distinct frequencies fCC
i with corresponding weights wCC

i .

For each of these points, we then find the closest frequency in the discrete set fDFT
i to

form the set fH
i . In order to construct the associated weights wH

i , we first note that each

frequency fCC
i satisfies either fCC

i < fH
0 ; fCC

i > fH
N−1; or fH

k ≤ fCC
i ≤ fH

k+1. In the first

case, we associate the weight wCC
i with wH

0 ; in the second case we associate the weight

wCC
i with wH

N−1; and in the third case we distribute the weight wCC
i linearly (in log)

between wH
k and wH

k+1 according to the respective distance to fCC
i of their corresponding

frequencies. Finally, some frequencies in the set fH
i might be duplicates, in which case

we combine them and their weights for minor gains in computational efficiency. This

results in a set of NH ≤ N hybrid frequencies and weights allowing us to approximate

the integral as

∫ b

a

df g(f) ≈
NH−1∑

k=0

wH
k g(fH

k ). (5.9)

We verified that the loss of accuracy in the integral evaluation due to the modification

of the quadrature rule does not impact the result significantly. With this method,

we drastically reduce the number of waveform evaluations necessary to evaluate each

log-likelihood by selecting a few relevant datapoints in the discrete Fourier transform

of the data. Note that this algorithm needs only to be used once at the beginning of

the run, and that the computational efficiency of the resulting run is independent of

the length of the time series, and weakly dependent on its cadence. We also stress that

the choice of 10 subintervals with a 21-point Clenshaw-Curtis quadrature rule applied

to them is somewhat arbitrary. We found that it yielded fast parameter estimation
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with good reliability in the case at hand, but it can certainly be optimized depending

on the particular source analyzed. Moreover, further optimization of subintervals and

quadrature’s number of points would be required in the presence of noise in the data,

e.g. tuning both choices to narrow noise spectral features in the data.

5.2.4 Sampling parameters

An appropriate choice of the sampling parameters is crucial to complete the inference.

In order to remove the influence of uncertain cosmological effects from the analysis, in

what follows we express all mass parameters in the detector frame (i.e. we use redshifted

masses), unless stated otherwise. We choose to use the following set of 11 parameters

to describe the circular, spin-aligned SmBBHs:

• For the two mass parameters, we use the chirp massMc and the dimensionless

mass difference δµ = (m1 −m2)/(m1 +m2).

• The two amplitude parameters AL and AR are related to the luminosity distance

DL and the inclination ι by AL = (1 + cos ι)/
√

2DL and AR = (1− cos ι)/
√

2DL.

They are the square roots of the amplitudes of the left- (right-)handed components

of a GW.

• The two phase parameters ψL and ψR are related to the initial orbital phase φ0

and the polarization phase ψ by ψL = φ0 + ψ and ψR = φ0 − ψ. These are the

initial phases of the left- (right-)handed components of a GW.

• The spins are described by the parameters χ1,` and χ2,`, corresponding to the

dimensionless spin magnitudes of the two binary components. In the general case

of arbitrarily oriented spins(e.g.), these two parameters would correspond to the
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dimensionless spin projections onto the orbital angular momentum (hence the

subscript `) axis of the two binary components.

• The initial orbital frequency of the source f orb
0 , related to the initial GW frequency

by f0 = 2f orb
0 .

• The sine of the ecliptic latitude sin b and the ecliptic longitude l, as sky location

parameters.

For the case of eccentric sources with precessing spins, one needs to modify and extend

the sampled set of parameters. In particular, we choose the following:

• We parametrize eccentric orbits with the square eccentricity at f = 10 mHz e2
10

and the initial argument of periastron φe.

• Precessing sources require six spin parameters; we choose the dimensionless spin

magnitudes χ1,2 and the spin orientations in an ecliptic frame, which we describe

by their sine latitudes sin bχ1,2 and longitudes lχ1,2.

• For these runs, we also use the approximate time to merger tM defined in Eq. (5.16)

instead of the initial orbital frequency f orb
0 .

We use flat priors for all the above parameters. Assuming that some information on

the source will be provided by the preceding search stage, we restrict the prior range

for (at least some of) the parameters around the injected values, which is essential to

keep the computational burden at a manageable level (cf. Secs. 5.3.2 and 5.3.4).

This specific choice of parameters greatly simplifies the likelihood structure, thus

facilitating the sampling process. We use the chirp massMc because this is the mass

parameter entering the frequency evolution at lowest PN order and is thus better

constrained than any other mass parameter. For the second mass parameter, our choice
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of δµ has a key advantage over the more traditional alternatives of the symmetric mass

ratio ν or the mass ratio q: the Jacobian of the transformation into the (m1,m2) space

is symmetric and regular in the m1 = m2 limit, avoiding potential issues related to this

reparametrization. As shown in Fig. 5.2, the amplitude parameters AL and AR are

weakly correlated, in contrast with the more common choices of luminosity distance

DL and inclination cos ι. Furthermore, a flat distribution in AL and AR corresponds

to a flat distribution in cos ι, which we expect from an isotropic distribution of source

locations and orbital angular momenta. Similarly, in the interest of avoiding strongly

correlated quantities, we opted for the phase parameters ψL and ψR instead of φ0 and

ψ.

Figure 5.2 shows a comparison of the two-dimensional posteriors for an illustrative

LDC–1 run (source 15), which has signal-to-noise ratio (SNR) 12. We contrast the

parameter spaces described by (AL, AR) and (DL, cos ι) as well as that described by

(ψL, ψR) and (φ0, ψ). The posterior distributions of parameters related to the circular

polarization of the GW are significantly less correlated compared to those involving

linear polarization. Moreover, we only sample half of the (φ0, ψ) plane, thus removing

the multimodality arising from the following symmetries of gravitational radiation:

(φ0 → φ0 + nπ), (ψ → ψ + nπ), (φ0 → φ0 + π/2, ψ → ψ + π/2), n ∈ Z. Note that the

source we chose for illustrative purposes offers an unbiased measurement of the phases

ψL,R, while we observed significant biases in the recovery of those two parameters for

most sources. However, we did not observe such biases when analyzing data containing

a single source, and we thus argue that this effect arises from the confusion between

overlapping sources and is independent of the chosen parametrization. This illustrative

source is thus representative of the single source injection results, and most relevant to

this discussion.
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5.3 Results

As an initial test of the analysis approach described in the previous section, we have

applied it to the data sets released for LDC–1. The data sets are briefly described in

Sec. 5.3.1. Details of prior choices and parameter estimation results are presented in

Sec. 5.3.2. As LDC–1 had limited scope and contained only BHs on circular orbits

with aligned spins, we also present in Sec. 5.3.4 a proof-of-concept analysis on a generic

precessing and eccentric system.

5.3.1 LISA data challenge

The first round of the LISA Data Challenges (LDC–1, lisa-ldc.lal.in2p3.fr) consisted

of several datasets, each of which was dedicated to a specific source class: massive black

hole binaries, extreme-mass ratio inspirals, galactic binaries, SmBBHs, and stochastic

backgrounds.

The LDC–1 SmBBH data consists of two sets, each containing the same 66 SmBBH

injections, one noise-free and the other including a realization of the expected LISA

Gaussian stationary noise. In this work, we focused on the noiseless dataset, as our

initial goal is to test the performance of the Bayesian analysis scheme to accurately

recover the source parameters. We are currently developing functionalities to jointly

estimate the unknown level of noise that affect the source measurements, which we

will report about in the future. Each LDC–1 dataset consists of the 1.5-generation

TDI observables X, Y , and Z [277, 18] with a cadence of 5 seconds and a duration of

2.5 years. By linearly combining X, Y , and Z, we construct the data, d, for the GW

analysis, consisting of the three noise-orthogonal TDI observables A, E and T [265].

https://lisa-ldc.lal.in2p3.fr/
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The parameters of the injected sources are released as part of the dataset. Figure 5.1

provides a summary of the main features of the signals that were injected. These sources

all have GW frequencies of ∼ 1–10 mHz at the beginning of the LISA mission. This set

of sources covers the chirp mass range 7− 61 M�, see Figs. 5.3, 5.4. The source chirp

masses and initial frequencies determine the merger time [see Eq. (5.1)]. Five sources

inspiral and merge within Tobs = 2.5 yr, with chirp masses in the range 30–61M� and

initial frequencies between 16 and 20 mHz. Five more, with chirp masses in the range

20–47M� and frequencies between 12 and 22 mHz merge within 5 years. Six other,

with chirp masses in the range 13–55M� and frequencies between 8 and 21 mHz merge

within 10 years. The longest lived ones, with chirp masses in the range 7–55M� and

frequencies between 1 and 11 mHz merge within 3000 years. This set of sources covers a

range of SNRs which is governed primarily by the distance to the source, the inclination

angle and the source sky position, the latter of which is shown in Fig. 5.5. In total, 22

sources yield an optimal (and coherent across the 3 TDI observables) SNR > 8.

5.3.2 Parameter estimation and results

Preliminarily, we analyzed the same noiseless dataset in distinct runs, where we

tuned the priors to a corresponding target SmBBH. We chose priors

• Flat in the dimensionless mass difference δµ in [0, 0.9], corresponding to a mass

ratio between 1 : 1 and 1 : 19.

• Flat in AL and AR (i.e. the amplitudes parameters introduced in Sec. 5.2.4) in

[0, Amax], where Amax = 2
√

2/DL (twice the overall amplitude of an optimally

oriented source at the injected distance).
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• Flat in ψL and ψR (i.e. the initial phases of the left- and right- handed components

of the GW signal, respectively) in [0, π].

• Flat in the dimensionless spin components of the two binary components, χ1,`

and χ2,`, in [−1, 1].

• ForMc, f0, sin b, and l (the chirp mass, the initial orbital frequency, the sine of

the ecliptic latitude, and longitude, respectively), we emulated the output of a

prior GW search by performing searches on single source simulated data in steps.

At each step, we adjust the priors using the posteriors resulting from the previous

step to m ± 4σ, where m is the median of the posterior, and σ its standard

deviation. In order to improve the convergence of the method, when computing

m and σ we neglected posterior samples with log-likelihood smaller than one

obtained with AL = AR = 0 (i.e. with logL < −SNR2/2). This method required

at most three steps for each target before convergence. Note that this was not

possible for all systems, particularly those with low SNR, which we flagged as not

detected.

The method we used to determine the search priors produced a set of single-injection

runs, where the same waveforms were used for injection and recovery. We found it a

useful set of analyses to compare to our main results.

This set of sources also covers a range of SNRs which is governed primarily by

the distance to the source, the viewing inclination angle and the source sky position

in addition to the chirp mass. With our parameter-estimation pipeline, we were able

to obtain good quality posterior distributions, and hence measurements of the source

parameters for the 22 sources with SNR > 8. Eight sources with SNRs in the range



5.3. Results 93

5.7–7.9 offered good quality posteriors as well, but we choose to use a fixed SNR

threshold and exclude them from the analysis.

For each of the 22 sources that we selected, we computed the 3-dimensional volume

within which LISA is able to localize it. Because these sources are generally long-lived,

and are at the high-frequency end of the LISA bandwidth, relatively good (by the

standards of GW astronomy) sky position measurements with uncertainty regions

spanning ∆Ω = 1 to 100 square degrees are obtained. However, because these sources

have relatively low SNRs in the range 8–14 there is a comparatively large fractional

uncertainty in the distances spanning 30%–150%. These results are summarized in

Figs. 5.5 and 5.6.

Of the intrinsic source parameters, by far the best measured is the chirp mass;

for the loudest (quietest) of the recovered sources with SNR 14 (8) we find that we

are able to measure the chirp mass to a fractional accuracy better than 0.5% (2%).

Our parameter-estimation pipeline sampled directly in the chirp mass Mc and the

dimensionless mass difference δµ as explained in Sec. 5.2.4. The resulting posteriors are

shown in Fig. 5.7. The more astrophysically interesting component masses m1 and m2

for the individual BHs can be obtained fromMc and δµ; see Fig. 5.3. Notably, we find

fractional uncertainties on chirp masses —measured in the frame at rest with the Hubble

flow— to be comparable or smaller (∆MH
c /MH

c . 2× 10−2) to the uncertainties arising

from source proper motion redshifts (vpec/c . 10−2). Similarly, the choice of cosmology

yields uncertainties in redshift up to 10−2 for the most distant source recovered at

500 Mpc, over a broad range of cosmological parameters [281, 282].

Of the other intrinsic parameters, the most interesting are arguably the component

spins. While χ1,` and χ2,` cannot be individually measured, it is helpful to identify

intrinsic parameters entering the PN frequency evolution series at different orders [256,
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283, 270]. As mentioned above, the parameter entering the series at leading order is

Mc, the parameter entering at 1PN is δµ, while spins first enter at 1.5PN via the

combination

β =
2∑

i=1

(
µi +

75µj
113

)
µiχi,`, (5.10)

where i 6= j, and µi = mi/(m1 + m2) are the dimensionless individual masses. We

normalized this parameter so that |β| ≤ 1 for arbitrary mass ratios, implying |β| ≤

94/113 for equal-mass systems.

The marginal posterior distributions of these three parameters are shown in Fig. 5.4,

together with those of the individual masses m1 and m2. While the chirp mass is

measured extremely well for all sources, δµ and β can be measured with some confidence

only for SmBBHs that are merging within the observation window. This is because

those sources are the only ones with a sufficient frequency evolution such that the

subdominant terms in the PN expansion become observable.

Overall, comparing runs performed on the LDC–1 data with ones performed on single-

source injections, we find that parameters are recovered with similar precision. Biases

in the LDC–1 runs are comparable to those expected from random noise fluctuations.

The exception to that are the two phase parameters ψL and ψR. These were recovered

without any significant bias in the single-source runs, but with large biases comparable

to the prior range in the LDC–1 runs in almost all cases. These biases did propagate to

both parameters when converted to the (φ0, ψ) plane.

We summarize in Table 5.1 of the appendix the injected parameters of the 22 sources

we analyzed, and in Table 5.2 their recovered values.
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5.3.3 Challenging systems

Let us now discuss those few systems which showed posteriors that were found to

be particularly challenging to analyze. All the SmBBH injections and recoveries done

in LDC–1 were performed using noiseless injections. Therefore, in the absence of noise

fluctuations, we might expect the likelihood (posterior) to be peaked at (near) the true

(i.e. injected) source parameters. However, this is not guaranteed to be the case because

(i) we are using different waveforms for recovery than the ones that were injected, and

(ii) some sources are overlapping in the LDC–1 data and could therefore be confused.

In particular, we highlight four systems.

• For source number 5 (SNR = 11.36), we obtain a frequency posterior that is

peaked significantly away from the injected values.

• Sources number 20 (SNR = 8.68), and 36 (SNR = 9.93) resulted in a 2-dimensional

posterior on the chirp mass and mass difference parameters (or equivalently on

the component masses) that only include the injected values on the boundary of

their ∼ 99.8% confidence interval.

• For source number 16 (SNR = 10.14) the marginalized, 1-dimensional posterior

onMc includes the injected value only in its 99.4% confidence interval.

We note that for the first two bullet points listed above, the issues described are

not present in the single-injection run results used for comparison. These differences

could possibly be due to the difference in the employed waveforms, the signal overlap in

LDC–1, sampling issues, or a combination of these. Work toward analyzing jointly the

overlapping sources [1] and characterizing performances of different samplers is ongoing.

On the other hand, the bias inMc observed for source 16 was also present in the

single-injection result. In the following we argue that it’s a genuine effect of the signal



96 Chapter 5. Stellar-mass Binary Black Holes with LISA

parametrization. Figure 5.8 shows the marginalized posteriors in the (Mc, δµ) plane for

source number 16 (SNR = 10.14, τ = 7.9 yr), together with a reparametrization of it.

While the true parameters still lie in the main confidence region of the two-dimensional

posterior, the chirp mass posterior only includes the injected value in the tail of the

distribution. Notably, its injected mass ratio of q ≈ 1/11.3 (δµ ≈ 0.84) is the most

asymmetric among all detected sources. The flat posterior in δµ that we observe in

Fig. 5.8 suggests that this parameter is not measurable. The flatness of this posterior

together with the shape of the confidence region implies a bias in the marginalized

posterior forMc for highly asymmetric mass ratios. The shape of the two-dimensional

posterior can be explained by an examination of the PN GW phase series [256]:

Φ = Φc −
(πMcf)−5/3

16

[
1 (5.11)

+
(πMcf)2/3

21/5 (1− δµ2)2/5

(
2435

252
− 55δµ2

24

)]
+O

(
f−2/3

)
.

As δµ increases, the resulting change in the number of accumulated cycles can be

compensated by an increase in Mc. This behavior is all the more pronounced that

the system is observed closer to merger, as the strength of the 1PN term gets more

comparable to the 0PN one. To reduce the correlation in the (Mc, δµ) plane, we can

define a new parameter Mφ(Mc, δµ, f0, Tobs), such that the number of accumulated

cycles during the observation is independent of δµ up to some given PN order. Note

that the likelihood is not exclusively determined by the number of accumulated cycles

of phase, hence one should not expectMφ and δµ to be completely uncorrelated. At
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1PN order, we get

Mφ =Mc

{
1− (5Mc)

1/4 [974(1− A)− 231δµ2]

168× 21/5A
(5.12)

×

(
τ

3/8
0 − τ 3/8

f

)2

5τ0 − 8τ
5/8
0 τ

3/8
f + 3τf

}
,

A =
(
1− δµ2

)2/5
, (5.13)

τ0 =
5(πMcf0)−5/3

256πf0

, (5.14)

τf = max

[
τ0 − Tobs,

5(πMcfmax)−5/3

256πfmax

]
, (5.15)

where f0 = 2f orb
0 is the initial GW frequency, and fmax is the higher limit of the

observation frequency band. As shown in Fig. 5.8, the 2-dimensional posterior in the

masses plane yields a milder correlation, and hence a smaller bias in the marginalized,

1-dimensional posterior forMφ.

5.3.4 Eccentric precessing system

We also ran as a proof of concept a Bayesian parameter estimation run on a fully

general eccentric precessing system. We chose a 95-55M� binary system, with spin

magnitudes χ1 = 0.7 and χ2 = 0.73 respectively, initial spin misalignment angles

θ1 = 179◦ and θ2 = 135◦ respectively, eccentricity at 10 mHz of e10 = 3.1× 10−3, and

SNR 15. These values were inspired by the most massive event detected by LIGO/Virgo

to date, GW190521 [284]. This particular source accumulated N ≈ 1.89× 106 cycles of

orbital phase, Nspin ≈ 892 cycles of spin precession, and Necc ≈ 4060 cycles of periastron

precession.

For this run, we used the same sampling parameters as for the LDC–1 runs with a few
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modifications. We used different spin parameters, we added eccentricity parameters, and

we replaced the initial orbital frequency with the approximate merger time parameter [29]

tM = t0 +
5Mc(πMcf0)−8/3

32
√

1− e2
10 (8 + 7e2

10)
, (5.16)

where t0 is the time at the start of data gathering. Note that, for simplicity, this

relation is obtained from the leading PN order frequency evolution equation, assuming

a constant eccentricity. It is more accurate for circular systems, and becomes gradually

less so as the initial eccentricity increases.

We note that since spin-induced precession causes cos ι and ψ to evolve with time,

we use their initial values to define the parameters AL, AR, ψL, and ψR. Additionally,

we set the priors on ψL and ψR as [0, 2π] since the addition of eccentricity breaks the

waveform symmetry from (φ0 → φ0 + nπ) to (φ0 → φ0 + 2nπ), n ∈ Z.

Of note, we report on the measurability of a few chosen parameters, shown in

Fig. 5.9. The merger time tM could be recovered with accuracy ∼ 2 hours, a figure

comparable to the corresponding merging circular sources. The chirp mass could

be recovered with accuracy of ∼ 0.004M�. The eccentricity at 10 mHz could be

recovered in the range 2.7× 10−3 < e10 < 4.9× 10−3 at 90% confidence, and was clearly

distinguishable from zero. The injected dimensionless mass difference was recovered

within the 24% confidence interval. The (initial) spin parameter β could be recovered

with 90% confidence in the range −0.41 < β < −0.14, including the injected value of

βinj ≈ −0.37, (with β = 0 excluded at more than 99.9% confidence). The source is

located on the sky at 90% confidence level within 8 deg2. The recovered values were

mostly consistent with the injected ones. More work is ongoing to assess the robustness

of the parameter estimation pipeline across the full parameter space.

One interesting additional information to gather from these results is to determine
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whether the effects of spin-precession are measurable for such systems. In order to

do this, we looked at the average precession parameter χp [285, 286], and found that

the posterior did not differ significantly from the prior, suggesting that precession

effects might not be measurable for SmBBHs with LISA, thus strengthening the case

for multiband GW astronomy.

These Bayesian results obtained for a fully precessing eccentric binary show promise

for an extension of the present work, investigating the full 17-dimensional parameter

space of SmBBHs more extensively.

5.3.5 Computational performances

Parameter estimation runs were carried out on the high performance computing

infrastructure provided by the Birmingham BlueBEAR cluster, with each run using 8

Intel Xeon (2.50GHz) sibling cores on a single computing node. The total CPU time

for each run on the LDC–1 dataset was distributed with a median of 5 hours for the 22

sources with SNR > 8.

The three runs with sources coalescing within the dataset duration where the most

computationally demanding with CPU times of 36, 20, and 45 hours for sources number

20, 36, and 47 respectively. All runs had small memory footprint throughout, with

usage peaks below 1.6 Gigabytes.

The run with eccentricity and spin precession was substantially more expensive

(∼ 3000 CPUh), approximately 100 times more than its merging spin-aligned circular

counterparts. This is due to a combination of factors including the increased dimen-

sionality of the parameter space, the additional structure of the likelihood, and the

increased complexity of the waveforms.
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5.4 Conclusions

In this paper we presented a fully Bayesian parameter-estimation routine for the

observation of SmBBHs with LISA. As part of the LISA data challenge LDC–1, we

employed our codebase Balrog for the accurate estimation of 66 circular, spin-aligned

SmBBHs’ parameters. We confidently recovered all 22 sources with SNR > 8. Our

results show that LISA will be able to localize SmBBHs over the sky within a few tens

of squared degrees, and constrain their detector-frame chirp mass down to ±0.01 M�.

Additionally, for sources merging within the mission lifetime, the chirping morphology

of the signals allows us to measure parameters entering at higher order in the post-

Netwonian expansion, namely the dimensionless mass difference δµ, and the spin

combination β.

On the technical side, we presented a novel choice of the sampling parameters

that substantially reduce the correlations in the high-dimensional likelihood, thus

vastly increasing the resulting computational efficiency. In particular, this relies on

decomposing the signal into circular polarizations. We also presented an algorithm that

drastically reduces the number of waveform evaluations needed to estimate likelihoods,

by adapting a nonuniform quadrature rule to work with uniformly sampled data.

This allowed us to successfully perform full Bayesian parameter estimation studies for

individual spin-aligned, circular SmBBH sources undergoing O(106) wave cycles that

required just a few CPU hours to complete. Focusing on a selected number of sources

that exhibit mild biases in the recovered parameters, we characterized the effect of

binaries cross-contamination, waveform differences, and inherent likelihood structures

which make SmBBHs parameters challenging to sample.

Finally, we presented a proof-of-concept analysis where we tackle the full SmBBH

parameter-estimation problem, which includes eccentricity and spin precession. We
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recover the parameters of a specific, but generic, source in the resulting 17-dimensional

parameter space. We report a measurable eccentricity at 10 mHz of a few 10−3 together

with a merger time determination within a time window of . 1 hour. We also report the

immeasurability of spin-induced precession effects, suggesting that individual component

spins cannot be recovered. This suggests that joint space and ground based detector GW

observations might be crucial to fully characterize SmBBHs. More work is necessary

to fully explore potential challenges for this type of sources. This analysis brings us

closer to LISA’s goal of efficiently and accurately reconstructing the parameters of

SmBBHs, which constitute an unmatched tool to discriminate their formation history

and evolution.
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Figure 5.2: Two-dimensional posteriors for LDC–1 source 15 (SNR 12) using
different parameters. Quantities related to the circular (linear) polarizations are
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and cos ι (top right). The phases ψL and ψR (bottom left) are related to φ0 and ψ
(bottom right). The posteriors have been weighted in each plot so that the parameters
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5.4. Conclusions 103

102

m1 [M�]

101

m
2

[M
�

]

8 9 10 11 12 13
SNR

Figure 5.3: Posterior samples of detector frame component masses for the 22
recovered sources. Solid lines extend in the 90% confidence interval of the symmetric
mass ratio posterior. The thickness of the curve is comparable to or greater than the
posterior distribution widths, indicating the very high accuracy of the chirp-mass
measurements. Injected values are marked by stars. Lines and markers are colored
according to the sources’ SNRs. All injected values lie within their posterior’s 90%
contour levels, except for source 16 (SNR = 10) whose true, high dimensionless mass

difference is within the 98% confidence interval (cf. Sec. 5.3.3).
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Figure 5.4: Marginal posteriors, represented through kernel density estimators for
five selected parameters. From left to right, we show the primary component mass,
the secondary component mass (both measured in the source frame), the redshifted
chirp mass, the dimensionless mass difference, and the 1.5 PN spin parameter reported
in Eq. (5.10). Source posteriors are sorted and colored by their SNRs; their index
in the LDC-1 injections catalogue is reported to the right. Stars mark sources that
merge within the LDC–1 dataset duration (2.5 yr). Posteriors are reweighted to an
effective prior uniform in the column’s parameter, except for the spin parameter β.
The redshifted chirp mass, appearing in the leading-order PN term of the frequency
evolution, is much better constrained than any of the other parameters. Parameters
entering at higher PN order like δµ and β can only be constrained for systems that

merge within the mission lifetime.
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Figure 5.5: Posteriors on the sky position of the recovered sources in ecliptic
coordinates using a Mollweide projection. Stars denote the true locations of the
injected sources. All true locations are enclosed within the 90% confidence intervals
of their posterior. The solid black line shows the galactic plane. Note that sources
close to the ecliptic have an approximate symmetry involving the ecliptic latitude
b→ −b (see e.g. [280]), resulting in elongated posteriors in that region, and even a

bimodal posterior as seen in the source close to 180◦ longitude.
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resolution better than 100 deg2. At SNR above 11 the localization improves by
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Markers label the source time to coalescence as shown in legend and described

previously in Fig. 5.1.
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5.5 Appendix: LDC–1 injected and recovered param-

eters

In this Appendix, we provide the parameters of our LDC–1 analysis in tabular

format. In particular, in Table 5.1 we list the parameters of all the injected SmBBHs,

while in Table 5.2 we present the results of our parameter-estimation recovery.
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Table 5.1: Properties of the LDC–1 injected sources. Rows are ordered by
increasing source SNR and labelled by the injection ID in the LDC dataset. Sources
merging within the mission lifetime (here set to 2.5 yr) are marked with stars. For a

description of the parameters see Sec. 5.2.4.
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Table 5.2: Recovered parameters for the LDC sources. Rows are ordered by
increasing source SNR and labelled by the injection ID in the LDC dataset. Sources
merging within the mission lifetime (here set to 2.5 yr) are marked with stars. For each
parameter (cf. Sec. 5.2.4), we quote median and 90% confidence intervals. In addition,
we quote the area enclosed by the 90% contour level of the sky localization posterior

∆Ω and the number of CPU hours required to perform each run (cf. Sec. 5.3.5).
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background
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6.1 Constraining the lensing of BBHs from the SGWB

6.1.1 Introduction

Several binary black hole (BBH) mergers have been detected so far [238, 287]

and a number of additional candidates reported [97, 288, 289, 290]. Forthcoming

gravitational-wave (GW) detector upgrades will provide increased sensitivity, which

will allow us to probe an even larger spacetime volume [162].

The current BBH detections are loud and individually resolvable [15, 270]. However,

they are part of a much larger population [162] whose properties, such as the overall

merger rate and the source mass distribution, can be inferred statistically [46, 174]. As

new GW events are detected, this population can be constrained with increasing accu-

racy. The GW ensemble redshift distribution and correlations with source parameters

constitute an important piece of evidence, allowing us to place tighter constraints on pro-

genitors formation history and evolution channels [291, 178, 292, 293, 294, 295, 296, 297].

Ultimately, observing distinctive features in the population distribution would provide

independent characterization of the expansion history of nearby universe [298]. Impor-

tantly, this population does not only consist of individually detectable BBH mergers

but will contain many other distant, unresolved events [299]. Their emissions accumu-

late across all redshifts as a stochastic background of GWs (SGWB): an incoherent

superposition of signals whose properties cannot be inferred individually [123, 300].

Broadly speaking, events are individually observable depending on the instrument

sensitivities and the choice of search strategy [301, 156, 302, 303]. The majority of

events that are not individually observed contribute instead to the SGWB. Current

estimates predict a detection of a SGWB with a signal-to-noise ratio (SNR) of 3 after

40 months of observations [124, 120]. The observation of a stochastic background will



6.1. Constraining the lensing of BBHs from the SGWB 115

complement individual detections, providing an integrated measure of the cosmological

black holes’ population history [126].

GWs from BBHs are generated by the dynamics of vacuum spacetime, as prescribed

by general relativity. As a consequence, they carry information from an inherently

scale-free physics. Additional assumptions on the formation mechanism, or observations

of a counterpart are necessary to connect with weak or electromagnetic phenomena

thereby introducing new length/energy scales and breaking the ubiquitous mass-distance

degeneracy [298].

However, GWs are in principle affected by the intervening gravitational potential

which influences the inferred spatial and temporal properties of the signals [304]. At the

simplest level of description, the effect of lensing on a GW signal is to change its strain

amplitude by a multiplicative magnification factor√µ. As a consequence, and in absence

of independent constraints on the lensing magnification, the mass-distance degeneracy is

re-established even for chirping sources. Parameter estimation pipelines do not currently

incorporate any lensing model, and therefore infer source properties agnostically of such

a phenomenon. However, follow-up studies have addressed a number of questions: Is any

detection actually magnified? Are there event couples originating from the same source

emission, whose light-path has been altered to mimic independent events? Does lensing

affect the population inference? [305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315].

In this letter we address one of the above questions, rephrasing it as a probabilistic

statement. Given a set of observations, how likely is it for a fraction to be magnified by

more than a certain µ? We show that by considering lensing of the entire population a

significant amount of information can be leveraged from the SGWB; even the current

non-detection has surprising astrophysical consequences. Significantly, we find the

recent claims of lensed events to be statistically disfavoured [313, 314, 315].
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6.1.2 Models

We now turn our attention to the modeling assumptions made. Firstly, we describe

the effect of lensing on GW signals, and the parameterization of the lensing probability

model. Secondly, we summarize the features of the population model for BBH mergers.

Finally, we derive the associated energy density of the stochastic background including

lensed events. Throughout this letter we use G = c = 1.

6.1.3 Lensing probability

Unlensed, chirping binaries provide a direct measurement of their luminosity distance

dL [316, 317]. If associated with electromagnetic counterparts, this gives an independent

estimate of the source redshift z. Together, these constitute a point measurement in

the expansion history of the universe [318, 319]

dL(z)

1 + z
=

1

H0

∫ z

0

dz′
1

E(z′)
, (6.1)

where H0 is the local Hubble constant. E(z) is a function of redshift, proportional to

the time derivative of the logarithm of the scale factor, and encodes the information on

the cosmological density parameters.

Alternatively, assuming a cosmological model breaks the mass-redshift degeneracy,

thereby providing a redshift estimate for each observed event. However, this degeneracy

is re-established by the addition of an a priori unknown lensing magnification µ.

Given a GW event, we focus on its true luminosity distance dL(z), chirp massM,

and lensing magnification µ. Its strain amplitude is magnified by a multiplicative factor
√
µ [304]. Independent of the cosmology, the apparent mass M̃, redshift z̃, and distance
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d̃L are related to their true values by the following relationships:

dL(z̃)√
µ̃

=
dL(z)√
µ

, M̃(1 + z̃) =M(1 + z) . (6.2)

The apparent parameters are those inferred by any pipeline that assumes a certain

magnification µ̃. Parameter estimates provided in published catalogues are computed

under the assumption of no lensing, i.e. µ̃ = 1 [238, 288, 289, 290].

In order to incorporate the effect of lensing in the parameter reconstruction, ad-

ditional independent information on the same transient would be required: e.g. the

observation of electromagnetic counterparts, a detailed knowledge of the lensing poten-

tial along the GW travel path, or an association with a host galaxy. Another possibility

is the association between two or more GW events, whose apparent properties can be

referred back to a common source that has undergone multiple imaging [306]. In the

absence of such additional information, prior knowledge on µ remains unaltered after

any single detection, because of the above degeneracy.

In this letter we use a semi-analytic lensing model for the probability of a given

magnification dP/d lnµ from equation (B1) in [309] :

dP (µ)

d lnµ
= A (t0)

∫ +∞

0

dt exp

[
λ

t+ t0
− 2t

]
1√
2πσ

exp

[
−(lnµ− δ − t)2

2σ2

]
(6.3)

While A and δ are fixed by the probability distribution normalization and mean

magnification to 1, the parameters σ, t0, λ characterize the shape of the distribution

and are matched to observations and large-scale simulations. We interpolate with cubic

splines the fitted parameters from Table I in [309] across the redshift range z ∈ [0, 20]

We note that this model correctly captures the limiting behavior in both the strong

and weak lensing regimes [320, 321], and is in agreement with recent hydrodynamical
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simulations [322]. Greater details on the lensing model are provided in [309].

6.1.4 Apparent merger distribution

Following [295, 46] (which are based on [238]), we parametrize the BBH differential

merger rate R as a function of the binary masses m1,2 and redshift z, as

d3R

dm1dm2dz
=R(z|λ,γ,zP)p(m1,m2|mmin,mmax, α), (6.4)

where

p(m1,m2 | mmin,mmax, α) ∝ m−α1 I(m1 | mmin,mmax) I(m2 | mmin,m1) (6.5)

Here I(·|a, b) are the indicator functions on the interval [a, b], and throughout we adopt

α=2.3 and (mmin,mmax)=(5, 50)M�.

We set the cosmological merger rate to track the star formation rate (with no delay

between formation and coalescence). This is modeled using a power law with index λ

peaking at zP and tapering off further in the past with index (λ− γ) [323];

R(z | λ, γ, zP) = R0
(1 + z)λ

1 +

[
1 + z

1 + zP

]γ . (6.6)

We tune R0 to match the current estimate for the local merger rate from GW

population analyses [46]. The uncertainty on the merger rate propagates to all redshifts

affecting the entire population.

A straightforward consequence of fixing the mass and redshift distributions (Eqs. 6.5

and 6.6 respectively) is the amplitude of the stochastic background accumulated over
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R0 (Gpc−3yr−1) λ γ zP

O1 + O2 57+40
−25 5.8+0.4

−0.4 5.6 1.9

Design 57+40
−25 3.4+0.6

−0.7 5.6 1.9

Table 6.1: Parameters modeling the merger rate density. R0 is tuned to match the
current estimate of the local merger rate, while zP, γ capture the the star formation
rate peak and decay further out in redshift. λ is adjusted to provide a stochastic
background signal with a fixed SNR=2 at the two sensitivities considered. Fig. 6.1

shows the two resulting distributions.

the past light-cone of the observer. We have considered a number of merger rate models,

varying both λ and γ, while keeping the star formation rate peak zP fixed. In this letter,

we present results for two choices of λ, with a fixed γ, that yield SGWB amplitudes

consistent with current upper limits [126] (see Fig. 6.1, and Table 6.1, and the discussion

in the following section).

For simplicity, we neglect in both models black hole spins. Depending on the spin

properties of the BBHs, the enhancement on the overall rate can be significant, up

to a factor of 3 in the mass range of interest for current detectors [296]. We leave a

consistent inclusion of spin effects –i.e. on the intrinsic merger rate, on the spectral

shape of the stochastic signal, and on individual event detectability– to future work.

We highlight that the local merger rate and mass distribution used here were

obtained with hierarchical analyses on individual GW source parameters [49, 48, 50].

Therefore, in order to remain consistent with the prior assumptions therein, we have

to consider z,m1,m2 as the apparent redshifts and masses with no intervening lensing,

i.e. assuming µ̃ = 1. Henceforth, building on the notation in Eq. 6.2, we denote these

parameters z̃, m̃1, m̃2, and related functions with a superscript tilde.
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Figure 6.1: Cosmological merger rate density models considered, using the param-
eterization in Eq. 6.6. Parameter choices are listed in Table 6.1. Models are matched
to the current local estimate for the BBH merger rate R0. Assuming the functional
form in Eq 6.6 we construct models providing a stochastic signal with SNR=2 at
each given sensitivity (see Table 6.1 for the corresponding model parameters). The
blue line refers to the sensitivity achieved after O1 and O2. The red line refers to
the projected sensitivity after two years of observation at 50% duty cycle at design
sensitivity. Shaded regions delimit similarly constructed models, matched to the

upper and lower 90% confidence interval on the local merger rate estimate.

6.1.5 Lensed stochastic background

The stochastic background from BBH mergers is the incoherent superposition of

individual GW events [121, 120]. We assume a flat ΛCDM cosmology and a simple

leading order post-Newtonian expression for the GW energy spectrum from the inspiral

of non-spinning BBHs [29]

dEGW(m1,m2)

dfr
=

(π)2/3

3
M(m1,m2)5/3f−1/3

r , (6.7)
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with fr = f(1 + z) the GW frequency in the source rest frame. Integrating over the

cosmological expansion history, gives a value for the energy density of GWs from BBH

mergers expressed as a fraction of the critical density ρc: this is a standard result from

the GW literature[121], and it reads

ΩBBH(f) =
1

ρc

∫
dz

f

H0(1 + z)E(z)
(6.8)

×
∫

dm1dm2
d3R

dm1dm2dz
dEGW

dfr

∣∣∣∣∣
fr=f(1+z)

.

We stress here that Eq. 6.8 neglects the effects of lensing. Here, we seek to instead

compute Ω̃BBH which accounts for the lensing model. In order to do this we must modify

Eq. 6.8 by replacing {dz,dm1,2} → {dz̃, dm̃1,2}, use the apparent differential merger

rate d3R̃, and use the apparent redshifted frequency fr = f(1 + z̃).

We constrain the maximum allowed redshift evolution – λ in Eq. (6.6) – by considering

upper-limits on a SGWB [124, 324], while keeping the local merger rate fixed to the

observed value. We consider the current SGWB limit based on the O1 and O2 observing

runs, using data from the two LIGO instruments only. As a limit for a non-detection

we assume a signal-to-noise ratio smaller than 2 in a stochastic search [324]. Similarly,

we forecast the projected limits after 2 years of observation at design sensitivity and

50% duty cycle of the network of the two LIGO instruments and Virgo. We denote the

two scenarios O1+O2 and Design, respectively.

As expected and clearly shown in Fig. 6.1 a non detection of a SGWB over longer

integration time and with better sensitivities implies a lower merger rate outside the

horizon for individual detections. The merger rate redshift evolution considered here is

consistent with the results of [126].
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Figure 6.2: Complementary cumulative distribution for the lensing probability
of detectable BBH mergers, constrained by the non-detection of the SGWB for
two sensitivity scenarios. Solid lines and narrow shaded regions are obtained from
corresponding models shown in Fig. 6.1. The fraction of lensed transients with µ > 2
is less than ∼ 4× 10−5 after O1 and O2; a non detection of a SGWB after 2 years
of operation at design sensitivity would yield a fraction a factor of 10 higher. The
result depends very weakly on the local merger rate uncertainty, hence the light-blue

shaded region has neglible width.

6.1.6 Lensed fraction

Having established the population models to be considered, we turn to our main task:

quantifying the probability for an individual transient to be magnified with a particular

magnification. For each apparent redshift shell [z̃, z̃ + dz̃] we consider contributions

from true redshifts shells up to z = 20, the maximum extent of the lensing model [309].

The pair (z, z̃) fixes uniquely the magnification and therefore the relationship between

the two redshifts is given by Eq. 6.2 (with µ̃ = 1); this transformation, and its Jacobian,

|∂z̃/∂z|µ, is further explored in the supplemental material.
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Figure 6.3: Differential rate of detectable lensed events for each redshift and
logarithmic magnification bin. Results are shown as solid lines coloured according
to magnification. Left (right) panels show results for the O1 and O2 (Design)
population models respectively; see Table 6.1 and the accompanying discussion in the
text. Moderately magnified events (e.g. µ < 10) dominates the detected population
of BBH mergers by at least three orders of magnitude. At Design sensitivity, a
non-detection of a stochastic background will imply by itself a significant reduction
of mergers at high redshift, as described by the model in Fig. 6.1. Concurrently, a
better sensitivity enhances detections further out in redshift, at all magnifications.
Predominantly, non magnified events will be observed out to z ≈ 2. A very small
fraction of strongly magnified ones will extend out z ≈ 6. A comparison of the overall
improvement integrated over redshift at each magnification, is presented in Fig. 6.2.

We use this relationship to write explicitly an expression for the differential rate of

magnified events which is a proxy for the magnification probability,

d2R

dzd lnµ
=

dP (µ | z)

dlnµ

4πχ2 (z)

H0 (1 + z)E (z)

∣∣∣∣
∂z̃

∂z

∣∣∣∣
µ

(6.9)

×
∫

dm̃1dm̃2
d3R̃

dm̃1dm̃2dz̃
pdet (m̃1, m̃2, z̃) .

Additionally, using apparent masses and redshifts we filter events by their detectability.

We use a fixed single detector threshold SNR = 8 for each given set of source parameters,

and compute the observable fraction of the distribution in component masses, averaged

over the source orientation [15]. We estimate selection effects pdet(m̃1, m̃2, z̃) for both

sensitivities using the publicly available code gwdet [325].

As discussed above, the SGWB should contain only unresolved events. To be

consistent, the same selection effects should be added to Eq. 6.8 by the inclusion of a
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factor (1−pdet(m̃1, m̃2, z̃)) in the innermost integral. However, we neglect this effect

here because the region of parameter space where pdet is non-zero, i.e. at moderate

masses and low redshift, is far from the peak of the intrinsic rate.

Results are shown in Figs. 6.2 and 6.3. Detections are dominated in both scenarios

by low-redshift, unlensed events (i.e. µ ≈ 1). While at design sensitivity the detections

will extend further out to z ≈ 2, magnifications smaller than 2 will likely dominate the

population by at least three orders of magnitude. This is clearly apparent in Fig. 6.2,

where the contributions across redshifts are integrated out to a single magnification

distribution. For ease of comparison we show both as cumulative distribution functions,

i.e. factoring out the respective total rate of detections per year.

Remarkably, a better instrument sensitivity provides proportionally more events at

larger magnification. This is the net result of a few competing factors. The assumed

non-detection of a SGWB constrains the population to a shallower redshift distribution:

as a consequence both lensed and unlensed events within the detection horizon are

equally suppressed; however, the population of distant events at z > 2 is significantly

depleted, therefore reducing their relative contribution to the apparent distribution.

We study the impact on our results of our modelling choices for (i) the lensing

model, (ii) the redshift evolution of the merger rate, (iii) the BBH mass distribution.

Overall we find our results to be robust; changing the mass distribution has the largest

effect, increasing the fraction of lensed event by at most a factor of 2 (see details in

Supplemental material).

6.1.7 Conclusions

A SGWB of astrophysical origin has not yet been observed. This constrains the

redshift dependence of the BBH merger rate, particularly the number of mergers at
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high redshift. This in turn has consequences for the lensing probability of individual

events. In this letter we exploit this surprising link between the non detection of a

SGWB and the lensing probability to quantify the fraction of lensed BBH events. We

provide estimates for the relative contribution of lensed BBHs to the total rate out to

redshifts of z ≤ 20 and magnifications of µ ≤ 100. Even the current non-detection of

a SGWB already has interesting astrophysical implications; we find a fraction below

∼ 4× 10−5 of events to have a magnification µ ≥ 2. At design sensitivity, in the absence

of a SGWB detection after two years of observation, this fraction increases by a factor

of ∼ 10.

If and when there is a detection of a SGWB, our argument will become even more

informative. It can be applied to the BBH merger redshift distribution –constrained

jointly from the mergers population and the SGWB detection– to predict the number

of lensed events. For a detection of a SGWB in less than two years of observation at

Design sensitivity, we expect the inferred lensing fraction to lie between the two curves

shown in Fig. 6.2.

Simultaneously and independently, a similar study using complementary methods

appeared [127] showing agreement with our results.

6.2 Constraining the lensing of BNSs from the SGWB

6.2.1 Introduction

Two binary binary neutron star (BNS) mergers have been detected so far [326, 327].

The event GW190814 [97] may also contain a neutron star. Forthcoming detector

upgrades will provide better sensitivity, allowing us to probe ever larger spacetime

volumes and detect more events [162]. Currently, the observed GW events involving
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neutron stars are loud and individually resolvable [15, 270]. However, many more

events will lie below the threshold for detection, individually indistinguishable from the

instrument noise. All these events are drawn from the same overall population. The

unresolvable GW events, including those involving neutron stars, will pile up across the

detector bandwidth and give a stochastic background of gravitational waves (SGWB).

Such signal is subject to dedicated searches by current ground-based interferometers [124,

120, 328].

A fraction of BNS events will be gravitationally lensed; this has the effect of

increasing the GW amplitude by a factor √µ, where µ is the lensing magnification.

The lensing of a GW depends on the intervening gravitational potential, and different

events will experience different lensing magnifications. Multiply imaged GWs, phasing

and wave-optics effects may also occur depending on the specific potential [304, 309,

311, 306, 329, 330].

In [4] we considered the analogous situation for binary black hole (BBH) GW events.

That paper described in detail the formalism to quantify the impact of lensing on

the amplitude and detection rate of individual events, as well as the amplitude of the

associated SGWB (see also [127]). Subsequently, we leveraged the non detection of a

stochastic background to get constraints on the probability of individual BBHs being

lensed. In order to do so, we framed in a single statistical picture the observational

data from GW detectors (i.e. individual events, stochastic background), their inferred

properties, and the implication on the observation of lensed events.

In this paper we reapply the techniques from [4] to the analysis of BNS events. Using

constraints on the BNS merger rate density after the first two observing runs [238], and

the confirmed non-detection of a stochastic background [124], we report the implication

on the expected number of lensed BNS observations, both in the weak and strong
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lensing regime. Throughout we follow the conventions of [4].

6.2.2 Models

We employ a semi-analytical model for the lensing probability dP (µ | z)/d log µ as

a function of redshift out to redshifts z ≤ 20. This model applies to magnifications µ

up to µ ≤ 200, as described in [309] (i.e. it includes both strong and weak lensing). For

details of our implementation of this lensing model we refer the interested reader to

Appendix A of [4].

It is also necessary to model the BNS population. We neglect neutron star spins

and matter effects (e.g. tides) as well as any orbital eccentricity in the binary. Under

these simplifying assumptions a binary is described by the two component masses, m1

and m2. We model the distribution of component masses, p(m1,m2), in three different

scenarios. The first two match those employed in the rates analysis of GWTC-1 [238]

(see Section VII.C). The third is included to investigate the effect of the width of the

mass distribution.

• “Uniform”; the component masses m1,m2 are drawn independently from a uniform

distribution in the range [0.8M�,2.3M�].

• “Gaussian”; the component masses are drawn from a Gaussian distribution with

mean 1.33M� and standard deviation 0.09M�.

• “Fixed”; all neutron star masses are equal to 1.4M�.

We choose to model the redshift evolution of the BNS merger rate R(z) by tracking

the star formation rate. For details, see Equation 5 and Figure 1 of [4]. In a slight

deviation from the previous study, we keep the population extinction (i.e. λ− γ) fixed

at high redshifts (i.e. z � zP) (following Madau-Dickinson [323]) while increasing the
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Mass R0 (Gpc−3yr−1) Sensitivity λ

Uniform 800+1970
−680

O1 + O2 5.83+1.54
−1.06

Design 3.26+1.76
−1.41

Gaussian 1210+3230
−1040

O1 + O2 5.686+1.6
−1.12

Design 3.078+1.85
−1.54

Fixed 1210+3230
−1040

O1 + O2 5.685+1.6
−1.12

Design 3.077+1.85
−1.54

Table 6.2: Parameters modelling the merger rate density. The local rate R0 for the
“Uniform” and “Gaussian” cases are taken from the analysis in [238]. For the “Fixed”
case we use the same values as for the “Gaussian” case. As described in the text, we
increase the slope of the local merger rate λ to a value that gives a SGWB signal
with a marginally detectable signal-to-noise ratio of 2 at the sensitivities considered.

slope of the local merger rate (λ). We fix the local rate (R0) to the estimates provided

in [238], while varying λ (see Table 6.2). We focus on results from one pipeline search

only (pyCBC [156]); analogous results have been computed for other pipelines (e.g.

GstLAL [155]) and differences are at the level of 1%.

By changing the value of λ, we effectively set the level of the BNS stochastic

background (see Equation 7 in [4]), including the effect of lensing, to a marginally

detectable level. As in [4], this is done for two different detector network sensitivities

(namely the existing “O1+O2” sensitivity and a projected future “Design” sensitivity).

This section has briefly described the various modelling assumptions made for (i) the

lensing probability, (ii) the properties of the BNS population, and (iii) the cosmological

evolution of the BNS merger rate. We refer the reader to the Appendices in [4] for

a more detailed discussion of the impact of these assumptions on the results of our

analysis.
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Figure 6.4: The complementary cumulative distribution for the lensing probability
of BNS mergers. This is constrained by the current (left, blue) or future (right, red)
non-detection of a SGWB. The fraction of lensed transients with µ > 1.02 is less than
∼ 7× 10−8 after O1 and O2; a non detection of a SGWB after 2 years of operation at
design sensitivity would increase the fraction of lensed event to ∼ 7× 10−6. The inset
plots zoom in on a narrow range of magnification around µ ∼ 1 where the lensing
probability steeply decreases. In our lensing model, there are no BNS events lensed

with µ > 200.

6.2.3 Results

The main result of our calculation is shown in Fig. 6.4. Here we plot the probability

of a BNS event having a magnification above a certain value. Across all three models

that we considered for the BNS masses and redshift distribution, the fraction of lensed

events with magnification µ > 1.02 is lower than 7× 10−8 for the “O1+O2” sensitivity.

We find it extremely unlikely on statistical ground that a significantly lensed binary

neutron star will be observed in the near future. These complementary cumulative

distributions shows a large drop just above µ = 1 and then a very prominent plateau out

to magnifications of µ ∼ 200 before dropping to zero. This behaviour can be understood

by looking at the contribution of lensed events broken down by redshift as shown in

Fig. 6.5. The main contribution to the observed BNS population (left blob in the plots

of Fig. 6.5) gives the high probability near µ ∼ 1. The gap at intermediate redshifts

visible is responsible for the plateau. And finally, in our model, there are no events

with µ > 200, and this is responsible for the final drop off.

At design sensitivity we expect a slightly higher fraction of lensed events (7× 10−6).
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This can be seen in right panel of Fig. 6.4 where a non detection of a stochastic signal

yields a higher value for the plateau.

6.2.4 Discussion

A SGWB from BNS events has not yet been observed and is expected to be

subdominant with respect to the background from BBH events. The current non-

detection places a constraint on the redshift evolution of the BNS merger rate; in

particular it limits the rise in the rate at redshifts around z ∼ 2. This in turn has

important implications for the lensing of individual BNS events. Here, we have used

the current non-detection of a SGWB to constrain the probability that an individual

BNS event is magnified by more than a certain amount. In particular we find that the

probability that µ > 1.02 is less than ∼ 7× 10−8. This probability increases slightly for

detectors upgraded towards design sensitivity, but remains small. Therefore significantly

lensed BNS events should not be expected in the near future.

6.2.5 Updates after LIGO/Virgo third observing runs

Using data and results from the third observing run, I performed a similar analysis

to the two presented above, with updated mass distribution, merger rate density, and

selection effects constraints from the non-detection of a stochastic background. This

study was performed as part of a broader collaboration work, searching for signatures of

gravitational lensing of GWs in LIGO and Virgo data. Results are broadly consistent

with the ones presented here, and the interested reader can compare with Sec.3 of [6].
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Figure 6.5: Differential rate of lensed events for each redshift and logarithmic
magnification bin. Left column (blue) show results for the “O1+O2” sensitivity while
the right column (red) shows results for “Design” sensitivity. The three rows shows
the results for the different BNS mass distributions described in the text. Solid lines
is colored according to magnification. Moderately magnified events (i.e. µ < 1.02)
dominate the detected population. For these moderately magnified events, there is a
clear horizon redshift beyond which unlensed sources cannot be seen (e.g. around
z ∼ 0.6 − 0.7 in the top-left plot). To see more distant events we need them to
be significantly magnified. However, there are few large lenses at low redshifts to
provide this magnification. There is therefore a gap out to z ∼ 3 where large lenses
are plentiful and there is a secondary contribution to the observed BNS population.

The secondary contribution is more significant at “Design” sensitivity.
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Chapter 7

Conclusions and Prospects

This Chapter contains conclusions and prospects for future work. No original work

is presented here.

7.1 Conclusions

In this thesis we have explored a number of topics at the intersection between GW

astronomy and Bayesian statistics.

We discussed the problem of parameter estimation on multiple indistinguisable

sources with LISA, and we have introduced a technique to significantly simplify the

structure of the parameter space, drastically reducing the excess multimodality emerging

from the likelihood, with no information loss. The solution we propose is efficient

and simple: it acts as a transformation on the prior parameter space, hence from a

computational point of view keeps unaltered the specific likelihood implementation.

It turned out that an identical strategy can be applied on population inference with

mixture models, whose components are intrinsically indistinguishable. We showed an

example application of such application to the inference on the component masses

distribution of BBHs observed by LIGO and Virgo. Ultimately, within the context of
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the “global-fit” in by LISA, the same strategy will be applicable to simplify each set of

indistinguishable sources parameter estimation.

We also discussed the science case of a detection of DWD in known satellites of

the Milky Way. We showed –through the development of a detailed Bayesian inference

pipeline, and its application to a set of representative DWD sources informed by

population synthesis models– that LISA will be able to either associate the DWDs

to their host satellites, or discover new ones in regions otherwise unprobed by other

observatories (e.g. the galactic disk and the bulge).

Going forward we expanded the capabilities of our simulation code, focusing on

Bayesian parameter estimation of SmBBHs with LISA. By targeting precessing eccentric

unequal mass binaries, we have challenged ourselves with the source class parameter

space at full dimensionality. By showing that LISA will be able to predict the time

to merger to within ∼ 1hr, we argued that a “multiband” detection will be possible in

conjunction with ground-based detectors and quantified reliably the typical errors in the

recovered parameters. We showed an example inference on the orbital eccentricity using

the inspiral signal in the LISA sensitivity band, which would be otherwise unobserved to

ground-based detectors. This will serve as a powerful probe among different formation

channels.

Benchmarking LISA performances through extensive SmBBHs injections and recov-

ery campaigns will be crucial to better explore the full parameter space, ultimately to

understand correlations and degeneracies arising in realistic scenarios.

Exploring the middle ground between individually resolved SmBBHs and the stochas-

tic foreground originating from the unresolved ones, we have investigated how the latter

can constraints the former in the specific context of gravitationally lensed GWs. High-

lighting how the merger rate density, spanning across redshifts in and out of the detector
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horizon, constitutes a link between resolved and unresolved sources, we showed a robust

prediction of the probability of observing gravitationally lensed events compatible with

a fixed maximum stochastic background energy density. Our results relied on the

ineffectiveness of lensing magnification on the isotropic SGWB, which breaks when an

angular dependence on its power spectrum is introduced. Further studies to explore

this effect are required.
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