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ABSTRACT

Apart from the attached attributes of entities, the relationships among entities are also an

important perspective that reveals the topological structure of entities in a complex system.

A network (or graph) with nodes representing entities and links indicating relationships,

has been widely used in sociology, biology, chemistry, medicine, the Internet, etc. However,

traditional machine learning and data mining algorithms, designed for the entities with

attributes (i.e., data points in a vector space), cannot effectively and/or efficiently utilize the

topological information of a network formed by relationships among entities. To fill this gap,

Network Embedding (NE) is proposed to embed a network into a low dimensional vector

space while preserving some topologies and/or properties, so that the resulting embeddings

can facilitate various downstream machine learning and data mining tasks.

Although there have been many successful NE methods, most of them are designed for

embedding static plain networks. In fact, real-world networks often come with one or more

additional properties such as node attributes and dynamic changes. The central research

question of this thesis is “where and how can we apply NE for more realistic scenarios?”.

To this end, we propose three novel NE methods, each of which is for addressing the new

challenges resulting from one type of more realistic networks. Besides, we also discuss the

applications of NE with the focus to the drug-target interaction prediction problem.

To be more specific, first, we investigate how to embed the attributed network, which can

better describe a real-world complex system by including node attributes to a network. Pre-

vious Attributed Network Embedding (ANE) methods cannot effectively embed attributed

networks especially when networks become sparse, and/or are not scalable to large-scale

networks. To deal with these challenges, we propose a scalable ANE method to effectively

and robustly embed attributed networks with different sparsities. Second, we study how to

embed the dynamic network, which is often the case in real-world scenarios as real-world

complex systems often evolve over time. Most previous Dynamic Network Embedding (DNE)

methods try to capture the topological changes at or around the most affected nodes and

accordingly update node embeddings. Unfortunately, this kind of approximation, although
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can improve efficiency, cannot effectively preserve the global topology of a dynamic network

at each timestep, due to not considering the inactive sub-networks that receive accumulated

topological changes propagated via the high-order proximity. To tackle this challenge, we

propose a DNE method for better global topology preservation. Third, comparing to static

networks, dynamic networks have a unique character called the degree of changes, which

can be used to describe a kind of dynamic character of an input dynamic network about

its rate of streaming edges between consecutive snapshots. The degree of changes could be

very different for different dynamic networks. However, it remains unknown if existing DNE

methods can robustly obtain good effectiveness to different degrees of changes, in particular

for corresponding dynamic networks generated from the same dataset by different slicing

settings. To answer this open question, we test several state-of-the-art DNE methods, and

then further propose a DNE method that can more robustly obtain good effectiveness to the

dynamic networks with different degree of changes. Fourth, regarding a specific application

of NE to a real-world problem, we propose a NE based Drug-Target Interaction (DTI) pre-

diction method by additionally utilizing the two implicit networks which are extracted from

a given DTI network but are ignored in previous DTI prediction methods. A case study

indicates that the proposed method can predict novel DTIs.

Key Words: Network Embedding; Dynamic Network Embedding; Attributed Networks; Dynamic

Networks; Robustness; Representation Learning; Machine Learning; Data Mining; Drug Discovery

ii



ACKNOWLEDGMENTS

As a student of the Joint PhD Training Program offered by the University of Birmingham

(UoB) and Southern University of Science and Technology (SUSTech), I would like to thank

Dr. Shan He in UoB and Prof. Ke Tang in SUSTech for their supervision, as well as UoB and

SUSTech for their support for my studies in both universities. Particularly, I would like to

express my heartfelt gratitude to my supervisors for their professional advice, encouragement,

and kindness. They were always willing to answer my questions and provided useful feedback

for me. I learned a lot from them, especially about critical thinking and the way to conduct

research. I would not complete this thesis without their guidance.

I am sincerely grateful to several people, mostly from UoB and SUSTech, Prof. Iain Style,

Prof. Xin Yao, Prof. Ata Kaban, Dr. Yunwen Lei, Dr. Peng Yang, Dr. Bo Yuan, Dr. Xiaofeng

Lu, Dr. Wenjing Hong, Dr. Guiyin Li, Dr. Shencai Liu, Ms. Sarah Brookes and Ms. Kate

Sterne (UoB student administrators), Mr. Xuefeng Zhang and Mr. Xing Zhang (SUSTech

student administrators), Dr. Zheng Hu (from Huawei), and Dr. Bingzhe Wu (from Tencent)

for their insightful discussions in my research or their helps from other aspects.

My special thanks go to my buddies in Birmingham and Shenzhen, Yu Zhang, Guoji Fu,

Han Zhang, Phan Trung Hai Nguyen, Fuad Mire Hassan, Robeter Chin, David McDonald,

Gourab Ghosh Roy, Abdullabh Alharbi, Irfan Muhammad, Shaolong Shi, Jinbao Wang, Hua

Yan, Jikai Wu, Boping Deng, Jinxin Sun, Rui He, Muyao Zhong, Qi Yang, Zhiyuan Wang,

and many others, for countless enjoyable experiences with you during my Ph.D. journey.

I would also like to thank Prof. Peter Tino and Prof. Yannis Goulermas for agreeing to

be the examiners of this thesis and my viva.

Finally, this thesis is dedicated to my parents, my wife, and my daughter for their love,

understanding, and encouragement. They put me where I am today.

iii



Contents

Page

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 How to embed an attributed sparse network . . . . . . . . . . . . . . 6

1.2.2 How to embed a dynamic network with global topology preservation . 7

1.2.3 How to embed a dynamic network robustly to degree of changes . . . 8

1.2.4 How to apply network embedding to drug-target interaction prediction 8

1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Publications Resulting from the Thesis . . . . . . . . . . . . . . . . . . . . . 10

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Preliminaries 12

2.1 Literature Review of Network Embedding . . . . . . . . . . . . . . . . . . . 12

2.1.1 Stage 1: an early stage . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Stage 2: a rapidly developing stage . . . . . . . . . . . . . . . . . . . 14

2.1.3 Stage 3: a well-established stage . . . . . . . . . . . . . . . . . . . . . 19

2.2 From Static Networks to Dynamic Networks . . . . . . . . . . . . . . . . . . 20

2.3 Notations and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Static Network Embedding for Attributed Sparse Networks 25

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Prior Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



CONTENTS

3.3.1 A Generic Embedding Framework . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.4 Algorithm and Complexity . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Dynamic Network Embedding with Global Topology Preservation 55

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Prior Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 Algorithm and Complexity . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Results and Discussions, Comparative Study . . . . . . . . . . . . . . 71

4.4.3 Results and Discussions, Further Investigation . . . . . . . . . . . . . 79

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Robust Dynamic Network Embedding via Ensembles 88

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Prior Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.2 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.3 Algorithm and Complexity . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

v



5.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Applications of Network Embedding 115

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Generic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 A Specific Application to Drug-Target Interaction Prediction . . . . . . . . . 118

6.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.2 Formulating the specific application based on generic applications . . 120

6.3.3 Constructing networks from the original relational data . . . . . . . . 122

6.3.4 Incorporating network embedding to the proposed method . . . . . . 123

6.3.5 Experiments and A Case Study . . . . . . . . . . . . . . . . . . . . . 126

6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Conclusions 133

7.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A Supplementary Materials 140

A.1 A Proof of Eq. (3.1) in Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 140

A.2 A Proof of Eq. (3.3) in Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 141

A.3 An Early Version of GloDyNE in Chapter 4 . . . . . . . . . . . . . . . . . . 142

A.4 Additional Results of Ablation Study for Chapter 5 . . . . . . . . . . . . . . 144

A.5 Additional Results of Parameter Sensitivity for Chapter 5 . . . . . . . . . . . 145

B Useful Resources 147

References 149

vi



List of Figures

1.1 Two kinds of data: a) data points, and b) networked data points. . . . . . . 2

1.2 A few examples of real-world networks. . . . . . . . . . . . . . . . . . . . . . 2

1.3 The workflow of Network Embedding (NE). . . . . . . . . . . . . . . . . . . 4

1.4 Different types of networks this thesis is interested in. . . . . . . . . . . . . . 5

1.5 The outline of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Skip-Gram based NE approach. . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Matrix factorization based NE approach. . . . . . . . . . . . . . . . . . . . . 16

2.3 Autoencoder based NE approach. . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Graph convolution based NE approach. . . . . . . . . . . . . . . . . . . . . . 18

2.5 The discrete-time dynamic network. This thesis mainly considers d). . . . . 22

3.1 A new generic embedding framework. . . . . . . . . . . . . . . . . . . . . . . 32

3.2 The block diagram of the general steps before network embedding. . . . . . . 36

3.3 2D visualization of the node embeddings. . . . . . . . . . . . . . . . . . . . . 47

3.4 Parameter sensitivity of RoSANE. . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 The challenges caused by inactive sub-networks in a dynamic network. . . . 57

4.2 Comparison among all methods in terms of both effectiveness and efficiency. 79

4.3 The necessity of dynamic network embedding. . . . . . . . . . . . . . . . . . 80

4.4 The advantage of reusing previous models in GloDyNE. . . . . . . . . . . . . 81

4.5 The implicit smoothing mechanism of GloDyNE. . . . . . . . . . . . . . . . 82

4.6 The trade-off between effectiveness and efficiency with the free hyper-parameter

in GloDyNE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vii



5.1 An example of robust dynamic network embedding to different degree of changes. 91

5.2 The overview of proposed method. . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Evaluation protocol to the proposed method SG-EDNE. . . . . . . . . . . . 106

5.4 Comparative study for GR tasks. . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Comparative study for NR tasks. . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Comparative study for LP tasks. . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Parameter sensitivity of SG-EDNE for GR tasks. . . . . . . . . . . . . . . . 112

5.8 Statistics of random walk with restart using different restart probabilities. . . 112

5.9 Scalability test for the proposed method. . . . . . . . . . . . . . . . . . . . . 113

6.1 An example of the implicit networks construction from a DTI network. . . . 119

6.2 The framework of network embedding based DTI prediction method. . . . . 123

6.3 A case study to predict novel DTIs by the proposed method. . . . . . . . . . 130

A.1 The illustration of the proposed online node selecting scheme in DynWalks. . 143

A.2 Parameter sensitivity of SG-EDNE for NR tasks. . . . . . . . . . . . . . . . 145

A.3 Parameter sensitivity of SG-EDNE for LP tasks. . . . . . . . . . . . . . . . . 146

viii



List of Tables

3.1 The statistics of six real-world attributed networks. . . . . . . . . . . . . . . 41

3.2 Datasets used in different experiments. . . . . . . . . . . . . . . . . . . . . . 43

3.3 Left: AUC score of link prediction. Right: Micro-F1 score of node classification. 44

3.4 Paper recommendation results by RoSANE . . . . . . . . . . . . . . . . . . . 49

3.5 The wall-clock time of all methods for comparing time efficiency. . . . . . . . 52

3.6 The wall-clock time of RoSANE for its scalability testing. . . . . . . . . . . . 52

4.1 Comparative study for GR tasks by MeanP@k scores. . . . . . . . . . . . . . 73

4.2 Comparative study for LP tasks by AUC scores. . . . . . . . . . . . . . . . . 75

4.3 Comparative study for NC tasks by Micro-F1 and Macro-F1 scores. . . . . . 76

4.4 Comparative study for wall-clock time in seconds. . . . . . . . . . . . . . . . 77

4.5 The performance of GloDyNE with different node selecting strategies. . . . . 84

5.1 The statistics of datasets and the generated dynamic networks. . . . . . . . . 104

5.2 Quantitative results of comparative study for all tasks. . . . . . . . . . . . . 109

5.3 Ablation study of SG-EDNE for GR tasks. . . . . . . . . . . . . . . . . . . . 111

6.1 The statistics of five DTI datasets. . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 The AUPR scores on five benchmark datasets. . . . . . . . . . . . . . . . . . 128

6.3 The effect of implicit networks. DIN and TIN are implicit networks. . . . . . 129

6.4 The effect of edge density parameter α in NE-DTIP. . . . . . . . . . . . . . . 129

A.1 Ablation study of SG-EDNE for NR and LP tasks. . . . . . . . . . . . . . . 144

ix



List of Algorithms

1 Information Fusion Step of RoSANE . . . . . . . . . . . . . . . . . . . . . . 39

2 Network Embedding Step of RoSANE . . . . . . . . . . . . . . . . . . . . . . 39

3 GloDyNE: Global Topology Preserving Dynamic Network Embedding . . . . 67

4 SG-EDNE at timestep t (online) . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 NE-DTIP: Network Embedding based Drug-Target Interaction Prediction . . 125

x



Chapter 1

Introduction

Network Embedding (NE), also known as graph embedding, network representation learning,

or graph representation learning, has attracted considerable attention especially from data

mining, machine learning, and network science communities, due to its widespread real-world

applications of relational data in sociology, biology, chemistry, medicine, the Internet, etc.

In this chapter, the general background and motivation of NE are presented first. After

that, we summarize the research questions and contributions of this thesis. The outline of

the thesis is given at the end of this chapter.

1.1 Background

Nowadays, a huge amount of web data and sensor data are generated every day and every-

where [1]. According to the report by Demo Inc. [2], for every minute in 2020, Facebook

users share 150,000 messages; Amazon ships 6659 packages; Venmo users send $ 239,196

worth of payments; Zoom hosts 208,333 participants in meetings; 1,388,889 people make

video or voice calls; ect. The so-called big data enables researchers from various communi-

ties such as data mining, machine learning, and network science, to develop and verify their

algorithms towards the large-scale real-world applications.

The real-world entities can be abstracted as data points, and the attached attributes of
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Introduction

each entity can be preprocessed as a vector. For example, one may treat social users as data

points as shown in Figure 1.1 a), and preprocess their activities [3] or profiles [4] into vectors.

For a friend recommendation system, one straightforward idea is to adopt those vectors as

the input of the friend recommendation system for further computing.

In fact, the inherent relationships between entities exist in many real-world scenarios

such as messages exchanged between users in Facebook, packages shipped between addresses

in Amazon, and payments made between users in Venmo. Following the aforementioned

example, except the attached attributes of users, they are also linked if two users have a

friendship as shown in Figure 1.1 b), which naturally forms a network.

Figure 1.1: Two kinds of data: a) data points, and b) networked data points.

A network (or graph), with nodes (or vertexes) representing entities and links (or edges)

indicating relationships, has been widely used in sociology, biology, chemistry, medicine, the

Internet, etc. Just take a few examples as shown in Figure 1.2.

Figure 1.2: A few examples of real-world networks. Subfigures are adapted from Internet.
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The relationship between two entities in a complex system can be easily modeled as a link

connecting two nodes in a network. In this way, a complex system yields a new perspective

about its network topology. The network topology is important information to study the

relationships among (may be more than two, e.g., neighbors of neighbors) entities, and even

investigate the characteristics of a whole system. In fact, the network topological information

has been explicitly or implicitly exploited in the literature.

• Previous studies in sociology and biology [5–7] have shown that the topological in-

formation and attribute information of entities are highly correlated with each other

(so-called homophily). Using both information for network inference tasks may achieve

better results as two sources of information can help each other.

• In manifold learning, one popular algorithm is Local Linear Embeddings (LLE) [8]. It

first constructs the local neighborhood graph using only k-nearest neighbors for each

data point. The graph thus reveals the invariant geometric properties of each data

point to its k-nearest neighbors [9]. LLE assumes data points are sampled from d-

dimensional manifold. As a result, it then learns d-dimensional data embeddings while

preserving the invariant geometric properties given by the weights in the graph.

• The Convolutional Neural Networks (CNN) has received a great success in computer

vision related problems [10]. An input image can be viewed as a special network, where

each pixel (except the pixels at boundary) is linked with its eight adjacent pixels. Each

pixel is regarded as a node and its neighbors are defined by the filter size, e.g., 3 by 3,

so that the 2D sliding window takes weighted average of pixel values of the node along

with its neighbors [11]. It might be worth noting that CNN can now be interpreted as

an operation over the special network formed by adjacent pixels.

To utilize network topological information, one common idea might be directly using the

adjacency matrix of a network. Specifically, the vector in the i-th row stores the relationships

between the i-th node to all nodes in a network, which can be treated as the topological

feature of the i-th node. The vector carrying the topological feature of the i-th node is

then fed to a downstream machine learning or data mining task. Unfortunately, the such

3
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straightforward vector representation would face the following challenges.

• The i-th row vector of an adjacency matrix only reflects the first order proximity

(i.e., the direct neighboring information) between i-th node to all nodes in a network.

However, the second order proximity (i.e., neighbors of neighbors) and the higher order

proximity, which might also be useful knowledge for a downstream predictive task, are

not directly included in the row vector of an adjacency matrix.

• Many real-world networks are larger-scale, e.g., a social network may have millions of

users. If a network has 106 nodes, the size of its adjacency matrix becomes 106 by 106.

The row vector carrying the topological information of a node then has 106 dimensions.

Feeding vectors with such high dimensionality to a downstream machine learning or

data mining algorithm is likely to lead to a famous phenomenon called the curse of

dimensionality [12], which would reduce the performance of downstream tasks.

• Due to the time-evolving nature of real-world complex systems, most real-world net-

works are dynamic by nature. Under the dynamic environment, when new nodes add to

the network, the dimensionality of vectors would vary if we directly take out the vector

from the adjacency matrix. The varying dimensionality of vectors becomes problematic

while feeding them to a downstream machine learning or data mining task.

Figure 1.3: The workflow of Network Embedding (NE).

To address these challenges, Network Embedding (NE) is proposed to embed a network

into a low dimensional continuous vector space (where the specified embedding dimension d

is often much less than the number of nodes |V| for a large-scale network, i.e., d� |V|) while

preserving some network topologies and/or properties, so that the resulting embeddings can

4
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facilitate various downstream machine learning and data mining tasks, e.g., link prediction

and node classification. The workflow of NE is illustrated as shown in Figure 1.3.

1.2 Research Questions

Although there have been many successful NE methods, most of them are designed for

embedding static plain networks (Figure 1.4-a). In fact, real-world networks often come

with one or more additional properties such as node attributes (Figure 1.4-b) and dynamic

changes (Figure 1.4-c). The central research question of this thesis is “where and how can we

apply NE for more realistic scenarios?”. To this end, we propose three novel NE methods,

each of which is for addressing the new challenges resulting from one type of more realistic

networks. Besides, we also discuss the applications of NE to the drug-target interaction

prediction problem (Figure 1.4-d), a key step to drug discovery [13].

Figure 1.4: Different types of networks this thesis is interested in: plain networks, attributed

networks, dynamic networks, and drug-target interaction networks (bipartite networks).

5
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1.2.1 How to embed an attributed sparse network

Comparing to a plain network, an attributed network has better capability to describe a

complex system, since it not only reflects the topological information of the system but also

records the attribute information of entities in the system. Attributed Network Embedding

(ANE), which aims to learn enhanced node embeddings by considering both topological and

attribute information, is attracting much attention [14–19].

However, the existing ANE methods still face some challenges. First, most existing ANE

works have not carefully considered the issues caused by sparse networks, and accordingly

proposed a special treatment to explicitly tackle the issues. As a result, they may obtain

poor node embeddings on sparse or extremely sparse networks, especially for those methods

[15, 17, 19–22] relying on edges to process node attributes. Note that, the sparse network is

a common real-world scenario [23]. Second, the scalability of ANE problem becomes a more

challenging problem compared with plain network embedding problem, as the methods to

solve ANE problem require additional computational resources to also utilize node attributes.

And third, it is worth noticing the robustness of ANE methods to different networks or the

same network with different sparsities regarding parameter tuning. Instead of grid search for

the best hyper-parameter(s) [14, 16, 17, 20, 21], the robustness is desirable to design a generic

ANE method. To be more specific, it should have relatively good and stable performance

for few typical choices or by following explicit tuning advice [24], so that others can easily

apply it in different real-world applications without much effort on hyper-parameter tuning,

especially if it already has several other hyper-parameters to tune [25].

Research Questions 1 (RQ1): How can we embed an attributed sparse network

effectively, efficiently, and robustly? Specifically, how do we use attribute infor-

mation to alleviate the issue caused by topological sparse networks? What is and

how do we handle the bottleneck that would restrict the scalability of the pro-

posed ANE method? Does the proposed ANE method have a (or a few) preferred

hyper-parameter setting(s) which can obtain a satisfactory performance robustly

to different networks or the same network with different sparsities?
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1.2.2 How to embed a dynamic network with global topology preser-

vation

Many real-world networks are dynamic by nature, i.e., edges might be added or deleted

between seen and/or unseen nodes as time goes on. For instance, in a wireless sensor network,

devices will regularly connect to or accidentally disconnect from routers; in a social network,

new friendships will establish between new users and/or existing users. Due to the time-

evolving nature of many real-world networks, Dynamic Network Embedding (DNE) is now

attracting much attention [26–36]. The main and common objective of DNE is to efficiently

update node embeddings while preserving network topology at each time step. Most existing

DNE methods try to compromise between effectiveness (evaluated by downstream tasks) and

efficiency (while obtaining node embeddings). The idea is to capture the topological changes

at or around the most affected nodes (instead of all nodes), and promptly update node

embeddings based on an efficient incremental learning paradigm.

Unfortunately, this kind of approximation, although can improve the efficiency, cannot

effectively preserve the global topology of a dynamic network at each time step. Concretely,

any changes, i.e., edges being added or deleted, would affect all nodes in a connected network

and greatly modify the proximity between nodes over a network via the high-order proximity.

On the other hand, the real-world dynamic networks usually have some inactive sub-networks

where no change occurs lasting for several time steps. Putting both together, the existing

DNE methods that focus on the most affected nodes (belonging to the active sub-networks)

but do not consider the inactive sub-networks, would overlook the accumulated topological

changes propagating to the inactive sub-networks via the high-order proximity.

Research Questions 2 (RQ2): How can we embed a dynamic network with global

topology preservation? Specifically, why do we need global topology preservation

for DNE? What is the strategy to achieve the global topology preservation? Does

the proposed DNE method with global topology preservation indeed improve the

performance compared to that without global topology preservation?
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1.2.3 How to embed a dynamic network robustly to degree of changes

In the context of dynamic environment, the robustness of a method itself is an important

problem, as the dynamic environment would bring in many uncertainties comparing to the

static environment. For a DNE problem, generating an input dynamic network, which

consists of a series of snapshots, also involves many uncertainties. Regarding an input

dynamic network, the degree of changes is a unique character of dynamic networks comparing

to static networks. It can be used to describe a kind of dynamic character of an input dynamic

network about its rate of streaming edges between consecutive snapshots. It could be very

different in real-world scenarios, e.g., the degree of changes would be different for a daily

updated network and a weekly updated network. Moreover, different slicing settings over

the same dataset such as increasing by one hundred edges per snapshot and one thousand

edges per snapshot, would also lead to dynamic networks with different degrees of changes.

Unfortunately, existing DNE works [26–29, 31–35, 37–47] have not considered the effect of

different degree of changes of an input dynamic network to DNE methods. As a result, these

methods might not be robust enough to different degree of changes even if the corresponding

input dynamic networks come from the same dataset. However, the robustness of DNE to

different degree of changes is a desirable characteristic, as this would improve the reliability

and usability of the DNE method while applying it to unknown real-world applications.

Research Questions 3 (RQ3): How can we embed a dynamic network robustly to

the degree of changes? Specifically, why do we investigate the robustness of DNE

w.r.t. the degree of changes? Are the existing DNE methods robust enough w.r.t.

the degree of changes? Can we propose a more robust DNE method?

1.2.4 How to apply network embedding to drug-target interaction

prediction

The reason why Network Embedding (NE) becomes such popular nowadays could be mainly

owing to its widespread real-world applications. NE has been not only employed to some
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generic applications (or called downstream tasks) such as link prediction and node classifi-

cation [48–53] as shown in Figure 1.3, but also applied to some specific applications such

as clustering vehicle trajectory in transportation systems [54, 55] and predicting unknown

drug-target interaction in drug discovery [56, 57].

Research Questions 4 (RQ4): How can we apply NE to Drug-Target Interaction

(DTI) prediction? Specifically, how do we reformulate DTI prediction problem as

a link prediction problem? What networks should we construct based on a DTI

dataset? Does the newly proposed NE based DTI prediction method really work?

Beyond benchmarking, can we interpret the DTI prediction outcomes in terms of

drug discovery via a case study?

1.3 Contributions of the Thesis

The main contributions of this thesis can be briefly summarized as follows:

• discover and suggest three sets of new challenges resulting from more realistic networks,

one of which is from attributed networks and two of which are from dynamic networks

(Chapter 3, 4, and 5);

• propose and empirically study three novel NE methods, each of which is for addressing

one set of the new challenges (Chapter 3, 4, and 5);

• propose and empirically study a novel NE based drug-target interaction prediction

method, which applies NE to extract additional features from the implicit networks

constructed from an input drug-target interaction network (Chapter 6);

• provide sufficient reading materials of NE such as motivation, literature, concepts,

representative approaches, and future directions (Chapter 1, 2, and 7).

The specific contributions for Chapter 3, 4, 5, and 6 are summarized and clearly presented

in each chapter respectively. Therefore, it might not be necessary to repeat here.
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1.4 Publications Resulting from the Thesis

Work 1: Chengbin Hou, Shan He, and Ke Tang. RoSANE: Robust and Scalable Attributed

Network Embedding for Sparse Networks. Neurocomputing, 2020. [58]

I Chapter 3 mainly presents Work 1.

Work 2: Chengbin Hou, Han Zhang, Shan He, and Ke Tang. GloDyNE: Global Topology

Preservation Dynmaic Network Embedding. IEEE Transactions on Knowledge and

Data Engineering (TKDE), 2020. [59]

I Chapter 4 mainly presents Work 2. See also the invited extended abstract [60].

Work 3: Chengbin Hou, Guoji Fu, Peng Yang, Zheng Hu, Shan He, and Ke Tang. Robust

Dynamic Network Embedding via Ensembles. IEEE Transactions on Knowledge and

Data Engineering (TKDE), submitted. [61]

I Chapter 5 mainly presents Work 3.

Work 4: Han Zhang, Chengbin Hou, David McDonald, and Shan He. A Network Embedding

Based Approach to Drug-Target Interaction Prediction Using Additional Implicit Net-

works. International Conference on Artificial Neural Networks (ICANN), 2021. [62]

I Chapter 6 mainly presents Work 4.

Work 5: Chengbin Hou and Ke Tang. Towards Robust Dynamic Network Embedding. In-

ternational Joint Conference on Artificial Intelligence (IJCAI), DC track, 2021. [63]

. Chapter 7 mentions Work 5.

Work 6: Muyao Zhong, Chengbin Hou, and Ke Tang. A Neural Embedding Model for Drug-

Target Interaction Prediction with Micro and Macro Proximities Preservation. in

preparation.

. Chapter 7 mentions Work 6.

Work 7: Guoji Fu, Chengbin Hou, and Xin Yao. Learning Topological Representation for

Networks via Hierarchical Sampling. International Joint Conference on Neural Net-

works (IJCNN), 2019. [64]

. Chapter 3 mentions Work 7.
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1.5 Outline of the Thesis

The outline of this thesis is illustrated in Figure 1.5.

Figure 1.5: The outline of the thesis.

In Chapter 1, we have introduced the motivation of NE, the research questions and the

contributions of this thesis.

For the remaining chapters1, Chapter 2 first revisits the literature of NE, and then in-

troduces some common concepts for later chapters. In order to answer RQ1, RQ2 and RQ3,

Chapter 3, 4 and 5 present Work 1, 2 and 3 respectively in great details. To answer RQ4,

Chapter 6 first discusses the generic applications of NE, and then presents Work 4 in great

details. In Chapter 7, we summarize the thesis and discuss future directions.

1Work 5 and 6 are briefly discussed in Chapter 7. Work 7 is briefly discussed in Chapter 3.
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Chapter 2

Preliminaries

Network Embedding (NE) is a representation learning paradigm for networks to extract

topological features. It has recently become a popular topic in the artificial intelligence and

its related areas where the data is in the form of networks or graphs. Where does NE come

from? What are the representative approaches of NE? How is the recent situation of NE?

To answer these questions, we review the literature of NE via three stages. After that, we

discuss why and how to develop from static networks to dynamic networks which are not

such obvious to think about but are the focus in Chapter 4 and 5. Finally, we declare the

notations and concepts used throughout this thesis.

2.1 Literature Review of Network Embedding

In this section, we review the literature of NE via three stages. Specifically, stage 1 recaps

the related topics which greatly affect or motivate the later development of NE. Stage 2

categorizes and discusses the representative approaches of NE during its rapid development.

Stage 3 analyzes the recent situation of NE.

Note that, we focus on NE to static plain networks in this section due to the following

reasons. First, the primary objective of NE is to exploit network topology or structure,

though there could be other objectives while applying NE to other types of networks. Second,
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various types of NE methods are usually developed from static plain NE methods. And third,

the more specific literature will be given in Chapter 3-6 respectively.

2.1.1 Stage 1: an early stage

Before NE becoming popular, i.e., roughly before year 2014, there are four related topics

which greatly affect or motivate the later development of NE.

The first related topic is manifold learning, which aims to project the data points in high

dimensional vector space into a low dimensional vector space (or low dimensional manifold)

from which these data points are sampled [9]. There are several popular methods such as LLE

[8], Isomap [65], and Laplacian Eigenmap [66]. They first construct a weighted graph, e.g.,

by applying k-nearest-neighbors to data points, and then obtain low dimensional embeddings

while preserving the structure of the constructed graph.

Although these methods from manifold learning are proposed to deal with data points in

high dimensional vector space instead of a real graph, the approach of obtaining embeddings

while preserving the structure of the constructed graph can be also applied to NE. To be

more specific, how they formulate problem as an optimization problem after the constructed

graph is ready, and how to solve the optimization problem using matrix factorization, both

together motivate some later NE works such as [67] and [68].

The second related topic is the word embedding technique from Natural Language Pro-

cessing (NLP). The most representative method is Word2Vec with the Skip-Gram model [69].

It first employs a fixed-size window to slide along a given text. Then, it builds word training

pairs by the center word and its neighboring words within a window. And finally, it feeds

the training pairs to the Skip-Gram model, which is derived from the neural probabilistic

language model [70]. Intuitively, the more frequently two words co-occur, the closer their

embeddings are. The assumption of this idea is that similar words have similar contexts.

After Word2Vec, many other word embedding techniques are proposed such as [71] and [72].

Note that, word embedding is now an essential step in various NLP tasks.

The word embedding technique motivates some later NE works mainly because of the
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following analogy. If one conducts random walks on a network, the resulting node sequences

are very similar to the word sequences generated from a text. This analogy motivates a

series of NE works such as [73] and [74].

The third related topic is the autoencoder coming from deep learning [10, 75]. A con-

ventional autoencoder tries to minimize the reconstruction error between input layer and

output layer (the two layers have exactly the same number of neurons). As a result, the

middle layer(s) with less neurons can obtain a compressed representation of the input layer.

It can be naturally seen as a dimensionality reduction technique. Also thanks to the powerful

fitting ability guaranteed by the universal approximation theorem [76], the autoencoder are

employed in several later NE works such as [77] and [78].

The fourth related topic is the Convolutional Neural Networks (CNN) also coming from

deep learning [10, 75]. CNN is often used for image data. The basic idea is to extract the

local stationarity property from a given 2D sliding window [79]. As a matter of fact, an image

is a special network where most pixels connect to their eight adjacent pixels. Regarding a

general network, one can define the window as k-hops neighbors of a node, which leads to

Graph Convolutional Network and may be seen as a kind of generalization of CNN [11]. This

affects a lot of later NE (or NE related) works such as [20] and [21].

2.1.2 Stage 2: a rapidly developing stage

The static plain NE (or simply called as NE in this section) is developing rapidly from year

2014 to 2018. During this stage, a huge number of NE methods are proposed, which has

been reviewed in several surveys [48–53] around 2018. In general, they can be categorized

into four representative approaches.

2.1.2.1 Skip-Gram based NE Approach

The first breakthrough NE method towards large-scale networks is DeepWalk1 [73], which

belongs to Skip-Gram based NE approach. There are three key steps. First, it conducts
1DeepWalk receives over 6000 Google Scholar citations in December 2021.

14



Preliminaries

truncated random walks over each node in a network to generate node sequences. Second, a

fixed-size window is applied to slide along each node sequence to build node training pairs.

And third, it feeds node training pairs to train the Skip-Gram model.

The Skip-Gram model [69] aims to predict the contextual nodes (or words in NLP) given

its central node (or word) of the sliding window. It is a simple neural network model where

the input layer takes the one-hot representation of a node; the fully connected middle layer

without activation function is called project layer which acts as the simple index of a row

of the weight matrix (i.e., node embedding matrix) between input and middle layers; and

the fully connected last layer (yielding contextual embedding matrix between middle and

last layers) adopts softmax to output the probability of the co-occurrence of central and

contextual nodes. If the co-occurrence is observed from the sliding window, its maximizes

the probability for this co-occurrence. Overall and intuitively, the closer two nodes in a node

sequence are, the more training pairs of the two nodes would generate, and accordingly the

closer embedding vector of the two nodes would be after training.

Figure 2.1: Skip-Gram based (or called random walk based) NE approach [48].

In this category, another representative work is Node2Vec [74]. It extends DeepWalk by

modifying the first step with more flexible random walks so that one can balance between

local topology and global topology. Instead of the above Skip-Gram model with softmax,

it employs the Skip-Gram Negative Sampling model2 to reduce computation costs due to

softmax. Moreover, many other Skip-Gram based (or sometimes called random walk based)

NE works can be found in surveys [48–53].
2The Skip-Gram Negative Sampling (SGNS) model treats the problem as a binary classification problem

rather than a multiclass classification problem. The details of SGNS can be found in Chapter 4.
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2.1.2.2 Matrix Factorization based NE Approach

The matrix factorization based NE approach stems from some manifold learning methods

such as [8, 65, 66], which first construct a neighborhood graph, and then factorize the

adjacency matrix of the graph to seek a lower rank approximation. As a graph is given

in the NE problem, these manifold learning methods can be easily adapted to it. The

general form of objective function for the matrix factorization based NE approach could

be min ||S − ZTZ||22 where S ∈ R|V|×|V| is a matrix containing pairwise similarity measure

between nodes among |V| nodes, and Z ∈ R|V|×d is the node embedding matrix [48]. In the

context of manifold learning, once a neighborhood graph is constructed, it often sets S to

the adjacency matrix A of the neighborhood graph.

Figure 2.2: Matrix factorization based NE approach. |V| denotes the number of nodes. d

denotes the dimension of embeddings.

Unlike directly using the adjacency matrixA that only reflects the first-order proximity or

one-hop away neighbors, GraRep [67] and HOPE [68] also consider higher-order proximities

between nodes. They first transform an adjacency matrix into its transition matrix Atransition

(still one-hop relationship), and then obtain, e.g., k-hop relationship by matrix multiplication

of the transition matrix Ak
transition. Finally, they learn node embeddings with d dimensions by

factorizing the new matrix, e.g., S = Ak
transition with k-hop features, using the aforementioned

objective function. Other methods in this route may encode more advanced topological

information such as community patterns [80] and hierarchical patterns [64] into S. For more

matrix factorization based NE methods, the readers may refer to surveys [48–53].
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2.1.2.3 Autoencoder based NE Approach

The autoencoder can be easily employed in NE problems, since it is originally designed to

learn data representation or coding [81]. It minimizes the reconstruction error between input

layer and output layer (the two layers have exactly the same number of neurons), and the

middle layer(s) with less neurons can learn a compressed representation of the input layer. To

be more specific, each row Si ∈ R|V| of a matrix S ∈ R|V|×|V| containing pairwise similarity

measure between nodes is fed to train the autoencoder using the objective function, e.g.,

min ||Si − Ŝi||22 where Si is the input of autoencoder and Ŝi is the output of autoencoder.

After training, we can feed Si again to the trained autoencoder where the middle layer with

d neurons produces the embeddings Zi ∈ Rd for node vi.

Figure 2.3: Autoencoder based NE approach [48].

Two representative works in this category are SDNE [77] and DNGR [78]. SDNE directly

takes the adjacency matrix (set to be S) of a network as the input of an autoencoder, so

as to minimize the reconstruction error of each row of the adjacency matrix. Note that,

each row of the adjacency matrix reflects the first-order proximity of each node to all nodes

in the network. Unlike SDNE, DNGR takes the input of the pointwise mutual information

matrix (set to be S) DNGR [78], which offers more advanced network features after further

transformation of the adjacency matrix. The readers may refer to surveys [48–53] for more

autoencoder based NE methods.
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2.1.2.4 Graph Convolution based NE Approach

The graph convolution based NE approach can be intuitively analogous to Convolutional

Neural Networks (CNN), which has received a great success in computer vision. By treating

an image as a special network formed by adjacent pixels, the analogy between CNN and

graph convolution is conceptually illustrated in Figure 2.4.

Figure 2.4: Graph convolution based NE approach [11]. The left is 2D convolution filter with

size 3 by 3 over an image. The neighbors of a center node are in fixed size and ordered. The

right is graph convolution filter with one-hop away neighbors over a network. The neighbors

of a center node are in varying size and unordered.

One representative method is GraphSAGE [20]. It first defines neighbors of a node by

one-hop away neighbors. Second, attributes from the node and its neighbors are aggre-

gated, combined, and transformed as the new attributes (i.e., embeddings) for the node.

Specifically, this step can be written as hkv = fknonlinear(W
k · fkcombine(h

k−1
v ,hkNv

)) and hkNv
=

fkaggregate({hk−1u ,∀u ∈ Nv}) where Nv defines neighbors of node v; fkaggregate is an aggregation

function (e.g., elementwise mean which is irrelevant to the order of neighbors); fkcombine can

be a simple concatenation operation between two vectors; Wk contains trainable parame-

ters that are shared while training over all nodes; fknonlinear can be a Sigmoid function which

finally yields new embeddings for node v at layer k; and k ∈ {1, ..., K}. For h0
v, one can

assign node attributes to it for attributed networks or node degree to it for plain networks.

Third, the parametric functions in the second step can be trained by a specific task, e.g.,

node classification. After training, we use the trained parametric functions to obtain the

final embeddings from the last layer K. Note that, GraphSAGE belongs to the spatial based
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approach as intuitively shown in Figure 2.4, while another representative method called GCN

[21] belongs to the spectral based approach related to graph signal processing [82].

Moreover, the performance of graph convolution based NE methods depends on not only

network topology but also node attributes. These methods are often employed to attributed

networks, although they can also be employed to plain networks with artificial attributes [21].

Besides, graph convolution based NE approach is usually under a semi-supervised learning

paradigm though we can also train it using an unsupervised learning paradigm [20], whereas

previous three approaches are usually under an unsupervised learning paradigm. For more

graph convolution based NE methods, the readers may refer to NE surveys [48–53] and the

surveys specialized in graph neural networks [11, 83–85].

2.1.3 Stage 3: a well-established stage

After the rapid development from year 2014 to 2018, NE then becomes a well-established

topic. From the academic perspective, several good surveys [48–53] have been published

around 2018 to systematically review this topic. In stage 2 above, we have summarized four

representative NE approaches, in which the most representative static plain NE methods of

each approach are introduced. Since 2018, the research interest of NE has largely moved to

more complicated networks such as attributed networks, dynamic networks, etc. The main

reason might be that these networks, compared to the static plain network, are more realistic

and remain more challenges while applying NE to them.

From the industrial perspective, world-leading companies, such as Facebook, Tencent,

Google, Baidu, Amazon, and Alibaba, have paid considerable attention to the NE topic,

because they own a huge number of network data such as social networks, knowledge graphs,

and user-item networks. To better utilize these networks, they have done or support a surge of

NE works such as the papers [86–91] and the related open-source softwares https://github

.com/facebookresearch/PyTorch-BigGraph, https://github.com/dmlc/dgl, https://

github.com/PaddlePaddle/PGL, https://github.com/rusty1s/pytorch_geometric, and

https://github.com/alibaba/graph-learn. These evidences imply that NE would have
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a big impact on our daily life, e.g., online social networks (Facebook and Tencent), web

searching (Google and Baidu), and online shopping (Amazon and Alibaba).

In summary, starting from 2018, NE has been widely recognized as an important topic

in both academia and industry.

• In academia, researchers start to propose NE methods for more complicated networks

such as attributed networks and dynamic networks, which still remain many challenges.

• In industry, engineers and researchers start to integrate NE methods into industrial

products and apply NE methods to specific real-world applications.

• It is also worth noticing, as a byproduct of NE, an emerging topic called Graph Neural

Networks (GNN) start to attract much attention from both academia and industry.

NE usually obeys an unsupervised paradigm to learn generic embeddings for various

tasks, whereas GNN often follows a semi-supervised or supervised paradigm to learn

task specific embeddings typically from attributed networks [88].

2.2 From Static Networks to Dynamic Networks

Most real-world networks are dynamic by nature, while embedding dynamic networks still

remains many challenges. To tackle the challenges, this thesis proposes two NE methods for

embedding dynamic networks. Unfortunately, dynamic networks might not be such obvious

to think about compared to static networks. In this section, we thus develop the concept of

dynamic networks, and clarify the type of dynamic networks used in the thesis.

Before talking about well prepossessed networks, let us have a look at the original dataset

of networks. According to network data collections at http://snap.stanford.edu/data,

http://networkrepository.com/dynamic.php, and http://konect.cc, the most widely

used format is edge list, i.e., {(v1, v2), (...), (...), ...} where (v1, v2) denotes an edge between

node v1 and v2, and similarly each (...) includes an edge between two nodes. There are two

advantages of using edge list compared to other formats, e.g., adjacency matrix. First, it

greatly reduces the storage space in computers for most real-world networks that are sparse
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by nature. Second, we can easily append auxiliary information to an edge (v1, v2), e.g.,

append node attributes and edge attributes via (v1, v2, v1attr, v2attr, edgeattr).

If only time information is appended to edges, we obtain the edge list with timestamps or

called edge streams, i.e., {(v1, v2, timestamp), (...), (...), ...} where each timestamp records the

occurrence time of each edge. In fact, it is the most widely used format to store the original

dataset of dynamic networks according to the aforementioned network data collections. Note

that, we do not consider node attributes and edge attributes for dynamic networks, as there

still exist many challenges while embedding a simple dynamic network. We leave the more

complicated dynamic networks to the future work.

Given the static network data, i.e., {(v1, v2), (...), (...)...}, we can simply connect all edges

to establish a static network. It is easy to conduct graph related algorithms, e.g., random

walks, over the static network, or directly feed its adjacency matrix to a computational

model. However, given the dynamic network data, i.e., {(v1, v2, timestamp), (...), (...), ...}, it

seems to be ambiguous and not that obvious to represent the dynamic network.

There are quite a few approaches to represent a dynamic network as discussed in [92, 93]

in the literature of network science, while there are two approaches widely used in embedding

dynamic networks according to the very recent surveys [94–98] appeared around 2021.

The first one is continuous-time approach. If we only consider the event of adding edges

[94] as the most dynamic network datasets offered in the above network data collections,

this approach can directly employ {(v1, v2, timestamp), (...), (...), ...} to continuously record

the timestamp of adding edges. This approach does not require much preprocessing effort,

and preserves all available information provided by the original dynamic network dataset.

Nevertheless, it might not good at reflecting the network topology at a certain timestamp,

though the time resolution is perfectly preserved.

The second one is discrete-time approach. This approach is better at reflecting the

network topology, as well as preserves partial time information. Concretely, all edges are

first ordered by time, and are then divided into slices by, e.g., fixed time interval or fixed

number of edges. By doing so, multiple timestamps would be merged into one timestep, which

yields the larger time granularity or window to show the pattern of network topology. After
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the discretization from continuous timestamps to discrete timestep, we have edge streams

{(v1, v2, timestep), (...), (...), ...} as the edge view shown in Figure 2.5-a) and as the network

view shown in Figure 2.5-b).

Figure 2.5: The discrete-time dynamic network. This thesis mainly considers d).

However, it is still unclear what the pattern of network topology should be fed to an

embedding model at each timestep. To this end, we can expand the discretized edge streams

over timesteps, which generates the snapshots taken at each timestep of a dynamic network.

The snapshot could have two typical ways to capture edges as illustrated in Figure 2.5-c) and

2.5-d) respectively. Furthermore, the snapshot representation of Figure 2.5-d) is a special

case of Figure 2.5-c), if we set a varying k to allow each snapshot to capture the edges from

the very beginning to the current timestep.

It is noteworthy, in this thesis, we mainly consider the dynamic network generated in

the same way used for generating Figure 2.5-d). The reasons are as follows. First, this type

of dynamic network not only reserves partial time information but also better reflects the
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evolution of network topology. Second, the evolution of network topology in Figure 2.5-d) is

more stable and tractable than that in Figure 2.5-c).

In fact, finding a good way to generate a dynamic network as the input to a computational

model is still an open problem. This problem is vital important especially in real-world

applications, but it is out of the scope of this thesis. In general, we believe one key thing

is the trade-off between preserving time information and reflecting network topology of the

generated dynamic network, which would further affect the effectiveness and efficiency of its

following computational model.

2.3 Notations and Concepts

Unless otherwise stated, this thesis generally employs the following notations.

• The uppercase letter, e.g., A, denotes a matrix.

• The i-th row of matrix A is denoted as Ai, which is a vector.

• The element in i-th row and j-th column of A is denoted as Aij, which is a scalar.

• The lowercase letter, e.g. d, is a scalar or scalar variable.

• The number of elements in a set is given by |V|.

Next, we clarify some important concepts used in this thesis.

• Networks and Graphs: They refer to the same thing, which at least consists of a set of

nodes and a set of edges between the nodes.

• Topology, Structure, and Layout: The topology or topological information of a network

only cares about the relationship (or connection) among nodes, while the structure or

structural information of network additionally considers the strength of relationship

(or weight of connection) among nodes. Networks with different layouts can have the

same topology or the same structure, as both topology and structure do not need to

concern about the absolute position of nodes.
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• Proximity and Similarity: In the context of network embedding, the proximity is a

widely used measurement of the similarity between nodes. The first order proximity

reveals one-hop or immediate neighbors of a node, the second order proximity reveals

two-hop or neighbors of neighbors of a node, etc [68]. For a pair of nodes in a net-

work, they may have multiple proximities, but the smallest one (given by a shortest

path algorithm) often dominates others. Apart from the similarity measured by the

proximity, there exist other similarity measurements over a network.

• Network Embedding, Graph Embedding, Network Representation Learning, and Graph

Representation Learning: In general, they all refer to the same thing. We use Network

Embedding (NE) consistently throughout the thesis for better readability.

• Network Embedding (NE) and Graph Neural Networks (GNN): NE usually obeys an

unsupervised paradigm to learn generic embeddings for various tasks, whereas GNN

often follows a semi-supervised or supervised paradigm to learn task specific embed-

dings typically from attributed networks [88]. As both learn embeddings, GNN can be

seen as a special NE approach, while NE can be an important step to GNN.

• Complex Systems, Datasets, Networks, Network Embedding, and Applications: 1) A

complex system consists of many entities which involve interactions, relationships, or

dependencies with each other. 2) A relational dataset is generated from the complex

system. 3) We build a network based on the relational dataset, since we hope to utilize

the relational information. 4) Network embedding can be adopted to extract features

especially network topological features, and encode them into embeddings. 5) The

embeddings can then facilitate some applications in the complex system.
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Chapter 3

Static Network Embedding for

Attributed Sparse Networks

As discussed in previous chapters, the early works of network embedding mainly focus on

the static plain networks. Among these static plain network embedding works, the relatively

earlier works aim to preserve microscopic network topologies, e.g., the proximity between

nodes, while the relatively latter works try to additionally capture macroscopic network

topologies. As one of the relatively latter works, we also proposed a static plain network

embedding method called HSRL1 to additionally preserve the hierarchical topology, a kind

of macroscopic network topology, of a network. For the readers who are interested in HSRL,

we refer them to our paper [64] for more details.

The aforementioned (static) plain networks only provide topological information. As a re-

sult, network embedding methods can only utilize the topological information. In fact, many

real-world networks also offer node attributes, e.g., the profile of users in social networks.

This type of networks is called (static) attributed networks under a static environment.
1Specifically, HSRL or Hierarchical Sampling Representation Learning recursively [64] compresses an

input network into a series of smaller networks using a community-awareness compressing strategy. Then,

any existing network embedding method can be used to learn node embeddings for each compressed network.

Finally, the node embeddings of the input network are obtained by concatenating the node embeddings

resulting from each compressed network.
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Based on our work [58], this chapter presents a static network embedding method for the

attributed network, especially for the topological sparse attributed network. This chapter is

intended to answer the RQ1 of the thesis “how can we embed an attributed sparse network

effectively, efficiently, and robustly? ”. The source code to reproduce this work is available

at https://github.com/houchengbin/OpenANE

The organization of this chapter is as follows. Section 3.1 discusses the background

and motivation of this work. Section 3.2 reviews the prior related works of learning node

embeddings for attributed networks. Section 3.3 first introduces a new generic embedding

framework that allows to integrate different sources of information to learn enhanced node

embeddings. Based on the generic embedding framework, Section 3.3 then develops the

proposed method and derives its time and space complexity. Extensive empirical studies of

six downstream tasks on seven datasets are reported and discussed in Section 3.4. Finally,

the chapter summary is presented in Section 3.5.

3.1 Background

Attributed networks are powerful data representation for many real-world complex systems

(e.g., a social network with user profiles) in which entities (or users) can be represented as

nodes; the interaction or relationship between entities can be represented as edges; and the

auxiliary information of entities (or user profiles) can be represented as node attributes [48–

50]. Comparing to a plain network, an attributed network has better capability to describe

a complex system, since it not only reflects the topological information of the system but

also records the attribute information of the entities in the system.

To facilitate various network inference tasks such as link prediction [17, 99, 100] and node

classification [14, 20, 101], Network Embedding (NE) is proposed to learn low-dimensional

node embeddings while persevering one or more network properties [48–50], so that the off-

the-shelf distance metrics or machine learning algorithms can be effectively and efficiently

applied. The early works [67, 68, 73, 74, 77, 102] only consider topological information

while learning node embeddings, but cannot utilize attribute information which might also
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be helpful in network inference tasks [5].

Attributed Network Embedding (ANE), which aims to learn enhanced node embeddings

by considering both topological and attribute information, is attracting much attention [14–

19]. The assumption behind ANE is that network topology and node attributes can provide

complementary information [18] to jointly improve the performance of network inference

tasks. This assumption can also be observed from human decision making process. For a PhD

student who starts to seek a research topic, the common strategies of exploring related papers

are to look at the references of some important papers (i.e., network topology), and to search

for the papers with similar title, keywords, and etc. (i.e., node attributes). For a Facebook

social network user, the user can decide to accept or reject the friend recommendation based

on mutual friends (i.e., network topology) and user profiles such as attended university (i.e.,

node attributes). There are a lot of such examples. Therefore, it is reasonable to consider

both topological and attribute information while learning node embeddings.

Nevertheless, the existing ANE methods still face some challenges. First, most existing

ANE works have not carefully considered the issues caused by sparse networks, and accord-

ingly proposed the special treatment to explicitly tackle the issues. As a result, they may

obtain poor node embeddings on sparse or extremely sparse networks, especially for those

methods [15, 17, 19–22] relying on edges to process node attributes, since the sparse network

with less edges would restrict attributes processing. The sparse networks are important

real-world scenarios [23] such as some incomplete networks, e.g., crawling a paper citation

network in arXiv Computational Complexity subfield for recent five years, and the snapshots

of some dynamic networks at early stages. The sparse network is a relative term and can be

quantified by the ratio between the number of edges and the linear or the quadratic number

of nodes [103]. The concrete examples of sparse networks, e.g., defined as edges
nodes

< 5, can be

found at Koblenz Network Collection [104], in which one can also find the extreme sparse

networks, e.g., defined as edges
nodes

< 1, with some isolated nodes via extracting the snapshots

of some dynamic networks at early stages.

Second, the scalability of ANE problem becomes a more challenging problem compared

with plain network embedding problem, since the methods to solve ANE problem require
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additional computational resources to also utilize node attributes. A few very recent ANE

works [105–108] that could also handle sparse networks, unfortunately require either O(n2)

or O(n3) where n is the number of nodes, to utilize node attributes. Note that, it should be

scalable in terms of not only the time complexity, but also the space complexity. For example,

if the space complexity is O(n2), a network with 106 nodes at least requires 8 · 1012/10243 ≈

7500 Gigabytes memory if each floating-point number occupies 8 bytes.

Third, it is worth noticing the robustness of ANE methods to different networks or the

same network with different sparsities regarding parameter tuning. Instead of grid search for

the best hyper-parameter(s) [14, 16, 17, 20, 21], the robustness is desirable to design a generic

ANE method. To be more specific, it should have relatively good and stable performance

for few typical choices or by following explicit tuning advice [24], so that others can easily

apply it in different real-world applications without much effort on hyper-parameter tuning,

especially if it already has several other hyper-parameters to tune [25].

To tackle the above challenges, we first propose a generic embedding framework that

allows to integrate different sources of information together to learn enhanced node embed-

dings. In other words, the information fusion process and the network embedding process

are two cascaded steps in turn, which is different from most previous methods that they

either adopt the reverse order of the two steps or mix the two steps together. The such

design (i.e., information fusion first and then network embedding) aims to explicitly cope

with sparse networks and increase the robustness of network embedding process. After that,

several carefully selected techniques based on the criteria of scalability such as ball-tree k-

nearest neighbors technique and random walks based Skip-Gram embedding technique, are

employed to realize the proposed ANE method.

The main contributions of this work are as follows.

• We carefully discuss the issues caused by sparse networks for the different categories

of network embedding methods.

• Based on a new generic embedding framework, a robust and scalable ANE method is

realized to effectively embed attributed sparse (or extremely sparse) networks, and the

28



Static Network Embedding for Attributed Sparse Networks

novel idea is to learn node embeddings upon the reconstructed denser network after

information fusion via transition matrices.

• The theoretical complexity analysis shows the scalability of the proposed ANE method,

and the extensive empirical studies (6 tasks, 7 datasets, 8 methods2) demonstrate the

effectiveness, efficiency, and robustness of the proposed ANE method.

3.2 Prior Related Work

The first category of related works is Plain Network Embedding (PNE), which can only make

use of network topology. DeepWalk [73] employs truncated random walks to obtain node

sequences, which are then fed into Skip-Gram language model [69] to embed nodes closer

if they co-occur more frequently. Node2Vec [74] extends DeepWalk by using more flexible

truncated walks to capture network topology. To learn node embeddings, LINE [102] and

SDNE [77] preserve both the first and second order proximities, while HOPE [68] preserves

higher proximities. N-NMF [109] and ComVAE [110] consider not only microscopic structure

(e.g., proximities between nodes) but also macroscopic structure (e.g., communities).

Although using the high order proximites [68, 77, 102] may relieve the sparsity issue,

it cannot solve this issue caused by missing edges, since an edge indicating the first order

proximity between two nodes is often assumed to have a stronger relationship than the

higher order proximity. Furthermore, the high order proximity is built on the existence of

the first order proximity. Therefore, it becomes harder to build high order proximities if

the input network becomes sparser, and it is impossible to build any order proximities to

a node isolated from all other nodes. Unlike these PNE methods, we directly establish the

first order proximity between two nodes based on the similarity of their node attributes.

The second category of related works is Attributed Network Embedding (ANE), which

utilizes both network topology and node attributes to learn enhanced node embeddings. The

works in this category might be divided into four sub-categories. 1) Matrix Factorization
2The unified framework of the source code including over ten embedding methods is open sourced at

https://github.com/houchengbin/OpenANE for benefiting future research in network embedding area.
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based approach: TADW [14] and AANE [16] encode topological and attribute information

into two matrices, and then formulate the ANE problem as a bi-convex optimization prob-

lem (the problem is convex for one variable if another variable is fixed) to jointly learn node

embeddings. ANEM [111] encodes microscopic proximity structure, macroscopic community

structure, and node attributes into three matrices, and then formulate the ANE problem as a

multi-convex optimization problem (the problem is convex for one variable if remaining vari-

ables are fixed) to jointly learn node embeddings. One main challenge is the scalability, as

they finally need to perform matrix factorization [15]. 2) Graph Convolution based approach:

GCN [21] and graphSAGE [20] first define node neighbors based on network topology, and

then aggregate attributes of neighboring nodes for further computing. These methods heavily

rely on edges to aggregate node attributes, and hence may obtain less accurate node embed-

dings for sparse networks. More recently, GRCN [105] first combines the attribute pairwise

similarity matrix with the adjacency matrix, and then applies either GCN or graphSAGE

based on the combined matrix. It can handle the network sparsity issue, however, explicitly

obtaining the attribute pairwise similarity matrix requires O(n3). Besides, there are a large

number of other methods in this direction as discussed in a recent survey [11]. 3) Deep

Neural Networks based approach: ASNE [17] encodes node ID and attributes together as the

input, and node co-occurrence probabilities as the output, of a deep neural networks model.

Recently, there are several other methods [18, 106, 107, 112–114] in this direction. They

all employ auto-encoders to preserve some network proximities and/or integrate different

sources of information. These methods might be good at mining nonlinearity, but the com-

putational complexity is relatively high or hard to estimate, which is related to the number

of nodes or edges, the architecture of neural networks, and the way to generate training

samples. It is worth noticing that [107] and [106] can handle network sparsity issue, since

they first combine the (attribute or polarity) pairwise similarity matrix with the adjacency

matrix, and then adopts auto-encoders for further processing. However, explicitly obtaining

the attribute or polarity pairwise similarity matrix at least requires O(n3) or O(n2) respec-

tively. 4) Random Walks based approach: TriDNR [15] (ignore label part) and SANE [19]

jointly maximize the likelihood of preserving network topology and node attributes. They
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adopt random walks based PNE method for the part of preserving network topology, but

another part of using node attributes still rely on the node pairs sampled by the random

walks. The sparse network may not well utilize node attributes, since random walks in a

sparse network lead to less combination of node pairs. Besides, [22] and [115] aim to embed

the attributed network with binary and/or sparse attributes. They would encounter the

similar problem due to the limitation of random walks on a (topological) sparse network.

The proposed ANE method belongs to random walks based ANE approach, so that it

inherits the scalability [15, 19]. Unlike previous works in this direction, the information

fusion and network embedding are two cascaded steps in turn, so as to cope with possible

sparse networks by reconstructing an enriched denser network before network embedding

step. Besides, unlike [105–107], our method does not need to explicitly obtain the attribute

pairwise similarity matrix, which is computational expensive. Finally, this work focuses on

unsupervised ANE methods, since the aim is to learn generic node embeddings for various

downstream tasks which may or may not have labels.

3.3 Method

We first introduce a generic embedding framework, based on which the proposed method is

developed. After that, we present the formal problem definition, the details of the proposed

method, and its implementation with complexity analysis.

3.3.1 A Generic Embedding Framework

In this section, we introduce a new generic embedding framework that allows to integrate

different sources of information to learn enhanced embeddings. Note that, this framework

does not require the original data to be networked, though the proposed network embedding

method is developed based on this framework.

Considering a generic embedding problem which can be treated as a generalized problem

of network embedding, the real-world entities can be seen as data points where each data
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Figure 3.1: A new generic embedding framework.

point i has p sources of information to describe it, i.e., Si = {S(1)
i , . . . ,S

(p)
i }. The p different

sources of information of each data point may come from its network topology, textual data,

categorical data, image data, and so on. As shown in Figure 3.1, there are different ways to

convert different sources into matrices where each row vector S(q)
i ∈ Rm(q) denotes the vector

representation of data point i ∈ {1, ..., n} from q ∈ {1, ..., p} source. For example, one may

use Convolutional Neural Networks (CNN) to extract the features from the image source of

data point i, and Figure 3.1 presents one possible technique for prepossessing each source

information. After the raw data prepossessing, we can obtain matrix S(q) ∈ Rn×m(q) for each

source of information.

To integrate different sources of information and then smoothly employ a network em-

bedding method to learn data embeddings, one possible solution is to use the transition

matrix, i.e., a square matrix with non-negative real numbers and each row summing to one.

As shown in Figure 3.1, it consists of two main cascaded steps.

For the former step, i.e., information fusion, it first transforms each matrix S(q) into its

transition matrix T(q) ∈ Rn×n where each entry (i, j) reflects the pairwise similarity of data
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points. Intuitively, if (i, j) are more similar than (i, k) at q source, the transition probability

of (i, j) should be larger at the q source. After the transformation, the information fusion is

achieved via a linear combination among all sources of information, i.e.,

T =

p∑
q=1

λ(q)T(q) s.t.
p∑
q=1

λ(q) = 1 (3.1)

where q ∈ {1, ..., p} denotes different sources of information, and the factor λ(q) ∈ [0, 1] is

a non-negative real number. There are two main reasons of using such linear combination.

First, T is still a transition matrix given each T(q) is a transition matrix. The proof is in

Appendix A.1. Second, it is easy to interpret and/or adjust the importance of each source

contributing to the final result. One can even inject expert knowledge to λ(q) if needed.

It might be interesting to notice that, the transition matrix T (a.k.a. stochastic matrix

or Markov matrix) in Eq. (3.1) can be seen as a mixture of Markov chains. Intuitively, we

have totally p sources of information and λ(q) gives the probability to choose the q-th source

from p sources. We then go to the Markov chain based on T(q).

For the latter step, i.e., network embedding, it either explicitly reconstructs the enriched

network based on transition matrix T, or implicitly treat T as a network. And then, any

existing PNE methods [67, 68, 73, 74, 77, 102] can be applied to this plain network T ∈ Rn×n

to learn node embeddings. Each row vector of embedding matrix Z ∈ Rn×d where d� n is

the node embedding vector corresponding to the original data point or real-world entity.

3.3.2 Problem Definition

Let G = (V , E ,W,X) be a given attributed network where V = {v1, . . . , vn} denotes a set of

|V| or n nodes; E = {eij} denotes a set |E| edges; the weight attached to each edge is a scalar

Wij; the attributes associated to each node are in a row vector Xi; and i, j ∈ {1, . . . , n} are

subscripts. Note that, the proposed ANE method can accept either directed or undirected

and either weighted or unweighted attributed networks.

Definition 1: Topological Information Matrix W ∈ Rn×n. The topological information refers

to network linkage information, which is encoded in matrix W. There are several popular
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choices to encode topological information [68] such as the first-order proximity that gives the

information of one-hop neighbors, the second-order proximity that gives the information of

two-hop neighbors, etc. In this work, the first-order proximity is used to define W, i.e., the

adjacency matrix, since it can be directly obtained without further computation.

Definition 2: Attribute Information Matrix X ∈ Rn×m. The attribute information refers to

network auxiliary information attached to each node, which is encoded in matrix X where

each row Xi ∈ Rm corresponds to the node attributes for node vi. To obtain the vector

presentation Xi, one may employ word embedding if it is textual auxiliary information [15],

one-hot encoding if it is categorical auxiliary information [17], and so on.

Definition 3: Attributed Network Embedding (ANE). It aims to find a mapping function f

such that Z = f(W,X) where Z ∈ Rn×d, d � n, and the row vector Zi ∈ Rd is the node

embedding for node vi. The pairwise similarity between node embeddings should reflect the

pairwise similarity between nodes in the original input attributed network considering both

network topology and node attributes.

3.3.3 Method Description

Based on the above generic embedding framework in Section 3.3.1 and the problem definition

in 3.3.2, we now present the proposed ANE method namely Robust and Scalable Attributed

Network Embedding or RoSANE. Sections 3.3.3.1, 3.3.3.2, and 3.3.3.3 address how to ob-

tain the transition matrices of network topology and node attributes in terms of scalability,

how to achieve information fusion using Eq. (3.1), and how to employ PNE method to effi-

ciently learn node embeddings, respectively. Finally, Section 3.3.4 summarizes the algorithm

implementation of RoSANE, and derives its time and space complexity.

3.3.3.1 Preprocessing Transition Matrix

As discussed in Section 3.3.1, we need to obtain the transition matrices for the two sources of

information of an attributed network, i.e., network topology and node attributes. Concretely,

it requires to transform topological information matrix W ∈ Rn×n and attribute information
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matrix X ∈ Rn×m into topological transition matrix T(W ) ∈ Rn×n and attribute transition

matrix T(X) ∈ Rn×n respectively. Note that, such transformation should be scalable in terms

of both time and space complexity. And each entry in the transformed transition matrices

should reflect the pairwise similarity of the corresponding pair of nodes.

For the topological transition matrix T(W ), each entry in the topological information ma-

trix W, i.e., the weight of edge naturally reflects the pairwise similarity of the corresponding

pair of nodes. In order to inherit such desirable meaning from W, the topological transition

matrix T(W ) can be obtained by

T
(W )
i = fnorm(Wi) =

Wi∑
j∈nWij

(3.2)

where fnorm is a function operating on row vector Wi such that each row of W sums to one,

i.e., a discrete probability distribution. But T(W ) might not be a strict transition matrix,

since the isolated node leads to all-zero row. One may assign an uniform distribution to each

all-zero row as what Google Matrix does [116], however, we retain them to avoid meaningless

edges. Note that, all-zero rows are fixed in Eq. (3.4) using attribute information.

For the attribute transition matrix T(X), one naive solution is to calculate the pairwise

similarity for all possible pairs of rows of X, which gives an n-by-n pairwise similarity matrix,

and then analogously apply Eq. (3.2) to obtain T(X). Unfortunately, the resulting n-by-n

pairwise similarity matrix (often with few zero entries) needs to store almost (n2) nonzero

entries, which is not scalable in terms of memory usage. Besides, the resulting T(X) is also

an extreme dense transition matrix, which leads to an almost fully connected network where

two very dissimilar nodes would also have an edge. In fact, it is not necessary to explicitly

calculate the pairwise similarity of all possible pairs, since the aim is to enrich the topology of

the input (sparse) network using the top-k most attribute similar nodes so that the attribute

dissimilar nodes are omitted. As a result, there are only (kn) nonzero entries in T(X), which

make it scalable in terms of memory usage by storing it in a sparse matrix format.

Finding the top-k most attribute similar nodes now becomes a K-Nearest Neighbors

(KNN) search problem. Due to the large number of nodes and the high dimensional node

attributes in many real-world scenarios, ball-tree KNN technique is employed [117]. The
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basic steps are to first partition data points into a series of nesting hyper-spheres which

construct a binary tree data structure, and then query k nearest neighbors of a given data

point based on the binary tree [118]. It is worth noting that the ball-tree KNN technique

is often based on a valid distance metric, e.g., Euclidean distance, whereas the generic

embedding framework requires a similarity measure, e.g., Cosine similarity. Therefore, after

ball-tree KNN, we need the following transformation

cos(Xi,Xj) = 1− ||Xi −Xj||2

2
s.t. ||Xi|| = 1 ∀i ∈ {1, ..., n} (3.3)

where || · || denotes L2 norm of a vector; ||Xi −Xj|| gives the Euclidean distance between

i and j with respect to node attributes; and cos(Xi,Xj) represents their Cosine similarity

which is a good measure in both continuous and binary vector spaces [119]. The proof of

Eq. (3.3) is provided in Appendix A.2. The general steps from X to T(X) is shown in Figure

3.2, and the implementation details will be summarized in Algorithm 1.
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Figure 3.2: The block diagram of the general steps before network embedding.

3.3.3.2 Information Fusion

The Eq. (3.1) can be used to enrich the topology of input (sparse) network using top-k most

attribute similar nodes, i.e., the information fusion process. However, as discussed in Section

3.3.3.1, the topological transition matrix T(W ) might not be a strict transition matrix due

to the possible isolated nodes, and thus the (attributed) biased transition matrix T might

not be a strict transition matrix. Instead of directly using Eq. (3.1), a trick is employed to

guarantee the resulting biased transition matrix T being a strict transition matrix, i.e.,

Ti =

 T
(X)
i if T(W )

i is all zeros

λT
(W )
i + (1− λ)T(X)

i otherwise
(3.4)
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where λ is the balancing factor of the importance between network topology and node at-

tributes; the subscript i indicate the corresponding row of each transition matrix; and each

row of T gives discrete probability distribution Ti ∈ Rn to indicate the transition probability

from node i to any nodes in the network. Furthermore, Eq. (3.4) can enrich a (sparse) net-

work from two perspectives. Intuitively, for two nodes without an edge before, there will be

a new edge (thus a denser network) if their node attributes are top-k similar. For two nodes

already with an edge, the weight of this edge will be augmented (thus more discriminative)

if their node attributes are top-k similar.

Based on the biased transition matrix T, an enriched denser network can be recon-

structed, which comes with several properties: 1) it reflects both topological and attribute

information; 2) it is a weighted and directed network, which is more informative than an

unweighted and undirected network; and 3) it does not contain isolated nodes, and each

node in the reconstructed network gains enriched connectivities.

3.3.3.3 Learning Node Embeddings

The problem now becomes learning node embeddings on the reconstructed network (weighted,

directed, and not attributed). Regarding scalability, a random walks based PNE method,

i.e., a modified version of DeepWalk [73] is employed to learn node embeddings. Instead

of unweighted random walks and softmax strategy used in DeepWalk, we adopt weighted

random walks and negative sampling strategy [74].

Specifically, the weighted random walks with length l starting from each node in the

network for r times, generate a set of r|V| node sequences. For each node sequence, a fixed-

size window w+1+w is used to slide along it. For each window, several training pairs (vc, vi)

are generated such that vc is the center node and vi is one of other nodes inside the window.

By doing so, we obtain a list of training pairs (vc, vi) ∈ D for all sequences, which is then fed

into Skip-Gram Negative Sampling (SGNS) model [69] for training node embeddings. For

each pair (vc, vi), we maximize the following formula

max log σ(Zc · Z′i) +

q∑
i′=1

Evi′∼PD
[log σ(−Zc · Z′i′)] (3.5)
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where σ is the Sigmoid function; the operator · denotes a dot product between vectors;

Zc ∈ Rd is the embedding vector from row c of the trainable embedding matrix Z (between

input and middle layers a.k.a. a project layer), while Zi ∈ Rd and Z′i′ ∈ Rd are the

embedding vector from column i or i′ of another trainable matrix Z′ (between middle and

output layer) [120]; vi′ is the negative sample from the unigram distribution PD [121]; and

q is the number of negative samples [122]. The aim of maximizing formula (3.5) is to make

embedding vectors similar if they co-occur, and dissimilar if they are negative samples. The

overall objective is to sum over all (vc, vi) ∈ D, i.e.,

max
Z,Z′

∑
(vc,vi)∈D

{log σ(Zc · Z′i) +

q∑
i′=1

Evi′∼PD
[log σ(−Zc · Z′i′)]} (3.6)

It can be optimized by stochastic gradient ascent over D to learn these trainable embeddings.

Intuitively, the more frequently a pair of nodes (vc, vi) ∈ D co-occurs3, the more similar or

closer their embeddings would be.

3.3.4 Algorithm and Complexity

The proposed ANE method consists of two cascaded steps: information fusion and network

embedding. Their implementation details are summarized in Algorithm 1 and 2 respectively.

In Algorithm 1, first, lines 1-7 are all based on row vector operation, and hence each line

of them is easily parallelized or vectorized. Second, line 2 aims to project Xi into a unit

hyper-sphere, so that it enables line 5 employ Eq. (3.3) for transforming Euclidean distance

into Cosine similarity. Third, the three transition matrices, with many zero entries, are

stored and operated in Compressed Sparse Row (CSR) format to reduce space complexity.

In Algorithm 2, first, the two loops in lines 2 and 3 can be easily parallelized, as random

walks are independent with each other. Second, instead of explicitly reconstructing a network

for running random walks, the Alias sampling method is adopted to simulate random walks
3In the experiment, we found that the quality of node embeddings not only depends on the co-occurrence

statistics, but also the order of training pairs. It suggests that a random order obtains better node embeddings

comparing with a fixed order, since the random order of training pairs may help the optimizer jump out

some bad local optima.
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Algorithm 1 Information Fusion Step of RoSANE
Input: topological information matrix W, attribute information matrix X, balancing factor

λ, top-k value k

Output: attributed biased transition matrix T ∈ Rn×n

1: obtain T(W ) by Eq. (3.2)

2: normalize X by ||Xi|| = 1 ∀ i

3: construct BallTree(X)

4: query k nearest neighbors of Xi ∀ i ∈ {1, ..., n}, and return dist with index

5: transform Euclidean dist to Cosine sim by Eq. (3.3), and return unnormalized T(X)

6: obtain normalized T(X) analogously by Eq. (3.2)

7: obtain T by Eq. (3.4)

8: return attributed biased transition matrix T

Algorithm 2 Network Embedding Step of RoSANE
Input: attributed biased transition matrix T, walks per node r, walk length l, window size

w, negative samples q, embedding dimensionality d

Output: node embedding matrix Z ∈ Rn×d

1: initialize a list walks = [ ]

2: for iter ∈ r do . parallel

3: for vi ∈ V do . parallel

4: initialize a list walk = [vi]

5: for walk_iter ∈ l do

6: curr_node = walk[−1]

7: prob_dist = Tcurr_node

8: next_node = AliasSampling(prob_dist)

9: append next_node to walk

10: append walk to walks

11: obtain Z ∈ Rn×d by training word2vec(walks, w, q, d)

12: return node embedding matrix Z
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based on the discrete probability distribution given by Ti, which can greatly reduce the

time complexity [74]. Third, the widely-used Word2Vec [122] approach with Eq. (3.5), as

described in Section 3.3.3.3, is employed to train embeddings by the analogy of the nodes in

a walk and the words in a sentence [73].

Recall that |V| = n is the number of nodes, |E| = θn is the number of edges where θ is

the average degree of a network; m is the number of attributes of each node; and r, l, w, k,

q, and d are user-defined constants. Next, we will investigate the scalability of RoSANE in

terms of time and space complexity.

In Algorithm 1, the most time-consuming operations are in lines 3 and 4, whose complexi-

ties are O(n(log(n))2) and O(n log(n)) respectively [123]. Besides, because all transition ma-

trices are stored and operated in CSR format, the complexities of lines 1-2 and 5-7 are O(θn),

O(mn), O(kn), O(kn), and O(θn+kn) respectively. In Algorithm 2, Alias sampling method

in line 8 needs O(rln) for repeating rl times on n nodes [74], and the time complexity of whole

network embedding process (as discussed in Section 3.3.3.3) requires O(rlwdn) [73, 74]. In

summary, the overall time complexity is O(n(log(n))2 + n log(n) + θn+mn+ kn+ rlwdn).

Since r, l, w, d and k are the user-defined constants, plus θ and m are the constants of a

given attributed network, it can be rewritten as O(n(log(n))2 + n log(n) + n). Note that,

even if there are n = 1018 nodes, we have log(n) ≈ 60 and (log(n))2 ≈ 602 � n = 1018, and

hence RoSANE is scalable in terms of time complexity for very large-scale networks.

For space complexity, several space-consuming variables needed to store in memory are

W, X, T(W ), BallTree(X), T(X), T, look-up table of Alias sampling, training pairs D,

weights of SGNS model Z′ and Z. The overall space complexity of them is O(θn + mn +

θn+mn+ kn+ (θ + k)n+ 3n+ rlwn+ dn+ dn). Note W, T(W ), T(X), and T are in CSR

format. After eliminating the constants, it can be rewritten as O(n), which demonstrates

the scalability of RoSANE in terms of space complexity.
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3.4 Experiments

3.4.1 Experimental Settings

3.4.1.1 Datasets

Six real-world attributed networks and a series of synthetic attributed networks are employed

to study the effectiveness, efficiency, and robustness of the proposed method RoSANE. To be

specific, MIT and UIllinois are two Facebook friendship social networks for each university,

and there are seven properties attached to each Facebook user: status flag, gender, major,

second major, dorm, year, and high school [124]. The ’year’ is taken out as the label, and

the remaining six properties are converted into attributes via one-hot encoding. Moreover,

Cora, Citeseer, Pubmed, and DBLP are four paper citation networks. The attributes of

Cora and Citeseer preprocessed by [125] are in binary vector form, whereas the attributes

of Pubmed and DBLP prepossessed by [125] and [15] respectively are in continuous vector

form. The well preprocessed attributed networks are provided at https://github.com/hou

chengbin/NetEmb-Datasets, and their statistics are summarized in Table 3.1.

Table 3.1: The statistics of six real-world attributed networks.

Datasets Nodes Edges Attributes Labels

Cora 2708 5429 1433 7

Citeseer 3327 4732 3703 6

MIT 5298 217118 2804 32

Pubmed 19717 44338 500 3

UIllinois 26803 1073235 2921 34

DBLP 60744 52890 400 4

3.4.1.2 Compared Methods

All the methods compared in the experiments are in unsupervised fashion, i.e., no label is

used during embedding. Except DeepWalk and attrSVD, all other methods utilize both

topological and attribute information.
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• DeepWalk [73]: It is a random walks based PNE method that only utilizes topological

information, i.e., W ∈ Rn×n 7→ Z ∈ Rn×d.

• attrSVD: It only utilizes attribute information by applying SVD for dimensionality

reduction [126] on the attribute information matrix, i.e., X ∈ Rn×m 7→ Z ∈ Rn×d.

• TADW [14]: It jointly models attribute and topological information as a bi-convex

optimization problem under the framework of matrix factorization.

• AANE [16]: It is similar to TADW, but the problem is solved in a distributed manner.

• sageMean [20]: It aggregates attributes from neighboring nodes, and then takes the

element-wise mean over them. For fair comparison, we adopt its unsupervised version.

• sageGCN: GCN first proposed by [21] is designed for semi-supervised learning. For

fair comparison, we adopt the unsupervised generalized version of GCN by [20].

• ASNE [17]: It encodes node ID and attributes together as the input, and node co-

occurrence probabilities as the output, of a deep neural networks model. The objective

is to maximize the co-occurrence probability of the co-occurred node pairs generated

by one-hop node neighbors.

3.4.1.3 Evaluation

Based on the original implementation, all compared methods are unified in one framework

namely OpenANE, which enable us to use the same I/O and evaluate performance in a fair

environment. Regarding hyper-parameters, we mostly follow the suggestions by the original

papers. To be more specific, node embedding dimensionality d = 128 for all methods. For

DeepWalk and RoSANE, walks per node r = 10, walk length l = 80, window size w = 10,

negative samples q = 5, and top-k = 30 when needed. For sageGCN, sageMean, and ASNE,

learning rate, dropout rate, batch size, and epochs are set to {search: 1e-2, 1e-3, 1e-4}, 0.5,

128, and 100 respectively. For TADW, AANE, ASNE, and RoSANE, the balancing factors

are set to 0.2, 0.05, 1.0, and 0.2 respectively. For other hyper-parameters, please refer to

OpenANE at https://github.com/houchengbin/OpenANE
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Table 3.2: Datasets used in different experiments.

Datasets LP NC Vis. PR Sen. Time

Cora X X X X X

Citeseer X X X X

MIT X X X X X

Pubmed X X X X

UIllinois X X X X

DBLP X X X X X

Synthetic X

We conduct six types of experiments. The datasets used in different experiments are

summarized in Table 3.2. Specifically, the sections 3.4.2.1-3.4.2.6 report the results of Link

Prediction (LP) task, Node Classification (NC) task, Visualization (Vis.) task, Paper Rec-

ommendation (PR) case study, Sensitivity Analysis (Sen.), and Wall-Clock Time (Time)

respectively. Except Vis. and PR, all other experiments are repeated 12 times and their

arithmetic averages are reported.

3.4.2 Results and Discussions

3.4.2.1 Link Prediction

Link Prediction (LP) task is intended to predict missing links or potential links. We randomly

remove 20% edges as the positive samples, and randomly generate the equal number of non-

existing edges as the negative samples, together serving as the ground truth of testing set

to evaluate LP tasks [17, 74]. Specifically, the LP task asks whether node pairs in testing

set should have edges. The decision is made based on the cosine similarity between the

corresponding pairs of node embeddings, and the final result is given by AUC score [17].

Furthermore, to study the effectiveness and robustness of network embedding methods for

sparse networks, we further randomly remove different percentages of edges. The percentages

of the removed edges for different sparsities are shown in the header of Table 3.3. Note that,

only the remaining edges would be used during the upstream embedding phase.
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Table 3.3: Left: AUC score of link prediction. Right: Micro-F1 score of node classification.

removed 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cora-LP Cora-NC

attrSVD 79.52 79.71 79.64 79.96 79.89 79.89 79.80 79.74 72.24 72.55 72.13 72.96 72.47 72.34 72.69 72.60
DeepWalk 80.89 77.36 72.96 67.41 62.09 57.79 54.54 52.64 78.37 75.95 72.62 66.11 60.14 51.32 42.25 34.53
TADW 85.46 83.97 82.81 79.32 75.39 71.38 65.85 59.46 82.48 81.01 79.79 77.82 75.68 73.33 70.25 66.81
AANE 81.20 81.06 81.21 81.01 80.31 80.74 80.05 79.64 70.99 69.81 69.85 70.39 71.13 70.80 69.91 70.11

sageGCN 85.21 83.60 80.35 76.71 73.54 68.99 64.48 61.22 71.50 69.99 65.95 62.23 56.93 51.21 46.87 40.56
sageMean 76.46 73.05 70.56 68.63 64.63 61.71 57.82 53.34 62.46 58.12 54.46 49.96 46.32 41.38 37.25 34.79
ASNE 69.74 70.17 69.68 69.39 69.42 69.06 69.30 69.21 47.62 46.25 45.43 45.69 45.19 44.21 44.68 44.42

RoSANE 92.99 92.38 91.91 90.28 88.70 87.68 85.95 83.59 84.32 83.28 82.17 80.53 79.00 77.94 74.98 72.86

Citeseer-LP Citeseer-NC

attrSVD 87.88 88.09 88.14 87.81 88.02 87.64 87.77 87.98 68.28 68.16 68.42 68.19 68.52 68.77 68.00 68.07
DeepWalk 69.97 68.13 65.45 63.00 61.90 59.17 57.67 54.51 53.43 49.60 46.56 42.67 39.64 33.51 29.22 25.21
TADW 86.88 84.78 83.12 80.08 76.91 71.92 67.23 62.22 71.47 70.58 69.96 69.25 67.91 66.72 65.38 63.49
AANE 88.63 88.29 87.89 88.00 88.20 88.08 87.65 87.43 69.25 69.44 69.81 69.52 69.00 68.96 69.25 69.63

sageGCN 87.20 85.63 84.30 81.81 78.46 76.10 71.67 67.27 54.70 52.07 50.77 47.62 44.47 41.74 37.63 34.22
sageMean 84.32 82.56 80.63 77.39 74.62 69.72 64.74 58.93 50.98 48.81 44.74 42.51 38.40 35.48 31.68 29.11
ASNE 77.09 76.60 75.46 75.37 75.26 73.54 74.46 74.16 43.39 44.02 42.00 42.33 40.34 41.21 41.90 41.69

RoSANE 94.90 95.11 94.35 94.30 93.45 92.93 92.03 91.01 71.95 71.52 71.07 70.29 70.02 69.74 69.80 69.22

MIT-LP MIT-NC

attrSVD 64.66 64.55 64.51 64.66 64.62 64.69 64.63 64.80 35.02 35.18 35.26 34.99 34.76 34.79 34.77 35.28
DeepWalk 91.80 91.32 90.78 89.88 88.65 86.75 83.48 76.40 79.53 78.70 77.35 76.34 74.52 71.26 66.63 55.79
TADW 87.05 86.89 86.84 86.46 86.02 84.96 83.18 69.31 66.99 65.30 65.82 63.72 61.88 60.07 56.66 50.05
AANE 65.55 65.29 64.76 64.47 64.32 64.01 63.71 62.41 36.41 36.03 36.50 36.31 35.84 36.03 35.59 35.42

sageGCN 80.99 80.95 80.69 80.25 80.24 79.55 77.64 70.81 60.78 59.63 59.25 57.44 57.16 55.46 52.45 44.15
sageMean 73.76 74.02 73.44 73.75 73.35 72.70 65.02 58.07 53.78 53.16 51.09 51.65 49.89 48.20 41.33 32.23
ASNE 73.85 72.98 72.22 71.46 70.19 68.88 67.27 65.10 53.85 51.54 49.11 45.89 41.41 37.23 33.50 31.18

RoSANE 90.26 89.78 89.07 88.14 86.81 84.73 81.42 74.71 79.07 78.27 77.19 76.09 74.60 71.71 67.34 58.67

Pubmed-LP Pubmed-NC

attrSVD 90.34 90.25 90.24 90.21 90.20 90.33 90.20 90.16 83.44 83.40 83.42 83.64 83.42 83.35 83.37 83.47
DeepWalk 78.42 77.18 75.95 74.26 72.18 69.76 66.17 60.93 76.13 73.50 69.97 66.14 62.05 56.88 50.82 43.52
TADW 90.17 89.53 88.55 86.87 84.82 81.53 76.00 67.60 86.39 86.35 86.03 85.69 85.22 85.14 84.49 83.70
AANE 84.06 84.11 84.26 84.30 84.35 84.69 85.10 86.18 85.00 85.07 84.90 84.93 85.00 84.87 84.85 84.91

sageGCN 92.17 92.08 91.21 90.14 89.82 87.24 84.97 80.83 81.10 80.19 79.50 78.05 78.38 75.79 74.40 72.28
sageMean 88.41 87.72 87.78 86.83 84.28 81.60 76.12 63.43 79.55 78.05 77.81 76.72 73.93 73.03 69.36 64.79
ASNE 79.51 78.54 76.46 74.18 72.22 69.47 65.22 61.45 78.81 77.82 77.46 77.20 76.72 76.02 74.24 71.03

RoSANE 95.20 94.86 94.36 93.82 93.08 92.14 90.83 88.71 83.59 83.04 82.48 81.88 81.13 80.24 79.83 78.75

UIllinois-LP UIllinois-NC

attrSVD 61.30 61.36 61.34 61.31 61.29 61.32 61.27 61.36 45.94 45.92 45.91 45.90 45.76 46.03 45.82 45.84
DeepWalk 94.62 94.30 93.95 93.50 92.75 91.43 88.82 81.79 80.27 79.80 79.24 78.41 76.77 74.73 71.05 62.06
TADW 86.93 86.85 84.26 84.86 78.04 74.67 76.06 79.71 70.13 69.78 69.06 68.50 67.41 66.06 63.58 59.84
AANE 61.09 61.55 61.62 61.38 61.06 60.42 60.65 60.53 47.33 46.85 46.16 46.02 45.91 46.26 45.92 45.48

sageGCN 86.19 86.05 86.09 85.71 85.42 85.02 84.21 80.98 64.55 64.52 64.64 63.42 62.07 61.22 59.32 52.66
sageMean 85.43 84.85 84.76 84.89 84.27 83.56 82.77 78.76 63.81 63.23 62.35 62.65 60.67 58.70 56.47 47.21
ASNE 80.81 79.78 78.50 76.99 75.75 75.18 74.64 72.74 55.26 54.68 53.50 52.05 50.00 48.30 46.64 44.94

RoSANE 94.44 94.14 93.81 93.30 92.58 91.30 88.98 83.30 80.18 79.87 79.30 78.61 77.25 75.59 73.03 65.74

DBLP-LP DBLP-NC

attrSVD 72.64 72.57 72.66 72.49 72.48 72.53 72.74 72.59 69.52 69.65 69.55 69.52 69.67 69.61 69.46 69.54
DeepWalk 93.57 92.47 91.48 89.68 87.29 84.03 78.80 69.10 52.33 51.78 51.03 50.19 49.04 47.52 45.63 42.89
TADW 69.43 68.48 67.64 65.53 63.41 61.27 58.58 56.00 72.71 72.28 72.01 71.57 71.09 70.35 69.35 68.32
AANE n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

sageGCN 90.45 89.50 88.32 86.77 84.28 81.65 76.48 69.18 71.72 71.22 70.67 70.29 69.75 68.85 68.27 66.96
sageMean 84.54 83.67 81.66 79.38 75.78 69.57 62.36 54.33 69.98 69.33 68.79 68.46 67.69 66.31 65.56 64.15
ASNE 67.83 65.62 65.17 64.07 62.74 61.46 62.10 64.70 65.64 65.68 65.49 65.61 65.31 65.67 65.70 65.73

RoSANE 94.69 93.88 92.92 91.54 89.60 86.75 82.21 74.87 72.82 72.65 72.25 71.95 71.51 70.86 70.24 69.13

The values (in decimal) in the first line show different percentages of edges removed. These edges will not be used during embedding.
All the results (given by arithmetic average over 12 runs) are reported in %, and the best ones are marked in bold.
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The left-hand side of Table 3.3 shows the results of 6 datasets under the different per-

centages of removed edges in LP tasks. First, the overall observation is that RoSANE obtain

either the best results or the second best results for all networks with all different sparsities,

which verifies its effectiveness in LP tasks. Second, comparing among the ANE methods

(ignore attrSVD and DeepWalk) to see how well they can utilize two sources of information,

RoSANE always achieves the best results for all cases. Third, as the same network becomes

sparser (from the left to the right), the gain of RoSANE w.r.t. the second best ANE method

often increases, e.g., 7.70% in Citeseer-LP-0.2, 12.49% in Citeseer-LP-0.5, and 23.74% in

Citeseer-LP-0.9, w.r.t. sageGCN. Therefore, these observations demonstrate the robustness

of RoSANE to different networks or the same network with different sparsities. The reasons

might be two-folds: 1) RoSANE adopts two cascaded steps so that information fusion step

gives an enriched denser network, which makes the network embedding step more robust; 2)

The enriched denser network contains two sources of information, which enables the network

embedding step to capture the high-order proximity (beyond pairwise relationship) of not

only topological information but also attribute information.

Besides, one interesting observation is that DeepWalk (only uses topological information)

and attrSVD (only uses attribute information) achieve the best results in some cases. In

particular, DeepWalk achieves the best results in the most cases of social networks, i.e., MIT

and UIllinois, due to the very rich topological information (see Table 3.1 for edges-nodes

ratio). In these cases, the majority of useful attribute information (indicated by attrSVD)

might be contained in topological information (indicated by DeepWalk), and parts of two

sources of information might be conflicted with each other. As a result, ANE methods may

receive worse results than DeepWalk or attrSVD. Nevertheless, RoSANE always outperforms

other ANE methods for the reasons as discussed above.

3.4.2.2 Node Classification

Node Classification (NC) task aims to assign known label(s) to nodes without label(s). We

randomly pick 50% nodes with labels for training a one-vs-rest logistic regression classifier.

The remaining nodes with labels serve as the ground truth of testing set, and the final result
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is given by Micro-F1 score [20] based on the prediction of the trained classifier. Similarly as

LP tasks, different percentages of edges are removed to study the effectiveness and robustness

of RoSANE in NC tasks.

The right-hand side of Table 3.3 shows the results of 6 datasets under the different

percentages of removed edges in NC tasks. The overall observations in NC tasks are similar

as that in LP tasks as discussed above. There are two main differences. First, for the

social networks, i.e., MIT and UIllinois, RoSANE in general receives better results in NC

tasks, whereas DeepWalk receives better results in LP tasks. Second, on Pubmed dataset,

TADW obtains the best results in NC tasks, whereas RoSANE obtains the best results in

LP tasks. In fact, due to the complicated real-world scenarios, different methods, tasks,

and sources of information, all have different bias, e.g., topological information (indicated

by DeepWalk) might be more important than attribute information (indicated by attrSVD)

in LP tasks, and the opposite situation can be found in NC tasks. From an industrial

perspective, RoSANE is worth trying, since RoSANE (with the fixed recommended hyper-

parameters) in general obtains the most promising results than other embedding methods

considering different datasets, sparsities, and tasks.

3.4.2.3 2D Visualization

Visualization task further reduces the dimensionality of node embeddings to 2D by Principal

Component Analysis technique. We then assign different colors to nodes based on their

labels. This task paves a way to intuitively understand why node embeddings can benefit

downstream tasks like LP and NC tasks. The four most competitive methods, i.e., RoSANE,

DeepWalk, sageGCN, and TADW (according to Table 3.3) are selected for visualizing Cora

and MIT datasets. The upstream embedding settings are identical to Cora-LP/NC-0.2 and

MIT-LP/NC-0.2 (LP and NC have the same settings under same dataset and sparsity).

As shown in Figure 3.3-a), RoSANE presents more distinguishable boundaries between

different labels on Cora dataset comparing to other methods, which is consistent with the

quantitative results in LP and NC tasks. Similarly, for Figure 3.3-b), RoSANE and DeepWalk

both obtain superior visualization results than TADW and sageGCN on MIT dataset.
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Figure 3.3: 2D visualization of node embeddings for a) Cora and b) MIT. Different colors

indicate different labels. In particular, b) also highlights the result given by RoSANE of six

corresponding years, which shows the temporal trend.
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Furthermore, according to the six highlighted sub-figures of Figure 3.3-b), we observe an

interesting phenomenon by RoSANE called temporal trend. It is in accordance with human

common sense that students in a university have very close relationships if they graduate

(or enter) in the same year. And more interestingly, students also have relatively closer

relationships if they graduate in nearby years (usually within 4 years). However if the year

window is more than 4 years, the students graduated in 2009 have a big gap to those students

graduated in 2005 and 2004.

One may argue that DeepWalk is competitive with RoSANE on MIT dataset. In fact, if

we carefully examine their visualization result, RoSANE might be better at distinguishing

the nodes with less links (non-blue and non-red colors corresponding to the earlier years of

MIT Facebook users) compared with DeepWalk. For the visualization result of DeepWalk

on Cora, it is obvious that there are some nodes from different classes squeezed together.

Besides, for the quantitative results in Table 3.3, we observe that RoSANE dramatically

outperforms DeepWalk on the sparser networks, e.g., Cora, Citeseer, and Pubmed, although

DeepWalk is comparable with RoSANE on the relatively denser networks, e.g., MIT and

UIllinois. Moreover, the gain of RoSANE to DeepWalk continuously increases, as the same

network becomes sparser. These observations indicate that RoSANE can effectively utilize

nodes attributes to tackle the sparse networks or the sparse parts of a network.

3.4.2.4 Paper Recommendation: A Case Study

Thanks to the availability of raw paper titles of the DBLP citation network, we conduct a

case study of paper recommendation, i.e., recommend similar papers for a given paper based

on the resulting node/paper embeddings. This task is used to study some characteristics of

RoSANE in recommendation related tasks. In this task, the upstream embedding settings

are identical to DBLP-LP/NC-0.2. The downstream recommendation task is based on the

cosine pairwise similarity between the embeddings learned by RoSANE.

Given an interested paper, e.g., “Dimensionality Reduction for Similarity Searching in

Dynamic Databases” to retrieve (denoted as R paper), the returned top-10 papers are shown

in Table 3.4 based on the top-10 highest scores. For R paper, there are three key terms:
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Table 3.4: Paper recommendation results by RoSANE

Top Paper

R Dimensionality Reduction for Similarity Searching in Dynamic Databases

1 A Simple Dimensionality Reduction Technique for Fast Similarity Search in Large Time Series Databases

2 A non-linear dimensionality-reduction technique for fast similarity search in large databases

3 Fast Time-Series Searching with Scaling and Shifting

4 On the Effects of Dimensionality Reduction on High Dimensional Similarity Search

5 Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases

6 Dimensionality Reduction and Similarity Computation by Inner Product Approximations

7 A Comparison of DFT and DWT based Similarity Search in Time-Series Databases

8 Interval-Focused Similarity Search in Time Series Databases

9 Fast Time Sequence Indexing for Arbitrary Lp Norms

10 VQ-index: an index structure for similarity searching in multimedia databases

dimensionality reduction, similarity search, and dynamic database. For the recommended

papers, the top-(1∼6, 10) are directly cited by R paper, whilst the top-(7∼9) are not directly

cited by R paper. Among those directly cited papers, the top-1 has three matched terms.

The top-(2,4,5,6) have two matched terms. The top-(3,10) have one matched term, and the

top-3 cites three papers that are also cited by R paper, i.e., the second-order proximity,

whereas the top-10 has zero such paper. Among those not directly cited papers, they all

cite several papers that are also cited by R paper. The top-(7,8) have two matched terms,

whereas the top-9 has one term ’Lp-norm’ related to ’similarly search’.

It should be noted that, a paper recommendation system might not be a good system,

if it only returns the papers cited by the retrieved paper. Because other papers that have

many second-order (and higher order) proximities or have a very similar title are also worth

recommending. This case study illustrates that RoSANE effectively utilizes both network

topology and node attributes for paper recommendation.
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3.4.2.5 Parameter Sensitivity

This section investigates the hyper-parameter sensitivity of RoSANE. Concretely, there are

two special hyper-parameters λ for balancing the two sources of information and k for re-

turning the top-k most attribute similar nodes. We conduct both LP and NC tasks on all six

real-world datasets. The experimental settings are identical to dataset-LP/NC-0.2 as used

in Table 3.3, except that Figure 3.4-a) varies λ and Figure 3.4-b) varies k.

Figure 3.4: Parameter sensitivity: a) the left two figures for k = 30 and varying λ; b) the

right two figures for λ = 0.2 and varying top-k (x-axis in log2 k scale)

For Figure 3.4-a), k = 30 is fixed, but λ is varied from 0.0 to 1.0 with step 0.1. The

results of six different real-world datasets all show that RoSANE can obtain satisfactory

performance for λ with different values around 0.2, which indicates that RoSANE does not

require much effort on tuning λ. In fact, all the above experiments fix λ = 0.2 and RoSANE

already obtains the most promising results, although it is still possible to further improve

the performance if one has priori knowledge. For example, MIT and UIllinois have very rich

topological information and hence set λ = 0.1 to obtain better performance (by doing so,

RoSANE may outperform DeepWalk as shown in Table 3.3). Second, for the two extreme

cases λ = 0.0 (only uses topology) and λ = 1.0 (only uses attributes), RoSANE often

50



Static Network Embedding for Attributed Sparse Networks

obtains relatively worse results, which implies the usefulness of employing the two sources

of information to learn embeddings.

For Figure 3.4-b), λ = 0.2 is fixed, but k is varied from 20 to 28 with exponential step 1.

It shows that the performance of RoSANE increases as k increases when k is relatively small,

and then is saturated when k becomes larger. A smaller k indicates that the less attribute

similar nodes are used to enrich the later reconstructed network, but it requires less time to

retrieve similar nodes. As a trade-off, k = 30 might be a good typical choice4 and is used in

all above experiments. In summary, this section conveys that RoSANE can robustly obtain

satisfactory performance with the fixed hyper-parameters λ = 0.2 and k = 30 (and hence

requires less effort on hyper-parameter turning) at least for the six tested networks.

3.4.2.6 Wall-Clock Time

The wall-clock time, excluding I/O and downstream tasks, is extracted from the experiments

of the removed 20% edges (in both LP and NC tasks for simulating different sparsities) as

shown in Table 3.3. The experiments are conducted in a computer cluster with the same fixed

budget for all methods: 36 cores of Intel Xeon E7-8880v3 CPU, 256G memory, Nvidia Kepler

K80 with 12G GPU memory (sageGCN, sageMean, and ASNE use GPU for acceleration),

CentOS-6.5 64-bit. The wall-clock time results of ANEmethods on the six real-world datasets

are shown in Table 3.5 for comparing their time efficiency5. First, RoSANE consumes either

the shortest time or acceptable time, which confirms the time efficiency of RoSANE. Second,

the wall-clock time of sageGCN, sageMean, and ASNE significantly increases as the number

of edges increases, since they rely on edges to process node attribute as discussed before.

Finally, the wall-clock time of TADW, AANE, and RoSANE is highly related to the number

of nodes, however, TADW and AANE are less efficient than RoSANE due to the explicit

matrix factorization operation [15].
4In addition to fixing λ = 0.2 and varying k, we have also tested several different λs. The general tendency

remains the same as that of λ = 0.2.
5The results of wall-clock time of ANE methods are based on their original implementations with different

levels of code optimization that will also affect the results to some extent. Besides, DeepWalk and attrSVD

are not included in Table 3.5, as they belong to a different class of methods than ANE methods.
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Table 3.5: The wall-clock time of ANE methods (in seconds) on the six real-world attributed

networks for comparing their time efficiency.

nodes edges TADW AANE sageGCN sageMean ASNE RoSANE

2708 5429 Cora 102 42 96 90 40 33

3327 4732 Citeseer 155 56 213 187 43 48

5298 217118 MIT 197 116 5963 5256 1735 113

19717 44338 Pubmed 540 1570 317 299 361 265

26803 1073235 UIllinois 2212 1883 30993 26468 11080 801

60744 52890 DBLP 7280 n/a 370 358 643 1144

To empirically study the scalability of RoSANE regarding the increasing number of nodes,

edges, or attributes, we generate a series of synthetic attributed networks. The node at-

tributes part is based on the random binary vector with dimensionality m, and the network

topology part is based on the Erdos-Renyi graph [127, 128] in which any possible edge has

a fixed probability pe to present. Generating an Erdos-Renyi graph requires pe and n (the

number of nodes), but we are more interested in |E| (the number of edges) and n. For an

undirected Erdos-Renyi graph, pe ≈ 2θn
n(n−1) where θ is the average degree, |E| = θn, and

n(n− 1)/2 is the number of all possible edges of an undirected graph. As a result, it enables

us to generate an Erdos-Renyi graph using θ (or |E|) and n.

Table 3.6: The wall-clock time of RoSANE (in seconds) on synthetic attributed networks to

empirically study its scalability w.r.t. the increasing number of nodes, edges, or attributes.

SET1 θ = 24 m = 27

n 29 210 211 212 213 214 215 216 217 218

T (n) 7 12 21 38 74 149 346 886 2342 6940

SET2 n = 212 m = 27

θ 21 22 23 24 25 26 27 28 29 210

|E| 213 214 215 216 217 218 219 220 221 222

T (θ) 37 39 42 47 57 79 123 204 378 731

SET3 n = 212 θ = 24

m 26 27 28 29 210 211 212 213 214 215

T (m) 39 39 40 39 39 40 44 56 77 115
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Table 3.6 shows the wall-clock time of RoSANE on the synthetic attributed networks.

All the experiments in Table 3.6 are conducted in the aforementioned hardware expect the

memory is further limited to 16GB. There are three sets of experiments. For each set, we

fix two variables and investigate the third one which increases in ×2 rate. For SET2 and

SET3, the wall-clock time T (·) increases in less than ×2 rate within the tested range. The

range is chosen based on the real-world scenarios: for SET2, the average degree θ is often no

greater than 1000 (see real-world networks collection at Koblenz Network Collection [104]);

for SET3, the dimensionality m is specified by users while encoding node attributes, which

should not be too large in order to avoid the curse of the dimensionality. Moreover, regarding

SET1, T (n) increases in a rate no greater than ×3 within the tested range. The choice of

largest n is due to the given limited memory at 16GB (so that many computers can meet it).

It is possible that the number of nodes n might be larger. However, the tendency indicates

that the rate itself increases very slowly due to the log term in time complexity as discussed

in Section 3.3.4. In summary, RoSANE is scalable to the number of nodes n, the average

degree θ or number of edges |E|, and the dimensionality of attributes m. The results in Table

3.6, to some extent, also empirically verify the complexity analysis in Section 3.3.4.

3.5 Chapter Summary

In this chapter, to answer the RQ1 of the thesis, we presented our work [58], which proposed

a novel ANE method to effectively embed attributed sparse or extremely sparse networks.

Specifically, we first introduced a new generic embedding framework, which was intended

to enrich a network from multiple sources of information. Based on the generic embedding

framework, a robust and scalable attributed network embedding method called RoSANE

was realized. RoSANE first integrated topological and attribute information via transition

matrices so as to reconstruct an enriched denser network. It then learned node embeddings

upon the enriched denser network. In above two steps, the techniques such as Ball-tree

KNN and random walks based Skip-Gram model were adopted to guarantee the scalability,

which was demonstrated via complexity analysis. The extensive empirical studies of various
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downstream tasks on six real-world attributed networks with different sparsities as well as a

series of synthetic attributed networks confirmed the effectiveness, efficiency, and robustness

of the proposed method.

Our experiments, however, also showed that the two baseline methods DeepWalk (using

network topology) and attrSVD (using node attributes) can slightly outperform all ANE

methods (using both information) in some cases. This might be due to the less complemen-

tary information or the conflict between two sources of information. Therefore, one promising

future direction is to investigate the interplay between network topology and node attributes

before applying any ANE method. Another future work is to extend RoSANE to cope with

the sparsity issue at the early stages of a dynamic network in the context of the dynamic

network embedding problem [27, 129].
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Chapter 4

Dynamic Network Embedding with

Global Topology Preservation

Chapter 3 discussed the static network embedding method. In fact, most existing network

embedding methods are designed for static networks. These methods try to deal with dif-

ferent challenges caused by different types of static networks (e.g., attributed networks) or

different properties to preserve (e.g., hierarchical topology).

However, many real-world networks are dynamic by nature, e.g., new friendships would

establish between existing users and/or new users in a social network, and devices would

regularly connect to or accidentally disconnect from routers in a wireless sensor network.

Although most challenges in embedding static networks have been addressed, there are still

many challenges in embedding dynamic networks.

Based on our work [59], this chapter presents a dynamic network embedding method

particularly for better global topology preservation, so as to answer the RQ2 of the thesis

“how can we embed a dynamic network with global topology preservation? ”. Note that, we

do not consider node attributes in this work. The source code to reproduce this work is

available at https://github.com/houchengbin/GloDyNE

This chapter is organized as follows. Section 4.1 discusses the background of this work,

especially why dynamic network embedding needs global topology preservation. Section 4.2
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reviews the prior related work. In Section 4.3, we define the problem, present the proposed

method, and analyze its complexity. The empirical studies are reported in Section 4.4, where

Section 4.4.2 compares the proposed method to other methods and Section 4.4.3 investigates

the proposed method itself. Finally, Section 4.5 summarizes this chapter.

4.1 Background

The interactions or connectivities between entities of a real-world complex system can be nat-

urally represented as a network (or graph), e.g., social networks, biological networks, and sen-

sor networks. Learning topological representation of a network, especially low-dimensional

node embeddings which encode network topology therein so as to facilitate downstream

tasks, has received a great success in the past few years [48, 49, 51].

Most previous network embedding methods such as [67, 68, 73, 74, 102] are designed

for static networks. However, many real-world networks are dynamic by nature, i.e., edges

might be added or deleted between seen and/or unseen nodes as time goes on. For instance,

in a wireless sensor network, devices would regularly connect to or accidentally disconnect

from routers; in a social network, new friendships would establish between new users and/or

existing users. Due to the time-evolving nature of many real-world networks, Dynamic Net-

work Embedding (DNE) is now attracting much attention [26–36]. The main and common

objective of DNE is to efficiently update node embeddings while preserving network topol-

ogy at each timestep. Most existing DNE methods try to compromise between effectiveness

(evaluated by downstream tasks) and efficiency (while obtaining embeddings). The idea is

to capture topological changes at or around the most affected nodes (instead of all nodes),

and promptly update node embeddings based on an incremental learning paradigm.

Unfortunately, this kind of approximation, although can improve the efficiency, cannot

effectively preserve the global topology of a dynamic network at each timestep. Specifically,

any changes, i.e., edges being added or deleted, would affect all nodes in a connected network

and greatly modify the proximity between nodes over a network via the high-order proximity

as illustrated in Figure 4.1 a-c). On the other hand, as observed in Figure 4.1 d-f), the real-
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world dynamic networks usually have some inactive sub-networks where no change occurs

lasting for several timesteps. Putting both together, the existing DNE methods that focus

on the most affected nodes (belonging to the active sub-networks) but do not consider the

inactive sub-networks, would overlook the accumulated topological changes propagating to

the inactive sub-networks via the high-order proximity.

To tackle this challenge, the proposed DNE method, Global topology preserving Dynamic

Network Embedding (GloDyNE), first partitions a current network into smaller sub-networks

where one representative node in each sub-network is selected, so as to ensure the diversity

of selected nodes. The representative node for each sub-network is sampled via a probability

distribution over all nodes within each sub-network, such that a higher probability is assigned

to a node with the larger accumulated topological changes. After that, GloDyNE captures

the latest topologies around the selected nodes by truncated random walks [73], and then

promptly updates node embeddings based on the Skip-Gram Negative Sampling (SGNS)

model [69] and an incremental learning paradigm.

The contributions of this work are as follows.

• We demonstrate the existence of inactive sub-networks in real-world dynamic networks.

Together with the propagation of topological changes via the high-order proximity, we

find the issue of global topology preservation for many existing DNE methods.

• To better preserve the global topology, unlike all previous DNE methods, we propose

to also consider the accumulated topological changes in the inactive sub-networks. A

novel node selecting strategy is thus proposed to diversely select the representative

nodes over a network.

• We further develop a new DNE method or framework, namely GloDyNE, which extends

the random walk and Skip-Gram based network embedding approach to an incremental

learning paradigm with a free hyper-parameter for controlling the number of selected

nodes at each timestep.

• The empirical studies show the superiority of GloDyNE compared to the state-of-the-

art DNE methods, as well as verify the usefulness of some special designs in GloDyNE

such as the node selecting strategy and the free hyper-parameter.
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4.2 Prior Related Work

To learn low-dimensional topological representation of a network in dynamic environments,

one naive solution is to treat the snapshot of a dynamic network at each timestep as a

static network, so that a static network embedding method such as [68, 73] can be directly

applied to learn node embeddings for each snapshot. As reported in recent DNE works

[26, 29–31], this naive solution obtains superior results compared with some DNE methods.

One possible reason is that this solution does not suffer the aforementioned issue of global

topology preservation. However, it is time-consuming [29, 31], and thus may not satisfy the

requirement of promptly updating embeddings for some downstream tasks [33, 40].

To compromise between effectiveness and efficiency, most existing DNE methods try to

capture the topological changes at or around the most affected nodes (instead of all nodes or

edges), and promptly update node embeddings based on an incremental learning paradigm.

BCGD [26] aims to minimize the loss of reconstructing the network proximity matrix using

the node embedding matrix with a temporal regularization term, and it is optimized by

the Block-Coordinate Gradient Descent algorithm. Particularly, this work further offers an

efficient solution–BCGD-incremental that only updates the most affected nodes’ embeddings

based on their previous embeddings. DynGEM [28] and NetWalk [40] both utilize an auto-

encoder with some regularization terms for modeling. They continuously train the model

inherited from the last timestep, so that the model converges in a few iterations thanks to

the knowledge transfer from previous models. To efficiently cope with dynamic changes at

each timestep, some DNE methods [31, 34] propose an incremental version of the Skip-Gram

model [69] to update embeddings based on the most affected nodes. Likewise, DHEP [29]

extends HOPE [68] to an incremental version by modifying the most affected eigenvectors

using matrix perturbation theory.

Apart from above DNE methods with the trade-off between effectiveness and efficiency,

some DNE methods [32, 35, 36] aim to further improve effectiveness without considering

the efficiency. For example, tNE [35] runs a static network embedding method to get node

embeddings at each timestep, and then employs Recurrent Neural Networks among them
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(for better exploiting the temporal dependence and hence may further improve effectiveness)

to obtain the final node embeddings at each timestep.

Unlike the previous DNE works that mainly consider the most affected nodes or sub-

networks, this work proposes to also consider the accumulated topological changes in inactive

sub-networks to better preserve the global topology of a dynamic network. Moreover, this

work focuses on the network topology, but does not include node attributes [14, 16, 18],

which would be left as the future work.

4.3 Method

4.3.1 Problem Definition

Definition 1: A Static Network. Let G = (V , E) be a static network where V denotes a set

of |V| nodes or vertices, and E denotes a set of |E| edges or links. The adjacency matrix of

G is denoted as W ∈ R|V|×|V| where Wij is the weight of edge eij between a pair of nodes

(vi, vj). And if Wij = 0, there is no edge between the two nodes.

Definition 2: A Dynamic Network. A dynamic network G is represented by a sequence of

snapshots Gt taken at each timestep t, i.e., G = (G0, G1, ..., Gt, ...). Each snapshot Gt(V t, E t)

can be treated as a static network.

Definition 3: Static Network Embedding. Given a static network G(V , E), it aims to find a

mapping f : V 7→ Z where Z ∈ R|V|×d is the output embedding matrix with a set of node

embeddings; each row vector Zi ∈ Rd corresponds to node vi in V ; and d � |V| is the

user-specified embedding dimensionality. The objective is to best preserve some topologies

of G while learning node embeddings.

Definition 4: Dynamic Network Embedding. Given a dynamic network G = {G0, ..., Gt} with

the latest snapshot Gt(V t, E t), it aims to find a mapping f t : V t 7→ Zt where Zt ∈ R|Vt|×d is

the output embedding matrix at timestep t; each row vector Zti ∈ Rd corresponds to node

vi in V t; and d is the user-specified embedding dimensionality. The main objective is to
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efficiently update node embeddings at timestep t, so that the pairwise similarity of node

embeddings in Zt best preserves the pairwise topological similarity of nodes in Gt.

Definition 5: Sub-networks of A Snapshot. Let Gt
k denote the k-th sub-network in a snap-

shot Gt. All sub-networks of a snapshot Gt, after network partition [131], should be non-

overlapping, i.e, V tm ∩ V tn = ∅, ∀ m 6= n. And their node sets should satisfy V t =
⋃
k V tk.

4.3.2 Method Description

The proposed DNE method GloDyNE consists of four essential components. Next, we in-

troduce them step by step. Intuitively, Step 1 and 2 ensure the selected nodes diversely

distributed over a network, and meanwhile, bias to the nodes with the larger accumulated

topological changes in each sub-network. Step 3 encodes the latest topologies around the

selected nodes into random walks (i.e., node sequences), which are then decoded by a sliding

window and the SGNS model for incrementally training node embeddings as described in

Step 4. Note that, these four steps are repeatedly executed at each timestep.

4.3.2.1 Step 1. Partition A Network

In order to realize inactivate sub-networks of a snapshot Gt, it is needed to divide Gt into

sub-networks Gt
1, G

t
2, ..., G

t
K where K is the number of sub-networks of a snapshot. The

sub-networks are desirable to be non-overlapping and to cover all nodes in the original

snapshot as defined in Definition 5, so that the later Step 2 can select unique nodes from

each sub-network and the later Step 3 is easier to explore the whole snapshot Gt based on

the selected nodes from each sub-network. A network partition algorithm [131] is therefore

used to achieve the desirable goals. The most common objective function is to minimize the

edge cut, i.e.,

min
∑

1≤m,n≤K

{W t
ij | vti ∈ V tm, vtj ∈ V tn, (vti , vtj) ∈ E t} (4.1)

where the subscripts i, j indicate node ID and m,n indicate sub-network ID. Note that, Eq.

(4.1) should subject to two constraints V tm ∩ V tn = ∅, ∀ m 6= n, and V t =
⋃
k V tk for the

reasons as discussed above.
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Moreover, an additional constraint of the balanced sub-networks is introduced to let the

number of nodes be similar among all sub-networks, so as to facilitate the later steps to fairly

explore all sub-networks and hence better preserve the global topology. The third constraint

about the balanced sub-networks can be defined as

∀k ∈ {1, ..., K}, |V tk| ≤ (1 + ε)
|V t|
K

(4.2)

where |V tk| is the number of nodes in Gt
k and ε is the tolerance parameter. Note that, if ε

is 0, network partitions are perfectly balanced. In practice, ε is set to a small number to

allow a slight violation. However, such a (K, ε) balanced network partition is an NP-hard

problem [131]. In order to address this problem, METIS algorithm [130] is employed. There

are roughly three steps. First, the coarsening phase, the original network is recursively

transformed into a series of smaller and smaller abstract networks, via collapsing nodes with

common neighbors into one collapsed node until the abstract network is small enough. Sec-

ond, the partition phase, a K-way partition algorithm is applied on the smallest abstract

network to get the initial partition of K sub-networks. And third, the uncoarsening phase,

it recursively expands the smallest abstract network back to the original network, and mean-

while recursively swaps the collapsed nodes (or the original nodes lastly) at the boarder

of sub-networks between two neighboring sub-networks, so as to minimize the edge cut as

describe in Eq. (4.1).

4.3.2.2 Step 2. Select Representative Nodes

In order to ensure the selected nodes diversely distributed over a snapshot Gt, one natural

idea is to select one representative node from each sub-network. As a result, the total number

of selected nodes is K. We let K = α|V t|, so that α can freely control the total number of

selected nodes for the trade-off between effectiveness and efficiency.

The problem now becomes as how to select one representative node from a sub-network.

According to the latest DNE works such as [31, 34, 40], the nodes affected greatly by edge

streams are selected for updating their embeddings, since their topologies are altered greatly.

Similarly, in this work, the representative node to be selected is biased to the node with larger
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topological changes. Motivated by the concept of inertia1 from Physics, an efficient scoring

function is designed to evaluate the accumulated topological changes of a node vti in a current

snapshot Gt as follows

S(vti) =
|∆E ti |+Rt−1

i

Deg(vt−1i )
=
| N (vti) ∪N (vt−1i )−N (vti) ∩N (vt−1i ) |+Rt−1

i

Deg(vt−1i )
(4.3)

where the reservoir Rt−1
i stores the accumulated changes2 of vi up to t − 1. For simplicity,

we treat Gt as an undirected and unweighted network3, so that the current changes of vi

at t, denoted as |∆E ti |, can be easily obtained by the set operations on neighbors of vi as

shown in Eq. (4.3), which is equivalent to count the number of the edges with node vi in

the current edge streams ∆E t. The representative node of a sub-network Gt
k is then selected

based on the probability distribution over its node set V tk, i.e.,

P (vti) =
eS(v

t
i)∑

vtj∈Vt
k
eS(v

t
j)
∀ vti ∈ V tk (4.4)

where e is Euler’s number and S(vti) is the score of the accumulated topological changes of

node vti given by Eq. (4.3). Note that, if S(vti) = 0, e0 = 1 and P (vti) 6= 0, so that even for

an inactivate sub-network with no change in all nodes, the probability distribution over this

sub-network is still a valid uniform distribution. Intuitively, within a sub-network, the higher

score of a node given by Eq. (4.3) is, the higher probability of this node would be selected

as the representative node for this sub-network. Because one representative node from each

sub-network is selected, all the selected nodes are therefore diversely distributed over the

whole snapshot, and meanwhile, biased to the larger accumulated topological changes for

each sub-network.
1Here the node degree is regarded as the inertia of this node.
2The accumulated changes in reservoir are used to handle the case when a node has small changes at each

timestep for a long time, which greatly affects network topology but maybe ignored if not recorded.
3If one wants to consider edge’s weight in Eq. (4.3), let |∆Eti | =

∑
vt
j∈N (vt

i)
|W t

ij −W
t−1
ij | +∑

vt−1
j ∈(N (vt−1

i )−N (vt
i))
|W t−1

ij | where the first term gives the total weight changes of i’ neighbors presented at

t; whereas the second term gives the total weight changes of i’ neighbors presented at t−1 but not presented

at t. The operator | · | on a set gives its cardinal number, and on a scalar gives its absolute value.
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4.3.2.3 Step 3. Capture Topological Changes

Given the selected representative nodes from Step 2, this step explains how to capture the

topological changes based on the selected nodes. As the topological changes at the selected

nodes can propagate to other nodes via the high-order proximity, the truncated random

walk sampling [73] (instead of edge sampling [102]) strategy is employed to capture the

topological changes around (instead of at) the selected nodes. Concretely, for each selected

node, r truncated random walks with length l are conducted starting from the selected node.

For a random walk, the next node vtj is sampled based on the probability distribution over

its previous node’s neighbors N (vti), i.e.,

P (vtj | vti) =


W t

ij∑
vj′∈N (vt

i
)
W t

ij′
if vj ∈ N (vti)

0 otherwise
(4.5)

4.3.2.4 Step 4. Update Node Embeddings

After Step 3, the latest topological information around the selected nodes is encoded in

random walks. Step 4 aims to utilize the random walks to update node embeddings. Fol-

lowing [73] and [74], a sliding window with length s+ 1 + s is used to slide along each walk

(i.e., node sequence), and the positive node-pair samples in Dt are built via vtcenter, (vtcenter+i)

where i ∈ [−s,+s], i 6= 0. As a result, the node-pair samples can encode 1st ∼ sth-order

proximity of a given center node with another node. Note that, several network embedding

works have shown the advantage of using the high-order proximity [67, 68, 132].

The latest topological information about changes captured in random walks has now been

encoded into node co-occurrence statistics in Dt [121]. In addition, our aim is to learn node

embeddings that reflect pairwise similarity between two nodes rather than to predict the

probability of a random walk with l nodes [73]. Therefore, we could assume the observations

of node pairs in Dt are mutually independent [74]. The objective function to maximize the

node co-occurrence log probability over all node pairs in Dt can be written as

max
∑

(vti ,v
t
c)∈Dt

logP (vti | vtc) (4.6)
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where vtc is the center node, and vti is another node with 1st ∼ sth order proximity to vtc.

Unlike [73] that defines P (vti | vtc) using softmax, we treat it as a binary classification prob-

lem to reduce expensive calculations in the denominator of softmax. Concretely, the Skip-

Gram Negative Sample (SGNS) model aims to distinguish a positive sample (vtc, v
t
i) ∈ Dt

from q negative samples (vtc, v
t
i′)s, which conceptually comes from noise contrastive estima-

tion [133, 134], i.e., an efficient estimation of softmax by distinguishing observed data from

some artificially generated noise using logistic regression [69]. The probability of observing

a positive sample (vti , v
t
j) is

P (B = 1 | vtc, vti) = σ(Ztc · Z′
t
i)=

1

1 + e−Zt
c·Z′t

i

(4.7)

where Ztc and Z′ti are two vectors from two trainable matrices Z and Z′ respectively; the

operator · represents the dot product between two vectors; and P (B = 1 | vtc, vti) gives the

probability of a positive prediction given a positive sample (vtc, v
t
i). Likewise, the probability

of observing a negative sample (vtc, v
t
i′) is

P (B = 0 | vtc, vti′) = 1− σ(Ztc · Z′
t
i′)=

1

1 + eZ
t
c·Z′t

i′
= σ(−Ztc · Z′

t
i′) (4.8)

where P (B = 0 | vtc, vti′) gives the probability of a negative prediction given a negative sample

(vtc, v
t
i′). Putting together, the objective of the SGNS model is to maximize P (B = 1 | vtc, vti)

for each positive sample in Dt and P (B = 0 | vtc, vti′) for the q negative samples corresponding

to each positive sample, i.e.,

max log σ(Ztc · Z′
t
i) +

q∑
i′=1

Evt
i′∼PDt

[log σ(−Ztc · Z′
t
i′)] (4.9)

And the overall objective of the SGNS model is to sum over all positive samples and their

negative samples, i.e.,

max
Zt,Z′t

∑
(vtc,v

t
i)∈Dt

{log σ(Ztc · Z′
t
i) +

q∑
i′=1

Evt
i′∼PDt

[log σ(−Ztc · Z′
t
i′)]} (4.10)

where Ztc ∈ Rd is the embedding vector from row c of the trainable embedding matrix Zt

(between input and middle layers a.k.a. a project layer [69], and Zt serves as DNE output

after training), while Z′ti ∈ Rd and Z′ti′ ∈ Rd are the embedding vector from column i or
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i′ of another trainable matrix Z′t (between middle and output layers) [120]. Eq. (4.10) is

optimized by stochastic gradient ascent over Dt to learn trainable embeddings. Intuitively,

the more frequency two nodes appear in Dt, the closer their embeddings would be.

Finally, we extend SGNS as described above to an incremental learning paradigm. The

overall framework of GloDyNE can be formalized as

Zt =

 f 0(G0,Z0
rand,Z

′0
rand) t = 0

f t(Gt, Gt−1,Zt−1,Z′t−1) t ≥ 1
(4.11)

where f t maps each node in Gt to corresponding node embeddings in Zt using a neural

network model in which Zt is weights between input and middle layers, and Z′t is weights

between middle and output layers; the trained weights Zt−1 and Z′t−1 in f t−1 are copied to

the trainable weights in f t (denoted as f t ← f t−1) as the initialization; and Gt−1 and Gt are

two consecutive snapshots to provide dynamic changes. After f t is trained by Eq. (4.10),

we can directly take out Zt as the output of DNE at timestep t.

4.3.3 Algorithm and Complexity

The pseudocode of GloDyNE is summarized in Algorithm 3, and the open source code is

provided at https://github.com/houchengbin/GloDyNE

According to Eq. (4.11) and Algorithm 3, GloDyNE consists of two stages. During

the offline stage, i.e., t = 0, Step 3 (specifically V tsel = V0
all) and Step 4 are employed to

obtain the initial SGNS model and node embeddings. Lines 2-5 are indeed a static network

embedding method–a modified version of DeepWalk [73], which trains a SGNS model instead

of Skip-Gram Hierarchical Softmax (SGHS) model. Therefore, the time complexity of lines

2-5 is further reduced to O(rlw(1 + q)d|V0
all|) [74] where (1 + q) is due to one positive sample

corresponding to q negative samples.

During the online stage, i.e., t ≥ 1, steps 1-4 are employed to incrementally update

the SGNS model and node embeddings. For lines 7-8 corresponding to Step 1, the time

complexity is O(|V t| + |E t| + K logK) [130] where K = α|V t|, α ∈ (0, 1). For lines 9-14

corresponding to Step 2, the time complexity of lines 9-10 is O(|∆E t|); the time complexity
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Algorithm 3 GloDyNE: Global Topology Preserving Dynamic Network Embedding
Input: snapshots of a dynamic network G0, ..., Gt−1, Gt,...; previous trained model f t−1; coefficient

to determine the number of selected nodes α; walks per node r; walk length l; sliding window

size s; negative samples per positive sample q; embedding dimensionality d

Output: embedding matrix Zt ∈ R|Vt|×d at each timestep

1: for t = 0 do

2: conduct random walks with length l starting from each node in V0all for r times by Eq. (4.5)

3: build positive samples D0 based on each sliding window with size s along each walk

4: initialize SGNS f0rand, and train it using D0 each with q negative samples by Eq. (4.10)

5: return f0 and Z0

6: for t ≥ 1 do

7: calculate K = α|Vt|, and initialize ∆E t = ∅ and Vtsel = ∅

8: partition Gt into K sub-networks Gt1, Gt2, ..., GtK by METIS based on Eq. (4.1) and (4.2)

9: read edge streams ∆E t (or obtain it by differences between Gt−1 and Gt if not given)

10: update reservoir via Rtvi = |∆E ti |+R
t−1
i for accumulating new changes of vti by Eq. (4.3)

11: for k ∈ {1, ...,K} do

12: calculate a probability distribution over all nodes in a sub-network Gtk by Eq. (4.4)

13: select one representative node based on the probability distribution, and add it to Vtsel

14: remove selected nodes Vtsel from the reservoir Rt if exists

15: conduct random walks with length l starting from each node in Vtsel for r times by Eq. (4.5)

16: build positive samples Dt based on each sliding window with size s along each walk

17: initialize SGNS f t ← f t−1, and train it using Dt each with q negative samples by Eq. (4.10)

18: return f t and Zt
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of lines 11-13 using alias sampling method [74] requires O(|V t|); the time complexity of line

14 is O(α|V t|) due to |V tsel| = K = α|V t|. For lines 14-18 corresponding to Step 3 and Step

4, similarly to lines 2-5 above, the complexity of lines 14-18 is O(rlw(1 + q)d|V tsel|) where

|V tsel| = α|V t|. Because most real-world networks are sparse, edges in a snapshot |E t| = b1|V t|

such that the average degree b1 is a very small number compared with |V t|. Besides, since the

edge streams between two consecutive snapshots are often much less than the edges in the

snapshot, edge streams |∆E t| = b2|V t| such that b2 < b1 � |V t|. Regarding those real-world

assumptions, the overall complexity of online stage (including all four steps) at each timestep

can be approximated as O(|V t|+α|V t| log α|V t|+ rlw(1 + q)dα|V t|) where α ∈ (0, 1) is used

to control the number of selected nodes; |V t| denotes the number of nodes at t; and others

are negligible constants compared to |V t|. GloDyNE is thus scalable w.r.t. |V t|, as there is

no quadratic or higher term.

4.4 Experiments

4.4.1 Experimental Settings

4.4.1.1 Datasets

In this work, six datasets are employed to evaluate the proposed method.

• AS733 contains 733 daily instances of the autonomous system of routers exchanging

traffic flows with neighbors. Since AS733 is directly given as the snapshot represen-

tation, we directly take out the recent 21 snapshots (12/Dec./1991–01/Jan./2000) to

form its dynamic network. The initial snapshot has 1476 nodes and 3123 edges, and

the final snapshot has 3570 nodes and 7033 edges. The original dataset comes from

https://snap.stanford.edu/data/as-733.html

• Elec is the network of English Wikipedia users vote for and against each other in

admin elections. The gap between the timestamps for taking snapshots is one calendar

day. We take out the recent 21 snapshots (16/Dec./2007–05/Jan./2008) to form its

dynamic network. The initial snapshot has 6972 nodes and 99006 edges, and the
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final snapshot has 7066 nodes and 100655 edges. The original dataset comes from

http://konect.cc/networks/elec

• FBW is a social network of Facebook Wall posts where nodes are users and edges are

built based on the interactions in wall posts. The gap between the timestamps for tak-

ing snapshots is one calendar day. We take out the recent 21 snapshots (01/Jan./2009–

21/Jan./2009) to form its dynamic network. The initial snapshot has 41730 nodes and

169918 edges, and the final snapshot has 43952 nodes and 182365 edges. The original

dataset comes from http://konect.cc/networks/facebook-wosn-wall

• HepPh is a co-author network extracted from the papers of High Energy Physics Phe-

nomenology in arXiv. The gap between the timestamps for taking snapshots is one

month. We take out the recent 21 snapshots (Apr./1998–Dec./1999) to form its dy-

namic network. The initial snapshot has 11156 nodes and 611311 edges, and the

final snapshot has 16913 nodes and 1194408 edges. The original dataset comes from

http://konect.cc/networks/ca-cit-HepPh

• Cora is a citation network where each node represents a paper, and an edge between

two nodes represents a citation. Each paper is assigned with a label (from 10 different

labels) based on its field of the publication. Following [35], the gap between the times-

tamps for taking snapshots is one year. The 11 snapshots (1989–1999) are taken out

to form its dynamic network. The initial snapshot has 348 nodes and 481 edges, and

the final snapshot has 12022 nodes and 45421 edges. The original dataset comes from

https://people.cs.umass.edu/~mccallum/data.html

• DBLP is a co-author network in computer science field. Each author is associated

with a label (from 15 different labels). The label of an author is defined by the fields

in which the author has the most publications. Following [35], the gap between the

timestamps for taking snapshots is one year. The 11 snapshots (1985–1995) are taken

out to form its dynamic network. The initial snapshot has 1679 nodes and 3445 edges,

and the final snapshot has 25826 nodes and 56932 edges. The original dataset comes

from https://dblp.org/xml/release

To construct the dynamic networks, except AS733 (given as the snapshot representation),

69

http://konect.cc/networks/elec
http://konect.cc/networks/facebook-wosn-wall
http://konect.cc/networks/ca-cit-HepPh
https://people.cs.umass.edu/~mccallum/data.html
https://dblp.org/xml/release


Dynamic Network Embedding with Global Topology Preservation

all other ones (given as the edge streams {(vi, vj, timestamp), ...}) are constructed as follows:

1) the initial snapshot G0 is built by appending all edges no later than the initial cut-off

timestamp; 2) the next snapshot G1 is built by appending the edges newly appeared until the

next cut-off timestamp to G0; 3) repeat step 2 so as to generate G2, G3, and so on. For each

snapshot, we take out the largest connected component and treat it as an undirected and

unweighted graph. According to real-world practice, the cut-off timestamp is based on the

last second of a calendar day, and the gap between snapshots on a same dataset is identical.

The gap for different datasets would be different due to the nature of different datasets, e.g.,

the gap is set to more calendar days if a dataset evolves more slowly over time.

4.4.1.2 Compared Methods

The proposed DNE method GloDyNE is compared with the following state-of-the-art DNE

methods for demonstrating the effectiveness and efficiency.

• BCGDg [26]: The general objective of BCGD is to minimize the quadratic loss of re-

constructing the network proximity matrix using the node embedding matrix with a

temporal regularization term. BCGDg (or BCGD-global) employs all historical snap-

shots to jointly and cyclically update embeddings for all timesteps.

• BCGDl [26]: Unlike BCGDg but following the same general objective of BCGD as

above, BCGDl (or BCGD-local) iteratively employs the previous snapshot and initial-

izes current embeddings with the previous embeddings to update embeddings for a

current timestep.

• DynGEM [28]: This work proposes a strategy to modify the structure of a deep auto-

encoder model based on the size of a current snapshot. At each timestep, the auto-

encoder model is initialized by its previous model. DynGEM continuously trains the

adaptive auto-encoder model based on the existing edges in a current snapshot.

• DynLINE [31]: This work extends the static network embedding method–LINE[102] to

cope with dynamic networks. To improve efficiency, DynLINE updates the embeddings

for the most affected nodes and new nodes in each snapshot.
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• DynTriad [32]: DynTriad models the triadic closure process, the social homophily, and

the temporal smoothness in its objective function to learn node embeddings at each

timestep. It optimizes the objective function according to the existing edges of each

snapshot respectively.

• tNE [35]: tNE runs a static network embedding method to get node embeddings for

each snapshot, and then exploits the temporal dependence among all available static

node embeddings using Recurrent Neural Networks, so as to obtain the final node

embeddings for a current timestep.

The original open source codes with the default settings of BCGD4, DynGEM5, Dyn-

LINE6, DynTriad7, and tNE8 are adopted in the experiments. Note that, BCGDg and

BCGDl are two proposed algorithms in BCGD correspondingly to the type of algorithm 2

and 4. Moreover, we adopt the link prediction architecture of tNE to obtain node embed-

dings, so that all methods only use network linkage information as the supervised signal to

learn node embeddings. Furthermore, the dimensionality of node embeddings is set to 128

for all methods for the fair comparison.

Regarding our method GloDyNE, following [73] and [74], the hyper-parameters of walks

per node, walk length, window size, and negative samples are set to 10, 80, 10, and 5

respectively. The hyper-parameter α to control the number of selected nodes for freely

trade-off between effectiveness and efficiency, is set to 0.1 unless otherwise specified.

4.4.2 Results and Discussions, Comparative Study

In this section, we conduct a comparative study over different methods. Three typical types

of downstream tasks are employed to evaluate the quality of obtained node embeddings by

the seven methods on the six datasets. Specifically, the graph reconstruction (GR) task is

used to demonstrate the ability of global topology preservation, while the link prediction
4https://github.com/linhongseba/Temporal-Network-Embedding
5https://github.com/palash1992/DynamicGEM
6https://github.com/lundu28/DynamicNetworkEmbedding
7https://github.com/luckiezhou/DynamicTriad
8https://github.com/urielsinger/tNodeEmbed
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(LP) task and node classification (NC) task are used to show the benefit of global topology

preservation. For fairness, we first take out the node embeddings obtained by each method

respectively, and then feed them to exactly the same downstream tasks. The above process

is repeated for 20 runs. Their average results as well as other statistics are reported in

Section 4.4.2.1, 4.4.2.2, and 4.4.2.3. Moreover, the average results of the wall-clock time

to obtain node embeddings, are reported in Section 4.4.2.4 for comparing the efficiency of

the implementation of the seven methods. Finally, the overall performance regarding both

effectiveness and efficiency is discussed in Section 4.4.2.5.

All experiments in this section are conducted in the following hardware specification.

For all methods, we enable 32 Intel-Xeon-E5-2.2GHz logical CPUs and 512G memory. In

addition, for DynGEM, DynTriad, DynLINE and tNE that can use GPU for acceleration,

we also enable 1 Nvidia-Tesla-P100 GPU with 16G memory. The n/a values for DynLINE

and tNE on AS733 are due to the inability of handling node deletions. The n/a values for

DynGEM on HepPh and FBW are because of running out of GPU memory.

Note that, only Cora and DBLP have node labels. During the embedding phase, there

is no testing set, but the learned node embeddings (not dedicated to a specific downstream

task) are evaluated by various downstream tasks. For the downstream tasks, there might be

a training and/or testing set depending on the nature of a downstream task.

4.4.2.1 Graph Reconstruction (GR)

In order to demonstrate the ability of the global topology preservation of each method,

one possible way is to use the obtained node embeddings to reconstruct the original net-

work. For this purpose, precision at k or P@k is used as the metric to evaluate how

well the top-k similar nodes of each node in the embedding space can match the ground-

truth neighbors of each node in the original network [29, 67, 132]. Concretely, P@k(vi) =

|Q(vi)@k ∩ N (vi)| / min(k, |N (vi)|), where Q(vi)@k gives a set of the top-k similar nodes

of a queried node vi based on the cosine similarity between node embeddings, and N (vi)

denotes the ground-truth neighbors of vi. As a result, the testing set is just a node set

to query, but there is no training set. To show the ability of global topology preserva-
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Table 4.1: Comparative study for GR tasks by MeanP@k scores (in %). Each entry is

obtained by the mean of MeanP@k over all timesteps, and then the mean with its standard

deviation over 20 runs. Student’s T-Test is applied to the best two results (in bold). The

best result is indicated by † or ‡, if the p-value is < 0.05 or < 0.01. The n/a values are due

to the inability of handling node deletions or running out of memory.

AS733 Cora DBLP Elec FBW HepPh

MeanP@1

BCGDg 02.13±0.06 02.09±0.16 02.17±0.08 10.01±0.05 00.32±0.01 32.81±0.07
BCGDl 38.47±1.33 06.31±0.26 04.54±0.28 25.77±0.73 07.09±0.11 73.25±0.37
DynGEM 00.89±0.03 11.26±0.55 30.47±0.60 04.41±0.06 n/a n/a
DynLINE n/a 06.77±0.00 21.49±0.00 01.76±0.00 00.45±0.00 51.24±0.00
DynTriad 65.43±18.76 64.68±23.85 68.91±21.42 69.86±8.48‡ 76.92±7.55 80.64±3.67
tNE n/a 62.58±0.27 72.20±0.09 08.27±0.09 40.14±0.39 73.58±0.46
GloDyNE 66.47±0.33 77.41±0.27† 81.85±0.11‡ 51.75±0.16 90.63±0.04‡ 84.21±0.13‡

MeanP@5

BCGDg 02.00±0.05 10.23±0.32 00.68±0.03 10.41±0.04 00.15±0.00 31.08±0.04
BCGDl 42.61±2.07 05.75±0.84 02.67±0.15 20.64±0.63 05.69±0.13 65.91±0.39
DynGEM 00.82±0.02 07.22±0.36 22.62±0.48 04.14±0.04 n/a n/a
DynLINE n/a 09.45±0.00 26.58±0.00 01.54±0.00 00.28±0.00 44.36±0.00
DynTriad 62.18±17.47 53.40±23.13 56.15±22.02 66.64±9.13 58.84±11.09 73.96±4.35
tNE n/a 60.81±0.34 68.16±0.19 06.82±0.06 27.54±0.34 61.24±0.44
GloDyNE 70.37±0.26† 79.66±0.08‡ 84.24±0.12‡ 66.42±0.11 87.81±0.02‡ 76.24±0.11†

MeanP@10

BCGDg 03.37±0.09 18.60±0.24 01.50±0.14 10.28±0.05 0.12±0.00 30.82±0.04
BCGDl 51.94±2.82 08.04±2.70 03.30±0.16 19.22±0.64 4.67±0.09 61.12±0.38
DynGEM 00.82±0.02 07.28±0.33 22.54±0.50 03.99±0.03 n/a n/a
DynLINE n/a 12.80±0.00 33.76±0.00 01.39±0.00 00.23±0.00 40.34±0.00
DynTriad 67.19±16.79 55.05±23.22 57.60±21.94 67.37±8.95 56.38±11.29 70.31±4.73
tNE n/a 67.98±0.38 77.53±0.24 06.37±0.05 27.05±0.35 55.16±0.42
GloDyNE 78.25±0.20‡ 86.53±0.11‡ 94.01±0.07‡ 71.19±0.09 89.22±0.01‡ 72.43±0.11

MeanP@20

BCGDg 50.34±0.71 26.88±0.18 13.08±0.32 09.63±0.05 00.11±0.00 30.27±0.03
BCGDl 69.62±4.34 14.21±4.00 12.97±0.2 19.44±0.71 03.96±0.06 56.76±0.36
DynGEM 00.89±0.02 08.52±0.36 24.33±0.51 03.81±0.03 n/a n/a
DynLINE n/a 17.53±0.00 39.39±0.00 01.30±0.00 00.20±0.00 36.85±0.00
DynTriad 73.00±15.66 59.54±23.47 61.66±21.98 69.47±8.60 57.97±11.40 67.12±5.16
tNE n/a 76.44±0.42 85.15±0.27 06.17±0.06 29.03±0.37 49.48±0.41
GloDyNE 85.40±0.17† 93.15±0.02‡ 98.84±0.02‡ 74.31±0.07† 91.79±0.01‡ 69.91±0.10†

MeanP@40

BCGDg 89.60±0.74 36.96±0.16 35.89±0.29 08.85±0.05 00.12±0.00 29.06±0.03
BCGDl 84.52±5.27 23.57±4.48 28.44±0.35 27.57±0.95 04.16±0.11 54.25±0.39
DynGEM 01.20±0.05 10.61±0.42 26.77±0.53 03.67±0.04 n/a n/a
DynLINE n/a 21.81±0.00 43.86±0.00 01.39±0.00 00.22±0.00 33.89±0.00
DynTriad 78.90±14.01 64.95±23.12 66.33±21.67 72.80±8.03 61.92±11.53 65.42±5.61
tNE n/a 81.27±0.41 88.57±0.30 06.52±0.07 32.61±0.40 44.58±0.38
GloDyNE 90.87±0.13‡ 95.31±0.01‡ 99.85±0.00‡ 76.95±0.04† 94.95±0.00‡ 69.81±0.08‡
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tion, we further calculate the mean of P@k over all nodes in a current snapshot Gt, i.e.,

MeanP@k = [
∑

vti∈Vt P@k(vti) ] / |V t| where V t is a set of all nodes in Gt, and |V t| counts the

number of nodes in V t. Table 4.1 presents the results for MeanP@1, MeanP@5, MeanP@10,

MeanP@20, and MeanP@40.

First, GloDyNE consistently outperforms all other methods on all datasets (28/30 cases),

except that DynTriad outperforms GloDyNE on Elec dataset under MeanP@1 and MeanP@5

(2/30 cases). Second, although DynTriad can obtain the second best results in many cases,

the standard deviation of DynTriad is always very high (often larger than 5.0%). In con-

trast, the performance of GloDyNE is very stable, since the standard deviation is always

very low (often smaller than 0.3%). Third, GloDyNE significantly outperforms the second

best method in 25/30 cases according to the statistical hypothesis testing9.

The main reason of such superiority of GloDyNE in the GR task is that GloDyNE is

designed to better preserve the global topology of a dynamic network at each timestep, while

the GR task is also employed for demonstrating the ability of global topology preservation.

4.4.2.2 Link Prediction (LP)

The (dynamic) LP task aims to predict future edges at timestep t + 1 using the obtained

node embeddings at t. The testing edges include both added and deleted edges from t to

t + 1, plus other edges randomly sampled from the snapshot at t + 1 for balancing existent

edges (or positive samples) and non-existent edges (or negative samples). The LP task is

then evaluated by Area Under the ROC Curve (AUC) score based on the cosine similarity

between node embeddings [17, 26, 64]. Table 4.2 presents the AUC scores for LP tasks, and

each entry of the table is obtained in the similar way as described in Table 4.1.

According to the statistical hypothesis testing, GloDyNE significantly outperforms the

second best method on AS733, Cora, and FBW by 12.64%, 11.97% and 4.03% respectively

(3/6 cases), while GloDyNE obtains the second best results on other three datasets (3/6

cases). Overall, GloDyNE is also a good method for the (dynamic) LP task on most datasets,
9Two-tailed and two-sample Student’s T-Test is applied with the null hypothesis that there is no statis-

tically significant difference of the mean over 20 runs between the two best results.
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Table 4.2: Comparative study for (dynamic) LP tasks by AUC scores.

AS733 Cora DBLP Elec FBW HepPh

BCGDg 69.64±0.64 67.92±0.95 66.55±0.85 81.22±0.91 82.90±0.29 77.06±0.15
BCGDl 62.69±1.05 81.46±1.64 84.86±1.17‡ 86.61±3.72 83.83±1.34 88.16±1.93‡

DynGEM 61.60±1.28 56.69±1.42 60.90±0.81 60.71±1.56 n/a n/a
DynLINE n/a 65.20±0.85 57.21±0.58 58.80±0.68 65.14±0.31 62.20±0.03
DynTriad 64.36±3.45 65.86±6.37 58.78±2.66 94.25±1.50‡ 78.54±4.81 85.10±2.63
tNE n/a 79.94±0.68 59.26±0.71 61.50±1.19 68.38±0.48 77.16±0.52
GloDyNE 82.10±0.32‡ 93.43±0.36‡ 74.56±0.67 87.03±0.85 87.86±0.18‡ 85.88±0.05

thanks to the high-order proximities being used for better preserving the global topology

[67]. In fact, the high-order proximity between nodes is an important temporal feature

for predicting future edges. For example, the triadic closure process which tries to predict

the third edge among three nodes if there have already been two edges among them, as

modelled in DynTriad [32], can be easily realized by considering the second-order proximity

via setting l ≥ 3 and s ≥ 3 (see Section 4.3.2.3 and 4.3.2.4). In the experiments, we set

l = 80 and s = 10. As a result, much higher order proximities (up to 10th order according

to s) are considered for better preserving the global topology, which therefore provides more

advanced temporal features (analogous to triadic closure process) to improve the performance

of GloDyNE in LP tasks on most datasets.

However, not all high-order proximities are helpful on all kinds of datasets. For example,

we can observe from Table 4.1 and 4.2 that DynTriad, which mainly considers the second-

order proximity due to modeling the triadic closure process, can obtain the best performance

on Elec dataset; while GloDyNE, which considers more high-order proximities, obtains the

second best performance. This observation might be caused by some special characteristics

of Elec, which is an election network and is quite different from other kinds of networks.

4.4.2.3 Node Classification (NC)

The NC task aims to infer the most likely label for the nodes without labels. Specifically,

50%, 70%, and 90% nodes are randomly picked respectively to train a one-vs-rest logistic

regression classifier based on their embeddings and labels. The left nodes respectively are
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treated as the testing set. Note that, only Cora and DBLP are employed in NC tasks,

as other datasets do not have node labels. At each timestep, the latest node embeddings

are employed as the input features to logistic regression classifier. The prediction of the

trained classifier over the testing set are evaluated by Micro-F1 and Macro-F1 [35, 73, 74]

respectively. Table 4.3 presents the F1 scores for NC tasks, and each entry of the table is

obtained in the similar way as described in Table 4.1.

Table 4.3: Comparative study for NC tasks by Micro-F1 and Macro-F1 scores. Three differ-

ent proportions of training set are evaluated respectively.

Cora DBLP
0.5 0.7 0.9 0.5 0.7 0.9

Micro-F1

BCGDg 32.28±0.29 33.43±0.49 33.93±0.74 56.00±0.17 56.15±0.15 56.34±0.16
BCGDl 36.49±0.53 38.24±0.66 39.59±0.72 56.48±0.18 56.71±0.27 57.12±0.35
DynGEM 36.92±0.69 38.95±0.60 41.03±0.85 55.22±0.04 55.37±0.08 55.76±0.13
DynLINE 40.48±0.00 42.21±0.00 42.83±0.00 55.95±0.00 56.77±0.00 57.46±0.00
DynTriad 36.54±3.61 37.67±3.74 38.57±3.70 55.60±0.55 56.22±0.46 56.86±0.65
tNE 65.37±0.29 67.12±0.29 67.97±0.49 63.19±0.16 63.90±0.20 64.27±0.36
GloDyNE 74.20±0.30‡ 75.22±0.39‡ 75.54±0.58‡ 64.73±0.28‡ 65.17±0.30‡ 66.40±0.37‡

Macro-F1

BCGDg 08.30±0.20 08.68±0.20 08.58±0.38 10.24±0.14 10.26±0.20 10.19±0.31
BCGDl 12.23±0.62 12.85±0.79 13.32±0.86 11.19±0.27 11.44±0.35 11.56±0.39
DynGEM 09.91±0.56 10.79±0.50 11.33±0.63 08.25±0.06 08.41±0.11 08.63±0.16
DynLINE 22.65±0.00 23.98±0.00 23.91±0.00 16.32±0.00 16.94±0.00 15.74±0.00
DynTriad 16.92±4.01 17.71±4.30 17.64±4.37 12.81±0.74 13.06±0.81 13.05±1.10
tNE 50.03±0.31 52.45±0.39 51.41±0.96 25.60±0.40 27.02±0.35 26.02±0.84
GloDyNE 61.20±0.66‡ 62.75±0.71‡ 62.01±1.00‡ 29.87±0.75‡ 30.28±0.81‡ 29.99±1.05‡

According to the statistical hypothesis testing, GloDyNE significantly outperforms the

second best method on both detests, which demonstrates the benefit of global topology

preservation in NC tasks. Moreover, GloDyNE achieves better performance on Cora than

DBLP. The reason is that Cora is a citation network where the label/field of nodes/papers

contains less noise (the field of a journal or conference often remains the same), while DBLP

is a co-author network where the label/field of nodes/authors contains more noise (the field

of an author varies over time or an author with few papers is not accurate).
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4.4.2.4 Walk-Clock Time During Embedding

To conduct the downstream tasks in Section 4.4.2.1, 4.4.2.2, and 4.4.2.3, the common step

is to first obtain node embeddings which serve as the low dimensional hidden features to the

downstream tasks. In this section, the wall-clock time of obtaining node embeddings (but

not including downstream tasks) over all timesteps are reported in Table 4.4.

Table 4.4: Comparative study for wall-clock time (while obtaining node embeddings but not

including downstream tasks) in seconds. Each result is given by the sum of the wall-clock

time over all timesteps, and then the mean over 20 runs. The total number of nodes and

edges of a dynamic network over all snapshots is also attached.

AS733 Cora DBLP Elec FBW HepPh

BCGDg 2987 4486 9277 6513 30063 24119
BCGDl 597 1214 2543 1941 10272 12091
DynGEM 2021 3336 8054 1577 n/a n/a
DynLINE n/a 809 814 1577 1740 2095
DynTriad 109 208 318 1879 3408 16893
tNE n/a 2728 4497 9989 79987 66679
GloDyNE 64 106 186 203 943 908

# of nodes 45 k 66 k 108 k 147 k 902 k 295 k
# of edges 91 k 216 k 233 k 2095 k 3703 k 18491 k

It is obvious that GloDyNE is the most efficient method among all methods on all

datasets. In addition, the superiority of efficiency of GloDyNE grows, as the size of a

dynamic network (given by the number of nodes or edges over all snapshots) grows. The

reasons are as follows. First, GloDyNE is scalable regarding its time complexity, since there

is no quadratic or higher term in |V| and |E| as analyzed in Section 4.3.3. Second, the

implementation of Step 4 of GloDyNE is highly parallelized and optimized.

To further test the scalability of GloDyNE on a very large-scale dataset, a hyperlink net-

work from http://konect.cc/networks/link-dynamic-dewiki is employed. We follow the

same approach as described in Section 4.4.1.1 to generate its dynamic network. Specifically,

the gap between snapshots is one calendar day; the recent 11 snapshots (03/Aug./2011-

13/Aug./2011) are taken out; the initial snapshot has 2,161,514 nodes and 39,578,432 edges;
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the final snapshot has 2,165,677 nodes and 39,705,237 edges; and the total number of nodes

and edges over all snapshots are 23,795,061 and 435,918,113. During the embedding phase,

for the initial snapshot or timestep (i.e., offline stage), the wall-clock time for Step 3 and

Step 4 is 110698s and 12258s. After that, the averaged wall-clock time per snapshot over

other 10 snapshots (i.e., online stage) for Step 1-2, Step 3, and Step 4 are 2769s (for net-

work partition and node selection), 12388s (for capturing topological changes), and 1255s

(for updating node embeddings) respectively. We may ignore the offline stage as it is only

conducted once at the beginning. During the online stage, the overall time to obtain em-

beddings for one snapshot is 16412s or 4.56h, which is acceptable for the scenario of daily

updating embeddings in this very large-scale hyperlink network. Note that, one may further

reduce the overall time by parallelizing random walks over multiprocessors in Step 3, so as

to overcome the main bottleneck of the current implementation of GloDyNE.

4.4.2.5 Effectiveness and Efficiency

To better visualize the comparison among the seven methods in terms of both effectiveness

and efficiency, we make scatter plots as shown in Figure 4.2 based on the quantitative results

in above sections. Note that, the wall-clock time (of a method on a dataset) to obtain node

embeddings in Section 4.4.2.4 is the same for different downstream tasks. Besides, the n/a

values in the tables are omitted in Figure 4.2.

In terms of both effectiveness and efficiency, GloDyNE is the best choice on AS733, Cora

and FBW, since it is located at the most top-left corner in these cases. Although GloDyNE

obtains the second best effectiveness on other three datasets, it still keeps the best efficiency

in these cases. According to the quantitative results in Table 4.2 and Table 4.4, from the

effectiveness perspective, GloDyNE is outperformed by BCGDl, DynTriad and BCGDl by

10.3%, 7,22% and 2.28% on DBLP, Elec and HepPh respectively. Nevertheless, from the

efficiency perspective, GloDyNE is ×11.5, ×9.3 and ×13.3 faster respectively. Therefore,

if one prefers efficiency, GloDyNE would be a better choice than BCGDl, DynTriad and

BCGDl on DBLP, Elec and HepPh respectively.

Apart from the above discussions for LP tasks based on Figure 4.2, the scatter plots of
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Figure 4.2: The comparison among the seven methods in terms of both effectiveness (y-axis

for scores in decimal) and efficiency (x-axis for wall-clock time in seconds). We only show

the plots of LP tasks for illustration. But the plots of GR and NC tasks are omitted, because

GloDyNE obtains both the best effectiveness and best efficiency (i.e., located at the most

top-left corner or the best choice) in almost all cases.

GR and NC tasks are omitted. The reason is that GloDyNE is the best choice in terms of

both effectiveness and efficiency (i.e., located at the most top-left corner) for 28/30 cases of

GR tasks and 12/12 cases of NC tasks.

4.4.3 Results and Discussions, Further Investigation

In this section, we further investigate the proposed method itself. Since GloDyNE is proposed

to better preserve the global topology, we focus on the ability of global topology preservation,

and thus adopt the graph reconstruction task for discussions. Besides, thanks to the good

time and space efficiency of GloDyNE and its variants, all experiments in this section are

conducted with less expensive hardware: 16 Intel-Xeon-E5-2.2GHz logical CPUs and 8G

memory. All experiments are repeated for 20 runs. We choose two datasets for illustration.

One is AS733 that includes both node additions and deletions, while another is Elec that

only includes node additions.
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4.4.3.1 Necessity of Dynamic Network Embedding

One advantage of DNE is that, it promptly updates node embeddings at each timestep, so

that the latest embeddings can better reflect the original network topology at each timestep.

To demonstrate this, two variants of GloDyNE based on the SGNS model, namely SGNS-

static and SGNS-retrain, are used for comparison. For SGNS-static, we perform the t = 0

part of Algorithm 3, and the obtained embeddings at t = 0 are identically used in the

downstream task at each timestep. For SGNS-retrain, we repeatedly perform the t = 0 part

of Algorithm 3 at each timestep, and the obtain embeddings at each timestep are used in

the downstream task at each timestep respectively.
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Figure 4.3: SGNS-static vs SGNS-retrain in graph reconstruct tasks for showing the necessity

of dynamic network embedding: y-axis indicates MeanP@k scores; x-axis indicates timesteps;

each point depicts the average result over 20 runs at a timestep.

According to Figure 4.3, SGNS-retrain outperforms SGNS-static on both datasets. For

AS733, SGNS-retrain maintains the performance at a superior level all the time, whereas

the performance of SGNS-static suddenly decreases at t = 1 and then maintains a poor level

afterward. For Elec, SGNS-retrain maintains the performance at a superior level all the time,
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whereas the performance of SGNS-static gradually decreases. The difference of sudden drops

on AS733 and gradual drops on Elec is due to the fact that the network topology between

consecutive timesteps on AS733 varies more severely than on Elec (see Section 4.4.1.1), so

that the obtained node embeddings at t = 0 is less useful afterward. Consequently, it is

needed to promptly update node embeddings at each timestep (i.e., the necessity of DNE)

as what SGNS-retrain, i.e., the naive DNE method does.

4.4.3.2 Incremental Learning vs Retraining

Instead of SGNS-retrain, recent DNEmethods often adopt the incremental learning paradigm

by continuously training the previous model on a new training set. Another baseline–SGNS-

increment thus follows Algorithm 3 but replaces all operations in lines 7-14 with V tsel =

V tall. The difference between SGNS-increment and SGNS-retrain is whether they reuse the

previous model as the initialization of next model.
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Figure 4.4: SGNS-increment vs SGNS-retrain in graph reconstruct tasks for showing the

advantage of reusing previous models: y-axis indicates MeanP@k scores; x-axis indicates

timesteps; each point depicts the average result over 20 runs at a timestep.

According to Figure 4.4, SGNS-increment outperforms SGNS-retrain on both datasets.
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The general tendency on both datasets is the same, although the performances of SGNS-

increment and SGNS-retrain are both less stable on AS733 than on Elec, due to the larger

variations between consecutive snapshots on AS733 (see Section 4.4.1.1). These observations

show that reusing the previous model as the initialization of next model might be not only

useful for a dynamic network with small variations, but also useful for a dynamic network

with relative large variations.

4.4.3.3 Visualization of Embeddings

To show how embeddings evolve over consecutive timesteps, we first employ a DNE method

to obtain node embeddings with 128 dimensions, and then use Principle Component Analysis

to project the node embeddings from 128 dimensions to 2 dimensions (so that they can be

displayed on a 2 dimensional plane). As shown in Figure 4.5, GloDyNE keeps not only the

relative position but also the absolute position of node embeddings between two consecutive

timesteps, whereas SGNS-retrain cannot keep the absolute position (notice the rotation of

the ’v’ shape). The reason of why GloDyNE can well keep the absolute position is owing to

the incremental learning paradigm which acts as an implicit smoothing mechanism.

Figure 4.5: GloDyNE vs SGNS-retrain in embedding visualization tasks for showing the

implicit smoothing mechanism of GloDyNE. The first row of six sub-figures is for applying

GloDyNE on Elec to obtain node embeddings for six consecutive timesteps from 8 to 13

respectively. Similarly, the second row is for SGNS-retrain. To visualize embeddings, we

further project them from 128 dimensions to 2 dimensions.
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4.4.3.4 Different Node Selecting Strategies

According to Figure 4.3 and 4.4, the ranking among the three baselines is SGNS-increment

> SGNS-retrain > SGNS-static. Although SGNS-increment (i.e., GloDyNE with α = 1.0)

achieves the best performance, it is not efficient enough since all nodes in a current snapshot

are selected for conducting random walks and then training the SGNS model. One natural

idea for further improving the efficiency is to select some representative nodes as the approx-

imate solution, such that it can significantly reduce the wall-clock time but meanwhile, still

retain a good performance. Consequently, in this work, we propose a node selecting strategy,

denoted as S4, as described in Section 4.3.2.1 and Section 4.3.2.2.

To show the advantage of S4 used in GloDyNE, the baselines with different node selecting

strategies are used for comparison. For fairness, the number of selected nodes at each

timestep is set to α|V t| = 0.1|V t| for all strategies. Concretely, S1 selects the nodes randomly

with replacement from reservoir Rt which records the most affected nodes; S2 selects the

nodes randomly without replacement fromRt and then from all nodes in a current snapshot if

|Rt| < 0.1|V t|; S3 selects the nodes randomly without replacement from all nodes in a current

snapshot. Intuitively, from the perspective of diversity of selected nodes, S1 < S2 < S3 < S4

because 1) sampling nodes from Rt cannot be aware of inactive sub-networks which exist in

many real-world dynamic networks; 2) sampling nodes from all nodes in a current snapshot

cannot guarantee the selected nodes have an enough distance from each other; 3) sampling

one node from each sub-network after network partition as introduced in S4, however, can

ensure the selected nodes have an enough distance from each other.

In order to compare the performance of GloDyNE with different node selecting strategies,

the length of random walks l (see Section 4.3.2.3) should be also considered. Because as l

increases, the generated random walks (or node sequences) become less distinguishable. An

extreme case is that, if l goes to infinity, a random walker starting from any node in a

network can well explore its global topology. As a result, we compare the four different node

selecting strategies w.r.t. different ls as shown in Table 4.5.

According to Table 4.5, first, the overall ranking of the performance under a same l is
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Table 4.5: The performance of GloDyNE with different node selecting strategies w.r.t. dif-

ferent length of random walks in graph reconstruction tasks. Each entry is obtained in the

similar way as described in Table 4.1.

AS733 Elec

S1 S2 S3 S4 S1 S2 S3 S4

l MeanP@10

3 15.275 18.841 20.623 21.340‡ 04.038 05.912 06.105 06.122
5 36.791 38.657 39.671 40.033‡ 07.091 11.204 11.519 11.837‡

8 43.976 44.289 44.807 44.862 10.518 14.886 15.357 15.630‡

10 44.714 44.934 45.253 45.225 12.029 17.446 18.059 18.325‡

15 48.083 48.311 48.495 48.514 17.704 25.468 25.963 26.420‡

20 53.713 54.083 54.323 54.443 26.656 34.437 34.790 35.071‡

30 63.585 63.881 64.163 64.186 44.556 48.710 48.938 49.074†

40 69.483 69.694 69.961 69.852 54.906 57.055 57.157 57.220
50 72.918 73.083 73.324 73.281 60.846 62.224 62.278 62.306
60 75.086 75.265 75.507 75.497 65.021 65.981 66.031 66.028
70 76.491 76.724 76.985 77.046 68.288 68.946 68.920 69.004†

80 77.723 77.982 78.385 78.208 70.825 71.272 71.332 71.340
90 78.778 79.090 79.367 79.369 72.916 73.257 73.268 73.277
100 79.846 79.991 80.227 80.305 74.621 74.882 74.870 74.885

l MeanP@40

3 22.097 26.784 28.791 29.747‡ 04.972 06.587 06.820 06.822
5 52.509 54.063 54.695 55.094‡ 05.925 11.482 11.936 12.312‡

8 59.334 59.606 59.809 59.845 07.532 14.409 15.183 15.608‡

10 60.522 60.871 61.005 61.062 09.278 18.567 19.401 19.887‡

15 66.123 66.801 67.372 67.340 20.117 32.013 32.617 33.224‡

20 72.998 73.506 74.077 74.095 35.458 44.739 45.027 45.251‡

30 81.225 81.617 82.111 82.191 57.477 60.500 60.604 60.739‡

40 85.083 85.506 86.007 86.018 66.260 67.436 67.488 67.502
50 87.332 87.705 88.109 88.105 70.602 71.218 71.209 71.215
60 88.756 89.102 89.327 89.329 73.414 73.731 73.725 73.714
70 89.713 89.913 90.085 90.156 75.493 75.584 75.564 75.576
80 90.474 90.648 90.779 90.695 77.046 77.014 77.016 77.027
90 91.103 91.217 91.259 91.286 78.300 78.214 78.179 78.189
100 91.667 91.608 91.703 91.745 79.287 79.150 79.127 79.126
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S1 < S2 < S3 < S4, which exactly matches the ranking of the diversity of selected nodes

as discussed above. Second, as l increases, the four strategies become less distinguishable,

which verifies the above analysis of four strategies with respect to l. And third, comparing

AS733 and Elec, it shows that the superiority of S4 over other three node selecting strategies,

is more obvious on Elec than on AS733. It suggests that using S4 with GloDyNE on a lager

dataset (e.g., Elec is larger than AS733 as shown in Table 4.4) might gain more benefits.

4.4.3.5 The Free Hyper-Parameter

The hyper-parameter α, which determines the number of selected nodes at each timestep,

is designed for freely trade-off between effectiveness and efficiency. We vary α from 0.1 to

1.0 with step 0.1, together with other four smaller values. Each bar in Figure 4.6 has two

results. The blue one shows the effectiveness which is measured by the mean of MeanP@k

over all timesteps and over 20 runs, while the red one shows the efficiency which is measured

by the mean over 20 runs of the total wall-clock time over all timesteps.
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Figure 4.6: The effectiveness (in blue corresponding to the left y-axis) and efficiency (in red

corresponding to the right y-axis) of GloDyNE w.r.t. different α (x-axis) which determines

the number of selected nodes.
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According to Figure 4.6, it demonstrates that the hyper-parameter α can be used to

freely compromise between effectiveness and efficiency. With this free hyper-parameter, one

could fulfill the real-world requirement by trade-off between effectiveness and efficiency, if

downstream tasks require the latest node embeddings within a specified period. Besides, all

experiments in the above sections set α = 0.1, which implies one can obtain better results

by increasing α at the risk of consuming more wall-clock time.

Furthermore, an interesting observation is that increasing α to a certain level achieves a

very competitive performance as α = 1.0 (GloDyNE with α = 1.0 is equivalent to SGNS-

increment), but consumes much less wall-clock time. This observation also supports that

GloDyNE especially the proposed node selecting strategy that selects partial nodes, makes

a good approximation to SGNS-increment that selects all nodes for further computation.

4.5 Chapter Summary

In this chapter, to answer the RQ2 of the thesis, we presented our work [59], which proposed

a novel DNE method for better global topology preservation10.

Specifically, the proposed DNE method called GloDyNE aimed to efficiently update

node embeddings while better preserving the global topology of a dynamic network at each

timestep, by extending the SGNS model to an incremental learning paradigm. In particular,

unlike all previous DNE methods, a novel node selecting strategy was proposed to diversely

select the representative nodes over a network, so as to additionally considers the inactive

sub-networks for better global topology preservation. The extensive experiments not only

confirmed the effectiveness and efficiency of GloDyNE w.r.t. other six state-of-the-art DNE

methods, but also verified the usefulness of some special designs or considerations in the

proposed method.

From a high-level view, GloDyNE can also be seen as a general DNE framework based on

the incremental learning paradigm of SGNS model. With this framework, one may design
10See also the invited extended abstract [60] to be presented at the 38th IEEE International Conference

on Data Engineering (ICDE), TKDE poster track, 2022.
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a different node selecting strategy to preserve other desirable topological features into node

embeddings for a specific application. On the other hand, the idea of selecting diverse nodes

could be adapted to other existing DNE methods for better global topology preservation.

Besides, one more future work, according to Figure 4.6, is to further investigate why selecting

partial nodes can receive almost the same performance or even the superior performance

compared to selecting all nodes.
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Chapter 5

Robust Dynamic Network Embedding

via Ensembles

In chapter 4, we proposed a Dynamic Network Embedding (DNE) method for better global

topology preservation. This DNE method, like other existing DNE methods, mainly aimed

at improving the effectiveness by considering some additional topologies or properties for an

already preprocessed input dynamic network.

Unfortunately, to our best knowledge, existing DNE works ignore the uncertainties in

generating an input dynamic network. In fact, most real-world datasets of dynamic networks

are given in the form of edge streams (i.e., an edge list where each edge has its timestamp),

rather than directly given as the input dynamic network that consists of a sequence of network

snapshots captured at each timestep after preprocessing. Comparing to static networks,

dynamic networks have a unique character called the degree of changes, which can be used

as an index to quantify a kind of dynamic character of an input dynamic network about

its rate of streaming edges between consecutive snapshots. The degree of changes could be

very different for different dynamic networks. However, it remains unknown if existing DNE

methods can robustly obtain good effectiveness to different degrees of changes, in particular

for different dynamic networks generated from the same dataset by different slicing settings.

To answer this open question, we test several state-of-the-art DNE methods, and find that

they might not be robust enough to different degrees of changes. It thus emerges our RQ3
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“how can we embed a dynamic network robustly to the degree of changes? ”.

In order to answer the RQ3 of the thesis, according to our work [61], this chapter presents

a robust dynamic network embedding method w.r.t. the degree of changes which is defined as

the average number of streaming edges between consecutive snapshots spanning a dynamic

network. The source code to reproduce this work is available at https://github.com/hou

chengbin/SG-EDNE

The organization of this chapter is as follows. Section 5.1 discusses the background and

motivation of this work. Section 5.2 reviews the literature of DNE methods and distinguishes

the proposed method from them. Section 5.3 formulates the DNE problem, describes the

DNE method in details, and analyzes the complexity of the DNE algorithm. Section 5.4.1

presents the experimental settings including benchmark datasets, compared methods, and

evaluation protocols. The experimental results of comparative study, ablation study, pa-

rameter sensitivity, and scalability test are discussed in Section 5.4.2. Finally, Section 5.5

summarizes this chapter.

5.1 Background

Network embedding (a.k.a. network or graph representation learning) has been widely ap-

plied to various fields such as social networks, biological networks, telecommunication net-

works, knowledge graphs, and drug discovery [11, 48, 51, 53, 135]. Most previous network

embedding methods are designed for static networks, while the real-world networks are often

dynamic by nature [92–94], namely dynamic networks in which edges and/or nodes may be

added and/or deleted at each snapshot of a dynamic network. Due to the dynamic nature

of many real-world networks and the advantage of network embedding in various fields, Dy-

namic Network Embedding (DNE) has recently attracted considerable attention. DNE aims

to efficiently learn node embeddings for each current network snapshot at each timestep

by preserving network topology using current and historical knowledge, so that the latest

embeddings can facilitate various downstream tasks.

A dynamic network in terms of a series of snapshots (graph streams) is often assumed
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to have smooth changes [26–32, 39], which serves as the input to DNE. However, the as-

sumption of smooth changes over snapshots would not hold for all real-world scenarios. It

is natural to ask if existing DNE methods can perform well for an input dynamic network

without smooth changes. To quantify the smoothness of changes, we suggest an index called

Degree of Changes (DoCs)1, which describes the average number of streaming edges be-

tween consecutive snapshots spanning a dynamic network. Note that, DoCs might be a way

to quantify and rank the smoothness of changes for different dynamic networks. And the

smaller DoCs corresponds to the smoother changes.

The DoCs of an input dynamic network depends on not only the nature of a network (e.g.,

a citation network versus an email network) but also how we preprocess it (e.g., 10 streaming

edges per timestep versus 100 streaming edges per timestep). The existing general-purpose

DNE methods are usually benchmarked on several network datasets, each of which is prepro-

cessed by one special slicing setting that leads to a dynamic network with a special DoCs.

However, the dynamic network with the special DoCs might not really fit the real-world

requirement (e.g., it may require a smaller DoCs to update embeddings more frequently, or

a larger DoCs to reduce the updating frequency). It remains unclear whether DNE methods

can still perform well for the dynamic network with a different DoCs due to a different slic-

ing setting on the same dataset. This motivates us to investigate the robustness of DNE to

different input dynamic networks with different DoCs, especially when they come from the

same dataset2.

Although there have existed quite a few DNE works [26–35, 37–46, 59], they have not

considered the effect of different DoCs of an input dynamic network to DNE methods. As a

result, these methods might not be robust enough to different DoCs even if the corresponding

input dynamic networks come from the same dataset, which is shown in our comparative

study. However, the robustness of DNE to different DoCs is a desirable characteristic, as this

would improve the reliability and usability of the DNE method while applying it to unknown
1The DoCs here is a global index to quantify the smoothness of changes of a dynamic network over all

snapshots or timesteps.
2We can more fairly compare and rank the smoothness of changes of dynamic networks using DoCs if

they are generated from the same dataset.
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real-world applications. To this end, we aim to propose an effective and more robust (w.r.t.

DoCs) DNE method.
Would the input dynamic networks with different degree of changes, e.g., by 

different slicing settings on the same dataset, affect the effectiveness of  DNE methods? 

Dynamic Networks
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Figure 5.1: A toy example. The five input dynamic networks G1,...,G5 with different De-

gree of Changes (DoCs), constructed from the same dataset, are respectively fed to a DNE

method and then evaluated by a downstream task. We could regard DoCs for G1,...,G5 as

1, 2, (3+2)/2=2.5, 4, 3 respectively. Despite the method 2 (in blue triangular) not always

achieving the best, it may still be preferred due to its good effectiveness and robustness.

Concretely, the proposed method follows the notion of ensembles where the base learner

adopts an incremental Skip-Gram neural embedding approach. Furthermore, a simple yet

effective strategy is designed to enhance the diversity among base learners at each timestep

by capturing different levels of local-global topology using random walks with different restart

probabilities. Intuitively, the diversity enhanced ensembles encourage the base learners to

learn from more diverse perspectives, such that it is more likely to have a part of (not

necessarily all) base learners producing good embeddings at each timestep. The diversity

enhanced ensembles therefore provide a better redundancy design to handle uncertainties

(e.g., requiring different DoCs for different tasks) in generating a dynamic network and its

time-evolving topological changes over snapshots of a dynamic network.

The contributions are as follows:
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• An index called DoCs is suggested to quantify the smooth changes of a dynamic net-

work. We then investigate the robustness of DNE to different input dynamic networks

with different DoCs, especially when they are generated from the same dataset. The

comparative study reveals that the existing DNE methods are not robust enough to

DoCs, and might not always prefer an input dynamic network with the smaller DoCs,

i.e., the smoother changes, which is often assumed in existing DNE works.

• An effective and more robust DNE method is proposed via the ensembles of incremental

Skip-Gram embedding models at each timestep. To further boost the performance, we

also propose a simple yet effective strategy to enhance the diversity among base learners

by capture different levels of local-global topology.

• The comparative study also demonstrates the superior effectiveness and robustness of

the proposed method compared to six state-of-the-art DNE methods. The ablation

study and parameter sensitivity analysis confirm the benefits of special designs such

as the ensemble design and the diversity enhancement strategy. The scalability test

verifies our theoretical complexity analysis.

5.2 Prior Related Work

Most existing DNE methods are developed based on Static Network Embedding (SNE) meth-

ods. For SNE methods, there have been several good surveys [11, 48, 51, 53, 135]. In general,

SNE methods can be divided into four main categories. First, the Matrix Factorization (MF)

based approach [67, 68] encodes the desirable topological information into an n-by-n matrix,

and then employs matrix factorization techniques to keep the top-d eigenvectors, which fi-

nally form the output embedding matrix. Second, the Auto-Encoder (AE) based approach

[77, 78] also encodes the desirable topological information into an n-by-n matrix, and then

feeds each row of input matrix to an auto-encoder for training. The middle layer of the

trained auto-encoder gives output embeddings. Third, the Skip-Gram (SG) based approach

[73, 74] encodes the desirable topological information via a sampling strategy (e.g., random

walkers) into node sequences. The node sequences can be treated as the network language,
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so that the Skip-Gram embedding model [69] can be adopted for learning node embeddings.

And fourth, the Graph Convolution (GC) based approach [20, 136] defines node neighbors for

each node by the first order proximity. For each node, node attributes are aggregated based

on its neighbors so as to train a shared parametric mapping function. The trained function

is finally used to infer node embeddings. Next, we review DNE based on the categories and

methodologies of SNE.

MF based DNE. The key challenge is how to update previous factorization results based

on the difference between current and previous input matrices. [29, 37] employ the matrix

perturbation theory to resolve the challenge; [27] additionally considers the dynamic changes

of node attributes; and [30] discovers the accumulated error of such incrementally updating

mechanism and discusses when to restart the matrix factorization from scratch. Unlike these

works, [26] and [33] iteratively minimize the reconstruction error of the current input matrix

using previous factorization results (as a good initialization) for the faster convergence.

AE based DNE. One key challenge is how to fit the architecture of an Auto-Encoder for

the current input matrix. When there is a new node leading to the increasing dimensionality

of current input matrix, one neuron should be added to the first layer of the Auto-Encoder

so as to make it runnable. [28] proposes a heuristic strategy to adjust the Auto-Encoder

to handle the challenge. [37–39] also adopt an Auto-Encoder to incrementally learn node

embeddings. But these works do not adjust the architecture of the Auto-Encoder and hence,

they need to fix the node size in advance.

SG based DNE. The key challenge is how to generate appropriate training samples to

continuously train the Skip-Gram model. [31, 34, 41, 42] determine most affected nodes

based on the changes between current and previous snapshots, and then employ a sampling

strategy to generate the training samples related to the most affected nodes. [59] additionally

considers inactive subnetworks, i.e., no change occurs for several timesteps, and generates

training samples for the inactive subnetworks to better preserve the global topology.

GC based DNE. Unlike above three categories, some SNE methods in this category, e.g.,

[20] can be directly applied to DNE problem as they aim to learn a shared parametric

mapping function, which can be treated as a stacked deep neural network where the number
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of neurons in the first layer is the dimensionality of node attributes. Therefore, there is

no need to modify the neural network architecture even if there is a new node. It worth

noticing that [43–46] additionally employ the attention mechanism or Recurrent Neural

Network (RNN) to capture the temporal dependency.

Moreover, some DNE methods might not be solely classified into one of the above four

categories. For instance, [35] applies a SNE method to obtain node embeddings at each

timestep, and then feeds them sequentially to an RNN to capture the temporal dependency.

[32] considers the triadic closure process, social homophily, and temporal smoothness in the

objective function, and then optimizes it based on the existing edges of each snapshot.

Unlike the above DNE methods (for embedding a discrete-time dynamic network), [137]

takes the input of edge streams (for embedding a continuous-time dynamic network), and

defines a temporal awareness random walk sampling strategy to generate training samples for

continuously training the Skip-Gram model. Other works about continuous-time dynamic

network embedding can be found in the survey [94].

The proposed method, which takes snapshots as the input and Skip-Gram embedding

approach as the base learner of ensembles, belongs to SG based DNE. But distinguished

from existing works, this work aims to propose a more robust DNE method w.r.t. DoCs,

and introduces the ensembles to DNE to improve its effectiveness and robustness.

5.3 Method

5.3.1 Problem Definition

Definition 1: A Static Network. G(V , E) denotes a static network where V = {v1, ..., vn} is

a set of nodes; V × V 7→ E gives a set of edges; and |V| and |E| indicates the size of each

set. The adjacency matrix is denoted as A ∈ R|V|×|V| where Aij is the weight of edge eij; if

Aij 6= 0, the edge eij ∈ E ; and if Aij = 0, there is no edge between vi and vj.

Definition 2: Static Network Embedding (SNE). Given a static network G(V , E), SNE aims

to find a mapping f : V 7→ Z where Z ∈ R|V|×d is the output embedding matrix with a set
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of node embeddings; each row vector Zi ∈ Rd corresponds to node vi in V ; and d � |V| is

user-specified embedding dimensionality. The objective is to best preserve network topology

while learning node embeddings.

Definition 3: A Dynamic Network. G = {G0, G1, ..., Gt, ...} denotes the snapshots of a

dynamic network at each timestep (i.e., graph streams). Each snapshot Gt(V t, E t) is indeed

a static network at timestep t. For a dynamic network, new nodes would come with new

edges, and so this work only considers new edges but allows new nodes to occur.

Definition 4: Degree of Changes (DoCs). The DoCs is defined as the average number of

streaming edges between consecutive snapshots spanning a dynamic network. Concretely,

as the toy example shown in Figure 5.1, the DoCs for G1,...,G5 is (1*7)/7=1, (2*3)/3=2,

(3+2)/2=2.5, 4/1=4, and 3/1=3 respectively. Although other definitions could exist, the

definition here might be the straightforward one.

Definition 5: Dynamic Network Embedding (DNE).Given a dynamic network G = {G0, ..., Gt}

with the latest snapshot Gt(V t, E t), DNE aims to find a mapping f t : V t 7→ Zt where

Zt ∈ R|Vt|×d is the output embedding matrix with a set of node embeddings at timestep t;

each row vector Zti ∈ Rd corresponds to node vi in V t; and d is embedding dimensionality.

The objective is to best preserve network topology and its dynamics into Zt, so that the

latest node embeddings in Zt can help various downstream tasks achieve good effectiveness.

Besides the effectiveness of DNE for a certain DoCs of an input dynamic network, this

work also considers its robustness (i.e., a small standard deviation or variance of effective-

ness) across different DoCs especially when the corresponding input dynamic networks are

generated from the same dataset, as the toy example shown in Figure 5.1.

5.3.2 Method Description

The proposed method is termed as Skip-Gram based Ensembles Dynamic Network Embedding

(SG-EDNE). It consists of four key components: Skip-Gram embedding approach, incremen-

tal learning paradigm, ensembles, and diversity enhancement as the overview illustrated in

Figure 5.2.
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5.3.2.1 Skip-Gram Embedding

A Skip-Gram embedding approach, an efficient neural network model [138], acts as the

basic building block of the proposed method for learning node embeddings. At each current

timestep t, the Skip-Gram Negative Sampling (SGNS) embedding model [59, 74] is adopted

to learn node embeddings3, given the node sequences that capture desirable network topology

(how to generate node sequences is presented in Section 5.3.2.4).

Specifically, a sliding window with length s + 1 + s is employed to slide along each

node sequence, so as to generate a series of positive node-pair samples by (vcenter, vcenter+i),

i ∈ [−s,+s] and i 6= 0. In this way, the desirable network topology captured in node

sequences is now encoded into node co-occurrence (vc, vi) statistics in Dt. We then maximize

the log probability of node co-occurrence over all positive samples in Dt, i.e.,

max
∑

(vc,vi)∈Dt

logP (vi | vc) (5.1)

where vc is the center node, and vi is its nearby node with 1 ∼ s orders proximity to vc.

To define P (vi | vc), it can be treated a binary classification problem [121]. Specifically,

at timestep t, each positive sample (vc, vi) ∈ Dt is distinguished from q negative samples

(vc, vi′)s where vi′ is drawn from a unigram distribution PDt [121]. We then have P (B =

1 | vc, vi) = σ(Ztc · Z′
t
i) for observing a positive node-pair sample, and P (B = 0 | vc, vi′) =

1 − σ(Ztc · Z′
t
i′) = σ(−Ztc · Z′

t
i′) for observing a negative node-pair sample. For all positive

samples in Dt and their corresponding q negative samples, the objective is

max
Zt,Z′t

∑
(vc,vi)∈Dt

{log σ(Ztc · Z′
t
i) +

q∑
i′=1

Evi′∼PDt [log σ(−Ztc · Z′
t
i′)]} (5.2)

3The reasons of using Skip-Gram rather than other embedding approaches are as follows. While extending

SNE to DNE approaches, first, the matrix factorization based and auto-encoder based approaches often

require to set a fixed number of nodes in advance [26, 29, 39, 40], and hence are hard to handle unlimited

new nodes. Second, the performance of graph convolution based approach [20, 136] largely depends on the

node attributes, which is out of the consideration of this work. Third, the Skip-Gram based approach has

been shown to be not only effective but also efficient to DNE [31, 34, 41, 42, 59], and can easily handle node

additions and deletions [59].
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where σ(x) = 1/(1+exp(−x)); operator · denotes a dot product between vectors; and Ztc ∈ Rd

is the embedding vector from row c of the trainable embedding matrix Zt (between input and

middle layers a.k.a. a project layer [69], and Zt serves as DNE output after training), while

Z′ti ∈ Rd and Z′ti′ ∈ Rd are the embedding vector from column i or i′ of another trainable

matrix Z′t (between middle and output layers) [120]. Eq. (5.2) is optimized by stochastic

gradient ascent over Dt to learn these trainable embeddings. Intuitively, the more frequency

two nodes co-occur in Dt, the closer or more similar their embeddings would be.

Note that, if the above approach only considers the snapshot at each timestep, i.e.,

treating as a static network embedding problem Zt = f t(Gt) at each timestep, we then need

to retrain it from scratch at each timestep, which is time-consuming and cannot make use

of historically learned knowledge.

5.3.2.2 Incremental Learning

The incremental learning paradigm is employed to avoid retraining from scratch for better

efficiency and exploit historically learned knowledge for better effectiveness. To further

improve efficiency, we consider one step back learned knowledge in input to middle layer Zt−1

and in middle to output layer Z′t−1 which are indeed the weights of SGNS neural network

model, one step back snapshot Gt−1, and current snapshot Gt. Formally, the incremental

Skip-Gram based DNE becomes

Zt = f t(Gt, Gt−1,Zt−1,Z′
t−1

) (5.3)

where trainable embeddings Zt and Z′t in the neural network model f t are copied from its

one step back Zt−1 and Z′t−1 in f t−1 (or denoted as f t ← f t−1) as the initialization before

training. After training by Eq. (5.2), we can take out the updated embedding matrix Zt as

the output of DNE at timestep t.

It is worth noting that, Eq. (5.3) holds for t > 0 (online), and the latest two consecutive

snapshots Gt and Gt−1 provide the latest dynamics of streaming edges ∆E t (or given directly)

which yields affected nodes ∆V t (see Figure 5.2). When t = 0 (offline), we have to train

Z0 = f 0(G0) with randomized embeddings for all nodes in V0 of G0 from scratch.
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5.3.2.3 Ensembles

The ensembles have been shown useful to incremental learning problems on Euclidean data

for handling uncertainties to improve model effectiveness and robustness [139–142]. Mo-

tivated by this, we attempt to employ ensembles to the DNE problem on graph (non-

Euclidean) data.

At each timestep, we separately train several base learners of the incremental Skip-Gram

based DNE model in Eq. (5.3) using the objective function in Eq. (5.2) respectively. The

objective function of the ensembles at each timestep t becomes

M∑
m=1

{ max
Zt
m,Z

′t
m

∑
(vc,vi)∈Dt

m

[ log σ(Ztm,c · Z′
t
m,i)

+

q∑
i′=1

Evi′∼PDt
m

[log σ(−Ztm,c · Z′
t
m,i′)] ] }

(5.4)

where the number of models to train isM ; Dt
m is the training samples for base model m; and

the output embedding matrix for base model m is Ztm = f tm(Gt, Gt−1,Zt−1m ,Z′t−1m ). Please

refer to Eq. (5.2) and Eq. (5.3) for other notations.

After training, the embeddings from each base learner are concatenated to form the

unified embeddings, i.e.,

Zt = Ztm=1 ⊕ ...⊕ Ztm=M (5.5)

where ⊕ denotes the concatenation operator4. Note that, we keep the dimensionality of

unified embeddings to be d, i.e., Zt ∈ R|Vt|×d regardless of the number of base learners M

(but d ≥ M). To achieve that, the dimensionality for each Ztm is R|Vt|×dm where dm takes

the integer of d/M and the reminder is added to dm if m = M .
4The output from each base learner is embeddings in our (unsupervised learning) problem rather than

a score in most supervised learning problems. Hence, the combining strategy of the outputs of embeddings

is different from usual strategies, e.g., weighted voting of scores. Apart from concatenation, we also tested

element-wise mean, max, min, and sum over each dimension of embeddings. The concatenation operator

often obtained superior embeddings (evaluated by downstream tasks) for d = 128 by convention [59, 73, 74].
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5.3.2.4 Diversity Enhancement

The diversity among base learners is recognized as a key factor to improve the performance

of ensembles [139, 140, 143]. It is thus natural to enhance diversity for further boosting the

effectiveness and robustness of the ensembles mentioned in Eq. (5.4). To be more specific, we

propose to enhance the diversity among node sequences (and therefore training samples Dt
m)

before feeding to each incremental Skip-Gram based DNE model. The strategy to enhance

the diversity is that, each base learner adopts a different restart probability of Random Walk

with Restart (RWR) to explore a different level of local-global topology over snapshot Gt

starting from each node in ∆V t which is affected by streaming edges at timestep t.

For the restart probability Rm, a maximum Rmax is set to assign different restart proba-

bilities to M base learners by

R1, R2, ..., RM = 0, Rmax/M, ..., (M − 1)Rmax/M (5.6)

where Rmax and M are two hyper-parameters. The reason of setting restart probabilities

uniformly is that, this work does not intend to find the optimal restart probabilities for a

specific application. But one may try nonuniform restart probabilities for a certain real-world

application. Furthermore, we believe different restart probabilities can capture different

levels of local-global topology (see Figure 5.8). Considering two extremes: for Rm = 1, RWR

can only explore very limited local neighbors around a starting node; for Rm = 0, RWR can

collect more global information from a starting node.

With Eq. (5.6), a RWR using Rm for model m can be used to generate node sequences

at timestep t. Concretely, for each node in ∆V t (or V0 if t = 0), r truncated RWRs with

length l are conducted starting from it. For each RWR, the next node vj much jump back to

the starting node (i.e., restart) if a random number PR from a uniform distribution U [0, 1]

meets PR < Rm. Otherwise, the next node vj is sampled based on the transition probability

of its previous node vi given by

P (vj | vi) = Atij /
∑

vj′∈Vt
Atij′ (5.7)

where Atij is the edge weight between node vi and node vj at timestep t, and there is no edge

between them if Atij = 0.
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Each base learner is trained separately to preserve a different level of local-global topology

into embeddings. To keep the concatenated embeddings from M base learners in the same

scale, we conduct a rescaling operation over each column5 of Zt, which then serves as the

input to downstream tasks. In this way, the diverse local-global topological information

might be fairly preserved and used in downstream tasks.

5.3.3 Algorithm and Complexity

The workflow of proposed method SG-EDNE during online stage (i.e., t > 0) is summarized

in Algorithm 4. Note that, Section 5.3.2.1 describes L6, L8; Section 5.3.2.2 describes L1,

L7; Section 5.3.2.3 describes L2, L8, L9, L11; and Section 5.3.2.4 describes L3, L5, L12. For

offline stage (i.e., t = 0), we still follow Algorithm 4 except that we have to train Z0
m = f 0

m(G0)

with random parameters for all nodes in V0 from scratch. One may also restart the algorithm

after t = 0 to reduce potential accumulated errors [30]. For both online and offline stages,

one can parallelize L4-L10, as there is no interaction among M base learners.

The ensembles of M base learners does not increase time complexity, as M is a small

constant. Consequently, we ignore the effect of M as well as other constants such as r,

l, and d in the following complexity analysis. During the online stage that follows the

incremental learning paradigm as described in Algorithm 4, L5 requires O(|∆V t|), as the

algorithm conducts RWR for |∆V t| nodes using alias sampling method [74]. The complexity

of L6-L9 is O(|∆V t|), since the algorithm generates training samples and accordingly trains

SGNS based on O(|∆V t|) node sequences. Moreover, the complexity for L1, L11, and L12 is

O(|V t|) respectively, while the complexity for L2 and L3 is O(1) respectively. In summary,

the overall complexity for the online stage is O(|∆V t| + |V t|). While for the offline stage,

i.e., t = 0 or in case of restarting algorithm, the overall complexity becomes O(|V t|), since

L5-L9 are now based on O(|V t|) node sequences.
5Comparing to zero mean and unit variance scaling, we found [0,1] min-max scaling obtained better

results in our cases, and is thus used in this work. The motivation of rescaling Zt over each column is that

we hope all d hidden variables/features from M base learners are fairly used in downstream tasks.
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Algorithm 4 SG-EDNE at timestep t (online)
Input: two latest snapshots of a dynamic network Gt−1, Gt; previous trained models

f t−1m=1, ..., f
t−1
m=M ; number of base learners/models M ; max restart probability Rmax; walks per

node r; walk length l; sliding window size s; negative samples per positive sample q; embedding

dimensionality d

Output: embedding matrix Zt ∈ R|Vt|×d

1: find affected nodes ∆Vt by new edges based on Gt−1, Gt

2: assign dimensionality dm to base learner based on d, M

3: assign restart probability Rm to base learner based on Rmax and M by Eq. (5.6)

4: for base learner m=1 to M do

5: generate node sequences Seqtm by RWR with r, l, Rm from each node in affected nodes ∆Vt

6: generate training samples Dt
m by SGNS with s, q

7: copy trainable parameters to f tm from f t−1m

8: train f tm using Dt
m by Eq. (5.2)

9: take out Ztm from f tm

10: combine Ztm=1,...,Ztm=M to obtain Zt by Eq. (5.5)

11: rescale Zt over each column

12: return f tm=1, ..., f
t
m=M and Zt
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5.4 Experiments

5.4.1 Experimental Settings

5.4.1.1 Datasets

In this work, the independent variable to control is DoCs. Consequently, we adopt five

different slicing settings to each dataset to generate five dynamic networks G1, ...,G5 with

five different DoCs. The statistics are presented in Table 5.1. Given the same dataset, the

more slices often lead to the smaller DoCs of the corresponding generated dynamic network.

All datasets6 [144, 145] are originally in edge streams and each edge has an Unix times-

tamp. Because of a large volume of experiments and some DNE methods encountering the

out of memory (OOM) issue, we take out partial edges up to date 19951231, 20070331, and

20050331 on Co-Author, FB-Wall, and Wiki-Talk respectively. For other datasets, their full

datasets are used. For each dataset, five dynamic networks are generated in the following

way: 1) order edge streams by timestamps; 2) take the first 1/5 edges to establish the initial

snapshot G0; 3) the rest of edges are roughly and evenly divided into 20, 40, 60, 80, and

100 slices respectively for dynamic networks G1, G2, G3, G4, and G5; and 4) the largest

connected component, unweighted, and undirected G1 of G1 is given by G0 appending with

the first slice of the 20 slices; the G2 of G1 is given by G1 appending with the second slice of

the 20 slices; and so on.

It is worth mentioning that there is no suitable well preprocessed dynamic networks to

investigate the robustness of DNE to different DoCs. To achieve the goal, we utilize the
6DNC-Email (http://networkrepository.com/email-dnc.php) is the email network of Democratic

National Committee email leak in 2016. College-Msg (http://snap.stanford.edu/data/CollegeMsg.ht

ml) is the messaging network of an online social network at the University of California, Irvine. Co-Author

(http://networkrepository.com/ca-cit-HepPh.php) is the collaboration network of authors from the

papers of high energy physics phenomenology in arXiv. FB-Wall (http://networkrepository.com/ia-f

acebook-wall-wosn-dir.php) is a social network for Facebook users interacting in their wall posts. Wiki-

Talk (http://snap.stanford.edu/data/wiki-Talk.html) is the network of registered Wikipedia users

editing in each other’s talk pages for discussions.
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unified preprocessing approach above to fairly deal with each real-world dataset, so as to

generate several dynamic networks with different DoCs for each dataset.

Table 5.1: The statistics of datasets and the generated dynamic networks.

DNC-Email College-Msg Co-Author FB-Wall Wiki-Talk

G1-20slices 170.4 531.7 4269.9 1213.6 3951.4
G2-40slices 85.2 265.8 2135.0 606.8 1975.7
G3-60slices 56.8 177.2 1423.3 404.5 1317.1
G4-80slices 42.6 132.9 1067.5 303.4 987.9
G5-100slices 34.1 106.3 854.0 242.7 790.3

|E|init 959 3202 21298 7420 19602
|E|last 4366 13835 106696 31691 98630
|V|init 555 755 1842 4343 6782
|V|last 1833 1893 4466 10300 31263

1 The upper block presents Degree of Changes (DoCs), as defined in Definition 4, for each

generated dynamic network.
2 The lower block shows the number of edges and nodes in the initial and last snapshots,

which should be the same for the five dynamic networks generated from the same dataset.

Apart from real-world datasets, we also prepare synthetic datasets via the Barabási–Albert

(BA) model [146] to verify the scalability of the proposed method. The BA model is used

to generate the dynamic network such that the node degree (w.r.t. counts) distribution

obeys the power law distribution (i.e., a scale-free network) at each timestep. Specifically,

it implements the preferential attachment mechanism to successively add a new node with

mBA edges such that each edge connects the new node with higher probability to an existing

node with larger node degree. The size of networks |VBA| grows from a few nodes to millions

of nodes. The details of scalability test are presented and discussed in Section 5.4.2.4

5.4.1.2 Compared Methods

The proposed method SG-EDNE (or EDNE for short) is compared to six state-of-the-art

DNE methods. According to the literature review in Section 5.2, BCGD-G and BGCG-L [26]

belong to the matrix factorization based DNE; DynLINE [31], GloDyNE [59] and SG-EDNE

(this work) belong to the Skip-Gram based DNE; DynTriad [32] and tNEmbed [35] employ
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other approaches to handle the DNE problem.

The source codes of BCGD7, DynLINE8, DynTriad9, tNEmbed10, and GloDyNE11 are

used in the experiments. In tNEmbed, the link prediction architecture is used to obtain

node embeddings, since the datasets in this work do not have node labels. In GloDyNE,

the parameter retains 0.1 by default to balance effectiveness and efficiency. BCGD-G and

BCGD-L are two proposed algorithms in BCGD for the type 2 and 4 algorithms respectively.

Regarding other parameters, we search {1e-4,1e-3,1e-2,1e-1} for ’l’ in BCGD-G and BCGD-

L; {3e-4,3e-3,3e-2,3e-1} for ’learn-rate’ in DynLINE; {1e-3,1e-2,1e-1,1} and {1e-3,1e-2,1e-

1,1} for ’beta-triad’ and ’beta-smooth’ in DynTraid; and {1,10,100,1000} for ’train-skip’ in

tNEmbed. We find the recommended parameters in the original source codes obtain better

results in most cases (among the 30 cases: DNC-Email and College-Msg datasets, 5 dynamic

networks per dataset, and 3 downstream tasks), and are thus adopted for all experiments.

Without otherwise specified, for all experiments, SG-EDNE employs following default

parameters: number of base learners M = 5 and maximum restart probability Rmax = 0.1.

For the parameters of Skip-Gram approach, we follow [59, 73, 74] so that walks per node r,

walk length l, window size s, and negative samples q are set to 10, 80, 10, and 5 respectively.

For the fair comparison, the dimensionality of node embeddings for all methods is set to

128. Besides, all experiments are conducted given the following specification: Linux 4.15.0,

16 Intel-Xeon CPUs @2.20GHz, 256G memory, and Tesla P100 GPU with 16G memory.

5.4.1.3 Evaluation

The node embeddings at each timestep are taken out and stored in the same format for all

methods, so that we can utilize the same evaluation protocol as shown in Figure 5.3.

Three types of downstream tasks are employed to evaluate the quality of node embed-

dings. Graph Reconstruction (GR) tasks [29, 39, 59] use current embeddings to reconstruct
7https://github.com/linhongseba/Temporal-Network-Embedding
8https://github.com/lundu28/DynamicNetworkEmbedding
9https://github.com/luckiezhou/DynamicTriad

10https://github.com/urielsinger/tNodeEmbed
11https://github.com/houchengbin/GloDyNE
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snapshot (by retrieving node neighbors for every node) at current timestep. Node Rec-

ommendation (NR) tasks use current embeddings to recommend node neighbors for those

affected nodes (by verifying their old and new neighbors) at next timestep. Link Prediction

(LP) tasks [26, 32, 59] use current embeddings to predict new links (i.e., changed edges)

at next timestep. For GR and NR tasks, we adopt cosine similarity between embeddings

for ranking, and employ mean average precision at k (MAP@k) [28, 77] as the index. For

LP tasks, we train an incremental logistic regression using previous new edges as positive

samples and randomly sampled equal non-edges as negative samples, and employ area un-

der the ROC curve (AUC) [26, 37] as the index. The testing set includes positive samples

from future new edges at next timestep and equal negative samples from non-edges at next

timestep. The edge features are given by Weighed-L1 and Weighed-L2 binary operators

between node embeddings [74].

GR: Graph Reconstruction            NR: Node Recommendation           LP: Link Prediction
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matrix
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Figure 5.3: Evaluation protocol. For a task (e.g., GR), a method (e.g., SG-EDNE), and a

dynamic network of a dataset (e.g., G1 of DNC-Email), one result at each timestep t (e.g.,

GRt) is measured by an index (e.g., MAP@5). For the dynamic networks G1, G2, G3, G4,

and G5 generated from the same dataset, there are about 20, 40, 60, 80, and 100 timesteps

respectively. Each point shown in Figure 5.4, 5.5, and 5.6 depicts the averaged result over

all timesteps (e.g., GRavg), and we report the mean over 10 independent runs.

5.4.2 Results and Discussions

5.4.2.1 Comparative Study

The comparative study intends to compare the effectiveness and robustness of the DNE

methods, which include the six state-of-the-art DNE methods and proposed method SG-
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EDNE (or EDNE for short). In this work, the robustness is w.r.t. DoCs and is measured by

the standard deviation (or stdev) over the five effectiveness results for the five input dynamic

networks with different DoCs to a DNE method.

First, we observe the quantitative results from Table 5.2 that SG-EDNE achieves the

best effectiveness and robustness (see mean±stdev) for most cases (25/30). The exceptions

are GloDyNE in two NR tasks on Wiki-Talk, BCGD-L in two LP tasks on College-Msg,

and BCGD-L in LP-AUC-L1-feature on Co-Author. Nevertheless, SG-EDNE is more robust

w.r.t. DoCs (see stdev) in these exceptions, and still achieves the second best effectiveness

(see mean). The same findings can be visually observed in Figure 5.4-5.6.

Second, from Figure 5.4-5.6 (effectivness below 40% are omitted), we observe that DoCs

would greatly affect the effectiveness of some DNE methods such as DynTriad in GR tasks

on College-Msg, tNEmbed in NR tasks on Co-Author, and BCGD-L in LP tasks on FB-Wall.
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Figure 5.4: Comparative study for GR tasks. The evaluation protocol is illustrated in Figure

5.3. Each point depicts the mean over 10 independent runs of the averaged result over all

timesteps, i.e., GRavg. For each dataset, the ranking of DoCs of five input dynamic networks

is G1 > G2 > G3 > G4 > G5.
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Figure 5.5: Comparative study for NR tasks.
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Figure 5.6: Comparative study for LP tasks.

108



Robust Dynamic Network Embedding via Ensembles

Table 5.2: Quantitative results of comparative study for all tasks.

DNC-Email College-Msg Co-Author FB-Wall Wiki-Talk

GR-MAP@5

BCGD-G 13.77±0.44 26.42±0.79 51.68±1.95 0.73±0.02 0.53±0.01
BCGD-L 22.57±0.78 55.3±3.55 85.57±2.24 68.84±12.3 3.37±1.09
DynLINE 2.64±0.11 2.79±0.07 79.02±0.28 5.42±0.10 0.22±0.02
DynTriad 69.39±5.46 79.15±5.44 92.03±2.24 87.92±3.90 OOM
tNEmbed 16.15±1.18 31.85±4.59 72.03±8.83 51.3±12.11 5.36±1.55
GloDyNE 38.19±3.78 80.11±1.05 93.24±0.94 92.89±0.24 83.95±0.34
SG-EDNE †85.65±2.20 †92.78±0.30 †97.39±0.34 †96.40±0.53 †86.30±0.58

GR-MAP@50

BCGD-G 17.49±0.67 27.05±1.12 50.51±2.67 1.43±0.03 0.52±0.00
BCGD-L 21.29±0.78 43.18±3.20 70.78±1.90 61.31±11.7 2.90±0.95
DynLINE 2.42±0.06 2.97±0.06 62.76±0.71 5.45±0.06 0.25±0.02
DynTriad 64.62±5.51 65.05±5.73 80.63±3.86 79.31±4.11 OOM
tNEmbed 14.30±1.08 25.95±3.17 57.94±6.91 43.91±9.39 4.66±1.18
GloDyNE 36.15±3.41 64.23±1.07 80.49±1.36 87.80±0.23 78.18±0.30
SG-EDNE †82.14±2.14 †82.74±0.26 †88.92±0.72 †92.32±0.68 †81.02±0.59

NR-MAP@5

BCGD-G 60.45±4.78 49.65±2.94 77.85±4.41 1.52±0.10 7.02±1.28
BCGD-L 67.99±4.81 73.85±3.19 93.08±1.45 72.57±9.15 24.73±5.90
DynLINE 14.80±0.74 5.05±0.29 83.73±0.89 7.99±0.14 1.37±0.09
DynTriad 82.31±3.64 78.56±4.52 94.37±1.68 88.01±3.72 OOM
tNEmbed 54.02±2.20 41.45±4.84 78.24±9.87 54.8±13.34 23.90±5.49
GloDyNE 73.67±4.08 88.72±1.15 95.12±0.75 93.58±0.28 †89.47±0.87
SG-EDNE †95.02±0.97 †92.80±0.20 †98.94±0.09 †96.60±0.20 87.18±0.78

NR-MAP@50

BCGD-G 52.20±4.29 41.78±2.50 72.65±4.91 2.35±0.12 6.68±1.20
BCGD-L 57.01±4.50 54.42±3.34 80.53±2.10 58.85±7.85 18.67±4.18
DynLINE 11.75±0.30 5.32±0.17 64.28±0.25 7.95±0.05 1.67±0.11
DynTriad 64.63±4.22 57.35±4.55 83.57±2.92 74.83±3.79 OOM
tNEmbed 43.33±1.94 31.02±3.00 62.85±8.51 44.22±9.54 18.62±3.62
GloDyNE 60.42±3.90 66.53±1.47 83.61±1.40 83.45±0.21 †74.62±0.94
SG-EDNE †83.68±1.60 †76.50±0.23 †91.35±0.11 †86.84±0.28 70.63±0.49

LP-AUC-L1-feature

BCGD-G 53.69±1.04 53.59±0.29 79.65±3.78 51.54±1.00 82.66±1.40
BCGD-L 85.30±1.80 †79.03±3.17 †92.12±1.97 86.05±3.71 84.52±0.39
DynLINE 61.21±0.86 56.78±0.80 61.99±0.21 51.84±0.10 72.05±2.34
DynTriad 73.83±1.46 70.61±0.76 88.83±2.08 69.47±0.67 OOM
tNEmbed 53.53±2.88 54.77±1.70 50.96±0.83 50.83±0.49 70.49±7.10
GloDyNE 75.45±1.04 61.84±1.51 86.29±0.23 78.29±3.17 75.11±0.71
SG-EDNE †87.47±0.63 74.44±0.39 90.92±0.70 †88.01±0.08 †86.28±0.61

LP-AUC-L2-feature

BCGD-G 60.41±4.57 68.00±2.81 85.21±3.85 52.62±1.45 54.59±2.51
BCGD-L 80.97±1.53 74.32±2.68 88.47±1.22 87.16±2.02 83.23±0.77
DynLINE 62.04±0.85 56.95±0.93 63.08±0.28 52.07±0.22 72.97±2.15
DynTriad 83.58±1.24 †77.53±1.11 90.88±1.66 74.56±1.64 OOM
tNEmbed 48.34±2.42 51.79±1.54 50.28±0.54 51.22±0.81 66.58±7.63
GloDyNE 83.83±0.69 68.13±0.45 87.61±0.37 80.94±2.03 76.78±0.51
SG-EDNE †88.34±0.49 76.63±0.44 †91.93±0.61 †88.67±0.05 †87.34±0.58

Each entry quantifies mean±stdev of each line (with five effectiveness scores) in Figure 5.4, 5.5, and

5.6. The top two are in bold, and † highlights the best one.
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Third, it is interesting to observe there is no clear tendency that DNE methods prefer an

input dynamic network with the smaller DoCs, i.e., the smoother changes, which is however

assumed in several existing DNE works [26–32, 39].

Moreover, one more observation is that the performance of DNE methods might vary a

lot for different datasets and different types of tasks. The reason is that different datasets

and different types of tasks have different properties. For different datasets, the global (or

average) clustering coefficient [147] of the last snapshot of DNC-Email is about 0.215, while

that of Co-Author is about 0.665, and that of Wiki-Talk is about 0.114. For different types

of tasks, GR using current embeddings to reconstruct current snapshot is a relative static

task compared to LP for predicting future edges. Nevertheless, for the various datasets and

tasks, the proposed method with default parameters can effectively and robustly outperforms

other DNE methods for most cases.

5.4.2.2 Ablation Study

The ablation study aims to investigate if the key components in the proposed method (here

termed as EDNE-rwr) are useful. EDNE-rw is a variant that replaces random walks with

restart (rwr) used in EDNE-rwr with random walks (rw). EDNE-rw-fix is a variant that

fixes one set of node sequences for all base models compared to EDNE-rw that generates

different set of node sequences to each base model. DNE-rw is a variant that uses only one

base model compared to EDNE-rw that employs more than one base models. EDNE-rwr-ws

is a variant without the scaling operation compared to EDNE-rwr. The results for GR tasks

are shown in Table 5.3, and each entry is obtained in the same way as that in Table 5.2.

The results for NR and LP tasks can be found in Appendix A.4.

First, from the diversity perspective of the training samples to ensembles, EDNE-rwr >

EDNE-rw > EDNE-rw-fix. The results among them indicate that enhancing the diversity

among base models can improve the performance. Second, comparing the results of EDNE-

rwr to EDNE-rwr-ws, it demonstrates the usefulness of the scaling operation.

Third, regarding DNE-rw, it is interesting to observe that applying ensembles to DNE

by EDNE-rw-fix strategy would lead to the worse results, while other carefully designed
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ensembles by EDNE-rw strategy and EDNE-rwr strategy often obtain the better results.

One exception is that the proposed method by EDNE-rwr on Wiki-Talk is outperformed

by DNE-rw without ensembles, though EDNE-rwr is more robust. This encourages us to

further exploit a better design of ensembles for DNE methods as a future work.

Table 5.3: Ablation study of SG-EDNE for GR tasks.

DNC-Email College-Msg Co-Author FB-Wall Wiki-Talk

GR-MAP@5

DNE-rw 54.41±3.64 90.64±1.52 94.28±0.89 93.86±1.13 †90.47±2.64
EDNE-rw-fix 59.48±2.65 85.97±0.96 94.49±0.73 93.12±0.87 43.10±0.87
EDNE-rw 83.35±1.22 92.57±0.21 97.06±0.33 95.47±0.44 84.88±0.44
EDNE-rwr †85.65±2.20 †92.78±0.30 †97.39±0.34 †96.40±0.53 86.30±0.58
EDNE-rwr-ws 82.29±3.32 92.17±0.78 96.96±0.49 94.89±0.75 85.49±0.93

GR-MAP@50

DNE-rw 51.04±3.53 80.68±2.27 84.91±1.63 90.53±1.84 †86.85±3.10
EDNE-rw-fix 55.52±2.64 71.83±1.55 83.60±1.38 87.42±1.48 40.53±0.80
EDNE-rw 79.75±1.22 82.36±0.20 88.34±0.66 91.44±0.55 79.58±0.46
EDNE-rwr †82.14±2.14 †82.74±0.26 †88.92±0.72 †92.32±0.68 81.02±0.59
EDNE-rwr-ws 77.72±3.32 78.23±0.87 86.62±1.08 88.89±0.95 80.32±0.90

5.4.2.3 Parameter Sensitivity

The parameter sensitivity analysis tries to investigate two important hyper-parameters M

and Rmax. We vary M from 1 to 10 with step 1 and Rmax from 0.1 to 0.9 with step 0.2.

There are totally 10× 5 points, and each point is given by the same evaluation protocol as

illustrated in Figure 5.3. The results for GR tasks are shown in Figure 5.7, while the results

for NR and LP tasks can be found in Appendix A.5.

First, for number of base models (or base learners) M , increasing M would not always

improve performance, though M > 1 often achieves better performance. It seems different

datasets have quite different preferences in M . Second, for the maximum restart probability

Rmax, a smaller Rmax is often preferred in most cases. Recall Eq. (5.6) for assigning different

restart probabilities to RWR based on Rmax, which implies the proposed method employs a

smaller restart probability than Rmax in each base model. This motivates us to study the
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Figure 5.7: Parameter sensitivity for GR tasks. M is for the number of base models and

Rmax is for the maximum restart probability.
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property of RWR with different restart probabilities R, which is shown in Figure 5.8.

For Figure 5.8, we randomly pick a node and conduct RWR with different R starting

from the same node on the last snapshot of DNC-Email. We observe that different Rs can

explore different levels of local-global neighbors (i.e., different levels of local-global topology)

of the starting node. In particular, a smaller R explores a richer set of neighbors (more

evenly visit various nodes), while as R becomes larger, the diversity of the the neighboring

information being explored is reduced (more likely revisit few nodes). This might be the

reason why the proposed method prefers a smaller Rmax.

5.4.2.4 Scalability

This section presents the scalability test for SG-EDNE to verify its theoretical complexity

given in Section 5.3.3. Since SG-EDNE consists of two stages namely the offline stage

(at initial timestep or when retraining is needed) and the online stage (during incremental

learning), two sets of datasets are generated via the BA model (see Section 4.1) withmBA = 4

new edges per new node. For the offline stage, the number of nodes |VBA| in each network

ranges from 26 to 220 with step 1 in the exponent. For the online stage, the number of newly

emerging nodes |∆VBA| per snapshot ranges from 22 to 216 (lasting for 20 snapshots so the

last snapshot of a dynamic network has about |∆VBA| × 20 nodes).
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Figure 5.9: Scalability test for the proposed method. All axes are in log2 scale.

It might be easy to observe from Figure 5.9 that the results of scalability test are consis-
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tent with the theoretical complexity. The running time for offline stage and online stage is

linearly proportional to |V| and (|V t|+ |∆V t|) respectively.

5.5 Chapter Summary

In this chapter, to answer the RQ3 of the thesis, we presented our work [61], which proposed

a robust DNE method w.r.t. the degree of changes.

Specifically, we suggested the robustness issue of DNE methods w.r.t. Degree of Changes

(DoCs), and proposed an effective and more robust DNE method namely SG-EDNE basaed

on the diversity enhanced ensembles of the incremental Skip-Gram model. The compara-

tive study revealed that the existing DNE methods are not robust enough to DoCs, and

also demonstrated the superior effectiveness and robustness of SG-EDNE compared to the

existing DNE methods. The further empirical studies for SG-EDNE verified the benefits of

special designs in SG-EDNE and its scalability.

We acknowledge that our first attempt to the robustness issue of DNE w.r.t. DoCs

remains limitations. One can also preprocess a dynamic network with nonuniform number

of streaming edges per timestep, and then study the robustness of DNE under this scenario.

It might be another interesting but probably a more challenging scenario for the future work,

and we refer readers to our work [63] for further discussions.. Moreover, it is also interesting

to develop a better design of DNE ensembles, e.g., adopting other embedding model(s) as

base learners, or exploiting a better strategy to enhance the diversity among base learners.
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Chapter 6

Applications of Network Embedding

In Chapter 3-5, we have presented three novel Network Embedding (NE) methods [58, 59, 61],

each of which tries to address the challenges caused by one type of more realistic networks.

We employed some generic downstream tasks such as link prediction and node classification

to evaluate the embeddings obtained by those NE methods.

In this chapter, we discuss NE from the perspective of applications. The applications of

NE can be divided into two groups. One group is called generic applications (i.e., various

downstream tasks used in Chapter 3-5 to evaluate embeddings), which are summarized in

Section 6.2. Another group is called specific applications, which are discussed in Section 6.3.

Particularly, Section 6.3 presents our work [62] about a specific NE application to drug-target

interaction prediction, as a concrete example, to answer the RQ4 of the thesis “how can we

apply NE to drug-target interaction prediction? ”.

6.1 Background

According to the literature review in Chapter 2 and prior related works in Chapter 3-5, a

huge number of NE methods have been proposed to address various challenges resulting from

various scenarios of networks. The reason why NE becomes such popular nowadays could

be mainly owing to its widespread real-world applications. Regarding the development of
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NE algorithms, some generic NE applications (or called downstream tasks in Chapter 3-5)

such as link prediction and node classification [48–53] are employed to evaluate the quality

of resulting embeddings. These generic NE applications can be treated as the abstraction of

common (or standard) problems for mining or learning from networks, which paves a way

for broader real-world problems.

Regarding a specific NE application to a specific real-world problem, one natural idea is to

formulate the specific NE application as a well-studied generic NE application, and then solve

it. For instance, one could formulate a drug-target interaction prediction problem as a link

prediction problem, and apply NE to solve it [62]. There are a lot of specific NE applications

to a wide variety of real-world problems, e.g., predicting unknown interactions in drug-target

interaction networks [62], gene function prediction in biological networks [148], clustering

vehicle trajectory in transportation systems [54], visualizing electronic health records of

patients [149], recommendation system in social networks [150], traffic flow forecasting in

road networks [151], fraud detection in financial networks [152], and so on. Note that, these

specific real-world applications, which benefit business, scientific research, and our daily life,

further motivate and boost the development of NE algorithms.

6.2 Generic Applications

One commonly used methodology to apply NE to a specific real-world problem is to first

formulate the specific NE application as a well-studied generic NE application. Consequently,

we first summarize the generic NE applications in this section, according to our works [58,

59, 61] presented in Chapter 3-5 as well as NE surveys [48–53].

Assume that node embeddings have been obtained by adopting a NE method to a given

network. Based on the node embeddings, we then conduct the following downstream tasks

or generic applications.

• Node Classification (NC). NC aims to assign the most likely labels to the nodes without

labels [58, 59]. It can be seen as a multiclass classification problem. Concretely, we need

to train a classifier, e.g., a one-vest-rest logistic regression, using the node embeddings

116



Applications of Network Embedding

as input features and the known node labels as output labels. The trained classifier

can be then used to assign the most likely labels to the nodes without labels.

• Link Prediction (LP). LP aims to predict missing links [58] or future links [59, 61]. It

can be treated as a binary classification problem. Concretely, we should first obtain

edge embeddings via a binary operator [61, 74] or simple concatenation [58, 59] between

two node embeddings. If an edge exists, it would be labeled as a positive sample. And

if an edge does not exist, it would be labeled as negative sample. Usually, an equal

number of negative samples would be generated to balance the possible samples. After

that, we need to train a binary classifier, e.g., a logistic regression, using the edge

embeddings as input features and the edge labels as output labels. The trained binary

classifier can be then used to predict missing links or future links.

• Node Recommendation (NR). NR aims to recommend the nearest neighbors of a given

node. Unlike NC and LP above, NR does not require training. The search of k nearest

neighbors can be directly conducted over the node embeddings. It is worth noting that

NR would have different meanings under different contexts. For a static plain network

or a snapshot of a dynamic plain network, NR tries to evaluate how well the topological

information is preserved, which is also called graph reconstruction [59]. For a dynamic

plain network, NR tries to evaluate how well the temporal topological information is

preserved [61]. For a static attributed network, the goal of NR becomes to evaluate how

well the topological information and attribute information are combined and preserved,

e.g., as the specific application of paper recommendation [58] shown in Chapter 3.

• There are some other generic applications, e.g., visualization, community detection,

anomaly detection, sub-network classification, and so on. We refer the readers to

the NE surveys [48–53] for further reading. Overall, the generic NE applications can

be at node level (i.e., the lowest level), edge level, sub-network level, or even whole

network level. Regarding the input features to a generic NE application, the higher

level embeddings could be calculated via some operators over their relative lower level

embeddings, e.g., edge embeddings can be calculated via a binary operator between

node embeddings as discussed in the link prediction above.
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6.3 A Specific Application to Drug-Target Interaction

Prediction

As mentioned in Section 6.1, there are a lot of specific NE applications to a wide variety of

specific real-world problems, which benefits business, scientific research, and our daily life.

In this section, we take the drug-target interaction problem, as an example, to demosrate

how to apply NE to this specific problem and hence answer the RQ4 of the thesis. The main

contents in Section 6.3 are adapted1 from our work [62].

6.3.1 Background

Identifying novel Drug-Target Interactions (DTIs) is a crucial step in drug discovery [13].

Since experimentally determining DTIs is expensive and time-consuming [153], it is desirable

to develop computational methods to identify promising candidate DTIs to accelerate the

speed of drug discovery. Over the years, many computational methods have been proposed

to identify novel DTIs. The existing methods could be divided into three categories.

The first category is the target structure based methods [154]. These methods simulate

the docking process of drugs. However, the 3D structures of the proteins are required as

the input, yet, the 3D structures of many proteins are unavailable. The second category is

ligand similarity based methods [155]. These methods use the structural similarity between

ligands to predict interactions, however, the sequence similarities between targets are ignored

in predicting DTIs. The third category is machine learning based methods [56, 57, 156–162].

These methods often take the DTI network, drug structural similarity network (DSSN) and

target sequence similarity network (TSSN) as the inputs to train a machine learning model

for predicting DTIs. It should be noted that, the machine learning based methods have

attracted a lot of research interests in recent years. Most of them focus on identifying novel
1Though I am the second author of our work [62], I participated deeply in this work including coming up

with the idea of using implicit networks, providing advice of NE techniques, designing experiments, writing

introduction part, and proofreading other parts. I have also gained the permission from the first author to

reuse the materials of our work [62] in this thesis.
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DTIs from known DTIs, as a drug might bind to more than one target [160] and vice versa,

which could lead to successful drug repositioning.

Although many computational methods have been proposed to tackle the DTI predic-

tion problem, the implicit networks extracted from the known DTI network are ignored in

the existing works. However, it has been shown the implicit networks extracted from a

bipartite network can improve the performance of the link prediction task in the bipartite

network [163]. Besides, the implicit relations can also improve the performance of recom-

mender systems [164]. Motivated by the success of using implicit networks or relations in

other problems, we suggest to also consider the implicit networks extracted from the DTI

network (a bipartite network) in the DTI prediction problem. The implicit networks, i.e.,

drug implicit network (DIN) and target implicit network (TIN) as shwon in Figure 6.1, are

constructed using the second-order proximity in the DTI network. It is worth noticing that,

an edge in DIN indicates that two drugs would bind to one common target, and an edge

in TIN indicates that two targets would bind to one common drug, while DSSN (or TSSN)

represents the structural similarity directly calculated between two drugs (or two targets).

The topological structures of DIN and TIN would be different from the topological structures

of TSSN and DSSN, as they are computed from different perspectives.

Figure 6.1: An example of the implicit networks construction from a DTI network. A circle

represents a drug and a diamond represents a target. From the DTI network, the DIN and

TIN are constructed based on the common neighbours.
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To incorporate the implicit networks, we propose a method called Network Embedding

based Drug-Target Interaction Prediction (NE-DTIP). Specifically, NE-DTIP is a machine

learning based method and it includes two stages: the feature vector construction stage

and the DTI classification stage. During feature vector construction stage, DIN and TIN

are extracted from a DTI network. After that, drug embeddings and target embeddings

are learned from DIN, TIN, DSSN, and TSSN using a network embedding method. Unlike

previous methods, the proposed method additionally considers two homogeneous networks,

i.e., TIN and DIN, both of which are generated based on the implicit relations of a given

DTI network. During DTI classification stage, the drug-target pairs in a DTI network are

regarded as positive samples, while randomly sampled unknown drug-target pairs in the

DTI network are regarded as negative samples. The feature vector of each training sample is

constructed via concatenating the corresponding drug embeddings and target embeddings.

Finally, all samples are used to train a classifier for DTI predictions. The source code to

reproduce this work is available at https://github.com/BrisksHan/NE-DTIP

We employ five real-world DTI datasets to evaluate the performance of NE-DTIP. Com-

paring to four state-of-the-art methods, NE-DTIP outperforms the existing methods on three

out of five datasets. We also conduct a case study to verify the top twenty DTI predictions

by NE-DTIP on the latest dataset, and it is interesting to find that six out of twenty novel

DTIs (i.e., new DTIs not recorded on the dataset) are supported by recent studies.

6.3.2 Formulating the specific application based on generic appli-

cations

According to the generic applications as discussed in Section 6.2, the DTI prediction problem

is more suitable to be formulated as a link prediction problem, rather than other frequently

formulated generic problems such as node classification and node recommendation. The

reason is that a DTI network is a bipartite network in which we only need to predict whether

a drug (one type of node) has interaction (a link) with a target (another type of node).

Therefore, there is no need to assign labels for nodes without labels (node classification) or
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recommend a node to another node with the same type (node recommendation). Next, we

formally define the DTI prediction problem as a link prediction problem.

Definition 1: A Homogeneous Network. Let G = (V , E) be a homogeneous network (or

simply called a network) where V denotes a set of |V| nodes belonging to the same type,

and E denotes a set of |E| edges belonging to the same type. The adjacency matrix of G is

denoted as W ∈ R|V|×|V| where Wij is the weight of edge eij between a pair of nodes (vi, vj).

It should be noteworthy that, GDIN, GTIN, GTSSN, and GTSSN are homogeneous networks, as

all nodes in each network belong to the same type, e.g., all nodes in GDIN are drugs.

Definition 2: A DTI Network. A DTI network is a bipartite network in which nodes with

two different types can be divided into two sets and there is no edge between nodes in

the same set. Let GDTI = (VD,VT, EDTI) be a DTI network, where VD denotes a set of

drugs; VT denotes a set of targets; and EDTI ⊆ VD × VT denotes interactions. There is no

drug-drug interaction or target-target interaction in the DTI network. For any drug-target

pair (vD
i , v

T
j ) where i ∈ {1, ..., |VD|} and j ∈ {1, ..., |VT|}; the weight WDTI

ij describes the

strength of interaction between them; and WDTI
ij = 0 if there is no interaction. The matrix

WDTI ∈ R|VD|×|VT| stores all weights about drug-target interactions.

Definition 3: DTI Prediction Problem. The aim of DTI prediction is to infer a DTI prediction

matrix M ∈ R|VD|×|VT| for all drug-target pairs, given the inputs of a DTI network (DIN and

TIN are two implicit networks generated from the DTI network), a DSSN, and a TSSN. The

output of each entry in M should reflect the possibility of the existence of the interaction

between a drug-target pair.

Definition 4: Link Prediction Problem. To make the DTI prediction problem easier to solve,

we formulate it as a link prediction problem. Concretely, to infer a DTI prediction matrix

M ∈ R|VD|×|VT|, we only need to ask what is the probability of a link between every drug-

target pair (i.e., a link prediction problem), which yields every entry of the DTI prediction

matrix M (i.e., a DTI prediction problem). Note that, though link prediction is often

treated as a binary classification problem, here we want to further know the probability or

the confidence level of a link between a drug-target pair.
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6.3.3 Constructing networks from the original relational data

Unlike generic NE applications, the input networks are often directly given. However, the

input networks need to be constructed from the original relational data, when we try to apply

NE to a specific real-world problem. In this section, we thus introduce how to construct the

input networks as discussed in the above definitions.

6.3.3.1 Construction of Implicit Networks for DIN and TIN.

The implicit networks DIT orGDIN = (VD, EDIN) and TIN orGTIN = (VT, ETIN) are extracted

from the DTI network GDTI = (VD,VT, EDTI). Both implicit networks are homogeneous

networks, where each node in GDIN represents a drug; each node in GTIN represents a target;

and each edge in either GDIN or GTIN indicates the two corresponding nodes share at least

one common neighbor in GDTI. Following [165], the edge weight in GDIN and GTIN can be

respectively defined as

WDIN
ij =

∑
k∈{1,...,|VT|}

WDTI
ik WDTI

jk ∀ i, j ∈ {1, ..., |VD|} and i 6= j (6.1)

WTIN
ij =

∑
k∈{1,...,|VD|}

WDTI
ik WDTI

jk ∀ i, j ∈ {1, ..., |VT|} and i 6= j (6.2)

where WDIN
ij denotes the edge weight for a drug-drug node pair (vD

i , v
D
j ) in DIN and WTIN

ij

denotes the edge weight for a target-target node pair (vT
i , v

T
j ) in TIN.

6.3.3.2 Construction for DSSN and TSSN.

The edge weight in TSSN or GTSSN is calculated via applying smith-waterman algorithm to

pairs of protein sequences [166], while the edge weight in DSSN or GTSSN is calculated via

applying either Tanimoto coefficient [167] or [168] to pairs of drug molecular structures. The

DSSN and TSSN are very likely to be fully connected after the pairwise similarity calculation.

However, many edges are not informative, since their weights are too small. Furthermore, the

speed of network embedding process would be improved if the edges with small weights are

removed. Based on these considerations, we introduce an edge density parameter α ∈ [0, 1]
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to only keep a certain percentage of edges with large weights. In this way, the DSSN and

TSSN would reveal strong community structures according to [169]. Specifically, for both

DSSN and TSSN, we rank edges by weights and then keep the top (α × 100) percent, e.g.,

α = 0.1 means that only the edges with weights in the top 10 percent are kept.

6.3.4 Incorporating network embedding to the proposed method

As discussed in Section 6.2, the DTI prediction problem can be treated as a link prediction

problem. For a link prediction problem, we can train a classifier to predict whether an edge

would occur between two nodes. To this end, we should have the feature vector with its

known label for some edges to train the classifier. In this section, we first introduce why and

how to apply Network Embedding (NE) to obtain node embeddings, and then present how

to construct the labeled training samples. Finally, we describe what type of the classifier is

used for training and how to use the trained classifier to predict DTIs.

Figure 6.2: The framework of network embedding based DTI prediction method.

6.3.4.1 Network Embedding

Despite the weighted adjacency matrices of DIN, TIN, DSSN, and TSSN can be obtained

according to Section 6.3.3. These matrices only reflect the first order proximity between

nodes in each network, if we simply feed these matrices as the inputs to a classifier. It

has been shown that the higher order proximities are also beneficial to the link prediction
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problem [59, 74]. Therefore, a network embedding method is applied to encode both first

order proximity and higher order proximities into low dimensional embeddings for nodes.

The network embedding method used here is a modified version of DeepWalk [58]. It

has been introduced in Section 3.3.3.3, and thus is not repeated here. The reason of using

it should be owing to its simplicity, efficiency, and effectiveness [51]. Note that, this net-

work embedding method is applied to DIN, DSSN, TIN, and TSSN respectively to learn

drug embeddings in ZDIN ∈ R|VD|×d, drug embeddings in ZTSSN ∈ R|VD|×d, target embed-

dings in ZTIN ∈ R|VT|×d, and target embeddings in ZTSSN ∈ R|VT|×d, where the embedding

dimensionality d is kept the same for all types of embeddings.

6.3.4.2 Feature Vectors of Training Samples

The feature vectors of training samples are constructed based on the learned embeddings

that are stored in ZDIN, ZTSSN, ZTIN, and ZTSSN. The positive sample is defined as the

edge occurring in the DTI network. For the m-th drug-target pair (vD
i , v

T
j ) ∈ EDTI, which is

labeled as ypositive
m = 1, the feature vector of a positive drug-target sample Zpositive

m is obtained

by concatenating (denoted as ⊕) all corresponding embeddings, i.e.,

Zpositive
m = ZTSSN

i ⊕ ZDIN
i ⊕ ZTSSN

j ⊕ ZTIN
j (6.3)

The negative sample is generated randomly from currently nonexistent edges in the DTI

network where those edges, indicating drug-target interactions, have not be experimentally

validated. For the n-th randomly sampled drug-target pair (vD
i , v

T
j ) /∈ EDTI, which is labeled

as ypositive
n = −1, the feature vector of the negative drug-target sample Znegative

n can be

obtained by in the same as described in Eq. (6.3).

The ratio of positive samples to negative samples is set to 1:10 according to [159], because

there is less likely to have an interaction if we just randomly sample a drug-target pair.

6.3.4.3 DTI Prediction

As discussed in Section 6.3.2, to make the DTI prediction problem easier to solve, we formu-

late it as a link prediction problem. Note that, though link prediction is often treated as a
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binary classification problem, here we want to further know the probability or the confidence

level of a link between a drug-target pair.

In Section 6.3.4.2, the feature vectors of training samples, i.e., edge or drug-target pair

embeddings with either positive label or negative label, were constructed. After that, we

can train a classifier using these training samples. Specifically, the support vector machine

(SVM) [170] is selected as the classifier, as it has been shown to be effective and robust

[171]. To be more specific, the radial basis function (RBF) kernel of SVM [172] is chosen

to offer a better non-linear classification ability without having to project features into a

higher dimensional space. The SVM with RBF kernel is then trained using both positive

and negative training samples.

With the trained SVM classifier, we can infer the DTI prediction matrix M , which tries

to predict every entry of M or the probability of a link between every drug-target pair. The

feature vector of a drug-target pair is constructed by concatenating node embeddings from

DTN, DSSN, TIN, and TSSN as described in Section 6.3.4.2. Finally, the feature vector for

every drug-target pair is fed, one by one, to the trained SVM with Platt scaling [173] to

predict the probability of a link between every drug-target pair, until M is completed.

Algorithm 5 NE-DTIP: Network Embedding based Drug-Target Interaction Prediction
Input: DTI network; pre-computed DSSN; pre-computed TSSN; edge density parameter α; other

hyper-parameters related to network embedding and SVM are stated in Section 6.3.5

Output: DTI prediction matrix M ∈ R|VD|×|VT|

1: construct DIN and TIN from DTI network . Section 6.3.3.1

2: keep the top (α× 100) percent of edges in DSSN and TSSN . Section 6.3.3.2

3: for G in {GDIN, GTIN, GTSSN, GTSSN} do

4: obtain node embeddings for G by network embedding . Section 6.3.4.1

5: construct feature vectors with labels as training samples . Section 6.3.4.2

6: train a SVM classifier using training samples . Section 6.3.4.3

7: obtain feature vectors for all drug-target pairs, and feed them one by one to the trained SVM

with Platt scaling to infer every entry of M, until M is completed . Section 6.3.4.3

8: return DTI prediction matrix M
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6.3.5 Experiments and A Case Study

This section first states experimental settings such as datasets, compared methods with their

hyper-parameters, and performance evaluation. After that, we compare the proposed method

to other state-of-the-art methods, demosrate the effectiveness of using implicit networks, and

analyze the sensitivity of the edge density parameter used in the proposed method. Finally,

a case study is presented to show that the proposed method can predict the novel DTIs,

which are not recorded on the original DTI dataset.

6.3.5.1 Experimental Settings

There are five DTI datasets for benchmarking. Four of them, i.e., Nuclear Receptor (NR),

G-Protein-Coupled Receptors (GPCR), Ion Channel (IC), and Enzyme (E) come from [161],

while the largest one, i.e., Drug-Target INhibition (DT-IN) comes from [56]. For all datasets,

DSSN and TSSN are pre-computed. More specifically, the DSSN of NR, GPCR, IC, and, E is

computed by following [168], while the DSSN of DT-IN is computed by Tanimoto coefficient

[167]. The TSSN of all datasets are computed by Smith-Waterman algorithm [166]. Besides,

DIN and TIN (implicit networks) for each dataset are extracted from each DTI network

using the second order proximity. The statistics of five DTI datasets are shown in Table 6.1.

Table 6.1: The statistics of five DTI datasets.

NR GPCR IC E DT-IN

# of DTI edges (in a DTI network) 90 635 1476 2926 4978
# of drug nodes (in both DTI and DIN networks) 54 223 210 445 732
# of targets nodes (in both DTI and TIN networks) 26 95 204 664 1915
# of implicit drug-drug edges (in a DIN network) 218 2748 2546 5137 25628
# of implicit target-target edges (in a TIN network) 54 668 8843 15497 46843

To demosrate the effectiveness of the proposed method NE-DTIP, it is compared to

other four state-of-the-art methods, i.e., Netlaprls [174], BLM-NII [158], NRLMF [157] and

NeoDTI [159]. There could exist other recent methods that require external inputs such

as drug-drug interaction networks and target-target interaction networks, however, theses
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external inputs are not available to some of above DTI datasets. As a result, we focus on the

comparison among NE-DTIP, Netlaprls, BLM-NII, NRLMF, and NeoDTI. For fairness, all

five compared methods can only take the inputs from the DTI network, DSSN, and TSSN.

Unless otherwise specified, the experiments obey the following hyper-parameter settings.

The hyper-parameters of NE-DTIP consist of three parts. First, the hyper-parameters of

embedding dimensionality, number of walks, walk length, window size, and negative samples

for the incorporated network embedding method are set to 128, 10, 80, 10, and 5 respectively

according to [59, 73, 74]. Second, we adopt the default hyper-parameters for the selected

SVM with RBF kernel as recommended in [175]. Third, the density hyper-parameter α for

DSSN and TSSN is set to 0.1 after hyper-parameter tuning. Apart from NE-DTIP, regarding

the hyper-parameters of other four methods, we conduct a grid search around their default

values to find the better hyper-parameters, which help these methods achieve the better

performance. These hyper-parameters tuned on the largest dataset, i.e., DT-IN, are then

used for other four smaller datasets.

For the experiments except the case study, we randomly and equally split all existing

edges of a DTI network into 10 folds, in which each fold is treated as the testing set (10%)

once, and the rest night folds are treated as the training set (90%) accordingly. Note that,

this is known as the ten-fold cross validation. For both training and testing sets, the ratio

of positive samples (from existing edges) to negative samples (from non-existing edges) is

set to 1:10 according to [159], because there is less likely to exist an interaction if we just

randomly sample a drug-target pair. To evaluate the performance, we follow [56, 159] to

adopt the Area Under Precision and Recall curve (AUPR), as it is more suitable for the

imbalanced classification problem where the ratio of positive samples to negative samples is

1:10. For the fairness evaluation, we report the average AUPR with its standard deviation

over five independent ten-fold cross validations, i.e., 5 × 10 runs.

6.3.5.2 A Comparative Study

A comparative study of the proposed method NE-DTIP to other four state-of-the-art meth-

ods is conducted over five DTI datasets. The results are shown in Table 6.2.
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Table 6.2: The AUPR scores on five benchmark datasets.

Netlaprls BLM-NII NRLMF NeoDTI NE-DTIP

AUPR stdev AUPR stdev AUPR stdev AUPR stdev AUPR stdev

NR 0.2288 0.0486 0.3617 0.0984 0.3336 0.0629 0.2308 0.0835 0.2906 0.0992
GPCR 0.4149 0.0358 0.4578 0.0434 0.4979 0.0392 0.4966 0.0624 0.4398 0.0628
IC 0.4704 0.0291 0.4763 0.0276 0.5201 0.0278 0.5841 0.0356 0.6077 0.0397
E 0.6930 0.0265 0.7299 0.0285 0.7352 0.0294 0.7844 0.0267 0.7963 0.0248

DT-IN 0.7816 0.0230 0.8024 0.0231 0.8484 0.0186 0.8560 0.0161 0.8610 0.0145

The best results are in bold. The stdev is the abbreviation for standard deviation.

From Table 6.2, we observe that NE-DTIP outperforms other methods over IC, E,

and DT-IN datasets, despite it does not obtain the best performance over NR and GPCR

datasets. Note that, it is impossible for a method to always outperform other methods over

all datasets according to no free lunch theorem [176]. Considering the datasets themselves,

we can observe from Table 6.1 that IC, E, and DT-IN have more implicit relations than NR

and GPCR. Consequently, we believe the performance of NE-DTIP might be affected by the

implicit edges in the input DTI network. And NE-DTIP would be more useful for a DTI

network with rich implicit edges (i.e., the second order proximity relations).

6.3.5.3 Effect of Implicit Networks

To further investigate the effect of the implicit networks used in NE-DTIP, we compare

the performance of NE-DTIP with implicit networks (i.e., the original method) and NE-

DTIP without implicit networks (i.e., a variant of the original method) on DT-IN dataset.

Specifically, the variant of NE-DTIP only takes DSSN and TSSN as the inputs, while the

original NE-DTIP takes DSSN, TSSN, DIN, and TIN as the inputs. There are two variants

of NE-DTIP called DSSN+TSSN (d=128) and SSN+TSSN (d=258). The later one tries to

eliminate the effect of the dimensionality of edge embedding, which needs to concatenate

node embeddings from each network and hence has 256 × 2 dimensions. It is equal to the

dimensionality of edge embedding, which has 128× 4 dimensions for the original NE-DTIP

that takes two additional implicit networks.
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Table 6.3: The effect of implicit networks. DIN and TIN are implicit networks.

DSSN+TSSN (d=128) DSSN+TSSN (d=256) NE-DTIP

AUPR stdev AUPR stdev AUPR stdev
0.8075 0.0171 0.8063 0.0172 0.8610 0.0145

NE-DTIP: DSSN+TSSN+DIN+TIN (d=128)

According to the results in Table 6.3, the original NE-DTIP with implicit networks out-

performs its variants without implicit networks in both different dimensionality settings. It

demosrates the effectiveness of using implicit networks in NE-DTIP.

6.3.5.4 Parameter Sensitivity

The proposed method NE-DTIP has an important hyper-parameter α called edge density

parameter, which is used to control the edge density while constructing DSSN and TSSN.

To analyze its sensitivity, α is set to 0.01, 0.04, 0.1, 0.4, and 1.0 with other parameters fixed.

Table 6.4: The effect of edge density parameter α in NE-DTIP.

α=0.01 α=0.04 α=0.1 α=0.4 α=1

AUPR stdev AUPR stdev AUPR stdev AUPR stdev AUPR stdev

0.8547 0.014 0.8608 0.0153 0.8610 0.0145 0.8536 0.0151 0.8491 0.0159

From the results in Table 6.4, we observe that NE-DTIP obtains the best two results when

α = 0.04 and α = 0.1, while it obtains degraded results for other choices when α becomes

either too small or too large. If α becomes too small, DSSN and TSSN become very sparse

and thus there is no much topological structures to be encoded into node embeddings. If α

becomes too large, DSSN and TSSN would keep many uninformative or noisy edges, which

would also degrade the quality of node embeddings from DSSN and TSSN.

6.3.5.5 A Case Study

A case study on DT-In dataset is conducted to predict the novel DTIs that are not recorded

on this dataset. Unlike previous experiments, all existing edges in DT-In network are used
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for training, and there is no testing set. In fact, we exactly follow the procedures described

in Section 6.3.4 and Algorithm 5, which finally infers a DTI prediction matrix M , in which

each entry indicates the probability of a link between a drug-target pair. We then rank

all these probabilities, and select the top-100 most likely links excluding known links (i.e.,

existing edges in DT-In network). The top-100 most likely links predicted by our method is

plotted in Figure 6.3.

Figure 6.3: The top-100 novel DTIs predicted by the proposed method on DT-IN dataset.

Each circle is a drug and each diamond is a target. The links between drugs and targets are

the novel DTI predictions (i.e., new DTIs not recorded on the original dataset). The top-20

novel DTI predictions are drawn in solid lines, while the rest ones are drawn in dashed lines.

To interpret the novel DTI predictions in terms of drug discovery, we search for the

supporting studies over the top-20 novel DTI predictions. It is interesting to find that six
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of them are supported by recent studies. Sunitinib inhibits EPHB2 [177], SYK [178], and

GSK3B [179]. Using Sunitinib as a treatment substantially increases ERBB3 [180]. Bosutinib

is an inhibitor of KDR [181]. Haloperidol down regulates CHRM2 [182].

6.4 Chapter Summary

This chapter discussed NE from the perspective of applications, which can be divided into

generic applications and specific applications. The generic applications, i.e., various down-

stream tasks used in Chapter 3-5 to evaluate embeddings, were summarized in Section 6.2.

The specific applications were discussed in Section 6.3.

In particular, Section 6.3 presented our work [62] about a specific NE application to

drug-target interaction prediction, as a concrete example, to answer the RQ4 of the thesis.

Specifically, we proposed a NE based DTI prediction method. The experiments on five DTI

datasets demonstrated that the proposed method is competitive with other four state-of-the-

art methods, especially when there is a rich implicit relations in a DTI network. A further

experiment about removing implicit networks (built using the implicit relations) suggested

that there was a significant performance gain in incorporating the implicit networks, which

however are ignored in previous works. More importantly, a case study on DT-In dataset

indicated that the proposed method can predict the novel DTIs, which are not recorded on

the original DT-In dataset but are supported by recent studies.

From this concrete example of a specific NE application, we could summarize a workflow

of applying NE to a real-world problem.

• Formulate a given specific real-world problem into a well-studied generic NE applica-

tion, e.g., a link prediction task or a node classification task.

• Construct a network or networks from the original relational data, and try to think

about and utilize the characteristics of the network.

• Employ a suitable NE method to learn embeddings, which then serve as the inputs (or

extra inputs) to a downstream task.

131



Applications of Network Embedding

• Test and optimize the whole model, and try to conduct an ablation study to see whether

the NE module really helps.

It is worth mentioning that, the specific NE applications to real-world problems, which

benefit business, scientific research, and our daily life, further motivate and boost the devel-

opment of NE algorithms. Regarding the future work, one may follow the above workflow

to apply NE to various real-world problems, if one can reasonably construct a network or

networks from the given problem and dataset.
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Conclusions

Networks (or graphs) are powerful and preferred data representation (or structure) to model

the relationships between entities in many fields, e.g., social networks, knowledge graphs,

molecular interaction networks from biology or chemistry, telecommunication networks,

transportation networks, the Internet, recommender systems, sensor networks, and so on.

Network Embedding (NE), serving as a kind of feature extraction technique for networks,

can facilitate various downstream tasks and specific real-world problems. Although many

successful NE methods are proposed, most of them are designed for embedding static plain

networks. In fact, the real-world networks often come with one or more additional properties

such as node attributes and dynamic changes. The central research question of this thesis

was “where and how can we apply NE for more realistic scenarios? ”. It then resulted in four

concrete research questions (RQs) as described in Chapter 1 and answered in Chapter 3-6

respectively, which is briefly summarized in Section 7.1. Furthermore, we provide several

promising directions of the related future work in Section 7.2.

7.1 Thesis Summary

Chapters 1 and 2 mainly introduced the background of NE, suggested the RQs of this thesis,

reviewed the literature of NE, and discussed other preliminaries. These build a foundation

to systematically present our research works in the subsequent chapters.
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In Chapter 3, we considered the (static) attributed network, which can better describe

a real-world complex system where the relationships between entities can be represented as

networks and the auxiliary information can be represented as node attributes. Attributed

Network Embedding (ANE) aims to utilize network topology and node attributes to jointly

learn enhanced low-dimensional node embeddings. However, prior ANE methods cannot

effectively and efficiently embed attributed sparse networks which are important real-world

scenarios. It leaded to our RQ1 “how can we embed an attributed sparse network effectively,

efficiently, and robustly? ”. To answer RQ1, we first integrated network topology and node at-

tributes to reconstruct an enriched denser network, and then learned node embeddings upon

the denser network. In above two steps, the techniques such as Ball-tree K-Nearest Neigh-

bors and random walks based Skip-Gram model were adopted to guarantee the scalability,

which was demonstrated via theoretical complexity analysis. The extensive empirical studies

showed the effectiveness and efficiency of the proposed method, as well as its robustness to

different networks or the same network with different sparsities.

In Chapter 4, we moved to the dynamic (plain) network, which is a more realistic scenario

as real-world complex systems often evolve over time. Dynamic Network Embedding (DNE)

aims to efficiently learn node embeddings at each timestep by preserving network topology

and its dynamics. Most prior DNE methods try to capture the topological changes at or

around the most affected nodes and accordingly update node embeddings. Unfortunately,

this kind of approximation, although can improve efficiency, cannot effectively preserve the

global topology of a dynamic network at each timestep, due to not considering the inactive

sub-networks that receive accumulated topological changes propagated via the high-order

proximity. It produced our RQ2 “how can we embed a dynamic network with global topology

preservation? ”. To answer RQ2, we proposed a novel node selecting strategy to diversely

select the representative nodes over a network, which was coordinated with a new incremental

learning paradigm of Skip-Gram based embedding approach. The experiments showed the

proposed method achieved the superior or comparable performance w.r.t. the state-of-the-

art DNE methods. Particularly, it significantly outperformed other methods in the graph

reconstruction task, which demonstrated its ability of global topology preservation.
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In Chapter 5, we made a step further towards robust DNE. Comparing to static networks,

dynamic networks have a unique character called the degree of changes, which can be used

as an index to quantify a kind of dynamic character of an input dynamic network about

its rate of streaming edges between consecutive snapshots. The degree of changes could be

very different for different dynamic networks. However, it remains unknown if existing DNE

methods can robustly obtain good effectiveness to different degrees of changes, in particular

for corresponding dynamic networks generated from the same dataset by different slicing

settings. To answer this open question, we conducted a comparative study over six state-

of-the-art DNE methods, and found they were not robust enough to different degrees of

changes. It thus emerged our RQ3 “how can we embed a dynamic network robustly to the

degree of changes? ”. To answer RQ3, the proposed method followed the notion of ensembles

where the base learner adopted an incremental Skip-Gram embedding approach. To further

boost the performance, a simple yet effective strategy was proposed to enhance the diversity

among base learners at each timestep by capturing different levels of local-global topology.

Extensive experiments demonstrated the benefits of special designs in the proposed method,

and its superior performance compared to state-of-the-art DNE methods.

In Chapter 6, we applied NE to a specific real-world problem, rather than those generic

downstream tasks as used in previous chapters for benchmark. The problem we chose was the

Drug-Target Interaction (DTI) prediction problem, which is a crucial step in drug discovery

and benefits human health. It yielded our RQ4 “how can we apply NE to DTI prediction? ”.

To answer RQ4, the DTI prediction problem was formulated as a link prediction task. After

that, we stated the way to prepare input networks from the original DTI dataset. Finally,

we proposed a new NE based DTI prediction method, in which a NE method was applied

to obtain node embeddings over each prepared network, and then we followed the paradigm

of link prediction to build training samples, train a classifier, and make predictions. Unlike

previous methods, the proposed method additionally considered two implicit networks gen-

erated from the DTI network. Experiments demonstrated the effectiveness of the proposed

method. A case study indicated that the proposed method can predict the novel DTIs, which

are not recorded on the original DTI dataset but are supported by recent studies.
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7.2 Future Work

This final section provides several promising directions of the related future work.

• Towards robust dynamic network embedding.

There are two straightforward approaches to generate a dynamic network. First, the

dynamic network can be generated by slicing with a fixed number of edges [30, 31].

Second, the dynamic network can be generated by slicing with a fixed time interval

[35, 59]. For the both cases, the degree of changes could be quite different even for

the dynamic networks generated from the same dataset. In Chapter 5, we proposed a

robust DNE for the first case [61], while a robust DNE for the second case was left for

future work as suggested in our works [61, 63]. The second scenario is more challenging,

because the number of changed edges may vary a lot over timesteps, e.g., much more

friendships than usual would be built in a social network during a social event. The

second scenario tries to study the performance of a DNE method at each timestep,

while the first scenario focuses more on the average performance over all timesteps.

Ideally, a desirable DNE method should be effective and robust to not only different

degrees of changes by different slicing settings, but also different numbers of streaming

edges over timesteps. Therefore, it is also worth investigating the second scenario.

Apart from above two approaches to generate a dynamic network, there could exit more

complicated approaches. It is impossible to list all. Consequently, another important

future direction is to rethink of how to represent a dynamic network in a more proper

way to reduce the uncertainties in generating dynamic networks, so that we can then

propose a robust DNE method for broader applications [63].

• Dynamic attributed network embedding for sparse topology in early stages.

Chapter 3 proposed a static attributed network embedding method [58], while Chapter

4 and 5 developed two dynamic plain network embedding methods [59, 61] respectively.

It is natural to come up with combining both, i.e., to embed a dynamic attributed net-

work. A dynamic attributed network is an attributed network with the evolution of

both topologies and attributes over time. It can better model some real-world complex
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systems, e.g., the relationships between social users and the profiles of social users

would both vary over time. To our best knowledge, there are three dynamic attributed

network embedding methods [27, 129, 183]. However, these methods have not consid-

ered the sparse topology of an dynamic attributed network in early stages (maybe called

as a cold-start problem), which would affect the use of node attributes in a topological

sparse network as discussed in Section 3.1. As a result, one future direction is to study

the effect of sparse topology in early stages on dynamic attributed network embedding.

Moreover, another interesting direction is to investigate the interplay between network

topology and node attributes as a dynamic attributed network evolves.

• Theoretical analysis or deeper insights of the proposed methods.

In this thesis, we proposed and empirically studied three novel NE methods, each

of which was for addressing one set of the new challenges that we discovered from

more realistic networks. Although extensive experiments were conducted to demosrate

the superiorities and good properties of the proposed methods, the limitation of these

proposed methods might be the lack of solid theoretical analysis or deeper insights. For

example, we adopted softmax, i.e., Eq. (4.4) in Chapter 4, to normalize the score that

quantifies the accumulated topological changes of a node in a sub-network snapshot of a

dynamic network. The motivation of using softmax (often used in machine learning for

multiclass classification problems) was simply to obtain a valid probability distribution

such that a larger score gives a larger probability to select nodes largely affected by

streaming edges. In fact, we may interpret the softmax here from the perspective

of Boltzmann distribution in statistical physics, if an input dynamic network can be

regarded as a complex system that follows thermodynamics. From this perspective, we

may redesign the score function in Eq. (4.3) to include both an energy-like quantity

and a temperature-like system constant in a more principle way, which might make

the proposed method better motivated, enable researchers to conduct some theoretical

analysis on it, and even develop a more effective method or new theory from it.

• An end-to-end network embedding based DTI prediction method.

In Chapter 6, we introduced a NE based DTI prediction method [62], which consisted of
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the feature extraction step and the DTI prediction step. Specifically, NE was applied to

each input network to extract node features, which were then used to construct training

samples, train a DTI prediction model, and make DTI predictions. It should be noted

that, the node features were learned separately from the final prediction model. There-

fore, the node features might not be optimal for the final prediction model. To fill this

gap, we are now working on an end-to-end NE based DTI prediction method as listed

in Section 1.4, titled as (might be slightly modified) “A Neural Embedding Model for

Drug-Target Interaction Prediction with Micro and Macro Proximities Preservation” or

GraphDTIP for short. For this ongoing work1, the node features (or node embeddings)

would be jointed optimized with the final prediction model.

• Specific applications of dynamic network embedding.

There have been a large number of specific applications of static network embedding

as surveyed in [48–53]. However, most real-world networks are dynamic by nature.

Recently, the research interests of applications start moving to DNE. For instance, our

DNE work [184] briefly presented in Appendix A.3 (i.e., an early version of our work

[59] presented in Chapter 4) was adapted to dynamic vehicle trajectory clustering [54].

The specific DNE applications to real-world problems, which benefit business, scientific

research, and our daily life, would further motivate and boost the development of DNE.

Hence, it is needed to further explore specific DNE applications.

• Beyond node level embeddings.

Considering the output of network embedding, this thesis mainly focused on learning

node embeddings (i.e., node level embeddings or lowest level embeddings). However,

some specific real-world applications require the higher (or coarser) level embeddings

such as edge level, sub-network level, and whole network level [50]. One straightforward

approach is to define a pooling or readout operation [11] to obtain the higher level

embeddings based on the node level embeddings But this would neglect the direct

semantic meaning between the higher level objects, as node level embeddings mainly

preserve similarities between nodes. In the future, we may need to carefully consider
1https://github.com/mythezone/GraphDTIP

138



Conclusions

the direct semantic meaning between the higher level objects, rather than simply using

a pooling or readout operation over node embeddings to obtain embeddings for the

higher level objects, e.g., sub-network embeddings.

• Input network enhancement.

In Chapter 3, we proposed an attributed network embedding method particularly for

handling the topological sparse network [58]. To this end, node attributes were used to

enrich the topological sparse network, as a kind of network enhancement mechanism, to

improve the performance of its following Skip-Gram embedding model. Besides, there

is also an interesting work about network enhancement to denoise weighted biological

networks [185], though this work is neither directly related to network embedding nor

related to attributed networks. Inspired by above two works, a novel angle to improve

network embedding could be including an input network enhancement mechanism.

It might be more intuitive to include an input network enhancement mechanism for

attributed network embedding as we did in [58]. But the work [185] shows a way of

network enhancement without using node attributes. It is promising for future work,

from this novel angle, to improve network embedding by including an input network

enhancement (or denoising) mechanism for various types of networks.
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Supplementary Materials

A.1 A Proof of Eq. (3.1) in Chapter 3

In Eq. (3.1), we have

T =

p∑
q=1

λ(q)T(q) s.t.
p∑
q=1

λ(q) = 1 (A.1)

where the superscript q ∈ {1, ..., p} denotes different sources of information and the factor

λ(q) ∈ [0, 1] is a non-negative real number. Prove that T is a transition matrix given each

T(q) is a transition matrix1.

According to the definition of a transition matrix, each row of T(q) sums to one i.e.

n∑
j=1

T
(q)
ij = 1 (A.2)

where T (q)
ij is the entry (i, j) of the transition matrix at q source, which indicates the transition

probability (or similarity) from node i to j; n is the number of nodes, and the subscript

i, j ∈ {1, ..., n}. With Eq. (A.2) and the constraint in Eq. (A.1), it might be easy to show
1In mathematics, a transition matrix is also known as a stochastic matrix to describe the transitions of

a Markov chain.
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that each row of T sums to one as follows.
n∑
j=1

Tij =

p∑
q=1

n∑
j=1

λ(q)T
(q)
ij

=

p∑
q=1

λ(q)(
n∑
j=1

T
(q)
ij )

=

p∑
q=1

λ(q) · 1

= 1

(A.3)

Note that, λ(q) is a scalar and thus can be multiplied with each entry of the matrix. Eq.

(A.3) demosrates that each row of T ∈ Rn×n sums to one. By the definition of a transition

matrix, T is hence a transition matrix.

A.2 A Proof of Eq. (3.3) in Chapter 3

For Eq. (3.3), we can rewrite as

cos(x,y) = 1− ||x− y||2

2
s.t. ||x|| = ||y|| = 1 (A.4)

where || · || denotes L2 norm of a vector; ||x − y|| gives the Euclidean distance between x

and y; and cos(x,y) represents their Cosine similarity. Prove that Eq. (A.4) holds for any

pair of vectors x 6= 0 and/or y 6= 0.

According to the definition of Euclidean distance, we have:

Euclidean(x,y) = ||x− y|| =

[∑
i

(xi − yi)2
] 1

2

=

[∑
i

x2i + y2i − 2xiyi

] 1
2

=

[∑
i

x2i +
∑
i

y2i − 2
∑
i

xiyi

] 1
2

=
[
xTx + yTy − 2xTy

] 1
2

(A.5)
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According to the definition of Cosine similarity, we have:

cos(x,y) =
xTy

||x||||y||
(A.6)

With the constant in Eq. (A.4) that ||x|| = ||y|| = 1 i.e. projecting x and y into a unit

hyper-sphere, we have:

Euclidean(x,y) =
[
2− 2xTy

] 1
2

= [2− 2cos(x,y)]
1
2

(A.7)

By rearranging Eq. (A.7), it is easy to show that:

cos(x,y) =
2− Euclidean(x,y)2

2

= 1− ||x− y||2

2

(A.8)

A.3 An Early Version of GloDyNE in Chapter 4

In this section, we first give the abstract of our work called DynWalks [184], which is an

early version of our work called GloDyNE [59] in chapter 4. After that, the main different

between DynWalks and GloDyNE is presented. And finally, we refer the readers who are

interested in DynWalks to the original manuscript. Note that, the contents below are mainly

adapted from our work [184].

Learning topological representation of a network in dynamic environments has recently

attracted considerable attention due to the time-evolving nature of many real-world networks

i.e. nodes/links might be added/removed as time goes on. Dynamic network embedding

aims to learn low dimensional embeddings for unseen and seen nodes by using any currently

available snapshots of a dynamic network. For seen nodes, the existing methods either

treat them equally important or focus on the k most affected nodes at each time step.

However, the former solution is time-consuming, and the later solution that relies on incoming

changes may lose the global topology—an important feature for downstream tasks. To

address these challenges, we propose a dynamic network embedding method called DynWalks,

which includes two key components: 1) An online network embedding framework that can

142



Supplementary Materials

dynamically and efficiently learn embeddings based on the selected nodes; 2) A novel online

node selecting scheme that offers the flexible choices to balance global topology and recent

changes, as well as to fulfill the real-time constraint if needed. The empirical studies on

six real-world dynamic networks under three different slicing ways show that DynWalks

significantly outperforms the state-of-the-art methods in graph reconstruction tasks, and

obtains comparable results in link prediction tasks. Furthermore, the wall-clock time and

complexity analysis demonstrate its excellent time and space efficiency.

The main different between DynWalks and GloDyNE is the node selecting scheme. As

a result, here we present the idea of (online) node selecting scheme used in DynWalks as

shown in Figure A.1.

Figure A.1: The illustration of the proposed online node selecting scheme in DynWalks.

The online node selecting scheme is proposed to select nodes from current snapshot Gt.

There are two questions to be answered. Firstly, how many nodes should be selected? To

reduce time and space complexity, one natural idea is to focus on a part of important nodes.

Therefore, the hyper-parameter α is used to limit the number of selected nodes to α|V t| where

α can be adapted according to the real-time constraint if needed. And secondly, which nodes

should be selected? To balance recent changes and global topology, the hyper-parameter β

is used to select βα|V tall| most affected nodes and (1− β)α|V tall| diverse nodes.

The original manuscript of DynWalks, with the details of how to select most affected

nodes and diverse nodes, are available at https://arxiv.org/abs/1907.11968. Note that,

DynWalks has been applied to dynamic vehicle trajectory clustering [54], which demosrates

its real-world significance.
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A.4 Additional Results of Ablation Study for Chapter 5

In addition to Table 5.3 (for GR tasks), we provide the results of ablation study for NR and

LP tasks as shown in Table A.1.

Table A.1: Ablation study of SG-EDNE for NR and LP tasks.

DNC-Email College-Msg Co-Author FB-Wall Wiki-Talk

NR-MAP@5

DNE-rw 81.22±0.71 88.98±1.85 96.00±0.99 94.41±1.02 92.62±1.52
EDNE-rw-fix 87.90±1.10 87.46±0.59 97.18±0.43 93.56±0.67 70.97±1.11
EDNE-rw 94.24±1.33 92.34±0.21 98.67±0.15 95.82±0.24 85.53±0.71
EDNE-rwr 95.02±0.97 92.80±0.20 98.94±0.09 96.60±0.20 87.18±0.78
EDNE-rwr-ws 93.62±0.85 94.44±0.19 98.69±0.18 95.09±0.38 87.64±0.79

NR-MAP@50

DNE-rw 67.46±0.59 71.15±2.88 87.43±1.30 86.72±1.87 81.14±3.35
EDNE-rw-fix 74.62±1.22 67.12±1.20 87.70±0.60 82.10±1.22 54.54±0.71
EDNE-rw 82.58±1.85 75.60±0.19 90.81±0.13 86.13±0.29 68.61±0.29
EDNE-rwr 83.68±1.60 76.50±0.23 91.35±0.11 86.84±0.28 70.63±0.49
EDNE-rwr-ws 80.53±1.28 74.93±0.29 89.32±0.30 82.89±0.52 71.33±0.66

LP-AUC-L1-feature

DNE-rw 84.86±0.60 72.49±0.34 87.91±0.33 84.35±0.49 77.14±0.94
EDNE-rw-fix 86.21±0.44 73.35±0.41 90.43±0.54 87.29±0.11 85.16±0.58
EDNE-rw 87.48±0.64 74.79±0.50 90.90±0.68 87.83±0.02 86.29±0.68
EDNE-rwr 87.47±0.63 74.44±0.39 90.92±0.70 88.01±0.08 86.28±0.61
EDNE-rwr-ws 85.16±1.11 70.28±0.25 89.36±0.23 84.61±1.37 84.96±0.49

LP-AUC-L2-feature

DNE-rw 85.96±0.48 75.01±0.40 89.17±0.41 85.69±0.27 78.79±0.66
EDNE-rw-fix 87.13±0.32 75.48±0.47 91.34±0.49 87.92±0.07 86.13±0.57
EDNE-rw 88.32±0.53 77.01±0.58 91.89±0.58 88.45±0.03 87.37±0.66
EDNE-rwr 88.34±0.49 76.63±0.44 91.93±0.61 88.67±0.05 87.34±0.58
EDNE-rwr-ws 85.14±1.00 70.29±0.27 89.54±0.20 83.24±2.17 85.31±0.51

The findings for NR and LP tasks are similar to that for GR tasks as discussed in Section

5.4.2.2. There are two exceptions. First, EDNE-rwr-ws outperforms EDNE-rwr on College-

Msg in NR-MAP@5 and on Wiki-Talk in both NR tasks. This finding indicates that the

scaling operation, i.e., [0, 1] min-max scaling, may fail sometimes. However, for all other

27/30 cases, the scaling operation can improve the performance.
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Second, DNE-rw (without ensembles) obtains the worst results than all other variants of

DNE ensembles in LP tasks, while DNE-rw obtains the best results in NR tasks GR tasks

(see Table 5.3). This observation may encourage us to employ the ensembles in LP tasks.

A.5 Additional Results of Parameter Sensitivity for Chap-

ter 5

In addition to Figure 5.7 (for GR tasks), we provide the results of parameter sensitivity for

NR and LP tasks as shown in Figure A.2 and A.3. The findings for NR and LP tasks are

the same to that for GR tasks as discussed in Section 5.4.2.3.

One new observation, according to Figure A.3, is that LP tasks often prefer a lager M

than GR and NR tasks. This observation again encourages us to employ the ensembles in

LP tasks as also suggested in Appendix A.4 above.

M

2468
Rmax0.1

0.5
0.9

85
90
95

DNC-Email

M

2468
Rmax0.1

0.5
0.9

80

90

College-Msg

M

2468
Rmax0.1

0.5
0.9

96

98

Co-Author

M

2468
Rmax0.1

0.5
0.9

90

95

FB-Wall

M

2468
Rmax0.1

0.5
0.9

NR
-M

AP
@

5

70
80
90

Wiki-Talk

M

2468
Rmax0.1

0.5
0.9

70

80

M

2468
Rmax0.1

0.5
0.9

60
70
80

M

2468
Rmax0.1

0.5
0.9

84
87
90

M

2468
Rmax0.1

0.5
0.9

80

90

M

2468
Rmax0.1

0.5
0.9

NR
-M

AP
@

50

60

80

Figure A.2: Parameter sensitivity for NR tasks. M is for the number of base models and

Rmax is for the maximum restart probability.

145



Supplementary Materials

M

2468
Rmax0.1

0.5
0.9

86

88

DNC-Email

M

2468
Rmax0.1

0.5
0.9

70
72
74

College-Msg

M

2468
Rmax0.1

0.5
0.9

88

90

Co-Author

M

2468
Rmax0.1

0.5
0.9

86

88

FB-Wall

M

2468
Rmax0.1

0.5
0.9 LP

-A
UC

-L
1-

fe
at

ur
e

80

85

Wiki-Talk

M

2468
Rmax0.1

0.5
0.9

86

88

M

2468
Rmax0.1

0.5
0.9

72

75

M

2468
Rmax0.1

0.5
0.9

90

92

M

2468
Rmax0.1

0.5
0.9

86

88

M

2468
Rmax0.1

0.5
0.9 LP

-A
UC

-L
2-

fe
at

ur
e

80

85

Figure A.3: Parameter sensitivity for LP tasks. M is for the number of base models and

Rmax is for the maximum restart probability.
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Useful Resources

Source Code for The Thesis.

• To reproduce RoSANE in chapter 3: https://github.com/houchengbin/OpenANE

• To reproduce GloDyNE in chapter 4: https://github.com/houchengbin/GloDyNE

• To reproduce SG-EDNE in chapter 5: https://github.com/houchengbin/SG-EDNE

• To reproduce NE-DTIP in chapter 6: https://github.com/BrisksHan/NE-DTIP

• To reproduce HSRL as mentioned in chapter 3: https://github.com/fuguoji/HSRL

• To reproduce DynWalks as mentioned in Appendix A.3 (an early version of GloDyNE):

https://github.com/houchengbin/GloDyNE/releases/tag/v0.1

• To reproduce GraphDTIP as mentioned in chapter 7 (ongoing work): https://gith

ub.com/mythezone/GraphDTIP

Network Datasets.

• Prepared data for the thesis: https://github.com/houchengbin/NetEmb-Datasets

• Stanford large network dataset collection: https://snap.stanford.edu/data

• Dynamic networks: http://networkrepository.com/dynamic.php

• KONECT Project: http://konect.cc

• And others:
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Useful Resources

https://www.aminer.cn/data

https://linqs.soe.ucsc.edu/data

http://networkrepository.com/index.php

http://snap.stanford.edu/biodata/index.html

http://vlado.fmf.uni-lj.si/pub/networks/data

https://sites.google.com/site/ucinetsoftware/datasets

https://cnets.indiana.edu/data-repository-for-nan-group

http://networksciencebook.com/translations/en/resources/data.html

Others.

• A list of NE papers: https://github.com/thunlp/NRLPapers

• A list of DNE papers: https://github.com/Cantoria/dynamic-graph-papers

• A list of GNN papers: https://github.com/thunlp/GNNPapers

• Source code of a list of NE methods: https://github.com/thunlp/OpenNE

• Source code of a list of ANE methods: https://github.com/houchengbin/OpenANE

• NE or GNN framework: https://github.com/alibaba/graph-learn

• NE or GNN framework https://github.com/facebookresearch/PyTorch-BigGraph

• NE or GNN framework: https://github.com/dmlc/dgl

• NE or GNN framework: https://github.com/PaddlePaddle/PGL

• NE or GNN framework: https://github.com/rusty1s/pytorch_geometric

• Python package for network science: https://networkx.org

• Python package for machine learning: https://scikit-learn.org/stable

• Python package for Skip-Gram: https://github.com/RaRe-Technologies/gensim
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