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Abstract 

A wide range of clinical conditions, such as autism spectrum disorders, Parkinson’s disease, 

Huntington’s disease or schizophrenia (amongst others), show co-occurring socio-cognitive 

and motor symptoms. In addition, all of these populations have been associated with a 

dopamine-system dysfunction. However, it is currently unclear whether co-occurring 

symptoms across socio-cognitive and motor domains in these populations relate to the same 

underlying mechanism (e.g., dysfunctional dopamine signaling) or originate from distinct root 

causes that lead to seemingly related symptoms. Across four empirical chapters, this thesis 

explores the link between motor- and social-cognitive function in healthy individuals and in 

pharmacological models of neuropathology.  

The first chapter provides a general introduction into the existing literature on the relationship 

between social and motor function in healthy and clinical populations. The second chapter 

addresses the relationship between motor function and mental state attribution. Because 

existing tasks for the assessment of mental state attribution do not allow the comparison of 

stimulus and participant movements, first the development of an adaptation of a classic 

mentalizing task, which is suitable to track both observer and animator kinematics, is outlined. 

The chapter then explores the role of stimulus kinematics and observer-animator kinematic 

similarity, alongside other important stimulus characteristics, in successful mental state 

attribution in this task in healthy adults. 

The third chapter examines potential contributions of atypical dopamine signaling to mental 

state attribution differences in clinical disorders by pharmacological dopamine depletion in 

healthy adults. Furthermore, this chapter discusses why dopamine imbalances may impact 

mental state attribution independently of motor function.   
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The fourth chapter gives insights into the route via which dopaminergic dysfunctions may affect 

emotion recognition in conditions like Parkinson’s disease by pharmacological manipulation 

of dopamine in healthy participants. Independent effects of dopamine depletion on locomotion 

and emotion recognition from PLW stimuli, as well as correlations between these effects are 

discussed.  

Chapter five comprises a series of studies which explore the contributions of one’s own gait 

kinematics to emotion recognition from others’ gait, using smartphone accelerometers to 

measure participants’ gait kinematics and point-light-walker (PLW) stimuli to assess 

individuals’ emotion perception from whole-body motion information. The chapter further 

addresses a current shortcoming of the existing literature, which is the lack of knowledge about 

expression and perception of genuinely felt (as opposed to acted) whole-body motion.  

The last chapter integrates all findings presented in this thesis with a specific focus on the role 

of dopamine as a potential mediator in the relationship between motor function and social 

cognition. Finally, implications for disorders with dopamine dysfunctions and future research 

are discussed.
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Chapter 1: Introduction 
 

1.1. General Introduction 

Our everyday movements carry a wealth of information about our internal states, 

including emotions and mental states. Our peers’ facial expressions, gestures or body postures 

can effectively reveal to us their current state of mind without the need for verbal 

communication. A slumped posture combined with slow, effortful movements, for example, 

may indicate to us that our counterpart is feeling sad. Researchers dating back to Darwin in 

18727 assigned a specific role to patterns of body movement and posture in communicating 

emotional states. Since then, a growing body of empirical work has shown that bodily 

movements convey important cues about an actor’s underlying emotions8-12, intentions13,14, and 

other subjective cognitive states (e.g., confidence15,16) and that humans use these cues to 

effectively infer information about others’ internal states13,15,17,18. Whilst the literature on body 

expressions is lagging behind facial expression research19, an increasing number of studies 

suggest that body movement comprises cues for emotion recognition that are just as rich in 

information as facial expressions: Evidence indicates comparable recognition performance for 

facial and bodily stimuli19, furthermore, motion recognition from facial expressions is 

significantly affected by emotional body language20. Moreover, humans refer to bodily cues in 

situations where facial emotion information is not accessible, for instance when judging 

emotions from a distance21, or when facial emotion expressions are ambiguous22,23. Finally, 

there is evidence that suggests that some internal states may be better communicated by body, 

rather than face movement24,25. 

In 1992, a pioneering single-cell recording study26 discovered that in the macaque, 

passively viewing an action activates the same motor neurons as performing that same action. 
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In the subsequent three decades, research involving humans has provided ample evidence for 

the notion that our perceptions of others’ actions are closely linked to our own actions 

(discussed in more detail in section 1.2.2). Functional magnetic resonance imaging (fMRI) 

studies in humans showed, similar to what was found in Macaques, overlapping activity during 

action execution and observation in a network of various brain regions typically referred to as 

the Mirror Neuron System27-29. In the following years, these results were widely interpreted as 

evidence for a role of motor production areas in action understanding26,29-31. 

Support for a reciprocal relationship between action perception and production is 

provided by behavioral studies: For example, observing another human performing sinusoidal 

(e.g., horizontal) arm movements while simultaneously producing incongruous arm movements 

(e.g., vertical) significantly interfered with participants’ own movements as measured by 

increased variance32. This “interference effect” has been attributed to the finding that action 

observation elicits subtle imitations of the perceived movement as measured by increased 

motor-evoked potentials in the extremities the observer themselves would use to execute the 

same movement33. Likewise, our experiences with our own movements can shape our 

judgements about others’ actions. For instance, walking, but not standing, while judging the 

gait speed of point-light displays (coordinated moving dots representing only the joint 

movements of an agent) significantly interfered with participants’ perceptual performance34. In 

short, our own movements impact on the way we perceive and infer information from others’ 

movements. 

If our understanding of others’ movements is influenced by the way we move ourselves, 

it is conceivable that compromised motor function may lead to inadequate communication and 

social understanding. Indeed, a number of disorders primarily classified by clinicians as 

‘movement disorders’35, present with deficits in tasks of Theory of Mind (ToM; i.e., the ability 
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to reflect on the contents of one’s own and  others’ minds36) and emotion recognition. For 

instance, patients with Huntington’s disease (HD), an inherited autosomal-dominant 

progressive neurodegenerative disorder leading to selective atrophy of striatal neurons37, 

experience motor symptoms such as chorea (dance-like involuntary movements) and dystonia 

(uncontrollable muscle spasms)38 alongside socio-cognitive difficulties. Socio-cognitive 

impairments in this condition comprise consistent deficits in emotion recognition (from both 

facial expressions39 and voices40) and various measures of ToM ability41 (e.g., Frith-Happé 

Animations task42, Faux Pas test43 or Reading the Mind in the Eyes test [RMET]44, though note 

the debate about whether the RMET is a true measure of ToM45).  

Unlike HD patients, who have been shown to exhibit a reduced tendency to infer 

intentions from animations of interacting triangles46, patients with Tourette’s syndrome (TS) 

tend to overattribute intentions and mental states to the same kind of animations47. TS is a 

neurodevelopmental disorder characterized by involuntary repetitive movements and 

vocalizations (tics). In addition to exhibiting a bias towards hyper-mentalizing48, TS patients 

display difficulties in various other tasks of emotion recognition and ToM49 and show greater 

interference effects on their own movements while observing others’ actions. Together, the 

socio-cognitive impairments in TS may be suggestive of a hyper-responsiveness to social 

information conveyed by visuo-motor cues50.  

Two further examples of conditions exhibiting shared motor and socio-cognitive 

symptoms are elaborated in more detail in section 1.3. of the introduction: The case of autism 

spectrum disorder (ASD) and the case of Parkinson’s disease (PD). Altogether, a noteworthy 

number of clinical populations exhibit co-occuring socio-cognitive and motor symptoms. Yet, 

while this co-occurrence is intriguing, little is currently known about the causality of this 

relationship between social and motor impairments. It may be the case, as stated above, that 



 
 

20 

motor abnormalities cause difficulties in understanding others’ actions. However, the opposite 

direction of causality may be true: socio-cognitive difficulties could result in atypical motor 

development. Finally, co-occurrences of social and motor atypicalities may not be related at all, 

but rather independently arise from the same, or entirely different, underlying mechanisms.  

Strikingly, the previously mentioned conditions do not only share motor and socio-

cognitive symptoms: An additional commonality of these disorders is that they have all been 

linked to disruptions in the dopamine system. The dopamine system is one of the brain’s largest 

neuromodulatory systems and is, via discrete projections to several different brain regions, 

implicated in motor control, cognition, and emotion. Dopamine system dysfunction is 

associated with a number of neurodegenerative and psychiatric disorders, among them PD51, 

HD52, TS53, ASD54, but also schizophrenia55 or depression3. In PD, for example, pathological 

changes in dopamine neurotransmission are well studied: Degeneration of dopamine producing 

neurons in the substantia nigra pars compacta (SNc) leads to dopamine loss in the striatum and 

is thought to be responsible for motor symptoms such as bradykinesia (slowness of movement), 

rigidity and resting tremor.  

There are several ways in which dopamine system disruptions may be responsible for 

shared deficits in social and motor function in these clinical populations. It is possible that 

dopamine affects socio-cognitive and motor abilities independently, via distinctly separate 

pathways. Equally conceivable, however, is that dopamine primarily affects patients’ motor 

function, and that difficulties in social understanding arise as a consequence of altered 

movement patterns or motor simulation processes. Evidence in support of and against these 

hypotheses is further elucidated in section 1.4 of the introduction. Yet, it is important to 

consider that there are other possible mechanisms which may be responsible for socio-cognitive 

impairments among movement disorder populations. Psychosocial changes accompanying 
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diagnoses could over time lead to altered social responses. For example, a common symptom 

of PD, hypomimia (reduction in voluntary and spontaneous facial expression), can lead to 

patients being perceived as disinterested, awkward and less likeable, and ultimately lead to 

bidirectional interaction problems56. 

This thesis addresses two primary questions: First, how do our own bodily actions and 

the similarity to others’ actions influence our perception of others’ affective and mental states? 

Second, what is the role of the neurotransmitter dopamine in the co-occurrence of socio-

cognitive and motor deficits in various clinical populations? I attempt to answer these questions 

with a series of empirical studies that appraise the link between motor and social function first 

in healthy participants and subsequently in a pharmacological model of neuropathology. My 

overall goal is to gain insight into the relationship between social, motor and dopamine system 

function in the general population so that future work may make clear and testable predictions 

about the likely effects that dopaminergic disruption should have on social and motor function 

in clinical conditions. Correspondingly, in the General Discussion (Chapter six) I reflect upon 

the implications of my findings across various clinical populations.   

The remainder of the introduction first provides an overview of the way in which 

movement kinematics convey information related to one’s internal states and on how one’s own 

movement kinematics affect the perception of others’ internal states. On the basis of two 

examples (ASD and PD), the introduction further outlines evidence concerning the relationship 

between impairments in social and motor function in clinical populations. Finally, I evaluate 

how disruptions of the dopamine system in these conditions may contribute to deficits in social 

understanding and communication, highlight the questions presently unanswered by the 

literature, and discuss how this thesis addresses these gaps. 
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1.2. The relationship between motor function and social cognition in 

healthy individuals 

1.2.1. What are ‘internal states’? 

Throughout different fields of human and life sciences, different conceptualizations of 

what constitutes a mental state have been adopted. Oosterwijk et al.57 for example, argue that 

neuroscientific evidence speaks for a broad, constructionist conception of mental states as 

comprising emotions, cognitions and (bodily) perceptions, arising from a combination of 

multiple domain-general psychological processes. They refer, for instance, to the ‘default mode 

network’, a large-scale brain network including the medial prefrontal cortex, medial temporal 

lobe and posterior cingulate cortex, which is recruited during emotion processing58 as well as 

mental state attribution59 (amongst a multiplicity of other cognitive processes). In line with this, 

Salzman and Fusi60 describe mental states as behavioral dispositions comprising “thoughts, 

feelings, beliefs, intentions, active memories, and perceptions” and refer to functional 

interactions between brain areas traditionally associated with emotion processing (e.g., 

amygdala) and cognitive processes (e.g., prefrontal cortex). 

In contrast, although there is no generally accepted definition of what constitutes a 

‘mental state’, social cognitive psychologists commonly describe mental states as beliefs, 

desires, and intentions, but usually exclude emotions from this definition. This is evidenced by 

the observation that socio-cognitive research typically clearly distinguishes between emotion 

recognition and ‘mentalizing’1/ToM, with distinctly different tasks used to assess either ability 

(e.g., whereas emotion recognition studies classically employ stimuli of either all or a subset of 

 
1 In the relevant literature, the term ‘mentalizing’ is predominantly used equivalently to ToM and can be 
defined as ‘the process of attributing mental states to others, where mental states refer to another person’s 
thoughts or cognitive states’ (e.g., see 61 Blakemore, S.-J. The Developing Social Brain: Implications for 
Education. Neuron 65, 744-747, doi:10.1016/j.neuron.2010.03.004 (2010).). 
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the six basic62 emotions, traditional ToM tasks test a person’s ability to infer (false) beliefs63 or 

reason about another person’s intentions64).  

The principle of ‘intentionality’ views a person’s subjective states as having an 

‘intentional’ relationship with the outer world65. Intentionality hereby encompasses all the ways 

in which the mind can be directed at or related to states of affairs in the world (e.g., one believes 

X, one desires X). Thus, intentionality refers to the understanding that others’ actions are goal 

directed and arise from unique beliefs and desires. In his recent book, Whiting66 takes up the 

view proposed by 19th century philosopher David Hume that emotions are bodily feelings 

lacking intentional or representational qualities (i.e., they make no references to external 

objects). In his ‘feeling theory of emotion’, although Whiting classifies emotions under the 

umbrella term ‘mental states’, he argues they stand in contrast to ‘representational mental 

states’, such as beliefs or desires, which are always object (including other persons) related. In 

other words, Whiting views emotions as states which are distinguished by how they feel to an 

individual, whereas representational mental states are individuated based on how they represent 

a particular object as being. 

The more recently adopted distinction of ToM into the two sub-components affective 

and cognitive ToM further supports a conceptual separation of emotions and mental states, as 

it implies the idea that dissociable processes are involved in representing and reasoning about 

another person’s emotions and in representing their intentions, beliefs or desires. Indeed, a 

series of imaging and lesion studies suggest that cognitive and affective ToM at least in part 

rely on distinguishable neural substrates67-70. These studies have identified the ventromedial 

prefrontal cortex (vmPFC) as a region which is specifically recruited during tasks requiring 

affective, but not cognitive ToM. 



 
 

24 

Throughout this thesis I will honor the distinction between emotions (affective states) 

and representational mental states and refer to the broader term ‘internal states’ as all internal 

states of mind which can be experienced by an individual (i.e., including both emotions and 

mental states). In two separate empirical studies, I go on to explore the concepts of mental state 

attribution and emotion recognition (and how they are expressed in and perceived from body 

movement).  

 

1.2.2. The role of movement kinematics in the expression of internal states 

For decades, the question of how we read others’ minds has occupied philosophers and 

psychologists alike. The ‘Unobservability Principle’71 relates to the general idea that another 

person’s internal states are ‘hidden’, i.e., perceptually inaccessible and therefore can only be 

inferred. Accepting this notion as true brings to question how individuals infer these hidden 

states from what is accessible to their senses. As Whiten elaborated:  

 

[…] mind-reading is not telepathy. So, the recognition of another's state of mind must 

somehow rest on observation of certain components within the complex of others' 

behaviour patterns together with their environmental context: that's all we can see - we 

can't see their minds in the direct way suggested by the idea of telepathy (Whiten, 1996, 

p. 27772) 

 

Accordingly, we use an entity’s behaviors in combination with contextual cues to draw 

inferences about their internal worlds. Amongst other behavioral signals such as facial 

expressions and vocalizations, bodily movements provide valuable cues about affective and 

mental states. Early research on emotional body expressions used trained or untrained observers 
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to rate dynamic stimuli of gait, dance, or isolated limb movements, typically displayed by 

actors, according to how well they matched pre-defined emotion categories8,18,73, demonstrating 

that humans can successfully identify intended expressions of emotions from bodily movement 

cues. More recently, machine learning techniques have been employed to extract the bodily 

expressions that best discriminate emotional states74,75. The range of bodily cues that have been 

identified as reliably differentiating emotional states as rated by human observers or machine 

recognition algorithms include postural and spatial configuration, as well as temporal 

characteristics, of dynamic arm-, head and whole-body movements8,9,73,76. Among these cues, 

accumulating evidence points to a specific role of movement kinematics, which were shown to 

be at least sufficient for the accurate classification of internal states77. For example, Pollick et 

al.9 observed that their participants could adequately detect affective states from point-light 

displays of instrumental arm movements with minimal configural information. More 

specifically, they found their emotion categories to be clustered within a two-dimensional 

psychological space. Within this space, the arms’ movement kinematics (velocity, acceleration, 

and jerkiness) were highly correlated with the ‘activation’ dimension: While fast and jerky 

movements were associated with emotions of high activation such as anger or happiness, slow 

and smooth arm movements tended to be rated as internal states with low activation (e.g., 

sadness). This relationship between arm movement kinematics and the activation dimension of 

emotions was preserved even when the point-light displays were altered so they did not 

resemble an arm anymore (i.e., when only kinematic, and no form information was available). 

Further tightening the link between kinematics and emotion, several other studies found similar 

associations between high-speed movements and happiness / anger and decreased movement 

velocity and sadness75,78-82. What is more, movement kinematics have been shown to not only 

encode emotions, but also intentions (e.g., kinematics discriminate between the intention to 
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cooperate or compete83), and other cognitive states, such as confidence15. The study conducted 

by Pollick and colleagues, however, was unique in that it illustrated that in order to perceive 

emotional states in others, humans do not need faces, whole bodies, or contextual cues; they 

can effectively perceive internal states from impoverished stimuli depicting merely the joints 

of isolated body parts.  

In fact, humans do not need bodily expressions at all in order to infer internal states: 

Motion cues alone are sufficient to cause us to attribute agency, intentionality, and more 

specific mental states to animated objects. Heider and Simmel84 demonstrated 1944 in a seminal 

study that humans readily attribute animacy to and infer mental states from simple animations 

of two interacting triangles. Their paradigm was subsequently adapted by several research 

groups42,85,86, and rapidly gained in popularity amongst psychologists for its suitability to test 

individual differences in mentalizing abilities. In particular, the Frith-Happé animations42 have 

been used extensively to investigate mental state attribution in ASD42, HD46, TS49, and 

schizophrenia87 and reliably show performance differences between patients and controls.  

At present, however, little is known about why a range of clinical populations show 

these differences in mental state attribution. One recent study1 which evaluated the ability to 

attribute mental states to Heider-Simmel style animations in autistic and non-autistic 

individuals provides some preliminary clues as to possible underlying reasons for performance 

differences in this task. In this study, autistic and non-autistic participants were first asked to 

create their own animations by using magnetic levers to move two cardboard triangles around 

a horizontally positioned whiteboard (see Fig. 1.1). Whilst participants created animations for 

four mental state words (coaxing, mocking, surprising and seducing; words were adopted from 

Abell et al.42), a film camera positioned above the whiteboard recorded their stories. 

Subsequently, both groups were shown a range of animations created by autistic and non-
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autistic subjects and asked to rate the extent to which each animation depicted either of the four 

target mental state words. Their results showed that typical participants were less accurate in 

labelling the animations when these had been created by autistic participants, relative to 

animations generated by their own group. In contrast, autistic participants showed no such in-

group bias. Crucially, animations created by autistic participants were characterized by 

increased kinematic jerk. The authors surmised that reduced movement similarity between the 

groups (i.e., differences in jerk), may have been responsible for difficulties in interpreting 

animations created by the respective other group.  

It is possible that this lack in similarity in the way individuals with and without motor 

dysfunctions perform certain movements may lead to misunderstandings between populations 

in real-world communicative situations. Support for this is lent by a study88 showing that 

autistic children are less efficient than non-autistic children in reading social intentions from 

whole-body movements, although stimuli were based on non-autistic actors, thus providing no 

insights into whether these inference difficulties were bi-directional. Moreover, currently there 

is no direct evidence linking specific motion characteristics of movement to (impaired) 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Animations task procedure in Edey et al.1. (A) Participants were asked to move two cardboard 

triangles around a white board by moving magnetic levers attached to the triangles. (B) Still of an example 

animations stimulus created by filming the triangle movements from above. Image from Edey et al. 
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inference of internal states. In Chapter two I present empirical evidence on which motion cues 

are relevant for successful mental state attribution using the Heider-Simmel paradigm. In 

Chapter two, I further demonstrate that movement similarity between agent and observer indeed 

facilitates the interpretation of those cues. 

One issue with investigating bodily and/or motion cues that are associated with 

successful social interaction is that most of what we know about internal state expression in 

body movements depends on acted, rather than genuinely felt affective / mental states. In the 

majority of studies on the subject, either actors or the experimenters themselves created the 

stimulus material. It is likely that this material is richer in expressive cues than real world 

affective expressions, as it was purposefully designed to communicate affective states or 

mentalistic interactions25. Chapter two presents a study which uses population-derived 

animations of interacting triangles to assess mental state attribution and discuss possible 

differences to existing tasks which use experimenter designed stimuli. Furthermore, chapter 

five examines the current literature on the spontaneous expression of emotions in body 

movement and provide some empirical evidence for why researchers need to be careful when 

drawing conclusions from an evidence base which mainly depends on posed expressions. 

1.2.3. The reciprocal relationship between action and perception 

Neuroscientific evidence for a ‘Mirror Neuron System’ 

Early indirect evidence for the existence of a brain mechanism that closely couples 

action perception and production in humans was provided in 1954 by Gastaut and Bert89 and 

Cohen-Seat et al.90: The research groups showed that the desynchronization of a centrally 

derived EEG rhythm, the so-called mu rhythm, was present both when their participants 

observed others’ actions, and when they were performing actions themselves. This observation 
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was subsequently replicated by several other studies using EEG91-94 and 

magnetoencephalogram (MEG)95,96 recordings. More direct evidence for a so-called mirror 

neuron system (MNS) comes from studies using transcranial magnetic stimulation (TMS) of 

the motor cortex. Motor evoked potentials (MEPs) are electrical signals recorded from the 

contralateral extremities following motor cortex stimulation with TMS. These MEPs have been 

shown to be stronger whilst participants observe another person performing actions compared 

to a visual control condition, thus illustrating a facilitatory effect of action observation on action 

execution33,97,98. Further insight into the anatomical organization of the MNS is provided by a 

range of fMRI studies showing overlapping activity during action observation and action 

execution in a complex network of brain regions: The MNS is thought to comprise as key areas 

the posterior inferior frontal gyrus99,100, rostral inferior parietal lobes100 and ventral and dorsal 

premotor regions27. In addition, the superior temporal sulcus (STS), although it does not involve 

classical mirror neurons, is often mentioned alongside the MNS for its role in action 

understanding101. Early research on mirror neurons focused on understanding action 

recognition devoid of inferences about internal motivations of the action, also referred to as the 

‘what’ of an action (i.e., what is a person doing?). More recent studies, however, give rise to 

the idea that human mirror neurons are also involved in processing the ‘why’ of an action, that 

is, the underlying intention of an action (i.e., why are they performing this action?)102. For 

instance, Iacoboni and colleagues103 observed increased blood oxygen level dependent (BOLD) 

signal upon the viewing of actions embedded in informative contexts, relative to videos of 

actions without contexts, in the right inferior frontal cortex. This suggests that regions of the 

MNS, which were previously believed to be involved in simple action recognition only, process 

contextual information related to the intention of an action. Moreover, the human MNS has 

been shown to be involved in the processing of emotions. For instance, viewing facial 
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expressions of disgust activated the same parts of the anterior insula as the experience of disgust 

after exposure of a non-pleasant odorant104. Yet, it should be noted that whilst these previous 

results indicate that the MNS may process cues that can elicit the attribution of specific 

intentions or emotions to an action, a greater, more complex network of neurons including 

mirror neurons is presumably involved in enabling action understanding105. Altogether, 

neuroimaging studies provide substantial evidence for a biologically based link between 

perception and action. Given this evidence, it is plausible that our movements influence the way 

we perceive others’ actions and vice versa. 

 

Behavioral evidence for a functional link between action and perception 

Behavioral evidence for an overlapping neural mechanism underlying action perception 

and production suggests strong reciprocal relationships between a person’s own actions and 

how they perceive others’ actions. On the one hand, perceiving someone else’s actions can 

influence the observer’s own action production. For example, Kilner et al.32 found that 

observing another human performing sinusoidal (e.g., horizontal) arm movements while 

simultaneously producing incongruous arm movements (e.g., vertical) themselves significantly 

interfered with participants’ own movements as measured by increased variance. More 

intriguingly, a follow-up study106 showed that this interference effect only occurred when the 

observed movements followed a biological (minimum-jerk) movement profile. Their results 

suggest that the interference effect was not induced by attentional demands or increased task 

complexity. Rather, they indicate that the interference was caused by the incongruent human 

arm motion and suggest that the human MNS may respond selectively to biological motion. 

On the other hand, our own movements can have direct, on-line effects on how we 

perceive others’ actions. For instance, lifting a heavyweight box whilst simultaneously being 
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asked to judge the weight lifted by an actor caused participants to underestimate the weight 

lifted by the other person (and vice versa when the subject was lifting a lightweight box). 

Similarly, as pointed out earlier, Jacobs and Shiffrar34 observed a selective interference of 

subjects’ walking speed on their perception of other walkers’ speeds: This was evidenced by a 

reduced ability to discriminate two point-light walkers’ (PLWs) speeds whilst walking as 

opposed to when cycling or standing. The selectivity of this effect for walking relative to 

cycling movements suggests that currently active motor representations of our own movements 

may interfere with our observations of others’ movements. The more similar an observed 

movement is to the one we are carrying out in the very same moment, the more difficult it may 

be for us to represent the observed movement. 

Intriguingly, when the subjects in Jacobs and Shiffrar’s study were asked to judge the 

PLWs’ speed in relation to their own pace, simultaneous walking on a treadmill did not interfere 

with their perceptual judgements when their own walking speed was manipulated to be closest 

to the human average walking speed (which was assumed to be the speed the participants would 

have chosen themselves, i.e., their preferred walking speed). What is more, when observers’ 

speeds were manipulated, their egocentric judgements of others’ speeds were biased towards 

their own speeds: Increases in walking speed resulted in participants overestimating observed 

speeds, and vice versa for decreased own speeds. These observations led the authors to conclude 

that, to facilitate self-relative judgements of others’ actions, we draw on visuo-motor experience 

of our own actions. Together, the previous experiments demonstrate that, amongst other cues, 

humans use representations of their own actions to make perceptual judgements about other 

humans’ movements. Moreover, the findings indicate that increased similarity between one’s 

own and observed movements can facilitate action understanding. 
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How do we understand others' actions? 

  Currently, there are diverging views on precisely how our internal action representations 

shape our perceptions and subsequential inferences about an action’s underlying intention. 

According to the ‘direct matching hypothesis’31 we understand others’ actions based on our 

own prior experience with the very same actions. This account postulates a stimulus-driven 

feed-forward process, where low-level (e.g., kinematic) representations of observed actions are 

directly mapped onto the observer’s own visual and motor plans, which then activates higher-

level goals / intentions which the observer themselves associates with the represented action. 

In other words, people interpret others’ actions by implicit matching of the kinematics of a 

perceived movement with their own individual action templates and inferring the goal, 

intention, or emotion they themselves would associate with the observed movement. Crucially, 

these action templates are presumed to be built from early childhood through associative 

learning of the sensorimotor consequences of one’s own and others’ actions107,108 and can 

comprise both purely visual representations of movements, as well as visuo-motor 

representations gathered from simultaneous proprioceptive (i.e., sensorimotor perceptions of 

body position and movement relative to space) and visual experience with our own actions. 

Thus, while others’ internal states can be interpreted based on mere visual experience from 

observing actions and their associated outcomes, it has been proposed that observing 

movements oneself has experience with performing (i.e., motor expertise) additionally activates 

internal motor representations of that action, reflected by increased activation in regions of the 

mirror neuron system relative to observing actions one is visually, but not motorically familiar 

with109. In the remainder of this thesis, I refer to representations which are based on visual and 

motor expertise with observed actions, including the internal states associated with these 

representations, as ‘internal action models’. 
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In line with this, Edey and colleagues2 were able to show that subjects make affective 

judgements about others’ actions based on their own internal action models. When comparing 

participants’ preferred walking speeds with their intensity ratings of emotional PLWs, Edey et 

al. found that individuals whose own preferred walking speed was slower than average were 

more likely to rate a slow point-light walker as being in a neutral state of mind. In contrast, they 

perceived a PLW at average velocity as being mildly angry. Equally, those average velocity 

stimuli were more likely to be rated as mildly sad by participants whose own preferred walking 

speed was faster than average (see Fig. 1.2).  

Thus, we are prone to judge walks with a similar speed to our own neutral walk as 

reflecting a neutral affective state, whereas walks with distinctly different speeds to our own 

appear as emotionally intense. Consequently, the labelling of internal states from others’ 

movements could be simply a result of referencing the observed movement against 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Schematic diagram of hypothesis tested in Edey et al.2. (A) Hypothetical kinematics of sad slow, 

typical and fast walkers. At the velocity level indicated by the green arrow, a slow walker is in a neutral state, 

whereas a fast walker would be feeling intensely sad. (B) Hypothetical kinematics of angry slow, typical and 

fast walkers. Image reproduced from Edey et al. 
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representations stemming from a lifetime of somatosensory and proprioceptive experiences 

with our own affective kinematics.  

It follows that based on individual action idiosyncrasies, people may draw different 

inferences from others’ movements, hence individuals who move in a similar way may 

understand each other better than people who move very differently. Edey et al. discovered in 

a subsequent study110 that internal state attributions of four different age groups (early 

adolescents, middle adolescents, late adolescents, adults) varied according to their participants’ 

preferred walking speed, which covaried with age. The authors hypothesized that cross-

generational conflicts, such as typically observed conflicts between adolescents and adults, 

might be at least in part attributable to different action models within these generational groups.  

‘Predictive coding/processing accounts’111 may be seen as an extension to the direct 

matching hypothesis.  According to these accounts, visual action information is processed via 

both feed-forward and feed-back loops between the pSTS and the MNS regions. Following 

initial visual processing of an action, estimations are made, based on a priori internal models2 

of the goals or intentions associated with the observed action, about the visual consequences of 

that action. This prediction is then compared to the actual visual outcome and a prediction error 

produced. Depending on the magnitude of the prediction error, an observer’s internal model of 

the underlying cause (i.e., an agent’s underlying intention) of the action is continuously revised 

until the prediction error is sufficiently minimized, or in other words, the observed action 

consequence fits the predicted action consequence. In addition to the observer’s personal visual 

and visuo-motor experiences with the observed action and linked internal states, contextual 

cues serve as informative priors that increase the efficiency of ongoing predictions.  

 
2 Note that here the term ‘internal models’ refers to statistical estimates an individual holds about hidden 
states of the world (e.g., an action’s underlying intentions) according to predictive coding or Bayesian 
inference accounts. 
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Predictive processing accounts extend Bayesian inference theories by positing specific 

assumptions about the neural structures involved in the prediction process, thereby creating 

hypotheses that are testable by neuroimaging methods. In the same way that dopamine neurons 

show increased firing patterns upon receipt of an unpredicted reward, predictive coding theories 

assume that there is a group of neurons specifically dedicated to reporting more general sensory 

prediction errors (i.e., ‘error neurons’). Within and across many levels of the cortical 

hierarchy112,113, these error neurons are believed to be in constant interactions with so-called 

‘predictor neurons’, which encode the representations of predictions114. In this relationship, 

error neurons are thought to compare incoming sensory information with top-down predictions 

encoded by predictor neurons, and are expected to show increased firing rates upon a mismatch 

between top-down and bottom-up information. In vision studies, average responses across large 

populations of neurons have followed activity patterns in line with predictive processing 

accounts, with attenuated activity for repeated stimuli (e.g., 115,116). Furthermore, reduced neural 

responses in brain areas thought to be part of the ‘mentalizing system’117 (pSTS, TPJ, mPFC) 

have been observed for expected compared to unpredicted actions and intentions114.  

Predictive processing accounts serve a different perspective on the putative underlying 

causes of co-occuring social and motor symptoms in clinical conditions. For instance, in 

autistic3 individuals, atypically highly weighted sensory information – at the expense of 

information based on priors - is hypothesized to underly a number of behavioral characteristics 

of the condition118,119. This atypicality in predictive processing has been associated with both 

abnormalities in motor function (such as problems with movement planning and 

 
3 Disability-first’ terminology is used throughout in line with the majority preference expressed in a survey 
of the autistic community (Kenny, L., Hattersley, C., Molins, B., Buckley, C., Povey, C., and Pellicano, E. 
(2016). Which terms should be used to describe autism? Perspectives from the UK autism community. 
Autism Int. J. Res. Pract. 20, 442–462.) 
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initiation120,121), as well as socio-cognitive impairments in ASD122. Moreover, besides ASD, 

other clinical conditions such as PD123 and schizophrenia124 have been linked to predictive 

processing deficits. Thus, in a number of clinical conditions, the very same processes that are 

hypothesized to underlie atypical motor function may independently be responsible for aberrant 

internal state attribution from action information. In section 6.2.3 of the discussion, I elucidate 

how aberrant dopamine signaling may be causally implicated in socio-cognitive deficits by 

atypical representation of prediction processes.  

This section outlined the reciprocal relationship between action and perception and 

highlighted two prominent theories about how individuals may draw on their own motor 

experience to understand other peoples’ movements. Whilst deciding between these two 

accounts of action understanding is beyond the scope of this thesis, the present work goes on 

to discuss both accounts as possible mechanistic pathways via which aberrant dopaminergic 

signaling may contribute to co-occurrences of socio-cognitive and motor deficits in clinical 

populations. 

Co-morbidities of social and motor dysfunctions are particularly prevalent among 

conditions which have been linked to a dysfunction in the dopamine system50, suggesting that 

aberrant dopamine signaling may contribute to these co-occurrences. Consequently, in the 

following I first outline the various ways in which the dopamine system is involved in cognition 

and behavior. I then discuss two examples of conditions involving atypical motor experiences, 

and how those different experiences may shape individuals’ social perception and interactions, 

before going on to elucidate how dopamine may be a common denominator in observed 

relationships between motor and social function in these conditions. Finally, in two empirical 

chapters, I use a pharmacological model to test whether, and if so, how altered dopaminergic 
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states may affect both socio-cognitive and motor processes across a variety of clinical 

populations. 

 

1.3. Dopamine  

1.3.1. Dopamine neurons: Two different activity states 

Dopamine is a neurotransmitter which, alongside epinephrine and norepinephrine, 

belongs to the group of catecholamines. Dopamine neurons are primarily located in the 

midbrain (ventral tegmental area [VTA] and SNc) and form anatomically distinct subclasses of 

populations with discrete projections to specific brain regions3. Dopaminergic neurons are 

known to exist in various activity states. While a proportion of dopamine neurons is in an 

inhibited, non-firing state, another proportion is in an active state, spontaneously firing in a 

slow, irregular pattern. The proportion of neurons firing in this pattern determines the level of 

tonic dopamine release into the extrasynaptic space, and has been proposed to reflect individual 

baseline responsivity of the dopamine system125. 

Upon exposure to a salient, behaviorally relevant event, only the active population of 

dopamine neurons responds with firing of phasic bursts, leading to high amplitude, highly 

transient dopamine release into the synapse (see Fig. 1.3)3. This phasic spiking dopamine  
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Figure 1.3. Tonic and phasic dopamine neuron regulation. a) A subset of dopamine neurons is kept in a 

hyperpolarized, non-firing state due to GABA-ergic inputs from the ventral pallidum (VP). By controlling 

the number of dopamine neurons firing, the VP determines the potential for phasic burst firing. Glutamatergic 

input from the pedunculopontine tegmentum (PPTg) causes active, spontaneously firing dopamine neurons 

to generate phasic bursts of dopamine release. b) & c) The behavioral context determines the number of 

dopamine neurons which are spontaneously firing, and thereby regulates the level of dopaminergic response 

to behaviorally relevant stimuli: In a benign, non-threatening context, the number of spontaneously firing 

neurons is kept low and a salient stimulus will therefore only lead to phasic bursting in a small population of 

dopamine neurons. In a threatening or opportunistic environment, a larger population of dopamine neurons 

are disinhibited, leading to a much larger phasic response to the same salient stimulus. Image from Grace3.  
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activity has been observed to accompany presentations of unexpected (i.e., not predicted) 

rewards (e.g., a drop of liquid in the mouth) in primates and the magnitude of the dopamine 

response is thought to directly reflect the discrepancy between prediction and actual occurrence 

of reward: the reward prediction error126. 

A popular theory posits that tonic dopamine levels encode the long-term average rate of 

available reward, and consequently determine the effort an individual is willing to exert - also 

termed ‘response vigor’ - in order to obtain a reward127. In other words, while the phasic 

dopamine response signals the magnitude of the immediate reward associated with a 

behaviorally relevant stimulus, tonic dopamine activity is believed to encode the average 

availability of this reward in the environment. In consequence, dopamine depletions in humans  

may lead to effects linked to both phasic and tonic dopamine activity such as blunted prediction 

error signals and aberrant coding of the cost-benefit ratio of certain actions. In clinical 

populations, such a hypodopaminergic state may manifest as reduced vigor during action 

execution (e.g., bradykinesia in PD128) or dysfunctional reward processing (e.g., as seen in 

ASD129). 

 

1.3.2. Four dopamine pathways 

Besides modulating reward, however, dopamine is hypothesized to regulate a 

multiplicity of behavioral and physiological functions via four major neural pathways (see Fig. 

1.4). The tuberoinfundibular pathway, which originates in the arcuate nucleus of the 

hypothalamus and projects to the pituitary gland, inhibits prolactin (i.e., a hormone facilitating 

lactation) release and is therefore involved in the control of lactation130. The mesolimbic 

pathway involves neurons whose cell bodies originate in the VTA and project to the nucleus 

accumbens in the ventral striatum. The mesolimbic pathway is implicated in the processing of  



 
 

40 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Four major dopamine pathways. Image from Nummenmaa et al.4 

 

incentive salience and motivation, and overactivity of this circuit is, for example, associated 

with addiction131 and psychosis132. Dopaminergic neurons in the mesocortical pathway also 

originate in the VTA, but connect to the prefrontal cortex and are involved in the regulation of 

executive functions, learning and memory, as well as mood and emotion133. Finally, the 

nigrostriatal pathway projects from the SNc to the dorsal striatum (i.e., caudate nucleus and 

putamen) and is involved in the regulation of movement. According to a prevailing model of 

the role of the basal ganglia in movement control, striatal dopamine controls motor function via 

two cortico-basal ganglia-thalamo-cortical loops (see Fig. 1.5, 134). In short, the direct (‘Go’) 

pathway is linked to the facilitation of movement, where cortical glutamatergic downstream 

projections excite striatal dopamine release, which via inhibitory action on the globus pallidus 

internal disinhibits the thalamus, leading to excitatory action on the cortex and finally 

stimulating movement. The indirect (‘NoGo’) pathway is by nature inhibitory with the 

hypothesized purpose of preventing unwanted movements. Dopamine release inhibits neurons  
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Figure 1.5. Basal ganglia direct and indirect pathways. (A) Model of direct and indirect basal ganglia 

pathways. SNc = substantia nigra pars compacta; GPe = globus pallidus external; GPi = globus pallidus 

internal; SNr = substantia nigra pars reticularis. In the direct pathway, dopamine activates medium spiny 

neurons (MSNs) in the striatum via excitatory D1 receptors, and therefore increases activity of this pathway, 

resulting in excitatory input into the cortex. By binding to inhibitory D2 receptors of the indirect pathway, 

dopamine decreases inhibitory activity in this pathway, again leading to excitation of the cortex via decreased 

inhibition of the thalamus. (B) Diagram of coronal section of basal ganglia nuclei. Image from Aum & 

Tierney5. 

 

in the indirect pathway, thereby ultimately leading to disinhibition of the thalamus and cortex, 

and again resulting in facilitation of movement. Underactivity in the direct- in combination with 

overactivity in the indirect pathways resulting from a hypodopaminergic state (e.g., as seen in 

PD), for instance is linked to motor symptoms such as bradykinesia or muscle stiffness. More 

recently, these two pathways have also been associated with the modulation of cognitive 

function (e.g., see 135,136, discussed in more detail in Chapter six). 
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1.3.3. Dopamine receptors and psychopharmacological manipulation of dopamine 

function  

Dopamine function is mediated by five distinct subtypes of G protein-coupled receptors 

named D1 to D5. These five subtypes can further be divided into two major sub-classes with 

distinct pharmacological properties: D1-like (D1 & D5; hereafter: D1 receptors) and D2-like 

receptors (D2, D3, D4; hereafter: D2 receptors)137. D1 receptors are exclusively expressed post-

synaptically on dopamine-receptive cells in the striatum, olfactory bulb and cerebral cortex, as 

well as hippocampus and amygdala. D2 receptors are inhibitory in nature and found at highest 

densities in the striatum, nucleus accumbens and olfactory tubercle, and in lower densities in 

the amygdala, hippocampus, hypothalamus and cortical regions (e.g., 138). While the majority 

of D2 receptors are found postsynaptically on non-dopamine neurons (i.e., heteroreceptors), 

D2 receptors are also located on the presynaptic terminals of dopamine neurons. These so-

called autoreceptors act as feedback regulators by decreasing both excitability of dopamine 

neurons and dopamine release upon activation139. 

Dopamine receptors, in particular D2 receptors, are the primary targets of 

pharmacological interventions for various neurodegenerative and psychiatric conditions. For 

instance, most clinically effective antipsychotics are D2 receptor antagonists, suggesting a 

critical role of this receptor subtype in the pathogenesis of schizophrenia140-142. However, the 

dopaminergic action of agents targeting D2 receptors depends on numerous factors, such as the 

local ratio of hetero- to autoreceptors143 and drug dose135: Because D2 autoreceptors are 

presumed to be abundant in the striatum144, and generally activated at lower doses than 

heteroreceptors, the same dopamine antagonist can lead to increased dopamine function at low 

(through the primary blocking of autoreceptors), and to decreased signaling at higher doses. 

For instance, D2 antagonists, which are used in schizophrenia primarily for their capacity to 
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decrease tonic dopamine transmission have been observed to lead to increased levels of 

dopamine at low doses (e.g., haloperidol135).  

 

1.4. The relationship between motor function and social cognition in 

clinical populations – two different cases 

1.4.1. The case of autism 

Autism Spectrum Disorder is a heterogenous neurodevelopmental condition 

characterized by difficulties in social interaction and communication, as well as restricted, 

repetitive and stereotyped behaviors and interests145. In particular, autistic individuals’ social-

cognitive functioning has received considerable attention, with an extensive literature attesting 

to performance differences between autistic and control participants in a variety of ToM and 

social-cognitive tasks. However, a growing body of work has additionally noted motor 

abnormalities in this condition and several studies have established links between socio-

cognitive and motor symptoms. To provide further insight into the precise relationships 

between social and motor function, in the following section, I expand on findings regarding 

social and motor function in ASD and elaborate evidence for putative social-motor links in this 

condition.  

With regard to ToM, differences compared to controls have been reported for autistic 

individuals in the ability to detect white lies, figures of speech or misunderstandings (e.g., 

Strange Stories test64), detect social faux pas (Faux Pas task43), attribute false beliefs (e.g., 

Sally-Anne task63) and infer actors’ affective and mental states from short video clips of 

interacting triangles (e.g., Frith-Happé animations42) or people (Movie for the Assessment of 

Social Cognition [MASC]146). Furthermore, autistic individuals have been shown to exhibit 
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differences in the ability to infer emotions, mental states or intentions from both static and 

dynamic stimuli, depicting just the eye region of a face44, facial expressions147-149 and bodily 

postures150, as well as body movement151-153. In addition, a number of studies point to 

impairments in the recognition of biological motion, evidenced for instance by reduced ability 

to discriminate natural from unnatural arm movements154, and reduced sensitivity to human 

motion in point-light displays155.  

Although first observations of movement atypicalities in ASD have already been noted 

by Kanner156 and Asperger157, much of the autism literature to date has focused on social 

impairments. In the recent years, however, atypical motor function in this condition has 

received growing attention. Retrospective analyses indicate that motor abnormalities are 

evident in children diagnosed with or at high risk of autism from early infancy on and can 

emerge before social and linguistic impairments. Motor atypicalities in infants include delays 

in gross-158 and fine159 motor development, abnormal muscle tone160, postural asymmetries161 

and gait abnormalities162. Research suggests that these impairments tend to persist into 

adulthood, with a meta-analysis reporting persistent deficits in ASD in motor coordination, gait, 

upper limb movement, and postural stability across three age groups163. Furthermore, atypical 

eye movements164,165, as well as differences in emotional facial expressions166,167 have also been 

found in autistic individuals. Thus, despite the relative paucity in empirical research on motor 

dysfunctions in ASD, prevailing evidence for motor abnormalities has sparked calls to treat 

motor symptoms as a ‘core’ feature of this condition163,168, as well as proposals to use motor 

signatures as a biomarker for the identification of ASD168,169. 

In sum, there is ample evidence that autistic individuals exhibit atypical movements 

from early on in life, and that these atypicalities span a variety of gross- and fine motor 

behaviors. If it is true that we build action models based on experiences with our own actions, 
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it is likely that autistic people have atypical action models, built from a lifetime of experience 

with their own, atypical actions. Consequently, they may struggle to interpret the actions of 

non-autistic people due to a lack of familiarity with the observed movement. It would follow 

from this, that individuals with systemic motor atypicalities show stronger impairments in the 

social domain. 

Evidence for a link between social and motor symptoms within ASD comes from 

developmental longitudinal studies as well as experimental research. For instance, in toddlers 

at high risk of ASD, delays in motor development at 18 months of age were predictive of a 

diagnosis of ASD at 36 months170. Likewise, in newly diagnosed children, better performance 

in motor tasks at 2 years was the strongest predictor of loss of diagnosis at age 4171. 

Furthermore, in older children of 6 to 15 years, motor skills have been shown to predict social 

communicative skills172.  

In an experimental study by Cook et al.173, autistic and control participants were asked 

to perform sinusoidal (‘waving’) arm movements, while their movement kinematics were 

recorded using motion tracking technology. Subsequently, participants performed a perception 

task where they were required to classify the movements of a human hand as ‘natural’ or 

‘unnatural’. Results showed that the movements produced by autistic participants were 

characterized by atypically high velocity, acceleration and jerk (i.e., the rate of changes in 

acceleration and deceleration). What is more, the magnitude of the kinematic atypicalities was 

positively correlated with a bias towards perceiving biological motion as ‘unnatural’, as well 

as autism symptom severity as measured by the Autism Diagnostic Observation Schedule 

(ADOS-2174).  

The observation that participants with more atypical movement patterns tended to judge 

‘typical’ movements as unnatural further suggests that autistic participants, like the non-autistic 
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participants in Edey et al.2 (who judged others’ emotional walks on the basis of their own 

neutral walking speeds), model observed movements on the basis of their own actions. That is, 

autistic individuals’ internal representations of ‘natural’ movements may be based on their 

visual and proprioceptive experience with their own movements, and therefore deviate from 

what a non-autistic person would constitute as ‘natural’. Consequently, the more different the 

observed movement kinematics are to their own, the less they would spark characterizations as 

‘natural’. In sum, a number of studies provide support for the idea that that social and motor 

performance may be linked in ASD. 

However, the few existing longitudinal and experimental studies bridging social and 

motor atypicalities in ASD rely on correlational analyses, thus provide no insight into the 

direction of the relationship between social and motor function. Although from the evidence 

discussed it might seem obvious that motor difficulties are causing social dysfunctions, indeed 

it is possible that abnormal social development precedes atypical motor development in ASD. 

For example, decreased attention to social movement cues in early life175 might result in 

reduced imitation of others’ actions and consequently to suboptimal motor learning176. What is 

more, observed relationships between social and motor function may not be causally related at 

all; it may be that a third, hidden variable influences both functions independently. Finally, even 

if there is a true causal relationship between social and motor abnormalities in ASD, little is 

known about the underlying neural and biochemical processes that cause the observed 

behavioral co-occurences.  

Alongside many other neurochemical modulators of brain function proposed to be 

implicated in the pathophysiology of ASD (e.g., gamma-aminobutyric acid [GABA]177, 

serotonin178, oxytocin179), dopamine has emerged as another candidate neurotransmitter linked 

to the condition’s etiology. Evidence for altered dopaminergic function in ASD comes from a 
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number of mouse models, gene studies and molecular imaging studies, as well as from the 

observation that dopaminergic medication alleviates some of the behavioral presentations of 

the condition. For instance, atypical antipsychotics (the majority of which are dopamine D2 

receptor antagonists) are among the most frequently prescribed medications to autistic 

individuals180 and have been shown effective in reducing symptoms such as hyperactivity, 

aggression, repetitive behaviors, or social withdrawal181. In mouse models of autism, 

administration of dopamine agonists have increased repetitive and stereotyped behaviors182 

(viewed as proxy measures of ASD), while dopamine antagonists have been shown to reduce 

these behaviors183. Furthermore, optogenetic stimulation of dopaminergic neurons in the ventral 

tegmental area (VTA) lead to increased time spent in social interaction184. A handful of studies 

have investigated in vivo dopamine transmission in autistic subjects by use of positron emission 

tomography (PET) in combination with radioactive tracers that bind to dopamine receptors 

(such as fluorine-18-labelled fluorodopa [FDOPA]). Two studies report abnormal dopamine 

function in autistic subjects, including decreased presynaptic dopamine activity in the mPFC in 

autistic children185 and increased presynaptic dopamine function in the striatum of autistic 

adults186 (though note a recent study reporting no differences in striatal dopamine synthesis 

capacity between autistic and non-autistic adults187). 

Based primarily on evidence from mouse models and drug trials, a recent theoretical 

account proposes two distinct routes via which aberrant dopaminergic signaling could lead to 

ASD-like behaviors54: According to this account, dysfunctions in the meso-corticolimbic 

pathway may lead to autistic individuals experiencing social interactions as less rewarding, 

thereby affecting the development of social abilities. In addition, stereotyped and repetitive 

behaviors are proposed to arise from dysfunctional nigrostriatal projections, due to their 

suggested role in mediating goal-directed actions. Thus, this ‘dopamine hypothesis of ASD’ 
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suggests that dysfunctions in two discrete dopaminergic pathways independently contribute to 

the emergence of social and motor symptoms in ASD. Indeed, parkinsonian symptoms have 

been observed at elevated rates in ASD (e.g., bradykinesia, other gait abnormalities, 

handwriting188), strengthening the case for a role of the nigrostriatal dopaminergic pathway in 

the etiology of motor symptoms in ASD. However, at present much less is known about the 

involvement of the meso-corticolimbic pathway in socio-cognitive atypicalities in ASD; 

furthermore, empirical evidence on dopaminergic dysfunctions in ASD is too limited to fully 

support the two-pathway account of autism (e.g., low consensus among molecular imaging 

studies). Given evidence on the influence of own action experiences on internal state inferences, 

an alternative role of dopamine in the relationship between social and motor symptoms in ASD 

is plausible: Dopaminergic imbalances in ASD may disrupt individuals’ motor function, 

resulting in atypical action models, which in turn lead to socio-cognitive impairments. Chapters 

three and four of this thesis explore the mechanistic pathways via which dopamine may affect 

both socio-cognitive and motor functioning in populations like ASD by administering the 

dopamine antagonist haloperidol to healthy volunteers.  

 

1.4.2. The case of Parkinson’s 

Parkinson’s disease is a neurodegenerative disorder where progressive loss of 

dopaminergic neurons in the SNc leads to the cardinal motor features bradykinesia, rigidity, 

resting tremor and postural imbalances. Secondary motor symptoms include hypomimia 

(reduced voluntary or spontaneous facial expressions), micrographia (abnormally small, 

cramped handwriting), shuffling gait, and dystonia189. Motor symptoms in this disease typically 

set on in late adult life to old age (median onset age = 60 years), and progressively worsen over 

time190. Whilst the etiology of PD is presumed to be multifactorial (with proposed involvement 
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of noradrenergic, glutamatergic, serotonergic and adenosine pathways), the cardinal motor 

impairments in this condition have been primarily ascribed to the degeneration of nigrostriatal 

dopamine neurons191, most effectively treated with levodopa, a dopamine precursor190.  

In addition to motor symptoms, PD is accompanied by a range of non-motor symptoms, 

comprising autonomic and gastrointestinal dysfunctions, sleep disorders and mood disorders 

(amongst others), some of which occur before onset of motor symptoms192. Furthermore, 

cognitive impairments are common and range from mild (e.g., affecting executive dysfunctions, 

such as working memory), to severe (dementia)193. Although not classically listed alongside 

non-motor symptoms, there is increasing evidence that socio-cognitive deficits are prevalent in 

PD. For example, while emphasizing high variability of results, a meta-analysis194 and a recent 

review195 suggest deficits in facial emotion recognition in PD, with evidence pointing towards 

a greater deficit for negative, relative to positive emotions. Highly variable findings, with some 

studies not reporting any differences in emotion recognition between PD patients and controls, 

have been attributed to confounding factors such as pathological heterogeneity, disease 

severity, psychiatric comorbidities, or dopaminergic medication.  

Furthermore, PD patients have been shown to exhibit lower performance than controls 

in various tasks of ToM, signaling impairments in attributing internal states to pictures of eyes 

(RMET, e.g.,196,197) or to agents of naturalistic stories (Happé stories, e.g.,198,199), in identifying 

social faux-pas (faux-pas test, e.g.,196,199), and in attributing (false) beliefs (e.g.,200,201). A meta-

analysis confirms a significant impairment in PD patients across cognitive and affective 

measures of ToM202. 

Whilst the dopaminergic involvement in motor dysfunctions in PD is well-established, 

much less is known about the role of dopamine depletion in socio-cognitive deficits in this 

condition. Although few studies to date have directly investigated the effect of dopaminergic 



 
 

50 

medication on emotion recognition in PD, there is evidence for a restorative effect of dopamine 

replacement therapy (DRT) on neuroscientific markers of emotion processing (e.g., amygdala 

activity203; N170 event related potential204) and on emotion recognition performance205,206. 

Intriguingly, however, in the early stages of PD, levodopa administration has been observed to 

result in reduced amygdala activation207 as well as impaired emotion recognition performance 

(with particular deficits in anger recognition208). This observation has been proposed to reflect 

overdose effects of DRT on emotion processing195, which were ascribed to the meso-

corticolimbic pathway being relatively unaffected by dopaminergic depletion in the early stages 

of the disease209,210. Further evidence for an involvement of the meso-corticolimbic pathway in 

emotion recognition in PD comes from a study of a sample with juvenile parkinsonism, where 

patients exhibited more severe depletion of the nigrostriatal, relative to the meso-corticolimbic 

pathway211. In this study, authors failed to find differences in emotion recognition performance 

between patients and controls. 

Dopaminergic pathways have been further hypothesized to be implicated in ToM 

deficits in PD. It has been suggested that the sequential occurrence of cognitive and affective 

ToM impairments in PD reflects the differential involvement of different parts of the 

striatum212. In early disease stages, where the dorsal striatum is more severely affected than the 

ventral striatum, patients appear to exclusively show deficits in cognitive ToM. In contrast, 

impairments in affective ToM tend to occur as the disease progresses and are associated with 

depletions in the ventral striatum.  

In sum, evidence is suggestive of socio-cognitive deficits in PD, including impairments 

in emotion recognition and cognitive and affective ToM. Moreover, severity and domain of 

impairments appear to depend on disease stage and have been associated with dopamine 

dysfunction in nigrostriatal and mesco-corticolimbic systems. However, it is possible that 
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dopamine does not directly influence socio-cognitive processes in PD. In fact, a number of 

studies failed to establish a link between DRT and emotion recognition performance in PD195. 

Rather than directly modulate, dopamine may affect emotion recognition indirectly, for 

example by affecting patients’ movements, which in turn may alter or disrupt internal motor 

representations associated with affective states. Although the evidence is not fully conclusive 

and may depend on sensitivity of the diagnostic scale used, several studies report a link between 

motor symptom severity and emotion recognition ability, supporting a possible role of motor 

function in emotion perception processes in PD213-216. For instance, Marneweck et al. reported 

positive correlations between patients’ ability to discriminate and recognize emotional facial 

expressions and the degree to which they were able to voluntarily control their facial muscles. 

More importantly, these effects were found to be independent of disease severity and selective 

towards emotion recognition, as patients’ ability to recognize and discriminate facial identity 

was not related to motor dysfunctions, indicating a specific role of motor simulation in emotion 

recognition. At present it is unclear, however, whether PD patients exhibit socio-cognitive 

deficits before, simultaneous with, or after onset of motor symptoms. If, as previously 

hypothesized, internal action models built on individuals’ own motor experiences contribute to 

the understanding of observed actions, it is possible that PD patients at early disease stages still 

benefit from a lifetime of experiences with typical actions, and that difficulties in action 

understanding arise only later, after gradual change of internal action representations. Indeed, 

in support of this idea, a range of studies report relatively spared socio-cognitive functioning 

alongside impaired motor function in early-stage PD patients196,211,217. However, in studies 

claiming to use more sensitive measures of socio-cognitive function, difference to controls were 

also found in PD patients at early disease stages199,218. Thus, whether motor symptoms precede 

socio-cognitive symptoms in PD is currently not fully established. Chapters three and four 
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discuss evidence in support of early socio-cognitive impairments in PD alongside spared 

internal action models. Chapter six elucidates possible mechanistic pathways via which 

dopamine dysfunctions may affect social understanding independent of motor function.  

 

1.4.3. Dopamine as a key player in mechanisms underlying symptomatic commonalities 

between Parkinson’s disease and autism spectrum disorders? 

Intriguingly, a large number of motor and social dysfunctions seen in PD and ASD are 

strikingly similar. For example, autistic individuals exhibit difficulties in movement 

initiation121,219, which is a cardinal motor feature of Parkinson’s220. Further shared motor 

abnormalities affect postural control (e.g., ASD221,222, PD223) and handwriting (e.g., ASD224,225, 

PD226). This overlap in motor difficulties, as well as indications of genetic overlaps (e.g., in the 

Park2 gene227) between ASD and PD, are potentially responsible for increased rates of 

diagnoses of parkinsonism in older autistic individuals (20% across the whole ASD sample)228. 

Furthermore, both populations exhibit difficulties in attributing and reasoning about internal 

states in a variety of socio-cognitive tasks (e.g., ASD43,64, PD196,199). With dopaminergic 

processes confirmed to be implicated in motor dysfunction in PD, symptomatic commonalities 

between the two conditions may hint at dopamine as a key contributor to social and motor 

dysfunctions. As previously outlined, it is conceivable, that dopamine dysfunction primarily 

affects individuals’ motor function, which in turn may impact upon their social abilities. Motor 

abnormalities may lead to dysfunctional social interactions in two ways: On the one hand, in 

both ASD and later-stage PD patients, extended time of visuo-motor experiences with atypical 

movements could lead to atypical action models, potentially resulting in activation of 

inappropriate internal state representations upon observing others’ actions and thus leading 

individuals to draw inaccurate inferences about others’ internal states. On the other hand, it may 
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be that short-term disruption of motor function acutely affects the internal state representations 

associated with mirrored actions which might interfere with long-term internal action models. 

In other words, if low dopaminergic tone slows down an individual’s movements but leaves 

their mood unaffected, that person might now associate slower movements with a neutral 

affective state, which would contradict their original internal action model (wherein slow speed 

was associated with sad mood). This interference may result in a bias in judgements towards 

the current association between movement speed and internal state, or alternatively in more 

general inference errors. Importantly, whereas the former hypothesis would predict socio-

cognitive deficits in PD patients only at later stages of the disease, the latter hypothesis would 

be in line with early-stage impairments in socio-cognitive ability in PD. Due to the acute nature 

of the dopaminergic manipulation employed in the following studies, the present thesis is 

suitable to test the latter question, but no inferences about any potential long-term influences of 

aberrant dopamine function on socio-cognitive function can be made.  Furthermore, it is 

conceivable that conditions with dopaminergic dysfunctions show co-occurring motor and 

social symptoms as a function of the same underlying domain-general processes. For instance, 

predictive coding accounts provide a unifying model for both action understanding and action 

production229, and predictive processing has been argued to be aberrant in PD230, ASD231, as 

well as schizophrenia124. Finally, it is possible that dopamine affects domain-specific processes 

underlying social and motor functions independently, via separate neural pathways. 

Lastly, socio-cognitive impairments in conditions like PD or ASD could not be 

associated with dopaminergic dysfunction at all, but instead stem from psychological or 

psychosocial changes patients experience with ongoing disease severity. For example, motor 

symptoms such as reduced facial expressiveness or dystonia can lead to PD patients being 

judged as hostile, less sociable or less cognitively competent232,233. This could in turn lead to 
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social withdrawal, and ultimately to decline of cognitive resources which may be necessary for 

social interaction. Moreover, conditions like PD, HD or ASD exhibit high levels of co-morbid 

mood disorders234,235, and mood is known to affect emotion perception processes236,237. Thus, 

various other processes are possible that may lead to a coincidental co-occurrence of socio-

cognitive and motor processes in the discussed clinical populations.  

By means of investigating socio-cognitive and motor performance in healthy subjects 

after acute pharmacological challenge of dopamine using haloperidol, Chapters three and four 

of this thesis attempt to disentangle the contribution of dopaminergic processes to the 

relationship between social and motor function. Investigating dopaminergic modulation of 

motor and social processes in healthy subjects is advantageous for several reasons. First, acute 

dopaminergic challenge in healthy participants bears the potential to disentangle effects of 

short-term dopaminergic depletion from long-term effects of dysfunctional dopamine signaling 

typically observed in patients, furthermore it allows the investigation of dopaminergic effects 

on socio-cognitive and motor abilities isolated of potentially confounding psycho-social 

changes. Second, high functional and pathological heterogeneities within clinical populations 

can complicate inferences due to increased variance within those samples. Third, using healthy 

subjects allows the exploration of the dopaminergic modulation of certain functions without 

imposing on patients which may not tolerate long experimental studies very well due to a 

variety of co-morbid psychiatric and physical difficulties. Finally, Chapter six applies the 

empirical findings presented in this thesis to draw conclusions about the potential mechanisms 

via which dopamine system dysfunctions may affect socio-cognitive abilities in various clinical 

populations. 
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1.5. Summary 

This chapter provided an overview on the existing literature on the expression of internal 

states in, and inference of internal states from body movement cues, as well as elucidating how 

similarity in movement between two interaction partners may lead to facilitated social 

interactions. Chapter one further summarized key knowledge on the neurophysiological 

processes via which dopamine affects cognition and behavior, as well as illustrating how 

dopamine system dysfunctions may lead to the co-occurrence of atypical social and motor 

function using the example of two clinical populations, ASD and PD. The primary question of 

this thesis concerns the role of the neurotransmitter dopamine in the co-occurrence of socio-

cognitive and motor deficits. I address this question by investigating (1) how our own bodily 

actions and the similarity to others’ actions influence our perception of others’ affective and 

mental states, and (2) whether dopamine signaling has acute effects on social ability via its 

effects on motor performance. 

To shed light on this question, Chapter two presents empirical evidence that individuals 

make use of a variety of kinematic and spatial cues to infer mental states from the movements 

of two triangles, and that similarity in those cues between an observer and agent promotes the 

accurate decoding of these movements. Thus, Chapter two sets the scene for the further 

investigation of dopamine’s influence on movement and mental state attribution by confirming 

that movement similarity contributes to accurate mental state attribution. Following on, Chapter 

three investigates whether the effects of dopamine manipulation on motor function have 

cascading effects on participants’ mental state attribution abilities by decreasing similarity 

between their and the triangle’s movements. To anticipate, Chapter three provides evidence that 

pharmacological manipulation of dopamine has dissociable effects on motor and social 

function. Chapter four goes on to explore the role of dopamine in emotion recognition from 
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whole-body movement, adding further support for the idea that dopamine independently 

modulates motor ability and socio-cognitive performance whilst presenting hypotheses for 

possible underlying mechanisms. As the fourth empirical chapter, Chapter five addresses 

current methodological shortcomings of the emotion recognition literature, thereby providing 

important implications for the results demonstrated in Chapter four. Finally, Chapter six 

presents a synthesized discussion of all findings of this thesis, concluding that dopamine 

signaling has short-term effects on internal state inferences which are independent from its 

influence on motor function and likely reflect domain general processes. The chapter closes by 

proposing three candidate mechanistic pathways via which the dopamine system may 

independently modulate socio-cognitive function, discussing implications for clinical 

populations and by providing some directions for future research.
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Chapter 2: Kinematics and observer-animator kinematic 

similarity predict mental state attribution from Heider-Simmel 

style animations 

 

The Introduction outlined how two individuals who move distinctly different from each 

other, as might be for instance the case in a dyad of a non-autistic and an autistic person, may 

have difficulties in inferring each other’s internal states. This may be specifically evident in 

situations where movement kinematics are the most obvious, or only, cues conveying 

information about underlying mental phenomena, such as in animations tasks. Edey and 

colleagues1 have shown that two populations who on average move with significantly different 

levels of kinematic jerk have trouble attributing the correct mental states to videos of interacting 

triangles when these were created by the respective other group. These findings led the authors 

to speculate that the dissimilarities in jerk between the two groups were causally related to the 

observed performance differences. This chapter presents a study which tests whether movement 

jerk, and similarity in jerk between animator and observer, are predictive of mental state 

attribution performance in the animations task. In addition, other animation features which are 

potentially important in conveying mental state information are explored. 
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Abstract 

The ability to ascribe mental states, such as beliefs or desires to oneself and other individuals 

forms an integral part of everyday social interaction. Animations tasks, in which observers 

watch videos of interacting triangles, have been extensively used to test mental state attribution 

in a variety of clinical populations. Compared to control participants, individuals with clinical 

conditions such as autism typically offer less appropriate mental state descriptions of such 

videos. Recent research suggests that stimulus kinematics and movement similarity (between 

the video and the observer) may contribute to mental state attribution difficulties. Here we 

present a novel adaptation of the animations task, suitable to track and compare animation 

generator and -observer kinematics. Using this task and a population-derived stimulus database, 

we confirmed the hypotheses that an animation’s jerk and jerk similarity between observer and 

animator significantly contribute to the correct identification of an animation. By employing 

random forest analysis to explore other stimulus characteristics, we reveal that other indices of 

movement similarity, including acceleration- and rotation-based similarity, also predict 

performance. Our results highlight the importance of movement similarity between observer 

and animator and raise new questions about reasons why some clinical populations exhibit 

difficulties with this task.   
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2.1. Introduction 

Seminal work by Heider and Simmel84 demonstrated that humans readily attribute 

mental states to two triangles moving around a rectangular enclosure. Since their inception in 

1944 such “animations tasks” (also referred to as Frith-Happé Animations42 and Social 

Attribution Task85) have grown dramatically in popularity and have been used in a wide variety 

of clinical populations, including autism spectrum disorder (ASD)42,238, schizophrenia87, 

antisocial personality disorder239, Huntington’s disease46 and Tourette’s syndrome47. Though 

animations tasks have been scored and administered in a number of ways (some studies count 

the number of mental state terms used to describe the movements of the triangles42,238, other 

studies have asked participants to rate the type of interaction or the mental state word depicted 

in the animations1,240) it is generally agreed that “poor performance” indicates a problem with 

ascribing appropriate mental states to the triangles. We refer to this process here as ‘mental 

state attribution’. 

Though mental state attribution has been found to be atypical across a range of clinical 

populations, little is known about why some individuals struggle to attribute appropriate mental 

states to the triangles. One explanation is that individuals who struggle with the animations task 

would exhibit atypicalities in other tests of mental state attribution because of a deficit in the 

ability to attribute minds and ascribe appropriate mental states (i.e., Theory of Mind [ToM]). 

However, animations tasks tend to be more sensitive to mental state attribution difficulties 

compared to other tests, as shown by Abell et al.42. At present it is unclear why some individuals 

find this task particularly challenging. 

A recent study highlights that kinematic similarities between the triangles’ movements 

and the participant’s own movements may influence performance in the animations task1. Edey 

and colleagues asked autistic (‘condition-first’ terminology is used in line with the majority 
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preference expressed in a survey of the autistic community241) and non-autistic participants to 

complete the animations task, and also to produce their own animations using triangles that 

could be moved around an enclosure with magnetic levers. In line with a growing literature 

concerning jerky body movements in autism173,242-244, the authors found that animations 

produced by autistic individuals were more jerky (i.e. exhibited greater changes in acceleration 

and deceleration) than those produced by non-autistic individuals. Furthermore, whereas non-

autistic participants could readily attribute mental states to animations created by other non-

autistic participants, they had difficulties attributing mental states to the jerky animations that 

had been produced by the autistic participants. Conversely, autistic participants in Edey’s study 

did not show improved performance when rating their own group’s, relative to the control 

group’s, animations. The authors proposed that jerk similarity significantly contributes to 

performance in the animations task: that is, non-autistic individuals were better able to correctly 

identify animations created by other non-autistic participants because the kinematic jerk in the 

videos was comparable to the amount of jerk they themselves would exhibit when moving the 

triangles. Autistic participants did not, however, benefit from jerk similarity because high 

variability in jerk present within this group led to a reduced number of animations sufficiently 

similar to facilitate mentalizing performance.  

Although Edey et al.1 inferred - on the basis that jerk differed between the ASD and 

control group - that jerk similarity was a likely contributor to animations task performance, they 

did not empirically demonstrate this to be the case. To test Edey et al.’s, hypothesis and better 

understand why some individuals struggle to attribute appropriate mental states in the 

animations task, the first aim of the current study was to test whether a significant amount of 

variance in performance in a Heider-Simmel style animations task would be accounted for by 
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the kinematic jerkiness of the animation and the similarity between the jerkiness of the 

animation and a participant’s own movements. 

Kinematic jerk and jerk similarity are not the only factors which plausibly influence 

performance in animations tasks. Previous studies have highlighted potential roles for stimulus 

features including the rotation of, and distance between, the triangles245, and the shape of the 

triangles’ trajectories246. For instance, Roux et al. documented highly distinguishable trajectory 

paths for random, goal-directed and mental state animations, thus suggesting that trajectory 

path may be an important cue that observers can use to attribute appropriate mental states. 

Furthermore, it is plausible that, in addition to jerk, other kinematic parameters such as speed 

and acceleration may predict performance. That is, beyond jerk similarity, movement similarity 

more generally may predict the accuracy of mental state attribution in the animations task. The 

proposal that movement similarity may affect performance in the animations task is bolstered 

by recent empirical work showing that observers more accurately estimate a human actor’s 

underlying intentions when the trajectory of the actor’s arm movements closely approximates 

the observer’s own movements247. Furthermore, a role for movement similarity in mental state 

attribution is in line with theoretical accounts suggesting that inferences about others’ actions 

are facilitated by mapping visual representations of these actions onto our own visual/motoric 

representations of the same actions29,106,248,249, and is broadly consistent with simulation 

accounts of ToM which claim that one uses one's own mental processes to simulate others’ 

mental states250. The movement similarity hypothesis would propose that mental state 

attribution difficulties in classic animations tasks may, at least in part, be explained by 

differences between the way the triangles are animated and the way an observer would move 

the triangles if required to create their own animation. 
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Correspondingly, the second aim of the current study was to explore the extent to which 

a range of other stimulus features (including trajectory shape, rotation of and distance between 

the triangles, and various indices of kinematics) influence the ease with which participants 

correctly attribute a mental state to an animation. By doing so, we shed light on a multiplicity 

of factors which may explain why some clinical groups find the animations task so challenging. 

For this latter analysis we made use of the fact that, similar to a sound wave, a triangle’s 

trajectory comprises a complex wave and thus can be decomposed with Fourier transform and 

represented as spectral density (i.e., energy) in different frequency bands251. In other words, 

Fourier transform can be used to characterize the shape of a trajectory. For example, a trajectory 

which approximately follows an elliptical orbit oscillates in speed and curvature twice during 

every full rotation and consequently would be characterized by high spectral density in a band 

centered around an angular frequency of two. Adapting a method developed by Huh & 

Sejnowski, we explored whether there are particular angular frequency bands which 

differentiate mocking, seducing, surprising, following and fighting animations and whether 

spectral density in these bands is predictive of accuracy. 

Currently available animations task stimulus sets are not suitable to test our hypotheses 

regarding jerk, jerk similarity and movement similarity for two reasons: First, having been 

created by experimenters or graphic designers, the stimuli in these tasks typically represent a 

narrow range of kinematics and thus lack the variation necessary for quantifying the 

contribution of kinematics and other stimulus features to performance. Second, tasks to date 

offer no option to track animator (or observer) kinematics at sufficient sampling rates to reliably 

make inferences about the role of jerk/movement similarity. Here we created a novel Heider-

Simmel style animations database (available upon request) by asking 51 members of the general 

population to animate two triangles to depict mental- (mocking, seducing, surprising) and non-
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mental- (following, fighting) state interactions on a 133 Hz touch screen device. The distinction 

between mental and non-mental states, and the choice of individual words used within these 

conditions, was based on the ToM and Goal-Directed conditions used in the original Frith-

Happé animations42. That is, ToM animations depict “[…] one character reacting to the other 

character’s mental state […]” whereas Goal-Directed animations represent “[…] reciprocal 

interaction, but no implication that one character was reading the other's ‘mind’” (p. 5). This 

distinction has since been widely used across the literature1,238,240. Following database creation, 

an independent sample of 37 members of the general population watched a selection of videos 

from our new database. To ensure that participants were exposed to a wide range of kinematics, 

they watched 8 exemplars for each word, ranging from slow to fast speed. Participants rated 

the extent to which each animation depicted the words mocking, seducing, surprising, following 

and fighting, in addition to also creating their own animation for each word (Fig. 1). In a four-

step analysis procedure, we first used Bayesian mixed effects models to test our hypotheses that 

kinematic jerk and the similarity in jerk between observer and animator are significant 

predictors of the accuracy of mental state attributions (confirmatory analysis). In a second step, 

we used Fast Fourier Transform (FFT) combined with bootstrapped F-tests to investigate 

whether mocking, seducing, surprising, following and fighting animations could be reliably 

distinguished according to their profile of spectral density across a range of frequency bands 

(exploratory analysis 1). Thus, enabling us to identify potential differences in trajectory shape 

between animations of different words. In a further exploratory analysis, we employed a 

random forest procedure to determine the relative contribution to accuracy of a multiplicity of 

factors including speed, acceleration, jerk, the amount of simultaneous movement of both 

triangles, the relative distance between triangles, triangles’ average rotation and trajectory 

shape as indexed by the magnitude of spectral density in the frequency bands identified in the 
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Figure 1. (a) Schematic depiction of three successive trials in the animations task. 37 participants watched 

videos from the database and rated the extent to which each video depicted mocking, seducing, surprising, 

following, or fighting. (b) Example trajectory of an animation stimulus. Each participant used a touchscreen 

device to create their own triangles animations.4 For each animation (both observed and generated by 

participants) we calculated jerk as the mean of the third order non-null derivative of the raw positional data 

across all frames, jerk similarity was calculated as the difference in mean jerk between an animation stimulus 

and the participant’s own animation of the same word (jerk difference). Depicted is an example of a following 

animation (one triangle’s trajectory).  

 

second analysis step (exploratory analysis 2). Finally, in exploratory analysis 3 we take the top 

three predictors from exploratory analysis 2 and use these to calculate novel indices of 

movement similarity; Bayesian mixed effects models are employed to test whether these novel 

indices are significant predictors of animations task performance.  

 

 
4 For a more detailed description of triangle movements and more examples of trajectories please see 
Appendix 1.1 

a

b
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2.2. Results 

Accuracy for each trial was calculated by subtracting the mean rating for all non-target 

words from the rating for the target word (e.g., the target word was seducing on trials where the 

participant watched a video wherein the original animator had attempted to depict the triangles 

seducing each other). Consequently, a high, positive accuracy score for a seducing animation 

indicates that an observer rated this animation as depicting seducing to a higher extent than 

mocking, surprising, following or fighting. For a comparison of mean accuracy scores for each 

word category see Supplementary Materials [Appendix 1]. For each video that participants 

observed and for each animation that they created themselves, mean jerk magnitude (hereafter: 

jerk) was obtained by taking the third order non-null derivatives of the raw positional data and 

calculating the mean across all frames in the video. Jerk similarity was calculated as the 

difference in mean jerk between an animation stimulus and the participant’s own animation of 

the same word (hereafter: jerk difference), where lower difference values indicate higher jerk 

similarity (see Methods: Data Analysis and Processing). 

 

Mental state animations are rated less accurately than non-mental state animations 

A Bayesian linear mixed effects model with the maximal random effects structure 

allowed by the design252 was fitted to jerk, jerk difference (lower values reflect higher jerk 

similarity) and the dummy-coded factor mental state (mental state [seducing, surprising, 

mocking] versus non-mental state [following, fighting]) as well as their three-way interaction. 

Random intercepts were fitted for animation ID (unique identifier for each animation) and 

subject ID; random slopes were fitted for the interaction between jerk and mental state varying 

by animation ID and jerk difference varying by subject ID. For all relevant model parameters, 

we report expected values (𝐸!) under the posterior distribution and their 95% credible intervals  
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Figure 2. Posterior probabilities of model parameters predicting accuracy. Filled green areas represent 95% 

credible Intervals around parameter estimates. Grey lines represent means of parameter estimates.  
 

(CrIs)253, as well as the posterior probability that an effect is different to zero (P(𝐸! < 0) / 

P(𝐸! > 0)). In line with Franke & Roettger254, if a hypothesis states that an effect 𝐸! 	≠ 0 (e.g. 

effect of jerk similarity on accuracy), we conclude there is compelling evidence for this effect 

if zero is not included in the 95% CrI of 𝐸! and if the posterior probability P(𝐸! 	≠ 0) is close 

to 1. The model indicated that accuracy was higher in non-mental state videos relative to mental 

state videos (𝐸𝜇"#$%&'()$*$+"#$%&' = 2.54, CrI= [1.81, 3.28]), with the posterior  

probability that the difference is larger than zero being P(𝐸𝜇$*$+"#$%&' > 0) = 1 (see Fig. 2 

for prior and posterior distributions of all estimated parameters). 

 

Jerk affects performance differently for mental- and non-mental state animations 
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In line with our hypothesis, accuracy was associated with mean jerk, furthermore jerk 

interacted with mental state: For mental state animations, lower mean jerk was associated with 

higher accuracy (𝐸𝜇,#-.,"#$%&' = -1.03, CrI = [-1.52, -0.53]), whereas in non-mental state 

animations higher mean jerk led to higher accuracy scores (𝐸𝜇,#-.,"#$%&'()$*$+"#$%&' = 1.65, 

CrI = [0.88, 2.41]). Thus, while mental state animations with mean jerk values 1 standard 

deviation (SD) above the (mental state condition) mean were rated 1.03 points less accurately 

(compared to a mental state video with a mean jerk value), non-mental state animations with 

jerk values 1 SD above the (mental state condition) mean were rated 0.62 points more 

accurately (𝐸𝜇,#-.,"#$%&' +	𝐸𝜇,#-.,"#$%&'()$*$+"#$%&' =	– 1.03 + 1.65). Since the posterior 

probabilities for both effects (P(𝐸𝜇,#-.,$*$+"#$%&' > 0), P(𝐸𝜇,#-.,"#$%&' < 0)) were in fact 1, 

we conclude that, given our model and the data, there is compelling evidence in favor of our 

hypothesis that an animations’ jerk impacts mental state attribution performance in the 

animations task. To probe whether such effects varied as a function of the word depicted in the 

video, we conducted separate exploratory models for non-mental state and mental state 

animations for which we included word category (non-mental state: following, fighting; mental 

state: mocking, seducing, surprising) as a predictor in addition to jerk and jerk difference. These 

models revealed that, for non-mental state animations there was a strong positive effect of jerk 

for fighting, but not following, animations (𝐸𝜇,#-.,0123%1$2 = 1.88, CrI = [0.67, 3.11], 

P(𝐸𝜇,#-.,0123%1$2 > 0) = 1; 𝐸𝜇,#-.,0*''*41$2 = 0.30, CrI = [-0.30, 1.05]). For mental state 

animations, the overall negative effect of jerk was driven by a tendency towards a negative 

effect of jerk on accuracy in mocking and surprising animations (𝐸𝜇,#-.,"*5.1$2 = -0.58, CrI = 

[-1.56, 0.40]; 𝐸𝜇,#-.,67-8-161$2 = -0.94, CrI = [-2.69, 0.76]). There was no effect of jerk in 

seducing animations (𝐸𝜇,#-.,6#9751$2 = 0.26, CrI = [-1.40, 1.85]).   
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Higher observer-animator similarity in jerk is associated with higher accuracy 

In line with our hypothesis, accuracy was also associated with jerk difference. The 

model revealed a negative relationship between jerk difference and accuracy for mental state 

animations (𝐸𝜇,#-.:100,"#$%&' = -0.38, CrI = [-0.72, -0.03]; P(𝐸𝜇,#-.:100,"#$%&' < 0) = 0.98). 

Jerk difference did not affect accuracy differently in non-mental state animations, indicated by 

high uncertainty surrounding the coefficient for the contrast of mental state and non-mental 

state (𝐸𝜇,#-.:100,"#$%&'()$*$+"#$%&' = 0.25, CrI = [-0.27, 0.76]). Thus, jerk difference had a 

negative effect on accuracy in both mental- and non-mental state animations. Consequently, 

higher jerk similarity was associated with higher accuracy. To probe whether such effects 

varied as a function of word category we conducted an exploratory mixed model which 

included the word categories mocking, seducing and surprising. This model revealed that the 

negative main effect of jerk difference was mainly driven by mocking animations 

(𝐸𝜇,#-.:100,"*5.1$2= -0.70, CrI = [-1.22, -0.18]; P (𝐸𝜇,#-.:100,"*5.1$2 < 0) = 0.99; 

𝐸𝜇,#-.:100,6#9751$2= 0.98, CrI = [-0.49, 2.46]; 𝐸𝜇,#-.:100,67-8-161$2= 0.63, CrI = [-0.29, 1.52]). 

 

A combination of ten kinematic and spatial variables best predicts accuracy in the 

animations task 

In order to explore the relative importance of trajectory path alongside a variety of other 

stimulus features, we first identified which components of triangle trajectories can reliably 

distinguish between the five target words (i.e., mocking, seducing, surprising, following, 

fighting). For this we used FFT to decompose the triangles’ trajectories and represent them as 

an amplitude spectral density profile across a range of angular frequencies. We then employed 

bootstrapped F-tests (with 1000 boots) to identify angular frequency “bins” wherein spectral 

density significantly differs between the five target words (see Methods: Data Analysis and 
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Processing). We reasoned that these bins contain signal that participants may be using in the 

mental state attribution task. This analysis revealed nine significant clusters, defined as clusters 

of difference that occurred in less than 5% of comparisons with resampled distributions (see 

Figure 3A). 

To examine whether spectral density in these nine frequency clusters was predictive of 

accuracy we used the maxima and minima of each significant cluster as bin edges and calculated 

the angular frequency spectral density (AFSD) as the area under the curve between the bin 

edges (cluster bin edges: 0.21 – 1.49, 1.61 – 2.39, 2.64 – 2.87, 3.04 – 3.40, 3.91 – 4.27, 4.79-

5.19, 6.19-6.68, 7.6-7.93, 8.75-10). AFSD in the nine bins refers to the relative amount of 

specific trajectory components (i.e., “shapes”) present in each animation. That is, an animation 

that predominantly features elliptical trajectory components would be characterized by high 

AFSD in a band centered around an angular frequency of two (i.e., bin 2 which covers angular 

frequencies from 1.61 to 2.39).  

The relative contribution to accuracy of the presence of these trajectory components was 

then assessed, alongside a selection of other kinematic and spatial variables, which were chosen 

based on indications in previous literature for their putative role in mental state attribution245,246. 

For this purpose, mental-state, speed, acceleration magnitude (hereafter: acceleration), jerk, 

simultaneous movement, relative distance and mean rotation were entered into a random forest 

model255 using the Boruta256 wrapper algorithm (version 7.7.0). Boruta trains a random forest 

regression model on all variables as well as their permuted copies - so called “shadow features” 

- and classes a variable as important when its permutation importance is significantly higher 

than the highest permutation importance of a shadow feature (for more details see Methods: 

Exploratory analysis). Note that because this analysis technique does not account for random 

effects, values corresponding to the same animation were averaged across participants, this 



 
 

13 

permits indices such as jerk and acceleration which are features of a particular animation but 

excludes jerk difference which depends on the relation between an animation and an individual 

participant.  

Out of all 16 variables tested, 10 were confirmed important, two were confirmed 

unimportant, and four were classed as tentative on the basis that their permutation importance 

was not significantly different from the maximal importance of a shadow feature (see Fig 4). 

Fig 4 illustrates that the important role of mental-state and jerk in predicting accuracy is 

confirmed by the random forest model, with mean importances of 16.0 and 7.82 respectively. 

However, the model identifies a third variable as even more important than jerk: mean rotation 

(mean importance = 11.78). In addition, an animation’s acceleration and speed, AFSD in bins 

1, 6, 9 and 8, as well as the amount of simultaneous movement of both triangles notably 

contribute to explaining performance in the animations task (mean importances: acceleration = 

7.91; speed = 4.70; AFSD-bin 1 = 7.03, AFSD-bin 6 = 6.37, AFSD-bin 9 = 5.04, AFSD-bin 8 

= 3.89; simultaneous movement = 4.74). A final model of all 10 important variables predicting 

accuracy was evaluated by training a random forest on a subset of 70% of the data (training set) 

and using it to predict the remaining 30% (test set). The regression model of the training set 

predicting the test set was highly significant (p < .001) and indicated that the selected variables 

explained 37% of accuracy values. 

We subsequently conducted post hoc random forests separately for mental state- and 

non-mental state animations. These post hoc analyses revealed that, in mental state animations, 

five factors were predictive of accuracy, with jerk and acceleration being the most prominent 

predictors, followed by speed, which was ranked third (see Supplementary Fig 2 [Appendix 

1]). In addition, AFSD in bin 6 and simultaneous movement were classed as important in 

predicting accuracy. In non-mental state animations, a total of eight predictors were identified 
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as important variables, with mean rotation being ranked highest by a considerable margin. In 

addition to mean rotation, a combination of AFSD in bins 1, 6, 7 and 9, and acceleration, jerk 

and speed were identified as important features of non-mental state animations. 

 

Similarity measures calculated from the three variables identified as most important in 

the random forest predict mental state attribution accuracy. 

 In order to assess whether the effect of movement similarity between animator and 

observer on successful mental state attribution extends beyond jerk, we calculated similarity 

measures for the two variables (acceleration and rotation) which were identified as most 

important in the random forest analysis alongside jerk. Subsequently we employed two 

Bayesian mixed effects models to assess the strength of these difference scores in predicting 

accuracy. The first featured acceleration difference, rotation difference and mental state 

(dummy-coded) as predictors, and the second featured rotation difference, jerk difference and 

mental state. Model 1 revealed a negative effect for rotation difference in mental state 

animations (𝐸𝜇-*%&%1*$:100,"#$%&'= -0.34, CrI = [-0.68, -0.01]; P(𝐸𝜇-*%&%1*$:100 < 0) = 0.98), 

and this relationship did not differ for non-mental state animations 

(𝐸𝜇-*%&%1*$:100,"#$%&'()$*$+"#$%&'= 0.40, CrI = [-0.13, 0.93]) indicating that overall,  higher 

rotation similarity was associated with higher accuracy. For acceleration difference, the model 

revealed an interaction with mental state, where acceleration difference was negatively 

associated with accuracy in mental state (𝐸𝜇&55#'#-&%1*$:100,"#$%&'= -0.48, CrI = [-0.88, -0.09]), 

but not related to accuracy in non-mental state animations 

(𝐸𝜇&55#'#-&%1*$:100,"#$%&'()$*$+	"#$%&' 	= 0.53, CrI = [0.01, 1.05]; note that this coefficient 

represents the difference in coefficients for acceleration difference between mental and non-

mental state animations, the coefficient for the relationship between acceleration difference and 
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accuracy in non-mental state animations is close to zero: 0.53 – 0.48 = 0.05). The second model 

revealed comparable results (𝐸𝜇-*%&%1*$:100,"#$%&'= -0.35, CrI = [-0.66, -0.04]; 

𝐸𝜇-*%&%1*$:100,"#$%&'()$*$+"#$%&'= 0.35, CrI = [-0.14, 0.85]; 𝐸𝜇,#-.:100,"#$%&'= -0.48, CrI = 

[-0.85, -0.11]; 𝐸𝜇,#-.:100,"#$%&'()$*$+	"#$%&' 	= 0.58, CrI = [0.09, 1.06]).  

 

2.3. Discussion 

This study evaluated the relative contribution of jerk, jerk similarity and other stimulus 

characteristics to mental state attribution performance indexed using a novel adaptation of the 

animations task, suitable to track and compare animation generator and -observer kinematics. 

Our results confirm our hypothesis that animation jerk and jerk similarity are predictors of the 

accuracy of mental state attribution. In addition, we highlight that stimulus features including 

the shape of the triangles’ trajectories and the amount of rotation of the triangles can also affect 

the ease with which participants are able to appropriately label the target states (exploratory 

analysis 2). Finally, we show that the similarity between an observer and generator is also 

beneficial when considering other movement characteristics beyond jerk, such as triangle 

rotation and acceleration (exploratory analysis 3). 

In the first part of our confirmatory analysis step, we found that mental state was the 

primary predictor of animations task performance. Mental state videos were strongly associated 

with lower accuracy, correspondingly non-mental state videos were rated more accurately. The 

extant literature is mixed and there are some studies in which mental state animations are rated 

less accurately than non-mental state animations240,257. However, our observation that our 

healthy participants performed worse when interpreting mental, relative to non-mental, state 

animations, is inconsistent with most previous findings: In Abell et al.’s and other studies, non-
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Figure 3. (a) Significant clusters of difference in angular frequency spectral density (AFSD). Solid colored 

lines represent spectral density as a function of angular frequency per word (=AFSD), the corresponding 

shaded areas represent 1 SEM (standard error of the mean) below and above the mean values. Yellow bars 

on x-axis represent clusters where AFSD significantly differs between mocking, seducing, surprising, 

following and fighting. Clusters that are predictive of accuracy are highlighted in yellow.  Note that the lowest 

b
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angular frequency derived from the data varied between 0.02 and 0.09, resulting in extrapolated values for 

some participants. For this reason, the first cluster of difference ranging from 0.02 to 0.09 was considered 

not representative of actual movements and disregarded. (b) Post-hoc comparisons of AFSD. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Random forest variable importances. Variable importances of all 16 features entered into the 

Boruta random forest, displayed as boxplots. Box edges denote the interquartile range (IQR) between first 

and third quartile; whiskers denote 1.5 * IQR distance from box edges; circles represent outliers outside of 

1.5 * IQR above and below box edges. Box color denotes decision: Green = confirmed, yellow = tentative, 

red = rejected; grey = meta-attributes shadowMin, shadowMax and shadowMean (minimum, maximum and 

mean variable importance attained by a shadow feature). 

 

autistic adult participants performed at least equally well42,238,257-259 on mental state and non-

mental state animations. It is possible that our findings illustrate a true difference in difficulty 

between mental and non-mental state attribution that is revealed only when participants are 

presented with a wide range of animation stimuli from a population-derived database. This 
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difference may have been overlooked because previous studies employed animations created 

by a single graphic designer, or small group of experimenters and thus lack variation. However, 

this possibility demands empirical testing. Indeed, a direct comparison between our paradigm 

and previous studies is not possible due to task related differences (e.g., in indices of 

performance, and number of words animated per condition). If superior performance for non-

mental, relative to mental, state animations were replicated, future studies may proceed to 

explore whether non-mental state videos are perhaps richer in cues (such as acceleration and 

ASFD in bin 6) which contribute to the correct inference of both mental- and non-mental states 

in the current dataset. 

In this first analysis step it was further revealed that the triangles’ mean jerk in an 

animation plays a substantial role in interpreting that animation. For mental state attributions 

jerk was negatively predictive of accuracy, whereas for non-mental state animations jerk was 

positively predictive of accuracy. Post hoc analyses revealed that this latter result was primarily 

driven by fighting animations, and that the former was most notable with respect to mocking 

and surprising animations (though caution is advised with regards to the effect of surprising 

animations, since credible intervals of coefficient estimates did not exclude zero). In previous 

work, Edey and colleagues1 observed that non-autistic participants were more accurate in their 

mental state attributions for animations generated by non-autistic participants compared to 

those generated by autistic participants. They also observed that animations generated by 

autistic participants were more jerky compared to those generated by controls. However, in 

Edey et al.’s study there were a number of additional dimensions along which the two groups’ 

animations may have varied, making it impossible to know whether the autistic participants’ 

animations were difficult to interpret because of the jerky kinematics. Our results show that 

jerk meaningfully contributes to the accuracy of mental state attributions, thus our data supports 
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the conclusion that jerk is highly likely to be one of the driving factors in the group differences 

observed by Edey et al. 

Our results also highlight jerk similarity as a potential driving factor for the differences 

observed by Edey et al.1. That is, we observed a positive relationship between jerk similarity 

and accuracy. Post hoc analyses revealed that evidence of this relationship was particularly 

compelling in the case of mocking animations: The more closely a mocking animation’s mean 

jerk approximated the participant’s own jerk when animating the same word category, the more 

accurately that animation was rated. We speculate that Edey et al.’s non-autistic participants 

performed poorly when attributing mental states to animations produced by autistic individuals 

not only because these animations were jerky, but also because the kinematics of the animations 

were dissimilar from the way in which the observer would have produced the same animation. 

In other words, it is plausible that, in the minds of Edey et al.’s non-autistic observers, the 

animations generated by non-autistic animators triggered suitable mental state labels because 

the animation kinematics were similar to the kinematics that observers themselves would have 

produced. However, because the atypically jerky videos generated by autistic animators were 

presumably not, in the minds of non-autistic observers, associated with any mental state labels, 

it was difficult for observers to correctly identify the underlying mental state. This interpretation 

is in line with theoretical accounts29,106,248,249,260 suggesting that visual and/or motoric 

representations of one’s own actions may influence interpretations of others’ actions and is 

reminiscent of simulation accounts of theory of mind which claim that one uses one's own 

mental processes to simulate others’ mental states250.  

The second aim of the current study was to explore the extent to which a range of other 

stimulus features, including trajectory shape, influence mental state attribution accuracy. To 

quantify trajectory shape we used FFT to decompose trajectories into spectral density in angular 
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frequency bins. Animation identity could be differentiated by AFSD in nine bins and random 

forest analyses confirmed that four of these bins - bins 1, 6, 8 and 9 corresponding to angular 

frequencies 0.2-1.5, 4.8-5.2, 7.6-7.9, 8.8-10 - were ‘important’ predictors of mental state 

attribution accuracy. Relative to the other words, following animations had the highest AFSD 

in the angular frequency range 0.2-1.5 (bin 1; Fig. 3). A high amount of AFSD in this range 

indicates a trajectory characterized by complex doodle-like movements (see Supplementary 

Fig. 3 [Appendix 1]) with low angular-frequency oscillation in speed and curvature. Thus, one 

may speculate that animations which are most easily identifiable as ‘following’ comprise 

doodle-like triangle trajectories, with between 0.2 and 1.5 curvature oscillations per 2𝜋 radians. 

In the angular frequency range 4.8-5.2 (bin 6), surprising animations had highest AFSD relative 

to the other words (See Fig. 3). This angular frequency range centers around the pure-frequency 

trajectory of a pentagon and thus is reflective of movements with around five speed-curvature 

oscillations per 2𝜋 radians. Whilst our stimuli did not necessarily contain trajectories in the 

shape of actual pentagons, high AFSD in bin 6 reflects curves and speed-curvature patterns 

similar to those required to produce a closed-form pentagon. Finally, relative to the other words, 

both surprising and fighting had high AFSD in angular frequency ranges 7.6-7.9 (bin 8) and 

8.8-10 (bin 9). A high amount of AFSD in these ranges indicates trajectories characterized by 

octagonal (bin 8) and decagonal shapes (See Fig. 4) with 8-10 speed-curvature oscillations per 

rotation. Together these results clearly illustrate that trajectory shape comprises an important 

cue with respect to the identity of the word that is depicted in an animation. At present one can 

only speculate about why some shapes (e.g., pentagons) are more indicative of particular 

mental/non-mental states (e.g., surprising). 

For the third step in our four-part analysis, we employed random forests to ascertain the 

relative contribution to accuracy of a range of stimulus features. The random forest 
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methodology was chosen for its robustness against (multi-)collinearity and suitability for 

evaluating contributions of a large number of variables with limited data points261. Our random 

forest analysis confirmed ten features as important predictors of accuracy. In order of relative 

importance these are: mental state, mean rotation, acceleration, jerk, trajectory shape (AFSD in 

bins 1, 6, 8, 9), simultaneous movement of the triangles and speed. Post hoc analyses (see Fig. 

3B) revealed that with respect to mental state attribution specifically, five of these features were 

of confirmed importance: jerk, acceleration, speed, AFSD-bin 6 and simultaneous movement. 

There was one feature which was uniquely important for mental state accuracy: The amount of 

simultaneous movement of blue and red triangles. By decomposing the animations task into 

features which predict accuracy, this random forest analysis deepens understanding of 

individual differences in animations task performance and raises testable empirical hypotheses 

for further research. For example, our analysis illustrates that simultaneous movement of the 

triangles is a stimulus feature which predicts mental state attribution accuracy. This observation 

raises the possibility that poor performance on the animations task in some clinical groups may 

be related to differences in processing this stimulus feature. That is, processing the simultaneous 

movement of the triangles requires distributed attention to two objects simultaneously. It may 

be that individuals with some clinical conditions (e.g., autism262) exhibit a deficit in the 

perception of global relative to local motion stimuli, making it more difficult for them to process 

the simultaneous movement of two triangles (though note contradictory evidence from Zwickel 

et al.263 that autistic participants distribute their attention evenly across both triangles). Given 

our finding that simultaneous movement cues are uniquely important for mental (but not non-

mental) state accuracy, we speculate that difficulties processing the simultaneous movement of 

both triangles may impact selectively on the accuracy of mental-, not non-mental-, state 

attributions.  
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Finally, exploratory analysis 3 investigated whether similarity effects also exist with 

respect to other movement features such as triangle rotation. The random forest technique, due 

to its inability to account for random variance among individuals, does not allow for the 

inclusion of indices relating to movement similarity (which depend on the relation between an 

animation and an individual participant). We therefore conducted an additional set of Bayesian 

mixed effects models where we tested whether similarity between an observer and animator in 

the top three features identified by the random forest also predicted accuracy. Results revealed 

that, alongside jerk similarity, acceleration similarity and rotation similarity predict accuracy in 

the animations task. Whereas our confirmatory analysis was hypothesis-driven, this analysis 

illustrates that, even when a more data-driven approach is applied, jerk similarity is a strong 

predictor of accuracy. The results of this last exploratory analysis step are consistent with motor 

simulation accounts of mentalizing and extend the effect of jerk similarity to other movement 

features. It remains to be seen whether apparent mentalizing deficits in autism are ameliorated 

when autistic people are provided with stimuli which match closely to features of their own 

movement including mean rotation, trajectory shape and kinematics. If it were the case that 

movement similarity facilitates mental state attribution in clinical populations including autism 

and healthy people alike, it may be feasible to develop support systems to improve bi-

directional communication between (for example) autistic and non-autistic people, by teaching 

counterparts to move more similarly in order to find a “common body language”. Although 

such support systems could be extremely helpful for autistic and non-autistic dyads who interact 

frequently, for instance in caregiver-caretaker relationships, there is much work that must yet 

be completed to build a bridge between the current findings and this future possibility. 

This study has several limitations worth noting. First, with respect to generalizability, it 

should be noted that our 84% female sample lacked variation in terms of gender, age and 
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educational background. In order to know whether our results apply to the wider population, 

future studies with more varied samples are needed. Second, since all of our participants first 

created their own animations then rated others’ animations, we cannot comment on whether the 

order of tasks influenced the results. The create-then-rate order was chosen to minimize the risk 

that, after first watching others’ animations, participants’ own movement kinematics would be 

biased towards the observed animations. However, we acknowledge that further studies are 

necessary to explore whether the jerk similarity effect here observed is weaker under rate-then-

create conditions and/or when the delay between creating and rating animations is increased. 

Third, the current study demonstrates a role for jerk similarity in the accuracy of mental state 

attributions as indexed by performance on a Heider-Simmel style task but the extent to which 

these results extend to other ToM tasks is unknown. Although it is possible that movement 

similarity influences the accuracy of mental state attributions across a range of mentalizing 

tasks which require interpretation of body movement cues (e.g., the Movie for the Assessment 

of Social Cognition [MASC]-146 or the Silent Films264 task), this speculation must be confirmed 

with empirical testing. Finally, we note that our task does not allow inference of the direction 

of causality regarding movement jerkiness and mentalizing abilities. Movement jerkiness may 

precede mentalizing difficulties in some clinical conditions, whereas mentalizing difficulties 

emerge before motor symptoms in others (for detailed discussion see Eddy and Cook50). For 

instance, in autistic individuals, motor atypicalities have been noted from as early as one month 

of age265, whereas socio-cognitive differences tend to gradually emerge over the first few years 

of life266. Conversely, in Huntington’s disease, social cognitive symptoms have been found to 

occur before the onset of motor symptoms267. To clearly disentangle the direction of the 

relationship between socio-cognitive and motor development longitudinal studies that study 

these relationships within the same individuals, whilst accounting for potential mediating 
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factors (see Happé et al.268, for further discussion about establishing cause and effect in socio-

cognitive studies), are needed. 

The present findings highlight particular kinematic- and trajectory features (specifically, 

acceleration, jerk, speed and energy in bin 6 (angular frequencies around 5); see Supp. Fig. 2) 

as being important for mental state attribution in the context of the animations task. Based on 

our results one may speculate that individuals who experience difficulties with processing 

kinematic cues, or with trajectory tracking, may struggle to attend to, and/or process, the cues 

in Heider-Simmel style animations that are most relevant for accurate mental state attributions. 

That is, our results raise the possibility that individual differences in mentalizing may be related 

to individual differences in the perceptual processing of kinematics and trajectory information. 

Future studies which investigate the relation between kinematic processing, trajectory tracking, 

and mental state attribution accuracy are required to test this hypothesis. Our findings further 

show that similarity in a variety of movement features between observer and animator facilitates 

mental state attribution. Consequently, individuals with certain clinical conditions might find 

the animations task particularly difficult due to differences in perceptual processing and/or 

reduced movement similarity. Our data paves the way for studies which empirically test 

whether mentalizing deficits in clinical populations persist when participants are provided with 

stimuli which closely match features (including kinematics, trajectory shape and amount of 

simultaneous movement) of their own movements.  
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2.4. Methods 

2.4.1. Building the animotions database 

Animotion online task  

We created a browser-based application that enables us to record and replay 

participants’ animations in the style of Heider & Simmel’s original movies84 while 

captu[268][268]ring the triangles’ positions at 133Hz. For this purpose, we adapted a web 

application developed by Gordon & Roemmele (The Heider-Simmel Interactive Theatre269, 

https://hsit.ict.usc.edu/) to fit our task design and allow instantaneous calculation of mean 

speed, acceleration and jerk (change in acceleration), thus enabling the selection of stimuli 

according to predefined criteria for replay. Gordon’s web application employs scalable vector 

graphics (SVG) objects that allow simultaneous translation and rotation of each object with 

input from a single finger per object. To ensure object motion follows the direction of 

movement of the finger, and to suppress sporadic rotations (which can occur if dragging is 

initiated too close to the object center), object motion is suppressed until the pointer is dragged 

sufficiently far away from the center point (see https://asgordon.github.io/rotodrag-js/ for a 

more detailed description of the library used for this application). 

 

Participants 

We asked 51 healthy volunteers (46 females, mean (M) [SD] age = 20.23 [2.71] years, 

range 18-34 years) to animate two triangles in order to depict three mental state (mocking, 

seducing, surprising) and two non-mental state (following, fighting) words. Participants were 

recruited from the University of Birmingham research participation scheme, gave written 

informed consent and received either course credit or money (£8 per hour) for their 
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participation. All experimental procedures were conducted in line with the WMA declaration 

of Helsinki270 and approved by the University of Birmingham Research Ethics Committee 

(ERN 16-0281AP5).  

 

Procedure 

Data was collected at the University of Birmingham. Individuals were seated in front of 

a WACOM Cintiq 22 HD touch screen, tilted at an angle of approximately 30 degrees upon the 

desk. They were presented with the starting frame, comprising a black rectangular enclosure 

and two equally sized equilateral triangles (one red and one blue) on a white background (see 

Supplementary Figure S1.5 [Appendix 1]). In a 45-second-long practice phase, participants 

familiarized themselves with how to use their finger movements in order to navigate the 

triangles around the screen. Participants were subsequently instructed to ‘represent certain 

words by moving the triangles around the screen’, assured they could move the triangles in any 

way they saw fit and encouraged to use their index fingers on both the left and right hand to 

move the triangles simultaneously (for a complete transcript of task instructions see 

Supplementary Materials [Appendix 1]). A dictionary was provided in case participants did not 

know the word in question. No further explanations were given.  

Following instructions, participants were presented with the first word and a 30-second-

long presentation of the stationary starting frame, allowing participants to plan their subsequent 

animation of that word. Finally, individuals were given 45 seconds to animate the given word. 

This process was repeated for the total of three mental state- (mocking, seducing, surprising) 

and two non-mental state words (following, fighting), and on each trial participants were given 

the option to discard and repeat their animations if they were unhappy with the result. Only the 

final animations were analyzed. 
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The mental state words were chosen to be the same as used in Edey et al.1, these words 

were based on the ToM animations used by Abell et al.42. After pilot testing revealed that 

participants found it difficult to understand the meaning of the word ‘coaxing’, even after 

consulting the dictionary, we removed this word. The non-mental state words were selected on 

the basis of the Goal-Directed animations used in Abell et al. 

 

Stimulus selection 

Our procedure resulted in a total of 255 animations (51 for each word), recorded at a 

frame rate of 133 frames / second. Animations were then visually inspected for sufficient length 

and movement coverage of more than two quadrants of the screen. 53 animations failed these 

quality control checks. The final stimulus set comprised 202 animations (42 mocking, 38 

seducing, 36 surprising, 44 following, 42 fighting). Note that while our choice of words for the 

new animotions stimulus set was based on previous work by Abell et al.42 and Edey et al.1, none 

of their animation stimuli were used in this study. 

 

2.4.2. Ratings collection 

Participants  

Thirty-seven healthy volunteers (31 females, M [SD] age = 21.30 [2.68] years, range = 

18-32 years) were recruited from the University of Birmingham Research Participation Scheme 

and gave written informed consent to participate in this study. Post-hoc power calculations 

based on an online application by Judd et al.271 

(https://jakewestfall.shinyapps.io/two_factor_power/) confirmed that this study had 91.2 % 

power to find an effect of size Cohen’s d (d) = 0.4 for the main hypothesis (1). An a priori 
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power analysis of the complete study was not performed due to the lack of applications 

available to estimate effect sizes for the present analyses (a mixed effects model with more than 

one fixed effect). Participants received either course credit or money (£8 per hour) for their 

participation. None of the participants had previously taken part in stimulus development. 

 

Task  

The Ratings Collection phase comprised two tasks. First, all participants carried out a 

production task, where they created one 45-second-long animation for each of the five target 

words mocking, seducing, surprising, following and fighting, as described above. Following 

this, participants completed a perception task, where they viewed 40 animations from the full 

stimulus set and rated the extent to which the animations depicted each of the target words 

(mocking, seducing, surprising, following, fighting). Participants viewed eight exemplars of 

each of the five target words, presented in random order. The eight animations were selected 

from the stimulus pool (N = 202, see Building the animotions database) such that the mean 

speed of the triangles represented one of eight percentiles of the speed frequency distribution 

for a word (see Figure 5). Thus, for each word, each participant viewed a selection of animations 

such that they were exposed to the full range of kinematic variation in the population used to 

create the stimulus pool.  

Finally, after watching each animation, participants were asked to rate on a visual 

analogue scale ranging from one to ten the extent to which they perceived the video to display 

the target word (e.g., mocking) and each of the four non-target words (e.g., seducing, surprising, 

following and fighting). The whole process of creating five and viewing and rating 40 45- 

second animations lasted between 40 and 50 minutes. Task order was fixed (production task 

then perception task) to allow participants’ animations to be unaffected by the animations they  
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Figure 5. Example of stimulus selection method. (a) Example of the stimulus selection method for the word 

mocking. The selection method was the same for all five word categories. From each of eight percentile bins 

of the speed frequency distribution for a word category, one animation was selected at random and replayed 

to the participant. (b) Schematic depiction of 3 successive trials in the perception task. Numbers next to words 

represent the order number of the percentile bin from which the stimulus was selected (e.g., mocking 3 

represents a mocking animation from the 3rd bin, which includes animations between the 25th and 37.5th 

percentile of the speed frequency distribution). Animations presented were selected at random; each 

animation was followed by a separate screen with five visual analogue sliding scales (one for each of the five 

word categories), ranging from 1 to 10.  
 

would see in the perception task. Due to the upper limit on the WACOM monitor refresh rate, 

videos were created with a 133 Hz sampling rate and displayed at 60Hz. 

mocking 3

seducing 1

mocking 5

b
rate

rate

rate

a
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Procedure 

Individuals sat in front of the WACOM Cintiq 22 HD touch screen, tilted at 30 degrees, 

and first completed a practice phase in which they familiarized themselves with moving the 

triangles around the screen. They were then instructed that they would first create an animation  

for each of the five words themselves (instructions were the same as in ‘Building the animotions 

database’; see Supplementary Materials [Appendix 1]) and subsequently would view and rate 

animations which had been created by other people. Participants then completed the production 

and perception tasks as described above.  

 

2.4.3. Data analysis and processing 

All data was processed in MATLAB R2020a272 and analyzed in R273. Code required to 

reproduce data analysis and figures for this study will be freely available under 

(https://osf.io/pqn4u/). 

 

Accuracy ratings  

Accuracy for each trial was calculated by subtracting the mean rating for all non-target 

words from the rating for the target word. Thus, a positive score indicates that the target word 

was rated higher than all non-target words, with higher accuracy scores reflecting better 

discrimination between target and non-target words. See Appendix 1 for further analysis of 

accuracy scores. 
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Spatial and kinematic predictors 

All variables were calculated from positional data derived from the center points of the 

blue and red triangles. All steps of data processing mentioned below were performed on both 

the animations created by participants (= production data) and the animations from the full 

stimulus set used as perception task stimuli (= perception data).  

 

Stimulus kinematics 

Instantaneous speed, acceleration magnitude and jerk magnitude were obtained by 

taking the first-, second- and third order non-null derivatives of the raw positional data, 

respectively (see [1], [2] and [3], where x and y represent x- and y positions of red and blue 

triangles in the cartesian coordinate system, 𝑣,	𝑎, and 𝑗 denote instantaneous velocity, 

acceleration and jerk, respectively, and 𝑡 denotes time).  

   

�⃗� = 	1(𝑥%+< − 𝑥%)= + (𝑦%+< − 𝑦%)= 
 

[1] 

�⃗� =
𝑑�⃗�
𝑑𝑡

 

 

[2]  

𝚥 =
𝑑�⃗�
𝑑𝑡

 

 

[3] 

 

As the ‘diff’ function in MATLAB amplifies the signal noise, which compounds for higher 

derivatives, we employed a smooth differential filter to undertake each step of differentiation 

(filter adopted from Huh & Sejnowski, 2015). The Euclidean norms of the x and y vectors of 

velocity, acceleration and jerk were then calculated to give speed, acceleration magnitude and 

jerk magnitude. That is, speed is calculated as the distance in pixels moved from one frame to 
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the next. Acceleration magnitude comprises the change in speed from one frame to the next, 

and jerk magnitude comprises the change in acceleration. Mean speed, mean acceleration 

magnitude and mean jerk magnitude were then calculated by taking the mean across red and 

blue values, respectively. Lastly, kinematic values were converted from units of pixels/frame 

to mm/s.  

 

Observer-animator jerk similarity 

In order to measure the similarity between participants’ and stimulus kinematic jerk, 

absolute observer-animator jerk difference was calculated by first subtracting the mean jerk of 

each video a person rated from their own jerk values when animating the same word, and then 

taking the absolute magnitude of those values. Lower jerk difference values indicate higher 

observer-animator jerk similarity. 

 

Angular frequency spectral density (AFSD) 

For the purpose of quantifying animation trajectories, we adapted a method developed 

by Huh & Sejnowski (2015). Huh and Sejnowski have shown that the two-thirds power law 

varies according to shape trajectory, such that the gradient of the relationship between angular 

speed and curvature (in the Frenet-Serret frame274,275) is a function of the shape’s angular 

frequency. Angular frequency here is defined as the number of curvature oscillations within 

one full tracing (360° or 2𝜋 radians) of a closed-form shape. We extended the method to derive 

the angular frequencies of arbitrary trajectories (i.e., not closed-form shapes) from the 

frequencies of speed oscillations within every 2𝜋 radians of a triangle’s angular displacement 

in the Frenet-Serret frame. 
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First, absolute instantaneous curvature k was calculated (angular speed divided by 

speed). This enables the calculation of Frenet-Serret speed v. Periodicity in v, in every 2𝜋 

radians, allows the determination of angular frequencies present in the triangles’ movement. 

Asymmetrical FFT was employed on log v, which returned the amplitude spectral density of all 

angular frequencies present for each triangle in each animation. Angular Frequency values 

returned by the FFT were then interpolated to obtain uniformly sampled values at 1001 points.  

Because the FFT assumes an infinite signal, when addressing a finite sample such as the log 

angular speed here, the first and last values of each sample must be continuous to avoid artefacts 

in the FFT results. We addressed this and any general drift in the signal (e.g., from participants 

generally slowing their movements due to fatigue) by removing a second order polynominal 

trend. The area under the amplitude spectral density curve was normalized to allow like to like 

comparison between differing lengths of red and blue triangle movement within and across 

participants. Across red and blue triangles’ trajectories a weighted mean was then taken by 

multiplying each AFSD value with a factor reflecting the proportion of curved movement 

available for a triangle before averaging. See Figure 6 for an example of an amplitude spectrum 

and the related trajectory path. 

 

Further spatial variables 

A variety of other variables were created to further quantify spatial aspects potentially 

affecting inferences from the animations. First, simultaneous movement was calculated as the 

proportion of all frames where both red and blue triangles’ speed was greater than zero (as seen 

in [4]), reflecting simultaneous movement of both triangles in a video. Furthermore, relative 

distance - the average distance between red and blue triangles - was quantified by taking the 

mean of the square root of the absolute distances between the triangles’ x and y coordinates, 
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respectively (see [5]). Finally, mean rotation reflects the average rotation of blue and red 

triangles around their own axis, measured in angle degrees and weighted by proportion of 

movement present across all frames for each color ([6]). 

 

∑(𝑠𝑝𝑒𝑒𝑑-#9&	𝑠𝑝𝑒𝑒𝑑>'7# > 0.01)
∑𝑎𝑙𝑙	𝑓𝑟𝑎𝑚𝑒𝑠  

 

[4] 

𝑥 CDE𝑎𝑏𝑠(𝑥-#9 − 𝑥>'7#)G
= +	E𝑎𝑏𝑠(𝑦-#9 − 𝑦>'7#)G

=		H 

 

[5]  

I𝑥E𝑎𝑏𝑠(𝑟>'7#	%+< − 𝑟>'7#	%)GJ + I𝑥	E𝑎𝑏𝑠(𝑟-#9	%+< − 𝑟-#9	%)GJ
2  

[6] 

 

2.4.4. Statistical analysis 

Data analysis overview 

This study investigates the role of a large number of different predictor variables in 

explaining accuracy in the animations task. For two of these variables we present specific 

hypotheses (jerk, jerk difference); in addition, we wanted to investigate the role of a larger set 

of variables on an exploratory basis. For this reason, analyses were conducted in two stages: 

First, in a confirmatory stage, the roles of jerk and jerk difference were examined using 

Bayesian mixed models. Second, in an exploratory stage, a random forest model was 

performed, investigating the relative contribution of all predictor variables together. 

Data cleaning and transformations 

For all analyses, variables that were not normally distributed were either log- or 

square-root transformed to approximate normal distribution. Any outliers, as defined by 

values exceeding three scaled absolute deviations from the median, were replaced with the 
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Figure 6. Example of trajectory shape and related angular frequency spectrum. (a) Example of angular 

frequency spectrum for following animation. (b) Related trajectory (of one of two triangles). Trajectory 

colors indicate speed (pixel/frame).  
 

respective lower and upper threshold values. Finally, all predictor variables were z-scored.  

 

Confirmatory analysis 

A Bayesian linear mixed effects model was fitted in R using the brms package276 to 

evaluate the relative contribution of jerk and jerk difference to accuracy as a function of word 

category, as well as their three-way interaction. A maximal252 random effects structure was 

defined, allowing the intercept, the predictors of interest and their interactions to vary by 

a

b
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participants (subject ID) and items (animation ID). Jerk and jerk difference were entered as 

covariates and word category was entered as dummy coded factor. We used brms default priors 

for the intercept and the standard deviation of the likelihood function as well as weakly 

informative priors (following a normal distribution centered at 0 and SD = 10) for all regression 

coefficients. Each model was run for four sampling chains with 5000 iterations each (including 

1000 warmup iterations). There was no indication of convergence issues for any of the models 

(all Rhat values = 1.00, no divergent transitions).  

 

Exploratory analysis 1 

Bootstrapped F-tests were performed to test for differences, between the five target 

words, in the presence of angular frequencies at each of the 1001 points on the amplitude 

spectrum. Bootstrapping amplitude spectrum values 1000 times revealed nine significant 

clusters, defined as clusters of difference that occurred in less than 5% of comparisons with 

resampled distributions (see Fig. 3A). The maxima and minima of each significant cluster were 

then used as bin edges for calculating the amplitude spectral density as the area under the curve 

within those nine bins, for both red and blue triangles’ trajectories in each animation (cluster 

bin edges: 0.21 – 1.49, 1.61 – 2.39, 2.64 – 2.87, 3.04 – 3.40, 3.91 – 4.27, 4.79-5.19, 6.19-6.68, 

7.6-7.93, 8.75-10). Finally, the weighted mean (weighted by amount of curved movement 

present in a triangle’s full trajectory) was taken across red and blue triangles’ spectral density 

values to form a single value of mean AFSD for each of nine bins for each animation. The final 

spectral density values are reflective of the relative proportion of curved movement available 

in a video in each of the nine areas of interest. Thus, a video that had high spectral density in 

bin 3 would be dominated by shapes with angular frequencies between 2.64 and 2.87. That is, 
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relative to all other animations, the triangles in this video would be predominately moving with 

a speed and acceleration profile that lies between that of elliptical- and triangle trajectories.  

 

Exploratory analysis 2 

 Relative variable importance of 16 variables in predicting accuracy was assessed using 

random forest models255 and the feature selection wrapper algorithm Boruta256. Random forests 

are ensembles of decision trees, where each tree is grown from a pre-specified subset of 

bootstrapped samples and where, for each tree, only a randomly selected subset of variables are 

considered as splitting variables. Boruta makes use of the ranger package277 to train a random 

forest regression model on all variables as well as their permuted copies - so called “shadow 

features”. First, normalized permutation importance (scaled by standard error, see255) of all 

features is assessed. Permutation importance of a given variable is the reduction in prediction 

accuracy (mean decrease in accuracy, MDA) of the model when this variable is randomly 

permuted. A variable is then classed as important when the Z-score of their importance measure 

is significantly higher than the highest importance Z-score achieved by a shadow feature. 

Overall performance of the model was evaluated by fitting a random forest with the ranger 

package with 500 trees and 10 random variables per tree.  

Due to the known correlational structure within the data and the present lack of random 

forest models which can account for random effects, this analysis was performed items-based. 

For this purpose, for every variable, values corresponding to the same item were averaged 

across subjects, resulting in a total of 202 data points. Note that, due to the reliance on between-

subject variance of variables relating to own-stimulus kinematic difference, these variables 

were excluded from this analysis.  
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Exploratory analysis 3 

 Acceleration difference and rotation difference were calculated as the difference in 

acceleration and mean rotation between an animation stimulus and the participant’s own 

animation of the same word, where lower difference values indicate higher movement 

similarity. Subsequently, we used Bayesian mixed effects models, with the maximal possible 

random effects structure, to quantify the strength of these difference scores in predicting mental 

state attribution accuracy. However, high variance inflation factors (VIFs) for the predictors 

jerk difference (VIF = 33.31) and acceleration difference (VIF = 33.84) indicated collinearity. 

To avoid the problem of inflated standard errors associated with high VIFs278, we used two 

mixed effects models: the first, with acceleration difference, rotation difference and mental state 

predicting accuracy, and the second with the predictors rotation difference, jerk difference and 

mental state.
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Chapter 3: The dopamine antagonist haloperidol modulates 

mental state attribution independent of motor function  

 

The previous chapter illustrated how in the widely used animations task, individuals 

make use of stimulus motion properties, including the triangles’ jerk, acceleration, or rotation, 

to successfully attribute labels to animations. What is more, the chapter demonstrated that 

similarity in those cues between an observer and the original animation creator facilitated the 

correct labelling of mental and non-mental state animations. These results suggest that reduced 

movement similarity may at least in part be responsible for the bi-directional difficulties 

previously observed between autistic and non-autistic adults in interpreting the respective other 

group’s animations. Atypical motor function has been reported not only for autistic individuals 

(e.g., 173), but for a variety of other clinical conditions (e.g., HD279, TS280, schizophrenia281) 

which all show difficulties in the animations task42,46,47,282. As outlined in Chapter one, a further 

commonality between these populations is that those disorders all have been linked to 

dysfunctions of the dopamine system3,37,53,54, indicating a role for dopamine in the putative 

relationship between aberrant motor production and decreased performance in the animations 

task. Aiming to shed light on the pathways via which dopamine disruptions may contribute to 

atypical performance in the animations task, the following chapter presents a pharmacological 

model of dopamine system dysfunction in healthy individuals. 
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3.1. Introduction 

Parkinson’s disease (PD), Huntington’s disease (HD) and Tourette’s syndrome (TS) are 

commonly thought of as motor disorders. However, a burgeoning literature reports that socio-

cognitive impairment is common across these conditions and is associated with negative 

outcomes including increased disease burden and poor quality of life41,283,284. An important 

aspect of social cognition is the ability to accurately attribute mental states to others (also 

referred to as mentalizing, mindreading or Theory of Mind [ToM]). So called animations tasks, 

which require participants to attribute mental states to two interacting triangles, have 

consistently revealed atypicalities in HD, TS, and other disorders that exhibit co-occuring motor 

and social atypicaltities such as Autism Spectrum Disorders (ASD) and schizophrenia. 

However, although difficulties in mental state attribution are worryingly prevalent across these 

conditions, little is known about the origin of these difficulties.  

 In addition to motor atypicalities, all previously mentioned populations share another 

salient commonality: PD, HD, schizophrenia, ASD and TS all have been linked to disruptions 

of the dopamine system, suggesting a causal role of dopaminergic signaling in mentalizing 

abilities. Indeed, a line of evidence implicates dopamine in ToM function212, with perhaps the 

strongest support coming from studies reporting improvements in ToM abilities in 

schizophrenic and PD patients after treatment with dopamine antagonists (schizophrenia285-287) 

and dopamine supplementation (PD288). However, since the restorative effect of antipsychotics 

on ToM function is typically only observed after several weeks to months, it cannot be excluded 

that the improvement is owed to other factors associated with longitudinal testing. These 

potentially confounding factors include practice effects due to repeated exposure to the same 

ToM tasks, behavioral interventions patients may have received during the period of 
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observation, or generally improved wellbeing as a result of alleviated primary symptoms (e.g., 

schizophrenia: positive symptoms such as hallucinations; PD: motor symptoms) after 

dopaminergic treatment. To the best of our knowledge there is only one study directly 

comparing ToM abilities within PD patients on, and after acute withdrawal of, dopaminergic 

medication. This study found no differences between drug states, leading the authors to 

conclude that dopaminergic pathways are not involved in ToM processes196. However, Péron 

et al. only compared drug on- with off states in their early-stage PD group and found no 

performance differences to controls for this group in either the on or off condition. Thus, as 

their early-stage PD patients already showed intact performance off dopaminergic medication, 

it would have been unlikely for the dopaminergic medication to improve ToM ability beyond a 

level comparable to controls. Consequently, the current evidence base is inconclusive regarding 

whether the dopamine system is involved in socio-cognitive function. Furthermore, little is 

known about the underlying mechanisms via which aberrant dopaminergic signaling may lead 

to atypical responses in ToM tasks in clinical populations. 

 There are several ways in which dopamine may modulate socio-cognitive function. For 

instance, the majority of individuals with known or hypothesized dopamine dysfunctions 

display motor atypicalities173,279-281, and changes in dopaminergic tone have been linked to 

changes in body movement (e.g., reduced movement vigor127). Importantly, motor function 

plays an integral role in social cognition: As illustrated in Chapter two, one’s own body 

movements influence the interpretation of others’ movements such that it is easier to correctly 

identify mental states when others’ movements are similar to one’s own289. Consequently, 

abnormal dopamine signaling could affect socio-cognitive functioning indirectly, via affecting 

patients’ movements, which in turn may disrupt internal motor representations associated with 

mental states. Insights into the plausibility of this hypothesis may come from reports of 
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statistical relationships between social and motor dysfunctions in conditions linked to dopamine 

system disruptions. However, the picture here is far from clear, and involves findings in support 

of173,290,291, and against283,292-294 a link between social and motor symptoms in these populations 

(for a review on social-motor links in a range of clinical conditions see 50).  

 Alternatively, it is possible that dopamine modulates social cognitive function directly 

and independent of motor function. As discussed above, a handful of studies exist that report 

restorative effects of ToM function after dopaminergic treatment, albeit with limited 

implications due to potential confounds associated with the longitudinal testing of drug effects. 

Nonetheless, any statistical relationships between dopaminergic treatment and mentalizing 

skills may still be mediated by drug effects on motor function. To the best of our knowledge, 

to date no study has tested the influence of acute dopaminergic challenge on both mentalizing 

abilities and motor function, as well as potential relationships between drug effects in social 

and motor domains.  

 Using the paradigm established in Chapter two, here we first investigated whether 

disruption of dopamine system function plays a causal role in mentalizing. Second, by indexing 

effects of dopamine challenge on motor function via three different motor tasks, we quantified 

the extent to which the dopaminergic modulation impacts mentalizing indirectly, via affecting 

body movements. The Heider-Simmel style paradigm presented in Chapter two lends itself to 

the investigation of mediating effects of atypical motor function on mental state attribution as 

here we have already established the influence of movement similarity on accuracy289. To 

anticipate, we did not find any relationship between effects of our dopamine manipulation on 

motor and mentalizing tasks. Thus, in an exploratory analysis, we used the well-known link 

between striatal dopamine function and baseline working memory span295 to dissociate effects 

of dopamine challenge on motor function and mental state attribution.  
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3.2. Methods 

3.2.1. Participants 

Forty-three healthy volunteers (19 females; mean (M) [SD] age = 26.36 [6.3]) took part 

on at least one of two study days after passing an initial health screening. Participants were 

recruited via convenience sampling from University of Birmingham campus and city centers, 

gave written informed consent and received either money (£10 per hour) or course credit for 

their participation. Four participants dropped out of the study after completing the first day, a 

further five participants could not complete the second test day due to COVID-19 related 

University wide closures. All experimental procedures were approved by the University of 

Birmingham Research Ethics Committee (ERN 18-1588) and performed in accordance with 

the WMA Declaration of Helsinki (1975).  

 

3.2.2. Pharmacological manipulation and general procedure 

Participants’ eligibility for the study was evaluated by a clinician via a review of their 

medical history, an electrocardiogram assessment and blood-pressure check (for details on 

exclusion criteria see Appendix 2.1). Eligible participants then completed a range of baseline 

measures and questionnaires (Appendix 2.1). The main study took place on two separate test 

days, between one and four weeks apart, where participants first completed an initial blood -

pressure and -oxygenation check with the medic. Subsequently, in a double-blind, placebo 

controlled cross-over design, participants received tablets containing either 2.5mg haloperidol 

or lactose (placebo). Haloperidol is a dopamine D2 receptor antagonist, limiting dopamine 

transmission by blocking dopamine D2 receptors in the brain. Reported mean values for peak 

concentration and elimination half-life of oral haloperidol administration lie between 1.7 and 
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6.1 and 14.5 – 36.7 hours, respectively296. After drug administration, participants rested for 1.5 

hours to allow for drug metabolization. Subsequently participants began the task battery, 

including the animations task and three motor tasks. Throughout the day, participants’ blood -

pressure and -oxygenation was checked hourly between tasks. All data was collected at the 

Centre for Human Brain Health (CHBH) at the University of Birmingham, UK. 

 

3.2.3. Animations task 

The main task, task setup and procedure were the same as in Chapter two (see also 289), 

with the following differences: (1) In both the animations generation and perception phase, two 

instead of three mental state words were used, resulting in the following animation types: 

Seducing, surprising (mental state), following, fighting (non-mental state). (2) The maximum 

time given for creating an animation and thus the maximum duration of animations presented 

in the perception task was 30 instead of 45 seconds. Note that, due to the pseudo-random 

selection of animation stimuli from the pre-defined bins (see Chapter two), animations viewed 

by each participant in haloperidol trials were not necessarily the same as in placebo trials.  

 

3.2.4. Movement tasks 

Walking task 

Individuals were asked to walk continuously between two sets of cones (placed 10 

meters apart) for 120 seconds at their preferred walking speed. Each participant completed two 

walks (á 120 seconds) approximately 30 minutes apart. Acceleration data was recorded, using 

the SensorLog app 297, with an iPhone 6s attached to the outer side of the participants’ left ankle.  
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Shapes drawing task 

 The same task set-up and device was used as for the animations generation phase (see 

Chapter two), with the exception that participants used a stylus pen, rather than their fingers, to 

complete the task. Subjects were first presented with written instructions to continuously trace 

each of the following presented shapes with their dominant hand as precisely and as quickly as 

possible. Subsequently, participants traced three different shapes (each shape was presented 

until 10 rotations were completed) of varying angular frequency which were displayed on the 

WACOM touchscreen, while positional data of their movements was recorded. Per condition, 

each shape was presented repeatedly 10 times across two individual blocks, resulting in a total 

of 10 trials per shape and 30 trials overall. Blocks were presented in pseudo-random order.  

 

3.2.5. Data processing and analysis 

All data was processed in MATLAB R2020b (The MathWorks Inc., 2020) and analyzed  

in R (version 4.0.2, R Core Team, 2020), following the procedure used in Chapter two289.  

 

Movement Kinematics 

Movement data was processed, and kinematics were calculated for three different 

movement tasks. Kinematics from the animation production phase were calculated following 

the procedure outlined in Chapter two289. For details on the pre-processing of walking task 

kinematics see Chapter five (5.2. Methods: Data processing).  

Shapes drawing task. Velocity for each trial was calculated as the square root of the sum 

of the squared delta of x and y vectors. Subsequently, velocity vectors were low-pass filtered 

at 5 Hz, before acceleration and jerk were calculated as the first and second order derivatives 
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of velocity, respectively. Absolute speed, jerk magnitude and acceleration magnitude were 

calculated following the procedure used to calculate kinematics in Chapter two (see 2.4.3. Data 

Analysis and Processing: Stimulus Kinematics). Subsequently, individual trial kinematics were 

averaged across all trials for each individual condition. 

 

Statistical analysis 

All statistical analyses followed the procedure used in Chapter two289. There was no 

indication of convergence issues for any of the models (all Rhat values = 1.00, no divergent 

transitions).  

3.3. Results 

As in Chapter two, accuracy for each trial was calculated by subtracting the mean rating 

for all non-target words from the rating for the target word. Thus, a positive score indicates that 

the target word (e.g., surprising) was rated higher than all non-target words (e.g., seducing, 

following, fighting) with higher accuracy scores reflecting better discrimination between target 

and non-target words. Effects of haloperidol on fine motor control were indexed by recording 

the speed of participants’ arm movements when producing, using a touchscreen device, their 

own mental and non-mental state animations (by using their fingers to move triangles around) 

and tracings of simple shapes. Haloperidol’s effects on gross motor control were indexed by 

recording participant’s natural speed of walking. Participants also completed additional 

assessments of general cognitive function and emotion perception to facilitate exploratory 

analyses (described in more detail in Chapter four). 

 

Haloperidol resulted in decreased accuracy in labelling animations 
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A Bayesian mixed effects model with random intercepts for subject ID and animation 

ID (unique identifier for each animation) and a random slope for drug effects varying by subject 

ID was fitted to accuracy and the two dummy-coded predictors drug (haloperidol vs. placebo) 

and mental state (mental vs non-mental), as well as their two-way interaction. The model 

indicated a main effect of drug, where haloperidol resulted in lower accuracy in labelling the 

animations (𝐸𝜇?@AB6CA@ = -0.68, CrI = [-1.13, -0.21]). The posterior probability that there was 

a truly negative effect (P(𝐸𝜇?@AB6CA@ < 0)) was .99. Thus, when participants had taken the 

drug, their ability to correctly classify an animation decreased by 0.68 points compared to when 

they had taken the placebo (see Fig. 3.1). There was, however, no interaction with mental state,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Animations task accuracy for placebo and haloperidol trials by mental state. Boxes represent 1 

SEM above and below the mean (i.e., horizontal lines within boxes), shaded areas surrounding boxes 

represent 1 SD above and below mean values. 
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indicating that haloperidol decreased attribution accuracy to a comparable extent for mental 

state and non-mental state animations (𝐸𝜇?@A,"#$%&'()$*$+"#$%&' = 0.23, CrI = [-0.33, 0.78]). 

Consequently, disruption of dopamine signaling using the D2 receptor antagonist haloperidol 

resulted in less accurate attribution of mental states to animations of interacting triangles. 

However, in addition we show that this effect of haloperidol is not restricted to inferring mental 

states and also extends to non-mental state inferences. These results raise the possibility that 

dopamine causally affects mental and non-mental state inferences due to its role in general 

cognitive functions, such as working memory and attention, which play a key role in inferential 

reasoning298. We return to this question in our exploratory analyses after first testing our second 

hypothesis. 

 

Jerk and Jerk similarity predict mental state attribution performance in placebo and 

haloperidol trials 

 To test whether our observation reported in Chapter two (see also Schuster et al.289) that 

both jerk and observer-animator similarity in jerk predict mental state attribution accuracy 

replicates, a Bayesian mixed effects model with random intercepts for subject ID and animation 

ID was fit to jerk, jerk difference and the dummy coded factors drug and mental state predicting 

accuracy. Under placebo, there was a main effect of mental state on accuracy, indicating that 

accuracy for mental state animations on average was 3.55 points lower than accuracy for non-

mental state animations (𝐸𝜇CA@,"#$%&'()$*$+"#$%&' = -3.55, CrI = [-4.59, -2.53]). The model 

further revealed an interaction of jerk and mental state, where in non-mental state animations 

higher jerk was associated with higher accuracy (𝐸𝜇CA@,,#-.,$*$+"#$%&' = 0.53, CrI = [0.04, 

1.02]; P(𝐸𝜇CA@,,#-.,$*$+"#$%&' > 0) = 0.98)) but in mental state animations negatively predicted 

accuracy (𝐸𝜇CA@,,#-.,"#$%&'()$*$+"#$%&' = -2.52, CrI = [-4.03, -1.01]; 
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P(𝐸𝜇CA@,,#-.,"#$%&'()$*$+"#$%&' < 0) = 1). Thus, whereas in non-mental state animations with 

mean triangle jerk higher than 1 SD above the mean accuracy increased by 0.53 points, mental 

state animations with the same level of jerk were rated 1.99 points less accurately 

(𝐸𝜇CA@,,#-.,$*$+"#$%&'  -  𝐸𝜇CA@,,#-.,"#$%&'()$*$+"#$%&' = 0.53 – 2.52 = -1.99). Furthermore, 

there was a main effect of jerk difference on accuracy, indicating that in both mental and non-

mental state conditions, lower jerk difference was associated with higher accuracy in labeling 

the animations (𝐸𝜇CA@,,#-.:100,$*$+"#$%&' = 0.34, CrI = [-0.63, -0.04]; 

𝐸𝜇CA@,,#-.:100,"#$%&'()$*$+"#$%&' = 0.37, CrI = [-1.12, 0.37]; P(𝐸𝜇CA@,,#-.:100,$*$+"#$%&' < 0) 

= 0.99; note that the latter contrast reflects that the effect of jerk difference in mental state 

animations was not different from non-mental state animations). In conclusion, in placebo trials, 

the effects observed in Chapter two (see also 289) were replicated in this study. 

Contrasts between PLA and HAL trials further revealed that there was no difference between 

placebo and haloperidol in any of the observed effects (𝐸𝜇CA@B6?@A,,#-.,$*$+"#$%&' = -0.04, CrI 

= [-0.51, 0.42]; 𝐸𝜇CA@B6?@A,,#-.,"#$%&'()$*$+"#$%&' = -0.28, CrI = [-1.65, 1.04]; 

𝐸𝜇CA@B6?@A,,#-.:100,$*$+"#$%&' = 0.09, CrI = [-0.31, .50]; 

𝐸𝜇CA@B6?@A,,#-.:100,"#$%&'()$*$+"#$%&' = 0.80, CrI = [-0.33, 1.93]; Fig. 3.2B). Consequently, 

the drug did not affect the extent to which participants used jerk as an informative cue for 

attributing labels to animations, moreover, disrupting dopamine signaling did not affect the 

effect of jerk similarity on our healthy participants’ ability to accurately decode animations 

(Fig. 3.2).  

 

Haloperidol affects mentalizing accuracy independent of drug effects on body movement 

To index drug effects on movement, jerk change scores were calculated for two different 

motor tasks: Drug effects on movement jerk in the animations task were calculated from  
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Figure 3.2. Relationships between jerk and accuracy (A) and jerk difference and accuracy (B). 

 

triangle kinematics of animations the participants had created themselves. For each of the four 

word types, jerk change scores were calculated by subtracting the mean jerk values of placebo 

trials from mean jerk values of haloperidol trials. Correspondingly, jerk change values for the 

shapes drawing task were calculated by subtracting the mean jerk values of placebo trials from 

mean jerk values of haloperidol trials. Note that we were not able to calculate jerk values for 

the walking task due to the lack of positional data, causing issues relating to signal drift (see 

Chapter five [5.2]). Based on our previous findings that animation mean jerk is a major 

predictor of accuracy (Chapter two, 289), drug effects on animations task accuracy were 

calculated by first selecting pairs of animations viewed by each participant in PLA and HAL 

conditions which were most similar in jerk. Subsequently, for each animation pair, accuracy 

change scores were calculated by subtracting PLA accuracy scores from HAL accuracy scores. 
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Two separate Bayesian mixed effects models (with random intercepts and slopes for 

subject ID and random intercepts for jerk level [i.e., individual rank of animations pairs with 

equivalent jerk levels which were used to calculate accuracy change scores]) were fitted to 

accuracy change scores with the predictor jerk change scores (using animations task and 

drawing task change scores, respectively). There were no main effects of jerk change scores 

and this was true irrespective of whether signed or unsigned values were used as a predictor, 

and irrespective of whether the jerk difference scores pertained to the animations task (signed: 

𝐸𝜇,#-.D3&$2# = 0.15, CrI = [-0.32, 0.60]; absolute: 𝐸𝜇,#-.D3&$2# = 0.34, CrI = [-0.20, 0.86] or 

the shapes drawing task signed: 𝐸𝜇,#-.D3&$2# = -0.33, CrI = [-1.15, 0.37]; absolute: 

𝐸𝜇,#-.D3&$2# = -0.13, CrI = [-1.36, 0.86]). Consequently, drug effects on participants’ mental 

state attribution accuracy were not related to drug effects on participants’ motor function, 

regardless of whether the direction of change was taken into account or not.  

In sum, there was no convincing evidence to support the idea that dopaminergic 

modulation impacted mentalizing indirectly, via affecting participants’ body movements. This 

pattern of results raises the possibility that D2 receptor antagonism has dissociable effects on 

mentalizing and body movement. If this is indeed the case this would make it possible that in 

clinical conditions such as PD, HD, schizophrenia and TS dopamine affects both mental state 

attribution and body movement, but these effects are dissociable.   

 

Exploratory analysis: Can the effects of haloperidol on (mental and non-mental) inferences be 

formally dissociated from effects on body movements? 

The extant literature concerning the role of dopamine in motor control and movement 

kinematics strongly emphasizes a role for striatal dopamine. Theoretical work suggests that 

dopamine in the ventral striatum may determine the general motivation to work for a reward 
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while, in the dorsal striatum, it may control how much energy is put into the specific 

actions/motor sequences selected to obtain rewards299,300. In line with this, rats with dorsal-

striatal lesions exhibit reduced running speed301 and striatum-wide manipulation of the type-2 

dopaminergic receptor modifies the energy expenditure of rats engaged in a foraging task302. 

Furthermore slower arm reaching movements are apparent in early-stage PD patients, in which 

dopamine depletion is primarily affecting dorsal regions of the striatum128. Consequently, both 

dorsal and ventral striatal dopamine levels are strongly implicated in movement (with roles in 

energizing action and general motivation respectively). Whilst it is possible that striatal 

dopamine is also strongly implicated in mental state inference, there is no existing data to 

support this claim. Furthermore, neuroimaging studies of the animations task do not implicate 

the striatum and instead show activity primarily in ‘social brain’ regions such as the mPFC303. 

Consequently, it is possible that though dopaminergic modulation affects both movement and 

mentalizing, these effects are mediated by dissociable neural pathways.  

Effects of dopaminergic drugs such as haloperidol have been noted to vary as a function 

of individuals’ striatal baseline dopamine synthesis capacity295. In the absence of direct 

measures, such as positron emission tomography, dopamine synthesis capacity can be estimated 

using indices of working memory capacity295. Here we reasoned that if the effects of haloperidol 

on movement and mentalizing shared a common striatal pathway we would see that the 

magnitude of the effect of haloperidol on both movement and mentalizing is predicted by 

baseline working memory capacity. If, however, we were to see that working memory capacity 

predicts drug effects on one, but not both, outcomes (i.e., movement or mentalizing) this could 

be considered evidence of a dissociation. 

 

Drug effects on movement depend on WM span 
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 Individual baseline WM span was assessed using an adaptation of the Sternberg304 

visual WM task, where participants were required to determine if a single consonant had been 

part of a previously displayed list of consonants. For more details on the task procedure see 

Chapter four: Visual WM task. 

As elaborated above, the majority of evidence for the modulation of motor function by 

striatal dopamine concerns speed. Thus, to evaluate effects of haloperidol on movement speed, 

first three separate Bayesian mixed effects models with random intercepts for subject ID were 

fit to the dummy-coded factor drug (PLA, HAL) predicting animations task, shapes drawing 

task, and walking task mean speed values, respectively (for details on processing and 

calculation of speed values see Methods). There was a negative main effect of drug on speed in 

all three tasks (albeit with varying levels of certainty about the true effect, as indicated by 

Credible Intervals and posterior probabilities P; drawing task: 𝐸𝜇?@AB6CA@ = -0.11, CrI = [-0.22, 

-0.00], P(𝐸𝜇?@AB6CA@	< 0) = 0.98; walking task: 𝐸𝜇?@AB6CA@ = -0.05, CrI = [-0.08, -0.01], 

P(𝐸𝜇?@AB6CA@	< 0) = 0.99; animations task: 𝐸𝜇?@AB6CA@ = -0.12, CrI = [-0.31, 0.07], 

P(𝐸𝜇?@AB6CA@	< 0) = 0.90). Adding WM span as covariate to the previous models revealed that 

drug effects in two of the three movement tasks depended on WM span (drawing task: 

𝐸𝜇?@AB6CA@:FG = 0.15, CrI = [0.03, 0.26]; walking task: 𝐸𝜇?@AB6CA@:FG = 0.48, CrI = [-0.02, 

0.99]) with post hoc models indicating negative effects of haloperidol on movement speed in 

the low WM (drawing task: 𝐸𝜇?@AB6CA@ = -0.19, CrI = [-0.36, -0.02], walking task: 𝐸𝜇?@AB6CA@ 

= -0.08, CrI = [-0.16, -0.01]) but not the high WM group (drawing task:	𝐸𝜇?@AB6CA@ = -0.02, 

CrI = [-0.17, 0.04], walking task: 𝐸𝜇?@AB6CA@ = -0.00, CrI = [-0.04, 0.03]). While there was no 

interaction of WM span and drug in the model predicting animations task speed 

(𝐸𝜇?@AB6CA@:FG = -0.04, CrI = [-0.22, 0.14]), visual partitioning of the data into low and high 

WM span suggests a trend towards a negative drug effect in the low WM group with no visible 
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effects of haloperidol on animations task speed in the high WM group (see Fig 3.3C), thereby 

following the pattern of drug effects observed for the two other measures of motor function. 

 

Drug effects on animations task accuracy do not depend on WM span 

To test whether observed effects of haloperidol on accuracy in the animations task 

depend on individual baseline WM span, a Bayesian mixed effects model (random intercepts 

for subject ID) was fit to the factor drug (HAL, PLA, dummy coded) and covariate WM span, 

as well as their two-way interaction, predicting accuracy. The model revealed no interaction of 

drug and WM span (𝐸𝜇?@AB6CA@:FG = 0.18, CrI = [-0.29, 0.66]) while leaving the main effect 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Drug effects on movement speed (A-C) and animations task accuracy (D) by WM group. Boxes 

represent 1 SEM above and below the mean (i.e., horizontal lines within boxes), shaded areas surrounding 

boxes represent 1 SD above and below mean values.  (A) Shapes task speed values. (B) Walking task speed 

values. (C) Animations task speed values. (D) Animations task accuracy scores. WM was split in groups of 

low and high by median split. 
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of drug on accuracy unchanged (𝐸𝜇?@AB6CA@ = -0.67, CrI = [-1.15, -0.1], see Fig. 3.3D). 

 

3.4. Discussion 

The present study aimed to investigate dopaminergic contributions to mental state 

attribution in the animations task and to explore possible mechanistic pathways via which 

dopamine imbalances may affect performance in various clinical populations. We observed a 

decline in accuracy in labelling animations after haloperidol compared to placebo ingestion, 

suggesting that the disruption of dopaminergic function causally impacts on performance in the 

animations task. Consequently, reported mentalizing differences between control participants 

and patients with HD, schizophrenia, TS or PD may at least in part be a direct result of 

dopaminergic dysfunctions. However, we did not observe an interaction between drug effects 

on accuracy and mental state condition (mental versus non-mental state), indicating that 

performance differences between patient groups and controls may to some extent be attributable 

to domain-general processes rather than a specific mentalizing deficit.  

Our results raise the possibility that drug-related differences in animations task 

performance were a result of effects of dopamine disruptions on motion perception. Compared 

to other mentalizing tasks, animations tasks are unique in that here (mental) states are almost 

exclusively communicated through motion information. More specifically, to be able to 

adequately decode an animation’s identity, participants are required to integrate two triangles’ 

motion trajectories into one coherent narrative. Thus, it is possible that the observed decrease 

in labelling accuracy after haloperidol is owed to changes in the lower- or higher-level 

processing of these motion cues. For instance, the ability to integrate local motion signals across 

space (i.e., global motion perception305) has been found to be impaired in some populations 
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which show atypical responses in animations tasks (e.g., schizophrenia306, ASD262). Moreover, 

dopamine replacement therapy (DRT) in PD patients restored global motion perception 

function to levels comparable to those of healthy controls307, suggesting a dopaminergic 

contribution to these processes. These difficulties in global motion perception could be 

attributed to an imbalance between bottom-up and top-down processing. Bayesian inference 

accounts (e.g., 308) explain perceptual inference as an optimal integration of prior expectations 

and sensory information according to uncertainty (e.g., confidence). In other words, these 

Bayesian theories assume that humans are ‘optimal observers’, who track the stochastic 

properties of perceptual events to minimize surprise (i.e., prediction errors arising from 

discrepancies between predictions and perceived outcomes). Our expectations of what kind of 

perceptual events are likely to occur (i.e., priors) limit the number of possible predictions and 

thereby enhance the efficacy of the perception process. With respect to animations of moving 

triangles, humans might hold priors at various levels of the motion hierarchy309: At the lowest 

level, priors might relate to the kinematics of both triangles’ individual trajectories, and may 

follow a normal distribution centered around human movement speed. At higher levels, priors 

may represent the possible motion structure (i.e., spatial configuration) of both triangles’ 

movements, which for instance is constrained by the size of the task window (see 

Supplementary Figure S1.5, Appendix 1). Finally, these lower-level motion percepts may feed 

into higher-level predictive processes of action understanding310, where our previous 

experiences of associations between particular motion patterns and mental states serve as priors. 

Support for the idea that top-down information is crucial for the successful interpretation of 

animations comes from a study investigating mental state attribution in schizophrenia311. In this 

study, patients’ ability to provide appropriate interpretations of the triangles’ movements was 

closely related to their ability to use top-down information to categorize stimuli in a different 



 
 

77 

task. More specifically, the less participants were able to use the contextual information of 

stimulus color to choose between two types of tasks, the less appropriate were their descriptions 

of the animations.  Importantly, using the same paradigm, a different study demonstrated how 

schizophrenic patients have specific difficulties with integrating contextual, but not sensory or 

episodic, information to select the appropriate response312. Given recent findings which suggest 

that dopamine may be involved in encoding perceptual uncertainty independent of reward313,314, 

it is conceivable that dopamine imbalances may lead to inadequate inferences from motion 

information present in the animations. In other words, dopaminergic signaling may reflect the 

relative weighting of bottom-up sensory information to top-down prior beliefs relating to the 

motion signals present in an animation. Consequently, difficulties in attributing the correct label 

to an animation may arise from atypical weighting of the incoming perceptual information in 

relation to prior beliefs about what a particular motion pattern may represent. More precisely, 

dopamine imbalances may result in aberrant signaling of the precision of predictions about an 

animation’s identity, leading to systematic biases toward either the motion information or prior 

beliefs about the context of the motion information. 

Further support for the idea that performance differences in the animations task may be 

driven by difficulties in the processing of motion cues comes from a recent meta-analysis, 

which reports deficits in autistic populations in interpreting control (both goal-directed [G-D] 

and random)  animations, in addition to slightly larger impairments for ToM animations315. The 

fact that larger difficulties were found for ToM relative to control animations may simply be 

attributable to more complex motion trajectories present in the ToM animations. Future studies 

should explore the contributions of motion processing demands to animations task performance 

by matching ToM, G-D and random animations with respect to trajectory complexity. Finally, 

two random forest analyses performed separately for placebo and haloperidol trials (see 
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Appendix 2.4) indicated that under haloperidol, participants did not use different perceptual 

features to decode animation identities, further suggesting that it was the way in which 

perceptual cues were processed, rather than which perceptual cues were attended to, that led to 

performance differences under dopamine challenge.  

One may argue that our findings are reflective of an alternative possibility. The lack of 

interaction of drug effects on accuracy and mental state condition may be due to the possibility 

that both mental and non-mental state animations require some degree of ToM. Indeed, one 

may reason that, for instance, a ‘fighting’ animation can elicit attributions of anger or upset. In 

fact, previous studies have viewed G-D animations (which are equivalent to our non-mental 

state animations) as entailing mental-state information, albeit to a lesser extent compared to the 

so-called ToM condition. This notion is supported by studies reporting graded fMRI signal 

changes accompanying graded levels of mentalizing demands posed by an animation238,316. 

However, if dopamine modulated animations task performance by affecting domain specific 

processes (i.e., mechanisms specifically dedicated to the processing of social information), 

based on the previous findings we would expect to see similarly graded effects on our mental 

and non-mental state animations. Consequently, our observation that dopamine challenge 

affected performance in both conditions to the same extent offers further support for a domain-

general role of dopamine in mental state attribution. 

A further aim of this study was to investigate an alternative mechanism via which 

dopamine disruption may be associated with impairments in mental state attribution: Based on 

the observation that disorders commonly classified as movement disorders show consistent 

atypicalities in social cognition, we hypothesized that dopamine may affect mental state 

attribution via affecting participants’ motor function. More precisely, given the importance of 

movement similarity for the correct interpretation of an animation (see Chapter two, 289), we 
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predicted that the degree to which haloperidol affected participants’ movements would be 

associated with the magnitude of drug effects on animations task accuracy. Indeed, we observed 

that haloperidol affected participants’ movement speed in three different tasks spanning fine- 

and whole-body motor control, illustrating a global effect of dopamine on motor function (note 

that the slightly increased uncertainty surrounding the effect on animations task movements is 

presumably owed to the lack of repeated trials and increased variance due to the non-periodicity 

of movements in this task). However, drug effects on movement speed and animations task 

performance were not related in the present study, thus providing no evidence for mediating 

effects of altered motor production on socio-cognitive processes. What is more, we observed a 

dissociation of the dependency of drug effects on our proxy of baseline striatal dopamine 

function, WM span. A slowing down of movements after haloperidol in three motor tasks (with 

varying levels of certainty) was evident in the low, but not high, WM group. This may be 

reflective of a drug induced reduction in tonic dopamine levels135, evident only in the group 

with hypothesized higher susceptibility to dopaminergic manipulation due to lower dopamine 

synthesis capacity295. In contrast, there was no interaction between WM span and drug effects 

on animations task accuracy, suggesting that effects of haloperidol on labelling an animation’s 

underlying (mental) state were not dependent on individual baseline dopamine function. These 

results prompt the conclusion that dopamine likely modulates mental state attribution 

independent of motor function, via dissociable pathways.  

Mental state attribution in the animations task has consistently been associated with 

activation of a network of brain regions including the posterior and anterior superior temporal 

sulcus, temporal poles, dorsomedial prefrontal cortex, inferior frontal gyrus and precuneus317. 

Two previous studies found decreased resting state cerebral blood flow (rCBF) in prefrontal 

(e.g., left middle frontal gyrus), as well as temporal (e.g., left inferior temporal gyrus) areas 
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following acute, single dose administration of haloperidol318,319. Consequently, we speculate 

that in our study, haloperidol may have affected animations task performance by altering rCBF 

in these prefrontal and temporal regions shown to be typically recruited when decoding 

animations. In contrast, the role of the nigrostriatal pathway in the control of movement is well 

established320, therefore haloperidol presumably affected movement speed via postsynaptic 

action within the nigrostriatal pathway. Moreover, the lack of association between drug effects 

on movement and mentalizing tasks suggests that dopamine challenge did not affect animations 

task performance by decreasing movement similarity between our participants and the 

triangles’ kinematics. 

 In line with our previous study321, participants were better able to identify animations 

which were more similar in jerk to their own movements, and this effect remained unchanged 

by the dopaminergic manipulation. It is plausible that haloperidol did not change our 

participants’ movements enough to reduce the range of animations available in the stimulus 

pool with sufficiently similar kinematics to their own. In particular, drug effects on movements 

in this study were robust but subtle (see Fig. 3.3.A-C) and may not be representative of the 

larger movement differences between controls and, for instance, autistic participants found in 

previous studies (e.g., 1,173). Thus, the observation of the present study that haloperidol affected 

participants’ ability to accurately decode animations without decreasing movement similarity 

suggests that reported performance differences between clinical populations and controls are 

not entirely attributable to differences in movement. Rather, performance differences may at 

least to some extent be owed to direct contributions of dopaminergic imbalances. 

However, the possibility is worth noting that, even if haloperidol had sufficiently 

decreased movement similarity between observers and animations, internal action models were 

not affected because they may be based on long-term visual and motor experiences with one’s 
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own actions, which were not atypical in our sample. Therefore, it may indeed be possible that 

over time, dopaminergic dysfunctions can lead to altering action models via long-term influence 

on individuals’ movements. Yet, this study shows that at least to some extent, dopamine 

modulates mentalizing ability independent of its influence on motor systems. 

 There are several limitations to the conclusions that can be drawn from the current study. 

First, inferences about anatomical correlates of observed effects associated with our 

dopaminergic manipulation are merely speculative, and no definitive conclusions about the 

precise local actions of haloperidol on dopaminergic activity and rCBF can be made in this 

study. Future studies investigating dopaminergic modulation of mental state attribution should 

employ pharmacological fMRI or PET to gain understanding of the precise dopaminergic 

mechanisms underpinning atypical responses in the animations task. Second, while the present 

findings provide support for a domain-general role of dopamine in mentalizing processes, the 

whole picture of neurochemical modulation of mental state attribution is likely to be far more 

complex. There is growing evidence that the dopaminergic system modulates social function in 

interaction with the serotonergic system212,322. For example, reports of restored ToM function 

in schizophrenic patients treated with atypical, but not classical, antipsychotics have been 

attributed to the fact that atypical antipsychotics (e.g., clozapine) bind to both dopamine and 

serotonin receptors, whereas classical antipsychotics (e.g., haloperidol) selectively target 

dopamine D2 receptors286,287. Future work is needed to identify the specific contributions of the 

dopaminergic and serotonergic system to social cognitive function. 

In conclusion, the current findings support a causal role of dopamine in the modulation 

of mental state attribution in the animations task. Our observation that a single, acute dose of 

haloperidol has deteriorating effects on mentalizing ability bears potentially important 

implications for individuals who are currently in treatment with classical antipsychotics. 
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Moreover, the non-selectivity of our observed effects is suggestive of a domain-general 

contribution of dopaminergic processes to performance in the animations task. Future studies 

should explore the specific nature of these domain-general processes in addition to possible 

interactions with other neurochemical modulators of ToM. Insights earned from the current and 

following studies may help facilitate the development of new pharmacological and behavioral 

interventions.  
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Chapter 4: Dopaminergic modulation of dynamic emotion 

perception 

 

Chapter three illustrated that acute dopamine disruption has detrimental effects on 

individuals’ ability to adequately interpret animations of interacting triangles, confirming our 

hypothesis that dopaminergic processes are involved in ToM. The lack of a relationship 

between drug effects on (mental) state attribution and drug effects on motor function suggests 

that dopamine may modulate mentalizing abilities directly and independently of motor and/or 

timing processes. In addition to deficits in ToM, disorders with dopamine system dysfunctions 

also display consistent impairments in emotion recognition39,195,323. However, currently there is 

not enough converging evidence on whether the dopamine system is at all involved in the 

modulation of emotion recognition nor concerning the putative mechanistic pathways via which 

dopamine may affect these processes. Chapter one elucidated the importance of motion 

kinematics for emotion perception based on body movements. While Chapter two confirmed 

that kinematics (in particular jerk) are important for mental state attribution, it is possible that 

emotion recognition relies on internal motor processes and/or adequate timing mechanisms to 

a greater extent than mentalizing. Consequently, this chapter examines the effects of dopamine 

manipulation on healthy individuals’ emotion recognition performance, while additionally 

investigating potential underlying pathways relating to motor and timing processes.
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4.1. Introduction 

The ability to recognize others’ emotions from facial and bodily cues is an important 

skill that facilitates the development of meaningful social relationships324,325. However, the cues 

towards genuine expressions of emotions are often highly subtle. When we are sad we do not 

pull a face that bears much resemblance to the Ekman example, but rather subtly alter the 

particular spatiotemporal dynamics of the way we move our body and face (e.g., 12,75,80). 

Therefore it is perhaps unsurprising that difficulties interpreting emotions are widespread 

throughout a wide range of clinical conditions. Difficulties with recognizing others’ emotions 

are particularly prevalent in clinical conditions featuring a disruption of the dopaminergic 

neurotransmitter system (e.g., Parkinson’s disease195, Huntington’s disease39, or 

schizophrenia323), leading to widespread examination of the role played by dopamine in such 

skills.  

An incisive way to establish a causal role of dopamine in emotion recognition is to 

observe the influence of dopaminergic drugs on emotion recognition in the healthy population. 

Given the widespread effects of dopamine across different psychological domains, and given 

expansive dopaminergic projections throughout the brain, one might assume that dopaminergic 

drugs would have truly striking impacts upon emotion perception. However, while studies have 

found a range of mixed influences on neural responses (e.g., amygdala activation326-329) during 

emotion processing tasks, they have generally not found drug-related behavioral differences. 

One explanation for this mixed neural picture and the null behavioral findings is that there is 

an optimal level of dopamine for such tasks, and that – dependent upon one’s baseline levels – 

dopaminergic modulation brings individuals closer to, or further away from, that 

optimum326,327. This theory has received widespread attention in other domains of 
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cognition295,330-332. Direct examinations of dopamine synthesis capacity and/or receptor binding 

are possible via positron emission tomography (PET) but are expensive and difficult to 

implement. Consequently, a large number of cognitive studies approximate striatal dopamine 

synthesis capacity via measures of working memory span – which are found to comprise a good 

proxy295. Specifically, low working memory scores are associated with low dopamine synthesis 

capacity, and thus have been suggested to reflect higher susceptibility to the effects of 

dopaminergic drugs295. Correspondingly, for many cognitive tasks, behavioral effects of 

dopaminergic drugs are found to be different in individuals with low and high working memory 

span333-335. For example, on a number of tests of executive function, performance is boosted by 

dopaminergic drugs in low-span participants and different effects are found for high-span 

participants330,331,336. Therefore, individuals with low dopamine synthesis capacity as indexed 

by low working memory span are likely to show a stronger response to a dopamine antagonist 

than those with higher capacity – or higher span. 

It is also notable that while a role for dopamine in emotion perception is suggested by 

studies illustrating emotion recognition difficulties in clinical conditions linked to dopamine 

disruption, we do not have good mechanistic models of the nature of that role. Some plausible 

contenders could relate to the influence of dopamine on temporal, and perhaps relatedly, motor 

encoding. Specifically, many of the cues signaling emotional state are dynamic, and will 

therefore be highly dependent upon one’s ability to encode temporal features. For instance, 

whereas rapid, accelerated movements are associated with anger, slower and sluggish 

movements tend to be interpreted as sadness (e.g.,2,75,78-80). It has also been hypothesized – 

outside of the dopaminergic literature – that recognition of such temporal features relies upon 

yoking to one’s own movements and the emotional state experienced when performing such 

movements2,110. Given the strong link between dopamine and temporal encoding337,338, as well 
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as motor performance127,338, it is plausible that dopamine mediates emotion recognition via its 

influence on temporal processing.  

To examine the role played by dopamine in emotion recognition, this study thereby 

presented participants with a dynamic whole-body emotion recognition task under the 

dopamine D2 receptor antagonist haloperidol, and a placebo. We separated our analyses 

according to working memory span and examined whether influences of the drug were 

modulated by performance in motor and timing tasks. To pre-empt, in line with our hypotheses 

we found that effects of haloperidol differed as a function of working memory span. 

Haloperidol impaired emotion recognition for high-span individuals and improved emotion 

recognition in individuals with low working memory span, this latter group were the same 

individuals whose movements were affected by the drug. These results help address conflicts 

in the literature to date by supporting the notion that the influence of dopamine on emotion 

recognition varies as a function of baseline dopamine levels and suggest possible mechanisms 

that may mediate the influence of dopaminergic drugs on emotion recognition. 

 

4.2. Method 

4.2.1. Participants 

Sample (43 healthy volunteers, 19 females; mean (M) [SD] age = 26.36 [6.3]; 9 

participants only completed one of two study days) and recruitment conditions were the same 

as in Chapter three. All experimental procedures were approved by the University of 

Birmingham Research Ethics Committee (ERN 18-1588) and performed in accordance with 

the WMA Declaration of Helsinki (1975).  
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4.2.2. Pharmacological manipulation and general procedure 

The general procedure is described in Chapter three: Methods - Pharmacological 

manipulation and general procedure. After drug metabolization, participants began the task 

battery, which included the emotion recognition task, a verbal working memory task and indices 

of drug effects on movement execution and timing (see Method: Tasks and procedure; for task 

order see Appendix 2.1). All data was collected at the Centre for Human Brain Health (CHBH) 

at the University of Birmingham, UK. 

 

4.2.3. Tasks and procedure 

 The tasks listed in this section were part of a larger task battery which is described in 

more detail in Appendix 2.2., see also Supplementary Figure S2.1.  

Emotion recognition task 

 Stimuli were whole-body point light displays of male and female actors expressing 

angry, happy and sad emotional walks (i.e., point light walkers [PLWs]) adopted from Edey et 

al2. For each of the three affective states, the stimulus set contained 100% stimuli, which 

displayed the walkers at the speed they originally modelled. In line with the literature 

demonstrating that sadness is conveyed via slow, sluggish movements, anger with fast, jerky 

kinematics, and happiness intermediate to the two75,78-80, sad 100% PLWs exhibited the slowest 

mean speed, followed by happy, and then angry PLWs152. In addition, for each emotion, the 

stimulus set included three levels of velocity adapted stimuli, consisting of morphs between the 

speed of neutral walkers and the corresponding 100% stimuli. The resulting velocity adapted 

stimuli thus contained 0%, 33% and 67% of emotion specific speed information with full 

postural information. A total of 48 velocity adapted and 100% stimuli (4 trials of angry, happy, 
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and sad PLWs at 4 levels of speed information) were presented in pseudorandom order for an 

average of 2000 milliseconds (ms). On each trial, participants first viewed a fixation cross for 

1000 ms, followed by a PLW stimulus. Subsequently three separate visual-analogue scales were 

presented one after another, in pesudorandom order, asking participants to rate how intensely 

they felt the stimulus was expressing an angry, happy, or sad emotional state (Fig. 4.1A). 

 

Walking task 

 Following the Emotion Recognition task (task order was fixed to enable comparison 

with a previous study using the same paradigm, and to avoid priming effects of own speed on 

emotion judgements based on PLWs’ speeds; for more details see 2), participants performed the 

walking task. The procedure for this task is described in Chapter three. 

 

Visual WM task  

Participants completed an adaptation of the Sternberg304 visual WM task. Participants 

were first presented with instructions followed by practice trials. Subjects completed 60 trials 

across five blocks over a total task duration of approximately 10 minutes. On each trial, a 

fixation cross was displayed in the center of screen (500-1000 ms), followed by a list of letters 

(5 – 9 characters in length, depending on the block; 1000 ms), followed by a blue fixation cross 

(3000 ms). A single test letter was then displayed (for a maximum of 4000 ms), asking 

participants whether the letter was taken from the previously displayed list (Fig. 4.1B). 

Participants responded by pressing 1-3 on the keyboard (1 – Yes, 2 - No, 3 – Unsure). Responses 

(accuracy) and response time (time from test letter displayed until participant response) were 

recorded for each trial. Each block varied in length from 5-9 consonants, with letters randomly 
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Figure 4.1. Schematic depiction of perception tasks. (A) PLW perception task. (B). Visual WM task. (A) 

Depiction of one trial of PLW perception task. (B) Depiction of one trial of visual WM task. After 

presentation of a fixation cross (duration varied between 500-1000 ms), a list of 5-9 characters was presented 

for 1000 ms, followed by a blue fixation cross (3000 ms). 

 

selected from the alphabet on each trial (Fig. 4.1B).  

 

Time estimation task 

In the time estimation control task, participants were asked to estimate temporal 

intervals by counting the number of seconds that had passed between two auditory signals. Four 

different time intervals of varying lengths (between 22 and 103 seconds) were presented in a 

pseudo-random order.  
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4.3. Results 

4.3.1. Effects of haloperidol on emotion recognition 

As in Edey et al.2, emotion recognition scores were calculated for each emotion and speed 

level by subtracting the mean of the ratings for the two non-modelled emotions from the rating 

for the modelled emotion. For example, for a sad PLW stimulus, we subtracted the mean of the 

ratings on the angry and happy scales from the rating given on the sad scale. High emotion 

recognition scores therefore reflect judgements of the PLW intensely expressing the modelled 

emotion and successful discrimination between the three emotion scales, whereas low or 

negative emotion recognition scores indicate that participants felt the PLW was weakly 

expressing the modelled emotion or a lack of discrimination between the three emotion scales. 

 

Haloperidol increased emotion recognition scores in low WM span, and decreased emotion 

recognition in high WM span individuals 

A Bayesian linear mixed effects model with a random intercept for subject ID was fitted 

to the factors drug (placebo [PLA], haloperidol [HAL]; dummy coded), emotion (sad, happy, 

angry; effects coded), speed level (i.e., emotion specific speed information; 0%, 33%, 67%, 

100%; orthogonal polynomial coded) and WM group (low, high; effects coded), as well as all 

possible two- and three-way interactions, predicting emotion recognition scores. Due to the 

dummy-coding of the factor drug all main effects refer to the placebo level, which are compared 

to effects under haloperidol via individual contrasts. The first model revealed a strong positive 

linear trend for the variable speed level (𝐸𝜇CA@,68##9A#B#'.A = 1.29, CrI = [0.94, 1.64]), 

confirming that, overall, participants gave increasing emotional intensity ratings with 

increasing speed levels (see Supplementary Figure S.3.1). There were no interactions between 
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drug and speed level, indicating that haloperidol did not affect participants’ sensitivity to the 

speed manipulation (for a detailed summary of model 1 see Appendix 3). Consequently, all 

following results are reported based on emotion recognition scores collapsed across the four 

speed levels. 

In the subsequent model (Model 2: Bayesian linear mixed effects model with random 

intercept for subject ID, factors drug, emotion and WM group, dependent variable [DV] 

emotion recognition scores collapsed across speed level), there was a main effect of emotion 

for PLA trials, with contrasts revealing that overall, sad PLWs were rated with higher intensity 

(𝐸𝜇CA@,6&9 = 0.65, CrI = [0.36, 0.93]), while angry PLWs were rated lower than average in 

terms of intensity (𝐸𝜇CA@,&$2-I = -0.59, CrI = -0.88, -0.31). There was no main effect of drug, 

with the contrast of PLA and HAL emotion recognition scores being close to zero 

(𝐸𝜇CA@+?@A =	-0.06 (CrI = [-0.37, 0.24]).  

Most interestingly and confirming our primary hypothesis, there was an interaction 

between drug and WM group, with a 0.94 point difference between drug effects on emotion 

recognition scores in the low and high WM group (𝐸𝜇(CA@+?@A,'*4FG)+(CA@+?@A,3123FG) = 

-0.94, CrI = [-1.56, -0.32]). To evaluate drug effects in the two WM groups, two separate post-

hoc models were run for low and high WM groups. These models confirmed the predicted 

nature of differences, revealing superior performance under haloperidol versus placebo in the 

low WM group (𝐸𝜇CA@+?@A,'*4FG = 0.40, CrI = [-0.06, 0.87]), probability that this is a true 

effect: P(𝐸𝜇CA@+?@A,'*4FG > 0) = 0.96), alongside poorer performance under haloperidol in the  

high WM group (𝐸𝜇CA@+?@A,3123FG =	-0.53, CrI = [-0.95, -0.12]), probability that this is a true 

effect: P(𝐸𝜇CA@+?@A,3123FG 	< 0) = 0.99; see Fig. 4.2). These improvements under haloperidol 

in the low WM group were generated via increased ratings on the modelled scales and decreased 

ratings on the non-modelled scales (see Appendix 3) – demonstrating improved discrimination  
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Figure 4.2. (A) Mean emotion recognition scores for placebo and haloperidol trials by WM group. Boxes 

represent 1 SEM above and below the mean (i.e., horizontal lines within boxes), shaded areas surrounding 

boxes represent 1 SD above and below mean values. (B-C) Probability density function (PDF) of emotion 

recognition difference scores for low (B) and high (C) WM groups. The central mark of each of the box plots 

below PDFs represents the median of each group, the edges represent 25th (Q1) and 75th (Q3) percentiles. 

Whiskers denote ranges of Q3 + 1.5 x (Q3 - Q1) above and Q1 + 1.5 x (Q3 - Q1) below box edges. 

 

abilities under haloperidol. Note that the same picture emerged when using a continuous 

variable for WM span, hence for illustrative purposes we proceeded with the binary split. 

 

4.3.2. Effects of haloperidol on participants’ own movements and time perception 

Movements 

A Bayesian mixed effects model of drug (PLA, HAL; dummy coded) and WM group 

(low, high; deviation coded) indicated a negative main effect of drug (𝐸𝜇CA@B6?@A = -0.04, CrI 

= [-0.08, 0.01], P(𝐸𝜇CA@B6?@A) < 0 = 0.94), indicating that, overall, haloperidol reduced walking 

speed in all participants. In addition, the model revealed a main effect of WM group 
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(𝐸𝜇FG2-*78 = 0.08, CrI = [-0.02, 0.19], P(𝐸𝜇FG2-*78 > 0) = 0.94), demonstrating that under 

placebo, the low WM group exhibited a slower walking pace relative to high WM individuals 

(low WM: mean [M] = 1.05 m/s, high WM: M = 1.13 m/s). There further was an interaction 

between drug and WM group (𝐸𝜇CA@B6?@A,FG2-*78 = 0.09, CrI = [0.00, 0.18], 

P(𝐸𝜇CA@B6?@A,FG2-*78 > 0) = 0.98). Separate post-hoc models for low and high WM groups 

indicated that, whereas the drug slowed movement speed in the low WM group, there were no 

drug effects on movement in the high WM group (𝐸𝜇CA@B6?@A,'*4FG = -0.08, CrI = [-0.16, -

0.01]; 𝐸𝜇CA@B6?@A,3123FG = 0.01, CrI = [-0.4, 0.6]; Fig. 4.3A). 

We indexed individual drug effects on emotion recognition by subtracting emotion 

recognition scores of PLA trials from emotion recognition scores of HAL trials (i.e., emotion 

recognition difference scores). Positive emotion recognition difference scores thus indicate 

enhanced emotion recognition under haloperidol. Accordingly, we estimated drug effects on 

walking speed by subtracting mean speed values from PLA trials from mean speed values from 

HAL trials for each of the two walks (i.e., speed difference values), where negative speed 

difference values reflect decreased walking speed in HAL relative to PLA trials. Speed 

difference was added as a covariate to a Bayesian mixed effects model (random effects for 

subject ID) fitted to emotion and WM group as well as all two- and three-way interactions, 

predicting emotion recognition difference scores. The first model revealed no interactions with 

emotion, therefore all following results are based on a model excluding this factor. There was 

a main effect of WM group, confirming the dependency of drug effects on WM group as 

reported above (𝐸𝜇FG2-*78 = -0.79, CrI = [-1.59, -0.00], P(𝐸𝜇FG2-*78 < 0) = 0.98). 

Furthermore, there was a main effect of speed difference, indicating that drug effects on 

walking speed were negatively related to drug effects on emotion recognition (𝐸𝜇68##9:100 = -

0.66, CrI = [-1.19, -0.12], P(𝐸𝜇68##9:100< 0) = 0.99). A lack of interaction between WM group  
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Figure 4.3. (A) Drug effects on walking speed by WM group. Boxes represent 1 SEM above and below the 

mean (i.e., horizontal lines within boxes), shaded areas surrounding boxes represent 1 SD above and below 

mean values. (B) Relationship between drug effects on walking speed and drug effects on emotion 

recognition scores by WM group. 

 

and speed difference scores (𝐸𝜇68##9:100,FG2-*78 = 0.44, CrI = [-0.30, 1.21]) suggests that the 

relationship between drug effects on movement and drug effects on emotion perception did not 

depend on WM span. Thus, in both the high and low WM groups, slower movement speed 

under the drug was associated with increased emotion recognition, however, haloperidol-

induced slowing was observed only in the low WM group (Fig. 4.3B). 

 

Timing 

Time perception difference scores were calculated as the difference between time 

perception scores in HAL and PLA trials. Negative time perception difference scores reflect 

slowed time perception in HAL relative to PLA trials. A model with time perception difference 

scores added as a covariate revealed no main effect of time estimation difference scores and no 
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interactions between any of the other predictors (WM group, emotion) and time estimation 

difference scores (𝐸𝜇%1"#:100 = -0.16, CrI = [-0.58, 0.27]).  

4.4. Discussion 

The current study tested whether the dopamine D2 receptor antagonist, haloperidol, 

modulated emotion recognition from dynamic, whole-body, motion cues. Interestingly and as 

predicted, the influence of haloperidol on emotion recognition was wholly dependent upon 

working memory stratification. In our low WM group emotion recognition improved under 

haloperidol, whereas performance deteriorated in the high WM group. The low WM group also 

demonstrated slower own movements under the drug, with no impact of haloperidol on walking 

pace in the high WM group. There was no effect of the drug on a supra-second time perception 

task.  

To the best of our knowledge our study is the first to illustrate a clear behavioral impact 

of dopaminergic manipulation on the recognition of numerous emotions and our results thereby 

highlight the critical importance of accounting for individual differences in measures thought 

to reflect baseline dopamine function. Such results are consistent with effects of dopamine 

antagonists on emotion recognition previously reported in a sample of 14 males (Lawrence et 

al.339). However, whereas Lawrence et al.’s results were restricted to anger recognition we 

demonstrate effects across emotions, likely due to accounting for individual differences in 

baseline dopamine levels. Indeed, our analyses revealed only an interaction between drug and 

working memory span, and no main effect of drug. Thus, previous mixed neural findings and 

the absence of behavioral effects likely reflect such individual differences in drug response.   

The observation that the low WM group exhibiting an improvement in emotion 

recognition also slowed their own walking pace is potentially informative with respect to the 
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underlying mechanism. Our results illustrated a negative relationship between drug effects on 

movement and drug effects on recognition of all three emotions. Speculatively, the observed 

effects on movement speed may reflect modulations of one’s internal timer mechanisms that 

have not been detected via our explicit timing task. The explicit timing task required estimating 

intervals of long durations and the mechanisms involved here may be quite different from those 

required for detecting the sub-second information that conveys emotion via action 

kinematics340. It is certainly the case that sub-second and supra-second perception recruit 

different neural structures, and it is hypothesized that different functional mechanisms are 

recruited over these different timescales340. Alternatively, one could argue that the explicit 

instruction to count may have prevented the emergence of putative links with more implicit 

supra-second timing processes. Furthermore, the crucial role for the motor system in time 

perception has received widespread recent attention341, such that a temporal influence of 

haloperidol on movement performance is likely to reflect wider influences on temporal 

encoding. It is possible that the slower walking pace under haloperidol in our low WM 

participants is reflective of the slowing down of an internal timing mechanism, which in turn 

may lead to higher emotion discrimination through increased sensitivity to temporal cues 

conveyed in the PLWs.  

Notably we did not observe that haloperidol-related movement slowing had emotion-

specific effects on recognition (slowing simply predicted improved recognition across all 

emotions). Such emotion-specific effects would have been interesting given previous work2,110 

which indicated that we recognize emotions according to comparisons between observed 

kinematic features and one’s own baseline kinematics – e.g., if the kinematics are faster than 

the observer’s baseline movement kinematics the model must be angry because this is the speed 

at which the observer herself feels anger. To be consistent with this, haloperidol-induced 
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slowing should have improved recognition of fast emotions (e.g., anger) yet impaired 

recognition of slow emotions (e.g., sadness). Nevertheless, given the likelihood that one builds 

models for emotion recognition across a lifetime of experience107,110, artificially slowing one’s 

movement pace in a particular setting (e.g., via haloperidol administration) would be unlikely 

to re-anchor all models. Given these concerns, we did not feel confident to make strong 

predictions about emotion-specific effects and we are, indeed, unsurprised to see that this 

pattern was not reflected in the data. 

An important question concerns why we would see such dramatically different results 

in individuals with high versus low working memory. Notably, despite the absence of an effect 

of haloperidol on movement speed (and supra-second timing) in the high working memory span 

group, we nevertheless observed that the drug impaired emotion recognition in this group. Thus, 

suggesting that timing/movement-based effects are not the only mechanism by which 

haloperidol can affect emotion recognition. One additional mechanism concerns haloperidol’s 

effects on the maintenance of mental representations. Biologically-inspired models342-345 

categorize the effects of haloperidol on mental representations in terms of putative pre- and 

post-synaptic drug effects. Pre-synaptic effects should correspond to enhanced updating of 

mental representations linked to dopamine bursts (e.g., representations that are rewarded or 

highly salient346,347). Post-synaptic effects should result in stable representations that are robust 

against interference from non-target information. Frank and O’Reilly135 have argued that low-

span subjects exhibit significantly greater responses to haloperidol (indexed by prolactin, an 

indirect measure of DA levels348) than high-span subjects and that higher doses are more likely 

to result in both pre- and post-synaptic effects. Since we used a slightly higher dose than Frank 

and O’Reilly (2.5mg, versus 2mg) it is feasible that our low-span subjects obtained a high 

enough dose of haloperidol that they experienced both pre- and post-synaptic effects, whereas 
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our high-span subjects experienced only mild pre-synaptic effects. It would follow from this 

that our low-span subjects should exhibit enhanced updating of rewarded/salient mental 

representations (the pre-synaptic effect) and more stable representations in general that are 

robust against interference from non-target information (the post-synaptic effect). In contrast, 

our high-span participants should have only experienced the former (pre-synaptic) effect.  

For accurate emotion recognition in the context of our paradigm one must maintain a 

stable and robust representation of the target PLW (e.g., angry PLW), and resist replacing it 

with a non-target representation (for example, an imagined PLW prompted by a sad or happy 

rating scale). Thus, post-synaptic effects, which promote stable and robust mental 

representations would benefit emotion recognition, resulting in the pattern (high target ratings 

and low non-target ratings) we observed in our low-span group. In contrast, since pre-synaptic 

effects favor flexible, rapidly updated, representations they are more likely to result in the 

pattern we observed in the high-span group where the target and non-target ratings are confused. 

Consequently, models of the role of dopamine in the updating of mental representations342-345 

offer a potential explanation for the differing effects we observe in the high and low-span group, 

and a potential pathway to explain drug effects on emotion recognition in the absence of effects 

on timing/movement. 

Although the importance of accounting for individual differences in baseline dopamine 

levels has received widespread attention in other domains of cognition295,330-332, this study 

comprises the first illustration within the domain of emotion recognition. We observed that 

individuals in the low-span group exhibited effects of the drug on both emotion recognition and 

the speed of their own movements suggesting that drug effects on emotion perception could, at 

least in part, be mediated by effects on movement/timing mechanisms. In contrast, high-span 

individuals exhibited drug effects in the absence of movement/timing effects, thus revealing 
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that here other mechanisms must be at play. This work paves the way for future studies to 

examine how such effects play out with different types of emotion stimuli including static 

emotion snapshots wherein timing-based mechanisms are less relevant. 
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Chapter 5: The assessment of emotion recognition and perception 

on the basis of gait kinematics 

  

While Chapter one discussed how individuals draw on internal action models built from 

visuo-motor experiences with their own movements when making judgements about others’ 

emotional movements, Chapter four demonstrated how dopaminergic disruption can lead to 

changes in emotion perception from whole-body expressions. Section one of this chapter 

addresses a current shortcoming in the present whole-body emotion expression literature, 

bearing important implications for our understanding of emotion perception in healthy and 

clinical populations alike: The over-reliance on emotional stimuli generated from actors posing, 

rather than genuinely expressing affective states in their movements. Furthermore, this section 

discusses inter-individual variability in the bodily expression of emotions and use of kinematic 

information when interpreting others’ emotional movements. Implications of the results 

presented in this chapter on conclusions drawn from Chapter four are discussed. Finally, section 

two of Chapter five presents a validation of the method used to capture changes in gait 

kinematics in Chapter four: smartphone-inbuilt accelerometry. 
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5.1.  Addressing limitations in the current whole-body emotion recognition 

literature 

5.1.1.  Introduction 

Body movement is rich in cues relating to an agent’s underlying affective state. Recent 

decades have seen a growing body of work investigating emotion expression in body 

movement, informing the development of emotion recognition algorithms with applications in 

forensics, diagnostics, and entertainment. Automated emotion detection has largely focused on 

facial expressions (e.g., 349), however, whole-body movement carries numerous emotion-

related cues which humans can rapidly detect. Parameters such as ground reaction forces, arm 

swing, stride length, cadence, speed, and jerk have been found to reliably differentiate discrete 

emotional states such as anger, sadness, pride or joy (e.g., 73,350,351). Kinematic measures such 

as movement speed have been extensively studied for their ability to reliably differentiate 

emotional states. Specifically, faster movements have been associated with anger and 

happiness, whereas slower than average body movements are indicative of sadness2,75,78-80,82,352. 

Whilst there have been advances in incorporating whole-body movements into emotion-

recognition technologies350,353, at present this field still lacks behind the facial expression 

literature. 

One issue which has received interest in the context of emotion recognition from faces, 

but which has been overlooked with respect to whole-body emotion recognition, is the question 

of differences between posed and spontaneous expressions. Current knowledge on emotion 

expression in, and emotion recognition from, whole-body movement mainly stems from studies 

using posed expressions from professional or lay actors25. Crucially, when actors are asked to 

produce a certain emotion, they most likely draw on stereotypical representations of emotions, 
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resulting in stylized and exaggerated movement patterns. Consequently, kinematic measures 

derived from studies using posed expressions alone may not correspond to naturally occurring 

emotional expressions. The few studies that have aimed to measure kinematic changes after 

genuinely felt emotions used induction methods such as autobiographical recall or emotional 

music that are likely to bias kinematics such as movement speed through choice of instruction 

wording (e.g., ‘Think about a time in your life when […] you felt like you wanted to jump up 

and down’354) or through the beats per minute of the music80,350. Thus, there currently is limited 

reliable evidence about the natural representation of emotions in the kinematics of human 

whole-body movement. 

With respect to facial expressions, preliminary evidence suggests that induced and 

posed expressions differ with regard to timing and amplitude355-357. Regarding whole-body 

movement, although Kleinsmith et al.358 claim that natural bodily expressions of emotion are 

“subtler, more complex and less separable”, the authors do not report any evidence to support 

their notion. Indeed, to date there is no study directly comparing measures derived from 

spontaneously felt and posed dynamic bodily expressions. Consequently, the first aim of this 

study was to address this issue by comparing the kinematics of spontaneous and posed 

emotional walks. 

A second question which has mostly been neglected in the literature investigating 

spontaneous emotion expression concerns the possibly large interindividual variability in the 

bodily expression of internal states. Whilst it has been widely acknowledged that there are 

differences in the extent to which individuals use body movement to express emotions between 

cultures359,360, some studies indicate that individuals of the same culture may too differ in their 

propensity to express internal states via body movement. For example, gender361-363 and 

personality364 have emerged as factors which influence the extent to which people display their 
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emotions non-verbally. Fujita et al. interpreted their finding of decreased emotional 

expressivity in their male, compared to the female sample as higher compliance to so-called 

‘display rules’365, the culturally induced inhibition of overt displays of affect. 

 Crucially, it is currently unclear how interindividual differences in the bodily expression 

of emotion are linked to interindividual differences in emotion perception. On the one hand, is 

plausible that individuals who heavily rely on their own body movements to express their 

internal states to a greater extent use others’ movements as emotionally informative cues. On 

the other hand, the reverse relationship could be true: Given that people make use of their 

baseline walking speed when inferring affective states from others’ whole-body movements2, 

it is plausible that individuals who tend to deviate highly from their baseline speed when 

expressing emotions, or who show higher levels of more general variation in gait speed, may 

lack a stable representation against which to compare other people’s walks. In consequence, 

people with highly variable walking speeds may rely less on kinematic emotion-specific 

information when inferring emotions from others’ walks. Therefore, the second aim of this 

study was to examine whether within-person kinematic variance determines participants’ 

reliance on kinematic emotion specific information. 

To address these aims, we employed a within-subjects design where all participants first 

completed a production task, consisting of a baseline walk at preferred walking speed, as well 

as two emotional walk conditions (posed [angry, happy, sad], induced [angry, happy, sad]). 

Following the production task, all participants completed a perception task where they rated 

Point-Light-Walker stimuli according to how angry, happy or sad they were perceived. 
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5.1.2. Methods 

Selection and evaluation of film clips for the induction of emotional states  

The most commonly used stimulus batteries for emotion induction from video clips 

were developed in the 80s366 and 90s367 and their content may therefore be outdated and less 

relatable to the current generation of young participants. In addition, most existing video-sets 

consist of short scenes derived from longer movies with much of the contextual information 

missing that would be required for both general comprehension and emotional engagement in 

the scenes. Consequently, a new set of contemporary emotion induction videos which discretely 

elicit angry, happy and sad emotional states has been developed as follows. 

 

Participants and Procedure 

Forty-seven healthy participants (30 females, aged 18-50 years) took part in an online 

rating task designed to induce specific emotional states in the observer.  Participants gave their 

informed consent online, prior to task completion. All experimental procedures have been 

approved by the University of Birmingham Research Ethics Committee (ERN 16-0281 AP5).

 The online rating task consisted of a total of 15 videos, selected to induce the three target 

emotions angry, happy and sad (5 videos per emotion condition, average length 2.5 minutes). 

Videos were presented to participants in a pseudo-random order (6 possible video orders), each 

video followed by a rating scale requiring participants to indicate how happy, angry, surprised, 

disgusted, and neutral they felt after viewing each video (order of emotion scales was pseudo-

randomized). In addition, participants rated valence (positive/negative mood) and arousal levels 

(calm/excited) following each video. All ratings were made on a 10-point likert scale, whereby 

1 indicated ‘not at all’ and 10 indicated ‘very’. For valence ratings, 1 indicated ‘highly negative’ 

and 10 indicated ‘highly positive’.  
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Selection of emotion induction videos 

Emotion discreteness scores were calculated by subtracting the mean rating of all non-

target emotions from the target emotion rating (e.g., if participants viewed a video selected to 

induce anger, scores were calculated by subtracting the mean of happy, sad, surprised, 

disgusted, and neutral ratings from the angry rating). For each emotion, the video that provided 

the highest mean discreteness score was selected for emotion induction in the production task 

(induced condition), resulting in three target videos (angry, happy, sad). A neutral film clip with 

similar length as the target videos was added to the battery as a control for the emotion 

conditions. In addition, two short informational film clips (average length 1.1 minutes) were 

selected as ‘neutral filler videos’ with the intention to reverse any emotion induction effects in 

between emotion conditions. 

 

Main Experiment 

Participants and general procedure 

 31 healthy participants (24 females, mean age [SD] = 19.94 [3.03]) with self-reported 

unimpaired motor function gave informed consent to participate and received course credit or 

a monetary incentive as reimbursement. All participants first completed an emotion production 

task, where they performed several walks on a pressure gait mat: A baseline walk, three (angry, 

happy, sad) posed emotional walks, and three walks after induction of angry, happy and sad 

emotions, respectively. The production task was followed by a computerized emotion 

perception task, where participants viewed angry, happy, and sad point light walker stimuli 

(PLWs) and were subsequently asked to rate how angry, happy, and sad they perceived each 

stimulus to be. 
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Emotion production task 

Kinematic data was recorded using a 5-metre-long ZenoTM Walkway (ProtoKinetics 

LLC, Havertown, USA) gait mat. 

Baseline walk. In order to gain a measure of individuals’ non-emotional walking speed, 

all participants first carried out a baseline walk for a duration of 120 seconds by walking 

continuously across the mat at their preferred speed and stepping off the end to turn around 

each time.  

Induced emotion walks. Following the baseline walk, participants viewed three target 

film clips which had been selected for their propensity to induce angry, happy and sad 

emotional states, as well as a neutral control video. Immediately after watching each film, 

participants walked continuously across the gait mat, resulting in four spontaneous emotion 

walks per participant (angry, happy, sad, neutral). Walks were recorded for 30 seconds, 

resulting in seven passes, across the full length of the gait mat, on average. Emotion induction 

videos were presented in a counterbalanced order with the neutral control video always second, 

in between the first and second emotional video, resulting in 6 possible orders. Before and after 

the third emotional film, participants viewed a 1-minute-long filler clip to reverse their mood 

back to neutral. After each of the four induced emotion walks, participants rated their current 

mood (positive – negative), arousal (calm – excited), intensity for the target emotion and four 

other basic emotions (anger, happiness, sadness, disgust, surprise) and the extent to which they 

felt emotionally neutral on a 10-point likert scale.  

Posed emotion walks. Following emotion induction, participants executed three 30-

second-long posed walks, simulating angry, happy and sad emotional states according to the 
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instruction: “Imagine you were angry (happy/sad). Walk across the mat how you think you 

would walk if you were angry (happy/sad)”. 

 

Perception task 

The stimulus set comprised of PLW stimuli depicting a male or female actor expressing 

angry, happy, sad and neutral emotional walks, originally created by Nackaerts et al.152. These 

original stimuli contained 100 % of the emotion specific velocity information (i.e., 100% 

stimuli), with sad PLWs exhibiting the slowest mean velocity, followed by happy PLWs with 

slightly faster velocities, and with angry stimuli displaying the highest walking speeds. To 

examine how the use of kinematic affective information varied according to one’s own 

kinematics, for each emotion velocity adapted stimuli were adopted from Edey et al.2, resulting 

in a total of 48 emotion stimuli (mean duration 2.04 seconds). The velocity adapted stimuli had 

mean velocities that were morphed between the velocities of the corresponding neutral- and 

100% animations and thus contained 0%, 33% and 67% velocity information with all postural 

information (Fig. 5.1B). To assess a possible response bias towards a particular emotion, the 

stimulus set also contained eight static control images that were derived from the neutral walker 

videos and contained no dynamic or affective information. In three rating blocks each, 

participants first viewed 100% stimuli, followed by velocity adapted stimuli. After each PLW 

stimulus, participants were asked to rate on a visual analogue scale the extent to which they felt 

it expressed either an angry, happy or sad emotional state (from 0 = ‘not at all’ to 10 = ‘very 

much’). Rating block order was counterbalanced across participants and stimulus order was 

pseudo-randomized within each block. 
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Figure 5.1. General experimental procedure and task stimuli. (A) Schematic depiction of experimental 

procedure. ‘Secs’ = seconds. The section in between the orange dashed lines represents four repeated video 

– walk successions. (B) Emotion perception task stimulus speed levels. (C) Schematic depiction of emotion 

perception task, example of ‘sad’ rating block. 

 
 

Kinematic data processing and analysis 

PKMAS software (ProtoKinetics LLC, Havertown, USA) was employed to process 

each walk and calculate average velocity (distance travelled/ambulation time, 

centimetres/second [cm/s]) across the walk periods (120 seconds for baseline walks, 30 seconds 

for all other walks). All data was analyzed in MATLAB R2020a. Data that did not meet 
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normality assumptions of parametric tests was either log- or squareroot transformed to 

approximate normal distribution. Any outliers as defined by values exceeding three scaled 

absolute deviations from the median were replaced with the respective lower and upper 

threshold values. 

   

5.1.3. Results 

Emotion induction successfully changed participants’ mood 

Due to data loss, all mood ratings data is based on a sample of 28 participants. At 

baseline, participants on average were in a positive mood, as indicated by valence (mean [M] 

(standard error of the mean [SEM]) = 6.39 (.45)) and happiness ratings (M (SEM) = 5.96 (.43)) 

which were significantly higher than the mid-point (i.e., 5) of the scale (valence: t(27) = 3.06 , 

p < .01; happy: t(27) = 2.27, p < .05). In addition, ratings for all other emotions, as well as 

arousal, were significantly lower than the mid-point of the scale (anger: M(SEM) = 1.41(.19), 

t(27) = -18.97; sadness: M(SEM) = 1.97(.29), t(27) = -10.57; disgust: M(SEM) = 1.41(.21), 

t(27) = -16.79; surprise: M(SEM) = 2.41(.33), t(28) = -7.90; angry: p = .002, all other ps < 

.001).  

For all four target emotions, discreteness scores were calculated by subtracting the mean 

ratings of the three non-target emotions from the mean rating of the target emotion. All three 

emotional films successfully elicited the target emotion as shown by the fact that all target 

ratings were significantly higher (happy) or lower (angry, sad) than the corresponding rating at 

baseline (Table 1). In addition, all target emotions were elicited discretely as indicated by all 

three discreteness scores being significantly different from zero (see Fig. 5.2).  
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Table 5.1. Mean ratings for target emotion, valence and arousal and mean discreteness scores at baseline and 

for each of the emotion elicitation videos. Asterisks indicate significant differences from the corresponding 

rating at baseline (target, valence and arousal ratings for the four emotional videos), from the scale mid-point 

5 (baseline ratings for valence and arousal) and from zero (discreteness scores) at p values of .05 (*), .01 (**) 

and .001 (***).  

 

Walking speed changes as a function of posed, but not induced emotions 

  A repeated-measures ANOVA with within-subjects factors of condition (posed, 

induced), and emotion (angry, happy, sad) revealed a significant main effect for emotion 

(Figure 1; F(2,60) = 60.09, p < .001, h2 = .67). There was no main effect for condition (F(1,30) 

=.041, p = .841, h2 = .00). Collapsing across posed and induced revealed that angry and happy 

walks were the fastest, and sad walks were the slowest (angry: M(SEM) = 118.90(3.29) cm/s; 

happy: M(SEM) = 114.96(2.34) cm/s; sad: M(SEM) = 101.34(2.95) cm/s). Bonferroni-

corrected post-hoc t-tests revealed that while there was no difference in speed for happy and 

angry walks (t(30) = 2.49, p = .019), sad and angry (t(30) = 9.56, p < .001) and happy and sad 

(t(30) = 8.46, p < .001) were significantly different. However, the ANOVA also revealed a 

significant condition x emotion interaction (F(2,60) = 38.16, p < .001, h2 = .56). Separate 

 

Induced emotion 

Target rating 

M(SEM) 

Valence rating 

M(SEM) 

Arousal rating 

M(SEM) 

Discreteness 

M(SEM) 

Angry 8.11(.38)*** 2.46(.24)*** 7.50(.44)*** 3.24(.25)*** 

Happy 7.32(.47)** 7.61(.43)* 4.82(.49) 4.94(.55)*** 

Sad 8.61(.45)*** 2.11(.18)*** 5.54(.42)** 5.32(.40)*** 

Neutral 7.89(.55)** 5.18(.26)** 2.75(.40) 5.85(.66)*** 

Baseline walk - 6.39(.45)** 3.50(.46)** - 
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Figure 5.2. Mean emotion, valence, and arousal ratings after induction videos. Orange bars indicate the 

emotion rating corresponding to the target emotion. 

 

 ANOVAs for each condition indicated that, whereas speed differed as a function of emotion 

for posed walks (F(2,60) = 57.39 p < .001, h2 = .66), this was not the case for the induced 

emotion condition (F(2,60) = 2.34, p =.105, h2 = .07). Post-hoc tests further showed that, for 

the posed condition alone, there was no difference in speed for happy and angry walks (t(30) = 

1.98, p = .058). However, mean speeds for posed sad walks were significantly lower than those 

for posed angry (sad: M(SEM) = 92.35(3.82) cm/s; angry: M(SEM) = 124.50(4.33) cm/s; t(30) 

= 9.77, p < .001) and posed happy walks (happy: M(SEM)  = 117.85(2.40) cm/s; t(30) = 9.04 

p < .001). The equivalent tests, for the induced condition, showed no difference in speed for  
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Figure 5.3. Mean speeds for induced (lilac) and posed (green) walk conditions. Boxes represent 1 SEM 

above and below the mean (i.e., horizontal lines within boxes), shaded areas surrounding boxes represent 1 

SD above and below mean values. Dashed lines represent the means of the respective control conditions: 

walk after neutral video (lilac), baseline walk (green).  
 

sad and angry walks (sad: M(SEM) = 110.32(2.60) cm/s; angry: M(SEM) = 113.31(2.74) cm/s; 

t(30) = 2.40, p = .024), sad and happy (happy: M(SEM) = 112.10(2.63) cm/s; t(30) = 1.10, p =  

.281) or happy and angry walks (t(30) = .96, p = .343). Thus, in our study gait speed varied as 

a function of emotion for posed, but not for induced emotion walks (Fig. 5.3). 

In order to explore whether, in absence of speed changes between the three induced 

emotions, there was a change in mean walking speed from baseline as a result of the video 

manipulation, a further exploratory analysis was conducted using a repeated measures ANOVA 

with the factor ‘change from baseline’ and the five levels baseline, neutral, angry, happy and 

sad. There was a significant main effect for change from baseline (F(4,120) = 8.58, p < .001, 
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η2 = .22), with post hoc tests revealing that whereas there was no difference in speed between 

baseline and sad walks (p = .068), neutral, angry and happy walks were all significantly faster 

than baseline walks (Fig. 5.3; baseline – neutral: p < .001, baseline – angry: p < .001, baseline 

– happy: p < .01).  

 

Participants made use of emotion specific speed information to infer emotions 

Emotion Intensity Scores 

To gain a measure of emotion recognition, ‘Emotion Intensity Scores’ (EIS) were 

calculated for each emotion and speed level (3 emotions x 4 speed levels) as the mean rating 

on the target emotion scale (e.g., angry rating for the 0%, 33%, 67% and 100% angry stimuli) 

minus the mean of the two ratings of the non-target emotion scales (e.g., happy and sad). High, 

positive EIS indicate that participants rated the PLW as intensely expressing the target emotion, 

whereas low or negative scores indicate that the PLW was seen as weakly or not at all 

expressing the modelled emotion.  

In order to test whether participants made use of the speed information when rating 

stimulus intensities, a 3 x 4 repeated measures ANOVA with within-subjects factors emotion 

(angry, happy, sad) and speed level (0%, 33%, 67%, 100%) was conducted. The analysis 

revealed a significant main effect for emotion (F(2,60) = 27.60, p < .001, η2 = .48), a significant 

main effect for speed level (F(3,90) = 64.38, p < .001, η2 = .68) and a significant emotion x 

speed level interaction (F(6,180) = 4.12, p < .01, η2 = .12). Separate Bonferroni corrected 

pairwise comparisons showed that stimuli containing more speed information were consistently 

rated as more intense than stimuli at lower speed levels (M(SEM): See Table 2, Fig. 5.4.A; 

100% > 67%: p < .05; 100% > 33%: p < .001; 100% > 0%: p < .001; 66% > 33%: p < .001; 

66% > 0%: p < .001; 33% > 0%: p < .01).  



 
 

114 

Table 5.2. Mean Emotion Intensity Scores (EIS) for angry, happy and sad stimuli at four speed levels and 

for overall EIS averaged across emotions. Asterisks indicate significant differences from EIS for the two 

other emotions (a = angry, h = happy, s = sad) at p values of .05 (*), .01 (**) and .001 (***).  

 

Figure 5.4. Mean EIS values. (A) mean EIS per speed level. (B) mean EIS for angry, happy and sad 

conditions. 

 

Further separate ANOVAS showed that, on all four speed levels, sad PLW were rated 

significantly more intense than angry or happy stimuli, whilst there was no difference in 

intensity ratings between angry and happy animations (Fig. 5.4B, Table 2).  

Speed 

level (%) 

EIS 

Angry 

M(SEM) 

Happy 

M(SEM) 

Sad 

M(SEM) 

Overall 

M(SEM) 

0 1.95(.35) s** 2.61(.37) s* 4.15(.48) a** h* 2.90(.27) 

33 2.36(.33) s*** 3.40(.32) s** 5.22(.46) a*** h** 3.66(.22) 

67 3.84(.29) s*** 4.72(.35) s** 6.10(.40) a*** h** 4.89(.23) 

100 4.89(.38) s*** 4.32(.30) s*** 7.75(.31) a*** h*** 5.66(.24) 
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Separate ANOVAS for each emotion with speed level as within subjects factor showed 

that the extent to which intensity ratings changed as a function of stimulus speed level differed 

between emotions, with sad stimuli receiving the most differentiated ratings (significantly 

different EIS between all speed levels at p < .05 or higher), followed by angry (significant 

difference at p < .05 or higher between all speed levels except for 0% - 33%), and happy (no 

significant difference between speed levels 0% - 33%, 33% - 100% and 67% - 100%). 

 

Use of emotion specific speed information depends on between walk variability 

 To assess interindividual differences in walking variability, we first calculated speed 

change scores as the mean of the absolute difference of baseline walking speed and speeds after 

each of the emotional videos. As we did not observe any speed change attributable to our 

systematic manipulation of affective state, this variable was calculated as a general measure of 

between-trial kinematic variability (see Discussion). We further calculated individual 

Kinematic Beta Scores (KIBS) as the slope of the regression of the stimulus speed level (0% to 

100%) against intensity ratings of stimuli at all speed levels (EIS). KIBS thus reflect individual 

use of kinematic information, with positive values being indicative of increasing emotion 

intensity ratings with increasing levels of emotion-specific speed information. A simple 

regression analysis of speed change from baseline against KIBS revealed a significant negative 

relationship of speed variability with use of kinematic information (Figure 5.5A, R2 = .17, 

F(1,30) = 6.05, p < .05), suggesting that the more an individual changed their speed between 

walks, the less they made use of speed information when judging emotional stimuli.   

 

Use of emotion specific speed information predicts emotion recognition accuracy 

To test the exploratory hypothesis that the extent to which individuals made use of the 
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Figure 5.5. Relationship between KIBS scores (i.e., use of kinematic emotion specific information) and (A) 

kinematic variability, measured as the mean absolute speed change of induced walks from the baseline walk 

(B) mean EIS scores for 100% PLW stimuli. 

 

emotion specific speed information when judging PLW stimuli affected their overall 

recognition performance, a further simple regression analysis of KIBS scores predicting the 

mean of all EIS 100% scores was performed. The analysis revealed a positive relationship 

between KIBS and EIS scores, indicating that 25 percent of variance in emotion recognition 

performance could be explained by participants’ use of emotion specific speed information 

(Fig. 5.5B, R2 = 0.25, F(1,29) = 9.49, p < .01). Thus, the more individuals modulated their 

intensity ratings according to emotion specific speed information, the better they were able to 

correctly identify PLWs at the full (100%) speed level. 

 

5.1.4. Discussion 

This study aimed to compare the gait speed patterns of induced and posed emotional 

gait. In line with our predictions and reports from the facial emotion literature355-357, we 
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observed different kinematic patterns for our two emotional walk conditions. More specifically, 

when asked to pose emotional walks, participants walked significantly slower in the sad, 

compared to the happy and angry conditions. Furthermore, sad walks were markedly slower, 

and happy and angry walks significantly faster than participants’ individual baseline speeds, 

thus illustrating that participants modulated their gait speeds in accordance with kinematics 

reported for posed emotional walks in previous studies2,75,78-80,82,352. Further in line with several 

previous findings78,351,368,369 was our observation that speeds of happy and angry posed walks 

did not differ, highlighting the possibility that gait parameters like speed may differentiate the 

affective dimension arousal better than valence or discrete emotional states25. For example, 

Pollick and colleagues9 found that the perceived arousal of point-light arm movements was 

strongly and positively related to stimulus kinematics such as speed, acceleration and jerk. This 

may explain why two emotions on opposite ends of the arousal space like angry and sad are 

better distinguishable by speed than emotions with different valence, but similar arousal (such 

as angry and happy).  

 In contrast to posed walks, analyses revealed no significant differences in speed between 

the neutral and any of the induced emotional walks, despite successful emotion induction as 

measured by post video mood ratings. However, comparing participants’ walking speeds after 

the induction videos to their baseline speeds did uncover an increase in speed from baseline to 

neutral, happy and angry videos. High discreteness scores for neutral mood ratings after the 

neutral video indicate that this film successfully elicited the target emotional state. Thus, since 

individuals showed a significant change in speed after the neutral, in addition to after angry and 

sad videos, it is likely they did not selectively change their speed as a response to the emotion 

induction conditions. Rather, the speed modulation observed after some of the induction films 

might be viewed as non-systematic, between-trial variation of walking kinematics. While 



 
 

118 

human gait speed has been shown to be highly reliable from one trial to the next, the mean 

between-trial variation of 6.93 cm/s in our sample lies within a range that other studies have 

found to reflect non-systematic variation370. Accordingly, it is possible that any systematic 

effects of emotion elicitation on movement kinematics were too transient to be still measurable 

during the walking task. In addition to the gait mat, this study explored the use of iPhone 

accelerometers as an alternative method to capture gait data. Thus, after watching each 

emotional video and before the subsequent emotional walk, an experimenter had to switch on 

the accelerometer recording on the iPhone attached to participants’ ankles. This systematic 

disruption to the flow of the experiment and possible social interactions between experimenter 

and participant could have been large enough to erase any potentially subtle effects of emotion 

induction. Future studies investigating the expression of spontaneously felt emotions in 

movement kinematics should therefore aim for smooth and fast transitions from emotion 

induction to motor tasks. 

Yet, the possibility that our emotion manipulation did indeed affect participants’ 

kinematics in a systematic, however much more subtle way, persists. With respect to facial 

expressions, several studies have shown that spontaneous expressions are portrayed with 

smaller amplitude than deliberate movements356,371,372. More sensitive methods may be needed 

to pick up delicate kinematic changes in emotional gait. The lack of distinguishable differences 

between the different induced emotions, in the clear presence of those differences between 

posed emotions in this study highlights the necessity for caution when inferring models of 

emotional gait from acted emotional walks.  

 A second aim of this study was to investigate whether individual differences in gait 

speed variability can be related to the perception of affective states from gait. Overall, 

incrementally reduced intensity ratings for every level of reduced speed information (67%, 33 
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%, 0%) signify that participants made use of the kinematic information when inferring emotions 

from PLW stimuli. However, the extent to which individuals used kinematic cues varied. Speed 

variability, calculated as the mean absolute change of walk speeds after emotion induction from 

baseline, significantly predicted participants’ use of emotion specific speed information when 

judging the PLWs. Specifically, the higher an individual’s speed variability, the less they were 

influenced by the manipulation of kinematic information when making their ratings. It could 

be speculated that people with high between-walk variability have a less stable reference basis 

to compare emotion-specific speed information against. In the same way as individuals with 

prosopagnosia may compensate for impairments in configural face processing by making use 

of motion cues373,374, people with highly variable gait kinematics might rely more on other 

salient cues, such as the spatial configuration of the body movements, when judging others’ 

gaits. However, it has been argued that point-light stimuli similar to the ones used in the present 

study contain only limited configural emotion specific information77. For example, our PLW 

displays did not include heads, while head position provides an important form cue of whole 

body movement375. Consequently, with potentially important emotion specific form 

information missing from our PLWs, in the current study reduced sensitivity to kinematic cues 

may have resulted in compromised recognition of emotions from these stimuli. Our exploratory 

analysis confirmed this hypothesis, showing that individuals with reduced sensitivity to the 

kinematic manipulation also demonstrated lower emotion recognition scores.  

Our findings bear crucial implications for emotion recognition research employing 

dynamic, whole-body expressions of emotions. First, the results of this study support 

observations from the facial emotion recognition literature356 in suggesting that, relative to 

genuine expressions of emotion, kinematics of emotional whole-body stimuli based on posed 

expressions are likely exaggerated. It follows that any study using emotion stimuli derived from 
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acted movements possibly overestimates real-world recognition performances in both healthy 

individuals and clinical samples. Furthermore, we demonstrated that individuals who varied 

highly in speed between walks made less use of the available emotion specific kinematic 

information. In addition, use of kinematic cues was positively related to the ability to accurately 

classify a PLW’s modelled affective state. In combination, these latter findings suggest that 

atypical emotion recognition in individuals who display high kinematic variability (e.g., 

individuals with movement disorders376 or autism spectrum disorders243,377) may in part be a 

result of reduced sensitivity to dynamic emotion related cues. Indeed, a recent study by Keating 

and colleagues378 demonstrated that autistic individuals showed reduced recognition accuracy 

of angry facial expressions when these were displayed at original speed, but showed recognition 

rates comparable to controls when the stimulus speed was increased to 150%. While in non-

autistic samples, the perceived intensity of angry emotional states has been shown to 

proportionally increase with stimulus speed (e.g., 2; see also: Chapter four; Appendix 3, 

Supplementary Figure S3.1), the latter results indicate that autistic individuals required higher 

stimulus intensity to adequately recognize the angry expressions. Future studies could 

systematically manipulate both kinematic and spatial emotion related cues to test whether 

individuals with high movement variability rely to a greater extent on spatial features when 

inferring internal states from observed movements. 

In Chapter four I reported that dopaminergic manipulation using a dopamine D2 

antagonist altered participants’ emotion perception. Specifically, we observed a decrease in 

emotion recognition performance in a subset of our sample (with high WM span), suggesting 

that dopamine dysfunctions could play a role in emotion recognition deficits observed in 

various clinical populations. Furthermore, the present chapter elaborated how genuine whole-

body expressions of emotions are likely much more subtle than posed emotional expressions. 
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Since the stimuli used in Chapter four were developed based on posed, not genuine expressions 

of affective states, results of the current study suggest that the effect of dopamine disruption on 

emotion recognition presented in Chapter four likely underestimates the true effect of 

dopaminergic imbalances on the recognition of genuine expressions of emotion. Furthermore, 

given dopaminergic dysfunctions have previously been associated with increased movement 

variability in (e.g., 379-381, note that these studies used within-trial measures of gait variability 

such as stride length or step time variability, rather than the between-trial speed variability 

measure used in this study), one may speculate that emotion recognition atypicalities in 

conditions with dopamine dysfunctions may at least to some extent be explained by increased 

kinematic variability.  

In sum, to our knowledge this chapter presented the first study to demonstrate that 

genuine expressions of affective states are associated with different gait patterns relative to 

posed expressions of emotions. Echoing findings from the facial emotion expression 

literature355-357, the present results suggest that the kinematics of genuine whole-body 

manifestations of affect are more subtle compared to those of acted expressions, and thus may 

require an individual to be highly sensitive to kinematic changes in order to use these cues to 

infer emotions. In conjunction with our observation that participants who exhibited high 

movement variability showed reduced sensitivity to emotion-specific kinematic variation, these 

findings raise important implications for populations associated with high movement variability 

(e.g., due to dopamine system dysfunctions379-381), who might struggle to pick up these subtle 

emotion-specific cues. Future studies should test whether emotion recognition deficits can 

indeed in part be attributed to increased kinematic variability in these conditions. If this turned 

out to be the case, interventions targeted at decreasing kinematic variability may be effective in 

improving emotion recognition abilities in patients. 
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5.2.  Validation of smartphone in-built accelerometry for the analysis of 

temporal gait parameters 

5.2.1.  Introduction 

While spatio-temporal parameters of gait, such as step length, stride length or speed, 

have traditionally been used to assess gait abnormalities in injury, geriatric medicine and 

movement disorders, they are increasingly becoming a focus of psychological research (e.g., 

351,382,383). For example, gait characteristics have been found to be indicative of personality382 

and psychopathology (e.g., depression384 or schizophrenia385). Until recently, the assessment of 

gait metrics required specialist equipment such as motion-capture or pressure sensing walkway 

systems, tools which are costly, require regular maintenance and typically are installed in fixed 

locations, thus lack portability. However, in the previous few years, mobile phone 

accelerometers have gained wide popularity as more convenient and cost-effective methods to 

measure human movement. With the technique originally stemming from applications in the 

automotive industry, accelerometer-based gait assessment has seen application in a range of 

fields such as sports (medicine), forensics and health care (e.g., 386-388). Within experimental 

and clinical psychology, accelerometry has been used as a non-intrusive, easy to use method to 

capture changes in gait as a function of, for instance, cognitive load389 or emotion 

processing390,391.  

However, currently it is unclear how accurate gait metrics derived from smartphone 

inbuilt accelerometers are in comparison to methods such as electronic pressure-sensing 

walkways which are commonly viewed as ‘gold-standard’. By recording direct measures of a 

foot’s contact with the ground, pressure walkways provide reliable spatio-temporal gait 

parameters and are widely used in clinical gait analysis (e.g., 392,393). In contrast, accelerometry 
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based gait analysis typically derives foot strikes by analyzing peaks and troughs in acceleration. 

While several previous studies have attempted to assess the validity of smartphone-derived gait 

assessment, there are some limitations to existing findings. For example, various studies have 

used a second accelerometer (i.e., wearable sensors containing Inertial Measurement Units 

[IMUs]) as the ‘ground truth’394-397, without ascertaining that their reference method is 

comparable in accuracy to more precise instruments such as pressure walkways. Furthermore, 

the handful of studies which investigated agreement with a gold-standard tool are limited by 

small sample sizes, with some being based on a single subject398-401. Lastly, the majority of 

studies seeking to validate accelerometer-based gait parameters investigated metrics such as 

stride time or step time399,400, which are often used in the diagnosis of pathological gait patterns 

(e.g., in Parkinson’s disease). However, while gait kinematics such as walking speed have 

proven informative as markers of cognitive or affective change354,384,402, studies validating gait 

speed estimation on the basis of smartphone devices are currently lacking. 

Consequently, the present study aimed to compare gait speed collected with two 

smartphone inbuilt accelerometers at preferred walking speed against gait data collected with a 

pressure-sensing walkway (ProtoKinetics LLC, Havertown, USA). Successful validation of 

smartphone accelerometers against a gold-standard tool would open up new opportunities for 

psychological and clinical research, for example by enabling more ecologically valid and large-

scale, population-based data collection outside of the laboratory.  
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5.2.2. Methods 

Participants and Procedure 

Forty healthy undergraduate and postgraduate students aged 18-32 (mean [M] = 21.03, 

standard deviation [SD] = 2.56) years from the University of Birmingham were recruited to 

take part in this study and received either a small monetary sum or course credit as 

reimbursement. One participant was excluded from the analyses because of a missing dataset. 

All experimental procedures were approved by the University of Birmingham Research Ethics 

committee. 

In this this repeated-measures study, each participant performed a 120-seconds-long 

walk at preferred walking speed along a 5-metre-long walkway. Walking data was recorded (1) 

with two tri-axial iPhone accelerometers (iPhone 5s, iPhone 6s) using the SensorLog app 

(version 3.2297) and (2) the pressure-sensor walkway system ZenoTM (ProtoKinetics LLC, 

Havertown, USA), which served as the gold standard reference. Accelerometer data was 

recorded at 100 Hz, whereas walkway data was recorded at approximately 120 Hz. The two 

iPhones were attached tightly to participants’ left and right lateral ankles using conventional 

mobile phone armbands. Participants then continuously walked across the walkway, starting 

with their right foot and stepping off, turning around and stepping back on the mat at the end 

of each pass. A walk of 120 seconds resulted in 20 passes on average. Immediately before 

starting each walk, participants were instructed to lift and lower their heels three times, resulting 

in acceleration peaks which served as a visual marker for matching up the first step of 

accelerometer and pressure sensor outputs.  
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Data processing 

Accelerometer data  

Accelerometer data was processed using MATLAB (version R2020a272). Acceleration 

magnitude (hereafter: acceleration, meters/second [m/s]2) was calculated as the two-norm of 

raw acceleration values in x, y and z vectors. Each walk was preceded by three, in place, up 

down heel-lift benchmark motions. The walk starting point was annotated as the first 

acceleration peak after the three benchmark peaks, and the end point was annotated as the last 

peak in acceleration (i.e., last footfall, see Fig. 5.6A). Turns between passes were annotated in 

acceleration envelope minima (occurring approximately every four gait cycles). Subsequently, 

the duration of each pass was estimated by taking the difference between timestamps for 

starting and envelope minima points. To obtain an estimation of mean speed across the whole 

120 seconds walk, first individual mean speed per pass was calculated by dividing the length 

of a pass (i.e., mat length, 5m) by its duration. Following this, speed estimates for all passes 

were averaged across the whole walk. Each data processing step was performed for left and 

right feet data individually and values were subsequently averaged across left and right. There 

were eight datasets for which only data from one iPhone was available (for one participant data 

from one phone was corrupted, for seven participants data was only recorded with one phone). 

Note that the two iPhones used in this study (iPhone 5s, iPhone 6s) had different inbuilt 

accelerometers, however the values from the two iPhones were found to be highly correlated 

(Spearman’s Rho = .997, p < .001). 

 

Zeno Walkway data  

ProtoKinetics Movement Analysis Software (PKMAS, ProtoKinetics LLC, Havertown, 

USA) was employed to process pressure sensor data and calculate average speed. First, replays 
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Figure 5.6. (A-B) Example of accelerometer data processing. (A) Orange markers represent manually 

annotated peak minima in acceleration, reflecting turns between passes. Accelerometer speed data was 

calculated for each pass by dividing the distance travelled (i.e., mat length) by the difference in time stamps 

in between markers. Subsequently, average speed across the whole walk was calculated as the mean of 

individual pass speed values. (B) Raw acceleration in x, y and z planes. (C) Foot strikes as recorded by the 

Zeno Walkway. Magenta = right foot contacts, green = left foot contacts. 
 

of recorded walks were visually inspected for accurate capture of individual footfalls, and 

incomplete footfalls removed (see yellow shaded area in Fig. 5.6.C). Subsequently temporo-

spatial gait parameters were exported. Mean speed was calculated by the software from the 

center of pressure recordings of left and right feet as distance travelled divided by ambulation 

time (cm/s). Finally, walkway data was converted to match units of accelerometer data (i.e., 

m/s).  
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5.2.3. Results 

Speed data of both methods was normally distributed as assessed by visual inspection 

of histograms. To assess concurrent validity, average speed values of the two measures were 

compared using linear regression coefficients and Bland-Altman 95% limits of agreement. 

Bland-Altman (BA) plots are commonly used in movement analyses to examine the difference 

between two different instruments. By plotting the difference of two measurements against their 

mean, BA plots facilitate the evaluation of biases as well as possible relationships between 

potential discrepancies and true values (i.e., the means between the two measures as best 

estimations of the true values). According to Bland and Altman403, evaluation of agreement of 

two variables presupposes that the differences between two measures are normal distributed. 

Figure 5.6 shows the agreement between accelerometer derived (iOS) and walkway derived 

(gait mat) mean speeds. There was a strong linear association between speed values collected 

with the accelerometer and walkway devices (r = 0.94, p < .001, Fig. 5.6.A). The mean 

difference of 0.38 shows that on average, speed values measured with the walkway method are 

0.38 m/s larger than accelerometer derived speed values (Fig. 5.6.B). Because the line of 

equality (i.e., mean difference = 0) is not within the 95% confidence bounds of the mean 

difference, we conclude this represents a systematic bias. Limits of agreement of 8.6 % further 

suggest that for 95% of the sample, the range of difference between the two methods lies 

between -0.24 and -0.51 % (∓1.96*SD). The BA plot further illustrates a negative relationship 

of the differences, with higher differences between the two instruments for higher speed values.  

  

5.2.4. Discussion 

 The present study aimed to evaluate the agreement between gait speed data collected 

with a smartphone accelerometer and a pressure sensing walkway, which served as the gold 
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Figure 5.7. Plots for the comparison of accelerometer (iOS) and pressure walkway (gait mat) speed (both 

m/s). (A) linear model of iOS and gait mat speed measures. Y = model equation, r2 = coefficient of 

determination, SSE = Sum of squared error, n = sample size. Solid diagonal lines around fit line represent 

95% confidence intervals of fit line. (B) Bland-Altman plot. LOA = limits of agreement (1.96*SD). The solid 

horizontal line represents the mean difference. Horizontal dashed lines represent upper and lower limits of 

agreement (mean difference ∓1.96*SD). 

  

standard. Whilst the correlation analysis suggested a strong association between speed values 

of both methods, the BA analysis revealed a bias for the accelerometer method, indicating that 

speed values collected with the smartphones were on average 0.38 m/s slower than speed values 

collected with the pressure walkway. If this bias was constant, future studies could simply add 

this value to any speed measure derived from a smartphone accelerometer to approximate the 

true speed value. However, with limits of agreement of 0.14m/s, the difference between iOS 

and walkway derived speed values ranges from -0.24 m/s to -0.51 m/s. Bland and Altman403 

recommended that criterion values for acceptable limits of agreement between two methods 

should be decided based on the purpose of the data collection method. With studies which have 

previously found associations between changes in gait speed and psychological function 
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reporting mean group differences ranging from 0.17 to 0.36 m/s, it is possible that a smartphone 

accelerometer employed with the current design may miss meaningful change in walking speed.  

It is likely that in the current study, the observed bias and relatively high variation 

around this bias was a direct result of the study design: In order to gain clear step signals from 

footfall pressures in the walkway recording, individuals stepped off the mat at the end of each 

pass and turned around to step back on. Across the whole 120 seconds walk, this likely lead to 

longer walk durations recorded from the iOS accelerometer, while for both measures the mat 

length (5m) was used as distance travelled for speed calculation. Our data further showed a 

negative relationship between difference values and the estimated true value, indicating higher 

differences between the two methods for faster participants. One may speculate that participants 

who were faster tended to step further off the mat when turning around, leading to larger biases 

in the accelerometer derived data, and ultimately to the observed skew in difference values. 

Thus, we conclude that a large proportion of the difference between accelerometer and walkway 

derived speed data in this study is owed to a discrepancy between actually travelled and 

estimated walking distance. In the present study, we chose not to approximate speed by 

integrating acceleration, as this way of calculating speed is well known to result in inherently 

noisy signal due to the accumulation of measurement error over time (i.e., integration drift, see 

404). This is a well-known issue accompanying gait speed estimations on the basis of 

accelerometers/IMUs and presumably why the literature lacks successful validations of 

accelerometer derived speed measures. While filter algorithms exist to minimize this drift (e.g., 

405), the adequate application of these would have exceeded the scope of this study. An 

alternative feasible way to decrease the bias in the accelerometer data could be to use longer 

walkways, thereby reducing the number of steps exceeding the estimated walking distance 

during turns. The study presented in Chapter four used a walkway of ten meters (as opposed to 
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the five-meter-long walkway of this study), which across the identical walking time of 120 

seconds would have resulted in approximately half the amount of turns as in the present study, 

thus likely resulting in increased accuracy of the accelerometer derived speed data.  

In conclusion, the comparison to a pressure-sensing walkway system revealed a 

systematic bias of speed data calculated based on smart-phone inbuilt accelerometry if a fixed, 

predefined distance is used across which participants walk numerous laps. Future studies 

estimating gait kinematics with smartphone accelerometers in the laboratory should aim to 

minimize the discrepancy between actual distance walked and distance used for speed 

calculation. However, to be able to fully exploit the accessibility and portability of smartphone 

accelerometers in psychological research (e.g., through large-scale data collection of natural 

walking outside of the laboratory), future research would benefit from evaluating currently 

available filters (see 405) for their aptitude to sufficiently minimize integration drift. 
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Chapter 6: General Discussion 

 

6.1. Overview of findings 

Overlapping atypicalities in social and motor function have been observed in a variety 

of clinical populations which have all been linked to a dopamine system dysfunction50, however 

the nature of this three-way relationship is currently unclear. The present thesis examined the 

relationship between motor- and socio cognitive function in healthy individuals as well as the 

role of dopamine in this relationship, using a pharmacological model of dopamine disruption. 

One of the aims of this thesis was to investigate the hypothesis that dopamine modulates socio-

cognitive functioning via affecting motor function and thereby altering internal action models. 

Throughout the presented studies we did not find any evidence for this. While we did find 

evidence for movement similarity as an important factor in mental state attribution, acute 

dopaminergic challenge likely does not alter the action models individuals use for interpreting 

others’ actions.   

Chapter two evaluated which stimulus characteristics individuals make use of when 

interpreting the movements of triangles in the animations task. We confirmed triangle jerk and 

other kinematics to be crucial for successful identification of animation identity and determined 

a variety of additional spatial stimulus features, such as certain trajectory components, as 

important for the accurate interpretation of animations. More intriguingly, the chapter 

demonstrates how similarity between an observer and the creator of an animation in a selection 

of those features facilitated mental state attribution. Chapter three discussed the contribution of 

dopaminergic disruptions to altered performance in the animations task and evaluated whether 

dopamine disruptions may lead to compromised mentalizing by decreasing movement 
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similarity between two counterparts. The study illustrated that dopamine disruption using a 

dopamine D2 receptor antagonist results in decreased accuracy in labelling both mental and 

non-mental state animations, supporting the idea that dopamine modulates mental state 

attribution in a domain general way. Furthermore, dopamine challenge affected participants’ 

motor function, however drug effects on motor and socio-cognitive ability were not related. 

Thus, findings do not provide any evidence for a role of dopamine in affecting motor simulation 

processes by decreasing movement similarity between observer and animator. Instead, while it 

is still possible that dopamine affects internal action models via its long-term effects on 

movement, our results suggest that dopamine in part modulates mentalizing ability 

independently of its influence on motor function. Chapter four investigated the influence of 

aberrant dopamine signaling (using the same dopamine D2 antagonist as in Chapter three) on 

emotion perception from whole-body motion. Findings of this study implicate dopaminergic 

processes in emotion perception. Furthermore, in this study drug effects on social and motor 

function were related, however not in the selective way that would have been predicted if 

dopamine had affected motor simulation processes, thus again suggesting no influence of 

dopamine manipulation on internal action models. Rather, drug-related changes in motor 

function and the observed relationship to changes in emotion recognition performance may be 

reflective of effects of dopamine challenge on internal timing mechanisms. The fifth chapter of 

this thesis addressed a prevalent limitation of studies investigating emotion perception based 

on movement information, namely the fact that the majority of dynamic emotion stimuli are 

created using actors posing affective states. The hypothesis that genuinely felt whole-body 

expressions of emotional states do not show the same kinematic patterns as posed emotions was 

supported by our results and confirms previous observations in the facial emotion expression 

literature355-357. The chapter further showed that the extent to which an individual uses 



 
 

133 

kinematic information to infer emotions from others’ movements depends on their own 

kinematic variability, suggesting that clinical populations which exhibit higher degrees of 

movement variability may to a lesser extent draw on their own motor experience when judging 

others’ affective actions. Finally, the fifth chapter presents a short analysis of the concurrent 

validity of smartphone accelerometers for the assessment of walking kinematics, demonstrating 

a strong relationship between the smartphone data and gold-standard reference. However, the 

study also revealed a systematic bias in the smartphone recordings, the implications of which 

are further discussed in the following sections of this thesis. 

In summary, this thesis demonstrated how dopaminergic processes are involved in socio-

cognitive function, including both emotion perception and mental state attribution. Whilst 

dopamine disruption affected motor function in addition to socio-cognitive abilities, we did not 

find any evidence to support the hypothesis that dopamine may modulate social cognition via 

affecting motor function. Instead, our results suggest that dopamine regulates social and motor 

function independently. 

Throughout the remainder of the discussion, I present a synthesis of all findings of this 

thesis and elaborate the potential alternative mechanisms via which dopamine may affect both 

social and motor function. Finally, I discuss implications for clinical populations and provide 

directions for future work. 

 

6.2.  The role of dopamine in the relationship between social and motor 

function 

Individuals with movement disorders, such as patients with PD, HD and TS, as well as 

individuals who present with motor atypicalities in addition to other primary symptoms (e.g., 
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ASD, schizophrenia) all show difficulties in the attribution of internal states to others. 

Overlapping motor and socio-cognitive symptoms in these conditions may be indicative of a 

causal relationship between social- and motor abilities in these individuals. Based on previous 

research suggesting that we use representations of visual and motor experiences with our own 

actions to interpret others’ movements1,2,110, the primary hypothesis of Chapter two was that 

movement similarity between observer and agent should foster an observer’s accurate labelling 

of another agent’s social movement cues. Presenting a novel adaptation of a classic task which 

utilizes movement cues to convey mental states, Chapter two confirmed this hypothesis, 

illustrating how similarity in several movement properties between an observer and the original 

animator of an animation facilitated the correct interpretation of that animation. These results 

suggest that individuals whose representations of mental states are associated with similar 

kinematics (and other movement features) are better able to interpret each other’s depictions of 

those mental states. Given the involvement of dopamine in motor function, as well as the 

established link between all of the abovementioned clinical conditions and a dopamine system 

dysfunction, we hypothesized that dopamine may affect social perception by affecting 

individuals’ internal action models.  

 

6.2.1. Effects of acute dopamine challenge on putative motor simulation processes 

As outlined in Chapters three and four, dopamine challenge did affect motor function in 

a subgroup of our participants in three different motor domains. The D2 antagonist haloperidol 

decreased movement speed in subjects with hypothesized high susceptibility to dopaminergic 

manipulation in the production part of the animations task, a shapes drawing task, and a walking 

task. Dopamine disruption further resulted in changes in social performance: Haloperidol 

affected mental state attribution (Chapter three) and emotion recognition (Chapter four). 
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Moreover, while effects of the drug on mental state attribution scores were independent of any 

drug related changes in motor function, drug effects on emotion recognition were statistically 

related to drug effects on motor function.  

Yet, as indicated in Chapter four, effects of dopamine challenge on emotion recognition 

and walking speed were not related in the selective way that we predicted. Based on evidence 

of specific associations between gait speed and perceived affective state75,78-80,82, and on 

suggestions that individuals may judge observed affective movements in relation to their own 

movement kinematics2,110, we expected that drug induced motor slowing would be related to 

higher perceptual sensitivity for emotions which are generally associated with faster walking 

speeds. In other words, we predicted that (given individuals’ moods remained unchanged by 

the pharmacological manipulation), by reducing participants’ movement speed, haloperidol 

may have biased their internal representations associated with a slower walking speed towards 

a neutral mood state. As a consequence, we hypothesized that those individuals would show 

lower recognition rates for sad PLWs, because they perceived the speed of the sad (i.e., slowest) 

PLW stimulus to be most similar to their own, slower walking speed, which they did not 

associate with a sad mood. In contrast, the same participants might have perceived the angry 

PLWs’ speeds as more dissimilar to their own current movement speed under haloperidol 

compared to placebo, and in result may have rated those stimuli as more intensely expressing 

an angry affective state. Contrary to our expectations, those individuals who exhibited motor 

slowing as a result of haloperidol showed increased emotion discrimination ability not only of 

angry, but all emotion stimuli. In conclusion, the observed non-selective relationship of drug 

induced movement slowing and increased emotion recognition performance contradicts the 

hypothesis that our dopamine manipulation affected emotion recognition by changing internal 

action models of angry, happy and sad emotions. 
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In combination with the lack of relationship between drug effects on mentalizing and 

motor function reported in Chapter three, the latter results suggest that acute haloperidol 

administration did not affect participants’ perception of social cues via effects on existing motor 

representations. However, while the results presented in this thesis support the proposition that 

the dopamine system is involved in the direct modulation of socio-cognitive processes, they do 

not rule out the possibility that, in addition to direct, acute effects on social ability, long-term 

dopamine dysfunction (e.g., in clinical conditions) affects internal action models via long term 

effects on action production. Section 6.3. discusses possible implications of these results for 

individuals with early-stage and long-term disruptions of the dopamine system. 

 

6.2.2. Evidence for domain-general contributions of dopamine signaling to social ability 

Perhaps the oldest debate within the social cognitive neurosciences concerns the 

question of whether certain aspects of socio-cognitive abilities rely on domain-specific or 

domain-general processes. While proponents of the domain-specificity of social cognition have 

argued that social ability relies upon specialized neural and/or cognitive processes which solely 

serve social functions (e.g., 117,406,407), opponents believe that current experimental evidence is 

not sufficient to support domain-specific accounts (e.g., 408,409). Rather, they argue that aspects 

of social reasoning can be wholly attributed to domain-general mechanisms, which are 

responsible for a broad range of skills including, but not exclusive to, the social domain. More 

recently, this rather dichotomous view of brain-domain relationships has been challenged and 

conceptions have evolved to a more integrative picture, accepting that a combination of both 

domain-general and domain-specific processes may give rise to socio-cognitive abilities410-413. 

Within its role as a modulator of brain function, dopamine signaling may on the one 

hand modulate domain-specific processes by excitatory or inhibitory action on parts of the 
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hypothesized mentalizing system414. On the other hand, well-established links between 

dopamine and cognitive functions such as working memory (WM) may suggest that dopamine 

exerts influence on social ability by regulating domain-general processes. Determining the 

exact neuroanatomical actions of dopamine, and thus explicitly linking dopaminergic actions 

to structures proposed to underlie specialized or non-specialized mechanisms lies outside the 

scope of this thesis. Nonetheless, Chapters three and four provide some evidence which 

supports a domain-general contribution of dopaminergic processes to social functioning. 

First, as outlined in Chapter three, dopamine manipulation in our sample of healthy 

participants resulted in an overall decrease in their ability to correctly identify both mental state 

and non-mental state animations. The non-mental state animations employed in this study were 

adopted from Abell et al.42, who selected their original goal-directed (G-D) animations with the 

intention of evoking descriptions of interaction, but without the implication that one triangle 

was reading the other’s mind. In their study, the younger autistic and control groups were better 

at identifying the G-D animations compared to the mentalistic ToM animations, a result which 

could be ascribed to the higher mentalizing demands present in the ToM animations, as 

animations were matched for overall difficulty and perceptual complexity. The meta-analysis315 

referenced in Chapter three confirms a conceptual difference between these animation types by 

reporting a general consensus of a subtle but evident performance difference between autistic 

and control groups in interpreting the ToM and G-D animations. Under the assumption that 

correctly interpreting the G-D animations does indeed not require the spontaneous attribution 

of mental states, our observation that dopamine disruption impaired performance for both 

animation types equally indicates that dopaminergic processes may play a more general role in 

modulating performance in the animations task. Furthermore, in the study discussed in Chapter 

three, although there were no group-level drug effects on working memory (WM) performance, 
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individual drug-related changes in WM scores were related to drug effects on both mental and 

non-mental state animation accuracy (see Appendix 2.3). This relationship, as well as a lack of 

relationship to other measures of ToM (i.e., cognitive and affective ToM as measured by the 

MASC task) suggests that the finding of reduced animations task accuracy after haloperidol 

does not reflect dopaminergic modulation of dedicated ToM processes, but rather may be a 

result of drug induced changes in more general cognitive abilities (such as working memory). 

Section 6.2.3. provides a detailed analysis of the potential domain-general mechanisms 

underlying the observed findings.  

Second, we argue that the observed pattern of results presented in Chapter four, wherein 

haloperidol resulted in improved emotion recognition performance in subjects with low, and 

decreased emotion recognition abilities in individuals with high baseline dopamine levels, can 

be best explained by effects of dopamine challenge on domain-general mechanisms such as 

time estimation and working memory abilities. I reiterate the main points of this discussion in 

Section 6.2.3. 

Collectively, I argue, the observed effects of dopamine challenge on performance in two 

tasks measuring mentalizing and emotion recognition are reflective of domain-general 

contributions of dopamine to social function. The following section elucidates three candidate 

mechanistic pathways via which dopaminergic processes may impact on social and motor 

ability. 
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6.2.3.  Three possible mechanistic pathways of dopaminergic modulation of social 

function 

The working memory hypothesis 

Undeniably, successful social interaction requires the ability to access, maintain and 

manipulate oftentimes large amounts of information relating to others as well as oneself. Thus, 

the idea that executive functions (including abilities such as working memory, inhibitory 

control, and attention415) are recruited during the processing of social cues is perhaps 

unsurprising. Yet, amongst social cognition researchers it is highly debated whether socio-

cognitive function at least in part relies on executive functioning. As already discussed in 

Chapter three, a variety of studies find no statistical relationships between measures of 

executive function and socio-cognitive performance, suggesting independence of socio-

cognitive and executive function processes (e.g., 46,202,416,417). Other studies, however, do 

provide evidence for an involvement of executive functions in socio-cognitive performance and 

include correlational studies which report statistical relationships between socio-cognitive 

ability and executive function418,419, dual-task paradigms which show that mentalizing 

performance decreases with increasing cognitive load420,421 and lesion studies demonstrating 

socio-cognitive impairments in patients with neuronal damage in brain regions specifically 

associated with general cognitive ability422. For example, investigating links between ToM 

performance, executive functions and ASD symptoms in a large sample of autistic adolescents, 

a recent study419 found strong relationships between ToM responses (including in the 

animations task) and performance in tasks of executive function (including indices of working 

memory such as backwards digit span). 

It is well-established that the dopaminergic system is implicated in cognitive processes 

and cognitive deficits have been linked to dopaminergic dysfunctions in both the PFC423 and 
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striatum135,295. Intriguingly, evidence from animal and human studies has yielded contrasting 

findings with both decreased and enhanced cognitive performance after dopamine receptor 

stimulation424,425 and administration of dopamine agonists331,426 and antagonists135,427. Those 

seemingly paradoxical effects led researchers to theorize that the dopaminergic modulation of 

cognitive function follows an inverted U-shaped curve, where medium levels of dopamine are 

considered optimal for cognitive performance, and low and high dopamine concentrations are 

associated with cognitive impairments428. Accordingly, cognitive responses to pharmacological 

dopamine manipulation have been demonstrated to vary depending on baseline WM span, a 

proxy of striatal dopamine synthesis295. In fact, one of the cognitive functions which has 

consistently been associated with dopamine is WM, where dopamine agents improve 

performance in individuals with low baseline WM span (indexing low striatal dopamine 

availability) while subjects with high WM function at placebo (i.e., hypothesized high striatal 

dopamine availability) show detrimental or no effects of the drug (e.g., 135,330,336,429). 

A specific role in the dopaminergic modulation of WM function has been ascribed to 

the basal ganglia, where frontostriatal loops are believed to regulate the updating of WM 

representations in the PFC via two distinct pathways, which have previously primarily been 

associated with action control (see Frank & O’Reilly135): The direct (Go) pathway, where 

activity leads to the updating and maintaining of current sensory information, and the indirect 

(no-Go) pathway, where upon activation, the threshold for WM updating is raised (by 

suppressing activity in cortical regions), thereby enabling the maintenance of previously stored 

information. While dopamine signaling has excitatory effects with respect to the direct pathway 

via activating D1 receptors, the D2 receptors located in the indirect pathway are inhibitory by 

nature, thus dopamine release here exerts inhibitory control on the indirect pathway. 
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Consequently, dopaminergic activity in the striatum has excitatory effects on the frontal cortex 

via both pathways (see Fig. 6.1.A). 

It is possible that the effects of dopamine challenge on social performance presented in 

this thesis (mental state attribution: Chapter three, emotion recognition: Chapter four) are 

indicative of dopaminergic modulation of working memory function. To understand how our 

observed drug effects on mental state attribution and emotion recognition may relate to 

dopaminergic modulation of working memory function, one needs to consider the specific 

actions of the selective D2 receptor antagonist haloperidol, as well as the abovementioned 

dependency of drug responses on individual baseline dopamine levels. As outlined in Chapter 

one, due to the relatively high ratio of D2 auto- to heteroreceptors in the striatum, low doses of 

D2 antagonists are expected to mainly block the former, leading to increased phasic release of 

dopamine (i.e., presynaptic effects). In contrast, high doses of the same antagonist will lead to 

blocking of both auto- and heteroreceptors, resulting in both increased phasic, and reduced tonic 

dopamine (i.e., postsynaptic effects) signaling430. With low striatal dopamine synthesis capacity 

potentially reflecting higher responsivity to dopaminergic drug effects (presumably through 

compensatory upregulation of either receptor density or sensitivity295), it should follow that the 

same dose of haloperidol (2.5 mg) results in both increased phasic and reduced tonic 

dopaminergic activity in our low WM span group, whereas we would expect only subtle phasic 

drug effects in high WM span individuals. Indeed, only our low WM group exhibited movement 

slowing, which is indicative of postsynaptic effects on the indirect pathway (see Chapter four). 

Moreover, because dopamine has inhibitory effects on the indirect pathway, thereby leading to 

disinhibition of cortical activity, tonic effects of a dopamine antagonist should revert these 

effects and ultimately lead to increased, by nature inhibitory, activity in the direct pathway, 

which is presumed to serve to suppress cortical activity. Frank et al135 argue that this 
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Figure 6.1. Schematic depiction of dopaminergic effects on the indirect pathway. SNc = substantia nigra 

pars compacta; GPe = globus pallidus external; STN = subthalamic nucleus; GPi = globus pallidus internal; 

SNr = substantia nigra pars reticularis. (A) Pale, dashed lines represent diminished activity compared to 

neural activity uninfluenced by dopamine. By activating inhibitory D2 receptors in the striatum, dopamine 

reduces the inhibitory effects the striatum has on the GPe, which in turn increases inhibitory action on the 

STN, thereby reducing the by nature excitatory action the STN has on the SNr, resulting in reduced inhibition 

of the thalamus, which has excitatory projections to the PFC. (B) Pale, dashed lines represent diminished 

activity compared to the direct pathway under dopaminergic influence. In the hypodopaminergic state, i.e., 

through tonic effects of a dopamine antagonist or in the parkinsonian state, reduced dopamine release results 

in less inhibition of the striatum and subsequently in increased inhibition of the GPe. Consequently, less 

inhibitory input into the STN leads to increased excitation of the SNr and in turn to increased inhibition of 

the Thalamus, finally resulting in suppression of prefrontal activity. 

 

suppression of critical activity inhibits the updating of PFC representations, thus making the 

content of working memory stable and robust against distractors, but inflexible to new input 

(see Fig 6.1.B). With postsynaptic D2 receptors being predominantly located in the indirect 
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pathway431, blockade of these postsynaptic receptors by the D2 selective antagonist haloperidol 

should lead to less facilitatory action of dopamine in this pathway and thus result in increased 

robustness of mental representations against interference135. While we would have expected 

tonic drug effects only in the low WM group, we predicted increased pre-synaptic action on the 

direct pathway in both WM groups, resulting in increased updating and maintaining of current, 

task-relevant information.  

 The animations and PLW tasks presented in this thesis are methodologically similar in 

that in both tasks, following stimulus presentation, target rating scales were presented on a new 

screen simultaneously with distractor rating scales. Thus, successful attribution of the adequate 

emotion or mental state label required the maintenance of stable representations of the stimulus 

and the associated internal state, as well as the inhibition of representations of the irrelevant 

distractor scales. Consequently, in both tasks enhanced performance would be consistent with 

the postsynaptic drug effects observed in our low WM group only. In other words, the increased 

emotion discrimination performance observed in the low WM group may be indicative of an 

enhanced ability to maintain stable representations of the PLW stimuli as a result of 

postsynaptic effects of haloperidol. In comparison, the pattern of emotion confusion 

demonstrated by the high WM group is congruent with potential pre-synaptic effects of more 

rapid updating of representations. While drug effects on mental state attribution accuracy were 

not dependent on individual WM span, they were strongly positively related to drug effects on 

the PLW task (see Appendix 2.3), indicating that those subjects who after drug ingestion 

showed increased emotion recognition performance also exhibited enhanced ability to attribute 

the correct label to animations in the animations task. Moreover, we observed a negative 

relationship between drug effects on animations task accuracy and individual drug induced 

changes in the WM task, indicating that increased WM function after haloperidol was 
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associated with decreased mental state attribution performance. In line with Frank and 

O’Reilly135, enhanced WM function after haloperidol is likely to be representative of 

presynaptic drug effects, resulting in rapid updating of salient representations. Thus, the 

negative relationship between WM and animations task drug effects further supports our 

interpretation that phasic drug effects, while potentially beneficial for the fast-paced 

methodological demands of the WM task (see Chapter 4: Methods), may have given rise to 

higher confusion between emotion scales.  

In conclusion, we propose that the observed contrasting pattern of drug effects on 

emotion recognition in individuals with low and high WM span and the associations with drug 

effects on mental state attribution are consistent with previous findings concerning the 

dopaminergic modulation of cognitive function. Our findings suggest that dopaminergic 

contributions to social cognition involve effects on WM functions such as the ability to maintain 

stable representations of internal states. While these conclusions highlight the possibility that 

social cognition inherently recruits WM processes (see also 421,432), for instance when inhibiting 

distracting representations of one’s own internal states while reasoning about others’ minds, 

they also hint at potential methodological issues of commonly employed tasks measuring socio-

cognitive ability. Section 6.3. discusses resulting implications for investigating social cognition 

in individuals who also display deficits in executive functions.  

 

The internal timing hypothesis 

As illustrated in Chapter one, temporal movement cues are rich in information relating 

to an agent’s internal state. More specifically, in the previous literature, movement speed, as 

well as the subtle changes in speed (i.e., acceleration and jerk) have been shown to be indicative 

of affective states such as anger, happiness or sadness (e.g., 9,12,18,79,80). The current thesis added 
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to existing evidence by demonstrating that movement kinematics (in particular jerk) are among 

the most important features for accurately inferring mental states from movements of 

interacting triangles (Chapter two), and that the extent to which an individual utilizes the 

emotion-specific kinematic information available to them predicts their success in recognizing 

certain emotions (Chapter five). If humans use temporal information to successfully infer 

emotions and mental states from body movements, it is conceivable that those internal state 

judgements are influenced by the accuracy with which an individual internally represents 

temporal cues. 

A wealth of evidence from animal (e.g., 433,434) and human studies (e.g., 337,338,435-437) 

suggests an implication of the dopamine system in the regulation of temporal information 

processing. In human studies, pharmacological manipulation of dopamine has been shown to 

affect both sub-second timing (i.e., time perception), as well as the timing of supra-second 

intervals (i.e., time estimation). Importantly, however, D2 receptor activity in the striatum and 

the nigrostriatal pathway have been attributed a specific role in the processing of brief time 

intervals in the range of milliseconds337,435-437. For instance, the D2 receptor antagonist 

haloperidol reduced participants’ ability to discriminate between two brief, sub-second time 

intervals, which has been proposed to reflect the slowing down of a hypothetical ‘internal 

clock’6,438. This internal clock mechanism is hypothesized to track time by means of an intrinsic 

accumulator which counts the number of pulses emitted by a neural pacemaker within a certain 

interval (see Fig. 6.2). 

In Chapter four we proposed that the observed relationship between drug induced 

movement slowing and emotion recognition performance may be reflective of haloperidol 

affecting timing mechanisms, which in turn may have mediated the temporal encoding of  
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Figure 6.2. Internal clock model as proposed by Treisman6. A pacemaker produces a sequence of pulses 

which travel along a pathway. A counter records the number of pulses accumulated over a given interval and 

transfers this measure to the store. The comparator compares previously retrieved measures against current 

counts and selects appropriate response mechanisms. A specific arousal center additionally acts on the 

pacemaker and can thereby affect the rate at which pulses are produced. Image and description from 

Treisman. 
 

dynamic emotion cues, and thus, emotion recognition accuracy. With respect to our supra- 

second time estimation task, we neither observed group-level effects of haloperidol on 

performance, nor did we find any statistical associations between individual drug-related 

changes in time estimation and drug effects on emotion recognition (see Chapter four). Both 

findings can be explained in line with the attentional gate model439, which proposes that 

directing attention to passing time opens an attentional gate, allowing more pulses to be 

accumulated, which causes individuals to overestimate time periods. In our dedicated time 
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estimation task, the requirement for participants to pay explicit attention on the time period to 

be estimated may have led to biased estimates of the time intervals. It is possible that this bias 

exceeded any potential drug effects on supra-second time estimation, thus resulting in decreased 

sensitivity to detect any influence of haloperidol on temporal processing.  

In contrast, recent theoretical work341 provides support for the idea that our walking task 

may represent a more implicit and thus more accurate (i.e., less prone to attention-mediated 

biases) index of internal timing mechanisms which may be more sensitive to subtle effects of 

dopaminergic manipulation. In their article, De Kock et al. review evidence that suggests that 

movements are closely linked to timing processes: A number of studies show that movements 

concurrent with, as well as preceding or succeeding a time estimation trial can bias, or increase 

the precision of (i.e., increase sensitivity to time cues) time judgements. The authors explain 

the reviewed findings within a Bayesian cue combination framework, which postulates that 

movements are used in combination with other sensory information to make optimally precise 

predictions about perceived events (see Fig. 6.3C). Crucially, within this account, movements 

are seen as informative input to, rather than mere reflection of, timing processes, with 

presumably high precision weights relative to other input modalities due to inherent high 

temporal precision of motor outputs341. In line with this account, we propose that movement 

slowing under haloperidol in our studies may have biased timing judgements by pulling 

estimates towards longer durations. As pointed out in Chapter four, one could speculate that the 

hypothetical slowing of an internal timing mechanism may have resulted in higher sensitivity 

to temporal emotion-specific cues. Future studies could investigate the validity of this 

speculation by directly manipulating walking speed (e.g., using treadmills) and testing the effect 

of this manipulation on individual perceptual thresholds for kinematic emotion information 

using staircase paradigms.  
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Bayesian cue combination further serves to explain some of the findings presented in 

Chapter five: The observation that individuals exhibiting higher between trial variation in 

walking speed rely less on kinematic cues when judging dynamic emotion stimuli is in 

accordance with the prediction by Bayesian cue combination accounts that the weight given to 

a sensory input modality when making perceptual judgements is the inverse of its variance. In 

other words, if movements can be seen as sensory input to timing processes which inform 

temporal judgements, and given there are no alternative sensory cues to timing available, more 

variable walking speed may result in loss of precision of those timing estimates. Consequently, 

individuals with higher movement variability may rely less on the temporal movement cues 

present in emotion stimuli. 

In summary, a growing body of work suggests that movements can alter our judgements 

of time. This evidence has been interpreted to reflect motor outputs providing relatively high-

precision sensory information, which is used to form posterior estimates of a given time 

interval. In line with this, we speculate that the observed effects of dopamine challenge on 

emotion recognition in Chapter four may be mediated by dopaminergic modulation of an 

internal timing mechanism reflected by change in walking speed. Much future work is needed 

to evaluate whether this speculation proves true, and to address many open questions, some of 

which are discussed in Section 6.4. 

 

The precision weighting hypothesis 

Our social environment is inherently noisy with a richness of sensory cues which could 

potentially inform us about our interaction partners’ internal worlds. For the sake of illustration, 

let us imagine we run into an old friend. In addition to the very complex auditory input we 

might receive from our friend’s verbal account about how their day was, we are confronted 
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with a wealth of visual cues relayed primarily by their movements, such as facial expressions, 

gestures or body posture. While Bayesian theories of visual perception date back to 1962440, in 

recent years, more and more researchers have turned to Bayesian frameworks to explain typical 

and atypical social behavior, including ToM441 and emotion attribution442, leading to the 

formulation of Bayesian accounts of autism118 and schizophrenia443 (amongst others). 

According to Bayesian inference theories (e.g., 444,445), an agent builds models of their 

perceptual environment by integrating a multitude of sensory signals from various modalities 

(i.e., sensory evidence/likelihood) with top-down estimates about the likelihood of a particular 

event (i.e., prior probability/prior belief), formed based on previous experience. To form a 

maximally precise prediction, this evidence is not simply averaged, but weighted according to 

the noise ascribed to the different individual estimates, where precision is defined as the inverse 

of an estimate’s variance (see Fig. 6.3). For instance, we might see our friend smile and hear 

them assuring us they are doing excellent, but given our knowledge about the likelihood of 

social platitudes implicitly might attribute more weight to the tone of their voice or the visual 

information of our counterpart’s movements. Moreover, our perceptual system may ascribe 

higher weight to posture or movement kinematics relative to the inherently noisy and 

unreliable446-448 facial expressions. In addition, we might draw on contextual information such 

as, for instance, our friend’s fully black outfit, which may suggest they have just come from a 

funeral (based on our prior knowledge of how often in the past an all-black outfit was associated 

with a funeral). Finally, a combination of these differentially weighted cues leads us to make a 

best-estimate prediction about our friend’s true internal state449. Throughout time, our brain 

learns about the stochastic probabilities of events through prediction errors, where large 

prediction errors reflect high discrepancy between predicted outcome and actual outcome.  

 



 
 

150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Diagram depicting Bayesian inference scenarios in form of gaussian probability distributions. 

Yellow = likelihood distribution (i.e., sensory evidence), Green = prior belief/expectation, Blue = posterior 

belief. Widths of distributions correspond to the individual estimate’s variance, where its precision is the 

inverse of the variance. Posterior beliefs are biased towards either prior or likelihood according to their 

relative precision. (A) Higher precision in sensory evidence. (B) Higher precision in prior belief. (C) 

Bayesian cue combination frameworks propose that agents combine sensory estimates from multiple 

modalities by weighting individual estimates according to the precision (noise) associated with them. 

 

According to Bayesian theories, our system seeks to minimize these prediction errors by 

changing internal models of the world (i.e., belief updating). Newer theories of ‘active  

inference’ have added to this stance by proposing that individuals additionally can minimize 

discrepancy between predictions and sensory outcomes by changing their actions (and thereby 

changing the sensory input itself)249. 
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Up until recently, phasic dopamine has been primarily discussed in the context of 

reinforcement learning where phasic dopamine signals are believed to encode reward prediction 

errors, i.e., the discrepancy between expected and received reward (e.g., 450). However, newer 

evidence suggests that the dopamine system is not only involved in evaluating outcomes against 

predictions, but may also play a role in increasing the precision of predictions by tracking the 

statistics of the likelihood of occurring events over time, as well as balancing prior beliefs 

against sensory information and coding for uncertainty relating to the sensory 

information310,313,347,451,452. In clinical conditions, aberrant dopamine signaling has been linked 

to overestimation of the precision of either prior beliefs or sensory information. For example, 

low striatal dopamine levels are believed to be responsible for PD patients showing an over- 

reliance on top-down information at the expense of updating their behavior to adapt to 

surprising sensory information452. A recent study314 aimed to disentangle the specific 

contributions of dopamine to decision making under uncertainty by asking PD patients and 

controls to determine the position of a stimulus from noisy visual information and prior 

information about the possible locations of the stimulus. By varying uncertainty in both prior 

and sensory information, the authors observed that PD patients off dopaminergic medication 

showed decreased weighting of sensory information compared to the “on” state. In addition, 

PD patients on and off medication were less sensitive to changes in likelihood uncertainty 

compared to healthy participants. Thus, dopaminergic state appears to be directly related to the 

precision weights attributed to sensory, relative to top-down information.   

Based on the assumption that the correct classification of internal states on the basis of 

motion cues requires the balanced integration of internal models of affective movements (i.e., 

motor representations with associated affective states) with sensory input, any bias in weighting 

of either prior or likelihood may result in aberrant inferences about those internal states. For 
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example, to recognize anger from fast gait speed, an individual needs to be relatively certain 

that fast gait speeds are associated with an angry affective state (prior precision), in addition to 

being able to rely on sensory input (likelihood precision) to successfully categorize the observed 

speed as ‘fast’. In Chapter four, we observed contrasting effects of haloperidol depending on 

individual striatal baseline dopamine levels. In line with evidence for an overreliance on prior 

information evident in a dopamine depleted state314, it is plausible that those of our participants 

hypothesized to have lower baseline dopamine (i.e., low WM span participants) showed an 

overreliance on prior information under placebo, which was shifted to an optimal balance 

between prior and sensory weights due to an increased phasic dopamine response to the drug, 

thus increasing emotion recognition performance in this group135. Likewise, the high WM span 

group may have exhibited dopamine levels associated with optimal precision weighting at 

placebo, which by phasic action of dopamine was shifted towards atypically high weights for 

sensory information. If a system for instance attributes high certainty to sensory information 

but fails to utilize top-down information (i.e., affective states associated with motor 

representations matching with the perceived input) to assign emotion labels to this input, the 

result may be confusion of emotion labels as observed in our high WM sample after 

administration of haloperidol. Correspondingly, in the animations task (Chapter three), a 

haloperidol-induced overreliance on an animation’s motion information at the expense of 

certainty in prior beliefs of what movement patterns are associated with which (non-)mental 

state may have resulted in participants’ relative inability to attribute correct animation labels. 

Such a relative decrease in prior precision has for instance been associated with elevated striatal 

dopamine levels in patients with schizophrenia453, and linked to key features of autism118, two 

populations which exhibit aberrant performance in the animations task282,315 as well as 

impairments in emotion recognition323,454. 
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In conclusion, our results suggest that dopamine did not affect the specific inference of 

emotions from body movement or mental states from object movements, rather, our findings 

might reflect more general effects of dopamine on perceptual inference. In particular, dopamine 

manipulation may have affected precision in higher-level representations (priors) which are 

necessary to adequately infer meaning from lower-level perceptions of motion patterns.   

Yet, it should be noted that the exact picture of the dopaminergic modulation of 

precision weighting is far from clear, and there are findings that suggest the opposite 

relationship between baseline (i.e., tonic430,455) and/or phasic dopamine, and weighting of prior 

versus sensory information (e.g., Cassidy et al456. observed an increased bias towards top-down 

information alongside striatal dopamine release after amphetamine administration in 

schizophrenic patients). One major contributing factor to this current lack of clarity is perhaps 

that most of the few studies which so far investigated the role of dopamine in perceptual 

inference used patient samples, complicating conclusions due to high within- (e.g., disease 

progression) and across sample (e.g., underlying pathophysiological mechanisms) variance. To 

gain a more thorough understanding of the specific dopaminergic contributions to inference 

under uncertainty, future studies should employ highly selective dopamine agents (such as 

haloperidol which primarily targets D2 receptors in the striatum457) in healthy individuals in 

combination with manipulation of both sensory and to-down information. 

 

An integrative perspective on the dopaminergic modulation of cognition and behavior 

Importantly, the three mechanistic accounts of the drug effects on socio-cognitive 

performance outlined in this section are not to be viewed as competing, mutually exclusive 

hypotheses. Rather, they represent potential mechanisms which might be simultaneously at 

play. Indeed, with dopamine being a key player in a multiplicity of processes spanning from 
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learning to motor control, it should not be surprising that dopamine receptor antagonism may 

have a variety of concomitant effects on perception, cognition and behavior. In fact, the internal 

timing hypothesis is just an extension of the precision weighting hypothesis, where movement 

is viewed as one of many sensory input modalities informing a particular estimate of the 

perceived environment. Thus, in line with hierarchical Bayesian inference frameworks, 

dopamine may modulate the precision of sensory information relating to estimates of timing by 

altering movement speed, where the resulting timing estimates feed into higher-level perceptual 

inference processes as prior information. Furthermore, at this higher level, dopamine may 

encode the relative precision attributed to priors and new incoming sensory information. Lastly, 

it is conceivable that dopamine modulates WM function and perceptual inference in parallel, 

and that those two processes influence each other. For instance, if dopamine regulates our 

ability to maintain and update internal representations, aberrant dopamine signaling may disrupt 

this ability to manipulate information, rendering our prior estimates less precise, which in turn 

may result in higher reliance on sensory estimates. Such a relationship between WM capacity 

and individuals’ ability to adjust to perceptual uncertainty has already been demonstrated for 

anger perception in a previous study458. Crucially, while each of these mechanistic avenues via 

which the dopamine system may be implicated in social function on their own is critically 

underexplored, an integrative view of potential interactions between these pathways may be 

necessary to fully understand the complex co-occurrence of social, cognitive, and motor 

symptoms within and between clinical populations such as PD or ASD.  
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6.3. Implications for populations with dopamine dysfunctions 

One of the primary findings of this thesis was that we did not observe any effects of 

acute dopamine challenge on motor simulation processes. However, as discussed in Chapter 

four, this is perhaps unsurprising as motor representations of internal states are likely built over 

a lifetime of experiences with one’s own movements, making them robust against temporary 

interferences such as short-term dopamine disruptions. Conceivably, it is adaptive that action 

models are robust against short-term changes in movement as otherwise our internal models 

would change every time some external influence prevents us from moving in our own, 

idiosyncratic patterns (such as a leg injury which forces us to walk slower than we normally 

do). Consequently, in disorders with dopamine dysfunction where motor symptoms only occur 

later in life, internal action models can be presumed to be largely unchanged at least in the early 

stages of the disease. It follows that any early-stage decline in socio-cognitive abilities in those 

late onset conditions is a result of direct dopaminergic modulation of socio-cognitive function 

independent of motor simulation processes. This is at odds with recent accounts emphasizing 

the role of hypomimia in emotion recognition impairments in PD (e.g., 195). Two recent studies 

found relationships between reduced (relative to controls) facial EMG responses and emotion 

recognition abilities of PD patients, leading authors to hypothesize a causal role for facial 

mimicry in emotion recognition459,460. However, the observed relationship between reduced 

emotion recognition accuracy and reduced emotion-specific EMG responses could equally well 

reflect independent effects of low tonic dopamine on motor and cognitive function.  

As outlined in Section 6.2.3, emotion recognition deficits in PD potentially arise from 

low tonic dopamine resulting in stable representations which in combination with an 

overreliance on prior estimates (presumably due to low phasic dopamine activity) may lead to 

reduced flexibility to adapt to a rapidly changing sensory environment. In line with this, in 
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cognitive tasks, PD patients have shown difficulties in adapting to unexpected events452 and in 

task switching461. In tasks measuring mentalizing or emotion recognition, this reduced 

flexibility may be particularly evident for dynamic stimuli due to the inherent rapid change in 

sensory events. Surprisingly, despite the apparent higher ecological validity of dynamic 

emotion stimuli, few studies to date have employed dynamic stimuli to study emotion 

recognition in PD, which may be contributing to the mixed literature (see Chapter one). If PD 

patients do indeed show deficits in adapting to sensory change, commonly used static stimuli 

may heavily underestimate emotion recognition impairments in this population. 

An alternative route via which dopamine dysfunctions may lead to atypical social 

responses in PD may be aberrant internal timing processes. Timing is known to be impaired in 

PD, with evidence suggesting underestimation of time intervals consistent with proposals of a 

slowed down internal clock (e.g., 462,463), as well as increased timing variability (e.g., 464). De 

Kock and colleagues341 proposed that own movement presents a primary source of sensory 

information for timing estimates due to the low variance ascribed to human movement patterns. 

At first sight, this may seem in disagreement with our findings of Chapter four that reduced 

movement speed (as seen in low WM participants after haloperidol) was associated with 

improved emotion recognition. However, in comparison to our low WM participants, who did 

not show increased between- or within trial movement variability after haloperidol (see 

Appendix 3.3), PD patients exhibit high gait variability (indexed by measures such as step time 

variability379 or stride variability376). Thus, in contrast to our healthy participants, in PD 

patients, highly variable gait kinematics may represent imprecise sensory information. High 

uncertainty in sensory input from movement information, in combination with an overall lower 

sensitivity to changes in the sensory environment may therefore in part be responsible for 

inaccurate timing processes in PD. Chapter five demonstrated how individuals with highly 
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variable walking speed relied less on dynamic emotion specific information when judging 

emotional PLW. It is plausible that accurate internal timing is crucial for the precise evaluation 

of temporal information, and that imprecise time estimates in participants exhibiting high 

movement variability may have prevented them from utilizing temporal emotion related cues. 

Consequently, it may be that PD patients show less sensitivity to dynamic emotion cues, as has 

been shown for autistic individuals378. Strikingly, while there is considerable research on the 

dilation effects of emotion perception on time estimation (e.g., 465,466), to our knowledge no 

study to date has directly investigated potential influences of intrinsic timing on the perception 

of emotions or mental states. In addition to PD, timing has been found to be atypical in ASD467, 

schizophrenia468, and HD469, which are all disorders presenting with increased movement 

variability (e.g., ASD470, schizophrenia471, HD376). Thus, as aberrant internal timing may play 

a role in socio-cognitive deficits in a wide range of conditions, future research should 

investigate a potential mediating role for timing mechanisms in the relationship between motor 

function and socio-cognitive abilities.  

The same three mechanistic pathways elaborated in Section 6.2 serve to explain atypical 

social responses in ASD. WM function, timing processes and Bayesian inference have all 

independently been proposed to be aberrant in autistic individuals. For example, executive 

function impairments are remarkably prevalent in ASD, including impairments in working 

memory, response inhibition and planning472. A recent computational approach links cognitive 

inflexibility in ASD to aberrant dopamine signaling and proposes a role for dopamine as an 

‘adaptive gating mechanism’ regulating the updating of representations in the PFC473. While 

this model has striking similarities with the direct/indirect pathways model of the basal ganglia 

detailed in Section 6.2.3, it needs to be confirmed whether either of these models can 

successfully predict autistic individuals’ performance in tasks of socio-cognitive function. 
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Moreover, in recent years, Bayesian inference accounts have grown popular for their aptitude 

in explaining the heterogeneity of symptoms prevalent in autism. In direct contrast to PD, 

Bayesian theories of autism propose increased weighting of sensory signals, at the expense of 

reliance on priors, to be at the core of autistic symptomatology including sensory hyper- or 

hyposensitivity, stereotyped and repetitive behaviors, motor impairments, and social 

atypicalities (e.g., 118,122,474). In relation to aberrant precision weighting in ASD, however, only 

a few studies have discussed links to dopamine, which is presumably due to the highly 

conflicting empirical evidence for dopamine dysfunctions in this condition (e.g., 475; see 

Chapter one). According to an influential model by Friston et al.310, a preference towards 

sensory signals relative to priors is reflective of high levels of tonic dopamine, which is in line 

with the low tonic dopamine levels in PD hypothesized to be related to an overreliance on 

priors. It is possible that the mixed results regarding aberrant dopamine signaling in ASD are 

owed to the high heterogeneity of the condition, and future studies are needed to evaluate the 

potential of dopaminergic treatment for social symptoms of ASD. 

In addition to the acute influence of dopaminergic dysfunctions on mentalizing and 

emotion recognition, the findings presented in this thesis indicate that abnormalities in the 

dopamine system may also have long-term effects on social ability by changing individuals’ 

movements. Chapter three and four illustrated that dopamine disruption by administration of a 

relatively low, acute dose of a dopamine antagonist can lead to broad effects on motor function: 

A reduction in movement speed after haloperidol was evident for arm movements (animations 

task, shapes drawing task) as well as gait. Accordingly, although there is currently little direct 

evidence for this, dopaminergic disruptions may be a causal factor in early onset motor 

abnormalities seen in conditions such as ASD54. Furthermore, Chapter two demonstrated how 

movement similarity between two agents facilitates mental state attribution. We hypothesized 
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that movement similarity was important for successful mentalizing because individuals use 

representations of associations between specific movement patterns and internal states to infer 

meaning from the movement cues provided by others. Thus, individuals who experience motor 

abnormalities from early childhood may build their internal action models based on atypical 

movements, and in turn may show difficulties in interpreting the internal states of interaction 

partners who display typical movement kinematics. Additionally, there are other cascading 

effects of motor disruptions on social interaction that should be considered, for example by 

limiting an individuals’ potential to participate in social situations which require high levels of 

physical ability, which ultimately might result in social exclusion (e.g., see 476).  

In summary, the findings presented in this thesis suggest that dopaminergic disruptions 

in conditions such as PD or ASD may alter social cognition via two primary routes: First, 

dopamine dysfunctions may lead to atypical action models calibrated on a lifetime of atypical 

movements, thereby potentially resulting in compromised interaction with individuals who 

show typical movement patterns. Second, hypothesized aberrant tonic and phasic dopaminergic 

signaling may additionally lead to social impairments via short-term actions on working 

memory, timing and/or precision weighting processes. By unpacking the relative contributions 

of each of these dopamine-mediated processes to socio-cognitive function, future research 

could provide new directions for the development of therapeutical interventions, including 

behaviorally based training. 

 

6.2. General limitations and future directions 

There are several limitations of the research presented in this thesis one should take into 

account when considering our findings. First and foremost, whilst this thesis aimed to explore 
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the underlying mechanisms via which dopamine may modulate both motor and social function, 

no direct conclusions can be made about the precise neuroanatomical and neurophysiological 

actions of our dopamine manipulation. Such inferences require methods such as molecular 

imaging techniques (e.g., PET) or brain tissue analysis (e.g., fast-scan cyclic voltammetry), 

which are costly and require special expertise. Consequently, any conclusions drawn about the 

likely loci of actions (i.e., striatum vs. PFC) and neuronal activity patterns (i.e., tonic vs. phasic 

dopamine activity) are based on knowledge about the pharmacokinetic properties of haloperidol 

and previous literature. Yet, I argue that the behavioral analyses in combination with 

pharmacological manipulation of dopamine used in this thesis offer novel insights with 

important implications for future research. For example, while the dopaminergic regulation of 

cognitive processes has been well studied, very few studies to date have investigated the direct 

dopaminergic modulation of socio-cognitive function, despite various theoretical accounts 

suggesting a role for dopamine in social behavior. The present thesis is therefore one of the first 

pieces of work demonstrating a causal role for the dopamine system across mentalizing and 

emotion recognition. Future studies could follow on by studying the influences of dopaminergic 

activity on socio-cognitive ability on a neuro-anatomical and brain-functional level, for 

example by the combined use of brain imaging techniques (e.g., fMRI, PET) and 

pharmacological as well as experimental manipulations. For instance, by tracking changes in 

brain activity associated with dopaminergic manipulation, pharmacological fMRI could 

provide evidence for or against hypotheses about the domain-specificity of the dopaminergic 

modulation of socio-cognitive function (e.g., increased activity in hypothesized mentalizing 

system vs. only in the striatum). 

A second limitation of this thesis is the examination of the neurotransmitter dopamine 

in isolation. A growing body of research suggests that several neuromodulators are involved in 
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regulating social function, such as serotonin, glutamate, noradrenaline, or oxytocin which for 

example have been implicated in addition to dopamine in the etiology of ASD178,179,477, PD478-

480 and schizophrenia481,482. Specifically, serotonin has been hypothesized to modulate socio-

cognitive processes in interaction with dopamine212,483. For instance, Nakamura et al.484 found 

serotonin transporter binding to be significantly lower in autistic, relative to control, 

participants (across the brain) and this was inversely correlated with abnormally high levels of 

dopamine transporter binding in the orbitofrontal cortex. Moreover, the relative reduction in 

serotonin transporter binding was related to impaired performance in the faux-pas test in autistic 

subjects, suggesting a functional role for serotonin in ToM processes. As already noted in 

Chapter one, further support for the dopamine-serotonin hypothesis comes from observations 

that antipsychotic medication which binds to both serotonin and dopamine receptors (e.g., 

olanzapine, clozapine), rather than to dopamine receptors alone (e.g., haloperidol), was 

associated with improvements in social cognition in schizophrenic participants286,287. 

Furthermore, in addition to dopamine, very recent work313 has linked serotonin to the encoding 

of perceptual uncertainty, indicating that dopamine and serotonin may in tandem modulate 

perceptual processes including the perception of social stimuli. In sum, there is ample evidence 

suggesting that in addition to dopamine, other neuromodulators may play a critical role in the 

regulation of social function and that our understanding of the neurochemical bases of social 

cognition would greatly benefit from investigating effects of several neuromodulators in 

conjunction. 

Lastly, a third limitation of the present findings concerns the emotion/mental state 

stimuli that were used to approximate social understanding outside of the laboratory. To be able 

to investigate effects of movement kinematics and movement similarity, in Chapters two to four 

we used dynamic stimuli with limited capability to represent real-world situations of social 
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interaction. Furthermore, the present thesis focused on the understanding of the inference of 

internal states from movement kinematics, however real-life social interaction is undisputedly 

more complex. It is possible that dopaminergic or dopamine-mediated processes influence more 

than one aspect of social cognition. For example, conceivably, effective turn-taking during 

conversation requires precise timing, consequently inaccurate internal timing mechanisms 

arising from aberrant dopaminergic signaling could considerably impact an individuals’ ability 

to engage in social interaction485. Future studies could therefore explore whether, and in what 

way, dopaminergic imbalances affect the perception and processing of socially relevant cues 

beyond movement kinematics.  

 In conclusion, this thesis demonstrated that movement similarity between observer and 

agent enhances mental state attribution, thereby adding to previous evidence suggesting that we 

use models of our own movements to infer internal states from others’ motion cues2,110. While 

it is possible that dopaminergic effects on movement affect our internal action models on a 

long-term basis, our findings indicate that acute dopamine disruptions do not impede putative 

motor simulation processes. Rather, they suggest that the dopamine system is directly involved 

in the modulation of socio-cognitive processes, bearing important implications for our 

understanding of the dopaminergic contribution to social impairments in clinical populations. 

By elucidating three candidate mechanistic pathways via which dopaminergic signaling 

potentially influences socio-cognitive function, the present work paves the way for future 

research to investigate the various avenues via which dopamine and other neuromodulators may 

impact upon social cognition. 
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Appendix 1 

 

Supplementary Information for the publication  

 

Kinematics and observer-animator kinematic similarity  

predict mental state attribution from Heider-Simmel style  

animations  

(Chapter 2) 
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1.1. Creation of triangle trajectories 

Participants created their own animations by using their index fingers of both hands to 

move two triangles and open/close a ‘door’ of an enclosure (see Supplementary Figure S1.5). 

With the intention to constrain the animation creation process as little as possible, individuals 

were free to move in and out of contact with the triangles/door throughout the 45 seconds time 

window for an animation. Periods of no movement were disregarded in the calculation of 

triangle kinematics. Accordingly, zero movement frames were removed from triangle 

trajectories, thus trajectories may not represent continuous movements. Furthermore, as noted 

in 2.4 Methods: Building the Animotions database, to suppress unvoluntary rotations of the 

triangles, object motion is suppressed until the pointer is dragged sufficiently far away from the 

center point. This entails that triangles can never be rotated around their own axis and that 

rotation is always determined by the motion direction. 
 

 
Supplementary Figure S1.1. Example trajectories of one triangle’s path for a seducing (a) and a fighting 

(b) animation. 
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Supplementary Figure S1.2. Mean Accuracy Ratings for the Five Word Categories. Error bars 

represent 1 standard error of the mean (SEM). 

Supplementary Figure S1.3. Post-hoc random forest models. Box edges denote the interquartile range (IQR) 

between first and third quartile; whiskers denote 1.5 * IQR distance from box edges; circles represent outliers 

outside of 1.5 * IQR above and below box edges. Box color denotes decision: Green = confirmed, yellow = 

tentative, red = rejected; grey = meta- attributes shadowMin, shadowMax and shadowMean (minimum, 
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maximum and mean variable importance attained by a shadow feature). 

 

Supplementary Figure S1.4. Examples of pure frequency shapes shown with their characteristic 

frequencies. Figure taken with permission from Huh & Sejnowski (2015). See 

https://www.youtube.com/watch?v=waXWOv0YqFE for a movie showing how the shape of the curve varies 

with continuously changing angular frequency. 

 

 
Supplementary Figure S1.5. Animotions task starting screen. 
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1.2. Further analysis of accuracy scores  

A one-way analysis of variance (ANOVA) comparing rating accuracy in the five 

word categories showed a main effect of word category, indicating that the five types of 

animations differed with respect to how accurately they were rated (F(4,175) = 31.03, p < 

.001). Separate Bonferroni-corrected post-hoc t-tests (using the MATLAB multcompare 

function with Bonferroni correction) revealed that while there was no difference in 

accuracy between the words following and fighting (following mean (M) = 5.86, standard 

error of the mean (SEM) = 0.28, fighting M = 5.07, SEM = 0.22, p = .507), both words 

were rated with higher accuracy than mocking (mocking M = 2.28, SEM = 0.28, both p < 

.001), and surprising (surprising M = 2.51, SEM = 0.35, both p < .001) and following was 

rated more accurately than seducing (seducing M = 4.12, SEM = 0.29, p < .001). 

Furthermore, seducing animations exhibited higher accuracy than both mocking and 

surprising videos (both comparisons p < .001), whereas there was no difference in accuracy 

between mocking and surprising (p = 1.000). 

 

1.3. Task instructions 

Production task 

In the following task you will be asked to use your fingers to move two triangles 

around the screen in order to depict various words. Both triangles can be moved 

at the same time using both of your index fingers. After you press continue you 

will have a chance to practice moving the triangles around. 

 

Perception task 

The main task will now begin. On the screen you will be presented with a word. 

Please move the triangles around to represent the word on the screen. You will be 

presented with five words in total, one after the other. You can move the triangles 

around in any way you want, as long as you think their movements represent the 

word. Remember that you can move both triangles at once! 

 

After you press ‘continue’, the first word will appear on the screen, along with a 

timer. You will have 30 seconds to plan how you are going to move the triangles to 

depict the word. You will not be able to move the triangles during the 30 second 
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thinking time. If you don‘t know the meaning of a word, you can look it up in the 

dictionary during this time. 

 

When the thinking time is up, you will have 45 seconds to create your animation. 

Please try and use all of that time to create your story. If you are happy with your 

animation, press ‘submit’ and you will be presented with the next word. If for any 

reason you are not happy with your animation, you can press ‘start over’ and 

restart that word as many times as you like. 



 
 

199 

Appendix 2 

Supplementary Information for Chapter three  

 
2.1. Drug study supplemental information 

As experiments presented in Chapters three and four were both part of the same drug 

study, all information under 2.1 is applicable to both chapters. 

Supplementary Figure S2.1. Drug study tasks and timing.  

 

2.1.1. Drug study eligibility criteria 

Inclusion criteria 

• Participant is willing and able to give informed consent for participation in the study 

• Sufficient English to be able to consent and understand study instructions 
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• Aged 18-45 

• BMI in range of 18.5 – 29.5 

 

Exclusion criteria 

• Participated in another drug study within last 3 weeks 

• Primary sensory impairment (e.g., uncorrected visual or hearing impairment) 

• Personal or first-degree relative history of: cardiovascular disease (specifically 

hypotension, arrhythmias or valvular disease, stroke) 

• Personal history of: any neurological abnormalities or past traumas, kidney disease or 

liver disease, stomach ulcers, skin conditions, endocrine conditions,  

• Inherited blood conditions 

• Psychiatric or psychological disorder (e.g., depression, anxiety) 

• Known learning disability 

• Elongated Q-T interval identified during the health screening using single-lead ECG 

(heart rate corrected): > 500 ms 

• Low heart rate 

• Low or high blood pressure (outside of lower bound 90/60 – upper bound 140/90) 

• Blood oxygenation below 95% 

• Any regular medication (excluding oral contraceptive pill) 

• Recent recreational drug use or alcohol and/or drug dependency 

• Known allergy to any medication or lactose sensitivity 

• Current pregnancy or breastfeeding 

 

Eligibiltiy as confirmed by medic during health screening 

During the health screening, participant and medic discussed the participant’s medical 

history by going through a health check questionnaire which participants filled out beforehand. 

Subsequently, a number of physiological measures were taken to confirm eligibility (e.g., 

cardiovascular and respiratory assessments, BMI, blood oxygenation %, resting blood pressure, 

resting heart rate ECG QT-interval). 

 

2.1.2. Baseline measures 

1. Autism Spectrum Quotient (AQ) 486 
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2. Toronto Alexithymia Scale (TAS-20) 487 

3. BIS-BAS (Behavioural Inhibition Scale – Behavioural Activation Scale) 488 

4. The Depression, Anxiety and Stress Scale - 21 Items (DASS-21) 489 

5. Interpersonal Reactivity Index (IRI) 490 

6. Positive Affect Negative Affect Scale (PANAS) 491 

7. Beck Depression Inventory (BDI) 492 

 
2.2. Task battery  

Tasks in order of completion. Participants had regular breaks and the opportunity to 

eat between tasks with a maximum period of 60 minutes between breaks. 

 

1. Go-NoGo learning task 

An adapted version of a probabilistic Go/No-Go Task135. 

 

2. Visual working memory task (for description see Chapter four) 

 

3. Point Light Faces dynamic facial emotion perception task 

Emotion perception task using dynamic point light face stimuli. Task design 

equivalent to Point Light Walker emotion perception task (Chapter four). 

 

4. Social learning task 

A modified version of a probabilistic learning task493 first developed by Behrens et 

al494. 

 

5. Time estimation task (Chapter four) 

 

6. Animations task (Chapter two) 

 

7. Shapes drawing task (Chapter three) 

 

8. Point Light Walker dynamic whole-body emotion perception task (Chapter four) 

 

9. Walking task (Chapter four) 
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10. Movie for the Assessment of Social Cognition (MASC) task 146 

Participants viewed short video clips of social interactions and were subsequently 

asked to answer questions referring to the protagonists’ mental states, emotions and 

intentions. 

 
2.3. Exploratory analysis: what other factors predict drug effects on mentalizing? 

To shed light on other possible underlying mechanisms of the observed drug effects on 

animations task accuracy, we calculated indices of drug effects on tasks measuring WM 

function (for task description see Chapter four), cognitive and affective ToM performance (as 

measured with the MASC task, see 2.2), and emotion recognition performance (see Chapter 

four). For all tasks, change scores were calculated by subtracting scores of PLA trials from 

scores of HAL trials, with positive change scores indicating increased performance under HAL 

compared to PLA trials, and negative change scores reflecting a decrease in performance under 

the drug.  

A Bayesian mixed effects model (with random intercept for subject ID) was fit to WM 

change scores, cognitive ToM change scores, affective ToM change scores, and emotion 

recognition (ER) change scores, as well as the dummy-coded factor mental state, predicting 

animations task accuracy change scores. The model showed an interaction between ER change 

scores and mental state, where ER change scores were positively related to animations task 

accuracy change scores for mental state animations (𝐸𝜇"#$%&',LM53&$2# = 0.05, CrI = [-0.01, 

0.11], P(𝐸𝜇"#$%&',LM53&$2# > 0) = 0.96) and more negatively related to accuracy change scores 

for non-mental state animations (in comparison to mental state animations; 

𝐸𝜇"#$%&'()$*$+"#$%&',LM53&$2# = -0.06, CrI = [-0.14, 0.01], P(𝐸𝜇"#$%&'()$*$+"#$%&',LMD3&$2# 

< 0) = 0.95). Thus, a decrease of 1 SD in emotion recognition performance after taking the drug 

was associated with a decrease in accuracy in identifying mental state animations by 0.05 
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percent. In contrast, the same drug induced decrease in emotion recognition performance was 

associated with a 1 percent increase in accuracy in labelling non-mental state animations 

(𝐸𝜇$*$+"#$%&',LM53&$2# = 𝐸𝜇"#$%&',LM53&$2# + 𝐸𝜇"#$%&'()$*$+"#$%&',LM53&$2# = 0.05 – 0.06   

= -0.01; see Fig 3.4A). The model further revealed an effect of WM change on accuracy in 

mental state animations, suggesting that here, accuracy was negatively correlated with WM 

change (𝐸𝜇"#$%&',FG53&$2#  = -0.06, CrI = [-0.12, 0.01], P(𝐸𝜇"#$%&',FG53&$2# < 0) = 0.98). In 

comparison, the relationship between WM change and non-mental state animations accuracy 

was close to zero with a coefficient of -0.03 (𝐸𝜇"#$%&'()$*$+"#$%&',FG53&$2#  = 0.06, CrI = [-

0.05, 0.18]; 𝐸𝜇$*$+"#$%&',FG53&$2# = 𝐸𝜇"#$%&',FG53&$2# + 𝐸𝜇"#$%&'()$*$+"#$%&',FG53&$2# 

= -0.09 + 0.06   = -0.03; see Fig 3.4B). Consequently, for every 1 SD decrease in WM accuracy 

after haloperidol, individuals increased their accuracy in identifying mental state animations by 

percent. There was no effect of cognitive or affective ToM change scores on either mental state 

nor non-mental state animation accuracy (𝐸𝜇"#$%&',5*2N*G = 0.03, CrI = [-0.47, 0.53]; 

𝐸𝜇"#$%&'()$*$+"#$%&',5*2N*G = 0.01, CrI = [-0.65, 0.66]; 𝐸𝜇"#$%&',&00N*G = 0.07, CrI = [-0.19, 

0.34]; 𝐸𝜇"#$%&'()$*$+"#$%&',&00N*G = -0.22, CrI = [-0.57, 0.12]). A post-hoc model of ER 

change and WM change predicting mental state animations revealed a larger, negative effect 

for WM change (𝐸𝜇FG53&$2# = -0.10, CrI = [-0.19, -0.01]) and a smaller, positive effect for 

ER change (𝐸𝜇LM53&$2# = 0.05, CrI = [-0.00, -0.11]). In summary, drug effects on emotion 

recognition and drug effects on WM performance together explained R2 = 0.22 of variance in 

drug effects on mental state attribution accuracy. 
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Supplementary figure S2.2. Relationships between drug effects on animations task and control tasks. 

 

 

2.4. Exploratory analysis: Do participants use different stimulus properties to infer 

animation identities under haloperidol compared to placebo? 

Two independent random forests were conducted to evaluate the relative importance of 

animation stimulus properties under placebo and haloperidol, respectively. As can be seen in 

Supplementary Figure S2.3., the same stimulus features are ranked among the top five variable 

importances (excluding the dummy variable mental state) for haloperidol and placebo: Mean 

distance, mean rotation, jerk, acceleration and simultaneous movement.  
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Supplementary figure S2.3. Random forest variable importances for placebo (A) and haloperidol (B) 

trials. Box edges denote the interquartile range (IQR) between first and third quartile; whiskers denote 1.5 * 

IQR distance from box edges; circles represent outliers outside of 1.5 * IQR above and below box edges. 

Box color denotes decision: Green = confirmed, yellow = tentative, red = rejected; grey = meta- attributes 

shadowMin, shadowMax and shadowMean (minimum, maximum and mean variable importance attained 

by a shadow feature) 
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Appendix 3 

Supplementary Information for Chapter four  

 

Supplementary Figure S3.1. Emotion intensity scores per stimulus speed level for placebo and 

haloperidol trials. 

 
3.1. Model 1 
 
Population-level effects Estimate Error 95% CrI 

(lower) 
95% CrI 
(upper) 

Intercept 3.71 0.23 3.26 4.17 
HAL-PLA  -0.06 0.14 -0.32 0.21 
Sad 0.64 0.13 0.39 0.89 
Happy -0.05 0.12 -0.29 0.19 
Angry -0.59 0.13 -0.84 -0.34 
Speed level linear 1.68 0.18 1.33 2.03 
Speed level quadratic -0.12 0.18 -0.47 0.23 
Speed level cubic 0.02 0.18 -0.33 0.36 
Low WM -0.00 0.23 -0.44 0.45 
High WM 0.00 0.23 -0.44 0.46 
HAL-PLA, sad 0.18 0.18 -0.18 0.54 
HAL-PLA, happy -0.23 0.18 -0.59 0.12 
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HAL-PLA, angry 0.05 0.18 -0.31 0.41 
HAL-PLA, speed level linear 0.01 0.26 -0.50 0.53 
HAL-PLA, speed level quadratic -0.23 0.26 -0.74 0.28 
HAL-PLA, speed level cubic -0.20 0.26 -0.72 0.30 
Sad, speed level linear 0.57 0.25 0.07 1.06 
Happy, speed level linear -1.00 0.25 -1.49 -0.51 
Angry, speed level linear 0.43 0.25 -0.06 0.93 
Sad, speed level quadratic -0.04 0.25 -0.53 0.46 
Happy, speed level quadratic 0.05 0.25 -0.44 0.55 
Angry, speed level quadratic -0.02 0.25 -0.51 0.47 
Sad, speed level cubic 0.23 0.25 -0.26 0.72 
Happy, speed level cubic -0.02 0.25 -0.51 0.48 
Angry, speed level cubic -0.21 0.25 -0.70 0.27 
HAL-PLA, low WM 0.47 0.14 0.21 0.75 
HAL-PLA, high WM -0.47 0.14 -0.74 -0.20 
Sad, low WM 0.15 0.13 -0.10 0.39 
Happy, low WM 0.26 0.13 0.01 0.50 
Angry, low WM -0.40 0.12 -0.64 -0.16 
Sad, high WM -0.15 0.13 -0.39 0.10 
Happy, high WM -0.26 0.13 -0.50 -0.01 
Angry, high WM 0.40 0.12 0.16 0.64 
Low WM, speed level linear 0.24 0.18 -0.11 0.59 
High WM, speed level linear -0.24 0.18 -0.59 0.11 
Low WM, speed level quadratic -0.09 0.18 -0.44 0.26 
High WM, speed level quadratic 0.09 0.18 -0.26 0.44 
Low WM, speed level cubic 0.18 0.18 -0.16 0.53 
High WM, speed level cubic -0.18 0.18 -0.53 0.16 
HAL-PLA, sad, speed level linear 0.31 0.37 -0.40 1.03 
HAL-PLA, happy, speed level linear -0.40 0.37 -1.12 0.33 
HAL-PLA, angry, speed level linear 0.09 0.37 -0.63 0.82 
HAL-PLA, sad, speed level quadratic 0.26 0.37 -0.48 0.99 
HAL-PLA, happy, speed level quadratic -0.62 0.37 -1.35 0.11 
HAL-PLA, angry, speed level quadratic 0.36 0.37 -0.36 1.10 
HAL-PLA, sad, speed level cubic -0.25 0.37 -0.97 0.46 
HAL-PLA, happy, speed level cubic 0.35 0.37 -0.38 1.08 
HAL-PLA, angry, speed level cubic -0.10 0.37 -0.81 0.63 
HAL-PLA, sad, low WM -0.15 0.18 -0.52 0.21 
HAL-PLA, sad, high WM 0.15 0.18 -0.21 0.52 
HAL-PLA, happy, low WM -0.29 0.18 -0.65 0.07 
HAL-PLA, happy, high WM 0.29 0.18 -0.07 0.65 
HAL-PLA, angry, low WM 0.44 0.18 0.08 0.80 
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HAL-PLA, angry, high WM -0.44 0.18 -0.80 -0.08 
HAL-PLA, speed level linear, low WM -0.10 0.26 -0.62 0.40 
HAL-PLA, speed level linear, high WM 0.10 0.26 -0.40 0.62 
HAL-PLA, speed level quadratic, low WM 0.15 0.26 -0.36 0.66 
HAL-PLA, speed level quadratic, high WM -0.15 0.26 -0.66 0.36 
HAL-PLA, speed level cubic, low WM -0.08 0.26 -0.59 0.43 
HAL-PLA, speed level cubic, high WM 0.08 0.26 -0.43 0.59 
Sad, speed level linear, low WM -0.13 0.25 -0.63 0.35 
Sad, speed level linear, high WM 0.13 0.25 -0.35 0.63 
Sad, speed level quadratic, low WM -0.04 0.25 -0.53 0.45 
Sad, speed level quadratic, high WM 0.04 0.25 -0.45 0.53 
Sad, speed level cubic, low WM 0.03 0.25 -0.46 0.52 
Sad, speed level cubic, high WM -0.03 0.25 -0.52 0.46 
Happy, speed level linear, low WM -0.29 0.25 -0.77 0.20 
Happy, speed level linear, high WM 0.29 0.25 -0.20 0.77 
Happy, speed level quadratic, low WM -0.15 0.25 -0.64 0.34 
Happy, speed level quadratic, high WM 0.15 0.25 -0.34 0.64 
Happy, speed level cubic, low WM 0.20 0.25 -0.30 0.69 
Happy, speed level cubic, high WM -0.20 0.25 -0.69 0.30 
Angry, speed level linear, low WM 0.42 0.25 -0.08 0.91 
Angry, speed level linear, high WM -0.42 0.25 -0.91 0.08 
Angry, speed level quadratic, low WM 0.19 0.25 -0.31 0.68 
Angry, speed level quadratic, high WM -0.19 0.25 -0.68 0.31 
Angry, speed level cubic, low WM -0.23 0.25 -0.73 0.26 
Angry, speed level cubic, high WM 0.23 0.25 -0.26 0.73 
HAL-PLA, sad, speed level linear, low WM 0.23 0.37 -0.48 0.95 
HAL-PLA, sad, speed level linear, high WM -0.23 0.37 -0.95 0.48 
HAL-PLA, sad, speed level quadratic, low 
WM 

0.13 0.37 -0.59 0.86 

HAL-PLA, sad, speed level quadratic, high 
WM 

-0.13 0.37 -0.86 0.59 

HAL-PLA, sad, speed level cubic, low WM -0.03 0.37 -0.74 0.69 
HAL-PLA, sad, speed level cubic, high WM 0.03 0.37 -0.69 0.74 
HAL-PLA, happy, speed level linear, low 
WM 

-0.02 0.37 -0.72 0.70 

HAL-PLA, happy, speed level linear, high 
WM 

0.02 0.37 -0.70 0.72 

HAL-PLA, happy, speed level quadratic, 
low WM 

-0.22 0.37 -0.95 0.50 

HAL-PLA, happy, speed level quadratic, 
high WM 

0.22 0.37 -0.50 0.95 
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HAL-PLA, happy, speed level cubic, low 
WM 

-0.35 0.37 -1.08 0.37 

HAL-PLA, happy, speed level cubic, high 
WM 

0.35 0.37 -0.37 1.08 

HAL-PLA, angry, speed level linear, low 
WM 

-0.21 0.37 -0.94 0.51 

HAL-PLA, angry, speed level linear, high 
WM 

0.21 0.37 -0.51 0.94 

HAL-PLA, angry, speed level quadratic, 
low WM 

0.09 0.37 -0.62 0.81 

HAL-PLA, angry, speed level quadratic, 
high WM 

-0.09 0.37 -0.81 0.62 

HAL-PLA, angry, speed level cubic, low 
WM 

0.38 0.37 -0.33 1.10 

HAL-PLA, angry, speed level cubic, high 
WM 

-0.38 0.37 -1.10 0.34 

 
Group-level effects Estimate (SD) Error 95% CrI  

(lower) 
95% CrI 
(upper) 

Subject ID (intercept) 1.29 0.18 0.99 1.68 
Supplementary Table S3.1. Model parameters for model 1. Model formula: Emotion recognition scores ~ 

drug * emotion * speed level * WM group + (1 | subject ID). 

 
 
3.2. Individual ratings analysis 

Under haloperidol, low WM individuals were better at discriminating angry, happy and sad 

PLWs from the distractor emotion scales. 

To gain insight whether increased in emotion recognition scores in the low WM group 

after haloperidol were a result of HAL increasing the ratings for the correct emotion, decreasing 

ratings for the non-modelled emotions, or a combination, we explored effects of HAL on the 

individual (angry, happy, sad) ratings. We therefore subtracted PLA emotion ratings from HAL 

emotion ratings. Higher rating difference scores reflect an increase in emotion intensity ratings 

under HAL, with difference scores below zero representing decreased emotion ratings under 

HAL. 

A Bayesian mixed effects model was fit to rating difference scores, with the factors 

emotion (angry PLW, happy PLW, sad PLW), rating (angry rating, happy rating, sad rating) 

and WM group (low, high), as well as all possible two- and three-way interactions (all factors 
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deviation coded). The model showed an interaction between emotion, rating and WM group 

(𝐸𝜇6&9,6&9M&%1$2,'*4FG = 0.30, CrI = [0.07, 0.54]; 𝐸𝜇3&88I,3&88IM&%1$2,'*4FG = 0.33, CrI = 

[0.10, 0.57]), which was confirmed using Bayesian model comparisons with cross-validation 

(using the loo package 495). To further unpack this interaction, two separate models were 

conducted for the high and low WM groups. This model comparison revealed a meaningful 

interaction between emotion and rating for the low, but not the high WM group.  As can be 

inferred from Table S3.2, under haloperidol, low WM individuals gave 0.40 points higher angry 

ratings (i.e., intercept + angry + angry rating + angry : angry rating = -0.02 + 0.05 - 0.07 + 0.44 

= 0.40) and 0.30 points less high sad ratings (-0.02 + 0.05 - 0.00 - 0.33 = -0.30) to angry PLWs 

(see Fig. 3). They also gave 0.16 points higher sad ratings to sad PLWs (- 0.02 - 0.14 - 0.00 + 

0.32 = 0.16). Furthermore, low WM participants tended to increase their happy ratings to happy 

PLWs by 0.44 points (-0.02 + 0.09 + 0.07 + 0.30 = 0.44) and decreased their angry ratings to 

the same PLWs by 31 (-0.02 + 0.09 - 0.07 - 0.31 = -0.31) points after having taken the drug.  

In sum, in our low WM group, responses under haloperidol were characterized by 

increased emotion discrimination: high target ratings and low non-target ratings.  

 
Low WM 

Population-level 
effects 

Estimate Error 95% CrI 
(lower) 

95% CrI 
(upper) 

Intercept -0.02 0.19 -0.39 0.34 
Sad  -0.14 0.12 -0.37 0.09 
Happy 0.09 0.12 -0.15 0.32 
Angry 0.05 0.12 -0.19 0.28 
Sad rating -0.00 0.12 -0.24 0.23 
Happy rating 0.07 0.12 -0.17 0.30 
Angry rating -0.07 0.12 -0.31 0.17 
Sad - sad rating 0.32 0.17 -0.01 0.66 
Happy - sad rating 0.00 0.17 -0.33 0.34 
Angry - sad rating -0.33 0.17 -0.66 0.01 
Sad – happy rating -0.20 0.17 -0.53 0.13 
Happy – happy rating 0.30 0.17 -0.03 0.63 
Angry – happy rating -0.10 0.17 -0.45 0.23 
Sad – angry rating -0.13 0.17 -0.46 0.21 
Happy – angry rating -0.31 0.17 -0.65 0.02 
Angry – angry rating 0.44 0.17 0.10 0.77 
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Group-level effects Estimate (SD) Error 95% CrI 
(lower) 

95% CrI 
(upper) 

Subject ID (intercept) 0.59 0.17 0.33 0.98 
Supplementary Table S3.2. Post-hoc mixed model of rating difference scores. Model formula: rating 

difference scores ~ emotion * rating + (1 | subject ID). 
 

 

3.3. Comparison of between- and within trial walking speed variability between 

placebo and haloperidol trials 

To investigate whether dopamine challenge affected movement variability, two separate 

dependent t-tests were carried out, once using a proxy of within-trial variability (coefficient of 

variation, i.e., SD divided by the mean), and once using an index of between-trial variability 

(speed difference scores calculated by subtracting speeds of walk one from speeds of walk 2). 

There was no difference between placebo and haloperidol conditions for either of the two 

measures of movement variability (within-trial: t(31) = -1.76, p = .088; between-trial: t(31) = -

0.003, p = .997). 
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Appendix 4 

Supplementary Information for Chapter five  

 

4.1. Analysis of emotion induction success 

 

The online rating task consisted of a total of 15 videos (average length: 2.5 minutes), 5 

of each were selected to assess for successful induction of one of the three target emotions 

anger, happiness and sadness. Videos were presented in a pseudo-random order which 

resulted in 6 possible combinations. After each video, participants were required to rate, in a 

random order, how happy, angry, surprised, disgusted and neutral they felt. Participants also 

rated valence (positive/negative) and arousal levels following each video. Ratings were made 

on a 10-point likert scale, whereby 1 indicated ‘not at all’ and 10 indicated ‘very’. For valence 

ratings, 1 indicated ‘highly negative’ and 10 indicated ‘highly positive’.  

 

Mean valence ratings 

Discreteness scores were calculated as the target emotion rating minus the mean rating 

of all non-target emotions. The video that provided the highest discreteness score for each 

emotion was selected for the main Point Light Walker (PLW) task, resulting in three target 

videos (angry, happy, sad). A neutral film clip with similar length as the target videos was added 

to the battery to control for any emotion unrelated speed effects as a result of watching video 

stimuli. In addition, two short informational film clips (average length: 1.1 minutes) were 

selected as ‘neutral filler videos’ with the intention to reverse any emotion induction effects. 

 

Emotion induction successfully changed participants’ mood. 

Due to data loss, all questionnaire data is based on a sample of 28 participants. 

Participants on average were in a positive mood at baseline as indicated by valence-  (mean 

[M](standard error of the mean [SEM]) = 6.39( .45)) and happy ratings (M(SEM) = 5.96(.43)) 

which were significantly higher than the mid-point (= 5) of the scale (valence: t(27) = 3.06 , p 

< .01; happy: t(27) = 2.27, p < .05), whereas ratings for all other emotions (anger, sadness, 

disgust and surprise) and arousal were significantly lower than the mid-point of the scale.  
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For all target emotions, discreteness scores were calculated by subtracting the mean 

ratings of the 4 non-target emotions from the mean rating of the target emotion. All three 

emotional films successfully elicited the target emotion as shown by the fact that all target 

ratings are significantly higher (happy) or lower (angry, sad) than the corresponding rating at 

baseline (Table S4.1). In addition, all target emotions were elicited discretely as indicated by 

all three discreteness scores being significantly different from zero.  

 

Supplementary table S4.1. Mean ratings for target emotion, valence and arousal and mean discreteness 

scores at baseline and for each of the emotion elicitation videos. Asterisks indicate significant differences 

from the corresponding rating at baseline (target, valence and arousal ratings for the four emotional videos), 

from the scale mid-point 5 (baseline ratings for valence and arousal) and  from zero (discreteness scores) at 

p values of .05 (*), .01 (**) and .001 (***).  

 

 

 

Video 

Target rating 

M(SEM) 

Valence rating 

M(SEM) 

Arousal rating 

M(SEM) 

Discreteness 

M(SEM) 

Baseline - 6.39(.45)** 3.50(.46)** -  

Angry 8.11(.38)*** 2.46(.24)*** 7.50(.44)*** 3.24(.25)*** 

Happy 7.32(.47)** 7.61(.43)* 4.82(.49) 4.94(.55)*** 

Sad 8.61(.45)*** 2.11(.18)*** 5.54(.42)** 5.32(.40)*** 

Neutral 7.89(.55)** 5.18(.26)** 2.75(.40) 5.85(.66)*** 


