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Abstract

While for the past several decades model predictive control (MPC) has been an estab-

lished control strategy in chemical process industries, more recently there has been in-

creased collaboration in MPC research between academia and automotive companies.

Despite the promising work thus far, one particular challenge facing the widespread

adoption of MPC in the automotive industry is the increased calibration requirement.

The focus of the research in this thesis is to develop methods towards reducing the cal-

ibration effort in designing and implementing MPC in practice. The research is tailored

by application to offline tuning of quadratic-cost MPC for an automotive diesel air-path,

to address the limited time-availability to perform online tuning experiments.

Human preferences can be influential in automotive engine controller tuning. Some

earlier work has proposed a machine learning controller tuning framework (MLCTF),

which learns preferences from numeric data labelled by human experts, and as such,

these learned preferences can be replicated in automated offline tuning. Work done in

this thesis extends this capability by allowing for preferences to be learned from pairwise

comparison data, with monotonicity constraints in the features. Two methods are pro-

posed to address this: 1) an algorithm based around Gaussian process regression; and 2)

a Bayesian estimation procedure using a Dirichlet prior. These methods are successfully

demonstrated in learning monotonicity-constrained utility functions in time-domain fea-

tures from data consisting of pairwise rankings for diesel air-path trajectories.

The MLCTF also constitutes a plant model, yet there will typically be some uncer-

tainty in an engine model, especially if it has been identified from data collected with
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a limited amount of experimentation time. To address this, an active learning frame-

work is proposed for selection of the next operating points in the design of experiments,

for identifying linear parameter-varying systems. The approach is based on exploiting

the probabilistic features of Gaussian process regression to quantify the overall model

uncertainty across locally identified models, resulting in a flexible methodology which

accommodates for various techniques to be applied for estimation of local linear models

and their corresponding uncertainty. The framework is applied to the identification of a

diesel engine air-path model, and it is demonstrated that measures of model uncertainty

can be quantified and subsequently reduced.

To make the most of the limited availability for online tuning experiments, an ordinal

optimisation (OO) approach is proposed, which seeks to ensure that offline tuned con-

trollers can perform acceptably well, once tested online with the physical system. Via the

use of copula models, an OO problem is formulated to be compatible with the tuning

of controllers over an uncountable search space, such as quadratic-cost MPC. In partic-

ular, results are obtained which formally characterise the copula dependence conditions

required for the OO success probability to be non-decreasing in the number of offline

controllers sampled during OO.

A gain-scheduled MPC architecture was designed for the diesel air-path, and imple-

mented on an engine control unit (ECU). The aforementioned non-decreasing properties

of the OO success probability are then specialised to tuning gain-scheduled controller

architectures. Informed by these developments, the MPC architecture was firstly tuned

offline via OO, and then tested online with an experimental diesel engine test rig, over

various engine drive-cycles. In the experimental results, it was found that some offline

tuned controllers outperformed a manually tuned baseline MPC, the latter which has

comparable performance to proprietary production controllers. Upon additional man-

ual tuning online, the performance of the offline tuned controllers could also be further

refined, which illustrates how offline tuning via OO may complement online tuning ap-

proaches.
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Lastly, using an analytic lower bound developed for OO under a Gaussian copula

model, a sequential learning algorithm is developed to address a probabilistically robust

offline controller tuning problem. The algorithm is formally proven to yield a controller

which meets a specified probabilistic performance specification, assuming that the un-

derlying copula is not too unfavourably far from a Gaussian copula. It is demonstrated

in a simulation study that the algorithm is able to successfully tune a single controller to

meet a desired performance threshold, even in the presence of probabilistic uncertainty

in the diesel engine model. This is applied to two case studies: 1) ‘hot-starting’ an online

tuning procedure; and 2) tuning for uncertainty inherent across a fleet of vehicles.
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Chapter 1

Introduction

MODEL predictive control (MPC) is gaining traction in the automotive industry.

While for the past several decades MPC has been an established control strategy

in chemical process industries, more recently there has been increased collaboration in

MPC research between academia and automotive companies [34, 96]. We highlight two

factors that have driven this surge of research.

Increased computation power. MPC requires a numerical optimisation problem to be

solved online, and has enjoyed decades of success in industry, owing to the relatively

slow plant dynamics in chemical process control. As the amount of available computa-

tional power has increased over time, this has allowed for practical implementation of

MPC on the engine control unit (ECU) in the embedded systems of vehicles, which can

match the fast dynamics and sampling rates required in automotive control.

Regulatory requirements. With environmental concerns at the forefront of attention,

increasingly strict regulatory requirements has led to the need for emissions constraint

satisfaction, without compromising the performance of current controllers. As a frame-

work for approximate optimal control with constraints, MPC is naturally suited for this

problem.

MPC has been applied to virtually all aspects of automotive control in the litera-

ture, from diesel air-path control to cruise control. There has also been investigation into

MPC for maturing automotive technologies, such as electric vehicles [79] and self-driving

cars [139]. Despite the promising work thus far, there are several challenges facing the
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2 Introduction

widespread adoption of MPC in the automotive industry.

1.1 Barriers to Widespread MPC

The amount of available computational power will continue to progress over time, as

will the development of efficient algorithms and solvers. Despite this, we discuss several

barriers that must be overcome for MPC to be a widespread control strategy.

Cultural reasons. A staple control strategy is Proportional Integral Derivative (PID)

control, which is deeply entrenched in industry. Surveys reveal typically in excess of 90%

of all controllers use PID loops in particular industrial sectors [3, 57]. For tasks requiring

low-level single-input single-output (SISO) actuation, PID control is often an adequate

solution. However, the prevalence of PID control could also be attributed to patterns in

control education, whereby not all academic programs may offer a state-space controls

course [15] and students may need to attend specialised courses to learn about MPC

[170]. In contrast, virtually all introductory controls courses that teach frequency-domain

classical control will introduce PID control. Thus, engineers will be equipped to design

PID controllers, but may not have sufficient familiarity with MPC. This trend results in

an ‘inertia’ in industry that makes PID control difficult to displace.

Increased calibration requirement. Being a model-based control approach, MPC ex-

plicitly requires the dynamics of the system to be modelled in order to implement. In

contrast, PID control has no such explicit requirement (however a controller design pro-

cess may still involve a system identification step). Nevertheless, calibrating MPC can

still be considered more cumbersome for the following reason. A standard PID control

loop has at most 3 gains to tune. More importantly, these gains are intuitively linked to

the time-domain characteristics (e.g. rise time, steady-state error, overshoot) of the sys-

tem response. In comparison, the number of tuning variables for MPC with a quadratic-

cost formulation scales quadratically with the order of the system. Furthermore, there is

no obvious intuitive relation between each of the variables and the resulting time-domain

characteristics in the response of the controlled system. Because of this, increased cali-
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bration effort can be spent tuning MPC.

In this thesis, the main motivator of the work is to address the increased calibration

requirement. We seek methods which reduce the calibration effort in designing and im-

plementing MPC in practice. Our focus is restricted to application of offline tuning MPC

on an automotive diesel air-path.

1.2 Challenges in Tuning MPC

We elaborate on several specific challenges of implementing and calibrating MPC, arising

in the context of automotive diesel air-path control.

Limited experimentation budget. In a controller design process, we distinguish be-

tween offline tuning (i.e. with simulations done on computers using a model or digi-

tal twin [134]) and online tuning (i.e. through physical experimentation on the actual

plant). When designing a controller in the automotive industry, availability of an engine

test bench may be limited, due to the test bench being simultaneously shared and nego-

tiated between other engine development teams. Thus, there is relatively more time for

offline tuning, while time for online tuning is scarce. This presents the challenge of tun-

ing controllers offline that perform well when tested online with the actual plant, within

the limited budget for experimentation.

Engine dynamics. A model of the diesel air-path engine dynamics may be used for

these two purposes: 1) to perform closed-loop simulation in offline tuning; and 2) to

explicitly encode within MPC for performing predictions. These two models need not

necessarily be the same; the model used in closed-loop simulation may be higher fidelity

than the MPC-encoded model. However, modelling diesel engine air-path dynamics can

be notoriously complicated, so collecting data to identify a high fidelity model will re-

quire further experimentation time. Thus, the challenge is to identify suitable models

that are useful for both purposes mentioned above, with respect to the limited testing

budget. A related concern is that there will inevitably be some plant-model mismatch in
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the identified models, which degrades the concordance between performance observed

offline versus performance observed online. So an auxiliary challenge is to make the

offline controller tuning process be more robust to uncertainty in the engine dynamics.

Assessment of performance. Human preferences can be influential in automotive en-

gine controller tuning. For instance, an engine calibrator may deem that there is ‘too

much’ overshoot in the response of a controller during online testing, and subsequently

decide to adjust the controller accordingly. These preferences also encode the degree of

trade-off that the calibrator is willing to make (e.g. how much of a reduction in overshoot

at the expense of longer settling time). A key advantage of offline tuning is that it can be

implemented as a fully automated procedure. However, this necessitates there no longer

being a human ‘in-the-loop’. The challenge spawned by this is how the preferences of

the human calibrator can be learned and replicated in automated offline tuning.

1.3 Outline of Thesis

This thesis contains research findings towards addressing the challenges listed in the

previous section. The document is structured as follows.

• In Chapter 2, a thorough review of the relevant literature is presented, culminating

in a statement of this thesis’ research aims.

• In Chapter 3, we propose machine learning algorithms which learn preferences

from pairwise comparison data, in order to assess the performance of controllers

during automated offline tuning.

• In Chapter 4, an active learning approach is proposed to quantify the uncertainty

in an identified Linear Parameter-Varying (LPV) model of the diesel air-path, and

simultaneously reduce the experimentation time required to obtain the model.

• In Chapter 5, novel theoretical results are developed in the area of ordinal optimisa-

tion (OO), using copulae as a model for offline/online performances. These results

feed into the tuning methodology featured in the subsequent chapters.
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• In Chapter 6, the results in OO from the previous chapter are specialised to a frame-

work of offline controller tuning, and extended to tuning of a gain-scheduled con-

troller architecture. The implementation of gain-scheduled MPC on a diesel engine

test rig is described, and the efficacy of the OO approach to offline tuning is demon-

strated.

• In Chapter 7, the results in OO from Chapter 5 are applied to probabilistically ro-

bust controller tuning. In particular, we present a sequential learning algorithm for

offline tuning of controllers to satisfy a performance specification, that is probabilis-

tically robust to plant uncertainty.

• Lastly in Chapter 8, the key contributions of the thesis are summarised, and direc-

tions for future research are concluded.

A graph of the chapter dependencies is presented in Figure 1.1.

Chapter 1

Chapter 2

Chapter 6 Chapter 7

Chapter 4Chapter 3 Chapter 5

Chapter 8

Figure 1.1: Reading dependencies on chapter in this thesis.

1.4 Notation

In this thesis, slanted serif symbols (e.g. x) are typically reserved for variables in an ordi-

nal optimisation context, sans-serif symbols (e.g. x) are typically reserved for variables in

a control context, Roman symbols (e.g. y) are typically reserved for variables in a diesel

air-path context, and TrueType symbols (e.g. x) are typically reserved for variables in a
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machine learning context. The inequality≤ or< between vectors indicates a component-

wise inequality. The dimensions of the identity matrix, zero vector and vector of ones

(denoted I , 0, 1 respectively) are usually clear from context, or otherwise indicated. If re-

quired, context for a probability space is provided in the subscript to a probability Pr (·)

or expectation E [·].



Chapter 2

Literature Review

In this chapter, we present preliminary material, and conduct a broad literature review in the rel-

evant topics needed to setup the research questions addressed in this thesis. The research aims are

stated at the end of the chapter, in Section 2.6.

2.1 Model Predictive Control

Model predictive control (MPC) is an intuitive control strategy about finding optimal

control actions based on predictions generated by a model. MPC can be considered to

belong to a class of methods (along with reinforcement learning) for approximate dynamic

programming [23]. There are several variants of MPC (and their corresponding formula-

tions) such as Dynamic Matrix Control or Generalised Predictive Control [131, §1.7], however

they all share the common idea of leveraging a model’s predictions to generate optimal

inputs in an open-loop fashion.

2.1.1 Quadratic-Cost MPC Formulation

In this thesis, we primarily consider tuning MPC with a quadratic-cost functional (plus

terminal cost) for the regulation of a plant with state and constraints. This formulation

is commonly found in textbooks, e.g. in [83, §23.5], and we provide the elements of the

formulation here. The MPC uses a prediction model to predict the future trajectory of the

states with respect to a sequence of inputs. While this prediction model can generally be

non-linear and also incorporate noise, this thesis considers an MPC formulation which

uses a linear discrete-time prediction model (with inputs u ∈ Rm, outputs y ∈ Rp, and

7
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states x ∈ Rn) given by a difference equation of the form

x+ = Ax + Bu (2.1)

and output equation

y = Cx, (2.2)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n, with polytopic state constraints

X = {x ∈ Rn : Mx ≤ f} (2.3)

where M, f have number of rows equal to the number of state constraints, and polytopic

input constraints

U = {u ∈ Rm : Eu ≤ h} , (2.4)

where E, h have number of rows equal to the number of input constraints. Moreover,

both X and U are assumed to contain the origin. Consider the task of choosing inputs to

regulate the states to the origin x = 0, from an initial condition of x0. At time k, the online

MPC cost function is defined as a quadratic in the states and inputs, with prediction

horizon N ∈ N:

Vk =
N−1∑
i=0

(
x>k|iQxk|i + u>k|iRuk|i

)
+ x>k|NPxk|N, (2.5)

where xk|i denotes the predicted future state at time k + i from current state xk, and uk|i

denotes the applied input at time k + i. Also, Q ∈ Rn×n, P ∈ Rn×n and R ∈ Rm×m

are symmetric positive definite weighting matrices used to penalise the deviation of the

trajectory of states and sequence of inputs from the origin. These matrices Q, P, R affect

the closed-loop performance of the controller and are thus the tuning variables under

consideration. Although other variables such as the prediction horizon N and sample

time also affects performance, this thesis treats these as fixed, and not tuning variables

(because they are tied to hardware limitations in practice). The MPC operates in the

following way. At each sampling instant k, the controller finds the optimal open-loop
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sequence {u∗k} :=
{
u∗k|0, . . . , u

∗
k|N−1

}
by solving:

min
uk|0,...,uk|N−1

Vk

subject to xk|i+1 = Axk|i + Buk|i, i = 0, . . . ,N− 1

xk|i ∈ X, i = 1, . . . ,N− 1

xk|N ∈ XN

uk|i ∈ U, i = 0, . . . ,N− 1

(2.6)

where

XN = {x ∈ Rn : MNx ≤ fN} (2.7)

is a terminal constraint set, which plays a role in the analysis of stability (discussed later

in Section 2.1.1.1). After (7.87) is solved, the input u∗k|0 is applied at time k. Hence the

closed-loop sequence of controls for times k = 0, 1, 2, . . . will be given by

U :=
{
u∗0|0, u

∗
1|0, u

∗
2|0, . . .

}
. (2.8)

The closed-loop trajectory of states/outputs is the result of feeding this sequence of in-

puts U into the plant with initial condition x0. The optimisation problem (7.87) can be

formulated as a quadratic program (QP) [106], hence it is a convex problem and there

exist a variety of QP solvers that can aid in finding the global optimum.

The controller defined by (7.87) is known as a regulator, as the aim is drive the states

(and consequently, the outputs) to the origin. On an intuitive level, the weights in Q

penalise future predicted deviations of the state from the origin, while P has a similar

role but for only the terminal state xN. On the other hand, the weights in R penalise non-

zero control inputs u. In some contexts, non-zero u may reflect the amount of control

effort or energy required to control the system. The effect of the R matrix also manifests

itself as a form of regularisation to keep the magnitude of the inputs low, analogous to the

role of regularisation in least squares regression [72]. Despite these connections, the exact

relationship between the elements of (Q,P,R) on features of interest of the closed-loop
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trajectory (such as time-domain characteristics) is generally non-trivial.

2.1.1.1 Stability of MPC

Analysis can be conducted for the stability properties of the controller defined by (7.87),

applicable when the MPC prediction model perfectly matches the plant dynamics. A

core object in this analysis is the terminal constraint set XN, which if chosen to be a control

invariant set (i.e. if x ∈ XN there exists a u ∈ U such that x+ ∈ X), then the controller

is recursively feasible (i.e. if the problem (7.87) is initially feasible, then it will be feasible

for all time thereafter) [26, Theorem 13.1]. Having recursive feasibility, in conjunction

with showing that the optimal objective V∗k (xk) := minuk|0,...,uk|N−1
Vk acts as a Lyapunov

function, closed-loop stability can be proven [26, Theorem 13.2].

2.1.1.2 MPC Integrator Augmentation

Due to plant disturbances, a regulator may result in non-zero steady-state output (i.e.

we have limk→∞ yk 6= 0). The quadratic-cost MPC formulation above (7.87) can be aug-

mented with an integrator to achieve zero offset (i.e. zero steady-state output regulation

error) [151]. The integrator formulation we consider, applicable to constant disturbances,

introduces the augmented state space

xk+1

ek+1

 =

 A 0

−C I

xk
ek

+

B
0

 uk. (2.9)

Then MPC is performed the same way as (7.87), except in the augmented state. To see

how this formulation can lead to zero offset, observe that a necessary condition for equi-

librium is that ek+1 = ek, i.e. Cxk = yk = 0.

2.1.2 Tuning of Model Predictive Control

A ‘meta-cost’ problem can be formulated for the tuning of the class of MPC discussed

above [45]. When given the Q, P, R matrices, the QP (7.87) can be solved online us-

ing convex optimisation, and the controller can be implemented/simulated on a plant to
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perform some designated task. This results in a closed-loop output trajectory sequence,

which we denote its first T elements by YQ,P,R (where the dependence on Q, P, R is ex-

plicit). The tuning problem involves a higher level objective of choosing Q, P, R to opti-

mise some performance index in the closed-loop output response YQ,P,R, so the following

meta-cost optimisation problem is introduced:

min
Q,P,R

J (YQ,P,R)

subject to Q � 0,P � 0,R � 0

(2.10)

where J (·) is a meta-cost function of the closed-loop response. For example, a meta-cost

could be constructed to penalise undesirable time-domain characteristics.

Other approaches to formulate the tuning problem are possible, and abundant in the

literature. Three papers [154], [75], [8], written roughly one decade apart from one an-

other, survey the landscape of MPC tuning at the time of their writing. This literature

encompasses a variety of approaches for tuning the multitude of MPC formulations, and

their associated tuning variables. Therefore, not every approach in the literature is ap-

plicable to the quadratic-cost MPC formulation that we are considering. Instead, we

taxonomise different aspects of the numerous MPC tuning methods.

2.1.2.1 Thematic Approaches

The MPC tuning methods may be organised into various thematic strategies.

Heuristic Textbooks on MPC will occasionally contain ‘rules-of-thumb’ tuning guide-

lines [37, 131, 176]. These guidelines are often based on frequency domain analysis, or

rules akin to the Ziegler-Nichols rules for PID controllers. Some heuristic tuning proce-

dures based on expert rules also appeared in [62, 204].

Analytical Analytical approaches based on pole placement [18,74] and controller match-

ing [33,69,116,188] have been investigated in the literature. However, the main limitation
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of these methods is that the analysis is conducted in the case when constraints are inac-

tive. Another limitation is scalability; the eigenvalue expressions in [74] are based on

symbolic computation, which quickly become impractical to work with for larger hori-

zon lengths.

Algorithmic Methods under this banner apply some algorithmic approach in tuning

controllers. For example, an optimisation problem like (2.10) may be explicitly formu-

lated with objective(s) being some function of the closed-loop response with respect to

the tuning variables. Then, a numerical optimisation algorithm is employed to find a

solution (e.g. [148, 200]). Several ways to deal with multi-objective optimisation formu-

lations have been presented [66, 194, 206]. The use of evolutionary and metaheuristic

algorithms (e.g. genetic algorithms or particle swarm optimisation) is a reoccuring tool

in many of these papers, because the formulated optimisation problems are typically

treated as black-box search [53, 56, 180].

Statistical In some approaches, the selection of tuning variables is informed by first

performing multiple controller experiments with different tuning variables, in order to

collect data. Models are then fitted to the data, from which tuning procedures may be

derived. In [17], a mapping from plant parameters to optimal tuning variables is fitted,

from which a tuning rule solely based on the plant model is obtained. In [161], statistical

methods have been used to characterise the sensitivity of controller performance to the

tuning variables. A strategy called response surface methodology is trialled in [108], which

fits a mapping from tuning variables to controller performance, and from which optimal

tuning variables can then be found.

2.1.2.2 Tuning Variables

The nature and role of the tuning variables will depend on the specific formulation of

MPC being considered.
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Weights Some authors focus on tuning purely the weights in the cost function [67,192].

The ambient space of the weights themselves (hence the number of tuning variables) can

also vary based on the formulation. In the quadratic-cost MPC formulation, the weights

are the Q, P, R symmetric positive definite matrices. In an SISO Dynamic Matrix Control

formulation, there is only a single weight (called the move suppression coefficient) taking

on an analogous role to the R matrix [174].

Structural parameters Some studies are dedicated to tuning the structural parameters

of MPC. For example, [16] focuses on the tuning of the sampling time and prediction

horizon. Some formulations of MPC separate the prediction and control horizons into

two different tuning variables, e.g. [131, §2.2], whereby the inputs are fixed for the re-

mainder of the horizon. This is also known as move blocking, and [171] rigorously studies

the optimal selection of move blocking structures. A genetic algorithm is also considered

by [140] for tuning of the prediction and control horizons exclusively.

Tuning the weights and structural parameters need not be mutually exclusive, as

there are examples of studies where the tuning of weights and structural parameters

occurs simultaneously [61, 62, 110]. However, allowing the structural parameters to be

a free tuning variable may not always be desired, since these variables could be fixed a

priori, due to limitations of the hardware that the controller is being implemented on.

There is also a qualitative difference between tuning the weights and structural pa-

rameters. The weights typically take values from an uncountably infinite set (e.g. the

positive definite cone). On the other hand, the structural parameters are usually values

from a countable set (e.g. horizon lengths must be positive integers).

2.1.2.3 Tuning Timescale

A distinction between some tuning methods is the timescale which the method operates,

i.e. whether the method is intended for offline or online tuning.
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Offline In an offline approach, the controller is specifically designated to be tuned

through simulations of the actual plant. This requires a computer model of the plant (i.e.

a digital twin). The authors in [9, 52] propose separate software packages for developing

MPC in simulation. A caveat to offline tuning is that the simulation performance will not

always emulate performance on the actual plant. This could be attributed to modelling

uncertainties, noise, disturbances, or error induced by discretisation in the simulation.

Thus, it is not immediately clear whether a well-performing controller in offline tuning

will also perform well on the actual plant. Despite this, assuming a reasonably repre-

sentative plant, offline simulation is still recommended to be used beforehand to assess

whether the designed controller meets prescribed performance specifications [119]. In

the reinforcement learning literature, the Sim-to-Real paradigm attempts to address the

mismatch by randomisation of dynamics while training control policies in simulation

[152].

Online In [6, 19, 32, 189], adaptive methods are proposed for tuning MPC, whereby the

controller is tuned online on the actual plant. A drawback of this approach is that it may

be more expensive or take longer to tune the controller, compared to offline tuning. This

is especially true when iterations of a controller in simulation are much faster/cheaper

than iterations on the actual plant.

Many tuning methods are ambiguous, in that they are suitable to be used in an online

or offline setting. To illustrate, a proposed algorithmic approach could be applicable irre-

spective of whether it is performed in simulation or on the actual plant, provided: 1) the

performance of any given controller can be evaluated by some oracle; and 2) the tuning

variables can be updated in-between evaluations.

Offline and online methods can also complement one-another, i.e. an offline method

can be used to design an initial controller in simulation, and then an online method fine-

tunes the controller on the actual plant, as suggested by [119, §4.1].
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2.1.2.4 Machine Learning Controller Tuning Framework

In the aforementioned MPC tuning literature, the performance indices used to assess the

controllers (e.g. choice of J (·) in (2.10)) are taken as pre-established. One such example

of a performance index is the integral of squared error [68]. In a multi-objective case, a

scalar performance index can be obtained from a weighted sum of the objectives (e.g. [4]);

these weights implicitly encapsulate the trade-offs between competing objectives. How-

ever, as acknowledged in [73,84], human preferences play an import role in MPC tuning.

Moreover, it may not be possible for human calibrators to directly write down a func-

tion J (·) which captures the trade-offs that they would themselves make when tuning a

controller. This is similar to the motivation behind inverse optimal control [147], being that

for some tasks, it is difficult to specify a cost or reward function that makes the system

behave as desired.

In [104], a machine learning controller tuning framework (MLCTF) was introduced

for learning the preferences of expert human controller calibrators, which addresses the

requirement to obtain a performance index J (·) if one is not explicitly provided. The

procedure was demonstrated for tuning MPC matrices Q, P, R in a quadratic-cost formu-

lation. The paper used neural networks to learn a mapping from time-domain charac-

teristics (e.g. overshoot, rise time, etc.) of closed-loop trajectories to scalar performance

rating, using human-provided rating data. This mapping was then used in conjunction

with a derivative-free optimiser to tune the weights in an offline setting.

Figure 2.1 shows a diagram of the framework, which in essence, optimises an ob-

jective function J (θ) with respect to the tuning variables θ, where J is the composition

J = f ◦ x ◦ Y and the function f is learned from human rating data.

2.1.2.5 Parametrisations of MPC Cost Weight Matrices

When tuning quadratic-cost MPC via the meta-cost as in (2.10), one important consider-

ation is how to parametrise the Q, P, R matrices. ‘Off-the-shelf’ optimisation algorithms
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Figure 2.1: The machine learning controller tuning framework.

typically optimise variables over some subset of Rd. In quadratic-cost MPC however, the

matrices are Q � 0, P � 0, R � 0, so they belong to the set of positive definite matrices in

the respective dimension. One option is to use diagonal weights, as in [148, 201], which

reduces the parametrisation of Q, P, R to elements in Rn, Rn, Rm respectively. However,

this reduces the flexibility of the controller and the opportunity to potentially find better-

performing weights.

Alternatively, naively parametrising Q as a vector from Rn2 is not very productive,

since Q is a symmetric matrix, and so can be uniquely determined by
(
n2 + n

)
/2 ele-

ments. However, even by parametrising the upper or lower triangular elements of Q as

a vector in R(n2+n)/2, one still needs to enforce the positive definiteness constraint. The

following two approaches can achieve this.

Cholesky decomposition As suggested by [66], the matrix Q (and analogously for P,

R) can be parametrised by the
(
n2 + n

)
/2 triangular elements of its Cholesky decompo-

sition: Q = LQL
>
Q , where LQ is lower triangular. If the main diagonal of LQ consists of

all positive elements (i.e. this implies LQ is invertible), then LQL
>
Q is positive definite.

Moreover, every positive definite matrix has a unique Cholesky decomposition with all

positive elements in the main diagonal [80, Theorem 4.2.7]. Hence in this parametrisa-

tion, n of the elements in the parametrisation will each be restricted to R>0, while the

remaining
(
n2 − n

)
/2 elements will each take on values in R.
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Spectral decomposition For positive definite Q (and analogously for P, R), we can de-

compose Q = WQDQW
>
Q where WQ is orthogonal, and DQ is diagonal with positive main

diagonal elements. Thus diagonal DQ is parametrised by n positive numbers in R, while

orthogonal WQ can be minimally parametrised by
(
n2 − n

)
/2 values ([173] surveys vari-

ous approaches to parametrise orthogonal matrices).

In [45], a parametrisation based on spectral decomposition is demonstrated for tuning

MPC, motivated by the observation that if we multiply Q, P, R all by the same positive

constant c > 0, the solution to the MPC problem (7.87) (hence the behaviour of the con-

troller) remains unchanged. This suggests some redundancy, which can be exploited to

further reduce the number of tuning variables. In addition, P is fixed with respect to

Q, R by setting it as the solution to the discrete-time algebraic Riccati equation [83, Eq.

(22.7.9)]:

Q + A>PA− A>PB
(
R + B>PB

)−1
B>PA− P = 0. (2.11)

Several reasons advocate for the P matrix to be chosen this way:

• it reduces the number of tuning variables of the controller,

• it causes the MPC law to be equivalent to the Linear Quadratic Regulator (LQR)

law when constraints are not active, and

• it can be stated as one of the sufficient conditions for closed-loop stability [135,

§3.7.4.1].

In all, this parametrisation of the MPC cost weights consists of
(
n2 + n

)
/2+

(
m2 + m

)
/2−

1 variables, as opposed to the n2 + n +
(
m2 + m

)
/2 variables required for parametrising

each of Q, P, R directly. Furthermore, using hyperspherical coordinates to parametrise

diagonal matrices and the Givens rotations parametrisation for orthogonal matrices, the

tuple (Q,P,R) can be parametrised over a box-constrained search-space, which is com-

patible with many existing off-the-shelf solvers. By additionally introducing a parameter

r > 0 that specifies the sum of squared diagonal elements in DR relative to DQ, this further

allows for some level of control of the regularisation in the controller.
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In the works [103,104] applying the MLCTF (Section 2.1.2.4), and also in [128], a vari-

ant of the Nesterov gradient free optimiser (originally from [146]) is tailored towards

tuning weights in quadratic-cost MPC, based on the spectral decomposition of positive

definite matrices. The algorithm requires random perturbations to the matrices, which

are performed (in the case of Q, and analogously for the other matrices) by generating

uniformly random orthogonal matrices WQ, performing a perturbation to the diagonal

elements of DQ, followed by projecting WQDQW
>
Q onto the positive definite cone. By ex-

ploiting the symmetric structure, it is shown in [130] that this approach leads to lower

complexity bounds in optimisation.

2.2 Diesel Engine Air-Path

In this thesis, the plant that we consider controlling is the air-path of a Toyota 1GD-FTV

diesel engine (abbreviated to GD engine hereafter). The air-path is a subsystem within

the wider engine control system governed by the ECU. The engine features exhaust gas

recirculation (EGR) and variable geometry turbine (VGT) technology. Figure 2.2 contains

a schematic of the diesel engine air-path. The relevant signals of interest for the modelling

and control of the plant are described in this section.

Throttle

EGR
Valve

EGR
Cooler

Intake manifold

Exhaust manifold

Exhaust gas

VGTCompressor

Air

Cylinders

Fuel rail and injectors

Intercooler

Figure 2.2: Schematic of an automotive diesel engine air-path.
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Operating condition Two signals which the air-path takes as given are the engine

speed Ne (in units rpm) and the fuel rate wfuel (in units mm3/stroke). Together, these two

signals constitute the current operating condition of the plant, and we refer to the pair

p = (Ne,wfuel) as the engine operating point. The operating point is controlled through

other subsystems of the diesel engine, yet the operating point itself will still influence the

air-path dynamics.

Pressures Figure 2.2 depicts the different manifolds of the air-path (e.g. pre-throttle

manifold, intake/exhaust manifolds) which may be treated as thermodynamic control

volumes. Each of these manifolds will be associated with a signal for the pressure of the

gas within the manifold. Of note, we have the intake manifold pressure (also called the

‘boost’ pressure) pim (measured in kPa) and exhaust manifold pressure pem (measured

in kPa).

Mass flow rates Between thermodynamic control volumes, there will be flow of gas,

quantified by mass flow rate signals. The flow rate of fresh air entering the system is

given by the compressor flow rate Wcomp (measured in g/s). The EGR flow rate is WEGR

(in g/s), which measures the flow rate of exhaust gas that is recirculated from the exhaust

manifold back into the intake manifold for combustion. The EGR rate yEGR is another

signal defined as

yEGR :=
WEGR

Wcomp + WEGR
. (2.12)

This variable quantifies the mixture of fresh air and exhaust gas that is being supplied to

the cylinders.

Actuators The air-path can be controlled via three actuators, shown in Figure 2.2. The

actuation signal for the throttle valve is uthr (specified in percentage closed), the signal

for the EGR valve is uEGR (percentage open) and the signal for the VGT vane is uVGT

(percentage closed).

Further details about this particular diesel air-path may be found in [166, §2.2] and
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[97, §1.3].

2.2.1 Modelling of Diesel Engine Air-Path

2.2.1.1 Mean-Value Engine Models

The operation of a diesel engine can be described through repeated thermodynamic cy-

cles, wherein combustion occurs in each cycle. While these cycles do influence the air-

path dynamics, they happen on a very short timescale. On this timescale however, the

effects of combustion may not be particular relevant for air-path control. Thus, the pur-

pose of a mean-value engine model (MVEM) is as a control-oriented model. That is, an

MVEM will preserve the main dynamics of interest with acceptable fidelity required to

control the air-path, without the excess complexity of needing to model the combustion

process. In an MVEM, the signals are considered to be averaged over one or more engine

cycles [65, Definition 7.1].

2.2.1.2 Identification Approaches

We discuss two schools of thought in the identification of control-oriented models for a

diesel engine air-path.

Physics-based modelling In a physics-based modelling approach, physics principles

(e.g. conservation of mass and ideal gas laws) are applied towards deriving continuous-

time dynamic equations for the pressures and other states. This approach is followed in

[198], whereby a non-linear MVEM is identified and validated over experimental data.

Some components of the model (e.g. friction torque) are diffcult to derive based on phy-

ics principles, and are instead assumed to take on the form of polynomial equations.

Non-linear least squares is used to identify the model parameters. The advantage of a

physics-based model is that it can potentially be used in a high fidelity closed-loop sim-

ulation. However, a drawback is needing to solve a potentially difficult non-linear least

squares problem, which poses questions for how well the model can be identified. Fur-

thermore, implementation of MPC requires a discrete-time model, so in order to acquire
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a model suitable for MPC implementation, one then needs to discretise (and perhaps also

linearise) the physics-based model. This is performed in [99], where local linear models

are obtained by linearising a given physics-based non-linear model.

Pure data-driven modelling An alternative to physics-based modelling is a pure data-

driven approach, in which phyics principles are discarded in favour of fitting classes of

time-series models to the data. The authors in [98] initially attempted physics-based

models, but found the identified models to give poor fit to data, thus instead relied

on identifying non-linear autoregressive exogenous (NARX) models with a polynomial

structure. In [172], discrete-time local linear models are also identified directly from data.

One advantage of the data-driven approach, if fitting linear models, is that the data re-

quirements for the identification process (i.e. convergence rates of parameter estimates

in the number of samples) will be relatively well understood [137, 175]. A potential dis-

advantage of this approach is that the simulation-fidelity may not be as high as a well-

calibrated physics based model, since the models will be valid only within the region

local to where data was gathered. Also, generic time-series models will fail to adhere to

physical constraints (e.g. non-negativity constraints) of some signals.

Despite the abundance of work in diesel air-path identification in the literature, re-

ports into any uncertainty quantification (i.e. obtaining uncertainty intervals for model

parameters) of the diesel air-path has been relatively scarce.

2.2.1.3 Linear Parameter-Varying Sytems

Recently, the use of linear parameter-varying (LPV) systems (where the matrices A and

B in (2.1) are now functions of an operating point p) have emerged as an approach for

model-based control of non-linear systems, whereby local linear controllers are designed

for regions of an operating space in a gain-scheduled manner [185]. Thus, LPV models are

highly suitable for the diesel air-path because the latter is parametrised in the operating

point p = (Ne,wfuel). In particular, when the operating point p is itself determined as a

function of the state x (e.g. via a feedback loop in the ECU), this is specifically termed a
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quasi-LPV system [30, §1.2.1].

There are two broad approaches to the identification of LPV systems. In the local ap-

proach, several local linear models are identified at several fixed operating points (also

called scheduling points), which are then interpolated over the operating space. In the

global approach, an LPV model is identified from an experiment which excites the oper-

ating space as well [60].

2.2.1.4 Active Learning

Active learning, along with closely-related optimal experimental design, are subfields

of machine learning and statistics, that are concerned with the determination of query

points which to sample data [168]. The main rationale underpinning active learning is

that data collection is costly, so these query points should be selected in a way such that

it optimises some notion of accuracy for a model being identified. Thus, active learning

carries the advantage of enabling either identification of a model that is more accurate for

a fixed data collection budget, or identification to a specified accuracy within a smaller

data collection budget.

Optimal experimental design for dynamical systems has been studied since the 1960s.

[122] demonstrated that a white noise input signal to a SISO discrete-time linear system

minimised the A-optimality criterion (trace of the covariance matrix) for the parameters

of a finite impulse response model. [82] gave an A-optimality formulation for optimal

design of input signals for a general class of discrete-time non-linear systems. Due to

limited computational resources at the time of the paper, the method was exemplified on

simpler systems.

The optimal experimental design for local LPV identification has previously been in-

vestigated, where in [112], a technique was proposed to select new operating points to

query for SISO systems with a univariate operating point. Their approach minimised a

measure of anticipated overall accuracy, and assumed that each local linear model could
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be identified perfectly. [143] relaxes this assumption, and provides an algorithm for the

simultaneous selection of operating points and design of input signals (although still only

valid for the class of SISO systems with univariate operating point). Their optimisation

criterion is based on an A-optimality-like criterion.

2.2.2 Control of Diesel Engine Air-Path

2.2.2.1 Drive-Cycles

A drive-cycle (or driving cycle) is a standardised trajectory for a vehicle speed reference

over time, which used in the development, testing and benchmarking of vehicles. Dur-

ing transient testing of controllers performed over drive-cycles in this thesis, the vehicle

speed reference is translated by the test hardware into a time-varying reference track-

ing problem, with reference trajectory denoted yref . Examples of common drive-cycles

include the Urban Drive-Cycle (UDC, also known as ECE-15), Extra-Urban Drive-Cycle

(EUDC) [191] depicted in Figures 2.3a and 2.3b respectively, and the more recent World-

wide Harmonized Light Vehicles Test Cycle (WLTC, also abbreviated as WLTP) [47],

which has four sections as shown in Figure 2.4.
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Figure 2.3: The Urban and Extra-Urban Drive-Cycles.
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(a) The first section of the WLTC.

0 50 100 150 200 250 300 350

Time (s)

0

20

40

60

80

k
m

/h
r

WLTC2

Vehicle speed reference
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(c) The third section of the WLTC.
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(d) The fourth section of the WLTC.

Figure 2.4: The Worldwide Harmonized Light Vehicles Test Cycle.

2.2.2.2 PID Control for Diesel Air-Path

PID (Proportional-Integral-Derivative) controllers have been standard in both the liter-

ature and industry for diesel air-path control [199]. An issue posed by controlling the

diesel engine air-path is that the dynamics are highly non-linear, and also dependent on

the operating point. This is typically addressed by an additional feed-forward/set-point

control component in addition to feedback, using mappings which have been calibrated

through experiments [50, §1.2.1]. An additional strategy in diesel air-path control is to ap-

ply gain-scheduling [193]. In gain-scheduling, different controller gains/weights are used

in different regions of the operating space to account for dynamics which vary over the

parameter space (e.g. an LPV system) [30, §3.1].

Software designed for general purpose calibration in the automotive industry, such

as AVL CAMEO, may also be used to assist with the PID tuning workflow. The optimisa-



2.2 Diesel Engine Air-Path 25

tion algorithms implemented by AVL CAMEO include some of those discussed in Section

2.1.2.1, such as genetic algorithms [211].

2.2.2.3 MPC for Diesel Air-Path

Several studies have also experimented with MPC for the diesel air-path. The same tech-

niques of feed-forward control and gain-scheduling can be applied, featuring different

local linear prediction models and cost weights active at different regions of the operat-

ing space [210].

Some earlier work [100, 103, 128, 129, 163–165, 172] has experimented with MPC on

the same class of diesel engine that we consider in this thesis (the GD engine). In those

works, the control objective is to track an output reference yref for the boost pressure and

EGR rate:

y =
[
pim yEGR

]
, (2.13)

using the inputs

u =
[
uthr uEGR uVGT

]
. (2.14)

In [100], a rate-based MPC strategy (an alternative to integrator augmentation for offset-

free tracking) was tested. A novel MPC formulation with exponentially decaying en-

velopes was proposed in [162], which aims to simplify and speed up the controller cali-

bration process. This formulation was tested for diesel air-path control on the GD engine

in [172], which found that tracking could be successfully performed with the four-state

representation

x =
[
pim pem Wcomp yEGR

]
. (2.15)

The studies [163–165] incorporated an additional robust formulation into the MPC, via

constraint tightening.

The MLCTF from [104], mentioned earlier in Section 2.1.2.4, has also been applied to

tuning MPC for the diesel air-path. MPC was tuned offline and tested on the physical
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engine over transient drive-cycles in [103]. In [128, 129], an online tuning approach was

performed and tested over transient drive-cycles, using the integral of squared error as a

performance index. The authors also used the same variant of the Nesterov gradient-free

optimiser that originally featured in [104].

2.3 Utility Theory

As mentioned in Section 2.1.2.4, preferences can play a pivotal role in controller tuning.

Our interest in utility theory is for the study of preferences, the latter which has attracted

attention from a number of disciplines in the literature. Economists first introduced a

rigorous treatment on the theory of preferences in the mid-20th century [54, 197]. Psy-

chologists have also studied the impact of preferences on decision making [107]. The

task of learning preferences from data has also gathered attention in the field of machine

learning and computer science; an overview to preference learning from this corner of

literature is given in [71].

2.3.1 Ordinal Utility Functions

We build a definition for utility functions, which act as a proxy for preferences. Let X =

X1 × · · · × Xd denote a topological space, which we may call the feature space. The binary

preference relation �
pref

denotes a total ordering on X , where for a pair of items xA, xB ∈ X ,

the expression xA �
pref

xB asserts that item xB is preferred at least as much as xA. The strict

preference relation is denoted by ≺
pref

.

Definition 2.1 (Ordinal utility functions). An ordinal utility function h : X → R for �
pref

is a

function representing the underlying preferences of an agent such that

xA �
pref

xB ⇔ h (xA) ≤ h (xB) . (2.16)

Note that there exists infinitely many ordinal utility functions that can represent a
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single preference relation �
pref

, since for an ordinal utility function h (x) and any strictly

monotonic (increasing) transformation q (·), then q (h (x)) is also an ordinal utility func-

tion for �
pref

.

An analogous definition and interpretation follows for ordinal cost functions, by re-

versing the direction of the inequality. That is, maximising the utility is equivalent to

minimising the cost. Moreover, given a utility function, a cost function can be obtained

by taking the negative of the utility.

2.3.2 Learning from Pairwise Rankings

Within the literature, there are various formulations of preference learning problems. A

sub-class of these is the problem of learning preferences from pairwise rankings: where

the data consists of pairwise comparisons (i.e. ordinal data), as opposed to numerical

labels.

We first detail the data structure of this class of learning problem. An individual pair-

wise comparison (training example) consists of the pair (x, x′) ∈ X × X and the label

y ∈ {−1, 1}, where a label of 1 indicates that x has been rated preferred over x′, while a

label of−1 indicates that x′ has been rated preferred over x. Some formulations allow for

a label to indicate ties, but this thesis does not. The structure of a pairwise comparison

dataset D consists of M individual comparisons as training examples. Then, the goal is to

learn the underlying preference relation �
pref

(usually via a utility function), from the data

D (in which the comparisons may have been corrupted with rating noise).

There are several motivating reasons for working with ranking data, in lieu of nu-

meric ratings. In some cases, ranking data are the type of data that are naturally solicited,

e.g. a user who selects a particular result from a list of search engine results conveys that

their selection was ranked above all other alternatives. In other situations, ranking data

may be more useful/reliable compared to numeric labels [190]. For instance, a human

may be asked to rate on a scale of 1 to 10, but this scale will be subjective depending on
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the human, and this subjectivity could inadvertently ‘drift’ over time (e.g. a mediocre

object may begin with a rating of 5, but then the same could could be rated 6 by the same

human in the future). A pairwise comparison rating scheme is a way to protect against

these issues.

Work pertaining to learning from pairwise rankings has been shared across the psy-

chometric, econometric and computer science literature. An early contribution proposed

in psychometrics is the Thurstone-Mosteller model [142, 184], which assumes Gaussian

rating noise. A variant known as the Bradley-Terry-Luce model [29] assumes Gumbel

distributed rating noise. These models are the basis for several sports rating systems,

such the Elo rating system used in competitive chess [64].

Discrete choice theory, originally from [136], is a Nobel prize-winning body of work

from economics, which models the preferences and utility of decision makers based on

choices made between a finite number of alternatives. In the case of a choice between

two alternatives, this reduces to an archetypal problem of learning from pairwise rank-

ings. The learned utility functions can be applied in the modelling and forecasting of

consumer demand [22, 186], while estimation of utility functions themselves is tradition-

ally performed via maximum likelihood or Bayesian methods [187].

Many contributions have arisen in the computer science literature, motivated by ap-

plications in recommender systems [81] and information retrieval [125]. In [138], the-

oretical relationships are drawn between pairwise ranking and the related problem of

bipartite ranking (which is itself similar to binary classification). A Bayesian version of the

Thurstone-Mosteller model is extended using Gaussian processes in [49]. An online rank-

ing algorithm using Borda scores (which generalise the Thurstone-Mosteller and Bradly-

Terry-Luce models) is considered in [91]. Learning from pairwise rankings has also been

investigated for reinforcement learning, where [202] originally proposed a policy gra-

dient algorithm. These reinforcement learning algorithms have been exhibited in robot

locomotion [48] and Atari game playing [101].
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2.3.3 Isotonic Preference Learning

In a feature spaceX , suppose it is known that some features are desirable or undesirable, i.e.

the more (less) of a particular feature, the better (worse), all else being equal. Hence the

utility should always be non-decreasing (non-increasing) in these features. Equivalently,

the cost should always be non-increasing (non-decreasing) in these variables. Placing this

concept in the context of controller tuning, where x is a feature vector of time-domain

characteristics, many variables would exhibit some desirability or undesirability. For ex-

ample, many control engineers would agree that the faster the settling time, the better,

all else being equal. In that case, we may wish to incorporate this knowledge into the

learned utility function, via monotonicity constraints. Further justification is elaborated

as follows.

Sensible Interpretation of Utility Functions To illustrate with a simple controller tun-

ing example, consider the trade-off between two features: the overshoot OS and settling

time ST of a single-output step response trajectory. One can reasonably assume that an

engineer prefers less overshoot (holding settling time constant), and likewise for settling

time (holding overshoot constant). Hence the utility over these features would be non-

increasing. Without monotonicity constraints, there could exist a point where the learned

utility function is increasing in OS and/or ST. At this point, this would then suggest that

increasing OS and/or ST would improve the trajectory, which is not a sensible interpreta-

tion.

Regularisation Incorporating prior information is a commonly used technique for reg-

ularisation in learning (e.g. the Bayesian interpretation of regularisation [25, §1.2.5]). We

can leverage prior knowledge of monotonicity to regularise the estimates and reduce the

data requirements that lead to a desired quality of estimate, compared to methods which

do not explicitly consider monotonicity. For the latter class of algorithms, monotonicity

may not even be guaranteed except in the asymptotic case when there is an arbitrarily

large amount of data.
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If the preference data comprised of numeric labels (as in previous controller tuning

work [104]), this would invoke the problem of isotonic regression, which could be solved,

for example, through non-negative least squares [121, Chapter 3] or a non-parametric

approach [117]. Monotonicity has also previously been considered for ordinal classifica-

tion [20], where the output label belongs to a finite number of classes. When the data

comprises pairwise comparisons however, there are seldom approaches in the literature

which explicitly addresses this. The method proposed in [58] does produce monotonic

utility functions, by virtue of making the utility function a product of beta cumulative dis-

tribution functions (CDFs). As a consequence though, the utility function is monotonic

in all features; the proposed method does not allow for the monotonicity constraints to

apply on only a subset of the features.

2.4 Ordinal Optimisation

Ordinal optimisation (OO) is an approach introduced in [92] for softening difficult prob-

lems in stochastic search and optimisation [177], and offered as a complementary ap-

proach to conventional optimisation techniques when there is ‘little hope’ of finding the

global optimum solution. The outcome provided by OO is a high-probability guarantee

that one or more out of a selected subset of candidate solutions is an acceptable sub-

optimal solution, and its operation rests on two underlying principles: 1) by selecting the

subset according to order, the selection is more ‘robust’ to noise; and 2) by ‘goal soften-

ing’ (i.e. increasing the degree of sub-optimality), chances of success can be improved.

OO was primarily introduced to the control theory community for the simulation-

based optimisation of discrete-event dynamic systems [92], and has seen numerous suc-

cessful applications in design/search problems across different disciplines. It was ap-

plied to stochastic optimal control in [55], where OO was used to find a heuristic solution

to the Witsenhausen problem [203]. A proposed solution 50% better than Witsenhausen’s

own proposed solution was found in terms of performance cost. In [93], OO was applied
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to rare event simulation of overflow probabilities in queuing systems. By embracing goal

softening, computational requirements for simulation were reduced by approximately 3

orders of magnitude. An improvement by a factor of 100 was also reported by [209] in the

time taken to generate optimal cloud computing schedules by an OO method, compared

to a Monte-Carlo approach.

A research area with roots from OO is the optimal computing budget allocation (OCBA)

framework, which addresses the problem of efficient allocation of simulation resources

[39]. In the literature, the OCBA framework has also been referred to as ranking and

selection [153], as well as “ordinal optimisation” [78]. The early results from the OCBA

framework may also be regarded as a precursor of a pure exploration objective from the

vast multi-armed bandit literature [120].

Some basic results in OO are summarised here, in the context of controller tuning. For

some controlled system, let Θ be a finite set of possible values for the controller tuning

variables, with cardinality |Θ| = N . Suppose that, if we were to evaluate the performance

of each of these controllers, there is a subset Θ? ⊂ Θ of controllers with performance

which we would consider ‘acceptable’, with cardinality |Θ?| = g. Then if we were to

sample a subset Θ̂ ⊂ Θ of m controllers (i.e.
∣∣∣Θ̂∣∣∣ = m) uniformly randomly without

replacement, then the probability that at least one of these selected m is in the top g

controllers is

Pr
(∣∣∣Θ̂ ∩Θ?

∣∣∣ ≥ 1
)

= 1− Pr
(∣∣∣Θ̂ ∩Θ?

∣∣∣ = 0
)

(2.17)

= 1−
(
N−g
m

)(
N
m

) , (2.18)

which is called the blind pick alignment probability. Now suppose that rather than se-

lecting the m controllers uniformly randomly, we observe the performances of all N con-

trollers (but with noise), and then select the best m observed (known as the horse race

selection rule). Assume the observation process of each controller θi, for i = 1, . . . , N , is
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given by

J (θi) = J (θi) +Wi, (2.19)

where J (θi) is the ‘true’ performance of the system under the convention that lower

is better (which determines the rankings between the θi an hence the top g), and Wi is

i.i.d. observation noise. Denote the observed ordering within the subset of acceptable

controllers:

J
(
θ{1}

)
+W{1} ≤ · · · ≤ J

(
θ{g}

)
+W{g}, (2.20)

i.e. θ{i} ∈ Θ? for each i ∈ {1, . . . , g}, and the observed ordering outside the subset of

observed controllers:

J
(
θ{g+1}

)
+W{g+1} ≤ · · · ≤ J

(
θ{N}

)
+W{N}, (2.21)

i.e. θ{i} /∈ Θ? for each i ∈ {g + 1, . . . , N}. Then now for the top m selection Θ̂∗, we have

Pr
(∣∣∣Θ̂∗ ∩Θ?

∣∣∣ = 0
)

= Pr
(
J
(
θ{g+m}

)
+W{g+m} < J

(
θ{1}

)
+W{1}

)
. (2.22)

It can be shown [94, §4.3.2] that the horse race alignment probability is lower bounded

by the blind pick alignment probability:

Pr
(∣∣∣Θ̂∗ ∩Θ?

∣∣∣ ≥ 1
)
≥ 1−

(
N−g
m

)(
N
m

) . (2.23)

In the above, OO has been formulated as a search problem over a finite search space.

That is, the variables which encode all the possible solutions take on values from a finite

set Θ. There are of course problems where the search space will be infinite and possibly

also uncountable (e.g. optimisation over the cone of positive definite matrices for tuning

MPC). For these problems, OO can still be informally applied in practice by conditioning

on the expected number of acceptable solutions in the sample, accompanied with the

assurance that a large enough sample from the search space becomes ‘representative’ of

the search space itself [123], and thus can be used as a good heuristic. However, a more

stringent analysis and treatment of OO for uncountable search spaces is lacking.
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2.5 Probabilistic Robust Control

The area of robust control is a richly developed sub-field of control for handling sys-

tems with uncertainties. Early on, the focus in the control community was on dealing

with worst-case uncertainties, using set-theoretic descriptions of plants. Some time later,

robust methods for dealing with probabilistic uncertainties, such as polynomial chaos

expansion, began to emerge [114]. These methods can offer a trade-off between less-

conservative bounds (which tend to be pessimistic in the worst-case) against some prob-

abilistic risk [35].

2.5.1 Randomised Algorithms

When there is probabilistic plant uncertainty, the use of randomised algorithms (RA) is

another well-established technique for finding approximate solutions to otherwise diffi-

cult computational problems [183]. A subset of these techniques goes by the name of the

scenario approach to robust control [36]. Some key results from this area of probabilistic

robust control pertain to the sample complexity, i.e. the number of simulations needed

for the RA to perform analysis or design until desired probabilistic specifications are met.

In control analysis, the techniques used to obtain sample complexities were originally pi-

oneered in [113, 181], and based on well-known concentration inequalities such as the

Chernoff bound. In control design, the first sample complexities for RA were provided

in [195], using results from the paradigm of empirical risk minimisation in statistical

learning theory (namely, using the Vapnik-Chervonenkis dimension). These randomised

algorithms and variants thereof have seen numerous control applications. In fault detec-

tion, randomised algorithms have been used for finding a solution which ensures a low

false alarm rate with high confidence [59]. In [10], randomised algorithms were used for

the estimation and analysis for the probability of stability in high speed communication

networks.

One basic randomised algorithm for probabilistically robust controller tuning is de-

scribed as follows. Let J (ψ, θ) : Ψ × Θ → [0, 1] be a system performance function with
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a family of uncertain plants ψ ∈ Ψ and a family of controllers θ ∈ Θ, under the con-

vention that a smaller value of J is better. The plant ψ is treated as a random variable

that is drawn when a test of the controller is conducted. One way to assess the controller

performance is by the expected performance over the plant uncertainty

J (θ) := Eψ [J (ψ, θ)] . (2.24)

Unfortunately, evaluating this expectation is usually not tractable. However, it can still

be estimated by drawing N i.i.d. samples ψ1, . . . , ψN from the distribution of ψ and com-

puting

ĴN (θ) :=
1

N

N∑
i=1

J (ψi, θ) . (2.25)

A randomised algorithm for control design proceeds as follows. Sample M i.i.d. con-

trollers θ1, . . . , θM from Θ using some arbitrary mechanism. Denote

ϑ̂N,M := argmin
i=1,...,M

ĴN (θi) . (2.26)

The following result [182, Theorem 10.3] says that for ε, ε, δ ∈ (0, 1), if the sample sizes

are chosen sufficiently large with

M ≥ log(2/δ)

log (1/ (1− ε))
(2.27)

and

N ≥
log 4M

δ

2ε2
, (2.28)

then with confidence at least 1− δ,

Prθ

(
J (θ) < ĴN

(
ϑ̂N,M

)
− ε
)
≤ ε. (2.29)

In the literature [196], the solution ϑ̂N,M is known as an approximate probable near min-

imiser, and ĴN
(
ϑ̂N,M

)
is known as the approximate probable near minimum. This stipulates

that given some risk δ, accuracy ε and level ε, then with high confidence (prescribed by
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the risk δ), there is only a small chance (prescribed by the level ε) that a randomly sam-

pled controller would outperform the performance observed in simulation of the ob-

tained solution ĴN

(
ϑ̂N,M

)
(within slack prescribed by the accuracy ε). In other words,

the empirical-averaged performance over plant uncertainty in simulation is ‘close’ to the

non-empirical-averaged performance of an ‘exceptional’ subset of controllers.

If a controller θ̂∗ has been obtained via offline tuning, it would seem useful to also

have a bound that involves the actual performance observed online of the tuned con-

troller, i.e. J
(
ψ, θ̂∗

)
from a realised plant ψ. However, such bounds do not yet appear to

exist in the literature.

Several commonalities can also be observed between methods in OO and methods in

RA for controller tuning. On the surface, they both seek to find approximate solutions

to difficult design problems that are rendered intractable due to uncertainty. Moreover,

they both employ a philosphy which can be roughly summarised as “randomly sam-

ple many candidate solutions, simulate their performances, and pick the best observed

one”. In OO, the optimality of this practice (the horse race rule) was formally shown in

[207]. Additionally, [196] discusses that although this strategy is what seems intuitively

to be the best thing to do (and what has been done for decades), the usage of RA is jus-

tified through rigorous sample complexity estimates. A further similarity shared by OO

and RA is the notion of goal softening, which can be used to control the degree of sub-

optimality for the obtained solution. This apparent connection between OO and RA had

been recognised and briefly touched on in [105, 113], but as of yet, has not been fully

explored in the literature.

2.6 Research Aims

Before stating the research aims, we first summarise the literature presented above. In

Section 2.1, a quadratic-cost formulation of MPC was introduced, and a meta-cost ap-

proach (as well as other approaches) to tuning were described in Section 2.1.2. In partic-
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ular, the MLCTF [104] highlighted the use of preference learning to obtain a performance

index for controllers. An account of preference learning and utility theory was given in

Section 2.3.

Section 2.2 provided definitions for signals of interest in the diesel air-path, and sum-

marised the current state of literature for diesel air-path modelling/control. Recount-

ing from Chapter 1, physical engine experiments are costly/limited, so a diesel air-path

model identified from a short amount of experimentation will lead to some model uncer-

tainty. Sections 2.4 and 2.5 cover approaches from literature to address controller tuning

in the presence of uncertainty, namely OO and RA.

Following this summary, we highlight several gaps in literature as they pertain to

offline tuning of MPC, and propose research questions to address them.

2.6.1 Research Aim 1

As discussed in Section 2.1.2.4, a novelty proposed by the MLCTF is the learning of pref-

erences from human experts. The original paper [104] considered this via a regression

problem using numeric labels for ratings. In Section 2.3 however, motivation was pro-

vided for learning from pairwise ranking data, and the need to incorporate monotonicity

constraints in learned utility functions in the case of desirable or undesirable features.

Thus, there exists an opportunity to build upon the MLCTF, by learning preferences when

data consists of pairwise comparisons, while also adhering to monotonicity constraints

in the utility function.

Additionally, if a highly uncertain model is used in simulation for offline tuning, this

may adversely impact the test performance of the tuned controller. Throughout Section

2.1.2, there have not been any studies which explicitly address the uncertainty in offline

tuning of MPC, although the paradigms of OO and probabilistic robust control (covered

in Sections 2.4 and 2.5 respectively) do offer a way to address the uncertainty in con-

trol design. However, their application firstly relies on having some characterisation of
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the uncertainty in the plant model. Therefore, this forms an opportunity to augment the

machine learning framework with uncertainty quantification, with respect to the plant

model. This leads to the first research aim.

To augment the machine learning controller tuning framework with isotonic pairwise prefer-

ence learning and plant uncertainty quantification.

This research aim is addressed throughout Chapters 3 and 4. Pairwise preference

learning algorithms with monotonicity constraints are proposed in Chapter 3, and an

active learning algorithm (which aims to reduce the number of experiments) for diesel

air-path identification and uncertainty quantification is presented and demonstrated in

Chapter 4.

2.6.2 Research Aim 2

In offline tuning of MPC, it would be desirable to have theoretical performance guaran-

tees for the tuned controller on the actual plant, to the flavour of: “a well-performing

MPC in simulation also performs well when tested on the actual plant”. The existing

theory not entirely suitable to provide such guarantees. The bounds and probabilities

in OO are valid for tuning over finite space of controllers, however for quadratic-cost

MPC this ideally requires tuning over an uncountable space of controllers. Also when

using RA, the bound (2.29) involves the approximate probable near minimum, but not

the actual test performance on a realised plant. Hence, an opportunity exists to develop

an offline tuning approach for controllers over an uncountable space that provides some

probabilistic performance guarantee of the tuned controller in a test on the actual plant.

This leads to our second research aim.

To develop an ordinal optimisation approach valid for offline tuning of MPC, which is to be

tested online.

This research aim is addressed throughout Chapters 5, 6 and 7. An analysis of OO
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over uncountably many controllers is conducted in Chapter 6. A sequential learning al-

gorithm for probabilistically robust controller tuning is also presented Chapter 7. The

results in Chapters 6 and 7 rely on theoretical bounds and properties developed in Chap-

ter 5.

2.6.3 Research Aim 3

The remaining research aim is an application of the proposed methods to tuning quadratic-

cost MPC for a diesel air-path. Existing studies [128, 129] have already demonstrated the

success of online MPC tuning approaches. Thus, the primary focus in this thesis is on the

offline tuning application, which complements the online tuning method (e.g. by find-

ing an initial good controller tuning for further online tuning). Our third research aim is

stated as follows.

To implement and experimentally validate the efficacy of quadratic-cost MPC tuned offline

from ordinal optimisation on a diesel engine test rig.

This research aim will involve designing an MPC architecture suitable for the control

of the diesel air-path over transient drive-cycles, and implementing the architecture on an

ECU. These experimental results arising from this research aim are presented in Chapter

6.



Chapter 3

Isotonic Preference Learning from
Pairwise Comparisons

In this chapter, two methods are proposed for learning the preference function in the machine learn-

ing controller tuning framework (i.e. based on Figure 2.1), when the data comprises of pairwise

comparisons, and monoticity constraints are to be enforced. The first method in Section 3.2 utilises

Gaussian process regression. The second method in Section 3.3 relies on Bayesian estimation of a

linear regression function using a Dirichlet prior. Both methods are demonstrated for learning prefer-

ences over features from diesel air-path trajectories, from pairwise comparison data.

Contributions in this chapter have been presented at the 2018 IEEE Conference on Decision and
Control [43]

3.1 Problem Setup

Recall Section 2.3.1, where ordinal utility functions for a preference relation �
pref

over a

feature space X = X1 × · · · × Xd was presented in Definition 2.1. In what follows, we

treat X ⊂ Rd and work with the following assumptions on the preferences of the human

providing the rating data (whom we call the user).

Assumption 3.1. (Debreu preferences) The users’ preferences �
pref

satisfy the conditions of De-

breu’s theorem [54, Theorem I] (i.e. X is a completely ordered, connected and separable space, and

for each x′ ∈ X the sets
{
x ∈ X : x �

pref
x′
}

and
{
x ∈ X : x′ �

pref
x

}
are both closed), so that

there exists a continuous ordinal utility function that can be used to represent �
pref

.

Remark 3.1. Assumption 3.1 is not overly restrictive, but does serve the purpose of excluding

cases where there does not exist a continuous utility function to represent users’ preferences. A

39
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well-known example of preferences which do not satisfy Assumption 3.1 are Lexicographic prefer-

ences [90].

The notions of desirability/undesirability of features as discussed in Section 2.3.3 is

formalised with the following definition.

Definition 3.1 (Monotonic preferences). A differentiable ordinal utility function h : X → R

for preferences �
pref

is strictly monotonic at x in direction j if

∂h (x)

∂ [x]j
> 0 (3.1)

while weak monotonicity is defined if (3.1) holds with ≥.

Assumption 3.2. (Monotonicity) The users’ preferences are strictly monotonic along dimensions

given by the index set J ⊆ {1, . . . , d}.

Remark 3.2. Assumption 3.2 is not restrictive because it arises from preconditioned knowledge

(e.g. common sense or otherwise) of features exhibiting monotonicity, which is a motivating factor

for the need to learn a monotonic utility function in the first place. For example, it is natural to

treat the negative amount of overshoot and settling time as being desirable (i.e. higher is better),

hence they should be monotonic in their preferences.

Suppose there is a set {X} := {x1, . . . , xn} of n distinct items where each xi ∈ X for

i = 1, . . . , n, from which items to compare are sampled from. Assume the data generating

process follows the rating model in Assumption 3.3.

Assumption 3.3. (Rating model) The user generates comparisons using the data generating

process

v (xA) := g (xA) + eA (3.2)

v (xB) := g (xB) + eB (3.3)

such that when shown items xA, xB ∈ {X} for comparison, v (xB) > v (xA) means the user rates

xB preferred over xA, where eA, eB ∼ N
(

0, σ2
rating

)
are i.i.d. rating noise terms and g (·) is the

underlying utility function of the user. The reverse analogously holds if v (xB) < v (xA).
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The rating noise may be interpreted as inaccuracy of the user’s judgement (e.g. due to

imperceptible differences in alternatives or other psychological factors such as fatigue). If

there are multiple inhomogeneous users providing ratings (as considered in [142]), then

any differences between users’ opinions can also be modelled using rating noise. The

data consists of M comparisons, denoted by D = (XA, XB) where XA := (xA1 , . . . , xAM) and

XB := (xB1 , . . . , xBM), with indices A1, . . . , BM ∈ {1, . . . , n} such that the agent has rated xBi

preferred over xAi for each i = 1, . . . , M.

The learning problem is posed as follows:

Problem 3.1. Given pairwise comparison data D, learn a continuous ordinal utility function

that exhibits strict monotonicity over all X in the respective dimensions given by J .

Observe that the monotonicity-constrained preference learning problem is trivial if x

is of dimension d = 1, as then the ordinal utility function can be chosen to be any strictly

monotonic continuous function. Thus we are primarily interested in the case where the

feature vector is of dimension d > 1.

3.2 Isotonic Preference Learning via Gaussian Process Regres-
sion

Throughout this section, we develop an algorithm for isotonic preference learning from

pairwise comparisons, using Gaussian process regression (Appendix A). Note thay mono-

tonicity constraints have previously been considered in Gaussian processes regression

[158], where ‘virtual’ derivative observations were injected into the data, however a guar-

antee of monotonicity for the posterior mean was not provided there.

3.2.1 Preference Learning via Gaussian Process Regression

We summarise an approach for learning a utility function from pairwise comparisons

using Gaussian processes. The method is adapted from [49], except a generally non-zero

prior mean is employed here. We seek an estimate for the vector of latent (i.e. unknown)
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utilities
⇀
f :=

[
f (x1) . . . f (xn)

]>
, (3.4)

which are the evaluations from our estimated utility function f (·) at each of the elements

in {X}. Denote the (normalised) difference in utility for the ith comparison by

Zi :=
f (xBi)− f (xAi)√

2σrating

. (3.5)

The estimate of
⇀
f is obtained by maximum a posteriori (MAP) estimation. This estimator

is a function of the data, denoted by
⇀
fMAP (D). In what follows, this dependency on the

data will be suppressed for brevity of notation. Given a kernel function k (x, x′) and prior

mean function m (x), the MAP estimate via Gaussian process regression is

⇀
fMAP = argmin

⇀
f

{
−

M∑
i=1

log Φ (Zi) +
1

2

(⇀
f −m (X)

)>
K−1

(⇀
f −m (X)

)}
, (3.6)

where X :=
[
x1 . . . xn

]>
, m (X) :=

[
m (x1) . . . m (xn)

]>
, K is the n×n Gram matrix of

X using the kernel k (·, ·) and Φ (·) is the cumulative distribution function of the standard

Gaussian. In practice, a small but positively scaled identity matrix can be added to K if it

is ill-conditioned. Note that the optimisation problem in (3.6) is strictly convex and twice

differentiable (as shown in [49]) and therefore can be solved in a straightforward manner

using Newton-like or gradient methods. Once
⇀
fMAP has been obtained, an approximate

predictive posterior mean (via a Laplace approximation [155, §3.4]) at a test location x∗ is

given by

f̂∗ (x∗) = m (x∗) +
⇀
k
>
∗K−1

(⇀
fMAP −m (X)

)
, (3.7)

where
⇀
k (X, x) :=

[
k (x1, x) . . . k (xn, x)

]>
and

⇀
k ∗ :=

⇀
k (X, x∗).

As later demonstrated via Figure 3.1b however, this approach does not enforce mono-

tonicity of the learned utility function.
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3.2.2 Maximum Likelihood of a Linear Utility Function

By following an empirical Bayes approach [133] (in which a Bayesian prior is obtained

from data), a maximum likelihood estimator (MLE) is proposed to obtain a prior mean

function m (x). Let qi : Xi → R, i = 1, . . . , d be strictly monotonic functions, and define

the operator
⇀
q : X → Rd with

⇀
q (x) := (q1 ([x]1) , . . . , qd ([x]d)). We can then construct a

model of the utility function linear in the basis
⇀
q (x):

g (x) = b>
⇀
q (x) , (3.8)

where b is the vector of parameters to be estimated. By applying the rating model from

Assumption 3.3, the maximum likelihood estimate of b under the monotonicity hypothe-

sis in Assumption 3.2 involves solving the constrained problem

b̂ = argmin
b

{
−

M∑
i=1

log Φ

(
b>

⇀
q (xBi)− b>

⇀
q (xAi)√

2σrating

)}

subject to bj > 0, ∀j ∈ J .

(3.9)

Using a linear-in-basis form for the utility function is the usual approach taken in discrete

choice theory [187], however as we later demonstrate, by using this form only as a prior,

the overall estimate can be improved upon.

Remark 3.3. The convexity of (3.9) is readily shown using the log-concavity of the Gaussian

distribution [28]. Twice differentiability also holds and Newton-like or gradient methods can be

used to solve (3.9).

Remark 3.4. We can fix σrating > 0 without loss of generality as this only affects the scale of the

learned utility function (as in [142]). To illustrate, notice that scaling both g (·) and σrating from

Assumption 3.3 by the same positive constant will not change the distribution of D. The learning

problem is unaffected as we are only concerned with learning an ordinal utility function. So for

convenience, we may choose σrating = 1/
√

2.

Remark 3.5. In numerical implementation of (3.9), it may be required to enforce monotonicity

with the constraint bj ≥ c with some small c > 0.
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After b̂ has been obtained, we can express the estimate of the vector of latent utilities

as the matrix-vector multiplication Q (X) b̂, where Q (X) :=
[
⇀
q (x1) . . .

⇀
q (xn)

]>
. We

also choose the prior mean function m (x) = b̂>
⇀
q (x) and our proposed utility function

estimate takes the form

f̂∗ (x∗) = b̂>
⇀
q (x∗) +

⇀
k
>
∗ Ξ

⇀
z , (3.10)

with Ξ := K−1,
⇀
z :=

⇀
y − Q (X) b̂, and

⇀
y is a choice of vector for the latent utilities. Note

that this closely resembles the form of the approximate predictive posterior mean in (3.7).

3.2.3 Monotonicity Conditions on Gaussian Process Regression

In this section, we state conditions for strict monotonicity of the utility function estimate.

As it produces differentiable sample functions of both the prior and posterior, the kernel

function being considered is the squared exponential kernel

k
(
x, x′

)
= s2 exp

(
−1

2

(
x− x′

)>
Λ−1

(
x− x′

))
, (3.11)

where Λ = diag {`1, . . . , `d} and s > 0, `1, . . . , `d > 0 are hyperparameters. We focus on

conditions pertaining to the predictive function (3.10). Let
[
∂
⇀
k
>
∗

∂x∗

]
j

denote the jth row of

the d × n matrix of partial derivatives ∂
⇀
k
>
∗

∂x∗
. From Definition 3.1, the predictive function

(3.10) is strictly monotonic at x in direction j if

b̂j
∂qj (xj)

∂ [x]j

∣∣∣∣∣
xj=x∗j

+

∂⇀k>∗
∂x∗


j

Ξ
⇀
z > 0. (3.12)

For the squared exponential kernel and a choice of prior mean function affine in x (i.e.

m (x) = b̂>x), the condition (3.12) becomes

0 < b̂− Λ−1
[
(x∗ − x1) k (x∗, x1) . . . (x∗ − xn) k (x∗, xn)

]
Ξ
⇀
z . (3.13)
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3.2.4 Monotonicity Constrained Estimates

We propose an approach to conduct preference learning from pairwise comparisons with

a guarantee of strict monotonicity along any amount of directions as desired. For sim-

plicity, the form of the prior mean function is chosen to be affine in x so that m (x) = b̂>x

and
⇀
z =

⇀
y − Xb̂. For the condition in (3.13), observe that when b̂j > 0, the inequality

will eventually be satisfied as
⇀
z → 0 (or equivalently as

⇀
y → Xb̂). We state the strict

monotonicity guarantee formally as follows.

Theorem 3.1. With choice of prior mean function affine in x, let
⇀
f lin := Xb̂ as obtained from

solving (3.9) and
⇀
fMAP as from solving (3.6). There exists an interval (a∗, 1] with

a∗ = max
j∈J

{
b̂j

−b̂j + gj

}
+ 1 (3.14)

gj := min

0, inf
x∈X


[
∂
⇀
k (X, x)>

∂x

]
j

Ξ
(⇀
fMAP − Xb̂

)+ b̂j

 (3.15)

such that for all a ∈ (a∗, 1], using the convex combination
⇀
y = a

⇀
f lin + (1− a)

⇀
fMAP in (3.10)

satisfies (3.12) for all j ∈ J over all x ∈ X .

Proof. We have strict monotonicity in direction j for all x ∈ X if

b̂j + inf
x∈X


[
∂
⇀
k (X, x)>

∂x

]
j

Ξ
(
⇀
y − Xb̂

) > 0. (3.16)

For ease of notation, define gj (x) :=

[
∂
⇀
k (X,x)>

∂x

]
j

Ξ
(⇀
fMAP − Xb̂

)
. Starting from the

monotonicity condition (3.16) and using
⇀
y = aXb̂j + (1− a)

⇀
fMAP, rearranging for a

in the case when b̂j + infx∈X {gj (x)} ≤ 0 yields

a >
b̂j

infx∈X {gj (x)}
+ 1, (3.17)

while noting that b̂j > 0 so infx∈X {gj (x)} < 0. Let a∗j = b̂j/ infx∈X {gj (x)}+1 ≥ 0, which

satisfies (3.17) for all x ∈ X if a ∈
(
a∗j , 1

]
. For the case when b̂j + infx∈X {gj (x)} > 0, it is
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enough to let a∗j = 0. To combine both cases we write

a∗j =
b̂j

−b̂j + gj
+ 1, (3.18)

where gj is given in (3.15). Then a∗ = maxj∈J a∗j finds the value such that for all a ∈

(a∗, 1], strict monotonicity is satisfied in all directions j ∈ J over all x ∈ X , yielding

(3.14).

This result shows that we can find values of a (and hence
⇀
y ) which will satisfy the

monotonicity constraint. A value of a = 1 is the most conservative, resulting in the

predictive function being identical to the prior mean, but is a value that always ensures

the monotonicity constraints are satisfied. However, there is merit in choosing an a as

low as possible (whilst satisfying monotonicity constraints), as indicated by Corollary

3.1, which follows Theorem 3.2.

Theorem 3.2. Denote
⇀
y a := a

⇀
f lin + (1− a)

⇀
fMAP, and define Zi,MAP, Zi,a, Zi,lin as in (3.5)

however using the vectors
⇀
fMAP,

⇀
y a and

⇀
f lin respectively. Suppose

⇀
fMAP 6=

⇀
f lin. Then the

negative log likelihoods (or equivalently, the Kullback-Leibler divergences from the empirical dis-

tribution of comparisons) satisfy

−
M∑
i=1

log Φ (Zi,MAP) < −
M∑
i=1

log Φ (Zi,a) < −
M∑
i=1

log Φ (Zi,lin) (3.19)

for any a ∈ (0, 1). If
⇀
fMAP =

⇀
f lin then (3.19) holds but with equality.

Proof. The case with
⇀
fMAP =

⇀
f lin is trivial. Let J

(⇀
f
)

denote the cost function in (3.6).

For the case
⇀
fMAP 6=

⇀
f lin, use by definition min⇀

f
J
(⇀
f
)

= J
(⇀
fMAP

)
< J

(⇀
f lin

)
along

with the strict convexity property of J
(⇀
f
)

to establish J
(⇀
fMAP

)
< J

(
⇀
y a

)
< J

(⇀
f lin

)
for a ∈ (0, 1). Then apply the fact that the weighted norm

∥∥∥⇀y a − Xb̂
∥∥∥
K

= (1− a)
∥∥∥(⇀fMAP −

⇀
f lin

)∥∥∥
K
≥ 0 (3.20)

is strictly monotonically decreasing in a for a ∈ (0, 1).
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Corollary 3.1. If
⇀
fMAP 6=

⇀
f lin, then for all a′ < a

−
M∑
i=1

log Φ
(
Zi,a′

)
< −

M∑
i=1

log Φ (Zi,a) . (3.21)

Remark 3.6. It is not trivial to find a class of problems such that there is a reasonable probability

that
⇀
fMAP =

⇀
f lin. To do so requires investigating the intersection of the supports for the sam-

pling distributions of
⇀
fMAP and

⇀
f lin, which may or may not be the empty set. The supports of the

sampling distributions themselves have cardinality in the order of 2M, so even if the intersection is

not the empty set, the probability should still be very small for reasonably large M. Hence we argue

that for most problems of interest (i.e. where M is not small), the probability that
⇀
fMAP =

⇀
f lin

will either be zero or can be considered negligibly small.

The revelation of results (3.19) and (3.21) is that we should choose a as low as possible

(whilst satisfying monotonicity constraints, i.e. a > a∗) and that the resulting empirical

fit as measured by the likelihood will be an improvement over using
⇀
f lin. A procedure

based on this principle which finds a weighting between the linear and MAP estimates

to guarantee strict monotonicity is described in Algorithm 3.1.

Algorithm 3.1 Preference Learning with Strict Monotonicity Constraints

Require: Data set D, minimal distinct items matrix X, monotonicity constraint index set
J

1: Choose hyperparameters s > 0, σrating = 1/
√

2, `1, . . . , `d > 0
2: Choose small e ∈ (0, 1]
3: Obtain estimate b̂ via (3.9) for the model b>x
4: Choose r > 0
5: b̂← rb̂, σnoise ← rσnoise . Normalise to a nominated scale
6:

⇀
f lin ← Xb̂

7: Obtain
⇀
fMAP via (3.6) using the prior mean b̂>x

8: a← a∗ from (3.14)
9: a← min {a + e, 1} . For strict monotonicity

10:
⇀
y ← a

⇀
f lin + (1− a)

⇀
fMAP

11: Compute the estimated utility function with (3.10)
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3.2.5 Application to Trajectory Rating Data

We apply Algorithm 3.1 to learning preferences over diesel air-path trajectories. The

available dataset is the same that is used in [103], and consists of 240 step response trajec-

tories for the pair of boost pressure and EGR rate output signals (pim, yEGR) with corre-

sponding numeric rating labels from [0, 10]. To obtain a pairwise ranking dataset suitable

for Algorithm 3.1, a bootstrapped dataset was generated by randomly selecting 120 pairs

of data points without replacement, and synthesising a comparison using the provided

label, plus some small rating noise (standard deviation 0.01). The feature vector was

selected to be integral of absolute error for each trajectory:

IAEpim = tsample

T−1∑
k=0

∣∣∣pim,k − pref
im

∣∣∣ (3.22)

IAEyEGR = tsample

T−1∑
k=0

∣∣∣yEGR,k − yref
EGR

∣∣∣ , (3.23)

where tsample is the sample time and T is the total number of samples in the trajectory.

The negative of the feature pair (IAEpim , IAEyEGR) was taken (so that the higher, the bet-

ter) and normalised between [0, 1]2 (by max/min normalisation across the whole dataset)

so that the transformed feature pairs ([x]1 , [x]2) were fed into Algorithm 3.1. Thus, Algo-

rithm 3.1 is applied with d = 2, n = 240 and M = 120.

Figure 3.1a shows the contours of the estimated utility function using the vector
⇀
y a∗+e, which is guaranteed to satisfy strict monotonicity. On the other hand Figure 3.1b

shows the contours when the vector
⇀
fMAP was used, which does not exhibit monotonic-

ity. The normalised coefficient estimates in the linear prior were

b̂ =
[
0.1997 0.8003

]>
. (3.24)

When converted back into its unnormalised scale, the coefficients become

b̂scaled =
[
0.0019 0.4659

]>
. (3.25)
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(a) A contour plot of the estimated utility func-
tion.

Monotonicity not enforced
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(b) A contour plot of the estimated utility func-
tion without enforced monotonicity constraints.

Figure 3.1: Comparison of learned utility functions.

3.3 Bayesian Isotonic Regression from Pairwise Comparisons

In the previous section, Algorithm 3.1 was successfully demonstrated in d = 2 dimen-

sions. However, the method may not scale well to higher dimensions of the feature space,

since there may be no efficient way to find a∗ in Algorithm 3.1, over brute force search.

Here, we describe an alternative approach for isotonic regression from pairwise com-

parisons, based on a Dirichlet prior. The index set J is now required to be in all the

dimensions {1, . . . , d}. The intention is to find a linear utility function of the form

f (x) = b>x, (3.26)

where b ≥ 0. Since we aim to find an ordinal utility function, we can fix the scale and

constrain b to lie on the standard simplex (i.e. the probability simplex), such that b>1 =

1. Then an appropriate choice of prior to place over b is the Dirichlet prior denoted

Dirichlet (·); we write

pprior (b) = Dirichlet (b) . (3.27)
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Re-using the likelihood implicit from (3.9) above, we have

plik (D|b) =
M∏
i=1

Φ

(
b>xBi − b>xAi√

2σrating

)
. (3.28)

Thus the posterior up to a constant of proportionality is

ppost (b|D) ∝ plik (D|b) pprior (b) . (3.29)

The analytical form of the exact posterior is intractable, however Markov Chain Monte-

Carlo (MCMC) can be performed to draw samples from the posterior. The σrating is a

hyperparameter, however it can be empirically chosen (e.g. similar to Algorithm 3.1, but

with a normalisation constant that exactly makes b sum to one).

3.3.0.1 Application to Trajectory Rating Data

We use a pairwise comparison data bootstrapped in a similar manner to Section 3.2.5,

however we now generate an eight-dimensional feature vector of undesirable (negated

to be desirable) time-domain characteristics:

x = − (RT1, ST1, OS1, US1, RT2, ST2, OS2, US2) , (3.30)

where the definition of each feature is given in Table 3.1. The Dirichlet prior is set to be

Table 3.1: Description of time-domain characteristics used in the meta-cost, for a trajec-
tory starting from its initial condition relative to a final value of 0.

Characteristic Description
RT1 10% to 90% rise time (seconds) of pim

ST1 2% settling time (seconds) of pim

OS1 Overshoot (proportion) of pim

US1 Undershoot (proportion) of pim

RT2 10% to 90% rise time (seconds) of yEGR

ST2 2% settling time (seconds) of yEGR

OS2 Overshoot (proportion) of yEGR

US2 Undershoot (proportion) of yEGR
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the ‘flat’ Dirichlet prior, i.e. with all parameters equal to one. After forming the likelihood

and the prior, we obtain 200 i.i.d. samples drawn approximately from the posterior using

the Metropolis-Hastings MCMC algorithm [160, §7.3], and average out the samples to

obtain an estimate of the posterior mean b̂. A histogram of marginal posterior samples

compared against is marginal prior is displayed in Figure 3.2.
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Figure 3.2: Histograms of samples approximately from the posterior, compared against
density curves of the priors.

Plugging-in the posterior mean, the resulting ordinal utility function is

f (x) = − (0.03RT1 + 0.0238ST1 + 0.0113OS1 + 0.0295US1
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+0.0465RT2 + 0.0455ST2 + 0.4107OS2 + 0.4029US2) . (3.31)

3.4 Summary

In this chapter, we demonstrated two methods for isotonic preference learning from pair-

wise comparisons. The first used Gaussian process regression and enforced monotonicity

by finding a weighted average between the MAP and linear MLE estimates. The sec-

ond used a Dirichlet prior for Bayesian estimation of a linear function, which potentially

scales better with larger d. Both methods were exemplified on diesel air-path trajectory

rating data.



Chapter 4

Active Learning for Linear Parameter
Varying System Identification

In this chapter, active learning is proposed for selection of the next operating points in the design of

experiments, for identifying linear parameter-varying systems. Our approach is based on exploiting

the probabilistic features of Gaussian process regression to quantify the overall model uncertainty

across locally identified models. This results in a flexible methodology which accommodates for various

techniques to be applied for estimation of local linear models and their corresponding uncertainty. In

Section 4.3, we perform active learning with application to the identification of a diesel engine air-path

plant model for the machine learning controller tuning framework, and demonstrate that measures of

model uncertainty can be successfully reduced using the proposed methods.

Contributions in this chapter have been presented at the 2020 IFAC World Congress [42].

4.1 Problem Setup

Recall the discussion in Section 2.2.1.3 that linear parameter-varying (LPV) systems are

suitable for modelling the diesel air-path, which are parametrised in the operating point.

We thus consider noisy discrete-time LPV systems of the following form:

xk+1 = A (p) xk + B (p) uk + wk (4.1)

yk = Cxk, (4.2)

with state xk ∈ Rn, input uk ∈ Rm, output yk ∈ Rp and with noise/unmodelled distur-

bance sequence wk. The operating point p ∈ P ⊂ Rd parametrises the system matrices

A (p) and B (p), the latter two which are the objects of interest to be identified. For the

53
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identification problem, we make the following assumptions.

Assumption 4.1. The operating space P ⊂ Rd is a compact region.

Assumption 4.2. The functions A : P→ Rn×n and B : P→ Rn×m are smooth.

Assumption 4.3. The matrix C is known and we have access to the full state measurement xk.

Assumption 4.4. For all p ∈ P, the system (4.1) is stable and the noise wk is an independent

and identically distributed (i.i.d.) sequence with covariance matrix E (p).

In our formulation, Assumption 4.3 ensures the system order n is known and the

state-space realisation is specified, so identification of (4.1) for fixed p becomes a special

case of VARX (vector autoregression with exogenous inputs) regression, where identifia-

bility issues arising from unknown state-space realisation do not become a concern. Also

note by Assumption 4.4 that we do not necessarily require the noise to be Gaussian.

An implementation of MPC for the system (4.1) requires some knowledge about the

matrices A (p) and B (p). As these are often not known in practice, they would be replaced

by their estimates Â (p) and B̂ (p) which have been obtained from experiments. Doing so

introduces some uncertainty in the predictions (in the form of variance), attributed to

variance in the estimates for A (p) and B (p). This motivates our problem herein, which is

to devise a method that quantifies the uncertainty in the estimates Â (p) and B̂ (p), and si-

multaneously leverages this to decide the next operating point to conduct an experiment

at.

We use Gaussian process regression (Appendix A), which has previously been ap-

plied in active learning settings [31] and also in uncertainty quantification [24]. A Gaus-

sian process on d-variate operating point p ∈ Rd may be denoted by:

f (p) ∼ GP
(
m (p) , k

(
p, p′

))
(4.3)

with mean function m (p) : Rd → R and covariance function k (p, p′) : Rd × Rd → R. For
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two collections of points p = (p1, . . . , pm) and p′ = (p′1, . . . , p
′
n), denote the Gram matrix

K
(
p,p′

)
:=


k (p1, p

′
1) . . . k (p1, p

′
n)

...
. . .

...

k (pm, p
′
1) . . . k (pm, p

′
n)

 , (4.4)

and mean vector

m (p) :=
[
m (p1) . . . m (pm)

]
. (4.5)

Then for pre-specified prior mean and covariance functions m (·) and k (·, ·), the posterior

predictive distribution at test points p∗ given input-output training data D = (p, f) sub-

ject to zero-mean Gaussian noise with covariance C on the output observations f, is given

by:

[f∗|p∗,D] ∼ N
(
m (p∗) + K (p∗,p) K−1 (f−m (p)) , K (p∗,p∗)− K (p∗,p) K−1K (p,p∗)

)
,

(4.6)

where

K := K (p,p) + C. (4.7)

4.2 Active Learning Framework

The work in this section relates to a framework of active learning for LPV system iden-

tification via a local approach, which extends previous work described in Section 2.2.1.4

since it is applicable to multiple-input multiple-output (MIMO) systems with multivari-

ate operating point. The framework also quantifies the uncertainty associated with the

LPV model in terms of the variance of the model parameters.

4.2.1 GPR-LPV Model Estimation

The active learning procedure is explained as follows. We presume there to be an initial

selection of m operating points p = (p1, . . . , pm) for identification. For each of these points,

a time-series data set has been collected by running a local experiment and measuring
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the (xk, uk) pairs. From this, we have then subsequently identified local linear models

with matrices
(
Âp1 , B̂p1

)
, . . . ,

(
Âpm , B̂pm

)
.

Moreover, suppose our estimation method also provides uncertainty estimates for

the identified parameters in the form of estimated standard deviation for the estimator

(called the standard errors of the estimates). For an arbitrary element ζ̂pi of
(
Âpi , B̂pi

)
for

any i ∈ {1, . . . , m}, denote its standard error by se
(
ζ̂pi

)
.

Now to conduct active learning, we fit Gaussian processes to each of the elements of

A (p) and B (p). That is, we represent these matrices as

A (p) =


a1,1 (p) . . . a1,n (p)

...
. . .

...

an,1 (p) . . . an,n (p)

 (4.8)

B (p) =


b1,1 (p) . . . b1,m (p)

...
. . .

...

bn,1 (p) . . . bn,m (p)

 , (4.9)

where each element a1,1 (p) , . . . , bn,m (p) is a GPR model over p as introduced in Section

4.1. From our initial identified models, we form n2 +mn training datasets Da1,1 , . . . ,Dbn,m

from the m experiments. Each Dζ for ζ ∈ {a1,1, . . . , bn,m} consists of m observations with

feature-label pairs
(
pi, ζ̂pi

)
for i = 1, . . . , m. Then at this stage, GPR is applied to each

training dataset. Note that this induces a distribution over LPV models, and is the pri-

mary mechanism used to quantify uncertainty, which we do so in the following novel

way. Under standard conditions (these being (4.1) is stable, wk is i.i.d. and uk is quasis-

tationary), the least squares parameter estimates are asymptotically normal as the length

of time for the local experiment tends to infinity [27]. Hence it is reasonable to use those

standard errors as the Gaussian output-error covariances for each of the GPR:

Cζ = diag

{
se
(
ζ̂p1

)2
, . . . , se

(
ζ̂pm

)2
}

(4.10)
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for each ζ ∈ {a1,1, . . . , bn,m}. In traditional GPR, the covariance C is typically treated as a

hyperparameter that can be optimised (usually simplified to be a scaled identity matrix).

Here, we expressly use C to incorporate uncertainty information about the local parame-

ters into the resulting GPR-LPV model. Qualitatively, where there is greater uncertainty

about the local parameter estimates, this carries through to greater uncertainty in that

surrounding region on the GPR-LPV model, as will be illustrated later on in Section 4.3.

4.2.2 Uncertainty Criterion

As a probabilistic model, the utility of the fitted GPR-LPV is that it can be used to quantify

the uncertainty of the model with respect to an operating point of interest p∗. Introduce

VM (p∗) : P → R as an arbitrary objective function which quantifies a measure of uncer-

tainty at operating point p∗ for identified GPR-LPV modelM. Following the well-known

MacKay approach, new query points can be selected where there is currently the most

uncertainty [132]. The decision of which operating point to conduct the (m + 1)th experi-

ment at is obtained by solving

pm+1 = argmax
p∗∈P

VM (p∗) . (4.11)

We focus on VM (p∗) being the sum of GPR-LPV variances:

VM (p∗) =
∑

ζ∈{a1,1,...,bn,m}

Var (ζ|Dζ , p∗) , (4.12)

which is a natural choice, since it is equivalent to the trace of the posterior covariance

for the parameter vector (a1,1, . . . , bn,m). In general, the problem (4.11) can have multi-

ple local optima. If d = 2, global optima may be validated visually due to compactness

in Assumption 4.1. However beyond d = 2, the problem of finding global optima be-

gins to suffer from the curse of dimensionality. This is a similar problem encountered

in Bayesian active learning, whereby the practice is to resort to global optimisation and

heuristic search techniques to find an approximate solution [31].
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Note that the type of uncertainty we are quantifying is the epistemic uncertainty (i.e.

the model uncertainty), because the epistemic uncertainty can in principle be reduced by

collecting more data. Quantifying the aleatoric uncertainty (which would involve estimat-

ing the covariance of the noise wk) is not within the main scope of the active learning

framework because the aleatoric uncertainty by definition cannot be reduced (without

modifying the system itself).

4.2.3 Active Learning Algorithm

The active learning procedure is detailed by the pseudocode in Algorithm 4.1, with the

following components.

• Time-series datasets D1, . . . ,Dm from local experiments conducted at the correspond-

ing operating points p1, . . . , pm. Note that the experiments need not be all of the

same length.

• A method ilm() which identifies a local linear model (with standard errors) from

local experiment data.

• A method gpr() which fits a GPR-LPV model to the local linear models, as de-

scribed in Section 4.2.1.

• A method uc() which computes the uncertainty criterion for a GPR-LPV model at

a supplied operating point.

Specific implementation details of the methods ilm(), gpr(), uc() are up to the practi-

tioner’s choice, which allows for flexible variations of the active learning algorithm. We

are also formally required to impose a basic assumption on the time-series data, so that

identifiability is maintained.

Assumption 4.5. The input signals in each of D1, . . . ,Dm are quasistationary and satisfy persis-

tency of excitation [13].

We are able to state the following two results for our active learning framework,

which characterise the performance of Algorithm 4.1 in terms of the posterior variance

on the GPR-LPV model.
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Algorithm 4.1 Active Learning with GPR-LPV Models

1: for i ∈ {1, . . . , m} do
2: Perform ilm (Di) to obtain

(
Âpi , B̂pi

)
and se

(
Âpi

)
, se
(
B̂pi

)
3: for ζ ∈

{
â1,1, . . . , b̂n,m

}
do

4: Construct Dζ from D1, . . . ,Dm

5: Cζ ← diag
{

se (ζp1)2 , . . . , se (ζpm)
2
}

6: Perform gpr
(
Da1,1 , . . . ,Dbn,m , Ca1,1 , . . . , Cbn,m

)
to obtain GPR-LPV modelM

7: Solve (4.11) using VM (p∗) := uc (M, p∗)
8: Return pm+1

Lemma 4.1. Suppose the experiment at pm+1 is appended to the existing GPR-LPV which is

identified from experiments at operating points pm = (p1, . . . , pm). Then for each parameter

ζ ∈ {a1,1, . . . , bn,m}, the reductionRζ,m+1 in posterior variance at p∗ is given by:

Rζ,m+1 (p∗) =

(
k (p∗, pm+1)− k>m,m+1K

−1
ζ K (pm, p∗)

)2

k (pm+1, pm+1) + se
(
ζ̂pm+1

)2
− k>m,m+1K

−1
ζ km,m+1

, (4.13)

where

km,m+1 := K (pm, pm+1) , (4.14)

Kζ := K (pmpm) + Cζ (4.15)

Cζ := diag

{
se
(
ζ̂p1

)2
, . . . , se

(
ζ̂pm

)2
}
, (4.16)

and ζ̂pi is the estimator for parameter ζ (pi) via the data collected at experiment i.

Proof. The proof follows closely to the online supplement of [179], which relies on parti-

tioned matrix inverse results. The main difference here is our inclusion of the standard

errors (i.e. se
(
ζ̂p1

)
, se
(
ζ̂p2

)
, etc.) in the output observation covariances.

Remark 4.1. The reduction in posterior variance is non-negative since the denominator of (4.13)

is the Schur complement of a positive definite matrix. Additionally, we can see that a smaller

standard error se
(
ζ̂pm+1

)
results in a greater reduction in the posterior variance. When the

term se
(
ζ̂pm+1

)
is computed using an asymptotic approximation [127, (10.3.8)], it behaves like
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O
(
T
−1/2
m+1

)
, where Tm+1 is the length of the (m + 1)th experiment. This yields an intuitive conclu-

sion that conducting a longer experiment will result in a greater reduction in posterior variance

of the GPR-LPV.

Next, we upper bound the posterior variance at the queried operating point in terms

of the standard errors provided by ilm().

Theorem 4.1. Suppose the experiment at pm+1 is appended to the existing GPR-LPV which is

identified from experiments at operating points pm. Then for each parameter ζ∗ ∈ {a1,1, . . . , bn,m},

the posterior variance at p∗ = pm+1 satisfies

Var
(
ζ∗

∣∣∣Dζ , pm+1, ζ̂pm+1 , p∗ = pm+1

)
≤ se

(
ζ̂pm+1

)2
. (4.17)

Proof. Begin from (4.13) and substitute pm+1 for p∗. Then from the structure for the pos-

terior variance given in (A.5), we are able to show that the posterior variance takes the

form:

Var
(
ζ∗

∣∣∣Dζ , pm+1, ζ̂pm+1 , p∗ = pm+1

)
= a− a2

a + b
, (4.18)

where

a := k (p∗, p∗)− K (p∗,p∗) K−1
ζ K (p∗, p∗) (4.19)

b := se
(
ζ̂pm+1

)2
. (4.20)

Then it follows that

Var
(
ζ∗

∣∣∣Dζ , pm+1, ζ̂pm+1 , p∗ = pm+1

)
= b · a

a + b
≤ b (4.21)

since a ≥ 0 and b ≥ 0.

Remark 4.2. If the uncertainty criterion is chosen as the sum of GPR-LPV variances as in (4.12),

then Theorem 4.1 implies that the total uncertainty at pm+1 post active learning will be upper

bounded by the trace of the estimated covariance matrix for the local LPV model parameters. In
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this way, the active learning framework decouples the choice of operating point from the choice

of input signals in the local experiment. Algorithm 4.1 can be seen as finding the operating

point with greatest variance reduction potential, for which the resultant variance reduction can

be controlled by the design of the local experiment with an A-optimality criterion. In general,

this local design problem will depend on experimental constraints such as the allowable length of

experimental time, as well as slew rate, saturation or power constraints on the input signals. This

sub-problem is already well-addressed for linear systems in other literature, so we do not elaborate

further here.

4.3 Active Learning for Diesel Engine Air-Path

We apply the active learning framework to the LPV system identification of a physi-

cal automotive diesel engine air-path, with exhaust gas recirculation (EGR) and variable

geometry turbine (VGT). As mentioned in Section 2.2.1.2, a high-fidelity physics-based

model for the diesel air-path has states for pressures and other physical signals of mod-

elling relevance. This can lead to a relatively large number of states, for example eight

in [198]. In [172], a reduced order model of four states was introduced to facilitate the

online implementation of model predictive control.

4.3.1 Modelling

Following [172], the system is modelled using n = 4 measured signals for the states:

x =
[
pim pem Wcomp yEGR

]>
(4.22)

and m = 3 actuators:

u =
[
uthr uEGR uVGT

]>
, (4.23)

where pim is the intake manifold (boost) pressure, pem is the exhaust manifold pressure,

Wcomp is the compressor mass flow rate and yEGR is the EGR rate (which is the ratio of

EGR mass flow rate to the sum of EGR and compressor mass flow rates, as defined in

(2.12)). For the inputs, uthr is the throttle valve, uEGR is the EGR valve and uVGT is the



62 Active Learning for Linear Parameter Varying System Identification

VGT vane. A model is developed in the trimmed state and input:

x̃ = x− xss (p) (4.24)

ũ = u− uss (p) , (4.25)

where xss (p) and uss (p) are steady-state maps on the operating point p = (Ne,wfuel), with

Ne as the engine speed and wfuel as the fueling rate. These maps have been previously

obtained from a static calibration procedure as described in [164]. Thus, we can form an

LPV model in the trimmed state and inputs with dynamics

x̃k+1 = A (p) x̃k + B (p) ũk + wk. (4.26)

The operating space P is formed by box-constraints over p (represented by high/low

Ne and wfuel), and the outputs of interest for this system are y =
[
pim yEGR

]>
. Nor-

malisation of the states has been performed so that they are within the same order of

magnitude.

4.3.2 Initial Training Data

An initial dataset was collected from 16 experiments at each of the operating points

marked by the crosses in Figure 4.1. Each experiment constituted slightly over 6000 sam-

ples in duration, and was designed with a multisine input perturbation signal, due to

slew rate considerations on the actuators.

For our choice of ilm() in the framework, the local linear estimates and their cor-

responding standard errors were identified using generalised least squares for VARX re-

gression [127]. A GPR-LPV model is then fitted to these estimates. In our gpr() method,

the covariance function we choose is the commonly-used squared exponential kernel:

k
(
p, p′

)
= s2 exp

(
−1

2

(
p− p′

)>
Λ−1

(
p− p′

))
, (4.27)

which is a justifiable choice by Assumption 4.2, since this kernel produces smooth sample
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Figure 4.1: Operating points at which experiments were conducted. Points labelled with
a number indicates the order in which the active learning experiment was performed
beginning from the initial dataset.

paths of the posterior Gaussian processes. The matrix Λ is a diagonal matrix of length-

scales, which we decide upon using domain knowledge, since the relative magnitudes

of the units used in the operating point variables p = (Ne,wfuel) are understood. The

hyperparameter s is chosen based on an empirical Bayes approach, where it is set to a

factor of 2 of the maximum observed standard error for the respective parameter being

fitted. As we suspect that A (p) has all eigenvalues inside the unit disk, we place a simple

prior mean for A (p) which is a constant diagonal matrix with all elements less than one

in magnitude. The prior mean for B (p) is taken as a constant matrix of zeros.

Figure 4.2a illustrates a GPR surface fitted to the a1,1 element from the initial training

dataset, along with 95% credible intervals provided by the GPR and approximate 95%

confidence intervals (2 standard errors) computed in the initial estimates.

4.3.3 Active Learning Results

We demonstrate the active learning framework for sequential selection of operating points.

The uncertainty criterion (as given by the sum of GPR-LPV variances in (4.12)) for the

GPR-LPV after the initial training dataset is displayed in Figure 4.3a. To extend Algo-

rithm 4.1 for sequential operating point selection, we adopt a greedy approach, whereby

the (m + 1)st operating point is chosen at the point of maximum uncertainty after m ex-
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a

(a) Initial fitted GPR surface for the a1,1 pa-
rameter. The GPR variance naturally increases
the further away from the data points. Where
the GPR surface lies above the particular data
point; this is due to the effect of the prior reg-
ularisation. With a different selection of priors
and also the hyperparameter Λ, a closer fit be-
tween the GPR estimate and the data point is
possible.

a
(b) Final fitted GPR surface for the a1,1 param-
eter after active learning. Compared to Figure
4.2a, the surface is more refined and the uncer-
tainty intervals of the GP are narrower. More-
over by comparing the width of the GP 95% in-
terval to the ±2 standard errors interval, Theo-
rem 4.1 is demonstrated.

Figure 4.2: Comparison of fitted GPR surfaces for the a1,1 parameter.

periments. We performed an additional 19 experiments using active learning with this

greedy approach, to append on top of the initial training dataset for the GPR-LPV. The

order and the locations at which these experiments were conducted are indicated in Fig-

ure 4.1. Figures 4.3a to 4.3d show the eventual reduction in variance over the operating

space. The updated GPR surface for the a1,1 element is presented in Figure 4.2b.

To assess the overall uncertainty of a GPR-LPV modelM after a batch of experiments,

we numerically evaluate the total integrated volume of the uncertainty criterion over

the operating space, i.e.
∫
P VM (p) dp. Figure 4.4 plots the uncertainty volume as each

subsequent experiment is added, and shows that using the active learning framework,

most of the uncertainty can be reduced within the first few experiments.
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(a) Initial total uncertainty of GPR-LPV. (b) Total uncertainty of GPR-LPV after 5 exper-
iments. The total uncertainty is reduced com-
pared to Figure 4.3a.

(c) Total uncertainty of GPR-LPV after 10 exper-
iments. The total uncertainty is reduced com-
pared to Figures 4.3a and 4.3b.

(d) Total uncertainty of GPR-LPV after 19 exper-
iments. The total uncertainty is reduced com-
pared to Figures 4.3a to 4.3c.

Figure 4.3: Total uncertainty surface as more experiments are added.

Figure 4.4: Decrease in uncertainty volume
∫
P VM (p) dp via active learning.

4.4 Summary

In this chapter, we contributed an active learning framework for identifying LPV systems,

and demonstrated the success of the approach via a reduction in total uncertainty of a

GPR-LPV for a diesel-engine air-path. The ability of the GPR-LPV to quantify the model
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uncertainty also provides an additional benefit, in analysing performance of controllers

that were designed using the machine learning controller tuning framework.



Chapter 5

Ordinal Optimisation with Copula
Models

In this chapter, we present results on the success probabilities for ordinal optimisation, with copula

models on the joint distribution of performance values. After establishing some properties on the

success probability for the general case in Section 5.2, we formally prove an analytic lower bound on

the success probability under the Gaussian copula model in Section 5.3, and numerical experiments

demonstrate that the lower bound yields a reasonable approximation to the actual success probability.

Lastly, we showcase that the analytic lower bound can be used to invert the success probability, i.e.

finding a sufficiently large sample size which yields a prescribed high success probability.

Contributions from this chapter also appear in the preprint publication [46].

5.1 Problem Setup

Recall in Section 2.4 that the original formulation of ordinal optimisation (OO) was where

the set of possible controllers Θ was a finite set. Motivated by the need to extend the the-

ory to cases where controller tuning variables belong to an uncountable set (e.g. quadratic-

cost MPC), we develop a model for offline and online controller performances. To facil-

itate this, we work with the pair (Z,X) of random variables, which has an arbitrary

continuous distribution with marginal cumulative distribution functions (CDFs) FZ (z),

FX (x) respectively. For concreteness, suppose there exists some mechanism to randomly

draw a candidate controller from uncountable Θ (e.g. the MLCTF from Section 2.1.2.4);

then Z models the observed performance offline, whileX models the tested performance

if the same controller were evaluated online. As both performances involve the same

controller, there will be some dependence between Z and X , which we model using a

67
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bivariate copula defined as follows.

Definition 5.1 (Bivariate copula). A bivariate copula is a bivariate distribution, with both

marginal distributions being the Uniform (0, 1) distribution.

Due to their ability to model dependence, and flexibility to describe wide classes of

distributions, copula models see a host of applications in engineering, e.g. [208] for sim-

ulating communications channels, and finance, e.g. [40] for modelling returns. Through

the probability integral transform (i.e. FZ (Z) , FX (X) ∼ Uniform (0, 1) [11, Theorem 1]), ev-

ery multivariate distribution can be represented with just its marginal distributions and

a copula. Moreover, Sklar’s theorem [109, Theorem 1.1.] asserts that if the distribution

is continuous, then the choice of copula in this representation is unique. If continuous

(Z,X) is represented with copula CZ,X , then we say that (Z,X) ‘has’ copula CZ,X and

write the joint copula CDF

CZ,X (z, x) := Pr (FZ (Z) ≤ z, FX (X) ≤ x) . (5.1)

In addition, the conditional copula CDF of X given Z is denoted by

CX|Z (x|z) := Pr (FX (X) ≤ x|FZ (Z) = z) . (5.2)

Importing the setting from Section 2.4 and adapting it to the setup here thus far, sup-

pose we have generated n i.i.d. candidate solutions and observed performance values

Z1, . . . , Zn. The horse race rule then stipulates to select the best m candidates out of the

n. The actual performance of our selection depends on the associated X-values, which is

quantified by the success probability formally defined as follows.

Definition 5.2 (Ordinal optimisation success probability). Consider n i.i.d. copies of (Zi, Xi)

drawn from the distribution of (Z,X), which is continuous. We observe Z1, . . . , Zn, and order

these observations from best to worst, denoted by Z1:n ≤ · · · ≤ Zn:n. The best m are selected,

given by Z1:n ≤ · · · ≤ Zm:n, with respective X-values denoted as X〈1〉, . . . , X〈m〉, which are

initially unobserved. More explicitly, we have selected the pairs
(
Z1:n, X〈1〉

)
, . . . ,

(
Zm:n, X〈m〉

)
.
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The success probability is defined as

psuccess (n,m,α) := Pr

(
m⋃
i=1

{
X〈i〉 ≤ x∗α

})
(5.3)

= Pr

(
min

i∈{1,...,m}
X〈i〉 ≤ x∗α

)
, (5.4)

where x∗α with α ∈ (0, 1] is the 100α percentile of the distribution of X , i.e. Pr (X ≤ x∗α) = α.

The value of α can be used to control the level of goal-softening (i.e. degree of sub-

optimality). A condition that we might desire on (Z,X) is some notion of positive de-

pendence, i.e. roughly speaking, low (high) Z is predictive of low (high) X . In offline

controller tuning for example, this intuitively means that well-performing controllers in

offline simulation are predicted to also perform well when tested online. One such formal

notion of positive dependence is called stochastically increasing (SI) positive dependence,

which we state as a regularity assumption.

Assumption 5.1 (Stochastically increasing positive dependence). The random variable X

is stochastically increasing in Z [109, §2.8.2]. That is,

Pr (X > x|Z = z) ≤ Pr
(
X > x

∣∣Z = z′
)

(5.5)

for all z, z′ in the support of Z such that z ≤ z′.

Regularity Assumption 5.1 may be satisfied, for instance, under an additive noise

causal representation. Consider the following causal mechanism (depicted in Figure 5.1a)

for generating (Z,X) by first generating Z, and then generating X given Z = z:

X = z + Y, (5.6)

where Y is independent of Z. An alternative additive causal representation is the reverse

(depicted in Figure 5.1b); first X is generated, and then Z is generated given X = x by:

Z = x+ Y, (5.7)
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where Y is independent of X .

X

Z Y

(a) Causal additive noise representation for X .

Z

X Y

(b) Causal additive noise representation for Z.

Figure 5.1: Causal graphs [141, §3.2.2] for additive noise representations.

Proposition 5.1 (Additive noise implies SI). If either of the following conditions hold:

• (Z,X) is generated via the causal representation (5.6), or

• (Z,X) is generated via the causal representation (5.7), and moreover the copula of (Z,X)

is exchangeable (i.e. its distribution function is permutation symmetric),

then X is stochastically increasing in Z.

Proof. Contained in Appendix B.3.1.

Note that many classes of parametric copulae (with one or two parameters) are ex-

changeable [109, §2.15], as are all members of the Archimedean family of copulae [89],

so regularity Assumption 5.1 is satisfied for a variety of models with additive noise. A

stronger notion of positive dependence is positive likelihood ratio dependence, which implies

SI positive dependence [145].

Definition 5.3 (Positive likelihood ratio dependence). The random variables Z and X are

said to be positive likelihood ratio dependent [145, Definition 5.2.18] if their joint density fZX (z, x)

satisfies

fZX (z, x) fZX
(
z′, x′

)
≥ fZX

(
z, x′

)
fZX

(
z′, x

)
(5.8)

for all z, x, z′, x′ ∈ R such that z ≤ z′ and x ≤ x′.
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5.2 Properties of OO Success Probability

In this section, we state several properties of the success probability when (Z,X) has

a general copula model. The first property gives an expression to compute the success

probability by evaluating an m-dimensional integral.

Theorem 5.1 (Expression for OO success probability). We have

psuccess (n,m,α) =
n!

(n−m)!

∫ 1

0

∫ zm

0
· · ·
∫ z2

0

1−
m∏
j=1

(
1− CX|Z (α|zj)

)
× (1− zm)n−m dz1dz2 . . . dzm. (5.9)

Proof. Contained in Appendix B.3.2.

Theorem 5.1 reveals that when calculating the success probability given n, m and α,

only the copula of (Z,X) matters. Or alternatively, we can without loss of generality as-

sume that (Z,X) is a copula distribution. Therefore, we see here why “ordinal” is a fitting

qualifier - the success probability will be invariant to univariate monotonic (increasing)

transformations of Z and X .

Under the SI positive dependence regularity condition, we can also confirm that se-

lecting the best m observed is indeed the optimal choice.

Theorem 5.2 (Optimality of horse race selection). Under regularity Assumption 5.1, the se-

lection of the firstm order statistics maximises the success probability in Definition 5.2, compared

to any other selection of size m from the sample.

Proof. Contained in Appendix B.3.3.

The success probability can also be shown to be non-decreasing in each of its argu-

ments.

Theorem 5.3 (Monotonicity of OO success probability). The success probability psuccess from

Definition 5.2 satisfies the following monotonicity properties.
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(a) (Monotonicity in n) Under Assumption 5.1, for any n ∈ N and fixed m̄ ≤ n and fixed

ᾱ ∈ (0, 1], we have

psuccess (n, m̄, ᾱ) ≤ psuccess (n+ 1, m̄, ᾱ) . (5.10)

(b) (Monotonicity in m) For fixed n̄ ∈ N, fixed ᾱ ∈ (0, 1] and any m < n, we have

psuccess (n̄,m, ᾱ) ≤ psuccess (n̄,m+ 1, ᾱ) . (5.11)

(c) (Monotonicity in α) For fixed n̄ ∈ N, fixed m̄ ≤ n̄ and any α, α′ ∈ (0, 1] such that α ≤ α′,

we have

psuccess (n̄, m̄, α) ≤ psuccess

(
n̄, m̄, α′

)
. (5.12)

Proof. Contained in Appendix B.3.4.

For any copula satisfying the SI positive dependence condition, we also have the fol-

lowing general upper and lower bounds.

Theorem 5.4 (General bounds for OO success probability). Under regularity Assumption

5.1, the success probability psuccess from Definition 5.2 satisfies

1− (1− α)m ≤ psuccess (n,m,α) ≤ 1− (1− α)n . (5.13)

Proof. Contained in Appendix B.3.5.

These bounds are tight, as some of the following limiting cases show.

Theorem 5.5 (Limiting forms of OO success probability). Under regularity Assumption 5.1,

the success probability psuccess from Definition 5.2 satisfies the following.
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(a) When m = n:

psuccess (n, n, α) = 1− (1− α)n . (5.14)

(b) When α = 1:

psuccess (n,m, 1) = 1. (5.15)

(c) When α→ 0+:

lim
α→0+

psuccess (n,m,α) = 0. (5.16)

(d) If Z and X are comonotonic (i.e. perfect positive dependence, such that FZ (Z) = FX (X)

for every realisation of (Z,X)), then

psuccess (n,m,α) = 1− (1− α)n . (5.17)

(e) If Z and X are independent, then

psuccess (n,m,α) = 1− (1− α)m . (5.18)

(f) When m→∞ and n→∞ in any way such that m ≤ n:

lim
m,n→∞

psuccess (n,m,α) = 1. (5.19)

(g) When m is finite and n→∞:

lim
n→∞

psuccess (n,m,α) = 1−
(
1− CX|Z (α|0)

)m
. (5.20)
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Proof. Contained in Appendix B.3.6.

Since n represents the number of offline simulations while m represents the number

of online tests (for which the latter is more restricted), we are primarily interested in the

regime of large n and small fixed m. Moreover, a useful result is to know for what suf-

ficiently large n is psuccess (n,m,α) ≥ 1 − δ for a given δ. Sadly, the property in Theorem

5.5(g) indicates that in general, for finite m we have limn→∞ psuccess (n,m,α) < 1, when-

ever CX|Z (α|0) < 1. For example, the bivariate Frank copula [109, §4.5.1] with parameter

$ > 0 has conditional CDF

CFrank
X|Z (α|0;$) =

1− e−$α

1− e−$
< 1. (5.21)

This means that in general we can only attain a high success probability with a combi-

nation of sufficiently large n and m. However, there do exist classes of copulae where

limn→∞ psuccess (n,m,α) = 1 for all finite m ≥ 1. In these cases, it is possible to invert

the success probability for any m, i.e. for a prescribed high probability 1 − δ with any

δ ∈ (0, 1], to find an n∗ such that psuccess (n∗,m, α) ≥ 1 − δ. In the next section, we study

one such class of copula which satisfies this property.

5.3 Gaussian Copula Ordinal Optimisation

The results in this section specialise to the case when (Z,X) has a Gaussian copula, de-

fined as follows.

Definition 5.4 (Bivariate Gaussian copula). Let (Z,X) be a bivariate standard Gaussian with

correlation ρ ∈ [−1, 1], i.e. Z
X

 ∼ N
0

0

 ,
1 ρ

ρ 1

 . (5.22)

Then the Gaussian copula with correlation ρ is the distribution of (Φ (Z) ,Φ (X)).
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In the literature, the class of multivariate distributions with Gaussian copulae are

known as non-paranormal distributions [124], and alternatively as meta-Gaussian distribu-

tions [178]. A bivariate Gaussian copula is entirely specified by the correlation param-

eter ρ, which also neatly summarises the dependence within the distribution. Thus, we

denote the OO success probability with a Gaussian copula as pNsuccess (n,m,α, ρ), with

analogous definition to (5.3), except the dependence on ρ is explicitly indicated. The bi-

variate Gaussian copula is known to satisfy the stronger condition of positive likelihood

ratio dependence (Definition 5.3) for ρ > 0 [109, §4.3.1], which implies regularity As-

sumption 5.1 is also satisfied. Thus all the properties in Section 5.2 hold for pNsuccess. It is

also known that the boundary CDF for the bivariate Gausssian is CNX|Z (·|0; ρ) = 1 for all

ρ > 0, so by Theorem 5.5(g), we immediately have

lim
n→∞

pNsuccess (n,m,α, ρ) = 1 (5.23)

when ρ > 0.

5.3.1 Additive Noise Representation

Suppose observations Z are generated by additive noise to X as in (5.7), analogous to the

setup in Section 2.4. Specifically, let

Z = X + Y, (5.24)

where X ∼ N (0, 1) and Y ∼ N
(
0, ξ2

)
. The variable ξ2 may be interpreted here as

the noise-to-signal ratio. Note that (Z,X) is then bivariate Gaussian with correlation ρ =(
1 + ξ2

)−1/2, and naturally, a bivariate Gaussian has a bivariate Gaussian copula. Hence

this yields the success probability pNsuccess

(
n,m,α,

(
1 + ξ2

)−1/2
)

in terms of the noise-to-

signal ratio. This additive noise representation can also be used in the proof to show an

additional monotonicity property in ρ, as follows.

Theorem 5.6 (Monotonicity in ρ). For fixed n̄ ∈ N, fixed m̄ ≤ n, fixed α ∈ (0, 1] and any
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ρ, ρ′ ∈ (0, 1] such that ρ ≤ ρ′, we have

pNsuccess (n̄, m̄, ᾱ, ρ) ≤ pNsuccess

(
n̄, m̄, ᾱ, ρ′

)
. (5.25)

Proof. Contained in Appendix B.3.7.

The intuitive takeaway from this result is that a ‘good’ model for (Z,X) is one with

high ρ, i.e. strong positive dependence.

5.3.2 Approximation Formula

Motivated by the computational intractability in computing psuccess by evaluating an m-

dimensional integral using (5.9) for large n, we develop a more computationally tractable

approximation for pNsuccess under the Gaussian copula model. From the additive noise

representation, the success probability may be written as

pNsuccess (n,m,α, ρ) = Pr
(
min

{
X〈1〉, . . . , X〈m〉

}
≤ Φ−1 (α)

)
. (5.26)

Note the symmetry properties of the zero-mean Gaussian and its order statistics, i.e. we

can relate the lower and upper extreme order statistics by

(Z1:n, . . . , Zm:n) =
st

(
−Zn:n, . . . ,−Z(n−m+1):n

)
. (5.27)

Then it follows that (5.26) has a symmetry property, in the sense

Pr
(
min

{
X〈1〉, . . . , X(m〉

}
≤ Φ−1 (α)

)
= Pr

(
max

{
X〈n−m+1〉, . . . , X〈n〉

}
≥ Φ−1 (1− α)

)
.

(5.28)

Hence, we develop the approximation of pNsuccess using the upper variablesX〈n−m+1〉, . . . ,

X〈n〉 instead of the lower variables X〈1〉, . . . , X〈m〉 (analogous to considering a maximisa-

tion problem rather than a minimisation problem). As will be clear, the resulting approx-

imation involves the usual multivariate Gaussian CDF rather than the complementary
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CDF, for which software implementations of the former are more prevalent. Our ap-

proach is to approximate the joint extreme order statistics of the standard Gaussian Z

from representation (5.22) with a multivariate Gaussian. The distribution of the random

vector Z′ =
(
Z(n−m+1):n, . . . , Zn:n

)
is chosen to be approximated with the distribution of

Ẑ′ ∼ N
(
µ
Ẑ′ , CẐ′

)
, (5.29)

with mean vector

µ
Ẑ′ =

[
Φ−1 (p1) . . . Φ−1 (pm)

]>
(5.30)

and covariance structure

[
C
Ẑ′

]
ij

=
pi (1− pj)

nφ (Φ−1 (pi))φ (Φ−1 (pj))
, i ≤ j, (5.31)

where p1 = n−m
n , . . . , pm = n−1

n . This approximation is justified by the asymptotic nor-

mality of joint central order statistics [12, Theorem 8.5.2], with which we subsequently

approximate the extreme order statistics. Note that the practice of approximating order

statistics using asymptotic theory is not uncommon [157]. From (5.22), the conditional

distribution of X′ =
(
X〈n−m+1〉, . . . , X〈n〉

)
given Z′ can be computed using well-known

Gaussian conditioning formulae [155, Equation (A.6)] to be the Gaussian

[
X′
∣∣Z′ = z

]
∼ N

(
ρz,
(
1− ρ2

)
I
)
. (5.32)

With a Gaussian approximation for Z′ and a Gaussian form for X′ conditioned on Z′, one

can analytically marginalise out Z′ with well-known formulae [159, Equation (1.11)] and

obtain a Gaussian approximation for X′ . Hence X′ is approximated with a multivariate

Gaussian vector X̂′ ∼ N
(
µ
X̂′ , CX̂′

)
, where

µ
X̂′ = ρµ

Ẑ′ (5.33)

C
X̂′ = ρ2C

Ẑ′ +
(
1− ρ2

)
I. (5.34)
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We denote the CDF of this multivariate Gaussian by Φµ
X̂′ ,CX̂′

(·). The success probability

is given by

pNsuccess (n,m,α, ρ) = Pr
(
max

{
X〈n−m+1〉, . . . , X〈n〉

}
≥ Φ−1 (1− α)

)
(5.35)

= 1− Pr
(
X′ ≤ Φ−1 (1− α) 1

)
. (5.36)

Using the Gaussian approximation X̂′ ∼ N
(
µ
X̂′ , CX̂′

)
for X′, the right-hand side of the

above equation is approximated as

p̂Nsuccess (n,m,α, ρ) := 1− Pr
(
X̂′ ≤ Φ−1 (1− α) 1

)
(5.37)

= 1−Φµ
X̂′ ,CX̂′

(
Φ−1 (1− α) 1

)
. (5.38)

Computing this approximation formula is of time complexity O
(
m2
)
. This is due to the

construction of the m × m covariance matrix C
Ẑ′ , and marginalisation of Gaussians in

(5.33) and (5.34) will take only O
(
m2
)

operations. Then, evaluation of the multivariate

Gaussian CDF using the algorithms from [77] are at most O
(
m2
)
. We proceed to illus-

trate that this formula yields a reasonable approximation.

In Figures 5.2a-5.2d, we depict primarily the approximation formula, when (5.30) and

(5.31) are used in (5.38). In each figure, the nominal values n = 100, m = 3, α = 0.05,

ρ = 1/
√

2 are used as a baseline, and one variable is varied at a time, keeping the others

fixed. This is compared against a numerical integration of the success probability (and

alternatively in the case m is varied, a Monte-Carlo estimate with 2 × 104 simulation

replications at each point). The approximation formula is also exhibited to be reason-

ably close to the true probability, whilst still being conservative (in the sense of being an

underestimate) of the success probability.

5.3.3 Analytic Lower Bound for Success Probability

Motivated by our approximation formula, we rigorously study Gaussian approximations

of the form (5.29), which allow us to analytically marginalise when approximating the
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(a) Comparison of pNsuccess when n is varied. In
particular, this figure demonstrates monotonic-
ity in n from Theorem 5.3(a) and convergence in
n from (5.23).
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(b) Comparison of pNsuccess when m is varied. In
particular, this figure demonstrates: 1) mono-
tonicity in m from Theorem 5.3(b), and 2) tight-
ness of the bounds when m = n from Theorem
5.5(a).
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(c) Comparison of pNsuccess when α is varied. In
particular, this figure demonstrates tightness of
the bounds as α = 1 and as α → 0 from Theo-
rem 5.5(c). The success probability is increasing
in α, which is intuitive (by goal softening, we
can improve our odds of success) and demon-
strates Theorem 5.3(c).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Numerical integration

Approximation formula

(d) Comparison of pNsuccess when ρ is varied. The
success probability is increasing in ρ, or alterna-
tively decreasing in ξ, which is intuitive (there
is a higher price to be paid for more noise) and
demonstrates Theorem 5.6.

Figure 5.2: Numerical results for the approximation formula.

success probability. The following lemma provides a sufficient condition for such an

approximation to yield a lower bound on pNsuccess. The result uses the following notion of

stochastic dominance.

Definition 5.5 (Multivariate stochastic dominance [169]). We say that random vector X1 ∈

Rn is stochastically dominated by random vector X2 ∈ Rn and denote X1 �
st

X2 if and only if
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E [u (X1)] ≤ E [u (X2)] for all weakly increasing (i.e. non-decreasing) functions u : Rn → R.

Equivalently, we can say X1 �
st

X2 if and only if Pr (X1 ∈ U) ≤ Pr (X2 ∈ U) for all upper sets

U (an upper set may be defined as a set which satisfies x2 ∈ U for all x2 ≥ x1 ∈ U).

Lemma 5.1 (Sufficient condition for lower bound). Let Z be a random vector for the first m

order statistics of Z1, . . . , Zn. Let Ẑ be an arbitrary Gaussian approximation to Z, of the form

(5.29). Suppose we have that Z �
st

Ẑ. Then the approximation computed in the same way as

(5.38), using Ẑ′ constructed symmetrically to Ẑ as per (5.27), yields a lower bound

p̂Nsuccess (n,m,α, ρ) ≤ pNsuccess (n,m,α, ρ) . (5.39)

Proof. Contained in Appendix B.3.8.

It is an open problem whether the proposed approximation formula in Section 5.3.2

with (5.30) and (5.31) satisfies the stochastic dominance condition of Lemma 5.1. This is

owing to the CDF of Z taking on a complicated form (see (B.3)), while the CDF of Ẑ is

a multidimensional integral of a multivariate Gaussian density which has no analytical

form. This makes it challenging to directly verify stochastic dominance. However, in the

case of m = 1, it is possible to construct a Gaussian approximation for the first order

statistic that is stochastically dominating. The following result presents a class of such

approximations.

Lemma 5.2 (Stochastic dominance of Gaussian first order statistic). Let Z1:n denote the first

order statistic of an i.i.d. standard Gaussian sample of size n. For any ω ∈
(
0, π2

)
, let

c1 =
1

2
− ω

π
(5.40)

c2 =
cotω

π − 2ω
. (5.41)

Consider Ẑ1:n ∼ N
(
µn, σ

2
n

)
where

µn = −

√
log (nc1)

c2
(5.42)
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σ2
n =

− log log 2

2c2 (log (nc1)− log log 2)
. (5.43)

Then there exists some integer n∗ (ω) such that for all n ≥ n∗ (ω), we have Z1:n �
st
Ẑ1:n.

Proof. Contained in Appendix B.3.9.

Combining Lemmas 5.1-5.2, we arrive at the following analytic lower bound on the

success probability under the Gaussian copula model.

Theorem 5.7 (Success probability lower bound). Given ω ∈
(
0, π2

)
, there exists some integer

n∗ (ω) such that for all n ≥ n∗ (ω), m ∈ [1, n], ρ ∈ (0, 1], α ∈ (0, 1]

pNsuccess (n,m,α, ρ) ≥ pNsuccess (n, 1, α, ρ) ≥ Φ

 Φ−1 (α)− ρµn (ω)√
1− ρ2 + ρ2 [σn (ω)]2

 (5.44)

=: pN
success,ω

(n, 1, α, ρ) . (5.45)

Morever, given any n ∈ N, m ∈ [1, n], ρ ∈ (0, 1], α ∈ (0, 1]:

pNsuccess (n,m,α, ρ) ≥ pNsuccess (n, 1, α, ρ) ≥ sup
ω∈Ωn

Φ

 Φ−1 (α)− ρµn (ω)√
1− ρ2 + ρ2 [σn (ω)]2

 (5.46)

=: pN
success

(n, 1, α, ρ) , (5.47)

where Ωn ⊂
(
0, π2

)
is the set of all ω such that n ≥ n∗ (ω), while µn (ω), [σn (ω)]2 are (5.42),

(5.43) respectively but with dependence on ω explicitly denoted.

Proof. Contained in Appendix B.3.10.

Remark 5.1. It is worthwhile to consider the smallest integer n∗ (ω) such that (5.44) is valid. It

is clear that we must have n∗ (ω) > 1/c1, otherwise it possibly allows for log (nc1) < 0 in (5.42)

and (5.43). Given n and ω, one can numerically certify whether n ≥ n∗ (ω), using conditions

from the proof of Lemma 5.2. We have empirically observed that n∗ (ω) can be quite small, i.e.

we can usually accept n∗ (ω) = d1/c1e. Using this numerical certification, the optimised lower

bound (5.46) can also be implemented via a numerical optimisation algorithm, noting that we
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need only conduct search over a univariate bounded region. Further discussion and pseudocode

for these implementations can be found in Appendix B.4.

Throughout Figures 5.3a-5.3d, we plot the optimised lower bound (5.46) from Theo-

rem 5.7, with baseline values n = 100, m = 1, α = 0.05, and ρ = 0.4. In Figure 5.3a, this is

compared against a numerical evaluation of the success probability using (5.9). However,

since the density in the integrand concentrates towards zero as n increases, numerical in-

tegration becomes inaccurate for large n. In Figure 5.3b, we instead plot the lower bound

over a semi-log horizontal axis scale for n, to illustrate the convergence of the success

probability to one. These plots demonstrate that the behaviour of the lower bound is rea-

sonably close to the actual probability. As the lower bound has been derived with m = 1

while the bound itself does not change withm, this means the bound is least conservative

for m = 1, and will generally become more conservative as m grows. For instance with

α = 0.05 and m = 32, the lower bound from Theorem 5.4 yields pNsuccess ≥ 0.806 for any

n ≥ 32, already surpassing the lower bound with n = 109 from Figure 5.3a.

5.3.4 Inversion of Analytic Lower Bound

The purpose of this section is to numerically investigate the efficacy of inverting the an-

alytic lower bound from Theorem 5.7, by considering the problem of guaranteeing a de-

sired high probability.

Problem 5.1 (High probability guarantees of success). Given the triple (m,α, ρ) ∈ N ×

(0, 1]× (0, 1], how large should n be, such that

pNsuccess (n,m,α, ρ) ≥ 1− δ (5.48)

for any given δ ∈ (0, 1]?

Having high probability guarantees would be useful in a situation where the sample

size n can be increased relatively cheaply (hence large n would not be unreasonable),

whereas increasing the selection size m in order to increase psuccess may be prohibitively

expensive and/or non-negotiable (as may be the case in controller tuning with limited
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(a) Comparison of the optimised lower bound
in (5.46) of Theorem 5.7, as n is varied. In addi-
tion, this figure demonstrates monotonicity in n
from Theorem 5.3(a).
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(c) Comparison of the optimised lower bound
in (5.46) of Theorem 5.7, as ρ is varied. In addi-
tion, this figure demonstrates monotonicity in ρ
from Theorem 5.6.
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in (5.46) of Theorem 5.7, as α is varied. In addi-
tion, this figure demonstrates monotonicity in α
from Theorem 5.3(c).

Figure 5.3: Numerical results for the lower bound.

online testing). To address Problem 5.1 (while avoiding the trivial solution of n = ∞),

take the lower bound in (5.44) of Theorem 5.7, which given α, ρ and δ, we aim to invert

for n in terms of ω with the expression

Φ

(
Φ−1 (α)− ρµn√

1− ρ2 + ρ2σ2
n

)
= 1− δ. (5.49)

Putting the definitions of µn and σn from (5.42) and (5.43) respectively, this equation can
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be rearranged into a quartic equation in
√

log (nc1), of the form

a4 log (nc1)2 + a3 log (nc1)3/2 + a2 log (nc1) + a1 log (nc1)1/2 + a0 = 0, (5.50)

where

a4 = − 2ρ2

log log 2
(5.51)

a3 = −4Φ−1 (α) ρ
√
c2

log log 2
(5.52)

a2 = 2ρ2 −
2c2

([
Φ−1 (α)

]2 − [Φ−1 (1− δ)
]2

+ ρ2
[
Φ−1 (1− δ)

]2)
log log 2

(5.53)

a1 = 4
√
c2Φ−1 (α) ρ (5.54)

a0 = 2c2

([
Φ−1 (α)

]2 − [Φ−1 (1− δ)
]2

+ ρ2
[
Φ−1 (1− δ)

]2)− ρ2
[
Φ−1 (1− δ)

]2
. (5.55)

Therefore we take the solution for n corresponding to the greatest real root of the quar-

tic equation. Let this solution for n in terms of ω be denoted n] (ω). According to the

monotonicity and convergence properties from Theorem 5.3(a) and (5.23) respectively,

then provided n] (ω) ≥ n∗ (ω), we guarantee

pNsuccess

(
n] (ω) ,m, α, ρ

)
≥ 1− δ, (5.56)

since n] (ω) upper bounds the smallest n needed such that psuccess ≥ 1− δ. Moreover, one

can numerically optimise with respect to ω to find the smallest n] (ω) that guarantees a

high probability of success.

Table 5.1: Values for n which guarantees pNsuccess (n,m,α, ρ) ≥ 1 − δ, with α = 0.01 fixed
and valid for any m ≥ 1.

δ = 0.01 δ = 0.05 δ = 0.1

ρ = 0.01 8.144× 1047007 5.427× 1034246 8.943× 1028267

ρ = 0.3 3.289× 1051 1.619× 1038 8.775× 1031

ρ = 0.6 8.703× 1011 1.988× 109 1.078× 108

ρ = 0.9 16744 4338 2188

ρ = 0.99 893 505 372

Table 5.1 lists computed values of n] (ω) numerically optimised with respect to ω,



5.4 Summary 85

taking into account the requirement n] (ω) ≥ n∗ (ω), using the aforementioned approach.

The table is valid for m ≥ 1 (least conservative when m = 1), for α = 0.01 and a variety

of values for ρ and δ. The values for n trend downwards as ρ increases, which is intuitive

(as fewer samples might be required if noisy observations are strongly correlated with

the actual values). Of particular note, the case with extremely small correlation ρ = 0.01

(interpreted as a noise-to-signal ratio of ξ2 ≈ 104) requires n to be at an impractical or-

der of magnitude, namely 1047007 when δ = 0.01. This highlights the utility of the lower

bound in Theorem 5.7, which allows for an O (1) inversion to find a sufficiently high n. If

Problem 5.1 were attempted to be solved by evaluating expression (5.9), then large n such

as in the order of 1047007 would have rendered the evaluation of such probabilities to be

intractable. Also, this example illustrates the value of having a strong positive depen-

dence in ρ, as it reduces the sample size required to reach a prescribed high probability

of success.

5.4 Summary

In this chapter, we established several properties on the success probability of OO on cop-

ula models. In particular, under a stochastic increasing positive dependence condition,

the success probability was shown to be non-decreasing in n and m. Also, the limiting

value of the success probability as n → ∞ was shown to depend on the boundary con-

ditional CDF of the copula. We studied in further detail the case of the Gaussian copula,

and provided an analytic lower bound for the success probability. This analytic lower

bound was then used to invert the success probability, to find the n which led to a pre-

scribed high probability.





Chapter 6

Ordinal Optimisation for Controller
Tuning

In this chapter, we focus on offline tuning of MPC for the diesel air-path, and test the tuned con-

trollers online with transient drive-cycles. In Section 6.2, the results on ordinal optimisation from the

previous chapter are specialised to offline controller tuning with a gain-scheduled architecture, where

the monotonicity properties of the ordinal optimisation success probability hold under analogous reg-

ularity conditions. In Section 6.3, controllers are tuned offline by following an ordinal optimisation

approach. Using performance indices obtained via preference learning in Chapter 3, online experimen-

tal results demonstrate that some offline tuned controllers yielded decent performance, outperforming

a baseline manually tuned MPC. Lastly in Section 6.4, the offline tuning procedure is complemented

by additional online manual tuning experiments, to further improve the performance.

6.1 Problem Setup

As discussed in Chapter 1, there is a constrained availability of experiment time within

the automotive industry for bench testing of controllers with the physical engine. For-

tunately, there is a relatively much larger time budget for offline tuning via simulation.

Hence the rationale behind offline tuning is to find controllers through simulation, prior

to physical experimentation, such that these controllers perform well when tested on-

line (or at least provide good initial points for further online tuning). Moreover, offline

tuned controllers can potentially complement online tuning approaches. Suppose that a

non-negotiable budget of m is given as the number of different offline tuned controllers

that can be tested online. Then once these m controllers are tested, the best performing

one can be selected for further refinement, using a remaining testing budget allocated to

87
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online tuning.

This motivates the question of how controllers should be tuned offline. If using the

same strategy traditionally endorsed by ordinal optimisation (OO) and randomised algo-

rithms (introduced in Sections 2.4 and 2.5.1 respectively), this stipulates we should gener-

ate many controllers offline, and “select the best to test”. The focus herein is to investigate

the merit of this strategy. The remainder of this chapter is split into two main parts. In the

first part beginning in Section 6.2, the offline controller tuning problem is framed in the

language of OO from Chapter 5, specialised to the particular controller architecture un-

der consideration. Informed by these developments, OO offline tuning simulations and

resulting online experiments are documented in the second part beginning in Section 6.3.

Some manual online tuning experiments are also performed in Section 6.4.

6.2 Offline Controller Tuning with OO

Consider a measurable controller performance function

J (θ) : Θ→ R (6.1)

with controller tuning variable θ ∈ Θ from an uncountable topological space Θ, that

allows us to compare any two controllers offline. Since Θ is uncountable, this accommo-

dates the space of positive-definite cost matrices Q, P, R in quadratic-cost MPC. The J (θ)

could be, for example, a closed-loop simulation of controller θ on a designated task. Also

consider a measurable test performance function

Jψ∗ (θ,W ) : Θ×W→ R (6.2)

with respect to a realised plant ψ∗ and noise W ∈W. This function represents the perfor-

mance evaluation of controller θ on plant ψ∗, and W is stochastic. That is, if we test the

same controller θ on the same plant ψ∗ multiple occasions, we will not always observe

the same performances, due to different realisations of W . The goal here is to find con-
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trollers via offline tuning which perform well in online tests. To that end, suppose there

is a mechanism Pθ to randomly sample a candidate controller θi ∈ Θ, e.g. this mecha-

nism could be from running the machine learning controller tuning framework (MLCTF)

from Section 2.1.2.4. Along with the distribution PW for W , this mechanism Pθ induces a

joint distribution
(
J (θi) , Jψ∗ (θi,W )

)
of offline-online performance pairs. Naturally, the

strength of positive dependence in this distribution impacts whether well-performing of-

fline controllers will also perform well in online tests. In order to invoke the OO results

developed in the previous chapter, we require this distribution to be continuous, and

impose regularity conditions analogous to Assumption 5.1.

Assumption 6.1. The induced distribution
(
J (θi) , Jψ∗ (θi,W )

)
is a continuous distribution,

and Jψ∗ (θi,W ) is stochastically increasing (SI) positive dependent in J (θi).

Note that a necessary condition for
(
J (θi) , Jψ∗ (θi,W )

)
to have a continuous distribu-

tion is that Θ be an uncountable set, which we have already specified the latter to be the

case, via (6.1). Also, the positive dependence assumption can be intuitively reasonable

if, for instance, an accurate system identification of the plant ψ∗ is used in offline simu-

lation, and the control task in the online test well-represents the task in offline simulation.

We can apply the results in OO from the previous chapter in the following way. An

OO approach for offline controller tuning is to first randomly generate n controllers

θ1, . . . , θn ∈ Θ offline using the mechanism Pθ, and evaluate their performances using

the controller performance function J (θ). We thus observe values J (θ1) , . . . , J (θn). Let

m be a fixed budget for the number of offline tuned controllers that can be devoted to

testing these online. We denote the best m observed controllers by θ∗(1:n), . . . θ
∗
(m:n), and

then physically test each online with the same realised plant ψ∗ with i.i.d realisations

W1, . . . ,Wm of the noise, yielding test performances

Jψ∗
(
θ∗(1:n),W1

)
, . . . , Jψ∗

(
θ∗(m:n),Wm

)
. (6.3)

Under regularity Assumption 6.1, we can assign the pair (Z,X) to be equal in distribution

to
(
J (θi) , Jψ∗ (θi,Wi)

)
, and treat this as the same pair (Z,X) from Chapter 5, so the OO
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success probability is expressed as

psuccess (n,m,α) = Pr

(
min

j∈{1,...,m}
Jψ∗

(
θ∗(j:n),Wj

)
≤ J∗α

)
, (6.4)

where α is given by

α = Prθi (Jψ∗ (θi,Wi) ≤ J∗α) . (6.5)

One possible interpretation for J∗α is a benchmark performance threshold aiming to be

met, which determines (or is determined by) α. Furthermore, from the stochastically in-

creasing positive dependence condition satisfied by regularity Assumption 6.1, then all

the established properties of psuccess from Section 5.2 are enjoyed. Since the copula of the

distribution of
(
J (θi) , Jψ∗ (θi,W )

)
is typically not not exactly known in however, we are

unable to compute the true success probability in practice. Despite this, desirable prop-

erties still hold in the context of offline controller tuning without requiring knowledge of

the copula, particularly monotonicity in n for fixed m and any choice of α ∈ (0, 1]. More

formally,

max
i∈{m,...,n}

Pr

(
min

j∈{1,...,m}
Jψ∗

(
θ∗(j:i),Wj

)
≤ J∗α

)
= Pr

(
min

j∈{1,...,m}
Jψ∗

(
θ∗(j:n),Wj

)
≤ J∗α

)
.

(6.6)

Or in other words, to maximise the success probability, the number of controllers gener-

ated offline should be made as large as possible, regardless of m or J∗α.

6.2.1 Offline Tuning of Gain-Scheduled Controllers

As discussed in Section 2.2.2, a standard way of controlling the diesel air-path over the

operating space is by using gain-scheduling. In particular, the previous work [103] im-

plemented a tuned gain-scheduled MPC architecture for the diesel air-path. The gain-

scheduled MPC partitioned the operating space into a grid consisting of 12 local con-

trollers (shown here in Figure 6.1), and each local controller was tuned separately and

independently in simulation prior to the whole controller being tested on transient drive-

cycles. Here, we transfer the setup in the previous section to the just-described case where

the diesel air-path has a gain-scheduled architecture composed of d local controllers with
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tuning variables

θ = ([θ]1 , . . . , [θ]d) ∈ Θ1 × · · · ×Θd, (6.7)

where each [θ]j for j = 1, . . . , d are the local controller tuning variables responsible for

different regions of the operating space. Since these local controllers are ‘modular’ (i.e.

responsible for non-overlapping regions of the operating space), we can consider tuning

them independently as is done in [103]. Suppose for the jth local controller currently

being tuned, that we have a local controller performance function

J j

(
[θ]j

)
: Θj → R, (6.8)

which allows us to compare any two of the same local controller offline. In [103], these

local controller performance functions involved performances of local step response tra-

jectories. Since an online test over a transient drive-cycle will traverse the operating space

and activate multiple local controllers, we introduce the conditional test performance func-

tion

Jψ∗,j|θ\j

(
[θ]j ,W

)
: Θj ×W→ R, (6.9)

given realised plant ψ∗, and the tunings

θ\j :=
(

[θ]1 , . . . , [θ]j−1 , [θ]j+1 , . . . [θ]d

)
(6.10)

∈ Θ1 × · · · ×Θj−1 ×Θj+1 × · · · ×Θd =: Θ\j , (6.11)

for all the other local controllers. Now letting m still be the available budget for online

testing, the OO approach is to independently generate offline nj candidates for the cur-

rent local controller, using the mechanism P[θ]j
(e.g. this mechanism could still be via a

MLCTF setup for the local controller), and evaluate them on the local controller perfor-

mance function J j , leading to the best m:

J j

(
[θ]∗j,(1:nj)

)
≤ · · · ≤ J j

(
[θ]∗j,(m:nj)

)
. (6.12)
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Completely analogous to (6.4) in the previous section, we may now consider the condi-

tional success probability for the local controller

pG.S.
success,j|θ\j (nj ,m, αj) = Pr

(
min

i∈{1,...,m}
Jψ∗,j|θ\j

(
θ∗(i:nj),Wi

)
≤ J∗αj

∣∣∣∣θ\j) (6.13)

given the other tunings θ\j , where the relation between αj > 0 and J∗αj ∈ R is

αj = Pr
[θ]j

(
Jψ∗,j|θ\j

(
[θ]j ,W

)
≤ J∗αj

∣∣∣θ\j) . (6.14)

By conditioning on the other controller tunings θ\j , this decouples the drive-cycle perfor-

mance of the jth controller from the other controllers. The role of regularity Assumption

6.1 when applied here is immediate. If the induced conditional joint distribution of

(
J j

(
[θ]j

)
, Jψ∗,j|θ\j

(
[θ]j ,W

))
(6.15)

is continuous (given θ\j), and moreover the second variate is SI positive dependent in

the first variate for all possible tunings θ\j ∈ Θ\j , then the conditional success probabil-

ity (6.13) is non-decreasing in nj . Note in particular, that this result holds for all possible

tunings θ\j ∈ Θ\j . Thus, the same principle in (6.6) applies; we should generate as many

local candidates for [θ]j offline as possible, no matter what the tunings of the other local

controllers are.

Furthermore, if the analogous regularity conditions apply for each of the other lo-

cal controllers in [θ]1 , . . . , [θ]d, then the conclusion is that we should make the numbers

n1, . . . , nd of offline candidates for each of local controllers j = 1, . . . , d as high as possi-

ble. Considering that the local controllers in a gain-scheduled architecture are modular,

and if a test performance function that promotes little coupling between the controllers

is used, e.g. an integral of absolute error (IAE) over the drive-cycle, then these regular-

ity conditions should be reasonable. The strength of positive dependence in each of the(
J j

(
[θ]j

)
, Jψ∗,j|θ\j

(
[θ]j ,W

))
may also rely on the drive-cycle being tested on. If the

drive-cycle spends a longer time in the operating region local to the jth controller, then
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we should reasonably anticipate the positive dependence to be stronger.

6.3 Diesel Air-Path Experiments

In this section, a gain-scheduled MPC architecture will be tuned offline under advice of

the OO “select the best to test” methodology in (6.6), where as many candidate controllers

are generated offline as possible.

6.3.1 Controller Architecture

We describe the gain-scheduled controller architecture to be tuned, which is similar to

that used in [103], although our architecture additionally incorporates an integrator on-

line. The operating space is divided into a grid of d = 12 rectangular regions with grid

points
(

N
{j}
e ,w

{j}
fuel

)
for j = 1, . . . , 12 as shown in Figure 6.1, where a local linear MPC is

responsible for each region.

1
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Mid-low wfuel

Mid-high wfuel

High wfuel

High NeMid NeLow Ne

A{5},B{5}

[θ]5 =
(
Q{5},R{5}

)

Figure 6.1: Partition of the operating space into operating regions and local grid points
for the gain-scheduled controller architecture.

As the current operating point p switches over to a different region, the controller

also switches. Each local linear controller has its own prediction model and cost function

weights; for the jth controller these are denoted by A{j}, B{j}, Q{j}, R{j}. The controller
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tuning variables at each grid point are [θ]j =
(
Q{j},R{j}

)
.

6.3.1.1 Steady-State Maps

During transient drive-cycle testing, the vehicle speed reference trajectory is translated

by vehicle models (see Figure 6.3) into a trajectory for the operating point p = (Ne,wfuel).

In transient drive-cycle experiments, the controller takes p as given. As is standard prac-

tice (originally discussed in Section 2.2.2), the controller is embedded with pre-calibrated

steady-state maps for the inputs (implemented as lookup tables with linear interpolation)

over the operating space, denoted

uss (p) : R2 → R3, uss (p) =
[
uthr,ss (p) uEGR,ss (p) uVGT,ss (p)

]>
. (6.16)

Additionally, steady-state maps are used for the states:

xss (p) : R2 → R4, xss (p) =
[
pim,ss (p) pem,ss (p) Wcomp,ss (p) yEGR,ss (p)

]>
. (6.17)

These maps have been previously obtained from a static calibration procedure as de-

tailed in [164], where at at given operating point p, the set-point uss (p) is applied, and the

steady-state xss (p) is recorded. The steady-state boost pressure contains our reference

boost pressure pref
im (p) = pim,ss (p) for the given operating point, while the steady-state

EGR rate contains the reference EGR rate yref
EGR (p) for the given operating point. Thus,

a drive-cycle test induces an operating point trajectory pk, which is transformed into a

time-varying reference
(
pref

im (pk) , y
ref
EGR (pk)

)
trajectory (an example shown in Figure 6.2)

through the steady-state maps. This whole process is depicted in Figure 6.3.

In the controller architecture, the maps uss (p) and xss (p) accommodate the reference

tracking problem by acting as trimming conditions. That is, at time k the trimmed input

and state are given by

ũk = uk − uss (pk) (6.18)

x̃k = xk − xss (pk) (6.19)
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Figure 6.2: A typical time-varying output reference trajectory on the fourth section of the
WLTC.

respectively. Thus, regulation in the trimmed state becomes reference tracking in the

untrimmed state, and the input uss (pk) is treated as a feed-forward component.

6.3.1.2 Local Linear Models

The local
(
A{j},B{j}

)
matrices at each grid point of the operating space are obtained

from previously conducted system identification experiments. A short (40 second) mul-

tisine perturbation signal was applied to the input, centered about the input feed-forward

uss

(
p{j}

)
, where p{j} is the grid point central for region j. The state signals were mea-

sured throughout the input perturbation signal, and trimmed about the steady-state val-

ues. Via least squares estimation, the local linear model was obtained as

x̃k+1 = A{j}x̃k + B{j}ũk (6.20)

for each j ∈ {1, . . . , 12}.

6.3.1.3 Integrator Architecture

To eliminate offset in reference tracking caused by constant disturbances, each local linear

MPC is fitted with an integrator, of the structure described in Section 2.1.1.2. To formulate
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the integrator, the trimmed state is augmented with two local error states

x̃′k =

x̃k (pk)

e
{jk}
k

 (6.21)

where jk denotes the identity of the active controller at time k. This necessitates an aug-

mentation to the Q matrix (which we choose be block-diagonal, for simplicity):

Q̃{j} =

Q{j} 0

0 Q
{j}
e

 , (6.22)

where

Q
{j}
e =

K{j}e,pim 0

0 K
{j}
e,yEGR

 (6.23)

and K
{j}
e,pim , K{j}e,yEGR are the integrator weights for the boost pressure and EGR rate respec-

tively. This also leads to the augmented matrices

Ã{j} =

A{j} 0

−C I

 (6.24)

B̃{j} =

B{j}
0

 . (6.25)

At each time k, the integrator states of the active region are updated by

e
{jk}
k = −Cx̃k−1 + e

{jk}
k−1 , (6.26)

while the integrator states of all the other non-active regions are left unchanged.

6.3.1.4 Gain-Scheduled MPC Law

At time k, given operating point pk, the controller determines the active grid point jk, and

the corresponding matrices A{jk},B{jk},Q{jk},R{jk}. The augmented Q matrix is formed
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by

Q̃{jk} =

Q{jk} 0

0 Q
{jk}
e

 (6.27)

and the matrix P̃{j} is found by solving the discrete-time algebraic Riccati equation as in

(2.11), except with the substitutions A = Ã{jk}, B = B̃{jk}, Q = Q̃{jk}, R = R{jk}. Then the

open-loop cost function is expressed as

Ṽk =

N−1∑
i=0

(
x̃′>k|iQ̃

{jk}x̃′k|i + ũk|i
>R{jk}ũk|i

)
+ x̃′>k|NP̃

{jk}x̃′k|N (6.28)

in terms of the open loop sequence of inputs
(
ũk|0, . . . , ũk|N−1

)
and the predicted sequence

of states

x̃′k|i+1 = Ã{j}x̃′k|i + B̃{j}ũk|i. (6.29)

The following optimisation problem is posed:

min
ũk|0,...,ũk|N−1

Ṽk

subject to x̃′k|0 = x̃′k

x̃′k|i+1 = Ã{jk}x̃′k|i + B̃{jk}ũk|i, i = 0, . . . ,N− 1

Mx̃′k|i+1 ≤ f, i = 1, . . . ,N

Eũk|i ≤ h, i = 0, . . . ,N− 1∣∣ũk|0 − ũk−1

∣∣ ≤ uslew∣∣ũk|i − ũk|i−1

∣∣ ≤ uslew, i = 1, . . . ,N− 1,

(6.30)

where the formulation of the constraint matrices M, f, E, h is further detailed in Appendix

B.5.1. At time k, the problem (6.30) is cast as a quadratic program and solved, leading to

the optimal solution
(
ũ∗k|0, . . . , ũ

∗
k|N−1

)
, and the controller plus feed-forward input ũ∗k|0 +

uss (pk) is commanded to the actuators.
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6.3.1.5 Hardware and Software Setup

The gain-scheduled MPC architecture is implemented in MATLAB/Simulink. The quadratic

program is formulated using the condensed formulation [106] and solved using the QP-

KWIK solver [167]. The code is compiled to the dSPACE DS1006 processor board, which

interfaces directly with the ECU during testing, as shown in Figure 6.3. The test diesel

engine is a Toyota GD engine as introduced in Section 2.2. Further technical specifica-

tions may be found in [2]. The engine speed is controlled by the dynamometer controller,

via readings from the transient dynanometer which is connected to the diesel engine via a

shaft.

Vehicle speed
reference

Dynamometer controller

Transient dynamometer

Diesel engineECU

MPC
Steady-state

maps

Vehicle model
Ne,wfuel

u

x

Ne,wfuel

xss, uss

θ

Figure 6.3: A block diagram of the experimental testing setup.

6.3.2 Simulation Setup

The offline tuning procedure is depicted in Figure 6.4, which produces m gain-scheduled

MPCs θ∗(1), . . . ,θ
∗
(m) which have been tuned offline and selected via OO. Each aspect of

this procedure is further explained below.

Offline Plant Model The local linear models
(
A{j},B{j}

)
described in Section 6.3.1.2

were used in offline simulation, for both the MPC prediction and state updates in closed-

loop.
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Local Plant
Model

Local MPC

Closed-loop
simulations

Optimiser

Output trajectories Meta-Cost
Function

[θ]j =
(
Q{j},R{j}

)
J j([θ]j)

For each grid point j ∈ {1, . . . , d}:

nj i.i.d. candidate
controllers

Selected best m
Combine with

other grid points

m offline-tuned
gain-scheduled

controllers

Figure 6.4: A diagram illustrating the simulation setup offline using the controller tuning
framework.

Meta-Cost Function (Offline Performance Index) The performance of each local con-

troller J j
(

[θ]j

)
is evaluated offline by a weighted average of the step response perfor-

mances from adjacent grid points, using the function (3.31) in 8 time-domain features

obtained by preference learning. Further details are provided in Appendix B.5.2.

Optimiser Each local
(
Q{j},R{j}

)
pair is parametrised using Given rotations and hy-

perspherical coordinates, as described in Section 2.1.2.5. A candidate local controller at

each grid point is generated from the MLCTF using a full i.i.d. run of the CMA-ES (Co-

variance Matrix Adaptation Evolution Strategies) optimiser [87] with box-constrained

decision variables. The decision to use CMA-ES is based on its competitive empirical

performance as a derivative-free black-box optimisation algorithm [14, 86, 88], however

an alternative randomised optimiser could have easily as well been used (in so far as

it forms the mechanism by which to generate candidate local controllers to satisfy the
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regularity conditions). Although often compared to other metaheuristic algorithms, the

behaviour of the CMA-ES algorithm has been studied from a information geometric per-

spective [5, 149], due to its connection with natural gradient descent on a Riemannian

manifold [102, §12.1.2].

Ordinal Optimisation Selection Offline simulations were performed using the Uni-

versity of Birmingham’s BEAR [1] and The University of Melbourne’s Spartan [118] high

performance computing services. Due to the advice of (6.6), as many candidate local

controllers as possible were generated for each of the grid points (the exact number of

samples for each grid point can be found in Table 6.1). We invoke the OO selection

methodology, and select the best m = 20 of each local controller. Then, 20 ordered con-

trollers are composed, whereby the ith ordered controller consists of the ith best of each

local controllers across all the grid points.

Table 6.1: Number of candidate controllers nj generated offline for OO at each of the grid
points j = 1, . . . , 12.

Low Ne Mid Ne High Ne

Low wfuel 1000 1000 1150
Mid-low wfuel 1000 3000 1000
Mid-high wfuel 1000 1000 1240
High wfuel 1000 1000 1000

6.3.3 Experimental Results

Engine bench tests involving drive-cycles were performed at the Toyota Motor Corpora-

tion Higashi-Fuji Technical Centre in Susono, Japan. Rather than testing each controller

on a full drive-cycle, the third section of the UDC (abbreviated UDC3) from Figure 2.3a

and fourth section of the WLTC (abbreviated WLTC4) in Figure 2.4d have been selected

as the test cycles, as while being relatively short, these together contain sufficient cover-

age of all the different operating regions. Each of the m = 20 controllers are tested online

with the realised plant ψ∗ on both the UDC3 and WLTC4 drive-cycles. To calculate the

test performance index, we use a linear cost function in the IAE over the respective drive-
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cycle

Jψ∗ = 0.0019IAEpim + 0.4659IAEyEGR (6.31)

where the coefficients have been obtained via preference learning, and directly found in

(3.25). The IAE for pim and yim for each of the m = 20 controllers are scatter-plotted in

Figures 6.5 and 6.6.
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Figure 6.5: A comparison of IAE of tuned controllers for the UDC3. The numbered points
indicate the offline observed rankings of the controllers. The contours are for the test
performance function which is linear in the variables (IAEpim , IAEyEGR).

6.3.3.1 Comparison with Baseline

The offline tuned controllers are compared against a baseline MPC, which is of the same

gain-scheduled architecture (including integrator), and has been manually tuned on-

line from previous experiments. The baseline MPC also shares qualitatively compara-
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Figure 6.6: A comparison of IAE of tuned controllers for the WLTC4. The numbered
points indicate the offline observed rankings of the controllers. The contours are for the
test performance function which is linear in the variables (IAEpim , IAEyEGR).

ble tracking performance to the Toyota production controller. One caveat however, is

that the production controller uses proprietary logic to generate the reference trajectories

(whereas our reference trajectories are based on steady-state maps). Hence direct quan-

titative comparisons against the production controller are difficult to make; we instead

focus on comparisons with our baseline controller.

The contour lines in Figures 6.5 and 6.6 represent the linear function being used to

evaluate the test performance, which allow us to straightforwardly inspect the relative

performance of contours (as better controllers will lie on lower contours). In can be seen

that on the UDC3, five out 20 offline tuned controllers outperformed the baseline MPC.

Moreover, four of these five dominated the baseline MPC (i.e. had smaller IAE for both

pim and yEGR, so that it would have outperformed the baseline MPC using any monotonic
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cost/utility function). While on the WLTC4, eight out 20 offline tuned controllers outper-

formed the baseline MPC. If the baseline MPC performance were used as a benchmark

performance, then the fact that several (not just one or two) of the controllers outper-

formed the baseline suggests that the success probability would have been quite high on

each of the respective drive-cycles. Overall, these results suggest that the OO approach

to offline tuning can provide decent performance when tested online.

6.3.3.2 Analysis of Selection Size

Even though m = 20 was the fixed number of controllers tested online in these exper-

iments, we can also perform a counterfactual analysis of the selection size m, which an-

swers the question: “what if onlym = 1, 5, 10, etc. (for somem less than 20) were selected

instead?” As gathered from Figures 6.5 and 6.6, the following are evident.

• If only m = 1, then the single controller tested would have performed worse than

the baseline MPC on both the UDC3 and WLTC4.

• With m = 2, the second-ranked offline controller would have outperformed the

baseline on the WLTC4, but not the UDC3.

• We would have required to go up to m = 12, before finding an offline tuned con-

troller which outperformed the baseline MPC on both the UDC3 and WLTC4.

• In addition, the 19th ranked controller performed relatively well on both drive-

cycles (ranked third in online performance on the UDC3, and fourth on the WLTC4).

One interpretation stemming from this analysis is that by increasingm (if allowable), this

helps to increase the ‘diversity’ of controllers, so that at least one performs acceptably

well when tested. This draws connections with the strategy of maintaining a diversity of

candidate solutions in population-based search metaheuristic algorithms [156, §2.3.8].



104 Ordinal Optimisation for Controller Tuning

6.4 Online Manual Tuning

To investigate whether the performance of the offline tuned controllers could be further

improved, manual online tuning experiments were performed. The manual tuning pro-

cedure parallels that of [165], in which online tuning rules were used to calibrate the

tuning variables for another variant of a gain-scheduled MPC architecture also applied

to the diesel air-path over transient drive-cycles. In their specific formulation, there was

an intuitive relationship between the tuning variables and qualitative characteristics of

the closed-loop response (e.g. certain variables could be tuned to address excessive over-

shoot). In much the same way, we adapt the procedure to our architecture and apply the

following simple rules for online manual tuning.

1. For the current controller, test it over a drive-cycle and obtain the closed-loop re-

sponse.

2. Identify the local controllers responsible for regions over the transient response

where better tracking is desired.

3. For each of the identified local controllers j ∈ {1, . . . , d}, apply the following rule-

based tuning guidelines.

• If there is slow convergence of the integrator in eliminating offset for any of

the outputs, increase the integrator weights K{j}e,pim , K{j}e,yEGR accordingly for the

respective outputs.

• If there are excessive oscillations, add a scaled identity matrix to R{j}, to regu-

larise and suppress the controller towards the feed-forward input.

4. Repeat the above steps until no further improvements are required, or until an pre-

determined online tuning budget has been reached.

Through inspection of the trajectories for the drive-cycle tests on both the UDC3 and

WLTC4, a single tuned controller was composed from well-performing local controllers

across all of the 20 controllers. Then the aforementioned online manual tuning procedure

was applied using both the UDC3 and WLTC4. The tracking performance of this final
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tuned and refined controller is plotted in Figures 6.7 and 6.8.
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Figure 6.7: Output reference tracking trajectories of the final tuned and refined controller
on the UDC3.

The performance of this final tuned and refined controller is shown in Table 6.2 to be

better than the best offline tuned controllers on the UDC3 and WLTC4. To assess how

the fully tuned and refined controller ‘generalises’ beyond the UDC3 and WLTC4, it was

tested on other drive-cycles (including the full UDC and other sections of the WLTC) and

compared against the baseline MPC. Table 6.2 additionally lists the IAE for the tests, and

as highlighted in the table, the fully tuned and refined MPC outperformed the baseline

MPC in both output tracking metrics. Plots comparing the tracking performance against

the baseline on all the drive-cycles tested are included in Figures 6.9-6.14. These results

also demonstrate that the performance of the best controllers is replicable to other drive-

cycles, and that noise is not dominating the observed test performances.
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Figure 6.8: Output reference tracking trajectories of the final tuned and refined controller
on the WLTC4.

Table 6.2: IAE values for baseline controller and fully tuned and refined controller over
different drive-cycles.

Drive-cycle MPC pim IAE yEGR IAE

UDC3 Baseline 117.1 3.019
Best Offline Tuned (#4) 95.45 2.396
Fully Tuned Refined 84.63 2.186

UDC Baseline 267.5 8.752
Fully Tuned Refined 184.1 6.362

EUDC Baseline 515.0 8.397
Fully Tuned Refined 492.4 6.340

WLTC1 Baseline 1249 32.32
Fully Tuned Refined 1001 24.64

WLTC2 Baseline 1879 24.11
Fully Tuned Refined 1572 18.42

WLTC3 Baseline 1899 23.83
Fully Tuned Refined 1820 20.33

WLTC4 Baseline 2154 18.44
Bast Offline Tuned (#10) 1597 18.66
Fully Tuned Refined 1818 14.08
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6.5 Summary

In this chapter, we specialised the OO framework to gain-scheduled MPC tuning, which

was applied and experimented on the diesel air-path. It was demonstrated that by fol-

lowing an offline tuning approach of selecting the best m to test (out of as many can-

didate controllers generated offline as possible), an acceptable level of performance was

achieved on the best of the controllers in online tests. This suggests that OO is suitable

as a viable offline tuning approach. Additionally, it was seen that via a combination of

offline and online tuning, the controller reached a higher performance than that of either

alone (i.e. better than both the manually tuned baseline and purely offline tuned con-

troller). Hence, this demonstrates that OO offline tuning is complementary, rather than a

substitute, to online tuning.

This chapter ends on an epistemological note, which is that although (6.6) suggests

that the success probability is maximised by selecting the largest possible sample sizes,

computation of the actual success probability itself is usually not possible in practice,

since the distribution (6.15) is typically not known. This also makes verifying the reg-

ularity Assumption 6.1 difficult. Information about the distribution could be gained by

sampling from the joint controller and test performances, but this is itself contradictory at

the outset, since access to samples from the physical plant are initially not possible within

the context of offline controller tuning. We partially address some of these limitations in

the next chapter, by considering a framework that allows for sampling from the induced

distribution.



108 Ordinal Optimisation for Controller Tuning

0 20 40 60 80 100 120 140 160
-1

-0.5

0

0.5

Tracking Errors

UDC

Baseline

Fully Tuned Refined

0 20 40 60 80 100 120 140 160

Time (s)

-0.5

0

0.5

Figure 6.9: A comparison of tracking errors of the final tuned controller against the base-
line for the UDC.
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Figure 6.10: A comparison of tracking errors of the final tuned controller against the
baseline for the EUDC.
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Figure 6.11: A comparison of tracking errors of the final tuned controller against the
baseline for the first section of the WLTC.
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Figure 6.12: A comparison of tracking errors of the final tuned controller against the
baseline for the second section of the WLTC.
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Figure 6.13: A comparison of tracking errors of the final tuned controller against the
baseline for the third section of the WLTC.
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Figure 6.14: A comparison of tracking errors of the final tuned controller against the
baseline for the fourth section of the WLTC.



Chapter 7

A Sequential Learning Algorithm for
Probabilistically Robust Controller

Tuning

In this chapter, we introduce a sequential learning algorithm to address a probabilistically robust

offline controller tuning problem. The algorithm leverages ideas from the areas of randomised al-

gorithms and ordinal optimisation. In Section 7.3, we formally prove that our algorithm yields a

controller which meets a specified probabilistic performance specification, assuming a Gaussian or

near-Gaussian copula model for the controller performances. Additionally, we are able to characterise

the computational requirement of the algorithm by using a lower bound on the distribution function

of the algorithm’s stopping time. To validate our work, the algorithm is then demonstrated for the

purpose of tuning model predictive controllers on a diesel engine air-path in Section 7.4. It is shown

in a simulation study that the algorithm is able to successfully tune a single controller offline to meet

a desired performance threshold, even in the presence of uncertainty in the diesel engine model (that

is inherent when a single representation is used across a fleet of vehicles). It is also demonstrated in

the simulation study that the offline tuned controller serves as an advantageous initial condition that

‘hot-starts’ online tuning approaches.

Contributions from this chapter also appear in the preprint publication [44].

7.1 Problem Setup

Consider a measurable system performance function

J (ψ, θ) : Ψ×Θ→ R, (7.1)

111
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with controller tuning variable θ ∈ Θ from an uncountable topological space Θ, and

uncertain plant parameter ψ ∈ Ψ from a topological space Ψ. This function gives the per-

formance of controller θ on plant ψ, for some designated control task. The uncertainty

over ψ is represented by some probability distribution Pψ over Ψ.

Unlike the previous chapter, where success probabilities cannot be computed unless

the induced distributions of the performance functions are fully known, our motivation

here is to prescribe a high probability and find a single controller θ∗ so that tested the

system will perform ‘well’ with at least the prescribed probability. To this end, suppose

again that there is a mechanism Pθ to randomly sample a candidate controller θi ∈ Θ.

Then to evaluate candidate controllers, re-introduce the controller performance function

J (θ) : Θ→ R, (7.2)

whose role is such that in order to find θ∗, we first sample n i.i.d. θi ∼ Pθ and let

θ∗ = argmin
θi∈{θ1,...,θn}

J (θi) . (7.3)

As a concrete example for J (θ), we could take J (θ) = J
(
ψ, θ

)
for some nominal value ψ,

such as ψ = EPψ [ψ]. An alternative example is to take J (θ) = EPψ [J (ψ, θ)], supposing

this expectation can be evaluated.

Once θ∗ has been obtained, a single ‘test’ of the system yields the performance J (ψ∗, θ∗),

from an independently realised plant ψ∗ ∼ Pψ. Unlike the previous chapter, exogenous

noise is not explicitly considered in this test performance, however a noise term can be

absorbed into the variable ψ∗ if desired, since only a single test performance is being

conducted. This test performance naturally predicates on how well the two random vari-

ables J (θi) and J (ψ∗, θi) are correlated, via their dependence on θi. A strong correla-

tion should suggest that well-performing J (θi) is highly indicative of well-performing

J (ψ∗, θi), thus we would reasonably anticipate the test J (ψ∗, θ∗) to also perform well.
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7.1.1 Copula Modelling

To formalise the concept of dependence between J (θi) and J (ψ∗, θi), we use again use

copulae, like in Chapter 5. A well-defined notion of correlation valid for any bivariate

distribution is the Kendall correlation.

Definition 7.1 (Population Kendall correlation). For a bivariate distribution (Z,X), the pop-

ulation Kendall correlation is defined as

κ = E
[
sign

(
Z − Z̀

)
sign

(
X − X̀

)]
, (7.4)

where
(
Z̀, X̀

)
is an independent copy of (Z,X).

In this chapter, it will be convenient to associate every bivariate distribution with a

bivariate Gaussian copula, which we do so through the Kendall correlation.

Definition 7.2 (Associated Gaussian copula). For any bivariate distribution (Z,X) with pop-

ulation Kendall correlation κ, the Gaussian copula associated with this distribution is defined as

the bivariate Gaussian copula with correlation ρ = sin (πκ/2).

The formula ρ = sin (πκ/2) is from the relation between κ and ρ for a Gaussian copula

[111, Equation (9.11)]. As such, any bivariate distribution with a Gaussian copula has its

own copula as the associated Gaussian copula.

7.1.2 Problem Statement

We are ready to list the standing assumptions of the chapter, for which the main results

rely on.

Assumption 7.1. The bivariate distribution for the performances
(
J (θi) , J (ψ∗, θi)

)
is contin-

uous, and has population Kendall correlation κ > 0, however the value of κ itself is unknown.

Remark 7.1. The positive likelihood ratio dependence condition from Definition 5.3 is strong

enough to imply positive Kendall correlation (see [145, (5.2.17) and Theorem 5.2.20]). Also by
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Sklar’s theorem [109, Theorem 1.1], the continuity property in Assumption 7.1 ensures that the

distribution of
(
J (θi) , J (ψ∗, θi)

)
has a unique copula.

We also assume the following bound between the copula of
(
J (θi) , J (ψ∗, θi)

)
, and

its associated Gaussian copula.

Assumption 7.2. Let
(
Z̃, X̃

)
denote the copula of

(
J (θi) , J (ψ∗, θi)

)
and let

(
Z̃, X̃ ′

)
denote

the Gaussian copula associated with
(
J (θi) , J (ψ∗, θi)

)
. For a given ν ∈ [0, 1), then for all

z ∈ (0, 1) we have

sup
x∈(0,1)

{
Pr
(
X̃ ′ ≤ x

∣∣∣Z̃ = z
)
− Pr

(
X̃ ≤ x

∣∣∣Z̃ = z
)}
≤ ν. (7.5)

Remark 7.2. The condition (7.5) in Assumption 7.2 is saying that the copula of
(
J (θi) , J (ψ∗, θi)

)
is not too unfavourably ‘far’ from that of a Gaussian copula, which is slighter weaker than say-

ing that the copula is ‘near’ to a Gaussian copula. To elaborate further, a given bound on the

Kolmogorov-Smirnov distance (i.e. supremum norm) or total variation distance [85, §5.9] be-

tween Pr
(
X̃ ′ ≤ x

∣∣∣Z̃ = z
)

and Pr
(
X̃ ≤ x

∣∣∣Z̃ = z
)

will imply (7.5). Moreover, if
(
J (θi) , J (ψ∗, θi)

)
is assumed to have a Gaussian copula, then (7.5) is satisfied with ν = 0.

Now let J∗ ∈ R denote a nominal performance threshold, which is used to benchmark

the test performance J (ψ∗, θ∗). We require this nominal performance threshold to be

feasible, in the following sense.

Assumption 7.3. The nominal performance threshold J∗ satisfies

Prψ∗,θi (J (ψ∗, θi) ≤ J∗) > 0. (7.6)

Lastly, we can forego exact knowledge about the distributions ofPψ,Pθ, but the stand-

ing assumption is that they can at the very least be sampled from (e.g. via a computer

simulation).

Assumption 7.4. Samples can be drawn i.i.d. from the distributions Pψ and Pθ.
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As a consequence, we can produce an i.i.d. sample from the distribution of
(
J (θi) , J (ψ∗, θi)

)
,

which we denote (
J (θ1) , J (ψ1, θ1)

)
, . . . ,

(
J (θn) , J (ψn, θn)

)
. (7.7)

We may now state the main problem addressed in this chapter.

Problem 7.1. Suppose Assumptions 7.1, 7.2, 7.3 and 7.4 hold. Given γ ∈ (ν, 1] and nominal

performance threshold J∗ ∈ R, find a controller θ∗ such that

Prψ∗,θ∗ (J (ψ∗, θ∗) ≤ J∗) ≥ 1− γ. (7.8)

In Section 7.3, we propose Algorithm 7.2 to address this problem, with the formal

statement contained in Theorem 7.3.

7.2 Success Probability Lower Confidence Bound

Problem 7.1 can be framed in the context of ordinal optimisation (OO), by taking

(Zi, Xi) =
st

(
J (θi) , J (ψ∗, θi)

)
(7.9)

in Definition 5.3 with m = 1. However, a value for α = Prψ∗,θi (J (ψ∗, θi) ≤ J∗) is not

explicitly given in Problem 7.1, nor can the analytical lower bound in Theorem 5.7 be

readily applied since (Z,X) may generally not have a Gaussian copula. In this section,

we overcome these obstacles by developing a lower confidence bound (LCB) for the OO

success probability. This is to be derived from LCBs for α, and for ρ, the latter being the

correlation of the associated Gaussian copula.

To facilitate this, we will work more abstractly with a continuous bivariate distri-

bution for (Z,X) as in Chapter 5, with Kendall correlation κ > 0, and its associated

Gaussian copula correlation ρ. It is to be kept in mind that we can take (7.9) to bring the

context back into controller tuning. Also, the standing assumptions can be stated in an
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analogous way for the distribution (Z,X). In particular, the analogy to Assumption 7.4

is to let an i.i.d. sample of size n be denoted by

(Z1, X1) , . . . , (Zn, Xn) =
st

(
J (θ1) , J (ψ1, θ1)

)
, . . . ,

(
J (θn) , J (ψn, θn)

)
. (7.10)

First, we consider the following point estimators for α and ρ.

Definition 7.3 (Point estimator for α). From the sample (7.10), a point estimate of α =

Pr (X ≤ x∗) for performance threshold x∗ is

α̂n :=
1

n

n∑
i=1

I{Xi≤x∗}. (7.11)

Definition 7.4 (Point estimator for ρ). From the sample (7.10), a point estimate of the correla-

tion ρ for the associated Gaussian copula is

ρ̂n := sin
(π

2
max {0, κ̂n}

)
, (7.12)

where κ̂n is the sample Kendall correlation

κ̂n :=
1

n (n− 1)

n∑
i=1

n∑
j=1

sign ((Xi −Xj) (Zi − Zj)) . (7.13)

Confidence bounds for α and ρ can be obtained from the following concentration

inequalities.

Lemma 7.1 (Concentration inequalities for α). For a > 0, we have

Pr (α̂n − α < −a) ≤ exp
(
−2na2

)
(7.14)

Pr (α̂n − α > a) ≤ exp
(
−2na2

)
. (7.15)

Proof. Recognising that nα̂n is a sum of independent Bernoulli random variables (each

bounded between 0 and 1) with mean α, use Hoeffding’s inequality [63, Theorem 1.1] to
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obtain

Pr (α̂n − α > a) = Pr (nα̂n − nα > na) (7.16)

≤ exp
(
−2na2

)
, (7.17)

and analogously for the lower tail bound.

Lemma 7.2 (Concentration inequalities for ρ). Under Assumption 7.1 with the substitution

(7.9), for r > 0, we have

Pr (ρ̂n − ρ < −r) ≤ exp

(
−
⌊n

2

⌋ 2r2

π2

)
(7.18)

Pr (ρ̂n − ρ > r) ≤ exp

(
−
⌊n

2

⌋ 2r2

π2

)
. (7.19)

Proof. Contained in Appendix C.1.

Remark 7.3. A two-tailed bound similar to Lemma 7.2 with a slightly different exponent can be

found in [124, Theorem 4.2]. Applying the fact that n/4 ≤ bn/2c for all n > 1, one can eliminate

the floor operator in (7.18), (7.19) and recover the same exponent as found in [124].

From the upper tailed concentration inequalities for α and ρ, we may then derive

LCBs. To derive a LCB for αwith confidence level at least 1−β1, equate exp
(
−2na2

)
= β1

and rearrange in the upper-tailed bound (7.15) to obtain

Pr

(
α̂n − α >

√
log (1/β1)

2n

)
≤ β1. (7.20)

Let

b1 :=

√
log (1/β1)

2n
, (7.21)

so that

Pr (α > α̂n − b1) ≥ 1− β1. (7.22)
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Thus the LCB for α with confidence at least 1− β1 is obtained as

α̂n := α̂n − b1. (7.23)

To derive a LCB for ρ with confidence level at least 1− β2, equate exp
(
−bn/2c 2r2/π2

)
=

β2 and rearrange in the upper-tailed bound (7.19) to obtain

Pr

(
ρ̂n − ρ > π

√
log

(
1

β2

)
· 1

2
⌊
n
2

⌋) ≤ β2. (7.24)

Let

b2 := π

√
log

(
1

β2

)
· 1

2
⌊
n
2

⌋ , (7.25)

so that

Pr (ρ > ρ̂n − b2) ≥ 1− β2. (7.26)

Thus the LCB for ρ with confidence at least 1− β2 is obtained as

ρ̂
n

:= ρ̂n − b2. (7.27)

We may also bound the difference in the success probability from that of its associated

Gaussian copula.

Lemma 7.3 (Difference in OO success probability). Consider the OO success probability (5.3)

from Definition 5.2, and let ρ be the correlation of the associated Gaussian copula. If Assumption

7.2 holds under the substitution (7.9), then for all n ∈ N and α ∈ (0, 1] we have

pNsuccess (n, 1, α, ρ)− psuccess (n, 1, α) ≤ ν. (7.28)

Proof. Let
(
Z̃, X̃

)
denote the copula of (Z,X) and let

(
Z̃, X̃ ′

)
denote the associated

Gaussian copula, where the marginal Z̃ can be shared since it is a Uniform (0, 1) ran-

dom variable. Using the fact that the first order statistic of an i.i.d. Uniform (0, 1) sample

is Beta (1, n) distributed [12, §1.1], and recognising that the OO success probability only
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depends on the underlying copula of the distribution, we have in the case m = 1 that

psuccess (n, 1, α) =

∫ 1

0
Pr
(
X̃ ≤ α

∣∣∣Z̃ = z
)
fU1:n (z) dz, (7.29)

where fU1:n (·) is the density of the Beta (1, n) distribution. Likewise

pNsuccess (n, 1, α, ρ) =

∫ 1

0
Pr
(
X̃ ′ ≤ α

∣∣∣Z̃ = z
)
fU1:n (z) dz. (7.30)

The difference between these is

pNsuccess (n, 1, α, ρ)− psuccess (n, 1, α) (7.31)

=

∫ 1

0

(
Pr
(
X̃ ′ ≤ α

∣∣∣Z̃ = z
)
− Pr

(
X̃ ≤ α

∣∣∣Z̃ = z
))

fU1:n (z) dz (7.32)

≤
∫ 1

0
sup

α∈(0,1]

{
Pr
(
X̃ ′ ≤ α

∣∣∣Z̃ = z
)
− Pr

(
X̃ ≤ α

∣∣∣Z̃ = z
)}

fU1:n (z) dz (7.33)

≤ ν
∫ 1

0
fU1:n (z) dz (7.34)

= ν, (7.35)

where the second inequality is from (7.5) in Assumption 7.2.

Using Lemma 7.3, the aforementioned properties on α and ρ, as well as the lower

bound for psuccess in (5.46), we are ready to establish a LCB on the OO success probability.

Theorem 7.1 (Lower confidence bound for psuccess). Consider the OO success probability

from Definition 5.2. If Assumption 7.2 holds under the substitution (7.9), then from the sample

(7.10), with confidence at least 1− β1 − β2, we have

pN
success

(
n, 1, α̂n, ρ̂n

)
− ν ≤ psuccess (n,m,α) . (7.36)

Proof. As pN
success

from (5.46) is a lower bound, then

pN
success

(
n, 1, α̂n, ρ̂n

)
≤ pNsuccess

(
n, 1, α̂n, ρ̂n

)
. (7.37)
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Applying Lemma 7.3 (which requires Assumption 7.2), this implies

p
success

(
n, 1, α̂n, ρ̂n

)
− ν ≤ p′success

(
n, 1, α̂n, ρ̂n

)
. (7.38)

Using the property of monotonicity in m from Theorem 5.3(b), we have

psuccess (n, 1, α) ≤ psuccess (n,m,α) . (7.39)

Therefore

Pr
(
pN

success

(
n, 1, α̂n, ρ̂n

)
− ν ≤ psuccess (n,m,α)

)
(7.40)

≥ Pr
(
pN

success

(
n, 1, α̂n, ρ̂n

)
− ν ≤ psuccess (n, 1, α)

)
(7.41)

≥ Pr
(
pN

success

(
n, 1, α̂n, ρ̂n

)
≤ pNsuccess (n, 1, α, ρ)

)
(7.42)

≥ Pr
(
pNsuccess

(
n, 1, α̂n, ρ̂n

)
≤ pNsuccess (n, 1, α, ρ)

)
(7.43)

≥ Pr
(
α̂n ≤ α, ρ̂n ≤ ρ

)
(7.44)

= 1− Pr
(
α̂n > α or ρ̂

n
> ρ
)

(7.45)

≥ 1− Pr (α̂n > α)− Pr
(
ρ̂
n
> ρ
)

(7.46)

≥ 1− β1 − β2, (7.47)

where the first inequality is from applying (7.39), the second inequality is due to the

implication (7.38), the third inequality is from (7.37), the fourth inequality is by apply-

ing the monotonicity properties from Theorems 5.3(c) and 5.6, the fifth inequality is by

the union bound (Boole’s inequality), and the last inequality is from the LCB properties

(7.22), (7.23), (7.26), (7.27).

Remark 7.4. A 1 − β1 − β2 LCB for the OO success probability under the associated Gaussian

copula is pN
success

(
n, 1, α̂n, ρ̂n

)
, i.e.

Pr
(
pN

success

(
n, 1, α̂n, ρ̂n

)
≤ pNsuccess (n, 1, α, ρ)

)
≥ 1− β1 − β2. (7.48)
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7.3 Sequential Learning Algorithm

In view of Remark 7.4, we present Algorithm 7.1, which sequentially draws samples from

(Z,X) and stops after a random τ samples until an associated Gaussian copula OO suc-

cess probability of at least 1 − δ is reached, with confidence of at least 1 − β1 − β2. Note

that this algorithm works irrespective of the value of ν in Assumption 7.2, because the

algorithm considers only the associated Gaussian copula.

Our algorithm uses a stopping rule, so that the sample complexity is not known in

advance, but rather is a random variable induced by the randomness over each run of the

algorithm. As the decision of whether to stop is learned from the algorithm by drawing

sequential samples, we refer to our algorithm as a sequential learning algorithm. Another

sequential learning algorithm also appeared in [115], which built upon the work of [195]

with less conservative sample complexities. Their algorithm is based on the Rademacher

bootstrap technique. Stopping rules in RA were also studied in [70] for designing linear

quadratic regulators, while [7] investigated another class of sequential algorithms. A

stopping rule is also considered by [21] for solving stochastic programs, in which the

algorithm stops when the computed confidence widths of estimated quantities become

sufficiently small; this is similar to the nature of our algorithm.
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Algorithm 7.1 Sequential learning for Gaussian copula OO success probability

Require: δ ∈ (0, 1], β1 ∈ (0, 1], β2 ∈ (0, 1], performance threshold x∗, initial sample (7.10)

of size n

1: n← n+ 1

2: Independently sample (Z,X) and add to existing samples

3: Compute α̂n, ρ̂n via (7.11), (7.12), (7.13)

4: Compute α̂n, ρ̂
n

via (7.23), (7.27) using β1, β2 respectively

5: p← pN
success

(
n, 1, α̂n, ρ̂n

)
6: If p ≥ 1− δ, continue, otherwise go to step 1

7: τ ← n

Qualitatively, as n increases, the confidence widths b1 and b2 decrease to zero. The

lower bound from Theorem 5.7 also stipulates that pN
success

is increasing in n. Thus,

we intuitively reason that Algorithm 7.1 eventually terminates with sufficiently large n.

This intuition can be made precise with the following theorem and subsequent corollary,

which uses the concentration inequalities for α and ρ to bound the distribution of the

time at which Algorithm 7.1 stops.

Theorem 7.2 (Bound on stopping time). Fix δ, β1, β2 in Algorithm 7.1. Given some n ∈ N,

suppose the pair (α∗, ρ∗) satisfies pN
success

(n, 1, α∗, ρ∗) ≥ 1− δ. Also let

a := α0 − α∗ (7.49)

r := ρ0 − ρ∗, (7.50)

where α0, ρ0 are the actual values of α, ρ respectively. Then, for all n greater than the initial

sample size, we have

Pr (τ ≤ n) ≥ 1− exp
(
−2n (α0 − α∗ − b1)2

)
− exp

(
−
⌊n

2

⌋ 2 (ρ0 − ρ∗ − b2)2

π2

)
, (7.51)

provided α0 − α∗ − b1 > 0 and ρ0 − ρ∗ − b2 > 0.
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Proof. We may bound

Pr (τ ≤ n) ≥ Pr
(
pN

success

(
n, 1, α̂n, ρ̂n

)
≥ 1− δ

)
(7.52)

≥ Pr
(
α̂n ≥ α∗, ρ̂n ≥ ρ

∗
)

(7.53)

= 1− Pr
(
α̂n < α∗ or ρ̂

n
< ρ∗

)
(7.54)

≥ 1− Pr (α̂n < α∗)− Pr
(
ρ̂
n
< ρ∗

)
(7.55)

= 1− Pr (α̂n − α0 < −a)− Pr
(
ρ̂
n
− ρ0 < −r

)
(7.56)

= 1− Pr (α̂n − α < −a+ b1)− Pr (ρ̂n − ρ < −r + b2) (7.57)

≥ 1− exp
(
−2n (a− b1)2

)
− exp

(
−2
⌊n

2

⌋ 2 (r − b2)2

π2

)
, (7.58)

where the first inequality holds because of the stopping condition, the second inequality

is by definition of α∗ and ρ∗ along with monotonicity properties from Theorems 5.3(c)

and 5.6, the third inequality is from the union bound (Boole’s inequality), and the fourth

equality is by application of the lower tailed concentration inequalities (7.14), (7.18) from

Lemmas 7.1 and 7.2 respectively. Substituting (7.49), (7.50) completes the proof.

Corollary 7.1 (Finite stopping time). Under Assumptions 7.1 and 7.3 with the substitution

(7.9), the stopping time τ from Algorithm 7.1 satisfies

Pr (τ <∞) = 1. (7.59)

Proof. Assumptions 7.1 and 7.3 ensure that α0 > 0 and ρ0 > 0. By Theorem 5.3(a) and

(5.23), for any δ > 0 there exists a pair (α∗, ρ∗) such that α0 − α∗ − b1 > 0 and ρ0 − ρ∗ −

b2 > 0 for all n greater than some sufficiently large number. Hence from the monotone

convergence theorem [38, Theorem 4.8], we have

Pr (τ <∞) = lim
n→∞

Pr (τ < n+ 1) (7.60)
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= lim
n→∞

Pr (τ ≤ n) (7.61)

≥ lim
n→∞

[
1− exp

(
−2n (α0 − α∗ − b1)2

)
− exp

(
−
⌊n

2

⌋ 2 (ρ0 − ρ∗ − b2)2

π2

)]
(7.62)

= 1, (7.63)

where the inequality is by applying Theorem 7.2.

Remark 7.5 (Optimised bound on stopping time). We can also numerically optimise the

bound (7.51) with respect to (α∗, ρ∗). This can be useful for characterising the computational

requirement (i.e. number of samples needing to be simulated) of the algorithm. Further details on

optimising the bound are provided in Appendix C.2.

7.3.1 Controller Tuning Algorithm

Next, we specialise Algorithm 7.1 to the context of controller tuning, in order to explicitly

address Problem 7.1. This is presented in Algorithm 7.2, which now also outputs the

tuned controller θ∗τ . A simplified flowchart is presented in Figure 7.1.

Algorithm 7.2 Probabilistically robust controller tuning

Require: δ ∈ (0, 1], β1 ∈ (0, 1], β2 ∈ (0, 1], performance threshold J∗, initial sample (7.7)

of size n

1: n← n+ 1

2: Independently sample θi and ψi

3: Form (Zi, Xi)←
(
J (θi) , J (ψi, θi)

)
and add to existing samples

4: Compute α̂n via (7.11) with performance threshold J∗

5: Compute ρ̂n via (7.12), (7.13)

6: Compute α̂n, ρ̂
n

via (7.23), (7.27) using β1, β2 respectively

7: p← pN
success

(
n, 1, α̂n, ρ̂n

)
8: If p ≥ 1− δ, continue, otherwise go to step 1

9: τ ← n

10: θ∗τ ← argminθi∈{θ1,...,θτ} J (θi)
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Draw & evaluate new controller, plant pairStart

Compute β1, β2-lower confidence bounds

pN
success

(n, 1, α̂n, ρ̂n) ≥ 1− δ?

Return best performing controller θ∗τ

Yes

No

Figure 7.1: A simplified flowchart depiction of Algorithm 7.2.

By chaining the confidence level with the OO success probability, we demonstrate

how Algorithm 7.2 addresses Problem 7.1, via the following theorem.

Theorem 7.3. Suppose Algorithm 7.2 is applied to tuning controllers of a system with a perfor-

mance function J (ψ, θ). Let θ∗τ denote the candidate solution output by the algorithm. Under

Assumptions 7.1, 7.2, 7.3 and 7.4, then given any γ ∈ (ν, 1] and δ > 0, β1 > 0, β2 > 0 with

δ + β1 + β2 = γ − ν, then

Prψ∗,θ∗τ (J (ψ∗, θ∗τ ) ≤ J∗) ≥ 1− γ. (7.64)

Proof. Let ñδ (α, ρ) denote the smallest integer n such that pNsuccess (n, 1, α, ρ) ≥ 1 − δ.

Combining this with Lemma 7.3 (requiring Assumption 7.2), we have

Prψ∗,θ∗τ (J (ψ∗, θ∗τ ) ≤ J∗|τ ≥ ñδ (α0, ρ0)) ≥ 1− δ − ν. (7.65)

Recognise that for any τ such that pNsuccess (τ, 1, α, ρ) ≥ 1− δ, this implies

τ ≥ ñδ (α, ρ) , (7.66)

by definition of ñδ (α, ρ) and due to monotonicity in n (Theorem 5.3(a)) for the Gaussian

copula. As noted in Corollary 7.1 (requiring Assumptions 7.1 and 7.3), the algorithm
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stops at time τ with probability one such that

pN
success

(
τ, 1, α̂τ , ρ̂τ

)
≥ 1− δ. (7.67)

Then by letting β = β1 + β2, we have

1− β1 − β2 = 1− β (7.68)

≤ Pr
(
pN

success

(
τ, 1, α̂τ , ρ̂τ

)
≤ pNsuccess (τ, 1, α0, ρ0)

)
(7.69)

≤ Pr
(
1− δ ≤ pNsuccess (τ, 1, α0, ρ0)

)
(7.70)

≤ Pr (τ ≥ ñδ (α0, ρ0)) , (7.71)

where the first inequality is via Remark 7.4, the second inequality is due to the stopping

condition (7.67), and the third inequality is due to the implication (7.66). Thus

Pr (J (ψ∗, θ∗τ ) ≤ J∗) ≥ Pr (J (ψ∗, θ∗τ ) ≤ J∗, τ ≥ ñδ (α0, ρ0)) (7.72)

= Pr (J (ψ∗, θ∗τ ) ≤ J∗|τ ≥ ñδ (α0, ρ0)) Pr (τ ≥ ñδ (α0, ρ0)) (7.73)

≥ (1− δ − ν) (1− β) (7.74)

> 1− δ − ν − β (7.75)

= 1− γ, (7.76)

because δ, β1, β2 were chosen such that

γ = δ + β1 + β2 + ν. (7.77)

Remark 7.6. An explicit choice of algorithm settings may, for instance, be δ = β1 = β2 =

(γ − ν) /3, or δ = (γ − ν) /2, β1 = β2 = (γ − ν) /4. The lower bound on the stopping time in

Theorem 7.2 will generally depend on δ, β1, β2, so by choosing an appropriate combination of δ, β1,

β2 in a practice known as risk allocation [150], the performance of the algorithm can potentially be

improved. However, doing so would not be reasonable in practice since it also requires the actual
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values of α and ρ to be known.

Remark 7.7. If
(
J (θi) , J (ψ∗, θi)

)
is assumed to have a Gaussian copula, we may take ν = 0

as per Remark 7.2, so Prψ∗,θ∗τ (J (ψ∗, θ∗τ ) ≤ J∗) can be made arbitrarily close to one. This is

because the lower tail boundary conditional CDF for the bivariate Gaussian copula is degenerate

at zero for ρ > 0 (as discussed in Section 5.3), so in the expression (7.30) for the OO success

probability, limn→∞ p
N
success (n, 1, α, ρ) = 1. However, there exist families of bivariate copulae

where the lower tail boundary conditional CDF is non-degenerate (e.g. the bivariate Frank copula

mentioned in Section 5.2), so in the expression (7.29), generally limn→∞ psuccess (n, 1, α) 6= 1.

Therefore in the case ν > 0, we generally cannot make Prψ∗,θ∗τ (J (ψ∗, θ∗τ ) ≤ J∗) arbitrarily close

to one.

Remark 7.8. Although the value of ν is treated as given in Theorem 7.3, this might not be

explicitly known a priori in practice, and instead must be assumed. However, once the algorithm

has finished running, an a posteriori value for ν can be estimated from the collected sample. This

is demonstrated in the numerical example.

7.4 Numerical Example

We demonstrate our proposed approach on a numerical example, of tuning MPC offline

for the diesel air-path. We shall consider two particular applications for the tuned con-

troller.

1. As mentioned in Section 2.1.2.3, offline tuning and online tuning methods may

complement each other. The experimental tuning results in Section 6.4 and Fig-

ures 6.5, 6.5 demonstrated that a combination of offline and online tuning could

outperform either along. In this application, Algorithm 7.2 will be used to tune an

MPC offline, to investigate the extent to which the tuned controller yields a good

initial point for online tuning.

2. Typically in production, a single controller will be tuned for a fleet of vehicles.

However, the exact model representing any individual engine dynamics may differ
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slightly. We apply Algorithm 7.2 to tuning engine controllers so that the perfor-

mance will be robust to these variations.

Here, the individual engine is modelled as a nominal linear process model

xk+1 = Axk + Buk, (7.78)

with the nominal matrices A ∈ Rn×n, B ∈ Rn×m subjected to a Gaussian disturbance

A = A + SA � Zn×n (7.79)

B = B + SB � Zn×m, (7.80)

where Zn×m denotes an n × m matrix of independent standard Gaussian entries, while

SA, SB contain the standard deviations of the disturbances. These disturbances model the

variations of different vehicles in the fleet.

7.4.1 System Description

The air-path of an automotive diesel engine can be locally represented by a reduced order

linear model with 4 states, and 3 inputs [172]. The state vector is denoted by

x =
[
pim pem Wcomp yEGR

]>
, (7.81)

where pim is the engine intake manifold pressure, pem is the exhaust manifold pressure,

Wcomp is the compressor mass flow rate and yEGR is the known as the exhaust gas recir-

culation (EGR) rate. The inputs are composed of the actuation signals

u =
[
uthr uEGR uVGT

]>
, (7.82)

where uthr is for the throttle valve, uEGR is for the EGR valve and uVGT is for the variable

geometry turbine (VGT) vane. At a particular operating condition, the nominal model

(7.78) with normalised units and variables trimmed from the equilibrium point has been
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obtained as

A =


0.9846 −0.0003 0.0010 0.0088

0.0066 0.9847 0.0058 0.0021

−0.0108 −0.0276 1.0186 0.1280

0.2116 0.1107 −0.2596 0.1946

 (7.83)

B =


−0.0006 −0.0002 0.0276

−0.0001 −0.0001 0.0284

0.0025 −0.0012 −0.1508

0.0123 0.0003 0.2997

 . (7.84)

We consider the task of regulating the states to the origin from the initial condition

x0 =
[
−0.7298 −0.6931 −1.2875 0.1051

]>
, (7.85)

which constitutes a step change from a ‘medium’ engine operating condition to a ‘high’

engine operating condition. Let the system performance function for our regulation prob-

lem be defined as

J (ψ, θ) = ST (Yψ,θ) , (7.86)

where Yψ,θ is the discrete-time closed-loop trajectory of yEGR under controller θ on plant

ψ, and ST (·) is the 2% settling time. This settling time function is implemented in MAT-

LAB, which linearly interpolates in between discrete-time trajectories, and is thus continuous-

valued. Here, the MPC law is obtained by solving the receding horizon quadratic-cost

problem

min
uk|0,...,uk|9

{
9∑
i=0

(
x>k|iQxk|i + u>k|iRuk|i

)
+ x>k|10Pxk|10

}

subject to xk|i+1 = Axk|i + Buk|i, i = 0, . . . , 9

Mxk|i ≤ f, i = 1, . . . , 10

Euk|i ≤ h, i = 0, . . . , 9∣∣uk|i − uk|i−1

∣∣ ≤ uslew, i = 0, . . . , 9

(7.87)
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where Q � 0, P � 0, R � 0, and with state constraint values (representing physical

constraints on the signals):

M =


0 0 1 0

0 0 0 1

0 0 0 −1

 (7.88)

f =
[
1.2568 0.8296 0.3704

]>
, (7.89)

input constraint values

E =

 I3×3

−I3×3

 (7.90)

h =
[
0.15 0.15 0.15 0 0.15 0.15

]
, (7.91)

and slew rate

uslew = 0.05, (7.92)

while the initial input begins at u0 =
[
0 0 0

]>
. At state xk for k ≥ 1, the optimal solu-

tion to (7.87) with xk|0 = xk is obtained as
(
u∗k|0, . . . , u

∗
k|9

)
, and the control law applied at

time k is uk = u∗k|0.

The controller tuning variables are the positive definite cost matrices

θ = (Q,P,R) . (7.93)

The mechanism we use for randomly generating the Q, R matrices, using a similar ap-

proach to [103, 128], is given by

Q = WQDQW
>
Q (7.94)

R = WRDRW
>
R , (7.95)

where
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• WQ is a uniformly random orthogonal matrix of dimension 4× 4,

• WR is a uniformly random orthogonal matrix of dimension 3× 3,

• DQ is a diagonal matrix whose diagonal elements are independently Exp (1) dis-

tributed,

• DR is a diagonal matrix whose diagonal elements are independently Exp (1/1000)

distributed.

Then P is fixed with respect to A,B,Q,R by solving the discrete-time algebraic Riccati

equation.

Uncertainty quantification for the diesel engine air-path has been performed using

the methodology detailed in Chapter 4, which we assume for the purpose of this example

represents the uncertainty over a fleet of vehicles. Each random plant is characterised by

the pair

ψ = (A,B) , (7.96)

and ψ can be sampled by perturbing the nominal model (7.78) with small noise. The

standard deviations from (7.79), (7.80) are

SA =


6.095 4.775 3.610 9.502

0.6014 0.4692 0.3555 0.9324

20.85 16.56 12.85 31.097

44.38 34.46 26.26 64.57

× 10−4 (7.97)

SB =


5.287 3.753 4.9861

0.5261 0.3705 0.4910

17.70 12.31 16.62

37.98 26.26 34.82

× 10−4. (7.98)

Let the performance comparison function J (θ) be the settling time from using the nomi-
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nal model ψ =
(
A,B

)
as the plant dynamics in closed-loop under controller θ, i.e.

J (θ) = ST
(
Yψ,θ

)
. (7.99)

We also set a desired nominal performance threshold of J∗ = 6.75 seconds for the settling

time.

7.4.2 Single Tuned Controller

Assume a value for ν = 0.1. By running Algorithm 7.2 with settings δ = 0.1, β1 =

0.05, β2 = 0.05, then from Theorem 7.3 the prescribed probability of the nominal perfor-

mance threshold being met in a single test is at least 1 − γ = 0.7. We ran the algorithm

once, which stopped after τ = 1544 samples. A histogram for the performances J (θi)

and J (ψi, θi) are plotted in Figure 7.2.
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Figure 7.2: Histograms of J (θi) and J (ψi, θi) for the 1544 samples in a single run of
Algorithm 7.2.

The best controller θ∗τ when evaluated on the performance comparison function J (θ)
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was found to have a settling time of J (θ∗τ ) = 2.1482 seconds. Upon simulating a test of

this tuned controller using another randomly generated plant ψ∗, we obtained a trajec-

tory for yEGR with a settling time of 2.7148 seconds, which far outperforms the nominal

threshold J∗ = 6.75.

7.4.2.1 Application to Online Tuning

We conduct a simulation of a mock online tuning example, using the offline tuned con-

troller θ∗τ as an initial point. The online optimiser used was a variant of Nesterov’s gradi-

ent free algorithm [146] tailored towards positive definite matrices, which has previously

been applied in online tuning of MPC [128]. Evaluations were performed using the ob-

jective J (ψ∗, ·), with the realised plant ψ∗ held constant. Each iteration of the algorithm

requires two function evaluations (i.e. two experiments per function evaluation in the

context of online tuning).
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Figure 7.3: Iterations of the system performance in the online tuning example.

Figure 7.3 shows the iterations of the online tuning, compared against that of another

baseline controller with initial performance roughly equal to the threshold J∗ = 6.75.

Since the behaviour of the algorithm is sensitive to the online optimiser settings (e.g.

step size sequence), the step size sequence in each example has been chosen favourably

in order to provide a fairer comparison of optimistic online tuning performance. As

the comparison shows, the improvement in performance approximately follows a linear
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trend with similar slope. It takes roughly 600 iterations for the baseline controller to

reach the initial level of the offline tuned controller, while it takes almost 800 iterations

for it to reach the same level that it took the offline tuned controller 100 iterations to

reach. This demonstrates how a well-performing controller obtained by offline tuning

can complement online tuning methods, by providing good initial controllers to ‘hot-

start’ the online tuning method, and reduce the amount of online tuning to reach a given

performance.

7.4.2.2 Application to Tuning for a Fleet of Vehicles

To investigate the tuned controller performance on a fleet of vehicles, we simulated 10000

tests on another set of independently generated plants, with the same tuned controller.

By the linearity of expectation, Theorem 7.3 prescribes that the expected proportion of

tests which outperform J∗ = 6.75 to be at least 1 − γ = 0.7. We found that all 10000

of the tests outperformed the nominal threshold, which far exceeds 0.7. Moreover, the

minimum, mean and maximum performance times were of 0.9359, 2.4826 and 4.8024

seconds respectively.

7.4.3 Multiple Tuned Controllers

Aggregate results were also obtained for 1000 independent runs of Algorithm 7.2 with

identical tuning procedure and settings as described above, producing 1000 tuned con-

trollers. Each controller was then tested on its own randomly generated plant. It was

found that all 1000 tests succeeded in outperforming the nominal threshold of J∗ = 6.75

seconds, with minimum, mean and maximum performance times of 0.5381, 2.7407 and

4.8867 seconds respectively. Note that the distribution of these 1000 tests is different

from that of the 10000 tests in previous section, as each test here consists of a different

controller.
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7.4.4 Discussion

For this example, we may validate Theorem 7.2 by plotting in Figure 7.4 the numerically

optimised lower bound for the CDF of the stopping time τ (using the point estimates

α̂τ = 0.5654, ρ̂τ = 0.4907 from the sample in Figure 7.2, in place of the actual α0, ρ0),

against the empirical CDF of the stopping time for the 1000 runs.
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Figure 7.4: The empirical algorithm run times compared against those as suggested by
Theorem 7.2.

As the curves in Figure 7.4 are within less than order of magnitude on the horizon-

tal scale, this hints that Theorem 7.2 is not overly conservative. However, our empirical

results also suggest that 1 − γ can be conservative for the actual probability of outper-

forming J∗ (which appears to be much closer to 1 than 0.7). This is partly attributed to

the ‘price’ of needing to estimate α and ρ, since the LCBs (7.23), (7.27) are non-asymptotic,

which tend to be more conservative than their asymptotic counterparts. This conserva-

tiveness can somewhat be reduced in absolute terms by choosing a lower γ. For instance,

one could select δ = 0.025, β1 = 0.0125 and β2 = 0.0125 such that γ = 0.15. However,

this comes at a trade-off of longer stopping times, hence more computation. Using point

estimates in place of the actual α and ρ, applying Theorem 7.2 suggests that Algorithm

7.2 will have stopped by n = 40000, with probability at least 0.999. In a similar fashion,

choosing δ = 0.005, β1 = 0.0025, β2 = 0.0025 so that γ = 0.11, this value for n changes to

480000.
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Decreasing J∗ rather than γ also comes at a trade-off of more computation. We per-

formed additional simulations identical to Section 7.4.2 with a single tuned controller,

except with J∗ = 6.5. After 10000 independent tests, the minimum, mean and maximum

settling times were 0.7185, 2.5036 and 5.1081, which are arguably not improved over the

results from setting J∗ = 6.75. However, this run of Algorithm 7.2 took 37144 samples.

Using point estimates in place of the actual α and ρ, applying Theorem 7.2 suggests that

Algorithm 7.2 will have stopped by n = 6800 with probability at least 0.999 for J∗ = 6.75

(evident from Figure 7.4). On the other hand with J∗ = 6.5, Theorem 7.2 suggests that

Algorithm 7.2 will have stopped by n = 93000, with probability at least 0.999. Therefore

while the indicative value for J∗ does seem to be conservative of the performance in this

example, decreasing J∗ by a small amount does not appear to improve the test perfor-

mance, but results in an order of magnitude increase in the computation time.

From the relatively large sample of size 37144 obtained in the previous paragraph,

we can also numerically validate the assumption that ν = 0.1. A nonparametric copula

kernel density estimate was fitted from this sample, using the kdecopula package in R

[144], which implements the transformation local likelihood estimation method [76]. A

Gaussian copula was also fitted with the point estimate for ρ. Performing a sweep over z

and x values in (7.5), we computed

sup
z,x∈(0,1)

{
Pr
(
X̃ ′ ≤ x

∣∣∣Z̃ = z
)
− Pr

(
X̃ ≤ x

∣∣∣Z̃ = z
)}
≈ 0.097, (7.100)

which is consistent with the assumption of ν = 0.1.

7.5 Summary

In this chapter, we addressed a probabilistically robust control design problem using a

sequential learning algorithm, based on OO. Our results were enabled by relating the

general OO success probability to work from Section 5.3 on the Gaussian copula OO suc-

cess probability, via the associated Gaussian copula. The algorithm was illustrated on
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a numerical example involving the tuning of MPC for automotive diesel engines, and

showed the advantage of using the offline tuned controller as an initial condition for on-

line tuning. Additionally, the performance of offline tuned controllers was robust to plant

uncertainty in both a multi-plant setting over a fleet of vehicles with a single algorithm

run, and a multi-controller setting over many algorithm runs.





Chapter 8

Conclusion

8.1 Summary of Contributions

This thesis has explored several contributions to methods of offline tuning for MPC, using

techniques from machine learning and ordinal optimisation (OO). These contributions

and their relation to the research aims from Section 2.6 are reiterated below.

8.1.1 Contributions to Research Aim 1

To augment the machine learning controller tuning framework with isotonic pairwise preference

learning and plant uncertainty quantification.

In Chapter 3, two methods were presented for performing isotonic pairwise prefer-

ence learning. The first method, detailed in Algorithm 3.1, found a weighted average be-

tween the MAP and MLE latent utility vectors
⇀
fMAP and

⇀
f lin respectively for Gaussian

process regression, based on derived conditions for monotonicity. This was successfully

demonstrated for learning preferences over diesel air-path trajectories in Section 3.2.5,

with a bivariate feature space. In Section 3.3, another method was presented, which per-

formed Bayesian estimation of a linear utility function f (x) = b>x with a Dirichlet prior.

This was also applied to diesel air-path trajectories, with an 8-dimensional feature space.

Both methods augmented the machine learning controller tuning framework by supply-

ing the performance index used to evaluate trajectories.

In Chapter 4, an active learning methodology was proposed for system identification

139
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of linear parameter-varying systems. The resultant model, called the GPR-LPV (Gaussian

Process Regression Linear Parameter-Varying) model, fits a Gaussian process over oper-

ating point p for each of the elements in the A (p) and B (p) matrices. In addition to select-

ing subsequent operating points for experimentation, the resulting identified model nat-

urally quantifies the plant uncertainty for the machine learning controller tuning frame-

work, since the estimation procedure is based on Gaussian process regression (which

inherently quantifies the variance). The method was successfully demonstrated on iden-

tification of a diesel-engine air path (with operating point p being the engine speed Ne

and fuel rate wfuel).

8.1.2 Contributions to Research Aim 2

To develop an ordinal optimisation approach valid for offline tuning of MPC, which is to be tested

online.

Chapter 5 considered a copula model for the pair (Z,X), and developed theoretical

results for the OO success probability psuccess. The results are compatible with offline tun-

ing of controllers over an uncountable space, as addressed in Section 6.2. Later within the

same section, the OO methodology was specialised to offline tuning of a gain-scheduled

controller architecture.

Moreover, Chapter 7 presented a sequential learning algorithm for probabilistically

robust offline controller tuning, using the analytic lower bound for the Gaussian copula

success probability pNsuccess derived in Section 5.3.3. The algorithm operates by drawing

samples of candidate controllers and plants, to sequentially estimate properties of the

underlying copula. The algorithm stops when a lower confidence bound on the success

probability is estimated to be high (at least 1− δ), with high confidence (at least 1− β1 −

β2). The algorithm was demonstrated in simulation on offline tuning a single MPC for

the diesel air-path when: 1) the initial controller is used to hot-start an online tuning

procedure; and 2) there is uncertainty across a fleet of vehicles.
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8.1.3 Contributions to Research Aim 3

To implement and experimentally validate the efficacy of quadratic-cost MPC tuned offline from

ordinal optimisation on a diesel engine test rig.

A gain-scheduled MPC architecture was implemented and tested at the Toyota Higashi-

Fuji Center in Japan. The experiments in Chapter 6 show that by following the OO offline

tuning methodolgoy, some of the offline tuned controllers were able to perform better

than a baseline tuned MPC, over the UDC3 and WLTC4 drive-cycles. After further man-

ual online tuning, the controller was then demonstrated to outperform the baseline MPC

over the full UDC, EUDC, and WLTC. These experimental results provide evidence that

MPC tuned offline by OO can provide an acceptable level of tuning. Moreover, offline

tuning was found to complement the online tuning experiments.

8.2 Future Research

Based on the work in this thesis, the following directions are highlighted for future re-

search.

8.2.1 Preference Learning

• Further theoretical analysis could be conducted for the pairwise isotonic learning

Algorithm 3.1 in Chapter 3 to show, for example, that by enforcing monotonicity,

generalisation error is reduced (compared to not enforcing monotonicity).

• Algorithm 3.1 could also be modified to scale better with the dimension d of the

feature space, since there is currently no efficient way to find a∗, over a brute force

approach.

8.2.2 Active Learning

• The ideas from the active learning framework from Chapter 4 could be extended

to other classes of parametric non-linear systems, whereby a Gaussian process is
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fitted to each parameter. In the same way, the resultant identified model would be

able to quantify plant uncertainty.

• Additionally, the Assumption 4.3 of full state measurement could be relaxed, so that

identification must be performed from only input-output (u, y) data, rather than

input-state (u, x) data as is currently done. This would perhaps involve combining

subspace identification techniques [126, §10.6] with the current approach.

8.2.3 Ordinal Optimisation

• Further study could be conducted into how properties of copula dependence, and

lower tail dependence affect psuccess. A monotonicity property in the correlation ρ

for a Gaussian copula was established Theorem 5.6. But since several other classes

of single-parameter bivariate copulae have a parameter that influences dependence

(e.g. $ for the Frank copula), it may also be possible to obtain an analogous prop-

erty applicable to a wider class of copulae.

• Although the approximation formula in Section 5.3.2 appeared to lower bound the

actual success probability, confirmation of this is currently elusive. If a lower bound

is established, then this would constitute a tractable and principled way to approx-

imate success probabilities that scale withm, and computed withO
(
m2
)

time com-

plexity, rather than with m-dimensional integration.

• Analytic lower bounds in the style of Section 5.3.3 could potentially be developed

for classes of copulae other than the Gaussian copula, which would then allow us

to invert the bound as in Section 5.3.4.

• It is also worthwhile investigating an extension of the OO problem from Definition

5.2, where we relax the requirement that (Z,X) have a continuous distribution.

This may allow for the OO tuning methodology to be applied to variables from a

countable set, such as the prediction horizon N. One complication arising from this

direction however is that the underlying copula of (Z,X) will no longer be unique,

hence this will need to be carefully considered in the treatment.
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8.2.4 Offline Controller Tuning Experiments

• With offline OO tuning, other MPC architectures could be experimented on, such

as a robust control architecture with stability and recursive feasibility guarantees

like that considered in [166].

• Other practical applications for the OO offline tuning approach could be consid-

ered, other than for control of the diesel air-path. Key application areas would share

similar logistical characteristics (i.e. online experimentation is relatively scarce com-

pared to offline simulation).

8.2.5 Sequential Learning Algorithm

• The examples in Section 7.4 illustrate Algorithm 7.2 with only simulation studies,

but the algorithm could be further validated through further physical experiments.

• Currently, the results in Chapter 7 are reliant on the underlying copula being not

too unfavourably far from a Gaussian copula (with the bound ν). As discussed in

Section 8.2.3, development of alternative lower bounds for the OO success proba-

bility may facilitate sequential learning algorithms which relax this restriction.

• Another avenue is to investigate the role that the distribution Pθ (for sampling can-

didate controllers) plays in the tuned controller performance. In our formulation,

Pθ is an arbitrary choice left to the practitioner. In Section 7.4, Pθ was chosen by

explicitly constructing a distribution, however another option would have been

to let θi be the solution output by running a randomised optimisation algorithm

with objective J (θ) (similar to Chapter 6). Modifying Pθ affects the distribution

of
(
J (θi) , J (ψ∗, θi)

)
, and consequently the value of ν. Hence it is perhaps possi-

ble to find guiding principles in designing Pθ which will lead to more favourable

probabilistic performance specifications, or alternatively, reduced computational

requirements for a fixed performance specification.

• The setup in Chapter 7 effectively considers a form of OO with selection sizem = 1,

i.e. only the single best offline controller is tested online. An extension to m > 1 is
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also worth investigating, which would foremost require developing lower bounds

for the success probability that favourably scale with m (as mentioned above in

Section 8.2.3).



Appendix A

Gaussian Process Regression

A Gaussian process on d-variate feature variable x ∈ Rd may be defined by:

f (x) ∼ GP
(
m (x) , k

(
x, x′

))
, (A.1)

where m (x) : Rd → R is called the mean function and positive definite kernel k (x, x′) :

Rd × Rd → R is also known as the covariance function; these two functions completely

specify the Gaussian process. For two collections of points X = (x1, . . . , xn) and X′ =

(x′1, . . . , x
′
m), denote the Gram matrix as

K
(
X, X′

)
:=


k (x1, x

′
1) . . . k (x1, x

′
m)

...
. . .

...

k (xn, x
′
1) . . . k (xn, x

′
m)

 (A.2)

and let

m (X) :=
[
m (x1) . . . m (xm)

]
. (A.3)

Then for a Gaussian process specified by m (·) and k (·, ·), the joint distribution of the

process at the points in X is

⇀
f (X) :=

[
f (x1) . . . f (xn)

]>
∼ N (m (X) , K (X, X)) . (A.4)

Suppose we have some input-output training data D =
(
X,
⇀
y
)

, subject to some Gaussian

observation noise with covariance C on the outputs (if the noise is i.i.d., we would take

C to be a scaled identity). Then given pre-specified prior mean and covariance functions
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m (·) and k (·, ·), we may obtain the posterior predictive distribution of the process at test

points X∗, by conditioning on the data. As the prior and likelihood are both Gaussian, it

follows that the posterior of the process at points X∗ is also Gaussian, given by [155, §2.7]:

[⇀
f ∗

∣∣∣X∗,D] ∼ N (m (X∗) + K (X∗, X) K−1
(⇀
f −m (X)

)
, K (X∗, X∗)− K (X∗, X) K−1K (X, X∗)

)
,

(A.5)

where

K := K (X, X) + C. (A.6)

The primary computational cost incurred by GPR is the inversion of the n × n matrix

K, which can be tempered using methods such as the Cholesky decomposition [155,

Algorithm 2.1].
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Ordinal Optimisation

B.1 Joint Distribution of Order Statistics

Consider an i.i.d. sample of size n from a ‘parent’ random variable X . Then the ordered

values of the sample, denoted

X1:n ≤ · · · ≤ Xn:n (B.1)

are called the order statistics.

Lemma B.1 (Joint PDF of order statistics). Denote ranks 1 ≤ n1 < · · · < nk ≤ n. Then

the joint PDF of the order statistics Xn1:n, . . . , Xnk:n for continuous X with parent PDF denoted

f (·), and CDF denoted F (·), is

fn1,...,nk (x1, . . . , xk) = n!

 k∏
j=1

f (xj)

 k∏
j=0

[
(F (xj+1)− F (xj))

nj+1−nj−1

(nj+1 − nj − 1)!

]
I{x1≤···≤xk},

(B.2)

where we take x0 := −∞, xk+1 :=∞, n0 := 0 and nk+1 := n+ 1.

Proof. See [51, §2.2].

Lemma B.2 (Joint CDF of order statistics). Denote ranks 1 ≤ n1 < · · · < nk ≤ n. Then the

joint CDF of the order statistics Xn1:n, . . . , Xnk:n for continuous X with parent CDF denoted

F (·) is

Fn1,...,nk (x1, . . . , xk) =

n∑
ik=nk

ik∑
ik−1=nk−1

· · ·
i2∑

i1=n1

n!

i1! (i2 − i1)!× · · · × (n− ik)!
[F (x1)]i1
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× [F (x2)− F (x1)]i2−i1 × · · · × [1− F (xk)]
n−ik (B.3)

for the case x1 ≤ · · · ≤ xk. For the case we do not have x1 ≤ · · · ≤ xk, then it holds that

Fn1,...,nk (x1, . . . , xk) = Fn1,...,nk (x∗1, . . . , x
∗
k) , (B.4)

where

x∗k := xk (B.5)

x∗k−1 := min {xk−1, x
∗
k} (B.6)

...

x∗1 := min {x1, x
∗
2} . (B.7)

Proof. The expression (B.3) generalises naturally based on arguments provided in [51,

Section 2.2]. The result (B.4) is obtained by noting that by construction x∗1 ≤ · · · ≤ x∗k, and

the joint density in the region bounded between (x∗1, . . . , x
∗
k) and (x1, . . . , xk) is zero.

B.2 Equivalent Characterisation of Multivariate Stochastic Dom-
inance

Stochastic orderings are notions of partial orders over random elements, such as univariate

random variables or random vectors. The necessary and sufficient conditions for two

random vectors to satisfy the ‘usual’ stochastic order�
st

, often referred to as (multivariate)

stochastic dominance, is stated in Definition 5.5, which we repeat here for convenience.

• For two random vectors X1,X2 ∈ Rn, we have X1 �
st

X2 if and only if E [u (X1)] ≤

E [u (X2)] for all weakly increasing (i.e. non-decreasing) functions u : Rn → R.

• Equivalently, X1 �
st

X2 if and only if Pr (X1 ∈ U) ≤ Pr (X2 ∈ U) for all upper sets

U (an upper set may be defined as a set which satisfies x2 ∈ U for all x2 ≥ x1 ∈ U).
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Another equivalent characterisation of multivariate stochastic dominance, found in [169,

Theorem 6.B.1], involves a construction on the same probability space as follows.

Theorem B.1. For two random vectors X1,X2 ∈ Rn, we have X1 �
st

X2 if and only if there exist

two random vectors X′1,X
′
2 defined on the same probability space such that X′1 =

st
X1, X′2 =

st
X2

and Pr (X′1 ≤ X′2) = 1.

B.3 Proofs for Chapter 5

B.3.1 Proof of Proposition 5.1

For the first causal additive representation, as Z and Y are independent, we write

[X|Z = z] =
st
z + Y. (B.8)

Thus

Pr (X > x|Z = z) = Pr (Z + Y > x|Z = z) (B.9)

= Pr (Y > x− z|Z = z) (B.10)

≤ Pr
(
Y > x− z′

∣∣Z = z′
)

(B.11)

= Pr
(
X > x

∣∣Z = z′
)
. (B.12)

For the second causal additive representation, first denote

C (z, x) = Pr (Z ≤ z,X ≤ x) . (B.13)

By analogous arguments to the first causal additive representation, we have

Pr (Z > z|X = x) ≤ Pr
(
Z > z

∣∣X = x′
)

(B.14)
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for all z, x, x′ ∈ (0, 1) such that x ≤ x′. Due to exchangeability, C (z, x) = C (x, z) and we

have the copula conditional CDF (computed by [109, §2.1.3]) as

Pr (Z > z|X = x) =
∂C (z, x)

∂x
(B.15)

=
∂C (x, z)

∂x
(B.16)

= Pr (X > z|Z = x) . (B.17)

Performing the same for the right-hand side of (B.14), we get

Pr (X > z|Z = x) ≤ Pr
(
X > z

∣∣Z = x′
)

(B.18)

for all z, x, x′ ∈ (0, 1) such that x ≤ x′, which is the required condition for (5.5).

B.3.2 Proof of Theorem 5.1

Let FX (·) denote the CDF of X , and observe that

min
{
X〈1〉, . . . , X〈m〉

}
≤ x∗α (B.19)

if and only if

min
{
FX
(
X〈1〉

)
, . . . , FX

(
X〈m〉

)}
≤ α. (B.20)

Moreover, letting FZ (·) denote the CDF of Z, the ordering of FZ (Z1) , . . . , FZ (Zn) is

unchanged, compared to Z1, . . . , Zn. Therefore using the probability integral transform,

we can assume without loss of generality that (Z,X) is a copula distribution, so that Z

and X are each Uniform (0, 1) distributed. With the law of total probability, write

psuccess (n,m,α)

=

∫ 1

0
· · ·
∫ 1

0
Pr
(
min

{
X〈1〉, . . . , X〈m〉

}
≤ α

∣∣Z1:n = z1, . . . , Zm:n = zm
)

× fZ1:n,...,Zm:n (z1, . . . , zm) dz1 . . . dzm, (B.21)
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where

fZ1:n,...,Zm:n (z1, . . . , zm) =
n!

(n−m)!
(1− zm)n−m I{z1≤···≤zm} (B.22)

is the joint PDF of the first m order statistics of (Z1, . . . , Zn), from Lemma B.1. Further

note that since each pair (Zi, Xi) is sampled independently, then each X〈j〉 is condition-

ally independent of all the variables

(
X〈1〉, . . . , X〈j−1〉, X〈j+1〉, . . . , X〈m〉, Z1:n, . . . , Z(j−1):n, Z(j+1):n, . . . , Zm:n

)
, (B.23)

given Zj:m. Denote the event Z = {Z1:n = z1, . . . , Zm:n = zm} for brevity. Then

Pr
(
min

{
X〈1〉, . . . , X〈m〉

}
≤ α

∣∣Z) = 1− Pr
(
X〈1〉 > α, . . . ,X〈m〉 > α

∣∣Z) (B.24)

= 1−
m∏
j=1

Pr
(
X〈j〉 > α

∣∣Zj:n = zj
)

(B.25)

= 1−
m∏
j=1

Pr (X > α|Z = zj) (B.26)

= 1−
m∏
j=1

(1− Pr (X ≤ α|Z = zj)) (B.27)

= 1−
m∏
j=1

(
1− CX|Z (α|zj)

)
. (B.28)

Plugging (B.22) and (B.28) into (B.21), we have the result claimed.

B.3.3 Proof of Theorem 5.2

Starting from (B.21) and applying (B.28), we have

psuccess (n,m,α) =

∫ 1

0
· · ·
∫ 1

0
Pr
(
min

{
X〈1〉, . . . , X〈m〉

}
≤ α

∣∣Z1:n = z1, . . . , Zm:n = zm
)

× fZ1:n,...,Zm:n (z1, . . . , zm) dz1 . . . dzm

(B.29)

= 1− EZ1:n,...,Zm:n

 m∏
j=1

Pr (X > α|Z = Zj:n)

 . (B.30)
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Consider some arbitrary ordered selection of sizem from (Z1, . . . , Zn), denoted (Z ′1, . . . , Z
′
m).

Then we have multivariate stochastic dominance

(Z1:n, . . . , Zm:n) �
st

(
Z ′1, . . . , Z

′
m

)
, (B.31)

since

Z1:n ≤ Z ′1, Z2:n ≤ Z ′2, . . . , Zm:n ≤ Z ′m (B.32)

for every realisation of (Z1, . . . , Zn), so Theorem B.1 holds. Applying the stochastically

increasing positive dependence assumption,
∏m
j=1 Pr (X > α|Z = zj) is a non-decreasing

function in (z1, . . . , zm), so by the definition of stochastic dominance (Section B.2), we

have

EZ1:n,...,Zm:n

 m∏
j=1

Pr (X > α|Z = Zj:n)

 ≤ EZ′1,...,Z′m

 m∏
j=1

Pr
(
X > α

∣∣Z = Z ′j
) . (B.33)

Hence the success probability is maximised when (Z ′1, . . . , Z
′
m) is chosen as the first m

order statistics.

B.3.4 Proof of Theorem 5.3

For (a), we require the following lemma.

Lemma B.3. Let Z[m]:n := (Z1:n, . . . , Zm:n) denote the joint first m order statistics of an i.i.d.

sample of size n from parent distribution Z. Then

Z[m]:(n+1) �
st

Z[m]:n. (B.34)

Proof. Consider the following construction on the same probability space. Form an i.i.d.

sample of size n + 1 from Z and take the first m order statistics. This will be equal in

law to Z[m]:(n+1). Now delete one element uniformly at random, and re-compute the first

m order statistics. This will be equal in law to Z[m]:n. Moreover, for every realisation
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(denoted in lowercase), we have

(
z1:(n+1), . . . , zm:(n+1)

)
≤ (z1:n, . . . , zm:n) . (B.35)

Therefore from the characterisation of stochastic dominance in Theorem B.1, (B.34) holds.

Then (a) follows, via the same technique and analogous arguments as in the proof of

Theorem 5.2 found in Section B.3.3.

For (b), since

min
{
X〈1〉, . . . , X〈m〉

}
≤ min

{
X〈1〉, . . . , X〈m+1〉

}
, (B.36)

then

psuccess (n,m,α) = Pr
(
min

{
X〈1〉, . . . , X〈m〉

}
≤ α

)
(B.37)

≤ Pr
(
min

{
X〈1〉, . . . , X〈m+1〉

}
≤ α

)
(B.38)

= psuccess (n,m+ 1, α) . (B.39)

For (c), by De Morgan’s laws (i.e. complement of the union is the intersection of the

complements), put the definition of psuccess (n,m,α) in terms of

psuccess (n,m,α) = 1− Pr

(
m⋂
i=1

{
X〈i〉 > x∗α

})
. (B.40)

Then apply the properties that x∗α is non-decreasing in α and Pr
(⋂m

i=1

{
X〈i〉 > x∗α

})
is

non-increasing in x∗α.

B.3.5 Proof of Theorem 5.4

For the lower bound, consider the success probability where the selection of size m is

uniformly random without replacement from (Z1, . . . , Zn). This selection is identical in
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law to (Z1, . . . , Zm), which are i.i.d. Then the success probability can be computed by

Pr (min {X1, . . . , Xm} ≤ xα∗) = 1−
m∏
j=1

Pr (Xj > x∗α) (B.41)

= 1− (1− α)m . (B.42)

Based on the arguments provided from the proof of Theorem 5.2 in Appendix B.3.3, it

follows that this lower bounds psuccess.

For the upper bound, we can use the fact

min
i∈{1,...,n}

Xi ≤ min
{
X〈1〉, . . . , X〈m〉

}
(B.43)

to bound

psuccess (n,m,α) = Pr
(
min

{
X〈1〉, . . . , X〈m〉

}
≤ x∗α

)
(B.44)

≤ Pr

(
min

i∈{1,...,n}
Xi ≤ x∗α

)
(B.45)

= 1−
n∏
i=1

Pr (Xi > α) (B.46)

= 1− (1− α)n . (B.47)

B.3.6 Proof of Theorem 5.5

For cases (a), (b), (c), the results are immediate from applying the general upper and

lower bounds in Theorem 5.4. For (d), assuming without loss of generality that (Z,X) is

a copula and applying the property of comotonicity, then

psuccess (n,m,α) = Pr
(
min

{
X〈1〉, . . . , X〈m〉

}
≤ α

)
(B.48)

= Pr (min {Z1:n, . . . , Zm:n} ≤ α) (B.49)

= Pr (Z1:n ≤ α) (B.50)
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= 1−
n∏
i=1

Pr (Zi > α) (B.51)

= 1− (1− α)n . (B.52)

For (e), by independence of Z and X we have from (B.28):

1−
m∏
j=1

(1− Pr (X ≤ α|Z = zj)) = 1−
m∏
j=1

(1− Pr (X ≤ α)) (B.53)

= 1− (1− α)m . (B.54)

This can be taken out of the integral in (B.21) (where the integral evaluates to one), so

the result follows. Case (f) follows from the lower bound in Theorem 5.4. Lastly for (g),

as n → ∞, the joint density (B.22) converges to the Dirac delta function in argument zm.

Considering the region of integration in the expression (5.9) where 0 ≤ z1 ≤ · · · ≤ zm, we

have that zm = 0 implies z1 = · · · = zm−1 = 0. Therefore

lim
n→∞

psuccess (n,m,α) = 1−
m∏
j=1

(1− Pr (X ≤ α|Z = 0)) (B.55)

= 1−
(
1− CX|Z (α|0)

)m
. (B.56)

B.3.7 Proof of Theorem 5.6

LetG be the random variable for the number ofX-values less than or equal to the thresh-

old x∗α. Conditional on G = g, we can write the order statistics of the X-values as

X1:n ≤ · · · ≤ Xg:n ≤ x∗α < X(g+1):n ≤ · · · ≤ Xn:n. (B.57)

Using the additive Gaussian noise representation of the Gaussian copula in Section 5.3.1,

we can treat each X ∼ N (0, 1), while Z is formed by

Z = X + Y, (B.58)
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where Y ∼ N
(
0, ξ2

)
is independent with X , and ξ2 = 1/ρ2 − 1. Introduce the following

indexing of the Z-values according to the ordering of the X-values. We denote

Z{i} := Xi:n + Yi (B.59)

where the Yi are i.i.d. N
(
0, ξ2

)
, since the Y -values are independent of the ordering of the

X-values. Let pNsuccess|g (n,m,α, ρ) denote the conditional success probability, given G =

g. An equivalent characterisation of the conditional success probability can be obtained

from [94, Equation (2.19)]. This way, we may write

pNsuccess|g (n,m,α, ρ) = Pr

(
min

{
Z{1}, . . . , Z{g}

}
≤

(m)

min
{
Z{g+1}, . . . , Z{n}

}∣∣∣∣∣G = g

)
,

(B.60)

where
(m)

min {·} denotes the mth smallest value of its arguments. Putting (B.59), we have

pNsuccess|g (n,m,α, ρ) = Pr

(
min {Y1 +X1:n, . . . , Yg +Xg:n}

≤
(m)

min
{
Yg+1 +X(g+1):n, . . . , Yn +Xn:n

}∣∣∣∣∣G = g

) (B.61)

= Pr

(
min {Y1 + ∆X1:n, . . . , Yg + ∆Xg:n}

≤
(m)

min
{
Yg+1 + ∆X(g+1):n, . . . , Yn + ∆Xn:n

}∣∣∣∣∣G = g

)
,

(B.62)

where ∆Xi:n := Xi:n − x∗α. Now let Ỹi ∼ N (0, 1) represent a standardised random

variable, so that Yi =
st
ξỸi, and

pNsuccess|g (n,m,α, ρ) = Pr

(
min

{
ξỸ1 + ∆X1:n, . . . , ξỸg + ∆Xg:n

}
≤

(m)

min
{
ξỸg+1 + ∆X(g+1):n, . . . , ξỸn + ∆Xn:n

}∣∣∣∣∣G = g

) (B.63)



B.3 Proofs for Chapter 5 157

= Pr

(
min

{
Ỹ1 +

∆X1:n

ξ
, . . . , Ỹg +

∆Xg:n

ξ

}

≤
(m)

min

{
Ỹg+1 +

∆X(g+1):n

ξ
, . . . , Ỹn +

∆Xn:n

ξ

}∣∣∣∣∣G = g

)
,

(B.64)

because ξ > 0. Let any fixed realisation of the random variables Ỹ1, . . . , Ỹn,∆X1:n, . . . ,∆Xn:n

be denoted as ỹ1, . . . , ỹn,∆x1:n, . . . ,∆xn:n respectively. Observe ∆Xi:n ≤ 0 for all i ≤ g,

and ∆Xi:n > 0 for all i > g. So for any ξ′ < ξ, we have

ỹi +
∆xi:n
ξ′

< ỹi +
∆xi:n
ξ

, ∀i ≤ g (B.65)

ỹi +
∆xi:n
ξ′

> ỹi +
∆xi:n
ξ

, ∀i > g. (B.66)

Therefore it follows that

min

{
ỹ1 +

∆x1:n

ξ′
, . . . , ỹg +

∆xg:n
ξ′

}
≤ min

{
ỹ1 +

∆x1:n

ξ
, . . . , ỹg +

∆xg:n
ξ

}
(B.67)

(m)

min

{
ỹg+1 +

∆x(g+1):n

ξ
, . . . , ỹn +

∆xn:n

ξ

}
≤

(m)

min

{
ỹg+1 +

∆x(g+1):n

ξ′
, . . . , ỹn +

∆xn:n

ξ′

}
.

(B.68)

Denote ρ′ =
(
ξ′2 + 1

)−1/2, so that ρ < ρ′. Then

pNsuccess|g
(
n,m,α, ρ′

)
= pNsuccess|g

(
n,m,α,

(
ξ′2 + 1

)−1/2
)

(B.69)

= Pr

(
min

{
Ỹ1 +

∆X1:n

ξ′
, . . . , Ỹg +

∆Xg:n

ξ′

}

≤
(m)

min

{
Ỹg+1 +

∆X(g+1):n

ξ′
, . . . , Ỹn +

∆Xn:n

ξ′

}∣∣∣∣∣G = g

) (B.70)

≥ Pr

(
min

{
Ỹ1 +

∆X1:n

ξ
, . . . , Ỹg +

∆Xg:n

ξ

}

≤
(m)

min

{
Ỹg+1 +

∆X(g+1):n

ξ
, . . . , Ỹn +

∆Xn:n

ξ

}∣∣∣∣∣G = g

) (B.71)

= pNsuccess|g (n,m,α, ρ) , (B.72)
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where the inequality is from applying (B.67) and (B.68). The random variable G is bino-

mial distributed with parameters n, α (i.e. not affected by the value of ρ), thus

pNsuccess

(
n̄, m̄, ᾱ, ρ′

)
=

n∑
g=0

pNsuccess|g
(
n̄, m̄, ᾱ, ρ′

)
Pr (G = g) (B.73)

≥
n∑
g=0

pNsuccess|g (n̄, m̄, ᾱ, ρ) Pr (G = g) (B.74)

= pNsuccess (n̄, m̄, ᾱ, ρ) . (B.75)

B.3.8 Proof of Lemma 5.1

We require the following lemma.

Lemma B.4 (Stochastic dominance of parametrised random vectors). For random vectors

X, T, consider the conditional distribution [X|T]. Suppose that [X|T = t1] �
st

[X|T = t2] when-

ever t1 ≤ t2. Let X1 denote the variable for X that arises from chaining the random vector T1

with [X|T1], and similarly let X2 denote the variable for X that arises from chaining the random

vector T2 with [X|T2]. If T1 �
st
T2, then

X1 �
st

X2. (B.76)

Proof. For all upper sets U , we may write using indicator variables (denoted by I)

Pr (X1 ∈ U) = E
[
I{X1∈U}

]
(B.77)

= ET1

[
E
[
I{X∈U}

∣∣T1

]]
(B.78)

= ET1 [Pr (X ∈ U|T1)] (B.79)

≤ ET2 [Pr (X ∈ U|T2)] (B.80)

= Pr (X2 ∈ U) , (B.81)

where the inequality follows by stochastic dominance (Definition 5.5), since Pr (X ∈ U|t)

is a weakly increasing function of t for all upper sets U .

Using the necessary and sufficient conditions for stochastic dominance of multivari-
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ate Gaussians [169, Example 6.B.29], and combined with Lemma B.4 applied to the con-

ditional distribution (5.32), since Z �
st

Ẑ it follows that X �
st

X̂. Thus

p̂Nsuccess (n,m,α, ρ) = Pr
(

min
{

X̂
}
≤ x∗α

)
(B.82)

= 1− Pr
(
X̂ > x∗α1

)
(B.83)

≤ 1− Pr (X > x∗α1) (B.84)

= Pr (min {X} ≤ x∗α) (B.85)

= pNsuccess (n,m,α, ρ) . (B.86)

B.3.9 Proof of Lemma 5.2

We require the following two lemmas.

Lemma B.5. We have

− p log 4 ≤ log (1− p) ≤ −p, (B.87)

where the lower bound applies for all p ∈
[
0, 1

2

]
, and the upper bound applies for all p ≥ 0.

Proof. The lower bound can be established over p ∈
[
0, 1

2

]
via concavity of log (1− p), i.e.

line secants lie below the graph. The upper bound can also be established over p ≥ 0 via

concavity.

Lemma B.6. For the Gaussian Q-function given by Q (x) = 1− Φ (x)

c1 exp
(
−c2x2

)
≤ Q (x) ≤ 1

2
exp

(
−x

2

2

)
(B.88)

over x ≥ 0, with

c1 =
1

2
− ω

π
(B.89)

c2 =
cotω

π − 2ω
(B.90)

for any ω ∈
(
0, π2

)
.
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Proof. The lower bound is due to [205, Equation (2)] and the upper bound is found in

[41, Equation (5)].

If Ẑ1:n stochastically dominates Z1:n, then Pr
(
Ẑ1:n ≥ z

)
≥ Pr (Z1:n ≥ z) for all z ∈ R.

Or in terms of the Gaussian Q-function Q (z) = 1− Φ (z), we require

Q (z)n ≤ Q
(
z − µn
σn

)
(B.91)

for all z ∈ R, where the left-hand side can be derived with a special case of Lemma B.2.

The idea is to show that this bound holds over three different intervals whose union is R,

being (−∞, µn], [µn, 0] and [0,∞). We begin with z ∈ (−∞, µn]. Since µn ≤ 0, then via

the lower bound in Lemma B.6

Q (z)n ≤
(
1− c1 exp

(
−c2z2

))n
. (B.92)

Since 0 ≤ c1 exp
(
−c2z2

)
≤ 1/2, then putting p = c1 exp

(
−c2z2

)
in the upper bound from

Lemma B.5, we get

Q (z)n ≤ exp
(
−nc1 exp

(
−c2z2

))
(B.93)

= exp
(
− exp

(
−
(
c2z

2 − log (nc1)
)))

. (B.94)

Now using the upper bound in Lemma B.6, we have for z ≤ µn:

1− 1

2
exp

(
−(z − µn)2

2σ2
n

)
≤ Q

(
z − µn
σn

)
. (B.95)

The lower bound in Lemma B.5 implies exp (−p log 4) ≤ 1 − p. Applying this with p =

1
2 exp

(
− (z−µn)2

2σ2
n

)
and after some manipulation, we arrive at

Q

(
z − µn
σn

)
≥ exp

(
− exp

(
−

(
(z − µn)2

2σ2
n

− log log 2

)))
. (B.96)
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Thus a sufficient condition for Q (z)n ≤ Q
(
z−µn
σn

)
over z ∈ (−∞, µn] is

exp
(
− exp

(
−
(
c2z

2 − log (nc1)
)))
≤ exp

(
− exp

(
−

(
(z − µn)2

2σ2
n

− log log 2

)))
(B.97)

or equivalently,

(
1

σ2
n

− 2c2

)
z2 − 2

µn
σ2
n

z +
µ2
n

σ2
n

+ 2 log (nc1)− 2 log log 2 ≥ 0. (B.98)

The roots of this quadratic are at

z =
µn ±

√
µ2
n − (1− 2c2σ2

n) (µ2
n + 2σ2

n log (nc1)− 2σ2
n log log 2)

1− 2c2σ2
n

(B.99)

with discriminant ∆ calculated by

∆ = σ4
n (4c2 log (nc1)− 4c2 log log 2) + σ2

n

(
2c2µ

2
n − 2 log (nc1) + 2 log log 2

)
. (B.100)

Under the same choice of ω, note 2c2µ
2
n = 2 log (nc1) and the discriminant becomes

∆ = σ4
n (4c2 log (nc1)− 4c2 log log 2) + σ2

n (2 log log 2) . (B.101)

The quadratic inequality is satisfied everywhere if the discriminant is non-positive, so

put ∆ = 0 and taking the positive solution for σ2
n, giving

σ2
n =

− log log 2

2c2 (log (nc1)− log log 2)
. (B.102)

Therefore the inequality is satisfied provided nc1 > 1, which occurs for sufficiently large

n, since c1 > 0. Next we show that the stochastic dominance condition is satisfied for

z ∈ [µn, 0], under the proposed choice of µn and σn above. Over this interval, we can use

the same upper bound on Q (z)n as before, and now we have the lower bound

Q

(
z − µn
σn

)
≥ exp

(
−

(
c2

(
z − µn
σn

)2

− log c1

))
. (B.103)
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Thus we want to show that

nc1 exp
(
−c2z2

)
≥ c2

(
z − µn
σn

)2

− log c1. (B.104)

Fix z, and recognise that µ2n
σ2
n

= O
(

(log n)2
)

in the right-hand side, while the left-hand

side is O (n). Therefore

O (n) ≥
(

(log n)2
)

(B.105)

since O (en) ≥ O
(
n2
)
. Lastly for the interval z ∈ [0,∞), we use the upper bound in

Lemma B.6 to give

Q (z)n ≤ 1

2n
exp

(
−nz

2

2

)
(B.106)

and we can use the same lower bound as in the preceding interval. In the same vein as

above, we want to show

(
n

2
− c2
σ2
n

)
z2 − 2c2µn

σ2
n

+ n log 2 +
µ2
n

σ2
n

− log c1 ≥ 0. (B.107)

The discriminant of the quadratic is non-positive when

(
n

2
− c2
σ2
n

)(
n log 2 +

µ2
n

σ2
n

− log c1

)
≥ c22µ

2
n

σ4
n

. (B.108)

The left-hand side is O
(
n2
)

and the right-hand side is O
(

(log n)3
)

, thus this inequality

is also satisfied for sufficiently large n.

B.3.10 Proof of Theorem 5.7

The right inequality in (5.44) occurs as a univariate special case of the approximation

scheme (5.38), in conjunction with the constructed stochastically dominating approxima-

tion in Lemma 5.2 satisfying the conditions of Lemma 5.1. The left inequality in (5.44)

is a result of monotonicity in m from Theorem 5.3(b). The inequalities in (5.46) follow

naturally from the class of inequalities in (5.44), by directly taking the supremum with

respect to ω.
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B.4 Implementation of Lower Bounds in Theorem 5.7

In continuation of the discussion from Remark 5.1, the lower bounds in Theorem 5.7

can be implemented numerically. This is done by using sufficient conditions found in

the proof of Lemma 5.2 to check whether n ≥ n∗ (ω) for a given n and ω. We are

required to check whether the inequality (B.91) is satisfied over each of the intervals

(∞, µn], [µn, 0] and [0,∞). The inequality is satisfied over (∞, µn] by construction pro-

vided nc1 > 1, whereas (B.108) contains the sufficient condition for the interval [0,∞). As

for the bounded interval [µn, 0], we can directly evaluate (up to the available numerical

precision) whether (B.91) is satisfied. Pseudocode to implement this numerical certificate

is provided in Algorithm B.1. Using this certificate, we can implement the optimised

lower bound (5.46) in Theorem 5.7. Pseudocode for this is found in Algorithm B.2.

Algorithm B.1 Numerical certification of sufficient conditions for n ≥ n∗ (ω) in Theorem
5.7

1: function NUMERICALCERT(n, ω)

2: c1 ←
1

2
− ω

π
, c2 ←

cotω

π − 2ω

3: µn ← −
√

log (nc1)

c2
, σ2

n ←
− log log 2

2c2 (log (nc1)− log log 2)
4: if nc1 ≤ 1 then . Check sufficient condition for the interval (∞, µn]
5: return False

6: else if (B.91) fails over [µn, 0] then . Check sufficient condition for the interval
[µn, 0]

7: return False

8: else if (B.108) fails then . Check sufficient condition for the interval [0,∞)
9: return False

10: else
11: return True

Algorithm B.2 Implementation of lower bounds in Theorem 5.7

1: function LOWERBOUND(n, α, ρ, ω) . Lower bound in (5.44)
2: if NUMERICALCERT(n, ω) then
3: return Right-hand side of (5.44)
4: else
5: return 0

6: function OPTIMISEDLOWERBOUND(n, α, ρ) . Optimised lower bound in (5.46)
7: return maxω∈(0,π/2)LOWERBOUND(n, α, ρ, ω)
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B.5 Experiment Details

B.5.1 Constraints

To formulate the matrices M, f, E, h in the constraints, we start from the actuator lower

and upper limits

ulb =
[
0 0 20

]>
(B.109)

uub =
[
95 90 95

]>
. (B.110)

Additionally, we impose the saturation constraint in trimmed coordinates

ũsat =
[
15 15 15

]>
(B.111)

so that in trimmed coordinates, the upper and lower bounds are

ũmax = min {ulb − uss (pk) , ũsat} (B.112)

ũmin = max {uub − uss (pk) ,−ũsat} , (B.113)

where the maximum and minimum are taken component-wise. Then

 I

−I


︸ ︷︷ ︸

E

ũk|i ≤

 ũmax

−ũmin


︸ ︷︷ ︸

h

. (B.114)

As for the augmented trimmed state constraints, we enforce the non-negativity of the

compressor flow Wcomp ≥ 0, and the EGR rate constraint of yEGR ∈ [0, 1] in a similar

manner: 
0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 −1 0 0


︸ ︷︷ ︸

M

x̃′k|i+1 ≤


− (0−Wcomp,ss (pk))

(1− yEGR,ss (pk))

− (0− yEGR,ss (pk))


︸ ︷︷ ︸

f

. (B.115)
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B.5.2 Meta-Cost Function

A step response from one grid point to another is evaluated using the preference function

on 8 features from (3.31). That is, for grid point j from initial grid point j′, the perfor-

mance is evaluated as

J j←j′ = 0.03RT1 + 0.0238ST1 + 0.0113OS1 + 0.0295US1

+ 0.0465RT2 + 0.0455ST2 + 0.4107OS2 + 0.4029US2, (B.116)

where the coefficients have been obtained from preference learning in Section 3.3, and

the features RT1, ST1, etc. are defined in Table 3.1, computed from the closed-loop re-

sponse with respect to the candidate controller [θ]j for grid point j, with trimmed initial

condition

x̃0 = xss

(
p{j
′}
)
− xss

(
p{j}

)
(B.117)

and previously held input

ũ−1 = uss

(
p{j
′}
)
− uss

(
p{j}

)
. (B.118)

The control law in offline simulation is as in (7.87) (i.e. without integrator augmentation),

while the P{j} matrix is generated by solving the Riccati equation (2.11). However, as

we are tuning for drive-cycles which traverse through the operating space, the initial

grid point may not always be the same. Thus for each grid point, a weighted average

of performances from adjacent grid points is taken. For example, at grid point j = 7 in

Figure 6.1, we take

J7 = wnorthJ7←6 + wsouthJ7←8 + weastJ7←11 + wwestJ7←2 (B.119)

where wnorth, wsouth, weast, wwest are weighted by the empirical frequencies of typical tran-

sitions between grid points over the UDC, EUDC and WLTC.





Appendix C

Sequential Learning Algorithm

C.1 Proof of Lemma 7.2

We prove the upper tail concentration bound; the steps for the lower tail are similar and

analogous. From Definition 7.2, the population Kendall correlation κ and the associated

Gaussian copula correlation ρ are related by ρ = sin (πκ/2). So for r > 0 we have

Pr (ρ̂n − ρ > r) = Pr
(

sin
(π

2
max {κ̂n, 0}

)
− sin

(π
2
κ
)
> r
)

(C.1)

= Pr
(

sin
(π

2
κ̂n

)
− sin

(π
2
κ
)
> r
)
. (C.2)

where we able to take max {κ̂n, 0} = κ̂n since κ̂n ≥ 0 is necessary for ρ̂n − ρ, as ρ > 0

by Assumption 7.1. Note that the event π
2 (κ̂n − κ) > r together with r > 0 implies that

κ̂n − κ > 0. Since sin (·) is 1-Lipschitz continuous, then generally

∣∣∣sin(π
2
κ̂n

)
− sin

(π
2
κ
)∣∣∣ ≤ ∣∣∣π

2
κ̂n −

π

2
κ
∣∣∣ . (C.3)

However as we have established the sign of κ̂n−κ, then the event π2 (κ̂n − κ) > r together

with r > 0 further implies that

sin
(π

2
κ̂n

)
− sin

(π
2
κ
)
≤ π

2
(κ̂n − κ) . (C.4)

Thus

Pr

(
κ̂n − κ >

2r

π

)
= Pr

(π
2

(κ̂n − κ) > r
)

(C.5)
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≥ Pr
(

sin
(π

2
κ̂n

)
− sin

(π
2
κ
)
> r
)

(C.6)

= Pr (ρ̂n − ρ > r) . (C.7)

Using the fact that κ̂n is an unbiased estimator for κ, and moreover a U-statistic with a

second-order kernel bounded between −1 and 1, we use [95, Equation (5.7)] to obtain

Pr

(
κ̂n − κ >

2r

π

)
≤ exp

(
−
⌊n

2

⌋ 2r2

π2

)
. (C.8)

Combining with (C.7) completes our proof.

C.2 Optimised Bound for Theorem 7.2

The lower bound (7.51) for the distribution of the stopping time can be optimised by

Pr(τ ≤ n) ≥ 1− min
(α∗,ρ∗)∈A

{
exp

(
−2n (α0 − α∗ − b1)2

)
+ exp

(
−
⌊n

2

⌋ 2 (ρ0ρ
∗ − b2)2

π2

)}
,

(C.9)

where

A :=
{

(α∗, ρ∗) ∈ (0, 1]2 : α0 − b1 > α∗, ρ0 − b2 > ρ∗, pN
success

(n, 1, α∗, ρ∗) ≥ 1− δ
}

(C.10)

is the region of (0, 1]2 where the gaps (α0 − b1)−α∗ and (ρ0 − b2)−ρ∗ are positive. More-

over, because the bound is improving with the gaps (α0 − b1)−α∗ and (ρ0 − b2)−ρ∗, and

also because of the monotonicity properties in Theorems 5.3(c) and 5.6, the optimum will

lie on the Pareto front pN
success

(n, 1, α∗, ρ∗) = 1− δ for (α∗, ρ∗) ∈ (0, 1]2. For a given ω, we

can instead analytically determine the Pareto front along pN
success,ω

(n, 1, α∗, ρ∗) = 1 − δ

using (5.44). Letting

Φ

(
Φ−1 (α)− ρµn√

1− ρ2 + ρ2σ2
n

)
= 1− δ, (C.11)

and putting the definitions of µn, σ2
n and rearranging, we obtain a quadratic form in α, ρ

given by

d1ρ
2 + d2Φ−1 (α) ρ+ d3Φ−1 (α)2 + d4 = 0, (C.12)
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where

d1 = − 2 log (nc1)2

log log 2
+ 2 log (nc1)− 2c2Φ−1 (1− δ)2 log (nc1)

log log 2
+ 2c2Φ−1 (1− δ)2

− Φ−1 (1− δ)2

(C.13)

d2 = −4
√
c2 log (nc1)3/2

log log 2
+ 4
√
c2 log (nc1)1/2 (C.14)

d3 = −2c2 log (nc1)

log log 2
+ 2c2 (C.15)

d4 =
2c2Φ−1 (1− δ)2 log (nc1)

log log 2
− 2c2Φ−1 (1− δ)2 . (C.16)

Thus given ω, n, δ, we can solve for ρ in terms of α with

ρω (α) =
1

2d1

[
−
(
d2Φ−1 (α)

)
+

√
(d2Φ−1 (α))2 − 4d1

(
d3Φ−1 (α)2 + d4

)]
. (C.17)

Alternatively given ω, n, δ, we can solve for α in terms of ρ with

αω (ρ) = Φ

− (d2ρ) +
√

(d2ρ)2 − 4d3 (d1ρ2 + d4)

2d3

 , (C.18)

where we have taken the positive solutions of the quadratics since α > 0, ρ > 0. We

may then proceed to optimise with respect to α∗ (and ρ∗ implicitly in terms of α∗) with

an inner minimisation for a given ω, and then optimise with respect to ω in an outer

minimisation. Explicitly, (C.9) becomes

Pr(τ ≤ n) ≥ 1− inf
ω∈Ωn

{
min
α∗∈A′ω

{
exp

(
−2n (α0 − α∗ − b1)2

)
+ exp

(
−
⌊n

2

⌋ 2 (ρ0 − ρω (α∗)− b2)2

π2

)}}
, (C.19)

where

A′ω := {α ∈ (0, 1] : αω (ρ0 − b2) ≤ α ≤ α0 − b1} , (C.20)
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and ω ∈ Ωn ⊂ (0, π/2) is defined the same as in (5.46). The inner minimisation in (C.19)

is quasiconvex, thus the optimised bound is not too difficult to numerically implement.

This is further illustrated in Figure C.1.
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Figure C.1: A visual depiction of how the bound (C.19) is optimised. The solid curve is a
plot of the original bound (7.51) along the Pareto front (dashed curve), for given ω = 0.84,
and with n = 7500, α0 = 0.1, ρ0 = 0.8, δ = 0.1, β1 = 0.05, β2 = 0.05. The dotted lines
indicate how the gaps (α0 − b1)− α∗ and (ρ0 − b2)− ρ∗ must be positive in order for the
bound to be informative.
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ing algorithm for probabilistically robust controller tuning,” 2021, arXiv preprint

arXiv:2102.09738.

[45] R. Chin and J. E. Rowe, “Re-parametrising cost matrices for tuning model predic-

tive controllers,” in IEEE Congress on Evolutionary Computation (CEC). IEEE, 2019.

[46] R. Chin, J. E. Rowe, I. Shames, C. Manzie, and D. Nešić, “Ordinal optimi-
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rithms from the black-box optimization benchmarking BBOB-2009,” in Genetic and

Evolutionary Computation Conference, 2010.

[89] M. Harder, “Exchangeability of copulas,” Ph.D. dissertation, Ulm University, 2016.

[90] H. Hayakawa, “Lexicographic preferences and consumer theory,” Journal of Behav-

ioral Economics, vol. 7, no. 1, pp. 17–51, 1978.

[91] R. Heckel, M. Simchowitz, K. Ramchandran, and M. Wainwright, “Approximate

ranking from pairwise comparisons,” in International Conference on Artificial Intelli-

gence and Statistics, 2018, pp. 1057–1066.

[92] Y. C. Ho, R. S. Sreenivas, and P. Vakili, “Ordinal optimization of DEDS,” Discrete

Event Dynamic Systems, vol. 2, no. 1, pp. 61–88, 1992.



180 Bibliography

[93] Y.-C. Ho and M. E. Larson, “Ordinal optimization approach to rare event probabil-

ity problems,” Discrete Event Dynamic Systems: Theory and Applications, vol. 5, no.

2-3, pp. 281–301, 1995.

[94] Y.-C. Ho, Q.-C. Zhao, and Q.-S. Jia, Ordinal Optimization: Soft Optimization for Hard

Problems. Springer, 2007.

[95] W. Hoeffding, “Probability inequalities for sums of bounded random variables,”

Journal of the American Statistical Association, vol. 58, no. 301, pp. 13–30, 1963.

[96] D. Hrovat, S. D. Cairano, H. Tseng, and I. Kolmanovsky, “The development of

model predictive control in automotive industry: A survey,” in IEEE International

Conference on Control Applications. IEEE, 2012.

[97] M. Huang, “Low complexity model predictive control of a diesel engine airpath,”

phdthesis, University of Michigan, 2016.

[98] M. Huang, H. Nakada, K. Butts, and I. Kolmanovsky, “Nonlinear model predictive

control of a diesel engine air path: A comparison of constraint handling and com-

putational strategies,” in 5th IFAC Conference on Nonlinear Model Predictive Control,

vol. 48, no. 23. Elsevier BV, 2015, pp. 372–379.

[99] M. Huang, H. Nakada, S. Polavarapu, K. Butts, and I. Kolmanovsky, “Rate-based

model predictive control of diesel engines,” in IFAC Symposium on Advances in Au-

tomotive Control, 2013.

[100] M. Huang, K. Zaseck, K. Butts, and I. Kolmanovsky, “Rate-based model predictive

controller for diesel engine air path: Design and experimental evaluation,” IEEE

Transactions on Control Systems Technology, vol. 24, no. 6, pp. 1922–1935, 2016.

[101] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei, “Reward learn-

ing from human preferences and demonstrations in atari,” in Advances in Neural

Information Processing Systems 31, 2018.

[102] S. ichi Amari, Information Geometry and Its Applications. Springer, 2016.



Bibliography 181

[103] A. S. Ira, C. Manzie, I. Shames, R. Chin, D. Nešić, H. Nakada, and T. Sano, “Tun-
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