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Abstract  

How does the human brain recover memories of past events? The neural processes 

of memory retrieval are still not fully uncovered. This doctoral thesis is concerned with 

the spatio-temporal feature representations of reactivated episodic memories. 

Classical theories and empirical evidence suggest that the revival of memory 

representations in the brain is initiated in the hippocampus, before activity patterns in 

cortical regions reactivate to represent previously experienced events. The current 

doctoral project tests the assumption that the neural processing cascade during 

retrieval is reversed with respect to perception. This general framework predicts that 

semantic concepts and modality-independent information is reconstructed before 

modality-specific sensory details. This backward information flow is also assumed to 

affect the neural representations when memories are recalled repeatedly, enhancing 

the integration of new information into existing conceptual networks. The first two 

studies investigate the neural information flow during retrieval with respect to the 

reactivated mnemonic representations. First, simultaneous EEG-fMRI is used to track 

the presumed reversed reconstruction from abstract modality-independent to sensory-

specific visual and auditory memory representations. The second EEG-fMRI project 

then zooms in on the recall of visual memories, testing whether the visual retrieval 

process propagates backwards along the ventral visual stream transferring from 

abstract conceptual to detailed perceptual representations. The reverse reconstruction 

framework predicts that conceptual information, due to its prioritisation, should benefit 

more from repeated recall than perceptual information. Hence, the last, behavioural 

study investigated whether retrieval strengthens conceptual representations over 
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perceptual ones and thus promotes the semanticisation of episodic memories. 

Altogether, the findings offer novel insights into retrieval-related processing cascades, 

in terms of their temporal and spatial dynamics and the nature of the reactivated 

representations. The results also provide an understanding of memory transformations 

during the consolidation processes that are amplified through repeated retrieval.  
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Chapter 1 - General introduction 
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Our environment consists of an overwhelming amount of dynamic, multidimensional 

and multisensory stimuli and offers us unique experiences on a daily basis. The only 

way to make sense of events as they unfold and to maintain a coherent narrative of 

our experiences is by being able to transform, maintain and recall inner representations 

of our sensations. The memory network plays a central role in these functions (e.g. 

Allen & Fortin, 2013; Dere et al., 2008). It helps to transform novel experiences into 

memories, and to use previously stored memories to interpret novel experiences. 

However, little is still known about what information is recovered during memory 

retrieval, when and where in the brain. The work in this doctoral thesis investigates the 

spatio-temporal neural mechanisms of episodic memory retrieval, and the 

transformation of the related memory representations.  

When encoding a novel event, sensory information is initially processed in a 

feedforward sweep. It is assumed that this process follows a hierarchical perceptual-

to-conceptual processing gradient as the information travels along the sensory 

pathways (T. Carlson et al., 2013; Cichy et al., 2014; Linde-Domingo et al., 2019; 

Martin et al., 2018). In contrast, it is still unclear if retrieval follows a hierarchical 

cascade, and what memory representations are reactivated at the various stages of 

this process. In this thesis, I will present an accumulation of findings showing that the 

retrieval process follows a hierarchically and spatially reversed stream from modality-

generic (instead of modality-independent as hypothesized) and highly abstract to 

sensory-specific and perceptually detailed representations. The first two experiments 

are EEG-fMRI studies, aiming to unravel the retrieval processing cascades and to 

deconstruct the retrieval process into its representational components. Multivariate 

analysis methods, including linear classification and representational dissimilarity 
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analyses, are used to isolate and then compare the representations that are 

reactivated at a given time (EEG) in a given brain region (fMRI) within a data fusion. 

This makes it possible to locate, temporally and spatially, the dominant modality and 

feature representations that are active at different hierarchical processing stages 

during retrieval. In contrast to the initial modality-independent to sensory-specific 

stream hypothesis, the first simultaneous EEG-fMRI study shows that when retrieving 

auditory or visual memories, general modality information is simultaneously activated 

in cross-modal as well as sensory-specific areas early in time. Then, stimulus-specific 

representations are reconstructed in sensory-specific areas at a comparatively later 

time point. A second EEG-fMRI study then zooms in on the visual domain to show that 

the sensory-specific visual reconstruction process is reversed in retrieval with respect 

to encoding. In particular, the findings reveal that late ventral visual areas are 

reactivated before early visual areas and reflect a conceptual-to-perceptual processing 

stream. After establishing the evidence for a mainly feedback, conceptual-to-

perceptual retrieval stream that propagates from hippocampal to neocortical 

structures, the final experiment is a reaction time (RT) study, demonstrating that the 

prioritised access to conceptual item features during retrieval promotes a 

semanticisation of memory representations in the longer-term, which exceeds the 

naturally occurring effects of consolidation over time.  
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Episodic memory 

Overview 

To provide the necessary background information, I will here introduce the concept of 

episodic memory. While following memory transformation processes sequentially from 

perception over memory formation to retrieval, I will describe the major characteristics 

of episodic memories. Together, I will show that episodic memories are multisensory, 

multi layered, multi-dimensional and malleable. Finally, I will introduce current 

knowledge gaps and evolving research questions. 

 

Episodic memories are multisensory 

What is episodic memory? To understand what makes episodic memories unique, I 

will first introduce a number of theoretical concepts that concern memory in general 

here. Defining memory cannot be done with a few words only. In layman’s terms, 

memory includes any influence that the past has on present information processing. In 

scientific terms, memory is therefore often characterised as an information processing 

system that transforms, stores and retrieves input data (Sherwood, 2015). Both 

descriptions reveal that memory is not one operation unit with a single function, but 

rather a broad system that contains many operations with individual functions (Squire, 

2004). The first evidence for distinct and possibly independent memory functions has 

been shown in a case description of the amnesic patient H.M. (Scoville & Milner, 1957), 

who showed severe forgetfulness of newly and pre-surgery acquired memories but 

preserved the ability to learn new motor coordination skills after hippocampal 

resections. Researchers have spent decades trying to explain this dichotomy and to 
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facilitate the understanding of the memory system with its underlying brain processes 

(Squire, 2004). Attempting to categorize different memory processes according to their 

operations, the division between declarative and non-declarative memories has been 

proposed (Squire, 2004; Squire & Zola-Morgan, 1988).  

While non-declarative memory includes a collection of systems that are responsible for 

unconscious performance, including procedural skills, associative and non-associative 

learning, priming and perceptual learning, the umbrella term has been created to make 

a clear distinction from declarative memory (Squire, 2004). Declarative memory in 

contrast involves the conscious recollection of knowledge and experience 

representations (Squire & Wixted, 2011). To be more precise, declarative memory on 

the one hand comprises semantic memory, which includes the knowledge about facts 

and meaningful concepts. Semantic memories are often recollected in a stand-alone 

fashion, without any associated perceptual recollection or detailed descriptions of how 

that memory was formed. An example of a semantic memory could be remembering 

one’s own date and place of birth. On the other hand, declarative memory also includes 

episodic memories, which as indicated by the name, represent in-person experienced 

episodes with all their multisensory conceptual, spatio-temporal and sometimes 

emotional recollections (Tulving, 1972).This could for example be a memory of the last 

birthday including time and place of the birthday dinner, the smell of the food, the colour 

and taste of the cake and the music playing in the car on the way home. Thus, in 

contrast to the abstract but compact semantic memories, episodic memories represent 

a whole repertoire of multisensory, multidimensional attributes that were initially 

perceived in an event. Importantly, they include perceptions from all our senses, i.e. 

visual, auditory, tactile, olfactory and gustatory experiences. Episodic memories thus 
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enable us to consciously re-experience the past, which is particularly distinctive from 

the other types of memories, and why it has been referred to as mental time travelling 

(Tulving, 1972, 1985).  

 

Episodic memories are multi-layered  

As this thesis is mainly concerned with episodic memories of auditory and visual 

stimuli, I will now give some background information on the formation of episodic 

memories of these two modalities in particular. Before episodic memories can be 

formed, initial sensory processing transforms our sensory input into a form that the 

brain can represent and prepare for long-term storage. Important integrative processes 

happen along those sensory processing pathways, such that we are able to make 

sense of our experiences. When we perceive auditory or visual stimuli, low-level 

perceptual features are encoded in primary sensory areas, as they enter the brain. As 

such, neurons in the primary visual cortex respond differentially to features as colour, 

orientation, spatial frequency (Tootell et al., 1998; Henriksson et al., 2008; Henriksen 

et al., 2016) and neurons in the primary auditory cortex have a similarly specific tuning 

for different auditory frequencies (Humphries et al., 2010). At this stage, experiences 

are coded as concrete sensory-specific brain representations that yet lack information 

about meaning. As the modality-specific perceptual information progresses further 

along its respective sensory “what” stream of the brain (which is further described in 

more details in Chapters 1 and 2), its representation becomes more abstract, 

meaningful and gets integrated into pre-existing semantic networks (Binder & Desai, 

2011; Borowsky et al., 2007; Devereux et al., 2013; DeWitt & Rauschecker, 2012; Gow, 

2012; Hickok & Poeppel, 2007; Valyear et al., 2006). For example, representational 
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brain activity patterns initially coding for a yellow curved object would start to represent 

a banana, or representations of an intermittent high frequency sound would further 

evolve into the representation of a ringing bell. The sensory-specific and perceptual to 

modality-independent conceptual processing are involved in everyday activities, such 

as object recognition, or social interaction. But the different stages of sensory 

processing are not only important, as they are fundamental neural correlates of the 

conscious experience of an event. The experience of both perceptual details and a 

conceptual understanding of our experiences are also a prerequisite for the storage of 

the multi-layered episodic memories. Once the input information has been processed 

on several levels of abstraction, perceptual and conceptual information is converged 

in the medial temporal lobe (MTL) ready for storage in the longer term (Staresina et 

al., 2011; Suzuki & Amaral, 1994).  In fact, David Marr summarises accordingly, that it 

is actually the interpretation of a perception that is saved within a memory (Marr, 1971). 

 

Episodic memories are multidimensional  

The transfer from sensory input to memory formation is called memory encoding (Rugg 

et al., 2015). The MTL, including hippocampus and its surrounding cortical structures, 

is known to play an important role during memory encoding. It is the central brain 

network, where all sensory information coincides from neocortical associations areas. 

While information about the content of sensory input is transmitted to the perirhinal 

cortex, spatial information arrives in parahippocampal cortex, before being projected 

to the lateral and medial portions of the entorhinal cortex respectively (Knierim, 2015; 

Staresina et al., 2011). Additionally, amygdala and orbitofrontal cortex provide 

information about emotional context to the entorhinal cortex (Rolls, 2016). From here, 
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information is relayed to and finally combined within the hippocampus, a structure 

responsible for the multi-dimensional, contextual, emotional and spatio-temporal 

association of events into coherent entities (Knierim, 2015; Suzuki & Amaral, 1994). 

To understand the associative integration of multi-dimensional characteristics of 

episodic memories within the hippocampus, the following section discusses the 

anatomy and underlying functions of the hippocampus in more detail. 

Both the medial and lateral parts of the entorhinal cortex transmit information to 

overlapping cells of the dentate gyrus (DG) and cornu ammonis (CA)3, allowing the 

combination of multi-dimensional information (Knierim, 2015). While sparse projections 

from dentate gyrus to the CA3 via the mossy fiber pathway are responsible for the 

pattern separation, reducing representational overlap across events, recurrent 

collateral projections within the CA3 enable auto-associative memory processes and 

ultimately bind related information of various sources together (Treves & Rolls, 1992). 

The established associations within the CA3 also reactivate, whenever part of an event 

representation is missing, completing the pattern of a previously encoded event (Rolls, 

2010). Finally, separately activated representations of episodic memories can be 

conjoined via the Schaeffer collateral synapses to CA1 which then projects back to 

entorhinal cortex directly as well as indirectly via the subiculum (Treves, 1995; Rolls, 

2010). The special attributes of hippocampal circuits thus do not only enable the 

segregation of different unique events while binding together related information of the 

same event (Danker et al., 2017; Horner et al., 2015). They also help to complete a 

representation of an event when only partial information is given, for example by a 

memory cue (for example see Horner et al., 2015). The operations above, and the 

plasticity induced in these hippocampal circuits (Lømo, 2003), ultimately conclude the 
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initial memory encoding process which result in enduring changes in the brain, referred 

to as memory engram (Schacter et al., 1978), and set the stage for the retrieval 

process. 

 

Episodic memories are malleable 

Neuroscientific research has been very successful in unravelling the neural 

representations underlying the initial sensory processing that result in memory 

encoding. But what exactly happens when we recall an event from memory and how 

do mental representations unfold during the retrieval process? Early work described 

that the recall of episodic memories starts with an ecphoric process, in which a cue 

that has partial overlap with the information of a previously encoded event, reactivates 

the engram, or associative patterns, and initiates a search for the remaining 

information of the memory trace (Schacter et al., 1978; Tulving, 1976; Tulving et al., 

1983). Many early theories but also later neuroscientific findings (such as described in 

the previous section) have suggested that this ecphoric process starts with pattern 

completion in the hippocampus and propagates from there to cortical structures. More 

specifically, the hippocampus is believed to provide an index to the previously encoded 

memory traces in neocortex, such that cortical encoding patterns can be reconstructed 

(Damasio, 1989; Teyler & DiScenna, 1985; Teyler & Rudy, 2007). Assuming that the 

engagement of higher-level sensory and association cortices provides the fundament 

for mental representations of sensory events (Damasio, 1989), it is then plausible to 

infer that similar cortical engagement is needed to re-establish a mental representation 

when recalling an experience from memory in absence of the sensory event. In fact 

Tulving and Thompson pointed out the overlap between perception and retrieval with 
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regard to the subjective experience (Tulving & Thomson, 1973). Correspondingly, early 

theories already suggested that the reactivation dictated by high-order “convergence 

zones” reaches up to early sensory cortices (Damasio, 1989), while state-of-the-art 

neuroscientific research has provided evidence of cortical re-engagement in mental 

representations of episodic memories (for a review see Danker & Anderson, 2010; 

McClelland et al., 1995). 

These previously described theories and findings suggest that memory recall is 

underpinned by processes that restore the neural and in turn mental state of our initial 

sensory experience. Everyday life, however, shows us that episodic memories are not 

exactly copies of our experiences. Apart from the extreme situations when we retell 

stories in a way they did not actually happen (Brewin & Andrews, 2017) or when some 

memories get forgotten completely (Joensen et al., 2018), the most common 

phenomenon is when we remember the gist but forget specific details of an event 

(Ahmad et al., 2019; Brady et al., 2013; Hauer & Wessel, 2006; Winocur & Moscovitch, 

2011). These observations imply that memory retrieval does not produce perfectly 

matching photocopies of an event but, at least to some degree, a partly reconstructive 

process. Similarly, Schacter relates seven observed memory flaws (Schacter, 2002) to 

the (re)constructive nature of memory, and argues that as beneficial the memory 

reconstruction can be, it is also subject to malfunction (Schacter, 2021), or 

incompleteness (Ahmad et al., 2019; Brady et al., 2013; Hauer & Wessel, 2006).  

Concerning neural processes of this (re)construction, some parallels have been drawn 

between retrieval and sleep (further discussed in Chapter 3). During sleep, 

hippocampal-cortical communication is believed to reactivate memories, strengthen 

the intermediate connections and relay episodic memory traces from the hippocampus 



11 

 

to neocortex, which has been strongly related to memory consolidation (Dudai et al., 

2015). Importantly, within this process, episodic memories have been shown to lose 

some of the detailed episodic characteristics, while maintaining the conceptual gist of 

an event (Ahmad et al., 2019; Lutz et al., 2017). While this representational 

transformation has been believed to mainly happen during sleep, more recent work 

has proposed that active remembering can enhance this transformation (Dudai et al., 

2015; Ferreira et al., 2019; Winocur & Moscovitch, 2011). As the retrieval related 

hippocampal-neocortical dialogue provides an opportunity to strengthen the 

intermediate connections and integrate them in reciprocal semantic networks, it is 

assumed that we simultaneously forget specific details on the way (Ahmad et al., 2019; 

Brady et al., 2013; Dudai et al., 2015; Hauer & Wessel, 2006; Káli & Dayan, 2004; 

McClelland et al., 1995; Winocur & Moscovitch, 2011). The reactivation of memories 

both during sleep and wake may thus transform the initially encoded memory, showing 

how plastic and malleable our memories are.  

 

Research aims 

I hope to have shown that episodic memories are not only multifaceted and 

multidimensional but also highly dynamic and subject to representational 

transformations. To summarise, I have pointed out that episodic memories are formed 

by the encoding of sensory input into so-called engrams (Josselyn & Tonegawa, 2020). 

The initial sensory representations provide the scaffold for later to-be-remembered 

memories. As sensory input propagates from cortical structures to the hippocampus, 

the encoding process follows a detailed, multi-sensory to modality-independent, 
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conceptual gradient. When episodes are recalled from memory, that memory trace 

within the hippocampus gets reactivated and the re-experience of episodic memories 

requires reinstatement of initial sensory patterns. Finally, I have shown that cortical 

memory representations undergo changes during retrieval and memory consolidation. 

From the introduction, it can be seen that the perception processes within episodic 

memory encoding are relatively very well studied. The aim of this doctorate thesis is to 

extend our understanding of the reconstructive processes underpinning episodic 

memory retrieval. In particular, this project aims at exploring how episodic events are 

represented in the brain while reconstructed from memory, and how these 

representations change with repeated retrieval. The following three main hypotheses 

guide the work in this thesis. 

1) The first hypothesis states that during retrieval, modality-independent 

representations are reactivated in cross-modal brain regions before sensory-

specific representations are reconstructed. Evidence for this assumption comes 

from the work suggesting that the retrieval process starts off in the hippocampus 

before it propagates to neocortical structures (Staresina & Wimber, 2019). 

Additional evidence discussed in the second chapter has given reason to 

assume a reverse reconstruction in comparison to the initial perception of an 

event. Since the initial steps of encoding show a sensory-specific to modality-

independent representation transformation, it was tested whether this 

information stream is reversed during retrieval. The hypothesis was tested in a 

simultaneous EEG-fMRI study, in which participants encoded and subsequently 

recalled paired associates each consisting of a word and a dynamic video or 

audio clip. First, classification analyses were used to determine when in time 



13 

 

and where in the brain individual video and audio clips can be decoded. Then, 

representational similarity analyses were used to trace the representational 

information processing in the brain during the retrieval process within individual 

participants. 

2) The second hypothesis states that during the recall of visual information 

specifically, the retrieval process propagates backwards along the ventral visual 

stream following a conceptual-to-perceptual gradient. This hypothesis goes 

hand in hand with the first hypothesis and similarly assumes a reversed 

reconstruction stream in comparison to perception/encoding. The hypothesis 

was tested by a consecutively acquired EEG-fMRI study, in which participants 

perform a verb-object association task and subsequently had to recall the object 

upon presentation of the cue. Like in the first project, multivariate analyses were 

used to trace information processing during retrieval and test for a backwards 

stream. Importantly, the stimulus material was designed to include a conceptual 

dimension (animate versus inanimate objects) that was orthogonally 

represented to a second, perceptual dimension (images presented as drawings 

and photographs). This manipulation was used to specifically test if the reversed 

stream followed a conceptual-to-perceptual gradient. 

3) The last hypothesis states that the repeated recall of an event facilitates access 

to conceptual features over perceptual details, and strengthens such semantic 

features in the long-term beyond sleep-dependent consolidation effects. Under 

the assumption of a backwards progressing retrieval stream (as described in 

the first two hypotheses and empirical chapters), the hippocampus dictates 

reactivation of neocortical representations. As the hippocampus is spatially 
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closer to brain regions representing conceptual features than those 

representing perceptual details, it can be assumed that communication is 

enhanced between the former regions, which could ultimately lead to stronger 

semanticisation. This hypothesis was tested by a simple reaction time task, 

staged across multiple days, which measured how fast participants could recall 

perceptual and conceptual features of a visual memory. Participants of a 

repeated retrieval group learned verb-object associates and then repeatedly 

recalled the object upon the presentation of a cue, each time answering either 

a perceptual or conceptual question about the object as rapidly as possible. To 

test if episodic memories semanticise over time, we compared their 

performance on day one to a delayed memory test 48 h later. Then, to test if the 

retrieval-induced semanticisation effects extend beyond natural consolidation 

effects of sleep, we compared the performance on day 2 with a group who 

repeatedly studied the materials on day 1.  
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Chapter 2 - Reconstructing Visual and Auditory 

Trajectories of Episodic Memories in the Human Brain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the time of thesis submission, this chapter represents preliminary analyses (Julia 

Lifanov, Ben Griffiths, Simon Hanslmayr, Ian Charest and Maria Wimber).  
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Abstract 

In contrast to the information transformation processes occurring during sensory 

perception, the neural processing hierarchies supporting memory recall are still poorly 

understood. In this simultaneous EEG-fMRI study, we used multivariate analysis 

methods to explore the processing stream supporting the recall of visual and auditory 

memories. Participants were asked to associate a dynamic video or audio clip to an 

unrelated word in an encoding phase, and then recall the dynamic clip upon 

presentation of a word cue during a subsequent retrieval phase. Using classifiers, we 

decoded visual and auditory processing from spatially distinct fMRI and temporally 

resolved EEG patterns. By means of representational similarity analyses, we were then 

able to map the representational geometries of visual and auditory voxel patterns onto 

the time course of event related potentials. Successful memory recall was 

accompanied by early hippocampal, cross-modal, and sensory-specific activations 

around 550-600 ms, followed by a feedback reinstatement along sensory visual and 

auditory pathways. The processing of generic modality could be traced back to cross-

modal and sensory activations early in time, whereas the processing of clip-specific 

elements was reflected in temporally later sensory-specific reinstatement. Finally, our 

results descriptively show the retrieval-induced information processing cascade 

starting from the medial temporal lobe to the reinstatement of sensory areas. 
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Introduction 

Memories can bring back detailed and near realistic impressions of past experiences 

to the extent that they can even affect us emotionally. What makes episodic memories 

so similar to real experiences are the rich multimodal representations of our different 

senses, such as vision and audition, which can be part of the subjective recollection. 

As such, we can not only visualize the facial features of the people we have only met 

once, but also recognize the sound of their voice. We know that these visual and 

auditory features are represented in the brain when people recall past experiences 

(Nyberg et al., 2000; Slotnick & Schacter, 2006; Wheeler et al., 2000). It is yet unclear, 

however, how these memory representations of different modalities unfold in the brain 

over time once a reminder is given. Using an EEG-fMRI fusion, we explore the spatio-

temporal activity cascades when visual and auditory memories of dynamic clips are 

being recalled, with a focus on the reactivation of generic modality information as 

compared to sensory-, or in this case clip-specific processes.  

Neuroscientific research has extensively explored how new experiences are 

represented in the brain while they are perceived aurally or visually, and how the 

underlying information processing evolves. Information from both modalities is 

assumed to progress along two separate information processing streams with different 

functions: the dorsal and ventral pathways. Concerning vision, the dorsal “where” 

pathway represents orientation- or location- and motion- specific visual information, 

stretching from early visual areas over medial temporal to the parietal lobe regions, 

once it exits the lateral geniculate nucleus (Hebart & Hesselmann, 2012; Valyear et al., 

2006). Representations along this stream proceed from spatial and temporal frequency 

via motion and rotation to self-motion and multimodal integration (Perry & Fallah, 
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2014). Roughly corresponding to this visual-dorsal stream, the auditory dorsal pathway 

starts at the primary auditory cortex and progresses via the posterior superior temporal 

gyrus to parietal areas, and is supposed to serve the transformation of auditory to 

articulatory and motor representations (Hickok, 2012). As such, the dorsal stream for 

both modalities supports processes that put information into spatial and motor context 

and are subject to increasing abstractness. 

While the dorsal pathway generally deals with spatial interpretation of incoming 

information, the more content-oriented ventral “what” pathway on the other hand 

prioritises identity-specific processing and integration. In the visual domain, activation 

spreads from occipital via the inferior temporal to the medial temporal lobe (Borowsky 

et al., 2007; Valyear et al., 2006). Along this path, visual information progresses 

hierarchically from low-level perceptual to high-level conceptual information within the 

first 300 ms after stimulus onset (T. Carlson et al., 2013; Cichy et al., 2014, 2016; 

Martin et al., 2018). Hence, representations of visual characteristics are thought to 

transform into meaningful object information. The corresponding ventral pathway in the 

auditory modality in contrast follows a stream along the middle and superior temporal 

areas to the temporal pole before converging with the visual stream (DeWitt & 

Rauschecker, 2012; Gow, 2012; Hickok & Poeppel, 2007). Similarly to vision, the 

auditory processing stream along the superior temporal gyrus also holds a hierarchical 

processing structure from early acoustic to more semantic features within the first 300 

ms, transforming low-level perceptual to higher-level meaningful information (Lowe et 

al., 2020; Li et al., 2019).  

Following the sensory-specific visual and auditory processing, information of both 

modalities eventually coincides in cross-modal regions, such as the posterior/inferior 
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parietal and inferior and medial temporal lobe, at a relatively late stage. At this point, 

the semantic meaning of incoming information is processed and represented in a 

modality-independent or amodal fashion, before all information from the different 

sources is finally bound together in the hippocampus for the retention in the longer 

term (Danker et al., 2017; Horner et al., 2015; Rolls, 2010).  

Having established this general perceptual-to-conceptual gradient when processing 

external information in either of the two modalities, the question arises how this 

information is represented when recalling experiences from memory. Classical 

literature suggests that the memory recall process starts within the hippocampus, 

which is supposed to then dictate further reactivation of other cortical regions (Quiroga, 

2012; Teyler & DiScenna, 1985). During this reactivation, activity patterns observed 

during the perceptual experience of an event are supposed to be re-established, 

recreating the mental representations of the past experience (Damasio, 1989). Indeed, 

it has been demonstrated that such a cortical reinstatement during the recall of 

multimodal memories is a prerequisite of successful remembering (Huijbers et al., 

2011; Staresina et al., 2012; Thakral et al., 2015). Univariate analyses in neuroimaging 

studies have found reactivation in sensory-specific cortical areas that were previously 

involved in the encoding of an event: retrieval-related reactivation included regions in 

the occipital cortex for visual memories (Johnson & Rugg, 2007) and superior temporal 

cortex for auditory memories (Nyberg et al., 2000; Wheeler et al., 2000). More recent 

findings provide evidence for cortical reinstatement by using multivariate methods that 

can match the encoding and retrieval fMRI activity patterns at a much more fine-

grained, voxel-specific scale (Polyn et al., 2005; Ritchey et al., 2013; Wing et al., 2014). 

While occipito-temporal regions are reinstated during visual retrieval (Bosch et al., 
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2014; Gordon et al., 2014; Griffiths, Mayhew, et al., 2019), regions including inferior 

frontal gyrus, postcentral gyrus, cingulate cortex and insula have shown high encoding-

retrieval similarity for auditory stimuli (Danker & Anderson, 2010; Griffiths, Mayhew, et 

al., 2019).  

Apart from these examples of sensory-specific reinstatement, more cross-modal 

parietal and late temporal areas have been found to be involved both in auditory and 

visual recall (Buckner et al., 1996; Huijbers et al., 2011; Tulving et al., 1994; Waldron 

et al., 2014), and often been related to semantic or episodic representations (Favila et 

al., 2018, 2020; Ferreira et al., 2019; Jeong & Xu, 2016). Interestingly, it has been 

shown that cross-modal areas are associated with successful access during cued-

recall, whereas sensory-specific regions held information that was not sufficient to 

support cued recall, but could support successful recognition via a familiarity signal 

(Salami et al., 2010). These findings indicate a possible dependency between cross-

modal and sensory-specific reactivation: Even if sensory-specific representations are 

available, they can only be accessed by involvement of higher-order, cross-modal 

regions. Thus, the literature so far suggests that retrieval relies on sensory-specific 

reinstatement presumably mediated by cross-modal activation. 

While the studies above point to the spatial location of sensory-specific and cross-

modal representations during the retrieval of auditory and visual information, the exact 

spatio-temporal hierarchy along which these different memory elements are 

reactivated has not been uncovered yet. Recent literature suggests that superordinate 

semantic categories are represented before perceptual details when recalling an object 

from memory (Linde-Domingo et al., 2019; Lifanov et al., 2021). When subjects 

recalled the perceptual or conceptual details of an object, reaction times and 
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accuracies demonstrated that access to conceptual features is prioritised over 

perceptual features. Similarly, decoding feature patterns from EEG while participants 

recalled an object, conceptual features were decoded before perceptual ones (Linde-

Domingo et al., 2019). Given the temporal prioritisation of conceptual features during 

retrieval and the dependence of sensory-specific perceptual reinstatement on cross-

modal activation, we investigate the possibility that spatial brain representations first 

get activated in cross-modal regions of the brain before information recovery 

progresses to perceptual and more sensory-specific regions. 

In theory, direct and indirect anatomical connections from medial temporal structures 

to the parietal lobe, as found in the macaque brain, would enable such an initially cross-

modal reactivation (Insausti & Muñoz, 2001; Kobayashi & Amaral, 2003; Lavenex et 

al., 2002; Muñoz & Insausti, 2005). From the parietal lobe, efferent pathways to the 

occipital and superior temporal cortex, as found in the macaque (Selemon & Goldman-

Rakic, 1988), could then enable more detailed sensory-specific processing. Similarly, 

medial temporal structures can access superior and inferior temporal cortices via direct 

efferents, entering the auditory and visual ventral stream retroactively (Insausti & 

Muñoz, 2001; Muñoz & Insausti, 2005). The evidence that the retrieval process starts 

off in and is guided by the hippocampus (Bosch et al., 2014; Staresina & Wimber, 

2019), progressing from abstract to detailed information processing (Linde-Domingo et 

al., 2019), and the indications of a possible dependency between modality-

independent and sensory specific processing (Salami et al., 2010) lead us to our 

research question. We tested if during retrieval, cross-modal parietal and temporal 

regions representing abstract modality-independent information become activated 

before visual and auditory areas reinstate more detailed sensory-specific information. 
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To test our research hypothesis, we examined the spatio-temporal neural processing 

stream during the recall of visual and auditory memories, using a simultaneously 

acquired EEG-fMRI dataset of 21 participants, who performed a simple memory task 

(data from Griffiths, Mayhew, et al., 2019). The participants of the described dataset 

were asked to associate short (3 sec) visual movie clips or auditory sound clips with a 

random word each in an encoding phase, and to subsequently retrieve the associated 

clip upon presentation of the related word cue during recall. Using multivariate 

classifiers, we first mapped the spatial representations during encoding and retrieval 

on the brain, and then tracked how they evolve over the time course of a trial in the 

EEG. Then, by means of representational similarity analyses (RSAs), we fused the 

EEG and fMRI data and mapped the temporal processing cascades on the brain. 

Together, this research uncovers visual and auditory representations during recall in 

time and space. 

 

Methods 

Participants 

The current study describes a dataset that has been acquired and published by 

Griffiths and colleagues (Griffiths, Mayhew, et al., 2019). For clarification, the methods 

and preprocessing steps will be summarized here, but for further information on the 

sample, paradigm, data acquisition or preprocessing please refer to the related 

previous publication (Griffiths, Mayhew, et al., 2019). The dataset includes data of 

twenty-one native English participants from the local student population at the 

University of Birmingham with normal vision (with or without correction). The number 
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of participants resembled the one of a previously published study that used the same 

study design (Michelmann et al., 2016). The study had been ethically approved by the 

Research Ethics Committee at the University of Birmingham, complying with the 

Declaration of Helsinki. 

 

Material 

The stimulus materials included 192 words from the MRC Psycholinguistic Database 

(Coltheart, 1981), four video and four audio clips, all being emotionally neutral. The 

video clips all included silent recordings picturing one of the dynamic sceneries 

including: a bike, a farm, an underwater scenery or a waterfall; whereas audio clips 

included melodies played by one of the following four different instruments: an 

accordion, a guitar, a piano or a trumpet (Fig. 1.1). 

 

Procedure 

Participants performed a memory task (Michelmann et al., 2016; Griffiths, Parish, et 

al., 2019; Griffiths, Mayhew, et al., 2019), in which they were asked to associate 

dynamic video or audio clips with pseudo-randomly allocated words (Fig. 1.1). Each 

participant went through four task runs with alternating clip modalities (two video and 

two audio task runs in alternating order). A task block included 48 encoding trials, a 

distractor task and 48 retrieval trials with clips of only one modality, i.e. either only 

video or only audio clips. The order of modality blocks – whether a subject started with 

an audio or video block - was counterbalanced between participants. A total of 192 

unique words and eight clips (four video and four audio clips) were used for the 



24 

 

association task. This way, each dynamic clip was first paired with 24 unique words in 

total during encoding and then cued by each unique word once during recall, so 24 

times in total. As there were two task runs for each modality, the clip-word pairs were 

equally distributed among the two. This means that each clip was used 12 times for 

both encoding blocks of the respective run and 12 times for both retrieval blocks of the 

respective run each. The presentation order of the individual dynamic clips within a 

block was randomized. The task was performed inside the fMRI scanner during 

simultaneous fMRI and EEG recordings. 

 

Encoding 

Encoding trials started with a fixation cross that was jittered around 2 s with a maximum 

deviation of 250 ms. Next, a video or audio clip appeared on the screen with a duration 

of 3 s, followed by the allocated word for another 3s. Participants were instructed to 

learn the word-clip pairings by creating a vivid link between the two. Before participants 

could proceed to the next trial, they were asked to rate the plausibility of their 

associative link within a maximum time of 4 s. Decisions were made by button press. 

 

Distractor 

After the encoding phase, participants performed a numerical distractor task for 2 min, 

in which they were asked to indicate as fast as possible whether each of the 

consecutively presented numbers, ranging between 0 and 99 was odd or even, with 

feedback being provided for each response. 
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Retrieval 

After the distractor task, participants progressed to the retrieval phase. Retrieval trials 

started with a fixation cross jittered around 2 s with a maximum deviation of 250 ms. 

The participants were cued with a previously learned word that appeared on the screen 

for 3 s. During this period, participants were expected to mentally retrieve and replay 

the video/audio clip previously associated with the word, before they were then 

presented with a choice of all four different videos/audio clips, from which they had to 

select the clip they had in mind. Last, participants were asked to rate their confidence 

about their decision within a maximum time of 4 s before proceeding to the next trial. 

The order of retrieval trials was randomised such that it did not match the order of 

encoding in order to avoid confounds by sequence memory. 
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Paradigm 
 

 

Figure 1. 1 

Prototypical task block of the paradigm. Participants either went through a visual or an auditory block at 

a time. At encoding, participants were asked to associate a dynamic clip (one out of four possible video 

clips or one out of four possible audio clips, depending on the modality of the task block) to an unrelated 

individual word, and rate the plausibility of the newly formed association. At retrieval, participants first 

recalled the previously associated dynamic clip upon presentation of a word cue and then indicated by 

button press which of the four possible clips they recalled. They then also indicated the confidence in 

their response. Participants performed four encoding (two of each modality) and four retrieval blocks 

(also two of each modality). Within each block, each dynamic stimulus of the respective modality was 

paired or recalled twelve times each, each time with a new unique word. The analyses were mainly 

addressed at the period of the clip presentation during encoding, and the cue presentation during 

retrieval. Stimuli depicted are chosen from the MRC Psycholinguistic Database (Coltheart, 1981). Figure 

adapted from (Griffiths, Mayhew, et al., 2019). 

 

FMRI data acquisition  

The fMRI data was recorded at the Birmingham University Imaging Centre (BUIC, now 

Centre for Human Brain Health (CHBH)) with a high-field 3T Philips Achieva scanner 

with a 32-channel SENSE head coil. T2*-weighted functional images were obtained 

through an echo-planar imaging (EPI) sequence (3 x 3 x 4 mm voxels, 64 x 64 matrix, 
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32 slices, no inter-slice gap, repetition time (TR) = 2 s, echo time (TE) = 40 ms, full 

head coverage, field of view (FOV) = 192 x 192 x 128 mm, flip angle (FA) = 80°). Four 

dummy scans that were later discarded were acquired before each scanning run. The 

resulting eight runs then each included 255 volumes after subtracting the dummy 

scans. T1-weighted structural scans (1 mm isotropic voxels, no inter-slice gap, TR = 

7.4 ms; TE = 3.5 ms, FOV = 256 x 256 x 176 mm, FA = 7°) were acquired halfway 

through the experiment. Participants were instructed to lie as still as possible, and foam 

pads were placed around their heads to additionally prevent motion. The task was 

presented to participants through a mirror system in the scanner and a JVC SX 21e 

projector with resolution 1280x1024 at 60 Hz. NATA response boxes were used for 

behavioural responses (https://natatech.com/). 

 

EEG data acquisition 

The EEG data was acquired inside the MRI scanner by using a non-ferromagnetic cap 

with 64 channels by Brain Products (Munich, Germany). The cap was fixated with tape. 

The electrode cables, which were bundled and fixated by cable tie were connected to 

an MR-compatible amplifier outside of the scanner. A synchbox was used to 

synchronize scanning and EEG clock timings. The EEG data was recorded with a 

sampling frequency of 5 kHz and the electrode conduction was regulated by adjusting 

the impedance of the electrodes to a value < 20 kΩ. To correct for motion-induced EEG 

artifacts within the scanner (Fellner et al., 2016), four electrodes (F5, F6, T7 and T8) 

were first isolated from the head by placing sticky tape beneath them, and then 

connected to the reference over externally placed cables (Jorge et al., 2015). This 

method, previously introduced in simultaneous EEG-fMRI paradigms (Jorge et al., 

https://natatech.com/


28 

 

2015) enabled the measure of magnetic transmission induced exclusively by head 

motion, which could later be extracted from other EEG channels. 

 

Analysis 

Behaviour 

For the inspection of accuracy performance, trials were categorized as ‘recalled’ when 

subjects linked the correct video/audio clip to the previously associated word, or 

‘forgotten’ when they did not. Then, reaction times of all concatenated recalled and 

forgotten responses were examined. Average values and standard deviations were 

computed. Since we had no a priori hypotheses about differences in reaction times or 

accuracies, the reported data were visualised to provide purely descriptive information 

without making statements on statistical significance. 

 

FMRI data preprocessing 

The preprocessing and analysis of the fMRI data was performed in MATLAB 2016a 

(www.mathworks.com) and SPM 12 (Statistical Parametric Mapping, 2007, 

http://store.elsevier.com/product.jsp?isbn=9780123725608). T2* images were 

spatially realigned, unwarped and slice time corrected. Anatomical images were 

segmented and coregistered with the functional images. In contrast to the previous 

published preprocessing version (Griffiths, Mayhew, et al., 2019), we used the T2* 

images as stationary images, and the T1 as image that is manipulated for the co-

registration, which provided a computing advantage. As preparation for the univariate 

http://www.mathworks.com/
http://store.elsevier.com/product.jsp?isbn=9780123725608
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GLM, the anatomical and functional images were additionally transformed into MNI 

coordinates and functional images were smoothed by means of an 8 mm full width at 

half maximum (FWHM) Gaussian Kernel. However, the functional images used in all 

multivariate analyses, were analysed in individual native space and without previous 

smoothing. 

 

ROIs 

ROIs were created by means of templates in MNI space created in the WFU PickAtlas 

(Maldjian et al., 2003, 2004; Tzourio-Mazoyer et al., 2002). These ROIs were then 

fitted to individual brains by applying inverted normalization parameters, created during 

segmentation, to the ROI masks. The anatomical masks used for our analyses 

included: an early visual mask (V1/V2), consisting of Brodmann areas (BA) 17 and 18, 

an human inferior temporal (hIT) mask, consisting of BA 19 and 37 and inferior 

temporal gyrus as defined by automated anatomical labelling (AAL, Tzourio-Mazoyer 

et al., 2002), a primary auditory cortex (A1) mask, consisting of BA 22, another later 

auditory mask (A2A3), consisting of BA 41 and 42, a temporal pole mask, consisting 

of BA 38, a superior parietal lobe mask, consisting of BA 7, and an inferior parietal lobe 

mask, consisting of BA 29 and 30. 

 

EEG data preprocessing 

As previously stated, the dataset originated from a previous publication and specifically 

the EEG data preprocessing was performed according to this publication (Griffiths, 

Mayhew, et al., 2019). However, the preprocessing steps will be recapped here for 
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clarification. The preprocessing and analysis of the EEG data were performed in 

MATLAB 2016a (www.mathworks.com) and the Fieldtrip toolbox (Oostenveld et al., 

2010; Donders Institute for Brain, Cognition and Behaviour, Radboud University 

Nijmegen, the Netherlands. See http://www.ru.nl/neuroimaging/fieldtrip). Before the 

conventional EEG analyses, gradient-, heartbeat- and movement-related noise were 

removed from the data. First, the gradient-related noise was removed. As a preparation 

for this procedure, the raw data was high-pass filtered with a cut-off frequency of 1 Hz. 

At each TR, a modelled gradient based on the 60 TRs closest to itself was computed 

and removed. This computational step was performed by the fmrib toolbox (Iannetti et 

al., 2005; Niazy et al., 2005). To remove slice acquisition artefacts (32 slices in 

2s/16Hz), a bandstop filter (15.5-16.5 Hz) was applied. Next, artefacts induced by 

heartbeat (ballistocardiogramm (BCG)) were removed. For this step, the data was 

down-sampled to 500 Hz. Heart beats had previously been acquired during the scan. 

Using the logged onsets, the BCG artefact was removed from the data by an optimal 

basis set (fmrib toolbox). Next, extensive head motion indicated by triggers in the 

logfiles have been deleted before another round of gradient and BCG artefact removal. 

Finally, rest noise induced by in-scanner motion was removed from the data by a least 

squares regression using the measurements of the four claw electrodes (Bouchard & 

Quednau, 2000; Masterton et al., 2007; Daniel et al., 2019; Jorge et al., 2015). 

For further conventional analyses, the data was epochs of -2 s to 4 s in relation to the 

dynamic clip onset at encoding and word onset at retrieval. The data was then further 

cleaned from eye artefacts, movements and remaining heartbeat artefacts by an 

independent component analysis. The mean was subtracted from trials, a low-pass 

filter with a cut-off frequency of 100 Hz was applied and the data was then re-

http://www.mathworks.com/
http://www.ru.nl/neuroimaging/fieldtrip
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referenced to the average. After a final manual trial and electrode rejection, demeaning 

and re-referencing was repeated, cancelling all noise evolving from bad electrodes. 

Finally, the data was resampled to 128 Hz and a moving average filter with width of 40 

ms was applied. 

 

fMRI univariate analysis 

After performing an own preprocessing pipeline on the fMRI data, that slightly differed 

on the previously published procedure (Griffiths, Mayhew, et al., 2019), we first 

performed some univariate analyses as sanity checks in comparison to the previous 

findings (Griffiths, Mayhew, et al., 2019).  

To distinguish video and audio processing during encoding and retrieval, we set up a 

GLM that modelled video and audio clips as boxcar functions with a duration of 3 s at 

encoding and at retrieval. This was done separate for remembered and forgotten trials 

and resulted in eight condition regressors (Video encoding remembered, video 

encoding forgotten, video retrieval remembered, video retrieval forgotten, audio 

encoding remembered, audio encoding forgotten, audio retrieval remembered, audio 

retrieval forgotten). We additionally included regressors for button presses, motion, 

scanner drift and run constants (one regressor per variable containing all onsets). After 

performing the GLM on each individual dataset, we performed a second-level ANOVA 

on the whole subject sample using the above-mentioned conditions as within-subject 

factors. Subsequent t-tests were performed, contrasting video versus audio processing 

at encoding and retrieval. At encoding, all trials were included in the t-test, whereas 
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only correct trials were used at retrieval. We then additionally tested memory success 

versus failure for both videos and audios at retrieval. 

 

fMRI multivariate analyses 

As preparation for the subsequent multivariate analyses, we ran a second GLM, 

modelling individual video- and audio-specific regressors as boxcar functions with a 

duration of 3 s for each individual trial at encoding and retrieval separately. Again, we 

added regressors of no interest as button presses and nuisance regressors (see 

above, one regressor per variable containing all onsets). The resulting beta weights 

were transformed into t-values for following multivariate analyses (Misaki et al., 2010). 

 

fMRI searchlight LDA 

To discover differential spatial video and audio processing during encoding and 

retrieval at the level of hemodynamic activity patterns, we performed a volumetric LDA 

searchlight analysis on the functional images in native space, separate for each 

participant (Kriegeskorte, 2009; Kriegeskorte et al., 2006, 2008; Kriegeskorte & Kievit, 

2013; https://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/). For each 

voxel and its surrounding neighbours within a radius of 12 mm, we extracted trial-

specific t-value patterns resulting from the corresponding GLM as preparation for 

multivariate analyses and arranged these as unidimensional feature vectors. At each 

voxel, we used these feature vectors to classify the generic modality (video versus 

audio) or the individual clip within its modality. This classification was performed 

separately for encoding and retrieval, in each case using a 5-fold LDA with 5 

https://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/
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repetitions, preserving class proportions, using the MVPA-Light toolbox (Treder, 2020; 

https://github.com/treder/MVPA-Light). Modality was classified by the default binary 

LDA as implemented in the toolbox, individual clips were classified by a multi-class 

LDA. As modalities were presented in different fMRI blocks, we implemented a 

baseline correction for classification between blocks. The baseline was computed by 

averaging the decoding accuracy across voxels within participants. After subtracting 

this average whole-brain decoding accuracy from all voxels within each individual 

subject, the new baseline-corrected value for each searchlight radius was assigned to 

its centre voxel. The resulting searchlight accuracy maps were normalized into MNI 

space and spatially smoothed with a 10 mm full width at half maximum (FWHM) 

Gaussian Kernel. Then, second level t-tests were performed to find whether voxel-

specific classification accuracies across participants are significantly higher than zero. 

The voxel-specific results were finally plotted on an MNI surface template brain. As 

one of the participants had too few correct responses in only one of the audio clip trials, 

we had to exclude this participant from that particular analysis, as the number of trials 

did not suffice for the cross-validation. 

 

EEG multivariate analyses 

EEG LDA 

To inspect the temporal progression of video and audio processing during encoding 

and retrieval, we also performed a time-resolved LDA on the EEG data using the 

MVPA-Light toolbox (Treder, 2020; https://github.com/treder/MVPA-Light). Clip-

specific amplitudes from each of the 64 electrodes at a given time bin were used as 

feature vectors in the following decoding analyses. We first classified the generic 

https://github.com/treder/MVPA-Light
https://github.com/treder/MVPA-Light
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modality (video vs audio) via the default LDA from the toolbox, and then individual 

video and audio clips among its modality via a multi-class LDA, at each time bin. Within 

the LDA, we implemented a 5-fold cross validated LDA with 20 repetitions, preserving 

class proportions. The resulting time-resolved accuracies were saved for each subject 

individually. Classification accuracies were then tested against chance accuracy (.5 for 

the classification of modality, .25 for the classification of individual clip) using a cluster-

based permutation one sample t-tests with 1000 permutations and a cluster-definition 

threshold of p < .05 (as in previous publications (Cichy et al., 2019; Cichy & Pantazis, 

2017; Dobs et al., 2019)). All cluster permutation tests were implemented by means of 

the permutest toolbox 

(https://www.mathworks.com/matlabcentral/fileexchange/71737-permutest by Gerber, 

2021; Maris & Oostenveld, 2007; Permutest, n.d.).  

 

EEG-fMRI data fusion 

ROI fusion  

To prepare the fMRI data for the ROI data fusion, we performed a representational 

similarity analysis on the unsmoothed fMRI data in native space. Specifically, we 

computed correlation distances (1-r) among all trial-specific t-values extracted from 

predefined anatomic ROIs at encoding and retrieval separately (Kriegeskorte, 2009; 

Kriegeskorte et al., 2006, 2008; Kriegeskorte & Kievit, 2013; https://www.mrc-

cbu.cam.ac.uk/methods-and-resources/toolboxes/).  

As preparation of the EEG data for the data fusion, we performed an RSA on the clip 

induced evoked EEG response at each time bin for encoding and retrieval separately. 

https://www.mathworks.com/matlabcentral/fileexchange/71737-permutest
https://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/
https://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/
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Using the time-specific amplitudes across electrodes as feature vector, we calculated 

the correlation distance (1-r) between each pair of trials for each time bin separately.  

To ultimately fuse the EEG and fMRI data, we first Fisher’s z-transformed the EEG and 

fMRI RDMs and then computed a second-order correlation of the representational 

dissimilarity matrices (RDMs) resulting from the separate imaging modalities. For the 

ROI fusion (as opposed to the searchlight-based fusion described below), we 

correlated the fMRI-based RDMs of each ROI with the matrices derived from each time 

bin of the EEG data. This correlation was done within subjects, and resulted in one 

correlation time course per ROI, displaying the similarity of this region’s 

representational geometry to the geometries of the EEG patterns at different time 

points. Note that we performed one fusion over all video and audio trials together, in 

which we merged V1, V2, and extrastriate regions for a visual mask, and A1, A2, A3 

for an auditory mask and additionally looked at our cross-modal regions (anterior 

temporal pole, inferior and superior parietal lobe). Further, we performed one fusion 

only including video or audio trials for the not merged ROIs within the respective 

sensory-specific processing pathway plus cross-modal regions (Fig. 1.2). 

A one-sample t-test against zero was performed on the ROI time courses to establish 

if and when representational geometries of an ROI are significantly reflected in the 

EEG patterns. Significant temporal clusters were detected using a cluster-based 

permutation test using 1000 permutations and a cluster-definition threshold of p < .05, 

correcting for multiple comparisons in time as in previous studies (Cichy et al., 2019; 

Cichy & Pantazis, 2017; Dobs et al., 2019). 
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We then additionally tested if there were any significant peak time differences between 

the ROI correlation time courses. To do so, we registered the correlation peak time of 

the predetermined TOI (0 – 1.5 s for encoding, 500 ms – 3 s for retrieval) for each 

individual subject. We used a repeated measures ANOVA with ROI as the single factor 

(https://uk.mathworks.com/matlabcentral/fileexchange/5576-rmaov1 by Trujillo-Ortiz, 

Hernandez-Walls & Trujillo-Perez, 2004; RMAOV1, n.d.) to test if there was any 

significant difference in peak time between the ROIs. If this test yielded a significant 

effect of the factor ROI, we subsequently used a post-hoc paired-sample t-test to test 

if there was there was a difference between the correlation peak times of sensory-

specific (auditory or visual) and cross-modal ROIs.  

To test for a sequential information progression from visual and auditory regions 

towards cross-modal ones, we implemented a linear regression on the cumulative 

sums of the ROI time courses (based on Michelmann et al., 2019) in the fusion 

approaches with only video or only audio trials. To do so, we first calculated the 

cumulative sum of the ROI time courses over the time period from 0 to 1.5 s for 

encoding, and from 0.5 to 3 s after cue onset for retrieval. For an easier comparison, 

the cumulative sum of each ROI time course was normalized to an area under the 

curve that equals 1. For each time point, a linear regression was fitted across the 

cumulative correlation values of the ROIs within subjects. The resulting slopes of all 

subjects were then tested against zero in a one-sided cluster-based permutation test 

(again with 1000 permutations and a cluster-definition threshold of p < .05). This 

method enabled us to test for a forward stream during encoding and a backward 

stream during retrieval. An example of the rationale is depicted in figure 2.3 of chapter 

3. In the case of a forward stream, the ROIs should sequentially activate from sensory-

https://uk.mathworks.com/matlabcentral/fileexchange/5576-rmaov1


37 

 

specific towards cross-modal regions. Therefore, the cumulative sums of sensory 

regions (e.g., V1-V2) should show a higher cumulative sum than cross-modal regions 

(e.g. temporal pole) already at an early time after stimulus onset. A linear fit across 

ROIs at a chosen time point should therefore show a significantly negative slope. 

According to this rationale, a stream from cross-modal to sensory regions would result 

in a significantly positive slope. Since we expected a sensory-to-cross-modal stream 

at encoding and cross-modal to sensory stream at retrieval, we used one-sided tests 

to see if the slope differs from zero (< 0 at encoding, > 0 at retrieval). The sequential 

ordering of our ROIs was based on a collection of literature on the ventral and dorsal 

visual and auditory streams from anatomical and neuroimaging studies (Borowsky et 

al., 2007; Cichy et al., 2016, 2017; Costanzo et al., 2013; DeWitt & Rauschecker, 2012; 

Felleman & Essen, 1991; Gow, 2012; Hebart & Hesselmann, 2012; Hickok & Poeppel, 

2007; Lowe et al., 2020; Valyear et al., 2006). 

 

Searchlight fusion 

For a better spatial resolution and a spatially focused perspective on the data fusion, 

we then performed a volumetric searchlight analysis (Kriegeskorte, 2009; Kriegeskorte 

et al., 2006, 2008; Kriegeskorte & Kievit, 2013). Within each participant, we computed 

an RDM from the trial-specific t-value patterns at each voxel v, including a surrounding 

sphere with a radius of 3 voxels (as resulting from the multivariate GLM), and 

compared them to the time-resolved EEG RDMs in a second order correlation for each 

time of interest (TOI). Since our main research questions were focused on retrieval, 

we performed the data fusion using all trials, only video trials, and only audio trials. In 

contrast, the data fusion for encoding was performed only once, using all trials, mainly 
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as a sanity check. The fused data was Fisher’s z-transformed. The searchlight fusion 

(Fig. 1.2) was performed using pyRSA (https://github.com/Charestlab/pyrsa) which 

works on Python (van Rossum, 1995), using the sys and os module, SciPy (Virtanen 

et al., 2020), NumPy (Harris et al., 2020), and nibabel 

(https://github.com/nipy/nibabel/releases).  

To test for significant EEG-fMRI pattern similarity at individual voxels, we normalized 

the correlation maps into MNI space, smoothed them with 10 mm FWHM Gaussian 

kernel and then tested them in a one-sample t-test against zero at each single time 

bin. Within this t-test, we performed a spatial maximal permuted statistic correction, 

combined with a threshold free cluster enhancement (Nichols & Holmes, 2002; Smith 

& Nichols, 2009). This cluster-based analysis was performed using the toolbox 

MatlabTFCE (http://markallenthornton.com/blog/matlab-tfce/) with 1000 permutations, 

a height exponent of 2, an extent exponent of 0.5, a connectivity parameter of 26 and 

a step number for cluster formation of .1 as suggested by Smith & Nichols (Smith & 

Nichols, 2009). The analysis resulted in a “fusion movie”, representing time-resolved 

spatial t-maps, which indicate significant similarity between the representational 

structure of the EEG time series and individual voxels (or rather, spheres around a 

voxel). 

  

https://github.com/Charestlab/pyrsa
https://github.com/nipy/nibabel/releases
http://markallenthornton.com/blog/matlab-tfce/


39 

 

EEG- fMRI Data fusion 

 
 

Figure 1. 2 

Overview of ROI and searchlight fusion approaches. First, brain activity patterns are extracted from fMRI 

and EEG to create correlation-based representational dissimilarity matrices (RDMs) in the spatial and 

temporal domain, respectively. Then, second-order correlations of the RDMs from the two imaging 

modalities are computed for the data fusion. FMRI RDMs can be performed at each voxel centre 

including voxels within a specific radius, or for larger regions of interest (ROI). Depending on this choice, 

the data fusion will be searchlight- or ROI-based. FMRI and EEG RDMs can be created using all trials, 

only video trials, or only audio trials. 

 

Figures 

Figures were created using the raincloud plots Version 1.1, ColorBrewer 2.0 (from 

www.ColorBrewer.org by Cynthia A. Brewer, Geography, Pennsylvania State 

University), colorbrewer schemes 2.0 for Matlab 

(https://www.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-

schemes-for-matlab by Charles, 2021; Cbrewer, n.d.), Inkscape 1.0.1 

http://www.colorbrewer.org/
https://www.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-schemes-for-matlab
https://www.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-schemes-for-matlab
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(https://inkscape.org/),  WFU PickAtlas v3.0 (Maldjian et al., 2003, 2004), MRIcron 

(www.mricro.com, Rorden & Brett, 2000) and a colin 27 average brain template 

(http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27, Holmes et al., 1998). 

 

Results 

Behaviour 

Before analysing the neuroimaging data, we explored the behavioural data including 

reaction times and accuracies (Fig. 1.3). On average, participants were similarly fast 

at recalling video (M = 1.29 s, SD = .20 s) and audio clips (M = 1.27 s, SD = .20 s). In 

contrast, participants achieved a higher accuracy when recalling videos (M = 73.83 %, 

SD = .10 %) than audios (M = 52.91 %, SD = .10 %) on average. The visualised data 

are for purely descriptive purposes (Fig. 1.3).  

  

https://inkscape.org/
http://www.mricro.com/
http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27
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Behavioural data 
 

a b 

  
 

Figure 1. 3 

Behavioural retrieval performance of visual and auditory retrieval. A) Retrieval reaction times (RTs) and 

b) accuracies for video and audio clips on average. Filled circles represent the overall mean, boxplots 

represent median and 25th and 75th percentiles; whiskers represent 2nd and 98th percentile; dots 

represent the means of individual subjects. Blue represents video, orange audio retrieval performance. 

N = 21 independent subjects. 

 

fMRI univariate results 

As a first step, we explored whether we could find global hemodynamic activity 

differences within the brain when comparing auditory and visual processing during 

encoding and retrieval. We therefore performed a GLM analysis with subsequent t-

contrasts between video and audio clips at encoding and retrieval (Fig. 1.4). At 

encoding (Fig. 1.4a), we found significantly higher activation for video clips than audio 

clips in areas along the visual stream ranging from occipital lobe to the middle temporal 

gyrus (t(20) = 6.39, p < .05 (FWE)). Audio clips in contrast elicited significantly higher 

BOLD responses in inferior and superior temporal gyrus (t(20) = 6.39, p < .05 (FWE)). 
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The visual activation of occipital and auditory activations of temporal regions were both 

in concordance with the previous findings (Griffiths, Mayhew, et al., 2019). 

At retrieval (Fig. 1.4b), we found a higher activation for the videos in parahippocampal 

and perirhinal cortex (t(20) = 6.39, p < .05 (FWE)) but no higher activation for audio 

clips, similar to previous results (Griffiths, Mayhew, et al., 2019). When contrasting 

retrieval success versus failure for video trials (Fig. 1.4c), we additionally found 

univariate success effects (success > failure) in the occipital lobe, the insular cortex 

and putamen for video clips (t(20) = 6.39, p < .05 (FWE)); and success effects in the 

hippocampus for audio clips (t(20) = 6.39, p < .05 (FWE)). Our results thus show much 

overlap with the previous results (Griffiths, Mayhew, et al., 2019) with some minimal 

additional findings within the auditory condition. 
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fMRI univariate results 
 

a b c 

       
 

Figure 1. 4 

Univariate t-contrasts results for encoding and retrieval. A) Contrasts at encoding depict blue: video > 

audio, orange: audio > video. B) Contrasts at retrieval depict blue: video > audio. C) Contrasts at retrieval 

depict blue: success > failure for video trials, orange: success > failure for audio trials. All contrasts were 

thresholded by the following values: T(20) = 6.39, p < .05 (FWE). N = 21 independent subjects. 

 

fMRI multivariate results 

Next, we took a closer look at modality-related information processing at the level of 

voxel activity patterns (Fig. 1.5). We therefore decoded the modality (video or audio) 

from fMRI activity patterns by a searchlight LDA during encoding and retrieval 

separately. At encoding (Fig. 1.5a), we found significant decoding accuracy spanning 

from early visual regions along the ventral stream up to fusiform gyrus and also 

expanding into superior temporal and inferior parietal cortex (t(20) > 5.55, p < .05 

(FWE)). At retrieval (Fig. 1.5a), we similarly found significant decoding accuracy 

ranging from occipital regions over fusiform gyrus over inferior temporal gyrus to the 

hippocampus, and additionally expanding into insula (t(20) > 5.55, p < .05 (FWE)).  

Retrieval (correct) 
 
• Video > Audio 

 
 

t(20) >= 6.39, 
p < .05 (FWE) 

Encoding 

 

• Video > Audio 

• Audio > Video 

t(20) >= 6.39, 

p < .05 (FWE) 

Retrieval  

success vs failure 

• Video 

• Audio 

t(20) >= 6.39, 

p < .05 (FWE) 
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By means of a multiclass classifier, we then tried to decode individual video and audio 

clips from the voxel patterns. At encoding (Fig. 1.5b), individual videos could be 

classified in regions along the ventral visual stream from early visual cortex to fusiform 

gyrus. Audio clips could be classified in superior temporal gyrus and right inferior frontal 

gyrus (t(20) > 5.24, p < .05 (FWE)), however when using a more liberal threshold, also 

the left inferior frontal gyrus was involved (t(20) > 3.55, p < .001(uncorr)). Finally, within 

successful retrieval (Fig. 1.5c), individual dynamic clips could only be classified at a 

liberal threshold of p < 0.1 (uncorr). In particular, individual videos could be classified 

in small regions within the inferior temporal lobe and parahippocampal gyrus (t(20) > 

3.55, p < .001 (uncorr)) and audio clips could be classified in the insula, left middle 

temporal and left (t(19) > 3.55, p < .001 (uncorr)) and right (t(19) > 2.53, p < .01 

(uncorr)) inferior frontal gyrus. 
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fMRI multivariate results 
 

a b c 

   
 

Figure 1. 5 

Multivariate searchlight LDA t-contrasts for encoding and retrieval. A) Contrasts depict significant 

modality decoding at encoding (pink) and retrieval (green, using only correct trials), t(20) = 5.55, p < .05 

(FWE). N = 21 independent subjects. B) Contrasts depict significant individual video (blue) and audio 

(orange) decoding at encoding, t(20) = 5.24, p < .05 (FWE).  N = 21 independent subjects. C) Contrasts 

depict significant individual video (blue, t(20) = 3.55, p < .001 (uncorrected), N = 21 independent 

subjects) and audio (orange, t(19) = 3.55, p < .001 (uncorrected), n = 20 independent subjects) decoding 

at retrieval (using only correct trials). See methods for analysis. 

 

EEG multivariate results  

We then decoded modality and unique clips (Fig. 1.6) from the EEG patterns. Again, 

we first classified the modality (video vs audio clip) using a binary classifier, followed 

by a multiclass decoding of the individual video and audio clips within their modality. 

After computing classification accuracies over time, we tested whether the given 

accuracies are higher than chance, using a one-sample t-test (cluster-based correction 

with 1000 permutations, cluster-definition threshold p < .05, cluster size threshold p < 

.05).   

Modality 

• Encoding 

• Retrieval (correct) 

t(20) >= 5.55 

p < .05 (FWE) 

Retrieval (correct) 

• Video (n=20) 

• Audio (n=19) 

t(20 or 19) >= 3.55 

p <.001 (unc.) 

Encoding 

• Video  

• Audio 

t(20) >= 5.24 

p < .05 (FWE) 
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a EEG multivariate results 

b  

c  

  

Figure 1. 6 

EEG classification accuracy time courses during a) encoding (all trials), b) retrieval (all trials) and c) 

retrieval (only correct trials). Black line represents modality decoding accuracy, blue represents video 

decoding accuracy, and orange represents audio decoding accuracy. At encoding, time point 0 s marks 

clip onset, 3 s marks word onset. At retrieval, 0 s marks cue onset, 3 s marks clip choice. In all panels, 
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significant decoding accuracy is indicated by asterisk (p < .05 cluster). See Methods for details on cluster 

correction. N = 21 independent subjects. 

 

Within the encoding trials (Fig. 1.6a), we were able to classify modality after the 

presentation onset of the clip as well as after word encoding, indicated by significant 

classification peaks at 328 ms after clip onset, and 172 ms and 523 ms after word 

onset. Additionally, individual video clips could be classified at 250 ms, 367 ms and 

1.98 s, and audio clips could be classified at 265 ms after clip onset, respectively (all 

at p < .05 (cluster)). 

Classifying the modality of all retrieval trials (Fig. 1.6b), classification accuracy reached 

a significant peak at 578 ms after word onset, and 336 to 438 ms after clip choice onset 

(all at p < .05 (cluster)). However, the classification of individual video and audio clips 

at retrieval failed when using all responses in the analysis. 

We then repeated the LDA on retrieval data including only correct trials (Fig. 1.6c). 

Classifying modality, we found one early significant accuracy cluster at 580 ms and  

several later clusters at 1.62 s, 2.08 s, 2.5 s and 2.8 s after word onset, as well as 250 

to 500 ms after clip choice onset. Unique videos could still not be classified 

successfully. However, including only correct trials resulted in a significant cluster of 

audio clip classification at 1.12 s after word onset (all at p < .05 (cluster)).  
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EEG-fMRI data fusion 

ROI fusion - encoding 

After investigating the EEG and fMRI data separately to establish when in time and 

where in the brain modality and unique clips could be classified during encoding and 

retrieval, we then implemented the data fusion. For the data fusion, a second-order 

correlation has been computed between individual ROI RDMs and EEG RDMs at each 

time point to map the ROI representations on a timeline. 

Inspecting the data fusion over both modalities, i.e. using video and audio trials (Fig. 

1.7a), we found significant correlation clusters within visual regions at 188 ms, auditory 

regions at 203 ms, inferior parietal regions at 230 ms and superior parietal regions at 

188 ms after clip onset (p < .05 (cluster)). Other peaks were found distributed over the 

encoding trial at a more liberal statistical threshold of p < .01 (uncorr.) (see Fig. 1.7a). 

Since we expected a sensory-specific to cross-modal information stream during 

encoding, we additionally analysed the ROI peak time differences of individual 

participants. First, a repeated measures ANOVA, using all five ROIs as within-subjects 

factor yielded an overall time difference between the regions that was marginally 

significant at a liberal statistical threshold (F(4, 20) = 3.37, p = .01). With a posthoc t-

test we then compared the correlation peak times of visual regions against the peak 

times averaged across the cross-modal anterior temporal pole, inferior and superior 

parietal lobe. This contrast yielded that visual regions showed an earlier correlation 

peak within visual than cross-modal regions (t(20) = -4.82, p < .0001 (uncorr.)). 

Unexpectedly, auditory regions did not show an earlier peak than cross-modal regions 

(t(20) = -0.29 , p = .77 (uncorr.)). 
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When looking at the fusion over video trials only (Fig. 1.7b), sensory-specific early 

visual and extrastriate regions show correlation peaks at 266 ms and 243 ms 

respectively (p < .05 (cluster)). Moreover, the inferior parietal lobe shows a significant 

correlation peak at 238 ms (p < .05 (cluster)). Other comparatively distributed peaks 

were found at a lower statistical threshold of p < .01 (see Fig.1.7b). A repeated 

measures ANOVA, using all six ROIs as within-subjects factor yielded no significant 

peak time differences between the ROIs (F(5, 20) = 1.45, p = .21). Further, performing 

a linear regression on the cumulative sums on the six ROI time courses at each time 

point (see Methods), we found non-significant slopes with values ranging between -

8*10-4 to 6*10-4 (p > .01 (uncorr.)). Sensory-specific and cross-modal regions thus 

seemed to activate around a similar time.  

The data fusion over audio trials (Fig. 1.7c) did not reveal any significant clusters, but 

showed peaks at a liberal statistical threshold for inferior parietal lobe at 32 ms and 

anterior temporal pole at 600 ms and 918 ms after clip onset (p < .01(uncorr.)). The 

repeated measures ANOVA did not show a significant peak time difference between 

ROIs (F(4, 20) = 0.36, p = .84). A linear regression on the cumulative sums of the five 

ROI time courses did not yield a significant slope (p > .01 (uncorr.), ranging from -1*10-

3 to 2*10-3). 

Summarizing the encoding data, the two fusion approaches within modalities, i.e. using 

only video or only audio trials, did not reveal any information stream across ROIs. 

However, the fusion over both modalities, i.e. using both video and audio trials 

replicates an information stream from sensory-specific visual to cross-modal regions 

confirmed by a contrasting t-test. 
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ROI fusion - retrieval 

The same data fusion approach has then been applied to the retrieval data. Again we 

first performed a fusion over the trials of both modalities and then over video and audio 

trials separately. Importantly, in the retrieval data, we discarded all correlation peaks 

before 500 ms after word cue onset, respecting this time as processing period of the 

cue where no memory-related reactivation is thought to occur (Staresina & Wimber, 

2019). Since our main hypotheses focused on retrieval, a more detailed description of 

correlation peaks within the retrieval data follows. 

The fusion over both modalities, i.e. including both video and audio trials (Fig. 1.8a), 

only showed a significant cluster within visual regions at 613 ms s after cue onset (p < 

.05 (cluster)). Other peaks were found at a more liberal threshold within early visual 

regions at 1.84 s and 2.16s, auditory regions at 600 ms and 1.87 s, inferior parietal 

lobe at 600 ms, 1.84 s and 2.16s, and the superior parietal lobe at 630 ms after cue 

onset. As we had a specific hypothesis about the temporal order in which a modality-

independent to sensory-specific reinstatement effects occur, we performed an 

additional repeated measures ANOVA on the individual correlation peak times with 

ROI as within-subject factor. This analysis did not show any significant differences in 

correlation peak times between the ROIs in terms of a main effect of ROI (F(4, 20) = 

0.76, p = .56).  

The fusion over video trials (Fig. 1.8b) only showed a significant correlation peak at 

626 ms within extrastriate visual regions (p < .05 (cluster)). Interestingly, more peaks 

were found within a similar time frame at a lower statistical threshold. These peaks 

were seen in early visual regions at 540 and 600 ms, inferior temporal lobe at 630 ms, 

temporal pole at 550 and 630 ms, and inferior parietal lobe at 550 ms after cue onset 
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(p < .01 (uncorr.)).  Inferior parietal lobe showed another peak at 1 s (p < .01 (uncorr.)). 

After 2 s, several regions showed a reverberation of information (p < .01 (uncorr.); see 

Fig. 1.8b). The repeated measures ANOVA on the peak times did not yield a significant 

effect of ROIs (F(5, 20) = .34, p = .89). Performing a linear regression on the cumulative 

sums on the six ROI time courses at each time point, slopes were ranging between -

10*10-4 to 2*10-4 and were not significantly different from zero (p > .01 (uncorr.)). 

The fusion over audio trials (Fig. 1.8c) only showed peak correlations at a liberal 

threshold for A2 and A3 at 532 ms, temporal pole at 600 ms, and A1 at 690 ms, 1.42 

s and 2 s after cue onset. None of these peaks survived the cluster correction. The 

repeated measures ANOVA on peak times did not yield a significant effect of ROI (F(4, 

20) = .23, p = .93). Finally, also the linear regression on the cumulative sums of the 

five ROI time courses did not show a significant slope (p > .01 (uncorr.), ranging from 

-12*10-4 to 6*10-4). 

Summarizing the retrieval data, neither the ROI fusion over trials of both modalities, 

nor the fusion over individual modalities separately confirmed an information stream 

from cross-modal to sensory-specific regions. Instead, both cross-modal and sensory-

specific regions descriptively reactivated for the first time within a similar time frame 

around 550 ms after cue onset. Interestingly, some sensory-specific regions 

descriptively showed reverberating later peaks (Fig. 1.8a-c). 
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ROI fusion for encoding 
a 

 
b 

 
c 

 
Figure 1. 7  

Time courses of encoding ROI fusion in t-values for a) all trials, b) video trials, and c) audio trials. ROIs 

are colour-coded as indicated in legends. Time point 0 s marks clip onset, 3 s marks word onset. 

Significant decoding accuracy at individual time bins is indicated by points (p < .01 uncorrected) and 

asterisks (p < .05 cluster). See Methods for details on cluster correction. N = 21 independent subjects. 
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ROI fusion for retrieval 
a  

 
b 

 
c 

 
Figure 1. 8 

Time courses of retrieval ROI fusion in t-values for a) all trials, b) video trials, and c) audio trials. ROIs 

are colour-coded as indicated in legends. Time point 0 s marks cue onset, 3 s marks clip choice. 

Significant decoding accuracy at individual time bins is indicated by points (p < .01 uncorrected) and 

asterisks (p < .05 cluster). See Methods for details on cluster correction. N = 21 independent subjects. 
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Searchlight fusion - encoding 

The analyses above combined the EEG and fMRI data in a ROI-based fashion. 

Complementing these analyses targeted at pre-selected regions, we also used a 

whole-brain searchlight to reveal which regions in the brain correlated significantly with 

the similarity structure of a given time point (in the EEG). This approach essentially 

results in a statistically thresholded fusion movie.  

Fusing EEG and fMRI data over both modalities within encoding (Fig. 1.9), we 

observed that high EEG-fMRI similarity started to evolve approximately 70 ms after 

stimulus onset in early visual and extrastriate regions. Within the next 100 ms 

information travelled further along the ventral visual stream, reaching fusiform gyrus 

und inferior temporal cortex. At 230 ms, superior temporal regions additionally showed 

significant EEG-fMRI similarity, with minor spread towards inferior parietal regions. 

After 300 ms similarity decreased in visual regions, and smaller clusters in fronto-

parietal and medio-frontal areas appeared relatively late, around 490 ms. The 

encoding fusion thus shows the expected forward stream from posterior visual and 

auditory to more anterior temporal and parietal regions. 
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Figure 1. 9 

T-maps of EEG-fMRI correlations at encoding, for both modalities together (i.e., full-matrix fusion), 

showing time points in the trial time course where significant spatial clusters (p < .05 cluster) emerged. 

See Methods for details on cluster correction. N = 21 independent subjects. 

 

Searchlight fusion - retrieval 

Again, the same searchlight-based fusion approach has been applied to the retrieval 

data. During retrieval, we expected reactivation-related clusters to emerge from 

approximately 500 ms following cue onset, and to evolve in a cross-modal to sensory-

specific fashion. The EEG-fMRI fusion over both modalities (Fig. 1.10) within our TOI 

(> 500 ms) showed an early correlation cluster at 590-600 ms located in hippocampal 

and parahippocampal areas, and spreading over to medial prefrontal, inferior and 

superior temporal gyrus. A second correlation peak was then observed within the 
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visual and inferior parietal cortex late, around 1.83 seconds after cue onset. Finally, at 

2.79 s after cue onset, small parts of the superior, inferior, anterior and medial temporal 

cortex showed significant correlations with the EEG similarity structure. 

 

Figure 1. 10 

T-maps of EEG-fMRI correlations at retrieval, for both modalities together (i.e., full-matrix fusion), 

showing time points in the trial time course where significant spatial clusters (p < .05 cluster) emerged. 

See Methods for details on cluster correction. N = 21 independent subjects. 

 

To spatially resolve visual and auditory processing during retrieval separately, we 

conducted another data EEG-fMRI data fusion within each modality (Fig. 1.11). The 

analysis within the visual modality (i.e., video trials) revealed high correlations 

approximately 550 ms after cue onset in the visual cortex. Late clusters emerged in 

superior anterior temporal lobe at 2.42 s, and further inferior and medial temporal lobes 
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at 2.78 s after cue onset. While the later clusters of sensory-specific correlations are 

consistent with the idea of a generic-to-detailed reactivation stream, we did not expect 

early time points to reflect video-specific activity patterns. 

Looking at the audio trials only, we observed significant hippocampal, 

parahippocampal and superior temporal correlations around 600 to 690 ms. Later 

sensory-specific clusters were found in medial prefrontal and inferior, medial and 

anterior temporal areas at 1.43 s after cue onset, consistent with the later sensory-

specific pattern observed in the visual modality (see above). Unexpectedly, inferior 

temporal areas along the ventral visual stream were also significantly correlated with 

the EEG structures later, at 1.54 s after cue onset, which might have been related to a 

visualisation of the auditory material. 
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Figure 1. 11 

T-maps of EEG-fMRI correlations at retrieval, for video and audio clips separately, showing time points 

in the trial time course where significant spatial clusters (p < .05 cluster) emerged. See Methods for 

details on cluster correction. N = 21 independent subjects. 
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Discussion 

Neuroscientific research has demonstrated that auditory and visual perception follows 

a feedforward processing stream from sensory-specific to more abstract modality-

independent information coding (T. Carlson et al., 2013; Cichy et al., 2014, 2016; 

Costanzo et al., 2013; Li et al., 2019; Lowe et al., 2020; Martin et al., 2018) and 

assumed that such a forward cascade feeds information to the hippocampus for the 

encoding of novel stimuli (Danker et al., 2017; Rolls, 2010). In comparison, our 

understanding of the spatio-temporal processes supporting the retrieval of memories 

from different modalities is still extremely limited. Here, using simultaneous EEG-fMRI 

recordings together with a multivariate fusion approach, we investigated the dynamic 

information processing cascade during the cued recall of short video and audio clips. 

We hypothesized that in contrast to the initial perception and encoding of these clips, 

the retrieval cascade progresses inversely from cross-modal to sensory-specific 

representations. Our findings offer insight into the dynamic neural representations 

supporting memory retrieval. Since our hypothesis were mainly based on the neural 

mechanisms of retrieval, we will mostly focus on the retrieval results in the discussion. 

First, we replicated that during recall, spatial fMRI patterns represent audio- and video-

unique processing, and these patterns are found in a subset of the regions involved in 

the initial perception of those stimuli (Fig. 1.5). Second, temporal EEG patterns show 

that during retrieval, generic modality information is established early around 550-600 

ms, before clip-specific patterns are re-instated approximately half a second later (Fig. 

1.6). Fusing the EEG and fMRI data in two different attempts, we find that the early 

processing of general modality information (Fig. 1.6b-c) is accompanied by 

simultaneous reactivation of both cross-modal and sensory-specific areas early in time 
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(Fig. 1.8), which stands opposed to our cross-modal to sensory-specific stream 

hypothesis. Further, episode specific features are represented in sensory specific 

areas at a relatively later time point (Fig. 1.6c, 1.8c). Finally, we show that the spatio-

temporal information processing stream during retrieval generally progresses from 

medial temporal areas towards cross-modal and sensory-specific regions during 

retrieval (Fig. 1.10-1.11). 

Using multivariate decoding analyses on regional voxel patterns of the fMRI data, we 

were able to offer insight into the spatial location of generic modality as well as clip-

specific representations. The imaging data provides evidence for the reactivation of 

some brain regions already engaged during encoding on the one side, and showed 

additional regions during retrieval non-coinciding with encoding on the other side. 

Modality could be decoded from a set of sensory-specific regions. This set included 

areas in extrastriate to inferior temporal cortex along the ventral visual (‘what’) stream, 

presumably reflecting a reactivation of visual representations in those areas (Borowsky 

et al., 2007; Valyear et al., 2006). Additionally, modality information during retrieval 

could be decoded from superior temporal and insular cortex, likely representing 

auditory memories (Danker et al., 2017; Renier et al., 2009). Finally, voxel patterns in 

the hippocampus coded for modality, suggesting that this core region of the episodic 

memory network (Tulving & Markowitsch, 1998) recapitulates generic modality 

information during retrieval.  

In comparison to the decoding of modality, the decoding of individual dynamic clips 

only succeeded at a liberal statistical threshold. Although we expected stronger 

classification accuracies, the data is in agreement with a substantial set of literature 
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regarding the reactivation of encoding patterns, as described in the following 

paragraphs. 

Individual video information could be decoded, during retrieval, in small parts of the 

inferior temporal lobe, a region representative of superordinate semantics (Cichy et al., 

2014), which also coincides with the univariate finding showing higher activation of the 

same inferior temporal fraction for video than audio clips during retrieval. The found 

reactivation in the fusiform area also coincides with the previously reported encoding-

retrieval similarity analysis on the same dataset (Griffiths, Mayhew, et al., 2019). Not 

surprisingly, the retrieval of the dynamic visual sceneries also elicited decodable 

activity patterns in the parahippocampal gyrus, which is commonly known to be central 

for the representation of visual scenery (Epstein & Kanwisher, 1998; Mormann et al., 

2017). These findings show that as expected, individual video processing can be 

pinpointed to visual regions along the ventral stream.  

In comparison, information about individual auditory clips was decoded in the insula, 

an area previously shown to process auditory stimulus identity (Renier et al., 2009; 

Danker et al., 2017), and to middle temporal lobe, which has been shown to be involved 

in controlled semantic retrieval (Davey et al., 2016). Additionally, the left inferior frontal 

gyrus was more engaged in individual auditory clip processing than the right inferior 

frontal gyrus, which stands contralateral to the encoding pattern. Similar left frontal 

representations have been found in the previously reported encoding-retrieval 

similarity results on the same dataset (Griffiths, Mayhew, et al., 2019). On the one hand 

these findings stand opposed to the hemispheric encoding/retrieval asymmetries that 

report a reversed lateralisation pattern (Habib et al., 2003; Nyberg et al., 1996). On the 

other hand, a lot of research also describes the role of the left inferior frontal gyrus in 
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retrieval of contextual, conceptual and episodic information and auditory stimuli in 

particular (Badre et al., 2005; Badre & Wagner, 2007; Watanabe et al., 2008). Further, 

the left inferior temporal gyrus holds Broca’s area (Keller et al., 2009), and its activation 

which could suggest the mental verbalization of the audio material during retrieval. 

Importantly, choosing a more liberal threshold at encoding and retrieval revealed 

bilateral involvement of the inferior frontal gyrus. Together, individual audio processing 

during retrieval could be related to the related to auditory regions also involved at 

encoding. 

Even though the classification methods used here do not directly compare encoding 

to retrieval activity patterns, they provide evidence for similar information processing 

in overlapping brain locations between encoding and retrieval. Moreover, as indicated 

above, both the visual and auditory reactivation analysed here are complementary to 

and show consistency with previous encoding-retrieval similarity analyses on the same 

dataset (Griffiths, Mayhew, et al., 2019). The results also agree with previous literature 

on sensory-specific, retrieval related reinstatement (Danker & Anderson, 2010). 

Together, these mainly visual and auditory networks found during memory retrieval set 

the foundation for our next step of mapping the audio and visual mental representations 

of onto the dynamic EEG patterns. 

On the electrophysiological level, multivariate classifiers enabled us to pinpoint the 

time points of maximum decodability of the retrieved contents, both on a gross (generic 

modality) and finer-grained (individual clips) scale. Specifically, we showed evidence 

for modality processing as early as 580 ms after cue onset, which was particularly 

prominent when using correct and incorrect trials, but also evident when using only 

correct trials. These peaks were followed by subsequent decoding peaks at 
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approximately 1.6, 2, 2.5 and 2.8 s after cue onset. Individual video decoding based 

on the EEG patterns was not significant at any time point during retrieval. In contrast, 

individual audio content was decodable also around 1.1 s after cue onset. Importantly, 

the findings indicate that some, most likely modality-related, features of recalled 

memories are already represented in the brain around 550 ms after cue presentation, 

a time frame in line with previous findings that show reinstatement in the entorhinal 

cortex from 500 ms onwards (Staresina et al., 2019). Only about 500 ms later, specific 

individual clip representations evolve, but based on the EEG patterns alone these are 

only seen in the auditory domain. 

By contrast, during encoding, we observed very early representation of modality that 

gradually increased within the first 100 ms and started to peak before the video-unique 

and the audio-unique decoding peak (Fig. 1.6a). The earlier decodability of modality is 

not surprising given the fact that visual and auditory information already enter the brain 

along completely separate routes, starting with the information relay from optical tract 

to lateral geniculate nucleus and auditory nerve to the cochlear nucleus respectively 

(Sefton et al., 2015; Malmierca, 2015). Interesting however is that individual videos 

and audio clips were maximally decodable at a relatively late processing stage, at 

which meaningful semantic processing is thought to take place (Cichy et al., 2014). 

This observation suggests that the decodability of individual clips might not be based 

on differences in low-level perceptual details, and that the neural representations 

distinguishing the specific content of the clips only emerged at a relatively late time 

point when meaning is assigned to these dynamic sensory clips. It is notable that within 

this experimental design, we cannot test which feature dimensions contribute to 

classification during encoding or retrieval, as there is no controlled manipulation along 
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perceptual or any other dimension (see Chapter 3 for a study addressing this gap). 

Future studies should take particular manipulations of different hierarchical features 

into account, to properly decompose information processing along the sensory streams 

(Schyns et al., 2020). Nevertheless, we were able to show when in time information 

differentiating individual auditory and visual clips was represented in the brain during 

encoding, and at which time points we can expect recall dependent reinstatement to 

happen. 

The core analysis in this study was the fusion of EEG and fMRI data. Computing 

second-order representational similarity analyses in ROI-based fashion, we were able 

to map the temporal information processing onto the distinct brain areas, revealing how 

content-specific representations in the two modalities dynamically unfold in the brain. 

To shortly sum up our findings on memory encoding, the ROI and searchlight fusion 

data give indications for a forward stream in the visual modality. Particularly, the ROI 

fusion over both modalities, i.e. including video and audio trials, replicated a sensory-

specific to cross-modal information stream, which was supported by a contrasting t-

test between visual versus cross-modal ROI peak time points (Fig. 1.7a). Moreover, 

the searchlight fusion showed information progress from early visual and early auditory 

to more frontal areas along their respective ventral stream (Fig. 1.9). Parietal areas 

and frontal areas were activated relatively late, all in line with the previously shown 

feed forward hierarchical processing cascades (Cichy et al., 2014; Costanzo et al., 

2013; Li et al., 2019; Lowe et al., 2020). In the light of the EEG classification results, 

these results suggest at the very least that low-level perceptual features between 

modalities are processed before meaningful clip-unique ones, which is in line with 

earlier findings (Cichy et al., 2014; Costanzo et al., 2013; Li et al., 2019; Lowe et al., 
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2020). Future studies looking deeper into spatio-temporal information processes 

during perception and memory encoding or retrieval should work with explicit feature 

manipulations along different perceptual and or conceptual dimensions, to be able to 

relate the processing stages to the representational content.  

Looking at the retrieval data, the ROI-based fusion over both modalities descriptively 

(i.e. at a low statistical threshold) suggests that first content-related reactivation 

patterns can be observed around 550 to 600 ms after cue onset, including cross-modal 

parietal areas as well as sensory-specific visual and auditory areas (Fig. 1.8). Based 

on the timing of the different ROI reactivations, our data does not convincingly support 

the idea of a general reinstatement transition from cross-modal to sensory-specific 

areas, as both type of regions descriptively showed an early reactivation between 550 

and 600 ms after cue onset. This time frame is in concordance with the first modality 

classification peak within retrieval (Fig. 1.6b-c). In contrast, neither the individual video 

nor the individual audio clip can be decoded within this time frame. The data therefore 

suggests that the early reactivation is mainly informative of generic modality features 

but does not contain more specific characteristics of the individual clips.  

In the ROI-based fusion over video trials only, sensory-specific visual and cross-modal 

ROIs descriptively showed a first early reactivation between 550 and 650 ms after cue 

onset. Together with the EEG-classification results, where we found significant 

modality decoding around the same time, but no clip-specific decoding, these findings 

suggests that early cross-modal and sensory-specific ROI activations possibly 

contribute to the generic modality representation of the retrieved clip, whereas no 

evidence was found for a contribution to visual episode-unique processing. 
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In the ROI-based fusion over audio trials, cross-modal parietal regions show no 

obvious correlation peak with the EEG structures at any time point. Instead, at an early 

time point between A2 and A3 showed descriptive peaks at 530 and temporal pole at 

600 ms after cue onset, whereas at a late time point, around 1.4 s and 2 s, A1 showed 

a descriptive peak. This later timeframe at 1.4 s is close in time with the individual audio 

classification peak at 1.1 s after cue onset that was found based on the EEG data 

alone. This lets us assume that a late recapitulation of modality-specific content in 

sensory regions is required for the brain to retrieve the diagnostic features of unique 

episodic events. 

Taken together, the ROI fusion (over modalities and audio clips in particular) shows 

that instead of a cross-modal to sensory-specific reactivation stream, we find 

something that looks more like a generic modality to clip-specific retrieval stream. Initial 

reactivations involving both cross-modal and sensory-specific networks support the 

global reinstatement of the modality of an episode, whereas later reactivations 

specifically in sensory-specific regions reinstate the within modality clip-specific details 

of the recalled events.  

Inspecting the fusion data in a more explorative voxel-resolved searchlight approach 

for videos and audios separately, we found additional regions involved during retrieval, 

as well as a descriptive indication of a reversed retrieval flow. The data fusion including 

clips of both modalities, most likely dominated by generic modality information, showed 

that around 600 ms after cue onset, EEG-fMRI correlations evolved in the 

hippocampus and from there progressed towards temporal and parietal areas. 

Similarly, the fusion of over audio trials showed a progression from medial-temporal 

towards various lateral temporal regions. These data points indicate a feedback 
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processing stream from hippocampal, medial temporal towards semantic and sensory 

regions. The data fusion over video trials showed no significant medial temporal match 

with EEG representations during early time points. Instead, and unexpectedly, visual 

areas became instantly reactivated around 550 ms after cue onset. Since previous 

literature has shown that medial temporal areas do reactivate from 500 ms onwards 

during retrieval, it is possible that our null finding in this time window is due to a lack of 

sensitivity for picking up these reinstatements in medial temporal areas (Staresina et 

al., 2019; Staresina & Wimber, 2019). Apart from this lack of early medial temporal 

reactivation during video processing, the majority of our present findings point to a 

feedback reconstructive retrieval stream, as previously suggested (Linde-Domingo et 

al., 2019; Lifanov et al., 2021).  

We would like to note that we disregarded any information peaks within the first 500 

ms of the retrieval data due to two reasons. First, previous work has consistently shown 

that visual stimulus processing elicits transient decodable activity strongest within the 

first 500 ms (Cichy et al., 2014), giving us reason to discard some of the initial 

processing time from making conclusion about the retrieval process. Further, the 

decoding of our EEG data indicates that representations of recalled clips only establish 

after 500 ms. We were therefore particularly interested into the time frame just after 

500 ms to find the source of these distinctive recall related activity patterns, that drive 

the high classification accuracies in the previous analysis. Third, and as previously 

mentioned, current evidence shows that retrieval processes only start at about 500 ms 

after cue onset (Staresina et al., 2019), additionally justifying our choice of TOIs. 

However, early information peaks of several ROIs within the first 500 ms during 

retrieval do not go unnoticed. This information processing is likely to be attributed to 
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the processing of the cue. As we expect similarities between cues within the dataset 

of an individual participant to be represented both within the EEG and the fMRI data, 

a rising EEG-fMRI correlation at the time of cue processing is not surprising. However, 

the expected reactivations related to retrieval were found in the previously described 

window of memory reactivation. And together, previous findings and the results from 

the EEG classification as well as the data fusion provide evidence for very early 

reinstatement processes in modality-independent and sensory-specific brain regions. 

A disadvantage in the design of the present study is related to the locking of all time 

dynamics to the memory cue. While encoding processes are computationally straight 

forward, and at least the initial forward sweep along sensory processing pathways 

occurs with little temporal variance across trials, retrieval processes are additionally 

influenced by other factors. For instance, the timing and strength of retrieval-related 

reactivation can be affected by previous encoding strength  (Lynch, 2004), contextual 

cues (Abernethy, 1940; Dulsky, 1935), emotional load (Bradley, 1994) and focused 

attention (Prull et al., 2016) during retrieval. Not surprisingly, any of these factors would 

lead to higher temporal variability in the retrieval compared to perception, as obvious 

for example in standard deviations of reaction time and EEG classification data (Linde-

Domingo et al., 2019). For this reason, reinstatement processes may begin as early as 

500 ms, but rates of progress from modality-independent to sensory-specific regions 

strongly differ between subjects and trials, which makes it hard to consistently detect 

meaningful information in the data fusion. One attempt to resolve this issue could be 

to analyse the data in a retrieval-locked fashion (Linde-Domingo et al., 2019), which 

was not possible within this task design, as there was no button press indicating the 

time point of subjective memory recollection.  
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Taken together, we were able to map modality-generic and clip-specific content 

representations during memory retrieval onto circumscribed brain areas and onto a 

neural timeline. Our results do not speak for a cross-modal to sensory-specific 

reconstruction stream. Instead, we showed that from 550 ms after cue onset, both 

cross-modal medial temporal and parietal regions and sensory-specific visual and 

auditory regions recapitulate information about the generic modality of the retrieved 

content, whereas later sensory-specific reactivations contain event-specific features. 

Finally, the exploration of multivariate similarity-based searchlight fusion suggests a 

(possibly recurrent) feedback reactivation cascade from hippocampal to sensory-

specific regions, as opposed to the previously reported feed-forward trajectory during 

initial object recognition. 
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Chapter 3 - Reconstructing Spatio-Temporal Trajectories 
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Abstract 

During object perception, the neural representation of a stimulus becomes increasingly 

abstract as the information progresses along the visual processing hierarchy. 

Retrieving an object from episodic memory is known to involve the reactivation of the 

same neural patterns present during the earlier encoding of an event. However, our 

understanding of how information unfolds as it travels through the brain when we recall 

information from memory remains limited. In this project, we make use of a multivariate, 

similarity-based fusion of EEG and fMRI data to investigate the spatio-temporal 

trajectories of visual memories during retrieval. Participants studied new associations 

between objects and semantically unrelated verbs in an encoding phase, and 

subsequently recalled the objects upon presentation of the corresponding verb cue. 

Multivariate pattern analyses were used to track the processing of perceptual and 

conceptual object features from fMRI activation patterns. As expected, we found that 

conceptual features were generally represented at later, more semantic processing 

stages than perceptual features, and that the retrieval patterns were generally 

dominated by semantics. Classification-based similarity analyses then allowed us to 

map the EEG time courses onto spatial fMRI patterns, demonstrating that the visual 

processing stages were recapitulated during memory recall in a reversed fashion with 

respect to encoding. Finally, a backward conceptual-to-perceptual processing stream 

was also reflected in reaction times. Together, the results shed light onto the dynamic 

nature of mental representations during the reconstruction of visual objects from 

memory. 
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Introduction 

In contrast to the large amount of scientific literature on visual perception, there are 

still large gaps in our knowledge about the neural processing flow during the recall of 

episodic memories. A number of recent neuroscientific studies suggests that during 

retrieval, information processing is reversed with respect to encoding (Linde-Domingo 

et al., 2019; Staresina & Wimber, 2019; Lifanov et al., 2021). However, the neural 

trajectories of information processing during retrieval are currently unknown. We here 

use a multivariate EEG-fMRI fusion approach to investigate whether the reversed 

information flow during visual recall can be mapped onto the ventral visual stream, 

reflecting a backward propagation from conceptual medial and ventrolateral temporal 

regions to more posterior visual-perceptual areas of the brain. 

Vision research has decomposed the processes of visual perception to a detailed 

extent, providing a relative complete picture of what image features are coded at each 

step of a first feed-forward sweep of information processing. When light waves 

reflected from an object hit the retinal cells of our eyes, visual information is relayed to 

neocortex via the thalamus, and object information enters the ventral visual stream 

(Kolb et al., 1995). With activity propagating along this stream, stimulus information is 

represented along a gradient of increasing abstractness (T. Carlson et al., 2013; Martin 

et al., 2018). Neocortical analysis of a visual stimulus starts about 50-100 ms after 

stimulus onset in low-level visual areas, where perceptual appearance, such as colour 

and shape are processed (Cichy et al., 2014), and then progresses within the next 200 

ms ventrally along the visual stream to more anterior temporal areas, where higher-

level conceptual features are processed. This processing stage is related to the 

categorization of objects and the assignment of meaningful information (Cichy et al., 
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2014). Finally, the information reaches the hippocampus around 200-300 ms. In the 

hippocampus, at least some cells represent an object as a highly abstract and 

individual concept (Cichy et al., 2014; Quiroga, 2012). And most importantly, this final 

processing stage within the hippocampus binds information from different sources 

(including the dorsal stream) together and serves its longer-term storage (Danker et 

al., 2017; Horner et al., 2015; Rolls, 2010).  

In contrast, little is known about the source and the presumed back-propagation of the 

internally generated information when visual memories are retrieved from episodic 

memory. Tulving’s reinstatement hypothesis suggested that cueing a person with 

partial information of a previously stored episode would induce a so-called ecphoric 

process, in which a cascade of activity pattern reactivations leads to the subjective re-

experience of the episodic memory (Tulving et al., 1983). Classical computational 

theories explain the origin of the reinstatement cascade by pattern completion in the 

hippocampus (Marr, 1971; O’Reilly & McClelland, 1994; O’Reilly & Norman, 2002). 

From this perspective, it is believed that the hippocampus dictates the reactivation of 

reciprocally connected neocortical brain regions that re-instate the various features of 

the relevant episodic memories (Teyler & Rudy, 2007; Marr, 1971; Moscovitch, 2008). 

Anatomical research has laid some fundamental cornerstones for our understanding 

of the possible processing pathways involved in this reinstatement process. Once an 

original memory trace is partially reactivated by an internal or external cue, it is 

assumed that pattern completion is initiated in the CA3 region of the hippocampus. 

After additional processing of competing traces in CA1, most of the information is 

relayed over the subiculum to the deep layers of the entorhinal cortex which in turn has 

back-projections to other cortical areas (Chrobak et al., 2000; Rolls, 2013; Staresina & 
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Wimber, 2019). The described pathway provides the gateway for a possible retrieval-

related reconstruction flow from the hippocampus that indexes the relevant memory 

trace to the reinstating cortical structures that complete the content of the episodic 

memory representation. Since a majority of direct hippocampal and entorhinal 

efferents end in late visual areas, the idea evolves that memories are initially reinstated 

on a conceptual level, before low-level areas could be reached (Insausti & Muñoz, 

2001; Linde-Domingo et al., 2019). 

Cortical reinstatement during retrieval has been explored by various neuroimaging 

studies using multivariate analyses approaches, often assessing the similarity of 

activation patterns between encoding and retrieval (Danker & Anderson, 2010; 

Rissman & Wagner, 2012). Using this method, numerous studies could show that 

successful retrieval is associated with the interplay of hippocampal activity and cortical 

reinstatement of encoding patterns during retrieval (Bosch et al., 2014; Horner et al., 

2015; Staresina et al., 2012). These findings support both the dictating role of the 

hippocampus and the representative role of cortical structures in memory retrieval.  

Reinstatement patterns during retrieval have been discovered in perirhinal and 

parahippocampal regions (Staresina et al., 2012), some of the most proximal cortical 

structures to the hippocampus. In theory, this would speak for the fact that the ecphoric 

process, presumably starting in the hippocampus, first progresses towards its 

surrounding cortices. From there, activation could be spread to more distanced cortical 

regions along anatomical connections. In line with this assumption, neocortical 

encoding-retrieval similarity has been found for categorical content (like faces, objects 

and scenes) (Polyn et al., 2005) and individual episodes (Wing et al., 2014).  
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However, few studies have decomposed what features of an item dominate these 

reinstated representations during retrieval. One exemplar study, using decoding 

methods based on neural networks, uncovered hierarchical representational structures 

from fMRI activity patterns (Bone et al., 2020). The study demonstrated that high- and 

low-level features throughout the ventral and dorsal streams, and in frontal and parietal 

areas, all contribute to the vividness of memory recall. Another study decomposed 

hierarchical memory representations using a classification approach on EEG data to 

specifically decode perceptual and conceptual information representations from 

temporally resolved neural activity patterns (Linde-Domingo et al., 2019). During 

retrieval, perceptual information was decoded later in time than conceptual information, 

while the opposite pattern was found during visual perception, speaking in favour of 

the reversed information processing hypothesis. Supporting these neural findings on a 

behavioural level, two recent studies demonstrated that when participants recalled 

previously encoded visual objects, they answered conceptual questions faster than 

perceptual ones, while the opposite was found when participants perceived a new 

image on screen (Linde-Domingo et al., 2019; Lifanov et al., 2021). Together the 

results give reason to assume a retrieval-induced feedback propagation along the 

ventral visual stream. 

The latter studies (Linde-Domingo et al., 2019; Lifanov et al., 2021) suggest a reversed 

information processing during retrieval, first reactivating core concepts and then 

reinstating sensory details. However, they do not provide any insight on the retrieval-

related spatial trajectories of information flow within the brain. Contrary, the previously 

mentioned study by Bone et al. (2020) offers insight into spatial representations along 
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the ventral visual stream during retrieval but does not provide information about the 

temporal progression of reinstatement.  

To fill this knowledge gap and reveal the spatio-temporal neural processes during 

retrieval, we here investigated which stimulus features are represented during retrieval, 

that is, when the relevant representations evolve in time and where in the brain. We 

used a combination of EEG and fMRI in order to map the feature reinstatement to the 

presumed back-propagation stream, and specifically to see whether information 

indeed flows backwards to where it originated from, or whether retrieved content 

emerges from different brain areas. The findings described above led us to propose 

our central working hypothesis that the retrieval process propagates backwards along 

the ventral visual stream, starting with early representations of conceptual information 

in medial temporal and ventrolateral temporal regions before moving on to low-level 

visual areas representing perceptual details. However, much recent work suggests that 

mnemonic content can primarily be decoded from parietal lobe areas (Favila et al., 

2020), and we were thus additionally interested in whether these parietal 

representations map onto early or late processing stages of the retrieval stream. 

To test these research hypotheses, we based our work on the memory paradigm 

developed by Linde-Domingo et al. (2019). Participants first encoded novel 

associations between objects and action verbs, and at a later recall stage were asked 

to retrieve the objects upon the presentation of the verb. Importantly, object images 

varied along a perceptual (photographs versus line drawings) and a conceptual 

(animate versus inanimate) dimension, and participants had to answer either a 

perceptual (Was the object a photograph/line drawing?) or conceptual (Was the object 

animate/inanimate?) question after each recall. Using this paradigm in an fMRI 
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environment, we aimed at pinpointing the retrieval-related reinstatement of different 

object features in the brain. To locate the perceptual and conceptual representations, 

we used a searchlight classification approach. The aim was then to map spatial 

representations onto a timeline on a trial-by-trial basis within subjects, using a 

simultaneous EEG-fMRI data acquisition. Since the within-scanner data was too noisy 

to decode the relevant object features, we instead used previously acquired out-of-

scanner EEG data (Linde-Domingo et al., 2019) to map the spatial representations 

onto the memory reconstruction timeline. This was done by means of an EEG-fMRI 

data fusion, using a second-order representational similarity analysis (RSA).  

 

Methods  

Participants 

We acquired fMRI data of 37 right-handed, fluent English-speaking participants of the 

local student population at the University of Birmingham (26 females, 11 males, mean 

age (Mage) = 23.33, standard deviation (SDage) = 3.89, one participant did not indicate 

the age). The a priori planned sample size for the full EEG-fMRI dataset was n = 24 

subjects. However, due to poor data quality and technical failures in 13 of the EEG 

datasets, additional subjects were recorded leading to a final sample size of 37 fMRI 

datasets. Three subjects were excluded from the fMRI analysis due to failed scanning 

sequences, and three additional subjects were excluded due to extensive motion within 

the scanner, exceeding the functional voxel size, such that 31 fMRI datasets remained 

for analysis.  
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All participants were informed about the experimental procedure, underwent imaging 

safety screening and signed an informed consent. The research was approved by the 

by the STEM ethics committee of the University of Birmingham.  

We further included a previously published EEG dataset including a nearly identical 

paradigm (Linde-Domingo et al., 2019) in our data analyses. This additional dataset 

included 24 further participants with a clean, out-of-scanner EEG. For further 

information on the EEG data sample and the related ethical procedures, we refer to 

the previous work (Linde-Domingo et al., 2019). 

 

Material 

The paradigm was a visual verb-object association task (Linde-Domingo et al., 2019) 

adapted for fMRI measurements. We used visual stimuli including 128 action verbs 

and 128 pictures of everyday objects (for more detailed information about the source 

of the verbs and pictures see (BOSS database; Brodeur et al., 2010; Linde-Domingo 

et al., 2019; www.gimp.org). Importantly, all object images existed in two perceptual 

versions, a black line drawing or a coloured photograph (perceptual categories); and 

each object belonged to one of two conceptual classes, i.e. animate vs inanimate 

(conceptual categories). We drew 128 images per participant according to a fully 

balanced scheme, such that each combination of perceptual and conceptual 

categories included the same number of pictures (32 animate-photographs, 32 

animate-drawings, 32 inanimate-photographs, 32 inanimate-drawings; Fig. 2.1a). With 

respect to the later fusion with the out-of-scanner EEG data, it is important to note that 

due to the pseudo-randomised image drawing, the same objects could appear in 

http://www.gimp.org/
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different perceptually manipulated versions between participants; for example, an 

image of a camel could be shown as a photograph to one participant, and as a line 

drawing to another. Action verbs were randomly assigned to images in each participant 

and were presented together with pictures centrally overlaid on a white background.  

 

Procedure 

Before the experimental session, participants were informed about the experimental 

procedure and asked to perform a training task block in front of the computer. After the 

completion of the training, the experimental session in the fMRI scanner included four 

runs with four task blocks each, summing up to a total of 16 task blocks. A typical block 

in the training and experimental task included eight association trials, a 20 s distractor 

task and 16 retrieval trials (two repetitions per association). A 3 min break was included 

after each fMRI run, in which participants were asked to close their eyes and have 

some rest. In total, it took the participants approximately 70 min to perform the entire 

task. 

 

Encoding 

In the encoding blocks (Fig. 2.1b), participants were instructed to study eight novel 

verb-object pairings in random order. A trial started with a fixation cross presented to 

the participants for a jittered period between 500 and 1500 ms. The action verb was 

presented for 500 ms before an object was shown for a maximum duration of 5 s. To 

facilitate learning, participants were instructed to form a vivid visual mental image using 

the verb-object pairing. Upon the formation of a strong mental image, participants were 
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asked to press a button with their thumb, which moved the presentation onto the next 

trial.  

 

Distractor 

After each encoding block, participants performed a self-paced distractor task for 20 s, 

indicating as fast as possible whether each of the consecutively presented numbers 

on the screen was odd or even, using a button press with their index or middle finger, 

respectively. Feedback on the percentage of correct responses was provided at the 

end of each distractor phase. 

 

Retrieval 

In the retrieval blocks, participants were instructed to recall the previously associated 

objects upon presentation of the corresponding verb (Fig. 2.1b). Trials started with the 

presentation of a fixation cross, jittered between 500 and 1500 ms and followed by a 

previously encoded action verb, presented for 500 ms. Cued with the verb, participants 

had to recall the paired object within a maximum of 5 s, while a black fixation cross 

was presented on screen. Participants were asked to indicate with a button press by 

their thumb the time point when they recalled the corresponding image, at which the 

black fixation cross turned grey and was presented for an additional 3 s. This retrieval 

button press was meant to mark the time point of subjective recollection. During the 

remaining 3 s participants were asked to hold the mental image of the object in mind 

as vividly as possible. Last, they were asked about the perceptual (Was the object a 

photograph or a line drawing?) or the conceptual features (Was the object animate or 



82 

 

inanimate?) of the recalled object, answering with their index or middle finger with a 

maximum response time of 5 s. During the presentation of the catch question, 

participants also had the option to indicate with their ring finger that they forgot the 

features of corresponding object. Importantly, each encoded stimulus was retrieved 

twice, once with a perceptual and once with a conceptual question. Trial order was 

pseudo-random within the first and second set of repetitions, with a minimum of two 

intervening trials before a specific object was recalled for the second time. The order 

of catch questions was counterbalanced across repetitions such that half of the 

associations were first probed with a perceptual question, and the other half was first 

probed with a conceptual question.  
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Paradigm 
 

 

Figure 2. 1 

Overview of stimuli and task. A) Design of the stimuli. The 128 pictures used in any given participant 

were orthogonally split into 64 drawings and 64 photographs, out of which 32 were animate and 32 

inanimate objects, respectively. Each object could thus be classified along a perceptual (photo/drawing, 

blue) or conceptual (animate-inanimate, red) dimension. B) One prototypical task block of the paradigm. 

At encoding, participants were asked to associate verb-object pairings, and indicate the successful 

formation of an association by button press. After a 20 s distractor task, each of the associations was 

tested twice during retrieval, once with a perceptual, once with a conceptual question. Participants 

recalled the previously associated object upon presentation of a verb cue and indicated successful 

subjective recollection by button press (referred to as retrieval button press). Then participants were 

asked to hold the mental image of the object in mind for three further seconds, before answering a 

perceptual or conceptual catch question about the object. Participants performed 16 task blocks overall, 

with eight associations per block. Reaction times (RTs) were measured at each button press. Stimuli 

depicted are chosen from the BOSS database (https://sites.google.com/site/bosstimuli/home, 

https://creativecommons.org/licenses/by-sa/3.0/) and customized with free and open source GNU 

image manipulation software (www.gimp.org; see Linde-Domingo et al., 2019). Figure adapted from 

Lifanov et al. (2021) and Linde-Domingo et al. (2019). 

 

https://sites.google.com/site/bosstimuli/home
https://creativecommons.org/licenses/by-sa/3.0/


84 

 

fMRI data acquisition 

FMRI scanning was performed in a high-field 3 Tesla Philips Achieva MRI scanner with 

a 32-channel sense head coil at the Birmingham University Imaging Centre (BUIC) in 

Birmingham. Slices covered the whole head. T1- weighted anatomical scans were 

collected with an MP-RAGE sequence (1 mm isotropic, 256 x 256 matrix, 176 slices, 

no inter-slice gap, repetition time (TR) = 7.5 ms, field of view (FOV) = 256 x 256 x 176 

mm, flip angle (FA) = 7°, echo time (TE) = 3.5 ms). T2*-weighted functional images 

were acquired by a dual-echo EPI pulse sequence with a low specific absorption rate 

(SAR) to optimize the image quality in regions highly susceptible for distortions by a 

long readout gradient (3 x 3 x 3.5 mm, 64 x 64 matrix, 34 slices, no inter-slice gap, TR 

= 2.2 s, full head coverage, FOV = 192 x 192 x 119 mm, FA = 80°, TE1 = 12 ms, TE2 

= 34 ms (for dual-echo information see also (Halai et al., 2014, 2015; Kirilina et al., 

2016). Slices were acquired in a continuous descending fashion. Furthermore, we 

collected 200 resting state volumes, 50 after each of the four task runs, used for the 

later combining of images with the short and long TEs. During the acquisition of scans, 

the helium pump was switched off to prevent contamination of the EEG by the 

compressor artifact at about 20-30 Hz. The scans were acquired in a jittered fashion 

in relation to the stimulus timings. The task was presented to participants through a 

mirror system in the scanner and a JVC SX 21e projector with resolution 1280x1024 

at 60 Hz. The participants´ heads were extra padded to minimize movement artefacts. 

The stimulus presentation and timing and accuracy information collection was 

controlled by scripts written in MATLAB 2016a (www.mathworks.com) and 

Psychophysics Toolbox Version 3 (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). 

Responses were logged by NATA response boxes (https://natatech.com/). 

http://www.mathworks.com/
https://natatech.com/
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Out-of-scanner EEG data acquisition 

As previously stated, a simultaneous EEG dataset was acquired during the fMRI 

session but this EEG dataset was too noisy to decode retrieval-related information. We 

therefore decided to use an out-of-scanner EEG dataset. This out-of-scanner data 

used for all analyses reported here originated from a previous publication (Linde-

Domingo et al., 2019). We give a short description of the EEG data acquisition in the 

following and of the EEG preprocessing further below.  

For the EEG data collection, 128 electrodes of silver metal and silver chloride were 

used. Further, an Active-Two amplifier system and the ActiView acquisition program 

by BioSemi aided the data recording (BioSemi, Amsterdam, the Netherlands). 

Psychophysics Toolbox Version 3 and MATLAB 2014b (www.mathworks.com) were 

used for task presentation and response collection. For more specific details about the 

EEG data acquisition, we refer to the related manuscript and the corresponding author 

(Linde-Domingo et al., 2019). 

 

Analysis 

Behaviour 

For the inspection of RTs and accuracies, the behavioural data were preprocessed as 

follows. For the RT analysis, all trials with incorrect responses to the catch question 

were removed first. Additionally, catch question RTs of correct trials were removed if 

they were faster than 200 ms or exceeding the average RT of a participant in a given 

set of repetitions (first or second cycle) by more than three times the standard 

deviation. For the analysis of the accuracy data, trials faster than 200 ms and objects 

http://www.mathworks.com/
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with a missing response for either of the two questions were excluded in the 

corresponding cycle. The same procedures were applied to the data of the out-of-

scanner EEG participants, who performed a nearly identical task. However, note that 

out-of-scanner EEG participants only went through one cycle of retrieval. 

 

FMRI data preprocessing 

We used MATLAB 2016a (www.mathworks.com) and SPM12 (Statistical Parametric 

Mapping, 2007; http://store.elsevier.com/product.jsp?isbn=9780123725608) for the 

preprocessing and the univariate analysis of fMRI data. All functional images were first 

realigned based on three motion and three rotation parameters, unwarped, and slice 

time corrected to the middle slice in time.  

After these initial preprocessing steps, images obtained during the task at two echo 

times were combined as a weighted average. Importantly, the relative weights were 

obtained from the signal-to-noise ratio (SNR) of 200 resting state volumes per echo 

and its corresponding TE 

𝑤(𝐶𝑁𝑅)𝑛 =
𝑆𝑁𝑅𝑛*𝑇𝐸𝑛

∑ 𝑆𝑁𝑅𝑛*𝑇𝐸𝑛𝑛
        (1) 

 

where w is the weight for an individual voxel, 𝑆𝑁𝑅𝑛is the signal to noise ratio here 

calculated as ratio of mean to standard deviation of the given voxel calculated over 

time at the nth echo, and TE is the readout time of the nth echo. 

Weights obtained from the resting state were then used to combine task volumes from 

both echoes 

http://www.mathworks.com/
http://store.elsevier.com/product.jsp?isbn=9780123725608


87 

 

𝑆 = 𝑤1*𝑆1+𝑤2*𝑆2                 (2) 

where S is the final signal of an individual voxel over time, calculated by summing the 

weighted signals of both echoes. These methods and equations were applied as 

described in work on BOLD contrast optimization by multi-echo sequences (Poser et 

al., 2006). Combined image structures were written to NIFTI files by Tools for NIfTI and 

ANALYZE image (https://uk.mathworks.com/matlabcentral/fileexchange/8797-tools-

for-nifti-and-analyze-image by Shen, 2021; Tools for NIfTI and ANALYZE Image, n.d.).  

Anatomical images were segmented, co-registered with the functional images and 

normalized into a standard MNI template in SPM. Then, after the combination of 

functional images, the T2* images were also normalized into MNI space, using the T1-

based normalization parameters. Finally, EPI images were smoothed for the univariate 

GLM analysis with a gaussian spatial filter of 8 mm full width at half maximum (FWHM). 

Note that multivariate analyses were performed on unsmoothed data in native space.  

 

ROIs 

ROIs were created from templates in MNI space as available in the WFU PickAtlas 

(Maldjian et al., 2003, 2004; Tzourio-Mazoyer et al., 2002). These ROIs were then 

fitted to individual brains by applying inverted normalization parameters to the ROI 

masks. The anatomical masks used for our analyses included: an early visual mask, 

consisting of Brodmann areas (BAs ; Brodmann, 1909) 17 and 18, an human inferior 

temporal (hIT) mask, consisting of BAs 19 and 37; a temporal pole mask, consisting of 

superior and middle temporal pole regions as defined by automated anatomical 

labelling (AAL, Tzourio-Mazoyer et al., 2002); an MTL mask, consisting of BAs 28, 34, 
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35, 36 and AAL rhinal sulcus and parahippocampal gyrus; a hippocampus mask, as 

defined by AAL; a superior parietal lobe mask, consisting of BA 7; an inferior parietal 

lobe mask (Wernicke’s area), consisting of BA 39 and 40; and another inferior parietal 

lobe mask (retrosplenial cortex) consisting of BA 29 and 30.  

 

EEG data preprocessing 

EEG data (Linde-Domingo et al., 2019) were preprocessed in MATLAB 2016a 

(www.mathworks.com) and Fieldtrip toolbox (Oostenveld et al., 2010; Donders Institute 

for Brain, Cognition and Behaviour, Radboud University Nijmegen, the Netherlands. 

See http://www.ru.nl/neuroimaging/fieldtrip). During epoching, we used different 

temporal references for encoding and retrieval. Encoding epochs were stimulus locked 

to the onset of the object image, while retrieval timelines were locked to the subjective 

retrieval button press, in order to observe the reactivation stream leading up to the 

subjective experience of recollection. These epochs were created with a length of 2 s 

(-500 before to 1500 ms after object onset) for encoding and 4.5 s (-4 s before to 500 

ms after retrieval button press) for retrieval. Line noise was removed by a FIR filter with 

a band-stop between 48 and 52 Hz. A high-pass filter with a cut-off frequency of 0.1 

Hz was applied to remove slow temporal drifts, and a low-pass filter with a cut-off 

frequency of 100 Hz to remove high-frequency noise. Individual artifactual trials and 

bad electrodes were rejected manually. Remaining artifacts were removed by 

independent component analysis (ICA), after which any excluded electrodes were re-

introduced by interpolation. The referencing of the data was set to the average across 

all scalp channels.  

http://www.mathworks.com/
http://www.ru.nl/neuroimaging/fieldtrip
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After this step, we implemented additional preprocessing steps to prepare data for the 

specific fusion analyses. The encoding data was baseline corrected by subtracting the 

average signal in pre-stimulus period from -0.2 to -0.1 s, separately per electrode. The 

retrieval data was baseline corrected by whole trial demeaning, since retrieval trials 

had no obvious, uncontaminated baseline period. The EEG time series data was then 

down-sampled to 128 Hz and temporally smoothed with a moving average with a time 

window of 40 ms. 

 

fMRI univariate analyses 

To investigate broad activations in the ventral visual stream, we modelled a GLM using 

the four main regressors (drawing-animate, photograph-animate, drawing-inanimate, 

and photograph-inanimate), independently for encoding, first retrieval, and second 

retrieval. We used stick functions locked to the object onset to model the onset of 

encoding trials and boxcar functions with a duration of 2.5 s locked to the cue onset to 

model the onset of retrieval trials. We added one regressor each for the presentation 

of verbs, button presses, and perceptual and conceptual questions as well as nuisance 

regressors for head motion, scanner drift and run means. After computing the GLM for 

each subject, a second sample-level ANOVA with the perceptual (photograph versus 

line drawing) and conceptual (animate versus inanimate) within-subjects factors was 

performed. Planned comparisons contrasting photographs versus drawings, and 

animate versus inanimate objects, were carried out in subsequent t-contrasts 

separately at encoding and retrieval. The t-contrasts for retrieval trials were performed 

using both the first and second retrieval trials together. 
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fMRI multivariate analyses 

As preparation for the multivariate analyses, we performed another GLM, modelling 

individual object-specific regressors for encoding, and for each of the two retrieval 

repetitions separately (see above for details), again adding regressors of no interest 

for the presentation of verbs, button presses, and catch question onsets, as well as 

nuisance regressors (see above, one regressor per variable containing all onsets). The 

resulting beta weights were transformed into t-values for all subsequent multivariate 

analyses (Misaki et al., 2010).  

 

fMRI searchlight LDA 

To investigate where in the brain activity patterns differentiated between the two 

perceptual and the two conceptual categories, we performed a volumetric LDA 

searchlight analysis on the non-normalized and unsmoothed fMRI data of each 

participant individually using the searchlight function of the RSA toolbox (Kriegeskorte, 

2009; Kriegeskorte et al., 2006, 2008; Kriegeskorte & Kievit, 2013; https://www.mrc-

cbu.cam.ac.uk/methods-and-resources/toolboxes/). The LDA was performed at each 

centre voxel, while object-specific t-values of the voxels within a 3D searchlight radius 

of 12 mm were used as feature vectors. Using these feature vectors, we classified 

perceptual (photo vs drawing) and conceptual (animate vs inanimate) categories by a 

5-fold LDA with 5 repetitions, preserving class proportions, for encoding and retrieval 

separately using the MVPA-Light toolbox (Treder, 2020; 

https://github.com/treder/MVPA-Light). Individual accuracy maps were then 

normalized to MNI space and spatially smoothed with a 10 mm full width at half 

maximum (FWHM) Gaussian Kernel, before second-level t-tests were performed to 

https://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/
https://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/
https://github.com/treder/MVPA-Light
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statistically compare voxel-specific classification accuracies against 50% chance 

performance. Finally, the results were plotted on an MNI surface template brain.  

  

fMRI correlation-based RSA 

As preparation for the fusion of EEG and fMRI data, we performed a representational 

similarity analysis (RSA,  Kriegeskorte, 2009; Kriegeskorte et al., 2006, 2008; 

Kriegeskorte & Kievit, 2013; https://www.mrc-cbu.cam.ac.uk/methods-and-

resources/toolboxes/) on the non-normalized and unsmoothed fMRI data. Object-

specific t-maps corresponding to single objects were arranged in the same order for all 

participants. As mentioned earlier, object correspondence across participants was only 

given on the level of object identity (and thus also conceptual category), but not 

perceptual format. In other words, all participants saw an image of a camel (i.e. an 

animate object) at some point in the experiment, but the camel could be presented as 

a photograph in some participants, and as a line drawing in others. For each voxel and 

its surrounding neighbours within a radius of 12 mm, we extracted object-specific t-

value patterns resulting from the appropriate GLM and arranged these as one-

dimensional feature vectors. Using these feature vectors, we calculated the Pearson 

correlation distance (1-r) between each pair of objects at each voxel location, 

separately for encoding and retrieval. The resulting RDM maps were used at a later 

stage for the searchlight fusion. 

In a similar fashion to the searchlight approach, RDMs were also calculated for the 

pre-defined set of anatomical regions of interest in the non-normalized and 

https://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/
https://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/
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unsmoothed individual functional datasets (see section ROIs). The resulting ROI 

RDMs were used at a later stage for the ROI fusion. 

 

EEG multivariate analyses 

EEG cross-subjects classifier-based RSA 

Our next step was to construct a representational dissimilarity matrix (RDM) for each 

time point of the EEG recordings, resulting in one timeline representing the similarity 

structure of our object dataset across all subjects. Cells of the RDM represented the 

pair-wise discriminability of object pairs, based on a cross-subjects classification of 

individual objects using the MVPA-Light toolbox (Treder, 2020; 

https://github.com/treder/MVPA-Light). To compute this matrix, we arranged object-

specific trials in the same order between all participants, independent of their 

perceptual format, and the 24 repetitions of each individual object across participants 

were used for the pairwise classification. Specifically, we performed a time-resolved 

LDA using EEG amplitude values from the 128 electrodes, at a given time bin, as 

feature vectors, and participants as repetitions of the same object. We used these to 

classify object identity among each pair of objects at each time bin, again with a 5-fold 

cross validation, preserving class proportions. The resulting discrimination accuracies 

were entered in a single time resolved RDM structure representing the dissimilarity 

between individual objects of our stimulus pool across participants over time. This 

classification procedure was performed independently for encoding and retrieval. 

Before using the EEG-based RDMs for our data fusion, we also wanted to assess 

statistically how much information about object identity can be decoded from the EEG 

https://github.com/treder/MVPA-Light
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signals themselves. We therefore first calculated the average classification 

performance across all pairwise accuracies as a descriptive measure. We then tested 

if the pairwise accuracies resulting from the ‘real’ classification with correct object 

labels were significantly larger than the pairwise accuracies that resulted from a 

classification with permuted object labels. This test was performed in two steps. First, 

we created 25 classification-based RDMs (same classification procedure as for the 

‘real’ RDM time course) but each one with randomly permuted object labels, keeping 

a given label permutation consistent across time in order to preserve the 

autocorrelation of the EEG time series. The 25 permutations were averaged to form a 

single ‘baseline’ RDM time course.  

As a second step, we used a cluster-based permutation test to find clusters with 

temporally extended above-chance decoding accuracy. This cluster-based 

permutation test compared the t-statistic of each time point evolving from a ‘real matrix’ 

versus ‘baseline matrix’ t-test with the t-statistics evolving from a ‘real matrix’ versus 

‘baseline matrix’ comparison this time shuffling the corresponding ‘real’ and ‘baseline’ 

cells between the two matrices (again consistent across time, 1000 permutations, 

cluster-definition threshold of p < .05, as used in previous publications (Cichy et al., 

2019; Cichy & Pantazis, 2017; Dobs et al., 2019). Note that the variance in the t-tests 

for each time bin comes from the pair-wise accuracies contained in the cells of the two 

(‘real’ and ‘baseline’) classification matrices. All remaining analyses were performed 

using the (‘real’) classification matrix with the correct object labels. 

 

Then, we wanted to see whether object discriminability systematically differs between 

objects coming from the same or different conceptual classes (i.e. animate and 
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inanimate objects) within the classification with correct labels. We thus calculated the 

average accuracies of pairwise classes within – and between conceptual categories 

as a descriptive measure. Using another cluster-based permutation test (again 1000 

permutations, cluster-definition threshold of p < .05), we then tested within- against 

between-category accuracies over time. This analysis was conducted for conceptual 

classes only, since there was no correspondence of perceptual class between 

subjects. The retrieval analyses focused on the time period from -3 s to -1 s before 

retrieval button press to have a similar long time window as for encoding. Moreover, 

we based the upper time limit on the previous findings (Linde-Domingo et al., 2019), 

which indicated perceptual and conceptual decoding peaks prior to -1 s before button 

press. All cluster permutation tests were implemented by means of the permutest 

toolbox (https://www.mathworks.com/matlabcentral/fileexchange/71737-permutest by 

Gerber, 2021; Maris & Oostenveld, 2007; Permutest, n.d.). 

 

EEG-fMRI data fusion 

ROI fusion 

Two distinct approaches were used for the fusion analyses, with either the fMRI data 

or the EEG data serving as starting point (similar to previous chapter). The first 

approach started with the fMRI patterns from a given ROI, and we thus refer to it as 

ROI fusion. One RDM was created per participant per ROI, representing the similarity 

structure in a given (functional or anatomical) brain region. This ROI RDM was then 

correlated with the RDM from each time bin of the single, EEG-based RDM that 

represents the pooled similarity structure across subjects (see cross-subject 

classification of described above). Correlations and classification accuracies were 

https://www.mathworks.com/matlabcentral/fileexchange/71737-permutest
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Fisher’s z-transformed before the data fusion. This analysis resulted in one correlation 

time course per individual ROI per subject who took part in the fMRI experiment (n = 

31). The EEG-fMRI correlations were only computed for those cells of the matrix that 

an individual participant from the fMRI study remembered correctly. To test for 

statistical significance, we then contrasted the 31 correlation time courses against 

zero, using a cluster-based permutation test with 1000 permutations and a cluster-

definition threshold of p < .05, as used in other studies (Cichy et al., 2019; Cichy & 

Pantazis, 2017; Dobs et al., 2019).  

To test for a sequential information progression over the ventral visual stream, we 

implemented a linear regression on the cumulative sums of the ROI time courses of 

the five ventral regions (based on Michelmann et al., 2019). To do so, we first 

calculated the cumulative sum of the ROI time courses over the time period 0 to 1.5 s 

for encoding and -3 to -1 s before button press for retrieval. For an easier comparison, 

the cumulative sum of each ROI time course was normalized to an area under the 

curve that equals 1. For each time point, a linear regression was fitted across the 

cumulative correlation values of the ROIs within subjects. The resulting slopes of all 

subjects were then tested against zero in a one-sided cluster-based permutation test 

(again with 1000 permutations and a cluster-definition threshold of p < .05). This 

method enabled us to test for a forward stream during encoding and a backward 

stream during retrieval (Fig. 2.10). An example of the rationale is depicted in figure 2.3. 

In the case of a forward stream, the ROIs along the ventral visual stream activate 

sequentially from early towards late regions. Therefore the cumulative sums of earlier 

regions (e.g. V1-hIT) show a higher cumulative sum than later regions (e.g. temporal 

pole - hippocampus) at 0.5 s after stimulus onset (and other time points). A linear fit 



96 

 

across ROIs at 0.5 s will therefore show a significantly negative slope. According to 

this rationale, a backward stream would result in a significantly positive slope. Since 

we expected a forward stream at encoding and a backward stream at retrieval, we 

used one-sided tests to see if the slope differs from zero (< 0 at encoding, > 0 at 

retrieval). The sequential ordering of our ROIs was based on a collection of literature 

on the ventral visual stream from anatomical and neuroimaging studies (e.g. Cichy et 

al., 2016, 2017; Felleman & Essen, 1991). Since some computational models propose 

that the role of the hippocampus is more related to association or indexing instead of 

feature representation (Eichenbaum, 2001; McClelland et al., 1995; Teyler & 

DiScenna, 1986), we computed the analysis once with and once without the 

hippocampus. 

 

Searchlight fusion 

The second, complementary fusion approach was meant to offer a higher spatial 

resolution and a more spatially focused perspective on the data. Here, we used the 

EEG-based RDMs from each time point as starting point, and then searched for 

matching similarity structures across the entire brain, using a volumetric searchlight 

analysis on each individual’s fMRI data (Kriegeskorte, 2009; Kriegeskorte et al., 2006, 

2008; Kriegeskorte & Kievit, 2013). We therefore refer to this method as a (time-

resolved) searchlight fusion. To do so, a second-order correlation was computed 

between the classification-based EEG RDM from each time bin, and the correlation-

based fMRI RDMs for each centre voxel and its neighbours within a searchlight radius 

of 3 voxels, separately for encoding and retrieval. This analysis results in a “fusion 

movie” (i.e., a time-resolved brain map) for each participant who took part in the fMRI 
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experiment. The searchlight fusion for retrieval data was performed for correct trials 

within the fMRI data only (same as above). The fused data was Fisher’s z-transformed. 

The searchlight fusion was performed using pyRSA 

(https://github.com/Charestlab/pyrsa) which works on Python (van Rossum, 1995), 

using the sys and os module, SciPy (Virtanen et al., 2020), NumPy (Harris et al., 2020), 

and nibabel (https://github.com/nipy/nibabel/releases). 

To test for significant EEG-fMRI pattern similarity at individual voxels, we normalized 

the correlation maps to MNI space, smoothed them with 10 mm FWHM Gaussian 

kernel and then tested them in a one-sample t-test against zero at each single time 

bin. The t-test included a spatial maximal permuted statistic correction combined with 

a threshold free cluster enhancement (Nichols & Holmes, 2002; Smith & Nichols, 

2009). This cluster-based analysis was performed using the toolbox MatlabTFCE 

(http://markallenthornton.com/blog/matlab-tfce/) with 1000 permutations, a height 

exponent of 2, an extent exponent of 0.5, a connectivity parameter of 26 and a step 

number for cluster formation of .1 as suggested by Smith & Nichols (2009). The 

analysis resulted in time-resolved spatial t-maps, depicting significant EEG-fMRI 

correlations. 

  

https://github.com/Charestlab/pyrsa
https://github.com/nipy/nibabel/releases
http://markallenthornton.com/blog/matlab-tfce/
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EEG-fMRI data fusion 

 
 

Figure 2. 2 

Overview of ROI and searchlight fusion approaches. First, brain activity patterns are extracted from fMRI 

and EEG to create representational dissimilarity matrices (RDMs) in the spatial and temporal domain 

respectively. Then, second-order correlations of the RDMs from the two imaging modalities are 

computed for the data fusion. Importantly, the EEG RDMs are computed by performing a binary classifier 

on each pair of stimuli across all participants. FMRI RDMs in contrast are computed within participants 

and are correlation-based. FMRI RDMs can be performed at each voxel centre including voxels within 

a specific radius, or for larger regions of interest (ROI). Depending on this choice, the data fusion will be 

searchlight- or ROI-based.  
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Linear regression approach on ROI time course in a forward stream example 
 

a b 

  
c d 

  
 

Figure 2. 3 

Linear regression approach on ROI time courses in a forward stream example. A) Modelled ROI time 

courses of the ventral visual stream depict a hypothetical forward stream. B) Normalized cumulative 

sum of each ROI time course. At time point 0.5 s, earlier visual regions show a higher cumulative sum 

than later regions along the ventral visual stream. C) A linear regression is fitted across ROI values at 

0.5 s and results in a negative slope. D) Average slopes and standard error are depicted for each time 

point across the window 0-1.5 s and tested against zero. Significant time points are indicated by points 

(p < .01 uncorrected). Method and figures adapted from Michelmann et al., (2019). 
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Figures 

Figures were created using the raincloud plots Version 1.1, ColorBrewer 2.0 (from 

www.ColorBrewer.org by Cynthia A. Brewer, Geography, Pennsylvania State 

University), colorbrewer schemes 2.0 for Matlab 

(https://www.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-

schemes-for-matlab by Charles, 2021; Cbrewer, n.d.), Inkscape 1.0.1 

(https://inkscape.org/),  WFU PickAtlas v3.0 (Maldjian et al., 2003, 2004), MRIcron 

(www.mricro.com, Rorden & Brett, 2000) and a colin 27 average brain template 

(http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27, Holmes et al., 1998). 

 

Results 

Behaviour 

At encoding, participants in the fMRI study took an equal amount of time to learn a new 

verb-object pair (M = 3.01 s; SD = 0.91 s) in comparison to the EEG study (M = 2.82 

s, SD = 1.56 s). At retrieval, we found similar average accuracy rates between 

participants who took part in the fMRI (M = 84.65 %, SD = .07) and participants who 

took part in the EEG study (M = 86.75 %; SD = .06). However, looking at the retrieval 

times, participants in the fMRI study (M = 1.75 s; SD = 0.66 s) were 1.24 s faster on 

average to push the retrieval button than participants in the EEG study (M = 2.99 s; 

SD = .81s). This RT difference was not only a result of the repeated retrievals in the 

fMRI group, since RTs of the fMRI group were substantially shorter than those of the 

EEG group for both the first (M1 = 1.93 s; SD1 = 0.67 s) and second (M2 = 1.58 s, SD2 

http://www.colorbrewer.org/
https://www.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-schemes-for-matlab
https://www.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-schemes-for-matlab
https://inkscape.org/
http://www.mricro.com/
http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27
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= 0.66 s) retrieval repetition. This observation might have implications for the results 

reported in the following paragraph. 

After an explorative inspection of the behavioural data, we compared accuracies and 

reaction times between perceptual and conceptual questions with posthoc paired-

sample t-tests and found that participants in the fMRI study performed more accurately 

(t(30) = -6.63, p < .01 (uncorr.)) and faster (t (30) = 8.31, p < .01 (uncorr.)) at answering 

conceptual (MRT = 1.06 s, SDRT = 0.25 s; MAccuracy = 0.88, SDAccuracy = 0.07) than 

perceptual questions (MRT = 1.30 s, SDRT = 0.35 s; MAccuracy = 0.82, SDAccuracy = 0.08), 

in line with the reverse reconstruction stream observed in earlier behavioural studies 

where the catch question preceded the memory cue (Lifanov et al., 2021; Linde-

Domingo et al., 2019). In the EEG study, participants answered conceptual (MRT = 1.36 

s, SDRT = 0.30 s; MAccuracy = 0.88, SDAccuracy = 0.07) and perceptual questions (MRT = 

1.38 s, SDRT = 0.35 s; MAccuracy = 0.86, SDAccuracy = 0.07) equally fast (t(23) = .5, p = .62 

(uncorr.)) and accurately (t(23) = -1.80, p = .09 (uncorr.)). This finding could be related 

to the reaction time difference described above and suggests that participants in the 

fMRI study often pressed the subjective retrieval button before recall was complete, 

such that a reverse memory reconstruction stream (Linde-Domingo et al., 2019) was 

still visible in the answers to catch questions following the retrieval button press (also 

see discussion).     
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Behavioural data 
 

a b c 

   
Figure 2. 4 

Behavioural data acquired within and out of scanner. A) Reinstatement reaction times (RTs), b) retrieval 

RTs and c) accuracies for both question types. Filled circles represent the overall mean, boxplots 

represent median and 25th and 75th percentiles; whiskers represent 2nd and 98th percentile; dots 

represent the means of individual subjects. Grey represents all trials, blue represents perceptual, pink 

conceptual responses. In-scanner data represents n = 24 independent subjects, out-of-scanner-data 

represents n = 31 independent subjects. 

 

fMRI univariate results 

We first performed a univariate GLM analysis and subsequent t-contrasts on the fMRI 

data to reveal activation differences between the two perceptual and the two 

conceptual categories (Fig. 2.5). At encoding, photographs and line-drawings showed 

average activity differences primarily in ventral visual regions. Photographs elicited 

significantly higher BOLD responses in regions V1, V2 and fusiform gyrus, (t(30) = 

4.56, p < .05 (FWE)). Drawings only triggered slightly stronger activity in the middle 

and inferior occipital gyrus (t(30) = 3.11; p < .001 (unc.)). When contrasting conceptual 

categories, animate objects were associated with significantly higher activity in the 

lingual gyrus, middle occipital gyrus, fusiform gyrus and inferior temporal gyrus (t(30) 
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= 4.56; p < .05 (FWE)) and inanimate objects in middle occipital gyrus and fusiform 

gyrus (t(30) = 4.56; p < .05 (FWE)). These contrasts thus show the expected pattern 

that perceptual categories differed in regions earlier along the ventral visual stream 

than conceptual categories.  

During retrieval, no voxels survived family-wise error correction or even a very liberal 

threshold of puncorr < .01 when contrasting perceptual or conceptual categories.  

 

fMRI univariate results 
 

a b 

    
 

Figure 2. 5 

Univariate t-contrasts results for encoding. A) Cyan: Photograph > drawing, green: drawing > 

photograph. B) Pink: animate > inanimate, yellow: animate< inanimate. All contrasts are thresholded at 

t(30) = 4.56, p < .05 (FWE). N = 31 independent subjects. 

 

fMRI multivariate results 

fMRI searchlight LDA 

Searchlight LDAs were performed on the fMRI data to map the representation of 

perceptual and conceptual information during encoding and retrieval onto the brain 

 photographs 

 drawings 

p < .05 (FWE) 

 

 animate 

 inanimate 

p < .05 (FWE) 
 

 

  p < .05(FWE) 
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(Fig. 2.6a). Here, we classified photographs versus drawings, and animate versus 

inanimate objects, from object-specific t-value patterns of the fMRI data. During 

encoding, information about perceptual classes could be decoded in posterior regions 

along the ventral visual stream including V1, V2, lingual and fusiform gyrus (t(30 = 

4.92, p < .05 (FWE)). Conceptual information was mapped to more anterior areas 

along the lateral temporal lobe, including inferior, mid and superior temporal gyrus, and 

additionally also to the precuneus, and inferior and dorsolateral prefrontal cortex (t(30) 

= 4.76, p < .05 (FWE)). Together, this mapping generally reflects a posterior-to-anterior 

perceptual-to-conceptual processing gradient while the object is visually presented on 

the screen. The results complement the univariate analyses reported above, but also 

show additional activity especially in frontal and parietal regions, suggesting that these 

areas code information in fine-grained voxel patterns that univariate analyses are 

unable to capture. 

During retrieval (Fig. 2.6b), perceptual features were most strongly decodable in the 

right precentral gyrus (i.e. premotor cortex), but also in V2, precuneus, mid and inferior 

temporal lobe, parahippocampal gyrus, cingulate gyrus and middle frontal gyrus (t(30) 

= 4.74, p < .05 (FWE)). Conceptual information was classified with highest accuracy 

from fusiform gyrus, precuneus, angular gyrus, and dorsolateral prefrontal cortex, 

inferior and middle frontal gyrus, and temporal pole (t(30) = 4.54, p < .05 (FWE)). 

Hence, in addition to the ventral visual areas dominating encoding/perception, we also 

found extensive frontal and parietal areas engaged during retrieval, in line with 

previous work suggesting that mnemonic as opposed to sensory content can often be 

decoded from these areas (Favila et al., 2018, 2020; Kuhl & Chun, 2014). 

  



105 

 

fMRI multivariate results 
 

a           Encoding b            Retrieval 

   
 

Figure 2. 6 

Searchlight LDA results. Encoding and retrieval accuracies significantly higher than 50 % for perceptual 

(cyan) and conceptual (pink) classifications. All contrasts are thresholded at p < .05 (FWE). N = 31 

independent subjects. 

 

EEG multivariate results 

EEG cross-subjects classifier-based RSA 

Before fusing the EEG and fMRI data, we also wanted to see how much information 

about object identity can be decoded from the EEG signals themselves, and whether 

objects from different conceptual classes would show more pronounced pairwise 

distances than objects from the same conceptual class (Fig. 2.7). Plots below therefore 

show the overall average decoding accuracy as well as the average decoding accuracy 

within and between conceptual classes, with corresponding statistics (see methods). 

Individual object decoding accuracy gradually increased from approximately 60 ms 

after stimulus onset, with a first smaller peak around 127 ms (p < .05 (cluster)), and a 

second temporally extended cluster from 224 ms until the end of the trial (p < .05 

(cluster)). Moreover, objects from conceptually different classes (animate vs 

 perceptual 

 conceptual 

p < .05 (FWE) 
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 perceptual 

 conceptual 
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  p<.05(FWE) 

 



106 

 

inanimate) were classified significantly better than objects from the same class, starting 

from 222 ms after stimulus onset until 1.3 s (p < .05 (cluster)).  

During retrieval, overall classification accuracies remained relatively low in comparison 

to encoding, showing peak decoding accuracy of 51 % at around -2.8 s before retrieval 

button press. Five significant accuracy clusters were found with peaks located at times 

-2.74 s, -2.63 s, -2.54 s, -2.16 s and -1.46 s relative to the time of subjective recollection 

(p < .05 (cluster)). When comparing classification accuracy for conceptually different, 

between-class object pairs to within-class pairs, no test survived cluster correction. 

However, the maximum between- versus within-class difference was identified -2.5 s 

before the retrieval button press (p < .01 (uncorr.)). 
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EEG multivariate results 
 

a b 

  
Figure 2. 7 

Average EEG classification accuracy over time and average classification accuracy within- versus 

between conceptual classes during a) encoding and b) retrieval. At encoding, time point 0 s marks object 

onset. At retrieval, time point 0 s marks button response, but is not included in figure as it does not lie 

within the time of interest (see methods). Solid grey line represents overall average accuracy, dashed 

grey line represents baseline average, and grey markers indicate significant overall classification 

accuracy against chance through random label permutation. Solid pink line represents the average 

accuracy within conceptual categories, dashed pink line represents average accuracy between 

conceptual categories, and pink markers indicate significant between- versus within conceptual classes 

with correct labels. Specifically, significant decoding accuracy is indicated by points (p < .01 

uncorrected) and asterisk (p < .05 cluster). See Methods for details on cluster correction. N = 24 

independent subjects. 

 

EEG-fMRI data fusion 

ROI fusion 

For a first fusion step, we used the representational geometries (i.e. the RDMs) from a 

pre-defined set of ROIs and tested when in the timeline of a trial they would correlate 

most strongly with the geometries obtained from the EEG data. In each of the below 
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figures (Fig. 2.8-2.9), correlation time courses are plotted for each individual ROI as t-

values against baseline. V1 and V2 show two first descriptive peaks at -50 and -30 ms 

before stimulus presentation (p < .01(uncorr.)), likely as response to the previous cue 

presentation. After stimulus presentation at encoding (Fig. 2.8), posterior regions 

including V1 and V2 start to show a rising correlation with the EEG representations 

from approximately 130 ms (p < .01 (uncorr.)). A significant cluster is seen at 240 ms 

(p < .05 (cluster)), followed by a correlation increase of later ventral visual areas (hIT) 

around 300 ms (p < .01 (uncorr.)), reaching a significant peak at 430 ms (p < .05 

(cluster)). Later lateral and medial temporal as well as parietal regions do not show a 

significant correlation with the EEG time series during encoding.  

As a proof of principle, we then tested for a forward stream within the ventral visual 

stream. Performing a linear regression on the cumulative sums of all ventral ROI time 

courses at each time point (see Methods and Fig. 2.3), we found negative but non-

significant slopes for time points after 500 ms. Importantly excluding the hippocampus 

from this linear regression, the slopes decreased to a larger extent and reached 

significance 500 ms after stimulus onset (p < .05 (cluster)). This speaks for the fact 

that earlier regions along the ventral visual stream code relevant information before 

later regions, supporting the idea of the previously established forward stream (Fig. 

2.10).  

When looking at the ventral visual ROIs during retrieval (Fig. 2.9), MTL regions show 

a descriptive peak correlation with the EEG representation series -2.17 s prior to the 

retrieval button press (p < .01 (uncorr.)). Next, descriptive correlation peaks were found 

for early visual regions (V1/V2) shortly after, -1.90 s before the button press (p < .01) 

and again at -1.32 s before button press, before reaching a significant peak at -1.20 s 
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(p < .05 (cluster)). At the latter peak, hIT also showed a peak correlation with the EEG 

geometry at -1.24 s (p < .01 (uncorr.)). The retrosplenial cortex showed a descriptive 

correlation peak in a similarly late time window, at -1.25 s and -1.13 s before button 

press (p < .01 (uncorr.)), however not surviving the cluster correction. This peak in the 

inferior parietal, but no other parietal regions, coincided with the peak times of early 

ventral visual areas. Unexpectedly, the hippocampus shows a correlation peak at -1.80 

s (p < .01 (uncorr.)), possibly reflecting reverberating activation, which is only 

speculative at this point. 

Importantly, our main aim was to test if the memory reactivation followed a backward 

processing stream. After replicating the forward stream during encoding, we therefore 

also performed a linear regression on cumulative sums of ventral visual regions within 

retrieval. This analysis including all five ventral ROIs revealed a significantly positive 

slope from -2.1 to -1.3 s before retrieval button press (p < .05 (cluster)). Also, when 

leaving out the hippocampus from the analysis, a significantly positive slope was found 

from -2.1 to -1.2 s before button press (p < .05 (cluster)), speaking in favour of a 

backward stream along the ventral visual pathway and thus confirming our main 

hypothesis (Fig. 2.10).   
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T-test: ROI fusion time course for encoding 
 
a b 

  
Figure 2. 8 

T-values of correlation time course with EEG for a) ventral visual and b) dorsal regions of interest (ROIs) 

at encoding. Regions of interest (ROIs) are colour-coded as depicted in the legends. Time point 0 s 

marks object onset. Significant time points are indicated by points (p < .01 uncorrected) and asterisk (p 

< .05 cluster). See Methods for details on cluster correction. Variance comes from n = 31 independent 

subjects. 

T-test: ROI fusion time course for retrieval 
 
a b 

  
Figure 2. 9 

T-values of correlation time course with EEG for a) ventral visual and b) dorsal regions of interest (ROIs) 

at retrieval. Regions of interest (ROIs) are colour-coded as depicted in the legends. Time point 0 s marks 

button response, but is not included in figure as it does not lie within the time of interest (see methods). 
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Significant time points are indicated by points (p < .01 uncorrected) and asterisk (p < .05 cluster). See 

Methods for details on cluster correction. Variance comes from n = 31 independent subjects. 

 

Average slopes after linear fit across ROIs 
 

a b 

  
Figure 2. 10 

Test for sequential processing using average slopes of linear fit across ROIs within the ventral visual 

stream using all ventral ROIs, or all ROIs except hippocampus at a) encoding and b) retrieval. Average 

slopes and standard errors are depicted for each time point and tested against zero. Slopes are colour-

coded as depicted in the legends. At encoding, time point 0 s marks object onset. At retrieval, time point 

0 s marks button response, but is not included in figure as it does not lie within the time of interest (see 

methods).  A negative slope suggests that earlier ROIs along the ventral visual stream have a higher 

cumulative sum than later ROIs, indicative of a forward stream. According to the same logic, a positive 

slope indicates a backward stream. Significant time points are indicated by cyan points above the curve 

(p < .05 cluster). See Methods for details on cluster correction. Variance comes from n = 31 independent 

subjects. 

 

Searchlight fusion 

Next, we conducted a whole-brain searchlight fusion to inspect where across the brain 

the fMRI-based representational geometries matched the EEG geometries from any 
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given time point. The figures below thus depict spatial t-maps representing significant 

EEG-fMRI RDM correlations in each searchlight radius for a given time bin, separately 

at encoding and retrieval. Only time points where significant spatial clusters emerged 

are shown. During encoding (Fig. 2.11), the searchlight fusion revealed a significant 

cluster in early visual regions from 300 to 800 ms after stimulus onset. Around 400 ms, 

the EEG-fMRI similarity in more ventral and lateral areas, including fusiform and inferior 

temporal gyrus, additionally increased. Correlations in early and ventral visual areas 

were sustained until around 700 ms, after which they gradually decreased. This more 

explorative searchlight approach shows overlapping results with the ROI fusion 

approach and mainly reveals ventral visual stream activation progressing in a forward 

manner. The missing engagement of early visual regions are most likely attributable to 

the cross-subject classification approach in the EEG data where the perceptual format 

of perceived objects differed between subjects. 
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Figure 2. 11 

T-maps of EEG-fMRI correlations at encoding showing time points in the trial time course where 

significant spatial clusters (p < .05 cluster) emerged. See Methods for details on cluster correction. N = 

31 independent subjects. 
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Figure 2. 12 

T-maps of EEG-fMRI correlations at retrieval showing time points in the trial time course where 

significant spatial clusters (p < .1 cluster) emerged. See Methods for details on cluster correction. N = 

31 independent subjects. 

 

During retrieval (Fig. 2.12), the earliest significant EEG-fMRI correlation was found in 

the temporal pole around -2.97 s before the retrieval button press. This region also 

showed a significant correlation around -2.13 s, together with clusters in the precentral 

and inferior frontal gyrus. Then, from -1.9 s prior to the retrieval button press, ventral 

and early visual regions showed a significant correlation peak. Visual regions also 

emerged again between approximately -1.35 s and -1.15 s before the retrieval button 

press. At -1.24 s, a larger set of frontal and parietal regions showed significant 

correlations with the EEG representations. Together, also the retrieval data shows 
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overlapping findings between the ROI- and searchlight fusion approach, showing a late 

temporal to visual activation processing and thus confirming our backward stream 

hypothesis, with additional engagement of fronto-parietal areas. 

 

Discussion 

A plethora of work on object recognition has shown that neural information about a 

visually perceived object progresses along the ventral visual stream following a feed-

forward gradient with increasing levels of information abstraction (T. Carlson et al., 

2013; Cichy et al., 2014; Martin et al., 2018). Contrary, recent memory research 

suggests that the information processing hierarchy is reversed during the recall of an 

object from memory (Linde-Domingo et al., 2019; Lifanov et al., 2021). Here, we 

investigated whether this presumed reversed information processing cascade during 

memory reconstruction maps onto the same ventral visual stream areas that carry the 

information forward during perception, but now following a feedback trajectory. Using 

a word-object association task and multivariate analyses on fMRI and EEG data, we 

first decomposed sensory and mnemonic processes into spatio-temporal feature 

representations. Then, using an EEG-fMRI fusion approach, we provide evidence for 

a reversed retrieval stream. 

On the one hand, we showed that encoding follows a feed-forward perceptual-to-

conceptual information flow, progressing from posterior visual to ventrolateral regions 

along the ventral visual stream (Fig. 2.8, 2.10, 2.11). On the other hand, while retrieved 

information was also reactivated in regions along the ventral visual stream, its 

trajectory followed a backward progression from anterior temporal to posterior parietal 
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and visual cortices (Fig. 2.9, 2.10, 2.12). Decoding the two features built into our 

experimental design from fMRI activity patterns showed that these regions represented 

conceptual and perceptual representations, respectively (Fig. 2.6). In addition, also 

lateral and inferior parietal and inferior frontal regions contained information about the 

retrieved objects. Finally, reaction times of this study (Fig. 2.4) supported and 

replicated the conceptual-to-perceptual information processing during retrieval (see 

also Linde-Domingo et al., 2019; Lifanov et al., 2021). 

Acquiring an fMRI dataset with a previously used visual learning paradigm (Linde-

Domingo et al., 2019) provided us the missing information on spatial representational 

patterns of recalled episodic memories. Using both univariate and multivariate analysis 

approaches, we first set out to map the processing of perceptual and conceptual object 

features during encoding onto the brain. As expected, these features largely mapped 

onto the ventral visual pathway, where early visual areas processed the perceptual 

features (coloured photos versus black-and-white line drawings, irrespective of 

semantic content), and later visual areas processed the higher order, conceptual 

information (animate versus inanimate objects, irrespective of perceptual format). This 

general perceptual-to-conceptual gradient is in line with a multitude of findings in the 

basic vision literature (T. Carlson et al., 2013; Cichy et al., 2014; Kravitz et al., 2013).  

Univariate analyses were not powerful enough to detect differential activations 

between our categories along the perceptual and conceptual dimension when objects 

were reconstructed from memory. Activity patterns at the finer-grained voxel level, 

however, represented the different features of the retrieved images. The memory-

related reactivation of these features comprised some of the encoding-related regions, 

in particular in late visual areas. On a basic level, this finding confirms a body of 
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previous work showing that posterior visual areas are not only involved in visual 

perception but also in internally generated processes, such as mental imagery (Dijkstra 

et al., 2021; Kosslyn et al., 1993) or in our case, memory representations. Moreover, 

the fMRI findings in themselves speak for the hypothesized reversed reconstruction 

stream, which also implies a pattern reinstatement during retrieval in areas that are 

active at encoding. The reinstatement of encoding-related patterns is a basic 

assumption of many computational models (O’Reilly & Norman, 2002), and has been 

reported in a wealth of empirical studies (Bosch et al., 2014; Polyn et al., 2005; 

Staresina et al., 2012; Staudigl & Hanslmayr, 2019; Wing et al., 2014). It is also 

commonly observed that stronger reinstatement of encoding-related patterns is 

associated with memory strength or successful retrieval (Ritchey et al., 2013; Tulving 

& Thomson, 1973) and the vividness of remembering (St-Laurent et al., 2015; Wheeler 

et al., 2000), suggesting an important functional role of sensory reactivation.  

Although some of the retrieval-induced processing resembled the feature 

representations during encoding, it is important to note the partial mismatch between 

encoding and retrieval activity representations. Most notably, we were able to decode 

conceptual information from middle frontal gyrus, which has previously been related to 

the semanticization of memories and unique object identity processing (Ferreira et al., 

2019), and fronto-parietal regions also commonly found in memory related processing 

and conceptual object representations (Favila et al., 2018; Xiao et al., 2017; Jeong & 

Xu, 2016; Levy, 2012). This transfer from visual to fronto-parietal regions has recently 

gained attention, and has been described as a spatial transformation of memories 

compared to their original representations during the actual physical experience (Favila 

et al., 2020). It was recently suggested that depending on an attentional bias in 
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functional networks towards an encoding or retrieval state, content representations are 

rather exhibited in visual or parietal cortices, respectively and mediated by differential 

connectivity with the hippocampus (Long & Kuhl, 2021; Ritchey & Cooper, 2020). Why 

reconstructed information is primarily represented in parietal cortex is currently 

unclear, but our findings in principle support this encoding-retrieval distinction. They 

also suggest that it is primarily conceptual information (Fig. 2.6b) that is represented 

in these regions during retrieval, most likely explained by a general dominance of 

semantic information during memory recall. Further ideas about the involvement of 

parietal networks are discussed further below in relation with the timing of the 

reactivation.  

Going beyond a simple spatial mapping of perceptual and conceptual representations, 

our fusion of the EEG and fMRI data allowed us to inject time information into these 

spatial maps, and to ask how the memory reconstruction stream evolves from cue 

presentation to the time of subjective recollection (i.e., the retrieval button press). We 

used two complementary approaches for data fusion, both comparing the 

representational geometries found in the EEG patterns at each time point with the fMRI 

geometries found in a given brain region. We did this once in a spatially focused ROI-

based fashion, and once in a more exploratory searchlight fashion. Both approaches 

showed a mainly feedforward sweep of information processing during the first few 

hundred milliseconds of encoding, starting within early visual regions approximately 

120 ms after image onset (ROI fusion), and then spreading to more ventral visual 

regions within the next 200 ms (ROI and searchlight fusion). 

Relating the fusion maps above to the EEG decoding results, we found that 

representations in early visual areas evolve with individual object processing. In 
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comparison, more ventral representations coincide with increasingly distinctive 

processing of different conceptual categories. Given the object recognition literature 

(Cichy et al., 2014), it was surprising that the accuracy of object-identity decoding was 

comparatively low (but still significant) within the first 100 ms compared to the time 

period after 200 ms. This might have to do with specifics of our fusion approach, 

combining data from two different groups who saw the stimuli in different formats. 

Across participants, the objects corresponded in terms of image content but not 

perceptual format, which potentially suppressed some patterns that reflect similarity on 

the level of early visual features. However, since the photographic and drawn versions 

of the object overlapped in shape, orientation and disparity, at least some of the 

representational structures should have been preserved. In fact, the main information 

cluster during encoding lies in early visual areas, which are also known to represent 

features such as contrast, orientation, spatial frequency and disparity (Tootell et al., 

1998; Henriksson et al., 2008; Henriksen et al., 2016). Thus, even if some perceptual 

information was supressed within our cross-subject EEG classification, other early 

features should have contributed to decoding performance at these earliest time 

points. Apart from the unexpectedly small early onset of the perceptual processing 

stream in the ROI fusion (and the missing early onset in the searchlight fusion), 

however, we were able to replicate the forward visual processing cascade, which was 

statistically supported by a sequence analysis (Fig. 2.10). 

Most critically, the same fusion approaches and the sequence analysis applied to the 

retrieval data revealed a largely feed-back information processing trajectory. 

Specifically, the data shows an information flow from medial temporal lobe (see ROI 

fusion) and temporal pole (see searchlight fusion) to early visual regions (both fusion 



120 

 

approaches). The earliest correspondence between EEG and fMRI representations in 

the searchlight approach (Fig. 2.12) was found 2.97 s prior to the retrieval button press, 

and was confined to the anterior temporal lobe. Caution is needed when interpreting 

this earliest time point, since some participants had retrieval button press times shorter 

than 3 sec, where this time point would overlap with cue presentation. Reassuringly 

however, later time points around 2.2 to 2.1 s before subjective recollection mark the 

onset of a backwards propagation and show the same anterior temporal reactivation 

together with reinstatement in MTL structures (Fig. 2.9). The temporal pole has 

previously been associated with the modality-independent processing of semantic 

information in general, and semantic retrieval in particular (McClelland & Rogers, 2003; 

Noppeney & Price, 2002; Patterson et al., 2007; Rice et al., 2018; Visser et al., 2010). 

Moreover, temporal pole reactivation around -2.1 s before button press was close in 

time to the time point when objects from two different conceptual classes were decoded 

with significantly higher accuracy than objects from two similar conceptual classes 

(based on the EEG classification alone). Together, these findings indicate that the 

conceptual features we explicitly manipulated are among the first to be reactivated in 

semantic networks.  

More posterior areas including inferior temporal, inferior parietal and visual cortex, and 

frontal regions reached their information representation peaks considerably later, at 

the earliest around -1.9 s and more strongly at -1.2 s, the latest time window leading 

up to subjective recollection (Fig. 2.9 & 2.12). While the visual and extrastriate 

activations are assumed to represent low-level perceptual content, the parietal regions 

have been shown to play a role in contextual processing and memory-related imagery 

(Cichy et al., 2016; Lundstrom et al., 2005; Fletcher et al., 1995; Chrastil, 2018). The 
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late timing of these reverberations might be indicative of a final reinstatement likely 

underlying working memory and memory-related imagery, as preparation for the 

upcoming categorisation task (Christophel et al., 2012, 2017; Ganis et al., 2004). 

Together, the information reactivation from frontal anterior pole to posterior parietal 

and visual regions with additional frontal involvement revealed by the EEG-fMRI data 

fusion overlaps with the regions found when classifying retrieved mnemonic features 

from the fMRI data alone and suggest a conceptual-to-perceptual processing stream 

with a final activation of a task-relevant imagery buffer. 

The EEG classification methods used in our data fusion differed from previously used 

classification methods (Linde-Domingo et al., 2019), which mainly served to decode 

categorical information within-subjects in order to find the peak times where conceptual 

and perceptual features are represented in the EEG data (Linde-Domingo et al., 2019). 

Evidence from these previous analyses provided the confidence that conceptual and 

perceptual representational structures are encoded in the electrophysiological data 

and could be used to find related representations in an EEG-fMRI data fusion. In 

contrast, our cross-subject, object-specific classification approach served the goal of 

subsequent fusion with fMRI data, which requires representational geometries (i.e. 

dissimilarity matrices) that are resolved on an individual object level, in order to then 

correlate the EEG and fMRI data on the level of these representational dissimilarity 

matrices. The different classification approaches might contribute to some of the 

outcome differences described below. 

The present study revealed a reinstatement timeline that slightly differs from the 

categorical classification peaks identified in Linde-Domingo et al. (2019). More anterior 

temporal and more posterior visual areas showed a representational match around -
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2.2 s and 1.9 s before button press respectively, while the previous study found 

conceptual and perceptual information processing peaks at 1.8 and 1.6 s prior to 

subjective recollection. The most obvious reason for these differences in timing is the 

decoding approach used for the data fusion, capitalizing on individual object 

representations. This could mean that object-level information is retrieved even before 

conceptual-classes-level information. Importantly, the findings do agree on the 

reversed reconstruction aspect of memory retrieval and add the missing spatial 

information about the loci of reconstructed content to previous work. Together these 

results imply an information reactivation cascade during memory retrieval that starts 

with late semantic networks that are close to the hippocampus, coding more abstract 

object features, and which then back-propagates to early visual regions representing 

perceptual characteristics of an object.  

The fMRI classification and the RSA-based EEG-fMRI data fusion in this study offer 

complementary information. While the data fusion tells us how information progresses 

in brain space over time, it does not provide information about the content that is driving 

the match in representations. In contrast, classifying two explicitly manipulated feature 

dimensions from fMRI activation patterns yields information about where specific 

representational content is most dominant in the brain, but does not provide any 

information on the temporal evolution of such content representations across the trial 

time course. The two analyses together thus provide complementary information on 

the representational information processing streams at encoding and retrieval. In this 

respect, it can be deducted that during encoding, feature processing increases in 

abstractness as information travels along the ventral visual stream over time. In 

contrast, retrieval follows a feedback propagating stream along the ventral visual 
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stream reflecting a conceptual-to-perceptual information reconstruction. Moreover, as 

in Chapter 2, we find that the backward reconstruction flow is not limited to ventral 

visual brain areas, but involves frontal and parietal regions likely serving as an episodic 

memory or imagery buffer for the retrieved representations (Baddeley, 1998; Levy, 

2012; Wagner et al., 2005).  

RSA is a highly useful tool to enable the comparison of brain activity representations 

measured by different neuroimaging modalities as fMRI and EEG (Kriegeskorte & 

Kievit, 2013). By creating similarity structures from both EEG and fMRI activity 

patterns, it is possible to directly correlate the two measures and find commonalities 

between the spatial and temporal representational geometries, because they are now 

available in the same format. As stated above, however, the data fusion in itself does 

not provide any content information. Our present design allowed us to complement the 

spatio-temporal representations with content information by using categorical 

classification. Here, explicitly manipulating low- vs high-level features of the object 

stimuli offered us insight into the level of processing at different temporal stages and 

within different brain regions. This attempt complements studies that use early vs late 

deep neural network layer outputs to model low- vs high-level processing (e.g. Bone 

et al., 2020). Though in contrast to the black box of such DNN layers, the controlled 

stimulus manipulation used here offers more transparency. However, we acknowledge 

that the dimensions of memory representations in the brain extend beyond the features 

(i.e., colour and animacy) that we were able to explicitly manipulate here. In fact, it has 

been previously argued that to tap into content information contained in a signal, 

explicit manipulations in a predefined set of dimensions is required (Schyns et al., 

2020). This is important as we found some correlation peaks in the searchlight fusion 
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maps during retrieval that did not overlap with the perceptual or conceptual 

classification results in the fMRI data. Similarly, some individual stimulus classification 

peaks in the EEG data do not coincide in time with the ROI fusion peaks. It has thus 

been suggested to make use of richer study designs with more stimulus variations on 

a trial-by-trial basis (Schyns et al., 2020). We agree that such studies with better 

feature resolution are an important future step in order to identify what dimension are 

contained in, and dominate, reactivated memory representations. 

Finally, the behavioural performance of the fMRI study supported a conceptual-to-

perceptual information processing during retrieval, reversed with respect to encoding. 

Note, that it was not the purpose of our study to find differential conceptual and 

perceptual reaction times in question type. The paradigm was designed such that after 

verb cue onset, participants were instructed to first reinstate objects fully and indicate 

this by a retrieval button press. At this stage, we expected participants to have a fully 

reconstructed image of the recalled object in mind, and answering either perceptual or 

conceptual question should thus take equally long, as found in the behavioural 

responses of the EEG dataset (also see Linde-Domingo et al., 2019). Our fMRI 

participants, however, responded more rapidly to conceptual than perceptual 

questions, and we believe that this is related to a significantly faster average timing of 

the subject recollection button presses in this group. If participants in this group pushed 

the retrieval button prematurely, while still in the process of reconstructing the object 

from memory, this would explain why the reconstruction process carried over into the 

catch question period, making the reverse reconstruction stream visible in behaviour. 

The comparably high accuracies show that the recall process itself did not suffer from 

overly rapid button presses. Our reaction results are thus in line with the reversed 
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feature access during retrieval compared to encoding as shown in previous work 

(Linde-Domingo et al., 2019; Lifanov et al., 2021). 

It is important to consider the differences in reaction times between the EEG and fMRI 

datasets, and possible effects on the results. As discussed above, these reaction time 

differences are suggestive of different memory processing stages at the time of button 

press between the studies. All analyses of the out-of-scanner EEG data are response 

locked and the reverse reconstruction stream is likely to be relatively complete at the 

time of this button press. The fusion results should thus reflect differential 

representational patterns aligned to the subjective button presses. Button presses in 

the fMRI sample did occur on average 1.3 s earlier and possibly at a time where the 

memory reconstruction process was less complete. However, due to the sluggishness 

of the BOLD response (Friston et al., 1994; Kruggel & von Cramon, 1999), this 

temporal delay should only have minor effects on the fusion analyses. Moreover, cue-

locked boxcar regressors were used to cover the entire reconstruction period in a trial, 

to make sure that both the perceptual and conceptual reconstruction stages were 

equally covered in the dataset. Since the fMRI data in our setting is mainly used to 

derive the spatial representational patterns, while the time resolution is provided by the 

EEG data, the difference in reaction times should thus only minimally affect the 

outcomes of the retrieval fusion analyses.   

Reaction times and accuracies have previously been shown to be highly related to 

neuroimaging results and thus indicative of the timing of the underlying brain processes 

(T. A. Carlson et al., 2013; Cichy et al., 2017; Linde-Domingo et al., 2019; Ritchie et 

al., 2015). Our reaction time results by themselves are suggestive of a feedback neural 

processing stream, which is strongly in line with previous findings (Linde-Domingo et 
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al., 2019; Lifanov et al., 2021). Complementary to the hierarchical reaction time 

pattern, accuracies also show a better retention of conceptual in contrast to perceptual 

features, supportive of a prioritization of conceptual information during retrieval. The 

fMRI-based categorical decoding analyses support such a prioritization (Fig. 2.6b), 

showing that reactivated mnemonic information is dominated by conceptual 

information. One important neural theory here is that closer reciprocal connections 

from the MTL to semantic than to perceptual regions shorten the processing time and 

thereby favour the reactivation of semantic features during retrieval, which ultimately 

leads to a stronger retention of semantic features, a possibly a semanticization of 

memories over time (Linde-Domingo et al., 2019; Lifanov et al., 2021). This notion 

could also indicate that repeated remembering, and retrieval-based practice of recently 

acquired memories, play a major role in the process of memory semanticization. The 

question whether the semanticization of memories is a naturally occurring effect, 

independent of practice strategy or whether retrieval particularly affects memory 

representations and contributes to the conceptualization and a long-term retention is 

further investigated and discussed in the next chapter (and published in Lifanov et al., 

2021). Taken together, the RT and accuracy data highlight the prioritisation of 

conceptual over perceptual features during retrieval. The behavioural results therefore 

complement the spatial and temporal prioritisation of conceptual over perceptual 

representations during retrieval (as seen in the fMRI and EEG patterns respectively). 

Summarizing the present study, we decomposed hemodynamic activation 

representations into two pre-specified feature dimensions, and were able to map these 

dimensions onto the brain. A multivariate RSA-based EEG-fMRI data fusion then 

allowed us to map stimulus-specific information representations in neural time and 
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space. These complementary analyses, supported by additional reaction time 

measures, provide evidence for the backwards propagation of reconstructed episodic 

memory representations along the ventral visual stream, following a reversed 

information processing gradient with respect to encoding. 
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Chapter 4 – Feature-specific reaction times reveal a 

semanticisation of memories over time and with 

repeated remembering 
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Abstract 

Memories are thought to undergo an episodic-to-semantic transformation in the course 

of their consolidation. We here test if repeated recall induces a similar semanticisation, 

and if the resulting qualitative changes in memories can be measured using simple 

feature-specific reaction time probes. Participants studied associations between verbs 

and object images, and then repeatedly recalled the objects when cued with the verb, 

immediately and after a two-day delay. Reaction times during immediate recall 

demonstrate that conceptual features are accessed faster than perceptual features. 

Consistent with a semanticisation process, this perceptual-conceptual gap significantly 

increases across the delay. A significantly smaller perceptual-conceptual gap is found 

in the delayed recall data of a control group who repeatedly studied the verb-object 

pairings on the first day, instead of actively recalling them. Our findings suggest that 

wake recall and offline consolidation interact to transform memories over time, 

strengthening meaningful semantic information over perceptual detail.  
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Introduction 

One powerful way to protect memories against forgetting is to recall them frequently. 

Decades of research on the testing effect have shown such a protective effect, 

suggesting that repeated remembering stabilizes newly acquired information in 

memory (Abott, 1909; Butler & Roediger, 2007; Dunlosky et al., 2013; Gates, 1917; 

Roediger & Butler, 2011; Roediger & Karpicke, 2006). It is unknown, however, whether 

all aspects of a memory equally benefit from active recall. The aim of the present work 

was to investigate the qualitative changes in memories that occur with time and 

repeated remembering. We used feature-specific reaction time probes to measure 

such changes in lab-based visual memories. Specifically, we expected to observe a 

transformation along a detailed-episodic to gist-like-semantic gradient, based on 

several strands of research indicating that memories become “semanticised” in the 

process of their stabilisation.  

Dominant theories of the testing effect make the central assumption that active recall 

engages conceptual-associative networks more so than other practice techniques 

such as repeated study (Bjork, 1975; Carpenter, 2011; Kolers & Roediger, 1984). The 

elaborative retrieval account suggests that during recall, a conceptual relationship is 

established between initially separate episodic elements to unify them into a coherent 

memory9. Similarly, the mediator effectiveness hypothesis (Pyc & Rawson, 2010) 

states that testing promotes long-term retention by evoking mediator representations, 

which are concepts that have meaningful overlap with a memory cue and target 

(Carpenter, 2011). Together, this work suggests that remembering co-activates 

semantically related concepts, more than restudy, and can thereby contribute to the 
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long-term storage of newly acquired memories by linking them to already established, 

related concepts.  

Other authors have made similar assumptions from a more neurobiologically and 

computationally motivated perspective (Antony et al., 2017), drawing a parallel 

between the processes stabilizing memories via online recall, and the processes 

thought to consolidate memories via offline replay, including during sleep. In this online 

consolidation framework of the testing effect, active recall activates a memory’s 

associative index in the hippocampus, together with the neocortical nodes representing 

the various elements contained in the memory. As a result of this simultaneous 

activation, links between the active elements are strengthened (HEBB, 1949). 

Moreover, because recall tends to be somewhat imprecise, more so than re-encoding, 

activation spreads to associatively or conceptually related elements, providing an 

opportunity to integrate the new memory with related information. This presumed 

stabilization and integration is strongly reminiscent of the hippocampal-neocortical 

dialogue assumed to happen during sleep-dependent memory replay (Frankland & 

Bontempi, 2005), resulting in the integration of new memories into existing relational 

knowledge, and the strengthening of conceptual/schematic links between memories 

(Káli & Dayan, 2004). Critically, many consolidation theories assume that this 

reorganization goes along with a “semanticisation” of memories, such that initially 

detail-rich episodic memories become more gist-like and lose detailed representations 

over time and with prolonged periods of consolidation (Dudai et al., 2015; McClelland 

et al., 1995; Sekeres et al., 2018; Winocur & Moscovitch, 2011). Based on these 

parallels between wake retrieval and offline consolidation, the present study tested 
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whether repeated recall specifically induces a behaviourally measurable 

“semanticisation” that goes beyond the effects that naturally occur over time.  

In the human memory consolidation literature, much of the empirical evidence for 

semanticisation comes from neuroimaging studies showing a gradual shift in the 

engagement of hippocampus and neocortex during recent and remote recall, or studies 

tracking representational changes in memories over time (Dudai et al., 2015; Tompary 

& Davachi, 2017). Recent work even suggests that the neocortical changes that 

accompany such shifts can occur rapidly, across repeated exposures to episodic 

events on the same day (Brodt et al., 2016, 2018), and that these changes are then 

further stabilized through subsequent periods of sleep (Himmer et al., 2019). 

Behavioural studies, on the other hand, have largely relied on scoring of 

autobiographical or other descriptive verbal memory reports for central gist versus 

peripheral details, and yielded robust evidence for a detail-to-gist gradient (Moscovitch 

et al., 2016; Sekeres et al., 2016). The present study used a different approach, asking 

if semanticisation via recall can be observed in reaction times (RTs) that specifically 

reflect the speed with which participants can access higher-level conceptual and lower-

level perceptual features of visual object memories.  

This method was recently introduced by Linde-Domingo, Treder, Kerrén, & Wimber 

(2019). They showed that when participants are retrieving visual objects from memory, 

conceptual aspects (e.g., Does the recalled image represent an animate or inanimate 

object?) are accessed more rapidly than perceptual aspects (e.g., Does the recalled 

image represent a photo or a drawing?). In sharp contrast, RTs were consistently faster 

to perceptual than conceptual questions when the image was physically presented on 

the screen. This flip suggests that recalling a memory progresses in the opposite 
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direction from visual perception, reactivating the core meaning first before back-

propagating to sensory details. Such semantic prioritisation is plausible considering 

that the hippocampus is most directly and reciprocally connected with late sensory 

processing areas assumed to represent abstract concepts (Felleman & Essen, 1991; 

Suzuki & Amaral, 1994). Both online retrieval and offline replay of hippocampus-

dependent memories can therefore be assumed to preferentially activate conceptual 

features of a memory, and this prioritisation may over time produce a semanticized 

memory compared with the one originally encoded. With this background in mind, and 

an adapted version of the described RT paradigm, we here investigate whether 

repeated retrieval enhances the semanticisation of memories over time compared to 

repeated study. 

In this work, two groups of participants learn novel verb-object pairings at the beginning 

of day 1 (Fig. 3.1), and then immediately practice the associations six times overall. 

Subjects in the retrieval group practice by actively recalling the object image from 

memory when cued with the verb, and answering conceptual and perceptual questions 

about the recalled object as fast as possible. Subjects in the restudy group instead 

practice by re-encoding the intact verb-object pairings, answering the conceptual or 

perceptual question while seeing the object on the screen. All participants return to the 

lab 48h later for a delayed cued recall test, where each verb-object pairing is probed 

once more with a conceptual and a perceptual question. Feature-specific reaction 

times (RTs) are used as a measure of accessibility to lower-level perceptual or higher-

level conceptual object features. We show that the reaction time gap between 

perceptual and conceptual features increases across the two-day delay, indicative of 

time-dependent semanticisation, and that active retrieval plays a central role in this 
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presumed semanticisation. Dependency analyses also suggest that object features are 

remembered and forgotten in a hierarchical fashion, and that recall becomes more 

dependent on conceptual object features over time.  

 

Methods  

Participants  

Previously published work has found an effect size of d = .55 for the perceptual-

conceptual gap in RTs during retrieval (Linde-Domingo et al., 2019). We expected an 

effect size at least as large on day 2 in the repeated retrieval group. A power analysis 

in G*Power (Faul et al., 2009) with d = .55, α = .05 and a power of 0.9 suggested that 

a sample size of at least 30 was required to detect an existing effect in the retrieval 

group. The effect of most interest in the retrieval group was a significant interaction 

between testing day and question type, specifically such that the gap between 

conceptual and perceptual RTs would significantly increase from day 1 to day 2. The 

power for this interaction contrast could not be estimated a priori from the work of 

Linde-Domingo et al. (2019). To have sufficient power to detect an increase in the 

perceptual-conceptual gap, we decided to double their sample size, aiming for 48 

subjects in the retrieval group. A sensitivity analysis in G*Power (Faul et al., 2009) on 

a two-by-two repeated measures ANOVA with an alpha of .05, a power of 0.9 and a 

sample size of n = 49 (as we eventually acquired) revealed a required effect size of f 

= .47 for the within-factor effect (see results section for corresponding posthoc effect 

sizes). 
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The second comparison of interest in this study was a contrast between the perceptual-

conceptual gap on day 2 (i.e., delayed test) in the retrieval and the restudy groups. 

Again, since the effect size could not be estimated directly from previous work, we 

aimed for n=24 participants in the restudy group based on Linde-Domingo et al. (2019) 

using n=24 within multiple groups to do between group comparisons. We thus aimed 

for a sample size of n=72 overall for the critical comparison of the retrieval and the 

restudy group. A sensitivity analysis on a two-by-two repeated measures ANOVA with 

an alpha of .05, a power of 0.9 and a sample size of n = 73 revealed a required effect 

size of f = 0.38 for the interaction effect (see results section for corresponding posthoc 

effect sizes). 

Fifty-seven healthy volunteers from the local student population in Birmingham 

participated in the retrieval condition (45 female and 12 male, mean age (Mage) = 19.95, 

standard deviation (SDage) = .79), of which eight were excluded due to absence on the 

second testing day or missing data. Another 26 volunteers participated in the restudy 

group (21 female and 5 male, Mage = 18.92, SDage = .89), of which two were excluded 

due to absence on the second testing day. Our final sample thus consisted of 49 

participants in the retrieval group and another 24 participants in the restudy group. All 

participants were informed about the experimental procedure, underwent a screening 

questionnaire (including sleep and consumption behaviour 24h before the experiment) 

and gave their written informed consent. The research was approved by the STEM 

ethics committee of the University of Birmingham. 
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Material 

The paradigm was an adapted version of the visual verb-object association task 

designed by Linde-Domingo et al. (2019). Our stimulus materials consisted of 64 action 

verbs and 128 pictures of everyday objects, all presented on white backgrounds (see 

Fig. 3.1a and previous work (Linde-Domingo et al., 2019) for more detailed information 

about the source and manipulation of pictures (BOSS database, www.gimp.org 

(Brodeur et al., 2010)) and verbs). Importantly, objects were categorized into two 

conceptual classes, i.e. animate vs inanimate objects; and two perceptual classes, i.e. 

black line drawings vs coloured photographs. We pseudo-randomly drew 64 images 

per participant according to a fully balanced scheme, such that each of the two-by-two 

categories included the same number of pictures (16 animate-photographs, 16 

animate -drawings, 16 inanimate-photographs, 16 inanimate-drawings). Action verbs 

were randomly assigned to images in each participant, and were presented together 

with pictures centrally overlaid on a white background. The stimulus presentation and 

timing and accuracy information collection was controlled by scripts written in Matlab 

2017a (www.mathworks.com) and the Psychophysics Toolbox Version 3 (Brainard, 

1997; Kleiner et al., 2007; Pelli, 1997).  

For the analysis we used customized Matlab code 

(https://www.mathworks.com/matlabcentral/fileexchange/64980-simple-rm-mixed-

anova-for-any-design by Caplette, 2021; Simple RM/Mixed ANOVA for Any Design, 

n.d.); https://www.mathworks.com/matlabcentral/fileexchange/6874-two-way-

repeated-measures-anova by Schurger, 2021; Two-Way Repeated Measures 

ANOVA, n.d.), G*power 3.1 (Faul et al., 2009). Figures were created using the 

raincloud plots Version 1.1 (M. Allen et al., 2019; Kirstie Whitaker et al., 2019), 

http://www.gimp.org/
http://www.mathworks.com/
https://www.mathworks.com/matlabcentral/fileexchange/64980-simple-rm-mixed-anova-for-any-design
https://www.mathworks.com/matlabcentral/fileexchange/64980-simple-rm-mixed-anova-for-any-design
https://www.mathworks.com/matlabcentral/fileexchange/6874-two-way-repeated-measures-anova
https://www.mathworks.com/matlabcentral/fileexchange/6874-two-way-repeated-measures-anova
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ColorBrewer 2.0 (from www.ColorBrewer.org by Cynthia A. Brewer, Geography, 

Pennsylvania State University) and colorbrewer schemes 2.0 for Matlab 

(https://www.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-

schemes-for-matlab by Charles, 2021; Cbrewer, n.d.) and the Inkscape 1.0.1 

(https://inkscape.org/). 

 

Procedure 

In both experimental groups, participants were informed about the experimental 

procedure, asked to sign an informed consent form, and to perform a training run. After 

completion of this training, participants continued to the experimental task (Fig 3.1.b). 

On day 1, participants performed eight task blocks, each including an encoding block 

with eight trials, a 20s distractor task and three practice cycles, each including two 

times eight practice trials. Returning after 48h, participants finished the experiment with 

a final test consisting of a single retrieval cycle (see below for details). Before leaving, 

participants completed a written cued recall test. Participants in both experimental 

groups had been clearly and repeatedly informed about the final recall on test day 2 

before carrying out the task on test day 1. It took participants about 70 min to perform 

the task on day 1, and about 20 min on day 2. 

 

Encoding 

In each encoding block (Fig. 3.1b), participants were instructed to study 8 novel verb-

object pairings. A fixation cross was presented to the participants for a jittered time 

period between 500 and 1500ms. An action verb was then presented for 1500ms 

https://www.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-schemes-for-matlab
https://www.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-schemes-for-matlab
https://inkscape.org/
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before an object was shown for a maximum time period of 7s. To facilitate learning, 

participants were instructed to form a vivid visual mental image using the verb-object 

pairing. Once they had formed a strong mental image, participants were asked to press 

the up-arrow key, which moved the presentation on to the next trial. In the repeated 

retrieval group, it took participants 4.65s on average, and in the restudy group it took 

them 4.34s to proceed to the next trial (SDretrieval = 1.77; SDrestudy = 1.65). 

Distractor 

After each encoding block, participants performed a self-paced distractor task for 20s, 

indicating as fast as possible whether each of the consecutively presented numbers 

on the screen was odd or even, using a left/right key press. Feedback on the 

percentage of correct responses was provided at the end of each distractor phase. 

 

Practice 

Repeated retrieval group 

The retrieval trials started with the presentation of a fixation cross, jittered between 500 

and 1500ms, and followed by the conceptual (animate/inanimate) or perceptual 

(photo/drawing) question that was displayed for 3s, enabling participants to mentally 

prepare to recall the respective feature of the object that was relevant on a given trial. 

The verb was then displayed above the response alternatives (e.g., 

animate/inanimate), and participants had to retrieve the associated object and answer 

the question as fast as possible. Verb and question were displayed for a maximum 

period of 10s or until the participant selected a response to the question. The questions 

were answered with left, downward and right-arrow keys. 
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Restudy group 

In the restudy group, the paradigm was kept as similar to the repeated retrieval group 

as possible, including an attempt to equate average exposure times during practice 

(for which reason the restudy group data was collected after the retrieval group). The 

restudy trial was initiated with a fixation cross with the same jitter (500-1500ms) as in 

the retrieval group, and followed by the conceptual or perceptual question that was 

displayed for 3s. The verb cue and object then appeared together above the question. 

Again, participants were asked to use the 3s period to prepare mentally to answer the 

question. When the object appeared, participants were instructed to first answer the 

question about the object they saw on the screen as fast as possible, and then use the 

remaining time to restudy the verb-object pair. In order to equate exposure times 

between the two groups, we set the trial duration of each of the three restudy cycles to 

the average response time of each of the three individual retrieval cycles from the 

previously collected retrieval group (cycle 1: 2.2s, cycle 2: 1.9s, cycle 3: 1.8s).  

 

Retrieval and restudy blocks setup 

Participants of both groups completed three consecutive practice cycles, in each of 

which they practiced all eight verb-object associations they had learned in the previous 

encoding block twice, once answering a conceptual and once answering a perceptual 

question. This sums up to six practice trials per learned association, three with each 

question type. The order of the conceptual and perceptual questions within cycles was 

counterbalanced as follows: In each of the three cycles, one half of the stimuli was first 
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probed with a conceptual question and the other half with a perceptual question first. 

Additionally, we controlled that each of the eight question-order possibilities occurred 

equally often for each object type (i.e., animate-photo, animate-drawing, inanimate-

photo, inanimate-drawing). The percentage of correct trials was provided after the third 

practice cycle.  

 

Final Test 

After 48 hours, participants were asked to complete a final test, in which they 

performed one cued recall block with the same procedural set-up as on day 1 in the 

retrieval group. Participants were presented with a conceptual/perceptual probe, and 

asked to answer this question as fast as possible when cued with a verb. Each object 

was recalled once with each question type. Here, half of the stimuli was first probed 

with a conceptual question and the other half with a perceptual question, randomized 

independently with respect to the first testing day. Finally, participants were given a 

paper sheet, displaying all 64 action verbs, next to which they were asked to write 

down a verbal description of the associated object. 
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Paradigm 
 

 
 

Figure 3. 1 

Overview of stimuli and task. a) Design of the stimuli. The 64 pictures used in any given participant were 

orthogonally split into 32 drawings and 32 photographs, out of which 16 were animate and 16 inanimate 

objects, respectively. Each object could thus be classified along a perceptual (photo/drawing, blue) or 

conceptual (animate-inanimate, red) dimension. b) One prototypical task block of the paradigm within 

the repeated retrieval/restudy group. Both groups performed eight blocks, each starting with the 

encoding of eight novel verb-object associations. After a 20s distractor task, each of the eight 

associations was practiced twice in each of the three practice cycles, once with a conceptual, once with 

a perceptual question, and reaction times (RTs) were measured on each of the overall 6 practice trials. 

The maximum response time in each practice cycle of the restudy group was set to the average 

response time of the corresponding cycle in the retrieval group. After 48 hours, participants returned to 

complete a final test, where again each association was tested once with each of the two question types, 

with RTs being recorded, as indicated by the button press symbols. Finally, a written cued recall test 

was performed. Stimuli depicted are chosen from the BOSS database 

(https://sites.google.com/site/bosstimuli/home (Brodeur et al., 2010), 

https://creativecommons.org/licenses/by-sa/3.0/) and customized with free and open source GNU 

image manipulation software (www.gimp.org; see Linde-Domingo et al., 2019). Figure adapted from 

Linde-Domingo et al. (2019). 

 

https://sites.google.com/site/bosstimuli/home
https://creativecommons.org/licenses/by-sa/3.0/
http://www.gimp.org/


143 

 

Data preprocessing 

During data preparation, all RTs faster than 200ms were excluded from the study. For 

the main analyses, RTs of correct trials were averaged and the standard deviation was 

calculated for both conceptual and perceptual questions, separately for the retrieval 

and the restudy group, and separately for the trials of each individual practice cycle 

per subject. Trials exceeding the average RT of a given cycle by more than three times 

the standard deviation were excluded in further RT analyses (Linde-Domingo et al., 

2019). In the repeated retrieval group, 98.16 % of the data remained after trimming the 

RTs of correct responses, whereas in the restudy group, 99.60% remained for our main 

analyses. Testing for a relationship between day 2 RTs and sheet responses, the RTs 

we used included correct, incorrect, and “don’t remember” button press responses and 

trials exceeding the average RT of the given cycle by more than three times the 

standard deviation were excluded after the categorization of RTs.  

To prepare the accuracy data, trials with responses faster than 200 ms, and objects 

with a missing response for either of both questions on one cycle were excluded in the 

related cycle. After this accuracy trimming, 99.39% of the repeated retrieval data and 

93.26% of the restudy data remained.  

 

Analysis 

In the past decades, there has been ongoing discussion about the validity of choosing 

mean RTs over medians (Miller, 1988, 2020; Rousselet & Wilcox, 2020). Here, we 

decided to use mean RTs similarly to previous work (Linde-Domingo et al., 2019) to 

easily compare our findings to the ones of Linde-Domingo et al. (2019). To counteract 
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a biased estimation of central tendency of RTs on the first level (i.e. within subjects), 

we used a large number of repetitions per condition (64 responses to a perceptual and 

conceptual questions each within each repeated cycle) on the one hand and trimmed 

our data as described in the section above on the other hand. Finally, on the second 

level, participants’ mean RTs within individual conditions met the normality 

assumptions to proceed to statistical analyses. 

To assess our main hypotheses of interest, including RT differences over time and 

between groups, we performed repeated measures (rm) ANOVAs on the RTs. Testing 

for a semanticisation over time, we included cycles (cycle 3, cycle 4) and question type 

(perceptual, conceptual) as within-subjects factors. Control analyses were added that 

used the averaged day 1 data instead of cycle 3, such that the relevant factors were 

day (day 1, day 2) and question type (perceptual, conceptual). Exploring the RT gap 

between groups on day 2, we used question type (perceptual, conceptual) as within-

subjects factor and group (retrieval, restudy) as between-subjects factor.  To replicate 

a reversed stream, we again used an rmANOVA with question type as within-, and 

group as between-subjects factor. Additional rmANOVAs were carried out on 

accuracies to test for dependency between two features. Here, we used cycles and 

question type as within-subject factors. For posthoc analyses, we performed two-sided 

t-tests. Two-sided t-tests were also used on sheet response accuracies, to 

demonstrate a testing effect. Finally, two-sided t-tests were performed on RT gaps and 

task accuracies categorized according to sheet accuracies. 
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Results 

Semanticisation over time 

Participants in the retrieval group (n = 49) immediately practiced the newly learned 

verb-object associations via cued recall. They did so six times overall, in three pseudo-

randomized cycles that each contained one perceptual and one conceptual feature 

probe. We first tested the retrieval group data for a time-dependent semanticisation, 

assuming that memory recall prioritises access to conceptual over perceptual features, 

and that this prioritisation increases over the two days with increasing semanticisation. 

Importantly, we wanted to isolate the transformation of episodic memories that occurs 

purely with passage of time, as opposed to the changes that occur already on the first 

day across the repeated practice trials. Using feature-specific reaction times, we thus 

compared the memory representation at the end of day 1 (i.e., cycle 3), after completed 

learning and practice, to the representation on day 2. We expected an increased 

perceptual-conceptual RT gap on the delayed day 2 test, compared to the end of day 

1. A 2 (recall cycle: end of day 1 vs day 2) by 2 (question type: conceptual vs 

perceptual) repeated measures analysis of variances (rmANOVA) on the RT data of 

the repeated retrieval group only (Fig. 3.2) showed a main effect of recall cycle (F(1,48) 

= 71.44, p < .01) indicating slower responses on day 2 than day 1, and a main effect 

of question type (F(1,48) = 29.58, p < .01) with conceptual questions being consistently 

answered faster than perceptual questions. Critical to our first main hypothesis, the 

rmANOVA also revealed a significant interaction (F(1,48) = 19.87, p < .01) between 

the two factors, indicating that the conceptual-over-perceptual RT advantage changed 

across days. A posthoc power analysis in G*Power revealed an effect size of f = .64 

for the interaction effect, which exceeds our required effect size of f = .47. Average 
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RTs confirmed that the interaction was produced by an increasing perceptual-

conceptual RT gap from the end of day 1 (Mday1 = 40 msec, SDday1 = 194 msec) to day 

2 (Mday2 = 290 msec, SDday2 = 359 msec), in line with the semanticisation hypothesis. 

Note that the interaction is equally robust when using the averaged day 1 reaction 

times within participants (F(1,48 = 20.11, p < .01), rather than the cycle 3 data. 

Together, these results suggest that semantic features preferentially benefit from 

passage of time after retrieval practice, in line with semanticisation.  

We additionally tested whether the perceptual-conceptual gap in the retrieval group 

already changed across cycles on day 1, in line with a “fast consolidation” process 

(Antony et al., 2017). A 3 (cycle: 1, 2, 3) by 2 (question type: conceptual or perceptual) 

repeated measures ANOVA of the day 1 RTs (Fig. 3.2) revealed a significant main 

effect of cycle (F(2,96)) = 102.44, p < .01), with participants becoming faster over time, 

as well as a significant main effect of question type (F(1,48) = 5.01, p = .03), with 

conceptual questions being answered overall faster than perceptual ones, generally 

replicating the results of Linde-Domingo et al. (2019). However, the cycle by question 

type interaction was not significant (F(2,96) = .42, p = .66), indicating that the 

perceptual-conceptual gap did not change significantly across practice cycles. The 

immediate recall data of this study thus provide no behavioural evidence for a fast 

semanticisation.  
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Figure 3. 2 

Retrieval reaction times (RTs), separate by question and repetition. The gap between perceptual and 

conceptual RTs significantly increases from day 1 to day 2 (interaction between question type and 

repetition (F(1,48) = 19.87, p = .00, d = .64)), in line with a semanticisation process over time. RTs in 

the repeated retrieval group are depicted for each cycle and question type. Filled circles represent the 

overall mean, boxplots represent median and 25th and 75th percentiles; whiskers represent 2nd and 98th 

percentile; dots represent the means of individual subjects. Blue represents perceptual, red conceptual 

responses. N = 49 independent subjects.  

 

Stronger semanticisation after repeated retrieval than restudy 

To test our second hypothesis, that repeated retrieval leads to a stronger delayed 

perceptual-conceptual gap than repeated study, we investigated the RT gap on the 

second testing day in both groups. If semanticisation over time is enhanced by retrieval 

practice, this should be reflected in a larger RT gap in the retrieval group (n = 49) in 

contrast to the restudy group (n = 24). A 2 (practice condition: retrieval vs restudy) by 
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2 (question type: conceptual vs perceptual) mixed ANOVA on the RTs of day 2 (Fig. 

3.3) revealed no main effect of practice condition (F(1, 71) = 1.41; p = .24), and a main 

effect of question type (F(1, 71) = 16.92; p < .01) with overall shorter RTs for conceptual 

than perceptual questions. As hypothesized, a significant interaction was found 

between question type and practice condition (F(1, 71) = 5.21; p = .03). Our posthoc 

power analysis on the interaction effect revealed an effect size of f = .27, which does 

not exceed but is comparatively close to our required effect size of f = .38. This 

interaction was due to an effect in the expected direction, with a higher perceptual–

conceptual difference in the repeated retrieval group (Mretrieval = 290 msec, SDretrieval = 

359 msec) than in the restudy group (Mrestudy = 83 msec, SDrestudy = 372 msec), in line 

with the interpretation that repeated retrieval leads to more pronounced 

semanticisation than repeated study. Specifically, we found that perceptual questions 

are answered only slightly faster in the retrieval group (Mretrieval = 2.63 sec, SDretrieval = 

.75 sec) in comparison to the restudy group (Mrestudy = 2.74 sec, SDrestudy = .86 sec). In 

contrast, conceptual RTs show a comparatively stronger difference between repeated 

retrieval (Mretrieval = 2.34 sec, SDretrieval = .61 sec) and restudy (Mrestudy = 2.66 sec, 

SDrestudy = .84 sec), suggesting that the interaction is mainly caused by faster access 

to conceptual features in the retrieval group, in line with a retrieval-induced 

semanticisation.  
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Figure 3. 3 

Perceptual-conceptual reaction time (RT) gap in each group on day 2. Repeated retrieval yields a 

stronger perceptual-conceptual RT gap than restudy on the delayed test (two-sided t(71) = 2.28, p = 

.03, CI = [.03, .39]). Perceptual-conceptual RT gaps are depicted for retrieval and restudy on day 2. 

Filled circles represent the overall mean, boxplots represent median and 25th and 75th percentiles; 

whiskers represent 2nd and 98th percentile; dots represent the means of individual subjects. Dark grey 

represents retrieval data, light grey represents restudy data. N = 49 independent subjects in the retrieval 

group, n = 24 independent subjects in the restudy group.  

 

To assure that the differential RT gap between groups is not a consequence of the 

unequal sample sizes, we randomly drew 5000 subsamples of size n = 24 of the 

repeated retrieval group, to equalize the group size to the one of the restudy group (n 

= 24). We then computed the z-score between the mean RT gap in the restudy group 

and the distribution of mean RT gaps of the resampled retrieval groups. First, we 

confirmed that, not surprisingly, the mean RT gaps in the subsampled retrieval groups 

(n = 24) distributed around the mean RT gap observed for the larger sample (n = 49). 
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Across the 5000 sub-samples, the perceptual-conceptual RT gap in the retrieval group 

had a mean of 290 msec (95% CI = [203 msec to 376 msec]). Critically, the mean RT 

gap in the restudy group (mean = 83 msec) showed no overlap with this confidence 

interval, and in fact we found zero cases amongst the 5000 subsamples where the 

restudy RT gap was equal to, or larger than, the retrieval RT gap. Comparing the 

restudy gap to the empirical distribution of retrieval RT gaps thus resulted in a highly 

significant z-score (z = -3.95, p < .01) and an empirical p-value <.01. This result 

confirms that the stronger semanticization in the repeated retrieval than restudy group 

also holds with equal sample sizes (Fig. 3.4). 

 

 

Figure 3. 4 

Subsampling methods showing higher perceptual-conceptual reaction time (RT) gap in retrieval on day 

2. The distribution of mean RT gaps after drawing subsamples of the repeated retrieval group 5000 

times shows that repeated retrieval yields a stronger semanticisation than restudy in 100% of the cases, 

even when using equally sized samples (one-sided empirical p = .00; z = -3.95, p = .00). The black line 

represents restudy data, the red line retrieval data, and the distribution is created by randomly drawing 
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subsamples from the retrieval data with n = 49 independent subjects in the retrieval group and n = 24 

independent subjects in the restudy group.  

 

A replication of the reversed retrieval stream  

Next, we analysed the data of the first day to test if we could replicate a reversal of the 

RT patterns between memory retrieval and visual exposure, conceptually replicating 

previous results(Linde-Domingo et al., 2019). Based on these findings, we expected 

faster RTs to conceptual than perceptual questions (i.e. a reverse stream) in the 

retrieval group that practiced the associations via active recall (Fig. 3.2), and faster 

perceptual than conceptual RTs (i.e., a forward stream) in the restudy group that 

practiced the associations by visual re-exposure. We therefore performed a mixed 2 

(practice condition: retrieval vs restudy) by 2 (question type: conceptual vs perceptual) 

ANOVA on the day 1 data, averaging RTs across the 3 cycles. Apart from a main effect 

of task (F(1,71) = 71.13, p < .01), and no main effect of question type (F(1,71) < .01, p 

= .98), this analysis revealed the expected, significant cross-over interaction (F(1,71) 

= 9.24, p < .01) with faster responses for perceptual questions than conceptual ones 

in restudy (Mper = 1.13 sec, SDper = 0.21 sec; Mcon = 1.19 sec, SDcon = 0.19 sec) and 

vice versa in retrieval (Mper = 1.95 sec, SDper = 0.42 sec; Mcon = 1.89 sec, SDcon = 0.44 

sec). 

 

Hierarchical relationship between remembered features 

Two further analyses were conducted on accuracy data, rather than reaction times. 

First, we investigated a possible hierarchical dependency between perceptual and 
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conceptual features as shown in recent work (Balaban et al., 2020) and how this 

relationship changed over time. All correct and incorrect recall trials with a response 

time above 200ms were sorted into four categories, depending on whether participants 

remembered both features, only perceptual features, only conceptual features or none. 

In line with previous work (Balaban et al., 2020; Joensen et al., 2018), we expected 

that over time, the majority of items would be forgotten in a holistic manner, such that 

items that were fully remembered (“both features correct”) on day 1 would be fully 

forgotten (“none correct”) on day 2. For the present purpose, we were however 

particularly interested in the two response categories indicating partial remembering 

(i.e., “conceptual only” and “perceptual only” recall trials). Here, a hierarchical 

dependence in a reverse memory reconstruction stream predicts a particular pattern: 

higher-level conceptual information would need to be accessed before the lower-level 

perceptual information can be reached. As a result, participants should be relatively 

likely to remember the conceptual feature (“Was it animate or inanimate”) while 

forgetting the perceptual one (“Was it a photo or drawing”), but there should be very 

few trials where they remember the perceptual while forgetting the conceptual feature, 

except for random guesses. We thus expected to see a significant difference in the 

number of responses falling into these two categories already on the immediate day 1 

recall. If semanticisation increases this hierarchical dependency, the gap in the 

proportion of conceptual-only and perceptual-only recalls should significantly increase 

across the 2-day delay.      

We carried out a 2 (recall cycle: end of day 1 vs day 2) by 2 (features remembered: 

conceptual-only vs perceptual-only) rmANOVA to test this hypothesis. This analysis 

revealed a main effect of repetition (F(1,48) = 53.97, p < .01), and a main effect of 
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features remembered (F(1,48) = 27.10, p < .01), the latter effect in line with hierarchical 

recall. Importantly, we also found the expected significant interaction (F(1,48) = 8.21, 

p < .01), reflecting the observation that over time, the number of objects for which the 

conceptual but not the perceptual feature could be remembered increased significantly 

more than the number of objects for which the opposite pattern was true (Fig. 3.5). The 

interaction is equally robust when using the averaged day 1 accuracies (F(1,48) = 

14.31, p < .01), rather than the cycle 3 data. 

Note that the data presented in Figure 3.5 is not corrected for estimated random 

guesses (Balaban et al., 2020), as such a correction would have turned most 

proportions negative, and therefore seemed to be an overestimation of guesses in our 

dataset. However, since the guesses of a particular cycle are assumed to be distributed 

equally across response categories within that cycle, correcting does not change the 

outcomes of the statistical analysis (corrected repetition effect F(1,48) = 55.52, p < 

.01), corrected features remembered effect (F(1,48) = 27.10, p < .01), and corrected 

interaction (F(1,48) = 8.21, p < .01)). Again, the interaction was also significant when 

comparing the average day1 data to day2 (F(1,48) = 14.31, p <.01). 
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Figure 3. 5 

Remembered and forgotten object features, separate for cycle 3 and 4. The data shows a hierarchical 

dependency between conceptual and perceptual memory features that increases over time (interaction 

between feature remembered and cycle F(1,48) = 8.21, p = .01, d = .41). The average number of objects 

in each response-category for cycle 3 (end of day 1) and cycle 4 (day 2) of all subjects in the repeated 

retrieval group are shown. Filled circles represent the overall mean, boxplots represent median and 25th 

and 75th percentiles; whiskers represent 2nd and 98th percentile; dots represent the means of individual 

subjects. Dark grey represents cycle 3, light grey represents cycle 4. N = 49 independent subjects.  

 

A replication of the testing effect 

Finally, we also assessed the written cued recall responses on the second day to 

investigate if a general testing effect was found in our sample. To do so, we compared 

the accuracy in the written sheet responses between both experimental groups, using 

two independent sample t-tests. All written responses were categorized by two 

experimenters as “specific correct/incorrect” and “coarse correct/incorrect” responses. 

Here, specific correct includes retrieving the exact object label (e.g., parrot), whereas 
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coarse correct responses also include correct descriptions of the object’s category 

(such as “colourful bird” for “parrot”). Two-sided t-tests revealed that participants in the 

repeated retrieval group (Mcoarse = .30, SDcoarse = .19; Mspecific = .25, SDspecific = .18) 

recalled significantly more associations than restudy participants (Mcoarse = .20, SDcoarse 

= .18; Mspecific = .16, SDspecific = .17) using either scoring scheme, specific (t(71) = 2.06, 

p = .04, CI = [.00, .17]) and coarse (t(71) = 2.16, p = .03, CI = [.01, .19]).  

We also wanted to make sure that the significant accuracy difference between groups, 

on the written paper and pencil test, is not influenced by the difference in sample sizes. 

We randomly drew 5000 subsamples from the repeated retrieval group with size n = 

24, to equate the restudy group, and then computed the z-score between the restudy 

group mean and the retrieval sample distribution, both for specific and coarse 

responses. We found that the restudy accuracy significantly differed from the repeated 

retrieval accuracy distribution for both coarse (z-score = -3.63, p < .01, empirical p < 

.01) and specific accuracies (z-score = -3.45, p < .01, empirical p < .01). For both 

scoring methods, the mean accuracies of the restudy group (Mcoarse= 0.20; Mspecific= 

0.16) were outside the 95% confidence intervals (CIcoarse= [0.25 to 0.34]; CIspecific= [0.21 

to 0.29]), and in fact entirely outside the re-sampled retrieval distributions. This finding 

confirms that a robust testing effect is present in our data also when equating sample 

sizes, based on the commonly used cued recall accuracies (Fig. 3.6).  
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Figure 3. 6 

Subsampling methods showing higher memory performance in retrieval on day 2. The distribution of 

mean sheet response accuracies after drawing subsamples of the repeated retrieval group 5000 times 

shows that repeated retrieval leads to better accuracies than restudy according to coarse (one-sided 

empirical p =.00; z = -3.63, p = .00) and specific scoring (one-sided empirical p =.00; z-score = -3.45, p 

= .00). The black line represents restudy data, the red line retrieval data, and the distribution is created 

by randomly drawing subsamples from the retrieval data with n = 49 independent subjects in the retrieval 

group and n = 24 independent subjects in the restudy group.  

 

We were then interested whether the paper-and-pencil based cued recall performance 

was related to the size of the perceptual-conceptual gap in feature-specific reaction 

time probes. We thus tested whether, within participants, those items for which delayed 

memory performance is strong enough to support cued recall on the final sheet test 

show a larger RT gap. To do so, all RTs of day 2 were compared between trials where 

the corresponding object was remembered on the response sheets (specific/coarse 

correct), and those where the object was not remembered (specific/coarse incorrect). 

Results show that the perceptual-conceptual RT gap is significantly larger for correctly 

than for incorrectly recalled items (t(71) = 2.13, p = .04, CI = [.01, .33] with the specific 
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scoring approach, t(71) = 2.65, p = .01, CI = [.05, .38] with the coarse scoring 

approach). Decomposing these differences in more detail, we found similar perceptual 

RTs for correct and incorrect sheet responses (for coarse scoring: Mper_corr = 2.54 sec, 

SDper_corr = .87 sec, Mper_incorr = 2.52 sec, SDper_incorr = .97 sec; for specific scoring: 

Mper_corr = 2.50 sec, SDper_corr = .68 sec, Mper_incorr = 2.52 sec, SDper_incorr = .97 sec) 

whereas the conceptual RTs for correct sheet responses (coarse scoring: Mcon_corr = 

2.23 sec, SDcon_corr = .59 sec; specific scoring: Mcon_corr = 2.20 sec, SDcon_corr = .62 sec) 

are faster than those for incorrect sheet responses (coarse scoring: Mcon_incorr = 2.42 

sec, SDcon_incorr = .93 sec; specific scoring: Mcon_incorr = 2.40 sec, SDcon_incorr = .89 sec). 

In contrast to the difference between correct and incorrect perceptual RTs (t(71) = .03, 

p =.98, CI = [-.19, .19 ]), the difference between conceptual RTs for correct and 

incorrect sheet responses is significant with the coarse scoring method (t(71) = -2.49, 

p = .02, CI = [-.38, -.04]) and thus seems to drive the changed RT gap on day 2 (the 

specific scoring method did not yield a significant difference for neither feature; t(71) = 

-.22, p = .83, CI = [-.21, .17] for perceptual; t(71) = -1.95, p = .06, CI = [-.39, .00] for 

conceptual questions; Figure 3.7). Again, these findings suggest that items for which 

a strong episodic trace exists show a larger RT gap, caused by relatively faster access 

to conceptual item features.  
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Figure 3. 7 

Perceptual and conceptual reaction times (RTs) for (in)correct a) specific and b) coarse written cued 

recall responses on day 2. Only associations that are remembered in the cued recall test yield a 

perceptual-conceptual reaction time gap in the task (two-sided test for the gap difference between 

correctly and incorrectly remembered associations: t(71) = 2.13, p = .04, CI = [.01, .33] with the specific 

scoring approach, two-sided t(71) = 2.65, p = .01, CI = [.05, .38] with the coarse scoring approach). 

Perceptual and conceptual RTs are shown as categorized in correct and incorrect specific (a) / coarse 

(b) sheet responses. Filled circles represent the overall mean, boxplots represent median and 25 th and 

75th percentiles; whiskers represent 2nd and 98th percentile; dots represent the means of individual 

subjects. Blue represents perceptual, red conceptual responses. N = 73 independent subjects.  

 

Note that we found a mirrored effect for accuracies, such that participants who 

performed better on the paper-and-pencil test showed a larger accuracy gap in the 

button presses, when splitting according to specific (t(71) = 3.08, p < .01, CI = [.03, 

.15]) and the coarse (t(71) = 3.95, p < .01, CI = [.05, .16]) scoring method (Fig. 3.8). 
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Figure 3. 8 

Perceptual and conceptual accuracy performance for (in)correct specific and coarse written cued recall 

responses on day 2. Associations that are remembered in the cued recall test yield a stronger 

perceptual-conceptual accuracy gap in the task (two-sided t(71) = 3.08, p = .00, CI = [.03, .15] with the 

specific scoring approach, two-sided t(71) = 3.95, p = .00, CI = [.05, .16] with the coarse scoring 

approach). Task accuracies from cycle 3 in the repeated retrieval group have been categorized into 

correct/incorrect specific (a) and coarse (b) response sheets. Filled circles represent the overall mean, 

boxplots represent median and 25th and 75th percentiles; whiskers represent 2nd and 98th percentile; dots 

represent the means of individual subjects. Blue represents perceptual, red conceptual responses. N = 

73 independent subjects.  

 

Discussion  

Do memories change every time we remember them? Cognitive (Carpenter, 2009; Pyc 

& Rawson, 2010) and neurobiologically motivated (Antony et al., 2017) theories 

assume that each active recall constitutes a distinct online consolidation event that 

systematically changes the nature of the memory, from an initially detail-rich episode 

to a “semanticised” version of the same event. Two questions were of central interest 

in the present study. First, we wanted to test if feature-specific probes can be used to 
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reveal this presumed perceptual-to-conceptual transformation (semanticisation) of 

memories over an initial period of consolidation. Second, we were interested if 

repeated remembering specifically boosts this transformation compared with repeated 

study, preserving conceptual information relatively more over time. 

To test our first hypothesis of a semanticisation over time, we measured how fast 

participants were able to recall perceptual and conceptual features of previously 

memorised objects on the first day, compared with how fast they accessed the same 

features 48h later. While conceptual information was consistently accessed faster on 

the immediate and the delayed memory test, the perceptual-conceptual gap 

significantly increased over the two-day retention period, suggesting that access to 

conceptual memory features was favoured over access to perceptual features across 

the temporal delay. This finding is consistent with at least two possible interpretations. 

High-level semantic information may be prioritised for active consolidation, an ongoing 

discussion in the consolidation literature (Dudai et al., 2015; Schreiner & Rasch, 2018). 

Or semantic information might be forgotten at a slower rate than perceptual 

information, a possibility we return to further below. As also elaborated below, 

hierarchical forgetting and prioritisation for active consolidation may in fact rely on the 

same mechanism. 

Recent studies do support an active and selective consolidation view. For example, 

structured, categorical information shows above-baseline enhancement from sleep, 

compared with detailed, stimulus-unique features of the memorized stimuli (Schapiro 

et al., 2017). It has thus been suggested that structured information is subject to active 

consolidation. In terms of functional anatomy, the hippocampus is most directly 

connected with late sensory areas coding abstract-semantic features of objects 
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(Felleman & Essen, 1991; Suzuki & Amaral, 1994). Moreover, concept cells in the 

hippocampus are thought to form the building blocks of episodic memories (Quiroga, 

2012). The elements (e.g., objects, people) that constitute an episode are thus likely 

bound together on the level of meaningful semantic units. During retrieval and offline 

replay, it is assumed that the linked elements belonging to the same episode are 

reactivated in a cascade that starts with pattern completion in the hippocampus, 

followed by a back-propagation into neocortex (Horner et al., 2015; Rolls, 2013; 

Staresina & Wimber, 2019). This back-propagation likely starts off with the information 

coded closest to the hippocampus, and then progresses backwards along the 

neocortical hierarchy (Linde-Domingo et al., 2019). The presumed hippocampal-

neocortical dialogue during wake retrieval and sleep might thus prioritise conceptual 

features of the reactivated memories, relative to their perceptual features that are 

coded in brain areas further removed from the hippocampus. As a result, each replay 

event would strengthen semantic information more than perceptual, further 

exaggerating the gap that is already present on the immediate recall.   

Alternatively, it is possible that the perceptual features of our visual objects were 

forgotten faster than their conceptual features. The nature of item-based forgetting is 

still under debate (Andermane et al., 2020). Some recent work suggests that the 

forgetting of perceptual features, such as colour, is independent of, and occurs faster 

than, forgetting of higher-level conceptual features such as item state or exemplar 

(Brady et al., 2013; Utochkin & Brady, 2020). In contrast, other research has shown 

that object memories are forgotten in a more holistic manner, with an interesting 

hierarchically dependent forgetting of perceptual and conceptual features (Balaban et 

al., 2020). Inspired by this work, we investigated a possible hierarchical dependency 
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of forgetting in our own accuracy patterns. We indeed saw evidence for asymmetrical 

recall, such that if participants only recalled one of the two features, they were more 

likely to remember the conceptual but not the perceptual feature than vice versa. This 

asymmetry significantly increased over the two-day delay, again indicating an 

increasing dependence of remembering on conceptual features. Together with the 

reaction time results, our findings therefore support a view of hierarchically dependent 

remembering and forgetting of single item features, with lower-level perceptual 

features having a higher likelihood of being forgotten independently of higher-level 

semantic features.  

To distinguish the contribution of active retrieval to such time-dependent consolidation 

effects, we further tested whether retrieval on the first day enhances the preservation 

of conceptual features more than restudy, a more visual type of practice that does not 

involve the same degree of intrinsic memory reactivation. In line with our second main 

hypothesis, we found a larger perceptual-conceptual RT gap on the second day in the 

retrieval group. Average reaction times indicate that this change is driven by a 

pronounced gain in conceptual feature access after repeated retrieval compared to 

restudy, rather than differences in how fast the two groups access the perceptual 

details of the stimuli. This pattern of results suggests that the semanticisation process 

is relatively stronger when the originally learned associations are immediately 

practiced by active cued recall, and it has at least two important implications.  

First, our finding has implications for theories of the testing effect, showing that active 

recall disproportionally increases the access to conceptual aspects of a memory over 

perceptual aspects. This finding resonates with the idea that each memory recall tends 

to co-activate semantically related information (McDermott, 2006), in turn facilitating 
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the integration of newly learned information into existing knowledge networks 

(Carpenter, 2009; Pyc & Rawson, 2010). In the long-term, such knowledge integration 

can then aid memory recall, as supported by the close relationship we found between 

paper-and-pencil accuracy and the RT gap on day two, such that participants with good 

episodic recall tend to show larger differences between perceptual and conceptual 

feature access on the delayed tests. Semanticisation thus seems to support episodic 

recall on delayed tests and is boosted by retrieval practice. 

Second, our results suggest that repeated remembering could be an important factor 

for representational memory changes that interacts with a subsequent period of sleep 

(see also Cairney et al., 2018). Many sleep studies carry out a memory test before and 

after sleep to obtain a difference score within subjects (Gais et al., 2006), and it is thus 

important to distinguish retrieval’s specific contribution to the observed consolidation 

effects. While the present study suggests that repeated recall can amplify time-

dependent, qualitative changes in memories, we did not manipulate whether retrieval 

was followed by a period of wake or sleep, and our results can therefore not directly 

address the interaction between retrieval practice and sleep. One recent study found 

that sleep’s benefits were indeed reduced when preceded by retrieval compared to 

restudy practice (Bäuml et al., 2014). These results, however, were interpreted as 

evidence that repeated recall can strengthen memories up to a point where they no 

longer benefit from sleep (Bäuml et al., 2014), an interpretation that is well in line with 

other reports that sleep prioritizes, or at least has a more measurable effect on, weaker 

memories (Petzka et al., 2020; Schapiro et al., 2018). In such cases, more sensitive 

tests like our feature-specific reaction time probes, or test conditions with higher 

demands (e.g. on interference control) can still be used to successfully uncover 
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consolidation effects (Petzka et al., 2020). In future studies, sensitivity and the timing 

of tests will certainly play an important role in disentangling the differential contributions 

of repeated remembering and sleep to the long-term retention of memories.  

Our findings support the idea that active testing, in terms of the neurobiological 

processes involved, mimics consolidation by relaying newly acquired information from 

hippocampal to neocortical structures (Antony et al., 2017). However, the perceptual-

conceptual gap in the retrieval group did not change with repeated remembering on 

day 1, and our results do thus not provide evidence for a “fast” consolidation (Antony 

et al., 2017) process. A very similar finding was recently reported in a study 

investigating qualitative changes in memory-specific, multivariate neural patterns 

during recall (Ferreira et al., 2019). In contrast, recent neuroimaging studies report that 

functional and neuroplastic changes can occur within a single session of rehearsal 

(Brodt et al., 2016, 2018), speaking in favour of a fast consolidation process. Why then 

do the behavioural, feature-specific changes not become visible on a more rapid 

timescale, when the neurobiological changes presumably take place? After initial 

learning and practice, hippocampal and neocortical memory traces likely co-exist, with 

the hippocampus dominating immediate recall. Delayed recall has been shown to 

depend more strongly on neocortex (Ferreira et al., 2019; Gais et al., 2006; Takashima 

et al., 2009),  in line with most consolidation theories (Marr, 1971; McGaugh, 2000; 

Nadel et al., 2012; Winocur & Moscovitch, 2011). Moreover, imaging work suggests 

that the rapid neurophysiological markers of plasticity may require a large number of, 

and more spaced, repetitions to evolve (Brodt et al., 2016, 2018), plus a further period 

of consolidation to become stabilised (Himmer et al., 2019). Retrieval practice might 

thus help to establish a neocortical trace rapidly, more so than restudy, but this trace 
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will only become behaviourally relevant at longer delays, when remembering is more 

dependent on neocortex.  

The present findings suggest that reaction times, paired with questions that 

differentially probe access to specific mnemonic features, are sensitive to the 

presumed time- and recall-dependent transformation of relatively simple, visual-

associative memories. Our feature-specific reaction time method thus lends itself well 

to testing for qualitative changes of practice and sleep on memory, and it complements 

other approaches that are commonly used. These include the scoring of 

autobiographical memories according to how much gist or detailed information 

subjects report (e.g. used in recent work Moscovitch et al., 2016); recognition-based 

measures using familiarity as a proxy for gist, and recollection as a proxy for detail 

(Guran et al., 2020); and more recently, measures of access and precision (Berens et 

al., 2020; Cooper et al., 2019). Reaction times are rarely used in memory studies. 

Object recognition work, however, shows that the speed with which participants can 

categorize objects (e.g., animate/inanimate) is well aligned with the time points when 

the same categories can be decoded from brain activity (T. A. Carlson et al., 2013; 

Ritchie et al., 2015), and a recent study tracked the back-propagation of information 

during memory recall using such feature-specific RTs (Linde-Domingo et al., 2019).  

On another important note, there is an ongoing discussion about the usage of means 

versus medians as to estimate the central tendency of RTs within subjects: While 

medians are usually closer to the centre of a skewed distribution, particularly low or 

unevenly distributed sample sizes across conditions can yield biased estimates with 

both measures (for more information see Miller, 1988, 2020; Rousselet & Wilcox, 

2020). To suit the skewed distribution of RTs, generalized linear mixed models 
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consider RTs on the single trial level and can serve as an alternative approach to 

general linear models on means and medians. Importantly, using this approach, 

previous behavioural work on perceptual-conceptual RT differences yields results that 

are in alignment with our findings (Linde-Domingo et al., 2019). Moreover, our 

behavioural results are further supported by the sequential reactivation of conceptual 

to perceptual neural processing as seen within EEG and fMRI patterns (see Linde-

Domingo et al., 2019 and chapter 3). These findings suggest that the exact choice of 

statistical analyses did not affect the outcome of the results. Together, the present 

results indicate that differential mean RTs can directly tap into the qualitative changes 

that occur over the course of memory consolidation. 

We have framed the qualitative changes as reflecting a transition along a perceptual-

to-conceptual gradient, whereas the primary terminology in the consolidation literature 

is that of an episodic-to-semantic transition (Nadel & Moscovitch, 1997; Tulving, 1972). 

These gradients are clearly overlapping in our paradigm, where answering the 

perceptual questions requires more vivid and detailed recollection than answering the 

conceptual questions. Moreover, semantic features (e.g. that a dog is animate) are 

inherent in an object’s identity, whereas our perceptual features are random bindings, 

and retrieving them should thus strongly engage episodic-associative memory 

processes. Having said that, if our reaction time task primarily measured an episodic-

semantic distinction, we would expect to see that participants with good episodic 

memory show very fast reaction times to perceptual questions, diminishing the RT gap 

to conceptual questions. On the other hand, participants with a weak memory should 

show a greater conceptual prioritisation, while losing access to perceptual information. 

Contrary to this prediction, we found that better memory accuracy (based the paper-
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and-pencil cued recall test) was related to a larger RT gap, and to faster RTs for 

conceptual features in particular. Access to the episodic trace does therefore not seem 

to scale with access to the perceptual features, even though the two processes are 

certainly not independent. We instead argue that feature-specific reaction times reflect 

the neocortical back-propagation process that follows initial access to the episodic 

trace (Linde-Domingo et al., 2019).  

In summary, using feature-specific probes, we provide evidence for the 

semanticisation of memories over time and specifically with repeated remembering. 

Our main results are consistent with a framework where the natural prioritisation of 

conceptual information during repeated retrieval (Linde-Domingo et al., 2019) has a 

lasting effect on what is being retained over time. We reconcile cognitive theories of 

the testing effect with neurobiologically motivated theories of memory retrieval, which 

posit that functional anatomy during retrieval dictates faster access to later, more 

abstract-conceptual stages of visual processing. Finally, our feature-specific RT 

probes provide a simple way to assess the qualitative changes of mnemonic 

representations over time, and might thus be useful for future consolidation studies 

using lab-based rather than autobiographical memories. 

 

Statistics and reproducibility 

Our methods and statistical results, especially the retrieval group results from day 1, 

reproduce and extend findings from one other study by Linde-Domingo et al. (2019) 

(Linde-Domingo et al., 2019, p.).  
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Chapter 5 - General discussion 
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Objectives 

The aim of this doctoral thesis was to understand the spatio-temporal neuronal 

dynamics supporting memory recall. Specifically, the first goal was to explore how the 

neural representations of episodic events unfold in the brain while an event is 

reconstructed from memory. The second aim was to study how these representations 

change with repeated retrieval.  

Regarding the first research aim, we hypothesized that retrieval follows a feedback, 

abstract and modality-independent to detailed and sensory-specific processing 

stream. We therefore conducted two experiments aimed at deconstructing episodic 

memories into their constituent components. In the first study (Chapter 2), we 

investigated if modality-independent or cross-modal representations would be 

reactivated before sensory-specific ones. To answer this research question, we 

studied memory recall in different modalities, based on simultaneously acquired EEG-

fMRI data. Participants were asked to perform a simple memory task in which they had 

to associate a dynamic video or audio clip with a random word. In a later retrieval 

phase, participants had to recall the dynamic clip after being cued with the related 

word. Using both spatially and temporally resolved multivariate analyses, we explored 

the representational structures across different brain regions, and how they unfold over 

time. We were particularly interested in examining such reactivations in sensory-

specific visual and auditory cortices, as opposed to multisensory regions including 

parietal lobe and temporal pole. 

A second experiment was aimed at unravelling the reconstructive process of memory 

recall within the visual modality, where we zoomed in on the ventral visual stream and 
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specifically explored how visual object memories are reconstructed. We hypothesized 

a reversed reactivation along the ventral visual stream reconstructing features along a 

conceptual-to-perceptual gradient. To test this hypothesis, participants were scanned 

while they associated randomly allocated verb-object pairings, and while they later 

recalled the associated object upon the presentation of the verb. To examine the 

representational information flow during memory recall in a spatially and temporally 

resolved fashion, we fused our data with an existing EEG dataset acquired using the 

same paradigm. Using multivariate analyses, we decomposed the episodic memories 

into their constituent perceptual and conceptual features, which were explicitly 

manipulated in this experiment, and then unravelled the reconstructive neural 

information processing stream. 

Regarding the second research aim, we wanted to investigate the representational 

changes of episodic memories that go along with repeated retrieval and the long-term 

stabilisation of a newly acquired memory. We hypothesized that when being repeatedly 

reactivated, memories undergo a transformation that favours conceptual features over 

perceptual ones. To test this, we used a behavioural paradigm using reaction times as 

a measure of the speed with which participants can access perceptual and conceptual 

features of a visual memory. Previous work established that such perceptual and 

conceptual reaction time measures reflect both a forward processing stream during 

visual perception, and a backward stream during memory reconstruction (Linde-

Domingo et al., 2019). In the work reported in Chapter 4, we used this method to look 

deeper into representational changes within this backward stream. Participants 

repeatedly recalled a previously learned object when prompted with an associated cue 

word, and were asked to answer a perceptual or conceptual question about the 
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retrieved object as fast as possible. Comparing their reaction time performance 

immediately after learning with the performance after a two-day delay, we investigated 

if the prioritised access to conceptual over perceptual features would be further 

enhanced after the delay. To investigate if this conceptual prioritisation was particularly 

enhanced by repeated retrieval beyond the effects of time-dependent consolidation, 

we finally compared the delayed performance of the repeated retrieval group with 

another group that instead underwent repeated study. 

 

Principal findings  

The present findings shed light onto the spatio-temporal representational information 

flow of episodic memory retrieval. Three major findings emerged from this line of 

research. First, we found that retrieval elicits a backwards information stream, 

presumably starting in the hippocampus and progressing backwards along the sensory 

processing pathways towards primary sensory cortices and additional cross-modal 

regions (Chapters 2 and 3). Second, the reversed processing stream follows a 

hierarchically descending gradient from modality-generic to individual episode coding, 

and from conceptual to perceptual representations (Chapters 2, 3 and 4). And finally, 

prioritised conceptual processing during retrieval facilitates a semanticisation of the 

reactivated memories in the long term (Chapter 4). 
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Reversed retrieval reconstruction 

Comparison of findings in Chapter 2 and 3 

In the introduction, I recapped established theories suggesting that to re-live previously 

experienced events, sensory patterns pertaining to these events need to be reinstated, 

providing the functional foundations for mental representations of recalled memories 

(Damasio, 1989; Marr, 1971; Tulving & Thomson, 1973). As previous research has 

suggested that the retrieval process starts in the hippocampus (Teyler & DiScenna, 

1986; Teyler & Rudy, 2007), I argued that retrieval follows a backwards stream from 

the hippocampus, via late sensory and cross-modal regions, before reaching 

reinstatement in early sensory areas. Such a backwards propagation during retrieval 

was demonstrated through multidimensional similarity analyses (Chapters 2 and 3). 

On the one hand, decoding EEG and fMRI activation patterns separately provided us 

with information on when in the brain and where in time different features of episodic 

memories are represented. The data fusion of the two recording modalities then helped 

us to map the temporally dynamic processes onto specific brain loci, and thereby 

unravel the spatio-temporal trajectories that memories take during their reconstruction. 

These analyses resulted in several new insights, as described in the following. 

First, the fusion attempts in both neuroimaging datasets showed that once a memory 

cue is provided to participants, retrieval-related information travels from medial 

temporal to sensory cortices. This was shown in Chapter 2 (Fig. 1.10, 1.11), where the 

fusion over both video and audio trials showed an information propagation from medial 

temporal to visual, ventrolateral temporal and parietal areas. It was also observed in 

Chapter 3 (Fig. 2.9, 2.12), where retrieval specifically of visual information followed the 

ventral visual stream in the reversed direction relative to encoding. The results 
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therefore speak for the previously suggested reversed memory retrieval stream 

(Damasio, 1989; Marr, 1971; Estefan et al., 2019; Staresina et al., 2013), that builds 

up to the eventual reinstatement of previous sensory representations (Bosch et al., 

2014; Wheeler et al., 2000).  

Further, the resulting reactivation of sensory pathways for both auditory (Chapter 2) 

and visual (Chapter 3) information was accompanied by stepwise information 

processing. First, the work in Chapter 2 showed that retrieval initiates generic modality 

processing before individual stimulus processing. Then, Chapter 3 demonstrated that 

retrieval within the visual modality also follows a conceptual-to-perceptual gradient. 

Both findings speak for a processing cascade that follows a decreasing hierarchy and 

stands opposed to perception (T. Carlson et al., 2013; Martin et al., 2018). 

Concerning the timing of reactivation, the earliest activity of medial temporal and other 

cortical regions was detected just 500-600 ms after a memory cue was provided (Fig. 

1.10, 1.11). This is the first time point that comes into consideration as a starting point 

of memory reactivation in line with previous findings on reactivation timings (for a 

review, see Staresina & Wimber, 2019). However, to detect the beginning of memory-

related reactivation processes and clearly separate these from still ongoing cue-related 

processes, the neural representation of recalled item features needs to be revealed for 

instance by content-specific classifiers. At 500-600 ms, we were not able to decode 

any retrieved clip-specific features except for the generic modality. However, the 

generic modality could be deducted even without recalling the item, because it was set 

constant within a block. This makes it questionable whether the retrieval reconstruction 

started at this point in time. About 600-800 ms later, audio-specific information was 

reinstated in neocortical temporal regions (Fig. 1.6, 1.8). At this point in time, the 
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recalled auditory clip could be decoded from the EEG. Therefore, the data suggests 

that this temporal information hub was related to the mnemonic reconstruction of item 

features. If we do assume that the recall started with our first temporal information hub 

around 550-600 ms, as suggested by previously (Staresina & Wimber, 2019), then the 

relay towards neocortical regions would have taken approximately 600-800 ms, as 

found in other studies (Estefan et al., 2019). Considering the visual representation 

transformation (Chapter 3), the relay from medial temporal (-2.2 s before button press) 

to more sensory visual areas (- 1.9 s before button press) took approximately 300-400 

ms (Fig. 2.9). The fact that the ROI correlation peaks are close in time to the conceptual 

and perceptual decoding peaks respectively, as seen in Linde-Domingo et. al (2019), 

suggests that these ROI peaks are related to reconstructive memory processes. The 

duration of the representational transformation from high to lower level cortical regions 

is therefore comparable with the findings from Chapter 2 and previous research, which 

also indicated first reinstatement around 500 ms in medial temporal, and specifically 

hippocampal regions, followed by item-specific reinstatement in the temporal 

neocortex about 500 ms later (Estefan et al., 2019; Staresina & Wimber, 2019). 

Together, our results suggest the reconstruction of specific items succeeds about a 

second after cue onset. Further, we can deduct that within the reconstruction time 

frame, conceptual information should reactive around 300-400 ms before sensory 

information.  

One finding, however, seems contradictory between the two studies. While the 

experiment in Chapter 3 demonstrates the reversed reactivation of regions along the 

ventral visual stream, including a late reactivation of early visual areas, Chapter 2 

shows fast reactivation of primary sensory areas very shortly after presentation of a 
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reminder (Chapter 2). Since there are currently no known direct anatomical backward 

connections from hippocampus to early visual cortex in the human brain, it is unlikely 

that a serial reconstruction stream originating from the hippocampus would reach early 

sensory cortices at this fast timescale (for a review: Insausti & Amaral, 2003). Further, 

the fact that we only find significant modality decoding but no specific audio/video clip 

decoding (Chapter 2) within the time frame of early sensory reactivation speaks against 

an early item-specific pattern reinstatement of those sensory visual regions. There is 

at least one possible alternative reason explaining this discrepancy between the two 

studies. Due to the blocked study design, participants of the study in Chapter 2 were 

constantly aware of the modality of the to-be-recalled stimuli. This means that 

participants were prepared to recall sensory-specific representations even before the 

onset of the cue word. Such presumed sensory-specific attention can be a major 

source for differential brain activations between modality conditions, for example due 

to enhanced sensory activations for attended and supressed activations for unattended 

modalities (Mozolic et al., 2008). Similarly, and specifically, task-specific neural 

processing activity has been found when participants prepared for memory retrieval, 

referred to as retrieval orientation (Rugg & Wilding, 2000; Herron & Wilding, 2004). For 

example, a previous study has shown that retrieval orientation towards a visual versus 

auditory recognition task enhanced activity in visual and auditory brain regions 

respectively (Hornberger et al., 2006). Similar to this study (Hornberger et al., 2006), 

the study of Chapter 2 was designed with alternating visual and auditory task blocks, 

making a retrieval orientation effect plausible. Previous research thus suggests that 

the fast, modality-generic neocortical reactivation during retrieval is likely to be related 

to a task-related preparatory processing state instead of a reconstruction related 
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reinstatement. Together, the reasons explain why a seemingly instant re-activation of 

primary sensory cortices during retrieval was found in Chapter 2 but is not evident in 

the study of Chapter 3. 

Last but not least, our neuroimaging data also demonstrated the involvement of lateral 

and predominantly medial parietal regions (including precuneus and retrosplenial 

cortex) during retrieval, which have frequently been reported in previous studies 

(Ranganath & Ritchey, 2012; Ritchey et al., 2015; Rugg & Vilberg, 2013; Wagner et 

al., 2005). In fact, both lateral and medial parietal engagement has often been 

observed during the recognition of previously seen material (Konishi et al., 2000) and, 

more related to the current thesis, the detailed recollection of episodic memories 

(Dobbins et al., 2003). Univariate medial parietal recollection effects have been found 

for both picture and auditory recall (Buckner et al., 1996), which is relevant for our 

visual and auditory study designs (Chapter 2 and 3). Importantly, domain-general 

parietal engagement during recollection has been put in relation to the previously 

discussed retrieval orientation effect. Irrespective of task performance, some studies 

found both stronger lateral parietal and medial (precuneus) activation during domain-

general recollection than during recency or novelty judgments (Dobbins et al., 2002, 

2003; Dobbins & Wagner, 2005). The parietal engagement was therefore related to 

task orientation and control mechanisms specifically during memory retrieval. The 

above findings are important for both neuroimaging studies in this thesis (Chapter 2 

and 3), as the used paradigms both used cued recall tasks, which are assumed to 

heavily rely on recollection (Yonelinas, 2002). Further, specifically in Chapter 2, and 

as previously described, a retrieval orientation effect is especially plausible due to the 
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alternating visual and auditory block design and therefore a strong parietal 

engagement is not surprising. 

The effects reported in this thesis, however, suggest a role for parietal regions beyond 

general task demands. Specifically, these regions not just showed a univariate 

increase in activation during retrieval, but also held decodable information about the 

retrieved memories. Previous work suggests that lateral (Favila et al., 2018) and 

ventral parietal regions (Long & Kuhl, 2021) do represent mnemonic information and 

that they represent both semantic and episodic information for retrieved items (Ferreira 

et al., 2019; Jonker et al., 2018). It should be noted that this observation is generally 

in conflict with most prominent neurocomputational theories of memory reinstatement, 

which all suggest that memory recall reinstates the same, or partly the same, patterns 

that were active during initial encoding (Alvarez & Squire, 1994; Damasio, 1989; 

McClelland et al., 1995; O’Reilly & Norman, 2002; Teyler & DiScenna, 1986). 

According to these computational theories, this pattern reactivation should thus be 

limited to sensory pathways, and not include additional regions like parietal lobe that 

were not involved in representing the original episode. However, several studies have 

observed such a spatial transformation of object representations between encoding 

and retrieval, from sensory to lateral, fronto-parietal regions as seen in the 

classification and searchlight fusion results in Chapter 3 (Favila et al., 2018; Xiao et 

al., 2017; Jeong & Xu, 2016; Favila et al., 2020). A recent review offers a number of 

explanations for the phenomenon and discusses the role of the parietal lobe in 

conceptual representations, enhanced internal processes, and unique retrieval-related 

control (Favila et al., 2020). While these processes can explain the enhanced 

engagement of parietal lobe in representing retrieved information, they do not yet offer 
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a satisfying account for how the transformation from sensory to parietal cortex 

representations takes place. An fMRI study using the behavioural paradigm in Chapter 

4 could be suited to further investigate the underlying spatial transfer processes within 

the brain: Comparing mnemonic perceptual and conceptual fMRI representations over 

repeated retrieval versus restudy could reveal the particular contribution of repeated 

retrieval to the spatial transfer of different memory features. Observing the 

representational changes over the course of two days (as in Chapter 4) could further 

show how repeated retrieval influences a representational transfer over time. Finally, 

it will be important to study unique contributions of different mediating factors (as 

named in Favila et al., 2020) in more detail, and more importantly, to come up with a 

unifying neurocomputational framework that can account for the memory 

transformations and their role in memory reactivation. 

Concerning the timing, both EEG-fMRI studies showed that parietal regions reactivated 

at a time point close to the reactivation of sensory-specific regions such as auditory 

(Chapter 2) and visual cortex (Chapters 2 and 3). The most likely reason for the similar 

reactivation time could be the close anatomical proximity between parietal and 

sensory-specific visual and auditory areas. Direct and indirect anatomical connections 

from hippocampus to medial and lateral parietal cortex enable the reactivation of the 

parietal cortex (Insausti & Muñoz, 2001; Kobayashi & Amaral, 2003; Kondo et al., 2005; 

Lavenex et al., 2002; Muñoz & Insausti, 2005), and from there the information could 

be relayed to visual cortex relatively directly (Selemon & Goldman-Rakic, 1988). 

Alternatively, visual information could be reactivated by indirect connections from 

hippocampus over the ventral visual stream, and then directly project from visual to 

lateral parietal areas (Baizer et al., 1991). So, due to the direct projections from parietal 
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to visual areas and vice versa, reactivations in those areas can happen closely in time. 

The comparatively late simultaneous activation of visual, parietal and also frontal areas 

just before subjective recollection (Chapter 3) additionally hints at memory and imagery 

buffer function as a preparation for the upcoming task (Baddeley, 1998; Christophel et 

al., 2012, 2017; Ganis et al., 2004; Levy, 2012; Wagner et al., 2005). 

Together, both neuroimaging studies suggest that during recall, retrieval related 

information spreads from medial temporal lobe along sensory pathways to primary 

sensory brain regions, which finally reinstate activity patterns that have previously 

represented sensory encoding patterns. Additionally, spatial transformations from 

encoding-related sensory to retrieval-related parietal regions were observed. The 

studies also suggest that during the retrieval process, representations follow a 

decreasing hierarchical gradient. 

 

Comparison of methods in Chapter 2 and 3 

I would now like to give a short recap on the observations made when comparing the 

two different designs of the neuroimaging studies. The two neuroimaging studies do 

not only differ with respect to their stimulus materials, but also general methodologies. 

The first difference is related to the general neuroimaging design. While the first 

neuroimaging study (Chapter 2) includes a simultaneously acquired EEG-fMRI 

dataset, the second study fuses the EEG and fMRI data of two separately acquired 

sessions (Chapter 3). Both bring along some advantages and disadvantages. While 

simultaneously acquired data is necessarily associated with a highly noisy EEG 

dataset and requires additional preprocessing methods (Allen et al., 1998), one 
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advantage of the study design in Chapter 2 was the ability to map not only participant-

specific, but also trial-specific recall process onto the brain in a time-resolved fashion. 

With very simple and computationally parsimonious correlation-based RSA, spatio-

temporal neural processes can be unravelled. For instance, if a strong representational 

similarity is detected within electrode correlations between certain trials, the same trials 

should also yield a strong representational similarity somewhere in the brain when 

correlating the corresponding voxel patterns. As such, trial-by-trial based temporal 

representations can be related to locations in the brain (see also Debener et al., 2006). 

In contrast, a separately acquired dataset will provide the advantage of cleaner EEG 

data. However, representations in one set of participants will likely slightly differ from 

the representations in the other set of participants (see also Scrivener, 2021). In our 

special case, where stimuli were presented in different perceptual variations between 

participants (line drawings versus photographs), spatio-temporal mapping in the 

searchlight fusion has suffered specifically within the first 200 ms under the between-

subjects design (Fig. 2.11). We believe that the design is one reason for the failure to 

show early perceptual components in the temporal domain. Equally, separate datasets 

do not allow to map temporal and spatial information on a trial-by-trial level, such that 

differences in the strength or timing of memory reactivation within a participant cannot 

be accounted for in the fusion analyses.  

The second difference between the two studies (Chapter 2 and 3) lies within the 

analytical approaches that were implemented to suit the respective simultaneous or 

non-simultaneous neuroimaging acquisition and are thus closely related to the points 

above. Comparing the correlation- and classification-based RSA methods, as 

implemented in the respective studies, it is important to elaborate on subtle but 
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important differences in the inferences that can be made based on these different data 

fusion approaches (see also Cichy & Oliva, 2020). The correlation-based method in 

Chapter 2 capitalises on the individual activation pattern differences between each pair 

of stimuli, within each participant. The representational dissimilarity matrices from this 

analysis thus reflect which stimuli are systematically represented as similar or 

dissimilar across the pool of object images within subjects. Therefore, there is no need 

for similar geometries across subjects (to give an illustrative example, one participant 

might represent a horse and a zebra as more similar, another one a horse and a 

donkey) in order to find a mapping between the EEG and fMRI patterns. Together, the 

correlation-based RSA approach thus offers a simple analytical implementation, a 

straight-forward interpretation of findings, and allows for representational variation 

across participants. 

The classification approach in Chapter 3, on the other hand, generalizes over a whole 

set of participants including the same pair of stimuli. In order to reveal a match between 

the EEG-based structures of individual participants by means of classification, 

representational distances between objects need to be relatively consistent across 

participants (see also Cichy & Oliva, 2020). To use the example above, in order to 

achieve above-chance classification, the zebra needs to be represented as equally 

similar to a horse in all participants. Importantly, the method not only requires 

consistency in the spatial patterns based on the EEG topographies, but also the 

consistency in the time course of object-evoked patterns across participants. If a 

(re)activation is slow in one participant and fast in another, the classifier will not be able 

to decode representations between subjects. These factors create a set of conditions 

that need to be fulfilled to find a match between an individual’s fMRI-based similarity 
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structure and this subject-generalized EEG-based structure, and might further explain 

the limited ability to detect early perceptual representations in the temporal domain 

(Fig. 2.11, Chapter 3). On the other hand, to point out some advantages of the 

classification-based approach, it is generally more robust as it is based on a larger set 

of trials and validated through randomisation processes (also see Misaki et al., 2010). 

Hence, considering the inter-individual stimulus pool differences and the additional 

topography differences, the classification-based similarity approach still proved to be 

powerful enough to detect some meaningful similarities between the EEG-based 

representational geometries of one participant group and the fMRI-based geometries 

of another group (Fig. 2.8-2.10 & 2.12, Chapter 3). 

Next, I would like to give a note on the choice of stimulus repetitions. Having said that 

classification-based RSAs are a more powerful tool to uncover representational 

structures within neuroimaging data sets, it is important to mention that this method 

requires a certain amount of repetitions of each given stimulus. Since the design of our 

neuroimaging study in Chapter 3 only included one repetition per stimulus, a cross-

subject classification is a useful workaround (Poldrack et al., 2009; Shinkareva et al., 

2008; Wang et al., 2020). However, a within-subject classification-based RSA would 

have been even more powerful (also see Shinkareva et al., 2008), as the results would 

have been more robust to inter-individual differences. Such inter-individual differences 

could include different temporal and spatial electrode pattern representations as 

described previously. Other important differences between individual measurements 

include anatomical, functional, performance - or electrode position related factors, 

which can additionally influence the signal and prevent successful decoding. Hence, 
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even if classifications are a handy method to perform RSA in a between-subjects 

design, it would profit from more trial repetitions within subjects.  

Comparatively, the first EEG-fMRI study (Chapter 2) included a large number of 

repetitions of each dynamic stimulus, but little inter-stimulus variability, since there 

were only four video and four audio clips overall. An important trade-off becomes 

evident here. On the one hand, using a large set of stimulus repetitions increases the 

classification power (compare Chan et al., 2011). On the other hand, the major 

downside of repeating trials is that we cannot assume that the neural representations 

remain stable across repetitions. Even in studies of visual object recognition, which 

typically use many repetitions to decode stimulus-specific patterns, neural repetition 

effects (e.g., priming, or repetition suppression (Henson, 2003; Henson & Rugg, 2003)) 

might be problematic though mostly ignored. In memory studies there are additional 

concerns when repeating stimuli across trials. For example, repeating the same 

stimulus but combining it each time with a new associate (like in Chapter 2) will likely 

lead to the build-up of memory interference over time (Anderson, 1983). Further, as 

shown in Chapter 4, repeated recall involves a transformation of memory 

representations. Even if our behavioural study of Chapter 4 only shows 

representational changes after a time delay, other studies suggest that neural changes 

can be detected immediately with repeated reactivation of memories (Brodt et al., 

2018; Brodt et al., 2016). Finally, repeated encoding of the same stimulus or 

association is generally incompatible with studying a truly one-shot episodic memory 

mechanism, and thus brings theoretical concerns (Baddeley, 2013). These factors 

have to be considered when a) choosing the stimulus design of a study and b) 

interpreting the findings.  
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I would like to conclude the methods comparison with a note on stimulus manipulation 

with additional future suggestions. This thesis aimed at deconstructing episodic 

memories into their hierarchical feature components and track their retrieval-induced 

reconstruction. The first EEG-fMRI design (Chapter 2) included a stimulus 

manipulation on the level of modality, and we could trace the different auditory and 

visual processing streams. However, the chosen stimulus manipulation did not provide 

the opportunity to resolve hierarchical representational structures along the processing 

trajectories. In other words, it is impossible to disentangle from this design whether 

lower-level or higher-level features contributed most strongly to the classification (or 

similarity) of the two modalities, and more importantly, the individual video and audio 

clips. In contrast, the second EEG-fMRI study (Chapter 3) offered us more control over 

the different levels of feature representations, explicitly differentiating between low-

level perceptual and high-level conceptual dimensions. Unfortunately, the failure of the 

planned fusion of simultaneously acquired EEG and fMRI data (Chapter 3) did create 

difficulties in tracking perceptual processing in the fusion approach, because 

perceptual format was not held constant for a given object across participants. In other 

studies, the same perceptual and conceptual feature manipulation has proved itself as 

useful to demonstrate memory representations in the temporal EEG domain (Linde-

Domingo et al., 2019) and behaviour (Lifanov et al., 2021).  

Together, the two neuroimaging studies provide two alternative methodological 

examples how to track spatio-temporal processes in the brain during perception and 

memory retrieval. This thesis provides some insight on the advantages and 

disadvantages of the two approaches, which should be considered in future data fusion 

studies. 
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Retrieval enhances semanticisation 

Comparison of findings in Chapter 3 and 4 

At the beginning of this thesis, I introduced the hypothesis that repeated retrieval 

enhances conceptual over perceptual access beyond the effects of time- and sleep-

dependent consolidation. In the present work, we used feature-specific reaction times 

as a measure of access to mnemonic information at different levels of the presumed 

visual processing hierarchy. Both Chapter 3 and Chapter 4 speak for a faster access 

to conceptual than perceptual features of recalled episodic memories and replicate 

previous findings (Linde-Domingo et al., 2019). Specifically, a conceptual-to-

perceptual access stream was shown in RTs in Chapter 4 and even Chapter 3 (due to 

premature retrieval button press, see discussion in Chapter 3). In addition, Chapter 4 

demonstrates that with repeated retrieval practice, conceptual access is further 

facilitated over perceptual access, and this increasing gap in feature access can be 

observed after a delay of 2 days. It is noteworthy that both the verb cue and the object 

were meaningful stimuli and thus there could be a general tendency to process the 

conceptual meaning of the verb-object association over the perceptual details of the 

object during the encoding process. This is important as the levels-of-processing 

framework suggests that semantic processing at a very deep operational level leads 

to more elaborate and more memorable traces (Craik & Lockhart, 1972). Further, 

according to the transfer-appropriate-processing framework (Morris et al., 1977), 

memory is best when retrieval processes match those at encoding (also see Tulving & 

Thomson, 1973). Hence, one could argue that a general tendency to encode the 

meaning of an event over the perceptual detail will lead to the enhanced conceptual 

reactivation and consolidation within successful memory (Morris et al., 1977). 



188 

 

However, we argue that neither the level-of-processing effect nor transfer-appropriate-

processing can solely describe the enhanced semanticisation of recalled memories, 

as our restudy control group underwent the same encoding conditions, however this 

group did show a significantly smaller (in fact, absent) conceptual-perceptual reaction 

time gap on the second day. For this reason, the advantage of conceptual over 

perceptual access cannot be a trivial effect of attending the meaning both during 

encoding (and re-encoding) but must be specifically enhanced with retrieval practice. 

These findings of increased conceptual access are plausible with respect to the 

backwards propagating reconstruction stream (Staresina & Wimber, 2019) that was 

shown during retrieval in Chapter 3. We demonstrated that late regions along the 

ventral visual stream, assumed to hold conceptual representations, get re-activated 

before earlier visual regions that are involved in lower-level perceptual representation. 

Due to this temporally prioritised reactivation, the connection between the 

hippocampus and ventral visual regions presumably likely benefits more from the 

retrieval process than the connection between the hippocampus and more distant 

posterior visual regions. The hippocampal-ventral cortical dialogue during repeated 

retrieval will in turn facilitate access to conceptual features (Dudai et al., 2015; 

Frankland & Bontempi, 2005; Winocur & Moscovitch, 2011), as shown in Chapter 4.  

As discussed in Chapter 4, we thus suggest that the recall-induced memory 

reactivation causes retrieval-induced plasticity in the connections between the 

hippocampus and neocortex, as well as within the semantic network. The simultaneous 

activation of these different nodes is assumed to enable such a long-term plasticity 

(Hebb, 1949). The relay from hippocampal towards neocortical structures is in 

agreement with several previous computational theories and functional findings 



189 

 

(Antony et al., 2017; Brodt et al., 2016, 2018; Ferreira et al., 2019). The work in this 

thesis does not give any direct insight into the neural changes that occur beyond the 

first day of practice, as our imaging studies do not include a second testing day. 

However, the behavioural work in Chapter 4 suggests that retrieval-induced conceptual 

embedding of episodic memories is especially strengthened over time, suggesting that 

the semanticisation becomes specifically evident when hippocampal traces might 

decay (see discussion in Chapter 4 and Ferreira et al., 2019). 

Comparing Chapter 3 and 4, both studies thus consistently show the priority of 

conceptual representations during retrieval in the temporal domain and speak for a 

gradually increasing conceptual-perceptual gap with repeated remembering. The 

dominance of conceptual features during retrieval was not only shown in the temporal 

domain, but also in the stronger spatial representation within fMRI patterns (Chapter 

3), faster reaction times and higher accuracies for conceptual than perceptual 

questions (Chapters 3 and 4). Altogether, these results favour the view that the 

anatomy of the brain and its inherent connections dictate a) what features are most 

likely to be accessed and b) how likely these features are to become strengthened or 

weakened over time.  

Summarized, we can conclude that memory access to certain features is accompanied 

by re-establishment of these feature representations, that is, reinstatement on a neural 

level. For instance, while conceptual features seem to be more strongly represented 

in the brain and prioritised in time, they are also more accurately recalled than 

perceptual features (Chapter 3 and 4). Our findings thus support the idea, introduced 

at the beginning of the thesis, that sensory brain representations during initial 

perception provide the scaffold for reactivated memory representations (Mitchell & 
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Johnson, 2009; Tulving & Thomson, 1973). Together, both studies show that retrieval 

is a non-exhaustive reconstructive process and stimulates the stabilisation as well as 

the transformation of newly acquired episodic-associative memories.  

 

Comparison of methods 

Chapter 3 and 4 both make inferences about neural processes during retrieval. 

Previously, reaction times have often been used in research on perception. For 

instance, in the field of vision research, reaction times were used to study the dynamics 

of natural and artificial object (VanRullen & Thorpe, 2001) or context (Joubert et al., 

2007) processing. Importantly, it was found that behavioural measures of perception 

are highly related to brain representations and can thus be used to make inferences 

about the underlying neural processes (Contini et al., 2021). Only few studies have 

taken the next step and used reaction times as indicator of neural processes during 

memory retrieval. Some that did have shown that similarly to encoding, the 

categorization speed during recognition (e.g. familiar/non familiar, Barragan-Jason et 

al., 2015) and active memory recall tasks (e.g. drawing/picture or animate/inanimate 

Linde-Domingo et al., 2019) is closely related to temporal decoding peaks of the same 

categories and can thus be used to make inferences about neural processes. Our 

studies (Chapter 3 and 4) used a similar memory recall paradigm to deconstruct 

episodic memories into feature representations, and even went a step a further to see 

how these representations change with time and repeated testing. On the one hand, 

the RT patterns demonstrate differences in feature access during retrieval (Chapter 3) 

and showed a strong relation to the neural dynamics during feature reconstruction 

(Chapter 3). On the other hand, RTs showed how feature access and presumably 
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related feature representations change with time and repeated testing (Chapter 4). 

Both studies confirmed that RT measurements can be a useful method to study 

retrieval and even consolidation processes. 

While both studies used the same simple memory paradigm in which participants had 

to encode and recall pictures of objects, there was one difference in the sequential 

order of tasks, which is important with regard to the research objectives of the two 

studies. In Chapter 3, participants were asked to recall the object upon the presentation 

of a cue and push a button to indicate successful retrieval. Only after this button press, 

they were asked to answer a question about perceptual or conceptual features. 

Introducing a button press to mark successful retrieval was supposed to provide us 

with an indication of the time when the episodic memory was mentally reinstated. This 

timing was meant to provide a useful anchor to align the trials to, such that if there was 

a consistent reactivation cascade leading up to the subjective recollection, 

representations would be better aligned in time between trials and between subjects 

(see Linde-Domingo et al., 2019). This was supposed to facilitate signal detection 

within the EEG, especially in the case when some participants took more time to recall 

an object than others. In contrast to the design in Chapter 3, the retrieval task in 

Chapter 4, which was not accompanied by any neuroimaging methods, started with 

the presentation of the question and was immediately followed by the verb cue, 

skipping the subjective retrieval button press. Hence, in this case, reaction times were 

used to offer us direct insight into the speed of access to perceptual and conceptual 

memory features. The studies thus provide two alternative examples of how to use 

reaction times in retrieval paradigms a) to indicate subjectively completed retrieval and 
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b) to directly measure timing between different feature reconstructions, showing how 

beneficial the use of reaction times in retrieval studies can be. 

In conclusion, feature-specific reaction times proved themselves as useful indicators 

of the timeline of reconstructive retrieval processes. They can not only be used as 

indicator for completed reinstatement (Chapter 3) but also as indicator for partly 

reconstructed episodic memories, including their specific features at different 

processing stages (Chapter 4). Additionally, we showed that they can measure 

representational changes at retrieval between different time points (Chapter 4). Finally, 

the use of RTs in combination of neuroimaging offers a complementary and powerful 

method to draw conclusions about the speed of neural processes. 

 

Future directions 

The studies in this doctoral thesis have given us insight into the spatio-temporal 

dynamics of feature reactivation in episodic memory. Specifically, the work 

demonstrates a temporal gradient of the reconstructed representations, from modality-

generic to sensory-specific representations within the auditory and visual domain, and 

from conceptual to perceptual representations within visual retrieval. Finally, it provides 

insight into how representations change over time and with repeated retrieval. Below I 

discuss a number of gaps in our understanding of episodic memory retrieval that 

should be addressed in future research. 

One future research aim might lie in further backing up the evidence for a reversed 

reconstruction stream by means of methods that allow for causal rather than 

correlational conclusions. Throughout this thesis, our work is based on a the working 
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hypothesis that the reconstruction stream is serial and backwards propagating (see 

also Staresina & Wimber, 2019). Evidence from this thesis speaks in favour of the latter 

assumption of a backwards propagating stream, with a reconstruction process 

following hierarchically decreasing processing stages along sensory pathways in a 

reversed order with relation to encoding. However, the directional information flow 

between the conceptual and perceptual hubs has not been considered within the 

projects of this thesis. Other studies do suggest directional information progression at 

earlier stages of memory activation, specifically between hippocampus and neocortex. 

For example, one study implemented a cross-correlation analysis on intracranial 

electrodes in the hippocampus and neocortex and demonstrated directional coupling 

from hippocampus to neocortex during retrieval, as reversed to encoding (Griffiths, 

Parish, et al., 2019). In a future project, it would be informative to additionally 

investigate directional coupling between high- and low-level neocortical regions along 

the ventral “what” streams and directly link the coupling to feature representations 

within these areas. This could, for example, be implemented by means of granger 

causality analyses on an MEG dataset (Michalareas et al., 2016) or dynamic causal 

modelling (Friston et al., 2019). Such a functional connectivity analysis between 

different cortical regions could potentially depict the serial trajectory and direction of 

information progression more clearly.  

Regarding the assumption of a serial reactivation stream, neurostimulation such as 

transcranial magnetic stimulation could be used to further unravel the dependencies 

between the different stages of the retrieval related trajectories. Even if the directional 

flow between regions was established, it is well possible that some neocortical regions 

depend on the previous reactivation of a preceding region, while others are reactivated 
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in parallel. The dependency analysis in Chapter 4 provides some indication that late 

perceptual stages of the reconstruction cascade depend on earlier conceptual stages. 

To fully establish such a temporal dependency, TMS or other invasive stimulation could 

be used to interfere with memory reactivation at a given stage of processing, and 

examine the knock-on effects on later reactivation stages (for example see Busan et 

al., 2009; Ellison & Cowey, 2007; Nyffeler et al., 2002). To give an example, Chapter 

3 suggests that the information flow supporting retrieval of visual information 

progresses from the hippocampus over ventral temporal cortices to early visual 

cortices. As such, interrupting information flow from the ventral temporal cortices might 

prevent reinstatement in the visual cortex, which would prove that information reaches 

the visual cortex via feedback propagation from more ventral areas. Relating the 

neuroimaging findings to behaviour, we would further expect that perceptual but not 

conceptual recall would be interrupted. Such methods would lay down a strong 

foundation for the demonstration of a serial reverse stream and additionally establish 

causalities between neural representations and behavioural performance. 

Another future research goal lies in completing the picture of what information is 

contained in a reconstructed episodic memory. As introduced in the beginning of this 

thesis, episodic memories have many more features and dimensions than those that 

have been addressed in this thesis. In particular, there is much room to explore various 

contextual features (Tomita et al., 2021). One typical feature, for example, is contextual 

information about the location in which an event occurred. In Chapter 2, I described 

that spatial information follows a different pathway than information about object 

identity while an experience is being encoded into memory. Moreover, there is some 

work suggesting that spatial context plays a special priority role for episodic memory, 
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providing the scaffold on which episodic memories are built and reconstructed (Robin 

& Olsen, 2019). It would be interesting to investigate how feature reactivation proceeds 

along the dorsal pathway when spatial information is recalled from memory. Does 

spatial reconstruction also follow a reversed processing stream? And what is the 

temporal order in which contextual and item features are reconstructed? Do these two 

sources of information get reconstructed simultaneously, or consecutively? And does 

information about one source aid the reconstruction about the other? Our two EEG-

fMRI studies show us the involvement of dorsal regions (such as the parietal lobe) in 

memory reconstruction, which may be related to the reconstruction of contextual 

spatial information about the previously encoded episodes (Ritchey & Cooper, 2020). 

However, our stimulus manipulations have not tapped into spatial representational 

structures and as such, we could not make any inferences on spatial-contextual 

processing. Since spatial-contextual information is one of the hallmark features of 

episodic memory, future studies should address this matter.  

Similarly, emotional features are an important characteristics of episodic memories and 

strongly shape memory organization (Dunsmoor et al., 2015; Tomita et al., 2021). It 

has been shown that emotional context during the initial experience can enhance the 

retention of memories with the passage of time (Yonelinas & Ritchey, 2015). Many 

studies have pointed out the important role of the amygdala in the memory 

enhancement related to emotional context (Murty et al., 2010). For instance, it was 

proposed that the amygdala can boost perceptual processing and conceptual 

evaluation (Murty et al., 2010) and is responsible for emotional association (Yonelinas 

& Ritchey, 2015). While these ideas put focus on the engagement of the amygdala 

during encoding, it would be informative to see how the amygdala is involved in the 
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reconstructive process of memory retrieval. Under the assumption of an (at least partly) 

serial reconstruction process, it would be specifically interesting to see at which stage 

the amygdala gets involved and whether its engagement speeds up or qualitatively 

improves the neocortical reinstatement. Finally, to improve our understanding of the 

role of the amygdala in memory reconstruction, we could study the interaction between 

amygdalar, MTL and neocortical processes over prolonged consolidation periods, and 

how their involvement in turn alters memory representations over time.  

Spatio-temporal and emotional context are just two examples of contextual features 

that are likely to influence the retrieval process. In a natural everyday environment, 

more complex associations, such as social context, purpose or value play an additional 

role in memory formation (Paulus et al., 2021; Sonkusare et al., 2019; Tomita et al., 

2021). In future attempts, a higher resolution of feature dimensions and contexts would 

thus be helpful to track the hierarchical development along the retrieval pathway, 

ultimately showing near-gradient like information transformation. The usage of 

naturalistic stimuli could further aid our understanding of memory formation and recall 

in a complex associative environment (Sonkusare et al., 2019). 

Finally, further investigation needs to be done on the role of retrieval in the 

consolidation process. Chapter 4 showed that repeated retrieval in combination with 

extended retention periods enhances semanticisation, a process previously related to 

sleep-dependent memory consolidation (Antony et al., 2017). While online recall and 

offline consolidation during sleep are believed to share some common mechanisms, 

the difference in their respective functions, and the interaction between sleep and 

retrieval, have not yet been fully established. We know that both processes include a 

reactivation of memories: Retrieval is believed to actively reactivate memories via a 



197 

 

hippocampal-neocortical dialogue (Antony et al., 2017), which ultimately leads to the 

reinstatement of perception-related cortical patterns. Sleep also involves memory 

reactivation as shown within neural replay of previous encoding representations in rats 

(Wilson & McNaughton, 1994), and memory circuit reactivation during slow-wave sleep 

in humans (Rasch et al., 2007), strongly related to improved memory performance 

(Ramadan et al., 2009). Consolidation theories propose that the cortical reactivation 

integrates newly learned information with schematic concepts, which ultimately 

stabilizes memories and leads to a semanticisation (Dudai et al., 2015; Frankland & 

Bontempi, 2005; Káli & Dayan, 2004; Winocur & Moscovitch, 2011). Although some 

studies have looked at interacting effects of sleep and retrieval (Bäuml et al., 2014), it 

would be informative to understand their overlapping and unique contributions to 

memory consolidation from a functional and mechanistic point of view. A fully balanced 

mixed study design comparing two performances before and after wake versus sleep 

periods while half of each condition is grouped into a restudy and the other half into a 

repeated retrieval task, could shed some more light on the specific contribution of 

retrieval and sleep dependent memory consolidation.  

Summarized, I hope to have stimulated some future questions to investigate when 

studying memory retrieval processes. The last decades have seen a big leap in 

discovering the underlying neural processes and evolving representations, but there 

are many factors possibly mediating retrieval reconstruction and partly leading to 

enhancement or impairment of retrieval. Understanding retrieval and its interaction with 

the contextual environment (Mitchell & Johnson, 2009) may also lead to discoveries 

that can help us to treat pathological cases, when retrieval is not functioning. 
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Conclusions  

Episodic memories are crucial parts of our identities as human beings. They mark our 

autobiographies and help us understand the world around us. It is truly fascinating how 

our minds and brains can capture the events in such richness and form retrievable 

representations of them. Previous research has shown that episodic memories start of 

as sensory experiences that carry multi-sensory, multi-layered and multi-dimensional 

features. The different features unfold as they progress along the sensory pathways 

before being encoded as memories. In this doctorate thesis, it was shown that retrieval 

follows a reversed processing stream with respect to perception and follows a 

hierarchically decreasing gradient. Further, it was shown that due to this retrieval 

gradient, high-level conceptual features of a memory are strengthened and therefore 

disproportionally enhanced over lower-level features with repeated retrieval. Contrary 

to the idea that retrieved episodic memories are instant photocopies of events, this 

thesis therefore rather confirms the view that memory recall is a reconstructive process 

that is subject to transformation (Mitchell & Johnson, 2009). Together, the current 

findings give insight into the spatio-temporal feature representations of reactivated 

episodic memories and hopefully stimulate a lot of further investigation on the 

reconstruction of episodic memories. 
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