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Abstract

This thesis concerns the transport of fermions through a one-dimensional channel. I consider two three-
dimensional reservoirs that contain BCS superconductors, that are connected via weak tunnelling junc-
tions to a one-dimensional channel in which the fermions have attractive interactions. The current
through the channel is entirely driven by the phase difference in the superconducting order parameters
of the two reservoirs. I theoretically investigate the current as a function of phase difference and show
that the flow has characteristics that are completely distinct from an equivalent system without attrac-
tive interactions between fermions. As a perturbative solution fails for attractive fermions, I develop a
non-pertubative mean field description of the fermionic current. With the inclusion of fluctuations in this
mean field solution, I show that the system of fermions with attractive interactions can identically map
onto a system of bosons in the same geometry, with Bose-Einstein condensate reservoirs. I show that
the novel features of the bosonic flow are retained in the attractive fermionic system, namely the two
seperate branches of the mean field solution. I show that these branches are degenerate at an applied
phase difference of π, and that the degeneracy is robust against fluctuations. I compare this degeneracy
in the attractive fermionic and bosonic systems to the topologically protected degeneracy in nanowires
that host Majorana zero modes.

ii



Acknowledgements

This work would not have been possible without the help and guidance of my supervisors, Dima Gangardt

and Igor Lerner. Thank you for the support when my research hit dead-ends, as well as the countless

conversations about interesting physics.

I would also like to thank the rest of the academic staff of the Theory Group, for making every seminar

and journal club interesting with your constant questions.

Thank you to all Theory PhD students, past and present, for creating the most friendly and welcoming

office environment I could have asked for. I will miss our afternoons comparing the ways we write the

different Greek letters! In particular I would like to thank a few groups of colleagues; Jack Gartlan,

Manjinder Kainth and Jordan Moodie for being the wise elders of the group and encouraging me on

sporting endeavours; Rose Davies, Enrico Martello and Ewan McCulloch for being brilliant officemates

and putting up with any random questions that I had; and finally Chris Oliver and James Pallister for

diligently proof-reading various chapters of this thesis.

I would like to thank my housemates, Will Barker, Mike Clark, Tom Loveland and Ben McCanna for

the non-stop jokes and memorable game nights that we spent together.

I thank Hayley Whelan with whom I have shared many of my happiest moments with. Our adventures

across Birmingham and Gloucestershire have been the best distraction from work.

Finally, a special thanks goes to my parents and sister for their immense support during the last four

years and throughout my life. I would not be able to achieve what I have without their encouragement

and belief in me.

iii



Contents

0 Introduction 2

I Concepts Background: Physics 4

1 Quantum Matter 5

1.1 Bose-Einstein Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Quantum Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Interacting Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Introduction to BCS Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Ginzburg-Landau Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 The Josephson Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.4 Cold Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 One Dimensional Physics 19

2.1 Why is 1D Weird? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Luttinger Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Spinful Luttinger Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Functional Bosonisation of Chiral Fermions . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Scattering Processes & Spin-Charge Separation . . . . . . . . . . . . . . . . . . . 26

iv



3 Majorana Zero Modes 31

3.1 The Kitaev Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Bulk-Edge Correspondence in the Kitaev Chain . . . . . . . . . . . . . . . . . . . . 34

3.2 Majorana Fermions in “Real” Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 What features are needed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Semiconductor-Superconductor Nanowires . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 The Bosonised Nanowire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

II Concepts Background: Mathematics 45

4 Functional Integration 46

4.1 Introduction to Functional Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 BCS Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 BCS Path Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Luttinger Liquid Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Renormalisation Group 57

5.1 How to perform RG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Single Impurity in a Luttinger Liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Sine-Gordon Impurity in a Luttinger Liquid . . . . . . . . . . . . . . . . . . . . . . . . . 62

III Results 66

6 The Bosonic System 67

6.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Mean Field Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.1 RG Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.2 Degeneracy & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

v



7 The Fermionic System 81

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Generating Effective Tunnelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4 Fluctuational Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4.1 Renormalisation Group Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5 Mean Field Solution & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.5.1 Classical Stability of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5.2 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5.3 Degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8 Conclusions 105

IV Appendix 107

A Mathematical Smörg̊asbord 108

A.1 Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2 Sherman Morrison Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vi



List of Figures

1.1 Condensate fraction as a function of temperature . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Bogoliubov dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Cartoon illustrating phonon-mediated attraction between two electrons . . . . . . . . . . . 14

2.1 Cartoon of Particle Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Examples of labelling functions, Θ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Illustration of pairings of Majorana fermions in the Kitaev chain. . . . . . . . . . . . . . . 33

3.2 Spectrum of Kitaev model (N=25) vs µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Cartoon illustrating the symmetry protection of the MZMs in the Kitaev chain. . . . . . . 36

3.4 Plots of h(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Cartoon illustrating Andreev Reflection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Andreev spectra for semiconctor-superconductor nanowire . . . . . . . . . . . . . . . . . . 42

6.1 Schematic of the geometry of the bosonic system . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Phase profile along the channel. The blue lines show a symmetric solution where φL = φR.

The red lines show an asymmetric solution where φL = 2π + φR. . . . . . . . . . . . . . . 74

6.3 Plots of the mean field energy of the bosonic system . . . . . . . . . . . . . . . . . . . . . 75

6.4 Plot of the current in the bosonic system as a function of phase difference . . . . . . . . . 76

7.1 A cartoon of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vii



“Such a life, with all vision limited to a Point, and all motion to a Straight Line, seemed to me

inexpressibly dreary; and I was surprised to note the vivacity and cheerfulness of the King”

- A. Square, commenting on life in One Dimension in ‘Flatland’ by Edwin Abbot.



Chapter 0

Introduction

Ever since the first experimental observation of a Bose-Einstein condensate over 25 years ago, the study

of cold atoms has been a hot topic in condensed matter research. In the lab, these cold atom systems

offer much greater flexibility and control over parameters than in the solid state. Recent experiments

have been able to cool many different species of atom (both bosonic and fermionic), and also engineer

a myriad of different interactions between them [1, 2, 3, 4, 5]. This has allowed for various theoretical

models to be simulated and explored in the lab.

This thesis is concerned with the transport of ultracold fermionic atoms in a one-dimensional geometry.

I consider a system that consists of two three-dimensional reservoirs that contain BCS superconductors,

connected to a one-dimensional channel through weak tunnelling links. I consider a the current that flows

through the channel, as a function of the phase difference between the two reservoirs. This geometry

has been considered for fermions with repulsive interactions [6, 7] and bosons with repulsive interactions

[8] and these systems behave significantly different. In this thesis I investigate the current when the

fermions have attractive interactions in the channel. I show that the behaviour can be exactly mapped

onto the bosonic system previously considered, and I draw some links from these systems to those that

are predicted to host Majorana fermions as edge modes [9, 10].

This thesis is made of three parts, first of which is an introduction to the topics in physics that are

relevant to understand the results. In chapter 1 I introduce the concepts of Bose-Einstein condensation

and superconductivity. I also introduce the phenomenon of the Josephson effect, which is critical for
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describing currents between quantum-coherent systems. Chapter 2 focuses on one-dimensional physics

and the oddities of describing systems of bosons and fermions in one spatial dimension. I introduce

the concept of a Luttinger liquid, and explain the concept of bosonisation which is used to describe the

low energy behaviour of one-dimensional systems. In chapter 3 I provide an introduction to Majorana

fermions in condensed matter systems. I start with the intuitive model of the Kitaev chain, before moving

onto describing the solid state systems predicted to host the Majorana fermions as edge modes.

In the second part of this thesis I cover the mathematical techniques I require to attain the results

in part III. The first technique, covered in chapter 4, is functional integration. I calculate correlation

functions of BCS superconductors and Luttinger liquids. In chapter 5 I explain the technique of the

renormalisation group, which I illustrate with two examples of impurities in Luttinger liquids.

In the third part I present the main results of the thesis. In chapter 6 I show the results obtained by

Simpson et. al. [8] for the bosonic system, and I highlight the links that this system has to the Majorana

systems described in chapter 3. Chapter 7 is my own work, and is to be published as a pre-print. I

introduce the model of interest and then show that it can be identically mapped onto the bosonic system.

Some pieces of mathematics required for the results in chapter 7 are included in the appendix.
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Chapter 1

Quantum Matter

The physics of quantum matter can be dated back to prehistory, with the discovery of lodestone and other

itinerant ferromagnets. Little did our ancient ancestors know that to describe the emergence of this state

of matter, you would need a many particle quantum theory. Quantum matter can be broadly defined

as any material, which has properties that are described by quantum mechanics. The study of quantum

matter is a broad subset of condensed matter physics, coming into prominence in the 20th century

with various experimental discoveries and the development of quantum theories to describe them. First

of these discoveries came in 1911, with the discovery of superconductivity in mercury by Kamerlingh

Onnes. When cooled to cryogenic temperatures, Onnes found the electrical resistance of mercury to

drop abruptly to almost zero. Further metals were found to superconduct, and various theories were

proposed to explain the origin of superconductivity [11]. The theories that are relevant to my work are

the Ginzburg-Landau theory, a phenomenological theory based on Landau’s theory of phase transitions,

and BCS theory, a microscopic theory that explains the mechanism that underlies many superconductors.

In section 1.2 I shall give a qualitative overview of BCS and Ginzburg-Landau theory, and some relevant

phenomena related to superconductivity.

Concurrent to these discoveries was investigation into a different phenomena, that of Bose-Einstein

condensates. A Bose-Einstein condensate (BEC) is a state of matter first predicted by Albert Einstein

and Satyendra Nath Bose in 1924 [12]. It arises from Bose-Einstein statistics, that allow for any number

of quantum particles to occupy the same energy level, and is where a macroscopic fraction of particles are

5



1.1. BOSE-EINSTEIN CONDENSATION

in the ground state energy. The initial prediction was based on a model of a non-interacting Bose gas,

and the decades that followed more detailed models were developed to describe BECs with interacting

particles. The experimental realisation of a BEC came in 1995, with Eric Cornell and Carl Wieman’s

group as well as Wolfgang Ketterle’s group creating BECs out of laser cooled groups of alkali earth atoms.

Since then more species of bosonic atoms have been condensed and techniques have been developed to

control the inter-atomic interactions. The level of control you can have over a system of cold atoms

has made them an ideal platform to investigate the behaviour of various theoretical models, which are

unsolvable or unscalable through classical computational means. In section 1.1 I shall give a theoretical

overview of Bose-Einstein condensation, including how to find the dynamics and dispersion relation of a

weakly interacting Bose gas.

1.1 Bose-Einstein Condensation

1.1.1 Quantum Statistics

When describing more than one particle in quantum mechanics, the nature of the joint wavefunction,

|ψ1, ψ2〉, under swapping of particles needs to be considered. There are two possibilities1, either the

wavefunction is symmetric or antisymmetric under exchange of particles, |ψ1, ψ2〉 = |ψ1〉 |ψ2〉±|ψ2〉 |ψ1〉 =

± |ψ2, ψ1〉. The exchange symmetry has a profound effect on the counting statistics of the particles, with

symmetric exchange particles being described by Bose-Einstein statistics and similarly antisymmetric

exchange having Fermi-Dirac statistics. These particles are called bosons and fermions. For a non-

interacting gas of bosons, the average occupation number of an energy level εi is given by the Bose

distribution,

nB(εi) =
1

eβ(εi−µ) − 1
, (1.1.1)

1In three dimensions. In two dimensions fractional statistics are possible, where an arbitrary phase is accumulated
through particle exchange. In one dimension things are slightly different, as discussed in chapter 2

6



1.1. BOSE-EINSTEIN CONDENSATION

where β = 1/kBT and µ(T,N) is the chemical potential which is set by the total number of particles,

NB =
∑
i

nB(εi) =

∫
dε g(ε)nB(ε), (1.1.2)

where g(ε) =
∑
i δ(ε − εi) is the density of states. Similarly, non-interacting fermions obey the Fermi

distribution,

nF(εi) =
1

eβ(εi−µ) + 1
. (1.1.3)

At high temperatures, both of these distributions are approximated by the classical Maxwell-Boltzmann

distribution, nB,F ∼ e−β(εi−µ), where the probability of finding a particle in any one state is exponentially

small. The implications of these statistics are two inherently quantum ena. For fermions this is the Pauli

exclusion principle, where no two fermions can be in the same state. The occupation number of any one

state cannot exceed one, which at T = 0 leads to fermions occupying all of the lowest energy levels up to

the Fermi energy, εi = µ(T = 0, N) ≡ εF.

For bosons, their statistics leads to Bose-Einstein condensation. Below a critical temperature, Tc, the

ground state becomes macroscopically occupied (N0/N is of order 1). To see how this occurs we shall

look at calculating the number of particles at this critical temperature. For the bose distribution Eq.

1.1.1 the chemical potential is always smaller than the lowest energy level, ε0, which can be set to zero

without loss of generality. As temperature decreases, µ reaches its maximum value of 0 at Tc. For a

Bose gas of mass m, in a box of volume V , the density of states is, g(ε) = V
√

2m3ε/2π2~3. The critical

temperature is then calculated from Eq. 1.1.2 with the dimensionless energy x = βε,

N(Tc)

V
=

√
2m3

2π2~3
(kBTc)

3/2

∫ ∞
0

dx
x1/2

ex − 1
=
g3/2(1)

Λ3(Tc)
. (1.1.4)

Here, Λ(T ) =
√

2π~3/mkBT is the thermal de-Broglie wavelength and gp(z) = 1
Γ(p)

∫∞
0

dx xp−1

z−1ex−1 is

the Bose function which takes the value, g3/2(1) = ζ(3/2) = 2.612. As the temperature decreases

beyond Tc, the chemical potential remains at 0 but and so it seems that the total number of particles

is decreasing as N(T ) ∝ T 3/2. This is remedied by remembering that the ground state isn’t counted by
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1.1. BOSE-EINSTEIN CONDENSATION

N0

N

T

1

Tc

Figure 1.1: Graph showing the condensate fraction as a function of temperature. Above the critical
temperature, Tc, there is no condensate. Below Tc, the ground state is macroscopically occupied.

the integral Eq. 1.1.2, and therefore the remaining particles must be populating the ground state. The

ground state occupancy, defined as the difference between total particles and number of excited particles

N0 = N −Nex(T ), has the temperature dependence (plotted in figure 1.1),

N0 = N

[
1−

(
T

Tc

) 3
2

]
(1.1.5)

At zero temperature all of the particles are in the ground state, however many of the interesting

properties that arise from the quantum coherence of the condensate will be present for fractions that

don’t necessarily seem large. If N0/N ∼ 1/100 in an experiment with 105− 106 atoms, then you will still

have a condensate consisting of ∼ 104 particles.

1.1.2 Interacting Bosons

A non-interacting Bose gas is a pathological problem, as it has divergent compressibility. In reality if

you were to compress a Bose gas, the particles will interact through some two body scattering. This

interaction between particles will always be present and for all cases that we consider will be repulsive.

In terms of the field operator; Ψ̂(r) =
∑
α ψα(r)âα, the macroscopic occupation of the ground state can

be expressed as, 〈â†0â0〉 = N0 � 1. Since the condensate has such a large particle number in it, creating

or annihilating a particle doesn’t change the state noticeably. That means we can take the creation and

8



1.1. BOSE-EINSTEIN CONDENSATION

annihilation operators to just be a number, a0 = a†0 =
√
N0. All other number operators are much smaller

which means that the bosonic field operator can be expressed as the ground state plus fluctuations:

Ψ̂(r) = Ψ0(r) + δΨ̂(r) =
√
N0ψ0(r) +

∑
α6=0

ψα(r)âα. (1.1.6)

In this description, Ψ0(r) is given by the mean value of the quantum mechanical operator Ψ0(r) =

〈Ψ̂0(r)〉, which for the condensate is a complex number with a defined modulus and phase. It plays the

role of a macroscopic wavefunction for the condensate, also known as an order parameter in the context

of phase transitions. We can use the order parameter to describe a condensate made up of bosons in

a potential that have repulsive interactions. For bosons in a potential U(r, t) and contact interactions

parameterised with interaction strength g, the Hamiltonian is,

Ĥ =

∫
dr

[
~2

2m
∇Ψ̂† · ∇Ψ̂ + (U(r, t)− µ)

∣∣∣Ψ̂(x)
∣∣∣2 + g

∣∣∣Ψ̂(x)
∣∣∣4] . (1.1.7)

The interaction strength g can be related back to the s-wave scattering length by g = 4π~2as/m. Through

the Heisenberg equation of motion for Ψ̂, i~ ∂
∂t Ψ̂ = [Ψ̂, Ĥ], the equation of motion that governs Ψ can be

deduced to be:

i~
∂

∂t
Ψ̂(r, t) =

[
− ~2

2m
∇2 + U(r, t)− µ+ g

∣∣∣Ψ̂(x)
∣∣∣2] Ψ̂(r, t). (1.1.8)

This is known as the Gross-Pitaevskii equation and is commonly used to describe weakly interacting

BECs. For a spatially homogeneous gas held at a constant potential, the gas is in a steady state for,

U = µ+ gn, where n =
∣∣∣Ψ̂(x)

∣∣∣2 is the density of the condensate.

We can now investigate it the behaviour of the ground state by replacing Ψ̂(r) = Ψ0(r), and then

expressing the order parameter in terms of its modulus and phase:

Ψ0(r, t) =
√
n(r, t) eiφ(r,t), (1.1.9)

where n(r, t) is the density of the condensate and φ(r, t) is the phase. Substituting this form of the order

9



1.1. BOSE-EINSTEIN CONDENSATION

parameter into the Gross-Pitaevskii equation (GPE) eq.1.1.8 gives us:

−n~φ̇+
i~
2
ṅ = −i~

2n

2m
∇2φ+

~2n

2m
(∇φ)2−i ~

2

2m
∇n ·∇φ− ~2

4m
∇2n+

~2

8mn
(∇n)2 +(U−µ)n+gn2. (1.1.10)

The imaginary part of this equation yields a continuity equation,

ṅ = − ~
m

(
n(∇2φ) + +∇n · ∇φ

)
= − ~

m
∇ (n∇φ) , (1.1.11)

which allows us to define a superfluid velocity,

v =
~
m
∇φ, (1.1.12)

and a current density, j = nv. From this we can see that a gradient in phase will produce a current of

particles, even without a difference in densities. The real part of Eq. 1.1.10 yields,

−~φ̇ =
mv2

2
+ U − µ+ gn− ~2

2m
√
n
∇2
√
n. (1.1.13)

These two equations (1.1.12, 1.1.13) are known as the hydrodynamic description of BECs because of the

links to classical fluid dynamics.

Another notion to take from the GPE is one of a “healing length”, which is the length scale at which

the density of the condensate can vary. De-dimensionalising the time independent GPE will give the

healing length to be ξ = ~/√mgn. Changes that occur on lengths shorter than the healing length are

unable to be accounted for by the condensate.

From the GPE we can investigate the low energy excitations that exist in a weakly repulsive BEC.

To do this we account for the leading order fluctuations in Eq. 1.1.6 and then find their dispersion. To

leading order, the α-th term gives,

i~
∂ψα
∂t

âα =

(
−~2

2m
∇2 + U − µ+ 2g|Ψ0|2

)
ψαâα + gΨ2

0ψ
∗
αâ
†
α. (1.1.14)

10



1.1. BOSE-EINSTEIN CONDENSATION

εq

|q|

Figure 1.2: Graph showing the Bogoliubov dispersion (solid line), with the two limits of linear dispersion
for small |q| (dotted), and quadratic for large |q| (dashed).

The same can be done for the Hermitian conjugate to give the equation,

−i~∂ψ
∗
α

∂t
â†α =

(
−~2

2m
∇2 + U − µ+ 2g|Ψ0|2

)
ψ∗αâ

†
α + g(Ψ∗0)2ψαâα. (1.1.15)

For plane wave solutions, ψα = e−iωαt+iqα·r, and substituting the 0th order form of U − µ = gn, the

equation for fluctuations becomes,

~ωα

 âα

−â†α

 =

~2|qα|2
2m + gn −gψ2

0

g(ψ∗0)2 −~2|qα|2
2m − gn


 âα

−â†α.

 (1.1.16)

In the continuum (ω and q become continuous and not quantised with index α), the spectrum of fluctu-

ations becomes,

~ω = εq =

√√√√~2|q|2

2m

(
~2|q|2

2m
+ 2gn

)
. (1.1.17)

This dispersion is known as the Bogolioubov dispersion, and is plotted in figure 1.2. For large |q| it

appears to be quadratic, as expected for free particles. For |q| � √gnm/~ = ξ−1, the dispersion is linear,

εq = ~c|q|, where c =
√
gn/m = ~/mξ is the sounds velocity of excitations. This tells us that the low

11



1.1. BOSE-EINSTEIN CONDENSATION

energy excitations of the system are sound waves, which have a wavelength much larger than that of the

coherence length.
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1.2. SUPERCONDUCTIVITY

1.2 Superconductivity

Superconductivity is the phase transition that happens in many metals where below a critical temperature,

Tc, the metal loses all electrical resistance. This allows for currents to flow unimpeded, which sees many

uses in technology. Many places that require large magnetic fields, such as medical imaging (MRI)

and beam deflection in particle accelerators, use superconducting electromagnets to induce them with

giant electric currents that don’t lose energy to resistance. Since their discovery physicists have sought to

describe superconductors and the emergence of superconductivity with a microscopic model, a description

of why certain collections of atoms and electrons behave this way. The first theory to achieve this was

BCS theory in 1957, titled after its creators John Bardeen, Leon Cooper and John Robert Schrieffer in

1957. In the next section we shall discuss BCS theory qualitatively, saving a mathematical description

for section 4.2 once we have the tools of functional integration to help us.

1.2.1 Introduction to BCS Theory

It was shown in the Little-Parks effect that the charge carriers in a superconductor are not single electrons,

but pairs of electrons. These pairs are most commonly known as Cooper pairs, after Leon Cooper’s

calculation that a net attractive interaction between electrons at the Fermi surface would create a bound

state of electron pairs, which would then be the carriers of the supercurrent. In the solid state, the origin

of this attractive interaction is due to electrons coupling to phonons, the quantum of lattice vibrations.

A sketch for how the net attraction arises is illustrated in figure 1.3 in real space. The negatively

charged electron travels through a lattice of positively charged ions and the electrostatic forces cause the

lattice to contract around the electron. The relaxation timescales of the lattice is much longer (O(ω−1
D ))

than the timescale the electron spends near the atoms (O(ε−1
F )). This means that for some period of time

after the electron has travelled far away but before the lattice has relaxed, there is a local positive charge

density. This charge density can then attract an electron towards it. This illustrates how an effective

attraction, mediated by the lattice, can arise between two electrons. In cold atom systems of fermionic

atoms, similar attractive interactions can be engineered despite the lack of a physical lattice.

A more physically accurate picture can be explained in momentum space. Around the Fermi surface

there is a shell of width ∼ ωD/vF in which electrons can couple. This is due to the energy the phonons

13



1.2. SUPERCONDUCTIVITY

Figure 1.3: Cartoon illustrating phonon-mediated attraction between two electrons

being of O(ωD). For many superconductors the Cooper pair is formed out of a singlet of electrons that

have opposite momentum states, |k ↑,−k ↓〉. This maximises the amount of accessible states the pair

can scatter into through interaction. This type of pairing is known as s-wave superconductivity, due to

the symmetry of the pairing potential being the same as s-orbitals in atomic physics. There are more

exotic materials that exhibit p-wave (with spin triplets as Cooper pairs), and d-wave superconductivity

however only s-wave pairing shall be considered in my work.

Since the a Cooper pair is made of two spin-1/2 fermions (forming a singlet in s-wave superconductors)

it can be treated as a boson, and thus superconductivity can be thought of as the condensation of Cooper

pairs. It is important to note that Cooper pairs are not point-like bosons as you might imagine cold

atomic gases. The ‘size’ of the Cooper pair is of the order ∼ 10−7m, which compared to the average

distance between electrons (∼ 10−10m) is massive. There will be billions of Cooper pairs overlapping the

volume that a single one takes up.
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1.2.2 Ginzburg-Landau Theory

Building upon Lev Landau’s theory of second order phase transitions, Ginzburg-Landau theory is a

enalogical theory of superconductors that describes their behaviour through the use of an order parameter.

This order parameter, ψGL(r, t), is a complex field which is zero for T > Tc and takes a non-zero value

for T < Tc. It can be thought of as the wavefunction of condensed Cooper pairs, much like we have seen

in section 1.1.2 with the wavefunction for the Bose-Einstein condensate.

The core of Ginzburg-Landau theory is the free energy as a functional of ψGL, of the form:

F − Fn = α|ψGL|
2

+
β

2
|ψGL|

4
+

1

2m
|(−i~∇− 2eA)ψGL|

2
+
|B|2

2µ0
. (1.2.1)

Here α and β are enalogical parameters who’s values will be found either through experiment or a

microscopic theory. This is minimised with respect to the order parameter and vector potential to give

the Ginzburg-Landau equations,

[
α+ β|ψGL|

2
+

1

2m
(−i~∇− 2eA)2

]
ψGL = 0, (1.2.2)

∇×B = µ0j, j =
2e

m
Re {ψ∗GL(−i~∇− 2eA)ψGL} . (1.2.3)

Equation 1.2.2 looks very similar to the Gross-Pitaevskii equation (Eq. 1.1.8), with the addition of a

magnetic field included with minimal coupling. For a spatially homogeneous superconductor with no

currents, Eq. 1.2.2 omits two solutions. Either ψGL = 0 which corresponds to the absence of supercon-

ductivity, or |ψGL|
2

= −α/β for the superconducting phase. As amplitudes must be positive, this implies

that α < 0 for the superconductor to exist1. The way of encoding the transition in these parameters is

to define, α = α0(T − Tc). For T < Tc, α < 0 and the order parameter will take a non-zero value. This

value is, ψGL =
√

α0(Tc−T )
β eiφ, where the phase φ can take any value. This is an example of spontaneous

symmetry breaking, where the order parameter spontaneously picks a phase upon the phase transition.

1If β < 0 then the energy would be unbounded from below for
∣∣ψGL

∣∣ → ∞.
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1.2.3 The Josephson Effect

The Josephson effect is an important concept in this thesis, it is the first step in investigating phenomena

of currents between reservoirs of quantum coherent matter. The formulation of the Josephson effect

that we shall look at now is relevant both for BECs as well as superconductors, as they can both be

described by a complex valued order parameter with a definite phase. If two of these systems, described

by order parameters Ψ1,2 =
√
N1,2e

iφ1,2 , are in close proximity then there could be some overlap of their

wavefunctions. This will lead to quantum tunnelling from one system to the other with some amplitude,

t. Experimentally systems like this can be created with solid state superconductors that are separated

by a thin layer of an insulator, or in cold atomic BECs that are confined to a double-well trap. The

tunnelling Hamiltonian for such a setup is, Htun = −t(Ψ†1Ψ2 + Ψ†2Ψ1). Including this tunnelling term

into the Hamiltonian for the two systems will give:

H = E1N1 + E2N2 − 2t
√
N1N2 cos(φ1 − φ2). (1.2.4)

This can be re-written in terms of total phase difference between the two condensates/superconductors,

Φ = φ1 − φ2, total particle number, NT = N1 + N2, and difference in particle number between the two

reservoirs, ∆N = N1 −N2,

H =
E1 + E2

2
NT +

E1 − E2

2
∆N − tNT

√
1−

(
∆N

NT

)2

cos Φ. (1.2.5)

Hamilton’s equations for ∆N and Φ lead to the Josephson relations. The DC Josephon relation describes

current that passes through a Josephson junction as a function of the phase,

IJ = Ic sin Φ(t). (1.2.6)

Here the critical current is defined as, Ic = tNT . For systems where the particle imbalance is small

compared to the total number (∆N/NT � 1), the AC Josephson relations can be expressed as:

Φ̇ = −E1 − E2

2
. (1.2.7)
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For superconductors, E1 − E2 is the voltage across the Josephson junction whereas in neutrally charged

cold atomic systems it will be the difference in chemical potentials.

For my work, the DC Josephson effect is incredibly relevant as I have investigated phase driven

transport between reservoirs.

1.2.4 Cold Atoms

The systems described theoretically in this thesis will be able to be examined experimentally using

ultracold atoms. Techniques of cooling and trapping atomic gases have been developed since the creation

of an atomic BEC of Rubidium atoms in 1995 [13], and since then many more species of atoms have been

trapped and cooled [12]. Bosonic atoms, such as 87Rb and 6Na have been trapped as well as fermionic

atoms such as 6Li. These fermionic atoms form a degenerate Fermi gas, instead of a condensate, due

to their exchange statistics. Through utilising a phenomenon known as Feshbach resonance, s-wave

scattering lengths between atoms can be changed. This means that inter-particle interactions can be

tuned to a remarkable degree. Magneto-optical traps that trap these atoms can have their geometry

engineered as well, with the creation of coupled reservoirs being achievable.

One limitation of cold atoms is the difficulty in making measurements of the system, particularly for

transport properties. Unlike in the solid state where currents can be detected as the flow of charged

particles, detecting currents of neutral particles is a harder task. A common method is time-of-flight

measurements. This is where the cold atom system is initialised in a trap and allowed to evolve for

an interval of time. Then the trap is removed and the particles are allowed to fly out to be imaged.

From imaging the density of particles can be measured. When combined with time-of-flight, the spatial

density and the momentum distribution can be calculated. The obvious drawback is that this procedure

is destructive, meaning that the system needs to be re-initialised for repeat measurements to be made.

Several transport phenomena have been observed in cold atom systems that are relevant to the

theoretical results in this thesis. First is the creation of a bosonic Josephson junction by Albiez et. al. in

2005 [14]. The system consisted of 87Rb atoms in a double well potential, initialised with a population

imbalance. Inside the double well, the condensates were observed to be weakly coupled and seen to obey

the Josephson relations 1.2.6 and 1.2.7.
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Second is the measurement of resistance in a defect free system of ultracold fermions by Esslinger’s

group in 2012 [3]. With ultracold 6Li atoms, they created a geometry of two reservoirs connected to

a mesoscopic channel. They were able to measure ohmic conduction, despite the lack of defects in the

channel.

Third, and most recently, is the observation of dc Josephson currents in a strongly correlated fermionic

superfluid consisting of ultracold 6Li atoms. This was achieved by Kwon et. al. in 2020 [15]. The system

they created consisted of two reservoirs that were intialised to have an equal number of particles and then

the current between the two reservoirs was measured as a function of the phase difference between the

two reservoirs. Through utilising the Feshbach resonance they were also able to investigate the behaviour

of the Josephson current through the BEC-BCS crossover. This experimental system would be the ideal

platform to investigate the main results of this thesis, as detailed in chapter 7.
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Chapter 2

One Dimensional Physics

One dimensional systems are of incredible importance in this thesis. It is their properties that results in

the novel behaviour detailed in part (III). Contrary to what one might think initially, the behaviour of

interacting quantum systems in one dimension (1D) is markedly different to those of higher dimensions,

and thus the techniques needed will be different. This section will give justification for why a different

approach is needed for 1D systems and then introduce the technique of Bosonisation and Luttinger liquids.

2.1 Why is 1D Weird?

When solving quantum mechanical problems, including the effects of interaction and scattering is a big

step and one which can render problems insoluble. For many cases of interacting Fermions, Landau’s

Fermi-Liquid theory is a great approximation. This is a perturbative approach that can simplify the

effects of interactions in a many-body system into a non-interacting Fermi-gas with a modified effective

mass. Fermi-liquid theory does fail sometimes, and the most important failure for us is 1D.

One justification of the failure of Fermi-Liquid theory comes from thinking of quasiparticle excitations.

The excitations of a Fermi-liquid are electrons with a renormalised effective mass. These are single

particle excitations which correspond to an actual particle (the electron) with interactions (i.e. with an

underlying lattice). This is in contrast to collective excitations, such as phonons, where the quasiparticles

involve the collective motion of many discrete particles. In figure 2.1 is an illustration of how excitations
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(a)
(b)

Figure 2.1: Cartoon of particle excitations. a). In 2D single particle excitations are possible. b). In 1D
single particle excitations are not possible as they will be converted into collective excitations.

behave differently in 1D. In 2 or 3 dimensions an single excited particle can have a mean free path that is

considerably large when compared to inter-particle spacing or even the size of the system. In 1D however,

any excitations are confined to travel longitudinally. Any excited particle in 1D will have to collide with

its neighbours, imparting energy and momentum, who then in turn collide with their neighbours etc. It

is no longer sensible to talk about single particle excitations in 1D since any single particle excitation will

be converted to collective excitations of particles. This is further justified by considering how excitations

look in momentum space. The low energy excitations in a Fermi gas will come from exciting a particle

from below the Fermi surface to above, with some momentum change q. The energies of such excitations

form the particle-hole spectrum, as a hole is left in the Fermi sea while the particle is excited. In two

and three dimensions, we are able to create excitations of arbitrarily low energy for any q < 2kF as we

can always find two points on the Fermi surface that are connected by the vector q. In 1D the Fermi

surface consists of two disconnected points, which means the particle hole spectrum only goes to zero for

q = 0, 2kF. This makes the quasiparticle from the electron and hole have a low uncertainty in energy, and

from the uncertainty principle, a longer lifetime. These long-lived quasiparticles are bosonic in nature as

they are comprised of two half-integer spin fermions.
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2.2 Luttinger Liquids

This section will introduce the concept of a Luttinger liquid as well as the method of bosonisation. There

are several “brands” of bosonisation, but they all produce the same low energy Hamiltonian at the end of

the day. The particular approach to bosonisation we shall focus on is what is known as ‘Phenomenological

Bosonisation’, as it is motivated by the phenomenology of 1D systems instead of a rigorous procedure

of bosonising operators and keeping a consistent Fock space. Phenomenological bosonisation is easily

applied to the systems of ultracold bosons and fermions that I model later in this thesis. This closely

follows chapter 3 in Giamarchi’s Quantum Physics in One Dimension [16] and is rigorously justified in

Cazalilla’s paper [17].

We start by considering a general one-dimensional system of bosons or fermions. A general form of

the density in such a system can be written as:

ρ(x) =
∑
i

δ(x− xi), (2.2.1)

where the positions, xi, is the position operator of the ith particle. Due to these particles existing in

1D, we can uniquely label them with xi < xj when i < j. We can then introduce a labelling field

Θ(x), which has the job of expressing the density and fluctuations as a continuous function of x. To

do this it is prescribed the property Θ(xi) = 2πi, at the particle positions xi. This means that Θ(x) is

monotonic-increasing function, an example of which is shown in Fig. (2.2).

Using the properties of delta functions we can rewrite the density in terms of the labelling function:

ρ(x) = ∂xΘ(x)
∑
n

δ(Θ(x)− 2πn), (2.2.2)

and then rewritten again through Poisson’s summation formula for the delta function:

ρ(x) =
∂xΘ(x)

2π

∑
m

eimΘ(x). (2.2.3)

It is convenient to introduce a new field, θ(x), which is the deviation Θ(x) takes from the perfect crystalline
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1
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Θ(x)/2π
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(a)
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Θ(x)/2π

x

(b)

Figure 2.2: Examples of labelling functions Θ(x). (a) is the perfect crystalline solution where particles
are evenly spaced, Θ(x) = 2πρ0x. (b) shows an example of a non-uniform particle distribution.

solution where particles are evenly spaced:

Θ(x) = 2πρ0x− 2θ(x), (2.2.4)

where ρ0 is the average density. The density then becomes:

ρ(x) =

(
ρ0 −

1

π
∂xθ(x)

)∑
m

ei2m(πρ0x−θ(x)). (2.2.5)

Up to this point we have not been concerned with the nature of the particles that make up our 1D

system, as we have only been expressing density in a uniquely 1D way. We can now use this form of

density to express a bosonic creation operator ψ†B as:

ψ†B(x) =
√
ρ(x)e−iϕ(x) (2.2.6)

=
√
ρ0 − 1

π∂xθ(x)
∑
m

ei2m(πρ0x−θ(x))e−iϕ(x).

The m = 0 term of the density can be thought of as a “smeared” density, which is the dominant term

in the long range (x� 1/ρ0) dynamics. From the commutation relations that the bosonic operators ψ†B
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and ψB have,

[
1

π
∂xθ(x), ϕ(x′)

]
= −iδ(x− x′). (2.2.7)

If our system was made of fermionic particles we would want there to be anticommutation between

operators instead. This can be achieved by modifying Eq. (2.2.6) to include a relative factor of −1 when

the fermionic operators are commuted. This is done by adding a factor of ei
1
2 Θ(x), which oscillates from

±1 between consecutive particles. Thus the fermionic fields can be expressed as,

ψ†F (x) = ei
1
2 Θ(x)ψ†B (2.2.8)

=
√
ρ0 − 1

π∂xθ(x)
∑
m

ei(2m+1)(πρ0x−θ(x))e−iϕ(x).

With the bosonic fields expressed in terms of the low energy bosonic degrees of freedom, Eq. (2.2.6),

we can substitute it into a generic Hamiltonian that describes bosons with repulsive contact interactions,

H =
~2

2m

∫
dx ∂xψ

†(x)∂xψ(x) +
1

2

∫
dxdx′ gδ (x− x′)ψ†(x)ψ†(x′)ψ(x′)ψ(x). (2.2.9)

This substitution leads to a Hamiltonian in terms of the phase and density fields,

H =
~2

2m

∫
dx
{
ρ0 (∂xϕ(x))

2
+

gm

~2π2
(∂xθ(x)− πρ0)

2
}
. (2.2.10)

In the expansion of the second term, only term that is quadratic in ∂xθ will play a part in the dynamics.

This then gives the Luttinger liquid Hamiltonian,

H =
~

2π

∫
dx
(
cK (∂xϕ(x))

2
+

c

K
(∂xθ(x))

2
)
. (2.2.11)

The speed of sound, c, and Luttinger parameter, K, have been defined as:

cK =
π~ρ0

m
,

c

K
=

g

~π
. (2.2.12)
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The two parameters introduced have fairly intuitive meanings. The sound velocity, c, is the speed that

the bosonic (phononic) excitations travel at. For both systems of 1D bosons and fermions this sound

velocity is related to the gradient of the dispersions at low energy, the linear part of the Bogoliubov

dispersion for bosons or the Fermi velocity for fermions. The Luttinger parameter K is a dimensionless

phenomenological parameter that characterises the interactions present in the Luttinger liquid. The

value of K will be determined by the microscopic Hamiltonian, which in our case gives K = πρ0ξ. For

condensed bosons, we expect there to be many particles within a healing length ξ, which meansK ≥ 1. For

bosons with repulsive interactions (or fermions with attractive ones), K ≥ 1, with K = 1 being reached

for infinitely repulsive (Tonks-Girardeau) bosons. This corresponds to non-interacting fermions, as the

bosons are effectively “hard core” particles. Values of K ranging between 0 and 1 classify fermionic

Luttinger liquids that have repulsive interactions. It can be seen that for large K, the θ term in the

Hamiltonian Eq. (2.2.11) shrinks whereas the ϕ term grows. This illustrates the phase coherence of the

condensate, as density fluctuations (∂xθ) are “cheap” and fluctuations in the phase are energetically more

costly. The opposite argument can be made for K < 1, with density fluctuations being more energetically

“expensive” for fermionic systems. The fact that we can classify both fermionic and bosonic systems with

one parameter illustrates that particle statistics are blurred in 1D. If we were to check the statistics of

a pair of particles by exchanging them, we would have to pass them through each other, thus causing

them to interact. The statistical phase that is accumulated through the exchange cannot be separated

from the scattering phase that occurs when they interact.

2.3 Spinful Luttinger Liquids

So far we have seen the bosonisation of spinless particles, when in reality the spin degrees of freedom

in a system can produce a wide gamut of behaviour. In this section we shall investigate what happens

when you include spin into a fermionic Luttinger liquid and what behaviour arises from it. We start

from considering chiral fermions and then use their bosonisation identities to see what happens to generic

scattering processes in terms of the bosonic fields. We will then add an additional spin index to the fields,

which will alter some of these scattering terms but leave much of the base level behaviour the same.
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2.3.1 Functional Bosonisation of Chiral Fermions

An alternative approach to bosonisation comes from bosonising within the functional integral (see chapter

4 for details on defining and using functional integrals). Here we shall only focus on definitions and

results, and details of how the procedure works will be omitted and can be found in [18]. We start with

the Hamiltonian density for a system of non-interacting fermions in 1D and linearise around the Fermi

points (p ≈ ±pF):

H0 − εF =
p2 − p2

F

2m
=

(p+ pF)(p− pF)

2m
≈ vF(|p| − pF)→ ηvFq. (2.3.1)

We can see that there are two almost independent branches, labelled by their chirality η = ±1 ≡ R/L,

and the momentum q = ηp − pF measured from the appropriate Fermi point. These two branches

correspond to right movers and left movers, which is all that is possible in 1D. The action with this

linearised Hamiltonian (with ξ ≡ x, t) is;

S0 =

∫
dξ ψ(ξ) [i∂t − (H0 − εF)]ψ(ξ)

=
∑
η=±

∫
dξ ψη(ξ)i (∂t − ηvF∂x)ψ(ξ), (2.3.2)

where the fields ψ and ψ are the the row and column vectors, with ψ = (ψ+, ψ−). The fields are now

bosonised, similarly to Eq. (2.2.6), with all the dynamics being consolidated into chiral bosonic fields

θη(ξ),

ψη(ξ) = χηe
iθη(ξ). (2.3.3)

The field χη is a global (co-ordinate independent) Majorana field, which exists to preserve the anti-

commutation relations between the fields ψη. To this end, they obey the anticommutation relation,

{χη, χη′} = 0. They are the equivalent to the Klein factors seen in operator bosonisation (chapter 2 in

Giamarchi [16]). It is at this point where the non-trivial details of this transformation arise, which we

will skip over in this section. Namely, this transformation appears to lead to a vanishing action due to

χ2
η = 0. This is a well known anomaly, and is carefully considered in [18, 19]. The gist of how to deal
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with this anomaly is from the Jacobian of the transformation, leading to a non-zero Hamiltonian for the

fields θη(ξ):

H0 =
vF

4π

∫ [
(∂xθL)2 + (∂xθR)2

]
dx

=
vF

2π

∫ [
(∂xθ)

2 + (∂xϕ)2
]

dx. (2.3.4)

The second line comes from the transformation from the chiral bosonic fields to the more familiar density-

phase fields,

θ =
1

2
(θL − θR), ϕ =

1

2
(θL + θR). (2.3.5)

The densities of left and right movers (obtained through the use of source fields [18]), is expressed as:

ρη =
η

2π
∂xθη =

1

2π
(η∂xϕ− ∂xθ). (2.3.6)

Knowledge of what the chiral density operators look like when bosonised it critical for the next subsection,

where scattering processes depend of terms quadratic in density.

2.3.2 Scattering Processes & Spin-Charge Separation

The beauty of bosonisation is that once we know the identity that takes us from our original fields to

the bosonised ones, we can add a multitude of terms to our Hamiltonian and still keep the low energy

behaviour categorically unchanged. The lowest energy interaction terms we could add have to act around

the Fermi surface, which in 1D is close to −kF or +kF. The extra terms we can add are labelled by their

co-efficient gi, and is commonly known as “g-ology” because of this. A g4 term couples fermions that live

near the same Fermi point, a g2 term couples fermions that live on opposite Fermi points. Both of these

processes are forward scattering, the particles stay on the same side of the fermi surface after scattering.

The last term, g1, couples fermions on opposite sides and has them exchange sides (backscattering)1. For

spinless fermions, g1 and g2 terms are identical due to both particles involved in both processes being

1There are also g3 processes that represent Umklapp scattering, but they are irrelevant in systems we investigate in this
thesis
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indistinguishable. When a spin index is added they become distinct, but also all g terms are separated

into parallel, g‖, for processes involving the same spin species, and perpendicular, g⊥, where the spin

species are mixed. For spinless fermions, the g2 and g4 terms are bosonised as:

g4

2

(
ψRψRψRψR + ψLψLψLψL

)
=
g4

2
(ρRρR + ρLρL)

=
g4

4π2

[
(∂xϕ)2 + (∂xθ)

2
]
,

(2.3.7)

g2ψRψRψLψL = g2ρRρL

=
g2

4π2
(∂xϕ− ∂xθ)(−∂xϕ− ∂xθ)

=
g2

4π2

[
(∂xθ)

2 − (∂xϕ)2
]

(2.3.8)

The bosonised form of these interaction terms fits perfectly into the Hamiltonian Eq. (2.3.4),

H =
1

2π

∫
dx
(
cK (∂xϕ(x))

2
+

c

K
(∂xθ(x))

2
)
. (2.3.9)

allowing us to define the Luttinger parameter and speed of sound in a similar way to (2.2.11):

c = vF

[
(1 + y4/2)2 − (y2/2)2

]1/2
(2.3.10)

K =

[
1 + y4/2− y2/2

1 + y4/2 + y2/2

]1/2

. (2.3.11)

Here the dimensionless coupling constants are defined as, yi = gi/(πvF). At this point we can introduce

spin degrees of freedom into the Luttinger liquid. This is done by bosonising the two spin species

separately and introducing a new index, ν =↑, ↓, to denote the spin species. The bosonisation identity

Eq. (2.3.3) remains the same, except for the addition of the spin index being included with the chirality

index. The two spin species, with the two chirality indices gives us 4 independent, anticommuting χ’s.

The non-interacting Hamiltonian Eq. (2.3.4) retains its structure, H0 = H0,↑ +H0↓, and the interaction
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terms will be treated much the same as before,

H4 =
∑
η,ν

∫
dx
[g4‖

2
ρη,ν(x)ρη,ν(x) +

g4⊥

2
ρη,ν(x)ρη,ν(x)

]
. (2.3.12)

H2 =
∑
ν

∫
dx
[
g2‖ρR,ν(x)ρL,ν(x) + g2⊥ρR,ν(x)ρL,ν(x)

]
. (2.3.13)

These terms will mix different spin species, but is easily diagonalised with the transformation:

ϕρ(x) =
1

2
[ϕ↑(x) + ϕ↓(x)]

ϕσ(x) =
1

2
[ϕ↑(x)− ϕ↓(x)] ,

(2.3.14)

and similarly for θν(x). This splits excitations and terms into ones that are of charge (ρ) and those of

spin (σ) degrees of freedom. This turns the g2,4 interactions into,

H4 =
1

2π2

∫
dx[g4‖ + g4⊥]

(
(∂xϕρ)

2 + (∂xθρ)
2
)

+ [g4‖ − g4⊥]
(

(∂xϕσ)2 + (∂xθσ)2
)
.

(2.3.15)

H2 =
1

2π2

∫
dx[g2‖ + g2⊥]

(
(∂xθρ)

2 − (∂xϕρ)
2
)

+ [g2‖ − g2⊥]
(

(∂xθσ)2 − (∂xϕσ)2
)
.

(2.3.16)

We can see that the inclusion of these types of scattering doesn’t stop the spin and charge Hamiltonians

from being completely decouple. They can be nicely incorporated into the Luttinger Hamiltonians for the

charge and spin sectors easily. We shall now turn our attention to the g1 terms. Without spin this term

was identical to g2 and thus not considered, however when including spin things become more interesting.
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The g1 Hamiltonian in full is:

H1 =
∑
ν

∫
dx
[
g1‖ψL,νψR,νψL,νψR,ν + g1⊥ψL,νψR,ν̄ψL,ν̄ψR,ν

]
(2.3.17)

=
∑
ν

∫
dx
[
(−g1‖)ψL,νψL,νψR,νψR,ν + g1⊥ψL,νψR,νψR,ν̄ψL,ν̄

]
(2.3.18)

=
∑
ν

∫
dx
[
(−g1‖)ρL,νρR,ν + g1⊥e

−i(2θν)ei(2θν̄)
]

(2.3.19)

The parallel term is identical to g2‖, so in Eq. (2.3.16) we can replace g2‖ → g2‖ − g1‖. The g1⊥ term is

bosonised with the identity Eq. (2.3.14) to become:

H1⊥ = g1⊥

∫
dx

∑
ν=↑,↓

e−i(2θν)ei(2θν̄) (2.3.20)

= 2g1⊥

∫
dx cos(4θσ(x)). (2.3.21)

Combining all of these scattering processes results in the total Hamiltonian, H = Hρ +Hσ with sectors

for spin and charge degrees of freedom. These two sectors are decoupled, they have no cross-terms arising

from g1,2,4 interactions. This phenomena is known as “spin-charge separation” and is unique to 1D. In

higher dimensions, electrons that move around the lattice carry both spin and charge but in 1D the spin

and charge degrees of freedom are free to travel independently. This is another example of collective

excitations in 1D, as any single particle excitation will have to carry both charge and spin.

The total Hamiltonian can be expressed with Luttinger parameters Ks and speeds of sound vs, where

s = ρ, σ denotes the sector:

H =
1

π

∑
s=ρ,σ

∫
dx

(
vsKs (∂xϕs(x))

2
+
vs
Ks

(∂xθs(x))
2

)
+H1⊥. (2.3.22)

29



2.3. SPINFUL LUTTINGER LIQUIDS

The constants are defined as,

vs = vF

[
(1 + y4s/2)2 − (ys/2)2

]1/2
Ks =

[
1 + y4s/2− ys/2
1 + y4s/2 + ys/2

]1/2

gs = g2‖ ± g2⊥ − g1‖

g4s = g4‖ ± g4⊥

ys =
gs
πvF

.

(2.3.23)

The non-quadratic part of the spin Hamiltonian (g1⊥) can potentially cause problems and we shall

investigate the effect of this term in section 5.3.

30



Chapter 3

Majorana Zero Modes

In nature we are used to having particles and anti-particles, such as electrons and positrons in particle

physics or similarly electrons and holes in the solid state. For each of these examples, the particles and

anti-particles are distinct from each other and in second quantisation they have distinct creation (annihi-

lation) operators. The ĉ† operator creates and electron and the ĉ operator creates a hole. Mathematically

speaking these operators are Hermitian conjugates of one another and, for the example of electrons and

holes, are distinct. This doesn’t have to be true though, and we could consider a particle who’s creation

and annihilation operators are self conjugates. With a pair of such operators we express fermionic cre-

ation and annihilation operators, c, c†, in Hermitian & anti-Hermitian parts with the Hermitian operators;

γj = γ†j ;

cj =
1

2
(γj,1 + iγj,2),

c†j =
1

2
(γj,1 − iγj,2).

(3.0.1)

One question would now be, “what commutation rules do these γ operators obey?” As the standard

fermionic operators obey the anticommutation relation:

{c†i , cj} = c†i cj + cjc
†
i = δi,j , (3.0.2)
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3.1. THE KITAEV CHAIN

the Hermitian γ operators obey the anticommutation relations:

{γi, γj} = 2δi,j . (3.0.3)

These Hermitian operators are known as Majorana fermions1 [21] and have been an increasingly popular

topic of research in condensed matter physics. This process of writing a fermion as the superposition of

two Majorana fermions is normally a purely mathematical procedure, they cannot be probed individually

since they are spatially localised together and have a big overlap. Things become more interesting if

the Majorana pair is spatially delocalised, for example one Majorana at each end of a 1D wire. This

could equally thought of as a single Dirac fermion that delocalises over the entire system. Such a highly

delocalised state has protection from local fluctuations, which is a highly desirable quality for qubits to

be used in quantum computation.

From inverting the definition Eq. (3.0.1) we can conclude that each species of Majorana is an equal

superposition of particle and hole (antiparticle) creation operators. For systems that have particle-hole

symmetry, this forces these Majorana fermions to exist at zero energy. For this reason (and to highlight

that these excitations aren’t particles in a traditional sense) they are often referred to as “Majorana Zero

Modes” (MZM).

In this chapter we shall investigate some proposals of condensed matter systems that are predicted to

host MZMs, and discuss potential signatures for detecting them in experiments.

3.1 The Kitaev Chain

One of the simplest models that has excitations that can be described by Majorana fermions was described

in 2001 by Alexei Kitaev [22]. The model describes spinless fermions hopping on a 1D chain of N sites,

with p-wave superconducting pairing and has a Hamiltonian of:

H = −µ
N∑
j=1

c†jcj +

N−1∑
j=1

(
−tc†jcj+1 + ∆cjcj+1 + h.c.

)
. (3.1.1)

1In contrast to Dirac fermions such as electrons. It is not known if any fundamental particle such as neutrinos are
Majorana fermions [20]
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c̃1 c̃2 c̃N

γ1,1 γ1,2 γN,1 γN,2

Figure 3.1: Illustration of pairings of Majorana fermions in the Kitaev chain. The top row illustrates
the pairings of Majoranas that exist on the same site. The bottom row shows the half-site shift, with
unpaired Majoranas at either end.

Here the parameters µ, t and ∆ are the chemical potential, hopping strength and superconducting

pairing respectively. Without loss of generality we can set the phase of the superconducting pairing to

zero, ∆ = |∆|. This model can be simply diagonalised, however Kitaev’s insight was in the details of this

diagonalisation. His approach started with writing the fermionic operators on each site cj and c†j in the

form of Eq. (3.0.1). This decomposed each fermionic site j, into two species of Majorana fermions that

live on that site. Under this transformation, the Hamiltonian becomes,

H =
i

2

∑
j=1

[
−µγj,1γj,2 + (t+ ∆)γj,2γj+1,1 + (−t+ ∆)γj,1γj+1,2

]
. (3.1.2)

For the tuning of t = ∆ = 0 and µ < 0, we can see that the model is in the “trivial” phase. The

Hamiltonian reads H = i
2 (−µ)

∑
j γj,1γj,2 = −µ

∑
j(c
†
jcj − 1

2 ). The Majoranas from the same site form

pairs that give a ground state of occupation number 0. The opposite case is true for, µ = 0, t = ∆ > 0,

where the model is in a “topological” phase:

H = it

N−1∑
j=1

γj,2γj+1,1. (3.1.3)

Here the Majoranas from neighbouring sites are paired together, as illustrated in fig. 3.1. So far this is

only an alternative way to write the diagonalised Hamiltonian. We can see this more clearly by re-writing
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eq. (3.1.3) in terms of shifted fermionic operators,

c̃j =
1

2

(
γj,2 + iγj+1,1

)
, c̃†j =

1

2

(
γj,2 − iγj+1,1

)
. (3.1.4)

This then gives us the diagonal Hamiltonian;

H = 2t

N−1∑
j=1

(c̃†j c̃j − 1/2). (3.1.5)

This is nothing more than finding a diagonal basis for the model, with the new fermions c̃†j being shifted

1/2 a site with respect to the original fermions. A key thing we can see is that the Majorana modes γ1,1

and γN,2 aren’t present in the Hamiltonian eq. (3.1.3). This means that the ground state is degenerate,

we can choose to populate or depopulate the state described by c̃0 = (γN,2 + iγ1,1)/2 at no energy cost.

It is this fermion that is delocalised across the system, because it is formed from Majoranas that live on

opposite edges. Any process that alters the occupation of this state will have to act on the length scales

of the whole system, meaning that it is protected against any local fluctuations that may occur.

One way of distinguishing the ground states is fermionic parity, one ground state has an even number

of fermions in the wire and the other must have an even number due to adding/removing the c̃0 fermion.

3.1.1 Bulk-Edge Correspondence in the Kitaev Chain

The identification of Majorana edge modes in the Kitaev chain might seem like an artefact from tuning

the parameters in the model so precisely, and one can wonder if this novel physics would disappear if

we were to deviate from this special point in parameter space, (∆ = t > 0, µ = 0). Fortunately this is

not the case due to the protection that symmetry provides to the Majoranas. To investigate this (and

models later in this chapter) it is useful to look at the Hamiltonian in its Bogoliubov-de Gennes form.

This form is particularly useful when dealing with models that have particle-hole symmetry such as these

superconducting models. The Hamiltonian (such as Eq. (3.1.1)) is transformed as:

H =
1

2
C†HBdGC, (3.1.6)
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where the column vector C contains all the creation and annihilation operators, C = (c1, . . . , cN , c
†
1, . . . , c

†
N )T.

The first N entries in C are creation operators for particles, and the last N are the equivalent creation

operators for holes. The Bogoliubov-de Gennes Hamiltonian is then a 2N × 2N matrix which can be

written in a compact form using Pauli matrices τx,y,z acting on particle-hole space, and row vectors |n〉

that act on the sites n. In this form, the Kitaev chain Hamiltonian Eq. (3.1.1) becomes:

HBdG = −
∑
n

µτz |n〉 〈n| −
∑
n

(tτz + i∆τy) |n〉 〈n+ 1|+ H.c. (3.1.7)

This Hamiltonian acts on states |n〉 |τ〉, with τ = ±1 denoting the particle/hole states respectively.

The particle-hole symmetry can be expressed by the operator: P = τxK, where the operator K performs

complex conjugation. This operator acting on column vector C, swaps particles and holes. It can also be

seen that the Hamiltonian Eq. (3.1.7) will anti-commute with the symmetry operator P:

P−1HBdGP = −HBdG. (3.1.8)

This can clearly be seen from the structure that HBdG takes with Pauli matrices τy,z. Since the Pauli

matrices anti-commute among themselves, any Hamiltonian that has only iτy or τz structure in particle-

hole space will have this particle-hole symmetry. This is important, because any eigenvector of HBdG,

ψ = (u, v)T with energy ε will have a corresponding particle-hole symmmetric eigenvector, Pψ = (v∗, u∗)T

with energy−ε. It is in this Bogoliubov-de Gennes form that the Hamiltonian Eq. (3.1.7) can be inspected

again. For the special point of µ = 0, there exists a pair of zero energy states that are spatially localised

at the edges. These can be found through fixing N to be some value and then numerically finding the

eigenvalues and eigenvectors of the corresponding 2N × 2N matrix. The rest of the eigenvalues are

separated from 0 by a gap of 2t. It is this gap between the edge states and bulk states, along with the

particle-hole symmetry that forbids the degenerate ground state from splitting. As µ is increased, the

gap between the bulk states and edge states remains finite, until µ = 2t when the gap closes and the

edge states disappear. It is the gaps in the band structure closing and re-opening that are important to

classifying these topologically protected edge states, as we shall see in the next section.

Another way to quantify the topology of the Kitaev chain is to define an integer topological invariant,
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Figure 3.2: Spectrum of Kitaev model (N=25) vs µ. The edge modes exist at zero energy for µ < 2t,
when there is a finite bulk gap in the spectrum. From [23]

Figure 3.3: Cartoon illustrating the symmetry protection of the MZM in the Kitaev chain. From [23].
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hz(k)

hy(k)

(a) µ > 2t hz(k)

hy(k)

(b) µ < 2t

Figure 3.4: Plots of h(k) for different values of µ. (a) shows the topologically trivial case where the origin
is not enclosed by h(k). (b) shows the topological phase where the origin is enclosed by h(k).

which changes upon the transition. To do so, we first put the model Eq. (3.1.7) into momentum space:

H = (−2t cos k − µ)τz + 2∆τy sin k. (3.1.9)

This Hamiltonian can be written as the product,

H = h(k) · σ, (3.1.10)

where the vector h(k) is a parameterisation of the Hamiltonian and σ is the vector of Pauli matrices.

For the Hamiltonian (3.1.9), there is no σx component so the path traced by h(k) lies in the y, z plane.

The topological invariant is the “polarisation” of the fermions, and is defined to be the winding number

of h(k) about the origin. For t = ∆, it can be seen in figure 3.4 that for µ < 2t the origin is enclosed

by h(k), corresponding to the topologically edge modes. For µ > 2t the origin is not enclosed and the

system is topologically trivial. The role particle-hole symmetry plays is to ensure that hx(k) = 0 for any

fluctuations. If this were non-zero then a winding number would not be able to be well defined, and thus

would be fragile to fluctuations.
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3.2 Majorana Fermions in “Real” Systems

The Kitaev chain is an interesting model in describing topological excitations as MZMs, but it is a fairly

contrived model. Firstly is the fact that the fermions contained in the chain are spinless, contrary to

all fermions that are present in the lab/nature. Secondly is the p-wave superconductivity, which is con-

siderably rarer in materials compared to the standard s-wave superconductivity. These conditions make

the hunt for Majorana fermions as edge modes in solid state systems a challenging one. A breakthrough

occurred in 2008 when Fu and Kane proposed experiments to probe potential MZMs in a system of a

superconductor connected to a magnet on the surface of a topological insulator [24]. Another break-

through happened in 2010, where two groups simultaneously proposed solid state systems that would

theoretically produce MZMs as edge modes [9, 10]. These systems garnered acclaim and interest as they

seemed a fruitful platform for the elusive Majorana fermions to be observed however, to date, MZMs

have not been observed in a condensed matter system. These systems suggested by Lutchyn et. al. [9]

and Oreg et. al. [10] are of particular interest in this thesis, because of their similarities to a seemingly

unrelated system of Bose-Einstein condensates flowing through a 1D channel (described in chapter 6).

In this section we shall look briefly at the models which these groups proposed, and see what signatures

MZMs would present in these systems. For full details, the reviews by Alicea [25], Beenakker [26] and

the lecture course on Topological Condensed Matter Physics from TU Delft [23].

3.2.1 What features are needed?

Recreating the physics of the Kitaev model in a realistic system requires a few steps. First is to take the

continuum Hamiltonian, (3.1.9) and linearise for small k:

HKitaev =

(
k2

2m∗
− µ

)
τz + 2∆kτy. (3.2.1)

Here the effective mass is defined as m∗ = 1/2t and the chemical potential has been shift to measure

from the bottom of the band: µ → µ + 2t. The first piece of building a system to get close to this

model is picking the material that will give a controllable dispersion, like the first term in Eq. (3.2.1). A

semiconductor nanowire would be an ideal candidate, as it can be doped to adjust the chemical potential
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with ease.

With this base, we can introduce terms that will get us closer to something that will host MZMs.

Unlike the Kitaev chain model the electrons in a semiconductor will have a spin, which increases the

degrees of freedom to include a spin index, ↑↓, described by Pauli matrices σi, that act on spin space.

This will double the number of bands in the spectrum, and if there are no spin dependent terms in the

Hamiltonian these bands will be degenerate. If we had a zero energy mode hosting a Majorana fermion

and then added spin, we would add another Majorana fermion to the edge mode. This would then just

be a normal fermion tuned to zero energy and not the exciting unpaired Majoranas that the Kitaev chain

describes. To lift this degeneracy a spin dependent term is needed. The type that is chosen is one of

a Zeeman field, a magnetic field that acts in the z direction. This favours one spin species to another,

lifting the degenerate spin bands. This is the equivalent to changing the chemical potential for the spin

species. The shift between topologically trivial and non-trivial bands in the Kitaev chain comes from

changing the chemical potential µ, so the Zeeman field can shift one spin species into the topological

phase while shifting the other spin species to be topologically trivial.

The superconductivity now needs to be added to this semiconductor nanowire with a Zeeman field.

This is important because it imposes the particle-hole symmetry that is important for hosting Majoranas.

In experiment, this will come from embedding the wire on top of a superconductor and having a super-

conducting pairing induced through the proximity effect. For feasibility reasons, the pairing modelled

will be s-wave, as opposed to the p-wave exhibited in the Kitaev chain model. This is due to the dearth

of p-wave superconductors when compared to the abundance of materials that exhibit s-wave supercon-

ductivity. As with the other features added, control over the superconductivity is of upmost importance.

In the papers [9, 10], spatial variation of the pairing potential is essential in creating the “edges” where

the MZMs will live.

The final piece of the model is a spin-orbit coupling term. This is a momentum dependent term of the

form, HSO = ασyk. Without this term the total spin is conserved (σz commutes with the Hamiltonian),

meaning that any excitations have a definite spin. As exhibited from the Kitaev chain, MZMs have no

spin. This means that this conservation must be broken, and the easiest term to implement this change

will be a Spin-Orbit coupling. One candidate material is Indium Arsenide, which has a strong spin orbit
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coupling with a Landé g factor of ∼ 35.

In total, the four terms needed are: chemical potential, magnetic field, superconducting pairing and

spin orbit coupling.

3.2.2 Semiconductor-Superconductor Nanowires

In Lutchyn et. al, and Oreg et. al.’s models, all the pieces are present but in slightly different combi-

nations. The Hamiltonian used by Oreg et. al [10] describes a nanowire, lying in the y direction, with

spin-orbit coupling (u) along the z axis and a magnetic field (B) along the x axis. It can be expressed in

Bogoliubov-de Gennes form with Nambu spinors, Ψ† = (ψ†↑, ψ
†
↓, ψ↓,−ψ↑):

H =

∫
dyΨ†(y)HBdGΨ(y),

HBdG =

(
− ∂2

x

2m∗
− µ(y)

)
τz + u∂xσzτz +B(y)σx + ∆(y)τx.

(3.2.2)

As before, the τ Pauli matrices act on particle-hole space and the additional σ Pauli matrices act on spin

space. The spectrum for this model is easily found by going to momentum space and then squaring the

Hamiltonian twice. The energy for constant µ,B,∆ and u is:

E2
± = B2 + ∆2 + ξ2

k + (uk)2 ± 2
√
B2∆2 +B2ξ2

k + (uk)2ξ2
k, (3.2.3)

where ξk = k2/2m∗− µ. The ± denotes the different bands coming from opposite spin species, while the

other two bands are the reflection about E = 0 from the particle-hole symmetry. As the parameters ∆, µ

and B change from 0, band gaps at k = 0 and k = ±2um∗ open and close linearly with the parameters.

This is a signature of topological phase transitions occurring. It is at the k = 0 point where Oreg et. al.

investigated what was going on. The energy at k = 0 is,

E(k = 0) =
∣∣∣B −√∆2 + µ2

∣∣∣, (3.2.4)

which changes from being pairing dominated and topologically trivial when B2 < ∆2+µ2, to B-dominated

and topologically non-trivial when B2 > ∆2 + µ2. The classification can be reasoned by considering
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N S

Figure 3.5: Cartoon illustrating Andreev Reflection. A particle in a normal metal, incident on a super-
conductor can tunnel as a Cooper pair by reflecting a hole back into the normal metal.

B = 0,∆2 + µ2 6= 0. The system must be in the topologically trivial phase because there is nothing that

lifts the spin degeneracy. As B is increased, the band gap at k = 0 decreases until B =
√

∆2 + µ2 when

it closes. As the band gap closes, and then re-opens for B >
√

∆2 + µ2, there must be a transition to a

phase with a different topology. This is further justified by Oreg et. al. who took a spatially varying B

field, that crosses the critical value at y = 0. They linearised the Hamiltonian Eq. (3.2.2) about k = 0,

squared it and then diagonalised it. They were then able to explicitly write a zero energy eigenstate as

a Majorana operator consisting of particle and hole operators of both spin species (see Eq. (6) in [10]).

Lutchyn et. al. have a similar model in their paper [9], but investigated some slightly different

properties of the nanowire. In their model, the superconductive pairing term has the spatial dependence

of: ∆(x) = ∆0Θ(x − L) + ∆0e
iϕΘ(−x − L), where ϕ is the phase difference between the left and right

sides of the wire. They were interested in solving the BdG equation (3.2.2) for zero energy. They

also probed the spectrum of Andreev reflection. This is a process of tunnelling from a normal metal to a

superconductor. Due to the gap in the superconductor a single particle is unable to tunnel with an energy

below the gap, however Cooper pairs are allowed to. Andreev reflection is the process where a single

particle, incident on a superconductor with an energy within the gap, tunnels into the superconductor

as a Cooper pair by reflecting a hole back into the normal metal. By numerically solving their BdG

equations, subject to the boundary conditions of Andreev reflection, Lutchyn et. al. were able to see

that the spectrum of Andreev excitations has some non-trivial dependence on the phase difference across

the wire. This is shown in figure 3.6, where the Andreev spectra for finite sized systems are plotted as a

function of phase difference. In the topological case, there are an odd number of crossings that the bands

make at zero energy. This contrasts with the topologically trivial case where there an even number of
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Figure 3.6: Andreev spectra for semiconctor-superconductor nanowire, from [9]. (a) The topologically
non-trivial case where there is an odd number of crossings in the spectrum, occurring at a phase difference
of π. (b) The topologically trivial case, where there is an even number of crossings.

crossings. This odd number of crossings for the topological case (which harbours Majorana edge modes)

means that the energy (and current) is a 4π periodic function of phase. If measured in experiments, this

would be a clear indicator of non-trivial physics occurring and potentially a “smoking gun” signature of

Majorana zero modes. It is also a key feature of the main system covered in this thesis, namely phase

driven transport of superfluids through 1D channels. In chapters 6 and 7 we shall see how these systems

have similarities to these solid state systems that claim to host Majorana fermions.

3.2.3 The Bosonised Nanowire

As the system investigated by Lutchyn et. al. is one dimensional, it can be investigated by using the

technique of bosonisation, as done in [27]. Through bosonising the system of the nanowire, we are able

to make some statements about the nature of the degeneracy that is present when the edges host MZMs.

In the paper [27], they start with the nanowire lying on the x axis, with spin-orbit coupling, a Zeeman

field and superconductive pairing:

HNW =

∫ L/2

−L/2
dxψ†σ(x)

(
− ∂2

x

2m∗
− µ+ iασy∂x + Vxσx

)
σ,σ′

ψσ′(x)

HP =

∫
dx [∆0ψ↑ψ↓ + H.c.] .

(3.2.5)
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The nanowire is projected onto the lowest band, and linearised with field operator, Ψ(x) ≡ (ψ↑(x), ψ↓(x))

Ψ(x) ≈ Φ−(pF)eipFxcR(x) + Φ−(−pF)e−ipFxcL(x) (3.2.6)

where the spinors are defined as, Φ−(pF) = 1√
2
(−eiκ(pF), 1), with κ(pF) = tan−1(αpF/Vx). These diag-

onalise the Hamiltonian, meaning that it can be described by the spinless chiral fermions, cL/R. These

chiral fermions are bosonised in the standard way, as seen in chapter 2; cR/L = 1√
2πα

e−i(±θ−φ). The

bosonised nanowire Hamiltonian then looks like:

HNW ≈ v
∫ L/2

−L/2
dx
[
ic†L(x)∂xcL(x)− ic†R(x)∂xcR(x)

]
(3.2.7)

≈ v

2π

∫ L/2

−L/2
dx
[
K(∂xφ)2 +K−1(∂xθ)

2
]

(3.2.8)

HP =
∆P

2πa

∫ L/2

−L/2
dx sin(2φ). (3.2.9)

The phase field, φ and density field θ also obey the standard commutation relations:

[∂xθ(x), φ(x′)] = iπδ(x− x′). (3.2.10)

The superconducting pairing is bosonised in a similar way, to give rise to a global Sine-Gordon type

impurity for the phase field φ. In total the Hamiltonian is,

HT =

∫ L/2

−L/2
dx

(
v

2π

[
K(∂φ)2 +K−1(∂xθ)

2
]

+
∆P

2πa
sin(2φ)

)
. (3.2.11)

As will be shown in section 5.3, the Sine-Gordon impurity is important to consider for values of K > 1/2,

which can be made with repulsive interactions within the nanowire (so long as they are not too repulsive).

When the Sine-Gordon impurity is relevant, the ground state can be found by minimising the sine and

having the field φ pinned to one of the minima. For ∆P > 0, this gives two different solutions for

φ ∈ [−π, π]. These are, φ = −π/4 & 3π/4, which are related by the transformation φ → φ + π. This

transformation between the degenerate ground states can be understood by considering the fermionic
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parity operator, (−1)NF :

(−1)NF = ei[θ(L/2)−θ(−L/2)]. (3.2.12)

Combined with the commutation relationship Eq. (3.2.10), it can be seen that what connects these

two ground states is fermionic parity, i.e. moving between them equates to adding or removing a single

fermion. In Majorana language, this is the same as the degeneracy in the Kitaev chain, where the edge

modes could either have the non-local fermion occupied or unoccupied at zero energy cost.
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Concepts Background: Mathematics
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Chapter 4

Functional Integration

Functional integrals are a powerful technique in quantum field theory, allowing for the easy computation

of expectation values and ability to investigate the effects of perturbations to a system. Here we shall

sketch an overview of how this method works, further details are present in Altland and Simons, chapters

3 & 4 [28] as well as Nagaosa chapter 2 [29]. The main focus of this chapter will be the calculation of

correlation functions, both of Luttinger Liquids and of BCS superconductors.

4.1 Introduction to Functional Integration

We start with the definition of the partition function in imaginary time:

Z = det
(
iω − Ĥ

)−1

, (4.1.1)

where ω is the energy and Ĥ is a single particle Hamiltonian with eigenvalues and eigenvectors labeled

by α: Ĥ |α〉 = εα |α〉. The determinant is independent of basis, so the partition function can be written

as the product over eigenvalues:

Z =
∏
α

1

iω − εα
. (4.1.2)
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Using the result of the Gaussian integral,

∫ ∞
−∞

dx e−bx
2

=

√
π

b
(4.1.3)

we can express the fraction within the product as a Gaussian integral over two real variables:

1

iω − εα
=

1

π

∫ ∞
−∞

dxdy e−(iω−εα)(x2+y2). (4.1.4)

Making the transformation to complex numbers, c = x+ iy and c∗ = x− iy gives:

1

iω − εα
=

1

2πi

∫ ∞
−∞

dc∗ dc e−c
∗(iω−εα)c. (4.1.5)

With this the partition function can be written as the product of these integrals, giving a functional

integral:

Z =
∏
α

[∫
dc∗α dcα

2πi
e−c

∗
α(iω−εα)cα

]
=

∫
Dc∗Dc e−c

∗(iω−εα)c.

(4.1.6)

The notation of Dc∗Dc denotes the integration over all possible complex numbers as well as absorbing

the factors of 1/2πi present in the product. The complex numbers c are also denote the coefficients of

the basis states of the Hilbert space as such:

Ψ(r) = 〈r|Ψ〉 =
∑
α

〈r| cα |α〉 =
∑
α

cαψα(r), (4.1.7)

thus meaning that the functional integral integrates over all possible states in the Hilbert space. In real

time the partition function is:

Z = det
(
ω − Ĥ

)−1

=

∫
Dc∗Dc ei

∑
α c
∗
α(ω−εα)cα . (4.1.8)
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The sum in the exponent can be rewritten in terms of the real space wavefunctions as:

∑
α

c∗α(ω − εα)cα =
∑
αβ

c∗α(ω − εα)cβδαβ

=
∑
αβ

c∗α(ω − εα)cβ

∫
drψ∗α(r)ψβ(r)

=

∫
dr

(∑
α

c∗αψ
∗
α(r)

)
(ω − εα)

∑
β

cαψβ(r)


=

∫
drΨ∗(r)(ω − εα)Ψ(r).

(4.1.9)

This then Fourier transforms into:

∫
drΨ∗(r)(ω − εα)Ψ(r)→

∫
drΨ∗(r)(∂t − εα)Ψ(r) = S[Ψ∗(r),Ψ(r)], (4.1.10)

where S is the action. The partition function is now simply:

Z =

∫
DΨ∗DΨ e

i
~S[Ψ∗,Ψ], (4.1.11)

where ~ has been restored for dimensionality. Assuming the action has up to quadratic terms in the

fields the functional integral is over, the partition function and correlation functions can be calculated

fairly simply using Gaussian integrals. For complex numbers φi & hi and matrix M , the result is:

∏
n

∫
dφ∗ndφn

2πi
e−
∑
ij φ
∗
iMijφj+

∑
i h
∗
i φi+φ

∗
i hi =

e
∑
ij h
∗
i (M−1)ijhj

det(M)
(4.1.12)

This can be used as a generating function for correlation functions, defined as:

〈φ∗pφq〉 =
1

Z

∏
n

∫
dφ∗ndφn

2πi
φ∗pφq e

−
∑
ij φ
∗
iMijφj

= lim
h→0

1

Z

∂

∂h∗p

∂

∂hq
Z

= M−1
pq .

(4.1.13)
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One important result is that for a real field, where φ∗(q) = φ(−q), the correlations go as:

〈φ∗(q1)φ(q2)〉 =

∫
Dφ∗[q]Dφ[q]φ∗(q1)φ(q2) e−1/2

∑
q φ
∗(q)M(q)φ(q)∫

Dφ∗[q]Dφ[q] e−1/2
∑
q φ
∗(q)M(q)φ(q)

=
1

M(q1)
δq1,q2 . (4.1.14)

The techniques of functional integration and the ways to calculate averages will be very important in the

rest of the thesis, as we shall see in the next two sections.

4.2 BCS Field Theory

The main result of this thesis involves superconductors, which are introduced in section 1.2.1. In this

section we shall describe the BCS action and treat it with a Hubbard-Stratonovich transformation and

then calculate the singlet correlation functions. This procedure will be roughly following chapter 5 of

Nagaosa [29].

4.2.1 BCS Path Integrals

BCS theory involves an attractive term in the Hamiltonian that causes the formation of singlets. For solid

state realisations of BCS theory this attractive potential arises from interactions of electrons with the

lattice, wheras these interactions can be generated in cold atom systems through Feshbach resonances.

For fermions with creation (annihilation) operators c†σ and attractive s-wave, pointlike interactions with

strength g, the Hamiltonian is,

HBCS =

∫
dr c†σ(r)

[
− 1

2m
∇2 − µ

]
cσ(r)− g

∫
dr c†↑(r)c†↓(r)c↓(r)c↑(r), (4.2.1)

where summation over the repeated spin (σ) indices is implicit. The partition function is ZBCS =∫
D(ψ̄, ψ)e−SBCS[ψ̄,ψ] with,

SBCS[ψ̄, ψ] =

∫ β

0

dτ

∫
d3r

[
ψ̄σ

(
∂τ −

1

2m
∇2 − µ

)
ψσ − gψ̄↑ψ̄↓ψ↓ψ↑

]
, (4.2.2)

with ψ(r, τ) being Grassmann fields. The problem with this action is the quartic interaction term which
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4.2. BCS FIELD THEORY

stops us from performing the standard Gaussian integrals. One way of dealing with this term and

reduce the action down to one which is, at most, quadratic in fields is through a Hubbard-Stratonovich

transformation. This exact transformation accomplishes this with the compromise of introducing new

fields to decouple the interaction. The interaction term transforms as:

exp

{
g

∫
dτ

∫
dr ψ̄↑ψ̄↓ψ↓ψ↑

}
=

∫
D(∆̄,∆) exp

{
−
∫

dτ

∫
dr

[
1

g
|∆|2 − (∆̄ψ↓ψ↑ + ∆ψ̄↑ψ̄↓)

]}
(4.2.3)

Now the once quartic interaction has been replaced by terms that are quadratic in the new fields ∆.

It can be shown that this field ∆ will take a mean field value, ∆0(r), which is the Ginzburg-Landau order

parameter. This tells us that when ∆ is non-zero we have a superconducting state of matter. Taking Eq.

4.2.3 into the full action we have:

SBCS =

∫ β

0

dτ

∫
d3r

{
1

g
|∆(r, τ)|2 − ψ̄σ

(
∂τ −

1

2m
∇2 − µ

)
ψσ

− ∆̄(r, τ)ψ↓(r, τ)ψ↑(r, τ)− ψ̄↑(r, τ)ψ̄↓(r, τ)∆(r, τ)

}
. (4.2.4)

This action can be rewritten in a matrix form with the identification of the Nambu spinors:

Ψ(r, τ) =

ψ↑(r, τ)

ψ̄↓(r, τ)

, Ψ̄(r, τ) =

(
ψ̄↑(r, τ) ψ↓(r, τ)

)
(4.2.5)

These spinors combine particle and hole degrees of freedom into a single object, allowing for the action

Eq. 4.2.4 to be written in the form:

SBCS =

∫ β

0

dτ

∫
d3r

{
1

g
|∆(r, τ)|2 − Ψ̄(r, τ)

−∂τ + 1
2m∇

2 + µ ∆

∆̄ −∂τ − 1
2m∇

2 − µ

Ψ(r, τ)

}
(4.2.6)

With this action we want to calculate correlation functions of the superconductor, specifically the anoma-

lous correlation functions like 〈ψ↑(r, τ)ψ↓(r, τ
′)〉. To do so we will introduce source fields coupled to Ψ
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and Ψ which should have the same form as the Nambu spinors:

h(r, τ) =

h↑(r, τ)

h̄↓(r, τ)

, h̄(r, τ) =

(
h̄↑(r, τ) h↓(r, τ)

)
(4.2.7)

With the source fields our action is now:

SBCS =

∫ β

0

dτ

∫
d3r

{
1

g
|∆(r, τ)|2 − Ψ̄(r, τ)G−1Ψ(r, τ) + h̄(r, τ)Ψ(r, τ) + Ψ̄(r, τ)h(r, τ)

}
(4.2.8)

where the matrix,

G−1 =

−∂τ + 1
2m∇

2 + µ ∆

∆̄ −∂τ − 1
2m∇

2 − µ


is known as the Gor’kov Green’s function. With this action we desire to calculate the anomalous corre-

lation functions, which can be evaluated by taking the partial derivatives:

〈ψ↑(r, τ)ψ↓(r, τ
′)〉BCS = lim

h→0

1

Z
∂

∂h̄↑(r, τ)

∂

∂h̄↓(r, τ ′)
Z. (4.2.9)

Evaluating these partial derivatives is accomplished by making a shift in the Ψ fields of: Ψ 7→ Ψ + Gh &

Ψ̄ 7→ Ψ̄ + h̄G. This shift then makes the action quadratic in h:

SBCS =

∫ β

0

dτ

∫
d3r

{
1

g
|∆(r, τ)|2 − Ψ̄(r, τ)G−1Ψ(r, τ)− h̄(r, τ)Gh(r, τ)

}
. (4.2.10)

Evaluating the matrix G is a simple procedure in reciprocal space, as the derivative operators turn into

ω and k elements. We define the Fourier transform of the fields as:

ψσ(r, τ) =

∫∫
dω

2π

d3k

(2π)3
ei(r·k−ωτ)ψσ(k, ω), (4.2.11)
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which then in turn makes the spinors transform like:

Ψ(k, ω) =

 ψ↑(k, ω)

ψ̄↓(−k,−ω)

 . (4.2.12)

In reciprocal space, the Green’s function can be evaluated to be matrix elements,

G−1 =

iω − k2

2m + µ ∆

∆̄ iω + k2

2m − µ

 , (4.2.13)

and then inverted:

G =
1

ω2 + ξ2
k + |∆|2

−iω − ξk ∆

∆̄ −iω + ξk

 . (4.2.14)

Here we have defined the energy relative to the Fermi surface, ξk ≡ k2/2m − µ. For us to calculate the

correlator in eq. 4.2.9 it will also need to be Fourier transformed,

〈ψ↑(r, τ)ψ↓(r, τ
′)〉BCS =

∫
dω

2π

dω′

2π

d3k

(2π)3

d3k′

(2π)3
ei(r.(k+k′)−ωτ−ω′τ ′) 〈ψ↑(k, ω)ψ↓(k

′, ω′)〉BCS . (4.2.15)

We can now evaluate the correlator on the right hand side through partial derivatives of the partition

function in momentum space,

〈ψ↑(k, ω)ψ↓(k
′, ω′)〉BCS = lim

h→0

1

Z
∂

∂h̄↑(k, ω)

∂

∂h̄↓(k′, ω′)
Z

= lim
h→0

1

Z
∂

∂h̄↑(k, ω)

(
∆(−k′,−ω′)h̄↑(−k′,−ω′)− (iω′ − ξ−k)h↓(k

′, ω)

ω′2 + ξ2
k′ + |∆|2

Z

)
,

= δ(k + k′)δ(ω + ω′)
∆

ω2 + ξ2
k + |∆|2

.

(4.2.16)

With the delta functions we can integrate over a k and an ω, leaving us with:

〈ψ↑(r, τ)ψ↓(r, τ
′)〉BCS =

∫
dω

2π

d3k

(2π)3
eiω(τ−τ ′) ∆

ω2 + ξ2
k + |∆|2

. (4.2.17)
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This integral over k is a standard procedure, see Landau & Lifshitz [30]. We limit ourselves only to a

narrow band around the Fermi surface, which gives the result:

〈ψ↑(r, τ)ψ↓(r, τ
′)〉BCS = πN(0)|∆|eiΦ

∫ ∞
0

dω
eiω(τ−τ ′)√
ω2 + |∆|2

,

= πN(0)|∆|eiΦK0(|∆|(τ − τ ′)), (4.2.18)

where N(0) the density of states at the Fermi level and the modified Bessel’s function of the second kind1

is defined as

K0(z) =

∫ ∞
0

dt
eitz√
1 + t2

.

For large argument, this function decays exponentially [32] thus suppressing the correlation function for

times τ − τ ′ � 1/|∆|.

4.3 Luttinger Liquid Correlation Functions

The Luttinger liquid is another important physical model in this thesis, and the correlation functions

of the fields are another example of using the tools of functional integration. We shall follow closely to

Appendix C of Giamarchi [16] and calculate correlation functions of the phase field,

〈
[ϕ(r)− ϕ(0)]2

〉
.

This is more readily calculated in Fourier space as,

〈
[ϕ(r1)− ϕ(r2)]2

〉
=

1

(βΩ)2

∑
q1,q2

〈ϕ(q1)ϕ(q2)〉
(
eiq1r1 − eiq1r2

) (
eiq2r1 − eiq2r2

)
, (4.3.1)

where r = (x, cτ), q = (k, ωn/c) and eiqr = ei(kx−ωnτ). Expressed as a functional integral, the average

we need to calculate is now:

〈ϕ(q1)ϕ(q2)〉 =
1

Z

∫
Dϕ(x, τ)Dθ(x, τ)ϕ(q1)ϕ(q2)e−SLL/~ (4.3.2)

1Also known as the Macdonald Function [31]
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To calculate this we start by using the Hamiltonian Eq. 2.2.11 to create the imaginary time action

(~ = 1),

−SLL =

∫ β

0

dτ

∫
dx

[
i
1

π
(∂xϕ)(∂τθ)−

1

2π

(
cK (∂xϕ)

2
+

c

K
(∂xθ)

2
)]
. (4.3.3)

This can be written in Fourier space as,

e−SLL = e
1
βΩ

∑
q[− ikωnπ θ(q)ϕ(−q)− cK2π k

2ϕ(q)ϕ(−q)− c
2πK k

2θ(q)θ(−q)]. (4.3.4)

To make it more applicable to calculate correlation functions we shall write this in matrix form,

SLL =
1

2

1

βΩ

∑
q

(
ϕ∗q, θ

∗
q

)
M−1

ϕq

θq

 =
1

2

1

βΩ

∑
q

(
ϕ∗q, θ

∗
q

) cK
π k

2 ikωn
π

ikωn
π

c
Kπk

2


ϕq

θq

 (4.3.5)

In this instance, the average we are computing has no dependence on the field θ, we can perform the

integration over θ in (4.3.2). This is happily done as the action has no non-quadratic terms in θ. To

do so, we complete the square in θ with the new variable θ̃(q) = θ(q) + iωnK
ck ϕ(q) and then perform

the Gaussian integration. This then cancels with the contribution coming from the partition function,

leaving the correlator expressed as a functional integral over ϕ only:

〈ϕ(q1)ϕ(q2)〉 =
1

Zϕ

∫
Dϕ(x, τ)ϕ(q1)ϕ(q2)e−Sϕ . (4.3.6)

Here we have defined the action,

Sϕ =
1

βΩ

∑
q

K

2πc

[
ω2
n + c2k2

]
ϕ∗(q)ϕ(q)

=
K

2πc

∫
dx

∫ β

0

dτ
[
(∂τϕ(r))2 + c2(∂xϕ(r))2

]
. (4.3.7)
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Similarly we could have made an action in terms of θ only, which would be identical up to the transfor-

mation K → 1/K,

Sθ =
1

2πKc

∫
dx

∫ β

0

dτ
[
(∂τθ(r))

2 + c2(∂xθ(r))
2
]
. (4.3.8)

We can use the result from (4.1.14) to evaluate the correlation function,

〈ϕ(q1)ϕ(q2)〉 =
πc

K

βΩ

ω2
n + c2k2

δq1,−q2 . (4.3.9)

Alternatively this could also be seen from the action (4.3.5), for the term that couples ϕ∗ and ϕ. With

this substitution, the correlator (4.3.1) becomes,

〈
[ϕ(r)− ϕ(0)]2

〉
=

1

β

∑
ωn

∫
dk

2π

2πc

K

1

ω2
n + c2k2

[1− cos(kx+ ωnτ)] . (4.3.10)

The evaluation of this summation over ωn and integral over k can be carefully performed (see Mahan [33]

for full details). In doing so we introduce a factor of e−ξ|k| in the integrand to ensure convergence, and

mimic the finite bandwidth of a real system by limiting modes of k > 1/ξ where ξ is the shortest length

scale the Luttinger liquid can change at1,

F1(x, τ) =
〈
[ϕ(r)− ϕ(0)]2

〉
=

1

2K
ln

[
β2c2

ξ2π2

(
sin2

(
πτ

β

)
+ sinh2

(
πx

cβ

))]
. (4.3.11)

For correlations of the form,
〈
ei(ϕ(r)−ϕ(0))

〉
, they can be calculated by the identity:

〈
ei(ϕ(r)−ϕ(0))

〉
= e−

1
2 〈[ϕ(r)−ϕ(0)]2〉 (4.3.12)

=

[
β2c2

ξ2π2

(
sin2

(
πτ

β

)
+ sinh2

(
πx

cβ

))]− 1
4K

(4.3.13)

It can be seen here that the decay of this correlation function is not exponential, but a power law that

depends on the Luttinger parameter. These algebraic decays are a signature of strictly 1D behaviour and

1This is the healing length of the Gross-Pitaevskii equation (1.1.8) for a bosonic Luttinger liquid, or the coherence
length from the Ginzburg-Landau equation (1.2.2) for a superconducting system.
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will re-appear in many other calculations performed in this thesis.
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Chapter 5

Renormalisation Group

This chapter will serve as an introduction to the Renormalisation Group (RG) as a theoretical technique,

mainly following the Wilson’s shell approach [34]. We shall also investigate two instances of using the

RG on Luttinger liquid systems, those being a single impurity (Kane-Fisher) and a global Sine-Gordon

type impurity.

5.1 How to perform RG

The Renormalization Group is a technique that assesses how certain parameters or couplings change as

the lengths in the system are scaled, for example it can be used to find critical points in systems where

phase transitions occur. It can be thought of as “integrating” out details of what happens at small length

scales, or equivalently averaging the high momentum modes. If the procedure succeeds then we shall be

left with a description of the low energy behaviour of the system, where the couplings have been scaled

by some factor. A full description of RG can be found in [35]. A momentum space RG process follows

three steps, coarse-graining, averaging and finally re-scaling. To start with we consider a system at low

energies, with only frequencies below a certain ultraviolet cutoff Λ. The system is described by an action

S[φ], where φ is the relevant field. This system has a partition function of:

Z =

∫ ∏
|ω|<Λ

dφ(ω) eS(φ(ω)), (5.1.1)
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The first step to a RG procedure is coarse graining, where an artificial separation between “fast” and

“slow” modes is made. The fast modes are live in a shell around the cutoff frequency, defined by the

scaling parameter b ≥ 1:

φ< = φ(ω), 0 < |ω| < Λ

b
,

φ> = φ(ω),
Λ

b
< |ω| < Λ.

The next step is decimation, where we integrate over all the fast modes to attain an effective action. We

hope that this action has the same form of the original action up to scalings because then that means the

RG procedure can be iterated, i.e. the mapping is closed. To perform the integration we split the action

into pieces containing only slow/fast modes and a term involving terms that mix the two:

S(φ<, φ>) = S0(φ<) + S0(φ>) + SI(φ<, φ>). (5.1.2)

This separation is done to make S0 a quadratic function of it’s argument. Substituting this into the

partition function allows us to define what this effective action is:

Z =

∫ ∏
0<|k|<Λ

b

dφ(k)

∫ ∏
Λ
b <|k|<Λ

dφ(k) eS0(φ<) eS0(φ>) eSI(φ<,φ>),

=

∫
[dφ<] [dφ>] eS0(φ<) eS0(φ>) eSI(φ<,φ>),

=

∫
[dφ<] eS0(φ<)

∫
[dφ>] eS0(φ>)+SI(φ<,φ>),

=

∫
[dφ<] eS

′(φ<),

(5.1.3)

where the effective, coarse grained, action is defined as:

eS
′(φ<) = eS0(φ<)

∫
[dφ>] eS0(φ>) eSI(φ<,φ>)

= eS0(φ<)

∫
[dφ>] eS0(φ>) eSI(φ<,φ>)∫

[dφ>] eS0(φ>)
×
∫

[dφ>] eS0(φ>)

= eS0(φ<)
〈
eSI(φ<,φ>)

〉
0>

Z0>.

(5.1.4)
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The partition function Z0> is irrelevant as it is constant with respect to the slow variables and will be

cancelled in the calculation of any correlation function.

The next stage is to rescale the momenta in the effective action, k′ = bk, so that the cutoff momenta

has the same numerical value in the effective action. Then the fields are rescaled, φ′(ω′) = ζ−1φ<

(
ω′

s

)
,

and ζ is picked so that the quadratic part of the action has a fixed coefficient. With this definition of the

RG transformation we obtain a mapping of Hamiltonians/Actions onto eachother. We can then examine

how couplings within the action transform under successive RG steps, to see if their effects are amplified

or suppressed by the coarse graining and averaging. We now turn to apply this technique to an impurity

in a Luttinger Liquid.

5.2 Single Impurity in a Luttinger Liquid

We shall investigate the effect that a weak scattering impurity has on the Luttinger liquid. This was first

done by Kane & Fisher [36] and is often known as a Kane-Fisher impurity. To model an impurity we add

a perturbative term to the bare Luttinger action:

Simp =

∫
dτdxV (x)ρ(x), (5.2.1)

where V (x) is the impurity potential and ρ(x) is the density of the Luttinger Liquid. The density can

also be expressed as a function of the density field (2.2.3):

ρ(x) =
1

π
∂xΘ(x)

∞∑
n=−∞

δ (Θ(x)− nπ) ,

=
(
ρ0 − ∂xθ(x)

) ∞∑
n=−∞

e2niθ(x),

(5.2.2)

which to leading order is:

ρ(x) = (ρ0 − ∂xθ(x)) (1 + 2 cos(2θ(x))) (5.2.3)

For a point-like impurity at the origin, the potential is V (x) = V0δ (x), where V0 is the strength of
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5.2. SINGLE IMPURITY IN A LUTTINGER LIQUID

the impurity. We assume that that V0 is small compared to other energies in the system, Fermi energy or

bosonic equivalent, so that the bosonisation representation is still valid. This gives the impurity action,

to leading order;

Simp = V0

∫
dτ

[
ρ0 −

1

π
∂xθ(0) + 2ρ0 cos(2θ(0))

]
. (5.2.4)

The first two terms are the forward scattering and can be removed using a gauge transformation, which

when substituting into the total action (in terms of θ only) gives:

S =
1

2πKc

∫ β

0

dτ

∫
dx
[
(∂τθ)

2 + c2(∂xθ)
2
]

+ Ṽ0

∫ β

0

dτ cos(2θ(0)). (5.2.5)

This action is Gaussian at all points apart from x = 0, where the impurity is. We can integrate over

the field θ(x) at all points except the origin where θ(0) = θ0. To impose this condition we introduce a

Lagrange multiplier, λ(τ),

e−Seff =

∫
DθDλ e−SLL+i

∫
dτλ(τ)[θ0−θ(x=0,τ)]. (5.2.6)

We now substitute the Luttinger action into this expression and integrate over the bulk field θ. The

integral over momentum q can now be performed, and finally the functional integral over the Lagrange

multiplier λ,

e−Seff =

∫
DθDλ e

1
2πcK

∫ dωdq

4π2 [(c2q2+ω2)|θ(q,ω)|2+iλ(−ω)θ(q,ω)] ei
∫

dω
2π λ(−ω)θ0(ω)

=

∫
Dλ exp

{
−1

2

∫
dωdq

4π2

πKc

c2q2 + ω2
|λ(ω)|2 + i

∫
dω

2π
λ(−ω)θ0(ω)

}
=

∫
Dλ exp

{
−1

2

∫
dω

2π

[
Kπ

2|ω|
|λ(ω)|2 + iλ(−ω)θ0(ω)

]}
= e−

1
2

∫
dω
2π

2|ω|
Kπ |θ0(ω)|2 .

(5.2.7)

This gives us an effective action in terms of fluctuations of the value of θ at the origin. Rescaling the
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field, 2θ0 → θ0 then gives:

Seff =
1

8π2

∫
|ω|<Λ

dω
|ω|
K
|θ(ω)|2 + Ṽ0

∫
dτ cos(θ(τ)). (5.2.8)

With this action we can apply the RG procedure as outlined in section 5.1. We introduce the scaling

parameter, b ∼ 1, to separate the slow and fast modes by ω = Λ
b . The first term in the action involved

no mixing of the slow and fast terms so can be easily split into slow and fast actions, and then the cosine

term can be investigated separately as it mixes terms. The integration over fast modes to generate the

coarse grained action gives:

e−Scg =

∫
Dθ>e

−S<(θ<)−S>(θ>)−Ṽ0

∫
dτ cos(θ<(τ)+θ>(τ))

= e−S<(θ<)

∫
Dθ>e

−S>(θ>)

(
1− Ṽ0

∫
dτ cos(θ<(τ) + θ>(τ))

)
= e−S<(θ<)

〈
1− Ṽ0

∫
dτ cos(θ<(τ) + θ>(τ))

〉
>

= e−S<(θ<)−Ṽ0

∫
dτ 〈cos(θ<(τ)+θ>(τ))〉> .

(5.2.9)

The average, 〈cos(θ<(τ) + θ>(τ))〉>, can be calculated by first expanding the cosine and employing the

identity
〈
eiA
〉

= e−
1
2 〈A2〉:

〈cos(θ<(τ) + θ>(τ))〉> = cos(θ<(τ)) e−
1
2 〈θ>(τ)2〉, (5.2.10)

and then using the correlation Eq. 4.1.14, previously calculated to get:

〈
θ>(τ)2

〉
>

=

〈∫
dω1

2π

dω2

2π
eiτ(ω1+ω2)θ>(ω1)θ>(ω2)

〉
>

=

∫
Λ
b <|ω|<Λ

dω
K

|ω|

= 2K ln b.

(5.2.11)

Putting this back into the coarse grained action eq. 5.2.9 gives:

S′ =
1

8π2

∫
|ω|<Λ

b

dω
|ω|
K
|θ(ω)|2 + b−K Ṽ0

∫
dτ cos(θ(τ)). (5.2.12)
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The final stage of performing the RG is to rescale the fields. To do so, we start by rescaling ω so that the

UV cutoff remains the same numerical value. This rescaling is: ω′ = bω, so that τ ′ = τ/b. We also want

the term inside the cosine to remain invariant under scaling [θ′(τ ′) = θ(τ)]. From the definition of the

Fourier transform, θ(τ) =
∫

dω
2π e

iωτθ(ω), this means that the field θ(ω) scales as: θ′(ω′) = θ(ω)/b. With

these rescalings, the action now looks like:

S′ =
1

8π2

∫
|ω|<Λ

dω
|ω|
K
|θ(ω)|2 + b1−K Ṽ0

∫
dτ cos(θ(τ)). (5.2.13)

The quadratic part of the action remains unchanged, and we can see that the coupling Ṽ0 scales as:

Ṽ0
′

= b1−K Ṽ0. (5.2.14)

This results in an RG equation of:

d ln Ṽ0

d ln b
= 1−K. (5.2.15)

This tells us that for Luttinger parameters K < 1 the impurity strength will flow to larger values,

meaning for any arbitrarily weak impurity in a fermionic Luttinger liquid it will have the effect of being

an impassable barrier. The opposite is true for bosonic Luttinger liquids where K > 1. For an arbitrarily

strong impurity, it’s strength will be renormalised to zero, meaning the impurity can be ignored. It can

also be seen if the weak barrier is replaced by a weak link, with a tunneling strength that gets renormalised

instead of V0. The same procedure is done except with the phase field φ instead of θ.

5.3 Sine-Gordon Impurity in a Luttinger Liquid

We have seen how a local impurity inside a Luttinger liquid behaves and how the physics is dominated

by the value of the Luttinger parameter. In this section we shall investigate a global Sine-Gordon type

impurity, one which is parasitic in spinful Luttinger liquids with g1⊥ type scattering (see section 2.3 for

details). The behaviour of this type of impurity is integral to the main result of this thesis, in chapter

7. This procedure will follow section 2.3.2 and Appendix E in Giamarchi [16], where we renormalise the
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impurity through the functional integral we have seen before.

We start with the Hamiltonian, coming from Eq. 2.3.22. We use this Hamiltonian to make an action

in the standard way, by integrating out the ϕρ,σ field

Sσ =
1

πvσKσ

∫
dxdτ

[
(∂τθσ)2 + v2

σ(∂xθσ)2
]

+ 2g1⊥

∫
dxdτ cos(4θσ(x, τ)).

(5.3.1)

From here on we shall omit the subscript of σ on the fields and ⊥ on the coupling as all the correlations

we shall be seeking will only involve those in the spin sector, and there are no other couplings in the

system. As we want to separate out fast and slow modes, we write the field θ in Fourier space:

θ(x, τ) =
1

βΩ

∑
k,ωn

ei(kx−ωnτ)θ(k, ωn). (5.3.2)

This field can then be decomposed into the fast and slow with respect to the high frequency cut-off Λ

(with r = (x, vτ), q = (k, ωn/v)),

θ<(r) =
1

βΩ

∑
‖q‖<Λ′

eiqrθ(q)

θ>(r) =
1

βΩ

∑
Λ′<‖q‖<Λ

eiqrθ(q)

(5.3.3)

with the notation of, qr = kx− ωnτ . The quadratic part of action Eq. (5.3.1) becomes:

S0 =
1

πK

1

βΩ

∑
q

[
ω2
n/v + vk2

]
θ∗(q)θ(q). (5.3.4)

This action does not mix fast and slow terms, so therefore can be written as: S0 = S<0 + S>0 . The way

to tackle the non-quadratic component of the action is through a perturbative expansion. The partition
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function Z =
∫

Dθe−S is expanded in a power series in g (where Z0 is the partition function for g = 0):

Z
Z0

=
1

Z0

∫
Dθe−S

<
0 −S

>
0

[
1− 2g

∫
d2r

v
cos
(
4(θ<(r) + θ>(r))

)
+ 2g2

∫
d2r1

v

∫
d2r2

v
cos
(
4(θ<(r1) + θ>(r1))

)
cos
(
4(θ<(r2) + θ>(r2))

)]
.

(5.3.5)

The fast fields can be isolated and then averaged over, giving:

Z
Z0

=
1

Z<0

∫
Dθe−S

<
0

[
1− 2g

∫
d2r

v
cos
(
4θ<(r)

)
e
−8〈θ>(r)2〉

>

+ g2
∑
ε=±1

∫
d2r1

v

∫
d2r2

v
cos
(
4(θ<(r1) + εθ<(r2))

)
e
−8〈(θ>(r)+εθ>(r2))2〉

>

]
.

(5.3.6)

This is then re-exponentiated to create an effective action, which gives:

Z
Z0

=
1

Z<0

∫
Dθ exp

[
−S<0 − 2g

∫
d2r

v
cos
(
4θ<(r)

)
e
−8〈θ>(r)2〉

>

]
exp

[
g2

∫
d2r1

v

∫
d2r2

v

(∑
ε=±

cos
(
4(θ<(r1) + εθ<(r2))

)
e
−8〈(θ>(r1)+εθ>(r2))2〉

>

)]

exp

[
−2g2

∫
d2r1

v

∫
d2r2

v
cos
(
4θ<(r1)

)
e−8〈θ>(r1)2〉 cos

(
4θ<(r2)

)
e−8〈θ>(r2)2〉

] (5.3.7)

The first term in this action corresponds to the original SG impurity, but only over slow fields. The

terms of order g2 can be shown to be less relevant in the RG, as they will renormalise based on faster

oscillating terms. For further details on what happens to these terms, refer to Giamarchi Appendix E [16]

or Nozieres & Gallet [37]. Renormalising the order g cosine is sufficient to show which values of K makes

this perturbation relevant. Since the fast modes have been integrated out, the fields shall be re-scaled to

bring the cut-offs back to their original numerical value:

dk =
Λ′

Λ
dk′. (5.3.8)

The same is done for ωn and the accordingly for the real space variables:

dx =
Λ

Λ′
dx′, dτ =

Λ

Λ′
dτ ′. (5.3.9)
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With these re-scalings it can be seen from the first line in Eq. (5.3.7) that the coupling, g, will scale as:

g(Λ′) =

(
Λ

Λ′

)2

g(Λ)e
−8〈θ>(r)2〉

> =

(
Λ

Λ′

)2

g(Λ)e
− 4
βΩ

∑
Λ′<‖q‖<Λ

πKv
ω2
n+v2k2 . (5.3.10)

In the zero temperature and infinite length limit, β, L→∞, the sum inside the exponent can be converted

to an integral:

g(Λ′) =

(
Λ

Λ′

)2

g(Λ)e−2
∫
Λ′<‖q‖<Λ

dqKq (5.3.11)

=

(
Λ

Λ′

)2

g(Λ)e−2K ln(Λ/Λ′). (5.3.12)

By parameterising the scaling by a scale factor b > 1, with bΛ′ = Λ, the RG equation for g will then read:

d ln g

d ln b
= 2− 2K. (5.3.13)

This has the critical point of K∗ = 1, which corresponds to the the non-interacting spin sector back in

the original model Eq. (2.3.22). For Kσ > 1 then the Sine-Gordon impurity term is RG irrelevant, and

can be ignored in the low energy description of the system.

In the opposite limit, Kσ < 1, the sine-Gordon impurity is relevant and g flows to larger values under

each RG step. This means that the spin sector is “massive”, and the presence of the g1⊥ term will cause

the spectrum to be gapped. The g1⊥ term will cause the field θσ(x, τ) to be pinned at the value that

minimises the cosine, g1⊥ cos(4θσ). This can lead to two different situations depending on the sign of g1⊥.

For either case, the field θσ takes a definite, static, value which means that the dual field φσ disorders due

to the uncertainty principle. This means that the spin sector, Sσ, will have no dynamics as the behaviour

is entirely dominated by the sine-Gordon term.

In chapter 7 this result will be used as part of a 1D system of interacting fermions, to suppress

dynamics of spin excitations.
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Chapter 6

The Bosonic System

In the following chapter I shall introduce the model for the key system of this thesis, a 1D wire/channel

connected to two 3D reservoirs. The first case of interest is what happens when the constituent particles

are bosonic, with the reservoirs containing BECs. This is the concern of [8], and is the foundation for the

main result of this thesis in chapter 7. We shall start with introducing the model, discuss why perturbation

theory fails and then proceed to solve the system with a non-perturbative mean field solution.

6.1 The Model

The system that we are investigating consists of three parts, as illustrated in Fig. 6.1. Firstly are the

reservoirs, which we are modelling as a harmonically trapped BEC. These are described by an order

parameter (see Eq. 1.1.9), ΨL,R =
√
NL,R/V e

iΦL,R , and action;

Ss=L,R =

∫ β

0

dτ

[
1

2
Ṅs − Φ̇sNs + VextNs +

g

2
N2
s

]
(6.1.1)

For the system in question we are preparing the reservoirs at an equal chemical potential, which sets

NL = NR. Without loss of generality we can set the phases in the right/left reservoirs as ±Φ. The

total phase difference across the junction is 2Φ which will be used to drive the current through the

system, much like a Josephson junction. The second part of the system is the 1D channel, of length

L which contains N bosons. We centre the channel symmetrically about x = 0, so that the channel
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Figure 6.1: Schematic of the geometry of the bosonic system

meets the reservoirs at the points x = ±L/2. The bosons in the channel form a quasi-condensate with

order parameter ψLL(x, t) =
√
ρ0 − 1

π θ(x, t)e
iϕ(x,,t), where ϕ is the phase field and ∂xθ is the density

fluctuations about the mean density ρ0 = N/L. We shall model the channel as a Luttinger liquid, with

the imaginary time action (~ = 1):

SLL =

∫ β

0

dτ

∫ L/2

−L/2
dx

[
−i 1

π
(∂xϕ)(∂τθ) +

1

2π

(
cK (∂xϕ)

2
+

c

K
(∂xθ)

2
)]
. (6.1.2)

As the particles as bosons, K >> 1 and c is the Bogoliubov speed of sound described in section 1.1.2.

The final piece of the system is a connection between the reservoirs and the channel. This comes in the

form of a Josephson style tunnelling term, much like in section 1.2.3. The tunnelling Hamiltonian for

such a process is:

Htun = −t
[
Ψ†L ψ(x = −L/2) + Ψ†R ψ(x = L/2) + h.c.

]
, (6.1.3)

where t is the tunnelling amplitude. Much like in a Josephson junction, we can express the tunnelling

in terms of the phase difference. In this case we have two phase differences, the difference between the

phase in the left reservoir and the channel at x = −L/2 and similarly between the right reservoir and the
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channel at x = +L/2. These phase differences are defined as:

φL = Φ− ϕ (−L/2)

φR = ϕ (L/2) + Φ.

(6.1.4)

With these phase differences, the tunnelling action becomes:

Stun = −2J

∫ β

0

dτ [cosφR + cosφL] . (6.1.5)

The tunnelling energy J = t
√
ρ0N/V is a small parameter, since the tunnelling Hamiltonian Eq. 6.1.3

is valid only for small overlaps of wavefunctions. This gives the system a total action of:

S = Sres + SLL + Stun, (6.1.6)

leading to a partition function of Z =
∫

D [ΦL,ΦR] D [ϕ, θ] exp(−S). Due to the absence of any non-

quadratic terms in θ, we can integrate out θ in the Luttinger action Eq. 6.1.2, which leads to the action

expressed in terms of ϕ alone:

SLL =
K

2πc

∫ β

0

dτ

∫ L/2

−L/2
dx
[
(∂τϕ)2 + c2(∂xϕ)2

]
. (6.1.7)

This form is more convenient when investigating currents and their dependence on the applied phase

difference driving them.

The geometry of this system is practically identical to similar systems considered in [6, 7], except for

the particles that make up the system being fermions. The main difference that this brings is the value

of the Luttinger parameter, K, in the channel. We shall see in the next subsection how this difference in

K causes problems when attempting a perturbative solution to this bosonic system.
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6.2 Perturbation Theory

The key property we are investigating in the system described above is the supercurrent, driven solely by

the phase difference between the reservoirs. To calculate this current we first calculate the free energy,

F ∝ lnZ, and then take the derivative with respect to the phase difference1, I ∝ ∂F/∂∆Φ. The action is

quadratic except for the tunnelling term Stun, and so to evaluate the partition function we need to deal

with it in some way. Since the tunnelling strength J is a small parameter, this incentivises us to try a

perturbative expansion in Stun:

Z =

∫
D [ΦL,ΦR] D [ϕ, θ] e−Sres−SLL−Stun (6.2.1)

=

∫
D [ΦL,ΦR] e−Sres

∫
D [ϕ, θ] e−SLL

(
1− Stun +

1

2
S2

tun + . . .

)
=

∫
D [ΦL,ΦR] e−Sres

〈
1− Stun +

1

2
S2

tun + . . .

〉
SLL

.

The lowest order term that would generate a dependence on the phase difference is at second order

in Stun, as we can have terms that couple the phases of the left and right reservoirs. These terms will

correspond to a boson tunnelling from a reservoir and then tunnelling out of the channel into the opposite

reservoir. This means that we can replace the tunnelling action with an effective action that contains

only the relevant processes,

Seff
tun = −2J2

∫
dτ1dτ2 cos

(
ΦL(τ1)− ϕ(−L/2, τ1)

)
cos
(
ΦR(τ2)− ϕ(L/2, τ2)

)
(6.2.2)

= −J2

∫
dτ1dτ2

[
cos
(
ΦL(τ1) + ΦR(τ2)− ϕ(−L/2, τ1)− ϕ(L/2, τ2)

)
+ cos

(
ΦL(τ1)− ΦR(τ2)− ϕ(−L/2, τ1) + ϕ(L/2, τ2)

)]
. (6.2.3)

The average over the Luttinger action can be done using the results from chapter 4, namely eq. (4.3.11),

〈
Seff

tun

〉
LL

= −2J2

∫
dτ1dτ2 cos

(
ΦL(τ1)− ΦR(τ2)

)
e
− 1

4K ln
[
β2c2

ξ2π2

(
sin2

(
π(τ1−τ2)

β

)
+sinh2(πLcβ )

)]
. (6.2.4)

1From a Hamiltonian mechanics perspective, number N and phase Φ are canonical conjugates and so the current, Ṅ ,
can be calculated from the derivative of the Hamiltonian with respect to Φ.
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Making the change into relative (∆τ = τ2− τ1) and collective (τ = (τ1 + τ2)/2) time co-ordinates we can

interrogate this integral,

〈
Seff

tun

〉
LL

= −2J2

∫
dτ cos

(
ΦL − ΦR

) ∫
d∆τe

− 1
4K ln

[
β2c2

ξ2π2 (sin2(π∆τ
β )+sinh2(πLcβ ))

]
. (6.2.5)

This will give the leading order term in the free energy that is dependent on ΦL − ΦR:

F = − 1

β
lnZ = 2J2 cos

(
ΦL − ΦR

) ∫
d∆τe

− 1
4K ln

[
β2c2

ξ2π2 (sin2(π∆τ
β )+sinh2(πLcβ ))

]
. (6.2.6)

In the zero temperature limit, β →∞ the integral becomes more tractable;

F = 2J2 cos
(
ΦL − ΦR

) ∫ ∞
−∞

d∆τe
− 1

4K ln
[
L2

ξ2

(
c2∆τ2

L2 +1
)]
. (6.2.7)

Finally, we can de-dimensionalise the integral,

F = 2J2 cos
(
ΦL − ΦR

)(L
ξ

)− 1
2K L

c

∫ ∞
−∞

dz
(
1 + z2

)− 1
4K (6.2.8)

= 2
J2

µ

(
L

ξ

)1− 1
2K

I0 cos
(
ΦL − ΦR

)
(6.2.9)

where I0 is defined to be the Beta function [31]

I0 =

∫ ∞
−∞

dz
(
1 + z2

)− 1
4K = B

(
1

2
,

1

4K
− 1

2

)
.

This integral is divergent for K > 1/2, which unfortunately is the limit of K that we are considering

for this bosonic system (K � 1). It is clear that perturbation theory fails and a different approach is

needed, which we shall develop in the next section.

6.3 Mean Field Solution

In this section we shall introduce and use the non-perturbative mean field solution developed by Simpson

et. al. [8] to solve the system described above. We shall calculate the supercurrent as a function of phase
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difference and then discuss the non-trivial behaviour and degeneracy that is present in the solution.

This mean field solution comes from considering the Luttinger liquid action, Eq. 6.1.7, and minimising

it. For a stationary solution, ϕ0(x), this means that ϕ satisfies the 1D Laplace equation,

d2ϕ0

dx2
= 0. (6.3.1)

Any linear function satisfies this equation, and the intercept and gradient are set by the boundary

conditions. The tunnelling action gives boundary conditions on ϕ at each end of the channel:

ϕ (−L/2) = Φ− φL

ϕ (L/2) = −Φ + φR.

(6.3.2)

This gives a mean field phase profile in the channel of:

ϕ0(x) = −φ− − 2(Φ− φ+)
x

L
, (6.3.3)

where φ± ≡ 1
2 (φL ± φR) are the symmetric and asymmetric combinations of the phase drops at either

end. Substituting this form of ϕ back into Eq. 6.1.7, we can perform the integration over x. This will

leave us with an action expressed in terms of the edge fields, φ±, only. This combines with the tunnelling

action, which is also solely a function of the edge fields, to give:

Sε =

∫ β

0

dτ

[
2
Kc

πL
(Φ− φ+)2 − 4J cosφ+ cosφ−

]
. (6.3.4)

This action, with subscript ε, is equivalent to the mean field1 energy of this system.The first term is the

kinetic energy of the superfluid in the channel, which flows with velocity v = −2(Φ − φ+)/mL. This

results in a kinetic energy of 1
2mNv

2, which gives us our first term. The second term is the Josephson

energy from the tunnelling processes at either side. Minimising this action/energy to find φ± as function

1It is a mean field solution because it does not have quantum fluctuations, only the semi-classical
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of Φ will give us the final mean field solution. This minimisation gives us the simultaneous equations,

Φ− φ+ = α sinφ+ cosφ−, (6.3.5a)

cosφ+ sinφ− = 0. (6.3.5b)

Here the dimensionless tunnelling constant is defined as α ≡ J/Jc, where Jc ≡ Kc/πL� πρ0c so that α

can range from 0 to values � 1 while the tunnelling Hamiltonian Eq. 6.1.3 still remains valid.

The condition Eq. 6.3.5b, sets either cosφ+ = 0 or sinφ− = 0. To investigate the (classical) stability

of these solutions we investigate the Hessian matrix of second derivatives of energy ε = 2(Φ − φ+)2 −

4α cosφ+ cosφ−, and its determinant:

H[φ+, φ−] =

4 + 4α cosφ+ cosφ− −4α sinφ+ sinφ−

−4α sinφ+ sinφ− 4α cosφ+ cosφ−

 , (6.3.6)

D[φ+, φ−] = 16
[
α cosφ+ cosφ− + α2(cosφ+ cosφ−)2 − α2(sinφ+ sinφ−)2

]
. (6.3.7)

For values of φ+ where cosφ+ = 0, the determinant is always negative meaning that the solutions are

always unstable (i.e. saddle points). This now restricts us to have sinφ− = 0, which yields φ− = 0, π

as the only solutions on φ− ∈ [0, 2π). As the energy is 2π periodic in φ− no other values that φ− can

take will produce anything new. The choice of φ− = 0 corresponds to symmetric phase drops on both

sides with φ+ = φL = φR and the choice of φ− = π corresponds to an asymmetric phase drop, where

φL = 2π + φR. A sketch of what both of these phase profiles look like is given in figure 6.2. With these

symmetric and asymmetric branches, the remaining condition eq. 6.3.5a is now:

Φ− φ+ = ±α sinφ+. (6.3.8)

This equation is transcendental, and unable to be inverted to get φ+ as a closed form function of Φ.

There are a few concrete pieces of information we can glean analytically, one of which is the periodicity

of the solutions that we will obtain by solving equation (6.3.8). For some φ+ that satisfies Eq. 6.3.8, if

Φ→ Φ + 2π then φ+ → φ+ + 2π is going to be a solution as well that gives the same energy. This means
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x

ϕ(x)

L
2−L2

Φ

−Φ

φL

φR

Figure 6.2: Phase profile along the channel. The blue lines show a symmetric solution where φL = φR.
The red lines show an asymmetric solution where φL = 2π + φR.

that the energy on a given branch is 2π periodic in Φ and therefore 4π periodic in 2Φ, the total phase

difference.

We can also assess the stability of solutions that it will admit. The stable solutions on either branch

(local minima of the energy landscape) we require both of the eigenvalues of H[φ+, φ−] to be positive.

For sinφ− = 0, the off diagonal terms in the Hessian are zero, giving the condition of

±α cosφ+(1± α cosφ+) > 0, (6.3.9)

to be satisfied for the symmetric/asymmetric branches respectively. For α < 1 there are only stable

solutions for ± cosφ+ > 0, which for the symmetric branch gives stable solutions in intervals about

φ+ = 2jπ where j ∈ Z. Solutions stable at φ+ = 0 remain stable in the interval φ+ ∈ [−π/2, π/2].

From Eq. 6.3.8 we can deduce that this symmetric branch solution remains stable for applied phases Φ ∈

[−(π/2 +α), π/2 +α]. Similarly for the asymmetric branch, stable solutions exist around φ+ = (2j+ 1)π

where j ∈ Z. The solution centred about φ+ = π remains stable in the region φ+ ∈ [π/2, 3π], leading to

stability for the applied phases in the interval Φ ∈ [π/2−α, 3π+α]. This means that for all values of Φ,

there exists at least one stable solution and about half integer multiples of π there is a region of width

2α where solutions from both branches are stable. This means that if we were to increase Φ from 0, we
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would initially start on the symmetric branch and have the phase drops at both barriers to be the same,

until switching to the asymmetric branch for Φ > π/2 +α where the asymmetric branch is stable but the

symmetric is not. These ranges of stability means that the energy and current will have the expected 2π

periodicity in phase difference. Both branches are 4π periodic in the applied phase difference, but their

regions of stability we would see an energy/current that is 2π periodic in phase difference if we were to

increase Φ monotonically. The equation (6.3.8) can be solved numerically to find φ+ as a function of Φ,

and then the mean field energy found as a function of Φ. This is plotted in figure 6.3.

Figure 6.3: Plots of the mean field energy in channel for different values of α. Blue lines are solutions
from the symmetric branch, red lines are from the asymmetric branch. [8].

The choice between branches can be thought of the balance between having most of the phase difference

closed up by having a current in the channel (symmetric branch) or by accumulating most of the phase

drop on one of the boundaries. For |Φ| < π/2, the kinetic energy cost is small so the lower energy state is

the symmetric branch. For |Φ| ∼ π, most of the phase difference can be made up through the phase drop

when tunnelling on the asymmetric branch, thus giving it the lower energy. At Φ = π/2 the branches are

degenerate, and they are both simultaneously stable for any values of α. The existence of this degeneracy

and mechanism that could lift it will be discussed later in subsections 6.4 and 6.4.2.

Extra solutions on both branches appear as α is increased. For α > 1 extra solutions appear around
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Φ = (2j+1)π for the symmetric branch and Φ = 2jπ for the asymmetric branch. These remain metastable

until Φ = π/2 where they are stable for the whole interval [0, π]. This can be seen in figure 6.3 where the

solid lines represent regions where the solution is stable. The current through the channel is the gradient

Figure 6.4: Dependence of the current on 2Φ. Black lines represent the lowest energy configuration and
green represent metastable solutions. The dotted lines represent unstable solutions and are used to guide
the eye [8].

of the phase given by Eq. 6.3.3, with the substitution of Eq. 6.3.8 giving:

I = ∓2J sinφ+. (6.3.10)

This is the same form as the standard Josephson current. The main differences to note is the fact that

it is non-perturbative, it is of a lower order in J than perturbation theory would give us. Secondly,

it differs from the Josephson formula due to the non-trivial (and non-linear) dependence of φ+ on the

phase difference 2Φ. The sign of the current comes from the cosφ− that defines the branches. As Φ

is increased past π/2 the lowest energy solution becomes the solution on the asymmetric branch, hence

the current corresponding to the lowest energy will discontinuously flip at Φ = π/2. The profile will be

piecewise sinusoidal due to the changing of the branches, as seen in figure 6.4. Experimentally this will

be measurable as a hysteresis in the current, because the symmetric branch is still stable as Φ increases

past π/2 but is no longer the solution corresponding to the lowest energy. We can see how this solution

is non-perturbative, as the current is a lower power of J than would be obtained by the perturbative

calculation. This behaviour is qualitatively different to that exhibited by an equivalent system of fermions
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[6, 7, 3], where the current exhibits Ohmic dissipation even in the absence of impurities, very different to

the non-perturbative behaviour of the current we’ve obtained.

6.4 Fluctuations

So far we have seen the classical stability of the solutions, however more analysis is needed to verify if

this mean field solution is robust against phase fluctuations. This will be done by adding fluctuations on

top of the mean field solution and generating an effective action that describes fluctuations. With this

action, we shall investigate how the addition of fluctuations affects the non-quadratic part of the action.

Through a renormalisation group process, as seen in chapter 5, we shall see that fluctuations don’t erase

the features of the mean field solution. It also implies that fluctuations won’t provide a mechanism of

lifting the degeneracy at Φ = π/2, making it dynamically protected.

In this section we shall outline the key results, full details can be found in [8, 38]. We start with the

action Eq. 6.1.7 where the Luttinger liquid is described in terms of ϕ alone1 The fluctuations within the

channel are defined as: ϕ(x, τ) = ϕ0(x) + ϕ̃(x, τ), which are independent from the fluctuations on the

boundary defined as: φL,R(τ) = φL,R + φ̃L,R(τ). From Eq. 6.3.2 the fluctuating field have the boundary

conditions:

ϕ̃ (−L/2, τ) = −φ̃L(τ),

ϕ̃ (L/2, τ) = φ̃R(τ).

(6.4.1)

From integrating out the Gaussian fluctuations inside the channel, the action for the fluctuations on the

edge is,

Sfl =
K

2π

∫
dω

2π
|ω|
(∣∣∣φ̃L(ω)

∣∣∣2 +
∣∣∣φ̃R(ω)

∣∣∣2)
=
K

π

∫
dω

2π
|ω|
(∣∣∣φ̃+(ω)

∣∣∣2 +
∣∣∣φ̃−(ω)

∣∣∣2) (6.4.2)

Here the limit of ω � c/L has been taken, as we are interested in high frequency fluctuations far away

from the minumum phononic frequency the channel can support (c/L). In the second line we define the

1A qualitatively identical approach starting with action Eq. 6.1.2 can be done, and full details can be found in section
7.4 of this thesis.
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fluctuations of the symmetric/asymmetric phase drops 2φ̃±(τ) ≡ φ̃L(τ)± φ̃R(τ) The substitution of the

fluctuating fields into the action Eq. 6.3.4 leads to:

Sε =
Kc

πL

∫ β

0

dτ
[
2(Φ− φ+)2 − 4(Φ− φ+)φ̃+(τ)− 4α cos

(
φ+ + φ̃+(τ)

)
cos
(
φ− + φ̃−(τ)

)]
. (6.4.3)

In the next subsection we shall investigate the impact that high energy fluctuations have on this action,

in particular the non-quadratic cosine term coming from the tunnelling at the barriers.

6.4.1 RG Analysis

We now embark on using the Renormalisation Group to assess the stability and validity of this mean field

solution. With the action eq. (6.4.2) we shall use RG to integrate out the high energy fluctuations in the

standard way to see how the couplings (namely the tunnelling α) scale. We proceed in the standard way

(detailed in chapter 5) and identify “fast” and “slow” fields:

φ̃±(τ) =

∫
|ω|<Λ

b

dωeiωτ φ̃±(ω) +

∫
Λ
b <|ω|<Λ

dωeiωτ φ̃±(ω)

= φ̃<±(τ) + φ̃>±(τ)

(6.4.4)

The action for fluctuations does not mix terms of different speeds, easily allowing for the identification of

actions for slow, S<fl , and fast, S>fl , fluctuations. Integrating out the fast modes is equivalent to performing

the average 〈. . .〉> ≡
∫

Dφ>(. . . )e−S
>
fl /
∫

Dφ>e−S
>
fl . Using the identity:

〈
exp

[
±iφ̃>±

]〉
±,>
≡ exp

[
−1

2

〈(
φ̃>±

)2
〉
±,>

]
, (6.4.5)

we can renormalise the non-Gaussian cosine term:

〈
cos
(
φ± + φ̃<±(τ) + φ̃>±(τ)

)〉
>,±

= exp

[
−1

2

〈
(φ̃>±(τ))2

〉
>,±

]
cos
(
φ± + φ̃<±(τ)

)
. (6.4.6)
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The average inside the exponential can be calculated more readily in Fourier space,

〈
(φ̃>±(τ))2

〉
>,±

=

∫
>

dω1

2π

dω2

2π
eiτ(ω1+ω2)

〈
φ̃±(ω1)φ̃±(ω2)

〉
>,±

. (6.4.7)

From the action for fluctuations, Eq. (6.4.2) we can see that the the averages for both symmetric and

asymmetric fluctuations will be identical, giving an average of;

〈
φ̃±(ω1)φ̃±(ω2)

〉
>,±

=
π2

K|ω1|
δ−ω1,ω2 . (6.4.8)

Substituting this back into Eq. (6.4.7) gives:

〈
(φ̃>±(τ))2

〉
>,±

=
1

4K

∫
>

dω
1

|ω|
=

1

2K

∫ Λ

Λ/b

dω
1

ω
=

1

2K
ln b. (6.4.9)

Now we can integrate out fast modes from both the symmetric and asymmetric fluctuations to renormalise

the cosines:

〈
cos
(
φ+ + φ̃<+(τ) + φ̃>+(τ)

)
cos
(
φ− + φ̃<−(τ) + φ̃>−(τ)

)〉
>

= exp

[
−1

2

〈
(φ̃>+(τ))2

〉
>,+
− 1

2

〈
(φ̃>−(τ))2

〉
>,−

]
cos
(
φ+ + φ̃<+(τ)

)
cos
(
φ− + φ̃<−(τ)

)
= exp

[
− 1

2K
ln b

]
cos
(
φ+ + φ̃<+(τ)

)
cos
(
φ− + φ̃<−(τ)

)
(6.4.10)

The final stage of the RG procedure is the rescaling of the fields φ̃± and frequencies ω, similar to the

procedure in chapter 5. The result of this scaling is the coefficient of the tunnelling term, α, gets

renormalised by a factor of b1−1/2K after each RG step. This gives an RG flow equation for α of:

d lnα

d ln b
= 1− 1

2K
. (6.4.11)

To get what the renormalised dimensionless tunnelling energy is at low energies, we integrate Eq. (6.4.11)

from our high energy cut-off, down to the low energy cut-off. The infra-red cut-off is ωmin ∼ max(T, c/L)

and the UV cut-off is related to the chemical potential, Λ ∼ c/ξ = µ. Therefore at low energies the
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dimensionless tunnelling energy is given by: α(ωmin) = α0(Λ/ωmin)1− 1
2K . Here the base value of the

tunnelling energy is what it was defined as earlier, α0 = J/Jc.

From Eq. (6.4.11) we can see that K = 1/2 is a critical value in the RG flow. For K < 1/2, α will flow

towards smaller values, meaning it is an RG irrelevant parameter. What this means is that fluctuations

dominate the low energy behaviour and destroy the structure of the mean field solution. Conversely for

K > 1/2, α flows towards larger values, strengthening the mean field solution. This is the case for a

bosonic Luttinger liquid which will have K � 1.

6.4.2 Degeneracy & Discussion

At an applied phase of Φ = π/2, both branches will have the same energy, and there is no mechanism

in the mean field theory that lifts this degeneracy. With the inclusion of fluctuations we have seen that

in the case of a bosonic Luttinger liquid the fluctuations only strengthen the mean field solution. This

means that fluctuations aren’t capable of connecting the two branches as they are power-law suppressed.

This dynamically protected degeneracy, along with the 4π periodicity of the individual branches,

echoes the same predicted behaviour of the systems claimed to host Majorana Fermions [9, 10]. This

raises a few questions, how closely linked our the Majorana systems to our system? Can we describe

our degeneracy as some topological edge excitation? Are there other systems that exhibit the same

behaviour as the bosonic system that are closer to the Majorana systems? It is this last question that

we shall investigate in the following chapter, by looking at if we can recreate the physics of the bosonic

system where we use fermions as our constituent particles.
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Chapter 7

The Fermionic System

In this chapter we shall discuss the main results of this thesis, and demonstrate how the same physics

of the bosonic system considered in chapter 6 can be achieved in a system consisting of fermions. These

results are to be published as a pre-print. We shall begin with the motivation for investigating such a

system, and then discuss the ingredients needed to construct a model that will allow us to recreate the

physics of the bosonic system.

This model consists of BCS superconducting reservoirs, connected with weak tunnelling links, to a

Luttinger liquid of attractive fermions, we shall create an effective tunnelling action for particle pairs and

see that for channels that have attractive fermionic interactions will reproduce the same action as seen

for bosons in section 6.1. The final step is to apply a mean field solution plus fluctuations, and see that

high energy fluctuations do not destroy the structure of it.

7.1 Motivation

The bosonic system considered in chapter 6 is novel due to the non-perturbative mean field solution that

exhibits similar qualities of the semiconductor-superconductor nanowire systems proposed to exhibit

Majorana zero modes [9, 10], as described in chapter 3. The bosonic system has 4π periodicity in the

current as a function of applied phase, which is a signature of MZMs in the semiconductor-superconductor

nanowires.
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Both systems also have a protected degeneracy; the nanowires have a topologically protected degen-

eracy due to the MZMs, whereas the bosonic system has a protection against fluctuations that is not

fully understood. It is possible that there is a description of this degeneracy in terms of topological edge

modes. The next step to better understand this degeneracy is to try to recreate it without using bosons.

The system that we choose to investigate has the same geometry as the bosonic system; two reservoirs

of particles that connect to two ends of a 1D wire with weak tunnelling links. The difference is that the

particles we shall fill the geometry with will be fermions, with the reservoirs forming a BCS superconductor

and the wire forming a Luttinger Liquid with attractive interactions between the fermions. It will be

the phase difference between the BCS order parameters of the two superconductors that will drive the

current. A possible realisation of this system would be in cold atoms, by using an atom chip. These

are electronic devices that are fabricated in a way, so that the currents through the chip produce finely

tuned magnetic fields for the purpose of trapping cold atoms. The fields produced by atom chips can

generate trapping potentials that produce the geometry of the reservoirs, 1D channel and the tunnelling

barrier between them (as demonstrated in the supplementary material of [8]). Another advantage of

cold atoms is that interactions between atoms are tunable through Feshbach resonances. This will allow

for the behaviour explored in this chapter to be investigated, where the interactions are required to be

attractive, and easily compared to systems that have repulsive interactions [6].

The key to the behaviour of the bosonic system in chapter 6 was the value of the Luttinger parameter,

K > 1. This is satisfied for bosons with any repulsive interactions. To recreate this with fermions this

corresponds to attractive interactions (see section 2.3 for details on which interactions we can include to

guarantee this). This system of superconducting reservoirs connected by a Luttinger liquid has already

been considered by Fazio et. al. [6]. For them a perturbative solution to 4th order in the tunnelling

parameter suffices, however it breaks down for K > 1. I shall show that for the fermionic system with

K > 1, we can use a non-perturbative mean field solution to calculate the current as a function of phase

difference, akin to Simpson et. al. [8] for a bosonic system.
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j jΨ1,s(r, τ) Ψ2,s(r, τ)
ψs(x, τ)

Figure 7.1: A cartoon of the system

7.2 The Model

We consider a system consisting of two bulk reservoirs, containing BCS superconductors, that couple to

the ends of a 1D channel of fermions that we model as a Luttinger Liquid (LL). The imaginary time

action for the full system is the sum of the actions describing the reservoirs, channel and a tunnelling

action, Stun, coupling them together: S = Sres + SLL + Stun. In the left and right hand side reservoirs

we have BCS superconductors described by actions, S1 + S2 = Sres, which are the standard BCS actions

(as described in Eq. (4.2.6))

−S`[Ψ`,s,Ψ`,s] =

∫ β

0

dτ

∫
d3r

(
Ψ`,↑(r, τ),Ψ`,↓(r, τ)

)−∂τ + 1
2m∇

2 + µ ∆`

∆∗` −∂τ − 1
2m∇

2 − µ


Ψ`,↑(r, τ)

Ψ`,↓(r, τ)


(7.2.1)

Here the index ` = 1, 2 denotes which reservoir the fields are from and the index s =↑, ↓= ± is the spin.

We are working in the mean field limit for ∆, where fluctuations of the superconducting order parameter,

∆` = |∆|eiΦ` are small. They are related to the fermionic fields inside the reservoirs in the standard way

(see Eq. (4.2.18)):

〈Ψ`,↑(τ)Ψ`,↓(τ
′)〉S` = πN0e

iΦ`

∫
dω

2π

|∆|eiω(τ−τ ′)√
ω2 + |∆|2

= πN0|∆|eiΦ`K0 (|∆|(τ − τ ′)) . (7.2.2)
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As before in section 4.2, N0 is the density of states at the Fermi surface and K0 is the modified Bessel’s

function of the second kind. The Bessel’s function is exponentially small for |τ − τ ′| � 1
|∆| , which

suppresses τ 6= τ ′. Without loss of generality we choose Φ1 = −Φ2 ≡ Φ. We assume that the two

reservoirs have been equilibrated to the same chemical potential and the same density of particles. This

ensures that the current through the channel is entirely driven by the phase difference, 2Φ.

We model the coupling between the reservoirs and channel by a tunnelling action that involves the

reservoir fields Ψ`,s(τ) and channel fields ψs(x, τ),

Stun

[
Ψm,s,Ψm,s, ψs, ψs

]
=j

∫ β

0

dτ
∑
s=↑,↓

[
Ψ1,sψs(x = −L/2) + Ψ2,sψs(x = L/2) + (H.c.)

]
. (7.2.3)

The tunnelling matrix elements, j, are taken to be constant and equal on the left and right barriers.

Inside the channel we choose to bosonise the fermionic fields and describe the channel as a Luttinger

Liquid. We use the bosonisation identity with phase (ϕ) and conjugate density (ϑ) fields:

ψs(x, τ) =
√
%0

∑
η=±1

ei(ηkF−π/L)xe−i(ηϑρ−ϕρ)e−is(ηϑσ−ϕσ), (7.2.4)

where the index η denotes right/left moving fermions and %0 is the density of particles in the channel

(assuming equal densities of spin species). This defines the charge (ρ) and spin (σ) degrees of freedom

identically to Eq. (2.3.14). The Luttinger liquid action in terms of these fields is:

SLL[ϕν , ϑν ] =
1

π

β∫
0

dτ

L/2∫
−L/2

dx

{ ∑
ν=ρ,σ

(
− 2i∂xϕν∂τϑν + vνKν(∂xϕν)2 +

vν
Kν

(∂xϑν)2
)

+ g1⊥ cos(4ϑσ)

}

(7.2.5)

where vν and Kν are the sound velocity and Luttinger parameter in the charge and spin sectors respec-

tively. There are two points to note about this Luttinger liquid action. First is the inclusion of the

global Sine-Gordon impurity term in the spin sector, arising from the spin flip (g1⊥) interactions. This is

included to cause the spin sector to be gapped, pinning the field ϑσ to the minimum of the cosine. This

suppresses the dynamics of the spin sector, leaving the charge sector to be the platform where the physics

of the bosonic system is recreated. To enable this, we want Kσ < 1 to ensure that the sine-Gordon
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impurity is a relevant perturbation (see section 5.3 for details). The second point about this Luttinger

liquid action is that we have not integrated out one of the fields, to be left with an action in only one of

them. This is because the tunnelling term is non-quadratic in both fields currently and needs to be dealt

with carefully. The full partition function for the system is:

Z =

∫
D
[
Ψ,Ψ

]
res

D
[
ψ,ψ

]
LL

exp
(
−Sres[Ψ,Ψ]− SLL[ψ,ψ]− Stun[Ψ,Ψ, ψ, ψ]

)
. (7.2.6)

In the next section we shall look more closely at the tunnelling term, and find a way to couple the phase

of the superconductors to the channel fields.

7.3 Generating Effective Tunnelling

To replicate the physics of the bosonic system, we need to replicate the tunnelling action Eq. (6.1.5). In

the bosonic system, this term couples the phase of the reservoirs with the phase of the Luttinger liquid

at the boundaries. For the fermionic system, with tunnelling action Eq. (7.2.3), things aren’t as simple.

The phase of the reservoirs comes into play at second order in Ψ when calculating anomalous correlation

functions, 〈Ψ↑Ψ↓〉res, such as Eq. (4.2.18). We will need to produce these sorts of correlations if we are

to recreate the same tunnelling action as for bosons. The way to generate these correlation functions

that depend on the phases of the reservoirs is through a perturbative expansion. The partition function

is expanded in a power series in the tunnelling parameter j:

Z =

∫
Dϑρ,σDϕρ,σDΨ1,2 e

−Sres−SLL−Stun (7.3.1)

'
∫

Dϑρ,σDϕρ,σDΨ1,2 e
−SLL−Sres

[
1 + 1

2S
2
tun + 1

4!S
4
tun + . . .

]
'
〈
1 + 1

2S
2
tun + 1

4!S
4
tun

〉
res,LL

The current through the channel is proportional to, I ∝ ∂ lnZ
∂∆Φ , where ∆Φ is the phase difference between

the two reservoirs. In this solely perturbative approach, the lowest order term that contains dependence
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on ∆Φ is at 4th order. The terms that would have dependence on ∆Φ look like1:

Ψ1,s(τ1)Ψ1,s̄(τ2)ψs(−L/2, τ1)ψs̄(−L/2, τ2)ψs(L/2, τ3)ψs̄(L/2, τ4)Ψ2,s(τ3)Ψ2,s̄(τ4)

A term like this corresponds to a (singlet) pair of fermions tunnelling into the channel from the right

(subscript 2) reservoir, propagating through the channel and then tunnelling into the left (subscript

1) reservoir. Upon averaging with respect to their respective reservoir actions, the Ψ1,s(τ1)Ψ1,s̄(τ2)

and Ψ2,s(τ3)Ψ2,s̄(τ4) parts together become proportional to ei(Φ2−Φ1) = e−i∆Φ. It is then the quartic

Luttinger liquid correlators that need to be calculated to fully evaluate the current through the channel.

Fazio et. al. [6] performed these functional integrals, which are divergent as T → 0 for Kρ > 1. This is

the equivalent analysis as shown in section 6.2 for the bosonic system. The purely perturbative approach

fails, and a different method is needed. What we shall do is the equivalent to the bosonic case, where a

non-perturbative mean field solution is applied to the action. The issue with doing this with the fermionic

system is that the tunnelling action does not couple the phases of the reservoirs, and needs to include

the averages 〈Ψ↑Ψ↓〉 for the phases to enter.

To get these averages, we start our analysis by taking the second order term in the perturbative

expansion Eq. (7.3.1), and average over the reservoir actions only. We are only interested in terms that

will generate the anomalous correlators, as they will be the ones that generate dependencies on the phases

of the reservoirs2. With this averaging done we re-exponentiate to get an effective action for tunnelling,

involving the phases of the reservoirs and the un-averaged fields of the 1D channel,

Z =

∫
Dϑρ,σDϕρ,σDΨ1,2e

−Sres−SLL−Stun (7.3.2)

'
∫

Dϑρ,σDϕρ,σe
−SLL

∫
DΨ1,2e

−Sres
(
1 + 1

2S
2
tun + . . .

)
'
∫

Dϑρ,σDϕρ,σe
−SLL

〈
1 + 1

2S
2
tun + . . .

〉
res

'
∫

Dϑρ,σDϕρ,σe
−SLL+

1
2 〈S2

tun〉res

1Up to Hermitian conjugation and permutation of τ ’s
2We also omit terms that would form correlators mixing different reservoirs,

〈
Ψ1,sΨ2,s′

〉
. These correlations would be

exponentially suppressed by their spatial separation.
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With the rules for selecting terms we consider in the expansion, the terms that are pertinent are:

〈
S2

tun

〉
res

= −j2

∫ β

0

dτdτ ′
∑
s

[ 〈
Ψ1,s(τ)Ψ1,s̄(τ

′)
〉
ψs(−L/2, τ)ψs′(−L/2, τ ′)

+ ψs(−L/2, τ)ψs̄(−L/2, τ ′) 〈Ψ1,s(τ)Ψ1,s̄(τ
′)〉

+
〈
Ψ2,s(τ)Ψ2,s̄(τ

′)
〉
ψs(L/2, τ)ψs̄(L/2, τ

′)

+ ψs(L/2, τ)ψs̄(L/2, τ
′) 〈Ψ2,s(τ)Ψ2,s̄(τ

′)〉
]

+ other terms

(7.3.3)

Using Eq. (4.2.18), we can substitute the value the anomalous correlations take (restoring the L/R index

on the reservoir phases for clarity), and perform the sum over spin indices. Dropping the other terms,

this gives us what our effective tunnelling will be:

Seff
tun = −1

2
j2πN0|∆|

β∫
0

dτdτ ′K0

(
|∆|(τ − τ ′)

){
e−iΦL

(
ψ↑(−L2 , τ)ψ↓(−L2 , τ

′) + ψ↑(−L2 , τ
′)ψ↓(−L2 , τ)

)

+ eiΦL

(
ψ↑(−L2 , τ)ψ↓(−L2 , τ

′) + ψ↑(−L2 , τ
′)ψ↓(−L2 , τ)

)
+ e−iΦR

(
ψ↑(

L
2 , τ)ψ↓(

L
2 , τ
′) + ψ↑(

L
2 , τ
′)ψ↓(

L
2 , τ)

)
+ eiΦR

(
ψ↑(

L
2 , τ)ψ↓(

L
2 , τ
′) + ψ↑(

L
2 , τ
′)ψ↓(

L
2 , τ)

)}
(7.3.4)

We have ordered all the pairs of terms the same way, with ↑ spins on the left of ↓ spins. This is to respect

the symmetry of the singlet, prior to bosonisation where we omit anti-commuting Klein factors.

The effective tunnelling action Eq. (7.3.4) can be readily seen as the sum of two tunnelling terms,

one at the left side of the channel and one at the right side. Focusing on the term on the left hand side,

we can bosonise using the identity Eq. (7.2.4),

ψ↑(−L2 , τ)ψ↓(−L2 , τ
′) = %0

∑
η,χ=±1

e
−i
(

(η+χ)
kFL

2 −π
)
e−i(ηϑρ(τ)+χϑρ(τ ′)−ϕρ(τ)−ϕρ(τ ′))e−i(ηϑσ(τ)−χϑσ(τ ′)).

(7.3.5)

Here the chirality indices, η, χ = ±1 denote right and left movers respectively, and the fields ϑ and ϕ

are implicitly evaluated at x = −L/2. As mentioned previously, due to the Bessel’s function K0 being
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dependent on the difference in times (τ − τ ′), and exponentially small for (τ − τ ′) > 1/|∆|, we can ignore

any time differences bigger than 1/|∆|. We assume that |∆| is one of the largest energy scales in our

system, thus making 1/|∆| a timescale at which the fields cannot fluctuate faster than. Therefore we can

happily perform an integral over a relative time coordinate to be left with one integral over a collective

time coordinate. This gives us

ψ↑(−L2 , τ)ψ↓(−L2 , τ) = %0

∑
η,χ=±1

e
−i
(

(η+χ)
kFL

2 −π
)
e−i((η+χ)ϑρ−2ϕρ)e−i((η−χ)ϑσ). (7.3.6)

We can see that there will be two types of terms arising from the different combinations of chiralities.

If the chiralities are different, η + χ = 0, then that would physically correspond to a singlet pair that

tunnels with net momentum of zero. The pair is created at each Fermi-point, meaning that it is a 1D

analogue of a Cooper pair. Terms that have this combination of chiralities will from now be referred

to as “Cooper” terms. Alternatively, the terms with the same chirality, η − χ = 0, would physically

correspond to Andreev reflection. This is a phenomenon in which a single fermion (electron in the solid

state, fermionic atom in cold atoms) tunnels into a superconductor below the energy gap. It does so

by tunnelling into the superconductor as a Cooper pair, and reflects a hole back into the normal metal.

Performing the sum over chiralities, this term becomes:

ψ↑(−L2 , τ)ψ↓(−L2 , τ) = −2%0e
2iϕρ

[
cos(2ϑσ) + cos(2ϑρ + kFL)

]
. (7.3.7)

Inside the brackets, the first term corresponds to the Cooper tunnelling, with the second corresponding

to Andreev tunnelling. A key point to note is that the Andreev term has a non-quadratic dependence

on ϑρ, which prevents us from integrating out ϑρ from our Luttinger liquid action Eq. (7.2.5). Including

the conjugated term, the total tunnelling action on the left side is given to be:

Seff
L = −j2πN0

− β|∆|2∫
− β|∆|2

dzK0(z)

β∫
0

dτ

{
e−iΦLψ↑(−L2 , τ)ψ↓(−L2 , τ) + eiΦLψ↑(−L2 , τ)ψ↓(−L2 , τ)

}

= 4j2π2N0%0

β∫
0

dτ cos
(
ΦL − 2ϕρ(−L2 , τ)

)[
cos
(
2ϑσ(−L2 , τ)

)
+ cos

(
2ϑρ(−L2 , τ) + kFL

)]
.

(7.3.8)
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We can define an effective tunnelling constant, J = 2j2π2N(0)%0 which then reduces the term into one

which looks more similar to the bosonic tunnelling action Eq. (6.1.5). Doing the same on the right side,

we can collect a total effective tunnelling action of:

Seff
tun = −2J

β∫
0

dτ

{
cos
(
ΦL − 2ϕρ(−L2 , τ)

)[
cos
(
2ϑσ(−L2 , τ)

)
+ cos

(
2ϑρ(−L2 , τ) + kFL

)]

+ cos
(
ΦR − 2ϕρ(

L
2 , τ)

)[
cos
(
2ϑσ(L2 , τ)

)
+ cos

(
2ϑρ(

L
2 , τ)− kFL

)]}
.

(7.3.9)

This combines with the full Luttinger action, Eq. (7.2.5), to be the effective action for the system. The

spin sector is gapped due to the presence of the g1⊥ term, which will be a relevant parameter due to

Kσ < 1. This means that 4ϑσ takes the value which minimises the cosine, which then depends on what

sign g1⊥ has. For g1⊥ > 0, repulsive spin interactions, 4ϑσ = π. This then will mean that the Cooper

terms in Eq. (7.3.9) will vanish as they contain a factor of cos 2ϑσ. This would only leave the Andreev

terms, which we shall see in section 7.4 are suppressed by fluctuations. This means that we require

g1⊥ < 0, thus pinning 4ϑσ = 0. Physically this makes sense, as we are encouraging the formation of

singlets in the Luttinger liquid with attractive interactions between opposite spin species.

We also define the phase drops similarly to what was done in the bosonic system:

φL = ΦL

2 − ϕρ(
−L
2 ), φR = ϕρ(

L
2 )− ΦR

2 ,

θL = ϑρ(
−L
2 ) + kFL

2 , θR = ϑρ(
L
2 )− kFL

2 . (7.3.10)

This then leaves the effective tunnelling action as only a function of charge sector variables:

Seff
tun = −2J

β∫
0

dτ

{
cos 2φL

[
1 + cos 2θL

]
+ cos 2φR

[
1 + cos 2θR

]}
. (7.3.11)

We expect (and shall show that) the Andreev terms are suppressed, because correlation functions of

Andreev terms include an oscillating factor on top of the power law decay we expect from 1-D correlations.

This means that they decay much faster than correlations that involve Cooper terms. We can see some

hint that this will be true for our effective tunnelling. As ϑ and ϕ are conjugate variables if one gets
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pinned to a fixed value (by a mean field solution stable to fluctuations or otherwise) then the other will

be free to disorder. If one orders, the other disorders. So if we order ϕ with a mean field solution like

in the bosonic system, that will mean that the fluctuations of ϑ won’t be suppressed. Therefore, the

Andreev terms that contain cosines of ϑ will oscillate wildly and average to zero. This then leaves the

Cooper pair tunnelling as the only term left in the effective tunnelling, thus making an exact mapping

onto the bosonic system.

To investigate this we shall now apply a mean field solution plus fluctuations, as seen in section 6.4

for the bosonic system, and then perform RG analysis to assess the low energy behaviour of the solution

found.

7.4 Fluctuational Solution

In this section we shall develop a mean field solution for the system of fermions described above. We

shall apply a mean field solution in ϕ and ϑ with fluctuations and investigate the low energy behaviour

through RG analysis. In the low energy limit we shall see that the mean field solution is identical to

the mean field solution for the bosonic problem covered in chapter 6, up to trivial scalings of fields and

tunnelling parameters.

The mean field solution, ϑ0,ρ(x), ϕ0,ρ(x), comes from minimising the Luttinger liquid action Eq.

(7.2.5) with respect to ϑρ and ϕρ. This means that ϑ0,ρ and ϕ0,ρ both solve the 1D Laplace equation,

d2ϑ0,ρ

dx2
= 0,

d2ϕ0,ρ

dx2
= 0. (7.4.1)

These makes both ϑ0,ρ, and ϕ0,ρ linear functions of x, with gradients and intercepts related to the

boundary conditions Eq. (7.3.10). By defining the symmetric and asymmetric combinations of φL,R and

θL,R,

φ± ≡
1

2
(φL ± φR), θ± ≡

1

2
(θL ± θR), (7.4.2)
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the mean field phase and density profiles are:

ϕ0,ρ(x) = −φ− −
2x

L

(
Φ
2 − φ+

)
, (7.4.3)

ϑ0,ρ(x) = θ+ −
2x

L
θ−. (7.4.4)

On top of this mean field solution we shall add fluctuations:

ϕρ(x, τ) = ϕ0,ρ(x) + ϕ̃ρ(x, τ), ϑρ(x, τ) = ϑ0,ρ(x) + ϑ̃ρ(x, τ). (7.4.5)

The fluctuations can be separated into two types, fluctuations of the boundary fields φ±, θ± and then

fluctuations that respect Dirichlet boundary conditions (vanishing on the boundary). For the phase field

we have that the fluctuations take the form of:

ϕ̃ρ(x, τ) = −φ̃−(τ) +
2x

L
φ̃+(τ) +

∞∑
n=1

[
φen(τ) cos

(2n− 1)πx

L
+ φon(τ) sin

2nπx

L

]
. (7.4.6)

The fluctuations of the density field are defined in a similar way:

ϑ̃ρ(x, τ) = −θ̃+(τ)− 2x

L
θ̃−(τ) +

∞∑
n=1

[
θen(τ) cos

(2n− 1)πx

L
+ θon(τ) sin

2nπx

L

]
. (7.4.7)

One can then put these into the quadratic terms of the full Luttinger Liquid action Eq. (7.2.5) and

evaluate the spatial integrals:

∂xϕρ(x, τ) = − 2

L
(Φ

2 − φ+(τ)) +

∞∑
n=1

[
− (2n− 1)π

L
φen(τ) sin

(2n− 1)πx

L
+

2nπ

L
φon(τ) cos

2nπx

L

]
, (7.4.8)

∫ L/2

−L/2
dx (∂xϕρ(x, τ))

2
=

4

L
(Φ

2 − φ+ − φ̃+(τ))2 +

∞∑
n=1

[
(2n− 1)2π2

2L
φen(τ)2 +

2n2π2

L
φon(τ)2

]
. (7.4.9)
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∂xϑρ(x, τ) = − 2

L
θ−(τ) +

∞∑
n=1

[
− (2n− 1)π

L
θen(τ) sin

(2n− 1)πx

L
+

2nπ

L
θtn

o(τ) cos
2nπx

L

]
, (7.4.10)

∫ L/2

−L/2
dx (∂xϑρ(x, τ))

2
=

4

L
(θ− + θ̃−(τ))2 +

∞∑
n=1

[
(2n− 1)2π2

2L
θen(τ)2 +

2n2π2

L
θon(τ)2

]
. (7.4.11)

For the term in the action Eq. (7.2.5) with the time derivative, we have:

∂τθρ(x, τ) = −∂τ θ̃+(τ)− 2x

L
∂τ θ̃−(τ) +

∞∑
n=1

[
∂τθ

e
n(τ) cos

(2n− 1)πx

L
+ ∂τθ

o
n(τ) sin

2nπx

L

]
. (7.4.12)

Combining this with for the term: (∂xφρ)(∂τθρ), gives a lot of terms. Many of these disappear when

integrating over x, but the ones that survive are:

∫ L/2

−L/2
dx(∂xφρ(x, τ))(∂τθρ(x, τ)) =

∫ L/2

−L/2
dx

[
− 2

L
(Φ

2 − φ+(τ))∂τ θ̃+(τ)

+

∞∑
n=1

{
− 2

L
(Φ

2 − φ+(τ))∂τ θ̃
e
n(τ) cos

(2n− 1)πx

L
+

2(2n− 1)π

L2
φen(τ)∂τ θ̃−(τ)x sin

(2n− 1)πx

L

+

∞∑
m=1

(
− (2n− 1)π

L
φen(τ)∂τθ

o
m(τ) sin

(2n− 1)πx

L
sin

2mπx

L

− 2nπ

L
φon(τ)∂τθ

o
m(τ) cos

2nπx

L
cos

(2m− 1)πx

L

)}]
.

(7.4.13)

These terms can then be integrated over space, with the results of the integrals being:

∫ L/2

−L/2
dxx sin

(2n− 1)πx

L
= − 2L2

(2n− 1)2π2
(−1)n, (7.4.14)∫ L/2

−L/2
dx cos

(2n− 1)πx

L
= − 2L

(2n− 1)π
(−1)n, (7.4.15)∫ L/2

−L/2
dxx cos

2nπx

L
= 0, (7.4.16)∫ L/2

−L/2
dxx sin

(2n− 1)πx

L
sin

2mπx

L
= −2L

π
(−1)n+m 2m

(2n− 1)2 − (2m)2
, (7.4.17)∫ L/2

−L/2
dxx cos

2nπx

L
cos

(2m− 1)πx

L
=

2L

π
(−1)n+m 2m− 1

(2n)2 − (2m− 1)2
. (7.4.18)

92



7.4. FLUCTUATIONAL SOLUTION

Substituting these integrals into Eq. (7.4.13) gives the full form for the mixed term:

∫ L/2

−L/2
dx(∂xφρ(x, τ))(∂τθρ(x, τ)) = −2(Φ

2 − φ+(τ))∂τ θ̃+(τ)

+

∞∑
n=1

[
4(−1)n

(2n− 1)π
(Φ

2 − φ+(τ))∂τθ
e
n(τ)− 4(−1)n

(2n− 1)π
φen(τ)∂τ θ̃−(τ)

+ 2

∞∑
m=1

{
(−1)n+m 2m(2n− 1)

(2n− 1)2 − (2m)2
φen(τ)∂τθ

o
m(τ)

+ (−1)n+m 2n(2m− 1)

(2n)2 − (2m− 1)2
φon(τ)∂τθ

e
m(τ)

}]
(7.4.19)

With equations, (7.4.9), (7.4.11) and (7.4.19) the action can be written as S = Sε + S0 + So + Se + Sm

where ε denotes the mean field energy component of the action, 0 is the quadratic fluctuations of the

boundary fields and o,e,m denotes the odd, even & mixed fluctuations within the channel. The first

action identified is:

Sε =
4

π

∫
dτ

[
vρKρ

L

{
(Φ− φ+)2 − 2(Φ− φ+)φ̃+(τ)

}
+

vρ
LKρ

(θ2
− + 2θ−θ̃−(τ))

]
+ Seff

tun, (7.4.20)

which contains all the terms that give the mean field energy of the system. The minimisation of this

action will give us the mean field equations for φ± to solve. The next action, S0 contains only fluctuations

of the boundary fields,

S0 =

∫
dω

2π

[
4vρKρ

πL

∣∣∣φ̃+(ω)
∣∣∣2 +

4vρ
πLKρ

∣∣∣θ̃−(ω)
∣∣∣2 +

2ω

π
φ̃+(−ω)θ̃+(ω)

]
, (7.4.21)

which can be simplified with the shift:

φ̃+(ω)→ φ̃+(ω)− ωL

4vρKρ
θ̃+(ω), (7.4.22)

to make the action Eq. (7.4.21) quadratic in all fields:

S0 =

∫
dω

2π

[
4vρKρ

πL

∣∣∣φ̃+(ω)
∣∣∣2 +

4vρ
πLKρ

∣∣∣θ̃−(ω)
∣∣∣2 + ω2 L

4πvρKρ

∣∣∣θ̃+(ω)
∣∣∣2]. (7.4.23)

The next two terms in the full action are of the fluctuations inside the channel, only containing odd &

93



7.4. FLUCTUATIONAL SOLUTION

even fluctuations respectively:

So =

∫
dω

2π

∞∑
n=1

[
2vρKρπn

2

L
|φon(ω)|2 +

2vρπn
2

KρL
|θon(ω)|2

]
, (7.4.24)

Se =

∫
dω

2π

∞∑
n=1

[
vρKρπ(2n− 1)2

2L
|φen(ω)|2 +

vρπ(2n− 1)2

2KρL
|θen(ω)|2+

− 4(−1)n

π2(2n− 1)
ωφen(−ω)θ̃−(ω) +

4(−1)n

π2(2n− 1)
ω(Φ− φ+(−ω))θen(ω)

]
.

(7.4.25)

The final term contains terms that mix odd and even fluctuations;

Sm =

∫
dω

2π

∞∑
n,m=1

2

π

[
(−1)n+m 2m(2n− 1)

(2n− 1)2 − (2m)2
ωφen(−ω)θom(ω)

+ (−1)n+m 2n(2m− 1)

(2n)2 − (2m− 1)2
ωφon(−ω)θem(ω)

]
.

(7.4.26)

Note how odd and even fluctuations are only mixed between φ and θ terms. They only ever come into the

action quadratically as well, meaning that the fluctuations can be integrated out. We begin by integrating

out the odd fields:

∫
Dφon exp

(
−
∫

dω

2π

∞∑
n=1

[
2vρKρπn

2

L
|φon(ω)|2 +

4n

π
(−1)nωφon(−ω)

∞∑
m=1

(−1)m(2m− 1)

(2n)2 − (2m− 1)2
θem(ω)

])

= exp

(∫
dω

2π

[
L

vρKρπ

∞∑
n=1

2

π2
ω2

∞∑
m,m′=1

(−1)m+m′(2m− 1)(2m′ − 1)

[(2n)2 − (2m− 1)2][(2n)2 − (2m′ − 1)2]
θem(−ω)θem′(ω)

])
.

(7.4.27)

Similarly we can integrate out the odd θ fields:

∫
Dθon exp

(
−
∫

dω

2π

∞∑
n=1

[
2vρπn

2

KρL
|θon(ω)|2 − 4n

π
(−1)nωθon(−ω)

∞∑
m=1

(−1)m(2m− 1)

(2n)2 − (2m− 1)2
φem(−ω)

])

= exp

(∫
dω

2π

[
KρL

vρπ

∞∑
n=1

2

π2
ω2

∞∑
m,m′=1

(−1)m+m′(2m− 1)(2m′ − 1)

[(2n)2 − (2m− 1)2][(2n)2 − (2m′ − 1)2]
φem(−ω)φem′(ω)

])
.

(7.4.28)

With these terms (Eq. (7.4.27) & 7.4.28) the sum over n can be evaluated using the result (see appendix
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A.1 for details):

∞∑
n=1

1

n2 − a2
=

1

2a2
− π

2a
cot(πa). (7.4.29)

This then will allow us to perform the sum over n present in Eq. (7.4.28),

∞∑
n=1

ab

(n2 − a2)(n2 − b2)
= − 1

2ab
+
π

2

a cot(πb)− b cot(πa)

a2 − b2
. (7.4.30)

Here a = m− 1/2 and b = m′− 1/2. For a = b, the diagonal terms when m = m′, the limit of the second

term in Eq. (7.4.30) needs to be taken carefully, which gives:

∞∑
n=1

a2

(n2 − a2)2
= − 1

2a2
+

π

4a
cot(πa) +

π2

4
csc2(πa). (7.4.31)

As a and b are always half integers, the cotangent term in Eq. (7.4.31) is eliminated and the cosec squared

term is always unity. In full, the action for the even φ fluctuations in the channel is:

Sφe =

∫
dω

2π

{ ∞∑
n,m=1

[
φem(−ω)

(
− KρLω

2

4vρπ3

(−1)m+n

(m− 1
2 )(n− 1

2 )

+
Kρ

2π

16v2
ρπ

2(n− 1
2 )2 + L2ω2

4Lvρ
δm,n

)
φen(ω)

]

−
∞∑
n=1

2(−1)n

π2(n− 1
2 )
ωφen(−ω)θ̃−(ω)

}
.

(7.4.32)

This action is now in a form in which it can be integrated with the standard functional integration result

of:

∏
n

∫
dφ∗ndφn

2πi
e−
∑
ij φ
∗
iMijφj+

∑
i h
∗
i φi+φ

∗
i hi =

e
∑
ij h
∗
i (M−1)ijhj

det(M)
.

In this case the inversion of the matrix M seems like a daunting task due to the infinite size and non-

sparseness of it, however it can be done reasonably simply. The details of inverting the matrix can be

found in appendix A.2. With the inverted matrix, the functional integral over the even fluctuations of φ
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is:

∫
Dφene

−Sφen = exp

[
L

2πKρvρ

∫
dω

2π

ω2

π4

∣∣∣θ̃−(ω)
∣∣∣2{ ∞∑

n=1

1(
n− 1

2

)2(
(n− 1

2 )2 +
(
Lω

4πvρ

)2
)+

+
2

π

(
Lω

4πvρ

)3

coth

(
Lω

4vρ

)( ∞∑
n=1

1(
n− 1

2

)2(
(n− 1

2 )2 +
(
Lω

4πvρ

)2
))2}]

.

(7.4.33)

Evaluating these sums and collecting like terms simplifies down to:

∫
Dφene

−Sφen = exp

[
1

πKρ

∫
dω

2π

∣∣∣θ̃−(ω)
∣∣∣2(ω coth

(
Lω

4vρ

)
− 4vρ

L

)]
. (7.4.34)

When combined with the other
∣∣∣θ̃−(ω)

∣∣∣2 term in Eq. (7.4.21), the constant terms vanish and we are left

with the coth term. An identical procedure can be done to the other field, in equation 7.4.27. The only

difference is that Kρ → 1/Kρ, leading to an effective action for (Ohmic) fluctuations as:

SOhm =

∫
dω

2π
ω coth

(
Lω

4vρ

)[
Kρ

π

∣∣∣φ̃+(ω)
∣∣∣2 +

1

πKρ

∣∣∣θ̃−(ω)
∣∣∣2],

=

∫
dω

2π
|ω|

[
Kρ

π

∣∣∣φ̃+(ω)
∣∣∣2 +

1

πKρ

∣∣∣θ̃−(ω)
∣∣∣2]. (7.4.35)

The simplification to |ω| can be made because we are concerned with the high frequency limit of this

action, where we don’t care about frequencies lower than the smallest phononic frequency supported by

the channel, πvρ/L � ω. Added with the remaining term from Eq. (7.4.23) gives the full action of

fluctuations on the boundary:

Sfl =

∫
dω

2π

[
Kρ

π
|ω|
∣∣∣φ̃+(ω)

∣∣∣2 +
1

πKρ
|ω|
∣∣∣θ̃−(ω)

∣∣∣2 + ω2 L

4πvρKρ

∣∣∣θ̃+(ω)
∣∣∣2]. (7.4.36)

This is of the same form as the action for bosonic fluctuations, with the addition of an ω2 dependent

term that will be exponentially suppressed in the RG.
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7.4.1 Renormalisation Group Analysis

With the mean field energy action Eq. (7.4.20) we can identify two different parts, one which contains

only φ± terms which will come from the kinetic energy of the superfluid and Cooper tunnelling terms:

Sε,φ =
vρKρ

2πL

∫
dτ

[
2 (Φ− 2φ+)

2 − 4 (Φ− 2φ+) (2φ̃+(τ))− 4αC cos(2φ+(τ)) cos(2φ−(τ))

]
. (7.4.37)

Here the dimensionless tunnelling constant for Cooper tunnelling is defined as, αC = J/Jc where the

critical current is defined as Jc ≡ vρKρ/2πL. The other term that we consider involves the dual fields

θ±, and is the energy from density fluctuations and Andreev tunnelling processes:

Sε,θ =
vρ

2πLKρ

∫
dτ

[
(2θ−)2 + 4θ−θ̃−(τ)− 4αA cos(2φ+(τ)) cos(2φ−(τ)) cos(2θ+(τ)) cos(2θ−(τ))

− 4αA sin(2φ+(τ)) sin(2φ−(τ)) sin(2θ+(τ)) sin(2θ−(τ))

]
.

(7.4.38)

The dimensionless tunnelling constant for Andreev tunnelling is αA = J/(
vρ

2πLKρ
) = K2

ραC . This term

has no analogue in the bosonic system, and we shall show in this section that it is RG irrelevant.

To investigate the low energy behaviour of these mean field actions, we proceed in the standard way,

as illustrated in chapter 5. The aim here is to see what terms remain relevant after the averaging over the

fast fluctuations. We shall see that the terms that remain are identically the ones present in the action

that describes the bosonic system, allowing us to use the mean field solution outlined in chapter 6 up to

trivial rescalings.

We define “fast” and “slow” fields being of frequency Λ/b < |ω| < Λ and 0 < |ω| < Λ/b respectively:

φ̃+(τ) =

∫
|ω|<Λ

b

dωeiωτ φ̃+(ω) +

∫
Λ
b <|ω|<Λ

dωeiωτ φ̃+(ω)

= φ̃<+(τ) + φ̃>+(τ).

(7.4.39)

The same can be done for the θ̃±, with the same UV cutoff. As the fluctuations of φ+, θ− and θ+

are not mixed in action Eq. (7.4.36) we can do these calculations independently. Integrating over
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the fast modes is equivalent to performing an average over the fast oscillating fluctuations, 〈. . .〉> =∫
Dφ>Dθ>(. . . )e−S

>
fl /
∫

Dφ>Dθ>e−S
>
fl . The only part of the mean field action Eq. (7.4.37) that mixes

fast and slow terms is the cosine. With the identity,

〈
exp

[
±iφ̃>+

]〉
+,>
≡ exp

[
−1

2

〈(
φ̃>+

)2
〉

+,>

]
,

the cosine term from the Cooper tunnelling can be renormalised as:

〈
cos
(

2φ+ + 2φ̃<+(τ) + 2φ̃>+(τ)
)〉

>,+
= e
−2〈(φ̃<+(τ))2〉

>,+ cos
(

2φ+ + 2φ̃<+(τ)
)
. (7.4.40)

To compute this average, first we Fourier transform:

〈
(φ̃<+(τ))2

〉
>,+

=

∫
>

dω1

2π

dω2

2π
eiτ(ω1+ω2)

〈
φ̃+(ω1)φ̃+(ω2)

〉
>,+

. (7.4.41)

This average can be calculated from the action Eq. (7.4.36), which gives:

〈
φ̃+(ω1)φ̃+(ω2)

〉
>,+

=
π2

Kρ|ω1|
δ−ω1,ω2 , (7.4.42)

thus giving the correlator to be:

〈
(φ̃<+(τ))2

〉
>,+

=

∫
>

dω1

2π

dω2

2π
eiτ(ω1+ω2) π2

Kρ|ω1|
δ−ω1,ω2

=
1

4Kρ

∫
>

dω
1

|ω|
,

=
1

2Kρ

∫ Λ

Λ/b

dω
1

|ω|
,

=
1

2Kρ
ln(b).

(7.4.43)

The final step is to rescale the other fields and then identify what the total scaling of αC will be. The
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frequencies, ω, times, τ , and fields, φ+(ω) are scaled like they are in section 5.2:

ω′ = bω

τ ′ =
τ

b

φ′+(ω′) =
1

b
φ+(ω)

(7.4.44)

This then lets us see that the Cooper tunnelling term is renormalised as:

αC

∫
dτ cos

(
2φ+ + 2φ̃+(τ)

)
= αCb

1− 1
Kρ

∫
dτ ′ cos

(
2φ+ + 2φ̃+(τ ′)

)
, (7.4.45)

resulting in an RG equation of:

d lnαC
d ln b

= 1− 1

Kρ
(7.4.46)

As expected, the Cooper pair term is relevant when Kρ > 1. For this system of fermions with attraction,

this is solidly achieved.

The other non-quadratic terms in the mean field energy action are in the θ part, Eq. (7.4.38). The

cosines in this term can be renormalised as before. As the action for fluctuations does not mix the terms

involving φ+ and θ± the renormalisations of each of the cosine factors can be done independently. The

averages are calculated in the standard way:

〈
(θ̃<−(τ))2

〉
>,−

=

∫
>

dω1

2π

dω2

2π
eiτ(ω1+ω2)

〈
θ̃<−(ω1)θ̃<−(ω2)

〉
=

∫
>

dω1

2π

dω2

2π
eiτ(ω1+ω2)Kρπ

2

|ω1|
δ−ω1,ω2

=
Kρ

4

∫
>

dω
1

|ω|
,

=
Kρ

2

∫ Λ

Λ/b

dω
1

|ω|
,

=
Kρ

2
ln(b).

(7.4.47)
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The θ̃+ correlator behaves slightly different due to its fluctuational action:

〈
θ̃+(ω1)θ̃+(ω2)

〉
>,+

=
4Kρvρπ

2

L

1

ω2
1

δ−ω1,ω2 . (7.4.48)

This makes the correlator:

〈
(θ̃<+(τ))2

〉
>,+

=
Kρvρ
L

∫ Λ

Λ/b

dω
1

ω2
,

=
Kρvρ
L

(b− 1)

Λ
. (7.4.49)

All together, along with the field re-scalings the frequencies and times, the Cooper terms are renormalised

as:

αA

∫
dτ cos(2φ+(τ)) cos(2θ+(τ)) cos(2θ−(τ)) = αAb

1−Kρ− 1
Kρ e

−2vρKρ(b−1)

LΛ

∫
dτ ′ cos(2φ+(τ ′)) cos(2θ+(τ ′)) cos(2θ−(τ ′)).

(7.4.50)

This results in the RG equation for αA:

d lnαA
d ln b

= 1− 1

Kρ
−Kρ −

2vρKρ

LΛ
. (7.4.51)

For all values of Kρ the right hand side always negative, allowing us to conclude that αA is an irrelevant

parameter. This is to be expected, as we have “fixed” a value of ϕ, which would cause ϑ to disorder

because they are dual fields. This means that the cosine terms that involve ϑ will be oscillating wildly

and average to zero. This then leaves us with only the Cooper tunnelling terms in our initial action Seff
tun.

7.5 Mean Field Solution & Discussion

With the justification that the Andreev terms are irrelevant, there is nothing prohibiting us from inte-

grating out ϑρ and having an action in terms of ϕρ alone. This then leads to the action Sε,φ (Eq. (7.4.37))
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giving the dimensionless mean field energy of the system:

ε = 2(Φ− 2φ+)2 − 4αC cos 2φ+ cos 2φ− (7.5.1)

This is minimised with respect to φ+ and φ− to give the same equations that the phase drops φ± in the

bosonic system satisfy (Eqs. 6.3.5):

Φ− 2φ+ = αC sin 2φ+ cos 2φ−, (7.5.2a)

cos 2φ+ sin 2φ− = 0. (7.5.2b)

These conditions are identical to the mean field equations for the bosonic system up to a scaling of

φ+ → 2φ+. This is due to the bosons in our channel being composed of two particles each contributing

their phases. All the analysis presented in section 6.3 is applicable here.

As energy is 2π periodic in 2φ−, we can restrict ourselves to the two solutions of , corresponding to

symmetric phase drops, 2φ− = 0 and asymmetric phase drops, 2φ− = π. The solutions corresponding

to cos 2φ+ = 0 are always unstable (saddle points). The symmetric/asymmetric branch Eq. 7.5.2a is

reduced to

Φ− 2φ+ = ±αC sin 2φ+. (7.5.3)

As seen before, this equation cannot be solved analytically for φ+ as a function of Φ and for αC > 1

φ+ becomes multivalued. We can however analyse the classical stability of the solutions that Eq. 7.5.3

admits.

7.5.1 Classical Stability of Solution

The Hessian matrix of mixed partial derivatives of energy Eq. (7.5.1) is identical to that of the bosonic

system, Eqs. (6.3.6, 6.3.7) (up to a global factor of 4 which does not impact the regions of stability):

D[φ+, φ−] = 256
[
αC cos 2φ+ cos 2φ− + α2

C(cos 2φ+ cos 2φ−)2 − α2
C(sin 2φ+ sin 2φ−)2

]
. (7.5.4)

101



7.5. MEAN FIELD SOLUTION & DISCUSSION

As before, we can rule out solutions where cos 2φ+ = 0 due to them being unstable saddle points of

the energy landscape (D[φ+, φ−] < 0). This means that for αC < 1 there are only stable solutions for

± cos 2φ+ > 0. which for the symmetric branch gives stable solutions in intervals about 2φ+ = 2jπ where

j ∈ Z. Solutions stable at 2φ+ = 0 remain stable in the interval φ+ ∈ [−π/2, π/2]. From Eq. 7.5.3 we can

deduce that this symmetric branch solution remains stable for applied phases Φ ∈ [−(π/2+αC), π/2+αC ].

The same analysis from the bosonic system holds for the asymmetric branch. Stable solutions exist

around 2φ+ = (2j + 1)π where j ∈ Z. The solution centred about 2φ+ = π remains stable in the region

2φ+ ∈ [π/2, 3π], leading to stability for the applied phases in the interval Φ ∈ [π/2− αC , 3π + αC ]. This

means that for all values of Φ, there exists at least one stable solution and about half integer multiples

of π there is a region of width 2αC where solutions from both branches are stable. This means that if we

were to increase Φ from 0, we would initially start on the symmetric branch and have the phase drops

at both barriers to be the same, until switching to the asymmetric branch for Φ > π/2 + αC where the

asymmetric branch is stable but the symmetric is not.

Each branch is 4π periodic in the applied phase difference 2Φ, but their regions of stability we would

see an energy and current that is 2π periodic in phase difference. The scaling of the phases in the channel,

φ± → 2φ±, does not impact the periodicity of the mean field solution. The equations ((7.5.2b), (7.5.2a))

still give an energy that is 4π periodic in the applied phase difference 2Φ.

7.5.2 Current

The current of fermion pairs through the channel is the gradient of the phase given by Eq. 7.4.3, with

the substitution of Eq. 7.5.3 giving:

I = ∓2J sin 2φ+, (7.5.5)

where the sign of the current comes from the factor of cos 2φ−. This is the same form as the standard

Josephson current, except for the non-linear dependence of 2φ+ on the phase difference 2Φ. Another fact

to note is that the current is non-perturbative, in the sense that it depends on a lower power of tunnelling,

j, than the perturbative approach would give us. Fazio et. al. [6] calculated the critical current to be

proportional to, Ic ∝ 1
LvF

N(0)2|j|4, where L is the length of the 1D channel, vF is the Fermi velocity in
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the superconducting reservoirs, N(0) is the density of states at the Fermi level and j is the tunnelling

amplitude from the tunnelling action Eq. (7.2.3). The current in the system considered in this section is

calculated to be proportional to J ∝ j2N(0)/
√
L, which is two orders of j lower than the perturbative

solution. This mirrors what was found in chapter 6, where the critical current for the bosonic system was

found to depend on a lower order in the tunnelling parameter than what perturbation theory would give.

A key, qualitative, signature of this non-perturbative solution would be a hysteresis in the current. If

the system was initialised with Φ = 0, then we expect that the tunnelling on either end of the system will

be symmetric, φL = φR, thus being on the symmetric branch of the mean field theory. As Φ is increased

up to π/2 the symmetric tunnelling remains the lowest energy option for the system, and the current

smoothly decreases from 0 to −2J sin
(
2φ+(Φ = π

2 )
)
. As Φ is increased past π/2 the lowest energy solution

becomes the solution on the asymmetric branch, hence the current corresponding to the lowest energy

will discontinuously flip at Φ = π/2. This wouldn’t be observed in practice though, because at Φ = π/2

both branches are stable and the discontinuous flip will only happen once Φ is increased past π/2 + αC

and the symmetric branch becomes unstable. Similarly if Φ were decreasing from Φ > π/2 + αC the

system would be tunnelling asymmetrically with, 2φL = 2φR + π until Φ decreased past Φ = π/2− αC .

It is this overlapping region of stability for both branches of the mean field solution (symmetric and

asymmetric tunnelling) that causes this hysteresis.

7.5.3 Degeneracy

At Φ = π/2 (and other half integers of π) the two branches are degenerate. From the RG analysis

performed in section 7.4 we can also conclude that this degeneracy is robust against dynamic fluctuations,

i.e. fluctuations do not provide a mechanism to remove this degeneracy. This protection of this degeneracy

is not known, but we can speculate that it could be linked to Majorana Zero Modes as predicted in systems

of a similar geometry [39, 9, 10]. In these systems a 4π periodicity in the Andreev spectrum is a signature

of Majorana zero modes appearing at the system edges and resulting in a degenerate ground state. To

provide further connection to these systems the fermionic parity of the channel on each branch could

be investigated, akin to Fidkowski et. al. [39]. Another aspect of investigation would be how these

results relate to the BEC-BCS crossover [40] and whether the profile of the current could be smoothly
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interpolated between our BEC limit and the BCS limit considered in [6, 41].
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Chapter 8

Conclusions

This thesis is the result of my own work, the results of which are to be published as a preprint on arXiv.

I began with an overview of concepts in physics and mathematical techniques that I learnt during my

PhD study, which are relevant for understanding the results obtained.

I explained the prior results on the bosonic system, obtained by Simpson et. al. The system considered

two reservoirs of Bose-Einstein condensate, connected to a 1D channel by weak tunnelling links. The

current through the channel is driven entirely by the phase difference between the two reservoirs, 2Φ.

I explained the non-perturbative solution required to calculate the current and how this solution has

two separate branches, each of which are 4π periodic in applied phase difference. The branches are

also degenerate at an applied phase difference of 2Φ = π and I showed that fluctuations alone cannot

lift the degeneracy. With these two qualities, I drew links to systems of semiconductor-superconductor

nanowires that are predicted to host Majorana fermions as edge excitations. With this motivation I set

out to reconstruct the physics of the bosonic system, with fermions as the constituent particles instead.

This would allow for a closer comparison to the systems suspected to host Majorana fermions.

I theoretically investigated a system consisting of BCS superconducting reservoirs, connected via

weak tunnelling links to a 1D channel of fermions with attractive interactions. I described the fermions

in the channel as a Luttinger liquid with a gapped spin excitation spectrum. I performed a second order

expansion in the tunnelling Hamiltonian and averaged over the reservoir fields to create an effective action

of tunnelling pairs of fermions. I then applied a mean field solution that consisted of a static part plus
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fluctuations. I integrated out these fluctuations and used the renormalisation group to analyse the low

energy description of this model. From this low energy theory, I made an exact mapping of the fermionic

system onto the bosonic system and was able to express the current as a function of phase difference.

As with the bosonic system, the solution to the attractive fermionic system consists of two branches

that are individually 4π periodic and degenerate at 2Φ = π. The exact nature of the degeneracy and

what is protecting it is still an open question. Future work on this topic could be done to investigate

the degeneracy in the fermionic system, and see if it can be described by some topological invariant

such as fermion parity. Other systems could be investigated to try and explore richer behaviour, such as

multi-channel Luttinger liquids that involve more than one species of boson/fermion [42].

It would be interesting for these theoretical predictions to be tested experimentally by creating the

system with ultracold fermionic atoms. With tunable interactions between fermions both the attractive

regime that I investigated and the repulsive/non-interacting regimes considered by Fazio et. al. could be

explored. The hysteresis of the current in the attractive fermionic system could serve as an signature of

the BEC-BCS crossover in the Fermi gas. The attractive fermionic system I considered will be strictly

in the BEC regime, due to the fermionic pairs I considered behaving almost identically to a system of

bosons.
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Appendix A

Mathematical Smörg̊asbord

A.1 Sums

I have used the result:

∞∑
n=1

1

n2 − a2
=

1

2a2
− π

2a
cot(πa). (A.1.1)

This can be shown by considering the sinc function, as expressed as an infinite product of its roots:

sin(πx)

πx
=
(

1− x
)(

1 + x
)(

1− x

2

)(
1 +

x

2

)(
1− x

3

)(
1 +

x

3

)
. . . , (A.1.2)

=
(

1− x2
)(

1− x2

4

)(
1− x2

9

)
. . . , (A.1.3)

=

∞∏
n=1

(
1− x2

n2

)
. (A.1.4)

On the right hand side we can have some hint on how to create the sum in e.q. A.1.1. If we take the

logarithm of the product, that can then be expressed as the sum of logarithms of the same argument.

Differentiating this expression will then create the sum we desire:
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d

dx
ln

( ∞∏
n=1

(
1− x2

n2

))
=

d

dx

∞∑
n=1

ln

(
1− x2

n2

)
, (A.1.5)

=

∞∑
n=1

−2x

n2 − x2
. (A.1.6)

Performing the same procedure on the LHS of A.1.2 and re-arranging gives the result.

A.2 Sherman Morrison Formula

In eq. 7.4.32 we have a matrix which we wish to invert. The matrix’s components are given by:

Mmn =
Kρ

2π

[
− Lω2

2π2vρ

(−1)m+n

(m− 1
2 )(n− 1

2 )
+

(
16v2

ρπ
2(n− 1

2 )2 + L2ω2

4Lvρ

)
δm,n

]
. (A.2.1)

It may seem daunting to invert because the matrix is of infinite size and it isn’t sparse. However due

to the form that it takes we can use a nifty formula to invert it. By employing the Sherman-Morrison

formula [43], if a matrix that can be decomposed into the sum of an invertible matrix (A) and the outer

product of two vectors (uvᵀ), the inverse can be found easily:

(A+ uvᵀ)−1 = A−1 − A−1uvᵀA−1

1 + vᵀA−1u
. (A.2.2)

In our case the matrices we have are:

Am,n =
Kρ

2π

[
16v2

ρπ
2(n− 1

2 )2 + L2ω2

4Lvρ
δm,n

]
, (A.2.3)

which is trivially inverted to:

A−1
m,n =

2π

Kρ

L

4vρπ2

1

(n− 1
2 )2 +

(
Lω

4πvρ

)2 δm,n. (A.2.4)
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The vectors, who’s outer product form the rest of matrix are easy to see as well:

um =
Kρ

2π

(
− Lω2

2vρπ2

(−1)m

(m− 1
2 )

)
, (A.2.5)

vᵀn =
(−1)n

n− 1
2

. (A.2.6)

In the Sherman-Morrison formula the denominator in the second term involves the scalar quantity:

vᵀA−1u = − 2

π2

(
Lω

4πvρ

)2 ∞∑
n=1

1(
n− 1

2

)2(
(n− 1

2 )2 +
(
Lω

4πvρ

)2
) . (A.2.7)

This sum can be evaluated using the result:

∞∑
n=1

1(
n− 1

2

)2 (
(n− 1

2 )2 + a2
) =

π2

2a2
− π tanh(πa)

2a3
, (A.2.8)

with a = Lω/4πvρ, which gives:

1 + vᵀA−1u =
4vρ
Lω

tanh

(
Lω

4vρ

)
. (A.2.9)

The numerator of the second term in the Sherman-Morrison formula will be:

[
A−1uvᵀA−1

]
m,n

= − L

Kρvρπ4

(
Lω

4πvρ

)2
(−1)m

(m− 1
2 )

(
(m− 1

2 )2 +
(
Lω

4πvρ

)2
) (−1)n

(n− 1
2 )

(
(n− 1

2 )2 +
(
Lω

4πvρ

)2
) .

(A.2.10)

All combined, this gives the inverse of matrix, M in eq. 7.4.32

[M−1]mn =
L

2Kρvρπ

[
1(

n− 1
2

)2(
(n− 1

2 )2 +
(
Lω

4πvρ

)2
)δm,n

+
2

π

(
Lω

4πvρ

)3

coth

(
Lω

4πvρ

)
(−1)m

(m− 1
2 )

(
(m− 1

2 )2 +
(
Lω

4πvρ

)2
) (−1)n

(n− 1
2 )

(
(n− 1

2 )2 +
(
Lω

4πvρ

)2
)].

(A.2.11)
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