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Abstract 

 

Glucocorticoid (GC) excess is characterised by central obesity, hypertension, 

proximal myopathy, insulin resistance and in some cases overt type 2 diabetes 

(T2D). However, the precise molecular mechanisms responsible for these 

observation have not been defined in detail. 

 

We have shown that GCs reduce the insulin sensitivity of skeletal muscle by 

impacting upon the insulin signalling cascade at several critical points: IRS1, PI3K 

and AS160. Furthermore, we have described a novel role of GC, and GCs with 

insulin, in the regulation of intramyocellular lipid metabolism, which may underpin 

GC-induced insulin resistance in this tissue. 

 

We have also highlighted the importance of 11β-hydroxysteroid dehydrogenase 

type 1 (11β-HSD1), which controls local GC availability, as a critical regulator of 

skeletal muscle insulin sensitivity, and have provided new insight into the insulin 

sensitizing actions of selective 11β-HSD1 inhibitors. 

 

In summary, these data highlight the importance of GCs, and pre-receptor GC 

metabolism in the regulation of lipid metabolic pathways and response to insulin 

stimulation in skeletal muscle. 
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1.1. Type 2 diabetes – an emerging pandemic 

Type 2 diabetes is an endocrine disorder characterised by elevated plasma 

glucose levels, caused by peripheral insulin resistance. Insulin resistance is 

defined as the inability of a normal amount of insulin to bring about an adequate 

response from the liver, adipose and skeletal muscle in terms of stimulating 

glucose uptake and suppressing glucose production (Yalow & Berson, 1960). 

Insulin resistance precedes the development of type 2 diabetes, and in this ‘pre-

diabetic’ state the pancreatic β-cells attempt to compensate for peripheral insulin 

resistance by upregulating insulin secretion to maintain blood glucose levels 

within the normal range (Efendic et al., 1988). Type 2 diabetes ensues when the 

levels of insulin secreted by the β-cells fails to keep blood glucose levels under 

control - leading to the development of hyperglycaemia. Hyperglycaemia in turn 

leads to glucose toxicity which causes further β-cell dysfunction and impaired 

insulin secretion - exacerbating the problem (Robertson, Olson & Zhang, 1994).  

 

A study published in 2004 found that the prevalence of type 2 diabetes among all 

age groups worldwide was 2.5% in the year 2000, and this figure is estimated to 

rise to 4.4% by 2030 (Wild et al., 2004). The total number of people living with 

type 2 diabetes is expected to increase from 171 million in 2000 to 366 million by 

2030 (Wild et al., 2004). These figures are likely to represent an underestimate. In 

addition, there is a worrying increase in the number of children and young adults 

effected with type 2 diabetes (Ehtisham et al., 2004). It appears that increasing 

levels of obesity, arising from energy-rich diets, and an increasing sedentary 

lifestyle are driving this global pandemic. However, it is estimated that the 
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prevalence of diabetes will continue to rise even if obesity levels remain constant 

(Wild et al., 2004). 

 

Type 2 diabetic subjects have a high standardised mortality ratio (SMR) of 4.47,  

in age and sex matched populations (SMR= the ratio of observed deaths to 

expected deaths) (de Marco et al., 1999; Mulnier et al., 2006). As well as 

increased mortality, there is a dramatic effect upon morbidity. The morbidities 

associated with type 2 diabetes are wide ranging and include: microvascular 

complications (damage to small blood vessels) leading in turn to damage to the 

retina (retinopathy), kidney (nephropathy) and nerves (neuropathy); 

macrovascular complications (damage to the larger arteries) leading in turn to 

damage to brain (stroke), heart (coronary heart disease) or to the legs and feet 

(peripheral vascular disease) (Luan, 2009). 

 

Type 2 diabetes not only has a negative impact upon health, but is also a 

massive economic burden. For example, figures from the Unites States show that 

type 2 diabetes accounts for ~$100bn in healthcare expenditure each year. In 

Britain, the charity Diabetes UK estimated this figure is around £9bn. The 

associated complications of type 2 diabetes accounts for the majority of this 

expenditure. 
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1.2. Genetic and environmental causes of type 2 diabetes 

Type 2 diabetes is a polygenic disease caused by the complex interplay between 

genes and the environment. In most cases the disease is acquired in genetically 

susceptible individuals. The most important susceptibility gene identified to date is 

TCF7L2 (Grant et al., 2006). Several type 2 diabetes-associated single nucleotide 

polymorphisms (SNPs) have been identified in this gene, which encodes a 

transcription factor involved in secretion of glucagon-like-peptide from the gut - 

essential for pancreatic β-cell function (da Silva Xavier et al., 2009). TCF7L2 joins 

a short list of genes associated with type 2 diabetes including: PPARγ (Pro12Ala 

SNP), which encodes a nuclear receptor primarily involved in adipogenesis 

(Altshuler et al., 2000); KCNJ11 (Glu23Lys SNP)  which encodes a pancreatic β-

cell KATP channel subunit (Gloyn et al., 2003). In addition SNPs in wnt signalling 

genes are strongly associated with T2D,  proposed to play a role in pancreatic 

development, these include: CCND2, a G1/S phase specific cyclin; SMAD3, a 

signal transducer and PRICKLE1, a nuclear receptor (Perry et al., 2009). It 

appears that many of the genetic susceptibilities relate to pancreatic β-cell 

development and insulin secretion, and work in concert with environmental 

factors, which includes poor diet, increased sedentary lifestyle and obesity, to 

trigger the development of type 2 diabetes.  

 

In addition to the multifactorial form of diabetes described above, rarer monogenic 

forms occur. These are a consequence of a single base pair mutation / exchange 

and include neonatal diabetes mellitus (Gloyn et al., 2004) and maturity-onset 

diabetes of the young (MODY) (Pearson et al., 2005). To date, 6 forms of MODY 
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have been identified, one a consequence of mutated glucokinase (MODY2) and 

the other forms result from mutations in various transcription factors e.g. HNF-1α, 

HNF-4α, HNF-1β, IPF-1 and NeuroD (MODY 1,3,4,5,6, respectively) (Gerard, 

2005). The severity of this disease varies depending upon the gene mutated e.g. 

MODY2 has a relatively benign clinical evolution, whereas MODY3 is 

characterized by severe defects in insulin secretion and hyperglycaemia, 

progressing quickly to become overt diabetes (Velho et al., 1996). 

 

1.3. Insulin resistance and the metabolic syndrome 

The metabolic syndrome (syndrome X) is defined as a cluster of cardiovascular 

risk factors. In 1988 Dr. Gerald Reaven noticed that people with cardiovascular 

disease also presented with hypertension, glucose intolerance, 

hyperinsulinaemia, hypertriglyceridemia and elevated high density lipoprotein 

(HDL) cholesterol. Raven postulated that insulin resistance was the driving force 

behind this cluster of cardiovascular risk factors (Reaven, 1988). However, in the 

preceding years the precise criteria for accurately diagnosing this syndrome has 

been subject of much controversy, and therefore several organisations have 

published contrasting definitions. 

 

In 1998, the first set of criteria was published by the World Health Organisation 

(WHO), based upon the assumption that insulin resistance is the underlying 

abnormality. Furthermore, this definition requires the presence of two additional 

risk factors from: central obesity, hypertension, hypertriglyceridemia or 
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microalbuminuria (Alberti & Zimmet, 1998) (Table1-1). The Adult Treatment Panel 

(ATP) III criteria was designed to facilitate diagnosis in clinical practice and 

consequently a measure of insulin sensitivity, which is not normally used in 

routine practice, was not included. The ATP III guidelines state that metabolic 

syndrome may be diagnosed when a patient presents with three or more of five 

identifiable risk factors. These include abdominal obesity, hypertriglyceridemia, 

hypertension, low HDL cholesterol and fasting hyperglycaemia. Importantly, in the 

ATP III criteria waist circumference is used to assess central obesity, whereas 

WHO uses the waist-to-hip ratio (ATPIII, 2001). In 2005, the International 

Diabetes Federation (IDF) attempted to come up with a unifying set of criteria for 

diagnosis. The main focus in this definition is central obesity, defined on the basis 

of waist circumference, and two or more of the following factors: 

hypertriglyceridemia, reduced HDL cholesterol, hypertension and fasting 

hyperglycaemia (Lawlor, Smith & Ebrahim, 2006) (Table1-1). 

 

 

 

 

 

 

 

 

 

Table  1-1 Metabolic syndrome definitions 
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Insulin resistance has been identified in the majority of people diagnosed with the 

metabolic syndrome. Therefore, it has been proposed that insulin resistance is 

the primary abnormality giving rise to: impaired glucose tolerance, dyslipidaemia, 

hypertension, type 2 diabetes, blood vessel endothelial dysfunction – all of which 

collectively lead to cardiovascular disease (Reaven, 1988) Moreover, the degree 

of insulin resistance is positively correlated with the number of features of the 

syndrome (Cruz et al., 2004), however, others have suggested that vascular 

endothelial dysfunction causes hypertension, glucose intolerance and insulin 

resistance (Pinkney et al., 1997). Also, there is evidence that the association 

between insulin resistance and the other components of the metabolic syndrome 

is a consequence of them being common outcomes of a state of low grade 

inflammation (Yudkin et al., 1999). In conclusion, although insulin resistance 

appears to be integral to the metabolic syndrome, its precise role has not been 

clarified to date. 
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1.4. Insulin 

Insulin is a peptide hormone synthesised by the pancreatic β-cells. High blood 

glucose stimulates its release into the blood where it acts on peripheral tissues to 

increase glucose uptake, suppress hepatic glucose production and prevent 

lipolysis. 

 

1.4.1. Insulin structure and synthesis  

Insulin gene transcription is normally restricted to the pancreatic β-cells within the 

islets of Langerhans. Insulin mRNA is translated on ribosomes attached to the 

endoplasmic reticulum (ER) as a single polypeptide precursor called preproinsulin 

(Figure  1-1). Structurally, preproinsulin consists of four domains: a C-terminal A-

chain; an N-terminal B-chain; a connecting region known as the C-peptide; and 

an N-terminal signal peptide (Sanger, 1959). The signal peptide anchors 

preproinsulin to the membrane of the ER (Walter & Johnson, 1994). The ER 

lumen is a highly oxidising environment, which facilitates the formation of two 

disulphide bridges between the A and B chains of preproinsulin. Cleavage of the 

signal peptide releases proinsulin into the ER lumen where it is transported to the 

golgi complex, and subsequent cleavage of the C-peptide yields the mature 

5808kDa dipeptide hormone (Patzelt et al., 1978). Insulin is then transported out 

of the golgi and accumulates in secretary granules in the cytoplasm. 
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Figure  1-1 The major steps of insulin synthesis in pancreatic β-cells. 

 

1.4.2. Insulin secretion 

Insulin secretion is enhanced by a number of stimuli including: glucose (Maske, 

1954), amino acids (Floyd et al., 1966) and gastrointestinal hormones such as 

secretin and glucagon-like peptide-1 (GLP-1) (Chisholm, Young & Lazarus, 

1969). Since the primary role of insulin is to control glucose homeostasis, glucose 

is the most important of these stimuli. Glucose induces a bi-phasic pattern of 

insulin release from the β-cells. Shortly following glucose stimulation, a transient 

spike in insulin secretion is observed, this is followed by a more enduring phase 

of insulin release (Ma et al., 1995). The mechanism by which glucose stimulates 

insulin secretion is as follows: high circulating glucose diffuses into the β-cells 

through GLUT2 transporters (Figure  1-2) (Thorens et al., 1988). Within the 

cytosol, glucose is metabolised through glycolysis generating pyruvate which is 

further metabolised in the mitochondria generating ATP. The elevated ATP/ADP 
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ratio induces closure of cell-surface ATP-sensitive K+ channels - preventing K+ 

from leaving the cell, leading to cell membrane depolarization (Ashcroft & 

Rorsman, 1989; Theler et al., 1992). This in turn leads to an opening of 

membrane bound voltage-gated Ca2+ channels, resulting in an influx of Ca2+ into 

the cytosol (Curry, Bennett & Grodsky, 1968; Theler et al., 1992). The increased 

cytosolic Ca2+ signals exocytosis of storage vesicles containing insulin (Figure 

 1-2) (Bokvist et al., 1995). 
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Figure  1-2 Schematic representation of the processes leading to insulin secreting in pancreatic β-

cells. 
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During stress (defined as trauma, sepsis, emotion, starvation) adrenal secretion 

of GCs and adrenaline increases, which has the action of inhibiting insulin 

secretion from pancreatic β-cells (Yamazaki, Katada & Ui, 1982). 

 

1.5. Metabolic actions of insulin 

Insulin is an anabolic hormone, important during times of nutrient excess; 

promoting energy storage and decreasing energy release (in the form of glucose 

from the liver and fatty acids and glycerol from adipose tissue). In the following 

sections, an overview of the effects of insulin upon metabolism will be addressed 

- more detailed discussions are dealt with in later sections. 

 

1.5.1. Carbohydrate metabolism 

The most important insulin target tissues are the liver, adipose tissue and the 

skeletal muscle. In the fed state, when circulating glucose levels are elevated, 

insulin enhances glucose uptake by the adipose tissue and skeletal muscle 

(Czech & Corvera, 1999). Insulin also upregulates glucose storage, by increasing 

glycogen synthesis in these tissues (Chiasson et al., 1980; Lawrence, Guinovart 

& Larner, 1977) 

 

In the fasted state, the liver synthesizes glucose via gluconeogenesis from 

precursors such as glycerol, lactate and amino acids. Glucose is also liberated by 

hydrolysis of hepatic glycogen stores. During the transition to the fed state insulin 

effectively inhibits both hepatic gluconeogenesis and glycogenolysis, consistent 
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with its role as an anabolic effector (Chiasson et al., 1976). 

 

1.5.2. Protein metabolism 

Since insulin signals that energy is abundant, with regards to protein metabolism 

it acts to increase amino acid uptake from the circulation (Elsas, Albrecht & 

Rosenberg, 1968), and incorporation into proteins (Proud & Denton, 1997), whilst 

inhibiting protein breakdown (Tischler et al., 1997). This occurs most notably in 

tissues where protein content is high, e.g. skeletal muscle.  

 

1.5.3. Lipid metabolism 

Insulin promotes lipid storage by increasing lipogenesis - the de novo synthesis of 

fatty acids (Wolfrum et al., 2004; Zhang, Yin & Hillgartner, 2003). De novo 

lipogenesis occurs predominantly in adipose tissue, liver and to a lesser extent in 

the skeletal muscle. Insulin also enhances uptake of fatty acid (Chabowski et al., 

2004), and their esterification with glycerol generating triacylglycrides (TAG) 

(Dyck, Steinberg & Bonen, 2001).  During fasting (in the presence of low insulin), 

TAG stores are broken down by lipolysis, and the resultant free fatty acids are 

oxidised in the mitochondria yielding ATP. In addition, some of these TAG-

derived fatty acids (particularly from liver) are released into the circulation as 

lipoproteins, which are utilised as an energy source by other tissues, including the 

skeletal muscle. During the fed state, insulin inhibits lipolysis (Degerman et al., 

1998) and fatty acid oxidation (Park et al., 1995), instead promoting the use of 

carbohydrates as a source of energy.  
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1.6. Insulin signalling 

1.6.1. Insulin receptor 

The actions of insulin are mediated through activation of cell surface receptors, in 

particular the insulin receptor (InsR), but also the closely related insulin-like 

growth factor receptor (IGF-IR) (Figure  1-3). InsR mediates metabolic regulation 

whereas IGF-IR is involved in normal growth and development. Both receptors 

can bind insulin, however, the binding affinity of IGF-IR for insulin is ~100-fold 

lower than for its cognate ligand, IGF-I (Andersen et al., 1992). InsR is a 

disulphide-linked heterotetrameric structure, composed of two identical 

extracellular α-subunits, and two identical transmembrane β-subunits that have 

tyrosine kinase activity (Bajaj et al., 1987). Upon binding of insulin to the α-

subunits, the receptor undergoes a conformational change leading to activation of 

the kinase domain resulting in auto-phosphorylation of specific tyrosine residues 

on the β-subunit (Cann & Kohanski, 1997; Hubbard et al., 1994). 

 

 

 

 

 

 

 

 

Figure  1-3 The insulin signalling cascade. 
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1.6.2. Insulin receptor substrates 

Upon activation by insulin, the auto-phosphorylated tyrosine residues on InsR act 

as docking sites for numerous proteins including the family of insulin receptor 

substrate (IRS) proteins (Figure  1-3). To date, six IRS isoforms have been 

identified (IRS1-6). IRS1 and IRS2 are ubiquitously expressed, and are most 

important in mediating metabolic signal transduction (Araki et al., 1994; Fantin et 

al., 2000; Liu et al., 1999; Withers et al., 1998), whereas the expression of IRS3 is 

limited to brain and adipocytes (Lavan, Lane & Lienhard, 1997) and IRS4 is 

expressed primarily in embryonic tissue (Fantin et al., 1998). IRS5 and IRS6 have 

limited expression and function in signal transduction (Cai et al., 2003). 

Structurally, IRS proteins share a high degree of homology; each containing an 

N-terminal pleckstrin-homology (PH) domain for phospholipid binding; a phospho-

tyrosine-binding (PTB) domain for docking with phospho-tyrosine sites on 

activated InsR; and a variable C-terminal region containing numerous tyrosine, 

threonine and serine phosphorylation sites which confers IRS activity (Sun et al., 

1991). The association between IRS1/2 and the activated InsR allows the kinase 

domain of the receptor to phosphorylate various tyrosine residues within the C-

terminal of these proteins (White, Maron & Kahn, 1985). This allows IRS1/2 to act 

as an adaptor; linking InsR to various src-homology 2 (SH2) domain containing 

proteins. For example, phosphorylation of IRS1 at tyrosine-612 and 632 

(corresponding to 608 and 628 in rodents) is required for full activation of 

phosphoinositide-3 kinase (PI3K) (Esposito et al., 2001). IRS activating tyrosine 

phosphorylation is negatively regulated by the phosphatase SHP2; attenuating 

the metabolic actions of insulin (Myers et al., 1998) (Figure  1-3). 
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In addition to tyrosine phosphorylation, IRS proteins also undergo serine 

phosphorylation (Figure  1-4). With over 70 putative serine phosphorylation sites, 

IRS1 is by far the most characterised isoform. As a general rule, serine 

phosphorylation inhibits IRS1 function, with increased serine phosphorylation 

seen in various insulin resistant states. These post translational modifications 

could be a major contributor to the pathogenesis of insulin resistance (Bouzakri et 

al., 2006; Corbould et al., 2005). Probably the most characterised of these 

residues is serine-307 (corresponding to serine 312 in humans), which is located 

adjacent to the PTB-domain (Figure  1-4). From yeast tri-hybrid assays, it was 

found that phosphorylation at this site inhibits the InsR / IRS1 interaction, 

attenuating signal transduction (Aguirre et al., 2000). Other residues associated 

with inhibiting IRS1 function include serine-612 and serine-632 (corresponding to 

human serine 616 and serine 636), which are located proximal to the PI3K 

binding site (Figure  1-4). It is thought that phosphorylation here can preclude the 

association between PI3K and IRS1, preventing the former from becoming 

activated (Mothe & Van Obberghen, 1996). 
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Figure  1-4 The structure of IRS1, highlighting some of the serine phosphorylation residues known 

to negatively regulate its function. (PH= plextrin homology domain, PTB= phospho-tyrosine 
tyrosine binding domain, PMA= phorbol 12-myristate 13-acetate, DAG= diacylglycerol) 

 

Numerous kinases have been implicated in mediating inhibitory serine 

phosphorylation of IRS proteins, and their dysregulation has been implicated in 

the pathogenesis of insulin resistance (Zick, 2005). These include Jun kinase 

(JNK) (Aguirre et al., 2000), inhibitor of nuclear factor κB (NF-κB) kinase-β (IKKβ) 

(Gao et al., 2002), p70S6K (S6K1) (Harrington et al., 2004), the mammalian 

target of rapamycin (mTOR) (Ozes et al., 2001), extracellular signal-regulated 

kinase (ERK) (Bouzakri et al., 2003) and certain protein kinase C (PKC) isoforms 

(Yu et al., 2002).  
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In addition to regulation of IRS activity by phosphorylation, levels of IRS proteins 

are regulated at the level of mRNA transcription and protein stability. For 

example, insulin can inhibit IRS2 expression, as a negative feedback mechanism 

(Hirashima et al., 2003). Furthermore, the induction of suppressor of cytokine 

signalling-1 and -3 (SOCS1, -3) enhances ubiquitination of IRS1 and IRS2, 

targeting them for proteosomal degradation (Rui et al., 2002).  

 

Although there is a high degree of homology between IRS1 and IRS2, studies 

from animal knockout models have shown that they serve complementary, rather 

than identical roles in insulin signalling. IRS1-/- mice are markedly insulin 

resistant, due to defective insulin action, primarily in the skeletal muscle. These 

mice also present with growth retardation, due to IGF-I resistance (Araki et al., 

1994). Similarly, IRS2-/- mice are resistant to the actions of insulin, reportedly with 

the greatest defects in insulin signalling in the liver. However, unlike the IRS1-/- 

mice, IRS2-/- mice have defects in pancreatic β-cells development, rendering 

these mice unable to compensate for the peripheral insulin resistance by 

increasing insulin secretion - eventually leading to a type 2 diabetic state. By 

contrast, the IRS1-/- mice can maintain lifelong hyperinsulinaemia (Withers et al., 

1998). 
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1.6.3. Phosphoinositide 3-kinase 

The PI3K enzyme is a heterodimer composed of a catalytic subunit ~110kDa 

(p110) and an SH2 domain containing regulatory subunit ~85kDa (p85). Binding 

of the regulatory subunit to the catalytic subunit allosterically inhibits its catalytic 

function (Yu et al., 1998). Only when the SH2 domain of the regulatory subunit 

binds with phosphorylated tyrosine sites on IRS is this inhibition relieved (Myers 

et al., 1992). Furthermore, binding of PI3K to IRS brings it into close proximity 

with its substrate, the membrane lipid phosphatidylinositol-3,4-diphosphate, which 

it subsequently phosphorylates at the 5’ position, generating phosphatidylinositol-

3,4,5-trisphosphate (PIP3). The formation of this second messenger allows for the 

activation of PH-domain containing proteins, such as PKB/akt (Alessi et al., 

1997). Negative regulation of insulin signalling can occur at the level of PIP3, by 

the phosphatases PTEN which dephosphorylate and inactivate PIP3 (Maehama & 

Dixon, 1999). Furthermore, the stoichiometry of the regulatory subunit to the 

heterodimer allows for competition for binding IRS proteins (Mauvais-Jarvis et al., 

2002). 

 

1.6.4. Protein Kinase B 

There are three members of the mammalian protein kinase B (PKB) family: 

PKBα, PKBβ and PKBγ (akt1, akt2 and akt3, respectively). All isoforms share 

three conserved functional domains: an N-terminal PH-domain; a central 

serine/threonine kinase domain; and a regulatory domain at the C-terminal. 

Generation of PIP3 by PI3K is necessary for the multi-step activation of PKB/akt 

(Hanada, Feng & Hemmings, 2004). The PH-domain of PKB/akt binds PIP3, 
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allowing for its recruitment to the plasma membrane from the cytosol, where it 

subsequently undergoes phosphorylation at threonine-308 (located within the 

kinase activation loop) by another PH-domain containing serine/threonine kinase, 

PDK1 (Alessi et al., 1997; Stephens et al., 1998). Phosphorylation at serine-473 

(within the regulatory domain) by the mammalian target of rapamycin (mTOR) 

complex, leads to full activation (Sarbassov et al., 2005) - allowing PKB/akt to 

phosphorylate numerous targets at the plasma membrane, cytosol and in the 

nucleus. PKB/akt activity is negatively regulated by the protein phosphatase-2A 

(PP2A), and the PH-domain leucine-rich repeat protein phosphatase (PHLPP), 

both effectively dephosphorylate PKB/akt when the activating stimuli has been 

removed (Gao, Furnari & Newton, 2005; Millward, Zolnierowicz & Hemmings, 

1999). 

 

1.6.4.1. Protein kinase B and glucose uptake 

One of the central roles of activated PKB/akt is to increase glucose transport into 

the cell. Under basal conditions, the GLUT4 glucose transporters reside in 

cytosolic storage vesicles containing rab GTPases, which are required for the 

cytoskeletal rearrangement necessary to target these vesicles to the plasma 

membrane. Also present in these vesicles is the rab-GTPase-activating protein 

AS160 (which stands for akt substrate of 160kDa), that effectively inhibits the rab 

GTPases, maintaining them in an inactive, GDP-bound form. Upon insulin 

stimulation, activated PKB/akt directly phosphorylates AS160, resulting in its 

association with the cytosolic scaffold protein 14-3-3. AS160 is subsequently 

removed from the storage vesicles, sequestered to 14-3-3 in the cytosol, relieving 
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the inhibition upon the rab GTPases and allowing the GLUT4 storage vesicles to 

be targeted to the plasma membrane - increasing glucose transport into the cell 

(Ramm et al., 2006; Sano et al., 2003). In addition, there is evidence that insulin-

stimulated glucose uptake can occur by a pathway independent of PKB/akt, 

involving PI3K-induced activation of atypical protein kinase C (PKC) isoforms 

(PKCλ/ζ) (Farese, 2002; Standaert et al., 2001), however, the precise molecular 

mechanism by which this pathway enhances insulin-stimulated glucose uptake is 

not clear.  

 

1.6.4.2. Protein kinase B and enzymic activation 

PKB/akt directly regulates the activity of a number of metabolic enzymes. For 

example, glycogen synthase (GS), a key enzyme involved in glycogen synthesis 

is negatively regulated by glycogen synthase kinase (GSK) which, in the 

presence of low insulin, phosphorylates GS, maintaining it in an inactive state. 

Under insulin-stimulating conditions, PKB/akt phosphorylates GSK resulting in its 

deactivation, which relieves the inhibition upon GS, and subsequently increasing 

glycogen synthesis (Sutherland, Leighton & Cohen, 1993). In addition, PKB/akt 

mediated suppression of GSK activity enhances protein synthesis by decreasing 

the GSK-induced inhibitory phosphorylation of the eukaryotic initiation factor 2B 

(elF2B) (Welsh & Proud, 1993). PKB/akt also activates protein synthesis by a 

separate mechanism involving phosphorylation and inhibition of tuberous 

sclerosis complex-2 (TSC2) (Potter, Pedraza & Xu, 2002). Since the TSC1/2 

complex inhibits mTOR, PKB/akt effectively activates mTOR which goes on to 

enhance protein translation by phosphorylating S6-kinase and the eukaryotic 
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translation initiation factor 4E binding protein-1 (4EBP1) (Miron, Lasko & 

Sonenberg, 2003). 

 

1.6.4.3. Protein kinase B and secondary messaging 

PKB/akt can modulate the activity of some metabolic enzymes through controlling 

the levels of second messengers in the cell, particularly cyclic AMP (cAMP). In 

the presence of low insulin, cytosolic cAMP levels are high, activating protein 

kinase A (PKA), which in turn activates serine/threonine LKB by phosphorylation. 

AMP-dependent protein kinase (AMPK) is subsequently activated by LKB, and 

goes on to phosphorylate acetyl-CoA carboxylase (ACC), inhibiting its activity. 

ACC catalyses the rate limiting step of lipogenesis, and its reaction products 

(malonyl-CoA) suppress β-oxidation. Consequently, inhibition of ACC promotes 

the use of fatty acids as fuel over their storage. In the presence of high insulin, 

PKB/akt phosphorylates and activates phosphodiesterase-3B (PDE3B), which 

hydrolyses cAMP to inactive 5’AMP (Kitamura et al., 1999), relieving the AMPK-

induced inhibition on ACC, resulting in fatty acid storage being favoured over 

oxidation. In addition to this role, activated PKA phosphorylates and activates 

phosphorylase kinase (PK), which in turn activates glycogen phosphorylase 

resulting in mobilisation of glycogen stores (Mehrani & Storey, 1993). The insulin-

induced inhibition of PKA blocks this effect. 
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1.6.4.4. Protein kinase B and transcriptional regulation 

PKB/akt can regulate the expression of a number of metabolic enzymes by 

controlling the activity of key transcription factors. The activities of several of the 

winged helix or forkhead (FOX) family are regulated by insulin (Tran et al., 2003). 

For example, in the presence of low insulin, FOXO1 activates the gluconeogenic 

enzymes: phosphoenolpyrouvate (PEPCK) and glucose-6-phosphatase (G6Pase) 

in the liver (Barthel et al., 2001; Hall et al., 2000; Puigserver et al., 2003). 

Similarly, FOX2A increases the transcription of genes involved in hepatic fasting 

metabolism (ketogenesis and fatty acid oxidation) (Wolfrum et al., 2004). In the 

presence of insulin, activated PKB/akt phosphorylates these transcription factors 

preventing their nuclear localisation, instead sequestering them to the cytosol and 

thus terminating the fasting metabolic program (Wolfrum et al., 2004). Insulin also 

enhances the expression of activating transcription factor 4 (ATF4, also known as 

CREB2), which co-ordinately increases the transcription of genes involved in 

amino acid biosynthesis and transport (Adams, 2007). 

 

In summary, the insulin signalling cascade is a complex network of membrane 

receptors, adaptor proteins and kinases which are both positively and negatively 

regulated through post-translational phosphorylation events. Numerous factors 

have been implicated in the pathogenesis of insulin resistance including: factors 

secreted by adipose tissue (e.g. TNFα and IL-6) and the intracellular 

accumulation of lipid metabolites (e.g. diacylglycerides (DAG) and ceramides). 

These agents impinge upon insulin signalling by activating ‘stress kinases’ which 

go on to directly phosphorylate components of the insulin signalling cascade.  
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1.7. Glucocorticoid structure, synthesis and action 

1.7.1. Adrenal glands 

The adrenal glands (also known as the suprarenal glands) are bilateral structures 

located above the kidneys (Figure 1-5). They are surrounded by a capsule of 

adipose and fibrous tissue. Each gland is separated into two distinct structures; 

an inner structure called the medulla, and an outer structure called the cortex. 

The cortex constitutes 90% of the weight of the adrenal gland and can be sub-

divided into 3 distinct zones: the zona reticularis (ZR), located next to the 

medulla; the zona fasciculata (ZF), located in the centre of the cortex; and the 

zona glomerulosa (ZG), located beneath the capsule (Figure 1-5). Blood is 

supplied to the adrenal glands by the inferior phrenic artery, renal artery and the 

aorta, giving this gland one of the highest blood supplies per gram of tissue. 

Blood from the adrenals drains into vena cava and renal vein (Arlt & Stewart, 

2005; Larsen et al., 2003). 

 

 

 

 

 

 

 

Figure  1-5 The Adrenal glands are positioned above the kidneys and are divided into two distinct 

structures, the adrenal cortex and the adrenal medulla. The cortex is further divided into three 
distinct zones; the glomerulosa, fasciculata and reticularis. 
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1.7.2. Structure of adrenal steroids 

One of the major roles of the adrenal gland is the synthesis and secretion of 

steroids. All steroids are synthesized from the precursor cholesterol, and share a 

common basic structure; three cyclohexane rings fused to a cyclopentane ring 

(Figure 1-6). The chemical properties of these molecules are dependent upon the 

number of carbons atoms and side groups bonded to the basic four ring structure. 

There are 5 main groups of steroid produced by the adrenal gland, identified by 

the number of carbon atoms they contain. For example, androgens and 

progestogens both have 19 carbons; estrogens have 18 carbons; 

mineralocorticoids and GCs have 21 carbons (Arlt & Stewart, 2005). 

 

 

 

 

 

 

 

 

 

Figure  1-6 Standard structure and nomenclature of adrenal steroids. The numbers designate the 

carbon atoms and letters designate the rings. 
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1.7.3. Steroidogenesis 

All adrenal steroids are synthesized from the precursor cholesterol in the cortex. 

The predominant source of cholesterol is through the uptake of low density 

lipoproteins (LDL) from the circulation. Adrenal tissue expresses specific cell 

surface receptors that bind and internalise circulating LDL, by receptor-mediated 

endocytosis. Once in the cytosol, the LDL is hydrolysed, liberating free 

cholesterol. Cholesterol can also be synthesized de novo within the cortex by the 

enzyme acetyl coenzyme A (acetyl-CoA) (Arlt & Stewart, 2005; Larsen et al., 

2003).  

 

The three zones of the cortex have distinct enzymic profiles, allowing them to 

specialise to the synthesis of specific steroids. The first step of steroidogenesis 

takes place in all zones, and involves the transport of cholesterol, from the 

cytosol, to the inner mitochondrial membrane, where it is subsequently converted 

to pregnenolone by cytochrome P450scc. The zona glomerulosa is specialised 

for synthesising mineralocorticoids, due to the high expression of aldosterone 

synthase (P450c18) in this zone. This enzyme is not expressed in either the zona 

fasciculata nor the zona reticularis, consequently these zones are unable to 

synthesize aldosterone (Figure 1-7) (Arlt & Stewart, 2005). By contrast, the zona 

fasciculata and zona reticularis express P450c17, which is absent from the zona 

glomerulosa. This enzyme has both 17α-hydrolylase and 17,20-lyase activity, the 

latter being dependent upon the availability of the flavoprotein cytochrome b5. In 

the zona fasciculata, the 17α-hydrolylase activity of P450c17 predominates, 

generating 17-OH-pregnenolone; a prerequisite for GC synthesis in this zone 
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(Figure 1-7). In the zona reticularis, the comparatively high expression of 

cytochrome b5 allows P450c17 to carry out 17,20-lyase activity, which is 

necessary for the generation of the adrenal androgen precursors, 

dehydroepiandrosterone (DHEA) and androstenedione in this zone (Figure 1-7) 

(Arlt & Stewart, 2005; Larsen et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

Figure  1-7 The 3 zones of the adrenal cortex have distinct enzymic profiles - allowing for the 

synthesis of specific steroids in each zone. 
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1.7.4. Cortisol synthesis 

The active GC, cortisol, is synthesized in the zona fasciculata. The first step of 

cortisol synthesis is the conversion of cholesterol to pregnenolone within the 

mitochondria, and involves hydroxylation and side chain cleavage at C20 by 

P450scc. Pregnenolone is released from the mitochondria, and subsequently 

converted to 17-OH-progesterone by one of two possible pathways. In the 

predominant pathway, pregnenolone is firstly converted to progesterone in the 

cytosol by 3β-HSD, by a reaction involving isomerisation of the double bond at C5 

and dehydrogenation of the 3-OH group. P450c17 then converts progesterone to 

17-OH-progesterone by hydroxylation of C17 using its 17α-hydroxylase activity, 

and cleavage of the 2 carbon side chain at C17 using its 17,20-lyase activity. The 

alternative pathway for 17-OH-progesterone synthesis utilises the same 

enzymes, however, P450c17 first converts pregnenolone to 17-OH-

pregnenolone, which in turn is converted to 17-OH-progesterone by the actions of 

3β-HSD. The next step in cortisol biosynthesis is the conversion of 17-OH-

progesterone to 11-deoxycortisol by 21-hydroxylase (P450c21), in a reaction that 

involves hydroxylation of C21. The last step takes place in the mitochondria, and 

involves the conversion of 11-deoxycortisol to cortisol by the enzyme 11β-

hydroxylase (P450c11) (Arlt & Stewart, 2005; Larsen et al., 2003).  
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1.7.5. The hypothalamic-pituitary-adrenal axis 

GC secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis 

(Figure  1-8). Neural stimuli from the brain drive the hypothalamus to secrete 

corticotrophin releasing hormone (CRH) into the hypophyseal portal vein, where it 

travels to the anterior pituitary and binds to the type I CRH receptors. This in turn 

stimulates the release of adrenocorticorticotrophic hormone (ACTH) from the 

anterior pituitary into the circulation, where it acts on the adrenal gland increasing 

cortisol secretion. A negative feedback system is in place whereby cortisol can 

inhibit the release and synthesis of CRH and ACTH.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1-8 The hypothalamic-pituitary-adrenal (HPA) axis. A negative feed back mechanism is in 

place whereby cortisol inhibits its own release. 
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ACTH secretion varies on a pulsatile basis, with peaks at approximately 30 

minute intervals. Furthermore, ACTH levels vary throughout a 24 hour cycle, in a 

pattern known as the circadian rhythm. As a consequence, cortisol secretion is 

also pulsatile, and follows the circadian rhythm with levels peaking just before 

waking, followed by a slow decline through the day reaching a nadir during the 

first few hours of sleep. The mechanism for how ACTH is released in the 

circadian rhythm is currently unknown. In response to stress (defined as trauma, 

sepsis, emotion, starvation), ACTH levels can increase independently of the 

circadian rhythm, which in turn drives an increase in cortisol secretion (Becker et 

al., 2001; Larsen et al., 2003).  

 

1.7.6. Regulation of cortisol secretion and synthesis 

ACTH is the principle regulator of cortisol synthesis and secretion. It is capable of 

eliciting both acute and chronic effects on steroidogenesis, through binding G 

protein-coupled melanocortin-2 receptors (MC2R) expressed on the adrenal 

cortex cell surface (Catalano, Stuve & Ramachandran, 1986).  Activation of 

MC2R triggers the cytosolic accumulation of cyclic-AMP (cAMP), which in turn 

activates cAMP-dependent protein kinase A (PKA) (Cooke, 1999; Rae et al., 

1979). Cholesterol esterase is activated by PKA, enhancing the release of free 

cholesterol from intracellular stores (Boyd & Trzeciak, 1973; Cook et al., 1982). 

The rate limiting step of steroidogenesis is the transport of cholesterol from the 

cytoplasm to the inner mitochondrial membrane, for its conversion to 

pregnenolone by P450scc. This step is mediated by steroidogenesis acute 

regulatory protein, StAR. ACTH-induced activation of PKA enhances cholesterol 
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uptake into the mitochondria by increasing StAR mRNA expression (Clark et al., 

1995), RNA stability (Ariyoshi et al., 1998), translation (Clark et al., 1995) and 

phosphorylation (Clark, Ranganathan & Combs, 2000). In addition, prolonged 

ACTH exposure enhances the expression the steroidogenic genes: P450scc, 

P450c17, P250c21 and P450c11 - enhancing steroidogenesis (Chu & Kimura, 

1973; Simpson & Waterman, 1988; Waterman & Bischof, 1997). ATCH can also 

increase the synthesis of LDL receptors (Larsen et al., 2003) 

 

1.7.7. Glucocorticoid action 

In the circulation, 90% of cortisol is bound to the α2-globulin, cortisol binding 

globulin (CBG) and albumin (Hammond, 1990). This reduces the bioactivity of 

cortisol, leaving the unbound fraction (10%) free to diffuse across cell membranes 

to exert its effect. Interestingly, serum CBG levels have been found to correlate 

negatively with BMI, waist-to-hip ratio and HOMA-IR (an index of insulin 

resistance) (Fernandez-Real et al., 2002; Ousova et al., 2004). Once in the 

cytosol, the predominant actions of cortisol are through the glucocorticoid 

receptor (GR), which regulates the transcription of specific genes. The GR is a 

member of steroid hormone receptor family, which are ligand-activated nuclear 

receptors. All members of this family share a common structure, consisting of a 

C-terminal ligand binding domain, a DNA binding domain and an N-terminal 

transactivation domain (Giguere et al. 1986). The GR shuttles between the 

cytoplasm and nucleus upon ligand binding. In its unbound form, the GR is 

localised to the cytosol where it forms a heterocomplex with 2 molecules of heat 

shock protein-90 (hsp90), stoichiometric amounts of heat shock protein-70 
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(hsp70), p23 and immunophilin (Pratt, 1998; Pratt & Toft, 1997) (Figure 1-9). The 

association between GR and hsp90 opens the hydrophobic steroid-binding cleft 

within the GR, allowing access by the steroid ligand (Stancato et al., 1996). Upon 

steroid binding, the hsp-immunophilin complex dissociates and the liganded GR 

rapidly translocates into the nucleus where it interacts with positive / negative GC 

responsive elements (GREs) within the DNA of gene targets - activating / 

repressing gene transcription (Figure 1-9) (Adcock, 2000; Schaaf & Cidlowski, 

2002).  

 

 

 

 

 

 

 

 

 

 

Figure  1-9 The mechanism of GC action. Upon steroid binding, the GR dissociates from its protein 

complex, translocates into the nucleus and modulates gene transcription. 

 

Structurally, the GR can be organised into 3 functional domains: an N-terminal 

domain, a DNA-binding domain and a ligand-binding domain (Figure  1-10) 

(Kumar & Thompson, 2005).  The DNA-binding domain is composed of two highly 
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conserved zinc fingers, located centrally within the amino acid sequence. The first 

zinc finger is primarily responsible for site specific GR-DNA binding, since amino 

acid residues located in this region make specific interactions with bases located 

within the GRE (Hard et al., 1990; Luisi et al., 1991). The second zinc finger 

functions to stabilise GR-DNA interactions, and also plays a role in 

homodimerisation at the GRE (Hard et al., 1990; Luisi et al., 1991). Much of the 

GRs transcriptional activity is dependant upon the AF1 activation region, located 

within the N-terminal domain. AF1 has been shown to associate with a number of 

transcriptional co-activators and co-repressors including: TFIIB, CBP and SRC1 

(Kumar et al., 2004; Kumar, Serrette & Thompson, 2005). In addition to its role in 

binding steroid-ligands and chaperones, the ligand-binding domain also has an 

activation subdomain (AF2) which, like AF1, binds co-activators and co-

repressors including SRC1 (Giguere et al., 1986; Kucera et al., 2002).  

 

ATF1 DBD ATF2 LBD

N C

 

Figure  1-10 The GC receptor domain structure. (DBD= DNA binding domain, LBD= ligand binding 

domain). 

 

In addition to regulating the transcription of genes which have GREs, the GR can 

also regulate transcription of genes that do not posses these elements: by 

interact with, and regulating the activity of, transcription factors bound to their own 

response element (Rogatsky et al., 2003). 
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The primary changes in gene transcription meditated by the GR can be either 

positive or negative, and can take place in as little as 15 minutes following GC 

exposure (Ringold et al., 1977). In addition, the GR can elicit secondary events 

whereby the expression of GC responsive genes can modulate the expression or 

activity of other proteins. 

 

The GR gene is subject to alternative splicing at the first and last exons. The most 

abundant spliced variants are GRα and GRβ (Lu & Cidlowski, 2004). GRα has a 

high affinity for GCs, and is expressed ubiquitously, whereas GRβ has a very low 

affinity for GCs, limited tissue distribution, and may act as a dominant negative 

regulator of GRα activation (Giguere et al., 1986; Lu & Cidlowski, 2004). 

 

Some GC effects have been reported to occur within minutes, and are insensitive 

to transcriptional inhibition (Croxtall, Choudhury & Flower, 2000; Croxtall et al., 

2002; Liu et al., 2005). There is evidence that these non-genomic GC effects are, 

at least partly, mediated by a membrane bound GR (Chen, Watson & Gametchu, 

1999; Gametchu, Watson & Wu, 1993). Reported non-genomic effects include 

activation of the insulin signalling components PI3K and PKB/akt (Hafezi-

Moghadam et al., 2002). The precise signalling events leading to these effects 

has not been fully elucidated, but are thought involve caveolin-1 (Matthews et al., 

2008). 
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1.7.8. Metabolic actions of glucocorticoids 

Acutely, GCs are released as part of the response to stress, for the purpose of 

dampening down many of the responses to illness, as well as resetting 

metabolism to favour release of substrates for oxidative metabolism. However, 

chronically, the effects of high levels of GCs are less beneficial, enhancing 

muscle wasting, visceral adipose accumulation and lipid accumulation within the 

liver (Becker et al., 2001).  

 

1.7.8.1. Carbohydrate metabolism 

GCs have catabolic effects, some of which oppose the anabolic actions of insulin. 

Therefore, under conditions of GC excess, there is a decrease in peripheral 

insulin sensitivity (particularly of the skeletal muscle), leading to hyperglycaemia 

(Rizza, Mandarino & Gerich, 1982). Furthermore, GCs increase hepatic de novo 

glucose production - further contributing to the hyperglycaemic state (Kraus-

Friedmann, 1984). Insulin secretion by the pancreatic β-cells is attenuated when 

GC sensitivity is increased through transgenic GR expression (Lambillotte, Gilon 

& Henquin, 1997). In the liver, GCs may work in concert with insulin to enhance 

hepatic glycogen synthesis and deposition - protection against long term 

starvation (Steiner, Rauda & Williams, 1961). 
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1.7.8.2. Protein metabolism 

GCs have catabolic / anti-anabolic effects upon protein metabolism in adipose 

tissue, bone and the lymphoid tissue (Becker et al., 2001), however, since 

skeletal muscle accounts for ~40% of the body mass, and is extremely protein 

rich, the effects of GC excess upon protein metabolism in this tissue are perhaps 

most relevant. It has been demonstrated that GC excess induces muscle atrophy 

(Schacke, Docke & Asadullah, 2002) by enhancing protein breakdown (Bodine et 

al., 2001), decreasing protein synthesis (Ma et al., 2003) and increasing amino 

acids conversion to glutamine (Falduto, Hickson & Young, 1989). The net result is 

elevated plasma free amino acid levels - providing substrate for glucose synthesis 

by gluconeogenesis in the liver. 

 

1.7.8.3. Lipid metabolism 

In the liver, GCs stimulate the production of very low density lipoprotein (VLDL) 

particles, enhance de novo synthesis of triacylglycerides (TAG) (Taskinen et al., 

1983), while decreasing the utilisation of stored TAG for VLDL production 

(Dolinsky et al., 2004). The effect of GCs in adipose tissue differs depending on 

the depot. Notably, GCs enhance pre-adipocyte differentiation (Gaillard et al., 

1991) and TAG accumulation (Samra et al., 1998) - resulting in central obesity. 

Furthermore, GCs enhance lipolysis, leading to elevated circulating free fatty acid 

levels (Slavin, Ong & Kern, 1994). The action of GCs upon lipid metabolism within 

the skeletal muscle will be discussed in detail in section  1.12.4. 
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1.7.9. Glucocorticoid metabolism 

Cortisol has a circulating half life of between 70 and 120 minutes (Peterson et al., 

1955). The major site of cortisol metabolism is the liver, but the kidney has also 

been found to inactivate cortisol to cortisone by 11β-HSD2.  In the liver, both 

cortisol and cortisone are reduced at the C4-C5 double bond by 5β-reductase, 

and hydroxylated at the 3-oxo group by 3α-hydroxysteroid dehydrogenase 

forming 5β-tetrahydrocortisol (5β-THF) and tetrahydrocortisone (THE), 

respectively (Figure  1-11) (Okuda & Okuda, 1984). The alternative reduction of 

the C4-C5 double bond of cortisol by 5α-reductace generates allo-THF, however, 

the 5β-THF metabolite predominates (Russell & Wilson, 1994). Approximately 

50% of secreted cortisol appears in the urine as THF, allo-THF and THE 

conjugated to glucuronic acid (Larsen et al., 2003). Alternatively, further reduction 

of THF and THE, at the 20-oxo group, by 20α-HSD or 20β-HSD generates cortols 

and cortolones respectively (Figure  1-11) (Shackleton, 1993). These metabolites 

account for 25% of the secreted cortisol. The remaining cortisol is secreted as 

C19 steroids (10%), Cortolic / cortolonic acids (10%) and unconjugated steroids 

(5%) (Larsen et al., 2003). 
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11β-Hydroxyetiocholanolone Cortol (+β cortol) Cortolone (+β cortolone)

CortisoneCortisol6β-Hydroxycortisol
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Cortisol Tetrahydrocortisol (+5α) Tetrahydrocortisone

 

Figure  1-11 The major metabolites of cortisol. 

 

Total urinary GC metabolites give an indication of adrenal cortisol secretion. 

Using a deuterated cortisol tracer, adrenal cortisol secretion rates were estimated 

at approximately 10 mg/day (Esteban et al., 1991).  

 

1.7.10. 11β-HSD and pre-receptor GC metabolism 

The interconversion between cortisol and its inactive metabolite, cortisone, are 

carried out by: 11β-HSD1 and -2. These isozymes are members of the short-

chain alcohol dehydrogenase family, and contain regions that allow cofactor 

binding and tethering to the ER membrane. They are products of separate genes. 

The ratio of urinary THF to THE is a predictor of the interconversion of cortisol 

and cortisone by 11β-HSDs. 
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1.7.10.1. 11β-hydroxysteroid dehydrogenase type 1 

The HSD11B1 gene is located on chromosome 1q32.2 and encodes a 34kDa 

glycosylated enzyme. It was first purified from rat liver, and initially thought to 

have only dehydrogenase activity - deactivating cortisol (Lakshmi & Monder, 

1988). However, later studies utilising intact cells, including hepatocytes 

(Jamieson et al., 1995), adipocytes (Bujalska, Kumar & Stewart, 1997), lung cells 

(Hundertmark et al., 1995) and skeletal myocytes (Jang et al., 2006), have 

demonstrated that 11β-HSD1 is predominantly an oxo-reductase - activating 

cortisol, unless cells are disrupted (Figure 1-12). This is supported by the higher 

affinity of 11β-HSD1 for cortisone (Km= 0.3µM), compared with cortisol (Km= 

2.1µM) (Stewart, Murry & Mason, 1994). 11β-HSD1 is tethered to the ER-

membrane, with the catalytic domain located within the lumen of the ER (Ozols, 

1995). A high concentration of NADPH, within the ER lumen, is thought to be 

responsible for maintaining the activity of 11β-HSD1 in the oxo-reductase 

direction. Hexose-6-phosphate dehydrogenase (H6PDH) is also present within 

the ER lumen, and is physically associated with 11β-HSD1. This enzyme 

generates a high concentration of NADPH within the ER lumen using the 

substrates NADP and Glucose-6-phosphate (Figure 1-12) (Bujalska et al., 2005). 

Evidence that the presence of this enzyme is essential for the directionality of 

11β-HSD1 is found from the H6PDH null mice, where liver and adipose 11β-

HSD1 activity switches to the dehydrogenase direction (Bujalska et al., 2005; 

Lavery et al., 2006). HSD11B1 is widely expressed throughout the body in many 

tissues, including: the liver, adipose tissue, skeletal muscle and brain (Jang et al., 

2006; Ricketts et al., 1998) 
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Figure  1-12 Pre-receptor regulation of GC generation. In skeletal muscle, liver and adipose 11β-

HSD1 acts as an oxo-reductase. This directionality is conferred by the catalytic products of 
H6PDH. 

 

1.7.10.2. 11β-hydroxysteroid dehydrogenase type 2 

The HSD11B2 gene is located on chromosome 16q22 and encodes a 44kDa 

dehydrogenase which catalyses the NAD+ dependent inactivation of cortisol to 

cortisone. Unlike the type 1 isozyme, the type 2 form has more limited tissue 

distribution; expressed predominantly in mineralocorticoid target tissues such as 

the colon (Whorwood, Ricketts & Stewart, 1994) and the kidney (Whorwood et al., 

1995).  The role of 11β-HSD2 in these tissues is to provide protection against the 

mineralocorticoid receptor (MR) being activated by cortisol, which has the same 

affinity for the MR as it does for the GR (Arriza et al., 1987; Edwards et al., 1988). 

Mutations in the HSD11B2 gene result in a condition called apparent 
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mineralocorticoid excess (AME). In this condition, activation of the MR by GCs 

results in hypertension and renal sodium retention (Palermo et al., 1996; Stewart 

et al., 1996). 11β-HSD2 has also been detected in the placenta, and is thought to 

protect the foetus from maternal GC exposure (Brown et al., 1996). In 

pregnancies presenting with intrauterine growth restriction, reduced placental 

11β-HSD2 expression has been detected (Shams et al., 1998). 11β-HSD2, like 

the type 1 isozyme, is anchored to the ER membranes, however, its catalytic 

domain is orientated towards the cytosol (Odermatt et al., 1999). 

 

In summary, the 11β-HSD isozymes catalyse the interconversion of inactive and 

active GCs, and thus play an integral role in controlling GR activation. Therefore, 

the tissue specific expression and activity of 11β-HSD1, 11β-HSD2, H6PDH and 

the GR all impact upon the GC response elicited in that tissue. 
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1.8. Skeletal muscle 

Skeletal muscle is a major component of the human body, accounting for ~40% of 

the total body mass. Its purpose is to provide support and movement to the 

skeleton and perform numerous vital metabolic functions. In this section, aspects 

of skeletal muscle development, morphology and function will be discussed.  

 

1.8.1. Skeletal muscle embryology 

In vertebrates, skeletal muscle development starts during early embryogenesis. 

With the exception of the craniofacial muscles, all skeletal muscles are derived 

from the somite, which is a transient condensation of mesodermal cells (Christ & 

Ordahl, 1995). The dorsal part of the somite responds to signals from the 

adjacent dorsal neural tube and notochord, forming the dermomyotome. Cells in 

this tissue continue to divide but are prevented from differentiating by signals 

released from the surface ectoderm and lateral plate (Amthor, Christ & Patel, 

1999; Pourquie et al., 1996). The formation of the dorsomedial lip of the 

dermomyotome leads to the migration of cells under the dermomyotome giving 

rise to a sheet of differentiated skeletal myocytes called the myotome, which 

subsequently form the axial skeletal muscles (Cinnamon et al., 2001; Ordahl et 

al., 2001). Formation of skeletal muscles in the appendages starts with the 

migration of cells from the lateral dermomyotome into the limbs, where they are 

exposed to local signals inducing a program of skeletal muscle differentiation 

(Daston et al., 1996; Tremblay et al., 1998).   
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1.8.2. Skeletal myocyte differentiation 

During embryo development, entry of progenitor cells into myogenesis is 

controlled by the expression of the paired box transcription factors (pax3 and -7). 

The expression of these markers occurs when the muscle progenitor cells are still 

proliferating (Relaix et al., 2005), and have important roles in regulating the 

migration of these cells to the limbs (particularly pax3) (Daston et al., 1996), as 

well as ensuring cell survival (both pax3 and -7) (Borycki et al., 1999). Double 

knockout of Pax3 and -7 in the mouse embryo results in major developmental 

defects of the skeletal muscle (Relaix et al., 2005).  These genes appear to act 

upstream of, or in parallel with, basic helix-loop-helix domain-containing myogenic 

regulatory factors (MRFs) which include; myogenic differentiation 1 (MyoD), 

myogenic factor 5 (Myf5) and myogenin (Myog) (Tajbakhsh et al., 1997). MRFs 

are late markers of the committed myogenic lineage, and are responsible for 

regulating the expression of muscle specific proteins. For example, MyoD triggers 

the expression of the contractile proteins: myosin heavy and light chains (Seward 

et al., 2001) and creatine kinase - essential for regulating anaerobic respiration 

within the muscle (Lassar et al., 1989). In addition, MyoD expression forces exit 

from the cell-cycle by upregulating the cyclin-dependent kinase inhibitor 

p21Waf/Cip1 (Figure  1-13) (Halevy et al., 1995).  

 

 

 

 

 



Chapter 1  General Introduction 

 43 

Pax-3 Myogenin

MyoD

Myf-5 Mrf-4

Mesodermal
progenitor

Myogenic 
specification/proliferation Early myotube Mature myotube

 

Figure  1-13 Myogenesis involves the formation of multinucleated myotubes that express 

characteristic contractile proteins. 

 

A key feature of terminally differentiated myocytes is the presence of multiple 

nuclei per cell. Each nucleus originated from separate myoblasts which fused 

together to form single, elongated, cylindrical cells referred to as myotubes which, 

for reasons discussed above, no longer have a proliferative capacity. Also 

present amongst terminally differentiated myotubes, located around the basal 

lamina, is a source of myogenic progenitor cells (also known as satellite cells) - 

essential for growth and regeneration of postnatal skeletal muscle (Moss & 

Leblond, 1971).  In the healthy adult skeletal muscle, these cells are mitotically 

quiescent, however, in response to various stimuli, including: exercise and injury, 

they become activated, undergoing multiple rounds of cell division generating a 

pool of cells that ultimately fuse to form new muscle. 

 

1.8.3. Hormonal regulation of skeletal muscle development 

The process of muscle development is complex, with many factors influencing 

both satellite cell proliferation and differentiation. One such example is IGF-I, 

which is synthesised by skeletal myocytes and the liver. This ligand acts in an 

autocrine, paracrine and endocrine fashion through the IGF-IR, expressed on the 
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cell surface of skeletal muscle. Initially, IGF-I signals myocyte proliferation, whilst 

inhibiting differentiation, but this pattern is reversed at a later time point by an 

IGF-I induced upregulation of the MRFs (Engert, Berglund & Rosenthal, 1996). It 

is well documented that exercise can increases IGF-I secretion from liver and 

muscle - increasing skeletal muscle mass (Czerwinski, Martin & Bechtel, 1994; 

Greig et al., 2006). Like IGF-I, IGF-II impacts upon skeletal muscle differentiation, 

with expression and secretion increasing prior to myoblast fusion (Florini et al., 

1991).  

 

Myostatin,  a recently identified member of the TGF-β superfamily, is synthesized 

and secreted by the skeletal myocytes, and has been found to have a negative 

impact upon satellite cell activation, proliferation and differentiation (McCroskery 

et al., 2003; McFarland et al., 2007). Its role is exemplified by its knockout in 

Belgian Blue cattle, where a substantial increase in skeletal muscle mass is 

observed (Grobet et al., 1997). 

 

Other factors associated with regulating myocyte development include: fibroblast 

growth factor-1 and -2 (FGF1, -2) which are synthesized and secreted by the 

skeletal muscle and enhances proliferation in response to muscle damage 

(Hannon et al., 1996). Also, muscle derived hepatocyte growth factor (HGF) has 

been found in the extracellular matrix of the skeletal muscle (Tatsumi & Allen, 

2004), capable of inducing satellite cell activation in response to muscle injury 

(Tatsumi et al., 1998). 
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In addition to peptide hormones, certain endogenous steroids such as androgens 

and oestrogens impact upon myocyte development. For example, high 

testosterone levels are observed in males in utero, which greatly increases 

skeletal muscle mass -  accounting for increased muscle strength in turn (Fink et 

al., 2006). Similarly, post-menopausal women on estrogen replacement therapy 

have greater skeletal muscle mass (Sipila & Poutamo, 2003). Like the peptide 

hormones described above, steroids are thought to mediate their effect by 

targeting the satellite cells (Nnodim, 2001). 

 

1.8.4. Skeletal muscle physiology 

As discussed above, myogenesis results in the formation of multinuclear cells 

called myotubes (also known as myofibres) (Figure  1-14). These cells can range 

in length from a hundred microns in diameter and a few millimetres in length, to 

hundreds of microns in diameter and several centimetres in length. Each myofibre 

expresses the contractile proteins myosin and actin which are incorporated into 

long filaments, organised into repeating units called sarcomeres (Figure  1-14). 

Sarcomeres in series are referred to as myofibrils, and give skeletal muscle a 

striated appearance. Multiple myofibres lie in parallel, linked by connective tissue 

(Brooks, 2003).  

 

Force is generated in skeletal muscle through the actions of the myosin filaments 

moving against filaments of actin (Figure  1-14). Briefly, ATP binding to the 

catalytic domain of the myosin motor head induces a conformational change, 

leading to dissociation of myosin from actin. ATP is subsequently hydrolysed, 
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inducing a further conformational change allowing the myosin motor head to bind 

actin at a different location along the filament - forming the “cross-bridge”. 

Inorganic phosphate release results in a conformational change - inducing the 

“power-stroke” causing the myosin filament to slide longitudinally with respect to 

the actin filament (Geeves & Holmes, 1999).  

 

I bandA bandI band M line

Z disk Z diskH zone

Actin filament

Myosin filament

M line

Sarcolemma

Nuclei

Myofibril

Sarcomere

 

Figure  1-14 The structure of skeletal muscle. Skeletal muscle is composed of muscle fibres which 

express contractile proteins organised into myofibrils.  

 

A unique feature of skeletal muscle is its fibre type heterogeneity, which allows for 

different functional capabilities (Table  1-2). There are two main types of muscle 

fibre; Type I (oxidative, slow-twitch) fibres, and type IIa / IIb / IIx (glycolytic, fast-

twitch) fibres (Bottinelli & Reggiani, 2000). Type I fibres express slow myosin 

heavy chain (MHC) isoforms, that give these fibres slow contractible properties 
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and high resistance to fatigue. These fibres generate energy by oxidising fatty 

acids, and have high levels of intramyocellular TAG (Bottinelli & Reggiani, 2000). 

Type II fibres exist in three forms; type IIa, type IIb and type IIx. All express fast 

MHC isoforms giving these fibres a fast contraction velocity, but fatigue relatively 

quickly when compared to type I fibers. Type IIa and IIx fibres generate energy 

from fatty acid oxidation and glycolysis, whereas type IIb fibres are solely 

glycolytic (Bottinelli & Reggiani, 2000). Most muscle beds are a mixture of both 

type I and type II fibres, but their relative composition varies according to the 

action of that muscle. Exercise can influence MHC expression and thus induce 

fibre type switching from type IIb to type IIa and type I  fibres (Jarvis et al., 1996; 

Olson & Williams, 2000). 
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Table  1-2 Comparison between the different skeletal muscle fibre types. 
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1.9. Lipid metabolism in the skeletal muscle 

1.9.1. Fatty acid oxidation (β-oxidation) 

In the fasted state, fee fatty acids are sequentially broken down in the 

mitochondria by a process called β-oxidation and the break down products are 

subsequently used to generate ATP by oxidative-phosphorylation (Figure  1-15). 

Transport of fatty acids (in the form of acyl-CoAs) across the outer mitochondrial 

membrane is the rate limiting step of β-oxidation. Carnitine palmitoyltransferase-1 

(CPT-I) facilitates this transport, by conjugating the fatty acyl groups with 

carnitine, releasing free CoA into the cytosol. Acyl-carnitine is then free to cross 

the outer mitochondrial membrane to the inter-membrane space (Fritz & Yue, 

1963). Subsequent transport across the inner mitochondrial membrane is 

facilitated by carnitine-acylcarnitine translocase (CAT) (Murthy & Pande, 1984).  

Acyl-carnitine is then converted back to acyl-CoA by inner membranes bound 

carnitine palmitoyltransferase II (CPT-II), leaving the free carnitine to cycle back 

to the cytosol. Once in the mitochondrial matrix, acyl-CoA is broken down by 

multiple rounds of a 4 reaction process. Each round, two cabons are cleaved from 

acyl-CoA, producing acetyl-CoA and 1 molecule of NADH and FADH2 

respectively. This process continues until all but two carbons of the original acyl 

chain remain (Rasmussen & Wolfe, 1999). The NADH and FADH2 generated are 

utilised as reducing power to generate a proton electrochemical gradient across 

the inner mitochondrial membrane. Dissipation of this gradient through the inner 

membrane bound ATP-synthase allows for coupling of ADP to inorganic 

phosphate (Pi) generating ATP (oxidative phosphorylation). Furthermore, the 
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multiple acetyl-CoA molecules generated by oxidation of acyl-CoA enter the 

tricarboxylic acid (TCA) cycle in the mitochondrial matrix - generating more 

reducing power and consequently more ATP molecules. 

 

1.9.1.1. Regulation of β-oxidation 

The rate limiting step of β-oxidation; the transport of acyl-CoA across the outer 

mitochondrial membranes, is inhibited by the catalytic product of acetyl-CoA 

carboxylase-2 (ACC2) – malonyl-CoA (Abu-Elheiga et al., 2001). ACC2 is 

phosphorylated and inhibited by AMPK, and since the latter is activated by a low 

ATP/ADP ratio, β-oxidation is tightly regulated by the energy status of the cell 

(Carling et al., 1989; Yeh, Lee & Kim, 1980) . Furthermore, there is evidence that 

GCs regulate β-oxidation, however, their effect varies depending upon the tissue 

exposed. For example, GCs appear to inhibit β-oxidation in the liver (Letteron et 

al., 1997), whereas in the skeletal muscle GCs are reported to stimulate β-

oxidation (Salehzadeh et al., 2009). 

 

1.9.2. Lipolysis 

Within the cytosol of muscle cells, located adjacent to the mitochondria, are 

stored lipids in the form of TAG (intramyocellular triacylglycerides, IMTG) which, 

during exercise or fasting, are broken down, liberating free fatty acids that are 

subsequently used to generate ATP by β-oxidation (Figure  1-15). The most 

studied lipolytic enzyme expressed in skeletal muscle is hormone sensitive lipase 

(HSL) (Langfort et al., 2000; Langfort et al., 1999; Watt, Heigenhauser & Spriet, 
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2003). This enzyme is capable of cleaving fatty acids from both TAG and 

diacylglycerides (DAG), but acts predominantly upon the latter, generating 

monoacylglycerides (MAG) (Haemmerle et al., 2002). The remaining fatty acid is 

cleaved from MAG by monoacylglyceride lipase (MAGL), releasing glycerol 

(Karlsson et al., 1997). Type I muscle fibres also highly express adipose 

triglyceride lipase (ATGL) which hydrolyses TAG generating DAG and a fatty acid 

(Jocken et al., 2008; Villena et al., 2004). 

 

1.9.2.1. Regulation of lipolysis 

The rate of lipolysis within the skeletal muscle is regulated primarily at the level of 

HSL. Adrenaline has a stimulatory effect upon lipolysis by activating the β-

adrenergic receptor (Langfort et al., 1999). This results in activation of adenylate 

cyclase; increases cytosolic cAMP levels - resulting in PKA activation. PKA is 

known to phosphorylate and activate HSL. By contrast, insulin has anti-lipolytic 

action, by activating PDE3B resulting in a reduction of cytosolic cAMP levels 

leading to reduced PKA activation (Enoksson et al., 1998). Muscle contraction 

increases lipolysis by activating HSL by a pathway involving protein kinase C 

(PKC) and extracellular signal-related kinase (ERK) activation (Donsmark et al., 

2003). The role of AMPK in the regulation of lipolysis is controversial. For 

example, exercise induced activation of AMPK mediates inhibitory 

phosphorylation of HSL, preventing its activation by adrenergic stimulation (Watt 

et al., 2004). This was supported by a study where AMPK was made 

constitutively active in a rat skeletal muscle cell line, inhibiting HSL function (Watt 

et al., 2006). However, in isolated rat soleus muscles undergoing contraction, 



Chapter 1  General Introduction 

 51 

variable HSL activation was observed in the face of constant AMPK activation 

(Donsmark et al., 2004). 

 

Lipolysis is increased by GCs in adipose tissue and the liver, consistent with its 

role as a catabolic effector  (Divakaran & Friedmann, 1976; Senft et al., 1968; Xu 

et al., 2009). The proposed mechanism is thought to involve a GC-mediated 

downregulation of PDE3B, thus increasing cytosolic cAMP levels (Senft et al., 

1968). Furthermore, GCs have also been found to upregulate the expression of 

both HSL and ATGL in adipose tissue (Xu et al., 2009). In human skeletal 

muscle, GC infusion also has a stimulatory effect upon lipolysis. In addition, co-

infusion of both GCs and growth hormone has an additive stimulatory impact 

upon lipolytic rates in this tissue (Djurhuus et al., 2004). Although it is not clear 

how GCs increase intramyocellular lipolysis,  a downregulation of PDE3B 

following GC treatment has been identified in skeletal muscle (Senft et al., 1968)  
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1.9.3. Fatty acid uptake  

The predominant source of skeletal muscle fatty acids is through uptake of liver / 

diet derived fatty acids from the circulation (Figure  1-15).  The liver synthesises 

fatty acids by de novo lipogenesis, which are subsequently esterified into TAG 

and packaged, along with cholesteryl esters, phospholipids and apolipoproteins, 

into very low density lipoproteins (VLDL). In the fasted state, the liver releases 

VLDL into the circulation where the constituent fatty acids are used by the 

skeletal muscle as a fuel (Gibbons et al., 2004). In addition, another source of 

fatty acids is from the intake of dietary lipids. These are absorbed into intestinal 

mucosal cells (enterocytes) where they are packaged with cholesteryl esters, 

phospholipids and apolipoproteins to form chylomicrons which are subsequently 

released into the circulation (Mu & Hoy, 2004). Neither VLDL nor chylomicrons 

can cross the plasma membrane of skeletal myocytes, however, hydrolysis of 

these particles by lipo-protein lipase (LPL) liberates free fatty acids which can 

enter the cell (Bickerton et al., 2007). Skeletal muscle secretes LPL, which 

attaches to chains of heparin sulphate on endothelial cells within the vascular 

space of the skeletal muscle (Kiens et al., 2004; Scow, Blanchette-Mackie & 

Smith, 1976). Once released by LPL, free fatty acids can enter the muscle cells 

by simple diffusion across the plasma membrane or via the fatty acid transporter 

FAT/CD36 (Bonen, Miskovic & Kiens, 1999). Skeletal muscle also expresses fatty 

acid binding proteins (FABP) which facilitate fatty acid uptake and intracellular 

transport (Binas et al., 2003). The predominant FABP isoform expressed in the 

skeletal muscle is FABP3 (Fischer et al., 2006). Fatty acids absorbed from the 

circulation are either esterified with glycerol and stored as TAG (when energy 
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demands are low), or enter β-oxidation and used to generate ATP (when energy 

demands are high). 

 

1.9.3.1. Regulation of fatty acid uptake 

Insulin enhances fatty acid uptake into skeletal muscle by increasing expression 

of the FAT/CD36 transporter (Corpeleijn et al., 2008; Dyck et al., 2001). Similarly, 

muscle contraction increases fatty acid uptake by upregulating LPL (Kiens et al., 

1989), FABP and increasing membrane localisation of FAT/CD36 (Bonen et al., 

2000). However, the main mechanism by which exercise enhances fatty acid 

uptake into the skeletal muscle is via increased muscle capillary blood flow, 

allowing for increased LPL-mediated lipolysis. The effect of GCs upon skeletal 

muscle fatty acid uptake has not been investigated to date, however, GCs have 

been found to increase fatty acid uptake in adipocytes by upregulating LPL 

expression (Ashby & Robinson, 1980). 

 

1.9.4. Fatty acid esterification 

The predominant source of intramyocellular TAG is through esterification of fatty 

acids taken up from the circulation (Figure  1-15). Esterification involves the 

conjugation of three fatty acids to a single glycerol-3-phosphate molecule, but 

intramyocellular hydrolysis of IMTG is also a source. Glycerol-3-phosphate can 

be generated from the precursors: lactate, pyruvate, alanine or TCA-cycle 

intermediates by glyceroneogenesis, which accounts for ~60% of the synthesized 

glycerol-6-phosphate (Nye, Hanson & Kalhan, 2008). The remaining ~40% of 
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skeletal muscle glycerol-3-phosphate come from glycolysis. An additional, yet 

minor source of glycerol-3-phosphate is via uptake of plasma glycerol (Coppack 

et al., 1999) and subsequent phosphorylation by glycerol kinase (GlK) 

(Newsholme & Taylor, 1969; Seltzer et al., 1989). The main enzymes involved in 

fatty acid esterification are: glycerol-3-phosphate acyltransferase (GPAT), which 

catalyses the addition of the first fatty acid to glycerol-3-phosphate; and 

diacylglycerol acyltransferase (DGAT), which mediates addition of a fatty acid at 

the third position. 

 

1.9.4.1. Regulation of esterification 

AMPK has been found to phosphorylate and inhibit GPAT -  linking the rate of 

TAG synthesis to the energy status of the cell (Muoio et al., 1999). By contrast, 

insulin upregulates TAG synthesis by increasing GPAT expression (Gonzalez-

Baro, Lewin & Coleman, 2007). Furthermore, exercise upregulates sterol 

regulatory element-binding protein 1 (SREBP-1), which in turn upregulates DGAT 

- enhancing esterification (Ikeda et al., 2002).  

 

1.9.5. De novo lipogenesis 

De novo lipogenesis is the process by which simple sugars, such as glucose, are 

converted to fatty acids which are subsequently esterified to glycerol-3-phosphate 

(Figure  1-15). Although de novo lipogenesis is not thought to be a major 

contributor to intramyocellular lipid stores under normal conditions, it is thought to 

occur under hyperglycaemic conditions (Aas et al., 2004; Baltzan et al., 1962; 
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Gaster & Beck-Nielsen, 2006; Guillet-Deniau et al., 2004). The principle building 

blocks for fatty acid synthesis are acetyl-CoA, produced in the mitochondria from 

the metabolism of fatty acids, pyruvate, ketone bodies and certain amino acids. 

Many of the lipogenic enzymes are located in the cytosol, consequently, acetyl-

CoA is converted to citrate allowing for its transport across the mitochondrial 

membrane, where it is subsequently converted back to acetyl-CoA by citrate 

lyase in the cytosol (Haralambie, 1977). The first and rate limiting step of de novo 

lipogenesis is the ATP-dependent conversion of acetyl-CoA to malonyl-CoA,  

catalyzed by acetyl-CoA carboxylase 1 (ACC1) (Lane, Moss & Polakis, 1974). 

Fatty acid synthase (FAS) then condenses malonyl-CoA with acetyl-CoA, by a 

series of reactions leading to the formation of acyl-CoA. Subsequent reactions 

between newly synthesized malonyl-CoA molecules and the growing acyl-CoA 

chain eventually result in the formation of the fatty acid palmitate (16 carbons) 

(Smith, Witkowski & Joshi, 2003). 

 

1.9.5.1. Regulation of de novo lipogenesis  

De novo lipogenesis within the skeletal muscle is induced in an SREBP-

dependent manner by glucose: through upregulation of FAS and ACC1 (Guillet-

Deniau et al., 2004); by insulin: through upregulation of FAS and citrate lyase 

(Guillet-Deniau et al., 2002); and by muscle contraction: through upregulation of 

ACC1 (Ikeda et al., 2002). Furthermore, GCs have been found to augment the 

stimulatory actions of insulin upon lipogenesis in adipose tissue by upregulating 

FAS expression and activity (Wang et al., 2004).  
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1.10. Lipotoxicity and insulin resistance in the skeletal muscle 

1.10.1. Intramyocellular triglycerides 

Lipotoxicity is the aberrant accumulation of IMTG and other lipid species within 

the skeletal muscle, resulting in chronic cellular dysfunction. IMTG turnover is a 

measure of the balance between TAG synthesis and degradation; both are 

influenced by β-oxidation rates and plasma fatty acid availability. High levels of 

IMTGs are associated with insulin resistance and type 2 diabetes (Koyama et al., 

1997; Pan et al., 1997; van Loon et al., 2004), however, endurance athletes also 

have an increased IMTG content whilst maintaining a high sensitivity to insulin, 

suggesting that a build up of IMTG per se, does not cause insulin resistance 

(Pruchnic et al., 2004; Tarnopolsky et al., 2007; van Loon et al., 2004). Recently, 

it has been proposed that the accumulation of lipid intermediates, such as long-

chain fatty acyl-CoAs, DAGs and ceramides, derived from IMTG stores, are 

actually the species responsible for inducing the insulin resistance. Since 

endurance athletes are thought to have a higher IMTG turnover, accumulation of 

these harmful metabolites is avoided.  By contrast, in insulin resistant subjects, 

the defects in lipid metabolism are partly attributed to a reduction in mitochondrial 

number and function  (Kelley et al., 2002). This results in diminished / incomplete 

oxidation of fatty acids, contributing to the accumulation of insulin resistance-

inducing lipid intermediates (Figure  1-16) (Muoio & Koves, 2007). Multiple factors 

have been associated with mitochondrial dysfunction, including: age, poor diet, 

lack of exercise as well as polymorphisms in the mitochondrial biosynthesis 

regulator PGC-1α (Phielix & Mensink, 2008). In this section, the consequences of 
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elevated intramyocellular long-chain fatty acyl-CoAs, DAG and ceramide levels 

upon the insulin sensitivity of skeletal muscle will be discussed.  

 

1.10.2. Long-chain fatty acyl-CoA 

Elevated intracellular long-chain fatty acyl-CoA are associated with insulin 

resistance (Chalkley et al., 1998; Chen et al., 1992; Oakes et al., 1997b). 

Intracellular fatty acyl-CoAs are derived from the hydrolysis of IMTG stores, or 

taken up from the circulation. Rat soleus muscles incubated with fatty acids have 

reduced insulin-stimulated glycogen synthesis and glucose uptake (Thompson et 

al., 2000). Also, high-fat fed rats, fasted overnight or exercised, have reduced 

intracellular fatty acyl-CoA levels, and improved insulin sensitivity (Oakes et al., 

1997a). To date, it is unclear if / how long-chain fatty acyl-CoAs mediate these 

effects, although direct inhibition of hexokinase (HK) has been proposed as a 

potential mechanism, decreasing glucose flux (Tippett & Neet, 1982). However, it 

is likely that the elevated intracellular long-chain fatty acyl-CoAs levels seen in 

states of insulin resistance are merely a marker of increased DAG / ceramides 

accumulation. 

 

1.10.3. Diacylglycerides 

Accumulation of intracellular DAG is also linked to insulin resistance (Figure  1-16) 

(Montell et al., 2001; Saha et al., 1994; Yu et al., 2002). DAG can be generated 

from multiple sources, including: hydrolysis of phospholipids by phospholipase C 

and D (PLC, PLD), esterification of two fatty acids with glycerol-3-phosphate and 



Chapter 1  General Introduction 

 59 

hydrolysis of IMTG by ATGL. The latter two routes are likely to be the most 

predominant source of intramyocellular DAG. DAG levels have also been found to 

be negatively regulated by diacylglycerol kinase-δ (DGK-δ), which phosphorylates 

DAG forming phosphatidic acid. Interestingly, DGK-δ is downregulated in type 2 

diabetes (Chibalin et al., 2008). Regulation of fatty acid saturation also impacts 

upon DAG levels, since saturated fatty acids (e.g. palmitate) are preferentially 

incorporated into DAG, rather than TAG (Pickersgill et al., 2007). This is 

exemplified by inhibition of stearoyl-CoA desaturase-1 (SCD-1) (a key enzyme 

involved formation of monounsaturated fatty acids), resulting in reduced insulin 

sensitivity (Pinnamaneni et al., 2006). 

 

Within the cell, DAG has an important role as a second messenger through its 

ability to activate PKC. The PKC family consists of ~12 isozymes, derived from 

multiple genes by alternative splicing (Nishizuka, 1988). There are three PKC 

subclasses: classical (cPKCα, βI, βII, γ), which are DAG, Ca2+ and phospholipid 

dependent; novel (nPKCδ, θ, ε, η) which are DAG and phospholipid dependent; 

and atypical (aPKCζ, λ), which are independent of DAG, Ca2+ and phospholipids 

(Newton, 1995). PKC activation involves their translocation to the plasma 

membrane where they phosphorylate numerous targets. In the skeletal muscle 

extracted from high fat fed rats, an increased proportion of PKCθ, PKCε and 

PKCδ localised at the plasma membrane was observed, correlating with the 

elevated intracellular DAG levels (Heydrick et al., 1991). Increased membrane 

localisation of PKCθ has been found in lipid infused rats, which was associated  

with enhanced inhibitory serine-307 phosphorylation of IRS1, and reduced IRS1-

associated PI3K activity (Figure  1-16) (Yu et al., 2002). PKCθ is further implicated 
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in DAG-induced insulin resistance from the PKCθ-/- mice, which are markedly 

insulin sensitive compared to control mice following lipid infusion (Kim et al., 

2004). In humans, lipid infusion increased DAG accumulation and PKCβII and 

PKCθ membrane localisation within the skeletal muscle (Itani et al., 2002).  

 

1.10.4. Ceramides 

Ceramides are a family of lipid species that function as signalling molecules. 

Within the cell they signal apoptosis and inhibit cell division (Haimovitz-Friedman, 

Kolesnick & Fuks, 1997). Ceramide accumulation has been reported in the 

skeletal muscle of insulin resistant animals (Figure  1-16) (Turinsky, O'Sullivan & 

Bayly, 1990), obese insulin resistant humans (Adams et al., 2004) and lipid 

infused humans (Straczkowski et al., 2004). Accumulation of ceramides could be 

a consequence of sphingomyelin hydrolysis (a plasma membrane constituent), 

catalysed by sphingomyelinase (Hannun & Obeid, 2002). Alternatively, ceramides 

can be generated from two fatty acids and a serine in four enzymic steps (Merrill 

& Jones, 1990). The first step is rate limiting, catalysed by serine 

palmitoyltransferase (SPT), which specifically requires a saturated fatty acid as 

substrate. Increased saturated fatty acid uptake by the skeletal muscle, or 

inhibition of SCD-1 enhance ceramide levels (as well as DAG levels, as 

discussed above) (Pickersgill et al., 2007; Pinnamaneni et al., 2006). 

 

The mechanism by which ceramides induce insulin resistance is via activation of 

PP2A, which dephosphorylates and inactivates PKB/akt (Stratford et al., 2004). 

Furthermore, ceramides have been found to activate PKCζ, which phosphorylates 
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PKB/akt within the PH-domain - preventing PIP3 association at the plasma 

membrane (Figure  1-16) (Hajduch et al., 2001; Powell et al., 2003). 
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Figure  1-16 Lipotoxicity within the skeletal muscle. Aberrant accumulation of DAG and ceramides 

contribute to insulin resistance. 
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1.11. Skeletal muscle and adipose tissue crosstalk 

Adipose tissue is key endocrine organ that is central to whole-body metabolic 

homeostasis. Adipose tissue secretes a large number of factors known 

collectively as adipokines, which regulate numerous processes ranging from 

inflammation to insulin sensitivity and appetite. Altered production of adipokines 

contributes to the association between obesity and type 2 diabetes. Importantly, 

many of these secreted factors impact upon the insulin sensitivity of the skeletal 

muscle, and consequently play an important role in the pathogenesis of insulin 

resistance and type 2 diabetes (Figure  1-17). In this section, the mechanisms by 

which some of these adipokines modulate the insulin sensitivity of skeletal muscle 

will be discussed.  

 

1.11.1. Adiponectin 

Adiponectin (also known as AdipoQ) has recently emerged as a key adipokine. It 

acts as an insulin sensitizer / mimetic and has additional, anti-atherogenic, anti-

inflammatory and cardioprotective properties (Whitehead et al., 2006). In contrast 

to the majority of adipokines, circulating levels of adiponectin are decreased in 

obese (Arita et al., 1999) and type 2 diabetic humans (Hotta et al., 2000). 

Adiponectin has been found to have a beneficial effect upon lipid metabolism 

within the skeletal muscle, by increasing fatty acid oxidation and thus reducing 

IMTG content in both mice (Fruebis et al., 2001) and humans (Thamer et al., 

2002). These beneficial effects are thought to be mediated via increased 

transcriptional activity of PPARα, which in turn leads to increased expression of 
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target genes including: CPT1, which catalyses the rate limiting step of β-oxidation 

(Yoon et al., 2006). Consequently, a reduction in adiponectin levels contributes to 

elevated IMTG levels, which are strongly correlated with reduced insulin 

sensitivity, as discussed in section  1.10.1. 

 

1.11.2. Resistin 

The role of resistin in the metabolic syndrome has been the subject of much 

controversy. In mice, resistin levels are elevated in obesity (Rajala et al., 2004), 

and have also been associated with insulin resistance when overexpressed 

(Satoh et al., 2004). Moreover, resistin knockout mice are insulin sensitive 

(Banerjee et al., 2004), however, resistin expression differs between rodents and 

humans. In rodents, resistin is expressed in white adipose tissue, whereas in 

humans it appears to be limited to mononuclear cells (Savage et al., 2001). 

Further inconsistencies have been found with human association studies. For 

example, some have shown that high resistin levels are associated with obesity 

and insulin resistance (Osawa et al., 2008), whereas others have not (Kielstein et 

al., 2003). In rodent skeletal muscle, resistin decreased insulin stimulated glucose 

uptake (Jorgensen et al., 2009; Moon et al., 2003). However, although resistin 

appears to mediate insulin sensitivity in rodent adipocytes (Steppan et al., 2005) 

and hepatocytes (Liu et al., 2008) by upregulating SOCS3, this does not appear 

to be its mechanism of action in skeletal muscle (Jorgensen et al., 2009). 

 

 

 



Chapter 1  General Introduction 

 64 

1.11.3. Pro-inflammatory cytokines 

Systemic inflammation is thought to have a role in the pathogenesis of insulin 

resistance, since markers of inflammation are elevated in obese and insulin 

resistant subjects. Many of these pro-inflammatory cytokines are derived from the 

adipose tissue. 

 

1.11.3.1. Tumour necrosis factor-α  

Expression of TNFα in adipose tissue is increased in obese and insulin resistant 

subjects (Hotamisligil et al., 1995) (Hotamisligil, Shargill & Spiegelman, 1993). 

Serum levels of TNFα are also increased in obesity (Olszanecka-Glinianowicz et 

al., 2004) and type 2 diabetes (Spranger et al., 2003; Zinman et al., 1999),  

however, this is not a consistent finding (Ho et al., 2005). At a cellular level, TNFα 

is thought to activate several key kinases associated with insulin resistance in the 

skeletal muscle, including: IKKβ (Jiang et al., 2003) and cJUN (Aguirre et al., 

2000) both of which are involved in inhibitory serine phosphorylation of IRS1. 

Furthermore, TNFα upregulates sphingomyelinase which hydrolyses 

sphingomyelin located within the plasma membrane, generating ceramides – also 

contributing to reduced insulin sensitivity (see section  1.10.4) (Murase et al., 

1998). TNFα has been linked with muscle wasting by inhibiting myoblast 

differentiation (Szalay, Razga & Duda, 1997) and enhancing protein degradation 

(Garcia-Martinez et al., 1993). 
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1.11.3.2. Interleukin factor-6 (IL-6) 

Adipose derived circulating levels of IL-6 are increased in obese and insulin 

resistant subjects (Kern et al., 2001; Spranger et al., 2003). Following weight loss, 

circulating levels of IL-6 are reduced (Bastard et al., 2000). Cell culture 

experiments using human primary myotubes found IL-6 to induce insulin 

resistance by upregulating SOCS3 (Rieusset et al., 2004). 

 

The adipokines discussed here represent a handful of a growing list secreted 

from adipose tissue. Other adipokines, whose aberrant expression and circulating 

levels potentially impact upon the insulin sensitivity of the skeletal muscle include: 

PAI-1 (Alessi et al., 2000), vaspin  (Youn et al., 2008) and leptin (Mohiti, Talebi & 

Afkhami-Ardekani, 2009). 
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Figure  1-17 Tissue crosstalk between adipose tissue and the skeletal muscle. 
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1.12. GCs, atrophy & insulin resistance in skeletal muscle 

1.12.1. Glucocorticoid excess 

The classical example of GC excess, Cushing’s disease, was first described by 

Harvey Cushing in 1912. This relatively uncommon disease is caused by a 

pituitary tumour secreting ACTH, which in turn, drives increased cortisol secretion 

from the adrenal (Cushing, 1913). By contrast, the more prevalent Cushing’s 

syndrome typically arises as a result of an adrenal tumour - driving ectopic 

cortisol release. Alternatively, aberrant ACTH secretion from anywhere other than 

the pituitary (e.g. lung tumour), can also result in this condition, however, the 

most common cause is GC therapy. An estimated 0.3% of the population are 

taking prescribed high dose GCs (>7.5mg daily) to benefit from their 

immunosuppressive anti-inflammatory properties (van Staa et al., 2000). 

 

The elevated circulating cortisol in patients with Cushing’s disease/syndrome 

result in a wide range of pathologies, such as: increased visceral adipose mass, 

skin thinning, hypertension, muscle wasting and insulin resistance - ultimately 

leading to type 2 diabetes. Metabolic syndrome, which affects 1 in 5 adults (Ford, 

Giles & Dietz, 2002), shares many similarities to Cushing’s syndrome/disease. 

These include central obesity, glucose intolerance, insulin resistance, type 2 

diabetes and increased cardiac risk of mortality (Friedman et al., 1996). Due to 

these similarities, there has been much interest into the role GCs play in the 

pathology of insulin resistance and type 2 diabetes.  
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1.12.2. Glucocorticoids and skeletal muscle atrophy 

GCs are required for the activation of muscle protein degradation in several 

muscle atrophy models (May, Kelly & Mitch, 1986; Mitch et al., 1999; Wing & 

Goldberg, 1993). Skeletal muscle proteolysis is partly regulated by the IRS1–

associated PI3K/Akt axis. Under insulin / IGF1 stimulation, activation of this axis 

leads to PKB/akt-induced phosphorylation and inhibition of the forkhead family of 

transcription factors (e.g. FOXO1), which are required for the transcription of 

proteolytic genes, such as the E3 ubiquitin ligase, atrogin-1 (Sandri et al., 2004). 

Under conditions whereby the activity of the IRS1–associated PI3K/Akt axis is 

reduced, FOXO1 becomes dephosphorylated and activated, resulting in 

increased atrogin-1 transcription and consequently enhanced protein breakdown 

(Sandri et al., 2004).  It has recently been shown that activated GR competes with 

IRS1 for binding PI3K; enhancing FOXO1 activation, leading to increased 

proteolysis. This represents a non-genomic action of GCs (Hu et al., 2009). 

FOXO3 also regulates the expression of key atrophy genes, including atrogin-1, 

and also enhances autophagy (the degradation of cellular components through 

the lysosomal machinery). The activity of FOXO3, like FOXO1, is inhibited is by 

akt phosphorylation (Zhao et al., 2008). 

 

GCs have also been shown to increase skeletal muscle proteolysis by 

upregulating the expression of another E3 ubiquitin ligase, muscle specific ring 

finger-1 (MuRF1) (Waddell et al., 2008), a gene upregulated in several atrophy 

conditions (Gomes et al., 2001; Lecker et al., 2004). In contrast to the above, the 

actions of GCs upon MuRF1 expression are via the association between 
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activated GR and a GRE located within the MuRF1 promoter. As with atrogin-1, 

transcriptional activation is dependent upon activated FOXO1. Furthermore, IGF1 

has been found to overcome the GC-induced increase in MuRF1 expression, 

which correlates with loss of FOXO1 binding to the promoter (Waddell et al., 

2008).  

 

1.12.3. Glucocorticoids & the insulin signalling cascade 

As discussed above, GC excess induces whole body insulin resistance. However, 

since skeletal muscle accounts for ~80% of glucose disposal, under insulin 

stimulating conditions, it is inferred to be a major site of GC-induced insulin 

resistance (DeFronzo et al., 1981). The interaction between GC and the insulin 

signalling cascade in skeletal muscle has only been examined in a small number 

of studies, which have offered varying explanations for the induction of insulin 

resistance. Chronic GC treatment decreases insulin-stimulated glucose uptake 

and GLUT4 translocation in skeletal muscle, without reducing the total content of 

GLUT4 (Dimitriadis et al., 1997; Haber & Weinstein, 1992). This suggests that the 

defect in insulin signalling lies upstream of GLUT4. Many studies have shown that 

GC exposure reduces insulin stimulated PKB/akt phosphorylation (Ruzzin, 

Wagman & Jensen, 2005), however, this is not a consistent finding (Rojas, Hirata 

& Saad, 2003). Similarly, IRS1 protein content and tyrosine phosphorylation 

appear to be reduced in skeletal muscle following GC treatment (Giorgino & 

Smith, 1995; Rojas et al., 2003), as is IRS1-associated PI3K activity (Giorgino et 

al., 1997; Giorgino & Smith, 1995; Hu et al., 2009; Rojas et al., 2003; Saad et al., 

1993). By contrast, InsR levels and autophosphorylation are reproducibly 
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unaffected by GC exposure in skeletal muscle (Block & Buse, 1989; Leighton et 

al., 1987; Saad et al., 1993), suggesting the defect lies downstream of the 

receptor. In summary, although it is clear that GC have an inhibitory effect upon 

the insulin signalling cascade in skeletal muscle, the precise molecular 

mechanism underpinning these observations is unclear. 

 

1.12.4. Lipotoxicity and glucocorticoids 

GCs have been linked with the accumulation of insulin resistance inducing lipid 

metabolites within the skeletal muscle. High fat fed mice treated with the synthetic 

GC, dexamethasone, have increased IMTG and DAG levels within skeletal 

muscle. The precise mechanisms by which GCs induce these changes are 

unclear, but the authors speculated that they may exacerbate the lipid exchange 

between adipose tissue and skeletal muscle. These mice were also insulin 

resistant, which may attributed to the elevated DAG levels - inducing PKC 

activation (Gounarides et al., 2008). In support of this hypothesis, GCs activate 

conventional PKC isoforms (PKCα, and β) in rodent adipocytes, and their 

inhibition (with use of a conventional PKC selective inhibitor) reversed the 

dexamethasone induced insulin resistance in these cells (Kajita et al., 2000; 

Kajita et al., 2001). GCs have also been found to enhance de novo ceramides 

synthesis in the skeletal muscle by upregulating SPT (Holland et al., 2007). 
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1.13. 11β-HSD1 and insulin resistance 

1.13.1. 11β-HSD1 activity and expression in insulin resistance 

11β-HSD1 is expressed and is biologically active in human skeletal muscle (Jang 

et al., 2006). Elevated 11β-HSD1 has been described in rodent skeletal muscle in 

models of diabetes (Zhang et al., 2009), and in myotubes isolated from patients 

with insulin resistance and type 2 diabetes (Abdallah, Beck-Nielsen & Gaster, 

2005; Whorwood et al., 2002), however, this is not a consistent finding (Jang et 

al., 2007) and its precise contribution to metabolic and muscle phenotype is still to 

be clarified. 

 

1.13.2. Genetics of 11β-HSD1 and insulin resistance 

As discussed in section  1.2, epidemiologic and family studies have demonstrated 

that there is a moderate genetic influence on the development on insulin 

resistance. With respect to the HSD11B1 gene, one study conducted in children 

has found that an intronic single nucleotide polymorphism is associated with 

insulin resistance (Gelernter-Yaniv et al., 2003). 

 

 

 

 

 

 

 



Chapter 1  General Introduction 

 71 

1.14. 11β-HSD animal models 

1.14.1. 11β-HSD1 knockout 

Whole body knockout of 11β-HSD1 in mice has a beneficial metabolic phenotype. 

11β-HSD1 null mice are insulin sensitive; resisting hyperglycaemia-induced by 

stress (Kotelevtsev et al., 1997), and are protected from type 2 diabetes when fed 

on a high fat diet (Morton et al., 2004). Much of the research as to why these 

mice are insulin sensitive has focussed upon the liver and adipose. Hepatic 

gluconeogenesis is attenuated in the fasted state (Kotelevtsev et al., 1997), and 

basal and insulin stimulated glucose uptake is increased in the adipose tissue 

(Morton et al., 2004). However, the metabolic impact of 11β-HSD1 knockout in 

skeletal muscle has not been explored. 

 

The 11β-HSD1 knockout mice are further protected from the accumulation of 

visceral fat when fed on a high fat diet (Morton et al., 2004). Interestingly, these 

mice  have a higher adrenal secretion of corticosterone, which is attributed to 

adrenal hyperplasia  (Kotelevtsev et al., 1997). 

 

1.14.2. Hexose-6-phosphate dehydrogenase knockout  

As described in section  1.7.10.1, H6PDH generates NADPH, which confers the 

directionality of 11β-HSD1. In the H6PDH knockout mouse, 11β-HSD1 switches 

to a dehydrogenase - inactivating corticosterone to 11-dehydrocorticosterone 

(Bujalska et al., 2008; Lavery et al., 2006). These mice have a reduced ability to 

store lipid in adipose tissue, and serum fatty acid levels remained unchanged 
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upon fasting (Bujalska et al., 2008). The insulin sensitivity of these mice is 

improved, with increased insulin-stimulated glucose uptake in skeletal muscle 

beds enriched with type IIb fibres (extensor digitorum longus). By contrast, no 

impact upon glucose uptake of type I fibre rich muscle beds is observed (soleus) 

(Rogoff et al., 2007). It is unclear whether this is a consequence of GC 

insensitivity, or loss of other actions of H6PDH. The most striking observation is 

that H6PDH null mice have severe muscle myopathy. The reduced NADPH within 

the sarcoplasmic reticulum (SR) alters the NADPH/NADP ratio, altering the redox 

balance in this environment. This has a knock-on effect upon the folding of 

proteins in the SR, leading to activation of the unfolded protein response (UPR) 

pathway. Once activated, large vacuoles are formed within the type IIb fibres, 

which are thought to be abnormally large SR. This is followed by fibre type 

switching from type IIb fibres to type I fibres - accounting for the muscle myopathy 

(Lavery et al., 2008). 

 

1.14.3. 11β-HSD as a therapeutic target  

11β-HSD1 has been considered an attractive therapeutic target for a number of 

years. Human studies using the non-specific 11β-HSD inhibitor, carbenoxolone, 

have proved useful as proof of concept experiments, but because this compound 

also inhibits 11β-HSD2 (resulting in mineralocorticoid excess), carbenoxolone 

cannot be used therapeutically. Therefore, a number of pharmaceutical 

companies have developed selective 11-βHSD1 inhibitors. Published data on the 

metabolic impact of these compounds is predominately from rodent studies. The 

effects of selective 11β-HSD1 inhibition has been explored in primates and more 
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recently human clinical trials, although the latter is in a preliminary abstract stage 

(findings summarised in Figure  1-18). 

 

The first selective inhibitor to be described was a benzene sulphonamide, 

BVT2733, which has a 200-fold greater selectivity for inhibiting 11β-HSD1 than 

11β-HSD2 (Barf et al., 2002). This compound, when administered to rodents for 4 

days, reduced fasting free fatty acid (19%), cholesterol (15%) and TAG (17%) 

levels, and also decreased total body weight (5%), when compared to vehicle 

treated animals. However, a decrease in food intake was observed (10%) which 

may have conferred improved metabolic function. In addition, insulin sensitivity 

and glucose tolerance were improved, with reductions in fasting glucose and 

insulin levels (Alberts et al., 2003). Hepatic gluconeogenesis was reduced by 

~60% (Alberts et al., 2002; Alberts et al., 2003). In a separate study, the 

effectiveness of BVT2733 was compared to thiazolidinedione (TZD) compounds 

(PPAR agonists are currently in use as a treatment for type 2 diabetes in 

humans) in diabetic  mice and, at the highest dose, was found to decrease blood 

glucose to similar levels to that induced by rosiglitazone (PPARγ agonist) 

(Sundbom et al., 2008).  Although BVT2733 is highly effective at inhibiting rodent 

11β-HSD1 (IC50 96nM), it is far less effective at inhibiting the human isozyme 

(IC50 of 3341nM) (Barf et al., 2002). 

 

An adamantyl triazole compound developed by Merck, inhibitor 544, has been 

tested in several rodent models (Hermanowski-Vosatka et al., 2005). When 

administered to diet-induced obese (DIO) mice for 11 days, reductions in fasting 

glucose, insulin, TAG, cholesterol and body weight were observed. Similarly, 
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when administered to mouse model of type 2 diabetes there were reductions in 

fasting glucose, insulin, glycogen, TAG, free fatty acids and an improvement in 

glucose tolerance. Interestingly, in mice with targeted deletion of apolipoproteins 

E, inhibitor 544 reduced atherosclerotic plaque formation - known to be the key 

clinical consequence of metabolic syndrome (Hermanowski-Vosatka et al., 2005). 

 

The metabolic impact of another selective 11β-HSD1 inhibitor, 4-

heteroarylbicycol[2.2.2]octyltriazole (Compound A), has recently been studied in 

rats fed on a high fat, high sucrose diet. Following a 3 week treatment with 

Compound A, there was a decrease in fasting serum TAG and free fatty acid 

levels without altering glucose and insulin levels. Food intake and body weight 

were unaffected at this dose. The lipid content of the liver and brown adipose 

tissue was decreased. Fatty acid uptake and β-oxidation rates were elevated in 

oxidative tissues including the skeletal muscle (Berthiaume et al., 2007a; 

Berthiaume et al., 2007b). More recently, Compound A has been used in 

combination with a TZD compound (rosiglitazone) and was found to further 

decrease hepatic steatosis and serum TAG levels compared to TZD treatment 

alone (Berthiaume et al., 2009). 

 

To date, all published reports on the metabolic impact of 11β-HSD inhibition in 

humans are from the non-selective compound carbenoxolone. When 

administered to healthy individuals, improvements in whole body insulin 

sensitivity is observed (Walker et al., 1995). Carbenoxolone has also been 

administered to patients with type 2 diabetes, and was found to decrease glucose 

production, principally through decreasing glycogenolysis, with no apparent effect 
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on gluconeogenesis. Circulating cholesterol levels were also reduced by this 

compound (Andrews, Rooyackers & Walker, 2003). Although carbenoxolone has 

been shown to access liver and subcutaneous adipose tissue (Tomlinson et al., 

2007), it is unknown whether this compound can inhibit local cortisol availability 

within the skeletal muscle. Furthermore, the use of carbenoxolone has limited 

therapeutic potential because of its inhibition of 11β-HSD2 which can lead to 

hypertension, hypokalemia and fluid retention (mineralocorticoid excess). 

 

Recently, data has begun to emerge from selective 11β-HSD1 inhibitor studies in 

primates and humans. Compound PF-915275 selectively inhibits 11β-HSD1 in 

both monkeys and humans, as measured from urinary steroid metabolites and 

from prednisolone conversion studies (a synthetic analog  of cortisone that can be 

distinguished from the endogenous substrate cortisone, enabling a direct 

measure of substrate to product conversion) (Bhat et al., 2008; Courtney et al., 

2008). Following an 8 hour treatment with this compound, primates were found to 

have decreased fasting insulin levels. To date, there have been no formal, peer 

reviewed, reports in the literature regarding the effect of selective inhibitors in 

humans. However, some data has been published in abstract form including a 

compound developed by Incite (INCB13739), which is currently in phase IIb 

clinical trials. In phase IIa, type 2 diabetic subjects were orally administered 

INCB13739 or placebo for 28 days. Insulin sensitivity was assessed via 

hyperinsulinaemic, euglycaemic and pancreatic clamps and showed that the 

inhibitor improved hepatic insulin sensitivity and, more importantly, increased 

peripheral insulin stimulated glucose uptake. Other beneficial effects of this drug 

include; reduced plasma cholesterol and LDL levels. INCB13739 has recently 
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been administered to type 2 diabetic patients where glucose levels were not 

adequately controlled by the standard metformin treatment. After 12 weeks on a 

combination of both drugs, the INCB13739  treatment group had lower HbA1c 

and total cholesterol levels, compared to the metformin alone - suggesting 

beneficial effects on both carbohydrate and lipid metabolism. Importantly, this 

study demonstrated that after twelve weeks of treatment the compound was still 

well tolerated (http://www.incyte.com/drugs_product_pipeline.html). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1-18 Data generated using rodents, along with human clinical studies suggest that 

selective 11β-HSD1 inhibitors have a beneficial metabolic impact. 
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1.15. Unanswered questions 

The rationale for this work is based upon the phenotype of GC excess. It is clear 

that GCs induce insulin resistance, and since skeletal muscle accounts for ~80% 

of glucose disposal, under insulin stimulating conditions, it is likely skeletal 

muscle is the major site of GC action in this respect. However, the precise 

molecular mechanism underpinning GC-induced insulin resistance in skeletal 

muscle is unknown. Recently, the accumulation of intramyocellular lipid 

metabolites has been linked with reduced insulin sensitivity in skeletal muscle, 

and although GC have been shown to regulate lipid metabolism in other tissues, 

their precise role in regulating these pathways in skeletal muscle is yet to be fully 

elucidated. Furthermore, 11β-HSD1 is of great interest as a therapeutic target in 

the treatment of type 2 diabetes, however, the role of this enzyme in the insulin 

sensitivity of skeletal muscle has not been firmly established. 
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1.16. Aims 

o Characterise the expression of the insulin signalling cascade, and genes 

involved in regulating GC response across myocyte differentiation 

(Chapter 3). 

 

o Characterise the impact of GCs upon the insulin signalling cascade and 

glucose uptake in skeletal muscle using rodent and human cell lines 

(Chapters 4, 5, 6 and 7). 

 

o Determine the role of 11β-HSD1 and pre-receptor GC metabolism in the 

regulation of insulin signalling in rodent skeletal muscle in vitro and in vivo 

(Chapters 5 & 6). 

 

o Identify the role of GCs in the regulation of intramyocellular lipid 

metabolism (Chapters 4 & 6). 
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2 Chapter 2 - General Methods 

 

The procedures described in this chapter were commonly used in this thesis. 

Methods specific to individual chapters are found in the methods section of those 

particular chapters. Unless otherwise stated, all reagents were purchased from 

Sigma Aldrich, Dorset, UK. 
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2.1. C2C12 cell culture 

2.1.1. C2C12 cell line 

The C2C12 cell line is a well established model of both skeletal muscle 

proliferation and differentiation. Originally generated by serial passage of 

myoblasts, cultured from the thigh muscles of C2H mice 70 h following a crush 

injury (Yaffe & Saxel, 1977).  A subclone of these myoblasts was selected for its 

ability to differentiate rapidly and express characteristic muscle proteins (Blau et 

al., 1985). 

 

2.1.2. Proliferation 

Cryofrozen C2C12 myoblasts were purchased from ECACC (Salisbury, UK) and 

maintained in 75cm3 TC flasks (Corning, Surrey, UK) in 12mL of Dulbecco’s 

modified eagle medium (DMEM) (PAA, Somerset, UK), supplemented with 10% 

foetal calf serum (FCS), at 37°C under a 5% CO2 atmosphere. At 60-70% 

confluence, cells were trypsinised, and re-seeded into fresh flasks. Prior to 

experiments being performed, cells were trypsinised and subcultured into 12-well 

TC plates (Corning, Surrey, UK), and cultured until 60-70% confluent. 

Proliferation media was replaced every 48 h. 

 

2.1.3. Differentiation 

Once myoblasts reached 60-70% confluence, differentiation was initiated by 

replacing proliferation media with DMEM, supplemented with 5% horse serum. 
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Differentiation media was replaced every 48 h. After 8 days, myoblasts had fused 

to form multinucleated myotubes (Figure  2-1). 

 

Differentiation

Day 0 myoblasts Day 7 myotubes

 

Figure  2-1 C2C12 cells were differentiated in chemically defined media for 8 days, forming 

multinucleated myotubes. 

 

2.1.4. Freezing down 

Cells to be frozen down were grown in 75cm3 TC flasks until 60-70% confluence. 

Cells were trypsinised, and then resuspended in 10mL of proliferation media, 

before being centrifuged at 1000 g for 10 mins. Media was aspirated and the cell 

pellet resuspended in 3mL of FCS supplemented with 10% DMSO. The cell 

mixture was then aliquoted into 1.5mL cryovials and slowly cooled to -80°C at a 

rate of 1°C/min, in a cryofreezing chamber (Nalgene, Hereford, UK) containing 

isopropanol. Cells were transferred to liquid nitrogen for long-term storage. 

 



Chapter 2  General Methods 

 82 

2.2. Human primary skeletal muscle cell culture 

2.2.1. Promocell skeletal muscle cells 

Primary human myoblasts were obtained from Promocell (Heidelberg, Germany). 

The Myoblasts were isolated from the M. gluteus maximus muscle of a healthy 31 

year old woman, according to promocell referenced procedures, and frozen in 

serum free cryopreservation media. These cells are not transformed, and have a 

limited prolferative / differentiative lifespan. 

 

2.2.2. Proliferation 

Myoblasts were initially seeded at 5x103 cells/cm3 in a 25cm3 TC flask (Corning, 

Surrey, UK), in 6mL of skeletal muscle growth media (Promocell, Heidelberg, 

Germany). Cells were maintained at 37°C under a 5% CO2 atmosphere. At 60-

70% confluence cells were washed with HEPES buffered saline (Promocell, 

Heidelberg, Germany) before trypsinisation. A trypsin neutralising solution 

(Promocell, Heidelberg, Germany) was added before suspending the cells in 

growth media and reseeding them into fresh flasks. Prior to the experiment, cells 

were trypsinised and subcultured into 12-well TC plates (Corning, Surrey, UK) 

and cultured until 60-70% confluent. Proliferation media was replaced every 48 h. 

 

2.2.3. Differentiation 

At 60-70% confluence, cells were transferred to Promocell serum free media, 

supplemented with 10µg/ml insulin and 2% horse serum. Differentiation media 
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was replaced every 48 h. After 7 days, myoblasts had fused to form 

multinucleated myotubes (Figure  2-2). For all experiments, no cells were used at 

a passage greater than 7. 

Differentiation

Day 0 myoblasts Day 7 myotubes

 

Figure  2-2 Human primary myocytes were differentiated in chemically defined media for 7 days 

forming multinucleated myotubes. 

 

2.2.4. Freezing down 

Cells to be frozen down were grown in 75cm3 TC flasks, until 60-70% confluence. 

Cells were trypsinised, as described above, then resuspended in 10mL 

proliferation media before being spun 1000 g for 10 mins. Media was aspirated, 

and the cell pellet resuspended in 3mL of cryo serum free media (Promocell, 

Heidelberg, Germany).  Cell mixture was aliquoted into 1.5mL cryovials and 

slowly cooled to -80°C at a rate of 1°C/min, in a cryo freezing chamber (Nalgene, 

Hereford, UK) containing isopropanol. Cells were transferred to liquid nitrogen for 

long-term storage. 
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2.3. Glucose transport assay 

2.3.1. Principles 

Glucose transport assays allow a functional readout of insulin action upon the 

cell, through uptake of a radiolabelled glucose tracer (Liu et al., 2001). The effect 

of a specific treatment, on both basal and insulin stimulated glucose uptake, can 

be assessed by incubating cells with a fixed concentration of glucose combined 

with a radiolabelled traced in the presence and absence of insulin. After uptake, 

the amount of radiolabelled glucose trace taken into the cells can be measured by 

scintillation counting. 2-deoxy-D-[glucose] is used as it is not metabolised beyond 

2-deoxy-D-[glucose]-6-phosphate - thus it accumulates in the cells. 

 

2.3.2. Method 

Treatments were carried out in 24-well TC plates (Corning, Surrey, UK). At the 

end of the treatment, cells were washed 3 times with warm PBS then incubated 

with 0.9mL krebs ringer buffer (KRB, 4.7mM KCl, 136mM NaCl, 1.25mM CaCl2, 

1.25mM MgSO4 and 10mM sodium phosphate buffer at pH 7.4) containing 

treatments at 37°C for 10 mins under a 5% CO2 atmosphere. Insulin was added 

(80nM final concentration), and cells incubated at 37°C for 20 mins under a 5% 

CO2 atmosphere. Glucose uptake was initiated by addition of 0.1mL of KRB 

containing 6mM glucose combined with 37MBq/L of 2-deoxy-D-[3H-glucose] (GE 

Healthcare, Bucks, UK) as a tracer. After incubation at 37°C for 60 mins under a 

5% CO2 atmosphere, glucose uptake was terminated by removal of culture 

media. Cells were washed 3 times with ice cold PBS and lysed by addition of 
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0.1ml of 1M NaOH for 30 mins. A 15µl aliquot was taken for protein quantification 

(see section  2.6.2) before each well was neutralised by addition of 85µl of 1M 

HCl. The cell lysates were combined with scintillation fluid (PerkinElmer, Bucks, 

UK), and counted using a Wallac 1414 liquid scintillation counter (PerkinElmer, 

Bucks, UK) 

 

2.4. 11β-HSD1 enzyme activity assay 

2.4.1. Principles 

This technique allows for the measurement of the interconversion between the 

rodent inactive 11-dehydrocorticosterone (A) and active corticosterone (B), by 

11β-HSD1 [this technique was also used to measure the interconversion between 

human cortisone (E) and cortisol (F)]. This protocol was carried out on both 

monolayers of intake cells and whole tissue explants. 

 

2.4.2. Method 

2.4.2.1. Monolayer of cells 

Confluent rodent cell monolayers were washed once with PBS, then incubated 

with serum free media containing 100nM of either 11-DHC enriched with 

20000cpm/reaction 3H-11DHC (for synthesis see below) or corticosterone 

enriched by 20000cpm/reaction of 3H-corticosterone (GE Healthcare, Bucks, UK). 

If human cell monolayers were used, then cells were washed as described above 
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but alternatively incubated with 100nM of either cortisone, enriched with 

20000cpm/reaction 3H-corticone (GE Healthcare, Bucks, UK), or cortisol, 

enriched by 20000cpm/reaction of 3H-cortisol (GE Healthcare, Bucks, UK). 

Incubations were carried out at 37°C under a 5% CO2 atmosphere for 2 - 24 h, 

depending on the cell type. Media was then transferred to glass test tubes and 

6mL of dichloromethane was added. The cells were retained in 100µL of PBS and 

stored at -80°C for protein quantification (see section  2.6.2). Steroids were 

extracted from media by vortexing the tubes for 20 secs. Aqueous and organic 

phases were separated by centrifugation at 1000 g for 10 mins. The aqueous 

phase was aspirated and the organic phase containing the steroids was 

evaporated at 55°C using an air blowing sample concentrator (Techne, New 

Jersey, US). Steroids were resuspended in 55µl of dichloromethane and spotted 

onto a silica coated thin layer chromatography plate (Thermofisher, Surrey, UK) 

using a Pasteur pipette, followed by 2µl of non-radiolabelled 

11DHC/corticosterone or cortisone/cortisol (10mM in ethanol). Each spot was 

separated by at least 1.5cm from adjacent samples, and 2cm from the bottom of 

the plate. Steroids were then separated by thin layer chromatography (TLC) using 

200mL of cholorform:ethanol (92:8) as the mobile phase for 2.5 h. Radioactivity of 

the separated 3H-11DHC/3H-corticosterone or 3H-corticone/3H-cortisol was 

measured using a Bioscan 200 imaging scanner (LabLogic, Sheffield, UK). 

Finally, to assign the radioactivity peaks with the correct steroids, the plates were 

placed under UV light to visualise the position of the cold standards. See Figure 

 2-3 for an example of typical Bioscan traces. Percentage conversion was 

calculated using region counts for the individual peaks. Enzyme activity was 

expressed in pmoles of steroid converted per mg of protein per hour (pmol/mg/h). 
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2.4.2.2. Mouse tissue explants 

Fresh tissue explants were chopped to ~20mg/well and the above protocol was 

followed. Activity expressed as pmoles of steroid converted per mg of tissue per 

hour (pmol/mg/h). 

11DHC

Corticosterone

Cortisone

Cortisol

A B

 

Figure  2-3 Representative Bioscan traces for 11β-HSD1 oxo-reductase activity in mouse C2C12 

myotubes (A) and human primary myotubes (B).  

 

2.4.3. Production of 3H-11DHC 

Unlike tritiated cortisone (3H-corticone), tritiated 11-dehydrocorticosterone (3H-

11DHC) is not commercially available; consequently tritiated corticosterone (3H-

corticosterone) (GE Healthcare, Bucks, UK) was used to generate 3H-11DHC. In 

glass test tubes, 20µl of 3H-corticosterone (1mCi/mL) was incubated with 250µg 

of homogenised mouse placenta, in 500µl of 0.1M phosphate buffer, pH7.4, with 

500µM NAD+. Conversion was carried out overnight in a shaking water bath at 

37°C. Steroids were extracted by addition of 6mL of dichloromethane and 

vortexing the tubes for 20 secs. Aqueous and organic phases were separated by 

centrifugation at 1000 g for 10 mins. The aqueous phase was aspirated and the 
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organic phase, containing the steroids, was evaporated at 55°C using an air 

blowing sample concentrator (Techne, New Jersey, US). Steroids were 

resuspended in 55µl of dichloromethane and spotted onto a silica coated thin 

layer chromatography plate (Thermofisher, Surrey, UK) using a Pasteur pipette. 

Steroids were then separated by thin layer chromatography using 200mL of 

cholorform:ethanol (92:8) as the mobile phase for 2.5 h. To establish position of 

3H-11DHC, the silica plates were read using a Bioscan 200 imaging scanner 

(LabLogic, Sheffield, UK). The silica at the 3H-11DHC position was scraped into a 

glass test tube, and eluted in 300µL of ethanol overnight at 4°C. The eluted 3H-

11DHC and silica were separated by centrifugation at 100 g for 5 mins. 

Radioactivity of 3H-11DHC was determined by separating 5µL of stock by thin 

layer chromatography, and number of counts determined using the Bioscan 200 

imaging scanner. Stock was then diluted in ethanol to give ~1000 counts/µL. 
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2.5. Protein Extraction 

2.5.1. Principles 

The extraction of soluble proteins from cell monolayers or whole tissue was 

carried out using a cell lysis buffer containing protease inhibitors and detergent. 

Insoluble cell debris, such as membrane lipids, was removed by centrifugation. 

 

2.5.2. Method 

2.5.2.1. Monolayer of cells 

Monolayers of cells were placed on ice and washed with cold PBS. For cells 

grown 12-well plates, 40µl of RIPA buffer (1mM EDTA, 150mM NaCl, 0.25% 

SDS, 1% NP40, 50mM Tris pH 7.4, supplemented with protease inhibitor cocktail 

(Roche, Sussex, UK) and phosphatase inhibitor (Thermofisher, Surrey, UK)), was 

added per well, into which the cells were scraped using a 1mL syringe plunger. 

Cell lysates were then transferred to eppendorf tubes and incubated at -80°C for 

20 mins. The lysates were then thawed out on ice and centrifuged at 14,000 g for 

15 mins at 4°C. The supernatant containing soluble proteins was transferred to 

fresh eppendorf tubes and stored at -80°C prior to assessment of protein 

concentrations (see below). 
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2.5.2.2. Mouse tissue explants 

Mouse tissue was quickly harvested and snap frozen using liquid nitrogen. 

Samples were then transferred to -80°C until required. Proteins were extracted by 

homogenising ~ 20mg of tissue in 1.5mL of RIPA buffer using a mechanical 

homogeniser. Cell lysates were then incubated at -80°C for 20 mins, thawed out 

on ice, then centrifuged at 14,000 g for 15 mins at 4°C. The supernatants 

containing soluble proteins was transferred to fresh eppendorf tubes and stored 

at -80°C prior to assessment of protein concentrations (see below). 

 

2.6. Measuring protein concentration 

2.6.1. Principles 

Total protein concentration from both cell monolayers and tissue explants was 

assessed using the BioRad RC DC protein assay (BioRad, Herts, UK). The assay 

is based on the Lowry method, but has been modified to be reducing agent 

compatible (RC) as well as detergent compatible (DC).  The protein to be 

quantified initially reacts with the copper in an alkaline copper tartrate solution. 

Folin then reacts with the copper treated protein subsequently leading to the 

generation of various reduced folin species all of which have a characteristic blue 

colour and absorb maximally at 750nM and minimally at 405nM. 
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2.6.2. Method 

Protein assays were carried out according to the protocol provided by 

manufacturer (BioRad, Herts, UK). Firstly, 5µL of sample protein or protein 

standards was added per well of a 96-well plate in duplicate. The protein 

standards were made by dissolving bovine serum albumin (BSA) in RIPA buffer 

and serially diluted to generate the following concentrations: 0, 0.5, 1, 2, 4, 

6mg/mL (Figure  2-4). 25µL of an alkaline copper tartrate solution (solution A) was 

added to each well followed by 200µL of a folin solution.  The assay was 

incubated at room temperature for 10 mins prior to absorbance being read at 

690nM on a vector3 1420 multilable counter (PerkinElmer, Bucks, UK). 
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Figure  2-4 Representative BSA protein standard curve for the BioRad RC DC protein assay. 
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2.7. Immunoblotting 

2.7.1. Principles 

Immunoblotting allows the measurement of relative amounts of a specific protein 

in a mixed protein sample (Towbin, Staehelin & Gordon, 1979). Proteins are 

boiled in a strong reducing agent which removes all secondary and tertiary 

structures and gives them a uniform negative charge. SDS-PAGE electrophoresis 

is then employed to separate the proteins according to molecular mass. Since the 

proteins are negatively charged they are pulled through the gel towards the 

anode at a speed that is dependent upon their size - small proteins migrate fast 

and large proteins migrate slowly. The separated proteins are then transferred to 

a membrane, usually polyvinylidene diflorise (PVDF) or nitrocellulose using 

electrical current. Since these membranes strongly bind proteins they will also 

bind to any antibodies that they are exposed to. To prevent this non-specific 

binding the membrane is incubated in a blocking solution containing a generic 

protein such as milk or BSA. The next step involves probing the membrane with a 

primary antibody that specifically recognises the protein of interest, followed by 

incubation with a secondary antibody that is directed against the primary 

antibody. The secondary antibody is conjugated to horseradish peroxidase (HRP) 

which, in the presence of hydrogen peroxide, catalyses a reaction involving the 

oxidation of luminol. Upon oxidation of luminol, an iridescent blue light is 

produced which is proportional to the amount of protein hybridised to the antibody 

on the membrane. The reaction is captured on photographic film. 

 



Chapter 2  General Methods 

 93 

2.7.2. Method 

Between 20-30µg of protein was mixed with an appropriate volume of 5 x loading 

buffer, and boiled for 5 mins. Samples were loaded into a 4-20% gradient SDS-

PAGE gel (BioRad, Herts, UK) and run at 200V for 1 h - 1 h 30 mins. Transfer of 

proteins to nitrocellulose membrane (GE Healthcare, Bucks, UK) was conducted 

at 140mA for 1-2 h, depending on the size of the protein of interest. Efficient 

transfer was assessed by incubating the membrane in Ponceau stain with 

agitation for 60 secs, and then rinsed with water to allow visualisation of the 

protein bands. Electrophoresis and protein transfer was carried out in BioRad 

mini protein 3 apparatus (BioRad, Herts, UK). Membranes were blocked in 10mL 

of blocking buffer (5% milk or BSA) for 1 h at room temperature with constant 

agitation, then incubated with primary antibody overnight at 4°C on an orbital 

shaker. Membranes were washed with 100mL of washing buffer 3 times for 15 

mins. Secondary antibody incubation was conducted at room temperature with 

constant agitation. The membrane was then washed with 100mL of washing 

buffer 3 times for 15 mins. Bound antibody was detected using Enhanced 

Chemluminescence (ECL, GE Healthcare, Bucks, UK) The reaction mixture was 

set up by combining substrate A with substrate B at a 50:50 ratio (final volume: 

1mL per membrane). Following equilibration for 5 mins, 1mL was added per 

membrane and left to incubate for 2 mins before the membrane was placed 

between two plastic sheets in a photo cassette. Photographic film (PerkinElmer, 

Surrey, UK) was placed over the membrane in the dark and exposed for 30 secs 

to 3 h, then developed on Compact X4 automatic film processor (Xograph 

Imaging Systems, Gloustershire, UK). Membranes were routinely stripped to 
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remove bound primary/secondary antibodies by incubating the membrane in 

stripping buffer (2% SDS, 100mM β-mercaptoethanol, 50mM Tris, pH 6.8) at 

50°C for 1 h with gentle agitation. Membranes were then washed with 100mL of 

washing buffer 3 times for 15 mins before being reprobed with a different primary 

antibody. Immunoblots were evaluated by integrating densitometry using 

GeneSnap and GeneTool (Chemigenius Gel Documenting System, Syngene, 

Cambridge, UK). Equal loading was confirmed by reprobing the membrane with 

anti-β-actin antibody conjugated to HRP and visualized as described above. 

 

2.8. RNA extraction 

2.8.1. Principles 

RNA is extracted from cultured cell monolayers or tissue explants using a single 

step procedure developed by Chomczynski (Chomczynski & Sacchi, 1987). This 

is achieved by homogenizing tissue or lysis of cultured cells in TRI reagent. This 

solution contains phenol and guanidine thiocyanate, and immediately and 

effectively inhibits RNase activity. The addition of chloroform, followed by 

centrifugation, results in the formation of three phases. RNA is present 

exclusively in the aqueous phase, and is subsequently precipitated with 

isopropanol. 
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2.8.2. Method 

For cultured cell monolayers: media was removed and cells washed in PBS 

before 1mL of TRI reagent (Sigma-Aldrich, Dorset, UK) was added per well (for a 

12-well plate) and incubated at room temperature for 5 mins using a mechanical 

homogeniser. For tissue explants: ~20mg of tissue was homogenized in 1.5mL of 

TRI reagent then incubated at room temperature for 5 min. For both cultured cell 

monolayers and tissue explants, cell lysates in TRI reagent were transferred to 

eppendorfs tubes. 200µL of chloroform was added and tubes were shaken 

vigorously for 30 sec, before incubation at room temperature for 15 mins. The 

mixture was centrifuged at 10,000 g for 15 min at 4˚C.  The RNA contained within 

the aqueous phase was transferred to a fresh eppendorf tube and 200µL of 

isopropanol was added. The tubes were inverted 4 times then incubated at room 

temperature for 15 mins. RNA was pelletted by centrifugation at 10,000 g for 15 

min at 4˚C.  The supernatant was aspirated and the RNA pellet was washed with 

75% ethanol, centrifuged and ethanol was removed by aspiration. The RNA pellet 

was air dried then resuspended in 50µL of nuclease free water. 

 

2.8.3. RNA quantification 

The quantity of RNA was measured using NanoDrop ND-1000 UV-Vis 

Spectrophotometer (Thermofisher, Surrey, UK). The absorbance of 2µl of RNA at 

260nm and 280nm was determined where 1 OD260
 = 40µg/mL of RNA and the 

OD260/OD280 ratio indicates the RNA purity. Only OD260/OD280 ratios in the range 

of 1.8- 2 were used. All measurements were made with respect to a blank 

consisting of the nuclease free water in which the RNA was suspended. 
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In addition, the integrity of the RNA was assessed by electrophoresis on a 1% 

agarose gel containing 0.15µg/mL ethidium bromide. The RNA separates down 

the gel according to its molecular mass and the resultant bands were visualized 

under UV light. Intact RNA shows two sharp bands corresponding to the highly 

abundant 28S and 18S rRNA. 

 

2.8.4. DNase treatment 

10µg of RNA was further purified by removal of any contaminating genomic DNA 

by incubation at 30°C with DNase I enzyme (Ambion, Warrington, UK). 

 

2.9. Reverse transcription of RNA 

2.9.1. Principles 

Reverse transcription (RT) is the process of converting single stranded RNA to 

complementary DNA (cDNA), using RNA-dependent DNA polymerase. Initially 

the extracted RNA is heated to denature secondary structure which allows the 

random hexomers to anneal to the RNA template. The reverse transcription 

process is initiated by increasing the temperature further, allowing the RNA-

bound primers to be extended generating a complementary DNA copy of the RNA 

template. Lastly, the reaction is heated to a high temperature to inactivate the 

enzyme and terminate the reaction. 

 

 



Chapter 2  General Methods 

 97 

2.9.2. Method 

All RT reactions were carried out using Applied Biosystems High-Capacity 

Reverse Transcription Kit (Applied Biosystems, Warrington, UK). The reagents 

listed in the table below were combined in an eppendorf tube to generate a 2x RT 

master mix. 

Component 
Volume (µl) per 
sample 

10X RT Buffer 2 
25X dNTP mix (100mM) 0.8 
10X Random Hexomers 2 
MultiScribe Reverse 
Transcriptase 

1 

RNase inhibitor 1 
Nuclease-free H2O 3.2 
TOTAL VOLUME 10 
 

 

1µg of RNA was diluted with nuclease free water to a volume of 10µl before 10µl 

of 2x RT master mix was added giving a final volume of 20µl. Samples were 

loaded onto a thermal cycler (Applied Biosystems, Warrington, UK) and incubated 

at 25°C for 10 mins followed by 48°C for 30 mins and finally 95°C for 5 mins to 

terminate the reaction. 
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2.10. Conventional Polymerase Chain Reaction (PCR) 

2.10.1. Principle 

Regions of DNA or cDNA can be amplified using oligonucleotide primers that are 

complementary to the 3’ and 5’ ends of this region. High temperature is used to 

denature double stranded DNA which is then cooled to allow the oligonucleotides 

primers to anneal. When the temperature is increased to the optimal catalytic 

temperature for taq polymerase, these oligonucleotides are extended to generate 

complementary DNA strands. Subsequent repeated rounds of denaturation, 

oligonucleotide annealing and DNA synthesis allow the amount of product to 

increases exponentially until production plateaus due to limiting nucleotides 

availability and/or low taq concentration. Conventional PCR, although not used for 

experimentation, was used to check the integrity of cDNA prior to RT-PCR. 

 

2.10.2. Method 

All conventional PCRs were carried out using Promega reagents (Promega, 

Southampton, UK). In a 20µl reaction, the following components were added: 

reaction buffer (final concentration 1x), MgCl (1-2.5mM), deoxy-dNTPs (0.5µM), 

Taq polymerase (0.05U/µl) forward and reverse primers (0.6µM) and 100µg of 

cDNA. Samples were incubated in a thermal cycler at 95°C for 5 mins then cycled 

30 times at 95°C for 30 secs, 60°C for 30 secs and 72°C for 1 min. Finally, 

samples were incubated at 72°C for 7 mins. 
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2.11. Relative quantitative (Real-time) polymerase chain reaction 

2.11.1. Principles 

Real-time PCR or relative quantitative PCR is a technique used to monitor the 

progress of a PCR reaction in real-time. Using oligonucleotide primers that are 

complementary to the 5’ and 3’ ends of a region of interest, cDNA can be 

amplified by PCR. The presence of an oligonucleotide probe complementary to a 

sequence downstream of one of the primers allows quantification of the target 

transcript by fluorescence (Figure  2-5). This probe is chemically synthesized with 

a fluorescent reporter dye at the 5’ end and a quencher dye at the 3’ end. Since 

the quencher dye is in close proximity to the fluorescent reporter dye it reduces 

the fluorescence emitted by the latter through a process called fluorescence 

resonance energy transfer (FRET). During the primer elongation step of the PCR 

reaction the probe bound downstream from one of the primers is cleaved due to 

the 5’- 3’ exonuclease activity of taq DNA polymerase. Removal of the probe 

allows primer extension to continue and amplification of the sequence of interest, 

it does not inhibit the PCR process. Cleavage of the probe separates the 

quencher dye from the reporter dye, increasing the fluorescence emitted by the 

latter (Figure  2-5). Fluorescence intensity is proportional to the amount of PCR 

product produced. The point at which the target sequence is detected is called 

the cycle threshold (Ct). This threshold is set to the exponential phase of the 

amplification for the most accurate reading. The higher the target sequence copy 

number within the original cDNA sample the lower the cycle number at which 

fluorescence is observed.  Real-time PCR is a relative measure of gene 
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expression, therefore, the Ct of the target genes is compared to the Ct of a house 

keeping gene with constant expression levels. This is calculated by subtracting 

the Ct of the house keeping gene from the Ct of the target gene, the resultant 

value is known as the ∆Ct. The greater the ∆Ct, the greater the change in gene 

expression due to treatment. 
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Figure  2-5 Schematic representation of real-time PCR. Separation of reporter dye from the 

quencher allows detection of fluorescence. 
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2.11.2. Method 

Real-time PCR was carried out using Applied Biosystems reagents and 

expression assays (Applied Biosystems, Warrington, UK), unless otherwise 

stated. Target gene expression was normalised against the 18s rRNA house 

keeping gene and these measurements were carried out in separate wells from 

target gene expression measurements (singleplex). All reactions were carried out 

in duplicate in 96-well plates (Applied Biosystems, Warrington, UK). For the 18S 

house keeping gene, the following components were combined per well: 10µl of 

2x MasterMix, 18S forward and reverse primers and vic labelled probe (final 

concentration 25nM each), 100ng of cDNA and nuclease free water to a final 

volume of 20µl. For the gene of interest, the following components were 

combined per well: 10µl of 2x MasterMix, 1µl of 20x expression assay, 100ng of 

cDNA and nuclease free water to a total volume of 20µl. Plates were sealed with 

clear adhesive film (Applied Biosystems, Warrington, UK) and run on a 7500 real-

time PCR system (Applied Biosystems, Warrington, UK). Data was expressed as 

Ct values (threshold set within the exponential part of the PCR amplification curve 

and above the baseline value), and used to calculate ∆Ct [Ct of gene of interest - 

Ct of 18S house keeping gene]. All data was expressed as arbitrary units [AU = 

1000x2-∆Ct]. Fold change was calculated using the 2-∆∆Ct method. 
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2.12. Custom taqman real-time PCR arrays 

2.12.1. Principles 

Taqman custom arrays work by same the principles as standard real-time PCR 

(see section  2.11.2), but differ in the fact that a greater number of target genes 

that can be assayed simultaneously on the same plate. This is a faster and more 

cost effective way of analysing expression of multiple gene targets. 

 

2.12.2. Method 

Taqman custom arrays were purchased from Applied Biosystems (Applied 

Biosystems, Warrington, UK). Each array consisted of 384-well plates preloaded 

with 48 custom gene expression assays (including 3 house keeping genes) 

organised into channels to allow a maximum of 8 unique samples to be assayed 

simultaneously.  50µl of 2x Taqman Universal PCR MasterMix (Applied 

Biosystems, Warrington, UK) was mixed with 500µg of cDNA and nuclease free 

water to give a final volume of 100µl. Samples were loaded into the fill reservoirs 

at the end of each channel and distributed into the reaction wells by centrifugation 

twice at 331 g for 1 min with an up/down ramp rate of 9. Centrifugation was 

carried out in a Heraeus centrifuge and bucket (DJB Labcare, Bucks, UK). The 

array was sealed to isolate the wells using a low density array sealer (Applied 

Biosystems, Warrington, UK) and run on a 7900HT fast real-time system (Applied 

Biosystems, Warrington, UK). Data was expressed as Ct values (threshold set 

within the exponential part of the PCR amplification curve and above the baseline 

value), and used to calculate ∆Ct [Ct of gene of interest - Ct of house keeping 
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gene]. Fold change was calculated using the 2-∆∆Ct method. Results were 

validated with standard taqman RT-PCR. 

 

2.13. Short interfering RNA (siRNA) 

2.13.1. Principles 

Short interfering RNA (siRNA) or RNA interference is a technique used to 

knockdown the expression of a specific gene by targeting its transcribed mRNA 

species. SiRNA oligonucleotides are around 20-25 nucleotides in length and are 

complementary to the mRNA product of the gene of interest. Since these 

oligonucleotides are large and negatively charged they cannot pass through the 

cell membrane into the cytosol unfacilitated. This problem can be overcome by 

using a lipid based delivery system, which works because positive surface 

charges on the liposomes interacts with the nucleic acids of the siRNA species 

and the cell membrane, allowing for fusion of the liposome/nucleic acids 

(transfection complex) with the negatively charged cell membrane. The 

transfection complex can then enter the cell through endocytosis.  Once inside 

the cell, the siRNA oligonucleotides assemble into endoribonuclease-containing 

complexes known as RNA-induced silencing complexes (RISCs). The siRNA 

strands subsequently guide the RISCs to the target mRNA molecules. Cleavage 

of cognate RNA takes place near the middle of the region bound by the siRNA 

strand. 
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2.13.2. Method 

Predesigned short-interfering oligonucleotide (siRNA) sequences directed against 

genes of interest were purchased from Dharmacon (Thermofisher, Surrey, UK), 

each contains 4 different oligonucleotide sequences directed against separate 

regions of the target gene (ON-TARGETplus, SMARTpool). The lyophilised 

siRNA was resuspended in 1X siRNA buffer (Thermofisher, Surrey, UK) to a 

stock concentration of 20µM then aliquoted and stored at -80°C until required. 

C2C12 myocytes were initially seeded at 5x104cells/mL in 12-well TC-plates and 

incubated overnight at 37°C with 5% CO2. On the day of the experiment, stock 

siRNA was diluted in 1X siRNA buffer to a concentration of 5µM then further 

diluted in serum free medium (final volume 100µL/well) and incubated at room 

temperature for 5 mins. In a separate tube, a lipid based transfection reagent, 

DharmaFECT3 (Thermofisher, Surrey, UK), (5µl/well) was combined with serum 

free media (95µL/well) and incubated for 5 mins at room temperature. Both siRNA 

and DharmaFECT3 were combined (final volume 200µL/well), mixed then 

incubated at room temperature for 20 mins. 800µL/well of complete media 

(containing serum) was then added (giving a final siRNA concentration of 100nM) 

and introduced onto the cells. Experimental controls, run in parallel, included: no 

treatment, negative control (non-targeting siRNA, 100nM), mock transfection 

(DharmaFECT3 without siRNA) and a positive control (siRNA directed against a 

highly expressed house keeping gene; cyclophilin B [ON-TARGETplus, 

SMARTPool, 100nM]).  
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2.14. Acetyl-CoA Carboxylase (ACC) assay 

2.14.1. Principles 

De novo lipogenesis involves the conversion of acetyl-CoA to free fatty acids. The 

first and rate limiting step of this pathway is the conversion of acetyl-CoA to 

malonyl-CoA and is catalysed by acetyl-CoA carboxylase (ACC). Malonyl-CoA is 

subsequently converted to fatty acids by fatty acid synthase (FAS). This assay 

measures the accumulation of a 1-[14C]-acetic acid tracer. The acetate is first 

converted to acetyl-CoA by acetyl-CoA synthase before entering de novo 

lipogenesis. After incubation, cellular lipids are extracted, and retained 

radioactivity is measured by scintillation counting. 

 

2.14.2. Method 

C2C12 myocytes were cultured and treated in 24-well TC places and 

differentiated into myotubes. Cells were incubated with 500µL of serum free 

media with 0.12µCi/L 1-[14C]-acetic acid (GE Healthcare, Bucks, UK) with 

unlabelled sodium acetate to a final concentration of 10µM acetate, with 

treatments and with or without insulin. The cells were incubated at 37°C for 4 h. 

Cells were then washed 3 x with ice cold PBS, scraped into 250µL of PBS then 

transferred into glass tubes. To extract the lipid fraction, 5mL of Folch solvent was 

added and shaken vigorously for 20 secs. 1mL of water was added and shaken 

vigorously for 20 secs. Phases were separated by centrifugation at 300 g for 5 

mins. The upper aqueous phase was removed by aspiration, and lower fraction 

transferred to a 5mL scintillation tube and evaporated until dry using a sample 
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dryer (Techne, New Jersey, US). Once dry, 5mL of scintillation cocktail was 

added (PerkinElmer, Bucks, UK) and samples were counted using a Wallac 1414 

Liquid Scintillation Counter (PerkinElmer, Bucks, UK). 

 

2.15. β-oxidation assay 

2.15.1. Principles 

β-oxidation is the pathway by which fatty acids are sequentially broken down in 

the mitochondria, generating acyl-CoA molecules which enter the TCA cycle 

ultimately leading to increased ATP production. This assay involves incubating 

cells with a tritiated fatty acid tracer and measuring the accumulation of tritiated 

water, released during each round of the oxidation process. After incubation, the 

tritiated water is extracted and radioactivity measured by scintillation counting.  

 

2.15.2. Method 

C2C12 myocytes were cultured and treated in 24-well TC places and 

differentiated into myotubes. Cells were incubated with 500µL of serum free 

media containing 0.1 mmol/L palmitate (9,10-[3H]palmitate (5µCi/mL) (GE 

Healthcare, Bucks, UK), 2% BSA and treatments for 24 h. After incubation, the 

media was retained and precipitated twice with equal volumes of 10% 

trichloroacetic acid to remove excess labelled palmitate. The supernatants 

(≈0.5mL) were extracted by addition of 2.5mL of methanol:chloroform (2:1) and 

1mL of 2mol/L KCl:HCl, followed by centrifugation at 3000 g for 5 min. Aqueous 
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phase (0.5mL) was then added to scintillation cocktail (PerkinElmer, Bucks, UK), 

and samples were counted using a Wallac 1414 Liquid Scintillation Counter 

(PerkinElmer, Bucks, UK). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

108 

3 Chapter 3 - Characterisation of the Insulin 
Signalling Cascade and Genes Involved in 

Regulating the GC Response Across Skeletal 
Myocyte Differentiation 



Chapter 3                                                                                                  Characterisation of the Insulin Signalling Cascade  

 109 

3.1. Introduction 

Skeletal muscle is a major component of the human body, accounting for ~40% of 

the total body mass. Its purpose is to provide support and movement to the 

skeleton, but also has numerous vital metabolic functions. The formation of 

mature muscle fibres is dependent upon the fusion of multiple proliferative 

myoblasts to form long multinucleated myotubes, which express characteristic 

contractile proteins. Although the relative abundance of unfused myoblasts 

compared with differentiated myotubes is relatively low in adult skeletal muscle, 

the comparative insulin sensitivity of these two cell populations has not been 

explored in detail. 

 

The insulin signalling cascade has multiple roles within differentiating skeletal 

myocytes, governed by IGF-I/IGF-II as well as insulin; signalling both proliferation 

and differentiation through the IGF-I receptor (Engert et al., 1996), as well as 

glucose uptake through the insulin receptor. Little is know with regards to the 

gene expression of these signalling components across myocyte differentiation; 

during a time when the role of the cascade switches from signalling myoblast 

proliferation/differentiation to predominately signalling glucose uptake when 

myotube formation is complete.  

 

The aim of this chapter is to compare the insulin sensitivity of undifferentiated 

myoblasts with that of differentiated myotubes, and characterise the gene 

expression of the insulin signalling cascade and genes involved in regulating GC 
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response across myocyte differentiation. 

 

3.2. Strategy of Research 

Using cultured C2C12 myocytes as a skeletal muscle model, the insulin 

sensitivity of undifferentiated myoblasts and differentiated myotubes was 

assessed by measuring uptake of a radiolabelled glucose tracer in presence and 

absence of insulin. 

 

Gene expression of the insulin signalling cascade, 11β-HSD1 and genes involved 

in regulating GC responses were assessed in C2C12 myoblasts and myotubes 

using real-time PCR.  

 

Functional 11β-HSD1 activity was assessed in C2C12 myoblasts and myotubes 

by measuring the conversion of a radiolabelled GC tracer. 
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3.3. Methods 

3.3.1. C2C12 cell culture 

Proliferating C2C12 myoblasts were cultured in DMEM supplemented with 10% 

FCS and seeded into 12-well TC plates. At 60-70% confluence differentiation was 

initiated by replacing proliferation media with DMEM supplemented with 5% horse 

serum and differentiated for 8 days (Figure  3-1). Prior to treatment, cells were 

incubated in DMEM free from additives for 4 h. 

 

Differentiation

Day 0 myoblasts Day 7 myotubes

Differentiation

Day 0 myoblasts Day 7 myotubes

 

Figure  3-1 Murine C2C12 myocytes differentiated in chemically defined media for 8 days forming 

multinucleated myotubes 

 

3.3.2. 11β-HSD1 activity assay 

C2C12 myoblasts (at approx. 70% confluence) and differentiated myotubes were 

incubated with 100nM 11DHC or corticosterone supplemented with a tritiated 

tracer for 2 h. Steroids were then extracted using dichloromethane, separated 

using a mobile phase consisting of ethanol/chloroform (8:92) by thin layer 

chromatography, and scanned using a Bioscan 200 imaging scanner (LabLogic, 
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Sheffield, UK). Total protein levels were assayed using a commercially available 

kit (BioRad, Herts, UK), and activity expressed as pmol corticosterone/11DHC 

generated per mg of protein per hour.  

 

3.3.3. RNA extraction  

Total RNA was extracted using Tri-reagent system, concentration determined 

spectrophotometrically at OD260 and integrity assessed by agarose gel 

electrophoresis. For reverse transcription (see section  2.9.2) 1µg of RNA was 

used. 

 

3.3.4. Real-time PCR 

InsR, IRS1, IRS2, PI3K(p110), PI3K(p85), PKBα/akt1, PKBβ/akt2, GLUT4, 

AS160, 11β-HSD1, H6PDH, GRα, α-actin and myogenin mRNA levels were 

determined using an ABI 7500 sequence detection system (Applied Biosystems, 

Warrington, UK). Reactions were performed in singleplex as described in section 

 2.11.2, and normalised against the 18s rRNA house keeping gene.  Primers and 

probes and for all genes were supplied by Applied Biosystems as pre-mixed 

‘assay on demands’ (Applied Biosystems, Warrington, UK).  
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3.3.5. Glucose uptake assay 

Glucose transport was assessed by measuring uptake of a radiolabelled glucose 

tracer as described previously (Liu et al., 2001) and as described in section  2.3.2. 

C2C12 myoblasts were grown to approx. 70% confluence or differentiated as 

described above then incubated in serum free DMEM for 4 h. Cells were washed 

3 times with PBS then transferred to 0.9mL of KRB and incubated for 10 mins. 

Cells were spiked with 0.5µg/mL insulin for 20 mins prior to the addition of 0.1mL 

KRB containing 6mM glucose combined with 37MBq/L of 2-deoxy-D-[3H-glucose] 

(GE Healthcare, Bucks, UK) as a tracer. Radioactivity retained by cells was 

determined by scintillation counting. Glucose uptake was expressed as 

radioactivity retained by the cells in presence and absence of insulin. This assay 

was optimised as described in Figure  3-2 and Figure  3-3. 
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Figure  3-2 Preliminary glucose uptake assays to identify the optimal insulin concentration to 

achieve maximal insulin-stimulated glucose uptake in C2C12 myotubes. Insulin stimulation = 20 
mins, incubation in the presence of glucose tracer = 60 mins. Wortmannin = PI3K inhibitor. 
(background= wells containing no cells) 
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Figure  3-3 Preliminary glucose uptake assay to identify the optimal glucose exposure time to 

achieve maximal insulin-stimulated glucose uptake. Insulin conc. = 0.5µg/mL, 20 mins. 

 

3.3.6. Statistical analysis 

Where data were normally distributed, unpaired student t-tests were used to 

compare single treatments to control using SigmaStat 3.1 (Systat Software, CA, 

US). If normality tests failed, non-parametric tests were used. One way ANOVA 

on ranks, was used to compare multiple treatments, doses or times using 

SigmaStat 3.1. Statistical analysis on PCR data was performed on mean ∆Ct 

values. 
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3.4. Results 

After myocyte differentiation, there was a decrease in the mRNA expression of 

the key insulin signalling cascade components: IRS1 (18.6±3.1 vs. 8.7±0.7, 

p<0.01), IRS2 (27.6±1.2 vs. 0.34±0.06AU, p<0.001) and AS160 (9.2±3.6 vs. 

0.12±0.02AU, p<0.001) (Table  3-1). By contrast, there was an increase in the 

expression of the catalytic subunit of PI3K (p110) (0.070±0.002 vs. 0.32±0.04AU, 

p<0.0001) and GLUT4 (1.1±0.2 vs. 2.3±0.3AU, p< 0.01), with no significant 

change in the gene expression of InsR, the regulatory subunit of PI3K (p85), 

PKBα/akt1 or PKBβ/akt2. The transition from myoblasts to myotubes also saw an 

increase in the expression of genes involved in regulating GC metabolism: 11β-

HSD1 (5.2±0.6 vs. 32.9±2.9, p<0.001), H6PDH (0.03±0.01 vs. 0.10±0.01AU, 

p<0.01) and GRα (0.92±0.19 vs. 4.0±0.8AU, p<0.001). Myocyte differentiation 

was confirmed by the increase in the expression of α-actin (0.20±0.01 vs. 

1.4±0.1AU, p<0.05) and myogenin (0.070±0.001 vs. 2.1±0.2AU, p<0.01); markers 

of myotubes formation. 
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11β-HSD1 activity was detected in both in C2C12 myoblasts and myotubes 

(Figure  3-4). Activity was bidirectional, but oxo-reductase activity predominated. 

Furthermore, oxo-reductase activity increased 13-fold after myocyte 

differentiation (7.8±1.9 vs. 103.4±22.5pmol/mg/h, p<0.05).  
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Figure  3-4 11β-HSD1 activity (oxo-reductase and dehydrogenase) in C2C12 myoblasts and 

myotubes. (Data shown are the mean±s.e. of n=4 experiments, with representative activity traces 
inserted, * p<0.05). 

 

Tritiated glucose uptake was assessed across C2C12 myocyte differentiation 

(Figure  3-5). Basal glucose uptake increased 22-fold in the transition from 

myoblasts to myotubes (0.72±0.01 vs. 15.7±2.9dpmx104, p<0.05). Insulin 

stimulation increased total glucose uptake in both myoblasts (0.72±0.01 vs. 

1.80±0.02dpmx104, p<0.001) and myotubes (15.7±2.9 vs. 21.8±3.6dpmx104, 

p<0.05). In addition, insulin stimulated glucose uptake (glucose uptake in 
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presence of insulin - glucose uptake in absence of insulin) increased 5.6-fold 

across myocyte differentiation (1.20±0.03 vs. 6.10±0.78dpmx104, p<0.05).  
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Figure  3-5 Tritiated glucose uptake in C2C12 myoblasts and myotubes with and without insulin 

(0.5µg/mL, 20 mins). (* p<0.05; *** p<0.001) 
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3.5. Discussion 

During skeletal myocyte differentiation, IGF-I/IGF-II are synthesized and secreted 

by differentiating myoblasts and act autocrine and paracrine by associating with 

the IGF-I receptors. Subsequent stimulation of the IRS/PI3K axis enhances the 

activity of the mitogen-activated protein kinase (MAPK) family, namely 

extracellular signal-regulated kinase-1 and -2 (ERK-1 and -2), which regulate 

myocyte proliferation/differentiation (Engert et al., 1996). We have shown that 

across myocyte differentiation there is a downregulation in IRS1 and IRS2 mRNA 

expression. The reason for this downregulation is unclear, however, IRS proteins 

have recently been shown to activate cell-cycle progression in an IGF-I 

dependent manner by translocating into the nucleus where they are necessary for 

cyclin D1 promoter activation (Wu, Chen & Baserga, 2008). The observed 

decrease in expression of these proteins may simply reflect the fact that 

differentiated myotubes no longer undergo cell division, and thus do not require 

this transactivation function.  

 

Further downstream in the insulin signalling cascade, an increase in the 

expression of the catalytic subunit of PI3K (p110) with respect to its regulatory 

subunit (p85) was observed across myocyte differentiation. Due to the 

competition for binding IRS1 between the p85 monomers and the catalytically 

active p85-p110 heterodimer (Giorgino et al., 1997), this stoichiometric change is 

predicted to have an insulin sensitising effect. Similarly, the insulin dependent 

glucose transporter (GLUT4) was expressed 2-fold higher in the differentiated 

myotubes. Both these gene expression changes could explain the enhanced 
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glucose uptake of the myotubes compared with the myoblasts.  

. 

In addition to assessing mRNA expression levels of key proteins in the insulin 

signalling cascade, we also analysed the expression of genes involved in 

regulating GC action across myocyte differentiation. The expression of 11β-

HSD1, H6PDH and GRα increased in the transition from myoblasts to myotubes. 

Furthermore, oxo-reductase activity of 11β-HSD1 (which generates active GC) 

also increased, amplifying local GC availability. These results are consistent with 

previously published work (Aubry & Odermatt, 2009). Taken together, these data 

indicate that GCs, generated within the skeletal myocytes, could be integral to 

promoting and maintaining differentiation of these cells. Indeed, there is evidence 

in support of this from experiments done previously within our group whereby 

antagonism of the GC receptor by RU38486, introduced into the differentiation 

media, abolished all C2C12 myotube formation (personal communication, Mark 

Sherlock). Similar results were achieved by selectively inhibiting 11β-HSD1 

during differentiation (personal communication, Mark Sherlock). Adding further 

support, treatment of C2C12 myocytes with DEX significantly enhances the 

expression of Myog, Myod1, Myf5 and MRF4, demonstrating that GC regulate the 

expression of key myogenic cell differentiation-related genes (Nishimura et al., 

2008). However, retinoic acid (RA) induced downregulation of 11β-HSD1 

expression has been shown to be without effect upon myotube formation (Aubry 

& Odermatt, 2009). 

 

Interestingly, the expression of many of the insulin signalling cascade genes 

appear to be GC regulated, as demonstrated in Chapter 4, thus it is tempting to 
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speculate that some of the expression changes discussed in this chapter could, at 

least in part, be a consequence of enhanced activation of the GR as myocytes 

differentiate. 
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4  Chapter 4 - Impact of the Synthetic 
Glucocorticoid Dexamethasone Upon the Insulin 

Signalling Cascade and Lipid Metabolism in 
Skeletal Muscle 
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4.1. Introduction 

The pathophysiological effects of excess GCs are well described and impact 

upon almost all organ systems within the body. This is highlighted by patients with 

endogenous or exogenous GC excess, Cushing’s syndrome which is 

characterised by central obesity, hypertension, proximal myopathy, insulin 

resistance and in some cases overt type 2 diabetes (T2DM) (Wajchenberg et al., 

1984). In addition, it is estimated that up to 0.3% of the population are taking 

prescribed high dose GCs (>7.5mg daily) (van Staa et al., 2000), and their side 

effects represent a considerable clinical burden (for both patient and clinician).  

 

GCs induce whole body insulin resistance in both animal models and humans as 

measured by hyperinsulinaemic euglycaemic clamps (Larsson & Ahren, 1996). 

However, the precise molecular mechanisms that underpin this observation have 

not been defined in detail. It is likely that reduced whole body insulin sensitivity is 

the additive effect of metabolic events in different organ systems. For instance, in 

the liver, GC exposure increases glucose output and decreases glucose 

utilisation contributing to insulin resistance (Guillaume-Gentil, Assimacopoulos-

Jeannet & Jeanrenaud, 1993). Furthermore, short-term cortisol treatment of 

healthy individuals was found to impair the ability of glucose to suppress its own 

production (Nielsen et al., 2004). In adipose tissue, some have observed a GC-

induced decrease in insulin-stimulated glucose uptake (Sakoda et al., 2000), but 

this is not a consistent observation (Gathercole et al., 2007). Since skeletal 

muscle accounts for at least 80% of the glucose disposal under, insulin-

stimulating conditions (DeFronzo et al., 1981), the effects of GCs in this tissue 
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could be the major contributor to whole body insulin resistance. Indeed, a number 

of studies have demonstrated that GC directly inhibit insulin-stimulated glucose 

uptake in skeletal muscle (DiabetologiaWagman & Jensen, 2005; Dimitriadis et 

al., 1997; Guillaume-Gentil et al., 1993; Venkatesan et al., 1996).  

 

Following binding of insulin to its cell surface receptor, a complex signalling 

cascade is initiated, as discussed in detail in section  1.6. Briefly, the metabolic 

actions of insulin occur through the IRS1/PI3K axis (Giorgetti et al., 1993). This 

results in activation of PKB/akt, which subsequently phosphorylates AS160 

allowing GLUT4 storage vesicles to be trafficked to the plasma membrane - 

increasing uptake of glucose into the cell (Larance et al., 2005). 

 

The molecular mechanisms underpinning insulin resistance are complex and 

variable, however, many studies have focussed on the role of IRS1 as a critical 

regulatory point of the insulin signalling cascade. IRS1 has more than 70 putative 

serine/threonine phosphorylation sites which have the dual function of both 

positively and negatively regulating insulin signal transduction. Phosphorylation of 

IRS1 at serine-307 negatively regulates insulin signalling by inhibiting insulin-

stimulated tyrosine phosphorylation, and IRS1-associated PI3K activity, 

potentially through disruption of the protein–protein interaction between IRS1 and 

the insulin receptor (Aguirre et al., 2000; Aguirre et al., 2002). Intracellular 

accumulation of DAG is associated with enhanced phosphorylation at this site 

through activation of PKCθ - highlighting a close link between intramyocellular 

lipid metabolism and the insulin signalling cascade (Gao et al., 2004; Yu et al., 

2002), however, activation of numerous kinases, including: Jun kinase (JNK) 



Chapter 4                                                                                            Impact of DEX upon Skeletal Muscle Insulin Sensitivity 

 125 

(Aguirre et al., 2000), inhibitor of nuclear factor κB (NF-κB) kinase-β (IKKβ) (Gao 

et al., 2002), p70S6K (S6K1) (Harrington et al., 2004), the mammalian target of 

rapamycin (mTOR) (Ozes et al., 2001) and extracellular signal-regulated kinase 

(ERK) (Bouzakri et al., 2003) have been linked with phosphorylation at this site 

(Aguirre et al., 2000; Carlson, White & Rondinone, 2004). More recently, 

phosphorylation of IRS1 at serine-24 has been identified as being important in 

regulating lipid binding and intracellular localization of IRS1 (Nawaratne et al., 

2006).  

 

The interaction between GCs and the insulin signalling cascade in skeletal 

muscle has only been examined in a small number of studies, which have offered 

varying explanations for the induction of insulin resistance (Giorgino et al., 1993; 

Giorgino et al., 1997; Giorgino & Smith, 1995; Rojas et al., 2003; Ruzzin et al., 

2005; Saad et al., 1993). We have therefore characterized the impact of the 

synthetic GC, dexamethasone (Dex), upon the insulin signalling cascade in 

rodent skeletal muscle. In addition, since there is a strong link between 

dysregulated intramyocellular lipid metabolism and reduced insulin sensitivity, the 

impact of DEX upon these metabolic pathways has also been investigated. 
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4.2. Strategy of research 

Using cultured C2C12 myocytes as a skeletal muscle model, the functional 

impact of the synthetic GC, DEX, upon insulin sensitivity was addressed by 

measuring uptake of a radiolabelled glucose tracer in presence and absence of 

insulin. 

 

The impact of GCs upon the gene expression of the insulin signalling cascade, 

genes involved in glucocorticoid metabolism/action and genes regulating lipid 

metabolism in C2C12 myocytes was assessed using real-time PCR. 

 

Western blot analysis was employed to analyse the impact of GCs upon protein 

levels / phosphorylation status of the insulin signalling cascade components in 

C2C12 myocytes. 

 

The functional impact of GCs, and GCs with insulin upon the rate of de novo 

lipogenesis was assessed in C2C12 myotubes by measuring the intracellular 

accumulation of a radiolabelled acetic acid tracer.  

 

The functional impact of GCs, and GCs with insulin upon the rate of β-oxidation 

was assessed in C2C12 myotubes by measuring the release of radiolabelled 

water following treatment with a radiolabelled palmitic acid tracer. 
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4.3. Methods 

4.3.1. C2C12 cell culture 

Proliferating C2C12 myoblasts were cultured in DMEM supplemented with 10% 

FCS and seeded into 12-well TC plates. At 60-70% confluence, differentiation 

was initiated by replacing proliferation media with DMEM supplemented with 5% 

horse serum, and differentiated for 8 days (Figure  3-1). Prior to treatment, cells 

were incubated in DMEM without additives for 4 h. 

 

4.3.2. Generation of C2C12s stably expressing rIRS1  

C2C12 cells stably expressing myc-his-tagged IRS1 were generated by retroviral 

mediated gene transfer (Pear et al., 1993). Briefly, subconfluent BOSC23 

packaging cells were transfected with pBabePuro-rIRS1mychis plasmids, and 

conditioned media was collected 48 h later. This was passed through a 0.45-µm 

filter, supplemented with 16µg/ml of polybrene, and used to infect proliferating 

C2C12 myocytes. Drug selection with 4µg/ml puromycin was initiated 2 days later. 

After a week in drug selection, stable cell lines were confirmed by western blot 

analysis and expanded.  (This protocol was carried out by Jazwinder Sethi, 

University of Cambridge) 
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4.3.3. Cell treatments 

In all cell culture experiments investigating insulin signalling cascade protein 

expression/phosphorylation status, media was spiked with human insulin (50nM) 

for the final 15 mins of the treatment period. In experiments using the GR 

antagonist, RU38486, cells were pre-treated with RU38486 (10µM) for 10 mins 

before adding DEX (1µM) in DMEM media. In experiments using C2C12 stably 

overexpressing IRS1, phorbol-12-myristate-13-acetate (PMA) was used at 1µM. 

Cells were treated for 24 h. 

 

4.3.4. RNA extraction  

Total RNA was extracted using Tri-reagent system, concentration determined 

spectrophotometrically at OD260 and integrity assessed by agarose gel 

electrophoresis. For reverse transcription (see section  2.9.2) 1µg of RNA was 

used. 

 

4.3.5. Real-time PCR 

InsR, IRS1, IRS2,  PI3K(p110), PI3K(p85), PKBα/akt1, PKBβ/akt2, GLUT4, 

AS160, 11β-HSD1, H6PDH, GRα, LPL, HSL, ATGL, FAS, ACC1, ACC2, GPAT, 

DGAT and PDK4 mRNA levels were determined using an ABI 7500 sequence 

detection system (Applied Biosystems, Warrington, UK). Reactions were 

performed in singleplex as described in section  2.11.2, and normalised against 

the 18s rRNA house keeping gene.  Primers and probes and for all genes were 

supplied by Applied Biosystems as pre-mixed ‘assay on demands’ (Applied 
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Biosystems, Warrington, UK).  

4.3.6. Generation of anti-pSer24 IRS1 antibody 

The generation of anti-pSer24-IRS1 was commissioned from Cambridge 

Research Biochemicals Ltd. (Cambridge, UK). Briefly, rabbit antisera were 

generated against the following N-terminally, keyhole limpet hemocyanin-

conjugated phosphopeptide: [C]YLRKPKS(p)MHKRFF. The phosphoreactive 

serum was then affinity purified on a Thiopropyl Sepharose 6B column derivatized 

with nonphosphorylated antigen. The unbound antiserum was then passed down 

a Thiopropyl Sepharose 6B column derivatized with the phosphorylated peptide. 

The resulting triethylamine eluate retained significant phosphospecific 

immunoreactivity on peptide-coated ELISA plates and was used in western blot 

analysis as described below. (This protocol was carried out by Jazwinder Sethi, 

University of Cambridge) 

 

4.3.7. Immunoblotting 

Proteins were extracted from cell lysates, and concentration determined as 

described in section  2.6.2. For IRS1, p-IRS1, IRS2 and AS160 40µg of protein 

was resolved on 8% SDS-PAGE gels. For PKB/akt and p-PKB/akt, 20µg of 

protein was resolved on 12.5% SDS-PAGE gels. Proteins were transferred to 

nitrocellulose membranes (for IRS1, p-IRS1, IRS2 and AS160, proteins 

transferred at 140mA for 2 h, for PKB/akt and p-PKB/akt proteins transferred at 

140mA for 1 h). Primary (anti-IRS1, anti-pSer307 IRS1, anti-IRS2 and anti-AS160 

were purchased from Upstate, Dundee, UK, anti-PKB/akt and anti-pSer473 

PKB/akt [recognizing isoforms 1 and 2] were purchased from R&D Systems, 
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Abingdon, UK and anti-pTyr608 was purchased from Biosource, Nivelles, 

Belgium) and secondary antibodies (Dako, Glostrop, UK) were used at a dilution 

of 1/1000. Membranes were re-probed for β-actin and primary and secondary 

antibodies used at a dilution of 1/5000 (Abcam, Cambridge, UK). Bands were 

visualised using ECL detection kit (GE Healthcare, Bucks, UK) and quantified 

with Genesnap by Syngene (Cambridge, UK). The ratio of p-IRS1 to β-actin was 

normalised to the ratio of IRS1 to β-actin.  

 

4.3.8. Glucose uptake as a measure of insulin resistance 

Glucose transport was assessed by measuring uptake of a radiolabelled glucose 

tracer as described previously (Liu et al., 2001), and as described in section 

 2.3.2. Cells were pre-treated with 10µM RU38486 for 10 mins prior to addition of 

1µM DEX, and treated for 24 h. Cells were washed 3 times with PBS then 

transferred to 0.9mL of KRB containing same treatments and incubated for 10 

mins. Cells were spiked with 0.5µg/mL insulin for 20 mins, prior to the addition of 

0.1mL KRB containing 6mM glucose combined with 37MBq/L of 2-deoxy-D-[3H-

glucose] (GE Healthcare, Bucks, UK) as a tracer. Radioactivity retained by cells 

was determined by scintillation counting. For all treatments, glucose uptake was 

expressed as radioactivity retained by the cells in presence and absence of 

insulin.  
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4.3.9. Acetyl-CoA Carboxylase (ACC) assay 

ACC activity was measured by the uptake of 1-[14C]-acetic acid into the cellular 

lipid components of C2C12 myotubes as described in section  2.14. Cells were 

cultured in 24-well plates and at 60-70% confluence differentiated into myotubes 

in chemically defined media. Cells were incubated in serum free media for 4 h 

and then treated with either low dose DEX (5nM), high dose DEX (500nM) or no 

treatment for 24 h. In addition, treatments took place in the presence / absence of 

insulin (5nM). Cells were then incubated with 500µL of serum free media 

supplemented with 0.12µCi/L 1-[14C]-acetic acid (GE Healthcare, Bucks, UK) and 

unlabelled sodium acetate - to a final concentration of 10µM acetate (with same 

treatments). The cells were incubated at 37°C for 4 h and then washed 3x with 

ice cold PBS, scraped into 250µL of PBS and then transferred into glass tubes. 

To extract the lipid fraction, 5mL of Folch solvent was added and shaken 

vigorously for 20 secs. 1mL of water was added and shaken vigorously for 20 

secs. Phases were separated by centrifugation at 300 g for 5 mins. The upper 

aqueous phase was removed by aspiration, and lower fraction transferred to a 

5mL scintillation tube and evaporated until dry using a sample dryer (Techne, 

New Jersey, US). Once dry, 5mL of scintillation cocktail was added (PerkinElmer, 

Bucks, UK), and samples were counted using a Wallac 1414 liquid scintillation 

counter (PerkinElmer, Bucks, UK). 
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4.3.10. β-oxidation assay 

C2C12 myocytes were cultured and treated in 24-well TC places and, at 60-70% 

confluence, differentiated into myotubes using chemically defined media. Cells 

were incubated in serum free media for 4 h before incubation with 500µL of 

serum free media containing 0.1 mmol/L palmitate (9,10-[3H]palmitate (5µCi/mL) 

(GE Healthcare, Bucks, UK), 2% BSA and DEX (5nM or 500nM) with or without 

insulin (5nM) for 24 h. After incubation, the media was retained, and precipitated 

twice with equal volumes of 10% trichloroacetic acid, to remove excess labelled 

palmitate. The supernatants (≈0.5mL) were extracted by addition of 2.5mL of 

methanol:chloroform (2:1) and 1mL of 2mol/L KCl:HCl, followed by centrifugation 

at 3000 g for 5 min. Aqueous phase (0.5mL) was then added to scintillation 

cocktail (PerkinElmer, Bucks, UK), and samples were counted using a Wallac 

1414 liquid scintillation counter (PerkinElmer, Bucks, UK). 

 

4.3.11. Statistical analysis 

Where data were normally distributed, unpaired student t-tests were used to 

compare single treatments to control using SigmaStat 3.1 (Systat Software, CA, 

US). If normality tests failed, non-parametric tests were used. One way or two 

way ANOVA on ranks was used to compare multiple treatments, doses or times 

using SigmaStat 3.1. Statistical analysis on PCR data was performed on mean 

∆Ct values. 
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4.4. Results 

4.4.1. Insulin sensitivity of undifferentiated myoblasts  

Treatment of undifferentiated C2C12 myoblasts with DEX (1µM, 24h) was without 

effect upon both basal (Figure  4-1A) and insulin-stimulated glucose uptake 

(Figure  4-1B). 

 

 

 

 

 

 

 

 

Figure  4-1 DEX (1µM, 24 h) had no effect upon basal (A) or insulin-stimulated glucose uptake (B) 

in undifferentiated C2C12 myoblasts. Insulin-stimulated glucose uptake = glucose uptake with 
insulin (0.5µg/mL, 20 mins) minus glucose uptake in the absence of insulin. 
(DEX=dexamethasone, Ctrl=control). 

 

In undifferentiated C2C12 myoblasts, DEX (1µM, 24h) decreased mRNA 

expression of IRS1 (18.6±3.1 vs. 9.6±0.9AU, p<0.05), an effect that was blocked 

by the GR antagonist RU38486 (Table  4-1). In contrast, IRS2 and PKBβ/akt2 

mRNA expression was increased by DEX. RU38486 blocked the DEX-induced 

increase in IRS2 expression. DEX treatment increased the expression of 11β-

HSD1 (5.2±0.6 vs. 11.0±1.1AU, p<0.05) and H6PDH (0.03±0.01 vs. 

1.95±0.11AU, p<0.001). RU38486 blocked the effect of DEX upon H6PDH 
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expression, but was without effect upon 11β-HSD1 expression (Table  4-1).  

 

In undifferentiated C2C12 myoblasts, DEX decreased IRS1 total protein (0.5-fold, 

p<0.05), which was reversed by RU38486. However, DEX did not alter the 

relative activation state of IRS1, as shown by a parallel reduction in serine-307 

phosphorylation (Figure  4-2) 
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Figure  4-2 DEX treatment (1µM, 24 h) of undifferentiated C2C12 myoblasts decreases IRS1 total 

protein expression, an effect reversed by co-incubation with the GR antagonist RU38486 (10µM). 
IRS1 inactivating serine-307 phosphorylation was unchanged following DEX treatment. Cells were 
spiked with insulin (50nM) for the last 15 mins of treatment. Data presented are the mean of n=6 
experiments with representative western blots inserted above. Bands quantified relative to β-actin 
as internal loading control and the ratio of p-IRS1 to β-actin was normalised to the ratio of IRS1 to 
β-actin. (* p<0.05 vs. control; � p<0.05, vs. DEX) (DEX=dexamethasone, Ctrl=control, N.S=not 
significant
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4.4.2. Insulin sensitivity of differentiated myotubes 

In contrast to the undifferentiated myoblasts, DEX decreased insulin-stimulated 

glucose uptake (5.7±0.1 vs. 4.7±0.4dpmx104, p<0.05, n=5) in differentiated 

C2C12 myotubes, an effect recovered by co-incubation with RU38486 (Figure 

 4-3B). Basal glucose uptake was also reduced following DEX treatment (1.6±0.25 

vs. 1.3±0.08dpm dpmx105, p<0.05, n=5, Figure  4-3A).  

 

 

 

 

 

 

 

 

 

Figure  4-3 DEX (1µM, 24 h) decreased basal (A) and insulin-stimulated glucose uptake (B) in 

differentiated C2C12 myotubes. RU38486 (10µM) recovered the effect of DEX upon insulin-
stimulated glucose uptake. Insulin-stimulated glucose uptake = glucose uptake with insulin 
(0.5µg/mL, 20 mins) minus glucose uptake in the absence of insulin. (DEX=dexamethasone, 
Ctrl=control). 

 

In differentiated C2C12 myotubes, DEX (1µM, 24 h) decreased mRNA expression 

of IRS1 (8.7±0.7 vs. 4.5±0.4AU, p<0.05, n=5), an effect that was blocked by the 

GR antagonist RU38486 (Table  4-1). In contrast, InsR, PKBβ/akt2, AS160 and 

GLUT4 expression all increased. However, only the effect of DEX upon GLUT4 

and AS160 expression was reversed with RU38486. DEX treatment had 
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contrasting effects upon the expression of the PI3K subunits; increasing p85 

(regulatory subunit) expression (1.4±0.2 vs. 2.2±0.2AU, p<0.05) and decreasing 

p110 (catalytic subunit) expression (0.32±0.04 vs. 0.21±0.03AU, p<0.01). Whilst 

DEX treatment did not alter 11β-HSD1 expression, H6PDH expression increased 

(0.1±0.01 vs. 1.3±0.07AU, p<0.001) and this was blocked by co-incubation with 

RU38486 (0.18±0.02AU, p<0.001 vs. DEX). Decreased GRα expression was 

observed with DEX treatment (4.0±0.8 vs. 1.8±0.2AU, p<0.05), which was 

blocked by RU38486 (4.5±1.1AU, p<0.05 vs. DEX). Absolute mRNA expression 

levels following DEX treatment with and without the GR antagonist RU38486 are 

presented in Table  4-1. 

 

In differentiated C2C12 myotubes, treatment with DEX decreased IRS1 total 

protein expression (0.4-fold, p<0.05), which was recovered by co-incubation with 

RU38486 (Figure  4-4). Activating tyrosine-608 phosphorylation of IRS1 was 

unchanged with DEX treatment (Figure  4-4), however, inactivating serine-307 

phosphorylation (3.3-fold, p<0.05) was enhanced, and this was blocked by 

RU38486 (Figure  4-4).  
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Figure  4-4 DEX treatment (1µM, 24 h) of differentiated C2C12 myotubes decreases IRS1 total 

protein expression, increases inhibitory serine-307 phosphorylation of IRS1 but does not change 
activating tyrosine-608 phosphorylation. These effects are blocked by co-incubation with the GR 
antagonist RU38486 (10µM). Cells were spiked with insulin (50nM) for the last 15 mins of 
treatment.  Data presented are the mean of n=4-6 experiments with representative western blots 
inserted above. Bands quantified relative to β-actin as internal loading control and the ratio of p-
IRS1 to β-actin was normalised to the ratio of IRS1 to β-actin. (* p<0.05 vs. control; � p<0.05, vs. 
DEX) (DEX=dexamethasone, Ctrl=control)   

 

Phosphorylation of IRS1 at serine-24 has been linked to the pathogenesis of 

insulin resistance. We therefore examined the effect of DEX on C2C12 myobubes 

stably over expressing IRS1 (Nawaratne et al., 2006). Whilst DEX also increased 

serine-307 phosphorylation in this model, there was no impact upon serine-24 

phosphorylation (Figure  4-5). 
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Figure  4-5 C2C12 myocytes stably over-expressing IRS1 were differentiated into myotubes and 

treated with DEX (1µM, 24 h) resulting in an increase in inhibitory IRS1 serine-307 
phosphorylation, but not inhibitory serine-24 phosphorylation (Experiments carried out in 
collaboration with Jaswinder Sethi, University of Cambridge). (DEX=dexamethasone, PMA= 
phorbol-12-myristate-13-acetate). 

 

In differentiated C2C12 myotubes, DEX increased total IRS2 protein expression 

(1.7-fold, p<0.001) (Figure  4-6). Further downstream, PKB/akt protein expression 

did not change with DEX treatment, but activating serine-473 phosphorylation 

decreased (0.5-fold, p<0.05) (Figure  4-7). DEX increased AS160 total protein 

levels 1.5-fold (p<0.05), which was blocked by co-incubation with RU38486 

(Figure  4-8) 
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Figure  4-6 Total IRS2 protein expression increase following DEX treatment (1µM, 24 h) and was 

reversed with RU38486 (10µM) in differentiated C2C12 myotubes. Data presented are the mean 
of n=4 experiments with representative western blots inserted above. Bands quantified relative to 
β-actin as internal loading control. (* p<0.05 vs control, �� p<0.01 vs. DEX) 
(DEX=dexamethasone, Ctrl=control). 
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Figure  4-7 DEX treatment (1µM, 24 h) of C2C12 myotubes did not alter PKB/akt expression, whilst 

activating serine-473 phosphorylation was decreases but not recovered by co-incubation with 
RU38486 (10µM). Data presented are the mean of n=4 experiments with representative western 
blots inserted above. Bands quantified relative to β-actin as internal loading control (* p<0.05 vs 
control) (DEX=dexamethasone, Ctrl=control) 
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Figure  4-8 Total AS160 protein expression increase following DEX treatment (1µM, 24 h) and was 

reversed with RU38486 (10µM) in differentiated C2C12 myotubes. Data presented are the mean 
of n=3 experiments with representative western blots inserted above. Bands quantified relative to 
β-actin as internal loading control (* p<0.05 vs control; � p<0.05 vs. DEX) (DEX=dexamethasone, 
Ctrl=control). 

 

Defects in intramyocellular lipid metabolism have been linked with insulin 

resistance. Table  4-2 highlights the effects of DEX upon the expression of genes 

involved in key lipid metabolic pathways in differentiated C2C12 myotubes in the 

absence of insulin. LPL expression decreased following DEX treatment 

(0.88±0.13 vs. 0.65±0.08AU, p<0.05), reversed by RU38486. Similarly, FAS and 

ACC1, both key lipogenic genes, were decreased by DEX (1.90±0.18 vs. 

1.25±0.15AU, p<0.01; 1.03±0.09 vs. 0.83±0.06AU, p<0.05 respectively) (Table 4-

2, Figure 4-9). The effect of DEX upon FAS expression was the only change 

reversed by RU38486. By contrast, ACC2 expression was unaltered by DEX. 
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DEX increased the expression of the lipolytic gene ATGL (0.65±0.05 vs. 

0.97±0.13AU, p<0.05), which was blocked by co-incubation with RU38486 (Table 

4-2, Figure 4-9). A decrease in the expression of the gene which catalyses the 

first and committed step of the fatty acid esterification pathway, GPAT, was 

observed following DEX treatment (0.56±0.06 vs. 0.35±0.03AU, p<0.05), and 

reversed by RU38486 (Table 4-2, Figure 4-9). PDK4 phosphorylates and 

deactivates pyruvate dehydrogenase which catalyses the multi-step conversion of 

pyruvate (generated mainly from glucose) to acetyl-CoA (which subsequently 

enters the TCA cycle and used to generate ATP), thus this enzyme is a key 

metabolic switch between glucose and lipid metabolism. DEX treatment 

increased the expression of PDK4 (0.66±0.08 vs. 7.36±1.11AU, P<0.001), which 

was blocked when co-incubated with RU38486 (Table 4-2, Figure 4-9).  

 

1.49  ± 0.24   e7.36  ± 1.11  c0.66  ± 0.08PDK4

1.43  ± 0.291.35  ± 0.030.94  ± 0.12DGAT

0.43  ± 0.080.35  ± 0.03  a0.56  ± 0.06GPAT

0.013  ± 0.0030.010  ± 0.0010.010  ± 0.002ACC2

0.97  ± 0.190.83  ± 0.06  a1.03  ± 0.09ACC1

2.50  ± 0.48  d1.25  ± 0.15 b1.90  ± 0.18FAS

0.10  ± 0.020.12  ± 0.030.08  ± 0.008HSL

0.57  ± 0.13  d0.97  ± 0.13  a0.65  ± 0.05ATGL

0.99  ± 0.16 d0.65  ± 0.08  a0.88  ± 0.13LPL

Lipid

metabolism

Dex+RU38486DexControlGene

mRNA expression (AU ± SE)

 

Table  4-2 mRNA expression of genes involved in key lipid metabolic pathways in differentiated 

C2C12 myotubes, measured using real-time PCR following treatment with DEX (1µM, 24 h) with 
or without the GR antagonist, RU38486 (10µM). Cells were treated in the absence of insulin.  Data 
are the mean values from n=7 experiments and expressed as arbitrary units (AU)±S.E. (

a 
p<0.05, 

b
 p<0.01 and 

c
 p<0.001 vs. control; 

d
 p<0.05, 

e
 p<0.01 and  

f
 p<0.001 vs. DEX). 

 



Chapter 4                                                                                            Impact of DEX upon Skeletal Muscle Insulin Sensitivity 

 144 

0

1

2

3

4

5

6

7

8

9

Ctrl DEX DEX+RU486

PDK4

Ctrl                       Dex               Dex+RU38486   

m
R

N
A

 e
xp

re
s
s
io

n
 (

A
U

)

† †

***

0

1

2

3

4

5

6

7

8

9

Ctrl DEX DEX+RU486

PDK4

Ctrl                       Dex               Dex+RU38486   

m
R

N
A

 e
xp

re
s
s
io

n
 (

A
U

)

† †

***

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ctrl DEX DEX+RU486

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ctrl DEX DEX+RU486

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ctrl DEX DEX+RU486

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ctrl DEX DEX+RU486

ATGL FAS

ACC1 GPAT

Ctrl                     Dex             Dex+RU38486   

Ctrl                       Dex             Dex+RU38486   Ctrl                       Dex             Dex+RU38486   

Ctrl                       Dex               Dex+RU38486   

m
R

N
A

 e
x
p
re

s
s
io

n
 (

A
U

)

m
R

N
A

 e
x
p
re

s
s
io

n
 (

A
U

)

m
R

N
A

 e
x
p
re

s
s
io

n
 (

A
U

)

*

**

*

†

†
m

R
N

A
 e

x
p
re

s
s
io

n
 (

A
U

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ctrl DEX DEX+RU486

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ctrl DEX DEX+RU486

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ctrl DEX DEX+RU486

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ctrl DEX DEX+RU486

ATGL FAS

ACC1 GPAT

Ctrl                     Dex             Dex+RU38486   

Ctrl                       Dex             Dex+RU38486   Ctrl                       Dex             Dex+RU38486   

Ctrl                       Dex               Dex+RU38486   

m
R

N
A

 e
x
p
re

s
s
io

n
 (

A
U

)

m
R

N
A

 e
x
p
re

s
s
io

n
 (

A
U

)

m
R

N
A

 e
x
p
re

s
s
io

n
 (

A
U

)

*

**

*

†

†
m

R
N

A
 e

x
p
re

s
s
io

n
 (

A
U

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4-9 mRNA expression of genes involved in key lipid metabolic pathways in differentiated 

C2C12 myotubes (graphical representation of selected genes taken from Table  4-2), measured 

using real-time PCR following treatment with DEX (1µM, 24 h) with or without the GR antagonist, 
RU38486 (10µM). Cells were treated in the absence of insulin. Data are the mean values from 
n=7 experiments and expressed as arbitrary units (AU)±S.E. (* p<0.05, *** p< 0.001  vs control; � 
p<0.05, �� p<0.01  vs. DEX) (DEX=dexamethasone, Ctrl=control). 
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Endorsing the results from Table  4-2, de novo lipogenesis in C2C12 myotubes 

was decreased by DEX in a concentration dependent manner (2.9±0.04 vs. 

1.9±0.03 [5nM] vs. 1.3±0.02dpmx104 [500nM], p<0.05) (Figure  4-10). In the 

presence of insulin (5nM), low dose DEX was without effect upon de novo 

lipogenesis (3.1±0.05 vs. 3.2±0.06dpmx104 [5nM], p=ns) (Figure  4-10), whereas 

high dose DEX reduce lipogenesis (3.1±0.05 vs. 2.2±0.02dpmx104 [500nM], 

p<0.05).   

 

 

 

 

 

 

 

 

 

 

 

Figure  4-10. The effect of DEX (5nM, 500nM) upon the rate of de novo lipogenesis (ACC activity) 

in the presence/absence of insulin (5nM) in C2C12 myotubes. (* p<0.05, comparison indicated by 
the brackets) 
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DEX conversely increased the rate of β-oxidation in these cells (25.8±2.1 vs. 

27.7±2.9 [5nM] vs. 28.9±3.1dpmx104 [500nM], p<0.05) (Figure  4-11). In the 

presence of insulin (5nM), β-oxidation was decreased by DEX in a concentration 

dependent manner (25.2±2.0 vs. 23.5±2.9 [5nM] vs. 21.9±2.1dpmx104 [500nM], 

p<0.01) (Figure  4-11). 

 

 

 

 

 

 

 

 

 

 

 

Figure  4-11 The effect of DEX (5nM, 500nM) upon the rate of β-oxidation in the presence/absence 

of insulin (5nM) in C2C12 myotubes. (* p<0.05, ** p<0.01, comparison indicated by the brackets) 
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4.5. Discussion 

Our data show that the synthetic GC, DEX, impairs insulin signalling at multiple 

levels, importantly decreasing total IRS1 protein expression and increasing 

inhibitory IRS1 serine-307 phosphorylation. This increase in serine 

phosphorylation leads to a decrease in the affinity of IRS1 for the insulin receptor 

and increases IRS1 degradation (Aguirre et al., 2000; Aguirre et al., 2002), and 

may contribute to the decrease in IRS1 total protein expression that we observed. 

The pivotal role of IRS1 in skeletal muscle insulin signalling is highlighted by IRS1 

knock-out mice (Araki et al., 1994; Kido et al., 2000; Withers et al., 1998) which 

develop marked insulin resistance. Serine phosphorylation of IRS1 at numerous 

residues has been implicated in the development of insulin resistance (Mussig et 

al., 2005; Nawaratne et al., 2006; Waraich et al., 2008; Werner et al., 2004). 

Specifically, serine-307 phosphorylation has been implicated in various models, 

as a negative regulator of IRS1 function. Inflammatory cytokines including TNFα 

and C-reactive peptide increase serine-307 phosphorylation (D'Alessandris et al., 

2007) (de Alvaro et al., 2004), and insulin itself has similar effects (Danielsson, 

Nystrom & Stralfors, 2006; Gual et al., 2003). Serine-307 is phosphorylated 

following FFA exposure and PKCθ is believed to have a critical role in this 

process (Gao et al., 2004; Yu et al., 2002).  With enhanced serine-307 

phosphorylation one would expect to see a decrease in activating tyrosine 

phosphorylation of IRS1. However, we saw no change in tyrosine phosphorylation 

following GC treatment. The explanation for this observation is unclear, but may 

reflect the fact that serine-307 is located within the binding region of the 

phosphatase PTP1B, and thus the GC-induced phosphorylation at this site may 
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preclude this phosphatase from associating with IRS1 (Paz et al., 1999). 

Alternatively, phosphorylation of serine-307 could induce translocation of IRS1 

(Heller-Harrison, Morin & Czech, 1995) away from the relevant phosphatases. 

Another residue on IRS1 associated with inhibiting insulin signalling is serine-24, 

located within the membranes lipid binding PH-domain. Phosphorylation at this 

site is proposed prevent IRS1 from associating with membrane lipids in the 

vicinity of the insulin receptor, and thus participating in signal transduction 

(Nawaratne et al., 2006). PKCθ does not contribute to phorbol-12-myristate-13-

acetate induced serine-24 phosphorylation, but instead is dependent upon PKCα 

activation (Nawaratne et al., 2006). We observed no regulation of serine-24 

phosphorylation by GCs suggesting that phosphorylation at these two sites is via 

distinct mechanisms. 

 

Other studies have also highlighted the pivotal role of IRS1 in GC-induced insulin 

resistance. The results of these studies do show some discrepancy, for example 

some, but not all have shown decreased activating tyrosine phosphorylation of 

IRS1 (Giorgino et al., 1993; Rojas et al., 2003; Saad et al., 1993). Others have 

reported changes in the insulin receptor expression and activation, PI3K activity 

and expression, and IRS2 expression and phosphorylation (Giorgino et al., 1997; 

Giorgino & Smith, 1995; Saad et al., 1993). The explanation for these 

inconsistencies is not entirely clear, but may reflect differences between rats and 

mice, differing cell models and specific investigative protocols.  One particular 

study looking at the effects of GCs upon the insulin signalling cascade in cultured 

primary rat myoblasts found no regulation of IRS1 serine-307 phosphorylation 

following treatment with DEX (Brown et al., 2007), however, the effect of DEX 
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upon differentiated primary rat myotubes was not explored in this study. 

Consistent with this finding, we also observed no regulation of IRS1 serine-307 

phosphorylation in undifferentiated C2C12 myoblasts following DEX treatment, 

suggesting that GC-induced IRS1 serine-307 phosphorylation may only occur 

when myoblasts have fused to form mature differentiated myotubes. In support of 

this, we observed no change in insulin-stimulated glucose uptake with DEX in 

undifferentiated cells, whereas insulin-stimulated glucose uptake was reduced in 

the myotubes; consistent with the induction of insulin resistance in the latter. On 

the basis of this evidence, combined with the low 11β-HSD1 expression and 

activity we observed in the myoblasts, we chose to concentrate our study 

exclusively on the differentiated myotubes from there on.  

 

Downstream of IRS1, we observed altered expression of the subunits comprising 

PI3K. DEX upregulated the mRNA levels of the regulatory subunit (p85) while 

downregulating the catalytic subunit (p110). If this translates to protein 

stociometry this altered subunit ratio could contribute to a state of insulin 

resistance, since the regulatory subunit is in competition for binding IRS1 with the 

catalytically active heterodimer. This effect of GCs upon the insulin signalling 

cascade has been reported previously in L6 myoblasts (Giorgino et al., 1997). 

 

As discussed in the introduction, the role of PI3K is to generate the second 

messenger of the insulin signalling cascade; PI-3,4,5-P3, recruiting PKB/akt to the 

plasma membrane where it is subsequently activated.  We observed a decrease 

in PKB/akt activating serine-473 phosphorylation following DEX treatment, we 

therefore propose that this may be a direct consequence of enhanced IRS1 
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inactivation, along with potentially altered PI3K subunit stoichiometry.  

 

AS160 is a recently identified protein with Rab-GTPase activity that, under basal 

conditions, is resident in GLUT4 containing vesicles, and limits the GTP 

availability that is necessarily for vesicle translocation to the cell membrane to 

permit glucose entry. Upon phosphorylation by PKB/akt, AS160 dissociates from 

the vesicle and thus allows GTP to bind to Rab proteins and vesicle translocation 

to the cell membrane can then occur (Larance et al., 2005; Sano et al., 2003). 

Whilst regulation of AS160 phosphorylation at differing sites by growth factors, 

including IGF-1 and EGF, has been described (Geraghty et al., 2007), GC 

regulation has not been explored. Our data show that GCs increase both AS160 

protein and mRNA expression in a GR dependent mechanism. Since there is no 

change in PKB/akt mRNA or protein levels, the GC-induced upregulation of 

AS160 could play an inhibitory role in insulin stimulated glucose uptake. These 

observations are interesting and point towards a separate mechanism of 

regulation, rather than simply a down-stream consequence of decreased 

IRS1/PI3K activation.  

 

Whilst the net effect of GCs is to induce insulin resistance, we did observe an 

increase in IRS2 mRNA and protein expression. Moreover, InsR and GLUT4 

mRNA expression increased. It is possible that this represents a compensatory 

mechanism to preserve insulin sensitivity; adjusting for the inhibition of signalling 

through IRS1/PI3K/AS160. However, overall the effect of GC exposure is to limit 

insulin stimulated glucose uptake.  
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Basal glucose uptake is also decreased with GC exposure in differentiated 

myotubes, consistent with previously published finding (Salehzadeh et al., 2009). 

This is likely to represent a mechanism independent of GCs effects upon the 

insulin signalling cascade. One possible explanation could be linked to the 

increase in PDK4 expression we observed following DEX treatment. PDK4 

phosphorylates the pyruvate dehydrogenase complex, resulting in its deactivation 

- inhibiting glucose flux and thus favouring fatty acid utilisation as a fuel. Indeed, 

GCs have been found to enhance fatty acid oxidation rates in cultured human 

primary myotubes in support of this (Salehzadeh et al., 2009).  

 

Defects in intramyocellular lipid metabolism have been linked to insulin resistance 

(Consitt, Bell & Houmard, 2009), however, the effects of GCs upon these 

metabolic pathways in skeletal muscle have not been investigated in detail. 

Classically, GCs oppose the actions of insulin; acting to increase catabolism, but 

in the case of de novo lipogenesis, there is evidence that GCs act with insulin  as 

an anabolic effector (Wang et al., 2004; Williams & Berdanier, 1982). In our 

experiments using C2C12 myotubes, the effects of DEX treatment upon lipid 

metabolism, in the absence of insulin, was in keeping with GCs known catabolic 

role. For example, we observed decreases in the mRNA levels of lipogenic 

genes, as well as genes involved in fat esterification, and importantly de novo 

lipogenic rates were reduced in a dose dependent manner following DEX 

treatment. This suggests that GC alone act to decrease intramyocellular lipid 

accumulation. In addition, the expression of key lipolytic genes were upregulated 

following DEX exposure - increasing intramyocellular free fatty acid availability, 

and in addition, may also afford increases in intramyocellular DAG levels, which 
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have been linked with PKCθ activation resulting in enhanced IRS1 serine-307 

phosphorylation (Yu et al., 2002). The possibility that the mechanism of GC-

induced IRS1 serine-307 phosphorylation is through enhanced DAG-sensitive 

PKC activation, is investigated in later chapters.  

 

The rate of β-oxidation was increased in C2C12 myotubes following DEX 

treatment, which is consistent with the observed increase in PDK4 expression, 

i.e. suggesting a shift from glucose metabolism to lipid metabolism. Collectively, 

these data show that mimicking in the fasted state (in the absence of insulin), 

GCs promote fatty acid release over their storage, and mediate metabolic 

switching from glucose to free fatty acids as a fuel. By contrast, coincubation of 

DEX with insulin blocked the DEX-induced decrease in de novo lipogenesis at 

lower DEX concentrations. Although we have shown that the impact of GC upon 

de novo lipogenesis differs depending on whether insulin is present, we have not 

endorsed observations made in other tissues that GC work in concert with insulin 

to enhance de novo lipogenesis. Interestingly, when DEX was coincubated with 

insulin, the rate of β-oxidation was decreased, suggesting that in the fed state, 

there is a concerted action of GCs and insulin to reduce fatty acid utilisation - 

potentially contributing to the accumulation of IMTGs which have been identified 

as a marker of insulin resistance.  

 

In addition to investigating the effects of GC upon the insulin signalling cascade 

and lipid metabolic pathways, we also studied their effects upon genes involved in 

GC metabolism and action. The observed decrease in GRα expression with DEX 

treatment could represent a negative feedback mechanism, limiting the genomic 
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effects of GCs following chronic GRα activation. H6PDH controls NADPH 

availability, an essential cofactor for 11β-HSD1 oxo-reductase activity. The 13-

fold increase in H6PDH expression we observed following treatment with DEX 

could drive increased 11β-HSD1 activity. In support of this others in our lab have 

demonstrated elevated 11β-HSD1 oxo-reductase activity in C2C12 myotubes 

following DEX treatment (Mark Sherlock, personal communication).  

 

In summary, we have identified a novel action of GCs upon the insulin signalling 

cascade in skeletal muscle, by decreasing IRS1 total protein and increasing 

inhibitory serine-307 phosphorylation. This, in concert with potentially altered 

PI3K subunit stoichiometry along with increased AS160 expression leads to 

decreased activation of the insulin signalling cascade - reducing insulin-

stimulated glucose uptake. Furthermore, we have shown that GCs impact upon 

intramyocellular lipid metabolism, which may underpin GC-induced insulin 

resistance. 
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5 Chapter 5 - Pre-receptor Glucocorticoid 
Metabolism and Regulation of Insulin Signalling in 

Skeletal Muscle 
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5.1. Introduction 

Excess circulating GC levels, as seen in Cushing’s syndrome, result in increased 

adiposity, skeletal myopathy and insulin resistance (van Staa et al., 2000; 

Wajchenberg et al., 1984). As discussed in chapter 4, the synthetic GC, DEX, 

enhances inhibitory serine-307 phosphorylation of IRS1, resulting in insulin 

resistance in C2C12 skeletal myotubes. Enhanced serine-312 phosphorylation 

(corresponding to rodent serine-307) has been linked with insulin resistance in 

humans (Bouzakri et al., 2006; Corbould et al., 2005; Seow et al., 2007). 

However, in patients with type 2 diabetes and insulin resistant obese subjects, 

circulating GC levels are not elevated. In key insulin target tissues including liver, 

adipose and skeletal muscle, GC availability to bind and activate the GR is 

controlled by 11β-HSD1. 11β-HSD1 is an endo-lumenal enzyme that inter-

converts inactive (cortisone in humans and 11-dehydrocorticosterone in rodents) 

and active GCs (cortisol in humans and corticosterone in rodents) (Tomlinson et 

al., 2004). Critically, the directionality of 11β-HSD1 activity is cofactor (NADPH) 

dependent, which is supplied by a tightly associated endo-lumenal enzyme, 

H6PDH. Decreases in H6PDH expression / activity results in a switching of 11β-

HSD1 activity from an oxo-reductase to a dehydrogenase (Bujalska et al., 2005; 

Lavery et al., 2006). Despite this bidirectional potential, the predominant direction 

of activity in liver, adipose and skeletal muscle is oxo-reductase - generating 

active GCs (cortisol / corticosterone) and thus amplifying local GC availability 

(Bujalska et al., 1997; Jamieson et al., 2000; Whorwood et al., 2001). The 

contribution of pre-receptor GC metabolism to the insulin sensitivity of skeletal 
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muscle is unknown. 11β-HSD1 knockout mice are relatively insulin sensitive 

(Morton et al., 2001) and, as discussed in section  1.14.3, selective inhibitors of 

11β-HSD1 improve lipid profiles, glucose tolerance and insulin sensitivity and 

have considerable potential as therapeutic agents (Alberts et al., 2002; Alberts et 

al., 2003; Berthiaume et al., 2007a; Hermanowski-Vosatka et al., 2005). However, 

the molecular mechanisms that underpin these observations remain to be 

defined. In this chapter, we have characterised the expression and activity of 11β-

HSD1 in rodent and human skeletal muscle, and determined the functional impact 

of selective 11β-HSD1 inhibition upon insulin signalling. 

 

5.2. Strategy of research 

Expression of 11β-HSD1, and genes involved in regulating GC response were 

measured in C2C12 myotubes and rodent tissue explants using real-time PCR.  

 

Functional 11β-HSD1 activity was assessed in C2C12 myotubes, rodent skeletal 

muscle explants and human primary myotubes by measuring the conversion of a 

radiolabelled inactive GC tracer. 

 

Western blot analysis was employed to assess the impact of pharmacological 

inhibition of 11β-HSD1 (using non-specific 11β-HSD inhibitor glycyrrhetinic acid 

as well as AstraZeneca’s selective 11β-HSD1 compound, A1) upon the insulin 

signalling cascade protein levels / phosphorylation status in C2C12 myotubes. 
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5.3. Methods 

5.3.1. C2C12 cell culture 

Proliferating C2C12 myoblasts were cultured in DMEM supplemented with 10% 

FCS and seeded into 12-well TC plates. At 60-70% confluence, differentiation 

was initiated by replacing proliferation media with DMEM, supplemented with 5% 

horse serum and differentiated for 8 days (Figure  3-1). Prior to treatment, cells 

were incubated in DMEM free from additives for 4 h. 

 

5.3.2. Primary human myocyte cell culture 

Primary human myoblasts were obtained from Promocell (Heidelberg, Germany). 

Myoblasts were cultured to 60-70% confluence, as per the manufactures 

guidelines using the supplied media. Once confluent, media was changed to a 

chemically defined media (Promocell, Germany), supplemented with 2% horse 

serum and cells differentiated into myotubes for 7 days (Figure 5-1). Following 

differentiation, cells were incubated with serum free media for 4 h prior to 

treatment. 

 

 

 

 

 

Figure  5-1. Human primary myocytes were differentiated in chemically defined media for 7 days 

forming multinucleated myotubes. 
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5.3.3. Immunocytochemistry staining for myotubes formation 

Since we had not previously used Promocell’s human primary myocytes, we (in 

conjunction with AstraZeneca) carried out quantitative immunocytochemistry 

staining in order to identify the optimal conditions for maximal myotube formation. 

Human primary myoblasts were grown to 60-70% confluence in 24-well TC plates 

(Corning, Surrey, UK) and differentiated for 7-days in chemically defined media 

with variable constituents. Following differentiation, media was removed and cells 

fixed by incubation in 4% paraformaldehyde for 15 mins at room temperature. Cells 

were washed 3 times with PBS then blocked with PBS supplemented with 3% BSA 

for 1 h. Blocking solution was removed and replaced with fresh blocking solution 

supplemented with the primary antibodies and incubated for 1 h 30 mins. The 

primary antibodies used were; anti-myosin slow and anti-myosin fast (Sigma 

Aldrich, Dorset, UK), at a dilution of 1/1000 and 1/250 respectively. Cells were 

washed 3 times with PBS then incubated with alexa-488-labelled secondary antibody 

(Invitrogen, Paisley, UK), at a dilution of 1/300 in blocking solution for 40 mins. Nuclei 

were stained by the addition of 2µg/ml hoescht dye 3342 (Invitrogen, Paisley, UK) in 

PBS and incubated in the dark for 10 mins. Cells were washed 3 times with PBS then 

fluorescence read on ImageXpress ultra imaging system (Molecular Devices, 

Pennsylvania, US). Analysis was performed using MetaXpress software 

(molecular Devices, Pennsylvania, US) (Figure 5-2) 
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Figure  5-2 Quantitative immunocytochemistry staining for slow and fast twitch muscle fibres for 

the purpose of optimising differentiation media constituents (n=5). Experiments performed by 
Wendy Tomlinson (AstraZeneca). (IC= internal control; incubation with PBS 3% BSA minus 
primary antibody) 

 

5.3.4. Cell treatments 

In all cell culture experiments investigating insulin signalling cascade protein 

expression / phosphorylation status, media was spiked with human insulin (50nM) 

for the final 15 mins of the treatment period. In experiments using the 11β-HSD 

inhibitors, GE or A1, cells / tissue explants were pre-treated with the inhibitor for 1 

h prior to the addition of the steroids. Treatments were made up in serum free 

DMEM media. 
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5.3.5. 11β-HSD1 selective inhibitor 

AstraZeneca’s selective 11β-HSD1 inhibitor, A1, was used in both mouse and 

human cell culture experiments. A1 has an IC50 for human recombinant 11β-

HSD1 of 0.3nM, for rat: 637nM, for mouse: 33nM and for human 11β-HSD2: 

>15µM (personal communication AstraZeneca). 

 

5.3.6. Rodent protocol 

Male C57BL/6 mice (6-8 weeks of ages) were housed in standard conditions on a 

12 h / 12 h light-dark cycle with access to standard rodent chow and water ad 

libitum. All procedures were carried out in accordance with the UK Animals 

(Scientific Procedures) Act, 1986. On the day of experiment mice were sacrificed 

by cervical dislocation then adipose tissue, liver tissue and femoral quadricept 

muscles were removed and snap-frozen in liquid nitrogen for characterisation of 

mRNA expression. For measurement of 11β-HSD1 activity: freshly harvested 

tissue was transferred directly to the assay. 

 

5.3.7. 11β-HSD1 activity assay 

Intact cells (grown in 12-well TC plates) and tissue explants (roughly 20mg) were 

incubated with 100nM 11DHC or cortisone supplemented with a tritiated tracer. 

For C2C12 myotubes and tissue explants steroid incubation took place for 2 h, 

whereas human primary myotubes were incubated for 24 h. Steroids were then 

extracted using dichloromethane, separated using a mobile phase consisting of 

ethanol/chloroform (8:92) by thin layer chromatography, and scanned using a 
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Bioscan 200 Imaging Scanner (LabLogic, Sheffield, UK). For intact cells protein 

levels were assayed using a commercially available kit (BioRad, Herts, UK), and 

activity expressed as pmol corticosterone/cortisol generated per mg of protein per 

hour.  For tissue explants activity expressed as pmol corticosterone generated 

per mg of tissue per hour. 

 

5.3.8. RNA extraction  

Total RNA was extracted using Tri-reagent system, concentration determined 

spectrophotometrically at OD260 and integrity assessed by agarose gel 

electrophoresis. For reverse transcription (see section  2.9.2) 1µg of RNA was 

used. 

 

5.3.9. Real-time PCR 

11β-HSD1, H6PDH and GRα mRNA levels were determined using an ABI 7500 

sequence detection system (Applied Biosystems, Warrington, UK). Reactions 

were performed in singleplex as described in section  2.11, and normalised 

against the 18s rRNA house keeping gene.  Primers and probes and for all genes 

were supplied by Applied Biosystems as pre-mixed ‘assay on demands’ (Applied 

Biosystems, Warrington, UK).  
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5.3.10. Immunoblotting 

Proteins were extracted from cell lysates and concentration determined as 

described in section  2.6.2. For IRS1, and p-IRS1, 40µg of protein was resolved 

on 8% SDS-PAGE gels. For PKB/akt and p-PKB/akt, 20µg of protein was 

resolved on 12.5% SDS-PAGE gels. Proteins were transferred to nitrocellulose 

membranes (for IRS1, p-IRS1, proteins transferred at 140mA for 2 h, for PKB/akt 

and p-PKB/akt proteins transferred at 140mA for 1 h). Primary (anti-IRS1 and 

anti-pSer307 were purchased from Upstate, Dundee, UK, anti-PKB/akt and anti-

pThr308 PKB/akt [recognizing isoforms 1 and 2] were purchased from R&D 

Systems, Abingdon, UK) and secondary antibodies (Dako, Glostrop, UK) were 

used at a dilution of 1/1000. Membranes were re-probed for β-actin and primary 

and secondary antibodies used at a dilution of 1/5000 (Abcam, Cambridge, UK). 

Bands were visualised using ECL detection kit (GE Healthcare, Bucks, UK), and 

quantified with Genesnap by Syngene (Cambridge, UK). The ratio of p-IRS1 to β-

actin was normalised to the ratio of IRS1 to β-actin. 

 

5.3.11. Statistical analysis 

Where data were normally distributed, unpaired student t-tests were used to 

compare single treatments to control using SigmaStat 3.1 (Systat Software, CA, 

US). If normality tests failed, non-parametric tests were used. One way ANOVA 

on ranks was used to compare multiple treatments, doses or times using 

SigmaStat 3.1. Statistical analysis on PCR data was performed on mean ∆Ct 

values. 
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5.4. Results 

5.4.1. 11ββββ-HSD1 in rodent and human skeletal muscle 

11β-HSD1 mRNA was highly expressed in C2C12 cells. Expression was also 

detected in whole mouse tissue explants of quadriceps muscle, although levels 

were lower than those seen in liver and adipose tissue. 

 

 

Table  5-1 Comparative mRNA expression of 11β-HSD1, GRα and H6PDH in mouse skeletal 

muscle and C2C12 myotubes. Expression in mouse liver and adipose tissue are provided as a 
quantitative reference. Data are expressed as arbitrary units (A.U.±S.E), n=3-5 experiments) 

 

In all systems examined (C2C12 myocytes, human primary cultures and whole 

tissue explants from mouse), functional 11β-HSD1 activity was demonstrated. 

Activity was bi-directional, however, oxo-reductase activity, generating active 

cortisol or corticosterone predominated (Figure  5-3). In addition, in rodent 

quadriceps explants, activity was decreased following co-incubation with the non-

selective 11β-HSD inhibitor, glycyrrhetinic acid (GE, 1µM, 2 h) (114.0±5.7 vs. 

44.6±11.1 pmol/g/h, p<0.05). 

3.90 ± 0.683.33 ± 0.365.67 ±0.290.56 ± 0.02GRα

0.11 ± 0.0010.12 ±0.0050.10 ± 0.010.10 ± 0.02H6PDH

1.26 ± 0.1418.40 ± 1.960.29 ± 0.0332.9 ± 2.911β-HSD1

AdiposeLiverQuadricepsC2C12Gene

mRNA expression (AU ± SE)

3.90 ± 0.683.33 ± 0.365.67 ±0.290.56 ± 0.02GRα

0.11 ± 0.0010.12 ±0.0050.10 ± 0.010.10 ± 0.02H6PDH

1.26 ± 0.1418.40 ± 1.960.29 ± 0.0332.9 ± 2.911β-HSD1

AdiposeLiverQuadricepsC2C12Gene

mRNA expression (AU ± SE)
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A1 is a selective 11β-HSD1 inhibitor provided by AstraZeneca. A1 has an IC50 for 

human recombinant 11β-HSD1 of 0.3nM, 637nM for rat and 33nM for mouse. 

Treatment with A1 (1µM, 24 h), significantly decreased oxo-reductase activity in 

rodent quadriceps whole tissue explants, differentiated C2C12 myotubes, and 

primary cultures of differentiated human skeletal myotubes (Figure  5-3). 
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Figure  5-3 The selective 11β-HSD1 inhibitor, A1 (1µM, 24 h), decreases oxo-reductase activity in 

mouse whole tissue quadriceps explants, differentiated C2C12 skeletal myotubes and 
differentiated human primary myotubes.  (Data shown are the mean±s.e. of n=3-6 experiments 
with representative activity traces inserted (* p<0.05, § p<0.005). 
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5.4.2. Functional impact of 11ββββ-HSD1 inhibition in skeletal muscle 

In order to determine whether our observations with synthetic GCs were 

applicable in a physiological context, further experiments were performed using 

the active endogenous rodent GC corticosterone (CORT). Consistent with our 

observations using DEX, CORT caused a concentration and time dependent 

decrease in IRS1 total protein expression (Dose: 1.0 (control) vs. 0.59-fold 

(100nM), p<0.01, 0.47-fold (250nM), p<0.05, 0.44-fold (500nM), p<0.01, 0.38-fold 

(1000nM), p<0.01; Time: 1.0 (control) vs. 0.19±0.04 (48 h), p<0.05, (Figure  5-4A 

and B). This was accompanied by a concentration- (1.0 (control) vs. 2.80-fold 

(250nM), p<0.01, 3.99-fold (500nM), p<0.01, 4.37-fold (1000nM), p<0.001) 

(Figure  5-4A) and time- (1.0 (control) vs. 3.0±0.08 (48 h), p<0.05) (Figure  5-4B) 

dependent increase in serine-307 phosphorylation. 

 

 

 

 

 

 

 

 

 

 

Figure  5-4 The endogenous rodent glucocorticoid, corticosterone (CORT) induces a dose (A) and 

time (B) dependent decrease in total IRS1 protein expression and increase in serine-307 
phosphorylation in C2C12 myotubes. Data presented are the mean of n=4-6 experiments with 
representative western blots inserted above. Bands quantified relative to β-actin as internal 
loading control and the ratio of p-IRS1 to β-actin was normalised to the ratio of IRS1 to β-actin (* 
p<0.05, ** p<0.01 vs. control). 
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Paralleling our observations with CORT, 11DHC (250nM, 24 h) decreased IRS1 

total protein (0.5-fold, p<0.05) expression and increased serine-307 

phosphorylation (2.0-fold, p<0.05) in C2C12 cells (Figure  5-5).  Co-incubation 

with the non-selective 11-βHSD inhibitor GE (2.5µM, 24 h) decreased 11DHC-

induced serine-307 phosphorylation to levels seen in control untreated cells (1.1-

fold, p=0.56 vs. control) (Figure  5-5A). GE treatment alone was without effect 

(data not shown). Similarly, observations with the selective 11β-HSD1 inhibitor, 

A1 (2.5µM, 24h), mirrored those with GE, completely blocking the effects of 

11DHC to decreases total IRS1 expression and increase serine-307 

phosphorylation (Figure  5-5B).  
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Figure  5-5 Both corticosterone (CORT) and 11-dehydrocorticosterone (11DHC) decrease IRS1 

expression and increase serine-307 phosphorylation in C2C12 myotubes. The activity of 11DHC 
is dependent upon its activation to CORT by 11β-HSD1. Inhibition of 11β-HSD1 using 

glycerrhetinic acid (GE) (A) or the selective 11β-HSD1 inhibitor, A1 (B) reverses the effect of 
11DHC upon IRS1 expression and phosphorylation. Data presented are the mean of n=6 
experiments with representative western blots inserted. Bands quantified relative to β-actin as 
internal loading control and the ratio of p-IRS1 to β-actin was normalised to the ratio of IRS1 to β-
actin. (* p<0.05, ** p<0.01 vs. control, � p<0.05 vs. 11DHC) (Ctrl=control). 
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Extending these findings, in primary cultures of human skeletal muscle, treatment 

with cortisone (250nM, 24 h) decreased insulin-stimulated threonine-308 

phosphorylation of PKB/akt, without altering total PKB/akt protein expression. 

These observations were completely abolished following co-incubation with A1 

(Figure  5-6). 
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Figure  5-6 Both cortisol and cortisone decrease PKB/akt threonine-308 phosphorylation in insulin-

stimulation human primary myotubes. No effect was observed with total PKB/akt levels. The 
activity of cortisone is dependent upon its activation to cortisol by 11β-HSD1. Inhibition of 11β-

HSD1 using the selective 11β-HSD1 inhibitor, A1 reverses the effect of cortisone upon PKB/akt 
phosphorylation. Data presented are the mean of n=4 experiments with representative western 
blots inserted (* p<0.05, ** p<0.01 vs. control, � p<0.05 vs. cortisone) (Ctrl=control). 
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5.5. Discussion 

In this chapter we have confirmed that, in agreement with our finding with the 

synthetic GC, the mouse physiological GC mediates inhibitory effects upon the 

insulin signalling cascade by decreasing IRS1 total protein and increasing 

inhibitory IRS1 serine-307 phosphorylation in C2C12 myotubes. In addition, we 

have clearly shown expression and activity of 11β-HSD1 in both human and 

rodent cell skeletal muscle culture models as well as rodent muscle explants, 

consistent with previously published findings (Jang et al., 2006). Activity is 

predominantly oxo-reductase, generating active GC, and is blocked by selective 

and non-selective 11β-HSD1 inhibitors. Our use of primary human skeletal 

myocytes, purchased from Promocell, has allowed us to demonstrate the 

relevance of this enzyme in human skeletal muscle. However, due to the high 

cost of using these cells, it has only been feasible to carry out a limited number of 

experiments. 

 

Our rationale for investigating the role of this enzyme in the insulin sensitivity of 

skeletal muscle comes from a limited number of rodent studies. For example, 

over-expression of 11β-HSD1 has been described in rodent skeletal muscle in 

models of diabetes (Zhang et al., 2009), and myotubes isolated from patients with 

insulin resistance and type 2 diabetes (Abdallah et al., 2005; Whorwood et al., 

2002). However, this is not a consistent finding (Jang et al., 2007). Furthermore, 

selective 11-βHSD1 inhibitors, currently in development, have insulin sensitising 

effects, as discussed in section  1.14.3 (Alberts et al., 2002; Alberts et al., 2003; 

Bhat et al., 2008; Hermanowski-Vosatka et al., 2005). These studies, along with 
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encouraging preliminary data from human clinical trials, have shown that 11β-

HSD1 has considerable therapeutic potential. However the precise contribution to 

the metabolic and muscle phenotype is still to be clarified. 

 

In our studies, we have shown that selective 11β-HSD1 inhibition restores IRS1 

protein levels to that seen in control but also decreases inhibitory serine-307 

phosphorylation, while further downstream enhances PKB/akt activation. This 

may therefore represent an important insulin sensitizing action of selective 11β-

HSD1 inhibitors. In light of these results, we will further our studies into the role of 

this enzyme, and its selective inhibition, upon skeletal muscle insulin sensitivity 

using whole rodent studies. 
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6  Chapter 6 - The Impact of Selective 11β-HSD1 
Inhibition upon Insulin Sensitivity and Lipid 

Metabolism in vivo 
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6.1. Introduction 

As discussed in chapter 5, selective 11β-HSD1 inhibitors, which are currently in 

development, limit local GC availability and improve glucose tolerance, lipid 

profiles and insulin sensitivity in rodents, primates (Alberts et al., 2002; Alberts et 

al., 2003; Berthiaume et al., 2007a; Hermanowski-Vosatka et al., 2005) and, as 

indicated from the  preliminary results of phase IIa and IIb clinical trials, humans. 

However, the precise molecular mechanism underpinning these beneficial effects 

is not clear. In chapter 5, we showed that skeletal muscle is a true 

pharmacological target of these inhibitors, and that selective inhibition of this 

enzyme reverses GC-induced inactivation of IRS1 which could, in part, explain 

the insulin sensitising effects of these compounds. In this chapter, we attempted 

to endorse these cell culture findings in vivo. In addition, since we demonstrated 

that many of the genes involved in intramyocellular lipid metabolism are GC 

regulated (these include: ACC1, FAS, ATGL, HSL, GPAT and PDK4, chapter 4), 

we assessed the impact of selective 11β-HSD1 inhibition upon the expression of 

these genes, many of which are implicated in the accumulation of insulin 

resistance-inducing lipid intermediates (DAGs, ceramides and fatty acids).    
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6.2. Strategy of research 

The effect of pre-receptor GC metabolism upon lipid metabolic gene expression 

was assessed in C2C12 myotubes, using the selective 11β-HSD1 inhibitor 

(AstraZeneca’s compound, A1). 

 

Using C57Bl6 mice, the effect of selective 11β-HSD1 inhibition (using 

AstraZeneca’s compound, A2) upon food intake, glucose tolerance and insulin 

sensitivity was measured. 

 

Using cortisone conditioned KK/Ta Jcl mice, the impact of selective 11β-HSD1 

inhibition (using AstraZeneca’s compound, A2), upon the mRNA levels of genes 

of the insulin signalling cascade and genes involved in intramyocellular lipid 

metabolism, was assessed using genecard analysis and selected results were 

validated using real-time PCR. Furthermore, total protein levels / phosphorylation 

status of the insulin signalling cascade components were studied using western 

blot. 
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6.3. Materials and methods 

6.3.1. C2C12 cell culture 

Proliferating C2C12 myoblasts were cultured in DMEM supplemented with 10% 

FCS and seeded into 12-well TC plates. At 60-70% confluence differentiation was 

initiated by replacing proliferation media with DMEM supplemented with 5% horse 

serum and differentiated for 8 days (Figure  3-1). Prior to treatment, cells were 

incubated in DMEM free from additives for 4 h. 

 

6.3.2. Cell treatments 

In cell culture experiments investigating the expression of genes involved in lipid 

metabolism, cells were treated with CORT (250nM, 24 h). In addition, cells were 

treated with 11-DHC (250nM, 24 h) with or without the selective 11β-HSD1 

inhibitor, A1 (2.5µM, 24 h). Cells were pre-treated with A1 for 10 mins prior to the 

addition of 11-DHC. 

 

6.3.3. 11β-HSD1 selective inhibitors 

AstraZeneca’s selective 11β-HSD1 inhibitor, A2, was used in preference over A1 

in all rodent in vivo protocols because the former has a lower IC50 for mouse 11β-

HSD1 (26nM vs. 33nM). Moreover, screening carried out at AstraZeneca showed 

that A2 has a better pharmacodynamic profile in vivo compared with A1. 
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6.3.4. Mouse protocols 

The selective 11β-HSD1 inhibitor, A2, was used in 2 separate mouse protocols. 

All experimental procedures were conducted in accordance with the Animal 

Scientific Procedures Act 1986, Animal Welfare Act 2006 and local guidelines (at 

AstraZeneca). Firstly, male C57Bl6 mice (6 weeks of age) were maintained for 20 

weeks on a diet comprising 48kcal% fat and 10kcal% fructose (Special Diets 

Services, Witham, UK). Mice were housed with a standard light cycle (6am on 

6pm off) and A2 was administered (20mg/kg b.i.d) by oral gavage for 28 days and 

compared against vehicle-control and pair-fed, vehicle treated animals. Food 

intake was assessed over the 28-day period and prior to animal sacrifice, after a 

12 h fast, an OGTT was performed. This experiment was performed at 

AstraZeneca by David Laber. AstraZeneca have granted us permission to use 

data derived from these experiments in this thesis. 

 

6.3.5. Oral glucose tolerance test (OGTT) 

C57Bl6 mice were fasted from 8pm until 8am before glucose (2g/kg) was 

administered via oral gavage. Plasma glucose levels were assessed from tail vein 

nicks using a hand-held glucometer (Roche, Sussex, UK) prior to glucose 

administration (fasting levels) and at 20, 60, 90 and 120 mins post glucose 

injection. In addition, 25µL of blood was extracted from the tail veins at the same 

time points, for determination of plasma insulin levels using a commercially 

available assay (Crystal Chem, Illinois, US). The areas under the curves (AUCs) 

were calculated using trapezoidal integration. This experiment was performed at 

AstraZeneca by David Laber. AstraZeneca have granted us permission to use 
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insulin sensitivity =
fasting glucose (mmols/L)  X  fasting insulin (ng/mL)

1.0
insulin sensitivity =

fasting glucose (mmols/L)  X  fasting insulin (ng/mL)

1.0

data derived from these experiments in this thesis. 

 

6.3.6. HOMA Index 

Insulin sensitivity was estimated using homeostatic model assessment (HOMA) 

index which was calculated using the equation below:  

  

 

 

6.3.7. Insulin Elisa 

Following the extraction of blood from tail vein nicks using heparin coated 

capillary tubes, the plasma was separated by centrifugation at 1000 g for 10 mins. 

Supernatant containing the plasma was then transferred to cryo-vial and stored at 

-80°C until required. Plasma insulin levels were measured using a commercially 

available kit (Crystal Chem, Illinois, US). 5µL plasma was diluted in 95µL of 

sample diluting buffer per well of a 96-well plate, and incubated for 2 h at 4°C. All 

measurements were run in triplicate. Samples were then washed 5x with the 

wash buffer before 100µl anti-insulin enzyme conjugate was dispensed per well. 

The plate was then incubated for 30 mins at room temperature. Each well was 

then washed 7x with wash buffer before 100µl enzyme substrate solution was 

added per well, and incubated at room temperature for 40 mins. The reaction was 

terminated by the addition of 100µl/per well of the enzyme reaction stop solution. 

The absorbance at 450nm and 630nm was determined on a vector3 1420 

multilable counter (PerkinElmer, Bucks, UK). A450nm was then subtracted from 
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A630nm and used to calculate the insulin concentration using a standard curve. 

This assay was performed at AstraZeneca by David Laber. AstraZeneca have 

granted us permission to use data derived from these experiments in this thesis. 

 

6.3.8. Slow release GC pellet implantation 

Separately, the impact of A2 upon skeletal muscle gene and protein expression in 

an additional hyperglycemic model was determined (male KK/Ta Jcl mice aged 7 

weeks, CLEA Japan Inc., Tokyo, Japan). This study was run at AstraZeneca in 

parallel with the C57Bl6 mice experiments. Animals had free access to water and 

irradiated RM3 (E) diet composed of 11.5Kcal% fat, 27Kcal% protein and 

62Kcal% carbohydrate (Special Diets Services). Compound A2 (20mg/kg) or 

vehicle (10ml/kg) was administered by oral gavage at 08:00 and 20:00 hours for 4 

consecutive days. Following the administration of the 3rd dose of A2, mice were 

anaesthetised by inhalation of 2-3% v/v isoflurane (vaporised by oxygen at 1.6 

litre/minute flow rate) and a 5mg slow-release cortisone pellet (approximately 

8mg/kg/day in a 29g mouse) was implanted subcutaneously in the lateral aspect 

of the neck (Innovative Research of America, Sarasota, USA). On day 4, 1-2 h 

after the 7th oral dose of A2, a rising-dose carbon dioxide concentration was used 

to humanely terminate mice and femoral quadriceps muscles were removed and 

snap-frozen in liquid nitrogen. Pellet implantation, A2 administration and animal 

sacrifice were carried out by David Laber at AstraZeneca, however, I was present 

during these procedures. I was responsible for harvesting the skeletal muscle 

from these mice following sacrifice, and any further experimentation carried out 

on this tissue was done solely by me. AstraZeneca have granted us permission to 
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use data derived from these experiments in this thesis. 

 

6.3.9. Genecard analysis 

Taqman 348-well custom arrays were purchased from Applied Biosystems 

containing 45 custom genes and 3 house keeping genes. 500ng of cDNA was 

mixed with taqman universal PCR master mix (Applied Biosystems) and the array 

was run on an ABI 7900HT Fast Real-Time PCR System (Applied Biosystems).  

Data were obtained as Ct values which were normalised against 18s rRNA house 

keeping gene and fold changes calculated as described in section  2.12.2. Results 

were validated with standard Taqman RT-PCR. 

 

6.3.10. Real-time PCR 

Taqman RT-PCR was carried out on an ABI 7500 sequence detection system 

(Applied Biosystems, Warrington, UK). Reactions were performed in singleplex as 

described in section  2.11.2, and normalised against the 18s rRNA house keeping 

gene.  Primers and probes and for all genes were supplied by Applied 

Biosystems as pre-mixed ‘assay on demands’ (Applied Biosystems, Warrington, 

UK).  
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6.3.11. Immunoblotting 

Proteins were extracted from femoral quadriceps muscles and concentration 

determined as described in section  2.6.2. For IRS1, and p-IRS1, 40µg of protein 

was resolved on 8% SDS-PAGE gels. For PKB/akt and p-PKB/akt, 20µg of 

protein was resolved on 12.5% SDS-PAGE gels. Proteins were transferred to 

nitrocellulose membranes (for IRS1, p-IRS1 proteins transferred at 140mA for 2 

h, for PKB/akt and p-PKB/akt proteins transferred at 140mA for 1 h). Primary 

(anti-IRS1 and anti-pSer307 were purchased from Upstate, Dundee, UK, anti-

PKB/akt and anti-pThr308 PKB/akt [recognizing isoforms 1 and 2] were 

purchased from R&D Systems, Abingdon, UK) and secondary antibodies (Dako, 

Glostrop, UK) were used at a dilution of 1/1000. Membranes were re-probed for 

β-actin and primary and secondary antibodies used at a dilution of 1/5000 

(Abcam, Cambridge, UK). Bands were visualised using ECL detection kit (GE 

Healthcare, Bucks, UK). 

 

6.3.12. Statistical analysis 

Where data were normally distributed, unpaired student t-tests were used to 

compare single treatments to control using SigmaStat 3.1 (Systat Software, CA, 

US). If normality tests failed, non-parametric tests were used. One way ANOVA 

on ranks was used to compare multiple treatments, doses or times using 

SigmaStat 3.1. Statistical analysis on PCR data was performed on mean ∆Ct 

values. 
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6.4. Results 

6.4.1. Impact of A1 upon lipid metabolism in C2C12 myotubes 

To study the effects of selective 11β-HSD1 inhibition upon muscle lipid 

metabolism, C2C12 myotubes were treated with endogenous GCs in the 

presence of the selective 11β-HSD1 inhibitor, A1. In agreement with the effects of 

DEX (chapter 4), both CORT and 11DHC increased the mRNA expression of the 

key lipolytic genes ATGL (Ctrl vs. CORT: 0.46±0.05 vs. 1.01±0.04AU, p<0.01; 

Ctrl vs. 11DHC: 0.46±0.05 vs. 1.05±0.02AU, p<0.05) and HSL (Ctrl vs. CORT: 

0.046±0.005 vs. 0.100±0.012AU, p<0.05; Ctrl vs. 11DHC: 0.046±0.005 vs. 

0.086±0.013AU, p<0.05) (Table  6-1). In both cases, the effects of 11DHC were 

reversed by co-incubation with A1. The expression of FAS and ACC1 was 

downregulated by 11DHC only (2.73±0.50 vs. 1.99±0.15AU, p<0.05; 0.36±0.18 

vs. 0.29±0.15AU, p<0.05 respectively). GPAT expression was downregulated by 

CORT (0.40±0.01 vs. 0.25±0.01AU, p<0.05) and 11DHC (0.40±0.01 vs. 

0.28±0.02AU, p<0.05). The effects of the latter were reversed by A1. As with 

DEX, the expression of DGAT did not change with either CORT or 11DHC. Other 

genes analysed include: stearoyl-CoA desaturase 1 and -2 (SCD1, -2) (which 

catalysing the addition of double bonds into unsaturated fatty acids), neither of 

which appeared to be GC regulated. The expression of PPARα, PPARβ/δ and 

PPARγ, key transcription factors integral to transcription control of many lipid 

metabolic genes, was also analysed. With the exception of PPARβ/δ, the 

expression of these genes was either very low (PPARα) or undetected (PPARγ). 

Both CORT and 11DHC was without effect upon LPL expression. 
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Lipid 

metabolism

0.39 ± 0.100.47± 0.09 b0.45 ± 0.090.34 ± 0.09PPARβ/δ

0.0039 ± 0.0013 a0.0043 ± 0.0008 b0.0042 ± 0.0001 b0.0014 ± 0.0004PPARα

11.0 ± 2.310.5 ± 1.211.4 ± 1.312.1 ± 2.4SCD2

15.6 ± 4.415.7 ± 2.516.2 ± 2.512.6 ± 3.2SCD1

0.82± 0.010.69 ± 0.070.71 ± 0.040.63 ± 0.01DGAT

0.46 ± 0.01 d0.28 ± 0.02 a0.25 ± 0.01 a0.40 ± 0.01GPAT

0.015 ± 0.0050.012 ± 0.0030.016 ± 0.0030.008 ± 0.002ACC2

0.35 ± 0.180.29 ± 0.15 a0.32 ± 0.160.36 ± 0.18ACC1

3.63 ± 0.62 d1.99 ± 0.15 a2.24 ± 0.142.73 ± 0.50FAS

0.063 ± 0.009 a0.086 ± 0.013 a0.100  ± 0.012 a0.046 ± 0.005HSL

0.86 ± 0.01 a1.05 ± 0.02 a1.01 ± 0.04 b0.46 ± 0.05ATGL

0.96 ± 0.270.85 ± 0.190.84 ± 0.20 0.61 ± 0.37LPL

11-dehydrocorticosterone + A111-dehydrocorticosteroneCorticosteroneControlGene

mRNA expression (AU ± SE)

Lipid 

metabolism
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0.015 ± 0.0050.012 ± 0.0030.016 ± 0.0030.008 ± 0.002ACC2

0.35 ± 0.180.29 ± 0.15 a0.32 ± 0.160.36 ± 0.18ACC1

3.63 ± 0.62 d1.99 ± 0.15 a2.24 ± 0.142.73 ± 0.50FAS

0.063 ± 0.009 a0.086 ± 0.013 a0.100  ± 0.012 a0.046 ± 0.005HSL

0.86 ± 0.01 a1.05 ± 0.02 a1.01 ± 0.04 b0.46 ± 0.05ATGL

0.96 ± 0.270.85 ± 0.190.84 ± 0.20 0.61 ± 0.37LPL

11-dehydrocorticosterone + A111-dehydrocorticosteroneCorticosteroneControlGene

mRNA expression (AU ± SE)

 

Table  6-1 mRNA expression of genes involved in key lipid metabolic pathways in differentiated 

C2C12 myotubes, measured using real-time PCR following treatment with CORT (250nM, 24 h) or 

11DHC (250nM, 24 h) with or without selective 11β-HSD1 inhibitor, A1 (2.5µM). Cells 
were treated in the absence of insulin.  Data are the mean values from n=7 experiments 
and expressed as arbitrary units (AU)±S.E. (a p<0.05, b p<0.01 and c p<0.001 vs. control; 
d p<0.05 vs. 11DHC).  

 

6.4.2. Mouse in vivo studies with inhibitor A2  

Food intake, glucose tolerance and insulin sensitivity: Food intake decreased 

within the first 48 h in the A2 treated animals in comparison with vehicle-treated 

controls, however, by day 4 and for the remainder of the 28 day protocol, food 

intake did not differ between the groups (day 4: 15.5±0.4 vs. 16.5±0.4 kcal/day 

(A2 treated vs. vehicle treated), p=N.S) (Figure 6-1).  
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Figure  6-1 C57Bl6 mice treated with selective 11β-HSD1 inhibitor, A2, initially had reduced food 

intake compared to vehicle treated mice. Levels normalized by day 4 and remained constant and 
non-significant compared to vehicle treated mice for the duration of the treatment (28 days). 

 

At day 28, fasting blood glucose and insulin levels were lower in the A2 treated 

animals compared to both vehicle treated and pair-fed controls (glucose: 6.8±0.3 

vs. 7.4±0.35 vs. 7.7±0.3mmol/L, p<0.05; insulin: 0.60±0.10 vs. 0.82±0.14 vs. 

0.91±0.11ng/mL, p<0.05, A2 vs. vehicle vs. pair-fed vehicle) (Figure  6-2A and B).  

Glucose levels across an OGTT (area under curve, AUC) did not change 

significantly (22.4±0.46 vs. 24.2±0.42 vs. 22.9±0.45mmol/L.h (A2 vs. vehicle vs. 

pair-fed vehicle), p=NS) (Figure  6-2C). By contrast, insulin secretion was lower 

(AUC) (2.29±0.23 vs. 2.95±0.37 vs. 2.94±0.21ng/mL.h (A2 vs. vehicle vs. pair-fed 

vehicle), p<0.05) (Figure  6-2D). Similarly, HOMA values were lower (4.2±0.9 vs. 

6.0±0.98 vs. 7.1±0.9 (A2 vs. vehicle vs. pair-fed vehicle), p<0.05) (Figure 6-3) 
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Figure  6-2 Fasting plasma glucose (A) and insulin (B) levels were lower in C57Bl6 mice treated 

with the selective 11β-HSD1 inhibitor, A2, compared to vehicle treated controls (time 0). († p<0.05 
A2 vs. vehicle vs. paid-fed, vehicle treated). Area under curve (AUC) values calculated from (A) 
and (B) showed no change in plasma glucose levels (C) with A2 treatment compared to vehicle 
treated controls, by contrast insulin secretion (D) was reduced (* p<0.05) 
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Figure  6-3 C57Bl6 mice treated with the 11β-HSD1 inhibitor, A2, were more insulin sensitive than 

vehicle treated controls as indicated by HOMA index. (* p<0.05) 

 

Gene and protein expression in skeletal muscle from KK mice: Cortisone pellet 

implanted KK mice treated with A2 for 4 consecutive days had increased total 

IRS1 protein expression, decreased inhibitory IRS1 serine-307 phosphorylation 

and increased activating threonine-308 phosphorylation of PKB/akt in whole 

tissue quadriceps explants. Activating tyrosine-608 phosphorylation of IRS1 did 

not change (Figure  6-4).  
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Figure  6-4 In cortisone pellet implanted KK mice, the selective 11β-HSD1 inhibitor, A2, increases 

IRS1 total protein expression, decreases inactivating IRS1 serine-307 phosphorylation and further 
downstream enhances insulin stimulated threonine-308 phosphorylation of PKB/akt in quadriceps 
muscle explants. Representative western blots are shown (A2 vs. vehicle) 

 

Genecard analysis of quadriceps mRNA expression following A2 treatment is 

shown in Table 6-2. Positive findings were endorsed with real-time PCR (Figure 

6-5). A2 decreased 11β-HSD1 expression (0.48-fold) (Table 6-2, Figure 6-5), but 

was without effect upon GRα or H6PDH expression. In agreement with our 

protein expression data, IRS1 mRNA expression increased following selective 

11β-HSD1 inhibition, whereas IRS2 expression was unchanged (Figure 6-5). 

mRNA levels of the regulatory subunit of PI3K (p85) decreased 0.25-fold 

following treatment with A2 with no change in catalytic subunit (p110) expression 

(Table 6-2, Figure 6-5). A2 decreased expression of key target genes involved in 

de novo lipogenesis (ACC1 0.3-fold, DGAT 0.4-fold,), lipolysis (HSL: 0.3-fold; 
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ATGL: 0.39-fold) and lipid oxidation (ACC2: 0.6-fold) (Table 6-2, Figure 6-5). In 

addition, PDK4 increased 1.7-fold following A2 treatment (Figure 6-5).  
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 Gene of interest 
Cortisone + 

vehicle (mean 
∆Ct±se)  

Cortisone+A2 
(mean 

∆Ct±se) 

Fold change 
in gene  

Insr 15.9±0.2 16.5±0.2 0.65 
Irs1 16.9±0.1 16.6±0.1 1.27 
Irs2 17.2±0.2 16.3±0.8 1.93 
Pik3r1  (p85α) 14.9±0.2 16.9±0.4 0.25 
Pik3cb (p110β) 19.4±0.3 19.8±0.1 0.79 
Pdk1  15.9±0.2 16.9±0.1 0.49 
Akt1 16.3±0.1 17.1±0.2 0.59 
Akt2 17.7±0.3 18.2±0.3 0.74 
Prkcz (PKCζ) 19.2±0.3 20.6±0.6 0.37 
Prkci (PKCλ) 19.6±0.1 20.2±0.1 0.62 
Tbc1d1  15.7±0.3 16.5±0.1 0.58 
Tbc1d4 (AS160) 17.2±0.3 18.1±0.3 0.53 
Rab10 11.7±0.3 12.3±0.1 0.68 
Slc2a1 (GLUT-1) 16.8±0.2 17.0±0.1 0.91 
Slc2a4 (GLUT-4) 14.1±0.1 14.1±0.1 1.03 
Ptpn1 (PTP-1b) 17.8±0.1 18.8±0.1 0.52 
Ptpn11 (SHP2) 16.1±0.2 16.4±0.1 0.77 
Pten  15.8±0.1 16.6±0.1 0.60 
Ppp2r1a (PP2A) 14.9±0.2 15.2±0.1 0.81 
Socs1 21.5±0.4 21.2±0.4 1.20 
Socs3 19.4±0.2 19.4±0.1 0.98 
Frap1 (mTOR) 16.5±0.2 17.3±0.3 0.55 
Foxo1 16.9±0.2 17.4±0.1 0.75 
Foxo3a 15.9±0.1 16.7±0.5 0.58 
Prkaa2 (AMPK) 14.8±0.1 15.0±0.3 0.91 

Insulin 
signalling 
cascade 

Ppargc1a (PGC-1α) 16.9±0.2 17.1±0.1 0.93 

H6pd 15.6±0.1 16.2±0.3 0.66 
Hsd11b1 (11β-HSD1) 17.5±0.6 18.5±0.8 0.48 

Glucocorticoid 
metabolism 
and action Nr3c1 (GRα) 15.8±0.1 16.3±0.2 0.72 

Acaca (ACC1) 15.1±1.0 16.7±0.2 0.33 
Acacb (ACC2) 13.6±0.3 14.4±0.2 0.60 
Lpl 12.6±0.2 13.2±0.1 0.68 
Lipe (HSL) 16.4±0.6 18.1±0.1 0.30 
Pnpla2 (ATGL) 13.7±0.5 15.1±0.1 0.39 
Dgkd  (DGKδ) 21.3±0.5 21.4±0.1 0.97 

Lipid 
metabolism 

Pparg (PPARγ) 21.2±0.5 22.4±0.3 0.43 

Sptlc1 (SPT1) 17.8±0.1 18.6±0.0 0.59 
Ugcg (Glucosylceramide synthase) 18.8±0.1 19.5±0.1 0.61 
Asah1 (acid ceramidase) 19.0±0.1 19.3±0.1 0.82 
Lass1 16.9±0.1 17.3±0.1 0.77 

Ceramide 
metabolism 

Lass6 20.5±0.4 21.1±0.0 0.68 

Prkca (PKC-α) 16.6±0.2 16.6±0.1 0.94 
Prkcb1 (PKC-β) 22.7±0.3 22.8±0.3 0.96 
Prkcc PKC-γ) 22.6±0.1 23.1±0.7 0.69 

Other genes 

Ppara (PPARα) 18.7±0.3 19.0±0.1 0.85 

Ppib (cyclophilin B) 18.1±0.2 18.4±0.1 0.79 Internal 
controls Hprt1 16.5±0.2 17.1±0.0 0.69 

Table  6-2 Analysis of 45 pre-selected gene targets implicated in the pathogenesis of insulin 

resistance. Cortisone pellet implanted KK mice were treated with a selective 11β-HSD1 inhibitor, 
A2, or vehicle for 4 days prior to animal sacrifice (n=3 per group). Data presented as mean 

∆Ct±s.e. for both groups of animals relative to 18s as an internal house keeping gene, higher ∆Ct 
values corresponding with lower gene expression.  Fold-changes in gene expression were 
calculated as described in chapter 2. Specific target genes and all changes >2-fold increase or 
0.5-fold decrease vs. vehicle (highlighted in bold) were endorsed with real-time PCR (Figure 6-5). 
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Figure  6-5 Real-time PCR analysis endorsing observations from the genecard analysis presented 

in Table 6-2. Gene expression from whole tissue quadriceps explants obtained from cortisone 

pellet implanted KK mice treated for 4 days with the selective 11β-HSD1 inhibitor, A2 (white bars) 
or vehicle (black bars) (* p<0.05, ** p<0.01) (n=3 per group) 
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6.5. Discussion 

In this chapter, we have shown that selectively inhibiting 11β-HSD1 improves 

insulin sensitivity in vivo, consistent with previously published data (Alberts et al., 

2002; Alberts et al., 2003; Berthiaume et al., 2007a; Hermanowski-Vosatka et al., 

2005). Furthermore, we have found that 11β-HSD1 inhibitors not only restore 

IRS1 protein levels to control values, but also decrease inhibitory serine-307 

phosphorylation of IRS1 and enhance PKB/akt activation in vivo. These findings 

endorse our results from cell culture models and add more credence to the 

hypothesis that this may represent an important insulin sensitizing mechanism of 

these compounds. As reported in both chapters 2 and 3, GC-mediated 

modulation of PI3K subunit stoichiometry may represent an additional mechanism 

by which GC modulate the insulin sensitivity of skeletal muscle. The results 

presented in this chapter also endorse this hypothesis; since mice treated with 

inhibitor A2 have lower mRNA levels of the regulatory subunit of PI3K (p85) with 

respect to the catalytic subunit (p110), in contrast to the vehicle treated mice (p85 

monomers compete with the catalytically active p85-p110 heterodimer for binding 

IRS1).  

 

A2 also decreased lipogenic gene expression (ACC1 and DGAT), and increased 

FFA utilization (decreased ACC2 expression leading to a decrease in the 

malonyl-CoA mediated inhibition of β-oxidation) in agreement with published 

observations (Berthiaume et al., 2007b). Furthermore, decreased HSL and ATGL 

will afford decreases in FFA and DAG generation. Importantly, these mice were 

not fasted prior to sacrifice, thus some of the gene expression changes observed 
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here may be a consequence of GCs and insulin working in concert, in a manner 

analogous to that we demonstrated in cell culture (chapter 4). By contrast, the 

C2C12 myotube treated with A1 were not exposed to insulin during the 24 h 

treatment period, mimicking the fasted state. This may offer an explanation for the 

apparent opposite actions of A1 upon the gene expression of ACC1, FAS and 

GPAT in the C2C12 myotubes compared with the action of A2 upon the same 

genes in the cortisone-conditioned mice.  

 

We observed a 1.7-fold increase in PDK4 expression with A2 treatment in vivo. 

PDK4 is a negative regulator of the pyruvate dehydrogenase complex, limiting 

acetyl CoA generation. Rodents with deletion of PDK4 have increased glucose 

oxidation (Jeoung & Harris, 2008), and we have shown that DEX increases PDK4 

expression in C2C12 myotubes, endorsing published observations in human 

primary myocytes (Salehzadeh et al., 2009). The discrepancy where A2 

increases PDK4 may again reflect the complexities of working with whole animals 

versus cell culture models (i.e. the concerted action of GC with other factors such 

as insulin modulating gene expression). Importantly, the increase in PDK4 with 

selective 11β-HSD1 inhibitors, may further serve to drive lipid oxidation at the 

expense of glucose oxidation.  

 

The net effect of A2 will be to decrease intramyocellular lipid accumulation, as 

well as local FFA and DAG generation and, as a consequence, activation of DAG 

sensitive PKC isoforms will be decreased. This may further explain the reduced 

IRS1 serine-307 phosphorylation observed in the A2 treated mice. 
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Intramyocellular accumulation of ceramides has been strongly associated with the 

onset of insulin resistance in both rodents and humans (Adams et al., 2004; 

Straczkowski et al., 2004; Turinsky et al., 1990). Recently, GCs have been found 

to increase de novo ceramide synthesis (Holland et al., 2007). However, we 

observed no regulation of mRNA levels for genes involved in ceramide 

metabolism in our genecard analysis of A2 treated cortisone-conditioned mice. 

 

The in vivo studies presented in this chapter were designed by AstraZeneca for 

the purpose of measuring the pharmacokinetics of A2. Consequently, we had 

very little influence over their design. Numerous rodent studies looking into the 

metabolic impact of selective 11β-HSD1 inhibitors have found that they are most 

effective in rodent models that are prone to developing insulin resistance / type 2 

diabetes. The C57Bl6 mice used in the initial characterisation of the metabolic 

effect of A2, are prone to developing obesity, but are not the best model for these 

studies for the reason highlighted above. Consequently, the decision was made 

(by AstraZeneca) to undertake all additional experiments in KK/Ta Jcl mice, which 

are genetically predisposed to developing insulin resistance and type 2 diabetes.  

 

In summary, we have demonstrated that selective inhibition of 11β-HSD1 in vivo 

enhances IRS1 expression and reduces inhibitory serine-307 phosphorylation of 

IRS1, the net result of which is increased downstream activation of AKT leading 

to increased insulin sensitivity - endorsing our initial cell culture findings. 

Moreover, the insulin sensitising actions of these compounds may be mediated 

by reducing intramyocellular lipolysis, de novo lipogenesis and perhaps 

enhancing β-oxidation consistent with other reports (Berthiaume et al., 2007b).  



 

191 

7  Chapter 7 - Investigating the role of PKC 
Isoforms in GC-induced Insulin Resistance of 

Skeletal Muscle 
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7.1. Introduction 

In previous chapters we have demonstrated a clear link between GC exposure, 

serine-307 of IRS1 and insulin resistance in skeletal muscle, both in cell culture 

models and in vivo. In this chapter we will attempt to identify the mechanism by 

which GCs mediate these effects. 

 

Numerous kinases have been implicated in phosphorylating IRS1 at inhibitory 

serine residues, and their dysregulation has been implicated in the pathogenesis 

of insulin resistance. These include Jun kinase (JNK) (Aguirre et al., 2000), 

inhibitor of nuclear factor κB (NF-κB) kinase-β (IKKβ) (Gao et al., 2002), p70S6K 

(S6K1) (Harrington et al., 2004), the mammalian target of rapamycin (mTOR) 

(Ozes et al., 2001), extracellular signal-regulated kinase (ERK) (Bouzakri et al., 

2003) and certain protein kinase C (PKC) isoforms (Yu et al., 2002). As discussed 

previously, the intramyocellular accumulation of lipid intermediates, such as 

DAGs, is strongly associated with the activation of DAG-sensitive, novel PKC 

isoforms (most notably PKCθ), which go on to phosphorylate IRS1 at serine-307 - 

reducing insulin sensitivity (Yu et al., 2002). Furthermore, other DAG-sensitive 

PKC isoforms of the conventional subclass (specifically PKCα and β) have also 

been implicated in inhibiting insulin signal transduction by mediating serine 

phosphorylation of IRS1 (including serine-307 in the case of PKCα) (Chin, Liu & 

Roth, 1994; Liberman et al., 2008; Nawaratne et al., 2006). The impact of GCs 

upon the activation of these kinases in skeletal muscle has not been explored, but 

DEX has been found to activate conventional PKC isoforms (PKCα, and β) in 
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rodent adipocytes, and there inhibition (with use of a selective conventional PKC 

inhibitor) reversed the DEX-induced insulin resistance in these cells (Kajita et al., 

2000; Kajita et al., 2001). Since we have shown that GCs regulate 

intramyocellular lipid metabolism; potentially contributing to enhanced IMTG and 

DAG levels, we hypothesize that the mechanism of GC-induced insulin resistance 

is via activation of one or more of these PKC isoforms. 

 

7.2. Strategy of research 

Using a myristoylated pseudosubstrate peptide to inhibit PKCθ and an 

indolocarbazole compound to inhibit the conventional PKC isoforms (Gö6976), 

the effect of CORT upon the insulin sensitivity of C2C12 myotubes  was assessed 

using western blot analysis (total IRS1 and p-Ser307) and tritiated glucose 

uptake.  

 

Expression of the conventional PKC isoforms was measured in C2C12 

myoblasts, C2C12 myotubes and rodent tissue explants using real-time PCR.  

 

Using siRNA technology to knockdown the mRNA expression of the conventional 

PKC isoforms in C2C12 myotubes, the effect of CORT upon insulin sensitivity 

was assessed using western blot analysis (IRS1/pIRS1 and AKT/pAKT) and 

tritiated glucose uptake. 
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7.3. Materials and methods 

7.3.1. C2C12 cell culture 

Proliferating C2C12 myoblasts were cultured in DMEM supplemented with 10% 

FCS and seeded into 12-well TC plates. At 60-70% confluence, differentiation 

was initiated by replacing proliferation media with DMEM supplemented with 5% 

horse serum and differentiated for 8 days. Prior to treatment, cells were incubated 

in DMEM free from additives for 4 h. 

 

7.3.2. Protein kinase C inhibitors 

A cell permeable myristoylated pseudosubstrate of PKCθ (Calbiochem, 

California, US) was used to selectively inhibit this isoform (Sequence: Myr-Leu-

His-Gln-Arg-Arg-Gly-Ala-Ile-Lys-Gln-Ala-Lys-Val-His-His-Val-Lys-Cys-NH2 (Wang 

et al., 2009)  

 

The conventional PKC isoforms (α, βI, βII, and γ) were selectively inhibited using 

an indolocarbazole inhibitor, Gö6976, (Calbiochem, California, US) which is 

selective for calcium-dependent PKC isoforms (IC50= 7.9nM for rat brain) and 

does not affect the kinase activity of the calcium-independent PKCδ, ε, or ζ, even 

at micromolar concentrations (Martiny-Baron et al., 1993).  
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7.3.3. Cell treatment 

In cell culture experiments investigating the protein expression/ phosphorylation 

status of IRS1, C2C12 myotubes were initially washed out with serum free DMEM 

media (4 h) before CORT (1µM, 24 h) treatment with or without either a 

myristoylated PKCθ pseudosubstrate inhibitor (1µM, [highest concentration that 

did not induce apoptosis]) or a conventional PKC inhibitor (Gö6976) (5µM, 24 h), 

both added 10 mins prior to the addition of CORT. Media was spiked with human 

insulin (50nM) for the final 15 mins of the treatment period. 

 

7.3.4. Rodent protocol 

Male C57BL/6 mice (6-8 weeks of ages) were housed in standard conditions on a 

12 h / 12 h light-dark cycle with access to standard rodent chow and water ad 

libitum. All procedures were carried out in accordance with the UK Animals 

(Scientific Procedures) Act, 1986. On day of experiment mice were sacrificed by 

cervical dislocation then femoral quadricept muscles and brain tissue was 

removed and snap-frozen in liquid nitrogen for characterisation of mRNA 

expression. 

 

7.3.5. Glucose uptake  

Glucose transport was assessed by measuring uptake of a radiolabelled glucose 

tracer as described previously (Liu et al., 2001), and as described in section 

 2.3.2. C2C12 myotubes were initially washed with serum free DMEM media (4 h) 

before the cells were treated with CORT (1µM, 24 h) with or without the 
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conventional PKC inhibitor (Gö6976) (5µM, 24 h). Gö6976 was incubated on the 

cells 10 mins prior to the addition of CORT. Cells were washed 3 times with PBS 

then transferred to 0.9mL of KRB containing same treatments and incubated for 

10 mins. Cells were spiked with  0.5µg/mL insulin for 20 mins prior to the addition 

of 0.1mL KRB containing 6mM glucose combined with 37MBq/L of 2-deoxy-D-

[3H-glucose] (GE Healthcare, Bucks, UK) as a tracer. Radioactivity retained by 

cells was determined by scintillation counting. For all treatments glucose uptake 

was expressed as radioactivity retained by the cells in presence and absence of 

insulin.  

 

7.3.6. Immunoblotting 

Proteins were extracted from cell lysates and concentration determined as 

described in section  2.6.2. For both IRS1 and p-IRS1, 40µg of protein was 

resolved on 8% SDS-PAGE gels. Proteins were transferred to nitrocellulose 

membranes (both IRS1 and pIRS1 proteins transferred at 140mA for 2 h). 

Primary (anti-IRS1 and anti-pSer307 were purchased from Upstate, Dundee, UK) 

and secondary antibodies (Dako, Glostrop, UK) were used at a dilution of 1/1000. 

Membranes were re-probed for β-actin and primary and secondary antibodies 

used at a dilution of 1/5000 (Abcam, Cambridge, UK). Bands were visualised 

using ECL detection kit (GE Healthcare, Bucks, UK) and quantified with 

Genesnap by Syngene (Cambridge, UK). The ratio of p-IRS1 to β-actin was 

normalised to the ratio of IRS1 to β-actin. 
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7.3.7. siGLO- transfection indicator 

In order to optimise conditions for most the effective transfection, cells were 

treated with siGLO - a green fluorescent (6-FAM-labelled), double-stranded 

oligonucleotide (Thermofisher, Surrey, UK) which localises to the nucleus upon 

successful transfection. C2C12 myoblasts and myotubes were coincubated with 

siGLO (50nM) and 0, 1, 2, or 3µL/well of a lipid based transfection reagent 

(DharmaFECT3, Thermofisher, Surrey, UK), in serum free media, for 24 h after 

which time the media was removed, cells were fixed with 4% formaldehyde and 

nucleus stained with Hoechst 33342 (1:5000) (Invitrogen, paisley, UK). The 

intracellular location of siGLO was visualised using ArrayScan (Thermofisher, 

Surrey, UK) (Figure  7-1 and 7-2). 

siGLO (50nM) + TFR (1µL/well) siGLO (50nM) only siGLO (50nM) + TFR (2µL/well) siGLO (50nM) + TFR (3µL/well) siGLO (50nM) + TFR (1µL/well) siGLO (50nM) only siGLO (50nM) + TFR (2µL/well) siGLO (50nM) + TFR (3µL/well) 

 

Figure  7-1 Transfection efficiency assessed in C2C12 myoblasts using a range of lipid based 

transfection reagent concentrations (DharmaFECT3). Top panel: siGLO staining only, bottom 
panel: siGLO staining superimposed with nuclei positions (green circles). Although there does not 
appear to be a high degree of colocalisation, cells treated with the highest concentration of 
DharmaFECT3 had marginally more siGLO localised to the nucleus. (TFR= transfection reagent)  
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siGLO (50nM) + TFR (1µL/well) siGLO (50nM) only siGLO (50nM) + TFR (2µL/well) siGLO (50nM) + TFR (3µL/well) siGLO (50nM) + TFR (1µL/well) siGLO (50nM) only siGLO (50nM) + TFR (2µL/well) siGLO (50nM) + TFR (3µL/well) 

 

Figure  7-2 Transfection efficiency assessed in differentiated C2C12 myotubes using a range of 

lipid based transfection reagent concentrations (DharmaFECT3). Top panel: siGLO staining only, 
bottom panel: siGLO staining superimposed with nuclei positions (green circles). Although there 
does not appear to be a high degree of colocalisation, cells treated with the highest concentration 
of DharmaFECT3 had marginally more siGLO localised to the nucleus. (TFR= transfection 
reagent)  

 

7.3.8. Transient siRNA in C2C12 myoblasts and myotubes 

Predesigned short-interfering oligonucleotide (siRNA) sequences directed against 

mouse PKCα, PKCβ and PKCγ were purchased from Dharmacon (Thermofisher, 

Surrey, UK), each contains 4 different oligonucleotide sequences directed against 

separate regions of the target gene (ON-TARGETplus, SMARTpool) – 

maximising the chances of a high mRNA knockdown. Although, there are two 

distinct PKCβ isoforms (PKCβI and PKCβII), they are alternative splice products 

of the same gene (PRKB), thus siRNA directed against the primary transcript 

should be sufficient to knockdown the expression of both isoforms. In order to 

facilitate siRNA entry into the cells, a lipid based transfection reagent was used: 
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DharmaFECT3 (Thermofisher, Surrey, UK) (recommended by the manufacturer 

as most effective in transfecting C2C12 myoblasts). The optimal DharmaFECT3 

concentration that achieved the highest level of transfection was determined by 

using a fluorescent transfection indicator, as detailed above. C2C12 myoblasts 

were initially seeded into 12-well plates at 5x104cells/mL and incubated overnight 

at 37°C with 5% CO2. The PKC siRNA (100nM) was introduced in normal serum 

containing media and experimental controls, run in parallel, included: no 

treatment, negative control (non-targeting siRNA, 100nM), mock transfection 

(DharmaFECT3 without siRNA) and a positive control (siRNA directed against a 

highly expressed house keeping gene; cyclophilin B [ON-TARGETplus, 

SMARTPool, 100nM]). In a separate experiment, trialling a different approach, 

C2C12 myotubes were treated with siRNA (directed against cyclophilin B) 

containing novel modifications allowing for their uptake into the cell without the 

need for a transfection reagent (Accell, SMARTpool siRNA, Thermofisher, Surrey, 

UK). Here, the siRNA (100nM) was added to the cells using the manufacturers 

optimized siRNA delivery media (Thermofisher, Surrey, UK) supplemented with 

4.5g/L glucose and 3% horse serum. For further details regarding the duration 

and timing of siRNA treatments see the results section. 

 

7.3.9. RNA extraction  

Total RNA was extracted using Tri-reagent system, concentration determined 

spectrophotometrically at OD260 and integrity assessed by agarose gel 

electrophoresis. For reverse transcription (see section  2.9.2) 1µg of RNA was 

used. 



Chapter 7                                                                                                        Role of PKC in GC-induced Insulin Resistance  

 200 

7.3.10. Real-time PCR 

Cyclophilin B, PKCα, PKCβ and PKCγ mRNA levels were determined using an 

ABI 7500 sequence detection system (Applied Biosystems, Warrington, UK). 

Reactions were performed in singleplex as described in section  2.11.2, and 

normalised against the 18s rRNA house keeping gene.  Primers and probes and 

for all genes were supplied by Applied Biosystems as pre-mixed ‘assay on 

demands’ (Applied Biosystems, Warrington, UK).  

 

7.3.11. Statistical analysis 

Where data were normally distributed, unpaired student t-tests were used to 

compare single treatments to control using SigmaStat 3.1 (Systat Software, CA, 

US). If normality tests failed, non-parametric tests were used. One way ANOVA 

on ranks was used to compare multiple treatments, doses or times using 

SigmaStat 3.1. Statistical analysis on PCR data was performed on mean ∆Ct 

values. 
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7.4. Results   

Testing the hypothesis that PKC isoforms maybe responsible for GC-induced 

IRS1 serine-307 phosphorylation, co-incubation of C2C12 myotubes with a 

myristoylated PKCθ pseudosubstrate peptide inhibitor (PS) (1µM) was without 

effect upon the CORT (1µM, 24 h) induced IRS1 serine-307 phosphorylation 

(3.6±0.6 (CORT) vs. 3.2± 0.7 (CORT+PS), p=N.S) (Figure 7-3A). Similarly, the 

decrease in IRS1 total protein observed following CORT treatment was not 

recovered with this inhibitor (0.62±0.2 (CORT) vs. 0.60±0.1 (CORT+PS), p=N.S) 

(Figure 7-3A). By contrast, the conventional PKC inhibitor Gö6976 (5µM), 

decreased CORT-induced IRS1 serine-307 phosphorylation (3.49±0.5 (CORT) 

vs. 0.78±0.1 (CORT+Gö6976), p<0.05) (Figure 7-3). Total protein levels were not 

recovered (0.55±0.1 (CORT) vs. 0.55±0.04 (CORT+Gö6976), p=ns) (Figure 7-

3B). 
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Figure  7-3 The myristoylated PKCθ pseudosubstrate peptide inhibitor (PS) was without effect 

upon IRS1 serine-307 phosphorylation or IRS1 total protein levels following CORT treatment in 
C2C12 myotubes (a). By contrast, the conventional PKC inhibitor, Gö6976, blocked the effects of 
CORT upon IRS1 serine-307 phosphorylation, but had no effect upon IRS1 total protein levels (b). 
Cells spiked with insulin (50nM) for the last 15 mins of treatment. Data presented are the mean of 
n=5 experiments with representative western blots inserted above. Bands quantified relative to β-
actin as internal loading control and the ratio of p-IRS1 to β-actin was normalised to the ratio of 
IRS1 to β-actin. (* p<0.05 vs. Ctrl, † p<0.05 vs. CORT) (Ctrl=control, CORT=corticosterone, 

PS=pseudosubstrate inhibitor of PKCθ, Gö=Gö6976). 

 

Importantly, Gö6976 blocked the decrease in both basal glucose uptake (4.9±0.2 

(CORT) vs. 6.9±0.4dpmx103 (CORT+Gö6976), p<0.05) and total insulin-

stimulated glucose uptake (5.3±0.6 (CORT) vs. 6.8±0.6dpmx103 

(CORT+Gö6976), p<0.05) following CORT treatment (Figure 7-4), suggesting a 

critical role of conventional PKC isoforms in GC-induced insulin resistance of 

skeletal muscle.  
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Figure  7-4 CORT decreased both basal and total insulin-stimulated glucose uptake in C2C12 

myotubes. Coincubation with the conventional PKC inhibitor, Gö6976, reversed the effects of 
CORT. Gö6976 treatment alone was without significant effect. (* p<0.05) (Ctrl=control, 
CORT=corticosterone, Gö=Gö6976) 

 

All conventional PKC isoforms were detected in whole mouse tissue explants of 

quadricept muscle, with PKCα being the dominant isoform (Table  7-1).  Similarly, 

all isoforms were detected in C2C12 myoblasts, however, following differentiation 

only PKCα and PKCγ appeared to be expressed (Table  7-1). As with whole tissue 

quadriceps, PKCα was the most highly expressed isoform in the differentiated 

cells. Mouse brain was used as a positive control and displayed the highest 

expression of all three isoforms (Table  7-1). 
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11.4 ± 0.0122.2 ± 0.224.1± 0.515.4 ± 1.0PKC-γ

9.9 ± 0.0823.1. ± 0.9Not Expressed 23.0 ± 0.5PKC-β

12.6 ± 0.00116.0 ± 0.318.2 ± 0.115.4 ± 0.9PKC-α

BrainQuadriceptC2C12 myotubesC2C12s myoblastsGene

mRNA expression (∆Ct ± SE)

11.4 ± 0.0122.2 ± 0.224.1± 0.515.4 ± 1.0PKC-γ

9.9 ± 0.0823.1. ± 0.9Not Expressed 23.0 ± 0.5PKC-β

12.6 ± 0.00116.0 ± 0.318.2 ± 0.115.4 ± 0.9PKC-α

BrainQuadriceptC2C12 myotubesC2C12s myoblastsGene

mRNA expression (∆Ct ± SE)

 

Table  7-1 Comparative mRNA expression of the conventional PKC isoforms (α, β and γ). 

Expression in mouse brain tissue is provided as a quantitative reference. (Data are `expressed as 
∆Ct±S.E, n=4 experiments) 

 

To identify which specific conventional PKC isoform is involved in GC-induced 

insulin resistance, we attempted to transiently knockdown the expression of each 

isoform separately using siRNA. The effectiveness of the siRNA oligos was 

initially validated in C2C12 myoblasts where, after 24 h incubation, we achieved 

mRNA expression knockdown of 94% for Cyclophilin B (positive control); 88% for 

PKCα; 74% for PKCβ and 82% for PKCγ, with minimal off target effects (Figure 

 7-5). 

 

 

 

 

 

 

 

 

 

 



Chapter 7                                                                                                        Role of PKC in GC-induced Insulin Resistance  

 205 

0

20

40

60

80

100

120

N
o 

tre
at

m
en

t
ne

g

N
on

e-
ta

rg
et

in
g s

iR
NA

C
yc

lo
ph

illi
n 

B

PKC
-a

lp
ha

PKC
-b

et
a

PKC
-g

am
m

a

0

20

40

60

80

100

120

ffg
h

ne
g

N
on

e- t
ar

ge
tin

g 
si
R
N
A

C
yc

lo
ph

ilin

PKC
-a

lp
ha

PKC
-b

et
a

PKC
 g

am
m

aM.T. N.T.
siRNA

Cyclo B PKCα PKCβ PKCγNo
Treatment

M.T. N.T.
siRNA

Cyclo B PKCα PKCβ PKCγNo
Treatment

%
 m

R
N

A
 e

xp
re

s
s
io

n
 r

e
la

tiv
e
 t
o
 n

o
 t
re

a
tm

e
n

t

%
 m

R
N

A
 e

xp
re

s
si

o
n
 r

e
la

ti
ve

 t
o
 n

o
 t

re
a
tm

e
n
t

A B

0

20

40

60

80

100

120

N
o 

tre
at

m
en

t
ne

g

N
on

e-
ta

rg
et

in
g s

iR
NA

C
yc

lo
ph

illi
n 

B

PKC
-a

lp
ha

PKC
-b

et
a

PKC
-g

am
m

a

0

20

40

60

80

100

120

ffg
h

ne
g

N
on

e- t
ar

ge
tin

g 
si
R
N
A

C
yc

lo
ph

ilin

PKC
-a

lp
ha

PKC
-b

et
a

PKC
 g

am
m

aM.T. N.T.
siRNA

Cyclo B PKCα PKCβ PKCγNo
Treatment

M.T. N.T.
siRNA

Cyclo B PKCα PKCβ PKCγNo
Treatment

%
 m

R
N

A
 e

xp
re

s
s
io

n
 r

e
la

tiv
e
 t
o
 n

o
 t
re

a
tm

e
n

t

%
 m

R
N

A
 e

xp
re

s
si

o
n
 r

e
la

ti
ve

 t
o
 n

o
 t

re
a
tm

e
n
t

A B

 

0

20

40

60

80

100

120

N
o 

tre
at

m
en

t

ne
ga

tiv
e

N
on

e-
ta

rg
et

in
g 

si
R
N
A

C
yc

lo
ph

ill
in

 B

PK
C-a

lp
ha

PKC-b
et

a

PKC
-g

am
m

a

0

20

40

60

80

100

120

dd

ne
ga

tiv
e

N
on

e-
ta

rg
et

in
g 

si
R
NA

C
yc

lo
ph

illi
n 

B

PKC
-a

lp
ha

PKC
-b

et
a

PKC
-g

am
m

a
M.T. N.T.

siRNA
Cyclo B PKCα PKCβ PKCγNo

Treatment
M.T. N.T.

siRNA
Cyclo B PKCα PKCβ PKCγNo

Treatment%
 m

R
N

A
 e

xp
re

s
s
io

n
 r

e
la

ti
ve

 t
o
 n

o
 t
re

a
tm

e
n
t

%
 m

R
N

A
 e

x
p
re

s
s
io

n
 r

e
la

ti
ve

 t
o
 n

o
 t
re

a
tm

e
n
t

C D

0

20

40

60

80

100

120

N
o 

tre
at

m
en

t

ne
ga

tiv
e

N
on

e-
ta

rg
et

in
g 

si
R
N
A

C
yc

lo
ph

ill
in

 B

PK
C-a

lp
ha

PKC-b
et

a

PKC
-g

am
m

a

0

20

40

60

80

100

120

dd

ne
ga

tiv
e

N
on

e-
ta

rg
et

in
g 

si
R
NA

C
yc

lo
ph

illi
n 

B

PKC
-a

lp
ha

PKC
-b

et
a

PKC
-g

am
m

a
M.T. N.T.

siRNA
Cyclo B PKCα PKCβ PKCγNo

Treatment
M.T. N.T.

siRNA
Cyclo B PKCα PKCβ PKCγNo

Treatment%
 m

R
N

A
 e

xp
re

s
s
io

n
 r

e
la

ti
ve

 t
o
 n

o
 t
re

a
tm

e
n
t

%
 m

R
N

A
 e

x
p
re

s
s
io

n
 r

e
la

ti
ve

 t
o
 n

o
 t
re

a
tm

e
n
t

C D

 

Figure  7-5 siRNA directed against cyclophilin B (positive control) (a), PKCα (b), PKCβ (c) and 

PKCγ (d) in C2C12 myoblasts. (M.T.= Mock transfection [no siRNA], N.T. = non-targeting siRNA) 

 

In order to knockdown the mRNA expression of these PKC isoforms in 

differentiated C2C12 myotubes, we employed a variety of strategies: including 

introducing the siRNA before, during and after myocyte differentiation 

(summarised in Table  7-2). The highest level of knockdown we achieved was only 

21% for Cyclophilin B (positive control); 23% for PKCα and 6.2% for PKCγ, with 

minimal off target effects (Table 7-2, Figure 7-6) (N.B. PKCβ is not expressed in 

C2C12 myotubes, Table  7-1). The low mRNA knockdown observed in the 

differentiated cells is likely due to poor transfection efficiency; consequently, we 

have been unable to fully explore the precise role that conventional PKC isoforms 

play in GC-mediated insulin resistance in skeletal muscle.
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Figure  7-6 siRNA directed against cyclophilin B (positive control) (a), PKCα (b) and PKCγ (c) in 

C2C12 myotubes (graphical representations of selected results taken from Table  7-2; where 

highest mRNA knockdown was achieved). (M.T.= Mock transfection [no siRNA], N.T. = non-
targeting siRNA) 
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7.5. Discussion 

In this chapter, we have attempted to address the hypothesis that PKC isoforms 

are implicated in GC-induced insulin resistance of skeletal muscle. From our 

experiments with PKC inhibitors, we were able to show that PKCθ is unlikely to 

participate in GC-mediated serine-307 phosphorylation of IRS1. By contrast, 

inhibition of the conventional PKC isoforms successfully blocks GC-induced IRS1 

serine-307 and importantly, restores both basal and total insulin-stimulated 

glucose uptake. This inhibitor does however fail to restore IRS1 total protein 

levels. Although serine-307 phosphorylation is known to increase proteosomal 

degradation of IRS1 (Greene et al., 2003) this result, along with the results of 

chapters 4 and 6, points towards the possibility that GCs negatively impact upon 

IRS1 by two separate mechanisms: 1) genomic downregulation, and 2) 

enhancing serine-307 phosphorylation.  

 

Looking at the relative expression levels of the conventional PKC isoforms in 

C2C12 myotubes has revealed that PKCα is the most highly expressed, followed 

by PKCγ, with no detectable expression of PKCβ. Consistent with these findings, 

an identical pattern of expression has been observed in human primary myocytes 

(Boczan et al., 2000). PKCα is also the dominant isoform expressed in mouse 

muscle explants, however, unlike the above there is detectable PKCβ expression. 

 

Interestingly, PKCα has been implicated in GC-induced insulin resistance of 

adipocytes (Kajita et al., 2001), and in a separate study, this isoform has been 

shown to have an indirect involvement in IRS1 serine-307 phosphorylation 
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(Nawaratne et al., 2006). These results taken together suggest that PKCα is the 

likely candidate mediating the GC-induced insulin resistance of skeletal muscle, 

however, the possibility that a different PKC isoforms / ser/thr-kinases are 

responsible cannot be ruled out.  

 

Following on from our results using the conventional PKC inhibitor, we attempted 

to knockdown the expression of PKCα and PKCγ separately in C2C12 myotubes 

using siRNA - for the purpose of pinpointing the precise PKC isoform(s) involved 

in GC-induced insulin resistance. Upon successful knockdown our intention was 

to then looking at the effect of GCs upon IRS1/pIRS1, akt / p-akt and tritiated 

glucose uptake. Although we achieved a high level of knockdown for all isoforms 

in the undifferentiated myoblasts, we were unable to achieve a reasonable level 

in the differentiated myotubes, using a number of different strategies. Post-mitotic 

cells, including skeletal myotubes are notoriously difficult to transfect. 

 

In summary, although we have identified DAG-sensitive conventional PKC 

isoforms as likely candidate kinases mediating GC-induced insulin resistance of 

skeletal muscle, we have been unable to explore this possibility fully. 
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8.1. Discussion 

The rationale for our interest into the impact of GCs upon the insulin sensitivity of 

skeletal muscle is based upon the phenotype of GC excess. GC treatment 

induces whole-body insulin resistance in both rodents and humans (Larsson & 

Ahren, 1996), and since skeletal muscle takes up the majority of the circulating 

glucose, under insulin stimulation (DeFronzo et al., 1981), it seemed likely 

skeletal muscle was the major site of this action of GCs. However, since 

mechanistic detail regarding how GCs impinge upon the metabolic functions of 

skeletal muscle were lacking, further investigation was warranted.  

 

The interaction between GC and the insulin signalling cascade in skeletal muscle 

has only been examined in a limited number of studies, mostly in cultured 

myocytes. This has provided variable explanations for the induction of insulin 

resistance, as discussed in section  1.12.3 (Giorgino et al., 1993; Giorgino et al., 

1997; Giorgino & Smith, 1995; Rojas et al., 2003; Ruzzin et al., 2005; Saad et al., 

1993).  We have shown that GCs impact upon the insulin signalling cascade at 

several critical points (Figure  8-1); firstly, by direct modulation of mRNA gene 

expression, including: IRS1 downregulation, altered PI3K subunit stoichiometry 

(although this has not been backed up with protein data and thus robust 

conclusions cannot be drawn) and increased AS160 expression. Secondly, GCs 

increase inhibitory serine-307 phosphorylation of IRS1, which is likely to reduce 

its affinity for the insulin receptor and potentially enhance its proteosomal 

degradation. Collectively, these gene expression changes / phosphorylation 
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events act to reduce insulin stimulated glucose uptake into skeletal myocytes 

(Figure  8-1). 
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Figure  8-1 The insulin signalling cascade in skeletal muscle and how GCs potentially mediate 

insulin resistance based on the data presented in this thesis. 

 

Recently, accumulation of intramyocellular lipids have been identified as a marker 

of reduced insulin sensitivity and type 2 diabetes, in both rodents and humans 

(Koyama et al., 1997; Pan et al., 1997; van Loon et al., 2004), however, whether 

this is due to free fatty acid oversupply to skeletal muscle or reduced β-oxidation 

rates, or a combination of both is unknown. Although increased intracellular TAG 

is a marker of reduced insulin sensitivity, it is largely agreed that metabolites 

derived from these lipid stores are responsible for mediating the insulin 

resistance; these include long-chain fatty acyl-CoAs, DAGs and ceramides. 
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GCs potently regulate lipid metabolism in adipose tissue and liver, however, their 

precise role in the regulation of these processes in skeletal muscle has been 

poorly defined. We have shown that, in conditions mimicking the fasted state (i.e. 

in the absence of insulin), GCs decrease the rate of intramyocellular lipid 

accumulation, increase fatty acid release from intramyocellular lipid stores and 

upregulate the rate of fatty acid oxidation. The latter is vital for maintaining a high 

ATP/ADP ratio in this highly metabolically active tissue. Importantly, we have 

shown that some of these catabolic actions may not hold true under conditions 

mimicking the fed state (i.e. in the presence of insulin), in particular with respect 

to β-oxidation, where a GC-induced concentration-dependent decrease is 

observed. This concerted action of GCs and insulin has been reported before, in 

regulation of de novo lipogenesis (Wang et al., 2004) and glycogen metabolism 

(Lopez, Gomez-Lechon & Castell, 1984). Taking glycogen metabolism as an 

example, GC have been found to enhance both hepatic glycogen deposition as 

well as glycogenolysis, whereas insulin stimulates glycogen storage but inhibits 

glycogenolysis (Baque et al., 1996; Lopez et al., 1984). During fasting adrenal GC 

secretion increases, and under these conditions, in a low insulin environment, GC 

allow a more effective release of glucose from glycogen for use as fuel. By 

contrast, during re-feeding, when recovering from fasting, GC levels remain 

elevated and work in concert with insulin to promote glycogen re-accumulation 

(Lopez et al., 1984). In a similar way, the contrasting actions of GCs upon skeletal 

muscle β-oxidation may be a beneficial mechanism allowing effective generation 

of ATP from oxidation of free fatty acids during fasting. Conversely, during re-

feeding GCs promote recovery from fasting, by enhancing intramyocellular lipid 

accumulation – replenishing the depleted stores. In this respect it is easy to see 
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that if GC levels remain elevated over a sustained period of time (e.g. as a 

consequence of GC therapy or elevated skeletal muscle 11β-HSD1 expression), 

the resulting reduced rates of β-oxidation may favour the aberrant accumulation 

of intramyocellular lipids, as is observed in the skeletal muscle of insulin resistant 

individuals. In addition, since the majority of fatty acids utilised by the skeletal 

muscle are taken up from the circulation, and insulin resistance is often 

accompanied by increased circulating free fatty acids levels (Swislocki et al., 

1987), then this would only serve to exacerbate the problem.  

 

Elevated intramyocellular DAG is associated with reduced insulin sensitivity in 

skeletal muscle, by activating PKCθ which goes on to mediate inhibitory serine-

307 phosphorylation of IRS1 (Yu et al., 2002). We have shown that GCs may 

contribute to enhanced intramyocellular DAG accumulation by upregulating the 

expression of key lipolytic genes. This, in conjunction with the observed increase 

in serine-307 phosphorylation of IRS1 following GC exposure, lead us to 

investigate whether activation of DAG-sensitive PKC isoforms underpin GC-

induced insulin resistance. Our results indicate that inhibition of the conventional 

subclass of the PKC isozymes (PKCα, β, γ), rather than PKCθ, protects against 

GC-induced serine-307 phosphorylation of IRS1, and restore glucose uptake. 

Unfortunately, we were unable to pinpoint the precise conventional PKC isozyme 

responsible; although a previous study conducted in adipocytes points towards 

PKCα as the likely candidate kinase (Kajita et al., 2001). If future studies prove 

successful in identifying this critical mediator of GC-induced insulin resistance, 

then its targeted inhibition may offer a novel approach in the treatment of type 2 

diabetes. 
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Although there is unequivocal evidence that elevated circulating GC levels reduce 

whole-body insulin sensitivity (as demonstrated in Cushing’s syndrome), the role 

of 11β-HSD1 is emerging as a key player in the pathogenesis of insulin 

resistance and type 2 diabetes, particularly in light of the fact that circulating GC 

levels are not elevated in these conditions. Importantly, the expression of this 

enzyme has been found to be increased in myotubes extracted from type 2 

diabetic individuals (Abdallah et al., 2005; Whorwood et al., 2002), suggesting 

that GCs, generated locally within skeletal myocytes, may contribute to the 

reduced insulin sensitivity.  

 

In this thesis we have confirmed the importance of 11β-HSD1 as a critical 

regulator of skeletal muscle insulin sensitivity – since its targeted inhibition, using 

selective compounds, not only reduces inhibitory serine-307 phosphorylation of 

IRS1 and increases downstream activating AKT phosphorylation, but also has a 

potentially insulin sensitising impact upon intramyocellular lipid metabolism; by 

reducing both de novo lipogenesis and lipolysis, which may afford decreases in 

IMTG and DAG levels.  

 

In conclusion, we have described novel mechanisms by which GCs regulate 

skeletal muscle insulin sensitivity and lipid metabolism. We propose that both 

increased circulating, and intramyocellularly generated, GCs induce skeletal 

muscle insulin resistance by impacting upon the insulin cascade at several critical 

points: IRS1, PI3K and AS160 (Figure  8-1). In addition, we suggest that GC have 

a direct effect upon intramyocellular de novo lipogenesis, lipolysis and β-

oxidation, co-ordinating lipid accumulation and loss in conjunction with insulin – 
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underpinning their insulin resistance-inducing actions. Furthermore, we have 

identified a critical role for 11β-HSD1 in the regulation of skeletal muscle insulin 

sensitivity, and have provided new mechanistic detail regarding the known insulin 

sensitizing actions of selective 11β-HSD1 inhibitors, and thus provide further 

support for their use in the treatment of type 2 diabetes. 
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The work presented in this thesis has given us a great deal of insight into the role 

GCs play in the insulin sensitivity of skeletal muscle, however, since this is not an 

exhaustive study, there remains a number of avenues that warrant further 

attention in order to gain a greater understanding of this topic. Indeed, our work 

has raised several interesting questions which we will explore in future studies. In 

this chapter, we will discuss the future direction we believe this research should 

follow – preliminary data will be presented where possible.   

 

9.1. Impact of exogenous 11DHC/CORT and 11βHSD1 knockout 

upon skeletal muscle insulin sensitivity in vivo 

In chapter 6, we showed that selective 11β-HSD1 inhibition enhances whole body 

insulin sensitivity in vivo, by reducing inhibitory serine-307 phosphorylation of 

IRS1 and increasing activating PKB/akt phosphorylation, whilst also impacting 

upon the expression of numerous genes involved in intramyocellular lipid 

metabolism. Although these findings have gone some way to elucidating the role  

that GCs/11β-HSD1 play in the insulin sensitivity of rodent skeletal muscle, 

further in vivo experiments are warranted to include appropriate controls (e.g. 

none GC treated mice), and to incorporate the 11β-HSD1 knockout mice which, 

despite previously being shown to be insulin sensitive (Morton et al., 2001), has 

not been characterised in terms of skeletal muscle insulin sensitivity.  Our 

intention was to undertake these experiments as part of this thesis, but due to the 

fact that our 11β-HSD1 null colony became infected with pin worm (requiring all 

mice to undergoing an 8 month an anti-pin worm drug treatment; which 
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unfortunately had the side effect of inhibiting CYP3A4 activity, and thus interfering 

with GC metabolism) complete optimisation of these experiments before the 

submission of this thesis was not possible.  We were, however, able to carry out a 

pilot study which involved exposing wild-type and 11β-HSD1 knockout mice to 11-

DHC / placebo for 21 days, by subcutaneous implantation of slow release GC 

pellets. Aspects of insulin sensitivity were measured using glucose tolerance 

testing (GTT) and western blot analysis looking at skeletal muscle PKB/akt 

phosphorylation. In addition, the impact of these treatments upon total body 

weight, tissue weight and circulating 11DHC/corticosterone levels was also 

assessed. 

 

9.1.1. Materials and methods 

9.1.1.1. Experimental design 

Wild-type and 11β-HSD1 null mice (generated in-house by G. G. Lavery) (6-12 

weeks of age) had free access to water and irradiated RM3 (E) diet composed of 

11.5Kcal% fat, 27Kcal% protein and 62Kcal% carbohydrate (Special Diets 

Services, Witham, UK). Mice were housed with a standard light cycle (6am on 

6pm off). For a schematic representation of this experiment see Figure  9-1. On 

day 1 of the experiment, slow-release 11DHC / placebo pellets were implanted 

subcutaneously (see below for specific protocol). Blood was withdrawn from tail 

vein nicks at 12pm on day 10 - for determination of mid-way 11DHC and CORT 

plasma concentrations via LC-MS. On day 17, glucose tolerance was assessed 

via glucose tolerance testing, following a 4 h fast (see below for specific protocol). 
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On day 21, mice were fasted (4 h) before a standardized dose of insulin (2U/Kg) 

was administered via intraperitoneal injection to activate the insulin signaling 

cascade. 10 mins post injection; mice were anaesthetised and humanly sacrificed 

by exsanguination (cardiac puncture). Blood plasma was snap frozen in liquid 

nitrogen for determination of circulating CORT and 11DHC levels via LC-MS. 

Tissue was harvested and weighed before being snap frozen in liquid nitrogen. 

Short fasting of 4 h (rather then the standard 12 h) was used to avoid the mice 

becoming so stressed that their endogenous GC levels impinged upon their 

insulin sensitivity. Mice were weighed at regular intervals throughout the 

experiment. 

 

GTT

� 4 hour fast
� IP 2mg/g glucose
� Plasma gluose measured at     
0 15 30 60 90 120 mins

weigh weigh weighweighweighweigh

TERMINAL PROCEDURE

� 4h fast
� IP Insulin (2U/kg, 10 mins) 
� anesthetise 
� cardiac puncture (for blood)
� Tissue weigh/ collection

• 11DHC or placebo 
pellet implantation

Week 1 Week 2 Week 3

Blood collection

weigh weigh

GTT

� 4 hour fast
� IP 2mg/g glucose
� Plasma gluose measured at     
0 15 30 60 90 120 mins

weighweigh weighweigh weighweighweighweighweighweighweighweigh

TERMINAL PROCEDURE

� 4h fast
� IP Insulin (2U/kg, 10 mins) 
� anesthetise 
� cardiac puncture (for blood)
� Tissue weigh/ collection

• 11DHC or placebo 
pellet implantation

Week 1 Week 2 Week 3

Blood collection

weighweigh weighweigh

 

Figure  9-1 Schematic representation of the protocol carried out on both wild-type and 11β-HSD1 

knockout mice. (GTT= glucose tolerance test) 

 

 

 

 

 



Chapter 9  Future Directions 

 221 

9.1.1.2. Slow release GC pellet implantation 

We decided upon using slow release GC pellets, implanted subcutaneously, as 

the method for administering GC to our mice - since this method would provide a 

controlled and continuous release of the steroids throughout the treatment period, 

avoiding fluctuations in the circulating levels associated other delivery methods, 

such as daily injections or spiking drinking water. 

 

Mice were anaesthetised by inhalation of 2-3% v/v isoflurane (vaporised by 

oxygen at 1.6 litre/minute flow rate) and 5mg slow-release (60-day) 11-

DHC/vehicle pellets (approximately 4mg/kg/day in a 20g mouse) were implanted 

subcutaneously in the lower back (Innovative Research of America, Sarasota, 

USA). Wounds were closed with staples which were removed after 7 days. 

 

9.1.1.3. Glucose tolerance test (GTT) 

Mice were fasted from 8am until 12pm (4 h), before glucose (2g/kg in 0.9% 

saline) was administered via intraperitoneal injection (IP). Plasma glucose levels 

were assessed from tail vein nicks using a hand-held glucometer (Roche, 

Sussex, UK), prior to glucose administration (fasting levels), and at 15, 30, 60, 90 

and 120 mins post glucose injection. Plasma glucose levels were plotted against 

time and the areas under the curves (AUCs) were calculated using trapezoidal 

integration. 
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9.1.1.4. Activation of the insulin signalling cascade (terminal procedure) 

On day 21 post pellet implantation, mice were fasted for 4 h (from 8am until 

12pm) before insulin (2U/Kg in 0.9% saline) was administered via intraperitoneal 

injection (IP). 10 mins post injection, mice were anaesthetised by inhalation of 2-

3% v/v isoflurane (vaporised by oxygen at 1.6 litre/minute flow rate) and were 

humanly sacrificed by exsanguination (cardiac puncture). Tissue was quickly 

harvested, weighed then snap frozen with liquid nitrogen. 

 

Total PKB/akt

p-Thr308 PKB/akt

(activating)

‒ + ‒ + ‒ +

Insulin 

Total PKB/akt

p-Thr308 PKB/akt

(activating)

‒ + ‒ + ‒ +

Insulin 

 

Figure  9-2 To demonstrate that we can activate the insulin signalling cascade in skeletal muscle in 

vivo: C57Bl6 mice were fasted for 4 h before insulin (2U/Kg in 0.9% saline) or vehicle (0.9% 
saline) were administered via intraperitoneal injection. 10 mins post injection, mice were humanely 
sacrificed by cervical dislocation, and femoral quadriceps were removed and quickly snap frozen 
in liquid nitrogen. Western blot analysis was employed to measure total / activating threonine-308 
phosphorylation of PKB/akt. 
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9.1.1.5. Immunoblotting 

Proteins were extracted from femoral quadriceps muscles, and concentration 

determined as described in section  2.6.2. For PKB/akt and p-PKB/akt, 20µg of 

protein was resolved on 12.5% SDS-PAGE gels. Proteins were transferred to 

nitrocellulose membranes (for PKB/akt and p-PKB/akt proteins transferred at 

140mA for 1 h). Primary (anti-pThr308 PKB/akt [recognizing isoforms 1 and 2] 

were purchased from R&D Systems, Abingdon, UK) and secondary antibodies 

(Dako, Glostrop, UK) were used at a dilution of 1/1000. Secondary antibodies 

used at a dilution of 1/5000 (Abcam, Cambridge, UK). Bands were visualised 

using ECL detection kit (GE Healthcare, Bucks, UK). 

 

9.1.1.6. CORT and 11-DHC analysis of mouse plasma and pellets. 

The steroids were extracted from 100µL of mouse plasma, by liquid-liquid 

extraction using MTBE.  The mouse plasma was heated at 50°C for 5 mins after 

which 1mL of MTBE was added.  The mixture was then vortexed and centrifuged 

at 1200rpm for 5 mins.  The MTBE layer was removed, evaporated to dryness 

and reconstituted in 100µL of a 50/50 methanol/water solution. 

 

Pellets were dissolved in 1mL of water.  1ml of MTBE was added and the mixture 

was then vortexed and centrifuged at 1200rpm for 5 mins.  The MTBE layer was 

removed, evaporated to dryness and reconstituted in 1mL of a 50/50 

methanol/water solution, 10µL of this solution was subsequently diluted into 1mL 

of 50/50 methanol/water before LC/MS/MS analysis. 
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The steroid extract was analysed using LC/MS/MS (Xevo TQ mass spectrometer 

combined with an acquity uPLC system) with an electro-spray ionisation source in 

positive ion mode.    The extraction efficiency was >85%.  Steroids were eluted 

from a BEH C18 2.1 x 50mm 1.7µm column using a methanol/water gradient 

system, solvent A was water 0.1% formic acid, and B was methanol 0.1% formic 

acid.  The flow rate was 0.6mL/min and starting conditions were 45% B 

increasing linearly to 75% B over 5 mins.   

 

Steroids were quantified via a linear regression method relative to a calibration 

series, the assay was linear for both corticosterone and 11-dehydrocorticosterone 

from 200 to 1ng/mL. Intra assay reproducibility RSD was <15%.    

 

Steroids were positively identified by comparison of retention times and mass 

transitions to steroid standards.  Two mass transitions were used to positively 

identify each steroid (qualifier ion in italics).  

  

Steroid Mass Transitions Cone Voltage Collision Energy 

Corticosterone 
347.18 > 329.16 

347.18 > 293.184 
26 
26 

14 
16 

Dehydrocorticosterone 
345.18 > 120.95 
345.18 > 242.12 

30 
30 

24 
32 
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9.1.2. Results of pilot study 

Glucose tolerance was assessed by glucose tolerance testing (Figure  9-3A). 

Glucose levels did not change significantly (area under curve, AUC) between 

wild-type placebo treated and wild-type 11DHC treated mice (1.18±0.01 vs. 

1.05±0.02AUCx103, p=ns) (Figure  9-3A and B). 11β-HSD1 knockout  mice were 

more insulin sensitive than wild-type mice (0.85±0,01 vs. 1.18±0.01AUCx103, 

p<0.05) (Figure  9-3A and B), consistent with previously published observations 

(Morton et al., 2001). 11β-HSD1 knockout 11DHC treated mice were unusually 

more insulin resistant than the placebo treated 11β-HSD1 knockout mice 

(0.85±0.01 vs. 1.37±0.02AUCx103, p<0.05) (Figure  9-3A and B). 
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Figure  9-3 Glucose tolerance testing carried out in wild-type and 11β-HSD1 knockout mice treated 

with either 11DHC or placebo pellets. (A) Plasma glucose levels vs, time plots (B) Calculated 
AUCs. (* p<0.05 WT placebo vs. WT 11DHC, † p<0.05 KO placebo vs, KO 11DHC) (n=4 per 
treatment group) 
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Activation of the insulin signalling cascade in the skeletal muscle was assessed 

by measuring total PKB/akt levels / activating threonine-308 phosphorylation of 

PKB/akt, however, no consistent results were obtained (Figure  9-4). 

 

Total PKB/akt

p-Thr308 PKB/akt

(activating)

Wild-type 11βHSD1 KO Wild-type 11βHSD1 KO

Veh 11DHC Veh 11DHC Veh 11DHC Veh 11DHC

Total PKB/akt

p-Thr308 PKB/akt

(activating)

Wild-type 11βHSD1 KO Wild-type 11βHSD1 KO

Veh 11DHC Veh 11DHC Veh 11DHC Veh 11DHC

 

Figure  9-4 Western blot analysis looking at total PKB/akt and activating PKB/akt threonine-308 

phosphorylation in the skeletal muscle harvested from wild-type and 11β-HSD1 knockout mice 
treated with either 11DHC or placebo pellets. 

 

Wild type placebo treated mice steadily gained weight through the treatment 

period, culminating in a 6% increase overall by day 21 (p<0.05) (Figure  9-5). By 

contrast, the 11DHC treated wild type mice lost weight from day 1 post pellet 

implantation, and total body weight remained lower than the placebo treated wild 

type mice throughout the treatment period (Figure  9-5). There was no clear 

difference in body weights between the placebo treated 11β-HSD1 knockout mice 

and the11DHC treated11β-HSD1 knockout mice (Figure  9-5). 
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Figure  9-5 Total body weight plotted against time. (n=4 per treatment group) 

 

Between treatment groups, there was no difference in skeletal muscle tissue bed 

weights (Figure  9-6A), nor in the weights of the liver, kidney or gonadal fat pads 

(Figure  9-6B). 
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Figure  9-6 Tissue bed weights. (n=4 per treatment group) 
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To determine whether implantation of 5mg, 60-day release 11DHC pellets was 

sufficient to elevate circulating 11DHC levels, compared to the placebo treated 

mice, terminal plasma 11DHC and CORT levels were measured by LC-MS 

(Figure  9-7 A and B). Although the 11DHC pellets contained significant amounts 

of the inactive GC (8329±2587nM) compared to the placebo pellets (levels 

undetectable) (Figure  9-7C), implantation subcutaneously failed to elevate 

circulating 11DHC levels in both wild-type and 11β-HSD1 knockout mice (Figure 

 9-7A). Unusually, 11DHC levels appeared to be higher placebo treated mice. 

Furthermore, CORT levels mirrored that of the 11DHC in these mice (Figure 

 9-7B). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  9-7 LC-MS was used to measure 11DHC levels (A) and CORT levels (B) in the terminal 

plasma harvested by cardiac puncture on day 21 of the experiment.  11DHC and CORT levels 
were also assessed in the 5mg, 60-day release 11DHC pellets (C). N.B the placebo pellets were 
also tested but contained undetectable amounts of 11DHC / CORT.   
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9.2. Discussion 

The results obtained from this pilot study have demonstrated the complexities of 

working with whole animal models. Clearly, the mice implanted with 11DHC 

pellets did not have elevated circulating levels as was expected. One possible 

explanation for this could that the pellets released all their steroids early on during 

the treatment period, and thus by the 3rd week no impact upon insulin sensitivity 

or circulating levels was observed. Reassuringly, the 11β-HSD1 knockout, 

placebo-treated mice were significantly more insulin sensitive than the wild-type, 

placebo-treated mice, consistent with previously published observations (Morton 

et al., 2001). Future experiments may benefit from using slow-release GC pellets 

containing the human GC equivalents; cortisone / cortisol, a longer release half 

life (~90 days) and shorter treatment duration. Indeed, we have had some 

success using this strategy, as demonstrated in chapter 6. This would also allow 

us to distinguish between the circulating endogenous GCs (released by the HPA-

axis) and the circulating GCs arising from the treatment. However, this approach 

is less physiologically relevant. Once we have optimised this protocol, we intend 

to carry out similar rodent experiments using selective 11β-HSD1 inhibitors. 
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9.3. Identification of the conventional PKC isoform mediating GC-

induced insulin resistance in skeletal muscle 

Although we have shown that inhibition of the conventional PKC isoforms blocks 

GC-induced serine-307 phosphorylation of IRS1, and importantly, restores 

glucose uptake, identification of the precise PKC isoform responsible for 

mediating these effects was not possible with the methods employed in this 

thesis. Future studies may benefit from using a viral transfection method, e.g. 

lentivirus-mediated siRNA delivery, which allows for a greater transfection 

efficiency in order to identify which PKC isoform(s) is involved. Alternatively, since 

PKC translocates to the plasma membrane upon activation, probing membrane 

fractions with antibodies directed against specific PKC isoforms by western blot 

may be beneficial. If these methods prove successful, carrying these experiments 

forward into a rodent model would be the next approach. These could include 

treating mice with a commercially available PKC inhibitor (such as Go6976, if cell 

culture results confirm that a conventional PKC isoform is involved) and 

identifying whether this protects from GC-induced insulin resistance. Alternatively, 

PKC knockout mice could be employed in similar experiments. Indeed, PKCα 

knockout mice are known to be insulin sensitive (Leitges et al., 2002), however, 

whether this protects them from GC-induced insulin resistance remains to be 

investigated. 
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9.4. Further investigation into the impact of GC upon 

intramyocellular lipid metabolism 

In chapters 4 and 6 we showed that the actions of GCs upon intramyocellular lipid 

metabolism vary depending on whether or not insulin is present. For example, in 

the absence of insulin, GCs appear to increase the rate of β-oxidation, consistent 

with its known role as a catabolic effector, however, in the presence of insulin GC 

decreased β-oxidation rates. Although we have shown that GC regulate the 

mRNA expression of numerous genes involved in intramyocellular lipid 

metabolism, further investigation is warranted to identify the mechanism by which 

GC, and the combination of GC and insulin, regulate these metabolic pathways. 

Specifically, we intend to focus our attention upon measuring total protein levels / 

phosphorylation status of key enzymes known to regulate lipogenesis (ACC1, 

FAS); β-oxidation (ACC2, CPT1) and lipolysis (HSL, ATGL) as well as other key 

enzymes (AMPK, CAMKK). Employing phosphoproteomics might be a useful 

technique for this.  

 

Importantly, we intend to obtain a functional readout for lipolysis in the C2C12 

myotubes, in order for us to fully elucidate the impact of both GC and GCs with 

insulin on this pathway. Currently, we can measure lipolytic rates in Chub S7 

cells, using a colorimetric assay which measures glycerol release, but obtaining 

consistent meaningful results in C2C12 myotubes has proved problematic thus 

far.  
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As we have discussed throughout this thesis, the accumulation of lipid 

metabolites, such as long-chain fatty acyl-CoAs, DAGs and ceramides are 

strongly associated with the onset of insulin resistance, and there accumulation 

may underpin the insulin resistance inducing effects of GCs. Consequently, we 

will attempt to measure the abundance of these metabolites using liquid 

chromatography-mass spectroscopy (LC-MS) which we have set up in house. 
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