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Abstract

This thesis deals with three topics in Harmonic Analysis:

1. Sharp restriction theory;

2. Sparse domination for square function operators;

3. Two weight theory for the Bergman projection.

In the first part we study some sharp inequalities that arise composing a k-plane trans-

form with the square of the Fourier extension operator from the paraboloid. We study

the sharp form of these inequalities. We compute the optimal constants and characterise

maximisers.

The second and main part of this thesis develops on sparse domination for square

function operators. In particular we derive a sparse domination in form under minimal

testing conditions. We called this domination a “quadratic” as it dominates the non-linear

operator (Sf)2 rather than Sf . This produces optimal weighted estimates for the domi-

nated square functions.

We show that a quadratic domination holds also for non-integral square functions as-

sociated with a general elliptic operator L. This refines and improves the domination in

[BFP16] when the operator is a square function.

The last part of the thesis studies the Bergman projection P on the complex unit

ball Bd in Cd. We derive sufficient conditions for two weight estimates for P via sparse

domination. These conditions are given in terms of “bumped” Orlicz averages of the two

weights. On the way, we also derive mixed B2–B∞ estimates for the Bergman projection

on L2(Bd).
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Notation in this thesis

The results that are contributions by author are indicated with letters: A, B, C, . . . .

Other results are indicated with numbers, as the equations, using (Chapter.section.#).

For two positive quantities X and Y we will write X . Y to mean that there exists

a constant C > 0 such that X ≤ CY . We write X h Y when also the reverse inequality

Y . X holds, and so the quantities X and Y are equal up to constants.



Symbols

D dyadic system

〈f〉Q :=

 
Q

f average of the function f over the set Q

〈f〉σQ weighted average of the function f over the set Q with respect to the measure σ dx

S sparse family

1Q indicator function on the set Q





CHAPTER 1

INTRODUCTION

Dove c’è gusto, non c’è perdenza.

1.1 Sharp restriction theory

One of the main tools used in harmonic analysis is the Fourier transform. It is known,

by the Hausdorff–Young theorem, that it maps Lp to Lp′ , for 1 ≤ p ≤ 2, where p′ = p
p−1

.

However, the Fourier transform is not surjective on these spaces, and a function in its

image is more regular than a generic element in Lp′ . Indeed, unlike a generic function in

Lp
′ , the Fourier transform of a function in Lp can be meaningfully restricted to curved

hypersurfaces, although these have zero Lebesgue measure. The so-called “restriction es-

timates” quantify this phenomenon.

These estimates have important applications to dispersive PDEs, such as Schrödinger

and wave equations. Solutions to these equations can be seen as Fourier transforms of

functions supported on characteristic hypersurfaces, thus enabling the use of restriction

estimates to obtain meaningful bounds. This procedure is called “Fourier extension”.

Sharp restriction theory aims to compute the norms of these Fourier extension oper-
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ators. It also seeks to characterise functions that achieve maximal norm; such functions

are called maximisers.

Example 1.1.1. The Fourier extension from the parabola τ = ξ2 corresponds to the time

evolution of the Schrödinger equation i∂tu = ∂2
xu. Gaussians are maximisers in dimension

d = 1, 2, and it is conjectured that maximisers are gaussians in every dimension.

Despite all the efforts made so far, this conjecture remains open: maximisers are

known only for the simplest surfaces in low dimension. The latest research directions

try to find new methods to obtain sharp inequalities. Among these avenues, there are

the heat flow techniques [BBCH09] and new tomography bounds for Fourier extensions

[BBF+18; BV20; BN21]. These recent works investigate bounds for the Fourier extension

operator composed with a k-plane transform.

Our first result is a sharp inequality of this kind, which holds in any dimension

d ≥ 3. It involves the Fourier extension from the paraboloid composed with the (d− 2)-

plane transform Td−2, which is the operator that averages a function on a given (d− 2)-

dimensional plane. To state it, we denote by Ad−2,d the collection of all affine subspaces

of Rd of codimension 2, which is the domain of Td−2; while e−it∆ is the solution operator

of the free Schrödinger equation.

Theorem A. Let d ≥ 3. The following estimate:

‖Td−2(|e−it∆f |2)‖L2(R×Ad−2,d) ≤ Cd‖f‖2
L2(Rd)

is saturated only by gaussians and the optimal constant is

Cd =

(
(d− 2)

πd/2

Γ(d/2)

)1/2

.

The inequality in Theorem A follows by composing Strichartz estimates for the Fourier

extension operator and known Lp bounds for the operator Td−2. The novelty is the sharp
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form of the inequality and the characterisation of maximisers.

Remark 1.1.2. Some maximisers for the Lp inequality for Td−2 are known [Dro14] and they

are not gaussian, while the Fourier extension inequality from the paraboloid in higher

dimension is not known in sharp form, and its maximisers have not been characterised.

We give a proof of Theorem A in Chapter 2.

Other k-plane Strichartz estimates in [BBF+18] have a weight in the L2 norm on

the right hand side. The investigation of these weights in Fourier extension inequalities

has contributed in leading the author’s attention to more general weighted estimates.

From a broader point of view, weighted estimates — with optimal dependence on the

characteristic of the weight — can be obtained via a powerful method today popular as

sparse domination, which is having an incredible impact on harmonic analysis.

1.2 Background on weights and sparse domination

This section presents some background material in order to state our main results.

Weights appear in a variety of situations: for example, on a bounded domain, weights

may arise as the Jacobian of a transformation or perturbation of the domain itself. They

have many applications to PDEs [FKP91], approximation theory, quasiconformal theory

[AIS01; PV02], complex analysis and operator theory [APR17].

In this thesis we call weight a positive, locally integrable function. We are interested

in understanding how the norm of the operator depends on the weight in the underlying

measure. It was known [HMW73] that for certain singular integral operators, like the

Hilbert transform, for 1 < p <∞ the finiteness of the Muckenhoupt characteristic

[w]Ap := sup
Q

(
1

|Q|

ˆ
Q

w

)(
1

|Q|

ˆ
Q

w−
1
p−1

)p−1

(Ap)

is a necessary and sufficient condition for the boundedness on Lp(w). Since the qualita-

tive problem was settled, the quantitative problem attracted interest. It consists in the
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following question:

Given a bounded (sub)linear operator T from Lp(w) to itself, what is the smallest

power α ≥ 0 such that

‖T‖Lp(w)→Lp(w) ≤ cp [w]αAp ?

The search for the optimal dependence on the characteristic of the weight was also

motivated by a problem in quasi-conformal theory about regularity of solutions of the

Beltrami equation

∂f(z) = µ(z) ∂̄f(z) (1.2.1)

where f, µ : C→ C and ‖µ‖L∞ < 1. The open question was:

What is the minimal q such that any solution f ∈ W 1,q
loc to (1.2.1) is continuous?

The condition q > 1 + ‖µ‖L∞ was known to be sufficient [AIS01], while there are

counterexamples for q < 1 + ‖µ‖L∞ . The critical value q = 1 + ‖µ‖L∞ was shown to be

sufficient by Petermichl and Volberg [PV02]. Their result follows from a sharp weighted

estimate for a singular integral operator: the Ahlfors–Beurling operator, the complex

analogue of the Hilbert transform.

The same question about optimal dependence on the weight can be asked for more

general singular integral operators.

1.2.1 Integral operators

In the following, C will denote a positive constant which may change from line to line.

Singular Integral Operators

We consider the class of operators named after A. Calderón and A. Zygmund.

Definition 1.2.1 (Calderón–Zygmund kernel). We say that a function K(x, y) on Rd ×

Rd \ {x = y} is a Calderón–Zygmund kernel if there exists C > 0 and α ∈ (0, 1] such that
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K satisfies the following size and regularity conditions:

|K(x, y)| ≤ C|x− y|−d ,

|K(x+ h, y)−K(x, y)|+ |K(x, y + h)−K(x, y)| ≤ C
|h|α

|x− y|d+α

for all h ∈ Rd such that |x− y| > 2|h|.

We denoted by C∞c the space of smooth, compactly supported functions, and by (C∞c )′

its dual. If the underlying measure is doubling, the space C∞c is dense in any Lp space,

for 1 ≤ p <∞.

Definition 1.2.2 (Singular Integral Operator). We say that a linear map T : C∞c → (C∞c )′

associated with a Calderón–Zygmund kernel K is a Singular Integral Operator if for all

f, g ∈ C∞c with disjoint supports one has the following integral representation

〈Tf, g〉 =

¨
Rd×Rd

K(x, y)f(y)g(x) dy dx.

Square function operators

In most of this thesis, and in particular in Chapter 3, we will focus on general square

function operators, which we now introduce.

Definition 1.2.3 (Littlewood–Paley kernels). A collection of functions {kt(x, y)}t>0 is a

family of Littlewood–Paley kernels if there exists positive constants C1, C2 and α ∈ (0, 1]

such that the kernels kt satisfy the following size and regularity conditions for all x, y ∈ Rd:

|kt(x, y)| ≤ C1
tα

(t+ |x− y|)α+d
, (C1)

|kt(x+ h, y)− kt(x, y)|+ |kt(x, y + h)− kt(x, y)| ≤ C2
|h|α

(t+ |x− y|)d+α
(C2)

for all h ∈ Rd and t > |h|.
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Let {θt}t>0 be the family of integral operators θtf(x) =
´
Rd kt(x, y)f(y) dy. We con-

sider the vertical square function

Sf(x) :=

(ˆ ∞
0

|θtf(x)|2 dt

t

)1/2

. (1.2.2)

Example 1.2.4 (Littlewood–Paley square function). A standard example for which the size

and regularity conditions hold is θtf = f ∗ψt, where ψt(x) = t−dψ(t−1x) and ψ is a mean

zero Schwartz function which gives rise to the Littlewood–Paley square function [Gra14,

§6.1]. In particular, conditions (C1) and (C2) are off-diagonal conditions compatible with

the scaling.

1.2.2 Quantitative weighted estimates

The dependence of the operator norm ‖T‖pLp(w)→Lp(w) on the Muckenhoupt character-

istic (Ap) has been first investigated by Buckley [Buc93, Theorem 2.5] for the Hardy–

Littlewood maximal function

Mf(x) := sup
B3x

 
B

|f(y)| dy

where the supremum is taken over all balls B containing x and
ffl
B
f := |B|−1

´
B
f .

Theorem 1.2.5 (Buckley 1993). For p > 1 and for all weights w ∈ Ap it holds that

‖Mf‖pLp(w) ≤ C[w]p
′

Ap
‖f‖pLp(w)

and the power of the Muckenhoupt characteristic is the best possible.

A decade later, quantitative weighted estimates (optimal in terms of the Muckenhoupt

characteristic [w]Ap) have been obtained for the Hilbert transform [Pet07], the Riesz trans-

form [Pet08], Haar shift [LPR10] and for general Calderón–Zygmund operators [Hyt12]:
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Theorem 1.2.6 (Hytönen 2012). Let T be a Singular Integral Operator with Calderón–

Zygmund kernel. For any 1 < p <∞ and weight w ∈ Ap it holds that

‖T‖pLp(w)→Lp(w) ≤ cp[w]
max{p′,p}
Ap

.

Remark 1.2.7. The power in the characteristic of the weight is sharp and it can be matched

with power weights. The sharpness had already been shown by Buckley [Buc93, Theorem

2.14] for some singular integral operator T and its maximal truncation T# given by

T#f(x) := sup
ε>0
|(K · 1Rd\B(0,ε)) ∗ f(x)|.

Theorem 1.2.6 is known as the “A2 theorem”, as the estimates for general p ∈ (1,∞)

can be extrapolated [Gra14, Theorem 7.5.3] from the one with p = 2. This result has been

extended and simplified by many authors [HLP13; HLM+12; HRT17; Hyt14], especially

via sparse domination techniques [Ler13a; Lac17; Ler16], which we now introduce.

1.2.3 Sparse domination

Sparse domination consists in controlling non-local operators by a sum of positive aver-

ages. An operator T might be dominated either pointwise:

|Tf(x)| ≤ C
∑
Q∈S

(
1

|Q|

ˆ
Q

|f |
)
1Q(x) (1.2.3)

for all x in a fixed cube Q0; or in form:

∣∣∣ ˆ
Q0

Tf · g dx
∣∣∣ ≤ C

∑
Q∈S

(
1

|Q|

ˆ
Q

|f |
)(

1

|Q|

ˆ
Q

|g|
)
|Q|. (1.2.4)

In both cases, the constant C in (1.2.3) and (1.2.4) does not depend on the input

functions, while the collections S do and they are sparse in the following sense
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Definition 1.2.8 (Sparse collection). A collection of cubes S is 1
τ
-sparse, for τ ≥ 1, if

for any Q ∈ S there exists a subset EQ ⊆ Q such that {EQ}Q∈S are pairwise disjoint

and |Q| ≤ τ |EQ|.

Roughly speaking, a collection of sets S is sparse if it contains a disjoint subcollection

of sets that are not too small. For simplicity, the reader can think of S to be a collection

of dyadic cubes, although sparse families can be defined for general Borel sets [Hän18].

The thrust of sparse domination consists in the fact that sparse expressions (the right

hand sides in (1.2.3) and (1.2.4)) enjoy the same boundedness properties of several inter-

esting operators, but are much simpler to deal with. As a consequence, sparse domination

produces – in an unified manner – plenty of unweighted, weighted, and vector valued es-

timates, for the dominated operator. Moreover these estimates are often optimal in the

dependence on the weight.

A growing list of operators sparsely dominated includes: Calderón–Zygmund operators

[CCDO17; CR16; Ler16; CDO18b], bilinear Hilbert transform and multilinear singular in-

tegrals [CDO18a], variational Carleson operators [DDU18], oscillatory and random singu-

lar integrals [LS17], pseudodifferential operators [BC20], Stein’s square function [CD17],

and singular Radon transforms [Obe19].

Despite the fact that having a sparse domination is not always possible [BCOR19],

the sparse paradigm has been extended beyond the classical theory to obtain weighted

estimates for Bochner–Riesz multipliers [LMR19; BBL17], singular integral operators on

spaces of non-homogeneous type [VZ18], and more general non-integral operators [BFP16]

which will be discussed in §1.4.

Sparse domination can be seen as a technique to deduce properties of an operator

from its action on a single function, or on a class of functions. For this reason sparse

domination is particularly suited for improving classical T (1) theorems.

8



1.2.4 Sparse T1 theorems

In the ’80s David and Journé [DJ84] showed that L2-boundedness of singular integral

operators follows from the uniform boundedness on indicator functions. Let Q be a cube

and let 1Q be the indicator function on Q taking values 1 on Q and 0 otherwise. The

result in [DJ84] can be rephrased as follow.

Theorem 1.2.9 (David & Journé 1984). Let T be a Singular Integral Operator with

Calderón–Zygmund kernel and let T ? be its adjoint. If there exists C > 0 such that

〈|T1Q|,1Q〉+ 〈|T ?1Q|,1Q〉 ≤ C|Q| (1.2.5)

holds for all cubes Q ⊆ Rd, then ‖T‖L2→L2 <∞.

This kind of results are known as “T (1) theorems”, as the operator is tested on constant

functions. This classical result has been recast by Lacey and Mena [LM17b, Theorem 1.1]

to a sparse domination under minimal assumptions.

Theorem 1.2.10 (Lacey & Mena 2016). Let T be a singular integral operator with

Calderón–Zygmund kernel that satisfies the testing condition (1.2.5). Then for any pair

of compactly supported functions f, g ∈ C∞c there exists a sparse collection S such that

|〈Tf, g〉| ≤ C
∑
Q∈S

( 
Q

|f |
)( 

Q

|g|
)
|Q|

where C > 0 is a positive constant independent of f and g, and the symbol
 
Q

f denotes

the average of f over Q.

This theorem, instead of just L2 boundedness, implies:

• weak (1, 1) bound [CCDO17, Appendix B], [BB18, Prop 3.1];

• strong Lp-bounds for 1 < p <∞;
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• strong weighted bounds on Lp(w) with optimal dependence on [w]Ap as in Theo-

rem 1.2.6:

‖T‖Lp(w)→Lp(w) ≤ cp[w]
max{ 1

p−1
,1}

Ap
;

• weak weighted estimates at the endpoint for w ∈ A1 [FN19, Theorem 1.4]:

‖T‖L1(w)→L1,∞(w) ≤ c [w]A1 log(e+ [w]A∞),

where [w]A1
:= supQ

(ffl
Q
w
)
‖w−1‖L∞(Q) and [w]A∞ is the Wilson characteristic

[w]A∞ := sup
Q

1

w(Q)

ˆ
Q

M(w1Q).

• Upper bound on γ1, γ2 for the asymptotic behaviour of the unweighted norm at the

endpoints [FN19, Prop. 5.4]:

lim
p→1+
‖T‖Lp→Lp ' (p− 1)−γ1 , lim

p→∞
‖T‖Lp→Lp ' pγ2 ;

• vector valued estimates [LN20].

Again, we emphasise that only the testing condition (1.2.5) is assumed.

In the spirit of Lacey and Mena, we will derive a sparse T1 theorem for square func-

tions.

1.3 T1 theorem for square functions

In this section we introduce the main result of Chapter 3.

The first T (1) theorem for square functions is by Christ and Journé [CJ87]: they

showed that a square function S is bounded on L2(Rd) if θt applied to the constant
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function 1 gives rise to a Carleson measure ν := |θt1(x)|2 dt/t dx on the upper half space

Rd+1
+ .

A Carleson measure on Rd+1
+ is a measure which acts like a d-dimensional measure in

the following sense. Let Q be a cube in Rd with sides parallel to the coordinate axes.

Denote by `Q and |Q| the side length and the Lebesgue measure of Q, so that (`Q)d = |Q|.

Consider the Carleson box BQ := Q× (0, `Q). Then ν is a Carleson measure if ν(BQ)/|Q|

is finite for any cube Q.

Successively, it has been shown [Hof08; Hof10; LM17a] that S is bounded in L2(Rd)

if there exists a constant CT > 0 such that the following local testing condition holds for

any cube Q: ˆ
Q

ˆ `Q

0

|θt1Q(x)|2 dt

t
dx ≤ CT|Q|. (T)

Example. For the case of a Littlewood–Paley square function in Example 1.2.4, where

θtf = f ∗ ψt and ψ is a mean zero Schwartz function rescaled as ψt(x) = t−dψ(t−1x),

condition (T) is the cancellation condition
´
ψ = 0.

The testing condition (T) is equivalent to the following testing condition: there exists

C > 0 such that 〈S(1Q)2,1Q〉 ≤ C|Q| for all cubes Q. The reader can find the details in

§3.1.7.

We have the following local T1 theorem for square functions.

Theorem 1.3.1 (Christ & Journé 1987, Auscher, Hofmann, Lacey, et al. 2002). Let S

be a square function associated to a family of Littlewood–Paley operators {θt}t>0. If there

exists C > 0 such that

〈S(1Q)2,1Q〉 ≤ C|Q| (T’)

holds for all cubes Q ⊆ Rd, then ‖S‖L2→L2 <∞.

We present the main result from Chapter 3, also in [Bro20], where the theorem above

has been recast to a quadratic sparse domination.

11



Theorem B (B. 2020). Let S be a square function associated to {θt}t>0 satisfying con-

ditions (C1), (C2) and (T). Then for any f, g ∈ C∞c there exists a sparse collection S

such that

|〈(Sf)2, g〉| ≤ C(C1 + C2 + CT)
∑
Q∈S

( 
Q

|f |
)2( 

Q

|g|
)
|Q| (1.3.1)

where C = C(α, d) is a positive constant independent of f and g.

The reader can compare (1.3.1) with the sparse form in Theorem 1.2.10.

The domination (1.3.1) implies the L2-boundedness of S, which in turn implies the

Carleson condition (T), see also [MM14, Remark 1.6]. So we have the following

Corollary B. Let S be a vertical square function in (1.2.2) associated to a family of

Littlewood–Paley operators {θt}t>0. Then S admits a sparse domination if and only if the

Carleson condition (T) holds.

Previous sharp weighted inequalities for square functions

Under condition (T) the square function S was known to be bounded on the weighted

space Lp(w) for p ∈ (1,∞), provided that w belongs to the Muckenhoupt class for which

the quantity in (Ap) is finite.

For p ∈ (1,∞) and w in Ap, let α(p) be the best exponent in the inequality

sup
f 6=0

‖Sf‖Lp(w)

‖f‖Lp(w)

≤ C(S, p)[w]
α(p)
Ap

. (1.3.2)

When p = 2, Buckley [Buc93] showed the upper bound α(2) ≤ 3/2. Later Wittwer

improved it to α(2) = 1 and showed that it is sharp for the dyadic and the continuous

square functions [Wit02, Theorem 3.1–3.2]. The same result was obtained independently

by Hukovic, Treil and Volberg using Bellman functions [HTV00, Theorem 0.1–0.4].

Lerner was the first to prove that α(p) = max{1
2
, 1
p−1
} cannot be improved [Ler06,

Theorem 1.2] and to conjecture estimate (1.3.2) for Littlewood–Paley square functions.

After improving the best known exponent for p > 2 [Ler08b, Corollary 1.3], Lerner proved

12



the estimate

‖Sf‖L3(w) ≤ C[w]
1/2
A3
‖f‖L3(w) (1.3.3)

for Littlewood–Paley square functions pointwise controlled by the intrinsic square func-

tion [Ler11, Theorem 1.1]. Lerner achieved this by applying the local mean oscillation

formula to a dyadic variant of the Wilson intrinsic square function [Wil07]. The sharp

estimate (1.3.2) for all 1 < p <∞ follows from (1.3.3) by the sharp extrapolation theorem

[DGPP05], see also [Gra14, Theorem 7.5.3]. A proof of the sharp bound (1.3.2) for the

dyadic square function using local mean oscillation can be found in [CMP12, Theorem

1.8].

Lerner’s result relies on a pointwise control of the square function S, and it exploits

the local behaviour of the Wilson intrinsic square function. Instead Theorem B implies

the weighted estimate (1.3.3) by duality, and so the estimate (1.3.2) in the full range with

optimal dependence on the Ap characteristic. As for the list after Theorem 1.2.10, other

estimates follow from the sparse domination in Theorem B. In particular, see [LS12] and

[HL18] for weak type estimates and [LL16; DLR16] for mixed Ap–A∞ estimates.

Our different approach can dispense with the extra “locality” assumption used in

[Ler11; Zor16]. As a consequence, we can allow for square functions with general ker-

nel. A similar approach, where the input function is decomposed using wavelets, has been

used in [DWW20]: the basis of wavelets used there allows to derive new T (1) theorems

on weighted Sobolev spaces, see in particular [DWW20, §8 and Theorem C].

The fact that sparse domination for (Sf)2 gives better estimates than the one for Sf

is true also for more general square functions.

13



1.4 Beyond classical square functions

In this section we present the main result of Chapter 4.

Classical operators in harmonic analysis come with an integral representation and a

kernel. On the other hand, many operators coming from elliptic PDEs are “non-integral”,

in the sense that they do not possess such an explicit representation.

In contrast to the classical Calderón–Zygmund theory, which cannot be applied in this

situation, sparse domination has proven to be more flexible and it has yielded many results

in this context [BFP16; BCDH17; CDO18a; BD20b; BD20a]. In the case of operators

associated to an elliptic operator L, the usual assumptions on the kernel are replaced by

hypotheses on the action of the operator on the semigroup e−tL generated by L.

Example 1.4.1. Prominent examples are operators attached to the elliptic operator L =

−div(A∇), where A is bounded and elliptic with complex coefficients. For example, the

Riesz transforms∇L−1/2 or the constituent operators {
√
t∇e−tL}t>0 of the square function

GLf =

(ˆ ∞
0

|
√
t∇e−tLf |2 dt

t

)1/2

might not possess integral kernels.

In contrast to the classical setting where L is the Laplacian, these operators are in

general not bounded on Lp(Rd) for every p ∈ (1,∞). As proved in [Aus07], boundedness

might occur only in a restricted range (p0, q0) ⊆ (1,∞). This interval depends on the

perturbation A in L = −div(A∇), see also [BK03] and [HM03]. Weighted estimates have

been introduced in this setting by Auscher and Martell in the seminal series of papers

[AM07a; AM07b; AM06; AM08].

Operators bounded on Lp only for a limited range of p can be bounded on the weighted

space Lr(w), for r ∈ (p0, q0), only for a restricted class of weights. This is a consequence

of the extrapolation theorem [Gra14, Theorem 7.5.3], as the finiteness of the quantity

‖T‖Lr(w)→Lr(w) for all w ∈ Ar would imply the boundedness of T on unweighted Lp spaces
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for all 1 < p <∞.

For this reason, we consider a subclass of Ap weights which additionally satisfy a

reverse Hölder property: there is q > 1 such that

[w]RHq := sup
Q cube

( 
Q

wq
)1/q ( 

Q

w

)−1

(RHq)

is finite. This subclass of Ap will be denoted by Ap ∩RHq, as in [AM07a].

Aiming to a sparse bound, note that the pointwise sparse domination

|Tf(x)| ≤ C
∑
Q∈S

( 
Q

|f |p0
)1/p0

1Q(x)

would yield (weighted) estimates in the open range p ∈ (p0,∞). A way to restrict further

the range to (p0, q0) is to consider a sparse domination in form of the following kind

∣∣∣ˆ
Rd
Tf · g dx

∣∣∣ ≤ C
∑
Q∈S

( 
Q

|f |p0
)1/p0 ( 

Q

|g|q′0
)1/q′0

|Q|.

This has been obtained in [BFP16] for a large class of non-integral operators, including

the Riesz transform and the square function above.

As we will see in Chapter 4, in the case of non-integral square functions a sparse

domination for (GLf)2 yields better estimates. This is true for a large class of square

functions, as shown in the following result.

Theorem C (Bailey, B., Reguera 2020). Let S be a vertical square function as defined

in Chapter 4, which is bounded on Lp for p ∈ (p0, q0), p0 < 2 < q0. For any f and g in

C∞c (Rd) there exists a sparse family S such that

∣∣∣ ˆ
Rd

(Sf)2 · g dx
∣∣∣ ≤ C

∑
Q∈S

( 
Q

|f |p0
)2/p0 ( 

Q

|g|
(
q0
2

)′)1/
(
q0
2

)′
|Q|.

where C is a positive constant independent of f and g.

The sparse domination in Theorem C implies the following weighted estimates.
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Corollary C. Let S be a vertical square function as defined in Chapter 4, which is bounded

on Lp for p ∈ (p0, q0), p0 < 2 < q0. For a weight w ∈ Ap/p0 ∩RH(q0/p)′ the square function

S is bounded on Lp(w) with

‖S‖Lp(w)→Lp(w) ≤ C
(

[w]Ap/p0
[w]RH(q0/p)

′

)max
(

1
p−p0

,
q0−2
q0−p

)

where C is positive constant independent of the weight.

The power in the characteristic of the weights is sharp for the sparse form in Theo-

rem C, see Proposition C.

It remains open to understand:

(a) if the sparse bound in Theorem C and the weighted estimates in Corollary C are

sharp for all the square functions considered;

(b) what are the minimal assumptions on the operator S for the sparse bound.

Example 1.4.2. The domination from Theorem C yields weighted estimates for square

functions associated with divergence forms and Laplace–Beltrami operators on Rieman-

nian manifolds. These are presented in §4.3.

Theorem C and its corollary are presented in Chapter 4.

We move to another application of sparse domination in a completely different context.

1.5 Two weight theory for the Bergman projection

In this section we introduce the results from Chapter 5.

An active direction of research aims to better understand the projections onto spaces

of holomorphic functions in terms of weighted estimates.
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To fix some notation, let Ω ⊂ Cd be a bounded domain (open, connected set) with

smooth boundary, and let dν be the normalised Lebesgue measure on Ω. Let H(Ω) be the

space of holomorphic functions on Ω. The Bergman space is the subspace of holomorphic

functions of L2(Ω)

A2(Ω) := {f ∈ H(Ω) ∩ L2(Ω)}.

The L2 inner product makes A2(Ω) a Hilbert space. The evaluation at any point z0 ∈ Ω

is a continuous functional on A2(Ω). This follows from the mean value theorem for

holomorphic functions and an application of Hölder’s inequality: for any ball B(z0, r) ⊆ Ω

we have

|f(z0)| =
∣∣∣∣ 
B(z0,r)

f(ζ) dν(ζ)

∣∣∣∣ ≤ ( 
B(z0,r)

|f(ζ)|2 dν(ζ)

)1/2

≤ c2d

rd
‖f‖A2(Ω).

By the Riesz representation theorem, the evaluation at z0 can be written as

f(z0) =

ˆ
Ω

K(z0, ζ)f(ζ) dν(ζ) (1.5.1)

where K(z0, ·) is a function in A2(Ω) called Bergman kernel. The associated operator

Pf(z) :=

ˆ
Ω

K(z, ζ)f(ζ) dν(ζ)

is the identity on A2, in view of (1.5.1). Moreover P is self-adjoint and idempotent, see

[Kra01, §1.4]. It follows that P is a projection from L2(Ω) to A2(Ω), so we call it the

Bergman projection. When Ω is the unit ball in Cd, the Bergman kernel can be written

explicitly and a sparse domination for P is available [PR13; APR17; RTW17]. The one-

weight theory for P is then well understood. On the other hand, the two weight theory

is still at its early stages and is becoming increasingly important in connection with the

resolution of the Sarason conjecture, see §1.5.1.
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1.5.1 Connection with Operator Theory

Given f in the Bergman space A2 ⊂ L2, one can consider the Toeplitz operator Tfh :=

(P ◦mf )(h) = P (f · h), where mf denotes the pointwise multiplication by f .

In [ACS78] Sarason showed sufficient conditions on f, g for the composition of Toeplitz

operators to be bounded. The question about necessity of these conditions was left open.

We state the conjecture on the Bergman space A2(D).

Conjecture 1.5.1 (Sarason). Given f, g ∈ A2(D), the operator TfTḡ is bounded on A2(D)

if and only if

‖B(|f |2)B(|g|2)‖L∞(D) <∞,

where the operator B is the Berezin transform

Bf(z) :=

ˆ
D
f(ζ)

(1− |z|2)2

|1− ζ̄z|4
dν(ζ).

Cruz-Uribe [Cru94] showed that the Sarason conjecture on Bergman spaces is related

to the two weight boundedness of the Bergman projection. Indeed, we have the following

abstract diagram, where f and g are general functions and Ap(Ω) := {f ∈ H(Ω)∩Lp(Ω)}..

Ap(Ω) Ap(Ω)

Lp(Ω, |g|−p) Ap(Ω, |f |p)

mḡ

Tf ◦ Tḡ

P

Tf

Figure 1.1: Relation between composition of Toeplitz operators and weighted estimates

for the Bergman projection P .

The original diagram in [Cru94] considered the Hardy space H2(T) and the corre-

sponding Riesz projection. The case of the Bergman space A2(D) has been studied in

[APR17].

Remark 1.5.2. When f ∈ Ap(Ω), the Toeplitz operator on the right of the diagram can
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be replaced by mf , since for a holomorphic function h we have Tf (h) = P (f · h) = f · h.

1.5.2 Bergman projection on the unit ball

In this thesis we consider the Bergman projection on the unit ball Bd ⊂ Cd given by

Pf(z) :=

ˆ
Bd

f(ζ)

(1− zζ̄)d+1
dν(ζ).

In Chapter 5 we address the following question

What are the sufficient conditions on two weight u, ω for the boundedness of
the Bergman projection P : L2(u)→ A2(ω)?

Remark 1.5.3. For two weights u and ω, we have

‖P‖L2(u)→L2(ω) h ‖P (σ ·)‖L2(σ)→L2(ω) (1.5.2)

where σ = u−1. This equivalent formulation is due to Sawyer and it holds for general

domains other than the unit ball, see Appendix C.

For the complex ball, the weights for which any of the two quantities in (1.5.2) is finite

are the Békollé–Bonamí weights. These weights satisfy a (Ap) condition where the role of

cubes is played by Carleson tents.

Definition 1.5.4 (Carleson tent on the unit ball). Given a point z ∈ Bd \ {0}, consider

the following set

Tz :=
{
ζ ∈ Bd : |1− 〈ζ, z|z|〉| ≤ 1− |z|

}
.

The set Tz is the intersection of Bd with the ball centred at z/|z| with radius 1−|z|, whose

boundary contains the point z. For z = 0, set T0 = Bd.

Definition 1.5.5 (Békollé–Bonamí weights). Given two weights w, σ on Bd, we define
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their joint B2 characteristic:

[w, σ]B2 := sup
z∈Bd
〈w〉Tz〈σ〉Tz

where 〈w〉Tz := |Tz|−1
´
Tz
w. For general 1 < p <∞, we define the quantity

[w, σ]Bp := sup
z∈Bd
〈w〉Tz〈σ〉

p−1
Tz

.

When σ = w1−p′ is the dual weight of w, the quantity [w]Bp := [w,w1−p′ ]Bp is the Bp

characteristic of w. We say that w is a Békollé–Bonamí weight if [w]Bp is finite and we

write w ∈ Bp.

In order to state the main results of this section, we introduce bump conditions.

1.5.3 Bumps conditions

Since the ’70s it is known that the joint Muckenhoupt condition for two weight w, σ

[w, σ]Ap := sup
Q
〈w1/p〉p,Q〈σ−1/p〉p′,Q < +∞ (1.5.3)

is necessary but not sufficient for the boundedness of singular integral operators T from

Lp(σ) to Lp(w). Aiming to find suitable sufficient conditions, researchers have replaced

the averages in (1.5.3) with smaller averages, and so assuming a stronger condition on the

weights w, σ.

A way to generalise the Lp averages is to consider Orlicz averages, which we now

introduce.
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Orlicz bumps

Definition 1.5.6 (Young function). Let Φ: [0,∞) → [0,∞) be a continuous, convex,

strictly increasing function such that

Φ(0) = 0 and lim
t→+∞

Φ(t)

t
= +∞.

Given a set Q and a Young function Φ we denote by 〈f〉Φ,Q the Orlicz average defined

via the Luxembourg norm

〈f〉Φ,Q := inf{λ > 0 : 〈Φ(f/λ)〉Q ≤ 1}.

In [Pér95, Theorem 1.7] Pérez characterised the Young functions for which the asso-

ciated maximal function

MΦf := sup
Q
〈|f |〉Φ,Q1Q

is bounded on Lp.

Theorem 1.5.7 (Pérez 1995). Given a Young function Φ, the associated maximal function

MΦ maps Lp to Lp, for 1 < p <∞, if and only if

ˆ ∞
1

Φ(t)

tp
dt

t
< +∞. (Bp)

Note that the operator MΦ is also bounded on L∞ [And15, Lemma 3.2]. We say that

a Young function Φ belongs to Bp if the condition (Bp) holds.

Using the dyadic structure on the ball introduced in §5.1 we can define the Orlicz

averages of two weights.

Definition 1.5.8. Given two weight w, σ and two Young functions Φ,Ψ ∈ B2, the joint

Orlicz bumps condition reads

[w, σ]Φ,Ψ := sup
K̂∈T

〈w〉K̂
〈w1/2〉Φ,K̂

〈σ〉K̂
〈σ1/2〉Ψ,K̂
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where 〈 · 〉Φ,K̂ denotes the Orlicz average on the dyadic tent K̂ with respect to Φ.

The first result of Chapter 5 is a sufficient bump condition in terms of Orlicz averages.

This will be deduced from the sparse operator dominating P . In particular, once a dyadic

structure on Bd has been constructed in §5.1, we have the following.

Theorem D. Let σ, ω be two weights1 on Bd and let Φ,Ψ be two Young functions such

that the associated maximal function is bounded on L2. Then the Bergman projection P

on L2(Bd) satisfies the following bound

‖P (σ ·)‖L2(σ)→L2(ω) ≤ C [σ, ω]Φ,Ψ

where C is a positive constant independent of σ, ω.

This result is deduced by combining the domination in [RTW17] with the known esti-

mates for sparse forms [Li17]. Nevertheless, to the best of our knowledge, these estimates

have not appeared in the context of Bergman spaces.

In Chapter 5 we derive the bump conditions in the theorem via testing conditions on

sparse operators. We will also obtain the following mixed estimates in terms of the B∞

characteristic.

Definition 1.5.9. We consider the quantity

[σ]B∞ := sup
K̂∈T

1

σ(K̂)

ˆ
K̂

M(σ1K̂)

where M is the maximal operator

Mf(z) := sup
K̂∈T
〈|f |〉K̂1K̂(z)

over the collection of sets T introduced in §5.1. We say that a weigth σ belongs to B∞ if

the quantity [σ]B∞ is finite.
1Weight will always mean: positive, measurable function.
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Theorem E. Let σ, ω be two weights on Bd in the class B∞ such that their joint B2

characteristic [ω, σ]B2 is finite. The Bergman projection P on L2(Bd) satisfies the following

bound

‖P (σ ·)‖L2(σ)→L2(ω) ≤ C [ω, σ]
1/2
B2

(
[σ]

1/2
B∞

+ [ω]
1/2
B∞

)
where C is a positive constant independent of σ and ω.
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CHAPTER 2

SHARP k-PLANE INEQUALITIES

The more I do this, the more I think Analysis is

a mistake.
C. B.

2.1 Strichartz estimates for Schrödinger equation

We study a family of Strichartz estimates for the solution of the free Schrödinger equation


i∂tu(x, t)−∆u(x, t) = 0

u(x, 0) = f(x) ∈ L2(Rd).

In quantum mechanics, the quantity |u(x, t)|2 represents the probability to find a

particle at a point x at time t. Bounds for this probability function in time and space are

the content of a family of estimates introduced by Strichartz [Str77]:

‖e−it∆f‖Lqt (R)Lpx(Rd) ≤ C‖f‖L2(Rd) (2.1.1)

24



where the constant C depends on exponents and di-

mension, which are related by the following scaling

condition:

2

q
+
d

p
=
d

2
with


p ∈ [2,∞] if d = 1

p ∈ [2,∞) if d = 2

p ∈
[
2, 2d

d−2

]
if d ≥ 3

For a given dimension d, a pair (q, p) satisfying the

above relation is called admissible.

1
p

1
q

•
1
2

|
d−2
2d

•1
4

◦1
2

•

(
d−2
2d
, 1

2

)

d = 1

d
=

2

d ≥
3

Figure 2.1: Admissible exponents.

We are interested in the sharp form of these inequalities. We will focus on the sym-

metric case q = p. Moreover, we consider the inequality for the modulus of the wave

function u:

‖|u|2‖Lq(R×Rd) ≤ C‖f‖2
L2(Rd), with q = 1 +

2

d
. (2.1.2)

When the exponent in the Lq-norm is an integer, we can write

‖|u|2‖q
Lq(R1+d)

=

¨
|u|2 . . . |u|2︸ ︷︷ ︸

q times

dxdt

and study the inequalities in sharp form.

Characterisation of extremisers in (2.1.2) and the value of the best constant have been

computed only when d ∈ {1, 2}, exploiting the above representation for integer exponents

in the norm.

In [BBF+18], Bennett, Bez, Flock, Gutierrez, and Iliopoulou obtained the inequality

‖X(|u|2)‖L3
t,`
≤
(π

2

) 1
3 ‖f‖2

L2(R2), (2.1.3)

where X is the (spatial) X-ray transform on R2. The constant in (2.1.3) is sharp, and

extremisers are Gaussians. The authors also established similar results in higher dimen-
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sions for general k-plane transform in Rd by considering the Ld+1 norms and a weight on

the right hand side. We consider instead a family of estimates which arise by applying

the k-plane transform to the function |u|2. By restricting ourselves on integer exponents,

we can study the sharp form of these inequalities also in higher dimensions.

2.2 Sharp k-plane estimates for Schrödinger equation

We study sharp inequalities obtained in the same spirit of (2.1.3), namely composing an

Lp-bound of a k-plane transform with a Strichartz estimate (2.1.2).

Let us introduce some notations. With k we indicate an integer between 1 and d− 1.

Given an affine k-dimensional plane U in Rd this is identified by (ω1, . . . , ωk), ωj ∈ Sd−1

and a vector b ∈ Rd, such that

U = {x1ω1 + · · ·+ xkωk + b : (x1, . . . , xk) ∈ Rk} = U0 + b

where U0 is a k-dimensional subspaces in Rd. LetAk,d be the bundle of affine k-dimensional

subspace of Rd. There is a natural projection from Ak,d onto the Grassmannian Grk(Rd) of

all k-dimensional subspaces in Rd: the one that maps an affine k-plane U to its translated

copy U0 passing through the origin.

p : Ak,d → Grk(Rd)

U 7→ U0

The projection p is a fibration that turns Ak,d into a vector bundle over Grk(Rd).

The manifold Ak,d can be endowed with a measure µ given by the product of the

uniform measure µGr on the Grassmannian times the Lebesgue measure on the orthogonal

(d− k)-plane.

The k-plane transform Tk,d maps measurable functions on Rd to functions on Ak,d:
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given an affine k-plane U ∈ Ak,d, the value of Tk,d(g) at U is the average of the function

g over U , namely

Tk,d(g)(U) =

ˆ
U

g =

ˆ
U0

g(x1ω1 + · · ·+ xkωk + b) dLk(x)

where Lk is the k-dimensional Lebesgue measure. The k-plane transform Tk,d(g) is then

a function on Ak,d.

Composing the Lp bounds for the k-plane transform with the Strichartz estimates in

(2.1.1) gives raise to a family of inequalities:

‖Tk(|u(t, ·)|2)‖Lrt (R;Ls(Ak,d)) ≤ C ‖f‖2
L2(Rd) (2.2.1)

for 1 ≤ r, s ≤ ∞ and k ∈ {1, . . . , d − 1}

satisfying the following scaling conditions

1

r
=
d− k

2

(
1− 1

s

)
(2.2.2)

with

1 ≤ s ≤ d+ 1, r ≥ 1.

The optimal constant C = C(r, s, d, k) de-

pends on k and d, as well as on the exponents

r, s.

1
s

1
r

•
11

d+1

1
2

1 •

•

•

d− k = 1

d−
k

=
2

d−
k
≥

3

Figure 2.2: Exponents satisfying (2.2.2).

Aiming to study the sharp form of the inequality in (2.2.1), we focus on the symmetric

case, when r = s. We have the following inequalities:

‖Tk(|u(t, ·)|2)‖Lq(R×Ak,d) ≤ C ‖f‖2
L2(Rd), with q = 1 +

2

d− k
. (2.2.3)

One should compare this inequality with the one in (2.1.2).

Remark 2.2.1. When k = 0 the exponent q in (2.2.3) coincides with the Strichartz ex-
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ponent in (2.1.2). Indeed, the classical Strichartz estimates in (2.1.2) can be seen as a

special case of (2.2.3), T0 being just evaluation at a point.

Remark 2.2.2. For k = d− 1 the L3 norm on the left hand side of (2.2.3) is

‖Td−1(|u(t, ·)|2)‖3
L3(R×Ad−1,d) =

d− 2

4π

ˆ
R

ˆ
(Rd)3

|u(t, x0)|2|u(t, x1)|2|u(t, x2)|2

∆2(x0, x1, x2)
dxdt (2.2.4)

where ∆2(x0, x1, x2) is the area of the triangle in Rd with vertices (x0, x1, x2). It can

be written as det(xTx) where x denotes the d × 3 matrix with columns x0, x1, x2. The

expression in (2.2.4) is a special case of Drury’s identity in [Rub18, eq (3.8)].

When d = 2 the Radon transform Td−1 is an X-ray transform and the inequality

corresponds to (2.1.3), which is the only case known in sharp form.

Applying a high dimensional k-plane transform allows us to regain integer exponents

in any dimension. When k = d− 2 we characterise extremisers and compute the optimal

constant. Our approach uses Drury’s identity for the k-plane transform from [Rub18].

2.3 Main result

We consider inequality (2.2.3) in the case q = d− k = 2. We have the following theorem.

Theorem A. Let d ≥ 3. The following estimate holds:

‖Td−2(|u(t, ·)|2)‖L2(R×Ad−2,d) ≤ Cd‖f‖2
L2(Rd) (2.3.1)

where the sharp constant is

Cd =

(
(d− 2)πd/2

Γ(d/2)

)1/2

The equality in (2.3.1) is achieved if and only if f̂(ξ) = exp(a|ξ|2 +b ·ξ+c) with <(a) < 0,

b ∈ Cd and c ∈ C.

We give a proof of the theorem.
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2.3.1 Proof of Theorem A

After applying the Drury’s identity [Rub18, eq (3.8)] with k = d− 2, we have

‖Td−2(|u(t, ·)|2)‖2
L2(R×Ad−2,d) =

d− 2

2π

ˆ
R

ˆ
(Rd)2

|u(t, x)|2|u(t, y)|2

|x− y|2
dxdydt. (2.3.2)

Notation comparison

To help the reader comparing the identities (2.3.2) and [Rub18, eq (3.8)], we provide

some information for the notation used by Rubin in [Rub18]. In the article, Md,k denotes

the space of real matrices with d rows and k columns which can be identified with Rd×k.

The identity (2.3.2) above corresponds to [Rub18, eq (3.8)] with k = d − 2 and q = 1.

Given x = (x1, . . . , xk) ∈ (Rd)k, the quantity ∆k(x) appearing in [Rub18] denotes the

volume of the convex hull of {0, x1, . . . , xk}. So ∆1(x0, x1) is the length of the vector

x1 − x0. The identity is justified since the integrand |u(·, x)|2|u(·, y)|2|x− y|−2 belongs to

L1(R2d) = L1(Md,2) as required, by (2.3.1).

We write |u|2 as uū and expand using the expression for the solution to the free

Schrödinger equation:

u(x, t) = (2π)−d
ˆ
Rd
eix·ξeit|ξ|

2

f̂(ξ)dξ.

After one application of Fubini, and computing the inverse Fourier transform of |x|−2,

we obtain

ˆ
R

ˆ
(Rd)2

|u(t, x)|2|u(t, y)|2

|x− y|2
dxdydt = (2π)1−2d

ˆ
R2d
ξ

ˆ
R2d
η

F̂ (ξ)F̂ (η) dΣξ(η)dξ (2.3.3)
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where ξ = (ξ0, ξ1) ∈ R2d, F = f ⊗ f and the measure dΣξ(η) is given by

dΣξ(η) =

δ

(
|ξ|2 − |η|2

)
δ

(
(ξ − η) · (1, 1)

)
|ξ0 − η0|d−2

dη. (2.3.4)

Remark 2.3.1. The quantity in the left hand side of (2.3.3) is a real number. Also, the

product F (ξ)F (η) can be written as

F (ξ)F (η) =
1

2

(
FF + FF

)
=

1

2

(
|F (ξ)|2 + |F (η)|2 − |F (ξ)− F (η)|2

)
. (2.3.5)

Note that the measure dΣξ(η) is also real valued, and it is symmetric in ξ and η, in the

sense that dΣξ(η)dξ = dΣη(ξ)dη.

Using the symmetry of the measure and the expression (2.3.5), the integral in (2.3.3)

can be written as

ˆ
R2d
ξ

ˆ
R2d
η

F̂ (ξ)F̂ (η) dΣξ(η)dξ =

ˆ
|F̂ (η)|2

ˆ
dΣη(ξ)dξ −

1

2

¨
|F̂ (ξ)− F̂ (η)|2 dΣξ(η)dξ.

If the measure dΣξ(η) is finite almost everywhere, so has to be each of the two terms.

In this case the first term on the right hand side equals the right and side of (2.3.1):

the inequality is maximised when the difference |F̂ (ξ)− F̂ (η)|2 vanishes. The functional

equation F̂ (ξ) = F̂ (η) is used to characterise extremisers.

In the follows lemma, we show that this is the case: the measure dΣξ(η) is finite.

Lemma 2.3.2. Let ξ, η ∈ R2d. For any d ≥ 2, the measure dΣη(ξ) defined in (2.3.4) is

independent of η. Moreover its total mass is finite and equals

ˆ
R2d

dΣη(ξ)dξ =
πd/2

Γ (d/2)
=

1

2
|Sd−1|.

Proof. Wemake the change of variables: ξ−η 7→ (v, w), so that v = ξ0−η0 and w = ξ1−η1.
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Then

ˆ
R2d

dΣη(ξ) dξ =

¨
(Rd)2

δ


∣∣∣∣∣∣∣
v
w

+ η

∣∣∣∣∣∣∣
2

− |η|2

 δ

(
v + w

)
|v|d−2

dvdw.

On the support of the second Dirac delta we have v = −w. We complete the square in

the argument of the first Dirac delta

∣∣∣∣∣∣∣
v
w

+ η

∣∣∣∣∣∣∣
2

− |η|2 = |v|2 + |w|2 + 2〈

 v

−v

 ,

η1

η2

〉
= 2

(
|v|2 + v · (η1 − η2)

)
= 2

(
|v − ζ|2 − |ζ|2

)
where we use the new variable ζ = 1

2
(η2−η1). Integrating the other Dirac delta we obtain:

¨
(Rd)2

δ


∣∣∣∣∣∣∣
v
w

+ η

∣∣∣∣∣∣∣
2

− |η|2

 δ

(
v + w

)
|v|d−2

dvdw =

ˆ
Rd

δ

(
|v − ζ|2 − |ζ|2

)
|v|d−2

dv.

We write v = rω + ζ, for ω ∈ Sd−1 and r ∈ R+, so that |v − ζ|2 = r2. Then in spherical

coordinates, after using the variable s = r2, the integral equals

ˆ
Sd−1

ˆ ∞
0

δ

(
r2 − |ζ|2

)
|rω + ζ|d−2

rd−1dr dσ(ω) =
1

2

ˆ
Sd−1

ˆ ∞
0

δ

(
s− |ζ|2

)
|ω + ζ/

√
s|d−2

ds dσ(ω)

=
1

2

ˆ
Sd−1

dσ(ω)

|ω + ω′|d−2
(2.3.6)

where ω′ := ζ/|ζ|. The denominator is a function of ω which is rotations invariant. We

can choose a rotation ρ such that ρ(ω′) = −ed. We have

ˆ
Sd−1

1

|ω + ω′|d−2
dσ(ω) =

ˆ
Sd−1

1

|ω + ρ(ω′)|d−2
dσ(ω) =

ˆ
Sd−1

1

|ω − ed|d−2
dσ(ω).

This integral is finite, since in a chart centered at the singularity ed the integrand equals
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|x|−(d−2), which is in L1
loc(Bd−1).

In order to compute the exact value of the integral, consider spherical coordinates

(θ1, . . . , θd−1) on Sd−1. These coordinates can be chosen such that ωd = 〈ω, ed〉 = cos(θd−1).

After writing |ω − ed|d−2 as (2− 2〈ω, ed〉)
d−2
2 , the integral in (2.3.6) becomes

1

2

ˆ
Sd−1

dσ(ω)

|ω − ed|d−2
=

=
1

2

ˆ 2π

0

ˆ
[0,π]d−2

sind−2(θd−1)

(2− 2 cos θd−1)
d−2
2

d−2∏
k=1

(sin(θd−1−k))
d−2−k dθd−1−k dθd−1

=
1

2

∣∣Sd−2
∣∣ ˆ π

0

(sin θ)d−2

(2− 2 cos θ)
d−2
2

dθ =
π
d−1
2

2
d−2
2 Γ

(
d−1

2

) ˆ π

0

(sin θ)d−2

(1− cos θ)
d−2
2

dθ

where we have renamed θ := θd−1. The last integral can be computed exactly via the

expression ˆ π

0

(
sin2(θ)

1− cos θ

)n
2

dθ =

ˆ π

0

(1 + cos θ)
n
2 dθ =

2
n
2
√
π Γ(n+1

2
)

Γ(n
2

+ 1)
.

for any n ∈ N. The case n = d− 2 gives the desired result.

Now we turn to the characterisation of extremisers:

Theorem 2.3.3. Extremisers for (2.3.1) are Gaussians.

Proof. Following the approach in [BBF+18], we have equality in (2.3.1) if and only if

F̂ (ξ) = F̂ (η) for almost every ξ and η in the support of the measure dΣξ(η)dξ. The

functional equation

f̂(ξ1)f̂(ξ2) = f̂(η1)f̂(η2) (2.3.7)

is known as the Maxwell-Boltzmann functional equation, and it has been previously stud-

ied in [BBJP17; BBF+18]. The solution of (2.3.7), when f̂ is locally integrable, is given

by f̂(ξ) = exp(a|ξ|2 + b · ξ + c) with <(a) < 0, b ∈ Cd and c ∈ C.

We need to check that f̂ is locally integrable, and this is the case since f̂ ∈ L2. See

also [BBJP17, Remark p. 471] and [BBF+18, Proof of Theorem 2.1].
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CHAPTER 3

A SPARSE QUADRATIC T (1) THEOREM

Sometimes science is more art than science, a

lot of people don’t get that.
R. & M.

This chapter is based on the paper

G. Brocchi. A sparse quadratic T1 theorem, New York Journal of Mathemat-
ics, 26 (2020), 1232–1272.

The only addition is Section 3.1.7 on the equivalence of the testing conditions:

1. There exists a constant CT > 0 such that

ˆ
Q

ˆ `Q

0

|θt1Q(x)|2 dt

t
dx ≤ CT|Q|. (T)

holds uniformly for any cube Q.

2. There exists a constant C > 0 such that

〈S(1Q)2,1Q〉 ≤ C|Q| (T’)

holds uniformly for any cube Q.

Remark 3.0.1. It is possible to relax the L2 testing condition (T) to the following weak

L0 condition: there is a non-increasing function ϕ : (0,∞) → [0, 1) vanishing at infinity
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such that for all cubes Q and λ > 0 it holds that

|{x ∈ Q : S(1Q)(x) > λ}|
|Q|

≤ ϕ(λ). (T0)

See [MMV19, Theorem 1.6] and the remarks after it, where the measure νQ appearing

there can be replaced by 1Q dx. In particular, conditions (T0) and (T) are equivalent, as

each one is a necessary and sufficient condition for the L2 boundedness of S.

We prove the following theorem.

Theorem B. Let S be the vertical square function defined in (1.2.2) satisfying conditions

(C1), (C2) and any of the equivalent testing conditions: (T), (T’), (T0). Then for any

pair of compactly supported functions f, g ∈ C∞c (Rd) there exists a sparse collection S

such that

∣∣∣ ˆ
Rd

(Sf)2 · g dx
∣∣∣ ≤ C(C1 + C2 + CT)

∑
Q∈S

(
1

|Q|

ˆ
Q

|f |
)2(

1

|Q|

ˆ
Q

|g|
)
|Q|

where C = C(α, d) is a positive constant independent of f and g.

Guide to this chapter

In §3.1 we introduce shifted random dyadic grids and the associated Haar basis. Further-

more we use the classical reduction to good cubes. In §3.2 we start the proof of Theorem B

by decomposing the operator into off-diagonal and diagonal parts. These are split further

each one into two terms

〈(Sf)2, g〉 . (I) + (II)︸ ︷︷ ︸
off-diagonal

+ (IIIa) + (IIIb)︸ ︷︷ ︸
diagonal

.

The off-diagonal part is bounded by a dyadic form using standard techniques in §3.3 and

off-diagonal estimates in §3.4. The dyadic form is dominated by a sparse form in §3.7.

Terms (IIIa) and (IIIb) come from a Calderón–Zygmund decomposition g = a + b,
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where a is the average part and b is the bad part of g.

In §3.5 we introduce the stopping cubes used to control the diagonal part. We reduce

(IIIa) to a telescopic sum on stopping cubes plus off-diagonal terms. We remark that

the stopping family depends only on the functions f and g. Furthermore, the testing

condition (T) is used only in this section and only once.

In §3.6 we deal with (IIIb). We exploit the zero average property of b together with

the regularity of the kernel (C2) to restore a setting in which off-diagonal estimates can

be applied as in the previous sections, see §3.6.1.

In §3.8 we collect some of the proofs postponed to ease the reading. In Appendix B

we recall some known results about conditional expectations and Haar projections which

are used in §3.6.

Notation

For two positive quantities X and Y the notation X . Y means that there exists a

constant C > 0 such that X ≤ CY . The dependence of C on other parameters will be

indicated by subscripts X .d,r,α Y when appropriate.

Given a cube Q in Rd, the quantities ∂Q, `Q and |Q| denote, respectively, boundary,

size length, and the Lebesgue measure of Q. We also denote by 3Q the (non-dyadic) cube

with the same centre of Q and side length 3`Q.

The average of a function f over a cube Q will be denoted by

〈f〉Q :=

 
Q

f :=
1

|Q|

ˆ
Q

f(y) dy.

We consider Rd with the `∞ metric, so that dist(x, 0) = maxi|xi|. The distance between

two cubes P and R will be denoted by d(P,R), while

D(P,R) := `P + d(P,R) + `R
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is the “long distance”, as defined in [NTV03, Definition 6.3].

3.1 Preliminaries

3.1.1 Dyadic cubes

The standard dyadic grid D on Rd is a collection of nested cubes organised in generations

Dj := {2−j([0, 1)d +m),m ∈ Zd}.

Each generation Dj is a partition of the whole space and D= ∪j∈ZDj. Any cube Q ∈ Dj

has 2d children in Dj+1 and one parent in Dj−1. For k ∈ N we denote by Q(k) the

k-ancestor of Q, that is the unique cube R in the same grid D such that R ⊃ Q and

`R = 2k`Q. We also denote by chk(Q) the set of the k-grandchildren of Q, so that if

P ∈ chk(Q) then P (k) = Q.

3.1.2 Haar functions

Classical Haar functions are an orthonormal basis of L2(Rd) given by linear combinations

of indicator functions supported on cubes in D.

On R, for a given interval I ∈ D let I− and I+ be the left and the right dyadic child of

I. Consider the functions h0
I := |I|−1/2

1I and h1
I := (1I−−1I+)|I|−1/2. Then {h1

I}I∈D is an

orthonormal complete system of L2(R). In higher dimensions, as a cube I is the product

of intervals I1 × · · · × Id, a non-constant Haar function hεI is the product hε1I1 × · · · × h
εd
Id
,

where ε = (εi)i ∈ {0, 1}d \ {0}d.

A function f in L2 can be written in the Haar basis:

f =
∑
I∈D

∑
ε∈{0,1}d\{0}d

〈f, hεI〉hεI
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=
∑
I∈D

∑
J∈ch1(I)

(〈f〉J − 〈f〉I)1J =:
∑
I∈D

∆If.

In this chapter the sum over ε is not important, so both the superscript and the sum will

be omitted and hI will denote a non-constant Haar function. Two bounds that will be

used are
‖∆If‖L1 ≤ |〈f, hI〉||I|1/2 ≤

ˆ
I

|f |,

‖∆If‖L∞ ≤ |〈f, hI〉||I|−1/2 ≤
 
I

|f |.
(3.1.1)

3.1.3 Good and bad cubes

A cube is called good if it is distant from the boundary of any much larger cube. More

precisely, we have the following

Definition 3.1.1 (Good cubes). Given two parameters r ∈ N and γ ∈ (0, 1
2
), a cube

R ∈ D is r-good if d(R, ∂P ) > (`R)γ(`P )1−γ for any P ∈ D with `P ≥ 2r`R.

A cube which is not good is a bad cube.

Recall that a family of Littlewood–Paley kernels comes with a parameter α ∈ (0, 1],

see Definition 1.2.3. It is useful to fix γ = α/(4α + 4d). This is just a convenient choice

and any other value of γ strictly between 0 and α/(2α + 2d) would work as well.

3.1.4 Shifted dyadic cubes

Given a sequence ω = {ωi}i∈Z ∈ ({0, 1}d)Z and a cube R ∈ Dj of length 2−j, the

translation of R by ω is defined by

R+̇ω := R + xj where xj :=
∑
i>j

ωi2
−i.

For a fixed ω, let Dω be the collection of dyadic cubes in D translated by ω. The standard

dyadic grid corresponds to D0 where ωi = 0 for all i ∈ Z. Shifted dyadic grids enjoy the
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same nested properties of the standard grid D0, together with other properties that will

be useful later, see Remark 3.3.5. For more on dyadic grids, we refer the reader to the

beautiful survey [Per19, §3].

3.1.5 Random shifts

Let P be the unique probability measure on Ω := ({0, 1}d)Z such that the coordinate

projections are independent and uniformly distributed. Fix R ∈ D0 with `R = 2−j and

consider J ∈ D0 with `J > `R. The translated cube J+̇ω is

J+̇ω = J +
∑

2−i<`R

ωi2
−i +

∑
`R≤2−i<`J

ωi2
−i,

R+̇ω = R +
∑

2−i<`R

ωi2
−i.

The position of R+̇ω depends on the i such that 2−i < `R while the goodness of R+̇ω,

since R and J are translated by the same ω, depends on the i such that 2−i ≥ `R. Then

position and goodness of a cube are independent random variables, see [Hyt12].

Let 1good be the function on Dω which takes value 0 on bad cubes and 1 on good cubes.

The probability of a cube R to be good is πgood = P(R+̇ω is good) = Eω[1good(R+̇ω)],

where Eω is the expectation with respect to P. The probability πgood > 0 provided to

choose r large enough in Definition 3.1.1, see [Hyt17, Lemma 2.3]. The indicator function

1R+̇ω( · ) depends only on the position of R+̇ω, so by the independence of goodness and

position, for any cube R ∈ D0 we have

Eω[1good(R+̇ω)] · Eω[1R+̇ω( · )] = Eω[1{R+̇ω good}( · )]. (3.1.2)

3.1.6 Calderón–Zygmund decomposition on dyadic grandchildren

Let R be a dyadic cube. For r ∈ N we denote by Rr a r-dyadic child of R in chr(R), so

that R(r)
r = R.
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Proposition 3.1.2 (Calderón–Zygmund decomposition on r-grandchildren). Let r ∈ N

and f be a function in L1(Rd). For any λ > 0 there exists a collection of maximal dyadic

cubes L and two functions a and b such that f = a+ b, with ‖a‖L∞ ≤ 2d(r+1)λ and

b :=
∑
L∈L

∑
Lr∈chr(L)

bLr , where bLr :=
(
f − 〈f〉Lr

)
1Lr .

Remark 3.1.3. When r = 0, this is the usual Calderón–Zygmund decomposition of f , see

[Gra14, Theorem 5.3.1].

Proof. Given λ > 0, let L be the collection of maximal dyadic cubes L covering the set

E :=
{
x ∈ Rd : sup

Q∈D
〈|f |〉Q1Q(x) > λ

}
=
⋃
L∈L

L

so that 〈|f |〉L ∈ (λ, 2dλ] for each L ∈L. Let

a := f1E{ +
∑
L∈L

∑
Lr∈chr(L)

〈f〉Lr1Lr , b := f − a.

The cubes in chr(L) are a partition of L. Since the cubes L in L are disjoint, we have

‖a‖L∞ ≤ λ+ sup
L∈L

sup
Lr∈chr(L)

|〈f〉Lr |.

Let L(1) be the dyadic parent of L. Then the average of f is controlled by

∣∣∣ 1

|Lr|

ˆ
Lr

f
∣∣∣ ≤ |L(1)|

|Lr|

 
L(1)

|f | ≤ 2d(r+1)λ.

3.1.7 Equivalence of testing conditions

The testing condition in (T) can also be expressed as testing against indicator functions

on cubes.
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Compare the following proposition with [AT98, Lemma 6 (Localization)].

Proposition 3.1.4. Let S be a Littlewood–Paley square function. Then the two testing

conditions are equivalent:

1. there exists C > 0 such that

〈S(1Q)2,1Q〉 ≤ C|Q|

holds for all dyadic cubes Q;

2. there exists C > 0 such that

ˆ
Q

ˆ `Q

0

|θt1Q|2
dt

t
dx ≤ C|Q|

holds for all dyadic cubes Q.

To prove Proposition 3.1.4, we use the following general reduction for large scales

exploiting the decay of the kernel (condition (C1)).

Proposition 3.1.5. Let f, g be functions supported on a fixed Q ∈ D in Rd, then

ˆ
Q

ˆ ∞
`Q

|θtf(x)|2g(x)
dt

t
dx ≤ 1

2d
〈|f |〉2Q〈|g|〉Q|Q|.

Proof. Bound kt(u, v) by tα(t + |u − v|)−(α+d), then by dropping the term |u − v| in the

denominator, we estimate

ˆ
Q

ˆ ∞
`Q

|θtf(x)|2g(x)
dt

t
dx ≤

ˆ
Q

ˆ ∞
`(Q)

|t−d‖f‖L1|2g(x)
dt

t
dx

=

(
|Q|

 
Q

|f |
)2 ˆ ∞

`(Q)

t−2d−1 dt

(ˆ
Q

g

)
=

( 
Q

|f |
)2

|Q|2 `(Q)−2d

2d
|Q|
( 

Q

g

)
.d 〈|f |〉2Q〈|g|〉Q|Q|.
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Proof of Proposition 3.1.4. Since the integrand is non-negative, we can bound with

ˆ
Q

ˆ `Q

0

|θt1Q|2
dt

t
dx ≤

ˆ
Q

ˆ ∞
0

|θt1Q|2
dt

t
dx ≤ C|Q|.

For the opposite implication, we decompose the integral in t in two ranges, then we

estimate:

〈S(1Q)2,1Q〉 =

ˆ
Q

ˆ `Q

0

|θt1Q|2
dt

t
dx

+

ˆ
Q

ˆ ∞
`Q

|θt1Q|2
dt

t
dx ≤ (CT + (2d)−1)|Q|

where we applied the testing condition (T) to the fist term and Proposition 3.1.5 to the

second.

3.2 Proof of Theorem B

We start by decomposing the dual form 〈(Sf)2, g〉.

3.2.1 Decomposition

For any fixed ω ∈ Ω = ({0, 1}d)Z the upper half space Rd+1
+ can be decomposed in the

Whitney regions

WR := R×
[
`R

2
, `R

)
, R ∈ Dω.
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R

WR

Figure 3.1: Decomposition of R2
+ in Whitney regions. The regionWR and the correspond-

ing interval R are shown.

Thus we can write

〈(Sf)2, g〉 =

¨
Rd+1
+

|θtf(x)|2 dt

t
g(x) dx =

∑
R∈Dω

¨
WR

|θtf(x)|2 dt

t
g(x) dx.

Then we decompose f =
∑

P∈Dω ∆Pf . Given R ∈ Dω, we distinguish two collections of

P :

Pω
R := {P ∈ Dω : P ⊃ R(r)}, and Dω \Pω

R.

We shall sometimes omit the superscript ω in the following. Bound the operator:

∑
R∈D

¨
WR

|θtf(x)|2 dt

t
g(x) dx

≤ 2
∑
R∈D

¨
WR

(∣∣ ∑
P∈D\PR

θt∆Pf(x)
∣∣2 +

∣∣ ∑
P∈PR

θt∆Pf(x)
∣∣2)|g(x)| dt

t
dx.

(3.2.1)

Consider the second term in (3.2.1). Let PR be the dyadic child of P containing R. Then

∆Pf1P = ∆Pf1P\PR + 〈∆Pf〉PR1PR and we split the operator accordingly as before to

obtain:

∑
R∈D

¨
WR

|θtf(x)|2 dt

t
g(x) dx .
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.
∑
R∈D

¨
WR

∣∣∣ ∑
P∈D\PR

θt∆Pf(x)
∣∣∣2|g(x)| dt

t
dx (I)

+
∑
R∈D

¨
WR

∣∣∣ ∑
P∈PR

θt(∆Pf1P\PR)(x)
∣∣∣2|g(x)| dt

t
dx (II)

+
∑
R∈D

¨
WR

∣∣∣ ∑
P∈PR

θt(〈∆Pf〉PR1PR)(x)
∣∣∣2|g(x)| dt

t
dx. (III)

In each term, without loss of generality, we can assume g to be supported on R. We write

|g| = a + b using the Calderón–Zygmund decomposition in Proposition 3.1.2 at height

λ = A〈|g|〉R for A > 1. Then the bad part b is decomposed in the Haar basis. We split

term (III) in two parts: (IIIa) and (IIIb), defined below.

(III) =
∑
R∈D

¨
WR

∣∣∣ ∑
P∈PR

θt(〈∆Pf〉PR1PR)(x)
∣∣∣2 dt

t
a(x) dx (IIIa)

+
∑
R∈D

¨
WR

∣∣∣ ∑
P∈PR

θt(〈∆Pf〉PR1PR)(x)
∣∣∣2 ∑
Q∈D
Q⊂R

∆Qb(x)
dt

t
dx. (IIIb)

3.2.2 Good reduction

Averaging over all dyadic grids Dω we have

¨
Rd+1
+

|θtf(x)|2|g(x)| dt
t

dx = Eω
∑
R∈Dω

¨
WR

|θtf(x)|2|g(x)| dt
t

dx

. Eω
[
I + II + III

]
= Eω

[
I + II + IIIa

]
+ Eω

[
IIIb
]

because all the integrands are non-negative and the expectation Eω is linear.

By using the identity (3.1.2) and writing 1 as π−1
goodEω[1good( · +̇ω)], one can turn a

sum over all cubes in Dω into a sum over good cubes, in particular:

Eω
[
I + II + IIIa

]
= π−1

goodEω
[
1good(R+̇ω)

(
I + II + IIIa

)]
, (3.2.2)

Eω
[
IIIb
]

= π−1
goodEω

[
1good(Q+̇ω)

(
IIIb
)]
.
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We refer the reader to [MM14, §2.2] for an expanded version of (3.2.2) with g ≡ 1.

From now on, the cubes Q in (IIIb) and the cubes R in all other cases are considered to

be good cubes. The superscript in Dω, as well as the expectation Eω and the probability

πgood will be omitted.

3.3 Reduction of (I) to a dyadic form

We start by showing that

(I) =
∑
R∈D
R good

¨
WR

∣∣ ∑
P∈D\PR

θt∆Pf
∣∣2|g| dt

t
dx .

∑
j∈N

2−cjBD
j (g, f)

for c > 0, where BD
j (g, f) is the dyadic form given by

BD
j (g, f) :=

∑
K∈D

〈|g|〉3K
∑
P∈D
P⊂3K

`P=2−j`K

〈f, hP 〉2. (3.3.1)

We remark that the function g barely plays any role in this section.

3.3.1 Different cases for P

Given R ∈ D, the cubes P are grouped according to their length and position with respect

to R. This decomposition also appeared in [MM15, §4.3].
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Table 3.3.1: Different cases for P given R according to their lengths (first row) and

position.

`P ≥ 2r+1`R `R ≤ `P ≤ 2r`R `P < `R

P ⊃ R P 6⊃ R

Psubscale

3P \ P ⊃ R 3P 6⊃ R 3P 6⊃ R 3P ⊃ R P ⊂ 3R P 6⊂ 3R

Pnear Pfar Pclose inside far

PR D\PR

Remark 3.3.1. Since 3P is the union of 3d cubes in D, the condition 3P 6⊃ R is equivalent

to 3P ∩ R = ∅, which implies that d(P,R) > `P . The condition `P ≥ 2r+1`R allows to

exploit the goodness of R also with dyadic children of P .

We decompose the sum over P ∈ D\PR in four terms.

∑
R∈D

¨
WR

∣∣∣ ∑
P∈D\PR

θt(∆Pf)
∣∣∣2|g| dt

t
dx

.
∑
R∈D

¨
WR

∣∣∣ ∑
P : `P>2r`R

3P\P⊃R

θt(∆Pf)
∣∣∣2|g| dt

t
dx (near)

+
∑
R∈D

¨
WR

∣∣∣ ∑
P : `P≥`R
d(P,R)>`P

θt(∆Pf)
∣∣∣2|g| dt

t
dx (far)

+
∑
R∈D

¨
WR

∣∣∣ ∑
P : 3P⊃R

`R≤`P≤2r`R

θt(∆Pf)
∣∣∣2|g| dt

t
dx (close)

+
∑
R∈D

¨
WR

∣∣∣ ∑
P : `P<`R

θt(∆Pf)
∣∣∣2|g| dt

t
dx. (subscale)

3.3.2 Estimates case by case

We start with a well–known bound.

Lemma 3.3.2. Let P,R ∈ D with R good. If one of the following conditions holds
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(1) `P ≥ `R and P and R are disjoint;

(2) `P < `R;

then for (x, t) ∈ WR we have

|θt(∆Pf)(x)| .α,d (C1 + C2)
(
√
`R`P )α

D(R,P )α+d
‖∆Pf‖L1 .

The proof uses the goodness of R in case (1) and the zero average of ∆Pf in case (2),

see also [LM17a, §5],[MM14, §2.4]. Details of the proof are deferred to §3.8.

We apply Lemma 3.3.2 for P in Pi with i ∈ {near, far, close, subscale} and estimate

‖∆Pf‖L1 as in (3.1.1). Then we apply Cauchy–Schwarz in `2.

∑
R∈D

¨
WR

∣∣∣ ∑
P∈Pi

θt(∆Pf)(x)
∣∣∣2|g(x)| dt

t
dx

.
∑
R∈D

¨
WR

(∑
P∈Pi

|〈f, hP 〉|
(
√
`R`P )α

D(R,P )α+d
|P |1/2

)2

|g(x)| dt
t

dx

≤
∑
R∈D

¨
WR

(∑
P∈Pi

〈f, hP 〉2
(
√
`R`P )α

D(R,P )α+d
·
∑
P∈Pi

(
√
`R`P )α

D(R,P )α+d
|P |

)
|g(x)| dt

t
dx. (3.3.2)

The quantity in parenthesis in (3.3.2) does not depend on t, so we bound

ˆ `R

`R/2

dt

t
≤ 2

`R

ˆ `R

`R/2

dt = 1.

The second sum in parenthesis in (3.3.2) is finite in all cases.

Lemma 3.3.3. Let i ∈ {near, far, close, subscale}, then

∑
P∈Pi

(
√
`R`P )α

D(R,P )α+d
|P | . 1.

Details of the proof are in §3.8. We proceed with studying

∑
R∈D

ˆ
R

(∑
P∈Pi

〈f, hP 〉2
(
√
`R`P )α

D(R,P )α+d

)
|g(x)| dx
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for i ∈ {near, far, close, subscale}. When P and R are disjoint, it is useful to rearrange

the sums using a common ancestor of P and R.

Lemma 3.3.4 (Common ancestor). Let R,P ∈ D be disjoint cubes with R good. If

d(R,P ) > max(`R, `P )1−γ min(`R, `P )γ then there exists K ⊇ P ∪R such that

`K

(
min(`P, `R)

`K

)γ
≤ 2r d(R,P ).

A proof in the case `P ≥ `R can be found in [Hyt17, Lemma 3.7]. When `P < `R,

the same ideas carry over, see §3.8 for a proof of this case.

Remark 3.3.5. For any P,R ∈ Dω there exists (almost surely) a common ancestor K ∈

Dω. Indeed, dyadic grids (like the standard grid D0) without this property have zero

measure in the probability space (Ω,P), see [Per19, §3.1.1 and Example 3.2].

3.3.3 P far from R

In this case d(P,R) > `P and `P = max(`P, `R), so the hypotheses of Lemma 3.3.4

are satisfied. Let K be the common ancestor of P and R given by Lemma 3.3.4. Since

`P ≥ 2r+1`R, let `P = 2−j`K and `R = 2−i−j`K for some i, j ∈ Z+, with i ≥ r + 1. We

have

∑
R∈D

ˆ
R

g

( ∑
P∈Pfar

〈f, hP 〉2
(
√
`R`P )α

d(R,P )α+d

)

=
∑
K∈D

∑
i,j

∑
R :R⊂K

`R=2−i−j`K

ˆ
R

g
∑

P :P⊂K
`P=2−j`K
d(P,R)>`P

〈f, hP 〉2
(
√
`R`P )α

d(R,P )α+d
.

By using the lower bound d(P,R) &r (`K)1−γ(`R)γ with γ = α/(4α + 4d), we estimate

√
`P`R

d(P,R)
.r

2−j−i/2`K

`K2−(i+j)γ
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so that
(
√
`P`R)α

d(P,R)α+d
.r,α,d

2−(j+i/2)α

2−(i+j)γ(α+d)|K|
=

2−(3j+i)α/4

|K|
. (3.3.3)

For any fixed integer m, the set {R ⊂ K : `R = 2−m`K} is a partition of K, so we bound

∑
K∈D

∑
i,j

∑
R :R⊂K

`R=2−i−j`K

ˆ
R

g
∑

P :P⊂K
`P=2−j`K
d(P,R)>`P

〈f, hP 〉2
(
√
`R`P )α

d(R,P )α+d

.
∑
j∈N

2−3jα/4
∑
i≥r+1

2−iα/4
∑
K∈D

 
K

|g|
∑

P :P⊂K
`P=2−j`K

〈f, hP 〉2.

We can sum in i, then we have

∑
j∈N

2−3jα/4
∑
K∈D

〈|g|〉K
∑
P⊂K

`P=2−j`K

〈f, hP 〉2

≤ 3d
∑
j∈N

2−3jα/4
∑
K∈D

〈|g|〉3K
∑
P⊂3K

`P=2−j`K

〈f, hP 〉2

=
∑
j∈N

2−3jα/4BD
j (g, f).

A sparse domination of BD
j (g, f) is proved in §3.7.

3.3.4 P near R

Recall that P ∈ Pnear if 3P \ P ⊃ R and `P ≥ 2r+1`R. By the goodness of R, we have

d(P,R) > (`P )1−γ(`R)γ. So the hypotheses of Lemma 3.3.4 are satisfied and there exists

K ⊇ P ∪R such that d(P,R) &r (`K)1−γ(`R)γ. Arguing as in the far term leads to

∑
R∈D

ˆ
R

g

( ∑
P∈Pnear

〈f, hP 〉2
(
√
`R`P )α

d(R,P )α+d

)
.
∑
j∈N

2−3jα/4BD
j (g, f).
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3.3.5 P comparable and close to R

In this case `R ≤ `P ≤ `R(r) and 3P ⊃ R. Using the trivial bound D(P,R) ≥ `R we

have

∑
R∈D

ˆ
R

|g|

( ∑
P∈Pclose

〈f, hP 〉2
(
√
`R`P )α

D(R,P )α+d

)
.r,α

∑
R∈D

ˆ
R

|g|
∑

P : 3P⊃R
`R≤`P≤2r`R

〈f, hP 〉2

|R|
.

Rearrange the sum in groups of P such that `P = 2k`R for k ∈ {0, . . . , r}. Then

∑
R∈D

ˆ
R

|g|
r∑

k=0

∑
P : 3P⊃R
`P=2k`R

〈f, hP 〉2
1

|R|
=

r∑
k=0

∑
P∈D

〈f, hP 〉2
2kd

|P |
∑
R⊂3P

`R=2−k`P

ˆ
R

|g|

≤
r∑

k=0

∑
P∈D

〈f, hP 〉2
2kd

|P |

ˆ
3P

|g|

.r,d
∑
P∈D

〈f, hP 〉2
3d

|3P |

ˆ
3P

|g|

= 3d
∑
P∈D

〈f, hP 〉2〈|g|〉3P .

We define

BD
0 (g, f) :=

∑
P∈D

〈f, hP 〉2〈|g|〉3P . (3.3.4)

Then BD
0 (g, f) is bounded by a sparse form in §3.7.

3.3.6 Subscale

When `P < `R we distinguish two subcases, as shown in Table 3.3.1.

Inside : P ⊂ 3R

The leading term in the long-distance D(R,P ) is `R, so we bound

∑
R∈D

ˆ
R

|g|

( ∑
P : `P<`R
P⊂3R

〈f, hP 〉2
(
√
`R`P )α

D(R,P )α+d

)
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≤
∑
R∈D

 
R

|g|
∑

P : `P<`R
P⊂3R

〈f, hP 〉2
(
`P

`R

)α/2

=
∑
j∈N

2−jα/2
∑
R∈D

〈|g|〉R
∑

P :P⊂3R
`P=2−j`R

〈f, hP 〉2

.d
∑
j∈N

2−jα/2BD
j (g, f).

See §3.7 for the sparse domination of BD
j (g, f).

Far : P 6⊂ 3R

In this case d(P,R) > `R > `P , so the hypotheses of Lemma 3.3.4 are satisfied. Af-

ter Cauchy–Schwarz, rearrange the sum using the common ancestor K, then let `P =

2−m`R = 2−m−i`K and estimate the decay factor as in (3.3.3):

∑
R∈D

ˆ
R

|g|
∑

P :`P<`R
d(P,R)>`R

〈f, hP 〉2
(
√
`P`R)α

D(P,R)α+d

≤
∑
i,m

∑
K∈D

∑
R⊂K

`R=2−i`K

ˆ
R

|g|
∑
P⊂K

`P=2−m−i`K

〈f, hP 〉2
(
√
`P`R)α

d(P,R)α+d

.r
∑
i∈N

2−iα/2
∑
m∈N

∑
K∈D

ˆ
K

|g|
∑
P⊂K

`P=2−m−i`K

〈f, hP 〉2
2−(m+i)α/42−iα/2

|K|

≤
∑
i∈N

2−iα/2
∑
j∈N

2−jα/4
∑
K∈D

 
K

|g|
∑
P⊂K

`P=2−j`K

〈f, hP 〉2

where j := m + i and we bounded by the sum over all j ≥ 0, since all terms are non-

negative. After summing in i, what is left is bounded by BD
j (g, f). This concludes this

case and the reduction of (I) to a dyadic form.
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3.4 Reduction of (II) to a dyadic form

In this section we prove the following bound

∑
R∈D

¨
WR

|g|
∣∣∣ ∑
P :P⊃R(r)

θt(∆Pf1P\PR)
∣∣∣2 dt

t
dx . BD

0 (g, f). (3.4.1)

The dyadic form BD
0 (g, f) defined in (3.3.4) is controlled by a sparse form in §3.7.

Remark 3.4.1. The goodness of R gives the lower bound on the distance d(R, ∂P ) >

(`P )1−γ(`R)γ.

As will be clear from the proof, inequality (3.4.1) holds if one replaces the indicator

1P\PR with 1K\PR where K is Rd or any other larger cube containing P .

To prove (3.4.1), we use a classical estimate for the Poisson kernel.

Lemma 3.4.2 (Poisson off-diagonal estimates). Let β ∈ (0, 1], r ∈ N and γ as in the

introduction and let Q,P ∈ D such that Q(r) ⊂ P and Q is r-good. Then

ˆ
Rd\P

(`Q)β

d(y,Q)β+d
dy .

(
`Q

`P

)η

where η = β − γ(β + d).

Proof. Decompose Rd \ P in annuli Ak = 3k+1P \ 3kP for k ∈ N. Then on each annulus

d(y,Q) > d(∂(3kP ), Q). Since `P > 2r`Q, use the goodness of Q to obtain the bound.

Proof of (3.4.1). When (x, t) ∈ WR the size condition (C1) and Lemma 3.4.2 give

θt(∆Pf1P\PR)(x) . ‖∆Pf‖L∞
ˆ
P\PR

(`R)α

(`R + d(y,R))α+d
dy

.
|〈f, hP 〉|
|P |1/2

(
`R

`PR

)η

where η = α − γ(α + d) > 0. The sum
∑

P⊃R(r)(`R/`PR)η is a geometric series. An
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application of the Cauchy–Schwarz inequality gives

∑
R∈D

¨
WR

|g|

∣∣∣∣∣∣
∑

P⊃R(r)

|〈f, hP 〉|
|P |1/2

(
`R

`PR

)η∣∣∣∣∣∣
2

dt

t
dx

≤
∑
R∈D

∑
P⊃R(r)

〈f, hP 〉2

|P |

(
`R

`PR

)η ˆ
R

|g(x)| dx

.
∑
i≥r+1

2−iη
∑
P∈D

〈f, hP 〉2

|P |
∑
R⊂P

`R=2−i`P

ˆ
R

|g|

=
∑
i≥r+1

2−iη
∑
P∈D

〈f, hP 〉2

|P |

ˆ
P

|g|.

We sum in i and then we bound by the dyadic form BD
0 (g, f).

3.5 Reduction of (IIIa) to a sparse form

In this section we prove that there exists c > 0 and a sparse family S ⊆ D such that

(IIIa) .
∑
R∈D

〈|g|〉R
¨
WR

∣∣ ∑
P∈PR

〈∆Pf〉PRθt1PR
∣∣2 dt

t
dx

.
∑
j∈N

2−cjBD
j (g, f) + ΛS (g, f) (3.5.1)

where ΛS (g, f) =
∑

S∈S 〈|g|〉S〈|f |〉2S|S|. We remind the reader that PR is the dyadic child

of P which contains R, and PR is the collection of P containing R(r).

Remark 3.5.1 (Bound on a). Recall that a is the good part of g in the Calderón–Zygmund

decomposition of Proposition 3.1.2 with λ = A〈|g|〉R. So ‖a‖∞ ≤ 2d(r+1)A〈|g|〉R and the

first inequality in (3.5.1) follows.
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3.5.1 Stopping cubes

Given two functions f and g and a cube Q ⊆ Rd, consider the collections:

Af (Q) = {S ∈ D, S ⊂ Q : 〈|f |〉S > A〈|f |〉Q},

Ag(Q) = {S ∈ D, S ⊂ Q : 〈|g|〉S > A〈|g|〉Q}.

Let A?(Q) be the maximal dyadic components of the set

A(Q) = Af (Q) ∪Ag(Q).

The weak (1, 1) bound for the dyadic maximal function ensures that there exists a

constant A > 1 such that |A(Q)| ≤ 1
2
|Q| and so

∣∣∣ ⋃
S∈A?(Q)

S
∣∣∣ =

∑
S∈A?(Q)

|S| ≤ 1

2
|Q|.

Fix Q0 in D containing the support of f and g. The stopping family S is defined

iteratively:

S0 := {Q0}, Sn+1 :=
⋃
Q∈Sn

A?(Q), S :=
⋃
n∈N

Sn.

Remark 3.5.2. The family S is 1
2
-sparse, since for any S ∈ S the set ES := S\

⋃
S′∈A?(S) S

′

has measure |ES| > 1
2
|S| and {ES}S∈S are disjoint.

In the same way, taking A?(Q) to be the maximal dyadic components of Ag(Q) pro-

duces a sparse family that we denote with Sg. It will be used later when only the stopping

cubes related to g are needed.
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For a given Q ∈ D, denote by Q̂ the minimal

stopping cube S ∈ S such that S ⊇ Q.

For S ∈ S let Tree(S) be the family of

dyadic cubes contained in S, but not in any

S ′ ∈ A?(S)

Tree(S) := {R ∈ D : R̂ = S}.

S

A?(S)

Figure 3.2: Example of Tree(S).

Also, we define Treer(S) := {R ∈ D : R̂(r) = S}. Note that the maximal cubes in

Treer(S) are the r-grandchildren of S. See Figure B.1 in the appendix.

3.5.2 Reduction to a telescoping sum

We follow the decomposition in [LM17a; MM14] where the sum
∑

P∈PR〈∆Pf〉PR1PR is

decomposed in a telescopic sum plus off-diagonal terms. The off-diagonal terms are then

bounded by a sum of the dyadic forms BD
j (g, f) or directly by a sparse form.

Given S ∈ S such that S ⊃ PR, the indicator function 1PR can be written as 1S−1S\PR .

Recall that P̂R is the minimal stopping cube containing PR. Then

〈∆Pf〉PR1PR =


〈∆Pf〉PR1P̂R − 〈∆Pf〉PR1P̂R\PR if PR 6∈ S (3.5.2)

〈∆Pf〉PR1P̂R if PR ∈ S (3.5.3)

and in the latter case we have

〈∆Pf〉PR1P̂R = 1P̂R
〈f〉PR − 1P̂R

〈f〉P = (1P̂R〈f〉PR − 1P̂ 〈f〉P ) + 1P̂\P̂R〈f〉P .

The term 〈∆Pf〉PR1P̂R\PR is supported away from R, so one can use off-diagonal estimates

as in (3.4.1). Also notice that in the bound (3.4.1) and in its proof one can replace |g|

by 〈|g|〉R. In the same way, off-diagonal estimates are used for 1P̂\P̂R〈f〉P as shown in

Lemma 3.5.4 below.
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The terms 〈∆Pf〉PR1P̂R and 1P̂R
〈f〉PR − 1P̂ 〈f〉P left from (3.5.2) and (3.5.3) are rear-

ranged to obtain a telescopic series. We have

1P̂R
〈∆Pf〉PR = 1P̂R

〈f〉PR − 1P̂R
〈f〉P when PR 6∈ S

and 1P̂R
〈f〉PR − 1P̂ 〈f〉P when PR ∈ S .

If PR 6∈ S then P and PR are contained in the same minimal stopping cube P̂ . So P̂R = P̂

and the two cases add up to 2(1P̂R〈f〉PR − 1P̂ 〈f〉P ) which leads to the telescopic sum

∑
P∈D

R(r)⊂P⊆Q0

1P̂R
〈f〉PR − 1P̂ 〈f〉P = 1

R̂(r)〈f〉R(r) − 1Q̂0
〈f〉Q0 . (3.5.4)

Since f is supported on a fixed Q0, the average on larger cubes Q(n)
0 containing Q0

decreases:

〈f〉
Q

(n)
0

=
1

|Q(n)
0 |

ˆ
Q0

f ≤ 1

|Q(n)
0 |
‖f‖L1 → 0 as n→∞.

Thus when the sum in (3.5.4) extends to all P ⊃ R(r), the term 1
R̂(r)〈f〉R(r) is the only

one remaining.

We have then identified three terms

∑
P∈D
P⊃R(r)

〈∆Pf〉PR1PR =
∑

telescopic

−
∑
far

+
∑
sparse

where

∑
far

:=
∑

P :P⊃R(r)

〈∆Pf〉PR1P̂R\PR ,
∑
sparse

:=
∑

P :P⊃R(r)

PR∈S

1P̂\PR〈f〉P

and
∑

telescopic

:=
∑

P⊃R(r)

2(1P̂R〈f〉PR − 1P̂ 〈f〉P ) = 1
R̂(r)〈f〉R(r) .

Since the case with
∑

far is done in (3.4.1), we show how to deal with the remaining two

cases.
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3.5.3 Bound by a sparse form

We bound the operator applied to 1
R̂(r)〈f〉R(r) and 1P̂\PR〈f〉P .

Lemma 3.5.3. Let S be the sparse collection defined in §3.5.1, then

∑
R∈D

¨
WR

〈|g|〉R|θt1R̂(r)(x)|2〈f〉2R(r)

dt

t
dx .r,d CT

∑
S∈S

〈|g|〉S〈|f |〉2S|S|.

Proof. The set {Treer(S) : S ∈ S } is a partition of D, so we write

∑
R∈D

¨
WR

〈|g|〉R|θt1R̂(r)(x)|2〈f〉2R(r)

dt

t
dx

=
∑
S∈S

∑
R : R̂(r)=S

2rd〈|g|〉R(r)〈f〉2R(r)

¨
WR

|θt1S(x)|2 dt

t
dx

.r,d
∑
S∈S

〈|g|〉S〈|f |〉2S
∑

R :R⊂S

¨
WR

|θt1S(x)|2 dt

t
dx

=
∑
S∈S

〈|g|〉S〈|f |〉2S
ˆ
S

ˆ `S

0

|θt1S(x)|2 dt

t
dx

≤ CT

∑
S∈S

〈|g|〉S〈|f |〉2S|S|

where we used the stopping conditions for f and g, and the testing condition (T).

Lemma 3.5.4. Let S be the sparse collection defined in §3.5.1, then

∑
R∈D

¨
WR

∣∣∣∣∣ ∑
P :P⊃R(r)

PR∈S

θt(1P̂\PR)〈f〉P

∣∣∣∣∣
2

|g| dt
t

dx .
∑
S∈S ′

〈|f |〉2S〈|g|〉S|S| (3.5.5)

where S ′ is the sparse collection of dyadic parents of S .

Proof. Since P ⊃ R(r), the dyadic child PR = R(k) for some integer k ≥ r. For (x, t) ∈ WR,

an application of Poisson off-diagonal estimates (Lemma 3.4.2) gives

θt(1P̂\PR)(x) = θt(1R̂(k+1)\R(k)
)(x) . (`R/`R(k))η = 2−kη.
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After applying Cauchy–Schwarz the sums are rearranged using P as the common ancestor:

∑
R∈D

ˆ
R

|g|
∑

P :P⊃R(r)

P̂R=PR

〈f〉2P
(
`R

`PR

)η
=
∑
k≥r

2−kη
∑
P∈D

with PR∈S

〈f〉2P
∑

R :R⊂P
`R=2−k−1`P

ˆ
R

|g|

=
∑
k≥r

2−kη
∑

P :PR∈S

〈f〉2P
ˆ
P

|g|

≤
∑

P :PR∈S

〈|f |〉2P
ˆ
P

|g|.

Let S ′ be the collection {P ∈ D : P ⊃ S, `P = 2`S for some S ∈ S }. If S is τ -sparse,

then S ′ is τ2−d-sparse. This establishes (3.5.5) and concludes the proof.

The sparse collection in (3.5.1) can be taken as the union of S ′ and the stopping

family in §3.5.1.

3.6 Reduction of (IIIb) to a sparse form

In this section we show that there exists c > 0 and a sparse family S̃ such that

∑
R∈D

¨
WR

∣∣∣ ∑
P∈PR

θt〈∆Pf〉PR1PR
∣∣∣2 ∑

Q∈D
Q good,Q⊂R

∆Qb(x)
dt

t
dx

.
∑
j∈N

2−cjBD
j (g, f) + ΛS̃ (g, f).

In order to exploit the goodness of Q, for example via Poisson off-diagonal estimates as in

Lemma 3.4.2, we need a gap of at least r generations between Q and PR. This motivates

the Calderón–Zygmund decomposition in Proposition 3.1.2. In particular, since b is the

bad part of g at height λ = A〈|g|〉R given by Proposition 3.1.2, we have

∑
Q∈D
Q⊂R

∆Qb =
∑
L∈L

∑
Lr∈chr(L)

∑
Q∈D
Q⊆Lr

∆QbLr .
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Since A > 1, the cubes in L are strictly contained in R. If we choose the constant A as

in the construction of the stopping family in §3.5.1, then the cubes in L are also stopping

cubes in Sg. We can regroup the dyadic cubes Q ⊆ Lr in the stopping trees Treer(S) for

all S ∈ Sg inside R.

∑
L∈L

∑
Lr∈chr(L)

∑
Q∈D
Q⊆Lr

∆QbLr =
∑
S∈Sg

S⊂R

∑
Sr∈chr(S)

∑
Q∈Treer(S)
Q⊆Sr

∆QbSr .

The last sum is the Haar projection of b on Span{hQ : Q ∈ Treer(S), Q ⊆ Sr}. We denote

this quantity by

PSr(b) :=
∑

Q∈Treer(S)
Q⊆Sr

∆QbSr .

Remark 3.6.1. The Haar projection PSrb is supported on Sr and equals PSr(|g|). Indeed

bSr = 1Sr(|g| − 〈|g|〉Sr) and for Q ⊆ Sr the Haar coefficient 〈bSr , hQ〉 = 〈|g|, hQ〉.

We have then proved the following identity

(IIIb) =
∑
S∈Sg

∑
Sr∈chr(S)
Sr good

∑
R :R⊃S

¨
WR

∣∣ ∑
P∈PR

θt〈∆Pf〉PR1PR
∣∣2PSr(|g|) dt

t
dx.

With a slight abuse of notation, we omit the subscript in the stopping family Sg in the

following.

Remark 3.6.2 (Estimates for PSr). The Haar projection PSr(|g|) has zero average and

satisfies the following bound

‖PSrg‖L1 . |Sr|〈|g|〉S. (3.6.1)

A proof of (3.6.1) is in §B.0.4. In particular, summing over all Sr ∈ chr(S) gives

∑
Sr∈chr(S)

‖PSrg‖L1 .
∑

Sr∈chr(S)

|Sr|〈|g|〉S ≤
ˆ
S

|g|. (3.6.2)
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3.6.1 Recover decay and telescopic sum

Let PS be the dyadic child of P containing S. Then

∑
P :P⊃R(r)

〈∆Pf〉PR1PR =
∑
P :P⊃S

〈∆Pf〉PS1PS −
∑

P :S⊂P⊆R(r)

〈∆Pf〉PS1PS .

The second term can be handled as in the subscale case (§3.3.6), while the first can be

reduced to a telescopic sum which equals 〈f〉S1S.

If one tries to reduce 〈∆Pf〉PS1PS to a telescopic term plus off-diagonal terms as in

§3.5.2, the off-diagonal factor which should provide decay is the quantity

ˆ
Rd\PS

(`R)α

d(y, Sr)α+d
dy.

Here the scale (numerator) and the distance (denominator) don’t match and Lemma 3.4.2

seems unable to provide enough decay in order to handle the integral and the sum over

R. But the zero average property of PSr(g) comes to the rescue bringing a factor (`Sr)
α/2

at the numerator by exploiting the smoothness condition of the kernel. We will explain

how.

Let xSr be the centre of the Sr and consider the sublinear operator

KSr
t f(x) :=

ˆ
Rd

(t|x− xSr |)α/2

(t+ |x− y|)α+d
|f(y)| dy

Since the Haar projection PSr(g) is supported on Sr, we have the following bound.

Lemma 3.6.3. Let Sr and R be dyadic cubes with Sr ⊂ R, then

¨
WR

|θtf(x)|2 dt

t
PSr(g)(x) dx .

¨
WR

(
KSr
t f(x)

)2 dt

t
|PSr(g)(x)| dx. (3.6.3)

Proof. The idea is to use the zero average of PSr(g) to exploit the smoothness condition
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(C2). We recall that PSr(g) is supported on Sr ⊂ R. Consider the operator

Kf(x) :=

ˆ `R

`R/2

∣∣∣∣ˆ kt(x, y)f(y) dy

∣∣∣∣2 dt

t

so that the left hand side of (3.6.3) equals
´
Kf(x)PSrg(x) dx. Let xSr be the centre of

Sr. Then

ˆ
Kf(x)PSrg(x) dx =

ˆ (
Kf(x)−Kf(xSr)

)
PSrg(x) dx

and the difference Kf(x)−Kf(xSr) can be factorised as

ˆ `R

`R/2

∣∣∣∣ˆ kt(x, y)f(y) dy

∣∣∣∣2 − ∣∣∣∣ˆ kt(xSr , y)f(y) dy

∣∣∣∣2 dt

t

=

ˆ `R

`R/2

(ˆ
[kt(x, y)− kt(xSr , y)]f(y) dy

)(ˆ
[kt(x, y) + kt(xSr , y)]f(y) dy

)
dt

t

=:

ˆ `R

`R/2

K−Srf(x) ·K+
Sr
f(x)

dt

t
.

For x ∈ Sr, since Sr ⊂ R and t ∈ (`R/2, `R), the distance |x− xSr | ≤ `Sr/2 < `R/2 < t,

so by conditions (C2) and (C1) we have

K−Srf(x) ·K+
Sr
f(x) .

ˆ
|x− xSr |α

(t+ |x− y|)α+d
|f(y)| dy ·

ˆ
tα

(t+ |x− y|)α+d
|f(y)| dy

=

(ˆ
(t|x− xSr |)α/2

(t+ |x− y|)α+d
|f(y)| dy

)2

=:
(
KSr
t f(x)

)2
.

The operator KSr
t satisfies Poisson-like off-diagonal estimates.

Lemma 3.6.4 (Estimates for KSr
t ). Let x ∈ Sr ⊂ R and t ∈ (`R/2, `R). Let Q ∈ D such

that Q ⊃ Sr. Then there exists η > 0 such that the following estimates hold:

KSr
t 1Rd\Q(x) .

(
`Sr

max(`R(r), `Q)

)η
, KSr

t 1Q(x) .
|Q|
|R|

(
`Sr
`R

)α/2
.
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Remark 3.6.5. Notice that the first estimate is better than the one in Lemma 3.4.2 on

smaller scale (when `Q < `R(r)). For the second one, since `Sr < `R, we can also estimate

KSr
t 1Q(x) .

|Q|
|R|

provided that x ∈ Sr and t ∈ (`R/2, `R).

Proof of Lemma 3.6.4. For the second estimate, by forgetting the distance in the denom-

inator, we simply have

KSr
t (1Q)(x) .

ˆ
Q

(`Sr`R)α/2

(`R + d(y, Sr))α+d
dy ≤ |Q|

|R|

(
`Sr
`R

)α/2
.

For the first estimate, when Q ⊃ R(r) use (a+ b)α = (a+ b)2α/2 ≥ (2ab)α/2 in order to

apply off-diagonal estimates. For x ∈ Sr and t ∈ (`R/2, `R) we bound

KSr
t 1Rd\Q(x) .

ˆ
Rd\Q

(`Sr`R)α/2

(`R + d(y, Sr))α+d
dy

.
ˆ
Rd\Q

(`Sr`R)α/2

(`R · d(y, Sr))α/2
dy

d(y, Sr)d
=

ˆ
Rd\Q

(`Sr)
α/2

d(y, Sr)α/2+d
dy. (3.6.4)

Then apply Lemma 3.4.2 with β = α/2

ˆ
Rd\Q

(`Sr)
α/2

d(y, Sr)α/2+d
dy .

(
`Sr
`Q

)η
.

When Sr ⊂ Q ⊂ R(r), split 1Rd\Q as 1Rd\R(r) + 1R(r)\Q. Estimate KSr
t (1Rd\R(r)) as in

(3.6.4). Then applying Lemma 3.4.2 with β = α/2 gives

KSr
t (1Rd\R(r))(x) .

(
`Sr
`R(r)

)η

where η is positive and equals α
2
− γ(α

2
+ d) < α

2
. For KSr

t (1R(r)\Q) we bound

KSr
t (1R(r)\Q)(x) .

ˆ
R(r)

(`Sr`R)α/2

(`R)α/2(`R)α/2+d
dy
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≤ |R
(r)|
|R|

(
`Sr
`R

)α/2
.r,d

(
`Sr
`R

)α/2
= 2rα/2

(
`Sr
`R(r)

)α/2
.

Adding the two bounds gives

KSr
t 1Rd\Q(x) .

(
`Sr
`R(r)

)η
+

(
`Sr
`R(r)

)α/2
≤ 2

(
`Sr
`R(r)

)η

since `Sr < `R(r) and min(η, α/2) = η.

3.6.2 Reduction to telescopic: different terms

Apply Lemma 3.6.3 with
∑
〈∆Pf〉PR1PR in place of f to obtain

(IIIb) .
∑
S∈S

∑
Sr∈chr(S)
Sr good

∑
R :R⊃S

¨
WR

(
KSr
t

∑
P :P⊃R(r)

〈∆Pf〉PR1PR

)2
dt

t
|PSrg| dx.

We split the sum in P to obtain a telescopic sum as in §3.5.2, with an extra subscale term:

∑
P⊃R(r)

〈∆Pf〉PR1PR =
∑

telescopic

−
∑
far

+
∑
sparse

−
∑

subscale

where

∑
telescopic

:= 2
∑

P :P⊃S

(〈f〉PS1P̂S − 〈f〉P1P̂ ) = 2〈f〉S1S

∑
sparse

:=
∑

P :P⊃S
PS∈S

〈f〉P1P̂\PS

∑
subscale

:=
∑

P :P⊆R(r)

P⊃S

〈∆Pf〉PS1PS

∑
far

:=
∑

P :P⊃S

〈∆Pf〉PS1P̂S\PS .
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Then we bound

∣∣∣ ∑
telescopic

−
∑
far

+
∑
sparse

−
∑

subscale

∣∣∣ ≤ ∣∣∣ ∑
telescopic

∣∣∣+
∣∣∣∑

far

∣∣∣+
∣∣∣ ∑
sparse

∣∣∣+
∣∣∣ ∑
subscale

∣∣∣.
We estimate KSr

t applied to each term by using sublinearity and Lemma 3.6.4. Then take

the supremum in t on the Whitney region WR to bound the remaining integral
´ `R
`R/2

dt/t

by 1.

We give the details in each case.

3.6.3 Telescopic term

This case is bounded by the sparse form ΛS (f, g) =
∑

S∈S 〈|f |〉2S
´
S
|g|, where S is the

stopping family of g.

Lemma 3.6.6. It holds that

∑
S∈S

∑
Sr∈chr(S)

∑
R :R⊃S

¨
WR

〈f〉2S
(
KSr
t 1S

)2 dt

t
|PSrg| dx . ΛS (f, g)

Proof. For x ∈ Sr and t ∈ (`R/2, `R) we estimate KSr
t (1S)(x) . |S|/|R| and

´ `R
`R/2

dt/t

by 1. Then by using (3.6.2) for the Haar projection we have

∑
S∈S

∑
Sr∈chr(S)

〈f〉2S
∑
R:R⊃S

¨
WR

(
KSr
t 1S(x)

)2 dt

t
|PSrg(x)| dx

.
∑
S∈S

∑
Sr∈chr(S)

〈f〉2S
∑
R:R⊃S

(
|S|
|R|

)2

‖PSrg‖L1

.r,d
∑
S∈S

〈f〉2S
∑
R:R⊃S

(
|S|
|R|

)2 ˆ
S

|g| ≤
∑
S∈S

〈|f |〉2S
ˆ
S

|g|.
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3.6.4 Subscale term

This term is bounded in a similar way as in the subscale case in §3.3.6.

Lemma 3.6.7. It holds that

∑
S∈S

∑
Sr∈chr(S)

∑
R :R⊃S

¨
WR

(
KSr
t

∑
subscale

)2 dt

t
|PSrg| dx .

∑
j∈N

2−jα/4BD
j (g, f).

Proof. First, since KSr
t is sublinear, we bound

KSr
t

( ∑
subscale

)
≤

∑
P :P⊆R(r)

P⊃S

|〈∆Pf〉PS |KSr
t (1PS).

Then for x ∈ Sr and t ∈ (`R/2, `R) we estimate KSr
t 1PS using Lemma 3.6.4

KSr
t 1PS(x) .

(
`PS
`R

)d(
`Sr
`R

)α/2
.

Bound `PS < `P and |〈∆Pf〉PS | ≤ |〈f, hP 〉||P |−1/2, then we apply the Cauchy–Schwarz

inequality

∑
S∈S

∑
Sr∈chr(S)

∑
R :R⊃S

ˆ
R

( ∑
P :P⊆R(r)

P⊃S

|〈f, hP 〉|
|P |1/2

|R|

)2(
`Sr
`R

)α
|PSrg| dx

≤
∑
S∈S

∑
Sr∈chr(S)

∑
R⊃S

( ∑
P :P⊆R(r)

P⊃S

〈f, hP 〉2

|R|

)( ∑
P⊆R(r)

|P |
|R|

)(
`Sr
`R

)α
‖PSrg‖L1

≤
∑
S∈S

∑
Sr∈chr(S)

∑
R⊃S

(
`S

`R

)α/2
( ∑

P :P⊃S
P⊆R(r)

〈f, hP 〉2

|R|

(
`P

`R

)α/4) ∑
P⊆R(r)

|P |
|R|

(
`P

`R

)α/4 ‖PSrg‖L1 .

The second factor after Cauchy–Schwarz is controlled as in subscale case in Lemma 3.3.3
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where P ⊂ 3R. Then bound ‖PSrg‖L1 as in (3.6.2) to obtain

∑
S∈S

ˆ
S

|g|
∑

R :R⊃S

(
`S

`R

)α/2 ∑
P :S⊂P⊆R(r)

〈f, hP 〉2

|R|

(
`P

`R

)α/4

=
∑
R∈D

1

|R|
∑
S∈S
S⊂R

ˆ
S

|g|
(
`S

`R

)α/2 ∑
P :S⊂P⊆R(r)

〈f, hP 〉2
(
`P

`R

)α/4
.

For i, j ∈ N, let `P = 2−j`R(r) and `S = 2−i`R. Extend the sum over all P such that

P ⊆ R(r) and rearrange

∑
R∈D

1

|R|
∑
S∈S
S⊂R

ˆ
S

|g|
(
`S

`R

)α/2 ∑
P :S⊂P⊆R(r)

〈f, hP 〉2
(
`P

`R

)α/4

=
∑
i,j

∑
R∈D

2−iα/2
1

|R|
∑
S⊂R

`S=2−i`R

ˆ
S

|g|
∑

P⊆R(r)

`P=2−j`R(r)

〈f, hP 〉2
(

`P

`R(r)

)α/4
2rα/4

.r,d
∑
i,j

2−iα/22−jα/4
∑
R∈D

 
R

|g|
∑

P⊆R(r)

`P=2−j`R(r)

〈f, hP 〉2

.r,d
∑
j∈N

2−jα/4
∑

R(r)∈D

 
R(r)

|g|
∑

P⊆R(r)

`P=2−j`R(r)

〈f, hP 〉2

≤ 3d
∑
j∈N

2−jα/4BD
j (g, f).

3.6.5 Far and Sparse terms

In this subsection we show that the quantity

∑
S∈S

∑
Sr∈chr(S)

∑
R :R⊃S

¨
WR

(
KSr
t

(∑
far

+
∑
sparse

))2 dt

t
|PSrg| dx
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is bounded, up to a constant, by the sum of BD
0 (g, f) and ΛS (f, g).

Since KSr
t is sublinear and positive, we bound

KSr
t

(∑
far

+
∑
sparse

)
≤

∑
P :P⊃S

|〈∆Pf〉PS |KSr
t (1P̂S\PS)

+
∑
P :P⊃S
PS∈S

|〈f〉P |KSr
t (1P̂\PS)

≤
∑

P :P⊃S

(
|〈∆Pf〉PS |+ |〈f〉P |1{PS∈S }

)
KSr
t (1Rd\PS).

Then split the sum over P and consider the two cases:

∑
P :P⊃S

=
∑

P :P⊃R(r)

+
∑

P :P⊆R(r)

P⊃S

=: (i) + (ii).

Lemma 3.6.8 (Bound for (i)). Let FP be either 〈∆Pf〉PR or 〈f〉P1{PS∈S }. Then

∑
S∈S

∑
Sr∈chr(S)

∑
R:R⊃S

¨
WR

( ∑
P :P⊃R(r)

|FP | ·KSr
t 1Rd\PS(x)

)2 dt

t
|PSrg| dx

. ΛS (f, g).

Lemma 3.6.9 (Bound for (ii)). Let FP be either 〈∆Pf〉PS or 〈f〉P1{PS∈S }. Then

∑
S∈S

∑
Sr∈chr(S)

∑
R :R⊃S

¨
WR

( ∑
P :P⊃S
P⊆R(r)

|FP | ·KSr
t 1Rd\PS(x)

)2 dt

t
|PSrg| dx

. ΛS (f, g).

Proof of Lemma 3.6.8. In this case P ⊃ R ⊃ S, so the dyadic child PS equals PR. Using

Lemma 3.6.4, since `Sr < `S, we have

KSr
t 1Rd\PR(x) .

(
`Sr
`PR

)η
≤
(
`S

`R

)η (
`R

`PR

)η
.
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We bound
´ `R
`R/2

dt/t ≤ 1 and then apply Cauchy–Schwarz

∑
S∈S

∑
Sr∈chr(S)

∑
R:R⊃S

( ∑
P :P⊃R(r)

|FP |
(
`S

`R

)η (
`R

`PR

)η)2

‖PSrg‖L1

≤
∑
S∈S

∑
Sr∈chr(S)

∑
R:R⊃S

∑
P :P⊃R(r)

F 2
P

(
`S

`R

)2η (
`R

`PR

)η
‖PSrg‖L1

since
∑

P :P⊃R(r)(`R/`PR)η ≤ 1. Bound the sum of Haar projections as in (3.6.2)

∑
S∈S

∑
Sr∈chr(S)

∑
R:R⊃S

∑
P :P⊃R(r)

F 2
P

(
`S

`R

)2η (
`R

`PR

)η
‖PSrg‖L1

.
∑
S∈S

∑
R:R⊃S

∑
P :P⊃R(r)

F 2
P

(
`S

`R

)2η (
`R

`PR

)η ˆ
S

|g|.

Rearrange the sums

∑
S∈S

∑
R∈D
R⊃S

∑
P∈D
P⊃R(r)

=
∑
R∈D

∑
P :P⊃R(r)

∑
i∈N

∑
S∈S
S⊂R

`S=2−i`R

then we continue as in the proof of (3.4.1).

∑
R∈D

∑
P :P⊃R(r)

F 2
P

(
`R

`PR

)η∑
i∈N

∑
S∈S
S⊂R

`S=2−i`R

(
`S

`R

)2η ˆ
S

|g|

≤
∑
R∈D

∑
P :P⊃R(r)

F 2
P

(
`R

`PR

)η∑
i∈N

2−iη
ˆ
R

|g|

≤
∑
P∈D

F 2
P

∑
k≥r

∑
R :R⊂P

`R=2−k−1`P

(
`R

`PR

)η ˆ
R

|g|

≤
∑
P∈D

F 2
P

∑
k≥r

2−kη
ˆ
P

|g| ≤
∑
P∈D

F 2
P

ˆ
P

|g|.

Now we distinguish the two cases for FP .
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If FP = 〈∆Pf〉PR

∑
P∈D

F 2
P

ˆ
P

|g| ≤
∑
P∈D

〈f, hP 〉2

|P |

ˆ
P

|g|

≤ 3dBD
0 (g, f).

Then BD
0 (g, f) is bounded by a

sparse form in Lemma 3.7.4.

If FP = 〈f〉P1{PR∈S }

∑
P∈D

F 2
P

ˆ
P

|g| =
∑

P :PR∈S

〈f〉2P
ˆ
P

|g|

= ΛS ′(f, g)

where S ′ is the sparse collection of

dyadic parents of S .

Proof of Lemma 3.6.9. For x ∈ Sr and t ∈ (`R/2, `R), since Sr ⊂ S ⊂ P ⊆ R(r), by

Lemma 3.6.4

KSr
t (1Rd\PS)(x) .

(
`Sr
`R(r)

)η
.

Then we distribute the decay factor which is bounded as following

(
`Sr
`R(r)

)η
≤
(

`S

`R(r)

)η/2(
`S

`P

)η/2(
`P

`R(r)

)η/2
.

Estimate the integral
´ `R
`R/2

dt/t ≤ 1 and the sum of Haar projections as in (3.6.2).

∑
S∈S

∑
Sr∈chr(S)

∑
R⊃S

¨
WR

( ∑
P :P⊃S
P⊆R(r)

FP

(
`Sr
`R(r)

)η)2
dt

t
|PSrg| dx

≤
∑
S∈S

∑
Sr∈chr(S)

‖PSrg‖L1

∑
R :R⊃S

(
`S

`R(r)

)η( ∑
P :P⊃S
P⊆R(r)

FP

(
`S

`P

)η/2(
`P

`R(r)

)η/2)2

.
∑
S∈S

ˆ
S

|g|
∑

R :R⊃S

(
`S

`R(r)

)η( ∑
P :P⊃S
P⊆R(r)

FP

(
`S

`P

)η/2(
`P

`R(r)

)η/2)2

.
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Apply the Cauchy–Schwarz inequality.

∑
S∈S

ˆ
S

|g|
∑

R :R⊃S

(
`S

`R(r)

)η( ∑
P :P⊃S
P⊆R(r)

FP

(
`S

`P

)η/2(
`P

`R(r)

)η/2)2

≤
∑
S∈S

ˆ
S

|g|
∑

R :R⊃S

(
`S

`R(r)

)η ∑
P :P⊃S
P⊆R(r)

F 2
P

(
`S

`P

)η
·
∑
P :P⊃S
P⊆R(r)

(
`P

`R(r)

)η

The last sum is finite: since P ⊃ S there is only one ancestor for each generation. Since

all terms are non-negative, we bound by removing the restriction P ⊂ R(r) in the sum in

P .

∑
S∈S

ˆ
S

|g|
∑

R :R⊃S

(
`S

`R(r)

)η ∑
P :P⊃S

F 2
P

(
`S

`P

)η
≤
∑
S∈S

ˆ
S

|g|
∑
P :P⊃S

F 2
P

(
`S

`P

)η
=
∑
P∈D

F 2
P

∑
i∈N

2−iη
∑
S∈S
S⊂P

`S=2−i`P

ˆ
S

|g|

≤
∑
P∈D

F 2
P

ˆ
P

|g|
∑
i∈N

2−iη.

The two cases for FP are as at the end of the proof of Lemma 3.6.8.

3.7 Sparse domination of the dyadic form

In this section we prove a sparse domination of the dyadic form BD
j (g, f) defined in (3.3.1).

Writing 1 as 〈1P 〉P we have

BD
j (g, f) =

ˆ
Rd

∑
K∈D

〈|g|〉3K
∑
P∈D
P⊂3K

`P=2−j`K

〈f, hP 〉2

|P |
1P (x) dx.

Let Q0 be a dyadic cube containing the support of f and g. On the complement of

Q0 the form is controlled.

Lemma 3.7.1. Let BD
j �Q{

0
(g, f) be the restriction of BD

j (g, f) to the complement (Q0){,
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then

BD
j �Q{

0
(g, f) .d 2−jd〈|g|〉Q0〈|f |〉2Q0

|Q0|.

Proof. Decompose (Q0){ in the union of Q(k+1)
0 \ Q(k)

0 for k ∈ Z+. The non-zero terms

in BD
j �Q{

0
(g, f) are the ones where P intersects Q0 and (Q

(k)
0 ){. Then P ⊃ Q

(k)
0 and in

particular P = Q
(m)
0 for m > k. There is only one ancestor for each m, so we have

BD
j �Q(k+1)

0 \Q(k)
0

(g, f) =

ˆ
Q

(k+1)
0 \Q(k)

0

∑
K∈D

〈|g|〉3K
∑
P⊂3K

`P=2−j`K
P⊃Q(k)

0

(
〈f, hP 〉
|P |1/2

)2

1P (x) dx

.
∞∑

m=k+1

〈|g|〉
3Q

(m+j)
0
〈|f |〉2

Q
(m)
0

|Q(m)
0 |

=
∞∑

m=k+1

3−d2−(m+j)d〈|g|〉Q02
−2md〈|f |〉2Q0

2md|Q0|

≤ 2−jd〈|g|〉Q0〈|f |〉2Q0
|Q0|

∞∑
m=k+1

2−2md.

The last sum is bounded by 2−kd and summing over k ∈ Z+ concludes the proof.

It is enough to construct a sparse family inside Q0. Taking the supremum of 〈|g|〉3K

over all K ∈ D we have

BD
j (g, f) ≤

ˆ
M3Dg(x) · (S3D

j f(x))2 dx

where M3D and S3D
j denote the maximal function and the square function given by

M3Df := sup
Q∈D
〈|f |〉3Q13Q,

(
S3D
j f(x)

)2
:=
∑
R∈D

∑
P∈D
P⊂3R

`P=2−j`R

〈f, hP 〉2

|P |
1P (x). (3.7.1)

As we see below, S3D
j is pointwise controlled by the square function SD

j f(x) given by

(
SD
j f(x)

)2
:=
∑
Q∈D

∑
P∈D
P⊂Q

`P=2−j`Q

〈f, hP 〉2

|P |
1P (x).
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Proposition 3.7.2 (Pointwise control). Let f ∈ L2(Rd) and j ∈ N0. For all x ∈ Rd it

holds that

SD
j f(x) ≤ S3D

j f(x) ≤ 3d/2SD
j f(x)

Proof. The enlarged cube 3R is the union of 3d cubes {Ra}a in the same dyadic grid D.

So

(
S3D
j f(x)

)2
=
∑
R∈D

∑
P :P⊂3R
`P=2−j`R

〈f, hP 〉2
1P (x)

|P |

=
∑
R∈D

3d∑
a=1

∑
P :P⊂Ra
`P=2−j`Ra

〈f, hP 〉2
1P (x)

|P |

=
3d∑
a=1

(
SD
j f(x)

)2 ≤ 3d
(
SD
j f(x)

)2
.

We show that the square function SD
j satisfies a weak (1, 1) bound. The proof follows

the one for dyadic shifts without separation of scales [HPTV14, Theorem 5.2] and [LM17b,

Lemma 4.4].

Proposition 3.7.3. Let j ∈ Z+. There exists C > 0 such that for any f ∈ L1(Rd) it

holds that

sup
λ>0

λ|{x ∈ Rd : SD
j f(x) > λ}| ≤ C(1 + j)‖f‖L1 .

In particular ‖SD
j ‖L1→L1,∞ grows at most polynomially in j.

Proof. First, SD
j is bounded in L2 with norm independent of j.

We want to show that for any λ > 0 we have

|{x ∈ Rd : SD
j f(x) > λ}| ≤ C

‖f‖1

λ
.

Let f = g + b be the Calderón-Zygmund decomposition of f at height λ > 0. Then

‖g‖∞ ≤ 2dλ and in particular ‖g‖2
2 . λ‖f‖1, while b =

∑
Q∈L bQ, where bQ is supported on
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Q and
´
bQ = 0. The cubes Q in L are maximal dyadic cubes such that λ < 〈|f |〉Q ≤ 2dλ.

Let E be the union of the cubes in L. Then |E| =
∑

Q∈L|Q| ≤ λ−1‖f‖1 so it is

enough to estimate the superlevel sets on the complement of E. Using the decomposition

of f we have

|{x ∈ E{ : SD
j f(x) > λ}| ≤

∣∣∣∣{x : SD
j g(x) >

λ

2

}∣∣∣∣+

∣∣∣∣{x ∈ E{ : SD
j b(x) >

λ

2

}∣∣∣∣
.d
‖f‖1

λ
+

2

λ
‖SD

j b‖L1(E{).

The last bound follows by using Chebyshev’s inequality for the good part:

∣∣∣∣{SD
j g >

λ

2

}∣∣∣∣ ≤ 4

λ2
‖SD

j g‖2
2 .
‖g‖2

2

λ2
.
‖f‖1

λ

and Markov’s inequality for the bad part. The sublinearity of SD
j and the triangle in-

equality imply that

‖SD
j b‖L1(E{) ≤

∑
Q∈L

‖SD
j bQ‖L1(E{).

For each Q ∈ L, only dyadic cubes K ⊃ Q contribute to the ‖SD
j bQ‖L1(E{), since if

K ⊆ Q, then K would be inside E. Thus K is an ancestor of Q, so K = Q(k) for some

integer k ≥ 1. For k > j each j-child P ⊂ K contains Q, and so 〈bQ, hP 〉 vanishes, by the

zero average of bQ. Thus we estimate

‖SD
j bQ‖L1(E{) ≤

ˆ
E{

∑
K∈D

∑
P⊂K

`P=2−j`K

|〈bQ, hP 〉|
1P (x)

|P |1/2
dx

≤
j∑

k=1

∑
K⊃Q

`K=`Q(k)

∑
P⊂K

`P=2−j`K

|〈bQ, hP 〉||P |1/2

≤
j∑

k=1

∑
K⊃Q

`K=`Q(k)

∑
P⊂K

`P=2−j`K

‖bQ‖L1(P )

≤
j∑

k=1

∑
K⊃Q

`K=`Q(k)

‖bQ‖L1(K) =

j∑
k=1

‖bQ‖L1 .
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Since ‖bQ‖L1(K) = ‖bQ‖L1 . λ|Q| <
´
Q
|f |, and there is only one ancestor of Q for each k,

we have

j∑
k=1

‖bQ‖L1 .
j∑

k=1

ˆ
Q

|f | ≤ j

ˆ
Q

|f |.

Summing over all Q ∈L gives the bound

∑
Q∈L

‖SD
j bQ‖L1(E{) .

∑
Q∈L

j‖f‖L1(Q) ≤ j‖f‖L1(Rd).

The operatorM3D defined in (3.7.1) is also weak (1, 1) as it is bounded by the Hardy–

Littlewood maximal function, which is weakly bounded.

The following lemma exploits the weak boundedness of the operators M3D and SD
j to

construct a sparse collection S . The proof adapts the one in [LM17b, Lemma 4.5] to our

square function. We include the details for the convenience of the reader.

Lemma 3.7.4 (Sparse domination of BD
j ). Let j ∈ Z+. For any pair of compactly

supported functions f, g ∈ L∞(Rd) there exists a sparse collection S such that

BD
j (g, f) .

ˆ
M3Dg · (SD

j f)2 . (1 + j)2
∑
S∈S

〈|f |〉2S〈|g|〉S|S|

where the implicit constant does not depend on j.

Proof of Lemma 3.7.4. Fix a cube Q0 ∈ D containing the union of the supports of f and

g. By Lemma 3.7.1 it is enough to construct a sparse family inside Q0. Consider the set

F (Q0) given by

{x ∈ Q0 : M3Dg(x) > C〈|g|〉Q0} ∪ {x ∈ Q0 : SD
j f(x) > C(1 + j)〈|f |〉Q0}.

By the weak boundedness of M3D and SD
j , there exists C > 0 such that |F (Q0)| ≤ 1

2
|Q0|.
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Then

ˆ
Q0

M3Dg · (SD
j f)2 ≤

ˆ
Q0\F (Q0)

M3Dg · (SD
j f)2 +

ˆ
F (Q0)

M3Dg · (SD
j f)2

≤ C3(1 + j)2〈|g|〉Q0〈|f |〉2Q0
|Q0|+

∑
Q∈F

ˆ
Q

M3Dg · (SD
j f)2

where F is the collection of maximal dyadic cubes covering F (Q0). Iterating on each

Q ∈ F produces a sparse family of cubes S , since {EQ := Q \ F (Q)}Q∈S are pairwise

disjoint and |EQ| > 1
2
|Q| for each Q in S .

3.8 Proofs for the reduction to a dyadic form

Proof of Lemma 3.3.2. We distinguish three cases: `P > 2r`R, where the goodness is

used; `P ∈ [`R, 2r`R], where `P and `R are comparable; and `P < `R, where we use

the zero-average of ∆Pf and the regularity condition (C2).

(`P > 2r`R) Using the size condition (C1) and taking the supremum in (x, t) ∈ WR

θt(∆Pf)(x) ≤ C1

ˆ
P

tα

(t+ |x− y|)α+d
|∆Pf(y)| dy

≤ C1‖∆Pf‖L1

(`R)α

( `R
2

+ d(R,P ))α+d
. (3.8.1)

If d(R,P ) > `P , since `P > 2r`R the conclusion follows. Otherwise, by the goodness

of R, we have `P < d(R,P )
(
`P
`R

)γ. The same bound holds for `R, so

D(P,R)α+d < 3α+d d(P,R)α+d

(
`P

`R

)γ(α+d)

which implies

D(P,R)α+d

(
`R

`P

)α/2
.α,d d(P,R)α+d

(
`R

`P

)−γ(α+d)+α/2

≤ d(P,R)α+d
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since `R/`P < 1 and α/2− γ(α+ d) is non-negative for γ ≤ α
2(α+d)

. Then multiply

and divide (3.8.1) by D(P,R)α+d(`P )−α/2(`R)α/2 to conclude.

(`R ≤ `P ≤ 2r`R) The lengths of P and R are comparable and the conclusion follows.

(`P < `R) Let xP be the centre of P . Then

ˆ
kt(x, y)∆Pf(y) dy =

ˆ
(kt(x, y)− kt(x, xP ))∆Pf(y) dy

≤ C2

ˆ
|y − xP |α

(t+ |x− y|)α+d
|∆Pf(y)| dy

by the smoothness condition (C2), since |y − xP | ≤ `P
2
< `R

2
< t. To conclude, note

that
(`P )α

( `R
2

+ d(R,P ))α+d
<

(`P )α

( `R
4

+ `P
4

+ d(R,P ))α+d
≤ 4α+d (

√
`R`P )α

D(R,P )α+d
.

3.8.1 Counting close cubes

In both cases “near” and “close”, given a fixed R we estimate the number of P such that

3P ⊃ R. Given a discrete set A, we denote by #A its cardinality.

Lemma 3.8.1. For k ∈ N let Pk(R) := {P : 3P ⊃ R, `P = 2k`R}. Then #Pk(R) = 3d.

Proof. Let R(k) be the k-ancestor of R. Then R(k) belongs to Pk(R). There are 3d − 1

cubes P adjacent to R(k) with `P = `R(k). Each of them is such that 3P ⊃ R(k), so in

particular 3P ⊃ R.

On the other hand, if P is not adjacent to R(k) and `P = `R(k) then d(P,R(k)) ≥ `P ,

so 3P does not contain R(k), nor R.

This shows that the P in Pk(R) are exactly the cubes contained in 3R(k) with `P =

`R(k), and there are 3d of such cubes.

Proof of Lemma 3.3.3. We present each case separately.
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far `P ≥ 2r+1`R and d(P,R) > `P . The largest term in D(P,R) is d(P,R). Fix R and

k ∈ N. Given m ∈ N there are at most 2md cubes P with length 2k`R such that

2m`P < d(P,R) ≤ 2m+1`P , so rearranging the sum

∑
P : `P≥`R

d(R,P )>`P

(
√
`R`P )α

d(R,P )α+d
|P | =

=
∞∑
m=1

∞∑
k=r

∑
P : `P=2k+1`R

2m+1≥d(P,R)/`P>2m

(√
`R`P

d(R,P )

)α(
`P

d(P,R)

)d

≤
∞∑
m=1

∞∑
k=0

2md2−α(k/2+m)2−md ≤
∑
k,m

2−α(k/2+m).

near For P such that 3P \ P ⊃ R and `P ≥ 2r+1`R, the decay comes from d(P,R),

which is bounded below by `P (`R/`P )γ, and γ = α/(4α + 4d). Then

∑
P : 3P\P⊃R
`P≥2r+1`R

(
√
`R`P )α

d(R,P )α+d
|P | =

∞∑
k=r+1

∑
P : 3P\P⊃R
`P=2k`R

|P |
d(P,R)d

(√
`P`R

d(P,R)

)α

.d

∞∑
k=r+1

2−kα/4

where, by Lemma 3.8.1, the P in the sum are at most 3d for each k.

close For `R ≤ `P ≤ `R(r) and 3P ⊃ R, the leading term in the long-distance is `R, so

(
√
`R`P )α

D(R,P )α+d
|P | ≤ (2r/2`R)α

(`R)α
|P |
|R|
≤ 2αr/2

|P |
|R|

.

We fix a scale k for P , such that 0 ≤ k ≤ r, then we estimate

∑
P : 3P⊃R

`R≤`P≤`R(r)

(
√
`R`P )α

D(R,P )α+d
|P | .

∑
P : 3P⊃R

`R≤`P≤`R(r)

|P |
|R|

=
r∑

k=0

∑
P : 3P⊃R
`P=2k`R

2kd

≤ 2rd
r∑

k=0

|{P : 3P ⊃ R, `P = 2k`R}| ≤ 2rd3d(r + 1).
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Where to estimate the number of P we used Lemma 3.8.1.

subscale, P ⊂ 3R The leading term in the long-distance D(R,P ) is again `R. For any

k ∈ N, there are 3d2kd cubes P such that P ⊂ 3R and 2k`P = `R, so

∑
P :P⊂3R

(
√
`R`P )α

D(R,P )α+d
|P | ≤

∑
P⊂3R

(
`P

`R

)α/2+d

=
∞∑
k=1

∑
P⊂3R

`P=2−k`R

2−k
α
2 2−kd .d

∞∑
k=1

2−k
α
2 <∞.

subscale, P 6⊂ 3R In this case d(P,R) > `R > `P . Regroup the P according to length

and distance:

∑
P :P 6⊂3R
`P<`R

(
√
`R`P )α

D(R,P )α+d
|P | =

∑
k∈N

∑
P : 2k`P=`R
d(P,R)>`R

2−kd
(

`R

D(P,R)

)d
2−kα/2

(
`R

D(P,R)

)α

≤
∑
k,m

∑
P : 2k`P=`R

2m+1≥d(P,R)/`R>2m

2−k(d+α/2)2−md2−mα ≤
∑
k,m

2−kα/22−mα.

This because there are at most 2md cubes R in the range given by the distance,

which means at most 2md · 2kd cubes P with `P = 2−k`R.

Proof of Lemma 3.3.4 (for `P < `R). Recall that γ ∈ (0, 1
2
). Let K be the minimal cube

K ⊃ R such that `K ≥ 2r`R and d(P,R) ≤ `K
(
`P
`K

)γ. (The set of such cubes is not

empty since `K
(
`P
`K

)γ equals `P
(
`K
`P

)1−γ which goes to infinity as `K → ∞.) First,

observe that P ⊂ K. Suppose not, then

`K

(
`P

`K

)γ
< `K

(
`R

`K

)γ
< d(R, ∂K)

P⊂K{

≤ d(R,P )

which is absurd because of the second condition on K. It remains to show the upper
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bound for `K. By minimality of K, one of the following conditions holds: either

`K

2
< 2r`R or

`K

2

(
`P

1
2
`K

)γ
< d(P,R).

Since by hypothesis d(P,R) > (`R)1−γ(`P )γ, the first implies

`K

(
`P

`K

)γ
≤ 2r`R

(
`P

`K

)γ
≤ 2r`R

(
`P

`R

)γ
< 2r d(P,R).

The latter gives: `K(`P/`K)γ < 2 d(P,R) ≤ 2r d(P,R).
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CHAPTER 4

QUADRATIC SPARSE DOMINATION FOR
NON-INTEGRAL SQUARE FUNCTIONS

There is a time in the night in which all

theorems are true.
G. M.

This chapter is based on the paper

J. Bailey, G. Brocchi, M. C. Reguera. Quadratic sparse domination and
weighted estimates for non-integral square functions, arXiv:2007.15928.

We prove a version of Theorem C in a doubling metric measure space (X, d, µ).

Theorem C (Bailey, B., Reguera 2020). Let S be a vertical square function bounded on

Lp for p ∈ (p0, q0), p0 < 2 < q0, given by

Sf(x) :=

(ˆ ∞
0

|Qtf(x)|2 dt

t

)1/2

,

with Qt satisfying Assumption 4.1.2. For any f and g in C∞c (Rd) there exists a sparse

family S ⊆ D such that

∣∣∣ ˆ
X
(Sf)2 · g dµ

∣∣∣ ≤ C
∑
Q∈S

( 
Q

|f |p0 dµ

)2/p0 ( 
Q

|g|
(
q0
2

)′
dµ

)1/
(
q0
2

)′
µ(Q)

where C is a positive constant independent of f and g.
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The above theorem implies weighted estimates for weights in the intersection of the

Muckenhoupt class (Ap) and the reverse Hölder class (RHq) defined in the introduction.

Corollary C. Let S be a vertical square function considered in Theorem C. For p in

(p0, q0), p0 < 2 < q0, and a weight w ∈ Ap/p0 ∩RH(q0/p)′ the square function S is bounded

on Lp(w) with

‖S‖Lp(w)→Lp(w) ≤ C
(

[w]Ap/p0
[w]RH(q0/p)

′

)max
(

1
p−p0

,
q0−2
q0−p

)

where C is positive constant independent of the weight.

The result is sharp for certain square functions, see [Ler06, pag. 488], [Ler11] and

[BD20a, Remark 15 (ii)]. Sharpness can be deduced from the asymptotic behaviour of the

unweighted estimates [FN19]. Unfortunately, these asymptotics are not easy to exactly

compute for our non-integral square functions. However, the estimate in Corollary C

implies an upper bound on the asymptotic behaviour of the unweighted norm ‖S‖Lp→Lp ,

see Section 4.5.5. In particular, when such asymptotic behaviour is known to match the

upper bound, the weighted estimates in Corollary C are sharp.

The power in the characteristic of the weight is sharp for the sparse form in Theo-

rem C. These weighted estimates follow by applying the sharp quantitative limited range

extrapolation by Nieraeth [Nie19, Theorem 2.2]. The sharpness is proved in the same

article [Nie19, page 418].

We state the application in our case.

Proposition C. Let p ∈ (p0, q0), p > 2, for p0 < 2 < q0, and let w ∈ Ap/p0 ∩ RH(q0/p)′

and σ := w1−p∗ be the dual weight of w, where p∗ := (p/2)′. For any sparse family S ⊆ D

and functions f, g ∈ L1
loc( dµ) we have

∑
Q∈S

( 
Q

|f |p0 dµ

)2/p0 ( 
Q

|g|q∗0 dµ

)1/q∗0

µ(Q)

≤ C
(

[w]Ap/p0
[w]RH(q0/p)

′

)max
(

1
p−p0

,
q0−2
q0−p

)
‖f‖2

Lp(w)‖g‖Lp∗ (σ),
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where the constant C is independent of the weight. The power

γ(p) := max

(
1

p− p0

,

(
q0

p

)′
1

2q∗0

)

on the weight characteristic is sharp.

Remark 4.0.1. The weighted estimates in Proposition C and their sharpness can be derived

by combining [LN20, Prop. 2.9] in the scalar case (where X = C, m = 1, q = 2, r = p0,

s = q0) with [LN20, Prop. 2.5].

Since (Sf)2 is non-negative, the dual pairing is maximised by non-negative functions.

For a non-negative function g, let h =
√
g. One can consider the sparse domination with

h2 in place of g. The (q0/2)′-average of g on a cube Q is

〈g〉
Q,
(
q0
2

)′ = 〈h2〉
Q,
(
q0
2

)′ = 〈h〉2
Q,2
(
q0
2

)′ = 〈h〉2
Q, 1

1
2−

1
q0

which appears in the sparse form considered in [LN20, Prop. 2.5].

Guide to this chapter

We start by describing our framework in Section 4.1. Section 4.2 contains some prelim-

inary results that will be of use later. Section 4.3 discusses the examples that fit the

assumptions and that one should keep in mind as references. The proof of Theorem C

requires us to understand the boundedness properties of a grand maximal operator associ-

ated with the corresponding square functions. These boundedness properties are included

in Section 4.4. Section 4.5 is dedicated to the proof of Theorem C.

We do not include the derivation of the weighted estimates in Proposition C nor its

sharpness, which can be found in the original paper [BBR20, Section 7] for p ∈ (2, q0) or

in [Nie19; LN20] for the full range.
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4.1 Setting

Motivated by finding a uniform setting that will include several examples of square func-

tions, we consider the following general framework.

The underlying space (X, d, µ) is a locally compact separable metric space (X, d)

equipped with a Borel measure µ that is finite on compact sets and strictly positive

on any non-empty open set. For a measurable subset E ⊂ X, we denote |E| := µ(E), and
ffl
B
f dµ := |B|−1

´
B
f dµ for f ∈ L1

loc(X, µ).

The measure µ will be assumed to satisfy the doubling property,

|B(x, 2r)| . |B(x, r)| (4.1.1)

for all x ∈ X and r > 0, where B(x, s) denotes the ball of radius s > 0 centered at a point

x ∈ X and X . Y will be used to signify that there exists a constant C > 0 such that

X ≤ CY . There will then exist some ν > 0 for which

|B(x, r)| .
(r
s

)ν
|B(x, s)| ∀x ∈ X, r ≥ s > 0. (4.1.2)

It will be assumed that there exists some non-decreasing function ϕ : (0,∞)→ (0,∞)

with ϕ(1) = 1 for which

|B(x, r)| h ϕ
(r
s

)
|B(x, s)| (4.1.3)

for all x ∈ X and r, s > 0, where X h Y means that both X . Y and Y . X hold. This

technical condition has been imposed in order to prove boundedness of a certain maximal

operator that is essential to our proof. This point will be elaborated upon further in

Remark 4.1.4 and Section 4.4.

Let θ ∈ [0, π/2). We say that a linear operator L with dense domain D2(L) in L2(X, µ)

is θ-accretive if its spectrum is contained in the closed sector Σθ+ := {z ∈ C : |arg z| ≤

θ} ∪ {0} and 〈Lf, f〉 ∈ Σθ+ for all f in D2(L).

We consider an unbounded operator L on L2(X, µ) satisfying the below assumption.
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Assumption 4.1.1. The operator L is a linear, injective, θ-accretive operator with dense

domain D2(L) in L2(X, µ), and there exists some 1 ≤ p0 < 2 < q0 ≤ ∞ and c > 0 such

that for all balls B1, B2 of radius
√
t,

‖e−tL‖Lp0 (B1)→Lq0 (B2) . |B1|−
1
p0 |B2|

1
q0 exp

(
− c d(B1, B2)2

t

)
.

From Assumption 4.1.1, it follows that L possesses a bounded holomorphic functional

calculus on L2(X, µ) and −L is the generator of the analytic semigroup (e−tL)t>0 on

L2(X, µ), see [Haa06, §7.1.3].

We consider square function operators associated with L. These will be defined to be

operators S that satisfy the following set of assumptions.

Assumption 4.1.2. (a) The operator S is sublinear and bounded on L2(X, µ).

(b) (Off-diagonal estimates for the constituent operators) The operator S is of the form

Sf(x) :=

(ˆ ∞
0

|Qtf(x)|2 dt

t

)1/2

,

where {Qt}t>0 is a collection of bounded operators on L2(X, µ) which satisfy the

property that there exists some 1 ≤ p0 < 2 < q0 ≤ ∞ such that for all balls B1, B2

of radius
√
t,

‖Qt‖Lp0 (B1)→Lq0 (B2) . |B1|−
1
p0 |B2|

1
q0

(
1 +

d(B1, B2)2

t

)−(ν+1)

.

(c) (Cancellation with respect to L) There exists A0 > 0 and N0 ∈ N such that for all

integers N ≥ N0,

Qt(sL)Ne−sL =
tA0sN

(t+ s)A0+N
Θ

(N)
t+s ,

where {Θ(N)
r }r>0 is a collection of bounded operators on L2(X, µ) that satisfies off-
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diagonal estimates at all scales in the sense that

∥∥Θ(N)
r

∥∥
Lp0 (B1)→Lq0 (B2)

. |B1,
√
r|
− 1
p0 |B2,

√
r|

1
q0

(
1 +

d(B1, B2)2

r

)− ν+1
2

for all rescaled balls B1,
√
r, B2,

√
r and r > 0, where B√r := (

√
r/r(B))B, r(B) is

the radius of B, and tB represents the t-dilate of B, tB := B(x, tr(B)) for positive

t > 0.

(d) (Cotlar type inequality) There exists an exponent p1 ∈ [p0, 2) such that for all x ∈ X

and r > 0

( 
B(x,r)

|Se−r2Lf |q0 dµ

)1/q0

. inf
y∈B(x,r)

Mp1(Sf)(y) + inf
y∈B(x,r)

Mp1(f)(y),

where we denote by M the uncentered Hardy–Littlewood maximal function and

Mpf := (M|f |p)1/p for any p ≥ 1.

Remark 4.1.3. In general, the exponents p0 and q0 are determined by the off-diagonal

estimates for the constituent operator Qt, rather than by the off-diagonal estimates for

{e−tL}t>0. For our aim, it is enough to assume that the range in which one has off-diagonal

estimates for {e−tL}t>0 contains the range (p0, q0) in the Assumption 4.1.2.

Remark 4.1.4. As our work is intended to build upon the article [BFP16], it will be in-

structive to compare our assumptions with the hypotheses of [BFP16]. In both articles

the assumptions imposed upon the underlying operator L are identical, as well as for the

L2-boundedness and the Cotlar type inequality for the operator S. We have further as-

sumed that S is of the form of a square function with constituent operators Qt that satisfy

off-diagonal bounds. Also, the cancellative condition of S with respect to L, Assumption

(b) of [BFP16], has been replaced by a cancellative condition of the constituent operators

Qt.

This assumption, under condition (4.1.3) on the measure µ, implies the cancellative

condition of S with respect to L. The operators under consideration are then a subclass of
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the operators considered by [BFP16]. As such, we utilise some of the intermediary results

from [BFP16]. This will be particularly useful in Section 4.4 to prove the boundedness of

a certain maximal function operator.

Example 4.1.5. Square function operators that satisfy the previous set of assumptions are

the square functions associated with an elliptic operator L = −div(A∇), such as

gLf :=

(ˆ ∞
0

|tLe−tLf |2 dt

t

)1/2

and GLf :=

(ˆ ∞
0

|
√
t∇e−tLf |2 dt

t

)1/2

,

and some square functions associated with the Laplace–Beltrami operator. We discuss

these examples in detail in Section 4.3.

We recall the notion of a sparse family for a system of dyadic cubes D= {Db}Kb=1.

Definition 4.1.6. A collection S ⊆ D is 1
2
-sparse if for each b ∈ {1, . . . , K} there are

pairwise disjoint sets {FQ}Q∈S∩Db such that FQ ⊆ Q and |Q| ≤ 2|FQ|.

4.2 Preliminaries

In this section we gather a collection of useful results concerning dyadic analysis in met-

ric measure spaces, off-diagonal estimates for a family of operators, and properties of

Muckenhoupt and reverse Hölder weight classes.

4.2.1 Dyadic Analysis on a Doubling Metric Space

We recall some well-known definitions and facts from dyadic harmonic analysis as written

in [BFP16]. For detailed information on the construction of dyadic systems of cubes in

doubling metric spaces, the interested reader is referred to [HK12] and references therein.

Definition 4.2.1. A dyadic system of cubes in a metric measure space (X, µ), with

parameters 0 < c0 ≤ C0 <∞ and δ ∈ (0, 1), is a family of open subsets
(
Ql
α

)
α∈Al,l∈Z

that

satisfies the following properties:
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• For each l ∈ Z, there exists a subset Zl with µ(Zl) = 0 such that

X =
⊔
α∈Al

Ql
α

⊔
Zl;

• If l ≥ k, α ∈ Ak and β ∈ Al then either Ql
β ⊆ Qk

α or Qk
α ∩Ql

β = ∅;

• For every l ∈ Z and α ∈ Al, there exists a point zlα with the property that

B(zlα, c0δ
l) ⊆ Ql

α ⊆ B(zlα, C0δ
l).

The point zlα can be seen as the centre of the cube Ql
α and the side-length is defined

by `(Ql
α) := δl.

The below theorem asserts the existence of adjacent systems of dyadic cubes for a

doubling metric space. For a proof of this result, refer to [HK12].

Theorem 4.2.2 ([HK12, Thm. 4.1]). Let (X, d, µ) be a doubling metric space. There

exists 0 < c0 ≤ C0 < ∞, δ ∈ (0, 1), finite constants K = K(c0, C0, δ) and C = C(δ),

and a finite collection of dyadic systems Db with parameters (c0, C0, δ), b = 1, · · · , K, that

satisfies the following property. For any ball B = B(x, r) ⊆ X, there exists b ∈ {1, · · · , K}

and Q ∈ Db such that

B ⊆ Q and diam(Q) ≤ Cr.

From this point forward we fix a dyadic collection D := ∪Kb=1D
b as in the previous

theorem. The following covering lemma will be useful in §4.5.

Lemma 4.2.3 ([Lor21, Lemma 2.2]). Let (X, d, µ) be a doubling metric space with diam(X) =

∞ and D a dyadic system with parameters (c0, C0, δ). Let α ≥ 3/δ and E ⊂ X with

diam(E) ∈ (0,∞). There exists a partition P ⊆ D of the space X, made with dyadic

cubes, such that

E ⊆ αQ , ∀Q ∈P.
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Let w be a weight on X. The uncentered dyadic maximal functionMD
p,w of exponent

p ∈ [1,∞) is defined by

MD
p,wf(x) := sup

Q∈D

(
1

w(Q)

ˆ
Q

|f(y)|pw(y) dy

)1/p

1Q(x),

where the notation 1E is used to denote the characteristic function of a set E ⊂ X and

w(E) :=
´
E
w dµ. When w ≡ 1,MD

p,w will just be the usual dyadic maximal function of

exponent p and the shorthand notationMD
p =MD

p,1 will be employed. Similarly, we will

also use the notationMD
w =MD

1,w. It is known thatMD
p is of weak-type (p, p) and strong

(q, q) for all q > p, see [CW71]. Moreover, MD
w is bounded on Lp(w) for all p ∈ [1,∞)

with a constant independent of the weight,

‖MD
w f‖Lp(w) ≤ p′‖f‖Lp(w). (4.2.1)

4.2.2 Off-Diagonal Estimates

In this section, we define three different notions of off-diagonal estimates that will be used

throughout this article. For an extensive and detailed account of off-diagonal estimates

for operator families, the reader is referred to [AM07b]. Throughout this section, we will

consider exponents 1 ≤ p0 < 2 < q0 ≤ ∞.

Definition 4.2.4 (Off-diagonal estimates at scale
√
t). A family of operators {Tt}t>0 is

said to satisfy (p0, q0) off-diagonal estimates at scale
√
t if for any two balls B1, B2 of

radius
√
t we have

( 
B2

|Tt(f1B1)|q0 dµ

)1/q0

. ρ
(d(B1, B2)√

t

)( 
B1

|f |p0 dµ

)1/p0

,

where ρ : [0,∞) → (0, 1] is a non-increasing function such that limx→∞|x|aρ(x) = 0 for

some a ≥ 0, and ρ(0) = 1.

Remark 4.2.5. Some comments are in order.
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• Examples of ρ that we will use are the Gaussian function ρ(x) = e−c|x|
2 and ρ(x) =

〈x〉−s, where 〈x〉 = (1 + |x|2)1/2 is the Japanese bracket. For the Gaussian case,

the positive constant c is not relevant and may change from line to line. See also

comments after [AM07b, Def. 2.1]. For our sparse domination, the choice ρ(x) =

〈x〉−2(ν+1) suffices.

• Off-diagonal estimates at scale
√
t are stable under composition. That is, if Tt

satisfies (p1, p2) off-diagonal estimates at scale
√
t and St satisfies (p2, p3) off-diagonal

estimates at scale
√
t then StTt will satisfy (p1, p3) off-diagonal estimates at scale

√
t. It should be noted, however, that the value of c or s in the above examples of

ρ may change for the composition.

• For p0 ≤ p ≤ q ≤ q0, Hölder’s inequality implies that if an operator family satisfies

(p0, q0) off-diagonal estimates at scale
√
t then it will also satisfy (p, q) estimates.

• Off-diagonal estimates for p ≤ q do not imply Lp−Lq boundness of Tt, see [AM07b].

In order to apply off-diagonal estimates, we often need to decompose the support of a

function f into finitely overlapping balls with radius to match the scale.

Definition 4.2.6. We say that a collection of balls B has finite overlap if there exists a

finite constant ΛB such that

‖
∑
B∈B

1B‖L∞ = ΛB.

Remark 4.2.7. Let B be a collection of finite overlapping balls covering a set Ω. Then

∑
B∈B

µ(B) =

ˆ
Ω

∑
B∈B

1B dµ ≤ ΛB µ(Ω).

Lemma 4.2.8. Let Ω ⊂ X be an open set, and let R be a family of finite overlapping

balls, with the same radius, covering Ω. If there exists m ∈ N such that mR ⊃ Ω for all
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R ∈ R, then for any f ∈ Lp0(Ω), p0 ≥ 1, we have

∑
R∈R

( 
R

|f |p0 dµ

)1/p0

. mν

( 
Ω

|f |p0 dµ

)1/p0

. (4.2.2)

Proof. For p0 > 1, Hölder’s inequality implies that

∑
R∈R

( 
R

|f |p0 dµ

) 1
p0

≤
(

sup
R∈R

1

|R|

) 1
p0

(∑
R∈R

ˆ
R

|f |p0 dµ

) 1
p0

(∑
R∈R

1

) 1
p′0

=

(
sup
R∈R

|Ω|
|R|

) 1
p0

( 
Ω

|f |p0 dµ

) 1
p0

(#R)
1
p′0 .

Since mR ⊃ Ω for all R ∈ R, the doubling property implies that

(
sup
R∈R

|Ω|
|R|

) 1
p0

(#R)
1
p′0 . sup

R∈R

|mR|
|R|

. mν .

The case p0 = 1 is even simpler since it does not require the use of Hölder’s inequality

nor an estimate on the cardinality #R.

Remark 4.2.9. If Ts satisfies (p0, q0) off-diagonal estimates at scale
√
s, then it satisfies

( 
B(r)

|Ts(f1B1)|q0 dµ

)1/q0

. ρ

(
d(B1, B(r))√

s

)( 
B1

|f |p0 dµ

)1/p0

, (4.2.3)

for balls B(r) of radius r ≥
√
s and B1 of radius

√
s.

Proof of (4.2.3). It is enough to cover the larger ball B(r) with a collection B of smaller,

finite overlapping balls of radius
√
s.

( 
B(r)

|Ts(f1B1)|q0 dµ

)1/q0

=

(∑
B∈B

|B|
|B(r)|

 
B

|Ts(f1B1)|q0 dµ

)1/q0

≤

(∑
B∈B

|B|
|B(r)|

)1/q0 (
sup
B∈B

 
B

|Ts(f1B1)|q0 dµ

)1/q0

( by Remark 4.2.7 ) ≤ Λ
1/q0
B sup

B∈B

( 
B

|Ts(f1B1)|q0 dµ

)1/q0

.
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We can use off-diagonal estimates at scale
√
s to obtain

sup
B∈B

( 
B

|Ts(f1B1)|q0 dµ

)1/q0

. sup
B∈B

ρ

(
d(B,B1)√

s

)( 
B1

|f |p0 dµ

)1/p0

.

The estimate then follows from the fact that the supremum of ρ(d(B,B1)/
√
s) over B ∈ B

is at most ρ
(
d(B(r), B1)/

√
s
)
.

We denote the semigroup by Pt := e−tL. This is used as an approximation of the

identity at scale
√
t, since for any p ∈ (p0, q0) we have

lim
t→0
‖f − e−tLf‖Lp = 0 and lim

t→∞
‖e−tLf‖Lp = 0.

For N > 0, we also consider the family of operators Q(N)
t := c−1

N (tL)Ne−tL with

cN =
´∞

0
sNe−s ds

s
. These operators will satisfy an adapted Calderón reproducing formula

for functions f ∈ Lp with p ∈ (p0, q0), namely

f =

ˆ ∞
0

Q
(N)
t f

dt

t
.

Also define

P
(N)
t :=

ˆ ∞
1

Q
(N)
st

ds

s
.

Then P (N)
t is related to the operator Q(N)

t through t∂tP
(N)
t = −Q(N)

t . We also have that

as Lp-bounded operators,

P
(N)
t = Id +

ˆ t

0

Q(N)
s

ds

s
.

Remark 4.2.10. It is known that for any integer N ∈ N\{0} the operators P (N)
t and Q(N)

t

satisfy (p, p) off-diagonal estimates at scale
√
t for all t > 0 and all p ∈ [p0, q0] with p <∞

(see the arguments in [HLM+11, Prop 3.1], for instance).

Definition 4.2.11 (Off-diagonal estimates at all scales). A family of operators {Tt}t>0

is said to satisfy (p0, q0) off-diagonal estimates at all scales if for all balls B1, B2 of radius
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r1, r2 we have

‖Tt‖Lp0 (B1)→Lq0 (B2) .
∣∣B1,

√
t

∣∣− 1
p0

∣∣B2,
√
t

∣∣ 1
q0 ρ

(
d(B1, B2)√

t

)
,

where Bi,
√
t := (

√
t/ri)Bi for i = 1, 2 and ρ : [0,∞) → (0, 1] is a non-increasing function

such that limx→∞|x|aρ(x) = 0 for some a ≥ 0, and ρ(0) = 1.

It is trivial to see that off-diagonal estimates at all scales implies off-diagonal estimates

at scale
√
t. This stronger condition is used in our cancellation hypothesis, Assumption

4.1.2(c).

Let ψ : (0,∞) → (0,∞) be a non-decreasing function. A space of homogeneous type

(X, µ) is said to be of ψ-growth if

|B(x, r)| = µ(B(x, r)) h ψ(r)

uniformly for all x ∈ X and r > 0. Notice that this condition is stronger than (4.1.3). For

spaces of ψ-growth, one encounters another notion of off-diagonal estimate. These types

of estimates are studied in [AM07b].

Definition 4.2.12 (Full off-diagonal estimates). Suppose that (X, µ) is of ψ-growth. A

family of operators {Tt}t>0 is said to satisfy (p0, q0) full off-diagonal estimates if for all

closed sets E, F we have

‖Tt‖Lp0 (E)→Lq0 (F ) . ψ(
√
t)

1
q0
− 1
p0 ρ

(
d(E,F )√

t

)
,

where ρ : [0,∞) → (0, 1] is a non-increasing function such that limx→∞|x|aρ(x) = 0 for

some a ≥ 0, and ρ(0) = 1.

Remark 4.2.13. It is not difficult to show that for spaces of ψ-growth, the three different

notions of off-diagonal estimates, Definitions 4.2.4, 4.2.11 and 4.2.12, are all equivalent

for a particular choice of ρ.
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4.3 Applications

In this section, we consider two distinct applications of our quadratic sparse domination

result and Corollary C. For the first application, weighted estimates for square functions

associated with divergence form elliptic operators will be proved. For the particular case

of the Laplacian operator ∆, this will allow us to recover some estimates from [BD20a].

The second example that we will look at are square functions associated with the Laplace–

Beltrami operator on a Riemannian manifold.

4.3.1 Elliptic Operators

Fix n ∈ N\{0} and consider the Euclidean space Rd equipped with the Lebesgue measure.

This is a space of ψ-growth, so all definitions of off-diagonal estimates are equivalent, see

Remark 4.2.13.

Let A be an n × n matrix-valued function on Rd that is bounded and elliptic in the

sense that

Re〈A(x)ξ, ξ〉Cn ≥ λ|ξ|2,

for some λ > 0, for all ξ, x ∈ Rd. Consider the divergence form elliptic operator

L = −divA∇,

defined through its corresponding sesquilinear form as a densely defined and maximally ac-

cretive operator on L2(Rd). The operator L generates an analytic semigroup
{
e−zL

}
z∈Σπ/2−θ

,

where

θ := sup {|arg〈Lf, f〉| : f ∈ D2(L)} .

Let gL and GL denote the square function operators associated with L defined by

gLf :=

(ˆ ∞
0

|tL e−tLf |2 dt

t

)1/2

and GLf :=

(ˆ ∞
0

|
√
t∇e−tLf |2 dt

t

)1/2

.
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In the articles [AM07b] and [AM06], off-diagonal estimates for the constituent operators

of gL and GL were studied in great detail. The below proposition outlines some properties

of such off-diagonal estimates that will be required in order to apply Corollary C to these

two square functions.

Proposition 4.3.1 ([AM06, Prop. 3.3]). For m ∈ N and 0 < µ < π/2 − θ, there exists

maximal intervals Jm(L) and Km(L) in [1,∞] satisfying the below properties.

• If p0, q0 ∈ Jm(L) with p0 ≤ q0 then
{

(zL)me−zL
}
z∈Σµ

satisfies (p0, q0) full off-

diagonal estimates.

• If p0, q0 ∈ Km(L) with p0 ≤ q0 then
{√

z∇(zL)me−zL
}
z∈Σµ

satisfies (p0, q0) full off-

diagonal estimates.

• The interiors intJm(L) and intKm(L) are independent of m.

• The inclusion Km(L) ⊆ Jm(L) is satisfied.

• The point p = 2 is contained in Km(L).

Remark 4.3.2. Observe that for any m ≥ 1, J 1(L) ⊂ Jm(L). To see this, let p0, q0 ∈

J 1(L) with p0 ≤ q0. Then (tL)e−tL/m must satisfy both (p0, q0) and (q0, q0) off-diagonal

estimates. This fact, when combined with the decomposition

(tL)me−tL = (tL)e−tL/m · · · (tL)e−tL/m

and the property that full off-diagonal estimates are stable under composition (c.f. [AM07b,

Thm. 2.3 (b)]) then implies that p0, q0 ∈ Jm(L).
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It is also not difficult to see that J 0(L) ⊂ J 1(L). Indeed, consider the expression

tLe−tL = e−
t
3
L · (tL)e−

t
3
L · e−

t
3
L.

For p0, q0 ∈ J 0(L) with p0 < 2 < q0, Proposition 4.3.1 tells us that the operator e−
t
3
L will

satisfy both (p0, 2) and (2, q0) full off-diagonal estimates. It is also well-known that tLe−
t
3
L

satisfies (2, 2) full off-diagonal estimates. The stability of full off-diagonal estimates under

composition then implies that tLe−tL satisfies (p0, q0) full off-diagonal estimates.

Applying Corollary C to the operators L and gL will produce the following weighted

result.

Proposition 4.3.3. Let p0, q0 ∈ J 0(L) with p0 < 2 < q0. Then, for any p ∈ (p0, q0) and

w ∈ A p
p0
∩RH(

q0
p

)′,

‖gL‖Lp(w) .

(
[w]A p

p0

· [w]RH
(
q0
p )′

)γ(p)

,

where γ(p) is as defined in Corollary C.

Proof. To prove the proposition, it is sufficient to check that the hypotheses of Corollary

C, namely Assumptions 4.1.1 and 4.1.2, are valid for the operators L and gL and the

indices p0, q0. Assumption 4.1.1 is clearly valid since the definition of J 0(L) implies that

the semigroup e−tL will satisfy (p0, q0) full off-diagonal estimates.

It remains to prove the validity of Assumption 4.1.2. Part (a), the L2-boundedness

of gL, follows from the fact that L possesses a bounded holomorphic functional calculus

on L2. Assumption 4.1.2(b), the off-diagonal estimates of the operator family tLe−tL is

given by Remark 4.3.2. Assumption 4.1.2(c) follows on observing that

Qs(tL)Ne−tL = sLe−sL(tL)Ne−tL

=
stN

(s+ t)N+1
((s+ t)L)N+1e−(s+t)L

and that since p0, q0 ∈ J 0(L) the operator family Θ
(N)
r = (rL)N+1e−rL will possess (p0, q0)

full off-diagonal bounds for any N ≥ N0 = 0 by Remark 4.3.2. Finally, for Assumption
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4.1.2(d), in the proof of [AM06, Thm. 7.2 (a)] it was shown that for any ball B(x, r) we

have

( 
B(x,r)

|gLe−r
2Lf |q0 dµ

)1/q0

.
∑
j≥1

c(j)

( 
2j+1B(x,r)

|gLf |p0 dµ

)1/p0

, (4.3.1)

for some sequence of numbers c(j) > 0 that satisfies
∑

j≥1 c(j) . 1. It should be noted that

this argument was written for the square function with constituent operators (tL)
1
2 e−tL,

but it applies equally well to our choice of square function. This clearly implies that

( 
B(x,r)

|gLe−r
2Lf |q0 dµ

)1/q0

. inf
y∈B(x,r)

Mp0(gLf)(y),

and thus Assumption 4.1.2(d) is valid.

Similarly, Corollary C can be applied to the square function GL.

Proposition 4.3.4. Let p0, q0 ∈ K0(L) with p0 < 2 < q0. Then, for any p ∈ (p0, q0) and

w ∈ A p
p0
∩RH(

q0
p

)′,

‖GL‖Lp(w) .

(
[w]A p

p0

· [w]RH
(
q0
p )′

)γ(p)

.

Proof. In order to apply Corollary C, it is sufficient to show that GL satisfies Assumptions

4.1.1 and 4.1.2. Assumption 4.1.1 is implied by p0, q0 ∈ K0(L) ⊂ J 0(L).

Let us now demonstrate the validity of Assumption 4.1.2. The L2-boundedness of

GL, Assumption 4.1.2(a), follows from the ellipticity condition of A and a straightforward

integration by parts argument that can be found in [Aus07, pg. 74]. Assumption 4.1.2(b)

is implied by the condition p0, q0 ∈ K0(L). For Assumption 4.1.2(c), notice that

QsQ(N)
t =

√
s∇e−sL(tL)Ne−tL

=
s

1
2 tN

(s+ t)N+ 1
2

√
s+ t∇ ((s+ t)L)N e−(s+t)L

=:
s

1
2 tN

(s+ t)N+ 1
2

Θ
(N)
s+t .
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Also observe that

Θ(N)
r =

√
r∇e−rL/2(rL)Ne−rL/2.

As p0, q0 ∈ K0(L), Proposition 4.3.1 tells us that operator family
√
r∇e−rL/2 will satisfy

(2, q0) full off-diagonal estimates. Similarly, since K0(L) ⊂ J N(L) for any N ≥ N0 = 0,

the family (rL)Ne−rL/2 satisfies (p0, 2) full off-diagonal bounds. It then follows from the

stability of full off-diagonal bounds under composition that the family Θ
(N)
r will satisfy

(p0, q0) full off-diagonal bounds. This proves that Assumption 4.1.2(c) is satisfied.

Finally, for Assumption 4.1.2(d), in the proof of [AM06, Thm. 7.2 (b)] it was proved

that for any ball B(x, r) we have

( 
B(x,r)

|GLe
−r2Lf |q0 dµ

) 1
q0

.
∑
j≥1

d(j)

( 
2j+1B(x,r)

|GLf |p0 dµ

) 1
p0

,

for some sequence of numbers d(j) > 0 that satisfies
∑

j≥1 d(j) . 1. This clearly implies

that ( 
B(x,r)

|GLe
−r2Lf |q0 dµ

) 1
q0

. inf
y∈B(x,r)

Mp0(GLf)(y), (4.3.2)

and thus Assumption 4.1.2(d) is valid.

Remark 4.3.5. If A is real-valued then it is known that J 0(L) = [1,∞] (c.f. [AM06]).

Proposition 4.3.3 will then imply that

‖gL‖Lp(w) . [w]
max( 1

p−1
, 1
2)

Ap

for all w ∈ Ap. If, in addition to being real-valued, A has also smooth coefficients this

result was proved by Bui and Duong in [BD20a]. In this case it is known that K0(L) =

[1,∞]. Proposition 4.3.4 then implies that

‖GL‖Lp(w) . [w]
max( 1

p−1
, 1
2)

Ap
,

which reproduces a result in [BD20a]. Also, in the same work, the authors showed that
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square functions associated with
√
L are dominated by the corresponding one associated

with L [BD20a, Thm. 1.4]. In particular, our bounds for gL and GL imply the same bound

for the square function g√L and G√L, recovering weighted estimates for the vertical square

functions in [Ler11].

Remark 4.3.6. For A = I we have L = ∆ and it is then known that J 0(L) = K0(L) =

[1,∞]. We can then take p0 = 1 and q0 = ∞ in Propositions 4.3.3 and 4.3.4. This will

produce the weighted estimates

‖g∆‖Lp(w), ‖G∆‖Lp(w) .
(

[w]Ap [w]RH1

)max( 1
p−1

, 1
2)

= [w]
max( 1

p−1
, 1
2)

Ap

for all w ∈ Ap ∩ RH1 = Ap. For both square functions, it is known that these estimates

are optimal in the sense that they will not hold for an exponent of [w]Ap any smaller than

the above exponent. This provides a new proof of weighted boundedness of the standard

square functions associated with ∆ with optimal dependence on the constant [w]Ap .

4.3.2 Laplace–Beltrami

Let X be a complete, connected, non-compact Riemannian manifold. It will be assumed

that the Riemannian measure µ satisfies the volume doubling property. In addition, it

will also be assumed that there exists a function ψ : (0,∞)→ (0,∞) for which

|B(x, r)| = µ(B(x, r)) h ψ(r)

uniformly for all x ∈ X and r > 0. That is, the manifold is of ψ-growth. Enforcing this

stronger growth condition will allow us to interchange our different notions of off-diagonal

estimates (c.f. Remark 4.2.13).

Consider the Laplace–Beltrami operator ∆ defined as an unbounded operator on
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L2(X, µ) through the integration by parts formula

〈∆f, f〉 = ‖|∇f |‖2
2

for f ∈ C∞0 (X), where ∇ is the Riemannian gradient. The positivity of ∆ implies that it

will generate an analytic semigroup e−t∆ on L2(X, µ).

Recall that the heat kernel kt(x, y) of ∆ is said to satisfy Gaussian upper bounds if

there exists c > 0 such that

kt(x, y) .
1

|B(x,
√
t)|
e−c

d2(x,y)
t

for all x, y ∈ X and t > 0. This is a very common assumption that is imposed when

considering the boundedness of singular operators on Riemannian manifolds. For further

information refer to [CD99], [ACDH04] or [AM08]. Consider the square function g∆

defined through

g∆f :=

(ˆ ∞
0

|t∆e−t∆f |2 dt

t

)1/2

.

The boundedness for square functions of this form on unweighted Lp(X) with 1 < p <∞

is known to hold in the general symmetric Markov semigroup setting [Ste70, pg. 111]. Let

us consider the weighted case on the full range of p ∈ (1,∞).

Proposition 4.3.7. Suppose that the heat kernel for X satisfies Gaussian upper bounds.

Then, for any p ∈ (1,∞) and w ∈ Ap,

‖g∆‖Lp(w) . [w]
max( 1

2
, 1
p−1)

Ap
.

Proof. This result will follow from Corollary C provided that Assumptions 4.1.1 and 4.1.2

are verified to hold with p0 = 1 and q0 =∞.

For Assumption 4.1.1, it is known that the heat kernel satisfying Gaussian upper

bounds is equivalent to the semigroup e−t∆ satisfying (1,∞) full off-diagonal estimates.

For proof, the reader is referred to [AM07b, Prop. 2.2] and [AM07b, Prop. 3.3]. Thus
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Assumption 4.1.1 will be valid.

For Assumption 4.1.2(a), the L2-boundedness of g∆ follows from the bounded holo-

morphic functional calculus of ∆ on L2. For Assumption 4.1.2(b), notice that

t∆e−t∆ = e−
t
3

∆ · t∆e−
t
3

∆ · e−
t
3

∆.

Observe that since the semigroup e−t∆ satisfies (1,∞) full off-diagonal estimates, e−t∆

will satisfy both (1, 2) and (2,∞) full off-diagonal bounds. At the same time, t∆e−t∆ is

well-known to satisfy (2, 2) full off-diagonal bounds (c.f. [ACDH04, pg. 930] and [Dav95,

Lemma 7]). It then follows from the stability of full off-diagonal bounds under composition

([AM07b, Thm. 2.3 (b)]) that t∆e−t∆ satisfies (1,∞) full off-diagonal bounds. This proves

that Assumption 4.1.2(b) is satisfied.

Assumption 4.1.2(c) follows from the expression

Qs(t∆)Ne−t∆ =
stN

(s+ t)N+1
[(s+ t)∆]N+1 e−(s+t)∆

and the fact that the operator family {(r∆)N+1e−r∆}r>0 satisfies (1,∞) full off-diagonal

bounds by an argument similar to that of Remark 4.3.2.

Finally, the validity of Assumption 4.1.2(d) can be proved in an identical manner

to the argument used to obtain (4.3.1). This argument can be found in [AM06, §7] on

pages 729–730. This argument in the elliptic setting follows from a combination of the

off-diagonal estimates of the constituent operators, the fact that the constituent operators

are expressible in terms of the semigroup and a variation of the Marcinkiewicz–Zygmund

theorem [Gra14, Thm. 5.5.1]. All three of these components will hold for our square

function in this Riemannian manifold setting and thus the argument will be valid.

Next, we will apply our sparse result to the square function

G∆f :=

(ˆ ∞
0

|
√
t∇e−t∆f |2 dt

t

)1/2

.
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Define

q+ := sup
{
p ∈ (1,∞) : ‖|∇∆−

1
2f |‖p . ‖f‖p

}
.

The weighted boundedness of the Riesz transforms operator ∇∆−
1
2 on Lp(X, w dµ) was

considered for p ∈ (1, q+) in [AM08]. Owing to the strong connection between the Riesz

transforms and the square function G∆, the range (1, q+) will also be a natural interval

over which to consider the boundedness of G∆. From the definition of q+ and the L2-

boundedness of ∇∆−
1
2 , it is clear that q+ ≥ 2. In the below proposition we assume this

inequality to be strict.

Proposition 4.3.8. Assume that the heat kernel of X satisfies Gaussian upper bounds

and that q+ > 2. Let 2 < q0 < q+ and p ∈ [1, q0). Then for any w ∈ Ap ∩RH(
q0
p

)′,

‖G∆‖Lp(w) .

(
[w]Ap · [w]RH

(
q0
p )′

)γ(p)

.

Proof. Once again, let us apply Corollary C. Assumption 4.1.1 will be true for the same

reason as in Proposition 4.3.7. Assumption 4.1.2(a) is well-known and can be obtained by

combining the L2-boundedness of ∇∆−
1
2 together with the bounded holomorphic func-

tional calculus of ∆ on L2.

Let us show that the family of operators Qt =
√
t∇e−t∆ satisfies (1, q0) off-diagonal

estimates at scale
√
t with ρ(x) = exp(−cx2), for some c > 0. Fix balls B1, B2 ⊂ X of

radius
√
t. From the argument in the proof of [ACDH04, Prop 1.10],

(ˆ
X
|∇xkt(x, y)|q0ec

d2(x,y)
t dµ(x)

) 1
q0

.
1

√
t|B(y,

√
t)|1−

1
q0

for all t > 0 and y ∈ X, where c > 0 is dependent on q0. This immediately implies that

( 
B2

|∇xkt(x, y)|q0 dµ(x)

) 1
q0

.
1√
t
e−c

d2(B1,B2)
t

1

|B(y,
√
t)|1−

1
q0 |B2|

1
q0

h
1√
t
e−c

d2(B1,B2)
t

1

ψ(
√
t)
,
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where the last line follows from the uniform ψ-growth condition imposed upon our man-

ifold. For f supported in B1, Minkowski’s inequality followed by the previous estimate

produces

( 
B2

|
√
t∇e−t∆f(x)|q0 dµ(x)

) 1
q0

=

( 
B2

|
ˆ
B1

√
t∇xkt(x, y)f(y) dµ(y)|q0 dµ(x)

) 1
q0

≤
ˆ
B1

( 
B2

|
√
t∇xkt(x, y)|q0 dµ(x)

) 1
q0

|f(y)| dµ(y)

.
1

ψ(
√
t)
e−c

d2(B1,B2)
t

ˆ
B1

|f(y)| dµ(y)

h e−c
d2(B1,B2)

t

 
B1

|f(y)| dµ(y).

Let us now prove that Assumption 4.1.2(c) is valid. Observe that

Qs(t∆)Ne−t∆ =
s

1
2 tN

(s+ t)N+ 1
2

√
s+ t∇e−

s+t
2

∆ [(s+ t)∆]N e−
s+t
2

∆ =:
s

1
2 tN

(s+ t)N+ 1
2

Θ
(N)
s+t .

Observe that the operator family {(r∆)Ne−r∆}r>0 satisfies (1,∞) full off-diagonal esti-

mates. Recall that for spaces of ψ-growth the three different forms of off-diagonal esti-

mates, Definitions 4.2.4, 4.2.11 and 4.2.12, are all equivalent. This, when combined with

Hölder’s inequality, implies that this operator family satisfies (1, 2) off-diagonal estimates

at scale
√
r. Similarly, the family {

√
r∇e−r∆}r>0 satisfies (2, q0) off-diagonal estimates at

scale
√
r. The stability of off-diagonal estimates under composition then implies that the

operator family Θr satisfies (1, q0) at scale
√
r, which implies (1, q0) off-diagonal estimates

at all scales. This proves Assumption 4.1.2(c).

Finally, the validity of Assumption 4.1.2 (d) can be proved in an identical manner

to the argument used to obtain (4.3.2). This argument can be found in [AM06, §7] on

page 732. This argument in the elliptic setting follows from a combination of the off-

diagonal estimates of the constituent operators, the fact that the constituent operators

are expressible in terms of the semigroup and a variation of the Marcinkiewicz–Zygmund

theorem [Gra14, Thm. 5.5.1]. All three of these components will hold for our square

function in this Riemannian manifold setting and thus the argument will be valid.
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4.4 Boundedness of the Maximal Function

Throughout this section, fix p0, q0 ∈ [1,∞], N0 ∈ N and operators L and S satisfying

Assumptions 4.1.1 and 4.1.2 for such a choice of p0, q0. For a ball B we denote by r(B)

its radius. Define the following maximal operator associated with the square function,

S∗f(x) := sup
B ball
B3x

( 
B

|S[r(B)2,∞)f |q0 dµ

)1/q0

:= sup
B ball
B3x

( 
B

(ˆ ∞
r(B)2
|Qtf |2

dt

t

) q0
2

dµ

)1/q0

.

In this section, our aim is to prove the following boundedness result for S∗.

Theorem 4.4.1. The maximal function S∗ is bounded on L2 and weak-type (p0, p0).

The boundedness of this maximal function constitutes an important part of our sparse

domination argument. The reliance of our argument on an associated maximal function

is a well-known method for obtaining sparse bounds and finds its origins in the work

of Lacey [Lac17]. It was later streamlined by Lerner [Ler16]. Quite often, the issue

of proving sparse domination for a particular operator can be reduced to determining

an appropriate associated maximal operator, proving its (weak) boundedness and then

applying a stopping time argument that utilises this boundedness.

4.4.1 A Pointwise Estimate

In order to prove the boundedness of the operator S∗ we will require a couple of preliminary

lemmas. Given a ball B, we define the average of a function f over the annulus Sk(B) :=

2k+1B \ 2kB for k ∈ N as the integral over Sk(B) normalised by |2kB|.

Recall that A0 is a positive number defined in Assumption 4.1.2 (c).
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Lemma 4.4.2. For any 0 < s < r2 < t and N ∈ N,

( 
B

|QtQ(N)
s f |q0 dµ

) 1
q0

.
tA0sN

(t+ s)A0+N

(√
t

r

) ν
q0 ∑

j≥0

2−j

( 
Sj(B̃)

|f |p0 dµ

) 1
p0

for any ball B of radius r and B̃ :=
√
t
r
B.

Proof. Fix B a ball of radius r. For j ≥ 0, let Rj denote a collection of finite overlapping

balls of radius
√
t that is a cover for the set Sj(B̃). Then, Assumption 4.1.2 (c) together

with the triangle inequality produces

( 
B

|QtQ(N)
s f |q0 dµ

) 1
q0

=
tA0sN

(s+ t)A0+N

( 
B

|Θ(N)
s+tf |q0 dµ

) 1
q0

≤ tA0sN

(s+ t)A0+N

∑
j≥0

∑
R∈Rj

( 
B

|Θ(N)
s+t (1Rf)|q0 dµ

) 1
q0

.
tA0sN

(s+ t)A0+N

∑
j≥0

∑
R∈Rj

|B|−
1
q0 |R|

1
p0

|B√s+t|
− 1
q0 |R√s+t|

1
p0

(
1 +

d(B,R)2

s+ t

)− ν+1
2
( 

R

|f |p0 dµ

) 1
p0

.

(4.4.1)

On utilising the doubling property of our metric space and subsequently s+ t h t,

|B√s+t| .
(√

s+ t

r

)ν
|B|

h
(√

t

r

)ν
|B|.

(4.4.2)

This, together with the fact that |R| ≤ |R√s+t| gives

( 
B

|QtQ(N)
s f |q0 dµ

) 1
q0

.
tA0sN

(s+ t)A0+N

(√
t

r

) ν
q0 ∑

j≥0

∑
R∈Rj

(
1 +

d(B,R)2

s+ t

)− ν+1
2
( 

R

|f |p0 dµ

) 1
p0

.

(4.4.3)
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For R ∈ Rj, since d(B,R) ≥ (2j − 1)
√
t h (2j − 1)

√
s+ t for j ≥ 1, we have

(
1 +

d(B,R)2

s+ t

)− ν+1
2

. 2−j(ν+1). (4.4.4)

Let Ω = Sj(B̃) and Rj as defined above in this proof. The inclusion Ω ⊂ 2j+1B̃ ⊂

2j+2R holds for any R ∈ Rj and j ∈ N. Thus Lemma 4.2.8 implies that

∑
R∈Rj

( 
R

|f |p0 dµ

) 1
p0

. 2jν

( 
Sj(B̃)

|f |p0 dµ

) 1
p0

.

Applying this estimate and (4.4.4) to (4.4.3) gives us our result.

Using the previous lemma, the following result can then be proved using an argument

identical to the first estimate of [BFP16, Lem. 4.1].

Lemma 4.4.3. Fix N ∈ N with N > max(3ν/2 + 1, N0). For any ball B of radius

r(B) > 0 and t > r(B)2 we have

( 
B

|Qt(I − P (N)

r(B)2)f |
q0 dµ

) 1
q0

.

(
r(B)2

t

)N
2 ∑
l≥0

2−l
( 

2lB

|f |p0 dµ

) 1
p0

. (4.4.5)

Let S# denote the maximal operator

S#f(x) := sup
B ball
B3x

( 
B

|SP (N)

r(B)2f |
q0 dµ

) 1
q0

.

This operator was introduced in [BFP16] and formed an important part of their sparse

domination argument.

Proposition 4.4.4. For every x ∈ X,

S∗f(x) . S#f(x) +Mp0f(x).
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Proof. For x ∈ X and ball B ⊂ X containing x, the triangle inequality implies

( 
B

(ˆ ∞
r(B)2
|Qtf |2

dt

t

) q0
2

dµ

) 1
q0

≤

( 
B

(ˆ ∞
r(B)2
|Qt(I − P (N)

r(B)2)f |
2 dt

t

) q0
2

dµ

) 1
q0

+

( 
B

(ˆ ∞
r(B)2
|QtP (N)

r(B)2f |
2 dt

t

) q0
2

dµ

) 1
q0

.

For the first term, apply Minkowski’s inequality followed by Lemma 4.4.3 to obtain

( 
B

(ˆ ∞
r(B)2
|Qt(I − P (N)

r(B)2)f |
2 dt

t

) q0
2

dµ

) 1
q0

≤

(ˆ ∞
r(B)2

( 
B

|Qt(I − P (N)

r(B)2)f |
q0 dµ

) 2
q0 dt

t

) 1
2

.

ˆ ∞
r(B)2

((
r(B)2

t

)N
2 ∑
l≥0

2−l
( 

2lB

|f |p0 dµ

) 1
p0

)2

dt

t

 1
2

= r(B)N
(ˆ ∞

r(B)2

dt

tN+1

) 1
2 ∑
l≥0

2−l
( 

2lB

|f |p0 dµ

) 1
p0

.Mp0f(x).

For the second term,

( 
B

(ˆ ∞
r(B)2
|QtP (N)

r(B)2f |
2 dt

t

) q0
2

dµ

) 1
q0

≤

( 
B

(ˆ ∞
0

|QtP (N)

r(B)2f |
2 dt

t

) q0
2

dµ

) 1
q0

=

( 
B

|SP (N)

r(B)2f |
q0 dµ

) 1
q0

≤ S#f(x).

We thus obtain the pointwise estimate (4.4.4).

4.4.2 Cancellation of S with respect to L

As the operator Mp0 is L2-bounded and weak-type (p0, p0), the pointwise bound of the

previous section implies that in order to prove Theorem 4.4.1 it will be sufficient to show
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that S# is L2-bounded and weak-type (p0, p0). According to [BFP16, Prop. 4.6], S#

will be L2-bounded and weak-type (p0, p0) if S satisfies the assumptions of [BFP16]. The

only assumption from [BFP16] that is not included in our hypotheses is Assumption (b) of

[BFP16], the cancellative property of S with respect to L. Instead, for us, the cancellation

has been imposed upon the constituent operators Qt. In this section it will be proved

that cancellation on Qt with respect to L implies cancellation on S with respect to L.

Proposition 4.4.5. There exists Ñ0 ≥ N0 such that for all integers N ≥ Ñ0, s > 0 and

balls B1, B2 of radius
√
s,

( 
B2

|SQ(N)
s f |q0 dµ

) 1
q0

.

(
1 +

d(B1, B2)2

s

)− ν+1
2
( 

B1

|f |p0 dµ

) 1
p0

(4.4.6)

for all f ∈ Lp0(B1).

Proof. For I ⊂ [0,∞), define the operator

SIf(x) :=

(ˆ
I

|Qtf |2
dt

t

)1/2

.

In order to prove (4.4.6), it is sufficient to show that a similar estimate holds for the

operators S[0,s] and S[s,∞).

For I ⊂ [0,∞), Minkowski’s inequality implies that

( 
B2

|SIQ(N)
s f |q0 dµ

) 1
q0

=

( 
B2

(ˆ
I

|QtQ(N)
s f |2 dt

t

) q0
2

dµ

) 2
q0

1
2

≤

[ˆ
I

( 
B2

|QtQ(N)
s f |q0 dµ

) 2
q0 dt

t

] 1
2

.
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From Assumption 4.1.2(c) and the growth property (4.1.3), we have

( 
B2

|SIQ(N)
s f |q0 dµ

) 1
q0

≤

[ˆ
I

t2A0s2N

(t+ s)2(A0+N)

( 
B2

|Θ(N)
t+sf |q0 dµ

) 2
q0 dt

t

] 1
2

.

[ˆ
I

t2A0s2N

(t+ s)2(A0+N)

|B1|
2
p0 · |B2|−

2
q0

|B1,
√
t+s|

2
p0 |B2,

√
t+s|

− 2
q0

(
1 +

d(B1, B2)2

t+ s

)−(ν+1)
dt

t

]1/2( 
B1

|f |p0 dµ

) 1
p0

h

ˆ
I

t2A0s2N

(t+ s)2(A0+N)
ϕ

( √
s√

t+ s

)2
(

1
p0
− 1
q0

)(
1 +

d(B1, B2)2

t+ s

)−(ν+1)
dt

t

1/2( 
B1

|f |p0 dµ

) 1
p0

.

The property that ϕ(a) ≤ 1 for a ≤ 1 then gives

( 
B2

|SIQ(N)
s f |q0 dµ

) 1
q0

.

[ˆ
I

t2A0s2N

(t+ s)2(A0+N)

(
1 +

d(B1, B2)2

t+ s

)−(ν+1)
dt

t

] 1
2 ( 

B1

|f |p0 dµ

) 1
p0

.

(4.4.7)

In order to prove the desired off-diagonal estimate, it is then sufficient to prove

AI :=

ˆ
I

t2A0s2N

(t+ s)2(A0+N)

(
1 +

d(B1, B2)2

t+ s

)−(ν+1)
dt

t

.

(
1 +

d(B1, B2)2

s

)−(ν+1)

,

(4.4.8)

for both intervals I = [0, s] and I = [s,∞). Consider first the interval I = [0, s]. For t

contained in [0, s] we will have t+ s ≤ 2s and therefore

(
1 +

d(B1, B2)2

t+ s

)−(ν+1)

.

(
1 +

d(B1, B2)2

s

)−(ν+1)

.

This gives

AI .

(
1 +

d(B1, B2)2

s

)−(ν+1) ˆ s

0

t2A0s2N

(t+ s)2(A0+N)

dt

t

≤
(

1 +
d(B1, B2)2

s

)−(ν+1)
1

s

ˆ s

0

dt

=

(
1 +

d(B1, B2)2

s

)−(ν+1)

.
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Applying this to (4.4.7) produces the desired off-diagonal bounds for the operator S[0,s].

Next, let’s prove off-diagonal bounds for the operator S[s,∞). Suppose first that s >

d(B1, B2)2. When this occurs, note that

(
1 +

d(B1, B2)2

s

)−(ν+1)

h 1. (4.4.9)

We then have,

AI ≤
ˆ ∞
s

t2A0s2N

(t+ s)2(A0+N)

dt

t

≤ s2N

ˆ ∞
s

1

(t+ s)2N+1
dt

h 1

h
(

1 +
d(B1, B2)2

s

)−(ν+1)

.

Applying this to (4.4.7) produces the desired off-diagonal estimates for S[s,∞).

Finally, we must prove off-diagonal decay for S[s,∞) for the case s ≤ d(B1, B2)2. We

have,

AI =

ˆ ∞
s

t2A0s2N

(t+ s)2(A0+N)

(
1 +

d(B1, B2)2

t+ s

)−(ν+1)
dt

t

≤ s2N

d(B1, B2)2(ν+1)

ˆ ∞
s

dt

(t+ s)2N+1−(ν+1)
.

Select Ñ0 ≥ N0 large enough so that N ≥ Ñ0 implies 2N > ν + 1. Then,

AI .
sν+1

d(B1, B2)2(ν+1)

.

(
1 +

d(B1, B2)2

s

)−(ν+1)

,

where the last line follows from the condition s ≤ d(B1, B2)2. Applying this to (4.4.7)

completes our proof.

The below corollary, in combination with the pointwise estimate Proposition 4.4.4,
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completes the proof of Theorem 4.4.1.

Corollary 4.4.6 ([BFP16, Prop. 4.6]). The maximal function S# is bounded on L2, and

weak-type (p0, p0).

4.5 Sparse Bounds

In this section we prove Theorem C. Since f has compact support, without loss of gen-

erality we can assume that its support is contained in a bounded set E ⊂ X. By the

Lemma 4.2.3, there exists α ≥ 1 and a partition P of X of dyadic cubes such that

αQ ⊇ suppf for every Q ∈P. Then

ˆ
X
|Sf |2g dµ =

∑
Q∈P

ˆ
Q

|Sf |2g dµ =
∑
Q∈P

ˆ
Q

|S(f1αQ)|2g dµ.

We are not concerned with the particular value of α, so we will fix α = 5 in the following

and assume that this value works for the covering lemma. Then, it is enough to show the

existence of a sparse collection S0 inside a fixed cube Q0 such that

ˆ
Q0

(Sf)2g dµ .
∑
P∈S0

( 
5P

|f |p0 dµ

)2/p0 ( 
5P

|g|q∗0 dµ

)1/q∗0

|P |.

We will decompose our quantity in different terms: all will be controlled by the averages

of f and g but one. This last term is where f assumes a large value and it is similar to the

original quantity but on a smaller scale. We can then iterate the decomposition, which

terminates since the measure of the set we are decomposing shrinks geometrically at each

iteration.
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4.5.1 Decomposition

Denote by `(P ) the side length of the dyadic cube P . Let us consider the (localised)

dyadic version of the operator introduced in §4.4,

M∗
Q0,p0

f(x) := sup
P∈D
P⊆Q0

(
inf
y∈P
Mp0f(y)

)
1P (x),

S∗Q0
f(x) := sup

P∈D
P⊆Q0

( 
P

∣∣∣∣∣
ˆ ∞
`(P )2
|Qtf |2

dt

t

∣∣∣∣∣
q0
2

dµ

)1/q0

1P (x).

For a positive η to be fixed later, consider the set

E(Q0) :=

{
x ∈ Q0 : max

{
M∗

Q0,p0
f(x), S∗Q0

f(x)
}
> η

( 
5Q0

|f |p0 dµ

)1/p0
}
.

Since the operatorsM∗
Q0,p0

and S∗Q0
are weak-type (p0, p0), as shown in §4.4, there exists

η > 0 such that |E(Q0)| ≤ 1
2
|Q0|. Decompose our form as

ˆ
Q0

(Sf)2g dµ =

ˆ
Q0\E(Q0)

(Sf)2g dµ+

ˆ
E(Q0)

(Sf)2g dµ =: I + II

Term I is controlled by using Lebesgue differentiation theorem as in [BFP16, Lem. 4.4]

since |Sf(x)|2 ≤ |S∗Q0
f(x)|2 for µ-almost every x. Thus, for x ∈ Q0 \ E(Q0) we have

ˆ
Q0\E(Q0)

(Sf)2g dµ . η2

( 
5Q0

|f |p0 dµ

)2/p0 ( 
Q0

|g|q∗0 dµ

)1/q∗0

|Q0|.

Consider term II. Let E := {P}P∈D be a covering of E(Q0) with maximal dyadic

cubes. Then

ˆ
E(Q0)

(Sf)2g dµ =
∑
P∈E

ˆ
P

(Sf)2g dµ

=
∑
P∈E

ˆ
P

ˆ `(P )2

0

|Qtf(x)|2 dt

t
g dµ+

∑
P∈E

ˆ
P

ˆ ∞
`(P )2
|Qtf(x)|2 dt

t
g dµ

=: II< + II>.
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For each P in the covering, we write f = fin + fout, where fin := f15P and fout := f1(5P ){ .

Then each term in II< is itself decomposed into three terms

ˆ
P

ˆ `(P )2

0

|Qtf(x)|2 dt

t
g dµ =

ˆ
P

ˆ `(P )2

0

|Qtfin|2g
dt

t
dµ (IIin)

+

ˆ
P

ˆ `(P )2

0

|Qtfout|2g
dt

t
dµ (IIout)

+ 2

ˆ
P

ˆ `(P )2

0

(Qtfin)(Qtfout)g
dt

t
dµ. (IIcross)

Term (IIin) goes into the iteration. Terms (IIout) and (IIcross) are controlled by using

Fubini and applying off-diagonal estimates as in the following lemma.

Lemma 4.5.1. For a given dyadic cube P , let Sk(P ) := 2k+1P \ 2kP for k ≥ 2. Then for

any t > 0,

( 
P

|Qtfin|q0 dµ

)1/q0

.

(
`(P )√
t

)ν ( 
5P

|f |p0 dµ

)1/p0

(4.5.1)( 
P

|Qtfout|q0 dµ

)1/q0

.

(
`(P )√
t

)−ν−2∑
k≥2

2−k
( 

Sk(P )

|f |p0 dµ

)1/p0

. (4.5.2)

Proof of Lemma 4.5.1. The proof follows the one in [BFP16, Thm. 5.7]. For fin = f15P ,

let R0 be a collection of finite overlapping balls R of radius
√
t covering 5P . By linearity

of the operators, the triangle inequality, off-diagonal estimates for Qt with ρ(x) = (1 +

|x|2)−(ν+1) and Remark 4.2.9 we have

( 
P

|Qtfin|q0 dµ

)1/q0

≤
∑
R∈R0

( 
P

|Qtf1R|q0 dµ

)1/q0

.
∑
R∈R0

( 
R

|f |p0 dµ

)1/p0

.

Since 5P ⊆ 15`(P )√
t
R, Lemma 4.2.8 implies

∑
R∈R0

( 
R

|f |p0 dµ

)1/p0

.

(
5`(P )√

t

)ν ( 
5P

|f |p0 dµ

)1/p0

which proves (4.5.1).
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For fout = f1(5P ){ , decompose f on the squared annuli Sk = Sk(P ). Let Rk be the

covering of Sk with finite overlapping balls R of radius
√
t. Linearity of the operators Qt,

the triangle inequality and off-diagonal estimates for Qt imply that

( 
P

|Qtfout|q0 dµ

)1/q0

≤
∑
k≥2

∑
R∈Rk

( 
P

|Qtf1R|q0 dµ

)1/q0

.
∑
k≥2

∑
R∈Rk

ρ
(d(P,R)√

t

)( 
R

|f |p0 dµ

)1/p0

.
∑
k≥2

ρ
(d(P, Sk)√

t

) ∑
R∈Rk

( 
R

|f |p0 dµ

)1/p0

.
∑
k≥2

ρ
(d(P, Sk)√

t

)(2k+1`(P )√
t

)ν ( 
Sk

|f |p0 dµ

)1/p0

where we used that the function ρ is monotone decreasing and d(P,R) ≥ d(P, Sk). The

last inequality follows by applying Lemma 4.2.8, since Sk(P ) ⊆ 2kP ⊆ 2k+1`(P )√
t

R.

Finally, we have enough decay from the remaining product, since

ρ
(d(P, Sk)√

t

)(2k+1`(P )√
t

)ν
.
(2k`(P )√

t

)−ν−2

This follows because d(P, Sk) = d(P, 2k+1P \ 2kP ) is comparable with 2k`(P ) and the

function ρ(x) = (1 + |x|2)−(ν+1) decays faster than xν for x � 1. This proves estimate

(4.5.2).

We will use Lemma 4.5.1 to control the different terms left in the decomposition.

Remark 4.5.2. The geometric sum in (4.5.2) is controlled using the stopping condition:

the integral over Sk is bounded by the integral over the ball 2k+1P , so

(∑
k≥2

2−k
( 

Sk

|f |p0 dµ

)1/p0
)2

.

(
sup
k≥2

( 
2k+1P

|f |p0 dµ

)1/p0
)2

.
(

inf
y∈Pa

Pa parent of P

Mp0f(y)
)2

. η2

( 
5Q0

|f |p0 dµ

)2/p0

,
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where we used that P is a maximal cube covering E. Similarly for the average on 5P :

( 
5P

|f |p0 dµ

)2/p0

.
(

inf
y∈Pa
Mp0f(y)

)2

. η2

( 
5Q0

|f |p0 dµ

)2/p0

.

Remark 4.5.3 (Control on the q∗0-average of g). The sum of the q∗0-averages of g is controlled

by using Hölder’s inequality in `
q0
2 . Since 2

q0
= 1− 1

q∗0
, summing over all cubes P in E we

obtain

∑
P

|P |
( 

P

|g|q∗0 dµ

)1/q∗0

≤
(∑

P

|P |
) 2
q0

(∑
P

ˆ
P

|g|q∗0 dµ

)1/q∗0

≤ |Q0|
( 

Q0

|g|q∗0 dµ

)1/q∗0

. |Q0|
( 

5Q0

|g|q∗0 dµ

)1/q∗0

.

(4.5.3)

4.5.2 Out term

Consider (IIout). Applying Fubini and Hölder’s inequality, we have

ˆ
P

ˆ `(P )2

0

|Qtfout|2g
dt

t
dµ ≤

ˆ `(P )2

0

( 
P

|Qtfout|q0 dµ

)2/q0 dt

t

( 
P

|g|q∗0 dµ

)1/q∗0

|P |.

The average of g is controlled as in (4.5.3). Apply Lemma 4.5.1 to the first factor:

ˆ `(P )2

0

( 
P

|Qtfout|q0 dµ

)2/q0 dt

t
.
ˆ `(P )2

0

(∑
k≥2

√
t

2k`(P )

( 
Sk

|f |p0 dµ

)1/p0
)2

dt

t

.

(∑
k≥2

2−k
( 

Sk

|f |p0 dµ

)1/p0
)2

which is controlled as in Remark 4.5.2. This case is concluded.
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4.5.3 Cross term

Consider (IIcross). We exchange the integrals, then an application of Hölder’s and Cauchy–

Schwarz inequality give

ˆ
P

ˆ `(P )2

0

(Qtfin)(Qtfout)g
dt

t
dµ

≤
ˆ `(P )2

0

( 
P

|(Qtfin)(Qtfout)|q0/2 dµ

)2/q0 dt

t

( 
P

|g|q∗0 dµ

)1/q∗0

|P |

≤
ˆ `(P )2

0

( 
P

|Qtfin|q0 dµ

)1/q0 ( 
P

|Qtfout|q0 dµ

)1/q0 dt

t

( 
P

|g|q∗0 dµ

)1/q∗0

|P |.

The off-diagonal estimates for Qt in Lemma 4.5.1 applied to fin and fout imply that

ˆ `(P )2

0

( 
P

|Qtfin|q0 dµ

)1/q0 ( 
P

|Qtfout|q0 dµ

)1/q0 dt

t

.
ˆ `(P )2

0

( √
t

`(P )

)2
dt

t

( 
5P

|f |p0 dµ

)1/p0∑
k≥2

2−k
( 

Sk(P )

|f |p0 dµ

)1/p0

. η2

( 
5Q0

|f |p0 dµ

)2/p0

where the last estimate follows as in Remark 4.5.2.

4.5.4 Large scales

Consider II>. Let P a be the dyadic parent of P , so that `(P a) = 2`(P ). Then

ˆ
P

ˆ ∞
`(P )2
|Qtf(x)|2 dt

t
g dµ

=

ˆ
P

ˆ `(Pa)2

`(P )2
|Qtf(x)|2 dt

t
g dµ+

ˆ
P

ˆ ∞
`(Pa)2

|Qtf(x)|2 dt

t
g dµ. (4.5.4)

In the first term, we exchange the integrals and apply Hölder’s inequality

ˆ `(Pa)2

`(P )2

ˆ
P

|Qtf(x)|2g dµ
dt

t
≤
ˆ `(Pa)2

`(P )2

( 
P

|Qtf(x)|q0 dµ

)2/q0 dt

t

( 
P

|g|q∗0 dµ

)1/q∗0

|P |.
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Applying Lemma 4.5.1 and using that
√
t is comparable with `(P ), we obtain

ˆ `(Pa)2

`(P )2

( 
P

|Qtf |q0 dµ

)2/q0 dt

t

.
ˆ `(Pa)2

`(P )2

((
`(P )√
t

)ν ( 
5P

|f |p0 dµ

)1/p0

+
∑
k≥2

√
t

2k`(P )

( 
Sk

|f |p0 dµ

)1/p0
)2

dt

t

.

(( 
5P

|f |p0 dµ

)1/p0

+
∑
k≥2

2−k
( 

Sk

|f |p0 dµ

)1/p0
)2

,

which again is controlled as in Remark 4.5.2. The average of g is estimated as in (4.5.3).

The second term in (4.5.4), after applying Hölder’s inequality, is controlled by the

maximal truncation

ˆ
P

ˆ ∞
`(Pa)2

|Qtf(x)|2 dt

t
g dµ ≤

( 
P

(ˆ ∞
`(Pa)2

|Qtf(x)|2 dt

t

)q0/2
dµ

)2/q0 ( 
P

|g|q∗0 dµ

)1/q∗0

|P |

. inf
x∈Pa

(S∗Q0
f)2(x)

( 
P

|g|q∗0 dµ

)1/q∗0

|P |

. η2

( 
5Q0

|f |p0 dµ

)2/p0 ( 
P

|g|q∗0 dµ

)1/q∗0

|P |.

We have shown that

ˆ
Q0

ˆ ∞
0

|Qtf |2g
dt

t
dµ . η2

( 
5Q0

|f |p0 dµ

)2/p0 ( 
5Q0

|g|q∗0 dµ

)1/q∗0

|Q0|

+
∑
P

ˆ
P

ˆ `(P )2

0

|Qtf15P |2
dt

t
g dµ.

Let S = {Q0}. We add all P in the sum to S and we repeat the argument on each

term in the sum. This iteration gives the desired bound: a sum of averages of f and g on

cubes in the collection S . We can choose η > 0 such that |E(Q)| ≤ 1
2
|Q| for each Q ∈ S .

Then S is sparse since each Q ∈ S has a subset FQ := Q \E(Q) with the property that

{FQ}Q∈S is a disjoint family and |FQ| > 1
2
|Q| by construction.
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4.5.5 Upper bound on asymptotic behaviour

In this section we discuss the connection between sharp weighted estimates for an operator

T and the asymptotic behaviour of its unweighted norm ‖T‖Lp→Lp . In this section γ(·)

will be the quantity defined below and not the power on the weighted characteristic in

Proposition C, which is defined for p ∈ (p0, q0). We recall the definition of γ(q0) from

[FN19, Definition 5.1]. Let T be a bounded operator on Lp for p ∈ (p0, q0).

Definition 4.5.4. For q0 <∞ define

γ(q0) := sup
{
γ ≥ 0 | ∀ε > 0, lim sup

p→q0
(q0 − p)γ−ε‖T‖Lp→Lp =∞

}
,

and for q0 =∞

γ(∞) := sup

{
γ ≥ 0 | ∀ε > 0, lim sup

p→∞

‖T‖Lp→Lp
pγ−ε

=∞
}
.

We say that an operator T admits a (p0, q0) quadratic sparse domination if it satisfies

a bound as the one in Theorem C. We have the following upper bound on the unweighted

norm of T .

Proposition 4.5.5. Let q∗ := (q/2)′. If T admits a (p0, q0) quadratic sparse domination

then for p > 2 we have

‖T‖Lp→Lp .
[(

p

p0

)′] 1
p0
[(

p∗

q∗0

)′] 1
2

1
q∗0

and in particular

γ(q0) ≤ 1

2q∗0
. (4.5.5)

Proof. As in [FN19, Remark 3.4], let S be a η-sparse family. For p > 2 we have

∑
P∈S

( 
P

|f |p0 dµ

)2/p0 ( 
P

|g|q∗0 dµ

)1/q∗0

|P | . 1

η
‖MD

p0
2

(|f |2)‖Lp/2‖MD
q∗0
g‖L(p/2)′

116



.
1

η

[(
p

p0

)′] 2
p0
[(

p∗

q∗0

)′] 1
q∗0
‖f‖2

Lp‖g‖Lp∗

where the last inequality follows from the bound on the Lp-norm ofMD in (4.2.1), since

‖MD
p0
2

(|f |2)‖Lp/2 = ‖MD(|f |p0)‖2/p0
Lp/p0

.

Remark 4.5.6. The upper bound on γ(q0) in (4.5.5) implies that, if γ(q0) equals 1/(2q∗0)

then the weighted estimates in Corollary C are sharp.
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CHAPTER 5

TWO WEIGHT THEORY FOR THE BERGMAN
PROJECTION

Apparently Bergman misunderstood the task.

G.M. D’A.

This chapter presents an ongoing work around the following question:

What are the necessary and sufficient conditions on two weight u, ω for the
boundedness of the Bergman projection P : L2(u)→ A2(ω)?

Progress on this question has recently been obtained via sparse domination. For

example, in the case of the unit disc D, Aleman, Pott and Reguera characterised such

weights in the Bergman space A2(D) in terms of testing conditions [APR17].

This chapter contains some sufficient conditions for the boundedness in question.

These conditions are known for sparse forms [Li17], although they have not explicitly

appeared in the context of Bergman spaces. In this setting the question is particularly

relevant, as it is connected to a conjecture of Sarason in Operator Theory, see §1.5.1.

The sufficient condition is given in terms of a bump condition for the two weight.

Theorem D. Let σ, ω be two weights on the unit ball Bd in Cd and let Φ,Ψ be two Young

functions such that the associated maximal function is bounded on L2. Then the Bergman

projection P on L2(Bd) satisfies the following bound

‖P (σ ·)‖L2(σ)→A2(ω) ≤ C [σ, ω]Φ,Ψ

118



where C is a positive constant independent of σ, ω and the quantity [σ, ω]Φ,Ψ is given by

[σ, ω]Φ,Ψ := sup
K̂

〈σ〉K̂
〈σ1/2〉Φ,K̂

〈ω〉K̂
〈ω1/2〉Ψ,K̂

(5.0.1)

where the supremum is taken over the dyadic tents introduced in §5.1.

The condition (5.0.1) is known as bump condition, as the averages of the weights have

been “bumped up” by mean of Orlicz norms.

We also refine the estimates in [RTW17] by extending the result [APR17, Theorem

5.7] to higher dimensions and to general weights σ, ω that are not dual to each other.

Theorem E. Let σ, ω be two weights in B∞ of the ball Bd such that their joint B2 charac-

teristic [σ,w]B2 defined in §1.5.2 is finite. The Bergman projection P on L2(Bd) satisfies

the following bound

‖P (σ ·)‖L2(σ)→L2(ω) ≤ C [ω, σ]
1/2
B2

(
[σ]

1/2
B∞

+ [ω]
1/2
B∞

)
where C is a positive constant independent of σ, ω and the other quantity on the right

hand side is the B∞ characteristic defined in Definition 5.1.4.

Remark 5.0.1. The estimate in Theorem E improves on the B2 estimates in [RTW17],

since [σ]B∞ ≤ [σ]B2 . This is shown in Proposition 5.1.5.

Remark 5.0.2. A dyadic structure on convex domains of finite type can be constructed

via the dyadic flow tents [GHK20]. This generalises the construction in §5.1 for the ball.

The resulting collection of dyadic flow tents is also sparse, and it produces weighted

estimates for the Bergman projection of that class of domains.

Since our bump condition implies the boundedness of a sparse operator, the same

condition implies the boundedness of the Bergman projection on convex domains of finite

type by the pointwise control in [GHK20, Lemma 4.1].

Recall that the Bergman projection on the complex unit ball Bd ⊂ Cd is the integral
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operator

Pf(z) :=

ˆ
Bd

f(ζ)

(1− zζ̄)d+1
dν(ζ)

where dν is the normalised measure on Bd.

5.1 Dyadic structure on the complex unit ball

We borrow the dyadic structure on the ball developed by Arcozzi, Rochberg, and Sawyer

[ARS02] and also used in [RTW17, §2]. This structure introduces a collection of sets

called “dyadic kubes”, which comes with a tree structure T called Bergman tree (namely

a collection of partially ordered indexes {α ∈ T }. The points {cα}α∈T are the centres of

the dyadic kubes).

We explain how the dyadic structure is constructed.

Let ϕz be the bi-holomorphic involution of the ball exchanging z and the origin:

ϕz(w) :=
z − 〈w, z|z|〉

z
|z| −

√
1− |z|2(w − 〈w, z|z|〉

z
|z|)

1− 〈w, z〉
.

The Bergman metric on the unit ball Bd is defined as

β(z, w) :=
1

2
log

1 + |ϕz(w)|
1− |ϕz(w)|

.

In the following, B(z0, r) ⊂ Bd denotes the ball of centre z0 and radius r in the Bergman

metric. We also denote by Sr the sphere of radius r centred at the origin, so Sr = ∂B(0, r).

Fix R, δ > 0. For n ∈ N, there is a collection of points {znj }Jnj=1 and a partition of the

sphere SnR in Borel subsets {Ωn
j }Jnj=1 such that

(i) SnR =
⊔Jn
j=1 Ωn

j ;

(ii)
(
B(zj, δ) ∩ SnR

)
⊆ Ωn

j ⊆
(
B(zj, Cδ) ∩ SnR

)
for some C > 0.

Let πnR denote the radial projection from Bd onto the sphere SnR. The kubes are
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given by

K0
1 := B(0, R),

Kn
j := {ζ ∈ B(0, (n+ 1)R) \B(0, nR) : πnR(ζ) ∈ Ωn

j }.

The centre of the kube Kn
j is cnj := π(n+ 1

2
)R(znj ). We say that a point cn+1

i is a child of

cnk if πnR(cn+1
i ) ∈ Ωn

k . Then the centres form a tree structure T , which we will refer to as

Bergman tree.

Figure 5.1: Example of the first generations of kubes and the respective Ωn
k in the dyadic

structure on Bd.

To simplify the notation, let α be an element in T . We denote by Kα the unique kube

with centre α. If β is a descendant of α we write β ≥ α. Given a kube Kα, the dyadic
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tent K̂α is the union of all kubes whose centres are descendant of α in T , namely

K̂α :=
⋃
β≥α

Kα.

The volume of Kα and K̂α are comparable. This was originally proved in [ARS06,

Lemma 2.8], see also [RTW17, Lemma 1].

Lemma 5.1.1 (Arcozzi, Rochberg, and Sawyer 2006). Let T be a Bergman tree on Bd

with parameters R, δ. There is a universal constant τ > 1, depending only on R, δ and

the dimension d, such that |K̂α| ≤ τ |Kα| for all α ∈ T .

From this lemma, and from the fact that the kubes {Kα}α∈T are pairwise disjoint,

follows immediately that the collection of dyadic tents T := {K̂α}α∈T is 1
τ
-sparse, in the

sense of Definition 1.2.8.

Definition 5.1.2. Given two weights w, σ, their joint Bp characteristic on the dyadic

tents T is

[w, σ]Bp := sup
K̂α∈T

〈w〉K̂α〈σ〉
p−1

K̂α
.

As before, we denote by [w]Bp := [w,w1−p′ ]Bp so in particular [w]B2
:= [w,w−1]B2 . We say

that w ∈ Bp if [w]Bp is finite.

We shall not confuse the class of weights Bp with the one of Young functions. To

help the reader, we will recall which class we are referring to and we will always denote

Young functions by capital Greek letters (Φ or Ψ), whilst we keep the lower case notation

w, v, u, σ for weights.

Remark 5.1.3. Note that if σ ∈ Bp, by Hölder’s inequality T is (τ p[σ]Bp)
−1-sparse with

respect to the measure σ dν.
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Definition 5.1.4. We consider the weights in B∞ :=
⋃
p>1 Bp and the quantity

[σ]B∞ := sup
K̂α∈T

1

σ(K̂α)

ˆ
K̂α

M(σ1K̂α)

where M is the maximal operator

Mf(z) := sup
K̂∈T
〈|f |〉K̂1K̂(z).

The characteristic [σ]B∞ is controlled by [σ]Bp . We recall the simple proof from

[APR17, Proposition 5.6].

Proposition 5.1.5 (Aleman, Pott, Reguera 2017). For 1 < p <∞, let w be a weight in

Bp. Then we have

[w]B∞ ≤ [w]Bp .

Proof. Let w ∈ Bp and let σ := w1−p′ be the dual weight. By writing 1 = σ
1
p′ σ

1
p
−1 and

using Hölder’s inequality, we have

ˆ
K̂

M(w1K̂)σ
1
p′ σ

1
p
−1 ≤

(ˆ
K̂

M(w1K̂)p
′
σ

)1/p′ (ˆ
K̂

σ1−p
)1/p

≤ ‖M‖Lp′ (σ)→Lp′ (σ)

(ˆ
K̂

wp
′
σ

)1/p′ (ˆ
K̂

σ1−p
)1/p

.p,d [w]Bp

ˆ
K̂

w

where we used that wp′σ = w = σ1−p and the bound from Buckley in Theorem 1.2.5:

‖M‖Lp′ (σ)→Lp′ (σ) .p′,d [σ]
1/(p′−1)
Bp′

= [w]Bp .

A simple proof of the bound for the norm of M can also be found in [Ler08a].

We will derive estimates using the above quantities and then we will compare the joint
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dyadic B2 with the one on Carleson tents.

5.2 Program to deduce weighted estimates

A possible route to prove weighted estimates for P follows these steps, see also [Ler13b].

1. (Control by a positive operator). The modulus of the Bergman projection is con-

trolled by the maximal Bergman projection:

P+f(z) :=

ˆ
Bd

f(ζ)

|1− zζ̄|d+1
dν(ζ).

Namely we have |Pf(z)| ≤ P+|f |(z). Note that P+(| · |) is a real-valued, positive

operator. For positive weights w, v we have

‖P‖L2(w)→L2(v) ≤ ‖P+‖L2(w)→L2(v).

2. (Equivalence with a sparse operator). Given the dyadic structure on Bd and the

sparse collection T, the associated sparse operator ΛT is equivalent to the maximal

Bergman projection [RTW17, Lemma 5]:

P+|f |(z) hd ΛTf(z) :=
∑
K̂α∈T

〈f〉K̂α1K̂α .

3. (Bumps for the sparse operator). Two-weight estimates for sparse operators are

well understood. For example, they are equivalent to two-weight estimates for the

maximal operator M , see [Ler13b, Theorem 1.2]. Sufficient conditions on (w, v) for

the boundedness of

‖M‖L2(w)→L2(v) and ‖ΛT‖L2(w)→L2(v)

are known in terms of testing conditions. These are presented in §5.2.1.
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These three steps are enough if we are aiming to find sufficient conditions.

If our goal is to find also necessary conditions and solving the two weight problem,

another step is needed.

4. By showing the reverse inequality:

‖P+‖L2(w)→L2(v) . ‖P‖L2(w)→L2(v)

one has the equivalence

‖P‖L2(w)→L2(v) h ‖ΛT‖L2(w)→L2(v).

Then the two-weight estimates for ΛT imply estimates for the Bergman projection.

This has been done only for holomorphic weights w, v ∈ A2(D) in [APR17, §3].

The task of characterising weights w, v for which ‖P‖L2(w)→L2(v) is finite is still open.

5.2.1 Sawyer testing conditions

Let S be a sparse collection. We denote by ΛS the corresponding sparse operator

ΛS f :=
∑
Q∈S

〈f〉Q1Q.

The weights for which ΛS (σ ·) : Lp(σ) → Lp(w) holds, as well as the equivalent dual

formulation ΛS (·w) : Lp
′
(w) → Lp

′
(σ), have been characterised by Sawyer in terms of

testing conditions:

‖ΛS (σ1Q)‖pLp(w) ≤ Tσ(Q) , ∀Q ∈ S

‖ΛS (w1Q)‖p
′

Lp′ (σ)
≤ T′w(Q) , ∀Q ∈ S

(5.2.1)
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where the optimal testing constants are

T := Tp(w, σ) := sup
Q

‖1QΛS (1Qσ)‖pLp(w)

σ(Q)

T′ := T′p′(w, σ) := sup
Q

‖1QΛS (1Qw)‖p
′

Lp′ (σ)

w(Q)

(5.2.2)

These conditions are named after Sawyer, who first derived them for maximal operators

[Saw82] and for fractional and Poisson integrals [Saw88]. For sparse operators they have

been proved in [LSU09].

Testing constants for off-diagonal estimates ΛS (σ ·) : Lp(σ) → Lq(w) for q 6= p and

more general sparse forms have also been studied, see [Li17, Theorem 1.1]. In particular

we have

‖ΛS (σ ·)‖Lp(σ)→Lp(w) h
(
T1/p + (T′)1/p′

)
.

In the following we estimate the constants T,T′ from above with quantities involving

the weights w, σ.

5.3 Proof of Theorem D

We derive a bump condition in L2 for two weights w, σ in terms of Orlicz averages.

First, the maximal Bergman projection P+ is controlled by a sparse operator Λ.

Lemma 5.3.1 ([RTW17, Lemma 5]). There is a finite collection of Bergman trees {T`}N`=1

such that

P+|f(z)| h Λf(z) =
∑
K̂α∈T

〈f〉K̂α1K̂α

where T := ∪N`=1{K̂α : α ∈ T`} is a sparse collection of dyadic tents.

Then Theorem D and Theorem E follow from the respective estimates for Λ. In the

rest of the chapter we give a proof of these estimates for a sparse operator Λ associated

to a generic sparse collection S . We follow the proofs of [Li17, Theorem 5.2] and [Hyt14,
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Theorem 6.1].

Proposition 5.3.2. Let Λ be a sparse operator. For two weight w, σ and two Young

functions Φ,Ψ ∈ B2, it holds

‖Λ(σ ·)‖L2(σ)→L2(w) . [σ,w]Φ,Ψ.

We split the proof of Proposition 5.3.2 in a few simple steps, where we will use the

following lemmata and the notation 〈f〉σQ = σ(Q)−1
´
Q
fσ.

Lemma 5.3.3. Let S be a sparse family and σ be a weight. For 1 < p < ∞ and a

function f we have ( ∑
F∈S

(〈f〉σF )pσ(F )
)1/p

. ‖f‖Lp(σ)

where the implicit constant depends only on the sparse family and on the exponent p.

Proof. Assume that S is 1
2
-sparse with respect to the measure σ dx. Then for every

F ∈ S there is EF ⊆ F with σ(F ) ≤ 2σ(EF ), and the {EF : F ∈ S } are disjoint. Let

Mσ be the maximal function defined by

Mσf := sup
F∈S
〈|f |〉σF1F .

We bound

∑
F∈S

(〈f〉σF )pσ(F ) ≤ 2
∑
F∈S

(
inf
EF

Mσf
)p
σ(EF )

≤ 2
∑
F

ˆ
EF

|Mσf |pσ dx

≤ 2‖Mσ‖pLp(σ)→Lp(σ)‖f‖
p
Lp(σ).

Since the norm of the dyadic maximal function ‖Mσ‖Lp(σ)→Lp(σ) ≤ p′ and does not depend

on the weight σ, the result follows. The estimate for the maximal function is classical, a

proof in our case can be found in [HWW21, Lemma 3.13].
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Lemma 5.3.4. Let S be a 1
τ
-sparse family, τ ≥ 1. For 1 < p <∞ let Ψ ∈ Bp be a Young

function, so that the maximal function MΨ is bounded on Lp. Then for any G ∈ S the

following estimate holds ∑
Q∈S
Q⊆G

〈w1/p〉pΨ,Q|Q| . w(G)

where the implicit constant depends only on τ and ‖MΨ‖Lp→Lp.

Proof. By Theorem 1.5.7, since Ψ ∈ Bp the maximal function MΨ is bounded on Lp. For

Q ⊆ G, we have 〈w1/p〉Ψ,Q = 〈w1/p
1G〉Ψ,Q. Then |Q| ≤ τ |EQ| and

∑
Q∈S
Q⊆G

〈w1/p〉pΨ,Q|Q| ≤ τ
∑
Q∈S
Q⊆G

ˆ
EQ

MΨ(w1/p
1G)p

≤ τ

ˆ
G

MΨ(w1/p
1G)p

≤ τ‖MΨ‖pLp→Lp ‖w
1/p‖pLp(G).

We are ready to prove Proposition 5.3.2. By symmetry, it is enough to focus on one

of the two testing conditions in (5.2.1).

Reduction to dyadic form

By duality, the two-weight estimate

‖Λ(fσ)‖L2(w) ≤ C‖f‖L2(σ)

is equivalent the supremum over g ∈ L2(w) of |〈Λ(fσ), gw〉|. Then it is enough to show

that for non-negative functions f and g we have

|〈Λ(fσ), gw〉| =
∑
Q∈S

〈fσ〉Q〈gw〉Q|Q|

128



=
∑
Q∈S

〈f〉σQ〈g〉wQ〈σ〉Q〈w〉Q|Q| . [σ,w]Φ,Ψ‖f‖L2(σ)‖g‖L2(w).

Stopping families

We assume that both f, g are both non-negative and supported on the set Q0. We

will use a dyadic family of cubes inside Q0 and we select special cubes for the “parallel

corona” decomposition. We denote the principal cubes for (f, σ) and (g, w) by F and

G respectively. These are defined as the stopping family in §3.5.1 but for the weighted

averages of f and g:

A?
f (Q) = {S ∈ D, S ⊂ Q maximal : 〈f〉σS > 2〈f〉σQ},

A?
g(Q) = {S ∈ D, S ⊂ Q maximal : 〈g〉wS > 2〈g〉wQ}.

Then we define

F0 := {Q0}, Fn+1 :=
⋃

Q∈Fn

A?
f (Q), F :=

⋃
n∈N

Fn

and in a similar way for G . As shown in Chapter 3, the families F and G constructed

in this way are sparse. We denote by πF (Q) the minimal cube in F containing Q, and

similarly for πG (Q). Given a pair of cubes (F,G) ∈ F × G , we consider the collection of

cubes such that their projection to F and G are F and G respectively. Such collection is

{Q : π(Q) = (F,G)}, where π(Q) := (πF (Q), πG (Q)).

Using the stopping families we can write

∑
Q∈S

=
∑
F∈F

∑
G∈G

∑
Q∈S

π(Q)=(F,G)

.

Since either F ⊆ G or F ⊇ G, by symmetry it is enough to study only one case. We focus
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on the latter. We have

∑
F∈F

∑
G∈G
G⊆F

∑
Q∈S

π(Q)=(F,G)

〈f〉σQ〈g〉wQ〈σ〉Q〈w〉Q|Q|

≤ 4
∑
F∈F

〈f〉σF
∑
G∈G
G⊆F

〈g〉wG
∑
Q∈S

π(Q)=(F,G)

〈σ〉Q〈w〉Q|Q|. (5.3.1)

Introduce Orlicz bumps

We focus on the last summand in (5.3.1). We see that

〈σ〉Q〈w〉Q =

(
〈σ〉Q〈w〉Q

〈σ1/2〉Φ,Q〈w1/2〉Ψ,Q

)
〈σ1/2〉Φ,Q〈w1/2〉Ψ,Q.

The supremum over all cubes Q ∈ D of the quantity in brackets is [σ,w]Φ,Ψ. Then we

have ∑
Q∈S

π(Q)=(F,G)

〈σ〉Q〈w〉Q|Q| ≤ [σ,w]Φ,Ψ
∑
Q∈S

π(Q)=(F,G)

〈σ1/2〉Φ,Q〈w1/2〉Ψ,Q|Q|.

Using the Cauchy–Schwarz inequality and Lemma 5.3.4 we estimate

∑
Q∈S

π(Q)=(F,G)

〈σ1/2〉Φ,Q〈w1/2〉Ψ,Q|Q|

≤
( ∑

Q∈S
π(Q)=(F,G)

〈σ1/2〉2Φ,Q|Q|
)1/2( ∑

Q∈S
π(Q)=(F,G)

〈w1/2〉2Ψ,Q|Q|
)1/2

.
( ∑

Q∈S
π(Q)=(F,G)

〈σ1/2〉2Φ,Q|Q|
)1/2

w(G)1/2.

Putting all together, and using the Cauchy–Schwarz inequality in `2 in the third and

and fifth inequality and Lemma 5.3.4 in the second and the fourth, we obtain

∑
F∈F

〈f〉σF
∑
G∈G
G⊆F

〈g〉wG
∑
Q∈S

π(Q)=(F,G)

〈σ〉Q〈w〉Q|Q|
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≤ [σ,w]Φ,Ψ
∑
F∈F

〈f〉σF
∑
G∈G
G⊆F

〈g〉wG
∑
Q∈S

π(Q)=(F,G)

〈σ1/2〉Φ,Q〈w1/2〉Ψ,Q|Q|

. [σ,w]Φ,Ψ
∑
F∈F

〈f〉σF
∑
G∈G
G⊆F

〈g〉wG
( ∑

Q∈S
π(Q)=(F,G)

〈σ1/2〉2Φ,Q|Q|
)1/2

w(G)1/2

≤ [σ,w]Φ,Ψ
∑
F∈F

〈f〉σF
(∑
G∈G
G⊆F

(〈g〉wG)2w(G)
)1/2(∑

G∈G
G⊆F

∑
Q∈S

π(Q)=(F,G)

〈σ1/2〉2Φ,Q|Q|
)1/2

. [σ,w]Φ,Ψ
∑
F∈F

〈f〉σF
(∑
G∈G
G⊆F

(〈g〉wG)2w(G)
)1/2

σ(F )1/2

≤ [σ,w]Φ,Ψ

(∑
F∈F

(〈f〉σF )2σ(F )
)1/2(∑

F∈F

∑
G∈G
G⊆F

(〈g〉wG)2w(G)
)1/2

. [σ,w]Φ,Ψ‖f‖L2(σ)‖g‖L2(w)

where the last inequality follows from Lemma 5.3.3, concluding the proof.

5.4 Proof of Theorem E

In [APR17, §5] the authors obtained sharp one-weight estimates for the maximal Bergman

projection

P+f(z) :=

ˆ
Bd

f(ζ)

|1− zζ̄|d+1
dν(ζ)

in terms of the mixed B2–B∞ characteristics. These estimates follow from a sparse dom-

ination of P+ and are obtained via Sawyer’s testing conditions for the sparse operator

presented in §5.2.1. Combining the sparse domination in [RTW17] and the estimates for

sparse forms in [Li17], we derive B2–B∞ estimates for P+.

We consider the sparse operator

ΛTf :=
∑
K̂α∈T

〈f〉K̂α1K̂α .

The testing conditions for the boundedness of ‖ΛS (σ ·)‖Lp(σ)→Lp(w) for two weight w, σ
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are

‖1K̂0
ΛT(σ1K̂0

)‖2
L2(w) . [w, σ]B2 [σ]B∞σ(K̂0)

‖1K̂0
ΛT(w1K̂0

)‖2
L2(σ) . [σ,w]B2 [w]B∞w(K̂0).

By symmetry, it is enough to prove one of the two. We choose the first one.

Proposition 5.4.1. Let σ,w be two weights. Then for any dyadic tent K̂0 ∈ T, we have

‖1K̂0
ΛTσ‖2

L2(w) . [w, σ]B2 [σ]B∞σ(K̂0).

We refer the reader to [HL12, Prop. 5.2] for a version of this result for dyadic shifts.

Since we deal with sparse operators, the proof we present here is simpler. It follows the

approach in Hytönen’s work [Hyt14, §5.A] and in [APR17, §5].

Proof of Proposition 5.4.1. For simplicity, we denote by L0 ∈ T a fixed dyadic tent,

instead of K̂0. Recall that, since T is sparse, there is a fixed τ ≥ 1 such that for every

L ∈ T there exists a subset EL ⊆ L with the property that |L| ≤ τ |EL| and the sets in

{EL : L ∈ T} are pairwise disjoint.

Then we have

‖ΛTσ1L0‖2
L2(w) =

ˆ
L0

(∑
L∈T

〈σ〉L1L
)2

w

≤ 2

ˆ
L0

∑
L∈T
L⊆L0

〈σ〉L
∑
L′∈T
L′⊆L

〈σ〉L′1L′ w

= 2
∑
L∈T
L⊆L0

〈σ〉L
∑
L′∈T
L′⊆L

〈σ〉L′〈w〉L′|L′|

≤ 2 sup
L′∈T
〈σ〉L′〈w〉L′

∑
L∈T
L⊆L0

〈σ〉L
∑
L′∈T
L′⊆L

|L′|

≤ 2τ sup
L′∈T
〈σ〉L′〈w〉L′

∑
L∈T
L⊆L0

〈σ〉L|L|
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. [σ,w]B2

∑
L∈T
L⊆L0

〈σ〉L|L|.

The remaining sum is controlled by using the maximal function and the sparseness prop-

erty. We have

[σ,w]B2

∑
L∈T
L⊆L0

〈σ〉L|L| ≤ [σ,w]B2

∑
L∈T
L⊆L0

inf
L
M(σ1L0)|L|

≤ τ [σ,w]B2

∑
L∈T
L⊆L0

ˆ
EL

M(σ1L0)

≤ τ [σ,w]B2

1

σ(L0)

ˆ
L0

M(σ1L0)σ(L0)

≤ τ [σ,w]B2

(
sup
L0∈T

1

σ(L0)

ˆ
L0

M(σ1L0)
)
σ(L0)

. [σ,w]B2 [σ]B∞σ(L0).

This concludes the proof of the proposition.

The proof of Theorem E follows by combining the sparse domination in Lemma 5.3.1

with the bound for sparse operator in Proposition 5.4.1. This gives the bound

‖P (σ ·)‖L2(σ)→L2(ω) ≤ C [ω, σ]
1/2
B2

(
[σ]

1/2
B∞

+ [ω]
1/2
B∞

)
.

We conclude by comparing the volume of a Carleson tents Tz with the volume of a

dyadic tents K̂α. This is the content of the following two lemmas, see [RTW17, Lemma

3] and [HW20, Lemma 2.4].

Lemma 5.4.2 (Rahm, Tchoundja, and Wick, 2017). There exists a finite collection of

Bergman trees {T`}N`=1 such that for any tent Tz there is ` ∈ {1, . . . , N} and α in T` such

that K̂α ⊇ Tz and |Tz| h |K̂α|.
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Note that since a finite union of sparse families is sparse, if we denote by

T :=
N⋃
`=1

T̀ where T̀ := {K̂α : α ∈ T`} ,

then T is a sparse collection of sets in the unit ball Bd.

Lemma 5.4.3 (Huo and Wick 2020). For any dyadic tent K̂β ∈ T there exists a Carleson

tent Tz such that K̂β ⊆ Tz and |K̂β| h |Tz|.

Then it holds that [w, σ]B2 h [w, σ]B2 for B∞ weights. The proof of Theorem E is

concluded.
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APPENDIX A

FOURIER INVARIANCE

This is also written in Wilson’s book.

F. D’E.

The Strichartz norm introduced in Chapter 2 is invariant under the action of the

Fourier transform. We use the following definitions:

f̂(ξ) =

ˆ
Rd
e−ix·ξ f(x)dx, qf(y) =

1

(2π)d

ˆ
Rd
eiy·ξ f(ξ)dξ.

With the definitions above, the Fourier transform is an isometry between L2(Rd) and

L2(Rd, (2π)−d/2 dξ).

Proposition A.0.1 (Plancherel). Let f : Rd → C be a function in L1 ∩ L2, then

‖ qf‖2 = (2π)−
d
2‖f‖2.

We recall the Strichartz estimates for the solution u(t, x) = e−it∆f(x) of the free

Schrödinger equation i∂tu = 4u with initial datum f . The following estimate holds

‖‖e−it∆f‖Lpx(Rd)‖Lqt (R) ≤ C‖f‖L2
x(Rd), (A.0.1)
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for all admissible (d, p, q) satisfying

2

q
+
d

p
=
d

2
, q ≥ 2, (d, p, q) 6= (2,∞, 2).

The left hand side of (A.0.1) is Fourier invariant, namely, if one calls

‖f‖(d,p,q) := ‖‖e−it∆f‖Lpx(Rd)‖Lqt (R)

then we have the following

Proposition A.0.2. For all admissible (d, p, q) and every Schwartz function f it holds

that

‖ qf‖(d,p,q) = (2π)−
d
2‖f‖(d,p,q).

Proof. One can write the solution of the Schrödinger equation as a convolution

e−it∆f(x) = f ∗ e−i
| · |2
4t

(
√

4πt)d
(x) =

1

(
√

4πt)d

ˆ
Rd
f(y)e−i

|x−y|2
4t dy.

Then we expand the square

|x− y|2

4t
=
|x|2

4t
+

1

4t
(|y|2 − 2x · y).

Since |e− i
4t
|x|2| = 1, by changing variables t = 1

s
and z = sx, one is left with

‖e−it∆f‖q
LqtL

p
x

=

(
1

4π

) d
2
q ˆ

R

(ˆ
Rd

∣∣∣∣ˆ
Rd
f(y)e−i

s
4
|y|2ei

z
2
·ydy

∣∣∣∣p dz)
q
p

sq
d
2
−2ds.

Write v = z
2
and r = s

4
. Introducing a factor (2π)±dq we obtain

(
1

4π

) d
2
q ˆ

R

(ˆ
Rd

∣∣∣∣ˆ
Rd
f(y)e−ir|y|

2

eiv·y
dy

(2π)d

∣∣∣∣p 2ddv

) q
p

4(rq
d
2
−2−d q

p )dr

= (2π)
d
2
q‖e−it∆ qf‖q

LqtL
p
x
.
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The exponent in the Jacobian factor vanishes because of the scaling condition. Thus we

have

‖‖e−it∆ qf‖Lpx(Rd)‖Lqt (R) = (2π)−
d
2‖‖e−it∆f‖Lpx(Rd)‖Lqt (R).

137



APPENDIX B

CONDITIONAL EXPECTATION AND HAAR
PROJECTIONS

In this appendix we recall some known bounds for the Haar projection. These involve

conditional expectation and martingales related to the Haar system, see also [Gra14, §6.4].

Let S be the stopping family defined in §3.5.1. Given S ∈ S , let A?(S) be the

maximal stopping cubes inside S. Let GS be the σ-algebra generated by A?(S). A

function is measurable with respect the σ-algebra GS if and only if it is constant on any

cube in A?(S).

B.0.1 Conditional expectation

Denote by E[ · |GS] the projection on the space of measurable functions with respect to

the σ-algebra GS.

E[f |GS](x) =


f(x) if x ∈ S \A(S)

〈f〉S′ if x ∈ S ′ for some S ′ ∈ A?(S).

For more details about this operator, we refer the reader to [HvVW16, §2.6]. Let S

be a stopping family for f . The supremum of E[f |GS] in S is either f(x) (if A(S) is

empty), or 〈f〉S′ for some S ′ ∈ A?(S). In both cases ‖E[f1S|GS]‖L∞(S) .d 〈f〉S, since

〈f〉S′ ≤ 2dA〈f〉S by the stopping conditions.
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B.0.2 Haar projection

Given S ∈ S , let Tree(S) = {Q ∈ D : Q̂ = S} be the collection of cubes Q such that S

is the minimal stopping cube containing Q.

The Haar projection on S is given by

PSf :=
∑

I∈Tree(S)

∆If =
∑

I∈Tree(S)

∑
ε∈{0,1}d\{0}d

〈f, hεI〉hεI

where {hεI}ε are the Haar functions on I. Being a sum of Haar functions on cubes in

Tree(S), the Haar projection PSf is constant on any S ′ ∈ A?(S), so it is measurable on

GS. It also holds that PSf = PSE[f1S|GS].

The Haar projection PSf can be seen as a martingale transform, and so it satisfies the

following

Lemma B.0.1 (Lp bound for martingale transform [Bur84]). For 1 < p <∞ we have

‖PSE[f1S|GS]‖p ≤ Cp‖E[f1S|GS]‖p. (B.0.1)

Combining (B.0.1) with the estimate for the supremum of E[f1S|GS] one obtains that

‖PSf‖p .p 〈f〉S.

B.0.3 Richer σ-algebras and r-Haar projections

The same idea works with slight modifications when S is the minimal stopping cube

containing the r-ancestor of Q. Let Treer(S) be the collection of cubes Q such that

Q̂(r) = S. Define the r-Haar projection on S as

PrSf =
∑

Q∈Treer(S)

∆Qf.

Remark B.0.2. The projection PrSf is not measurable on GS in general, but it is measurable
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with respect to the richer σ-algebra generated by the r-grandchildren of S ′ ∈ A?(S), which

is

G r
S := σ

(
{(S ′)r ∈ chr(S

′), S ′ ∈ A?(S)}
)
.

Then PrSf = PrSE[f1S|G r
S ] and we have the following

Lemma B.0.3. Given a function f , let S be a stopping cube in Sf as defined in §3.5.1.

Then

‖E[f1S|G r
S ]‖L∞(S) .d,r 〈f〉S.

Proof. Either |f(x)| ≤ A〈f〉S for all x ∈ S, or there exists S ′ ∈ A?(S) with x0 ∈ (S ′)r

and E[f1S|G r
S ](x0) = 〈f〉(S′)r . Let P be the dyadic parent of (S ′)r. Then P ∈ Treer(S)

and we have

〈f〉(S′)r ≤ 2d〈f〉P ≤ 2d2dr〈f〉P r ≤ 2d(r+1)A〈f〉S

where we used the stopping condition in the last inequality.

B.0.4 Haar projection on maximal cubes

For S ∈ S , the r-grandchildren chr(S) are the maximal cubes in Treer(S). Then the

restriction of Haar projection PrS on a Sr ∈ chr(S) is

PSrf :=
∑

Q∈Treer(S)
Q⊆Sr

∆Qf and satisfies 〈|PSrf |〉Sr . 〈|f |〉S. (3.6.1)

Proof of (3.6.1). The Haar projector PSrf is measurable with respect to the σ-algebra

G r
S , then

ˆ
Sr

|PSrf | =
ˆ
Sr

|PSrE[f1Sr |G r
S ]| ≤ ‖1Sr‖Lp′‖PSrE[f1Sr |G r

S ]‖Lp(Sr)

by (B.0.1) .p ‖1Sr‖Lp′‖E[f1Sr |G r
S ]‖Lp(Sr)

≤ |Sr|
1
p′ |Sr|

1
p‖E[f1Sr |G r

S ]‖∞

by Lemma B.0.3 . |Sr|〈f〉S.
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Divide by |Sr| both sides to conclude.

S

A?(S)

Sr

Figure B.1: An example of stopping tree Tree(S) and the maximal stopping cubes in
A?(S). Below, shifted by r generations, there is the stopping tree Treer(S). The cubes Q
in Treer(S) contained in a specific r-grandchild Sr are highlighted.
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APPENDIX C

SAWYER’S DUALITY TRICK

The symmetric formulation of two weight inequalities recalled in the introduction of

[TV16] is attributed to [Fef83] and [Koo80]. It goes as follow.

Proposition C.0.1. Let u, v be two weights. Then the two weight inequality for an

operator

T : Lp(v)→ Lq(u)

is equivalent to

T (σ ·) : Lp(σ)→ Lq(u), (C.0.1)

where σ := v−p
′/p = v1−p′.

This formulation is useful since it reduces the number of different measures involved.

Indeed, in (C.0.1) there are only two measures (u dx and σ dx), instead of three: u dx,

v dx, and the Lebesgue measure in the operator T . Moreover, it reduces the assumptions

on the weights for the dual inequality.

The dual expression of T : Lp(v) → Lq(u) is T ? : Lq
′
(u1−q′) → Lp

′
(v1−p′). To make

sense of the latter, v has to take the values 0 and ∞ only on sets of measure zero.

Instead, the dual inequality of T (σ ·) : Lp(σ) → Lq(u) is T ?(·u) : Lq
′
(u) → Lp

′
(σ) and

does not require to have non-negative measures, see [Cru14, §5, page 23].
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Proof of Proposition C.0.1. Plugging the weight inside | · |p gives

(ˆ
u(x)|T (fv1/pv−1/p)(x)|q dx

)1/q

≤ C
(ˆ
|fv1/p|p dx

)1/p

. (C.0.2)

Let σ := v−p
′/p, so that σ1/p′ = v−1/p. Also let g = fv1/p, then (C.0.2) is equivalent to

‖T (gσ1/p′)‖Lq(u) ≤ C‖g‖Lp , ∀g ∈ Lp.

Write g = hσ1/p so that h ∈ Lp(σ) if and only if g ∈ Lp. We obtain

‖T (hσ1/pσ1/p′)‖Lq(u) ≤ C‖h‖Lp(σ) , ∀h ∈ Lp(σ)

which is what we wanted, since 1
p

+ 1
p′

= 1.

En passant, note that the two weight estimate (C.0.2), as the two formulations in

Proposition C.0.1, is equivalent to the unweighted estimate

u1/q T (· σ1/p′) : Lp → Lq.

In [Saw82], Sawyer observed that the inequality

‖T (fv1−p′)‖Lq(w) ≤ C‖f‖Lp(v1−p′ )

is equivalent to the dual inequality

‖T ∗(gw)‖Lp′ (v1−p′ ) ≤ C‖g‖Lq′ (w) , ∀g ∈ Lq′(w).
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