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ABSTRACT

In the first part of this thesis we will consider degree sequence results for graphs. An

important result of Komlós [39] yields the asymptotically exact minimum degree threshold

that ensures a graph G contains an H-tiling covering an x-proportion of the vertices of G (for

any fixed x ∈ (0, 1) and graph H). In Chapter 2, we give a degree sequence strengthening

of this result. A fundamental result of Kühn and Osthus [46] determines up to an additive

constant the minimum degree threshold that forces a graph to contain a perfect H-tiling. In

Chapter 3, we prove a degree sequence version of this result.

We close this thesis in the study of asymmetric Ramsey properties inGn,p. Specifically,

for fixed graphs H1, . . . , Hr, we study the asymptotic threshold function for the property

Gn,p → (H1, . . . , Hr). Rödl and Ruciński [61, 62, 63] determined the threshold function for

the general symmetric case; that is, when H1 = · · · = Hr. Kohayakawa and Kreuter [33]

conjectured the threshold function for the asymmetric case. Building on work of Marciniszyn,

Skokan, Spöhel and Steger [51], in Chapter 4, we reduce the 0-statement of Kohayakawa and

Kreuter’s conjecture to a more approachable, deterministic conjecture. To demonstrate the

potential of this approach, we show our conjecture holds for almost all pairs of regular graphs.
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Chapter One

Introduction

1.1 Matchings and tilings

A fundamental problem in extremal graph theory is to ascertain whether a given graph

contains some desired substructure. One may ask which conditions on a given graph G

necessitate it containing another graph H. For instance, for r ∈ N, Turán [70] determined

the number of edges in G required to guarantee Kr as a subgraph, with the equivalent result

for general graphs H being supplied later by Erdős and Stone [16]. Often though, one is

interested in finding a spanning substructure of a graph since this gives us information about

the global structure of the graph. One such structure is a perfect matching : a set of vertex-

disjoint edges that cover every vertex of the graph. (More generally, a matching is a set of

vertex-disjoint edges in a graph, not necessarily covering every vertex.)

Edmonds [12] showed that the decision problem of whether a graph contains a perfect

matching is solvable in polynomial time and, according with this, Tutte [71] characterised

those graphs that contain a perfect matching. Given a general graph H, an H-tiling in a

graph G is a collection of vertex-disjoint copies of H in G. We can generalise the problem

of finding a perfect matching in a graph G to finding a perfect H-tiling in G; namely, an
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H-tiling in G covering every vertex of G.1

G

K3 K3

Figure 1.1: A perfect K3-tiling.

In contrast to Edmonds’ [12] result, Hell and Kirkpatrick [26] showed that the decision

problem of whether a graph contains a perfect H-tiling is NP-complete precisely when H

has a component on at least 3 vertices, that is, when H is not a matching or the union of a

matching with isolated vertices. Hence, for such H it is useful to find sufficient conditions

that guarantee a graph G contains a perfect H-tiling. One could ask for results in the mode

of Erdős and Stone, where we desire to know the number of edges that guarantee a perfect

H-tiling. However, this immediately becomes not so interesting if we consider the following

example: Let G be the graph on n vertices made up of a clique on n − 1 vertices and an

isolated vertex (so G is very dense) and let H be a graph such that |H| divides n and H

has no isolated vertices. Then G does not contain a perfect H-tiling. A more illuminating

approach is to consider minimum degree conditions that guarantee perfect H-tilings.

1.1.1 Corrádi and Hajnal’s theorem: Cycle-tilings

Since any perfect H-tiling of G requires that |H| divides |G|, we assume in every perfect

tiling result from now on that |H| divides |G|.2

1Perfect H-tilings are also referred to as perfect H-packings, H-factors and perfect H-matchings.
2In later sections in this chapter we assume a similar criteria.

2
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When H = K3, Corrádi and Hajnal [8] proved the following.

Theorem 1.1.1 (Corrádi and Hajnal [8]). If G is a graph on n ≥ 3 vertices and δ(G) ≥ 2n/3

then G has a perfect K3-tiling.

In fact, they proved a more general result that for all 1 ≤ k ≤ n/3, if δ(G) ≥ 2k

then G contains k vertex-disjoint cycles. This result was generalised by Enomoto [13] and

Wang [72]:

Theorem 1.1.2 (Enomoto [13], Wang [72]). Let G be a graph and

σ2(G) := min{dG(x) + dG(y) | x, y ∈ V (G), xy /∈ E(G)}.

If |G| = n ≥ 3k and σ2(G) ≥ 4k − 1, then G contains k vertex-disjoint cycles.

Theorem 1.1.2 is called an Ore-type3 version of Theorem 1.1.1. Other versions of

Theorem 1.1.1 have been proven, including a density version due to Justesen [32, Theorem 4]

for k ≥ 2 and a graph G on n ≥ 3k vertices, and a more specific asymptotic density version

due to Allen, Böttcher, Hladký and Piguet [1] who consider the number of edges in G that

guarantee k + 1 disjoint triangles. By ‘density version’ here, we are referring to how the

central condition in these theorems relates to e(G).

1.1.2 Hajnal and Szemerédi’s theorem: Perfect clique-tilings

The k = n/3 case of Theorem 1.1.1 is a specific case of the celebrated theorem of Hajnal

and Szemerédi [24]:
3Here we are referring to Ore’s theorem [57] concerning Hamilton cycles.
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Theorem 1.1.3 (Hajnal and Szemerédi [24]). Let r ∈ N. If G is a graph on n vertices with

δ(G) ≥
(

1− 1

r

)
n,

then G contains a perfect Kr-tiling.

Theorem 1.1.3 is best possible as there exist graphs with δ(G) ≥ (1− 1/r)n− 1 that

do not contain a perfect Kr-tiling (for example, the complete r-partite graph with one vertex

class of size n/r − 1, one vertex class of size n/r + 1 and (r − 2) vertex classes of size n/r).

Let G be a graph and r ∈ N. We say a graph G has an equitable r-colouring if there exists a

(proper) r-colouring of V (G) with colour classes V1, V2, . . . , Vr such that ||Vi| − |Vj|| ≤ 1 for

all 1 ≤ i 6= j ≤ r. Theorem 1.1.3 was originally stated in terms of equitable colourings and

answered a conjecture of Erdős [14]:

Theorem 1.1.4 (Hajnal and Szemerédi [24]). Let G be a graph. If ∆(G) ≤ r − 1 then G

has an equitable r-colouring.

Let G be a graph and Ḡ be the complement graph of G (V (Ḡ) := V (G) and E(Ḡ) :=

{xy : xy /∈ E(G), x, y ∈ V (G)}). Let r divide n. One can see that Theorem 1.1.3 applied toG

with r and Theorem 1.1.4 applied to Ḡ with n/r are equivalent: observe that δ(G) ≥ n−n/r

if and only if ∆(Ḡ) ≤ n/r−1. If ∆(Ḡ) ≤ n/r−1 then by Theorem 1.1.4 we have an equitable

n/r-colouring in Ḡ. Since r divides n we must have that the colour classes of this equitable

n/r-colouring in Ḡ are equal in size, which immediately gives us a perfect Kr-tiling in G

(each colour class yields a copy of Kr in G). On the other hand, if δ(G) ≥ n − n/r then

by Theorem 1.1.3 we have a perfect Kr-tiling in G which immediately gives us an equitable

n/r-colouring in Ḡ.

As with Theorem 1.1.1, certain versions and generalisations of the Theorem 1.1.3 have

been proven. Kierstead and Kostochka [34] proved an Ore-type version and also provided
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a shorter proof of Theorem 1.1.3 (see [33]). In a slightly different vein, given n, r,D ∈ N,

Balogh, Kostochka and Treglown [4] were able to determine the minimum edge density that

ensures a graph G on n vertices with δ(G) ≥ D contains a perfect Kr-tiling. Further, a

discrepancy version of Theorem 1.1.3 has recently been proven by Balogh, Csaba, Pluhár

and Treglown [3], as well as a deficiency version by Freschi, Treglown and the author [19]

which generalises earlier work of Nenadov, Sudakov and Wagner [55].

1.1.3 Alon and Yuster’s theorem and Komlós’ theorem: H-tilings

After considering cycle and clique tilings, a natural problem to consider is which minimum

degree conditions guarantee H-tilings for any graph H. An important milestone in this

study was the following theorem of Alon and Yuster [2].

Theorem 1.1.5 (Alon and Yuster [2]). Let η > 0 and H be a graph. Then there exists

n0 := n0(η,H) ∈ N such that every graph G on n ≥ n0 vertices with δ(G) ≥ (1−1/χ(H)+η)n

contains a perfect H-tiling.

Komlós, Sárközy and Szemerédi [41] were able to improve on Theorem 1.1.5 by re-

placing ηn with a constant dependent only on the graph H.

Observe that χ(Kr) = r, so this result and Theorem 1.1.3 may suggest that the

parameter governing whether a graph G contains a perfect H-tiling is χ(H). However,

Komlós [39] showed that another parameter χcr(H) determines whether a graph G contains

an H-tiling covering all but at most an arbitrarily small linear number of vertices. Such an

H-tiling is informally known as an almost perfect H-tiling. We define

χcr(H) := (χ(H)− 1)
|H|

|H| − σ(H)
,

5
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where σ(H) denotes the size of the smallest possible colour class in any χ(H)-colouring of

H. Observe that χ(H) − 1 < χcr(H) ≤ χ(H) and χ(H) = χcr(H) if and only if in every

χ(H)-colouring of H every colour class has the same size (See Figure 1.2 for examples of

χcr(H) in comparison to χ(H) for several graphs).

Theorem 1.1.6 (Komlós [39]). Let η > 0 and H be a graph. Then there exists an n0 =

n0(η,H) ∈ N such that every graph G on n ≥ n0 vertices with

δ(G) ≥
(

1− 1

χcr(H)

)
n

contains an H-tiling covering all but at most ηn vertices.

Note that the minimum degree condition in Theorem 1.1.6 is best possible in the

sense that one cannot replace the (1− 1/χcr(H)) term with any smaller fixed constant and

still guarantee an almost perfect H-tiling. However, Shoukoufandeh and Zhao [65] were able

to strengthen Theorem 1.1.6 by improving the number of uncovered vertices to a constant

dependent only on H. For all x ∈ (0, 1), define

gH(x) := x

(
1− 1

χcr(H)

)
+ (1− x)

(
1− 1

χ(H)− 1

)
.

For x ∈ (0, 1), Komlós [39] gave the optimal minimum degree condition that ensures an

H-tiling covering at least an x-proportion of the vertices of G. The condition depends on

both χ(H) and χcr(H):

6
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Theorem 1.1.7 (Komlós [39]). Let H be a graph, η > 0 and x ∈ (0, 1). Then there exists

an n0 = n0(η, x,H) ∈ N such that every graph G on n ≥ n0 vertices with

δ(G) ≥ gH(x)n

contains an H-tiling covering at least (x− η)n vertices.

Theorem 1.1.7 implies Theorem 1.1.6. A consequence of the theorem of Erdős and

Stone mentioned earlier is that every n-vertex graph G with δ(G) ≥
(

1− 1
χ(H)−1

+ o(1)
)
n

contains a copy of H. So a way to interpret Theorem 1.1.7 is that, for very small x > 0, the

minimum degree threshold is governed essentially by the value of χ(H)− 1; however, as one

increases x, the value of χcr(H) plays an increasing role in the value of the threshold. Hladký,

Hu and Piguet [27] were able to prove both graphon and stability versions of Theorem 1.1.7.

Further, Ore-type generalisations of Theorems 1.1.5, 1.1.6 and 1.1.7 are given in [68].

1.1.4 Kühn and Osthus’s theorem: Perfect H-tilings

In the previous section we noted how χ(Kr) is the parameter in the minimum degree con-

dition governing whether G has a perfect Kr-tiling (Theorem 1.1.3), whereas χcr(H) is the

parameter in the minimum degree condition governing whether G has an almost perfect H-

tiling (Theorem 1.1.6). Hence, for a graph G on sufficiently many vertices and a graph H,

one may ask the question of whether χ(H) or χcr(H) (or something else) is the parameter

governing whether G has a perfect H-tiling. This question was fully settled by Kühn and

Osthus [44, 46]. To state Kühn and Osthus’ result we require several definitions. Let H be

a graph. We say that a proper colouring c of H is optimal if c uses precisely χ(H) colours.

Let CH be the set of all optimal colourings of H. Given an optimal colouring c ∈ CH , let

7
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xc,1 ≤ xc,2 ≤ · · · ≤ xc,χ(H) denote the sizes of the colour classes of c. Define

D(c) := {xc,j+1 − xc,j | j = 1, . . . , χ(H)− 1}

and take

D(H) :=
⋃
c∈CH

D(c).

Let hcfχ(H) be the highest common factor of all integers in D(H). In the case D(H) = {0},

we set hcfχ(H) :=∞. Note that D(H) = {0} if and only if χ(H) = χcr(H). Let hcfc(H) be

the highest common factor of all the orders of the components of H. If χ(H) 6= 2 we say that

hcf(H) = 1 if hcfχ(H) = 1. If χ(H) = 2 then we say that hcf(H) = 1 if both hcfc(H) = 1

and hcfχ(H) ≤ 2. We provide a few examples in the following table.

H χ(H) χcr(H) hcfχ(H) hcfc(H) hcf(H)
C2k+1 3 2 + 1/k 1 2k + 1 1
Kk k k ∞ k 6= 1

K1,2 ∪ C6 2 9/5 1 3 6= 1
K1,4 ∪ C6 2 11/7 3 1 6= 1
K1,2 ∪K1,4 2 4/3 2 1 1

Figure 1.2: Examples of χ(H), χcr(H), hcfχ(H), hcfc(H) and hcf(H) for various graphs

When hcf(H) = 1, Kühn and Osthus showed that χcr(H) is the parameter governing

the minimum degree condition that ensures a perfect H-tiling. When hcf(H) 6= 1, χ(H) is

the parameter. This is summarised in the following theorem.

Theorem 1.1.8 (Kühn and Osthus [44, 46]). Let H be a graph. Let

χ∗(H) :=


χcr(H) if hcf(H) = 1;

χ(H) otherwise.

Further, let δ(H,n) denote the smallest k such that every graph G on n vertices with |H|

dividing n and δ(G) ≥ k contains a perfect H-tiling. Then there exists a constant C = C(H)

8
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such that (
1− 1

χ∗(H)

)
n− 1 ≤ δ(H,n) ≤

(
1− 1

χ∗(H)

)
n+ C.

If hcf(H) = 1 or χ(H) ≥ 3 then the −1 on the left hand side can be removed.

Furthermore, there exist graphs H for which the constant C is necessary to ensure a perfect

H-tiling. We remark that just as Ore-type versions of the Theorems 1.1.3 and 1.1.7 have

been proven, an Ore-type version of the Theorem 1.1.8 was proven by Kühn, Osthus and

Treglown [48].

Summarising, the parameter governing whether a graph contains a perfect H-tiling is

χ∗(H) and the parameter governing the minimum degree condition that ensures an almost

perfect H-tiling is χcr(H).

1.1.5 Degree sequence conditions

Another way we can generalise minimum degree results is by instead considering degree

sequence conditions. We say a graph G on n vertices has degree sequence d1 ≤ d2 ≤ · · · ≤ dn

if there exists an ordering of the vertices v1, v2, . . . , vn of G such that d(vi) = di for all

1 ≤ i ≤ n. Pósa’s [59] and Chvátal’s [7] theorems are based on such degree sequence

conditions. Both generalise Dirac’s [11] theorem, which states that, for a graph G on n ≥ 3

vertices, if δ(G) ≥ n/2 then G contains a Hamilton cycle.

Erdős [15] was able to characterise those degree sequences which ensure the existence

of a copy of Kr. For perfect Kr-tilings, Balogh, Kostochka and Treglown [4] conjectured the

following degree sequence version of Theorem 1.1.3.

9
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Conjecture 1.1.9 (Balogh, Kostochka and Treglown [4]). Let n, r ∈ N such that r divides

n. Suppose that G is a graph on n vertices with degree sequence d1 ≤ · · · ≤ dn such that:

(α) di ≥ (r − 2)n/r + i for all i < n/r;

(β) dn/r+1 ≥ (r − 1)n/r.

Then G contains a perfect Kr-tiling.

Conjecture 1.1.9 is best possible in the sense that there are examples (see [4, Section 4])

showing that one cannot replace (α) with di ≥ (r − 2)n/r + i − 1 for a single i or (β)

with dn/r+1 ≥ (r − 1)n/r − 1. Treglown [69] proved the following asymptotic version of

Conjecture 1.1.9.

Theorem 1.1.10 (Treglown [69]). Let η > 0 and r ∈ N. Then there exists an integer

n0 = n0(η, r) such that the following holds: Suppose that G is a graph on n ≥ n0 vertices

with degree sequence d1 ≤ · · · ≤ dn such that:

di ≥ (r − 2)n/r + i+ ηn for all i < n/r.

Then G contains a perfect Kr-tiling.

Note that Treglown’s degree sequence allows for almost n/r vertices to have degree

below the Hajnal–Szemerédi threshold of (1− 1/r)n.

Moreover, Treglown [69] proved the following strong generalisation of Theorem 1.1.5.

Theorem 1.1.11 (Treglown [69]). Let η > 0 and H be a graph with χ(H) = r ≥ 2. Then

there exists an integer n0 = n0(η,H) such that the following holds: Suppose that G is a graph

10
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on n ≥ n0 vertices with degree sequence d1 ≤ · · · ≤ dn such that:

di ≥ (r − 2)n/r + i+ ηn for all i ≤ n/r.

Then G contains a perfect H-tiling.

One may ask whether the ηn term in the degree sequence in Theorem 1.1.11 can be

replaced by a constant depending only on H, just as in Komlós, Sárközy and Szemerédi’s [41]

improvement of Theorem 1.1.5. For many graphs however, if we replace the ηn term with a

o(
√
n) term for every i ∈ {1, . . . , n} then we cannot guarantee a perfect H-tiling. Note that

this does not rule out the possibility that one could replace the ηn term with a constant

C = C(η,H) for each i ≥ n/r − ηn + C and still ensure a perfect H-tiling. Such an

improvement of Theorem 1.1.11 would accord with Komlós, Sárközy and Szemerédi’s [41]

improvement of Theorem 1.1.5. We also note that Knox and Treglown [36] proved a degree

sequence result for embedding spanning bipartite graphs of small bandwidth4 and Staden

and Treglown [66] proved a degree sequence version of Pósa’s conjecture.

1.1.6 Our degree sequence results

Let x ∈ (0, 1) and H be a graph. In Chapter 2, we prove degree sequence versions of

Theorems 1.1.6 and 1.1.7 for almost perfect H-tilings and H-tilings covering at least an

x-proportion of the vertices in G. These results are similar in form to Theorem 1.1.3,

particularly in how our degree sequences allow for a significant proportion of the vertices in

G to have degree less than the corresponding Komlós thresholds. Also, in Chapter 3, we

use Theorem 1.1.6 to prove a degree sequence version of the following theorem of Kühn and

Osthus.
4In fact, they prove a much stronger result where the degree sequence condition is relaxed to a certain

robust expansion property.
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Theorem 1.1.12 (Kühn and Osthus [44]). Let η > 0 and H be a graph with hcfχ(H) = 1

and χ(H) ≥ 3. Then there exists an integer n0 = n0(η,H) such that the following holds: Let

G be a graph on n ≥ n0 vertices such that |H| divides n and

δ(G) ≥
(

1− 1

χcr(H)
+ η

)
n.

Then G contains a perfect H-tiling.

(One can see that Theorem 1.1.12 is a (weaker) error-term version of the hcfχ(H) = 1

case of Theorem 1.1.8.) In fact, we will prove a degree sequence version of Theorem 1.1.12

for all graphs H with hcf(H) = 1 and χ(H) ≥ 2.

1.2 Ramsey theory

In this thesis we will also consider a particular problem in Ramsey theory, one of the most

studied areas in modern combinatorics. Let r ∈ N and let G,H1, . . . , Hr be graphs. We

write G → (H1, . . . , Hr) to denote the property that whenever we colour the edges5 of

G with colours from the set [r] := {1, . . . , r} there exists i ∈ [r] and a copy of Hi in G

monochromatic in colour i. In this notation, the classical result of Ramsey [60] is as follows.

Theorem 1.2.1 (Ramsey [60]). Let H1, . . . , Hr be graphs and n be sufficiently large. Then

Kn → (H1, . . . , Hr).

One may posit that Theorem 1.2.1 is only true because Kn is very dense, but, building

on work of Folkman [17], Nešetřil and Rödl [56] proved that for any graph H there is a graph
5Here we will only be interested in colouring edges, not vertices, but there has been significant interest

in vertex Ramsey results (see e.g. [10, 43, 50]).
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G such that ω(H) = ω(G) and G→ (H1, . . . , Hr) when H1 = · · · = Hr = H.

1.2.1 Symmetric Ramsey properties: Rödl and Ruciński’s theorem

If we transfer our study of the Ramsey property to the random setting, we discover that

such graphs G are in fact very common. Let Gn,p be the binomial random graph with n

vertices and edge probability p. In this thesis, we will say that p = f(n) is a threshold for

the property Gn,p → (H1, . . . , Hr) if there exist positive constants b, B > 0 such that

lim
n→∞

P[Gn,p → (H1, . . . , Hr)] =


0 if p ≤ bf(n),

1 if p ≥ Bf(n).

The statement for p ≤ bf(n) is known as a 0-statement and the statement for p ≥ Bf(n)

is known as an 1-statement. For ease of reading, we will write out this definition in full in

later theorems. Improving on earlier work of Frankl and Rödl [18], Łuczak, Ruciński and

Voigt [50] proved that p = n−1/2 is a threshold for the property Gn,p → (K3, K3). Following

this, Rödl and Ruciński [61, 62, 63] determined a threshold for the general symmetric case.

For a graph H, we define

d2(H) :=


(eH − 1)/(vH − 2) if H is non-empty with v(H) ≥ 3,

1/2 if H ∼= K2,

0 otherwise

and the 2-density of H to be

m2(H) := max{d2(J) : J ⊆ H}.

13
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We say that a graph H is 2-balanced if d2(H) = m2(H), and strictly 2-balanced if for all

proper subgraphs J ⊂ H, we have d2(J) < m2(H).

Theorem 1.2.2 (Rödl and Ruciński [63]). Let r ≥ 2 and let H be a non-empty graph such

that at least one component of H is not a star. If r = 2, then in addition restrict H to having

no component which is a path on 3 edges. Then there exist positive constants b, B > 0 such

that

lim
n→∞

P[Gn,p → (H, . . . , H︸ ︷︷ ︸
r times

)] =


0 if p ≤ bn−1/m2(H),

1 if p ≥ Bn−1/m2(H).

The assumption on the structure of H in Theorem 1.2.2 is necessary. If every com-

ponent of H is a star then Gn,p → (H, . . . , H) as soon as sufficiently many vertices of degree

r(∆(H)−1)+1 appear inGn,p. A threshold for this property inGn,p is p = n−1−1/(r(∆(H)−1)+1),

but m2(H) = 1. For the case when r = 2 and at least one component of H is a path on 3

edges while the others are stars, the 0-statement of Theorem 1.2.2 becomes false. Indeed,

one can show that, if p = cn−1/m2(P3) = cn−1 for some c > 0, then the probability that Gn,p

contains a cycle of length 5 with an edge pending at every vertex is bounded from below by

a positive constant d = d(c). One can check that every colouring of the edges of this aug-

mented 5-cycle with 2 colours yields a monochromatic path of length 3. This special case was

missed in [63], and was eventually observed by Friedgut and Krivelevich [20], who corrected

the 0-statement to have the assumption p = o(n−1/m2(H)) instead. Note that Nenadov and

Steger [53] produced a short proof of Theorem 1.2.2 using the hypergraph container method.

The intuition behind the threshold in Theorem 1.2.2 is as follows: Firstly, assume H

is 2-balanced. The expected number of copies of a graph H in Gn,p is Θ(nv(H)pe(H)) and the

expected number of edges is Θ(n2p). For p = n−1/m2(H) (the threshold in Theorem 1.2.2),

these two expectations are of the same order since H is 2-balanced. That is to say, if the

expected number of copies of H at a fixed edge is smaller than some small constant c, then

14
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we can hope to colour without creating a monochromatic copy of H: very roughly speaking,

each copy will likely contain an edge not belonging to any other copy of H, so by colouring

these edges with one colour and all other edges with a different colour we avoid creating

monochromatic copies of H. If the expected number of copies of H at a fixed edge is larger

than some large constant C then a monochromatic copy of H may appear in any r-colouring

since the copies of H most likely overlap heavily.

1.2.2 Asymmetric Ramsey properties: The Kohayakawa-Kreuter

Conjecture

Here we are interested in asymmetric Ramsey properties of Gn,p, that is, finding a threshold

for the property Gn,p → (H1 . . . , Hr) when H1, . . . , Hr are not all the same graph. In classical

Ramsey theory, the study of asymmetric Ramsey properties sparked off many interesting

routes of research (see, e.g. [6]), including the seminal work of Kim [35] on establishing

an asymptotically sharp lower bound on the Ramsey number R(3, t). In Gn,p, asymmetric

Ramsey properties were first considered by Kohayakawa and Kreuter [33]. For graphs H1

and H2 with m2(H1) ≥ m2(H2), we define

d2(H1, H2) :=


e(H1)

v(H1)−2+ 1
m2(H2)

if H2 is non-empty and e(H1) ≥ 1,

0 otherwise

and the asymmetric 2-density of the pair (H1, H2) to be

m2(H1, H2) := max {d2(J,H2) : J ⊆ H1} .

15
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We say that H1 is balanced with respect to (w.r.t.) d2(·, H2) if we have d2(H1, H2) =

m2(H1, H2) and strictly balanced w.r.t. d2(·, H2) if for all proper subgraphs J ⊂ H1 we have

d2(J,H2) < m2(H1, H2). Note that m2(H1) ≥ m2(H1, H2) ≥ m2(H2) (see Proposition 4.3.1).

Kohayakawa and Kreuter [33] conjectured the following generalisation of Theo-

rem 1.2.2. (We give here a slight rephrasing of the conjecture: we consider r colours (instead

of 2) and add the assumption of Kohayakawa, Schacht and Spöhel [38] that H1 and H2 are

not forests.6)

Conjecture 1.2.3 (Kohayakawa and Kreuter [33]). Let r ≥ 2 and suppose that H1, . . . , Hr

are non-empty graphs such that m2(H1) ≥ · · · ≥ m2(Hr) and m2(H2) > 1. Then there exist

constants b, B > 0 such that

lim
n→∞

P[Gn,p → (H1, . . . , Hr)] =


0 if p ≤ bn−1/m2(H1,H2),

1 if p ≥ Bn−1/m2(H1,H2).

Observe that we would always need m2(H2) ≥ 1 as an assumption, otherwise

m2(H2) = 1/2 (that is, H2 is the union of a matching and some isolated vertices) and

we would have that m2(H1, H2) = eJ/vJ for some non-empty subgraph J ⊆ H1. For any

constant B > 0, the probability that Gn,p with p = Bn−1/m2(H1,H2) contains no copy of

H1 exceeds a positive constant C = C(B); see, e.g. [31]. We include the assumption of

Kohayakawa, Schacht and Spöhel [38] in this thesis, that m2(H2) > 1, to avoid possible

complications arising from H2 (and/or H1) being certain forests, such as those excluded in

the statement of Theorem 1.2.2.

The intuition behind the threshold in Conjecture 1.2.3 is most readily explained in

the case of r = 3, H2 = H3 and when m2(H1) > m2(H1, H2). (The following explanation is

adapted from [23].) Firstly, observe that we can assign colour 1 to every edge that does not
6This version of the conjecture is the same as that given in [52].
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lie in a copy of H1. Since m2(H1) > m2(H1, H2), we expect that the copies of H1 in Gn,p

with p = Θ(n−1/m2(H1,H2)) do not overlap much (by similar reasoning as in the intuition for

the threshold in Theorem 1.2.2). Hence the number of edges left to be coloured is of the

same order as the number of copies of H1, which is Θ(nv(H1)pe(H1)). If we further assume

that these edges are randomly distributed (which is not correct, but gives good intuition)

then we get a random graph G∗ with edge probability p∗ = Θ(nv(H1)−2pe(H1)). Now we colour

G∗ with colours 2 and 3, and apply the intuition from the symmetric case (as H2 = H3): if

the copies of H2 are heavily overlapping then we cannot hope to colour without getting a

monochromatic copy of H2, but if not then we should be able to colour. As observed before,

a threshold for this property is p∗ = n−1/m2(H2). Solving nv(H1)−2pe(H1) = n−1/m2(H2) for p

then yields p = n−1/m2(H1,H2), the conjectured threshold.

Actually, it turns out that if p < bn−1/m2(H1,H2) then we do not even need colour 3.

That is, we can colour G∗ with colours 1 and 2 and avoid monochromatic copies of H1 and

H2 in their respective colours. This is why the conjectured threshold only relies on the two

graphs with the largest 2-density.

After earlier work (see e.g. [23, 25, 33, 38, 51]), the 1-statement of Conjecture 1.2.3

was proven by Mousset, Nenadov and Samotij [52].

We are interested in the 0-statement of Conjecture 1.2.3, which has so far only been

proven when H1 and H2 are both cycles [33], both cliques [51] and, recently, when H1 is a

clique and H2 is a cycle [49]. (We also note that the authors of [23] prove, under certain

balancedness conditions, the 0-statement of a generalised version of Conjecture 1.2.3 which

allows H1, . . . , Hr to be uniform hypergraphs.) In Chapter 4, we prove a reduction of the

0-statement of Conjecture 1.2.3 to a particular deterministic subproblem and then solve this

subproblem for almost all pairs of regular graphs, thus resolving the 0-statement for these

graphs.

17



Introduction

1.3 Notation and Definitions

Let G be a graph. We define V (G) to be the vertex set of G and E(G) to be the edge

set of G. We will also denote (particularly in Chapter 4) the number of vertices of G by

v(G) = vG := |V (G)| and the number of edges of G by e(G) = eG := |E(G)|. Moreover, for

graphs H1 and H2 we let v1 := |V (H1)|, e1 := |E(H1)|, v2 := |V (H2)| and e2 := |E(H2)|.

Let X ⊆ V (G). Then G[X] is the graph induced by X on G and has vertex set X and

edge set E(G[X]) := {xy ∈ E(G) : x, y ∈ X}. We also define G \ X to be the graph with

vertex set V (G) \ X and edge set E(G \ X) := {xy ∈ E(G) : x, y ∈ V (G) \ X}. For each

x ∈ V (G), we define the neighbourhood of x in G to be NG(x) := {y ∈ V (G) : xy ∈ E(G)}

and define dG(x) := |NG(x)|. We drop the subscript G if it is clear from context which graph

we are considering. We write dG(x,X) for the number of edges in G that x sends to vertices

in X. Given a subgraph G′ ⊆ G, we will write dG(x,G′) := dG(x, V (G′)). Let A,B ⊆ V (G)

be disjoint. Then we define eG(A,B) := |{xy ∈ E(G) : x ∈ A, y ∈ B}|.

Let t ∈ N. We define the blow-up G(t) to be the graph constructed by first replacing

each vertex x ∈ V (G) by a set Vx of t vertices and then replacing each edge xy ∈ E(G) with

the edges of the complete bipartite graph with vertex sets Vx and Vy.

We write 0 < a � b � c < 1 to mean that we can choose the constants a, b, c from

right to left. More precisely, there exist non-decreasing functions f : (0, 1] → (0, 1] and

g : (0, 1] → (0, 1] such that for all a ≤ f(b) and b ≤ g(c) our calculations and arguments

in our proofs are correct. Larger hierarchies are defined similarly. Note that a � b implies

that we may assume e.g. a < b or a < b2.
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Chapter Two

A degree sequence Komlós theorem

This chapter is joint work with Hong Liu and Andrew Treglown, and is based on [29]. Our

main work here is proving the following degree sequence strengthening of Theorem 1.1.6.

Recall that, for a graph H, σ(H) denotes the size of the smallest possible colour class in any

χ(H)-colouring of H.

Theorem 2.0.1. Let η > 0 and H be a graph with χ(H) = r. Let σ := σ(H), h := |H| and

ω := (h− σ) /(r− 1). Then there exists an n0 = n0(η,H) ∈ N such that the following holds:

Suppose G is a graph on n ≥ n0 vertices with degree sequence d1 ≤ d2 ≤ · · · ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i for all 1 ≤ i ≤ ωn

h
.

Then G contains an H-tiling covering all but at most ηn vertices.

Note that if one considers an r-partition of H with smallest vertex class of size σ =

σ(H) and set i = ωn/h then we obtain that (1− (ω + σ)/h)n+σi/ω = 1−1/χcr(H). Thus,

Theorem 2.0.1 is a significant strengthening of Theorem 1.1.6. Indeed, Theorem 2.0.1 allows

for up to ωn/h vertices to have degree below that in Theorem 1.1.6. In particular, when H

is bipartite, the degree sequence condition in Theorem 2.0.1 starts at d1 ≥ 1 and allows for
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at least half of the vertices of H to have degree less than that required by Theorem 1.1.6.

Figure 2.1 gives a visualisation of the degree sequence in Theorem 2.0.1. Figure 2.2 presents

some key properties of the degree sequence in Theorem 2.0.1 for several graphs. Here, ‘angle

of slope’ refers to the value σ/ω.

d1 d2 dωn
h

(
1− ω+σ

h

)
n

(
1− ω

h

)
n

Degree

Figure 2.1: The degree sequence in Theorem 2.0.1.

Graph Bound on d1 Bound on dωn
h

Angle of slope
C5 2n/5 3n/5 1/2
K1,t 1 n/(t+ 1) 1/t
Kt (t− 2)n/t (t− 1)n/t 1
K2,4,6 5n/12 7n/12 2/5

Figure 2.2: Values of the start points, end points and angles of the slope in Theorem 2.0.1
for certain graphs.

The degree sequence in Theorem 2.0.1 is best possible in more than one sense for

many graphs H. For all graphs H, one cannot allow significantly more than ωn/h vertices

to have degree below the ‘Komlós threshold’, so in this sense the bound on the number of

‘small degree’ vertices in Theorem 2.0.1 is tight. Further, for many graphs H, we show that

the degree sequence cannot start at a lower value and the angle of the ‘slope’ in Figure 2.1

is best possible. This is discussed in more depth in Section 2.1.
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Theorem 2.0.1 deals with almost perfect tilings. A natural question now is whether

such a degree sequence strengthening also exists for tilings covering an x-proportion of ver-

tices, as in Theorem 1.1.7. Indeed, the following result is a straightforward consequence of

Theorem 2.0.1. Recall for a graph H and x ∈ (0, 1) that

gH(x) := x

(
1− 1

χcr(H)

)
+ (1− x)

(
1− 1

χ(H)− 1

)
.

Theorem 2.0.2. Let x ∈ (0, 1) and H be a graph with χ(H) = r. Set η > 0. Let σ := σ(H),

h := |H| and ω := (h− σ) /(r − 1). Then there exists an n0 = n0(η, x,H) ∈ N such

that the following holds: Suppose G is a graph on n ≥ n0 vertices with degree sequence

d1 ≤ d2 ≤ · · · ≤ dn such that

di ≥
(
gH(x)− xσ

h

)
n+

(r − 1)xσ

h− xσ
i for all 1 ≤ i ≤

(
h− xσ

(r − 1)h

)
n.

Then G contains an H-tiling covering at least (x− η)n vertices.

Theorem 2.0.2 is an improvement on Theorem 1.1.7. Indeed, Theorem 2.0.2 allows

for almost (h − xσ)n/(r − 1)h vertices to have degree below gH(x)n. Observe that as x

approaches 0, the degree sequence condition in Theorem 2.0.2 tends towards the condition

δ(G) ≥ (1− 1/(r − 1))n, and thus accords with the Erdős–Stone theorem.

Piguet and Saumell [58, Theorem 1.3] recently proved another generalisation of The-

orem 1.1.7. In their result they only require a certain fraction of the vertices to satisfy the

degree condition of Theorem 1.1.7, and all other vertices have no restriction on their degree

(so some could even be isolated vertices). Note though that our result allows for more vertices

to have small degree (i.e. smaller than the bound in Theorem 1.1.7), at a price of having

some restriction of the degrees of these vertices. In the case of almost perfect H-tilings,

Theorem 2.0.1 allows a large proportion of the vertices to have small degree, whilst in this
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d1 d2

(
1− ω+σ

h

)
n

(
1− ω

h

)
n

Degree

(gH(2/3)− 2σ/3h)n
(gH(1/3)− σ/3h)n

(1− 1/(r − 1))n
gH(1/3)n
gH(2/3)n

d
ω
n
h

d (
3h
−2
σ

3(
r−

1)
h
)n

d (
3h
−σ

3(
r−

1)
h
)n

Figure 2.3: The degree sequence in Theorem 2.0.2 for x = 2/3 (long dashed), x = 1/3
(medium dashed).

case [58, Theorem 1.3] corresponds precisely to Theorem 1.1.6.

As well as considering minimum degree and degree sequence conditions, it is also

natural to seek conditions on the density of a graph G that forces an H-tiling covering

a given fraction of the vertices of G. We remark though that only limited progress has

been made on this question (though Allen, Böttcher, Hladký and Piguet [1] did resolve this

problem in the case of K3-tilings).

Organisation The rest of Chapter 2 is organised as follows. In Section 2.1 we give extremal

examples for both Theorems 2.0.1 and 2.0.2. We then introduce an ‘error term’ version

(Theorem 2.2.1) of Theorem 2.0.1 in Section 2.2 and show that it implies Theorem 2.0.1.

Szemerédi’s Regularity lemma and several auxiliary results are presented in Section 2.3.

Then in Section 2.4 we provide the tools that we will need to prove Theorem 2.2.1. We

prove a result that iteratively constructs an almost perfect H-tiling and then use this result
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to prove Theorem 2.2.1 in Section 2.5. To conclude Section 2.5, we show that Theorem 2.0.1

implies Theorem 2.0.2.

2.1 Extremal Examples

In this section we present three extremal examples. We require the following definition. Set

r, σ, ω ∈ N and σ < ω. We define the r-partite bottle graph B with neck σ and width ω to be

the complete r-partite graph with one vertex class of size σ and (r− 1) vertex classes of size

ω. The first demonstrates that the ‘slope’ of the degree sequence in Theorem 2.0.1 is best

possible for bottle graphs. The second shows that for many graphs H, the degree sequence

in Theorem 2.0.1 ‘starts’ at the correct place. The third shows that, for any graph H, to

ensure an H-tiling covering at least (x− η)n vertices we cannot have significantly more than

(h− xσ)n/(r − 1)h vertices with degree below the ‘Komlós threshold’ of gH(x)n.

Extremal Example 1. Set η ∈ R. Let B be an r-partite bottle graph with neck σ and

width ω, where b := |B|. The following extremal example G on n vertices demonstrates that

Theorem 2.0.1 is best possible for such graphs B, in the sense that G satisfies the degree

sequence of Theorem 2.0.1 except for a small linear part that only just fails the degree

sequence, but does not contain a B-tiling covering all but at most ηn vertices.

Proposition 2.1.1. Set η ∈ R and n ∈ N such that 0 < 1/n � η � 1. Let B be an

(r-partite) bottle graph with neck σ and width ω, where b := |B|. Additionally assume that

b divides n. Then for any 1 ≤ k < ωn/b − 2ηn, there exists a graph G on n vertices whose

degree sequence d1 ≤ · · · ≤ dn satisfies

di ≥
(

1− ω + σ

b

)
n+

σ

ω
i for all i ∈ {1, . . . , k − 1, k + 2ηn+ 1, . . . , ωn/b},
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di =

(
1− ω + σ

b

)
n+

⌈σ
ω
k
⌉

for all k ≤ i ≤ k + 2ηn,

but such that G does not contain a B-tiling covering all but at most ηn vertices.

Proof. Let G be the graph on n vertices with r vertex classes V1, . . . , Vr where |V1| = σn/b

and |V2| = |V3| = · · · = |Vr| = ωn/b. Label the vertices of V1 as a1, a2, . . . , aσn/b. Similarly,

label the vertices of V2 as c1, c2, . . . , cωn/b. The edge set of G is constructed as follows.

Firstly, let G have the following edges:

• All edges with an endpoint in V1 and the other endpoint in V (G) \ V2, in particular

G[V1] is complete;

• All edges with an endpoint in Vi and the other endpoint in V (G)\(V1∪Vi) for 2 ≤ i ≤ r;

• Given any 1 ≤ i ≤ ωn/b and j ≤ dσi/ωe include all edges ciaj.

So at the moment G does satisfy the degree sequence in Theorem 2.0.1; we therefore

modify G slightly. For all k + 1 ≤ i ≤ k + 2ηn and dσk/ωe+ 1 ≤ j ≤ dσ(k + 2ηn)/ωe

delete each edge between ci and aj. One can easily check that G satisfies the degree sequence

in the statement of the proposition. In particular, the vertices of degree
(
1− ω+σ

b

)
n+ dσ

ω
ke

are ck, . . . , ck+2ηn.

Define A := {a1, . . . , adσk/ωe} and C := {c1, . . . , ck+2ηn}. Note that there are no edges

between C and V1 \ A in G.

Claim 2.1.2. Let T be a B-tiling of G. Then T does not cover at least 3ηn/2 vertices in C.

Consider any copy B′ of B in G that contains an element of C. As C is an independent

set in G, B′ contains at most ω elements from C. Since there are no edges between C and

V1 \A in G, B′ contains at least σ vertices in A. This implies that at most dσk/ωe(ω/σ) <

24



A degree sequence Komlós theorem

σn
b

ωn
b

ωn
b

ωn
b

V1

V2 V3 Vr

Figure 2.4: An example of a graph G in Proposition 2.1.1 where σ = 1, ω = 2.

k + ηn/2 vertices in C can be covered by T . Since |C| = k + 2ηn, we have that T does not

cover at least 3ηn/2 vertices in C. Therefore, Claim 2.1.2 holds. Hence G does not have a

B-tiling covering all but at most ηn vertices. �

Proposition 2.1.1 implies that for bottle graphs B, the degree sequence in Theo-

rem 2.0.1 cannot be lowered significantly in a small part of the degree sequence and still

ensure an almost perfect B-tiling; so the ‘slope’ of the degree sequence in Theorem 2.0.1

cannot be improved upon. It would be interesting to find other classes of graphs H for

which the slope in Theorem 2.0.1 is also best possible; we suspect though that there are

graphs H where the slope is not best possible.

Extremal Example 2. The next example shows that for many graphs H, Theorem 2.0.1

is best possible in the sense that we cannot start the degree sequence at a significantly lower

value.
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Proposition 2.1.3. Let H be an r-chromatic graph so that, for every x ∈ V (H), H[N(x)]

is (r − 1)-chromatic. Let h := |H|, σ := σ(H) and set ω := (h − σ)/(r − 1). Additionally

suppose σ < ω. Let 0 < 1/n� η � (ω− σ)/h where h divides n. Then there is an n-vertex

graph G with

(i) bηnc+ 1 vertices of degree (1− ω+σ
h

)n,

(ii) all other vertices have degree at least (1− 1/χcr(H))n = (1− ω/h)n,

and G does not have an H-tiling covering all but at most ηn vertices.

Proof. Let G be the complete r-partite graph on n vertices with vertex classes V1, . . . , Vr

where |V1| = σn/h + bηnc + 1, |V2| = ωn/h − bηnc − 1 and |V3| = · · · = |Vr| = ωn/h. Let

V ′ ⊆ V1 be of size bηnc+ 1. Delete from G all edges with one endpoint in V ′ and the other

in V2. By construction G satisfies (i) and (ii). Note that since the neighbourhood of any

x ∈ V ′ induces an (r − 2)-partite subgraph of G, no vertex in V ′ lies in a copy of H in G.

So G does not have an H-tiling covering all but at most ηn vertices. �

Extremal Example 3. Set η ∈ R and x ∈ (0, 1]. Let H be a graph with χ(H) = r. Let

h := |H|, σ := σ(H) and set ω := (h − σ)/(r − 1). Define gH(1) := 1 − ω/h. We give

an extremal example G on n vertices which satisfies the degree sequence of Theorem 2.0.2

except that (h−xσ)n/(r− 1)h+ ηn vertices have degree at most (gH(x)− η)n, but does not

contain an H-tiling covering at least (x− η)n vertices.

Proposition 2.1.4. Set η ∈ R and x ∈ (0, 1]. Let H be a graph with χ(H) = r. Let

h := |H|, σ := σ(H) and set ω := (h−σ)/(r− 1). Then there exists a graph G on n vertices

whose degree sequence d1 ≤ · · · ≤ dn satisfies

di = (gH(x)− η)n for all i ≤ h− xσ
(r − 1)h

n+ ηn,
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di ≥ gH(x)n for all i >
h− xσ

(r − 1)h
n+ ηn,

but such that G does not contain an H-tiling covering at least (x− η)n vertices.

Proof. Let G be the complete r-partite graph on n vertices with vertex classes V1, . . . , Vr

such that

• |V1| = xσn
h
− ηn,

• |V2| = (h−xσ)n
(r−1)h

+ ηn,

• |V3| = · · · = |Vr| = (h−xσ)n
(r−1)h

.

Consider any H-tiling T of G. Observe that T can contain at most xn/h − ηn/σ

copies of H. Indeed, to attain this bound one requires that all colour classes of size σ in

copies of H are placed into V1. Hence at most x(r − 1)ωn/h − (r − 1)ωηn/σ vertices are

covered by T in V2 ∪ · · · ∪ Vr. Thus at most (x− η)n− (r− 1)ωηn/σ vertices are covered by

T . Hence G does not contain an H-tiling covering at least (x− η)n vertices �

2.2 Deriving Theorem 2.0.1 from a weaker result

To prove Theorem 2.0.1 we will first prove the following ‘error term’ version.

Theorem 2.2.1. Let η > 0 and H be a graph with χ(H) = r. Let h := |H|, σ := σ(H) and

set ω := (h − σ)/(r − 1). Then there exists an n0 = n0(η,H) ∈ N such that the following

holds: Suppose G is a graph on n ≥ n0 vertices with degree sequence d1 ≤ d2 ≤ · · · ≤ dn

such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

h
.

Then G has an H-tiling covering all but at most ηn vertices.
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Theorem 2.2.1 implies Theorem 2.0.1. Indeed, a simple argument (as in [39]) allows

us to remove the error terms.

Proof of Theorem 2.0.1. Set 0 < τ � η, 1/h and let n ≥ n0. Suppose G is an n-vertex

graph as in the statement of Theorem 2.0.1. Let A be a set of τn vertices and define G∗ to be

the graph with vertex set V (G) ∪A and edge set E(G∗) := E(G) ∪ {xy : x ∈ V (G) ∪A, y ∈

A, x 6= y}. Then G∗ has degree sequence dG∗,1 ≤ dG∗,2 ≤ · · · ≤ dG∗, (1+τ)n where

dG∗,i ≥ dG,i + τn ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ τn =

(
1− ω + σ

h

)
(1 + τ)n+

σ

ω
i+

στ + ωτ

h
n

≥
(

1− ω + σ

h

)
(1 + τ)n+

σ

ω
i+

ωτ

2h
(1 + τ)n

for all 1 ≤ i ≤ ωn
h

and

dG∗,i ≥ dG, ωn/h + τn ≥
(

1− ω

h

)
n+ τn ≥

(
1− ω + σ

h

)
(1 + τ)n+

σ

ω
i+

ωτ

2h
(1 + τ)n

for all ωn
h
≤ i ≤ ω(1+τ)n

h
. Indeed, for i = ω(1+τ)n

h
, we have

(
1− ω + σ

h

)
(1 + τ)n+

σ

ω
i+

ωτ

2h
(1 + τ)n =

(
1− ω

h

)
n+ τn+

ωτ

2h
(1 + τ)n− ωτ

h
n

≤
(

1− ω

h

)
n+ τn.

Applying Theorem 2.2.1 (with ωτ
2h
), we have that G∗ has an H-tiling T covering all but at

most ωτ
2h

(1 + τ)n vertices.

Now, remove every copy of H from T that contains a vertex in A. Then we have

removed at most (h− 1)τn vertices from V (G) ⊂ V (G∗). Moreover, this implies that there

exists an H-tiling in G covering all but at most (h − 1)τn + ωτ
2h

(1 + τ)n vertices. Since

(h− 1)τn+ ωτ
2h

(1 + τ)n < ηn, Theorem 2.0.1 holds.
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Outline of the proof of Theorem 2.2.1. The aim of the rest of this chapter is to prove

Theorem 2.2.1; we now outline the proof of this result.

We first show that it suffices to prove Theorem 2.2.1 in the case when H = B, a

bottle graph with neck σ and width ω (where σ < ω). In particular, Theorem 2.2.1 is

already known in the case when H is a balanced r-partite graph [69].

We then employ a variant of an idea of Komlós [39]. Roughly speaking the idea is

as follows: Let B∗ be a suitably large blown-up copy of B. We apply the Regularity lemma

(Lemma 2.3.2) to obtain a reduced graph R of G. If R contains an almost perfect B∗-tiling

then one can rather straightforwardly conclude that G contains an almost perfect B-tiling,

as required (for this we apply Lemma 2.4.1). Otherwise, suppose that the largest B∗-tiling

in R covers precisely d ≤ (1 − o(1))|R| vertices. We then show that, for some t ∈ N, there

is a B∗-tiling in the blow-up R(t) of R covering substantially more than dt vertices. Thus,

crucially, the largest B∗-tiling in R(t) covers a higher proportion of vertices than the largest

B∗-tiling in R. By repeating this argument, we obtain a blow-up R′ of R that contains

an almost perfect B∗-tiling. We then show that this implies G contains an almost perfect

B-tiling, as desired.

Other applications of this general method have been used in the past [9, 22, 69]. Note

however, our approach has different challenges. Indeed, the process of moving from a B∗-

tiling B in R to a proportionally larger B∗-tiling in R(t) is rather subtle. In particular, what

we would like to do is conclude that one can find a tiling B0 (not necessarily of copies of

B∗) in R that covers a larger proportion of the vertices in R and when one takes a suitable

blow-up R(t) of R, then B0 corresponds to a B∗-tiling in R(t). However, the vertices in R

that are uncovered by B could perhaps all be ‘small degree’ vertices (i.e. they do not have

degree as large as that in Theorem 1.1.6). This is a barrier to finding such a special tiling

B0. (Intuitively, one can imagine that if one has large degree vertices outside of B then
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one can glue such vertices onto B in such a way to obtain our desired tiling B0.) In this

case, one has to (through perhaps many steps) modify B and then blow-up R to obtain an

intermediate blow-up R(t′) of R such that (i) there is a B∗-tiling B′ in R(t′) that covers the

same proportion of vertices compared to the tiling B in R and (ii) many of the vertices in

R(t′) uncovered by B′ are now such that they can be ‘glued’ onto B′ to obtain our desired

larger tiling B0.

Despite these technicalities the proof of Theorem 2.2.1 is perhaps surprisingly short.

The main work of the proof is encoded in Lemma 2.5.1, which ensures one can modify the

tiling B as above.

2.3 Szemerédi’s Regularity lemma and auxiliary results

A key tool in the proof of Theorem 2.2.1 is Szemerédi’s Regularity lemma [67]. To state this

lemma we will need the following notion of ε-regularity.

Definition 2.3.1. Let G be a bipartite graph with vertex classes A and B. We define the

density of G to be

dG(A,B) :=
eG(A,B)

|A||B|
.

Set ε > 0. We say that G is ε-regular if for all X ⊆ A and Y ⊆ B with |X| > ε|A| and

|Y | > ε|B| we have that |dG(X, Y )− dG(A,B)| < ε.
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Lemma 2.3.2 (Degree form of Szemerédi’s Regularity lemma [67]). Let ε ∈ (0, 1) and

M ′ ∈ N. Then there exist natural numbers M and n0 such that, for any graph G on n ≥ n0

vertices and any d ∈ (0, 1), there is a partition of the vertices of G into subsets V0, V1, . . . , Vk

and a spanning subgraph G′ of G such that the following hold:

• M ′ ≤ k ≤M ;

• |V0| ≤ εn;

• |V1| = · · · = |Vk| =: q;

• dG′(x) > dG(x)− (d+ ε)n for all x ∈ V (G);

• e(G′[Vi]) = 0 for all i ≥ 1;

• For all 1 ≤ i, j ≤ k with i 6= j, the pair (Vi, Vj)G′ is ε-regular and has density either 0

or at least d.

We call V1, . . . , Vk the clusters of our partition, V0 the exceptional set and G′ the pure

graph. We define the reduced graph R of G with parameters ε, d and M ′ to be the graph

whose vertex set is V1, . . . , Vk and in which ViVj is an edge if and only if (Vi, Vj)G′ is ε-regular

with density at least d. Note also that |R| = k.

The proof of the next result is analogous to that of [69, Lemma 5.2]. It states that

the degree sequence of G in Theorem 2.2.1 is ‘inherited’ by its reduced graph R.

Lemma 2.3.3. Set M ′, n0 ∈ N and ε, d, η, b, ω, σ to be positive constants such that 1/n0 �

1/M ′ � ε� d� η, 1/b and where ω+ σ ≤ b. Suppose G is a graph on n ≥ n0 vertices with

degree sequence d1 ≤ d2 ≤ · · · ≤ dn such that

di ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b
. (2.1)
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Let R be the reduced graph of G with parameters ε, d and M ′ and set k := |R|. Then R has

degree sequence dR,1 ≤ dR,2 ≤ · · · ≤ dR,k such that

dR,i ≥
b− ω − σ

b
k +

σ

ω
i+

ηk

2
for all 1 ≤ i ≤ ωk

b
. (2.2)

Proof. Let V1, . . . , Vk be the clusters of G and V0 the exceptional set, and let G′ be the

pure graph of G. Set q := |V1| = · · · = |Vk|. Clearly we may assume dR(V1) ≤ dR(V2) ≤

· · · ≤ dR(Vk). Now consider any i ≤ ωk
b
. Set S := ∪1≤j≤iVj. Then |S| = qi ≤ ωqk

b
≤ ωn

b
.

Thus by (2.1) there exists a vertex x ∈ S such that dG(x) ≥ dqi ≥ b−ω−σ
b

n +
(
σ
ω

)
qi + ηn.

Suppose that x ∈ Vj where 1 ≤ j ≤ i. Since we have that kq ≤ n, Lemma 2.3.2 implies that

dR(Vj) ≥
dG′(x)− |V0|

q
≥ 1

q

(
b− ω − σ

b
n+

(σ
ω

)
qi+ ηn− (d+ 2ε)n

)
≥ b− ω − σ

b
k +

σ

ω
i+

ηk

2
.

Since dR,i = dR(Vi) ≥ dR(Vj) we have that (2.2) holds. �

We will also apply the following well-known fact.

Fact 2.3.4. Let 0 < ε < α and ε′ := max{ε/α, 2ε}. Let (A,B) be an ε-regular pair of

density d. Suppose A′ ⊆ A and B′ ⊆ B where |A′| ≥ α|A| and |B′| ≥ α|B|. Then (A′, B′) is

an ε′-regular pair with density d′ where |d′ − d| < ε.

We will also need the following lemma, which we will use in a couple of proofs.

Lemma 2.3.5 (Key Lemma [42]). Suppose that 0 < ε < d, that q, t ∈ N and that R is a

graph where V (R) = {v1, . . . , vk}. We construct a graph G as follows: Replace every vertex

vi ∈ V (R) by a set Vi of q vertices and replace each edge of R by an ε-regular pair of density

at least d. For each vi ∈ V (R), let Ui denote the set of t vertices in R(t) corresponding to

vi. Let H be a subgraph of R(t) with maximum degree ∆, and set h := |H|. Set δ := d − ε
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and ε0 := δ∆/(2 + ∆). If ε ≤ ε0 and t− 1 ≤ ε0q then there are at least (ε0q)
h labelled copies

of H in G so that if x ∈ V (H) lies in Ui, then x is embedded into Vi in G.

2.4 Tools for proving Theorem 2.2.1

In this section we provide further tools that we will need to prove Theorem 2.2.1. We will

need the following notation.

The following lemma is a special case of [39, Lemma 11] (which in turn is easily

implied by the Key lemma above).

Lemma 2.4.1. Set 0 < β < 1/2 and let B be the bottle graph with neck σ and width ω. Set

d ∈ (0, 1). Then there exists an ε′ > 0 such that for all ε ≤ ε′ the following holds for all

q ∈ N: Let G be a graph constructed from B by replacing every vertex of B by q vertices and

replacing the edges of B with ε-regular pairs of density at least d. Then G has a B-tiling

covering all but at most a β-proportion of the vertices in G.

Given a bottle graph B, the next lemma ensures various blown-up copies of graphs

contain perfect B-tilings. Let v ∈ N. For brevity we will sometimes refer to a vertex class

of size v of G as a v-class of G.

Lemma 2.4.2. Set m ∈ N. Let B be an r-partite bottle graph with neck σ and width ω,

where b := |B| and σ < ω. Define B′ to be the r-partite bottle graph with neck σ and width

ω− 1 and let B∗ := B(m). Define t := (ω− σ)b. Then B(mt), B∗(mt), B′(mt) and Kr(mt)

all have perfect B∗-tilings.

Proof. Clearly B(mt) and B∗(mt) both have perfect B∗-tilings. It remains to show that

B′(mt) and Kr(mt) have perfect B∗-tilings.
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For Kr(mt), tile (ω − σ)r copies of B∗ into Kr(mt) such that their (σm)-classes are

distributed evenly amongst the r vertex classes of Kr(mt). Indeed, we can view this as tiling

(ω−σ) collections of r copies of B∗ into Kr(mt) such that, for each collection C, each vertex

class of Kr(mt) contains the (σm)-class of precisely one copy of B∗ in C.

For B′(mt), firstly tile (ω− 1−σ)b vertex-disjoint copies of B∗ into B′(mt) such that

each (σm)-class is placed into the (σmt)-class in B′(mt). So our current B∗-tiling covers

all but σmt − σm(ω − 1 − σ)b = σmb vertices in the (σmt)-class in B′(mt) and all but

(ω − 1)mt − ωm(ω − 1 − σ)b = σmb vertices in each (ωmt)-class in B′(mt). Then the

remaining vertices to be covered in B′(mt) form a Kr(σmb) which can be tiled with σr

copies of B∗. �

The next result states that the degree sequence of G in Theorem 2.2.1 is inherited by

any blown-up copy of G.

Proposition 2.4.3. Let n, s ∈ N and b, ω, σ > 0 such that ωn > b and ω+σ ≤ b. Set η > 0.

Suppose G is a graph on n vertices with degree sequence dG,1 ≤ dG,2 ≤ · · · ≤ dG,n such that

dG,i ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b
.

Then Ḡ := G(s) has degree sequence dḠ,1 ≤ dḠ,2 ≤ · · · ≤ dḠ,ns such that

dḠ,i ≥
b− ω − σ

b
ns+

σ

ω
i+
(
ηn− σ

ω

)
s for all 1 ≤ i ≤ ωns

b
.

Proof. For any 1 ≤ j ≤ ns we see that

dḠ,j = s · dG,dj/se.
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Suppose that j ≤ ωns
b
− s. Then dj/se ≤ ωn

b
and we have

dḠ,j ≥
b− ω − σ

b
ns+

σ

ω
dj/ses+ ηns ≥ b− ω − σ

b
ns+

σ

ω
j + ηns.

In particular, if we take any i ≤ ωns
b

we have

dḠ,i ≥
b− ω − σ

b
ns+

σ

ω
(i− s) + ηns =

b− ω − σ
b

ns+
σ

ω
i+
(
ηn− σ

ω

)
s.

�

The following result acts as a springboard from which to begin the proof of

Lemma 2.5.1.

Proposition 2.4.4. Set η > 0 and m ∈ N, and let B be an r-partite bottle graph with

neck σ and width ω, where b := |B|. Define B∗ := B(m). Then there exists n0 ∈ N such

that the following holds: Suppose G is a graph on n ≥ n0 vertices with degree sequence

d1 ≤ d2 ≤ · · · ≤ dn where

di ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b
.

Then there exists a copy of B∗ in G.

Proof. Set ∆ := ∆(B∗). Let n be sufficiently large and define constants ε, d > 0 and

M ′ ∈ N such that 0 < 1/n � 1/M ′ � ε � d � 1/b, η, 1/∆. Let G be an n-vertex graph

as in the statement of the proposition. Applying Lemma 2.3.2 with parameters ε, d and

M ′ to G, we obtain clusters V1, . . . , Vk, an exceptional set V0 and a pure graph G′. Set

q := |V1| = · · · = |Vk|. Let R be the reduced graph of G with parameters ε, d and M ′, where

k := |R|. By Lemma 2.3.3 we have that R has degree sequence dR,1 ≤ dR,2 ≤ · · · ≤ dR,k
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where

dR,i ≥
b− ω − σ

b
k +

σ

ω
i+

ηk

2
for all 1 ≤ i ≤ ωk

b
. (2.3)

By doing the following steps, we find a set {x1, . . . , xr} ⊆ V (R) such that {x1, . . . , xr}

induces a copy of Kr in R:

Step 1: Choose a vertex x1 ∈ V (R) such that

dR(x1) ≥ k − ω

b
k +

ηk

3
.

Such a vertex exists by (2.3).

Step i for each i ∈ {2, . . . , r − 1}: We have that {x1, x2, . . . , xi−1} induces a copy of Ki−1 in

R and

dR(x1), dR(x2), . . . , dR(xi−1) ≥ k − ω

b
k +

ηk

3
.

Let NR(x1, x2, . . . , xi−1) := NR(x1) ∩NR(x2) ∩ · · · ∩NR(xi−1). Then

|NR(x1, x2, . . . , xi−1)| ≥ k − (i− 1)ω

b
k +

(i− 1)ηk

3

≥ b− (r − 2)ω

b
k +

(i− 1)ηk

3
=
ω + σ

b
k +

(i− 1)ηk

3
.

Here the last equality follows as b = σ + (r − 1)ω. Hence by (2.3) there exists y ∈

NR(x1, x2, . . . , xi−1) such that dR(y) ≥ k − ω
b
k + ηk

3
. Let xi := y.

Step r: We have that {x1, x2, . . . , xr−1} induces a copy of Kr−1 in R. Moreover,

|NR(x1, x2, . . . , xr−1)| ≥ σ

b
k +

(r − 1)ηk

3
.

36



A degree sequence Komlós theorem

Choose xr to be any vertex in NR(x1, x2, . . . , xr−1).

Therefore there exists a copy of Kr in R, which implies that there exists a copy of B∗

in R(ωm). By Lemma 2.3.5 we have that there exists a copy of B∗ in G. �

A crucial tool in the proof of Theorem 2.2.1 is Lemma 2.5.1 below. Before stating

this lemma, we need two more definitions.

Definition 2.4.5. Set ` ∈ N. Let G be a graph on n vertices and B be a bottle graph

with neck σ and width ω. Suppose that there exists a B-tiling T of G and let {z1, . . . , z`} ⊆

V (G)\V (T ). We say that {z1, . . . , z`} is an expanding set of size ` for T in G if the following

is true: there exists an injection f : {z1, . . . , z`} → T such that zi has a neighbour in every

ω-vertex class of f(zi) for each 1 ≤ i ≤ `.

Definition 2.4.6. Set k, `,m ∈ N. Let G be a graph on n vertices and let (v1, v2, . . . , vn)

be an ordering of the vertices of G. Let B be a bottle graph with neck σm and width ωm.

Suppose that there exists a B-tiling T of G and let {z1, . . . , z`} ⊆ V (G) \ V (T ). Denote

by ΩT the set of all vertices in V (G) that belong to ωm-classes of copies of B in T . Let

z ∈ {z1, . . . , z`} and y ∈ ΩT , and denote by By the copy of B in T that contains y. Then

there exist 1 ≤ i, j ≤ n such that z := vi, y := vj and i 6= j. We say that (z, y) is a

k-swapping pair with respect to (v1, . . . , vn) if the following is true: z is adjacent to at least

σ vertices in the σm-class of By; z is adjacent to at least ω vertices in each ωm-class of By

that does not contain y; and j ≥ i + k. We say that {z1, . . . , z`} is a k-swapping set of size

` for T in G with respect to (v1, . . . , vn) if there exists a set of ` vertices {y1, . . . , y`} ⊆ ΩT

such that (zi, yi) is a k-swapping pair with respect to (v1, . . . , vn) for each 1 ≤ i ≤ ` and

Byp 6= Byq for all p 6= q.

Suppose B is a B-tiling in a reduced graph R. Very roughly speaking the purpose

of expanding sets is to extend B to a larger tiling whilst swapping sets allow us to ‘rotate’
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which vertices are uncovered by our tiling (which helps for future expansion of B to a larger

tiling).

2.5 Almost perfect H-tilings in graphs

Lemma 2.5.1. Let B be an r-partite bottle graph with neck σ and width ω, where b := |B|.

Set η, γ > 0 and n,m ∈ N such that 0 < 1/n� γ � 1/m� η � 1/b. Set B∗ := B(m). Let

G be a graph on n vertices with degree sequence d1 ≤ d2 ≤ · · · ≤ dn where

di ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b
.

Let V (G) = {v1, . . . , vn} be such that dG(vi) = di for all 1 ≤ i ≤ n. Suppose the largest

B∗-tiling in G covers precisely n′ ≤ (1− η)n vertices. Then for any B∗-tiling T covering n′

vertices in G there exists an expanding set of size γn for T in G or an ωγn
σ
-swapping set of

size γn for T in G with respect to (v1, . . . , vn).

Proof. By repeatedly applying Proposition 2.4.4, we see that n′ ≥ ηn/2. Define a bijection

I : V (G)→ [n] where I(x) = i implies that dG(x) = di. Let V (G) := {v1, . . . , vn} such that

I(vi) = i. Set n′′ := n − n′ and let G′′ := G \ V (T ). Let V (G′′) = {x1, . . . , xn′′} where

I(x1) < I(x2) < · · · < I(xn′′). For each 1 ≤ i ≤ n′′, set si := I(xi). Then dG(xi) = dsi .

Choose j to be the largest integer such that

dG(xj) ≤
b− ω
b

n+ (η − 2γ)n.

Notice that sj ≤ ωn/b. We will refer to x1, . . . , xj as small vertices and xj+1, . . . , xn′′ as big

vertices.
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Case 1: Suppose we have γn big vertices z1, . . . , zγn ∈ V (G′′) such that

dG(zi, G
′′) ≤ b− ω

b
n′′ +

ηn

4
for all 1 ≤ i ≤ γn. (2.4)

Then

dG(zi, T ) ≥ b− ω
b

n′ +
ηn

4
for all 1 ≤ i ≤ γn.

Set ω∗ := ωm. For each 1 ≤ i ≤ γn, we see that zi can be adjacent to at most a b−ω
b
-

proportion of the vertices in T without having a neighbour in each ω∗-class of some copy of

B∗ in T . Since γ � 1/m� η � 1/b, for each 1 ≤ i ≤ γn there are at least

(
b−ω
b
n′ + ηn

4

)
−
(
b−ω
b
n′
)

ω∗
=

ηn

4ω∗
≥ γn

copies of B∗ in T that have at least one neighbour of zi in each of their ω∗-classes. Thus we

can define an injection f : {z1, . . . , zγn} → T such that zi has a neighbour in each ω∗-class

of f(zi) for each 1 ≤ i ≤ γn. Hence {z1, . . . , zγn} is an expanding set of size γn for T in G.

Case 2: We may assume there does not exist an expanding set of size γn for T in G.

In particular, there are at most γn − 1 vertices in V (G′′) that have a neighbour in

every ω∗-class of γn copies of B∗ in T . (Note that these could be small or big vertices.)

Remove such vertices from V (G′′) and call the remaining graph G′′1. In particular, no big

vertex in G′′1 satisfies (2.4). Set n′′1 := |G′′1|.

Subcase A: Suppose we have γn small vertices xi1 , . . . , xiγn ∈ V (G′′1) such that

dG(xi` , G
′′
1) ≤ b− ω − σ

b
n′′1 +

σ

ω
i` + 2γn for all 1 ≤ ` ≤ γn. (2.5)
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Then by (2.5) and the degree sequence condition of the lemma, we have

dG(xi` , T ) ≥ b− ω − σ
b

n′ +
(σ
ω
si` −

σ

ω
i`

)
+
ηn

2
for all 1 ≤ ` ≤ γn. (2.6)

Let k ∈ {1, . . . γn}. Denote by Ω∗T the set of all vertices in G that belong to ω∗-classes of

copies of B∗ in T . Set σ∗ := σm. We aim to count the number of vertices y ∈ Ω∗T such that

(xik , y) is an ωγn
σ
-swapping pair (with respect to (v1, . . . , vn)). Let T1 denote the subcollection

of copies B1 of B∗ in T such that xik is adjacent to a vertex in every ω∗-class of B1. Then

since we removed earlier all vertices that have a neighbour in every ω∗-class of γn copies of

B∗ in T , we have

dG(xik , T1) ≤ (γn− 1)bm.

Suppose y ∈ Ω∗T and let B∗y be the copy of B∗ in T containing y. We say y is swappable

with xik if xik is adjacent to at least σ vertices in the σ∗-class of B∗y and at least ω vertices

in each ω∗-class of B∗y that does not contain y. Denote the set of vertices that are swappable

with xik by S(xik). Let T2 denote the subcollection of copies B2 of B∗ in T \ T1 such that

B2 does not contain any vertex in S(xik). Then

dG(xik , T2) ≤ (bm− ωm− σm+ σ − 1)|T2|.

Note that the −ωm term is present since xik cannot be adjacent to a vertex in every ω∗-class

of any copy of B∗ in T \ T1. Let T3 := T \ (T1 ∪ T2). Then

dG(xik , T3) ≤ (bm− ωm)|T3|.
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Observe that |T1|+ |T2|+ |T3| = n′/bm. Then

2dG(xik , T ) = dG(xik , T1) + dG(xik , T2 ∪ T3) (2.7)

≤ (γn− 1)bm+

(
b− ω − σ

b
n′ +

(σ − 1)

bm
n′
)

+ σm|T3|. (2.8)

Using (2.6) and (2.7) we see that

|T3| ≥
sik − ik
ωm

+
ηn

2σm
− (γn− 1)b

σ
− (σ − 1)n′

bσm2
≥ sik − ik

ωm
+

ηn

8σm
,

where the the last inequality follows as γ � 1/m� η � 1/b.

Note that as T3∩T2 = ∅, every copy B3 of B∗ in T3 must contain a vertex from S(xik).

By definition of swappable, this in fact implies that every copy B3 of B∗ in T3 must contain

ω∗ vertices from S(xik). Hence there are at least sik − ik + ωηn
8σ

vertices in S(xik). Not all

vertices in S(xik) may form an ωγn/σ-swapping pair with xik (with respect to (v1, . . . , vn)).

Indeed, there are at most sik − ik + ωγn
σ

vertices y ∈ S(xik) with I(y) < sik + ωγn
σ

(and so

do not form an ωγn/σ-swapping pair with xik). Hence, since γ � 1/m, η, 1/b, there are at

least
ωηn

16σ
≥ bmγn

vertices y ∈ Ω∗T such that (xik , y) is an ωγn
σ
-swapping pair. Therefore, since k ∈ {1, . . . , γn}

was arbitrary, for each ` ∈ {1, . . . , γn} there exist at least bmγn vertices y ∈ Ω∗T such that

(xi` , y) is an ωγn
σ
-swapping pair. Hence there exists a set of vertices {y1, . . . , yγn} ⊆ Ω∗T such

that (xi` , y`) is an ωγn
σ
-swapping pair for each 1 ≤ ` ≤ γn and B∗yi 6= B∗yj for all i 6= j. Thus

{xi1 , . . . , xiγn} is an ωγn
σ
-swapping set of size γn for T in G.
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Subcase B: Assume there are at most γn − 1 small vertices x ∈ V (G′′1) that satisfy

(2.5).

Remove such vertices from V (G′′1), call the remaining graph G′′2 and set n′′2 := |G′′2|.

Then for every small vertex xi ∈ V (G′′2) we have

dG′′2 (xi) ≥
b− ω − σ

b
n′′2 +

σ

ω
i+ γn′′2.

For every big vertex y ∈ V (G′′2), recall that y does not satisfy (2.4). So since |G′′\G′′2| ≤ 2γn,

we have

dG′′2 (y) ≥ b− ω
b

n′′2 + γn′′2.

Thus, G′′2 has degree sequence dG′′2 ,1 ≤ dG′′2 ,2 ≤ . . . ≤ dG′′2 ,n′′2 such that

dG′′2 ,i ≥
b− ω − σ

b
n′′2 +

σ

ω
i+ γn′′2 for all 1 ≤ i ≤ ωn′′2

b
.

Hence, by Proposition 2.4.4 there exists a copy of B∗ in G′′2, contradicting that the largest

B∗-tiling in G covers n′ vertices.

Thus Lemma 2.5.1 holds. �

With Lemma 2.5.1 at hand we now can prove Theorem 2.2.1.

Proof of Theorem 2.2.1. If σ = ω, then Theorem 2.2.1 is equivalent to the (non-directed)

graph version of [69, Theorem 4.2].

So we may assume that σ < ω. Set σ′ := (r − 1)σ and ω′ := (r − 1)ω. Let B be

the r-partite bottle graph with neck σ′ and width ω′, set b := |B| and observe that B has a

perfect H-tiling. Let t := (ω′ − σ′)b. Note that it suffices to prove the theorem under the

additional assumption that η � 1/b. Define additional constants ε, d, γ ∈ R and M ′,m ∈ N
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such that

0 < 1/n� 1/M ′ � ε� d� γ � 1/m� η � 1/b.

Let B∗ := B(m) and set

S :=
2σ

ωγ2
, Q := d1/γe and z := Q(S + 1).

Note that B∗ has a perfect H-tiling.

Suppose G is an n-vertex graph as in the statement of the theorem. Apply

Lemma 2.3.2 with parameters ε, d and M ′ to G. This gives us clusters V1, . . . , Vk, an

exceptional set V0 and a pure graph G′, where |V0| ≤ εn and |V1| = · · · = |Vk| =: q. Let R

be the reduced graph of G with parameters ε, d and M ′; so k = |R|. By Lemma 2.3.3, R has

degree sequence dR,1 ≤ dR,2 ≤ · · · ≤ dR,k such that

dR,i ≥
(

1− ω + σ

h

)
k +

σ

ω
i+

ηk

2
=

(
1− ω′ + σ′

b

)
k +

σ′

ω′
i+

ηk

2
for all 1 ≤ i ≤ ωk

h
=
ω′k

b
.

In what follows when we consider an s-swapping set in some blow-up R(w) of R,

we always implicitly mean an s-swapping set in R(w) with respect to (v1, . . . , vkw) where

V (R(w)) = {v1, . . . , vkw} and dR(w)(v1) ≤ dR(w)(v2) ≤ · · · ≤ dR(w)(vkw). That is, each blow-

up R(w) of R comes equipped with an ordering of its vertices based on the degrees; these

orderings are defined by the functions Ij below.

Claim 2.5.2. R′ := R((mt)z) contains a B∗-tiling T covering at least (1 − η/2)k(mt)z =

(1− η/2)|R′| vertices.

Proof of Claim 2.5.2. If R contains a B∗-tiling covering at least (1 − η/2)k vertices then
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Lemma 2.4.2 implies that Claim 2.5.2 holds. Suppose then that the largest B∗-tiling T in

R covers exactly c vertices where c < (1 − η/2)k. Then by Lemma 2.5.1, there exists an

expanding set of size γk for T in R or an ωγk
σ
-swapping set of size γk for T in R. Define B′

to be the r-partite bottle graph with neck σ′ and width ω′ − 1. Set ω∗ := ω′m.

Step 1: Find a B∗-tiling covering at least (c+ γk)(mt)S+1 vertices in R((mt)S+1).

Case 1: There exists an expanding set {z1, . . . , zγk} for T , and hence also an associ-

ated injection f : {z1, . . . , zγk} → T .

We need a few definitions. Let i ∈ N and H be a (finite) family of graphs. We define

an H-tiling in G to be a collection of vertex-disjoint copies of graphs from H in G.

In this case we do the following: For each 1 ≤ i ≤ γk, separate R[zi∪f(zi)] into a copy

of Kr (containing zi and one vertex from each ω∗-class of f(zi)), a copy of B′ and a copy of

B(m−1). Then we have a (B∗, B(m−1), B′, Kr)-tiling in R covering at least c+γk vertices.

By Lemma 2.4.2, R(mt) contains a B∗-tiling covering at least (c + γk)mt vertices. Further

applying Lemma 2.4.2 we obtain a B∗-tiling covering at least (c + γk)(mt)S+1 vertices in

R((mt)S+1), as desired.

Case 2: There does not exist an expanding set of size γk for T in R.

For each 1 ≤ j ≤ S, Proposition 2.4.3 implies that R((mt)j) has degree sequence

dR((mt)j),1 ≤ dR((mt)j),2 ≤ · · · ≤ dR((mt)j),k(mt)j such that

dR((mt)j),i ≥
(

1− ω + σ

h

)
k(mt)j +

σ

ω
i+

(
ηk

2
− σ

ω

)
(mt)j for all 1 ≤ i ≤ ωk(mt)j

h
.

Define for 0 ≤ j ≤ S bijections Ij : V (R((mt)j)) → [k(mt)j] where Ij(x) := i implies that

dR((mt)j)(x) = dR((mt)j),i. In particular, suppose that x ∈ V (R) and let x1, . . . , x(mt)j denote

the (mt)j vertices in R((mt)j) that correspond to x. Suppose that I0(x) = i. Then we may
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assume that

Ij(xs) = (i− 1)(mt)j + s > (I0(x)− 1)(mt)j for each 1 ≤ s ≤ (mt)j. (2.9)

To put all this another way, one can view I0 as an ordering of the vertices in R in terms of

the vertex degrees; Ij is the ordering of R((mt)j) ‘inherited’ from the ordering I0.

Note that for all 0 ≤ j ≤ S,

 ∑
x∈V (R((mt)j))

Ij(x)

 ≤ k2(mt)2j. (2.10)

Denote by Ω∗T the set of all vertices in V (R) that belong to ω∗-classes of copies of B∗ in

T . As there does not exist an expanding set of size γk for T in R, then there exists an
ωγk
σ
-swapping set {z1, . . . , zγk} for T in R. Hence there also exists a set {y1, . . . , yγk} ⊆ Ω∗T

such that (zi, yi) is an ωγk
σ
-swapping pair for each 1 ≤ i ≤ γk, such that B∗yi 6= B∗yj

1 for all

i 6= j, and such that I0(yi) ≥ I0(zi) + ωγk
σ

for all 1 ≤ i ≤ γk.

For each 1 ≤ i ≤ γk, note that R[(zi ∪ V (B∗yi)) \ {yi}] can be separated into a copy

of B containing zi and a copy of B(m − 1). Then we have a (B∗, B(m − 1), B)-tiling T1

covering c vertices in R. Further, since each (zi, yi) is an ωγk
σ
-swapping pair, we have that

 ∑
x∈V (R)\V (T1)

I0(x)

 ≥
 ∑
x∈V (R)\V (T )

I0(x)

+
ωγ2k2

σ
. (2.11)

By Lemma 2.4.2, T1(mt) contains a perfect B∗-tiling T ′, i.e. T ′ is a B∗-tiling covering

c(mt) vertices in R(mt). Observe that T ′ in R(mt) covers proportionally the same amount
1As in Definition 2.4.6.
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of vertices as T in R. Further, (2.9) and (2.11) imply that

∑
x∈V (R(mt))\V (T ′)

I1(x) ≥

 ∑
x∈V (R)\V (T1)

(I0(x)− 1)

 (mt)2

≥

 ∑
x∈V (R)\V (T )

I0(x)

+
ω(γk)2

2σ

 (mt)2. (2.12)

Denote by Ω∗T ′ the set of all vertices in R(mt) that belong to ω∗-classes of copies of B∗

in T ′. Suppose that there does not exist an expanding set of size γkmt for T ′ in R(mt). Then

by Lemma 2.5.1 there must exist an ωγkmt
σ

-swapping set of size γkmt for T ′ in R(mt). As

before we can produce a (B∗, B(m− 1), B)-tiling T ′1 covering c(mt) vertices in R(mt). Then

by Lemma 2.4.2, T ′1(mt) contains a perfect B∗-tiling T ′′, i.e. T ′′ is a B∗-tiling covering c(mt)2

vertices in R((mt)2). Observe, similarly as before, that T ′′ in R((mt)2) covers proportionally

the same amount of vertices as T in R and

∑
x∈V (R((mt)2))\V (T ′′)

I2(x) ≥

 ∑
x∈V (R(mt))\V (T ′)

I1(x)

+
ω(γkmt)2

2σ

 (mt)2

(2.12)

≥

 ∑
x∈V (R)\V (T )

I0(x)

+
ω(γk)2

σ

 (mt)4.

Note that (2.10) implies that one can repeat this argument at most S times; that

is, for some j ≤ S we must obtain an expanding set of size γk(mt)j in R((mt)j). More

precisely, we obtain a B∗-tiling T (j) in R((mt)j) covering c(mt)j vertices, such that there

exists an expanding set of size γk(mt)j for T (j) in R((mt)j). Then as before, one can use

this expanding set and Lemma 2.4.2 to obtain a B∗-tiling covering at least (c+ γk)(mt)S+1

vertices in R((mt)S+1), as desired.
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General Step:

Repeating the whole argument from Step 1 at most Q times we see that

R((mt)Q(S+1)) = R((mt)z) = R′ has a B∗-tiling T covering at least (1 − η/2)|R′| vertices.

Thus Claim 2.5.2 holds.

Now for each 1 ≤ i ≤ k, partition Vi into classes V ∗i , Vi,1, . . . , Vi,(mt)z where q′ :=

|Vi,j| = bq/(mt)zc ≥ q/(2(mt)z) for all 1 ≤ j ≤ (mt)z. Lemma 2.3.2 implies that qk ≥

(1− ε)n, therefore

q′|R′| = bq/(mt)zck(mt)z ≥ qk − k(mt)z ≥ (1− 2ε)n. (2.13)

Fact 2.3.4 tells us that for each ε-regular pair (Vi1 , Vi2)G′ with density at least d we have that

(Vi1,j1 , Vi2,j2)G′ is 2ε(mt)z-regular with density at least d−ε ≥ d/2 (for all 1 ≤ j1, j2 ≤ (mt)z).

Note that 2ε(mt)z ≤ ε1/2. So we can label the vertex set of R′ so that V (R′) = {Vi,j : 1 ≤

i ≤ k, 1 ≤ j ≤ (mt)z} and see that if Vi1,j1Vi2,j2 ∈ E(R′) then (Vi1,j1 , Vi2,j2)G′ is ε1/2-regular

with density at least d/2.

We know by Claim 2.5.2 that R′ has a B∗-tiling T that covers at least (1− η/2)|R′|

vertices. Let B̂∗ be a copy of B∗ in T and label the vertices of B̂∗ so that V (B̂∗) =

{Vi1,j1 , Vi2,j2 , . . . , Vibm,jbm}. Set V ′ := Vi1,j1∪Vi2,j2∪· · ·∪Vibm,jbm . Applying Lemma 2.4.1 with

η2, q′, d/2, ε1/2 playing the roles of β, q, d, ε, we have that G′[V ′] has a B∗-tiling covering at

least (1 − η2)q′bm vertices. Applying Lemma 2.4.1 in this way to each copy of B∗ in T we

see that G′ ⊆ G has a B∗-tiling covering at least

((
1− η2

)
q′bm

)
× ((1− η/2) |R′|) /bm

(2.13)

≥
(
1− η2

)
(1− η/2) (1− 2ε)n ≥ (1− η)n
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vertices. Since each copy of B∗ has a perfect H-tiling, G contains an H-tiling covering all

but at most ηn vertices. �

Theorem 2.0.1 easily implies Theorem 2.0.2.

Proof of Theorem 2.0.2. Let H, x ∈ (0, 1) and η > 0 be as in the statement of the

theorem. Suppose n is sufficiently large and let G be an n-vertex graph as in the statement

of the theorem.

Note that it suffices to prove the result in the case when x ∈ (0, 1) ∩Q. Thus, there

exist a, b ∈ N such that x = a/b. Define σ1 := a(r − 1)σ and ω1 := a(r − 1)ω + (b − a)h =

bh− aσ. Let H1 be the r-partite bottle graph with neck σ1 and width ω1, and observe that

σ1 < ω1 and |H1| = b(r − 1)h.

Claim. H1 contains an H-tiling covering x|H1| vertices.

The claim follows since one can tile H1 with a(r − 1) copies of H where each σ-class

lies in the σ1-class of H1. Thus, we have an H-tiling covering a(r − 1)h = x|H1| vertices in

H1, as desired.

Note that

di ≥
(
gH(x)− xσ

h

)
n+

(r − 1)xσ

h− xσ
i =

(
1− ω1 + σ1

b(r − 1)h

)
n+

σ1

ω1

i

for all i ≤
(
h−xσ

(r−1)h

)
n = ω1n

b(r−1)h
. Thus, applying Theorem 2.0.1 with H1 playing the role of

H, we produce an H1-tiling in G covering all but at most ηn vertices. Then the claim implies

that we have an H-tiling in G covering at least x(1− η)n > (x− η)n vertices. �
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2.6 Concluding remarks

In this chapter we have given a particular degree sequence condition that forces a graph to

contain an almost perfect H-tiling (Theorem 2.0.1). In fact, in general for a fixed graph H,

Theorem 2.0.1 yields a whole class of degree sequences that force an almost perfect H-tiling.

Indeed, we have the following consequence of Theorem 2.0.1.

Theorem 2.6.1. Let η > 0 and H be a graph with χ(H) = r and h := |H|. Set σ ∈ R such

that σ(H) ≤ σ ≤ h/r and ω := (h− σ) /(r − 1). Then there exists an n0 = n0(η, σ,H) ∈ N

such that the following holds: Suppose G is a graph on n ≥ n0 vertices with degree sequence

d1 ≤ d2 ≤ · · · ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i for all 1 ≤ i ≤ ωn

h
.

Then G contains an H-tiling covering all but at most ηn vertices.

Proof. Note that it suffices to prove the theorem under the assumption that σ ∈ Q. To

prove Theorem 2.6.1, we define a certain bottle graph H∗ and then apply Theorem 2.0.1

with input H∗ to conclude our result.

Since σ ∈ Q, there exist a, b ∈ N such that σ = a/b. Let ω(H) := (h− σ(H))/(r− 1)

and t := b(r − 1)(ω(H) − σ(H)). We define H∗ to be the r-partite bottle graph with neck

σt and width ωt (note σt, ωt ∈ N). Also, notice that |H∗| = ht.

Claim. H∗ contains a perfect H-tiling.

We tile t copies of H into H∗. Firstly, tile b(r − 1)(ω(H) − σ) copies of H into H∗

such that the σ(H)-classes are all placed in the σt-class of H∗ and the rest of the vertex
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classes of H are equally distributed amongst the vertex classes of H∗. This leaves

σb(r − 1)(ω(H)− σ(H))− σ(H)b(r − 1)(ω(H)− σ) = ω(H)b(r − 1)(σ − σ(H))

vertices in the σt-class of H∗ to be covered and

ωb(r − 1)(ω(H)− σ(H))− bω(H)(r − 1)(ω(H)− σ)

= b((h− σ)(ω(H)− σ(H))− (h− σ(H))(ω(H)− σ))

= b(h− ω(H))(σ − σ(H))

vertices in each ωt-class of H∗ to be covered. Let Ĥ be the r-partite complete graph with

one vertex class of size (r − 1)ω(H) and (r − 1) vertex classes of size (r − 2)ω(H) + σ(H).

Observe that Ĥ has a perfect H-tiling (using r − 1 copies of H). To cover the remaining

vertices of H∗, tile b(σ − σ(H)) copies of Ĥ into H∗ such that every vertex class of size

(r − 1)ω(H) is placed in the σt class of H∗. Observe that

((r − 2)ω(H) + σ(H))b(σ − σ(H)) = b(h− ω(H))(σ − σ(H)).

Hence H∗ contains a perfect H-tiling and the claim holds.

Suppose G is as in the statement of Theorem 2.6.1. Applying Theorem 2.0.1 with

input G and H∗, we obtain that G contains an H∗-tiling covering all but at most ηn vertices.

(Note the degree sequence in Theorem 2.6.1 is precisely the degree sequence of Theorem 2.0.1

with input H∗.) Since each copy of H∗ has a perfect H-tiling, we conclude that G contains

an H-tiling covering all but at most ηn vertices. �

In a similar way, Theorem 2.0.2 yields a class of degree sequences forcing an almost

x-proportional H-tiling in G.
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Theorem 2.6.2. Let x ∈ (0, 1) and H be a graph with χ(H) = r and h := |H|. Set η > 0.

Let σ ∈ R such that σ(H) ≤ σ ≤ h/r and ω := (h− σ) /(r − 1). Then there exists an

n0 = n0(η, x, σ,H) ∈ N such that the following holds: Suppose G is a graph on n ≥ n0

vertices with degree sequence d1 ≤ d2 ≤ · · · ≤ dn such that

di ≥
(
gH(x)− xσ

h

)
n+

(r − 1)xσ

h− xσ
i for all 1 ≤ i ≤

(
h− xσ

(r − 1)h

)
n.

Then G contains an H-tiling covering at least (x− η)n vertices.

Proof. Define H∗ as in the proof of Theorem 2.6.1. Applying Theorem 2.0.2 with input

H∗, we obtain that G contains an H∗-tiling covering all but at most (x− η)n vertices. Since

each copy of H∗ has a perfect H-tiling, we conclude that G contains an H-tiling covering all

but at most (x− η)n vertices. �
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Chapter Three

A degree sequence version of the

Kühn–Osthus tiling theorem

This chapter is joint work with Andrew Treglown and is based on [30]. Recall the following

definitions pertaining to Theorem 1.1.8. Let H be a graph and χ(H) =: r. We say that

a proper colouring c of H is optimal if c uses precisely r colours. Let CH be the set of all

optimal colourings of H. Given an optimal colouring c ∈ CH , let xc,1 ≤ xc,2 ≤ · · · ≤ xc,r

denote the sizes of the colour classes of c. Define

D(c) := {xc,j+1 − xc,j | j = 1, . . . , r − 1}

and take

D(H) :=
⋃
c∈CH

D(c).

Let hcfχ(H) be the highest common factor of all integers in D(H). In the case D(H) = {0},

we set hcfχ(H) :=∞. Note that D(H) = {0} if and only if χ(H) = χcr(H). Let hcfc(H) be

the highest common factor of all the orders of the components of H. If χ(H) 6= 2 we say that

hcf(H) = 1 if hcfχ(H) = 1. If χ(H) = 2 then we say that hcf(H) = 1 if both hcfc(H) = 1
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and hcfχ(H) ≤ 2. Note also that there are graphs H which have hcfχ(H) = 1, but for every

optimal colouring c of H we have that the highest common factor of the integers in D(c)

is greater than one.1 That is to say that no particular colouring of H necessarily ‘certifies’

that hcfχ(H) = 1. Let σ(H) denote the size of the smallest possible colour class in any

r-colouring of H.

Recall that in [44], Kühn and Osthus proved the following theorem:

Theorem 1.1.12 ([44]). Let η > 0 and H be a graph with hcfχ(H) = 1 and χ(H) =: r ≥ 3.

Then there exists an integer n0 = n0(η,H) such that the following holds: Suppose G is a

graph on n ≥ n0 vertices such that |H| divides n and

δ(G) ≥
(

1− 1

χcr(H)
+ η

)
n.

Then G contains a perfect H-tiling.

When H is such that hcfχ(H) = 1 and r ≥ 3, Theorem 1.1.12 is a weaker version of

Theorem 1.1.8 due to the additional error term required in the minimum degree condition.

In this chapter we prove the following degree sequence strengthening of Theorem 1.1.12,

including a case when r = 2 and hcf(H) = 1.

Theorem 3.0.1. Let η > 0 and H be a graph with hcf(H) = 1 and χ(H) =: r ≥ 2. Let

σ := σ(H), h := |H| and ω := (h− σ) /(r − 1). Then there exists an integer n0 = n0(η,H)

such that the following holds: Suppose G is a graph on n ≥ n0 vertices such that h divides n

and G has degree sequence d1 ≤ · · · ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

h
.

Then G contains a perfect H-tiling.
1An example is K1,4,6 with an extra vertex attached to every vertex in the vertex class of size 4.
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Observe that ω/h = 1/χcr(H). Hence, Theorem 3.0.1 is a strengthening of Theo-

rem 1.1.12. Note that Theorem 3.0.1 applies to all graphs H with hcf(H) = 1, not just

graphs H with χ(H) ≥ 3 and hcfχ(H) = 1 (as in Theorem 1.1.12). One can also see that

the statement of Theorem 3.0.1 is essentially the same as Theorem 2.0.1 except we have an

additional error term throughout the degree sequence and get a perfect H-tiling instead of

one covering all but at most ηn vertices. See Extremal Example 1 and Section 3.3 regarding

whether this additional error term can be removed or not.

Theorem 3.0.1 (and Theorem 1.1.11) is best-possible for many graphs H in the sense

that we cannot replace the ηn-term with a o(
√
n)-term (see Proposition 3.2.1). Theorem 3.0.1

is also best possible for all graphs H in the sense that there are n-vertex graphs G with

only slightly more than ωn/h vertices with degree (slightly) below (1 − ω/h + η)n that

do not contain a perfect H-tiling (see Proposition 3.2.4). Thus, it is not possible to allow

significantly more ‘small’ degree vertices in Theorem 3.0.1. Extremal examples are discussed

in more detail in Section 3.2.

Recall Theorem 1.1.11, the degree sequence Alon–Yuster theorem proved by Tre-

glown [69]:

Theorem 1.1.11 (Treglown [69]). Let η > 0 and H be a graph with χ(H) =: r. Then there

exists an integer n0 = n0(η,H) such that the following holds: Suppose that G is a graph on

n ≥ n0 vertices with degree sequence d1 ≤ · · · ≤ dn such that

di ≥ (r − 2)n/r + i+ ηn for all i < n/r

and |H| divides n. Then G contains a perfect H-tiling.

Theorem 3.0.1 complements Theorem 1.1.11. Indeed, combining Theorems 3.0.1 and

1.1.11 yields the following degree sequence version of Theorem 1.1.8.
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Theorem 3.0.2. Let η > 0 and H be a graph with χ(H) =: r ≥ 2. Let σ := σ(H), h := |H|

and ω := (h− σ) /(r − 1). Then there exists an integer n1 = n1(η,H) such that if G is a

graph on n ≥ n1 vertices, h divides n and either (i) or (ii) (below) holds, then G contains a

perfect H-tiling.

(i) hcf(H) = 1 and G has degree sequence d1 ≤ · · · ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

h
.

(ii) hcf(H) 6= 1 and G has degree sequence d1 ≤ · · · ≤ dn such that

di ≥ (r − 2)n/r + i+ ηn for all 1 ≤ i ≤ n/r.

One can in fact obtain the following generalisation of Theorem 3.0.1.

Theorem 3.0.3. Let η > 0 and H be a graph with hcf(H) = 1 and χ(H) =: r ≥ 2. Let

h := |H|. Set σ ∈ R such that σ(H) ≤ σ < h/r and ω := (h− σ) /(r− 1). Then there exists

an integer n1 = n1(η,H) such that the following holds: Let G be a graph on n ≥ n1 vertices

such that h divides n and G has degree sequence d1 ≤ · · · ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

h
.

Then G contains a perfect H-tiling.

Observe that for graphs H with hcf(H) = 1, Theorem 3.0.3 interpolates between

Theorem 1.1.11 and Theorem 3.0.1. In Section 3.7, we will prove Theorem 3.0.3 directly.

The proof of Theorem 3.0.3 follows that of Theorem 1.1.12 in [44] closely. The main novelty

of our proof is how we avoid divisibility barriers. For this we make use of an elementary
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number theoretic result for graphs with hcf(H) = 1 (see Theorem 3.5.2). We also make use

of Theorem 2.6.1 from the preceding chapter.

Since the choice of σ ∈ [σ(H), h/r) is arbitrary, note that Theorem 3.0.3 provides an

infinite collection of degree sequences that force a perfectH-tiling. Having a higher value of σ

lowers the starting point of the degree sequence condition, but at the price of a steeper ‘slope’

and higher value of dωn/h (see Figure 3.1). As with Theorem 3.0.1, for many graphs H, each

of these degree sequences is best-possible in the sense that we cannot replace the ηn-term

with a o(
√
n)-term (see Section 3.2). Note too that we cannot extend Theorem 3.0.3 to the

case when σ < σ(H). Indeed, in this case, if we set η � 1 then the degree sequence condition

in Theorem 3.0.3 would allow all vertices in G to have degree below (1 − 1/χcr(H))n − 1;

however, we know from Theorem 1.1.8 that there are graphs G that satisfy this condition

and that do not contain perfect H-tilings.

3.1 Organisation

The rest of Chapter 3 is organised as follows. In the next section we give several extremal

examples for Theorems 3.0.1 and 3.0.3. We also ask whether one can improve Theorem 3.0.1

by suitably ‘capping’ the bounds on the degrees of the vertices (see Question 3.3.1). In

Section 3.4 we give a number of auxiliary results and definitions, including a generalisation

of [46, Lemma 12] (Lemma 3.4.5). We then prove a new elementary number theoretic result

(Theorem 3.5.2) in Section 3.5 which will be a crucial tool in overcoming divisibility barriers

during the proof of Theorem 3.0.3. In Section 3.6 we give an overview of the proof of

Theorem 3.0.3. In Section 3.7 we prove Theorem 3.0.3.
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d1 d2

Degree

(
1− 2

r

)
n+ ηn

(
1− 1

r
− σ(H)+ω(H)

2h

)
n+ ηn

(
1− ω(H)+σ(H)

h

)
n+ ηn

(
1− ω(H)

h

)
n+ ηn

(
1− 1

2r
− ω(H)

2h

)
n+ ηn

(
1− 1

r

)
n+ ηn

d
n
r

d (
h
+
rω

(H
)

2r
h

)n
d ω

(H
)n

h

Figure 3.1: The degree sequence in Theorem 3.0.3 for a fixed graph H given σ = σ(H)

(medium dashed); σ = h+rσ(H)
2r

(long dashed); σ = h
r
(full).

3.2 Extremal examples for Theorems 3.0.1 and 3.0.3

The following 3 extremal examples demonstrate ways in which Theorems 3.0.1 and 3.0.3

are best possible. The first shows that we cannot significantly lower every term in the

degree sequence conditions of Theorems 3.0.1 and 3.0.3 and still ensure a perfect H-tiling

for complete r-partite graphs. The second shows that that the ‘slope’ of the degree sequence

in Theorem 3.0.1 is best possible for bottle graphs. The third demonstrates that for any

graph H, to ensure a perfect H-tiling (or even an ‘almost’ perfect H-tiling) in a graph G

on n vertices we cannot have significantly more than ωn/h vertices that have degree below(
1− 1

χcr(H)
+ η
)
n.
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Extremal Example 1. The following construction (a simple adaption of [69, Proposi-

tion 3.1]) demonstrates that for most complete r-partite graphs H, one cannot replace the

ηn-term in Theorems 3.0.1 and 3.0.3 with a o(
√
n)-term.

Proposition 3.2.1. Let r ≥ 3 and H := Kt1,...,tr with ti ≥ 2 (for all 1 ≤ i ≤ r). Let

h := |H|. Set σ ∈ R such that σ(H) ≤ σ < h/r and ω := (h− σ) /(r − 1). Let n ∈ N be

sufficiently large so that
√
n is an integer that is divisible by 6h2. Set C :=

√
n/3h2. Then

there exists a graph G on n vertices whose degree sequence d1 ≤ · · · ≤ dn satisfies

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ C for all 1 ≤ i ≤ ωn

h

but such that G does not contain a perfect H-tiling.

Proof. Let G denote the graph on n vertices consisting of r vertex classes V1, . . . , Vr with

|V1| = 1, |V2| = ωn/h+ 1 +Cr, |V3| = (σ+ω)n/h− 2− 3C and |Vi| = ωn/h−C if 4 ≤ i ≤ r

and which contains the following edges:

• All possible edges with an endpoint in V3 and the other endpoint in V (G) \ V1 (in

particular, G[V3] is complete);

• All edges with an endpoint in Vi and the other endpoint in V (G) \ Vi for i = 2 and

4 ≤ i ≤ r;

• There are
√
n/2 vertex-disjoint stars in V2, each of size b2|V2|/

√
nc, d2|V2|/

√
ne, which

cover all of V2.

In particular, note that the vertex v ∈ V1 sends all possible edges to V (G) \ V3 but no edges

to V3.

Let d1 ≤ · · · ≤ dn denote the degree sequence of G. Notice that every vertex in Vi for

3 ≤ i ≤ r has degree at least (1−ω/h)n+C. Note that b2|V2|/
√
nc ≥ 2

√
n/h = 6Ch ≥ 6Cr.
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Thus, there are
√
n/2 vertices (namely those at the centers of the stars) in V2 of degree at

least

(1− ω/h)n− 1− Cr + (6Cr − 1) ≥ (1− ω/h)n+ C.

The remaining ωn/h+ 1 +Cr−
√
n/2 ≤ ωn/h−

√
n/3−1 vertices in V2 have degree at least

(1− ω/h)n− Cr ≥ (1− ω/h)n− σ
√
n/3ω + C.

Since dG(v) ≥
(
1− ω+σ

h

)
n+ C + σ/ω for the vertex v ∈ V1 we have that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ C for all 1 ≤ i ≤ ωn

h
.

Suppose that v ∈ V1 lies in a copy H ′ of H in G. Then by construction of G, two of the

vertex classes U1, U2 of H ′ must lie entirely in V2. By definition of H, H ′[U1 ∪U2] contains a

path of length 3. However, G[V2] does not contain a path of length 3, a contradiction. Thus,

v does not lie in a copy of H and so G does not contain a perfect H-tiling. �

Extremal Example 2. Recall the following definitions. Let v ∈ N. We will refer to a

vertex class of size v of G as a v-class of G. Set r, σ, ω ∈ N and σ < ω. We define the

r-partite bottle graph B with neck σ and width ω to be the complete r-partite graph with

one σ-class and (r − 1) ω-classes.

Let η > 0 be fixed. Let B be an r-partite bottle graph with neck σ and width ω,

where b := |B|. The following extremal example (adapted from Proposition 2.1.1) G on n

vertices demonstrates that Theorem 3.0.1 is best possible for such graphs B, in the sense

that G satisfies the degree sequence of Theorem 3.0.1 except for a small linear part that only

just fails the degree sequence, but does not contain a perfect B-tiling. In fact, G does not

contain a B-tiling that covers all but at most ηn vertices.
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Proposition 3.2.2. Let η > 0 be fixed and n ∈ N such that 0 < 1/n � η � 1. Let r ≥ 3

be an integer. Let B be an r-partite bottle graph with neck σ and width ω, where b := |B|.

Additionally assume that b divides n. Then for any 1 ≤ k < ωn/b− (rb+ 1)ηn, there exists

a graph G on n vertices whose degree sequence d1 ≤ · · · ≤ dn satisfies

di ≥
(

1− ω + σ

b

)
n+

σ

ω
i+ ηn for all i ∈ {1, . . . , k − 1, k + rbηn+ 1, . . . , ωn/b},

di =

(
1− ω + σ

b

)
n+

⌈σ
ω
k
⌉

+ ηn for all k ≤ i ≤ k + rbηn,

but such that G does not contain a B-tiling covering all but at most ηn vertices.2

Proof. Let G be the graph on n vertices with r + 1 vertex classes V1, . . . , Vr+1 where

• |V1| = σn/b;

• |V2| = ωn/b− ηn;

• |V3| = · · · = |Vr| = ωn/b− (ηn+ 1);

• |Vr+1| = (r − 1)(ηn+ 1)− 1.

Label the vertices of V1 as a1, a2, . . . , aσn/b. Similarly, let us label the vertices of V2 as

c1, c2, . . . , cωn/b−ηn. The edge set of G is constructed through the following process.

Initially, let G have the following edges:

• All edges with an endpoint in V1 and the other endpoint in V (G) \ V2, in particular

G[V1] is complete;

• All edges with an endpoint in Vi and the other endpoint in V (G) \ (V1 ∪ Vi) for 2 ≤

i ≤ r + 1;
2Proposition 3.2.2 essentially implies Proposition 2.1.1, but with worse constants.
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• All edges with both endpoints in Vr+1, in particular G[Vr+1] is complete;

• Given any 1 ≤ i ≤ ωn/b− ηn and j ≤ dσi/ωe include all edges ciaj.

So at the moment G indeed satisfies the degree sequence in Theorem 3.0.1; we

therefore modify G slightly. For all k ≤ i ≤ k + rbηn and dσk/ωe + 1 ≤ j ≤

dσ(k + rbηn)/ωe delete each edge between ci and aj. One can easily check that G satisfies

the degree sequence in the statement of the proposition. In particular, the vertices of degree(
1− ω+σ

b

)
n+ dσ

ω
ke+ ηn are ck, . . . , ck+rbηn.

Define A := {a1, . . . , adσk/ωe} and C := {c1, . . . , ck+rbηn}. Note that there are no edges

between C and V1 \ A in G.

Claim 3.2.3. Let T be a B-tiling of G. Then T does not cover at least 3ηn/2 vertices in C.

Firstly, consider any copy B′ of B in T that contains at least one vertex in Vr+1. Since

C is an independent set in G, observe that B′ contains at most ω vertices from C. Thus

there are at most ω|Vr+1| = ω(r− 1)ηn+ ω(r− 2) vertices in C covered by copies of B in T

that each contain at least one vertex in Vr+1.

Secondly, consider any copy B′ of B in T that contains at least one vertex from C

and no vertices from Vr+1. As before, since C is an independent set in G, we have that B′

contains at most ω vertices from C. Since there are no edges between C and V1 \A in G, B′

contains at least σ vertices in A.

These two observations, alongside the fact that b = σ+ω(r−1) ≥ ω(r−1) ≥ ω(r−2),

imply that at most ω(r − 1)ηn+ ω(r − 2) + dσk/ωe(ω/σ) < k + 1 + b(ηn+ 1) vertices in C

can be covered by T . Since |C| = k + rbηn, we have that T does not cover at least 3ηn/2

vertices in C. Therefore, Claim 3.2.3 holds. Hence G does not have a B-tiling covering all

but at most ηn vertices. �
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Extremal Example 3. Let H be an h-vertex graph, χ(H) =: r, σ := σ(H) and ω :=

(h − σ)/(r − 1). The following extremal example demonstrates that there are n-vertex

graphs G for which all but (ω/h+ o(1))n vertices have degree above (1− 1/χcr(H) + o(1))n,

with the remaining (ω/h + o(1))n vertices having degree (1 − 1/χcr(H) − o(1))n, and yet

G does not contain a perfect H-tiling. Thus, this shows that one cannot have significantly

more than ωn/h ‘small’ degree vertices in Theorem 3.0.1.

Proposition 3.2.4. Let 0 < η � 1 be fixed. Let H be a graph with χ(H) =: r. Let h := |H|,

σ := σ(H) and set ω := (h − σ)/(r − 1). Then there exists a graph G on n vertices whose

degree sequence d1 ≤ · · · ≤ dn satisfies

di = (1− ω/h− (r − 1)η)n = (1− 1/χcr(H)− (r − 1)η)n for all i ≤ (ω/h+ (r − 1)η)n,

di ≥ (1− ω/h+ η)n = (1− 1/χcr(H) + η)n for all i > (ω/h+ (r − 1)η)n,

but such that G does not contain an H-tiling covering all but at most ηn vertices.3

Proof. Let G be the complete r-partite graph on n vertices with vertex classes V1, . . . , Vr

such that

• |V1| = σn
h
− ηn,

• |V2| = ωn
h

+ (r − 1)ηn,

• |V3| = · · · = |Vr| = ωn
h
− ηn.

Then G satisfies the degree sequence condition in the proposition. The choice in size of V1

ensures that any H-tiling in G covers at most |V1|h/σ < n− ηn vertices, as desired. �

3For x = 1, Proposition 3.2.4 implies Proposition 2.1.4, but with a worse constant on some error terms.

62



A degree sequence version of the Kühn–Osthus tiling theorem

3.3 A possible strengthening of Theorem 3.0.1

Whilst Proposition 3.2.1 demonstrates that we cannot lower every term in the degree se-

quence condition in Theorem 3.0.1 by much, perhaps one can cap the degrees as follows.

Question 3.3.1. Can the degree sequence condition in Theorem 3.0.1 be replaced by

di ≥ min

{(
1− ω + σ

h

)
n+

σ

ω
i+ ηn,

(
1− 1

χcr(H)

)
n+ C

}
for all 1 ≤ i ≤ ωn

h

where C is a constant dependent only on H?

Note that Theorem 3.0.2 does not quite imply Theorem 1.1.8 due to the ηn-terms.

On the other hand, an affirmative answer to Question 3.3.1, together with an analogous

‘capped’ version of Theorem 3.0.2(ii), would fully imply the upper bound in Theorem 1.1.8.

3.4 Auxiliary results

The results in this section will be employed in our proof of Theorem 3.0.3. First we need

the following definition.

Definition 3.4.1. Given ε > 0, d ∈ [0, 1] and G = (A,B) a bipartite graph, we say that G

is (ε, d)-superregular if all sets X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| satisfy

that d(X, Y ) > d, that dG(a) > d|B| for all a ∈ A and that dG(b) > d|A| for all b ∈ B.

Recall the the degree form of Szemerédi’s Regularity lemma [67] we used in Chapter 2.

Lemma 2.3.2 (Degree form of Szemerédi’s Regularity lemma [67]). Let ε ∈ (0, 1) and

M ′ ∈ N. Then there exist natural numbers M and n0 such that for any graph G on n ≥ n0
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vertices and any d ∈ (0, 1) there is a partition of the vertices of G into subsets V0, V1, . . . , Vk

and a spanning subgraph G′ of G such that the following hold:

• M ′ ≤ k ≤M ;

• |V0| ≤ εn;

• |V1| = · · · = |Vk| =: q;

• dG′(x) > dG(x)− (d+ ε)n for all x ∈ V (G);

• e(G′[Vi]) = 0 for all i ≥ 1;

• For all 1 ≤ i, j ≤ k with i 6= j the pair (Vi, Vj)G′ is ε-regular and has density either 0

or at least d.

Recall also that we call V1, . . . , Vk the clusters of our partition, V0 the exceptional set

and G′ the pure graph. We define the reduced graph R of G with parameters ε, d and M ′

to be the graph whose vertex set is V1, . . . , Vk and in which ViVj is an edge if and only if

(Vi, Vj)G′ is ε-regular with density at least d. Note also that |R| = k.

Recall Lemmas 2.3.4 and 2.3.5.

Fact 2.3.4. Let 0 < ε < α and ε′ := max{ε/α, 2ε}. Let (A,B) be an ε-regular pair of

density d. Suppose A′ ⊆ A and B′ ⊆ B where |A′| ≥ α|A| and |B′| ≥ α|B|. Then (A′, B′) is

an ε′-regular pair with density d′ where |d′ − d| < ε.

Fact 2.3.5 (Key lemma [42]). Suppose that 0 < ε < d, that q, t ∈ N and that R is a

graph with V (R) = {v1, . . . , vk}. We construct a graph G as follows: Replace every vertex

vi ∈ V (R) with a set Vi of q vertices and replace each edge of R with an ε-regular pair of

density at least d. For each vi ∈ V (R), let Ui denote the set of t vertices in R(t) corresponding
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to vi. Let H be a subgraph of R(t) with maximum degree ∆ and set h := |H|. Set δ := d− ε

and ε0 := δ∆/(2 + ∆). If ε ≤ ε0 and t− 1 ≤ ε0q then there are at least

(ε0q)
h labelled copies of H in G

so that if x ∈ V (H) lies in Ui in R(t), then x is embedded into Vi in G.

Let G and H be graphs and R be a reduced graph of G. Let H be a perfect H-tiling

in R. The following result ensures that after removing only a few vertices from each cluster

in R every edge in each copy of H ∈ H corresponds to a superregular pair. This will be

essential to apply Lemma 3.4.3 in Section 3.7.6.

Proposition 3.4.2 ([47]). Let G be a graph, ε, d ∈ (0, 1) andM ′,∆ ∈ N. Apply Lemma 2.3.2

to G with parameters ε,M ′ and d to obtain a reduced graph R with clusters of size q. Let

H be a subgraph of the reduced graph R with ∆(H) ≤ ∆ and label the vertices of H as

V1, . . . , V|H|. Then each vertex Vi of H contains a subset V ′i of size (1 − ε∆)q such that for

every edge ViVj of H the graph (V ′i , V
′
j )G′ is (ε/(1− ε∆), d− (1 + ∆)ε)-super-regular.

The following fundamental result of Komlós, Sárközy and Szemerédi, known as the

Blow-up lemma, essentially says that (ε, d)-superregular pairs behave like complete bipartite

graphs with respect to containing bounded degree subgraphs.

Lemma 3.4.3 (Blow-up lemma [40]). Given a graph F on vertices {1, . . . , f} and d,∆ > 0,

there exists an ε0 = ε0(d,∆, f) > 0 such that the following holds: Given L1, . . . , Lf ∈ N

and ε ≤ ε0, let F ∗ be the graph obtained from F by replacing each vertex i ∈ F with an

independent set Vi of Li new vertices and joining all vertices in Vi to all vertices in Vj

whenever ij is an edge of F . Let G be a spanning subgraph of F ∗ such that for every edge

ij ∈ F the pair (Vi, Vj)G is (ε, d)-superregular. Then G contains a copy of every subgraph H

of F ∗ with ∆(H) ≤ ∆.
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In [44], the following result of Kühn and Osthus is essential to their proof of Theo-

rem 1.1.12.

Lemma 3.4.4 (Lemma 12 in [46]). Let H be a graph with χ(H) =: r ≥ 2 and hcf(H) = 1.

Let h := |H| and ω(H) := (h− σ(H)) /(r − 1). Let β1, λ1 be positive constants such that

0 < β1 � λ1 � σ(H)/ω(H), 1 − σ(H)/ω(H), 1/h. Suppose that F is a complete r-

partite graph with vertex classes U1, . . . , Ur such that: 0 < 1/|F | � β1; |F | is divisible by h;

(1 − λ
1/10
1 )|Ur| ≤ σ(H)|Ui|/ω(H) ≤ (1 − λ1)|Ur| for all i < r; ||Ui| − |Uj|| ≤ β1|F |

whenever 1 ≤ i < j < r. Then F contains a perfect H-tiling.

We will use the Blow-up lemma in tandem with the following generalisation of

Lemma 3.4.4 to conclude that a particular tiling that we construct in a reduced graph

R guarantees a perfect H-tiling in our original graph G.

Lemma 3.4.5. Let H be a graph with χ(H) =: r ≥ 2 and hcf(H) = 1. Let h := |H|. Set

σ ∈ R such that σ(H) ≤ σ < h/r and ω := (h− σ) /(r − 1). Let 0 < β2 � λ2 � σ/ω,

1− σ/ω, 1/h be positive constants. Suppose that F is a complete r-partite graph with vertex

classes U1, . . . , Ur such that: 0 < 1/|F | � β2; |F | is divisible by h; (1−λ1/10
2 )|Ur| ≤ σ|Ui|/ω ≤

(1− λ2)|Ur| for all i < r; ||Ui| − |Uj|| ≤ β2|F | whenever 1 ≤ i < j < r. Then F contains a

perfect H-tiling.

Proof. Note we may assume that σ > σ(H) as otherwise the result follows immediately

from Lemma 3.4.4. We choose β2 � β1 � λ2 � λ1 where β1 and λ1 are as in Lemma 3.4.4.

Additionally we may assume β2, λ2 � (σ/ω − σ(H)/ω(H)).

Let F be as in the statement of the lemma. Set H∗ to be the complete balanced

r-partite graph on rh vertices (that is, each vertex class of H∗ has size h). Observe that H∗

has a perfect H-tiling using precisely r copies of H.
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Repeatedly delete disjoint copies of H∗ from F (and therefore update the classes

U1, . . . , Ur) until the first point for which there is some i < r such that (1 − λ1/10
1 /2)|Ur| ≤

σ(H)|Ui|/ω(H) ≤ (1− 2λ1)|Ur|. Call the resulting graph F ′. Note that σ/ω > σ(H)/ω(H),

so we can indeed obtain F ′. Further note that our (sufficiently small) choice of β2 ensures

each class Uj still contains at least a β
1/2
2 -proportion of the vertices it started with. So now

||Ui| − |Uj|| ≤ β2|F | ≤ β
1/2
2 |F ′| ≤ β1|F ′| whenever 1 ≤ i < j < r. Moreover, this implies

(1 − λ1/10
1 )|Ur| ≤ σ(H)|Uj|/ω(H) ≤ (1 − λ1)|Ur| for all j < r. Thus, by Lemma 3.4.4, F ′

contains a perfect H-tiling and therefore, so too does F , as desired. �

In [44], Kühn and Osthus begin their proof of Theorem 1.1.12 by applying Theo-

rem 1.1.6. In our proof of Theorem 3.0.3 we will use Theorem 2.6.1. We state it again here

for reference.

Theorem 2.6.1 ([29]). Let η > 0 and H be a graph with χ(H) = r and h := |H|. Set

σ ∈ R such that σ(H) ≤ σ ≤ h/r and ω := (h− σ) /(r − 1). Then there exists an integer

n0 = n0(η, σ,H) ∈ N such that the following holds: Suppose G is a graph on n ≥ n0 vertices

with degree sequence d1 ≤ · · · ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i for all 1 ≤ i ≤ ωn

h
.

Then G contains an H-tiling covering all but at most ηn vertices.

To justify a certain claim (Claim 3.7.1) we will apply the following Chernoff bound.

Lemma 3.4.6 (See e.g. [31]). If X ∈ Bi(n, p) and ε ∈ (0, 3/2], then we have that

P(|X − EX| ≥ εEX) ≤ 2e

(
− ε

2

3
EX
)
.
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To prove Theorem 3.5.2 we will need the following elementary arithmetic result.

Lemma 3.4.7 (Bézout’s Lemma). Let a1, a2, . . . , at ∈ Z. Then there must exist integers

y1, y2, . . . , yt ∈ Z such that
t∑
i=1

yiai = hcf(a1, a2, . . . , at)

where hcf(a1, a2, . . . , at) is the highest common factor of a1, a2, . . . , at.

3.5 A tool for the proof of Theorem 3.0.3

In this section, we prove a theorem (Theorem 3.5.2) that will be used in Sections 3.7.4 and

3.7.5 of the proof of Theorem 3.0.3. At the beginning of Section 3.7.3, we will have a certain

B̂-tiling B̂ of a reduced graph R (the graph B̂ will be defined later). Denote the copies of B̂

in B̂ by B̂1, B̂2, . . . , B̂k̂. For applications of Lemma 3.4.5 required at the end of our proof of

Theorem 3.0.3, we will need |VG(B̂i)| to be divisible by h for each 1 ≤ i ≤ k̂. The following

theorem is the crucial tool for ensuring we can remove copies of H from G to achieve this.

For a graph H with χ(H) = r, recall that CH is the set of all optimal colourings of H

and that given an optimal colouring c ∈ CH we let xc,1 ≤ xc,2 ≤ · · · ≤ xc,r denote the sizes

of the colour classes of c. We require the following definitions.

Definition 3.5.1. Let H be a graph with χ(H) =: r. Fix 1 ≤ p ≤ r − 1. For each c ∈ CH ,

define Dc to be the multiset [xc,1, xc,2, . . . , xc,r]. We say that A is a p-subset contained in Dc

if A is a multiset, |A| = p and A = [xc,j1 , xc,j2 , . . . , xc,jp ] where j1, j2, . . . , jp ∈ {1, . . . , r} are

distinct. Let zp be the number of p-subsets contained in Dc and observe that zp ≤
(
r
p

)
. For

each colouring c ∈ CH , label the p-subsets contained in Dc by Ap,c,1, Ap,c,2, . . . , Ap,c,zp . Let

Sp,c,J =
∑

x∈Ap,c,J x for each c ∈ CH , 1 ≤ J ≤ zp.
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Theorem 3.5.2. Let H be an r-partite graph and let h := |H|. Fix 1 ≤ p ≤ r − 1. Let b be

the number of components of H and t1, . . . , tb be the sizes of the components of H. Then

• if r = 2 and hcfc(H) = 1, there exists a collection of non-negative integers {ai : 1 ≤

i ≤ b} such that
b∑
i=1

aiti ≡ 1 mod h.

• if r ≥ 3 and hcfχ(H) = 1, there exists a collection of non-negative integers {ap,c,i : c ∈

CH , 1 ≤ i ≤ zp} such that

∑
c∈CH

zp∑
i=1

ap,c,iSp,c,i ≡ 1 mod h.

For each 1 ≤ p ≤ r − 1, c ∈ CH and j ∈ {1, . . . , r}, let Zp,c,j be the multiset defined

by the following table:

Colour class size xc,1 · · · xc,j−1 xc,j xc,j+1 · · · xc,r

Multiplicity in Zp,c,j p · · · p p+ 1 p · · · p

The following fact will be useful in our proof of Theorem 3.5.2.

Fact 3.5.3. For any 1 ≤ J, L ≤ r and 1 ≤ p ≤ r− 1, we can partition Zp,c,J into {xc,L} and

r p-subsets contained in Dc.

Proof of Fact 3.5.3. We assume wlog that xc,1 6= xc,2 6= . . . 6= xc,r.4 If L = J then clearly

there is such a partition. So assume L 6= J . Partition Zp,c,J into {xc,J} and r many p-subsets
4If there exist i1 6= i2 such that xc,i1 = xc,i2 , then we label xc,i with x′c,i for each 1 ≤ i ≤ r, define D′c to

be the set {x′c,1, x′c,2, . . . , x′c,r} and define a p-subset contained in D′c to be a subset of size p in D′c. Further,
let Z ′p,c,J be the multiset defined in the same way as Zp,c,J , but with x′c,i replacing xc,i for each 1 ≤ i ≤ r.
The proof of Fact 3.5.3 is then exactly the same, replacing Zp,c,J with Z ′p,c,J , Dc with D′c and xc,i with x′c,i
for i = 1, . . . , r. The resulting partition of Z ′p,c,J into x′c,L and r many p-subsets contained in D′c clearly
yields a partition of Zp,c,J into xc,L and r many p-subsets contained in Dc.
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contained in Dc. Denote this partition by P . Assume there exists a p-subset contained in

Dc in P which contains xc,L and does not contain xc,J and denote it by A. Then remove the

element xc,L from A to form a (p− 1)-subset contained in Dc, denoted by A′. Concatenate

A′ and {xc,J} to form a p-subset contained in Dc. Then Lemma 3.5.3 holds.

So assume no such A exists. Observe that since p ≤ r − 1 there exists a p-subset

contained in Dc in P that does not contain xc,J . Denote this p-subset contained in Dc by

B1. By assumption, B1 does not contain xc,L. Let B2 be a p-subset contained in Dc in P

that does contain xc,L. Then by assumption, B2 must also contain xc,J . Observe that there

must exist an element xc,K such that K 6= L, J and we have that B1 contains xc,K and B2

does not contain xc,K . Remove the element xc,K from B1 to form a (p− 1)-subset contained

in Dc; denote it by B′1. Further, remove the element xc,L from B2 to form a (p − 1)-subset

contained in Dc; denote it by B′2. Concatenate B′1 and {xc,J} and concatenate B′2 and {xc,k}

to form p-subsets contained in Dc. Hence Fact 3.5.3 holds.

Proof of Theorem 3.5.2. Firstly, we will consider the case when r = 2 and hcf(H) = 1.

In this case, as hcf(H) = 1 we must have that hcfc(H) = 1. Hence H must have multiple

components. The sizes of these components of H are t1, t2, . . . , tb. Since hcfc(H) = 1, by

Bezout’s Lemma (Lemma 3.4.7) there exist integers a′1, . . . , a′b such that

b∑
i=1

a′iti = hcf(t1, . . . , tb) = 1.

Since
∑b

i=1 ti = h, there exists â ∈ N ∪ {0} such that

b∑
i=1

(a′i + â)ti ≡ 1 mod h

and

a′i + â ≥ 0 for all 1 ≤ i ≤ b.
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For each 1 ≤ i ≤ b, take ai := a′i + â.

Next consider when r ≥ 3. Instead of explicitly calculating ap,c,i for each c ∈ CH ,

1 ≤ i ≤ zp, we will construct for each c ∈ CH a multiset Xc of bounded size which can be

partitioned into p-subsets contained in Dc. Further, we will construct our multisets Xc such

that ∑
c∈CH

∑
x∈Xc

x ≡ 1 mod h.

Observe that constructing such multisets Xc immediately yields a collection of non-negative

integers {ap,c,i : c ∈ CH , 1 ≤ i ≤ zp} that satisfy the conditions in Theorem 3.5.2. Indeed, for

each c ∈ CH and 1 ≤ i ≤ zp, we take ap,c,i to be precisely the number of times Ap,c,i occurs

in the partition of Xc into p-subsets.

In order to start constructing our multisets Xc, we define the following multiset:

D∗(H) :=
⋃
c∈CH

[xc,j+1 − xc,j | j = 1, . . . , r − 1].

Since hcf(H) = 1 we know that hcfχ(H) = 1. Hence we can apply Lemma 3.4.7 to the

multiset D∗(H) to get for each c ∈ CH , 1 ≤ j ≤ r − 1 integers bc,j such that the following

holds: ∑
c∈CH

r−1∑
j=1

bc,j(xc,j+1 − xc,j) ≡ 1 mod h. (3.1)

We now construct our multisets Xc. Fix c ∈ CH . Choose tc ∈ N to be the smallest

natural number such that

ptc ≥ max{|bc,1|, |bc,1 − bc,2|, |bc,2 − bc,3|, . . . , |bc,r−2 − bc,r−1|, |bc,r−1|}.

Then ptc−bc,1, ptc+bc,1−bc,2, ptc+bc,2−bc,3, . . . , ptc+bc,r−2−bc,r−1, ptc+bc,r−1 are non-negative

integers. Let Yc be the multiset defined by the following table:
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Colour class size xc,1 xc,2 xc,3 · · · xc,r−1 xc,r

Multiplicity in

Yc
ptc − bc,1

ptc+bc,1−

bc,2

ptc+bc,2−

bc,3
· · ·

ptc + bc,r−2 −

bc,r−1

ptc+bc,r−1

Then |Yc| = rptc. If we can partition Yc into p-subsets contained in Dc then we take Xc := Yc.

Assume we cannot. Then the multiplicities of xc,1, . . . , xc,r in Yc must be sufficiently different

from one another. We employ the following algorithm which transforms Yc into a multiset

which can be partitioned into p-subsets contained in Dc using Fact 3.5.3. To state the

algorithm we require the following definitions.

Definition 3.5.4. For each c ∈ CH , 1 ≤ i ≤ r, let mc,i be the multiplicity of xc,i in Yc. Let

J, L ∈ {1, . . . , r} be such that

• mc,J ≥
∑r
i=1mc,i
r

;

• mc,L ≤
∑r
i=1mc,i
r

;

• mc,L + 1 6= mc,J ;

• mc,L 6= mc,J .

Let Y ′c := Yc − {xc,J}+ {xc,L}.5 Then we say that Y ′c is more balanced than Yc.

Algorithm.

1) Let Q := ∅.

2) If |mc,i − mc,j| = 0 for all 1 ≤ i, j ≤ r, output Yc and Q. Otherwise, choose J, L ∈

{1, . . . , r} such that Y ′c := Yc − {xc,J}+ {xc,L} is more balanced than Yc.6

5That is, Y ′c is the multiset Yc except with xc,J having multiplicity mc,J − 1 and xc,L having multiplicity
mc,L + 1.

6Observe that we cannot ever have |mc,i −mc,j | ≤ 1 for all i and j, with equality for some i and j, by
definition of Yc.
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3) Add the colour classes sizes of p copies of H with colouring c to Yc (that is, xc,i now

has multiplicity mc,i + p in Yc for each 1 ≤ i ≤ r).

4) Take Zp,c,J to be the union of {xc,J} and the colour class sizes of the p copies of H we

just added. By Fact 3.5.3 there exists a partition of Zp,c,J into {xc,L} and r p-subsets

contained in Dc.

5) Place into Q these r p-subsets contained in Dc.

6) Take Yc := Y ′c and update the value of each mc,i (that is, mc,J has decreased by 1 and

mc,L has increased by 1). Go to Step 2.

Therefore, at the end of the algorithm |Yc| = rptc and |mc,i − mc,j| = 0 for all

1 ≤ i, j ≤ r. In particular, it is easy to see that Yc now has a partition QYc into p-subsets

contained in Dc. Let t′c be the number of collections of colour class sizes of p copies of H

added during the algorithm and define t̂c := tc + t′c. Then the multiset Ŷc, defined by the

table below, can be partitioned into p-subsets contained in Dc using the partition Q ∪QYc :

Colour class size xc,1 xc,2 xc,3 · · · xc,r−1 xc,r

Multiplicity in

Ŷc
pt̂c − bc,1

pt̂c+bc,1−

bc,2

pt̂c+bc,2−

bc,3
· · ·

pt̂c + bc,r−2 −

bc,r−1

pt̂c+bc,r−1

Take Xc := Ŷc. We now confirm that our multisets Xc satisfy

∑
c∈CH

∑
x∈Xc

x ≡ 1 mod h.
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By (3.1) and the definition of Xc for each c ∈ CH we have

∑
c∈CH

∑
x∈Xc

x

=
∑
c∈CH

(
r−1∑
j=1

bc,j(xc,j+1 − xc,j) + pt̂c

(
r∑
j=1

xc,j

))

=
∑
c∈CH

r−1∑
j=1

bc,j(xc,j+1 − xc,j) +

(
p
∑
c∈CH

t̂c

)
h

(3.1)
≡ 1 mod h.

Therefore, recalling the discussion earlier in this proof, there must exist the desired collection

of non-negative integers {ap,c,i : c ∈ CH , 1 ≤ i ≤ zp}, and we take a to be the maximum

element in this collection.

3.6 Proof Overview

The rest of this chapter will be devoted to proving Theorem 3.0.3 and here we outline the

proof. As noted previously, our proof follows closely Kühn and Osthus’ proof of Theo-

rem 1.1.12 in [44].

Let H, G, η and σ be as in the statement of the theorem. In particular, h := |H| and

ω := (h− σ)/(r− 1). Note that it suffices to prove the result in the case when σ ∈ Q. First

we define a bottle graph B that contains a perfect H-tiling.

Definition 3.6.1. Let a, b ∈ N such that σ = a/b. Let ω(H) := (h − σ(H))/(r − 1) and

ĉ := b(r−1)(ω(H)−σ(H)). Define B to be the r-partite bottle graph with neck σĉ and width

ωĉ (note that σĉ, ωĉ ∈ N). Observe that |B| = hĉ; σ(B) = σĉ; ω(B) = ωĉ. Further,

χcr(B) = r − 1 + σ/ω = h/ω.
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Since |B| = hĉ; σ(B) = σĉ; ω(B) = ωĉ, we have that G satisfies the hypothesis of

Theorem 2.6.1 with B, σ(B) and ω(B) playing the roles of H, σ and ω respectively. That is,

G contains an almost perfect B-tiling. In fact, as the reduced graph R of G almost inherits

the degree sequence of G, Theorem 2.6.1 ensures that R contains an almost perfect B-tiling

B. Further note that the choice of ĉ implies that B has a perfect H-tiling consisting of ĉ

copies of H. Indeed, this follows as B has a perfect tiling of a− σ(H)b copies of Kh,...,h and

hb − ar copies of H, where Kh,...,h is the complete r-partite graph with each vertex class

having size h.

Ideally one would like to use B as a framework to build the perfect H-tiling in G.

However, as explained shortly, we need more flexibility in our tiling in R. Therefore, we

introduce the following ‘modified’ version of B.

Definition 3.6.2. Let s ∈ N be sufficiently large and λ ∈ R+ be sufficiently small where

σ(1+λ)s/w ∈ N. Recall that σ < ω. Let B̂ be the r-partite bottle graph with neck σ(1+λ)s/ω

and width s.7 Moreover, we choose λ and s such that B̂ contains a perfect B-tiling. Hence

B̂ contains a perfect H-tiling. Note that

χcr(B̂) = r − 1 + σ(1 + λ)/ω.

Since λ is chosen to be small (and so χcr(B̂) is very close to χcr(B)), one can still

apply Theorem 2.6.1 on inputs B̂ and R. That is, R contains an almost perfect B̂-tiling B̂.

Denote the copies of B̂ in B̂ by B̂1, B̂2, . . . , B̂k̂. By removing a small number of vertices from

each cluster in R, we can ensure the edges of each B̂i correspond to superregular pairs. Let

V0 denote the set of all vertices in G not contained in the clusters lying in the tiling B̂.

For each 1 ≤ i ≤ k̂, let Ĝi be the r-partite subgraph of G whose jth vertex class is
7We have that σ(1 + λ)/ω < 1 by our choice of λ and that σ < ω.
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the union of all those clusters contained in the jth vertex class of B̂i, for each 1 ≤ j ≤ r. Let

G∗i be the complete r-partite graph on the same vertex set as Ĝi. We introduce the graph

B̂ (rather than just working with B) since B̂ has the following crucial property: For each

1 ≤ i ≤ k̂ we can arbitrarily delete a small number of vertices from G∗i (and correspondingly

Ĝi) and, provided |V (G∗i )| is now divisible by h, the resulting graph satisfies the hypothesis

of Lemma 3.4.5. That is, this graph contains a perfect H-tiling. Then the Blow-up lemma

(Lemma 3.4.3) implies that each Ĝi contains a perfect H-tiling.

We make use of this property of B̂ as follows: In Section 3.7.2 we remove copies of

H from G that cover all vertices in V0, as well as a small (possibly zero) number of vertices

from each Ĝi; call this H-tiling (formed from these copies of H) H1. Deleting these covered

vertices from each Ĝi, if |V (Ĝi)| (= |V (G∗i )|) is still divisible by h for each 1 ≤ i ≤ k̂ then

each Ĝi now contains a perfect H-tiling (by our argument above). However, for some i, we

may have that |V (Ĝi)| is not divisible by h. So in Section 3.7.3 we remove a further bounded

number of copies of H, forming an H-tiling H2, to ensure |V (Ĝi)| (= |V (G∗i )|) is divisible

by h for each 1 ≤ i ≤ k̂. Thus, we now have that each Ĝi contains a perfect H-tiling Ĥi.

Combining the tilings H1,H2, Ĥ1, . . . , Ĥk̂ yields a perfect H-tiling in G, as desired.

Our argument in Section 3.7.3 will split into two cases, the first being when χ(H) ≥ 3

and the latter when H is bipartite. This is where our proof differs the most from that in [44]

as we must make use of Theorem 3.5.2 to find suitable copies of H to ensure each |V (Ĝi)| is

divisible by h.
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3.7 Proof of Theorem 3.0.3

3.7.1 Applying the regularity lemma

Note that it suffices to prove the theorem in the case when σ ∈ Q. Let n be sufficiently large

and fix constants that satisfy the following hierarchy

0 < 1/n� 1/M ′ � ε� d� η1 � β � α� λ� η, σ/ω, 1− σ/ω, 1/h. (3.2)

As discussed in Section 3.6, we choose s ∈ N sufficiently large and define B̂ to be the r-partite

bottle graph with neck σ(1 + λ)s/ω and width s. As before, we choose λ and s such that

B̂ contains a perfect B-tiling, which implies that B̂ contains a perfect H-tiling. Note again

that

χcr(B̂) = r − 1 + σ(1 + λ)/ω.

Moreover, choose η1 and M ′ such that

η1 � 1/|B̂| and M ′ ≥ n0(η1, σ(B̂), B̂),

where n0 is defined as in Theorem 2.6.1. Let G be an n-vertex graph as in the statement

of Theorem 3.0.3. Apply Lemma 2.3.2 with parameters ε, d and M ′ to G to obtain clusters

V1, . . . , Vk, an exceptional set V0 and a pure graph G′, where q := |V1| = · · · = |Vk| and

k ≥M ′. Let R be the corresponding reduced graph. Using (3.2), we may apply Lemma 2.3.3

with parameters M ′, n, ε, d, η, h, ω, σ to conclude that R has degree sequence dR,1 ≤ dR,2 ≤

· · · ≤ dR,k where

dR,i ≥
(

1− ω + σ

h

)
k +

σ

ω
i+

ηk

2
for all 1 ≤ i ≤ ωk

h
. (3.3)

77



A degree sequence version of the Kühn–Osthus tiling theorem

For a graph F , recall that σ(F ) denotes the size of the smallest possible colour class in any

χ(F )-colouring of F and ω(F ) := (|F | − σ(F ))/(χ(F )− 1).

We aim to apply Theorem 2.6.1 to conclude that there is a B̂-tiling covering all

but at most η1k vertices in R. To do so we need to conclude that R has degree sequence

dR,1 ≤ · · · ≤ dR,k such that

dR,i ≥

(
1− ω(B̂) + σ(B̂)

|B̂|

)
k +

σ(B̂)

ω(B̂)
i for all 1 ≤ i ≤ ω(B̂)k

|B̂|
. (3.4)

Recall that χcr(B̂) = r − 1 + σ(1 + λ)/ω. Since λ � η and |B̂| = sχcr(B̂) we have

that

−ωk
h

+
ηk

4
≥ − sk

|B̂|
.

Hence by (3.3),

dR,i ≥

(
1− s

|B̂|
− σ

h

)
k +

σ

ω
i+

ηk

4
for all 1 ≤ i ≤ ωk

h
.

Further, observe that

−σk
h
> −σ(1 + λ)sk

ω|B̂|
and

ωk

h
≥ sk

|B̂|
.

Thus

dR,i ≥

(
1−

s+ σ(1+λ)s
ω

|B̂|

)
k +

σ

ω
i+

ηk

4
for all 1 ≤ i ≤ sk

|B̂|
.

Using again the fact that λ� η we have that

σ

ω
i+

ηk

4
≥ σ(1 + λ)

ω
i for all 1 ≤ i ≤ sk

|B̂|
.
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Then, σ(B̂) = σ(1 + λ)s/ω and ω(B̂) = s we have that

dR,i ≥

(
1− ω(B̂) + σ(B̂)

|B̂|

)
k +

σ(B̂)

ω(B̂)
i for all 1 ≤ i ≤ ω(B̂)k

|B̂|
,

as desired.

Since |V (R)| = k ≥ M ′ ≥ n0(η1, σ(B̂), B̂) and (3.4) holds, we apply Theorem 2.6.1

to find a B̂-tiling B̂ covering all but at most η1k vertices in R. Denote the copies of B̂ in

B̂ by B̂1, B̂2, . . . , B̂k̂. Now delete all clusters not contained in some B̂i from R and add the

vertices in these clusters to V0. Therefore now

|V0| ≤ εn+ η1n ≤ 2η1n.

Let R′ be the reduced graph induced by all the remaining clusters and let k′ := |V (R′)|.

Since η1 � η, (3.3) implies that R′ has degree sequence dR′,1 ≤ dR′,2 ≤ · · · ≤ dR′,k′ where

dR′,i ≥
(

1− ω + σ

h

)
k′ +

σ

ω
i+

ηk′

4
for all 1 ≤ i ≤ ωk′

h
. (3.5)

For each B̂i in B̂, let Bi be a perfect B-tiling in B̂i (recall that earlier we chose s and

λ such that B̂ contains a perfect B-tiling). Let B :=
⋃
Bi and observe that B is a perfect

B-tiling in R′. To aid with calculations we will sometimes work with B instead of B̂.

Let q′ := (1 − ε|B̂|)q. By Proposition 3.4.2, for all 1 ≤ i ≤ k̂ we can remove ε|B̂|q

vertices from each cluster Va belonging to B̂i so that each edge VaVb in B̂i now corresponds

to a (2ε, d/2)-superregular pair (Va, Vb)G′ . Further, all clusters now have size q′ and for

each edge VaVb in B̂i the pair (Va, Vb)G′ is a 2ε-regular pair with density at least d/2 (by

Fact 2.3.4).
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Add all the vertices we removed from the clusters to V0 and observe that now, since

ε� η1, 1/|B̂|,

|V0| ≤ 3η1n. (3.6)

From now on, we will refer to the subclusters of size q′ as the clusters of R′.

By considering a random partition of each cluster Va, and applying a Chernoff bound,

one can obtain the following partition of each cluster.

Claim 3.7.1. Let Va be a cluster. Then there exists a partition of Va into a red part V red
a

and a blue part V blue
a such that

∣∣∣ ∣∣V red
a

∣∣− ∣∣V blue
a

∣∣ ∣∣∣ ≤ εq′

and ∣∣∣ ∣∣NG(x) ∩ V red
a

∣∣− ∣∣NG(x) ∩ V blue
a

∣∣ ∣∣∣ < εq′ for all x ∈ V (G).

Proof of Claim 3.7.1. Let (V red
a , V blue

a ) be a partition of Va. Independently of all other

vertices in Va, place each vertex v ∈ Va into V red
a with probability 1/2 and into V blue

a with

probability 1/2. Let X := |V red
a | and observe that EX = q′/2 and |V blue

a | = q′ − X. Then

applying Lemma 3.4.6 we have that

P
(∣∣∣ ∣∣V red

a

∣∣− ∣∣V blue
a

∣∣ ∣∣∣ < εq′
)

= P(|2X − q′| < εq′) = P(|X − q′/2| < εq′/2)

= 1− P(|X − q′/2| ≥ εq′/2)

≥ 1− 2e

(
−ε2q′

6

)
.

Observe that given any x ∈ V (G),
∣∣NG(x) ∩ V red

a

∣∣ =
∣∣NVa(x) ∩ V red

a

∣∣ and ∣∣NG(x) ∩ V blue
a

∣∣ =∣∣NVa(x) ∩ V blue
a

∣∣. Let Y :=
∣∣NVa(x) ∩ V red

a

∣∣ and observe that EY = |NVa(x)| /2 and
∣∣NVa(x) ∩ V blue

a

∣∣ =

|NVa(x)| − Y . Clearly q′ ≥ |NVa(x)|.
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Let x ∈ V (G). If |NVa(x)| < εq′, then

P
(∣∣∣ ∣∣NVa(x) ∩ V red

a

∣∣− ∣∣NVa(x) ∩ V blue
a

∣∣ ∣∣∣ ≤ εq′
)

= 1.

If |NVa(x)| ≥ εq′, then applying Fact 3.4.6 we have that

P
(∣∣∣ ∣∣NVa(x) ∩ V red

a

∣∣− ∣∣NVa(x) ∩ V blue
a

∣∣ ∣∣∣ < εq′
)

= P
(∣∣2Y − |NVa(x)|

∣∣ < εq′
)

≥ P
(∣∣2Y − |NVa(x)|

∣∣ < ε |NVa(x)|
)

= 1− P
(∣∣Y − |NVa(x)| /2

∣∣ ≥ ε |NVa(x)| /2
)

≥ 1− 2e

(
−ε2|NVa (x)|

6

)
.

From Lemma 2.3.2, we know that q′ ≥ (1− 3η1)n/M . Hence

P
(
∀x ∈ V (G),

∣∣∣ ∣∣NG(x) ∩ V red
a

∣∣− ∣∣NG(x) ∩ V blue
a

∣∣ ∣∣∣ < εq′
)
≥ 1− 2ne

−ε2|NVa (x)|
6

≥ 1− 2ne−
ε3(1−3η1)n

6M .

Hence we can choose the partition required for Claim 3.7.1.

Apply Claim 3.7.1 to every cluster to yield a partition of V (G)−V0 into red and blue

vertices. In the next section, we will remove vertices of particular copies of H in G from their

respective clusters and do so in such a way that we avoid all the red vertices of G. After

removing these vertices, we will be able to conclude that that each (modified) pair (Va, Vb)G′

is (5ε, d/5)-superregular8 since V red
a and V red

b will have had no vertices removed from them.

After the next section, we will only remove a bounded number of vertices from the clusters,

which will not affect the superregularity of pairs of clusters in any significant way.

8Where VaVb is any edge in any B̂i in B̂.
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3.7.2 Covering the exceptional vertices

As in [44], given x ∈ V0, we call a copy of B ∈ B useful for x if there exist r − 1 clusters in

B, each belonging to a different vertex class of B, such that x has at least αq′ neighbours

in each cluster. Denote by kx the number of copies of B in B that are useful for x. The

following calculation demonstrates that

kxβq
′ ≥ |V0|.

By (3.2) and (3.6), we have that

kx|B|q′ + (|B| − kx)(|B|q′ − (1− α)q′ĉ(ω + σ))

≥ dG(x)− |V0|

≥
(

1− ω + σ

h
+
η

2

)
q′|B||B|,

which implies

(|B| − kx)(−(1− α)q′ĉ(ω + σ)) ≥
(
−ω + σ

h
+
η

2

)
q′hĉ|B|.

Rearranging, we get

kx ≥
|B|
(
hη
2
− α(ω + σ)

)
(ω + σ)(1− α)

.

Since α� η, we have that

kx ≥
η|B|

4
.

Now as |B|q′ ≥ n
2|B| and η1 � β, η, 1/h we have that

kxβq
′ ≥ η|B|βq′/4 > 3η1n ≥ |V0|.
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Hence we can assign greedily each vertex x ∈ V0 to a copy Bx that is useful for x and

do so in such a way that at most βq′ vertices in V0 are assigned to the same copy B ∈ B.

Then for each copy Bx ∈ B that is useful for some x ∈ V0 we can apply Lemma 2.3.5 to find

a copy of H containing x which contains no red vertices. We do this as follows:

For each x, since ε� α and x has at least αq′ neighbours in r− 1 clusters belonging

to different vertex classes of Bx, Claim 3.7.1 implies that x has at least αq′/4 blue neighbours

in each of these r−1 clusters. Further, we can find αq′/4 blue vertices in a cluster belonging

to the vertex class of Bx that does not necessarily contain any neighbours of x. Then it is

easy to see that we can find subclusters S1, . . . , Sr of r clusters in Bx such that: all vertices

in S1 ∪ · · · ∪ Sr are blue vertices; |Si| = αq′/4 for each i; every vertex in S1 ∪ · · · ∪ Sr−1

is a neighbour of x in G. By Fact 2.3.4, each pair (Si, Sj), 1 ≤ i < j ≤ r, corresponds to

an (8ε/α)-regular pair in G′ with density at least d/3. Using Lemma 2.3.5 with parameters

8ε/α, d/3, αq′/4, h−1, we find a copy of H containing x. Since each B ∈ B has been assigned

to at most βq′ vertices in V0 and β � α (from (3.2)), we may repeat the above argument

to find copies of H that contain each exceptional vertex in such a way that the copies are

disjoint and contain no red vertices. Denote the H-tiling induced by these copies of H by

H1. Remove all the vertices lying in these copies of H from their respective clusters. Observe

that currently, for each i,

(1− βh)q′ ≤ |Vi| ≤ q′.

3.7.3 Making the blow-up of each B ∈ B divisible by h

For a subgraph S ⊆ R′, let VG(S) denote the union of the clusters in S. We aim to apply

Lemma 3.4.3 to each B̂i in B̂ to find an H-tiling that covers every vertex of VG(B̂i). Combin-

ing these H-tilings with H1 will result in a perfect H-tiling in G as desired. Recall that, for

each 1 ≤ i ≤ k̂, Ĝi is the r-partite subgraph of G′ whose jth vertex class is the union of all

83



A degree sequence version of the Kühn–Osthus tiling theorem

those clusters contained in the jth vertex class of B̂i, for each 1 ≤ j ≤ r. Further, recall that

G∗i is the complete r-partite graph on the same vertex set as Ĝi. To apply Lemma 3.4.3 to

each B̂i in B̂ we require that each G∗i contains a perfect H-tiling. To guarantee the existence

of these perfect H-tilings we will apply Lemma 3.4.5. To use Lemma 3.4.5 on G∗i we require

that |V (Ĝ∗i )| is divisible by h. When we first chose our B̂-tiling this was the case. Indeed,

as each B̂i contained a perfect H-tiling and every cluster Vi was the same size, |V (G∗i )| was

divisible by h. However, in the last section we took out vertices from G in a greedy way,

changing the sizes of the clusters in R′. Hence we cannot guarantee that |V (G∗i )| is still

divisible by h for each i. Now we will take out a further bounded number of copies of H in

G to ensure |V (G∗i )| is divisible by h for each 1 ≤ i ≤ k̂. In fact, we will ensure |VG(B)| is

divisible by h for each B ∈ B.

We now split into two cases: when r ≥ 3 and when r = 2. When r ≥ 3 we have

that hcfχ(H) = 1 and this property will be central to our argument. For r = 2, we have

that hcfc(H) = 1 and hcfχ(H) ≤ 2. The former property will provide us an easy way of

removing copies of H from V (G) to ensure |VG(B)| is divisible by h for each B ∈ B. Further,

we will not need to use the property that hcfχ(H) ≤ 2 in our argument. The only time we

(implicitly) use the property that hcfχ(H) ≤ 2 will be when we apply Lemma 3.4.5.

3.7.4 Case 1: r ≥ 3

For a subgraph S of R′, let VR′(S) denote the vertex set of S. To assist in our argument, we

define an auxiliary graph F whose vertices are the copies of B in B and for B1, B2 ∈ V (F ),

we let B1B2 be an edge in F if and only if there exists a vertex x in VR′(B1) and r − 1

vertices in VR′(B2), all in different vertex classes of B2, (or vice versa) such that these r

vertices induce a Kr in R′. Assume F is connected and let B1B2 be an edge in F . Then

we may apply Lemma 2.3.5 to find h − 1 disjoint copies of H which each have one vertex
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in VG(B1) and all other vertices in VG(B2) (or vice versa). This means that we can remove

at most h− 1 copies of H to ensure VG(B1) is divisble by h. Continuing in this way we can

‘shift the remainders mod h’ along a spanning tree of F to ensure |VG(B)| is divisible by h

for each B ∈ B. (Indeed, since n is divisible by h we have that
∑

B∈B |VG(B)| is divisible by

h.)

So assume F is not connected. Let C be the set of all components of F . For C ∈ C

we will write VR′(C) for the set of vertices in R′ belonging to copies of B in C and VG(C) for

the union of the clusters corresponding to the vertices in VR′(C). In what follows our aim is

to remove a bounded number of copies of H to ensure that for each component C ∈ C we

have that |VG(C)| is divisible by h. Then we can apply our previous argument to spanning

trees of each component to achieve that |VG(B)| is divisible by h for each B ∈ B.

Call vertices in R′ of degree at least

(1− ω/h+ η/4)k′ (3.7)

big. If a vertex is not big, call it small. Note by (3.5) that all but at most ωk′/h− 1 vertices

in R′ are big.

Claim 3.7.2. Let C1, C2 ∈ C, C1 6= C2 and let a ∈ VR′(C2). Then

|NR′(a) ∩ VR′(C1)| <
(

1− ω + σ

h
+
η

4

)
|VR′(C1)|.

Proof. Recall that B has width ωĉ. Suppose Claim 3.7.2 is false. Then there exists some

B0 ∈ B such that B0 ∈ C1 and

|NR′(a) ∩B0| ≥
(

1− ω + σ

h
+
η

4

)
|B0| = (r − 2)ωĉ+

ηhĉ

4
.

Thus a must have neighbours in at least r−1 vertex classes of B0. We can therefore construct
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a copy of Kr in R′ which consists of a together with r − 1 of its neighbours in B0. But by

definition of the auxiliary graph F , we must have that B0 is adjacent in F to the copy of B

in B that contains a. This contradicts that C1 and C2 were different components of F . Thus

Claim 3.7.2 holds. �

Claim 3.7.3. There exist components C1, C2 ∈ C, C1 6= C2, a big vertex x1 ∈ V (R′) and

another (not necessarily big) vertex x2 ∈ V (R′) such that x1 ∈ V (C1), x2 ∈ V (C2) and

x1x2 ∈ E(R′).

Proof. Take some big vertex x ∈ R′. Then x is in VR′(Cx) for some component Cx of F .

We may assume |Cx| ≥ (1 − ω/h + η/4)k′, as otherwise x has a neighbour in R′ outside of

Cx and we are done. Since r ≥ 3,

|R′ \ VR′(Cx)| ≤ (ω/h− η/4)k′ < (1− ω/h+ η/4)k′.

If R′ \ VR′(Cx) contains any big vertex y, then y has a neighbour in VR′(Cx) since |R′ \

VR′(Cx)| < (1−ω/h+ η/4)k′ and we are done. Hence assume all big vertices are in VR′(Cx).

Then all vertices in R′ \ VR′(Cx) are small vertices. Let z be a small vertex in R′ \ VR′(Cx).

Since r ≥ 3,

dR′(z) ≥ (1− (ω + σ)/h+ η/4)k′ ≥ (ω/h+ η/4)k′.

Since there are at most ωk′/h − 1 small vertices in R′, we have that z has a neighbour w

which is a big vertex. But then w ∈ VR′(Cx). Thus Claim 3.7.3 holds. �

Claim 3.7.4. There exists a copy K ′ of Kr in R′ which has vertices in at least two compo-

nents of F .

Proof. By Claim 3.7.3, there exist components C1, C2 ∈ C, a big vertex x1 ∈ V (R′) and

another vertex x2 ∈ V (R′) such that x1 ∈ VR′(C1), x2 ∈ VR′(C2) and x1x2 ∈ E(R′). By (3.5)
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and (3.7), x1 and x2 have a common neighbourhood of size at least

((r − 3)ω/h+ η/2)k′.

If r = 3, then we choose x3 in the common neighbourhood of x1 and x2, and we are done. So

assume r ≥ 4. Since there are at most ωk′/h small vertices, we can choose a big vertex x3 in

the common neighbourhood of x1 and x2. Then x1, x2 and x3 have a common neighbourhood

of size at least

((r − 4)ω/h+ 3η/4)k′.

If r = 4, then we choose x4 in the common neighbourhood of x1, x2 and x3 and we are done.

Otherwise r ≥ 5 and we continue as before. Thus Claim 3.7.4 holds. �

For such a copy K ′ of Kr in R′, we now show that we can take out a bounded number

of copies of H from the clusters corresponding to the vertices of K ′ in such a way that

leaves one of the components C ∈ C with |VG(C)| divisible by h. We use Theorem 3.5.2 and

Lemma 2.3.5 to achieve this. We will then repeat this process to ensure |VG(B)| is divisible

by h for each B ∈ B.

Claim 3.7.5. There exists t ∈ N such that by removing at most t+ (|B| − |C|)(h− 1) copies

of H from G we can ensure |VG(B)| is divisible by h for each B ∈ B.

Proof. Firstly, for each component C ∈ C we will remove copies of H to ensure |VG(C)| is

divisible by h. Apply Claim 3.7.4 to find a copy K ′ of Kr in R which has vertices in at least

two components of F . Let C∗ be a component of F which contains at least one vertex of K ′.

Let p be the number of vertices of K ′ contained in C∗ and observe that 1 ≤ p ≤ r − 1. Let

0 ≤ g ≤ h− 1 such that |VG(C∗)| ≡ g mod h. If g = 0 then |VG(C∗)| is divisible by h and

we consider the graphs F1 := F − V (C∗) and R1 := R− VR(C∗). So assume 1 ≤ g ≤ h− 1.
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Observe that we can apply Lemma 2.3.5 to find any bounded number of disjoint copies

of H in G in the clusters of K ′ (see the end of Section 3.7.2). For any copy H ′ of H in G in

the clusters of K ′ there are precisely p colour classes of some colouring c of H ′ contained in

the clusters of K ′ in VG(C∗). Moreover, given any colouring c of H and p-subset P contained

in Dc (recall Definition 3.5.1) we can find any bounded number of disjoint copies H ′ of H in

G with colouring c in the clusters of K ′ so that the colour classes of H ′ in VG(C∗) correspond

to the p-subset P . So there exists j ∈ {1, . . . , zp} such that P = Ap,c,j (recall this notation

from Definition 3.5.1). Thus, removing such a copy H ′ of H from G would result in removing

precisely Sp,c,j vertices from VG(C∗).

By Theorem 3.5.2, there exist a collection of non-negative integers {ap,c,i : c ∈ CH , 1 ≤

i ≤ zp} such that

g ·
∑
c∈CH

zp∑
i=1

ap,c,iSp,c,i ≡ g mod h.

Let ā = max ap,c,i : c ∈ CH , 1 ≤ i ≤ zp. Hence we can remove

g ·
∑
c∈CH

zp∑
i=1

ap,c,i ≤ (h− 1)ā|CH |zp

suitable disjoint copies of H in G in the clusters of K ′ to make |VG(C∗)| divisible by h.

Next we consider graphs F1 := F − V (C∗) and R1 := R′ − VR(C∗). Let k1 := |R1|.

Claim 3.7.2 and (3.5) together give us that R1 has degree sequence dR1,1 ≤ · · · ≤ dR1,k1 where

dR1,i ≥
(

1− ω + σ

h

)
k1 +

σ

ω
i+

ηk1

4
for all 1 ≤ i ≤ ωk1

h
.

Suppose |C| ≥ 2. Arguing as in Claims 3.7.3 and 3.7.4 we can find a copy K ′1 of Kr in R1

which has vertices in at least two components of F1.

Let C∗∗ be a component of F which contains at least one vertex of K ′1. As before by
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removing at most (h− 1)ā|CH |zp copies of H from the clusters of K ′1 we can make |VG(C∗∗)|

divisible by h. Since |G| is divisible by h, we can continue in this way to make |VG(C)|

divisible by h for each component C ∈ C. We then apply the ‘shifting the remainders mod h’

argument mentioned earlier during the ‘F connected’ case to guarantee that |B| is divisible

by h for each B ∈ B. In this process we removed at most (|C| − 1)(h − 1)ā|CH |zp disjoint

copies of H from G. Each time we use the ‘shifting the remainders mod h’ argument on a

connected component C ∈ C we remove at most (|C| − 1)(h− 1) disjoint copies of H in G.

Hence overall we remove at most (|C| − 1)(h− 1)ā|CH |zp + (|B| − |C|)(h− 1) disjoint copies

of H in G. Denote this H-tiling (formed from these copies of H) by H2. �

Observe that now

(1− 2hβ)q′ ≤ |Vi| ≤ q′

for each i since we only removed a bounded number of vertices from G.

3.7.5 Case 2: r = 2

As in the statement of Theorem 3.5.2, let b be the number of components of H and t1, . . . , tb

be the sizes of the components of H. By Theorem 3.5.2, there exists a collection of non-

negative integers {ai : 1 ≤ i ≤ b} such that

b∑
i=1

aiti ≡ 1 mod h.

Let B1, B2 ∈ B. If |VG(B1)| ≡ 0 mod h, define B1 := B \ B1. If not, let p ∈ {1, . . . , h − 1}

such that |VG(B1)| ≡ p mod h. Remove p
∑b

i=1 ai copies of H from VG(B1) ∪ VG(B2) in

the following way: For each 1 ≤ i ≤ b, remove pai copies of H from VG(B1) ∪ VG(B2) such

that the component of order ti is in VG(B1) and all other components are in VG(B2).9 Since
9We use Lemma 2.3.5 to do this.
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p
∑b

i=1 aiti ≡ p mod h, by removing these p
∑b

i=1 ai copies of H from VG(B1) ∪ VG(B2) we

now have that |VG(B1)| is divisible by h. Define B1 := B \B1.

Let B′1, B′2 ∈ B1. If |VG(B′1)| ≡ 0 mod h, define B2 := B1 \ B′1. If not, let p′ ∈

{1, . . . , h−1} such that |VG(B′1)| ≡ p′ mod h. Remove p′
∑b

i=1 ai copies of H from VG(B′1)∪

VG(B′2) in the same way as before. Define B2 := B1 \ B′1 and let ā = max{ai : 1 ≤ i ≤ b}.

Continuing in the same way, we see that by removing at most

(|B| − 1)(h− 1)bā (3.8)

copies of H we can ensure that |B| is divisible by h for each B ∈ B.10 Denote this H-tiling

(formed from these copies of H) by H2.

Observe that now

(1− 2hβ)q′ ≤ |Vi| ≤ q′

for each i since we only removed a bounded number of vertices.

3.7.6 Completing the perfect tiling

As we related at the beginning of Section 3.7.3, we aim to apply Lemma 3.4.3 to each

B̂i ⊆ R′ (1 ≤ i ≤ k̂) where the vertices of R′ are the now modified clusters – modified by

the removing of copies of H in previous sections. Recall that, for each 1 ≤ i ≤ k̂, Ĝi is the

r-partite subgraph of G′ whose jth vertex class is the union of all those clusters contained

in the jth vertex class of B̂i, for each 1 ≤ j ≤ r. Observe that in Section 3.7.3 we made

10Since
∑

B∈B |VG(B)| is divisible by h, after we remove copies of H from B|B|−2 = {B(|B|−2)
1 , B(|B|−2)

2 }
(if necessary), both |VG(B

(|B|−2)
1 )| and |VG(B

(|B|−2)
2 )| will be divisible by h. This explains the presence of

the (|B| − 1) term in (3.8).
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|Ĝi| = |VG(B̂i)| divisible by h for each i. Further,

(1− 2hβ)q′ ≤ |Vi| ≤ q′

for each i. Recall that G∗i is the complete r-partite graph on the same vertex set as Ĝi. Since

0 < 2hβ � σ/ω, 1− σ/ω, 1/h by (3.2), we can apply Lemma 3.4.5 to conclude that each G∗i

contains a perfect H-tiling.

Furthermore, pairs of clusters that correspond to edges of B̂i are still (6ε, d/6)-

superregular. Indeed, in Section 3.7.2 we removed copies of H which avoided red vertices,

resulting in each pair of clusters (in a copy of H) being (5ε, d/5)-superregular. Then, in

Section 3.7.4, or Section 3.7.5 if r = 2, we removed only a constant number of vertices from

each cluster. Hence each pair of clusters (in a copy of H) is (6ε, d/6)-superregular.

We now have all we need to apply Lemma 3.4.3 to find a perfect H-tiling Ĥi in Ĝi

for each 1 ≤ i ≤ k̂. Then

H1 ∪H2 ∪ Ĥ1 ∪ · · · ∪ Ĥk̂

is a perfect H-tiling in G. Hence we have proved Theorem 3.0.3.
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Chapter Four

Towards the 0-statement of the

Kohayakawa-Kreuter Conjecture

This chapter is based on [28]. Recall from Chapter 1 that in this chapter we will prove a

reduction of Conjecture 1.2.3 to a certain deterministic subproblem (Conjecture 4.0.4). To

state Conjecture 4.0.4 we will require a significant preamble. We begin by recalling several

definitions from Chapter 1.

We write G→ (H1, . . . , Hr) to denote the property that whenever we colour the edges

of G with colours from the set [r] := {1, . . . , r} there exists i ∈ [r] and a copy of Hi in G

monochromatic in colour i.

For a graph H, we define

d2(H) :=


(eH − 1)/(vH − 2) if H is non-empty with v(H) ≥ 3,

1/2 if H ∼= K2,

0 otherwise
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and the 2-density of H to be

m2(H) := max{d2(J) : J ⊆ H}.

We say that a graph H is 2-balanced if d2(H) = m2(H), and strictly 2-balanced if for all

proper subgraphs J ⊂ H, we have d2(J) < m2(H).

For graphs H1 and H2 with m2(H1) ≥ m2(H2), we define

d2(H1, H2) :=


e(H1)

v(H1)−2+ 1
m2(H2)

if H2 is non-empty and e(H1) ≥ 1,

0 otherwise

and the asymmetric 2-density of the pair (H1, H2) to be

m2(H1, H2) := max {d2(J,H2) : J ⊆ H1} .

We say that H1 is balanced with respect to (w.r.t.) d2(·, H2) if we have d2(H1, H2) =

m2(H1, H2) and strictly balanced w.r.t. d2(·, H2) if for all proper subgraphs J ⊂ H1 we have

d2(J,H2) < m2(H1, H2). Note that m2(H1) ≥ m2(H1, H2) ≥ m2(H2) (see Proposition 4.3.1).

We define the following for brevity.

Definition 4.0.1. Let H1 and H2 be non-empty graphs. We say that a graph G has a valid

colouring for H1 and H2 if there exists a red/blue colouring of the edges of G that does not

produce a red copy of H1 or a blue copy of H2.

To prove the 0-statement of Conjecture 1.2.3, one only needs to show that G =

Gn,p has a valid colouring for H1 and H2 asymptotically almost surely (a.a.s.) (that is, in

accordance with the intuition for the threshold in Conjecture 1.2.3, we can ignore H3, . . . , Hr
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and colours 3, . . . , r). Further, when m2(H1) > m2(H2) we can assume when proving the

0-statement of Conjecture 1.2.3 that H2 is strictly 2-balanced and H1 is strictly balanced

w.r.t. d2(·, H2). Indeed, if either of these assumptions do not hold then one can replace H1

and H2 with subgraphs H ′1 ⊆ H1 and H ′2 ⊆ H2 such that H ′2 is strictly 2-balanced and H ′1 is

strictly balanced w.r.t. d2(·, H ′2). Then we would aim to show that G has a valid colouring

for H ′1 and H ′2 a.a.s.1 Similarly, when m2(H1) = m2(H2), we can assume when proving the

0-statement of Conjecture 1.2.3 that both H1 and H2 are strictly 2-balanced.

In past work on attacking 0-statements of Ramsey problems (e.g. Conjecture 1.2.3

and Theorem 1.2.2), researchers have applied variants of a standard and natural approach

(see e.g. [33, 49, 51, 61]). In Chapter 4, we prove that every step of this approach, except one,

holds w.r.t. Conjecture 1.2.3. That is, we reduce Conjecture 1.2.3 to a single subproblem.

To state this subproblem we require a number of definitions adapted from [51].

Definition 4.0.2. For any graph G we define the families

RG := {R ⊆ G : R ∼= H1} and LG := {L ⊆ G : L ∼= H2}

of all copies of H1 and H2 in G, respectively. Furthermore, we define

L∗G := {L ∈ LG : ∀e ∈ E(L) ∃R ∈ RG s.t. E(L) ∩ E(R) = {e}} ⊆ LG,

C = C(H1, H2) := {G = (V,E) : ∀e ∈ E ∃(L,R) ∈ LG ×RG s.t. E(L) ∩ E(R) = {e}}

and

C∗ = C∗(H1, H2) := {G = (V,E) : ∀e ∈ E ∃L ∈ L∗G s.t. e ∈ E(L)}.

1Which would immediately imply that G has a valid colouring for H1 and H2.
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Note that C∗(H1, H2) ⊆ C(H1, H2). These sets will be very important when analysing

the algorithms in this chapter.

Definition 4.0.3. Let H1 and H2 be non-empty graphs such that m2(H1) ≥ m2(H2) > 1.

Let ε := ε(H1, H2) > 0 be a constant. Define Â = Â(H1, H2, ε) to be

Â :=


{A ∈ C∗(H1, H2) : m(A) ≤ m2(H1, H2) + ε ∧A is 2-connected} if m2(H1) > m2(H2),

{A ∈ C(H1, H2) : m(A) ≤ m2(H1, H2) + ε ∧A is 2-connected} if m2(H1) = m2(H2).

We now state our subproblem as the following conjecture.

Conjecture 4.0.4. Let H1 and H2 be non-empty graphs such that H1 6= H2 and m2(H1) ≥

m2(H2). Assume H2 is strictly 2-balanced. Moreover, assume H1 is strictly balanced w.r.t. d2(·, H2)

if m2(H1) > m2(H2) and strictly 2-balanced if m2(H1) = m2(H2). Then there exists a con-

stant ε := ε(H1, H2) > 0 such that the set Â is finite and every graph in Â has a valid

colouring for H1 and H2.

Notice that we can assume H1 6= H2 as the H1 = H2 case of Conjecture 1.2.3 is

handled by Rödl and Ruciński’s theorem (Theorem 1.2.2).

Theorem 1.2.2 (Rödl and Ruciński [63]). Let r ≥ 2 and let H be a non-empty graph such

that at least one component of H is not a star. If r = 2, then in addition restrict H to having

no component which is a path on 3 edges. Then there exist positive constants b, B > 0 such

that

lim
n→∞

P[Gn,p → (H, . . . , H︸ ︷︷ ︸
r times

)] =


0 if p ≤ bn−1/m2(H),

1 if p ≥ Bn−1/m2(H).

To be clear, the main purpose of the work in this chapter is to show that if Conjec-

ture 4.0.4 holds then the rest of a variant of a standard approach for attacking the 0-statement
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of Conjecture 1.2.3 falls into place (see Section 4.1). That is, Conjecture 4.0.4 is a natural

subproblem of Conjecture 1.2.3. Thus we prove the following theorem.

Theorem 4.0.5. If Conjecture 4.0.4 is true then the 0-statement of Conjecture 1.2.3 is true.

We prove Conjecture 4.0.4 for almost every pair of regular graphs, which, by The-

orem 4.0.5, significantly extends the class of graphs for which the 0-statement of Conjec-

ture 1.2.3 is resolved.

Theorem 4.0.6. Let H1 and H2 meet the criteria in Conjecture 4.0.4. In addition, let H1

and H2 be regular graphs, excluding the cases when (i) H1 and H2 are a clique and a cycle, (ii)

H2 is a cycle and |V (H1)| ≥ |V (H2)| or (iii) (H1, H2) = (K3, K3,3). Then Conjecture 4.0.4

is true for H1 and H2.

Such pairs of graphs (H1, H2) that satisfy the criteria in Theorem 4.0.6 include

(Kk, Kk,k) for all k ≥ 4. We note that the 0-statement of Conjecture 1.2.3 is proved in

[49] for pairs of graphs in case (i). We also think it probable that Â(K3K3,3) 6= ∅. As a nat-

ural subproblem of the 0-statement of Conjecture 1.2.3, we believe that Conjecture 4.0.4 is a

considerably more approachable problem than the 0-statement of Conjecture 1.2.3. Indeed,

the techniques used in the proof of Theorem 4.0.6 are elementary and uncomplicated. Thus,

we hope that a full resolution of Conjecture 1.2.3 can be achieved via Theorem 4.0.5.

4.1 Overview of the proof of Theorem 4.0.5

As mentioned earlier, to prove Theorem 4.0.5 we will employ a variant of a standard ap-

proach for attacking 0-statements of Ramsey problems. For attacking the 0-statement of

Conjecture 4.0.4, this standard approach is as follows:
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• For G = Gn,p, assume G→ (H1, H2);

• Use structural properties of G (resulting from this assumption) to show that G contains

at least one of a sufficiently small collection of non-isomorphic graphs F ;

• Show that there exists a constant b > 0 such that for p ≤ bn−1/m2(H1,H2) we have that

G contains no graph in F a.a.s.;

• Conclude, by contradiction, that G 6→ (H1, H2) a.a.s.

The variant of this approach we will use is due to Marciniszyn, Skokan, Spöhel and

Steger [51], who proved Conjecture 1.2.3 for cliques. In [51], for r > ` ≥ 3, they employ

an algorithm Asym-Edge-Col which either produces a valid colouring for Kr and K` of G

(showing that G 6→ (Kr, K`)) or encounters an error. Instead of assuming G → (Kr, K`),

they assume Asym-Edge-Col encounters an error, and proceed with the standard approach

from there. One of the advantages of this approach is that it provides an algorithm for

constructing a valid colouring for Kr and K`, rather than just proving the existence of such

a colouring.

4.1.1 On Conjecture 4.0.4

As mentioned in Chapter 1, we provide all but one step, Conjecture 4.0.4, of this approach.

Let us consider how Conjecture 4.0.4 relates to previous work on the 0-statement of Con-

jecture 1.2.3. Firstly, Conjecture 4.0.4 was implicitly proven for pairs of cliques in [51] and

pairs of a clique and a cycle in [49]. More specifically, when H1 and H2 are both cliques

(except when H1 = H2 = K3)2, the authors of [51] prove a slightly more general version of
2The case H1 = H2 of Conjecture 1.2.3 is, of course, covered by Theorem 1.2.2.
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Conjecture 4.0.4 ([51, Lemma 8]) where Â(H1, H2, ε) is replaced with the set

A(H1, H2) := {A ∈ C(H1, H2) : m(A) ≤ m2(H1, H2) + 0.01 ∧ A is 2-connected}.

Note that the proof of [51, Lemma 8] shows that A(H1, H2) 6= ∅ for certain pairs of cliques

H1 and H2. When H1 is a clique, H2 is a cycle and H1 6= H2 (that is, excluding again the

case when H1 = H2 = K3), the proof of [49, Lemma 3.3] implies that there exists a constant

ε > 0 such that Â(H1, H2, ε) = ∅.

For reference, we note here the places in our proof of Theorem 4.0.5 where we specif-

ically need Conjecture 4.0.4 to hold:

• the proof of Lemma 4.4.1;

• the proofs of Claims 4.5.6 and 4.6.6;

• the definition of γ = γ(H1, H2) in Section 4.5.

4.1.2 Proof sketch of Theorem 4.0.5

Let us now proceed with describing the proof of Theorem 4.0.5 in detail. In what follows,

we write (Result A; Result B) to mean that ‘Result B in [51] fulfils the same role (in [51])

as Result A does in our proof of Theorem 4.0.5’. This is to illustrate how we indeed provide

every step bar one (Conjecture 4.0.4) of a proof of the 0-statement of Conjecture 1.2.3.

Firstly, as in [51], we give an algorithm Asym-Edge-Col that, assuming Conjec-

ture 4.0.4 holds, produces a valid colouring for H1 and H2 of G = Gn,p provided it does not

encounter an error (Lemma 4.4.2; Lemma 11). Our aim then is to prove that Asym-Edge-

Col does not encounter an error a.a.s. (Lemma 4.4.3; Lemma 12), that is, G 6→ (H1, H2)
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a.a.s. We split our proof of Lemma 4.4.3 into two cases: when m2(H1) > m2(H2) and when

m2(H1) = m2(H2).

Suppose for a contradiction that Asym-Edge-Col encounters an error. Let G′ ⊆ G

be the graph that Asym-Edge-Col got stuck on when it encountered this error. In the

m2(H1) > m2(H2) case, we input G′ into an auxiliary algorithm Grow which always outputs

a subgraph F ⊆ G′ (Claim 4.5.1; Claim 13) belonging to a sufficiently small collection of

non-isomorphic graphs F . The definition of F will be such that w.h.p. no copy of any F ∈ F

will be present in Gn,p provided that |F| is sufficiently small.

In order to show |F| is sufficiently small, we carefully analyse the possible outputs of

Grow. Assuming Conjecture 4.0.4 holds, we show that only a constant number of graphs

can be produced by Grow if one of two special cases occurs. If neither of these special

cases occur, then, starting from a copy of H1, in each step of Grow our subgraph F is

constructed iteratively by either (i) appending a copy of H1 to F or (ii) appending a ‘flower-

like’ structure to F , consisting of a central copy of H2 with ‘petals’ that are appended copies

of H1. We say an iteration is degenerate if it is of type (i) or, loosely speaking, of type

(ii) where ‘the flower is folded in on itself or into F ’. Otherwise an iteration is called non-

degenerate. Denote by λ(F ) the order of magnitude of the expected number of copies of

F in Gn,p with p = bn−1/m2(H1,H2). Key to showing |F| is sufficiently small is proving that

λ(F ) stays the same after a non-degenerate iteration (Claim 4.5.2; Claim 14) and decreases

by a constant amount after a degenerate iteration (Claim 4.5.3; Claim 15). Indeed, one of

the termination conditions for Grow is that λ(F ) < −γ (where γ = γ(H1, H2, ε) > 0 is

defined later in Section 4.5, given ε = ε(H1, H2) > 0, the constant acquired from assuming

Conjecture 4.0.4 holds), that is, only a constant number of such degenerate steps occur

before Grow terminates (Claim 4.5.4; Claim 16). Proving Claim 4.5.3 is the main work

of this chapter. An important step in proving it is showing that if an iteration of type (ii)

occurs where, loosely speaking, ‘the flower is folded in on itself’, we get a helpful inequality
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comparing this iteration with a non-degenerate iteration (Lemma 4.5.8; Lemma 21). Indeed,

the most novel work in this chapter is the proof of Lemma 4.5.8.

The proof of Lemma 4.4.3 in the m2(H1) = m2(H2) case is both similar and signif-

icantly simpler. Notably, we use a different algorithm, Grow-Alt, to grow our subgraph

F ⊆ G′. Our analysis of Grow-Alt is much quicker than that of Grow, allowing us to

easily prove a result analogous to Claim 4.5.3.

4.2 Organisation

The rest of this chapter is organised as follows. In Section 4.3, we collect together notation,

density measures and several useful results we will need. In Section 4.4, we give our algorithm

Asym-Edge-Col for producing a valid colouring for H1 and H2 of G = Gn,p provided it

does not encounter an error (and Conjecture 4.0.4 holds for H1 and H2). In Sections 4.5-

4.5.3, we prove that Asym-Edge-Col does not encounter an error a.a.s. (Lemma 4.4.3)

in the case when m2(H1) > m2(H2). In Section 4.6, we prove Lemma 4.4.3 in the case

when m2(H1) = m2(H2). In Section 4.7, we prove Theorem 4.0.6, before providing some

concluding remarks in Section 4.8.
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4.3 Notation, density measures and useful results

As far as possible we keep to the notation used in [51]. Also, we repeat several definitions

introduced in Chapter 1 for ease of reference.

Let H be a graph. The most well-known density measure is

d(H) :=


eH/vH if v(H) ≥ 1,

0 otherwise.

Taking the maximum value of d over all subgraphs J ⊆ H, we have the following measure:

m(H) := max{d(J) : J ⊆ H}.

(We say that a graph H is balanced w.r.t d, or just balanced, if we have d(H) = m(H).

Moreover, we say H is strictly balanced if for every proper subgraph J ⊂ H, we have

d(J) < m(H).)

In [61], Rödl and Ruciński introduced the following so-called 2-density measure:

d2(H) :=


(eH − 1)/(vH − 2) if H is non-empty with v(H) ≥ 3,

1/2 if H ∼= K2,

0 otherwise.

As with d, we have an associated measure based on maximising d2 over subgraphs of H:

m2(H) := max {d2(J) : J ⊆ H} .

Analogously to the notion of balancedness, we say that a graph H is 2-balanced if d2(H) =
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m2(H), and strictly 2-balanced if for all proper subgraphs J ⊂ H, we have d2(J) < m2(H).

Regarding asymmetric Ramsey properties, in [37], Kohayakawa and Kreuter intro-

duced the following generalisation of d2. Let H1 and H2 be any graphs, and define

d2(H1, H2) :=


e1

v1−2+ 1
m2(H2)

if H2 is non-empty and e1 ≥ 1,

0 otherwise.

Similarly to before, we have the following measure based on maximising d2 over all subgraphs

J ⊆ H1:

m2(H1, H2) := max {d2(J,H2) : J ⊆ H1} .

We say that H1 is balanced w.r.t. d2(·, H2) if we have d2(H1, H2) = m2(H1, H2) and strictly

balanced w.r.t. d2(·, H2) if for all proper subgraphs J ⊂ H1 we have d2(J,H2) < m2(H1, H2).

Observe that m2(·, ·) is not symmetric in both arguments. The following result will

be very useful for us, and illuminates the relationship between the one and two argument

m2 measures. It can be readily proven using elementary arguments.

Proposition 4.3.1. Suppose that H1 and H2 are non-empty graphs with m2(H1) ≥ m2(H2).

Then we have

m2(H1) ≥ m2(H1, H2) ≥ m2(H2).

Moreover,

m2(H1) > m2(H1, H2) > m2(H2) whenever m2(H1) > m2(H2).

Proof.

We will only prove here the case when for i ∈ {1, 2} we have

m2(Fi) = max

{
eJ − 1

vJ − 2
: J ⊆ Fi ∧ e(J) ≥ 1, v(J) ≥ 3

}
,
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that is, we assume F1 and F2 are neither edges nor have zero edges. Assume for a contradic-

tion that m2(H1) < m2(H1, H2). Then there exists F ′ ⊆ H1 with e(F ′) ≥ 1 and v(F ′) ≥ 3

such that

m2(H1) <
e(F ′)

v(F ′)− 2 + 1
m2(H2)

.

Since m2(H1) ≥ m2(H2) we have

m2(H1) <
e(F ′)

v(F ′)− 2 + 1
m2(H1)

and so

m2(H1) <
e(F ′)− 1

v(F ′)− 2
,

contradicting the definition of m2(H1).

Now assume for a contradiction that m2(H1, H2) < m2(H2). For every graph J ⊆ H1

with e(J) ≥ 1 and v(J) ≥ 3 we have that

e(J)

v(J)− 2 + 1
m2(H2)

< m2(H2).

Since m2(H1) ≥ m2(H2), for every graph J ⊆ H1 with e(J) ≥ 1 and v(J) ≥ 3 we have that

e(J)− 1

v(J)− 2
< m2(H1),

contradicting the definition of m2(H1). Hence m2(H1) ≥ m2(H1, H2) ≥ m2(H2), and so

m2(H1) = m2(H1, H2) = m2(H2) whenever m2(H1) = m2(H2).

It remains to show that m2(H1) > m2(H1, H2) > m2(H2) whenever m2(H1) >

m2(H2). To do this we will show that if m2(H1) = m2(H1, H2) then m2(H1) = m2(H2),

and if m2(H1, H2) = m2(H2) then, also, m2(H1) = m2(H2). So let us firstly assume

m2(H1) = m2(H1, H2). Then there exists F ′ ⊆ H1 with e(F ′) ≥ 1 and v(F ′) ≥ 3 such
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that

m2(H1) =
e(F ′)

v(F ′)− 2 + 1
m2(H2)

.

Assume for a contradiction that m2(H1, H2) > m2(H2). Then

e(F ′)− 1

v(F ′)− 2
> m2(H2).

Thus

m2(H1) <
e(F ′)

v(F ′)− 2 + v(F ′)−2
e(F ′)−1

=
e(F ′)− 1

v(F ′)− 2
,

contradicting the definition of m2(H1). Hence m2(H1, H2) = m2(H2) and so m2(H1) =

m2(H2). Now assume m2(H1, H2) = m2(H2). For every graph J ⊆ H1 with e(J) ≥ 1 and

v(J) ≥ 3 we have that

m2(H1, H2) ≥ e(J)

v(J)− 2 + 1
m2(H2)

.

Thus for every graph J ⊆ H1 with e(J) ≥ 1 and v(J) ≥ 3 we have that

m2(H2) ≥ e(J)− 1

v(J)− 2
.

Moreover, there exists a graph F ′ ⊆ H1 with e(F ′) ≥ 1 and v(F ′) ≥ 3 such that

m2(H2) = m2(H1, H2) =
e(F ′)

v(F ′)− 2 + 1
m2(H2)

which implies

m2(H2) =
e(F ′)− 1

v(F ′)− 2
.

Thus

m2(H2) = max

{
e(J)− 1

v(J)− 2
: J ⊆ H1 ∧ e(J) ≥ 1, v(J) ≥ 3

}
= m2(H1).

�
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Note that if m2(H1) = m2(H2) and H1 and H2 are non-empty graphs, then H1 cannot

be strictly balanced w.r.t. d2(·, H2) unless H1
∼= K2. Indeed, otherwise, by Proposition 4.3.1

we would then have that

m2(H2) = m2(H1, H2) > d2(K2, H2) = m2(H2).

The following fact will be useful in the proofs of Lemmas 4.3.3 and 4.5.8.

Fact 4.3.2. For a, c, C ∈ R and b, d > 0, we have

(i)
a

b
≤ C ∧ c

d
≤ C =⇒ a+ c

b+ d
≤ C and (ii)

a

b
≥ C ∧ c

d
≥ C =⇒ a+ c

b+ d
≥ C

and similarly, if also b > d,

(iii)
a

b
≤ C ∧ c

d
≥ C =⇒ a− c

b− d
≤ C and (iv)

a

b
≥ C ∧ c

d
≤ C =⇒ a− c

b− d
≥ C.

The following result will be very useful for us, creating an important connection

between types of balancedness and 2-connectivity.

Lemma 4.3.3. Let H1 and H2 be graphs such that m2(H1) > m2(H2) > 1, H2 is strictly

2-balanced and H1 is strictly balanced w.r.t. d2(·, H2). Then H1 and H2 are both 2-connected.

Proof. By [54, Lemma 3.3], H2 is 2-connected. We now use a very similar method to that

of the proof of Lemma 3.3 to show that H1 is 2-connected. Since H1 is strictly balanced

w.r.t. d2(·, H2), we have that H1 is connected. Indeed, assume not. Let H1 have k ≥ 2

components and denote the number of vertices and edges in each component by u1, . . . , uk

and d1, . . . , dk, respectively. Then since H1 is strictly balanced w.r.t. m2(·, H2), we must
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have that ∑k
i=1 di∑k

i=1 ui − 2 + 1
m2(H2)

>
d1

u1 − 2 + 1
m2(H2)

and ∑k
i=1 di∑k

i=1 ui − 2 + 1
m2(H2)

>

∑k
i=2 di∑k

i=2 ui − 2 + 1
m2(H2)

.

Since m2(H2) > 1, by Fact 4.3.2(i) we get that

∑k
i=1 di∑k

i=1 ui − 2 + 1
m2(H2)

≥
∑k

i=1 di∑k
i=1 ui − 4 + 2

m2(H2)

>

∑k
i=1 di∑k

i=1 ui − 2 + 1
m2(H2)

,

a contradiction.

Assume H1 is not 2-connected. Then there exists a cut3 vertex v ∈ V (H1). Fur-

ther, using Proposition 4.3.1 alongside that H1 is strictly balanced w.r.t. d2(·, H2) and

m2(H1) > m2(H2) > 1, we can show that H1 does not contain any vertex of degree 1. Indeed,

otherwise e1−1
v1−3+ 1

m2(H2)

> e1
v1−2+ 1

m2(H2)

= m2(H1, H2), contradicting that H1 is strictly balanced

w.r.t. d2(·, H2). Thus there exist subgraphs J1 and J2 of H1 such that |E(J1)|, |E(J2)| ≥ 1,

J1 ∪ J2 = H1 and V (J1) ∩ V (J2) = {v}. Using Fact 4.3.2(i) and that H1 is strictly balanced

w.r.t. d2(·, H2), we have that

e1 = eJ1 + eJ2 < m2(H1, H2)

(
vJ1 − 2 +

1

m2(H2)
+ vJ2 − 2 +

1

m2(H2)

)
= m2(H1, H2)

(
v1 − 3 +

2

m2(H2)

)
.

However, since m2(H2) > 1 we also have that

e1

v1 − 3 + 2
m2(H2)

>
e1

v1 − 2 + 1
m2(H2)

= m2(H1, H2),

contradicting the inequality above. Hence H1 is 2-connected. �

3That is, removing v and its incident edges from H1 produces a disconnected graph.
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4.4 Algorithm for computing valid colourings:

Asym-Edge-Col

To prove Theorem 4.0.5, we can clearly assume H1 and H2 are non-empty graphs satisfying

the criteria of Conjecture 4.0.4 and that Conjecture 4.0.4 itself holds. Suppose G = Gn,p

and p ≤ bn−1/m2(H1,H2) where b will be a small constant defined later. As noted earlier,

to prove Conjecture 1.2.3 we can show that a.a.s. G has a valid colouring for H1 and H2.

We construct our valid colouring using an algorithm Asym-Edge-Col (see Figure 4.1). In

order to state the algorithm succinctly, we need to define a considerable amount of notation,

almost all of which we keep very similar to that in [51].

Recall Definitions 4.0.2 and 4.0.3. That is, for any graph G we have the families

RG := {R ⊆ G : R ∼= H1} and LG := {L ⊆ G : L ∼= H2}

of all copies of H1 and H2 in G, respectively. Also,

L∗G := {L ∈ LG : ∀e ∈ E(L) ∃R ∈ RG s.t. E(L) ∩ E(R) = {e}}.

We highlight here that if E(L) ∩ E(R) = {e} for some L ∈ LG and R ∈ RG then it is still

possible that |V (L) ∩ V (R)| > 2.

Intuitively, the graphs in Â are the building blocks of the graphs Ĝ which may remain

after the edge deletion process in Asym-Edge-Col (described later).

For any graph G, define

SG := {S ⊆ G : S ∼= A ∈ Â ∧ @S ′ ⊃ S with S ′ ⊆ G, S ′ ∼= A′ ∈ Â},
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that is, the family SG contains all maximal subgraphs of G isomorphic to a member of Â.

Hence, there are no two members S1, S2 ∈ SG such that S1 ⊂ S2. For any edge e ∈ E(G),

let

SG(e) := {S ∈ SG : e ∈ E(S)}.

We call G an Â-graph if, for all e ∈ E(G), we have

|SG(e)| = 1.

In particular, an Â-graph is an edge-disjoint union of graphs from Â. In an Â-graph G, a

copy of H1 or H2 can be a subgraph of G in two particular ways: either it is a subgraph

of an S ∈ SG or it is a subgraph with edges in at least two different graphs from SG. The

former we call trivial copies of H1 and H2, and we define

TG :=

T ⊆ G : (T ∼= H1 ∨ T ∼= H2) ∧

∣∣∣∣∣∣
⋃

e∈E(T )

SG(e)

∣∣∣∣∣∣ ≥ 2


to be the family of all non-trivial copies of H1 and H2 in G. We say that an Â-graph G is

(H1, H2)-sparse if TG = ∅. Our next lemma asserts that (H1, H2)-sparse Â-graphs are easily

colourable, provided Conjecture 4.0.4 holds.

Lemma 4.4.1. There exists a procedure A-Colour that returns for any (H1, H2)-sparse

Â-graph G a valid colouring for H1 and H2.

Proof. By Conjecture 4.0.4, there exists a valid colouring for H1 and H2 of every A ∈ Â.

Using this we define a procedure A-Colour(G) as follows: Assign a valid colouring for H1

and H2 to every subgraph S ∈ SG locally, that is, regardless of the structure of G. Since G

is an (H1, H2)-sparse Â-graph, we assign a colour to each edge of G without producing a red

copy of H1 or a blue copy of H2, and the resulting colouring is a valid colouring for H1 and
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H2 of G. �

Note that we did not use that Â is finite, as given by Conjecture 4.0.4, in our proof

of Lemma 4.4.1, only that ‘every graph in Â has a valid colouring for H1 and H2’. The

finiteness of Â will be essential later for the proofs of Claims 4.5.6 and 4.6.6.

Now let us describe the algorithm Asym-Edge-Col which if successful outputs a

valid colouring of G. In Asym-Edge-Col, edges are removed from and then inserted back

into a working copy G′ = (V,E ′) of G. Each edge is removed in the first while-loop only

when it is not the unique intersection of the edge sets of some copy of H1 and some copy of

H2 in G′ (line 6). It is then ‘pushed4’ onto a stack s such that when we reinsert edges (in

reverse order) in the second while-loop we can colour them to construct a valid colouring

for H1 and H2 of G; if at any point G′ is an (H1, H2)-sparse Â-graph, then we combine the

colouring of these edges with a valid colouring for H1 and H2 of G′ provided by A-Colour.

We also keep track of the copies of H2 in G and push abstract representations of some of

them (or all of them if G′ is never an (H1, H2)-sparse Â-graph during Asym-Edge-Col)

onto s (lines 8 and 15) to be used later in the colour swapping stage of the second while-loop

(lines 30-32).

Let us consider algorithm Asym-Edge-Col in detail. In line 5, we check whether

G′ is an (H1, H2)-sparse Â-graph or not. If not, then we enter the first while-loop. In line 6,

we choose an edge e which is not the unique intersection of the edge sets of some copy of

H1 and some copy of H2 in G′ (if such an edge e exists). Then in lines 7-12 we push each

copy of H2 in G′ that contains e onto s before pushing e onto s as well. Now, if every edge

e ∈ E ′ is the unique intersection of the edge sets of some copy of H1 and some copy of H2

in G′, then we push onto s a copy L of H2 in G′ which contains an edge that is not the

unique intersection of the edge set of L and the edge set of some copy of H1 in G′. If no such
4For clarity, by ‘push’ we mean that the object is placed on the top of the stack s.
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1: procedure Asym-Edge-Col(G = (V,E))
2: s← empty-stack()
3: E ′ ← E
4: L ← LG
5: while G′ = (V,E ′) is no (H1, H2)-sparse Â-graph do
6: if ∃e ∈ E ′ s.t. @(L,R) ∈ L ×RG′ : E(L) ∩ E(R) = {e} then
7: for all L ∈ L : e ∈ E(L) do
8: s.push(L)
9: L.remove(L)
10: end for
11: s.push(e)
12: E ′.remove(e)
13: else
14: if ∃L ∈ L \ L∗G′ then
15: s.push(L)
16: L.remove(L)
17: else
18: error “stuck"
19: end if
20: end if
21: end while
22: A-colour(G′ = (V,E ′))
23: while s 6= ∅ do
24: if s.top() is an edge then
25: e← s.pop()
26: E ′.add(e)
27: e.set-colour(blue)
28: else
29: L← s.pop()
30: if L is entirely blue then
31: f ← any e ∈ E(L) s.t. @R ∈ RG′ : E(L) ∩ E(R) = {e}
32: f .set-colour(red)
33: end if
34: end if
35: end while
36: end procedure

Figure 4.1: The implementation of algorithm Asym-Edge-Col.
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copies L of H2 exist, then the algorithm has an error in line 18. If Asym-Edge-Col does

not run into an error, then we enter the second while-loop with input G′. Observe that G′ is

either the empty graph on vertex set V or some (H1, H2)-sparse Â-graph. By Lemma 4.4.1,

G′ has a valid colouring for H1 and H2. The second while-loop successively removes edges

(line 25) and copies of L (line 29) from s in the reverse order in which they were added onto

s, with the edges added back into E ′. Each time an edge is added back it is coloured blue,

and if a monochromatic blue copy L of H2 is constructed, we make one of the edges of L red

(lines 30-32). This colouring process is then repeated until we have a valid colouring for H1

and H2 of G.

The following lemma confirms that our colouring process in the second while-loop

produces a valid colouring for H1 and H2 of G.

Lemma 4.4.2. Algorithm Asym-Edge-Col either terminates with an error in line 18 or

finds a valid colouring for H1 and H2 of G.

Proof. Our proof is almost identical to the proof of [51, Lemma 11]. We include it here

for completeness.

Let G∗ denote the argument in the call to A-Colour in line 22. By Lemma 4.4.1,

there is a valid colouring for H1 and H2 of G∗. It remains to show that no forbidden

monochromatic copies of H1 or H2 are created when this colouring is extended to a colouring

of G in lines 23-35.

Firstly, we argue that the algorithm never creates a blue copy of H2. Observe that

every copy of H2 that does not lie entirely in G∗ is pushed on the stack in the first while-

loop (lines 5-21). Therefore, in the execution of the second loop, the algorithm checks the

colouring of every such copy. By the order of the elements on the stack, each such test is

performed only after all edges of the corresponding copy of H2 were inserted and coloured.
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For every blue copy of H2, one particular edge f (see line 31) is recoloured to red. Since red

edges are never flipped back to blue, no blue copy of H2 can occur.

We need to show that the edge f in line 31 always exists. Since the second loop

inserts edges into G′ in the reverse order in which they were deleted during the first loop,

when we select f in line 31, G′ has the same structure as at the time when L was pushed

on the stack. This happened either in line 8 when there exists no copy of H1 in G′ whose

edge set intersects with L on some particular edge e ∈ E(L), or in line 15 when L is not in

L∗G′ due to the if-clause in line 14. In both cases we have L /∈ L∗G′ , and hence there exists

an edge e ∈ E(L) such that the edge sets of all copies of H1 in G′ do not intersect with L

exactly in e.

It remains to prove that changing the colour of some edges from blue to red by the

algorithm never creates an entirely red copy of H1. By the condition on f in line 31 of the

algorithm, at the moment f is recoloured there exists no copy of H1 in G′ whose edge set

intersects L exactly in f . So there is either no copy of H1 containing f at all, or every

such copy contains also another edge from L. In the latter case, those copies cannot become

entirely red since L is entirely blue. �

To prove Theorem 4.0.5, it now suffices to prove the following lemma.

Lemma 4.4.3. There exists a constant b = b(H1, H2) > 0 such that for p ≤ bn−1/m2(H1,H2)

algorithm Asym-Edge-Col terminates on Gn,p without error a.a.s.

We split our proof of Lemma 4.4.3 into two cases: (1) when m2(H1) > m2(H2) and

(2) when m2(H1) = m2(H2). Notice that this accords with our definition of Â.
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4.5 Case 1: m2(H1) > m2(H2).

We will prove Case 1 of Lemma 4.4.3 using an auxiliary algorithm Grow (see Figure 4.2).

If Asym-Edge-Col has an error, then Grow computes a subgraph F ⊆ G which is either

too large in size or too dense to appear in Gn,p a.a.s. (with p as in Lemma 4.4.3). Indeed,

letting F be the class of all graphs that can possibly be returned by Grow, we will show

that the expected number of copies of graphs from F contained in Gn,p is o(1), which

with Markov’s inequality implies that Gn,p a.a.s. contains no graph from F . This in turn

implies Lemma 4.4.3 by contradiction. Note that algorithm Grow is only used for proving

Lemma 4.4.3 and hence does not add anything on to the run-time of Asym-Edge-Col.

To state Grow we require the following definitions. Let

γ = γ(H1, H2) :=
1

m2(H1, H2)
− 1

m2(H1, H2) + ε(H1, H2)
> 0,

where ε(H1, H2) is the constant in Conjecture 4.0.4. For any graph F , let

λ(F ) := v(F )− e(F )

m2(H1, H2)
.

The definition of λ(F ) is motivated by the fact that the expected number of copies of F in

Gn,p with p = bn−1/m2(H1,H2) has order of magnitude

nv(F )pe(F ) = be(F )nλ(F ).

For any graph F and edge e ∈ E(F ), we say that e is eligible for extension in Grow

if it satisfies

@L ∈ L∗F s.t. e ∈ E(L),
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and observe that F is in C∗ (see Definition 4.0.2) if and only if it contains no edge that is

eligible for extension in Grow.

Algorithm Grow has as input the graph G′ ⊆ G that Asym-Edge-Col got stuck

on. Let us consider the properties of G′ when Asym-Edge-Col got stuck. Because the

condition in line 6 of Asym-Edge-Col fails, G′ is in the family C, where we recall

C = C(H1, H2) := {G = (V,E) : ∀e ∈ E ∃(L,R) ∈ LG ×RG s.t. E(L) ∩ E(R) = {e}}.

In particular, every edge of G′ is contained in a copy L ∈ LG′ of H2, and, because the

condition in line 14 fails, we can assume in addition that L belongs to L∗G′ . Hence, G′ is

actually in the family C∗ = C∗(H1, H2) where we recall

C∗ = C∗(H1, H2) := {G = (V,E) : ∀e ∈ E ∃L ∈ L∗G s.t. e ∈ E(L)}.

Lastly, G′ is not an (H1, H2)-sparse Â-graph because Asym-Edge-Col ended with an error.

We now outline algorithm Grow. Firstly, Grow checks whether either of two special

cases occur (lines 2-9). If neither occurs, it chooses a suitable graph R ∈ RG′ (line 11) and

makes it the seed F0 for a growing procedure. In each iteration i of the while-loop, the

growing procedure extends Fi to Fi+1 in one of two ways. The first (lines 14-15) is by

attaching a copy of H1 in G′ that intersects Fi in at least two vertices but is not contained in

Fi. The second is more involved and begins with calling a function Eligible-Edge which

maps Fi to an edge e ∈ E(Fi) which is eligible for extension in Grow (we will show that

such an edge always exists). Importantly, Eligible-Edge selects this edge e to be unique

up to isomorphism of Fi, that is, for any two isomorphic graphs F and F ′, there exists an

isomorphism φ with φ(F ) = F ′ such that

φ(Eligible-Edge(F )) = Eligible-Edge(F ′).
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In particular, our choice of e depends only on Fi and not on the surrounding graph

G′ or any previous graph Fj with j < i (indeed, there may be many ways that Grow could

construct a graph isomorphic to Fi). One could implement Eligible-Edge by having an

enormous table of representatives for all isomorphism classes of graphs with up to n vertices.

What is important is that Eligible-Edge does not itself increase the number of graphs F

that Grow can output.

Once we have our edge e ∈ E(Fi) eligible for extension in Grow, we apply a procedure

Extend-L which attaches a graph L ∈ L∗G′ that contains e to Fi (line 18). We then attach

to each new edge e′ ∈ E(L) \ E(Fi) a graph Re′ ∈ RG′ such that E(L) ∩ E(Re′) = {e′}

(lines 4-6 of Extend-L). (We will show later that such a graph L and graphs Re′ exist and

that E(L) \E(Fi) is non-empty.) The algorithm comes to an end when either i ≥ log(n) or

λ(F̃ ) ≤ −γ for some subgraph F̃ ⊆ Fi. In the former, the algorithm returns Fi (line 23); in

the latter, the algorithm returns a subgraph F̃ ⊆ Fi that minimises λ(F̃ ) (line 25). For each

graph F , the function Minimising-Subgraph(F ) returns such a minimising subgraph that

is unique up to isomorphism. Once again, this is to ensure that Minimising-Subgraph(F )

does not itself artificially increase the number of graphs that Grow can output. As with

function Eligible-Edge, one could implement Minimising-Subgraph using an enormous

look-up table.

We will now argue that Grow terminates without error, that is, Eligible-Edge

always finds an edge eligible for extension in Grow and all ‘any’-assignments in Grow and

Extend-L are always successful. In order to argue such, recall the properties of G′ when

Asym-Edge-Col got stuck: G′ ∈ C∗(H1, H2) = {G = (V,E) : ∀e ∈ E ∃L ∈ L∗G s.t. e ∈

E(L)} and G′ is not an (H1, H2)-sparse Â-graph.

Claim 4.5.1. Algorithm Grow terminates without error on any input graph G′ ∈ C∗ that

is no (H1, H2)-sparse Â-graph. Moreover, for every iteration i of the while-loop, we have

e(Fi+1) > e(Fi).
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1: procedure Grow(G′ = (V,E))
2: if ∀e ∈ E : |SG′(e)| = 1 then
3: T ← any member of TG′
4: return

⋃
e∈E(T ) SG′(e)

5: end if
6: if ∃e ∈ E : |SG′(e)| ≥ 2 then
7: S1, S2 ← any two distinct members of SG′(e)
8: return S1 ∪ S2

9: end if
10: e← any e ∈ E : |SG′(e)| = 0
11: F0 ← any R ∈ RG′ : e ∈ E(R)
12: i← 0
13: while (i < ln(n)) ∧ (∀F̃ ⊆ Fi : λ(F̃ ) > −γ) do
14: if ∃R ∈ RG′ \ RFi : |V (R) ∩ V (Fi)| ≥ 2 then
15: Fi+1 ← Fi ∪R
16: else
17: e← Eligible-Edge(Fi)
18: Fi+1 ← Extend-L(Fi, e, G

′)
19: end if
20: i← i+ 1
21: end while
22: if i ≥ ln(n) then
23: return Fi
24: else
25: return Minimising-Subgraph(Fi)
26: end if
27: end procedure

1: procedure Extend-L(F, e,G′)
2: L← any L ∈ L∗G′ : e ∈ E(L)
3: F ′ ← F ∪ L
4: for all e′ ∈ E(L) \ E(F ) do
5: Re′ ← any R ∈ RG′ : E(L) ∩ E(R) = {e′}
6: F ′ ← F ′ ∪Re′

7: end for
8: return F ′

9: end procedure

Figure 4.2: The implementation of algorithm Grow.
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Figure 4.3: A graph F2 resulting from two non-degenerate iterations for H1 = K4 and
H2 = C4. The two central copies of H2 are shaded.

Proof. Our proof is very similar to the proof of [51, Claim 13].

We first show that the special cases in lines 2-9 always function as desired. The

first case occurs if and only if G′ is an Â-graph. By assumption, G′ is not (H1, H2)-sparse,

hence the family TG′ is not empty. Hence the assignment in line 3 is successful. Clearly, the

assignment in line 7 is always successful due to the if-condition in line 6.

One can also easily see that the assignments in lines 10 and 11 are successful. Indeed,

neither of the two special cases occur so we must have an edge e ∈ E that is not contained

in any S ∈ SG′ . Also, there must exist a member of RG′ that contains e because G′ is a

member of C∗ ⊆ C.

Next, we show that the call to Eligible-Edge in line 17 is always successful. Indeed,

suppose for a contradiction that no edge in Fi is eligible for extension in Grow for some

i ≥ 0. Then every edge e ∈ E(Fi) is in some L ∈ L∗Fi , by definition. Hence F ∈ C∗. Recall

that H1 and H2 satisfy the criteria of Conjecture 4.0.4. Hence H2 is strictly 2-balanced, H1
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is strictly balanced w.r.t. d2(·, H2)) and m2(H1) ≥ m2(H2) > 1. Then, by Lemma 4.3.3, H1

and H2 are 2-connected, hence Fi is 2-connected by construction. However, our choice of F0

in line 11 guarantees that Fi is not in Â. Indeed, the edge e selected in line 10 satisfying

|SG′(e)| = 0 is an edge of F0 and F0 ⊆ Fi ⊆ G′. Thus, by the definition of Â and that

m2(H1) > m2(H2), we have that m(Fi) > m2(H1, H2) + ε. Thus, there exists a non-empty

graph F̃ ⊆ Fi with d(F̃ ) = m(Fi) such that

λ(F̃ ) = v(F̃ )− e(F̃ )

m2(H1, H2)

= e(F̃ )

(
1

m(Fi)
− 1

m2(H1, H2)

)
< e(F̃ )

(
1

m2(H1, H2) + ε
− 1

m2(H1, H2)

)
= −γe(F̃ ) ≤ −γ.

Thus Grow terminates in line 13 without calling Eligible-Edge, and so every call to

Eligible-Edge is successful and returns an edge e. Since G′ ∈ C∗, the call to Extend-

L(Fi, e, G
′) is also successful and thus there exist suitable graphs L ∈ L∗G′ with e ∈ E(L)

and Re′ for each e′ ∈ E(L) \ E(Fi).

It remains to show that for every iteration i of the while-loop, we have e(Fi+1) > e(Fi).

Since a copy R ofH1 found in line 14 is a copy ofH1 in G′ but not in Fi (andH1 is connected),

we must have that Fi+1 = Fi ∪R contains at least one more edge than Fi.

So assume lines 17 and 18 are called in iteration i and let e be the edge chosen in line 17

and L the subgraph selected in line 2 of Extend-L(Fi, e, G
′). By the definition of L∗G′ , for

each e′ ∈ E(L) there exists Re′ ∈ RG′ such that E(L) ∩ E(Re′) = e′. If |E(L) \ E(Fi)| > 0,

then e(Fi+1) ≥ e(Fi ∪ L) > e(Fi). Otherwise, L ⊆ Fi. But since e is eligible for extension

in Grow, we must have L /∈ L∗Fi . Thus there exists e′ ∈ L such that Re′ ∈ RG′ \ RFi and

|V (Re′) ∩ V (Fi)| ≥ 2, contradicting that lines 17 and 18 are called in iteration i. �
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4.5.1 Proof of Lemma 4.4.3

We consider the evolution of Fi now in more detail. We call iteration i of the while-loop in

algorithm Grow non-degenerate if all of the following hold:

• The condition in line 14 evaluates to false (and Extend-L is called);

• In line 3 of Extend-L, we have V (F ) ∩ V (L) = e;

• In every execution of line 6 of Extend-L, we have V (F ′) ∩ V (Re′) = e′.

Otherwise, we call iteration i degenerate. Note that, in non-degenerate iterations, there are

only a constant number of graphs Fi+1 that can result from any given Fi since Eligible-

Edge determines the exact position where to attach the copy L of H2, V (Fi) ∩ V (L) = e

and for every execution of line 6 of Extend-L we have V (F ′)∩ V (Re′) = e′ (recall that the

edge e found by Eligible-Edge(Fi) is unique up to isomorphism of Fi).

Claim 4.5.2. If iteration i of the while-loop in procedure Grow is non-degenerate, we have

λ(Fi+1) = λ(Fi).

Proof. In a non-degenerate iteration we add v2 − 2 vertices and e2 − 1 edges for the copy

of H2 and then (e2 − 1)(v1 − 2) new vertices and (e2 − 1)(e1 − 1) new edges to complete the

copies of H1. This gives

λ(Fi+1)− λ(Fi) = v2 − 2 + (e2 − 1)(v1 − 2)− (e2 − 1)e1

m2(H1, H2)

= v2 − 2 + (e2 − 1)(v1 − 2)− (e2 − 1)

(
v1 − 2 +

1

m2(H2)

)
= 0,
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where we have used in the penultimate equality that H1 is (strictly) balanced w.r.t. d2(·, H2)

and in the final inequality that H2 is (strictly) 2-balanced. �

When we have a degenerate iteration i, the structure of Fi+1 may vary considerably

and also depend on the structure of G′. Indeed, if Fi is extended by a copy R of H1 in

line 15, then R could intersect Fi in a multitude of ways. Moreover, there may be several

copies of H1 that satisfy the condition in line 14. The same is true for graphs added in lines 3

and 6 of Extend-L. Thus, degenerate iterations cause us difficulties since they enlarge the

family of graphs algorithm Grow can return. However, we will show that at most a constant

number of degenerate iterations can happen before algorithm Grow terminates, allowing

us to bound from above sufficiently well the number of non-isomorphic graphs Grow can

return. Pivotal in proving this is the following claim.

Claim 4.5.3. There exists a constant κ = κ(H1, H2) > 0 such that if iteration i of the

while-loop in procedure Grow is degenerate then we have

λ(Fi+1) ≤ λ(Fi)− κ.

We prove Claim 4.5.3 in Section 4.5.2. Together, Claims 4.5.2 and 4.5.3 yield the

following claim.

Claim 4.5.4. There exists a constant q1 = q1(H1, H2) such that algorithm Grow performs

at most q1 degenerate iterations before it terminates, regardless of the input instance G′.

Proof. By Claim 4.5.2, the value of the function λ remains the same in every non-

degenerate iteration of the while-loop of algorithm Grow. However, Claim 4.5.3 yields a

constant κ, which depends solely on H1 and H2, such that

λ(Fi+1) ≤ λ(Fi)− κ

120



Towards the 0-statement of the Kohayakawa-Kreuter Conjecture

for every degenerate iteration i.

Hence, after at most

q1 :=
λ(F0) + γ

κ

degenerate iterations, we have λ(Fi) ≤ −γ, and algorithm Grow terminates. �

For 0 ≤ d ≤ t < dln(n)e, let F(t, d) denote a family of representatives for the

isomorphism classes of all graphs Ft that algorithm Grow can possibly generate after exactly

t iterations of the while-loop with exactly d of those t iterations being degenerate. Let

f(t, d) := |F(t, d)|.

Claim 4.5.5. There exist constants C0 = C0(H1, H2) and A = A(H1, H2) such that

f(t, d) ≤ dln(n)e(C0+1)d · At−d

for n sufficiently large.

Proof. By Claim 4.5.1, in every iteration i of the while-loop of Grow, we add new edges

onto Fi. These new edges span a graph on at most

K := v2 + (e2 − 1)(v1 − 2)

vertices. Thus v(Ft) ≤ v1 +Kt. Let GK denote the set of all graphs on at most K vertices. In

iteration i of the while-loop, Fi+1 is uniquely defined if one specifies the graph G ∈ GK with

edges E(Fi+1) \ E(Fi), the number y of vertices in which G intersects Fi, and two ordered

lists of vertices from G and Fi respectively of length y, which specify the mapping of the

intersection vertices from G onto Fi. Thus, the number of ways that Fi can be extended to
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Fi+1 is bounded from above by

∑
G∈GK

v(G)∑
y=2

v(G)yv(Fi)
y ≤ |GK | ·K ·KK(v1 +Kt)K ≤ dln(n)eC0

where C0 depends only on v1, v2 and e2, and n is sufficiently large. The last inequality follows

from the fact that t < ln(n) as otherwise the while-loop would have already ended.

Recall that, since Eligible-Edge determines the exact position where to attach the

copy of H2, in non-degenerate iterations i there are at most

2e2(2e1)e2−1 =: A

ways to extend Fi to Fi+1, where the coefficients of 2 correspond with the orientations of the

edge of the copy of H2 we attach to Fi and the edges of the copies of H1 we attach to said

copy of H2. Hence, for 0 ≤ d ≤ t < dln(n)e,

f(t, d) ≤
(
t

d

)
(dln(n)eC0)d · At−d ≤ dln(n)e(C0+1)d · At−d,

where the binomial coefficient corresponds to the choice of when in the t iterations the d

degenerate iterations happen. �

A reader of [51] may observe that Claim 4.5.5 is not analogous to [51, Claim 17].

Indeed, since we have a constant number of non-degenerate iterations, instead of a unique

non-degenerate iteration as in [51], we truncated the proof of Claim 17 in order to have

the appropriate bound to prove the following claim. Let F = F(H1, H2, n) be a family of

representatives for the isomorphism classes of all graphs that can be outputted by Grow

(whether Grow enters the while-loop or not). Note that the proof of the following claim
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requires Conjecture 4.0.4 to be true; in particular, we need that Â(H1, H2, ε) is finite when

m2(H1) > m2(H2).

Claim 4.5.6. There exists a constant b = b(H1, H2) > 0 such that for all p ≤ bn−1/m2(H1,H2),

Gn,p does not contain any graph from F(H1, H2, n) a.a.s.

Proof. We first consider the two special cases in lines 2-9 of Grow. Let F0 = F0(H1, H2) ⊆

F denote the class of graphs that can be outputted by Grow if one of these two cases

happens. We can see that any F ∈ F0 is either of the form

F =
⋃

e∈E(T )

SG′(e)

for some graph T ∈ TG′ , or of the form

F = S1 ∪ S2

for some edge-intersecting S1, S2 ∈ SG′ . Whichever of these forms F has, since every element

of SG′ is 2-connected and in C∗, and T is 2-connected5, we have that F is 2-connected and

in C∗. On the other hand, F ⊆ G′ is not in SG′ and thus not isomorphic to a graph in

Â. Indeed, otherwise the graphs S forming F would not be in SG′ due to the maximality

condition in the definition of SG′ . It follows that m(F ) > m2(H1, H2) + ε(H1, H2). Since we

assumed Conjecture 4.0.4 holds, the family F0 is finite. Hence Markov’s inequality yields

that Gn,p contains no graph from F0 a.a.s.

Let F̃ = F̃(H1, H2, n) denote a family of representatives for the isomorphism classes

of all graphs that can be the output of Grow with parameters n and γ(H1, H2) on any input

instance G′ for which it enters the while-loop. Observe that F = F0 ∪ F̃ . Let F1 and F2

denote the classes of graphs that algorithm Grow can output in lines 23 and 25, respectively.
5Since T ∼= H1 or T ∼= H2 and Lemma 4.3.3 holds.
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For each F ∈ F1, we have that e(F ) ≥ ln(n), as F was generated in dln(n)e iterations, each

of which introduces at least one new edge by Claim 4.5.1. Moreover, Claims 4.5.2 and

4.5.3 imply that λ(Fi) is non-increasing. Thus, we have that λ(F ) ≤ λ(F0) for all F ∈ F1.

For all F ∈ F2, we have that λ(F ) ≤ −γ due to the condition in line 13 of Grow. Let

A := A(H1, H2) be the constant found in the proof of Claim 4.5.5. Since we have chosen

F0
∼= H1 as the seed of the growing procedure, it follows that for

b := (Ae)−λ(F0)−γ ≤ 1,

the expected number of copies of graphs from F̃ in Gn,p with p ≤ bn−1/m2(H1,H2) is bounded

by

∑
F∈F̃

nv(F )pe(F ) ≤
∑
F∈F̃

be(F )nλ(F ) (4.1)

≤
∑
F∈F1

(eA)(−λ(F0)−γ) ln(n)nλ(F0) +
∑
F∈F2

be(F )n−γ

=
∑
F∈F1

A(−λ(F0)−γ) ln(n)n−γ +
∑
F∈F2

be(F )n−γ.

Observe that, since m2(F2) ≥ 1, we have that

λ(F0) = v1 −
e1

m2(F1, F2)
= 2− 1

m2(F2)
≥ 1 (4.2)

By Claims 4.5.1, 4.5.4 and 4.5.5, and (4.2), we have that
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∑
F∈F1

A(−λ(F0)−γ) ln(n)n−γ ≤
min{t,q1}∑
d=0

f(dln(n)e, d)A(−λ(F0)−γ) ln(n)n−γ (4.3)

≤ (q1 + 1)dln(n)e(C0+1)q1 · Adln(n)eA(−λ(F0)−γ) ln(n)n−γ

≤ (ln(n))2(C0+1)q1n−γ.

Observe that, by Claim 4.5.1, if some graph F ∈ F2 is the output of Grow after

precisely t iterations of the while-loop then e(F ) ≥ t. Since b < 1, this implies

be(F ) ≤ bt (4.4)

for such a graph F . Using (4.4) and Claims 4.5.1, 4.5.4 and 4.5.5, we have that

∑
F∈F2

be(F )n−γ ≤
dln(n)e∑
t=0

min{t,q1}∑
d=0

f(t, d)btn−γ (4.5)

≤
dln(n)e∑
t=0

min{t,q1}∑
d=0

dln(n)e(C0+1)d · At−d(Ae)(−λ(F0)−γ)tn−γ

≤ (dln(n)e+ 1)(q1 + 1)dln(n)e(C0+1)q1n−γ

≤ (ln(n))2(C0+1)q1n−γ.

Thus, by (4.1), (4.3) and (4.5), we have that
∑

F∈F̃ n
v(F )pe(F ) = o(1). Consequently,

Markov’s inequality implies that Gn,p a.a.s. contains no graph from F̃ .

Combined with the earlier observation that Gn,p a.a.s. contains no graph from F0, we

have that Gn,p a.a.s. contains no graph from F = F0 ∪ F̃ . �
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Proof of Lemma 4.4.3 Case 1. Suppose that the call to Asym-Edge-Col(G) gets stuck

for some graph G, and consider G′ ⊆ G at this moment. Then Grow(G′) returns a copy

of a graph F ∈ F(H1, H2, n) that is contained in G′ ⊆ G. Provided Claim 4.5.3 holds, by

Claim 4.5.6 this event a.a.s. does not occur in G = Gn,p with p as claimed. Thus Asym-

Edge-Col does not get stuck a.a.s and, by Lemma 4.4.2, finds a valid colouring for H1 and

H2 of Gn,p with p ≤ bn−1/m2(H1,H2) a.a.s.

4.5.2 Proof of Claim 4.5.3

Our strategy for proving Claim 4.5.3 revolves around comparing our degenerate iteration i

of the while-loop of algorithm Grow with any non-degenerate iteration which could have

occurred instead. In accordance with this strategy, we have the following technical lemma

which will be crucial in proving Claim 4.5.3.6 The lemma will play the same role as [51,

Lemma 21], but is considerably different. In order to state our technical lemma, we define

the following families of graphs.

Definition 4.5.7. Let F , H1 and H2 be graphs and ê ∈ E(F ). We define H(F, ê,H1, H2)

to be the family of graphs constructed from F in the following way: Attach a copy Hê of

H2 to F such that E(Hê) ∩ E(F ) = {ê} and V (Hê) ∩ V (F ) = ê. Then, for each edge

f ∈ E(Hê) \ {ê}, attach a copy Hf of H1 to F ∪ Hê such that E(F ∪ Hê) ∩ E(Hf ) = {f}

and (V (F ) \ ê) ∩ V (Hf ) = ∅.

Notice that, during construction of a graph J ∈ H(F, ê,H1, H2), the edge of Hê

intersecting at ê and the edge of each copy Hf of H1 intersecting at an edge f ∈ E(Hê)\{ê}

are not stipulated. That is, we may end up with different graphs after the construction

process if we choose different edges of Hê to intersect F at ê and different edges of the copies

Hf of H1 to intersect the edges in E(Hê)\{ê}. Observe that although E(F ∪Hê)∩E(Hf ) =

6More specifically, in proving Claim 4.5.10, stated later.
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F

Hf5

Hf2

Hf4

Hê

Hf1

Hf3

ê

f5

f4

f3

f2

f1

Figure 4.4: A graph J ∈ H(F, ê, C5, C6) \ H∗(F, ê, C5, C6).

{f} and (V (F ) \ ê) ∩ V (Hf ) = ∅ for each f ∈ E(Hê) − {ê}, the construction may result

in one or more graphs Hf intersecting Hê in more than two vertices, including possibly in

vertices of ê (e.g. Hf3 in Figure 4.4). Also, the graphs Hf may intersect with each other in

vertices and/or edges (e.g. Hf1 and Hf2 in Figure 4.4).

Borrowing notation and language from [51], for any J ∈ H(F, ê,H1, H2) we call the

vertices in VJ := V (Hê) \ ê the inner vertices of J and EJ := E(Hê) \ {ê} the inner edges

of J . Let HJ
ê be the inner graph on vertex set VJ ∪̇ ê and edge set EJ and observe that HJ

ê

is isomorphic to a copy of H2 minus some edge. Further, for each copy Hf of H1, we define

UJ(f) := V (Hf ) \ f and DJ(f) := E(Hf ) \ {f} and call

UJ :=
⋃
f∈EJ

UJ(f)
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the set of outer vertices of J and

DJ :=
⋃
f∈EJ

DJ(f)

the set of outer edges of J . Observe that the sets UJ(f) may overlap with each other and,

as noted earlier, with V (HJ
ê ). However, the sets DJ(f) may overlap only with each other.

Further, define H∗(F, ê,H1, H2) ⊆ H(F, ê,H1, H2) such that for any J∗ ∈ H∗(F, ê,H1, H2)

we have UJ∗(f1) ∩ UJ∗(f2) = ∅ and DJ∗(f1) ∩DJ∗(f2) = ∅ for all f1, f2 ∈ EJ∗ , f1 6= f2, and

UJ∗(f) ∩ V (HJ∗

ê ) = ∅ for all f ∈ EJ∗ ; that is, the copies of H1 are, in some sense, pairwise

disjoint. Note that each J∗ ∈ H∗(F, ê,H1, H2) corresponds with a non-degenerate iteration

i of the while loop of algorithm Grow when F = Fi, J∗ = Fi+1 and ê is the edge chosen

by Eligible-Edge(Fi). This observation will be very helpful several times later. For any

J ∈ H(F, ê,H1, H2), define

v+(J) := |V (J) \ V (F )| = v(J)− v(F )

and

e+(J) := |E(J) \ E(F )| = e(J)− e(F ),

and call e+(J)
v+(J)

the F -external density of J . The following lemma relates the F -external

density of any J∗ ∈ H∗(F, ê,H1, H2) to that of any J ∈ H(F, ê,H1, H2) \ H∗(F, ê,H1, H2).

Lemma 4.5.8. Let F be a graph and ê ∈ E(F ). Then for any J ∈ H(F, ê,H1, H2) \

H∗(F, ê,H1, H2) and any J∗ ∈ H∗(F, ê,H1, H2), we have

e+(J)

v+(J)
>
e+(J∗)

v+(J∗)
.

We prove Lemma 4.5.8 in Section 4.5.3.
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Claim 4.5.3 will follow from the next two claims. We say that algorithm Grow

encounters a degeneracy of type 1 in iteration i of the while-loop if line 14 returns true,

that is, ∃R ∈ RG′ \ RFi : |V (R) ∩ V (Fi)| ≥ 2. Note that the following claim requires that

m2(H1) > m2(H2).

Claim 4.5.9. There exists a constant κ1 = κ1(H1, H2) > 0 such that if procedure Grow

encounters a degeneracy of type 1 in iteration i of the while-loop, we have

λ(Fi+1) ≤ λ(Fi)− κ1.

Proof. Let F := Fi be the graph before the operation in line 15 is carried out (that is,

before Fi+1 ← Fi ∪R), let R be the copy of H1 merged with F in line 15 and let F ′ := Fi+1

be the output from line 15. We aim to show there exists a constant κ1 = κ1(H1, H2) > 0

such that

λ(F )− λ(F ′) = v(F )− v(F ′)− e(F )− e(F ′)
m2(H1, H2)

≥ κ1.

Choose any edge ê ∈ E(F ) (the edge ê need not be in the intersection of R and F ).

Let F ∗ ∈ H∗(F, ê,H1, H2). Our strategy is to compare our degenerate outcome F ′ with

F ∗. As noted earlier, F ∗ corresponds to a non-degenerate iteration of the while loop of

algorithm Grow (if ê was the edge chosen by Eligible-Edge). Then Claim 4.5.2 gives us

that λ(F ) = λ(F ∗). Then

λ(F )− λ(F ′) = λ(F ∗)− λ(F ′) = v(F ∗)− v(F ′)− e(F ∗)−e(F ′)
m2(H1,H2)

.

Hence we aim to show that there exists κ1 = κ1(H1, H2) > 0 such that
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v(F ∗)− v(F ′)− e(F ∗)− e(F ′)
m2(H1, H2)

≥ κ1. (4.6)

Define R′ to be the graph with vertex set V ′ := V (R) ∩ V (F ) and edge set E ′ :=

E(R) ∩ E(F ), and let v′ := |V ′| and e′ := |E ′|. Observe that R′ ⊂ R. Since F ∗ corresponds

with a non-degenerate iteration of the while-loop of algorithm Grow, H2 is (strictly) 2-

balanced and H1 is (strictly) balanced w.r.t. d2(·, H2), we have

v(F ∗)− v(F ′)− e(F ∗)− e(F ′)
m2(H1, H2)

= (e2 − 1)(v1 − 2) + (v2 − 2)− (v1 − v′)

−(e2 − 1)e1 − (e1 − e′)
m2(H1, H2)

= (e2 − 1)(v1 − 2) + (v2 − 2)

−(e2 − 1)

(
v1 − 2 +

1

m2(H2)

)
+

e1 − e′

m2(H1, H2)
− (v1 − v′)

=
e1 − e′

m2(H1, H2)
− (v1 − v′)

= v′ − 2 +
1

m2(H2)
− e′

m2(H1, H2)
. (4.7)

Also, since Grow encountered a degeneracy of type 1, we must have v′ ≥ 2. Hence, if e′ = 0

and v′ ≥ 2, then

v′ − 2 +
1

m2(H2)
− e′

m2(H1, H2)
≥ 1

m2(H2)
> 0.

If e′ ≥ 1, then since R is a copy of H1, H1 is strictly balanced w.r.t. d2(·, H2) and R′ ⊂ R

with |E(R′)| = e′ ≥ 1, we have that 0 < d2(R′, H2) < m2(H1, H2), and so

− 1

m2(H1, H2)
> − 1

d2(R′, H2)
. (4.8)
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Then by (4.7) and (4.8), we have that

v(F ∗)− v(F ′)− e(F ∗)− e(F ′)
m2(H1, H2)

= v′ − 2 +
1

m2(H2)
− e′

m2(H1, H2)

> v′ − 2 +
1

m2(H2)
− e′

d2(R′, H2)

= 0,

using the definition of d2(R′, H2). Thus (4.6) holds for

κ1 = min
R′⊂R

{
1

m2(H2)
, v′ − 2 +

1

m2(H2)
− e′

m2(H1, H2)

}
.

�

We say that algorithm Grow encounters a degeneracy of type 2 in iteration i of the

while-loop if, when we call Extend-L(Fi, e, G
′), the graph L found in line 2 overlaps with

Fi in more than 2 vertices, or if there exists some edge e′ ∈ E(L)\E(Fi) such that the graph

Re′ found in line 5 overlaps in more than 2 vertices with F ′. The following result corresponds

to [51, Claim 22]. As in the proof of [51, Claim 22], we transform F ′ into the output of a

non-degenerate iteration F ∗ in three steps. However, we swap the order of the latter two

steps in our proof. More precisely, we transform F ′ into a graph F 2 ∈ H(Fi, e,H1, H2) in

the first two steps, then transform F 2 into a graph F 3 := F ∗ ∈ H∗(Fi, e,H1, H2). In this

last step we require Lemma 4.5.8.

Claim 4.5.10. There exists a constant κ2 = κ2(H1, H2) > 0 such that if procedure Grow

encounters a degeneracy of type 2 in iteration i of the while-loop, we have

λ(Fi+1) ≤ λ(Fi)− κ2.
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Proof. Let F := Fi be the graph passed to Extend-L and let F ′ := Fi+1 be its output.

We aim to show that there exists a constant κ2 = κ2(H1, H2) > 0 such that

λ(F )− λ(F ′) = v(F )− v(F ′)− e(F )− e(F ′)
m2(H1, H2)

≥ κ2. (4.9)

Recall that F ′ would be one of a constant number of graphs if iteration i was non-

degenerate. Our strategy is to transform F ′ into the output of such a non-degenerate iteration

F ∗ in three steps

F ′ =: F 0 (i)→ F 1 (ii)→ F 2 (iii)→ F 3 := F ∗,

with each step carefully resolving a different facet of a degeneracy of type 2. By Claim 4.5.2,

we have λ(F ) = λ(F ∗), hence we have that

λ(F )− λ(F ′) = λ(F ∗)− λ(F ′) =
∑3

j=1 (λ(F j)− λ(F j−1))

=
∑3

j=1

(
v(F j)− v(F j−1)− e(F j)−e(F j−1)

m2(H1,H2)

)
.

We shall show that there exists κ2 = κ2(H1, H2) > 0 such that

(
v(F j)− v(F j−1)− e(F j)− e(F j−1)

m2(H1, H2)

)
≥ κ2 (4.10)

for each j ∈ {1, 2, 3}, whenever F j and F j−1 are not isomorphic. In each step we will look

at a different structural property of F ′ that may result from a degeneracy of type 2. We do

not know the exact structure of F ′, and so, for each j, step j may not necessarily modify

F j−1. However, since F ′ is not isomorphic to F ∗, as F ′ resulted from a degeneracy of type

2, we know that for at least one j that F j is not isomorphic to F j−1. This will allow us to
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conclude (4.9) from (4.10).

We will now analyse the graph that Extend-L attaches to F when a degeneracy of

type 2 occurs. First of all, Extend-L attaches a graph L ∼= H2 to F such that L ∈ L∗G′ .

Let x be the number of new vertices that are added onto F when L is attached, that is,

x = |V (L)\(V (F )∩V (L))|. Since L overlaps with the edge e determined by Eligible-Edge

in line 17 of Grow, we must have that x ≤ v2 − 2. Further, as L ∈ L∗G′ , every edge of L is

covered by a copy of H1. Thus, since the condition in line 14 of Grow came out as false in

iteration i, we must have that

for all u, v ∈ V (F ) ∩ V (L), if uv ∈ E(L) then uv ∈ E(F ). (4.11)

(By Claim 4.5.1, (4.11) implies that x ≥ 1 since F must be extended by at least one edge.)

Let L′ ⊆ L denote the subgraph of L obtained by removing every edge in E(F )∩E(L).

Observe that |V (L′)| = |V (L)| = v2 and |E(L′)| ≥ 1 (see the remark above). Extend-L

attaches to each edge e′ ∈ E(L′) a copy Re′ of H1 in line 6 such that E(L′)∩E(Re′) = {e′}.

As the condition in line 14 of Grow came out as false, each graph Re′ intersects F in at

most one vertex and, hence, zero edges. Let

L′R := L′ ∪
⋃

e′∈E(L′)

Re′ .

Then F ′ is the same as F ∪L′R, and since every graph Re′ contains at most one vertex of F ,

we have that E(F ′) = E(F ) ∪̇ E(L′R). Therefore,

e(F ′)− e(F ) = e(L′R).

Observe that |V (F ) ∩ V (L′)| = v2 − x and so
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v(F ′)− v(F ) = v(L′R)− |V (F ) ∩ V (L′R)|

= v(L′R)− (v2 − x)− |V (F ) ∩ (V (L′R) \ V (L′))|.

Transformation (i): F 0 → F 1. If |V (F ) ∩ (V (L′R) \ V (L′))| ≥ 1, then we ap-

ply transformation (i), mapping F 0 to F 1: For each vertex v ∈ V (F ) ∩ (V (L′R) \ V (L′)),

transformation (i) introduces a new vertex v′. Every edge incident to v in E(F ) remains

connected to v and all those edges incident to v in E(L′R) are redirected to v′. In L′R we

replace the vertices in V (F ) ∩ (V (L′R) \ V (L′)) with the new vertices. So now we have

|V (F ) ∩ (V (L′R) \ V (L′))| = 0. Since E(F ) ∩ E(L′R) = ∅, the output of this transformation

is uniquely defined. Moreover, the structure of L′R is completely unchanged. Hence, since

|V (F ) ∩ (V (L′R) \ V (L′))| ≥ 1, and |E(F ′)| = |E(F ) ∪̇ E(L′R)| remained the same after

transformation (i), we have that

v(F 1)− v(F 0)− e(F 1)− e(F 0)

m2(H1, H2)
= |V (F ) ∩ (V (L′R) \ V (L′))| ≥ 1.

Transformation (ii): F 1 → F 2. Recall the definition of H(F, e,H1, H2). If x ≤

v2 − 3, then we apply transformation (ii), mapping F 1 to F 2 by replacing L′R with a graph

L′′R such that F ∪ L′′R ∈ H(F, e,H1, H2).

If x = v2 − 2, observe that already F ∪ L′R ∈ H(F, e,H1, H2) and we continue to

transformation (iii). So assume x ≤ v2 − 3. Consider the proper subgraph LF := L[V (F ) ∩

V (L)] ⊂ L obtained by removing all x vertices in V (L) \V (F ) and their incident edges from

L. Observe that v(LF ) = v2 − x ≥ 3 and also that LF ⊆ F by (4.11). Assign labels to

V (LF ) so that V (LF ) = {y, z, w1, . . . , wv2−(x+2)} where e = {y, z} and w1, . . . , wv2−(x+2) are
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arbitrarily assigned. At the start of transformation (ii), we create v2 − (x+ 2) new vertices

w′1, . . . , w
′
v2−(x+2) and also new edges such that {y, z, w′1, . . . , w′v2−(x+2)} induces a copy L̂F of

LF , and for all i, j ∈ {1, . . . , v2 − (x+ 2)}, i 6= j,

if wiwj ∈ E(LF ) then w′iw
′
j ∈ E(L̂F );

if wiy ∈ E(LF ) then w′iy ∈ E(L̂F );

if wiz ∈ E(LF ) then w′iz ∈ E(L̂F );

and e = yz ∈ E(L̂F ).

We also transform L′R. For each edge in E(L′R) incident to a vertex wi in LF , redirect

the edge to w′i, and remove w1, . . . , wv2−(x+2) from V (L′R). Hence the structure of L′R remains

the same except for the vertices w1, . . . , wv2−(x+2) that we removed. Define L′′ := L′R ∪ L̂F

and observe that V (L′′) ∩ V (F ) = e.

Continuing transformation (ii), for each e′ ∈ E(L̂F ) \ {e} , attach a copy Re′ of H1 to

L′′ such that E(Re′)∩E(L′′∪F ) = {e′} and V (Re′)∩V (L′′∪F ) = e′. That is, all these new

copies Re′ of H1 are, in some sense, pairwise disjoint. Observe that E(L′′)∩E(F ) = {e} and

define

L′′R := L′′ ∪
⋃

e′∈E(L̂F )\{e}

Re′ .

Then F ∪ L′′R ∈ H(F, e,H1, H2). (See Figure 4.5 for an example of transformation

(ii).)

Let F 2 := F ∪ L′′R. Then,
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v(F 2)− v(F 1)− e(F 2)− e(F 1)

m2(H1, H2)

= (e(L̂F )− 1)(v1 − 2) + v(L̂F )− 2− (e(L̂F )− 1)e1

m2(H1, H2)

= v(L̂F )− 2− (e(L̂F )− 1)

m2(H2)

=
(v(L̂F )− 2)

(
m2(H2)− e(L̂F )−1

v(L̂F )−2

)
m2(H2)

≥ δ1

for some δ1 = δ1(H1, H2) > 0, where the second equality follows from H1 being (strictly)

balanced w.r.t. d2(·, H2), the third equality follows from v(L̂F ) = v(LF ) ≥ 3 and the last

inequality follows from L̂F being a copy of LF ⊂ L ∼= H2 and H2 being strictly 2-balanced.

F

L̂F

LF

F

(ii)

y z

w1

w2

w3

a

b

y

a

b

w′1

w′2

w′3

z

w1

w2

w3

Figure 4.5: An example of transformation (ii) where H1 = K3 and H2 = C8. Observe that
edges aw1 and bw1 are replaced by edges aw′1 and bw′1.

Transformation (iii): F 2 → F 3. Recall that for any J ∈ H(F, ê,H1, H2), we define

v+(J) := |V (J) \ V (F )| = v(J)− v(F ) and e+(J) := |E(J) \E(F )| = e(J)− e(F ). Remove
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the edge e from E(L′′) (and E(L′′R)) to give E(L′′) ∩ E(F ) = ∅. Then

e+(F ∪ L′′R) = e(L′′R)

and

v+(F ∪ L′′R) = v(L′′R)− 2.

If F 2 = F ∪L′′R ∈ H∗(F, e,H1, H2), then transformation (iii) sets F 3 := F 2. Otherwise

F ∪ L′′R ∈ H(F, e,H1, H2) \ H∗(F, e,H1, H2). Let F 3 := J∗ where J∗ is any member of

H∗(F, e,H1, H2) and recall that, indeed, J∗ is a possible output of a non-degenerate iteration

of the while-loop of Grow.

Then, in transformation (iii), we replace F ∪ L′′R with the graph J∗. Since H2 is

(strictly) 2-balanced and H1 is (strictly) balanced w.r.t. d2(·, H2), we have that

m2(H1, H2) =
e1

v1 − 2 + 1
m2(H2)

=
e1(e2 − 1)

(v1 − 2)(e2 − 1) + v2 − 2
=
e+(J∗)

v+(J∗)
. (4.12)

Using (4.12) and Lemma 4.5.8, and that H2 is (strictly) 2-balanced and H1 is (strictly)

balanced w.r.t. d2(·, H2), we have that
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v(F 3)− v(F 2)− e(F 3)− e(F 2)

m2(H1, H2)

= v(J∗)− v(F ∪ L′′R)− e(J∗)− e(F ∪ L′′R)

m2(H1, H2)

= v+(J∗)− v+(F ∪ L′′R)− e+(J∗)− e+(F ∪ L′′R)

m2(H1, H2)

L.4.5.8
> v+(J∗)− v+(F ∪ L′′R)−

e+(J∗)− e+(J∗)
(
v+(F∪L′′R)

v+(J∗)

)
m2(H1, H2)

=
(
v+(J∗)− v+(F ∪ L′′R)

)(
1− e+(J∗)

v+(J∗)m2(H1, H2)

)
= 0.

Since v+(J∗), v+(F ∪ L′′R), e+(J∗), e+(F ∪ L′′R) and m2(H1, H2) only rely on H1 and

H2, there exists δ2 = δ2(H1, H2) > 0 such that

v(F 3)− v(F 2)− e(F 3)− e(F 2)

m2(H1, H2)
≥ δ2.

Taking

κ2 := min{1, δ1, δ2}

we see that (4.10) holds. �

As stated earlier, Claim 4.5.3 follows from Claims 4.5.9 and 4.5.10. All that remains

to prove Case 1 of Lemma 4.4.3 is to prove Lemma 4.5.8.
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4.5.3 Proof of Lemma 4.5.8

Let J ∈ H(F, ê,H1, H2) \ H∗(F, ê,H1, H2). Choose J∗ ∈ H∗(F, ê,H1, H2) such that

1) the edge of the copy Hê of H2 in J attached at ê and its orientation when attached

are the same as the edge of the copy H∗ê of H2 in J∗ attached at ê and its orientation

when attached;

2) for each f ∈ EJ , the edge of the copy Hf of H1 in J attached at f and its orientation

when attached are the same as the edge of the copy H∗f of H1 in J∗ attached at f and

its orientation when attached.

Then, recalling definitions from the beginning of Section 4.5.2, we have that VJ = VJ∗

and EJ = EJ∗ ; that is, HJ
ê = HJ∗

ê . From now on, let V := VJ , E := EJ and H−ê := HJ
ê .

Observe for all J ′ ∈ H∗(F, ê,H1, H2), that

e+(J ′)

v+(J ′)
=

e1(e2 − 1)

(v1 − 2)(e2 − 1) + v2 − 2
. (4.13)

Hence, to prove Lemma 4.5.8 it suffices to show

e+(J)

v+(J)
>
e+(J∗)

v+(J∗)
.

As in [51], the intuition behind our proof is that J∗ can be transformed into J by

successively merging the copies H∗f of H1 in J∗ with each other and vertices in H−ê . We do

this in e2 − 1 steps, fixing carefully a total ordering of the inner edges E. For every edge

f ∈ E, we merge the attached outer copy H∗f of H1 in J∗ with copies of H1 (attached to

edges preceding f in our ordering) and vertices of H−ê . Throughout, we keep track of the

number of edges ∆e(f) and the number of vertices ∆v(f) vanishing in this process. One
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could hope that the F -external density of J increases in every step of this process, or, even

slightly stronger, that ∆e(f)/∆v(f) < e+(J∗)/v+(J∗). This does not necessarily hold, but

we will show that there exist a collection of edge-disjoint subgraphs Ai of H−ê such that,

for each i, the edges of E(Ai) are ‘collectively good’ for this process and every edge not

belonging to one of these Ai is also ‘good’ for this process.

Recalling definitions from the beginning of Section 4.5.2, letH−f := (UJ(f) ∪̇ f,DJ(f))

denote the subgraph obtained by removing the edge f from the copy Hf of H1 in J .

Later, we will carefully define a (total) ordering ≺ on the inner edges E.7 For such

an ordering ≺ and each f ∈ E, define

∆E(f) := DJ(f) ∩

(⋃
f ′≺f

DJ(f ′)

)
,

and

∆V (f) := UJ(f) ∩

((⋃
f ′≺f

UJ(f ′)

)
∪ V (H−ê )

)
,

and set ∆e(f) := |∆E(f)| and ∆v(f) := |∆V (f)|. We emphasise here that the definition of

∆v(f) takes into account how vertices of outer vertex sets can intersect with the inner graph

H−ê . One can see that ∆e(f) (∆v(f)) is the number of edges (vertices) vanishing from H∗f

when it is merged with preceding attached copies of H1 and V (H−ê ).

By our choice of J∗, one can quickly see that

e+(J) = e+(J∗)−
∑
f∈E

∆e(f) (4.14)

and
7For clarity, for any f ∈ E, f 6≺ f in this ordering ≺.
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v+(J) = v+(J∗)−
∑
f∈E

∆v(f). (4.15)

By (4.14) and (4.15), we have

e+(J)

v+(J)
=
e+(J∗)−

∑
f∈E ∆e(f)

v+(J∗)−
∑

f∈E ∆v(f)
.

Then, by Fact 4.3.2, to show that

e+(J)

v+(J)
>
e+(J∗)

v+(J∗)

it suffices to prove that

∑
f∈E ∆e(f)∑
f∈E ∆v(f)

<
e+(J∗)

v+(J∗)
.8 (4.16)

To show (4.16), we will now carefully order the edges of E using an algorithm Order-

Edges (Figure 4.6). The algorithm takes as input the graph H−ê = (V ∪̇ ê, E) and outputs

a stack s containing every edge from E and a collection of edge-disjoint edge sets Ei in E

and (not necessarily disjoint) vertex sets Vi in V ∪̇ ê. We take our total ordering ≺ of E

to be that induced by the order in which edges of E were placed onto the stack s (that is,

f ≺ f ′ if and only if f was placed onto the stack s before f ′). Also, for each i, we define

Ai := (Vi, Ei) to be the graph on vertex set Vi and edge set Ei and observe that Ai ⊂ H2.

We will utilise this ordering and our choice of Ei and Vi for each i, alongside that H2 is

(strictly) 2-balanced and H1 is strictly balanced w.r.t. d2(·, H2), in order to conclude (4.16).

Let us describe algorithm Order-Edges (Figure 4.6) in detail. In lines 2-8, we ini-
8Note that

∑
f∈E ∆v(f) ≥ 1 as otherwise J = J∗.
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1: procedure Order-Edges(H−ê = (V ∪̇ ê, E))
2: s← empty-stack()
3: for all i ∈ [be2/2c] do
4: Ei ← ∅
5: Vi ← ∅
6: end for
7: j ← 1
8: E ′ ← E
9: while E ′ 6= ∅ do
10: if ∃f, f ′ ∈ E ′ s.t. (f 6= f ′) ∧ (DJ(f) ∩DJ(f ′) 6= ∅) then
11: s.push(f)
12: Ej.push(f)
13: E ′.remove(f)
14: Vj ← f ∪ (UJ(f) ∩ V (H−ê ))

15: while ∃ uw ∈ E ′ s.t. (u,w ∈ Vj) ∨
(
DJ(uw) ∩

⋃
f∈Ej DJ(f) 6= ∅

)
do

16: s.push(uw)
17: Ej.push(uw)
18: E ′.remove(uw)
19: Vj ←

⋃
f∈Ej

(
f ∪ (UJ(f) ∩ V (H−ê ))

)
20: end while
21: j ← j + 1
22: else
23: for all f ∈ E ′ do
24: s.push(f)
25: E ′.remove(f)
26: end for
27: end if
28: end while
29: return s
30: for all i ∈ [be2/2c] s.t. Ei 6= ∅ do
31: return Ei
32: return Vi
33: end for
34: end procedure

Figure 4.6: The implementation of algorithm Order-Edges.
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tialise several parameters: a stack s, which we will place edges of E on during our algorithm;

sets Ei and Vi for each i ∈ [be2/2c],9 which we will add edges of E and vertices of V ∪̇ ê

into, respectively; an index j, which will correspond to whichever graph Aj we consider con-

structing next; a set E ′, which will keep track of those edges of E we have not yet placed

onto the stack s. Line 9 ensures the algorithm continues until E ′ = ∅, that is, until all the

edges of E have been placed onto s.

In line 10, we begin constructing Aj by finding a pair of distinct edges in E ′ whose

outer edge sets (in J) intersect. In lines 11-14, we place one of these edges, f , onto s, into

Ej and remove it from E ′. We also set Vj to be the two vertices in f alongside any vertices

in the outer vertex set UJ(f) that intersect V (H−ê ).

In lines 15-20, we iteratively add onto s, into Ej and remove from E ′ any edge uw ∈ E ′

which either connects two vertices previously added to Vj or has an outer edge set DJ(uw)

that intersects the collection of outer edge sets of edges previously added to Ej. We also

update Vj in each step of this process.

In line 21, we increment j in preparation for the next check at line 10 (if we still have

E ′ 6= ∅). If the condition in line 10 fails then in lines 23-26 we arbitrarily place the remaining

edges of E ′ onto the stack s. In line 29, we output the stack s and in lines 30-32 we output

each non-empty Ei and Vi.

We will now argue that each proper subgraph Ai = (Vi, Ei) of H2 and each edge

placed onto s in line 24 are ‘good’, in some sense, for us to conclude (4.16).

For each f ∈ E, define the graph

T (f) := (∆V (f) ∪̇ f,∆E(f)) ⊆ H−f $ H1.

9Order-Edges can output at most be2/2c pairs of sets Ei and Vi.
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Observe that one or both vertices of f may be isolated in T (f). This observation will be

very useful later.

For each i and f ∈ Ei, define

(V (H−ê ))f := (V (H−ê ) ∩ UJ(f)) \

 ⋃
f ′∈Ei:
f ′≺f

f ′ ∪

 ⋃
f ′∈Ei:
f ′≺f

(
V (H−ê ) ∩ UJ(f ′)

)
 ⊆ ∆V (f)

since (V (H−ê ))f is a subset of V (H−ê )∩UJ(f). One can see that (V (H−ê ))f consists of those

vertices of V (H−ê ) which are new to Vi at the point when f is added to Ei but are not

contained in f . Importantly for our purposes, every vertex in (V (H−ê ))f is isolated in T (f).

Indeed, otherwise there exists k < i and f ′′ ∈ Ek such that DJ(f)∩DJ(f ′′) 6= ∅ and f would

have been previously added to Ek in line 17.

For each f ∈ E, let T ′(f) be the graph obtained from T (f) by removing all isolated

vertices from V (T (f)). Crucially for our proof, since vertices of f may be isolated in T (f),

one or more of them may not belong to V (T ′(f)). Further, no vertex of (V (H−ê ))f is contained

in V (T ′(f)).

For all f ∈ E with ∆e(f) ≥ 1, since T ′(f) $ H1 and H1 is strictly balanced

w.r.t. d2(·, H2), we have that

m2(H1, H2) > d2(T ′(f), H2) =
|E(T ′(f))|

|V (T ′(f))| − 2 + 1
m2(H2)

. (4.17)

Recall (4.12), that is

m2(H1, H2) =
e+(J∗)

v+(J∗)
.

We now make the key observation of our proof: Since vertices of f may be isolated in T (f),

and so not contained in V (T ′(f)), and no vertex of (V (H−ê ))f is contained in V (T ′(f)), we
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have that

|V (T ′(f))| ≤ ∆v(f) + |f ∩ V (T ′(f))| − |(V (Hê))f |. (4.18)

Hence, from (4.17) and (4.18) we have that

∆e(f) = |E(T ′(f))|

< m2(H1, H2)

(
∆v(f)− (2− |f ∩ V (T ′(f))|)− |(V (H−ê ))f |+

1

m2(H2)

)
. (4.19)

Edges f such that |f ∩ V (T ′(f))| = 2 will be, in some sense, ‘bad’ for us when trying to

conclude (4.16). Indeed, if |(V (H−ê ))f | = 0 then we may have that ∆e(f)
∆v(f)

≥ m2(H1, H2) =

e+(J∗)
v+(J∗)

, by (4.12). However, edges f such that |f ∩ V (T ′(f))| ∈ {0, 1} will be, in some sense,

‘good’ for us when trying to conclude (4.16). Indeed, since m2(H2) ≥ 1, we have for such

edges f that ∆e(f)
∆v(f)

< m2(H1, H2) = e+(J∗)
v+(J∗)

.

We show in the following claim that our choice of ordering ≺, our choice of each Ai

and the fact that H2 is (strictly) 2-balanced ensure that for each i there are enough ‘good’

edges in Ai to compensate for any ‘bad’ edges that may appear in Ai.

Claim 4.5.11. For each i,

∑
f∈Ei

∆e(f) < m2(H1, H2)
∑
f∈Ei

∆v(f).

Proof. Fix i. Firstly, as observed before, each Ai is a non-empty subgraph ofH2. Moreover,

|Ei| ≥ 2 (by the condition in line 10). Since H2 is (strictly) 2-balanced, we have that

m2(H2) ≥ d2(Ai) =
|Ei| − 1

|Vi| − 2
. (4.20)

Now let us consider ∆e(f) for each f ∈ Ei. For the edge f added in line 12, observe
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that ∆e(f) = 0. Indeed, otherwise ∆e(f) ≥ 1, and there exists k < i such that DJ(f) ∩(⋃
f ′∈Ek DJ(f ′)

)
6= ∅. That is, f would have been added to Ek in line 17 previously in the

algorithm. Since (V (H−ê ))f ⊆ ∆V (f), we have that

∆e(f) = 0 ≤ m2(H1, H2)
(
∆v(f)− |(V (H−ê ))f |

)
. (4.21)

Now, for each edge added in line 17, either v, w ∈ Vi when uw was added to Ei, or

DJ(uw)∩
(⋃

f ′∈Ei:
f ′≺uw

DJ(f ′)

)
6= ∅, that is, ∆e(uw) ≥ 1, and at least one of u, w did not belong

to Vi when uw was added to Ei. In the former case, if ∆e(uw) ≥ 1, then by (4.19) and that

−(2− |f ∩ V (T ′(f))|) ≤ 0, we have that

∆e(uw) < m2(H1, H2)

(
∆v(uw)− |(V (H−ê ))uw|+

1

m2(H2)

)
. (4.22)

Observe that (4.22) also holds when ∆e(uw) = 0. In the latter case, observe that for all

k < i, we must have DJ(uw) ∩
(⋃

f∈Ek DJ(f)
)

= ∅. Indeed, otherwise uw would have been

added to some Ek in line 17. Combining this with knowing that at least one of u, w did not

belong to Vi before uw was added to Ei, we must have that one or both of u, w are isolated

in T (uw). That is, one or both do not belong to T ′(uw), and so |uw ∩ V (T ′(uw))| ∈ {0, 1}.

Thus, since ∆e(uw) ≥ 1, by (4.19) we have that

∆e(uw) < m2(H1, H2)

(
∆v(uw)− 1− |(V (H−ê ))uw|+

1

m2(H2)

)
(4.23)

if |uw ∩ V (T ′(uw))| = 1, and

∆e(uw) < m2(H1, H2)

(
∆v(uw)− 2− |(V (H−ê ))uw|+

1

m2(H2)

)
(4.24)

if |uw ∩ V (T ′(uw))| = 0.
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In conclusion, except for the two vertices in the edge added in line 12, every time a

new vertex x was added to Vi when some edge f was added to Ei, either x ∈ (V (H−ê ))f ,

or x ∈ f and (4.23) or (4.24) held, dependent on whether one or both of the vertices in f

were new to Vi. Indeed, x was isolated in T (f). Moreover, after the two vertices in the edge

added in line 12 there are |Vi| − 2 vertices added to Vi.

Hence, by (4.21)-(4.24), we have that

∑
f∈Ei

∆e(f) < m2(H1, H2)

(∑
f∈Ei

∆v(f)− (|Vi| − 2) +
|Ei| − 1

m2(H2)

)
. (4.25)

By (4.20),

−(|Vi| − 2) +
|Ei| − 1

m2(H2)
≤ 0. (4.26)

Thus, by (4.25) and (4.26), we have that

∑
f∈Ei

∆e(f) < m2(H1, H2)
∑
f∈Ei

∆v(f)

as desired. �

Claim 4.5.12. For each edge f placed onto s in line 24, we have ∆e(f) = 0.

Proof. Assume not. Then ∆e(f) ≥ 1 for some edge f placed onto s in line 24. Observe

that DJ(f) ∩
(⋃

f ′′∈Ei DJ(f ′′)
)

= ∅ for any i, otherwise f would have been added to some

Ei in line 17 previously.

Thus we must have that DJ(f) ∩ DJ(f ′) 6= ∅ for some edge f ′ 6= f where f ′ was

placed onto s also in line 24. But then f and f ′ satisfy the condition in line 10 and would

both be contained in some Ei, contradicting that f was placed onto s in line 24. �
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Since J ∈ H(F, ê,H1, H2) \ H∗(F, ê,H1, H2), we must have that ∆v(f) ≥ 1 for some

f ∈ E. Thus, if ∆e(f) = 0 for all f ∈ E then (4.16) holds trivially. If ∆e(f) ≥ 1 for

some f ∈ E, then E1 6= ∅ and A1 is a non-empty subgraph of H−ê . Then, by (4.12) and

Claims 4.5.11 and 4.5.12, we have that

∑
f∈E ∆e(f)∑
f∈E ∆v(f)

=

∑
i

∑
f∈Ei ∆e(f) +

∑
f∈E\∪iEi ∆e(f)∑

f∈E ∆v(f)

<
m2(H1, H2)

∑
i

∑
f∈Ei ∆v(f)∑

i

∑
f∈Ei ∆v(f)

= m2(H1, H2)

=
e+(J∗)

v+(J∗)
.

Thus (4.16) holds and we are done.

4.6 Case 2: m2(H1, H2) = m2(H2).

In this section we prove Lemma 4.4.3 when m2(H1) = m2(H2). Our proof follows that of

Case 1 significantly, but uses a different algorithm Grow-Alt. All definitions and notation

are the same as previously unless otherwise stated.

For any graph F and edge e ∈ E(F ), we say that e is eligible for extension in Grow-

Alt if it satisfies

@L ∈ LF , R ∈ RF s.t. E(L) ∩ E(R) = {e}.

We note here that this is substantially different to Case 1; indeed, the set C∗ will not feature

in what follows. Algorithm Grow-Alt is shown in Figure 4.7. As with Grow, it has input

G′ ⊆ G, the graph that Asym-Edge-Col got stuck on. Grow-Alt operates in a similar

way to Grow. In line 14, the function Eligible-Edge-Alt is called which maps Fi to
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an edge e ∈ E(Fi) which is eligible for extension in Grow-Alt. As with Eligible-Edge

in Case 1, this edge e is selected to be unique up to isomorphism. We then apply a new

procedure Extend which attaches either a graph L ∈ LG′ or a graph R ∈ RG′ that contains

e to Fi. As in Case 1, because the condition in line 6 of Asym-Edge-Col fails, G′ ∈ C.10

We now show that the number of edges of Fi increases by at least one and that

Grow-Alt operates as desired with a result analogous to Claim 4.5.1.

Claim 4.6.1. Algorithm Grow-Alt terminates without error on any input graph G′ ∈ C

that is no (H1, H2)-sparse Â-graph.11 Moreover, for every iteration i of the while-loop, we

have e(Fi+1) > e(Fi).

Proof. The special cases in lines 2-9 and the assignments in lines 10 and 11 operate

successfully for the exact same reasons as given in the proof of Claim 4.5.1.

Next, we show that the call to Eligible-Edge-Alt in line 14 is always successful.

Indeed, suppose for a contradiction that no edge in Fi is eligible for extension in Grow-

Alt for some i ≥ 0. Then for every edge e ∈ E(Fi) there exist L ∈ LF and R ∈ RF s.t.

E(L) ∩ E(R) = {e}, by definition. Hence F ∈ C. Recall that H1 and H2 satisfy the criteria

of Conjecture 4.0.4. Hence H1 and H2 are strictly 2-balanced and m2(H1) = m2(H2) > 1.

Then, by Lemma 4.3.3, we have that H1 and H2 are both 2-connected. Hence Fi is 2-

connected by construction. However, our choice of F0 in line 11 guarantees that Fi is not

in Â. Indeed, the edge e selected in line 10 satisfying |SG′(e)| = 0 is an edge of F0 and

F0 ⊆ Fi ⊆ G′. Thus, by the definition of Â and that m2(H1) = m2(H2), we have that

m(Fi) > m2(H1, H2) + ε. Thus, there exists a non-empty graph F̃ ⊆ Fi with d(F̃ ) = m(Fi)

such that
10Note that we could also conclude G′ ∈ C∗, however this will not be necessary, as noted earlier.
11See page 108 for the definition.
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1: procedure Grow-Alt(G′ = (V,E))
2: if ∀e ∈ E : |SG′(e)| = 1 then
3: T ← any member of TG′
4: return

⋃
e∈E(T ) SG′(e)

5: end if
6: if ∃e ∈ E : |SG′(e)| ≥ 2 then
7: S1, S2 ← any two distinct members of SG′(e)
8: return S1 ∪ S2

9: end if
10: e← any e ∈ E : |SG′(e)| = 0
11: F0 ← any R ∈ RG′ : e ∈ E(R)
12: i← 0
13: while (i < ln(n)) ∧ (∀F̃ ⊆ Fi : λ(F̃ ) > −γ) do
14: e← Eligible-Edge-Alt(Fi)
15: Fi+1 ← Extend(Fi, e, G

′)
16: i← i+ 1
17: end while
18: if i ≥ ln(n) then
19: return Fi
20: else
21: return Minimising-Subgraph(Fi)
22: end if
23: end procedure

1: procedure Extend(F, e,G′)
2: {L,R} ← any pair {L,R} such that L ∈ LG′ , R ∈ RG′ and E(L) ∩ E(R) = e
3: if L * F then
4: F ′ ← F ∪ L
5: else
6: F ′ ← F ∪R
7: end if
8: return F ′

9: end procedure

Figure 4.7: The implementation of algorithm Grow-Alt.
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Figure 4.8: A graph F3 resulting from three non-degenerate iterations for H1 = K3 and
H2 = K3,3.

λ(F̃ ) = v(F̃ )− e(F̃ )

m2(H1, H2)

= e(F̃ )

(
1

m(Fi)
− 1

m2(H1, H2)

)
< e(F̃ )

(
1

m2(H1, H2) + ε
− 1

m2(H1, H2)

)
= −γe(F̃ ) ≤ −γ.

Thus Grow terminates in line 13 without calling Eligible-Edge-Alt. Thus every

call to Eligible-Edge-Alt is successful and returns an edge e. Since G′ ∈ C, the call

to Extend(Fi, e, G
′) is also successful and thus there exist suitable graphs L ∈ LG′ and

R ∈ RG′ such that E(L) ∩ E(R) = {e}, that is, line 2 is successful.

It remains to show that for every iteration i of the while-loop, we have e(Fi+1) > e(Fi).

Since e is eligible for extension in Grow-Alt for Fi and E(L) ∩ E(R) = {e}, we must

have that either L * Fi or R * Fi. Hence Extend outputs F ′ := F ∪ L such that

e(Fi+1) = e(F ′) > e(Fi) or F ′ := F ∪R such that e(Fi+1) = e(F ′) > e(Fi). �
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We consider the evolution of Fi now in more detail. We call iteration i of the while-

loop in algorithm Grow-Alt non-degenerate if the following hold for Extend:

• If L * Fi (that is, line 3 is true), then in line 4 we have V (Fi) ∩ V (L) = e;

• If L ⊆ Fi (that is, line 3 is false), then in line 6 we have V (Fi) ∩ V (R) = e.

Otherwise, we call iteration i degenerate. Note that, in non-degenerate iterations i, there

are only a constant number of graphs that Fi+1 can be for any given Fi; indeed, Eligible-

Edge-Alt determines the exact position where to attach L or R (recall that the edge e

found by Eligible-Edge-Alt(Fi) is unique up to isomorphism of Fi).

We now prove a result analogous to Claim 4.5.2 for Grow-Alt.

Claim 4.6.2. If iteration i of the while-loop in procedure Grow-Alt is non-degenerate, we

have

λ(Fi+1) = λ(Fi).

Proof. In a non-degenerate iteration, we either add v2 − 2 vertices and e2 − 1 edges for

the copy L of H2 to Fi or add v1 − 2 vertices and e1 − 1 edges for the copy R of H1 to Fi.

In the former case,

λ(Fi+1)− λ(Fi) = v2 − 2− e2 − 1

m2(H1, H2)

= v2 − 2− e2 − 1

m2(H2)

= 0,

where the second equality follows from m2(H1, H2) = m2(H2) (see Proposition 4.3.1) and

the last equality follows from H2 being (strictly) 2-balanced.
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In the latter case,

λ(Fi+1)− λ(Fi) = v1 − 2− e1 − 1

m2(H1, H2)

= v1 − 2− e1 − 1

m2(H1)

= 0.

where the second equality follows from m2(H1, H2) = m2(H1) (see Proposition 4.3.1) and

the last equality follows from H1 being (strictly) 2-balanced. �

As in Case 1, when we have a degenerate iteration i, the structure of Fi+1 depends

not just on Fi but also on the structure of G′. Indeed, if Fi is extended by a copy L of

H2 in line 4 of Extend, then L could intersect Fi in a multitude of ways. Moreover, there

may be several copies of H2 that satisfy the condition in line 2 of Extend. One could say

the same for graphs added in line 6 of Extend. Thus, as in Case 1, degenerate iterations

cause us difficulties since they enlarge the family of graphs algorithm Grow-Alt can return.

However, we will show that at most a constant number of degenerate iterations can happen

before algorithm Grow-Alt terminates, allowing us to bound from above sufficiently well

the number of non-isomorphic graphs Grow-Alt can return. Pivotal in proving this is the

following claim, analogous to Claim 4.5.3.

Claim 4.6.3. There exists a constant κ = κ(H1, H2) > 0 such that if iteration i of the

while-loop in procedure Grow is degenerate then we have

λ(Fi+1) ≤ λ(Fi)− κ.
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Compared to the proof of Claim 4.5.3, the proof of Claim 4.6.3 is relatively straight-

forward.

Proof. Let F := Fi be the graph before the operation in line 15 (of Grow-Alt) is carried

out and let F ′ := Fi+1 be the output from line 15. We aim to show there exists a constant

κ = κ(H1, H2) > 0 such that

λ(F )− λ(F ′) = v(F )− v(F ′)− e(F )− e(F ′)
m2(H1, H2)

≥ κ

whether Extend attached a graph L ∈ LG′ or R ∈ RG′ to F . We need only consider the

case when L ∈ LG′ is the graph added by Extend in this non-degenerate iteration i of

the while-loop, as the proof of the R ∈ RG′ case is identical. Let VL′ := V (F ) ∩ V (L) and

EL′ := E(F ) ∩E(L) and set vL′ := |VL′ | and eL′ := |EL′ |. Let L′ be the graph on vertex set

VL′ and edge set EL′ . By Claim 4.6.1, we have e(F ′) > e(F ), hence L′ is a proper subgraph

of H2. Also, observe that since iteration i was degenerate, we must have that vL′ ≥ 3. Let

FL̂ be the graph produced by a non-degenerate iteration at e with a copy L̂ of H2, that is,

FL̂ := F ∪ L̂ and V (F )∩V (L̂) = e. Our strategy is to compare F ′ with FL̂. By Claim 4.6.2,

λ(F ) = λ(FL̂). Thus, since m2(H1, H2) = m2(H2), we have

λ(F )− λ(F ′) = λ(FL̂)− λ(F ′) = v2 − 2− (v2 − vL′)−
(e2 − 1)− (e2 − eL′)

m2(H1, H2)

= vL′ − 2− eL′ − 1

m2(H1, H2)
. (4.27)

If eL′ = 1, then since vL′ ≥ 3 we have λ(F ) − λ(F ′) ≥ 1. So assume eL′ ≥ 2. Since

H2 is strictly 2-balanced and L′ is a proper subgraph of H2 with eL′ ≥ 2 (that is, L′ is not
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an edge), we have that
vL′ − 2

eL′ − 1
>

1

m2(H2)
. (4.28)

Using (4.27), (4.28) and that eL′ ≥ 2 and m2(H1, H2) = m2(H), we have

λ(F )− λ(F ′) = (eL′ − 1)

(
vL′ − 2

eL′ − 1
− 1

m2(H2)

)
> 0.

Letting δ := 1
2

min
{

(eL′ − 1)
(
vL′−2

eL′−1
− 1

m2(H2)

)
: L′ ⊂ H2, eL′ ≥ 2

}
, we take

κ := min{1, δ}.

�

Together, Claims 4.6.2 and 4.6.3 yield the following claim (analogous to Claim 4.5.4).

Claim 4.6.4. There exists a constant q2 = q2(H1, H2) such that algorithm Grow-Alt

performs at most q2 degenerate iterations before it terminates, regardless of the input instance

G′.

Proof. Analogous to the proof of Claim 4.5.4. �

For 0 ≤ d ≤ t ≤ dln(n)e, let FAlt(t, d) denote a family of representatives for the

isomorphism classes of all graphs Ft that algorithm Grow-Alt can possibly generate after

exactly t iterations of the while-loop with exactly d of those t iterations being degenerate.

Let fAlt(t, d) := |FAlt(t, d)|.

Claim 4.6.5. There exist constants C0 = C0(H1, H2) and A = A(H1, H2) such that

fAlt(t, d) ≤ dln(n)e(C0+1)d · At−d for n sufficiently large.

Proof. Analogous to the proof of Claim 4.5.5. �
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Let FAlt = FAlt(H1, H2, n) be a family of representatives for the isomorphism classes

of all graphs that can be outputted by Grow-Alt (whether Grow-Alt enters the while-

loop or not). Note that the proof of the following claim requires Conjecture 4.0.4 to be true;

in particular, we need that Â is finite when m2(H1) = m2(H2).

Claim 4.6.6. There exists a constant b = b(H1, H2) > 0 such that for all p ≤ bn−1/m2(H1,H2),

Gn,p does not contain any graph from FAlt(H1, H2, n) a.a.s.

Proof. Analogous to the proof of Claim 4.5.6. �

Proof of Lemma 4.4.3: Case 2. Suppose that the call to Asym-Edge-Col(G) gets stuck

for some graph G, and consider G′ ⊆ G at this moment. Then Grow-Alt(G′) returns a

copy of a graph F ∈ FAlt(H1, H2, n) that is contained in G′ ⊆ G. By Claim 4.6.6, this

event a.a.s. does not occur in G = Gn,p with p as claimed. Thus Asym-Edge-Col does

not get stuck a.a.s. and, by Lemma 4.4.1, finds a valid colouring for H1 and H2 of Gn,p with

p ≤ bn−1/m2(H1,H2) a.a.s.

4.7 Proof of Theorem 4.0.6

Since H1 and H2 are regular graphs, let `1 be the degree of every vertex in H1 and `2 be the

degree of every vertex in H2. We begin using an approach employed in [37] and [51]. Let A

be a 2-connected graph such that A ∈ C∗(H1, H2) if m2(H1) > m2(H2) and A ∈ C(H1, H2) if

m2(H1) = m2(H2). In both cases, A ∈ C(H1, H2). Then, since every vertex is contained in

a copy of H1 and a copy of H2 whose edge-sets intersect in exactly one edge, we must have

that δ(A) ≥ `1 + `2 − 1. Hence

d(A) =
eA
vA
≥ `1 + `2 − 1

2
. (4.29)
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We aim to show d(A) > m2(H1, H2) + ε for some ε = ε(H1, H2) > 0. Indeed, if there

exists ε = ε(H1, H2) > 0 such that for all such graphs A we have d(A) > m2(H1, H2) + ε

then Â(H1, H2, ε) = ∅, and so Conjecture 4.0.4 holds trivially for H1 and H2.

Since m2(H1) ≥ m2(H2) > 1, we have that H1 and H2 cannot be matchings. Hence

`1, `2 ≥ 2. Also, observe that

m2(H1, H2) =
e1

v1 − 2 + 1
m2(H2)

=
v1`1

2

v1 − 2 + v2−2
v2`2
2
−1

=
v1`1

2v1 − 4 + 4v2−8
v2`2−2

. (4.30)

Furthermore,

`1 + `2 − 1

2
> m2(H1, H2) (4.31)

⇐⇒ `1 + `2 − 1 >
v1v2`1`2 − 2v1`1

2v1v2`2 − 4v2`2 − 4v1 + 4v2

⇐⇒ `1 + `2 − 1 >
2v1v2`1`2 − 4v1`1

2v1v2`2 − 4v2`2 − 4v1 + 4v2

⇐⇒ 0 < v1v2`2(`2 − 1)− 2v1(`2 − 1)− 2v2`1(`2 − 1)− 2v2(`2 − 1)2

⇐⇒ 0 < v1v2`2 − 2v1 − 2v2`1 − 2v2`2 + 2v2,

where in the last implication we used that `2 ≥ 2.

Let f(v1, v2, `1, `2) := v1v2`2 − 2v1 − 2v2`1 − 2v2`2 + 2v2. Observe that `1 ≤ v1 − 1.

Hence −2v2`1 ≥ −2v1v2 + 2v2 and we have

f(v1, v2, `1, `2) ≥ v1v2(`2 − 2)− 2v1 + 4v2 − 2v2`2.

Let g(v1, v2, `2) := v1v2(`2 − 2)− 2v1 + 4v2 − 2v2`2 so f(v1, v2, `1, `2) ≥ g(v1, v2, `2). Observe

that, since `1, `2 ≥ 2, we have that v1, v2 ≥ 3. If `2 = 2, then g(v1, v2, 2) = −2v1 < 0.
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However, if `2 ≥ 3, then since v1, v2 ≥ 3, we have that

dg

dv1

= v2(`2 − 2)− 2 > 0;

dg

dv2

= v1(`2 − 2) + 4− 2`2 = (v1 − 2)(`2 − 2) > 0;

dg

d`2

= v1v2 − 2v2 = v2(v1 − 2) > 0.

Further,

g(4, 5, 3) = 20− 8 + 20− 30 = 2 > 0.

Thus, for all v1 ≥ 4, v2 ≥ 5, `2 ≥ 3, we have that

f(v1, v2, `1, `2) ≥ g(v1, v2, `2) ≥ g(4, 5, 3) = 2 > 0.

Hence, by (4.29)-(4.31), we have that there exists a constant ε := ε(H1, H2) > 0 such that

d(A) > m2(H1, H2) + ε.

Thus we only have left the cases when v1 = 3, v2 ≤ 4 or `2 = 2.

Case 1. `2 = 2.

Then H2 is a cycle and

f(v1, v2, `1, 2) = 2v1v2 − 2v1 − 2v2`1 − 2v2.

Observe that `1 ≤ v1 − 2, as otherwise H1 is a clique, contradicting that (H1, H2) is not a

pair of a clique and a cycle. Thus −`1 ≥ −(v1 − 2). Then, since we excluded considering

when H2 is a cycle and H1 is a graph with v1 = |V (H1)| ≥ |V (H2)| = v2, we have that
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v2 > v1, and so

f(v1, v2, `1, 2) ≥ 2(v2 − v1) ≥ 2 > 0.

Hence by (4.29)-(4.31), we have that there exists a constant ε := ε(H1, H2) > 0 such that

d(A) > m2(H1, H2) + ε.

Case 2. v1 = 3.

Then H1 = K3 and `1 = 2. Thus

f(3, v2, 2, `2) = v2(`2 − 2)− 6.

We can assume `2 ≥ 3, as otherwise we are in Case 1. Observe that we cannot have that

v2 = 6 and `2 ≥ 3. Indeed, when `2 = 3, one can check that the only strictly 2-balanced

3-regular graph on 6 vertices is K3,3. But then (H1, H2) = (K3, K3,3), which is a pair of

graphs we excluded from consideration.

When `2 ≥ 4, we have that m2(H2) > m2(H1), contradicting that our choice of H1

and H2 meet the criteria in Conjecture 4.0.4. If v2 ≤ 5, then since also `2 ≥ 3 we must have

that H2 is a copy of K4 or K5.12 But then m2(H2) > m2(H1).

Hence v2 ≥ 7 and `2 ≥ 3. Thus f(3, v2, 2, `2) > 0 and, as before, we conclude that

there exists a constant ε := ε(H1, H2) > 0 such that d(A) > m2(H1, H2) + ε.

Case 3. v2 ≤ 4.

Still assuming `2 ≥ 3, we have that H2 = K4, v2 = 4 and `2 = 3. If v1 ≥ `1 + 2, then

f(v1, 4, `1, 3) = 10v1 − 8(`1 + 2) ≥ 2(`1 + 2) > 0.

12There exists no graph with both odd regularity and odd order.
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If v1 = `1 + 1, then H1 is a clique. Since H1 and H2 meet the criteria in Conjecture 4.0.4,

we must have that v1 ≥ 5. Therefore

f(v1, 4, `1, 3) = 10v1 − 8(`1 + 2) = 2v1 − 8 ≥ 2 > 0.

Then, as before, there exists a constant ε := ε(H1, H2) > 0 such that d(A) >

m2(H1, H2) + ε, as desired.

4.8 Concluding remarks

In [51], the value of ε was set at 0.01 for every pair of cliques, that is, the value of ε did not

depend explicitly on the graphs H1 and H2. It would be interesting to know if there exists

a single value of ε satisfying Conjecture 4.0.4 for all suitable pairs of graphs H1 and H2.

Also, in [51], Marciniszyn et al. note that they do not know whether C∗(H1, H2) =

C(H1, H2) or not for any pair of cliques. The author is unaware if this has been resolved

for any pair of graphs. According with the definition of Â, perhaps it is the case that

C∗(H1, H2) = C(H1, H2) whenever m2(H1) = m2(H2)?

Note that our method in this chapter does not completely extend to whenm2(H2) = 1.

Indeed, in this case H2 is a forest and so not 2-connected, a property which is specifically

used in the proofs of Claims 4.5.1, 4.5.6, 4.6.1 and 4.6.6. In the proofs of Claims 4.5.1 and

4.6.1 we require that Fi is 2-connected for each i > 0. However, if the last iteration of the

while-loop of either Grow or Grow-Alt was non-degenerate when constructing Fi, then

Fi is certainly not 2-connected if H2 is a tree. A similar problem occurs at the beginning of

the proofs of Claims 4.5.6 and 4.6.6 if T ∼= H2.
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