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Abstract 

The platelet collagen receptor GPVI has been shown to activate platelets through an 

ITAM (immunoreceptor based activatory motif) signalling pathway mediated by 

sequential activation of Src and Syk tyrosine kinases leading to activation of PLC2.  

The recently discovered C-type lectin CLEC-2 has been shown to activate platelets 

using an ITAM-like sequence in its cytoplasmic tail that is also dependent on Src and 

Syk tyrosine kinases, but this shows a partial rather than an absolute dependence on 

adapter SLP-76 for activation of PLC2.  The aim of this thesis is to understand some of 

the key differences in these two signalling pathways. 

 

GPVI is found in a complex with FcRwhich contains the ITAM sequence consisting 

of two conserved tyrosine residues (Yxx(L/I)x6-12Yxx(L/I)).  These two tyrosines, when 

phosphorylated, provide a docking site for the tandem SH2 domains of the tyrosine 

kinase Syk, which plays a critical role in downstream signalling and platelet activation.  

In this thesis I show that CLEC-2 signalling through Syk is mediated by 

phosphorylation of the single CLEC-2 YxxL sequence and involves receptor 

dimerisation and cross-linking by the tandem SH2 domains in Syk.  I also show that the 

differential requirement for the adaptor protein SLP-76 between GPVI and CLEC-2 is 

not mediated by the adaptor Gads, which is a constitutive SLP-76 binding partner and 

plays a similar, weak partial role in platelet activation by both receptors.  Both 

signalling pathways also show a similar, partial dependency for the transmembrane 

adaptor protein LAT, although its role is more substantive that that of Gads.  I also 

show that a novel membrane adapter protein, G6f, is not able to substitute for LAT in 

this signalling pathway and also exclude the LAT-family proteins PAG, LIME, LAX 



 

 

and NTAL as potential LAT replacements in platelet activation by GPVI.  Thus, these 

results extend our understanding of the mode of platelet activation by CLEC-2 in 

comparison to GPVI, with the major difference being that the former induces activation 

of Syk through a novel dimerisation pathway.  The events that lie downstream of 

activation of Syk by CLEC-2 and GPVI on the other hand appear to largely similar. 
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“…all that is of the body is as coursing waters, all that is of the soul as dreams and 

vapours; life a warfare, a brief sojourning in an alien land; and after repute, oblivion.  

Where, then, can man find the power to guide and guard his steps?  In one thing and one 

alone: the love of knowledge.” 

Marcus Aurelius 

 

 

“We are just an advanced breed of monkeys on a minor planet of a very average star.  

But we can understand the Universe.  That makes us something very special.” 

Stephen Hawking 

 

 

“When you are courting a nice girl an hour seems like a second.  When you sit on a red-

hot cinder a second seems like an hour.  That's relativity.” 

Albert Einstein 
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1.1 Platelet physiology 

1.1.1 Platelet overview 

Platelets play a major haemostatic role in the body.  They have a discoid shape and 

circulate at a relatively high concentration of 1.5 – 4x10
8
/ml in a quiescent state ready to 

form a haemostatic plug at sites of damage to the vasculature.  Their shape, small size 

(1-3 m) and the physics of laminar flow in blood vessels, whereby red blood cells 

cause the platelets to marginate to the vessel wall, means they are ideally placed to 

detect injury to the vessel wall.  Activation is brought about by exposure to sub-

endothelial matrix proteins, by positive feedback mechanisms from the platelets 

themselves and through the generation of thrombin (Gibbins, 2004).  Pathologic platelet 

activation is found in areas of diseased endothelium and atherosclerotic plaque rupture 

causing thrombotic disorders such as myocardial infarction and stroke, two of the major 

causes of death in the Western world.  Anti-platelet agents (e.g. aspirin and clopidogrel) 

are widely prescribed for individuals at high risk of arterial thrombosis.  The following 

sections give an overview of platelet receptors, activation, and inhibition.  For more 

extensive reviews see (Jackson, 2007; Jackson et al, 2009; Watson and Harrison, 2010).  

 

1.1.2 Platelet genesis 

Platelets have a life-span of approximately ten days (Fritz et al, 1986) before their 

removal by the reticuloendothelial system.  Multipotent haematopoietic stem cells in the 

bone marrow give rise to all circulating blood cells (Figure 1.1).  The cytokine, 

thrombopoietin (TPO), plays a critical role at the early stages of blood cell production 
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and in the maturation of megakaryocytes and subsequently, platelet production.  

Megakaryocytes are large polyploid cells that can grow up to 50 m or more and which 

make up approximately 0.1% of bone marrow cells.  They can each be viewed as 

factories that fragment, releasing 2,000–3,000 platelets into the blood stream (Hartwig 

and Italiano, 2003).  They can also be used as a genetically tractable platelet model with 

the advent of RNA interference and viral expression technologies. 
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Figure 1.1 – Haematopoiesis.  Based on (Kondo et al, 2003). 

 

  



Chapter 1 – General Introduction 

Page | 5 
 

1.1.3 Platelet anatomy 

Platelets are anucleate cells which have the capacity to undergo very limited de novo 

protein synthesis, although the physiological significance of this is unclear.  The 

organelles, proteins and very low levels of mRNA are therefore synthesised in the 

parental megakaryocyte, although the platelet retains the ability to take up some 

proteins from the plasma, most notably fibrinogen.  The plasma membrane is supported 

by an actin cytoskeleton and a ring of microtubules to maintain the resting discoid 

shape.  The membrane contains a large network of invaginations known as the open 

canilicular system (OCS) which greatly increases the surface area of the platelet 

membrane thereby increasing the sites for release of granule content.  The OCS also 

contains the dense tubular system which is a Ca
2+

 store and the site for cyclooxygenase-

1, which is crucial in the production of thromboxane A2 (TxA2), a positive feedback 

platelet agonist.  The plasma membrane contains a wide variety and diversity of 

glycoprotein receptors, many of which are expressed at high level such as integrin IIb3 

(GPIIbIIIa), which facilitate rapid platelet activation at sites of vascular damage.  

Phosphatidylserine (PS) is selectively concentrated on the inner envelope of the 

membrane and is exposed on activation to provide a pro-coagulant surface for thrombin 

generation which both further activates additional platelets and leads to fibrin 

generation as part of the coagulation cascade.  Another clotting factor, Factor XII has 

also recently been shown to be activated by platelet-released polyphosphates (Muller et 

al, 2009). 

 

The cytoplasm contains two distinct secretory vesicles which rapidly release their 

contents upon activation, namely -granules and dense granules.  -granules contain a 
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wide variety of proteins which can be divided according to their function.  These 

include adhesion proteins, such as fibrinogen and von Willebrand Factor (VWF), which 

play a critical role in aggregation and thrombus formation.  They also contain a variety 

of chemokines, such as platelet factor 4 (PF4) and SDF-1 which attract leukocytes and 

stem cells to sites of vessel damage, and growth factors, including PDGF, EGF and 

VEGF which are involved in wound repair and angiogenesis.  They also express a 

number of membrane proteins on their surface that support aggregation, including 

band support binding of leukocytes, namely P-selectin.  Dense granules, so called 

due to their appearance in electron micrographs; contain the major feedback mediators 

adenosine diphosphate (ADP) and adenosine triphosphate (ATP), as well as Ca
2+

, 5-HT 

(serotonin), and polyphosphates (Muller et al, 2009; Watson and Harrison, 2010). 

 

1.1.4 Platelet function in haemostasis 

Platelets circulate in healthy vessels in a quiescent state, continuously sampling the 

endothelium for sites of vascular damage.  Ordinarily, platelets are unable to bind to the 

endothelial cells which release PGI2 (prostacyclin) and nitric oxide and express the 

ectonucleoside triphosphate diphosphohydrolase (CD39/ENTPD1, which hydrolyses 

ATP and ADP to AMP) to prevent platelet activation (Kaczmarek et al, 1996).  Damage 

to the endothelium leads to exposure of sub-endothelial matrix proteins which mediate 

powerful platelet adhesion and activation.  Activated platelets will recruit other platelets 

and provide a surface to catalyse the coagulation cascade leading to formation of a 

thrombus and occlusion of the wound (Gibbins, 2004).  The role of platelets in 

thrombus formation can be described in several stages (Figure 1.2) (Watson and 

Harrison, 2010). 
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(1)  Tethering – Under low shear stress (i.e. venous flow) the collagen binding integrin 

21 can bind to exposed collagen fibres in the sub-endothelial matrix.  This interaction 

has a slow rate of association, which under high shear stress (i.e. arterial flow), is unable 

to tether the platelets.  However, the exposed collagen fibres become coated by soluble 

VWF which undergoes rapid binding to the GPIb-IX-V complex on the platelet surface 

as a result of a fast on-rate of association.  This leads to capture (or tethering) of 

platelets but is unable to mediate stable adhesion due to a fast off-rate of dissociation.  

Thus, on a VWF coated surface, platelets role or slide in the direction of flow. 

 

(2)  Activation and stable adhesion – tethering to VWF brings the low affinity collagen 

receptor GPVI into close proximity with the exposed collagen fibres resulting in its 

activation and the conversion of integrins IIb3 and 21 from an inactive to an active 

conformation.  This in turn leads to stable adhesion through their interactions with VWF 

and collagen, respectively.  The GPIb-IX-V complex also generates intracellular signals 

that, on their own, are insufficient to mediate rapid platelet activation but may act in 

synergy with those from GPVI to induce activation. 

 

(3)  Spreading – Activation-dependent actin polymerisation results in the sequential 

formation of filopodia and lamellipodia thereby increasing the surface area in contact 

with the exposed sub-endothelial matrix and strengthening attachment.  This is in turn 

followed by the formation of actin stress fibres that further reinforce the growing 

aggregate (Calaminus et al, 2007). 
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(4)  Secretion – Activated platelets rapidly synthesis thromboxane A2 and secrete this 

along with the contents of their - and dense granules in response to most activatory 

agonists.  ADP is secreted from dense granules and acts in synergy with thromboxane 

A2 to induce aggregation.  Fibrinogen and VWF, which are stored in -granules, support 

platelet aggregation through cross-linking and capture of circulating platelets, 

respectively (Kulkarni et al, 2000). 

 

(5)  Aggregation and thrombus growth – New, discoid shaped platelets are recruited to 

the growing thrombus by a combination of membrane tethers (Nesbitt et al, 2009) and  

binding to VWF.  They are subsequently activated by ADP and TxA2.  Secretion of the 

adhesion proteins fibrinogen and VWF, and their recruitment from plasma, leads to the 

cross-linking of activated platelets (aggregation) through integrin IIb3.  As mentioned 

above, activated platelets also provide a pro-coagulant surface for the generation of 

thrombin through the coagulation cascade (thrombin is also generated by exposure of 

tissue factor).  Thrombin activates further platelets and mediates conversion of 

fibrinogen to fibrin, resulting in a fibrin mesh which makes up the bulk of the growing 

thrombus and occludes the wound, preventing further blood loss. 

 

(6)  Late stage events in platelet activation – Several other transmembrane glycoprotein 

receptors have been shown to participate during the later stages of aggregation and 

thrombus formation by reinforcing (or consolidating) the growing aggregate, including 

ephrins and eph kinases (Prevost et al, 2005; Brass et al, 2008).  There is also evidence 

that aggregation is further strengthened by sustained Src kinase activity and actin-
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dependent contraction, independent of fibrin formation (Auger and Watson, 2008; Ono 

et al, 2008). 

 

(7)  Clot retraction – Further stabilisation of the thrombus is brought about by the active 

process of clot retraction which is mediated by contraction of the actin cytoskeleton via 

fibrin/fibrinogen-bound IIb3. 

 

Several roles for platelets in processes other than in haemostasis have also been 

described, including inflammatory processes through adhesion to activated endothelium 

and recruitment of leucocytes (Tull et al, 2006; Zarbock et al, 2006), cancer metastasis 

(Jain et al, 2007; Jain et al, 2009), vascular integrity (Aursnes and Pedersen, 1979; 

Kisucka et al, 2006) and recently, in the closure of the ductus arteriousus in newborn 

mice (Echtler et al, 2010).  Other roles for platelets are reviewed by (Smyth et al, 2009). 
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Figure 1.2 – Thrombus formation.  Based on (Jackson et al, 2003; Sachs and 

Nieswandt, 2007; Varga-Szabo et al, 2008). 
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1.1.5 Platelet activation and inhibition 

This section is a brief description of some of the major activatory and inhibitory agents 

and receptors, including, GPVI, which is of key importance in this thesis as it is used as 

a comparison to the novel activation receptor, CLEC-2. 

 

Platelet activation – Collagen, a sub-endothelial matrix protein, is a powerful activator 

of platelets through GPVI and integrin 21.  Platelets become tethered to collagen via 

interactions with 21 or GPIb-IX-V (via VWF) allowing for robust signalling through 

GPVI (Nieswandt and Watson, 2003).  This is enhanced through inside-out activation of 

integrin 21 which further facilitates binding to and activation of GPVI.  Limited 

signalling by GPIb-IX-V and integrin 21 has also been described but is of uncertain 

physiological significance (Inoue et al, 2003; Ozaki et al, 2005).  The basement 

membrane protein laminin has also been shown to activate GPVI.  Platelets can become 

tethered to laminin coated surfaces via interactions with 61 or GPIb-IX-V (via VWF) 

(Inoue et al, 2006; Inoue et al, 2008) facilitating activation of GPVI.  GPVI has also 

been shown to be activated by globular adiponectin, although the physiological 

relevance of this is unclear (Riba et al, 2008). 

 

GPVI activates platelets through a tyrosine kinase-linked pathway (described in detail 

later) resulting in the activation of phospholipase C- (PLC) which produces the 

secondary mediators inositol-1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG) 

which in turn mediate a cellular increase in both Ca
2+

 and protein kinase C (PKC) 
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activity.  Ca
2+

 release from intracellular stores is mediated by IP3.  This Ca
2+

 release 

stimulates extracellular Ca
2+

 entry through the CRAC (Ca
2+

-release-activated-Ca
2+

) 

channel Orai-1by binding to STIM1which is localised to the intracellular stores (Varga-

Szabo et al, 2009).  PKC has been shown to regulate secretion of both dense and -

granules in mouse platelets (Konopatskaya et al, 2009).  There is also evidence for both 

activatory and inhibitory roles that are specific to other PKC isoforms (Hall et al, 2007; 

Pears et al, 2008).  Additionally, DAG and Ca
2+

 together regulate CALDAG-GEF1, a 

Rap1 (aka Rap1b) GTP exchange factor.  Rap1 plays a role in integrin IIb3 activation 

(Chrzanowska-Wodnicka et al, 2005). 

 

The major platelet integrin IIb3 (making up 15% of surface protein) mediates platelet 

adhesion to VWF and platelet aggregation by cross-linking platelets through soluble 

VWF, fibrinogen and other adhesion proteins, including fibronectin and vitronectin.  It 

is essential for aggregation as demonstrated using specific blocking reagents or platelets 

from patients that lack either subunit of the integrin, a condition known as Glanzmann‟s 

thrombasthaenia.  Outside-in signalling through the integrin leads to further PLC 

activation reinforcing platelet activation, and activation of myosin light chain (MLC) 

which plays a role in shape change, actin stress fibre formation and clot retraction 

(Wonerow et al, 2003; Suzuki-Inoue et al, 2007; Coller and Shattil, 2008). 

 

Activation of platelets is reinforced by release of TxA2, which activates the TP 

thromboxane receptor, and by release of ADP, which signals through the P2Y1 and 

P2Y12 receptors.  P2Y1 and P2Y12 couple to the Gq and Gi classes of G proteins, 
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respectively, while TP couples to Gq and G12/13.  Gq activates PLC, while G12/13 

activates p115Rho, a GTP exchange factor which activates Rho, which activates Rho 

kinase, which regulates Myosin light chain phosphatase, thereby playing a role in shape 

change and stress fibre formation.  Gi inhibits the formation of cAMP through 

adenylyl cyclase (Woulfe et al, 2002; Chrzanowska-Wodnicka et al, 2005) and also 

activates PI3-kinase which phosphorylates inositol-lipids in the membrane to provide 

binding sites for the pleckstrin homology domains of PLC and  isoforms, and various 

other proteins.  The P2Y12 ADP receptor interacts synergistically with Gq and G12/13-

coupled receptors to mediate powerful platelet activation.  This synergy accounts for the 

powerful anti-platelet activation of the P2Y12 antagonist clopidogrel which is used in 

the long term treatment of patients at risk of thrombosis.  Platelets also express an ATP 

receptor, P2X1, which is a Ca
2+

 ion channel.  The physiological significance of P2X1 is 

uncertain due to its low expression level. 

 

The coagulation cascade generates thrombin (Factor IIa) which cleaves fibrinogen 

(Factor Ia) to form fibrin, forming a large part of the bulk of a thrombus.  Thrombin also 

activates platelets through the protease-activated receptor (PAR) family of GPCRs 

which are linked to both Gq and G12/13.  Thrombin cleaves the N-terminus of the 

receptors, exposing a tethered ligand.  Human platelets express PAR-1 and PAR-4 

isoforms of the receptor, while mouse platelets express PAR-4 and the PAR-3 isoform.  

The latter does not directly signal but facilitates the interaction between thrombin and 

PAR-4 (Kahn et al, 1998; Xu et al, 1998; Brass, 2003). 
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Table 1.1 Major platelet activation and adhesion receptors 

Receptor Agonists Receptor 

Type 

Signalling 

Pathway 

GPVI Collagen (physiological) 

Laminin (physiological) 

Globular Adiponectin (pathological?) 

CRP (collagen related peptide) (synthetic) 

Convulxin (snake toxin) 

JAQ1 (antibody) 

 

Ig Tyrosine kinase 

21 Collagen (physiological) Integrin Tyrosine kinase 

(weak) 

61 Laminin (physiological) 

 

Integrin  

GPIb-XI-V VWF (physiological) 

Ristocetin (snake toxin) 

 

Leucine-rich Tyrosine kinase 

IIb3 Fibrinogen (physiological) 

VWF (physiological) 

 

Integrin Tyrosine kinase 

P2Y1 ADP (physiological) 

 

GPCR Gq 

P2Y12 ADP (physiological) 

 

GPCR Gi 

P2X1 ATP (physiological) 

 

Ca
2+

 channel  

TP TxA2 (physiological) 

U46619 (synthetic) 

 

GPCR Gq, G12/13 

PAR1 Thrombin (physiological) 

PAR1 peptide (synthetic) 

 

GPCR Gq, G12/13 

PAR4 Thrombin (physiological) 

PAR4 peptide (synthetic) 

GPCR Gq, G12/13 
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Platelet inhibition – Healthy, intact endothelium has several mechanisms for inhibiting 

platelet activation.  Probably the most powerful mechanism is through nitric oxide (NO) 

generation.  Healthy endothelial cells continuously synthesise NO through nitric oxide 

synthase (NOS) (Jin et al, 2005; Naseem, 2005).  NO is a membrane permeable gas 

with a short half life in the vasculature and so is concentrated close to the endothelial 

cell wall.  NO activates guanylyl cyclase leading to formation of cyclic guanosine 

monophosphate (cGMP) which inhibits platelet activation.  Endothelial cells release 

PGI2 (prostaglandin I2, prostacyclin) which also has short half life (Jin et al, 2005).  

PGI2 acts on the platelet through the G protein-coupled PGI2 receptor (IP) which is 

coupled to Gs.  Activation of this receptor results in an accumulation of cyclic 

adenosine monophosphate (cAMP) and platelet inhibition.  cAMP and cGMP activate 

protein kinase A (PKA) and protein kinase G (PKG) respectively, which phosphorylate 

several common target proteins in platelets,  including Rap1b and vasodilator-

stimulated phosphoprotein (VASP) (Munzel et al, 2003).   In addition, PKG 

phosphorylates the IP3 receptor-associated cGMP kinase substrate (IRAG), which is 

expressed in complex with PKG-1, and the type 1 IP3 receptor (Antl et al, 2007).  

Phosphorylation of IRAG by PKG-1 inhibits IP3-induced Ca
2+

 release.  Another major 

mechanism of endothelial cells inhibiting platelets is by virtue of their expression of 

CD39.  This enzyme will hydrolyse the platelet agonists ATP and ADP to AMP (Jin et 

al, 2005).   

 

Platelets express several ITIM (immunoreceptor tyrosine based inhibitory motif)-

containing receptors namely PECAM-1 (platelet endothelial adhesion molecule 1, 

CD31) (Falati et al, 2006; Dhanjal et al, 2007), CEACAM-1 (carcinoembryonic 
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antigen-related cell adhesion molecule 1, CD66a) (Wong et al, 2009), TLT-1 (TREM-

like transcript 1) (Barrow et al, 2004; Washington et al, 2004) and G6b (Newland et al, 

2007; Mori et al, 2008).  ITIMs are binding sites for the inhibitory phosphatases SHP1 

and 2 (SH2 containing tyrosine phosphatase), SHIP1 (SH2 containing inositol-5-

phosphatase) and Csk (c-Src kinase).  The physiological significance of ITIM receptors 

in platelets is unclear, although it is generally accepted that their inhibitory activation is 

relatively weak when compared to that of NO and PGI2 (Dhanjal et al, 2007).  It has 

been speculated that they serve to dampen down constitutive tyrosine kinase signalling 

under basal conditions (Mori et al, 2008). 
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Table 1.2 Major platelet inhibitory mechanisms 

Receptor Agonists Receptor Type Signalling Pathway 

- Nitric oxide  

 

- cGMP 

IP PGI2 

 

GPCR Gs 

CD39 ATP 

ADP 

 

-  

G6b Unknown 

 

Ig SHP1, SHP2, SHIP2 

PECAM-1 PECAM-1 

 

Ig SHP1, SHP2, SHIP2 

CEACAM-1 CEACAM-1 

 

Ig SHP1, SHP2, SHIP2 

TLT-1 Unknown Ig Unknown 
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1.2 Platelet ITAM signalling 

Since the GPVI signalling pathway is a major focus of this thesis, the following section 

describes this signalling pathway in detail and also the major ligands that are used to 

study GPVI function.  The low affinity immune receptor, FcRIIA, which signals via 

the same signalling motif and pathway to that of GPVI, is also described, as is the major 

platelet integrin IIb3, which activates many of the same signalling proteins, although 

the proximal events in its signalling cascade are distinct. 

 

1.2.1 The GPVI-Fc receptor -chain complex 

GPVI is a member of the immunoglobulin (Ig) superfamily of receptors and contains 

two extracellular Ig domains, a single transmembrane domain and a short cytoplasmic 

tail (Clemetson et al, 1999).  Its expression is restricted to platelets and megakaryocytes 

and has been estimated to be expressed on the cell surface at between 4,000 – 6,000 

copies per platelet using a range of antibodies against GPVI (Furihata et al, 2001; Best 

et al, 2003; Samaha et al, 2004; Senis et al, 2009) although there are reports which 

differ from this generally accepted amount (Chen et al, 2002).  It is constitutively 

associated with the FcR chain, which is present as a disulphide-linked homodimer and 

is required for surface expression of GPVI (Nieswandt et al, 2000).   

 

Each FcR chain contains one copy of an immunoreceptor tyrosine-based activatory 

motif (ITAM) which is defined by the consensus Yxx(L/I)x6-12Yxx(L/I), which is 

essential for GPVI signalling.  YxxL is the most frequent sequence, although YxxI does 
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appear in both B-cell receptor ITAMs and also in one of the T cell receptor -chain 

ITAMs.  ITAMs are also found in several of the major immunoreceptor complexes, 

including the T-cell and B-cell receptors and a number of Fc receptors, including FcRI, 

FcRI and FcRIIA where they signal through Src and Syk tyrosine kinases resulting in 

cellular activation (Shaw et al, 1995; Barrow and Trowsdale, 2006; Underhill and 

Goodridge, 2007).  They are also found on a number of virally encoded proteins which 

initiate signalling through the ITAM receptor cascade (Grande et al, 2007). 

 

GPVI is the major signalling receptor for collagen on platelets.  Collagen is comprised 

of three helical peptide chains, which are rich in prolines and hydroxyprolines, and with 

a glycine at every third residue.  GPO (glycine-proline-hydroxyproline) is the specific 

sequence which activates GPVI (Knight et al, 1999).  Several synthetic collagen-related 

peptides (CRP) have been developed based on repeats of the GPO sequence and shown 

to mimic collagen-induced platelet activation (Morton et al, 1995; Asselin et al, 1997).  

Depending on the number of GPO motifs and cross-linking, CRP has the potential to be 

a stronger agonist than collagen due to avidity caused by the repeated GPO sequence.  

Platelets also express a second collagen receptor, integrin 21, which binds sequences 

containing GER but not GPO (Zhang et al, 2003), and which has a greater affinity for 

collagen than GPVI.  Thus, binding to integrin 21 can bring about a net increase in 

activation of GPVI by collagen.  GPVI is also activated by monoclonal antibodies, such 

as JAQ1 (Nieswandt et al, 2000), and by snake venom toxins, such as convulxin 

(Jandrot-Perrus et al, 1997; Polgar et al, 1997).  Convulxin, a snake C-type lectin 

protein produced by the South American rattlesnake (Crotalus durissus terrificus), was 

used in the original purification and cloning of GPVI (Clemetson et al, 1999).  
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Convulxin is a tetrameric protein consisting of - and -subunits and therefore able to 

cluster several GPVI molecules making it a powerful agonist. 

 

Mice engineered to lack GPVI or FcR fail to undergo aggregation to collagen and 

exhibit defects in both adhesion and aggregation under flow (Poole et al, 1997; Best et 

al, 2003; Kato et al, 2003).  FcR-deficient mice also have mildly delayed and 

decreased thrombus formation in vivo following mild but not severe laser injury model 

(Kalia et al, 2008; Senis et al, 2009).   Furthermore, GPVI-immuno-depleted mice (i.e. 

mice treated with an -GPVI antibody to deplete the protein from the platelet 

(Bergmeier et al, 2001)) have reduced thrombus formation in an in vivo ferric chloride 

injury model (Munnix et al, 2005) and or an in vivo laser injury model in response to a 

low but not a high level of laser injury (Hechler et al, 2009).  Deficiency of either GPVI 

or FcR also results in a mild increase in tail bleeding in mice (Kato et al, 2003; Kalia et 

al, 2008) demonstrating that other compensatory mechanisms protect the animal from 

excessive blood loss. 

 

GPVI is constitutively associated with FcR which contains one copy of an ITAM 

sequence which is responsible for the major component of signalling through the 

receptor.  The FcR chain was identified in collagen stimulated platelets through its 

association with the tyrosine kinase Syk (Gibbins et al, 1996).  Subsequently, GPVI in 

complex with FcR was identified as the collagen receptor on platelets via co-

precipitation between GPVI and FcR, and by antibody cross-linking of GPVI to cause 

aggregation (Gibbins et al, 1997).  More recently, definitive proof that GPVI and FcR 
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form a receptor for collagen was achieved through expression in a cell line model using 

a sensitive NFAT-report assay (Tomlinson et al, 2007). Experiments of this nature had 

been attempted previously by transfection of GPVI into the DAMI megakaryocyte cell 

line (Clemetson et al, 1999) and by expression in rat-Rbl cells (Zheng et al, 2001; 

Berlanga et al, 2002).  However, the conclusions from these studies were unclear as 

convulxin was able to flux calcium in non-transfected DAMI cells, thereby 

demonstrating the presence of an endogenous receptor, while the Kahn group, although 

able to confer responsiveness to convulxin, were not able to show responsiveness to 

collagen.  The Kahn group later suggested that this was a consequence of the level of 

receptor expression as they were able to reconstitute signalling in one out of 177 stable 

clones of GPVI expressed in Rbl cells (Chen et al, 2002).  The success of the 

Tomlinson study in reconstituting a robust response to collagen was to use a highly 

sensitive reporter assay that had been previously used to characterise signalling by other 

ITAM receptors (Lin et al, 1999).  Moreover, the Tomlinson study also demonstrated 

that there was no need for a critical level of GPVI to confer signalling to collagen. 

 

1.2.2 The GPVI receptor signalling pathway 

Following ligand binding, the conserved ITAM tyrosine residues are phosphorylated by 

Src family kinases (SFK).  Fyn and Lyn are the major two Src kinases mediating FcR 

phosphorylation as shown using mutant mice and precipitation studies (Ezumi et al, 

1998; Quek et al, 2000), although, significantly, a residual level of activation is seen in 

mice deficient in the two Src kinases indicating involvement of one or more other Src 

kinases (Quek et al, 2000).  Both Fyn and Lyn have been shown to associate via their 

SH3 domains with a poly-proline region of the cytoplasmic tail of GPVI placing them 
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proximal to their substrate.  Further, mutation of this region results in a partial inhibition 

of GPVI mediated signalling (Suzuki-Inoue et al, 2002; Bori-Sanz et al, 2003; Schmaier 

et al, 2009).  The protein tyrosine phosphatase CD148 has also been shown to play a 

role in regulating Fyn and Lyn downstream of GPVI by dephosphorylating an inhibitory 

tyrosine residue which, due to intermolecular binding, holds the SFK in an inactive 

conformation (Senis et al, 2009).  GPVI also contains a calmodulin (CaM) binding site 

which has shown to bind calmodulin in resting cells but which promotes dissociation 

upon activation.  The functional significance of this site in mediating platelet activation 

is unclear (Andrews et al, 2002; Locke et al, 2003). 

 

SFK-mediated phosphorylation of the two ITAM tyrosines provides a docking site for 

the tandem SH2 domains of the Syk family of tyrosine kinases, namely Syk, which is 

widely expressed in haematopoietic cells, and ZAP-70 (-chain associated protein of 70 

kDa), which is localised to T-cells and a sub-population of natural killer cells.  Binding 

of Syk or ZAP-70 to a phosphorylated ITAM leads to activation through a combination 

of molecular re-organisation and phosphorylation by both SFKs and auto-

phosphorylation (Futterer et al, 1998; Brdicka et al, 2005; Arias-Palomo et al, 2007; 

Deindl et al, 2007).  Classically, SH2 domains have micromolar affinity for 

phosphotyrosine groups, but the interaction between the two ITAM tyrosines and the 

tandem SH2 domains of Syk has nanomolar affinity due to cooperativity (Grucza et al, 

1999).  Moreover, mutagenesis studies have shown that both of the conserved ITAM 

tyrosine residues and also both of the Syk SH2 domains are required for signalling 

thereby favouring a model in which Syk kinase binds to the dually phosphorylated 

ITAM (Kurosaki et al, 1995; Fruehling and Longnecker, 1997; Abtahian et al, 2006).  
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Mouse platelets which are deficient in Syk are unresponsive to collagen confirming the 

critical role of the tyrosine kinase in platelet activation by collagen (Poole et al, 1997). 

 

GPVI-mediated activation of Syk has been shown to mediate phosphorylation of a 

number of downstream targets including the membrane scaffolding protein LAT (linker 

for activation of T-cells), which has nine conserved tyrosine residues (Pasquet et al, 

1999; Judd et al, 2002) (Figure 1.3).  When phosphorylated, LAT has been shown to 

bind to a range of SH2 domain-containing proteins thereby forming a „signalosome‟ 

that plays a key role in mediating platelet activation by GPVI.  Among the proteins that 

bind to LAT in platelets are the cytosolic adaptors proteins Grb2 (growth factor receptor 

bound protein 2) and Gads (Grb2 related adaptor protein downstream of Shc), and 

PLC (Asazuma et al, 2000).  The adaptor protein SLP-76 (SH2 domain containing 

leukocyte protein of 76 kDa) is also recruited to the signalosome through binding to 

Gads and PLC (Liu et al, 1999; Yablonski et al, 2001) and is critical for activation of 

PLC (Clements et al, 1999; Gross et al, 1999; Judd et al, 2002).  LAT also binds to PI-

3 kinase (phosphatidylinositol 3-kinase) in platelets (Gibbins et al, 1998).  The product 

of PI 3-kinase, PIP, binds to the pleckstrin homology (PH) domain of PLC2 thereby 

supporting its localisation to the membrane.  The LAT-Gads-SLP-76 signalling triad is 

the focus of the work in Chapter 4 and is discussed in further detail later (see Figure 

1.3). 

 

The recruitment of PLC2 to the signalosome allows it to become activated as a 

consequence of phosphorylation by the Tec family kinases, Btk (Bruton‟s tyrosine 
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kinase) and Tec, which also bind to PIP3 in the membrane (Quek et al, 1998; Atkinson 

et al, 2003), and by binding to SLP-76 (Gross et al, 1999).  A role for both Btk and Tec 

was shown using double-deficient mouse platelets which exhibited a much greater loss 

signalling through GPVI compared to the individual knock-out platelets (Atkinson et al, 

2003).  However, because of the interplay of proteins in the LAT signalosome, it is 

unclear whether additional kinases also mediate phosphorylation of PLC2, including 

Src family kinases.   

 

The Vav family of guanine nucleotide exchange factors (GEF) have also been shown to 

be recruited to the LAT signalosome by binding to SLP-76, Btk/Tec and Syk, and to 

play a critical role in mediating PLC2 activation (Pearce et al, 2002; Pearce et al, 

2004).  In this pathway, Vav is believed to function as an adaptor rather than as a GEF 

for small G proteins, as mutation of the GEF domain does not inhibit TCR signalling 

(Kuhne et al, 2000).  As with the SFKs and Btk/Tec kinases, there is redundancy 

between the Vav family members, as mice deficient in both Vav1 and Vav3 show 

defective GPVI signalling whereas mice deficient in Vav1, Vav2 or Vav3 alone, or a 

combination of both Vav1 and Vav2 show no obvious defect in GPVI signalling (Pearce 

et al, 2002; Pearce et al, 2004). 

 

Activation of PLC2 leads to hydrolysis of its substrate, phosphatidylinositol-4,5-

bisphosphate (PIP2), to form the two second messengers, inositol-1,4,5-trisphosphate 

(IP3) and 1,2-diacylglycerol (DAG), which release Ca
2+

 from intracellular stores and 

activate protein kinase C (PKC), respectively.  PLC2 knock-out mice have a severe 
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blockade in GPVI signalling, although this is not complete as mouse platelets also 

express a small amount of PLC1 (Suzuki-Inoue et al, 2003). 
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Figure 1.3 – The GPVI signalling pathway 



Chapter 1 – General Introduction 

Page | 27 
 

1.2.3 FcRIIA – A second platelet ITAM receptor 

Human platelets express a second ITAM containing protein, FcRIIA (CD32A), which 

is believed to use the same ITAM signalling pathway as GPVI, but because it is not 

found in the mouse genome (and therefore mouse platelets), the same repertoire of 

studies using mutant platelets have not been performed.  FcRIIA is a low affinity 

member of the Fc (IgG binding) family of Fc receptors and is activated by clustering as 

a result of binding to immune complexes.  It has two extracellular Ig domains, a single 

transmembrane domain and a cytoplasmic tail, although unlike GPVI, this contains its 

own ITAM sequence.  The ITAM sequence can be regarded as atypical in that it is the 

only ITAM in which the tandem YxxL sequences are separated by more than 8 amino 

acids (the number in FcRIIA is 12).  Nevertheless, it has been shown that this length of 

spacer is able to bind to Syk in platelets and B-cells (Chacko et al, 1994; Yanaga et al, 

1995; Chacko et al, 1996).  However, due to its more rigid tertiary structure, it is 

thought that an ITAM of this length would not be able to signal through Zap-70 

(Brdicka et al, 2005; Deindl et al, 2007). 

 

The physiological role of FcRIIA in platelets is unclear, although it has been proposed 

that FcRIIA allows platelets to play a role in the innate immune system by binding to, 

and becoming activated by antibody bound pathogens, thus speeding their clearance.  

FcRIIA is also important in heparin-induced thrombocytopenia, as consequence of 

platelet activation by antibody-mediated clustering.   
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1.2.4 Integrin IIb3 

Integrin IIb3 is a heterodimer of  and  subunits.  It is highly expressed on the 

platelet surface at approximately 80,000 copies per platelet, with an estimated further 

40,000 copies on platelet -granules which become expressed upon platelet activation.  

It is activated by „inside-out‟ signals which induce a conformational change and thereby 

increase its affinity for its endogenous ligands, including fibrinogen and VWF.  In turn, 

ligand-induced clustering generates „outside-in‟ signals which play a role in later stage 

processes such as thrombus stability and clot retraction as discussed above (for review 

see (Coller and Shattil, 2008)).  IIb3 outside-in signalling uses many of the same 

signalling proteins as used by ITAM receptors, thereby fuelling the debate as to whether 

it associates with one or more ITAM-containing proteins.   Indeed, in human platelets, 

the group of Newman and colleagues have proposed FcRIIA as the ITAM that 

facilitates outside-in signalling by the integrin (Boylan et al, 2008).  Nevertheless, the 

absence of this protein from mouse platelets, and studies on transfected cell lines, shows 

that the integrin can signal independent of an ITAM sequence.  Outside-in signalling by 

IIb3 is described in more detail below. 

 

The cytoplasmic tail of the 3 subunit contains an RGD sequence at its C-terminus 

which allows for the constitutive association with SFKs, namely Src, Fyn and Yes 

(Arias-Salgado et al, 2003).  There is also a separate binding site for Fyn (Reddy et al, 

2008).  Csk (C-Src kinase) is also associated with the tail under basal conditions 

(Obergfell et al, 2002).  Csk regulates SFKs by phosphorylating the inhibitory tyrosine 

residue.  Following ligand binding and receptor clustering, Csk dissociates, allowing the 
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SFKs to become active through dephosphorylation of the inhibitory tyrosine by the 

protein tyrosine phosphatases PTP1b (protein tyrosine phosphatase 1b) and CD148, and 

autophosphorylation of an activatory tyrosine residue (Arias-Salgado et al, 2005; Senis 

et al, 2009).  Syk has been shown to associate with the 3 tail, via an interaction 

between the integrin and the Syk N-terminal SH2 domain and inter-domain, which is 

independent of phosphorylation of the integrin (Woodside et al, 2001; Woodside et al, 

2002).  This brings Syk into the proximity of the SFKs and allows it to become 

activated.  Following Syk activation, it can initiate a similar signalling cascade to the 

ITAM pathway with roles shown for SFKs, Syk, SLP-76, PLC2, PI 3-kinase, Tec, 

PKC and Vav family proteins (Judd et al, 2000; Obergfell et al, 2002; Goncalves et al, 

2003; Wonerow et al, 2003; Pearce et al, 2007; Coller and Shattil, 2008).  Interestingly, 

what has been termed late-stage activation of IIb3 results in SFK mediated 

phosphorylation of the 3 tail on two tyrosine residues, Y747 and Y759.  These are not 

in an ITAM sequence and therefore do not allow for binding of Syk.  In fact, their 

phosphorylation destabilises the interaction with Syk, causing dissociation (Woodside et 

al, 2001; Woodside et al, 2002).  Y747 and Y759 have however been shown to bind to 

several other SH2 domain and PTB (phospho-tyrosine binding) domain containing 

proteins and also to myosin II, with evidence for a role in clot retraction (Law et al, 

1999; Suzuki-Inoue et al, 2007). 

 

There is evidence that IIb3 couples to FcRIIA in human platelets as discussed above.  

The Newman group have proposed that FcRIIA is incorporated into IIb3 clusters, 

bringing it into the proximity of active SFKs which then phosphorylate its ITAM 

sequence, providing a docking site for Syk (Boylan et al, 2008; Gao et al, 2009).  The 
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mechanism and stoichiometry of the interaction of FcRIIa and IIb3 is not known.  

However, since FcRIIa is expressed at approximately 5% of the level of IIb3, it 

seems likely that it only associates with a fraction of the integrin.  Interestingly, mouse 

platelets do not express FcRIIa and this may explain why they exhibit much weaker 

signalling compared to human platelets on a fibrinogen coated surface.  

 

1.2.5 The role of GEMs in platelet ITAM signalling  

IIb3 „outside-in‟ signalling and GPVI signalling show distinct requirements on 

glycolipid-enriched microdomains (GEMs) that are also known as lipid rafts.  GPVI 

signalling takes place in lipid rafts, with many of the signalling proteins required for 

GPVI signalling being found in these cholesterol rich membrane domains, including 

LAT which is considered a GEM marker and the Src kinases Fyn and Lyn (Wonerow et 

al, 2002).  IIb3 is found almost exclusively outside of GEMs and signals independent 

of LAT (Wonerow et al, 2002).  The caveat to this is that approximately 2-5% of IIb3 

is found within rafts, which, due to the high expression of the integrin, equates to a level 

of protein comparable that of GPVI or FcRIIA (Dorahy et al, 1996; Miao et al, 2001; 

Wonerow et al, 2002).  Alternatively, this could be due to contamination of the GEM 

preparation.   

 

The SFKs Fyn and Lyn are also able to localise to GEMs by virtue of palmitoylation.  

All SFKs have an N-terminal myristoylation which allows them to associate with the 

inner leaflet of the plasma membrane, however only some of them are palmitoylated.  
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Interestingly, Src lacks the residues for the critical palmitoylation, excluding it from 

GEMs.  This suggests that Src could be the major SFK regulating signalling though the 

integrin (Paige et al, 1993; Koegl et al, 1994; Palacios and Weiss, 2004). 

 

1.2.6 ITAM signalling in other haematopoietic cells 

The signalling pathway downstream of GPVI follows the same pattern as that of other 

ITAM receptors; however, different members of the various protein families substitute 

for each other depending on the cell type.  Thus, the GPVI pathway can be described as 

a hybrid of the T-cell and B-cell ITAM pathways (or vice versa) as shown in Figure 1.4.  

For example, GPVI and the B-cell receptor use Lyn and Syk, whereas the T-cell 

receptor uses Lck (leukocyte-specific kinase) and ZAP-70.  On the other hand, GPVI 

and the T-cell receptor use the adaptors LAT-Gads-SLP-76, while the B-cell receptor 

uses BLNK (B-cell linker, SLP-65).  BLNK is a cytoplasmic adaptor protein from the 

same family as SLP-76 and is capable of fulfilling the same role as the LAT-Gads-SLP-

76 triad (Ishiai et al, 2000).  The major effector protein of the ITAM pathway is PLC.  

The T-cell receptor uses the PLC1 isoform, whereas GPVI and the B-cell receptor use 

PLC2 (although, as mentioned previously, mouse platelets express a small amount of 

PLC1).  The plasticity of these pathways has proved to be a useful tool for studying 

platelet GPVI signalling in the absence of a knock-out mouse model, by transfecting 

platelet receptors into wild type (WT) or mutant B- and T-cells (Tomlinson et al, 2007). 
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Figure 1.4 – Comparison of ITAM pathways.  Platelet ITAM signalling is 

represented by the GPVI/FcR complex for comparison to T-cell receptor and B-cell 

receptor ITAMs.  The integrin is shown using some of the signalling proteins 

independent of an ITAM. 
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1.3 The C-type lectin CLEC-2 in platelets 

Determining the molecular basis of platelet activation by CLEC-2, which signals via a 

single YxxL sequence, is a major focus of this thesis.  The following sections 

summarise the discovery of CLEC-2 and how it is currently known to mediate platelet 

activation.  An endogenous ligand for CLEC-2, podoplanin, was reported in 2008 and 

this too is described along with two other C-type lectin receptors, which are structurally 

related to, and signal in a similar fashion to CLEC-2, namely Dectin-1 and CLEC9A.  

 

1.3.1 CLEC-2 

C-type lectin 2 (CLEC-2) was identified in platelets as a receptor for the snake venom 

toxin rhodocytin as described below (Suzuki-Inoue et al, 2006).  CLEC-2 is a group V 

(non-classical) C-type lectin receptor that is expressed at high level on platelets and at 

low level in mouse but not human neutrophils, and also on rat liver sinusoidal 

endothelial cells (Chaipan et al, 2006; Kerrigan et al, 2009).  mRNA for CLEC-2 (but 

not yet protein) has also been found in several other blood cells, including monocytes, 

dendritic cells and granulocytes (Colonna et al, 2000).  CLEC-2 has an N-terminal 

cytoplasmic tail, a single transmembrane domain, a stalk region and a C-terminal 

carbohydrate-like recognition domain (CRD) that is referred to as a C-type lectin-like 

domain (CTLD) (Weis et al, 1998; Drickamer, 1999).   In CLEC-2, the CTLD lacks the 

key residues for carbohydrate binding which indicates that ligands are likely to bind 

through a protein-protein interaction, as is the case for rhodocytin, which is not 

glycosylated. 
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The cytoplasmic tail of CLEC-2 has a single YxxL motif that is preceded by three 

acidic amino acids, but no other recognised signalling motif (Figure 3.1).  The single 

YxxL sequence distinguishes CLEC-2 from ITAM-containing proteins, which have two 

YxxL sequences separated by 6 – 12 amino acids (Table 1.3).  The CLEC-2 YxxL also 

lacks the conserved upstream amino acids that precede the single YxxL sequences of 

ITIM and ITSM (immunoreceptor tyrosine-based switch motif)-containing proteins that 

have been shown to mediate inhibition of ITAM signalling by recruitment of SH2 

domain containing tyrosine phosphatases (SHP1 or SHP2) or inositol phosphatases 

(SHIP1 or SHIP2) (Table 1.3).  Thus, the YxxL in CLEC-2 is distinct from that in other 

YxxL-containing proteins that are known to regulate intracellular signalling cascades.  
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Table 1.3 YxxL containing proteins 

Type Group Name Sequence 

ITAM 

CONSENSUS  Yxx(L/I)x6-12Yxx(L/I) 

   

Fc receptor FcR-chain SDGVYTGL-----STRNQETYETL 

 FcRRIIA ADGGYMTLNPRAPTDDDKNIYLTL 

   

B-cell receptor CD79a DENLYEGL-----NLDDCSMYEDI 

 CD79b EDHTYEGL-----DIDQTATYEDI 

   

T-cell receptor -chain 1 QNQLYNEL-----NLGRREEYDVL 

 -chain 2 QEGLYNEL----QKDKMAEAYSEI 

 -chain 3 HDGLYQGL-----STARKDTYDAL 

 CD3 NDQLYQPL-----KDREDDQYSHL 

 CD3 NDQVYQPL-----RDRDDAQYSHL 

 CD3 PNPDYEPI-----RKGQRDLYSGL 

   

Intracellular DAP12 TESPYQEL-----QGQRSDVYSDL 

ITIM 

CONSENSUS  (L/I/V)xYxx(L/V) 

   

 PECAM-1 VQYTEV 

   

 CEACAM-1 VTYSTL 

  IIYSEV 

   

 G6b LLYADL 

   

 TLT-1 VTYATV 

ITSM 

CONSENSUS  TxYxx(L/V) 

   

 PECAM-1 TVYSEV 

   

 G6b TIYAVV 

   

 TLT-1 TTYTSL 

ITAM-like 

(hemITAM) 

CONSENSUS  (D/E)E(D/E)xYxxL 

   

C-type lectin CLEC-2 --------MQDEDGYITL 

   

 Dectin-1 MEYHPDLENLDEDGYTQL 

   

 CLEC9A --------MHEEEIYTSL 
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1.3.2 Rhodocytin 

Rhodocytin (also known as aggretin) is a C-type lectin snake venom toxin that was 

purified from the Malayan Pit Viper Calloselasma rhodostoma more than ten years ago 

by two research groups (Huang et al, 1995; Shin and Morita, 1998).  The ability of 

rhodocytin to stimulate powerful platelet activation was initially attributed to binding to 

integrin 2 based on the use of a blocking antibody to the integrin (Huang et al, 1995; 

Suzuki-Inoue et al, 2001).  This hypothesis was later refuted by the demonstration that 

the snake venom toxin was unable to bind to recombinant 2 (Eble et al, 2001).  At 

the same time, however, the Clemetson group reported that platelet activation by 

rhodocytin was inhibited by antibodies to both integrin 2and GPIb(Navdaev et al, 

2001), which was surprising given that a previous finding that cleavage of GPIb had 

no effect on rhodocytin activation (Shin and Morita, 1998).  Moreover, both of these 

receptors, and also the collagen receptor GPVI, were shown to be dispensable for 

platelet activation by rhodocytin snake toxin using mice deficient in the subunit of 

integrin 2which had been depleted of GPIb and GPVI using O-sialoglycoprotein 

endopeptidase and in vivo treatment with GPVI monoclonal antibody, JAQ1, 

respectively (Bergmeier et al, 2001).  Thus, rhodocytin stimulates powerful activation 

of platelets independent of the three receptors (Bergmeier et al, 2001).   

 

The receptor underlying platelet activation by rhodocytin was identified as CLEC-2 

based on a proteomic approach using rhodocytin affinity chromatography and mass 

spectrometry (Suzuki-Inoue et al, 2006).  CLEC-2 was confirmed as a receptor for 

rhodocytin by expression studies in chicken DT40 cells using NFAT activation as a 
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reporter assay (Suzuki-Inoue et al, 2006).  Furthermore, a polyclonal antibody to 

CLEC-2 was shown to mediate powerful activation of human platelets independent of 

the platelet low affinity Fc receptor, FcRIIA, demonstrating that engagement of CLEC-

2 was sufficient to mediate platelet activation (Suzuki-Inoue et al, 2006).  The 

possibility that integrin 2 may facilitate binding of rhodocytin to CLEC-2 was also 

refuted by the demonstration that azide-free preparations of 2-blocking antibodies 

had no effect on platelet activation by the snake toxin (Fuller, 2006).  Thus, these results 

demonstrate that CLEC-2 mediates platelet activation by rhodocytin. 

 

1.3.3 The CLEC-2 signalling pathway  

Rhodocytin stimulates Src kinase-dependent phosphorylation of the only tyrosine in the 

cytoplasmic tail of CLEC-2, located in the conserved YxxL sequence.  Mutation of this 

tyrosine to phenylalanine abolishes NFAT activation in CLEC-2-transfected DT40 cells 

demonstrating the critical role of phosphorylation in mediating activation (Fuller et al, 

2007).  Rhodocytin stimulates a similar pattern of increase in tyrosine phosphorylation 

to that induced by GPVI in platelets, including phosphorylation of the tyrosine kinase 

Syk, thereby suggesting that it signals through an „ITAM-like‟ pathway (Suzuki-Inoue 

et al, 2001; Suzuki-Inoue et al, 2006).  Consistent with this, Syk has been shown to be 

essential for activation of mouse platelets and NFAT induction in transfected DT40 

cells by rhodocytin (Suzuki-Inoue et al., 2006).  In view of this similarity, the single 

YxxL sequence in CLEC-2 has been named a „hemITAM‟ by the group of Reis e Sousa 

(Robinson et al, 2006) although the term „ITAM-like‟ is used in this thesis.   
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The possible interaction between CLEC-2 and Syk has been further investigated 

through a series of pull-down and immunoprecipitation studies. A direct interaction 

between CLEC-2 and Syk is supported by the observation that Syk can be precipitated 

from platelets by a phosphorylated CLEC-2 peptide and that the tandem SH2 domains 

of Syk precipitate CLEC-2 from rhodocytin-stimulated platelets (Suzuki-Inoue et al, 

2006).  Furthermore, rhodocytin stimulated signalling is blocked in transfected DT40- 

cells by point mutations that disrupt phosphotyrosine binding of the N- and C-terminal 

SH2 domains of Syk (Fuller et al, 2007). On the other hand, neither the N- or C-

terminal SH2 domains of Syk alone are able to precipitate CLEC-2 from rhodocytin-

stimulated platelets suggesting that both SH2 domains are required for a stable 

interaction (Suzuki-Inoue et al, 2006).  These results therefore provide evidence for a 

novel mode of Syk regulation in which two phosphorylated CLEC-2 receptors are 

cross-linked by its N- and C-terminal SH2 domains.   

 

The use of mutant platelets have also highlighted critical roles for LAT, Vav1/3 and 

PLC2 in signalling by CLEC-2 as is the case for signalling by GPVI (Suzuki-Inoue et 

al, 2006).  A role for SLP-76 has also been reported, but unlike GPVI signalling where 

SLP-76 is essential, the requirement for the adapter protein is overcome at high 

concentrations of rhodocytin (Suzuki-Inoue et al, 2006).  Furthermore, the activation of 

platelets by CLEC-2 can also be distinguished from that of GPVI by its dependence 

upon the feedback mediators, ADP and TxA2, and on actin polymerisation, which are 

essential for phosphorylation of the C-type lectin receptor and downstream 

phosphorylation events (Suzuki-Inoue et al, 2001; Pollitt et al, 2010).  The molecular 

explanation for the differential requirement of CLEC-2 and GPVI on the adapter SLP-
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76, secondary mediators and actin polymerisation is not known, but suggests 

fundamental differences in the proximal events underlying platelet activation by the two 

receptors.  The study from Pollitt et al has also provided evidence that CLEC-2 

signalling takes place in GEMs following activation of the receptor, which is not 

surprising given the critical role of LAT and the similarity to ITAM signalling.  CLEC-

2 phosphorylation takes place following translocation to GEMs (Pollitt et al, 2010). 

 

1.3.4 Other platelet C-type lectin receptors 

There are currently four other C-type lectins which are known to be expressed in 

platelets, namely DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-

grabbing non-integrin), P-selectin, CD23 and CD69.  P-selectin (CD62P) has a well 

established role in platelets where it is present on -granules and expressed at the cell 

surface upon platelet activation.  It is widely used as a marker of platelet activation in 

flow cytometry assays.  Its major role is in the recruitment of leukocytes during 

thrombus growth (Falati et al, 2003).  The cytosolic tail of P-selectin does not have any 

recognised signalling motifs. Consistent with this, a study has shown that cross-linking 

P-selectin does not appear to generate regulatory signals in platelets (Sathish et al, 

2004). P-selectin belongs to the selectin group of C-type lectins which are quite 

different to group V C-type lectins.  The extracellular part of the selectins contain, along 

with the N-terminal CTLD, an EGF-like domain and a number of complement 

regulatory domain repeats.  These domains are thought to be important for cellular 

interactions under flow conditions. 
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DC-SIGN (CD209) is highly expressed on dendritic cells where its major role is in the 

binding and internalisation of pathogens.  Activation of DC-SIGN in dendritic cells has 

been shown to result in ERK and PI-3 kinase activation, PLC2 phosphorylation and 

Ca
2+

 mobilisation.  It has also been shown to be associated with Lyn and Syk (Caparros 

et al, 2006) and to be linked to Raf-1 and possibly Ras, both part of the MAP (mitogen 

activated protein) kinase signalling pathway (Gringhuis et al, 2007; Gringhuis et al, 

2010), although the role of MAP kinases in platelets is currently controversial as 

platelets do not have a nucleus and only limited functional roles have been described in 

platelets (Adam et al, 2008). 

 

The cytoplasmic tail of DC-SIGN contains a YxxL sequence, however this is not 

preceded by the acidic DEDG sequence that is found in ITAM-like receptors (the DC-

SIGN sequence is QTRGYKSL).  Furthermore, mutation of this YxxL sequence does 

not affect the ability of DC-SIGN to generate a weak signal upon cross-linking as 

measured using a NFAT reporter assay in DT40 cells (Fuller et al, 2007) .  DC-SIGN is 

expressed at low levels on platelets where it has been shown to facilitate binding and 

internalisation of pathogens, in particular, viral particles (Boukour et al, 2006).  DC-

SIGN binds to several different viruses, including HIV (human immuno-deficiency 

virus), HCV (hepatitis C virus) and HPV (human papillomavirus) (Geijtenbeek et al, 

2000; Pohlmann et al, 2003; Garcia-Pineres et al, 2006).  The uptake of viral particles 

by platelets has been proposed to result in their degradation in the open canilicular 

system (Boukour et al, 2006). In some cases, however, the viruses remain infectious and 

the platelet can act as a means of viral dispersal throughout the body (Chaipan et al, 

2006). 
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CD69 and CD23 are only expressed at low level on platelets and no function has, as yet, 

been attributed to their presence on platelets.  CD69 does not contain any recognised 

signalling motifs in its cytoplasmic tail.  There is however a single report that antibody 

cross-linking of CD69 on platelets promotes aggregation.  This study was flawed 

however as FcRIIA was not blocked thereby leaving the possibility that the Fc receptor 

mediated the aggregation response (Testi et al, 1990).  CD23 is a low affinity IgE 

receptor and it has been shown to play an inhibitory role on IgE synthesis in B-cells 

through an unknown mechanism (Yu et al, 1994).  A functional role for CD23 in 

platelets however has not been established.  The cytoplasmic tail of CD23 contains a 

YxxI motif although there are no reports of its phosphorylation.  Further, this sequence 

is preceded by EEGQ which does not correspond to the „ITAM-like sequence‟ that is 

present in CLEC-2 and Dectin-1.  

 

1.3.5 Endogenous CLEC-2 ligands 

The first evidence for an endogenous ligand for CLEC-2 was shown in a study 

investigating binding of platelets to HIV-1 viral particles (Chaipan et al, 2006).  This 

study reported that platelets could bind to and internalise the viral particles by a 

mechanism dependent on CLEC-2 and DC-SIGN (Chaipan et al, 2006).  DC-SIGN was 

shown to be the major contributor through binding to the viral envelope protein Env via 

bound mannose sugars (Geijtenbeek et al, 2000).  Interestingly, CLEC-2 binding to the 

viral particles was not dependant on the Env protein suggesting that it recognised a host 

protein derived from the cell used to make the virus.  Blockade of both CLEC-2 and 

DC-SIGN severely inhibited binding to the viral particles suggesting that these two 
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proteins interacted together to aid the dissemination of the virus throughout the infected 

patient (Chaipan et al, 2006). 

 

As the viral particles were grown in HEK-293T cells (human embryonic kidney), it was 

proposed that these cells expressed an endogenous ligand for CLEC-2.  Consistent with 

this, addition of HEK-293T cells to platelets was shown to mediate aggregation, which 

was blocked by PD173952, an inhibitor of Src family kinases, and to stimulate NFAT 

production in DT40 cells transfected with CLEC-2 (Christou et al, 2008).  At the time 

that the studies were performed, however, the nature of the activating ligand was not 

known.  

 

Podoplanin was identified as a CLEC-2 ligand by Katsue Suzuki-Inoue, who had 

performed the original affinity purification studies that led to the identification of 

CLEC-2 (Suzuki-Inoue et al, 2007).  Podoplanin is expressed on the leading edge of 

many tumour cells and underlies tumour cell-mediated platelet aggregation (Kato et al, 

2003).  It has been proposed that activation of platelets by tumour cells facilitates cancer 

metastasis by release of growth factors and metalloproteinases which facilitate tumour 

cell growth and invasion, respectively (Nash et al, 2002; Gupta and Massague, 2004).  

Activation of platelets by tumour cells occurs after a characteristic lag phase that is 

reminiscent of rhodocytin induced platelet aggregation (Kaneko et al, 2004; Kaneko et 

al, 2007).    In view of this similarity, Suzuki-Inoue et al sought to identify the platelet 

receptor which was mediating platelet activation by podoplanin on tumour cells, 

hypothesising that CLEC-2 was the candidate.   
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Suzuki-Inoue et al demonstrated an interaction between the two proteins by flow 

cytometry using recombinant CLEC-2 binding to podoplanin expressing Chinese 

hamster ovary cells (CHO).  This association was shown to be dependent on podoplanin 

glycosylation as it was lost when podoplanin was expressed in mutant CHO cells which 

lacked a sialic acid transporter and therefore are unable to fully glycosylate surface 

proteins (Suzuki-Inoue et al, 2007).  Furthermore, the podoplanin transfected CHO cells 

were able to mediate platelet aggregation, whereas the mutant CHO cells could not.  

They confirmed that platelet aggregation was induced by podoplanin expressing tumour 

cells and showed that lymphatic endothelial cells (LECs), which endogenously express 

podoplanin at high level, could also mediate platelet aggregation.  Furthermore, 

aggregation by podoplanin-expressing tumour cells or LECs was blocked by 

recombinant CLEC-2, and was dependent on SFKs (Suzuki-Inoue et al, 2007).  

Together, these data provided definitive evidence for podoplanin as a CLEC-2 ligand. 

 

The above discovery enabled the demonstration that the ligand on HEK-293T cell was 

also podoplanin, a finding that was performed through a collaboration between the 

Birmingham Platelet Group and Chris O‟Callaghan in Oxford (Christou et al, 2008).  

The association was confirmed using several methods, including flow cytometry using 

recombinant CLEC-2 and HEK-293T cells, and by precipitation studies from cell 

lysates, which pulled out a band of 36 kDa that was identified as podoplanin.  Further, 

recombinant podoplanin and HEK-293T cells stimulated NFAT activity in CLEC-2 

transfected DT40 cells and this was blocked with an -podoplanin antibody (NZ-1).  

The affinity (KD) of the interaction between the two proteins was calculated to be 24 

M using surface plasmon resonance (Christou et al, 2008).   
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Podoplanin (also known as aggrus, T1, GP36, GP38) is a type I transmembrane 

sialoglycoprotein with a relatively large (206 amino acids), heavily glycosylated, 

extracellular domain, a single transmembrane domain and a short (9 amino acids) 

cytoplasmic tail (sequence – RKMSGRYSP).  The tail contains two serine residues that 

are present in putative PKA and PKC phosphorylation sites and a single tyrosine 

residue, although there are no reports of a functional role for phosphorylation of any of 

these three residues.  On the other hand, podoplanin has been proposed to interact with 

ERM (ezrin, radixin, moesin) family of proteins, with a direct interaction with ezrin and 

moesin being mediated by the three basic amino acids in the cytoplasmic tail (Martin-

Villar et al, 2006).  Expression of podoplanin in Madin-Darby canine kidney (MDCK) 

cells, an epithelial cell line, resulted in an up-regulation of RhoA and epithelial-

mesenchymal transition (EMT). The EMT transition results in cells acquiring migratory 

features, a process required for many responses including tissue remodelling during 

development, as well as wound healing, inflammation and tumour invasion and 

metastasis (Bissell and Radisky, 2001; Thiery, 2002).  Mutations based around the R/K 

group showed that the association of podoplanin with ERM family proteins was 

required for the increase in RhoA activity in the MDCK cells (Martin-Villar et al, 

2006).  These observations suggest that, in addition to being a ligand for CLEC-2, 

podoplanin may be a functional receptor in its own right. 

 

Podoplanin has a wide expression profile and is expressed at particularly high levels on 

kidney podocytes (hence its name), type I alveolar cells, lymphatic endothelial cells and 

metastatic tumour cells.  Two different podoplanin knock-out mice have been described 

as summarised in Table 1.4 (Ramirez et al, 2003; Schacht et al, 2003; Fu et al, 2008; 
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Mahtab et al, 2008; Uhrin et al, 2010).  The two mice were made by deletion  of the 

promoter and exon 1 (Mahtab et al, 2008) or by deletion of exons 2-5 (Ramirez et al, 

2003) through insertion of a neomycin cassette, with neither mouse expressing 

podoplanin protein.  Cardiac developmental problems were observed on a proportion of 

the first of these two knockouts, which is attributed to defective epithelial-mesenchymal 

transition (Mahtab et al, 2008).  This knock-out shows 40% prenatal lethality.  Of the 

null mice which survive to birth, 50% die within the first weeks after birth (the fate of 

the remaining 50% is not stated).  Backcrossing from a 129 Sv x Swiss background to a 

C57Bl/6 background resulted in survival of approximately 20% of the null mice to 

adulthood and are fertile, but no prenatal lethality is described (Uhrin et al, 2010).  

Cardiac defects were not described for the second knockout, which was bred on a 129 

Sv Ev background.   The birth rate for this knockout was 75% of that expected from 

Mendelian genetics, although the authors stated that this figure was statistically 

insignificant and they did not report prenatal lethality (Ramirez et al, 2003).  All of the 

mice died however within minutes to hours after birth due to defective lung 

development resulting in lungs that were unable to expand to perform gas exchange 

(Ramirez et al, 2003). 

 

Both of the knock-out models show defective lymphatic separation during development, 

resulting in blood filled, dilated lymphatics and lymphoedema (Schacht et al, 2003; Fu 

et al, 2008; Uhrin et al, 2010).  The most recent of these studies monitored development 

of the lymphatics and observed platelet aggregates in the separation zone between the 

cardinal vein and the newly forming lymph sacs in the wild type but not the knockout 

mice (Uhrin et al, 2010).  This raises the possibility that platelets play a crucial role in 
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the separation of lymphatics through the interaction of CLEC-2 and podoplanin.  

Antibody blockade of podoplanin in utero resulted in the same phenotype as the knock-

out (Uhrin et al, 2010). 

 

A similar defect in lymphatic separation from the vasculature is seen in knock-out mice 

lacking Syk, SLP-76 or PLC2 (Abtahian et al, 2003; Sebzda et al, 2006; Ichise et al, 

2009).  The defect does not appear to be as severe, however, particularly in mice 

deficient in PLC2 which may be attributed to a low level of PLC1 (Suzuki-Inoue et al, 

2003).  Since these three proteins are required for CLEC-2 signalling, the results 

provide further evidence for a role for podoplanin-mediated CLEC-2 activation of 

platelets in development of the lymphatics.  There are several explanations for the 

overlapping but distinct phenotypes of these three mice relative to those lacking 

podoplanin, including the possibility that podoplanin functions as a signalling receptor 

with CLEC-2 serving as a ligand. 
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Table 1.4 Podoplanin
-/-

 summary 

Reference Defects 

 

MOUSE USED – Generated by deletion of exons 2-5 by insertion of Neo cassette 

 

(Ramirez et al, 

2003) 

Mice born at close to Mendelian ratios.  Die 3-10 min after birth due to 

respiratory failure.  A few mice survived up to 4 hours.  Lung 

morphology affected.  Fewer and attenuated type I alveolar cells.  

Smaller airspaces with abundant surfactant.  Lung defects attributed to 

disrupted epithelial-mesenchymal signalling. 

(Schacht et al, 2003) 

Defective lymphatic but not blood vessel pattern formation.  Diminished 

lymphatic transport, congenital lymphoedema and dilated lymphatic 

vessels.  Normal epidermal differentiation despite podoplanin expression 

in basal epidermis. 

(Fu et al, 2008) 

Blood-filled lymphatics.  Similar phenotype seen in EHC T-Syn
-/- 

(endothelial and haematopoietic
 
specific knock-out of T-synthase) mice 

which have significantly reduced podoplanin due to loss of 

glycosylation.  EHC T-Syn
-/- 

mice survive and develop fatty liver disease 

due to misconnected lymphatics. 

 

MOUSE USED – Generated by deletion of promoter and exon 1 by insertion of Neo cassette 

 

(Mahtab et al, 2008) 

Increased embryonic and foetal lethality by 40%.  50% of neonates die 

within the first weeks of life.  Cause of death unknown, but possibly 

cardiac in origin.  Impaired cardiac development based on defective 

epicardial-myocardial interaction and reduced epithelial-mesenchymal 

transformation. 

(Uhrin et al, 2010) 

Mice were backcrossed onto a C57Bl/6 background.  55% of neonates 

die during the first week and are smaller than wild types.  Some show 

petechia.  20% survive to adulthood achieving normal weights, life spans 

and are fertile.  Blood filled, non-separated lymphatics.  The lymph sacs 

bud off from the cardinal vein in development.  This separation zone is 

podoplanin positive and platelet aggregates are found here.  The 

knockout lacks platelet aggregates on lymphatic endothelium. 
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A recent publication has provided evidence for a further endogenous CLEC-2 ligand 

and for a critical role of CLEC-2 in haemostasis (May et al, 2009).  In this study mice 

were treated with a CLEC-2 antibody which resulted in thrombocytopenia.  Following 

recovery from this thrombocytopenia, the platelets were shown to be depleted of surface 

CLEC-2 for several days suggesting that the antibody had inhibited CLEC-2 expression 

on newly formed platelets.  These CLEC-2-deficient platelets were unable to aggregate 

or express P-selectin in response to rhodocytin whereas the response to collagen, 

convulxin, thrombin, ADP, and U46619 was not altered (although only single doses of 

these agonists were tested therefore leaving the possibility that a dose-response curve 

may have highlighted a smaller defect).  This result demonstrates that, in the low shear 

environment of an aggregation assay, CLEC-2 is only required for platelet activation by 

rhodocytin.  However, when the CLEC-2-depleteted platelets were flowed in whole 

blood through collagen-coated capillaries at intermediate (1000 s
-1

) and high (1700 s
-1

) 

shear rates, there was a marked decrease in platelet aggregate formation.  The initial 

attachment of the platelets was unaffected but the recruitment of further platelets and 

aggregate growth was inhibited in the absence of CLEC-2.  In blood that was not anti-

coagulated, and therefore thrombin generation allowed to occur, this defect was 

overcome.  This suggests that CLEC-2 is playing a vital role in thrombus formation at 

arterial rates of shear.  Moreover, using an in vivo ferric chloride injury model, the 

CLEC-2-depleted mice failed to fully occlude their vessels.  Thrombi still formed at the 

injury site with similar kinetics to the control but due to increased embolisation and 

release of single platelets, the thrombi did not become occlusive.  The CLEC-2 deficient 

mice also exhibited an increased bleeding time (by approximately 50%) as measured by 

a tail bleeding assay.  As podoplanin expression is not found in blood cells, including 

platelets, this study suggests that CLEC-2 has another ligand which is either found in 
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plasma or is expressed by/secreted by platelets and which contributes to thrombus 

formation.  It also highlights the potential of CLEC-2 as a drug target for anti-platelet 

therapy. 

 

1.3.6 Dectin-1 and CLEC9A  

CLEC-2 is a member of the group V family of C-type lectins which is closely related to 

the group II family having a single extracellular C-type lectin domain, a stalk region, a 

single transmembrane domain and a short cytoplasmic tail.  Group II C-type lectins are 

considered the „classical‟ C-type lectins, requiring Ca
2+

 for ligand binding, while group 

V are „non-classical‟ C-type lectins as they do not require Ca
2+

 for binding (Drickamer, 

1993).  Many of the cytoplasmic tails of the group II and group V families of C-type 

lectins either contain recognised signalling motifs or associate with proteins with 

signalling motifs.  Some examples are summarised in Table 1.5. 
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Table 1.5 Other C-type lectin signalling motifs 

C-type 

lectin 

Other names References Motif 

CLEC12A MICL (myeloid inhibitory C-

type lectin) 

(Marshall et al, 2004; Pyz 

et al, 2008) 

 ITIM 

CLEC12B  (Hoffmann et al, 2007) 

 

CLEC5A MDL-1 (myeloid DAP12 

associating lectin) 

(Bakker et al, 1999) ITAM – 

associated with 

DAP12 

CLEC6A Dectin-2 (Sato et al, 2006) 

 

ITAM – 

associated with 

FcR 

CLEC4A CD303, BDCA2 (blood 

dendritic cell antigen 2) 

 

(Cao et al, 2007; Rock et 

al, 2007) 

 

CLEC4E Mincle (macrophage-inducible 

C-type lectin) 

(Wells et al, 2008; 

Yamasaki et al, 2008; 

Yamasaki et al, 2009) 
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CLEC-2, Dectin-1 (CLEC7A) and CLEC9A appear to be unique within the group V 

family of C-type lectin receptors in that they have a single YxxL in their cytoplasmic 

tails which is preceded by three negatively charged amino acids and a glycine or 

isoleucine residue (Table 1.3).  All three signal through sequential activation of Src and 

Syk tyrosine kinases downstream of phosphorylation of the conserved tyrosine in the 

YxxL sequence in their cytoplasmic tail (Fuller et al, 2007; Huysamen et al, 2008).  The 

significance of the three acidic amino acid residues and glycine in the regulation of Syk 

by CLEC-2 has been investigated by expression of receptor mutants in DT40 cells 

(Fuller et al, 2007).   Mutation of D3 and E4 to alanine had little effect on receptor 

signalling, while mutation of G6 to alanine abolished the response possibly due to steric 

hindrance.  The significance of D5 could not be assessed as mutation to alanine 

prevented surface expression of CLEC-2.   Thus, the overall significance of the acidic 

acid region in signalling by CLEC-2 is uncertain. 

 

CLEC-2 and Dectin-1 share the same acidic amino acid sequence upstream of the single 

cytoplasmic YxxL motif, namely DEDG.  In CLEC9A, this upstream sequence is EEEI, 

although the functional significance of this difference, if any, is not known.  Unlike 

CLEC-2 and Dectin-1, CLEC9A is expressed as covalently-linked dimer on the cell 

surface.  This dimerisation suggests a possible mechanism of regulation of Syk through 

binding of the two individual SH2 domains in the tyrosine kinase to separate, 

phosphorylated YxxLs in two molecules of CLEC9A, as illustrated in Figure 3.10.  

Moreover, a similar mechanism of regulation of Syk may also apply to CLEC-2 as 

activation is lost upon mutation of the phosphotyrosine binding motif in either of the 

Syk SH2 domains (Fuller et al, 2007).  Because of the similarity in sequence, structure 
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and mode of signalling by Dectin-1 and CLEC9A to that for CLEC-2, these two C-type 

lectins are described in further detail below. 

 

Dectin-1 – Dectin-1 is a group V C-type lectin receptor for -glucan found primarily on 

dendritic cells (Brown et al, 2003), macrophages, monocytes, polymorphonuclear 

(PMN) cells but also on B-cells, eosinophils and mast cells (Willment et al, 2001; 

Olynych et al, 2006).  -glucans are immunostimulatory carbohydrate polymers found 

on in the cell wall of fungal, some plant and some bacterial cells (Brown and Gordon, 

2001; Brown and Gordon, 2003).  Dectin-1 also has a role in homeostasis as a currently 

unidentified endogenous ligand has been shown to be on T-cells (Ariizumi et al, 2000; 

Willment et al, 2001; Grunebach et al, 2002) and Dectin-1 has also been shown to be 

activated by apoptotic cells, again by an unidentified ligand (Weck et al, 2008).  

Activation of Dectin-1 results in dendritic cell maturation, phagocytosis, endocytosis 

and production and release of a variety of cytokines and chemokines (Brown, 2006; 

Reid et al, 2009) 

 

Dectin-1 has two tyrosine motifs in its cytoplasmic tail, namely the ITAM-like motif, 

DEDGYxxL, which is described above, and a separate motif with the sequence YxxxL 

and YxxxI in human and mouse, respectively.  The YxxxL sequence is dispensable for 

signalling by the C-type lectin receptor, whereas the ITAM-like sequence is essential 

for activation (Brown et al, 2003; Gantner et al, 2003; Herre et al, 2004; Rogers et al, 

2005; Underhill et al, 2005; Fuller et al, 2007).  Signalling by Dectin-1, as is the case 

for CLEC-2, is dependent on SFKs and Syk, as shown using selective inhibitors and 
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mutant mouse bone marrow-derived cells (Underhill et al, 2005).  In addition, there is 

evidence that Dectin-1 can signal independently of Syk, again through the DEDGYxxL 

sequence, although the physiological relevance of this and the underlying mechanism is 

unknown (Herre et al, 2004; Rogers et al, 2005; Brown, 2006; Gringhuis et al, 2009). 

 

CLEC9A – CLEC9A (DNGR-1 (DC, NK lectin group receptor-1)) is a group V C-type 

lectin receptor.  It has been found in brain, thymus and spleen (Huysamen et al, 2008).  

CLEC9A is also expressed in subsets of haematopoietic cells, namely B cells, BDCA3
+
 

(thrombomodulin) dendritic cells (a rare subset of dendritic cells), CD14
+
CD16

-
 

monocytes and CD14
-
CD11b

-
CD64

+
 cells (Caminschi et al, 2008; Huysamen et al, 

2008; Sancho et al, 2008). 

 

The only functional role ascribed to CLEC9A to date is as a receptor for necrotic cells 

(Sancho et al, 2009).  Sancho et al demonstrated that necrotic cells express a ligand for 

CLEC9A that becomes externalised during necrosis.  However, they show that the 

functional role for CLEC9A is for efficient antigen-presentation by the dendritic cell, 

rather than for antigen uptake.  Interestingly, the related C-type lectin receptor, Mincle, 

is also activated by cells undergoing apoptosis (Yamasaki et al, 2008). 

 

It appears therefore that the major roles described for both Dectin-1 and CLEC9A are in 

the innate immune system and homeostasis through the activation of dendritic cells.  

These cells are the link between the innate and the adaptive immune system, expressing 
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a host of Toll-like receptors and C-type lectins which bind to and internalise invading 

pathogens (innate immunity).  The internalised pathogens are processed, and fragments 

are attached to the major histocompatibility complex (MHC class II) which is in turn 

presented at the cell surface.  The MHC and attached antigen is therefore presented for 

the activation of helper T-cells and killer T-cells (adaptive immunity).  Because of this 

function, dendritic cells and macrophages are often referred to as antigen presenting 

cells (APC).  B-cells can also perform this function but rather than binding to a 

pathogen directly, they bind to antibodies which have already recognised the pathogen, 

and subsequently internalise the complex. 

 

Despite the similarities between the structure, sequence and signalling of CLEC-2, 

Dectin-1 and CLEC9A it is apparent that they play different roles and have different 

ligands.  Dectin-1 has a well characterised exogenous ligand and is involved in the 

immune response to pathogens which express it.  It also has unidentified endogenous 

ligands on T-cells and apoptotic cells.  CLEC-2 has two or more endogenous ligands 

and appears to play roles in haemostasis and possibly development of the lymphatics 

and lungs.  Whether it is possible that CLEC-2 can recognise further exogenous ligands 

(other than rhodocytin) and also plays a role in pattern recognition, or whether Dectin-1 

has any role in development remain to be seen.  CLEC9A also recognises an 

endogenous ligand on apoptotic cells with no other ligands as yet identified.  It remains 

to be seen if CLEC9A has further endogenous or exogenous ligands and roles outside of 

the immune system. 
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1.4 Aims of the thesis 

The proximal events underlying ITAM receptor signalling are reasonably well 

understood whereas, at the time that this work was begun, the mode of regulation of Syk 

by CLEC-2 and the related „ITAM-like‟ receptors was uncertain.  The aim of the work 

undertaken in this thesis was; 

 

1. To investigate the mechanism of regulation of Syk by CLEC-2, with special 

focus on the hypothesis that activation is achieved through receptor 

dimerisation. 

 

2. To compare the functional roles of the adapters Gads and LAT in platelet 

activation by GPVI and CLEC-2 given their differential requirement for SLP-76. 

 

3. To investigate whether the LAT-independent component of platelet activation 

platelet by GPVI and CLEC-2 is due to the presence of one or more further 

LAT-like molecules in platelets.  These studies were limited to platelet 

activation by GPVI in view of the similarity in the functional role of LAT in 

supporting platelet activation by the collagen receptor and CLEC-2. 

  



 

 

 


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2.1 Materials 

2.1.1 Antibodies and reagents 

The agonists and antagonists used in the course of this thesis are listed in Table 2.1 and 

2.2 respectively.  Table 2.3 lists the antibodies used.  If unstated, materials used are 

from Sigma (Poole, UK) or from previously described sources (Atkinson et al, 2003; 

Bori-Sanz et al, 2003; Pearce et al, 2004) 
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Table 2.1 Agonists 

Agonist Target Source 

Collagen (HORM) GPVI 

21 

Nycomed (Munich, Germany) 

CRP (YGKO(GPO)10GKOG) GPVI Dr RW Farndale (Cambridge 

University, UK) 

Rhodocytin CLEC2 Dr JA Eble (University of 

Frankfurt, Germany) (Eble et al, 

2001) 

Thrombin PAR-1 

PAR-3 

PAR-4 

Sigma (Poole, UK) 

VWF GPIb Dr MC Berndt (Monash 

University, Australia) 

Fibrinogen IIb3  Enzyme Research Laboratories 

(Swansea, UK) 

ADP P2Y1 

P2Y12 

Sigma (Poole, UK) 

Phorbol Myristate Acetate 

(PMA) 

PKC Sigma (Poole, UK) 

Ionomycin Ca
2+

 Sigma (Poole, UK) 

 

 

Table 2.2 Antagonists 

Inhibitors Target Source 

Indomethacin Cycloxygenase Sigma (Poole, UK) 

Apyrase ADP Sigma (Poole, UK) 

EGTA Ca
2+

 Sigma (Poole, UK) 

Lotrafiban IIb3  GlaxoSmithKline (USA) 

Pervanadate Tyrosine phosphatases Sigma (Poole, UK) 
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Table 2.3 Antibodies 

Antibody Host 

species 

Use* Source 

PRIMARY    

CLEC-2 (human) Goat IP:  2 g/ml 

WB:  1 g/ml 

R+D Systems (Abingdon, UK) 

G6f (human) Rabbit IP:  5 l 

WB:  1/200 

Invitrogen (UK) 

G6f (mouse) Rabbit IP:  5 l 

WB:  1/200 

Invitrogen (UK) 

Gads Rabbit IP:  2 g/ml 

WB:  2 g/ml 

Millipore (Bucks, UK) 

Goat IgG - - R+D Systems (Abingdon, UK) 

Grb2 Rabbit IP:  2 g/ml 

WB:  1/500 

Santa Cruz Biotechnology 

(Heidelberg, Germany) 

LAT Rabbit IP:  5 g/ml 

WB:  1/500 

Millipore (Bucks, UK) 

Mouse IgG - - R+D Systems (Abingdon, UK) 

Myc (9B11) Mouse FC:  10 g/ml 

WB:  1/1000 

Cell Signalling Technology 

(Herts, UK) 

Phosphotyrosine (4G10) Mouse IP:  2 g/ml 

WB:  1/1000 

Millipore (Bucks, UK) 

PLC2 Rabbit IP:  1/500 

WB:  1/1000 

Dr MG Tomlinson (Birmingham, 

UK) 

P-Selectin FITC-

conjugate (mouse) 

Rat FC:  1/100 BD Bioscience (Oxford, UK) 

Rabbit IgG - - Millipore (Bucks, UK) 

Sheep IgG - - Millipore (Bucks, UK) 

SLP-76 Sheep IP:  4 g/ml 

WB:  1/500 

Millipore (Bucks, UK) 

Syk Rabbit IP:  1/500 

WB:  1/1000 

Dr MG Tomlinson (Birmingham, 

UK) 

SECONDARY    

Goat IgG HRP-conjugate Chicken WB:  1/10000 R+D Systems (Abingdon, UK) 

Mouse IgG FITC-

conjugate 

Sheep FC:  1/100 Sigma (Poole, UK) 

Mouse IgG HRP-

conjugate 

Sheep WB:  1/10000 Amersham Bioscience (Bucks, 

UK) 

Rabbit IgG HRP-

conjugate 

Donkey WB:  1/10000 Amersham Bioscience (Bucks, 

UK) 

Sheep IgG HRP-

conjugate 

Donkey WB:  1/20000 R+D Systems (Abingdon, UK) 

    

*IP:  Immunoprecipitation, WB:  Western Blot, FC:  Flow cytometry 
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21.2  Plasmids and constructs 

Human CLEC-2 sub-cloned into pEF6 vector with a C-terminal Myc tag (Invitrogen).  

A point mutation of tyrosine 7 to phenylalanine (Y7F) was generated and sub-cloned 

into pEF6 vector with an N-terminal FLAG tag.  These were provided by Dr Gemma 

Fuller and Dr Andrew Pearce (University of Birmingham, UK).  The CLEC-2 mutations 

shown in Table 2.4 were generated by a two-step PCR method (Higuchi et al, 1988) 

using the vector primers 5147 and 4150 in pEF6 with a C-terminal Myc tag using the 

restriction enzymes Kpn I (5‟) and Not I (3‟) (New England Biolabs, Herts, UK).  Pfu 

Turbo DNA polymerase (Stratagene), Rapid ligation kit (Roche, East Sussex, UK), 

DH5 chemically competent E.coli, mini-prep and maxi-prep kits (Sigma, Poole, UK) 

were used for cloning according to manufacturers protocols.  All cloning was verified 

by Plasmid to Profile sequencing.  Human GPVI in pcDNA3 with a C-terminal Myc tag 

(Invitrogen) and untagged human FcR in pEF6 were provided by Dr Mike Tomlinson 

(University of Birmingham, UK).  FcR with an N-terminal Myc tag was provided by 

Dr Jun Mori (University of Birmingham, UK) (Mori et al, 2008).  The FcR mutations 

shown in Table 2.4 were generated by a one-step PCR method using a Quikchange II 

XL site-directed mutagenesis kit (Stratagene) into pEF6 with an N-terminal Myc tag.  

Human G6f was cloned into pEF6 vector with a C-terminal Myc tag (Invitrogen) using 

a two-stage, nested PCR approach, from K562 cDNA (human erythroleukaemic cell 

line) using the restriction enzymes Bgl II (5‟) and Eco RI (3‟) (New England Biolabs, 

Herts, UK).  Mouse G6f was cloned into pEF6 vector with a C-terminal Myc tag 

(Invitrogen) using PCR from primary mouse megakaryocyte cDNA using the restriction 

enzymes Kpn I (5‟) and Eco RI (3‟) (New England Biolabs, Herts, UK).  The nuclear 

factor of activated T-cells (NFAT)-luciferase reporter containing three copies of the 
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distal NFAT site from the IL-2 promoter (Shapiro et al, 1997) was provided by Prof 

Arthur Weiss (UCSF School of Medicine, USA).  The pEF6-lacZ reporter was from 

Invitrogen.  GST-fusion proteins of Syk N-SH2, C-SH2 and tSH2 domains were 

provided by Dr C Law (University of Washington, USA) (Law et al, 1996).  A GST-

fusion protein of the Syk tSH2 domains was also provided by Klaus Fütterer (University 

of Birmingham) (Futterer et al, 1998). 
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Table 2.4 Constructs 

Construct Primers 

T9A CLEC-2 FWD:  5‟-CAT GCA GGA TGA AGA TGG ATA CAT CGC CTT 

AAA TAT TAA AAC TCG-3‟ 

REV:  5‟-CGA GTT TTA ATA TTT AAG GCG ATG TAT CCA 

TCT TCA TCC TGC ATG-3‟ 

21-28 CLEC-2 FWD:  5‟-TAA AAC TCG GAA ACC AGC TCT CAT CTG GTG 

GCG TGT GAT GGC TTT GAT TC-3‟ 

REV:  5‟-GAA TCA AAG CCA TCA CAC GCC ACC AGA TGA 

GAG CTG GTT TCC GAG TTT TA-3‟ 

S21/27A CLEC-2 FWD:  5‟-GAA ACC AGC TCT CAT CGC CGT TGG CTC TGC 

ATC CGC CTC CTG GTG GC-3‟ 

REV:  5‟-GCC ACC AGG AGG CGG ATG CAG AGC CAA 

CGG CGA TGA GAG CTG GTT TC-3‟ 

Y66F FcR  FWD:  5‟- CAG ATG GTG TTT TCA CGG GCC TGA G-3‟ 

REV:  5‟- CTC AGG CCC GTG AAA ACA CCA TCT G-3‟ 

Y77F FcR  FWD:  5‟- GGA ACC AGG AGA CTT TCG AGA CTC TGA 

AGC-3‟ 

REV:  5‟- GCT TCA GAG TCT CGA AAG TCT CCT GGT TCC-

3‟ 

Human G6f (1
st
 

round) 

FWD:  5‟-TGG GGG AGA TCT ACC ATG GCA GTC TTA TTC 

CTC C-3‟ 

REV:  5‟-TTT TTC ACC TGG GCT TGT GGG CA-3‟ 

Human G6f (2
nd

 

round) 

FWD:  5‟-TGG GGG AGA TCT ACC ATG GCA GTC TTA TTC 

CTC CTC CTG-3‟ 

REV:  5‟-TAG TAG GAA TTC CCT GGG CTT GTG GGC AGG 

TG-3‟ 

Mouse G6f FWD:  5‟-TAG TAG GGT ACC ACC ATG GCA GTT GTA GTA 

TTC CTC CTG-3‟ 

REV:  5‟-TAG TAG GAA TTC CCT GGT CTT GTG GTT AGG 

TGG G-3‟ 
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2.1.3 Mice 

Gads deficient and LAT deficient mice were generated as previously described 

(Samelson et al, 1999; Zhang et al, 1999; Yoder et al, 2001).  LAT mice were kindly 

provided by Dr Lawrence Samelson.  Gads mice were kindly provided by Dr Jane 

McGlade (Hospital for Sick Children, Toronto, Canada).  Mice were bred as 

heterozygotes allowing the use of litter matched wild-type control mice.  LAT mice 

were provided on a C57Bl/6 background, Gads mice on a Balb-c background.  Gads 

mice were subsequently back-crossed for nine generations onto a C57Bl/6 background.  

Housing and husbandry was in accordance with Home Office regulations under the 

Animals (Scientific Procedures) Act 1986.  The mice used in chapter 5, deficient in 

PAG, LIME, NTAL, LAT, LAX, and the compound knock-out mice, NTAL/LAT 

deficient, NTAL/LAT/LAX deficient and PAG/LIME deficient were all provided by Dr 

Burkhart Schraven and were used in his labs in the Institute for Molecular and Clinical 

Immunology (Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany).  

These mice, and control mice, were all provided on a C57Bl/6 background. 

 

2.2 Platelet preparation 

2.2.1 Human washed platelet preparation 

Blood was taken by venipuncture from healthy, drug free volunteers on the day of 

experiments into 10% sodium citrate.  The blood was further anti-coagulated by 

addition of 10% acid citrate dextrose (ACD: 120 mM sodium citrate, 110 mM glucose, 

80 mM citric acid).  Platelet rich plasma (PRP) was retained following centrifugation 

for 20 minutes at 200 g.  Prostacyclin (10 g/ml) was added to inhibit platelet activation 
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prior to centrifugation for 10 minutes at 1000 g.  The plasma was discarded and the 

platelet pellet washed in 25 ml modified Tyrode‟s-HEPES buffer (134 mM NaCl, 0.34 

mM Na2HPO4, 2.9 mM KCl, 12 mM NaHCO3, 20 mM HEPES, 5 mM glucose, 1 mM 

MgCl2; pH 7.3) and 3 ml ACD.  Prostacyclin (10 g/ml) was added prior to final 

centrifugation for 10 minutes at 1000 g.  The platelet pellet was resuspended in 

Tyrode‟s-HEPES buffer at a concentration of 2 x 10
7
/ml for static adhesion and 

spreading assays, 2 x 10
8
/ml for aggregation assays and 5 x 10

8
-1 x 10

9
/ml for protein 

biochemistry.  The platelets were allowed to rest for at least 30 minutes prior to 

experimentation. 

 

2.2.2 Mouse washed platelet preparation 

Mice were terminally CO2-narcosed following isofluorane anaesthesia.  A laparotomy 

was then performed and blood was taken from the descending aorta into 10% ACD.  

The blood was diluted further with addition of 200 l of Tyrode‟s-HEPES buffer and 

centrifuged in a microcentrifuge at 2000 rpm for 5 minutes.  The PRP and top third of 

erythrocytes were retained and centrifuged at 200 g for 6 minutes.  PRP was retained 

and to maximise platelet recovery, a further 200 l of Tyrode‟s-HEPES buffer was 

added to the remaining erythrocytes, mixed, and centrifuged again at 200 g for 6 

minutes.  The second collection of PRP was pooled with the first and following addition 

of 10 g/ml prostacyclin, centrifuged at 1000 g for 6 minutes.  The platelet pellet was 

resuspended in Tyrode‟s-HEPES buffer at a concentration of 2 x 10
7
/ml for static 

adhesion and spreading assays, 2 x 10
8
/ml for aggregation and ATP secretion assays 

and 5 x 10
8
/ml for protein biochemistry.  The platelets were allowed to rest for at least 

30 minutes prior to experimentation. 
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2.3 Platelet functional studies 

2.3.1 Aggregation and stimulation for biochemistry 

Aggregation/stimulation was performed in a dual channel Born lumi-aggregometer 

(model 460VS; Chronolog, Labmedics, Manchester, UK) at 37˚C with stirring at 1200 

rpm.  The optical density of the platelet suspension was measured against a blank 

reading from Tyrode‟s-HEPES buffer and recorded in real time on a chart recorder 

(Chronolog, Labmedics, Manchester, UK). 

 

Aggregation/stimulation experiments were carried out in silconised glass test tubes.  

The platelets were pre-incubated with stated inhibitors for 10 minutes before the 

experiment.  Platelets were pre-incubated with EGTA (1 mM), indomethacin (10 M) 

and apyrase (2 U/ml) to block aggregation, thromboxane A2 (TxA2) and ADP 

respectively.  Platelets were then warmed to 37˚C for 1 minute followed by 1 minute 

with stirring followed by addition of the agonist.  Aggregation was monitored for 5-10 

minutes.  Stimulations were allowed to proceed for the stated times and then the 

platelets were lysed by the addition of an equal volume of 2 x lysis buffer plus protease 

inhibitors (300 mM NaCl, 20 mM Tris, 2 mM EGTA, 2 mM EDTA, 2% NP-40; pH 7.4 

plus 2.5 mM Na3VO4, 100 g/ml AEBSF, 5 g/ml leupeptin, 5 g/ml aprotinin, 0.5 

g/ml pepstatin). 
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2.3.2 ATP secretion 

Secretion assays were carried out in the same way as aggregation studies.  Platelets 

were pre-incubated for 2 minutes with Chrono-lume, a luciferin/luciferase reagent 

(Chronolog, Labmedics, Manchester, UK).  After addition of agonist, light emission 

from the luciferase reaction, catalysed by secreted ATP was recorded on a chart 

recorder in real time. 

 

2.3.3 Static adhesion and spreading 

Glass coverslips were coated using either 100 g/ml fibrinogen, 100 g/ml collagen or 

10 g/ml VWF at 4˚C overnight followed by washing with three changes of PBS.  The 

coverslips were then blocked with 5 mg/ml heat denatured BSA for 1 hour at room 

temperature followed by washing with three changes of PBS.  VWF coated coverslips 

were then treated with 2 g/ml botrocetin for 10 min at room at room temperature 

followed by washing with three changes of PBS.  Washed platelets were then added to 

the coverslips and allowed to adhere and spread for 45 mins at 37˚C in the presence of 2 

U/ml apyrase and 10 M indomethacin.  Non-adherent platelets were washed away with 

three changes of PBS.  Adherent platelets were then fixed with 3.7% paraformaldehyde 

for 10 minutes at room temperature.  The coverslips were then mounted onto glass 

slides using Hydromount (National Diagnostics, Atlanta, USA) and imaged by 

differential interference contrast (DIC) microscopy using a Zeiss Axiovert 200 M 

microscope.  Platelet surface area was then analysed using ImageJ software (NIH, 

Bethesda, USA). 
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2.3.4 P-Selectin exposure 

Washed mouse platelets were stimulated with stated agonists for 10 minutes at 37˚C in 

a volume of 50 l in the presence of 1 mM EGTA to prevent aggregation.  The platelets 

were stained with 100 g/ml FITC-conjugated -mouse P-selectin antibody for a 

further 10 minutes at 37˚C in the dark.  The platelets were diluted by addition of 200 l 

Tyrode‟s-HEPES buffer and analysed with a FACScalibur (BD Biosciences) and 

CellQuest software. 

 

2.3.5 In vitro flow adhesion 

Mouse blood was drawn as above, into sodium heparin (5 U/ml) and PPACK (40 M).  

Glass capillary tubes (1 x 0.1 mm; Camlab, Cambridge, UK) were coated with 100 

g/ml Horm collagen for 1h at room temperature whilst rotating slowly.  The capillaries 

were washed with PBS and blocked with 5 mg/ml heat-inactivated BSA for 1h at room 

temperature before being mounted on the stage of an inverted fluorescent microscope 

(DM IRB; Leica Microsystems Ltd, Milton Keynes, UK) equipped with a digital 

camera (CoolSnap ES, Photometrics, Huntington Beach, CA, USA).  Anticoagulated 

whole blood was pre-incubated with 2 M DiOC6 for 15 minutes at 37˚C to 

fluorescently label the cells.  The blood was then perfused through the capillary for 4 

minutes at a wall shear rate of 1000 s
-1

 at 37˚C followed by washing for 3 minutes at the 

same shear rate with Tyrode‟s-HEPES buffer.  Fluorescent images were recorded at 

approximately 2 second intervals for 2 minutes and the images linked to create a movie.  

Adherent cells were then fixed with 3.7% paraformaldehyde for 30 minutes and imaged 

using DIC microscopy on a Zeiss Axiovert 200 M microscope. 
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2.4 Cell culture 

2.4.1 Cell culture 

DT40 chicken B-cells were grown in RPMI supplemented with 10% foetal bovine 

serum (FBS), 1% chicken serum, 100 U/ml penicillin, 100 g/ml streptomycin, 50 M 

-mercaptoethanol and 20 mM GlutaMAX.  Human endothelial kidney (HEK) 293T 

cells were grown in DMEM supplemented with 10% FBS 100 U/ml penicillin, 100 

g/ml streptomycin, and 20 mM GlutaMAX.  Jcam2 human Jurkat T-cells were grown 

in RPMI supplemented with 10% foetal bovine serum (FBS), 100 U/ml penicillin, 100 

g/ml streptomycin, and 20 mM GlutaMAX. 

 

2.4.2 Transfection 

DT40 cells and Jcam2 cells were transfected in a volume of 400 l cytomix (120 mM 

KCl, 0.15 mM CaCl2, 2 mM EGTA, 5 mM MgCl2, 10 mM K2HPO4, 10 mM KH2PO4, 

25 mM HEPES, 0.04 mM ATP, 5 mM glutathione; pH 7.6) by electroporation using a 

GenePulser II (Biorad) set at 350 V and 500 F.  Cells were grown for 20 hours before 

use in experiments.  HEK 293T cells were transfected by a calcium phosphate method:  

DNA was diluted in 500 l water containing 252 mM CaCl2 followed by drop wise 

addition of 500 l of 2 x HEPES buffered saline (280 mM NaCl, 10 mM KCl, 1.5 mM 

Na2HPO4, 50 mM HEPES, 12 mM dextrose; pH 7.5).  This was allowed to precipitate at 

room temperature for 10 minutes then added to cells and incubated for 24 hours after 

which time, the media was removed and replaced with fresh media for a further 24 

hours after which time the cells were used for experiments. 
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2.5 Cell line reporter assay 

2.5.1 NFAT-luciferase assay 

DT40 cells or Jcam2 cells were transfected with stated amounts of stated receptors in 

addition to 20 g of the luciferase reporter construct and also, 2 g of pEF6-lacZ as a 

control for transfection efficiency.  Twenty hours after transfection cells were counted 

in the presence of Trypan blue to exclude dead cells and the live cells were split for the 

luciferase assay, -galactosidase assay for transfection efficiency and flow cytometry to 

assay surface expression of the receptor of interest.  Stimulations were performed in 

triplicate in a 96-well plate using 10
5
 cells per well in a final volume of 100 l for 6 

hours at 37˚C with stated agonists.  PMA (50 ng/ml) with ionomycin (1 M) were used 

as a positive control to show all cells were responsive.  Following the 6 hour 

stimulation, cells were lysed with the addition of 11 l harvest buffer (0.2 M potassium 

phosphate buffer; pH 7.8, 10% Triton X-100 and 1 mM DTT) for 5 minutes at room 

temperature.  The lysate (100 l) was added to an equal volume of assay buffer (0.2 M 

potassium phosphate buffer; pH 7.8, 20 mM MgCl2, 10 mM ATP).  Luciferase activity 

was measured with a Centro LB 960 microplate luminometer (Berthold Technologies, 

Germany) by addition of 50 l of 1 mM luciferin (MP Biomedicals, UK).  Data from 

the triplicates were averaged and normalised to -galactosidase activity, then expressed 

as fold increase over basal. 
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2.5.2 -galactosidase assay 

From each transfection, live cells (10
5
) were assayed in triplicate using the Galacto-

Light chemiluminescent reporter assay, according to the manufacturer‟s instructions 

(Applied Biosystems, Bedford, Mass, USA).  -galactosidase activity was measured 

with a Centro LB 960 microplate luminometer. 

 

2.5.3 Flow cytometry 

From each transfection, live cells (10
5
) were used to confirm surface expression of the 

receptor where possible.  Cells were stained with primary antibody in a volume of 50 l 

of PBS for 20 minutes on ice.  Cells were then washed in 1 ml of PBS and stained with 

FITC- conjugated secondary antibody in a volume of 50 l of PBS for 20 minutes on 

ice in the dark.  Stained cells were then analysed with a FACScalibur (BD Biosciences) 

and CellQuest software.  

 

2.6 Protein biochemistry 

2.6.1 Immunoprecipitation and pull-downs 

Lysates made as described above were pre-cleared with either protein A sepharose 

(PAS), or protein G sepharose (PGS) for immunoprecipitation (IP), or streptavidin-

agarose for pull-downs.  Lysates were pre-cleared for 60 minutes at 4˚C and then 

insoluble debris and the beads were pelleted by centrifugation at 18000 g in a 

microcentrifuge at 4˚C.  Cleared lysates were transferred to a new tube and 50 l was 
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removed and added to an equal volume of 2 x Laemmli sample buffer (Reducing: 20% 

glycerol, 10% -mercaptoethanol, 4% SDS, 50 mM tris, trace Brilliant Blue R; Non-

reducing: 20% glycerol, 4% SDS, 50 mM tris, trace Brilliant Blue R) for whole cell 

protein studies.  For IP experiments, the remaining cleared lysate was incubated with 

stated antibody and PAS (rabbit antibodies) or PGS (mouse, sheep and goat antibodies) 

for 90 minutes at 4˚C.  For pull-down experiments, the remaining cleared lysate was 

incubated with a biotinylated peptide and streptavidin-agarose for 90 minutes at 4˚C.  

The agarose or sepharose beads were subsequently washed with three changes of lysis 

buffer and associated proteins were eluted into 2 x Laemmli sample buffer and boiled 

for 5 minutes at 100˚C. 

 

2.6.2 SDS-PAGE and Western Blotting 

Denatured proteins were separated by electrophoresis through sodium dodecyl sulphate 

polyacrylamide gels (10% unless otherwise stated).  Prestained molecular weight 

markers (Bio-Rad, Hemel Hempsted, UK) were run alongside samples.  Separated 

proteins were then electro-transferred onto polyvinylidene difluoride (PVDF) 

membranes using a wet transfer method at 30 V for 90 minutes.  Membranes were then 

blocked with blocking buffer (5% (w/v) bovine serum albumin (BSA) and 0.1% (w/v) 

sodium azide in TBS-T (Tris-buffered saline (200 mM Tris, 1.37 M NaCl; pH 7.6 

containing 0.1% Tween-100)) for 1 hour prior to Western Blotting. 

 

The blocked membranes were then incubated with primary antibodies in blocking buffer 

for 1 hour followed by washing for 5 minutes at a time, with three changes of TBS-T.  
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The membranes were then incubated with horseradish peroxidase (HRP)-conjugated 

secondary antibodies in TBS-T for 1 hour followed by washing for 5 minutes at a time, 

with three changes of TBS-T.  The membranes were then incubated with enhanced 

chemiluminescence (ECL, Amersham Bioscience, Buck, UK) reagent for 1 minute and 

then developed by exposure to autoradiographs.  In the cases where the membranes 

were required for a second blotting the antibodies were removed by stripping.  The 

membranes were incubated with stripping buffer (TBST-T containing 2% SDS) 

supplemented with 1% -mercaptoethanol for 20 minutes at 80˚C followed by 

incubation with stripping buffer for a further 20 minutes at 80˚C.  The membranes were 

then washed in several changes of TBS-T and blocked again in blocking buffer.  The 

blotting process was then repeated. 

 

2.6.3 Platelet surface protein cross-linking 

Following platelet stimulation, Sulfo-EGS at a final concentration of 0.15 mM or 1.5 

mM was added and allowed to incubate at room temperature for 30 minutes.  The 

reaction was then quenched with the addition of Tris-HCl (pH 7.5) at a final 

concentration of 25 mM, and allowed to incubate for a further 20 minutes at room 

temperature.  The platelets were then lysed with the addition of an equal volume of 2x 

ice cold NP-40 lysis buffer. 
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2.6.4 GST-fusion proteins 

2.6.4.1  Expression 

Constructs for the GST-tagged N-SH2, C-SH2 and tSH2 domains of Syk were 

transformed into DH5 E.coli cells and grown as a 100 ml overnight culture in Luria-

Bertani broth (LB; 10 g tryptone, 5 g yeast extract, 10 g NaCl per litre) plus ampicillin 

(100 g/ml) at 37˚C with shaking.  This was then split to inoculate four flasks of LB 

broth (1 litre) plus ampicillin (100 g/ml) and grown at 37˚C with shaking until the 

optical density at 600 nm (OD600) was approximately 0.75.  The cultures were then 

allowed to cool to room temperature and induced to express the fusion proteins with the 

addition of isopropyl β-D-1-thiogalactopyranoside (IPTG, 0.1 mM).  These were then 

incubated overnight with shaking at room temperature. 

 

2.6.4.2  Purification 

The cultures were centrifuged for 30 min at 4500 rpm (JLA 8.1000 rotor, BD) and 4˚C.  

The bacterial pellet was then resuspended in 200 ml of lysis buffer (PBS containing 1% 

Triton-X100, 1% aprotinin, 5 g/ml leupeptin, 1 mM PMSF, 1 mM EDTA and 1 mM 

DTT) and sonicated on ice extensively.  Cellular debris was then removed by 

centrifugation for 20 min at 15000 rpm (JA 25.50 rotor, BD) and 4˚C.  The cleared 

lysate was then passed through a 10 ml column of glutathione-agarose and recycled five 

times.  The column was then washed extensively with 500 ml PBS, then 300 ml Tris (10 

mM Tris, 0.5 M NaCl and 1% NP40; pH 7) followed by 300 ml PBS.  The bound GST-

fusion proteins were then eluted from the column with 25 ml PBS containing 10 mM 

glutathione (pH7).  For surface plasmon resonance studies the protein was used in this 
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form with the GST-tag still attached.  Aggregated protein was removed using size-

exclusion chromatography (HiLoad 16/60 Superdex-200 120 ml column, GE 

Healthcare, UK).  For ITC and fluorescence titration experiments, the GST-tag was 

removed with the addition of 40 U of thrombin and incubated at room temperature for 6 

hours.  A further 40 U were added and left to incubate overnight at room temperature 

followed by a final addition of 25 U and incubated for 9 hours at room temperature.  

The free glutathione was then removed by extensive dialysis (three changes of buffer 

for 8 hrs at a time).  The cleaved proteins were then passed through the regenerated 

glutathione-agarose column to deplete the free GST; recycling 10 times.  Aggregated 

protein and remaining GST was removed using size-exclusion chromatography (HiLoad 

16/60 Superdex-200 120 ml column, GE Healthcare, UK). 

 

2.7  Surface Plasmon Resonance (SPR) 

SPR experiments were performed using a Biacore 3000 machine (Biacore, GE 

Healthcare, UK).  Biotin tagged CLEC-2 and FcR peptides were attached to CM5 

research grade sensor chips (Biacore AB) following attachment of streptavidin to the 

chip using amine coupling.  All experiments were performed at 25˚C in HBS-EP buffer 

(150 mM NaCl, 1 mM MgCl2, 10 mM HEPES, 0.005% Surfactant P-20; pH 7.4).  

Different concentrations of N-SH2, C-SH2 and tSH2 domains were injected over all 

peptide surfaces to determine equilibrium dissociation constants (KD).  All injections 

were compared to a negative control flow cell containing no peptide. 
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2.8 Isothermal Titration Calorimetry (ITC) 

ITC measurements were made in a VP-ITC isothermal titration calorimeter (MicroCal, 

GE Healthcare, UK).  Both Syk tSH2 domains and CLEC-2 peptides were extensively 

dialysed into experimental buffer (50 mM HEPES, 150 mM NaCl, 150 mM glycine, 1 

mM EDTA and 5 mM -mercaptoethanol; pH 7.5) prior to experimentation.  Protein 

and peptide concentrations were determined by spectrophotometry using a ND-1000 

spectrophotometer (Nanodrop, Thermo Scientific, UK).  The tSH2of Syk (8 M) were 

loaded into the calorimeter cell (V = 1.42 ml) and the CLEC-2 peptide (2 mM) was 

loaded into the injection syringe.  Titrations were computer controlled and performed at 

25˚C.  Negative control injections of peptide into buffer were performed under the same 

conditions. 

 

2.9 Tryptophan fluorescence titration 

Fluorescence measurements were performed in a PTI spectrofluorimeter (Photon 

Technology International Ltd. UK).  Both Syk SH2 domains and CLEC-2 peptides were 

extensively dialysed into experimental buffer (50 mM HEPES, 150 mM NaCl, 150 mM 

glycine, 1 mM EDTA and 5 mM -mercaptoethanol; pH 7.5) prior to experimentation.  

Protein and peptide concentrations were determined by spectrophotometry using a ND-

1000 spectrophotometer (Nanodrop, Thermo Scientific, UK).  The SH2 domains of Syk 

(3 ml of 250 nM) were loaded into a quartz cuvette and placed into the cell turret with 

constant stirring.  The CLEC-2 peptide (2 mM) was titrated in and allowed to mix for 2 

min before scanning.  An excitation wavelength of 295 nm was used and emission 

spectra were collected over the range of 300-420 nm in 2.5 nm steps.  Slit widths of 
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0.75 mm were used for both excitation and emission.  The peak fluorescence of 340 nm 

was monitored for binding constant calculation. 

 

2.10 Analysis of data 

Data is shown from a single experiment which is representative of 3-5 experiments.  

Where data is expressed in chart form, results are shown as arithmetic mean ± standard 

error unless otherwise stated.  NFAT-luciferase data is expressed as geometric mean ± 

standard error.  Statistical analysis was carried out using unpaired Student‟s t-test.  

Significance was taken for P < 0.05.  Where differences reached statistical significance, 

this is stated (with p values) on the corresponding figure and legend.  Where statistical 

significance is not explicitly stated, any differences were not statistically significant. 

 



 

 

 

 

 

 

 

CHAPTER 3 

A CLEC-2 DIMER IS CAPABLE OF ITAM-LIKE 

SIGNALLING THROUGH SYK TYROSINE KINASE 
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3.1 Introduction 

CLEC-2 has been shown to activate platelets using a signalling pathway that is similar 

to that which is used by GPVI, an ITAM receptor, despite having a single YxxL in its 

cytosolic tail (Suzuki-Inoue et al, 2006; Fuller et al, 2007).  Critically, point mutations 

in the conserved tyrosine within the YxxL sequence in CLEC-2 or in either of the Syk 

SH2 domains, which destroying their phosphotyrosine binding capacity, cause complete 

ablation of CLEC-2 signalling (Fuller et al, 2007).  Further, only a fusion protein 

encoding both Syk SH2 domains is able to precipitate CLEC-2 from rhodocytin-

stimulated platelet lysates (Suzuki-Inoue et al, 2006; Fuller et al, 2007).  These results 

demonstrate that both SH2 domains and the CLEC-2 YxxL sequence are critically 

required for signalling by the C-type lectin receptor. 

 

Two models can be put forward to explain these results: (i) the presence of a second 

binding site in the CLEC-2 cytoplasmic tail that is required for binding, either directly 

or indirectly, to one of the Syk SH2 domains, or (ii) that CLEC-2 regulates Syk through 

dimerisation, thereby providing two YxxL sequences.  The recent publication on 

CLEC9A, which is a covalent dimer, lends circumstantial evidence for this second 

model (Huysamen et al, 2008).  Further, a CLEC-2 specific F(ab‟)2 fragment, but not a 

F(ab) fragment, is able to mediate activation of mouse platelets providing further 

supporting this second model (May et al, 2009). 

 

In regard to the first model, we hypothesised that a second binding site would be 

conserved between species and most likely with Dectin-1 and CLEC9A which are the 
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only other two known proteins that signal through a single YxxL motif.  Sequence 

alignment of CLEC-2 from 9 species using ClustalW (www.ebi.ac.uk/clustalw/) 

highlighted the complete conservation of the MQDEDGYxxL sequence, and two serine 

residues at positions 21 and 27 (number from human CLEC-2).  Several positively 

charged amino acids and a WR sequence at the juxtamembrane position were also 

conserved (Figure 3.1 a).  Sequence alignment of Dectin-1 from 9 species also 

highlighted conservation of the DEDGYxxL sequence and of two serine residues in 

equivalent positions, but not the other conserved amino acids in CLEC-2 apart from the 

membrane WR sequence (Figure 3.1 b).  The same relationship did not hold for the 

recently discovered third member of this family, CLEC9A (Figure 3.1c).  The 

conserved DEDG sequence was replaced by the similarly charged EEEI sequence and 

just one of the serines was conserved. 

 

Sequence alignment also highlighted the presence of a threonine residue at position 9 in 

CLEC-2, the Y+2 position in the YxxL.  Dectin-1 had a conserved threonine at Y+1 of 

its YxxL and this was also seen in CLEC9A.  Previous studies using mast cells or 

mouse platelets have shown that the presence of a threonine in position Y+1 in the FcR 

ITAM can be a target of PKC ( or ) phosphorylation, and that this phosphorylation 

allows for a tighter interaction with the Syk SH2 domains and maximal activation of 

Syk (Germano et al, 1994; Swann et al, 1999; Pears et al, 2008).  

 

The aims of this chapter are to investigate the mechanism of regulation of Syk by 

CLEC-2 in order to distinguish between the two models proposed above.  This will be 

http://www.ebi.ac.uk/clustalw/
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achieved by investigation of whether CLEC-2 signals as a monomer or as a 

dimer/oligomer; by mutation of the two conserved serine and threonine residues; and by 

co-expression of wild type and the Y7F mutant of CLEC-2 to investigate whether the 

latter inhibits signalling, as predicted by the dimerisation model.  The presence of the 

conserved serine and threonine residues is of particular interest compared to other 

conserved sequences in CLEC-2 given their potential for phosphorylation.  Alongside 

this, direct measurement of binding of the SH2 domains of Syk to peptides based on the 

cytosolic sequence of CLEC-2 using a variety of protein chemistry and biophysical 

techniques was performed. 
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Figure 3.1 – Sequence alignment of CLEC-2 family proteins.  a) 9 species of CLEC-

2 were aligned using ClustalW web-based software, highlighting the conserved 

MQDEGDYxTL motif and serines 21 and 27.  b) 9 species of Dectin-1 were aligned, 

highlighting the conserved DEDGYTxL motif and serine residues.  c) Human CLEC-2, 

Dectin-1 and CLEC9A were aligned, highlighting the partially conserved DEDGYxxL 

motifs and serine residues.  
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3.2 Results 

3.2.1 Structure-function relationships of the CLEC-2 cytoplasmic tail and Syk 

tandem SH2 domains 

To investigate a potential role of conserved residues in the CLEC-2 tail, we used a 

combination of peptide pull-down studies, to ascertain if a CLEC-2 model peptide could 

associate with Syk from a platelet lysate, and a DT40 cell line assay using mutant forms 

of CLEC-2.  Expression of WT CLEC-2 along with a NFAT-luciferase reporter gene 

can be used to monitor activation by rhodocytin in a DT40 cell line.  This cell line has 

been used as a model system for GPVI-FcR and CLEC-2 signalling previously (Fuller 

et al, 2007; Tomlinson et al, 2007).  In this model, CLEC-2 and GPVI-FcR use the 

ITAM signalling machinery of the B-cell receptor to activate PLC2, resulting in NFAT 

activation and subsequent expression of luciferase.  In confirmation of the previously 

published result (Fuller et al, 2007) rhodocytin stimulated luciferase activity in DT40 

cells transfected WT CLEC-2 but not Y7F mutant, in which the tyrosine of the single 

YxxL motif was mutated to phenylalanine (Figure 3.2 a).  This confirms the critical role 

of the conserved tyrosine in signalling by CLEC-2. 

 

In line with the above, Syk was precipitated from platelet lysates using a 

phosphorylated but not a non-phosphorylated peptide encoding the first 13 amino acids 

(aa) of the CLEC-2 tail (Figure 3.2 b).  This region includes the conserved DEDGYxxL 

sequence.  Furthermore, there was no observable increase in the amount of Syk pulled 

out when a tyrosine phosphorylated peptide encoding the full 31aa cytoplasmic tail of 

CLEC-2 was used (Figure 3.2 c) suggesting that the first 13aa, and therefore the YxxL 
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sequence, is sufficient for Syk association.  It is important to note however that the 

interaction between the peptide and Syk in this experiment could be mediated through 

binding of two separate phosphorylated peptides to individual SH2 domains in Syk, 

bearing in mind that multiple phosphorylated peptides are attached to the beads used for 

precipitation.  These observations therefore do not rule out a possible direct or indirect 

interaction between the Syk tandem SH2 domains and a second site in the CLEC-2 

cytosolic tail which may take place in an intact cell. 

 

Using a similar approach, the contribution of the two conserved serine residues was also 

investigated.  Mutation of the serines to alanines, or deletion of the serine rich region 

21-28, had no significant effect on the ability of the mutant CLEC-2 to induce NFAT 

activation relative to the WT receptor in transiently transfected DT40 cells (Figure 3.3 

a).  Likewise, a tyrosine phosphorylated 31aa peptide in which both S21 and S27 were 

replaced by alanine was able to associate with Syk to the same degree as the WT 

peptide (Figure 3.3 b).  These results provide evidence against a functional role of the 

serine residues in mediating the association with Syk or signalling to PLC2 and 

subsequent NFAT activation. 

 

 



Chapter 3 – A CLEC-2 dimer is capable of ITAM-like signalling through Syk tyrosine kinase 

Page | 84 
 

 

Figure 3.2 – YxxL is essential for Syk association and signalling through CLEC-2.  

a)  DT40 cells were transfected with 10 g/ml of the stated CLEC-2 construct and a 

NFAT-luciferase reporter plasmid.  Transfected cells were stimulated with 50 nM 

rhodocytin for 6 hrs at 37˚C and then the luciferase activity was measured as a readout 

of signalling.  Results were normalised for transfection efficiency and plotted as a 

percentage of the WT response.  Error bars represent the geometric mean ± standard 

error of three to six separate experiments.  b) Washed platelets (5 x 10
8
/ml) were lysed 

with 2x NP40 lysis buffer, pre-cleared and interacting proteins precipitated with the 

addition of 10 g of the relevant biotinylated CLEC-2 peptide.  Precipitated proteins 

were separated by SDS-PAGE and western blotted for the presence of Syk.  

Densitometry is shown in the histograms.  Result is representative of three experiments. 
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Figure 3.3 – Serines-21 and 27 are dispensable for Syk association and signalling 

through CLEC-2.  a)  DT40 cells were transfected with 10 g/ml of the stated CLEC-2 

construct and a NFAT-luciferase reporter plasmid.  Transfected cells were stimulated 

with 50 nM rhodocytin for 6 hrs at 37˚C and then the luciferase activity was measured 

as a readout of signalling.  Results were normalised for transfection efficiency and 

plotted as a percentage of the WT response.  Error bars represent the geometric mean ± 

standard error of three to six separate experiments.  b) Washed platelets (5 x 10
8
/ml) 

were lysed with 2x NP40 lysis buffer, pre-cleared and interacting proteins precipitated 

with the addition of 10 g of the relevant biotinylated CLEC-2 peptide.  Precipitated 

proteins were separated by SDS-PAGE and western blotted for the presence of Syk.  

Densitometry is shown in the histograms.  Result is representative of three experiments.  

  



Chapter 3 – A CLEC-2 dimer is capable of ITAM-like signalling through Syk tyrosine kinase 

Page | 86 
 

The same approach was also used to investigate the role of the conserved threonine in 

the Y+2 position in the CLEC-2 YxxL sequence.  Mutation of the threonine to alanine 

had no significant effect on the ability of rhodocytin to stimulate NFAT activity in 

DT40 cells (Figure 3.4 a).  Further, a 13aa peptide containing phosphotyrosine and 

phosphothreonine residues at position 7 and 9 was able to precipitate a similar level of 

Syk from a platelet lysate (Figure 3.4 b).  This provides evidence against a functional 

role of the conserved threonine at position 9 in signalling by CLEC-2. 

 

These results confirm a critical role for the phosphorylated YxxL sequence in binding to 

Syk and mediating signalling by CLEC-2, but demonstrate that the two conserved 

serines at positions 21 and 27 and the partially conserved threonine at position 9 are 

dispensable for these events.  The functional role of the two conserved serines and 

threonine residues remains to be determined.  The present results have therefore failed 

to provide evidence for a second binding site in the CLEC-2 tail that supports binding 

and activation of Syk and thereby indirectly favour a model in which Syk cross-links 

two molecules of CLEC-2 via its tandem SH2 domains, both of which are known to be 

essential for CLEC-2 signalling (Fuller et al, 2007). 
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Figure 3.4 – Threonine-9 is dispensable for Syk association and signalling through 

CLEC-2.  a)  DT40 cells were transfected with 10 g/ml of the stated CLEC-2 

construct and a NFAT-luciferase reporter plasmid.  Transfected cells were stimulated 

with 50 nM rhodocytin for 6 hrs at 37˚C and then the luciferase activity was measured 

as a readout of signalling.  Results were normalised for transfection efficiency and 

plotted as a percentage of the WT response.  Error bars represent the geometric mean ± 

standard error of three to six separate experiments.  b) Washed platelets (5 x 10
8
/ml) 

were lysed with 2x NP40 lysis buffer, pre-cleared and interacting proteins precipitated 

with the addition of 10 g of the relevant biotinylated CLEC-2 peptide.  Precipitated 

proteins were separated by SDS-PAGE and western blotted for the presence of Syk.  

Densitometry is shown in the histograms.  Result is representative of three experiments.  
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3.2.2 Dominant negative effect of Y7F CLEC-2 on signalling by WT CLEC-2 

In order to further investigate the mechanism of regulation of Syk by CLEC-2, I co-

expressed wild type CLEC-2 with varying levels of the Y7F mutant of CLEC-2.  The 

rationale for this experiment is that the Y7F mutant should have an inhibitory effect if 

the cross-linking/dimerisation model is correct whereas it will have no effect if Syk is 

activated by a single CLEC-2 receptor.  The alternative possibility that the Y7F mutant 

is able to inhibit activation of Syk by a single CLEC-2 receptor seems unlikely.  When 

expressed at a ratio of 3:1, Y7F to WT, NFAT activity was inhibited to approximately 

25% that of the WT receptor.  This response increases to approximately 40% when the 

ratio is decreased to 1:1 and is restored to approximately normal levels when the 

amount of Y7F CLEC-2 is titrated down below a ratio of 0.05:1 (Figure 3.5 a).  Surface 

expression of WT CLEC-2 was measured by flow cytometry using an -Myc antibody 

which only detected the WT CLEC-2 due to the presence of a Myc tag.  The surface 

expression of WT CLEC-2 was not significantly affected by expression of the Y7F 

mutant (Figure 3.5 b).  In contrast, the weak constitutive (agonist-independent) signal 

induced by expression of CLEC-2 that has been previously described (Mori et al, 2008) 

was not inhibited in the presence of the Y7F mutant suggesting that it may be mediated 

through a CLEC-2 monomer.  These data provide evidence that ligand-activated CLEC-

2 is unable to signal as a monomer in response to activation by rhodocytin and that 

expression of the Y7F inactive mutant has a „dominant negative‟ effect as a result of 

forming dimeric or higher order structures with wild type receptors that are unable to 

signal. 
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Figure 3.5 – The Y7F CLEC-2 mutant inhibits signalling by the wild type receptor.  

a) DT40 cells were transfected with 10 g/ml of WT CLEC-2 (black text) and/or 

varying amounts of Y7F CLEC-2 (grey text) shown as a ratio, and a NFAT-luciferase 

reporter gene.  Transfected cells were stimulated with 50 nM rhodocytin for 6 hrs at 

37˚C after which time, the amount of luciferase activity was measured as a readout of 

signalling.  Results were normalised for transfection efficiency and plotted as a 

percentage of the WT response.  Error bars represent the geometric mean ± standard 

error of three to eight separate experiments.  b) Transfected cells were analysed by flow 

cytometry for surface expression of Myc-tagged WT CLEC-2.  The selected gate was 

drawn to exclude ~99% of mock transfected cells.  No WT expression is seen in the 

Y7F transfection alone, and WT expression is similar when co-transfected with varying 

amounts of Y7F. 
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3.2.3 CLEC-2 oligomers are present on the platelet surface 

The above results favour a dimerisation/oligomerisation model of signalling by CLEC-

2.  To further investigate this, we used the cross-linker Sulfo-EGS, which is known to 

cross-link surface proteins that lie within a distance of 16.1 Å (12 atoms) of each other 

(Browning and Ribolini, 1989; Dihazi and Sinz, 2003; Sinz, 2003).  In non-stimulated 

or rhodocytin-stimulated platelets, CLEC-2 migrates on SDS-PAGE as a characteristic 

doublet due to differential glycosylation (Suzuki-Inoue et al, 2006; Watson et al, 2007).  

The molecular weights of the differentially glycosylated forms of CLEC-2 (30 and 40 

kDa) suggest that both are present as a monomer and is consistent with the fact that they 

are reduced to a single band of just less than 30 kDa upon deglycosylation (Suzuki-

Inoue et al, 2006).  Following addition of a low or high concentration of the cross-linker 

Sulfo-EGS, the presence of several higher molecular weight bands of CLEC-2 can be 

seen together with a corresponding reduction in intensity of the 30 and 40 kDa bands 

(Figure 3.6 a).  In the absence of stimulation, a new, broad band is observed at between 

60 – 80 kDa which corresponds approximately to a doubling of the molecular weight of 

monomeric CLEC-2.  With the higher concentration of cross-linker, there is the 

suggestion of higher order structures in non-stimulated platelets, with a corresponding 

reduction in both the monomeric and predicted dimeric forms of the receptor.  In the 

presence of rhodocytin, Sulfo-EGS induces formation of the predicted CLEC-2 dimer 

along with higher order structures, most notably at the higher of the two concentrations, 

where there is almost no detectable monomeric CLEC-2.  The broad nature and 

smearing of the bands could reflect a combination of higher oligomeric forms of CLEC-

2 and possibly cross-linking to other proteins.  Interestingly, western blotting studies 

failed to detect the presence of rhodocytin in the higher order structures suggesting that 

direct cross-linking to the toxin had not occurred (not shown). 
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A similar overall pattern of change in CLEC-2 dimerisation/oligomerisation was seen in 

whole cell lysates prepared from basal (not shown) and rhodocytin-activated platelets, 

as demonstrated by western blotting for CLEC-2 (Figure 3.7 b).  In marked contrast, 

there was no apparent dimerisation/oligomerisation of the low affinity immune receptor, 

FcRIIA, or the membrane-associated protein Src in the presence of the intermediate 

and high concentration of Sulfo-EGS in basal (not shown) or rhodocytin-activated 

platelets (Figure 3.7 b) as shown by the similar levels of the monomeric forms of both 

proteins and no higher molecular weight forms present as revealed by western blotting 

(Figure 3.7 b).  This result demonstrates that the oligomerisation of CLEC-2 is not 

simply the result of a non-specific effect of cross-linking of platelet surface proteins. 

 

Together, these results provide evidence for the presence of monomeric, dimeric and 

oligomeric forms of CLEC-2 on the platelet surface, although it should be noted that 

these structures may also be due to binding to one or more additional proteins.  

Nevertheless, the loss of the monomeric and the corresponding increase in the 60 – 80 

kDa band is consistent with the proposal that CLEC-2 forms a dimer thereby providing 

adjacent binding sites for Syk through its phosphorylated YxxL domains. 
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Figure 3.6 – CLEC-2 oligomers are present on the platelet surface.  Washed 

platelets (5 x 10
8
/ml) under basal or rhodocytin stimulated (100 nM) conditions had 

their surface proteins cross-linked with the addition of 0.15 mM or 1.5 mM Sulfo-EGS 

cross-linking reagent, with a linker length of 16 Å.  The cross-linking reaction was 

subsequently blocked and then the platelets were lysed with 2x NP40 lysis buffer.  a)  

The lysates were then pre-cleared with protein G Sepharose, then immunoprecipitated 

with -CLEC-2 antibody and PGS.  Precipitated proteins were separated by SDS-PAGE 

and western blotted for CLEC-2.  b) Lysates were separated by reducing SDS-PAGE 

and western blotted for CLEC-2, FcRIIA and Src.  The results are representative of 

three experiments 

a) 

b) 



Chapter 3 – A CLEC-2 dimer is capable of ITAM-like signalling through Syk tyrosine kinase 

Page | 93 
 

3.2.4 Affinity measurements of Syk SH2 domains for CLEC-2 

The above results support a model in which the tandem SH2 domains in Syk bind to the 

phosphorylated YxxL sequence in separate CLEC-2 monomers.  This is consistent with 

our previous report that point mutants that disrupt binding of the individual SH2 

domains to phosphotyrosine abrogate signalling by CLEC-2 (Fuller et al, 2007). 

 

For this model to be correct, both SH2 domains of Syk must be able to bind to the 

phosphorylated YxxL sequence.  This was investigated using surface plasmon 

resonance (SPR) to measure the equilibrium dissociation constants (KD) of binding of 

the N-SH2, C-SH2 and the tandem SH2 (tSH2) domains of Syk to surfaces coated with 

the phosphorylated or non-phosphorylated 13aa CLEC-2 peptide (Figure 3.7 a).  These 

proteins were expressed as GST-fusion proteins in DH5 E.coli cells and affinity 

purified on a glutathione-agarose column (Figure 3.7 b).  No detectable binding was 

observed for any of the SH2 domains when flowed over the non-phosphorylated CLEC-

2 peptide (not shown), confirming the requirement for phosphorylation of the conserved 

tyrosine residue.  There was also no detectable binding observed for GST alone or in a 

reference flow cell (not shown).  Specific binding was observed when the peptides were 

flowed over a tyrosine phosphorylated CLEC-2 peptide.  From the resulting curves, we 

calculated a KD of 10.5 M (±2 M) for the N-SH2 domain alone and 2.35 M (±0.54 

M) for the C-SH2 domain alone demonstrating the ability of both SH2 domains to 

bind to phosphorylated CLEC-2 YxxL with similar affinity.  Moreover, when the tSH2 

domain protein was flowed over the tyrosine phosphorylated CLEC-2 peptide, a KD of 

256 nM (±59.9 nM) was calculated thereby demonstrating cooperativity in binding of 

the two SH2 domains, i.e. the divalent nature of the tSH2 domain protein binding to the 
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peptide surface under flow results in an increased affinity as a function of the affinities 

of the two SH2 domains and avidity of the surface.  As a comparison, the individuals 

and tandem Syk SH2 domains were flowed over a dually phosphorylated peptide based 

on the FcR ITAM sequence.  Cooperativity was again observed when the tSH2 

domains were flowed over the peptide with a calculated KD of 19.7 nM (±1.79 nM) 

compared to the individual KDs of 19.7 M (±1.1 M) and 1.71 M (±0.36 M), 

respectively, for the N- and C-SH2 terminal domains alone.  These data therefore 

confirm that the Syk tandem SH2 domain protein binds with higher affinity than the 

single Syk SH2 domains to a surface containing multiple copies of a single or tandem 

phosphorylated YxxL-containing peptides.  This has important implications for the 

binding of Syk to a dually phosphorylated ITAM protein or to the phosphorylated 

CLEC-2 tail when presented as a dimer.  Consistent with this data, quantitative western 

blotting was used to show that twice the amount of a CLEC-2 peptide was able to 

associate with the tSH2 domains of Syk compared with the single SH2 domains alone 

providing further evidence of an interaction with a 2:1 stoichiometry of CLEC-2 to Syk 

(Figure 3.7 c). 
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Figure 3.7 – Surface plasmon resonance measurements of the CLEC-2-Syk SH2 

interaction.  a) Biotinylated CLEC-2 and FcR peptides were bound to streptavidin-

coated biosensor chips surfaces.  The N-SH2 (ai), C-SH2 (aii) or the tSH2 (aiii) 

domains of Syk were flowed over the chip at a range of concentrations.  Non-linear 

regression was used to analyse the data and calculate KD values.  The results are 

representative of three experiments.  b)  GST-fusion proteins were inducibly over-

expressed in DH5 cells, and purified on a glutathione-agarose column.  20 l samples 

were ran on SDS-PAGE and proteins visualised with Coomassie stain.  c)  GST-tagged 

Syk SH2 domain proteins were incubated with a 50-fold excess of biotinylated 

phospho-CLEC-2 peptide and precipitated with glutathione-agarose beads.  The 

precipitated proteins were dot-blotted and the amount of associated CLEC-2 was 

measured using HRP-streptavidin and densitometric analysis.  The result is 

representative of four experiments 
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The results from the SPR were particularly encouraging as the results for binding to the 

CLEC-2 peptide followed the same pattern of cooperativity as binding to the FcR 

ITAM peptide.  However, to have greater confidence we wanted to use another 

technique to try to confirm the measured affinities.  Firstly we chose to use isothermal 

titration calorimetry (ITC) due to its sensitivity, and because it is also possible to 

directly determine the stoichiometry of an interaction.  ITC requires high concentrations 

of pure protein without any GST-tags attached.  We therefore scaled up the production 

of the tSH2 protein, cleaved off the GST-tag with thrombin, and performed several 

purification steps with glutathione-agarose columns and size-exclusion chromatography 

(Figure 3.8 a).  Titration of the phosphorylated CLEC-2 peptide caused a small heat 

exchange which was titratable down to only the heat exchanged due to the heat of 

dilution of buffer, thereby demonstrating an interaction (Figure 3.8 b).  However, under 

the conditions required for this experiment (i.e. stirring conditions at room temperature 

for 3-4 hours), the tSH2 protein did not remain stable for long enough to collect high 

quality data.  Without the GST-tag, the protein came out of solution after extended 

periods of time above 4˚C but these experiments could not be performed in the presence 

of the GST-tag due to the possibility of GST forming dimers and non-specific 

interactions with the peptide.  Therefore, the data was insufficient to directly measure 

the stoichiometry of the interaction.  However, it was possible to fit the collected data to 

a two-site but not to a single-site binding curve, consistent with the model in which the 

tandem Syk SH2 domains bind to two phosphorylated CLEC-2 peptides.  The two 

calculated KDs from this fitting were 28 M and 2.07 mM.  These values do not 

correspond with the above results, most likely due to the instability of the proteins under 

the experimental conditions, thereby making the data unreliable.  It may be possible to 

repeat these experiments in the future at 4ºC to bypass the instability of the SH2 
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domains however, the decreased temperature would mean that many of the measured 

thermodynamic parameters would not be comparable to those measured in assays at 

room temperature although the stoichiometry would presumably still be possible to 

calculated at the lower temperature. 

 

Due to the failure of the ITC, we used a third approach to investigate binding of the 

tSH2 domains of Syk to a CLEC-2 peptide, namely tryptophan fluorescence titration.  

This technique is based on the principle that binding to the peptide causes a change in 

fluorescence of one or more tryptophan groups in the tandem Syk SH2 domains (Grucza 

et al, 1999; Kim et al, 2000).  The N-terminal 13aa CLEC-2 peptide was used for these 

studies as this supports a similar level of binding of Syk to that of the 31aa 

phosphorylated peptide and does not contain any tryptophan residues.  Addition of the 

peptide resulted in a saturatable decrease in peak tryptophan fluorescence of the tandem 

Syk SH2 domains at 340 nm, indicative of ligand binding (Figure 3.8 c).  The resulting 

dissociation constant (KD) of 5.72 M (±2.14 M) for the Syk tSH2:CLEC-2 interaction 

was of a similar order to the SPR derived KD of the CLEC-2 peptide associating with 

either the N- or C-terminal Syk SH2 domains alone.  In contrast, the fluorescence data 

recorded a 20-fold weaker binding to the tSH2 domains than was observed by SPR.  

This discrepancy may reflect the influence of avidity in the binding between the Syk 

tSH2 domains and a surface-immobilised peptide whereas the tryptophan fluorescence 

measurements were made in solution.  In contrast, we were unable to detect binding of 

the CLEC-2 peptide to the single C-terminal SH2 domain of Syk over the same 

concentration range (not shown).  The equivalent experiment was not valid for the N-

terminal SH2 domain as this does not contain a tryptophan residue.  It should also be 
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noted that there is also a single tryptophan residue in the SH2 linker region which is 

present only in the tSH2 domain protein.  It is therefore possible that ligand binding is 

causing only the linker region tryptophan to change its fluorescence and this could 

explain the lack of fluorescence change with the C-terminal SH2 domain. 
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Figure 3.8 – SPR and tryptophan fluorescence measurements.  a) GST-fusion tSH2 

domain protein was inducibly over-expressed in DH5 cells, and purified on a 

glutathione-agarose column.  Eluted fractions were treated with thrombin to cleave off 

the GST-tag.  Samples were run on SDS-PAGE and proteins visualised with Coomassie 

stain (ai).  Free GST was depleted using a glutathione agarose column.  Samples were 

run on SDS-PAGE and proteins visualised with Coomassie stain (aii).  Size exclusion 

chromatography was used to further purify the tSH2 domain protein (aiii).  The blue 

line represents absorbance at 280 nm, the red line represents absorbance at 254 nm.  

Samples from CV (void column volume), and the two major peaks were run on SDS-

PAGE and proteins visualised with Coomassie stain.  The second peak contains pure 

tSH2 domain protein and was eluted off the column with a predicted MW of 29.65 kDa.  
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Figure 3.8 – continued.  b) The purified tSH2 domains of Syk were loaded into the cell 

of an ITC instrument (MicroCal) and allowed to equilibrate to 25˚C.  Computer 

controlled injections of a CLEC-2 peptide were performed and the power required for a 

reference cell to match the temperature in the experimental cell was plotted (upper 

panel), and integrated to calculated power per mole of peptide (lower panel).  Origin 

Lab ITC software was used to fit the data to various binding models.  The graph is 

representative of 2 experiments.  c) The purified tSH2 domains of Syk were placed into 

a quartz cuvette in a PTI (Photon Technology International) spectrofluorimeter.  

Following excitation at 295 nm, emission at 340 nm was plotted during titration of a 

CLEC-2 peptide.  Non-linear regression was used to analyse the data and calculate KD 

values.  The graph is representative of 3 experiments. 
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3.2.5 GPVI requires both FcR YxxL sequences to signal 

The above observations that CLEC-2 is able to signal with only a single YxxL by 

forming a dimer, raises the question as to whether an ITAM receptor, containing tandem 

YxxL sequences, is able to activate Syk through cross-linking adjacent phosphorylated 

YxxLs or if binding to a doubly phosphorylated ITAM is essential for activation.  This 

question was addressed through the generation of single and double point mutations (Y-

F) of the conserved ITAM tyrosines in FcR which associates with GPVI.  This work 

was performed in collaboration with Dr. Jun Mori.  An N-terminal Myc-tagged version 

of FcR, which supports a similar level of signalling to that of the wild type protein 

(Mori et al, 2008), was used in these studies to enable measurement of the level of 

surface expression.  As shown in Figure 3.9 a, mutation of the C-terminal ITAM 

tyrosine, or mutation of both ITAM tyrosines, abolished NFAT activation by collagen 

in DT40 cells transfected with GPVI and mutant FcR, whereas mutation of the N-

terminal ITAM tyrosine alone suppressed the response by more than 95%.  Expression 

of the various FcR mutants did not significantly affect the surface expression of GPVI 

as determined by flow cytometry using an -GPVI antibody (Figure 3.9 b).  Thus, these 

results demonstrate that both ITAM tyrosines are required for robust signalling by the 

GPVI-FcR complex and that FcR is unable to function efficiently through 

phosphorylation of a single YxxL. 
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Figure 3.9 – GPVI signalling requires both ITAM tyrosines.  a) DT40 cells were 

transfected with 2 g/ml of stated FcR construct, 2 g/ml of GPVI, along with a 

NFAT-luciferase reporter gene.  Transfected cells were then stimulated with 10 g/ml 

collagen for 6 hrs at 37˚C after which time, the amount of luciferase activity was 

measured as a readout of signalling.  Results were normalised for transfection efficiency 

and plotted as a percentage of the WT response.  Error bars represent the geometric 

mean ± standard error of three separate experiments.  b) Transfected cells were analysed 

by flow cytometry for surface expression of GPVI.  The selected gate was drawn to 

exclude ~99% of mock transfected cells.  GPVI expression is similar when co-

transfected with the various FcR point mutants. 
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3.3 Discussion 

In this chapter I have considered two models for regulation of Syk by CLEC-2 via a 

single YxxL sequence, bearing in mind that it has previously been reported that 

activation requires the phosphotyrosine binding activity of both of the Syk SH2 

domains (Fuller et al, 2007).  The first model proposes the presence of a second (either 

direct or indirect) binding site for one of the Syk SH2 domains in the cytoplasmic tail of 

CLEC-2.  This possibility was tested by mutational analysis of conserved residues using 

peptide pull-down assays and cell line reporter assays.  Sequence alignment of multiple 

species of CLEC-2, and of the related family member Dectin-1, highlighted 

conservation of serines at position 21 and 27 (numbering from human CLEC-2).  

However, mutational analysis of these two residues failed to provide evidence for a 

functional role in mediating the association with Syk or for activation of NFAT activity 

in DT40 cells, which is critically dependent on engagement of Syk and PLC2 (Fuller et 

al, 2007).  Likewise, the partially conserved threonine at the Y+2 position in the CLEC-

2 YxxL sequence was shown to be dispensable for Syk association and NFAT 

activation.  In fact, a short 13aa peptide was found to be sufficient to mediate the 

association with Syk.  However, it may be possible that these residues are conserved 

throughout the family for some other function that is not required for the signalling 

pathway involving Syk. 

 

The second model is through dimerisation, with CLEC-2 interacting with the tandem 

SH2 domains of Syk via phosphotyrosines found in adjacent CLEC-2 molecules (Figure 

3.10).  In support of this model, co-expression of functionally inactive Y7F CLEC-2 
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with the wild type receptor was found to inhibit signalling, with the response being 

restored by titrating down the amount of the Y7F mutant.  Importantly, this effect of the 

Y7F mutant was not due to altered surface expression of the wild type receptor.  This 

suggests that WT CLEC-2 is unable to signal when present as a complex with the Y7F 

mutant.  This, taken with the dependence of both SH2 domains of Syk and the 

conserved tyrosine in the single YxxL of CLEC-2 (Fuller et al, 2007), suggests that the 

minimum signalling unit is a CLEC-2 dimer, recruiting a single molecule of Syk. 

 

It is also interesting to consider that for Syk to be able to cross-link two CLEC-2 

molecules, the linker region between the tandem SH2 domains would require a degree 

of flexibility.  Various structural studies have shown that this linker region (interdomain 

A) interacts with the kinase domain helping to regulate its activity and that in Syk it is 

more flexible than in Zap-70 (Futterer et al, 1998; Zeitlmann et al, 1998; Grucza et al, 

1999; Brdicka et al, 2005; Deindl et al, 2007).  Therefore we can hypothesise that 

CLEC-2 signalling would be much less efficient through Zap-70 as it would be less 

likely to cross-link two CLEC-2 molecules and interact with the kinase domain 

correctly. 

  



Chapter 3 – A CLEC-2 dimer is capable of ITAM-like signalling through Syk tyrosine kinase 

Page | 105 
 

 

 

Figure 3.10 – Proposed model for Syk cross-linking a CLEC-2 dimer. 
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In further support of this model, cross-linking studies revealed the presence of dimeric 

and higher ordered complexes of CLEC-2.  Moreover, the presence of these structures 

under basal conditions suggests that ligand binding is not required for the formation of 

CLEC-2 clusters.  However, following rhodocytin stimulation, there was a shift towards 

higher molecular weight structures and a further lowering of the level of the monomeric 

form, suggesting that binding to rhodocytin induces or stabilises the formation of these 

higher, oligomeric forms.  This is not surprising given the observation that rhodocytin is 

tetrameric and therefore potentially able to cluster up to eight molecules of CLEC-2 

(Watson et al, 2008). 

 

Using both SPR and tryptophan fluorescence we were able to measure the affinity of the 

interaction between the SH2 domains and CLEC-2 peptides.  SPR showed an increase 

in affinity for the tSH2 domains compared to the single SH2 domains, thereby 

suggesting cooperative binding under the flow conditions of the assay.  A similar result 

was found with an FcR peptide which is a known binding partner for the Syk tandem 

SH2 domains.  This result was backed up with quantitative western blotting which 

showed that twice the amount of a CLEC-2 peptide was able to associate with the tSH2 

protein compared to the single SH2 domains, giving further evidence that both of the 

SH2 domains are able to bind to a single CLEC-2 peptide.  Tryptophan fluorescence 

was used to obtain a second measurement of the affinity of the interaction with the 

tandem SH2 domain peptide.  The approximate one order of magnitude lower affinity is 

consistent with the affinity measured using SPR for binding to the individual Syk SH2 

domains, reflecting the absence of cooperativity as the study was performed in solution 
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rather than on a monolayer.  ITC measurements were unable to provide suitable data to 

directly measure the stoichiometry of the interaction. 

 

This family of proteins may present a novel modification of ITAM signalling, which 

uses phosphorylation of the two conserved tyrosines in an ITAM sequence for optimal 

signalling.  Given the dimerisation model, it is of interest to consider why FcR does 

not function in this way as shown in the NFAT studies by the abolition/dramatic 

inhibition of response following mutation of the individual FcR YxxL sequences.  One 

possible explanation is that FcR, which is a covalent dimer, is expressed in a 

conformation that does not favour cross-linking of YxxL groups on separate chains, 

possibly to dampen or prevent signalling in the absence of agonist binding.  It is also 

possible that it is a difference in agonists as rhodocytin is potentially able to cluster up 

to eight CLEC-2 molecules whereas, although collagen is able to cluster GPVI 

molecules, due to the spacing of the GPO repeats it may not bring the molecules into 

close enough proximity for the FcR molecules to be cross-linked by Syk.  It may be 

that CRP would be able to induce a signal in the single point mutant of FcR by 

inducing tighter clustering of the receptor and being sufficient to initiate signalling 

through Syk. 

 

On the other hand, the presence of two YxxL groups on the same chain facilitates 

binding to proteins with tandem SH2 domains without a need for receptor 

dimerisation/oligomerisation.  This is illustrated by comparison of the KDs derived for 

binding of single and tandem SH2 domains of Syk to immobilised tyrosine 
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phosphorylated peptides in the surface plasmon resonance experiments described above.  

Dual YxxL groups that form an ITAM are found in separate exons 

(http://www.ensembl.org) suggesting that ITAM-like receptors preceded ITAM 

receptors and that the latter arose through gene duplication.  The greater number of 

ITAM receptors over ITAM-like receptors may reflect an evolutionary advantage in 

having two YxxL groups on the same protein, although this may also reflect the fact 

that the majority of ITAM receptors are composed of multiple chains which may 

hamper dimerisation/oligomerisation. 

 

http://www.ensembl.org/
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4.1 Introduction 

Although there are many parallels between the CLEC-2 and GPVI signalling pathways, 

one of the distinguishing features is in regard to the role of the adaptor protein, SLP-76, 

in the activation of PLC2.  GPVI has been shown to have an absolute requirement for 

SLP-76 in platelet activation (Clements et al, 1999; Gross et al, 1999; Judd et al, 2000), 

whereas the response to low but not to high concentrations of rhodocytin are inhibited 

in the absence of the adapter (Suzuki-Inoue et al, 2006).  Furthermore, this differential 

requirement is also seen between CLEC-2 and GPVI in DT40 cells using an NFAT 

reporter assay that is driven by activation of PLC2 (Fuller et al, 2007).  SLP-76 has 

also been shown to play an essential role in signalling by other ITAM receptors, 

including the T-cell antigen receptor (Fang et al, 1996; Motto et al, 1996; Wardenburg 

et al, 1996) thereby indicating that the partial role in signalling by CLEC-2 may be a 

distinguishing feature between ITAM and ITAM-like receptors.  It is therefore 

important to consider whether other proteins that regulate SLP-76 have a differential 

role in signalling by these two classes of receptor. 

 

SLP-76 has been shown to be constitutively associated with the adaptor protein Gads 

(Grb2 adaptor downstream of Shc, also known as Mona/Grap2/GrpL/Grf40) and to 

form a complex with the membrane adapter LAT in activated platelets and T-cells (Liu 

et al, 1999).  Gads has a central SH3 domain, flanked by two SH2 domains.  The 

constitutive association with SLP-76 is by virtue of an atypical interaction between the 

SH3 domain of Gads and an RxxK motif on SLP-76 which is of very high affinity (~3 

nM) relative to other SH3 interactions which fall within the micromolar range (Liu et al, 
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2003; Seet et al, 2007).  Phosphorylation of the membrane bound adaptor protein LAT 

at position 191 (and to a lesser extent 171) (Zhang et al, 2000; Paz et al, 2001; Perez-

Villar et al, 2002) by a Syk family kinase, leads to recruitment of Gads via an SH2-

phosphotyrosine interaction, thereby recruiting SLP-76 to the membrane.  The complex 

of LAT-Gads-SLP-76 recruits PLC2 and several other proteins to the membrane, 

including Vav and Tec family kinases, forming a LAT signalosome that is integral for 

activation of PLC 

 

Gads is a member of the Grb2 (Growth factor receptor bound protein) adaptor family 

which comprises Gads, Grb2 and Grap (Grb2 related adaptor protein).  All three have 

the same domain organisation and moreover Grb2 has also been shown to bind to both 

LAT, via tyrosines Y171, Y191 and Y226 (Zhang et al, 2000; Paz et al, 2001; Perez-

Villar et al, 2002), and to SLP-76, through a classical PxxP-SH3 interaction with a 

lower affinity (~3 M) relative to the interaction between Gads and SLP-76 (Seet et al, 

2007).  Significantly, Grb2 has been shown to substitute for Gads in reconstitution of B-

cell receptor signalling in chicken DT40 cells (Ishiai et al, 2000).  This is a very 

artificial system, however, in which the B-cell equivalent of SLP-76 (BLNK/SLP-65) is 

removed by homologous recombination and cells transfected with various mutated 

forms of LAT and SLP-76 along with Gads or Grb2.  Thus it is unclear whether Grb2 is 

able to substitute for Gads in more physiological systems. 

 

As mentioned above, the ITAM containing T-cell receptor (TCR, and therefore the pre-

TCR) also uses the LAT-Gads-SLP-76 signalosome for activation of PLC1.  Mice 
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deficient in SLP-76 do not express any mature T-cells due to a blockade of signalling 

through the pre-TCR, which is analogous to blockade of GPVI signalling (Clements et 

al, 1998; Pivniouk et al, 1998; Clements et al, 1999).  Mice deficient in LAT also do 

not express mature T-cells, again due to a block in pre-TCR signalling (Zhang et al, 

1999), whereas GPVI signalling is able to bypass the requirement to LAT at high 

agonist concentrations (Pasquet et al, 1999).  Similarly there is a loss of PLC1 

activation by the TCR in either SLP-76 or LAT deficient Jurkat cells, which is a 

commonly used immortalised T lymphocyte cell line (Finco et al, 1998; Yablonski et al, 

1998).  Interestingly, mice deficient in Gads do have a limited degree of pre-TCR 

signalling which results in the production of mature T-cells, albeit in reduced numbers 

(Yoder et al, 2001).  Consistent with this, disruption of the Gads-SLP-76 interaction 

impairs TCR signalling in Jurkat cells by approximately 50% (Yablonski et al, 2001; 

Jordan et al, 2007), confirming that Gads plays a partial role in TCR signalling. 

 

The role of Gads in platelets has not been studied in detail.  It has been shown to 

associate with SLP-76 (Liu et al, 1999; Asazuma et al, 2000) and, more recently, to 

undergo tyrosine phosphorylation downstream of GPVI, although the significance of 

this is unclear (Garcia et al, 2006).  The only functional study using Gads-deficient 

mice reported that Gads was not required for platelet -granule secretion following 

stimulation with a single, high concentration (20-30 nM) of the GPVI specific snake 

toxin, convulxin, whereas LAT was essential for activation by these concentrations of 

the toxin (Judd et al, 2002).  Further,  mutation of the Gads binding site on SLP-76 has 

been shown to impair platelet -granule secretion by more than 50% in response to a 
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low dose (5 nM) of convulxin (Abtahian et al, 2006). The role of Gads in signalling by 

CLEC-2 is unclear. 

 

The adapter SLP-76 has also been shown to shown to play a critical role in the 

regulation of PLC2 by integrin IIb3 and the GPIb-IX-V complex (Judd et al, 2000; 

Judd et al, 2002; Liu et al, 2005), whereas the role of Gads in signalling by these two 

receptors is not established.  In contrast, the membrane adapter LAT has been reported 

to have a differential role in signalling by integrin IIb3 and the GPIb-IX-V.  The 

membrane adaptor is localised to lipids rafts on the platelet surface, which are enriched 

in many signalling proteins including several Src family kinases.  The integrin IIb3 is 

excluded from these domains and, consistent with this, has been shown to regulate 

PLC2 independent of LAT (Wonerow and Watson, 2001; Wonerow et al, 2002).  In 

contrast, the membrane adapter has been shown to play a partial role in the regulation of 

PLC2 by GPIb-IX-V, which has been shown to be recruited to rafts in activated 

platelets (Wu et al, 2001; Jin et al, 2007). 

 

The aim of this chapter is to compare the role of Gads and LAT in platelet activation by 

the major membrane glycoprotein receptors using mutant mice, with special emphasis 

on activation by GPVI and CLEC-2 given their differential dependence on SLP-76. 
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4.2 Results 

4.2.1 Comparison of the role of Gads and LAT in platelet aggregation and 

secretion 

The role of Gads and LAT in supporting platelet aggregation by the GPVI-specific 

agonist CRP was compared using mice deficient in the two proteins.  Platelet 

aggregation was monitored in a Born-lumi aggregometer which measures light 

transmission through the platelet suspension: as the platelets become activated and form 

larger but less numerous aggregates, the amount of light transmission increases.  WT 

platelets responded to a range of CRP concentrations (0.3-10 g/ml) with a 

characteristic shape change response (as reflected an initial decrease in light 

transmission) followed by full aggregation (increase in light transmission) (Figure 4.1).  

All of these concentrations of CRP were able to elicit a full aggregation response; 

however, the lower ones had a more pronounced shape change because of increase in 

the time to onset of aggregation. 

 

In the absence of LAT, the dose-response curve for platelet aggregation to CRP was 

shifted such that a supra-maximal concentration of CRP (10 g/ml) in washed platelets 

only induced a sub-maximal aggregation response.  In contrast, full aggregation was 

achieved a concentration of 1 g/ml in litter matched WT controls.  Further, the onset of 

aggregation was also delayed in response to 10 g/ml of CRP, whereas there was a 

much greater delay and reduction in aggregation with 3 g/ml of CRP, while 1 g/ml 

was unable to induce aggregation (Figure 4.1 a).  In contrast, the dose-response curve 

was only slightly shifted in the absence of Gads.  A CRP concentration of 1 g/ml 
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which was ineffective with LAT-deficient platelets was able to induce full aggregation 

in the absence of Gads, although there was a notable delay in the onset of aggregation 

(Figure 4.1 a).  Further, Gads-deficient platelets responded very weakly to 0.3 g/ml 

CRP and with a large delay in onset.  On the other hand, aggregation induced by a low 

concentration of the GPCR agonist thrombin (0.03 U/ml), was not altered in the absence 

of either LAT or Gads (Figure 4.1 b). 

 

The aggregation response to rhodocytin in WT platelets is distinct from that of GPVI in 

that it has a characteristic delay which decreases with increasing concentration over the 

range 3-30 nM.  At a threefold lower concentration of 1 nM prolonged shape change is 

seen which is eventually followed by weak aggregation.  In the absence of LAT, there 

was a loss of aggregation to 3 nM rhodocytin which could be overcome by increasing 

the concentration to 30 nM, thereby restoring the response to the same level as WT 

platelets (Figure 4.1 c).  This result is in agreement with previously published work 

(Suzuki-Inoue et al, 2006).  In contrast, in the absence of Gads the response to 3 nM 

rhodocytin was comparable to the WT response.  At the lower concentration of 1 nM, 

shape change was further prolonged relative to litter matched controls and aggregation 

was not seen (Figure 4.1 c). 

 

These results demonstrate that the aggregation defect in the absence of Gads is very 

minor in comparison to the defect seen in the absence of LAT.  However, the two mice 

were on different strain backgrounds thereby raising the possibility that this could 

account for the difference.  To investigate this, the Gads
-/-

 mice were backcrossed for 
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nine generations from the Balb-c background on which they were supplied onto a 

C57Bl/6 background to match the LAT
-/-

 mice.  With the Gads
-/-

 mice on the equivalent 

background to the LAT
-/-

 mice we were able to assess the possible effect of the 

background on the extent of the Gads
-/-

 defect.  Using the same concentrations of both 

CRP and Rhodocytin as used above, we found no apparent difference in the severity of 

the defect in the absence of Gads (Figure 4.1 d).  There was again, slightly delayed but 

full aggregation to 1 g/ml CRP and a partial response to 0.3 g/ml CRP.  The response 

to 3 nM rhodocytin was comparable to the WT response, while the lower concentration 

of 1 nM was unable to induce aggregation.  However, the WT response is slightly 

delayed compared to the response in the Balb-c mice.  This small difference may be due 

to agonist batch differences, as these experiments were performed several months after 

the initial Balb-c background experiments. 
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Figure 4.1 – Aggregation responses in Gads
-/-

 and LAT
-/-

 platelets. 
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Figure 4.1 – continued.  Washed platelets (2 x 10
8
/ml) were stimulated in an 

aggregometer with CRP (a), thrombin (b) or rhodocytin (c) and allowed to aggregate.  

Percentage light transmission was calculated.  (d) Washed platelets (2 x 10
8
/ml) from 

Balb-c or backcrossed C57Bl/6 mice were stimulated in an aggregometer with CRP or 

rhodocytin and allowed to aggregate.  Results are representative of between three and 

eight experiments. 
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Figure 4.1 – continued 
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Dense granule secretion was monitored in real-time along with aggregation in a Born-

lumi aggregometer.  Secreted ATP was detected by virtue of its catalysis of a luciferin-

luciferase light reaction.  After the experiment was completed, the addition of a known 

amount of ATP enabled quantification.  Both CRP and rhodocytin stimulate secretion of 

ATP in wild type platelets in an agonist-dependent manner.  In both cases, there is a 

delay in secretion which coincides with the end of the shape change response (Figure 

4.2). 

 

Similar to aggregation, secretion was abolished in the absence of LAT in response to 1 

g/ml CRP but was partially restored at the higher concentration of 3 g/ml.  In 

comparison there was a marked delay and decrease in the rate of secretion in the 

absence of Gads in response to 1 g/ml CRP.  A lower concentration of 0.3 g/ml 

shows a more pronounced defect in secretion (Figure 4.2 a).  The overall pattern of the 

decrease in the Gads deficient mice is similar to that for aggregation although it appears 

to be more substantial. 

 

There was also a reduction and delay in secretion induced by 1 nM rhodocytin in the 

absence of Gads, although there near full recovery at 3 nM.  In comparison, the 

response to 3 nM rhodocytin was reduced by more than 90% in the absence of LAT, 

with partial recovery observed in response to 30 nM (Figure 4.2 b).  These results 

therefore correspond to those for aggregation.  In comparison, secretion to a low dose of 

thrombin was not altered in the absence of Gads or LAT (Figure 4.2 c).  Secretion 
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experiments were performed on both backgrounds of Gads
-/-

 mice but as with 

aggregation, not significant differences were seen (not shown). 

 

These results demonstrate the relatively minor role of Gads in mediating platelet 

activation through both GPVI and CLEC-2, in contrast to the greater, yet dispensable 

role of LAT.  Neither protein plays a significant role in platelet activation by thrombin. 
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Figure 4.2 – ATP secretion in Gads
-/-

 and LAT
-/-

 platelets.  Washed platelets (2 x 

10
8
/ml) were stimulated in an aggregometer with CRP (a), rhodocytin (b) or thrombin 

(c) and allowed to aggregate.  ATP secretion was measured using light emission from 

luciferin/luciferase.  Results are representative of between three and eight experiments. 
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Figure 4.2 – continued 
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4.2.2 Platelet aggregation on collagen at arteriolar rates of flow 

Platelet aggregometry takes place in a low shear environment in contrast to the high 

shear forces that exist within arterioles.  Thus, it is possible that Gads and LAT may 

have a more significant role under flow conditions, where the speed of platelet integrin 

activation may be rate limiting in mediating platelet stable adhesion and aggregate 

growth.  To address this, I monitored aggregate formation in heparinised whole blood 

over a collagen-coated surface at an intermediate arteriolar flow rate of 1000 s
-1

.  This 

assay allows monitoring of aggregate formation in real time using a monolayer of 

collagen which has been described as a highly thrombogenic component of the 

extracellular matrix. 

 

When blood from WT mice was flowed at 1000 s
-1

 over the collagen surface, there was 

a rapid formation of a platelet monolayer followed by aggregate formation due to the 

capture and activation of further platelets.  Fluorescent and DIC endpoint images show 

these large, elongated 3-dimensional aggregates present in abundance at 4 min (Figure 

4.3).  There was no detectable difference in the initial stages of adhesion and platelet 

aggregate growth using blood from Gads
-/-

 mice compared to the WT (Figure 4.3 and 

not shown).  In comparison, LAT
-/-

 platelets were only able to form a monolayer on the 

collagen surface (Figure 4.3).  This strongly suggests that the level of signalling through 

GPVI following adherence to collagen is sufficient to bypass the small defect caused by 

the absence of Gads but not the larger defect caused by the absence of LAT.  
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Figure 4.3 – Adhesion of Gads
-/-

 and LAT
-/-

 platelets on collagen under flow 

conditions.  Heparinised whole mouse blood was fluorescently labelled with DiOC6 

and passed through collagen-coated glass capillaries at an intermediate shear rate of 

1000 s
-1

.  Platelets were imaged with a fluorescent microscope (lower) and subsequently 

fixed and imaged by differential interference contrast (DIC) microscopy (upper).  

Results are representative of five experiments. 
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4.2.3 Measurement of protein tyrosine phosphorylation 

The above results suggest a critical role for LAT in platelet function downstream of 

GPVI and CLEC-2 in contrast to the much more minor role of Gads.  To investigate the 

molecular basis of this, we measured tyrosine phosphorylation of key signalling 

proteins in the two receptor cascades, Syk, SLP-76, and PLC2.  Several concentrations 

of both CRP (0-3 g/ml) and rhodocytin (0-300 nM) were used to stimulate platelets for 

up to one and two minutes respectively, before lysis.  The tyrosine phosphorylation of 

these proteins was measured following immunoprecipitation and western blotting.  Both 

agonists stimulated a dose-dependent increase in tyrosine phosphorylation of all three 

proteins (Figure 4.4).  In the absence of Gads there was a small but consistent reduction 

in CRP-induced tyrosine phosphorylation of Syk, SLP-76 and PLC2 in comparison to 

wild type platelets (Figure 4.4 a), consistent with a supporting role for Gads in 

mediating activation of PLC2 through the LAT signalosome.  There was also a minor 

reduction in phosphorylation of SLP-76 and PLC2 in Gads
-/-

 platelets in response to 

low concentrations of rhodocytin, whereas Syk phosphorylation appeared unaltered 

(Figure 4.4 b).  In comparison, there was a marked inhibition of phosphorylation of all 

three proteins in the absence of LAT in response to both CRP and rhodocytin, as 

previously reported (Pasquet et al, 1999; Suzuki-Inoue et al, 2006).  The reduction in 

Syk phosphorylation in platelets deficient in LAT and, in the case of GPVI, Gads, 

indicates a role for the LAT signalosome in maintaining Syk phosphorylation.  These 

results correspond to those for aggregation and secretion, with minor and major roles 

for Gads and LAT, respectively, in regulating tyrosine phosphorylation of PLC2 

downstream of GPVI and CLEC-2. 
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Figure 4.4 – Measurement of tyrosine phosphorylation in Gads
-/-

 and LAT
-/-

 

platelets.  Washed platelets (5x 10
8
/ml) were stimulated with CRP for 60 sec (a) or 

rhodocytin for 120 sec (b) and subsequently lysed with NP-40 detergent.  PLC2, SLP-

76 and Syk were immunoprecipitated and samples were analysed by SDS-PAGE and 

western blotting for phosphotyrosine (4G10) and reprobed for PLC2, SLP-76 and Syk.  

Results are representative of between four and six experiments. 
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4.2.4 Grb2 association with the LAT-Gads-SLP-76 signalosome 

The relatively minor role of Gads in mediating platelet activation by both CRP and 

rhodocytin raises the issue of whether there is a Gads-related protein that supports 

platelet activation downstream of GPVI and CLEC-2 through binding to LAT.  Gads 

belongs to a family of three adaptors, of which only Gads and Grb2 are expressed in 

platelets.  Grb2 has been shown to associate with both LAT and SLP-76 in T-cells and 

therefore has the potential to have a redundant role with Gads in platelets downstream 

of GPVI or CLEC-2.  The data so far has shown no apparent difference in the 

contribution of Gads in signalling by GPVI and CLEC-2, with the adapter playing a 

very minor role in either pathway.  Therefore, studies designed to compare the role of 

Gads and Grb2 focussed only on platelet activation by GPVI. 

 

Gads and Grb2 were immunoprecipitated from basal and CRP (10 g/ml) stimulated 

platelets and samples analysed for protein tyrosine phosphorylation (Figure 4.5).  

Tyrosine phosphorylated bands of 38 and 76 kDa, which co-migrate with LAT and 

SLP-76, respectively, were observed to immunoprecipitate with Gads, along with a 

band of 45 kDa that was detected after 90 seconds which co-migrates with a band that 

has previously been identified as Gads (Garcia et al, 2006).  Two further unidentified 

tyrosine phosphorylated bands of 60 and 150 kDa were also present.  In comparison, a 

major tyrosine phosphorylated band of 38 kDa that co-migrates with LAT is observed in 

the Grb2 immunoprecipitates, along with a weakly tyrosine phosphorylated band of 76 

kDa that co-migrates with SLP-76.  There is also a prominent tyrosine phosphorylated 

band of 125 kDa that has not been identified.  Confirmation that the 38 and 76 kDa 

bands correspond to LAT and SLP-76 was achieved by immunoprecipitation of both 
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proteins and Western blotting (not shown), although it is possible that these bands 

contain additional proteins.  These results indicate that Gads efficiently precipitates 

LAT and SLP-76 from platelets, which are presumably present as a complex.  In 

comparison, Grb2 binds to other protein complexes, although the presence of a small 

amount of SLP-76 and a high level of LAT indicates that it may also form a complex 

with the two adapters. 
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Figure 4.5 – Gads and Grb2 associate with LAT and SLP-76 in platelets.  Washed 

platelets (5x 10
8
/ml) were stimulated with 10 g/ml CRP for 30 and 90 sec and 

subsequently lysed with NP-40 detergent.  Gads and Grb2 were immunoprecipitated 

and samples were analysed by SDS-PAGE and western blotting for phosphotyrosine 

(4G10) and reprobed for Gads and Grb2.  Results are representative of five experiments. 
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4.2.5 Spreading of platelets on collagen and other matrix proteins 

As there is also a role for SLP-76 in signalling through IIb3 and GPIb-IX-V, I also 

investigated a potential role for Gads and LAT in spreading of platelets on surfaces 

coated with fibrinogen which binds IIb3 or VWF which can bind to both IIb3 and 

GPIb-IX-V under the right conditions.  Platelets were also spread on collagen coated 

surfaces as a comparison.  As the assay is under static conditions, immobilised VWF 

was pre-treated with botrocetin to activate it.  This pre-treatment confers specific 

binding to GPIb-IX-V but not to integrin IIb3 which requires pre-treatment with 

ristocetin for specific binding (McCarty et al, 2006).  Both botrocetin and ristocetin are 

snake venom toxins which act upon VWF causing conformational changes allowing 

binding to the above receptors.  These changes are physiologically induced by the shear 

forces under flow.  WT platelets adhere to the surface coated proteins and undergo 

spreading.  Spreading occurs in stages, firstly with the formation of actin-rich finger-

like protrusions (filopodia) followed by formation of actin-rich sheet-like structures 

(lamellipodia) which form between the filopodia.  This is then followed by formation of 

stress fibres.  This is referred to as full spreading, examples of which can be readily seen 

on collagen (Figure 4.6 a).  In contrast to results for human platelets, WT mouse 

platelets generate only filopodia and limited lamellipodia on fibrinogen or VWF-

botrocetin as illustrated in Figure 4.6 a and shown by others (Pearce et al, 2007; 

Calaminus et al, 2008). 

 

In the absence of Gads or LAT there was no significant difference in the surface area or 

morphology of platelets spread on either fibrinogen or VWF-botrocetin compared to 

WT platelets after 45 minutes of spreading (Figure 4.6).  This indicates that although 
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SLP-76 has been shown to be important in signalling downstream of IIb3 and GPIb-

IX-V, this role is independent of the LAT-Gads-SLP-76 signalosome.  Surprisingly, 

there was no significant difference in the spreading of LAT
-/-

 platelets on collagen 

compared to WT platelets, whereas there was a small but significant decrease in surface 

area in the absence of Gads (Figure 4.6 b).  While this is consistent with a minor role for 

Gads in signalling by GPVI, the lack of effect in the absence of LAT argues against this 

interpretation.  It is therefore possible that this reflects an unknown role for LAT in 

platelet development or in signalling by another receptor which contributes to platelet 

spreading. 
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Figure 4.6 – Spreading of Gads
-/-

 and LAT
-/-

 platelets on matrix proteins.  Washed 

platelets (2 x 10
7
/ml) were allowed to spread on collagen, fibrinogen or botrocetin-

treated VWF coated cover-slips for 45 min at 37˚C.  Non-adherent platelets were 

subsequently washed away and adherent platelets were fixed and imaged by differential 

interference contrast (DIC) microscopy (a).  Surface area of adherent platelets was 

calculated using ImageJ software (b).  The results are representative of five fields of 

view from three mice ± 95% confidence interval.  Statistical significance was calculated 

using a Student‟s t-test. 
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4.3 Discussion 

The primary aim of the work in this Chapter was to compare the roles of Gads and LAT 

in the regulation of PLC2 by GPVI and CLEC-2 signalling in view of the differential 

role of SLP-76, which forms a signalosome with LAT and Gads, between the two 

receptors.  SLP-76
-/-

 mice have previously been shown to have a complete blockade of 

GPVI signalling and also lack any mature T-cells (Yablonski et al, 1998; Clements et 

al, 1999; Gross et al, 1999; Judd et al, 2000) whereas CLEC-2 signalling was able to 

overcome SLP-76-deficiency with sufficiently high agonist concentrations (Suzuki-

Inoue et al, 2006).  In agreement with previous studies, LAT was shown to have major 

role in GPVI-mediated aggregation and secretion, although high concentrations of CRP 

were able to induce aggregation and secretion in the absence of LAT.  Furthermore, 

LAT
-/- 

platelets formed a monolayer but were unable to support aggregation when 

flowed over collagen at an arteriolar rate of flow.  This can be explained by the limited 

degree of platelet activation that occurs in the absence of LAT which is sufficient to 

support stable adhesion through integrins 21 and IIb3, which bind to collagen and 

VWF, respectively, but being insufficient to mediate the robust secretion that is 

essential for capture of flowing platelets and aggregate growth (Auger et al, 2005; 

Sarratt et al, 2005).  LAT also plays a critical role in aggregation and secretion induced 

by rhodocytin, although, as was the case for CRP, higher concentrations of rhodocytin 

are able to induce aggregation and secretion in the absence of LAT.  In contrast, LAT 

was not required for adhesion or spreading induced by integrin IIb3, GPIb-IX-V or 

collagen, which binds to both GPVI and integrin 21.  The lack of effect on collagen 

was surprising and suggests that LAT is either not essential or is not rate-limiting in the 

events that underlie aggregation and secretion.  Because of the absence of a role in 
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signalling by collagen in this assay, it is not possible to draw conclusions surrounding 

the role of LAT in signalling by integrin IIb3 and GPIb-IX-V. 

 

In comparison, Gads was found to have a minor role in mediating platelet activation by 

both GPVI and CLEC-2, as illustrated by a slight delay in onset and reduction in the 

magnitude of aggregation and secretion to low but not intermediate or high 

concentrations of both CRP and rhodocytin.  This minor effect did not translate into a 

defect in aggregate formation under flow on collagen suggesting that this effect has 

minor if any physiological significance.  Gads is also not required for spreading induced 

by integrin IIb3 or GPIb-IX-V although it was found to play a minor role in mediating 

spreading on collagen, although the molecular basis of this is unclear as no defect was 

observed in the absence of LAT as discussed above.  We attribute the minor role of 

Gads in platelet activation by GPVI and CLEC-2 to supporting the recruitment of SLP-

76 to the LAT signalosome, bearing in mind that it is able to efficiently precipitate both 

proteins in stimulated platelets.  However, the relatively minor phenotype of the Gads-

deficient platelets compared to that of platelets deficient in LAT or SLP-76 suggests the 

presence of one or more, more prominent pathways of regulation of SLP-76 by LAT.  

Furthermore, there must also be a LAT-independent pathway of regulation of SLP-76 in 

view of the fact that platelets deficient in this adapter protein have a more marked 

phenotype than those deficient in LAT, at least following activation by GPVI. 

 

This minor role for Gads in supporting both GPVI and CLEC-2 signalling in platelets is 

in line with its more limited role in TCR signalling relative to that of LAT and SLP-76.  
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For example, mice deficient in Gads have a marked reduction in mature T-cells (Yoder 

et al, 2001) as a consequence of inhibited pre-TCR signalling, whereas mice deficient in 

LAT and SLP-76 have a blockade of pre-TCR signalling, resulting in no circulating T-

cells.  Further, mutation of the site of interaction of Gads with LAT reduces signalling 

through the T-cell receptor by approximately 50% (Zhang et al, 2000) in contrast to the 

full inhibition of T-cell signalling that is observed in the absence of LAT and SLP-76 

(Finco et al, 1998; Yablonski et al, 1998).    Thus, the relatively minor role of Gads in 

TCR, CLEC-2 and GPVI signalling in comparison with those of LAT and SLP-76, may 

be to facilitate the interaction of the two adapter proteins in response to threshold levels 

of receptor stimulation. 

 

Platelets express the Gads-related adapter, Grb2, which also binds to LAT and SLP-76.  

This raises the possibility that a role for Gads could be masked by the presence of Grb2, 

especially in light of studies in a DT40 cell model reporting that Gads and Grb2 are 

both able to couple LAT and SLP-76, albeit Gads does this more efficiently (Ishiai et al, 

2000).  Indeed, this is in line with the present result which demonstrates that Grb2 

associates strongly with LAT but only weakly with SLP-76, whereas Gads is 

constitutively associated with SLP-76 (not shown).  The strong binding of Grb2 to LAT 

is explained by the presence of three sites for association of Grb2 with LAT at 

phosphotyrosines Y171, Y191 and Y226 (Zhang et al, 2000; Paz et al, 2001; Perez-

Villar et al, 2002), compared with a single, major site for Gads at phosphotyrosine 

Y191, and to a lesser extent Y171 (Zhang et al, 2000; Paz et al, 2001; Perez-Villar et al, 

2002).  On the other hand, the increased binding of Gads to SLP-76 is explained by the 

very high affinity of the association between the C-terminal SH3 domain of Gads and a 



Chapter 4 – Differential roles for the adapters Gads and LAT in platelet activation by GPVI and CLEC-2 

Page | 137 
 

RxxK motif on SLP-76 of 3 nM (Liu et al, 1999; Seet et al, 2007).  This is an atypical 

interaction, as the majority of SH3 domains bind to proline rich sequences with 

micromolar affinity, including the C-terminal SH3 domain of Grb2 which binds to a 

proline rich region in SLP-76 with an affinity of 3 M (Seet et al, 2007).  Grb2 knock-

out mice are embryonically lethal due to its ubiquitous expression.  For future work it 

would be interesting if a platelet specific Grb2 knock-out could be generated as this 

could be studied in regards to GPVI and CLEC-2 signalling and also crossed with the 

Gads
-/-

 mouse to make platelets deficient in both proteins.  This would make it possible 

to address the possible redundancy of these two proteins. 

 

Overall, these observations, along with previously published data, emphasise that SLP-

76 and LAT are the key adapters in bringing PLC2 to the membrane, with SLP-76 

being essential for tyrosine phosphorylation and activation of PLC2.  In the absence of 

LAT, a limited degree of tyrosine phosphorylation of PLC2 occurs which is sufficient 

to enable recovery of aggregation to high concentrations of CRP in the absence of shear.  

On the other hand, platelet aggregation on collagen at arteriolar shear is abolished in the 

absence of LAT resulting in increased tail-bleeding and impaired thrombus formation in 

vivo (Kalia et al, 2008).  Interestingly, a reduction in tyrosine phosphorylation of Syk 

was also observed in the absence of LAT in platelets stimulated by CRP and rhodocytin.  

This reduction is possibly due to increased accessibility of tyrosine residues in Syk to 

protein tyrosine phosphatases in the absence of LAT, or due to the lack of signals that 

recruit Src kinases to the signalosome. 
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In comparison to LAT and SLP-76, Gads has a relatively minor role in recruiting SLP-

76 to LAT and activation of PLC2, and does not contribute to platelet aggregation at 

arteriolar shear.  Indeed, it may be that the evolution of a role for Gads in mediating the 

interaction between LAT and SLP-76 has occurred because of its role in facilitating 

weak signalling by the pre-TCR to ensure an optimal number of mature T-cells in the 

circulation rather than to facilitate TCR or platelet activation at higher agonist 

concentrations.  Consistent with this theory, Gads can be bypassed in a LAT 

signalosome as PLC can be recruited to LAT through a direct interaction between LAT 

Y132 and its N-terminal SH2 domain (Zhang et al, 1998; Aguado et al, 2002; Sommers 

et al, 2002). 



 

 

 

 

 

 

 

CHAPTER 5 

INVESTIGATION OF CANDIDATE LAT-LIKE 
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5.1 Introduction 

The previous chapter investigated the requirement for Gads in GPVI and CLEC-2 

signalling using mice deficient in Gads, an adaptor protein which couples SLP-76 to 

LAT.  SLP-76 is essential for activation of phospholipase C by GPVI whereas, in 

contrast, CLEC-2 is able to bypass the requirement for the adapter at high agonist 

concentrations.  The membrane adapter LAT also plays a key role in platelet activation 

by GPVI and CLEC-2, although in both instances, high agonist concentrations bypass 

the requirement for the membrane adapter. 

 

LAT belongs to a family of transmembrane adaptor proteins as described in detail in 

Appendix I.  The partial requirement for LAT in GPVI and CLEC-2 signalling raises 

the possibility that one or more LAT-like molecules are present in platelets and exhibit 

redundancy with LAT.  Furthermore, this could also explain why SLP-76 but not LAT 

is required in IIb3-mediated outside-in signalling, especially given that a mutation in 

SLP-76 which destroys its ability to bind to LAT inhibits spreading on fibrinogen 

(Abtahian et al, 2006).  Signalling by GPVI and CLEC-2 takes place in lipid rafts (also 

known as glycosphingolipid-enriched microdomains or GEMs), where LAT is localised, 

whereas IIb3 signalling takes place outside of these domains (Wonerow et al, 2002; 

Pollitt et al, 2010).  This may therefore explain why LAT does not play a role in 

signalling by the integrin.   
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Although structurally unrelated to the LAT family of adapter proteins, several candidate 

membrane adapter proteins/novel cell surface receptors have been identified which 

contain one or more cytoplasmic tyrosines that undergo tyrosine phosphorylation and 

mediate binding to SH2 domain-containing proteins.  It is therefore possible that one or 

more of these could also explain the partial or lack of role of LAT in mediating 

activation of platelets by surface glycoprotein receptors.  One such candidate is G6f 

which is found in the multi-histocompatibility complex class III gene region along with 

several other proteins that are expressed in platelets including the novel ITIM receptor, 

G6b-B (Ribas et al, 2001).  G6f has a predicted molecular weight of 36 kDa, similar to 

that of LAT, and consists of a glycosylated extracellular Ig domain, a transmembrane 

domain and a cytoplasmic tail containing a single tyrosine residue at position 281 in the 

human sequence.  Expression of wild type G6f but not the Y281F mutant in K562 cells 

and treatment with the tyrosine phosphatase inhibitor vanadate leads to association with 

Grb2 and Grb7, therefore establishing tyrosine 281 as a docking site for SH2 domain-

containing proteins (De Vet et al, 2003).  Furthermore, cross-linking G6f through an N-

terminal T7 tag using a T7 antibody resulted in Erk phosphorylation in K562 cells, 

presumably as a result of recruitment of Grb2 and activation of Ras (De Vet et al, 

2003).  Importantly, we have identified the presence of G6f in platelets by analysing 

tyrosine phosphorylated proteins in CRP-stimulated human platelets (Garcia et al, 

2006).  Potentially, therefore, tyrosine phosphorylation of G6f in platelets could account 

for some of the redundancy with LAT bearing in mind that both proteins bind to the 

adapter Grb2. 
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The aim of this chapter is to investigate the presence of the various LAT family proteins 

and G6f in platelets and to investigate whether they are phosphorylated downstream of 

GPVI and CLEC-2.  Furthermore, through collaboration with Dr Burkhart Schraven in 

Magdeburg, Germany, the functional roles of the LAT-like proteins have been 

investigated using mice deficient in one or more of the transmembrane family of 

adapters.  
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5.2 Results 

5.2.1 Raising a G6f antibody 

To confirm whether G6f is expressed in platelets, a rabbit polyclonal antibody was 

raised against a peptide based on the cytoplasmic tail (amino acids 259-274) of human 

G6f (Figure 5.1 a).  The antibody was raised in rabbits using a commercial company, 

Invitrogen, and the bleeds tested against human G6f expressed in 293T HEK (human 

kidney epithelial) cells alongside mock transfected cells.  To achieve this, I cloned 

human G6f into a pEF6 expression vector (Invitrogen) with a C-terminal Myc tag 

attached using a two-round, or „nested‟ PCR approach.  The cDNA was obtained from 

K562 cells, which were used in the original cloning of G6f (De Vet et al, 2003).   

 

G6f was transfected into 293T HEK cells and the expressed protein immunoprecipitated 

using an antibody against the Myc tag.  The immunoprecipitate was then used for 

testing of serum from two rabbits immunised against G6f.  This work revealed the 

presence of a clear band of approximately 45 kDa with the serum from all three bleeds 

of both rabbits (not shown)  The final bleed from the second rabbit had the strongest 

response as shown in Figure 5.1 b.  Importantly, this band was not present in the mock 

transfected control cell lysates or in the pre-immune rabbit serum (not shown).  This 

band was successfully reprobed for the presence of Myc, confirming that the antibody 

recognises G6f (Figure 5.1 b).  There was also a minor band of approximately 85 kDa 

which was not visible when reprobed with the Myc antibody (not shown) indicating that 

it is not a dimer of G6f. 
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Figure 5.1 – A new antibody recognises transfected G6f.  a) Human and mouse G6f 

were aligned using ClustalW web-based software highlighting the conserved YxN motif 

in bold, and the regions used as antigen are shown in red.  b) 293T cells were 

transfected with G6f or an empty vector control and subsequently lysed with NP-40 

detergent.  Myc-tagged proteins were immunoprecipitated and samples were analysed 

by SDS-PAGE and western blotting with the third bleed test serum and reprobed for 

Myc.  Results are representative of three experiments.  Similar results were seen with 

both first and second bleed serum samples, whereas the pre-immune serum was 

negative. 
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5.2.2 G6f is phosphorylated downstream of GPVI in platelets 

G6f was identified by Dr Ángel García through analysis of tyrosine phosphorylated 

proteins in CRP-stimulated human platelets (Garcia et al, 2006).  This approach 

identified several proteins that undergo tyrosine phosphorylation upon stimulation by 

CRP, including G6f.  Confirmation of tyrosine phosphorylation of G6f was achieved 

using the novel antibody to the membrane adapter described above.  Platelets were 

stimulated with CRP (10 g/ml) for 30–300 sec and tyrosine phosphorylated proteins 

were immunoprecipitated using the monoclonal -phosphotyrosine antibody, clone 

4G10 and western blotted for G6f (Figure 5.2 a).  A clear band for G6f was seen in the 

whole cell lysate lane, whereas there was a minor band in the immunoprecipitate from 

non-stimulated platelets.  Following CRP stimulation, a marked increase in the amount 

of G6f was detected which peaked at 90 sec.  These results confirm that G6f is present 

in platelets and strongly suggest that it undergoes tyrosine phosphorylation upon 

activation of GPVI.  Interestingly, G6f runs as a smaller sized protein (~40 kDa) 

compared to over-expressed G6f in the HEK 293T cells, most likely due to differential 

glycosylation.  Interestingly, a second band of approximately 70 kDa was also identified 

by western blotting using the novel antibody to G6f.  This could represent a covalent 

dimer of the transmembrane protein or a non-specific band. 

 

The G6f antibody was tested for its ability to immunoprecipitate G6f from platelets 

stimulated with CRP (10 g/ml) in order to directly confirm that it undergoes tyrosine 

phosphorylation upon activation of the collagen receptor (Figure 5.2 b).  Western 

blotting with the anti-phosphotyrosine antibody 4G10 revealed the presence of a major 

band of 40 kDa in CRP-stimulated platelets.  Re-probing with the G6f serum identified 
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the same band thereby demonstrating that it is G6f.  Several weakly phosphorylated 

bands were also observed on the 4G10 western blot, most notably at 50, 70 and 85 kDa, 

which are likely to represent co-precipitating proteins.  In addition, G6f may interact 

with non-tyrosine phosphorylated proteins although these would not be seen using this 

experimental design.   

 

The novel antibody was used to investigate the ability of other agonists to stimulate 

phosphorylation of G6f.  These studies were performed in the absence or combined 

presence of apyrase and indomethacin in order to block the feedback effects of ADP and 

thromboxane A2 and thereby establish whether phosphorylation was direct.  Apyrase 

hydrolyses ATP and ADP to AMP and will therefore remove any ADP secreted by the 

activated platelets and indomethacin is a cycloxygenase (COX) 1 and 2 inhibitor which 

inhibits the production of thromboxanes from arachidonic acid in the platelet.  CRP (10 

g/ml) stimulated robust phosphorylation of G6f which was not altered in the presence 

of apyrase and indomethacin (Figure 5.2 c).  Collagen (10 g/ml) also stimulated 

marked phosphorylation of G6f.  In contrast, a high concentration of rhodocytin (300 

nM) stimulated weak tyrosine phosphorylation of G6f which was completely blocked in 

the presence of apyrase and indomethacin suggesting that stimulation through CLEC-2 

is critically dependent on the secondary mediators ADP and TxA2.  The G protein-

coupled receptor agonist thrombin (1 U/ml) but not ADP (100 M) also stimulated 

weak tyrosine phosphorylation of G6f.  In addition, thrombin and rhodocytin stimulated 

weak tyrosine phosphorylation of a doublet of approximately 70 kDa which may be the 

same band as observed in CRP-stimulated platelets.  A small increase in G6f 

phosphorylation was also seen when platelets were spread on a fibrinogen-coated 



Chapter 5 – Investigation of candidate LAT-like molecules 

Page | 147 
 

surface whereas there was no such increase on a BSA-coated surface (Figure 5.2 d).  

Reprobing the gel revealed the presence of a much higher amount of G6f in the 

fibrinogen-stimulated platelets.  Despite this difference, the complete absence of a co-

migrating tyrosine phosphorylated band in non-stimulated platelets supports the idea 

that integrin IIb3 is able to induce weak phosphorylation of G6f.
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Figure 5.2 – G6f is undergoes tyrosine phosphorylation downstream of GPVI in 

platelets. 
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Figure 5.2 – continued.  a) Washed platelets (5x 10
8
/ml) were stimulated with 10 

g/ml CRP for up to 300 sec and subsequently lysed with NP-40 detergent.  Tyrosine 

phosphorylated proteins were immunoprecipitated using 4G10.  WCL = whole cell 

lysate.  b) Washed platelets (5x 10
8
/ml) were stimulated with 10 g/ml CRP for up to 90 

sec and subsequently lysed with NP-40 detergent.  c)  Washed platelets (5x 10
8
/ml) 

were stimulated with 10 g/ml CRP for 90 sec, 10 g/ml collagen for 90 sec, 1 U/ml 

thrombin for 60 sec, 300 nM rhodocytin for 300 sec or 100 M ADP for 60 sec, and 

subsequently lysed with NP-40 detergent.  Apy = apyrase, Indo = indomethacin.  d) 

Washed platelets (5x 10
8
/ml) were spread on surfaces coated with 100 g/ml fibrinogen 

or 5 mg/ml BSA for 45 mins at 37˚C.  Adherent cells were lysed with NP-40 detergent.  

In b, c and d, G6f was immunoprecipitated using the newly raised antibody.  Samples 

were all analysed by SDS-PAGE and western blotting for phosphotyrosine (4G10) and 

G6f.  Results are representative of three experiments. 
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5.2.3 G6f is associated with Grb2 but not Gads 

Grb2 was shown to associate with G6f in a phosphorylation dependent manner in K562 

cells (De Vet et al, 2003).  Co-immunoprecipitation studies where therefore performed 

to investigate whether Grb2 and the closely related adapter protein Gads associate with 

G6f in platelets.  Platelets were stimulated with CRP (10 g/ml) for 30 and 90 sec and 

lysed.  Gads, Grb2 and G6f were immunoprecipitated from the lysates and the samples 

subjected to SDS-PAGE before western blotting for the presence of all three proteins 

(Figure 5.3).  There was no detectable association between Gads with either Grb2 or 

G6f.  Similarly, Grb2 was not detected following immunoprecipitation of G6f.  On the 

other hand, G6f could be weakly detected in the Grb2 immunoprecipitate at 30 sec and 

robustly at 90 sec, confirming the phosphorylation-dependent association seen 

previously (De Vet et al, 2003).  The absence of Grb2 in the G6f immunoprecipitate 

may be due to a steric effect as the peptide that was chosen for immunisation is only 

four amino acids upstream of Y281 (Figure 5.1 a). 
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Figure 5.3 – G6f associates with Grb2 in a phosphorylation dependant manner.  

Washed platelets (5x 10
8
/ml) were stimulated with 10 g/ml CRP for up to 90 sec and 

subsequently lysed with NP-40 detergent.  G6f, Gads and Grb2 were 

immunoprecipitated and samples were analysed by SDS-PAGE and western blotting for 

Gads, Grb2 and G6f.  Results are representative of three experiments. 
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5.2.4 G6f cannot substitute for LAT in LAT-deficient cells 

LAT-deficient Jurkat T-cells (Jcam2) were used to investigate whether G6f can act as a 

LAT-replacement molecule in the GPVI signalling pathway.  The Jcam2 cells were 

generated by Dr Arthur Weiss (San Francisco) using a mutagenesis strategy and 

screening for the absence of LAT (Finco et al, 1998).  The reintroduction of LAT into 

the cells served as a control to show that LAT is sufficient to restore activation bearing 

in mind that the mutagenesis strategy may have introduced other mutations.  The Jcam2 

cells were transfected with both GPVI and FcR and either LAT or G6f.  Receptor 

activation was monitored using a NFAT-luciferase reporter construct as described in 

Chapter 3.  Jcam2 cells transfected with GPVI and FcR were unresponsive to collagen 

unless co-transfected with LAT (Figure 5.4).  Although it was noticeable that the 

response was weak compared to that in DT40 cells it was comparable to previous 

experiments in Jurkat cells (Fuller et al, 2007).  In contrast, co-transfection of G6f was 

unable to restore the response to collagen suggesting that it is unable to mimic the loss 

of LAT in this cell line model. 
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Figure 5.4 – G6f cannot substitute for LAT.  Jcam2 cells were transfected with 2 

g/ml each of GPVI, FcR, G6f and LAT as specified, and a NFAT-luciferase reporter 

plasmid.  Transfected cells were stimulated with 10 M collagen for 6 hrs at 37˚C and 

then the luciferase activity was measured as a readout of signalling.  Results were 

normalised for transfection efficiency and plotted as fold increase over basal.  Result is 

representative of three experiments. 
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5.2.5 G6f is not a novel collagen receptor 

G6f was identified in a proteomic analysis of CRP-stimulated platelets raising the 

possibility that it is a receptor for CRP or collagen and that it is able to confer activation 

of PLC2.  To test this possibility, we monitored phosphorylation of G6f and NFAT 

activation in transfected DT40 cells stimulated by CRP or collagen.  Cells transfected 

with GPVI/FcR exhibited a robust NFAT response to collagen and a smaller response 

to CRP (Figure 5.5 a).  The difference between the two agonists in this model has been 

previously described and is attributed to weak but sustained signalling over the 6 hour 

incubation with collagen compared to powerful but short lived activation with CRP 

(Tomlinson et al, 2007).  Transfection of G6f alone was unable to confer a response to 

collagen or CRP.  Furthermore, the response to collagen or CRP in cells that had been 

co-transfected with G6f and GPVI/FcR was not significantly different to that in cells 

transfected with GPVI/FcR thereby demonstrating that G6f does not contribute to the 

activation of PLC2 in this cell line model. 

 

As a second, indirect test, of whether G6f is a collagen receptor, I monitored tyrosine 

phosphorylation of the membrane adapter in G6f-transfected cells stimulated by CRP.  

The synthetic collagen was used in these studies since G6f was first identified as a 

tyrosine phosphorylated protein in CRP-stimulated platelets (Garcia et al, 2006).  G6f is 

weakly tyrosine phosphorylated in basal, serum-starved DT40 cells with no significant 

increase in phosphorylation upon stimulation by CRP.  In contrast, the tyrosine 

phosphatase inhibitor, pervanadate, induced a marked increase in tyrosine 

phosphorylation of G6f (Figure 5.5 b).  The disparity between the level of tyrosine 
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phosphorylation of G6f in CRP and pervanadate treatment strongly suggests that G6f is 

not a receptor for CRP. 

 

Higher agonist concentrations were not tested suggesting the possibility that G6f could 

show a signalling response or phosphorylation if stimulated with higher concentrations.  

However, these concentrations are considered to be maximal with regards to platelet 

stimulation and the DT40 NFAT assay and therefore it seems unlikely that any potential 

signalling to supra-high agonist concentrations would have any physiological relevance. 
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Figure 5.5 – G6f is not a CRP receptor.  a) DT40 cells were transfected with 2 g/ml 

of GPVI and FcR, G6f or a combination of both, and a NFAT-luciferase reporter 

plasmid.  Transfected cells were stimulated with 10 g/ml collagen or 10 g/ml CRP 

for 6 hrs at 37˚C and then the luciferase activity was measured as a readout of 

signalling.  Results were normalised for transfection efficiency and plotted as a 

percentage of the GPVI-collagen response.  Error bars represent the geometric mean ± 

standard error of three experiments.  b) DT40 cells were transfected with G6f.  

Following serum starvation, cells were stimulated with 10 g/ml CRP or 0.1 mM 

pervanadate for 300 sec and subsequently lysed with NP-40 detergent.  Myc-tagged 

proteins were immunoprecipitated and samples were analysed by SDS-PAGE and 

western blotting for G6f and Myc.  Results are representative of three experiments. 
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5.2.6 Minimal expression of G6f in mouse platelets 

To assess whether G6f is expressed in mouse platelets, I raised an antibody to the 

cytoplasmic tail of mouse G6f (amino acids 259-273, Figure 5.1 a shows a comparison 

of the mouse and human sequence), using the same commercial approach for the anti-

human G6f antibody.  The antibody was validated by cloning mouse G6f into a pEF6 

expression vector (Invitrogen) with a C-terminal Myc tag attached.  When this construct 

was expressed in 293T cells, mouse G6f was immunoprecipitated using the -Myc 

antibody followed by western blotted using serum from the immunised rabbit.  A clear 

band of approximately 45 kDa was observed which was absent in mock transfected 

cells.  Reprobing the membrane for Myc confirmed that the band was mouse G6f 

(Figure 5.6 a).  There was also the presence of a smaller sized protein (~40 kDa) in the 

transfected lysate which did not re-probe for Myc, suggesting either an unrelated protein 

or a break-down product of full length G6f protein. 

 

Several attempts to demonstrate expression of G6f expression in whole cell lysates of 

mouse platelets by a combination of western blotting and immunoprecipitation were 

carried out but failed to provide definitive proof of expression.  Only through the use of 

4G10 to immunoprecipitate tyrosine phosphorylated proteins from basal and CRP 

stimulated mouse platelets was it possible to identify the presence of a weak band of 

approximately 55 kDa in GPVI stimulated platelets using the validated mouse G6f 

antibody (Figure 5.6 b).  However, since this protein is much bigger than predicted 

(although this could be explained by glycosylation), and we were unable to 

immunoprecipitate G6f and detect its presence by western blotting, we suspect that the 

positive band is an unrelated protein that is phosphorylated upon stimulation by CRP.  
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Indeed, a serial analysis of gene expression (SAGE) on mouse megakaryocytes did not 

reveal any tags for mouse G6f (Senis et al, 2007).  Several non-specific bands are also 

seen under both basal and stimulated conditions.  We therefore conclude that G6f is 

absent or below the level of detection in mouse platelets. 
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Figure 5.6 – G6f was not detected in mouse platelets. 
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Figure 5.6 – continued.  a) 293T cells were transfected with mouse G6f or an empty 

vector control and subsequently lysed with NP-40 detergent.  Myc-tagged proteins were 

immunoprecipitated and samples were analysed by SDS-PAGE and western blotting 

with the mouse G6f antibody and reprobed for Myc.  Results are representative of three 

experiments.  b) Washed mouse platelets (5x 10
8
/ml) were stimulated with 10 g/ml 

CRP for 90 sec and subsequently lysed with NP-40 detergent.  Tyrosine phosphorylated 

proteins were immunoprecipitated and samples were analysed by SDS-PAGE and 

western blotting for mouse G6f.  Results are representative of three experiments. 
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5.2.7 Studies on LAT-like proteins reveal the presence of PAG in platelets 

To search for a LAT-like molecule that lies upstream of SLP-76 and PLC2 in platelets, 

we were given access to several knock-out mouse lines in Dr Burkhart Schraven‟s 

laboratory in Magdeburg, Germany.  This approach has a number of benefits over that 

of western blotting of this family of adapters, as antibodies to this group of proteins are 

notoriously poor most likely due to their relatively low levels of expression.  Thus, a 

more definitive guide to the functional presence of one or more LAT-like proteins was 

to investigate a possible phenotype using platelets deficient in one or more of the family 

of membrane adapters. 

 

We were provided with access to platelets deficient in one LAT family protein, namely 

LAT
-/-

, NTAL
-/-

, LAX
-/-

, LIME
-/-

 and PAG
-/- 

or compound knock-out mice, namely 

LAT/NTAL
-/-

, LAT/NTAL/LAX
-/-

 and PAG/LIME
-/-

.  Protein lysates were generated 

from all of these mice and used for western blotting.  Platelet lysates from litter matched 

controls, primary T-cells and in the case of NTAL, primary B cells, were used to verify 

expression in platelets and to verify the efficacy of the antibodies.  Using the specific 

antibodies, all of which were supplied by Dr Schraven, we were able to confirm 

expression of PAG in platelets which runs at approximately 70 kDa in both T-cells and 

in platelets, and which was absent in PAG knock-out platelets (Figure 5.7 a).  On the 

other hand, we were unable to detect the presence of NTAL in platelets although we 

were able to confirm its expression in B cells where it runs as a 30 kDa protein (not 

shown).  We were unable to detect the presence of LIME (Figure 5.7 b) and LAX (not 

shown) in platelets or in the T cell lysates, raising concern over the sensitivity of the 

available antibodies. 
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Figure 5.7 – PAG is expressed in mouse platelets.  Washed platelets (1x 10
7
) from 

wild type (WT) and knock-out mice lysed with SDS sample buffer.  Platelet and T-cell 

lysates were analysed by SDS-PAGE and western blotting for a) PAG and b) LIME.  

Results are representative of two mice. 
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5.2.8 Contribution of LAT-family proteins to GPVI-mediated platelet activation 

We used lysates from the various mutant mice platelets to investigate a possible role for 

the LAT-like adapter proteins in phosphorylation of PLC2 by GPVI.  For these studies, 

washed platelets from WT, PAG
-/-

, LIME
-/- 

and PAG/LIME
-/- 

mice were stimulated with 

collagen (10 g/ml) or CRP (3 g/ml CRP) for 90 sec.  Syk and PLC2 were then 

immunoprecipitated and analysed for tyrosine phosphorylation by western blotting.  

There was no significant difference in tyrosine phosphorylation of Syk or PLC2 by 

CRP or collagen in the absence of any of the above LAT-like adapter proteins, with the 

exception that, in the absence of LIME alone, the CRP response appears slightly low in 

comparison to the other mice (Figure 5.8).  On the other hand, phosphorylation of 

PLC2 was similar to that in the other lysates suggesting that the reduction in Syk may 

reflect loss of sample.  Due to the limited availability of tissue, we were unable to test a 

full dose response curve to CRP or collagen, and to extend this to other agonists such as 

rhodocytin.  We were also unable to monitor aggregation for the same reason. 

 

LAT
-/-

 platelets were also used as control (not shown) and results were similar to those 

seen in Figure 4.4.  Similar experiments were also performed on LAX
-/-

 and NTAL
-/-

 

platelets (not shown) which showed no obvious differences although we were unable to 

confirm or deny their expression in platelets making it difficult to draw any firm 

conclusions.  Likewise, LAT/NTAL
-/-

 and LAT/NTAL/LAX
-/-

 platelets showed no 

obvious difference in comparison to LAT
-/-

 platelets (not shown). 
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Figure 5.8 – Measurement of tyrosine phosphorylation in PAG
-/-

, LIME
-/- 

and 

PAG/LIME
-/-

 platelets.  Washed platelets (2x 10
8
/ml) were stimulated with 3 g/ml 

CRP for 60 sec or 10 g/ml collagen for 90 sec and subsequently lysed with NP-40 

detergent.  PLC2 and Syk were immunoprecipitated and samples were analysed by 

SDS-PAGE and western blotting for phosphotyrosine (4G10) and reprobed for PLC2, 

and Syk.  Results are representative of studies performed using platelets from two mice. 
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5.3 Discussion 

The transmembrane adaptor protein LAT has previously been shown to be required for 

optimal GPVI and CLEC-2 signalling, but a residual response can be seen in its 

absence.  This raises the possibility of expression of a LAT-like protein in platelets.  

The aim of this chapter was to test several candidate proteins which may have 

redundancy with LAT. 

 

A potential candidate was highlighted by the identification of G6f using proteomics 

(Garcia et al, 2006). G6f is a potential orphan receptor with a single transmembrane 

domain and a cytoplasmic tail containing one tyrosine residue (Ribas et al, 2001).  After 

raising and validating an antibody against human G6f, we were able to confirm its 

presence in human platelets and demonstrate that it undergoes tyrosine phosphorylation 

in response to CRP.  G6f was also robustly phosphorylated by collagen, whereas it was 

only weakly phosphorylated in response to fibrinogen, thrombin and rhodocytin.  The 

weak response to rhodocytin was dependent on the formation of the secondary 

mediators, ADP and thromboxanes, as is the case for phosphorylation of CLEC-2 itself 

and downstream proteins (Pollitt et al, 2010).  These results show that GPVI is the 

major receptor mediating G6f phosphorylation, although other receptors can also 

mediate weak G6f phosphorylation 

 

The single cytoplasmic tyrosine residue, Y281 is in a consensus sequence for Grb2 

binding via its SH2 domain, namely YxN.  In agreement with this, and also with the 

initial study on G6f (De Vet et al, 2003), we were able to confirm a phosphorylation-
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dependent association with Grb2 using CRP-stimulated platelets. In contrast, no 

association with the Grb2 family member Gads was observed.  The functional 

contribution of the G6f-Grb2 association, if any, to platelet activation by GPVI is 

unclear.  However, the observation that G6f was unable to restore the response to 

collagen in GPVI-FcR-transfected LAT-deficient Jurkat T-cells argues against a role in 

the regulation of PLC2.  As a caveat to this experiment, it should be noted that we were 

unable to confirm expression of G6f at the cell surface by flow cytometry due to the 

absence of a suitable antibody.  Following CRP, thrombin and rhodocytin stimulation, 

several larger, unidentified tyrosine phosphorylated proteins were seen to co-precipitate 

with G6f, but their overall level of tyrosine phosphorylation was weak compared to the 

level of G6f phosphorylation.  Identifying these proteins is an interesting line of future 

work on G6f as it is unclear if they are constitutively associated proteins or if they 

associate with G6f following its phosphorylation, and whether this is via Grb2 or an 

independent association. 

 

G6f contains an extracellular Ig domain, thus raising the possibility that it may be a 

novel collagen receptor by analogy to GPVI.  Transfection of DT40 cells with G6f 

however failed to result in a NFAT response to collagen or CRP and nor were we able 

to detect significant tyrosine phosphorylation downstream of GPVI.  Therefore it seems 

likely that G6f is phosphorylated downstream of GPVI in platelets rather than serving as 

a collagen receptor.  The observation that collagen and CRP stimulate robust 

phosphorylation of G6f argues for a potentially important role in mediating platelet 

activation.  However, a functional role for G6f seems less likely following our failure to 

find conclusive evidence for expression of the mouse homologue in mouse platelets, 
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either using a validated antibody or by a SAGE analysis (Senis et al, 2007).  Caution is 

necessary in regard to this conclusion however as the major receptor for thrombin in 

human platelets, PAR-1 is not expressed in mouse platelets, where PAR-4 plays the 

major role.  It is possible that a similar scenario may exist for a putative G6f-like 

protein.  Also, rather than a role as a receptor it may be that G6f acts as an adaptor 

protein for GPVI signalling, however ligand hunting for G6f would be an interesting 

line of future work as it may have a novel ligand for platelet activation. 

 

I also investigated the possible expression of several other LAT-like molecules in 

mouse platelets, thereby able to demonstrate expression of PAG.  I was unable to detect 

the presence of LIME, NTAL or LAX, although concerns remain in regard to the 

efficacy of available antibodies for the latter two adapters.  PAG-deficiency had no 

significant effect on CRP- or collagen-mediated Syk and PLC2 phosphorylation.  In T-

cells, PAG acts as a membrane anchor for the Src family kinase regulatory protein, Csk 

(Brdicka et al, 2000; Kawabuchi et al, 2000).  Csk mediates phosphorylation of Src 

kinases at their inhibitory tyrosines.  The lack of an effect of the absence of PAG on 

platelet activation by GPVI therefore argues against a major role for the membrane 

adapter in regulating Csk in platelets downstream of collagen.   However, extending 

future studies with this knock-out mouse to look at integrin IIb3 signalling would be 

particularly interesting as Csk has been shown to mediate Src family kinases 

downstream of the integrin (Obergfell et al, 2002). 
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The hypothesis that formed much of the basis of the work in this chapter, namely that 

the LAT-independent component of platelet activation by GPVI and CLEC-2 reflects 

the presence of a LAT-like molecule that overlaps with LAT in terms of function, is still 

valid as there are other LAT-like proteins whose expression has yet to be confirmed, as 

well as other potential candidates.  However, the alternative possibility that there is no 

such protein should also be considered, especially given our inability to identify robust 

expression of one or more LAT-like proteins other than that of PAG.  In such a 

scenario, it may be that the role of LAT is to amplify signalling by GPVI but that a 

residual level of activation of PLC2 can occur in its absence.  In a similar argument, 

the role of Gads may be to amplify GPVI signalling but again the pathway can function 

independent of Gads or a related family protein.  Studies on mice deficient in Gads and 

Grb2 are required to investigate this.  Neither LAT nor Gads are required for signalling 

downstream of IIb3 consistent with the localisation of LAT and the integrin to lipids 

rafts and non-raft regions, respectively.  Again, it remains unclear if platelets express 

one or more LAT- and Gads-like proteins that facilitate signalling by the integrin.  

Nevertheless, the much greater level of expression of integrin IIb3 (80,000 – 120,000 

copies in human platelets) relative to GPVI (4,000 – 6,000), and the fact that the latter is 

the more powerful signalling receptor, provides an indirect argument against the 

presence of a LAT-like protein downstream of activation of Syk by the integrin. 
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6.1 Summary of results 

In this thesis I have provided evidence for a unique mode of signalling through Syk and 

a single YxxL sequence via cross-linking of CLEC-2 molecules.  This trans binding is a 

novel mechanism through Syk which until now was thought to activate either through 

cis binding to the dual tyrosines of an ITAM or through a phosphotyrosine independent 

mechanism through integrin IIb3.  I have also shown a minimal role for the adaptor 

protein Gads in both GPVI and CLEC-2 signalling pathways.  It appears that Gads is as 

dispensable for GPVI and CLEC-2 signalling as LAT is, whereas CLEC-2 is capable of 

a small degree of signalling independently of its constitutive binding partner, SLP-76.  I 

have also investigated the possible role of a number of other LAT-like molecules in the 

ITAM signalling pathway, but failed to identify any potential candidates.  In this, the 

final chapter, I will discuss some of the wider aspects of the work. 

 

6.2 The evolution of ITAM receptors and C-type lectins 

After performing numerous database searches with the help of John Herbert we have 

found that orthologs for a number of ITAM proteins can be found as far back as 

zebrafish (Danio rerio).  Due to the size of and divergence of the C-type lectin family, 

only one (CLEC14) was found to have an ortholog in zebrafish.  Other zebrafish C-type 

lectins were too divergent in sequence to be directly linked to a human C-type lectin.  

We were however, able to find a single zebrafish protein which had both a C-type lectin 

domain and a putative ITAM-like sequence (Figure 6.1).  Both Syk and Zap-70 can also 

be found in the zebrafish. 
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Figure 6.1 – Sequence alignment of human CLEC-2 and a hypothetical zebrafish 

C-type lectin LOC564061.  Sequences were aligned using ClustalW web-based 

software. 
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As discussed in Chapter 3, we have found that a number of the ITAM-containing 

proteins have their ITAM sequence split over two exons.  We therefore hypothesised 

that the possibility of gene duplication of the ITAM-like sequence resulted in a protein 

which was able to signal more efficiently due to a higher affinity for Syk.  As the 

known ITAM-like C-type lectins have multiple roles, in haemostasis, lymphatic 

development and in the innate immune system, it is possible that at one time this family 

of proteins mediated many of these responses in a thrombocyte forerunner.  A review by 

Pancer and Cooper discusses the evolution of the adaptive immune system and they 

conclude that this appeared along with the rearrangement of IgG domain receptors in 

jawed fish (Pancer and Cooper, 2006).  The jawless fish have an immune system that 

utilises Leucine-rich-repeat receptors.  This step in evolution from innate towards 

adaptive immunity could be linked to the appearance of the variable IgG receptors and 

possibly the presence of an ITAM.  Before this ITAM-like molecules may have been 

the less efficient mode of signalling used. 

 

The opposite hypothesis to this would be that the ITAM-like molecules may have 

evolved through convergent evolution with ITAM proteins and use a common 

signalling pathway.  This is perhaps the more likely scenario given that ITAMs are 

found mostly on IgG superfamily proteins, whereas the only ITAM-like proteins we 

know of so far are C-type lectins.  Also, the ITAM-like proteins are type II proteins 

whereas the ITAM proteins are type I and are therefore quite different structurally.  

However, the structure and activity of Syk versus Zap-70 is also of interest when 

thinking about the evolution and role of ITAMs and ITAM-like receptors although it is 
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of note that Syk is also able to be activated by a phosphotyrosine independent 

mechanism through integrin IIb3.  

 

Syk is expressed in a number of tissues whereas the expression of Zap-70 is restricted to 

haematopoietic cells, in particular, T-cells and natural killers (NK) cells where its role is 

in ITAM signalling.  In B-cells, platelets, granulocytes and macrophages Syk plays this 

role although Syk is also expressed in thymocytes (a T-cell precursor), but then lost 

following T-cell maturation.  The sequence of Syk and Zap-70 reveals an N-terminal 

SH2 domain, a short inter-domain linker (interdomain A), a C-terminal SH2 domain, a 

SH2-kinase linker (interdomain B), and a kinase domain (Figure 6.2).  A structural 

analysis of inactive Zap-70 shows that these domains are arranged such that the tandem 

SH2 domains present their phosphotyrosine binding pockets in line facing in one 

direction, and the kinase domain presents the active site in the opposite direction 

(Deindl et al, 2007).  This arrangement allows for tight binding to the ITAM sequence 

and therefore, membrane localisation of the kinase domain such that it is orientated to 

phosphorylate its targets. 
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Figure 6.2 – Domain arrangement of Syk and Zap-70.  a) Linear representation of 

the domains and their sizes (in number of amino acid residues) of Syk and Zap-70.  b) 

Colour-coded cartoon representing the 3D arrangement of the domains of Syk and Zap-

70 including the phosphotyrosine binding pockets of the SH2 domains. 

b) 

a) 
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Interestingly, in Syk, the two phosphotyrosine binding pockets are complete, one per 

SH2 domain.  However, Zap-70 is slightly different with one complete binding pocket 

present in the C-SH2 domain, and the second binding pocket is partially formed by both 

SH2 domains.  Therefore, the N-SH2 domain of Zap-70 alone should not be able to bind 

to phosphotyrosine and for Zap-70 to bind to an ITAM, both SH2 domains have to align 

correctly.  In comparison, we have presented data in Chapter 3 confirming that both of 

the single SH2 domains of Syk are capable of phosphotyrosine binding.  A further 

difference between the two kinases is in their kinase domains, with the kinase domain of 

Syk being shown as up 100 times more active than that of Zap-70 in an in vitro kinase 

assay (Latour et al, 1996).  Furthermore, interdomain A in Syk has been shown to be 

more flexible than in Zap-70 suggesting it would be able to accommodate binding 

between two chains much more efficiently than Zap-70. 

 

Therefore, we can hypothesise that ITAM-like molecules came first in evolution, and 

that they were able to mediate a number of functions (haemostasis, innate immunity, 

development) in a generic blood cell.  This is mediated through cross-linking by Syk 

which is made possible due to the ability of both SH2 domains to bind to 

phosphotyrosine residues and the high intrinsic activity of its kinase domain.  The 

appearance of an ITAM could result in a higher affinity interaction with Syk and more 

efficient signalling.  The high activity of Syk would be advantageous in a platelet-like 

cell which is required to activate fully and rapidly in times of vascular damage, 

however, immune cells which evolved for the adaptive immune system, like T-cells, 

have to undergo positive and negative selection and the high activity of Syk could 

possibly affect these processes.  Therefore the use of Zap-70 with its lower intrinsic 
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kinase activity and requirement for binding to an ITAM and not an ITAM-like molecule 

could be a way that evolution refined the ITAM signalling pathway. 

 

Future work on the structure-activity relationship between CLEC-2 and Syk will be 

carried out to investigate these hypotheses by comparing the ability of CLEC-2 to signal 

through Syk compared to Zap-70 using the NFAT-luciferase cell line reporter assay and 

cells deficient in either Syk or Zap-70.  Interestingly, it has previously been published 

that CLEC-2 can signal in a Jurkat T-cell line (Zap-70 expressing) using the NFAT-

luciferase reporter assay, although the increase over basal in these cells is much lower 

than the increases seen in the DT40 B-cell line (Fuller et al, 2007).  Chimeric versions 

of Syk and Zap-70 would also be interesting for further experiments.  Constructs with 

the SH2 domains of Zap-70 and the kinase domain of Syk, and vice versa would allow 

us to investigate if it is the less active kinase domain or the unusual SH2 domains of 

Zap-70 which were the key to any differences found.  Furthermore, the Zap-70 kinase 

domain may become more active when paired with the Syk SH2 domains due to 

intramolecular interactions; however in vitro kinase assays can be used to study this 

also. 

 

Various CLEC-2 mutants can also be investigated looking at the importance of the 

DEDG sequence preceding the YxxL and also CLEC-2/ITAM chimeras to investigate if 

CLEC-2 can signal with two YxxL sequences in its cytoplasmic tail, and would this also 

be possible through Zap-70? 
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It would also be interesting to extend studies into the zebrafish and investigate the 

ITAM-like C-type lectin we found to be expressed there.  Use of in situ hybridisation 

could be used to look at the expression of this protein.  If it were present in 

thrombocytes, cells which play an analogous role to platelets found in birds and fish, it 

would be particularly provocative as it may play a CLEC-2-like role.  Further, the use of 

morpholino knock-down technology could be used to look at the development of the 

fish in the absence of the protein, and also the use of a laser injury model to investigate 

a haemostatic role for the protein.  DT40 cell line studies could also be performed 

following cloning of the zebrafish protein to see if it can signal in a similar fashion to 

CLEC-2. 

 

6.3 Final thoughts 

During the course of this thesis, many new developments for a physiological role of 

CLEC-2 have been published.  While this does not directly influence the work in this 

thesis which has focussed on the downstream signalling pathway it does validate the 

importance of working on the receptor.  Unlike GPVI which has a well defined 

haemostatic role though its interaction with collagen, it seems that the major 

physiological role of CLEC-2 is in development through its interaction with podoplanin.  

This field of work is showing the importance of platelets not only as a means of 

preventing blood loss, but as a crucial cell required for the development of, and 

continued maintenance of the lymphatic system (Carramolino et al, 2010; Uhrin et al, 

2010).  Unpublished, ongoing work in our lab with a recently generated CLEC-2 knock-

out mouse has shown the mutation to be lethal, highlighting the importance of this 

molecule.  Furthermore, radiation chimeric mice have blood filled lymph providing 
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evidence for a continued role of CLEC-2 in the maintenance of the lymphatics in adult 

mice (Hughes, Pollitt, Finney and Watson, Unpublished). 
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I.1 The LAT-family of adaptor proteins 

The members of the family of LAT-like transmembrane adaptor proteins (TRAPs) are 

NTAL, LAX, PAG, LIME, TRIM and SIT (Figure I.1, adapted from (Horejsi et al, 

2004).  All of these family members are structurally related to LAT in that they have a 

short or limited extracellular domain, a transmembrane domain and a tyrosine-rich 

cytoplasmic tail.  LAT has nine tyrosine residues in its cytoplasmic tail which, when 

phosphorylated, enable LAT to act as a protein scaffold to several SH2 domain-

containing proteins including Gads, Grb2 and PLC2.  LAT also contains an inner 

membrane proximal CxxC motif which undergoes palmitoylation and thereby allows 

LAT to integrate into GEMs (glycolipid enriched microdomains, aka lipid rafts).  PAG, 

NTAL and LIME also have a CxxC motif proximal to the membrane which mediates 

their association with GEMs.  SIT, TRIM and LAX are not found associated with 

GEMs and lack this CxxC motif. 

 

Although LAT was first identified in T-cells, it is also found in platelets, NK cells and 

in B-lineage, but not mature B-cells, playing a role downstream of the pre-BCR (Jumaa 

et al, 1999; Minegishi et al, 1999; Pappu et al, 1999; Hayashi et al, 2000; Oya et al, 

2003; Su and Jumaa, 2003).  NTAL (Non-T-cell Activation Linker, also known as LAB, 

Linker for Activation of B-cells) is expressed in B-cells, NK and myeloid cells 

including mast cells.  It contains eight cytoplasmic tyrosine residues which allow 

association with Grb2 but not PLC or SLP-65 and SLP-76 downstream of the BCR or 

Fc receptor (Brdicka et al, 2002; Janssen et al, 2003).  PAG (Protein Associated with 

GEMs, also known as CBP, (CSK Binding Protein)), appears to be ubiquitously 
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expressed and contains nine cytoplasmic tyrosine residues, although the only clearly 

defined binding partner is Csk (c-Src Kinase).  It has been proposed that PAG is a 

membrane anchor for Csk, allowing it to phosphorylate and thereby inhibit Src family 

kinases (Brdicka et al, 2000; Kawabuchi et al, 2000).  LIME (Lck-Interacting 

Membrane Protein) is expressed in T-cells and contains five cytoplasmic tyrosine 

residues.  It has been shown to associate with Lck, Fyn and Csk.  Paradoxically, despite 

the association with Csk, Lck has been demonstrated to have increased activity when 

associated with LIME suggesting it is present in an active conformation (Brdickova et 

al, 2003; Hur et al, 2003). 

 

LAX (Linker for Activation of X cells (where X is an unidentified cell)) has been 

shown to be expressed in T- and B-lymphocytes.  It contains eight cytoplasmic tyrosine 

residues which are able to bind to Gads, Grb2 and PI-3kinase although it is unable to 

reconstitute T-cell receptor signalling in LAT-deficient Jurkat T-cells (Zhu et al, 2002).  

TRIM (T-cell Receptor Interacting Molecule) is expressed in T-cells where it forms a 

disulphide-linked homodimer.  Each monomer contains three cytoplasmic tyrosines and 

the only binding partner described so far is PI-3 kinase.  Over-expression of TRIM in 

Jurkat T-cells was shown to increase, by approximately two-fold, the levels of 

expression of the T-cell receptor on the cell surface and therefore the magnitude of 

TCR-mediated signalling (Bruyns et al, 1998; Kirchgessner et al, 2001).  SIT (SHP2-

Interacting TRAP) is expressed in T-cells where it forms a disulphide-linked 

homodimer.  Each monomer contains five cytoplasmic tyrosines which, following TCR 

mediated activation, allow binding of Grb2, SHP2 and Csk.  The association with SHP2 

and Csk suggests an inhibitory role and indeed this has been shown experimentally by 
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over-expression in Jurkat T-cells (Marie-Cardine et al, 1999; Pfrepper et al, 2001).  

Interestingly, SIT is the only member of this family with an N-linked glycosylation 

group, which is found in the small extracellular domain.  It has been proposed that this 

may be a binding site for an unidentified ligand although there is no direct evidence for 

this (Marie-Cardine et al, 1999). 
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Figure I.1 – Transmembrane adaptor proteins.  Adapted from (Horejsi et al, 2004). 


