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ABSTRACT

Understanding the rheology of colloidal suspensions is of significant importance for both

fundamental interest and practical applications. Many industrial processes and products

rely on either the stability of colloidal suspensions, such as in the foods, adhesives and

paints, or the aggregation of colloids out of suspension, such as for optical crystals. These

processes and products will inevitably experience external forces and understanding how

the colloidal suspensions will react to these external forces is very important to industry.

It is well established that the microstructure plays a key role in the rheological behaviour

of colloidal systems. The focus of colloid rheology has largely been on suspensions of

spherical colloidal particles, where the inter-particle interactions, which govern the mi-

crostructure, are isotropic. It would be of fundamental interest to study systems that are

able to produce more complex microstructure, and therefore potentially interesting rheo-

logical behaviours. Since the turn of the 21st century, advances in particle synthesis have

made available a variety of colloidal particles that involve anisotropic inter-particle inter-

actions due to shape and/or surface chemistry. Colloidal dumbbells offer an attractive

model system to advance our understanding of how the microstructure governs colloidal

rheology beyond the well-studied isotropic limit. In this context, we have investigated

systems of symmetric as well as asymmetric colloidal dumbbells, interacting via depletion

interaction, using Brownian Dynamics simulations.

We find that for dense suspensions of symmetric colloidal dumbbells interacting via de-

pletion, the aspect ratio, i.e. the length-to-breadth ratio, critically influences the shear

viscosity of the suspensions, which exhibit a non-monotonic variation with the aspect



ratio showing a minimum at an intermediate value. This non-monotonic behaviour be-

comes more pronounced as the effective packing fraction increases. We argue that the

non-monotonic variation of the shear viscosity with the aspect ratio is a manifestation of

translation-rotation decoupling. The suspension exhibits shear-thinning behaviour, which

we attribute to a microstructure arising from an alignment of the axis of the cylindrical

symmetry with the flow direction.

For asymmetric colloidal dumbbells, we exploit the size ratio and a hierarchy of inter-

actions between the lobes to promote self-limiting cluster formation upon gradual cool-

ing. The cluster fluid becomes more viscous as the fraction of colloidal particles forming

tetramers grows upon cooling. Under an external shear, we observe a strong shear thin-

ning behaviour, which is attributed to the disassembly of the clusters with increasing

shear rate. This study found that the shape and surface chemistry can be exploited to

form clusters in a controlled way to manipulate colloid rheology.

When the system of colloidal symmetric dumbbells is subject to a temperature quench, the

arrested structure is found to show local ordering that is sensitive to the aspect ratio. At a

lower aspect ratio, the system undergoes shear-induced crystallisation into a close-packed

structure, whereas at a high aspect ratio the system arrests into a gel-like structure.
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1. INTRODUCTION

1.1. Colloidal suspensions

Colloids are systems with particles in one phase dispersed in a continuous phase made

of constituents on a much smaller length scale [1]. A variety of colloidal systems exist,

depending upon whether the disperse and continuous phases are solids, liquids or gases.

Examples of this are emulsions such as milk, where a liquid is dispersed within a continuous

liquid phase; or gels, where a liquid is dispersed within a solid phase. In the terminology of

sol-gel transition, when solid particles dispersed in a liquid medium form a space spanning

network, one obtains a colloidal gel that ceases to flow and supports yield stress. In this

thesis, we focus on colloidal suspensions, where solid colloidal particles are dispersed in a

liquid phase. The size of the colloidal particles ranges roughly from 1 nm to 1 µm.

Figure 1: Image reproduced from Ref 2. An example of colloids imaged using confocal
microscopy. On the left is a hexagonal close packed colloidal crystal layer of PMMA
particles. On the right is an image of the same particles in fluid suspension.

Colloidal suspensions are of wide interest because of both fundamental and practical

reasons. It has been suggested by Poon [3] that “colloids made up of relatively large
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particles can behave in the same way as much smaller counterparts in the molecular

world; for some purposes, colloids behave as “big atoms””. This is one reason why colloid

science has been of such interest. Colloids can act like atoms, but have properties that

enable experiments, which cannot be done with atomic or molecular systems [4]. For

example, due to the size of colloidal particles, colloidal particles move on a much longer

time scale (seconds) than their molecular counterparts. As a result, the pathways for

crystallisation, and other interesting phase transitions, are much easier to study with

colloidal particles than in molecular systems. The size of colloids also make them easily

observed using optical microscopy [2], and are especially conducive for many applications

such as encapsulation and photonic materials.

There is great interest in the kinetic stability of this type of colloidal suspension in the

consumer goods industry. An increased kinetic stability can lead to longer shelf life of a

product, or a more robust product that can withstand transport and storage in different

conditions. This applies to a wide variety of goods in industry, including food, cleanliness

products, adhesives, paints etc. [5, 6].

Another interesting property of the system is to overcome the kinetic stability and bring

the colloids out of the continuous phase. The aggregation of the colloids can have many

applications including optical crystals, drug delivery systems and oil recovery [7–9]. Opti-

cal crystals utilise the controlled formation of colloids into crystal structures to propagate

light, whereas drug delivery and oil recovery both utilise the controlled aggregation of

colloids around a desired product to transport it to a target location before release.

With such sought after applications in industry, the comprehensive study of colloid suspen-

sions is of great importance. These products and applications would experience external
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forces during transport, storage and use, therefore, how the system reacts to an external

force is also vital to industry.

1.2. Colloidal interactions

One of the attractive features of colloidal suspensions is that the interactions between

the suspended colloidal particles are tunable. Understanding colloidal interactions is

critical to controlling the stability of colloidal suspensions. Colloidal interactions can be

manipulated to engineer the phase behaviour of colloidal suspensions [10], and also their

rheological properties [11]. The microstructure of colloidal suspensions, i.e. the spatial

distributions of the colloidal particles in suspensions, are influenced by the forces at play.

The ubiquitous presence of attractive van der Waals forces require colloidal suspensions

to be stabilised by invoking repulsive interactions. The London dispersion forces, due

to instantaneously induced dipoles in non-polar particles causing fluctuating attractive

forces, account for the ubiquitous presence of the van der Waals forces. In the case of

charge-stabilised suspensions, the surface of the colloidal particles acquires charges due

to the ionisation of the surface groups; the counterions dispersed in the medium satisfy

the electro-neutrality condition. The charge distribution around a colloidal particle in the

medium forms what is known as an electric double layer. Some of the counterions are

bound to the surface forming the Stern layer, with a diffuse layer carrying an excess of

charges of the same sign as the counterions, in close proximity to the surface but under

thermal motion. When the colloidal particles come close together, the double layers

around each particle start to interact, giving rise to a screened electrostatic repulsion.
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The effective screened electrostatic repulsion between a pair of spherical colloidal particles,

derived by Boris Derjaguin and Lev Landau [12], and independently by Evert Verwey and

Theodoor Overbeek [13], is given by

Urepulsion(r) =

[
Q exp(κR)

1 + κR

]2
exp(−κr)

4πεr
(1)

where Q is the charge of the colloidal particles, ε is the vacuum permittivity, R is the

radius of the spherical particles and r is the distance between the centres of the particles.

Here, κ is the inverse Debye screening length, which controls the range of the screened

electrostatic repulsion, in the limit of the Debye-Hückel approximation.

The interplay between the attractive van der Waals forces and the repulsive electrostatic

forces is what governs the stability of the colloidal suspension. One of the earliest theories

to explain this interplay in the interparticle interactions between colloidal particles is the

DLVO theory, named after the four authors who derived the expression for the electrostatic

force [12, 13]. The model potential derived from the DLVO theory, called the DLVO

potential, is given as

UDLVO(r) =

[
Q exp(κR)

1 + κR

]2
exp(−κr)

4πεr

− AH

12

[
4R2

r2 − 4R2
+

4R2

r2
+ 2 ln

(
r2 − 4R2

r2

)] (2)

The second term in the above expression is due to the attractive van der Waals interac-

tion, where AH is the Hamaker constant. Figure 2 shows the distance dependence of the

DLVO potential in a solid line, with the contributions from the repulsive and attractive

components separately in dashed lines. First, a potential minimum is present due to the
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strength of the van der Waals force at very short distances between the two particle cen-

tres. As the two particles move further apart, we observe a maximum that arises from

the dominating electrostatic repulsion as the van der Waals forces weaken. Often, at

even further centre-to-centre distances, a secondary minimum is observed as the electro-

static repulsion is generally short-ranged resulting in the van der Waals forces becoming

dominant once again. Eventually the two forces become negligible meaning there is no

interactions between the two particles, culminating in a potential energy of zero. The

height of the maximum indicates the stability of the colloidal suspension as the thermal

energy must be greater than the energy barrier, created by the maximum, for aggregation

of the colloidal particles to occur.

Figure 2: The DLVO potential as a function of the distance between two spherical
colloidal particles, r. The total potential energy (solid line) is derived from the
contributions from the screened electrostatic repulsion and attractive van der Waals
interactions (dashed lines).

Beyond the simple charge-stabilised colloidal interactions, there are a multitude of ways of

introducing additional tunable forces to the colloidal system. An example of an interaction

introduced to stabilise the colloidal suspension is steric repulsion. Short polymers are
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adsorbed onto the surface of the colloidal particles denying two particles from getting

close enough together for the van der Waals forces to overtake the electrostatic repulsion,

therefore causing an effective repulsion.

As well as controlling the repulsion between colloidal particles, attractive forces can be

introduced to these systems causing aggregation of the colloidal particles out of the contin-

uous solvent phase. One such attractive force comes from the addition of non-adsorbing

polymers to the colloidal suspension, which can be easily tuned to change the phase

behaviour of the system.

At a sufficient concentration and size of non-adsorbing polymer, the colloidal suspension

separates into a colloid-rich phase and colloid-poor phase [14]. Assuming the polymers are

small, relative to the colloidal particles, an exclusion zone is created around the surface

of the large colloidal particle. This exclusion zone is where the centre of mass of these

polymers cannot penetrate, decreasing the entropy of the system due to the restriction to

where the polymers can move.

The large colloidal particles in the system can approach each other causing their exclusion

zones to overlap, resulting in a reduction of the total exclusion zone in the system, allowing

the polymers more space to move freely. The increase in free space creates an increase

in entropy, meaning the overlapping of exclusion zones is favourable to the system. This

favourable interaction promotes the attraction of the colloidal particles in the system,

pulling them out of suspension and leading to aggregation. This interaction has been

called the “depletion flocculation” or “depletion attraction”. The interaction has gone

on to be integral in food stuffs, pharmaceuticals, paints and other industrial products. A

simple graphical representation for this interaction is shown in Fig 3.
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Figure 3: Image reproduced from Ref 3. Showing colloids in green, polymers in blue, the
exclusion zone in grey and the overlap of exclusion zones in red.

Early observations of this attractive interaction were first documented by Asakura and

Oosawa [14], with the early model named after them, the Asakura-Oosawa Model. The

interaction was also independently documented by Vrij [15]. The colloidal particles are

modelled as hard spheres of diameter σC and the polymers as soft spheres with the

diameter derived from the radius of gyration, σP = 2Rg.

UCC(rij) =


∞, if rij < σC

0, if rij > σC

(3)

UCP (rij) =


∞, if rij < (σC + σP )/2

0, if rij > (σC + σP )/2

(4)

With the colloidal particles being hard spheres, the colloid-colloid potential, UCC(rij), and
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colloid-polymer potential, UCP (rij), are simple repulsive potentials with infinite repulsion

at the point of surface-to-surface contact. There is no potential energy when the particles

are not touching. The polymers in the Asakura-Oosawa model are soft spheres, allowing

them to pass freely through each other.

In this early model, only the entropy of the system through packing made an impact on

the phase behaviour observed for the colloid-polymer mixture. It was seen later that the

polymers can be integrated out from the model to produce an effective potential between

the colloids [16]. With a large enough difference in the size ratio between the colloids and

polymers in a mixture [17], the colloid-colloid interaction can be described by

1

kBT
Ueff (r) =− π

6
σP ζP

(
1 +

σC
σP

)3[
1− 3r

1 + σP

+
2r3

2(1 + σP )3

]
, σc < r < σc + σP

(5)

where ζP is the fugacity which governs the control of the concentration of the polymers

in the solution, given by

ζP = Λ−3P exp
( µP
kBT

)
(6)

where Λ−3P is the de Broglie wavelength and µP the chemical potential of the polymers.

Following the hard sphere colloid prescription of the early model, the effective colloid-

colloid potential goes to infinity in the r < σC regime and is zero in the r > σC +

σP regime. Although the Asakura-Oosawa model, including the effective potential, is a

decent approximation of the depletion attraction seen in the hard sphere colloid-polymer

system, the discontinuous nature of the model makes it a bad approximation for the vast

majority of real colloidal systems. A continuous, empirical potential is better suited for
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our purposes.

Alongside the Asakura-Oosawa model, which provides a widely used theoretical descrip-

tion of the effective potential due to depletion, the Morse potential and generalised

Lennard-Jones potential have also been used to provide an empirical description of deple-

tion or more generally short-ranged attraction [18, 19]. For the body of the work presented

in this thesis, dumbbell-shaped colloidal particles are represented using two sites held in

a rigid framework and we used the generalised Lennard-Jones (GLJ) potential to describe

the effective interaction between the sites. The GLJ potential will be described in detail

in chapter 2.

The depletion attraction can be tuned via the size and concentration of non-adsorbing

polymers in the system [20]. The size of the polymer is not always directly linked to the

polymer chain-length but often described by the effective radius of the polymer, called

the radius of gyration. The radius of gyration of a polymer, Rg, is defined as the root

mean square of the distance of every monomer in the chain coil from the polymer’s centre

of mass.

The centre of the polymer, according to its radius of gyration, cannot penetrate the

exclusion zones and so a larger radius of gyration means there would be a larger exclusion

zone around the colloidal particles. A greater area of exclusion translates to a larger range

in which the exclusion zones of two colloidal particles would overlap. Therefore, a larger

radius of gyration would result in a larger range for the attractive interactions between

the colloidal particles in the system to occur.

The concentration of polymers in the system would increase the strength of the attractive

interactions between colloidal particles. With a larger number of polymers, the gain of
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free space when the exclusion zones overlap would affect more polymers and, therefore, it

is ever more favourable for the colloidal particles to come together. In essence, an increase

in concentration of non-adsorbing polymers would result in an increase in the strength of

the attractive interactions between the colloidal particles in the system.

1.3. Colloid rheology

1.3.1. Hard sphere colloids

Rheology is the study of the flow of matter, or how matter deforms when forces are

applied to them. An ideal liquid is purely viscous and an ideal solid is purely elastic [11].

By measuring the stress and strain experienced by materials, it is possible to quantify

the viscosity (for liquids) and elastic moduli (for solids). However, a soft material is

rarely ideal on either end of the spectrum. Soft matter exhibits both viscous and elastic

properties, making them viscoelastic materials. Colloidal suspensions, as prototypical soft

matter, can exhibit rich viscoelastic behaviour when an external force is applied to them.

It is well documented that the microstructure of the colloidal system affects the rheology

[21–25]. However, it is still not completely understood exactly how the microstructure

affects the rheology. Thus, it is vital to understand the microstructure of the systems we

study and how the microstructure changes with different system parameters as well as

under shear.

Colloidal suspensions, with their tunable interparticle interactions, exhibit rich phase

behaviour and provide model systems to study the mechanisms of phase transitions [10].
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A system of hard-sphere colloids, with no attractive interactions between the colloidal

particles, exhibits one of the simplest phase diagrams. The phase diagram has a fluid

phase and a crystal phase with a coexistence region [26], as shown in Figure 4. The

region of coexistence has been of great interest in the field [26–28].

Figure 4: Phase diagram of a hard-sphere colloidal suspension, involving a fluid (F)
phase and a crystal (C) phase and a region of coexistence of both fluid and crystal.

A key parameter in rheology is the viscosity of the system. In the spherical regime,

Einstein [29] calculated the effective viscosity, η, of a system of hard spheres in dilute

suspension. It was observed that the viscosity of the system increased linearly with the

increase in volume fraction, φ, of the spheres. The relationship was given as

η = η0(1 +
5

2
φ) (7)

where η0 is the viscosity of the solvent that the hard spheres are suspended in.

More than half a century later, Batchelor and Green [30] published a theory to determine

the bulk stress of hard spheres in a semi-dilute suspension. From the bulk stress they
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calculated the viscosities and found a different relationship as a function of volume fraction

compared to the dilute suspensions, given as

η = η0(1 +
5

2
φ+ 5.2φ2) (8)

This relationship was calculated in the absence of Brownian motion. The random dis-

placements felt by the hard spheres, due to the solvent when Brownian motion is taken

into account, produce a slightly different relationship [31], given as

η = η0(1 +
5

2
φ+ 6.17φ2) (9)

The rheology of hard-sphere colloid suspensions has been extensively studied [27, 28, 32].

Petekidis et al. [27] studied the behaviour at a volume fraction of colloidal particles near

the region of coexistence. Specifically, their work focused on investigating colloidal glasses

under stress. It is reported that these colloidal glasses in hard-sphere systems have a finite

yield stress and recover elastically from applied shear [27].

When shear is applied, the viscosity of a Newtonian (pure) fluid is independent of the

rate of shear. However, in a viscoelastic system, shear thickening and thinning behaviours

can be observed; where the viscosity increases (dilatant fluid behaviour) or decreases

(pseudoplastic behaviour), respectively, as increasing shear is applied, as seen in Figure

5. Often these non-Newtonian behaviours are observed when a yield stress is exceeded.

Yield stress being an amount of stress needed to be exceeded for a irreversible change in

microstructure, called plastic deformation, to occur.
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Figure 5: Image reproduced from http://polymerdatabase.com/, accessed April 2018.
shear rate dependence of viscosity in three systems. A Newtonian fluid, dilatant fluid
(shear thickening behaviour) and a pseudoplastic (shear thinning behaviour).

The flow behaviour of colloidal suspensions is important for a variety of industrial ap-

plications. For example, in the concrete industry, if the concrete mixture is too shear

thickening, the speed at which one can transport or apply the concrete will be limited to

the point at which the concrete becomes too viscous to move efficiently. It is therefore of

interest to monitoring and control the shear thickening behaviour for optimal performance.

Another example is ketchup and other bottled condiments, where the rheology of the

product needs to be optimised. An optimal rheological behaviour allows only a small

amount of shear stress to exceed the yield stress and cause shear thinning behaviour for

the product to flow out of the vessel, but also ensures that the shear thinning behaviour

is weak enough such that for the product does not become too runny and come out too

fast. Effectively controlling shear thinning and thickening behaviour is clearly of much

importance.
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In recent work, Guy et al. [28] investigated the rheology of suspensions of hard-sphere

particles as their size was varied. In particular, they were interested in the intermediate

size regime of 1 µm to 50 µm, pushing past the colloidal size regime. It was shown that

the transition from colloidal to granular flow in colloidal hard spheres was caused by shear

thickening.

Wagner and Brady studied the shear thickening behaviour of colloidal suspensions [22],

using Stokesian Dynamics simulations. According to this study, the system shows New-

tonian behaviour at very low shear rates, shear thinning at intermediate shear rates and

shear thickening at high shear rates.

Figure 6: Image reproduced from Ref 22, showing how the viscosity of the system
changes as an increasing shear rate is applied. The hypothesis of microstructure relating
to the behaviour is given in a cartoon representation.

The hypothesis that Wagner and Brady put forward is shown schematically in Figure

6. According to this hypothesis, the Newtonian behaviour is caused by an equilibrium

microstructure, where the stochastic and interparticle forces are in balance with random
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collisions among particles that make the system resistant to flow [22]. When the shear

rate is increased, the particles rearrange themselves into layers orthogonal to the shear-

gradient direction, making the flow easier and decreasing shear viscosity. However, at

high shear rates, the hydrodynamic interactions between the particles become dominant

over stochastic forces, leading to the formation of the so-called hydroclusters. Due to these

transient density fluctuations, flow is hindered and a rise in shear viscosity is observed.

This hypothesis was subsequently backed up by experimental imaging of the microstruc-

ture during shear by Cheng et al. [25]. However, more recently, a computational study by

Xu et al. has suggested that the shear thinning behaviour is driven by structural changes

at the pair level, as opposed to layering [23].

1.3.2. Attractive colloids

The addition of non-adsorbing polymers to a colloidal suspension can lead to phase be-

haviour of great complexity. An assortment of different phase behaviours can be observed

depending on the relative sizes between the colloid and polymer, the concentration of each

or even the starting conditions of the system [10]. For a set size of colloidal particle, large

polymers show a phase diagram akin to an atomic system with an area of three-phase

equilibria (gas + liquid + crystal) [33], whereas, small polymers show a phase diagram

closer to a protein system with a metastable liquid-liquid area and two-phase coexistence.

The concentration of polymer effectively represents inverse temperature. This can be seen

in Figure 7, where the diagrams are inverted compared to phase diagrams of atomic and

protein systems against temperature.

In 1992, Lekkerkerker et al. [33] employed a statistical mechanical model, which uses a
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Figure 7: Image reproduced from Ref 10. Phase diagrams of one colloid size with large
polymers on the left and small polymers on the right. The shade area on the left shows
the region of three-phase equilibria.

van der Waals mean field-approximation, to calculate the phase behaviour and show the

existence of the three-phase equilibria in systems with long-range attraction, i.e. large

polymers. At the time, two-phase coexistence had been observed experimentally [34]

but no work had shown the three-phase. Only around a decade later, Pusey et al. [4]

and Calderon et al. [35] were able to independently observe the three-phase coexistence in

experiment. Recently, Sabin et al. [36] also gave experimental evidence for the phenomena.

There are other unexpected phase behaviours that the colloid-polymer system can exhibit.

For instance, in a recent study by Feng et al. [37], experimental and theoretical evidence

was given for re-entrant solidification phase behaviour of a 2D system. For a readily used

colloid-polymer system [38–40], the polymers were non-adsorbing at lower temperatures

but actually became weakly adsorbing as the temperature of the system was increased.

When the polymers are non-adsorbing the crystallisation via the depletion attraction was
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observed as expected. As the temperature was increased, the crystal melted, again, as

expected. However, past a critical temperature, the polymers became weakly adsorbing

and bridging between colloids observed flocculation of the colloids. The flocculation was

reversible, which means if the system is cooled slowly, there is potential for using two

different colloid materials and performing staged aggregation. The paper was limited to

a 2D study but the researchers stated that the nature of the interactions, and therefore

phase behaviour, are general so “could be readily applied to three dimension” [37].

A number of studies both experimental and theoretical have been conducted on the colloid-

(non-adsorbing)polymer mixture, showing the presence of complex states such as the

glassy state and the gel phases [41, 42]. Investigating the rheological properties of vis-

coelastic materials can give information on these microstructures formed, which can be

very important for foods, like gel formations in yogurt-based foods [5], and other com-

mercial products. Studying the effect of the parameters of a system on its rheological

behaviour would be invaluable in designing novel soft materials for use in industry.

A number of experimental studies on the rheology of the colloid-polymer system have

been undertaken [43–46]. Marzi et al. [43] studied a system opposite to the traditional

colloid-polymer system, where small colloidal particles are added to large soft polymers.

Rich behaviour is observed as the concentration of the small colloidal particles added

is increased. At a high density of polymer, the addition of colloids cause the melting

of a repulsive glassy state. Reentrant solidification is observed as the concentration of

depletant is further increased, similar to that of the study by Feng et al. [37] With the

polymer-induced depletion of the colloid suspension, a repulsive glass forms, melts and

then the polymer becomes weakly-adsorbing to form an attractive glass microstructure.
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In the case of the polymer suspension, addition of the colloid depletant causes melting of

the repulsive glass, and eventually the increase in total concentration counteracts the loss

in repulsion and a repulsive glassy state is reformed. At sufficiently high concentrations

of depletant, the strong attractive contribution eventually overcomes the repulsive glass

to form an attractive glass. Marzi et al. [43] explain this reentrant behaviour in terms of

an interplay between structural arrest and phase separation.

Another interesting rheological behaviour of the colloid-polymer system was studied by

Harich et al. [44]. They found that as a gel formed from the polymer-induced depletion

of a colloid suspension, dense “debris” gathered on top of the gel. If the debris was heavy

enough, it would fall through the gel and cause a rapid gravitational collapse of the gel.

They posit that identifying the origin of this debris would be key in fully understanding

colloidal gels.

Extensive experimental work was done by Laurati et al. [46] on the colloid-polymer system

at intermediate colloid volume fraction. By tuning the attractive interaction, they were

able to locate the gelation boundary for the system. Using microscopic techniques, it

was shown that the liquid phase, upon approaching the gelation boundary, started to

cluster and form a space-spanning network [46]. Once the gelation boundary was crossed,

a colloidal gel was formed. Laurati et al. [46] showed the data was consistent with mode-

coupling theory predictions of the rheology of the system.



19

1.3.3. Axisymmetric colloids

Unlike spherical particles, which have a shape such that every axis has the same dimen-

sions, axisymmetric particles are symmetric in two dimensions with the third principle

axis being different. The particles are commonly described using an aspect ratio parame-

ter, L∗, that compares the length of particle along the principle axis with the dimensions

of the particle in the other two axes. Axisymmetric particles cover a wide variety of shapes

such as ellipsoids, rods, dumbbells etc. The anisotropy of these types of particles have

been used as models for rod-like micro-organisms from as early as the 1940’s by Onsager

[47] and have continued to be studied in more recent research [48, 49]. The shape of

these particles introduce shape anisotropy into the system, leading to novel behaviours

moving away from the well studied spherical regime. The equilibrium phase behaviour

shows many interesting phases appear due to the shape anisotropy of the axisymmetric

particle.

Frenkel et al. [51] studied hard ellipsoid particles in simulation and observed the exis-

tence of plastic crystalline and nematic liquid crystalline phases. The phase behaviour

seemed to be equivalent in both prolate and oblate ellipsoids. A decade later, a compu-

tational study of spherocylinders (elongated bodies similar to prolate ellipsoids) revealed

a smectic-A liquid crystalline phase alongside the phases shown in the previous study

[50]. The phase behaviour was studied more recently in experiment using confocal laser

scanning microscopy with small angle X-ray scattering on colloidal silica rods, confirming

the existence of the unique phases found in the computational studies and also revealing

that both the smectic-B phase appears alongside the -A phase at high densities [52].
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Figure 8: Image taken from Ref 50. This phase diagram of hard spherocylinders probes
a range of densities against the elongation of the spherocylinder particles. There is the
isotropic (I), plastic crystal (P), nematic (N) smectic (Sm) and closed packed solid (S)
phases along with coexistence regions.

Under the presence of an external shear flow, suspensions of spherical colloidal particles

generally exhibit a shear thinning behaviour with a sudden onset of shear thickening past

a critical shear rate [22]. Leal and Hinch [53] demonstrated that even a small presence

of shape anisotropy deviating from the spherical form can have a significant effect on

the rheological behaviours of the system. From more than a century ago, it has been

observed that elongated axisymmetric particles have complicated behaviours under shear

flow compared to the spherical equivalent [54, 55]. Jeffery [55] solved the equations of

motion for a small neutrally buoyant axisymmetric particle under a simple shear flow in

the absence of fluid and particle inertia. Within those system conditions, Jeffery found

that the particle rotates on infinite degenerate orbits coined “Jeffery orbits”; he speculated

that the degeneracy would not last in a system with fluid and particle inertia and that

the particle would settle on an orbit corresponding to the least energy dissipation. Soon
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after the work was published, it was shown experimentally that an axisymmetric particle

under shear flow adjusted through many Jeffery orbits until it eventually settled to a final

optimum orbit of minimum energy dissipation [56]. A prolate particle would settle into a

log-rolling orbit where the elongated principle axis of the particle is sitting perpendicular

to the shear plane and the particle is rotating in the shear plane. An oblate particle

would settle into a tumbling orbit where the flattened principle axis of the particle is

sitting parallel to the shear plane and again the particle is rotating in the shear plane.

Although these findings confirmed Jeffery’s hypothesis that the particle would settle on

the orbit corresponding to the least energy dissipation, it was observed much later both

experimentally and theoretically that dumbbell shaped particles preferred to settle on the

orbit of maximum energy dissipation, tumbling, when fluid inertia was present [57]. This

work was focussed on suspensions in newtonian fluids however work has also been done

on the dynamics of axisymmetric particles in non-newtonian fluids [58–60]. It has been

observed numerically that a prolate particle suspended in a non-newtonian fluid settles

on a log rolling orbit at weak shear flows and shifts to aligning in the flow direction and

not rotate at higher shear rates [60].

The rheological behaviour of near-spherical spheroids have been studied by Leal and

Hinch [53]. They focus their study on the effect of Brownian motion on the rheology

of the spheroids and calculate the bulk stress of the system in a wide parameter space,

varying aspect ratio and shear rate. In steady and oscillatory shear flow, they observed

shear thinning behaviour that increases on increasing the rate of flow and/or frequency

of oscillation. This work was soon accompanied by the extensive work of Brenner [61],

who studied the rheology of dilute suspensions of rigid, axisymmetric particles. Again,

this work observes shear thinning behaviour.
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1.3.4. Colloidal dumbbells

Here we discuss the rheology and phase behaviour of a specific dumbbell-shaped axisym-

metric particle as a particularly interesting system to study and the focal point for this

thesis. A primary reason to focus study on a colloidal dumbbell particle system would be

the relatively recent advances in the synthesis of the particle type. Several studies reveal

simple techniques to fabricate dumbbell particles with varying lobe dimensions and sur-

face chemistry in a controlled manner [62–65]. An important advance is in the formation

of dumbbell particles in a mono-disperse manner which makes the transfer of observation

between our one-component computational studies and experiment much easier. Chu

et al. [64] demonstrated the mono-disperse synthesis of dumbbell-shaped microgels which

are stabilised by electrostatic screening vis adding salt to the aqueous suspension, the

mono-dispersity is shown in Figure 9.

Figure 9: Image taken from Ref 64. Demonstrating the mono-dispersity of the
fabrication of polystyrene core, dumbbell-shaped microgels.
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The shape anisotropy that the colloidal dumbbell particle introduces give rise to inter-

esting microstructures. The phase behaviour of this system has been well studied using

Monte Carlo simulations [66–68]. Dense suspensions of these particles transition into a

plastic crystal regime in the near-spherical limit with an aspect ratio of less than 0.4,

where an aspect ratio of 0 denotes a spherical particle. The nucleation process of the

plastic crystal phase has been studied by Marechal and Dijkstra [68]. At higher aspect

ratios, the plastic crystal phase is lost and instead we get direct transitions from fluid to

closed packed regimes. An example of the phase diagram is given in Figure 10.

Figure 10: Image taken from Ref 68. There is the fluid, plastic crystal (PC) and the
close packed (CP) phases along with coexistence regions. The diagram probes a range of
reduced densities (ρ∗) and packing fractions (Φ) against how elongated the dumbbells
are (L∗)

Heptner and Dzubiella [69, 70], studied colloidal dumbbells using Brownian dynamics,

focusing their study on the near-spherical regime, at packing fractions that would produce

the plastic crystal phase behaviour. The equilibrium study showed that the orientational

diffusion of the particles is heavily affected by the increase in anisotropy of the dumbbells,

i.e. the elongation [69].
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Heptner et al. also studied the rheological behaviour of a symmetrical dumbbell system

under oscillatory shear [70]. The phase transitions due to the external flow are similar

to that of the hard sphere system, however the pathway is different. In the spherical

system a shear-twinned FCC regime is observed at low strain, which transitions continu-

ously to a regime of sliding HCP layers. In the dumbbell system this transition becomes

discontinuous, with an intermediate disordered phase. Heptner et al. [70] attributes this

difference in nature of the transitions to rotational-translational coupling and say this is

a path that requires further study. It was also suggested that this coupling is the reason

a sharp increase in the linear shear response above an aspect ratio of 0.15 is observed,

despite the shape anisotropy of the system having little impact on the translational and

rotational diffusion of the particles [69].

The rheological behaviour of soft dumbbells have been studied in the soft FENE (Finitely

Extensible Nonlinear Elastic) dumbbell model and similar bead-spring models. Dlu-

gogorski et al. [71] studied the FENE model and a generalised LJ model under steady

shear and observed shear thinning behaviour much like the spherical system. The differ-

ence from the spherical system was that the onset of the shear thinning behaviour was

delayed to higher shear rates in the dumbbell model. They suggested that the dumbbells

behaved more elastically than the spherical system.

Sultan et al. [72] also used the FENE dumbbell model to study the rheology of polymers.

They used FENE dumbbells in a standard DPD fluid to show that you can study macro-

scopic and mesoscopic scales simultaneously when using DPD. The study was mainly to

prove the methodology but some rheological characteristics of the dumbbells were shown,

in which they observed that the viscosity of the system decreased as the rigidity of the
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connecting rod was increased. The viscosity of the system increased when the maximum

extension of the rod was increased. As a proof of their methodology they also showed, as

known previously, that as you increase the polymer fraction (fraction of dumbbells) the

onset of turbulence in the Couette flow was delayed to higher shear rates.

Townsend and Wilson [73] studied a bead-spring using two different spring models,

Hooke’s law and the FENE model. They tested this system using small and large am-

plitude oscillatory shear. Again, this study was mainly to test the applicability of their

methodology of using Stokesian Dynamics to mimic the viscoelasticity of a polymer fluid.

Much like in the work of Dlugogorski et al. [71], at large amplitude strain, the fluid showed

shear thinning behaviour.

A couple of studies by Mandal and Khakhar [74, 75] have looked at the granular flow

of inelastic dumbbell particles down a inclined plane with a rough surface both in two

and three dimensions. Using this incline plane they studied both shear flow and chute

flow, where chute flow includes gravity in the system. When looking at chute flow, they

found that at the near-spherical limit the mean velocity of the dumbbells were slightly

higher than for the spherical system due to the loss of symmetry and therefore local

crystallisation. As the aspect ratio is increased further the mean velocity decreases greatly.

When observing shear flow, they found the flow was homogeneous aside from wall effects

and that increasing the aspect ratio resulted in an decrease in shear stress and pressure

up to 1.4 (where 1 = sphere), beyond which they increased.
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1.4. Thesis aim

In this context, the aim of this thesis was to investigate the rheological behaviour of sus-

pensions of colloidal dumbbells interacting via depletion attractions, to understanding the

effects of shape anisotropy on the rheological properties of the suspensions in connection

with their microstructures so that the rheological behaviour can be controlled. To this

end, we studied suspensions of symmetric as well as asymmetric colloidal dumbbells, using

computer simulations. The objectives were as follows:

1. to investigate the effects of shape anisotropy on the rheological behaviour of sus-

pensions of colloidal dumbbells and analyse the microstructures;

2. to establish design principles for self-limiting cluster formation to explore the effects

on the rheological properties;

3. to explore routes to form colloidal gels in the presence of shape anisotropy.
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2. METHODOLOGY

2.1. Model

We employed a one-component description that is traditionally used to model colloidal

suspensions [76]. In this implicit-solvent representation, the solvent degrees of freedom are

projected out and a pairwise additive effective potential is used to describe the interaction

between colloidal particles. We considered colloidal dumbbells by treating them rigid

bodies, each comprising two spherical lobes with interaction sites located at their centres.

In our model, the effective potential between a pair of dumbbells is then given by the

sum of site-site interactions, which, in turn, is described by the empirical generalised

Lennard-Jones potential [19].

2.1.1. The generalised Lennard-Jones potential

The generalised Lennard-Jones potential between two spherical particles at a separation

rij is given by

UGLJ(rij) = 4ε

[(
σ

rij

)2n

−
(
σ

rij

)n]
. (10)

The widely used Lennard-Jones potential corresponds to (10) with n = 6. The potential

has a repulsive term, corresponding to a softer core, and an attractive term. Here, ε is

the depth of the well potential and represents the strength of the interaction, and σ is

the distance between the two particle centres at which the potential is zero. Although

the potential does not have a hard-sphere diameter, σ does provide an estimate of the

diameter for the repulsive interaction to become dominant at distances less than σ. The
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exponent n controls the range of the potential. In our simulations, the length and energy

are expressed in the units of σ and ε, respectively. The reduced units are discussed further

in section 2 2.4.
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Figure 11: The generalised Lennard-Jones potential for two values of the exponent:
n = 6 and 24.

The Lennard-Jones potential is known to well describe the interactions between two inert

gas atoms, and is extensively used in computer simulations of atomic and molecular

systems. Figure 11 shows the generalised Lennard-Jones potential for two values of the

exponent: n = 6 and n = 24. It is evident that the range of the potential becomes shorter

as the exponent n increases with as shift in the distance at which the minimum occurs to a

lower value. For n = 6, the potential is fairly long-ranged (approaching zero beyond 2.5σ

with the minimum of the well at roughly 1.12σ), and therefore inadequate to describe

the effective interaction between a pair of colloidal particles, which is short-ranged as

compared to their diameters. In contrast, for n = 24, the potential has a much shorter

range with the minimum occurring at roughly 1.04σ and the potential energy becoming
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nearly zero at 1.3σ.

In our studies, we opted to use the generalised Lennard-Jones potential, mostly with the

exponent n = 24, to describe the effective interactions between colloidal particles when

depletion attractions are at play. In case, any other exponent value was used, this will be

explicitly mentioned.

2.1.2. Colloidal dumbbells

The colloidal dumbbells under consideration are represented as rigid bodies, each com-

prising two spherical lobes with interaction sites, which we label A and B, located at their

centres. The site-site interaction is given by the generalised Lennard-Jones potential, so

that the potential energy due to the interaction between two dumbbells is given by

Uij =
B∑

a=A

B∑
b=A

4εab

[(
σab
rab

)2n

−
(
σab
rab

)n]
(11)

where n is the generalised Lennard-Jones exponent, σab and εab are the Lennard-Jones

parameters for the interaction between site a and site b belonging to dumbbell i and

j, respectively, and rab is the corresponding site-site separation. The spherical lobes

may differ in size and/or surface chemistry. In the case of symmetric dumbbells, any

two interaction sites have identical Lennard-Jones parameters: σAA = σBB = σAB = σ;

εAA = εBB = εAB = ε. We we used n = 24 for the range of interaction to be sufficiently

short to describe depletion interaction.

It is important to note here that σ represents the pair separation at which the generalised
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Lennard-Jones pair potential goes to zero. So, strictly speaking, σ does not represent the

diameter of the spherical lobe. For a purely repulsive isotropic potential v(r), an effective

diameter d can be given, following the prescription of Barker and Henderson [77], by

d =

∫ ∞
0

(
1− e−v(r)/kBT

)
dr, (12)

which yields the hard-sphere diameter for the hard-sphere potential. For the generalised

Lennard-Jones potential with a relatively large value for the exponent n, the effective

diameter is very close to σ. In the present study, the effective diameter d was taken to be

σ as an approximation. For the symmetric dumbbells, the two spherical lobes have the

same effective diameter, with their centres separated along the dumbbell axis by a distance

L, as shown schematically in Figure 12. The aspect ratio of the dumbbell is denoted as

L∗, and is defined by L∗ = L/σ. L∗ = 1 represents a dumbbell with two spherical lobes

touching each other; for 0 < L∗ < 1, we have dumbbells where the spherical lobes are

fused; the spherical limit is reached at L∗ = 0. L∗ thus provides a measure of shape

anisotropy.

Figure 12: A symmetric colloidal dumbbell modelled as a rigid body, comprising two
equal-size spherical lobes with the interaction sites located at their centres separated by
a distance L. Here, σ is the Lennard-Jones length parameter, which is approximately
equal to the effective diameter of each lobe.



31

The packing fraction for a colloidal suspension is the fraction of the volume that the

colloidal particles themselves occupy while suspended in a liquid. In a one-component

description with implicit solvent, the packing fraction is essentially the ratio of the volume

that all the colloidal particles taken together occupy to the volume of the simulation box,

i.e. φ =
Vp
V

. For a system of monodisperse spherical colloidal particles having diameter

σ, the packing fraction is φ =
πN

6V
. In the case of symmetric dumbbells, each comprising

two spherical lobes of effective diameter σ, the packing fraction can be given by

φα =
πNα

6V
, (13)

where α is a geometric factor, which takes into account any overlap as L∗ varies between

0 and 1:

α = 1 +
3L∗

2
− L∗3

2
(14)

For L∗ = 0, α = 1 recovering the spherical limit; α = 2 when L∗ = 1, corresponding two

touching spheres of the same size.

For the asymmetric colloidal dumbbells that we considered, the two spherical lobes are

only touching, but have different sizes and surface chemistry. We set σAA = 1 and

εAA = 1 with the length and the energy reduced by σAA and εAA, respectively. Our

attempts to simulate a system of asymmetric dumbbells, where the second lobe has an

effective diameter of σBB < 1, suffered from issues due to numerical instability while

running the Brownian Dynamics simulations. In our model, the second lobe therefore

has larger effective diameter, i.e. σBB > 1. For the asymmetric dumbbells with touching,
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rather than fused, spherical lobes, the packing fraction is given by

φ =
πN(σ3

AA + σ3
BB)

6V
(15)

We used only touching spheres for our asymmetric dumbbells for a simpler model with

fewer parameters, thus also simplifying the calculation of the packing fraction.

2.2. Basin-Hopping global optimisation technique

Figure 13: A schematic representation, illustrating how the basin-hopping global
optimisation technique reduces the potential energy surface to a set of basins. Image
was taken from the user manual of GlOSP [78].

The basin-hopping global optimisation technique is a well established method for search-

ing the potential energy surface and optimising the structure of finite cluster systems

[79–82]. In this algorithm, one starts with an arbitrary configuration, which when sub-

jected to local minimisation, gives the current minimum. In a basin-hopping step, a new

configuration is generated by randomly displacing the translational and rotational coordi-

nates of the particles, and this configuration is subjected to local minimisation to obtain
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a new minimum. The proposed step from the current minimum to the new minimum is

accepted or rejected based on the Metropolis acceptance criteria [83], using a fictitious

temperature. The technique relies upon a hypersurface deformation method, which effec-

tively reduces the potential energy surface (PES) to a set of minima, without changing

their energies from the orginal PES, as depicted in Figure 13. If the basin-hopping step is

accepted, the new minimum becomes the current minimum for the next step, otherwise

the current minimum remain unchanged. In a basin-hopping run, this is repeated for a

set number of steps and certain number of low energy minim visited during the run are

saved to obtain the global minimum as the lowest lying minimum on the PES. A benefit of

the basin-hopping technique, as opposed to a Monte Carlo algorithm for thermodynamic

sampling, is that the step size that is utilised can be much bigger and the detailed balance

need not be obeyed. Since the objective is to explore the PES, large step sizes are indeed

used.

2.3. Brownian Dynamics simulations

2.3.1. Brownian Dynamics for spherical particles

Brownian Dynamics (BD) is a useful technique to observe the rheological behaviour of

colloidal dispersions. The colloidal particles are much larger than the suspending fluid

molecules, meaning the dynamics of the fluid can be reduced to a random force acting

on the dispersed particles. BD is derived from the Langevin equation (eq. (16)) at the

overdamped limit where inertia isn’t taken into account, meaning the R̈̈R̈R(t) term vanishes

(eq. (17)). The following methodology takes reference from the text book “Computer
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Simulation of Liquids” by Allen and Tildesley [84].

R̈̈R̈R(t) = FFF I(t)/m+FFF S(t)/m− ζṘ̇ṘR(t) (16)

FFF I(t)/m+FFF S(t)/m− ζṘ̇ṘR(t) = 0 (17)

where m is the mass of the particle, RRR(t) is the position of the particle at time t, FFF I(t) is

the interparticle force experienced by the particle, FFF S(t) is the stochastic force implicitly

modelling the Brownian motion of the particle due to the solvent, and ζ is the friction

coefficient.

The overdamped Langevin equation can be rearranged (eq. (18)) to calculate the velocity

of the particles in the system. This equation can be used to calculate the displacement a

particle experiences over a set time period, ∆t.

Ṙ̇ṘR(t) = (FFF I(t) +FFF S(t))/mζ (18)

The propagation of a particle over a time step, ∆t, is defined by

RRR(t+ ∆t) = RRR(t) + (FFF I(t) +FFF S(t))∆t/mζ

ζ = kBT/mD0

(19)

where D0 is the diffusion coefficient of a sphere at infinite dilution and kB is the Boltzmann

constant.
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The stochastic force, FFF S(t), has an average value of zero,

〈
FFF S

〉
= 0 (20)

where
〈
.....
〉

denotes an average over time. The stochastic force also has no correlation in

time, 〈
FFF S(0)FFF S(t)

〉
= λδ(t) (21)

where λ defines the strength of the random force and δ(t) is a Dirac delta function. The

Dirac delta function denotes the virtually instantaneous decay in the auto-correlation

function which occurs due to the suspending fluid fluctuations occurring at a much faster

timescale than the Brownian particle. Effectively, the Dirac delta function in time implies

that there is no correlation between impacts at any two distinct times.

The strength of the stochastic force, λ, can be determined from the mean squared velocity

of the system. First we use the formal solution for the Langevin equation

Ṙ̇ṘR(t) = e−t/τ
S(
Ṙ̇ṘR(0) +

1

m

∫ t

0

dτet/τ
S

FFF S(τ)
)

(22)

where τ s is the relaxation time of Brownian motion.

We can square equation (22) and take the ensemble average [85]

〈
Ṙ̇ṘR2
〉
e2t/τ

S

= Ṙ̇ṘR2(0) +
2

m

∫ t

0

dτet/τ
S〈
FFF S(τ)

〉
+

1

m2

∫ t

0

dτ
′
∫ t

0

dτe(τ+τ
′
)/τS
〈
FFF S(τ)FFF S(τ

′
)
〉 (23)
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The first integral vanishes due to the
〈
FFF S(τ)

〉
term. The second integral is calculated

using the trace of
〈
FFF S(τ)FFF S(τ

′
)
〉

〈
Ṙ̇ṘR2(t)

〉
=

3λ

2mζ
+
(
Ṙ̇ṘR2(0)− 3λ

2mζ

)
e−2t/τ

S

(24)

If we go to the limit of infinite time then the exponential term becomes zero leaving us

with

lim
t→∞

〈
Ṙ̇ṘR2(t)

〉
=

3λ

2mζ
(25)

Equipartition theorem can then be used to be substituted into equation (25) to obtain

the definition of λ.
1

2
m
〈
Ṙ̇ṘR2
〉

=
3

2
kBT

λ = 2ζkBT

(26)

This means that the stochastic force over a timestep, ∆t, becomes

〈
FFF S(0)FFF S(t)

〉
=

〈
FFF S(0)FFF S(∆t)

〉
∆t

=
2ζkBTδr

∆t
(27)

where δr denotes a random number of Gaussian distribution with zero mean and unit

variance.

According to equation (19) the displacement due to the random force is given as

∆RS(∆t) =
FFF S(t)∆t

mζ
(28)
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The mean square displacement can now be derived as

〈
RS(0)RS(t)

〉
=
〈
FFF S(0)FFF S(t)

〉(∆t

mζ

)2
=

2kBT∆tδr

mζ
= 2D0∆tδr (29)

Equation (19) can now be reduced to the propagation algorithm we use in our Brownian

dynamics program.

RRR(t+ ∆t) = RRR(t) +
FFF I(t)∆t

mζ
+
√

2D0∆tδr (30)

2.3.2. Brownian Dynamics for dumbbell-shaped particles

There is need to adapt the methodology to correctly propagate dumbbell-shaped particles

using Brownian Dynamics. The following adapted methodology takes reference from the

work of Heptner and Dzubiella [69].

The dumbbell particle positions are stored using a vector at the centre of mass (COM) of

the dumbbell. Due to the axis-symmetric nature of the dumbbell this COM vector is then

split into position vectors that are perpendicular and parallel to the direction along the

axis through which the centre of the dumbbell lobes are connected (which we designate

the z-axis).

RRRi(t) = RRRi,⊥(t) +RRRi,‖(t)

RRRi,‖(t) = [uuui(t) ·RRRi(t)]uuui(t)

(31)

where uuui(t) is the unit vector along the z-axis.
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The force that each particle experiences is then split in the same way.

FFF i(t) = FFF i,⊥(t) +FFF i,‖(t)

FFF i,‖(t) = [uuui(t) ·FFF i(t)]uuui(t)

(32)

The dumbbell experiences force acting upon it from directions perpendicular and parallel

to the z-axis. The Brownian Dynamics propagation for the particle position is then

adjusted from the isotropic form accordingly.

RRRi,‖(t+ ∆t) = RRRi,‖(t) + ∆t
D‖
kBT

FFF i,‖(t) + δri,‖uuui(t)

RRRi,⊥(t+ ∆t) = RRRi,⊥(t) + ∆t
D⊥
kBT

FFF i,⊥(t) + δri,1eeei,1(t) + δri,2eeei,2(t)

(33)

where eeei,2(t) and eeei,2(t) are unit vectors perpendicular to the z-axis unit vector, uuui(t).

δri,α (α being ‖, 1, or 2) is the random force describing the brownian motion acting on

the particles. The random force is a Gaussian distributed random number which has zero

mean and a variance of
√

2D∆t where D is either the parallel, D‖, or perpendicular, D⊥,

diffusion coefficients depending on α. The diffusion coefficients are obtained using the

Rotne-Prager-Yamakawa tensor, explained in more detail below with benchmarking data.

Due to the anisotropy of the dumbbell particle we must also propagate the orientation

of the particles. This propagation is done by calculating the torque that the particle

experiences due to the perpendicular force,

TTT i(t) =
σ

2
L∗uuui(t)× (FFF (i,2),⊥(t)−FFF (i,1),⊥(t)) (34)
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and taking the cross product of the torque and z-axis unit vector.

uuui(t+ ∆t) = uuui(t) + ∆t
Dr

kBT
TTT i(t)× uuui(t) + δx1eeei,1(t) + δx2eeei,2(t) (35)

Here, δxi,n is a Gaussian distributed random number which has zero mean and a variance

of
√

2D∆t where D is the rotational diffusion coefficient, Dr.

2.3.3. Lees-Edwards shearing boundary

To apply an external shear to the system we employ the Lees-Edwards shearing boundary

to replace the standard periodic boundary conditions [86]. Lees and Edwards propose two

ways of applying the boundary, the angling of the simulation box or a sliding box scheme

[86]. The sliding box method is preferred for long BD simulations so as to avoid very acute

angles for the box as the simulation proceeds [84]. The sliding box Lees-Edwards shearing

boundary has been used extensively with most discrete particle simulations including BD

[69, 87, 88].

In the sliding box method, when a particle leaves the central image in the shear velocity

gradient direction, it is placed on the opposite side of the box with an added displacement,

∆Rx, in the flow direction relative to the rate of shear that is imposed on the system.

∆Rx = ∆tγ̇L, where L is the length of the central simulation box. The displacement is

reversed for particles crossing the opposite boundary. This method creates sliding layers

of periodic images and, with enough simulation time, will allow the system to reach a

non-equilibrium steady state.
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On top of this shearing periodic boundary condition, we must account for shear within

the propagation itself [84]. The shear flow in this case is a laminar couette flow, or a

flow with a symmetric flow velocity gradient in one plane, in our case the xy-plane. This

means the shear only affects the translation of the particle in the x-direction, scaled by

the previous position of the particle in the y-axis.

For the propagation of a spherical system in BD, we take equation (30) and simply add

the shear displacement, as seen in equation (36).

RRR(t+ ∆t) = RRR(t) +
FFF (t)∆t

mζ
+
√

2D0∆tδr + ∆tγ̇(t)Ry(t)eeex (36)

For the dumbbell system the parallel and perpendicular translational propagation are

calculated the same as the equilibrium system. The addition shear displacement is added

to the final centre-of-mass translational propagation, equation (31).

RRRi(t+ ∆t) = RRRi,⊥(t+ ∆t) +RRRi,‖(t+ ∆t) + ∆tγ̇(t)Ry(t)eeex (37)

The orientation of the dumbbell particle is propagated in the same way as the equilibrium

system with the addition of an adjusted torque calculation that includes both the previous

inter-particle contribution and the contribution from the external shear flow.

uuui(t+ ∆t) = uuui(t) + ∆t
Dr

kBT
TTT γ̇i (t)× uuui(t) + δx1eeei,1(t) + δx2eeei,2(t) (38)
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TTT γ̇i (t) = TTT i(t)−
kBT

Dr

[uuui(t)× E(t) · uuui(t)] (39)

The contribution of the shear flow is calculated using a simple rate-of-strain tensor that

limits the contribution, again, to the xy-plane.

E(t) = γ̇(t)


0 1 0

0 0 0

0 0 0

 (40)

2.3.4. Cell list with shear

We implemented a cell list to be used with our BD program to improve the efficiency and

therefore speed of the simulations. The cell list implementation used was taken from the

book, “Computer Simulation of Liquids” by Allen and Tildesley [84].

The “raw” program uses a cut off distance for the pair potential calculation to ensure that

time isn’t wasted calculating the potential energy for two particles that are sufficiently

distant that the energy, and therefore force, would be calculated to a value of zero. This

cut off is determined by plotting the equation for potential energy and picking a sufficient

distance for the tail to reach a near-zero value. For a Lennard-Jones system with the

exponent n = 6, we would use a cut off of 2.5σ which would give an energy value of

roughly 1/60th of the depth of the attractive well, or ε.

Although the use of a cut off distance speeds up the simulation greatly, we still have to

go through every pair of particles in the whole simulation box and calculate the distance
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between them to compare against the cut off. This means we must go through N(N − 1)

combinations, which for even a 500 particle system would mean hundreds of thousands of

pairs. The Lennard-Jones system with the exponent n = 6, even at high density, would

have less than 50 particles that would possibly be within a sufficient distance to each

other to impart a non-zero force. This means that we should only have to calculate 50N

pairs to probe the whole system, which for a 500 particle system would equate to almost

a 10 fold reduction in the number of pair distances calculated.

Cell list enables us to tackle this issue by splitting the simulation box into M ×M ×M

cubic cells. The edge length of each cell must be greater than the cut off distance of the

potential. Cell list is most optimal when M is given as the maximum number of cells that

can fit along the edge of the simulation box. The particles are sorted into the cells at

the beginning of every step and for each particle the pair distance is only calculated for

the other particles in the cell and the particles in half of the adjacent cells. The adjacent

cells are the 26 cells surrounding a central cell in a 3 × 3 × 3 cube of cells. Only half of

the adjacent cells are needed to be taken into account due to the use periodic boundaries,

meaning we can just take the top layer of 9 cells and 4 cells in the middle layer leading to

13 neighbouring cells. There are approximately N/M3 particles per cell with 14 cells to

consider, meaning a considerable reduction in the number of pairs compared to the “raw”

program.

To correctly use cell list with a Lees-Edwards shear boundary, the top layer of cells in the

simulation box in the direction of the velocity gradient are treated differently (assuming

a shear in the xy-plane, the “top layer” would be the top y layer). Each cell in this layer

considers the same 13 adjacent cells as before with the addition of a row of cells in the
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x-direction (or the direction of shear) for the top layer of neighbours, above the cell in

question. We now have 12 neighbour cells in this top layer, therefore 16 neighbour cells in

total. This top layer of 12 cells is then given an adjustment in the x-direction dependent

on the strain on the system (defined by the shear rate and time). This treatment ensures

that we look at all the relevant particles when a Lees-Edwards shear boundary with the

sliding box method is being used.

2.4. Reduced units

As we are using a simple pair potential to model are particles, we can use a few parameters

to define our whole system, a common practice in computational techniques. In the

generalised Lennard-Jones potential, we can define the units energy, length and mass in

the system by ε, σ, and m respectively. From these parameters, we can define the unit of

temperature as ε/kB, where kB is the Boltzmann constant. From these base units of the

system we can reduce the static and dynamic properties of the system to dimensionless

properties such as,

Temperature T ∗ = kBT/ε
Pressure P ∗ = Pσ3/ε
Density ρ∗ = ρσ3

Potential energy U∗ = U/ε
Force F ∗ = Fσ/ε

As we are using Brownian Dynamics, we define the unit of time in our system as τ =

σ2/D0. D0 is the diffusion coefficient for a single sphere at infinite dilution obtained from

the Stokes-Einstein relations, D0 =
kBT

3πη0σ
, with a solvent viscosity η0. Note here that to

maintain the correct units in our dumbbell particle propagation, discussed previously in

this chapter, we must normalise our diffusion coefficients by D0.
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By using reduced units, we can lower the computational cost of calculations by setting the

base unit of ε, σ,m and η0 to unity, which allow us to simply the equations in the prop-

agation of the system. If a more complex model is required with many more parameters

the use of reduced units may not significantly affect simulation times.

Once the simulation results are obtained, the reduced properties can be translated back

into real units to be used in experimental studies. For example, in a system of Argon

where σ = 3.405 Å, m = 0.03994 g/mol, and ε/kB = 119.8 K, a simulation using a reduced

temperature of T ∗ = 1, reduced pressure of P ∗ = 1, and a timestep of ∆t = 0.001τ is

equivalent to a real temperature of 119.8 K, real pressure of 41.9 MPa, and a timestep of

2.18 fs.

2.5. Methods for data analysis

2.5.1. Radial distribution function

The spatial arrangement of the system can be analysed using the radial distribution

function (RDF). The RDF measures the probability of finding a particle at a particular

distance away from a reference particle averaged over all particles in the system over any

number of configurations along the simulation trajectory. The probability function g(r)

represents the probability of finding a particle in a shell with thickness dr at a distance r.

g(r) =
Ns

Vsρ

Vs =
4

3
π(r + dr)3 − 4

3
πr3

(41)
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where Ns is the number of particles in the shell, Vs is the volume of the shell, and ρ is the

density of the system.

The RDF is a simple tool to determine the structural order that the system possesses. If

in the gas phase, no order should be observed and so no peaks in the RDF. In the liquid

phase some short-range order would be observed but for the order to vanish at long range.

In the solid phase we would expect to see regular peaks throughout the RDF regardless

of range. Where no order is observed, we should expect the probability function g(r) to

have a value of 1 as the density of particles in each shell should be the same as the overall

system density.

2.5.2. Time-correlation functions

Time-correlation functions are a useful way of representing time-dependent data and are

a common tool to obtain dynamic properties of a system. They can be used whenever we

analyse the statistical behaviour of a time-dependent variable, such as A(t). The function

measures the correlation of the fluctuations of the variable, A(t), at different points in

time, where the fluctuations, δA(t), are defined as

δA(t) = A(t)− 〈A〉 (42)

where 〈A〉 is the time-averaged value of the variable. The time-correlation function of a

variable is then defined as the time-averaged product of two fluctuations at points in time
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C(t) =
1

τ

∫ τ

0

δA(s)δA(s+ t)ds (43)

where τ is the amount of time the correlation is averaged over, s are the time origins

that are integrated over and t is the amount of time separating the two fluctuations.

The time-correlation function is not bound by a specific initial time but is defined by the

separation in the time between the two fluctuations. A correlation of two fluctuations at

the same time is given as C(0). The generic example of a time-correlation function used

here is often defined as an “auto-correlation” function, meaning the correlation is between

fluctuations of a variable with itself at different points in time over the trajectory. Note,

that this is not always the case but is often the case when time-correlation functions are

used to obtain dynamic properties of a system.

In computer simulations, we can easily track the change in a variable over time and so can

directly produce the time-correlation function of a variable. In experiment it is not always

possible to directly measure the time-dependent variables where instead the data obtained

is of the Fourier transform of the time-correlation function, called the spectral density. A

Fourier inversion can then be performed to recover the time-correlation function.

2.5.3. Linear response theory

Linear response theory (LRT) can be used to observe the response of an equilibrium

system due to an external force. When the external force is weak enough the change

to the coupled internal variable of the system is proportional to the force, i.e. there is a

linear relationship between the external force and the change in the internal variable. The
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idea behind LRT is that, for weak enough perturbations, the equilibrium fluctuations can

dictate the non-equilibrium response. An example of a non-equilibrium response would

be the viscosity of the system under a shear flow. We can use LRT to observe the viscosity

of an equilibrium system, which will be particularly important in the work of this thesis.

For a generic example, we can describe the equilibrium system with the Hamiltonian, H0.

The non-equilibrium system can then be described with the Hamiltonian,

H = H0 − f(t)A (44)

where the external force is given by f(t) and A denoted the internal variable coupled to the

external force. The initial system is at thermal equilibrium, so we can observe ensemble

averaging of the internal variable, 〈A〉. The external force is then applied at some time,

t0, and the internal variable changes as a response, characterised by a non-equilibrium

ensemble average, A.

For a weak enough perturbation, we can approximate the non-equilibrium ensemble aver-

age of the internal variable by an expansion in powers of the external force. The approx-

imation is to the first two terms of the expansion, given as,

A(t) = 〈A〉+

∫ ∞
−∞

R(t, t0)f(t0)dt0 (45)

where t is the time over which the external force was applied and R(t, t0) is the response

function [89].
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The first term is independent of the force and can be reduced to the equilibrium ensemble

average of the internal variable. The second term describes the linear response of the

system away from equilibrium due to the external force, where the integration is showing

that the response depends on the whole time that the perturbation is being applied. The

lower limit of −∞ implies that the system starts at equilibrium.

From here, two main properties of the response function come in to play. First is of

causality, which states that the system cannot respond before the external force has been

applied. This means that R(t, t0) = 0 when t < t0. We can rearrange the approximation

in equation 45 to obtain the fluctuation of the non-equilibrium ensemble average of the

internal variable.

δA(t) = A(t)− 〈A〉 =

∫ t

−∞
R(t, t0)f(t0)dt0 (46)

The second property of the response function is that of stationarity, which states that the

time-dependence of the system only depends on the difference between the time at which

the force was applied, t0, and the time at which the observation was made, t. This means

that R(t, t0) = R(t− t0) and equation 46 becomes,

δA(t) =

∫ t

−∞
R(t− t0)f(t0)dt0 (47)

This equation can then be rewritten to use a defined time-interval τ = t− t0, in place of

the absolute time.
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δA(t) =

∫ ∞
0

R(τ)f(t− τ)dτ (48)

Comparing this final form with the result of the fluctuation-dissipation theorem [89], up

to the linear term,

δA(t) =
f

kBT
〈δA(t)δA(0)〉 (49)

it follows that the non-equilibrium response in the linear regime is related to the correla-

tions between spontaneous fluctuations at different times as they occur in the system at

equilibrium.

2.5.4. Translational diffusion

Translational diffusion can be calculated using the Green-Kubo relation of the velocity

auto-correlation function. However, due to the Brownian Dynamics technique being in

the overdamped limit, a velocity is not being directly calculated and so we cannot use

this method. Instead, we can analyse the mean square displacement (MSD) of particles

over the simulation trajectory. The relation is derived from the Einstein formula,

〈
∆r2(t)

〉
= 2NDt (50)

where
〈

∆r2(t)
〉

is the mean-squared displacement (MSD) of a particle, N is the number

of dimensions of the system, D is the diffusion coefficient and t is time.
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The MSD of a system is a measure of the movement of the particles from their starting

positions over time. The diffusion coefficient obtained is the centre-of-mass diffusion

coefficient, which can then be broken down for the axisymmetric dumbbell system into

the parallel and perpendicular diffusion coefficients by DCOM =
1

3
D‖ +

2

3
D⊥.

2.5.5. Rotational diffusion

The rotational diffusion coefficient can be calculated from the orientational auto-correlation

function, 〈
uuu(t) · uuu(0)

〉
= e−2Drt (51)

The orientational relaxation time, τr, can also be derived from the rotational diffusion

coefficient with the simple relationship, Dr =
1

2τr
.

2.5.6. Stress

The stress of the system is calculated using the Irving Kirkwood stress tensor, given as

σαβ where α and β are cartesian coordinates [90]. The off-diagonal elements of the stress

tensor give us the stress on the system along each cartesian plane, xy, yz and zx.

σαβ = − 1

V

[
Np∑
i=1

mi(vvviα · vvviβ) +

Np∑
i=1

Np∑
j>i

rrrij,α ·FFF ij,β

]
(52)

The stress calculation must change due to the BD system being in the overdamped limit

and therefore a velocity not being directly calculated. The kinetic contribution to the
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Irving-Kirkwood stress tensor is simply reduced using equipartition theory, to 3kT . As

the kinetic term is a constant we ignore it in our stress calculation.

σαβ = − 1

V

[
3kT +

Np∑
i=1

Np∑
j>i

rrrij,α ·FFF ij,β

]
(53)

The potential term of the stress tensor is proportional to the intermolecular pair virial

function, w(rij), by

rrrij ·FFF ij = −w(rij) (54)

To model the dumbbell system, we utilise the site-site interactions of the dumbbell lobes.

To calculate the correct potential term of the stress tensor in the site model, we must

correctly calculate the intermolecular pair viral function from the site-site pair virial

function, wab(rab), where a and b are the sites of the dumbbell. The relationship is given

as

w(rij) =
∑
a

∑
b

wab(rab)

r2ab
(rrrab · rrrij) (55)

where rrrab is the distance between the a site of the i-th dumbbell and the b site of the j-th

dumbbell.

2.5.7. Equilibrium viscosity

To calculate the equilibrium viscosity we can utilise the stress auto-correlation function

(SACF). At equilibrium there is no external bias on any of the cartesian planes of our

cubic simulation box. Therefore, we can average the SACF over the three off-diagonal
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elements of the stress tensor.

〈
σavg(t)σavg(0)

〉
=

1

3

[〈
σxy(t)σxy(0)

〉
+
〈
σyz(t)σyz(0)

〉
+
〈
σzx(t)σzx(0)

〉]
(56)

Viscosity is then obtained from the integration derived from the Green-Kubo relation of

the averaged SACF, as given in equation (57).

η∗ =
V

kBT

∫ ∞
0

〈
σavg(t)σavg(0)

〉
dt (57)

2.5.8. Shear viscosity

Under an external shear, we are no longer able to utilise the Green-Kubo relation of the

stress auto-correlation function. This is because the response to the external stimulus is

non-linear and so the relation is no longer valid.

The shear viscosity of the system is obtained using Newton’s law for viscosity. Under lam-

inar flow, the stress of the system in the flow plane, σxy, is proportional to the shear rate,

γ̇, with the constant of proportionality being the shear viscosity. This can be rearranged

to obtain shear viscosity.

η∗xy =
σxy
γ̇

(58)
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2.6. Benchmarking

As we have developed the code for the Brownian Dynamics for dumbbell particles in-

house, we must benchmark the code to be confident that the code correctly simulates

the given theory. It is crucially important that we are confident in the data that we

obtain from the simulations as we will be looking at new data that may not have straight

forward properties. We want to be sure that any new behaviours that we observe are true

observations of the theory and not products of bugs in the code. Below is some of the

benchmarking data that analysed to ensure that the code is working as intended.

We benchmarked the dumbbell Brownian Dynamics code against work by Heptner and

Dzubiella [69]. The simulations were of symmetric dumbbells with varying aspect ratios

and packing fractions. We looked to match the properties of the equilibrium simulations

between our code and data presented by Heptner and Dzubiella.

2.6.1. Benchmarking the diffusion coefficients

We are utilising the translational and rotational diffusion coefficients of a single dumbbell

particle at infinite dilution for the propagation of our system using Brownian Dynamics.

The coefficients are calculated using the 5th-order approximation of the Rotne-Prager-

Yamakawa (RPY) tensor [91, 92]. The tensor utilises the idea that when a particle

begins to move due to an applied force, flow is induced in the bulk fluid. This flow

then effects the translational and rotational velocities of another particle in the system

[93]. Mobility tensors can be formed relating to the translation, rotation and translation-

rotation coupling of the forces and velocities. The diffusion coefficients can then be derived
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from these mobility tensors [94]. The coefficients are then normalised by the single-sphere

diffusion coefficient to maintain the correct units in our simulation.

All three diffusion coefficients are normalised by the translational diffusion of a single-

sphere, D0 =
kBT

3πη0σ
, to obtain the correct units in our propagation. However, for the

sake of benchmarking and comparing our diffusion coefficients with known work, we have

normalised the parallel and perpendicular translational coefficients by translational dif-

fusion of a single-sphere and the rotational coefficient by the rotational diffusion of a

single-sphere, D0
r =

kBT

πη0σ3
.

Using this method, we have the parallel translational diffusion coefficient D‖/D0, per-

pendicular translational diffusion coefficient D⊥/D0 and rotational diffusion coefficient

Dr/D
0
r .
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Figure 14: A plot of the normalised parallel, perpendicular and rotational diffusion
coefficients as a function of the aspect ratio of a symmetric dumbbell particle.

Figure 14 shows the normalised values calculated from the RPY tensor and is comparable
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to work reported by Heptner and Dzubiella [69]. We have also given a table of the diffusion

coefficients at key aspect ratio values that Heptner reported to get a direct comparison

between the normalised diffusion coefficients. There is some apparent dicrepancy between

the absolute numbers but this will purely be down to the slightly different methods used

to calculate the coefficients. Heptner use the Shell Bead Model (SBM) which uses the

RPY tensor but breaks the single particle down into lots of “beads” at the surface. This

is a costly but more accurate method. Due to the computational cost we opted to instead

use the 5th-order approximation of the tensor.

L* DSBM
‖ DRPY

‖ DSBM
⊥ DRPY

⊥ DSBM
r DRPY

r

0.02 0.99 1.00 0.99 0.99 0.97 0.98

0.10 0.97 0.98 0.95 0.95 0.85 0.89

0.24 0.93 0.96 0.89 0.90 0.69 0.76

0.30 0.91 0.94 0.87 0.87 0.63 0.71

Here we observe that, in comparison to the SBM method, our RPY method has a shallower

decrease in diffusion as a function of aspect ratio across all three coefficients. We believe

that the discrepancy is expected from the difference in method and the program is working

as intended.

2.6.2. Benchmarking the algorithm

We benchmarked the algorithm against work by Heptner and Dzubiella [69], and so have

used a symmetric dumbbell system. The first form of benchmarking is through the radial

distribution function (RDF) of the system. Although it is a good initial test, the RDF
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of a system is quite robust so it may not always be indicative of a working program.

However, the initial test was very successful. As seen in Figure 15 and Figure 16, we

matched the RDFs very well with the literature at φα = 0.44 and 0.60. This data shows

the distinct change in phase behaviour of the dumbbells as the packing fraction of the

system is increased. Going from φα = 0.44 to φα = 0.60, we see a clear transition from a

fluid-like behaviour to a plastic crystalline behaviour. We also see in Figure 16, that as

the elongation of the dumbbells increases the system becomes less crystalline.

(a) Our code
(b) Image reproduced from Heptner’s work

Figure 15: (a) shows our plot of RDF at φα = 0.44 at varying aspect ratios. (b) shows
the equivalent plot given in Heptner’s work.

Diffusion is a better benchmark test as it is less robust and will be more sensitive to any

inconsistencies in the code. First we looked at translational diffusion. For dumbbells,

there is translation perpendicular and parallel to the axis at which the two spheres of the

dumbbell separate. The diffusion was calculated via the gradient of the respective mean

square displacements and normalised by the translational diffusion of a single dumbbell

at infinite dilution. As seen in Figure 17 and Figure 18, we have a very good match with

literature for the translational diffusion constants for the system. This diffusion data

shows us that the diffusion constants of the dumbbells is only loosely dependent on the
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(a) Our code
(b) Image reproduced from Heptner’s work

Figure 16: (a) shows our plot of RDF at φα = 0.60 at varying aspect ratios. (b) shows
the equivalent plot given in Heptner’s work.

elongation of the dumbbell. This means that the shape anisotropy is not having a large

impact on the diffusion of the system. We do, however, see a decrease in the diffusion

constant as packing fraction (φα) is increased. This observation is due to the system

transitioning to a more crystalline state as φα is increased.
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(a) Our code (b) Image reproduced from Heptner’s work

Figure 17: (a) shows our plot of parallel translational diffusion at φα = 0.22 and 0.44 at
varying aspect ratios. (b) shows the equivalent plot given in Heptner’s work.

As the dumbbell is axis-symmetric, we can also look at how the dumbbell diffuses via

rotation. We calculated the orientational diffusion of the dumbbell system by fitting the
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(a) Our code (b) Image reproduced from Heptner’s work

Figure 18: (a) shows our plot of perpendicular translational diffusion at φα = 0.22 and
0.44 at varying aspect ratios. (b) shows the equivalent plot given in Heptner’s work.

time evolution of the first-rank orientational auto-correlation function to an exponential

decay and normalising the calculated value by the rotational diffusion of a single dumbbell

at infinite dilution. When normalised in this way, it would be expected that the value of

the rotational diffusion coefficient tends to 1 as the infinitely dilute regime is approached.

The lowest packing fraction used in our work was φα = 0.22, seen in Figure 19a; it would

be expected for the rotational diffusion coefficient to approach 1 as the packing fraction is

further reduced. The work that we benchmarked against, seen in 19b, shows data down

to the very dilute regime and sees the values of the normalised diffusion coefficients tend

to 1. Our data do not appear to quantitatively match in the region of packing fraction

φα ≈ 0.2, but the qualitative trend is reproduced well.

Despite the quantitative discrepancies, we can see from Figure 19 that, unlike the transla-

tional diffusion, there is almost no dependence between φα and the orientational diffusion

coefficient at the near-spherical limit of the dumbbells. When the shape anisotropy is

increased, we see a large drop in the orientational diffusion coefficient at higher φα. This

data suggests that packing effects are influencing how the dumbbells can rotate, which
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matches literature findings.
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(a) Our code (b) Image reproduced from Heptner’s work

Figure 19: (a) shows our plot of orientational diffusion at varying φ and aspect ratios.
(b) shows the equivalent plot given in Heptner’s work.

It is clear from the data presented that we can find confidence in the dumbbell BD

framework that we have developed. The data obtained from this program as we go

forward in this work can be trusted as real observations.

2.6.3. Benchmarking the shear boundary conditions

To benchmark the Lees-Edwards shear boundary we must observe whether our code is

self-consistent. To do this we first calculate the equilibrium viscosity of the system us-

ing the Green-Kubo relation to integrate the stress-stress auto-correlation function of a

sufficiently long simulation with no external shear present. We can then compare the

equilibrium viscosity with the shear viscosity of the same system under a low shear rate.

At a sufficiently low shear rate we would expect the system to have barely moved from

equilibrium and therefore be able to calculate comparable viscosities in both methods of
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viscosity calculation.

We have produced benchmarking data using the asymmetric dumbbell system with the

parameters σBB = 5 and εBB = 0.5 at three different system densities each with three

identical simulations with different starting configurations taken from an initial equili-

brated system of asymmetric dumbbell particles. the numbers can be translated easily,

with the densities being absolute and packing fractions comparative. The system densities

were defined by the dumbbell packing fraction, φ, with values of φ = 0.18, 0.29 and 0.39

used here. Due to the size of the asymeetric dumbbell, these packing fractions translate

to reduced densities of ρ∗ = 0.0028, 0.0044 and 0.0060 respectively.

The interparticle force is given by the generalised Lennard-Jones potential with a Lennard-

Jones exponent of n = 24. Our simulations use 500 dumbbell particles which are propa-

gated using a timestep of ∆t = 1× 10−5τ and a temperature of T ∗ = 0.40.

We ran the initial equilibration for each density for 100 million steps, split into 20 million

equilibration steps and 80 million production. From the 80 million production runs we

selected 3 starting configurations to run our sheared systems. The sheared simulations

were also run for 100 million steps with the stress of the system being calculated and

printed every 10 timesteps. We are printing so often in order to gather enough steady

state data to obtain a good statistical average for the viscosity calculations.

As an initial sanity check, we can say that qualitatively the viscosities are increasing with

increasing density as expected.

We first ran with a shear rate of γ̇ = 0.01. When comparing between the equilibrium

viscosity and low shear viscosity in table I, we have some particularly erroneous points,
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Table I: Comparison of equilibrium viscosity, ηeq, against the viscosity at low shear,
ηγ̇=0.01, at three different starting configurations of three system densities.

T ∗ = 0.40 ηeq ηγ̇=0.01 % Error

φ = 0.18

Config. 1 0.00185 0.00186 0.7

Config. 2 0.00172 0.00196 14

Config. 3 0.00171 0.00230 34

φ = 0.29

Config. 1 0.00705 0.00671 5

Config. 2 0.00799 0.00676 15

Config. 3 0.00615 0.00697 13

φ = 0.39

Config. 1 0.0213 0.0237 11

Config. 2 0.0188 0.0266 41

Config. 3 0.0238 0.0255 7

like that of the second starting configuration of the φ = 0.39 system with a 41% error.

However, we do have some very good matching between the equilibrium and low shear

viscosities, with errors as low as 0.7%. The majority of errors are below 15% which

we deem a good matching when taking into account that the error between equilibrium

viscosities of the same density can be up to 20%. Due to the statistical nature of the

viscosity calculations, we have run our simulations for a very long time, but it seems

like we may need even longer runs to guarantee the statistical averaging is giving us the

correct result. We must trade some statistical accuracy with the time taken to gather the

data.

Theoretically, a low enough shear rate should give a good match in viscosity to the

equilibrium case. However, to calculate viscosity, the average stress of the system is

divided by the shear rate. This means that the accuracy of the statistical averaging is of

critical importance as we lower the shear rate. The erroneous values observed in table I

could be fixed but may require an unfeasibly long simulation to get the sufficient level of
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Table II: Comparison of equilibrium viscosity, ηeq, against the viscosity at low shear,
ηγ̇=0.1, at three different starting configurations of three system densities. Improved
matching between the equilibrium viscosity and low shear viscosity is observed.

T ∗ = 0.40 ηeq ηγ̇=0.1 % Error

φ = 0.18

Config. 1 0.00185 0.00183 1

Config. 2 0.00172 0.00156 9

Config. 3 0.00171 0.00159 7

φ = 0.29

Config. 1 0.00705 0.00661 6

Config. 2 0.00799 0.00665 17

Config. 3 0.00615 0.00664 8

φ = 0.39

Config. 1 0.0213 0.0218 2

Config. 2 0.0188 0.0222 18

Config. 3 0.0238 0.0219 8

statistical averaging. To test this theory we ran the same set of simulations with a shear

rate of γ̇ = 0.1, seen in table II, and saw much better matching of the equilibrium viscosity

to low shear viscosity with every run matching within 20 % and the majority matching

within 10 % error. This increase in accuracy shows that the limitation of statistical

averaging is alleviated as we increase shear rate.

Following this benchmarking data, we are convinced that we have implemented the ex-

ternal shear correctly within our dumbbell BD framework. We are aware of the pitfalls of

statistical averaging and understand that there will be some trade off with statistical av-

eraging and simulation time. We must continue running multiple starting configurations

for the same phase space to ensure that we can avoid erroneous trends and continue to

monitor these trends and carefully consider the length of our production trajectories.
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3. EXPLORING THE EFFECTS OF SHAPE ANISOTROPY ON THE

RHEOLOGICAL BEHAVIOUR OF SUSPENSIONS OF SYMMETRIC

COLLOIDAL DUMBBELLS

3.1. Introduction

Interest in the colloidal dumbbells has grown significantly in recent years. This growth is

closely attributed to the advances in synthetic techniques for the dumbbell-shaped par-

ticles in the nano- and micro-scale. Several studies reveal simple techniques to fabricate

dumbbell particles with control over lobe dimensions and surface chemistry [62–65, 95].

Importantly, monodispersed colloidal dumbbells can be synthesised, thus bringing exper-

imental and computational studies closer together.

The phase behaviour of hard dumbbells is well studied by Monte Carlo simulations [66–

68, 96]. The phase diagram of hard dumbbells is shown in Figure 10. Dense suspensions of

these particles in the near-spherical limit with an aspect ratio L∗ of less than 0.4 transition

into a plastic crystal regime [66–68]. At higher aspect ratios, the plastic crystal phase is

lost the phase diagram; instead a direct transition from the fluid phase to a closed-packed

crystal is observed. The dynamical and rheological behaviour of colloidal dumbbells with

such a rich phase behaviour has also drawn attention in recent years [69, 70].

Understanding the effects of shape anisotropy on the rheological behaviour of suspensions

of colloidal dumbbells in the presence of depletion, which has emerged as a versatile

tool for controlling attractive interactions between colloidal particles in a suspension and

hence its microstructures, is of both fundamental and practical interests. In this context,
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the aim of this computational study was to investigate the effects of shape anisotropy

on the rheological behaviour of dense suspensions of symmetric colloidal dumbbells when

depletion is in operation. To this end, we considered a model system of symmetric colloidal

dumbbells for a range of aspect ratios, not limiting to the near spherical regime, at three

different effective packing fractions. We investigated the dynamical properties of the

system at equilibrium before studying the system under steady shear.
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3.2. Discussion

3.2.1. Dynamical properties

We used Brownian Dynamics simulations to investigated systems of colloidal symmetric

dumbbell suspensions interacting via depletion attractions, modelled by the generalised

Lennard-Jones pair potential. We studied the system at a reduced temperature of T ∗ = 1

for a range of aspect ratios from L∗ = 0.2 to 0.8, over a range of effective packing

fractions, φα = 0.497, 0.524 and 0.550. The chosen effective packing fractions fall within

the fluid phase of the phase diagram for hard symmetric dumbbells practically for all

investigated L∗, as reported by Marechal and Dijkstra [68]. In order to study the effect of

shape anisotropy of the dumbbells on the microstructure and rheological behaviour of the

system, we looked to study a phase space without the influences of a phase boundary. It

is important to note here that we are utilising the effective packing fraction , φα =
πNα

6V
,

the geometric factor α, which is a function of L∗, was included to take into account the

overlap caused by fused lobes. Such a choice allows us to investigate the effects of shape

anisotropy without being convoluted by the effects of a concomitant change in the packing

fraction.

Figure 20 shows the radial distribution functions, g(r), for the system of the symmetric

colloidal dumbbells for a range of aspect ratios, computed in terms of their centres of

mass, at the highest packing faction φα simulated. It is clear from the figure that there is

no long-range order and the system is in the fluid phase for all the aspect ratios. Although

the data for only the highest packing fraction simulations are shown in the figure, similar

behaviour was observed for the systems of lower packing fractions. As seen in the figure,
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Figure 20: Centre-of-mass radial distribution functions for the systems of symmetric
colloidal dumbbells with different aspect ratios at an effective packing fraction of
φα = 0.550. The schematics inset in the plot suggest the pair configurations that
correspond to the peaks that they point to.

there are four main configurations that a pair of symmetric dumbbells can fall into.

First, an ‘X’ configuration where the dumbbells are on top of each other, oriented per-

pendicular to each other with respect to the axis of cylindrical symmetry which is seen

as a small shoulder at a separation distance below σ. The shoulder increases as the elon-

gation of the dumbbell is increased due to the increased space between the two lobes of

the dumbbell allowing for a closer centre-of-mass interaction than possible for lobe-to-

lobe interactions. The second configuration is the side-by-side configuration where the

dumbbell pair are next to each other, oriented parallel to each other with respect to the

axis of cylindrical symmetry, seen at a separation distance of around σ. As L∗ increases,

the shoulder at lowest aspect ratio becomes gradually more pronounced resolving into a
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smaller peak. The reasoning for this is due to the proximity of the large peak for the third

configuration, which is a ‘T’ configuration where the dumbbells are oriented perpendicular

to each other, as with the ‘X’ configuration, but in the same plane as each other, forming

a ‘T’ shape. The peak corresponding to the ‘T’ configuration appears at a separation

distance of around σ +
1

2
L∗, due to the centre-of-mass of the dumbbells separating in-

creasingly as elongation of the dumbbell increases. The final notable configuration is the

end-to-end configuration of a pair of dumbbells, corresponding to the emerging shoulder

past the large peak. The shoulder representing the end-to-end configuration emerges at a

distance of roughly σ+L∗. Unlike the separation distance of the ‘T’ configuration, which

is only affected by the elongation of one of the dumbbells, the end-to-end configuration

separation distance is effected by the elongation of both dumbbells in the pair.

The RDF data suggests that the low aspect ratio system is dominated by parallel and ‘T’

configurations. As aspect ratio increases the shoulders for the ‘X’ and end-to-end config-

urations become much more pronounced, reducing but not eliminating the dominance of

the other two configurations.

The static structure factor, S(kkk), is a quantitative measure of how the structure of a

system would scatter incident radiation, where kkk is the scattering vector. Effectively, the

static structure factor is another way of quantifying the translational order in the system.

S(kkk) can be calculated via the Fourier transform of the radial distribution function, but

can also be calculated directly from the inter-particle distances by

S(kkk) =
1

N

〈
N∑
i

N∑
j

exp(−ikkk(rrri − rrrj))

〉
(59)

In the systems considered here, the particles are placed in a cubic box with an edge length
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of L = V 1/3 and with periodic boundary conditions imposed. Given this, the wavevector is

defined as: kkk = ∆k(nx, ny, nz), where ∆k = 2π/L and nx, ny, nz = −nk, ...,−1, 0, 1, ..., nk.

Additionally, the structure factor can be expressed as a function of the magnitude of the

wavevector: k = |kkk|; where wavevectors are grouped together if they fall within the range

[k, k + dk] and are averaged to give S(k) [97].
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Figure 21: Static structure factor for the system of symmetric colloidal dumbbells with
different aspect ratios at an effective packing fraction of φα = 0.550.

Figure 21 shows the static structure factor for the same system as for the RDF analysis.

Although only the highest packing fraction is shown, the trends were similar in the other

packing fractions studied. First of all, it must be said that the systems, as seen in the

RDF data, show no long-range order. However, there is a clear decrease in the height

of the first peak of the structure factor as the aspect ratio of the dumbbell is increased.

Chong and Gotze [98] studied the hard dumbbell system using Mode-Coupling Theory and

observed a non-monotonic trend for the static structure factor as a function of elongation.

It was shown that the centre-of-mass correlations were the governing factor for the low
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aspect ratio regime, causing a drop in the peak intensity as the dumbbell was elongated.

However, for the high aspect ratio regime, the angular correlations became dominant in

governing the peak intensity of the static structure factor and an increase in the peak

heights were seen. The interplay between centre-of-mass and angular correlations caused

a non-monotonic trend. We do not see such a trend in the static structure factor of our

system and so we can most likely conclude that the angular correlations of the dumbbells

are not affecting the static structure factor of this system and we are only observing the

centre-of-mass correlations which decrease as elongation of the particles increase.

Figure 22 shows the translational and rotational diffusion coefficients for the systems as

a function of the aspect ratio L∗ at all three packing fractions. For a given L∗, the trans-

lational diffusion coefficient is calculated from the slope of the linear regime of the curve

obtained by plotting the mean-squared displacement as a function of time. DCOM, D|| and

D⊥ are obtained by considering the displacement for the centre-of-mass, and its compo-

nents resolved along the directions parallel and perpendicular to the axis of elongation of

the dumbbell, respectively. As expected from what is known for hard dumbbell systems

[69, 70], the general trend of a decreasing diffusion coefficient with increasing packing

fraction is apparent.

Figure 22a shows the rotational diffusion coefficient, Dr; calculated by fitting the time-

dependence of the orientational correlation function to an exponential decay and obtaining

the corresponding time constant. It is observed that Dr monotonically decreases with L∗

at all three packing fractions, with Dr dropping by as much as 70% as L∗ is increased

from 0.2 to 0.8. Given that the effective packing fraction is the same across the aspect

ratio range studied, the slowdown in rotational dynamics is caused solely by an increase in
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Figure 22: Translational and rotational diffusion coefficients for the systems of
symmetric colloidal dumbbells as the aspect ratio L∗ is varied at three packing fractions.
Error bars are included from three separate simulation runs; however, the error is
insignificant.

shape anisotropy hindering the rotation due to an increasing excluded volume, rather than

increased density. One reason for the decrease in the rotational diffusion coefficient, as the

particles become more elongated, is the increase in excluded volume causing difficulty in

performing tumbling rotations. Notwithstanding the shape anisotropy, it can be expected

that the barrier to log-rolling rotation, or rotation around the cylindrical axis of the

symmetric dumbbell, remains unaffected. However, the tumbling rotation, or rotation

perpendicular to the cylindrical axis, is hindered as the excluded volume is increased.

The monotonic trend in rotational diffusion seen here suggests that there is an increase in
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angular correlation of the system as the elongation of the dumbbell is increased. Although

the change in angular correlation is seen in the rotational diffusion it does not seem to

affect the static structure factor of the system as seen in the literature for a hard dumbbell

system [98].

The translational diffusion has only a weak dependence on L∗, meaning that the shape

anisotropy does not significantly affect the movement of the particles in the system. This

could imply that the shape anisotropy does not significantly affect the translational friction

in the system, however, as BD is an implicit solvent technique and lacks information on

the hydrodynamic behaviour of the system we can not make any concrete claims on

translational friction experienced by these systems [99].

The rotational diffusion coefficient, Dr, of the colloidal dumbbells in the suspensions

decreases with increasing L∗ regardless of their volume fraction because the excluded

volume of a particle increases with increasing elongation. However, the translational

diffusion coefficients show a similar trend only at longer elongation. At smaller elongation,

the translational diffusion coefficients increase with increasing L∗, resulting in a non-

monotonic behaviour. The reversal of the trend at smaller elongation is due to enhanced

density correlation due to the effects of forces derived from the interactions between sites

at smaller separation, as apparent in Figure 23. From Figure 21, we see that the height

of the first peak of static structure factor diminishes with increasing L∗ showing a decay

in the strength of the density correlation. Hence, the excluded volume effect takes over

beyond an intermediate value of L∗.

Figure 23 shows the average energy per particle in the system as a function of the aspect

ratio of the symmetric dumbbells. As the aspect ratio is increased, the average energy per
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Figure 23: Average energy per particle for the system of symmetric colloidal dumbbells
as the aspect ratio L∗ is varied at three packing fractions.

particles becomes significantly less negative before it reaches a plateau and eventually dips

again. The pair energy between the symmetric dumbbells draws contributions from the

interactions between sites located at the centres of lobes. With short-range interactions at

play, these contributions become weaker as the separation between the lobes increases with

increasing aspect ratio, resulting in a plateau. The slight dip from this plateau observed

at large aspect ratios is presumably due to closer approach between centres of mass of

the dumbbells, as reflected in the RDF shown in Figure 20. The much stronger attractive

interactions experienced at lower aspect ratios cause enhanced density correlations which

effect the dynamics of the dumbbell particles.

We calculated the shear viscosity, η∗, at equilibrium using the Green-Kubo relation of the

stress auto-correlation function, averaging over the three cartesian planes of 3D space.

Figure 24 shows η∗ as a function of L∗ at the three packing fractions studied. There is

a clear increase in viscosity as the packing fraction of the system is increased, observed

in the literature for hard sphere and hard dumbbell systems [69, 100]. A non-monotonic
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dependence on L∗ is also observed for the shear viscosity of the system at equilibrium.

The non-monotonic trend as a function of L∗ exhibited by the shear viscosity is consistent

with the translation diffusion coefficient following the Stokes-Einstein relationship, which

states that the translational diffusion coefficient decreases with increasing shear viscosity.
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Figure 24: Shear viscosity for the systems of symmetric colloidal dumbbells as a
function of the aspect ratio L∗ at three packing fractions. Error bars are included from
three independent simulations.

The shear viscosity is governed by the timescale of shear stress autocorrelation, which is

in turn related to density fluctuations. The static structure factor contains information

on density fluctuations. The first peak of S(q) is primary governed by the centre-of-mass

density fluctuations. The growth of the height of the first peak with decreasing L∗ is an

indication of enhanced density correlation due to the effects of forces derived from the

interactions between sites at smaller separation. On the other hand, dynamics slow down

with increasing L∗. Hence, the shear viscosity shows a non-monotonic variation with L∗,

with a minimum at an intermediate value of L∗. Stronger correlations dominate at smaller

elongation and slow decorrelations dominate at larger elongation.
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Our results show that the translational diffusion coefficient exhibits a non-monotonic vari-

ation with the aspect ratio mirroring the shear viscosity, being consistent with the inverse

relationship between translational diffusion and shear viscosity. However, the rotational

diffusion coefficient exhibits a monotonic behaviour, decreasing with increasing aspect ra-

tio. This set of observations is a manifestation of translational-rotational decoupling. The

non-monotonic variation is apparent due to competition between stronger correlations at

low aspect ratio and slower decorrelations at high aspect ratio. The translational diffu-

sion follows this trend whereas the rotational diffusion does not, meaning the slowdown

in dynamics is more dominant in the rotational degrees of freedom. The exact origins of

the decoupling behaviour will be key in fully understanding the dynamics of the system

and will require further investigation following this work.

3.2.2. Non-equilibrium conditions

A steady external shear flow was applied to the system of symmetric colloidal dumbbells

to investigate the effect of shape anisotropy on the rheological response of the system.

Figure 25a shows how the shear viscosity of the system, at an effective packing fraction

of φα = 0.550, varies with the aspect ratio at a range of different shear rates. It is evident

that the non-monotonic dependence of the shear viscosity on L∗ persists even at the

highest shear rate, suggesting that this dependence is a robust attribute of the system.

Figure 25b shows a shear thinning response to the applied external shear, meaning the

viscosity decreases with increasing shear rate. The shear thinning behaviour appears

strongest for the highest aspect ratio dumbbell system and more pronounced in the low

aspect ratio regime compared to that of the median. Although only the system with
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the highest effective packing fraction is shown here, all three effective packing fractions

demonstrated similar results.
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Figure 25: Shear viscosity of the suspensions of symmetric colloidal dumbbells under
shear flow for different aspect ratios at the effective packing fraction φα = 0.550. (a)
Shear viscosity as a function of the aspect ratio L∗ at different shear rates; (b) Shear
viscosity as a function of the shear rate on a log-scale for three different aspect ratios
spanning the range studied.

It is important to note here that the shear viscosity reported for the lowest shear rate is

slightly higher that the equilibrium viscosity reported above. For example, the system

with dumbbells of an aspect ratio of L∗ = 0.2 had an equilibrium viscosity, η∗, of roughly

1.9 and a shear viscosity, η∗xy, of roughly 2.05 at the lowest shear rate of γ̇ = 0.1. The

shear and equilibrium viscosities were calculated differently. The equilibrium viscosity was

calculated using the Green-Kubo relation of the stress auto-correlation function, whereas

the shear viscosity was calculated using Newton’s law for viscosity. Due to the differences

in methods and the heavily statistical nature of the calculations, it is difficult to confirm

whether the initial increase in viscosity is a true observation or statistical error and most

likely leaning to the latter.

Figure 26 shows the RDF analysis for the dumbbell system at a density of φα = 0.550

at the three aspect ratios studied in the shear regime over a range of shear rates. The
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Figure 26: Radial distribution functions between the centre-of-masses of the symmetric
dumbbells of systems under shear at a packing fraction of φα = 0.550. The plots show
the full range of shear rates used on the system at three aspect ratios, (a) L∗ = 0.2, (b)
0.5, and (c) 0.8.

RDF plot for the L∗ = 0.2 system suggests there is very little microstructural change

at the near-spherical regime. The high aspect ratio regime represented by the system of

L∗ = 0.8 shows a noticeable change in the local microstructure of the dumbbell system as

the external shear is applied. The peak corresponding to the side-by-side configuration

of a pair of dumbbells increases in intensity as shear rate increases. The shoulder that

appears due to the end-to-end configuration also becomes more apparent as the shear

rate applied to the system increases. The peak corresponding to the ‘T’ configuration

decreases. This suggests that the system is moving towards a microstructure where the

dumbbells are aligning parallel to each other with respect to the axis of symmetry. The
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system with the median shape anisotropy of L∗ = 0.5 shows the same trends as observed

in the high aspect ratio system, though to a lesser extent.
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Figure 27: Comparison of probability densities along the cartesian axes of the system of
symmetric dumbbells with an aspect ratio of L∗ = 0.2 at a packing fraction of
φα = 0.550 with applied shear rates of (a) γ̇ = 0 and (b) γ̇ = 10. An increase in peaks of
the probability density suggests an increase in layering of particles perpendicular to the
corresponding cartesian axis.

Figure 27 shows the probability density of the system along the cartesian axes of the

simulation box for the dumbbell system with an aspect ratio of L∗ = 0.2 at a packing

fraction of φα = 0.550, with both the highest rate and with no rate of shear flow applied

to the system.

Pα =
1

Np

〈
Np∑
i=1

Np∑
j>i

δ(r − (ri,α − rj,α))

〉
(60)

The probability density, Pα, is calculated by finding the distance between a reference

particle (ri, i = 1) and every other particle in the system (rj, j > i) and breaking those

distances down into the three separate cartesian axes of the simulation box, denoted by

α. By averaging these distances over all particles, Np, and a number of configurations

along the simulation trajectory, we obtain the density of particles along the planes of the
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simulation box where the integral of the curve would be equal to unity. If the system

was a perfectly dispersed fluid the probability density would show a linear line holding

the Pα value of the inverse of the edge length of the simulation box. When α = x we are

observing the probability density of particles in the yz plane along the simulation box,

when α = y the xz plane, and when α = z the xy plane.

Figure 27a shows the system at equilibrium with peaks and troughs that imply some

level of layering, however, all three axes are equivalent in layering implying an isotropic

layering behaviour. Figure 27b shows the system under the highest rate of shear applied

in this study of γ̇ = 10. Under a high shear flow, we observe that the layering in the x and

z axes stay the same as in equilibrium yet the layering in the y axis noticeably increases.

This implies the layering of dumbbell particles in the xz plane is increasing as the shear

rate applied to the system is increased.

It was hypothesised by Wagner and Brady [22] that the shear thinning behaviour of

hard sphere colloidal systems is due to the particles forming layers orthogonal to the

shear-gradient direction (i.e. layering in the xz plane). The particles forming these

channels reduce the collisions experienced by the particles under increasing shear rate,

resulting in a decreasing shear viscosity and therefore a shear thinning behaviour. This

layering behaviour is exactly what is observed in Figure 27 and is corroborated by the

microstructure observed from the RDF data.

In a Stokesian dynamics simulation study of suspensions of hard sphere colloidal particles

under shear by Xu et al. [23], layering and shear thinning were, in actuality, observed

to be decoupled; instead contact particle pairs were found to align when projected on

the flow-gradient plane. This alignment of the particles was thought to be the cause of
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shear thinning with the layering being coincidental as opposed to causal. The particle

pair mentioned in the literature could be defined as a single dumbbell particle with the

alignment of the pair of spheres being synonymous to the alignment along the symmetry

axis of the dumbbell particle. According to the Jeffrey orbitals of prolate axisymmetric

particles observed in the literature, it would be expected for the symmetric dumbbell

particle to begin to align in the direction of shear flow at higher shear rates [55, 60].
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Figure 28: Number of the symmetric dumbbell particles that align in the direction of
shear flow, Nalign, within a margin of 30◦ at varying aspect ratio as a function of log(γ̇).
The data shown here is for the system at a packing fraction of φα = 0.550.

with the number of aligned particles, Nalign, being normalised by the number of particles
in the system, N .

Figure 28 shows the average number of particles in the system that are aligned with the

direction of shear flow, i.e. the x axis, as the shear rate is increased. These numbers were

obtained by calculating the angle between the symmetry axis of the dumbbell particle

and the x axis of the simulation box, allowing for a margin of 30◦ to be counted as

aligned. The data shows a clear increase in alignment of the particles along the shear flow

direction as the rate of shear is increased. However, the behaviour is reasonably weak
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when considering that the system has 500 particles. The highest number of particles

aligning in the flow direction observed in this system is only around a quarter of the total

number of particles in the system. However, several studies have shown that the aligning

behaviour of axisymmetric particles to the shear flow is maximally strong near the wall of

the shearing implement, weakening to near-isotropic orientational behaviour towards the

bulk of the flow channel [101–104]. The BD simulation utilised in this study is focused

on the bulk behaviour of the system and may explain the present yet relatively weak

alignment to the shear flow.

Despite the weakness in the alignment, the data correlates well with the shear thinning

behaviour observed in the system. The highest aspect ratio dumbbell system, L∗ = 0.8,

has both the greatest aligning behaviour and the strongest shear thinning behaviour. The

rate of shear thinning in the L∗ = 0.2 and 0.5 systems are similar, reflecting the similar

rate of growth in the number of particles aligning with the shear flow. However, the shear

thinning behaviour appears to be fractionally stronger in the L∗ = 0.2 system compared

to 0.5, which contradicts the fractionally higher increase in alignment in the L∗ = 0.5

system compared to 0.2. This may suggest some interplay between other properties of

the system under shear.

Figure 29 shows that, in conjunction with the evidence of particle alignment with the

shear flow, there is a clear increase in the rotational diffusion coefficient of the system as

the shear rate is increased. The increase in rotational diffusion appears to be identical

from a shear rate of γ̇ = 0.1 to 1 at all three aspect ratios. However, between the shear

rates of γ̇ = 1 and 10 there is a greater rate of increase in the L∗ = 0.2 opposed to the

comparable increases for the higher two aspect ratio dumbbell systems. The increased
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Figure 29: Plot of rotational diffusion coefficients of the symmetric dumbbell particles at
varying aspect ratio as a function of log(γ̇). The data shown here is for the system at a
packing fraction of φα = 0.550.

rotational diffusion in the low aspect ratio regime would be expected for the same reasons

as in the equilibrium state, where there is less hindrance to tumbling rotations for the

lower aspect ratio dumbbell particles. It can be hypothesised that the higher rotational

diffusion observed under shear in the L∗ = 0.2 system results in the fractionally stronger

shear thinning behaviour compared to the system at an aspect ratio of 0.5. The rotation

of the particles clearly play a role in the rheological behaviour of the system, but it is

apparent that the microstructural behaviour of the alignment of particles with the shear

flow is a more defining feature effecting the shear thinning behaviour of the symmetric

dumbbell system.
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3.3. Conclusions

A Brownian Dynamics simulation study was performed for a system of symmetric colloidal

dumbbells to investigate the effects of shape anisotropy on the rheological behaviour of

the system. The phase space was chosen such that the system would remain in the fluid

phase at equilibrium to allow for effects of the shape anisotropy to be observed without the

influences of a phase boundary. An intriguing non-monotonic dependence on the aspect

ratio was observed in the translational diffusion and shear viscosity of the system. The

competition between the density correlation and excluded volume was hypothesised to

be the reasoning behind the non-monotonic behaviour. Stronger correlations, due to en-

hanced density correlation, dominated at smaller elongation, whereas slow decorrelations,

due to increased excluded volume, dominated at larger elongation.

There also appears to be manifestations of translation-rotation decoupling in the sys-

tem when comparing the non-monotonic behaviour of the translational diffusion and the

monotonic behaviour of the rotational diffusion. This decoupling is as of yet still unre-

solved, it would be of great interest to discern the origin of this decoupling behaviour in

future.

An external shear flow was then applied to the system to investigate how the elongation

of the colloidal dumbbell particles may effect the dynamic response. The non-monotonic

behaviour seen at equilibrium survived even the highest shear rates. A general shear

thinning trend was observed at all aspect ratios, with the shear thinning being strongest

in the highest aspect ratio system. Increased layering and alignment were observed in the

system as the shear rate was increased. The literature suggests that layering proves to be
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coincidental opposed to causal in the hard sphere regime with shear thinning behaviour

instead being driven by alignment. The trend in alignment match well with the shear

thinning trends.

It was seen that the rotational behaviour of the system is somewhat important to the

rheological behaviour of the system, but is overshadowed by the effect of the alignment

of particles to the shear flow. It is very important to note that the BD simulation is an

implicit solvent technique and does not take the hydrodynamic behaviour of the system

into account. The inclusion of hydrodynamic behaviour in the system will be pivotal

in fully understanding the rheological properties of a colloidal system due to the vast

differences in timescales for solvent and colloid interactions.
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4. EXPLORING THE EFFECTS OF CONTROLLED CLUSTER FORMATION

ON THE RHEOLOGICAL BEHAVIOUR OF COLLOIDAL SUSPENSIONS

4.1. Introduction

Understanding the rheology of colloidal suspensions is key in the development of many

products in the consumer goods industry, including food, cleaning products, adhesives

and paints [6, 105]. Understanding rheological behaviour is vital to optimise production

and transport of the product as well as improving the product itself. It is also important

to probe how an external shear flow might disable, or enable, the aggregation of colloidal

particles into many interesting applications, such as optical crystals, drug delivery systems

and oil recovery [7–9].

It is widely recognised that the microstructure influences the rheology of a colloidal system

[22]. However, it is still not well understood precisely how these structural changes affect

the flow of the particles in the system or indeed how flow can affect the microstructure.

It is equally important to understand how to control the microstructure of the system as

well as how the microstructure can influence the rheology.

The focus of colloid rheology in the literature has largely been on dispersions of spherical

colloidal particles with isotropic interparticle interactions [22, 29]. The spherical regime

is well studied but is also limited to fairly simple microstructural behaviour. It has been

shown by Leal and Hinch [53] that even a small deviation from the isotropic spherical

shape can have a powerful effect on the microstructural and rheological behaviour of a

system.
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Recent advances in particle synthesis have made a variety of anisotropic colloidal particles

available. These particles are anisotropic often due to shape and/or surface chemistry.

Anisotropic colloidal particles are easily tuned to allow for a precise control on the inter-

particle interactions, which leads to control over the microstructure of the system [79].

Colloidal dumbbells offer an attractive model system to advance our understanding of

how the microstructure governs the viscoelastic response of colloidal dispersions in the

presence of anisotropic interparticle interactions. A colloidal dumbbell is able to encom-

pass many forms of anisotropy to produce particularly interesting phase behaviour and

microstrutures. Not only is a dumbbell axis-symmetric, introducing a variety of interest-

ing orientational properties such as plastic crystals and aperiodic crystals [68, 69], but

an asymmetry between the two lobes can be introduced to further diversify the phase

diagram [106, 107].

Patchy colloids have been studied outside of the dumbbell particle shape, where clusters

are able to be self-assembled for spherical repulsive particles with attractive patches at

each pole [108]. Peng et al. [109] have shown both experimentally and theoretically

that colloidal dumbbells can be used for self-assembly, or clustering of particles to achieve

control in microstructure. Avvisati et al. [110] studied a patchy colloidal dumbbell system

where one lobe was attractive and the other repulsive, demonstrating the formation of

vesicle, micelle and bilayer structures using Monte Carlo simulations, as seen in Figure

30.

It is widely recognised that the microstructure influences the rheology of colloidal suspen-

sions [22]. However, it is still not well understood precisely how these structural changes

affect the flow of the particles in colloidal suspensions or indeed how flow can affect the
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Figure 30: Image taken from ref [110]. Each panel shows a different microstructure
formed in a patchy colloidal dumbbell system with vesicles, micelles and bilayers.

microstructure. It is equally important to understand how to control the microstructure

of the system as well as how the microstructure can influence the rheology.

Chakrabarti and coworkers have recently established design rules for hierarchical self-

assembly pathways to yield a variety of colloidal open crystals, especially for their photonic

applications [111, 112]. The bottom-up route exploits a hierarchy of interactions, encoded

in triblock patchy particles having attractive patches on the poles across a charged middle

band [113], to programme two-stage self-assembly pathways via self-limiting clusters. The

formation of self-limiting clusters ensures that the first-stage of assembly results in small

colloidal clusters of well-defined size and shape, i.e. colloidal molecules, which serve as

monodisperse secondary building blocks in the second-stage of assembly to yield open

crystals. This series of work suggests that a geometric criterion, satisfied by the width

of the patches and the range of patch-patch interactions is crucial for the formation of
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self-limiting clusters in the first stage. In this context, our hypothesis was asymmetric

colloidal dumbbells in the presence of a hierarchy of interactions between the lobes should

provide an alternative route to self-limiting clusters, where the size ratio between the lobes

can be tuned to satisfy the geometric criterion.

The aim of this study was to validate our hypothesis to yield self-limiting colloidal clusters

from designer asymmetric colloidal dumbbells and investigate the rheological behaviour of

the cluster fluid in the presence of controlled cluster formation. To this end, we considered

asymmetric colloidal dumbbells, each comprising two touching spherical lobes of different

sizes. The colloidal dumbbells are treat as rigid bodies interacting via site-site generalised

Lennard-Jones potential as described previously. The shape asymmetry is governed by

the size ratio of the lobes and the surface chemistry can be exploited to realise a hierarchy

of interactions.

The phase diagrams of hard asymmetric dumbbells are reported in the literature, either

for touching spheres with varying constituent sphere diameter ratios (also referred to

as snowman-shaped particles) or for fixed constituent sphere diameter ratio of 0.5 [106,

107]. In the present study, we consider attractive interactions for asymmetric dumbbells,

combing shape anisotropy with energy anisotropy, for which the phase behaviour has not

been reported previously to the best of our knowledge.
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4.2. Discussion

4.2.1. Designer colloidal dumbbells

We set out to test our hypothesis that asymmetric colloidal dumbbells can form self-

limiting clusters when the shape asymmetry and surface chemistry are tuned. To this

end, we first employed the basin-hopping global optimisation technique to predict the

global minima of finite systems as the likely structures to be observed at low reduced

temperatures, with an objective to identify the parameter space that can plausibly support

tetrahedral clusters. For a given size of the finite system, five basin-hopping runs were

carried out, starting from randomly generated configurations and performing 10 million

basin-hopping steps for each run. A large number of steps were run to sufficiently increase

the level of confidence in the putative global minima that we present here.

The shape asymmetry is controlled by changing the size ratio between the two spherical

lobes of the dumbbell particle. We set σAA = 1, and varied the value of σBB > 1 controlling

the size of the other spherical lobe, away from the limit of a symmetrical dumbbell, with

σAB = 1
2
(σAA+σBB). In search of parameterisation that can support repeating tetrahedral

units, we considered a hierarchy of interactions strengths, i.e. we set εAA = 1, varied

εBB < 1, with εAB =
√
εAAεBB. Such a choice of parameter set ensures that the smaller

lobes of the asymmetric dumbbells interact favourably, governed by the surface chemistry,

and probes the effects of decreasing the interaction strength of the bigger lobe.

By introducing a hierarchy of interaction strengths between the two lobes of the dumbbell,

an energetic bias is formed towards the clustering of one lobe before secondary interactions
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(a) 4-particle system (b) 6-particle system

Figure 31: Putative global minima on the potential energy surface for finite systems of
N = 4 (a) and N = 6 (b) asymmetric colloidal dumbbells with σAA = 1, σBB = 5,
εAA = 1 and εBB = 0.5. The structures show the propensity for forming tetrahedral
clusters, with an inner tetrahedral motif formed by the smaller lobes. In this snapshot
representation, lobe A of the dumbbell is coloured red and lobe B grey. In (a), the large
lobes of the asymmetric dumbbell particles have been kept to scale, however in (b), the
large lobes have been scaled down to 80% to provide a better view on the smaller lobes.

between the second lobe occur. In conjunction with the interaction asymmetry, a shape

asymmetry is introduced to form a steric barrier when enough dumbbells cluster together;

limiting the cluster from growing any further. A balance of the two types of asymmetry

are required to achieve self-limiting cluster formation.

Figure 31 shows the putative global minima on the potential energy surface for finite

systems of N = 4 and N = 6 asymmetric colloidal dumbbells that we identified for

σAA = 1, σBB = 5, εAA = 1 and εBB = 0.5. For N = 4, we see a tetrahedral cluster, where

the smaller lobes interact with each other to pack in a tetrahedral motif, which is shielded

by the larger lobes forming an outer tetrahedron. In the cases of N = 5 (not shown

here) and N = 6 systems, the propensity to form a tetrahedral unit is apparent, with

the remaining particle(s) attached to the tetrahedral unit. The hierarchy of interaction

strengths is what enables the smaller lobes to cluster together preferentially, while an
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optimal size ratio is critical to satisfying the geometric criterion that limits the number

of smaller lobes facing inward.

Next we considered a bigger finite system with N = 12 asymmetric colloidal dumbbells

and investigated the effects of the shape asymmetry on the morphology of the system

by varying σBB from 5, while keeping the hierarchy of interactions intact, i.e. εAA = 1

and εBB = 0.5. Figure 32a shows the putative global minimum energy structure for a 12-

particle system consisting of three tetrahedral units. These units are clustered together

for optimal interactions between the larger lobes. We narrowed down the parameter

space that would give this structure as the global minimum to be between σBB = 4.5 and

σBB = 6.5. The trend for forming tetrahedral units continues with the N = 16 system

with the putative global minimum consisting of four tetrahedral units, as evident in Figure

32b.

(a) 12-particle system (b) 16-particle system

Figure 32: Putative global minima on the potential energy surface for finite systems of
N = 12 (a) and N = 16 (b) asymmetric colloidal dumbbells with σAA = 1, σBB = 5,
εAA = 1 and εBB = 0.5. The propensity for forming tetrahedral units continues as the
size of the finite system grows. In this snapshot representation, lobe A of the dumbbell
is coloured red and lobe B grey. Here, the size of the larger lobes of the dumbbells is
scaled down to offer a better view of the smaller lobes.

Unlike in the smaller systems, it was observed for the 12- and 16-particle systems that
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the global minimum structure was found for all five basin-hopping runs starting from

independent random configurations only in the range of σBB values between 5 and 5.5.

Above a σBB value of 5.5 and below 5, not all of the 5 basin-hopping runs could find the

global minimum structure even after 10 million simulation steps, indicating the existence

of deep local minima that might be difficult to escape from to find the global minimum

structure. The implication for this observation is that the structures that are desired are

likely to be difficult to reach in the bulk dynamic simulations, let alone in experiments.

We chose to consider the σBB value of 5, concerning smaller shape anisotropy, for further

investigation to assess the ratio of interaction strengths between εAA and εBB, keeping

the former fixed to unity. As εBB was varied between 1 and 0.2 for a 12-particle system,

the global minimum structure was found to consist of 3 tetrahedral units between 0.5

and 0.2. While a more pronounced hierarchy of interactions provides a stronger energetic

driving force, a larger bias in the interaction interaction strengths could be more difficult

to realise experimentally. We therefore decided to proceed with εBB = 0.5 and σBB = 5

with εAA and σAA set to unity for assessing the success of self-limiting cluster formation in

Brownian Dynamics simulations of a system of N = 500 asymmetric colloidal dumbbells.

4.2.2. Bulk simulation at equilibrium

We carried out a Brownian Dynamics simulation of a 500 particle system of asymmetric

dumbbells with a hierarchy of interaction strengths, interacting via a depletion interaction,

which was modelled by the generalised Lennard-Jones potential. Optimised in the global

optimisation simulations, the smaller lobe (σAA = 1) has a greater interaction strength

(εAA = 1) compared to the larger lobe (σBB = 5, εBB = 0.5). Unlike in the global
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optimisation study, the bulk dynamic simulations are temperature-dependent resulting in

the necessity for the system to be slowly annealed in order to facilitate the formation of

clusters. The annealing process consisted of bringing the system to equilibrium, lowering

the temperature and then running the simulation until reaching a steady state at the

new temperature. We would expect to then repeat this process until we observe the end

of a phase transition. We applied the annealing to a number of systems with varying

packing fractions, φ, to ensure we sample a good portion of the phase space leading to

the observation of the desired behaviour. We used packing fractions of φ = 0.18, 0.29

and 0.39. We ran the system first at a reduced temperature, T ∗, of 0.36, resulting in an

equilibrium system in the liquid state. We then lowered the temperature by 0.02 down to

T ∗ = 0.30, and further in increments of 0.01 down to T ∗ = 0.15.
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Figure 33: The left y-axis shows the number of individual tetramers formed from 4
dumbbells coming together with the smaller lobes facing inward as we annealed the
system. The right y-axis shows the average energy per particle as we annealed the
system.

Figure 33 shows the growth of tetramer clusters formed in the system along the annealing
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trajectory. The non-linear change in the average energy per particle matching with the

growth of tetramer clusters beginning from a temperature of 0.30, shows that the system

is undergoing a phase transition as it is annealed. By the end of the annealing process,

just over 100 tetramer clusters were formed, translating to over 80% of particles in the

system being a part of a tetramer cluster. We do not see 100% of the system forming

tetramer clusters as at a low enough temperature the secondary interactions of the large

lobes become strong enough to not be broken under thermal fluctuations. The formation

of these secondary bonds cause the dumbbell particles, not already forming tetramer

clusters, to be unable to move into the correct position and orientation to form the

primary bonds needed for the formation of the tetramer clusters.

Note here that we are referring to tetramer clusters and not the regular tetrahedra that

were predicted in the global optimisation simulations. To call a cluster a regular tetrahe-

dron, a cluster of four dumbbell particles is identified, for which an orientational tetrahe-

dral order parameter, q, is calculated to determine the regularity of the tetramer cluster

[114, 115].

q = 1− 3

8

3∑
a=1

4∑
b=a+1

[
cos(θab) +

1

3

]2
(61)

where θab is the angle between the axes of symmetry of two dumbbell particles, denoted as

a and b, in the 4-particle cluster. The value of q ranges from 0 for an isotropic orientation

up to 1 for the perfect orientation for a regular tetrahedron and is commonly used to

quantify the local structure of water in various conditions [115–117].

As described above, a q value of 1 requires perfect orientations of the dumbbell particles

which would be unrealistic to expect in a dynamic system. A cut-off value was utilised in

the order parameter calculation to allow for some slight deviations in otherwise regular
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tetrahedra. When running the order parameter with a cut-off of 0.99, it was seen that

only around 70% of the tetramer clusters were classed as regular tetrahedra. However,

when the cut-off was relaxed to 0.95, where the shape of the cluster still closely resembles

a tetrahedron, over 95% of the tetramer clusters were counted as regular tetrahedra.

This indicates that the vast majority of tetramers in the system are effectively regular

tetrahedra with some minor deviations in orientations due to the temperature-dependent

nature of the simulation. Mathematically perfect tetrahedra would be an unrealistic

means of assessing the cluster formation in the system. The rest of this study will refer

to tetramer clusters and not regular tetrahedra when reporting cluster analysis.
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Figure 34: Radial distribution functions for a range of reduced temperatures along the
annealing trajectory for the φ = 0.18 system. The distance r is given in the reduced unit
of length. In the case of the asymmetric dumbbell, the reduced unit of length is set to
σAA.

Figure 34 shows the radial distribution functions (RDF) of the lowest density system at

various points along the annealing trajectory. The range of reduced temperatures were

chosen as they represent the system at key stages in tetramer cluster formation. At a
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reduced temperature of T ∗ = 0.36 the system is in an equilibrium fluid state with no

tetramer cluster formation. The reduced temperatures of T ∗ = 0.25, 23, and 0.20 are

points along the annealing trajectory where 25, 50, and 75% of the particles in the system

made up the tetramer clusters, respectively. It is apparent that there is an increase

in translational order in the system as the temperature is lowered. The first peak in

the distribution function corresponds to the distance between the centre-of-mass of a

dumbbell particle and that of a neighbouring particle at contact. The increase in the size

of the first peak indicates the growth of contact neighbours corresponding to the growth

of clusters. The increase in the height of peaks at roughly 8.9σ and 10.3σ indicate the

growth of tetramer clusters, specifically, as they correspond to the distance between an

asymmetric dumbbell and dumbbells of a neighbouring tetramer cluster.

As apparent from Figure 34, g(r) at T ∗ = 0.20 shows more features at larger separation,

indicating a non-trivial microstructure. The emergence of this microstructure at the

lowest temperature studied suggests that the weaker interactions at play, involving the

larger lobe of the dumbbells (i.e. A-B or B-B interactions), have begun to form longer

lasting bonds. At higher temperatures, the life times of the A-B or B-B bonds are small

enough to facilitate the formation of tetramers (largely tetrahedral clusters), which grow

in number as the temperature is lowered. With around 80% of the dumbbells forming

tetramers at T ∗ = 0.20, the smaller lobes are still exposed to form A-B bonds. The longer

lifetimes of these A-B bonds disrupt the formation of tetramers and connect clusters

together; leading to the non-trivial microstructure quantitatively observed in the RDF

data. However, visual inspection confirms the lack of long-range crystalline order in the

system at this temperature.
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Figure 35: Growth of clusters in the φ = 0.18 system. Each size of cluster is given on
the graph as a % of the 500 particles in the system that make up all the clusters in the
system. The x-axis represents the trajectory of time over the annealing simulation; it
has non-significant units and have been removed for ease of viewing.

Figure 35 shows the growth of clusters in the φ = 0.18 system over the annealing process.

To measure the growth of clusters in a system, we employed a graph theoretical method

using the depth-first search algorithm to establish the number of connected particles

in each cluster of the system. The system structure is represented as a graph of vertices

where each vertex represents a particle. Edges are created between vertices if the distance

between two particles are within a cut-off parameter. The depth-first search algorithm

then searches the whole structure for connected particles and calculates the size of every

cluster in the system.

The annealing was started from the equilibrium fluid state of the system where around

95% of the dumbbells in the system were monomers with a small percentage making up

dimer clusters. As the annealing process starts, there is a sharp drop in monomers as the

smaller lobes of the asymmetric dumbbells begin to interact to form larger clusters. It
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is clear from the early stages of the annealing process that the dumbbells form smaller

clusters before tetramer clusters begin to form. This is further reinforced as we continue

along the trajectory, where we see the growth of dimers and trimers are stunted as the

tetramer clusters are formed, suggesting that dimers and trimers are the pathway to

growing the tetramer clusters. Eventually the % of dumbbells that form the trimer clusters

level off completely, implying that the dumbbells are forming trimers at the same rate

as the trimers are interacting with monomers to form tetramer clusters. The continuous

decline in the % of dumbbells forming dimers could suggest that the dimers are both

interacting with monomers to form trimers, and also interacting with other dimers to

form directly into tetramer clusters. As there are two paths to dimer loss we observe a

faster rate of dimer loss than growth and therefore a decline in dimer clusters along the

annealing process. These observations suggest that there are multiple pathways to form

tetramer clusters. As each temperature in the annealing process is continued until an

steady state is reached, it is apparent that the system does not require every monomer to

form intermediate clusters before continuing to form tetramers. Most importantly, there

is no indication of the formation of larger clusters than the tetramers as the system is

annealed, strongly supporting the success of the design principle to achieve self-limiting

cluster formation.

The shear viscosity, η∗eq, at equilibrium was calculated using the Green-Kubo relation of the

stress auto-correlation function. Figure 36 shows the equilibrium viscosity as a function of

temperature for all three systems of varying packing fractions. A small, steady increase in

η∗eq was observed as the temperature of the system was lowered. A general upward trend

in η∗eq as temperature decreases is expected, regardless of microstructural change, as the

dumbbells would have less kinetic energy. However, the increase correlates well with the
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Figure 36: The equilibrium viscosity of the system along the annealing trajectory. Each
of the three systems with packing fractions φ = 0.18, 0.29 and 0.39 have been reported.
Error bars are included from three independent simulations. NOTE: The data point for
φ = 0.39, T ∗ = 0.20 is missing error bars. The calculation of equilibrium viscosity
becomes unreliable at low temperatures due to kinetic arrest.

increase in cluster formation and there is a sharp increase in η∗eq as we approach the peak

count of tetramer clusters. We expect to observe the viscosity of a system to increase

as the number and size of clusters increase due to the reduced mobility experienced by

“particles” with more mass (or in this case larger clusters compared to monomers). It is

sound reason to believe that a larger particle (or cluster of particles) would also experience

more drag from the solvent medium, however, the hydrodynamics of the system are not

captured in this Brownian Dynamics framework and so this hypothesis cannot be drawn.

Although the sharp increase in viscosity may reflect the sharp increase of tetramer clusters

in the system, the RDF data showed that the system at low temperature is beginning to

see increased long-range order from the secondary interactions between the larger lobes

of the asymmetric dumbbells. This increase in long-range order may be the cause for the

increasing viscosity.
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4.2.3. Bulk simulations under external shear flow

An external shear was applied to the equilibrated states of the system at various points

along the annealing simulation. The systems investigated were the equilibrated states

at reduced temperatures of T ∗ = 0.36, 0.25, 0.23, and 0.20, at these points along the

simulation trajectory 0, 25, 50, and 75% of the system made up the tetramer clusters,

respectively. These systems were chosen for study in order to probe the effect of different

levels of cluster formation on the rheological behaviour of the system.
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Figure 37: Shear viscosity of the system against the logarithmic shear rate at a range of
reduced temperatures from T ∗ = 0.36 to 0.20. (a), (b), and (c) are plots of systems at a
packing fraction of φ = 0.18, 0.29 and 0.39 respectively. Error bars are included from
three independent simulations.

It can be seen in Figure 37 that every system exhibits shear thinning behaviour, where
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the viscosity decreases with increasing shear rate. The shear thinning becomes more

pronounced in denser systems and is much stronger for the systems at lower temperature.

This stronger shear thinning behaviour at lower temperatures appear to indicate that the

higher number of tetramer clusters in the system has a strong effect on the rheological

behaviour of the system under shear. However, it appears that, as the shear rate is

increased, the viscosity of the systems at all temperatures converge to the viscosity of the

equilibrium liquid state of the highest temperature system, T ∗ = 0.36. The converging

viscosities suggest that the systems may be reverting to the microstructure of the fluid

state. This could mean the shear thinning behaviour may not be an effect driven by

the presence of clusters in the system and instead purely the loss of these clusters as

the system is driven back to the fluid state. Once converged, the viscosity continues to

decrease, at a much lower gradient, as the shear rate is further increased. As the continued

shear thinning is present in the highest temperatue system, it is clear that the continued

shear thinning is not an effect due to the presence of clusters in the system.
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Figure 38: Radial distribution functions for the φ = 0.18 system at a variety of shear
rates from γ̇ = 0.01 to 10.0. (a) shows the system at a reduced temperature of
T ∗ = 0.23, where the system has 50% of its particles in tetramer clusters. (b) shows the
system at a reduced temperature of T ∗ = 0.20, where the system has 75% of its particles
in tetramer clusters.
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Figure 38 shows the RDF analysis of the lower temperature systems of packing fraction

φ = 0.18 under a range of applied shear rates. As the rate of shear applied to the system

was increased the order, previously observed in the equilibrium state of the annealed

system, was lost. Translational order is lost in every system under a shear rate of γ̇ = 5.00,

with the higher temperature systems, although not shown here, losing order even under

the application of a shear rate of γ̇ = 1.00. The RDF analysis corroborates the observation

from the shear viscosity data that the system is converging to that of the fluid state.

Figure 38b shows that the advanced structural order, observed due to the secondary

interactions between the large lobes at the lowest reduced temperature, survives the lowest

shear rate. However, the order is lost beyond the lowest shear rate of γ̇ = 0.01, returning

back to the translation order observed at the higher temperatures. Both panels in Figure

38 still show the peaks at roughly 8.9σ and 10.3σ at a shear rate of γ̇ = 0.10, which

suggests that the clusters in the lower temperature systems are somewhat resistant to

shear. However, the peaks are reduced in intensity at each increasing increment of shear

rate, implying that the clusters are being broken down to some extent at every shear rate.

The RDF analysis suggests that the far steeper shear thinning behaviour seen at the lowest

temperature system is most likely due to the breaking of the secondary interactions and

therefore the loss of the advanced structural order. The systems are all appearing to be

returning to the fluid state in a continuous manner as a function of increasing shear rate,

which may explain the rest of the shear thinning behaviour. The RDF does not shed light

on the shear thinning behaviour beyond the convergence of shear viscosities to that of the

fluid state.

In the cluster analysis, seen in Figure 39, it was clear that clusters were destroyed as the
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Figure 39: Growth and loss of clusters due to different rates of applied steady shear, γ̇,
on the φ = 0.18 system at a reduced temperature of T ∗ = 0.23. Each size of cluster is
given on the graph as a % of the 500 particles in the system that make up all the
clusters in the system. The x-axis represents the trajectory of time over the annealing
simulation; it has non-significant units and have been removed for ease of viewing.

shear rate applied to the system was increased. In the φ = 0.18 system at a reduced

temperature of T ∗ = 0.23, the tetramer clusters were all but completely lost at a shear

rate of γ̇ = 1.00. When a shear rate of γ̇ = 10.0 was applied to the system, not only were

the tetramer clusters destroyed, but the trimer clusters had also broken apart. Although

the clusters were all but lost when high shear rates were applied to the system, it was

also observed that the % of particles in each cluster size were only slightly reduced at

the lower shear rates. These observations corroborate the data seen in the RDF analysis.

Only the cluster analysis of one system is shown here for multiple shear rates, however, the

same general trends were seen at all packing fractions and temperature systems. Systems
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with more tetramer clusters at equilibrium, i.e. lower temperatures, withstood a slightly

higher shear rate before complete collapse of the clusters into dimers and monomers. This

was most likely due to the shear flow needing to breakdown the secondary interactions

between the larger lobes of the asymmetric dumbbells before the clusters were affected.

From the RDF and cluster analysis it is clear that the system is reverting back to the fluid

state under increased rates of shear. It appears that the shear thinning behaviour at lower

shear rates observed in our simulations were all down to the breaking up of the clusters.

The loss of clusters was an unintended result and most likely down to the relatively weak

interactions between the colloidal dumbbell particles. We would need to see a wider range

of shear rates in which the clusters remain stable in the system so that we can properly

analyse the effect of cluster formation on the rheological properties of the system under

shear. An annealing of an asymmetric dumbbell with stronger interactions would be of

interest in future in order to complete the investigation on the rheology of the system as

a function of cluster formation.

Figure 40 shows the alignment of the symmetry axis of the dumbbells with the direction

of shear flow increasing as the rate of shear applied to the system is increased. The

alignment with the flow direction was measured with a margin of 30◦ with almost half

of the dumbbells in the system aligning at the highest shear rate. It has been shown

in the literature, that the shear thinning behaviour of hard axisymmetric particles can

be attributed to the alignment along the direction of shear flow [55, 60]. Although the

literature studies were conducted on prolate particles with a much higher elongation than

in the case of our asymmetric dumbbell particles, the hierarchy of the interactions along

the axis of symmetry may be promoting the bias towards aligning with the shear flow.
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The alignment of particles is most likely the cause of the shear thinning behaviour of the

fluid state.
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Figure 40: Number of the dumbbell particles that align in the direction of shear flow
within a margin of 30◦ at varying points along the annealing trajectory as a function of
log(γ̇). The data shown here is for the system at a packing fraction of φ = 0.29.
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4.3. Conclusions

In this chapter, we have validated our hypothesis that designer asymmetric colloidal

dumbbells can form self-limiting clusters, by exploiting the size ratio between the lobes and

a hierarchy of interaction strengths between them. A global optimisation study of finite

systems was conducted for asymmetric colloidal dumbbells to determine the parameter

space that would support structures with repeating tetrahedral units. This study led

us to a set of parameters for Brownian Dynamics simulations under periodic boundary

conditions. Our Brownian Dynamics simulations establish the design principles for the

asymmetric colloidal dumbbells to form self-limiting clusters. Upon gradually cooling, we

find a growth in the fraction of particles forming self-limiting tetrahedral clusters, with

roughly 80% of them forming tetrahedral clusters at the lowest temperature studied. 100%

cluster formation was not observed due to the secondary interactions of the weaker lobes,

which had begun to kinetically trap the dumbbell particles not already in tetrahedral

clusters from rearranging to form new tetrahedral clusters. The cluster analysis shows

that smaller dimers and trimers are formed first and the tetramers are formed through

multiple pathways from these smaller clusters and monomers. No larger clusters were

observed, implying that the chosen set of parameters is robust for self-limiting cluster

formation.

The increase of clusters in the system was mirrored in the increase of equilibrium shear

viscosity. It is important to note that the trend in viscosity is also reflecting the decreasing

in system temperature to some extent. The drastic increase in viscosity at the lowest

temperature system is most likely down to the secondary interactions starting to come

into play.
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An external shear flow was then applied to the system to investigate the response in the

presence of self-limiting clusters. A strong shear thinning behaviour was observed with

the viscosity of all systems converging to the fluid state viscosity. The microstructural

data showed that the clusters were breaking apart as higher shear rates were applied

to the system, bring the system back to the microstructural state of the fluid system.

The clusters were most likely breaking apart as the interactions holding the clusters

together were not strong enough to withstand the shear flow. It would be of importance

to investigate the annealing of a system of asymmetric dumbbell particles with higher

interaction strengths as the effect of the presence of clusters on the rheological response

of the system due to an external shear flow is yet to be answered. The shear thinning

behaviour that continues in the fluid state corresponded to the alignment of particles with

the direction of shear flow, as expected from the literature.
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5. INVESTIGATING THE EFFECT OF SHAPE ANISOTROPY ON THE

MICROSTRUCTURE OF TEMPERATURE QUENCHED COLLOIDAL

SYSTEMS

5.1. Introduction

Colloidal gels, typically characterised by a space-spanning network of colloidal particles,

are commonly encountered in our everyday life in foods and cosmetics. Gelation has

been studied extensively for spherical colloids with attractive interactions [42, 118], and

to a significantly lesser extent for shape-anisotropic colloidal particles [119–121]. For

spherical colloidal particles with isotropic, short-range attractions, it has been observed

that gelation is caused by arrested phase separation initiated by spinodal decomposition

[118]. However, for shape-anisotropic colloidal particles, there may even be an alternative

“nonsticky” route to gelation with a shift from the common paradigm, as revealed in a

very recent study [122]. Such a revelation calls for more extensive investigation of gelation

for shape-anisotropic colloidal particles.

The full understanding of the properties of the gel regime alongside the mechanism for

gelation itself is still disputed in the literature [118, 123]. A colloidal gel can be difficult

to characterise and is very similar in physical properties to the colloidal glass [124]. A

colloidal glass is generally observed when repulsive interactions are involved, however,

attractive glasses are also observed at high packing fraction. The separating definition of

a colloidal gel is that it is observed from attractive interactions at low packing fractions

[118, 124].
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A plausible route to a non-equilibrium gel is quenching, i.e. reducing the temperature. A

quench, often carried out instantaneously, into a two-phase region may lead to a dynamic

arrest [42]. Royall and Malins [123] discussed the role of quench rate in colloidal gels in a

system of spherical colloids with a relatively short-ranged attraction, in which the equi-

librium state is gas–crystal phase coexistence. As reported in their Brownian Dynamics

study, controlled quenching results in an enhancement in the degree of local order in the

resulting gel, while local crystallisation is found for sufficiently slow quenching [123]. The

rapid cooling makes it difficult for the system to properly nucleate into a crystal struc-

ture, which is commonly a slow process [125]. The much faster process of random local

ordering in the system frustrates the nucleation of the crystal where the system can then

kinetically arrest into a gel structure.

The non-crystalline states may therefore arise from frustrations in the nucleation process

due to rapid quenching favouring random local ordering. By utilising the shape anisotropy

of colloidal dumbbell particles, it may be possible to introduce a bias towards different

local ordering in the system; therefore, affecting the frustrations leading to the interesting

arrested states. The aim of this computational study is to investigate the effects of shape

anisotropy on the microstructures formed in a system of symmetric colloidal dumbbells

with short-ranged attractions upon quenching.
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5.2. Discussion

5.2.1. Quenching the system

A Brownian Dynamics simulation was conducted on a system of symmetric colloidal

dumbbells modelled using the generalised Lennard-Jones potential with an exponent of

n = 24. A 500 particle system of symmetric dumbbells were studied over a range of aspect

ratios, or dumbbell elongation, from L∗ = 0.2 to 0.8 at an effective packing fraction of

φα = 0.1. Each aspect ratio system was initially simulated at a high reduced temperature

of T ∗ = 2.0 until an equilibrium state was reached. The reduced temperature of each

system was then instantaneously dropped to T ∗ = 0.3 in order to simulate a temperature

quench. The simulations were run for 200 million steps at a reduced timestep of ∆t =

2.5 × 10−6τ to reach a steady state. The system parameters and quench protocol were

chosen through reviewing work by Lodge and Heyes [126] who studied the quenching of

spherical particles using the same potential model. The study reported “transient colloidal

gels” with gel-like physical properties in the system after the temperature quench.

Figure 41a shows the radial distribution function (RDF) data for the lower aspect ratio

systems of L∗ = 0.2 and 0.4 at the quenched steady state. It can be observed that

the systems have moved away from the fluid phase and some long-range local order has

manifested. The first three peaks of these RDF plots correspond to a pair of neighbouring

dumbbells in side-by-side, ‘T’ and end-to-end configurations respectively, as discussed in

chapter 3. The first peak of both the L∗ = 0.2 and 0.4 systems have very high intensity

suggesting the presence of some strong orientational order in the system towards the

parallel configuration. Unlike for the second and third peaks, which differ in range as a
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Figure 41: Radial distribution functions for the centres of mass of the symmetric
colloidal dumbbells for a range of aspect ratio L∗ values, obtained upon quenching from
T ∗ = 2 to T ∗ = 0.3 at the effective packing fraction φα = 0.1.

function of aspect ratio, the long-range order in the RDF data show coinciding peaks in

both systems. This suggests there is some long-range behaviour invariant to aspect ratio.

The peak positions themselves imply the presence of a hexagonal close-packed structure

indicating crystalline behaviour in the system opposed to the gel-like structures that were

reported in the spherical regime [126].

An interesting feature in the RDF plots of the higher aspect ratio systems is the peak

below r = 1. As the RDF is calculated using the centre-of-mass of the dumbbell particles,

this corresponds to two symmetric dumbbell particles in an ‘X’ configuration. When

in the ‘X’ configuration, the centre-of-masses of two dumbbells can be closer than the

diameter of lobe due to the free space between the two lobes. At higher aspect ratios, the

elongation is such that there is more space between the two lobes of a dumbbell resulting

in smaller distance for the peak. The affinity to the ‘X’ configuration of dumbbells does

not necessarily suggest less orientational order, however, in conjunction with the rest of

the RDF plot for the high aspect ratio systems the structures appear to be more frustrated

than the low aspect ratio regime.
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Table III: Translational diffusion coefficients for the centre-of-mass (COM),
perpendicular (⊥), and parallel (‖) translations of the symmetric dumbbell particles at
varying elongations after a temperature quench down to T ∗ = 0.3.

L∗ DCOM D⊥ D‖

0.2 0.0065 0.0064 0.0067

0.4 0.0084 0.0082 0.0088

0.6 0.0103 0.0102 0.0104

0.8 0.0134 0.0131 0.0140

Table III shows the translational diffusion coefficients of the quenched states over the

range of aspect ratios giving information on the dynamics of the systems. The diffusion

coefficients appear to show that the system is under kinetic arrest at all aspect ratios.

There appears to be a trend of increasing translational diffusion as the aspect ratio of the

dumbbell is increased, however, it is hard to elucidate the reason for this trend beyond

the simple observation that the translational order is inversely proportional to the trend

in diffusion. In any case, the values are all minute and effectively indicate a lack of

translational movement in the system at the low temperature.

Figure 42 shows snapshots of the simulations of the quenched steady states of varying

aspect ratio at a system density of φα = 0.1. The snapshots show what appear to be space-

spanning structures at every aspect ratio. The higher two aspect ratio systems, L∗ = 0.6

and 0.8, in particular, show gel-like structures. It is important to note here that structures

of this kind can be prone to finite-size effects; as the system size is fairly small with

only 500 dumbbell particles, the periodic simulation box is small and may be incorrectly

suggesting that the amorphous structure is a space-spanning network, opposed to simply

a large cluster of particles reaching the edges of the box. Simulations of larger systems

should be investigated to eliminate this possibility, however, due to time constraints this

could not be completed for this body of work. By visual inspection, there appears to
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(a) L∗ = 0.2 (b) L∗ = 0.4

(c) L∗ = 0.6 (d) L∗ = 0.8

Figure 42: Snapshots of representative configurations of the systems of symmetric
colloidal dumbbells for different values of the aspect ratio L∗ at the steady state at
T ∗ = 0.3 following the temperature quench at the packing fraction φα = 0.1. NOTE: The
dotted lines are purely a visual aid and is not a direct reflection of the simulation box.

be an increased orientational order in the lower two aspect ratio systems, L∗ = 0.2 and

0.4. These systems have formed hexagonal close-packed sheets of particles with dumbbells

in parallel orientation with regards to the principle axes of elongation. The orientation

of the dumbbells in the plane corroborate the observations seen in the RDF analysis.

As the dumbbells are in parallel orientation there would be no change in the centre-of-



113

mass distance between neighbouring particles as a function of aspect ratio, leading to the

coinciding peaks seen in the Figure 41a. Important to take note here that although the

hexagonal close-packed sheets show an increase in local order there is no “global” order

in the system with the sheets attaching to each other in seemingly random orientations

in space.

As the aspect ratio is increased, the planar structures are lost with an amorphous structure

taking its place; mirrored by the loss of long-range order in the RDF analysis of the higher

aspect ratio systems.

Figure 43 shows the orientational distribution function (ODF) data for the quenched

systems at steady state. The local orientational order in these systems can be used to

quantify the trend in order observed by eye in the snapshots of the simulations. The ODF

is calculated using the second Legendre polynomial, P2(cosθij),

P2(cos θij) =
1

2
(3 cos2 θij − 1) (62)

where θij is the angle between the principle axes of elongation between the particle pair.

P2(cosθij) holds a value of 1 when two dumbbells are in a parallel configuration and a

value of −0.5 for a perpendicular configuration. A probability function, gP2(r), is then

calculated which measures the probability of the orientation of particles at a particular

distance from a reference particle.

gP2(r) =
1

ρNp

〈
Np∑
i=1

Np∑
j>i

P2(cos θij)δ(r − (ri − rj))

〉
(63)

The function, gP2(r), takes the sum of P2(cos θij) values for particles at a distance r from
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a reference particle averaged over all configurations and particles.

Figure 43a clearly shows a strong trend of orientational order at the lower aspect ratios.

Further to this, the ODF data clearly shows large positive peaks at r = 1, confirming that

there is a strong bias towards parallel orientation of the dumbbell particles in the lower

aspect ratios. Figure 43b shows the higher aspect ratios exhibiting a deep trough at a

pair distance below σ which corroborates the observation in the RDF suggesting that the

local order of the dumbbells are dominated by perpendicular interactions forming pairs

in an ‘X’ configuration.
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Figure 43: Orientational pair distribution functions for the symmetric colloidal
dumbbells for a range of aspect ratio L∗ values, obtained upon quenching from T ∗ = 2
to T ∗ = 0.3 at the effective packing fraction φα = 0.1.

In all configurations there are four interactions occurring between dumbbell pairs; the

two lobes of a dumbbell interacting with the adjacent lobes of the other dumbbell (AA

and BB interactions) and then the lobes interacting with the diagonally opposite lobe

of the other dumbbell (AB and BA interactions). In the ‘X’ configurations all of these

interactions are equivalent. However, in the parallel side-by-side configuration, the AA

and BB interactions differ from the diagonal AB and BA interactions. The AA and BB

interactions are equivalent to each other and are interacting at the optimal distance for the
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potential, which for the generalised Lennard-Jones potential with an exponent of n = 24

is 1.02σ. The diagonal AB and BA interactions are also equivalent to each other with an

interaction distance of
√

(AA)2 + (L∗)2, demonstrating a steep increase as a function of

aspect ratio equating to distances of 1.04σ, 1.10σ, 1.18σ, and 1.30σ for L∗ = 0.2, 0.4, 0.6,

and 0.8 respectively.

For the potential utilised here, two lobes at a distance of 1.02σ experiences 100% of the

potential energy. In turn, a distance of 1.04σ experiences over 95%, 1.10σ experiences

around 40%, 1.18σ experiences under 10%, and finally, 1.30σ experiences less than 1%

of the potential energy. The range of the potential limits the viability for the parallel

configuration of symmetric dumbbells, with the configuration becoming unsustainable as

the symmetric dumbbell is elongated. It is our hypothesis that this geometric constraint

is what drives the observations made in the microstructural behaviour of the quenched

steady states as a function of aspect ratio. With the low aspect ratio regime forming

randomly ordered hexagonal close-packed sheets with parallel orientations of dumbbells

within the sheets, and the high aspect ratio regime forming more frustrated amorphous-

like structures.

Global optimisation studies were conducted for the system to ascertain the optimal ener-

getic behaviour of the system as a function of aspect ratio and therefore provide evidence

for our hypothesis. As a temperature-independent study, the global optimisation data

provides information on the energetic reasoning for the behaviour observed regardless of

the temperature of the system. Figure 44 shows the global minimum configurations of

the 2-particle systems at every aspect ratio under study. As expected, the optimal lowest

energy configuration is the ‘X’ configuration allowing every lobe to interact with both
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(a) L∗ = 0.2 (b) L∗ = 0.4

(c) L∗ = 0.6 (d) L∗ = 0.8

Figure 44: Configurations corresponding to the global minima on the potential energy
surface for the 2-particle systems of symmetric colloidal dumbbells for different values of
the aspect ratio L∗.

lobes of the neighbouring dumbbell at the optimal distance for the potential.

Figure 45 shows the global minimum configurations of the 8-particle system. Compared to

the 2-particle system, there is a clear difference in the global minimum energy structures

observed as a function of aspect ratio. The lowest aspect ratio system, L∗ = 0.2, shows

the hexagonal close-packed sheet structure with the dumbbells oriented in parallel with

respect to the axis of symmetry. The planar structure is regular at the lowest aspect

ratio and becomes more frustrated with the gradual re-appearance of the 2-particle global

minimum ‘X’ configuration as the aspect ratio increases. At an aspect ratio of L∗ = 0.8

the structure is formed solely of several ‘X’ configuration dumbbell pairs interacting with

neighbouring pairs.
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(a) L∗ = 0.2 (b) L∗ = 0.4

(c) L∗ = 0.6 (d) L∗ = 0.8

Figure 45: Configurations corresponding to the global minima on the potential energy
surface for the 8-particle systems of symmetric colloidal dumbbells for different values of
the aspect ratio L∗.

Although the ‘X’ configuration is the most stable 2-particle structure, this configuration

is hindered in the multi-particle regime as it does not pack efficiently. The lack of effi-

ciency is exacerbated at lower aspect ratios where the dumbbells are shorter, meaning

the optimal ‘X’ configuration cannot be propagated throughout all particles. Even in the

most elongated state the ‘X’ configuration is not observed past the 2-particle level, with

each dumbbell pair interacting with neighbouring pairs in a frustrated near-parallel orien-

tation. This then leaves the parallel, side-by-side configuration of dumbbells as the ideal

configuration for packing efficiently. The planar structure had the lowest energy with a

value of roughly −53ε, indicating that this structure is the most stable structure. The

increasingly frustrated structures were increasingly less stable but within a close range of
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energies around −42ε.

It is clear from the global optimisation data that the geometric restrictions formed due to

the elongation of the dumbbell particles drive the differences in energetically viable struc-

ture and therefore the local ordering of the systems. This is local ordering then dictates

the differences seen in the microstructures of the quenched steady states, corroborating

our hypothesis.

5.2.2. Quenched steady state under shear

An external shear was applied to the steady states of the temperature quenched systems.

Figure 46a shows the RDF of the quenched L∗ = 0.2 system under shear and we observe

an increase in translational order as the shear rate is increased. Almost every peak

increases in intensity with a notable decrease in the second peak of the RDF, corresponding

to the loss of dumbbells in the ‘T’ configuration. This implies the system increases

in orientational order in the presence of shear and suggests that the randomly ordered

hexagonal closed-packed sheets have been able to rearrange from single sheets into more

crystalline structures under shear. In the quenched steady state of the L∗ = 0.2 system it

appeared that the sheets were attached to one another only by a few dumbbell interactions.

However, even these weak interactions could not be overcome at the low temperature

that the system was quenched to. However, upon shearing the system, the external force

allowed the system to escape this kinetic trap and achieve crystallisation.

Figure 46b shows the quenched L∗ = 0.8 system under shear and we observe very little

change in the translational order of the system at the first two applied shear rates. A small
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Figure 46: Radial distribution functions for the systems of symmetric colloidal
dumbbells under shear at varying shear rates from γ̇ = 0.01 to 10.0 for two different
values of the aspect ratio L∗: (left) L∗ = 0.2 and (right) L∗ = 0.8.

decrease in order is observed at a shear rate of γ̇ = 1.0 and then a significant decrease in

translational order is observed at the highest shear rate of γ̇ = 10.0. This suggests that

the amorphous structure seen in the quenched state may be weakening under shear and

reaching a breaking point at the highest shear rate in which the structure is becoming

more fluid-like.
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Figure 47: Orientational distribution functions for the systems of symmetric colloidal
dumbbells under shear at varying shear rates from γ̇ = 0.01 to 10.0 for two different
values of the aspect ratio L∗: (a) L∗ = 0.2 and (b) L∗ = 0.8.

Figure 47a shows the ODF analysis of the quenched L∗ = 0.2 system under shear. There
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(a) γ̇ = 0.01 (b) γ̇ = 0.1

(c) γ̇ = 1 (d) γ̇ = 10

Figure 48: Snapshots of representative configurations under shear at varying shear rates
for the system of symmetric colloidal dumbbells with the aspect ratio L∗ = 0.2 at the
packing fraction φα = 0.1. The direction and velocity gradient of shear flow are labelled
on each snapshot. NOTE: The dotted lines are purely a visual aid and is not a direct
reflection of the simulation box.

is a clear increase in orientational order reflecting what was observed in the RDF data,

including the small decrease in the negative peak at around r = 1.1 indicating the loss

of particles in the ‘T’ configuration. This further corroborates the idea that the external

shear flow is facilitating the crystallisation of the system. Figure 47b shows the ODF

analysis of the quenched L∗ = 0.8 system under shear showing very little change as the

smaller rates of shear are applied to the system. When the highest shear rate of γ̇ = 10

was applied to the system, there was a decrease in orientational order. The ODF data

matches well with the observations made in the analysis of the RDF data.
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Figure 48 shows snapshots of the L∗ = 0.2 system under increasing shear rates. The

snapshots show the hexagonal close-packed sheets of the quenched steady state being

pushed into stacked planes and what appears to be crystalline structures. The visual

inspection of the system greatly supports the observations made in the RDF and ODF

analysis, where the external shear flow is facilitating the crystallisation of the kinetically

trapped quenched system. A visual inspection of the snapshots clarify that, although

the planar sheets are being pushed together, there does not appear to be a correlation

between the direction of flow and the orientation of the stacked planes.

When the external shear is turned off from this crystalline system, the structure does not

revert back to the quenched state before the shear was applied. The planar structure has

undergone a plastic deformation and implies that the crystalline phase is the thermody-

namically stable phase of the system. This corroborates well with the hypothesis that

the quenched system was kinetically trapped from reaching the crystalline state and the

external shear flow induces the process.

In order to confirm the onset of this shear-induced crystallisation in the low aspect ra-

tio system, the average number of crystalline particles were identified in the structures

obtained at each of the shear rates considered. This is done using well-established meth-

ods based on the Steinhardt bond-orientational order-parameters [127–129]. First, the

complex vector ql is determined for each particle:

qlm(i) =
1

NB

NB(i)∑
j=1

Ylm(rij) (64)

where NB is the number of first nearest-neighbors of particle i based on a radial cutoff

(rc), rij is the vector connecting the centres of particles i and j and Ylm is the spherical
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harmonic with symmetry index l and −l ≤ m ≤ l. Then, two particles are considered

to share a crystalline bond if their local environments are sufficiently similar. This is

determined using the translational-order correlation parameter:

dl(i, j) = Re

(
ql(i) · q∗l (j)
|ql(i)||ql(j)|

)
(65)

where the ∗ indicates the complex conjugate and ql(i) · q∗l (j) =
∑l

m=−l qlm(i) · q∗lm(j).

Following previous studies, the symmetry index is taken to be l = 6, and two particles

are considered to share a crystalline bond if d6(i, j) ≥ 0.7. Finally, those particles which

possess a certain threshold number of crystalline bonds, Ncb, are labelled as crystalline.

As close-packed crystal motifs are expected to form the threshold number is chosen to

be Ncb = 8 and the radial cutoff for determining nearest neighbours is set to be rc/σ =

1.2 + L∗.
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Figure 49: Evolution of (a) the average fraction of crystalline particles (fxtal) and (b)
the energy of the system along the simulation trajectory, as a function of shear rate for
the system of symmetric colloidal dumbbells with an aspect ratio of L∗ = 0.2 at a
packing fraction of φα = 0.1.

Figure 49a shows the average fraction of crystalline particles (fxtal) for structures obtained



123

at each of the shear rate considered for the system of dumbbells with an aspect ratio of

L∗ = 0.2. It is evident that there is a significant increase in fxtal when γ̇ = 10, confirming

the onset of shear-induced crystallisation.

Figure 49b shows the energy of the system of dumbbells with an aspect ratio of L∗ = 0.2

along the simulation trajectories as the various shear rates were applied to the quenched

steady state. Here we see a discontinuous phase transition upon application of the shear

rate of γ̇ = 10, confirming that the system is clearly undergoing crystallisation. The

lower shear rate of γ̇ = 1 also reaches the crystallised state but through multiple smaller

energy drops along the trajectory. Although the lower two shear rates appear to drop

the energy of the system, a clear phase transition is not apparent. The observation in

energy closely ties in with the increase in the average fraction of crystalline particles in the

system as a function of increasing shear rate, further proving the onset of shear-induced

crystallisation.

The energy data presented in Figure 49b is not wholly convincing of the systems reaching

a steady state by the end of the simulation trajectory. If a steady state is reached the

energy of the system remains stable, and although the energies begin to settle by the end of

the simulation trajectory, there are multiple small drops in energy that occur throughout

the trajectories. Each system was simulated three times from three random starting

configurations to observe whether the states reached in the presented work in Figure 49b

are reproducible. Although none of the simulation trajectories showed especially stable

energies, similar to that of the presented data, there was reasonable correlation in the

final energies of the systems which lead to the conclusion that the simulations have most

likely reached the steady state.
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(a) γ̇ = 0.01 (b) γ̇ = 0.1

(c) γ̇ = 1 (d) γ̇ = 10

Figure 50: Snapshots of representative configurations under shear at varying shear rates
for the system of symmetric colloidal dumbbells with the aspect ratio L∗ = 0.8 at the
packing fraction φα = 0.1. The direction and velocity gradient of shear flow are labelled
on each snapshot. NOTE: The dotted lines are purely a visual aid and is not a direct
reflection of the simulation box.

Figure 50 shows the snapshots of the L∗ = 0.8 system under increasing shear rates. At the

higher aspect ratio, the amorphous structure remains intact and is showing resistance to

structural change at the smaller shear rates, reflecting the analysis of the RDF and ODF

data. Further still at the highest shear rate, γ̇ = 10, we observe a collapse in the thick

strand-like amorphous structure with the system instead forming an amorphous layer in

the simulation box. The snapshots do not appear to reveal a direct dependence between

the collapse of the microstructure with the direction of flow.

This collapse could suggest the presence of a yield stress which would be some evidence

that the high aspect ratio regime undergoes gelation upon quenching, as a key property
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of a gel is to be resistant to shear strain up to a yield point that results in the collapse

of the gel [126]. To confirm the presence of a yield stress, the external shear was turned

off and the system allowed to return to a steady state. Once the system had reached a

steady state without the external shear, it was observed that the system did not return to

the original quenched state. The system has undergone a plastic deformation, confirming

that the collapse of the thick strand-like amorphous structure is due to a yield stress, and

adding to evidence for the formation of a colloidal gel structure.

Unfortunately, although there is some evidence, the finite-size effects of the small system

size means that the data in this study alone cannot confirm the formation of a colloidal

gel structure under the temperature quenching of attractive colloidal dumbbell particles

at the high aspect ratio regime.

5.3. Conclusions

A Brownian Dynamics study was carried out on a system of symmetric dumbbells with

varying elongation at a density of φα = 0.1. The systems were temperature quenched and

resulted in two distinct kinetically arrested structures. As hypothesised, the utilisation of

the shape anisotropy of the symmetric dumbbell particles introduced a bias in the local

order in the system, leading to very interesting arrested microstructures as the systems

were quenched.

At low aspect ratios planar structures were observed with high orientational order favour-

ing the parallel configuration of neighbouring particles within each plane. A global opti-

misation study confirmed a hypothesis that the range of the depletion attraction between
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the symmetric dumbbell particles alongside the geometric restriction of the low aspect

ratio drove the formation of planar structures of parallel dumbbells. It would be of inter-

est, moving forward, to study the effect of adjusting the range of attraction on the planar

structures as a function of aspect ratio. At higher aspect ratios strand-like amorphous

structures were observed. It is difficult to fully ascertain if these structures are space-

spanning as the presence of finite-size effects was not tested in the timeframe of this work.

Larger system sizes must be studied in order to confirm the space-spanning behaviour of

the system.

An external shear was applied to the temperature quenched systems. It was seen that

the L∗ = 0.8 was resistant to low shear rates and driven to plastic deformation at the

highest applied rate of shear. With the potential space-spanning nature of the amorphous

structure and the presence a yield stress, there is good evidence pointing to the formation

of a colloidal gel structure following a temperature quench. However, the finite-size effect

driven by the small system size makes it very difficult to correctly identify a space-spanning

network as the periodic simulation box is simply too small. Further investigation of larger

system sizes is required to be certain.

Most interestingly, at the low aspect ratio regime, the external shear facilitated the re-

orientation of the planar sheet structures into crystalline clusters. As the shear rate was

increased there appeared to be a clear phase transition to a thermodynamically favourable

crystalline structure. This suggests that the system exhibits shear-induced crystallisation

when there is a small elongation to the dumbbells.
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6. CONCLUSION

6.1. Summary

In this thesis, the rheological behaviour of suspensions of colloidal dumbbells interacting

via depletion attractions was investigated, using Brownian Dynamics simulations. The

colloidal dumbbells were treated as rigid bodies with two interaction sites located at the

centres of the spherical lobes. The site-site interactions were described by the generalised

Lennard-Jones potential with an exponent which is sufficiently high to describe the short-

range attractions. The focus was on understanding the effects of shape anisotropy on the

rheological properties of the suspensions in connection with their microstructures so that

the rheological behaviour can be controlled.

We considered dense suspensions of symmetric colloidal dumbbells and investigated the

effects of shape anisotropy on the rheological behaviour of these suspensions. We observed

a non-monotonic dependence of the equilibrium shear viscosity on the aspect ratio L∗ as it

was varied from 0.2 to 0.8. The non-monotonic dependence was most pronounced for the

densest suspension considered, with the shear viscosity showing a minimum at an interme-

diate aspect ratio. We attributed this non-monotonic variation on competition between

stronger correlations at low aspect ratio and slower decorrelations at high aspect ratio.

Translation-rotation decoupling was also apparent in the system with a non-monotonic

trend in the translation diffusion, mirroring that of the shear viscosity, and a monotonic

trend in the rotational diffusion. Under an external shear flow, the suspensions exhibited

shear thinning behaviour, which became more pronounced with increasing aspect ratio

of the dumbbells. Our analysis reveals that the shear thinning behaviour was correlated
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with microstructures, where the axis of symmetry of the dumbbells tend to align with

the direction of the shear flow and noticeable enhancement in layering along the shear

gradient direction.

With the aim of controlling the microstructure, suspensions of asymmetric colloidal dumb-

bells were considered to promote self-limiting cluster formation upon gradual cooling.

Here, we exploited the size ratio between the lobes and a hierarchy of strengths for the

interactions between them to form self-limiting clusters in a controlled way. A gradual

increase in the equilibrium shear viscosity was observed with the growth in the fraction

of particles forming self-limiting clusters. Under an external shear flow, we observed a

strong shear thinning behaviour, which was attributed to the disassembly of the clusters

with increasing shear rate.

A dilute suspension of symmetric colloidal dumbbells was quenched from a high-temperature

fluid phase in search of routes to gel in the presence of shape anisotropy. At low aspect

ratios, hexagonal close-packed sheets of orientationally ordered dumbbells were formed

after the temperature quench. With increasing aspect ratio, the local translational order

became more frustrated forming an amorphous network. The change in local order was

attributed to geometric restriction due to the elongation of the dumbbells making the

energetically favourable sheet structure unavailable for the higher aspect ratio systems.

When subjected to an external shear, we observed shear-induced crystallisation in the

low aspect ratio regime, while distinct gel-like physical properties were on display at the

higher aspect ratio regime. The change in local order due to shape anisotropy appeared

to play a critical role in observing such differing and interesting microstructures following

a temperature quench.
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This body of work has presented fundamental observations of novel systems, with several

interesting observations made on the rheological properties alongside the reaction of the

systems to an external shear. This computational work has laid the initial foundation

of fundamental observations in hope that future work can provide key information for

industrial processes and products.

6.2. Outlook

Several lines of inquiry worth further investigation have emerged from the present study.

• We observed a manifestation of translation-rotation decoupling in the system. It will

be of utmost importance to ascertain the origin of this decoupling behaviour for fully

understanding the effects of shape anisotropy on the rheological behaviour. Without

fully understanding this behaviour it would not be possible to confidently transfer

these observations to practical applications beyond the computational space.

• The design principles for self-limiting cluster formation demonstrated with asym-

metric colloidal dumbbells need not be limited to tetrahedral cluster formation. It

would be of interest to search the potential energy surface of the system to find

parameters to achieve the self-limiting formation of different cluster sizes. This

would allow for wider control of the microstructure of the colloidal suspensions,

which would have great interest for practical applications such as drug delivery and

oil recovery. It would also be important to conduct a further study of the tetra-

hedral cluster formation with stronger primary interactions, aiming to stabilise the

clusters under shear in order to investigate the behaviour of the suspensions under
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shear as a function of the fraction of particles forming the clusters. As shear forces

are a constant presence in real systems, it would be important to maximise the

stability of clusters under shear to increase the longevity of the clusters in practical

applications.

• Upon quenching, the system of symmetric colloidal dumbbells was arrested into two

very contrasting microstructures depending on the aspect ratio of the dumbbells. It

would be important to establish if there are any finite-size effects on our results by

investigating larger system sizes. With more information on finite-size effects we can

solidify our claims of potential gel structures forming under quenching conditions.

It would also be useful to ascertain the phase diagram of the quenched system

and identify the cross-over region from crystalline stacked planes to an amorphous

structure.

• A computational framework that can explicitly handle the hydrodynamic interac-

tions between anisotropic colloidal particles in the suspensions will be vital to fully

understand the rheological behaviour of suspensions of colloidal dumbbells and take

this body of work to the next level. We have begun to develop a computational

framework that implements the Dissipative Particle Dynamics (DPD) technique

for suspensions of anisotropic colloidal particles, an explicit solvent technique, al-

lowing for inclusion of the hydrodynamic interactions. Although primary work in

this regard has proved promising, the current in-house framework requires further

development to be able to treat the colloidal dumbbells in question. It will be im-

portant to carry on this development. Given in the appendix is a description of the

theoretical framework for DPD along with initial developments and benchmarking.
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APPENDIX

Developing an in-house dissipative particle dynamics framework for the study of

rheological properties of colloidal suspensions

Many successful computational studies of the rheology of colloidal suspensions have been

done using implicit solvent techniques. However, the fit to experimental data has not

been perfect and some observations have been contradictory [22, 23, 130]. The Brownian

Dynamics framework used throughout this thesis is also an implicit solvent technique and

there have been clear limitations and unanswerable questions that stem from the lack of

hydrodynamic behaviour in the simulation. Even though the solvent is taken into account

to some level, it is impossible to simulate the full picture of how the solvent is effecting the

dynamics of the system without including the hydrodynamics. An obvious improvement

would be to use an explicit solvent technique to refine the simulation data to better fit

the experimental work.

To conserve the hydrodynamic behaviour of a system, it is essential to model the solvent

explicitly. Looking at the solvent explicitly requires the simulation of the system to

contain a large number of particles. Molecular Dynamics is one such technique, however,

that framework has a large computational inefficiency in simulating the solvent around

the colloidal particles. In 1992, Hoogerbrugge and Koelman [131] developed Dissipative

Particle Dynamics (DPD) as an effective technique to study the hydrodynamics of complex

fluids at the mesoscopic scale. It has strong ties to Molecular Dynamics (MD), a well

documented method to study the time-dependent behaviour of molecular systems, first

applied in the 1950’s by Alder and Wainwright [132]. Dissipative Particle Dynamics is
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a technique that partitions the solvent into groups of solvent particles that are coarse-

grained into discrete particles, coined “DPD particles”.

The DPD particles have short-range interactions under a soft potential, given in equation

(66). The soft potential means that the coarse-grained solvent particles are able to pass

through each other, allowing for faster equilibration and larger time-steps to be used in the

simulation. This is a major improvement to that of MD, where cumulative errors mean

that a large time-step cannot be used in simulation. As colloidal systems are generally in

the mesoscopic scale, it is absolutely important that the modelling technique can handle

larger time-steps to capture the colloidal dynamics.

Urij =


1
2
aijrc(1− rij

rc
)2, if rij < rc

0, if rij ≥ rc

(66)

where aij is the strength of the repulsion between the i-th and j-th particle, rc is a cutoff

distance for the potential, and rij is the distance between the two particles.

This method vastly reduces the number of particles in the system needed for the simula-

tion, alleviating the computational cost but maintaining the hydrodynamic information

of the system. In the original form of DPD [131], there was no clear definition of the tem-

perature of the system, and so the relationship between the temperature and the model

parameters was not defined. Without this temperature relation, it is not possible to look

at the thermodynamics of the model which is absolutely necessary for simulating colloidal

systems. An advance in the model was made by Español and Warren [133] in 1995 where

they derive the Fokker-Planck equation to give a defined temperature to the method.



149

The original DPD method is a solvent-only technique and developments have been made

to include colloidal particles in a suspension of DPD particles. It is common to simulate

the colloid as a frozen collection of solvent particles and has been studied fairly extensively

[130, 134–136]. The colloid can be simulated as one single hard-sphere, greatly reducing

the computational cost of the simulations. One such method is the Fluid Particle Model

and modifications [137–139].

The aim of this chapter is to develop an in-house framework for the DPD method. The

previous studies in this thesis have all demonstrated the necessity for a simulation tech-

nique that can take hydrodynamic behaviour into account in order to fully understand

the complex and interesting observations. The reason to develop an in-house framework

is in order to have control over the way in which the model can be manipulated to use for

simulations of novel systems, which can often be difficult in external programs.

Methodology

Standard DPD

Following the work of Español and Warren [133], we get the definition of the total force

acting on a given coarse-grained DPD particle “i” in equation (67).

FFF i =
∑
j 6=i

(FFFC
ij +FFFD

ij + F̃FF ij) (67)
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where FFFC
ij gives the conservative force derived from the potential, given in equation (66),

felt by the i-th particle due to the j-th particle in the system, FFFD
ij denotes the dissipative

force and F̃FF ij describes the corresponding random force. These forces are shown in the

following equations:

FFFC
ij =


aij(1− rij

rc
)r̂rrij, if rij < rc

0, if rij ≥ rc

(68)

FFFD
ij = −γ

[
f(r)

]2
(r̂rrij · vvvij)r̂rrij (69)

F̃FF ij = σ̃
[
f(r)

]
r̂rrijδr (70)

where the relative positions and velocities are given by vectors rrrij = rrri − rrrj and vvvij =

vvvi − vvvj (following Galilean invariance), the unit vector from rrri to rrrj is given by r̂rrij =

rrrij/rij. Parameters γ and σ̃ represent the strengths of the dissipative and random forces

respectively. δr is a Gaussian random number is zero mean and unit variance.
[
f(r)

]
is a

position-dependent weight function which ensure that the dissipative and random forces

are zero when rij ≥ rc.

Español and Warren [133] used the fluctuation-dissipation theorem to derive the relation-

ship of the system parameters with temperature, given in equation (71) [140].

σ̃2 = 2γkBT (71)
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Following from this, the weight function is simply defined as seen in equation (72).

[
f(r)

]
= 1− rij

rc
(72)

As well as following the fluctuation-dissipation theorem, the weight function gives the

DPD particles an effective radius of 1 with the units of the cutoff radius, rc.

Instead of using the overdamped limit, utilised by Brownian Dynamics, DPD uses New-

ton’s equations of motion to propagate the model system [131, 133]. The technique used

for the propagation of the system is called an integrator. There are some novel integrators

for the DPD system [141–143], but the most common integrator using the equations of

motion is called the Velocity Verlet integrator, developed by Verlet [144] and improved

upon by Besold et al. [145].

Velocity Verlet integrator

There are many variations to the Velocity Verlet integrator available to be paired with

DPD [145–147]. Below is a simple explanation of the basic form of the Velocity Verlet

integrator.
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The equations of motion are derived from Newton’s Second law of motion as shown below.

FFF i = miaaai (73)

aaai =
δvvvi
δt

(74)

vvvi =
δrrri
δt

(75)

δvvvi =
FFF i(t)

mi

δt (76)

δrrri = vvviδt (77)

Following equations (76) and (77), we can calculate how the positions and velocity would

change over time. This brings us to the main part of the integrator seen in equations

(78)-(80).

vvvi(t+ 1
2
∆t) = vvvi(t) + 1

2
∆t
FFF i(t)

mi

(78)

rrri(t+ ∆t) = rrri(t) + ∆tvvvi(t+ 1
2
∆t) (79)

vvvi(t+ ∆t) = vvvi(t+ 1
2
∆t) + 1

2
∆t
FFF i(t+ ∆t)

mi

(80)

∆t is the time-step parameter of the simulation. Once the system parameters have been

defined, initial positions and velocities would need to be created and assigned to each

particle in the system for the start of the simulation. After the initialisation, the total

force can be calculated, followed by the mid-step velocity (equation (78)). Using this

new velocity, the new positions for the particles can be calculated (equation (79)). The

particles can then be moved to their new positions with boundary conditions taken into

consideration if needed for the simulation. The total force is recalculated with the new
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positions and mid-step velocities. Finally, the velocity at the full time-step can be calcu-

lated (equation (80)). The process is cycled from the calculation of the mid-step velocity

until the number of time-steps defined for the simulation is reached.

The Velocity Verlet integrator is a simple integrator used for Molecular Dynamics, where

the force is not related to velocity. However, in DPD, FFFD
ij does have a velocity component.

Therefore a modification must be used. The simplest and effective fix is to merely re-

calculate FFFD
ij at the end of the integration, before cycling back to the mid-step velocity

calculation. This prescription was first developed by Besold et al. [145] and has been

coined the DPD Velocity Verlet (DPD-VV) integrator.

A flow chart for the integration cycle:

Start

Initialise system

t = 0

Calculate DPD force
Calculate

mid-step velocity

Calculate new
particle positions

Move particles

Calculate new
DPD force

Calculate fi-
nal velocity

Re-calculate
dissipative force

t = t + ∆t

t < tfinal?

Stop

yes

no

A mid-step velocity is necessary in the cycle to reduce errors created in the equations of
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motion. To get rrri(t+ ∆t), we need to look at the Taylor expansion.

rrri(t+ ∆t) = rrri(t) + ∆tvvvi(t) + 1
2
∆t2aaa(t) + ... (81)

Using this method causes numerical errors due to having a ∆t2 term. We can take this

term out by using a mid step velocity. The Taylor expansion of v and a give us tools to

do this.

vvvi(t+ ∆t) = vvvi(t) + ∆taaai(t) + 1
2
∆t2bbb(t) + ... (82)

aaai(t+ ∆t) = aaai(t) + ∆tbbbi(t) + ... (83)

By rearranging equation (82), it can be seen that equation (83) can be substituted in to

give equation (84)

vvvi(t+ ∆t) = vvvi(t) + 1
2
∆t[aaai(t) + aaai(t+ ∆t)] (84)

Equation (84) can then be split into the mid-step and final velocity.

vvvi(t+ ∆t) = vvvi(t+ 1
2
∆t) + 1

2
∆taaai(t+ ∆t) (85)

where vvvi(t+ 1
2
∆t) = vvvi(t) + 1

2
∆taaai(t) (86)

Now the mid step velocity can be put into equation (81) to remove the ∆t2 term, as seen

in equation (79).
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Fluid Particle Model

Standard DPD only describes the solvent particles and so the model must be adapted to

study a colloidal suspension. There are two main paths to modelling colloidal particles

in DPD. One is to simulate the colloidal particle as a collection of DPD particles frozen

together. Different variations of this path have been explored in the literature [130, 134–

136]. A setback for this way of simulating the colloid is the computational cost. A colloid

is much larger than that of solvent particles and so we would be required to bond around

500 DPD particles together to create a single average colloid [138]. This would mean a

fairly small system with 50 colloids would need 25,000 particles for the colloids alone. It

can be seen that once the solvent is added to the system, there would be a significant

number of particles that would be very computationally expensive to simulate.

The second method is to simulate the colloidal particle as a single large particle. The

aim is to formulate a modification to the DPD force calculation which would allow for

the approximation of a colloid as a single large free-moving sphere, surrounded by DPD

solvent particles. This would greatly reduce the number of particles required in the sim-

ulation and therefore a more efficient model. The interparticle force from the standard

form of the DPD framework does not allow for a single large sphere to impart the correct

hydrodynamic interactions to the solvent particles due to the vast size disparity between

the two types of particle [137–139]. Therefore, a modification to the framework is re-

quired to add rotational degrees of freedom between the colloidal particles and solvents.

This torque is used to calculate the non-central shear acting on the binary system. One

methodology to introduce the non-central shear forces into the DPD framework is the

Fluid Particle Model (FPM) by Español [137].
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To impart shear forces between two different sized particles, we require the angular mo-

mentum and velocity of the particles. The angular momentum was not previously required

in the standard DPD method to calculate the shear, as the intrinsic angular momentum

of each molecule would go to zero as the system is so large in comparison to one DPD

particle [137]. However, now we would require the finite value of angular momentum

for the larger colloid particle and collection of solvent molecules (the DPD particle) to

correctly impart shear forces in the binary system.

The equations of motion, now become

δrrri = vvviδt (87)

δvvvi =
FFF i(t)

mi

δt (88)

δωωωi =
1

I

∑
j 6=i

TTT ijδt (89)

where ωωωi, I and TTT ij are the angular velocity of particle i, the moment of inertia, and the

torque experienced by particle i due to particle j, respectively. The torque is given by

TTT ij = −1
2
rrrij ×FFF ij (90)

The propagation of the system is implemented the same as for standard DPD with the

addition of the propagation of the angular velocity. This is done in the same way as

translational velocity but with the torque instead of force and inertia of the particle
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instead of the mass.

ωωωi(t+ 1
2
∆t) = ωωωi(t) + 1

2
∆t
TTT i(t)

Ii
(91)

ωωωi(t+ ∆t) = ωωωi(t+ 1
2
∆t) + 1

2
∆t
TTT i(t+ ∆t)

Ii
(92)

The inclusion of angular momentum was achieved by splitting the dissipative force (FFFD
ij )

into the translational (FFF T
ij) and rotational (FFFR

ij) forces.

FFF i =
∑
j 6=i

(
FFFC
ij +FFF T

ij +FFFR
ij + F̃FF ij

)
(93)

The conservative force (FFFC
ij) is derived from the potentials used for the pairwise interac-

tions. For the interaction between two solvent particles, the standard DPD soft potential

is used, as the solvents are soft particles. For the interaction between two colloid particles,

a different potential is required to simulate the properties of the colloid. In this case, we

have used the generalised Lennard-Jones potential to maintain the same colloidal inter-

actions as the previous work within this thesis. However, the potential can be adjusted

and changed to our liking depending on the type of system we would want to study in the

future. The colloid-solvent interaction is modelled using the generalised Lennard-Jones

potential but with the required changes to the parameters used due to the size and energy

difference in the particles. Although the solvent particles can pass through each other

using the soft potential, the repulsive characteristics the colloid particle take precedence

to simulate the interactions correctly between the colloid and solvent particles.
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The potentials have the form,

U cc
rij

=


4εcc

[(
σcc
rij

)2n

−
(
σcc
rij

)n]
, if rij < rcc

0, if rij ≥ rcc

(94)

U cs
rij

=


4εcs

[(
σcs
rij

)2n

−
(
σcs
rij

)n]
, if rij < rcs

0, if rij ≥ rcs

(95)

U ss
rij

=


1
2
aijrss(1− rij

rss
)2, if rij < rss

0, if rij ≥ rss

(96)

(97)

The generalised Lennard-Jones potential is given, where n is varied depending on the

desired range of the potential. rcc, rcs and rss are the cut-off distances for the interactions,

where the subscript cc indicates a colloid-colloid, ss a solvent-solvent, and cs a colloid-

solvent interaction.

The conservative force is derived from these potentials

FFFC
cc(rrrij) =


4nεcc
rij

[
2

(
σcc
rij

)2n

−
(
σcc
rij

)n]
r̂rrij, if rij < rcc

0, if rij ≥ rcc

(98)

FFFC
cs(rrrij) =


4nεcs
rij

[
2

(
σcs
rij

)2n

−
(
σcs
rij

)n]
r̂rrij, if rij < rcs

0, if rij ≥ rcs

(99)

FFFC
ss(rrrij) = aij

(
1− rij

rss

)
r̂rrij (100)
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The dissipative force is split into the translational and rotational forces with the random

force adjusted accordingly to remain true to the fluctuation-dissipation theorem. The

translational force equates the force of friction by relating the translational velocities

with the vector positions and velocities.

FFF T
ij = −γmMMMT (rrrij) · vvvij (101)

where MMMT (rrrij) is in the form,

MMMT (rrrij) =
[
f(r)

]2
III +

[
f(r)

]2
r̂rrijr̂rrij (102)

When this formulation is expanded, it is seen that we get the standard DPD equation for

the dissipative force and an extra shear consideration.

FFF T
ij = −γm

[
f(r)

]2(
r̂rrij · vvvij

)
r̂rrij − γm

[
f(r)

]2
vvvij (103)

The rotational force is essentially the same as the translational force, but the velocity is

replaced with the relative velocity at the surface of the particles. Here, FPM assumes the

spheres i and j have radii of rij/2, are in contact, and are spinning with angular velocities

(ωωωi and ωωωj) and no translational velocities. In this scenario, the relative velocity at the

surface of these spheres is given as 1
2
rrrij× (ωωωi+ωωωj). Therefore the rotational force is given

as,

FFFR
ij = −γmMMMR(rrrij)

(
1
2
rrrij ×

[
ωωωi +ωωωj

])
(104)
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where MMMR(rrrij) is in the same form as MMMT (rrrij). However, as the cross product in the

calculation of the relative velocity at the surface of these spheres is perpendicular to r̂rrij,

the second term is zero, and therefore the rotational force can be written,

FFFR
ij = −γm

[
f(r)

]2(1
2
rrrij ×

[
ωωωi +ωωωj

])
(105)

The random force has been modified to match the changes in the dissipative force. This

is because the random force must be able to balance the dissipation according to the

fluctuation-dissipation theorem [137]. Español [137] deduced the random force to have

the form,

F̃FF ijdt = σ̃m

(
Ã(rij)dWWW

S

ij + B̃(rij)
1

D
tr
[
dWWW ij

]
+ C̃(rij)dWWW

A
ij

)
r̂rrij (106)

where σ̃ is the strength of the random force with the form σ̃ =
√

2γkBT , Ã(rij), B̃(rij) and

C̃(rij) are scalar functions, and dWWW
S

ij, dWWW
A
ij and tr

[
dWWW ij

]
are the traceless symmetric,

anti-symmetric and trace random matrices, respectively. The random matrices follow

these rules,

dWWW Sµν
ij =

1

2

[
dWWW µν

ij + dWWW νµ
ij

]
, (107)

dWWWAµν
ij =

1

2

[
dWWW µν

ij − dWWW
νµ
ij

]
, (108)

dWWW
S

ij = dWWW S
ij −

1

D
tr
[
dWWW S

ij

]
. (109)

where D is the number of physical dimensions of the system and dWWW µν
ij is a matrix of inde-
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pendent Gaussian random numbers with zero mean and unit variance. Due to momentum

conservation, dWWW µν
ij = dWWW µν

ji to ensure that F̃FF ij = −F̃FF ji.

It is common practice to set Ã(rij) = 0, B̃(rij) =
√

2D
[
f(r)

]
and C̃(rij) =

√
2
[
f(r)

]
[137–139]. By putting these into equation (106) we can get our functional form of the

random force.

F̃FF ijdt = σ̃
[
f(r)

][√2D

D
tr
[
dWWW S

ij

]
III +
√

2dWWWA
ij

]
· r̂rrij (110)

Pryamitsyn and Ganesan [138] have developed a variation to the Fluid Particle Model

by adding a prefactor, λij, which would weight the force according to the size difference

between the colloid and solvent. This λij prefactor dictates the ratio between the two

spheres that are interacting in each pairwise interaction.

λij =
Ri

Ri +Rj

(111)

For the solvent-solvent and colloid-colloid interactions the prefactor would merely by 1/2,

and so the standard FPM model is observed. For the systems we desire to simulate the

colloid would be much bigger that the solvent DPD particles and so the prefactor would

heavily weight the forces toward the colloid in the case of a colloid-solvent interaction.

The work by Pryamitsyn and Ganesan [138] was a small change, but effective in modelling

the colloid as a single-particle, with dynamics and rheological behaviour being correctly

simulated for simple fluid solvents.
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The torque is written as,

TTT ij = −λijrrrij ×FFF ij (112)

The rotational force is now given the form,

FFFR
ij = −γm

[
f(r)

]2(
rrrij ×

[
λijωωωi + λijωωωj

])
(113)

Benchmarking

Benchmarking the standard DPD framework

As with the Brownian Dynamics framework developed for this thesis, we must benchmark

the code in order to be confident in the data that is produced for new systems.

Figure 51 shows the static and dynamic properties of the system comparing the radial

distribution function (static) and the velocity auto-correlation function (dynamic) from

our framework and that reported by Leimkuhler and Shang [148, 149]. The match is near

perfect at all timesteps with the only discrepancy at the near zero distance for the radial

distribution function at a timestep of ∆t = 0.13τ . This discrepancy is purely down to the

width of the shells used in the process of calculating the radial distribution function.

Another benchmarking method is to look at the diffusion coefficients we obtain from the

simulation and see if they match with the literature [150]. The diffusion coefficient is

a good benchmarking tool, as it can be calculated from two separate outputs from the
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Figure 51: Radial distribution function and velocity auto-correlation of a system of 500
solvent DPD particles at a reduced number density of ρ∗ = 4.0. The strength of the
interaction was set to aij = 25ε and the strength of the dissipative force to γ = 4.5ε.
The parameters followed from the literature we are benchmarking against [148]. (b)+(c)
images taken from Ref 148. The comparison of the plot show how the in-house
framework gives concordant results to the literature. In our our work ∆t is the timestep
used in each simulation, which mirrors the timesteps given in the literature labelled as h.

system. One method is to use the mean square displacement (MSD) of the particles in

the system, described in chapter 2.

Figure 52 shows the plot of MSD against time for our solvent-only DPD system with the

dissipative strength, γ = 4.5ε. The gradient of the plot is 1.8213, so with the simulation

being in three dimensions, 6D = 1.8213σ2/τ we obtain the diffusion coefficient, D =

0.30355σ2/τ . This matches with the literature, where Chaudhri and Lukes [150] reports
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a value of around 0.3σ2/τ for the diffusion coefficient.
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Figure 52: The mean-squared displacement against time of a 3000 particle system at a
reduced number density of ρ∗ = 3.0, following the parameters give by the literature
[150]. The gradient of this plot is used to calculate the diffusion coefficient. The
calculated diffusion coefficient matches with literature [150].

The other method of calculating the diffusion coefficient is via the Green-Kubo relation

of the velocity auto correlation function [151–153]. In the same way that the stress auto

correlation function can give information on the equilibrium viscosity of the system, the

VACF can give information on the diffusion of the system, the relation is seen in equation

(114). The value for the diffusion coefficient measured in this way matches well with the

MSD data and also to the literature [150].

D =
1

N

∫ ∞
0

〈
vi(t)vi(0)

〉
dt (114)

To further benchmark the solvent-only DPD code, we employed the external package

that was used by Leimkuhler and Shang [148] in their study. By using the external
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package directly we can guarantee that our framework is working as intended. This

external package is DL MESO. DL MESO is capable of utilising a whole host of different

integrators and boundary conditions, along with several utility packages for analysis,

including the DPD-VV integrator and Lees-Edwards shearing boundary. This program is

great for initial benchmarking of the system, but we still chose to develop our own in-house

code to allow us to manipulate the framework for novel systems we wish to study. The

data we observed from the external packaged matched the values from our system and

the literature. From this data we are confident that the framework developed in-house is

working correctly for the initial solvent-only DPD system.

(DL MESO is a mesoscale simulation package written by R. Qin, W. Smith and M. A.

Seaton [154] and has been obtained from STFC’s Daresbury Laboratory via the website

http://www.ccp5.ac.uk/DL MESO)

Benchmarking the Lees-Edwards shearing boundary

With the backbone of the code complete, we moved onto developing the Lees-Edwards

shearing periodic boundary condition. This boundary condition will impart shear on the

DPD system and allow us to study the phase behaviour and rheological properties. The

system we are benchmarking is merely a Newtonian solvent, but we will need this dynamic

capability to study colloidal systems.

To initially benchmark the shearing code, we need to calculate the viscosity of the system
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under shear, i.e. the shear viscosity.

η∗αβ =
σαβ
γ̇

(115)

Viscosity is calculated according to equation (115), where γ̇ is the shear rate and σαβ is

the shear stress. Unlike in the Brownian Dynamics framework that is in the overdamped

limit, the particle velocities are tracked in the DPD framework and so we must include

the kinetic term of the Irving-Kirkwood stress tensor, the full tensor is given in equation

(116),

σαβ = − 1

V

[
Np∑
i=1

mi(vvviαvvviβ) +

Np∑
i=1

Np∑
j>i

rrrij,α ·FFF ij,β

]
(116)

The stress calculation itself must be benchmarked to use the viscosity data that comes

from it. To do this, we can look at the stress auto-correlation function (SACF) in con-

junction with equipartition theory [147, 150]. Due to equipartition the average kinetic

energy from the translational degrees of freedom is equal to 1
2
mv2 and also equal to

3
2
kBT . At low friction, the kinetic term of the stress calculation is dominant [150], there-

fore, σxx = 1
V

∑Np

i=1mi(vvvixvvvix). In turn,
〈
σxx(0)σxx(0)

〉
= Np

V
(mv2). Np

V
is simply the

density of the system and, following equipartition, mv2 can be written as 3kBT , meaning

that
〈
σxx(0)σxx(0)

〉
= 3ρkBT . The system parameters used are ρ∗ = 3 and T ∗ = 1,

therefore, we should expect in our simulation that
〈
σxx(0)σxx(0)

〉
= 9. The value of 9 is

indeed observed with our SACF calculation confirming the benchmarking for the stress

calculation in our framework.

We can also calculate the equilibrium viscosity of the system through the Green-Kubo

relation with the SACF. This is discussed in chapter 2. The reported value is around
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1ε/σD0 [150, 155], however, with the fluctuation in stress at equilibrium being quite large

and the heavily statistical nature of the calculation we won’t be expecting a perfect match

in values [155]. Following the key system parameters set out in Ref 150 (seen in table

6 6.2), we observe a viscosity of 1.0178ε/σD0 from our program, confirming that the code

is correctly calculating stress. The calculated viscosity fluctuated when using different

values of ∆t, but we believe the fluctuation is within tolerance to be confident in the

framework.

Parameter Description Value

N Number of particles 3000

V Volume 1000σ3

ρ∗ Reduced Density 3.0

rcut Cut-off Radius 1.0σ

T ∗ Reduced Temperature 1.0

γ Drag strength 4.5ε

aij Interaction strength 10.0ε

∆t Timestep 0.04τ

Having first benchmarked the standard DPD system with stress calculations, we can

now calculate the shear viscosity and benchmark the shearing boundary condition. The

system we are simulating is made up solely of solvent particles, the system should act

as a Newtonian liquid [156], this means that the viscosity should remain constant as a

function of the rate of shear applied to the system. Checking whether our code gives a

constant viscosity will tell us whether the periodic shear boundary is working correctly.

We used the dissipative rate of γ = 4.5ε, where our shear viscosity was well matched to
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the literature, to calculate the viscosities at a range of shear rates. It was observed that

the shear viscosity remains constant at around 0.87ε/σD0 through all shear rates, as seen

in Figure 53.
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Figure 53: A plot which shows the shear viscosity of the system at different shear rate.
The observed constant trend helps to prove that the shear is correctly being imparted
on a Newtonian solvent.

Initial benchmarking of the FPM framework

Due to time constraints, the FPM framework was only partially developed with very basic

initial benchmarking completed. It will be vital to the future study of dynamic systems

to complete the development of this explicit solvent technique.




