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Abstract 

 

The railway assets studied in this project, are those widely distributed pieces of 

equipment that are critical to the dependable operation of the railway system. A failed 

asset is likely to cause significant delay to rail services, and may even place the 

system into an unsafe state. A generic fault detection and diagnosis (FDD) solution 

for a number of railway assets of different types is therefore desired. 

In this thesis, five assets, namely the pneumatic train door, point machine and train-

stop, the electric point machine and the electro-hydraulic level crossing barrier, are 

considered as case studies. Based on their common dynamic characteristics, these 

assets are also known as Single Throw Mechanical Equipments (STMEs). A generic 

FDD method is proposed for these STMEs, which consists of sensor inputs and pre-

processing, fault detection processes and fault diagnosis processes. A generic model, 

composed of a series of sub-models, is constructed to describe the behaviour of each 

asset. The results of fault detection approaches indicate that the proposed method has 

good performance and is generically applicable to the five assets. Two fault diagnosis 

methods using fault model and residual analysis are proposed and the fault model 

based fault diagnosis is preliminarily approached. Finally, a new three level 

architecture for railway condition monitoring is discussed for practical applications. 
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Chapter 1 

Introduction 

 

1.1 Background 

In any industrial process, it is essential that maintenance is provided to ensure that the 

equipment runs safely and normally. Properly maintained industrial plants have 

significant benefits, such as higher productivity, equipment which has a longer 

lifespan and, as a consequence, lower production costs. An effective and efficient 

maintenance plan requires that information concerning the condition of the equipment 

can be accessed on a timely basis. In the early 19th century, maintenance was only 

carried out following a failure as there was a lack of means to understand the status of 

machinery. Since that time, routine maintenance has been performed in order to find 

and fix problems before a fault occurs. However, time period based maintenance 

inspection is still not sufficient, particularly for incipient faults. With the development 

of electronic technology, a low-cost, on-line condition monitoring system has become 

realistic for industrial applications. Predictive maintenance is, therefore, achievable 

via deliberated fault detection and diagnosis (FDD) algorithms.  

Railway systems are both safety and time critical. A large number of trackside railway 

assets, such as point machines and level crossing barriers, contribute to regular train 

services in a complex operating context. A failed asset is likely to cause a significant 

delay to rail services, and may even place the system into an unsafe state. Appropriate 

maintenance for these widely distributed assets is the main concern of infrastructure 

management, which is currently undertaken by Network Rail in Britain. In 2007/2008, 
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£1,118 million was spent on maintenance of the UK main line network (Network Rail 

2008), mainly through scheduled basis. A time period based regular maintenance 

regime has been used on the railway systems since the 1950s. A predetermined set of 

tasks is performed for each asset (Roberts 2007). To date, predictive maintenance has 

not been fully delivered to the railway system.  

In recent years, there have been many studies on predictive (condition-based) 

maintenance for a wide range of industries, including railway systems, with the aim of 

increasing the operational reliability of industrial processes (Roberts et al. 2001, 

Lehrasab et al. 2002, Becker and Poste 2006 and Redeker 2006). The most effective 

maintenance strategy, predictive maintenance, provides continuous condition 

monitoring of the equipment and any deviation from the desired operating 

characteristics triggers maintenance requirements. This type of maintenance strategy 

is especially good at detecting incipient and gradually developing faults, which are 

difficult to find, even with expert knowledge. Proactive conduct can prevent a total 

failure of the equipment, which may result in significant costs and unpredictable 

hazards.  

Condition monitoring is the key point of the predictive maintenance strategy. Modern 

technology, such as sensors, data transmission and computing, has enabled 

information collection and processing for remote condition monitoring to be carried 

out at a high speed with an effective cost. For widely distributed railway assets, local 

networks, i.e. Fieldbus, are capable of organising data from installed sensors and 

transferring it to a Central Processing Unit (CPU), where the data is processed with 

FDD algorithms to identify the operating status of the equipment. The classical FDD 
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process usually consists of analytical models (quantitative or qualitative) and relevant 

detection and diagnosis algorithms. Data from sensors is validated against the models 

to check any existing deviation and the results are used to analyse the health status of 

the equipment. If significant inconsistency is detected, further fault diagnosis will be 

carried out. 

Based on the features of railway assets, a concept of (RCM)2 was proposed to 

combine the concepts of reliability centred maintenance and remote condition 

monitoring (Roberts and Fararooy 1998). The underlying intention of this concept is 

to realise automated condition-based maintenance through remote condition 

monitoring techniques, whereby the maintenance costs are reduced and the safety of 

rail services is reinforced. As an initial basis of (RCM)2, a comprehensive Failure 

Mode and Effects Analysis (FMEA) is usually developed for a specific asset using 

expert knowledge and accumulated experience.  

1.2 Motivation and objectives 

In the railway system, there are a large number of safety and dependability critical 

assets spread over a wide geographical area. It is essential to keep these assets 

working in a healthy condition by using proper maintenance systems. Currently, a 

scheduled maintenance regime is carried out; however, defects are commonly found 

in the following areas: 

- It is impossible to be aware of the onset of faults that occur between scheduled 

maintenance inspections.  

- Some faults cannot be found by a visual inspection. 
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- If a sudden failure occurs, maintainers may be required to work during traffic 

hours to provide emergency maintenance. This could create a health and safety 

risk to the personnel. 

- The tasks performed by routine maintenance are normally predetermined, which 

may result in inadequate preparation for unusual maintenance requirements.  

- Due to the intermittent nature of some faults, the asset is often found fault-free 

when tested by the maintenance staff; however, the asset may fail after a random 

period of time. This number of instance of ‘Tested OK on arrival’ (TOK) is high 

in railway infrastructure maintenance. 

- Since the assets are distributed over a wide area, a large number of maintainers 

are often required to take care of them. In the absence of detailed fault 

information, an asset sometimes has to be inspected repeatedly due to either 

inadequate preparation or failed fault identification. Consequently, the financial 

and time costs of maintenance are increased significantly, while the reliability of 

the railway system decreases. 

Failed railway assets can lead train traffic into an unforeseen situation which places 

passengers in danger. Abrupt asset failures and emergency maintenance often 

significantly delay train services. A penalty charge of up to £120 per delayed train per 

minute is currently applied. The financial loss can be huge for the infrastructure 

owner, particularly when main line traffic is disrupted. It is therefore obvious that a 

more effective and efficient maintenance methodology is required to ensure the 

reliability and safety of the railway system. 
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Previous studies have been carried out on fault detection and diagnosis to railway 

assets through condition monitoring. Lehrasab (1999) presented Single Throw 

Mechanical Equipment (STME) concept-based approaches on the modelling and 

diagnosis of pneumatic train doors, train-stops and point machines. Roberts (2007) 

discussed the methodology of fault detection and diagnosis on several railway assets 

outlined in this thesis and presented practical applications and results. As a closed loop 

controlled asset, the electric train door was studied by Dassanayake (2001). For the 

electro-hydraulic level crossing barrier, various approaches can be found in 

Suthasinekul et. al. (1976), Brinkmann and Spalmann (1996), Yazdi et. al. (1998), 

Nash and Roberts (1999), Garcia Marquez et. al. (2007) and Ishak et. al. (2008). 

Strategies were developed for the health state detection of electric point machines, 

such as statistics based RCM2 algorithms (Garcia Marquez and Pedregal 2007), 

Principal Component Analysis (PCA) (Garcia Marquez 2006), unobserved component 

models for wear in point machines (Garcia Marquez et. al. 2007) and qualitative 

presentation of parameter trends (Silmon and Roberts 2006). However, most of these 

studies were related to a specific asset rather than producing a generic solution to a 

class of similar railway assets, which is pursued in this study.  

The objective of this study is to investigate a generic fault detection and diagnosis 

method for a number of multi-type simple railway assets. The benefits are: 

- Condition monitoring, integrated with a FDD algorithm, is capable of collecting 

fault information upon the occurrence of a fault and diagnosing the fault for 

appropriate maintenance.  

- Intermittent faults can be detected and diagnosed in time, which reduces the 



 

Introduction 

 

6 

occurrence of ‘TOK’. 

- Incipient faults can be detected and relevant maintenance can thus be carried out 

before a failure occurs. 

- With the ability to monitor multiple types of asset, the condition monitoring 

system is simplified and therefore the capital cost is reduced. 

- The proposed generic FDD solution is able to replace a series of specifically 

designed algorithms. The computation required can also reduce by integrating the 

generic FDD software into one centralised computation unit. 

1.3 Thesis structure 

The work, completed to achieve the above objectives, is presented in this thesis, and 

the structure is outlined as follows: 

Chapter 1 - Introduction to the study. The background, motivation and objectives of 

the project are presented.  

Chapter 2 - Definition and techniques of fault detection and diagnosis. An overview is 

provided of the development of fault detection and diagnosis methodology 

over the last few decades. As analytical methods, the model-based 

mathematical (quantitative) and artificially intelligent (qualitative) fault 

detection and diagnosis methods are discussed and compared.  

Chapter 3 - Five railway assets are considered in this study, namely the pneumatic 

train door, point machine and train-stop, electric point machine and 
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electro-hydraulic level crossing. The assets are introduced and the 

lab-based test rigs for data acquisition are described in detail. Data 

collected from these assets are presented. The definition of Single Throw 

Mechanical Equipement (STME) is introduced, and the relevance of this 

definition to the case studies is explored. As a classification of STME, 

common features are abstracted from the five railway assets, based on 

which a generic fault detection and diagnosis method is proposed for 

condition monitoring. Based on statistics theory, an adaptive thresholding 

algorithm is proposed for residual generation. Two fault diagnosis 

approaches are presented and discussed. 

Chapter 4 - A generic fault detection and diagnosis approach is presented for the 

pneumatic train door. As the essential part of FDD, the modelling work is 

illustrated. The results of fault detection using an adaptive threshold 

algorithm are presented. The results are analysed and the performance of 

the proposed generic fault detection and diagnosis method is proved to be 

good. A fault diagnosis approach using a fault model is presented and 

discussed.  

Chapter 5 - Four case studies for other assets considered in this thesis are provided. 

The generic fault detection method is applied for the other two pneumatic 

railway assets, the train-stop and the point machine, as for the pneumatic 

train door. Fault detection results are presented, by which the fault 

detection method is proved to be good and generic for the pneumatic 

assets. Initial fault detection approaches for the electric point machine and 
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electro-hydraulic level crossing are presented with results. The feasibility 

of the generic fault detection method to the electric and electro-hydraulic 

assets is discussed and confirmed.  

Chapter 6 - A distributed condition monitoring architecture for simple multiple 

railway assets is described. A three level condition monitoring 

architecture for the assets is introduced and discussed. Based on a generic 

fault detection and diagnosis solution, a more economic three level 

architecture is proposed. Digital communication networks suitable for 

local condition monitoring networks are also introduced. 

Chapter 7 - Conclusions of this study and discussion of further work. 



Chapter 2 

Fault detection and diagnosis methods 

 

2.1 Introduction 

In order to achieve reliability, maintainability and safety in industrial processes, fault 

detection and diagnosis (FDD) technology has been rapidly developed and improved 

over the last four decades. In the 1970s, initial FDD applications in chemical and 

industrial plants used threshold testing to check system data. Using this method, a 

fault can be detected when a measured value crosses a given threshold (Vaclavek 

1974 and Himmelblau 1978). This classical limit-value-based method is simple and 

reliable; however, it only responds to a relatively large change to a feature, therefore a 

detailed fault diagnosis becomes impossible (Isermann 1997). 

With increasing system complexity and requirements for reliability, a quantitative 

model of a practical system was required and many investigations were therefore 

made using analytical approaches during the 1980s and 1990s. The idea was to 

generate signals that represent inconsistencies between normal and faulty system 

operation (Patton, Lopez-Toribio and Uppal 1999). Based on analytical model, the 

algorithms, such as observers (Chen and Patton 1999), parity equations (Gertler 1998) 

and parameter estimation (Isermann 1994a), were designed for inconsistency signal 

generation (also known as residuals generation).  These model-based FDD methods 

have been widely implemented in many industrial fields, such as nuclear power plants 

(Lee et al. 2006), railway vehicles (Li and Goodall 2003 and Li, et al. 2007), jet 

engines (Patton and Chen 1997) and electrical machines (Combastel et al. 2002). In 
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some safety-critical industrial systems, e.g. nuclear reactor, aircraft or fast rail, high 

cost hardware redundancy integrated with analytical methods is applied to avoid 

incident when a fault occurs (Patton and Chen 1997).  

More recently, modern computing and analysis methods, e.g. neural networks, fuzzy 

logic and pattern recognition, have been investigated as powerful modelling and 

decision making tools. A survey of Artificial Intelligence (AI) approaches to FDD 

was given by Patton (1999). Neural networks can be used for continuous linear and 

non-linear systems modelling, where the model itself has the potential to be improved 

by learning from new input and output information from a real system. Thus, some of 

the difficulties of using mathematic models are overcome, which makes neural 

network based FDD algorithms more applicable to real systems. However, neural 

networks are generally treated as black-box models, which indicates that it is not easy 

to achieve insight into the behaviour of the models. To obtain maximum benefit, 

neural networks are usually combined with qualitative models or inference methods, 

e.g. fuzzy logic, to enhance the diagnostic reasoning capabilities.  

This chapter provides an introduction to fault detection and diagnosis methodology by 

means of a literature review. The FDD methods are generally classified into two 

categories: quantitative FDD methods, including observers, parity equations and 

parameter estimation; and qualitative methods, including neural networks, fuzzy logic 

and neuro-fuzzy systems. The comparison of three quantitative methods is also 

provided.  

2.2 Fault detection and diagnosis methodology 

A fault is defined as an unpermitted deviation of at least one characteristic parameter 



 

Fault detection and diagnosis methods 

 

11 

of a system from normal (healthy) status (Isermann 1984, 1997). A system which has 

the capacity of detecting, isolating and identifying faults is called a fault detection and 

diagnosis system (Patton et. al. 1999). A failure is defined as the state of a permanent 

invalidation of a system to perform normal functions. The system mentioned above is 

often a machine/plant/network or a railway asset in this thesis.  

Abrupt Intermittent Incipient Noise 

 

Figure 2.1  Typical temporal faults. 
 

Time-varying faults leading to the failure of a system are mainly classified into four 

categories as shown in Figure 2.1. When abrupt faults occur, the system jumps from 

healthy to failure without a sign. This type of fault can not usually be predicted and 

often happens due to the sudden failure of an important component. Intermittent faults 

usually happen when electric connections are unstable. A long term observation 

would help to identify this fault. Noise (disturbance) is defined as an unknown extra 

input to a system, which may randomly cause malfunctions or failure. This class of 

fault may be statistically defined; however, it is very difficult or impossible to predict.  

Therefore, the fault detection and diagnosis methods need to be robust to these normal 

system variations, as the behaviour of the system changes with the presence of this 

extra input. Incipient faults are typical in mechanical systems, where faulty elements 

deviate from their behaviour in a gradual manner (drift). A certain threshold can be set 
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for detection of this type of fault, and a decision can be made when the threshold is 

exceeded. The tracking of the deviation can also provide information for early fault 

prediction. 

 The fault categories mentioned above are based on the time-varying characteristics of 

a system. Regarding the effect of faults on a process, they can also be classified as: 

additive faults and multiplicative faults (Isermann 1997 and Dassanayake 2001). 

Additive faults are caused by unknown inputs or disturbances. The outputs are 

changed independently from the known inputs. Sensor and actuator faults are 

normally modelled as additive faults. When unknown variables are added to a system 

and the physical parameters change accordingly, the resulting faults are referred to as 

multiplicative faults. With the occurrence of this type of fault, the outputs of a system 

change depending on the magnitude of these unknown variables. As subsets of 

additive faults, sensor faults and actuator faults are common in industrial plants 

(Frank 1990). Sensor faults generate fake deviations between actual system values 

and measurements. In the same way, actuator faults cause discrepancies between the 

actual performance of actuators and the expected performance by the commands.  

As mentioned in the definition of fault detection and diagnosis systems, a FDD 

system theoretically consists of three functions: fault detection, fault isolation and 

fault identification. Fault detection (FD) is referred to as the capability to observe 

something wrong and determine a fault which is occurring in a system. The fault can 

then be classified and located by the isolation function. Based on the knowledge 

abstracted from the aforementioned two steps, the fault identification function 

implements the identification of fault strength. In practice, only fault detection and 
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isolation are normally included since fault strength identification is often too difficult 

to apply.  

A FDD system is often required to have a set of desirable characteristics which offer a 

reliable, safe and efficient target system. Quick detection and accurate diagnosis are 

normally required as key points of a good FDD system (Isermann 1997 and Dash and 

Ventkatasubramanian 2000). However, timely detection is often a trade off between 

robustness and performance, since high speed execution is always sensitive to high 

frequency influences. Therefore, desensitisation to disturbances/noises is a must.   

Furthermore, an accurate diagnostic algorithm also needs to overcome model 

uncertainties in order to correctly classify multiple faults. In practical FDD 

applications, a priori estimations on classification error are expected to enhance 

reliability and provide more information to users (Ventkatasubramanian 2003a). The 

robustness of a diagnostic system is the key point which can directly affect 

performance under different practical or environmental conditions.  

2.2.1 General model-based FDD algorithm 

The aim of model-based fault diagnosis is to generate information about faults which 

have occurred in target systems using actual measurements, as well as the quantitative, 

qualitative or combined system model. The model-based method is referred to as an 

analytical method, which is low-cost compared to hardware redundancy in some 

safety-critical applications, provided that a model can precisely simulate the 

behaviour of a real system. Typically, the target system is considered as a continuous-

variable dynamic system, which has an input u and an output y, with an unknown fault 

f. Figure 2.2 illustrates the conceptual structure of a model-based fault detection and 
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FDD algorithm 

diagnosis system. 

The inconsistency between the model and the actual system (also known as residual), 

r(t), is generated by the following equation: 

( ) ( ) ( )mr t Hy t Hy t          (2.1) 

f 

y(t) u(t) System 

r(t) 

Fault information 

Model Hym(t) 

Hy(t) 

Decision Making

 

Figure 2.2  Concept of model-based fault detection and diagnosis. 
 

H represents the manipulation function of the system output, y(t), and model output, 

ym(t). The status of the system can be observed by r(t): 

 , fault free; ( ) 0r t 

 , fault occurs. ( ) 0r t 

In theory, the residuals must be either zero in a fault free case, to indicate that no fault 

occurs, or non-zero in the case of a fault. However, in practice, deviations normally 

exist with different magnitudes. A threshold is, therefore, required for sensitivity 

adjustment. The value at which a threshold is set determines whether the FDD system 

has enough sensitivity to detect a fault or not. The balance is a trade-off between 
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In

detection accuracy and false alarm frequency. 

Residuals represent the likelihood of fault occurrence, and the decision making 

system (Figure 2.2) provides a decision rule to examine whether these residuals are 

indicating a fault (Patton et. al. 1999). In addition to the threshold testing method for 

fault detection described above, statistical and inference methods can also be used to 

make a decision (Frank and Ding 1996). As shown in Figure 2.2, decision making 

system generates fault information by investigating and analysing a set of residuals. 

Faults

 

Figure 2.3  General scheme of model-based fault detection and diagnosis (Isermann 2005). 

A general scheme of model-based fault detection and diagnosis is shown in Figure 2.3. 

In this figure, the whole system consists of actuators, the target system and sensors, 

where the faults can be grouped as actuator faults, system faults or sensor faults. 

Disturbance (noise) is added on the sensor output. Both input and output are physical 
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measurements, which are compared with the prediction from the system behaviour 

model for residual generation. The residual generator aims to produce a set of 

inconsistencies to indicate whether a fault is present. Normal behaviour information is 

used as an input to the system behaviour model to detect any change in system 

features and to produce symptoms to aid further diagnosis. Basically, an intact FDD 

system includes three stages (procedures) with different functions: system modelling, 

residual generation and fault diagnosis. Firstly, a precise mathematical model is 

required to predict system performance. For most systems, precise mathematical 

models are often very difficult to obtain. The robustness of the FDD scheme is often 

achieved by designing algorithms where the effects of model uncertainties and 

unmodelled dynamic disturbances on residuals are minimised and sensitivity to faults 

is maximised (Patton et. al. 1999). Secondly, a set of residuals is generated to 

represent the deviation between actual and nominal features. Finally, the residuals are 

evaluated to relate to certain faults and to locate the fault if it is present. The model 

implementation and residual generation compose the model-based fault detection 

system. 

2.2.2 Quantitative FDD methods 

This section reviews quantitative, model-based residual generation methods. The most 

frequently used FDD approaches, including observers (state estimation), parity 

equations and parameter estimation, are described and the three methods are 

compared. The mathematic descriptions of both observers and parity equations can 

take the form of either continuous or discrete time equations. In this section, the 

observers are described in continuous and parity equations in discrete time to illustrate 

the basic principles. 
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2.2.2.1 Observer based methods 

Diagnostic observers appeared in the early 1970s and have been well developed in the 

last thirty years. The algorithms of residual generation in this model-based method are 

based upon the calculation of estimation error using observer equations, which are 

applicable to both continuous and discrete systems (Chen and Patton 1999). A 

detailed survey of this technique has been given by Frank and Ding (1997).  

The concept of the observer-based method is to observe any change to the system 

states by state estimation. A continuous, time variant linear system with faults is 

assumed in the form of a State-Space model (Frank and Ding 1997 and Patton 2000). 

1( ) ( ) ( ) ( )x t Ax t Bu t R f t     (2.2) 

2( ) ( ) ( ) ( )y t Cx t Du t R f t     (2.3) 

Where x(t)∈Rn , is the state vector; u(t)∈Rk, is the system input vector, whilst 

y(t)∈Rm, is the output vector; f(t)∈Rj, is the fault vector in the temporal domain (fi(t) 

can represent a set of faults with i=1,2,…,j, if they are present); R1 and R2 are matrices 

representing how the fault relates to the system. An observer is then required to 

estimate a set of states, which can be written as follows: 

 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x t Ax t Bu t K y t y t A KC x t B KD u t Ky t          (2.4) 

ˆ ˆ( ) ( ) ( )y t Cx t Du t    (2.5) 

where ˆ( )x t  is the estimated state vector and  is the observer output vector; 

K∈Rnm is the designed feedback gain matrix of the observer. Therefore, the state 

estimation error can be described with the following equation. 

ˆ( )y t

ˆ( ) ( ) ( )e t x t x t    (2.6) 

Where e(t) satisfies 
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)

2 1( ) ( ) ( ) ( ) ( )e t A KC e t KR R f t      (2.7) 

The residuals, r(t)∈Rp, can then be obtained. 

2ˆ( ) ( ( ) ( )) ( ) ( )r t W y t y t WCe t WR f t      (2.8) 

Where W∈Rnm is the residual weighting matrix. This equation shows that the 

residuals are sensitive to estimation errors and fault signals. In a fault-free case, where 

f(t)=0, the e(t) should converge to zero as t→∞, if the absolute values of the 

Eigenvalues of WC are less than 1 (Venkatasubramanian 2003a).  

2.2.2.2 Parity equations 

The aim of parity equations is to compare the parity (consistency) of the analytical 

models with the actual outputs (measurements from sensors) of a real system. In 

theory, the result of parity equations (residuals) is zero under fault-free conditions, 

where an accurate and robust system model is a must. In the form of a State-Space 

model, a discrete system is illustrated as (Chow and Willsky 1984): 

( 1) ( ) (x k Ax k Bu   k   (2.9) 

( ) ( ) ( )y k Cx k Du k    (2.10) 

where x(k)∈Rn , is the state vector; u(k)∈Rp, is the input vector, whilst y(k)∈Rm, is 

the output vector; x(k+1) represents the state of the system at time k+1. A, B, C and D 

are constant matrices to relate output to input parameters. To produce residual signals 

temporally, an output, y, of the model at time, k, is deduced. The output at time, k+1, 

is: 

( 1) ( ) ( ) ( 1y k CAx k CBu k Du k     )   (2.11) 

For any Δt >0, the output at k+Δt is: 
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1 2( ) ( ) ( ) ( 1) ... ( 1) ( )t t ty k t CA x k CA Bu k CA Bu k CBu k t Du k t                 
  
  (2.12) 

where Δt =0,1,…, n. Writing the above equation in a compact form as: 

( ) ( ) ( )Y k Qx k n RU k     (2.13) 

Therefore, residuals generated at time, k, can be written as (Yu et al. 1996 and Ding et 

al. 1999): 

( ) ( ( ) ( ))mr k W Y k Y k    (2.14) 

where Ym(k) is the measurement of system outputs; W is a vector for residual 

generating manipulation. A well designed residual generation vector is selected to 

achieve a specific structured residual response to faults and to decouple from 

unknown disturbances and model uncertainties. 

2.2.2.3 Parameter estimation 

The parameter estimation approach detects faults by the estimation of parameters 

within a dynamic system, where the faults are assumed to be reflected by these 

features (Isermann 1984, Isermann 1994, Chen and Patton 1999 and Patton et. al. 

1999). The system parameters can be classified as physical and abstract parameters, 

which directly and indirectly represent the status of a real system, respectively. As, in 

most practical cases, these parameters are not obtained, parameter estimation methods 

are applied by measuring the input and output signals, provided that the first principle 

(physical principle based) model is well known (Isermann 2005). However, due to the 

difficulty of constructing an accurate model for a complex non-linear system, the 

application of this method is often restricted to simple linear systems.  
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A single-input, single-output, time variant, linear model around a steady state 

operating point (Y00/U00) can be described by a differential equation (Isermann 1997 

and Patton 1989 ). 

(1) ( ) (1) ( )
0 1 0 1( ) ( ) ... ( ) ( ) ( ) ... ( )n m

ma y t a y t y t b u t b u t b u t        (2.15) 

00 00( ) ( ) ; ( ) ( )y t Y t Y u t U t U      (2.16) 

Where a and b are model parameters and ( ) ( ) ( ) /n n ny t d y t dt . In compact form, the 

equation 2.15 can be written as: 

( ) ( ) ( ) ( )ny t t e   t   (2.17) 

where e(t) is the equation error, regression ( )t and the parameter vector   are: 

(1) ( 1) (1) ( )( ) [ ( ), ( ),..., ( ), ( ), ( ),..., ( )]n mt y t y t y t u t u t u t      (2.18) 

 0 1 1 0 1, ,..., , , ,...,
T

n ma a a b b b    (2.19) 

The measurements of input and output are at discrete time t=kΔt, where k=0,1,…,N, is 

the number of sampled data. The N+1 equation is as: 

( ) ˆˆ ( ) ( ) ( )ny K K e   K   (2.20) 

where ̂  is the estimated parameter vector and ( 1)K N t   , which can be obtained 

by the loss function, J. 

2 2

0 0 0

ˆˆ( ) ( ) ( ( ) ( ))
N N N

k k k

J e k y y k y k 
  

       2  (2.21) 

The ̂  is, therefore, estimated using the well-known least-squares (LS) algorithm 

(Mandel 1964 and Ljung 1987). 

1

( ) ( ) ( )

ˆ [ ]

[ (0), (1),..., ( )], [ (0), (1),..., ( )]

T T

n n n

Y

N Y y y y N



  

   

  
 (2.22) 

For the linear model as mentioned above, a LS algorithm is normally applicable for 

minimising the loss function, J, and therefore the estimated parameter vector ̂  can be 
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obtained. However, this method is generally not valid for non-linear models, except a 

class of which have the linearity characteristic in parameters and the non-linear 

functions are known (Gertler 1998). The non-linear model with features of a linear 

model in the parameters can be described by the following equation. 

1 1 2 2( ) [ ( )] [ ( )] ... [ ( )] ( )r ry t a f u t a f u t a f u t t      (2.23) 

Where [ ( )]f u t  is a known non-linear function with input u(t); a1, a2…ar are unknown 

parameters and ( )t ( )t  is the equation error. In this case, the regression   and 

parameter vector   can be described as: 

 1 2( ) [ ( )], [ ( )],..., [ ( )]rt f u t f u t f u t    (2.24) 

 1 2, ,...,
T

ra a a    (2.25) 

The output is therefore predicted by the following equation: 

ˆˆ( ) ( )y t t    (2.26) 

The estimated parameter vector can also be obtained using the LS algorithm as in 

equation 2.22. 

2.2.2.4 Comparison of the three methods 

The three model-based residual generation methods have been well developed over 

several decades, the research and application of which can be found in literature such 

as observer-based approaches in Frank (1996), Frank and Ding (1997) and Patton 

(1997), parity equations in Chow and Willsky (1984), Patton (1994) and Kosebalaban 

and Cinar (2001) and parameter estimations in Isermann (1997, 2003a) and Patton 

(1999). 

In various aspects, these methods have similar and different characteristics, which can 
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be illustrated as follows: 

– The observer-based approach realises fault detection through observing the 

change in system state, which is also known as a state redundancy. The parity 

equations method functions by identifying the inconsistencies between the 

analytical model and the real system. The aim of parameter estimation is to detect 

the variety in the physical parameters of the system by estimation. 

– Fundamentally, the observer-based and parity equation methods have an 

equivalent structure, which results in the possibility that the parity equation 

method can be transformed into the form of observer structures in some specific 

conditions (Chen and Patton 1999), i.e. parity equations can be transformed to 

observer representation by use of linear filter (Gertler 1991). 

– The model structures for the three methods are all required to be well known. The 

system parameters are also necessary for the first two methods that also require 

the analytical (mathematic) model to fit the process well (Isermann 1994). 

– For non-linear systems, these methods can be applied; however, restrictions exist. 

Non-linear observers and non-linear parity equations are only applicable to a 

particular class of non-linear circumstance. Parameter estimation can be applied 

to non-linear systems, provided that the parameters have a linear feature and the 

non-linear functions are known. 

– The performances of the three fault detection methods highly depend on their 

designs for different applications. The three methods, with appropriate designs,  

have their own characteristics. In comparison to parameter estimation, observers 
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and parity equations have a very fast response to sudden faults. The computation 

demand of these two methods is moderate, which makes on-line real-time 

application feasible. Parameter estimation is relatively slow since a large number 

of data samples are required to make the estimation accurate. However, this 

method can detect small changes in the system, irrespective of whether they are 

slow or fast developing faults, since the parameter values directly indicate the 

fault strength. A pre-condition of applying parameter estimation is that the system 

must stay dynamic; otherwise the estimation result may drift to unpredictable 

values. 

With the strict requirement of an explicit model for the target system, these traditional 

methods are often difficult to implement in practical tasks, especially for those 

complex highly non-linear objects. In recent years, artificial intelligence (AI) 

techniques have been introduced to the fault detection and diagnosis field either as a 

system modelling tool or as a residual classifier. 

2.2.3 Qualitative FDD methods 

In this section, the applications of AI techniques, such as neural networks and fuzzy 

logic, in the fault detection and diagnosis field are introduced. The combination of 

these two methods, the neuro-fuzzy technique, is also reviewed. 

2.2.3.1 Artificial neural networks 

An artificial neural network (ANN) is a processing system with a number of 

interconnected elements, which are called neurons (Winston 1992 and Patton et. al. 

1999). This technique was initially developed in the late 1940s in order to model 
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certain aspects of the function of a human brain. A neuron has only a very simple 

specific function and structure; however, a large number of connected neurons in 

parallel provide huge processing power. Each neuron can be thought of as a 

mathematical function, which connects to other neurons to map the inputs and outputs 

within a network (Patton et. al. 1999). 
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Figure 2.4  Concept of an n-input neural network processing unit. 
 

Figure 2.4 illustrates a typical neuron in a neural network with n inputs, where xi 

(i=1,2,..,n) is input; y is output; wi (i=1,2,…,n) is connection weight to corresponding 

xi; h is threshold; f is activation function and u is the summation of weighted inputs. 

A neuron has a series of input signals which are changed when they travel along the 

connections by combining with the connection strength (weight). After gathering the 

inputs from connections, an activation value is then computed using an activation 

function. The output of this unit, y, is written in mathematical form as: 

1

( , ) ( , )
n

i i
i

y f u h f x w h


     (2.27) 
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The threshold relation for obtaining the output, y, can be written as: 

1,

0,

if u h
y

if u h


  

  (2.28) 

Function 2.28 presents the ‘all-or-nothing’ characteristic of the processing unit 

threshold function (Gurney 1997). Apart from the step function (2.28), other 

activation functions are also popular, for example a sigmoid function. The sigmoid 

function (2.29) makes the output, y, smoothly depend on u. 

( )/

1
( , )

1 h u
y f u h

e  


  (2.29) 

Where e ≈ 2.7183 is a constant and ρ determines the shape of the function. 

A neural network consists of a number of connected neurons. Depending on their 

functionality, the neurons are organised as three layers: input layer, hidden (middle) 

layer and output layer as shown in Figure 2.5, where the hidden layer may be more 

than one layer. A fundamental property of neural networks is the ability to learn. The 

learning process requires a set of training data, which include desired inputs and 

outputs that reflect the behaviours of a system. With feedback loops, the network 

trains itself to be a close approximation of the actual. In the fault detection and 

diagnosis field, neural networks are normally applied to system modelling and fault 

classification. 

Compared to analytical models, neural network modelling does not require explicit 

information about the physics of the real system. The advantage is that it can 

automatically learn the system by extracting the system features from historical 

training data. The neural network can handle both linear and nonlinear systems, 

although it is not efficient for linear systems. The capability of simulation of non-
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linear behaviours with given suitable weighting factors and network structure is the 

most important feature of neural networks (Narendra and Parthasarathy 1990 and 

Narendra 1996). 

 

Figure 2.5  Three-layer feed forward (a.) and recurrent (b.) networks. 
 

In Figure 2.5, the architecture of a three-layer neural network is displayed. For system 

modelling, the two main classes of neural network can be considered: multi-layer feed 

forward network (Figure 2.5 a) and recurrent network (Figure 2.5 b). The first 

network maps the linear and non-linear relations with activation functions at each 

neuron. However, this is static, rather than dynamic, mapping. Narendra and 
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Parthasarthy (1990) investigated the possibility of representing non-linear dynamic 

systems using the feed forward network combined with linear dynamic systems. With 

the feed-back character, the recurrent network is applicable to dynamic non-linear 

modelling. The deviation from the desired output is propagated back to re-input to 

neurons at the middle and/or input layers for network behaviour adjustment. 

A non-linear dynamic system can be generally described as: 

( ) ( ( 1), , ( ), ( ), , ( ))y k F y k y k n u k u k n       (2.30) 

where u(k)∈Ri is the input vector, y(k)∈Rj is the output vector, F is the non-linear 

function and n is the system order. A one-step prediction model of this system using a 

feed forward neural network can be presented in the form of an equation. Time delay 

units are also employed for output prediction, which simulates the feed back function 

to make the feed forward neural network self-adjustable. 

ˆ( ) ( , ( 1), , ( ), ( ), , ( ))y k NN W y k y k n u k u k n       (2.31) 

Where W is the weight matrix. Therefore, the residual function is: 

ˆ( ) ( ) ( )r k y k y k    (2.32) 

During training, the weight W is adjusted to reduce the inconsistency from measured 

outputs. The error function is as the following function. 

2

1

1
ˆ( ( ) ( ))

2

m

k

E y k y k


    (2.33) 

Where E is the sum of the squared error and m is the number of training tasks. 

Typically, neural network architectures for system modelling include feed forward 

networks, Radial Basis Function (RBF) networks and dynamic neural networks, 

because of their powerful approximation and generalising abilities (Patton et. al. 

1999). 
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Fault classification is a logic decision-making process to transform quantitative 

knowledge into qualitative statements that determine fault occurrence and location 

(Korbicz et. al. 2004 and Chen and Patton 1999). For various fault situations, a fault 

classifier is used to classify the generated symptoms into corresponding 

distinguishable patterns. The capability of generating arbitrary regions in space makes 

neural networks feasible for this task (Cybenko 1989). In fault diagnosis, the regions 

may represent different fault types or locations. Based on the architecture and learning 

algorithms, probabilistic neural networks and radial basis function networks are the 

most suitable for fault classification (Winston 1992). On the other hand, unsupervised 

neural networks, such as self-organising neural networks, can also be used for 

classification, due to their adaptive structure based on the input to the network. To 

achieve an accurate classification of a fault, the training data must contain all possible 

faults that may happen in the process. 

2.2.3.2 Fuzzy logic 

Fuzzy logic is a technique used to deal with ambiguous rather than precise reasoning 

problems using multi-valued logics derived from fuzzy set theory (Zadeh 1965 and 

Klir and Yuan 1996). In classic predicate logic, the degree of statement to truth is 

defined as ‘crisp’ {true, false}, however, in fuzzy logic, it can range from 0 to 1, 

where the statement is declared based on the closeness to each value. In recent years, 

the research and application of fuzzy logic to model-based fault diagnosis has been 

attempted (Chen et al. 1996, Ballè and Fuessel 2000 and Evsukoff et al. 2000). The 

main idea of model-based fault detection and diagnosis is to generate the 

inconsistency, termed residuals, between the model and the actual system as 
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mentioned in Section 2.2.1. The robustness of the model-based method can be 

influenced by the accuracy and uncertainty of the model, especially in the case of 

unknown disturbances, which may lead to the generation of vague residuals and, 

therefore, difficulty in fault classification. A possible solution is to tune the 

parameters in the system state observer and controller by estimating the real system 

outputs (Schneider and Frank 1994 and Patton et. al. 1999). On the other hand, the 

fuzzy logic method is suitable to deal with this type of uncertain situation with known 

knowledge. With inference by fuzzy logic, ambiguous residuals or structured 

residuals can be fuzzily isolated, and the degree of possibility of belonging to a certain 

fault pattern can be deduced. 

As mentioned above, the fuzzy logic method is based on fuzzy set theory. Figure 2.6 

illustrates how fuzzy set theory is defined (Terano et. al. 1991). The rectangular frame 

represents the whole set X; the dotted circle is the ambiguous border of fuzzy set A; x 

is an element (member) in X. A is a fuzzy subset of X. Fuzzy set theory defines the 

degree of how x belongs to A, where the function to give the degree is called the 

membership function. The fuzzy set A can be written as: 

    ,  ( )   AA x x x X    (2.34) 

where ( )A x  is the membership function to fuzzy set A. Based on the membership 

function, a one-to-one correspondence for fuzzy sets over the region [0,1] is 

achievable. An example of residual amplitude classification is used to explain how the 

membership function works (Figure 2.7). 
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Figure 2.6  Fuzzy set A. 

 

Figure 2.7  Membership functions for residual amplitude classification. 
 

In this figure, the meaning of the expressions, ‘Small’, ‘Medium’ and ‘Large’, is 

represented by three functions mapping residual amplitude. Each function maps the 

same residual value into [0, 1]. The dotted vertical line represents a particular value of 

a residual, which is given three truth values by each membership function correlated 

to each of the expressions. Three arrows point the truth values obtained from each 

function: arrow ‘3’ points to zero, which linguistically means ‘not large’; arrow ‘2’ 

describes the residual amplitude as ‘slightly medium’ and arrow ‘1’ shows ‘fairly 

small’. 

Rule-based mechanisms have been developed for fuzzy inference systems to process 

fuzzy inputs, which can mainly be classified as: direct and indirect reasoning methods 
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Min

(Tanaka 1996). The most popular reasoning methods are direct methods. The 

inference rules to perform fuzzy reasoning are expressed in an IF-THEN format called 

‘fuzzy IF-THEN rules’.  

A1 B1 
1 1 

 

Figure 2.8  Fuzzy inference process using Mamdani’s direct method. 
 

An example of a two-input one-output reasoning mechanism using Mamdani’s direct 

method (Mamdani 1975) is presented in Figure 2.8. A1, A2, B1, B2, C1 and C2 are 

fuzzy sets. X and Y are inputs and Z is the output. x and y represent two input variables. 

The two fuzzy inference rules in IF-THEN format are 

Rule 1:   IF x is A1   and   y is B1   THEN   z is C1 

Rule 2:   IF x is A2   and   y is B2   THEN   z is C2 

By the membership functions chosen as trapezoidal shapes, two membership values 
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y

y

for the two crisp inputs x and y are obtained, where a min-operation, represented by ∧, 

is applied. The adaptability of rule 1 and 2 is presented as follows. 

1 1

2 2

1

2

( ) ( )

( ) ( )

A B

A B

T x

T x

 

 

 

 
  (2.35) 

Apply the above result to the consequence part, C1 and C2, to obtain the conclusion of 

the two rules, which are shown by shaded areas. 

1 1

2 2

1

2

( ) ( )

( ) ( )

C C

C C

x T z z Z

x T z z

 

 




   

   Z

z

  (2.36) 

The final result is then achieved by applying the max-operation, represented by ∨, 

and the reasoning process is completed. 

1 2
( ) ( ) ( )C C Cz z       (2.37) 

In practice, a defuzzification is applied to convert a fuzzy set to a crisp output in the 

form of a definite value. For this purpose, there are two common methods (Tanaka 

1996). One is to take the centre of gravity of the fuzzy set (Centroid Of Area, COA), 

which is described by the following function. 

( )

( )

C

z
COA

C

z

z zdz

z
z dz








  (2.38) 

The other is to take the maximum value of the membership in the fuzzy set. 

 max max ( )C
z

z z   (2.39) 

With the ability to handle ambiguous problems by a priori knowledge, the fuzzy logic 

technique has been widely used in industrial scenarios. For system description, fuzzy 

logic provides linguistic rules instead of only traditional mathematical methods, which 

allows heuristic knowledge derived from expert experience to be integrated. As 
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linguistic expressions are used, the states of a system can be described to engineers 

usefully and meaningfully. With the fuzzy inference system, fuzzy logic is a 

convenient method for dealing with imprecise residual data, which is then used for 

fault detection and diagnosis. For example, fuzzy observers, which combine the fuzzy 

logic and model-based methods for non-linear dynamic system fault diagnosis, using 

the Takagi-Sugeno fuzzy model, were described by Patton (1999). 

2.2.3.3 Neuro-fuzzy system 

A neuro-fuzzy system is a hybrid system combining neural networks and fuzzy logic, 

where these two methods are complementary to each other (Jang et al. 1997). As 

mentioned in Section 2.2.3.1, neural networks are ideal for non-linear modelling and 

fault classification, however, they are not good at explaining how decisions are 

reached, due to their ‘black-box’ characteristic. Fuzzy logic, which is highly suitable 

for reasoning with imprecise information, can easily explain the decision making 

process by linguistic expressions, but the rules can not be obtained automatically for 

decision making. These limitations, therefore, raise the requirement for hybrid 

intelligent systems, where two or more techniques are combined together to overcome 

the drawbacks of each individual method. For instance, a fault detection and diagnosis 

task normally includes a signal processing task and a reasoning task, where, 

respectively, neural networks and fuzzy logic can be applied depending on 

adaptability. The combination of neural networks and fuzzy logic therefore gives the 

ability to learn and to deal with system uncertainties by using the advantages of each 

system. 

The models composed of neural network and fuzzy logic mainly have two classes 
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depending on whether neural network or fuzzy logic is defined as the input interface 

or the decision maker. As a system input interface, fuzzy logic responds to linguistic 

statements and provides a fuzzy input vector to a multi-layer neural network, while 

the decision making is performed by the neural network. This type of combined 

system is normally referred to as a fuzzy neural network system. In this system, the 

weight and neurons are considered to be fuzzy sets. The fuzzy neurons are designed to 

process fuzzy inputs with linguistic expressions in the form of IF-THEN rules and the 

fuzzy weights are updated by backpropagation algorithms to realise the learning 

procedure. Conversely, when fuzzy logic is employed as the decision maker, the 

neural network works as an input interface and receives feedback from output 

decisions. The architecture of this combination, which is called a neuro-fuzzy system, 

allows the membership functions of fuzzy logic to be automatically tuned. Since the 

design and tuning of membership functions are often time consuming tasks, this 

ability based on the neural network learning mechanism can improve system 

performance and reduce the time cost of system design.  

With the combination of quantitative and qualitative information, the neuro-fuzzy 

technique is capable of handling complex systems. The neuro-fuzzy model also 

becomes more transparent than the simulation using a neural network, due to the 

linguistic expression of rules which humans can interpret. These advantages have 

resulted in the wide application of this method in industrial processes. Fault detection 

and diagnosis can also be facilitated, and related literature can be seen in the 

supervision of vehicle tyre pressure (Ayoubi and Isermann 1997), fault detection of 

fuel injection system (Förstner and Lunze 2000), fault diagnosis in AC motor control 

(Alexandru 2004) and railway junction cases (Roberts et. al. 2002). 
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2.3 Conclusions 

Model-based quantitative and qualitative methods for fault detection and diagnosis 

have been discussed in this chapter. The quantitative model-based fault detection 

methods, namely observers, parity equations and parameter estimation, are introduced 

and compared. The performances of the three methods depend on whether they are 

well designed for specific applications. With appropriate designs, the first two 

methods have the advantage of a fast response to sudden faults, provided that explicit 

system models and adequate disturbance information is available. In comparison, 

parameter estimation is good at detecting incipient faults by observing changes in 

system parameters, however, a slow response speed and a high computation cost are 

expected and the system must keep dynamic. Accurate models and decoupling from 

disturbances are often required to improve the robustness of these three methods.  

Some qualitative methods, neural networks, fuzzy logic and neuro-fuzzy, have been 

discussed. With input and output data, neural networks can model complex non-linear 

behaviour and generate residuals for fault diagnosis. This approach can also facilitate 

fault classification by training residuals to map to different faults. The black-box 

feature makes it impossible to understand the trained network and abstract rules from 

the neural network model. In comparison, fuzzy logic systems are more favourable for 

practical applications, since the model behaviour can be easily explained based on 

fuzzy rules and the performance can be adjusted by tuning the rules. However, design 

and tuning of membership functions can often take a lot of time, traditionally fuzzy 

logic systems are therefore only applicable to fields where prior expert knowledge is 

available and the number of inputs is small. Neuro-fuzzy systems combined the 
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strength of both the two techniques, which enable the system to learn and to be 

transparent with the fuzzy IF-THEN rules. Neuro-fuzzy systems also have the 

advantage of the ease of the rules and linguistic model design and the ability to apply 

the method to complex, uncertain and inherently non-linear systems, which makes 

accurate fault detection and diagnosis more achievable.  



Chapter 3 

Generic fault detection and diagnosis for STMEs 

 

3.1 Introduction and motivation 

Apart from rolling stock and rails, a railway system runs with the coordination of a 

number of rail-side assets. These assets are simple, low-level and widely distributed 

along the track; however, they are often critical to operational success. A failed asset 

is likely to cause a significant delay to rail services, and may even make the system 

unsafe. Five safety-critical assets, the electro-pneumatic pneumatic train door, train-

stop and point machine, the electric point machine and the electro-hydraulic level 

crossing barrier, are introduced in this chapter. A generic fault detection and diagnosis 

method is proposed for these assets based on their command features. The laboratory 

based test rigs for data collection and condition monitoring are also discussed. 

In order to develop a generic fault detection and diagnosis solution, an abstract 

description (model) of a generic class of assets is required, which can be used for 

multiple asset types of the same class. As the abstract model, the STME is defined 

according to a series of dynamic features of a class of assets with similar operational 

characteristics, such as reciprocating movement and nonlinear load. The detailed 

definition of the STME will be presented in this chapter. The definition of STME also 

provides a set of common features which the devices should posses if they fall into 

this group. A physical modelling approach for the assets is discussed to indicate why a 

physical model is very difficult to obtain. Based on the above knowledge, a generic 

fault detection and diagnosis method is illustrated in the following aspects:  
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- Common feature extraction at the parameter and system levels; 

- Generic fault detection and diagnosis methodology and processes; 

- Adaptive thresholds design with statistics theory; 

- Fault codes and initial fault diagnosis.  

3.1.1 Single Throw Mechanical Equipments 

The railway assets studied in this thesis are different in design, functionality and 

power source. However, based on similar operational characteristics, these assets are 

classified as Single Throw Mechanical Equipments (STMEs). The STME is a class of 

electro-mechanically operated equipment, which shares the properties of mechanical 

switches and reciprocating systems but differs from them due to the following 

features: slow throw speed, long throw time, non-periodic operation and large varying 

load.  

According to the definition given by N. Lehrasab and S. Fararooy (1998), an STME 

operates with the following characteristics: 

– An STME has two stable states. Whenever activated, it physically moves from 

one state to another. This transition is known as a throw; 

– During the transition, the load to be moved is large and nonlinear; 

– Compared with reciprocating systems, such as relays and switches, the time taken 

from one state to another, the throw time, is correspondingly longer and the throw 

speed is lower. Due to the large nonlinear load, the throw dynamic is much more 
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important than the throw time and transients; 

– The operation of STMEs is not periodic; it starts only upon the receipt of a 

control command; 

– In the open-loop configuration, for safety reasons, the speed-limiting mechanisms, 

such as dampers, are often employed.  

 
Figure 3.1  A typical STME displacement profile. 

 

A typical STME displacement profile is shown in Figure 3.1. Before an operation 

command is given, the system is at State A. The transition starts from State A, SA, to 

State B, SB, on the receipt of an activation pulse. This is referred to as a forward 

throw. Then the system stops and stays at rest at SB. After an arbitrary time, another 

control signal is given to make the STME move from SB back to SA, which is referred 

to as a reverse throw. Forward throws and reverse throws are commonly referred to as 
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operations. From Figure 3.1, we can see an obvious time difference between the 

activation signal (t0) and actual movement (ts), which is known as the activation delay, 

ta = (ts-t0). At time te, the throw completes at SB. Therefore, the throw time (tt) can be 

defined as tt = (te-t0). In most cases t0 = 0, then tt = te. The distance between the initial 

position and the end position is defined as the throw distance, St = (SB-SA).  

In most STMEs, throw time, tt, is dependent upon the input force, ξ; if the force 

increases, the throw time reduces, and vice versa. Due to the physical limitation of 

system mechanics, with the force increase, tt reduces to a minimum value tmin. Throw 

time is inversely proportional to the force. It was found experimentally that the rate of 

change of tt with respect to the force applied is proportional to the difference between 

the actual and minimum throw time. The relation function can be expressed as: 

.

),(

min2

min1

1 tekt

ttk
d

dt

k
t

t
t





 

                     (3.1) 

Where, ,  are the STME constants. 1k 2k

For the purpose of fault detection and diagnosis, a STME definition, as a high level 

model, is essential to generically describe the basic operation of the STME system. 

The common features, e.g. throw time and activation delay, can therefore be 

abstracted from all such equipment, and a generic fault detection and diagnosis 

method becomes achievable.  

3.1.2 Involved railway assets and data visualisation 

Five STME railway assets, the electro-pneumatic train door, the train-stop and point 

machine, the electric point machine and the electro-hydraulic level crossing barrier, 
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are discussed in this section. For the purpose of visualisation, some of the measured 

profiles are normalised into the region of [0, 1] to present the dynamics. 

3.1.2.1 Electro-pneumatic train door 

An electro-pneumatic train rotary door test rig developed by Vapor (UK) was used for 

data collection. The mechanical configuration is shown in Figure 3.2. A master and a 

slave actuator are used to control the ‘open’ and ‘close’ operation of a pair of door 

panels via two rotary arms connected to each panel. 

 

Figure 3.2  Mechanical configuration of pneumatic train door. 
 

Figure 3.3 details the mechanism of the actuator. This type of train door actuator is 

similar to that used on London Underground’s Central Line rolling stock. This 

actuator consists of two cylinders which operate the ‘open’ and ‘close’ respectively. 

The cylinders are controlled by four 52 V DC activated solenoids and share one piston 

head. With the compressed air as power source, the ‘open cylinder’ is filled by the 

train air supply to push the piston to the desired direction in which the rotary arm is 

driven to open the panels. Meanwhile, the air in the ‘close cylinder’ is exhausted and 
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the airflow is measured by a sensor for condition monitoring. Conversely, the 

compressed air is filled in the ‘close cylinder’ to perform a ‘close’ operation. A 

hydraulic damper is installed in the actuator to provide damping force, which reduces 

the speed of the door panel movement and makes it smooth, to avoid any potential 

harm to passengers. Two springs are also attached to the door arm to enable it to be 

pushed back whenever an obstruction happens. The trajectories of the door panel are 

different on ‘open’ and ‘close’ operations due to the design of the system, where these 

two operations are defined as normal and reverse throws respectively. Door 

displacement, compressed air pressure and exhausted airflow are normally monitored 

for fault detection and diagnosis.  

 

Figure 3.3  Electro-pneumatic train door actuator. 
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a. b.

c. d.
 

Figure 3.4  Data visualisation for the displacement and airflow of pneumatic train door. 
 

The train door displacement profiles are displayed in Figures 3.4 a and b. In the 3-D 

figures, the air pressure increased from 2 to 6 bar with a 0.1 bar step. With the air 

pressure increasing, the activation delay and throw time decreases correspondingly. 

The throw time falls in the region of 2 to 6 s for a normal throw (opening) and 2 to 8 s 

for a reverse throw (closing). Under the same conditions, the airflow was also 

measured and shown in Figures 3.4 c and d.  

The unit of airflow is standard litre per minute (SLPM), which means the number of 
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litres per minute at standard condition (0 °C and 1 standard atmosphere). In the 

originally measured airflow data, the noise may exist due to the high response 

frequency of the sensor. In the process of modelling the noise can be reduced by using 

a low-pass filter. 

3.1.2.2 Electro-pneumatic train-stop 

 

Figure 3.5  Oil-filled J-type Train-stop. 
 

The train-stop is a tripping mechanism, which is fitted on the railway track in front of 

the signals to apply emergency brake to trains that pass through red signals by mistake 

(Allan 1993). This mechanism is usually required by some rapid transit systems such 

as London Underground. An example of an oil-filled J-type train-stop is shown in 

Figure 3.5. The operation of this train-stop is electro-pneumatic. It is designed to fail 

in the safe position, raised, which means that the train would be stopped for safety 

reasons when the train-stop fails to operate. When the green signal is illuminated, the 

train-stop arm is lowered by the pressure of compressed air (nominal 4.1 bar, critical 

2.8 bar) via the electrically activated solenoid valve. This operation compresses the 

main spring, which forces the arm back to the up/danger position in the absence of air 
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b.a. 

pressure. When the train-stop operates, the angular movement of the arm is turned 

into a lateral one by a conversion mechanism to move the indication/detection rod, 

which shorts/opens the circuit of contact switches in the proving box to indicate the 

train-stop down/up state to the central control.  

The measured data of train-stop displacement is normalised and visualised in Figure 

3.6. As a member of the classification of STMEs, the train-stop also has two throws: 

normal (the train-stop head is pressed down) and reverse (the train-stop head is 

released up). The train-stop head is designed to be in the ‘up’ position by the spring in 

case of a lack of compressed air. The design of this mechanism makes the reverse 

throw different from the normal throw. In the figures, the throw time falls in the range 

of 0.45 to 1.2 s for a normal throw and of 0.35 to 0.73 s for a reverse throw when the 

compressed air pressure changes from 2 to 6 bar.  

 

Figure 3.6  Train-stop displacement visualisation in 3-D. 
 

3.1.2.3 Electro-pneumatic point machine 

Points are a mechanism by which the train can continue along its current tracks or be 
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guided onto the adjacent ones. The points are driven by point machines with different 

actuators (e.g. electric, electro-hydraulic or electro-pneumatic). The original point 

machines were operated manually. This approach was superseded by rod driven 

points where compressed air was used to drive the points via air motors. This 

mechanism was known as the 6-foot pneumatic point machine. However, this type of 

point machine has difficulty of working in tunnels due to its requirement for space 

outside the tracks. To solve this problem, a new type of point machine located 

between the running rails was designed and named the 4-foot pneumatic point 

machine. The schematic of this type of point mechanism is shown in Figure 3.7. The 

4-foot pneumatic point machine is typically driven by compressed air of around 3 bar 

pressure. Two electrically activated valves work alternately to determine the normal 

or reverse movement. 

 

Figure 3.7  Schematic of a 4-foot electro-pneumatic point machine. 
 

The 3-D displacement profiles of an unloaded 4-foot pneumatic point machine are 

displayed in Figure 3.8. Here the compressed air pressure has been changed from 0.5 

to 6 bar with 0.1 bar increments. In this pressure range, the throws for both directions 

can be completed in less than 2 seconds.  
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b. a. 

c. d. 

Figure 3.8  Data visualisation for point machine displacement and airflow. 
 

3.1.2.4 Electric point machine 

A Westinghouse M63 electric point machine, which was set up in the laboratory, is 

introduced here as a case study. The electric point machine has the same function as 

the pneumatic one discussed above, but it performs the route switching by different 

means. The M63 electric point machine consists of several subsystems as shown in 

Figure 3.9. A 110 V DC motor provides the driving force where the rotary force from 

the motor is transferred to a lateral force on a drive bar by a gear system. In turn, the  
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Figure 3.9  Diagram of an electric point machine (Zhou et. al. 2002). 
 

a. b. 
0.14

 
                     a) Normal throw                                                       b) Reverse throw 

Figure 3.10   Data visualisation for the displacement and current of electric point machine 
(Loaded). 
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force is transferred through the drive bar to the switch blade via the drive arm. To 

avoid any damage when the point is obstructed, a clutch is employed to slip at a 

predetermined load. For the same purpose, a snubbing device slows the motor down 

rapidly when the switch blade reaches the end. To ‘lock’ the point at rest, a 

mechanical ‘lock dog’ is used and the status is detected by a set of contacts. A set of 

motor contacts is designed to allow the direction of movement to be set. In case of 

emergency, the point machine can be operated manually. The displacement and 

current data of the loaded electric point machine is visualised in Figure 3.10. 

3.1.2.5 Electro-hydraulic level crossing barrier  

 

Figure 3.11  Level crossing barrier. 
 

A typical illustration of an electro-hydraulic level crossing barrier BR843 is shown in 

Figure 3.11. This type of barrier is widely used in the UK. This equipment can be 
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operated either manually or by an electrically driven hydraulic system. These two 

operation systems are accommodated in a steel weatherproof cabinet, called a ‘barrier 

machine’. The normal length of the boom measured from pivot to tip is in the range of 

3.6 m to 9.1 m. The boom is balanced by adding a variety of balance weights on the 

boom side arm. The balance weights are chosen according to both the length of the 

boom and the practical effects of wind. For booms longer than 6.6 m, support 

members and a straining wire are used to strengthen the boom. 

In the laboratory, a BR843 level crossing barrier was set up with a 1.63 m boom. The 

boom is shorter than would be found on an operational railway junction. To simulate a 

practical operation, a brass rod was inserted into the hollow boom to provide the 

equivalent load to 4.1 m. A 24 V DC power supply with maximum 30 A output 

current was deployed to drive the DC motor (nominal 24 V DC and 15-29 A DC). An 

oil hydraulic pump driven by the motor generates force to raise the barrier. The 

working hydraulic oil pressure was 34 bars/500 psi and the current of the control 

solenoids was around 260 mA. 

As an STME, the operation of a level crossing barrier includes two throws: the normal 

throw, which is defined as the movement from the lowered to the raised position 

powered by the hydraulic force; and the reverse throw, with movement from the 

raised to the lowered position, where the force is provided by gravity and the boom 

freely falls. In Figure 3.12, the parameters measured from the level crossing barrier 

are displayed. The angular displacement, voltage, current and oil pressure of a normal 

throw are shown in Figures 3.12. The voltage and current are zero for the reverse  
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Figure 3.12  Level crossing barrier data visualisation. 

throw, therefore only oil pressure and angular displacement are shown in Figure 3.12 

(e and f). Figure 3.12 d indicates that the oil pressure inside the pump vibrates due to 

the interactional forces of both the DC motor and barrier gravity, before it reaches 
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constant. 

3.1.3 A physical modelling approach 

Using the data collected from the assets discussed above, a physical modelling (State-

space model) approach is presented to indicate that it is very difficult to accurately 

describe STME assets with one physical model. The pneumatic train door is used as 

an example in this section. 

As proposed by N. Lehrasab (1999), the STME may be modelled as a single-input 

(pressure) single-output (displacement) (SISO), linear, lumped, time-invariant 

dynamical system, which can be represented by a state-space model. Due to the 

process parameters which are needed for state-space modelling, a system simulator 

should be designed first, where a ‘Spring-Damper-Mass’ model is used to represent 

the simple STME system. 

 

Figure 3.13  ‘Spring-Damper-Mass’ model of STME. 
 

Pneumatic STME equipment usually has a piston-based configuration to convert the 

pneumatic pressure into useful work. A piston with surface area A is exposed to 

pressure u(t) at time t during the throw (te-t0), where t0 refers to the activation time for 

the throw (from state A) and te refers to the time when the moving part reaches 

another stable state (state B).  A schematic view of this ‘Spring-Damper-Mass’ system 
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is displayed in Figure 3.13. 

Using Newton’s law, the modelling equation for this system when force u is applied 

to the moving part with mass, M, the displacement, y, can be expressed as:  

u Dy Ke My My Dy Ke u                           (3.2) 

where, K is the spring constant (Hookes Law); D is the damping effect (all the 

frictional forces may be modelled as the damping effect); M is the mass of the moving 

part and load of the equipment; u in the pneumatic case represents the pressure of 

compressed air; e is the stretch length of the spring, where Ke represents the force 

produced by the spring; A and B are two states of the moving part.  

This second order system was thought not to be accurate enough for residual 

generation due to large modelling errors by N. Lehrasab (1999).  A state-space model 

was therefore used to represent the system dynamics of the train door panel in the 

following form: 

( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

 
 


                    (3.3) 

where,  u(t) is the input of this model, which, here, is referred to as the pressure of 

compressed air; y(t) is the output, which, here, is referred to as the displacement of the 

moving part of  the STME; x(t) is the state vector. From equation 3.2, 

My Dy Ke     u

'

                   (3.4) 

Due to  (the spring stretch and moving part have same speed), 'e y

1
'' '

'
1 0 0

D K
y y

uM M M
e e

                   






                  (3.5) 

The state matrix x(t) can be written as, 
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'y
x

e

 
  
 

                     (3.6) 

From equation 3.5, 

 

1

1 0 0

1 0

D K
x x uM M M

y x

      
  
  









                   (3.7) 

Thus, 

 

1 0

1
, 1

0

D K
A M M

B CM

   
 
 
 
  
 
 

0

0D 

                    (3.8) 

Using the estimated parameters suggested by N. Lehrasab (1999), the coefficients of 

the state-space model, A, B, C and D, are: 

 25 0.1 50
, , 1 0 ,

1 0 0
A B C

    
     
   

                (3.9) 

The output of the state-space model and the measured displacement profile are 

compared in Figure 3.14. In the figure, it can be observed that the state-space model 

cannot simulate the system performance (represented by the displacement) accurately. 

By using state-space modelling, the system can be described as a physical principle 

model, which may give an insight into STME systems. However, this physical model 

is not precise enough to be used for residual generation. A physical model of the 

whole system is, therefore, considered to be very difficult to obtain for fault detection 

and diagnosis application. 
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1

 

Figure 3.14   Comparison of measured displacement and state-space model estimation (train door 
normal throw) (Lehrasab 1999). 

 

3.2 A generic FDD method for STMEs 

Based on the previous introduction and discussion, a generic fault detection and 

diagnosis method is proposed in this section based on common features extracted 

from the STMEs.  

3.2.1 Feature extraction 

As discussed in section 3.1.1, the assets, considered in this study, can be classified as 

STMEs, and therefore exhibit the characteristics of non-periodicity and relatively 

slow reciprocating operation with large and non-linear loads. However, these assets 

also have their own specific features, the aspects of which can be described under the 

two headings: parameter features and system features. 

Due to the difference in the driven principle between the pneumatic and the electric 
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and electro-hydraulic assets, the features of electro-pneumatic equipment are 

illustrated in detail and comparisons are made between the features of the different 

assets for a clear illustration of the similarities between their parameters and systems. 

3.2.1.1 Parameter features 

The parameters of the five assets, which are monitored for the purpose of generic fault 

detection and diagnosis, are listed in Table 3.1. As discussed previously, the electro-

pneumatic assets are driven by the potential force of compressed air. The electric part 

of these assets is only the electrical activated solenoids. In order to distinguish from 

the electrically driven assets, the electro-pneumatic assets will be called pneumatic 

assets in the following sections and chapters. 

Assets Monitored Parameters 

Pneumatic Train Door Linear displacement 
Airflow 

Air pressure 

Pneumatic Point Machine Linear displacement 
Airflow 

Air pressure 

Pneumatic Train-stop Angular displacement 
Airflow* 

Air pressure 

Electric point machine Linear displacement 
Voltage* 

Current 

Electro-hydraulic level crossing Angular displacement 
Voltage 

Current 

Oil pressure 

* Data was not collected for this parameter, as no appropriate sensor was available. 
 

Table 3.1  Monitored parameters of the STME assets. 
 

3.2.1.1.1 Pneumatic assets 

The parameter features of pneumatic assets are presented in this section. The relations 

between the three parameters are analysed. 
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Displacement 

Displacement is a common parameter which can be monitored on all five assets 

considered in this thesis. As the velocity and acceleration can be calculated using the 

displacement data and corresponding sampling frequency, the displacement is very 

important for the analysis of operation dynamics. As a second order differential of the 

displacement, the acceleration maxima indicate the dynamic changes of the movement. 

As an example, the velocity and acceleration profiles of the forward throw of the train 

door panel are displayed in Figure 3.15. The velocity and acceleration are calculated 

by the following equations. 

( ) (y t t y t
v

t

  



)

                  (3.10) 

( ) (v t t v t
a

t

  



)

             (3.11) 

Where v is the velocity and a is the acceleration. Δt is the sampling period which is 

fixed during the measurement. 

21

 

              a) Velocity vs. time                                                   b) Acceleration vs. time 
 

Figure 3.15  Velocity and acceleration profiles of pneumatic train door normal throw at 3.5 bar. 
 

In Figure 3.15, the velocity and the acceleration can be observed to vary with time. 
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-1

The variation is affected by both the specifics of the design, for example the damper 

(reducing the door panel speed to avoid harm to passengers), and the supplied 

compressed air pressure. A higher pressure leads to a higher velocity and acceleration. 

For the particular case considered in this thesis, with a 3.5 bar air supply the highest 

velocity reaches approximately 0.9 ms-1 and the highest acceleration values are 

approximately 1 ms-2 for acceleration and 3.5 ms-2 for deceleration.  

When the displacement was measured using a draw-wire displacement sensor (Micro-

epsilon WPS-1250 MK46), the sampling frequency was set at 1000 Hz. The measured 

discrete data resulted in an unsmoothed displacement profile. In addition, noise was 

also observed in the collected data. In order to get smoothed velocity and acceleration 

profiles and to reduce the noise, the displacement profile was filtered using a 

Butterworth low-pass filter. As a compromise between distortion and fidelity, the 

order of the filter and the normalised cut-off frequency were chosen as 2 and 

0.01  respectively. The filtered results retained the throw dynamics and, 

simultaneously, reduced the distortion caused by noise or sampling resolution. 

rad s

In the definition of an STME, the dynamic characteristics are the most important 

criterion to judge whether an item of equipment is an STME or not. Consequently, the 

dynamics of an STME are also the most useful tools for operation status identification. 

In order to precisely analyse the performance of an asset, the acceleration features are 

used to divide the whole throw period into several temporal regions, where each 

region responds to a dynamic status, acceleration or deceleration. In Figure 3.16, 8 

temporal regions, at1, at2, …, at8, for acceleration and 7 temporal regions, dt1, dt2, …, 

dt7, for deceleration are displayed. 
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For fault detection and diagnosis, a comparison between a model output and measured 

practical data is usually used to detect occurrence of a fault. In the case of fault 

detection for STMEs, it is considered that it is more applicable and accurate to carry 

out the comparisons within the defined regions. In the regions, which correspond to 

certain dynamic status, the dynamic changes caused by faults are more easily 

observed.  

1.5

 

Figure 3.16  Temporal regions division using acceleration feature. 
 

In order to relate a fault to the position of the train door panel on its trajectory, the 

spatial regions must therefore be studied. As shown in Figure 3.17, 6 spatial regions, 

as1, as2, …, as6, for acceleration and 6 spatial regions, ds1, ds2, …, ds6, for deceleration 

are divided using acceleration maxima. 
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are clearly illustrated. However, these two methods produced two different region 

division results. When a fault, such as an excessive friction or a leakage, occurs, the 

actuator normally requires a longer time to finish a throw. A temporal model of the 

displacement with a fixed throw time will therefore be unavailable to be used for a 

comparison with the measured displacement. Since the throw distance is constant 

when the throw is finished, the spatial model is considered more appropriate.  

 

Figure 3.17  Spatial regions division using acceleration feature. 
 

In Figure 3.17, the size of the regions is not even, where regions, as5, as6, ds5 and ds6, 

are small and region, ds3, is large. In addition, a logic understanding is also required to 

mark each of the regions, which is meaningful for fault location. In this situation, the 

regions are improved by combining both the acceleration and the velocity profile 

features. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-4

-3

-2

-1

0

1

2

Displacement (m)

A
cc

el
er

at
io

n
(m

s-2
) 

as as as as as

as

ds ds ds ds

ds

ds



 

Generic fault detection and diagnosis for STMEs 

 

61 

 

Figure 3.18  Spatial regions division using acceleration and velocity features. 

 

Regions 
Boundaries 

(metre) 
Boundaries 

(second) 
Description 

Rd1 0 – 0.095 0 – 0.53 Throw start 

Rd2 0.095 – 0.32 0.53 – 0.96 Intermediate 1 

Rd3 0.32- 0.53 0.96 – 1.21 Intermediate 2 

Rd4 0.53 – 0.73 1.21 – 1.61 Intermediate 3 

Rd5 0.73 – 0.75 1.61 – 1.7 Intermediate 4 

Rd6 0.75 – 0.812 1.7 – 2.35 Throw stall 

Table 3.2  Boundaries of spatial regions. 
 

As shown in Figure 3.18, a healthy normal throw of a train door can be divided into 6 

regions and each region represents a status of the throw process. Rd1 and Rd6 indicate 

the start (velocity increasing from zero) and end (velocity decreasing to zero) of the 

train door throw respectively. Rd2 and Rd3 are both in an area of velocity increasing, 
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P1, V1, A1 P2, V2, A2 
ML 

however, a maximum value of acceleration at 0.322 m is used to divide the regions 

finely and therefore enhance the degree of precision. Rd4 is a deceleration region while 

Rd5 has a small level of acceleration. The boundaries and descriptions of logic 

meanings are shown in Table 3.2. The regions definition method presented for the 

pneumatic train door is also applicable to other STMEs considered in this thesis.  

Airflow 

An air cylinder is often used as a force generator for pneumatic STMEs. The control 

of the cylinder is normally operated by an electrically activated solenoid. Once a 

solenoid is activated, the valves are switched on or off to allow compressed air into or 

out of the cylinder chambers. The compressed airflow expelled from the chamber is 

considered in this study. This feature is useful in indicating the working conditions 

within a machine. Before extracting the characteristics of this feature, a mathematical 

analysis of cylinders is given.  

Cylinder 

 

Figure 3.19  Schematic representation of the pneumatic cylinder. 
 

In Figure 3.19, a schematic of a pneumatic cylinder is shown. ML is the external mass; 

Mpr is the assembly mass of the piston and rod; FL is the external force; Fp is the 

output force provided by the rod; P1 and P2 are the absolute pressure in the two 

FL 
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r

chambers; Pa is the absolute ambient pressure; A1 and A2 are the effective areas of 

piston, and Ar is the cross-sectional area of the rod. 

Under ideal conditions, where the friction, the mass of the piston and rod and the 

ambient pressure are ignored, the output force is described as: 

1 1 2 2pF P A P A                    (3.12) 

1 2 rA A A                    (3.13) 

where equation 3.13 describes the relationship of the piston effective areas between 

chamber 1 and 2. The output force is determined by the difference in pressures in the 

two chambers. Practically, when all the factors are considered, the dynamic process of 

an operating cylinder is presented with a differential function (Barber 1986 and 

Richer and Urmuzlu 2000). 

1 1 2 2( )L pr f L aM M x x F F P A P A P A                                 (3.14) 

Where x represents the piston position; β is the viscous friction coefficient and Ff is 

the Coulomb frictional force. 

The mass flow of compressed air can be illustrated as (Warring 1969 and Daugherty 

et. al. 1985): 
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)

)

               (3.15) 

where A0 is the effective valve orifice area; P1 is the upstream pressure; P2 is the 

downstream pressure; T1 is the upstream temperature and the constant k=cv/cp=1.4 for 

air (cv and cp are the constant volume and constant pressure specific heats of air); R is 
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the ideal air constant, where 
pV

u

R
nT

  (p is the absolute pressure; V is the volume of 

gas; n is the amount of gas and T is thermodynamic temperature) in the ideal gas law. 

The ‘choked’ and ‘unchoked’ are two limiting conditions for two mass flow rate 

descriptions, where a choked flow indicates a condition that the mass flow rate will 

not increase with a further decrease in the downstream pressure environment while 

upstream pressure is fixed. The state of ‘choked’ is reached when the flow velocity 

approaches the speed of sound; otherwise, the flow is considered as ‘unchoked’ 

(Miller 1996). 

A relationship between mass flow and airflow velocity can be described by the 

following equation. 

0m A                    (3.16) 

Where ρ is the air density and u is the airflow velocity.  

If we substitute equation 3.16 into equation 3.15, velocity of airflow is described as: 
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           (3.17) 

In this equation, the value of airflow velocity is influenced by the pressures in the two 

chambers, the absolute temperature and the density of the air expelled through the 

orifice. The size of the open area of the orifice does not affect the airflow velocity.  

In the laboratory the airflow of the pneumatic STMEs was measured by a mass 

airflow sensor, Honeywell AWM720P1, which has a larger measurement range, up to 

200 SLPM (Standard Litre per Minute), than other airflow sensors. However, the 
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actual airflow is still over the measurement range of this sensor in the case of the 

point machine. According to equation 3.15, the mass airflow is proportional to the 

orifice area. The orifice area of the point machine was therefore increased by 

diverting the main airflow into several pipes, one of which was measured. The 

branched airflow cannot indicate the value of the total mass airflow, however, it 

represents the airflow dynamics, which is important for condition monitoring. 

Since the variation of density of the air flowing through the orifice and of the pressure 

in the two chambers shows non-linear characteristics, it is hard to accurately model 

the mass airflow for the cylinder operating process. From equations 3.14 and 3.15, the 

displacement of the piston can be observed to be differentially related to the mass 

airflow; furthermore, it can be deduced that the displacement of the load driven by the 

pneumatic cylinder is also non-linearly related to the mass airflow. In this situation, a 

precise mathematical model to relate displacement to mass airflow becomes difficult. 

Instead of a mathematical description, the mass airflow can be modelled using 

artificial neural networks by which non-linear relations can be studied to achieve a 

better simulation performance (Patton et. al. 1999).  

A throw of the STMEs is normally composed of two parts: activation delay and 

dynamic movement. The displacement of the load remains as zero in the activation 

delay period, however, contrarily the airflow produces a large output. Based on the 

design of a pneumatic cylinder, the piston can only move when the air in one idle 

chamber is partly expelled and the pressure in this chamber drops to a certain value. 

The value of the pressure drop depends on the pressure in the working chamber and 

the force required to drive the load. As shown in Figure 3.20 a, a large amount of air 
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is expelled within the activation delay period. The plotted airflow curve is the mean of 

100 airflow measurements of the train door normal throws. 

Activation delay 

 

a) Two sections of airflow.                 b) Spatial regions for airflow. 
 

Figure 3.20  Analysis of the airflow data of train door normal throw. 
 

With the boundaries defined in Table 3.2, the dynamic part of the airflow is divided 

into 6 spatial regions, as shown in Figure 3.20 b, where the airflow in Ra1 corresponds 

to the start of the throw, the regions, Ra2, …, Ra5, correspond to the intermediate 

sections of the throw and Ra6 is the end of the throw. In this figure, two turning points, 

A (0.682 m) and B (0.745 m), can be observed in regions Ra4 and Ra5 respectively. By 

comparing to Figure 3.18, a feature can be observed that turning points A and B 

respectively respond to the low and high points of the acceleration profile within 

regions Rd4 and Rd5. This feature relates the airflow to the acceleration on these two 

points, which could be useful to identify the synchronisation of the piston and the load. 

Apart from this correlation, the airflow still shows a non-linear relationship to the 

displacement based features. 
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Air pressure 

Other than displacement and airflow, there is another parameter, air pressure, which is 

available to be measured and monitored. As a part of the test rig for pneumatic 

STMEs, the compressed air was supplied by an air compressor, an Airmaster Tiger 

8/50. This compressor generates enough compressed air to provide constant pressure 

for most of the experiments, which performs a good simulation of a practical 

compressed air supply. In practical circumstances, the air pressure may vary within a 

permitted range, however, as a constant value, this parameter can be monitored by an 

air pressure sensor and a pre-defined threshold could be used for fault detection.  

3.2.1.1.2 Electric and electro-hydraulic assets 

In this section, the parameters of the electric point machine and the electro-hydraulic 

level crossing barrier, monitored for fault detection and diagnosis, are compared with 

the pneumatic assets. The parameters monitored on the pneumatic assets, air pressure, 

airflow and displacement, represent the working status of the pneumatic driven assets. 

The variation of these parameters reflects the performance changes of the assets and, 

therefore, the faults could be detected by the monitoring system. In the case of the 

electric and electro-hydraulic assets, the parameters for monitoring are different.  

Electric and electro-hydraulic STMEs have measurable parameters for condition 

monitoring. In the electric point machine, the voltage supplied for the electromotor 

and the current through the inside coil show the performance of the motor. The 

displacement can also be monitored to describe the movement profile of the drive bar 

and mechanically connected switch blades. In previous studies (Marquez 2007 and 

2008), a force transducer was employed to the electric point machine for the 
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generation of the output force data. However, this measurement was not included in 

this study, since the force output is a specific quantity for the point machine. Using 

this parameter conflicts with the aim of a generic solution in which the displacement 

of all five STMEs is used as a common feature. On the other hand, the measurement 

of the displacement and the output force are considered to represent the same dynamic 

characteristics; in other words, these two parameters are intrinsically linked and 

reflect the performance in two different ways. In the electro-hydraulic level crossing 

barrier, the voltage and current of the electric motor and the oil pressure in the 

hydraulic pump provide the information to show how the machine works. Unlike the 

output force for the electric point machine, the motor current and oil pressure are both 

monitored since they respectively represent two devices within the machine. 

Importantly, as the parameter presenting the throw dynamic, the rotary displacement 

of the axis is also monitored.  

In comparison with the pneumatic STMEs, the parameters of the electric point 

machine also present the condition of the system. The voltage and displacement show 

the condition of the machine input and output. The current, which gives a better 

description of the motor condition than the voltage, directly reflects the force output 

and represents the health status of the whole machine. 

The input and output of the electro-hydraulic level crossing barrier are figured by the 

motor voltage and the rotary displacement of the axis in the machine box. The current 

indicates the health condition of the electromotor. The oil pressure profile is very 

useful to detect a leakage or power failure of the hydraulic pump. These two 

parameters are also intrinsically linked to the performance of the barrier raising up or 
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falling down. The health condition of the level crossing machine is well described by 

a combination of these two parameters.  

As members of the classification of STMEs, the electric point machine and electro-

hydraulic level crossing barrier have similar performance, known as throws (an 

operation includes one normal and one reverse throw), as the pneumatic assets, where 

the throw dynamic is generically presented by the displacement profiles. For each 

asset, the status can be presented by a specific parameter for input, machine and 

output, based on which the fault detection is applicable by monitoring the parameter 

changes. 

3.2.1.2 System features 

Due to the similar mechanisms and power source of the pneumatic assets, their system 

features are discussed together. In order to extract common system features from all 

the assets considered in this study, the system features of the electric and electro-

hydraulic assets are analysed by comparing them with the pneumatic assets. Although 

the electric and electro-hydraulic assets are very different in both mechanism and 

power source from the pneumatic assets, common features can still be found at system 

level. In Figure 3.21, the system structures of three types of assets are displayed. 

3.2.1.2.1 Pneumatic assets 

As shown in Figure 3.21, the whole process of the operation of pneumatic STMEs 

consists of three main sections: input, machine and output. In each section, at least 

one parameter can be used to represent or indicate the condition. This structure is not 

specific to these pneumatic assets, as it can be found widely in various systems, such 
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Figure 3.21   Comparison of three groups of STMEs. 
 

as elevators and electric windows in cars. However, if a generic solution is required 

for the three items of differently designed equipments, the generic features would be 

an essential base. 

Input 

The input includes power supply and control command signals. The status of the input 

can be ascertained by monitoring the air pressure and the corresponding command 

signals.  
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Machine 

A pneumatically driven machine can be generally split into two functions: actuation 

and force transmission. The actuation is performed by an actuator to generate force 

output upon the receipt of a command signal. The control unit of the actuator, the 

solenoid, is electrically activated to magnetically control the valves to enable the air to 

flow into or out of the cylinder. With the pressure difference increasing in the 

chambers of the cylinder, the piston is pushed to generate an output force to drive the 

load. The force is transferred to the load through the transmission system, which 

includes the driving shaft, gearing system, etc. The load is mechanically connected to 

the transmission system, such as the train door panel, and it is therefore classified as a 

part of the machine. During the operation of the machine, airflow can be observed, 

which reflects the internal working conditions. 

Output 

The output is mainly referred to as the movement of the driven load which is 

represented by the measured displacement profile. This parameter is a presentation of 

the machine dynamics, which is very useful for condition monitoring. 

3.2.1.2.2 Electric and electro-hydraulic assets 

The mechanism design determines the fundamental principle of the assets. The 

principal features of the three groups of STMEs were introduced previously. For 

comparison purposes, the features are briefly listed as follows: 

- The pneumatic assets operate using the power of compressed air. The energised 

solenoid valves control the air in/out of the chambers of the cylinder to drive the 

piston and consequently the mechanically connected load.  
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- The electric point machine is powered by electricity. A motor provides a rotary 

force to drive the switch blades through a gear system and a drive bar.  

- The electro-hydraulic level crossing barrier is powered by electricity. A hydraulic 

pump, driven by an electric motor, delivers oil under pressure to extend the 

actuator and thus raise the barrier. 

In Figure 3.21, the system structures of assets are displayed schematically in the 

absence of the signalling and self-protection systems. These STMEs differ in the 

following respects: 1) different power supplies are used as the driving forces; 2) the 

loads are different and have different characteristics; 3) the mechanisms are 

significantly different for each of the three types of STMEs. Despite these differences, 

a generic systematic feature can still be observed, as shown by the vertical dotted lines. 

These assets are open-loop controlled machines composed of three parts: input, 

machine and output. This type of structure could be found in many systems, whether 

big or small, complex or simple. However, for the purpose of generating a generic 

FDD solution, it is still a useful basis for the algorithm development.  

With the structure defined at the system level, the electric and electro-hydraulic assets 

are considered to have similar system features as the pneumatic assets. Thus there is 

potential that the structure of the generic FDD solution designed for pneumatic assets 

could be applied to these two railway assets. 

3.2.2 Generic FDD methodology 

As the aim of this study, a generic FDD solution should cover a large number of 

railway assets as an STME group and provide an efficient and low-cost condition 
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monitoring system. Based on feature extraction and analysis, a generic view of the 

measurable parameters and system structure was presented. Consequently, a generic 

FDD solution will be proposed and explained in this section. 

3.2.2.1 Principle of generic FDD method 

The model-based fault detection and diagnosis solution normally relies on an accurate 

system model. The more accurate the model is, the better the condition of the system 

can be identified. For the five railway assets, more modelling work and more sensors 

could be applied to improve the level of response to the FDD method. However, these 

efforts would limit condition monitoring to each single machine, instead of being 

applicable to a group of assets with different mechanical designs. Furthermore, this 

more precise FDD solution would greatly increase the economic cost and require 

longer development time, which deviates from the original intention of this study. The 

generic FDD solution therefore emphasises on the common features extracted from 

these STMEs and proposes to monitor a large number of them by using a relatively 

small number of sensors and relatively simple mathematical models. The generic 

solution will rely on the common features of the mechanisms and the integration of 

models. Fault detection will then be implemented by using several sub-models and the 

fault diagnosis will be based on the logical analysis of mechanical common features in 

the form of model combination.  

The operation process of the STME can be divided into three parts: input, machine 

and output. At each part, a parameter represents the status. Based on the mechanical 

design, the three parts are dependent upon each other. The performance of the 

machine is influenced by the input. In other words, the input can determine the 
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performance to different extents. The machine also affects the output and in the same 

way the output is indirectly affected by the variation of the input.  

 
If Mf Of O => M O ≠> M Fault location 

0 0 0 N/A N/A No fault 

1 1 1 1 0 Input fault 

1 0 0 1 0 Pressure/Voltage sensor 

0 0 1 0 1 Displacement sensor 

0 1 0 0 1 Airflow/Current/Oil pressure  sensor 

0 1 1 1 0 External fault (friction etc.) 

0 1 1 0 1 Internal fault (cylinder etc.) 

Table 3.3  Basic rules of fault diagnosis for STMEs. 
 

Based on the connections between the three parts, a logical fault diagnosis regulation 

can be constructed. The input is defined as If for a faulty status. In the same form, the 

machine is defined as Mf and the output is defined as Of. O => M represents that the 

output keeps consistent with the machine variables in fault mode, which can be 

identified by the synchronisation between the displacement and airflow (or current, oil 

pressure); meanwhile, the inconsistence, represented by O ≠> M, indicates that 

mechanical faults might exist inside the machine. The basic rules for fault diagnosis 

on STMEs are displayed in Table 3.3. In the table, the ‘1’ represents ‘true’ and the ‘0’ 

represents ‘false’. 

When applying the rules to a logical analysis for the condition monitoring, the fault 

model O => M could be a key point of the solution. To apply this model, it is 

important that a distinguishable change exists in the synchronisation between machine 

variables and the output (displacement) when the machine itself operates under 

normal and faulty conditions. This requirement may lead to a failed diagnosis for 

small faults inside the machine which only slightly affect the machine variables or 
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which do not affect at all. In this case, the fault could only be located by long term 

observation. 

3.2.2.2 Process of generic FDD method 

Based on the previous analysis, a generic fault detection and diagnosis diagram was 

drawn to illustrate the FDD process in detail, as shown in Figure 3.22. In this figure, 

the whole FDD process was divided into three stages: sensor inputs and pre-

processing, fault detection processes, and fault diagnosis processes. In each of the 

processes, the tasks are generically defined for all the railway assets considered in this 

study. 

The generic fault detection and diagnosis method proposed in this study is based on a 

generic model of the STMEs, where the generic model is considered to be a 

combination of a series of sub-models. The sub-models are the models of the 

variables presenting the working status of the assets. Before applying this generic 

FDD method to the assets, the modelling work for these sub-models was carried out 

and the details will be presented in Chapter 4. During the process of fault detection, 

these variables need to be monitored by specific sensors and the data are collected. 

The acquired data is then used for observing deviations between the measured profiles 

and estimated profiles produced by sub-models to determine whether the system is 

working normally or not. Any detected change of the measured data would potentially 

indicate a fault. The change is, therefore, processed to residuals by a pre-designed 

algorithm to finally determine a fault alarm, to be passed to the next procedure, fault 

diagnosis. Using the fault information obtained during the fault detection procedure, 

the fault diagnosis algorithm works to identify the fault type and location. 
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Figure 3.22   Diagram of generic fault detection and diagnosis for STMEs. 
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The final result of this generic FDD method would either be that the asset works 

under fault-free conditions or that the fault(s) occurred with relevant fault information, 

such as the fault is on the machine or caused externally. 

Sensor inputs and pre-processing 

At the first stage of the FDD process, the data of the variables in each section of the 

system (input, machine and output) are collected by sensors. As displayed in 

Figure 3.22, the variables monitored in this generic FDD process include the control 

command signals, air pressure/voltage, angular or linear displacement, current and oil 

pressure. Due to unavoidable noise during data collection and the sensor resolution, 

the data requires pre-processing by a low-pass filter to smooth the profile at a 

predetermined level. Furthermore, the variables, velocity and acceleration, which 

represent the dynamic of the system performance, are calculated using the processed 

displacement data. For the Ta and Te models, the activation delay, ta, and the throw 

time, te, are abstracted from the measured displacement. 

Fault detection processes 

At this stage the model based fault detection is carried out with the pre-processed data. 

The measured data is compared with the data estimated by the pre-designed sub-

models to detect changes. As discussed previously, the whole profile of variables was 

divided into pre-defined spatial regions in order to increase the accuracy of 

comparison. The comparison of the measured and estimated data profiles is, therefore, 

performed within each spatial region. To determine whether an inconsistency 

represents an actual fault, an adaptive thresholding algorithm was developed, which 

will be explained in detail in the next section. Based on the thresholds, the 
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inconsistency would be considered either as a fault or tolerable. Consequentially, the 

inconsistency is then processed and passed to the fault diagnosis procedure as 

residuals.  

The fault detection process contains three sections: generic processes, pneumatic 

process, and electric and electro-hydraulic processes. Each of the sections has 

different functions during the fault detection process. 

The generic processes have three models and one threshold checking algorithm. The 

variables considered in this section exist among all the five assets. 

- Threshold check for compressed air pressure and command signals: 

),,,( SPThresholdTh TSTPfV                (3.18) 

where P and S are the pressure and the amplitude of the command signal for 

monitoring. Tp and Ts are the given thresholds for the pressure and command 

signal respectively. VTh is the comparison result which indicates normal or faulty 

status. 

The threshold checking produces two residuals rP and rS to indicate whether the 

voltage of the control command and the initial air pressure/voltage are in a 

normal range.  

- The Ta and Te model for activation delay and throw time: 

)),(exp( 11& mnea PkfT                (3.19) 

where  is the coefficient of the exponential model; is the air pressure. 

Since this model is built to respond to m pressure inputs, one single Ta 

(activation delay) or Te (throw time) value is achievable at a certain pressure 

1 nk  1 mP
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P

P

value. Ta&e is an activation delay or throw time value at a given pressure. 

Two residuals, ra and re, are produced to show the difference between the model 

estimated and measured activation delay and throw time.  

- The polynomial model for displacements: 

)),,(( 11 mipoly PtrpolyfDisp                 (3.20) 

where  is the coefficient of the (i-1)th polynomials. The model generates a 3-

dimensional output responding to a time sequence, t, and a pressure range, . 

The output Disppoly is a displacement data set at a selected pressure P. 

1 ir

1 m

The residual, rD, represents a series of residuals, rd1, rd2, … , rdk, where k is the 

number of spatial regions. These residuals indicate the comparison result in each 

spatial region of the displacement. 

- The State-Space model for the throw dynamic including velocity and acceleration: 

)),),,,,((( 11 mjss PpdcbaSSfDyn                (3.21) 

where is the State-Space model for j spatial regions and the a, b, c and d 

are parameters for each of the models. The p is the abscissa of spatial plotting. 

Responding to every pressure, , the spatial regions are defined and the State-

Space model is set up for each of the regions. The calculation result, Dynss, is 

therefore a velocity or an acceleration data set.  

1 jSS 

1 m

Two residuals, rv and ra, are produced for the velocity and acceleration 

respectively. rv contains rv1, rv2, … ,rvk, and ra contains ra1, ra2, … , rak for the 

spatial regions, where k is the number of the spatial regions. 
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m

m

The pneumatic process has one model for airflow that is available for the three 

pneumatic assets (airflow data is not available from the train-stop, since no proper 

sensor was found). 

- The neural network model for airflow estimation: 

),( 1 mNN ApNNA                 (3.22) 

where p is the spatial X-axis and is the airflow profile responding to the 

pressure range, 1 . This neural network model is trained using healthy 

airflow data sets in a spatial scale. The ANN is an airflow data set estimated by the 

model at a certain air pressure. 

1 mA

The residual, rA, representing a series of residuals rA1, rA2, … , rAk, where k is the 

number of spatial regions, indicates the inconsistency of the estimated and 

measured airflows.  

The electric and electro-hydraulic processes have two models working for the electric 

current and hydraulic oil pressure respectively.  

- The neural network models for current estimation of the electro-hydraulic level 

crossing barrier and the electric point machine: 

1( , )NN mC NN p C                 (3.23) 

where p is the spatial X-axis and is the current profile responding to the 

voltage range, 1 . This neural network model is trained using healthy current 

data sets in a spatial scale. The CNN is a current data set estimated by the model at 

a certain voltage.  

1 mC

The residual generated by using this model, rC, is composed of rC1, rC2, … , rCk, 
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m

where k is the number of spatial regions. rC indicates the deviation of the 

measured current from the model estimated values. 

- The neural network model for oil pressure estimation: 

1( , )NN mOP NN p OP                  (3.24) 

where p is the spatial X-axis and is the oil pressure profile responding to 

the voltage range, 1 . This neural network model is trained using healthy oil 

pressure data sets in a spatial scale. The OPNN is an oil pressure data set 

estimated by the model at a certain voltage. 

1 mOP

The residual, rO, containing rO1, rO2, … rOk, represents the inconsistency of the 

measured and estimated oil pressure and k is the number of spatial regions. 

These models mentioned above were constructed and applied for the assets considered 

in this study. The modelling work will be presented in Chapter 4. 

Fault diagnosis processes 

The residuals produced in the fault detection processes are used in the process of 

‘fault flag’ to determine whether a fault occurred. Since the number of residuals could 

be large with an increase in the number of spatial regions, the residuals used for 

residual-based fault diagnosis processes are re-organised into another form based on 

the characteristics of the variables. 

Another fault diagnosis method using fault models is also proposed for initial fault 

characterisation. The fault occurred during the performance can be classified as either 

an external fault (fault caused by external factors, such as friction or obstruction) or an 

internal fault (fault caused by the machine mechanism, such as broken force 
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)f

transmission). This initial fault characterisation would be very helpful for 

maintenance.  

The fault model relating faulty displacement to correlated faulty airflow, current or oil 

pressure: 

1 1
( ,

m mT fX NN D X
 

               (3.25) 

where is the faulty displacements and is the faulty airflow, current or oil 

pressure at m pressure/voltage values. This neural network model is trained using 

faulty displacement data as an input and the target is the correlated faulty airflow, 

current or oil pressure. The detail of the fault diagnosis processes will be introduced in 

section 3.2.4. 

mfD
1 1 mfX



3.2.3 Residual generation 

In model-based fault detection and diagnosis, the generation of residuals is a central 

issue for inconsistency identification and fault information collection (Chen and 

Patton et. al. 1999). In Chapter 2, three common methods for residual generation were 

introduced. In this section parity equations are employed for FDD of the pneumatic 

STMEs. 

3.2.3.1 Parity equations approach 

As discussed in Chapter 2, the parity equations method compares the parity 

(consistency) of the analytical models with the measurements of a real system. The 

experiment-based models can be considered as analytical approaches. Here the 

models are applied in parallel with the system process and the results are used to 

generate parity vectors.  
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In the spatial scale of throw distance, the models can be written in a general form as: 

0( ) ( , ( ))y k f P u k   (3.26) 

where the function f can take both linear or non-linear formats; P is the model 

coefficient vector for linear models. In neural network models, P represents the 

parameters, such as the number of neurons, goal and spread and u(k0) is the model 

input. When the displacement is taken as the input, k0=k where k is the spatial scale of 

throw distance. When the input is air pressure, k0=0 and u(0) represents the initial 

pressure of the air supply. According to equation 2.14 in Chapter 2, the residuals can 

be described as: 

( ) ( ( ) ( ))mr k W f k f k                  (3.27) 

where fm(k) is the measurement at position k and W is the residual generation vector. 

3.2.3.2 Adaptive threshold 

With the models constructed under fault-free conditions, it is possible to generate 

healthy STME performance data. The residual generation method also provides the 

methodology for producing inconsistencies in a mathematic form. 

A thresholding process is normally involved in the decision-making stage of model-

based FDD (Chen and Patton 1999). The choice of threshold is not a straightforward 

issue, as it determines the robustness of the whole FDD algorithm. If a fixed threshold 

is used, the sensitivity of faults will vary depending on the limit selected. When the 

threshold is chosen to be too high, the sensitivity to faults will reduce; on the contrary, 

the false alarm rate will increase if a threshold is chosen to be too low. In addition, a 

fixed threshold is often not sufficient with the presence of model uncertainty and 

measurement noise. 
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In order to enhance the robustness of the FDD system, an adaptive threshold approach 

is proposed, which will take model uncertainty and measurement noise into account. 

This approach improves the monitoring of performance with increased detection 

sensitivity and few false alarms (Patton, Frank and Clark 1989). The methodology and 

procedures for designing adaptive threshold were summarised theoretically by Ding 

and Frank (1991) and Emami-Naeini et. al. (1988).  

3.2.3.2.1 Model analysis using statistical theory 

In this section, the train door displacement of a normal throw is taken as an example 

for analysis. The polynomial model (model 3.20) discussed in section 3.2.2.2 is used 

to provide healthy displacement data at 3.5 bar. This polynomial model was 

constructed using a mean displacement value of 200 throws (normalised in the region 

of [0,1]) under fault-free conditions. Even though the 200 train door displacements 

were measured under the same conditions, the data profiles were not identical due to 

the variation in lubrication level. The maximum deviations between the model output 

and the 200 measured displacements are displayed in Figure 3.23. The residual 

amplitude varies from -0.015 to 0.015 through the whole throw, however, it can be 

seen that the distribution of residuals is symmetrical from the standard. 

The deviations displayed in Figure 3.23 indicate that the standard displacement 

generated by the polynomial model does not precisely match the actual displacements 

due to inevitable model uncertainty. In a practical environment, this model would 

cause a high false alarm rate or failure of fault detection, if a fixed threshold were to 

be applied. Therefore, the threshold needs to be adaptively designed with 

consideration for the model uncertainty and noise which may exist.  
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0.015

 

Figure 3.23  The residuals under fault-free conditions. 
 

Further investigation of the residuals was conducted by statistically counting the 

residuals at different amplitude levels for all the 200 experimental displacement data 

sets. Based on the counting result, a probability distribution function (PDF) could be 

estimated.  

 

Figure 3.24  Distribution of residuals vs. throw times. 
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shows a typical feature of a Gaussian distribution. The Gaussian distribution, also 

known as normal distribution, is a continuous probability distribution used to describe 

the data that clusters around a mean (Bishop 2006). As shown in Figure 3.25, the 

residuals were counted according to their amplitudes and the density distribution was 

fitted by a Gaussian function with a 95 % confidence level.   

 

Figure 3.25  A histogram of residual density distribution and Gaussian distribution fitting. 
 

The probability density function for Gaussian distribution can be illustrated by an 

exponential function (Dougherty 1990): 
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where μ is the mean; σ is the standard deviation. The estimated value of μ is 1.7×10-

14 and σ is 5.75. Based on the assumption of Gaussian distribution, a Lilliefors test 

was carried out for confirmation. 

The Lilliefors test, as an adaption of the Kolmogorov-Smirnov test, is used to test the 
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null hypothesis that data comes from a normal (Gaussian) distribution (Lilliefors 1967 

and Gonzalez et al. 1977). The Lilliefors test statistic can be described as: 

max ( ) ( )
x

SCDF x CDF x                 (3.29) 

which has the same form as the Kolmogorov-Smirnov test. In the function, x 

represents the sample vector; SCDF is the empirical cumulative distribution function 

(CDF) estimated from the sample and CDF is the normal CDF with mean and 

standard deviation equal to the mean and standard deviation of the sample. At a 

significance level of 0.01, the distribution of residuals under fault-free conditions is 

confirmed to be close to Gaussian distribution. A Gaussian distribution probability 

plot of the residuals is shown in Figure 3.26. 

 

Figure 3.26  Gaussian distribution probability of residuals. 
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parallel with the model output without crossing. In this case, if the displacement 

profile generated by the model is taken as a standard, a mean value of the deviations 

of a measured displacement in time series could be used to represent its average 

deviation from the standard. In Figure 3.26, 200 average deviations obtained from 200 

healthy displacement data sets are displayed. The linear distribution of the data 

indicates that the distribution of the data is close to a Gaussian distribution.  

Based on the results of the Lilliefors test and Gaussian probability plotting, a 

conclusion can be drawn that the deviations of measured displacement profiles from 

the model output (the displacement profile generated by the polynomial model) obey 

the Gaussian distribution. The deviations at any time instant are also Gaussian 

distributed. 

3.2.3.2.2 Adaptive threshold design 

The displacement profile is a set of discrete data, where the number of data equals the 

number of samples. In order to set up an adaptive threshold, at each time instant the 

deviations between measured healthy displacement and the displacement generated by 

the model need to be statistically analysed. If the number of data is assumed to be n, 

the distribution of the deviations at a time instant, tk, can be described as: 

2

2

( )

2
1

( )
2

kt

kP t e




 

 

                 (3.30) 

where ; μ and σ are the mean and the standard deviation at time, tk. In the 

train door case, the normal (forward) throw of the pneumatic train door at the air 

pressure of 3.5 bar is employed as an example. In a practical environment, the air 

pressure might vary in a range, and different supplied pressures result in 

1k  n
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corresponding displacements. In this case, it is useful to introduce the air pressure, p, 

to the threshold design. Therefore, the μ and σ at time, tk, with air pressure, pj, can be 

illustrated by the following functions. 

1

1
ˆ ( , ) ( , )

m

j k i j k
i

p t r p
m




  t                  (3.31)

  

2

1

1
ˆ( , ) ( ( , ) ( , ))

1

m

j k i j k i k
i

p t r p t p t
m

 


 
                 (3.32) 

where 1j q  , q is the number of predetermined air pressure values; ̂  is the 

estimated mean value. In this study, the air pressures supplied for the pneumatic train 

door are at an increment of 0.1 bar from 2 to 6 bar, where, for example, q is 41; m is 

the number of healthy experimental displacement data sets at pressure, pj; r is the 

deviation at time, tk.  

From statistical theory, a confidence level, represented by 1-α, is normally used to 

indicate the reliability of an estimation, where α is a number between 0 and 1. In 

practical applications, the confidence level for Gaussian distribution is often selected 

to be between 95 % and 99 % (Shi et. al. 2005). With a given confidence level, the 

probability function can be described as follows using the mean, μ, and the standard 

deviation, σ (Crowder and Hand 1990).  

 ˆ ˆ 1P z z                           (3.33) 

where z is a coefficient related to the confidence level. This equation presents the 

confidence level by the confidence limits of the mean. In the case of thresholding, this 

equation indicates that (1-α)·100 % deviations lie in the interval between 

ˆ ( , ) ( , )j k j kp t z p t ˆ ( , ) ( , ) and j k j kp t z p t   . In equation 3.33, the estimated mean 
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and standard deviation are usually known parameters, but z needs to be calculated. 

The Gauss error function is therefore employed, which can be written as: 

2

0

2
( )

tz
erf z e dt




                    (3.34) 

This function presents the probability that the deviations have a distance less than z 

from the mean value at the centre. The z can therefore be calculated using the reverse 

error function as follows. 

12 (1z erf )                    (3.35) 

When a confidence level is given as 97 %, α is then 0.03 and the coefficient z = 2.17. 

If the standard displacement profile generated from the polynomial model is 

represented by , the two thresholds at a confidence level of 97 % can be 

described as ( ): 

( )D p j

1k n 

ˆ( ) ( ) ( , ) 2.17 ( , )j j j k j kp D p p t p t                    (3.36) 

With the consideration of the variation of air pressure, this design of adaptive 

threshold is capable of producing a series of thresholds for measured displacements 

under the air pressures, pj.  

In Figure 3.27 and 3.28, the adaptive thresholds with 97 % confidence for the 

displacement and airflow of a train door normal throw are displayed for 6 temporal 

regions (the air supply was provided at 3.5 bar). The displacement and airflow data 

used for model fitting were the average of 200 sets of experimentally collected data 

under healthy conditions. Meanwhile, the 200 sets of data were used for the adaptive 

threshold generation, where the possible varieties of healthy performance of the train 

door were supposed to be included. In the two figures, the threshold is represented by 

the dashed red lines and the dynamics of displacement and airflow at each time point 
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are outlined, which indicates that the level of the variation of healthy data would be 

tolerated by these thresholds. The false alarm rate would therefore be reduced.  

 

Figure 3.27  Adaptive thresholds for displacement of a train door normal throw generated by a 
polynomial model. 

 

The confidence level selected for threshold design directly influences the fault 

detection accuracy. A higher confidence level increases the threshold to tolerate larger 

deviations from the modelled prediction. The detection sensitivity for minor faults is 

therefore lowered. However, the false alarm rate is also reduced. The selection of 

confidence level is therefore a compromise between the fault detection accuracy and 

the false alarm rate.  
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Figure 3.28  Adaptive thresholds for airflow of a train door normal throw generated by a state 
space model. 

 

3.2.4 Fault diagnosis  

As explained in Chapter 2, a fault detection and diagnosis system involves both 

detection and diagnosis, where the diagnosis of faults is also known as identifying the 

classification, location and strength of the faults. Previous sections introduced the 

generic fault detection method for the railway assets considered in this study. So far, 

two fault diagnosis methods have been designed for the pneumatic assets, which are 

illustrated in this section. For the purpose of fault diagnosis, the fault codes are also 

defined for all five assets. 
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When a fault occurs on an asset and prevents it from performing a normal operation, 

three items of information are normally required to identify the fault: what the fault is, 

where/how it occurs and the size or strength of the fault (Collacott 1977 and Patton et. 

al. 1989). The first question requires gathering and analysing the fault information 

from residuals generated when the fault is detected. The residuals could be mapped to 

certain faults providing that the residual patterns are unique to each other. The answer 

to the second question can be generally said to be that the fault is either inside the 

machine or caused by external factors. The last question is the most difficult to answer. 

In this section, a solution is initially proposed by combining the parameter estimation 

and inference system to identify the fault type and strength.  

3.2.4.1 Fault codes 

In order to identify the failure modes for the five assets considered in this study, the 

faults, which may occur during operation, are classified and coded. In practice, the 

faults could usually be located to different mechanical or electrical components. 

However, in order to apply the generic fault detection and diagnosis method for the 

assets with different mechanisms, these various faults are categorised in a similar 

format.  

Pneumatic train door 

Table 3.4 lists the failure modes of a pneumatic train door. These faults were also 

simulated on the test rig and corresponding data were collected for FDD method 

evaluation. The data collection in healthy and fault modes was carried out at a range 

of air pressure values with 0.1 bar increments from 2 to 6 bar.  
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Code Failure mode Details 

TD-F0 Healthy operation 
Open and close profiles with nominal air pressure 

of 3.5 bar 

TD-F1 Friction 
Significant friction resulting in a larger activation 

delay and throw time 

TD-F2 Obstruction 
The train door panel is stuck and failed to 

complete an operation 

TD-F31 Mechanical faults 
Poor sealed cylinder piston or broken linkage 

between piston and driven load 

TD-F4 Non-critical leakage 
A slight leakage on the air pipe or cylinder, but 

complete operation can be performed 

TD-F5 Critical leakage 
A severe leakage on the air pipe or cylinder 

resulting in operational failure 

TD-F6 Non-critical air supply failure 
Air pressure is in the range of 2 to 5 bar, but not 

at 3.5 bar (experimental definition)  

TD-F7 Critical air supply failure 
Air pressure is lower than 2 bar or higher than 5 

bar (experimental definition)2 

TD-F8 Pressure sensor failure Intermittent signal transmission or sensor failure 

TD-F9 Displacement sensor failure Intermittent signal transmission or sensor failure 

TD-F10 Airflow sensor failure Intermittent signal transmission or sensor failure 

1 Fault was not simulated. Other faults were simulated and data were collected. 
2 High air pressure (> 5 bar) may cause hazard to passengers due to the high speed of train door 

movement. 

Table 3.4  Description of faults considered in train door test rig. 
 

Although the performances under non-nominal pressures can be considered as a 

failure mode, they can also be seen as healthy for those where faults do exist under the 

same pressures. Taking this into consideration, the experimental operations include 

2250 operations in healthy mode and 410 operations in a failure mode. 
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Pneumatic train-stop 

Fault simulation and data collection were also performed for a train-stop. Since no 

airflow sensor was available for the train-stop, the mechanical fault and airflow sensor 

fault were not considered. The pressure range defined in experiments for train-stop 

operation is 0.1 bar increments from 2 to 6 bar. In total, 1230 operations were 

performed for healthy conditions with 205 faulty operations. In Table 3.5, one healthy 

mode and eight fault modes are listed.  

 

Code Failure mode Details 

TS-F0 Healthy operation 
Normal and reverse throws with nominal air 

pressure of 4.1 bar (60 psi) 

TS-F1 Friction 
Significant friction resulting in a larger activation 

delay and throw time 

TS-F2 Obstruction 
The train-stop head is stuck and failed to 

complete an operation 

TS-F3 Non-critical leakage 
A slight leakage in the air pipe or cylinder, but 

complete operation can be performed 

TS-F4 Critical leakage 
A severe leakage in the air pipe or cylinder 

resulting in operation failure 

TS-F5 Non-critical air supply failure 
Air pressure is lower than 4.1 bar, but higher than 

2 bar (experimental definition). 

TS-F6 Critical air supply failure 
Air pressure is lower than 2 bar (experimental 

definition).  

TS-F7 Pressure sensor failure Intermittent signal transmission or sensor failure 

TS-F8 
Angular-displacement sensor 

failure 
Intermittent signal transmission or sensor failure 

Table 3.5  Description of faults considered in the train-stop test rig. 
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Pneumatic point machine 

 

Code Failure mode Details 

PM-F0 Healthy operation 
 

Normal and reverse throws with a nominal air 

pressure of 3 bar 

PM-F1 Friction 
Significant friction resulting in a larger activation 

delay and throw time 

PM-F2 Obstruction 
The point machine rod is stuck and failed to 

complete an operation 

TD-F3* Mechanical faults 
Poorly sealed cylinder piston or broken linkage 

between piston and driven load 

PM-F4 Non-critical leakage 
A slight leakage on an air pipe or cylinder, but 

complete operation can be performed 

PM-F5 Critical leakage 
A severe leakage on an air pipe or cylinder 

resulting in a failure of operation 

PM-F6 Non-critical air supply failure 

Air pressure is lower than 3 bar, but higher than 

0.5 bar (experimental definition for unloaded 

case) 

PM-F7 Critical air supply failure 
Air pressure is lower than 0.5 bar (experimental 

definition for unloaded case)  

PM-F8 Pressure sensor failure Intermittent signal transmission or sensor failure 

PM-F9 Displacement sensor failure Intermittent signal transmission or sensor failure 

PM-F10 Airflow sensor failure Intermittent signal transmission or sensor failure 

* Fault was not simulated. Other faults were simulated and data were collected. 

Table 3.6  Description of faults considered in point machine test rig. 
 

Two point machines, one healthy and the other with a leaky air cylinder, were used to 

generate data in both healthy and failure modes. The air pressure range was set up at 
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0.1 bar increments from 0.5 to 6 bar. The unloaded healthy point machine was used to 

generate healthy data for model construction. The total operations of the point 

machine in healthy mode were 1680, and 560 operations were performed for each 

failure mode. In Table 3.6, one healthy and ten failure modes are listed.  

Fault code Failure mode Practical faults 

LCB-F0 Healthy Fault-free condition 

LCB-F1 Friction 
Main shaft bearing tight 

Boom up/down slowed 

Incorrect balance weight 

LCB-F2 Obstruction 

Main shaft seized 

Counter balance weight obstructed 

Hydraulic system blockage 

Maintenance door obstructing boom 

LCB-F3 Motor fault Pump motor failure 

LCB-F4 Hydraulic pump fault 
Piston rod broken 

Hydraulic fault in pack 

Hydraulic oil leakage 

LCB-F5 Power failure 
Power pack disconnected 

Power pack on incorrect boom length 

LCB-F6 Displacement sensor fault N/A 

LCB-F7 Oil pressure sensor fault N/A 

LCB-F8 Current sensor fault N/A 

LCB-F9 Voltage sensor fault N/A 

Other failures 

Main shaft moved 

Solenoid valve fails 

Circuit controller seized/general wear 

Down stop missing 

Detecting relays disconnected 

High resistance in electric circuits 

Circuit controller band dirty 

Boom resting > 90 degree 

Circuit controller spring high resistance 

Table 3.7  Faults considered for the electro-hydraulic level crossing barrier. 
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Electro-hydraulic level crossing barrier 

Based on a Failure Mode and Effects Analysis (FMEA) (Roberts 2007), the faults 

were analysed and sorted into categories in the same form as the fault types for the 

pneumatic assets. The reason this work was undertaken is that the generic FDD 

solution is designed only to the same type of faults for different assets, and the faults 

thus cannot be accurately located to single components. 

The fault types considered in this study and the corresponding practical faults are 

listed in Table 3.7. The practical faults included are only those which could result in a 

degraded or failed operation. Since the FMEA focuses on the faults of the machine 

mechanism, no practical faults were suggested for sensor faults. For the development 

of generic FDD algorithms, the data in fault modes is required, however, it is difficult 

to simulate the mechanical faults by damaging the components. The simulation of an 

obstruction fault would also raise a high risk to both the operator and the machine. 

Therefore, the machine has only been operated with a simulated friction fault and the 

data has been collected. 

Fault code Failure mode Description 

EPM-F0 Healthy Fault-free condition 

EPM-F1 Friction 
Throw time is longer than normal, but the throw 

is completed. 

EPM-F2 Obstruction Throw fails to complete 

EPM-F3 Motor fault Faulty motor performance reflected by current 

EPM-F4 Power failure Voltage failure 

EPM-F5 Displacement sensor fault Sensor failure or bad connection 

EPM-F6 Current sensor fault Sensor failure or bad connection 

EPM-F7 Voltage sensor fault Sensor failure or bad connection 

Table 3.8  Faults considered for electric point machine. 
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Electric point machine 

Since a Fault Mode and Effects Analysis (FMEA) from experts was not available for 

the electric point machine, the fault modes for consideration are initially outlined as a 

generic view, as shown in Table 3.8. 

3.2.4.2 Fault model approach 

The fault model in this study is understood as a generic model of the assets to describe 

performance in fault mode and to generate fault information at the same time. The 

construction of a fault model normally requires in-depth knowledge of how the 

system physically works and how it could go wrong. For a generic FDD solution, 

however, specific physical descriptions of the assets are not considered and the 

possible faults are only considered generically as listed in section 3.2.4.1. In this 

situation, a simple fault model was designed. How it works on the pneumatic assets is 

explained in this section.  

In the case of pneumatic assets, displacement and airflow are two important 

parameters which reflect the performance of the assets. In this study, displacement is 

considered as the final presentation of the operation of the asset, which determines 

whether the operation is healthy or faulty. In parallel with displacement, the airflow is 

generated from the working cylinder as a by-product, which also presents the process 

of the operation. For example, the speed (acceleration or deceleration) of a vehicle 

represents the performance, however, the exhaust of a gas-based vehicle can also 

show the working status and, furthermore, the exhaust indicates the condition of the 

engine, of which the speed may not be able to give any information. Airflow is 
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therefore an important parameter which provides information about the cylinder and 

the mechanical system of the machine.  

When a fault occurs on a pneumatic asset, the displacement is always affected. The 

change in displacement is often similar no matter whether the fault is caused by a 

faulty machine or an external factor, i.e. friction. For airflow, the situation is different 

in that airflow is also influenced when a friction or obstruction fault occurs, but it 

correlates with the displacement profile (as mentioned in section 3.2.1.1.1) only if the 

pneumatic system is healthy. When a fault occurs on the machine, e.g. badly sealed 

cylinder piston or broken linkage from piston to driven load, the airflow will lose 

synchronisation with the displacement. Another issue to point out is that the fault of 

leakage does not influence the synchronisation between the airflow and the 

displacement. From the working principle of the air cylinder introduced in section 

3.2.1.1.1, the mass airflow only relates to the air pressure and the movement of the 

cylinder piston. This phenomenon was also observed during the analysis of collected 

data.  

A fault model (function 3.25) was designed to identify whether a fault was caused 

externally or internally, where the air leakage was classified as an external fault. This 

fault model involves a radial basis function neural network (RBFNN) to predict an 

airflow profile using an actual measured displacement profile and compares it with 

measured airflow. This type of neural network has the capability of accurate 

approximating with adequate training data (Patton et. al. 1999). The data used to train 

the network includes the data collected from fault simulation, where the faults are 

only caused by external factors such as friction, obstruction and air leakage. The result 
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of comparison between the fault model output and measured airflow indicates that the 

fault is considered to be caused externally and the asset is in a healthy condition, if the 

two airflow profiles are similar. Otherwise, the fault is likely to be caused by an 

internal machine fault. External faults were used for model training because these 

faults are easier to simulate on the test rig than mechanical faults, which would need 

to be simulated by damaging a machine. 

3.2.4.3 Residual analysis approach 

The residuals produced by the fault detection procedure are essential information for 

fault diagnosis, especially when the system is taken as a black box without knowledge 

of its internal workings. In order to make the FDD method generic to all the assets 

considered in this study, their physical details were not taken into account and the 

assets were considered as black boxes only with inputs and outputs. The residuals are 

therefore the unique information for fault diagnosis. Compared with the method using 

a fault model introduced in the last section, the analysis of residuals is expected to 

generate more accurate classification results by relating the residual patterns to certain 

faults.  

The residuals were defined for three pneumatic assets, which are displayed in Table 

3.9, 3.10 and 3.11, where ‘1’ represents true and ‘0’ represents false. Twelve residuals 

were designed for the pneumatic train door and the point machine; and 9 residuals 

were designed for the pneumatic train-stop with the absence of airflow information. 

With the same parameters monitored on these three assets, the residuals are also of the 

same design, which facilitates the generic consideration for fault diagnosis. 
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Fault Code Residuals 

TD-F0 0 0 0 0 0 0 0 0 0 0 0 N/A 

1 1 1 1 1 1 1 1 0 1 0 0 

0 1 1 0 1 1 0 1 0 1 0 0 TD-F1 
0 0 1 0 0 1 0 1 0 1 0 0 

1 1 1 1 1 1 1 1 0 1 1 0 

0 1 1 0 1 1 0 1 0 1 1 0 TD-F2 
0 0 1 0 0 1 0 1 0 1 0 0 

TD-F3 1 1 1 1 1 1 1 1 0 1 1 1 

TD-F4 1/0 1/0 1 1 1 1 1/0 1 0 1 0 0 

TD-F5 1 1 1 1 1 1 1 1 1 1 1 0 

TD-F6 1/0 1/0 1 1 1 1 1/0 1 1 1 0 0 

TD-F7 1 1 1 1 1 1 1 1 1 1 1 0 

TD-F8 0 0 0 0 0 0 0 0 1 0 0 0 

TD-F9 1 1 1 1 1 1 1 1 0 0 1 1 

TD-F10 0 0 0 0 0 0 0 0 0 1 1 1 
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Residuals r1 r r r r r r r r r r r2 3 4 5 6 7 8 9 10 11 12 

Table 3.9  Residuals for pneumatic train door case. 
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Fault Code Residuals 

TS-F0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 0 

0 1 1 0 1 1 0 1 0 TS-F1 

0 0 1 0 0 1 0 1 0 

1 1 1 1 1 1 1 1 0 

0 1 1 0 1 1 0 1 0 TS-F2 

0 0 1 0 0 1 0 1 0 

TS-F3 1/0 1/0 1 1 1 1 1/0 1 0 

TS-F4 1 1 1 1 1 1 1 1 1 

TS-F5 1/0 1/0 1 1 1 1 1/0 1 1 

TS-F6 1 1 1 1 1 1 1 1 1 

TS-F7 0 0 0 0 0 0 0 0 1 

TS-F8 1 1 1 1 1 1 1 1 0 
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Table 3.10  Residuals for pneumatic train-stop case. 
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Fault Code Residuals 

PM-F0 0 0 0 0 0 0 0 0 0 0 0 N/A 

1 1 1 1 1 1 1 1 0 1 0 0 

0 1 1 0 1 1 0 1 0 1 0 0 PM-F1 
0 0 1 0 0 1 0 1 0 1 0 0 

1 1 1 1 1 1 1 1 0 1 1 0 

0 1 1 0 1 1 0 1 0 1 1 0 PM-F2 
0 0 1 0 0 1 0 1 0 1 0 0 

PM-F3 1 1 1 1 1 1 1 1 0 1 1 1 

PM-F4 1/0 1/0 1 1 1 1 1/0 1 0 1 0 0 

PM-F5 1 1 1 1 1 1 1 1 1 1 1 0 

PM-F6 1/0 1/0 1 1 1 1 1/0 1 1 1 0 0 

PM-F7 1 1 1 1 1 1 1 1 1 1 1 0 

PM-F8 0 0 0 0 0 0 0 0 1 0 0 0 

PM-F9 1 1 1 1 1 1 1 1 0 0 1 1 

PM-F10 0 0 0 0 0 0 0 0 0 1 1 1 
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Residuals r1 r r r r r r r r r r r2 3 4 5 6 7 8 9 10 11 12 

Table 3.11  Residuals for pneumatic point machine case. 
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- The residuals, 1 6r r , are based on the displacement measurement. The three 

residuals generated from velocity data in a spatial scale could provide the 

information as to whether and where a fault occurred. As the dynamic changes 

are amplified by acceleration, the residuals generated from acceleration are useful 

for the detection of small incipient faults. 

- The residuals of activation delay (r7) and throw time (r8) are time related, which 

are used to check whether an operation starts and ends within the nominal time 

range. These two residuals are sensitive to the faults that influence the operation 

time. 

- The monitoring of air pressure provides a deviation from the nominal air pressure 

and identifies whether this deviation is within or outside an allowed pressure 

range.  

- The airflow related residuals, 10 12r r  (for the train door and point machine), give 

information on the operation of the assets in parallel with the displacement. The 

airflow and fault mode airflow are used to check the dynamic change of the 

airflow profile. The monitoring of synchronisation proves whether the two 

sections of an asset, cylinder piston and driven load, are working in step.  

The normal working sensors are critical for the application of the generic FDD 

method. Among the three sensors, it is considered that only one sensor is allowed to 

fail in each operation. The dependency of the residuals on sensors was analysed under 

the assumption that no other faults were involved.  
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Displacement sensor failure 

The consequential residuals of a failed displacement sensor are provided in Tables 3.9, 

3.10 and 3.11. In this situation, the initial fault diagnosis can still be carried out by 

comparing the output of the airflow sensor with the modelled prediction of airflow 

with respect to the reading of the air pressure sensor. The result could identify either 

the displacement sensor fault or that the asset failed to operate upon receiving the 

command signal. 

Airflow sensor failure 

The consequential residuals of the airflow sensor failure are also presented in the 

tables. The FDD could still be performed using the displacement based residuals and 

air pressure value. In the case where no other faults are present, the airflow sensor 

fault could be identified. 

Air pressure sensor failure 

The models, 3.20 to 3.22, depend on the air pressure value to generate a 

corresponding prediction of the displacement, velocity, acceleration and airflow. A 

faulty air pressure sensor could lead to the failure of these models. In this case, the 

fault detection and diagnosis would totally collapse. In order to avoid this situation, 

two methods could be used to decouple the sensitivity of these models to an air 

pressure sensor fault.  

The first solution was mentioned in previous literature by Roberts (2002). The 

decoupling of the displacement related residuals can be realised through the 

calculation of secondary residuals. A precondition is that the regions need to be more 

finely divided to enable the first order approximations to replace the state-space 
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)

models for velocity and acceleration (3.21). The primary residuals are achieved 

directly from the comparison between actual measurements and the modelled 

prediction. The secondary residual could be calculated by eliminating the first order 

variable (pressure) using subtraction for two primary residuals. The secondary 

residuals will be independent of air pressure.  

The other solution proposed is to predict the air pressure value during the failure of 

the sensor. The model 3.20 predicts the displacement with a given pressure value and 

stored polynomial coefficients. In the healthy mode, the displacement profiles at a 

pressure range of 0.1 bar increments from 2 to 6 bar were used to train the polynomial 

model. When the pressure reading is unavailable, this model could also be able to 

inversely predict the pressure using the measured displacement profile. The 

application of the inverse prediction of air pressure requires that the displacement 

sensor works normally to provide data. The inverse function of model 3.20 can be 

illustrated as follows. 

1
1( ( , ), iP f poly r t Disp                 (3.37) 

Where the Disp is the measured displacement and P is the predicted air pressure. The 

function of this model is to compare the measured displacement profile with the 

predicted displacement automatically using the air pressure at 0.1 bar increments from 

2 to 6 bar. Once the most similar one is found, the corresponding air pressure value 

will be the predicted air pressure.  

3.3 Test rig development 

A generic test rig for the five STME assets was set up in the laboratory (Appendix A). 
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The hardware overview of the test rig is shown in Figure 3.29. In this system, a 

computer was used as the control centre to send control instructions and receive data 

from sensors via two NI-DAQ USB-6008 data acquisition cards. The USB-6008 

provides a maximum of 8 analogue input connections in single-ended mode or 4 

analogue input connections while in differential mode. These analogue channels are 

used to interface with the sensors for data collection. The two analogue output 

channels of the USB-6008 can provide up to 5 V DC (5 mA). These are used to send 

control signals to the control units of the STMEs. Apart from the features described 

above, this DAQ card also has 12 TTL/CMOS digital channels, a 2.5 V DC (1 mA) 

reference voltage and a 5 V DC (200 mA) power supply.   

 

Figure 3.29  Overview of STME test rig hardware. 
 

For the pneumatic STMEs, an air compressor (Airmaster Tiger 8/50 with maximum 

pressure of 8 bar and 50 litre capacity) was used to provide the power. In order to 

control the pressure of the output of compressed air, a digital air regulator (SMC 
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ITV2050-31F2BS3-Q) was employed. A 5 μm air filter was also used to dry and filter 

the air from the compressor to make the air regulator operate normally.  

A 24 V DC heavy-duty electric power supply drove the level crossing barrier. The 

operation of the barrier was controlled by relays to start, stop and reverse the motor. 

In order to drive the motor of the electric point machine, a 1.5 kVA transformer was 

used to convert 240 V AC to a 110 V AC supply. 

3.3.1 Sensors for data collection 

STMEs Parameters Sensors* 

Linear displacement Micro-epsilon WPS-1250 MK46 

Airflow Honeywell AWM720P1 Pneumatic Train Door 

Air Pressure SMC ITV2050-31 

Angular displacement 106-degree rotary position sensor 

Pneumatic Train-stop 

Air pressure SMC ITV2050-31 

Linear displacement Penny & Giles HLP190 LVDT 

Airflow Honeywell AWM720P1 Pneumatic Point Machine 

Air pressure SMC ITV2050-31 

Voltage LEM CV 3-500 

Current LEM PointSenz PCM 30-P Electric Point Machine 

Linear displacement Micro-Epsilon WPS-250 MK30 

Angular displacement Micro-Epsilon WPS-250 MK30 

Voltage LEM LV 25-P 

Current LEM LTA 50P/SP1 

 Electro-hydraulic Level 

Crossing Barrier 

Oil pressure GENSPEC GS4200 

* All the sensors listed in the table were installed by the author for experimental purposes. 

Table 3.12  Sensors installed on STME assets. 
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Various sensors were installed on the assets for data collection. Several electric power 

supplies, providing 24 V DC, 10 V DC, 5 V DC and ±15 V DC power, were used to 

enable the sensors to work properly. A list of the used sensors is given in Table 3.12. 

Displacement sensors 

Two draw-wire displacement sensors, Micro-Epsilon WPS-1250 MK46 and WPS-250 

MK30, were used to measure linear displacement up to 1250 mm and 250 mm 

respectively. The travel distances of the train door panel and the drive bar of the 

electric point machine, 812 mm and 122 mm, were measured using these sensors. The 

draw-wire displacement sensor measures movement using a highly flexible steel cable. 

The ‘cable drum’ is attached to a sensor element which provides a proportional output 

signal. This type of displacement sensor has the advantages of having a high dynamic 

response speed and good linearity. The resolution of WPS-1250 MK46 is 0.4 mm and 

that of WPS-250 MK30 is 0.1 mm. The WPS-250 was used to measure the angular 

displacement of the level crossing barrier. When the axis of the barrier machine 

rotates, the cable attached to the surface of the axis is drawn out vertically and the 

angular displacement is therefore calculated using the displacement reading and 

known axis radius.  

A 106-degree rotary position sensor was attached to the pneumatic train-stop to 

measure of rotary displacement of the train-stop head.  

Airflow sensor 

The airflow exhaust of a pneumatically powered device can be measured. As a 

dynamic parameter reflecting the practical action of the cylinder, the mass airflow 

velocity was measured using a Honeywell AWM720P1 sensor on pneumatic STMEs. 
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2

This sensor provides in-line flow measurement with a specially designed flow housing 

and measures mass velocity up to 200 standard litres per minutes (SLPM) with a 

response time of 6 ms. This sensor was chosen because the maximum airflow of the 

point machine (160 SLPM) and the train door (80 SLPM) are higher than the 

measurement range of other sensors. A 10 V power supply is required by this airflow 

sensor and the output ranges from 1 to 5 V corresponding to 0 to 200 SLPM. The 

output signal is not linear with respect to the varying airflow, however, the response 

curve can be fitted by a second-order Gaussian function. 

2
1 1 2 2(( )/ ) (( )/ )

1 2( ) x b c x b cf x a e a e       (3.38) 

Where x is the voltage signal and f(x) is the corresponding airflow value. The 

parameters were calculated using the typical input-output relations provided by the 

datasheet of the airflow sensor and are listed in Table 3.13. 

 

a1 b1 c1 a2 b2 c2 

2.972×1016 24.34 3.359 81.64 5.46 2.337 

Table 3.13  Gaussian curve fitting parameters for airflow sensor. 
 

Air regulator/pressure sensor 

In order to make the compressed air pressure adjustable, an air regulator, SMC 

ITV2050-31F2BS3-Q, was employed. This pneumatic regulator allows the setting of 

the output pressure up to 9 bar with 0.01 bar adjustment resolution, which satisfies the 

experiments in which a maximum of 6 bar pressure is required. The power supply 

used was a 24 V DC supply and the input signal ranged from 0 to 10 V DC. The 

pressure in 0.1 bar resolution can be displayed by an LED indicator and can also be 

read from the output signal (1 to 5 V DC) to achieve a more accurate value.  
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Voltage sensor 

Two voltage sensors, LEM CV 3-500 and LEM LV 25-P, were used to monitor the 

electrical power supply. The CV 3-500 measures the primary voltage up to 500 V 

(r.m.s. 350 V). With a ±15 V DC power supply, the conversion ratio is 500 V / 10 V 

and the accuracy is at ±0.2 % at 25 ºC. The LV 25-P performs the same function as 

the CV 3-500, but the accuracy is lower at ±0.8 % at 25 ºC. The nominal electrical 

supplies for the electric point machine and the level crossing barrier are 110 V DC 

and 24 V DC respectively, which both fall in the measurement range of these two 

sensors. 

Current sensor 

In order to measure the current of the motors in the electric point machine and the 

level crossing barrier, two current sensors, LEM PointSenz PCM 30-P and LEM LTA 

50P/SP1, were employed respectively. The PCM 30-P requires a 24 V DC power 

supply and measures current up to 30 A nominally. With a ±15 V DC power supply, 

the LTA 50P/SP1 measures nominal current of 50 A and gives output at the ratio of 

100 mV / A.  

Pressure sensor 

A pressure sensor, GENSPEC GS4200, was used to measure the oil pressure in the 

hydraulic system of the level crossing barrier. This sensor provides a measurement 

range of 0 to 700 bar. With a 15 V DC power supply the output span is 0 to 10 V DC 

to indicate the pressure reading, i.e. 700 bar pressure gives 10 V output voltage. 

Software  

To enable the functionality of the hardware, the software was designed to control and 
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read the sensor via the NI DAQ card. National Instrument’s LabVIEW was chosen as 

the developing tool for software programming. LabVIEW provides a graphical 

development environment to interface with the DAQ card for machine control and 

data acquisition (Appendix B).  

3.3.2 Load simulation for point machines 

As a test rig, a M63 electric point machine was installed on a machine base in the 

laboratory. With a 110 V DC power supply, the point machine operated normally and 

the data was collected through a computer based data acquisition system and installed 

sensors, including a voltage, a current and a draw-wire displacement sensor. 

In order to create a practical application environment, a load was designed to simulate 

the dynamic force generated by the switch blades. The load device used a strong 

spring, of which the design parameters are listed in Table 3.14. 

 

Natural length 
Deformed length 

(Stretched) 

Deformed length 

(Compressed) 
Spring rate Max load 

14 cm 20.25 cm 7.75 cm 43200 N/m 2700 N 

Table 3.14  Parameters of load simulated for electric point machine. 
 

In practical application, the drive bar of the point machine is connected to the switch 

blades through the stretchers, as shown in Figure 3.9. Once the point machine is 

activated, the drive bar moves vertically to the switch blades and, therefore, the switch 

blades are pushed or pulled to one side of the stock rails, via which two routes are 

switched. In the design of the load, the force output by the drive bar was calculated 

and the dynamic changes were considered.  
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a b c

a. 

Motor is aided by elastic 
force of switch blades 

Motor is resisted by elastic 
force of switch blades 

Compressed Natural Stretched 

b. 
 

a) Schematic structure of simulated load     b) Images of the load responses 

Figure 3.30  Load simulation using single spring. 
 

 

Figure 3.31  Displacement profiles for electric point machine with load. 
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The point machine moves a variable load due to the bending of the switch blades. 

Initially, the motor of the point machine is aided by the released force of the switch 

blades. As the blades traverse to their final position, an increased force is exerted as 

the switch blades bend in the opposite direction (Oyebande 2002). At the end of the 

throw, the motor stops and the switch blades are locked. To simulate these working 

statuses, a single spring load device was developed as shown in Figure 3.30 a. The 

elastic forces of the spring on compression and stretching are used to simulate the 

similar force experienced when the switch blades of a point machine are bent. When 

the drive bar of the point machine travels from a to c and from c to a, it experiences 

forces similar to those experienced during a real throw. The load was fitted at the 

other end of the drive bar instead of the one connected to switch blades. As shown in 

Figure 3.30 b, for the normal (forward) throw (the switch blades are pushed to the 

farther side of stock rails), the travel starts from the point the spring is fully 

compressed to the end where the spring is fully stretched. The reverse throw repeats 

the process inversely. The test results (shown in Figure 3.31) proved that the 

simulation basically reflects the practical dynamic process; however, this one spring 

system is still too simple to accurately present the force changes of the practical stock 

rails, and the force generated by the spring is still weaker than expected.  

3.4 Conclusions 

Five railway assets, the pneumatic train door, train-stop and point machine, the 

electric point machine and the electro-hydraulic level crossing barrier, are introduced 

in this chapter. A generic fault detection and diagnosis method using common features 

was proposed. A method of adaptive thresholding was also proposed and explained. 
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Two fault diagnosis approaches for the pneumatic assets, fault model and residual 

analysis, were also discussed. For the development of the generic FDD method, test 

rigs were set up in the laboratory and the details were also presented. 

The assets considered in this study are different in both function and mechanism; 

however, they have similar dynamic characteristics during their operations. Based on 

these similarities, such as non-periodical and reciprocating operations with large 

nonlinear load, these assets are classified into a group called Single Throw 

Mechanical Equipments (STMEs).  

As the aim of this study is to design a generic FDD method for these STMEs, the 

common features of the assets are the emphasis for consideration and utilisation. Two 

aspects of the features were extracted: the parameter features, including the 

displacement, airflow/current/oil pressure and air pressure/voltage; and the 

mechanism features, including the input, machine and output.  

Based on the information monitored on parameter features and the structure outlined 

by system features, a generic FDD method was proposed. A common system structure 

for each asset is composed of input, machine and output with dependency relations. 

Each section in the structure can be represented by one corresponding parameter. 

Based on this system structure, a fault detection and diagnosis process diagram was 

provided for illustration of the FDD procedures. The processes of application of the 

generic FDD method include three stages: sensor inputs and pre-processing, fault 

detection processes, and fault diagnosis processes. In each of the processes, the tasks 

are generically defined. At the first stage, the performance data of the asset is 

measured by a series of sensors and pre-processed. At the stage of fault detection, 
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seven different types of sub-models are used for different variables, where the sub-

models include the Ta and Te model for activation delay and throw time, the 

polynomial model for displacement, the state-space models for velocity and 

acceleration, the radius basis function neural network model for airflow, current and 

oil pressure. Each of these sub-models works for one dependent task and the 

combination of them composes a generic model to describe the whole system. At the 

fault diagnosis stage, two processes, fault model and residual analysis, are included. 

The faulty model, built using faulty mode data, has the function of initial fault 

characterisation (external faults or internal faults). The residual analysis is to generate 

fault information by using reformatted residuals generated from the fault detection 

procedure. The diagram of generic fault detection and diagnosis (as shown in Figure 

3.22) describes the procedures of fault detection and diagnosis and will be tested on 

the assets in the following chapters. 

A parity equation approach for residual generation was discussed and the design of an 

adaptive threshold using statistical theory for fault detection and residual generation 

was introduced in detail. The threshold has the capability to tolerate normal dynamic 

variation for healthy operation data and thus minimises the false alarm rate. With 

confidence levels, the threshold could be adjusted to adaptively change the detection 

sensitivity for faults.  

Two approaches to fault diagnosis for pneumatic assets were discussed. One approach 

uses the fault model, which benefits from a rough fault classification. Mechanical 

faults, such as leakage at the cylinder piston and failed linkage between the cylinder 

and the driven load, and external faults, such as friction or obstruction, could be 
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classified into different categories. The precondition of applying the fault model is 

that the sensors of displacement and airflow are in a normal working condition. 

Another approach is based upon the analysis of residuals and pointing the residual 

patterns to certain faults. Since the residuals come from the comparison between the 

prediction by the model and actual measurements by sensors, the decoupling of the 

residuals from sensor faults is important. Two methods were introduced to decouple 

residuals from the air pressure sensor fault. The fault diagnosis methods have not been 

tested on the test rig, which will be left as a future work.  

The test rig for data collection from these assets was built in the laboratory. The 

hardware, including sensors, control units and power supplies, was introduced in 

detail. The software programme, using the LabVIEW graphical language for 

controlling and data acquisition, was also introduced. Automatic data collection and 

storage was achieved by the combination of both hardware and software. 

By the information provided above, the idea of generic fault detection and diagnosis 

was illustrated and clearly explained. For the five simple STMEs, the fault detection 

and diagnosis method and an adaptive threshold were deliberately designed using 

their common systematic and parametrical features. The results of applying this 

method are presented in Chapters 4 and 5. 



Chapter 4 

A generic fault detection and diagnosis approach for 

pneumatic train door 

 

4.1 Introduction and motivation 

This chapter presents a generic fault detection and diagnosis (FDD) approach for the 

pneumatic train door. Several modelling methods discussed in Chapter 3, such as 

exponential modelling (Ta and Te modelling), polynomial modelling, state-space 

modelling and neural networks modelling, are introduced and combined to compose a 

practical generic STME model appropriate for FDD. The failure modes of the train 

door, derived from the failure mode and effects analysis (FMEA), were provided in 

Chapter 3, based on which the fault detection results are presented. An initial 

approach to fault diagnosis using the fault model is also discussed. 

The motivation for research into safety-critical railway equipment is both to improve 

the reliability of asset performance and to enhance the quality of service to passengers. 

This study aims to develop a practical FDD method which will allow a large range of 

different assets to be effectively monitored and, at the same time, reduce the 

development cost of monitoring systems. In addition to the above benefits, detection 

of incipient faults should also be achievable, which is very useful for efficient 

infrastructure management.  

The approach presented in this chapter is to illustrate how the proposed generic fault 

detection and diagnosis method works on an STME asset (the pneumatic train door) 

119 
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and to test the effectiveness of this method. 

4.2 Modelling for STMEs 

As an essential part of fault detection and diagnosis, the modelling methods for the 

STMEs were studied and several modelling approaches are presented in this section. 

For the convenience of modelling work, the measured data was normalised into the 

region of [0,1]. 

4.2.1 Exponential model 

The compressed air supply of the pneumatic STMEs may vary within a range. In this 

study, the performance of pneumatic assets was considered within the pressure range 

from the minimum value, less than that at which the asset will absolutely fail to 

operate, to the maximum value, the maximum pressure that the compressor can 

continuously supply, i.e. 2 to 6 bar for the pneumatic train door. These two pressure 

limits were set based on the laboratory environment rather than practical applications 

in which the threshold for failure pressure supply is likely to be stricter.  

In the case of the train door, the 3-D profiles of normal and reverse throws are 

displayed in Figures 4.1 a and b respectively. The top views of these two 3-D profiles 

are shown in Figures 4.1 c and d with contour lines, in which the throw time can be 

clearly observed to be exponentially related to the air pressure. The activation delay 

(delay between the solenoid activation and the physical movement of the door) of the 

train door panel also has an exponential relationship with respect to the air pressure.   
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Figure 4.1  Exponential feature in the train door throws. 

 

Figure 4.2  Throw time and activation delay vs. pressure for the pneumatic train door. 
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3

 

In Figure 4.2, the throw time and activation delay obtained from experimental data are 

displayed. To model these data, the curve was fitted using a general exponential 

equation. 

2
1( ) x ut u x e x    (4.1) 

Where t is either the throw time or activation delay; u is the input pressure and x1, x2 

and x3 are the designed coefficients. The curve fitting process aims to select 

appropriate coefficients to minimise the misfit between the function and the training 

set data points, where the misfit is usually represented by an error function. A widely 

used error function is given by the sum of the squares of the error between the 

predicted and actual data points, which can be simply described as the follows 

(Bunday 1984 and Bishop 2007).  

2
2

1 3
1

( )i

n
x u

i
i

E x e x t



    (4.2) 

Where i=1, 2, 3, … , n. n is the number of measurements. ui is the ith pressure value 

and ti is the ith measured throw time or activation delay.  

 

Type State Model 
Accuracy 

(R-square) 

Opening 1.053( ) 454.4 2091ut u e  99.25% Throw-time 

Closing 1.02( ) 667.6 1987ut u e  98.64% 

Opening 0.6942( ) 168.4 308.5ut u e  97.73% Activation Delay 

Closing 0.7062( ) 136.6 233.2ut u e  93.87% 

Table 4.1  Temporal models of throw time and activation delay. 
 

In Table 4.1, the optimised model parameters for healthy train door operation are 

shown. The data in Figure 4.2 for modelling are mean values obtained from 100 



 

A generic fault detection and diagnosis approach for pneumatic train door 

 

123 

randomly selected throw data sets, thus the model can be thought to reliably reflect 

the nominal operation characteristics.  

As shown in Table 4.1, the R-square was calculated to indicate the accuracy of 

models. This statistic indicates the goodness level of fit in explaining the variation of 

the training set data. The R-square is the square of the correlation between the 

predicted and actual values, which is defined as the ratio of the sum of squares of the 

regression and the total sum of squares and the function can be written as (Everitt 

1998): 

2

1
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1

ˆ( )
1

( )
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i i i
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i i
i

w t t
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w t t






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




  (4.3) 

Where wi is the selected weight;  is the predicted value; ît t  is the average 

measured value and ti is the ith measured throw time or activation delay. The R-square 

values in Table 4.1, which indicates accuracy by being close to 1 and poor accuracy 

by being close to 0, show that the models achieved a high accuracy, i.e. 99.25% of 

data could be explained by the throw time opening model.  

Apart from the throw time and activation delay, the exponential feature can also be 

observed in the throw dynamics. This feature is more clearly presented by the throw 

velocity and acceleration. As an example, Figure 4.3 displays the top view of 

acceleration 3-D profiles of the train-stop normal throw, where the pressure applied 

ranges from 2 to 6 bar. In this figure, the light areas indicate the wave crests (the 

acceleration maxima) and the dark areas between the light areas are the wave valleys 

(the deceleration maxima). The maxima and minima of acceleration at different air 
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pressures were linked up and displayed by lines in the figure. It can be observed that 

these lines also exhibit exponential features between the time and pressures. 

 

a) Trend lines of wave crests.                     b) Trend lines of wave valleys. 
 

Figure 4.3  Peak values of acceleration (train-stop). 
 

4.2.2 Polynomial model 

The polynomial model is one of the most frequently used models for curve fitting. It 

has many advantages such as low computation cost and well-understood mathematic 

forms (Wolberg 1967 and Hunt 1993). The main aim of designing a polynomial 

model is to select a suitable model order to map the input and output of a given data 

sets covering all possible system operation conditions. In this study, the polynomial 

model is used to build up a functional relationship between the air pressure and 

displacement. As the displacement profiles of the pneumatic train-stop are the most 

complex for modelling among the five assets, the train-stop is selected as an example 

of polynomial modelling. 

An mth order polynomial function can be described in the form: 
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where m is the order of the polynomial and x is the scalar input variable. W={w0, w1, 

w2,…,wm} is a vector of designed model parameter. y(x,W) is a nonlinear function of x 

and is a linear function of coefficients, W, which presents the model output.  

The polynomial modelling process aims to select a polynomial function with an order 

that fits the given training data. The coefficients are determined by inverse 

calculations. The accuracy of fitting is determined by minimising the error function, 

which is in the same form as equation 4.2 and written as: 

2

1

( ) ( , )
n

j
j

E W y x W t


  j     (4.5) 

where tj is the jth target value.  

The polynomial fitting in the train-stop case by the CFTool of MATLAB is taken as 

an example. Two methods can be considered to fit the displacement profile using 

polynomial functions. The first one is to map the input, air pressure, and the output, 

displacement, where the pressure varies in the range of 2 to 6 bar, in the case of the 

train-stop. However, due to the relatively large variation of the data, the fitting results, 

especially at 2 to 3.5 bar, were proved to be not good enough, even with the high 9th 

order polynomial. Furthermore, the computation cost using high order polynomial 

functions is high. The second method is to model the displacement profiles using the 

time point as input and the position of the train-stop head at each time point as the 

target output. Compared with the first method, this second method benefits from a low 

computation power requirement and the ability to predict the displacement which is 

not included in the training data. For example, the training data for the displacement 
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profile was selected at every 0.1 bar increment from 2 to 6 bar, however, the model 

has the ability to generate the displacement in 0.05 bar increment.  

In order to apply polynomial fitting on the training data, a discrete time interval needs 

to be selected. A small time interval will result in an accurate model, conversely, a 

large time interval makes the model less accurate. Lehrasab (1999) gave an analysis 

on time interval selection and suggested that 10 Hz (100 ms) was sufficient for 

dynamic presentation. However, for experimental purposes, a 10 ms time interval was 

chosen to provide higher accuracy and better prediction capability. On the other hand, 

a conclusion drawn from previous trials is that one polynomial function with fixed 

order is not sufficient for modelling due to the large variations among the datasets. 

Therefore, the data was grouped into four temporal regions (as shown in Figure 4.4) 

for appropriate fitting methods and polynomial orders.  

Apart from polynomials, rational fitting was also used to model the data sets in 

temporal regions (290-390 ms and 590-1100 ms) as shown in Table 4.2. The rational 

fitting can be considered as an extension of polynomial functions in the form: 

2 1
1 2 1

1 2
1 2 1

( )
m m

m m
n n n

n n

p x p x p x p x
f x

x q x q x q x q




 


   


    



           (4.6) 

Where p1, p2, … , pm are the coefficients of numerator polynomial and q1, q2, … , qn 

are the coefficients of denominator polynomial. 

At a frequency of 100 Hz, 111 sets of data were extracted as the training data. As 

illustrated in Table 4.2, 3rd and 4th order polynomial and ‘cubic/quadratic’ and 

‘cubic/cubic’ rational models were trained in four temporal regions. To ascertain the 

reliability of the model, the model output of training data is shown in Figure 4.5 a. In 
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comparison with the measured train-stop normal throw (Figure 3.6 a.), the 

performance of the model is good. With the function of prediction, the model also 

generates predicted displacement data at every 0.2 bar from 1.95 to 5.95 bar, as shown 

in Figure 4.5 b. The coefficients of polynomials are given in Appendix C. 

 

Figure 4.4  Temporal regions for polynomial model. 
 
 
 

Temporal Regions Polynomials 

0-280 ms 3rd order polynomial 

290-390 ms Cubic/quadratic rational 

400-580 ms 4th order polynomial 

590-1100 ms Cubic/cubic rational 

Table 4.2  Temporal regions for polynomial fitting. 
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a) Model validation.                      b) Prediction by model. 
 

Figure 4.5  Polynomial model of train-stop normal throw. 
 

4.2.3 State space model 

Two methods of modelling STME features have been discussed in the last two 

sections, the exponential model for throw time and activation delay and the 

polynomial model for displacement dynamics. However, another type of parameter, 

which is very important to identify the health status of the asset, is also monitored. 

This is the airflow (for pneumatic assets) or the current and oil pressure (for electric 

or/and hydraulic assets). This type of parameter is normally too complex to model, 

however, it directly reflects the operation dynamic within the equipment. In other 

words, these parameters can indicate the working conditions of the mechanisms. 

The aim of the state space modelling approach discussed in this section is to build up 

a simple and low computation cost model for the airflow, current and oil pressure. 

The difficulties of modelling these parameters are the large variations and the 

disturbances of measured data. As an example, a pneumatic train door airflow profile 

at 3.5 bar is shown in Figure 4.6.  
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Figure 4.6  Airflow profile of train door normal throw at 3.5 bar. 
 

A state space model of the airflow of the train door normal throw is presented in 

Figure 4.7. To reduce the complexity of modelling, the airflow data was divided into 

17 temporal regions based on the acceleration feature of train door movement. The 

data in each region was modelled with the state space model and the predicted outputs 

are compared with the original data. The discrete time-variant state space model used 

in this study can be described as the following: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t Ts Ax t Bu t Ke t

y t Cx t Du t e t

   
  

  (4.7) 

where , is the state vector; , is the output vector, and , 

is the input vector. A is the state matrix in n×n dimension; B is the input matrix in 

n×p dimension; C is output matrix in q×n dimension and D is feedforward matrix in 

q×p dimension. Ts is the sampling period and e(t) is the estimation error. 

( ) nx t  ( ) qy t  ( ) pu t 
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Figure 4.7  State space model of the airflow of the train door normal throw. 
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division of temporal regions increases the number of models, the accuracy of the 

model is improved and the model size for each region is small. The low request of 

computation power for the state space model makes it an economic solution for 

practical applications. 

4.2.4 Neural network model 

Due to the limits of using mathematical models in complex modelling and to make 

fault detection and diagnosis algorithms practical for real systems, an approach to the 

simulation of the dynamics of STMEs was applied using ANN modelling techniques, 

such as radial basis function neural networks (RBF). However, sufficient system 

processing power is required for the necessary mathematics.  

RBF neural networks are single-hidden-layer feed-forward networks, which can be 

presented as: 

1

( ) ( , ) 1
hn

i ji j j
j

f x x c  


     i m             (4.8) 

where ji  are the weights of the linear combiner; .  denotes the Euclidean norm; 

is the RBF centre; jjc    is the positive scalars width; hn  is the number of nodes in 

the hidden layer; m  is the number of inpu
2( , )zets and ( , )z    . RBF neural 

networks are capable of modelling any non-linear behaviour with arbitrary accuracy. 

With higher accuracy requirements, the number of neurons increases as do the model 

complexity and size. The RBF model trained by the data of the unloaded point machine 

is illustrated in Figure 4.8.  
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a) Original displacement profiles (training data) vs. outputs of RBF model for normal throws. 

 

b) Original displacement profiles (test data) vs. predictions by RBF model for normal throws. 

 

c) Original displacement profiles (training data) vs. outputs of RBF model for reverse throws. 
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d) Original displacement profiles (test data) vs. predictions by RBF model for reverse throws. 
 

Figure 4.8  Prediction results of RBF model of the pneumatic point machine. 
 

 

Figure 4.9  Measured data vs. RBF model output of point machine at 3 bar. 
 

The pneumatic air pressures are used as the input of the RBF model and the output is 

the displacement of the rod of the point machine. To train this network, 56 sets of data 

at an increment of 0.1 bar from 0.5 to 6 bar were collected from the asset as training 

data. In order to test the accuracy of the prediction of the model, the data were divided 

into two groups. The first group included the data at pressures of 0.5, 0.7, …, 5.7, 

5.9 bar, and the data at pressure of 0.6, 0.8, …, 5.8, 6.0 bar were used for model testing. 

The RBF model was created and trained by the first data group and tested by the second 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Nromal throw

Samples (100 Hz)

N
or

m
al

is
ed

 d
is

pl
ac

em
en

t

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Samples (100 Hz)

N
or

m
al

is
ed

 d
is

pl
ac

em
en

t

Reverse throw

 

 

Actual profile
RBF model



 

A generic fault detection and diagnosis approach for pneumatic train door 

 

135 

group. The comparison between the actual data and the RBF model output at the 

nominal pressure of 3 bar is presented in Figure 4.9.   

 

 

Figure 4.10  Prediction results of RBF models of the train-stop. 
 

The same method was also applied to the train-stop case study. Another RBF model 

was trained using half of the train-stop displacement data at every 0.2 bar from 2 to 

6 bar, and tested by the data from 2.1 to 5.9 bar in 0.2 bar increments. Results of 

model are shown in Figure 4.10. The comparisons between the measurement and the 

a) Validation by training data and test of RBF model for normal throws. 

b) Validation by training data and test of RBF model for reverse throws. 
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RBF model output at the pressure of 3.1 bar are displayed in Figure 4.11. 

 

 

Figure 4.11  Measured data vs. RBF model output of train-stop at 3.1 bar. 
 

The results presented above indicate that the RBF neural network model provides 

good simulation and prediction performance. In practice, the computation cost for the 

neural network models is relatively high and special integrated circuits could be 

required to handle the complex algorithms. 

4.3 Fault detection for pneumatic train door 

Based on the modelling work discussed above, a fault detection approach for the 

pneumatic train door is presented in this section. According to the diagram of generic 

fault detection and diagnosis in Chapter 3, the diagram for the pneumatic train door is 

revised and shown in Figure 4.12. In this figure, the generic and pneumatic processes 

remain and are displayed in black. The processes for electric and electro-hydraulic 

assets are displayed in grey, which means that they are not involved in the FDD 

procedures. 
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Figure 4.12  Diagram of generic fault detection and diagnosis for pneumatic STMEs. 
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During the fault detection process, the actual measured and model estimated variables 

are compared within a series of pre-designed spatial regions. The dividing of spatial 

regions for a pneumatic train door normal throw was introduced in Chapter 3 (shown 

in Figure 3.18 and Table 3.2). The spatial regions of the reverse throw are displayed in 

Figure 4.13 and the boundaries are listed in Table 4.3. 

 
Figure 4.13  Definition of spatial regions for the reverse throw of pneumatic train door (3.5 bar). 
 

Regions Boundaries (m) Description 

Rd1 0.812 – 0.735 Throw start 

Rd2 0.735 – 0.51 Intermediate 1 

Rd3 0.51 – 0.233 Intermediate 2 

Rd4 0.233 – 0.049 Intermediate 3 

Rd5 0.049 – 0.036 Intermediate 4 

Rd6 0.036 – 0 Throw end 

Table 4.3  Boundaries of spatial regions for the reverse throw of pneumatic train door (3.5 bar). 
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collected data and the results are displayed in Table 4.4. Five single models, the 

exponential model, polynomial model, state-space model (velocity), state-space model  

Model 
Fault detection 

(%) 
False alarm 

(%) 
Confidence level 

(1-α)% 

65.57 5.5 99 

71.07 11.13 97 
Exponential model 

(activation & throw-time) 

73.28 15.63 95 

84.37 2.88 99 

87.83 7.63 97 
Polynomial model 

(displacement) 

88.95 11.93 95 

94.46 1.5 99 

95.46 7 97 
State-space model 

(velocity) 

96 10.25 95 

92.46 8 99 

93.91 12.5 97 
State-space model 

(acceleration) 

95.09 16.63 95 

78.5 4 99 

82.41 10.25 97 
Neural network model 

(airflow) 

85.14 17.25 95 

96.92 11.82 (0.78) 99 

98.59 17.74 (4.1) 97 Model combination 

99.25 24.76 (5.79) 95 

Table 4.4  Fault detection results for pneumatic train door. 
 

(acceleration) and neural network model, were tested independently with three 

confidence levels, 99 %, 97 % and 95 %, for threshold design. Flowcharts of generic 

modelling and evaluation programmes are presented in Appendix D. The fault 

detection results and false alarm rates are listed in the form of percentages which can 

be described as: 
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number of faults detected in faulty profiles
fault detection rate = 100%

number of operations with failure mode
       (4.9) 

number of faults detected in healthy profiles
false alarm rate = 100%

number of healthy operations
        (4.10) 

Under ideal conditions, a rate of 100 % is required for fault detection with a 0 % false 

alarm rate, which means that all the faults are successfully detected and no fault alarm 

is triggered during healthy operations. However, due to the presence of noise and 

model uncertainty, the ideal results can never be achieved by a single model.  

In the table, it can be observed that the accuracy of fault detection is different for 

every single model. As discussed in section 3.2.2.1, the models should be combined in 

order to achieve a better fault detection result. As shown at the bottom of the table, a 

combined model approach significantly improves the performance of fault detection. 

However, the false alarm triggered by any one of the models was counted, the false 

alarm rate is high. To reduce the false alarm rate, an alarm management system could 

be introduced to logically analyse the generated alarms. A false alarm supported by 

multi models could be proved to be a true alarm; otherwise, the alarm could be 

ignored. For example, the values in brackets at the bottom of the table are the 

percentages of false alarm rate that were supported by all the models. It can be seen 

that the false alarm rate is highly reduced. 

4.4 Preliminary fault diagnosis approach 

In this section, a preliminary fault diagnosis approach for the pneumatic train door 

using a fault model is discussed. Another fault diagnosis method, residual analysis, 
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was also introduced in Chapter 3 and the residuals were defined for different failure 

modes. 

In Figure 4.14, a displacement profile of a train door normal throw in healthy mode is 

shown by a dotted line with a 3.5 bar air pressure. The solid line is a faulty 

displacement profile, where the fault is created by a restricting force applied by hand 

in the opposite direction to which the train door is moving, to simulate random 

friction. The fault occurring during the throw is circled. Due to the resistive force, the 

throw time was longer.  

1

 

Figure 4.14  Healthy and faulty pneumatic train door displacement profiles. 
 

The corresponding healthy and faulty airflow profiles with this disturbance are 

displayed in Figure 4.15. It can be observed that the airflow sharply decreased when 

the disturbance was applied and then increased after the disturbance was removed.  

In order to identify whether the asset is in a healthy or a faulty condition, the fault 
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model was applied to predict an airflow profile from the faulty displacement. The 

predicted and actual airflow profiles are compared in Figure 4.16.  

0.9

 

Figure 4.15  Healthy and faulty pneumatic train door airflow profiles. 
 

 

Figure 4.16  Airflow prediction using fault model. 
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In the figure, the solid and dotted lines respectively represent the airflow predicted by 

RBF network and the actual airflow. The predicted airflow is considered to be 

consistent with the actual airflow and a conclusion can be drawn that the asset is in a 

healthy condition and the fault was caused by an external factor (a friction simulated 

by a hand-push in this case). Assuming that they do not match, it could be considered 

that the machine is in a faulty condition.  

From the results shown above, it is proved that this fault model is capable of roughly 

identifying external faults. The accuracy of the classification depends on how many 

fault mode data could be achieved from the assets to train the network. Another 

requirement of applying this method is that the displacement and airflow sensors are 

available and working normally. The sensor faults are therefore not tolerable for this 

fault model. This method did not apply to the train-stop since no airflow sensor is 

available for this asset. Due to the lack of data of mechanical faults, the diagnosis of 

machine faults is left for future work. 

4.5 Conclusions 

A generic fault detection and diagnosis approach for the pneumatic train door was 

presented in this chapter. As the essential part of the fault detection and diagnosis 

method, the modelling work was also illustrated. Based on the constructed models, the 

proposed generic FDD method was applied on the pneumatic train door by following 

the procedures designed in the generic FDD diagram. The results of the fault detection 

were provided. A preliminary fault diagnosis approach using a fault model was also 

discussed. 
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Data analysis for modelling was discussed and four modelling approaches and results 

were illustrated. For each of these modelling methods, the economic application and 

practical accuracy were considered. These two factors have to be achieved in 

compromise. The exponential model for throw time and activation delay is an 

efficient way to provide a healthy value for fault detection. In comparison with the 

neural network method, the polynomial model has the advantages of straightforward 

model structure and low computation requirements. However, when accuracy and 

prediction capability are emphasised, the neural network model becomes more 

suitable. Therefore, the polynomial model method is better for low cost applications 

and the neural network model is more often used in experimental cases. The state 

space model was discussed for the modelling of some parameters, such as airflow, 

current and oil pressure. The spatial region division provides the possibility of 

application of this simple model. This model can also be used for dynamic simulation 

in either temporal or special regions. 

The results of fault detection were provided for the pneumatic train door. The results 

suggested that the performance of fault detection using a single sub-model varies; 

however, a combination of sub-models has a good fault detection capability. As well 

as improving the sensitivity of fault detection, the false alarm rate was also enlarged 

by model combination, since the false alarms generated by each sub-model were taken 

into account. A mechanism of managing the false alarms is introduced to only count 

the false alarms supported by all the sub-models, by which the false alarm rate is 

highly reduced. 

Overall, the generic FDD method has a good response on laboratory-based test rigs. A 

limitation of this method, however, still exists which may reduce the applicability of 
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employing the method in practice. This limitation is caused by the individuality of 

multiple instances of the same system. The models and FDD methods in this study are 

based on assets in the laboratory. Other assets in the practical environment may 

exhibit different characteristics, although they are of the same type and performing the 

same operations. This limitation could be overcome by the construction of a self 

learning mechanism, which would collect the data for model construction from the 

first several operations, then the features of each asset would be automatically 

modelled and adapted by the FDD method.  



Chapter 5 

Generic fault detection approaches for other STMEs 

 

5.1 Introduction and motivation 

As introduced in Chapter 3, five railway assets, known as STMEs, were studied in this 

project. These assets can be further grouped into three categories by the type of power 

supply: pneumatic, electric and electro-hydraulic. The pneumatic train door has been 

studied previously, for which a generic fault detection and diagnosis method has been 

proposed and applied. This chapter considers the case studies for the other four assets 

including the pneumatic train-stop, point machine, the electric point machine and the 

electro-hydraulic level crossing barrier. 

The case studies for the four assets in this chapter are to test and analyse whether the 

proposed FDD method is applicable for all these assets. For the two pneumatic assets, 

the train-stop and the point machine, the same FDD processes as for the pneumatic train 

door are applied. Although the electric and electro-hydraulic assets are grouped as a 

class of Single Throw Mechanical Equipments (STMEs), based on the manner of 

reciprocating operations, they have significant differences in mechanical designs due 

to the different power sources. Preliminary fault detection approaches for the electric 

and electro-hydraulic assets are, therefore, applied with the emphasis on analysing the 

feasibility of this method. The results are also presented and concluded.  

5.2 Generic fault detection for pneumatic assets 

146 
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Figure 5.1  Diagram of generic fault detection and diagnosis for pneumatic train-stop and point machine.
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This section presents the generic fault detection approaches for the two pneumatic 

assets: the train-stop and the point machine. In order to illustrate the generic FDD 

method, the generic fault detection and diagnosis diagram for the pneumatic train door 

is also used here and shown in Figure 5.1. Since the three machines are all pneumatic 

and have similar mechanisms, the diagram is the same as the one for the pneumatic 

train door. In the diagram, the electric and electro-hydraulic processes are displayed in 

grey to indicate that these processes are not functional. 

5.2.1 Fault detection for pneumatic train-stop 

Before applying the FDD method on the pneumatic train-stop, the spatial regions 

dividing method is exhibited by the spatial regions figures and the table of boundaries. 

The spatial regions, divided using velocity and acceleration features, are displayed in 

Figures 5.2 and 5.3 for normal and reverse throws respectively. The region boundaries  

25

 
Figure 5.2  Definition of spatial regions for the normal throw of pneumatic train-stop (3.1 bar). 
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Regions Boundaries (rad) Description 

Rd1 0 – 0.095 Throw start 

Rd2 0.095 – 0.371 Intermediate 1 

Rd3 0.371 – 0.535 Intermediate 2 

Rd4 0.535 – 0.683 Intermediate 3 

Rd5 0.683 – 0.774 Intermediate 4 

Rd6 0.774 – 0.9 Throw end 

Table 5.1  Boundaries of spatial regions for the normal throw of pneumatic train-stop (3.1 bar). 

15

 

Figure 5.3  Definition of spatial regions for the reverse throw of pneumatic train-stop (3.1 bar). 
 

Regions Boundaries (rad) Description 

Rd1 0.9 – 0.814 Throw start 

Rd2 0.814 – 0.535 Intermediate 1 

Rd3 0.535 – 0.372 Intermediate 2 

Rd4 0.372 – 0.171 Intermediate 3 

Rd5 0.171 – 0.058 Intermediate 4 

Rd6 0.058 – 0 Throw end 

Table 5.2  Boundaries of spatial regions for the reverse throw of pneumatic train-stop (3.1 bar). 

Rd1 Rd2 

 
Rd3 Rd4 Rd5 Rd6 

00.10.20.30.40.50.60.70.80.9
-25

-20

-15

-10

-5

0

5

10

Angular displacement (rad)

V
el

oc
ity

 (
ra

ds
-1

) 
an

d 
ac

ce
le

ra
tio

n 
(x

10
 r

ad
s-

2)

Velocity 

Acceleration 

(×
10

 m
·s

-2
) 

(m
·s

-1
) 

Rd1 Rd2 

 
Rd3 Rd4 Rd5 Rd6 



 

Generic fault detection and diagnosis approaches for other STMEs 

 

150 

are listed in Tables 5.1 and 5.2. As mentioned previously, the regions would increase 

in accuracy, when the comparison between actual measured and model estimated 

variables is carried out within proper defined regions. 

 

Model 
Fault detection 

(%) 
False alarm 

(%) 
Confidence level 

(1-α)% 

65.51 1.38 99 

68.84 2.89 97 
Exponential model 

(activation & throw-time) 

69.35 3.84 95 

90.74 10.22 99 

92.41 13.73 97 
Polynomial model 

(displacement) 

96.11 16.29 95 

87.78 8.73 99 

94.26 11.71 97 
State-space model 

(velocity) 

96.94 14.93 95 

87.78 9.76 99 

91.85 13.32 97 
State-space model 

(acceleration) 

93.43 16.41 95 

98 16.8 (0.79) 99 

98.33 24.6 (2.73) 97 Model combination 

98.89 29 (3.75) 95 

Table 5.3  Fault detection results for pneumatic train-stop. 

 

Based on the deliberately designed models and the adaptive thresholds, the fault 

detection processes were applied and the results are listed in Table 5.3. Due to the 

absence of an airflow sensor, the neural network model for airflow was not included. 

From the results, it can be observed that the polynomial model gives the best detection 

rate; however, the corresponding false alarm rate is also higher than other models. 

This phenomenon is considered to be caused by the large dynamic changes in the 
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displacement profiles. The large dynamic changes can help the detection of faults; 

meanwhile, they can also trigger more false alarms due to the existing model 

uncertainties. The solution to guarantee good capability of fault detection could be to 

use a combination of models. The results of the combination of models can be 

observed to have much better sensitivity to the simulated faults in this case study. 

Under the condition that the false alarms are only counted when they are triggered by 

all the sub-models, the false alarm rates (shown in the brackets) are also lower than 

individual models.   

5.2.2 Fault detection for pneumatic point machine 

The spatial regions, based on the velocity and acceleration features, are displayed in 

Figures 5.4 and 5.5 for pneumatic point machine normal and reverse throws 

respectively. The region boundaries are listed in Tables 5.4 and 5.5.  

0.6

 

Figure 5.4  Definition of spatial regions for the normal throw of pneumatic point machine (3 bar). 
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Regions Boundaries (m) Description 

Rd1 0 – 0.02 Throw start 

Rd2 0.02 – 0.056 Intermediate 1 

Rd3 0.056 – 0.086 Intermediate 2 

Rd4 0.086 – 0.135 Intermediate 3 

Rd5 0.135 – 0.179 Intermediate 4 

Rd6 0.179 – 0.218 Throw end 

Table 5.4  Boundaries of spatial regions for the normal throw of pneumatic point machine (3 bar). 
 

0.2

 
Figure 5.5  Definition of spatial regions for the normal throw of pneumatic point machine (3 bar). 
 

Regions Boundaries (m) Description 

Rd1 0.218 – 0.185 Throw start 

Rd2 0.185 – 0.138 Intermediate 1 

Rd3 0.138 – 0.106 Intermediate 2 

Rd4 0.106 – 0.057 Intermediate 3 

Rd5 0.057 – 0.017 Intermediate 4 

Rd6 0.17 – 0 Throw end 

Table 5.5  Boundaries of spatial regions for the normal throw of pneumatic point machine (3 bar). 
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Model 
Fault detection 

(%) 
False alarm 

(%) 
Confidence level 

(1-α)% 

69.1 1.07 99 

71.88 2.95 97 
Exponential model 

(activation & throw-time) 

73.73 4.55 95 

97.92 2.95 99 

99.77 4.73 97 
Polynomial model 

(displacement) 

99.77 7.05 95 

97.92 2.68 99 

98.84 5.09 97 
State-space model 

(velocity) 

99.07 7.95 95 

97.69 0.54 99 

97.92 5.45 97 
State-space model 

(acceleration) 

100 10.18 95 

90.05 0 99 

91.9 0.45 97 
Neural network model 

(airflow) 

92.13 3.93 95 

100 4.64 (0) 99 

100 11.07 (0.45) 97 Model combination 

100 21.16 (3.87) 95 

Table 5.6  Fault detection results for pneumatic point machine. 
 

In Table 5.6, the fault detection results for the pneumatic point machine are listed. 

Except for the exponential model, the models present good detection sensitivity for 

simulated faults at each confidence level. In comparison with the train door and 

train-stop, the displacement profiles of the unloaded point machine used for model 

construction have less dynamic variations. The accuracy of the model is therefore 

highly enhanced. The model combination provides fault detection rates of 100 % at all 

confidence levels, which is an ideal result for a fault detection system. However, these 
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good results would also lead to the difficulty of transplanting this method onto other 

pneumatic point machines. This issue will be discussed in the conclusion section of 

this chapter. 

5.3 Preliminary generic fault detection for electro-hydraulic and 
electric assets 

The application of the generic FDD solution for the electro-hydraulic and electric assets 

will be analysed in this section. Based on the work completed so far for these two 

assets, initial generic fault detection approaches are presented, which focus on the 

feasibility analysis of the proposed generic fault detection method. 

5.3.1 Fault detection for electro-hydraulic level crossing barrier 

In order to illustrate the generic FDD process, the generic fault detection and diagnosis 

diagram for the electro-hydraulic level crossing barrier is displayed in Figure 5.6. In the 

figure, the process for pneumatic assets is shown in grey to indicate it is not functional. 

Two sub-models, neural network models for current and oil pressure, are involved in 

the electro-hydraulic process. The current model in the figure has two representations: 

the current of the motor of the level crossing machine or the current profiles of the 

electric point machine motor. In this case study, the current model simulates the current 

of the level crossing barrier. A lab-based BR843 electro-hydraulic level crossing barrier 

was used as a test rig, the detail of which was illustrated in section 3.1.2.5. 

In order to simulate a friction fault, a weight was fitted at the end of the boom to simply 

simulate an external resistance during the operation. Since the centre of gravity of the 

weight is changing when the boom goes up and down, this simulated friction varies 
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Figure 5.6  Diagram of generic fault detection and diagnosis for electro-hydraulic level crossing barrier. 
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Ô

O

Fault 
classification 

Sensor Inputs and 
pre-processing 

Ta and Te Model ,ta ter rˆ ˆ,a et t

,a et t
ta&te



 

Generic fault detection and diagnosis approaches for other STMEs 

 

156 

25

 

Figure 5.7  Healthy vs. faulty profiles of the electro-hydraulic level crossing  
barrier normal throw. 

 

Operating characteristic Healthy With simulated fault 

Operating voltage-Average (Volts) 22.8 22.1 

Motor current-Max (Amps) 29 30.5 

Motor current-Working (Amps) 11.5 14.7 

Oil pressure-Max (bar) 77.7 108.6 

Oil pressure-Average (bar) 27.7 60.5 

Activation delay (sec) 0.7 0.79 

Throw time (sec) 6.8 7.7 

Throw distance (rad) 1.48 1.48 

Table 5.7  Operating characteristics of level crossing barrier normal throw. 
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with respect to the height it is raised. This simulation is only valid for the normal throw 

(raising) of the level crossing, since in the reverse throw (lowering) the boom falls by 

gravity and the weight therefore makes the speed of falling faster instead of slower. 

The fault of friction was simulated on the normal throws of the level crossing barrier 

and the data was collected. In Figure 5.7, the voltage, current, oil pressure and rotary 

displacement of a normal throw (from lowered to raised position) in both healthy and 

fault modes are profiled and compared against time. The operating characteristics are 

listed in Table 5.7.  

Due to resistance of the simulated friction, the activation delay and throw time became 

longer. To drive a larger load, the motor current had an increase of 3.2 Amps; 

consequently, the oil pressure in the hydraulic pump was 32.8 bar higher than the 

nominal working condition in average. By the angular displacement of the rotary axis, 

it can also be observed that the barrier rose at a lower speed and reached the end at 

approximately 0.9 second later than the healthy throw. The throw distance was 

measured by degrees of an arc as 1.48 rad (around 85° angle). With the increasing of 

current output, the power supply had a small drop of 0.7 V.  

The changes shown in the figure indicate that the performance of the level crossing can 

be directly reflected by the measured variables, which, as expected, indicates that the 

FDD could be realised by condition monitoring. The parameter monitoring based 

generic FDD solution proposed in Chapter 3 is, therefore, applicable for this asset.  

The strategy of the generic fault detection method is to use a single model for each 

parameter to generate the predicted profile. With the thresholds generated by the 

adaptive thresholding algorithm, the actual measured data is then compared with the 
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prediction to give fault information and to generate residuals for further diagnosis. As 

the adaptive threshold algorithm was developed by a statistical analysis of training data, 

this threshold method is, therefore, applicable for the models based on the mean of a 

number of profiles. 

0.3

 

Figure 5.8  Spatial regions division using acceleration and velocity features  
(level crossing barrier normal throw). 
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level crossing barrier are displayed on a spatial scale. These two profiles were 
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as either acceleration or deceleration. The spatial boundaries are listed in Table 5.8. 

Since the level crossing barrier has a relatively slow operation (6.1 s for a normal 

throw), the intermediate regions could be further divided in practice. For the purpose 

of analysis, the 4 regions are individually used for fault detection in this section. 

 

Regions Boundaries (rad) Description 

Rd1 0 – 0.223 Throw start 

Rd2 0.223 – 0.675 Intermediate 1 

Rd3 0.675 – 1.26 Intermediate 2 

Rd4 1.26 – 1.48 Throw end 

Table 5.8  Spatial regions of level crossing barrier normal throw. 
 

The modelling methods introduced to pneumatic STMEs in Chapter 4 were applied to 

parameters of the level crossing barrier. A polynomial model was used to model the 

displacement profile under fault-free conditions. In Figure 5.9 and 5.10, the velocity 

and acceleration derived from the polynomial model are displayed with thresholds. 

The thresholds were designed at a confidence level of 0.97 (α = 0.03). The profiles 

generated from faulty operations are also displayed red for comparison.  

Due to the simulated friction fault, the velocity deviates from the typical profile at the 

start of the throw and remains low in the following process, which makes the fault 

very obvious. Since the fault was simulated by adding weight at the end of the boom, 

the affect to the throw dynamics is therefore constant and results in a faulty velocity 

profile in parallel with the typical one in the intermediate regions as shown in Figure 

5.9. Consequently, the acceleration profile for the faulty throw has clear differences at 

the start and end of throw but little difference in the intermediate regions as shown in 

Figure 5.10. A comparison between the two figures suggests that the velocity is more 
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sensitive to this type of fault. 

0.3

 

Figure 5.9  Velocity profiles of level crossing barrier (polynomial model vs. faulty). 

 
Figure 5.10  Acceleration profiles of level crossing barrier (polynomial model vs. faulty). 
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a) Current profiles            b) Oil pressure profiles 

Figure 5.11  RBF neural network models with thresholds vs. faulty profiles. 
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neural network model. The thresholds were also calculated using the previously 

introduced adaptive thresholding method, shown by red dashed lines in the figure. 

The faulty profiles are presented to compare with the typical ones. It is clear that the 

simulated fault causes significant deviations from the model predictions. 

Based on these results, the models have a good performance for parameter prediction 

and the thresholds work well for detecting the simulated fault. 

5.3.2 Fault detection for electric point machine 

In Figure 5.12, the generic fault detection and diagnosis diagram for the electric point 

machine is displayed. In this figure, the processes of pneumatic and electro-hydraulic 

assets are shown in grey, which means that these processes do not function. The current 

model in the electric process represents current profiles of the electric point machine 

motor. 

Before considering the fault detection, the responses of the electric point machine 

parameters to the simulated load are illustrated by the current and displacement profiles 

shown in Figure 5.13. In the figure, the displacement and current profiles under both 

unloaded and loaded conditions are displayed for comparison. The red lines are the 

profiles when the point machine is loaded and the black lines are for the unloaded 

machine. In Figure 5.13 a, it can be observed that, when loaded, the throw started earlier, 

which indicates that the motor is aided by the released elastic force of the spring. When 

the drive bar keeps moving, the spring reaches its natural length and the force on the 

drive bar changes to a resistance force, where the displacement profile shows a step in 

the middle of travelling. In the second half of the distance, the drive bar pulls the spring 

and it takes longer to reach the end. The electric current profiles also indicate the  
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Figure 5.12  Diagram of generic fault detection and diagnosis for electric point machine. 
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Ĉ

C

Ô
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process. In the first half of the distance, as shown by arrow point a, the loaded current is 

lower than the unloaded current due to the assistance of the spring released force. In the 

last half of the distance, the loaded current becomes higher, as shown by arrow point b, 

since the motor overcomes the resistance to move the drive bar to the end. For the 

reverse throw, the process is inversely performed and the two points, c and d, show the 

same situations. From this analysis, it can be observed that the displacement and the 

current reflect the dynamic changes in different ways. The correlation between these 

two parameters could be used to identify the health of the machine. 

 

a) Normal throw               b) Reverse throw 

Figure 5.13  The displacement and current profiles of electric point machine (Unloaded vs. 
Loaded).  
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Unloaded Loaded  
Operating characteristic 

Normal Reverse Normal Reverse 

Operating voltage-Average (Volts) 110 DC 

Motor current-Max (Amps) 7.6 7.1 7.3 7.1 

Motor current-Working (Amps) 0.96 0.79 0.97 0.9 

Activation delay (sec) 0.76 0.82 0.53 0.44 

Throw time (sec) 1.82 1.94 1.92 1.9 

Throw distance (m) 0.122 

Table 5.9  Operating characteristics of electric point machine. 
 

The operating characteristics under both unloaded and loaded conditions are listed in 

Table 5.9. When the electric point machine is loaded, the activation delays of both 

normal and reverse throws are shorter and the throw time is longer than the unloaded 

operations. The spring load basically simulates the dynamic features of the stock rails 

which are driven by the point machine in practical terms. 

In order to analyse the dynamic process of the throws, the velocity and acceleration 

profiles were calculated using the displacement data. Figure 5.14 and 5.15 

respectively show the velocity and acceleration profiles for both the normal and 

reverse throws of the loaded electric point machine.  

In Figure 5.14, the throw is divided into six spatial regions using the features of 

acceleration profile and the region boundaries are listed in Table 5.10. The regions of 

the start and end of the normal throw are defined by the maxima of acceleration close 

to both sides. The intermediate regions are divided using the zero-crossing points. 

Responding to the changes of the load, regions Rd2 and Rd5 represent the processes 

when the motor is aided and resisted respectively by the elastic force of the spring. 

Regions Rd3 and Rd4 present the dynamic change when the spring moves from 
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compression to stretch.  

0.4

 

Figure 5.14  Division of spatial regions using acceleration and velocity features (electric point 
machine normal throw). 
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Rd1 0 – 0.002 Throw start 

Rd2 0.002 – 0.042 Intermediate 1 

Rd3 0.042 – 0.062 Intermediate 2 

Rd4 0.062 – 0.08 Intermediate 3 

Rd5 0.08 – 0.119 Intermediate 4 

Rd6 0.119 – 0.122 Throw end 

Table 5.10  Spatial region boundaries of a normal throw of electric point machine. 
 

In Figure 5.15, the profiles for reverse throw are displayed and the region boundaries 

are listed in Table 5.11. There are also six spatial regions divided according to the 

dynamic changes of the load. Since the direction of the velocity is reverse to that in 

normal throw, the velocity is shown by minus values. The dynamic process of reverse 
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throw is inverse to the normal throw. 

0.4

 

Figure 5.15  Spatial regions division using acceleration and velocity features (electric point 
machine reverse throw). 

  

Regions Boundaries (m) Description 

Rd1 0.122 – 0.116 Throw start 

Rd2 0.116 – 0.082 Intermediate 1 

Rd3 0.082 – 0.063 Intermediate 2 

Rd4 0.063 – 0.044 Intermediate 3 

Rd5 0.044 – 0.003 Intermediate 4 

Rd6 0.003 – 0 Throw end 

Table 5.11  Spatial regions of electric point machine reverse throw. 
 

Models for the electric point machine were designed and the model outputs are 
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0.14 0

 

  a) Normal throw                            b) Reverse throw 
 

Figure 5.16  Models of electric point machine with thresholds. 
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displacement profiles under fault-free conditions. The velocity and acceleration 

displayed in the figure are calculated using the output of the polynomial model. The 

RBF neural network was used for the simulation of the motor current, the results of 

which are also presented in the figure. At a confidence level of 0.97, the thresholds 

are generated and shown in Figure 5.16. Further work will be the simulation of faults 

and data collection under different fault modes. It would be interesting to evaluate the 

models using fault mode data and, meanwhile, enhance the robustness and accuracy 

of the designed models. 

Based on the preliminary fault detection results, it can be concluded that the generic 

FDD method is applicable to the electric point machine. Monitored parameters, the 

displacement and motor current, can directly reflect the dynamic process of the asset. 

Changes of performance caused by faults are capable of being detected when their 

deviations from the model predictions become larger than the adjustable predefined 

thresholds. 

5.4 Conclusions 

This chapter presented four case studies for the pneumatic train door and point machine, 

the electro-hydraulic level crossing barrier and the electric point machine, using the 

proposed generic fault detection and diagnosis method. For each of the assets, the 

diagram of FDD processes was provided for the purpose of illustrating how the generic 

FDD method can be applied.  

In the case studies of the two pneumatic assets, the fault detection, based on the 

pre-designed sub-models and the adaptive thresholding method, was applied and the 
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results were listed. The fault detection results indicate that the generic fault detection 

method performs as well as for the pneumatic train door discussed in Chapter 4. A 

conclusion can be drawn that the generic fault detection method is good for the 

pneumatic assets considered in this study. The results also suggested that the accuracy 

of fault detection by individual sub-model is relatively low compared to the combined 

model (combination of relative sub-models). The combined model is also considered as 

a generic model for the assets, which is able to describe their performance and status. 

The false alarm rates, under the condition that a false alarm is only counted when it is 

supported by all the sub-models, are in a reasonable range. 

The case studies for the electro-hydraulic level crossing barrier and the electric point 

machine were also presented, where the emphasis was on the analysis of the feasibility 

of applying the generic FDD method on these two assets. As discussed in Chapter 3, the 

structure for the electro-hydraulic level crossing barrier and the electric point machine 

is similar to the mechanism features of the pneumatic assets, which can also be 

systematically divided as: input, machine and output. The parameter features were 

similar to the pneumatic assets. For each section of the system, there are one or two 

parameters which are valid to be monitored and to present the dynamic of the asset. For 

instance, in the case of the electric point machine, the voltage, current and displacement 

respectively represent the input, machine and output of the system and the dynamic 

changes are reflected by these parameters. Preliminary results of generic fault detection 

were provided and analysed. Based on the results and above analysis, a conclusion can 

be drawn that the generic solution would be effective and efficient for the two cases. 

As future work, it would be interesting to collect more fault mode data and evaluate 

the proposed method properly. 



Chapter 6 

A distributed condition monitoring architecture for 

railway assets  

 

6.1 Introduction and motivation 

As a safety strategy used to help avoid financial losses and unpredictable hazards, 

condition monitoring has been widely applied to industry processes. For safety-critical 

processes, such as nuclear power generation (Weerasinghe et al. 1998, Gomm et al. 

2000), aircraft control and power systems (Patton and Chen 1997, Marcos et al. 2004) 

and chemical processes (Basila et al. 1990, Ruiz et al. 2001), the application of fault 

detection and diagnosis takes an essential role. In these cases, stand-alone, dedicated, 

expensive monitoring systems are utilised. However, the assets considered in this 

study are in a different situation. In railway systems, there is a large number of these 

assets, which are simple but safety-critical, thus a generic condition monitoring 

system in a distributed architecture is desired to reduce the maintenance cost while 

improving reliability at the same time. 

In this chapter, a condition monitoring architecture for a large number of widely 

distributed multiple railway assets is discussed. Previous studies have considered a 

three-level distributed architecture that was successfully implemented to condition 

monitoring, where Embedded Processors (EP) were used to perform the data 

transmission and preliminary fault detection and diagnosis (FDD) for assets of the 

same type at close geographic locations (Roberts 2007, Dassanayake et al. 2001). An 

algorithm based distributed fault diagnosis architecture for electric train doors was 
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also proposed (Dassanayake 2001). As digital communication solutions, the Fieldbus 

and Ethernet were employed in the two studies and proved to be both effective and 

economical. These two networks are therefore also utilised in this study. The technical 

options and the protocol selection for the Fieldbus are also introduced. Finally, a new 

distributed architecture benefitting from the generic FDD solution will be discussed 

and a conclusion will be drawn to this approach.  

6.2 Condition monitoring architectures 

The purpose of developing a condition monitoring architecture is to achieve three 

system functions: data acquisition, computation and storage (Dassanayake 2001). In 

this section, these issues are discussed and possible solutions are proposed. 

6.2.1 Condition monitoring architectures for multiple assets 

In railway systems, multiple assets are distributed over a wide area. However, they are 

often found clustered together in a small local area, such as around a railway station 

or a junction. This geographical feature determines that the monitoring system cannot 

be highly centralised, otherwise data acquisition would be difficult. Consequently, the 

monitoring system should be geographically distributed to an asset or a cluster of 

assets. The localisation of the condition monitoring system is a distributed 

architecture, in which the functionality found in centralised systems is located 

throughout the architecture.  

In the distributed condition monitoring architecture, data acquisition becomes viable. 

The computation for preliminary fault detection and diagnosis is also carried out close 

to the assets in order to reduce the amount of data communication. However, the 
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computation units should not be distributed to each individual asset, since the cost 

would be increased. As railway assets are often clustered in a local area, a local 

centralisation could reduce the cost for both data acquisition and computation. In 

principle, the distributed condition monitoring architecture should be a systematically 

distributed (the system level referred to as the Maintenance Information System (MIS) 

of the railway system) but locally centralised (at asset level including multiple assets) 

system. 

 

      a) Centralised monitoring system.         b) Fieldbus based distributed monitoring system. 
 

Figure 6.1  Two types of condition monitoring systems (Roberts 2007). 
 

Two schematics of condition monitoring systems, centralised and distributed, are 

displayed in Figure 6.1. In the centralised monitoring system (shown in Figure 6.1 a), 

the control instructions and the data from sensors are sent out from and sent back to the 

central management computer. In the distributed system (shown in Figure 6.1 b), the 

sensors and assets (actuators) connect to a Fieldbus network which manages the 

communication. From the point of view of the financial cost, these two types of system 

are compared. 

- The centralised monitoring system usually consists of a central management unit 
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which communicates with assets through point-to-point connections to sensors or 

control units. For widely distributed railway assets, a condition monitoring system 

based on this type of topology would require a large amount of cables to operate 

over long distances and the large number of assets would mean that this would be a 

complex process. As a result, the cost of data acquisition and computation is high, 

whereas the reliability and flexibility decrease. 

- As discussed above, the distributed monitoring system distributes the data 

acquisition and preliminary computation to the assets in a local area. The 

monitoring data would not have to be sent through a long distance to the 

management centre and the initial FDD process could be carried out via a local 

network, such as Fieldbus. The financial cost is therefore reduced due to fewer 

requirements for cables and powerful computation devices.  

Compared with the centralised architecture, the distributed condition monitoring 

architecture is, technically and financially, more suitable for multiple railway assets.  

Previous studies proposed and implemented a three level (component level, asset level 

and system level) condition monitoring architecture for railway assets, including the 

train door, electro-hydraulic level crossing barrier and point machine (Figures 6.3 and 

6.4, Roberts 2007). 

In Figure 6.2, a configuration of train door distributed condition monitoring 

architecture is displayed. In passenger carriages, the train doors are connected to the 

Embedded Processor (EP) via a Fieldbus network. Each train door contains fieldbus 

nodes (FN) which link the transducers to the network for communication. The EP 

processes the preliminary FDD and reports to the Train Central Computer (TCC) 



 

A distributed condition monitoring architecture for railway assets  

 

175 

Train doors 
Maintenance Information System (MIS) 

 

Figure 6.2  Distributed train door condition monitoring architecture. 
 

 

Figure 6.3  Distributed level crossing condition monitoring architecture. 
 

 

Figure 6.4  Distributed point machine condition monitoring architecture. 
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through the Train Management System (TMS). In the circumstance of a fault 

occurring, the TCC sends the fault information to the Maintenance Information 

System (MIS). The MIS contains the functionality of fault diagnosis which will 

identify the faults and arrange corresponding maintenance on the schedule.  

The distributed condition monitoring architectures are also shown in Figures 6.3 and 

6.4 respectively for the level crossing and the point machine. As for the train door, EP 

is fitted on the assets to process the data from the sensors. The Fieldbus network is 

also used for data transmission to connect the transducers to the EP via the FNs. The 

MIS collects the condition information from the EPs and manages maintenance for 

faulty assets. 

This type of distributed architecture splits the data acquisition, computation and 

storage functions into three levels, via which the cost of the condition monitoring 

system decreases and the reliability increases. Based on this topology, another 

distributed architecture using the generic FDD method, which is more economic and 

powerful, is proposed and will be discussed in section 6.3.  

6.2.2 Communication networks 

In the distributed condition monitoring architecture, data acquisition and computation 

need to be localised to a cluster of assets which are in a geographically small area. A 

demand for a data communication solution in the local area is therefore raised.  

In a conventional industrial control system, data communication often uses standards 

such as 4-20 mA (analogue signal) or RS232 (digital signal) (Thompson 1997). The 

topology of the network is centralised, where the transducers are connected directly to 
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the control centre by cables. As discussed previously, this type of topology is not 

suitable for railway asset condition monitoring. Due to the low reliability of the 

analogue signal transmission, the 4-20 mA standard is not suitable for critical 

applications or for long distances. As a replacement, the fieldbus system is introduced 

to the local network construction. 

A number of digital communication networks developed under the International 

Electromechanical Commission (IEC) 1158 standard are collectively known as 

Fieldbuses (International Electrotechnical Commission 1993, Patzke 1998, Roberts et 

al. 1999). The advantages of the fieldbus digital communication network can be 

summarised in three main areas: installation, maintenance and performance. 

- Instead of point-to-point, as in conventional systems, the fieldbus network is a 

multi-drop system. The sensors or assets and their controllers (CPU) are 

connected to a serial bus through the fieldbus nodes which manage all the 

information transmitted serially. This network topology offers a significant 

reduction in cable requirement. The fieldbus is also capable of supplying power 

to the transducers and transmitting the signals up to a 5 km distance. With an A/D 

(analogue to digital) conversion, the signals from the analogue sensors can be 

transmitted digitally through the fieldbus, which avoids the noise or other 

influences making analogue transmission unreliable. There are many fieldbus 

protocols available which can provide a high level of noise immunity and reduce 

the electromagnetic emissions during data transmission. 

- The topology of a single bus network is much less complex than conventional 

systems, which implies that there would be less demand for maintenance. This 
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multi-drop bus system also provides a high level of flexibility for adding a new 

device or transducer by the addition of an extra node, where no more cable needs 

to be laid. Due to the simplification of the network, the operators can easily scan 

all the devices included in the system and debug any fault, once occurring, via the 

online diagnostics supported by the fieldbus. With these functionalities, both the 

financial cost and the time consumed by maintenance are much reduced. 

- The protocols of the fieldbus are designed to transfer small data packets between 

the CPU and the fieldbus node (or between the nodes) with the minimum of time 

delay, which is ideal for time critical systems, such as controlling and monitoring. 

The capability of direct communication between the fieldbus nodes greatly 

increases flexibility when the data is required at different places in the system. 

System performance is also enhanced by freeing the CPU for other more 

important tasks. With fieldbus technology, the system can be initialised, operated 

and repaired faster than conventional systems.  

With the advantages introduced, the fieldbus can be cost-effective, reliable and 

appropriate for the applications within a local condition monitoring system. 

Meanwhile, the technology and topology of the fieldbus enables the computation to be 

distributed into a set of smaller processing units, which reduces the data amount for 

transmission. 

The data communication from the local system to a higher level (MIS) can be 

undertaken by the Ethernet. The ethernet is a frame-based computer networking 

technology for local area networks (LAN). In comparison with the fieldbus, the 

ethernet transmits a large amount of data with no time criticality in either wired or 
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wireless mode, which is thus not suitable for the local network where timed data 

transferring is required.  

6.2.3 Fieldbus for distributed condition monitoring 

Under the same standard, various fieldbus network protocols, such as WorldFIP, 

Profibus, CAN and Interbus, were designed for applications in distinct industrial 

scenarios (Kolla 2003). Focusing on the industrial application domain, the 

communication protocols can be grouped into three categories: sensor networks, 

device networks and control networks (Pratt 2003). In this study, the fieldbus network 

for asset condition monitoring crosses all the three domains. The selection of 

appropriate fieldbus protocol is therefore challenging but critical.  

Each of the fieldbus networks has its own strengths and weaknesses. In order to select 

a suitable fieldbus, the following points need to be considered (Noel 2002, Kolla 

2003). 

- The selection should focus on the characteristics of the application and the 

specific benefits the designer expects. For serious condition monitoring 

applications, data transmission needs to be fast and over a long distance. For 

instance, the WorldFIP is capable of transferring at 1 Mbit/s rates over a distance 

of up to 5 km. As a number of multiple assets are connected to the bus via field 

nodes, the variables should be identical and sharable via broadcasting by other 

nodes. Depending on the number of assets involved, the maximum amount of 

field nodes, which can be added to the bus, needs to be considered. The power 

supply for the transducers must be included in the network functionalities.  
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- As discussed previously, an important criterion is cost. Under the precondition of 

providing the required performance, cabling and chipsets should be affordable. If 

new nodes are needed in the future, it might be necessary to re-assess the cost, 

implied by the compatibility and supportability of the network hardware and 

protocol. 

- The network connectivity or, in other words, how the data can be obtained, needs 

to be considered when choosing a fieldbus protocol, especially when multiple 

assets are connected to one fieldbus. The proper network topology must be 

assigned and each type of asset is with specific identifiers.  

- Flexibility of the network is also an important issue if future changes are expected. 

A flexible network protocol is capable of supporting the potential changes and 

impacts with an affordable cost. The interface of the network to both other 

networks (interoperability) and the operators (supported software) must be 

friendly.  

6.3 A distributed architecture for generic FDD based condition 
monitoring 

The main topic of this study focuses on the approach of a generic fault detection and 

diagnosis solution for multiple railway assets, including the pneumatic train door, 

train-stop and point machine, electric point machine and electro-hydraulic level 

crossing barrier. The benefits of this generic method are to allow a number of multiple 

assets to be monitored simultaneously and to ensure relatively simple algorithm 

development. Based on the three level distributed condition monitoring architecture 
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< 5 km 

proposed in previous studies, a distributed architecture for generic FDD based 

condition monitoring is proposed (as shown in Figure 6.5). 

 

Figure 6.5  A three level distributed architecture for generic FDD based condition monitoring. 
 

In previous architecture systems, preliminary FDD is processed by the Embedded 

Processors (EP) for railway assets. Since the FDD algorithms developed for each type 

of asset differ from the others, the EP works specifically on the assets of same type. 

The computation undertaken by the EPs is, therefore, further distributed to groups of 

same assets. The generic FDD method proposed in this thesis has same algorithm 

structure, even though the parameter models are different for the assets with distinct 

electromechanical principles. It is consequently possible to integrate the algorithms 

for the multiple assets considered in this study into one processing unit to monitor 

their conditions at the same time. Based upon this feature, an Enhanced Embedded 
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Process (EEP) is proposed to replace the EPs at the asset level to further centralise the 

computation in a local network. Although the EEP requires a more powerful 

computation capability and a larger data storage capacity for the preliminary FDD 

processing using multi models, the computation cost could be reduced compared with 

the cost of a number of EPs. 

Of the assets involved in this study, the pneumatic train door is not included in this 

architecture since it works on a moving train without geographic constraint. 

Furthermore, with the assistance of distributed EPs, the train central computer is able 

to independently perform FDD for the doors via the train management system. The 

proposed architecture will only be suitable for multiple assets in a geographically 

local area. 

In Figure 6.5, the distributed architecture still consists of three levels: component 

level, asset level and system level. At the lowest level, the fieldbus node links 

between the transducers and the bus, and controls the data communication. Low-level 

control alarms can be produced by the node when it is connected to a control signal 

monitoring component. At the asset level, the EEP unit, which contains 4 modules for 

4 types of assets, is capable of interfacing to manage the traffic on the local fieldbus 

network and processing the fault detection and preliminary diagnosis. Once a fault is 

detected by the EEP, the information is passed to the Maintenance Information 

System (MIS) at the system level for further fault diagnosis. The link to the MIS from 

the EEP could either be a wired or wireless ethernet. The MIS will generate a failure 

code after isolating the fault and send the information to infrastructure maintainers for 

maintenance scheduling. 
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6.4 Conclusions 

In this chapter, the architecture for condition monitoring of the railway assets has 

been introduced and discussed. The feature of geographical distribution of the railway 

assets determines that a widely distributed and locally centralised condition 

monitoring architecture is appropriate for condition monitoring of multiple assets. As 

a data communication tool, the fieldbus was introduced and its advantages for 

industrial applications were discussed. The principles of selecting a suitable fieldbus 

protocol were listed and the requests for condition monitoring of railway assets were 

described. 

In a fieldbus based three level distributed architecture, the assets are efficiently 

managed via a flexible network topology. The cost of this distributed network is lower 

compared with the traditional centralised network and maintenance is less time 

consuming and more economical. As a digital communication network, the fieldbus is 

reliable and the interface to the operator is friendly and supports third-party software.  

In the final section of this chapter, an Enhanced Embedded Processor (EEP) based 

three level architecture is proposed. The computation distributed from centralised 

system functionality is locally centralised. The EEP requires more computation and 

data storage costs; however, the total computation cost is still reduced by replacing 

specifically functioned EPs. A number of multiple assets can be monitored 

simultaneously with the integration of different FDD algorithm modules. With the 

ethernet link to the MIS, the modularised condition monitoring software could be 

changed or upgraded remotely. 



Chapter 7 

Conclusions and further work 

 

7.1 Introduction 

This chapter presents the conclusions of a generic fault detection and diagnosis 

approach (FDD) for simple multiple railway assets, known as a classification of 

Single Throw Mechanical Equipments (STMEs). Further work required in some areas 

is also suggested in order to improve the functionality and reliability of the proposed 

generic FDD solution. 

The case studies in this thesis are on the low-level, simple trackside railway assets, 

including the pneumatic train door, the point machine and train-stop, the electric point 

machine and the electro-hydraulic level crossing barrier. In contrast to their low 

capital cost, these safety-critical assets have significant value for the operation of 

whole railway system. A cost effective FDD method focusing on generic application, 

with the aim of improving the reliability of these assets, was studied and presented in 

this thesis.  

In the literature review (Chapter 2), an overview of current FDD techniques was 

illustrated. A description of the railway assets involved in this study and the 

development of test rigs for data acquisition and modelling were presented in 

Chapter 3. According to the common features of performance and load, these assets 

were classified as STMEs. A generic FDD method was proposed for the railway 

assets and the development of this method was illustrated. For residual generation, an 
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adaptive thresholding algorithm was also developed and presented. Two fault 

diagnosis methods were proposed and discussed. In Chapter 4, a generic fault 

detection and diagnosis approach was carried out for the pneumatic train door and the 

modelling work was described in detail. Case studies for the other four assets were 

provided in Chapter 5. The results of case studies in Chapters 4 and 5 indicated good 

performance and generic applicability of the proposed FDD method. This common 

feature based generic solution benefits from the low cost of a generic condition 

monitoring system. A distributed condition monitoring architecture using the Fieldbus 

technique was discussed in Chapter 6. The detailed conclusions of this thesis and 

further work which may be pursued are presented in the next sections. 

7.2 Conclusions 

This section summarises the findings from this work in the following areas. 

7.2.1 Model-based fault detection and diagnosis methods 

In previous studies, quantitative model-based residual generation methods, namely 

observers, parity equations and parameter estimations, were well developed. With 

adequate information of the system and probable disturbances, the first two methods, 

when well designed, respond to sudden faults rapidly. Parameter estimation is good at 

detecting incipient faults by observing changes in system parameters, but the response 

speed is relatively slow because a large amount of computation is involved. A 

limitation of parameter estimation is that this method only works for dynamic systems, 

since the estimated values would drift when the system is in a static status.  

Compared with the quantitative methods, the qualitative methods, such as neural 
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networks, fuzzy logic and neuro-fuzzy, do not depend on the first principle 

information of the target system. Trained by the input and output data, these methods 

are capable of simulating the behaviour of the system, where the system can be either 

linear or nonlinear. The neural network model is known as a black-box model, which 

indicates that it is impossible to understand the trained network. Inversely, the fuzzy 

logic model can be easily explained by its fuzzy rules and the model performance can 

be adjusted by tuning the rules. However, prior expert knowledge is required for the 

fuzzy system design. A combination of these two qualitative methods, the neuro-fuzzy 

system, benefits from both the self-learning of the neural network and the transparent 

model structure of fuzzy logic, which makes the complex system modelling more 

robust and flexible.  

7.2.2 Involved assets and test rig development 

Five railway assets involved in this study were described. With similar dynamic 

characteristics, these assets were classified into a group called Single Throw 

Mechanical Equipments (STMEs). For the purpose of data acquisition and modelling, 

lab-based test rigs were developed for these assets. With the interface using LabVIEW 

software, the asset control, data acquisition and storage were automatically performed 

by the computer. The details of hardware utilised in this system were provided in 

Chapter 3. 

7.2.3 Generic fault detection and diagnosis method 

Among the five assets considered in this study, the three pneumatic assets have 

similar dynamic features, mechanical designs and parameters, which facilitates the 

development of a generic FDD method. Common features of their mechanism and 
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parameters were abstracted, based on which a systematic view of these assets was 

presented as input, machine and output. The performances of three sections of the 

asset depend on each other. The logic relations of these sections were used for logic 

analysis in the circumstance of a fault occurring. The pneumatic assets and the electric 

and electro-hydraulic assets were compared and a conclusion was drawn that these 

assets have similar system structure and parameter features and the proposed generic 

fault detection and diagnosis method could also be applicable to these two assets. 

Based on the common features extracted from these STMEs, a generic fault detection 

and diagnosis method was developed and illustrated by the diagram of processes. The 

whole FDD process consists of three stages: sensor inputs and pre-processing, fault 

detection processes and fault diagnosis processes. In each of the processes, the tasks 

are generically defined for all the railway assets considered in this study. At the stage 

of sensor inputs and pre-processing, the data of the variables is collected by a set of 

sensors and pre-processed for fault detection. The fault detection processes include 

three sections, generic processes, pneumatic process, and electro-hydraulic and 

electric processes. A series of sub-models are designed for these processes, where a 

combination of these sub-models is considered to be the generic model for the STME 

assets. For residual generation, a statistics based adaptive thresholding method was 

used to automatically generate thresholds. At the fault diagnosis stage, two methods 

were introduced. The fault model was used to roughly classify the faults into two 

categories: external faults (e.g. friction or obstruction) and internal faults (e.g. 

mechanical faults). Another method, using residuals patterns to accurately classify 

faults, was also proposed, in which two methods were introduced to decouple the 

residuals from the sensor faults.  
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7.2.4 Railway assets modelling 

Four modelling approaches using data collected in the laboratory were illustrated. In 

consideration of both the computation cost and accuracy, these modelling methods 

were discussed. The exponential model, polynomial model and state-space model 

benefit from a low computation cost at a certain level of accuracy. The neural network 

model provided an accurate simulation with a larger amount of computation. These 

modelling methods were selected according to the characteristics of the modelled 

parameters. The modelling results indicate that the model outputs fit the measured 

profiles well and the selection of modelling methods is correct. 

7.2.5 Fault detection and diagnosis approaches 

Fault detection approaches were applied to the three pneumatic assets and the results 

were provided. From the fault detection results, it can be observed that the 

performance of a single sub-model is usually not good enough, due to unavoidable 

model uncertainty and disturbances; whereas a combination of the sub-models 

presented good sensitivity to faults and the false alarm rate was effectively controlled. 

The feasibility of applying the generic FDD method to the electric point machine and 

electro-hydraulic level crossing barrier was analysed. Preliminary fault detection 

approaches were carried out and the results indicate that the generic fault detection 

and diagnosis method is feasible for these two STMEs with an electrical power 

source. 

Based on the results of five case studies, the performance of the proposed generic 

fault detection and diagnosis method was proved to be good for the pneumatic assets 

and applicable for all five assets considered in this thesis. 
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7.2.6 Condition monitoring architecture 

Condition monitoring architecture for the railway assets was discussed. Based on the 

geographical distribution of the simple railway assets, a three level distributed 

condition monitoring architecture, proposed in a previous study, was introduced. The 

monitoring system, from assets to the Maintenance Information System (MIS), is 

divided into three levels: component level, asset level and system level. At the 

component and asset levels, the fieldbus, a serial-bus digital communication network, 

was employed due to its flexible network topology and low cost achieved by reducing 

the amount of cabling. Embedded Processors (EPs) were used to communicate 

between the components and the fieldbus. From the asset level to the system level, 

ethernet was used for data transmission. 

With the benefits of a generic FDD solution, an Enhanced Embedded Processor (EEP) 

based, widely distributed and locally centralised condition monitoring architecture 

was proposed. The generic FDD solution allows simultaneous condition monitoring 

of a large number of multiple assets, thus the distributed computation of preliminary 

FDD can be centralised to an EEP in a relatively small local area. This methodology 

would further reduce the cost of computation by replacing many EPs with one EEP. 

The modularisation of the FDD algorithm in EEP would allow the operator to change 

or upgrade the software remotely. 

7.3 Further work 

Work completed so far has been presented in this thesis. However, it would be 

interesting to carry out some further work. 
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7.3.1 Fault detection and diagnosis model improvement 

In this study, the work is focused on finding a generic fault detection and diagnosis 

method for all STME railway assets. Work was also completed on the development of 

test rigs for data acquisition and modelling. Some interesting points found in the data 

collection and analysis may be studied further. 

7.3.1.1 Improvement by system features 

92

 

Figure 7.1  Train door positions at 1 sec for 100 normal throws. 
 

When data was collected from the pneumatic train door, it was found that the 

displacement profiles did not simply repeat under the same air pressure, where the 

activation delay and throw time decreased with the increase in continuous operation 

time. Figure 7.1 shows the train door positions at 1 sec for 100 normal throws. With 

the increase in operation time, the door positions became farther than previous ones at 

the same time point, in other words, the door travelled faster. The data sets obtained 
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were therefore a band instead of a single line. This situation was considered in 

modelling by using an adaptive threshold for tolerance; however, it is still meaningful 

to study the effects of lubrication on the train door trajectory.  

The points shown in the figure could be modelled using exponential or polynomial 

methods. The model of the train door integrated with this feature could identify the 

lubrication condition of the door trajectory. This feature exists in the operation of all 

the STME assets considered in this study and it is more obvious in the relatively 

weakly powered assets, such as pneumatic assets.  

In the case of the train-stop, the peak values of acceleration were shown in Figure 

3.15. It was proposed that the modelling of the peak values would benefit from an 

automatic regions division. This would make the model more flexible and enable a 

self-learning based preliminary fault detection algorithm for newly produced assets. 

This feature mainly exists in the case of the train-stop, but would also be useful for 

other STME assets when they are loaded. 

Other factors which would influence the asset performance include temperature and 

humidity. Currently, temperature is not involved in the modelling work, since the test 

rigs of assets are lab-based with little temperature change. In practice, the temperature 

may change significantly which means that this feature would become important. 

Humidity may also affect the condition of assets as erosion can develop on moving 

components. Environmental information could be considered in data collection by 

using intelligent sensors that are able to pre-process the sensor data to allow for the 

environmental conditions (Tian, Zhao & Baines 2000). 
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7.3.1.2 Improvement by failure mode data 

In the proposed generic FDD method, fault models, trained by failure mode data, are 

able to identify the faults occurring externally or internally. The accuracy of the 

model performance relies on the amount of faailure mode data for training. So far, the 

fault simulation has been carried out on pneumatic assets; however, more failure 

mode data is required to improve the model accuracy. As a future work, it is necessary 

to simulate faults on the electric and electro-hydraulic assets to collect failure mode 

data. As well as training the fault model, the failure mode data is also required for 

testing the robustness and reliability of parameter models. 

7.3.2 Laboratory based online condition monitoring 

The test rigs for assets have been set up in the laboratory. With well designed and 

trained models, a computer based preliminary online condition monitoring system for 

testing purposes is expected. The online test would include the following procedures: 

- The computer sends operation instructions to controlled assets, where the 

operation could be either continuous or random. 

- The parameters of assets are monitored simultaneously by the computer via 

installed sensors. 

- Once a throw is finished, the data would be processed for FDD. 

- Faults could be simulated randomly on the assets. 

- Testing the FDD software responses to the simulated faults and fault-free 

conditions. 



 

Conclusions and further work 

 

193 

The test would be very useful for detecting defects in the FDD algorithm and 

improving the reliability of condition monitoring software. 

7.3.3 Real trackside data 

Once the lab-based FDD test is accomplished, the practical application of the generic 

FDD method would be considered. The limitation of the proposed method is that the 

performance of assets in the laboratory may differ from practical instances. To 

overcome this limitation, real trackside data would be essential for testing the 

algorithm.  

Since the same examples of an asset may vary in performance, it may be difficult to 

fit the generic FDD method to every asset. A solution is that a self-learning algorithm 

is achievable based on the ease of modelling the parameters. The generic FDD 

method integrated with a self-learning feature would be able to adapt to each 

individual asset using the initial operation data when the asset is newly fitted. After a 

period of time, the asset performance may degrade and an alarm would be triggered. 

If the degradation is caused by normal wear or by environmental influences, the 

self-learning mechanism could allow re-adaption to the asset with the configuration of 

the infrastructure maintainer.  

7.3.4 Neuro-fuzzy decision making 

Neuro-fuzzy is a useful tool to solve nonlinear problems. In fault diagnosis, the 

residuals, generated in fault detection, need to be mapped to certain faults by which 

the fault can then be isolated. Furthermore, the weighted residuals would also be able 

to provide the information on the fault strength and location. The nonlinear mapping 

from residual patterns to corresponding faults could be processed by the neural 
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network. With well designed fuzzy rules, the magnitude of residuals could be 

transferred to the strength of faults and the faults could also be located. It would 

therefore be interesting to explore a neuro-fuzzy method for residual processing and 

fault isolation. 



Appendix A 

Illustration of lab-based STME test rigs 

 

A-1 Pneumatic train door test rig 
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Figure A.1  Illustration of pneumatic train door test rig and actuator. 
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Appendix A - Illustration of lab-based STME test rigs 

 

 

 

Description of components 

1 Door arm 5 Hydraulic damper 

2 Pushback springs 6 Electric connector 

3 Door open limit switch 7 Compressed air input 

4 Pneumatic cylinders 8 Solenoids 

Table A.1  Description of components of pneumatic train door test rig. 
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Appendix A - Illustration of lab-based STME test rigs 

A-2 Pneumatic train-stop test rig 
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2 1 

Figure A.2  Illustration of pneumatic train-stop test rig. 

 

 

 

Description of components 

1 Train-stop head 4 Main spring 

2 Air motor 5 Proving box 

3 Angular displacement sensor   

Table A.2  Description of components of pneumatic train-stop test rig. 
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Appendix A - Illustration of lab-based STME test rigs 

A-3 Pneumatic point machine test rig 

 1 2 3 
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Figure A.3  Illustration of pneumatic point machines test rig. 

 

 

 

Description of components 

1 LVDT displacement sensor 3 Compressed air supply pipe 

2 Pneumatic cylinder 4 Drive rad 

Table A.3  Description of components of pneumatic point machine test rig. 
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Appendix A - Illustration of lab-based STME test rigs 

A-4 Electric point machine test rig 
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Figure A.4  Illustration of electric point machine test rig. 

 

 

 

Description of components 

1 Transmission belt 5 Crank 

2 Spring load 6 Draw-wire displacement sensor 

3 Current transducer 7 Drive bar 

4 Circuit controller 8 Electric motor 

Table A.4  Description of components of electric point machine test rig. 
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Appendix A - Illustration of lab-based STME test rigs 

A-5 Electro-hydraulic level crossing barrier test rig 
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Figure A.5  Illustration of electro-hydraulic level crossing barrier test rig. 

 

 

 

Description of components 

1 Barrier machine box 3 Skirts 

2 Boom 4 Boom side arm 

Table A.5  Description of components of electric-hydraulic level crossing test rig. 

 

 

 

200 



Appendix B 

LabVIEW based test rig control and data collection 

software 

 

As a tool for developing the test rig control and data collection programs, the 

LabVIEW software was employed to realise various functions via a USB 6008 DAQ. 

Friendly user interfaces were designed for the pneumatic and electric STMEs 

respectively, which are shown in Figure B.1 and B.2. 

 Area 1 Area 2 

Area 3 

Area 4 

 
Figure B.1  LabVIEW interface for pneumatic STME test rigs. 
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Appendix B - LabVIEW based test rig control and data collection software 

In Figure B.1, the interface is divided into 4 areas and the functions in each of them 

are described as follows: 

Area 1  

- Indicating operation status: open (normal/forward throw) and close (reverse 

throw); 

- Operation time counter and in-process indicator; 

- Operation start/stop control buttons. 

Area 2  

- Air pressure setting with 0.1 bar resolution; 

- Air pressure indicator up to 10 bar; 

- Environmental temperature indicator. 

Area 3  

- Real-time visualisation of collected data including displacement, airflow and air 

pressure. 

Area 4  

- Sensor readings at the start and end of a throw for data calibration; 

- Data collection button for manually selecting data for storage. The data storage 

function is on in default unless it is turned off manually. When data is required to 

be recorded, a new file is automatically named by the current time. 
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Appendix B - LabVIEW based test rig control and data collection software 

 Area 1 Area 2 

Area 3 

 
Figure B.2  LabVIEW interface for electric and electro-hydraulic STME test rigs. 

In Figure B.2, the functions are distributed in 3 areas. In each area, the functions are 

as follows: 

Area 1  

- Same functions as the area 1 introduced in Figure B.1. 

Area 2  

- Data calibration using sensor readings at the start and end of a throw; 

- A switch for selecting the two STMEs: electric point machine (EPM) and 

electro-hydraulic level crossing (LCB); 

- Data collection start button (default status is on).  
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Area 3  

- Area for real time data visualisation including: displacement, voltage, current, oil 

pressure (in the case of LCB). 



Appendix C 

Coefficient bank of polynomial and rational models 

 

The coefficients of polynomial and rational models in the case of pneumatic train-stop 

normal throw are listed in the following table. 

 

3-order polynomial f(x) = p1*x^3 + p2*x^2 + p3*x + p4 

0.001s 0.01s 0.02s 0.03s 0.04s 0.05s 0.06s 

-0.0002419 -0.00002615 -4.837E-05 -0.000275 -0.000159 -0.0001762 -0.0003058 

0.002606 -0.0002446 -0.0001269 0.002786 0.00136 0.001685 0.003177 

-0.006554 0.004855 0.005726 -0.006629 -0.001419 -0.003004 -0.008284 

1.02 1.008 1.004 1.021 1.016 1.018 1.023 

0.07s 0.08s 0.09s 0.1s 0.11s 0.12s 0.13s 

-0.0004601 -0.0002826 -0.001491 -9.647E-05 -0.0001251 0.0001615 -0.00004407 

0.004907 0.002746 0.001107 0.0004272 0.001111 -0.002721 -0.0001337 

-0.01405 -0.005716 0.0006457 0.003227 -0.001146 0.0154 0.005019 

1.029 1.018 1.011 1.008 1.016 0.9934 1.006 

0.14s 0.15s 0.16s 0.17s 0.18s 0.19s 0.2s 

-7.949E-05 -0.00014 -0.000271 -0.0004145 -0.0002959 -0.0003486 -0.0002036 

0.0003604 0.0008696 0.002898 0.004537 0.003009 0.00352 0.001869 

0.002953 0.002051 -0.008204 -0.01382 -0.007628 -0.009171 -0.003066 

1.009 1.009 1.025 1.031 1.023 1.025 1.017 

0.21s 0.22s 0.23s 0.24s 0.25s 0.26s 0.27s 

-0.0001223 -0.0002695 0.0000852 0.00005468 -0.0001454 -0.0006188 0.0004741 

0.0008242 0.002631 -0.001787 -0.001222 0.002876 0.009462 -0.002444 

0.001297 -0.005927 0.01147 0.008823 -0.01162 -0.03602 0.007992 

1.011 1.021 0.9996 1.003 1.032 1.058 1.007 

0.28s       

0.003708       

-0.0209       

0.0303       

1.014       

3/2 Rational f(x) = (p1*x^3 + p2*x^2 + p3*x + p4) /(x^2 + q1*x + q2) 

0.29s 0.3s 0.31s 0.32s 0.33s 0.34s 0.35s 
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Appendix C - Coefficient bank of polynomial and rational models 

0.0732 0.07275 0.1047 0.168 0.1602 0.1913 0.198 

0.3082 0.3127 0.1053 -0.09733 0.277 0.1807 0.2772 

-6.471 -6.498 -5.444 -4.305 -5.396 -4.902 -5.081 

17.35 17.42 14.73 10.95 11.53 9.695 9.176 

-8.577 -8.589 -7.936 -6.582 -6.053 -5.537 -5.241 

19.34 19.39 16.93 12.38 11.13 9.133 8.118 

0.36s 0.37s 0.38s 0.39s    

0.1888 0.1826 0.2075 0.2395    

0.5475 0.7318 0.4125 -0.02008    

-5.71 -5.985 -4.724 -2.911    

9.116 8.798 7.451 5.727    

-4.897 -4.621 -4.699 -4.793    

7.13 6.408 6.675 7.262    

4-order polynomial f(x) = p1*x^4 + p2*x^3 + p3*x^2 + p4*x + p5 

0.4s 0.41s 0.42s 0.43s 0.44s 0.45s 0.46s 

0.003793 -0.0006964 -0.005361 -0.008356 -0.009435 -0.008585 -0.006102 

-0.03562 0.03811 0.1114 0.1536 0.1641 0.143 0.09617 

-0.0421 -0.4691 -0.8717 -1.067 -1.073 -0.8958 -0.5754 

1.396 2.397 3.28 3.59 3.437 2.846 1.936 

-1.339 -2.061 -2.637 -2.673 -2.327 -1.63 -0.6981 

0.47s 0.48s 0.49s 0.5s 0.51s 0.52s 0.53s 

-0.002176 0.002713 0.006601 0.006139 0.004156 0.006785 0.01125 

0.02655 -0.05697 -0.1218 -0.1199 -0.09514 -0.1376 -0.2025 

-0.1303 0.3807 0.7628 0.768 0.6424 0.8632 1.176 

0.7582 -0.5297 -1.433 -1.415 -1.066 -1.473 -2.033 

0.4141 1.567 2.317 2.252 1.891 2.126 2.452 

0.54s 0.55s 0.56s 0.57s 0.58s   

0.01348 0.01303 0.01137 0.009441 0.007018   

-0.2305 -0.214 -0.1793 -0.1429 -0.1004   

1.275 1.113 0.8574 0.612 0.3453   

-2.088 -1.504 -0.7421 -0.06784 0.6173   

2.377 1.757 1.039 0.4568 -0.09874   

3/3 Rational f(x) = (p1*x^3 + p2*x^2 + p3*x + p4) / (x^3 + q1*x^2 + q2*x + q3) 

0.59s 0.60s 0.61s 0.62s 0.63s 0.64s 0.65s 

4.349 4.095 3.888 3.986 3.894 3.84 3.789 

-46.16 -40.99 -38.38 -37.99 -35.49 -33.56 -32 

149.9 126.6 118.8 112.5 101.1 92.06 85.3 

-114.8 -97.89 -100.1 -85.57 -76.18 -68.07 -62.8 

-9.325 -9.028 -9.195 -8.685 -8.396 -8.096 -7.882 

22.5 22.27 24.7 21.05 20.09 18.89 18.19 

2.649 -4.153 -12.71 -5.756 -7.272 -7.397 -8.059 

0.66s 0.67s 0.68s 0.69s 0.70s 0.71s 0.72s 

 206



Appendix C - Coefficient bank of polynomial and rational models 

3.749 3.727 3.704 3.679 3.663 3.653 3.633 

-30.6 -29.63 -28.86 -28.02 -27.44 -26.94 -26.53 

79.24 74.94 71.87 68.61 66.37 64.42 63.08 

-57.91 -54.46 -52.33 -49.71 -48.11 -46.57 -45.95 

-7.663 -7.494 -7.382 -7.241 -7.147 -7.051 -7.012 

17.42 16.81 16.5 16.04 15.77 15.45 15.44 

-8.357 -8.512 -8.872 -8.877 -9.033 -9.007 -9.408 

0.73s 0.74s 0.75s 0.76s 0.77s 0.78s 0.79s 

3.624 3.613 3.608 3.59 3.583 3.577 3.572 

-25.87 -25.58 -25.11 -24.92 -24.66 -24.44 -24.31 

60.42 59.44 57.6 57.12 56.17 55.42 54.97 

-43.31 -42.7 -40.87 -40.9 -40.09 -39.4 -39.06 

-6.854 -6.818 -6.7 -6.715 -6.666 -6.626 -6.609 

14.82 14.75 14.3 14.48 14.32 14.19 14.15 

-8.856 -9.018 -8.603 -9.061 -9.002 -8.921 -8.958 

0.80s 0.81s 0.82s 0.83s 0.84s 0.85s 0.86s 

3.559 3.548 3.537 3.531 3.526 3.522 3.522 

-24.4 -24.5 -24.61 -24.52 -24.48 -24.18 -24.06 

55.52 56.09 56.71 56.32 56.21 54.9 54.3 

-39.97 -40.83 -41.77 -41.44 -41.46 -40.13 -39.5 

-6.682 -6.754 -6.829 -6.824 -6.832 -6.761 -6.729 

14.52 14.87 15.23 15.21 15.26 14.95 14.8 

-9.514 -10.01 -10.53 -10.57 -10.7 -10.42 -10.28 

0.87s 0.88s 0.89s 0.90s 0.91s 0.92s 0.93s 

3.517 3.51 3.509 3.506 3.501 3.501 3.498 

-23.91 -23.57 -23.36 -22.97 -22.76 -22.58 -22.19 

53.73 52.39 51.49 49.88 49.09 48.35 46.75 

-39.07 -37.81 -36.88 -35.28 -34.58 -33.83 -32.18 

-6.706 -6.631 -6.574 -6.474 -6.431 -6.382 -6.276 

14.73 14.43 14.19 13.78 13.62 13.42 12.98 

-10.28 -10.04 -9.796 -9.408 -9.295 -9.101 -8.649 

0.94s 0.95s 0.96s 0.97s 0.98s 0.99s 1s 

3.495 3.494 3.49 3.486 3.485 3.483 3.482 

-22.03 -21.85 -22.04 -22.12 -21.87 -22.18 -22.29 

46.15 45.42 46.29 46.69 45.66 46.99 47.48 

-31.65 -30.92 -31.95 -32.46 -31.39 -32.82 -33.37 

-6.239 -6.193 -6.262 -6.298 -6.229 -6.325 -6.364 

12.85 12.66 12.97 13.14 12.85 13.26 13.43 

-8.547 -8.366 -8.746 -8.949 -8.655 -9.103 -9.292 

1.01s 1.02s 1.03s 1.04s 1.05s 1.06s 1.07s 

3.477 3.478 3.476 3.475 3.474 3.476 3.473 

-22.39 -22.46 -22.55 -22.48 -22.52 -22.49 -22.3 
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47.97 48.25 48.64 48.36 48.56 48.37 47.62 

-33.96 -34.25 -34.69 -34.4 -34.64 -34.41 -33.67 

-6.407 -6.426 -6.457 -6.438 -6.457 -6.44 -6.393 

13.62 13.7 13.83 13.76 13.84 13.76 13.57 

-9.521 -9.605 -9.757 -9.679 -9.777 -9.689 -9.501 

1.08s 1.09s 1.10s     

3.474 3.473 3.472     

-22.29 -22.19 -22.08     

47.57 47.15 46.7     

-33.6 -33.18 -32.73     

-6.389 -6.363 -6.334     

13.55 13.44 13.32     

-9.477 -9.372 -9.253     

Table C.1  Coefficient bank of polynomial model of the train-stop normal throw (4.1 bar). 
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Programme flowcharts for pneumatic STMEs 
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Figure D.1  Flowchart of modeling process for pneumatic STMEs. 
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Figure D.2  Flowchart of fault detection process for pneumatic STMEs. 
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Publication 

Bai, H., Roberts, C. and Goodman, C., (2008). A generic fault detection and diagnosis 

approach for railway assets. IET International Conference on Railway Engineering 

2008, ICRE 2008, IET Seminar Digest, vol. 2008 (1), pp. 164-171. 
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