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ABSTRACT 

It has been shown that migraines can be triggered by Pattern-Glare stimuli. The epidemic of 

migraine in the UK, and indeed, the world, is significant. Migraine is the third most common 

disease in the world. The overarching theme of the PhD thesis is how Pattern-Glare gives rise to 

behavioural symptoms of Visual Stress and associated electrophysiological correlates in the 

occipital lobe. This thesis explores this by investigating abnormal (scalp-recorded) EEG 

responses to clinically relevant pattern-glare gratings (.37, 3, and 12 c/deg, where 3 c/deg is 

known to be visually aggravating) by undertaking three separate analyses on the same EEG data 

set. Additionally, we split the data apart between the first presentations of a particular stimulus 

and its further repetitions, enabling us to explore and distinguish surprise and habituation effects. 

In Chapter 2, we looked at evoked responses in the time domain, whilst in Chapters 3 and 4, we 

looked at evoked/induced responses in the frequency domain.  

Additionally, Chapter 2 and Chapter 3 investigated questionnaires that were used to assess 

participants’ headache history (Headache and General Health Questionnaire, HGHQ) and 

tendency to suffer visual stress (Cortical Hyper-Excitability index (Chi); Visual Discomfort Scale 

(VDS)).  We regressed our EEG data onto these state and trait measures of condition 

susceptibility, enabling us to identify electrophysiological correlates of these measures. Chapters 

2 and 3 found EEG effects that were significant on the headache and discomfort factors, whilst 

Chapter 4 found significant effects in the theta band. This thesis provides supporting evidence 

that visual stress (and by extension, migraine, and perhaps epilepsy) is driven by a failure to 

habituate, with this failure observable in the time-domain (missing N1) and the frequency domain 

(theta and gamma effects). These findings add to the body of existing knowledge and ultimately 

may contribute to the further development of clinical interventions in this area. 
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CHAPTER 1: INTRODUCTION 

Imagine a clear day, and you decide that you want to take a trip to the shopping centre. As you are 

walking, you see a department store that you really like. You take a trip into the store and begin to feel 

nauseous. You remember that you have been here before and also felt nauseous then. This may be 

linked to different types of patterns or shapes that we see in everyday life. The brain is not really set up 

to contend with the modern world in the way that we intuitively think. Figure 1 (Rees et al., 2020, 

unpublished; Monger et al., 2016) shows typical scenes we would see every day; the left image is a 

natural scene that has a broad Fourier power spectrum however, the image on the right is an unnatural 

image that we see in everyday life and contains a spatial frequency close to that to which the visual 

system is most sensitive. Images such as this can be particularly aggravating for a minority of people 

that experience visual illusions of colour, shape and motion (Wilkins et al., 1984). Some even report 

migraines and, in severe cases, epilepsy. These symptoms of perception are sometimes called visual 

stress, which is caused by sensitivity to pattern-glare (PG) (Monger et al., 2015).
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Figure 1-1 Natural Scene and Unnatural Scene. 

Shown left is the natural environment and right is a man-made environment that may cause pattern 

glare issues resulting in visual stress symptoms (taken from Rees, 2020, unpublished; Monger et al., 

2016). 

1.1 An introduction to the problem 

It has been shown that migraines can be triggered by PG. The epidemic of migraine in the UK, 

and indeed, the world, is significant. Migraine is the third most common disease in the world (Steiner et 

al., 2013). Severe migraines are considered by the World Health Organization (WHO) (2016) as the 

leading cause of disability among all neurological disorders, affecting 1 in 7 people (House of Commons, 

2010), consisting of 3000 attacks each day in the UK alone with an estimated 190,000 episodes occurring 

annually (Steiner et al., 2003). Missed work from migraines is estimated to cause £250 million in lost 

revenue in the UK each year (Clarke et al., 1996). Migraine is also the least funded of all neurological 

illnesses in the world (House of Commons, 2014; Shapiro & Goadsby, 2007).  

This issue has been investigated using fMRI (Huang et al., 2011), MEG and EEG (Adjamian et 

al., 2004). Of interest to this PhD thesis are biomarkers that may be specific to visual stress symptoms, 

occurring on the posterior of the scalp, as revealed through EEG methodologies, which are measurable 

indicators of a biological state or condition (Atkinson et al., 2001). This will help the field to better 

understand the neurological underpinnings of visual stress (VS) arising from PG, as well as providing 

an objective means to diagnose and stratify patients. VS has been argued to contribute to migraine and 

also to reading difficulties (such as the speed of reading) in children and adults with abnormal 

responses to PG (Irlen, 1991; Cornelissen et al., 1994). This is important to understand in order to 

inform treatment-based clinical work. There are many explanations for what might cause migraine and 

other adverse symptoms, which are covered more in detail below. For example, VS (as a potential 

trigger for migraine) may be caused by cortical hyperexcitability (Welch et al., 1990). This theory 
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proposes spontaneous depolarisation, followed by a spreading suppression of neuronal function 

(cortical spreading depression, CSD). Another explanation may be habituation, suggesting that those 

with migraines fail to habituate to repeated stimulation with the same stimulus (Schoenen et al., 1995; 

Afra et al., 1998; Wang et al., 1999).  Few studies have recorded brain activation in response to pattern 

glare stimuli. Huang et al. (2003) applied such stimuli to a visual stress population showing increased 

fMRI activity in the occipital cortex, consistent with the cortical hyperexcitability theory in migraine. 

To our knowledge, only Haigh et al. (2019) and Fong et al. (2020) have previously measured event-

related potentials (ERPs) in a headache prone population using the PG stimuli. Fong et al. (2020) 

found differences between migraine sufferers and controls at around 200ms and 400ms post-stimulus 

onset. The migraine group showed significantly greater negativity at 200ms for high-frequency 

gratings (13 c/deg). Note that 13 c/deg stimuli are not thought to induce PG symptoms via neural 

factors, so this effect is not the same as the classic pattern-glare response.  

Overall, this thesis explores abnormal (scalp-recorded) EEG responses to clinically relevant 

pattern-glare gratings by undertaking three separate analyses on the same EEG data set. Each analysis 

investigates different domains in an effort to understand the underlying neurophysiological processes.  

1.2 Empirical Chapters 

Analysis one (Chapter 2) is concerned with responses to PG in the time domain, primarily 

looking at ERPs, which are time-locked to the onset of the stimulus (Luck, 2005), while analyses two 

(Chapter 3) and three (Chapter 4) relate to the frequency domain. Analyses one and two fit parametric 

regressors, which are extracted from a factor analysis of self-reported state and trait characteristics, e.g. 

sense of discomfort and headache susceptibility. The factors were 1) visual stress (a combination of the 

CHi, VDS, aura measures and Cortical Hyper-Excitability index (Chi), Braithwaite et al., 2015; Visual 

Discomfort Scale (VDS), Conlon et al., 1999), 2) headache (frequency, intensity and duration) and 3) 
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discomfort. Both analyses one and two utilise the same short time window following stimulus 

presentation. Analysis three extends the window in time to include a D/C shift period (i.e. a sustained 

change in the baseline response) in the frequency domain but does not analyse parametric regressors. 

Importantly, the frequency domain allows the researcher to see induced responses, which are increases 

in amplitude without a resetting of the phase of ongoing oscillations (Adjamian, 2014). ERPs are blind 

to such effects. Further discussion on the literature that informs this thesis is outlined below. 

1.3 Visual Perception 

Human visual perception operates in dynamic networks to understand and represent the 

environment. The cells in these networks work together through mechanisms of excitation and 

inhibition to process exogenous stimuli. It does this in multiple ways, such as ascending 

feedforward projections, descending feedback projections, and lateral connections within layers 

(Kafaligonul et al., 2015; Lamme et al., 1998). The role of feedforward connections is relatively 

well understood: each layer of processing identifies features in the image and passes that 

information onto the next layer: progressive layers detect ever more complex feature combinations. 

Lateral connections are thought to modify neuronal responses according to the context in which 

stimuli are placed and are of two forms: short-range connections are inhibitory and have a role in 

both gain-control (limiting local responsiveness) and fine-tuning the receptive field properties of 

each cell. These connections most likely lead to inhibitory after-effects, such as the tilt-after effect 

(Clifford et al., 2000). Longer-range lateral connections are excitatory and may have a role in 

promoting the activities of cells tuned to similar image properties at different spatial locations 

(Field et al., 1993). Feedback connections between processing layers and brain regions are less well 

understood. Some appear excitatory, inducing responses to imagined stimuli or helping the brain to 

resolve sensory ambiguity; others seem to have an inhibitory effect, perhaps controlling attention by 
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attenuating the sensory input (Lamme et al., 1998). Regardless of this pattern, feed-forward and 

feed-back connections create a dynamical, recurrent network of cells whose activity is held in 

delicate balance by excitatory and inhibitory processes. Additionally, researchers observed lower 

performance for migraine groups versus controls on orientation discrimination tasks (Tibber et al., 

2006) and contrast sensitivity tasks (Shepherd et al., 2012).  

One tenet of sensory processing is that activity in a given neuron increases the likelihood of 

activity in other neurons with which it has excitatory connections. For the feed-forward path in the 

sensory systems, the resultant chain of activity is likely to result in the organism perceiving the 

stimulus feature that is usually detected by the neuron(s) at the start of the chain. Even when there is 

no physical stimulus present, this outcome can be adaptive, as contours and surfaces that are present 

in the world but absent in the retinal image are nonetheless reconstructed in the cortical 

representation and thus perceived (modal and amodal completion; Nakayama & Shimojo, 1995). 

However, in other circumstances, such activity is unwanted and results in positive, illusory 

perceptions or hallucinations. For example, Isia Leviant’s (1981; 1996) Enigma image (Figure 1.2) 

contains only static radial stripes and purple disks but is widely reported to induce a sensation of 

motion within the rings in most but not all people. 
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   Figure 1-2 Enigma by Isia Leviant (1981; 1996). 

This stimulus has been shown to elicit activity in the motion-sensitive area MT/V5 (Zeki,1993); 

despite the absence of motion in the stimulus, this may be caused by micro-saccadic eye 

movements (Zanker & Walker, 2004) being miss-interpreted as object motion. The fact that motion 

is perceived in the rings (where there are no features whose displacement by such eye movements 

could be interpreted as motion) suggests that the neural activity spreads out of the inducing striped 

areas into the rings. Excess inhibition can result in illusions, such as in the many after-effect 

illusions (for example, the motion-after effect, Kohn & Movshon, 2003), where lingering inhibition, 

most likely mediated by lateral connections, biases the perception of the opposite stimulus from a 

previously viewed stimulus (e.g., viewing motion to the left produces the sensation of rightward 

motion in a subsequently static stimulus). There is additional evidence for greater susceptibility in 

migraine groups for multisensory illusions in sound-induced flash illusions (Yang et al., 2014). This 
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is important because the sound-induced flash illusion is thought to be determined by the integration 

of visual and auditory signals.  

1.3.1 Visual Stress 

VS forms the foundation and experimental basis of this thesis. VS is a variety of abnormal 

responses to specific visual stimuli when the visual cortex is exposed to certain types of patterns of 

light and dark stripes (Wilkins, 1995). These abnormal responses are characterised by illusions of 

colour, shape, and motion. In some cases, people experience migraines and, more severely epileptic 

attacks (Wilkins et al., 1979,1980). Using magnetoencephalography (MEG), Adjamian et al. (2004) 

have shown that gamma oscillations underlie hyperexcitability in area V1 peaking for stimuli with 3 

cycles per spatial degree (c/deg). They hypothesise that such visual stress is caused by hyper-

excitability of the visual cortex, which results in an increase in a spreading activity among neurons 

usually associated with sensory input, thus producing hallucinations. The somatic effect sometimes 

found in visual stress may be due to activity spreading outside of the visual cortex. In some cases, 

these effects may not be appropriately regulated by GABAergic inhibitory mechanisms. Visual 

symptoms might thus be the precursor to a photo-paroxysmal response. This, if not sufficiently 

controlled by inhibitory mechanisms, may lead to epileptic seizures and migraines. However, the 

mechanism underlying this activation has not been explored; this Ph.D thesis will examine this 

missing component in the literature. 

The stimuli that are most likely to induce such anomalies, typically 3 c/deg high-contrast 

stripes, are precisely those most likely to induce attacks of migraine and epilepsy in those with a 

visual trigger (Wilkins, 1986, 1995; Wilkins et al., 1979, 1980). Most importantly, a minority report 

seeing such visual distortions when viewing printed text (Meares-Irlen syndrome or VS; Mears, 

1980). While such distortions could be due to poor ocular accommodation and binocular convergence, 

they are found even when such abnormalities are excluded (Evans et al., 1995).   
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The fact that a minority sees such distortions in the text suggests that some populations are 

more prone to VS than others. Indeed, some evidence points towards this idea that VS may be co-

morbid with dyslexia, migraine (with aura), and autism (Ludlow et al., 2006; Wilkins et al., 1994; 

Wilkins et al., 2002).  

1.3.2 Visual Stress and its Connection with Dyslexia 

 During the 1980s and 1990s, researchers discovered that the use of coloured acetates (sheet, 

filter) overlays could be used to help people suffering from eye strain and visual perception 

distortions when reading. This gave rise to a new syndrome known as Meares-Irlen (Mears, 1980; 

Irlen, 1983). In this thesis, this condition is described as VS as it is commonly known in the UK. VS 

produces somatic symptoms such as distortions of text, illusions, sore eyes, and tiredness (Conlon, 

2000).  The stimuli that induce these effects are also aversive to migraineurs, trigger headaches in 

those with photosensitive migraine and trigger seizures in those with photosensitive epilepsy. 

Interestingly, VS occurs more frequently in people with dyslexia than other patient populations 

(Irlen, 1991). Irlen (1991) had observed these somatic symptoms in 12% of the general population 

but noticed that people with dyslexia had an incidence of 65%. She later observed that VS was 

found in 46% of the people with dyslexia and other neurophysiological disorders (autism, ADD, & 

other non-specified learning disabilities (Irlen, 1997)). 

 A theoretical explanation of the benefits of using coloured filters in patients that suffer from 

visual stress (specifically those with concurrent dyslexia), named ‘the magnocellular theory of 

dyslexia’ was proposed by a number of researchers (Stein & Walsh, 1997; Livingstone et al., 1991; 

Lovegrove, 1991; Lovegrove et al., 1986, Ramus et al., 2003). In the visual system, signals travel 

from the retina to the lateral geniculate nucleus (LGN) of the thalamus and then to the visual cortex. 

In this system (Figure 1.3), the LGN is described as having six distinctive layers. The inner two 

layers, (1 and 2) are magnocellular cell (M cell) layers, while the outer four layers (3,4,5 and 6) are 
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parvocellular cell (P cell) layers (Wallace et al., 2016; Brodal, 2004; Carlson, 2007). The 

magnocellular visual system comprises a fast pathway that processes rapid changes in the visual 

scene, while its counterpart, the parvocellular system, is a slower pathway responsible for more 

detailed, stable visual perception (Stein & Walsh, 1997). 

 

Figure 1-3. Diagram of the Lateral Geniculate Nucleus (Skalicky, 2016). 

 These systems work together across eye saccades, continuously facilitating and updating the 

visual image on the retina. When there are abnormalities in eye movement, they can lead to issues 

in processing text (Evans et al., 1996; Stein, 2001; Stein & Talcott, 1999; Stein & Walsh, 1997). 

More recent research has suggested that defective eye movements driven by the magnocellular 

system may be a cause of dyslexia (Vidyasagar, 2004). Researchers have used this as a basis to 

connect visual stress and dyslexia (Irlen, 1994; Lehmkuhle, 1993; Livingstone et al., 1991; Solman 

et al, 1991; Solman et al., 1995; Williams et al., 1992).  

 However, Wilkins and colleagues (2003) challenged this as a theory of VS. They stated that 

whilst the visual effects may be caused by deficits in the magnocellular system, this system, the 

theory, does not account for individual differences found when specific colours are optimal for 
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some patients, but not sufficient for other patients (people tend to have a preferred colour). Wilkins 

further asserted that people without dyslexia had been observed to benefit from colour filters, 

leading to the conclusion that VS is a condition in its own right, related to cortical hyperexcitability, 

and is independent from dyslexia (Wilkins, 2003). Nevertheless, there may be a connection between 

magnocellular deficits and PG caused by cortical hyperexcitability (Evans, 2001).  

1.3.3 Reading 

Reading involves many cognitive processes to extract meaning from print; this encompasses 

eye saccades, cognitive load, reading fluency, and deriving text meaning from print. Data taken 

from research evaluating the relationship between printed word identification and written and oral 

language comprehension processing shows that reading comprehension is impaired in a person who 

has not developed accuracy and fluency, even if that person is competent in oral language 

comprehension skills (Gough & Tunmer, 1986; Perfetti, 1985; Snowling, 2000; Stanovich, 1991; 

Vellutino, 1979, 1987; Vellutino et al., 1994; Vellutino et al., 1995; Vellutino et al., 1996). 

Developmental dyslexia has been observed to have biological foundations that affect the individual 

(Evans et al., 1996; Stein, 2001; Stein & Talcott, 1999; Stein & Walsh, 1997). However, aside from 

typical reading delays due to issues with fluency, visual stress has also been observed to affect these 

populations causing migraines and, more severely, seizures.  These neurological events prevent 

fluent reading and affect the ability to comprehend text. VS comprises a variety of issues that relate 

to visual processing in the brain. This thesis proposes to understand different physiological 

processes that underlie these abnormal difficulties. It will explore such physiological processes for 

VS in its own right, instead of just as an oddity of dyslexia. 

Additionally, this thesis will seek to make progress towards a biomarker for VS, which 

might make better-targeted interventions for headache or patients with other pathology related to 

VS. Notably, the same stimuli that elicit migraine in clinical populations are also the types of 
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stimuli that can cause migraines and epilepsy in people whilst they read (Wilkins, 1995).  Reading 

contributes to a person’s wellbeing in many ways: it is fundamental to education (Mitchell, 2014); it 

promotes economic growth (Naudé, 2004; Coulombe et al., 2004); it improves the ability of a 

person to interact in a social community (Stromquist, 2005) and finally, it is essential for 

employability. This line of research leads to the conclusion that many struggling readers that have 

issues with dyslexia may have additional problems that originate from abnormalities in visual 

information processing.  

1.3.4 Visual Stress and Connections with Autism 

 Autism is composed of a variety of issues dealing with language, social-cognitive processing 

in social situations, and repetitive behavioural mannerisms (Frith, 1989). Specifically, important to 

this thesis is the integration of sensory information: researchers have observed abnormalities in 

hypersensitivity to sensory stimuli in patients with autism (Kientz & Dunn, 1997). Furthermore, 

there have been some abnormalities in the way people with autism perceive specific colours. Some 

children with autism refuse to eat certain types of food or may be averse to riding a bike because of 

the colour (White & White, 1987). Coloured filters have been seen to improve the reading 

performance of people with autism (Ludlow et al, 2006). People have reported that they were able 

to see the world more clearly with coloured filters, stating that their vision diverged from the 

everyday piecemeal visual scene usually reported in people with autism (Williams, 1998).  

 According to this research, patients that have shown improvements whilst using coloured 

filters are likely to have cortical hyperexcitability. In this vein, it is important to note that 

individuals with autism are more likely to have epileptic seizures than normal controls (Bryson et 

al., 1988; Cialdella & Mamelle, 1989; Deykin & MacMahon, 1979; Ornitz, 1973; Rutter, 1970; 

Steffenburg & Gillberg, 1986; Tanoue et al., 1988; Wing & Gould, 1979). Given that they benefit 
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from coloured filters, it is possible that the cause of the epileptic attacks observed in this patient 

population is due to an increased level of excitable neurons in the visual cortex.   

1.4 Migraine 

1.4.1 Migraine & Coloured Filters  

 Maclachlan et al. (1993) found that children who find colour filters helpful are twice as likely 

to have migraine in the family as those who show no benefit. Wilkins (1995; 2003) asserts that 

since the wavelength of light is known to affect neuronal sensitivity (Zeki, 1983), the use of colour 

could reduce hyperexcitation, thus reducing perceptual distortions and headaches when reading. 

Research has suggested that people with migraines had significantly more hallucinations than those 

without migraines when viewing striped patterns, and these people are more prone to be sensitive to 

pattern-glare (Harle et al., 2006). This is discussed later in this chapter. In one experiment, two 

groups (migraineurs and controls) had stimuli presented on a monitor with different coloured 

backgrounds. A target was briefly introduced to measure colour accuracy; migraineurs were 

observed to have alterations in colour perception. Specifically, vision in migraine deficits occurred 

in S-cone discriminants, and there was no difference between controls and migraineurs for L and M 

cones (Figure 1.5) (Shepherd, 2005). For an overview of different colour spectra for specific cones, 

see Figure 1.4. 
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Figure 1-4. Results for threshold detection. 

Circles represent the control group, and squares represent the migraine group. The average 

percentage errors are turned into z-scores relative to the group’s performance. When objects are 

presented on a purple background, migraine groups make more errors (taken from Shepherd, 2005). 

 As mentioned previously, the link to migraine and epilepsy triggers suggests that those 

suffering from VS may exhibit cortical hyperexcitability (Huang et al., 2011).  
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Figure 1-5. Normalised responsivity spectra of human cone cells, S, M, and L types (taken from 

Stockman & Sharpe, 2000).  

1.4.2 Cortical Hyperexcitability and Migraine 

There are several independent observations of cortical hyper-excitability found in 

migraineurs (Aurora & Wilkinson, 2007). Such excitation results in distortions of the visual image, 

which can be disruptive for reading and cause discomfort when viewing certain visual stimuli or 

under certain lighting conditions. In extreme cases, it can be temporarily debilitating, leading to 

workplace absences (e.g., migraine) or can adversely affect individual life opportunities.  Cortical 

hyper-excitation has been observed in the NIRS responses of those who have heightened sensitivity 

to striped patterns, but the mechanism by which such excitation forms and spreads are unclear 

(Haigh et al., 2015).   

Additionally, EEG and ERP studies have provided evidence that migraines with and without 

aura are characterised by habituation abnormalities related to aggravating sensory stimulation; this 

results in hyper-activation in the visual cortex (Ambrosini & Schoenen, 2006). Recall that it has 
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also been posited earlier in the chapter that the patterns that induce the most illusions and visual 

discomfort have the same physical attributes as those that trigger seizures in patients with 

photosensitive epilepsy (Adjamian et al., 2004; Wilkins et al., 1984). This suggests that the 

underlying neuronal mechanism for both abnormalities could be, at least to some extent, the same 

(Wilkins et al., 1979; Wilkins, 1995).  

Of the variety of neuro-pathologies mentioned above, pattern-sensitive epilepsy is of 

interest; it is a rare disorder in which seizures are triggered by viewing specific stripped patterns. It 

was first discussed by Bickford and his colleagues in 1953, and many cases have been reported 

since (Bickford et al., 1953; Millichap et al., 1962; Bickford & Klass, 1964, 1969; Gastaut et al., 

1966; Wilkins et al., 1975). Individuals asked to look at patterns of alternating light, for example 

light and dark stripes, report many anomalies (i.e., visual discomfort, eyestrain, headaches, blurring, 

motion, and diagonal coloured bands (Wilkins, 1995)).   

1.4.3 Shape of the Hemodynamic Response and Cortical Hyper-Excitability 

The relationship between hemodynamic changes and neural excitation is related to local 

field potentials (LFP). This is the electrophysiological signal generated by the summed electric 

current flowing from multiple nearby neurons within a small volume of nervous system tissue 

(Logothetis et al., 2001). It is useful to use the hemodynamic response as a substitute measure of 

neural activation. This is because the same visual stimuli that can evoke a strong neural response in 

the visual cortex will also cause a large reaction in the hemodynamic response (Olman et al., 2004; 

Vazquez & Noll, 1988).  

Coutts et al. (2012), using NIRS, found evidence that patients with migraine had shorter 

oxyhaemoglobin responses compared to healthy controls. This posits that the shape of the 

hemodynamic response can also be related to cortical excitability. This is in line with other findings 

that suggest that patients with lower concentrations of GABA produce taller and thinner BOLD 
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responses in the visual cortex (Muthukumaraswamy et al., 2012). This directly supports the 

hypothesis that GABAergic mechanisms affect local cortical excitability (Semyanov et al., 2003). A 

study looked to explore this relationship (Haigh et al., 2015); the researchers found that the average 

amplitude and slope of the response to chromatic gratings were correlated with the average 

amplitude and slope of the responses to the moving gratings for everyone. Gratings with large 

chromaticity separation have been reported to be seen as uncomfortable to view, suggesting a 

relationship between discomfort and the amplitude of the cortical response (Haigh et al., 2013).  

This means that the shape of the hemodynamic response appears to reflect the strength of 

the stimulus: the stimuli that evoke the most discomfort and are potentially epileptogenic, 

producing the largest amplitude and the steepest slope in the oxyhaemoglobin response and 

deoxyhaemoglobin response. Additionally, patients with migraine showed larger BOLD responses 

to grating stimuli than controls (Huang et al. 2003). As mentioned above, neurochemicals such as 

GABA also play a role in influencing patients suffering from migraines. GABA affects BOLD 

responses in the visual cortex and works to inhibit the hyperexcitation seen in migraine, whilst 

glutamate is involved in exciting the network (Gasparini & Griffiths, 2013). 

1.4.4 Neurochemicals Influencing Migraine  

There is some data in the fMRI literature surrounding patterns of activity in the visual cortex 

in response to stimuli that were around 1.2 cycles per degree. Welch et al. (1990) proposed the 

general hyperexcitability theory of the pathophysiology of migraine. This theory suggests 

spontaneous neuron depolarisation, followed by a spreading suppression of neuronal function. This 

chain of neuronal events is possibly mediated by the release of the excitatory amino acid glutamate 

or the increase in extracellular K+. Also, glutamatergic neurons are most likely responsible for 

neuronal hyperexcitability, particularly in the occipital cortex. Clearance of K+ is also heavily 

dependent upon the capacity of glial cells (Van Gelder, 1987; Wright et al., 2001). 
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1.5 The Pattern Glare Test 

The pattern glare test (Figure 1.6) was published in 2001 by Wilkins and Evans (2001) as a 

standardised way for physicians to examine whether a patient had some proclivity to experiencing 

VS. The test is intended to induce visual stress in susceptible patients; patterns are also presented 

horizontally to appear like text and at different spatial frequencies (SF) (.37, 3, and 12) (Evans & 

Stevenson, 2008). For the purpose of this thesis we call .37 c/deg thick, 3 c/deg medium and 12 c/deg 

thin.  

 

Figure 1-6 Pattern-glare Stimuli:  

Left to right, thick (.37 c/deg), medium (3 c/deg) and thin (12 c/deg) gratings with a central fixation 

and vertical dividing line. The images shown here are representative of the stimuli but have been 

rendered to aid visibility in print. 

Pattern 1 (thick) is meant to be a control for low SF and is not supposed to trigger distortions 

in most participants. However, it is useful in detecting ‘which patients may be highly suggestible and 

may respond yes to any question about visual perception distortions’ (Evans & Stevenson, 2008). 

Pattern 2 (medium) is the only relevant clinical stimulus falling between SF’s 1-4, which are known 

to elicit migraines and epileptic seizures (Braithwaite et al., 2013; Wilkins, 2016). Pattern 3 (thin) is 

a control for poor convergence and accommodation. Those with poor convergence and/or 
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accommodation will see distortions in this stimulus reflecting optical rather than neurological factors 

(Conlon et al., 2001).  

1.6 Neural oscillations 

1.6.1 Background 

 In 1929, Berger observed neural oscillations in the brain waves as rhythmic repeating patterns 

of neuronal activity (Berger, 1929). Since then, more research has been undertaken on other 

oscillatory patterns in clinical and basic research (Buzsaki & Draguhn, 2004). Research in 

biophysics at the single cellular level has revealed that brain oscillations cycle at multiple 

frequencies and have an essential role to play in information delivery and communication between 

neurons (Llinás, 1988; Hutcheon & Yarom, 2000). In signal processing, time-frequency analysis is 

a vast array of techniques and methods used to study the signals of the time and frequency domains 

simultaneously (Meyer & Flandrin, 1999, see Figure 1.7). 

 

Figure 1-7. Example of a Time-Frequency plot at electrode Oz, generated by spm 12. 

Zero is the onset time of a visual stimulus. Colour bar represents dB power -6.5 to 6.5. 
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1.6.2 Oscillations in Migraine Research 

 Alpha-band oscillations 8-12hz (Figure 1.8) are believed to have a role in the visual system 

from controlling the timing of perceptual processes (Jensen et al., 2014; Klimesch et al., 2007; 

Klimesch et al., 2012), to playing a role in inhibiting part of the cortex (Cole & Ray, 1985; Klimesch, 

1996; Klimesch, 2006; Pfurtscheller, 2001; 2003). These oscillations may also play a role in 

communication (Palva & Palva, 2007) and have been attributed the title the ‘window of excitability’ 

(Dugué et al., 2011). Previous studies suggest that alpha differs between migraine and healthy controls; 

specifically, there is activity in alpha 72 hours before an attack (Bjørk et al., 2009). There are two 

characteristics of alpha-band activity: peak frequency (defined as the frequency at which the maximum 

amplitude occurs within the band) and magnitude (variation in amplitude of the oscillation at the given 

frequency band) of an oscillation. Tonic alpha-band oscillations have been researched in 

migraine patient populations. Increased pre-attack occipital-parietal alpha asymmetry has been found 

before attacks (Nyrke et al., 1990); however, the cause and origin of hypersensitivity to visual stimuli 

in migraineurs are unknown.  

 

Figure 1-8. Example of an alpha wave.  

The X-axis represents time, and the Y-axis represents amplitude. 

It is suggested that differences in performance from migraineurs to controls are due to 

internal noise in the processing of visual stimuli (Wagner et al., 2010). One study showed 
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differences in lower alpha power in migraineurs versus control groups (Figure 1.9) (O’Hare et al., 

2018). Participants were given a contrast detection task, whilst alpha-band activity was recorded 

before and after the psychophysics task.  The visual tasks consisted of two alternative forced-choice 

contrast discrimination. Participants viewed two gratings of 1 c/deg presented side by side. These 

were presented on both sides of a small red fixation cross. The targets consisted of a one-level 

contrast (-10dB) and a jittered contrast. The presentation was in random order, and this 

randomisation was different for each person. The task of the observer was to declare using arrow 

keys, whether the stimulus on the left or right had higher contrast. This went on for 100 repetitions 

for 45 minutes. The researchers found that lower-band resting-state power was increased in 

migraine groups compared to control groups. This supported previous research where fluctuations 

in alpha-band oscillations may explain differences in tasks relating to temporal integration.  
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Figure 1-9. Average power spectra for migraine and control groups before and after the task.  

Spectral power in 10 × log10 (μV2/Hz) averaged over electrodes O1, O2, Oz, and Iz. There is a 

bigger difference in low alpha (8-10hz) compared with high (10-12 Hz) and overall alpha band (8 

to 12 Hz) (O’Hare et al., 2018).  

Bjørk et al. (2009) studied alpha using 41 migraine patients and 32 healthy controls who had 

completed headache diaries and questionnaires about headaches, with recorded EEG using a 10/20 

cap and an eye blink measurement. The researchers found migraine with and without aura showed a 

negative correlation between disease duration and alpha peak frequency (p=.001) and that 

correlation results indicate long-lasting attacks are associated with reduced peak frequency (p=.04) 

(Figure 1.10).  

 

Figure 1-10. Shows a Spearman’s correlation of number of years with migraine disease and attack 

duration in hours with peak frequency (Bjørk et al., 2009).  

Gamma frequency (30-100hz) is an important signal in the brain; there is evidence that gamma is 

related to engaged networks, such as attention (Fries et al., 2001) and learning (Bauer et al., 2007). 

Gamma activity has also been connected to neurological disorders such as Alzheimer's, Parkinson's, 
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schizophrenia and epilepsy (Uhlhaas & Singer, 2006). Wu et al. (2018) showed that migraineurs had 

abnormal gamma-band activity after viewing emotional stimuli between attacks.  

 Of importance to this thesis is a paper by Adjamian et al. (2004), where they analysed PG 

stimuli between 1-6 c/deg in .5 cycle steps. The stimuli were presented to participants for 5 seconds 

and repeated in separate MEG recordings for sessions over 2-3 days. These recordings were source 

localised to visual area V1. Subjects were asked to report if they felt discomfort and/or illusions. The 

results showed an oscillatory synchronising response between 20-60 Hz in the gamma range, for SFs 

of 2-4 CPD. This gamma response was sustained throughout the 5s of stimulus viewing (see Figure 

1.11 for results breakdown). Additionally, these aggravating PG stimuli (between 2-4 c/deg) induced 

(subjectively reported) high levels of discomfort and a number of illusions. However, Adjamian et al. 

(2004) did not directly relate their subjective report measures to their brain data, as we do in our mass-

univariate analysis, allowing us to assess how specific parts of the data volume vary with subjective 

report. 
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Figure 1-11. Cortical results for Adjamian et al. (2004). 

The group-average (n=7) magnitude of oscillatory power in the primary visual cortex as a function of 

stimulus-response frequency (taken from Adjamian et al., 2004). 

 Additionally, Muthukumaraswamy and colleagues (2009) performed an analysis with stimulus-

induced sustained gamma oscillations, using 3 c/deg gratings. They recorded data using magnetic 

resonance spectroscopy (MRS), fMRI and MEG over several days. Each stimulus was presented for 

1.5-2s followed by 2s of fixation at cross only. Their goal was to quantify resting GABA 

concentrations in the visual cortex. They discovered that individuals’ gamma oscillation frequency was 

positively correlated with resting GABA concentration.    

1.7 Overarching Hypotheses 

The key hypotheses that this thesis assesses are as follows. 

1. There will be a response in the posterior part of the scalp, as revealed by EEG, that exhibits a more 

extreme difference from zero in the medium as opposed to thick and thin stimuli (i.e., the medium 

will be the most extreme of the three responses, either more positive with positive-going effects or 

more negative with negative-going effects). These will be present in both the time and frequency 

domains. 

2. We will find effects on some factors, whereby participants higher on a factor will have more 

extreme pattern glare index (PGI) responses, and participants low on a factor will have less 

extreme PGI responses. These may be particularly found for the discomfort factor. This factor is at 

least partially a state measure, which may be easier to correlate with the EEG, since measure and 

EEG are collected in the same session. 

3. There will be a different induced response in onset 1 and onset 2:8 for the oscillation pattern, i.e., 

desynchronisation to synchronisation versus synchronisation to desynchronisation versus sustained 
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synchronisation, which is not consistent in both. Onset 1 may reflect a failure to predict, or be 

affected by stimulus novelty effects, and onsets 2:8 represent a failure to habituate.  

1.8 Experimental strategy 

1.8.1 Outline 

The tools outlined here will form the basis for the experiments reported in this Thesis. I will 

focus on utilising EEG to measure and understand brain activity. EEG studies for both event-related 

and steady-state methodologies will be discussed. Event-related EEG will be used to compare the 

amplitude of neural responses specific to striped patterns in the healthy population and groups with 

known or suspected cortical hyperexcitability. Tonic EEG will be used to assess the strength of the 

various oscillatory patterns that are associated with relatively active or inactive brain regions.  

1.8.2 EEG Overview 

Signaling among neurons within the brain is principally electrical and chemical. Cells send 

action potentials along their axons, resulting in a release of neurotransmitters at synapses with 

receiving cells. These neurotransmitters attach to the membrane of the receiving cells and alter the 

flow of chloride, calcium, potassium, and sodium ions across the cell membrane, setting up currents 

that are aggregated by the cell until it eventually releases its own action potential. This ion 

exchange process also produces ‘volume conduction’ whereby ion movements and currents, 

propagate to the scalp and can be recorded with electrodes. The nature of the volume conduction 

process means that signals recorded at the scalp are necessarily the aggregate of activity in many 

neurons over a wide area of the brain; thus, EEGs have low spatial resolution. Conversely, the 

temporal resolution of EEG is excellent. Further, by comparing the activity of multiple electrodes, it 

is possible to derive the approximate location of the activity driving a given EEG waveform. 
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1.9 Event-related EEG & Event-related potentials (ERP) 

Event-related EEG (arguably the more common EEG technique) and time-frequency 

analysis involves the presentation of some stimulus (here visual) while recording brain activity. The 

activity associated with many similar presentations is then time-locked to the stimulus onset and 

averaged. This procedure reduces the impact of random fluctuations and reveals the results of 

reliable processing events and peaks and troughs in the waveform at each electrode. Activity 

associated with early visual processing typically occurs early in the waveform and at occipital 

electrode locations. The amplitude and, to some extent, the precise timing of such features is 

thought to correlate with the degree of processing dedicated to it. Thus, if an individual is especially 

sensitive to a specific stimulus, we might expect higher amplitude signals than in a control 

participant. In contrast, if they are less sensitive or are actively ignoring the cue, a lower amplitude 

might be expected. 

By recoding event-related potentials (ERPs) in relation to striped stimuli of various spatial 

frequencies presented to those who are thought to suffer from cortical hyperexcitability and control, 

I hope to establish that certain stimuli do elicit higher amplitude ERPs in the patient groups relative 

to control. As the stimuli are very simple, differences in the N1-P1 complex recorded at the most 

posterior electrodes would be expected, as demonstrated in Figure 1.12, which shows variations in 

the N1, P1 complex when processing negative emotional words (Van Hooff et al., 2008).  
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Figure 1-12. ERPs recorded at scalp locations O1 and O2 in response to neutral words (grey line) and 

negative affect words that produced reaction time facilitation (dark line).  

The negative effect words made enlarged P1 responses. The figure was adapted from Van Hooff et al. 

(2008) with the permission of an author. 

1.9.1 Tonic EEG 

In Tonic EEG, waveforms are recorded over a period (of time) while the participant is either 

resting or looking at some stimulus, but signals are not explicitly time-referenced to stimulus onset. 

Further analysis is then used to isolate oscillations in the waveform, and power spectral analysis can 

identify the energy in different oscillatory bands, which are associated with different kinds of brain 

activity. Of specific interest to this project are the alpha (7.5–12.5Hz+ (Gerrard & Malcolm, 2007)), 

beta (14-30 Hz +(Berger, 1929)), and gamma (32Hz +) bands (Hughes, 1964). Some have 

associated alpha band with inhibition of sensory input, whilst beta and gamma-band activity have 

been related to active processing. I expect individuals with cortical hyper-excitability to have 

increased gamma and beta-band activity and or reduced alpha-band activity when viewing an 

aggravating stimulus (Adjamian et al., 2004). A similar difference may also be found at rest if the 

affected cortical area is generally excitable rather than hyper-excited only by specific stimuli. 
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1.10 Experimental methods 

 In order to investigate this, we used stimuli similar to those used in the Pattern-Glare Test 

(PGT) (Wilkins, 2001) (See Figure 1.6, Chapter 1). Stimuli comprised horizontal square-wave gratings 

(contrast = 75%) at 3 different spatial frequencies (.37, 3, and 12 c/deg: described as thick, medium, 

and thin respectively) displayed at 75% contrast in a circular window with diameter 15.2 deg at a 

viewing distance of 86 cm.  

We measured EEG (using the Biosemi 128 electrode cap, Figure 1.13) responses to visual 

stimuli based on those used in the PGT in a novel paradigm where stimuli were repeated (flicked on 

and off) at a low temporal frequency, allowing the recording of both ERPs and steady-state EEG, 

while also allowing us to consider habituation effects. Thus, we compared stimuli known to be 

aggravating in migraine with those that are less aggravating, in a paradigm that allows the separation 

of initial and habituated responses. In all analyses, participants were not selected based on their 

migraine or headache status; rather ERP and EEG results were correlated with scores on a range of 

headache and hyper-excitation measures within a single group drawn from the general population. 

State measures of discomfort in response to the PGT stimuli were also taken.  
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Figure 1-13 Biosemi cap used in the Experiment 

Biosemi (BioSemi , Amsterdam, Netherlands) 128 cap used in the experiment.  

In analyses 1 and 2, questionnaires were used to assess participants’ headache history 

(Headache and General Health Questionnaire, HGHQ) and tendency to suffer visual stress (Cortical 

Hyper-Excitability index (Chi), Braithwaite et al., 2015; Visual Discomfort Scale (VDS), Conlon et al., 

1999). We performed a factor analysis in which three orthogonal factors emerged in the data: 1) visual 

stress (a combination of the CHi, VDS and aura measures), 2) headache (frequency, intensity and 

duration) and 3) discomfort. Analysis 3 did not use a questionnaire or factor data.  
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Additionally, a contrast image was created based on what we call the PGI. This is the output 

file type that is used in the SPM data matrices in order to perform models or statistical tests.   

Statistical analyses of M/EEG data in SPM use the same mechanisms as all other data types 

(PET, fMRI, and structural MRI in VBM). This simply requires transforming data from SPM 

M/EEG format to image files (see NIfTI format, http://nifti.nimh.nih.gov/nifti-1/). A summary 

statistic image is just a technical term for the data feature summarising treatment effects that 

one wants to make an inference about. More formally, when this summary statistic is itself a 

maximum likelihood estimate based on within-subject data, the analysis is called a summary-

statistic procedure for random effect models (Litvak et al., 2011). 

This index enables us to focus our analysis on regions of the data volume where the clinically 

relevant, medium stimulus exhibits an extreme response relative to the thick and thin stimuli. Note that 

the images are the EEG/ERP responses to the medium, thick or thin stimulus. The PGI is defined as 

follows, 

PGI = (medium image – average (thick image, thin image)).  

1.11 Procedure 

 Each trial contained between seven and nine onsets of the same stimulus, which were presented 

on grey backgrounds with the same space-averaged luminance. After each trial, the participant was 

asked to rate how discomforting they found each stimulus on a 5-point scale and to indicate how many 

onsets they saw. This additional task was designed to ensure attention to the stimuli. At the end of each 

block, participants were shown the three stimuli in turn and asked to rate the extent to which they had 

experienced a range of possible pattern glare symptoms (Wilkins & Nimmo-Smith, 1984) (See Figure 

1.14 for experimental sequence breakdown). We also split the onsets from 1 to 8 to onset 1 and onsets 

2:8; this allows us to distinguish between surprise effects and habituation effects.  
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Figure 1-14 Experimental Sequence. 

The experimental sequence of the experiment.  

1.12 Author contributions 

 When writing a thesis by publication, it is understood that the analysis chapters are a 

collaborative effort by the authors. Listed below are the individual author contributions. Overall, each 

author contributed to each analysis: Schofield conducted the factor analysis used in the experiment and 

wrote the experimental code. Miller edited the code to add labjack commands and the range of 

discomfort measures.  Miller and Tempesta worked on collecting most data in the study. However, 

some data was collected by a previous student, before Tempesta joined the lab. Tempesta wrote the 

code to edit plots in Matlab, binning the data, preprocessing the EEG, and the batch files for the time-

frequency analysis. Litvak wrote the code to transfer the ERP/EEG data from ERPlab to SPM. 

Bowman assisted Tempesta with statistical analysis of the entire experiment, interpretation of the 
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results, manuscript supervision of analysis 2 and 3, Bowman and Tempesta also worked together with 

the creation of the graphics used in the analysis papers of 2 and 3.   

Analysis One  

For analysis one, Tempesta wrote the main manuscript, analysed the data and collected part of the data. 

Miller reviewed drafts of the manuscript and collected the other portion of the data. Schofield, 

Tempesta and Miller worked together on writing the introduction and discussion. Schofield also 

looked over the final draft revisions; specifically some of the introduction was re-written. Litvak 

helped assisted with the processing of the data in SPM and helped with the associated technical 

challenges. Bowman helped with all aspects of the manuscript preparation. All authors contributed to 

the discussion conversations, including interpretation of the results. 
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CHAPTER 2: THE MISSING N1: ELECTROPHYSIOLOGICAL CORRELATES OF 

PATTERN-GLARE IN THE TIME AND FREQUENCY DOMAINS  

Austyn J. Tempesta1, Claire E. Miller1, Vladimir Litvak2, Howard Bowman1,3, & 

Andrew J. Schofield4,1 

2.1 Abstract 

Headaches, including migraine, are a major contributor to workplace absences. Many headache 

prone individuals also show sensitivity to certain visual stimuli (visual stress), which can extend to 

discomfort. We analysed event-related potentials (ERPs) in response to square-wave gratings of thick 

(.37 c/deg), medium (3 c/deg) and thin (12 c/deg) gratings, using mass univariate analysis, considering 

three factors in the normal population: headache proneness, visual stress and discomfort. We found 

significant relationships between ERP features and the headache and discomfort factors. Stimulus main 

effects were driven by the medium stimulus regardless of participant characteristics. Participants with 

high discomfort ratings had larger P1 components for medium stimuli suggesting cortical 

hyperexcitability. The participants with high headache ratings showed abnormal N1-P2 components 

for medium stripes relative to the other stimuli, indicating an effect of habituation. These effects were 

also explored in the frequency domain suggesting variations in inter-trial theta band phase coherence. 

Our results suggest that discomfort and headache in response to striped stimuli are related to different 

neural processes; however, more exploration is needed to determine whether the results translate to a 

clinical migraine population.  

Keywords: Headache, migraine, visual stress, pattern glare, EEG.   
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2.2 Introduction 

Tension type headaches (TTH) and migraine are the second and third most common diseases in the 

world respectively (Steiner et al., 2013). Headache disorders are ranked second among causes of 

disability worldwide; mostly due to migraine (Institute for Health Metrics and Evaluation, 2018). 

Severe migraines are considered by the World Health Organization (WHO, 2016) as the leading cause 

of disability among neurological disorders, affecting 1 in 7 people (House of Commons, 2010), 

consisting of 3000 attacks each day in the UK alone with an estimated 190,000 occurring annually 

(Steiner et al., 2003). Missed work from migraine is estimated to cause £250 million in lost revenue in 

the UK each year (Clarke et al., 1996). Nonetheless, migraine is also the least funded of all 

neurological illnesses in the world (House of Commons, 2014; Shapiro & Goadsby, 2007). 

Migraine has been associated with the hyper-excitability of neurons in the visual cortex (Welch et al., 

1990) and increased sensitivity to certain stimuli, both during and between episodes; even in the 

absence of a specific visual trigger (Friedman & De Ver Dye, 2009; Ambrosini & Schoenen, 2006; 

Spierings et al., 2001). Migraine has also been associated with atypical EEG patterns (Marks & 

Ehrenberg, 1993) and an increased fMRI blood-oxygen level dependent (BOLD) response to certain 

visual stimuli (Hougaard et al., 2014). These stimuli also elicit an atypical haemodynamic response 

function (Olman et al., 2004; Vazquez & Noll, 1988). Here, we consider a broader range of headache 

causes and consider differences in event related potentials (ERPs). We consider EEG frequency 

components in response to visually aggravating versus control stimuli and the relationship between 

such differences. Finally, we examine a range of state and trait measures of cortical hyper-excitability 

and headache proneness. 



 

 

 35 

2.2.1 General Hyperexcitability Theory of Pathophysiology of Migraine 

Welch and colleagues (1990) proposed the general hyper-excitability theory of the 

pathophysiology of migraine. This theory proposes spontaneous depolarization, followed by a 

spreading suppression of neuronal function (cortical spreading depression, CSD). This chain of 

neuronal events is possibly mediated by the release of the excitatory neurotransmitter glutamate or the 

increase in extracellular potassium (K+). Clearance of K+ is also heavily dependent upon the capacity 

of glial cells (Van Gelder, 1987; Wright et al., 2001), which may be defective in migraine. This 

account is broadly consistent with the genetic account of migraine, which implicates genes that affect 

the glutamatergic system. These genes lead to both dysfunctional sensory processing and a cortical 

imbalance between excitation and inhibition leading in turn to hyperactive cortical circuits (Ambrosini, 

& Schoenen, 2006), CSD, sensory aura and activation of the trigeminovascular pain pathway (Buzzi, 

2001; see Vecchia & Pietrobon, 2012 for a review). There is some dissociation between these 

outcomes in that not all migraineurs experience aura and some experience aura without headache 

(suggesting a common trigger for aura and headache, which then proceed in parallel but with further 

modulation (Datta et al., 2013; Denuelle et al., 2008)). 

Excitation via the glutamate system would normally be held in balance by inhibition mediated 

by gamma-aminobutyric acid (GABA). Bigal et al. (2008) used magnetic resonance spectroscopy to 

measure in vivo GABA in a migraine population and controls, finding that migraineurs with low to 

moderate headaches had elevated GABA, whereas those with the most severe headaches had GABA 

concentrations similar to controls. This result suggests that migraine sufferers may counter excess 

excitation through increased GABAergic inhibition but that those suffering the most severe headaches 

cannot bring this inhibition to bear. Alternatively, increased GABA could be associated with a pain 

response which is deficient in those with severe headaches (Enna & McCarson, 2006). However, 
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others have found only a positive association between migraine and GABA concentrations (Aguila et 

al., 2015; 2016). Although the GABA system is complex and elevated levels may be a result rather 

than cause of migraine, these results would certainly suggest that migraine sufferers do not lack this 

key inhibitory neurotransmitter. The suggestion that migraine results from excess excitation rather than 

poor inhibition is supported by psychophysical evidence showing stronger inhibitory illusions such as 

the motion after-effect in migraine (Shepherd & Joly-Mascheroni, 2016), suggesting greater excitation 

during the adaptation phase, which then produces greater inhibition. Increased after-effects would be 

unlikely if neural inhibition were compromised. 

2.2.2 Effects of Cortical Hyper-Excitability in Migraine 

Cortical hyper-excitability may make those with migraine and other headache disorders more 

sensitive to visual stimulation such as flickering lights (Wilkins et al., 1989) and striped patterns (Harle 

et al., 2006). Such stimuli induce visual distortions and eye strain and are also trigger stimuli for some 

individuals (Wilkins, 1986, 1995; Wilkins et al., 1979, 1980). Flickering light sources up to around 

100Hz are problematic and those working under flickering fluorescent lighting experience more 

headaches and other symptoms than those working in natural light or under high frequency fluorescent 

tubes (Wilkins, et al., 1989). Of greater interest here are the visual distortions and discomfort resulting 

from striped stimuli. Most people have a tendency to see distortions when viewing high-contrast 

square-wave gratings (stripes) and this tendency increases somewhat with spatial frequency. However, 

migraineurs tend to see more distortions, especially when viewing mid-range spatial frequencies 

around 3c/deg (Harle, et al, 2006), such that the difference in the number of distortions seen between 

3c/deg and 12c/deg patterns is seen as diagnostic of interictal visual stress (Evans & Stevenson, 2008). 

This comparison is the basis for the pattern glare test (PGT) developed by Wilkins and Evans (2001).  



 

 

 37 

2.2.3 EEG Findings 

If cortical hyper-excitability is responsible for heightened sensitivity to simple visual patterns, 

we might expect to find increased neural activity associated with early visual processing in response to 

such patterns. A few early studies measured ERPs in response to non-patterned flashes of light, finding 

these have greater amplitude than pattern flashes in the early components of the ERP waveform 

(Lehtonen, 1974; MacLean et al., 1975; Connolly et al., 1982; Brinciotti et al., 1986; but see also 

Richey et al., 1966). However, EEG studies have more typically measured pattern-reversal visual 

evoked potentials (PR-VEPs) in response to chequerboard stimuli and have provided mixed results for 

the amplitude and latency of early visual components: some studies show increased amplitude and 

latency and others found a reduction; however most found that PR-VEPs in migraine were similar to 

those in controls (see Ambrosini & Schoenen, 2006, for a review). The evidence for habituation 

abnormalities is more consistent, suggesting that those with migraine fail to habituate to repeated 

stimulation with the same stimulus (Schoenen et al., 1995; Afra et al., 1998; Wang, Wang, et al., 

1999).  EEG waveforms also vary with migraine phase, paradoxically being closer to that of typical 

non-sufferers just prior to migraine onset (Shahaf, 2015), which may explain the somewhat 

contradictory results for PR-VEP amplitudes. The common use of un-patterned flashes and 

chequerboard stimuli to test VEP responses in migraine may be sub-optimal since stripes of a mid-

range frequency, rather than cheques are thought to be more aggravating for migraine sufferers and 

others with visual stress or pattern glare symptoms (Wilkins, 1995). It is possible then that VEP studies 

have not explored the strongest or most pertinent EEG responses in this population.  

Few studies have recorded brain activation in response to pattern glare stimuli. Huang et al. 

(2003) applied such stimuli to a visual stress population showing increased fMRI activity in the 

occipital cortex, consistent with the cortical hyper-excitability theory in migraine. To our knowledge 
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only Haigh et al (2019) and Fong et al., (2020) have previously measured ERPs in a headache prone 

population using the pattern glare stimuli. Fong et al. (2020) found differences between migraine 

sufferers and controls at around 200ms and 400ms post stimulus onset. The migraine group shows 

significantly greater negativity at 200ms for high frequency gratings (13 c/deg). Indeed, their main 

findings were on the high-frequency grating, while, in contrast, the findings we report here will be on 

the clinically relevant, medium frequency grating (3 c/deg). 

2.2.4 Implication of Cortical Hyper-Excitability to Different Brain Regions  

Cortical hyper-excitability has also been observed in the fMRI BOLD responses of those who 

have heightened sensitivity to striped patterns. Elevated BOLD signals have been found in the primary 

(striate) visual cortex as well as extra-striate visual cortex, pre-cortical structures and areas of the 

frontal cortex (See Schwedt et al., 2015, for a review). In one study, heightened BOLD responses to 

striped stimuli in cortical area V3 were found to reduce when the migraine patients wore glasses with a 

prescribed colour tint versus a similar tint or grey filters (Huang et al., 2011). Indeed, similar coloured 

filters have been found to reduce distortions on the PGT (Harle et al., 2006). 

Studies using near infra-red spectroscopy (NIRS) have found evidence that patients with 

migraine have shorter oxyhaemoglobin responses than healthy controls (Coutts et al., 2012). This 

result is in line with other findings suggesting that patients with lower concentrations of GABA 

produce higher amplitude, but shorter, BOLD responses in the visual cortex (Muthukumaraswamy et 

al., 2012). The result also supports the hypothesis that GABAergic mechanisms affect local cortical 

excitability (Semyanov et al., 2003), although, as noted above, the glutamatergic system seems to be 

the primary focus for hyper-excitability in migraine. Haigh et al. (2015) explored the link between 

pattern glare and the haemodynamic response in the normal population, comparing stimuli known to 

be aggravating in migraine with those that are not.  The amplitude of the haemodynamic response was 
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largest for stripes with high chromatic contrast; these being more aggravating. Moving striped stimuli 

showed a steeper decline in the haemodynamic response at stimulus offset compared to static gratings. 

This result suggests that, even in the normal population, the shape of the haemodynamic response 

appears to reflect stimulus potency: the stimuli that evoke the most discomfort in migraine produce the 

largest amplitude and the steepest slope in oxyhaemoglobin and deoxyhaemoglobin responses in the 

general population.  

2.2.5 State-Dependent Measures  

The neurophysiological tests described above tend to be costly and difficult to administer as a 

diagnostic test. The PGT is an easy to use clinical tool but, like some of the physiological measures, it 

may be state dependent – varying with migraine phase (Wilkins et al., 1984). Such state measures are 

useful for judging if an individual is suffering from visual hypersensitivity at a particular moment in 

time but may be poor measures of their general tendency to suffer hyper-perception. Hypersensitivity 

results in distortions of the visual image, which can be disruptive for everyday tasks such as reading 

and can cause discomfort in everyday environments. Based on these and other symptoms, Conlon and 

colleagues developed a 23 item questionnaire (Visual Discomfort Scale - VDS; Conlon, Lovegrove & 

Pattison, 2010) for which scores correlate positively with headache severity and visual distortions 

when viewing square wave gratings (similar to the pattern-glare (PG) stimuli) and letter stimuli; and 

negatively with reading speed and performance on the digit symbol sub-test from the revised Wechsler 

Intelligence Scale for Children (WISC-R). In an attempt to address cortical hyper-excitability more 

broadly, if still indirectly, Braithwaite et al. (2015) developed the Cortical Hyper-Excitability index 

(CHi), a 27-item questionnaire in which symptoms are rated for both intensity and frequency of 

occurrence; although these scores can be merged. Both the VDS and CHi can be regarded as trait 
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measures of cortical hyper-excitability in that they measure the proneness of the participant to episodes 

of hyper-excitability based on their previous experience. 

Cortical hyper-excitability is not limited to those who experience migraines. Stimuli that are 

disruptive for migraine sufferers are also triggers for those with photosensitive epilepsy (Adjamian et 

al., 2004; Wilkins et al., 1984). Further, visual hypersensitivity as observed with the PGT or similar 

metrics is co-morbid with a range of conditions including multiple sclerosis (Wright et al., 2007), 

stroke (Beasley & Davies, 2012), autism (Kientz & Dunn, 1997), and dyslexia (Saksida et al., 2016). 

In many of these conditions, visual distortions in text inhibit reading but can be alleviated using 

coloured filters. Some have disrupted reading and high scores on measures of visual discomfort, hyper-

excitability and PGT but few other symptoms. Wilkins and colleagues describe such individuals as 

suffering from visual stress and posit that this condition is separate from but co-morbid with other 

conditions – especially where there is no obvious brain injury (Wilkins, 2003). This overlap of 

symptoms may increase the generality of findings from the migraine literature; however, it does also 

suggest that when comparing patient and control groups to assess cortical hyper-excitability, some 

members of the control group may have some degree of latent hyper-excitability. This possibility can 

be countered by recording several measures of hyper-excitability as possible covariates for analysis, 

rather than relying on whether or not the participant is in the control or experimental group as the sole 

predictor of atypical neural activity. 

In this study, participants were not selected based on their migraine or headache status; rather 

ERP and EEG results were correlated with scores on a range of headache and hyper-excitation 

measures within a single group drawn from the general population. We measured EEG responses to 

visual stimuli based on those used in the PGT in a novel paradigm where stimuli were repeated 

(flicked on and off) at a low temporal frequency allowing the recording of both ERPs and steady state 
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EEG, while also allowing us to consider habituation effects. Thus, we compared stimuli known to be 

aggravating in migraine with those that are less aggravating, in a paradigm that allows the separation 

of initial and habituated responses. State measures of discomfort in response to the PGT stimuli were 

also taken. We hypothesised that symptoms of headache, visual discomfort, cortical hyper-excitability 

and pattern glare would correlate with increased amplitude and abnormal timing of early ERP 

components at occipital electrodes and that this would manifest in part as a lack of habituation to 

repeated stimulation. 

2.3 Materials and Methods  

2.3.1 Participants 

Forty undergraduate and postgraduate participants, recruited at the University of Birmingham, gave 

their informed consent and were compensated with £24 for participating. Participants with a history of 

psychiatric, psychological, and neurological conditions, or a history of unconsciousness, convulsions 

or epilepsy were excluded from the study. Migraineurs were included in the study. However, 

migraineurs were excluded if they experienced migraine with aura and smoked, if they used the 

contraceptive pill or if they experienced aura that lasted more than an hour. If aura lasted less than an 

hour, they were included.  

One participant chose to leave the experiment, one was removed due to an equipment malfunction, one 

due to an artefact that could not be removed and three were removed during data pre-processing due to 

a lack of usable trials (fewer than 20% per condition). There were thus 34 usable datasets (male=13, 

female=21, mean age= 22.5y, range=18-32y, standard deviation=2.86). This study was approved by 

The Science Technology Engineering and Maths Ethics Committee at the University of Birmingham in 

adherence with The Declaration of Helsinki.  
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2.3.2 Stimuli and Equipment 

We used stimuli similar to those used in PGT (Wilkins, 2001). Stimuli comprised horizontal 

square-wave gratings (contrast = 75%) at 3 different spatial frequencies (.37, 3, and 12 c/deg: 

described as thick, medium, and thin, respectively, see Figure 2.1) displayed in a circular window with 

diameter (15.2 deg). These stimuli were created in MATLAB using the Psychophysics Toolbox 

(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) and displayed on a Samsung 932BF LCD monitor 

(Samsung Electronics, Suwon, South Korea).  

 

Figure 2-1. Pattern-glare stimuli 

Left to right, thick (.37 c/deg), medium (3 c/deg) and thin (12 c/deg) gratings with a central fixation 

and vertical dividing line. The images shown here are representative of the stimuli but have been 

rendered to aid visibility in print.  

Questionnaires were used to assess participants’ headache history (Headache and General Health 

Questionnaire, HGHQ) and tendency to suffer visual stress (Cortical Hyper-Excitability index (Chi), 

Braithwaite et al., 2015; Visual Discomfort Scale (VDS), Conlon et al., 1999). EEG recordings were 

made using a 128-channel BioSemi (University of Amsterdam) EEG system in a dark, quiet room. 
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2.3.3 Procedure 

 After the EEG electrodes had been applied, participants began the experiment with a 5-minute 

resting period and then were presented with three blocks, each containing six trials for each of the 

three stimuli. Thus, each participant observed 18 trials per stimulus type. Each trial contained between 

seven and nine onsets of the same stimulus each lasting three-seconds followed by a variable interval 

of 1 – 1.4 seconds. We later averaged across onsets 2-8 thus increasing the effective trial count in that 

analysis. After each trial, the participant was asked to rate how discomforting they found each stimulus 

on a 5-point scale (1 = no discomfort, 5 = extreme discomfort) and to indicate how many onsets they 

saw. This additional task was designed to ensure attention to the stimuli. Due to ethical concerns, 

participants had the option to turn off stimuli by pressing a key; only three did so, and then only once 

each. At the end of each block, participants were shown the three stimuli in turn and asked to rate the 

extent to which they had experienced a range of possible pattern glare symptoms (Wilkins et al, 1984). 

After each block and at the end of the experiment, participants had a further resting period of 5 

minutes, during which they were requested to close their eyes and relax. They were also asked if they 

were willing to continue at each break. Stimulus order and number of onsets per trial were 

counterbalanced (subjecting them to variation, increasing interval validity) (Allen, 2017). 

2.3.4 Discomfort ratings and questionnaires 

Working with the 39 participants who completed the study, we computed mean discomfort 

ratings for each participant and stimulus type across the three blocks. Discomfort ratings tend to co-vary 

across the stimulus types, so we computed a discomfort index for each participant by dividing discomfort 

ratings for the medium stimulus by the mean of the thick and thin ratings. High scores on this index 

identify those participants who find the medium stimulus relatively discomforting compared to the two 

control stimuli. Overall scores for the CHi and VDS were computed according to the instructions for 
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those tools. Finally, data for headache frequency, intensity and duration and the experience of sensory 

aura were extracted from the headache and general health questionnaire (HGHQ). These seven measures 

have very different ranges, so we standardized each variable before entering them, which identified 3 

factors based on a Scree plot analysis. Following a Varimax rotation, the three factors were identified as 

visual stress (predominantly a combination of the CHi, VDS and aura), headache (frequency, intensity 

and duration) and discomfort (discomfort index). This factor structure is not surprising given the nature 

of the variables included, but the analysis also served to provide uncorrelated factors to aid the 

subsequent mass univariate analysis (MUA). Factor scores were computed using the regression method 

from coefficients shown in Section 2.9.1 of the Supplementary Materials, where we also describe the 

factor analysis in more detail. 

2.3.5 ERP pre-processing 

 We decimated the EEG data from a sampling rate of 2048Hz to 512Hz using the BioSemi 

toolbox. EEGs were then band-pass filtered using a second-order Butterworth filter with a pass band of 

0.1 to 30 Hz (½ power -3dB, fall-off at 12 dB per octave; for prior precedent for this choice, see Luck, 

2014; Tanner et al., 2015). Data for each onset were epoched between -200 and 1200ms relative to 

stimulus onset, referenced to the average of all electrodes and baseline corrected based on the 200ms 

period prior to stimulus onset. Eye-blink artefacts were removed using independent component 

analysis (ICA), with ICA components associated with eye blinks removed and the dataset 

reconstructed. The crown electrodes were removed to further reduce the presence of muscle and eye-

movement artefacts (Chennu et al., 2013), in line with previous work (Shirazibeheshti et al., 2018) 

who argue that this additional noise may confound mass univariate analysis (MUA) (explained in the 

next section) (electrodes removed = A11, A12, A13, A14, A24, A25, A26, A27, B8, B9) and the data 

referenced to the new electrode set (see figure 1-13 for full electrode cap). Data for individual onsets 
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were then deleted if any channel exceeded a +/-100 µV threshold, thus removing large artefacts such 

as movement. The data for each participant were split into 27 bins, one for each stimulus type (thick, 

medium or thin) and Onset number (1 to 9). Finally, we discarded data from Onset 9 - the number of 

onsets varied between 7 and 9 on each trial, so the occurrence of the 9th Onset was rare, making these 

data unreliable. Tallying across onset number, three participants who did not have at least 20% of 

usable stimulus repeats per stimulus type were removed (decided a priori, based on Luck, 2014). In 

addition, one participant was removed because an artefact could not be removed, and a further 

participant was removed because they had EEGs that were flat (i.e. equipment malfunction). For 

interpolation, approximate values between electrodes from biosemi and the internal SPM grid were 

mapped together, when the electrode locations from EEGLAB were combined with the SPM software. 

This enabled the interrogation of positions on the scalp beyond the electrode locations. In order to 

compare stimulus onset with habituation-effects, we divided the repeated onsets into two groups. We 

drew a logical distinction between the first stimulus onset in each trial (where the observer was 

unaware of the stimuli to be presented) and the remaining onsets (where the participant was able to 

anticipate the stimulus) and thus analysed Onset 1 separately from Onsets 2-8; the latter being 

combined so as to aggregate over the maximum number of onsets.  

2.3.6 Mass Univariate Analysis  

A mass univariate analysis (MUA) is the analysis of a large number of simultaneously 

measured dependent variables (e.g. voxels or samples) via the performance of the same univariate 

hypothesis tests (e.g., t-tests) across all of those dependent variables. This method allows for powerful 

error corrections for multiple comparisons. 

An MUA was conducted in SPM-12 (Wellcome Trust Centre for Neuroimaging, London, 

England) on three dimensional images (two of space, one of time) derived from the ERP data. To 
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control for multiple comparisons, we use a family-wise error (FWE) correction. Images were created 

using the data for each stimulus type (thick, medium, and thin), which is a response to EEG. Images 

are the file type used in the SPM data matrices in order to perform analysis of models or statistical 

tests. Statistical analyses of M/EEG data in SPM use the same mechanisms as all other data types 

(PET, fMRI, and structural MRI in voxel‐based morphometry ((VBM)).  

This simply requires transforming data from SPM M/EEG format to image files (see NIfTI 

format, http://nifti.nimh.nih.gov/nifti-1/). The result of statistical inference is a summary statistic 

image, an image representing the data feature summarising treatment effects that one wants to make an 

inference about. More formally, when this summary statistic is itself a maximum likelihood estimate 

based on within-subject data, the analysis is called a summary-statistic procedure for random-effects 

models (Litvak et al., 2011). 

 In the context of this paper, we will be regressing the dependent variable (the EEG data) onto 

parametric regressors (the factors).  Consequently, our summary statistic images reflect the extent to 

which the dependent variable correlates with the factor, as reflected in beta coefficients and one-

sample t-tests exhibiting a difference from zero. 

A contrast image was created based on what we call the pattern glare index (PGI). This index 

enables us to focus our analysis on regions of the data volume where the clinically relevant, medium 

stimulus exhibits an extreme response relative to the thick and thin stimuli. 

PGI = (medium image – average (thick image, thin image)).  

Then, we used the factor scores derived from the factor analysis as parametric regressors in the 

MUA, excluding factor scores from the five participants whose ERP data failed our screening tests.   
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This analysis focused on the evoked response generated by a stimulus onset, which will be 

strongest at posterior regions of the scalp. To do this, we limited our analysis in two ways. First, we 

calculated an overall window of analysis in time considering only that portion of the grand average 

ERP waveform that deviated from baseline. This window was used to seed the subsequent region of 

interest (ROI) analysis. Second, we calculated two 3D ROIs in order to capture the P1 and subsequent 

ERP features that are central to our hypotheses.  

The initial window of analysis was calculated as follows. ERPs are typically characterised by a 

series of positive and negative excursions from baseline, which correspond to the stimulus-evoked 

onset transients before the time series settles back and we wanted to capture only this period. To do 

this, we focused on the aggregated average (Brooks et al., 2017) across the three stimulus conditions 

(for Onsets 2-8). ROIs can be identified on the aggregated average, without inflating false-positive 

rates, since it does not reflect condition (i.e. stimulus) differences, which for us amounts to the PGI 

(Brooks et al., 2017)1. However, an initial inspection of our data revealed that the aggregated average 

did not settle back to baseline but rather fell to a constant, positive direct current (DC) level (a stable 

baseline shift). Thus, working with the aggregated average at electrode A23 (Oz), we captured the 

period from the first significant deviation from baseline (zero) until the aggregated average finally fell 

to below significance compared to the DC level. We first calculated the DC level from a period of 

400ms duration taken well after the end of the evoked transients. We took the mean value of all 

participants over this period. The window of analysis was then found by calculating confidence 

 
1
 Indeed, it is straightforward to show that the aggregated average and the PGI are orthogonal: the dot product of the 

corresponding contrast vectors, [1/3,1/3,1/3] for the aggregated average and [1,-1/2,-1/2] for the PCI, is equal to zero. 
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intervals across participants at each time point weighted by the number of valid trials2. We used the 

following equations for the weighted confidence interval (CI) at each time point:  

𝜇𝜔 =
∑ 𝑥𝑖 . 𝑚𝑖

𝑛
𝑖=1

∑ 𝑚𝑖
𝑛
𝑖=1

 

 

𝑚̅ =
∑ 𝑚𝑖

𝑛
𝑖=1

𝑛
 

 

𝜎𝜔 =
√∑

𝑥𝑖
2. 𝑚𝑖

𝑚̅
𝑛
𝑖=1 − 𝑛𝜇𝜔

2

𝑛 − 1
 

 

𝐶95 = 𝜇𝜔 −
𝑡95,𝑛−1  𝜎𝜔

√𝑛
  

 

where 𝜇𝜔 is the weighted mean, 𝜎𝜔 is the weighted standard deviation, 𝐶95 is the confidence interval, 

𝑛 is the number of participants, 𝑡95,𝑛−1 = 1.7 is the critical t value for a one-tailed 95% confidence 

interval,  𝑥𝑖 is the value of the ERP for the ith participant, 𝑚𝑖 is the number of valid trials for that 

participant, and 𝑚 is the mean number of trials per participant. The lower CIs were compared to zero 

at the start of the ERP trace working forward and to the DC level at the end of the trace working 

backwards; yielding a window of analysis between 56-256ms. This time window was used in the 

MUA analysis of the factor intercept and to seed our second ROI. 

We next constructed ROIs using two methods. Our first ROI targeted the P1 excursion and was 

based a-priori on the literature concerning this ERP feature (Bruyns-Haylett et al., 2017; Di Russo et 

 
2
 This weighting generates the Aggregated Grand Average of Trials (Brooks et al, 2017), upon which regions of interest 

can be selected without inflating type-I error rates in the presence of trial-count asymmetry. 



 

 

 49 

al., 2002; Vogel & Luck, 2000; Zhang et al., 2013) resulting in an ROI volume centred on co-ordinates 

x=0mm, y=-84mm, t=101ms with dimensions length = 92mm, width = 42mm, time = 62ms (for 

explanation see supplementary material). Note also that Adjamian et al. (2004) located MEG sources 

in response to similar stimuli in the occipital pole. 

Our second ROI targeted the ERP components subsequent to P1. The best locations and time 

period to capture such features are less well determined in the literature, so we took a different 

approach using an orthogonal contrast to determine an ROI (Brooks et al., 2017). The key property that 

underlies the orthogonal contrast approach is that the contrast used to identify the ROI does not bias 

the contrast of interest under the null hypothesis.  That is, under the null, statistically speaking, there is 

no sense to which the contrast of interest is more, or indeed less, likely to hold at the ROI than 

anywhere else in the data volume.  Perhaps, the simplest orthogonal contrast approach to ROI selection 

is to average all conditions together, generating what is called the aggregated average.  This is 

orthogonal to a typical contrast of interest over the conditions.  In our context, the mean/intercept is 

orthogonal to any of the factors. We used our analysis of the factor intercept in the MUA (see results) 

to produce an ROI mask for further analysis; section “Further Justification of Window Selection” in 

the supplementary material gives further justification for the validity of this approach. To this end, we 

applied a t-threshold of 5.55 (which corresponded to p<.001) to the intercept image to capture a 

coherent space-time mask for our second ROI. In practice, this ROI captures posterior electrodes in the 

period of the N1 excursion. 

Our statistical tests are one-sample t-tests, used to demonstrate that individual regression 

coefficients (for our factors and intercept) are statistically different from zero. Analyses of the 

mean/intercepts were run two-tailed, but, then, analyses over factors were run one-tailed. This is 

because the direction of the effect that defined the ROI (based on prior precedent for P1 and 
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mean/intercept for N1) governed the direction of interest for each factor effect. For example, if 

medium were largest for the mean/intercept, a positive correlation with a factor is the only 

theoretically plausible finding. This is because higher on the factor corresponds to a greater deficit, and 

our central hypothesis is that medium will induce a more extreme response from more impaired 

participants. 

We did not perform statistical inference on our time-frequency plots. This is because any such 

analysis would be confounded by double dipping (Kriegeskorte et al., 2009), since we are interested in 

time-frequency features (including ROIs) that correspond to significant effects observed in our time-

domain (ERP) analyses. Accordingly, we view our time-frequency analyses as explanatory, but the 

statistical robustness of our finding’s rests upon our ERP analyses. A general linear model (GLM) 

analysis was performed on the data where the PGI over ERPs was the dependent variable, while the 

independent variables were the normalised factor scores of the trait and state data responses (which act 

as regressors).  This same general linear model was fit to the ERP data at each time-space point in the 

data volume, providing beta parameter values for all the regressors (the intercept and three factors) at 

each such point.  Intuitively, each parameter value indicates the extent to which the evoked response at 

the corresponding time-space point correlates (across subjects) with the relevant regressor.  In this 

way, a mass univariate analysis is able to identify time-space regions in the data volume, which vary in 

a fashion consistent with a factor or intercept.  Additionally, due to the mean centering of regressors, 

the intercept parameter is the mean of the evoked response at that time-space point.   

2.3.7 Data Visualisation 

 MUA treats each factor as a continuous variable and looks for significant relationships between 

space-time maps and each factor. This approach produces space-time significance maps for the factors 

of concern but is limited for visualising the underlying ERPs. It also emphasises those participants who 
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score at the extremes on each factor. We therefore placed our participants into two groups for each 

factor based on median splits of the factor scores. We then derived weighted ERPs for each (median 

split) group based on the absolute deviation of the factor scores from the median (a positive scalar) for 

each participant multiplied by the amplitude at each timepoint in the ERP matrix. In this way, we 

scaled the ERPs according to the corresponding factor loadings in order to provide a visualisation that 

was more representative of the parametric regressor inferences of the MUA (see supplementary 

material for unweighted ERPs). These groupings differed between the factors. 

2.3.8 Time-frequency analysis 

We followed up our main MUA analysis with a time-frequency analysis to better understand 

the origin of one of our effects. To avoid edge effects (caused by the wavelet being partially outside 

the segment being analysed) during wavelet fitting, we expanded our EEG analysis window to include 

the -500 to 0 ms period. For each participant, we then examined amplitude (ie.  power) and inter-trial 

phase coherence for frequencies in the range 5-40 Hz using 5-cycle morlet wavelets at 1 Hz 

intervals. Inter-trial coherence is a measure of the consistency of phase across trials.  If a component 

presents at a similar phase on all trials, it means that there is a little variation in the latency of this 

component across replication, ie., there is little temporal jitter.   

The results were then cropped between -100 and 800 ms, baseline rescaled using a logR ratio 

function to the (-100 – 0 ms) baseline window and then averaged. We present the results between 5 

and 11 Hz. A further analysis of the lower frequencies used a 3-cycle wavelet to improve temporal 

resolution. 

 

2.4 Results 

 In summary, MUA was nearly significant for Onset 1 (Figure 2.2) and MUA revealed 

significant space-time peaks in the factor intercept for Onsets 2-8 (Figure 2.3) as well as a significant 

cluster for Onset 1 on the discomfort factor (Figure 2.4) and a significant peak for Onsets 2-8 on the 
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headache factor. No other significant peaks or clusters were found and there were no significant effects 

on the visual stress factor. 

2.4.1 Intercept effects 

Figure 2.2 shows the results of the MUA for the factor mean/intercept for Onset 1 data only. 

Both unthresholded-t (A) and thresholded-t (B) maps are shown, where the latter shows a nearly 

significant effect, p=.054 [two-tailed] (which corresponds to t(30) =5.37, p=.027, one-tailed), family-

wise error (FWE) corrected at the peak-level, at around 180ms and centred at Oz. Panel C shows 

standard grand averages (in this case unweighted) for thick, medium and thin at this electrode. 

Recalling that the MUA analysis was conducted on the PGI (not raw ERPs), the nearly significant 

excursion in this index occurred in the N1 period, where thick and thin exhibit a minimum whereas 

medium undergoes what appears to be an early P2 deflection. 
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Figure 2-2. Topographic maps with (one-tailed) t-values over pattern-glare index and ERPs for 

Mean/intercept Onset 1. 

One-sample t-values are shown to enable the polarity of effects to be seen. A) Topographic maps that 

represent unthresholded t-values for Onset 1 from -200 to 380ms in 20ms intervals; scale is t-values 

from -5 to 5. B) Thresholded (FWE corrected at the peak-level) SPM maps from 170-184ms in 2ms 

intervals; the scale is t-values 0 to 7. C) ERPs representing Onset 1 for medium, thick, and thin at 

electrode Oz, which approaches significance two-tailed. The PGI was added to the plot with a +10 

increase to amplitude. Vertical lines show start and end of significant effects. Positive is plotted up. 

MUA intercept results for Onsets 2-8 showed a significant peak at 179ms at Oz p<.001[two-

tailed] (which corresponds to t (30) =8.94, p<.001, one-tailed) FWE corrected at the peak-level (Figure 

3). Interestingly, the ERP for Onsets 2-8 (Panel C) appears elevated relative to that for Onset 1 (Figure 

2.2, Panel C), perhaps due to smaller N1 components. The late DC shift referred to above is also 

visible from around 350-400ms in the ERPs for thick and medium stimuli for Onsets 2-8. 
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Figure 2-3. Topographic maps with (one-tailed) t-values upon pattern-glare index and ERPs for 

mean/intercept, Onsets 2-8. 

One-sample t-values are shown to enable the polarity of effects to be seen. A) Unthresholded 

topographic maps that represent t-values for Onsets 2-8 from -200 to 380ms in 20ms intervals; 

scale is t-values -9 to 9. B) Thresholded (FWE corrected at the peak-level) topographic maps; 

scale is t-values from 0 to 7. C) ERPs representing Onsets 2-8 for medium, thick, and thin at Oz 

electrode (the location of the significant cluster). The PGI was added to the plot with a +10 

increase in amplitude. Vertical lines show the start and end of significant effects. Positive is 

plotted up. 

2.4.2 Factor effects 

Figure 2.4 shows the MUA results for Onset 1 on the discomfort factor based on the a-

priori P1-ROI revealing two significant (FWE-peak corrected, with small volume correction) 

peaks at 97ms (Panel A) centred on electrodes A20 (Panel B; t(30)=4.31, p=.027, one-tailed) and 

A8 (Panel C; t(30)=4.17, p=.036, one-tailed). Comparing participants above and below the 

median value on the discomfort factor both electrodes show a marked P1 component for medium 

frequency stimuli that is present in the high-discomfort group but not those low on the factor. 

High discomfort is associated with a strong P1 peak for the first appearance (Onset 1) of medium 

stimuli. 
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Figure 2-4. Topographic Maps with (one-sample, one-tailed) t-values on PGI using a ROI 

analysis and weighted ERPs at the significant electrodes for discomfort factor scores for Onset 1. 

A) Thresholded (FWE corrected at the peak-level) topographic maps, using a ROI analysis 

derived a priori from the literature for 90-105ms, shown here in 1ms intervals. Scale represents 

t-values from 0 to 6. B & C) Weighted ERPs at the significant electrodes for the discomfort factor 

A20 (Green(B)) & A8 (Blue(C)) at the corresponding significant points in each cluster in Panel 

A. Vertical dashed lines show start and end of significant effects. Positive plotted up.  

Figure 2.5 shows the MUA results for Onsets 2-8 on the headache factor based on the 

orthogonal contrast N1-ROI. We found a small but significant cluster (FWE peak-level corrected, 

with small volume correction; t(30)=3.34, p=.047, one-tailed) centred at electrode A29 (Figure 

2.5) comprising 4 voxels but lasting over 22ms from 155-177ms with a peak at 173ms. ERPs (see 

Panel B) suggest that either the N1 deflection is missing for the medium stimulus in the high-

headache group or that the P2 is accelerated and perhaps somewhat variable in latency in the high 

group. We explored these two possibilities further using a time-frequency analysis. ERPs were 

re-baselined over a 500ms period (to allow a broad wavelet) prior to stimulus onset and subjected 

to time-frequency analysis based on a wavelet size of 5 cycles to reveal changes in power and 

inter-trial phase coherence over time across a range of EEG frequency bands. As time-frequency 

analysis calculates average power and inter-trial phase coherence across trials and participants, an 

absence of N1 at the trial level would likely result in reduced theta band power for the high-group 

with medium stimuli. This is because theta is the dominant band for the P1-N1-P2 complex. In 

contrast, if the apparently weak N1 were due to variability in the timing of P2, we would expect 

power to be unaffected but inter-trial phase coherence to be weak in this time-period. 
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Figure 2-5. Topographic maps of (one-sample, one-tailed) t-values and ERPs using an 

orthogonally derived mask from the mean/intercept of Onsets 2-8. 

A) Thresholded (FWE corrected at the peak-level, small volume corrected) t-value maps for 

length and frequency of headaches from 152ms to 184ms in 2ms intervals; scale is t-values from 

0 to 6. B) Weighted ERPs derived from a median split on headache parameters, which was at 

electrode A29 in the significant cluster.  

Figure 2.6 shows time-frequency power plots for the high-headache group for the three stimuli. 

We have marked the ROI in the relevant power plots in Figure 2.6. Power is about as high for the 

medium stimulus in the theta band (around 7Hz) as for the thick stimulus. That is, the power plots 

for thick and medium stimuli are similar, despite the lack of visible N1 in the medium ERP. 

Figure 2.7 shows inter-trial phase coherence plots for the high (Figure 2.7 Panels A, B, C) and 

low (Figure 2.7 Panels D, E, F) groups for each type of stimulus. Phase coherence in the theta 

band in the relevant window is similar for the thick and medium stimuli in the low-headache 

group, but weaker for medium stimuli than thick in the high-headache group, suggesting that 

temporal jitter (Chennu et al., 2009) in the timing of the P2 is responsible for the altered ERPs. 

Jitter refers to variations of phase cycle in time, reflecting changes between trials in latency. 

Another way of thinking about this would be that for those high on the Headache factor, 

in the relevant time window, the medium condition is exhibiting an induced response (i.e. high 

power, but less locking to the stimulus), while the thick condition is exhibiting a more typical 

evoked response (i.e. high power, with strong stimulus locking). The fact that there is low phase 

consistency across trials at the relevant time-frequency point for thin stimuli does not confound 

our argument. That could simply be explained by the lower power for thin, which would cause a 
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loss of inter-trial coherence because the noise in the data has a greater impact on the 

measurement of phase, when the signal has low amplitude (Chennu et al., 2009). 
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Figure 2-6 Time-frequency analysis for those high on the headache factor. 

Power as a function of oscillation frequency and time is shown: A) Thick stimulus, B) Medium 

stimulus and C) Thin stimulus at electrode A29. Colours represent power in dB, which was 

calculated using a 5-cycle wavelet. Box shows window of interest based on significance window 

for headache factor from the time-domain. 
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Figure 2-7. Time-frequency analysis for those high (left) and low (right) on the headache factor, 

showing inter-trial coherence as a function of oscillation frequency over time for Onsets 2-8: 

A, D) Thick stimulus, B, E) Medium stimulus, C, F) Thin stimulus at electrode A29. Colours 

represent inter-trial coherence, calculated using a 5-cycle wavelet. Box shows window of interest 

based on significance window for headache factor from the time-domain. 

We decided that the initial analysis would be to see what difference we are observing in power 

between medium and thick, where thick is showing a strong oscillatory pattern. We noticed that 

the inter-trial coherence in thick was stronger than for medium in those high on headache Factor. 

We therefore constructed a confirmatory analysis in which we averaged before doing the power 

analysis, which gives us a better insight into what is going on at the ERP level. 

To provide converging evidence for our jittered-P2 hypothesis for the high headache 

group’s response to the medium stimulus, we conducted a power analysis on the grand averages. 

That is, we computed power after averaging rather than before. We would now expect to find a 

drop-in theta power for medium relative to thick at the relevant time period despite the absence of 

such a dip in the normal power-plot of Figure 2.6.  Using a smaller 3-cycle wavelet (which 

improves temporal resolution but reduces frequency resolution) we indeed observe a loss in theta 

power at around 185ms as expected (see Figure 2.8). 
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Figure 2-8. Time-Frequency plots for those high on the Headache factor on grand averages,  

A) Thick stimulus and B) Medium stimulus at electrode A29, analysed with 3 cycle wavelets. Box 

shows window of interest based on significance window for Headache factor from the time-

domain. 

2.5 Discussion 

 Migraine and tension headaches represent a major cause of disability and lost potential in 

the working age population. A better understanding of the neural factors that are associated with 

headaches may help to reduce their impact. Migraineurs are known to be sensitive to striped 

stimuli of a particular mid-range spatial frequency.  In the present study, we considered evoked 

responses to such stimuli in the general population and related them to three factors: visual stress, 
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a tendency for headaches, and discomfort in response to aggravating stimuli. These factors were, 

by construction, uncorrelated. We found significant effects for the headache and discomfort 

factors operating at different times in terms of stimulus presentation and on different components 

in the ERP. Both these effects are new and would benefit from replication: while both are clearly 

significant (p=.027 and p=.036), even samples of size 34 (which is a good size for neuroimaging) 

are subject to substantial error (Lorca-Puls et al., 2018). 

The state measure discomfort showed a significant effect only for the first presentation of 

the stimulus (Onset 1), suggesting that this factor may relate to the initial response to a new 

stimulus. The second factor combined headache frequency, intensity and duration and was 

associated with significant effects only for subsequent presentations of the stimulus (Onsets 2-8), 

suggesting that this factor relates to habituation. The separation between these effects across 

factor, time (from stimulus onset) and electrode sites suggests that they represent distinct 

physiological phenomena in the way the first stimulus presentation and the remaining onsets are 

processed. We will discuss these effects more fully below after discussing the stimulus driven 

effects that were not factor dependent. 

2.5.1 Stimulus driven / factor intercept effects 

Importantly, the mean/intercept effect for Onset 1 only approached significance (two-

tailed, p=.054). Thus, at present, this effect needs to be treated with caution. This said, we have 

included the effect, since it somewhat mirrors what we see for Onsets 2-8, which is a more highly 

powered condition (as it involves many more trials), affording it some face validity. When 

looking at the mean intercept of both Onset 1 and Onset 2-8 trials, the most salient feature is that 

the window of time and position of the effect is similar for both subdivisions of trials, which 

suggests some sort of underlying connection. The P2 elicited by Onset 1 (see Figure 2.2) seems 
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to be accelerated in the medium condition relative to the thick/thin conditions, and visually there 

is attenuation of N1 in Onsets 2-8 for medium stripes relative to thick (see Figure 3), which could 

also relate to an accelerated P2. The similarity between this result for all participants and the N1-

P2 effects found for the high-headache group on Onsets 2-8 only (see Figure 2.5 and later) is 

striking. This may suggest that the effect is driven by the medium stimulus regardless of 

participant characteristics but is accentuated in the high-headache group.  The visual N1 is 

considered important in modulating spatial attention (Mangun, 1995; Hillyard et al., 1998) and 

discriminative processing (Ritter et al., 1979; Vogel & Luck, 2000; Hopf et al., 2002). However, 

one explanation to account for a reduction of the N1 attentional effect in sequences of bilateral 

stimuli (Heinz et al., 1990) is that physiological refractoriness due to the stimulus repetition 

might reduce the N1 amplitude (Luck et al., 1990).  Additionally, N1 is affected by stimulus 

properties such as brightness of stimulus and intensity (Munte et al., 1995; Carrillo-De-La-Peña 

et al., 1999), although N1 amplitude is generally higher for stronger stimuli. We will return to 

this point when discussing the visually weak N1 component found for our high-headache group. 

2.5.2  Discomfort 

 The discomfort factor reflects a state measure of how comfortable (low scores) or 

discomforting (high scores) participants found the medium stripes relative to the other stimuli 

during the course of the experiment. We found a stronger P1 for the high-discomfort group 

compared to low-discomfort in response to the medium striped stimuli (see Figure 2.4). 

Specifically, for the high-discomfort group, the medium stimuli elicited stronger P1 than the other 

stimuli. This was not so for the low-discomfort group. This supports our hypothesis that medium 

stripes would elicit significantly different early ERP components compared to thick and thin, but 

only in individuals showing evidence of visual sensitivity. Strong occipital P1 has been associated 



 

 

 67 

with higher luminance suggesting that stronger stimuli may elicit a stronger P1 at posterior 

electrodes (Munte et al., 1995; Carrillo-De-La-Peña et al., 1999). In the context of our study, those 

with cortical hyperexcitability may respond more strongly to certain stimuli (particularly those that 

are aggravating) as if they were presented at higher strength. This group might also be more likely 

to find those stimuli discomforting. Thus, hyperexcitability alone could produce the enhanced P1 

in the high-discomfort group. In addition, P1 is associated with spatial attention (Luck et al., 1994). 

In particular, P1 is reduced for unattended stimuli (Mangun & Hillyard, 1991; Van Voorhis & 

Hillyard, 1977; Munte et al., 1995). Therefore, in our experiment, the lack of P1 in the low 

discomfort group may also be because these participants were able to quickly shift attention away 

from this aggravating stimulus, thus avoiding discomfort. In contrast, the high-discomfort group 

may have been unable to withdraw attention from the medium stimulus.  

Our P1 differences are specific to the first Onset; that is the initial presentation of each 

stimulus type in a series of repeated presentations. Noting that the P1 has been associated with 

surprise (Utama et al., 2009; Lassalle & Itier, 2013), it seems likely that even the high-discomfort 

group are able to ignore or attenuate the impact of the medium stimulus when they are expecting it 

to occur – in this group at least, habituation of P1 is effective.  

2.5.3 Headache  

 The headache factor is a trait measure recording the participant’s proneness to long, 

intense and frequent headaches. The high-headache group shows an abnormal N1 for the medium 

stimuli in Onsets 2-8. This may be due to an absent or attenuated N1 or an accelerated and 

temporally unreliable P2. Our time-frequency analyses suggest that the P2 account is more likely, 

but we cannot dismiss the N1 account entirely. Here, we briefly outline the implications of an 

attenuated N1 before discussing P2 more fully. 



 

 

 68 

The low-headache group showed a strong N1 component for medium stimuli, but the 

high-headache group showed a slight opposite polarity deflection in the same period in weighted 

ERPs (see Figure 2.5B) and a reduced amplitude N1 in the unweighted ERPs (supplementary 

material). At first sight, this result appears opposite to that of Fong et al (2020) who found 

migraine sufferers to have more negative ERPs around 200ms (equivalent to our N1). However, 

they did not use repeated onsets and so could not have revealed our positive going effect for 

Onsets 2-8 (see supplementary material). Occipital N1 is also linked to stimulus intensity (Munte 

et al., 1995), with higher-amplitude and shorter latencies associated with stronger stimuli. The 

amplitude of the occipital N1 has also been linked to attention; with a stronger N1 at attended 

locations (Luck et al., 2000). Thus, assuming a link between cortical-hyperexcitability and 

headaches, neither a hyperexcitability account nor failure to withdraw attention would account 

for low N1 amplitudes in our high-headache group. However, in the auditory domain, reduced N1 

amplitude has been associated with repetition suppression (Hsu et al., 2014). It is possible then 

that the high-headache group is successful in suppressing the repeated medium stimuli whereas 

the low-headache group do not feel the need to suppress this stimulus as, for them, it may be 

weaker in the first place. This would imply that the high-headache group habituates to the 

medium stimulus. There is conflicting evidence in the literature showing both that those with 

migraine fail to habituate to repeated stimulation of the same stimulus (Schoenen et al., 1995; 

Brighina et al., 2016) and conversely that habituation may be present in migraineurs (Omland et 

al., 2013;2016). However, this habituation account seems unlikely in the light of the time-

frequency analysis described above and discussed next. 

Our time-frequency analysis suggests that EEG power is relatively stable between the 

medium and thick stimuli in all frequency bands and in particular in the theta band over the 
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period of time for which ERPs for the two stimuli most differ in the high-headache group (see 

Figure 2.6). Reduced theta power, as might be associated with an absent N1, does not explain our 

data. However, inter-trial phase coherence is reduced for the high-headache group viewing 

medium stimuli during the critical period around 165ms after stimulus onset. This suggests that 

theta phase coherence (locking) may be weak in this group for this stimulus. Inter-trial theta 

phase coherence has been associated with the P2 component (Freunberger et al., 2007) and it is 

possible that variability in the timing of the P2 component, from trial-to-trial or between 

participants, spreads this component in time, masking the N1 in the ERP.  We now further 

explore the role of the P2 component.  

The P2 component has been associated with a number of top-down attentional tasks such 

as visual search (Luck & Hillyard, 1994). This association with top-down processing makes 

modulations of P2 an unlikely candidate in our study where the attentional load is minimal. 

However, we note that variations in P2 latency have been found across a range of conditions 

where neural inhibition is potentially compromised, including ADHD (Johnstone et al., 2009), 

schizophrenia (Shin et al., 2010) and ageing (Bourisly & Shuaib, 2018). Mostly, P2 onset is 

delayed in these conditions, which would not compromise the N1 region, but we note first that 

our high-headache group may not all have been migraineurs and second that migraine is not 

necessarily associated with poor inhibition but rather with an imbalance between excitation and 

inhibition. For example, Shepherd & Joly-Mascheroni (2017) reported stronger inhibitory 

illusions in those with migraine. It is possible therefore that our headache group exhibit unreliable 

P2 and poor inter-trial theta phase coherence around the P2 time period, with an advanced, rather 

than delayed, P2 on some trials. Importantly, theta-phase connectivity has been associated with 

increased frequency of epileptic attacks (Douw et al., 2010).  Given our participants’ high scores 
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on the headache factor, there may be overlap between some of these individuals and the migraine 

population. However, more work is required to pinpoint the cause of the absent N1 / unreliable 

P2 and relate it to inhibitory mechanisms. 

In conclusion, we found two factors related to altered ERPs. Those scoring high on the 

discomfort factor exhibited an increased P1 component for the medium stimulus relative to both 

the other stimuli and the low-discomfort group. This state measure may relate to cortical hyper-

excitability making the stimuli appear more potent or to an inability to disengage attention. Those 

scoring high on the headache factor showed a difference in the N1-P2 time window consistent 

with an early/jittered P2 masking N1. This could relate to poor inter-trial theta phase coherence 

and poorly regulated P2 timing but could also be evidence of successful suppression of repeated 

stimuli or habituation. The dissociation between these factors across time from stimulus onset, 

stimulus repeats, and electrode sites suggest that they relate to distant neural processes. Given 

previous results suggesting that differences in hyper-excitability and habituation in migraine are 

underpinned by different physiological phenomena, future studies are needed to see whether our 

results are transferable to clinically diagnosed migraineurs. 
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2.9 Supplementary Material 

2.9.1 Factor analysis 

Factor analysis seeks to derive independent factors from a collection of variables. Thus, the 

correlations between our factors were zero. Rotation helps to clarify which variables load onto 

(belong to) each factor, as seen in the Rotated Component Matrix (Table 2-1) and helps with 

factor naming. Our factors scores were calculated in SPSS (IBM, NY) using the regression 

method in which all variables contribute to all factors according to the Component Score 

Coefficient Matrix (Table 2-2). For the headache and discomfort factors, the contribution from 

variables not obviously associated with these terms was minimal. The headache variables did 

contribute to the visual stress factor, but were pitted against each other such that intensity and 

frequency contributed positively onto this factor while duration contributed negatively. Since the 

headache variables correlate relatively strongly, the effect of these positive and negative 

weightings will be to cancel out the overall effect of headache on the VS factor. Although 

correlations between factors were zero by design, the correlation between discomfort ratings for 

the medium stimuli alone and headache frequency was 0.3 (p=.068) which, while not significant 

in our sample, is similar to previous measures. 

Table 2-1. Rotated Component Matrix 

Rotated Component Matrix 

 
Component 

 
1 2 3 

VSQ 0.636 0.035 0.062 

CHi 0.845 0.212 -0.074 
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aura 0.789 0.122 0.292 

H-duration -0.470 0.764 0.040 

H-intensity 0.366 0.716 -0.116 

H-frequency 0.305 0.795 0.041 

Discomfort 0.119 -0.028 0.977 

 

Table 2-2. Component Score Coefficient Matrix 

 
Component Score Coefficient Matrix 

  
Component 

 
  1 2 3 

VSQ 0.303 -0.055 -0.021 

CHi 0.401 0.018 -0.172 

aura 0.337 -0.012 0.187 

H-duration -0.332 0.51 0.135 

H-intensity 0.108 0.372 -0.128 

H-frequency 0.048 0.433 0.036 

Discomfort -0.065 0.013 0.934 

 

2.9.2 Direct Comparison of Stimulus Responses 

In EEG work, one often attempts to avoid differences in stimulus properties, particularly those 

that are low-level, such as spatial frequency. This is because one is typically seeking to identify 

differences in higher-level properties, such as, attentional state, affective salience or linguistic 

properties, and associated EEG features could be contaminated by differences in low-level 

features. However, this is not our situation, we are specifically seeking to observe differences in 

the brain’s electrical response to changes in low-level stimulus features, i.e. spatial frequency. 

Other researchers also looking at the brain’s electrical response to aggravating stimuli, 

have sought to avoid making comparisons across stimuli with different spatial frequencies (Fong, 
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et al., 2020). A consequence of this choice is that effects of different spatial frequencies have to 

be judged informally, without a statistical test to quantify the confidence in an observed 

difference; effectively one is left considering the difference of evidences (e.g. comparing p-

values), rather than assessing the evidence for a difference. There are, of course, many ways to 

investigate scientific questions, but, since the question of interest for us is how early brain 

responses change to stimuli that have different effective strengths for different groups, we have 

chosen to directly compare the EEG generated by stimuli of different spatial frequencies. 

Additionally, our parametric regression onto the three factors we identified cannot be 

impacted by fixed baseline differences between gratings, such as, Thick generating an overall 

higher amplitude than Thin or Medium, since that difference would be consistent across 

participants. As a result, it would not create a differential pattern “down” the regressor, i.e. it 

could not generate a non-zero correlation between dependent variable and regressor. Thus, fixed 

baseline differences in brain responses to different gratings cannot impact our analysis of factors. 

2.9.3 Further Justification of Window Selection 

The second ROI that we analysed focussed on the time region of the N1 component, which 

follows the P1. As discussed in the “Mass Univariate Analysis” subsection of the “Methods” 

section, the spatial and temporal parameters of this component are less well defined in the 

literature. Consequently, we applied an orthogonal contrast approach to identify the ROI (Brooks 

et al., 2017). We used our analysis of the factor intercept in the MUA (see results) to produce an 

ROI mask for further analysis. This approach will not inflate the false-positive rate for the 

following reasons. 

All our three factors are, by construction, orthogonal to the intercept. This can be seen 

from the fact that they are all de-meaned and consequently, their dot-product with the column 
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vector of all ones (i.e. the intercept regressor), which corresponds to taking the sum of the factor, 

equals zero. Additionally, the contrast vector for the one-sample t-test (the statistic of interest for 

us) for each regressor in our design (of which there are four: intercept and three factors) has a 

zero dot-product with any other. This is because each is a unit vector on one dimension, e.g. [0, 1, 

0, 0]. Accordingly, the contrasts being performed are also orthogonal. 

There are two further properties that support the parametric contrast orthogonality 

property, which is the gold-standard demonstration that the false positive rate is not inflated 

(Bowman, et al., 2020). The first of these is that there are no correlations running down the 

dependent variable, which holds because every participant is an independent sample. To clarify, 

in some neuroimaging analyses, the dependent variable contains a correlational structure. For 

example, in fMRI, first-level inference at each voxel is performed down the time-series of the 

entire experiment, which becomes the dependent variable and since this is a time-series, there are 

correlations down it. This raises further non-orthogonality concerns, but is not the situation we 

have to deal with. Regarding the last property, which considers trial count asymmetry across 

conditions, (Brooks et al., 2017) showed that such asymmetries have a negligible effect unless 

they are great. For example, Figure 3, Panel C of (Brooks et al., 2017) considers a t-test on an 

N170 component overlaid with noise at the human frequency spectrum. The N170 has a similar 

timeframe to that which we are considering in this paper. Essentially, there is very little evidence 

of an inflation of false positive rate when one condition has twice as many trials as the other, and 

indeed little until there is an 8 times asymmetry. 

Since our main inference is parametric regression, the point of interest for us is whether 

differences in trial counts between participants could bias the mean/intercept ROI selection. 

Importantly, in our data, there is trial-count variability between participants, but that variability is 
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not great. For example, the mean trial-count is 350.4, while the standard deviation is 42.3. This 

standard deviation is very small relative to the mean, with a ratio of 0.12 (42.3/350.4). 

Additionally, the mean count is 1.412 times the lowest trial count and the highest trial count is 

1.23 times the mean count. These levels of trial-count asymmetries between participants are very 

unlikely to bias ROI selection on the mean/intercept. 

 Note, at an earlier stage in our processing pipeline, there was more trial-count variability. 

That is, before we removed crown electrodes, see subsection “ERP pre-processing”, trial-count 

asymmetry was a greater issue. This is because presence of the noisy crown electrodes, lead to a 

higher rate of trial rejection due to artefacts. Indeed, this is why we performed a weighted average 

when calculating the overall window of analysis in time by identifying the portion of the grand 

average ERP waveform that deviated from baseline; see “Mass Univariate Analysis” subsection 

of the “Methods” section. 

2.9.4 Justification of Prior Precedent for P1 Window 

We consulted the literature when choosing our P1 window for the ROI analysis. The P1 is 

described as having an onset in the interval 80-100ms over the posterior visual cortex (Figure 3.9; 

Luck et al., 1998), with a peak between 100-130 ms (Luck, 2014). It was also described as having 

a peak in the interval 90-110ms (Slotnick et al., 1999). Finally, Mangun (1995) described the P1 

component as a positive going component that typically begins around 70–90ms with a peak 

around 80-130ms, with maximum amplitude over the peristriate cortex (Mangun et al., 1993). 
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Figure 2-9. ERP electrode locations where the different visual components were analysed by 

Luck et al., 1998.  

The P1-contra and P1-ipsi components are associated with electrodes O1 and O2 on the 10/20 

cap, which are associated with electrodes B6,7 & A9,10 on our montage. Negative is plotted up. 

Image taken from Luck et al. (1998). 

The electrode caps where the P1 was analysed used a 10/20 system (Figure 3.10; Kungl et 

al., 2017). We needed to convert this to our 128-electrode channel biosemi cap (see Methods 

section). The electrodes analysed were O1-Oz-O2 on the 10/20 cap, which are associated with 

electrodes B6,7 & A9,10 on our current set B6= [34, -94.625], B7= [ 34, -73.125], A9=[-38.25, -

89.25], A10=[-38,25, -94.625]mm. Oz lies in the rectangle created by these electrodes; that is 

Oz=[ -4.25, -94.625] mm, because we removed electrodes, the locations skewed somewhat. So, 

we decided to place a box centred at the midpoint of these electrodes: -2.125mm, -83.875mm. 

For the box to just reach those electrodes on the SPM maximum intensity projection (MIP), it 
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would be 72.25mm x 21.5mm. If these electrodes are the ones we are interested in, then we 

needed to make the box a bit bigger, so that it encompasses rather than just reaches them. Based 

on electrode spacing, we added an extra 20mm on each dimension, with 10mm at each end. This 

gave us a size of 92mm x 42mm. 

For the time domain, we wanted to have a window big enough to include the entire P1 

effect. We decided to use a window as close to 70-130ms as possible. We did this in order to 

encompass the time window precedents from all the literature (both onset and peak), which were 

described above. The dimensions of the ROI box go in both directions from the box location 

(which acts as the midpoint of the box). We had chosen to centre our time window at 100ms, 

choosing 61ms as the length of the time window (30.5ms in both directions). However, because 

the closest time point SPM could give us was 101ms, we had to adjust the window to fit the 

region of analysis. We ended up adjusting the time window to 62ms, which would fully cover the 

70-132ms needed to investigate the P1.  
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Figure 2-10. 10/20 Cap and electrode placements for components of interest.  

The diagram colour codes the areas on the 10/20 cap used for detection of specific components. 

Taken from Kungl et al. 2017.  

2.9.5 Unweighted Grand Averages 

In the “Factor effects” subsection of the “Results” section, we displayed the discomfort and 

headache factor ERPs scaled by factor weights to better visualise the parametric regressor 

inferences in the MUA. Figure 2.11, provides the median split ERPs on factors (discomfort and 

headache), unweighted by the factor scores for significant electrodes (A8, A20, and A28).  
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Figure 2-11 Unweighted median splits for ERPs from statistically significant electrodes for 

factor’s discomfort (A8 & A20, Onset 1) and headache (A29, Onsets 2-8).  

A, C) high discomfort B, D) low discomfort ERPs.  E) high and low median splits for headache 

factor (electrode A29).  Positive plotted up. Lines indicate start and end of statistically significant 

time window (See our analysis section for specific time windows).  

2.9.6 Comparisons with Fong et al. (2020) 

Fong et al. (2020) used a very similar paradigm to ours, presenting the three pattern glare stimuli, 

at spatial frequencies very close to our thick, medium and thin, to those with self-reported 

migraine. However, their stimulus timings were different from ours with a key difference being 

that they only presented single onsets in each trial, whereas we repeated our stimuli several times 

per trial.  

In comparing our results, we first note a difference in nomenclature. Fong et al. (2020) 

observe a negative going deflection just prior to 100ms in response to high frequency stimuli and 

report this as N1 with the subsequent positive deflection termed P2 and a second negative 

deflection N2 at around 200ms. They then carry this labelling through to the ERP for the low 

frequency stimulus, which starts with a positive deflection around 100ms, which they label P2. 

P1 is absent in all ERPs, with N1 also absent in the ERP for low frequency gratings. However, a 

number of researchers (Alonso et al, 2015; Earls et al, 2016; Hogendoorn et al, 2015; Luck, 2005; 

Mangun, 1995; Woodman, 2010) have found a positive going occipital peak at around 100ms, 

which is called variously the P1 or P100 followed by a negative deflection between 150-200ms 

post stimulus, which is typically called the N1 component; see, for example, Figure 2.9. Our ERP 

for thick stimuli follows this typical P1-N1 pattern, as indeed does Fong et al’s trace for their 

low-frequency stimulus. We thus prefer to label the positive peak at 100ms as P1 and the 
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subsequent deflections as N1 and P2 respectively. We note however that, in common with Fong 

et al. our thin (high frequency) stimulus tended to produce a negative deflection at 100ms as can 

be seen in the yellow trace of our Figure 2.2. Thus, our results have some superficial similarities 

to those of Fong et al. with a transposition of nomenclature. For the avoidance of doubt, we will 

refer to stimulus features in terms of milliseconds post stimulus in the comparisons below. 

Owing to our initial data-driven ROI, we do not consider ERP components outside the 56-

256ms window. We will therefore not comment on the reduced late negativity found by Fong et 

al (2020). at around 400ms, although we do note that those high on our headache factor have 

more positive EPRs between 300-400ms than those low on the same factor. Fong et al. also found 

significant between-group differences between migraineurs and controls at around 200ms, with 

the patient group having more negative ERPs for high-frequency stimuli in this region. This was 

to some extent also visible, but not significant, in the traces for medium frequency stimuli. At 

first sight, this result is at odds with our finding of more positive traces at 200ms for those high 

on our headache factor than those low on the same factor (see our Figure 2.5); this resulted in a 

significant relationship between the PGI and headache. However, we found this only for Onsets 

2-8 and since Fong et al. did not use repeated stimulus presentations, our result could represent a 

habituation effect that they were unable to detect due to differences in methodology. Further, 

although we found no significant results in this region, an examination of our ERPs for the first 

onset of our medium stimuli, shows a greater negativity for those high on the headache factor at 

around 150ms not unlike that found by Fong et al., See Figure 3.12. We conclude that the 

apparent difference between the studies to a certain extent rests on stimulus presentation methods 

and our use of repeated onsets to address habituation effects. 
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Figure 2-12. Unweighted ERPs derived from a median split on headache parameters at Oz 

(electrode A23) for the first onset of each stimulus.  

a) ERPs for those high on the headache factor, b) low. Positive is up. Vertical red lines show 

effect of interest. 
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Fong et al. (2020) also posit that those with migraine and those controls with strong 

pattern glare have a “phantom” positive deflection at 200ms for the medium stimulus. We notice 

a similar effect; our medium stimuli tend to produce greater positivity at 200ms, which we 

describe as an early or jittered P2, but could be related to the proposed phantom P200 component. 

Additionally, studies of visual stress and pattern glare typically associated both symptoms 

and increased neural activity with gratings at 3 c/deg: less so at higher frequencies. Indeed, PG 

symptoms at 11-13 c/deg are often used as a control for symptoms at 3 c/deg (Evans & 

Stevenson, 2008). Therefore, our findings of significant results on our PGI – which treats 

responses to the high-frequency grating as a control for medium – may be a better correlate of 

symptoms than responses to high-frequency gratings alone, upon which Fong et al focus their 

findings. 
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CHAPTER 3: PATTERN-GLARE DRIVEN BY BROADBAND GAMMA IS 

MODULATED BY DISCOMFORT RATINGS 

Austyn J. Tempesta1, Claire E. Miller1, Andrew J. Schofield3,1, & Howard 

Bowman1,2 

3.1 Introduction 

 Visual stress (VS) is a form of abnormal response when the visual cortex is exposed to 

certain types of striped patterns falling in the medium spatial frequency (3 cycles per degree) 

range (Mears, 1980; Irlen, 1983; Wilkins, 1995). These abnormal responses are characterised by 

illusions of colour, shape, and motion. In some cases, people experience migraines and more 

severely epileptic attacks (Wilkins et al., 1979,1980). Using magnetoencephalography (MEG), 

Adjamian et al. (2004) have provided evidence that gamma oscillations underlie hyperexcitability 

in area V1, peaking for gratings at three cycles per degree. They hypothesize that such visual 

stress is caused by the visual cortex's hyperexcitability, which induces spreading activity among 

neurons usually associated with sensory input, thus producing hallucinations. The somatic effect 

sometimes found in visual stress may be due to activity spreading outside of the visual cortex. 

In some cases, these effects may not be appropriately regulated by GABAergic inhibitory 

mechanisms. Visual symptoms might thus be the precursor to a photo-paroxysmal response. This, 

if not sufficiently controlled by inhibitory mechanisms, may lead to epileptic seizures and 

migraines. The stimuli that are most likely to induce such anomalies, typically 3 cycles per 

degree (c/deg) high-contrast stripes, are precisely those most likely to cause attacks of migraine 

and epilepsy in those with a visual trigger (Wilkins, 1986, 1995; Wilkins et al., 1979, 1980). 

Most importantly, a minority report seeing such visual distortions when viewing printed text 

(Meares-Irlen syndrome or VS; Mears, 1980). While such distortions could be due to poor ocular 
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accommodation and binocular convergence, they are found even when such abnormalities are 

excluded (Evans et al., 1995).   

 Migraine and headache disorders account for the 3rd highest cause of disability worldwide 

(Steiner et al., 2013; Steiner et al., 2015; Strovner et al., 2007).  Globally, the percentage of the 

adult population with an active headache disorder is 46% for headache in general, 11% for 

migraine, 42% for tension-type headache, and 3% for chronic daily headache (Stovner et al., 

2018). Missed work from migraines is estimated to cause £250 million in lost revenue in the UK 

each year (Clarke et al., 1996). Migraine is also the least funded of all neurological illnesses 

globally (House of Commons, 2014; Shapiro & Goadsby, 2007). 

The pattern glare (PG, Figure 3.1) test was published in 2001 by Wilkins and Evans 

(2001) as a way for physicians to examine if a patient had some proclivity to experiencing VS. 

Wilkins and Evans designed this test as a standard way for researchers to analyse VS. The test is 

intended to induce visual stress in susceptible patients; patterns are also presented horizontally to 

appear like text and at different spatial frequencies (SF) (.37, 3, and 12) (Evans & Stevenson, 

2008).  
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Figure 3-1.Pattern-glare Stimuli.  

Left to right, thick (.37 c/deg), medium (3 c/deg), and thin (12 c/deg) gratings with a central 

fixation and vertical dividing line. The images shown here are representative of the stimuli but 

have been rendered to aid visibility in print. 

As mentioned previously, there has been important prior work, using MEG, showing 

increased gamma power for pattern glare (Adjamian et al., 2004). We seek to build from this 

previous work. Because MEG is expensive, Adjamian et al. (2004) were only able to run analysis 

on a small sample n=7. Importantly, Adjamian et al. did not present stimuli in such a manner that 

they could isolate habituation effects. We respond to this by repeating the same stimulus in trains 

of onsets. Finally, they tested each grating from .5 c/deg to 6 c/deg in .5 cycle-steps presented 

over 2-3 days. Thus, they did not test a 12cpd spatial frequency, which, has been argued to be, a 

control for optical factors, versus neurological controls (Conlon et al., 2001). Pattern 1 (thick) is 

intended to be a control for low SF and is not supposed to trigger distortions in most participants. 

However, it is useful in detecting ‘which patients who may be highly suggestible and may 

respond yes to any question about visual perception distortions’ (Evans & Stevenson, 2008). 

Pattern 2 (medium) is the only clinically relevant stimulus, falling between SF’s 1-4. It is this 

stimulus that is known to elicit migraines and epileptic seizures (Braithwaite et al., 2013; 

Wilkins, 2016). Pattern 3 (thin) is also a control as it is argued to have poor convergence, 

reflecting a large contribution from optical as opposed to neurological factors (Conlon et al., 

2001). 

 Alpha desynchronisation has been shown to be particularly important when the brain is 

representing stimuli and encoding them into memories or retrieving them from memories (Parish 

et al., 2018), with alpha power decreasing during semantic encoding and retrieval (Klimesch et 

al., 1996, 1997). However, this oscillation may reflect the brain representing any sort of stimulus 
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and not be specific to pattern glare. Some models have shown that alpha amplitude modulations 

regulate the inhibitory level of the cortex (Klimesch et al., 2007; Jensen & Mazaheri, 2010), with 

synchronisation reflecting habituation and desynchronisation representing active information 

processing (Hanslmayr, 2012). Thus an absence of alpha synchronisation could represent a lack 

of inhibition as the brain continues to process a stimulus that might otherwise be attenuated. 

This paper builds from the Adjamian et al. (2004) findings and from the previous work on 

oscillations. Specifically, our hypotheses are: first, that there will be a deeper alpha 

desynchronisation for pattern glare. Second, there will be greater gamma power for pattern glare, 

which relates to a failure to habituate. Third, these EEG effects on pattern glare will be 

modulated by state and trait measures of sensitivity to headache, discomfort, and visual 

hallucinations. We investigated these hypotheses through a PG task where we recorded EEG data 

in response to the PG stimuli (Figure 3.1) over several hours, which we analysed in the frequency 

domain, using mass univariate analysis (MUA). Participants were asked to fill in a series of 

questionnaires, which we then ran factor analysis on revealing 3 factors, that we interpret as 

visual stress, headache proneness, and discomfort. Because we used EEG, we have a sample of 

34, which is likely to give us considerably increased confidence in the robustness of our findings 

(Lorca-Puls et al., 2018).  

3.1.1 State-Dependent Measures 

The PGT is an easy to use clinical tool but, like some of the physiological measures, it 

may be state-dependent – varying with migraine phase (Wilkins et al., 1984). State physiological 

measures are useful for judging if an individual is suffering from visual hypersensitivity at a 

particular moment in time but maybe inadequate measures of their general tendency to suffer 

hyper-sensitivity. Hypersensitivity results in distortions of the visual image, which can be 

disruptive for everyday tasks such as reading and can cause discomfort in everyday 



 

 

 101 

environments. Based on these and other symptoms, Conlon and colleagues developed a 23 item 

questionnaire (Visual Discomfort Scale - VDS; Conlon et al., 1999) for which scores correlate 

positively with headache severity and visual distortions when viewing square-wave gratings 

(similar to the pattern-glare (PG) stimuli) and letter stimuli; and negatively with reading speed 

and performance on the digit symbol sub-test from the revised Wechsler Intelligence Scale for 

Children (WISC-R). In an attempt to address cortical hyper-excitability more broadly, if still 

indirectly, Braithwaite et al. (2015) developed the Cortical Hyper-Excitability index (CHi), a 27-

item questionnaire in which symptoms are rated for both intensity and frequency of occurrence; 

although these scores can be merged. Both the VDS and CHi can be regarded as trait measures of 

cortical hyper-excitability in that they measure the proneness of the participant to episodes of 

hyper-excitability based on their previous experience. 

Cortical hyper-excitability is not limited to those who experience migraine. Stimuli that 

are disruptive for migraine sufferers are also triggers for those with photosensitive epilepsy 

(Adjamian et al., 2004; Wilkins et al., 1984). Further, visual hypersensitivity as observed with the 

PGT or similar metrics is co-morbid with a range of conditions including multiple sclerosis 

(Wright et al., 2007), stroke (Beasley & Davies, 2012), autism (Irlen, 1997; Kientz & Dunn, 

1997), and dyslexia (Irlen, 1991); however, some do not find a connection to dyslexia (Saksida et 

al., 2016). In many of these conditions, visual distortions in-text inhibit reading but can be 

alleviated using coloured filters.  

Some individuals have disrupted reading and high scores on measures of visual 

discomfort, hyper-excitability and PGT but few other symptoms. Wilkins and colleagues describe 

such individuals as suffering from visual stress and posit that this condition is separate from but 

co-morbid with other conditions – especially where there is no apparent brain injury (Wilkins, 

2003). This overlap of symptoms may increase the generality of findings from the migraine 
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literature; however, it does also suggest that when comparing patient and control groups to assess 

cortical hyperexcitability, some members of the control group may have some degree of latent 

hyper-excitability. This possibility can be countered by recording several measures of hyper-

excitability as possible covariates for analysis rather than relying on whether or not the 

participant is in the control or experimental group as the sole predictor of atypical neural activity. 

In this study, participants were not selected based on their migraine or headache status. 

Instead, EEG results were correlated with scores on a range of headache and hyper-excitation 

measures within a single group drawn from the general population. We measured EEG responses 

to visual stimuli based on those used in the PGT in a novel paradigm where stimuli were repeated 

(flicked on and off) at a low temporal frequency allowing the recording of steady-state EEG, 

while also allowing us to consider habituation effects. Thus, we compared stimuli known to be 

aggravating in migraine with those that are less aggravating, in a paradigm that allows the 

separation of initial and habituated responses. 

3.2 Materials and Methods 

3.2.1 Participants 

Forty undergraduate and postgraduate participants, recruited at the University of 

Birmingham, gave their informed consent and were compensated with £24 for participating. 

Participants with a history of psychiatric, psychological, and neurological conditions, or a history 

of unconsciousness, convulsions or epilepsy were excluded from the study. One participant chose 

to leave the experiment; one was removed due to an equipment malfunction, one due to an 

artefact that could not be removed and three were removed during data pre-processing due to a 

lack of usable trials (fewer than 20% per condition). There were thus 34 usable datasets 

(male=13, female=21, mean age= 22.5y, range=18-32y, standard deviation=2.86). This study was 
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approved by The Science Technology Engineering and Maths Ethics Committee at the University 

of Birmingham in adherence with The Declaration of Helsinki.  

3.2.2 Stimuli and Equipment 

We used stimuli similar to those used in the PGT (Wilkins, 2001). Stimuli comprised 

horizontal square-wave gratings (contrast = 75%) at 3 different spatial frequencies (.37, 3, and 12 

c/deg: described as thick, medium, and thin, respectively, see Figure 3.1) displayed in a circular 

window with diameter (15.2 deg). These stimuli were created in MATLAB using the 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) and displayed on a 

Samsung 932BF LCD monitor (Samsung Electronics, Suwon, South Korea) (Figure 3.1.). 

Questionnaires were used to assess participants headache history (Headache and General 

Health Questionnaire, HGHQ) and tendency to suffer visual stress (Cortical Hyper-Excitability 

index (Chi), Braithwaite et al., 2015; Visual Discomfort Scale (VDS), Conlon et al., 1999). EEG 

recordings were made using a 128-channel BioSemi (University of Amsterdam) EEG system in a 

dark, quiet room. 

3.2.3 Procedure 

After the EEG electrodes had been applied, participants began the experiment with a 5-

minute resting period. They then were presented with three blocks, each containing six trials for 

each of the three stimuli. Thus, each participant observed 18 trials per stimulus type. Each trial 

contained between seven and nine onsets of the same stimulus, in each of which the stimulus 

stayed on for three-seconds followed by a variable interval of 1 – 1.4 seconds. After each trial, 

the participant was asked to rate how discomforting they found each stimulus on a 5-point scale 

(1 = comfortable, 5 = highly discomforting) and to indicate how many onsets they saw. This 

additional task was designed to ensure attention to the stimuli. At the end of each block, 

participants were shown the three stimuli in turn and asked to rate the extent to which they had 
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experienced a range of possible pattern glare symptoms (Wilkins & Nimmo-Smith, 1984). After 

each block and at the end of the experiment, participants had a further resting period of 5 

minutes, during which they were requested to close their eyes and relax. Stimulus order and 

number of onsets per trial were counterbalanced (subjecting them to variation, increasing interval 

validity) (Allen, 2017).  

3.2.4 Discomfort ratings and questionnaires 

Working with the 39 participants who completed the study, we computed mean 

discomfort ratings for each participant and stimulus type across the three blocks. Discomfort 

ratings tend to co-vary across the stimulus types, so we computed a discomfort index for each 

participant by dividing discomfort ratings for the medium stimulus by the mean of the thick and 

thin ratings. High scores on this index identify those participants who find the medium stimulus 

relatively discomforting compared to the two control stimuli. Overall scores for the CHi and VDS 

were computed according to the instructions for those tools. Finally, data for headache frequency, 

intensity and duration and the experience of sensory aura were extracted from the headache and 

general health questionnaire. These seven measures were then entered into a factor analysis, 

which identified 3 factors based on a Scree plot analysis. Following a Varimax rotation, the three 

factors were identified as visual stress (a combination of the CHi, VDS and aura), headache 

(frequency, intensity and duration) and discomfort (discomfort index). This factor structure is not 

surprising given the nature of the variables included, but the analysis also served to provide 

uncorrelated factors to aid the subsequent mass univariate analysis (MUA). It also provided 

factor scores with which individuals can be compared.  

3.2.5 EEG pre-processing 

We decimated the EEG data from a sampling rate of 2048Hz to 512Hz using the BioSemi 

toolbox. EEGs were then band-pass filtered using a second-order Butterworth filter with a 
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passband of 0.1 to 80 Hz  (½ power -3dB, fall-off at 12 dB per octave; for prior precedent for this 

choice, see Luck, 2014; Tanner, Morgan-Short, & Luck, 2015). For each participant, we 

performed a time-frequency analysis using a morlet wavelet (a wavelet composed of a complex 

exponential [carrier]F multiplied by a Gaussian window [envelope], used for time-frequency 

analysis of non-stationary time series data) with 5-cycles in the frequency range 5-80 Hz, with 

steps of 1 Hz between each wavelet frequency, and a notch-filter at 50hz. The baseline was 

initially 500ms long for the wavelet estimation, but after estimation, we cropped the epoch from -

100ms pre-stimulus to 800ms post-stimulus, then the conditions were averaged, and baseline (-

100ms to zero ms) was rescaled using a logR function in SPM.  

3.2.6 Frequency band Selection 

We divided the frequency domain into separate bands on onsets 1-8, with stimulus 

condition (thin, medium and thick) collapsed. The frequencies from Onset 1 and Onset 2-8 were 

averaged with the spm averaging tool, with weighting by replications (trial counts). Then the 

windows were selected based on visual inspection of the time-frequency plot at Oz (see Figure 

3.2). This does not inflate the false positive rate, because the inspection of the frequency bands 

was on the aggregated average of the stimulus (i.e., average of activation in response to all three 

stimulus types) and all onsets, making the frequency selection image blind to stimulus conditions 

and also to differences between onsets. As a result, the selection of a frequency band is not 

differentially influenced by a particular stimulus or onset; ensuring that the selection of the 

frequency bands is not biased. (For justification of this line of reasoning (see Brooks et al, 2017; 

Bowman et al, 2020)). For each selected frequency band, we collapsed across power values, to 

generate a single time-series. Frequency bands were as follows: 

 

Alpha: 8-13hz 

https://en.wikipedia.org/wiki/Wavelet
https://en.wikipedia.org/wiki/Complex_exponential
https://en.wikipedia.org/wiki/Complex_exponential
https://en.wikipedia.org/wiki/Carrier_signal
https://en.wikipedia.org/wiki/Gaussian_window
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Beta: 20-35hz 

Low Gamma: 30-45hz 

Mid Gamma: 45-60hz 

High gamma: 60-80hz 

 

We were very explicitly seeking to place windows that isolated the key spectral power 

features in Figure 3.2, with some windows selected to be narrow to ensure we isolate the “sweet 

spot” of the feature, see for example our choice regarding alpha. Additionally, we selected 

overlapping windows for beta and low gamma, in order to include a late (between 700ms and 

800ms) power increase in the beta frequency. Thus, we are making a priori decisions concerning 

our key contrast, which is on the Pattern Glare Index, about placing frequency bands, which 

necessarily means that we will not place optimally for effects in the data. This is the standard 

trade-off between type-I and type-II error rates (Bowman et al., 2020). 

Eye-blink artefacts were removed using independent component analysis (ICA), with ICA 

components associated with eye blinks removed and the dataset reconstructed. The crown 

electrodes were removed to further reduce the presence of muscle and eye-movement artefacts 

(Chennu et al., 2013), in line with previous work (Shirazibeheshti et al., 2018), who argue that 

this additional noise may confound MUA (electrodes removed = A11, A12, A13, A14, A24, A25, 

A26, A27, B8, B9) and the data referenced to the new electrode set. Data for individual onsets 

were then deleted if any channel exceeded a +/-100 µV threshold, thus removing large artefacts 

such as movement. The data for each participant were split into 27 bins, one for each stimulus 

type (thick, medium or thin) and Onset number (1 to 9). Finally, we discarded data from Onset 9 - 

the number of onsets varied between 7 and 9 on each trial, so the occurrence of the 9th onset was 

rare, making these data unreliable. Tallying across onset number, three participants who did not 
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have at least 20% of usable stimulus repeats per stimulus type were removed (decided a priori, 

based on Luck, 2014). In addition, one participant was removed because an artefact could not be 

removed, and a further participant was removed because they had EEGs that were flat (i.e. 

equipment malfunction). For interpolation, approximate values between electrodes of the biosemi 

and the internal spm grid were calculated when the electrode locations from EEGLAB were 

combined with the SPM software. This enabled the interrogation of positions on the scalp beyond 

the electrode locations. In order to compare the stimulus onset with habituation-effects, we 

divided the repeated onsets into two groups. The initial onsets were analysed separately from 

Onsets 2-8; the latter being combined. We drew a logical distinction between the first stimulus 

onset in each trial (where the observer was unaware of the stimuli to be presented) and the 

remaining onsets (where the participant was able to anticipate the stimulus) and thus analysed 

Onset 1 separately from Onsets 2-8; the latter being combined so as to aggregate over the 

maximum number of onsets. 
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Figure 3-2. Time-Frequency plots of Weighted Average of Onsets 1:8 Aggregated Across all 

Stimuli (Thick, Medium and Thin) at Electrode Oz.  

Bottom to top: frequency bands used for analysis, chosen from electrode Oz: Alpha: 8-13hz, 

Beta: 20-35hz, Low Gamma: 30-45hz, Medium Gamma: 45-60hz, High gamma: 60-80hz. Colour 

Scale is -7 to 7dB power. Frequency scale is 5 to 80hz. The frequency ranges were selected 

through visual inspection; the selection of windows was based on where a strong effect in power 

could be seen visually (i.e. where there is a marked difference in colour from green in the figure). 

However, since stimulus conditions (thick, medium and thin) are aggregated across in this plot, 

this selection is orthogonal to our pattern-glare contrasts that are our central finding, as well as 

contrasts between Onsets. Note, this selection of frequency ranges was done in order to isolate 

salient features in this map, consequently some frequencies were narrow, not all frequencies 

were included, and some ranges overlap. Necessarily, these windows may not be placed 

appropriately for some pattern-glare effects that may be present, but this is the standard trade-off 

between type I and type II error rates for a priori selection of features. 

3.2.7 Mass Univariate Analysis  

A mass univariate analysis (MUA) is the analysis of a large number of simultaneously 

measured dependent variables (e.g. voxels or samples) via the performance of the same univariate 

hypothesis tests (e.g., t-tests) across all of those dependent variables. This method allows for 

powerful error corrections for multiple comparisons. 

An MUA was conducted in SPM-12 (Wellcome Trust Centre for Neuroimaging, London, 

England) on three-dimensional images (two of space, one of time) derived from the ERP data. 

Images were created using the data for each stimulus type (thick, medium, and thin). Images are 
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the file type used in the SPM data matrices in order to perform analysis of models or statistical 

tests. Statistical analyses of M/EEG data in SPM use the same mechanisms as all other data types 

(PET, fMRI, and structural MRI in voxel‐based morphometry ((VBM)).  

This simply requires transforming data from SPM M/EEG format to image files (see 

NIfTI format, http://nifti.nimh.nih.gov/nifti-1/). The result of statistical inference is a summary 

statistic image, an image representing the data feature summarising treatment effects that one 

wants to make an inference about. More formally, when this summary statistic is itself a 

maximum likelihood estimate based on within-subject data, the analysis is called a summary-

statistic procedure for random-effects models (Litvak et al., 2011). 

 In the context of this paper, we will be regressing the dependent variable (the EEG data) 

onto parametric regressors (the factors).  Consequently, our summary statistic images reflect the 

extent to which the dependent variable correlates with the factor, as reflected in beta coefficients 

and one-sample t-tests exhibiting a difference from zero. 

 A contrast image was created based on what we call the pattern glare index (PGI). This index 

enables us to focus our analysis on regions of the data volume where the clinically relevant, 

medium stimulus exhibits an extreme response relative to the thick and thin stimuli. Which is the 

response to EEG of the particular stimulus.  

 

PGI = (medium image – average (thick image, thin image)).  

 

Then, we used the factor scores derived from the factor analysis as parametric regressors 

in the MUA, excluding factor scores from the five participants whose EEG data failed our 

screening tests. A general linear model (GLM) analysis was performed on the data where the PGI 

over ERPs was the dependent variable, while the independent variables were the normalised 
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factor scores of the trait and state data responses (which act as regressors).  This same general 

linear model was fit to the ERP data at each time-space point in the data volume, providing beta 

parameter values for all the regressors (the intercept and three factors) at each such point.  

Intuitively, each parameter value indicates the extent to which the evoked response at the 

corresponding time-space point correlates (across subjects) with the relevant regressor.  In this 

way, a mass univariate analysis is able to identify time-space regions in the data volume, which 

vary in a fashion consistent with a factor or intercept.  Additionally, due to the mean centring of 

regressors, the intercept parameter is the mean of the evoked response at that time-space point.   

Mean/intercept. We first tested the mean/ intercepts over the whole volume in all five 

frequency bands, both positive-going and negative-going. We used a one-tailed, 1-sample t-test: 

We checked for a significant peak (FWE .05, peak-level) or cluster (unc .001, 0.05 FWE 

corrected) levels in both +1 and -1 directions on the mean/intercept of aggregated 

(thin+medium+thick) and then on mean/intercept of PGI. Most of our visualisation use 

thresholded and unthresholded t-maps for both aggregated and PGI. We also show PGI and factor 

score effects in the form of time-series. 

3.2.8 Orthogonal Contrast Methods for Selecting Exploratory Factor Effects 

As previously discussed, our factor analysis identified three orthogonal factors: 1) visual 

stress (a combination of the CHi, VDS and aura measures), 2) headache (frequency, intensity and 

duration) and 3) discomfort (discomfort index). The electrophysiological effects that we observe 

on these three factors are generally lower amplitude than those arising from mean/intercept 

contrasts. This becomes a particular issue, since in order to reliably perform FWE correction in 

SPM with random field theory (RFT), which is 'a body of mathematics defining theoretical 

results for smooth statistical maps’ which is used to FWE (i.e. multiple comparisons) correct in 

neuroimaging research (Brett, et al., 2003). Only voxels that, in a first level test (i.e. just on that 
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voxel), cross this threshold, can contribute to clusters. Such a threshold is likely to be 

conservative for EEG/ MEG data, where effects tend to be broad in extent, i.e. comprising a large 

proportion of the volume, but low in amplitude. 

As a result, we have applied two orthogonal contrast approaches (Brooks et al., 2017; 

Bowman et al., 2020) to identify effects on these factors. The orthogonality here is based upon 

the observation that, by construction, each of our factors is orthogonal to the mean/intercept, and 

indeed, factors are orthogonal to each other, i.e. dot-products of the corresponding pairs of 

regressors are zero. 

Thus, the methods we apply are statistically robust and do not inflate false positive rates: 

see Brooks et al., 2017 for simulations and Bowman et al., 2020 for further simulations and a 

mathematical proof that confirm that type I errors are not inflated. Nonetheless, since several 

contrasts have had to be performed in the procedures we now outline, we consider these findings 

on factors as exploratory, and requiring of replication before they can be conferred the mark of 

reliability. 

The orthogonal contrast procedure that we perform proceeds as follows: 

1) We are specifically interested in effects on factors inside the significant clusters that we observe 

on the mean/intercept of the PGI. We are seeking to link these PGI effects to participants’ state 

and trait characteristics, as encoded in the factors. Consequently, it is natural to employ an ROI 

approach, in which ROIs are selected from the PGI mean/intercept effects, and we look for 

effects on factors in these ROIs. This is the strategy we employ. 

2) Cluster inference in ROI: our first strategy is to perform cluster-inference on factors within each 

ROI that is extracted from the mean/intercept. This approach does not substantially increase 

statistical power if the mean/intercept of PGI cluster, and thus the resulting ROI is very large. 

This is simply because the statistical power of FWE correction goes down with the size of the 
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volume over which it is performed. Many of the ROIs that we take forward from the 

mean/intercept of PGI are indeed very large. Consequently, although there are strong effects on 

factors within these PGI ROIs, they in all but one case, do not both cross the 0.001 threshold and 

survive FWE correction in the associated ROI. 

3) Uncorrected at peak in ROI: our second strategy is to focus on peaks in the PGI mean/intercept 

clusters, i.e. take one-point ROIs forward from the PGI mean/intercept. Since peaks are single 

points in the volume, there is no need to FWE correct with them. Accordingly, an effect on a 

factor that is significant uncorrected at a peak in a PGI mean/intercept cluster is reliable as long 

as the PGI mean/intercept, and corresponding factor are orthogonal, which, as we have discussed, 

they are by construction. 

These two orthogonal contrast approaches are interestingly sensitive in different ways. 

The cluster inference in ROI approach will detect effects that are high amplitude (since the 0.001 

threshold is applied), but are not necessary throughout a very large proportion of the ROI. In 

contrast, the Uncorrected at peak in ROI approach will be sensitive to lower amplitude effects 

(since only an uncorrected 0.05 threshold needs to be crossed). However, for these effects to 

happen to fall at peaks of a mean/intercept of PGI cluster (which only reflect a small overall part 

of the mean/intercept cluster), they will typically need to be broadly distributed throughout the 

cluster/ROI. In this sense, the Uncorrected at peak in ROI approach is likely to do better for low 

amplitude, but broad in ROI, effects, which we have argued is the way that signal often manifests 

in EEG, and indeed, we do find this second approach more sensitive than the cluster inference in 

ROI approach. 

3.3 Results 

 For this experiment, we performed several analysis steps (see materials and methods for 

full explanation). For this section, we will first discuss the aggregated effects, then PGI 
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mean/intercept effects, and finally, PGI effects on factors. For a breakdown of statistics, each 

analysis step has associated tables for statistics (either table 3.1, 3.2, or 3.3). In summary, we 

have significant results on the aggregated (table 3.1), the PGI index (table 3.2), and on the factors 

(table 3.3). 

3.3.1 Aggregated mean/intercept contrasts 

Figure 3.3 shows the results of the aggregated mean/intercept contrasts, topographic 

maps, the rows from top to bottom indicate if the topographic maps are either thresholded or 

unthresholded. Onset 1 or Onset 2:8 is indicated on the right. The columns indicate what 

frequency band is being shown. Within the unthresholded topographic maps, we have indicated 

effects of interest, early positive transients or sustained synchronisations (see key for full 

breakdown), with, for example, alpha showing a large desynchronisation on Onset 1 and 2:8. In 

contrast, we see a synchronisation in the other frequency bands. We can also see that beta and 

low gamma are showing strong posterior peaks. 

Note, the early positive transient bleeds into the baselining window for alpha Onset 2:8, 

see feature highlighted with dotted rectangles in unthresholded maps. This is just because of the 

smoothing effect of the wavelet, when frequencies are low. A consequence of this is that the 

thresholded maps for alpha, specifically alpha 2:8, cut off a period where there is a significant 

effect, i.e. before 50ms. 

There is no consistent scale across thresholded maps, in order to avoid colour saturating in 

some maps. The white vertical line indicates onset of the stimulus.  

As a summary of Figure 3.3, we can identify four main features in this power analysis of 

aggregated, which, as just discussed, can be divided into early positive transients and sustained 
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responses. The four features are highlighted with white framing in panels where they are 

particularly evident (see Figure 3.3 and Legend). 

Early Positive Transients 

1) Posterior to anterior, constant amplitude: this transient bleeds from over occipital along 

midline to over frontal, with similar amplitude throughout (e.g. alpha 2-8, dotted framing). 

2) Clear posterior peak: this has a higher peak over occipital (e.g. beta and low gamma for 

onsets 1 and 2-8, dashed framing). 

Sustained Responses 

1) Desynchronisation: this starts after the positive transient and can be quite broadly 

distributed across the scalp (e.g. alpha 2-8, long dash, dot framing). 

2) Synchronisation: this starts after the positive transient or after the desynchronisation has 

subsided and tends to be relatively local to occipital regions (e.g. mid-gamma 2-8, unbroken 

framing). 

 The resolution of uncertainty associated with onset 1 (before which the stimulus to be presented 

is not known) seems only to increase the strength of a single feature, which is the sustained 

desynchronisation. For example, the response to onset 1 compared to for onsets 2-8, seems to be 

somewhat more occipitally focused for alpha and beta and also continues into higher frequencies: 

low, mid and high gamma. 
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Figure 3-3. Time-frequency effects on the mean/intercept of aggregated (Thin+Medium+Thick): 

 frequency bands are presented in five columns (from left to right: alpha, beta, low gamma, mid 

gamma and high gamma); first two rows present thresholded maps for onset 1, next two rows 

present unthresholded maps (onset 1 and then onset 2:8), last two rows present thresholded maps 

for onsets 2:8. Thresholded maps show one-tailed t-tests, with direction indicated by bracketed 

terms (e.g. “(+1)” is right-tailed). Each panel of the plot shows scalp maps through time, laid 

out from top left to bottom right in the panel. Unthresholded maps (blue, black and red) show 

scalp maps from -100ms to 775ms in steps of 25ms, with 0ms, indicated with a white vertical line. 

Thresholded maps (yellow, orange, grey) show scalp maps from 50 to 775ms in steps of 25ms. 

Key findings are most evident in unthresholded maps (middle two rows). Raw one-sample t-

values are presented for difference to zero, with red positive-going and blue negative-going. Four 

features are highlighted with white framing in panels where they are particularly evident (see 

legend and main text). Thresholded maps result from whole-volume cluster-level familywise error 

correction (first level, cluster-forming, threshold set at 0.001; second-level FWE correction at 

0.05), see table 3.1 for full presentation of these statistics. There is no consistent scale across 

thresholded maps, in order to avoid colour saturating in some maps. Note, the early positive 

transient bleeds into the baselining window for alpha onset 2:8, see feature highlighted with 

dotted rectangles in unthresholded maps. This is just because of the smoothing effect of the 

wavelet, when frequencies are low. A consequence of this is that the thresholded maps for alpha, 

specifically alpha 2:8, cut off a period where there is a significant effect, i.e. before 50ms. 

Table 4.1 shows the results breakdown of the associated statistics of the effects from 

Figure 3.3. Each cluster is given with its Xmm, Ymm, Zms location and time with both T and P 

values. From left to right, the columns indicate the frequency of interest and the rows indicate 

Onset 1 or 2:8. NS means that there was no statistical effect found. Loc is the location of the 
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cluster; LC means largest cluster, SLC, second-largest cluster and NLC means the next largest 

cluster.  

Alpha Beta Low 

Gamma 

Mid 

Gamma 

High 

Gamma 

 

NS LC: t(30)=7.98 

P<.001 

Loc:13,  

-79, 105 K:654 

LC: 

t(30)=7.78,P<.00

1 

Loc: 4,-89, 96 

K:661 

LC: 

t(30)=6.51, P<.001 

Loc: 4, -84, 105 

K:549 
 

SLC: 

t(30)=4.42,P<.001 

Loc: -13, -73, 252 

K:260 

 

LC: 

t(30)=6.03, P<.001 

Loc: 9, -89, 125 

K:257 

onset 1 (+1) 

LC: 

t(30)=7.67, 

P<.001 

Loc: 13,  

-79, 477 

K:34316 

 

LC: 

t(30)=7.29, 

P<.001 

Loc: -9, 2, 379 

K:15731 

LC: 

t(30)=6.27,P<.00

1 

Loc: -51, -36, 

311 

K:2909 

SLC: t(30)=5.54, 

P<.001 

Loc: 9,-30,730 

K:1786 

NLC:t(30)=5.39, 

P<.001, Loc: 0, -

-25, 516, K:315 

NLC:t(30)=5.25,

P<.001,Loc: 60,-

68,721 K:379 

NLC:t(30)=4.84, 

P=.004, Loc: 

58,-14, 574, 

k:203 

LC: 

t(30)=7.67,P<.001 

Loc: -60, 8, 398 

K:628 

SLC:t(30)=6.31,P<.0

01 Loc: -51,-25,662 

K:843 

NLC:t(30)=5.73,  

P<.001 

Loc: 21, -14, 389 

K:558 

NLS:t(30)=5.48, 

P=.005, -55, 34, 701 

K: 141 

NLS:t(30)=5.23, 

P<.001, Loc: -47, -

30, 740 

K:247 

NLS:t(30)=4.73, 

P<.001, Loc: 60, -9, 

730 

K:219 

 

LC: 

t(30)=7.97,P<.001 

Loc: 47, -19, 379 

K:2379 

SLC:t(30)=6.74 

Loc: -55,-19 652 

K:1491 

NLC: t(30)=6.66, 

P<.001 

Loc: -38, 13, 369 

K:1140 

 

onset 1 (-1) 

LC: 

t(30)=6.50, 

P<.001 

Loc: 30, 

-89, 18 

K:3727 

LC: 

t(30)=10.86, P<.001 

Loc: 0,  

-62, 105 

K:2909 

SLC: 

t(30)=5.11, P=.001 

Loc:-4,    

-95, 799 

K:468 

 
 

LC: 

t(30)=9.98, 

P<.001 

Loc: -26, 

-84, 115 

K: 2512 

SLC-  

t(30)=8.84, 

P<.001 

Loc:0, -89, 799 

K:4255 

 

 

LC: 

t(30)=8.84, 

P<.001 

Loc: 9,  

-73, 86 

K:9929 

 

LC: 

t(30)=5.75, P<.001 

Loc: 4,-79, 86 

K:663 

SLC:  

t(30)=4.92, 

P<.001 

Loc: -9, -52, 252 

K:445 

NLC: t(30)=4.82, 

P<.001 

Loc: -4, -68, 359 

K:748 

NLC: t(30)=4.54, 

P<.001 

Loc:4, -19, 760  

K:307 

onset 2:8 

(+1) 
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Table 3-1. Aggregated, mean/intercept contrasts. 

Raw one-sample t-values (uncorrected at peak of cluster) are presented for difference to zero 

(direction indicated by bracketed terms (e.g. “(+1)” is right-tailed)) and associated p-values 

(FWE-corrected at 0.05 at the cluster-level, cluster-forming threshold 0.001). Location of cluster 

is listed in Xmm, Ymm, Zms format. The columns from left to right are alpha, beta, low gamma, 

mid gamma, and high gamma. The rows from top to bottom are (onset 1 and then onset 2:8). NS 

means not significant, Loc is the location of cluster, LC is the largest cluster, SLC is the second 

largest cluster, and NLC is the next largest cluster. K is the size of the cluster in voxels. 

3.3.2 PGI mean/intercept contrasts 

Figure 3.4 shows the results of the PGI mean/intercept contrasts, topographic maps, the rows 

from top to bottom indicate if the topographic maps are either thresholded or unthresholded. 

Onset 1 or onset 2:8 is indicated on the right. The columns indicate what frequency band is being 

shown. Within the unthresholded topographic maps, we have indicated effects of interest, which 

were discussed previously, either early positive transients or sustained synchronisations (see key 

for full breakdown), with white framing. The w, x, y, v, and z letters on the topographic maps 

indicate their relation to Figure 3.6. Precisely, each letter corresponds to a different effect 

indicated by a vertical line in the Figure 3.6 graph. The reader can then refer back to Figure 3.4 to 

 

LC: 

t(30)=9.55, 

P<.001 

Loc:64,  

-41, 281 

K:44785 

 

 

LC: 

 t(30)=7.36, P<.001 

Loc:43,  

-36, 184 

K:5735 

 

NS NS NS onset 2:8 

(-1) 
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see that indicated effect in the context of the broader findings. Notice, that in Onset 2:8 

Unthresholded we see the large, sustained synchronisation in time, which extends from beta to 

mid gamma frequencies, with some even coming out on high gamma. There is no consistent scale 

across thresholded maps, in order to avoid colour saturating in some maps. The white vertical line 

indicates the onset of the stimulus. 

With the framing interpretation we just presented and the resulting four phenomena we identified 

for aggregated, we can see the following in the pattern-glare plots with key features again 

presented with white framing (see Figure 3.4 and Legend). We begin with the early positive 

transients 

1) Posterior to anterior, constant amplitude: there is little evidence of modulation of this by 

medium grating. 

2) Clear positive peak: there are only a few frequencies at which we see modulation of this 

feature.  All of these are restricted to Onset 2:8. The feature is somewhat present for mid 

gamma, and particularly for high gamma (see dashed framing). There may be small 

effects in beta 2-8 and low gamma 2-8, but these are not obviously separate features form 

the sustained synchronisation (see below). 

Points 1) and 2) here suggest that early positive transients are not markedly increased in 

amplitude by medium grating, apart from for mid and high frequencies for Onset 2-8. Now 

focussing on the two sustained effects identified in the aggregated analysis, we can see the 

following in Figure 3.4. 

1) Negative-Going effect (see also Figure 3.5): There is no evidence in figure 3.4 of a 

sustained negative-going effect for any frequency for either Onset 1 or 2:8. In particular, 

this feature is not present for alpha, where it was strong for the aggregated contrast. The 

time series in Figure 3.5 show a representation of the alpha effects, showing particularly, 
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that medium is not influencing the desynchronisation more than thick and thin, i.e. 

medium, thick and thin exhibit similar desynchronisations. Thus there is no clear evidence 

that pattern-glare induces a deeper desynchronisation in alpha. 

2) Positive-Going effect (See also Figure 3.6): as previously discussed, there is robust 

evidence that pattern glare can enhance the sustained positive-going effects, especially 

where it is most marked in aggregated: mid and low gamma for 2-8. There is evidence 

such an enhancement can also be seen in beta 2-8, but this may be explainable by the beta 

frequency partially overlapping with low gamma 2-8; note for aggregated, beta 2-8 

exhibited a sustained desynchronisation followed by a synchronisation for aggregated. 
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Figure 3-4. Time-frequency effects on the mean/intercept of PGI (PGI=medium-mean (thick, 

thick)):  

Frequency bands are presented in five columns (from left to right: alpha, beta, low gamma, mid 

gamma and high gamma); first two rows present thresholded maps for onset 1, next two rows 

present unthresholded maps (onset 1 and then onset 2:8), last two rows present thresholded maps 

for onsets 2:8. Thresholded maps show one-tailed t-tests, with direction indicated by bracketed 

terms (e.g. “(+1)” is right-tailed). Each panel of the plot shows scalp maps through time, laid 

out from top left to bottom right in the panel. Unthresholded maps (blue, black and red) show 

scalp maps from -100ms to 775ms in steps of 25ms, with 0ms, indicated with a white vertical line. 

Thresholded maps (yellow, orange, grey) show scalp maps from 50 to 775ms in steps of 25ms. 

Key findings are most evident in unthresholded maps (middle two rows). Raw one-sample t-

values are presented for difference to zero, with red positive-going and blue negative-going. Key 

features are again presented with white framing (see legend and main text). Thresholded maps 

show result from whole-volume cluster-level familywise error correction (first level, cluster-

forming, threshold set at 0.001; second-level correction at 0.05); see Table 3.2 for full 

presentation of these statistics. There is no consistent scale across thresholded maps, in order to 

avoid colour saturating in some maps. 

Table 3.2 shows the results breakdown of the associated statistics of the effects from Figure 3.4. 

Each cluster is given with its Xmm, Ymm, Zms location and time with both T and P values. The 

frequency and number order of cluster is given in bold, e.g. B1 is the largest cluster form beta.  

From left to right, the columns, indicate the frequency of interest and the rows indicate whether it 

is onset 1 or 2:8. NS means that there was no statistical effect found.   
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Table 3-2. Pattern-Glare Index, mean/intercept statistics. 

One-sample t-values (uncorrected) at peak of cluster are presented for difference to zero 

(direction indicated by bracketed terms (e.g. “(+1)” is right-tailed)) and associated p-values 

(FWE-corrected at cluster-level, with alpha level 0.05 and cluster-forming at 0.001). Location of 

cluster is listed in format Xmm, Ymm, Zms and cluster size if taken forward for factor analysis 

(i.e.., it is posterior in location). The columns from left to right are alpha, beta, low gamma, mid 

gamma, and high gamma. The rows from top to bottom are (onset 1 and then onset 2:8). NS 

means not significant, Loc is the location of cluster, LC is the largest cluster, SLC is the second 

largest cluster, and NLC is the next largest cluster.  

Alpha Beta Low 

Gamma 

Mid Gamma High 

Gamma 

 

NS NS NS NS NS onset 1 (+1) 

NS NS NS NS NS onset 1 (-1) 

NS NS NS NS NS onset 2:8 

(-1) 

      NS 

  

B1: LC-t(30)=7.01, 

P<.001 

Loc: 9, -84, 271 

K=2943 

B2: SLC: 

t(30)=6.34,P<.001 

Loc: 17, -30, 691 

K=350 

B3: NLC:t(30)=5.04 

P=.002 

Loc: -43, -14, 545 

B4: NLC: 

t(30)=4.99, P=.016 

Loc:4, -84, 

779 

K=171 

B5: NLC:t(30)=4.97, 

P=.041 

Loc: -43, 40, 271 

LG1: LC-t(30)=7.19, 

P<.001 

Loc: 17,-41, 262 

K=3969 

LG2: SLC: t(30)=5.30, 

P=.020 

Loc: 4, -84, 770 

K=118 

LG3: NLC:t(30)=4.84, 

P=.001 

Loc: 17, -9, 730 

K=207 

 

MG1: LC-t(30)=7.56, 

P<.001 

Loc: -9, -89, 408 

K=3724 

MG2: SLC:t(30)=4.64, 

P<.001 

Loc: -17, -79, 652 

K=375 

 

HG1: LC-t(30)=6.72, 

P<.001 

Loc:17, -68, 145 

K=731 

HG2: SLC:t(30)=4.63, 

P=.002 

Loc: -13, -89, 408 

K=144 

 

onset 2:8 

(+1) 
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As previously discussed, Figure 3.5 shows time-series illustrating that sustained alpha 

desynchronisation is not driven by medium, i.e.  medium, thick and thin exhibit similar 

desynchronisations. 
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Figure 3-5. Sustained alpha desynchronisation is not driven by medium.  

Time series of power summed across Alpha frequency for Onset 2:8 and Onset 1, showing 

medium, thick, and thin at electrode Oz (A23), along with the pattern glare index. The time series 

here show a representation of the Alpha effects, specifically, that medium is not influencing the 

desynchronisation more than thick and thin. This figure shows that medium, thick and thin exhibit 

similar desynchronisations. 

Figure 3.6 shows graphs to illustrate that sustained synchronisation is driven by medium in the 

(A) beta, (B) low gamma, (C) mid gamma, and (D) high gamma bands for the mean/intercept of 

the PGI. These panels plot posterior electrodes: A30, A16, and A31. A red arrow indicates the 

relevant electrode in the glass-map on the upper left-hand side of each plot, v, w, x, y, and z 

indicate effects that the reader can link back to Figure 3.4, in order to see the effect in the broader 

context. We can observe that, beta, low gamma, and mid gamma, show large, sustained 

synchronisations in time driven by medium, with the same effect present, but more intermittent in 

high gamma. 

As previously alluded to, it is striking that for the PGI mean/intercept; the earlier positive 

transient only seems to yield a clearly distinct effect from the sustained positivity for the higher 

frequencies (high and mid gamma). Figure 3.6 shows this, where, for thin and thick, the early 

positive transient subsides to nothing from low to mid to high gamma, while remaining present 

for medium (see z in panel D and the same feature in panel C). 
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Figure 3-6. time-series of (A) beta, (B) low, (C) mid, and (D) high gamma frequencies, onsets 

2:8, at different posterior electrodes, showing synchronisation (both sustained and early positive 

transient) for medium grating: 

Time series of power summed across each frequency band, showing medium, thick, and thin at 

electrodes A30, A16, A31 (see red arrow in inset scalp map). Plots correspond to different effects 

in Figure 3.4: (A) beta to effect w; (B) low gamma to x; (C) mid gamma to y; and (D) high 

gamma to v and z. These effects can also be seen in the PGI time-series in these plots, see right-

side y-axes.  The scalp maps here show an spm glass scalp, in which all significant effects 

through time are collapsed onto a two-dimensional representation. It shows that the electrode 

being plotted (red arrow) is at a position where there is considerable significance through time. 

Positive is plotted up on time-series. 
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3.3.3 Factor Effects 

Figure 3.7 shows the results of regressing the PGI onto the three-factor effects, with factor scores 

presented in three columns (from left to right: F1 (headache) +1, F2 (VSQ) +1, F3 (Discomfort) 

+1); the rows represent topographic maps for the different averaged frequencies (from top to 

bottom: beta, low gamma, mid gamma, and high gamma). These maps are unthresholded, 

allowing the full quantitative pattern of the data to be observable. The white outlines indicate the 

areas where the effects of interest for us arise a, b, c, d, e, and f. These letters also appear in the 

figures of the time-series for factors, which follow, enabling effects in topographic maps and 

time-series to be linked. 
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Figure 3-7. Onset 2:8 results of regressing PGI onto factor scores.  

Factors are presented in three columns (from left to right: F1+1(VSQ, Chi, Aura, positive-going 

effect), F2 +1(Length, Intensity, Duration of headache, positive-going effect), F3 +1 

(Discomfort, positive-going effect)); the rows represent topographic maps for the different 

averaged frequencies (from top to bottom: beta, low gamma, mid gamma, and high gamma). 

Each panel of the plot shows scalp maps through time, laid out from top left to bottom right in the 

panel. Scalp maps are from 50ms to 775ms in steps of 25ms. Scale is from -4 to 4. 

The maps in Figure 3.7 are unthresholded, not enabling us to make statistical inferences. As 

previously discussed, in this respect, we are specifically interested in the effects on factors that 

enable us to explain the PGI mean/intercept effects identified in the previous section. 

Accordingly, as discussed in the methods, we employ a procedure that looks explicitly for 

significant effects in ROIs selected from the clusters observed in Figure 3.7. 

Two methods of analysis were conducted on the results of regressing PGI onto factors (see Figure 

3.7). These two methods are as follows: 

1. Orthogonal cluster inference in the region of interest (ROI). 

An ROI was produced using the clusters of interest from the PGI mean/intercept contrast. This is 

used because it is orthogonal to the factors by design. This procedure identified one peak for high 

gamma for factor 3 at 438ms (t(30)=3.51 (uncorrected at peak of cluster), p=.038 (FWE-

corrected at cluster-level)); see Figure 3.8. 

2. Uncorrected analysis at peak of region of interest. 

Eleven of the peaks that were identified in significant cluster ROIs from the PGI mean/intercept 

yielded significant effects (uncorrected) on positive-going factors (see Figure 3.7). Of these, 

seven were on F3 (+1); three F1 (+1); and one F2 (+1) (see Table 3 for full statistical 
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breakdown). We applied the following criteria to determine the effects at peaks to focus on 

particularly: - posterior: effects should be approaching Oz, since we have the greatest prior 

precedent for such effects (Adjamian et al., 2004); contiguous to substantial cluster: effect being 

observed at a single point is not isolated, i.e. it is contiguous to a substantial cluster, particularly 

that is extended in time. Effects that did not satisfy these criteria can be found in the Appendix. 

Table 3 shows the results breakdown of the associated statistics of the factor effects from Figure 

3.7. Each peak is given within the mean/intercept cluster/ ROI that it sits in, stated in the format 

Xmm, Ymm, Zms (two spatial locations and one of time), with associated t-values. The 

mean/intercept cluster/ROI, if it was posterior near occipital lobe, is given, with the frequency 

band and order in cluster size given in bold, e.g. B1 is the largest cluster from beta.  From left to 

right, the first column indicates the mean/intercept cluster/ROI; the second the regressor of 

interest (either mean/intercept, factor 1,2 or 3), the following columns indicate peaks of the 

frequency-band cluster/ROI being examined. From top to bottom, the rows indicate what cluster 

of what frequency band is indicated, e.g. B1, is the largest cluster in the beta frequency. NS 

means that there was no statistical effect found. 
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T-values Parametric-

Regressor 

(All on onset 2:8, 

positive-going 

effects) 

Peak 

1 

Peak 

2 

Peak 

3 

B1 

 

Mean/intercept 

F1 

F2 

F3 

9,-84, 271 

NS 

NS 

1.86 

9,-84,428 

NS 

NS 

NS 

13,-84, 438 

NS 

NS 

NS 

B2 Mean/intercept 

F1 

F2 

F3 

17,-30, 691 

NS 

NS 

NS 

26,-30, 701 

2.02 

NS 

NS 

30,-25,740 

NS 

NS 

NS 

B3 Mean/intercept 

F1 

F2 

F3 

4,-84,779 

NS 

NS 

NS 

-13,-84,779 

NS 

NS 

NS 

No 3rd major 

peak 

LG1 Mean/intercept 

F1 

F2 

F3 

17, -41, 262 

NS 

NS 

NS 

9, -84, 271  

NS 

NS 

2.704 

-9,-73,252 

2.15 

NS 

NS 

LG2 Mean/intercept 

F1 

F2 

F3 

17, -9, 730 

NS 

NS 

NS 

21,-9,643 

NS 

3.81 

NS 

13,-46,740 

NS 

NS 

NS 

LG3 Mean/intercept 

F1 

F2 

F3 

4,-84,770 

NS 

NS 

NS 

13,-89,760 

NS 

NS 

NS 

-9,-73,799 

NS 

NS 

NS 

MG1 Mean/intercept 

F1 

F2 

F3 

-9, -89, 408 

NS 

NS 

2.58 

0, -89, 145-A23 

NS 

NS 

1.85 

-9, -89, 135  

NS 

NS 

2.5 

MG2 Mean/intercept 

F1 

F2 

F3 

-17, -79, 652 

NS 

NS 

NS 

 

-9,-89,564 

NS 

NS 

NS 

13, -79,564 

NS 

NS 

NS 

HG1 Mean/intercept 

F1 

F2 

F3 

17, -68, 145 

NS 

NS 

NS 

9, -68,145 

NS 

NS 

NS 

9,-52,145-A32 

NS 

NS 

2.02 
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HG2 Mean/intercept 

F1 

F2 

F3 

-13,-89, 408,  

3.12 

NS 

NS 

 

17,-57,438-A32 

NS 

NS 

3.09 

-17,-79,438 

NS 

NS 

NS 

 

Table 3-3. Factor effects at peaks from Pattern-Glare Index mean/intercept effects.  

(Uncorrected) one-sample t-values are presented for difference to zero (right-tailed) and 

associated locations. Location of cluster is listed as Xmm, Ymm, Zms. The columns from left to 

right are, first, identifier of mean/intercept cluster/ ROI, second a description of the regressor 

(mean/intercept, F1, F2, or F3), then the remaining columns are peaks within that ROI. The rows 

from top to bottom are the clusters/ROI in order of size denoted by the first letter/s of the name of 

the frequency band, i.e., HG= High Gamma. NS means not significant. 

To interpret the peaks and clusters we obtain, we perform median splits on the corresponding 

factor, and present the corresponding (thin, medium and thick) time-series for high and low 

groups. We also present PGI time-series for high and low, as well as the difference of PGI. The 

difference of PGI is an indicative visualisation of an effect on a factor. However, it is no more 

than indicative. That is, it will frequently be the case that when there is a large positive PGI effect 

on a factor, those in a high median split group will have bigger PGI than those in a low median 

split group. However, this is not always going to be the case, since a median split goes not take 

into account the factor loadings for different participants, i.e. it effectively assumes that all 

loadings in the high group are +1 and all loadings on the low group are -1. Consistent with this, 

we, in some cases, see differences of PGI near zero at the position of a significant PGI effect on a 

factor. 

 We start by considering the single effect that was significant under our first statistical 

inference approach (Orthogonal cluster inference in the region of interest (ROI)) Figure 3.8 

Table Continued 
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shows thresholded and unthresholderd topographic maps, and time series at electrode A32, for 

factor 3 high gamma (HG) on onsets 2:8. As just stated, this effect was significant according to 

the orthogonal cluster inference at the region of interest (ROI) method,for HG at 438ms 

(t(30)=3.51, p=.038). The left topographic maps are thresholded. The right is the unthresholded 

map. The white box indicates the significant electrode and associated cluster of effect. High [A] 

and Low [B] on median split of Factor 3 (discomfort) are presented, showing in both cases, Thin, 

Medium and Thick, and PGI. PGI for High and Low median splits, along with difference of High 

and Low PGIs are also presented [C].  The ‘a’ on the graph can be used to refer back to Figure 

3.7 to compare effects in the broader context. Both topographic maps are from 430 to 450ms in 

2ms steps. The vertical line on all 3 time series at 438ms shows the peak of significance. As we 

can see, this effect is limited in time, and positioned somewhat anterior to Oz. 
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Figure 3-8. thresholded and unthresholded topographic maps, and time-series at electrode A32 

illustrating effect on factor 3 positive going within ROI from PGI mean/intercept, High Gamma 

frequency, Onset 2:8:  

Peak in PGI mean/intercept cluster is at 13mm, -57mm, 438ms, see vertical line, here placed on 

the closest electrode. The vertical line is the same in the difference of PGI time-series as well. 

Topographic maps (upper half of figure) are from 430 to 450ms, in 2ms steps. Left side maps are 

thresholded, and have a scale of 0 to 10. Right side maps are unthresholded, and have a scale 

from -4 to 4. The “a” links to the effect in Figure 3.7. White boxes indicate the cluster where the 

effect sits. Stimulus time series are of power summed across High Gamma frequency. [A] High 

and [B] Low on median split of factor 3, showing in both cases, Thin, Medium and Thick, and 

PGI. [C] PGI for High and Low median splits, along with difference of High and Low PGIs. The 

scalp maps on panels [A] and [B] show an SPM glass scalp, in which all significant effects 

through time are collapsed onto a two-dimensional representation. It shows the electrode being 

plotted as the red arrow. Positive is plotted up on time-series. 

We now move to effects that are significant with our second ROI approach (uncorrected analysis 

at the peak of ROI). Figure 3.9 shows the high gamma effect for factor 1 at Oz using this 

uncorrected analysis at the peak of ROI approach on onsets 2:8. The topographic maps shown are 

unthresholded from 350 to 550ms in 25ms steps. The peak of PGI mean/intercept cluster is at -

13mm, -89mm, 408ms. The white box indicates the significant electrode and associated cluster of 

effect. High [A] and Low [B] on median split of factor 1 are presented, showing in both cases, 

Thin, Medium and Thick, and PGI. Panel [C] presents PGI for High and Low median splits, 

along with difference of High and Low PGIs. The ‘b’ on the scalp maps can be used to refer back 

to Figure 3.7 to compare effects in the broader context. High gamma was significant t(30)=3.12, 

p<.05, (for full statistical breakdown see, table 3, refer to HG2, row). This F1 effect is positioned 
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close to Oz, where we have a strong prior precedent, and is placed within a clear cluster on the 

difference of PGIs (see panel C). 
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Figure 3-9. Topographic maps and time-series at electrode A23 (Oz), illustrating the effect on 

factor 1 positive-going, High Gamma frequency, Onset 2:8:  

Peak of PGI mean/intercept cluster is at -13mm, -89mm, 408ms, see vertical line, here placed on 

the closest electrode. The topographic maps are unthresholded and from 350 to 550ms, in 25ms 

steps, the scale is from -4 to 4. The “b” links to effect in Figure 3.7. The white boxes indicate the 

cluster where the effect sits. Stimulus time series are of power summed across High Gamma 

frequency. [A] High and [B] Low on median split of factor 1, showing in both cases, Thin, 

Medium and Thick, and PGI. [C] PGI for High and Low median splits, along with difference of 

High and Low PGIs. The SPM glass scalps shown on [A] and [B] depict all significant effects 

through time collapsed onto a two-dimensional representation. It shows the electrode being 

plotted as the red arrow. Note, Oz is off the midline in this depiction, since crown electrodes were 

removed. Positive is plotted up on time-series. 

Figure 3.10 shows the effect for Beta on factor 3 at electrode A30 using the uncorrected analysis 

at the peak of ROI approach on onsets 2:8. The topographic maps shown are unthresholded from 

250 to 525ms in 25ms steps. The peak from the PGI mean/intercept cluster is at 9mm, -84mm, 

271ms. The white boxes indicate the region and associated cluster that contains the significant 

(uncorrected) peak on the factor. High [A] and Low [B] on the median split of factor 3 are 

presented, showing in both cases, Thin, Medium and Thick, and PGI. PGI for High and Low 

median splits [C] is also shown, along with difference of High and Low PGIs. The ‘c’ on the 

graph can be used to refer back to Figure 3.7 to compare effects in the broader context. Beta was 

significant uncorrected t(30)=1.86, p<.05, (for full statistical breakdown see, table 3 and refer to 

B1, F3 row). This effect is clearly posterior, where we have our strongest prior precedents, and 

sits at the start of an extended cluster through time of a strong difference between High and Low 

on PGI; see panel [C]. 
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Figure 3-10. Topographic maps and time-series at electrode A30, illustrating effect on factor 3 

positive-going, Beta frequency, Onset 2:8:  

Peak of PGI mean/intercept cluster is at 9mm, -84mm, 271ms, see vertical line, here placed on 

closest electrode. The topographic maps are unthresholded from 250 to 525ms, in 25ms steps, the 

scale is from -4 to 4. The “c” links to effect in Figure 3.7. Stimulus time series are of power 

summed across Beta frequency. [A] High and [B] Low on median split of factor 3, showing in 

both cases, Thin, Medium and Thick, and PGI. [C] PGI for High and Low median splits, along 

with difference of High and Low PGIs. The white boxes indicate the cluster where the effect 

(uncorrected at peak on factor) sits. The SPM glass scalps shown on [A] and [B] depict all 

significant effects through time collapsed onto a two-dimensional representation. It shows the 

electrode being plotted as the red arrow. Positive is plotted up on time-series. 

Figure 3.11 shows the effect for low gamma on factor 3 at electrode A30 using the uncorrected 

analysis at the peak of ROI approach on onsets 2:8. The topographic maps shown are 

unthresholded from 250 to 525ms in 25ms steps. The peak of the PGI mean/intercept cluster/ROI 

is at 9,-84, 271ms. The white boxes indicate the region and cluster that contains our significant 

(uncorrected) peak on the factor. High [A] and Low [B] on the median split of factor 3, showing 

in both cases, Thin, Medium and Thick, and PGI. PGI [C] for High and Low median splits, along 

with difference of High and Low PGIs. The ‘d’ on the graph can be used to refer back to Figure 

3.7 to compare effects in the broader context. Low gamma was significant (uncorrected) 

t(30)=2.704, p<.05 (for full statistical breakdown see, table 3, with this effect on LG1, F3 row).  

Similarly to what we observed for Beta (do note that Beta and Low Gamma frequencies overlap), 

the significant peak on this factor is positioned at the start of an extended cluster where PGI is 

bigger for High than for Low. Additionally, the effect is posterior on the scalp, where we have 

our strongest prior precedents. 
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Figure 3-11. topographic maps and time-series at electrode A30, illustrating the effect on factor 

3 positive-going, Low Gamma frequency, Onset 2:8:  

Peak of PGI mean/intercept cluster is at 9mm, -84mm, 271ms, see vertical line, here placed on 

the closest electrode. The topographic maps are unthresholded maps from 250 to 525ms, in 25ms 

steps, the scale is from -4 to 4. The “d” links to effect in Figure 3.7. Stimulus time series are of 

power summed across low gamma frequency. [A] High and [B] Low on median split of factor 3, 

showing in both cases, Thin, Medium and Thick, and PGI. [C] PGI for High and Low median 

splits, along with difference of High and Low PGIs. The white boxes indicate the region/cluster in 

which the (uncorrected) peak effect on the factor sits. The SPM glass scalps shown on [A] and 

[B] depict all significant effects through time collapsed onto a two-dimensional representation. It 

shows the electrode being plotted as the red arrow. Positive is plotted up on time-series. 

Figure 3.12 shows the three significant effects for mid gamma for factor 3 at electrode a23 (Oz) 

using the uncorrected analysis at the peak of ROI approach on onsets 2:8. The topographic maps 

shown are unthresholded from 50 to 425ms in 25ms steps.  High [A] and Low [B] on median 

split of factor 3 are presented, showing in both cases, Thin, Medium and Thick, and PGI. PGI [C] 

for High and Low median splits are shown, along with difference of High and Low PGIs. The ‘e’ 

on the graph can be used to refer back to Figure 3.7 to compare effects in the broader context. 

Peaks of PGI mean/intercept clusters where we observe an (uncorrected) effect on the mid 

gamma frequency are at -9mm,-89mm, 408ms t(30)=2.58, p<.05; 0mm,-89mm, 145ms 

t(30)=1.85, p<.05; & -9mm,-89mm, 135ms t(30)=2.5, p<.05 (for full statistical breakdown see, 

table 3, with this effect on MG1, F3 row). The white boxes indicate the region and clusters that 

contain the significant (uncorrected) peaks on the factor. Notably, we have solid prior precedents 

for observing effects at Oz, particularly in the early window around 100ms (Adjamian et al., 

2004; Tempesta et al.,  in submission, chapter 3), which is exactly what we are observing here in 
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our earlier effects (around 150ms) These early uncorrected peaks are also placed within an 

extended cluster in which High PGI is bigger than Low, see panel [C]. 
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Figure 3-12: topographic maps and time-series at electrode A23 (Oz), illustrating the effect on 

factor 3 positive-going, Mid Gamma frequency, Onset 2:8:  

Peaks of PGI mean/intercept clusters, where uncorrected factor effects arise, are at, -9mm,-

89mm, 408ms, 0mm,-89mm, 145ms, & -9mm,-89mm, 135ms, see vertical lines, here placed on 

the closest electrode. The topographic maps are unthresholded from 50 to 425ms, in 25ms steps, 

the scale is from -4 to 4. The “e” links to effect in Figure 3.7. The white boxes indicate the 

regions/clusters that contain the significant (uncorrected) peaks on the factor. Stimulus time 

series are of power summed across Mid Gamma frequency. [A] High and [B] Low on median 

split of factor 3, showing in both cases, Thin, Medium and Thick, and PGI. [C] PGI for High and 

Low median splits, along with difference of High and Low PGIs. The SPM glass scalps shown on 

[A] and [B] depict all significant effects through time collapsed onto a two-dimensional 

representation. It shows the electrode being plotted as the red arrow. Note, Oz is off the midline 

in this depiction, since crown electrodes were removed. Positive is plotted up on time-series. 

Figure 3.13 shows the three significant effects for high gamma for factor 3 at electrode A32 

using the uncorrected analysis at the peak of ROI approach on onsets 2:8. The topographic maps 

shown are unthresholded from 50 to 200ms in 10ms steps. High [A] and Low [B] on median split 

of factor 3 are depicted, showing in both cases, Thin, Medium and Thick, and PGI. PGI [C] for 

High and Low median splits are shown, along with difference of High and Low PGIs. The ‘f’ on 

the graph can be used to refer back to Figure 3.7 to compare effects in the broader context. Peak of 

PGI mean/intercept cluster, where uncorrected effect on factor occurs on mid gamma frequency is 

at 9mm, -52mm,145ms t(30)=3.09, p<.05 (for full statistical breakdown see, table 3, with this effect 

on row HG2, F3). The white boxes indicate the region/cluster in which the (uncorrected) peak 

effect on the factor occurs. This peak sits in a time-extended cluster that sits somewhat anterior of 

Oz. 
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Figure 3-13: Topographic maps and time-series at electrode A32, illustrating the effect on factor 

3 positive-going, High Gamma frequency, Onset 2:8: 

Peak of PGI mean/intercept cluster, where uncorrected factor effect arises is at 9mm, -52mm, 

145ms, see vertical line, here placed on the closest electrode. The topographic maps are 

unthresholded from 50 to 200ms, in 10ms steps, the scale is from -4 to 4. The “f” links to effect in 

Figure 3.7. The white boxes indicate the region/cluster that contains the significant (uncorrected) 

peak on the factor. Stimulus time series are of power summed across High Gamma frequency. 

[A] High and [B] Low on median split of factor 3, showing in both cases, Thin, Medium and 

Thick, and PGI. [C] PGI for High and Low median splits, along with difference of High and Low 

PGIs. The SPM glass scalp shown on [A] and [B] depict all significant effects through time 

collapsed onto a two-dimensional representation. It shows the electrode being plotted as the red 

arrow. Positive is plotted up on time-series  

3.4 Discussion  

Understanding the underlying neurological factors that affect visually induced migraines is 

essential. It is a significant cause of disability and causes issues at work. In this analysis, we 

looked at the frequency domain, within the general population, we looked at the responses to 

aggregated and PGI and related them to three factors: visual stress, a tendency for headaches, and 

discomfort. Our 3 hypotheses were that firstly there will be a deeper alpha desynchronisation for 

PG. Secondly there will be greater gamma power for PG, which relates to a failure to habituate 

and finally, these EEG effects on pattern glare will be modulated by state and trait measures of 

sensitivity to headache, discomfort, visual hallucinations. The increased alpha desynchronisation 

for PG hypothesis was not confirmed: medium was not observably different to thick and thin in 

how it affected synchronisation in the alpha frequency band (Figure 3.5).  However, for the PGI 

analysis on the mean/intercept, there was greater gamma power for PGI (Figure 3.6, Panels C and 
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D); we will discuss this further by looking at the factor effects on the PGI. Finally, we did have a 

significant finding for many of the factors on state and trait measures (Figure 3.7). 

3.4.1 Aggregated mean/intercept contrasts 

We described in the results section that there were four main features in the power 

analysis, which we divided between early positive transients and sustained responses (Figure 

3.3).  For the early positive transient, we saw a clear posterior peak for beta and low gamma for 

onset 1 and onset 2:8 (dashed framing), which means that this is probably not being affected by 

lack of habituation, but reflects information processing (Hanslmayr, 2012). However, alpha onset 

2:8 showed an early anterior to posterior synchronisation (dotted framing), which does not occur 

in onset 1. Additionally, while this early anterior to posterior effect in alpha 2:8 has some overlap 

with the effect in beta and low gamma; there is a clear posterior peak for beta and low gamma 

localised to Oz. Note that Adjamian and colleagues (2004) only directly investigated a localised 

gamma effect for V1.Then, almost directly after the Onset 2:8 anterior to posterior effect, we 

observe a large sustained desynchronisation (dotted-dash framing) for both onset 1 and 2:8 for 

alpha. 

Additionally, in low gamma and mid gamma frequencies, we observe a sustained 

synchronisation effect happening only for Onsets 2:8 (Unbroken framing). This sustained 

synchronisation is continuously present as we progress through the time series of the topographic 

maps across all gamma frequencies, except high gamma. This may be related to a high stimulus 

driver.  

3.4.2 Pattern-Glare Index mean/intercept contrasts 

The PGI mean/intercept effects follow along the same lines of aggregated mean/intercept, 

i.e., early positive transients and sustained synchronisations (see Figure 3.4). As we can observe, 

beta showed a sustained synchronisation effect that continued in time and through low and mid 
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gamma in onset 2:8 (see solid framing). The effects underlying the PGI mean/intercept findings 

presented in Figure 3.4 are presented in Figure 3.6, showing time series at different posterior 

electrodes one for each relevant frequency. Observe that in panel A) for beta, all three stimuli 

display an early positive transient, and then medium continues on into a d/c shift. We also 

observed this continuation in panel B) and panel C), albeit with the early positive transient 

progressively diminishing. Finally, in panel D) we observe that the early positive transient is 

wholly gone for thick and thin, but the medium still shows such a transient. Thus, when for high 

gamma there is not just a quantitative change between medium, thin and thick, there is a 

qualitative (all-or-none) change; i.e. the feature is completely absent for thin and thick. One 

possible explanation for this is a failure to habituate, i.e., the synchrony is continuing because the 

stimulus cannot be habituated to, a phenomenon that might be expected to connect with our 

discomfort factor (Schoenen et al., 1995; Afra et al., 1998; Wang, Wang, et al., 1999). 

It is also interesting to note that our finding of high gamma in onset 2-8, and not onset 1, 

does stand against some operationalisations of predictive coding (Den Ouden et al., 2012). Onset 

1 should be the condition that generates a prediction error, since stimuli are equiprobable 

(Hawkins, 2004; Friston, 2005; Bar, 2009), and some have argued that prediction errors should 

manifest in increased gamma (Todorovic et al., 2011), since they would be registered in 

superficial layers of the cortical column. We saw precisely the opposite of this in high gamma for 

2-8. This suggested that a lack of habituation is a more probable interpretation of this feature in 

our data. 

It is striking that we observed such a substantial effect on the sustained positivity for the 

pattern-glare index for onset 2:8, but there is nothing significant for onset 1; see Figure 3.4. One 

might argue that this is due to onset 1 having less statistical power than onset 2:8, since it 

involves fewer trials per participant. We cannot rule out this possibility completely, but it is 
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notable that we do observe large effects for onset 1 for the aggregated analysis (see Figure 3.3). 

We also observe effects on onset 1 in the time-domain (Tempesta et al., 2021; also Chapter 2). 

Thus, it seems that there is sufficient statistical power to observe robust effects for onset 1. 

However, for high gamma, the D/C shift that continues beyond the time window is gone. 

Additionally, the early positive transient in high gamma has an increased latency in time, peaking 

at 150ms. This is slightly after the rising arm of the event-related P1, the feature that is likely to 

coincide with the early positive transient seen in panels A) and B), which peaks around 100ms. 

Accordingly, this high and mid gamma transient peaking at 150ms might be considered a distinct 

feature. Additionally, interestingly, it peaks at about the point that our missing N1 in the time-

domain starts (Tempesta et al., 2021; also Chapter 2). 

 A possible physiological explanation for what we observe would be that there are two 

sorts of cell-assemblies (Hebb, 1949) in relevant visual areas. One sort is “somewhat” densely 

interconnected and thus oscillate at beta, low gamma and to some extent mid gamma, and the 

other sort is more densely interconnected, generating shorter cycle times, that oscillate at mid and 

high gamma. This second set activate slightly later following a stimulus onset. Thick, medium 

and thin all drive the “somewhat” densely interconnected assemblies, but only medium drives the 

most densely interconnected assemblies. 

3.4.3 Factors Effects 

 As we can recall from the results section, there were two methods used to analyse the factors in 

our data set - orthogonal cluster inference in an ROI from mean/intercept of PGI and uncorrected 

analysis at a peak of interest from the mean/intercept of PGI clusters. Figure 3.7 shows the major 

significant effects of factors. Notably, we observed most of our effects on the discomfort factor, 

the factor that is dominated by a state, rather than a trait, response. As a result, in line with other 

studies (Csikszentmihalyi & Larson, 1987; Finnigan & Vazire, 2018), one might believe that 
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discomfort is a more reliable measure than the trait measures, which require subjective reflection 

on past experiences  

 Consequently, it is reassuring, and perhaps also not surprising, that the most apparent 

correlations we observed with brain response are from the discomfort factor. The orthogonal 

cluster inference in an ROI approach identified a small cluster for discomfort for high gamma 

within a region of interest (see Figure 3.8), which means that participants who scored high on 

discomfort for high gamma felt uncomfortable during the study. 

Eleven peaks came out on the uncorrected analysis at peaks of the ROIs; 7 were on the 

discomfort factor, three were on the VSQ, Chi and Aura factor, and one was related to the length 

and frequency of headaches factor. Figure 3.9 shows topographic maps for electrode A23 (Oz) 

for the VSQ, Chi, and Aura factor for high gamma; participants who scored high on this factor 

responded high on these trait measures. Importantly, these effects were observed at a posterior 

site, for which we have the strongest prior precedent (Adjamian et al., 2004). Figure 3.10, 

discomfort for beta, showed the start of a sustained cluster, which means that those who score 

high on discomfort have increased beta for PGI. In Figures 3.11, 3.12 and 3.13, we showed 

similar effects for low gamma, mid gamma and high gamma on the discomfort factor. This means 

that those who have higher discomfort are experiencing more higher PGI in these frequency 

bands. It is important to note that mid gamma for Oz, for which we have the strongest prior 

precedents (Adjamian et al., 2004; Tempesta et al., 2021; also Chapter 2), shows three significant 

peaks for discomfort, suggesting that for mid gamma there is a particularly high effect on pattern 

glare for those high on the discomfort factor.   
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3.4.4 Limitations 

Our study is not without its caveats.  Critically, although the PG test uses 12 c/deg, there 

are some questions over this stimulus, partly because the 12cpd pattern is not always well 

reproduced (see discussion in Wilkins et al., 2016). We see glare-induced gamma primarily for 

onset 2:8, but not onset 1. The fact this is only in 2:8, may suggest that it is an 

electrophysiological correlate of the brain’s inability to habituate to PG, although one would like 

an analysis that would show that later onsets, e.g. 5:8, have similar, or even, increased levels of 

gamma power to early ones, e.g. 2:4. Given the differences in the explanations of gamma 

synchrony as either a cognitive example of habituation or failure of habituating, more studies are 

needed to see which of these results might be transferable to a patient population.  

3.4.5 Conclusion 

 We observed a substantial effect on the sustained positivity for the PGI for onset 2:8 on 

gamma band. Notably, we observed most of our effects on the discomfort factor, the factor that is 

dominated by a state, rather than a trait, response. As a result, one might believe that discomfort 

is a more reliable measure than the trait measures, which require subjective reflection on past 

experiences. Finally, eleven peaks came out on the uncorrected analysis at peaks of the ROIs; 7 

were on the discomfort factor, three were on the VSQ, Chi and Aura factor, and one was related 

to the length and frequency of headaches factor in posterior on the scale.  
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3.8 Supplementary Material  

3.8.1 Factor analysis 

Factor analysis seeks to derive independent factors from a collection of variables. Thus, the 

correlations between our factors were zero. Rotation helps to clarify which variables load onto 

(belong to) each factor, as seen in the Rotated Component Matrix (Table 3-4) and helps with 

factor naming. Our factors scores were calculated in SPSS (IBM, NY) using the regression 

method in which all variables contribute to all factors according to the Component Score 

Coefficient Matrix (Table 3-5). For the headache and discomfort factors, the contribution from 

variables not obviously associated with these terms was minimal. The headache variables did 

contribute to the visual stress factor, but were pitted against each other such that intensity and 

frequency contributed positively onto this factor while duration contributed negatively. Since the 

headache variables correlate relatively strongly, the effect of these positive and negative 

weightings will be to cancel out the overall effect of headache on the VS factor. Although 

correlations between factors were zero by design, the correlation between discomfort ratings for 

the medium stimuli alone and headache frequency was 0.3 (p=.068) which, while not significant 

in our sample, is similar to previous measures. 

Table 3-4. Rotated Component Matrix 
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Rotated Component Matrix 

 
Component 

 

1 2 3 

VSQ 0.636 0.035 0.062 

CHi 0.845 0.212 -0.074 

aura 0.789 0.122 0.292 

H-duration -0.470 0.764 0.040 

H-intensity 0.366 0.716 -0.116 

H-frequency 0.305 0.795 0.041 

Discomfort 0.119 -0.028 0.977 

 

Table 3-5. Component Score Coefficient Matrix 

 
Component Score Coefficient Matrix 

  
Component 

 
  1 2 3 

VSQ 0.303 -0.055 -0.021 

CHi 0.401 0.018 -0.172 

aura 0.337 -0.012 0.187 

H-duration -0.332 0.51 0.135 

H-intensity 0.108 0.372 -0.128 

H-frequency 0.048 0.433 0.036 

Discomfort -0.065 0.013 0.934 

 

3.8.2 Direct Comparison of Stimulus Responses 

In EEG work, one often attempts to avoid differences in stimulus properties, particularly 

those that are low-level, such as spatial frequency. This is because one is typically seeking to 

identify differences in higher-level cognitive functions, such as, attentional state, affective 

salience or linguistic properties, and associated EEG features could be contaminated by 
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differences in low-level features. However, this is not our situation: we are specifically seeking to 

observe differences in the brain’s electrical response to changes in low-level stimulus features, 

i.e. spatial frequency.  

Other researchers also looking at the brain’s electrical response to aggravating stimuli have 

sought to avoid making comparisons across stimuli with different spatial frequencies (Fong et al., 

2020). A consequence of this choice is that effects of different spatial frequencies have to be 

judged informally, without a statistical test to quantify the confidence in an observed difference; 

virtually one is left considering the difference of evidences (e.g. comparing p-values), rather than 

assessing the evidence for a difference. There are, of course, many ways to investigate scientific 

questions, but, since the question of interest for us is how early brain responses change to stimuli 

that have different effective strengths for different groups, we have chosen to directly compare 

the EEG generated by stimuli of different spatial frequencies. Additionally, our parametric 

regression onto the three factors we identified cannot be impacted by fixed baseline differences 

between gratings, such as, Thick generating an overall higher amplitude than Thin or Medium, 

since that difference would be consistent across participants. As a result, it could not generate a 

non-zero correlation between the dependent variable and regressor, i.e. it would impact the 

intercept term of the regression, but not the slope, which gives the beta we are interested in. Thus, 

fixed baseline differences in brain responses to different gratings cannot impact our analysis of 

factors. 

3.8.3 Difference of Evidences 

The previous section justifies our use of the pattern-glare index to quantify evidence for a 

difference between the three types of stimuli. There is, though, one caveat to our capacity to 

quantify evidence for a difference. 
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If we were to look for statistical differences between conditions in a fully principled way, we 

should not only compare Onset 1 to Onset 2 to 8, but we should also compare what we see for 

different frequency bands. That is, one could, for say PGI mean/intercept, run a 2 (Onset_1 vs 

Onset 2_8) by 5 (alpha, beta, low gamma, mid gamma, high gamma) ANOVA. 

Such a 2 by 5 ANOVA is going to suffer from gross non-sphericity, since, for example, what one 

sees for low gamma and mid gamma are going to be highly correlated, but what one sees for 

alpha and high gamma are going to be much less correlated. One could attempt a Greenhouse-

Geisser correction, but it would be challenging. 

Because it is so difficult to perform such inference uncontaminated by loss of sphericity, we 

decided to rely on comparing evidences. This does, at least, enable us to be informed by the 

amount of across subject variability. However, since the final comparison is only informal, we 

will only consider effects that are strong as anything other than exploratory. 

3.8.4 Further Factor Effects 

A number of the effects on factors that arose through our “Uncorrected analysis at peak of region 

of interest” approach are placed here in the appendix. As discussed in the main-body of this 

paper, we applied the following criteria to determine the effects at peaks to keep in the main-

body: 

1. posterior: effects should be approaching Oz, since we have the greatest prior precedent for 

such effects (Adjamian, 2004); 

2. continuous to substantial cluster: an effect being observed at a single point is not isolated, 

i.e. it is continuous to a substantial cluster, particularly that is extended in time. 

Effects that did not satisfy these criteria are placed here. 

On each Figure below, we discuss why this electrode was not included in the main body, i.e. 

which of the two criteria above it failed to meet, and show the peak of significance with a vertical 



 

 

 155 

line. Visualisations of the median splits, and the difference of high-low with [A] representing the 

high group, [B] representing the low group and [C] the difference between high and low are 

given below. 

Figure 3.14 was not considered in our main body because the electrode was relatively 

anterior, e.g. it is closer to Cz than to Oz, meaning we had less a priori precedent to study it. The 

Figure shows electrode B18 for factor 1 on the Beta frequency. 

 

Figure 3-14. Time-series at electrode B18, illustrating effect on factor 1 positive going, Beta 

frequency, Onset 2:8:  

Peak of PGI mean/intercept cluster is at 26mm, -30mm, 701ms, see vertical line, here placed on 

closest electrode. [A] High and [B] Low on median split of factor 1, showing in both cases, Thin, 

Medium and Thick, and PGI. Stimulus time series are of power summed across Beta frequency. 

[C] PGI for High and Low median splits, along with difference of High and Low PGIs. The SPM 

glass scalps depict all significant effects through time collapsed onto a two-dimensional 

representation. It shows the electrode being plotted as the red arrow. Positive is plotted up. 
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Figure 3.15 was not considered in the main body, because it is a relatively isolated effect in time 

and not continuous with a clear cluster; see panel C, purple line. The Figure shows A21, for 

factor 1 Low gamma. 

 

Figure 3-15. Time-series at electrode A21, illustrating the effect on factor 1 positive-going, Low 

Gamma frequency, Onset 2:8:  

Peak of PGI mean/intercept cluster is at -9mm, -73mm, 252ms, see vertical line, here placed on 

the closest electrode. [A] High and [B] Low on median split of factor 1, showing in both cases, 

Thin, Medium and Thick, and PGI. Stimulus time series are of power summed across Low 

Gamma frequency. [C] PGI for High and Low median splits, along with difference of High and 

Low PGIs. The SPM glass scalps depict all significant effects through time collapsed onto a two-

dimensional representation. It shows the electrode being plotted as the red arrow. Positive is 

plotted up. 
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Figure 3.16 was not considered in the main-body because it is located anterior relative to Oz; in 

fact it is very close to Cz. The Figure shows B32, which is significant for low gamma for factor 

2.  

 

Figure 3-16. Time-series at electrode B32, illustrating the effect on factor 2 positive-going, Low 

Gamma frequency, Onset 2:8:  

Peak of PGI mean/intercept cluster is at 21mm, -9mm, 643ms, see vertical line, here placed on 

the closest electrode. [A] High and [B] Low on median split of factor 2, showing in both cases, 

Thin, Medium and Thick, and PGI. Stimulus time series are of power summed across Low 

Gamma frequency. [C] PGI for High and Low median splits, along with difference of High and 

Low PGIs. The SPM glass scalps show all significant effects through time collapsed onto a two-

dimensional representation. It shows the electrode being plotted as the red arrow in the MIP. 

Positive is plotted up. 

Figure 3.17 shows A32 for high gamma on Factor 3. It was not used because it does now have a 

clear cluster in time associated with it.  
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Figure 3-17: time-series at electrode A32, illustrating the effect on factor 3 positive-going, High 

Gamma frequency, Onset 2:8:  

Peak of PGI mean/intercept cluster is at 17mm, -57mm, 438ms, see vertical line, here placed on 

the closest electrode. [A] High and [B] Low on median split of factor 3, showing in both cases, 

Thin, Medium and Thick, and PGI. Stimulus time series are of power summed across High 

Gamma frequency. [C] PGI for High and Low median splits, along with difference of High and 

Low PGIs. The glass scalps show all significant effects through time collapsed onto a two-

dimensional representation. It shows the electrode being plotted as the red arrow. Positive is 

plotted up. 
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CHAPTER 4: PATTERN-GLARE IMPACTS THETA AND GAMMA 

FREQUENCIES DURING THE D/C SHIFT 

Austyn J. Tempesta1, Claire E. Miller1, Andrew J. Schofield3,1, & Howard 

Bowman1,2 

 

4.1 Introduction 

Within the natural environment, human vision is constantly responding to many different types of 

stimuli such as colours, shapes and patterns. However, some of these patterns are aggravating to 

some people’s brains. Of specific interest to this experiment is visual stress (VS), an aberrant 

response in the visual cortex in the brain that arises when exposed to different types of striped 

patterns (Mears, 1980; Irlen, 1983; Wilkins, 1995). The symptoms of visual stress arising from 

pattern-glare (PG) include eye strain, illusions of colour, shape, motion, and in severe cases, 

epilepsy and migraines (Wilkins et al. 1979, 1980), however, these might not be occurring 

because of the same condition. Specifically, migraines and headaches are essential to understand 

as they are the third-highest cause of disability worldwide (Steiner et al., 2013; Steiner et al., 

2015; Strovner et al., 2007).  ‘Globally, the percentage of the adult population with an active 

disorder of this nature is 46% for headache in general, 11% for migraine, 42% for tension-type 

headache and 3% for chronic daily headache’ (Stovner et al., 2007). Missed work from migraines 

is estimated to cost £250 million in lost revenue in the UK each year (Clarke et al., 1996). 

Migraine is also the least funded of all neurological illnesses globally (House of Commons, 2014; 

Shapiro & Goadsby, 2007). 

  Adjamian et al. (2004) hypothesised that such visual stress is caused by the visual cortex's 

hyperexcitability, which induces spreading activity among neurons usually associated with 

sensory input, thus producing hallucinations. They used magnetoencephalography (MEG) to 
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study this and found that gamma oscillations underlie hyperexcitability in visual area V1, which 

peaked for stimuli that was 3 cycles per degree (c/deg). In some cases, these effects may not be 

appropriately regulated by GABAergic inhibitory mechanisms. Visual symptoms might thus be 

the precursor to a photo-paroxysmal response. This, if not sufficiently controlled by inhibitory 

mechanisms, may lead to epileptic seizures and migraines. The stimuli that are most likely to 

induce such anomalies, typically 3 c/deg high-contrast stripes, are precisely those most likely to 

cause attacks of migraine and epilepsy in those with a visual trigger (Wilkins, 1986, 1995; 

Wilkins et al., 1979, 1980). Most importantly, a minority of people report seeing such visual 

distortions when viewing printed text (Meares-Irlen syndrome or VS; Mears, 1980). While such 

distortions could be due to poor ocular accommodation and binocular convergence, they are 

found even when such abnormalities are excluded (Evans et al., 1995).   

 The PG test (Figure 4.1) was published by Wilkins and Evans (2001). They designed this 

test as a standard way for researchers to analyse VS. The test is intended to induce visual stress in 

susceptible patients; patterns are presented horizontally to appear like text and at different spatial 

frequencies (SF) (.5, 3, and 12) (Evans & Stevenson, 2008). 
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Figure 4-1. Pattern-glare Stimuli:  

Left to right, thick (.37 c/deg), medium (3 c/deg) and thin (12 c/deg) gratings with a central 

fixation and vertical dividing line. The images shown here are representative of the stimuli but 

have been rendered to aid visibility in print.  

As mentioned previously, there has been crucial prior work, using MEG, showing 

increased gamma power for PG (Adjamian et al., 2004). Importantly, Adjamian et al. did not 

present stimuli in such a manner that they could isolate habituation effects. They tested each 

grating from .5 c/deg to 6 c/deg in .5 cycle-steps presented over 2-3 days. Thus, they did not test 

a 12cpd spatial frequency (SF), which has been argued to be a control for optical factors (Conlon 

et al., 2001). Pattern 1 (Thick) is intended to be a control for low SF and is not intended to trigger 

distortions in most participants. However, it is useful in detecting ‘which patients who may be 

highly suggestible and may respond yes to any question about visual perception distortions’ 

(Evans & Stevenson, 2008). Pattern 2 (medium) is the only clinically relevant stimulus, falling 

between SF’s 1-4. It is stimuli in this range that is known to elicit migraines and epileptic 

seizures (Braithwaite et al., 2013; Wilkins, 2016). Thus, in this study, we respond to the work of 

Adjamian et al. (2004) by repeating the same stimulus in trains of onsets in order to isolate 

habituation effects. 

Alpha desynchronisation has been shown to be particularly important when the brain is 

representing stimuli and encoding them into memories or retrieving them from memories (Parish 

et al., 2018), with alpha power decreasing during semantic encoding and retrieval (Klimesch et 

al., 1996, 1997). However, this oscillation may reflect the brain representing any sort of stimulus 

and not be specific to pattern glare. 
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 Some models have shown that alpha amplitude modulations regulate the inhibitory level 

of the cortex (Klimesch et al., 2007; Jensen & Mazaheri, 2010), with synchronisation reflecting 

habituation and desynchronisation representing active information processing (Hanslmayr, 2012). 

We investigated these hypotheses through a PG task where we recorded EEG data in 

response to the PG test (PGT, Figure 4.1) over several hours, which we analysed in the frequency 

domain, using mass univariate analysis (MUA). Because we used EEG (which is relatively 

cheap), we have collected a reasonably large sample of 35, which is likely to give us increased 

confidence in the robustness of our findings (Lorca-Puls et al., 2018).  In our previous study, we 

found that we had effects from low beta to high gamma that continued onto the d/c shift period (a 

sustained period with baseline shifted from zero, the start of which can be seen after 300ms in 

figure 3.3(C) of Tempesta et al, in submission, Chapter 3), so we wanted to explore that time 

period.  

Hypersensitivity results in distortions of the visual image, which can be disruptive for 

everyday tasks such as reading, and can cause discomfort in everyday environments. Cortical 

hyper-excitability is not limited to those who experience migraine. Stimuli that are disruptive for 

migraine sufferers are also triggers for those with photosensitive epilepsy (Adjamian et al., 2004; 

Wilkins et al., 1984). Further, visual hypersensitivity as observed with the PGT or similar metrics 

is co-morbid with a range of conditions including multiple sclerosis (Wright et al., 2007), stroke 

(Beasley & Davies, 2012), autism (Irlen, 1997; Kientz & Dunn, 1997), and dyslexia (Irlen, 1991), 

although a connection to dyslexia is disputed (Saksida et al., 2016). In many of these conditions, 

visual distortions in-text inhibit reading but can be alleviated using coloured filters.  

In this study, participants were not selected based on their migraine or headache status. 

We measured EEG responses to visual stimuli based on those used in the PGT in a novel 

paradigm where stimuli were repeated (flicked on and off) at a low temporal frequency, allowing 
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the recording of steady-state EEG, while also allowing us to consider habituation effects. Thus, 

we compared stimuli known to be aggravating in migraine with those that are less aggravating, in 

a paradigm that allows the separation of initial and habituated responses. 

This paper builds upon the findings of Adjamian et al. (2004) and upon our previous work 

on oscillations. Specifically, our hypotheses are: 

1. High gamma power observed immediately after the onset transient in (Tempesta et al., in 

preparation, Chapter 3) will continue throughout the D/C shift period and will be driven 

by the medium stimulus. Explicitly we should expect to see desyncrony in the low 

frequency bands and synchrony in the high frequency bands.  

2. There will be a broadband effect at stimulus offset, by analogy with the broadband effect 

we see at onset.  

3. Medium frequency stimuli lead to greater activity in the brain. Processing of the early 

visual areas representing the three different spatial frequencies of these gratings will be 

visibly different from each other in either synchrony or desynchrony. 

4. Delta and theta will show a desynchrony during the D/C shift period with aggregated 

EEG responses to the stimuli (medium+thick+thin), mimicking our earlier result for alpha 

in aggregate responses (Tempesta et al., in preparation, Chapter 3). This may be related to 

information processing. There may also be a difference between onset 1 and onset 2:8, as 

onset 1 may be due to a surprise or prediction effect, whilst onset 2:8 reflects a failure to 

habituate specifically for the medium grating. 

4.2 Materials and Methods  

4.2.1 Participants 

Forty undergraduate and postgraduate participants, recruited at the University of 

Birmingham, gave their informed consent and were compensated with £24 for participating. 
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Participants with a history of psychiatric, psychological, and neurological conditions, or a history 

of unconsciousness, convulsions or epilepsy were excluded from the study. One participant chose 

to leave the experiment, and four were rejected during data pre-processing due to a lack of usable 

trials (fewer than 20% per condition). There were thus 35 usable datasets (male=14, female=21, 

mean age= 22.5y, range=18-32y, standard deviation=2.86). This study was approved by The 

Science Technology Engineering and Maths Ethics Committee at the University of Birmingham 

in adherence with The Declaration of Helsinki.  

4.2.2 Stimuli and Equipment 

We used stimuli similar to those used in the PGT (Wilkins, 2001). Stimuli comprised horizontal 

square-wave gratings (contrast = 75%) at 3 different spatial frequencies (.37, 3, and 12 c/deg: 

described as thick, medium, and thin, respectively, see Figure 4.1) displayed at 75% contrast in a 

circular window with diameter (15.2 deg) at a viewing distance of 86 cm. These stimuli were 

created in MATLAB using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997; Kleiner et 

al., 2007) and displayed on a Samsung 932BF LCD monitor (Samsung Electronics, Suwon, South 

Korea). EEG recordings were made using a 128-channel BioSemi (University of Amsterdam) 

EEG system in a dark, quiet room. 

4.2.3 Procedure 

 After the EEG electrodes had been applied, participants began the experiment with a 5-

minute resting period and then were presented with three blocks, each containing six trials for 

each of the three stimuli. Thus, each participant observed 18 trials per stimulus type. Each trial 

contained between seven and nine onsets of the same stimulus each lasting three seconds, 

followed by a variable interval of 1 – 1.4 seconds. After each trial, the participant was asked to 

rate how uncomfortable they found each stimulus on a 5-point scale (1 = comfortable, 5 = 
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extremely uncomfortable) and to indicate how many onsets they saw. This additional task was 

designed to ensure attention to the stimuli. At the end of each block, participants were shown the 

three stimuli in turn and asked to rate the extent to which they had experienced a range of 

possible pattern glare symptoms for each stimulus (Wilkins & Nimmo-Smith, 1984). After each 

block and at the end of the experiment, participants had a further resting period of 5 minutes, 

during which they were requested to close their eyes and relax. Stimulus order and number of 

onsets per trial were counterbalanced (subjecting them to variation, increasing interval validity) 

(Allen, 2017). 

4.2.4 ERP pre-processing 

We decimated the EEG data from a sampling rate of 2048Hz to 512Hz using the BioSemi 

toolbox. EEGs were then band-pass filtered using a second-order Butterworth filter with a pass 

band of 0.075 to 80 Hz (½ power -3dB, fall-off at 12 dB per octave; for prior precedent for this 

choice, see Luck, 2014; Tanner et al., 2015). We used a baseline of -500 for the EEG data that 

would be subjected to the frequency-domain analysis; this long baseline was required to 

encompass the full wavelet at low frequencies. For each participant, we performed a time-

frequency analysis using a morlet wavelet with 5-cycles in the frequency range 3-80 Hz, with 

steps of 1 Hz between each wavelet frequency, and a notch-filter at 50hz. Additionally, we 

performed another time-frequency analysis using a 3-cycle wavelet from frequency ranges 1-10 

Hz, with steps of 1Hz between each wavelet frequency. As stated previously, the baseline was 

initially 500ms long for the wavelet estimation. However, after estimation, we cropped the epoch 

from -100ms pre-stimulus to 3900ms post-stimulus, then the conditions were averaged, and the 

baseline (-100ms to zero ms) was rescaled using a logR function in SPM.   
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Eye-blink artefacts were removed using independent component analysis (ICA), with ICA 

components associated with eye blinks removed and the dataset reconstructed. The crown 

electrodes were removed to further reduce the presence of muscle and eye-movement artefacts 

(Chennu et al., 2013), in line with previous researchers (Shirazibeheshti et al., 2018) who argue 

that this additional noise may confound Mass-Univariate Analysis (MUA) (electrodes removed = 

A11, A12, A13, A14, A24, A25, A26, A27, B8, B9) and the data was referenced to the new 

electrode set. Data for individual onsets were then deleted if any channel exceeded a +/-100 µV 

threshold, thus removing large artefacts such as movement. The data for each participant were 

split into 27 bins, one for each stimulus type (thick, medium or thin) and onset number (1 to 9). 

Finally, we discarded data from Onset 9 - the number of onsets varied between 7 and 9 on each 

trial, so the occurrence of the 9th Onset was rare, making these data unreliable. Tallying across 

onset number, four participants who did not have at least 20% of usable stimulus repeats per 

stimulus type were removed (decided a priori, based on Luck, 2014). For interpolation, 

approximate values between electrodes of the biosemi and the internal spm grid were calculated 

when the electrode locations from EEGLAB were combined with the SPM software. This 

enabled the interrogation of positions on the scalp beyond the electrode locations. In order to 

compare stimulus onset with habituation-effects, we divided the repeated onsets into two groups. 

The initial onsets were analysed separately from Onsets 2-8, the latter being combined. We drew 

a logical distinction between the first stimulus onset in each trial (where the observer was 

unaware of the stimuli to be presented) and the remaining onsets (where the participant was able 

to anticipate the stimulus) and thus analysed Onset 1 separately from Onsets 2-8; the latter being 

combined so as to aggregate over the maximum number of onsets. 
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4.2.5 Frequency band selection 

We divided the frequency domain into separate bands on onsets 1-8. The frequencies 

from onset 1 and onset 2-8 were averaged with the spm averaging tool weighting by replications 

(trial counts). A 5-cycle wavelet was used for frequencies 4-80 Hz (Figure 4.2) as we did not 

have a long enough baseline to observe effects below 3 Hz due to edge artefacts swamping the 

segment. The windows were selected based upon visual inspection of the time-frequency plot at 

Oz (see Figure 4.2). For 1-10hz, we used a 3-cycle wavelet (Figure 4.3). This does not inflate the 

false positive rate, because the inspection of the frequency bands was on the aggregated average 

of the stimuli (i.e., average of activation in response to all three stimulus types) and onsets (1 to 

8), making the frequency selection image blind to conditions. As a result, the selection of a 

frequency band is not differentially influenced by a particular stimulus, ensuring that the 

selection of the frequency bands is not biased (for justification of this line of reasoning see 

Brooks et al, (2017); Bowman et al, (2020)). For each selected frequency band, we collapsed 

across power values, to generate a single time-series. Frequency bands were as follows: 

For 5-cycle wavelet: 

Theta:4-10hz 

Alpha: 9-13hz 

Low Beta: 17-25hz 

Low Gamma/High Beta: 25-45hz 

Mid Gamma: 45-60hz 

High Gamma: 60-80hz 

For 3-Cycle wavelet: 

Delta: 2-3hz 
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We were very explicitly seeking to place windows that isolated the key spectral power 

features in Figures 4.2 & 4.3, with some windows selected to be narrow to ensure that we select 

the “sweet spot” of the feature; see, for example, our choice regarding alpha. Additionally, we 

selected overlapping windows for alpha and theta. Thus, we are making a priori decisions 

concerning our key contrast, which is on the PGI, regarding the placing of frequency bands, 

which necessarily means that we will not place optimally for effects in the data. This is the 

standard trade-off between type-I and type-II error rates (Bowman et al., 2020). 
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Figure 4-2. Time-Frequency plot of Weighted Average of Onsets 1:8 Aggregated Across all 

Stimuli (Thick, Medium and Thin) at Electrode Oz, excluding lowest frequencies.  

Bottom to top: frequency bands used for analysis, chosen from electrode Oz: Theta:4-10hz, 

Alpha: 9-13hz, Low Beta: 17-25hz, Low Gamma/High Beta: 25-45hz, Mid Gamma: 45-60hz, 

High Gamma: 60-80hz. Colour Scale is -2 to 2dB power. Frequency scale is 3 to 80hz. The 

frequency ranges were selected through visual inspection - the selection of windows was based 

on where a strong effect in power could be seen visually. However, since stimulus conditions 

(Thick, Medium and Thin) are aggregated across in this plot, this selection is orthogonal to our 

pattern-glare contrasts that are our central finding. Note, this selection of frequency ranges was 

made in order to isolate salient features in this map; consequently some frequencies were 

narrow, some frequencies overlapped and not all frequencies were included. Necessarily, these 

windows may not be placed appropriately for some pattern-glare effects that may be present, but 

this is the standard trade-off between type I and type II error rates for a priori selection of 
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features.  

 

Figure 4-3 Time-Frequency plot of Weighted Average of Onsets 1:8 Aggregated Across all 

Stimuli (Thick, Medium and Thin) at Electrode Oz, for lowest frequencies.  

Frequency band used for analysis chosen from electrode Oz: Delta:2-3hz. Colour Scale is -2 to 

2dB power; frequencies are from 1 to 10hz. The frequency ranges were selected through visual 

inspection - the selection of windows was based on where a strong effect in power could be seen 

visually. However, since stimulus conditions (Thick, Medium and Thin) are aggregated across in 

this plot, this selection is orthogonal to our pattern-glare contrasts that are our central finding. 

Note, this selection of frequency ranges was made in order to isolate salient features in this map; 

consequently, the frequency band selected here is relatively narrow. Necessarily, these windows 

may not be placed appropriately for some pattern-glare effects that may be present, but this is the 

standard trade-off between type I and type II error rates for a priori selection of features. 
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4.2.6 Mass Univariate Analysis  

A mass univariate analysis (MUA) is the analysis of a large number of simultaneously 

measured dependent variables (e.g. voxels or samples) via the performance of the same univariate 

hypothesis tests (e.g., t-tests) across all of those dependent variables. This method allows for 

powerful error corrections for multiple comparisons. 

An MUA was conducted in SPM-12 (Wellcome Trust Centre for Neuroimaging, London, 

England) on three-dimensional images (two of space, one of time) derived from the data resulting 

from collapsing across each frequency band. Images were created using the data for each 

stimulus type (thick, medium, and thin).  A contrast image was created based on what we call the 

pattern glare index (PGI). This index enables us to focus our analysis on regions of the data 

volume where the clinically relevant, medium stimulus exhibits an extreme response relative to 

the thick and thin stimuli. 

PGI = (medium image – average (thick image, thin image)).  

We then tested the mean intercept over the whole volume in all seven frequency bands, both 

positive-going and negative-going. We did this first for aggregated (thick, thin and medium 

collapsed) and then for PGI. We used a one-tailed, 1-sample t-test: We checked for a significant 

peak (FWE .05, peak-level) or cluster levels (unc .001, 0.05 FWE corrected) in both +1 and -1 

directions on aggregated and PGI on mean/intercept. A general linear model (GLM) analysis was 

performed on the data where the PGI over ERPs was the dependent variable, while the 

independent variables were the normalised factor scores of the trait and state data responses 

(which act as regressors).  This same general linear model was fit to the ERP data at each time-

space point in the data volume, providing beta parameter values for all the regressors (the 

intercept and three factors) at each such point.  Intuitively, each parameter value indicates the 
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extent to which the evoked response at the corresponding time-space point correlates (across 

subjects) with the relevant regressor.  In this way, a mass univariate analysis is able to identify 

time-space regions in the data volume, which vary in a fashion consistent with a factor or 

intercept.  Additionally, due to the mean centring of regressors, the intercept parameter is the 

mean of the evoked response at that time-space point.   

4.3 Results 

 We performed several analysis steps (see materials and methods for full explanation). In 

this section, the aggregated effects are discussed, followed by the PGI mean/intercept effects.  

The frequencies of interest were split into low and high. (To visualise the effects, see Figures 4.4, 

4.5, 4.6 and 4.8, for both aggregated and PGI analyses.) A breakdown of statistics for each 

analysis step can be found in associated tables (see tables 4.1, 4.2, 4.3 and 4.4).  

Our results are summarized by four main features, which can, for example, be seen in the 

unthresholded maps in figures 4.4 and 4.5, and which we now describe briefly before considering 

each in more detail: 

Early Positive Transients: 

1. Posterior to anterior, constant amplitude: this transient bleeds from over occipital along 

the midline to over frontal, with similar amplitude throughout (e.g. theta, delta and alpha 

1 and 2:8, dotted framing). 

2. Clear posterior peak: this has a higher peak over occipital (and is not present in aggregate 

low frequencies; but can be seen for higher frequencies, e.g. Low Gamma/ High Beta and 

Mid Gamma). 

Sustained Responses: 

3. Desynchronisation: this starts after the positive transient and can be quite broadly 

distributed across the scalp (e.g. theta, delta and alpha 1 & 2:8, long dash, dot framing). 
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4. Synchronisation: this starts after the positive transient has subsided and tends to be 

broadly distributed over the scalp, with strong areas in occipital (e.g. delta  2-8, unbroken 

framing). 

4.3.1 Aggregated mean/intercept contrasts for low frequencies 

Figure 4.4 shows the results of the aggregated mean/intercept contrasts as topographic maps. The 

rows from top to bottom display thresholded and unthresholded topographic maps for the low 

frequencies. Onset 1 or Onset 2:8 is indicated on the right. The columns indicate the frequency 

bands. Within the unthresholded topographic maps, we have indicated effects of interest, early 

positive transients or sustained synchronisations (see key for full breakdown), with, for example, 

delta showing a posterior to anterior early positive transient, followed by a large desychronisation 

on onset 1; for onset 2:8 we see a synchronisation. In contrast, we see a sustained 

desynchronisation in the other frequency bands on both onset 1 and onset 2:8. There is no 

consistent scale across thresholded maps, in order to avoid colour saturating in some maps. 

In summary, in Figure 4.4, we can identify three of the four main features in this power 

analysis on aggregated, which, as mentioned, can be divided into early positive transients and 

sustained responses. These features are highlighted with white framing in panels where they are 

particularly evident (see Figure 4.4 and Legend). Not all effects mentioned in the key are present 

in every graphic.  
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Figure 4-4. Time-frequency effects on the mean of aggregated (Thin+Medium+Thick) for low 

frequencies:  

Frequency bands are presented in three columns (from left to right: Delta, Theta, and Alpha); 

first two rows present thresholded maps for onset 1, next two rows present unthresholded maps 

(onset 1 and then onset 2:8), last two rows present thresholded maps for onsets 2:8. Thresholded 

maps show one-sample one-tailed t-tests, with direction indicated by bracketed terms (e.g. 

“(+1)” is right-tailed). Each panel of plot shows scalp maps through time, laid out from top left 

to bottom right in the panel. Unthresholded maps (blue, black and red) show scalp maps from -

100ms to 3900ms in steps of 50ms. There is a 50% opacity filter to show the area of the edge 

effect. Thresholded maps (yellow, orange, grey) show scalp maps from -100 to 3900ms in steps of 

50ms. Note, that the analysis window was only 50-3500ms, so for Thresholded maps the non-

analysed region is black. For thresholded maps, Alpha +1 was presented FWE-corrected at the 

peak-level; all others are corrected at the cluster-level. The scale of the unthresholded maps is -8 

to 8. Key findings are most evident in unthresholded maps (middle two rows). Raw one-sample t-

values are presented for difference to zero, with red positive-going and blue negative-going. Key 

features are presented with white framing (see legend and main text). 

Table 4.1 shows the results breakdown of the associated statistics of the effects from Figure 4.4. 

Each cluster is given with its Xmm, Ymm, Zms location and time with both T and P values. 

Alpha onset 2:8 (+1(right-tailed)) is corrected at the peak-level. From left to right, the columns 

indicate the frequency of interest, and the rows indicate Onset 1 or 2:8. NS means that there was 

no statistical effect found. Loc is the location of the cluster. 
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Table 4-1. Aggregated, mean/intercept contrasts, statistics at low frequencies. 

Raw one-sample t-values are presented for difference to zero at the peak of a cluster (direction 

indicated by bracketed terms (e.g. “(+1)” is right-tailed)) and associated p-values, which are, in 

all but one case, for encompassing cluster, FWE-corrected at the cluster level. In contrast, alpha 

onset 2:8 (+1) is corrected at the peak-level. Location of peak of cluster is listed in Xmm, Ymm, 

Zms format. The columns from left to right are delta, theta, and alpha. The rows from top to 

bottom are (onset 1 and then onset 2:8). NS means not significant, Loc is the location of cluster.  
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4.3.2 Aggregated mean/intercept contrasts for high frequencies 

Figure 4.5 shows the results of the aggregated mean/intercept contrasts of the high frequencies, 

topographic maps. The rows from top to bottom display thresholded and unthresholded 

topographic maps for the low frequencies. Onset 1 or Onset 2:8 is indicated on the right. The 

columns indicate the frequency band. Within the unthresholded topographic maps, we have 

indicated effects of interest, early positive transients or sustained synchronisations (see key for 

full breakdown), with, for example, low gamma/high beta 2:8 showing an early posterior to 

anterior positive-transient followed by a large synchronisation across the scalp.  

4.3.3 Early Positive Transients and Sustained Responses 

With the framing interpretation presented above and the resulting four phenomena we 

identified for aggregated low frequencies, we can see the following in the aggregated plots, with 

key features again presented with white framing (see Figure 5.5 and legend). We begin with the 

early positive transients: 

1. Posterior to anterior, constant amplitude: There is an effect that bleeds from occipital 

across the cortex within frequencies low beta and low gamma/high beta onset 2:8. 

2. Clear posterior peak: Onset 1 low gamma/high beta and onset 2:8 mid gamma show a 

clear posterior effect that is localised to occipital lobe. Note that in low frequencies, there 

was no localised posterior peak, the early positive transients were only observable broadly 

across the scalp.  

For the sustained response effects, we can observe the following: 

1. Sustained Desychronisation: In stark contrast to low frequencies where most frequencies 

both onset 1 & 2:8 showed large desyncs, only onset 1 shows the strong 

desynchronisation.  
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2. Sustained synchronisation: There is an early positive transient followed by a strong 

sustained synchronisation for two frequencies: low gamma/high beta and mid gamma for 

onset 2:8. There is evidence of a similar response for high gamma onset 2:8, but it is 

much briefer than for the other gamma frequencies. 

Generally, there is a sense to which all frequencies for onset 1 and onset 2:8 exhibit a similar 

pattern – brief positivity followed by extended negativity – apart from low beta and gamma 

frequencies for onset 2:8, which show strong sustained synchronisations. It is also notable that 

these sustained synchronisations are strongly stimulus-bound, in the sense that they finish sharply 

at stimulus offset; see unbroken framing. 
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Figure 4-5. Time-frequency effects on the mean of aggregated (Thin+Medium+Thick) for high 

frequencies: 

Frequency bands are presented in four columns (from left to right: Low Beta, Low gamma/High 

Beta, Mid Gamma, High Gamma); first two rows present thresholded maps for onset 1, next two 

rows present unthresholded maps (onset 1 and then onset 2:8), last two rows present thresholded 

maps for onsets 2:8. Thresholded maps show one-tailed one-sample t-tests, with direction 

indicated by bracketed terms (e.g. “(+1)” is right-tailed). Each panel of plot shows scalp maps 

through time, laid out from top left to bottom right in the panel. Unthresholded maps (blue, black 

and red) show scalp maps from -100ms to 3900ms in steps of 50ms. The scale of the 

unthresholded maps is -8 to 8. Thresholded maps (yellow, orange, grey) show scalp maps from -

100 to 3900ms in steps of 50ms. Note that the analysis window was only 50-3500ms, so for 

thresholded maps the non-analysed region is black.  

Key findings are most evident in unthresholded maps (middle two rows). Raw one-sample 

t-values are presented for difference to zero, with red positive-going and blue negative-going. 

Key features are again presented with white framing (see legend and main text). There are no 

substantial qualitative differences between onset 1 and onset 2:8 for aggregated low frequencies, 

as in the earlier (see Figure 5.4), but there are substantial differences, especially in the DC shift 

period, for the higher frequencies being seen in this figure.  

Table 5.2 shows the results breakdown of the associated statistics of the effects from Figure 5.5. 

Each cluster is given with its Xmm, Ymm, Zms location and time with both T and P values. From 

left to right, the columns indicate the frequency of interest and the rows indicate whether it is 

onset 1 or onset 2:8. NS means that there was no statistical effect found.  
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Table 4-2. Aggregated, mean/intercept contrasts statistics for high frequencies. 

Raw one-sample t-values are presented for difference to zero at the peak of a cluster (direction 

indicated by bracketed terms (e.g. “(+1)” is right-tailed)) and associated p-values, which are for 

encompassing cluster, FWE-corrected at the cluster level. Location of peak cluster is listed in 

Xmm, Ymm, Zms format. The columns from left to right are low beta, low gamma/high beta, mid 

gamma, high gamma. The rows from top to bottom are (onset 1 and then onset 2:8). NS means 

not significant; Loc is the location of the cluster. 

4.3.4 PGI mean/intercept contrasts for low frequencies  

Figure 4.6 shows the results of the PGI mean/intercept contrasts for the low frequencies, 

topographic maps. The rows from top to bottom indicate if the topographic maps are thresholded 

or unthresholded. Onset 1 or onset 2:8 is indicated on the right. The columns indicate what 

frequency band is being shown. Within the unthresholded topographic maps, we have indicated 

effects of interest, which were discussed previously, either early positive transients or sustained 

positive and negative-going effects (see key for full breakdown), with white framing. For this 

figure, the peak of the contrast theta 2:8 +1 is significant at the peak level (this is circled in 

black). The x and y letters on the topographic maps indicate their relation to Figure 4.7. Precisely, 

each letter corresponds to a different effect indicated by a vertical line in the Figure 4.7 graph. 

The reader can then refer back to Figure 4.6 to see that indicated effect in the context of the 

broader findings. 

With the framing interpretation we just presented above, there is one difference between PGI 

and aggregated contrasts. In the PGI contrasts, because PGI is a measure of the difference of 

medium to the mean of thick and thin, it is not truly a measure of synchronicity but of a positive 

or negative going effect. Thus, we use the terms positive going and negative going effect here. 
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We can see the following in the pattern-glare plots with key features again presented with white 

framing (see Figure 4.6 and legend). We again begin with the early positive transients: 

1. Posterior to anterior, constant amplitude: This effect is not present for PGI in the low-

frequency band.  

2. Clear posterior peak: There is a clear posterior peak for theta (see x). This is interesting 

because Adjamian and colleagues (2004), did not see this effect in their data.  

For sustained responses, we can observe the following: 

1. Positive going effect: For theta, a sustained positive-going effect can be observed after 

the early positive transient. However, due to the way in which we overlapped the 

frequency bands of theta and alpha, this effect may continue into alpha but with 

insufficient statistical power to show significance in the alpha band. In order to 

visualise this effect, we have plotted both theta and alpha at electrode C2 (see Figure 

4.7). Notwithstanding the edge effect, it appears that the PGI effect continues beyond 

the offset transient for these frequencies. This is not the case for the higher 

frequencies, where the PGI effect seems to be obliterated by the offset transient. 

Additionally, this sustained positivity is maximal near Cz, so substantially anterior to 

the sustained PGI effects we will observe for higher frequencies. 

2. Negative going effect: We do not observe any statistically significant negative-going 

effects for low frequencies on the PGI.  
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Figure 4-6. Time-frequency effects on the mean of PGI index for low frequencies:  

Frequency bands are presented in three columns (from left to right: Delta, Theta, and Alpha); the 

first two rows present thresholded maps for onset 1; the next two rows present unthresholded 

maps (onset 1 and then onset 2:8); the last two rows present thresholded maps for onset 2:8. 

Thresholded maps show one-sample one-tailed t-tests, with direction indicated by bracketed 

terms (e.g. “(+1)” is right-tailed). Each panel of plot shows scalp maps through time, laid out 

from top left to bottom right in the panel. Unthresholded maps (blue, black and red) show scalp 

maps from -100ms to 3900ms in steps of 50ms. The scale of the unthresholded maps is -5 to 5. 

Thresholded maps (yellow, orange, grey) show scalp maps from -100 to 3900ms in steps of 50ms. 

Note that the analysis window was only 50-3500 ms, so for thresholded maps, the non-analysed 

region is black.  

Key findings are most evident in unthresholded maps (middle two rows). Raw one-sample 

t-values are presented for difference to zero, with red positive-going and blue negative-going. 

Key features are again presented with white framing (see legend and main text).  

Table 4.3 gives a breakdown of results in statistical form, in relation to the effects shown in 

Figure 4.6. The peak is given with its Xmm, Ymm, Zms location and time with both T and P 

values. From left to right, the columns indicate the frequency of interest and the rows indicate 

whether it is onset 1 or onset 2:8. NS means that there was no statistical effect found. 
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Table 4-3. PGI, mean/intercept contrasts statistics for low frequencies. 

Raw one-sample t-values are presented for difference to zero (direction indicated by bracketed 

terms (e.g. “(+1)” is right-tailed)) and associated p-values, FWE-corrected at the peak level. 

Location of peak is listed in Xmm, Ymm, Zms format. The columns from left to right are delta, 

theta, and alpha. The rows from top to bottom are (onset 1 and then onset 2:8). NS means not 

significant; Loc is the location of the cluster.  

Figure 4.7 shows the effect for theta and alpha on low frequencies at electrode C2. The peak from 

the PGI mean/intercept is at 17mm, -3mm, 1463ms. The ‘x’ on theta and the ‘y’ on alpha on the 

graph can be used to refer back to figure 4.6 to compare effects in the broader context. Theta was 

significant FWE-corrected at the peak-level, with p=.025, and uncorrected t(34)=5.23 at the peak  

(for full statistical breakdown see, table 4.3).  
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Figure 4-7: time-series of (A) theta and (B) alpha, frequencies, onsets 2:8, at the same posterior 

electrode, showing positive effect (both sustained and early positive transient) for medium, thick 

and thin gratings:  

Time series of power summed across each frequency band, at electrode C2 (see red arrow in 

inset scalp map). Plots correspond to different effects in Figure 4.8: (A) theta to effect x; (B) 

alpha to y. These effects can also be seen in the PGI time-series in these plots, see right-side y-

axis.  The scalp maps here show spm glass scalps, in which all significant effects at this peak are 

collapsed onto a two-dimensional representation. It shows that the electrode being plotted (red 

arrow) is at a position where there is considerable significance through time. Positive is plotted 

up on time-series. The green 50% opacity filter is to show where there is an edge effect present. 

4.3.5 PGI mean/intercept contrasts for high frequencies  

Figure 4.8 shows the results of the PGI mean/intercept contrasts for the high frequencies, 

presented as topographic maps. The rows from top to bottom indicate if the topographic maps are 

either thresholded or unthresholded. Onset 1 or onset 2:8 is indicated on the right. The columns 

indicate what frequency band is being shown. Within the unthresholded topographic maps, we 

have indicated effects of interest, which were discussed previously, either early positive 

transients or sustained positive and negative-going effects (see key for full breakdown), with 

white framing. The w, x, y and z letters on the topographic maps indicate their relation to Figure 

4.9. Specifically, each letter corresponds to a different effect indicated by a vertical line in the 

Figure 4.9 graph. The reader can then refer back to Figure 4.8 to see that indicated effect in the 

context of the broader findings. With the framing interpretation we presented in PGI 

mean/intercept low frequencies, we can see the following in the pattern-glare plots with key 

features again presented with white framing (see Figure 4.8 and legend). We again begin with the 

early positive transients: 
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1. Posterior to anterior, constant amplitude: For onset 2:8 there is a posterior to anterior, 

constant amplitude for low gamma/high beta. This is not present for any other high 

frequencies 

2. Clear posterior peak: Interestingly, there is a clear posterior peak for both onset 1 and 

onset 2:8 for mid gamma.  

For sustained responses, we can observe the following: 

1. Negative going effect: There are no negative-going effects occurring for onset 1 or 

onset 2:8. However, there is a specific significance FWE-(familywise error corrected at 

peak-level) t(34)=6.65, p=.010, at 3104ms for low gamma/ high beta for onset 1.  

Shown with a blue circle. 

2. Positive going effect: for onsets 2:8 PGI, we see an early positive transient followed by 

a sustained positive-going effect for low gamma/high beta and mid gamma.  

Whilst we see sustained synchronisations for Onset 2:8 for both low and high frequencies, the 

synchronisation is maximal more anteriorly (close to Cz) for low frequencies, but more 

posteriorly for high frequencies. 
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Figure 4-8. Time-frequency effects on the mean of PGI, for high frequencies:  

Frequency bands are presented in four columns (from left to right: low beta, low gamma/high 

beta, mid gamma, high gamma); first two rows present thresholded maps for onset 1, next two 

rows present unthresholded maps (onset 1 and then onset 2:8), last two rows present thresholded 

maps for onsets 2:8. Thresholded maps show one-sample one-tailed t-tests, with direction 

indicated by bracketed terms (e.g. “(+1)” is right-tailed). Each panel of plot shows scalp maps 

through time, laid out from top left to bottom right in the panel. Unthresholded maps (blue, black 

and red) show scalp maps from -100ms to 3900ms in steps of 50ms. The scale of the 

unthresholded maps is -5 to 5. Thresholded maps (yellow, orange, grey) show scalp maps from -

100 to 3900ms in steps of 50ms. Note that the analysis window was only 50-3500ms, so for 

Thresholded maps, the non-analysed region is black. Low gamma/high beta +1 for onset 1 comes 

out at the peak level only, circled in blue (see thresholded map). Key findings are most evident in 

unthresholded maps (middle two rows). Raw one-sample t-values are presented for difference to 

zero, with red positive-going and blue negative-going, again presented with white framing (see 

legend and main text).  

Table 4.4 shows the results breakdown of the associated statistics of the effects from Figure 4.8. 

Each cluster is given with its Xmm, Ymm, Zms location and time with both T and P values. For 

contrasts that had more than three significant clusters, we have given only the three most 

significant clusters. Note that for Onset 1 low gamma/high beta, this was significant family-wise 

error correct at the peak level t(34)=6.65 (uncorrected p=.010) not cluster. From left to right, the 

columns, indicate the frequency of interest and the rows indicate whether it is onset 1 or 2:8. NS 

means that there was no statistical effect found. 
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Table 4-4. PGI mean/intercept contrasts, statistics for high frequencies. 

Raw one-sample t-values are presented for the difference to zero at the peak of a cluster 

(direction indicated by bracketed terms (e.g. “(+1)” is right-tailed)) and associated p-values, 

which are, in all but one case, for the encompassing cluster, FWE-corrected at the cluster level. 

In contrast, low gamma/ high beta Onset 1 (+1) is corrected at the peak-level. Location of peak 

of cluster is listed in Xmm, Ymm, Zms format. The columns from left to right are low beta, low 

gamma/high beta, mid gamma, and high gamma. The rows from top to bottom are (onset 1 and 

then onset 2:8). NS means not significant; Loc is the location of the cluster. 
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Figure 4.9 shows the effect for low beta, low gamma/high beta, mid gamma and high gamma on 

high frequencies at electrodes A22, D30, A29, and B3. Plots correspond to different effects in 

Figure 4.8: (A) low beta to effect w; (B) low gamma/high beta to x; (C) mid gamma to y; and (D) 

high gamma to z. There is an enhancement of medium relative to thick and thin in all figures but 

visually looks biggest at low beta. This enhancement seems to be quashed by stimulus offset, 

suggesting that the pattern-glare gamma is strongly driven by stimulus presence. This 

enhancement continues through the gamma frequencies. Additionally, there is a very large 

difference between medium and thick and thin at the offset transient for low beta (see w). This is 

true, as the effect moves to higher gamma frequencies until High Gamma where the effect 

disappears. 
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Figure 4-9. time-series of (A) low beta, (B) low gamma/high beta, (C) mid and (D) high gamma 

frequencies, onsets 2:8, at different posterior electrodes, showing increased positivity (both 

sustained and early positive transient) for medium grating:  

Time series of power summed across each frequency band, at electrodes A22, D30, A29, and B3 

(see red arrow in inset scalp map) is shown. Plots correspond to different effects in Figure 4.8: 

(A) low beta to effect w; (B) low gamma/high beta to x; (C) mid gamma to y; and (D) high 

gamma to z. These effects can also be seen in the PGI time-series in these plots, see right-side y-

axes.  Large peaks are indicated with a vertical line. The scalp maps here show an spm glass 

scalp, in which all significant effects through time are collapsed onto a two-dimensional 

representation. It shows that the electrode being plotted (red arrow) is at a position where there 

is considerable significance through time. Positive is plotted up on time-series. This figure only 

presents time-series at a single electrode, a number of the effects we are looking at here have 

multiple peaks within the significant clusters. 

4.4 Discussion 

In this analysis, we wanted to understand the underlying neurological factors related to 

visually induced migraines. Specifically, our focus was on what was happening in posterior areas 

of the brain during the D/C shift period. Our hypotheses were: 

1. High gamma power observed immediately after the onset transient in (Tempesta et al., 

in preparation, Chapter 4) will continue throughout the D/C shift period and will be 

driven by the medium stimulus. Explicitly we should expect to see desyncrony in the 

low frequency bands and synchrony in the high frequency bands.  

2. There will be a broadband effect at stimulus offset, by analogy with the broadband 

effect we see at onset.  
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3. Medium frequency stimuli lead to greater activity in the brain. Processing of the early 

visual areas representing the three different spatial frequencies of these gratings will 

be visibly different from each other in either synchrony or desynchrony. 

4. Delta and theta will show a desynchrony during the D/C shift period with aggregated 

EEG responses to the stimuli (medium+thick+thin), mimicking our earlier result for 

alpha in aggregate responses (Tempesta et al., in preparation, Chapter 4). This may be 

related to information processing. There may also be a difference between onset 1 and 

onset 2:8, as onset 1 may be due to a surprise or prediction effect, whilst onset 2:8 

reflects a failure to habituate specifically for the medium grating. 

We found evidence for the first part of hypothesis one (seen in Figure 4.9, for PGI, panel B and 

C). Note that this effect is also present in low beta but at some time points with higher power for 

medium (panel A) compared to panels (B and C). We did observe an increased positive-going 

gamma effect in low gamma/high beta and mid gamma (see table 4.4 for full statistical 

breakdown); however, this effect seems diminished, if not absent, in high gamma (panel D). In 

the topographic maps of Figure 4.8 (with the correspond time-series in Figure 4.9), we can only 

say that the PGI effect in onset 2:8 is positive-going; however, when we look at Figure 4.9, we 

see that medium is positive relative to zero for low beta, low gamma/high beta and mid gamma. 

Therefore, there is a synchrony happening for onset 2:8 medium. This is supported by the 

findings of Adjamian et al., (2004), who observed high power for mid/low gamma continuing up 

to four seconds after stimulus presentation for a similar grating to our medium. This may reflect a 

failure to habituate, which may be affecting the processing of the stimulus as it is very 

aggravating for the participant making it more challenging to habituate. Neurophysiological data 

has suggested that a lack of habituation during stimulus repetition is a genetically determined 

property of the migraine brain (Coppola et al., 2013).  
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For the second part of the first hypothesis, which is observing a change in synchrony 

across frequencies from a desyncronisation to synchronisation, we do not observe a change in 

synchrony in aggregate onset 1 or 2:8, contrary to the second part of the first hypothesis. Note, 

there is a change in synchrony from desynchrony to synchrony from theta and alpha to higher 

frequencies. However, because delta is synchronous for an initial period following the early 

transient in Onset 2:8, we have taken a strict stance on this hypothesis.  Also, for PGI, we do not 

observe a negative-going to positive-going effect across frequencies for onsets 1 or 2:8. 

The results show that for Figure 4.9 (panel A), there is a large offset transient for low beta 

(see W), which is statistically significant. Since this feature is also present at low gamma/high 

beta and mid gamma,  the feature is broadband, this confirms our second hypothesis. Note that 

the offset transient effect diminishes from low gamma/high beta to mid gamma (although this is 

partially due to the electrodes chosen in Figure 4.9 – see also Figure 4.8 offset features in X and 

Y frames), and is ultimately lost in high gamma. Gamma oscillations may reflect stimulus 

prevalence or may facilitate conscious perception (Gray et al., 1989) and perception of pain 

(Gross et al., 2007). A further possible physiological explanation (as stated previously in 

Tempesta et al., in preparation, Chapter 4) for what we observe in the D/C shift would be that 

there are two sorts of cell-assemblies (Hebb, 1949) in relevant visual areas. One sort are 

‘somewhat’ densely interconnected and thus oscillate at low beta; the other sort is more densely 

interconnected, generating shorter cycle times, that oscillate at low gamma/high beta, mid and 

high gamma. Thick, medium and thin all drive the ‘somewhat’ densely interconnected 

assemblies, but only medium drives the most densely interconnected assemblies (Tempesta et al., 

in preparation, Chapter 4). 

Note that, as previously stated, aggregate is the EEG responses to each of the stimuli 

added together (medium+thin+thick), and PGI is a measurement of the difference in responses to 
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medium compared to the average of think and thin.. Therefore, comparing PGI to aggregate is 

analogous to comparing the effect of the medium stimuli to general activity trends across the 

scalp. With reference to the third hypothesis, there is a noticeable difference in statistical 

significance on the high frequencies for aggregated versus PGI. Notably, in the D/C shift period, 

aggregate shows more significant effects across onset 1 and 2:8, contrasting with PGIs effects, 

which are limited to peak effects in low gamma/high beta for onset 1 and onset 2:8 positive-going 

at the cluster-level. For low frequencies, again aggregate has more significant effects across onset 

1 and 2:8. However, our central finding is that theta was statistically significant for onset 2:8 

positive-going` at peak level (see Figure 4.6, circled in black). This is a robust finding coming out 

whole-volume (in what is a large volume), which has not previously been reported. Our theta 

effect is relatively anterior in space; this may reflect a mechanism of cognitive control, as some 

research has observed that theta frequency is associated with interference control (Cavanagh & 

Frank, 2014; Cooper et al., 2015). Anterior theta may be regulating posterior gamma effects 

across the scalp; however, we have not done any connectivity analyses (such as cross-frequency 

coupling) in order to be able to confirm this hypothesis.  

With regard to hypothesis 4 (see Figures 4.6 and 4.7), the effect of theta may be bleeding 

into alpha. For Figure 4.7, the vertical line labelled X indicates significance in theta; Y is in the 

same position as X, which is a peak for alpha that does not quite reach significance. However, 

theta and alpha’s frequency windows do overlap; therefore, alpha may not reach significance 

because the window to alpha is limited. Nevertheless, the effect still looks present there, albeit to 

a weaker extent. Previous research posits that alpha-band synchrony has been observed to 

facilitate information integration across anatomically segregated regions (Sadeghiani et al., 

2019), however, linking our findings to this interpretation is difficult because EEG only records 

from the scalp, and we have not projected into source space. However, alpha synchrony affects 
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top-down processing, which is illustrated by the strength of the alpha band frequency in the 

frontal-parietal network and is evidenced in patients with lesions to the dorsolateral prefrontal 

cortex, who showed reduced cognitive flexibility (Sadeghiani et al., 2019). Thus, overall, these 

synchrony effects in theta and alpha may suggest the action of more executive brain functions in 

controlling the hyper-excitation being observed more posteriorially, but, again, confirmation of 

this hypothesis awaits work on connectivity in this data set. 

As for the early positive transients for the low frequencies, we can observe posterior to 

anterior effects on delta, theta, and alpha, for onsets 1 and 2:8 for aggregate (Figure 4.4). 

However, for the PGI index (Figure 4.6), we only observe a posterior peak of theta for onset 2:8. 

This may mean that medium is driving posterior effects early on for onset 2:8.   

There are several limitations to the analysis. Identifying habituation by comparing effects 

on onset 1 to onset 2:8 is not definitive; in particular, onset 1 has less statistical power than onset 

2:8, since it involves fewer trials per participant. Thus, it could be the case that we observe PGI 

effects in onset 2:8, but not onset 1, simply because onset 1 has less statistical power. We cannot 

rule out this possibility altogether, but it is notable that we do observe here and in previous work 

(Tempesta et al., in preparation, Chapter 3, Figure 3.3) large effects for onset 1 for the aggregated 

analysis. We also observe effects on onset 1 in the time-domain (Tempesta et al., 2021, Chapter 

2). Thus, it seems that there is sufficient statistical power to observe robust effects for onset 1, if 

they are present. 

 As mentioned in previous work (Tempesta et al., in preparation, Chapter 3), although the 

PG test uses 12 c/deg, some say this is not a good control and that the 12cpd pattern is not always 

well reproduced (see discussion in Wilkins et al., 2016). An additional limitation is that, as 

previously discussed, for PGI, we have not linked the anterior theta effect we observe with the 

posterior gamma effect. For example, we have not performed a cross-frequency coupling 
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analysis, so we do not know how they relate. This leaves the possibility that they are causally 

unrelated phenomena. 

4.5 Conclusions 

The work presented here revealed a theta effect, which has not previously been reported. 

There is evidence that the theta band is responding differently for medium stimulus as opposed to 

thin and thick during the D/C shift period and may be modulating low gamma/high beta and mid 

gamma frequencies, although connectivity work is required to confirm this. Overall, the work in 

this paper goes some way to understanding the underlying neurological processes relating to the 

response of the posterior areas of the brain to PG stimuli. However, more research is needed to 

confirm this line of thought. In future work, we would like to include participants who have a 

diagnosis of migraine. The findings reported here are limited to healthy populations, and 

additional work is needed. Finally, we believe that having participants maintain a headache diary 

would help with understanding when a migraine attack is happening or if it already happened. 

We could then record EEG before and after an attack to see if the frequencies differ.  
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CHAPTER 5: DISCUSSION 

The overarching theme of this PhD thesis is how pattern glare stimuli give rise to symptoms of 

VS and associated electrophysiological correlates in the occipital lobe, and how the symptoms 

are associated with headaches. Headaches are the second most prevalent disease worldwide 

(James et al., 2018) and cost the US $17 billion a year (Goldberg, 2005). In Europe, an estimated 

27 billion euros per year is lost due to loss of productivity caused by headaches (Olesen et al., 

2010; Stovner et al., 2008). This is indeed a vital pathology both economically and in terms of 

world prevalence. Understanding how this disease arises in the brain can inform the treatment of 

this neuropsychological phenomenon. The investigated results and findings of this study were 

reviewed in each of the chapters. Specifically, Chapter 2 explored evoked responses in the time 

domain. In Chapters 3 and 4, this thesis investigated evoked/induced responses in the frequency 

domain. This chapter will explore the findings in the broader context of the literature and where 

this thesis lies in the greater visual-neuroscientific field. 

5.1.1 Analysis One 

In analysis one, we analysed event-related potentials (ERPs) in response to PGT gratings, 

using mass univariate analysis, a major effect for onset 1 in the time domain (Figure 2.2), showed 

a peak in the PGI (mean/intercept analysis) between 170-184 on the posterior part of the scalp. 

For onset 2:8 mean/intercept (Figure 2.3), medium showed an extreme response at 179 ms, which 

was posterior on the scalp. Thus, we obtained a more extreme response for medium on the 

posterior of the scalp relatively late in the segment analysed for both onset 1 and onsets 2:8. 

Considering the three previously specified factors in the normal population: headache 

proneness, visual stress and discomfort, we found significant relationships between ERP features 

and the headache and discomfort factors. Participants with high discomfort ratings had larger P1 
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components for medium stimuli suggesting cortical hyperexcitability. The participants with high 

headache ratings showed abnormal N1-P2 components for medium stripes relative to the other 

stimuli, indicating an effect of habituation (this is explored further below in the ‘Factor Effects’ 

section).  

There is also evidence of a P2 latency and jitter effect. The P2 elicited by onset 1 (see 

Figure 2.2) may be accelerated in the medium condition relative to the thick and thin conditions; 

visually, there is attenuation of N1 for onsets 2:8 for medium stripes relative to thick (Figure 2.3). 

This attenuation is particularly strong for those high on the headache factor (see Figure 2.5). 

This attenuated N1 may be related to an accelerated P2 (all these findings are explored 

more deeply in Chapter 2). Combining such acceleration with high temporal jitter (i.e. variability 

in latency across trials) could generate the observed attenuation of N1. We return to this point 

shortly.   

5.1.2 Analysis Two 

In analysis two, we focused on the frequency-domain; we looked at the responses to aggregated 

(average of thick, thin and medium) and PGI and related them to our three factors: visual stress, a 

tendency for headaches, and discomfort. We found four key phenomena: two in the early positive 

transient period and two sustained responses. This is explored in Chapter 3. We also found that 

for PGI, there was a synchronisation for beta, which continued in time and through low and mid 

gamma frequencies on onset 2:8, but not onset 1. For factor effects, we found a small significant 

cluster for participants who scored higher on discomfort, having higher power for high gamma. 

Additionally, 11 peaks were identified as significant in a cluster analysis of different ROIs from 

the PGI contrast. Seven of these were related to the discomfort scale. 
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5.1.3 Analysis Three 

 In analysis three, we again explored the frequency-domain, but this time, we looked at the 

responses to aggregated and PGI during the D/C shift period, a sustained period of baseline shift. 

We found a PG induced theta effect that had not previously been reported in the literature on the 

medium stimulus, which may reflect a mechanism of cognitive control. Additionally, we 

observed a large positive-going extreme response for medium relative to zero, in low 

gamma/high beta and mid gamma. We also found a large offset transient effect for low beta, with 

this effect quashed in high gamma frequency. This is explored further in Chapter 4.  

5.2 Connection with Cell Assemblies 

There is a strong positive-going effect for PGI for onset 2:8 (see Figure 3.4). If we look at 

the time series for beta, low gamma, mid gamma and high gamma (Figure 3.6), we observe that 

at the statistically significant points (marked with vertical lines), the medium is more extreme 

from zero, relative to thick and thin. Additionally, there is a sustained synchronisation effect for 

almost the entire time series in medium, albeit not in high gamma, which exhibits two separate 

clusters. Clearly, the medium is driving a broadband effect in beta and gamma.  

A possible physiological explanation for these observations is that two sorts of cell 

assemblies (Hebb, 1949) are being driven by the medium stimulus (see discussions in Chapters 3 

and Chapter 4). One sort is “somewhat” interconnected and thus oscillates at beta, low gamma 

and to some extent mid gamma, and the other sort is more densely interconnected, generating 

shorter cycle times that oscillate at mid and high gamma.  

It is also possible that the strong positive-going effect of PGI on beta, low gamma, mid 

gamma and high gamma for onset 2:8 represents a failure to habituate for the medium grating – 

i.e., the stimulus cannot be habituated to (Schoenen et al., 1995; Afra et al., 1998; Wang et al., 
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1999), especially since the phenomena is present for onsets 2:8, but, within the statistical power 

we have available, was absent for onset 1.  

5.3 Theta Effect in Migraine 

Chapter 4 primarily builds upon the results from Chapter 3 by looking at both low 

frequencies and high frequencies in a more extended time window. Theta shows an early posterior 

peak and a sustained positive-going effect for PGI (Figure 4.6). There is a significant peak in the 

D/C shift period (close to 1500ms after stimulus onset), which is an essential finding for this thesis, 

as this phenomenon has never previously been reported.  While acknowledging the uncertainties 

associated with relating patterns on the scalp to brain areas, if we consider that the statistically 

significant peak for theta may be detected above the scalp's somatosensory area, a reasonable line 

of argument arises around pain. Recent research posits that migraine is associated with aberrant 

connections from the somatosensory cortex to the frontal lobe, indicating that migraineurs have 

hyperactive cortical networks (Ren et al., 2019). Recent literature in mice (Iwamoto et al., 2021) 

has shown a coupling of theta and gamma oscillations that is increased during nociceptive phases 

in the somatosensory cortex, which represented the ongoing status of pain perception. (Nociceptive 

phases are the central nervous system [CNS] and peripheral nervous system [PNS] processing 

phases of noxious stimuli, which causes the brain to perceive the sensation of pain.) This may mean 

that our activity being observed in theta band may be due to perception by the participants during 

our experiment that could be the precursors of pain perception.  In addition, since we observe this 

effect for the PG index, this perception would be stronger for the (aggravating) medium stimulus. 

An additional line of reasoning is that if we think about theta as reflecting a mechanism for 

cognitive control, previous research has shown that theta is associated with interference control 

(Cavanah & Frank, 2014; Cooper et al., 2015). This effect seems to have continued into alpha 

(Figure 4.7 shows that alpha is having a similar impact to theta); however, potentially because of 
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how we selected frequency bands, we do not have sufficient statistical power to detect effects in 

relatively narrow, and therefore noisy, frequency bands. Additionally, some models have shown 

that alpha amplitude modulations regulate the inhibitory level of the cortex (Klimesch et al., 2007; 

Jensen & Mazaheri, 2010), with synchronisation reflecting habituation and desynchronisation 

representing active information processing (Hanslmayr, 2012). 

Despite the fact that this alpha effect only exhibited a trend towards significance, it may 

have implications for cognitive phenomena because alpha has been associated with facilitating 

information integration, and alpha synchrony has been related to top-down processing in the 

frontoparietal network, strengthening our previous statements that increased theta may reflect 

cognitive control (Sadeghiani et al., 2019).  In particular, it is quite plausible that (more anterior) 

cognitive control areas of the brain could be attempting to inhibit hyper excitation responses in 

posterior areas.  Furthermore, this inhibition might be specific for the medium stimulus, as 

suggested by our effect being seen as a positive PGI effect.   

Interestingly, we do observe effects in the theta frequency both in our first (Chapter 2) 

and third (Chapter 4) analyses. It should be noted that the first analysis was a theta effect that 

came out on a factor, and in the third analysis, the theta effect was on the mean/intercept. The 

former of these effectively reflects the early evoked response, which exhibits a theta frequency; 

the latter arises in the DC shift period and may not even correspond to an evoked response. 

Accordingly, it is unclear at this stage whether or not these two effects are related. 

5.4 Factor effects 

 In Chapter 2, we found significant effects for the headache and discomfort factors, 

operating at different presentations in terms of the repetition of stimuli and on various components 

of the ERP. These are new findings. The discomfort factor, which has a strong state contribution, 

showed a significant effect only for onset 1 (Figure 2.4). This may suggest a stimulus-driven or 
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surprise effect. Further, a second-factor effect emerged for headache frequency, intensity and 

duration (a trait factor), which was only significant for onsets 2:8 (Figure 2.5), suggesting a 

relationship with habituation.   

As stated previously, the discomfort factor largely reflects how comfortable people found 

the medium stripes relative to the other stimuli. We found a stronger P1 for medium for the high-

discomfort group compared to low-discomfort. Those with cortical hyperexcitability may respond 

more strongly to certain stimuli that are aggravating; this alone could have an effect on P1, as the 

P1 is reduced for unattended stimuli (Mangun & Hillyard, 1991; Voorhis & Hillyard, 1977; Munte 

et al., 1995). The relative lack of a P1 in the low discomfort group may be because these participants 

are able to quickly shift attention away from this aggravating stimulus, thus avoiding discomfort. 

In contrast, the high-discomfort group may have been unable to withdraw attention from the 

medium stimulus. The P1 is associated with surprise (Utama et al., 2009; Lassalle & Itier, 2013), 

and we see these effects of P1 only on the first onset where all the three stimuli are equally likely 

and therefore potentially surprising.  

For the headache factor the high-headache group showed an abnormal N1 for the medium 

stimuli on Onsets 2:8. This may be related to an absent or attenuated N1 or, as just discussed, an 

accelerated and temporally unreliable P2 (for a deeper explanation, refer to Chapter 2). The 

components in this P1-N1-P2 ERP complex can be seen to be at a theta frequency.  Notably, there 

was a drop in inter-trial phase coherence in this theta frequency band at around 165ms for the high 

headache group viewing the medium stimulus - which was less evident for the low headache group 

(see Figure 2.7). The inter-trial theta phase coherence has been associated with the P2 component 

(Freunberger et al., 2007), which has also been associated with a number of top-down attentional 

tasks, such as visual search (Luck & Hillyard, 1994). We posit that the effects seen in this N1-P2 

time window could relate to poor inter-trial theta phase coherence, suggesting a temporally poorly 
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regulated P2, i.e., increased variability in latency at the single-trial level. Additionally, since this is 

observed in onsets 2:8, this could also be evidence of unsuccessful suppression of repeating stimuli, 

i.e., poor habituation.  

In Chapter 3, which moved beyond the theta frequency band response set-up by the ERP 

transients, 11 peaks came out on the uncorrected analysis at peaks of the ROIs; 7 were on the 

discomfort factor, three were on the VSQ, Chi and Aura factor, and one was related to the length 

and frequency of headaches factor. Participants who scored high on these factors responded high 

on these state and trait measures. Importantly, these effects were observed at a posterior site, for 

which we have a strong prior precedent (Adjamian et al., 2004). Figure 3.10 (discomfort factor 

for beta) showed the start of a sustained cluster, which means that those who score high on 

discomfort have increased PGI in the beta band. In Figures 3.11, 3.12 and 3.13, we showed 

similar effects for low gamma, mid gamma and high gamma on the discomfort factor. This 

suggests that those who have higher discomfort are experiencing substantially higher PGI across 

these frequency bands. It is important to note that mid gamma for Oz, for which we have the 

most substantial prior precedents (Adjamian et al., 2004; Chapter 2), shows three significant 

peaks for discomfort, suggesting that for mid gamma there is a particularly high effect on pattern 

glare for those high on the discomfort factor.   

5.5 Frequency Domain Response Differences between Onset 1 and Onset 2:8 

  The aggregate response in the low-frequency bands mostly did not confirm our 

overarching hypothesis concerning differences between Onset 1 and 2:8. In Chapter 4, we found 

few significant differences between Onset 1 and Onset 2:8 for aggregated responses in terms of 

synchronisation in the theta and alpha bands; however, there are some differences between onsets 

in delta. For onset 1, there is a desychronisation which is broadly distributed across the scalp and, 
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although only a trend, there is a sychronisation which is broadly distributed over the scalp for 

onset 2:8 for the first half of the time segment (Figure 4.4).  

For the high frequencies (Figure 4.5), we can observe desynchronisations (power 

reductions relative to baseline) for onset 1 across all high frequencies; however, there are 

synchronisations from low gamma/high beta to high gamma for onset 2:8, confirming our 

hypothesis. For the PGI in the low-frequency bands (Figure 4.6), we can observe that our 

hypothesis is confirmed - only theta and alpha show a positive-going effect in onset 2:8. Further, 

for high frequencies (Figure 4.8), we again confirm our hypothesis of a difference between onset 

1 and onset 2:8, since only for onset 2:8 do low gamma/high beta and mid gamma, show a strong 

sustained positive-going effect. 

Prediction Error and Gamma: It is also interesting to note that our finding of high gamma in 

onset 2-8, and not onset 1, does stand against some operationalisations of predictive coding (Den 

Ouden et al., 2012). Onset 1 should be the condition that generates a prediction error, since 

stimuli are equiprobable (Hawkins, 2004; Friston, 2005; Bar, 2009), and some have argued that 

prediction errors should manifest in increased gamma (Todorovic et al., 2011), since they would 

be registered in superficial layers of the cortical column. We saw precisely the opposite of this in 

high gamma for 2-8. This suggested that a lack of habituation is a more probable interpretation of 

this feature in our data. 

Gamma and perception: a further possibility is that the increased gamma we observed for the 

medium stimulus could be directly related to the experience associated with this stimulus.  

Gamma oscillations may reflect stimulus prevalence or may facilitate conscious perception (Gray 

et al., 1989) and perception of pain (Gross et al., 2007). 
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5.6 Alpha Suppression and Cortical Hyperactivity 

Singh et al. (2003) was one of the first to find that areas of the cortex that showed an 

increase in fMRI signal, also showed event-related desynchronization in the alpha band (which is 

a measure of alpha suppression). Mayhew et al. (2013) found that the fluctuations in the alpha 

response could explain some of the variance in the BOLD response. Furthermore, visual stimuli 

that were presented during the trough of the alpha wave produced a larger BOLD response 

compared to stimuli presented during the peak of the alpha wave, suggesting that the alpha 

response is closely related to cortical excitability (Scheeringa et al., 2011).  

Previously, alpha suppression was localised to the visual cortex consistent with cortical 

hyperexcitation (Haigh, et al., 2018). Haigh and colleagues (2018) posit that greater cortical 

excitation (as indicated by greater alpha suppression), in response to chromaticity differences in 

chromaticity pairs (i.e. pairs of colours presented as pattern-glare stimuli), may indicate why 

certain pairs give more visual discomfort. However, as seen in our data (see, Figure 3.5), the 

frequency analysis did not show an alpha suppression for medium only. It showed an alpha 

suppression for all stimulus types. This may be because in this study, chromaticity differences 

were not utilised. An alternative explanation may be that although one of our hypotheses from 

analysis 2 did predict a deeper activation for PG, this may indicate that something other than 

cortical hyperexcitability is influencing the medium striped patterns. It may be the case that by 

virtue of our population being non-clinical, we do not see this deeper desychronisation as 

strongly in medium for alpha. However, neurobiological evidence supports a theory of 

hyperexcitability in VS, in a clinical population. This evidence is explored in more detail in the 

following sections. 
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5.7 Support for Hyperexcitability and Energy Impairment from the Neurobiology Research 

in Migraine 

There is evidence from recent neurobiological research that there is a brain energy deficit 

between migraine attacks that results from increased energy demands from hyperactivity in the 

brain, which leads the brain to trigger acute migraine attacks (Borkum, 2021). Magnetic 

Resonance Spectroscopy (MRS) has shown that between and during attacks, lower 

phosphocreatine-to-creatine ratio and increased concentration of adenosine diphosphate (ADP) 

cause a brain energy deficit (Reyngoudt et al., 2012; Younis et al., 2017). There is also some 

evidence that reduced energy available from adenosine triphosphate (ATP) hydrolysis in the 

occipital lobe correlates with severity of migraine type (Lodi et al., 2001) and attack frequency 

(Reyngoudt et al., 2012). This may explain why we observed a deficit in habituation for onsets 

2:8 for participants that scored high on headache duration and intensity factor; that is, a brain 

energy deficit prevents normal habituation. 

 However, it is not clear in the literature whether high-energy phosphate levels result from 

the dysfunction in the production of energy in the system or the increased demand of energy from 

hyperactive neurons. Still, it seems to be the case that both occur in the clinical migraine 

population.  

5.7.1  Increased Energy Demands in Migraines 

 This thesis and other research support the theory of cortical hyperexcitation in the 

occipital lobe in migraine (Coppola et al., 2007). Indeed, failure to habituate in ERPs from our 

PG stimulus (see Chapter 2, Tempesta et al., 2021) and literature showing a habituation deficit in 

the P300 (Evers et al., 1999) supports this theory. This suggests that the cortical response to 

sensory and attention demands in migraine are heightened relative to normal participants, 

requiring higher energy usage (Ambrosini et al., 2011; Evers et al., 1999; Gauntenbein et al., 
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2013). Other research in fMRI measuring cerebral blood flow indicates increased metabolic rate 

in response to the PG stimuli at 3 (c/deg) (Huang et al., 2003). This increased energy demand can 

have an effect on the brain's ability to inhibit this ongoing excitatory response.  

5.7.2 Decreased Energy Production in Migraine 

Migraine is 3-4 times more prevalent in people with mitochondrial disorders (Tiehius et 

al., 2020). This is regardless of the type of mitochondrial disorder (Kraya et al., 2018; Vollono et 

al., 2017), meaning that energy generation, more generally, is the problem underlying acute 

migraine attacks. Studies of PET and fMRI show that repeated migraine attacks modified 

metabolism in regions of the brain involved in sensory and pain processing (see Russo et al., 

2017 for review). These studies also support the theory that ATP depletion existed in migraine 

patients with aura due to deficient mitochondrial metabolism (Sarchielli et al., 2005). Figure 5.1 

shows the relationship between repeated migraine attacks and mitochondrial functioning, 

compromising the cell’s ability to create ATP (Fila et al., 2019). 
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Figure 5-1. Migraine attacks and their effect on mitochondrial functioning and ATP generation.  

Repeated migraine attacks cause a modification of metabolic functioning in the primary 

somatosensory (blue) and secondary (brown) somatosensory cortices. This results in impaired 

mitochondrial functioning, affecting the ability to produce ATP (taken from Fila et al., 2019).  

  It seems plausible that the biological explanation instead of the electrophysiological 

explanation better explains the underlying causes of VS at the cellular level. Until now, we have 

discussed and analysed how PG gives rise to VS as a response to specific medium stimuli (3 

c/deg), as a conceptual understanding at the electrophysiological level. We reported on EEG in 

the time and frequency domains and have shown how cortical hyperexcitability, the aspect of 

prediction (surprise), and oscillatory responses from the occipital lobe are responding at an 
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aggregate level to the PG stimulus. However, a system of energy demands at the cellular and 

metabolic level underpins the electrophysiological migraine response in the brain. It seems that 

there is a dysfunction in energy generation and/or an increased energy demand that underlies the 

entire process that is ultimately manifesting in migraine and, more severely in some people, 

epilepsy. We return to this concept in detail shortly.  

5.7.3 Oxidation Stress in Migraine 

It is the case that, due to technical limitations, reduced nicotinamide adenine dinucleotide 

(NADH) cannot be studied directly. Nevertheless, this can be inferred through in-vivo studies of 

(Cortical Spreading Depression) CSD, which physiologically underpins migraine. The threshold 

for CSD is lowered by migraine triggers and increased by migraine medications (Harriot et al., 

2019). Additionally, because CSD activates the trigeminovascular system, it is used as a model 

for studying migraines (Harriot et al., 2019). Some studies have also shown that CSD is a 

substrate of visual aura (Leao, 1944; Smith et al., 2006). In CSD phases, increased energy 

demands can be observed due to the stripping of oxygen in the system (Takano et al., 2007). This 

energy-deficiency between migraine attacks or inadequate energy production may cause 

oxidation stress and trigger a migraine attack. Oxidant-sensing switches in the body trigger this 

homeostatic response. This occurs when brain energy is insufficient and leads to oxidative stress 

(an imbalance between free radicals and antioxidants in the body), leading to cell and tissue 

damage (Borkum, 2021). It follows then that the brain may use migraines as a defensive 

mechanism as it enforces rest and withdrawal from a sensory environment and reduces 

processing demands (Montagna et al., 2010), reducing the likelihood of cell and tissue damage. 

Borkum (2021) states that energy deficiency is caused by increased energy demand. Even so, not 

everyone withdraws from sensory and information processing demands. A hyperexcitable brain 
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or mitochondrial impairment will ultimately lead to oxidative stress. It is a typical feature in 

cellular metabolism. While Borkum (2021) describes a hyperexcitable brain, our investigation 

was limited to the excitability and habituation of the occipital lobe, albeit we did report on the 

theta effect (which is not an occipital effect).  

5.7.4 Could Energy Deficiency Demands Explain our Findings? 

 Throughout the previous three sections, we have discussed two systems that could 

underlie the electrophysiological migraine results of our analysis (see Figure 5.2, System A and 

System B). It seems plausible that the sort of excitation we observe in the gamma band for onsets 

2:8 could initiate a cascade of metabolic processes that lead to migraine, as described in System 

A. It could be the case that the PG stimulus is eliciting a hyperexcitation in the gamma band. 

When a neuron is hyperexcitable, the threshold to fire is lower than normal, so the cell fires more 

easily. This increases metabolic demand in the occipital lobe, which results in an energy 

deficiency. This in turn, causes oxidative stress, which can lead to acute migraine attacks as a 

defensive mechanism. This would arise from the brain attempting to reduce incoming stimuli to 

prevent cell and tissue damage.  

 We do not have direct evidence for System B in our research results. However, if it were 

present, it would reverse the direction of causation associated with System A; that is, metabolic 

changes would induce energy deficiencies, which would, in turn, induce electrophysiological 

changes. This said, the key finding of our work and Adjamian’s work is an increase in gamma. It 

seems unlikely that a deficiency of energy could increase the firing of excitatory neurons. This 

leaves the possibility of the energy-deficiency specifically impacting, and reducing the firing of, 

inhibitory interneurons. This could induce reduced inhibitory action on excitatory neurons, 

leading to increased gamma power. However, this explanation relies upon the hypothesis that 
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energy-deficiencies only act on inhibitory interneurons and not on excitatory neurons, which may 

be considered implausible. 

A further possibility could be that the energy deficiency reduces the firing of both 

excitatory and inhibitory neurons. However, self-sustaining dynamics counter the effects of the 

energy deficiency specifically in the excitatory units.  This could lead to increased gamma, 

because the impact of reduced inhibition outweighs the effect of energy depletion on the 

excitatory units.  However, these hypotheses remain highly speculative at the moment. 

As shown in the red arrows in figure 3, there is of course the further possibility that both 

systems are functioning and interacting. 
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Figure 5-2. Hypothesis for Systems A and B.  

The arrows show the relationship between the boxes indicated. This is a theory of what may 

explain our data and how it relates to the biological literature. The red-coloured arrows indicate 

where the connections would lie if system A and B are connected, and the no fill arrows specify 

system-specific influences.  

5.8 Implications of This Research to Clinical Applications 

Although the associated symptoms of VS do not exist in their severe manifestations in healthy 

controls, healthy participants still report perceptual illusions and distortions (Haung & Zhu, 2017; 
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Wilkins, 1995; Wilkins et al., 1984). The way in which these symptoms manifest is of interest. 

Often, when conducting research in specific populations, it is difficult to recruit at-risk 

populations, especially if they are clinical or vulnerable. Therefore, it is important to be 

absolutely certain about the specific focus of any investigation. Undertaking research on normal 

populations allows basic research to be done in order to help direct further research at the 

clinical/translational level. The results of the research reported in this thesis give clear indications 

regarding the focus required in a clinical population. Although the level of dysfunction in this 

normal population sample is insufficient to meet the criteria to label these participants 

migraineurs, the study does signpost specific aspects of the clinical brain that would be useful to 

investigate for comparison. For example, looking for the jittered P2 component in migraine 

patients may reveal a biomarker for migraine phenotype. This would be clinically useful and 

facilitate the development of better diagnostic tools.  

5.9 Gamma Activity Mediating Perceptual Binding 

Sensory systems are constantly given an influx of information that requires organization 

in a sensible way. During this process, the brain interprets sensory input as a neural 

representation of what we are seeing in the world in order for us to interact with it. Perceptual 

binding is the process of merging individual aspects of information into a perceptual 

representation (Livingstone & Hubel, 1988). One issue that arises in this literature is how these 

features are bound together (Treisman, 1996). It may be the case that gamma activity is mediating 

perceptual binding; some research in the past has supported this idea in the macaque visual cortex 

(Friedman-Hill et al., 1999; Maldando et al., 2000).  

Based on what we observe in the gamma activity in our previous analysis Chapters 3 & 4 

it may be the case that the participants are seeing the stationary stimulus as a moving stimulus. 

For example, the Enigma image (Figure 1.2) in Chapter one contains only static radial stripes and 
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purple disks but is widely reported to induce a sensation of motion within the rings in most 

people. It may be the case that the participant perceives the stimulus as moving; this may be 

caused by a dysfunction in gamma activity, which mediates the perceptual binding of the stimuli 

that is causing a misfiring of neurons in V1 to specifically clinically relevant patterns. Previous 

research, self-reports and our analysis of EEG and oscillatory responses indicate this may be 

occurring in the normal population. More research would be needed that explores the role of 

gamma in perceptual feature binding, in order to clarify this further.  

Although not in gamma, a related finding in this thesis arises from the temporal jitter 

investigation of the theta feature in our time-frequency analysis, which we have argued 

corresponds to the P1-N1-P2 event related potential complex we observed in the time-domain.  

The increased temporal jitter (reduced inter-trial coherence, with little reduction in power) we 

observed for those high on the headache factor, may represent an electrophysiological correlate 

of the participant perceiving motion in the stimulus.  That is, a perception of movement might 

vary the latency of the P2 component across trials.  However, extrapolating this argument to 

perceptual binding would require us to also observe an effect on a factor of jitter in the gamma 

band.  This awaits further analysis work. 

5.10 Habituation of Evoked Potentials in Migraine 

There are various neurophysiological studies that have explored migraine during and 

between attacks, revealing cortical hyperexcitability (see review by Schoenen, 1992). It is 

suggested that migraine causes insufficient habituation, affecting cortical information processing, 

which may affect the amplitude of average evoked potentials (Schoenen, 1996). Habituation has 

been seen to be a protective mechanism for protection against overstimulation and/or learning 

(Kandel, 1991).  Although for a conclusive demonstration, we would need to see EEG responses 

change through onsets 2:8, our results in Chapter 2 may be argued to be suggestive of an 
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habituation effect.  Specifically, we saw clear increases in the response in onsets 2:8 relative to 

onset 1, suggesting that there was a problem with habituation, which might be expected to reduce 

the EEG response across the 2:8 repetitions.      

5.11 Other Variables 

 Although this thesis has acted to explore the role of PG stimuli, specifically, the clinically 

relevant, medium 3 c/deg stimulus and its effect on the occipital lobe, stimulus features other than 

pattern may affect the brain’s response. For example, it has been observed that significant colour 

differences evoke greater visual discomfort and metabolic response; that greater alpha 

suppression occurs in response to the large colour difference; and finally, that these chrominance 

differences can drive hyperactivity in the cortex (Haigh et al., 2019). However, in our 

experiment, we used grey and black stimuli, so this does not affect our investigation.  

Another variable that one might argue could explain the EEG effects we have observed is 

contrast sensitivity. Aldrich and colleagues (2019) showed that those with lateralized visual aura 

have heightened sensitivity in the visual field in which they see the aura. Additionally, Huang et 

al. (2003) linked reduced contrast sensitivity/discrimination to reduced BOLD response, which 

might suggest that increased contrast sensitivity could generate increased EEG responses. It may 

be the case that some of our participants who self-reported that they suffer from aura may have 

contrast sensitivity in the visual field that affected their EEG response to the stimuli; this would 

have affected the analysis. However, our key findings were on headache and discomfort, not on 

aura.  

Additionally, it may be the case that the temporal jitter that we observed in Chapter 2 is 

due to nonuniformity in the hyperexcitability in the occipital lobe of different participants. 

Previous research has shown that hyperexcitability is unlikely to be uniform in patients with 

pattern-sensitive epilepsy (Wilkins et al., 1979). However, the inter-trial coherence measure, that 
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underlies out temporal jitter analysis, is looking at differences in phase coherence across trials. 

There is an averaging step across participants, but the basic measure is across trials. 

Consequently, across participant variation in hyperexcitability is not likely to confound our jitter 

findings.  

5.11.1 The Appropriateness of Studying Gamma in EEG 

 It is essential to study scalp-EEG as it can contribute to the development of paradigms 

that allow neurophysiological function in humans to be investigated through a non-invasive 

measure.  Additionally, being able to explore high frequencies enables more discriminating EEG 

measures to be identified. Several instances where EEG can be used are in etiological studies of 

patient cohorts, large-scale genetic studies, development, ageing, and understanding the 

neuropharmacological basis of high-frequency activity (Muthukumaraswamy, 2013). However, 

criticism has been levelled at the viability of the gamma frequencies (30-80hz), namely that the 

neural activity in gamma overlaps with the spectral bandwidth of muscle activity (20-300hz). 

Muscle activity may contaminate non-invasive high-frequency brain activity (Whitham et al., 

2007).  

However, we do not believe that our high-frequency findings were contaminated by 

muscle activity. We used many techniques during pre-processing to lower the number of artefacts 

in our data; specifically, we conducted an ICA in which eye-blink artefacts and other components 

that could be identified as muscle artefacts were removed. The EEG data were then recompiled. 

An additional method that was utilised was threshold rejection of -100 and +100μv, which is used 

to control for muscle artefacts. Finally, electromyographic activity demonstrates considerable 

spectral variability in terms of amplitude, peak frequency, and bandwidth, which is dependent on 

factors such as muscle strength, muscles used and sex (Kumar et al., 2003; Muthukumaraswamy, 

2013). Such variability in activity will in theory be averaged out when computing the ERPs from 
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the EEG data because one tenet of ERP theory is that signal is consistent while noise is random, 

meaning that the noise should theoretically average out to zero. However, the number of 

participants needed to be sure that noise is sufficiently suppressed is not known for particular 

experimental paradigms and could be high. Fortunately though, there is a further and particularly 

strong reason for believing our effects are driven by signal: research by Adjamian et al. (2004) 

showed that gamma activity in the primary visual cortex is associated with the spatial frequency 

(SF) of the stimulus and visual discomfort. Critically, Adjamian et al. were using MEG, rather 

than EEG, which is typically argued to have a higher signal-to-noise ratio for high frequencies. 

Their findings were completely consistent with the gamma results that we observed. This is 

strong evidence that the gamma activity we are observing is signal and not noise.  

5.11.2 Contrast Sensitivity Function (CSF) as a possible explanation?  

 The strong gamma activity seen in Adjamian et al’s (2004) work may have indicated a 

relationship to the CSF, which also peaks at 3 (c/deg). However, this does not seem to be the 

case, and even if so, this alone would not rule out a link to VS. This can be observed in Figure 

5.3.  
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Figure 5-3.The CSF in relation to spatial frequency.  

‘Five sensitivity functions (normalized to maximum). CSF using square-wave gratings (Campbell 

& Robson, 1968). CSF using sine-wave gratings, and the contrast matching function (Georgeson 

& Sullivan 1975); V1 Gamma activity; and mean number of illusions and discomfort is also 

shown (Taken from Adjamian et al., 2004).’ 

The power of gamma falls of much more steeply with increased spatial frequency than does the 

CSF. Further Adjamian’s stimulus (and indeed our own) had much higher contrast than the 

threshold level stimuli used to measure the CSF. Thus if the CSF were determining gamma 

oscillations, gamma power should remain high beyond 5c/deg whereas in fact is in near zero at 

this point.  It seems unlikely then that the CSF is the main driver of our observed gamma effect 
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with the 3 (c/deg) stimuli in either Adjamian et al’s (2004) work or our own. It seems likely that 

this effect is more driven by cortical hyperexcitability than any other explanation.  

5.12 Limitations of Work 

As we did not use clinical populations, we cannot generalize the findings in this thesis to a 

clinical group. As stated previously, we might also expect that we would find more significant 

effects in a clinical group compared to controls. Further experiments would therefore benefit 

from having access to a patient group. 

An additional limitation is that, as previously discussed, for PGI (See Chapter 4), we have 

not linked the anterior theta effect we observe with the posterior gamma effect. For example, we 

have not performed a cross-frequency coupling analysis, so we do not know how or if they relate. 

This leaves the possibility that they are casually unrelated phenomena. 

Identifying habituation by comparing effects on onset 1 to onset 2:8 is not definitive; in 

particular, onset 1 has less statistical power than onset 2:8, since it includes fewer trials per 

participant. Thus, it could be the case that we observe PGI effects in onset 2:8, but not onset 1, 

simply because onset 1 has less statistical power. We cannot rule out this possibility altogether, 

but it is notable that we do observe large effects for onset 1 for the aggregated analysis within the 

frequency domain (Chapters 3 and 4). We also observe effects on onset 1 in the time-domain (see 

Chapter 2). Thus, it seems that there is sufficient statistical power to observe robust effects for 

onset 1, if they are present. 

EEG inherently has limitations, as they are recordings from the scalp impeded by bone, 

meaning that some of the signals are lost. It would be advantageous to do intracranial electrode 

recordings (iEEG) and analyse that data; however, this is difficult as the NHS ethics are quite 

complex, and iEEG is challenging to get approval for as it is typically performed during 

neurosurgery and in an at-risk population, such as patients with severe epilepsy.  
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5.13 Further Research 

Further research could involve a more extended time baseline period. This would allow the 

researcher to use a longer wavelet and observe lower frequencies without the current edge effects 

and broaden our findings' scope into even lower frequencies. It might be informative also to break 

the data into onsets throughout the trial blocks. It would be good to know if the habituation effect 

we see in onset 2:8 is a build-up effect, i.e., increasing from onsets 2-3, 4-5, and 6-7, although this 

might require more trials to obtain reliable effects and this would make the experiment very long.  

It would be interesting for participants to keep headache diaries. Asking participants to keep 

headache diaries in the days prior to data collection might improve the reliability of reporting and, 

in migraineurs, help to identify their migraine phase. It would be valuable to collect data from 

different populations (individuals with epilepsy, those with dyslexia and other reading difficulties, 

individuals with autism, and migraineurs), with different imaging modalities, possibly MEG, 

because it would give higher resolution in source space and might help to establish links and 

differences between conditions. An exploration of the role of gamma in mediating perceptual 

binding may be useful in order to understand why the brain is observing the medium stimulus to 

be moving while it is a stationary stimulus.  

Additionally, research in the neurobiological field would be useful as it seems that an 

energy demand caused by either an increase in metabolism or mitochondrial dysfunction in which 

not enough energy is produced in occipital, may be the underlying cause of the hyperexcitable 

response to PG stimuli resulting in VS, migraine and, in more severe cases, epilepsy. Research in 

modeling the CSD and in vivo research on animal brains or iEEG and single cell recording research 

may shed more light on the subject than this research project was able to, given the limitations of 

scalp EEG electrode recordings.  
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5.14 Conclusion 

Overall, the results of the three analyses both support existing findings in this field and also 

reveal hitherto undiscovered effects. The theta effect in Chapter 4 and the headache and discomfort 

effects in Chapters 2 and 3, operating at different times in terms of stimulus presentation and on 

different components, are potentially important new discoveries. Additionally, by observing effects 

present for onset 2:8, but not onset 1, this thesis has provided supporting evidence that visual stress 

(and by extension, migraine, and perhaps epilepsy) is driven by a failure to habituate, with this 

failure observable in the time-domain (missing N1) and the frequency domain (theta and gamma 

effects). These findings add to the body of existing knowledge and ultimately may contribute to 

the further development of clinical interventions in this area. 
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