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Abstract 

 

Coarticulation has been studied in speech production for over 100 years and more recently 

has been observed in upper limb movement sequences. Coarticulation of upper limb 

movements has been shown to underlie our remarkable ability to produce movement 

sequences such as drinking a cup of coffee or driving a car reliably, smoothly and fast. 

Crucially, coarticulation breaks down in Parkinson’s disease and stroke patients which 

significantly affects their daily lives. However, how humans learn to coarticulate and 

specifically how coarticulation can be facilitated is unknown. Reward is a powerful tool to 

influence human behaviour and over the past decade research on how reward shapes 

learning has widely increased. Importantly, reward has been shown to enhance execution of 

simple movements while converging evidence found that reward can improve learning of 

complex motor skills. The work in this thesis explores whether reward can enhance 

coarticulation. To address this question a novel motor task is introduced which involves a 

complex sequence of reaching movements (chapter 2). Across a series of behavioural 

experiments (chapter 3) we demonstrate that reward facilitates coarticulation which also led 

to improvements in movements smoothness and speed. Importantly, these improvements 

were retained over a long period without reward. Extending these findings, we used a 

neuropharmacological modulation (chapter 4) to investigate whether dopamine plays a role 

in coarticulation. The results suggest that a dopamine antagonist impairs coarticulation which 

can be compensated for with reward-based feedback. Finally, we show that coarticulation is 

guided by the principal of maximum smoothness which explains why coarticulation is 

constrained by the transition angle between reaching movements (chapter 5). 
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Chapter 1 

 

Introduction 

 

 

1.1 Motivation for this thesis 

Movements are central to how an agent (i.e., humans and animals) successfully interacts with 

the environment and can be used to achieve daily life (e.g., making a cup of tea) and other 

complex (e.g., executing a tennis serve) goals. However, controlling goal-directed movements 

in an ever-changing environment is tremendously difficult. Additionally, often these goals 

(e.g., making a cup of tea) require the agent to perform a sequence of movements in order to 

realise them (e.g., fill the kettle with water, source the tea bag etc). Consequently, even 

simple goals can pose a challenge to the motor system and even sophisticated robots still fail 

to complete a variety of human daily life tasks. Yet, humans have the remarkable ability to 

complete such movement sequences with reliability, smoothness and speed; an ability which 

breaks down in clinical populations such as Parkinson’s disease and stroke patients which 

severely impacts their daily life.  
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The present work focuses on our ability to perform movement sequences skilfully and aims 

at identifying strategies that aid efficient execution. Specifically, how reward affects both the 

learning and execution of movement sequences represents a core part of the present work. 

Reward has been a major focus of research across multiple disciplines. For instance, episodic 

memories that are paired with a rewarding stimulus (i.e., money or enjoyable food) rather 

than a neutral stimulus are encoded more strongly and remembered better1. Similarly, it has 

been demonstrated that reward serves as a central source in shaping optimal behaviour 

during decision-making2. Considering its pivotal role in shaping both animal and human 

behaviour, research on the effects of reward on both motor learning and adaptation has been 

a focus within the field of motor control and motor neuroscience. Particularly, its potentially 

beneficial effects within rehabilitation settings has been of great interests in recent years3–5. 

Consequently, here the effects of reward on movement sequences are investigated. 

 

1.2 Motor skill learning 

Motor skill learning refers to the process of learning and refining new skills such as mastering 

a tennis serve through the act of repeated practise6–8. Within this context, skill is defined as 

learning to execute complex movements (i.e., movement sequences) to a level of proficiency 

that allows for achieving the task goal reliably, efficiently and fast9. Consequently, motor skill 

learning can be distinguished from other forms of motor learning such as motor adaptation. 

Motor adaptation primarily describes the adjustment of already existing motor commands to 

perturbations in the environment10,11. In contrast, during motor skill learning motor 

commands have to be formed and refined de novo (i.e., from ‘scratch’)12. Consequently, 

motor skill learning is characterised by a slower learning process that typically involves several 

training sessions. However, once a skill has been mastered it is retained with little decay for 

a long period of time13–17.  
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1.3 Motor sequence learning and coarticulation 

Many motor skills require an agent to execute a series of movements with examples ranging 

from playing the piano to touch typing, to tasks of daily living such as making a cup of coffee. 

In each case, skill learning refers to the process of executing a series of movements with 

increasing spatial and temporal accuracy as well as overall movement quality (i.e., 

smoothness)12. Many clinical populations show impairments in sequence learning, which has 

detrimental effects on their daily living. Stroke survivors decompose movements into jerky 

sub-movements with available data suggesting that stroke severity and sequence learning 

ability are correlated18–20.  Thus, there is an urgent need to understand how movement 

sequences are learnt in order to inform the development of clinical rehabilitation 

programmes. In recent years, research has provided valuable insight into different aspects of 

motor sequence learning with coarticulation of movement sequences being the focus of this 

thesis.   

Ubiquitous in our daily life but often impaired in clinical populations 21–24, coarticulation 

describes the process of blending together a series of distinct movements into a single 

continuous action. For example, with learning compound movements such as drinking a cup 

of coffee are gradually blended together to form a continuous action that is executed with 

increased speed, smoothness and energetic-efficiency 25–28. Therefore, coarticulation 

represents a hallmark of motor sequence learning. Crucially, coarticulation breaks down in 

stroke23,24 and PD patients29, which severely affects their daily life. However, despite its 

prevalence and importance to characterising impairments in clinical population, how humans 

learn to coarticulate and specifically how coarticulation can be facilitated is unknown. The 

work in this thesis explores whether reward can enhance coarticulation (see Chapter 2 for 

more information on coarticulation). 

 

1.3.1 Implicit and explicit sequence learning  

First observed in amnesic patients such as HM30, it has been shown that motor sequences can 

be learnt both implicitly and explicitly31. While implicit motor learning occurs without 
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knowledge of the task structure and the learned motor sequence, explicit learning requires 

higher levels of active attention32–34. Consequently, these fundamental concepts have been 

differentiated mainly based on the level of awareness an agent has of the learned skill35. 

Typical daily life examples of implicit learning include learning how to ride a bicycle and to 

walk as a child; motor skills that can often not be verbalised (procedural). In contrast, learning 

a dance routine or how to cook a new dish are examples of explicit learning, which requires 

knowledge of the action sequence (declarative) and attentional resources.  On a neural level, 

explicit learning is believed to be integrated by the hippocampus and its surrounding brain 

structures, whereas implicit learning is thought be controlled by brain structures such as the 

basal ganglia36. However, delineating precisely what systems underlie both implicit and 

explicit learning still represents a major research challenge37. Additionally, in most real-world 

situations both implicit and explicit sequence learning contributes to skill learning38, which 

further complicates dissociation. For example, when learning how to make a cup of coffee, 

one must learn the sequence of movements (knowledge) as well as the motor commands to 

execute the actions skilfully (practise). In line with this approach, research has shown that 

both explicit knowledge of task elements in combination with implicit features of movement 

constitute for skilfully executing a movement sequence39.  Consequently, sequence learning 

can also be compartmentalised as learning what to do (explicit learning) and how to do it 

(implicit learning), with the latter being mainly driven by extensive practise38.   

 

1.3.2 Components of learning  

Within motor sequence learning, spatial-sequential components (what to do) have been 

dissociated from its motor control components (how to do it)38–41 allowing for a functional 

extension of the implicit-explicit framework of sequence learning. The spatial-sequential 

component refers to the order of the movement sequence in space and time (e.g., when and 

where to press the next button when entering your PIN). In contrast, the motor control 

component encompasses the movement dynamics and more specifically the sensorimotor 

integration of the individual movements (e.g., how fast and with how much pressure you 
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press the button)38–41. Consequently, in most cases learning of motor sequences comprises 

the explicit identification of the movement sequence and the implicit acquisition of skilfully 

executing the sequence39. There is growing evidence that these components are learnt in 

parallel but have been shown to follow different time courses with different underlying brain 

networks mediating learning6,39,42. Further evidence comes from research showing that motor 

sequences can be learned implicitly43–45, which highlights that different mechanisms support 

explicit and implicit learning. The typical time-course of motor skill learning will be reviewed 

in the following section.  

 

1.3.3 Stages of sequence learning   

There is a growing body of evidence that suggest that motor sequence learning can be 

segmented into 3 distinct stages, which was first proposed by Fitts and Posner (1967)34. These 

stages differ with regards to the amount of learning taking place and which brain areas and 

networks contribute to the learning process. Albeit the nomenclature differing across authors 

and time, current theoretical models of sequence learning propose a segmentation into an 

early, intermediate and autonomous phase6–8,38,39,42,47–49.  

 

Phase I: Early stage 

The early phase (or sometimes referred to as cognitive or initial stage) is characterised by 

rapid improvements in the spatial-sequential component of motor sequence learning. 

Specifically, during this phase the temporal order of the sequence as well as the spatial 

location of each movement element is learnt. This allows for successful completion of the 

given movement sequence, albeit slowly, inefficiently and variable6. Despite these rapid 

improvements in successfully completing the given motor sequence40,50, performance is still 

heavily reliant on attentional resources and sensory feedback to guide execution6. The 

corticostriatal loop (also called the ‘associative’ circuit) is particularly engaged during early 

sequence learning. Both the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal 

cortex (PPC) are part of the corticostriatal loop and are mainly engaged during explicit 
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learning which is attentionally demanding and relies on working memory51,52. Lesions to the 

PFC in monkeys have shown to impair sequence learning, highlighting the role of frontal brain 

regions to early sequence learning53. Additionally, there is growing evidence that the 

cerebellum plays a pivotal role in fine-tuning performance through extensive feedback loops 

with cortical structures such as prefrontal, parietal and premotor brain areas54,55. Here, 

feedforward mechanisms allow for predictive control via integration of current sensory inputs 

and future motor commands (for a comprehensive review on the role of the cerebellum 

during motor learning see 56,57). Predictive control is crucial for navigation and forecasting 

future body states, especially during early learning when movements tend to be more 

erroneous58. Therefore, both the corticostriatal and cortico-cerebellar loop allow for rapid 

learning and successful sequence completion during early learning when the task space is 

relatively unexplored.  

 

Phase II: Intermediate stage 

However, with learning, performance stabilises and only incremental improvements in 

performance are observed across time. During this second phase, which is also called the 

consolidation period, the sensorimotor map becomes stronger and is gradually stored in  the 

long-term memory6. This allows for a faster retrieval while also having to rely less on sensory 

feedback, which leads to performance becoming less susceptible to interference6,8,59. On a 

neural basis, a decrease in activity in the cerebellar-cortical network can be observed. In 

contrast increased activity can be found in the  striatal-cortical network when sequence 

learning transitions from the early to the consolidation phase8,48.  Specifically, the BG appears 

to update behaviour via links to premotor and motor areas and has been shown to play a 

central role in concatenating movement elements either through chunking or 

coarticulation60. This results in improvements in performance which are learnt slowly over 

time.  

 

Phase III: Autonomous stage 
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The learning curve eventually reaches a plateau, once performance is near optimal. In this 

final stage, which has also been called retention or advanced stage, performance is almost 

automatic requiring little active attention (implicit)49. There has been considerable research 

into the concept of automaticity to describe skilled behaviour. Particularly, whether it 

represents a habit31,61,62. Habitual responses can be distinguished from goal-directed action 

selection which are mostly observed during early motor learning. Given prior knowledge and 

the task environment at hand, a goal-directed action is chosen which yields the best possible 

outcome. In contrast, habitual choices of actions are purely based on what has been 

successful in the past (i.e., what always yielded the best outcome). While goal-directed action 

choices are computationally heavy and therefore slow, habitual responses require little 

computation and are significantly faster31,61,62. However, this comes at the cost of inflexibility 

manifesting itself in choices that no longer yield the best outcome. This feature of habitual 

choices becoming maladaptive has been investigated extensively in relation to addiction63. 

Yet, habitual actions can be overridden by goal-directed choices and it has been assumed that 

these two systems act in parallel competing for action selection control62. Recent work could 

show that habitual responses are expressed when participants were forced to respond 

rapidly. In contrast, with more preparation time goal-directed actions were chosen which led 

to improvements in task success62. Therefore, it appears that the likelihood of expressing 

habits is increased if there is too little time to evaluate better options.  

Traditionally, it has been assumed that motor areas such as the primarily motor cortex (M1), 

premotor cortex (PMC) and the PPC are of central importance during this final stage. While 

the PMC is involved in the integration of sensorimotor and visual information, M1 appears to 

store use-dependent motor maps to further optimise performance 38,47,57.  However, recent 

work found no evidence of M1 storing a motor map of a learnt discrete button-pressing task64. 

Instead, activity in M1 was related to the execution of sequence components (i.e., button 

presses), while the PMC appeared to store a representation of the sequence64.  
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1.3.4 Skill in motor sequence learning 

Speed, accuracy and reaction times 

Motor skills have been traditionally assessed at the level of changes in temporal and spatial 

accuracy, which can be traced back to the well-established Fitts’ law65. This universal principle 

states that the time to execute a movement is a function of the distance to the target divided 

by the target size. Consequently, longer distances and smaller target sizes lead to longer 

movement times. The rationale behind smaller target sizes leading to longer movement times 

is that, given a constant reaching speed and target distance, the probability of hitting smaller 

targets accurately decreases due to the inherent noise within the motor system65. Therefore, 

the reaching speed will have to be adjusted to ensure hitting the target accurately and 

avoiding errors, which led to the formulation of the speed-accuracy trade-off65,66. In many 

sports67, daily life tasks and experimental settings, the speed-accuracy trade-off naturally 

limits performance12. Skill learning then is related to breaking this natural limit via improving 

the speed-accuracy trade-off68,69. Consistently, it has been demonstrated that repeated 

practise leads to improvements in the speed-accuracy function and that these improvements 

can continue for weeks and even years70,71. Similarly, it has been shown that reward can shift 

and even break this trade-off by simultaneously improving both speed and accuracy72–75. 

Thus, there has been a pronounced emphasis on measuring changes in speed and accuracy 

(or precision) to capture motor skill learning. In line with this approach, reaction times have 

similarly been employed as a proxy measure for skill76,77. In contrast to speed or total 

movement time, reaction times capture the response time between a go signal and 

movement initiation. As such reaction times are a valuable tool to measure automaticity, 

interference and habit formation using task such as the serial reaction time task76. Recent 

work could show that reaction times are driven by both movement preparation and 

movement initiation78. This suggest that apart from the neural delays in initiating an action, 

reaction times also represent a preparation process during which an appropriate action is 

selected78. Consistently it has been demonstrated that reductions in reaction times are mainly 
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driven by decreases in preparation time through repeated practise79 and explicit knowledge80, 

with chached or habitual responses requiring the least amount of preparation time81.  

 

Going beyond: movement variability and smoothness 

Over the last few decades, there has been a pronounced interest in capturing motor skill 

based on the notion of movement efficiency, which relates to concepts such as movement 

variability82–84 and smoothness85–87. Traditionally, movement variability has been deemed an 

unwanted by-product of the inherent noise in the motor system88. This motor noise has been 

shown to permeate from every level of the sensorimotor system (i.e., integration and 

perception of sensory input, generation and initiation of motor responses etc.)89. Considering 

that many daily life tasks have precision requirements, there has been a focus on how the 

sensorimotor system minimises this inherent noise90. Consequently, successful skill learning, 

and motor expertise has been linked to decreases in movement variability. However, recently 

research has shown that variability, especially during early learning, provides a source to 

explore the task space to potentially find better solutions to complete a given task82,84,88,91,92. 

Indeed, research has shown that increases in variability in task-relevant dimensions during 

early learning led to steeper learning curves and a subsequent decrease in variability 

(exploitation) across training82,84,92. Hence, research has aimed to disentangle motor noise 

from variability that is driven by exploration93,94. Recent findings were able to demonstrate 

that motor learning can be formalised as a process of sequential decisions that are adjusted 

for the given motor noise in the system93. Furthermore, once a skill is mastered, variability is 

constrained within goal-relevant dimensions only94. This suggests that movement variability 

is controlled differently depending on the stage of motor learning and the structure of the 

task. In addition to movement variability, smoothness has been identified as a marker of 

skilled performance85–87. Movement smoothness has been shown to improve during 

infancy95, motor learning27,96 and over the course of stroke recovery23,24 and is believed to 

represent the result of effort minimisation90,97. As such, movement smoothness might 

indicate other important aspects of sensorimotor control such as spatio-temporal 
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coordination85. However, despite its prevalence and importance to efficiency via effort 

minimisation, there has been considerable debate how to best measure or quantify motion 

smoothness85. Generally, a movement is considered as smooth if it is executed without 

prominent interruptions. Consequently, the derivatives of the positional data (x, y) are most 

commonly used to assess motion smoothness. Jerk measures (3rd derivative) to quantify 

smoothness are an established approach98, which is based on the seminal finding that 

minimum jerk trajectories capture and correspond well to reaching movements in healthy 

participants99,100. However, jerk metrics are very sensitive to noise and may therefore, be less 

informative in clinical settings85. Hence,  aspects of the velocity profile have been used to 

capture smoothness in clinical populations including metrics such as number of peaks, mean 

velocity and number of intervals with velocities close to 0 cm/s23. Both increases in 

smoothness and decreases in goal-related variability have been related to skill learning, and 

provide evidence that motor skill learning leads to improvements in efficiency and overall 

movement quality. 

 

1.4 Motor control and motor sequence learning  

It has been long established that repeated practise leads to improvements in speed, accuracy 

and movement quality. However, how the motor system achieves this feat is less understood. 

For skill learning to occur, the motor system must deal with several complex problems ranging 

from motor redundancy and noise to uncertainty due to the volatility of the environment. 

The following section will provide a brief overview of some these problems. Subsequently two 

computational models will be presented that were successful at providing a mechanistic 

framework for how the motor system allows for skill learning.  

 

Motor redundancy and noise 

The human body consists of over 600 muscles that control more than 200 joints making the 

motor system very flexible yet difficult to control considering the very large number of 

degrees of freedom that come with it101. This renders the motor system redundant because 
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there are multiple, and in some cases infinite, ways to execute the same action101,102. For 

example, when executing a simple reaching movement to reach a specific target, an infinite 

number of trajectories with altogether different speed profiles can lead to task completion. 

Similarly, a single trajectory can be executed using various joint angles and therefore muscle 

configurations. Consequently, the motor system is faced with a decision-making problem in 

terms of having to choose one solution from an abundance of possible solutions. Despite this 

sheer abundance, human reaching movements appear to follow highly stereotyped patterns 

(i.e., even single reaching movements are slightly curved). Within sensorimotor control, 

understanding how and why the motor system chooses one particular solution over all other 

has been a major focus.  

Similarly, how the motor system deals with the inherent noise that is present at all stages of 

the control hierarchy has been a longstanding question within motor neuroscience89. As 

described in the previous section, motor noise affects the planning and execution of 

movements and appears to scale with the magnitude of the movement, which has been 

termed signal-dependent noise103,104. How the motor system accounts for this signal-

dependent noise is a crucial question and evidence suggests that the nature of this variability 

might be based on the size principle of the given motor unit104. Dealing with noise is further 

complicated by the fact that we effectively live in the past which is driven by delays in the 

sensorimotor system101. Depending on the sensory modality and the complexity of the 

sensory input, sensory processing can be delayed by up to 150 ms101.  

Uncertainty and nonstationary  

Uncertainty is present both in the environment and due to noise and delays within the motor 

system itself. Particularly, if the environment is unstable105 or not fully predictable106, control 

of movements can be difficult. Imagine you are asked to execute a series of reaching 

movements to complete a task, in which force-fields are applied throughout that differ in 

direction and intensity. If these force-fields were stable across time, initially an agent would 

have to respond to the force-fields on the fly. However, with training the agent would be able 

to execute the sequence more skilfully and with less error corrections. In contrast, if the 
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properties of these force-fields randomly change from trial to trial (i.e., the environment is 

unstable and difficult to predict), the agent can rely less on prior experience and has to adapt 

to the new situation on each trial. How the motor system learns to respond to this uncertainty 

and what computations drive possible solutions to this problem has been a fundamental field 

of research in recent years. Similarly, imagine you were to take part in the same experiment 

in your 20s and again in your 60s. Your body will have changed over this time manifesting 

itself in longer delays107, decreases in muscle strength108 and sensory acuity109. Hence, the 

motor system is nonstationary, which is also present on shorter timescales through muscle 

fatigue101.  

Over the past few decades research on sensorimotor control and motor skill learning has 

made substantial progress at identifying computations that allow the motor system to 

alleviate these problems.  

 

1.4.1 Kinematic models  

Initially, research focused on the problem of redundancy and how agents choose one motor 

command over an infinite number of other possible motor commands. This is particularly 

striking considering that despite this sheer abundance, human reaching movements appear 

to follow highly stereotyped patterns110. Based on the observation that such over-trained 

reaching movements tend to be highly smooth and fluid100, the criterion of maximum 

smoothness was introduced99,100. This allows to differentiate distinct yet equally available 

motor commands according to how smooth they are. As such, a scalar value can be associated 

with each way of executing a particular reaching movement depending on how smooth the 

solution is. And consequently, the most optimal way of completing the task is to choose the 

smoothest motor command. Therefore, here the aim of the motor system is to optimise the 

cost of jerkiness. Indeed, the minimum jerk model99,100 has been shown to account for a 

variety of reaching movements27,99,100,111,112. However, despite its accuracy in predicting 

simple and sequential reaching movements across a variety of 2D and 3D reaching movement 

tasks, its biological feasibility has been challenged101. It remains an open question whether 
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the motor system actually cares about movement smoothness and even if it does how it 

would then compute it. Jerk is the third derivative of positional data which has to be 

integrated over the whole movement in order to evaluate smoothness of a given movement, 

which is by no means a trivial computation. Additionally, the minimum jerk model is limited 

in its generalisability and application to other motor tasks such as a tennis serve.  

 

1.4.2 Optimal feedback control  

Extending on the idea of optimality, computational models have been developed in which 

optimisation is driven by relevant task demands113,114. Hence, in contrast to minimising jerk 

exclusively, the cost function in these models can include other task relevant dimensions, 

such as accuracy101,113,114.  In contrast to minimising jerk, increasing accuracy is a natural 

variable that the motor system should care about considering that it will ultimately ensure 

task success101. Additionally, compared to jerk this cost can easily be measured by estimating 

the difference between end position and target location and, therefore, might be biologically 

more feasible. Furthermore, research has shown that such optimal control models can deal 

with the redundancy in the motor system, because the noise stemming from the muscular 

system affects accuracy which the model aims to minimise. Thus, the inherent level of noise 

is accounted for by an optimal control model115. Lastly, optimal control models are 

substantially more generalisable than kinematic models such as the minimum-jerk and 

minimum-torque model, because the cost function can be a mix of multiple task relevant 

dimensions101,113,114.  

Importantly, optimal control models were recently combined with feedback control which 

represents a crucial extension of the optimal control framework. Specifically, by integrating 

sensory feedback in the framework, the optimal solution to a given task is now represented 

by a control policy113. Depending on a set of rules, the control policy aims to complete the 

task while minimising a mixed cost function (i.e., overall motor effort). Indeed, research has 

shown that optimal feedback control models (OFC) can accurately predict behaviour across a 



14 
 

broad range of motor tasks including eye116,117, arm118 and wrist119 movements, posture and 

has even been applied to jumping120. While both optimal control models and OFC models can 

predict human behaviour, only OFC models can account for changes in behaviour due to 

perturbations (via sensory feedback)121–123. Hence, optimal control and particularly, OFC 

represents an important and highly influential framework to explore human motor behaviour. 

However, despite its success in modelling human movements OFC models rely on a number 

of pre-specifications. Its versatility and generalisability via minimising a mix of costs (e.g. 

accuracy, energy) comes with the problem of having to determine the relative weighting of 

these costs101. This free parameter is often fitted to the empirical data. Furthermore, in its 

current form OFC models cannot predict execution of long movement sequences. 

 

1.4.3 Reinforcement learning  

Reinforcement learning (RL) is an important and widely established model in the field of 

decision-making and in contrast to OFC models requires substantially less pre-

specifications101. It centres on the idea that an agent learns from rewarding feedback124. 

Specifically, it describes a learning process during which actions that lead to reward are valued 

more and subsequently expressed more likely. In contrast, non-rewarded or punished actions 

are valued less and are executed less frequently. Consequently, over the course of learning 

an agent will update its belief of how rewarding each action from the set of available options 

is based on the received feedback124. In theory, this learning process will increase the 

likelihood of maximising future rewards, which is mediated by the exploration-exploitation 

trade-off1,2. Two classes of algorithms have been successful at modelling learning from 

rewards and have been covered extensively within the RL literature127. Firstly, model-free 

algorithms learn the value of an action when it is chosen and executed. However, here this 

choice does not affect the value of other options in the set. Thus, in order to determine the 

value of actions they have to be chosen and cannot be inferred2,128. Additionally, model-free 

algorithms only store the net reward of an action. This means that in multi-step decision-
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making tasks the agent does not store information about how rewarding the individual 

decisions were. Therefore, there is no structural understanding of the task and the agent 

simply tracks which action sequence was rewarded the most127,128. This family of algorithms 

is computationally light, because no structural understanding of the task or model is needed 

(hence model-free) to complete the task. Despite this reduced need to store complex 

transition histories, which significantly reduces the amount of information to be computed, 

this computationally light architecture comes at the cost of inflexibility127,129,130. If the reward 

probabilities change (i.e., a formerly rewarded option is now not being rewarded anymore), 

the algorithm will continue choosing the formerly rewarding option even though it is not 

optimal anymore. Only after the option has been devalued, the agent will choose other 

options and find a new optimal. Considering that choosing one option does not update the 

value of the other options in the set, model-free algorithms tend to be slow, susceptible to 

environmental change and inflexible. However, they might be biologically more plausible 

considering the lightness of their computational architecture127,129,130.  

In contrast, model-based algorithms store a model of the environment, which means that 

here an agent updates the value of options even when not executed. Therefore, executing 

one action leads to changes in the probability of choosing other options. In addition, model-

based algorithms do not only store the net value of actions but build value relationships 

between all states. This makes them very resilient to environmental changes because changes 

in the reward probabilities can be accounted for. However, this also means that here the 

computational architecture is very heavy or expensive, which will further increase with task 

difficulty. As such it has been argued that model-based algorithms despite being more flexible 

and resilient to change are potentially biologically implausible127,129,130. 

This dichotomy between model-free and model-based algorithms in RL has been well 

established in decision-making, whereas RL in motor skill and motor sequence learning is a 

more recent development. Furthermore, a growing body of work suggests that model-free RL 

relies on implicit learning processes, whereas model-based RL requires working memory and 

is thus considered to be more explicit131–133.  
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1.4.4 Reinforcement learning and dopamine 

RL has been successful in modelling and predicting animal and human behaviour across a 

broad range of tasks (for reviews see 128,134,135). Consequently, there has been much interest 

and research into the neural underpinnings of RL. The neuromodulator dopamine (DA) is 

believed to be central to RL, which has been demonstrated in both animal135–138 and 

humans1,2. Specifically, in RL learning is driven by prediction errors and the phasic bursting of 

DA in the midbrain has been shown to be a putative neurobiological substrate of this signal1. 

Mechanistic accounts posit that reward prediction errors drive reward-based learning and 

represent the difference between expected reward and received reward124. This difference is 

used to update the value of actions. Consequently, actions that lead to positive prediction 

errors were more rewarding than expected and hence should be valued more. Similarly, 

actions that lead to negative prediction errors should be valued less. In a now seminal study 

Schultz (1986) could show that when primates found food (reward) a strong phasic burst of 

DA neuronal firing occurred142. This increase in bursting was not observed when the monkey 

found non-food items142. Moreover, research has demonstrated that when highly probable 

rewards did not occur, DA neurons in the midbrain show a phasic decrease in firing143. This is 

consistent with a negative prediction error. Consequently, phasic firing of DA neurons in 

response to reward appear to explain well how action values are updated during RL128.   

In addition, dopamine projections are found from the midbrain to the striatum, which is on 

of the main input areas of the BG144. The striatum is part of the cortico-basal ganglia-thalamo-

cortical loop, which consists of modulatory dopaminergic projections to the cortex145. It is 

assumed that dopaminergic reward prediction error signals regulate synaptic plasticity in the 

cortex146,147. Hence, positive reward prediction errors are believed to increase synaptic 

plasticity through and increase in phasic DA bursting and this is thought to contribute to a 

strengthening of associations leading to reward138.  

Therefore, there is a mounting evidence that DA subserves the computations in RL, with 

clinical studies lending further support. Parkinson’s disease (PD) is a degenerative disorder 

that is characterised by a severe depletion of dopaminergic neurons in the striatum. PD 
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patients suffer from motor impairments which involve symptoms such as bradykinesia, 

rigidity and tremor. Hence, dopamine appears to play a role not only in supporting RL but also 

in motor control128. Assessing RL in PD patients provides valuable insights into its neural 

underpinnings and specifically the role of DA, by comparing task performance ON and OFF 

medication. An influential study assessed how well PD patients learn from positive and 

negative reinforcement in a probabilistic learning task. They found that patients ON 

medication learnt better from positive reinforcement, while negative reinforcement led to 

poorer learning. In contrast, patients OFF medication learnt better from negative 

reinforcement and less from positive. The authors embedded their findings in a Go-NoGO 

model based on the assumed working mechanisms of the basal ganglia148. In their Go-NoGO 

model, the direct and indirect pathways from the striatum are proposed to underlie positive 

and negative RL, respectively. Specifically, D1 receptors in the direct (Go) pathway are 

activated when a reward prediction error is positive, whereas D2 receptors In the indirect 

(NoGo) pathway are active with a negative reward prediction error. The authors concluded 

that higher dopamine levels during ON medication led to more D1 binding biasing activation 

towards the direct pathway and as a result improved positive RL. Conversely, lower levels of 

dopamine during OFF medication led to less binding and biased activation towards the 

indirect pathway, which improved negative RL.  

Despite indicating a strong support for DA underpinning RL, recent studies were unable to 

replicate these findings149–151.  These studies could not find any effect of medication during 

the learning phase but found impairments in performance during consolidation149,150. 

Specifically, patients OFF medication showed impaired performance during retrieval, which 

has been explained by the lack of dopamine (OFF medication) leading to decreases in synaptic 

plasticity thereby impairing memory consolidation149,150.  

 

 

1.4.5 Reward, dopamine and motor sequence learning 
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RL has been influential within fields of decision-making, however its role in motor skill learning 

and more specifically motor sequence learning has been a more recent development. It is 

important to bear in mind that motor sequence learning includes learning the order of a 

motor sequence (i.e., what to do when and where) and the kinematic dynamics of the 

individual movements (i.e., how to do it). In the literature these two components are often 

referred to as action selection and action execution and reward has been shown to act on 

both.  

The effect of reward on action selection and execution was first shown in simple motor tasks. 

Early results come from studies employing saccadic eye movement tasks. Capitalising on the 

speed-accuracy trade-off and its implications for human and animal behaviour, these studies 

operationalise changes in reaction time (RT) or movement time (MT) as a proxy to assess 

reward-based effects on behaviour. Takikawa and colleagues (2001) could show that monkeys 

make faster saccadic eye movements to rewarded targets (juice) than to non-rewarded 

targets, while preserving similar levels of accuracy. Similar results were obtained using human 

participants152–154 with Manohar et al. (2015) demonstrating that humans can perform 

rewarded saccades faster as well as more accurately73. These results indicate that reward can 

not only shift the speed-accuracy trade-off curve but break it by simultaneously invigorating 

speed and precision. They were able to partially replicate these results by comparing the 

effects of contingent and non-contingent rewards on the performance of saccadic eye 

movements. Their findings imply that both contingency and reward rate increased movement 

vigour as expressed in higher peak velocities of rewarded saccades155. More recently, several 

studies attempted to translate the effects of reward on saccadic movements to simple arm 

movements. Assessing the RTs of wrist movements in trials with varying amounts of reward 

available, Opris and colleges (2011) demonstrated that in monkeys, RTs were the fastest when 

the upcoming trial was cued as a high reward trial. In addition, they could show that reward 

predictability modulated changes in movement vigour156, a result that complements the 
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findings of reward contingency and saccadic peak velocity in humans (see also157). A potential 

explanation could be that and agent is more willing to produce an action with a higher 

metabolic cost (i.e., effort) associated with it, if the reward is high and can be reliably 

anticipated. Expanding on the saccadic one-direction-rewarded task by Takikawa et al. (2001), 

Summerside and colleagues (2018) adapted this task to include arm reaching movements. 

They asked participants to produce centre-out reaching movements to four different targets 

while one of them was rewarded. In line with the original findings, participants reduced RTs 

and MTs alongside exhibiting higher peak velocities in reaching movements that were paired 

with reward74. In summary, reward has been consistently shown to improve performance on 

simple tasks. However, the literature is far more limited assessing the effects of reward on 

sequential actions.  

Using a serial reaction time task (SRTT), Wächter et al. (2009) could show that retention of 

reward-based procedural learning was increased through reward. However, they failed to 

observe any improvements in the execution of the individual button presses. Consequently, 

they suggested that reward is beneficial to implicit motor sequence learning, but has no effect 

on the execution of movements158. In line with these results an influential study by Abe et al. 

(2011) could demonstrate that monetary reward led to improved retention and offline gains 

in a force tracking task (FTT). Similarly to Wächter et al. (2009), they did not observe 

improvements in performance during training, but found that reward led to performance 

being maintained which was found even 30 days after the initial training. In contrast, work by 

Steel et al. (2016) did not find any reward-based improvements during learning or retention 

using both a SRTT and a FTT. However, they found that punishment led to improvements in 

the execution of the individual button presses in the SRTT159. Furthermore, a study by Dayan 

et al. (2014) demonstrated that highly stochastic reward feedback improved both motor skill 

learning, enhancing both online and offline gains using a sequential visual isometric task. 

Consequently, the results on the effect of reward on motor sequence learning and execution 
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is far more heterogeneous than in simple motor tasks. Differences in task designs and reward 

feedback have been attributed to this lack of consensus.  

However, considering the strong link between reward and dopamine, which has been shown 

to underlie learning through reward prediction errors, recent research has sought to 

determine the role of dopamine during motor sequence learning. Using a SRTT task, Boyd et 

al. (2009) showed that stroke patients with a damage to the basal ganglia exhibited severe 

impairment in motor sequence learning. Across a series of blocks, performance only 

marginally improved suggesting that the basal ganglia is involved in motor sequence 

learning20. Similar results come from a study investigating explicit and implicit sequence 

learning in PD patients using a probabilistic SRT task. Their findings demonstrate that PD 

patients were impaired in both implicit and explicit sequence learning43. Converging with 

these results, Jin et al. (2014) found that in rodents, neural activity in the basal ganglia 

encoded an entire action sequences as a single motor command. Specifically, they 

demonstrated that both the indirect and direct pathway was involved in action initiation but 

showed differential patterns of activity during sequence execution. These findings suggest 

that the basal ganglia, which is connected to the cortex via dopaminergic projections is 

involved in both sequence learning and its execution60,160. Further support comes from a 

series of studies by Shin et al. (2018, 2020) in which they could show that DA neurons in both 

the direct and indirect pathway of the striatum were involved during both reward-based 

learning and motor control161,162. These findings highlight that DA is involved in both RL and 

motor sequence learning, whilst further challenging the antagonistic dichotomy between the 

direct and indirect pathway within RL as proposed by Frank et al. (2006)148. In an effort to 

assess the role of dopamine during motor sequence learning, recent neuropharmacological 

studies have used DA agonists and antagonists to selectively block or enhance D1 and D2 

receptor binding. Trembley et al. (2009) used raclopride, a selective D2 antagonist, to 

investigate the role of D2 receptor binding to motor sequence learning in monkeys. They 
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found that raclopride impaired consolidation of a new motor sequence. Importantly, when 

raclopride was administered after a motor sequence was already learnt, no impairments in 

consolidation were observed163. These findings align with the behavioural results of Wächter 

et al. (2009) and Abe et al. (2010) and suggest that D2 receptor binding play a role in 

consolidating motor skills. In a subsequent study, Trembley et al. (2010) investigated the role 

of dopamine in movement chunking by assessing PD patients ON and OFF medication. In 

short, chunking refers to discrete actions that are temporally aligned with very short reaction 

times in between them. Hence, chunking is considered to represent efficient skill learning 

within discrete action sequence tasks (further information on chunking will be provided in the 

next section). The authors found that patients OFF medication showed severe impairment in 

chunking even for well-trained motor sequences. In comparison, patients ON medication did 

not differ significantly from healthy controls164. Converging results come from Seo et al. 

(2010) who also observed that patients OFF medication showed impairments in a motor 

sequence learning task using stochastic reward feedback165. Furthermore, Lissek et al. 

(2014)showed that learning on a complex motor sequence task was impaired following 

administration of tiapride, a highly selective D2 antagonist, hence mirroring previous work on 

the importance of D2 receptor binding during motor sequence learning166. Interestingly, a 

recent study by Augustin et al. (2020) showed the  selective depletion of D2 receptors in the 

indirect pathway was also associated with impaired initiation and vigour of self-paced 

actions167. Therefore, D2 receptors appear to be involved in both motor sequence learning 

and response vigour. Further evidence from studies assessing response vigour found that PD 

patients OFF medication show a reduction in response vigour in both a saccadic eye task168 

and an effort-based decision-making task169. Recently, Niv et al. (2007) have suggested that 

changes in tonic dopamine underpins the determination of response vigour 170. By extending 

the RL framework, they could show that on a computational level vigour represents the net 

rate of rewards and as such acts as the opportunity cost of time170,171. Hence, how much effort 
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an agent should exert to obtain a future reward depends on the reward history and more 

specifically on the reward average. 

To illustrate this, let us consider two rats that engage in a lever pressing task in which food 

pellets drop after four presses. One rat is hungry, while the other one is sated. This difference 

in satiety will affect the utility of receiving a food pellet which in turn will affect the reward 

magnitude. Hence, for a hungry rat receiving food is more rewarding which will increase the 

net reward rate. This will lead to increases in the opportunity cost of time thereby favouring 

faster responses. Niv et al. (2007) argue that this corresponds to the energising role of 

motivation on behaviour and suggest that tonic dopamine underpins this computation170,171. 

Indeed, tonic dopamine is suitable to represent the net reward rate because it reflects phasic 

DA firing across time172. Consequently, there is ample evidence that both tonic and phasic DA 

influence human behaviour and contribute to both skill learning and response vigour. 

However, despite these advances in understanding the role of reward, and more specifically 

DA in motor skill learning, there is currently no consensus whether reward enhances learning 

of complex sequential actions. Consequently, this thesis aims to investigate the effects of 

reward on movement vigour and particularly motor skill learning in complex sequential tasks.   

 

1.5 Structure of the thesis 

In chapter 2, I present the development of the continuous sequential reaching task (CSRT) 

which is then used in chapters 3 and 4. Chapter 3, investigates the effect of explicit reward on 

sequential reaching. While chapter 4 uses a neuropharmacological manipulation to assess the 

role of dopamine in underlying the relationship between reward and sequential reaching. 

Chapter 5 investigates how environmental (task) constraints influences how reward affects 

sequential reaching. Finally, chapter 6 discusses the impact of this work in relation to previous 

literature and introduces possible future directions. 
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Chapter 2 

 

Task development 

 

 

2.1 Task design: Background 

The aim of this thesis was to investigate the effect of reward on complex sequential 

movements. In nature, sequential actions can be discrete or continuous. Discrete movements 

are characterised by a period without motion (i.e., zero velocity) before and after its 

execution, such as a single finger flexion to press a button173. In contrast, continuous 

movements lack such marked stop periods, and are often described as rhythmic in the 

literature to refer to periodically repeated actions such as walking or swimming174. The 

previously described serial reaction time task (SRTT) is often used to assess motor sequence 

learning on a discrete serial task. Here participants are asked to a press a button in response 

to a specific cue76. This task has been successfully used to assess both implicit and explicit 

motor sequence learning175, while improvements are mainly seen at the level of action 

selection (i.e., reductions in response times). This means that over the course of practise, 

individual motor primitives (i.e., button presses) can be aligned temporally resulting in a 
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reduction in response times. This will lead to in part temporally overlapping movements, 

which over time will be executed as a holistic unit176 (i.e., chunk). However, the motor 

primitives underlying the formed chunk will remain stable and are not kinematically 

modified176. A prominent example of a continuous motor sequence task is the force tracking 

task (FTT)177. Here participants are asked to pinch a force transducer between thumb and 

index finger to move a cursor upward (increase of grip force) or downward (release). The aim 

is to follow a predetermined path as accurately as possible177. Hence, in this task individual 

movement elements do not have a marked end or start point and the underlying movement 

primitives can be modified to improve execution177. Recently, Codol et al. (2020) showed that 

reward had dissociable effects on action selection and execution in a simple reaching task75. 

The authors showed that movement time (i.e., the time from initiating the reaching 

movement until reaching the target) was decreased with reward at no cost to movement 

accuracy through an increase in arm stiffness. Additionally, during distractor trials, action 

selection was improved when the trial was rewarded. These findings align with previous 

research which has shown that reward improves execution via decreases in  movement time 

across a broad range of simple motor tasks73–75,155,178. However, the effects of reward on more 

complex movements such as reaching movements is less explored. There is currently a lack in 

consensus in the literature71,158,159,177. For example, a recent study could not find that reward 

improved movement execution or retention on both a SRTT and FFT159. In line with these 

results, two studies using a SRTT and FFT respectively, could also show that reward did not 

improve execution via a reduction in MTs158 or improve accuracy177, respectively. However, 

both studies observed an increase in retention, suggesting that reward improved motor 

retention158,177. Consequently, in these studies reward appears to lead to enhanced retention 

during complex continuous tasks which is often not observed during simple discrete 

tasks74,75,179. Codol et al. (2020) offers an explanation suggesting that increases in metabolic 

cost through increases in arm stiffness are only viable as long as reward is available to pay for 

it. Consequently, once reward is removed performance reverts back to near baseline levels75. 

However, it is unclear why this does not seem to be the case during more complex continuous 
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tasks. To address these inconsistencies, a novel task was developed in which participants were 

asked to execute a series of reaching movements. 

 

2.1 Pilot studies 

In two experiments, we sought to investigate the effects of reward on the execution of a 

sequence of reaching movements. Changes in performance were measured based on the time 

in which participants completed a given trial (movement time) and as such served as a proxy 

measure for reward-based movement invigoration. The following two sections will provide 

an overview of the design and the results from these experiments.  

 

2.1.1 Experiment 1 

Participants: 14 participants (6 males; age range 18 - 26) were recruited to participate in this 

experiment, which had been approved by the local research ethics committee of the 

University of Birmingham. All participants were novices to the task paradigm and were free 

of motor, visual and cognitive impairment. Most participants were self-reportedly right-

handed (N = 3 left-handed participants) and gave written informed consent prior to the start 

of the experiment. For their participation, participants were remunerated with either course 

credits or money (£7.5/hour) and were able to earn additional money during the task 

depending on their performance. Depending on the experiment, participants were pseudo-

randomly allocated to one of the available groups. 

Experimental apparatus: All experiments were performed using a Polhemus 3SPACE Fastrak 

tracking device (Colchester, Vermont U.S.A; with a sampling rate of 110Hz).  Participants were 

seated in front of the experimental apparatus which included a table, a horizontally placed 

mirror 25cm above the table and a screen. A low-latency Apple Cinema screen was placed 

25cm above the mirror and displayed the workspace and participants’ hand position 

(represented by a green cursor – diameter 1cm). On the table, participants were asked to 
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perform 2-D reaching movements. Looking into the mirror, they were able to see the 

representation of their hand position reflected from the screen above. This setup effectively 

blocked their hand from sight. The experiment was run using MATLAB (The Mathworks, 

Natwick, MA), with Psychophysics Toolbox 3.  

Task design: Participants were asked to produce 4 sequential reaching movements to targets 

displayed on the screen to complete a trial (Figure 1a). To investigate whether reward can 

invigorate movements selectively in a within-participant design, 4 movement sequences were 

created (Figure 1b). They were unique in their target arrangement but were of equal in length 

(15 cm) and total amount of curvature (540°) and therefore, had similar task demands 

(hereafter called ‘shapes’).  

 

                              

Figure 1 | Experimental design. (a) Schematic representation of a target arrangement. Participants were asked 

to perform reaching movements to pass through 4 targets to complete a trial. (b) In total, four target 

arrangements (‘shapes’) were presented. Note that the dotted lines in-between targets were not presented. 

 

This was confirmed in a pilot study in which 20 participants were asked to complete 30 trials 

on each shape without receiving reward. Subsequent performance analysis revealed no 

differences in movement time between the four shapes.  

A trial consisted of three elements: a preparation box (width 2cm) on the right side of the 

workspace, a start box (width 2cm) positioned to its left, and 4 targets (diameter 2cm, Figure 

2a). Participants had to pass the cursor through the preparation box for the start box to 

appear and were instructed that once they moved into the start box, target appearance would 

be triggered. The aim of the task was to pass the cursor through all 4 targets without missing 
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any of them. Participants had to repeat a trial if they exceeded 3 seconds in total movement 

time (MT) or missed a target, which enforced accuracy in the reaching movements. In this 

experiment participants were able to earn money (reward) depending on their performance, 

with faster MTs leading to higher rewards. By enforcing accuracy throughout the experiment, 

any shifts in the speed-accuracy trade-off could be explained by changes in MTs. Reward trials 

were cued using an auditory and visual stimulus prior to the start of the trial (Figure 2b). Once 

participants moved into the preparation box just to the right of the start box, they heard a 

sound (auditory stimulus) and the start box appeared in yellow (visual stimulus) rather than 

in black. In the no reward trials participants were instructed to complete the trial ‘as fast and 

accurately as possible’ (Figure 2c).  

        

Figure 2 | Trial design. (a) Illustration of the task workspace including preparation box, start box and targets. (b) 

Illustration of a reward (c) and no reward trial. In reward trials once participants passed though the preparation 

box, an auditory and visual cue was triggered to indicate an upcoming reward trial. Note that the dotted lines 

in-between targets in (a-c) were not presented. 

 

Experimental procedure: The experiment consisted out of 3 parts: baseline, training and post 

assessment and lasted for approximately 1 hour (Figure 3). Additionally, it included an initial 

learning phase prior to the start of the experiment for participants to be able to memorise 

the reaching sequences.     

Baseline: Participants completed 2 trials on each of the four shapes (8 trials in total) during 

Baseline, which were presented in a random order during a block (i.e., 2 blocks of 4 trials with 
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each block containing all shapes). These trials were used to assess whether there were any 

pre-training differences between groups. Participants were instructed to ‘move as fast and 

accurately as possible’, while no performance-based feedback was given at the end of each 

trial.  

 

     

Figure 3| Design of Experiment. In each block all shapes were presented in a random order. During Training 

participants received reward depending on their movement time on one randomly chosen target arrangement. 

Another was only trained but was not reward. 

 

Training: During training participants practised two shapes which were counterbalanced 

across participants (2 shapes x 150 trials = 150 blocks). Performance on one shape was 

rewarded (RS) and participants received monetary reward depending on how fast they 

completed the trial (see Reward structure and feedback for more information). No reward 

was available on the other shape (NS). The remaining two shapes were not trained at all and 

were only presented during a post assessment as a control (CS) (Figure 3).  

Post assessments: Participants were asked to complete a post assessment (4 shapes x 5 trials 

= 5 blocks) during which no reward was available on any shape. Similarly, to the no reward 

trials during training, participants were asked to complete each trial as ‘fast and accurately as 

possible’. Importantly, trials had to be repeated when participants missed a target, hence high 

levels of accuracy were enforced throughout.  

Reward structure and feedback: (1) Reward trials were cued using a visual stimulus prior to 

the start of the trial. Once participants moved into the preparation box, the start box 
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appeared in yellow (visual stimulus) rather than in black (Figure 2b). Participants were 

informed that faster MTs would earn them more money, with a maximum amount of 5p 

available in each trial. While participants moved from the start box to the preparation box to 

initiate a new trial, the amount earned in the previous trial was displayed on the top of the 

screen (i.e., ‘You have earned 2p out of 5p’). We used a closed-loop design to calculate the 

amount of reward earned in each trial. To calculate this, we included the MT values of the last 

20 trials and organised them from fastest to slowest to determine the rank of the current trial 

within the given array. A rank in the top three (<= 90%) returned a value of 5p, ranks >= 80% 

and <90% were valued at 4p; ranks >=60% and <80% were awarded 3p; ranks >=40% and < 

60% earned 2p while 1p was awarded for ranks >=20% and < 40%. A rank in the bottom three 

(<20%) returned a value of 0p. When participants started a new experimental block, 

performance in the first trial was compared to the last 20 trials of the previously completed 

block. (2) No reward trials were not cued, and no reward was available for participants. 

However, participants were instructed to ‘move as fast and accurately as possible’.  

Data analysis: Analysis code is available on the Open Science Framework website, alongside 

the experimental datasets at: https://osf.io/62wcz/. The analyses were performed in Matlab 

(Mathworks, Natick, MA). To measure and compare performance between conditions 

Kruskal-Wallis and Wilcoxon single rank tests were employed, since most of the obtained data 

was non-parametric. For this analysis, median MTs of the first (early Training) and last (late 

training) 20 trials of training for each participant in both the reward and no reward condition 

were used. For Post-hoc analysis, Tukey’s Test for single-step multiple comparisons were 

used. 

Movement Time (MT): MT was the main outcome measure of this experiment and was 

measured as the time between exiting the start box and reaching the end target.  

Results. MT performance is illustrated in Figure 4. Baseline performance did not differ 

significantly between shapes (Kruskal-Wallis test; p = 0.156), which suggests that all four 

https://osf.io/62wcz/
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shapes exhibit similar task demands; a result which is in accordance with the findings of the 

pilot study assessing performance on the same. With the start of Training, performance on 

the rewarded shape (RS) and non-rewarded shape (NS) improved significantly with respect to 

their Baseline MT (Wilcoxon test; p < 0.0001 for RS Baseline vs early Training and p < 0.0063 

for NS Baseline vs early Training). Importantly, performance on RS was significantly faster 

during late training than on NS (Wilcoxon test; RS vs NS: p = 0.0176). These results align with 

previous findings on the effect of reward on simple reaching movements74,75,179. However, no 

differences in performance between RS and NS could be observed during post (Kruskal-Wallis 

test; p = 0.4082 for RS vs NS), which suggests that in this task reward did not improve 

retention of performance.  

 

 

Figure 4 | Results Experiment 1. Movement times (MT) across participants for baseline, training and post 

assessment. Values are averaged across 2 trials in baseline and 10 trials in both training and post. Coloured lines 

represent group mean and shaded areas represent s.e.m.  

 

Nevertheless, MT performance on both trained target arrangements (RS and NS) was faster 

than performance on the control shapes (Kruskal-Wallis test; p < 0.0001, Tukey’s test p < 

0.0001 for RS vs CS; p = 0.0032 for NS vs CS and p = 0.4082 for RS vs NS). Hence, these results 
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are not consistent with previous findings that have shown reward-based improvements in 

retention for complex sequence tasks158,177, while also indicating that task exposure via 

training improves performance. 

 

2.1.2 Experiment 2 

In a subsequent experiment, an additional testing day was added to the study design, while 

replicating experiment 1 on the first testing day. Previous work could show that reward led 

to improvements in retention in complex sequence tasks158,177. To investigate whether 

reward similar to these previous results improves retention of reward-based improvements 

in MTs in this task a second testing day was added to the design.  

Participants: 14 participants (5 males; age range 18 - 24) were recruited to participate in the 

second experiment, which had been approved by the local research ethics committee of the 

University of Birmingham. All participants were novices to the task paradigm and were free 

of motor, visual and cognitive impairment. Most participants were self-reportedly right-

handed (N = 4 left-handed participants) and gave written informed consent prior to the start 

of the experiment. For their participation, participants were remunerated with either course 

credits or money (£7.5/hour) and were able to earn additional money during the task 

depending on their performance. Depending on the experiment, participants were pseudo-

randomly allocated to one of the available groups. 

Experimental apparatus and task design: Both the experimental apparatus and task design 

were the same as in Experiment 1. 

Experimental procedure: To assess possible retention effects, we split Experiment 2 over two 

consecutive assessment days (Figure 5). During Day 1 participants underwent the same 

experimental protocol as participants in Experiment 1. During Training 2 shapes were chosen 

to be trained while one was rewarded (RS) and the other was not (NS), which was 

counterbalanced across participants. As mentioned before, the shapes not chosen for RS and 
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NS, served as a control condition throughout the experiment (CS). Assessment on Day 2 was 

always scheduled 24 hours after testing on Day 1 and included a familiarisation phase prior 

to the start of the main experiment. During the second testing day, participants engaged in 

an additional post assessment (4 shapes x 5 trials = 5 blocks) and furthermore in three tests: 

(1) shape that was previously rewarded during Training (Day 1) is again rewarded (Test RS)  

(2) shape that was previously trained but not rewarded during Training is rewarded (Test NS)  

(3) one shape of the control set is pseudo-randomly chosen to be rewarded (Test CS). 

In each sub assessment participants completed 25 blocks with each block containing all 4 

shapes (25 x 4 trials) presented in a random order. Participants were informed that during the 

Test, only one shape would be rewarded and that upcoming reward trials would be indicated 

with the auditory and visual cues already encountered during Day 1. The order of sub 

assessments was counterbalanced to control for order effects, and participants were unaware 

which shapes would be rewarded in each assessment.  

 

 

Figure 5 | Experimental design (Experiment 2). Design of Experiment. In this experiment, participants 

completed experiment 1 on the first testing day. On the second testing day, participants engaged in a second 

post assessment in which all shapes were presented but no reward was available. Over the course of three tests, 

reward was available for one shape while all shapes were presented in a random order.  

Reward structure and feedback and data analysis: The same Reward structure and feedback 

as used in Experiment 1 was used in Experiment 2. Similarly, Kruskal-Wallis and Wilcoxon 

single rank tests were employed again since most of the obtained data was non-parametric. 

For this analysis, median MTs of the first (early Training) and last (late training) 20 trials of 
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training for each participant in both the reward and no reward condition were used. To assess 

differences in performance across the Test phase median MTs were calculated. 

Results. Day 1 – Replication of results obtained in Experiment 1 

MT performance for Day 1 and Day2 are shown in Figure 6.  Baseline performance did not 

differ significantly between conditions (Kruskal-Wallis test; p = 0.1569) and was comparable 

to MTs produced during Baseline in Experiment 1. Reward expectancy had a similar effect on 

performance in RS and NS as compared to Experiment 1 with significant decreases in MT 

during early Training (Kruskal-Wallis test; p < 0.0001 for RS Baseline vs early Training and p = 

0.0063 for NS Baseline vs early Training). This effect was again significantly more pronounced 

in RS when compared to NS during early and late Training (Kruskal-Wallis test; p = 0.01629 for 

early Training RS vs NS; p < 0.0001 for late Training RS vs NS. During Post assessment 

performance on RS and NS was significantly faster than CS (Kruskal-Wallis test; p < 0.0001, 

Tukey’s test p < 0.0001 for RS vs CS and p = 0.0001 for NS vs CS). However, performance on 

RS in comparison to NS did not yield significant results (Tukey’s test p = 0.3491). This result is 

mainly driven by a sharp increase in MT in RS during Post with MTs comparable to MTs 

produced during late Training in NS. These findings underline that once reward is removed, 

its effect on movement vigour and subsequent performance decreases. Overall, we were able 

to replicate the findings from Experiment 1 in Day 1 of Experiment 2. 

Day 2 – Retention and generalisation effects  

Performance in Post 2 improved significantly compared to Post (Day 1) in all conditions 

(Kruskal-Wallis test; p = 0.0044 for RS Post vs Post 2; p = 0.0033 for NS Post vs Post 2 and p < 

0.0001 for CS Post vs Post 2) indicating a retention effect for all shapes. Importantly, no 

differences in MT between conditions could be observed (Kruskal-Wallis test; p = 0.3932) 

which suggests that when not under a reward regime of task ability generalised and is similar 

across all shapes after 24 hours. During Test, participants completed three sub assessments 

in which RS, NS and one shape of CS (pseudo-randomly chosen) was rewarded independently 



34 
 

in an expected reward design. Across all Tests (Test RS, Test NS, Test CS) we found a significant 

performance effect using three separate Kruskal-Wallis tests (p < 0.0001 for Test RS and Test 

NS, respectively and p = 0.0005 for Test CS). Post-hoc analysis revealed that the rewarded 

shape was performed significantly faster compared to the non-rewarded shapes in each sub 

assessment (p < 0.0001 for all Tukey’s Tests in all 3 Tests). Using a Kruskal-Wallis test we then 

compared performance on the rewarded shape in each sub assessment with each other 

(Kruskal-Wallis test; p = 0.0196). Post-hoc analysis revealed that RS was performed 

significantly faster than CS (Kruskal-Wallis test;p = 0.0196, Tukey’s test p = 0.0221 for RS vs 

CS). However, despite faster MTs in RS than in NS this result failed to reach significance CS 

(Kruskal-Wallis test; p = 0.0196, Tukey’s test p = 0.0811 for RS vs NS). In addition, no significant 

differences could be observed for NS and CS (Kruskal-Wallis test; p = 0.0196, Tukey’s test p = 

0.8586 for NS vs CS). 

 

  

Figure 6 | Results Experiment 2. Movement times (MT) across participants. Values are averaged across 2 trials 

in baseline and 10 trials in training, both posts and all three tests. Coloured lines represent group mean and 

shaded areas represent s.e.m.  

The aim of these experiments was to determine if reward can invigorate performance of 

sequential reaching movements. Reaching movements that were paired with reward were 

consistently performed faster (MT) during Training and Test in both Experiment 1 and 2. 

These results complement the current literature on motivational vigour and its effects on 
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performance73–75,155. However, the results also highlight that rewarded training during the 

first experimental day does not lead to improvements in retention on the second day. Hence 

previous findings on the beneficial effects of reward on retention could not be replicated 

71,158,177.  

 

2.2 Strategies to reduce MTs during sequential reaching  

Results from experiment 1 and 2 suggest that reward-based improvements in MT during 

sequential reaching follows a previously observed ‘on-off’ pattern during single-target 

reaching tasks179. Specifically, reductions in MT were seen when participants received reward-

based feedback but disappeared once reward was removed.  

                       

             

Figure 7| Movement invigoration of sequential reaching movements. (a) Illustration of invigoration of reaching 

performance. Reward will reduce MTs via increases in peak velocity as seen in the orange line.  (b)  Illustration 

of coarticulation which leads to reductions in MT via decreases in dwell time around the via point as seen in the 

red line. 

 

As previously discussed, this ‘on-off’-pattern may be explained by  reward paying the cost of 

the increased metabolic effort to move fast while remaining accurate (via increases in arm 

stiffness)75. However, in sequential reaching tasks participants can reduce MTs through two 

strategies (Figure 7a,b): 1) increasing peak velocities of each individual reaching movement 



36 
 

and 2) reduce the dwell time in each target (i.e., periods of stopping with velocities close to 0 

cm/s). The first strategy has been shown to underlie reward-based MT improvements during 

single-target reaching movements74,75. However, this strategy comes with a marked 

escalation in metabolic costs and as such might not represent a sustainable option once 

reward is removed75. The second strategy centres around the idea of increasing movement 

velocities when passing through targets instead of stopping when reaching them. This 

strategy will reduce overall MT via a reduction in dwell time around these targets effectively 

making them via points. Crucial to this strategy is that individual reaching movements are no 

longer treated as discrete actions but are performed continuously.  

 

2.2.1 Coarticulation  

The idea of integrating sequential movements into a continuous action lies at the core of the 

concept of coarticulation. Coarticulation has been an influential concept in the language 

production literature for more than 100 years and describes how consecutive phonemes are 

altered to allow for fluid speech production180–182. Specifically, how a preceding phoneme is 

adjusted to allow for a fluid transition to the next180–182 as illustrated by the example of 

articulating ‘H-U’ and ‘H-A’. Hence, depending on the following phoneme and particularly on 

its phonetic gesture, the coordination of the preceding H is modified which results in 

temporally overlapping gestures181. In such a case of anticipatory coarticulation, there is a 

lack of parsing between the phonemes which results in a fluid articulation of each speech 

segment. Importantly, coarticulation is not only the result of physiological constraints of the 

mouth since vowel coarticulation differs across languages183. Consequently, coarticulation in 

language production is a learned behaviour which has to planned to be executed183. However, 

coarticulation is not restricted to speech production and has been observed in many other 

behaviours such as finger spelling in sign language184. Similarly, coarticulation has been 

investigated during piano playing in expert pianists185, while recent research found signatures 

of coarticulation in typing186–188.  Additionally, coarticulation has also been observed during 
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various 2D and 3D upper limb actions111,189–193. Consequently, coarticulation appears to be a 

central mechanism to human movement that is ubiquitous in our daily life. Imagine, you want 

to drink a sip of your coffee. Rather than reaching for your cup with your hand still closed, 

you start opening your hand while reaching for it. Similarly, you will tilt your cup while moving 

it to your already opened mouth. This simple example of drinking a sip of coffee highlights 

the importance of coarticulation to daily activities and illustrates its main feature: it allows 

for discrete sub-movements to be merged into a single continuous action. Thus, upper limb 

coarticulation represents a hallmark of skilled sequential performance, which alongside other 

markers can be used to assess the quality of movements. However, despite its prevalence, 

previous work using a sequential reaching task has shown that upper limb coarticulation takes 

humans up to 8 days (1200-2000 trials)25–27 and monkeys up to 30,000-40,000 trials194. This 

highlights that coarticulation is characterised by a very slow and difficult learning process 

which is not simply the logical consequence of training. Furthermore, research has 

demonstrated that coarticulation of sub-movements leads to the gradual development of a 

new motor primitive that is globally planned and, once initiated, must run to completion26. 

As such, coarticulation is thought to represent a strategy for the evolution of sequential 

behaviour towards increased efficiency194,195. Crucially, coarticulation breaks down in 

stroke23,24 and PD patients29, which severely affects their daily life. In patients exhibiting upper 

limb impairment following a stroke, behaviour is often characterised by a decomposition of 

movements into jerky and inefficient sub-movements, with successful recovery being 

associated with a return to continuous, smooth, and efficient movements23,24. Furthermore, 

work on coarticulation in PD patients suggests that dopamine (DA) might play a role in 

coarticulation. Research has shown that PD patients exhibit impairments in coarticulation 

during cursive handwriting29. Specifically, compared to healthy controls, PD patients wrote 

words as a series of discrete movements which was independent of movement speed29. 
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In summary, upper limb coarticulation represents a successful strategy to produce smooth 

and energetically efficient movements; a skill that appears to break down in clinical 

populations such as stroke and PD patients. Additionally, coarticulating sequential reaching 

movements leads to a reduction in dwell times around the via points, which effectively 

reduces overall MT. In contrast, invigoration of peak velocities to decrease MTs has been 

shown to be energetically expensive and might only represent a viable option as long as 

reward negates this motor cost. To investigate whether participants pursue either or both 

strategies, and whether coarticulation leads to improvements in retention, a novel sequential 

reaching task was developed. 

 

2.3 Continuous sequential reaching task (CSRT) 

Previous work by Sosnik et al. (2004, 2007, 2014) could show coarticulation of sequential 

reaching movements using a task which consisted of a sequence of point-to-point movements 

(Figure 8a). Participants were asked to connect these four target points ‘as rapidly and as 

accurately as possible’25. To track coarticulation, changes in participants’ velocity profile were 

assessed25–27. Completing the point-to-point task by executing four discrete reaching 

movements would be reflected in the velocity profile by four consecutive bell-shapes (each 

representing one reaching movement). Consequently, the velocity profile should be 

characterised by four peak velocities and five minimum velocities (including start and end) 

corresponding to the stop periods when reaching a target (Figure 8b).  
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Figure 8 | Extensive training of sequential reaching movements results in coarticulation. Figure adapted from 

Sosnik et al. (2004). (a) Task design. Participants were asked to execute four point-to-point reaching movements 

(ABCD). (b) Upper and lower plots denote example trajectories and corresponding profiles, respectively. Over 

training, performance changes both in the trajectory (via increases in curvature) and velocity profile (via a 

reduction in the number of peaks) suggesting that reaching movements have been coarticulated. 

 

Indeed, Sosnik et al. (2004) found that, during the initial testing sessions, participants 

executed a series of discrete reaching movements25. However, with training, movement paths 

became more curvilinear and the velocity profile began to change. Instead of displaying a four 

bell-shape velocity profile, performance was now characterised by a double-peaked velocity 

profile (Figure 8b)25. Hence, over the course of training, participants learnt to not stop in two 

targets and effectively treat them as via points. Therefore, instead of executing four discrete 

reaching movements, participants ended up producing two coarticulated reaching 

movements25–27, which also led to reductions in MT (Figure 8b). Furthermore, they were able 

to show that, over time, participants’ performance aligned with the predictions of a 

minimum-jerk model25–27. The authors argued that these results suggest that maximisation of 

movement smoothness is an inherent goal of the motor system that allows for a more 

efficient execution25. However, as previously discussed, it remains an open question whether 

the motor system cares about smoothness and if it does how it were to compute it101.  

Similarly, whether a coarticulated movement sequence represents a new motor primitive or 

whether it is still represented as a sequence of discrete movements that are dynamically 



40 
 

integrated is still an open question194. Despite these open questions, Sosnik et al. (2004, 2007, 

2014) consistently showed that through coarticulation performance became faster (faster 

movement time) and more efficient (less jerk)25–27,196. 

The novel task design (CSRT), which is used in most experiments presented in this thesis, was 

based on this work and involves participants executing a series of 8 reaching movements to 

hit visual targets that were arranged in a semi-circle around the start box (Figure 9). 

Participant behaviour could range from executing 8 discrete movements (i.e., stopping at 

each via point) to a series of 5 movements that would reflect the outcome of minimising jerk 

across the trial via coarticulation (Figure 9).  

       

Figure 9 | Task design CSRT. Participants were asked to execute a series of reaching movements to targets in a 

prespecified order (top panel). Based on the predictions of a minimum-jerk model, it was hypothesised that 

coarticulation would occur in the in-centre-out reaching movements (reaching movement 2,3 and 4 – lower 

panel). This would effectively reduce the number of reaching movements from eight to five. 

 

These predictions were based on the result of modelling a trajectory which would minimise 

jerk across the sequence of movements28,99. According to the model28,99, it was hypothesised 

that coarticulation would mainly occur in the central set of three in-centre-out reaching 

movements (Figure 9).  Such changes in the number of reaching movements come with 
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marked differences in the velocity profile. Specifically, executing discrete reaches 

characterised by pronounced stops in-between movements would correspond to an eight-

peaked velocity profile. In contrast, coarticulating three consecutive pairs of reaching 

movements would reduce the number of peaks to five (Figure 10). The aim of this task was to 

investigate whether reward-based invigoration of performance would be driven by either 1) 

increases in peak velocities and/or 2) increases in coarticulation which leads to reductions in 

dwell time. Both strategies have been shown to reduce MTs participants pursue either or both 

strategies and whether coarticulation leads to improvements in retention a novel sequential 

reaching task was developed. 

 

        

Figure 10 | Changes in the velocity profile though coarticulation. Schematic velocity profiles highlighting the 

difference between single versus coarticulated reaching movements for a trial. Based on the predictions of a 

minimum jerk model, we assumed that the three sets of in-centre-out reaching movements could be 

coarticulated which would reduce the number of velocity peaks from 8 (green) to 5 (orange). 

 

The CSRT design was favoured over the original design by Sosnik et al. (2004) because the 

design neatly allows for different reaching sequences with regards to the reaching order while 

preserving the spatial location of the targets. This feature is particularly useful and can be 

leveraged to conduct future experiments, such as when trying to assess whether 

coarticulation is generalisable (i.e., are previously coarticulated reaching movements 

preserved in a different reaching sequence). Additionally, compared to the task design used 



42 
 

in the pilot studies, the CSRT was specifically designed to address the overarching research 

question of this thesis and its main feature is that it enables coarticulation of sequential 

reaching movements. This has been shown to reduce MTs over the course of training25. 

 

2.3.1 Performance analysis in CSRT 

To analysis performance on the CSRT a range of outcome measures were employed which 

will be presented briefly in this section. 

Movement time (MT): Changes in MT have consistently been used as a proxy to measure the 

effect of reward on performance invigoration. Hence, to assess whether reward invigorates 

performance in the CSRT, MT was measured as the time between exiting the start box and 

reaching the last target. This time excludes reaction time, which describes the time between 

target appearance and when the participants’ start position exceeded 2cm (i.e., when the 

participant has exited the start box).  

Peak and minimum velocities: Peak and minimum velocities (Figure 11) were determined by 

firstly calculating the derivative of the positional data (x, y). The obtained velocity profiles for 

each trial were subsequently smoothed using a gaussian smoothing kernel (σ = 2).  

 

                                         

Figure 11 | Peak and minimum velocities. Schematic velocity profile with corresponding peak (red) and 

minimum (blue) velocities.  
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The velocity profile was then divided into segments representing movements to each 

individual target (8 segments) by identifying when the positional data was within 2cm of a 

target. Peak velocity (vpeak) was determined for each segment by finding the maximum 

velocity: 

             𝑣𝑝𝑒𝑎𝑘  ≜  𝑚𝑎𝑥𝜖 [𝑡1 𝑡2] 𝑣(𝑡)                                                  Equation 1 

Where v(t) is the velocity of segment t, and t1 and t2 represent the start and end of segment 

t respectively. Similarly, minimum velocities (vmin) were determined by: 

             𝑣𝑚𝑖𝑛  ≜  𝑚𝑖𝑛𝜖 [𝑡1 𝑡2] 𝑣(𝑡)                                                  Equation 2 

The individual peak and minimum velocities were then averaged for each trial.  

Coarticulation index (CI): To investigate whether participants increase coarticulation of 

sequential movements to reduce MTs, a novel index was developed. CI can reliably determine 

how much coarticulation is present in a given sequence.  Coarticulation describes the blending 

together of individual motor elements into a singular smooth action. This is represented in 

the velocity profile by the stop period between the two movements gradually disappearing 

and being replaced by a single velocity peak (Figure 12a) 25–27. Based on the predictions of a 

model which minimised jerk (Equation 4), it was hypothesised that coarticulation would 

mainly occur between out-centre centre-out reaching movements (Figure 12b). We therefore 

excluded the first and last target reach from this analysis. To measure coarticulation, we 

compared the mean peak velocities of two sequential reaches with the minimum velocity 

around the via point. The smaller the difference between these values, the greater 

coarticulation had occurred between the two movements (Figure 12a) 193. The velocity profile 

was cut into 3 segments depending on the peak velocities of the out-centre and centre-out 

reaching movements. The minimum velocity of these segments was calculated and compared 

to the average of the peak velocities: 

  𝐶𝑜𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 ≜ 1 − 
(

𝑣
𝑝𝑒𝑎𝑘1 – 𝑣

𝑝𝑒𝑎𝑘2 

2
)− 𝑣𝑚𝑖𝑛

(
𝑣

𝑝𝑒𝑎𝑘1 – 𝑣
𝑝𝑒𝑎𝑘2 

2
)

                       Equation 3 
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with vpeak1 and vpeak2 representing the velocity peak value of the out-centre and centre-in 

reaching movement of a given segment, respectively, and vmin representing the minimum 

value between these two points. The obtained difference was normalised, ranging from 0 to 

1, with 1 indicating a fully coarticulated movement. Given that in this task three pairs of 

movements were able to be coarticulated, the maximum CI value was 3 in each trial. Note 

that this measure is MT insensitive since it focuses on the difference in values not on their 

absolute value. This means slow and fast movements could have a similar CI value. 

 

        

Figure 12 | Coarticulation index (CI) and minimum-jerk model. (a) Schematic illustration of how coarticulation 

manifests itself in the velocity profile. Increases in the minimum velocity around the target (via point) will reduce 

the difference to the peak velocities of the two reaching movements. The smaller this difference, the less dwell 

time around the target. (b) Minimum-jerk trajectory prediction (‘Model’) and the corresponding velocity profile 

(top panel). These predictions were used to compare the how well the model fits actual data on a trial-by-trial 

basis.  

 

Minimum-jerk model: Previous work by Sosnik et al. (2004) has shown that, with training, 

performance on a sequential reaching task progressively aligns with the predictions of a 

minimum-jerk model196. This suggests that performance becomes more optimal with regards 

to smoothness maximisation. To assess whether this can be replicated in the CSRT, 

performance was compared to the predictions of a minimum-jerk model (Figure 12b). A 
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traditional minimum-jerk model for motor control is guided by optimisation theory, where a 

‘cost’ is minimised over the trajectory 28,99. In the case of the minimum-jerk model, the cost 

is defined as the squared jerk (3rd derivative of position with respect to time): 

              𝑗𝑒𝑟𝑘 ≜  
1

2
 ∫ (|

𝑑3𝑥

𝑑𝑡3  |
2

+  |
𝑑3𝑦

𝑑𝑡3  |
2

)  𝑑𝑡 
𝑡2

𝑡1
                                          Equation 4 

Here x and y represent the position of the index finger over time (t), while t1 and t2 define the 

start and end of a trial in seconds (t). The Matlab code provided by Todorov and Jordan 

(1998)197 was used to compute the minimum-jerk trajectory (a trajectory that minimised 

Equation 4), and the accompanying velocity profile, given a set of via points, start/end 

position and movement time 28. The model fit was then calculated using mean square error 

(immse function in Matlab) between the predicted and actual velocity profile, to estimate the 

fit on a trial-by-trial basis. Due to the two-dimensional structure of trajectories, in this analysis 

velocity profiles rather than the trajectories were used for this comparison.  

Spectral arc length: As previously described, motion smoothness has been identified as an 

important marker of skilled performance and has been widely used to assess recovery 

following stroke85–87. However, how to best measure or quantify motion smoothness has 

been a centre of debate85. Several smoothness metrics have been shown to be sensitive to 

changes in MT (e.g., log dimensionless jerk85,87). Consequently, in addition to the traditional 

jerk metric in the modelling analysis, spectral arc length was used to measure motion 

smoothness. Spectral arc length has been shown to be less sensitive to differences in MTs  

and more sensitive to changes in smoothness 85,87. The spectral arc length is derived from the 

arc length of the power spectrum of a Fourier transformation of the velocity profile. An open-

source Matlab toolbox was used to calculate this value for each trajectory 198.  

Spatial reorganisation: In addition to CI, coarticulation can also be expressed spatially. This 

approach is based on previous work by Sosnik et al. (2004) who showed that with 

coarticulation the via point of the reaching movement starts to shift (Figure 13a)25. During 

early training, the location of the via point corresponds to the target location. However, with 
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training the via point shifts in location along the trajectory (Figure 13a). Here an adapted 

approach was pursued, in which coarticulation was operationalised as the radial distance 

between the peak velocity (vpeak) on the sub-movements and the minimum velocity (vmin) 

around the via point (Figure 13b). This distance becomes smaller with increased coarticulation 

25,26 and reflects the merging of two sub-movements into one (Figure 13c).  

 

Figure 13 | Radial distance as a proxy measure of coarticulation. (a) Adapted from Sosnik et al. (2004). The red 

circle representing the via point in this case shifts with coarticulation from the target B to a more central location 

along the path between target AC.  (b) Example data for the spatial location of peak velocities when performing 

two individual (left panel) and one coarticulated (right panel) reaching movement. With coarticulation, the peak 

velocities (green dots) drift towards the via point (in black min velocities of the reaching movement) (c) 

Illustration of radial distance (%) values depending on different levels of coarticulation. Considering two target 

reaches (same length), the spatial position (x,y) changes depending on the level of coarticulation thereby 

exhibiting less radial distance to the via point.  

 

To measure these changes in radial distance between peaks and via points, a sliding window 

approach of 10 trials at a time was used. For each target reach (excluding the first and the 

last) we fitted a confidence ellipse 199  with a 95% confidence criterion around the scatter of 

the spatial position (x, y) of each peak velocity of the included trials (Figure 13b). The 
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confidence ellipses were obtained using principal component analysis to determine the 

minimum and maximum dispersion of the included data points in the x-y plane. To measure 

the distance between the scatter and its corresponding via point, we determined the ellipse’s 

centroid (point of intersection of ellipse’s axes) and calculated the radial distance to the via 

point. The obtained distance values were normalised and ranged from 0-100%, with 100% 

representing 0 cm distance between the centroid and the via point. Considering that 

individual reaching movements display a bell-shaped velocity profile, with the vpeak situated 

approximately in the centre of the movement, radial distance values between 45-55% can be 

expected if each movement is executed individually (Figure 13c). To understand the optimal 

radial distance to the via point, we measured the radial distance for a trajectory which 

minimised jerk (using the minimum-jerk model). This suggested that values of 82-85% 

represent the optimal range for coarticulated movements in this task. 

 

2.3.2 Conclusions and outlook 

Seeking reward is a powerful tool for shaping behaviour 124,134 and it has been shown that 

reward leads to saccadic and reaching actions to be executed with greater speed and accuracy 

72–75,179,200–202. However, it has also been shown that these reward-based effects on 

movement are transient i.e. the effects are lost when reward is removed73–75. Codol et al. 

(2020) offers an explanation suggesting that increases in metabolic cost through increases in 

arm stiffness are only viable as long as reward is available to pay for it. Consequently, once 

reward is removed performance reverts back to near baseline levels75. However, it is unclear 

why this does not seem to be the case during more complex continuous tasks158,177. To 

address these inconsistencies, two pilot studies were conducted that assessed the effect of 

reward on complex movements in a continuous reaching task. The results from Experiment 1 

and 2 show that reaching movements that are paired with reward are consistently performed 

faster (MT). These results complement the current literature on motivational vigour and its 
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effects on performance73–75,155. However, the results also highlight that rewarded training 

during the first experimental day does not lead to improvements in retention on the second 

day. Hence previous findings on the beneficial effects of reward on retention could not be 

replicated 71,158,177. Despite this, a steady improvement in MTs can be observed across training 

which suggests that deceases in MTs are not solely driven by a tonic invigoration effect but 

that over the course of training participants learn how to execute the sequence faster. This 

observation and that fact that movement sequences can be executed faster via two 

strategies: 1) increases in peak velocities and 2) reduction in dwell times (i.e., coarticulation), 

inspired the development of a novel task (CSRT). The task design allows for improvements in 

MT to be driven by both strategies and therefore provides a unique framework to study the 

effects of reward the execution of complex movement sequences. Specifically, whether 

reward-based improvements are driven by one or both strategies can be explored using the 

novel task design (Chapter 3). 
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Chapter 3 

1 

Long-term retention of reward-based 

improvements during complex movements is 

facilitated by coarticulation  

 

 

3.1 Introduction 

Seeking reward is a powerful tool for shaping behaviour 124,134. For example, the expectation 

of reward causes individuals to perform saccadic and reaching actions with greater speed and 

accuracy 72–75,179,200–202. As a result, there has been significant interest in the potential of using 

reward to enhance motor behaviour in both healthy individuals and clinical populations such 

as stroke patients 4,5. However, it has been shown that these reward-based effects on 

movement are cognitively demanding, energetically-inefficient and transient i.e. the effects 

are lost when reward is removed 73–75. Importantly, these results stem from simple tasks that 

involve singular discrete actions e.g., movement towards a single static target. In contrast, 

during more complex sequential or continuous tasks, the beneficial effects of reward appear 

long lasting and persist even after the removal of reward 158,159,177. The mechanism, however, 

 
This chapter has been published as a pre-print on bioRxiv at the URL https:\\www.biorxiv.org/content/10.1101/2020.06.15.152876v1.full. 

I designed and implemented the task, acquired, analysed and interpreted the data, created the figures and wrote the manuscript. X. Chen 

helped with the data analysis (minimum-jerk model) which was implemented by me. J.M Galea helped design the task, interpret the data 

and gave feedback during the writing of the manuscript. J.M. Galea provided the funding, facilities and materials to conduct this work, 
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by which reward induces these long-lasting effects and the reason why sequential or 

continuous behaviour seems critical is unknown. An interesting possibility is that reward-

driven performance gains are only maintained if they are accompanied by improvements in 

kinematic efficiency. We propose that this is possible during sequential actions through 

coarticulation.  

Ubiquitous in our daily life but often impaired in clinical populations 21–24, coarticulation 

describes the process of blending together a series of distinct movements into a single 

continuous action. For example, compound actions such as drinking a cup of coffee or 

cleaning your teeth are often executed discretely with pronounced stop periods between 

them when first encountered 60,83,181,194,195,203–205. However, with learning these sub-

movements are gradually blended together to form a continuous action that is executed with 

increased speed, smoothness and energetic-efficiency 25–28. Therefore, coarticulation 

represents a hallmark of skilled sequential behaviour performance as it reflects the evolution 

of behaviour, both temporally and spatially, towards increased efficiency 25–28,83,194. 

Coarticulation is observed across many motor behaviours such as speech production 180,182, 

sign language 184, piano playing 185, typing 186–188 and various other upper limb actions 111,190–

193,206. Within sequential reaching, the coarticulation of sub-movements leads to the gradual 

development of a new motor primitive that is globally planned and, once initiated, must run 

to completion 26. However, despite its prevalence, previous work has shown that 

coarticulation takes humans up to 8 days (1200-2000 trials) 25–27 and monkeys up to 30,000-

40,000 trials 194. Additionally, it has been observed that not all participants learn to 

coarticulate 25. This highlights that coarticulation is characterised by a very slow and difficult 

learning process which is not simply the logical consequence of training.   

Here we tested the hypothesis that reward can facilitate coarticulation during sequential 

reaching and thereby promote energetically efficient performance gains that persist even in 

the absence of reward. To this end, our main experiment assessed the effect of reward on 
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sequential reaching performance and the evolution of coarticulation over the course of two 

testing days. We then carried out two further experiments to assess the robustness of these 

performance gains during an additional testing day without reward availability, and to 

investigate whether reward or performance-based feedback drove these observed 

improvements.  

 

3.2 Methods 

Participants: 107 participants (17 males; age range 18 - 35) were recruited to participate in 

three experiments, which had been approved by the local research ethics committee of the 

University of Birmingham. All participants were novices to the task paradigm and were free 

of motor, visual and cognitive impairment. Most participants were self-reportedly right-

handed (N = 7 left-handed participants) and gave written informed consent prior to the start 

of the experiment. For their participation, participants were remunerated with either course 

credits or money (£7.5/hour) and were able to earn additional money during the task 

depending on their performance. Depending on the experiment, participants were pseudo-

randomly allocated to one of the available groups. 

 

Experimental apparatus: All experiments were performed using a Polhemus 3SPACE Fastrak 

tracking device (Colchester, Vermont U.S.A; with a sampling rate of 110Hz).  Participants were 

seated in front of the experimental apparatus which included a table, a horizontally placed 

mirror 25cm above the table and a screen (Figure 1a). A low-latency Apple Cinema screen was 

placed 25cm above the mirror and displayed the workspace and participants’ hand position 

(represented by a green cursor – diameter 1cm). On the table, participants were asked to 

perform 2-D reaching movements. Looking into the mirror, they were able to see the 

representation of their hand position reflected from the screen above. This setup effectively 
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blocked their hand from sight. The experiment was run using MATLAB (The Mathworks, 

Natwick, MA), with Psychophysics Toolbox 3.  

 

Task design: Participants were asked to hit a series of targets displayed on the screen (Figure 

1b). Four circular (1cm diameter) targets were arranged around a centre target (‘via target’). 

Starting in the via target, participants had to perform eight continuous reaching movements 

to complete a trial. Target 1 and 4 were displaced by 10cm on the y-axis, whereas Target 2 

and 3 were 5cm away from the via target with an angle of 126 degrees between them (Figure 

1b). Our task design was based on previous work 25–27,196 in which the authors were able to 

observe coarticulation using similar angles and reaching distance configurations. Participant 

behaviour could range from executing 8 individual movements (i.e., stopping at each via 

point; Figure 1c) to a series of 5 coarticulated movements that would reflect the outcome of 

minimising jerk across the trial (chapter 2 Equation 4; Figure 1d) 28. Changes in the number of 

reaching movements were associated with marked differences in the velocity profile. 

Specifically, individual reaches were characterised by pronounced stops in-between 

movements, with velocity dropping close to zero. As reaching movements merge through 

coarticulation, these dips in velocity gradually disappear (Figure 1c). To start each trial, 

participants had to pass their cursor though the preparation box (2x2cm) on the left side of 

the workspace, which triggered the appearance of the start box (2x2cm) in the centre of the 

screen. After moving the cursor into the start box, participants had to wait for 1.5s for the 

targets to appear. This ensured that participants were stationary before reaching for the first 

target. Target appearance served as the go-signal and the start box turned into the via target 

(circle). Upon reaching the last target (via target), all targets disappeared, and participants 

had to wait for 1.5s before being allowed to exit the start box to reach for the preparation 

box to initiate a new trial.  
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Figure 1 | Experimental setup. a) Participants wore a motion-tracking device on the index finger and the unseen 

reaching movements were performed across a table whilst a green cursor matching the position of index finger 

was viewable on a screen. b) 8 movement sequential reaching task. The participants started from the centre 

target. c) Schematic velocity profiles highlighting the difference between single versus coarticulated reaching 

movements for a trial. Based on the predictions of a minimum jerk model, we assumed that the three sets of in-

centre-out reaching movements could be coarticulated which would reduce the number of velocity peaks from 

8 (green) to 5 (orange). d) Velocity profile for a trial predicted by a minimum jerk model. e) Study design. After 

baseline (10 trials) participants were randomly allocated to a reward and no reward group (training - 200 trials) 

and performed an additional 20 trials in each post assessment; one with reward (post-R) and one without (post-

NR) (counterbalanced across participants). This design was repeated 24 hours later (Day 2). f) Rewarded trials 

were cued using a visual stimulus prior to the start of the trial. At the end of the trial, participants received trial-

based monetary feedback based on their last 20 trials (closed-loop design). In no reward trials, participants were 

instructed to be as fast and accurate as possible. 
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Participants had to repeat a trial if they missed a target or performed the reaching order 

incorrectly. Similarly, exiting the start box too early either at the beginning or at the end of 

each trial resulted in a missed trial.  

 

Reward structure and feedback: Participants in experiment 1 and experiment 2 experienced 

either reward or no reward trials depending on the current experimental phase (Figure 1e): 

(1) Reward trials were cued using a visual stimulus prior to the start of the trial. Once 

participants moved into the preparation box, the start box appeared in yellow (visual 

stimulus) rather than in black (Figure 1f). Participants were informed that faster MTs would 

earn them more money, with a maximum amount of 5p available in each trial. While 

participants moved from the start box to the preparation box to initiate a new trial, the 

amount earned in the previous trial was displayed on the top of the screen (i.e. ‘You have 

earned 2p out of 5p’). We used a closed-loop design to calculate the amount of reward earned 

in each trial. To calculate this, we included the MT values of the last 20 trials and organised 

them from fastest to slowest to determine the rank of the current trial within the given array. 

A rank in the top three (<= 90%) returned a value of 5p, ranks >= 80% and <90% were valued 

at 4p; ranks >=60% and <80% were awarded 3p; ranks >=40% and < 60% earned 2p while 1p 

was awarded for ranks >=20% and < 40%. A rank in the bottom three (<20%) returned a value 

of 0p. When participants started a new experimental block, performance in the first trial was 

compared to the last 20 trials of the previously completed block. (2) No reward trials were 

not cued, and no reward was available for participants. However, participants were instructed 

to ‘move as fast and accurately as possible’. In experiment 3, participants were randomly 

allocated to one of the four groups: (1) no reward, (2) reward without performance-based 

feedback, (3) reward with random feedback and (4) reward with accurate feedback. 

Participants in the no reward (1) and reward with accurate feedback (4) groups underwent 

the same regime as the no reward and reward groups in experiment 1 respectively. To 

investigate whether reward and/or feedback drove performance changes, we changed the 
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reward and feedback structure for the two remaining groups. Participants in the reward 

without performance-based feedback group (2) were able to earn money depending on their 

performance in each trial. Reward trials were cued with a yellow start box prior to the start 

of the trial. However, participants did not receive any feedback on their performance after 

completing a given trial. They were asked to initiate a new trial and ‘be as fast and accurate 

as possible to earn more money’. In contrast to this, participants in the reward with random 

feedback group (3) received feedback after completing a reward trial during training, which 

were also cued with a yellow start box. However, feedback in this group was not performance-

based, but was drawn randomly from feedback given to participants in experiment 1. To this 

end, we strung together all reward values given to participants in the first experiment and 

randomly chose a value for feedback in a given trial in experiment 3. Participants, therefore, 

received feedback which was similar in reward probability without corresponding to actual 

performance. 

 

Experiment 1 experimental procedure: In this experiment, we investigated whether reward 

can invigorate performance on a sequential reaching task. The experiment included an initial 

learning phase prior to the start of the experiment as well as a baseline, training and two post 

assessments. The same design without the learning phase was repeated 24 hours later (Figure 

1b). Participants were pseudo-randomly allocated to either the reward or no reward group 

(N = 21 each) and were informed that at some point during the experiment they would be 

able to earn additional money depending on their performance.   

Learning: We included a learning phase prior to the start of the experiment for participants 

to be able to memorise the reaching sequence. This allowed us to attribute any performance 

gains to improvements in execution rather than memory. Once participants waited 1.5s inside 

the start box, the targets appeared which were numbered clockwise from 1 to 4 starting with 

the central top target. Participants were also able to see a number sequence at the top left of 

the screen displaying the order of target reaches (1 – 3 – 2 - 4). Participants were instructed 
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to hit the targets according to the number sequence while also hitting the via target in 

between target reaches. They had to repeat a trial if they missed a target or performed the 

reaching order incorrectly. Similarly, exiting the start box too early either at the beginning or 

at the end of each trial resulted in a missed trial. After a cued trial, participants were asked to 

complete a trial from memory without the number sequence or numbers inside the targets. 

If participants failed a no cue trial more than twice, cues appeared in the following trial as a 

reminder. After a maximum of 10 cue and 10 no cue trials participants completed this block. 

Baseline: Participants in both groups completed 10 baseline trials, which were used to assess 

whether there were any pre-training differences between groups. Both groups were 

instructed to ‘move as fast and accurately as possible’, while no performance-based feedback 

was given at the end of each trial.  

Training: Participants in the reward group were informed that during this part they would be 

able to earn money depending on how fast they complete each trial (200 reward trials). In 

contrast, participants in the no reward group engaged in 200 no reward trials and were again 

instructed to move as fast and as accurately as possible. 

Post assessments: On both testing days, participants from both groups were asked to 

complete two post assessments (20 trials each); one with reward trials (post-R) and one with 

no reward trials (post-NR). The order was counter-balanced across participants. 

 

Experiment 2 experimental procedure: In this experiment, we aimed to test how robust 

reward-driven performance gains were over an additional testing day without reward 

availability. Participants (N = 5) underwent the same regime as the reward group in 

experiment 1 on the first two testing days. On the third testing day after baseline, participants 

were asked to complete 200 no reward trials.  

Experiment 3 experimental procedure: Here, we investigated whether the observed 

performance gains depend on reward expectation, performance-based feedback or a 

combination of both. To this end, we allocated participants (N = 60) to one of the four groups: 
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(1) no reward, (2) reward without performance-based feedback, (3) reward with random 

feedback and (4) reward with accurate feedback (see Reward Structure and Feedback for 

more information). Participants underwent the same procedure as participants in experiment 

1 over the course of the first testing day. After a learning phase and a baseline part, 

participants engaged in 200 training trials which differed with regards to their reward and 

feedback structure. Similarly, to experiment 1 and 2, participants then completed the post 

assessments, which were counter-balanced across participants.  

 

Data analysis: Analysis code is available on the Open Science Framework website, alongside 

the experimental datasets at: https://osf.io/62wcz/. The analyses were performed in Matlab 

(Mathworks, Natick, MA). We used parameters to assess performance which were described 

in more detail in chapter 2. 

Movement Time (MT): MT was measured as the time between exiting the start box and 

reaching the end target. This excludes reaction time, which describes the time between target 

appearance and when the participant has exited the start box. Trials with MTs beyond 9.0s 

were excluded from analysis, which amounted to 0.37% of all trials.  

Peak Velocity: Through the derivative of positional data (x, y), we obtained velocity profiles 

and found the peak velocities of each reaching movement. These were then averaged to 

provide a peak velocity measure for each trial.  

Coarticulation Index (CI): To measure coarticulation, we compared the mean peak velocities 

of the two sequential reaches with the minimum velocity around the via point. The smaller 

the difference between these values, the greater coarticulation had occurred between the 

two movements193. We normalised the obtained difference, ranging from 0 to 1, with a CI 

value of 1 indicating a fully coarticulated movement.  

Error: We operationalised error as the amount of repetitions necessary to complete a given 

trial. Trials had to be repeated if participants missed a target or if they exited the start box 

before the targets appeared or disappeared.  

https://osf.io/62wcz/
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Minimum-jerk model: We used the minimum-jerk model to model trajectories for each angle 

configuration used in this experiment using the Matlab code provided by Todorov and Jordan 

(1998)28. We then calculated the mean square error (immse function in Matlab) between the 

predicted and actual velocity profile, which were both normalised and interpolated (N = 500), 

to estimate the fit on a trial-by-trial basis. Due to the two-dimensional structure of 

trajectories, we used velocity profiles rather than the trajectories for this comparison.  

Spectral Arc Length: To assess movement smoothness, we used spectral arc length as our 

smoothness metric. Spectral arc length has been shown to be less sensitive to differences in 

MT and more sensitive to changes in smoothness 85,87. The spectral arc length is derived from 

the arc length of the power spectrum of a Fourier transformation of the velocity profile. We 

used an open-source Matlab toolbox to calculate this value for each trajectory 198.  

For both spectral arc length and the minimum-jerk model, we only included non-corrected 

trials. Trials that were classified as corrected included at least one corrective movement to hit 

a previously missed target. These additional movements added peaks to the velocity profile 

which complicated model comparison and increased jerkiness disproportionally. Therefore, 

1820 trials were excluded for both analyses (8.68% of all trials).  

Spatial reorganisation: To measure changes in radial distance between peaks and via points, 

a confidence ellipse 199  with a 95% confidence criterion was fitted around the scatter of the 

spatial position (x, y) of each peak velocity of the included trials (sliding window of 10). The 

distance between the centroid of the ellipse and the via point represents the radial distance.  

Variability: To assess changes in variability we measured the area of the peak velocity ellipses 

using the same approach as for spatial reorganisation. The area of the ellipse represents the 

total variance of the included data points in the x-y plane and was calculated by multiplying 

the axes of the ellipse with pi (π) 199,207. Data was normalised to the baseline for each group. 

Statistical analysis: Wilcoxon tests were used to analyse differences in performance during 

baseline. Mixed model ANOVAs were used to assess statistical significance of our results in 
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experiment 1. We carried out separate analyses for training with timepoint (early training 

(first 20 trials), late training (last 20 trials)) and group (reward, no reward) as factors for both 

days. Similarly, for post assessment condition (post-R, post-NR (all 20 trials in each)) and 

group (reward, no reward) were used as factors. We used one-sample Kolmogorov-Smirnov 

tests to test our data for normality and found that all measures were non-parametric. Median 

values were therefore used as input in all mixed model ANOVAs. Wilcoxon tests were 

employed when a significant interaction and/or main effects were reported and corrections 

for multiple comparisons were performed using Bonferroni correction. Linear partial 

correlations (fitlm function in Matlab) were used to measure the degree of association 

between the chosen variables, while accounting for the factor group. Piecewise linear spline 

functions were fitted through the scatter of spatial distance values and CI levels using least 

square optimisation by means of shape language modelling (SLM) 208. We used three knots as 

input for the linear model. 

A repeated-measure ANOVA was used to test for significance of our results in experiment 2. 

We compared MT and CI performance separately with timepoint (early training, late training 

over all 3 testing days) as the within factor. Due to our data being non-parametric after using 

one-sample Kolmogorov-Smirnov tests, we included median values as input for all repeated-

measure ANOVAs. Wilcoxon test was used as post-hoc test and multiple comparisons were 

corrected for using Bonferroni corrections.  

We used mixed model ANOVAs to statistically analyse our results from experiment 3. 

Separate analyses were carried out for training and post assessment for both MT and CI. 

Timepoint (early training, late training) and group (no reward, reward without feedback, 

reward with random feedback, reward with correct feedback) were factors to assess 

performance in training. Post assessment performance was analysed with a mixed model 

ANOVA that had condition (Post-R, Post-NR) and group (no reward, reward without feedback, 

reward with random feedback, reward with correct feedback) as factors. We used median 
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values as input, because one-sample Kolmogorov-Smirnov tests confirmed a lack of normality. 

Wilcoxon tests were employed when a significant interaction and/or main effects were 

reported and corrections for multiple comparisons were performed using Bonferroni 

correction. 

 

3.3 Results 

Reward invigorates sequential reaching movements 

MT reflected the total movement duration from exiting the start box until reaching the last 

target. Our results highlight that reward instantaneously invigorated sequential reaching 

behaviour with these performance gains being maintained even in the absence of reward 

(Figure 2a). Specifically, we found a significant decrease in MT over the course of training on 

both days for both groups (mixed-effect ANOVA; timepoint (early (1st 20 trials) vs late (last 20 

trials)) x group; main effect for timepoint, day 1: F = 18.29, p < 0.0001; day2: F = 8.51, p = 

0.0058; Figure 2b,d). Importantly, despite no differences in MT between groups during 

baseline on day 1 (Wilcoxon test; Z = -1.38, p = 0.17), we found that the reward group 

produced significantly faster MTs than the no reward group across training on both days 

(main effect for group, day 1: F = 18.96, p < 0.0001; day 2: F = 17.58, p < 0.0001; Figure 2b,d). 

Across post assessments, a significant interaction was found between phase (post-R (all 20 

trials) vs post-NR (all 20 trials)) and group (mixed ANOVA; condition x group; interaction, day 

1: F = 18.07, p < 0.0001; day 2: F = 19.99, p < 0.0001). Specifically, there was a significant 

difference in MT between groups during post-NR (Wilcoxon test; day 1: Z = -2.82, p = 0.0192; 

day 2: Z = -3.27, p = 0.0044; Figure 2c,e) but not post-R (Wilcoxon test; day 1: Z = -1.13, p = 1; 

day 2: Z = -1.38, p = 1). This indicates that the no reward group were able to instantaneously 

invigorate their performance during post-R. However, these performance gains were not 

maintained during post-NR, suggesting that they remained transient in nature. 

https://localhost:31515/static/help/stats/ranksum.html#bti4z5t
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Figure 2 | Reward-based improvements in MT. a) Trial-by-trial changes in MT averaged over participants for 

both groups. b-e) Median MT values for each participant for both groups. b) Comparing MT performance during 

training on day 1 (early (first 20 trials) vs late (last 20 trials)). c) Post assessment performance (day 1; post-R vs 

post-NR). d) Training (day 2; early vs late). e) Post assessment performance (day 2; post-R vs post-NR). Shaded 

regions/error bars represent SEM.  

 

In contrast, the enhanced MT performance in the reward group did not change significantly 

between post assessments, implying that performance gains had become reward-

independent (Wilcoxon test; day 1: Z = -1.11, p = 1; day 2: Z = -0.91, p = 1; Figure 2c,e). The 

counterbalancing of post assessment order did not affect these results (Supplementary Figure 

1). These decreases in MT could be driven by two processes: (1) an invigoration of each 

reaching movement’s peak velocity which has been observed to underlie the transient 

performance gains in singular discrete reaching tasks 73–75 and (2) the coarticulation of 

sequential reaching movements which decreases MTs via a reduction in dwell time around 

the central target.  
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Reward-based invigoration of peak velocities is instantaneous 

To assess changes in peak velocities (chapter 2, equation 1), we averaged peak velocity across 

the 8 reaching movements (Figure 3a). Over the course of training, we found significant 

increases in peak velocity on both days (mixed ANOVA; timepoint x group; main effect for 

timepoint, day 1: F = 9.72, p = 0.0034; day 2: F = 8.56, p = 0.0057; Figure 3b,d). Despite there 

being no differences in peak velocities during baseline on day 1 (Wilcoxon test; Z = 0.70, p = 

0.4812), the reward group produced significantly higher peak velocities than the no reward 

group across training (main effect for group, day 1: F = 19.42, p < 0.0001; day 2: F = 19.28, p 

< 0.0001; Figure 3b,d).  

                

Figure 3 | Reward-based improvements in peak velocity. a) Trial-by-trial changes in peak velocity averaged over 

participants for both groups. b-e) Median peak velocity values for each participant for both groups. b) Comparing 

peak velocity performance during training on day 1 (early (first 20 trials) vs late (last 20 trials)). c) Post 

assessment performance (day 1; post-R vs post-NR). d) Training (day 2; early vs late). e) Post assessment 

performance (day 2; post-R vs post-NR). Shaded regions/error bars represent SEM. 
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This supports existing findings that reward-based invigoration of MT can be driven by 

increases in peak velocities 73–75. Yet again, the no reward group exhibited a pronounced ‘on-

off’ effect across post assessments (post-R vs post-NR) for both days (mixed-effect ANOVA; 

condition x group; interaction, day 1: F = 8.02, p = 0.0072; day 2: F = 24.92, p < 0.0001). 

Specifically, we found a significant difference between groups during post-NR (Wilcoxon test; 

day 1: Z = 2.84, p = 0.018; day 2: Z = 3.07, p = 0.0084; Figure 3c,e) but not post-R (Wilcoxon 

test; day 1: Z = 0.86, p = 1; day 2: Z = 0.93, p = 1; Figure 3c,e). Similarly to MT, these results 

suggest that the no reward group were able to instantaneously increase peak velocity during 

post-R, but these performance gains remained transient in nature and were not maintained 

during post-NR. In contrast, peak velocities in the reward group remained elevated across 

post assessments irrespective of reward availability (Wilcoxon test; day 1: Z = 0.86, p = 1; day 

2: Z = 0.68, p = 1; Figure 3c,e). 

 

Reward-based facilitation of coarticulation is training-dependent 

Coarticulation describes the blending of individual motor elements into a combined smooth 

action. This is represented in the velocity profile by the stop period between two movements 

gradually disappearing and being replaced by a single velocity peak (Figure 1c). To measure 

coarticulation, we developed a coarticulation index (chapter 2, Equation 3) that compared 

the mean peak velocities of two sequential reaches with the minimum velocity around the via 

point. The smaller the difference between these values, the greater coarticulation had 

occurred of these two movements as reflected by CI value closer to 1 (Figure 4a). As the 

central 3 segments of the movement could potentially be coarticulated, the CI ranged from 

0-3 for each trial (Figure 4b). Our results show that reward facilitates movement 

coarticulation and leads to stable changes in behaviour even in the absence of reward.  
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Figure 4 | Reward-based improvements in CI levels. a) Illustration of CI levels. b) Trial-by-trial changes in CI 

levels averaged over participants for both groups. c-f) Median CI levels for each participant for both groups. c) 

Comparing CI levels during training on day 1 (early (first 20 trials) vs late (last 20 trials)). d) Post assessment 

performance (day 1; post-R vs post-NR). e) Training (day 2; early vs late). f) Post assessment performance (day 

2; post-R vs post-NR). g-h) Scatterplots displaying the relationship between MT and CI levels during post-NR on 

g) day 1 and h) day 2 with a linear line fitted across groups. Shaded regions/error bars represent SEM. 
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Additionally, changes in coarticulation, in contrast to the changes in peak velocities, appear 

to be training-dependent. Across training, CI levels increased on both days (mixed ANOVA; 

timepoint x group; main effect for timepoint, day 1: F = 21.70, p < 0.0001; day 2: F = 21.45, p 

< 0.0001; Figure 4b). Although there were no differences between groups in CI levels during 

baseline (Wilcoxon test; Z = 1.31, p = 0.1908), we found significantly higher CI levels for the 

reward group on both days (main effect for group, day 1: F = 6.81, p = 0.0127; day 2: F = 9.10, 

p = 0.0044; Figure 4c,e). Crucially, unlike MT and peak velocity, no significant increases in CI 

levels were observed for the no reward group on either day during post-R. This suggests that 

coarticulation cannot be invigorated instantaneously but represents a training-dependent 

process that is facilitated by reward. Importantly, CI levels were maintained during post-NR 

on both days for the reward group, highlighting that changes in coarticulation had become 

reward-independent (mixed-effect ANOVA; condition x group; main effect for group, day 1: F 

= 4.91, p = 0.0324; day 2: F = 7.38, p = 0.0097; Figure 4d,f). To understand whether CI levels 

are related to the retention of MT performance, we correlated MT values with CI levels during 

post-NR across participants (Figure 4g,h). We found a significant correlation between CI levels 

and MT performance for both day 1 (partial correlation controlling for group; post-NR: ρ = -

0.51 ; p < 0.0001, Figure 4g) and day 2 (partial correlation controlling for group; post-NR: ρ = 

- 0.66, p < 0.0001, Figure 4h). Although not causal, this indicates that faster MTs during post-

NR were associated with higher levels of coarticulation and that the reward group showed 

better performance for both (Figure 4g,h).  

To summarise, these results demonstrate that improvements in MT are driven by two 

processes which are both reward-sensitive but follow different time courses. The invigoration 

of peak velocities is instantaneous, whereas coarticulation is training-dependent. Invigoration 

in the no reward group was mainly driven by increases in peak velocities which were transient 

in nature, thereby displaying a pronounced ‘on-off’ effect. In contrast, participants in the 

reward group capitalised on both strategies: the invigoration of peak velocities and 

https://localhost:31515/static/help/stats/ranksum.html#bti4z5t
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additionally increases in coarticulation which led to persistent and ultimately reward-

independent improvements in MT performance. Importantly, despite an increase in 

execution errors on day 1 (reward group), we found that execution errors were not associated 

with performance levels during late training on day 2 (Supplementary Figure 2 including 

statistics).  In addition, no significant differences between groups were found on day 2 (mixed-

effect ANOVA; condition x group; main effect for group, day 2: F = 1.88, p = 0.1785), suggesting 

that performance gains by the second testing day reflected true improvements in skill. 

 

Reward-based improvements in smoothness are associated with reward-independent 

maintenance of performance gains 

It has been suggested that coarticulation leads to a reduction in jerk and thereby enables 

smoother and more efficient execution 99,209, which in turn could explain why participants in 

the reward group maintained their improved performance levels even in the absence of 

reward. Using spectral arc length as a smoothness metric that is insensitive to movement 

time85, we show that the performance in the reward group became progressively smoother 

(Figure 5a) 209. Movement smoothness significantly improved across training on both days 

(mixed ANOVA; timepoint x group; main effect for timepoint, day 1: F = 27.56, p < 0.0001; day 

2: F = 18.19, p < 0.0001, Figure 5a). Despite there being no differences between groups during 

baseline (Wilcoxon test; Z = 1.79, p = 0.0741), the reward group showed a greater 

improvement in smoothness throughout training (main effect for group, day 1: F = 5.31, p = 

0.027; day 2: F = 7.78, p = 0.0080; Figure 5b,d). During post assessments, we found a 

significant group effect for day 2 (mixed-effect ANOVA; post assessment x group; group, day 

1: F = 1.44, p = 0.2369; day 2: F = 6.41, p = 0.0154; Figure 5c,e). This suggests that 

improvements in smoothness were greater in the reward group and became reward-

independent. Additionally, we found that increased smoothness was strongly associated with 

faster MTs when reward was not available. 
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Figure 5 | Reward-based improvements in smoothness. a) Trial-by-trial changes in spectral arc length 

(smoothness) averaged over participants for both groups. A value closer to zero indicates greater smoothness85. 

b-e) Median smoothness values for each participant for both groups. b) Comparing smoothness during training 

on day 1 (early (first 20 trials) vs late (last 20 trials)). c) Post assessment performance (day 1; post-R vs post-NR). 

d) Training (day 2; early vs late). e) Post assessment performance (day 2; post-R vs post-NR). f-g) Scatterplots 

displaying the relationship between MT and smoothness during post-NR on f) day 1 and g) day 2 with a linear 

line fitted across groups. Shaded regions/error bars represent SEM. 

 

We correlated smoothness values with MTs during post-NR on both days (Figure 5f,g), and 

found a significant correlation between smoothness and MT performance for both day 1 

(partial correlation controlling for group; Post-NR: ρ = -0.69 ; p < 0.0001, Figure 5f) and day 2 

(partial correlation controlling for group; post-NR: ρ = - 0.79, p < 0.0001, Figure 5g). These 

results align with the aforementioned results showing that CI levels were associated with 

faster MTs during post-NR, and point to improvements in movement efficiency as a potential 

mechanism enabling reward-independent maintenance of performance gains during post-NR.  
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Progressive alignment to the predictions of a minimum jerk model is facilitated by reward 

We then assessed whether performance aligned with the predictions of an optimisation 

model that attempted to minimise jerk given a set of via points, start/end position and 

movement time 28. On trial-by-trial basis, mean squared error was calculated between the 

model and the actual velocity profile (chapter 2, Equation 4; Figure 6a). In comparison to the 

no reward group, performance in the reward group became significantly more aligned to the 

predictions of the minimum-jerk model. Mean squared error progressively decreased across 

days although this was not significant for day 2 (mixed ANOVA; timepoint x group; main effect 

for timepoint, day 1: F = 16.19, p < 0.0001; day 2: F = 2.23, p = 0.1429, Figure 6b). Despite no 

differences between groups during baseline (Wilcoxon test; Z = -1.16, p = 0.2472), the reward 

group’s performance showed significantly greater similarity to the model’s predictions (main 

effect for group day 1: F = 5.61, p = 0.0228; day 2: F = 7.56, p = 0.0089, Figure 6c,e). Across 

post assessments, we found a significant interaction for day 2 (mixed-effect ANOVA; condition 

x group; main effect for interaction, for day 1: F = 3.92 p = 0.0548; day 2: F = 7.58, p = 0.0088, 

Figure 6b,f), however all post-hoc comparisons were not significant. Nevertheless, there was  

a significant group effect for day 2 (main effect for group, for day 1: F = 3.26 p = 0.0787; day 

2: F = 4.98, p = 0.0313, Figure 6b,f), suggesting that the degree of similarity to the minimum-

jerk model was maintained across post assessments irrespective of reward availability. Within 

this context, we aimed to assess whether greater similarity to the predictions of the model 

was related to the maintenance of performance without reward. Using partial linear 

correlations, we found a correlation between model similarity and MT performance during 

post-NR for both day 1 (partial correlation controlling for group; Post-NR: ρ = 0.55 ; p < 0.0001, 

Figure 6g) and day 2 (partial correlation controlling for group; post-NR: ρ = 0.70, p < 0.0001, 

Figure 6h). These results complement our findings on smoothness and CI. 
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Figure 6 | Progressive alignment to the predictions of a minimum jerk model is facilitated by reward. a) 

Comparisons between data and the predictions of a minimum jerk model for both trajectory (right panel) and 

velocity profiles (left panel) for a single participant.  b) Trial-by-trial changes in mean square error averaged over 

participants for both groups. c-f) Median mean square error for each participant in both groups. c) Day 1 early 

vs late training d) Day 1 post assessment (post-R vs post-NR). e) Day 2 early vs late training f) Day 2 post 

assessment. g-h) Scatterplots displaying the relationship between MT and mean squared error during post NR 

on g) day 1 and h) day 2 with a linear line fitted across groups. Shaded regions/error bars represent SEM. 
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Overall, our results show that over the course of the experiment, performance in the reward 

group became smoother and showed greater similarity to the predictions of a minimum jerk 

model. Potentially due to being more energetically efficient 210, participants in the reward 

group maintained MT performance gains even in the absence of reward. 

 

Spatial reorganisation identifies the final stages of coarticulation and is enhanced by reward  

Coarticulation can also be expressed spatially as the radial distance between the peak velocity 

on the sub-movements and the minimum velocity around the via point (Figure 7a). This 

distance becomes smaller with high levels of coarticulation 25,26 (Figure 7a; chapter 2, Figure 

13c), suggesting that spatial reorganisation reflects the final stages of two movements 

merging together. We found that the reward group expressed spatial reorganisation with 

significant decreases in the radial distance between peaks and the via point. No difference 

between groups in radial distance was observed during baseline (Wilcoxon test; Z = -1.18, p = 

0.2371). However, there was significant main effects for timepoint (mixed ANOVA; timepoint 

x group; main effect for timepoint, day 1: F = 7.32, p = 0.0100; day 2: F = 18.14, p < 0.0001; 

Figure 7b) as well as group for the second testing day (main effect for group, day 1: F = 1.95, 

p = 0.1706; day 2: F = 7.52, p = 0.0091; Figure 7c,e). This indicates that spatial reorganisation 

progressively increased across both days, with the reward group showing greater changes on 

day 2. Across post assessments, the no reward group showed no reward-driven changes in 

spatial reorganisation, whereas the reward group maintained their performance although the 

differences between groups was only significant on day 2 (mixed-effect ANOVA; post 

assessment x group; main effect for group, day 1: F = 3.08, p = 0.0868; day 2: F = 5.76, p = 

0.0211; Figure 7d,f).  

To understand the relationship between CI and spatial reorganisation, we plotted them 

against each other and detected a pronounced drift in radial distance values (%) with 

increasing CI levels resulting in a curvilinear shape (Figure 7g).  
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Figure 7| Reward-based improvements in spatial reorganisation. a) Example data for the spatial location of 

peak velocities when performing two individual (left panel) and one coarticulated (right panel) reaching 

movement (green and black dots represent peak and min velocities, respectively) b) Trial-by-trial changes in 

radial distance averaged over participants for both groups. c-f) Median radial distance for each participant for 

both groups. c) Comparing radial distance during training on day 1 (early vs late). d) Post assessment 

performance (day 1; post-R vs post-NR). e) Training (day 2; early vs late). f) Post assessment performance (day 

2; post-R vs post-NR). g) Scatterplot illustrating the relationship between mean CI levels and spatial 

reorganisation (radial distance %). It includes a two-segment piecewise linear function fitted to the data, while 

the green area represents the model prediction. h) Scatter plot displaying the relationship between variability 

(ellipse area cm2) during early training and spatial coarticulation (radial distance %) during late training. i) Bar 
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plot comparing the reward and no reward group early training variability including jittered scatter of participant-

based median (ellipse area cm2). Shaded regions/error bars represent SEM. 

 

After fitting a two-segment piecewise linear function to the data, we found an inflection point 

at ~1.66 (CI) and a strong correlation between CI levels and radial distance values for the 

second segment (partial correlation controlling for group; segment 1: ρ = -0.16; p < 0.0001; 

segment 2: ρ = 0.89; p < 0.0001). 

This suggests that in order to fully coarticulate two consecutive movements, spatial 

reorganisation is essential 25–27 with this process appearing significantly more pronounced in 

the reward group. Overall, these findings indicate that improvements in movement efficiency 

through a quantitative change in how the task is executed may enable the retention of 

reward-based performance gains. 

Within the context of reinforcement learning, it has been suggested that reward leads to 

improvements in performance via increases in exploration during the early stages of training 

82,94. To assess whether an early increase in spatial variability was associated with improved 

performance, we measured the area of the confidence ellipses used to determine the radial 

distance to the via point. We then correlated the ellipse area (cm2), which was normalised to 

baseline, over the first 30 trials on day 1 with radial distance (%) over the last 30 trials on day 

2 (Figure 7h). We found a significant correlation (partial correlation controlling for group; ρ = 

0.40; p = 0.0104) suggesting that early increases in spatial variability were associated with 

increases in spatial coarticulation towards the end of the experiment. Comparing ellipse area 

between groups during early training (first 30 trials), we found that the reward group 

exhibited higher levels of variability (Wilcoxon test, Z = 2.52, p = 0.0119, Figure 7i). These 

results indicate that early reward-driven increases in spatial variability may benefit future 

coarticulation performance.  
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Performance gains are maintained across an additional testing day without reward  

We next aimed to assess the robustness of these performance gains in an experiment 

including an additional testing day without reward availability (elongated washout condition) 

(n=5). In experiment two, participants underwent the same regime as the reward group in 

experiment 1 on the first two days. On the third day, participants were asked to complete 200 

no reward trials. Our results show that even after 24 hours, and over the course of 200 

additional unrewarded trials, participants maintained similar MT performance levels. We 

used a repeated measures ANOVA with timepoint (early vs late across all testing days) as the 

within factor to assess changes across testing days (repeated measures ANOVA, main effect 

for timepoint, F = 28.65, p < 0.0001; Figure 8a; Supplementary Figure 3). These results indicate 

that performance improved over the course of the experiment. However, no changes in MT 

performance could be observed between late training on day 2 and early training on day 3 

(Wilcoxon test, Z = -1.21, p = 0.3016) and between early and late training on day 3 (Wilcoxon 

test, Z = -1.48, p = 0.4444). Similarly, coarticulation levels appeared stable across the 

additional testing day without reward (repeated measures ANOVA, main effect for timepoint, 

F = 19.19 p < 0.0001; Figure 8b; Supplementary Figure 3), with no changes in performance 

between late day 2 and early day 3 (Wilcoxon test, Z = -0.94, p = 1). Similarly to MT, no changes 

were observed across day 3 (Wilcoxon test; early vs late; day 3, Z = -0.67, p = 1). In addition, 

peak velocities were maintained transitioning to and across day 3 (Wilcoxon test, late training 

day 2 x early training day 3, Z = -1.21, p = 1; early training day 3 x late training day 3, Z = -1.21, 

p = 1; Figure 8c; Supplementary Figure 3). When assessing changes in smoothness using 

spectral arc length, we found similar results to experiment 1. Smoothness improved over the 

course of the experiment (repeated measures ANOVA, main effect for timepoint, F = 57.14 p 

< 0.0001; Figure 8d; Supplementary Figure 3), while no changes could be observed between 

late training on day 2 and early training on day 3 (Wilcoxon test, Z = -0.67, p = 1) and between 

early and late training on day 3 (Wilcoxon test, Z = -1.21 , p = 1). In line with these results, we 
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found that performance aligned progressively with the predictions of the minimum jerk 

model (repeated measures ANOVA, main effect for timepoint, F = 23.38 p < 0.0001; Figure 

8e; Supplementary Figure 3), while no significant changes in similarity could be observed 

transitioning to and across day 3 (Wilcoxon test, late training day 2 x early training day 3, Z = 

-2.02, p = 1; early training day 3 x late training day 3, Z = -1.21, p = 1). In addition, we found 

that participants progressively reorganised their spatial movement output, with a significant 

decrease in radial distance found across the experiment (repeated measures ANOVA, main 

effect for timepoint, F = 57.14 p < 0.0001; Figure 8f; Supplementary Figure 3). However, no 

changes in radial distance could be observed between late training on day 2 and early training 

on day 3 (Wilcoxon test, Z = -2.02, p = 1) and between early and late training on day 3 

(Wilcoxon test, Z = -1.75 , p = 1). These findings support our results from experiment 1 and 

indicate that improvements in movement efficiency through a quantitative change in how the 

task is performed may enable long-term retention of reward-based performance gains.  

 

Reward based on performance is most effective in producing behavioural change 

Our third experiment was intended to assess whether the observed changes on day 1 were 

specific to training with reward-based feedback of movement time performance. Participants 

were allocated to one of the four groups: (1) no reward, (2) reward without performance-

based feedback, (3) reward with random feedback and (4) reward with accurate feedback. 

Only groups 2-4 received monetary reward; reward for groups 1 and 4 were equivalent to 

that used in experiment 1. Participants within group 3 received feedback about the reward 

delivered on each trial which was randomly drawn from the feedback experienced during 

experiment 1. It therefore matched group 4 in terms of reward probability but this did not 

correspond to actual performance. In contrast, participants in group 2 did not receive any 

performance-based feedback after completing a given trial. Upcoming reward trials, however, 

were still cued.  
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Figure 8| Long-term retention of performance without reward. a-f: Experiment 2. Median data across all 3 

days (early (first 20 trials) vs late (last 20 trials) training). a) MT b) CI level c) Peak velocity d) Spectral arc length 

(smoothness) e) Mean squared error between data and minimum jerk model prediction f) Radial distance 

(spatial reorganisation) g-h: Experiment 3. g) Median MT across groups. h) Median CI level. Shaded regions/error 

bars represent SEM. 

 

Since groups 1 and 4 underwent the same regime as the no reward and reward group in 

experiment 1 respectively, we were able to test whether our results replicated. Group 4 

(reward with accurate feedback) produced the largest improvements in performance, being 
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the only group who showed significant improvements in MT (mixed ANOVA; timepoint x 

group; interaction, F = 3.76, p = 0.0158; Wilcoxon test; early vs late group 4: Z = 3.40, p = 

0.0028; Figure 8g; Supplementary Figure 4) and coarticulation (mixed ANOVA; timepoint x 

group; interaction, F = 3.18, p = 0.0308; Wilcoxon test; early vs late group 4: Z = -3.24, p = 

0.0048; Figure 8h; Supplementary Figure 4). This indicates that the expectation of reward is 

not sufficient to induce large behavioural improvements, with a link to performance being 

essential to optimise gains during reward-based training.   

 

These results showed that performance-based reward invigorates sequential reaching. Driven 

by a reward-based increase in speed, movements also exhibited greater coarticulation, 

smoothness and a closer alignment to the predictions of a minimum jerk model. Importantly, 

these performance gains were maintained across multiple days even after the subsequent 

withdrawal of reward. This highlights the importance of coarticulation to skilful sequential 

reaching performance, and the potential of this mechanism to produce long-lasting reward-

driven improvements in behaviour. 

 

3.4 Discussion 

Motor skill learning is integral to everyday life and describes improvements in performance 

above baseline levels 12. Improvements in skill have often been assessed at the levels of speed, 

accuracy and more recently efficiency 211. In our task, improvements in speed (MT) could be 

achieved via two strategies: (1) increases in peak velocities of the individual reaching 

movements and (2) reduction in dwell times around the via points (coarticulation). We were 

able to show that reward invigorated peak velocities, supporting previous findings on the 

reward-based invigoration of simple discrete reaching movements 74,75. Moreover, for the 

first time, we demonstrate that reward accelerates the naturally slow and difficult to achieve 

process of coarticulation  25–27,196. With respect to movement efficiency, these two strategies 
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differ regarding the metabolic costs they incur. Recently, it has been demonstrated that in 

discrete reaching movements, improvements in peak velocity can be achieved at no cost to 

accuracy through increased arm stiffness 75. Although an attractively simple strategy, it comes 

with a marked escalation in metabolic costs 210. In fact, it has been shown that in discrete 

reaching tasks such invigoration is reward-dependent and transient in nature 73–75. We 

suggest that this could be due to the energetic demands of the invigorated movement 

requiring the continued presence of reward to negate this added cost. In contrast, 

coarticulation enables the performance of sequential movements to become similar to a 

minimum jerk trajectory through the merging of neighbouring movements into continuous 

smooth elements 25–28,99.   The subsequent hypothesised improvement in energetic 

efficiency might explain why the enhanced performance of the reward group became reward-

independent. In contrast, performance in the no reward group, who showed little 

coarticulation, was highly dependent on the availability of reward, i.e., performance gains 

were lost once reward was removed. Considering that without coarticulation the given 

reaching sequence will be executed as a series of discrete target reaches, the removal of 

reward will negate the continued invigoration of performance. This conclusion is in line with 

previous work showing a transient ‘on-off’ effect of reward on movement invigoration. Thus, 

the performance of the no reward group mirrors invigoration patterns observed in simple, 

discrete reaching tasks. 

Despite previous studies demonstrating that reward can enhance retention across a wide 

variety of sequential and continuous motor tasks, the underlying mechanism for this effect 

has been described at a very abstract level 158,159,177. Specifically, it is unclear how reward 

strengthens a motor memory so that improved performance is maintained even when the 

incentive is no longer provided. We believe that for reward to induce such long-term 

improvements in motor skill, it must not only lead to enhanced performance but also 

improvements in efficiency. A reduction in the cost of this enhanced performance (faster or 
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more accurate movements 73), enables it to be performed long-term without further 

incentive/reward. Therefore, reward may not enhance the memory of the action but instead 

lead to the task being performed in a fundamentally different, and more efficient, manner. In 

support of this, we found that participants in the reward group produced a quantitative 

change (spatial reorganisation of the velocity profile between neighbouring movements) in 

how the task was executed. This highlights that careful analysis of how reward influences the 

performance of complex actions is essential for dissociating its effects on execution and 

retention. 

Although coarticulation might appear to feature similar movement characteristics as 

chunking, it is important to emphasise that they represent different processes.  Chunking 

often refers to a series of discrete movements (e.g. button presses in sequence learning 

paradigms) which are temporally aligned (chunked) over the course of training 20,64,83,189,212. 

The chunks are represented at a behavioural level through shorter reaction times between 

actions, and often allow for a faster execution overall 83,194. Yet the elements within a chunk 

are still performed discretely with a clear stop period between them 189,206. In addition, at a 

neural level, these elemental movements are planned individually through competitive 

queuing, highlighting again that some level of independence is maintained 213. In contrast, 

coarticulation reflects the merging of neighbouring movements into a single motor primitive 

that no longer features a pronounced stop period and must run to completion once initiated 

25–27,196. While kinematically appearing to represent a single movement, it remains an open 

question how these newly formed primitives are represented at a neural level in humans.  

We were able to show that reward facilities the slow and difficult process of coarticulation. 

Participants in the reward group started to coarticulate after a single day of training which, in 

comparison to previous work 25–27,194, represents a substantial acceleration in the formation 

of smooth, continuous reaching movements. Given the link between reward and increased 

dopamine levels, these results could indicate a critical role for dopamine in coarticulation. In 
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support of this idea, it has been shown in rats that dopamine levels dynamically change with 

sequence proficiency 62. In addition, Parkinson’s disease (PD) patients OFF medication exhibit 

specific impairments in movement chunking 1,2. However, whether dopamine underpins 

coarticulation similarly to chunking is still unexplored (a notable exception being 22). 

Specifically, whether dopamine directly acts on coarticulation or whether any mediating 

relationship is due to the effects of dopamine on movement invigoration, requires further 

examination 22.  

Here, we show that coarticulation is associated with smoother and, with regards to 

minimising jerk, more efficient execution. Interestingly, reaching movements performed by 

stroke patients exhibit reduced smoothness 23,24,214,215, with increases in jerk being due to a 

decomposition of movement into a series of sub-movements 23,24,214,215. However, over the 

course of the recovery process, performance becomes smoother as these sub-movements 

are progressively blended 23,24,214,215. Considering this theoretical proximity to the concept of 

coarticulation, we speculate that stroke recovery and coarticulation may follow similar 

principles. Consequently, coarticulation facilitated by reward could be a powerful tool in 

stroke rehabilitation to promote smooth and efficient sequential actions which form an 

essential component of everyday life activities.  

In conclusion, this work highlights that coarticulation could provide a mechanism by which 

reward can invigorate sequential performance whilst also improving efficiency. This 

improvement in efficiency through a quantitative change in how the action is performed 

appears essential for the retention of reward-based improvements in motor behaviour.   
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3.5 Supplement 

 

Supplementary Figure 1 

 

Supplementary Figure 1 | Counterbalancing did not affect MT results. Data was split depending on the 

counterbalancing. Participants in a) completed post-R prior to post-NR, whereas participants encountered the 

reversed order during their post assessment (b).  
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Supplementary Figure 2 

 

Supplementary Figure 2 | Number of errors did not affect performance during later stages of training. a) 

Trial-by-trial data showing the number of errors across participants for both groups). b-d) Scatterplots 

comparing median error data during early training with median (b) MT, (c) peak velocity and (d) CI data during 

late training.  
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Supplementary Figure 3 

 

 

Supplementary Figure 3 |Performance gains are stable even over a prolonged washout period. Trial-by-trial 

data for a) MT, b) CI levels c) peak velocity d) radial distance, e) spectral arc length, f) mean squared error CI for 

the second experiment which was scheduled on three consecutive days to assess behavioural change over a 

prolonged washout period. Participants received reward during training on the first two days, however no 

reward was available on the third day.  
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Supplementary Figure 4 

 

 

 

 

 

Supplementary Figure 4 |Reward based on correct performance feedback is most efficient at driving 

behavioural change. Trial-by-trial data for a) MT and b) CI levels for the third experiment which included 4 

groups that differed with regards to reward availability and feedback type during training to investigate what 

drove behavioural changes observed in experiment 1. 

 

 

 

 

 

 

 

 

 

 

 

              

 

 

 

 

 

 
 
  
 
 
 
  
 
  

 
  
 
 

     

              

 

   

 

   

 

 
 
 
  
  
 
  
  
 
 
   
 
 
 

     

    

    

                                 

                                             

                             

 

 

 

 
 
  
 
 
 
  
 
  

 
  
 
 

               

                             

 

 

 

 

 
 
 
  
  
 
  
  
 
 
   
 
 
 

               

    

    

      

              

 

 

 

 

 

 
 
  
 
 
 
  
 
  

 
  
 
 

     

              

 

   

 

   

 

 
 
 
  
  
 
  
  
 
 
   
 
 
 

     

    

    

                                 

                                             

                             

 

 

 

 
 
  
 
 
 
  
 
  

 
  
 
 

               

                             

 

 

 

 

 
 
 
  
  
 
  
  
 
 
   
 
 
 

               

    

    

      



84 
 

 

 

Chapter 4 

 

The role of dopamine during sequential 

reaching  

 

 

 

4.1 Introduction 

Obtaining and maximising reward is a fundamental goal of behaviour and has been shown to 

both modulate motor vigour and shape learning which has been formally conceptualised as 

reinforcement learning (RL)124. Evidence for its modulatory effect on motor vigour comes 

from research using saccadic eye movements. It has consistently been demonstrated that 

reward enhances vigour thereby reducing movement times (MT)73,155,178. Expanding on these 

findings, research found that reward invigorates simple discrete reaching movements leading 

to improvements in the speed-accuracy trade-off74,75,156,202. However, these reward-based 

improvements in speed and accuracy appear to be transient (i.e., they disappear once reward 

has been removed), which severely limits  the potential use of reward in clinical settings, such 
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as stroke rehabilitation75. Recent work has shown that increases in arm stiffness enable faster 

MTs whilst maintaining similar levels of end-point accuracy75. Albeit an attractively simple 

mechanism to account for the reward-based improvements in the speed-accuracy trade-off, 

this strategy comes with a marked increase in metabolic cost209. Therefore, removing reward 

might make this strategy unviable, which could explain the pronounced increase in MTs once 

reward is removed74,75.  

In contrast to simple discrete reaching movements, there is currently a lack of consensus 

whether reward can invigorate performance on complex sequential movements. In both a 

serial reaction time task (SRTT) and a force tracking task (FFT), reward did not improve 

execution via a reduction in MTs158 or improve accuracy177, respectively. However, both 

studies observed an increase in retention, suggesting that reward improved motor 

retention158,177. Yet, a recent study could not replicate these results and instead found that 

reward did not improve movement execution nor retention on both a SRTT and FFT159. Using 

a continuous sequential reaching task (CSRT), chapter 3 demonstrated that reward improves 

MTs via an increase in peak velocities and a decrease in dwell times between consecutive 

reaching movements. Furthermore, reward facilitates the coarticulation of sequential 

reaching movements leading to these shorter dwell times but also an increase in movement 

smoothness. Importantly, these reward-based improvements were maintained across an 

additional testing day without reward. Therefore, these results suggest that reward can 

improve the speed and efficiency of a sequential reaching action through enhanced 

coarticulation, and that seems to promote the retention of these reward-based performance 

gains. However, despite chapter 3 highlighting that both movement time and the learning 

process involved in coarticulation is reward-sensitive, it is unclear whether the 

neuromodulator dopamine (DA) underpins these improvements.  

A growing body of research has demonstrated that DA plays a central role in processing 

reward signals216. Specifically, while tonic DA appears to modulate motor vigour167,170,171, 
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phasic DA has been shown to play a role in motor learning160–166.  A recent study showed that 

selective depletion of D2 receptors in mice impairs the initiation and vigour of self-paced 

actions167. Additionally, D2 receptors have been suggested to play a role in motor learning. 

Monkeys that learnt a new discrete motor sequence showed impaired learning when a D2 

antagonist (raclopride) was administered prior to training. Similarly, using tiapride, another 

highly selective D2 antagonist a recent study found that learning on a complex motor 

sequence task was impaired, hence mirroring previous work on the effect of D2 receptor 

binding during motor sequence learning1. Converging results come from research on motor 

sequence learning in patients with Parkinson’s disease (PD); a neurological condition 

characterised by severe DA depletion in the striatum. Learning of discrete motor sequence 

learning in patients OFF medication was impaired, while learning was of similar magnitude 

ON medication when compared to healthy controls164,165. Therefore, DA appears to be 

involved in both the initiation and vigour of self-paced actions167 as well as motor sequence 

learning. 

However, despite these advances, it is an outstanding question whether DA and more 

specifically D2 receptors underpin coarticulation. Upper limb coarticulation represents a 

hallmark of skilled sequential performance and allows for a smooth and therefore more 

efficient execution209.  Evidence for DA playing a role in coarticulation comes from research 

which has shown that PD patients show impairments in cursive handwriting. Compared to 

healthy controls, PD patients wrote words as a series of discrete movements with this being  

independent of movement speed29. Additionally, it is unclear whether movement 

invigoration, which has been shown to be reward-sensitive167,170,171, is based on a similar DA 

mechanism as coarticulation or whether these two represent differential neural processes.  

Here, we aimed to fill this gap in the literature using haloperidol, a D2 antagonist, to modulate 

DA levels during our previously established motor sequence learning task (CSRT)217.  
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4.2 Methods 

Participants: 95 participants (42 males; age range 18-42) were recruited to participate in this 

experiment, which had been approved by the local research ethics committee of the 

University of Birmingham. Potential participants were pre-screened and were only invited to 

the medical exam if they met the following criteria: 1) naïve to the task paradigm ;2) 18–45 

years old; 3) no self-reported history of medical disorders; 4) normal or corrected-to-normal 

vision; 5) no drug allergies; 6) currently taking no medication that interfere with the 

absorption of haloperidol. Suitable participants were then evaluated by a medical doctor, who 

reviewed their medical history, evaluated an electrocardiogram taken at rest and took a blood 

pressure reading. Participants who received medical approval were then scheduled for all 

experimental sessions. Most participants were self-reportedly right-handed (N = 7 left-

handed participants) and gave written informed consent prior to the start of the experiment. 

Participants were remunerated with money (£18/hour) and were able to earn additional 

money during the task depending on their performance. Before the start of the experiment, 

participants were pseudo-randomly allocated to one of the available groups. 

 

Experimental Apparatus: All experiments were performed using a Polhemus 3SPACE Fastrak 

tracking device (Colchester, Vermont U.S.A; with a sampling rate of 110Hz).  Participants were 

seated in front of the experimental apparatus which included a table, a horizontally placed 

mirror 25cm above the table and a screen (Figure 1a). The low-latency Apple Cinema placed 

25cm above the mirror had a refresh rate of 60Hz and displayed the workspace and 

participants’ hand position (represented by a green cursor – diameter 1cm). On the table, 

participants were asked to perform 2-D reaching movements. Looking into the mirror, they 

were able to see the representation of their hand position reflected from the screen above. 

This setup effectively blocked their hand from sight. The experiment was run using MATLAB 

(The Mathworks, Natwick, MA), with Psychophysics Toolbox 3.  
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Task Design: In this experiment we used the same task design as in Chapter 3. In this motor 

task, participants were asked to hit a series of targets displayed on the screen (Figure 1a). 

Four circular (1cm diameter) targets were arranged around a centre target (‘via target’). 

Starting in the via target, participants had to perform eight continuous reaching movements 

to complete a trial. Target 1 and 4 were displaced by 10cm on the y-axis, whereas Target 2 

and 3 were 5cm away from the via target with an angle of 126 degrees between them (Figure 

1b).  

 

 

Figure 1 | Experimental Setup and Task Design. a) Participants wore a motion-tracking device on their index 

finger (Polhemus). b) 8 movement sequential reaching task. The participants started from the centre target. c) 

Rewarded trials were cued using a visual stimulus prior to the start of the trial, while feedback was provided at 

the end (based on a closed-loop design). In no reward trials, participants were instructed to be as fast and 

accurate as possible. d) Study design. Randomly allocated to a reward and no reward group, participants 

completed 200 trials during training and an additional 20 trials in each post assessment (post-R and post-NR). 

This design was repeated 24 hours later (day2) as well as 1 week later using a short version of the task (day7). 
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To start each trial, participants had to pass their cursor though the preparation box (2x2cm) 

on the left side of the workspace, which triggered the appearance of the start box (2x2cm) in 

the centre of the screen. After moving the cursor into the start box, participants had to wait 

for 1.5s for the targets to appear. This ensured that participants were stationary before 

reaching for the first target. Target appearance served as the go-signal and the start box 

turned into the via target (circle). Upon reaching the last target (via target), all targets 

disappeared, and participants had to wait for 1.5s before being allowed to exit the start box 

to reach for the preparation box to initiate a new trial. Participants had to repeat a trial if they 

missed a target or performed the reaching order incorrectly. Similarly, exiting the start box 

too early either at the beginning or at the end of each trial resulted in a missed trial. 

 

Reward Structure and Feedback. We used the same reward structure in this experiment as 

in our previous experiments (Chapter 3). Participants experienced either reward or no reward 

trials depending on the current experimental phase: (1) Reward trials were cued using a visual 

stimulus prior to the start of the trial (Figure 1c). Once participants moved into the 

preparation box, the start box appeared in yellow (visual stimulus) rather than in black (Figure 

1h). Participants were informed that faster MTs will earn them more money, with a maximum 

amount of 5p available in each trial. While participants moved from the start box to the 

preparation box to initiate a new trial, the amount earned in the previous trial was displayed 

on the top of the screen (i.e. ‘You have earned 2p out of 5p’). Similarly, to our previous 

experiment we used a closed-loop design to calculate the amount of reward earned in each 

trial (see Methods Chapter 1 for more information). When participants started a new 

experimental block, performance in the first trial was compared to the last 20 trials of the 

previously completed block. (2) No reward trials were not cued, and no reward was available 

for participants. However, participants were instructed to ‘move as fast and accurately as 

possible’ (Figure 1c). 
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Task Protocol. Similarly to the previous study, the task protocol included four experimental 

parts and an initial learning phase was scheduled prior to the start of the experiment (Figure 

1d; for more detail see Chapter 2).  Additionally, a secondary task was included in this task 

design, which asked participants to press a force sensor with the index finger of their non-

dominant hand. Participants were told to apply pressure in response to an audio signal that 

changed in amplitude, with higher amplitudes requiring increased force and vice versa. 

However, the analysis of these secondary-task trials which were scheduled on every 10th trial 

during training and every 5th trial during the remaining parts are excluded from the analysis 

presented here.   

Learning: We included a learning phase prior to the start of the experiment so that 

participants could memorise the reaching sequence. This allowed us to attribute any 

performance gains to improvements in execution rather than memory. After completing 20 

learning trials, participants moved on to the main experiment. 

Baseline: Participants in both groups completed 10 baseline trials, which were used to assess 

whether there were any pre-training differences between groups. Both groups were 

instructed to ‘move as fast and accurately as possible’, while no performance-based feedback 

was given at the end of each trial.  

Training: Participants in the reward group were informed that during this part they would be 

able to earn money depending on how fast they complete each trial (200 reward trials). In 

contrast, participants in the no reward group engaged in 200 no reward trials and were again 

instructed to move as fast and as accurately as possible. 

Post assessments: On both testing days, participants from both groups were asked to 

complete two post assessments (20 trials each); one with reward trials (post-R) and one with 

no reward trials (post-NR). The order was counter-balanced across participants. 

This design was repeated 24h after the initial session (day2). In addition, we asked 

participants to return to the lab 1 week after the initial session (day1) to complete a set of 
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post assessments (post-R and post-NR 25 trials each - day7). Consequently, participants 

completed three experimental sessions (day1, day2 and day7) as well as a medical assessment 

prior to the start of the study. 

 

Experimental Protocol, Randomisation and Blinding Protocol. In this study, we sought to 

investigate whether DA modulates both movement vigour (movement time) and 

coarticulation. To this end, participants were randomly allocated to one of four groups: 

haloperidol with reward-based feedback (Halo-Rew, N = 25), haloperidol without reward 

(Halo-NoRew, N = 24), placebo with reward-based feedback (Ctrl-Rew, N = 23) and placebo 

without reward (Ctrl-NoRew, N = 23) after the medical assessment. Due to the required 

testing environment this study was single-blind, and both the medical doctor and examiner 

were aware of the drug group allocation (haloperidol vs placebo). However, to reduce bias all 

participants were told that they will receive either a placebo tablet or the active drug 

(haloperidol). Similarly, all participants had to complete a health check on the day of 

drug/placebo intake (day1) and were checked by the medical doctor in intervals of 1h 

throughout day1. Additionally, all task instructions were displayed on screen instead of 

communicated verbally to further reduce bias. The administration of both the active drug and 

the placebo tablet was performed by the medical doctor. 

On the day of drug/placebo intake (day1), participants either received 2.5mg of haloperidol 

(2 x 0.5mg and 1 x 1.5mg tablet) or three lactose tablets of the same white colouring. In each 

case, participants were handed an envelope containing either the active drug or placebo and 

were asked to close their eyes during intake. Haloperidol is a D2-receptor antagonist that 

shows a limited affinity to D1 receptors and has superior in vivo D2 binding. In addition, it 

blocks DA D2 binding in the basal ganglia (BG) but not in the prefrontal cortex and as such can 

be considered to selectively modulate DA levels within the BG pathway148. To coincide with 

the peak plasma concentration, participants were asked to wait in the lab for 120min before 
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engaging in the motor task148. The chosen dose of 2.5mg of haloperidol and the waiting time 

of 2h were similar to previous studies that were able to observe drug-related behavioural and 

neurophysiological effects of haloperidol5,148. After the waiting period, participants were 

asked to complete the motor task (see Task Design and Task Protocol for details) and upon 

completion were yet again checked by the medical doctor. Participants were scheduled to 

return to the lab 24h later (day2) to complete the same motor task again; this time without 

any drug/placebo manipulation. However, participants received the same feedback as during 

day1 (i.e., with or without reward-based feedback). Lasty, participants engaged in a short 

version of the motor task one week after the initial session (day7) and were subsequently 

debriefed.  

 

Data Analysis. Analysis code will be available on the Open Science Framework website, 

alongside the experimental datasets at https://osf.io/62wcz/. The analyses were performed 

in Matlab (Mathworks, Natick, MA) and JASP. We used the same parameters to assess 

performance as in Chapter 1 (for more information on the individual parameters see chapter 

2). Dual-task trials (i.e., trials during which participants engaged in a secondary task) were 

removed from the analysis. 

Movement Time (MT): MT was measured as the time between exiting the start box and 

reaching the end target. This excludes reaction time, which describes the time between target 

appearance and when the participants’ start position exceeded 2cm.  

Peak Velocity: Through the derivative of positional data (x, y), we obtained velocity profiles 

and found the peak velocities of each reaching movement. These were then averaged to 

provide a peak velocity measure for each trial.  

Coarticulation Index (CI): To measure coarticulation, we compared the mean peak velocities 

of the two sequential reaches with the minimum velocity around the via point. The smaller 

the difference between these values, the greater coarticulation had occurred between the 
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two movements193. We normalised the obtained difference, ranging from 0 to 1, with a CI 

value of 1 indicating a fully coarticulated movement.  

Minimum-jerk model: We used the minimum-jerk model to model trajectories for each angle 

configuration used in this experiment using the Matlab code provided by Todorov and Jordan 

(1998)28. We then calculated the mean square error (immse function in Matlab) between the 

predicted and actual velocity profile, which were both normalised and interpolated (N = 500), 

to estimate the fit on a trial-by-trial basis. Due to the two-dimensional structure of 

trajectories, we used velocity profiles rather than the trajectories for this comparison.  

Spectral Arc Length: To assess movement smoothness, we used spectral arc length as our 

smoothness metric. Spectral arc length has been shown to be less sensitive to differences in 

MT and more sensitive to changes in smoothness 85,87. The spectral arc length is derived from 

the arc length of the power spectrum of a Fourier transformation of the velocity profile. We 

used an open-source Matlab toolbox to calculate this value for each trajectory 198.  

 

Statistical Analysis. We excluded participants that on average took longer than 7s to 

complete a trial during Baseline (day1). This was required to ensure that all groups had a 

similar level of MT performance during baseline on day 1. Without this, it would have made 

the interpretation of group differences very difficult, even with normalisation procedure 

described below. This resulted in 8 participants being removed from further analysis and led 

to changes in the group sizes (Halo-Rew, N = 0, Halo-NoRew, N = -4, Ctrl-Rew, N = 0, Ctrl-

NoRew, N = -4). In addition, data was normalised by performing a baseline correction for each 

participant and parameter Specifically, for each participant, we subtracted average 

performance during Baseline (day1) from all subsequent data points across all days. 

We used linear mixed-models (LMM) to assess statistical significance of our results. We 

carried out separate analyses for training on day1 (Training1) and day2 (Training2). Similarly, 

a separate analysis was conducted for each set of post assessments (including both post-R 
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and post-NR), which were scheduled on day1 (Post1), day2 (Post2) and day7 (Post7). 

Specifically, the LMM used throughout was: 

 

Dependent Variable ~ 1 + Reward *Drug *Trial Number + (1|Participant) 

 

This included fixed main effects for both reward (reward; no reward), drug (haloperidol; 

placebo) and trial number (number of trial), while accounting for individual differences using 

individual intercepts (random effect). In our model, we further included all possible 

interaction terms between the three main effects (i.e., Reward *Drug, Reward *Trial Number, 

Drug *Trial Number, Reward *Drug *Trial Number). This allowed us to assess the effect of 

both reward and drug condition on performance (dependent variable) across trials. How to 

best investigate significant interactions observed within LMM has been a heated topic218. 

First, additional LMM were performed to investigate specific interactions such as Reward * 

Trial Number. To further understand such interactions, median performance over the first 30 

trials during training (early) was compared with the median performance over the last 30 

trials (late) using Wilcoxon tests with false discovery rate (FDR) being used to correct for 

multiple comparisons and effect sizes being represented by η2. The alternative would have 

been to perform Wilcoxon tests for each individual trial (to determine where Reward and 

Drug differed) however this was perceived to be an excessive number of statistical tests. 

Therefore, although a simplified analysis, the comparison of early vs late provided an insight 

into how reward and drug influenced the changes across trials (as measured by the LMM). 30 

instead of 20 trials (as in Chapter 3) were used in this analysis to account for the increased 

noise in the data (i.e., clinical data). We used one-sample Kolmogorov-Smirnov tests to test 

our data for normality and found that all measures were non-parametric. Consequently, 

median values were used as input in all Wilcoxon tests. Linear partial correlations (fitlm 

function in Matlab) were used to measure the degree of association between the chosen 

variables, while accounting for the factor reward and drug. 
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4.2 Results 
 

Across all output measures described in the following section, no significant differences 

between groups were found during baseline. 

 

Haloperidol impaired reward-based invigoration of sequential reaching movements. 

Our results converge with our previous findings that reward invigorates sequential reaching 

performance (Figure 2a). For both days, we found a significant improvement in MT across 

training (Training1: β = 0.009, CI =  [0.007, 0.01], t = -5.4, p < 0.0001; Training2: β = -0.003, CI 

= [-0.004, -0.002], t = -4.2, p < 0.0001) as well as a significant difference in performance 

between the reward and no reward groups (group; Training1: β = 1.67, CI = [0.567, 1.8], t = -

9.3, p < 0.0001; Training2: β = 0.91, CI = [-0.35, 2.17], t = -6.7, p < 0.0001). Importantly, our 

analysis revealed a significant interaction between group x trial number x drug on day1 (group 

x trial number x drug interaction: β = 0.004, CI = [0.004, 0.005], t = 2.29, p = 0.024). Fitting two 

LMM for both the reward and no reward groups, we found a significant interaction between 

drug and trial number only for the reward groups (trial number x drug interaction: β = -0.003, 

CI = [-0.003, -0.002], t = -2.18, p = 0.034, Figure 2b). This suggests that over the course of 

Training1, haloperidol selectively affected performance of the reward group. In contrast, 

haloperidol did not have a significantly negative effect on MT performance in the no reward 

group. In a subsequent post-hoc test, changes in MT performance between early and late 

training were analysed. For each participant, the average median MT for each timepoint (early 

and late training) were subtracted from one another. This comparison confirmed the 

aforementioned findings (Wilcoxon test; Z = 2.21, p = 0.0272, η2 = 0.32, Figure 2b) and 

highlighted that haloperidol was associated with a lack of MT improvement only for the 

reward group. Additionally, we found no significant group x trial number x drug interaction 

for Training2 (β = -0.003, CI = [-0.003, -0.002], t = -1.18, p = 0.084). 
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Figure 2 | Haloperidol impaired reward-based invigoration of sequential reaching movements. a)  Changes in 

MT presented in epochs of 20 trials averaged over participants for all groups: b) Changes in median MT 

performance form early to late Training1 for both reward groups. Median MT performance for each group during 

c) Post1, d) Post2 and e) Post7. Error bars represent SEM. 

 

Additionally, we found no significant group x trial number x drug interaction for Training2. 

Instead, we found a significant drug effect (β = -0.017, CI = [-1.25, 1.22], t = 3.18, p = 0.002). 

These results indicate that haloperidol impaired reward-based invigoration of MTs during day 

1 but subsequently led to a global slowing in MT performance across groups on day 2. 

Similarly to our previous results, we observed a significant interaction between trial number 

(post-R vs post-NR) and group for all post assessments (trial number x group; interaction, 

              
  

    

  

    

  

    

 

 
 
  
 
 
 
  
 
  

 
  
 
 

               

  

  

  

 

 

 

  

  

  

 

 

  

  

  

  

  

 

 

  

  

  

  

  

 

 

  

        

                    

        

        

           

              

       

        

          

        

          

 
 
  
 
 
 
  
 
  

 
  
 
 



   

97 
 

Post1: β = -0.031, CI = [-0.059, -0.007], t = 3.38, p = 0.001; Post2: β = -0.0002, CI = [-0.021, 

0.021], t = 2.25, p = 0.027; Post7: β = -0.015, CI = [-0.032, -0.0006], t = 3.47, p < 0.0001   Figure 

c-e). Specifically, we found significant changes in MT performance from post-R to post-NR for 

the no reward groups (Wilcoxon test; Post1: Z = -3.4, p = 0.0034, η2 = 0.38; Post2: Z = -2.6, p 

= 0.0421, η2 = 0.29; Post7: Z = -3.05, p = 0.0092, η2 = 0.35) but not the reward groups (Wilcoxon 

test; Post1: Z = -1.7, p = 0.1796, η2 = 0.17; Post2: Z = -1.7, p = 0.1853, η2 = 0.17; Post7: Z = -1.7, 

p = 0.1939, η2 = 0.17). This suggests that performance was more stable across reward regimes 

for the reward groups, whereas MTs changed significantly in the no reward groups depending 

on reward availability.  

 

Reward-based invigoration of peak velocities was impaired under haloperidol. 

Over the course of Training1 and Training2, peak velocities increased (trial number; Training1: 

β = -0.06, CI = [-0.08, -0.06], t = 3.0, p = 0.004; Training2: β = 0.04, CI = [0.03, 0.05], t = 3.44, p 

< 0.0001) with the reward groups showing significantly higher peak velocities throughout 

both training blocks (group; Training1: β = -9.48, CI = [-15.76, -3.22], t = 7.7, p < 0.0001; 

Training2: β = -1.83, CI = [-10.73, 7.08], t = -5.8, p < 0.0001). Similarly to our MT results, we 

found a significant interaction between group, trial number and drug on day1 (group x trial 

number x drug interaction: F = 5.75, p = 0.0189, η2 = 0.016). Fitting two separate LMM for 

both the reward and no reward groups, we found a significant interaction between drug and 

trial number for the reward group (drug x timepoint interaction: β = 0.024, CI = [0.021, 0.028], 

t = -2.06, p = 0.045, Figure 3a). In contrast, no significant results were found for the no reward 

groups (drug x timepoint interaction: β = 0.002, CI = [0.0019, 0.022], t = -1.06, p = 0.075). In 

line with our MT results, this suggests that haloperidol selectively impaired reward-based 

invigoration of peak velocities, which ultimately led to slower MTs. A subsequent post-hoc 

test comparing changes in peak velocities between reward groups over Training1 confirmed 

this conclusion (Wilcoxon test; Z = -2.31, p = 0.0208, η2 = 0.34, Figure 3b). 
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Figure 3 | Reward-based invigoration of peak velocities is impaired with haloperidol. a)  Changes in peak 

velocities presented in epochs of 20 trials averaged over participants for all groups: b) Changes in median MT 

performance form early to late Training1 for both reward groups. Median peak velocities performance for each 

group during c) Post1, d) Post2 and e) Post7. Error bars represent SEM. Note negative values are possible due 

to baseline corrections. 

Furthermore, our analysis did not reveal a significant group x trial number x drug interaction 

during Training2. However, in line with the MT results, we found a significant drug effect (β = 

5.31, CI = [-3.4, 14.02], t = -2.15, p = 0.033). These findings converge with the MT results and 

indicate that haloperidol impaired reward-based movement invigoration via a reduction in 

peak velocities on day 1, and led to global slowing across groups on day 2. 

Across post assessments, we found a significant group x trial number interaction for Post1 

and Post2 (trial number x group; interaction, Post1: β = 0.18, CI = [-0.0008, -0.36], t = -2.79, p 
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= 0.006; Post2: β = 0.09, CI = [-0.1, 0.27], t = -2.39, p = 0.019, Figure 3c-e). Specifically, we 

found significant changes in MT performance from post-R to post-NR for the no reward 

groups (Wilcoxon test; Post1: Z = 3.3, p = 0.0039, η2 = 0.37; Post2: Z = 3.49, p = 0.0019, η2 = 

0.39) as well as the reward groups (Post1: Z = 2.39, p = 0.0341, η2 = 0.24; Post2: Z = 2.31, p = 

0.0424, η2 = 0.24). Albeit, less significant and smaller in effect size, these results suggest that 

similarly to the no reward groups, performance in the reward groups changed according to 

reward availability.  

 

Haloperidol impaired coarticulation without reward-based feedback.  

Our results converge with our previous findings that reward facilitates coarticulation of 

sequential reaching movements (Figure 4a,b). For both days, we found a significant 

improvement in CI levels across trials (trial number ; Training1: β = 0.002, CI = [0.001, 0.003], 

t = 6.03, p < 0.0001; Training2: β = 0.003, CI = [0.001, 0.0004], t = 3.92, p < 0.0001) as well as 

a significant difference in performance between the reward and no reward groups (group; 

Training1: β = -1.0, CI = [-1.66, -0.35], t = 4.97, p < 0.0001; Training2: β = -1.39, CI = [-2.28, -

0.5], t = 4.35, p < 0.0001). Crucially, we found a significant interaction between group and 

drug for both days (group x drug interaction; Training1: β = 0.42, CI = [0.007, 0.84], t = 2.85, p 

= 0.005; Training2: β = 0.59, CI = [0.02, 1.16], t = 2.51, p = 0.013, Figure 4b,c). Specifically, we 

observed a significant difference in CI levels between the no reward groups on day2 (Wilcoxon 

test early vs late; Training1: Z = -1.8, p = 0.119, η2 = 0.21; Training2: Z = -2.8, p = 0.0118, η2 = 

0.31). In contrast, we did not find differences in coarticulation for the reward groups on either 

day (Training1: Z = 1.03, p = 0.3028, η2 = 0.11; Training2: Z = 0.77, p = 0.4391, η2 = 0.08). 

Despite the no reward group differences failing to reach significance for Training1, this trend  
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Figure 4 | Haloperidol impaired coarticulation without reward-based feedback. a)  Changes in CI levels 

presented in epochs of 20 trials averaged over participants for all groups: Median peak velocities performance 

for each group during b) Training1 c) Training2, d) Post2 and e) Post7. Error bars represent SEM. Note negative 

values are possible due to baseline corrections. 

 

suggests that haloperidol impaired coarticulation in the no reward group during initial 

learning (day1) and led to a progressively larger deficit across days (Figure 4a). While 

performance differences between groups were persistent across all post assessments (group; 

Post1: β = -1.18, CI = [-2.05, -0.31], t = -4.06, p < 0.0001; Post2: β = -1.49, CI = [-2.44, -0.54], t 

= 3.03, p = 0.003; Post7: β = -1.17, CI = [-2.08, -0.26], t = 2.84, p = 0.006), we also found a 

significant group x drug interaction for Post2 (β = 0.68, CI = [0.07, 1.28], t = 2.15, p = 0.035, 

Figure 4d). Yet again, we observed a significant difference in CI levels between the no reward 

groups (Wilcoxon test: Z = -2.89, p = 0.0076, η2 = 0.33) but not the reward groups (Z = 0.48, p 
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= 0.631, η2 = 0.04). Additionally, across Post7 the group x drug interaction was close to 

significance (β = 0.51, CI = [-0.04, 1.09], t = 1.81, p = 0.064, Figure 4e). These findings indicate 

that haloperidol impaired coarticulation when no reward was available; an impairment which 

became more apparent over time. In contrast, haloperidol had no effect when reward-based 

feedback was provided.  

 

Increases in movement smoothness were driven by reward but were not modulated by 

haloperidol. 

On both days, movement smoothness improved significantly across training (trial number; 

Training1: β = -0.001, CI = [-1.83, 0.3], t = 4.5, p < 0.0001; Training2: β = 0.004, CI = [0.002, 

0.005], t = 5.1, p < 0.0001, Figure 5a). Similarly, to previous results, we found that the reward 

groups produced significantly smoother movements throughout both days (group; Training1: 

β = -0.76, CI = [-0.003, 0.008], t = 4.2, p < 0.0001; Training2: β = -0.57, CI = [-1.78, 0.65], t = 

4.6, p < 0.0001). However, in contrast to the CI results, we failed to observe a significant 

interaction between group x drug on either day (Figure 5b,c). Specifically, we found no 

evidence that haloperidol modulated movement smoothness during training. In line with 

these results, we found no group x drug interaction across all post assessments. Despite a lack 

of significance, smoothness was lowest in the no reward group that received haloperidol, 

which is especially prominent on day2. Considering that our previous results suggest that 

coarticulation is associated with movement smoothness, we aimed to assess whether this 

holds true in the current experiment. Correlating median CI and smoothness values for both 

early and late Training1 and Training2, we found a strong association between them (partial 

correlation controlling for group and drug; ρ = 0.64; p < 0.0001, Figure 5d,e). This finding 

highlights coarticulation is related to smoothness. However, here we did not observe that 

drug-induced impairments in CI levels also led to a decrease in smoothness.  

 



102 
 

 

Figure 5 | Increases in movement smoothness were driven by reward but were not modulated by haloperidol. 

a)  Changes in smoothness presented in epochs of 20 trials averaged over participants for all groups: Median 

smoothness levels for each group during b) Training1 and c) Training2. Scatterplots displaying the relationship 

between median spectral arc length values and median CI levels during d) Training1 and e) Training2. Error bars 

represent SEM. Note negative values are possible due to baseline corrections. 

 

Haloperidol impaired the progressive alignment to the predictions of a minimum jerk model 

when no reward-based feedback was available.  

Assessing whether performance aligned with the predictions of an optimisation model 

(minimum jerk model), we calculated the mean squared error between the model’s 

prediction and the actual data on a trial-by-trial basis. Across Training1, we observed a 

significant decrease in mean squared error (trial number; Training1: β = -0.0003, CI = [-0.0002 
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0.0005], t = 4.96, p < 0.0001, Figure 6a), suggesting that performance aligned progressively 

more with the predictions of the minimum jerk model.  

 

 

Figure 6 | Haloperidol impaired the progressive alignment to the predictions of a minimum jerk model when 

no reward-based feedback was available. a)  Changes in mean squared error presented in epochs of 20 trials 

averaged over participants for all groups: Median mean squared error for each group during b) Training1 c) 

Training2, d) Post1 and e) Post2. Error bars represent SEM. Note negative values are possible due to baseline 

corrections. 

Additionally, we found that mean squared error was significantly lower for the reward groups 

across both trainings (group; Training1: β = -0.05, CI = [-0.098, -0.007], t = 6.67, p < 0.0001; 

Training2: β = -0.07, CI = [-0.13, 0.02], t = 6.02, p < 0.0001). Importantly, a group x drug 

interaction was significant for both days (group x drug interaction; Training1: β = 0.02, CI = [-

0.01, 0.05], t = 2.67, p = 0.008; Training2: β = 0.03, CI = [-0.007, 0.06], t = 2.57, p = 0.011, 
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Figure 6b,c). Post-hoc analysis revealed a significant difference in mean squared error for the 

no reward groups on day2 (Wilcoxon test; Training1: Z = -0.6, p = 0.684, η2 = 0.04; Training2: 

Z = -2.4, p = 0.0324, η2 = 0.27). In contrast, we did not find performance differences for the 

reward groups on either day (Training1: Z = 0.41, p = 0.684, η2 = 0.04; Training2: Z = 0.83, p = 

0.4093, η2 = 0.08).  

Despite differences not reaching significance during Training1 for the no reward groups, this 

trend suggests that haloperidol impaired this optimisation process in the no reward group 

during initial learning (day1) which then led to a progressively larger deficit across days. 

Across all post assessments, we found significant group differences (group; Post1: β = -0.04, 

CI = [-0.1, 0.014], t = 2.41, p = 0.018; Post2: β = -0.15, CI = [-0.003, 0.07], t = 2.34, p = 0.022; 

Post7: β = -0.06, CI = [-0.117, 0.006], t = 2.22, p = 0.029). These results converge with previous 

findings suggesting that reward facilitates this optimisation process (i.e., reduces jerk). 

Additionally, we found significant a group x drug interaction for Post1 and near significant 

interaction for Post2 (group x drug interaction; Post1: β = 0.04, CI = [-0.003, 0.072], t = -2.09 

p = 0.04; Post2: β = 0.03, CI = [-0.007, 0.063], t = 1.9, p = 0.059). This suggests that haloperidol 

impaired performance in the no reward group and aligns with the results during training.  

 

4.4 Discussion 

In summary, reward led to a clear improvement in movement time, peak velocity, 

coarticulation, movement smoothness and similarity to an optimal minimum-jerk 

performance. This replicates our work in chapter 3 and reaffirms that reward is associated 

with improved speed and efficiency during sequential reaching. When under the influence of 

a dopamine D2-receptor antagonist (haloperidol), it was found that haloperidol affected both 

movement vigour and coarticulation. While both haloperidol groups showed a global slowing 

(slower movement time) during the day of drug intake, this effect was only significant for  the 

Halo-Rew group. Interestingly, a significant drug effect was found on day2 suggesting that 
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haloperidol led to a global slowing on the second testing day. However, it is important to note 

that the MT performance differences are far more pronounced in the no reward groups than 

in the reward groups. This stratification in MT performance cannot be fully explained by 

differences in peak velocities, which were performed at a similar level across both no reward 

groups on day2 (here performance differences are more pronounced in the reward groups). 

Instead, the marked impairment in coarticulation which was apparent on both testing days in 

the Halo-NoRew group could explain this pronounced difference in MTs between no reward 

groups. While the Ctrl-NoRew group gradually increased coarticulation levels across 

Training2, leading to further reductions in dwell time around the via points, the Halo-NoRew 

group exhibited sustained impairment in coarticulation. Interestingly, this impairment in 

coarticulation could not be observed in the Halo-Rew group with similar CI levels across 

reward groups, suggesting that haloperidol impaired coarticulation only when reward-based 

feedback was not provided.   

Importantly, these results indicate that reward has dissociable effects on movement 

invigoration and coarticulation. While haloperidol led to a global slowing of movement time, 

coarticulation was only impaired in the Halo-NoRew group. This suggests that while reward 

driven by DA modulates both movement invigoration and coarticulation, the neural 

underpinnings appear to be somewhat dissociable. Support for this dissociation comes from 

recent work showing that tonic DA appears to modulate motor vigour167,170,171, while phasic 

DA has been shown to play a role in motor learning160–166. Therefore, haloperidol appears to 

affect tonic DA irrespective of reward-based feedback leading to increases in MT. These 

findings agree with a recent study which showed that a selective depletion of D2 receptors in 

mice impairs the initiation and vigour of self-paced actions167. Further evidence comes from 

studies which assessed response vigour in PD patients OFF medication and showed a 

reduction in response vigour in both a saccadic task168 and an effort-based decision-making 
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task169. Consequently, DA appears to modulate motor vigour, while a D2 antagonist leads to 

an increase in MTs irrespective or reward-based feedback. 

In contrast to tonic DA, phasic DA has been found to play a role in motor learning160–166. 

Specifically, phasic firing of DA neurons increases if the obtained reward is higher than 

expected. In contrast, a dip in phasic DA burst can be observed for the opposite142. 

Consequently, phasic DA firing in response to reward appear to explain well how action values 

are updated thereby enabling learning128. In line with these findings, our results suggest that 

DA plays a role in coarticulation. However, interestingly this effect was only present in the 

Crtl-NoRew group. The impairment in the Crtl-NoRew group mirrors recent 

neuropharmacological work that has shown that tiapride, a highly selective D2 antagonist, 

impaired learning on a complex motor sequence task166. Further support comes from a study 

which assessed chunking in PD patients ON and OFF medication. This study found that 

patients OFF medication showed severe impairment in chunking even for well-trained motor 

sequences. In comparison, patients ON medication did not differ significantly from healthy 

controls164. Consequently, our results support recent findings and suggest that DA plays a role 

in motor sequence learning and particularly in learning to skilfully execute movement 

sequences through coarticulation. Importantly, the detrimental effects of a D2 antagonist on 

coarticulation appear to be compensated for by reward-based feedback. There is ample 

evidence that both the direct and indirect pathway contribute to motor sequence learning160–

162, with some work suggesting that the direct (D1) pathway is more involved when learning 

from rewards148. Consequently, blocking D2 receptor binding could lead to increased D1 

receptor binding, which may increase learning from positive reinforcement148. However, in 

the current study, blocking D2 receptor binding through haloperidol did not enhance 

coarticulation in the presence of reward, indicating that this proposed dichotomy may be 

overly simplistic. Further research is needed to explain why reward-based feedback preserved 

coarticulation.  
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Although sometimes lacking significance, there was an overall trend for the Halo-NoRew 

group to express impaired smoothness and a reduced similarity to the predictions of a 

minimum-jerk model throughout both testing days. This suggests that impairing 

coarticulation leads to impairments in movement quality that propagate and cannot be 

compensated for during a subsequent training. Further research is needed to understand why 

participants in the Halo-Rew do not show improvements in coarticulation on day2.  

These results provide evidence that both movement invigoration of sequential reaching 

movements and coarticulation are DA-dependent processes. However, the underlying neural 

mechanisms appear to be different. While haloperidol led to a global slowing, coarticulation 

was only impaired in the Halo-NoRew group. Based on prior work, this suggests that tonic DA 

modulates movement invigoration, while phasic dopamine underpins coarticulation. 

Importantly, the deleterious effects of haloperidol on coarticulation can be compensated for 

with reward-based feedback. 
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Chapter 5 

 

Coarticulation is guided by the principle of 

smoothness maximisation 

 

   

 

5.1 Introduction 

Humans have the remarkable ability to produce complex sequential movements such as 

drinking a cup of coffee or driving a car with reliability, smoothness and speed. Recent 

behavioural evidence suggests that the production of such efficient upper limb action 

sequences requires coarticulation25–27,217. Ubiquitous in our daily life but often impaired in 

clinical populations21–24, coarticulation describes the slow process of blending discrete sub-

movements into continuous actions25,27,28,99. Imagine, you want to drink a sip of your coffee. 

Rather than reaching for your cup with your hand still closed, you start opening your hand 

while reaching for it. Similarly, you will tilt your cup while moving it to your already opened 

mouth. This simple example of drinking a sip of coffee highlights the importance of 

coarticulation to daily activities and illustrates its main feature: it allows for discrete sub-
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movements to be merged into a single continuous action194,195,205. Thus, upper limb 

coarticulation represents a hallmark of skilled sequential performance25–28,83,194,217.  

However, despite showing in chapters 3-4 that reward led to a clear improvement in 

coarticulation, this could only be observed in three pairs of in-centre-out reaching 

movements. In contrast, no increases in coarticulation were evident in the other reaching 

movement transitions. Similarly, no coarticulation could be observed in the pilot studies 

described in chapter 2. In these experiments, reward only led to reductions in MTs which 

were transient (i.e., they disappeared once reward was removed). These results mirror 

previous findings by Sosnik et al. (2004, 2007, 2015)25–27. In their work, participants were 

asked to execute four sequential reaching movements. However, even after nine training 

sessions, only two pairs of reaching movements were coarticulated, while pronounced stop 

periods could be observed between the other movement transitions25–27. Consequently, 

coarticulation appears to be transition-specific with some transitions allowing for 

coarticulation, while others do not. Hence, it remains unclear which sequential actions benefit 

from coarticulation and what guides this selection process.  

Seminal work by Flash and Hogan (1985) introduced a kinematic model which predicts human 

behaviour based on the criterion of maximum smoothness99. It posits that the most optimal 

way of completing a given task is to choose the smoothest motor command99. Therefore, the 

aim of the motor system is to optimise the cost of jerkiness. Indeed, the so-called minimum 

jerk model99,100 has been shown to account for a variety of reaching movements99,100,111,112. 

In line with these results, in both the work presented in this thesis and earlier work by Sosnik 

er al. (2004, 2007, 2015)25–27 task performance progressively aligned with the predictions of 

a minimum-jerk model28,99. This suggests that a minimum-jerk model can accurately predict 

which movement transitions will be coarticulated. Therefore, coarticulation appears to be 

guided by the criterion of maximum smoothness. Considering that reductions in jerk have 
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been linked to decreases in metabolic effort209, maximising smoothness appears to be a 

biologically plausible strategy to guide human behaviour. 

Here we tested the hypothesis that coarticulation is guided by the criterion of maximum 

smoothness using a novel reaching task design. In this experiment, participants were asked 

to perform a sequence of two reaching movements with varying reaching angles between 

them ranging from acute to obtuse. Based on the predictions of a minimum-jerk model, in 

obtuse angles performance is maximally smooth if the sequential reaching movements are 

fully coarticulated. In contrast, executing two discrete movements (i.e., no coarticulation) 

maximises smoothness in acute angles. Hence, this experiment, by systematically varying the 

angle of the movement transition, explores whether the principle of smoothness 

maximisation guides the coarticulation of reaching movements. 

Furthermore, two further research questions were addressed in this study: 1) Does a delay in 

receiving rewarded training influence coarticulation?; and 2) Do individual differences affect 

coarticulation?  

It has been shown that increases in task space exploration prior to a subsequent reward-

based training, led to steeper learning curves84,91,219,220. In contrast, such an exposure could 

also slow down subsequent learning due to having to unlearn an original behaviour61. 

Consequently, task exposure prior to reward-based training could be either beneficial or 

detrimental to performance. To address this question, two training phases were included in 

this experiment and participants either received reward during the first or second phase. 

In both the work presented in this thesis and earlier work by Sosnik er al. (2004, 2007, 2015)25–

27 , a small but significant number of participants fail to coarticulate sequential movements 

even with reward and/or after days of training25–27,217. To date, these individual differences in 

coarticulation have not been accounted for. Based on recent work that demonstrated 

working memory capacity influences both motor skill learning and adaptation221–226, 

participants were asked to complete a working memory (WM) task prior to the start of the 
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experiment. Additionally, to investigate whether these individual differences in coarticulation 

could be mapped onto naturally occurring differences in movement smoothness86 

participants performed a doodling task in-between the working memory task and the main 

experiment.   

 

5.2 Methods 

Participants: 59 participants (18 males; age range 18-24) were recruited to participate in this 

experiment, which had been approved by the local research ethics committee of the 

University of Birmingham. All participants were novices to the task paradigm and were free 

of motor, visual and cognitive impairment. Most participants were self-reportedly right-

handed (N = 8 left-handed participants) and gave written informed consent prior to the start 

of the experiment. For their participation, participants were remunerated with either course 

credits or money (£7.5/hour) and were able to earn additional money during the task 

depending on their performance. Before the start of the experiment, participants were 

pseudo-randomly allocated to one of the available groups. 

 

Experimental Apparatus: All experiments were performed using a Polhemus 3SPACE Fastrak 

tracking device (Colchester, Vermont U.S.A; with a sampling rate of 110Hz).  Participants were 

seated in front of the experimental apparatus which included a table, a horizontally placed 

mirror 25cm above the table and a screen (Figure 1a). The low-latency monitor placed 25cm 

above the mirror had a refresh rate of 60Hz and displayed the workspace and participants’ 

hand position (represented by a green cursor – diameter 1cm). On the table, participants 

were asked to perform 2-D reaching movements. Looking into the mirror, they were able to 

see the representation of their hand position reflected from the screen above. This setup 

effectively blocked their hand from sight. The experiment was run using MATLAB (The 

Mathworks, Natwick, MA), with Psychophysics Toolbox 3.  
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Task design: In this experiment, we aimed to assess whether coarticulation is guided by 

smoothness maximation. To this end, a task was designed in which participants were asked 

to hit a series of targets displayed on the screen consisting of a via point and an end target 

(both 1cm diameter). The angle between these two reaching movements (both 10cm) ranged 

from acute to obtuse (10 ͦ,27.5 ͦ,45 ͦ,62.5 ,ͦ80 ;ͦ Figure 1b). Consequently, participants were 

asked to execute two equally long continuous reaching movements with 5 different reaching 

angles between them. Based on the predictions of a minimum-jerk model (Figure 1c,d), in 

obtuse angles performance is maximally smooth if the sequential reaching movements are 

fully coarticulated. In contrast, executing two discrete movements (i.e., no coarticulation) 

maximises smoothness in acute angles (Figure 1e,f). Hence, this experiment, by systematically 

varying the angle of the movement transition, explores whether the principle of smoothness 

maximisation guides coarticulation of reaching movements. To start each trial, participants 

had to pass their cursor though the preparation box (2x2cm) on the left side of the workspace, 

which triggered the appearance of the start box (2x2cm) in the centre of the screen. After 

moving the cursor into the start box, participants had to wait for 1.5s for the targets to appear. 

This ensured that participants were stationary before reaching for the first target. Target 

appearance served as the go-signal. Upon reaching the last target, all targets disappeared, 

and participants had to wait for 1.5s before being allowed to exit the start box to reach for 

the preparation box to initiate a new trial. Participants had to repeat a trial if they missed a 

target. Similarly, exiting the start box too early either at the beginning or at the end of each 

trial resulted in a missed trial.  

 

Reward Structure and Feedback: The same reward structure as in chapters 3-4 was used in 

this experiment. Participants experienced either reward or no reward trials depending on the 

current experimental phase: (1) Reward trials were cued using a visual stimulus prior to the 

start of the trial (Figure 1c). Once participants moved into the preparation box, the start box 

appeared in yellow (visual stimulus) rather than in black (Figure 1f). Participants were 
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informed that faster MTs will earn them more money, with a maximum amount of 5p 

available in each trial. While participants moved from the start box to the preparation box to 

initiate a new trial, the amount earned in the previous trial was displayed on the top of the 

screen (i.e. ‘You have earned 2p out of 5p’). Similarly to our previous experiment, we used a 

closed-loop design to calculate the amount of reward earned in each trial (see Chapter 2 for 

more information). When participants started a new experimental block, performance in the 

first trial was compared to the last 20 trials of the previously completed block. (2) No reward 

trials were not cued, and no reward was available for participants. However, participants 

were instructed to ‘move as fast and accurately as possible’ (Figure 1f). 

 

  

 

Figure 1 | Experimental setup and task design. a) Participants wore a motion-tracking device on their index 

finger (Polhemus). b) Location of the via and end target for each angle configuration. c) Predicted minimum jerk 

trajectories for each angle configuration. Dotted lines represent discrete reaches to each target. d) Velocity 

profile for each angle configuration derived from the positional data (x,y) of the minimum jerk model. e) The 

level of coarticulation and f) Smoothness (spectral arc length) present in each minimum jerk model prediction, 

with values closer to 0 indicating smoother movements. 
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Experimental Procedure 

Participants were pseudo-randomly allocated to either the Reward1 (N = 29) or Reward2 (N 

= 30) group. Both groups completed two training blocks (Training1 and Training2) and were 

then asked to complete two Post assessments afterwards (post-R where reward was available 

and post-NR without reward). Participants in the Reward1 group received reward during 

Training1 and no reward during Training2. In contrast, participants in the Reward2 group 

received no reward first and were then able to earn reward during Training2. Differences in 

performance during the Post assessment could provide insight whether the timing of reward 

affects future task performance. To address whether individual differences influence 

coarticulation participants were asked to complete both a working memory (cognitive) and a 

free doodling task (motor) at the beginning of the experiment (Figure 2a).  

Working memory task (WM): Participants were asked to complete a WM task prior to the 

start of the main experiment225. Across 60 trials, participants were asked to memorise an 

array of consonants during the encoding period (1s) and remember them during a subsequent 

maintenance period (3s). During recall (4s), participants were presented with a single letter 

and were asked to decide whether this letter was part of the array or not. Participants were 

able to respond by pressing one of three keys: “1” key indicated that the letter presented in 

the recall period was part of the array (‘match’). “2” key indicated the opposite (‘nonmatch’); 

and “3” indicated that the participant was unsure as to the correct answer (Figure 2b). This 

WM task included 5 levels of difficulty with 12 trials presented for each. Half of these (6 trials) 

were trials in which ‘match’ was the correct answer, whereas in the remaining 6 trials 

‘nonmatch’ was the correct answer. The order of presentation was pseudorandomized across 

participants, who had 10 practice trials prior to the start of the WM task to familiarise 

themselves with the task and instructions. Difficulty in this task was determined by the length 

of the array to be remembered, ranging from 5 to 9225.  
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Doodling Task: Across 5 trials participants were asked to doodle freely for 6s. Participants 

were seated in front of the experimental apparatus used for the main experiment wearing 

the Polhemus tracking device on their index finger. To start a trial, participants moved the 

cursor into the start box positioned in the centre of the workspace. After a wait period (1.5s), 

a white rectangle (40x20cm) appeared around the start box, which served as the go signal. 

Participants were instructed to freely doodle within the confines of the square until it 

disappeared, which also marked the end of the current trial. To initiate a new trial, 

participants had to move back into the start box, which appeared once the trial was over 

(Figure 2c). 

  

Figure 2 | Experimental setup and kinematic markers. a) Study design. Participants were randomly allocated to 

the Reward1 and Reward2 group and completed two trainings (Training1 and Training2) and two Post 

assessments (post-R and post-NR). b) Illustration of the working memory task. c) Illustration of the doodling task.  

d) Trial data from the doodling task, which was coloured according to the calculations of the curvature analysis. 

Blue segments represent segments, in which angle changes were below the threshold (straight lines), whereas 

angle changes above the threshold were coloured in red and orange (curves) e) Velocity profile derived from 
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doodling trial data. Coloured in red are velocity values that fall below the peak velocity threshold (20%) and were 

used to calculate the mean arrest period ratio. Blue dots represent peaks in the velocity profile to determine the 

number of peaks for the kinematic analysis of the doodling data. 

 

Baseline: Participants in both groups completed 5 blocks of baseline trials prior to the start of 

the main experiment. Each block contained 5 trials, one for each angle configuration. The 

order within each block was randomised. No reward was available during Baseline, instead 

both groups were instructed to ‘move as fast and accurately as possible’  

Training1: Participants in the Reward1 group were informed that during this part they would 

be able to earn money depending on how fast they complete each trial (25 blocks of 5 trials). 

In contrast, participants in the Reward2 group engaged in 25 blocks of no reward trials and 

were again instructed to move as fast and as accurately as possible. 

Training2: Participants in the Reward1 group were not able to earn any reward during this 

part. Instead, they were again instructed to move as fast and as accurately as possible. In 

contrast, participants in the Reward2 group were informed that during this part they would 

be able to earn money depending on how fast they complete each trial (25 blocks of 5 trials). 

Post assessments: Participants from both groups were asked to complete two post 

assessments (5 block of 5 trials); one with reward trials (post-R) and one with no reward trials 

(post-NR). The order was counter-balanced across participants. 

 

Data Analysis 

Analysis code will be available on the Open Science Framework website, alongside the 

experimental datasets at https://osf.io/62wcz/. The analyses were performed in Matlab 

(Mathworks, Natick, MA). A similar array of parameters to assess performance as in Chapters 

3-4 were used here (for more information on the individual parameters see Chapter 2): 
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Movement Time (MT): MT was measured as the time between exiting the start box and 

reaching the end target. This excludes reaction time, which describes the time between target 

appearance and when the participants has left the start box.  

Peak and Minimum Velocity: Through the derivative of positional data (x, y), the velocity 

profiles were obtained and both the peak and minimum velocities of each reaching 

movement were subsequently determined. These were then averaged for each trial.  

Coarticulation Index (CI): To measure coarticulation, we compared the mean peak velocities 

of the two sequential reaches with the minimum velocity around the via point. The smaller 

the difference between these values, the greater coarticulation had occurred between the 

two movements193. We normalised the obtained difference, ranging from 0 to 1, with a CI 

value of 1 indicating a fully coarticulated movement.  

Spectral Arc Length: To assess movement smoothness, we used spectral arc length as our 

smoothness metric. Spectral arc length has been shown to be less sensitive to differences in 

MT and more sensitive to changes in smoothness 85,87. The spectral arc length is derived from 

the arc length of the power spectrum of a Fourier transformation of the velocity profile. We 

used an open-source Matlab toolbox to calculate this value for each trajectory 198.  

Coarticulation Magnitude: To understand how much participants coarticulated sequential 

reaching movements across all five angle configurations, we determined their coarticulation 

magnitude. To this end, we aggregated participants’ CI scores across four time windows, 

which included the last 5 blocks of Training1 and Training2 as well as all 5 blocks of post-R and 

post-NR. We then z-scored the CI values for each angle separately and found the mean for 

each participant. This analysis stratifies participant’s performance into participants that 

comparatively coarticulated more across all angle configurations and participants that did 

not. Positive values for this coarticulation magnitude metric indicate greater expression of 

coarticulation, whereas negative values suggest that a given participant coarticulated less in 

magnitude across all angles and timepoints of interest.  
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Working Memory Performance: WM performance was defined as the average percentage of 

correct responses across the three highest levels of difficulty for each task225.  

Kinematic Analysis of Doodling Task: To analyse the doodling task, we compiled a battery of 

kinematic markers including mean speed, spectral arc length and three additional 

smoothness metrics. This approach was inspired by recent work assessing kinematic changes 

during stroke recovery23,24.  

Curvature ratio: Movement smoothness has been traditionally quantified using the velocity 

profile (temporal smoothness). However, here we sought to use the trajectory of the 

movement to assess smoothness. Spatial smoothness, represented by the curvature of the 

trajectory, has been shown to capture both stroke patient’ recovery and movement quality 

in healthy subjects227. To measure curvature, we first used spline interpolation (MATLAB 

function interp1) to evenly space data points (unit distance) and then measured the angle 

between consecutive data points. Subsequently, we subtracted consecutive angles values and 

defined curvature as differences between angle values exceeding 5 ͦ. Finally, we measured the 

ratio of curved movements to straight movements, with higher curvature ratio values 

indicating higher spatial smoothness (Figure 2d).   

Mean Speed: We calculated the mean speed of each doodling trial from the velocity profile, 

which was derived from the recorded positional data (x, y).  

Spectral Arc Length: We used the same approach to calculate the trial-based spectral arc 

length as described above. 

Mean arrest period ratio: We determined the mean arrest period ratio in each doodling trial 

by measuring the proportion of time  speed was below a given percentage of the peak 

velocity. The threshold used in this analysis was 20%, which has been shown to be informative 

when studying movement smoothness in healthy participants (Figure 2e)23,228.     

Number of velocity peaks: Using the same threshold as in the mean arrest period ratio analysis 

we obtained the number of peaks in the velocity profile that exceeded the given threshold. 
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This smoothness metric has been used in both healthy subjects and stroke patients to 

quantify movement smoothness (Figure 2e)229,230.     

 

Statistical Analysis 

Throughout we used mixed model ANOVAs to assess statistical significance. A mixed model 

ANOVA with group (Reward1 and Reward2) and angle (angle1 – angle5) as factors was used 

to measure differences in performance during baseline. We then carried out three separate 

analyses to analyse the performance across Training1 and Training2. All mixed model ANOVAs 

included group (Reward1 and Reward2) and angle (angle1 – angle5) as factors. In addition, 

timepoint was added as a factor. To assess changes across Training1, we compared the first 5 

blocks during early Training1 with the last 5 blocks of Training1. Similarly, to measure changes 

in performance from Training1 to Training2 (from here on called Transition) we compared the 

last 5 blocks of Training1 with the first 5 blocks of Training2. Finally, to assess performance 

across Training2 we compared the first 5 blocks of Training2 with the last 5 blocks of 

Training2. Hence, we used three separate mixed model ANOVAs with different timepoints 

(Training1, Transition and Training2) to answer our main research question. To address our 

second research question (reward timing on task performance), we carried out a mixed model 

ANOVA with group (Reward1 and Reward2), angle (angle1 – angle5) and timepoint (Post (i.e., 

post-R and post-NR)) as factors. We used one-sample Kolmogorov-Smirnov tests to test our 

data for normality and found that all measures were non-parametric. Median values were 

therefore used as input in all mixed model ANOVAs. Wilcoxon tests were employed when a 

significant interaction and/or main effects were reported and corrections for multiple 

comparisons were performed using Bonferroni correction. Linear partial correlations (fitlm 

function in Matlab) were used to measure the degree of association between the chosen 

variables, while accounting for the factor group and angle.  
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5.3 Results 

 

Reward invigorated sequential reaching movements irrespective of reaching angle. 

The results converge with results from Chapters 3-4 showing that reward invigorated 

sequential reaching performance (Figure 3a,b). No differences between groups or angles 

were observed during baseline (mixed-effect ANOVA; group: F = 0.92, p = 0.3416; angle: F = 

2.09, p = 0.0834). However, significant interactions between timepoint and group for both 

Training1 (timepoint x group; F = 7.65, p = 0.0076) and Transition (timepoint x group; F = 

36.34, p < 0.0001) were found.  Specifically, significant difference between groups during late 

Training1 (Wilcoxon test; Z = -6.2, p < 0.0001), but not during early Training1 (Z = -1.88, p = 

0.302, Figure 3c) were observed. Similarly, a significant decrease in MTs for Reward2 once 

they received reward during Training2 was observed (Z = 6.22, p < 0.00001), whereas Reward1 

increased MTs (Z = -2.99, p = 0.0136, Figure 3d). These results suggest that, reward invigorates 

sequential reaching. However, we only found significant group differences during Training1 

(group; F = 4.82, p = 0.0322), while no significant differences were observed across the other 

timepoints of interest (group; Transition: F = 1.7, p = 0.1972; Training2: F = 1.3, p = 0.2596,). 

Similarly, the interaction between timepoint and group was not significant during Training2 

(timepoint x group; F = 2.02, p = 0.1612, Figure 3e), which indicates that despite Reward1 

increasing their MTs during early Training2, overall group performances did not differ across 

the rest of the experiment.  
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Figure 3 | Reward invigorates sequential reaching movements irrespective of reaching angle (◦). Trial-by-trial 

changes in MT averaged over participants for each angle and group: a) Reward1 and b) Reward2. Median change 

in MT between groups for timepoint: c) Training1, d) Transition and e) Training2. Median change in MT for each 

angle between groups for timepoint: f) Training1, g) Transition and h) Training2. Shaded regions/error bars 

represent SEM. 

 

This suggests that Reward1 maintained performance gains across Training2, in which they 

were not able to receive any reward. A significant interaction between group and angle during 
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Training2 (group x angle; F = 3.71, p = 0.0061) as well as a significant main effect for angle 

(angle; F = 2.9, p = 0.023) indicates that this retention of reward-based improvements is angle-

specific. Specifically, we found that group performance on all angles apart from angle5 were 

significantly different during Training2 (Wilcoxon test; angle1: Z = 3.37, p = 0.0037; angle2: Z 

= 2.93, p = 0.0169; angle3: Z = 3.14, p = 0.0086; angle4: Z = 3.02, p = 0.0128: angle5: Z = 1.56, 

p = 0.6021, Figure 3f). These findings indicate that the retention of reward-based 

performance gains was greatest in angle5. 

Additionally, we found significant interactions between group and angle during Training1 and 

Transition (group x angle; F = 3.26, p = 0.0126, Figure 3g; F = 3.8, p = 0.0052, Figure 3h, 

respectively). During Training1, only the performance on angle5 was significantly different 

between groups suggesting that here reward invigoration was the greatest (Wilcoxon test; 

angle1: Z = -1.53, p = 0.6283; angle2: Z = -2.24, p = 0.1248; angle3: Z = -2.14, p = 0.2101; 

angle4: Z = -2.41, p = 0.0788: angle5: Z = -2.79, p = 0.0267, Figure 3g). In contrast, changes in 

performance during Transition were not significant (Wilcoxon test; angle1: Z = -0.79, p = 1; 

angle2: Z = -0.67, p = 1; angle3: Z = -0.9, p = 1; angle4: Z = -1.19, p = 1: angle5: Z = -1.97, p = 

0.2556, Figure 3h). Overall, these results show that reward invigorates sequential reaching 

movements, and that the magnitude and retention of these reward-based performance gains 

was greatest in the most obtuse angle (angle5).  

 

Reward invigorated peak velocities but changes in peak velocities did not fully explain 

reward-based retention of performance gains. 

The results show that reward invigorates peak velocities (Figure 4a,b), however fails to fully 

explain the retention of MT performance gains during Training2. Despite no differences in 

peak velocity during baseline (mixed-effect ANOVA; group: F = 0.17, p = 0.6755; angle: F = 

0.28, p = 0.4356) a significant interaction between all factors during Training1 (timepoint x 

group x angle; F = 5.29, p < 0.0001) and Transition (timepoint x group x angle; F = 4.66, p = 



   

123 
 

0.0012) was found. Specifically, we found a significant difference between groups during late 

Training1 (Wilcoxon test; Z = 5.23, p < 0.00001), but not during early Training1 (Z = 2.24, p = 

0.1251, Figure 4c). Similarly, a significant increase in peak velocities for Reward2 once they 

received reward was observed during Training2 (Z = -5.75, p < 0.0001), whereas Reward1 

exhibited a decrease in peak velocities (Z = 2.76, p = 0.029, Figure 4d). This supports existing 

findings that reward-based invigoration of MT can be driven by increases in peak velocities. 

However, in contrast to the MT results, no significant differences between groups could be 

found during Training1 and Transition (main effect for group; F = 2.95, p = 0.0915, F = 0.12, p 

= 0.7287, respectively).  

 

 

Figure 4 | Reward invigorates peak velocities but changes in peak velocities do not fully explain reward-based 

retention of performance gains. Trial-by-trial changes in peak velocities averaged over participants for each 

angle and group: a) Reward1 and b) Reward2. Median change in peak velocities between groups for timepoint: 

c) Training1, d) Transition and e) Training2. Shaded regions/error bars represent SEM. 

              

  

  

  

  

 
 
 
 
  
 
  
 
  
  
  
 
  
 

              

  

  

  

  

 

  

  

  

 
 
 
 
  
 
  
 
  
  
  
 
  
 

 

  

  

  

 

  

  

  

  

    

      

                                                  



124 
 

In contrast, a significant group difference was found during Training2 (for group; F = 4.81, p = 

0.0325), suggesting that here, unlike in the MT analysis, groups exhibited a significant 

difference in peak velocities. Additionally, no interaction between group and angle was 

observed (group x angle; F = 0.37, p = 0.8298, Figure 4e) suggesting that this change in peak 

velocities across Training2 was not angle-specific. Overall, these results suggest that the 

invigoration of peak-velocities is reward-sensitive but follows the previously observed ‘on-off 

effect’ of reward on movement invigoration. Consequently, the observed retention of 

Reward1’s performance gains during Training2 cannot be fully explained by peak velocities. 

 

Coarticulation is guided by the criterion of smoothness maximisation while increased 

coarticulation led to a retention of reward-based decreases in MT. 

The results show that more obtuse angles are being coarticulated faster and to a greater 

extent than more acute angles (Figure 1a,b). While no differences between groups or angles 

were observed during baseline (mixed-effect ANOVA, group: F = 0.54, p = 0.4661; angle: F = 

0.36, p = 0.8374), a significant interaction for both Training1 (timepoint x group; F = 5.93, p = 

0.0181) and Transition (timepoint x group F = 11.77, p = 0.0011) was found. Post hoc test 

revealed a significant difference between groups during late Training1 (Wilcoxon test; Z = 

4.17, p < 0.0001, Figure 1c), but not during early Training1 (Z = 1.23, p = 0.98, Figure 1d). 

Similarly, a significant increase in CI levels for Reward2 during Training2 was observed (Z = -

3.78, p < 0.00001), suggesting that reward facilitates coarticulation. Importantly, a lack in 

interaction during Training2 (timepoint x group; F = 0.23, p = 0.6313, Figure 1e), may suggest 

that this is a stable change in performance. Additionally, no significant group differences were 

found during Training2 (group; F = 0.01, p = 0.9521) indicating that a delay in reward-based 

training did not influence coarticulation.  
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Figure 5 | Coarticulation is angle-specific with obtuse reaching angles allowing for more coarticulation; a 

process which is facilitated by reward. Trial-by-trial changes in CI levels averaged over participants for each 

angle and group: a) Reward1 and b) Reward2. Median change in CI levels between groups for timepoint: c) 

Training1, d) Transition and e) Training2. Median values of CI levels for each angle across groups for timepoint: 

f) Training1, g) Transition and h) Training2. Scatterplots displaying the relationship between MT and CI levels 

during i) late Training2 and j) post NR with a linear line fitted across groups. Shaded regions/error bars represent 

SEM. 
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Notably, significant differences between angles across all timepoints of interest were 

observed (angle; Training1: F = 28.99, p < 0.0001; Transition: F = 36.87, p < 0.0001; Training2: 

F = 37.39, p < 0.0001; Figure 5f-h). Specifically, CI levels for angle5 were significantly higher 

than all other angles for each timepoint (see Supplement Table 1). Similarly, CI levels for 

angle4 were significantly higher than angle1-angle3, whereas no differences could be 

observed between the most acute angles (angle1-angle3; see Supplement Table 1).  These 

results highlight that more obtuse angles can be coarticulated faster and to a greater extent, 

which represents a change in performance that becomes reward-independent over time. It 

also indicates that coarticulation on different angles can be predicted by the minimum-jerk 

model. Based on predictions of a minimum-jerk model, CI level calculations revealed that 

angle5 can be fully coarticulated, whereas no (or very little) coarticulation is present in angle1. 

The presented results fit the model predictions and suggest that smoothness maximisation 

guides coarticulation. Considering that the retention of reward-based performance gains was 

greatest in magnitude in angle5, we sought to understand whether increases in CI levels are 

related to this observed retention. To this end, MT values with CI levels were correlated 

during Training2 and post-NR, and a significant correlation was found between them (partial 

correlation controlling for both group and angle; Training2: ρ = -0.44, p < 0.0001, Figure 5i, 

post-NR: ρ = -0.41, p < 0.0001, Figure 5j). Although not causal, this indicates that faster MTs 

during both Training2 and post-NR were associated with higher levels of coarticulation, which 

was most prominent in angle5.   

 

Reward invigorated minimum velocities around the via point which represented a stable 

change in motor output irrespective of reward availability.  

Coarticulation leads to discrete actions being progressively merged into a single movement, 

which comes with increases in minimum velocities around the via point. Such an increase in 

minimum velocity reduces the dwell time in the target and ultimately decreases overall MTs. 

Hence, here minimum velocities were assessed to investigate whether the retention of 
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performance gains can be linked to stable increases of minimum velocities. Despite no 

differences in peak velocity during baseline (mixed-effect ANOVA; group: F = 0.66, p = 0.4206; 

angle: F = 0.23, p = 0.9178), we found significant increases in minimum velocities when 

participants received reward (Figure 6a,b). A significant interaction between timepoint and 

group for both Training1 (timepoint x group; F = 9.63, p = 0.003, Figure 6c) and Transition 

(timepoint x group F = 17.20, p < 0.0001, Figure 6d) was found. Specifically, a significant 

difference between groups during late Training1 (Wilcoxon test; Z = 4.70, p < 0.00001), but 

not during early Training1 (Z = 1.69, p = 0.46, Figure 6c) was found. Similarly, a significant 

increase in minimum velocities for Reward2 were observed once they received reward during 

Training2 (Z = 4.70, p < 0.00001), however no changes were found for Reward1 (Z = 1.62, p = 

0.52, Figure 6d). These results suggest that reward facilitates coarticulation and in turn 

increases minimum velocities around the via point. Importantly, similarly to the coarticulation 

analysis no significant interaction between timepoint and group for Training2 (timepoint x 

group; F = 1.71, p = 0.1951, Figure 6e) as well as no significant group differences (group; F = 

0.38, p = 0.5399) were found. These results align with the coarticulation results suggesting 

that the observed changes in performance are robust and become reward-independent with 

training. Additionally, we observed significant differences between angles across all 

timepoints of interest (angle; Training1: F = 24.48, p < 0.0001; Transition: F = 32.75, p < 0.0001; 

Training2: F = 31.14, p < 0.0001; Figure 6f-h). Specifically, the CI levels for angle5 were 

significantly higher than all other angles for each timepoint (see Supplement Table 2). 

Similarly, CI levels for angle4 were significantly higher than angle1-angle3 for all timepoints 

apart from Training1, whereas no differences could be observed between the most acute 

angles (angle1-angle3; see Supplement Table 2). To ascertain whether increases in minimum 

velocities were related to faster MTs during periods of no reward, both values for Training2 

and post-NR were correlated. A significant correlation between minimum velocities and MTs 

for both timepoints (partial correlation controlling for both group and angle; Training2: ρ = -
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0.47, p < 0.0001, Figure 6i, post-NR: ρ = -0.45, p < 0.0001, Figure 6j) was found. Hence, 

decreases in dwell time via increases in minimum velocities around the via point were 

associated with the retention of performance gains during periods of no reward. 
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Figure 6 | Reward invigorates minimum velocities around the via point which represents a stable change in 

motor output irrespective of reward availability. Trial-by-trial changes in minimum velocities averaged over 

participants for each angle and group: a) Reward1 and b) Reward2. Median change in minimum velocities 

between groups for timepoint: c) Training1, d) Transition and e) Training2. Median values of minimum velocities 

for each angle across groups for timepoint: f) Training1, g) Transition and h) Training2. Scatterplots displaying 

the relationship between minimum velocities and CI levels during i) late Training2 and j) post NR with a linear 

line fitted across groups. Shaded regions/error bars represent SEM. 

 

To summarise, these results demonstrate that improvements in MT were driven by two 

processes which are both reward-sensitive: 1) an increase in peak velocities and 2) an increase 

in coarticulation which represented a reduction in dwell time via an increase in minimum 

velocities around the via point. Importantly, increases in coarticulation represented a stable 

change in behaviour that was associated with the retention of reward-based performance 

gains during periods of no reward availability. In line with the predictions of the minimum-

jerk model, this was particularly apparent in the most obtuse angle (angle5), which was 

coarticulated faster and to a greater extent, and hence indicates that coarticulation is guided 

by the criterion of smoothness maximisation. This increase in coarticulation allowed for faster 

execution during both periods with and without reward (as seen with angle 5). In contrast, 

the invigoration of peak velocities followed the previously observed ‘on-off’ principle and 

here performance gains remained transient in nature (as seen with angles 1-3). 

 

Coarticulation is guided by smoothness maximation. 

To further explore whether coarticulation is guided by smoothness maximation, actual and 

model smoothness data was compared. It was hypothesised that coarticulation should only 

occur if it leads to increases in movement smoothness. Considering that coarticulation was 

most pronounced in angle5, it should follow that during early Training1 movement 

smoothness was least optimal with regards to the predictions of a minimum-jerk model. Over 

training and with coarticulation, improvements in movement smoothness should be observed 
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that approach optimal values. Conversely, movement smoothness should be closer to optimal 

in angle1 over the whole experiment considering that here no increases in coarticulation were 

observed. Furthermore, over the course of training smoothness across angles should increase 

depending on how much the reaching movements are coarticulated. To test this hypothesis, 

using spectral arc length as the smoothness metric the predicted movement smoothness of 

each angle was calculated (based on the predictions of a minimum-jerk model, Figure 1f). This 

value was then subtracted by the spectral arc length for each trial performed by each 

participant . Hence, optimal smoothness represented the difference between the actual and 

predicted smoothness data, with optimal smoothness values close to zero. Indeed, the results 

indicate that performance was significantly different across angles during Training1 (mixed-

effect ANOVA; angle: F = 122.68, p < 0.0001, Figure 7a,b). Post hoc analysis revealed that 

optimal smoothness values were significantly smaller in angle1 when compared to any other 

angle, while values in angle5 were significantly greater (Figure 7c, see Supplement Table 3). 

This suggests that movement smoothness was near optimal in angle1, whereas in angle5 

smoothness was sub-optimal. Furthermore, a significant timepoint x angle interaction 

(timepoint x angle interaction; F = 4.44, p = 0.0018, Figure 7d) suggests that over the course 

of training improvements in optimal smoothness were angle-specific. Indeed, only 

performance on angle5 showed significant improvements, while improvements in angle4 

approached significance (Wilcoxon test; angle1: Z = -1.58, p = 0.5617; angle2: Z = -1.46, p = 1; 

angle3: Z = -1.85 p = 0.32; angle4: Z = -2.34, p = 0.0654: angle5: Z = -2.79, p = 0.0367, Figure 

7d). Results for Training2 mirror these results. Both a significant main effect for angle (angle: 

F = 89.15, p < 0.0001, Figure 7e) as well as a significant interaction was found (timepoint x 

angle interaction; F = 4.22, p = 0.0031, Figure 7f). However, no Post hoc comparison reached 

significance. These results suggest that performance on angle1 was closer to optimal 

throughout the experiment, while optimal smoothness was lowest in angle5. 
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Figure 7| Coarticulation is guided by smoothness maximation. Trial-by-trial changes in optimal smoothness 

determined by taking the difference between actual and predicted movement smoothness (based on minimum-

jerk model) calculated using spectral arc length for each angle and group: a) Reward1 and b) Reward2. Median 

change in optimal smoothness between angles for timepoint: c) Training1 and e) Training2. Difference in median 

optimal smoothness values (early vs late) for each angle across groups for timepoint: d) Training1 and f) 

Training2. Shaded regions/error bars represent SEM. 
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Furthermore, improvements in optimal smoothness were greatest in angle5, which matches 

the observed increases in coarticulation. Consequently, coarticulation appears to be only 

expressed if movement smoothness is sub-optimal.  

A delay in rewarded training does not affect future task proficiency. 

To assess whether a delay in receiving a rewarded training affects task performance, 

participants engaged in two counter-balanced Post assessments after Training1 and 

Training2. During post-R, participants received reward-based feedback, while during post-NR 

no reward was available, and participants were instructed to complete each trial as fast and 

accurately as possible.  

   

 

Figure 8 | A delay in rewarded training does not affect future task proficiency. a) Median change in MT 

values between groups during Post. b) Median change in CI levels between groups during Post. c) Median CI 

values for each angle across groups during Post. Median change in d) peak velocities, e) minimum velocities. 

Error bars represent SEM. 
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Assessing differences in performance between groups while under the same reward regime 

(post-R and post-NR) can provide insight into whether the timing of a reward training affects 

future task performance. It was hypothesised that the Reward2 group, which received a 

rewarded training after the non-rewarded training, may show lower performance levels 

compared to Reward1 especially during post-NR. No significant group differences for MT 

across Post assessments (mixed-model ANOVA; group; F = 0.78, p = 0.7812) nor a significant 

interaction between timepoint (post-R vs post-NR) and group (Post; F = 0.76, p = 0.386, Figure 

8a) were found, suggesting that both groups scored similar MTs across Post assessments. 

Similarly, no significant interaction between group and angle (Post; F = 2.03, p = 0.0911) was 

found. However, we observed a significant main effect for timepoint (Post; F = 14.19, p < 

0.0001), which indicates that both groups decreased their MTs once reward was removed 

during post-NR. These results suggest that the timing of the rewarded training did not affect 

MT performance. 

Assessing changes in CI levels across Post assessments, we yet again could not observe any 

significant group differences (mixed-model ANOVA; group; F = 1.31, p = 0.2569) nor a 

significant interaction between timepoint and group (Post; F = 0.21, p = 0.6532, Figure 8b). 

Similarly, no significant interaction between group and angle (Post; F = 0.92, p = 0.45) was 

found. However, a significant main effect for angle (Post; F = 49.49, p < 0.0001, Figure 8c) was 

observed, which indicates that CI levels were different depending on the angle in both groups. 

In line with the results from our Training2 analysis, we found higher CI levels for angle5 than 

for any other angle. Similarly, CI levels for angle4 were significantly higher than angle1-angle3, 

whereas no differences could be observed between the most acute angles (angle1-angle3; 

see Supplement Table 4).  

Converging with these results, no significant group differences across Post assessments for 

were found for either peak velocities (mixed-model ANOVA; group; F = 0.69, p = 0.4066, Figure 

8d) or minimum velocities (mixed-model ANOVA; group; F = 0.62, p = 0.4347, Figure 8e). In 
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summary, these results highlight that Reward1 and Reward2 reached similar levels of task 

proficiency despite different reward regimes. Thus, the timing of reward does not affect 

future task performance in this task.  

 

Individual differences within the motor and cognitive domain do not predict ability to 

coarticulate. 

To assess whether individual differences predict participants’ ability to coarticulate 

participants were asked to complete both a working memory (WM) and a doodling task. 

Specifically, we aimed to investigate whether individual differences within the cognitive (WM) 

and/or motor (doodling) domain predict coarticulation ability in our main experiment. We 

determined coarticulation magnitude (CI_Mag) for each participant by comparing CI levels 

across all timepoints of interest for each angle individually using z-scores. Subsequently, mean 

performance for each participant was calculated (see Methods for further information on 

CI_Mag).  

Performance on a working memory (WM) task does not predict coarticulation ability. 

Correlating participants WM performance with their CI_Mag values a positive relationship 

was found, suggesting that participants with higher WM values tend to be able to coarticulate 

more. However, this relationship was not significant (partial correlation controlling for group: 

ρ = 0.24, p = 0.114, Figure 9a).  

Performance on a doodling task did not predict coarticulation ability. 

Using a doodling task, we sought to investigate whether differences in coarticulation 

magnitude are related to a natural disposition to produce smooth movements. To this end, 

participants were asked to complete 5 trials in which they had to doodle for 5s. The obtained 

data was then analysed using a battery of kinematic markers to determine whether individual 

differences within the motor domain influence coarticulation magnitude. 

Using spectral arc length as the smoothness metric, we determined the participants’ mean 

movement smoothness during the doodling task and correlated them to the CI_Mag values. 
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Figure 9 | Individual differences within the motor and cognitive domain do not predict ability to coarticulate. 

Scatterplots displaying the relationship between coarticulation magnitude (CI_Mag) and a) working memory 

scores (%), b) mean smoothness values, c) mean speed, d) mean arrest period ratio, e) number of peaks. 

 

A positive relationship between movement smoothness during free scribbling and 

coarticulation magnitude during the main task was observed. However, this relationship was 

not significant (partial correlation controlling for group: ρ = 0.18, p = 0.177, Figure 9b). 

Similarly, correlating participants’ mean speed during doodling with CI_Mag, a positive 

relationship between mean speed while doodling and coarticulation ability was found. Yet 

again, this relationship was not significant (partial correlation controlling for group: ρ = 0.23, 

p = 0.089, Figure 9c). Following participants’ mean arrest period ratio was determined, which 

is defined as the proportion of time that a participant’s movement speed is below a given 

percentage of the peak velocity. We correlated participants’ mean arrest period ration during 

the doodling task with their CI_Mag values and found a negative relationship, which was not 
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significant (partial correlation controlling for group: ρ = -0.17, p = 0.202, Figure 9d). 

Subsequently, the total number of peaks in a speed profile was determined, with fewer peaks 

suggesting that participants execute smoother movements due to fewer periods of 

acceleration and deceleration. The mean number of peaks was used as the peak metric and 

was correlated with participants’ CI_Mag values. A non-significant positive relationship 

between the peak metric and CI_Mag values was found (partial correlation controlling for 

group: ρ = 0.11, p = 0.403, Figure 9e). Lastly, we assessed whether coarticulation magnitude 

during the main experiment is related to the ratio of curved to straight movements during the 

doodling task. To this end, the ratio of curved to non-curved (straight) movements was 

determined and used as the curvature metric. We found that the mean ratio of movement 

curvature during the doodling task is not related to coarticulation magnitude (partial 

correlation controlling for group: ρ = -0.08, p = 0.576, Figure 9f). Overall, these results indicate 

that movement smoothness during a free doodling task was not associated with 

coarticulation magnitude. 

  

5.4 Discussion 

The results highlight that reward invigorated performance leading to equal improvements in 

MTs across angles. Reductions in MTs were driven by two processes which were both reward-

sensitive: 1) an increase in peak velocities and 2) an increase in coarticulation which was 

represented by a reduction in dwell time via an increase in minimum velocities around the via 

point. Importantly, increases in coarticulation were stable and were associated with the 

retention of reward-based performance gains during periods without reward. However, 

reward only facilitated coarticulation on the obtuse angles while no increases in coarticulation 

were observed in the acute angles. Therefore, coarticulation is angle-specific and improved 

retention of reward-based reductions in MTs was only observed in the most obtuse angle 

(angle5). This suggests that decreases in MTs on the acute angles were mainly driven by 
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increases in peak velocities, while both increases in peak and minimum velocities led to the 

observed improvement in MTs on the obtuse angles. Recent work has shown that increases 

in arm stiffness enable faster MTs through increases in peak velocities whilst maintaining 

similar levels of end-point accuracy75. Albeit an attractively simple mechanism to account for 

the reward-based improvements in the speed-accuracy trade-off, this strategy comes with a 

marked increase in metabolic cost209. Therefore, removing reward might make this strategy 

unviable. This could explain the lack of retention in the acute angles and highlights that 

increases in minimum velocities through coarticulation, which was shown to be a stable 

change in behaviour, enables retention in the obtuse angles.  

The results show that coarticulation is angle-specific suggesting that coarticulation is 

constrained by the transition angle between reaching movements. Based on seminal work by 

Flash and Hogan99 demonstrating that the minimum jerk model can account for a variety of 

reaching movements99,100,111,112, it was hypothesised that  coarticulation is guided by the 

criterion of maximum smoothness. Considering that reductions in jerk have been linked to 

decreases in metabolic effort209, maximising smoothness appears to be a biologically plausible 

strategy to guide human behaviour. Indeed, the results demonstrate that, compared to 

obtuse angles, movement smoothness within acute angles was significantly closer to being 

optimally smooth (as determined by the predictions of a minimum-jerk model). Therefore, 

changes in behaviour through coarticulation will only have led to small improvements in 

smoothness. In contrast, performance on the most obtuse angle was sub-optimal. Here 

movement smoothness was improved through coarticulation becoming more optimal over 

the course of training. Hence, these results suggest that the principle of maximising 

smoothness guides coarticulation and more specifically highlights that coarticulation is 

constrained by the transition angle between reaching movements. These results explain the 

fact that no improvements in coarticulation were seen in the pilot studies. The transition 

angles between the reaching movements were all acute and therefore, executing discrete 
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reaching movements is more optimally smooth than coarticulating the movement sequences. 

However, this also results in reward-based invigoration effects remaining transient.  

However, it is important to stress that motor goals other than movement smoothness can 

guide behaviour and motor skill learning. In this task, both the primary goal (decreases in MT) 

and the secondary goal (movement smoothness) can be achieved through increases in 

coarticulation in obtuse and the lack thereof in acute angles, with coarticulation enabling 

retention. Yet, other primary goals (such as path length or increases in MT) may warrant 

distinct behavioural solutions that are optimal given the underlying reward structure. Despite 

this, the results highlight that kinematic models such as the minimum-jerk model are very 

accurate at predicting skilful execution of reaching movement sequences irrespective of the 

task goals. Additionally, the finding that coarticulation is guided by the principle of 

smoothness maximation suggests that the motor system incorporates smoothness as an 

inherent goal to optimise behaviour99,100. The minimum-jerk model was challenged because 

it was deemed biologically unfeasible for the motor system to calculate and keep track of the 

3rd derivative of positional data which has to be integrated over the whole movement101. 

However, reductions in jerk have been linked to decreases in metabolic effort209, which might 

suggest that rather than keeping track of jerk per se, the motor system simply stores a value 

for muscular effort. It has consistently been shown that effort influences both decision-

making and execution during reward-based motor tasks231,232. Therefore, effort based on 

smoothness maximisation could guide coarticulation. However, this will have to be proved 

experimentally in future. 

The results additionally showed that a delay in receiving rewarded training does not affect 

future task performance. Specifically, no group differences during Post were found, which 

suggests that both groups performed similarly across all measured variables. Moreover, we 

observed a steep improvement in MTs, peak and minimum velocities for the Reward2 group 

once they received reward during Training2. In contrast, improvements were more gradual 
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for the Reward1 group during Training1 as seen in a lack of group differences during early 

Training1. Therefore, the results align with recent work showing that participants exhibited 

steeper learning curves in reward-based training, if it followed non-rewarded 

training84,91,219,220.  Similarly, within latent learning it has been shown that rats find the 

rewarded location within a maze faster (rewarded phase) if they were pretrained first without 

reward130,233. However, despite Reward2 showing a steep improvement, no additional 

performance gains were observed for Reward2 during Training2. 

Furthermore, the results from the WM task and doodling task suggest that individual 

differences do not predict coarticulation in this task. Despite, recent research showing that 

WM ability modulates motor skill learning and adaptation221–226, the here presented analysis 

did not reveal a significant relationship between WM scores and coarticulation. In this task, 

only two movements had to be planned in each trial, which ultimately might not require 

extensive cognitive resources. Similarly, no behavioural measures to assess doodling 

performance were associated with coarticulation. This could either suggest that the measures 

were not sensitive enough to detect individual differences in smoothness during doodling, or 

that coarticulation is not linked to a natural tendency to produce smooth movements.  

In summary, these results suggest that coarticulation is guided by the principle of smoothness 

maximation which leads to increases in coarticulation in obtuse angles. These increases in 

coarticulation result in increases in minimum velocities which appear to drive reward-based 

retention of reductions in MTs. 
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5.5 Supplement 

 

Supplementary Table 1 

 

                   

 

Supplementary Table 1: Coarticulation is most pronounced in obtuse angles. Using the MATLAB functions 

anova2 and multcompare to assess differences in median CI levels between angles across for timepoint: top) 

Training1, middle) Transition and bottom) Training2. Highlighted in yellow are significant comparisons. 

 

 

 

 

 

  ngle1  ngle  ngle3  ngle  ngle 

 ngle1

 ngle Z = 1.18 , p = 1

 ngle3 Z = 1.5, p = 1 Z = 0.34 , p = 1

 ngle Z = 1.1 , p = 0.03 Z = 0.26, p = 0.02 Z =  0.08, p = 0.07

 ngle Z =  0.07, p < 0.001 Z =  0.84, p < 0.001 Z =  1.21, p < 0.001 Z =  1.41 , p < 0.001

  ngle1  ngle  ngle3  ngle  ngle 

 ngle1

 ngle Z = 0.54 , p = 1

 ngle3 Z = 0.64, p = 0.95 Z = 0.01 , p = 1

 ngle Z =  0.67, p < 0.001 Z =  1.02, p < 0.001 Z =  0.88, p = 0.004

 ngle Z =  2.22, p < 0.001 Z =  2.25, p < 0.001 Z =  2.62, p < 0.001 Z =  2.32 , p < 0.001

  ngle1  ngle  ngle3  ngle  ngle 

 ngle1

 ngle Z = 0.33 , p = 1

 ngle3 Z = 0.74, p = 0.97 Z = 0.23 , p = 0.97

 ngle Z =  0.51, p < 0.001 Z =  1.01, p < 0.001 Z =  0.95, p = 0.001

 ngle Z =  1.99, p < 0.001 Z =  2.41, p < 0.001 Z =  244, p < 0.001 Z =  1.97 , p < 0.001
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Supplementary Table 2 

 

               

 

Supplementary Table 2: Minimum velocities are fastest in obtuse angles. Using the MATLAB functions anova2 

and multcompare to assess differences in median minimum velocity between angles across for timepoint: top) 

Training1, middle) Transition and bottom) Training2. Highlighted in yellow are significant comparisons. 

 

 

 

 

 

 

  ngle1  ngle  ngle3  ngle  ngle 

 ngle1

 ngle Z = 1.11 , p = 1

 ngle3 Z = 1.12, p = 1 Z = 0.06 , p = 0.92

 ngle Z = 0.59 , p = 0.06 Z =  0.22 = 0.062 Z =  0.38, p = 0.11

 ngle Z =  0.41, p < 0.001 Z =  1.11, p < 0.001 Z =  1.32, p < 0.001 Z =  1.31, p < 0.001

  ngle1  ngle  ngle3  ngle  ngle 

 ngle1

 ngle Z = 0.54 , p = 1

 ngle3 Z = 0.45, p = 0.98 Z =  0.12 , p = 0.99

 ngle Z =  1.07, p = 0.03 Z =  1.4, p = 0.036 Z =  1.25, p = 0.019

 ngle Z =  2.24, p < 0.001 Z =  2.77, p < 0.001 Z =  2.69, p < 0.001 Z =  2.23 , p < 0.001

  ngle1  ngle  ngle3  ngle  ngle 

 ngle1

 ngle Z = 0.17 , p = 1

 ngle3 Z = 0.41, p = 0.99 Z = 0.17 , p = 0.99

 ngle Z =  0.82, p = 0.004 Z =  1.11, p = 0.004 Z =  1.21, p = 0.024

 ngle Z =  2.27, p < 0.001 Z =  2.58, p < 0.001 Z =  2.66, p < 0.001 Z =  2.02 , p < 0.001
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Supplementary Table 3 

                

 

Supplementary Table 3: Optimal smoothness using spectral arc length is greatest in the most acute angle. 

Using the MATLAB functions anova2 and multcompare to assess differences in median smoothness vlaues 

between angles across for timepoint: top) Training1, and bottom) Training2. Highlighted in yellow are 

significant comparisons. 

Supplementary Table 4 

 

                

 

Supplementary Table 4: Coarticulation is most pronounced in obtuse angles. Using the MATLAB functions 

anova2 and multcompare to assess differences in median CI levels between angles across for timepoint Post. 

Highlighted in yellow are significant comparisons. 

  ngle1  ngle  ngle3  ngle  ngle 

 ngle1

 ngle Z = 0.049 , p = 1

 ngle3 Z = 0.644, p = 0.99 Z = 0.41 , p = 1

 ngle Z =  0.621, p < 0.001 Z =  0.27, p < 0.001 Z =  0.79, p = 0.004

 ngle Z =  3.76, p < 0.001 Z =  3.73, p < 0.001 Z =  4.01, p < 0.001 Z =  3.39 , p < 0.001
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Chapter 6 

 

General discussion 

 

 

 6.1 Summary of thesis 

In chapter 2, a novel sequential reaching task (CSRT) was introduced, which was based on 

previous pilot studies and on important work by Sosnik et al. (2004, 2007, 2015)25–27. In 

comparison to the task design used in the pilot studies, the CSRT allowed for coarticulation of 

movements sequences, which was confirmed a priori by the predictions of a minimum-jerk 

model28,99. Additionally, results from the pilot studies provided evidence that reward can 

invigorate sequential reaching performance as seen by greater decreases in movement time 

(MT). 

In chapter 3, results were presented that demonstrate that reward invigorates performance 

on the CSRT through reductions in MT via both increases in peak velocities and decreases in 

dwell time around the via points. Specifically, these reductions in dwell time represented  an 

increase in coarticulation. Importantly, the results suggest that reward facilitates 

coarticulation, which also leads to improvements in movement smoothness and MTs that 

persist even over an additional testing day without reward.  
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In chapter 4, a neuropharmacological manipulation was used to investigate whether 

coarticulation, which was shown to be reward-sensitive, is a dopamine-dependent process. 

The findings highlight that coarticulation is severely impaired by haloperidol (D2 antagonist) 

if no reward-based feedback is available. In contrast, haloperidol had no deleterious effect on 

coarticulation if reward was provided. This finding complements existing work showing that 

a D2 antagonist impairs chunking in a discrete sequence learning task164 and expands the 

literature by showing that reward-based feedback appears to preserve coarticulation. 

Additionally, haloperidol led to a global slowing, as seen by increases in MTs and peak 

velocities across groups, which aligns with previous results showing that tonic dopamine 

modulates motor vigour.  

In chapter 5, two hypotheses were tested: 1)coarticulation is both transition and is guided by 

the principle of maximising smoothness, and 2) coarticulation is related to individual 

differences in working memory (WM) capacity and baseline movement. The results confirmed 

that coarticulation is transition specific and is guided by smoothness maximisation which led 

to increases in coarticulation only in the more obtuse angles. These findings explain the lack 

of coarticulation in the pilot studies in which angles between reaching movements were 

acute. Furthermore, both individual differences in WM and baseline movements smoothness 

did not explain differences in coarticulation across participants. Consequently, it remains an 

open question why some participants, even with reward-based feedback, do not coarticulate. 

 

 

6.2 Impact of this work on the emerging field of upper limb 

coarticulation  

Coarticulation has been studied in speech production for over 100 years180–182 and more 

recently been described in a range of upper limb movement sequences such as typing186–188, 

sign language184 and piano playing185. Furthermore, coarticulation has also been observed 

during various 2D and 3D upper limb actions111,189–193. Consequently, upper limb 
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coarticulation appears to be a central mechanism to human movement that is ubiquitous in 

our daily life and represents a hallmark of skilled sequential performance through which 

behaviour becomes more temporally and spatially efficient25–27,99,194,217. Crucially, 

coarticulation breaks down in stroke23,24 and PD patients29, which severely affects their daily 

life. Considering its importance to both daily life tasks, and in describing movement 

impairment in clinical populations, the recent increase in scientific interest in upper limb 

coarticulation is no surprise. The work presented in this thesis contributes to this emerging 

field by showing that coarticulation can be facilitated through reward. Therefore, this work 

provides evidence that coarticulation can be phrased in a reinforcement learning (RL) context. 

Compared to other computational approaches such as optimal control, RL requires 

substantially less informational and computational resources (which the brain simply might 

not have)234,235. Consequently, phrasing coarticulation as a RL problem provides the exciting 

opportunity to build a biologically plausible model to study the component processes 

underlying coarticulation. Further support for this approach comes from the result that 

dopamine plays a role in coarticulation and that reward-based feedback appears to 

compensate for the deleterious effects of a D2 antagonist on coarticulation. This suggest that 

DA plays a role in coarticulation and provides a basis to explore whether coarticulation can 

be increased through DA agonists such as levodopa.  

 

6.3 Coarticulation vs chunking 

In this thesis, coarticulation has been defined as an optimisation process that allows for 

sequential reaching movements to temporally and spatially converge. This definition is based 

on the seminal work by Sosnik et al. (2004, 2007, 2015)25–27. Specifically, on a temporal level 

this manifests itself in a progressive reduction in dwell time (stop period between reaching 

movements) resulting in temporally overlapping movements. In fully coarticulated 

movements, no stopping can be observed and the two reaching movements are assumed to 
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be planned and executed as a single continuous movement25–27. For this to occur, the reaching 

trajectory has to be spatially modified. Similarly, to anticipatory coarticulation described in 

speech production180–182, the trajectory of the preceding reaching movement is adapted to 

allow for a fluid transition between movements25–27. Consequently, in coarticulation a 

kinematic change in execution can be observed that aligns with the predictions of a minimum-

jerk model. According to previous work, this kinematic change results in the development of 

a new motor primitive that is globally planned and has to run to completion once initiated25–

27. This potential to form a new motor primitive to substitute executing two discrete 

primitives is the feature that distinguishes coarticulation from chunking25–27,176. Therefore, 

during chunking individual motor primitives (i.e., button presses) can be aligned temporally 

resulting in a reduction in response times. Similarly to coarticulation this will lead to in part 

temporally overlapping movements, which over time will be executed as a holistic unit176 (i.e., 

chunk). However, the motor primitives underlying the formed chunk will remain stable and 

are not kinematically modified176. This working definition was based on previous work25–

27,176,180–182 and suggests that coarticulation may represent a distinct yet extreme version of 

chunking. However, consensus within the field is currently lacking and a recent publication on 

coarticulation of reaching movements in monkeys termed this optimisation process 

chunking194. This lack of consistent usage of terminology may be in part due to the fractured 

literature within the field of upper limb coarticulation. Specifically, different schools of 

thought use different terminology and definitions of chunking and coarticulation might have 

been informed by the motor unit that is being assessed. For example, coarticulation is 

predominantly used in the speech production literature180–182, whereas chunking is more 

common in the discrete sequence learning literature20,64,83,190,212 to describe this optimisation 

process. The motor units that are being assessed (i.e., tongue and lip movements compared 

to button-pressing, which has been the focus in the discrete sequence learning 

literature20,64,83,190,212 ) might have informed what chunking and coarticulation represent. In 
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discrete button-pressing tasks, kinematic changes are limited and are often further prevented 

by enforcing button-presses to be completed before allowing for a subsequent press236–238. 

Furthermore, in most task designs, each finger only ever pressed the same button189,190,236–

239, which severely restricts how the hand is configurated in anticipation for a subsequent 

button-press in a different location. Therefore, the focus on temporal aspects of chunking 

might be due to the task design used to investigate this optimisation process. Conversely, in 

speech production the kinematic modification of both tongue and lip movements in 

anticipation of a subsequent phoneme is naturally present and therefore will inform the 

definition of coarticulation180–182. Therefore, accounting for these kinematic changes will 

inform the definition. In an attempt to align both concepts, Godøy et al. (2010) assessed music 

related actions and defined chunking and coarticulation as optimisation processes that occur 

simultaneously on a macro and micro level, respectively. Here chunking relates to the parsing 

and concatenation of sequence elements, whereas coarticulation represents the low-level 

integration of these sequence elements to improve fluidity176. However, to date, a clear 

differentiation between these two concepts does not exist and it remains an open question 

whether they represent altogether different optimisation processes or whether 

coarticulation is an extreme form of chunking.  

 

6.4 Coarticulation as a marker of movement quality 

The results presented in this thesis highlight that increases in coarticulation and movement 

smoothness are closely related. Additionally, with increases in coarticulation, performance 

showed greater alignment to the predictions of a minimum-jerk model25,28,99. However, note 

here that these results were based on fitting the velocity profile of the minimum-jerk 

prediction to the actual data and are not a trajectory-based outcome measure. However, 

existing jerk metrics such as log dimensionless jerk are also based on the velocity profile, 

which is often preferred due to the reduction of dimensionality that comes with the first 

derivative of positional data (x, y)23,85,87. Movement smoothness is severely impaired in stroke 
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patients, while recovery is characterised by improvements in smoothness23,24. Therefore, 

movement smoothness represents a clinically relevant marker to assess progress during 

rehabilitation23,24. Particularly, movement smoothness has been shown to reduce effort via a 

decreases in the metabolic cost of the movement209. This suggests that coarticulation leads 

to a smoother and thus more efficient execution of sequential movements. Importantly, the 

results from Chapter 2 and Chapter 3 highlight that these improvements are robust and 

reward-independent as seen by a retention of smoothness levels across an additional testing 

day without reward. Furthermore, coarticulation allows for a reduction in MTs, via a reduction 

in dwell times around via points, whilst maintaining high levels of accuracy. Hence, 

coarticulation leads to improvements in the movement smoothness while also enhancing the 

speed-accuracy trade-off. The results from Chapter 2 indicate that this improvement in the 

speed-accuracy trade-off is retained during long periods without reward. Taken together, 

coarticulation could be used as a global marker of movement quality due to its relation to 

various characteristics of skill. Previously, motor acuity has been proposed as a global marker 

to assess skill learning12,240. Motor acuity was used to describe improvements in the speed-

accuracy trade-off and other skill related concepts such as decreases in variability. It 

represents an effort to summarise several outcome measures into a single parameter; an 

approach which could be particularly useful in clinical settings and in identifying the neural 

correlates of motor skill learning240. However, compared to motor acuity, coarticulation 

occurs naturally and represents a strategy to decrease motor effort via a reduction jerk while 

improving the speed-accuracy trade-off. Therefore, coarticulation does not only represent a 

summation of several outcome measures but is a naturally occurring process where increases 

directly lead to improvements in inherent aspects of skill such as movement smoothness and 

speed. Consequently, measuring upper limb coarticulation could be an important and 

clinically relevant marker to assess movement quality in both healthy and clinical populations 

such as stroke patients to track and evaluate recovery. 
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6.5 Coarticulation within the context of RL 

Despite its importance to skilfully executing upper limb reaching sequences, how humans 

learn to coarticulate is an outstanding research question. This is a crucial gap in the literature 

because it precludes the development of targeted interventions to enhance coarticulation.  

The results from this thesis provide novel evidence that coarticulation can be facilitated with 

reward and that DA plays a role in it. Consequently, coarticulation could be phrased as a RL 

problem in which the agent aims to maximise future reward. RL has been successful in 

modelling and predicting animal and human behaviour across a broad range of tasks (for 

reviews see 128,134,135). Recently, it was demonstrated that using a RL framework an 

anthropomorphic robot arm could learn to hit a baseball241. Consequently, using RL could 

provide a framework to understand how humans learn to coarticulate. Further support comes 

from work showing that phasic DA bursting in the striatum appears to be the neurobiological 

substrate of the RPE and more specifically its value (i.e., positive, negative or neutral)138,142.   

Work in PD patients ON and OFF medication164, as well as neuropharmacological studies using 

D2 antagonists166, demonstrated that learning on a discrete movement sequence task is 

impaired. Specifically, they found that chunking was impaired164,166. Hence, there is a 

mounting evidence that DA indeed subserves the computations in RL. Recent computational 

work found that a robot with more degrees of freedom than necessary to complete a 

sequential reaching task, coarticulated movements235. A hierarchical RL was employed that 

aimed to achieve two hierarchically organised goals. The primary goal was to complete the 

given action sequence irrespective of the quality of the chosen actions which ultimately 

ensured reward (i.e., task completion). The quality of the chosen actions concerned the 

secondary goal, which centred around minimising the costs associated with movements such 

as jerk (i.e., coarticulation)235.  

The authors showed that using undirected search with a hierarchical optimisation approach 

resulted in behaviour that resembles coarticulation235. This work could also shed light on the 

observation that while coarticulation leads to overall improvements in movement quality, it 

produces sub-optimal solution on the level of individual movements. This is because 
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coarticulation, via increases in curvature, increases the path length of the individual 

movements. Therefore, potentially more effort has to be invested to complete individual 

reaching movements which is however paid for by the overall reduction in jerk and 

improvement in the speed-accuracy trade-off. These considerations will have to be confirmed 

experimentally and similarly whether such a hierarchical RL framework could predict 

coarticulation in humans will have to be tested.  

 

6.6 Implications of this work for stroke rehabilitation 

Executing upper limb movements, stroke patients exhibit marked impairment in 

performance. Reaching movements are decomposed into jerky sub-movements, which 

severely affects their daily life4,23,215. Successful recovery is associated with improvements in 

movement smoothness23 which has been demonstrated using an array of smoothness 

metrics23. Importantly, it has also been found that over the course of rehabilitation sub-

movements appear to decrease in number while the remaining sub-movements grow larger 

showing pronounced overlapping24,214. This analysis of the mechanism underlying stoke 

recovery is in theory very close to the concept of coarticulation24,25,214. Therefore, stroke 

recovery and coarticulation may follow similar principles. However, even state-of-the-art high 

intensity upper limb stroke rehabilitation programs prescribe training in which activities of 

daily living are decomposed into individual movements242. Stroke patients are trained on 

these decomposed movements while the training on movement transitions is minimal242. The 

results from this thesis highlight that coarticulation, and therefore the transition between 

movements, enhances smoothness and allows for the retention of reward-based 

improvements in the speed-accuracy trade-off. Consequently, based on these results, stoke 

recovery may benefit from re-directing training of decomposed, individual movements to 

entire movements sequences. Additionally, as described in the previous section, 

coarticulation leads to improvements in efficiency across the entire sequence, while efficiency 

on individual movement elements might be sub-optimal. Therefore, an entire movement 

sequence will have to be trained to allow for such overall improvements in movement quality. 
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Importantly, reward facilitates coarticulation while a D2 antagonist impairs coarticulation 

when reward-based feedback is not provided. This suggest that DA plays a role in 

coarticulation and provides a basis to explore whether coarticulation can be increased 

through a DA agonist such as levodopa.  

 

 6.7 Neural representation of coarticulated movements  

The important work by Sosnik et al. (2004, 2007, 2015) demonstrated that coarticulation of 

sequential reaching movements led to the formation of stable continuous actions25–27. In one 

study, they leveraged that human actions cannot be stopped once they have been initiated 

to investigate whether coarticulated movements are indeed treated as a single motor 

primitive27. Their results show that a stop signal after movement initiation did not lead to the 

break-down of the coarticulated action. Instead, participants completed the coarticulated 

movement and stopped on the next target. Therefore, this work suggests that coarticulation 

leads to the formation of new motor primitives that do not simply represent the summation 

of two discrete movements27. Further evidence comes from work highlighting that new 

coarticulated primitives are highly generalisable and do not break down when executed 

slowly. Furthermore, the work presented here agrees with these previous findings showing 

that with coarticulation individual reaching kinematics are spatially modified allowing for a 

continuous execution. To address whether such coarticulated movements are encoded as a 

single movement or as a series of discrete movements, Zimnik and Churchland (2021) took 

neural recordings of two monkeys while they performed single, a series of two discrete and 

compound actions243. They concluded that neural events during execution of both discrete 

and compound actions elicits the same neural events in the dorsal premotor and primary 

motor cortex. Specifically, they found that in compared to single reaching movements, the 

second movement in the compound action was prepared on the fly during the execution of 

the first movement243. Therefore, it appears that compound movements (i.e., coarticulated 

movements) are encoded discretely and initiated successively. However, it is important to 
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highlight that the behavioural results do not suggest that reaching movements were 

coarticulated in the compound action. Specifically, the mean velocity profiles of the 

compound action are of a distinct two-peaked shape, with a pronounced drop in velocities 

around the via point. Furthermore, the design predominantly includes reaching transitions 

with acute angles. Results from chapter 5 highlight in acute angles movement smoothness is 

optimal when executing two discrete reaching movements. Taken together,  this indicates 

that these sequential reaching movements were not coarticulated243, but were executed 

discretely in rapid succession. This would align with their results showing that the second 

reaching movement was prepared while executing the first reaching movement. 

Consequently, it remains an open question whether coarticulated reaching movements that 

exhibit temporal and spatial alignment are encoded as a single or set of discrete movements 

at a neural level. 

 

6.8 Limitations of the presented work 

A central finding presented in this thesis resolves around reaching movements becoming 

smoother with increases in coarticulation. This has been shown using the jerk metric spectral 

arc length and by comparing reaching performance to the predictions of a minimum jerk 

model (Chapter 3);  findings that are in line with previous work by Sosnik et al. (2004, 2007, 

2015)25–27. Based on recent work demonstrating that movement smoothness is related to 

energetic efficiency209, it has been concluded that increases in coarticulation lead to more 

efficient movement patterns via increases in smoothness. However, within the scope of the 

thesis this has not been assessed experimentally. It is, therefore, paramount to conduct 

experiments to provide causal evidence that demonstrates that coarticulation indeed leads 

to increases in energetic efficiency.  

Similarly, results in Chapter 3 show that improvements in MT are maintained during long 

periods without reward; a finding that was correlated with coarticulation. Therefore, 

improvements in the retention of reward-based performance gains were related to 

coarticulation. Based on previous work209 it was hypothesised that the observed 
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improvements in smoothness may account for these findings considering that there is 

theoretical evidence that increases in smoothness lead to improvements in movement 

efficiency, which may explain why participants continued to score fast MTs even when not 

being rewarded (i.e., only because it is energetically feasible to do so). However, despite this 

intuitive logic, factors other than efficiency via coarticulation could account for these results. 

Within this context it is of relevance to highlight that coarticulation describes a change in the 

underlying reaching kinematics that is independent of movement speed. Thus, two 

consecutive movements can be executed in a coarticulated manner (i.e., as a single 

movement) irrespective of how fast the movement is executed. Therefore, despite the results 

presented in this thesis, other factors other than coarticulation could account for the 

observed retention of reward-based improvements in MTs (however, note that coarticulation 

will always reduce the dwell time around the via point which will reduce MTs regardless of 

movement speed). Work on use-dependent plasticity (UDP) has shown that repeated 

movements towards a specific target introduce a bias towards the same target during 

execution in a subsequent trial79. Therefore, executing the CSR task repeatedly fast may shape 

UDP and introduce a bias to continue to perform fast movements even without the availability 

of reward. Future experiments will have to be designed to causally understand whether 

coarticulation, UDP or other factors drive the observed improvements in the retention of 

reward-based performance gains. 

 

 6.9 Conclusions 

While reward and its effect on shaping behaviour has been a research focus for many 

decades, research on upper limb coarticulation has emerged more recently. Due to its impact 

on movement efficiency via increases in smoothness, upper limb coarticulation underlies fluid 

generation of sequential movements. Crucially, coarticulation breaks down in clinical 

populations such as Parkinson’s disease and stroke patients, which severely affects their daily 

life23,43,164. Capitalising on the effect of reward in enhancing complex motor skill 

learning158,177,244 the work presented in this thesis aimed to investigate whether coarticulation 
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can be enhance with reward. Results across experiments have found that reward can enhance 

coarticulation, which led to increases in movement smoothness and speed which were 

retained across a long period without reward. Extending these findings, a 

neuropharmacological modulation (chapter 4) was used to investigate whether dopamine 

plays a role in coarticulation. The results suggest that the dopamine antagonist haloperidol 

impairs coarticulation which can be compensated for with reward-based feedback. Finally, it 

was shown that coarticulation is guided by the principal of maximum smoothness which 

explains why coarticulation is constrained by the transition angle between reaching 

movements (chapter 5). The work presented here provides evidence that coarticulation could 

be a useful tool in rehabilitation especially if it is paired with reward and furthermore 

advocates for a more widespread use of measuring coarticulation to evaluate movement 

efficiency in both healthy and clinical populations such as Parkinson’s disease and stroke 

patients.  
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