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ABSTRACT

In this thesis, we demonstrate how to generalise the diagrammatic methods of quantum

field theory commonly used for calculating transport phenomena in disordered homoge-

neous metals, such that they may be used for disordered granular metals. The predictions

of our granular model are then compared to experimental resistance versus temperature

data measured in boron-doped nanocrystalline diamond films. We find semi-quantitative

agreement under the assumption of a constant phase breaking rate, τ−1
φ , and explore the

possible temperature dependence of τ−1
φ . We find that our current model of a disordered

granular metal does not generate a phase breaking mechanism which is able to quantita-

tively match theory to experiment. We suggest different avenues to explore theoretically

and experimentally to determine the origin of the contributions to the fluctuation conduc-

tivity in BNCD, so that we better understand the onset of superconductivity in disordered

granular metals.
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PREFACE

Throughout my PhD I found that locating good pieces of literature that were clear, open,

and helpful in trying to improve my own understanding of condensed matter field theory

was quite a challenge, and at times a real pain. My journey into diagrammatic field theory

began with Rickayzen’s book titled “Green’s Functions and Condensed Matter Physics”,

or as the spine of the book I had would call it “Green’s Fucntions...”... so I was off to

a good start with a book with many typos and a few skimped over details. I guess the

typos and errors in the book made me pay closer attention, and perhaps meant I had

a better understanding of the material. Nevertheless, it was still infuriating to read at

times! Though I would still recommend it as a first read into the area if you’re willing to

learn about the lesser known Green’s “Fucntions”.

I did find many other brilliant sources for learning quantum field theory for condensed

matter, such as Altland and Simons; Abrikosov, Gorkov, and Dzyaloshinski (AGD); and

Bruus and Flensberg, but this did take time. For example, in trying to understand impu-

rity averaging for disordered metals near the beginning of my PhD, I found Altand and

Simons fantastic for performing the averaging procedure in the context of path integrals.

However, finding a good diagrammatic approach, that was not quite so hand wavey, only

presented itself three years into my PhD courtesy of Bruus and Flensberg. Granted that

one could continue with more complicated calculations by appreciating the notion behind

the averaging, I felt quite disatisfied not seeing the full beauty (or horror) that lead to

the results we so readily use.

Due to the penetrable literature (in my opinion) on different topics and ideas being



somewhat spread out through different textbooks and some papers, I have tried to compile

all the pre-requisite ideas and methods that a student whose focus is diagrammatic field

theory, like myself, would need or appreciate at the start of their PhD. Some of the

most renown texts are amazing once you already have a decent understanding, looking

at you AGD. Yet this is not helpful when it comes to trying to learn the subject at a

postgraduate level for the first time. After having spent probably too long worrying about

the fundamentals behind why field theory works, and why should I believe all the rules

we have, I thought I would try and compile the knowledge I found so that future PhD

students might find part of this thesis helpful in getting stuck into their research faster.

This has lead me to write my thesis in an almost three part style.

The first part of my thesis will provide a pedagogical presentation of the building

blocks of quantum field theory and how we can derive the rules to the well known Feynman

diagrams, which may appear as just squiggles on a page to the uninitiated. In conjunction

with this part, many of the appendices will serve as further in depth presentations of the

ideas discussed in the text.

Following this, the second part deals with commonly considered transport problems

related to the electrical conductivity in homogeneous metals. In these sections we discuss

how to derive the Drude conductivity in detail, and how the effects of weak localisation,

electron-electron interactions, and superconducting fluctuations lead to corrections. This

part will serve as a good demonstration of how to perform diagrammatic calculations in

disordered homogeneous metals, and will be a vital reference to all the analogous granular

calculations we consider later. The final part will focus purely on my research on granular

materials and how we can better understand the electrical conductivity in these systems

using diagrammatic methods.

In short, for the student reading this work wanting to learn about field theory and

diagrammatics I would advise them to read through chapter 2 and the appendices therein.

For those students who want to understand transport in terms of disorder and electrical

conductivity I would like to direct them to chapter 3 and the appendices referenced here.



For the worryingly keen students and examiner who wish continue reading or to skip the

introductory material (respectively) I direct them to chapters 4 onwards.
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CHAPTER 1

INTRODUCTION

Transport phenomena have been of great interest to physicists, chemists, biologists, and

engineers over the past few centuries. In a very general sense, transport phenomena relate

to the transfer of information from one point to another via some mechanism. Common

examples include electrical conductivity, thermal conductivity, diffusion of gases, fluid

flow, electrolysis, the list goes on. In this thesis, we focus on how information is transferred

through granular metals via electrical currents.

The simplest model for a metal was originally proposed by Drude [1] in 1900, only

three years after the discovery of the electron by J. J. Thomson [2]. In Drude’s model,

a metal was treated as an ideal gas of electrons in a positive background. Under the

influence of an electric field, the electrons move in the same general direction through a

field of impurities, colliding and scattering elastically off the impurities at a typical rate

of τ−1
0 . With this simple picture of a metal, Drude was able to obtain an expression for

the electrical conductivity of a metal in terms of measurable quantities,

σ0 =
nee

2τ0

me

, (1.1)

where ne is the number density of electrons, e is the magnitude of the electron charge,

and me is the mass of an electron. This expression allowed the determination of τ−1
0 for a

material, given experimental measurement of the system’s conductance and dimensions.

1



CHAPTER 1. INTRODUCTION

We can view this as the first measure of disorder in a system: more impurities would lead

to a larger scattering rate, and hence represent a more disordered (or less pure) metal. A

natural question arising from Drude’s formula is, how does the scattering rate (and hence

the conductivity) change with temperature?

It turns out that a whole plethora of phenomena occur in metallic systems that can

alter conductivity, some of which may be expected from a classical perspective, whilst

others are inherently quantum mechanical. The most obvious effect of temperature is

lattice vibrations, which were put on a firm mathematical footing in 1912 by Debye [3].

The Debye model of lattice vibrations [4] was phrased in terms of quantised sound waves

(now known as phonons), having been inspired by Max Planck’s quantisation of light.

Thus, even the simplest physical picture leading to a temperature dependent resistance

was quantum mechanical at its very core.

Throughout the 1900s and 1910s, it became clear that quantum mechanics was the un-

derlying description for the physics of particles on the atomic and sub-atomic scales. With

the development of “new” quantum mechanics (after Heisenberg [5] and Schrödinger[6]),

in 1927 Sommerfeld extended Drude’s original ideas to a weakly interacting electron gas

obeying Fermi-Dirac statistics [7]. Using these ideas, Drude’s formula for σ0 can be ob-

tained from the Boltzmann transport equation [8].

The development of microscopic quantum transport theory only began to take off with

proliferation of quantum field theory (QFT) in the 1950s, when Matsubara [9] introduced

finite temperature methods (statistical physics) into QFT. During this period, the focus

of physics moved from a single-particle description of the universe to a many-particle one.

This step had been hinted at since the conception of the phonon as a collective vibrational

mode of a crystal lattice. Using Matsubara field theory, the linear response theory of Kubo

[10], and the impurity averaging techniques of Edwards [11], Langer published a trilogy

of papers [12, 13, 14] demonstrating how the Drude conductivity could be obtained in a

fully microscopic manner (i.e. the Drude result survived QFT).

Using the machinery of Matsubara field theory, the period from the late 1950s to

2



the late 1980s saw the calculation of corrections to the electrical conductivity due to

various mechanisms. By the end of the 1950s, the microscopic theory of superconductivity

developed by Bardeen, Cooper, and Schrieffer (BCS) [15], had been rewritten in a field

theoretic form by Nambu [16] and Gorkov [17]. This allowed for calculation of the electrical

and thermal transport properties of the superconducting state. Paradoxically, it was only

at the end of the 1960s that the divergence of the electrical conductivity at the onset of

superconductivity was considered. These corrections to σ0 were understood in terms of

finite lifetime (virtual) Cooper pairs, and were calculated by Aslamazov and Larkin [18],

Maki [19], and Thompson [20]; they are referred to as the fluctuation conductivity.

Continuing with this back to front path, the effects of disorder and (Coulomb) electron-

electron interactions (EEIs) were not explained theoretically until the late 1970s. Altshuler

and Aronov [21] determined and evaluated the Feynman diagrams describing the EEI

corrections. The effects of localisation due to increasing disorder strength were calculated

using scaling theory by Abrahams et. al. [22], and diagrammatically by Gorkov et. al.

[23].

In parallel to this work, since the 1960s, physicists also explored the electronic trans-

port properties of granular materials, from both theoretical and experimental perspectives.

Early works (for reviews, see [24] and [25]) focussed primarily on the metal-insulator tran-

sition (MIT), whilst more recent work (for a review, see [26]) in the late 1990s and 2000s

considered disordered granular metals far from the MIT. It was found that many of the

results for disordered homogeneous metals, those originally considered in the early to mid

20th century, could be translated across to granular systems by a simple replacement of

the effective diffusion constant. However, novel temperature dependence of the electrical

conductivity in granular metals was also predicted theoretically, with some of the most

surprising differences appearing in the effects of superconducting fluctuations.

In 2008, Lerner et. al. [27] predicted three regions of behaviour to exist in the

fluctuation conductivity close to Tc. These three regions occur when the characteristic

size of a virtual Cooper pair was much smaller than the typical grain size, comparable to

3
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the grain size, and much larger than the grain size. It was only recently that this was

observed experimentally by Klemencic et. al. [28], who measured the change in resistance

of boron-doped nanocrystalline diamond (BNCD) films, as they were cooled from room

temperature to below Tc . 4K. In their data, they observed power law crossovers in

the reduced temperature, η = (T − Tc)/Tc, dependence of the fluctuation conductivity,

from −1/2 to −3 to −1/2. These changes in behaviour can be related to dimensional

crossovers from 3D to quasi-0D to 3D, which disagreed with Lerner et. al.’s theory only

in the far-from-Tc region.

The objective of this thesis is to explain the observations of Klemencic et. al.. To do

this we must first understand how to calculate the various contributions to the electrical

conductivity in disordered homogeneous metals, before trying to calculate their granular

analogues. This thesis is therefore structured as follows: chapter 2 presents an overview

of diagrammatic QFT in condensed matter physics. Chapter 3 shows how these ideas

can be applied to disordered homogeneous metals to calculate the electrical conductivity

contributions generated by various physical processes. After this, chapter 4 extends the

ideas of chapter 2 to granular systems, and provides the set of diagrammatic rules used

to perform the calculations that follow. Chapter 5 is analogous to chapter 3, and demon-

strates how to calculate the Drude conductivity of a granular metal, before considering

the corrections to this result arising from the same phenomena discussed in chapter 3. We

then compare our theory for superconducting fluctuations in granular metals to Klemen-

cic et. al.’s experimental results in chapter 6, and discuss how our theory can be refined

or adjusted. Finally, in chapter 7 we conclude the findings of this thesis.
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CHAPTER 2

GREEN’S FUNCTIONS &

DIAGRAMMATIC METHODS

FOR HOMOGENEOUS SYSTEMS

Green’s functions provide a natural building block in the construction of quantum field

theory (QFT). The general concept of a Green’s function remains unchanged in QFT,

that being the solution of a differential equation with a delta function source term. In

addition to this, the Green’s function now describes the propagation of a single particle

from (r′, t′) to (r, t) in the simplest case, and the collective behaviour of multiple particles

in more complex situations.

Two approaches can be taken in generating the necessary Green’s functions for a

problem; first being a diagrammatic description, which will be the focus of this thesis;

whilst the second uses a path integral phrasing of the partition function. Both methods

are equivalent, but carry advantages over the other. Diagrammatic theories are only

applicable when a perturbative expansion of the problem exists. However, they can allow

us to consider higher order corrections with greater ease compared to the path integral

formulation. When a perturbative expansion doesn’t exist, we may only use the path

integral approach. This allows us to access powerful techniques such as renormalisation.
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This chapter closely follows the structure of refs. [29, 30]. We first outline the types of

Green’s functions encountered in QFT and their mathematical properties in section 2.1.

Following, we construct the single electron Green’s function for free particles in section

2.2. Lastly, sections 2.3 and 2.4 provide a derivation of the diagrammatic rules for single

particle and two particle interactions, respectively.

2.1 Mathematical Properties of Green’s Functions

We concern ourselves with three types of Green’s function: the retarded Green’s function,

GR, the advanced Green’s function, GA, and the temperature Green’s function, G, defined

by (~ = 1)

GR(t, t′) = −i 〈[A(t), B(t′)]η〉Θ(t− t′), (2.1a)

GA(t, t′) = −i 〈[A(t), B(t′)]η〉Θ(t′ − t), (2.1b)

G(τ, τ ′) = −〈Tτ{A(τ)B(τ ′)}〉

= −〈A(τ)B(τ ′)〉Θ(τ − τ ′)

+ η 〈B(τ ′)A(τ)〉Θ(τ ′ − τ),

(2.1c)

where A(t) and B(t′) are Heisenberg operators at times t and t′ respectively, Θ(t) is the

Heaviside function, and the square brackets represent

[A,B]η = AB + ηBA, η =


+1, for fermioninc operators

−1, for bosonic operators

. (2.2)

The angled brackets denote averaging over the density matrix, ρ, for a system in the grand

canonical ensemble (GCE),

〈...〉 = Tr [ρ ...] , ρ =
1

Z
e−β(H−µN), Z = Tr

[
e−β(H−µN)

]
. (2.3)
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where H is the system’s Hamiltonian, µ is the chemical potential, N is the number

operator, β = 1/T is the inverse of temperature (kB = 1), and Z is the partition function.

The trace is defined as the sum of the diagonal elements of a matrix, Ô, in the basis of a

complete set of states, {φn},

Tr[ Ô ] =
∑
φn

〈φn| Ô |φn〉 . (2.4)

Clearly the trace is basis independent, but we typically choose the eigenbasis for ease of

calculation.

In the temperature Green’s function τ is imaginary time, related to real time via the

Wick rotation t = −iτ . Lastly, Tτ denotes imaginary time ordering, such that operators

occurring at later times appear to the left of operators occurring at earlier times.

All three of these Green’s functions can be related to each other, but the temperature

Green’s function is particularly useful for introducing statistical mechanics into quan-

tum mechanical problems. The choice t = −iτ transforms the grand canonical unitary

time evolution operator (assuming a time-independent Hamiltonian), U = e−i(H−µN)t =

e−(H−µN)τ , to a form resembling ρ.1 An operator in the GCE is thus evolved in imaginary

time according to

A(τ) = U †(−iτ)A(0)U(−iτ) = e(H−µN)τA(0)e−(H−µN)τ . (2.5)

Imaginary time therefore provides a natural link between time evolution and statistical

mechanics.2

1When in the GCE we wish to treat µ as being a fixed parameter, allowing the particle number to vary.
Consequently, we wish to deal with operators that keep µ fixed and change the number of particles in the
system. Keeping particle number fixed, operators evolve according to the normal time evolution operator
e−Hτ , whilst GCE operators changing the particle number (and keeping µ fixed) evolve according to the
grand canonical time evolution operator, e−(H−µN)τ , see [30].

Alternatively, we can consider the density matrix in the canonical ensemble, ∼ e−βH , and compare it
to the density matrix in the GCE, ∼ e−β(H−µN), and demand that the time evolution operator maintain
a similar form to these in their respective pictures. Hence in the GCE this amounts to considering time
evolution of a state according to H −µN , and so our Schrödinger equation (assuming particle number is

conserved) becomes (H − µN)φ = Ẽφ.
2Note that U†(−iτ) 6= U(−iτ)†, as the Hermitian conjugation acts at different times compared to the

7
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All Green’s functions with just two time arguments can be shown to depend only on

the time difference. This is seen by considering the correlator

C(t, t′) = 〈A(t)B(t′)〉

=
1

Z
Tr
[
e−β(H−µN)ei(H−µN)tA(0)e−i(H−µN)tei(H−µN)t′B(0)e−i(H−µN)t′

]
.

(2.6)

Clearly the cyclic nature of the trace combined with the commutation of the exponents

allows the exponentials to be grouped to produce (H−µN)(t′−t) in the exponents. Thus,

C(t, t′) =
1

Z
Tr
[
e−β(H−µN)ei(H−µN)(t′−t)A(0)e−i(H−µN)(t−t′)B(0)

]
= 〈A(t− t′)B(0)〉

= C(t− t′).

(2.7)

This property makes it convenient to consider the temporal Fourier transform; for some

general Green’s function

G(Ω) =

∫ +∞

−∞
dtG(t) eiΩt. (2.8)

Examining the retarded Green’s function, assuming 〈[A(t), B(0)]η〉 does not grow ex-

ponentially with time and Ω ∈ C, the integral only converges provided that Im[Ω] > 0.

This is a consequence of the retarded Green’s function being non-zero only for t ∈ [0,+∞].

Hence, G(Ω) is analytic in the upper-half plane and may be related to GR(ω) through

GR(ω) = G(ω + iδ), (2.9)

where δ is a positive infinitesimal, and ω ∈ R. We may therefore write the Fourier

input of the argument. In the first case, we take t = −iτ after conjugating U(t), whilst in the second
case we take t = −iτ before taking the conjugate of U(t). It is trivial to see that U(−iτ)† = U†(iτ).

8
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transform, and its inverse, for the retarded Green’s function as

GR(ω) =

∫ +∞

−∞
dtGR(t) ei(ω+iδ)t,

GR(t) =

∫ +∞

−∞

dω

2π
GR(ω) e−i(ω+iδ)t.

(2.10)

An alternative representation of a Green’s function is its spectral form. Consider eq.

2.8 and replace the trace in GR(t) with a sum over the many-body eigenstates of the

system’s grand canonical (GC) Hamiltonian [29], (H − µN) |m〉 = (Em − µNm) |m〉 =

Ẽm |m〉,

GR(ω) = − i

Z

∫ +∞

0

dt ei(ω+iδ)t
∑
m

〈m| e−β(H−µN)[A(t), B(0)]η |m〉

= − i

Z

∫ +∞

0

dt ei(ω+iδ)t
∑
m,n

(
e−βẼm + ηe−βẼn

)
AmnBnme

i(Ẽm−Ẽn)t,

= − 1

Z
∑
m,n

e−βẼm + ηe−βẼn

Ẽn − Ẽm − ω − iδ
AmnBnm,

(2.11)

where Amn = 〈m|A(0) |n〉, and we inserted the identity I =
∑

n |n〉 〈n| between A(0) and

B(0). The final line of eq. 2.11 is known as the frequency Lehmann representation of a

Green’s function [31]. Note this assumes that H and N commute in order for the state

to be an eigenstate of both operators, and so the particle number is conserved according

to Heisenberg’s equation of motion. Given Ẽm ∈ R we write

GR(ω) =

∫ +∞

−∞
dx

A(x)

ω + iδ − x
, (2.12a)

A(x) =
1 + ηe−βx

Z
∑
m,n

e−βẼm AmnBnm δ(x+ Ẽm − Ẽn). (2.12b)

Eq. 2.12a is the spectral form of the Green’s function, with A(x) being the spectral

function.3

3Some texts define the spectral function as containing an additional factor of 2π so that the inte-
gral over x is normalised by a factor of (2π)−1. This is just worth noting for understanding potential
discrepancies with other texts.
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To interpret this physically, let us consider the case where A = c†k and B = ck are

creation and annihilation operators, respectively, for a particle with momentum k. The

Green’s function associated to this is known as a single-particle Green’s function, as it

describes the propagation of a single particle. In this case the spectral function is

A(k, ω) =
1 + ηe−βω

Z
∑
m,n

e−βẼm | 〈m| c†k |n〉 |
2 δ(ω + Ẽm − Ẽn). (2.13)

First we note that | 〈m| c†k |n〉 |2 is the probability of finding the system in the state |m〉

after the addition of a particle with momentum k to the initial state |n〉. This also makes

A(ω) a real function.4 Next we see that the delta function enforces energy conservation,

Ẽm = Ẽn + ω, that is to say the particle carries an energy ω relative to the chemical

potential. Therefore, the spectral function describes all possible transitions from state

|n〉 to state |m〉 upon the addition of a particle with momentum k and energy (ω + µ).

As such it is closely tied to the probability of these transitions. In the case of transport

phenomena where most of the electrons involved are close to the Fermi surface, we expect

that the spectral function will be strongly peaked about the Fermi energy.

A useful sum rule can then be obtained from A(x),

∫ +∞

−∞
dxA(x) = 〈[A(0), B(0)]η〉 . (2.14)

Assuming that A and B are non-singular operators so the above is finite, we see in the

limit |ω| → ∞ eq. 2.12a becomes

GR(ω) ∼ 〈[A(0), B(0)]η〉
ω

. (2.15)

Therefore, GR(ω) tends to zero like ω−1 for non-zero 〈[A(0), B(0)]η〉, or faster in the case

〈[A(0), B(0)]η〉 vanishes.

These ideas can be applied entirely equivalently to the advanced Green’s function.

4This is true for the spectral function of any single particle Green’s function.
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The temporal Fourier transform now requires the complex frequency to be in the lower

half plane to ensure convergence, ω − iδ, so we can relate GA(ω) to G(Ω) via

GA(ω) = G(ω − iδ), (2.16)

and so the Fourier transform and inverse Fourier transform relations for the advanced

Green’s function are

GA(ω) =

∫ +∞

−∞
dtGA(t) ei(ω−iδ)t,

GA(t) =

∫ +∞

−∞

dω

2π
GA(ω) e−i(ω−iδ)t.

(2.17)

Furthrmore, it is trivial to show that the advanced Green’s function written in spectral

form is

GA(ω) =

∫ +∞

−∞
dx

A(x)

ω − iδ − x
. (2.18)

Clearly, the retarded and advanced Green’s functions are related via G(Ω). Therefore,

G(Ω) is analytic in the upper-half plane and equal to GR(ω) as Im[Ω] → 0+, as well as

being analytic in the lower-half plane and equal to GA(ω) as Im[Ω]→ 0−. Lastly, G(Ω) is

not analytic at all points on the real axis due to the difference between the retarded and

advanced Green’s functions,

GR(ω)−GA(ω) =

∫ +∞

−∞
dxA(x)

[
1

ω + iδ − x
− 1

ω − iδ − x

]
= −2πiA(ω). (2.19)

Here made use of the Plemelj formula,

∫ +∞

−∞
dx

A(x)

ω ± iδ − x
= ∓iπA(ω) + P

∫ +∞

−∞
dx
A(x)

ω − x
, (2.20)

where P denotes the principal part of the integral. Given this break of analyticity, we

introduce a branch cut along the real axis. The relation in eq. 2.19 simplifies in the

case of single-particle Green’s functions, as the retarded and advanced forms are simply

11
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complex conjugates of each other. In this case, the spectral function can be written easily

in terms of the retarded Green’s function,

A(ω) = − 1

π
Im
[
GR(ω)

]
. (2.21)

We now turn our attention to the temperature Green’s function. Like the previous

Green’s functions, this too depends only on the difference τ − τ ′. A very important

difference the temperature Green’s function has in comparison to the others is that its

convergence is only guaranteed on a finite interval, −β < τ − τ ′ < β [31]. To demonstrate

this we write G(τ − τ ′) in its temporal Lehmann representation,

G(τ − τ ′) = − 1

Z
∑
m,n

e−Ẽm(β−τ+τ ′)e−Ẽn(τ ′−τ)AmnBnmΘ(τ − τ ′)

+
η

Z
∑
m,n

e−Ẽn(β+τ−τ ′)e−Ẽm(τ ′−τ)AmnBnmΘ(τ ′ − τ).

(2.22)

When τ − τ ′ > 0 we can see the first line requires τ − τ ′ < β to ensure the sum converges

exponentially for large energies. In a similar vein, the second line is relevant for τ−τ ′ < 0

and easily converges for −β < τ − τ ′.5

Let us define the general argument of the temperature Green’s function on the interval.

Next we consider when this argument is negative by taking τ ′ = β,

G(τ − β) = η 〈B(0)A(τ − β)〉

=
η

Z
Tr
[
e−βHB(0)eH(τ−β)A(0)eH(β−τ)

]
=

η

Z
Tr
[
e−βHA(0)e−HτB(0)eHτ

]
= η 〈A(0)B(τ)〉 = −ηG(τ).

(2.23)

5For bosons µ ≤ 0, hence Ẽn > 0 is guaranteed, so the exponent of the surviving piece will be negative
for all accessible states. For fermions µ > 0, so Ẽn < 0 for states below the Fermi level. However, the
number of states accessible in this region is limited and have a finite range of energies in comparison to
the infinite number of states with an unbound range of energies above the Fermi level. Thus the sum will
converge, as for higher energies the summand decays exponentially for higher energies, provided AmnBnm
is well behaved and does not grow exponentially.

12
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Hence, the temperature Green’s function is periodic for bosons, G(τ) = G(τ + β), and

anti-periodic for fermions, G(τ) = −G(τ + β), over the interval −β < τ − τ ′ ≤ β.

These periodic properties suggest the use of Fourier analysis, however G(τ) is not

periodic for all τ ∈ R. Despite this lack of global periodicity, our range of concern is only

over the interval where we observe (anti-)periodic behaviour. Therefore, we can construct

a periodic function, that is periodic for all real numbers, defined by G(τ) on the interval

−β < τ < β. We can then perform Fourier analysis on this new function to find a Fourier

series definition of G(τ) for −β < τ < β. Using these ideas we can write the temporal

Fourier series definition for G(τ) as,

G(τ) = T
∑
ν

G(iν)e−iντ , for − β < τ < β, (2.24a)

G(iν) =

∫ β

0

dτG(τ)eiντ , (2.24b)

where ν = 2πnT and ν = (2n + 1)πT (n ∈ Z) in the bosonic and fermionic cases

respectively. The frequency ν is known as a Matsubara frequency and G(iν) a Matsubara

Green’s function.6 In general, when considering Matsubara frequencies, we adopt the

convention where ω and Ω are used exclusively for bosonic frequencies, whilst ε is used

for fermionic frequencies.

Furthermore, we may also write G(iν) in spectral form; starting from eq. 2.1c and

following the same steps as for the retarded Green’s function we find,

G(iν) =

∫ +∞

−∞
dx
A(x)

iν − x
, (2.25)

where ν can be a fermionic or bosonic Matsubara frequency. Although it appears that

we can obtain the retarded and advanced Green’s functions from G(iν) by analytic con-

tinuation of ν, iν → ω ± iδ, we have to ensure it leads to a unique solution. Analytic

6We use G(iν) to denote the use of Matsubara Green’s functions with i written explicity in the
argument alonside the generic Matsubara frequency ν. This is not to be confused for the continuous
frequency used in the retarded and advanced Green’s functions.
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iν

G(iν) = G(iν)

O

G(Ω) analytic

G(Ω) analytic

Re(Ω)

Im(Ω)

G(Ω) = GR(ω) on this line

iδ

G(Ω) = GA(ω) on this line

iδ

Branch cut

Figure 2.1: Relationship between G(Ω), GR,A(ω), and G(iν) in complex frequency space.

continuation alone cannot guarantee the generation of a single unique function. However,

recalling that GR(ω) and GA(ω) must decay as fast as, or faster than, ω−1 as |ω| → ∞

(eq. 2.15), a unique solution can be obtained [29]. Thus, there exists a unique function,

G(Ω), of the complex variable Ω, that satisfies the following

G(iν) = G(iν), ∀ ν, and, lim
|Ω|→∞

ΩG(Ω) = C, (2.26)

where C is some finite number. Fig. 2.1 shows how the different Green’s functions

discussed in this section are related to each other in complex frequency space.

Having provided a brief summary of the mathematical properties of Green’s functions

necessary for QFT calculations, we shall now move on to their physical interpretation.

The next section shall discuss Green’s functions as propagators and how to obtain their

functional form.
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2.2. FREE ELECTRON GREEN’S FUNCTION

2.2 Free Electron Green’s Function

As mentioned in this chapter’s introduction, a Green’s function can be interpreted as

the probability amplitude for a particle starting at (r′, τ ′) being found at (r, τ). Thus a

Green’s function describes particle propagation from (r′, τ ′) to (r, τ), and so is also referred

to as a propagator. This is most easily seen from the perspective of a temperature Green’s

function. We define the single-particle temperature Green’s function as

Gσσ′(r, τ ; r′, τ ′) = −
〈
Tτ

{
ψσ(r, τ)ψ†σ′(r

′, τ ′)
}〉

, (2.27)

where ψσ(r, τ) is the field operator for an electron with spin σ, and the averaging is taken

with respect to some general GC Hamiltonian H .7 See appendix A for a review of field

operators, second quantisation, and their representation in imaginary time.

We change the basis of the field operators from continuous real space to discrete

momentum space by assuming periodic boundary conditions for a system of volume V ,8

ψσ(r, τ) =
1√
V

∑
k

eik·rckσ(τ), ψ†σ(r, τ) =
1√
V

∑
k

e−ik·rc†kσ(τ), (2.28)

where c†kσ(τ) and ckσ(τ) are the creation and annihilation operators for a particle in state

k with spin σ at time τ respectively. Our single-particle Green’s function thus becomes

Gσσ′(r, τ ; r′, τ ′) = − 1

V
∑
k,p

eik·re−ip·r
′
〈
Tτ

{
ckσ(τ)c†pσ′(τ

′)
}〉

, (2.29)

though it may appear we have not gained much ground here. However, since we are

7Note that ψ†(r, τ) 6= ψ(r, τ)†, as the Hermitian conjugation acts at different times compared to
the Wick rotation being applied. In the first case, we take t = −iτ after conjugating ψ(r, t), whilst
in the second case we take t = −iτ before taking the conjugate of ψ(r, t). It is trivial to see that
ψ(r, τ)† = ψ†(r,−τ).

8Normally the field operators are written in some new basis with wave functions φα(r) appearing as
the coefficients of the annihilation operators, cα, and φ∗α(r) for the creation operators, c†α, see appendix
A. However, since we will be wishing to deal with translationally invariant systems, the most natural
basis to transform to is that of plane waves (free particles), as these have well defined momentum states
and respect the symmetries of the system.
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looking at systems with translational invariance,9 momentum conservation dictates that

only averages of equivalent momenta survive,

〈
ckσc

†
pσ′
〉

=
〈
ckσc

†
kσ

〉
δkpδσσ′ . (2.30)

Here we also noted that only averages of particles with equivalent spin survive.

Therefore, we arrive at a much simpler form for the free single-particle Green’s func-

tion, which we denote as G
(0)
σσ ,

G
(0)
σσ′(r− r′, τ − τ ′) =

1

V
∑
k

eik·(r−r
′)G(0)

σ (k, τ − τ ′)δσσ′ , (2.31a)

G(0)
σ (k, τ − τ ′) = −

〈
Tτ
{
ckσ(τ)c†kσ(τ ′)

}〉
. (2.31b)

Though we have only dealt explicitly with the temperature Green’s function here, the

retarded and advanced single-particle Green’s functions can be defined analogously, and

exhibit the same properties.

A general note to be made is that eq. 2.31a is the general definition for the momentum

space Green’s function of a system with translational invariance. That is to say,

Gσσ′(r− r′, τ − τ ′) =
1

V
∑
k

eik·(r−r
′)Gσ(k, τ − τ ′)δσσ′ (2.32)

Only in problems where we do not have translational invariance do we choose a different

basis of wave functions as prefactors to the creation and annihilation operators when re-

placing the field operators.10 For all the problems we consider though, we either start with

or restore translational invariance at some point, thus allowing us to use the momentum

Green’s function.

9In disordered metals we may treat the electrons as being nearly free, and so we use the free electron
Green’s function as a building block for these systems.

10For example, in the quantum Hall effect the wave functions are Landau levels, which are far from plane
waves. So using a plane wave basis would only create difficulties, especially since the total momentum,
k, is no longer a good quantum number. In other cases, it may be more beneficial to decompose our field
operators in terms of Bloch waves.
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Based upon ref. [31], let’s now consider the free electron gas in the grand canonical

ensemble, whose GC Hamiltonian is

H0 = H0 − µN =
∑
σ

∑
k

ξkc
†
kσckσ, where, ξk =

k2

2me

− µ, (2.33)

µ is the chemical potential (Fermi energy), me is the electron mass, and we have set ~ = 1.

Using ckσ(τ) ≡ U †(−iτ)ckσU(−iτ) = e−ξkτckσ and taking τ ′ = 0, eq. 2.31b becomes

G(0)
σ (k, τ) = −e−ξkτ

〈
ckσc

†
kσ

〉
Θ(τ) + e−ξkτ

〈
c†kσckσ

〉
Θ(−τ). (2.34)

The Matsubara Green’s function associated to eq. 2.34 is given by using eq. 2.24b,

G(0)
σ (k, iε) = −

∫ β

0

dτ e−τ(ξk−iε)
〈
ckσc

†
kσ

〉
=

〈
ckσc

†
kσ

〉
iε− ξk

[
1− e−β(ξk−iε)

]
=

〈
ckσc

†
kσ

〉
iε− ξk

[
1 + e−βξk

]
.

(2.35)

At this point we recall for electrons {ckσ, c
†
kσ} = 1, and the occupation factor of a state k

is given by
〈
c†kσckσ

〉
.11 This leads us to

G(0)
σ (k, iε) =

1

iε− ξk
. (2.36)

Thus we have obtained the free electron Matsubara Green’s function.12

Since the free electron Matsubara Green’s function doesn’t have any spin dependence,

we will drop the explicit spin label on the Green’s function and add the appropriate

multiplicative factors due to spin summation where necessary for the remainder of this

chapter. Additionally, the free particle label will now become a subscript (i.e: G
(0)
σ → G0).

11For fermions the occupation factor is the Fermi-Dirac distribution, f(ξk) = (1 + eβξk)−1, whilst for
bosons it is the Bose-Einstein distribution, n(ξk) = (eβξk − 1)−1.

12The Green’s function for non-interacting bosons has the same form as eq. 2.36, and follows the same
argument as given here.
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The retarded and advanced Green’s functions are easily obtained from eq. 2.36 by

analytic continuation iε→ ω ± iδ,

GR
0 (k, ω) =

1

ω + iδ − ξk
= GA

0 (k, ω)∗. (2.37)

These Green’s functions serve as the basic building blocks for all subsequent calcu-

lations. To understand the effects of disorder, electron-electron interactions, supercon-

ducting fluctuations, and more, we require eq. 2.36 as the zeroth order term in the

perturbation series. Before we explore these phenomena, let us first obtain the rules

governing diagrammatic field theory.

2.3 Single-Particle Interactions

In this section we shall consider the effects of a single-particle potential, U(r), upon the

single-particle Green’s function. This process is done perturbatively, generating correc-

tions to the complete single-particle Green’s function based upon the free particle Green’s

function and a number of interactions with U(r). We shall closely follow ref. [29] here,

and demonstrate how diagrammatics can be associated to the perturbative expansion.

The GC Hamiltonian of concern is given by

H1(r1) = − 1

2m
∇2

1 − µ+ U(r1), (2.38)

whose corresponding Schrödinger equation is

−∂φ(r, τ)

∂τ
= H1(r)φ(r, τ). (2.39)

Let us show that the single-particle Green’s function is indeed a Green’s function in the

classical sense for the Schrödinger equation in the absence of two-particle interactions.13

13It can be shown that the single-particle Green’s function also acts as a Green’s function in the classical
sense when interactions are present, however this generates a dependence of the single-particle Green’s
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We wish to show that the single-particle Green’s function solves the Schrödinger equa-

tion with a delta function source,

[
∂

∂τ1

+ H1(r1)

]
G(r1, τ1; r2, τ2;U) = −δ(d)(r1 − r2)δ(τ1 − τ2), (2.40)

subject to the boundary condition

G(r1, r2; τ1 − τ2 + β;U) = −ηG(r1, r2; τ1 − τ2;U). (2.41)

Here d is the number of dimensions, 0 ≤ τ1, τ2 ≤ β, and we have appreciated that the

Green’s function only depends upon time differences.14 Acting the time derivative upon

the Green’s function produces (suppressing spin indices)

∂

∂τ1

G(r1, r2; τ1 − τ2 + β;U) =−
〈[
ψ(r1, τ1 − τ2), ψ†(r2, 0)

]
η

〉
δ(τ1 − τ2)

+

〈
Tτ

{
∂

∂τ1

ψ(r1, τ1 − τ2)ψ†(r2, 0)

}〉
.

(2.42)

The δ function allows us to set τ1 = τ2 in the first term, hence we may use the equal-

time commutation relation [ψ(r, τ), ψ†(r′, τ)]η = δ(d)(r − r′) to obtain the delta function

product we are aiming for,

∂

∂τ1

G(r1, r2; τ1 − τ2;U) =− δ(d)(r1 − r2)δ(τ1 − τ2)

−
〈
Tτ

{
∂

∂τ1

ψ(r1, τ1 − τ2)ψ†(r2, 0)

}〉
.

(2.43)

Next we use the Heisenberg equation of motion (see appendix A.1)

∂

∂τ1

ψ(r1, τ1 − τ2) = H1ψ(r1, τ1 − τ2)− ψ(r1, τ1 − τ2)H1, (2.44)

function upon the two-particle Green’s function. See [29] for details.
14We have included U in the Green’s function’s argument to explicitly denote the presence of single-

particle interactions.
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and write H1 in its second-quantised form,

H1 =

∫
ddrψ†(r)

[
−∇

2

2m
− µ+ U(r)

]
ψ(r). (2.45)

We then manipulate the first term of eq. 2.44 by using eq. 2.45 to show

H1ψ(r1, τ1 − τ2) = eH1(τ1−τ2) H1 ψ(r1) e−H1(τ1−τ2)

= eH1(τ1−τ2)

∫
ddr

{
η[δ(d)(r− r1)− ψ(r1)ψ†(r)]

×
[
−∇

2

2m
− µ+ U(r)

]
(−η)ψ(r)e−H1(τ1−τ2)

}

= −H1(r1)ψ(r1, τ1 − τ2) + ψ(r1, τ1 − τ2)H1.

(2.46)

Substituting this into eq. 2.44, and then substituting the result into eq. 2.43 we find,

∂

∂τ1

G(r1, r2; τ1 − τ2;U) =− δ(d)(r1 − r2)δ(τ1 − τ2)

+ H1(r1)
〈
Tτ
{
ψ(r1, τ1 − τ2)ψ†(r2, 0)

}〉
.

(2.47)

Recognising the second term above as −H1(r1)G(r1, r2; τ1 − τ2;U), we simply rearrange

eq. 2.47 to arrive at eq. 2.40. Therefore, the single-particle Green’s function truly is a

Green’s function in the classical sense for the Schrödinger equation.

Let us introduce the notation x = (r, τ) for convenience. In which case eq. 2.40

becomes [
∂

∂τ1

+ H1(x1)

]
G(x1, x2;U) = −δ(x1 − x2). (2.48)

We now note that the free particle Green’s function, G0(x1, x2) = G(x1, x2;U=0), satisfies

[
∂

∂τ1

+ H0(x1)

]
G0(x1, x2) = −δ(x1 − x2), (2.49)

where H0(x1) is H (x1;U=0).
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From eq. 2.48 we see

[
∂

∂τ1

+ H0(x1)

]
G(x1, x2;U) = −δ(x1 − x2)−

∫
dx3 δ(x1 − x3)U(x3)G(x3, x2;U),

=

[
∂

∂τ1

+ H0(x1)

] [
G0(x1, x2) +

∫
dx3G0(x1, x3)U(x3)G(x3, x2;U)

]
,

(2.50)

thus yielding the integral equation defining the complete single-particle Green’s function

G(x1, x2;U) = G0(x1, x2) +

∫
dx3G0(x1, x3)U(x3)G(x3, x2;U). (2.51)

In the second line of eq. 2.50 we used eq. 2.49 to replace the delta functions. The integrals

appearing here represent ∫
dx =

∫ β

0

dτ

∫
Vd

ddr, (2.52)

where Vd is all space.

By continuing to substitute G(x1, x2;U) into itself in eq. 2.52, we may write full

Green’s function as a sum of terms increasing in the number of interactions with the

background potential,

G(x1, x2;U) = G0(x1, x2) +
∞∑
n=1

Gn(x1, x2;U), (2.53)

where

Gn(x1, x2;U) =

∫
dx3

∫
dx4 ...

∫
dxn+2

[
G0(x1, x3)U(x3)G0(x3, x4)U(x4)× ...

...× U(xn)G0(xn+2, x2)
]
.

(2.54)

This quickly becomes very cumbersome to write out, and so we represent expressions

such as eqs. 2.53 and 2.54 by diagrams, as shown in fig. 2.2. Here each thin solid

line represents the free particle Green’s function, and hence propagation between the

coordinates at either end of the line. The direction of propagation is given by the arrow

on the line. The thick solid line represents the full Green’s function, whilst each cross
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x2 x1 = x2 x1 + x2

x3

x1

+ x2

x3 x4

x1 + ...

Figure 2.2: Diagrammatic representation of eq. 2.53.

denotes an interaction with the single particle potential.

Let us describe what is happening in the case of G1(x1, x2;U), represented by the

second term in fig. 2.2. We first see the free particle propagating from x2 to x3, where

it interacts with the potential at x3. The free particle then continues to move from x3

to x1, and so the overall propagation is from x2 to x1 as expected from the argument of

G(x1, x2;U).

Currently, this diagrammatic representation seems to only be useful if we already

know what the mathematical expression for the Green’s function is. However, we can

use intuition and physical understanding to construct more complex diagrams instead of

following the procedure. This is particularly useful when considering physical phenomena

like electron-electron interactions and the role of disorder in transport. To understand how

the mathematical expressions are related to diagrams, we must construct and understand

the diagrammatic rules associated to a problem. For the case at hand, the rules we employ

are:

1. For each solid line directed from vertex xm to xn we associate a factor of G0(xn, xm).

2. For each cross located at vertex xl, introduce a factor of U(xl).

3. Integrate the resulting expression over all internal vertices (i.e: for the nth order

contribution, x3, x4, ..., xn+2 are all internal vertices, whilst x1 and x2 are external

vertices15).

15Here x2 and x1 are always external vertices, as they represent the start and end points of the full
Green’s function, and hence the start and end of the complete description of particle propagation. These
are fixed and do not vary, where as the internal vertices may vary in position, hence the integration
accounting for all possible internal space-time positions.
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It is clear from these rules that we can easily reconstruct the series described by eqs. 2.53

and 2.54.

We may also distinguish between whether the Green’s function describes particle or

hole propagation. From the definition of the temperature Green’s function we see that for

τ1 > τ2, G(x1, x2;U) =
〈
ψσ(x1)ψ†σ(x2)

〉
and hence describes particle propagation. Whilst

for τ1 < τ2, G(x1, x2;U) = −η
〈
ψ†σ(x2)ψσ(x1)

〉
and thus describes hole propagation. We

note that the single-particle interaction here is not spin dependent, and so G(x1, x2;U)

has no spin dependence like the free particle Green’s function.

In this subsection we outlined, constructed, and justified the diagrammatic rules for

a system of non-interacting particles that were subject to a single-particle potential. In

the next subsection we shall introduce two-particle interactions into the Hamiltonian, and

derive the diagrammatic rules associated to these types of systems.

2.4 Two-Particle Interactions

Here we shall construct the diagrammatic rules for general two-particle interactions de-

scribed by the GC Hamiltonian

H = H1 +Hint,

H1 =
∑
σ

∫
ddr ψ†σ(r)

[
− 1

2m
∇2 − µ+ U(r)

]
ψσ(r),

Hint =
1

2

∑
σ,σ′

∫
ddr

∫
ddr′ ψ†σ(r)ψ†σ′(r

′)V (r− r′)ψσ′(r
′)ψσ(r),

(2.55)

where V (r − r′) is the two-particle interaction potential. In order to proceed we must

change the picture of quantum mechanics we wish to work in.

Thus far we have been working in the Heisenberg picture, where all time dependence

is on the operators. However, to understand two-particle interactions we need to consider

the interaction picture (see appendix A for a summary of the different pictures of quantum
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mechanics). In this case, our Green’s function may be written as

Gαα′(x1, x2) = −

〈
Tτ

{
ψ̃α(x1)ψ̃†α′(x2)S(β)

}〉
0

〈S(β)〉0
, (2.56)

where ψ̃† and ψ̃ are the creation and annihilation operators in the interaction picture.

The S-matrix is defined as

S(τ) = Tτ

{
exp

(
−
∫ τ

0

dτ ′H̃int(τ
′)

)}
, (2.57)

with

H̃int(τ) = eH1τHinte
−H1τ . (2.58)

The angular brackets 〈...〉0 denote averaging with respect to H1,

〈...〉0 =
1

Z0

Tr
[
e−βH1 ...

]
, Z0 = Tr

[
e−βH1

]
. (2.59)

We now expand the S-matrix in powers of the interaction Hamiltonian,

S(β) = 1 +
∞∑
n=1

(−1)n

n!

∫ β

0

dτ1 ...

∫ β

0

dτnTτ

{
H̃int(τ1)...H̃int(τn)

}
, (2.60)

and substitute it into the numerator of eq. 2.56. This gives

Gαα′(x1, x2) = − 1

〈S(β)〉0

(〈
Tτ

{
ψ̃α(x1)ψ̃†α′(x2)

}〉
0

+
∞∑
n=1

(−1)n

n!

∫ β

0

dτ ′1 ...

∫ β

0

dτ ′n

〈
Tτ

{
ψ̃α(x1)ψ̃†α′(x2)H̃int(τ

′
1)...H̃int(τ

′
n)
}〉)

.

(2.61)

If we also expanded 〈S(β)〉−1
0 in powers of Hint we would easily identify

G (0)
αα′(x1, x2) = −

〈
Tτ

{
ψ̃α(x1)ψ̃†α′(x2)

}〉
0

= −
〈
Tτ

{
ψ̃α(x1)ψ̃†α(x2)

}〉
0
δαα′

= G(x1, x2;U)δαα′ = G (0)
α (x1, x2)δαα′ ,

(2.62)
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which is just the Green’s function without two-body interactions, as expected. Thus,

the sum generated after this expansion therefore describes the two-particle interaction

corrections to the Green’s function. Let us analyse the first order correction in detail.

Focussing on the numerator of eq. 2.56, we write its first order correction explicitly as

G (1,num)
αα′ (x1, x2) = −1

2

∑
σ,σ′

∫ β

0

dτ ′
∫
ddr′

∫
ddr′′

〈
Tτ

{
ψ̃α(x1)ψ̃†α′(x2)

× ψ̃†σ(r′, τ ′)ψ̃†σ′(r
′′, τ ′)V (r′ − r′′)ψ̃σ(r′′, τ ′)ψ̃σ′(r

′, τ ′)
}〉

0

= −1

2

∑
σ,σ′

∫
dx′
∫
dx′′
〈
Tτ

{
ψ̃α(x1)ψ̃†α′(x2)ψ̃†σ(x′)ψ̃†σ′(x

′′)

×W (x′ − x′′)ψ̃σ(x′′)ψ̃σ(x′)
}〉

0
,

(2.63)

where the superscript denotes the numerator part and

W (x′ − x′′) = V (r′ − r′′)δ(τ ′ − τ ′′). (2.64)

At this point we make use of Wick’s theorem (see appendix B for a short explanation of

Wick’s theorem) to split the average up into averages of pairs of creation and annihilation

operators, thus forming an expression in terms of the Green’s function we in principle

know, G (0)
σσ′ . This procedure yields

〈
Tτ

{
ψ̃α(x1)ψ̃†α′(x2)ψ̃†σ(x′)ψ̃†σ′(x

′′)W (x′ − x′′)ψ̃σ′(x′′)ψ̃σ(x′)
}〉

0

=
[ 〈
Tτ

{
ψ̃α(x1)ψ̃†α′(x2)

}〉
0

〈
Tτ

{
ψ̃σ(x′)ψ̃†σ(x′)

}〉
0

〈
Tτ

{
ψ̃σ′(x

′′)ψ̃†σ′(x
′′)
}〉

0

− η
〈
Tτ

{
ψ̃α(x1)ψ̃†α′(x2)

}〉
0

〈
Tτ

{
ψ̃σ(x′)ψ̃†σ′(x

′′)
}〉

0

〈
Tτ

{
ψ̃σ′(x

′′)ψ̃†σ(x′)
}〉

0

− η
〈
Tτ

{
ψ̃α(x1)ψ̃†σ(x′)

}〉
0

〈
Tτ

{
ψ̃σ(x′)ψ̃†σ′(x

′′)
}〉

0

〈
Tτ

{
ψ̃σ′(x

′′)ψ̃†α′(x2)
}〉

0

+
〈
Tτ

{
ψ̃α(x1)ψ̃†σ(x′)

}〉
0

〈
Tτ

{
ψ̃σ(x′)ψ̃†α′(x2)

}〉
0

〈
Tτ

{
ψ̃σ′(x

′′)ψ̃†σ′(x
′′)
}〉

0

− η
〈
Tτ

{
ψ̃α(x1)ψ̃†σ′(x

′′)
}〉

0

〈
Tτ

{
ψ̃σ′(x

′′)ψ̃†σ(x′)
}〉

0

〈
Tτ

{
ψ̃σ(x′)ψ̃†α′(x2)

}〉
0

+
〈
Tτ

{
ψ̃α(x1)ψ̃†σ′(x

′′)
}〉

0

〈
Tτ

{
ψ̃σ′(x

′′)ψ̃†α′(x2)
}〉

0

〈
Tτ

{
ψ̃σ(x′)ψ̃†σ(x′)

}〉
0

]
×W (x′ − x′′).

(2.65)
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Since x′ and x′′ are just dummy variables, it is clear that they can just be interchanged

freely. Hence the third and fifth terms may be set equal, and the fourth and sixth terms

may also be set equal in the above expression. Replacing the averages appearing in eq.

2.65 with Green’s functions in the absence of two particle interactions, we find

−
[
G (0)
α (x1, x2)G (0)

σ (x′, x′)G (0)
σ′ (x′′, x′′)δαα′

+ 2G (0)
α (x1, x

′)G (0)
α′ (x′, x2)G (0)

σ′ (x′′, x′′)δασδσα′

− ηG (0)
α (x1, x2)G (0)

σ (x′, x′′)G (0)
σ (x′′, x′)δαα′δσσ′

− 2ηG (0)
α G (0)

σ (x′, x′′)G (0)
α′ (x′′, x2)δασδσσ′δσ′α′

]
W (x′ − x′′).

(2.66)

Substituting this into G (1,num)
αα′ produces

G (1,num)
αα′ (x1, x2) = δαα′

∫
dx′
∫
dx′′
[

1

2

∑
σ,σ′

G0(x1, x2)G0(x′, x′)G0(x′′, x′′)

− η1

2

∑
σ

G0(x1, x2)G0(x′, x′′)G0(x′′, x′) +
∑
σ′

G0(x1, x
′)G0(x′, x2)G0(x′′, x′′)

− ηG0(x1, x
′)G0(x′, x′′)G0(x′′, x2)

]
W (x′ − x′′),

(2.67)

where we accounted for the lack of spin dependence in G (0)
α and replaced it with G0. From

this we can see that the full Green’s function will only be non-zero for α = α′, since

the interactions here are not spin dependent. Hence, let us only consider the case where

α = α′ and drop the subscript α and α′.

Now we are in a situation where we begin to introduce a diagrammatic representation.

Each term of eq. 2.67 is displayed respectively in fig. 2.3, with the wavy lines representing

the interaction W (x′−x′′) and the solid lines being particle propagators described by G0.

Interpreting these diagrams physically, fig. 2.3a represents the particle of concern passing

through the system whilst two background particles interact by exciting one another, be-

fore returning to the same state. Fig. 2.3b is similar to the previous, but the background

particles now exchange states by interacting with each other. Fig. 2.3c describes the

particle of interest interacting with a background particle by exciting it, before the back-
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x2 x1

x′ x′′

(a)

x2 x1

x′ x′′

(b)

x2 x1

x′

x′′

(c) (d)

Figure 2.3: Diagrammatic representation of eq. 2.67.

ground particle relaxes back into its original state. Lastly, fig. 2.3d represents the original

particle entering the system and interacting with a background particle by exciting it and

replacing it, thus leaving the background particle to continue moving through the system,

whilst the original particle occupies the state it kicked the other particle from.

It is clear two families of diagrams exist; one where all internal vertices are connected

directly, or via each other, to the external vertices; and another where not all internal

vertices are connected directly or indirectly to the external vertices. The former are called

connected diagrams, whilst the latter are known as disconnected diagrams. Figs. 2.3a and

2.3b are examples of disconnected diagrams, where as figs. 2.3c and 2.3d are connected

diagrams.

Let us now make use of the general expansion of the S-matrix in eq. 2.60. At the nth

order of expansion of G ’s numerator, we have n interaction Hamiltonians, each carrying

two internal vertices connected to each other via an interaction. These internal vertices

can then be joined to other internal vertices due to the other interaction Hamiltonians, or

to the external vertices. If we consider choosing n−m of these interaction Hamiltonians to

be disconnected from the external vertices (i.e: no connected path to x1 or x2 at all), this

leaves m interaction Hamiltonians to form the connected part of the diagram. We provide

a visualisation of this in fig. 2.4. Clearly this has n!
m!(n−m)!

ways of being constructed and
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x2 x1

Figure 2.4: A general diagram with external vertices x1 and x2, where the grey bubble
represents a generic set of interactions forming the connected piece. Where as the hatched
bubble represents set of interactions forming the disconnected piece.

contributes G (n,m)
num to the nth order piece, G (n,num). Therefore we may write the expression

associated to such a diagram as

G (n,m)
num (x1, x2) =− (−1)n

m!(n−m)!

×
∫ β

0

dτ ′1 ...

∫ β

0

dτ ′m

[〈
Tτ

{
ψ̃α(x1)ψ̃†α(x2)H̃int(τ

′
1)...H̃int(τ

′
m)
}〉con

0

×
∫ β

0

dτ ′m+1 ...

∫ β

0

dτ ′n

〈
Tτ

{
H̃int(τ

′
m+1)...H̃int(τ

′
n)
}〉discon

0

]
,

(2.68)

where 〈...〉con
0 is the average with respect to H1 and forms the connected piece of the

diagram, whilst 〈...〉discon
0 is the average with respect to H1 and forms the disconnected

piece of the diagram. The n! due to multiplicity is cancelled by the n! in the denominator

of the S-matrix expansion in eq. 2.61.

Next we consider a fixed connected piece and sum over all possible disconnected pieces,

so we sum over all l = n−m keeping m fixed. The contribution from this is simply

Gm,num(x1, x2) =
∑
l

G (l+m,m)
num (x1, x2)

− (−1)m

m!

∫ β

0

dτ ′1 ...

∫ β

0

dτ ′m

[〈
Tτ

{
ψ̃α(x1)ψ̃†α(x2)H̃int(τ

′
1)...H̃int(τ

′
m)
}〉con

0

×
(

1 +
∞∑
l=1

(−1)l

l!

∫ β

0

dτ ′′1 ...

∫ β

0

dτ ′′l

〈
Tτ

{
H̃int(τ

′′
1 )...H̃int(τ

′′
l )
}〉discon

0

)]
.

(2.69)

To obtain the full Green’s function, G , from this we simply sum over all possible connected
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pieces,

G (x1, x2) =
1

〈S(β)〉0

∞∑
m=0

Gm,num(x1, x2). (2.70)

Now, we note that the disconnected expression in eq. 2.69 is constant and independent

of m, and is exactly equivalent to the expanded form of 〈S(β)〉 given in eq. 2.60. The

disconnected superscript does not change the averaging procedure, but rather clarifies

which part of the diagram the average represents. However, the connected superscript

does change things by neglecting disconnected diagrams generated by Wick’s theorem.

Thus, eq. 2.70 simplifies to

G (x1, x2) = G̃0(x1, x2)

−
∞∑
m=1

(−1)m

m!

∫ β

0

dτ ′1 ...

∫ β

0

dτ ′m

〈
Tτ

{
ψ̃α(x1)ψ̃†α(x2)H̃int(τ

′
1)...H̃int(τ

′
m)
}〉con

0
.

(2.71)

Therefore, only connected diagrams contribute to the Green’s function.

This result is not surprising, as background processes are not of concern to the particle

passing through the system. Hence, any diagrams that describe background processes

irrelevant to the original particle should not contribute to the particle’s dynamics. Given

that the connected diagram already describes all relevant interactions with the particle

that occur, the disconnected diagrams only repeat the connected piece’s contribution with

additional background processes and are therefore redundant.

We may now write the rules for diagrammatics describing two-particle interactions

[29, 30]:

1. Create all connected, topologically inequivalent diagrams with 2n internal vertices

at nth order, and two external vertices. At each internal vertex, two solid lines and

a wavy line meet.

2. To each solid line we associate the propagator in the absence of two particle inter-

actions, G (0)
σσ′(xa, xb), where the line moves from position xb and spin σ′ to position

xa and spin σ.

29



CHAPTER 2. GREEN’S FUNCTIONS & DIAGRAMMATIC METHODS FOR
HOMOGENEOUS SYSTEMS

3. Each wavy line represents an interaction and carries a factor of −W (xa − xb).

4. We now integrate over all internal positions, {xm}, and sum over all internal spin

indices.

5. For each closed fermion loop we introduce an extra factor of (−1).

6. For any Green’s functions with their time arguments being equivalent, we take

G0(ra, rb, τ) in the limit τ = τa − τb → 0−.

These rules are given in real space and imaginary time. We have already shown that

the Green’s functions only depend upon time differences, meaning we may replace the

temperature Green’s functions by the Fourier series in terms of Matsubara Green’s func-

tions. This takes us into a Matsubara frequency picture. Furthermore, we shall consider

systems with translational invariance so that we may move into a momentum space rep-

resentation. This is particularly relevant to the phenomena we consider in disordered

media, as they may be regarded as possessing translational invariance after averaging

over all possible impurity distributions.

To move to a momentum-energy picture, we first write out our Green’s functions and

interaction in terms of their Fourier series,

G (0)
σσ′(ra, rb, τ

′ − τ ′′) = T
∑
ν

G (0)
σσ′(ra, rb, iν)e−iν(τ ′−τ ′′),

W (x′ − x′′) = V (r′ − r′′)δ(τ ′ − τ ′′) = V (r′ − r′′)T
∑
ω

e−iω(τ ′−τ ′′),

(2.72)

where ω is a bosonic Matsubara frequency and ν is a fermionic or bosonic Matsubara

frequency depending on the particle being described by the Green’s function.

Substituting these into the expansion in eq. 2.71 we find that each internal τn has

three different Matsubara frequencies associated to it. One from the interaction, and one

from each Green’s function entering the vertex. The integral over this imaginary time
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rb ra
r′ν ν′

ω

Figure 2.5: Example of the position frequency diagrammatic representation, illustrating
energy conservation at the vertex.

component then has the form

∫ β

0

dτne
−iτn(ω+ν−ν′) = δω+ν , ν′ , (2.73)

where ω is the frequency from the interaction entering the vertex, whilst ν and ν ′ are

from the Green’s functions entering and leaving the vertex respectively. The case where

ω is leaving the vertex is analogous to this (let ω → −ω), and we can clearly see that the

frequency entering a vertex must be equal to the frequency (energy) leaving the vertex.

Fig. 2.5 demonstrates this conservation of energy at the vertex.

Consequently the diagrammatic rules are adjusted upon moving into frequency space.

Our propagators now carry an energy (ν, ω, ε, etc), such that each vertex conserves

energy, and we sum over all internal energies. This replaces the labelling of end points

with imaginary times, and the integrals over all internal imaginary times.

Let us now consider a system with translational invariance. We may write the Mat-

subara Green’s functions in terms of their spatial Fourier series,

G (0)
σσ′(ra − rb, iν) =

1

V
∑
k

G (0)
σσ′(k, iν)eik·(ra−rb) → 1

(2π)d

∫
ddkG (0)

σσ′(k, iν)eik·(ra−rb),

V (r′ − r′′) =
1

V
∑
q

V (q)eiq·(r
′−r′′) → 1

(2π)d

∫
ddqV (q)eiq·(r

′−r′′),

(2.74)

where the last step in both lines approximates the sum as an integral, which is valid when

the momentum states are close together such that the summand is slowly varying. Using

this and eq. 2.72 we see that real space integrals in eq. 2.71 only have three momenta

associated to a single internal position, rn, one from the interaction and two from the
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Green’s functions as the vertex. This produces integrals of the form

∫
ddrne

irn·(q+k−k′) =


V δq+k,k′ , discrete momenta

δ(d)(q + k− k′), continuous momenta,

(2.75)

where q is the momentum entering the vertex from the interaction, whilst k and k′ are the

momenta entering and leaving the vertex due to the particle propagators, respectively. As

before, each propagator now carries a momentum across it, which replaces the position

labels at the vertices. We can easily see that eq. 2.75 ensures each vertex conserves

momentum.

Having now moved to momentum-frequency space, our diagrammatic rules have be-

come [29, 30]:

1. Create all connected, topologically inequivalent diagrams with 2n internal vertices

at nth order, and two external vertices. At each internal vertex, two solid lines and

a wavy line meet.

2. To each solid line we associate the propagator in the absence of two particle interac-

tions, G (0)
σσ′(k, iν), which moves from spin state σ′ to σ, whilst carrying a momentum

k and an Matsubara frequency ν, such that momentum and energy are conserved

at each vertex.

3. Each wavy line represents an interaction and carries a factor of −V (q, iω).

4. We now sum over all internal Matsubara frequencies, ν, and introduce a factor of

T for each internal frequency summed over.

5. We next sum (integrate) over all internal momenta, k, and introduce a factor of V−1

((2π)−d) for each internal momentum summed (integrated) over.

6. Sum over all internal spin indices. This is equivalent to just multiplying by a factor

of (2S+1) for each closed particle loop, where S is the particle’s spin, and neglecting

the spin indices and sums.
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7. For each closed fermion loop we introduce an extra factor of (−1).

These rules will be used throughout this thesis in calculating the effects of various

phenomena on the electrical transport properties of disordered metals. Given these dia-

grammatic rules, we are simply left with determining the interaction, V (q, iω), relevant

to the physical process we wish to understand. In the case of EEIs this is just the

Coulomb interaction, whilst for superconducting fluctuations the propagator describing

virtual Cooper pairs becomes the effective interaction propagator.16

In this section we have outlined the mathematical properties underlying Green’s func-

tions, and explained why they describe particle propagation. With this picture in mind,

we calculated the Green’s function for a free particle. With the knowledge of the free

particle propagator we proceeded to consider the perturbation expansion of the single-

particle Green’s function in terms of a background single-particle interaction. Doing so we

derived the diagrammatic rules for particle propagation in the presence of a single-particle

interaction. Lastly, we generalised these ideas further to generate the diagrammatic rules

for particle propagation subject to a two-particle interaction. Using these rules, we shall

move onto modelling disordered metallic systems.

16It is common in the literature when writing problems of this nature in terms of momentum sums, to
suppress the factor of V−1. This is done for notational ease, as most sums will eventually be replaced by
integrals. Nonetheless, these factors are accounted for in the literature though rarely written explicitly.
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CHAPTER 3

TRANSPORT PHENOMENA IN

HOMOGENEOUS SYSTEMS

The processes governing the transfer of energy and information through a system have

been of great interest to mathematicians, physicists, and chemists for many centuries.

One of the most famous of these people was the German physicist Paul Drude [1], who

applied Boltzmann’s kinetic theory of gases to the electrons in a metal to obtain the

renowned Drude formula for the electrical conductivity of a metal,

σ0 =
nee

2τ0

me

, (3.1)

where ne is the number density of electrons in the metal, and τ0 is the elastic scattering

rate of electrons interacting with impurities in the metal. However, it was observed that

this relation held well for high temperatures (comparable to room temperature), but broke

down for low temperatures implying there were other physical mechanisms playing a role in

these settings. With the quantum revolution of the 1920s, this result survived in the form

of the Drude-Sommerfeld model, where the old classical description of colliding particles

was replaced by a gas of weakly interacting electrons obeying Fermi-Dirac statistics [8, 4].

It was not until the 1950s that microscopic quantum transport theory began to be

developed. This approach started with Matsubara [9] developing finite temperature QFT,

35



CHAPTER 3. TRANSPORT PHENOMENA IN HOMOGENEOUS SYSTEMS

followed by Kubo [10] and Greenwood [32] deriving the linear response of the electrical

conductivity to an externally applied electric field. Shortly afterwards, Edwards [11]

introduced a method to include impurities in the metal, whilst Abrikosov and Gorkov [33]

showed that the regular Drude result, in principle, could be obtained via zero temperature

QFT in the absence of two-particle interactions and with the inclusion of impurities.

Finally, Langer [12, 13, 14] demonstrated, with strict rigour, that diagrammatic QFT

could be used to obtain the regular Drude result for zero and finite temperatures.

Let us begin this chapter by introducing impurities into our model of a metal, so that

we may reproduce the calculation of the Drude conductivity from diagrammatic QFT.

Only then may we understand how to calculate the electrical conductivity for a system

with more complex physics present. After this, we shall explore the effects of weak local-

isation in section 3.3, before considering the role of electron-electron interactions (EEIs)

in section 3.4. Following this, we will derive the corrections due to superconducting fluc-

tuations in section 3.5. Finally, we shall consider the role of phase breaking mechanisms

in section 3.6.

3.1 Impurity Scattering and Diagrammatics

The importance of impurities was realised within Drude’s original model of a metal. Here

they were treated as fixed points that electrons could scatter off with some characteristic

scattering rate, τ−1
0 . Including these into QFT was not an easy task and was first achieved

by Edwards [11] in 1958, quickly followed by Abrikosov and Gorkov [33] in 1959. Today

multiple approaches exist to tackle disorder in systems, but they all share the idea of

averaging over all possible distributions of the impurities. We shall follow the averaging

procedure described by Rickayzen [29] and Bruus and Flensberg [31], as this is the most

intuitive route to including impurities, and shares many similarities with the ideas pre-

sented in the original papers [11, 33]. Other approaches to averaging do exist: the path

integral formulation of QFT allows for use of the replica trick [34]; nonlinear sigma models
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(NLσM) provide an alternative route for those wishing to maintain complete mathemat-

ical rigour (see [34, 35, 36] for details), however, we will avoid using this method in this

thesis.

Let us begin by considering the Hamiltonian in eq. 2.38 with the single particle

potential,

U(r, τ) =

Nimp∑
i=1

V (r−Ri)δ(τ), (3.2)

which describes a set of Nimp identical impurities, with the ith impurity being located at

Ri. Each impurity is thus described by the potential V (r − Ri). Clearly the Green’s

function describing this system is given by the diagram in fig. 2.2, albeit only for a single

realisation of the impurity distribution. Given that we cannot know the exact position

of all impurities in a material, and that we are interested in the system’s macroscopic

properties, we perform an ensemble average over all possible impurity distributions. We

refer to this as either impurity averaging or disorder averaging. Thus the Green’s function

we wish to consider is defined as

G(x, x′) = 〈G(x;x′;U)〉(0)
dis = −

〈
Tτ{ψ(x′)ψ†(x)}

〉
dis
, (3.3)

where 〈...〉(0)
dis denotes disorder averaging alone, and 〈...〉dis denotes combined thermal and

disorder averaging.

Applying this average will not affect the free electron Green’s functions, now denoted

by G0, appearing in the perturbation series of the disorder-averaged Green’s function,

and hence the average will simply pass through them. The only objects affected by this

procedure will be the U(x) appearing as internal functions in the integrals defined in eq.

2.54. Thus the problem of impurity averaging reduces to evaluating averages of the form

〈U(x1)〉(0)
dis , 〈U(x1)U(x2)〉(0)

dis ,

〈U(x1)U(x2)U(x3)〉(0)
dis , 〈U(x1)U(x2)U(x3)U(x4)〉(0)

dis .

(3.4)

This averaging procedure is simply the average of a quantity over all possible positions of
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1 2 3 4〈 〉(0)

dis

=

+

+

Figure 3.1: Diagrammatic representation of the fourth order correction to the disordered-
averaged electron Green’s function.

the impurities that it contains.

We make the additional assumption that the concentration of impurities is not too

high, allowing us to treat the impurity positions as independent and random.1 Further-

more, we shall only consider s-wave scattering for our problems.2 To illustrate this process

requires a lot of time and tedious algebra, so we give the details of performing the disorder

average in appendix D, and simply state the consequences here. In brief, this averaging

procedure can be summed up as assuming that the average of impurity events has a

Gaussian distribution,

〈U(x1)〉(0)
dis = 0, 〈U(x1)U(x2)〉(0)

dis =
1

2πN(0)τ0

δ(x1 − x2). (3.5)

The end results of averaging generates the additional diagrammatic rules,

1. Only an even number of scattering events contributes after disorder averaging, so

we consider diagrams where 2n (n ∈ Z+
0 ) crosses are present. Consider fig. 2.2 with

all odd orders removed.

2. Consider all possible combinations where we pair all crosses, with paired crosses

connected via a dotted line. Next, replace the two crosses on the Green’s functions

with a single cross in the centre of the dashed line, see fig. 3.1. This dashed line

1Being more specific, what we mean by a sufficiently low concentration of impurities is that nimp/ne �
1, where nimp is the number density of impurities.

2All this means is that scattering is spherically symmetric, hence |u(k,k′)| depends only upon the
magnitude of the momentum exchange, |k − k′|. To include angular dependence in scattering we refer
the reader to Rickayzen [29], and Bruus and Flensberg [31].

38



3.1. IMPURITY SCATTERING AND DIAGRAMMATICS

= + + + ...

= +

(a)

Σ = =

(b)

Figure 3.2: (a): Diagrammatic representation of the disorder-averaged electron Green’s
function, where the thin solid lines are G0 propagators, and the thick solid lines are the
disorder-averaged electron Green’s function, G. (b): Diagrammatic series for the self-
energy describing impurity averaging. Here the solid line represents G0.

can transfer momentum but not Matsubara frequency, obeying the usual conserva-

tion laws, and forms a constant effective two-body interaction in energy-momentum

space, with magnitude

1

2πN(0)τ0

, (3.6)

where N(0) is the single spin density of states per unit volume at the Fermi surface.

3. For weakly disordered metals, where kF l � 1 (l is the mean free path), terms

involving overlapping (crossed) two-body scattering interactions are sub-dominant

at all orders, and so may be neglected; for example, see the third term of fig. 3.1.

Nested diagrams, such as that shown in the second term of fig. 3.1, give a vanishing

result, as will be explained shortly. After applying these rules and neglecting insignificant

diagrams, we are left with calculating the Green’s function shown in fig. 3.2a. The grey

circle is known as the self-energy, Σ, and allows for an easier calculation of the disorder-

averaged electron Green’s function.3

3We have given a very simple example of a self-energy here. A more complete definition and treatment
of the self-energy is given in appendix D.
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In general, the self-energy allows us to write our Green’s function as

G(x,x′) = G0(x, x′) +

∫
dx1

∫
dx2G0(x, x1)Σ(x1, x2)G0(x2, x

′)

+

∫
dx1

∫
dx2

∫
dx3

∫
dx4G0(x, x1)Σ(x1, x2)G0(x2, x3)Σ(x3, x4)G0(x4, x

′)

+ ...,

(3.7)

which may be rewritten as

G(x, x′) = G0(x, x′) +

∫
dx1

∫
dx2G0(x, x1)Σ(x1, x2)G(x2, x

′). (3.8)

We may further simplify the problem by noting that averaging over all possible impurity

distributions creates a system possessing translational invariance. Given that G(x, x′)

must respect the symmetries of the system, it too must have translational invariance and

therefore only a single momentum argument when written as a Fourier series. Similar

reasoning means that the self-energy also possesses translational invariance. Consequently,

we may write4

G(k, iε) = G0(k, iε) +G0(k, iε)Σ(k, iε)G(k, iε), (3.9)

where we have also performed a temporal Fourier transform to obtain Matsubara Green’s

functions. Eq. 3.9 is known as a Dyson equation. Therefore we arrive at a simple form

for the disorder-averaged electron Green’s function,

G(k, iε) =
1

G0(k, iε)−1 − Σ(k, iε)
. (3.10)

The benefit of this form is that all of the Green’s function’s properties are determined

by Σ, and so we need only focus on calculating this more primitive object. Fig. 3.2a

represents eq. 3.9 in momentum-frequency space, or eqs. 3.7 and 3.8 in real space and

imaginary time; fig. 3.2b shows the diagrammatic series for Σ(k, iε).

4We have not discussed temporal invariance, but it should be noted that this is possessed by the free
electron Green’s functions. Therefore the self-energy and the disorder-averaged electron Green’s function
will also have temporal invariance.
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We now calculate Σ. Fig. 3.2b gives the self-energy to be

Σ(iε) =
1

2πN(0)τ0

1

V
∑
k′

G0(k′, iε) = − 1

2πN(0)τ0

1

V
∑
k′

iε+ ξk′

ε2 + ξ2
k′
, (3.11)

where we have noted that the self-energy will have no momentum dependence. Since we

want to focus on the most significant (i.e: singular) contributions to the self-energy, we

focus on energies close to the Fermi surface, ξk′/εF � 1 (εF is the Fermi energy). We

may therefore approximate the sum in eq. 3.11 by an integral, whose limits are extended

to ±∞. This allows us to write

Σ(iε) = − 1

2πN(0)τ0

∫ +∞

−∞
dξ′N(ξ′)

iε+ ξ′

ε2 + ξ′ 2
' − 1

2πτ0

∫ +∞

−∞
dξ′

iε+ ξ′

ε2 + ξ′ 2
, (3.12)

where N(ξ′) is the single spin density of states per unit volume at energy ξ′. In the

final part of eq. 3.12, we accounted for the fact we are only interested in behaviour close

the Fermi surface, and took N(ξ′) to be approximately constant about the Fermi energy.

The second term of the integral vanishes due to oddness; the first term can be evaluated

trivially to yield

Σ(iε) = − i

2τ0

sgn(ε). (3.13)

This therefore produces the disorder-averaged electron Green’s function,

G(k, iε) =
1

iε− ξk + i
2τ0

sgn(ε)
. (3.14)

If we wanted to include nested diagrams into our calculation of this Green’s function,

we would simply need to replace G0 with G in the self-energy to generate a self-consistent

solution, see fig. 3.3. Doing so eq. 3.11 becomes

Σ(iε) =
1

2πN(0)τ0

1

V
∑
k′

G(k′, iε) =
1

2πN(0)τ0

1

V
∑
k′

1

iε− ξk′ − Σ(iε)
. (3.15)

To solve this we use the ansatz Im[Σ(iε)] = −γsgn(ε), where γ > 0, as done in [34]. The
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= +

Figure 3.3: Self-consistent diagrammatic series for the disorder-averaged electron Green’s
function, which includes all forms of nested diagrams involving two correlated impurity
scatterings.

real part is not of interest as we can absorb this into a redefinition of the chemical potential.

Therefore, looking at the imaginary part of eq. 3.15 and replacing the momentum sum

by an integral approximated about the Fermi surface, we see

Im[Σ(iε)] = − 1

2πτ0

∫ +∞

−∞
dξ′

ε+ γsgn(ε)

(ε+ γsgn(ε))2 + ξ′2

= −sgn(ε)

2πτ0

∫ +∞

−∞
dξ′

|ε|+ γ

(|ε|+ γ)2 + ξ′2

= −sgn(ε)

2τ0

.

(3.16)

For this to be true, we must have γ = 1/(2τ0).

This result leads to exactly the same Green’s function we found in eq. 3.14. To

demonstrate this we rewrite eq. 3.10 as

G(k, iε) =
1

iε− ξk − Re[Σ(iε)]− i Im[Σ(iε)]
. (3.17)

As stated earlier, we can absorb Re[Σ(iε)] as a shift to the chemical potential in ξk.

Finally, by substituting eq. 3.16 in for Im[Σ(iε)] we recover eq. 3.14. Clearly this means

that nested diagrams can be treated as vanishing.

This Green’s function allows us to extract new information by transforming to both

momentum-time space, and position-frequency space.5 In the former we find the retarded

Green’s function to be

GR(k, t) = −i e−iξkt e−t/(2τ0) Θ(t). (3.18)

The exponential decay in time shows that an electron remains in the definite momentum

5Details of these calculations are given in appendix D.
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state k for a time on the scale of τ0. We can interpret this as the typical time an electron

travels without scattering from an impurity. Similarly, in the second case we see

GR(r, ω) = −πN(0)

kF r
eikF r e−r/(2l), (3.19)

where l = vF τ0 (vF is the Fermi velocity). This demonstrates that an electron wave

function decays exponentially on the scale of l, after which the electron loses memory of

its initial state. In other words, the electron typically travels a distance l before scattering

from an impurity.

In summary, we have provided the results of including disorder diagrammatically and

calculated the propagator for an electron in a disordered system, this led to an electron

propagator that describes a confined electron wave function,6 that scatters into a new mo-

mentum state on a time scale of τ0, or equivalently after travelling a distance comparable

to l. We shall now move on to calculating the electrical conductivity of a metal by includ-

ing different physical mechanisms. We shall start simply by reproducing the Drude result,

before including electron-electron interactions and the superconducting fluctuations.

3.2 Drude Conductivity

When considering the Drude result, one might ask: “Why calculate something we already

know the answer to using more convoluted means?”. This question partially answers itself.

When using more sophisticated methods to understand more complicated mechanisms, to

have faith in these methods we must be able to reproduce the simplest result. If we were

to trudge on with diagrammatic QFT without rigorously verifying that it can generate the

Drude result, which we know to be correct in the high temperature limit from observation,

6Note that for a specific realisation of impurities that the eigenstates are still extended propagating
solutions in the case of weak disorder. In this case, we do not have translational invariance, and hence
momentum is not a quantum number labelling the eigenstates. The exponential decay only arises as a
result of the impurity averaging procedure, and so the effective eigenstates are confined. In contrast to
previously, translational invariance has been artificially restored and so momentum becomes an artificial
quantum number for these effective eigenstates. These are short lived states as a consequence.
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then all further corrections would harbour an essence of mystery and magic as to why

they work. This philosophy was clearly shared by Langer [12, 13, 14], whose work we

will shall expand upon shortly. First let us derive the diagrammatic rules surrounding

electrical conductivity following Rickayzen’s methodology [29].

We start from the definition of the electrical conductivity tensor, σαβ, as the response

of the macroscopic current density, J, to the applied electric field, E, for a d dimensional

system

Jα(r, t) =
∑
β

∫ +∞

−∞
dt′
∫
ddr′σαβ(r− r′, t− t′)Eβ(r′, t′). (3.20)

For simplicity we choose to work in the Coulomb gauge (zero scalar field), so that the

electric field is described solely in terms of the vector potential, A(r, t),

E = −∂A

∂t
. (3.21)

Performing a temporal Fourier transform on eq. 3.20 using eq. 3.21 yields

Jα(r, ω) = iω
∑
β

∫
ddr′σαβ(r− r′, ω)Aβ(r′, ω). (3.22)

Hence, the conductivity is related to the linear response of the current to the vector

potential, a field which is easily included into quantum mechanics via minimal coupling.

The Hamiltonian corresponding to a disordered system in the presence of A(r, ω) is simply

(c = 1)

H =
∑
σ

∫
ddr ψ†σ(r)

[
(−i∇− eA(r, t))2

2me

+ U(r)− µ
]
ψσ(r), (3.23)

which may be rewritten as H = H0 + H ′, where H0 is the Hamiltonian in the absence

of A and

H ′(t) =

∫
ddr j(r, t) ·A(r, t). (3.24)
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Here j(r, t) is the microscopic current density defined as7

j(r, t) = j0(r)− e2

me

∑
σ

ψ†σ(r)ψσ(r)A(r, t), (3.25a)

j0(r) = − ie

2m

∑
σ

[
ψ†σ(r)∇ψσ(r)−

{
∇ψ†σ(r)

}
ψσ(r)

]
. (3.25b)

To obtain the macroscopic current from the microscopic current, we take the thermal

average of j(r), followed by the disorder average. By applying Kubo’s formula for linear

response,8 we obtain

Jα(r, t) = 〈j0,α(r, t)〉0,dis −
nee

2

me

Aα(r, t)

−
∑
β

∫ +∞

−∞
dt′
∫
ddr′ GRαβ(r, t; r′, t′)Aβ(r′, t′),

(3.26)

where ne =
∑

σ〈ψ̃†σ(r)ψ̃σ(r)〉0,dis is the electron number density, and 〈...〉0,dis denotes ther-

mal averaging with respect to H0 and disorder averaging. The retarded Green’s function

is just the retarded current-current correlator

GRαβ(r, t; r′, t′) = −i
〈[
j̃0,α(r, t), j̃0,β(r′, t′)

]〉
0,dis

Θ(t− t′), (3.27)

with j̃0,α denoting the αth component of the current density operator with no external

field in the interaction picture. Specifically,

j̃0(r, t) = − ie

2me

∑
σ

[
ψ̃†σ(r, t)∇ψ̃σ(r, t)−

{
∇ψ̃†σ(r, t)

}
ψ̃σ(r, t)

]
. (3.28)

Clearly, the first term of eq. 3.26 must vanish, as this is the average current in the absence

of an applied field.

As a final step, we recall that the retarded Green’s function depends only upon time

7We can also find the current density operator using functional differentiation, j(r, t) = δH ′(t)/δA(r, t).
8See appendix E for the general Kubo formula and how it is applied to the electrical current.
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differences, t− t′, and perform a temporal Fourier transform on eq. 3.26. Disorder aver-

aging recovers translational invariance, allowing us to perform a spatial Fourier transform

with ease. Applying both Fourier transforms yields

Jα(q, ω) = −
∑
β

KR
αβ(q, ω)Aβ(q, ω), (3.29a)

where

KR
αβ(q, ω) =

nee
2

me

δαβ + GRαβ(q, ω), (3.29b)

and KR
αβ is commonly referred to as the (retarded) electromagnetic response function.9

The first term in KR
αβ is referred to as the diamagnetic term, whilst the second term is

known as the paramagnetic contribution.

From the spatial Fourier transform of eq. 3.22 and eq. 3.29, we see that the electro-

magnetic response function is related to the conductivity tensor via

KR
αβ(q, ω) = −iωσαβ(q, ω), (3.30)

for real frequency ω. Given that we will be working in the Matsubara formalism through-

out this thesis, we identify the equivalent relation in terms of the bosonic Matsubara

frequency Ω,10 which is obtained by letting ω → iΩ,

Kαβ(q, iΩ) = Ωσαβ(q, iΩ). (3.31)

Clearly, in the limit of DC conductivity (ω,Ω = 0), the response function must vanish

for a normal system. If this were not the case, the conductivity tensor would diverge

as the frequency tends to zero, and hence the system would be superconducting. When

performing diagrammatic calculations of the conductivity, it is of the utmost importance

that the response function vanishes when dealing with a normal state material, otherwise

9In general this is a type of linear response function, and these ideas can be applied in a variety of
cases.

10The applied electric field is bosonic in nature, and thus carries a bosonic Matsubara frequency.
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G′ = +α β α β

Figure 3.4: Diagrammatic representation G ′(r1, τ ; r′1, τ
′), where the solid lines are electron

Green’s functions for a specific impurity distribution, G′. The black dots denote the
current vertices and their vector components, α and β.

the model being applied cannot be the correct description for the system. As such, we

must always bear in mind that we have to include all diagrams of a certain order to ensure

this happens.11

To calculate KR
αβ we must first find GRαβ. This is most easily done by considering its

corresponding temperature Green’s function prior to disorder averaging,

G ′αβ(r1, τ ; r′1, τ
′) = −

〈
Tτ

{
j̃0,α(r1, τ)j̃0,β(r′1, τ

′)
}〉

0
, (3.32)

where 〈...〉0 means thermal averaging with respect to H0 only. By substituting j̃0 into

G ′αβ, we may write

G ′αβ(r1, τ ; r′1, τ
′) =

e2

4m2
e

lim
r2→r1
r′2→r′1

[
(∇2′ −∇1′)β(∇2 −∇1)α

×
∑
σ,σ′

〈
Tτ

{
ψ̃σ(r2, τ)ψ̃σ′(r

′
2, τ
′)ψ̃†σ′(r

′
1, τ
′)ψ̃†σ(r1, τ)

}〉
0

]
,

(3.33)

where the limit is applied after the gradient operators act. Wick’s theorem allows for two

possible contractions of the thermal average inside the spin sums,

G′(r′2, τ
′; r′1, τ

′)G′(r2, τ ; r1, τ)−G′(r2, τ ; r′1, τ
′)G′(r′2, τ

′; r1, τ)δσσ′ , (3.34)

where we have suppressed spin indices for ease of notation (the Green’s functions do not

11Order here typically refers to the loop order of the diagram. This is most easily determined by
counting the number of “small” momenta involved in the sums. We shall return to this idea later as there
are no small momenta involved in the basic Drude calculation.
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have any explicit spin dependence), and

G′(r, τ ; r′, τ ′) = −
〈
Tτ

{
ψ̃σ(r, τ)ψ̃†σ(r′, τ ′)

}〉
0
, (3.35)

is the electron Green’s function for a specific impurity distribution. These contractions

are presented diagrammatically in fig. 3.4. The black dots represent the current vertices

and hence act as our external vertices where momentum and Matsubara frequency may

enter from the applied field. In real space the current vertices are simply

ĵ0(r1, τ) =
e

2me

lim
r2→r1

(∇2 −∇1). (3.36)

The first of these two possible contractions leads to the term 〈 j̃0,α(r1, τ)〉0〈 j̃0,β(r′1, τ
′)〉0,

which clearly vanishes as 〈 j̃0,α〉0 is just the microscopic current in the absence of an electric

field. At this point we average over impurity distributions, such that

Gαβ(r1, τ ; r′1, τ
′) =

〈
G ′αβ(r1, τ ; r′1, τ

′)
〉(0)

dis

= − e2

4m2
e

lim
r2→r1
r′2→r′1

[
(∇2′ −∇1′)β(∇2 −∇1)α

×
∑
σ,σ′

〈G′(r2, τ ; r′1, τ
′)G′(r′2, τ

′; r1, τ)〉(0)
dis δσσ′

]
.

(3.37)

This leads to an infinite number of diagrams to be considered, examples of which are

given in fig. 3.5. However, we shall apply the same approximations we applied in finding

the disorder-averaged electron Green’s function in the previous subsection. In addition,

we shall neglect the effects of interference between the two Green’s functions in eq. 3.37,

which is equivalent to assuming s-wave scattering. The inclusion of interference terms

yields the same Drude result with τ0 → τtr (the transport relaxation time), and other

corrections which are significantly smaller (weak localisation).

These interference terms arise from both Green’s functions sharing the same impurity

distribution. So when performing our disorder average, we have to consider impurities
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G′ = + +

+ + + ...

α β α β α β

α β α β

Figure 3.5: Examples of diagrams that arise from the complete disorder average of G ′,
and not ignoring certain terms. The solid lines represent free electron Green’s functions,
G0.

contained within both Green’s functions simultaneously. This results in correlated scat-

tering events between the Green’s functions. A discussion of the terms that lead to the

replacement τ0 → τtr can be found in [29, 31]. We shall now focus purely on a metal

containing only s-wave scatterers, so that

G(r1, τ ; r′1, τ
′) ' − e2

4m2
e

lim
r2→r1
r′2→r′1

[
(∇2′ −∇1′)β(∇2 −∇1)α

×
∑
σ,σ′

〈G′(r2, τ ; r′1, τ
′)〉(0)

dis 〈G
′(r′2, τ

′; r1, τ)〉(0)
dis δσσ′

]
= − e2

4m2
e

lim
r2→r1
r′2→r′1

[
(∇2′ −∇1′)β(∇2 −∇1)α

×
∑
σ,σ′

G(r2, τ ; r′1, τ
′)G(r′2, τ

′; r1, τ)δσσ′
]
,

(3.38)

where G(r2, τ ; r′1, τ
′) is the disorder-averaged electron Green’s function in real space and

imaginary time.

After impurity averaging we regain translational invariance. Given that the Green’s

function already possesses temporal invariance, it is beneficial to move to momentum-

frequency space in the usual Matsubara formalism. Doing so we find,

Gαβ(q, iΩ) =
2e2

4m2
e

∑
k

T
∑
ε

(2kα + qα)(2kβ + qβ)G(k + q, iε+ iΩ)G(k, iε), (3.39)
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k + q, iε+ iΩ

k, iε

α β

Figure 3.6: Fully labelled Drude diagram describing eq. 3.39. The solid lines represent
disorder-averaged electron Green’s functions.

where the extra factor of 2 comes from the spin sums, G(k, iε) is the disorder-averaged

electron Green’s function of eq. 3.14, Ω is the bosonic Matsubara frequency of the external

electric field, and ε is a fermionic Matsubara frequency.12 We have suppressed the factor

of V−1 for notational convenience as we will replace the sum by an integral, at which point

this factor is naturally absorbed.13 Finally, we identify the current vertices in momentum

space as carrying the factor

e

2me

(2k + q). (3.40)

Considering a uniform electric field, we may set q = 0. This simplifies eq. 3.39 to

Gαβ(iΩ) = 2
∑
k

T
∑
ε

ekα
me

ekβ
me

G(k, iε+ iΩ)G(k, iε), (3.41)

with each current vertex now carrying a factor of ekα/me.

At this point we draw attention to a technical aspect of the Drude calculation. If we

simply swapped the order of momentum and frequency sums, so that we may perform

the momentum sum first, we would find that the diamagnetic term of the electromagnetic

response function would not be cancelled, and hence the system would appear to be

superconducting. Only by treating these sums carefully, and appreciating their insufficient

rate of convergence, can we show that the diamagnetic term is indeed cancelled by the

paramagnetic term, leaving only terms of order Ω and higher. This technical point was

12Whilst we have been explicit here, we shall assume that all future occurrences of ε as a Matsubara
frequency are fermionic, whilst ω and Ω will always be bosonic, unless otherwise stated.

13This is a standard convention in the literature.
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first openly acknowledged and dealt with by Langer’s trilogy of papers [12, 13, 14]. We

present here the same style of argument used in [37], where both näıve and rigorous

approaches are given to demonstrate the delicate nature of this calculation.

3.2.1 The Näıve Approach

We start with the assumption that we may interchange summation orders without conse-

quence. Replacing the momentum sum by an integral linearised about the Fermi surface

gives,14

Gαβ(iΩ) =
2e2N(0)

m2
e

T
∑
ε

∫
dΩ̂d kFα kFβ

×
∫ +∞

−∞

dξ[
ξ − iε− iΩ− i

2τ0
sgn(ε+ Ω)

] [
ξ − iε− i

2τ0
sgn(ε)

] , (3.42)

where dΩ̂d is the normalised d-dimensional angular element. Without loss of generality

we assume Ω > 0, meaning that the only non-zero contribution to the integral occurs

when ε + Ω > 0 and ε < 0, i.e. −Ω < ε < 0. All other choices of ε lead to both poles of

the integrand lying in the same half plane, so when evaluating the integral via complex

analysis the contour can be closed in a half plane containing no poles, and hence the

integral vanishes. We illustrate this point in fig. 3.7. Computing the ξ integral using the

14The use of linearise here may seem odd, as it does not appear that we have linearised anything in this
integral. What this linearisation refers to, is the linearisation of the spectrum, εk or ξk, near the Fermi
surface. If we say that we are close to the Fermi surface, then we can consider a small displacement, q,
away from kF , such that |q| � kF . In any case, we can write εkF+q = (kF + q)2/(2me). In the limit of
small q, we can approximate this expression as εkF+q ' vF · (kF +2q)/2, or equivalently ξkF+q ' vF ·q.
Hence, both spectra appear linear in variations about the Fermi surface.

The consequence of this linearisation here, is to set k = kF where possible, and to only keep small
variations where they are not dominated. For example, N(ξ) ∼ (ξ + εF )(d−2)/2, meaning linearising ξ
about the Fermi surface will do very little as it is small compared to the additive term of εF next to it.
Thus, we can simply take N(ξ) ' N(0). In contrast, the ξ terms appearing in the Green’s functions are
not actively compared to another energy scale that is much larger. Hence, we may replace them with the
linearised forms of ξ without them being insignificant. In short, this entire approximation comes down
to treating ξ as small compared to the Fermi energy, and ignoring it where appropriate.
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iε+ iΩ
+ i

2τ0

iε+ i
2τ0

iε+ iΩ
+ i

2τ0

iε− i
2τ0

O O
Re(ξ)

Im(ξ)
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Figure 3.7: Left: the contour from analytic continuation can be closed in an empty half-
plane when ε and ε+ Ω have the same sign. Right: when ε and ε+ Ω have opposite signs,
both half-planes contain a pole, so any choice of contour will enclose a pole.

method of residues, we see that

Gαβ(iΩ) =
2e2N(0)

m2
e

T
∑
ε

Θ(−ε(ε+ Ω))

∫
dΩ̂d kFα kFβ

2πτ0

1 + Ωτ0

. (3.43)

The Heaviside function enforces the condition that ε and ε+ Ω have opposite signs.

The angular integral is performed trivially to yield k2
F δαβ/d, while the ε sum produces

the contribution

T
∑
ε

Θ(−ε(ε+ Ω)) = T
∑

−Ω<ε< 0

1 = T
−1∑

n=− Ω
2πT

1 =
Ω

2π
. (3.44)

The resulting response function is then

Kαβ(iΩ) =

[
nee

2

me

+
Ω

1 + Ωτ0

nee
2τ0

me

]
δαβ. (3.45)

Clearly the diamagnetic term has not been cancelled, and Kαβ does not vanish in the

zero frequency limit. If we were allowed to simply ignore the diamagnetic term, then

performing analytic continuation to the upper half plane, iΩ→ ω+ iδ (ω is a continuous
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Re(z)

Im(z)

Im(z) = −Ω

Re(z)

Im(z)

Im(z) = −Ω

⇒

Figure 3.8: Analytic structure of the ε sum in eq. 3.41. The zigzags represent branch cuts
along the real axis and the line where Im(z) = −Ω, due to the Green’s functions G(k, iε)
and G(k, iε+ iΩ) respectively. Crosses denote poles.

real frequency), would yield a conductivity tensor of the form

σαβ(ω) =
nee

2τ0

me

1

1− iωτ0

δαβ, (3.46)

which is the correct result for the AC Drude conductivity. We now need to understand

how to cancel the diamagnetic term so that we can have confidence in this method of

calculating the electrical conductivity.

3.2.2 A Careful Treatment

For this careful treatment of the electrical conductivity, we use the ideas presented by

Rickayzen [29] and Altland and Simons [34].

In order to compute the frequency sum first, we begin by analytically continuing the

sum into complex frequency space using the relation,

T
∑
ε

F (iε) = − 1

2πi

∮
C

dzF (z)f(z), (3.47)

where F (iε) is some generic function, f(z) is the Fermi function, and C is the contour

enclosing the poles along the imaginary axis (located at z = iε) in the anti-clockwise
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direction (see the left diagram in fig. 3.8).15 We may deform the contour to run either

side of the branch cuts along the real axis and Im(z) = −Ω, as illustrated in fig. 3.8, to

yield

Gαβ(iΩ) =
e2N(0)i

πm2
e

∫
dΩ̂d kFα kFβ

∫ +∞

−∞
dξ

×
{∫ +∞

−∞
dz
[
GR(k, z)−GA(k, z)

]
GR(k, z + iΩ)f(z)

+

∫ +∞−iΩ

−∞−iΩ
dz
[
GR(k, z + iΩ)−GA(k, z + iΩ)

]
GA(k, z)f(z)

}
.

(3.48)

Here we have again linearised the momentum integral about the Fermi surface. We next

shift z → z− iΩ in the second frequency integral, noting that f(z− iΩ) = f(z), and then

analytically continue iΩ→ ω + iδ, to obtain

GRαβ(ω) =
e2N(0)i

πm2
e

∫
dΩ̂d kFα kFβ

∫ +∞

−∞
dξ

×
∫ +∞

−∞
dz
[
GR(k, z)−GA(k, z)

] [
GR(k, z + ω) +GA(k, z − ω)

]
f(z).

(3.49)

Let us first concentrate on the GRGR term. We initially consider the case where ω = 0,

for which the integral has the form

∫ +∞

−∞
dξ

∫ +∞

−∞
dz GR(k, z)2f(z) =

∫ +∞

−∞
dξ

∫ +∞

−∞

dz(
z − ξ + i

2τ0

)2f(z)

= −
∫ +∞

−∞
dξ

∫ +∞

−∞
dz

d

dz

[
1

z − ξ + i
2τ0

]
f(z).

(3.50)

Performing integration by parts on the z integral generates a vanishing boundary term and

shifts the derivative onto f(z). Due to the presence of f ′(z), which falls off exponentially

at infinity, there is now sufficient convergence to interchange the order of integration.

15This way of dealing with sums is explored in greater depth in appendix M.

54



3.2. DRUDE CONDUCTIVITY

Thus the GRGR term gives rise to the contribution

∫ +∞

−∞
dz

df

dz

∫ +∞

−∞

dξ

z − ξ + i
2τ0

=

∫ +∞

−∞
dz

df

dz
(−iπ) = iπ. (3.51)

We now consider the case ω 6= 0 by expanding GR(k, z + ω) as a power series in ω,

GR(k, z + ω)GR(k, z) =
∞∑
n=0

(−1)nωn(
z − ξk + i

2τ0

)n+2

=
d

dz

∞∑
n=0

(−1)n+1

n+ 1

ωn(
z − ξk + i

2τ0

)n+1 .

(3.52)

Proceeding as before, we perform integration by parts upon the z integral with eq. 3.52 as

the integrand; this again shifts the derivative onto f(z) allowing us to swap the orders of

integration. At this point it is clear that all terms of the sum with n ≥ 1 fall off sufficiently

rapidly at infinity so that they contribute nothing to the integral.16 Therefore, all non-

trivial behaviour of the GRGR term comes from the n = 0 piece, and has already been

derived in the ω = 0 case.

An entirely equivalent approach can be used for the −GAGA term to produce an

identical contribution of iπ. Thus, the completely retarded and advanced pieces of eq.

3.49 lead to the contribution

e2N(0)i

πm2
e

∫
dΩ̂d kFα kFβ(2πi) = −ne

2

me

δαβ, (3.53)

where we note that n = 2N(0)k2
F/(med). Recalling eq. 3.29b, we see that this contribution

exactly cancels the diamagnetic term appearing in the electromagnetic response function.

Let us now compute the GRGA terms of eq. 3.49 to check that no unexpected divergences

remain.

16This is most easily seen by using the calculus of residues on the ξ integral, and noting that only the
n = 0 term falls off logarithmically. Hence, even if the full contour is closed in the empty half plane, the
contour at infinity gives a non-zero result. All other terms vanish faster than ξ−1 at infinity, meaning
that the contour at infinity gives no contribution and so the full contour may be closed in the half plane
containing no poles.
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We combine the two GRGA terms by letting z → z + ω in the GR(k, z)GA(k, z − ω)

piece, to give

∫ +∞

−∞
dξ

∫ +∞

−∞
dz GR(k, z + ω)GA(k, z)[f(z + ω)− f(z)]. (3.54)

Conveniently, the difference between Fermi functions falls off exponentially at infinity,

allowing us to swap the order of integration without consequence. We therefore perform

the ξ integral first, followed by the z integral, before finally evaluating the angular integral.

By using eqs. 3.29b and 3.53, and the relation

∫ +∞

−∞
dz [f(z + ω)− f(z)] = ω, (3.55)

we find

KR
αβ(ω) =

nee
2τ0

me

−iω
1− iωτ0

δαβ. (3.56)

It is clear that the response function vanishes in the limit ω = 0, and hence the system

described is in the normal state.

Finally, by recalling that KR
αβ(ω) = −iωσαβ(ω), we arrive at the familiar AC Drude

conductivity

σαβ(ω) =
nee

2τ0

me

1

1− iωτ0

δαβ. (3.57)

The DC Drude conductivity given in eq. 3.1 is then reproduced by considering the diag-

onal components of σαβ(ω = 0).

In summary, we have shown that diagrammatic QFT can be used to successfully repro-

duce the well-known Drude formula, although issues of convergence do arise. Nonetheless,

with due care and attention, we can work around these difficulties so that no problems in

the methodology remain, and we can put faith into this approach to calculating the elec-

trical conductivity. Thankfully, when considering more complicated effects, convergence

issues do not arise, as we have a large enough number of Green’s functions to ensure that

the integrands decay rapidly enough at infinity. So, from here on, we may freely swap the
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orders of integration over frequency and momentum.17 As a final point, we introduce a

useful relation, after which we shall evaluate the corrections to the electrical conductivity

that arise at low temperatures.

3.2.3 The Einstein Relation

An alternative way to write the electrical conductivity of a system in the absence of

interference and interactions is via the Einstein relation [38],

σ = 2e2N(0)D, (3.58)

where D is the diffusion constant. For a d dimensional system

D =
v2
F τ0

d
. (3.59)

Substituting this into the Einstein relation gives the familiar Drude conductivity.

One advantage to using this relation is that it allows us to compare the sizes of

conductivity corrections to the Drude result with greater ease, as they are typically written

in terms of D as opposed to the the electron number density. Comparison of σ0 to the

corrections will allow us to identify any parameters that lead to the corrections being

parametrically small, and in what dimensionalities the corrections are small.

Finally, this relation will prove extremely useful when trying to relate homogeneous

and granular systems. In the granular analogue to the Drude conductivity, we will find

that D will be replaced by an effective (tunnelling) diffusion constant.

17It is quite ironic that the simplest result, or rather the system with the simplest physics, has the
most involved calculation in the sense that it requires the most appreciation of technical mathematics.
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A B

O
Figure 3.9: Example paths taken by a particle taken from A to B. The point O is a point
of self-intersection for the bottom path.

3.3 Weak Localisation

Before we consider the more obvious effects of electron-electron interactions on the electri-

cal conductivity, let us continue to focus on one-body effects. Specifically, in this section

we will turn our attention to the effects of quantum interference. Put simply, this is the

interference between all possible paths a particle can take when propagating from one

point to another. We illustrate this idea of paths in fig. 3.9.

To get a more physical handle on this phenomenon, let us use the interpretation given

in [39] and consider the probability of a particle travelling from point A to point B,

P (A→ B) =
∣∣∣∑

i

Ai

∣∣∣2 =
∑
i

|Ai|2 +
∑
i 6=j

AiA
∗
j , (3.60)

where Ai is the probability amplitude of the particle travelling along the ith path. The

first term of the final expression in eq. 3.60 is just the sum of probabilities of the particle

travelling down each possible path, whilst the second term represents interference between

the different paths. Most paths have very little interference with one another due to a lack

of coherence, and so their contribution to the probability is negligible. However, certain

paths are coherent with each other, such as the self-intersecting path illustrated at the

bottom of fig. 3.9. Consequently, we cannot neglect the contribution of these paths to the

probability, and it is these terms that lead to quantum interference in disordered media.
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Looking at the self-intersecting path in fig. 3.9 more closely, we can see that the

particle can traverse the loop in either the clockwise or anticlockwise direction. Let us

assign the probability amplitudes Ã1 and Ã2 to the two different directions, which are

associated with a particle moving from A to O. The probability of finding the particle at

O by travelling these paths is then

|Ã1|2 + |Ã2|2 + 2Re[Ã1Ã
∗
2] = 4|Ã1|2, (3.61)

where we used the fact that both paths are equally likely and (phase) coherent with

one another, so Ã1 = Ã2. Therefore the probability of finding a particle at the point

of self-intersection is twice that of a pair of independent paths. Hence, the particle has

an enhanced probability of being found at the point O. Consequently, the probability

of finding the particle at B must be reduced, and so we expect the effects of quantum

interference to lead to a reduction in the electrical conductivity.18

Given that a particle is more likely to be found at points of self-intersection, we can

think of it as becoming localised about these points. We therefore refer to this phenomenon

as localisation. The scattering strength then defines whether the particles are strongly

confined or not. For weak scattering, particles are only weakly localised, that is to say that

the wave function is significant inside a somewhat extended region, with characteristic

size ξloc (localisation length), about the point O and negligible beyond this region. If the

scattering is strong, then the particles are confined to a much smaller region and ξloc is

much smaller. By continuing to increase the scattering strength we can induce a metal-

insulator transition (MIT) due to Anderson localisation [40]. We shall not discuss the

role of MITs in this thesis as our focus is on materials deep inside the metallic regime.19

This limit of weak scattering we consider thus gives rise to the name of weak localisation

18It might seem like we could construct a similar counter-argument using paths that self-intersect at
the point B. However, the point B is the point of observation, so once a particle passes through B for the
first time we are no longer concerned with any subsequent motion of the particle as it has now reached
the point of interest.

19For the reader wishing to learn more about the Anderson transition, Lee and Ramikrishnan [41]
provide a good review of weak localisation and a discussion of how renormalisation groups may be used
to move to the strong scattering limit.
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+ + + ...

Figure 3.10: Generic form of a ladder diagram for impurity scattering.

(WL).20 These ideas are a brief overview of those detailed in [39, 43].

So how can we include the effects of quantum interference in diagrammatic calcu-

lations? To do this we will need to construct a pair of two-body propagators that de-

scribe the diffusive motion of electrons and holes in metals. We call the particle-particle

(hole-hole) propagator a cooperon, whilst the particle-hole propagator is referred to as a

diffuson. These propagators play a vital role in all phenomena in disordered media, due

to the infinitely many ways we may choose to correlate the impurity scattering events in

different Green’s functions. Hence, before we delve into the diagrammatic calculation of

the weak localisation correction to conductivity, let us first derive these propagators.

3.3.1 The Cooperon & Diffuson

We might expect that the diagrams for interference appear as a sum of ladders of impurity

lines between a pair of particle lines, or a particle and hole line, with each successive term

adding an extra rung. This idea is illustrated in fig. 3.10, and is correct in the weak

scattering limit we are considering. The details on how to derive these propagators’

diagrammatic series can be found in [34]. For now we shall give physical interpretations

of these propagators, and how to calculate their diagrammatic series.

Following [34], both of these propagators appear in the calculation of the density-

density correlator,

〈δρ(r, τ)δρ(0, 0)〉dis , (3.62)

where δρ(r, τ) = ρ(r, τ)− 〈ρ(r, τ)〉 is the local fluctuation of the density. Considering the

20An equivalent interpretation of WL is given by Bergmann [42] in terms of coherent backscattering
events.
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Figure 3.11: Explicit paths taken by particles and holes when travelling from one point to
another. The solid line represents a particle’s motion from (0, 0) to (r, τ), whilst a dashed
line represents a hole’s motion from (0, 0) to (r, τ). The arrows depict the direction taken
in a particle interpretation of the paths. Hence, the solid lines point from (0, 0) to (r, τ),
whereas the dashed lines point from (r, τ) to (0, 0) due to holes being particles travelling
backwards in time.

quantum average explicitly in eq. 3.62, and applying Wick’s theorem yields

〈〈
ψ†(r, τ)ψ(0, 0)

〉 〈
ψ(r, τ)ψ†(0, 0)

〉〉(0)

dis
, (3.63)

which clearly describes a particle moving from (0, 0) to (r, τ), and a hole moving from (0, 0)

to (r, τ). This correlator can be related to P (A → B), and so can be interpreted as the

interference between the paths taken by the particle (which carry probability amplitudes

Ai), with the paths taken by the hole (which carry probability amplitudes A∗i ).

The first term of eq. 3.60 corresponds to a particle traversing a path from (0, 0) to

(r, τ), whilst the hole traverses the same path in the same direction, as in the upper pair of

paths in fig. 3.11. This is just particle-hole interference, and is described by the diffuson.

If we consider the second term of eq. 3.60, the only significant contributions are from self-

intersecting paths: the particle traverses the loop in one direction, the hole in the other,

as shown in lower part of fig. 3.11, since we can interpret the hole as a particle moving

in the opposite direction to the hole, this leads to particle-particle interference along the

loop, which is described by the cooperon. In both cases, the leading-order behaviour is

given by non-crossing impurity scattering lines between particle and hole lines (diffuson),

or particle lines (cooperon).21

21Note that the impurity averaging still correlates the impurities inside a single Green’s function at the
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Figure 3.12: Diagrammatic series for the open diffuson, where the solid lines are disorder-
averaged electron Green’s functions and the grey region is the diffuson D̃(q, iε+ iω, iε).

We define the diffuson, D̃(q, iε + iω, iε), via the diagrammatic series in fig. 3.12. As

for the expansion of the electron Green’s function, we are left with a Dyson equation,

D̃(q, iε+ iω, iε) =
1

2πN(0)τ0

+
1

2πN(0)τ0

ΣD(q, iε+ iω, iε) D̃(q, iε+ iω, iε)

⇒ D̃(q, iε+ iω, iε) =
[
2πN(0)τ0 − ΣD(q, iε+ iω, iε)

]−1

,

(3.64)

where

ΣD(q, iε+ iω, iε) =
∑
p

G(p + q, iε+ iω)G(p, iε), (3.65)

is the diffuson’s self-energy. Note that ω must be a bosonic Matsubara frequency, so that

ε and ε + ω are both fermionic Matsubara frequencies. This makes sense as the diffuson

is a quasiparticle formed of two fermions, and hence we expect it to be bosonic in nature.

We now approximate the self-energy’s momentum sum by an energy integral linearised

around the Fermi surface. To do this, we first note that the energy appearing in the first

Green’s function above is a function of both p and q, whilst the second Green’s function

depends only on p. The main contribution to eq. 3.65 comes from energies, ξp, within

τ−1
0 of the Fermi energy; hence we are only interested in energies with ξp � τ−1

0 , or,

equivalently, momenta such that |p − kF | � l−1.22 This is due to G(p, iε) having a

similar form to a Lorentzian peaked around the Fermi surface with a width ∼ τ−1
0 in

energy, or ∼ l−1 in momentum. Given that l−1 � kF in the weak disorder limit, we may

same time. However, given that we can sum over all these possibilities, the disorder-averaged Green’s
function will simply be recreated, and so the scatterings between Green’s functions will just be a ladder
of scattering events will be between disorder-averaged Green’s functions.

22In other words, only the electrons near the Fermi surface contribute to transport phenomena.
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approximate |p| ∼ kF , and take |p| = kF where appropriate.23 Since ξp+q must also lie

within this region, we approximate the integral in the limit of small q, |q| . l−1 � kF .24

Using the fact that |q| � |p| ∼ kF , we approximate ξp+q ' ξp + vF · q, where vF

is the Fermi velocity. We now replace the momentum sum in eq. 3.65 with an energy

integral and an angular average,

ΣD(q, iε+ iω, iε) = N(0)

∫ +∞

−∞
dξ

∫
dΩ̂d

[
1

iε− ξ + i
2τ0

sgn(ε)

× 1

iε+ iω − ξ − vF · q + i
2τ0

sgn(ε+ ω)

]
.

(3.66)

If the frequencies, ε+ω and ε, have the same sign, then both poles of the integrand in

eq. 3.66 lie in the same half-plane of ξ. Since we have the freedom to choose a contour that

encloses the empty half-plane, this integral vanishes. Consequently, all Green’s functions

that interfere with one another must have opposite frequency signs to generate non-zero

contributions. The diffuson therefore carries the Heaviside factor Θ(−ε(ε+ ω)).25

Let us now consider the case where ε+ ω and ε have opposite signs, and assume that

ω > 0, i.e. ε < 0, ε+ ω > 0. The first Green’s function in eq. 3.66 then has a pole in the

lower half-plane at ξ = iε− i/(2τ0), whilst the second Green’s function has a pole in the

upper half-plane at ξ = vF ·q + iε+ iω+ i/(2τ0). Evaluating the ξ integral by closing the

contour in the lower half-plane gives,

Σ
(ω>0)
D (q, iε+ iω, iε) = N(0)

∫
dΩ̂d

2πτ0

1 + ω τ0 + ivF · q τ0

. (3.67)

23Since ξp is the variable we are integrating over, we don’t want to set |p| = kF inside it as this will
just give ξp = 0, meaning integration loses its purpose. Instead, we appreciate that ξp is small close to
the Fermi surface, and so variations of ξp in this region are important. Hence, we treat ξp as though it
is unaffected by this linearisation and neglect it when it is compared to a large energy scale, such as the
Fermi energy, due to its small size in this region.

24The statement that |q| . l−1 sets l−1 as the absolute maximum value of |q| in the diffusive limit.
25Technically speaking, the self-energy carries this factor. However, in defining the open diffuson to

carry this Heaviside factor we only neglect the first term (a single scattering event) of the series when
the frequencies have the same sign. This is a negligible change, as a Dyson equation is analogous to a
geometric series with a large result (courtesy of the diffusive limit defined in eq. 3.68). So by subtracting
the first term from the result we find a negligible change. Hence, we can ignore the first term without
much consequence.
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At this point we make use of the diffusive limit to approximate this integral.26 The

diffusive limit is defined as

|ω|, T � 1

τ0

, q � 1

l
⇔ Dq2 � 1

τ0

. (3.68)

We now expand the integrand to leading order in ω and q (noting that l = vF τ0),

Σ
(ω>0)
D (q, iε+ iω, iε) = 2πN(0)τ0

∫
dΩ̂d

(
1− ω τ0 − ivF · q τ0 − (vF · q)2τ 2

0

)
. (3.69)

To evaluate the angular averages, we note that

∫
dΩ̂d 1 = 1,

∫
dΩ̂d (vF · q) = 0,

∫
dΩ̂d (vF · q)2 =

v2
F q

2

d
, (3.70)

and hence,

Σ
(ω>0)
D (q, iε+ iω, iε) = 2πN(0)τ0

(
1− ω τ0 −

q2v2
F

d
τ 2

0

)
. (3.71)

If we were to assume that ω < 0, we would find that ω is replaced by −ω in eq. 3.71, so

ΣD(q, iε+ iω, iε) = 2πN(0)τ0

(
1− |ω| τ0 −

q2v2
F

d
τ 2

0

)
. (3.72)

From the diffuson self-energy above, we finally obtain the diffuson propagator,

D̃(q, iε+ iω, iε) =
1

2πN(0)τ 2
0

1

Dq2 + |ω|
Θ(−ε(ε+ ω)) ≡ D̃(q, iω)Θ(−ε(ε+ ω)). (3.73)

We introduce D̃(q, iω) as a shorthand for the diffuson without the Heaviside function.

For convenience, we also define the diffuson for a diagram with a single closed end, as

shown in fig. 3.13. For this we simply have to sum over the additional pair of internal

Green’s functions, which is equivalent to adding an extra factor of ΣD. However, the

order unity term will not be cancelled in this extra factor, and so we can neglect the ω

26With the sheer number of approximations and limits we take in condensed matter theory, physics
begins to feel more like an art than a science. Then again, we do try to justify all that we do, and our
results are usually in the ball park.
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Figure 3.13: Diagrammatic series for the half closed diffuson, where the grey region on
the left side of the equation is the diffuson D(q, iε + iω, iε). The wavy line is a generic
interaction.

and Dq2 terms in the diffusive limit. Therefore, we obtain this closed diffuson by simply

multiplying D̃(q, iε+ iω, iε) by 2πN(0)τ0 to give,

D(q, iε+ iω, iε) =
1

τ0

1

Dq2 + |ω|
Θ(−ε(ε+ ω)) ≡ D(q, iω)Θ(−ε(ε+ ω)). (3.74)

This form of diffuson occurs most often in our calculations, as it corresponds to a vertex

correction or the dressing of an interaction vertex.27

Alternatively, given |q| � |k| ∼ kF , we may neglect the small momentum, q, appear-

ing in the extra pair of Green’s functions. We then use the identity

∑
k

G+(k)mG−(k)n = 2πN(0)τ0

(m+ n− 2)!

(m− 1)!(n− 1)!
(−iτ0)m−1(iτ0)n−1 (3.75)

where G+ and G− are disordered electron Green’s functions with positive and negative

Matsubara frequencies respectively, to evaluate momentum sum of the Green’s functions.

This identity is derived in appendix M.

At this point we turn our attention to the cooperon. So far we have ignored all terms

involving crossed scattering events; let us consider a maximally crossed diagram. As

usual, scatterings are paired, such that the leftmost scattering event on the top line is

connected to the rightmost on the bottom line, and we proceed to pair the rest of the

events so that the nth leftmost event on the top is correlated to the nth rightmost event

on the bottom. We illustrate this idea in fig. 3.14. Due to the topological nature of

27The Heaviside appearing in the diffuson with a closed end is now exact, unlike the diffuson with two
open ends. This is due to the two extra Green’s functions being summed over. If they were of the same
sign, then the integral would simply vanish as in the diffuson’s self-energy.
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=

q+ k,

iε+ iω
q+ k′

,

iε+ iω

−k, iε−k′
, iε

q+ k,

iε+ iω
q+ k′

,

iε+ iω

−k, iε −k′
, iε

Figure 3.14: A maximally crossed diagram involving four sets of scattering events, and
its unravelled form.

diagrammatics, we can unwrap maximally crossed diagrams to produce a ladder diagram

between two particles, rather than a particle and a hole. In fact, the cooperon is related

to the diffuson via the time reversal of one of the propagators.28

We therefore define the cooperon according to the series in fig. 3.15a. Following the

same arguments as for the diffuson we quickly arrive at

C̃(q, iε+ iω, iε) =
1

2πN(0)τ 2
0

1

Dq2 + |ω|
Θ(−ε(ε+ ω)) ≡ C̃(q, iω)Θ(−ε(ε+ ω)). (3.76)

In a similar vein, we can define the cooperon with a closed side by the series in fig. 3.15b,

C(q, iε+ iω, iε) =
1

τ0

1

Dq2 + |ω|
Θ(−ε(ε+ ω)) ≡ C(q, iω)Θ(−ε(ε+ ω)). (3.77)

Both of these diffusive propagators possess a pole as ω, |q| → 0, usually referred to as

a diffusive pole. In practice this is not an issue for the diffuson, but becomes problematic

in calculations that involve the cooperon.29 This arises due to the approximations we

make when computing the diffusive momentum integral (the q integral), as explained in

[31]. Usually we take the radial integral to be over the range [0,∞], where we would then

find an infra-red divergence. However, the cooperon is related to phase coherence effects,

and so cannot live longer than the time it takes particles to lose phase coherence; this

is the phase coherence lifetime, τφ. We should therefore not include modes of infinitely

28Hence the change of propagator direction and reversal of momentum.
29The reason the diffuson is immune to this issue is related to Ward identities, which provide con-

servation laws to be obeyed by the propagators. In the case of the diffuson, the appropriate conserved
quantity is particle number.
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= +

q+ k,

iε+ iω
q+ k′

,

iε+ iω

−k, iε −k′
, iε

q+ k,

iε+ iω
q+ k′

,

iε+ iω

−k, iε −k′
, iε

q+ k,

iε+ iω
q+ p,

iε+ iω
q+ k′

,

iε+ iω

−k, iε −p, iε −k′
, iε

(a)

= +

q+ k,

iε+ iω

−k, iε

q,

iω + 2iε

q+ k,

iε+ iω
q+ k′

,

iε+ iω

−k, iε −k′
, iε

q,

iω + 2iε

q+ k,

iε+ iω
q+ p,

iε+ iω
q+ k′

,

iε+ iω

−k, iε −p, iε −k′
, iε

q,

iω + 2iε

(b)

Figure 3.15: Diagrammatic series for the open cooperon (top) and half closed cooperon
(bottom).

long wavelength in our integrals, but cut off the integrals at the phase coherence length

lφ =
√
Dτφ (i.e. qmin = l−1

φ ). This is the argument given in [31].

We can leave the lower limit of the integral unchanged, if we include the phase breaking

rate, τ−1
φ , in the denominator of the cooperon,

C̃(q, iε+ iω, iε) =
1

2πN(0)τ 2
0

1

Dq2 + |ω|+ τ−1
φ

Θ(−ε(ε+ ω)), (3.78a)

C(q, iε+ iω, iε) =
1

τ0

1

Dq2 + |ω|+ τ−1
φ

Θ(−ε(ε+ ω)). (3.78b)

An equivalent interpretation is given by Patton [44]. Here the cooperon is interpreted

as the lifetime of a diffusive particle-particle mode. Specifically, the lifetime for a particle

with momentum q is given by τ0C(q, ω → 0), which is just 1/(Dq2) in the absence of

phase breaking. However, as discussed above, this lifetime cannot exceed τφ, so these

particle-particle modes must have an effective lifetime of (Dq2 + τ−1
φ )−1. From the nature

of τφ, we can see the equivalence of Bergmann’s interpretation of WL [42] as coherent

backscattering events to the picture of self-intersecting paths.

Several physical mechanisms lead to phase breaking, with the total phase breaking rate
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being given by their sum. Examples include elastic scattering from magnetic impurities,

applied magnetic fields, inelastic EEI scattering, and superconducting fluctuations, which

all decrease τφ. The exact temperature dependence of τ−1
φ is thus quite non-trivial and

extremely system-dependent. We will return to the calculation of τ−1
φ in section 3.6. For

the time being, we note that τ−1
φ decreases with decreasing temperature.30

As a final remark about these diffusive propagators, let us consider the consequences of

the Heaviside function appearing in both. When performing diagrammatic calculations,

any cooperons or diffusons present will force the Matsubara frequencies of the Green’s

functions entering them to be of opposite sign. We can therefore break up the frequency

sums of the diagrams into different regions, corresponding to the combinations of fre-

quency signs that give a non-zero result. In general, these sign combinations will have to

be treated separately, and then summed to give the total contribution of a single diagram.

This organisation is used in all our calculations, and may be seen explicitly in the calcu-

lation of the EEI and superconducting fluctuation corrections in sections 3.4 and 3.5, as

well as in appendices G and I. This is vital in allowing us to being able to compute the

different diagrams in a tractable manner.

3.3.2 Weak Localisation Corrections

We start our calculation of the WL corrections by reconsidering the disorder average

taken to obtain the Drude diagram. This time we consider interference between the

Green’s functions, which generates many contributions. The most singular of these comes

from the maximally crossed diagrams, which can be unwrapped to produce the diagram

in fig. 3.16.

The first to consider this diagram were Langer and Neal [45], although they did not

resolve the apparent issue of divergence for systems of dimensionality two or less. It

was only in the late 1970s that this seemingly ill-behaved correction was resolved. One

30τ−1φ is not generated naturally in the diagrammatic series’ of fig. 3.15, and so we have inserted it
artificially into the Cooperon here. Section 3.6 shows how to include the phase breaking rate diagram-
matically, at least to leading order.
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α β

k, iε+ iΩ q− k, iε+ iΩ

q− k, iεk, iε

Figure 3.16: Diagrammatic representation of the WL correction to electrical conductivity.

approach was developed by Abrahams, Anderson, Licciardello, and Ramakrishnan [22].31

This method was the scaling theory of localisation, which relies heavily upon our faith in

physical intuition. To some, this approach may seem lacking in rigour and unsatisfying.

Around the same time, Gor’kov, Larkin, and Khmel’nitskii [23] continued to treat the

problem diagrammatically, and introduced an appropriate lower cut-off in the momentum

sums to avoid the infrared divergence plaguing the corrections. This approach was also

used by Abrahams and Ramakrishnan in a later paper [46].

We shall follow the Russian mindset when treating this problem, and stick to the

diagrammatic approach. The response function for fig. 3.16 is

Kαβ(iΩ) =
2e2

m2
e

T
∑
ε

∑
k,q

[
kα(qβ − kβ)G(k, iε+ iΩ)G(q− k, iε+ iΩ)

×G(q− k, iε)G(k, iε)C̃(q, iε+ iΩ, iε)
]
,

(3.79)

where, as usual, we assume Ω > 0. The presence of the cooperon forces ε < 0 and

ε+ Ω > 0, as these are the two frequencies entering the cooperon and must be of opposite

sign. The main contribution comes from small q, as this is where the cooperon is most

singular,32 so we may approximate qβ − kβ ' −kβ and G(q− k, iν) ' G(k, iν).

Eq. 3.79 therefore simplifies to

Kαβ(iΩ) = −δαβ
2e2v2

F

d
T
∑
−Ω<ε<0

∑
k,q

G(k, iε+ iΩ)2G(k, iε)2

2πN(0)τ 2
0

1

Dq2 + Ω + τ−1
φ

. (3.80)

31This group is sometimes referred to as the gang of four.
32Since one of the electron Green’s functions depends only on k, we take k to be close to kF . Therefore

the electron Green’s functions with q− k are most singular when q is small too.
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Unlike the Drude calculation, we may freely interchange the orders of summation here

without issue, as the summand is now sufficiently convergent.

We now make use of the identity in eq. 3.75, where in this case we replace G(k, iε+iΩ)

with G+(k) and G(k, iε) with G−(k). Applying eq. 3.75 to eq. 3.80 yields

Kαβ(iΩ) = −δαβ 4e2DT
∑
−Ω<ε<0

∑
q

1

Dq2 + Ω + τ−1
φ

. (3.81)

The Matsubara sum is the same as in eq. 3.44, and gives a multiplicative factor of

Ω/(2πT ). Thus our response function is

Kαβ(iΩ) = −δαβ Ω
2e2D
π

∑
q

1

Dq2 + Ω + τ−1
φ

. (3.82)

We may now deduce the correction to electrical conductivity due to WL using eq. 3.31

to obtain,

σWL(iΩ) = −2e2D
π

∑
q

1

Dq2 + Ω + τ−1
φ

. (3.83)

We now focus on the DC conductivity, Ω = 0, and consider the effect of dimensionality.

To progress further we approximate the momentum sum via an integral,

σWL = −2e2D
π

∫
ddq

(2π)d
1

Dq2 + τ−1
φ

. (3.84)

Consider the situation where τ−1
φ = 0 – we see that the integral diverges at the lower limit

of its radial integral in 1D and 2D. In 3D, however, we have an ultra-violet divergence,

regardless of the value of τ−1
φ , which is cut-off by the diffusive limit.33 This upper limit

exists for 1D and 2D as well, due to being in the diffusive limit, but we take this to infinity

33The upper cut-off in the 3D integral is set by our use of the diffusive limit, Dq2 � τ−10 . We therefore
set q−1max =

√
Dτ0. Note that this is much larger than other length scales present in these types of

problems. Hence it may be set to infinity where divergences are not an issue.
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where possible.34 The weak localisation correction is thus

σWL =



−e
2

π
lφ, d = 1

− e2

2π2
ln

(
τφ
τ0

)
, d = 2

e2

2π2

(
1

lφ
− 1

l

)
, d = 3,

(3.85)

where lφ =
√
Dτφ is the phase coherence length.35

Given that τ−1
φ is smaller for lower temperatures, τφ and lφ must therefore increase

with decreasing temperature. Hence, σWL leads to a conductivity that decreases with

decreasing temperature.

Finally, let us briefly mention experimental observation of WL. To observe WL phe-

nomena experimentally, we can make use of an applied magnetic to destroy the phase

coherence of self-intersecting paths. This reduces the WL correction, giving a negative

magneto-resistance. Amongst the first to observe this phenomenon of negative magneto-

resistance were Kawaji and Kawaguchi [47, 48].

Another observable effect is oscillatory behaviour in the magneto-resistance for a sys-

tem with a ring geometry, as seen in the works of Sharvin et. al. [49] and Al’tshuler

et. al. [50]. These experiments used a thin metallic cylinder threaded with a magnetic

field so that they could focus on loops of fixed area/containing the same magnetic flux.

When applying a magnetic field to a self-intersecting loop, the electron will pick up equal

but opposite phases depending on which way it traverses the loop. Therefore, when the

magnetic field corresponds to a 2πn phase shift, where n ∈ Z, the interference will be

constructive, whilst a 2π(n + 1/2) phase shift leads to destructive interference. The rest

of this thesis does not focus on the role of magnetic fields, so we give further details of

how to include a magnetic field in appendix F.

34Note that lφ � l.
35The prefactor to l−1 in the 3D result is not exactly what you would find upon doing the integrals.

In truth, you would obtain e2
√

3/(π3) as the prefactor, as we can set Dq2max = τ0. However,
√

3 ' 1.7
and π/2 ' 1.5, hence the prefactors of l−1φ and l−1 are relatively close. Thus we set the prefactors equal,
as the cut-off is defined with a sense of typical physicist hand waving.
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In this section we have outlined how one introduces diffusion due to correlated scat-

tering events between electron and hole propagators. Consequently, we studied the most

singular contributions that arise due to diffusive modes in the limit of weak disorder. We

found that they gave rise to a negative correction to the electrical conductivity, which can

by physically attributed to the localisation of current carriers in the metal. Let us now

introduce two-body interactions into our Hamiltonian.

3.4 Electron-Electron Interactions – Coulomb

The first two-body interaction we account for is the Coulomb interaction between elec-

trons. In this section we shall outline how the Coulomb interaction is modified by the

presence of many electrons and disorder, giving rise to the disorder-screened Coulomb

interaction. Upon constructing the physically correct interaction, we shall calculate the

corrections to the electrical conductivity due to its presence.

3.4.1 The Screened Coulomb Interaction and RPA

The bare Coulomb interaction is a long range force that decays radially as r−2. The

potential energy for this interaction between two charges located at r1 and r2, with charges

q1 and q2 respectively, is36

V0(r− r′) =
q1q2

|r1 − r2|
, ⇒ V0(r) =

q1q2

r
, (3.86)

where the second expression emphasises that the interaction depends solely on the sepa-

ration between the charges, r = |r1 − r2|. Since our charge carriers are electrons, we now

set q1 = q2 = e.

36Here we work in Gaussian cgs units, in which 4πε0 = 1, where ε0 is the vacuum permittivity of free
space.
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Figure 3.17: Diagrammatic series for the screened Coulomb interaction within RPA.

Taking the Fourier transform of V0(r− r′) in different dimensions gives,

V0(q) =



4πe2

q2
, d = 3

2πe2

q
, d = 2

−e2 ln(q2w2), d = 1.

(3.87)

The cases of d = 1 and d = 2 are quasi-1D and quasi-2D interactions. These appear

in thin wires and films respectively, where w, the transverse size of the system, is much

smaller than the relevant length scale for the potential [39].

In the systems we consider, the electron density is sufficiently high to allow us to

account for screening of the Coulomb interaction within the random phase approximation

(RPA).37 Using RPA we calculate the screened Coulomb interaction via the Dyson series

shown in fig. 3.17, which corresponds to

V (q, iω) = V0(q)− V0(q)Π(q, iω)V (q, iω). (3.88)

We refer to Π(q, iω) as the polarisation operator or bubble, which is given by

Π(q, iω) =− 2T
∑
ε

∑
k

G(k + q, iε+ iω)G(k, iε)

− 2T
∑
ε

∑
k,k′

[
G(k + q, iε+ iω)G(k, iε)D̃(q, iε+ iω, iε)

×G(k′ + q, iε+ iω)G(k′, iε)
]
.

(3.89)

37The ideas underpinning RPA are discussed in many books (see [29, 30, 31, 34, 39]), so we skip the in
depth details here.
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Let us start by considering the second term of eq. 3.89. The diffuson here means

that the only non-zero contributions occur when ε and ε + ω are opposite in sign. We

may then use eq. 3.75 to evaluate the momentum sums, noting that the most singular

contributions come from small q, so that we may neglect q inside the electron Green’s

functions. Evaluation of these momentum sums thus yields

−2T
∑
ε

(2πN(0)τ0)2

2πN(0)τ 2
0

Θ(−ε(ε+ ω))

Dq2 + |ω|
= −2T

|ω|
2πT∑
n=1

2πN(0)

Dq2 + |ω|
= − 2N(0)|ω|
Dq2 + |ω|

, (3.90)

so that

Π(q, iω) = Π0(q, iω)− 2N(0)|ω|
Dq2 + |ω|

. (3.91)

In general the polarisation bubble obeys [51],

lim
q→0

lim
ω→0

Π(q, iω) = 2N(0), lim
ω→0

lim
q→0

Π(q, iω) = 0. (3.92)

To satisfy eq. 3.92, we might guess that Π0(q, iω) = 2N(0) in the diffusive limit; this is

indeed the case, as demonstrated in appendix G. It follows that

Π(q, iω) = 2N(0)
Dq2

|ω|+Dq2
, (3.93)

and hence

V (q, iω) =
|ω|+Dq2

(|ω|+Dq2)V0(q)−1 + 2N(0)Dq2
. (3.94)

Writing this for the different choices of dimensionality we have,

V (q, iω) =
|ω|+Dq2

2N(0)



κ2
3

q2(|ω|+Dq2) + κ2
3Dq2

, d = 3,

κ2

q(|ω|+Dq2) + κ2Dq2
, d = 2,

2e2N(0)

2e2N(0)Dq2 − (|ω|+Dq2) [ln(q2w2)]−1 , d = 1,

(3.95)

74



3.4. ELECTRON-ELECTRON INTERACTIONS – COULOMB

(a) (b) (c)

(d) (e)

Figure 3.18: Leading order corrections to the electrical conductivity due to EEIs.

where κd is the d-dimensional Thomas-Fermi wave vector (inverse screening length),

κd =


√

8πN(0)e2 =

√
4mekF e2

π
, d = 3,

4πN(0)e2 = 2mee
2, d = 2.

(3.96)

Note that κd � l−1 for the systems we consider, which means we can usually ignore the

V0(q)−1 term in the denominator of eq. 3.94.38 The screened Coulomb interaction then

has the dimension independent form,

V (q, iω) =
1

2N(0)

|ω|+Dq2

Dq2
. (3.97)

Let us now consider its effect on the electrical conductivity.

3.4.2 EEI Corrections to the Electrical Conductivity

The leading order corrections to the conductivity are given by the diagrams in fig. 3.18

[39, 21]. The first three of these diagrams cancel exactly, as shown in appendix G; we

therefore focus on calculating diagrams D and E.

38An example where we cannot ignore V0(q)−1 is the zero-bias anomaly in two dimensions.
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These diagrams have the respective electromagnetic response functions,

K
(D)
αβ (iΩ) = −4e2

m2
T 2
∑
ε,ω

∑
k,k′,q

[
kαk

′
βV (q, iω)G(k, iε+ iΩ)

×G(k + q, iε+ iΩ + iω)G(k, iε)G(k′, iε+ iΩ)

×G(k′ + q, iε+ iΩ + iω)G(k′, iε)

×D(q, iε+ iΩ, iε+ iΩ + iω)2D̃(q, iε+ iΩ + iω, iε)
]
,

(3.98a)

K
(E)
αβ (iΩ) = −4e2

m2
T 2
∑
ε,ω

∑
k,k′,q

[
kα(k′β + qβ)V (q, iω)G(k, iε+ iΩ)G(k, iε)

×G(k + q, iε+ iΩ + iω)G(k′, iε+ iω)G(k′, iε)

×G(k′ + q, iε+ iΩ + iω)D(q, iε+ iω, iε)

×D(q, iε+ iΩ, iε+ iΩ + iω)D̃(q, iε+ iΩ + iω, iε)
]
.

(3.98b)

The factor of 4 in eq. 3.98a is due to a factor of 2 for spin, and an additional factor of 2

due to the equivalent diagram with the interaction on the lower electron Green’s function.

For eq. 3.98b the factor of 4 arises from a factor of 2 for spin, and an extra factor due to

the equivalent diagram with the diffuson and interaction crossed in the opposite order.39

If we simply neglected the small momentum, q, inside the electron Green’s function

these diagrams would vanish as the current vertices produce a single factor of kα in each

“fast” momentum sum, making the sums odd in their α component. We therefore expand

our Green’s functions to first order in q to extract the leading order behaviour.40 This

expansion is performed by taking ξk+q ' ξk +k ·q/m (the q2 term is negligible as q � k),

39The diagram in fig. 3.18e has the diffuson connecting the bottom left and top right Green’s functions,
whilst the interaction links the top left and bottom right Green’s functions. The other choice of orientation
of the diffuson and interaction has the former connecting top left and bottom right, whilst the latter
connects bottom left and top right.

40If we performed the same expansion for the first three diagrams, we would find that they are less
singular and parametrically smaller than the expansion here. For diagrams A, B, and C we find that
they would carry a factor of (ql)2 inside the q summand compared to the q = 0 case, which is small in
the diffusive limit. As will be seen, the last two diagrams will contain an additional factor of Dq2/(Dq2 +
|ω+ Ω|), which is naturally more singular than (ql)2. Note, this is at order q2, but this argument can be
continued for higher orders.
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(a) (b)

Figure 3.19: Sign choices for the Matsubara frequencies of the DOS diagram in fig. 3.18d.
Panels a and b correspond to the D1 and D2 contributions respectively.

which allows us to write

G±(k + q) = G±(k)
∞∑
n=0

(
k · q
m

G±(k)

)n
. (3.99)

We only need to retain the first-order term as all even orders will vanish due to being

odd in the summand when accounting for the current vertices, and higher order terms are

negligible. So, at leading order, these diagrams yield

K
(D)
αβ (iΩ) = −4e2

m4
T 2
∑
ε,ω

∑
k,k′,q

[
kα(k · q)k′β(k′ · q)V (q, iω)G(k, iε+ iΩ)

×G(k, iε+ iΩ + iω)2G(k, iε)G(k′, iε+ iΩ)

×G(k′, iε+ iΩ + iω)2G(k′, iε)

×D(q, iε+ iΩ, iε+ iΩ + iω)2D̃(q, iε+ iΩ + iω, iε)
]
,

(3.100a)

K
(E)
αβ (iΩ) = −4e2

m2
T 2
∑
ε,ω

∑
k,k′,q

[
kα(k · q)k′β(k′ · q)V (q, iω)G(k, iε+ iΩ)G(k, iε)

×G(k, iε+ iΩ + iω)2G(k′, iε+ iω)G(k′, iε)

×G(k′, iε+ iΩ + iω)2D(q, iε+ iω, iε)

×D(q, iε+ iΩ, iε+ iΩ + iω)D̃(q, iε+ iΩ + iω, iε)
]
.

(3.100b)

As usual, we approximate k to be around the Fermi surface, meaning kα(k · q) '

kFα(kF · q) produces a factor of k2
F qα/d inside the q sum upon performing the k sum.41

41This is most easily seen by writing kFα(kF · q) = kFαkFγqγ (using Einstein summation convention).
The sum over k then produces k2F δαγqγ/d = k2F qα/d.
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(a) (b)

Figure 3.20: Sign choices for the Matsubara frequencies of the diagram in fig. 3.18e.
Panels a and b correspond to the E1 and E2 contributions respectively.

Next we consider the non-zero sign configurations for these diagrams enforced by the

diffusons, which are shown in figs. 3.19 and 3.20 for K
(D)
αβ and K

(E)
αβ , respectively. Upon

performing the fast momentum and Fermi frequency sums, we arrive at

K
(D1)
αβ (iΩ) = −16N(0)e2D2T

∑
ω>Ω

∑
q

(ω − Ω)V (q, iω)

(Dq2 + ω)2(Dq2 + ω − Ω)
qαqβ, (3.101a)

K
(D2)
αβ (iΩ) = −16N(0)e2D2T

∑
ω>0

∑
q

ωV (q, iω)

(Dq2 + ω)2(Dq2 + ω − Ω)
qαqβ, (3.101b)

for diagram D, and

K
(E1)
αβ (iΩ) = 16N(0)e2D2T

∑
ω>Ω

∑
q

(ω − Ω)V (q, iω)

(Dq2 + ω)2(Dq2 + ω + Ω)
qαqβ, (3.102a)

K
(E2)
αβ (iΩ) = 16N(0)e2D2T

∑
ω>Ω

∑
q

(ω − Ω)V (q, iω)

(Dq2 + ω)2(Dq2 + ω − Ω)
qαqβ, (3.102b)

for diagram E. The total electromagnetic response function due to the EEIs is simply the

sum of these contributions,

Kαβ(iΩ) = −16N(0)e2D2

d
δαβ T

[ ∑
0<ω≤Ω

ω +
∑
ω>Ω

Ω

]

×
∑
q

q2V (q, iω)

(Dq2 + ω)2(Dq2 + ω + Ω)
.

(3.103)

Here we used the fact that the summand factors multiplying qαqβ have no angular de-

pendence (i.e: they only depend upon q), meaning that the summand was odd in each
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(a) (b)

Figure 3.21: Example curves of the resistivity, ρ, and conductivity, σ, for a typical metal
with EEIs present in three dimensions.

component of q leading to a vanishing sum, unless α = β.

At this point the choice of dimensionality dictates the approach we should take in

evaluating these sums, so we leave mathematical details to appendix G. We find the EEI

conductivity correction is then,

σEEI = − e2

2π2

(
T

D

) d
2
−1

×


αd

(2π)2− d
2

4− d
2d

ζ

(
2− d

2
, 1

)
, d = 1, 3

ln

(
1

2πTτ0

)
, d = 2,

(3.104)

where

αd =


4π2, d = 1

2π, d = 3,

(3.105)

and ζ(x, a) is the Hurwitz zeta function.42 We note that coefficients have the numerical

values,

αd

(2π)2− d
2

4− d
2d

ζ

(
d

2
, 1

)
'


9.82, d = 1

−0.61, d = 3,

(3.106)

which match those given Altshuler and Aronov [39].

Clearly in all dimensionalities, the EEI correction leads to a reduction in the conduc-

42See appendix N for details about the properties of ζ(x, a).
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tivity with decreasing temperature. The temperature dependence is a simple power law,

sgn(d−2)T
d
2
−1, in all except 2D, where it is logarithmic. Fig. 3.21 gives a visual reference

for the shapes of curve we would expect to see in experiment when EEIs are present.

3.5 Superconducting Fluctuations

In this section, we introduce a second type of two-body interaction in the form of super-

conducting fluctuations, mediated by the BCS interaction. These act as a precursor to

the superconducting transition. From observation, the R(T ) behaviour at the transition

is not a step function, but rather a smooth curve with finite width and a definite shape,

this is a consequence of superconducting fluctuations.

Physically, these fluctuations are the result of finite-lifetime (virtual) Cooper pairs.

In this process electrons temporarily pair up, allowing for a superconducting channel to

open, before being broken apart by natural thermal excitations. Due to the presence

of these virtual Cooper pairs travelling without resistance, the conductivity naturally

increases. These Cooper pairs survive for longer nearer the transition, and so the con-

ductivity increases. This specific mechanism can be linked to the Aslamazov-Larkin (AL)

contribution to the fluctuation conductivity. However, whilst electrons are preoccupied as

Cooper pairs, the number of electrons available in the normal current channel is reduced,

and so the conductivity due to normal state electrons decreases. This effect leads to the

density of states (DOS) contribution. Finally, we can consider interference effects in both

channels, although to give this a physical picture is not a simple task. These effects give

rise to the Maki-Thompson (MT) contribution.

These contributions will be calculated in detail in section 3.5.3, and their origin in

the literature explained in section 3.5.2. First we must understand how to construct the

propagator for virtual Cooper pairs.
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k+ q,

iε+ iω

−k, −iε

q, iω

k′ + q,

iε′ + iω

−k′
, −iε′

= + + + ...

= +

Figure 3.22: Diagrammatic series for the pair propagator mediated by BCS interactions
(wavy lines). The BCS interaction allows for the exchange of momentum and frequency.
The hatched region represents the addition of two electron Green’s functions with no
correlated scattering between them to the cooperon.

3.5.1 The Pair Propagator

The diagrammatic series for the pair propagator, L(q, iω), is given by the coiled line

(spring) in fig. 3.22, which yields

L(q, iω) = λ0 + λ0Πfl(q, iω)L(q, iω) ⇒ L(q, iω) =
1

λ−1
0 − Πfl(q, iω)

, (3.107)

where

Πfl(q, iω) = Πfl,0(q, iω) + Πfl,1(q, iω), (3.108a)

Πfl,0(q, iω) = T
∑
ε

∑
k

G(k + q, iε+ iω)G(−k,−iε), (3.108b)

Πfl,1(q, iω) = T
∑
ε

∑
k

G(k + q, iε+ iω)G(−k,−iε)C(q, iε+ iω, iε), (3.108c)

is the fluctuation or pair polarisation operator. The pair propagator has the important

property that it diverges at T = Tc when |q| = 0 = ω,

lim
T→T+

c

L(q = 0, ω = 0;T )→∞. (3.109)

Working in the diffusive limit, we may neglect Πfl,0 without consequence, as shown in
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appendix H.43 The momentum sums in eq. 3.108c then yield

Πfl,1(q, iω) = 2πN(0)T
∑
ε

Θ(ε(ε+ ω))

|ε|+ |ε+ ω|+Dq2 + τ−1
φ

. (3.110)

Let us assume ω ≥ 0 for the time being, so that

Π
(ω>0)
fl (q, iω) = 2πN(0)T

[∑
ε>0

+
∑
ε<−ω

]
1

|2ε+ ω|+Dq2 + τ−1
φ

= 4πN(0)T
∑
ε>0

1

2ε+ ω +Dq2 + τ−1
φ

.

(3.111)

However, this sum is logarithmically divergent, so we introduce the Debye frequency, ωD,

as an upper cut-off, as this is the characteristic phonon energy. Hence,

Π
(ω>0)
fl (q, iω) = N(0)

ωD
2πT∑
n=0

1

n+ 1
2

+
ω+Dq2+τ−1

φ

4πT

= N(0)

[
ψ

(
ωD
2πT

+
3

2
+
ω +Dq2 + τ−1

φ

4πT

)
− ψ

(
1

2
+
ω +Dq2 + τ−1

φ

4πT

)]

' N(0)

[
ln
( ωD

2πT

)
− ψ

(
1

2
+
ω +Dq2 + τ−1

φ

4πT

)]
,

(3.112)

where ψ(x) is the digamma function (see appendix N), and in the last line of eq. 3.112

we noted that ωD � T, |ω|,Dq2, τ−1
φ . In the case where ω < 0, we find the same result

with ω → −ω in eq. 3.111, and so

Πfl(q, iω) ' N(0)

[
ln
( ωD

2πT

)
− ψ

(
1

2
+
|ω|+Dq2 + τ−1

φ

4πT

)]
, (3.113)

Substituting this into eq. 3.107 leads to a somewhat cumbersome expression. This

may be simplified using the definition of Tc in eq. 3.109, allowing us to write λ0 in terms

of Tc,

λ−1
0 = N(0)

[
ln

(
ωD

2πTc

)
− ψ

(
1

2
+

1

4πTcτφ,c

)]
. (3.114)

43This corresponds to the “dirty limit” of a superconductor.
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When τ−1
φ = 0, this gives us the BCS result for the unsuppressed transition temperature,

Tc,0 =
2ωDe

γ

π
exp

(
− 1

N(0)λ0

)
, (3.115)

where γ is the Euler-Mascheroni constant. In the general case where τ−1
φ 6= 0, substituting

eq. 3.113 and eq. 3.114 into eq. 3.107 gives

L(q, iω) =
1

N(0)

[
ln

(
T

Tc

)
+ ψ

(
1

2
+
|ω|+Dq2 + τ−1

φ

4πT

)
− ψ

(
1

2
+

1

4πTcτφ,c

)]−1

.

(3.116)

This is the full pair propagator within the diffusive limit.44

Later on, we will only be concerned with cases involving small Cooper pair momenta

and frequencies, so we may expand L(q, iω) in powers of Dq2 and ω.45 This yields

L(q, iω) =
1

N(0)

[
ln

(
T

Tc

)
+ δψ + ψ′

(
1

2
+

1

4πTτφ

)
Dq2 + |ω|

4πT

]−1

, (3.117)

where

δψ = ψ

(
1

2
+

1

4πTτφ

)
− ψ

(
1

2
+

1

4πTcτφ,c

)
. (3.118)

In the case where phase breaking rates are negligible, Tτφ � 1, we may write

L(q, iω) =
1

N(0)

[
ln

(
T

Tc,0

)
+

π

8T
(Dq2 + |ω|)

]−1

. (3.119)

In the above, Tc is the general transition temperature for τ−1
φ 6= 0, which is suppressed

from the value Tc,0. To relate Tc to Tc,0, we use eq. 3.114, noting that λ0 is a constant,

44We have not assumed anything about the size of |ω|, Dq2, or τ−1φ compared to T .
45It may seem like we are lacking rigour by treating the bosonic Matsubara frequency as continuous so

that we may do a simple Taylor expansion (I.e: treating a discrete variable as continuous is not always
okay). However, we can analytically continue our Matsubara pair propagator using ω → ω ± iδ, perform
the expansion in terms of the now continuous frequency, and move back to the Matsubara form using
ω± iδ → ω. This will give exactly the same result as if we treated the Matsubara frequency as continuous
for the purpose of expansion.

83



CHAPTER 3. TRANSPORT PHENOMENA IN HOMOGENEOUS SYSTEMS

independent of the value of τ−1
φ . It follows that

ln

(
ωD

2πTc,0

)
− ψ

(
1

2

)
= ln

(
ωD

2πTc

)
− ψ

(
1

2
+

1

4πTcτφ,c

)
,

⇒ ln

(
Tc
Tc,0

)
= ψ

(
1

2

)
− ψ

(
1

2
+

1

4πTcτφ,c

)
.

(3.120)

Considering temperatures close to the transition, such that (T − Tc)/Tc � 1, we

can replace the logarithm in the pair propagator with the reduced temperature, η =

(T − Tc)/Tc. Hence, when τ−1
φ = 0, we may approximate eq. 3.119 as

L(q, iω) =
1

N(0)

[
η +

π

8T
(Dq2 + |ω|)

]−1

. (3.121)

Furthermore, we may obtain the square of the virtual Cooper pair coherence length from

the coefficient of q2,

ξv =

√
πD
8Tcη

=

√
π

8d

√
vF l

Tcη
, T > Tc, η � 1. (3.122)

This is within agreement of the Ginzburg-Landau coherence length for Cooper pairs in

a dirty 3D superconductor [52]. If we remove a factor of π/(8T ) from the denominator

of eq. 3.121, the first term in the denominator becomes the Ginzburg-Landau relaxation

rate [52],

τ−1
GL =

8

π

1

T − Tc
, T > Tc, η � 1. (3.123)

This can be interpreted as the characteristic lifetime of a virtual Cooper pair.

The pair propagator thus provides information about the size and lifetime of the virtual

Cooper pairs. These ideas will become very useful for building an intuitive picture for the

superconducting fluctuation corrections in both homogeneous and granular metal.
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(a) (b) (c)

(d) (e) (f)

Figure 3.23: Diagrams describing the corrections to the electrical conductivity due to
superconducting fluctuations.

3.5.2 Fluctuation Conductivity – A Brief History

In the previous subsection we constructed the propagator for the virtual Cooper pairs,

which describes superconducting fluctuations. Let us now use this to calculate their ef-

fects on the electrical conductivity. These corrections can be grouped into three categories:

Aslamazov-Larkin (AL), Maki-Thompson (MT), and density of states (DOS). The first

of these was initially thought to be the most dominant contribution that led to an en-

hancement of the conductivity as one approached the transition from above, as discussed

in the original paper by Aslamazov and Larkin [18]. The belief that the AL term was

the most significant was due to the presence of two pair propagators in the diagram (fig.

3.23f), implying a more singular contribution when close to Tc.

This was not entirely the case however, as the diagram given by Aslamazov and Larkin

which involved a pair propagator across the conductivity bubble, like that in fig. 3.23c,

was shown to suffer infra-red divergence issues in its diffusive momentum integral within

the work of Maki [19] in both one and two dimensions, suggesting that it may be as

important or more important than the AL piece. This divergent result was clearly not

physical, and was successfully dealt with by Thompson [20] by the inclusion of a phase

breaking rate.
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Thompson initially suggested that this phase breaking rate could arise from external

phase breaking mechanisms, such as paramagnetic impurities and magnetic fields, and

would lead to a suppression of the transition temperature. Soon after, Crow et. al.

[53] measured the fluctuation conductivity in aluminium and lead films, and saw that

the AL prediction was too small to explain their observations. By accounting for the

Maki contribution with Thompson’s correction, they were able to match the theory for

zero magnetic field to experiment. To further demonstrate the sensitivity of the MT

correction to magnetic fields, they also showed that at higher magnetic field strengths the

MT contribution became smaller and the total fluctuation conductivity approached that

predicted by Aslamazov and Larkin.

Whilst it might seem like a large success to have matched theory with experiment, the

issue behind what governed the presence of the MT term and prevented its divergence

was still not entirely resolved. What if no paramagnetic impurities or magnetic fields

were present in the system? What if the electron-phonon interaction was relatively weak,

so that it didn’t disturb an electron’s phase drastically? These qualms were settled later

by Patton [44] and Keller and Korenman [54, 55], who argued and showed that phase

breaking occurred naturally in the system without the need for external mechanisms.

Simply by the existence of virtual Cooper pairs there was a natural time scale, τn, that

described the lifetime of an electron in the normal state, after which it would combine

with another electron to form a virtual Cooper pair. Thus we have a natural lower cut-

off in the diffusive momentum integral set by ln = vF τn, which is just an example of the

phase breaking mechanisms discussed towards the end of subsection 3.3.1. Using Patton’s

description [44], we can think of a system with superconduting fluctuations as having a

decay rate, τ−1
n , associated to the decay of electrons from the normal fluid to the superfluid

of virtual Cooper pairs, whilst having a second decay rate, τ−1
s , describing the decay of

virtual Cooper pairs in the superfluid to electrons in the normal fluid.

Now that we have recapped some of the history behind the prediction and observation

of superconducting fluctuations and their effects on the electrical conductivity, let us begin
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to calculate their quantitative effects.46

3.5.3 Fluctuation Conductivity

The total fluctuation conductivity is given by the diagrams in fig. 3.23. Diagrams A,

B, and D form the DOS corrections and so we expect these to give an overall negative

contribution. Diagrams C and E are the MT contributions, and finally diagram F is the

AL term. They can be shown to cancel in the zero external frequency limit, however this

does not provide us with any new observable information and serves as a check that we

have included all relevant diagrams. Therefore, we present the proof of their cancellation

in appendix I. Furthermore, only diagrams A, B, C, and F give singular contributions,

so these are the ones we shall calculate explicitly here. We proceed in calculating these

diagrams in decreasing complexity, starting with the AL diagram, followed by the MT

diagram, and finishing with the DOS terms.

The AL term

The AL diagram contains two blocks of Green’s function which are independent of one

another (see appendix I for details). These blocks may be written as

Bα(q, iω, iΩ) = T
∑
ε

∑
k

[
kα
m
G(k, iε+ iΩ)G(k, iε)G(q− k, iω − iε)

× C(q, iε+ iΩ, iω − iε)C(q, iε, iω − iε)
]
,

(3.124)

where we have included the factor of kα/m from the current vertex inside a single block.

The response function associated to this diagram is then

K
(F )
αβ (iΩ) = −4e2T

∑
ω

∑
q

Bα(q, iω, iΩ)Bβ(q, iω, iΩ)L(q, iω + iΩ)L(q, iω). (3.125)

46This is the point at which we use all the ideas we have applied before, and just shut up and calculate.
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(a) (b)

Figure 3.24: Sign choices of the blocks appearing in the AL diagram. Panel a corresponds
to B

(a)
α (q, 0, 0) (ε < 0), whilst panel b corresponds to B

(b)
α (q, 0, 0) (ε > 0).

Due to the presence of two pair propagators, when in the vicinity of Tc, all important ω

and Ω dependence comes from the analytic structure of the pair propagators rather than

the weak frequency dependence of the blocks [56]. Hence, we may set Ω = ω = 0 inside

the blocks to extract the leading order correction of the AL diagram. Thus we are left

with evaluating,

Bα(q, 0, 0) = T
∑
ε

∑
k

kα
m
G(k, iε)G(k, iε)G(q− k,−iε)C(q, iε,−iε)2. (3.126)

As usual we work in the diffusive limit and consider k close to the Fermi surface.

Naturally, we would neglect the small momentum q in the electron Green’s function in

this case, however, the k sum would vanish due to being odd in kα. Therefore, we expand

the electron Green’s function in the same manner as we did for the EEI calculation,

making use of eq. 3.99 with q→ −q.

Next we need to appreciate the different sign choices enforced by the cooperons on a

block. These are illustrated in fig. 3.24, and each yield,

B(a)
α (q, 0, 0) = B(b)

α (q, 0, 0) = − T
τ 2

0

∑
ε>0

∑
k

kFα(kF · q)

m2

G−(k)2G+(k)2

(Dq2 + 2ε+ τ−1
φ )2

,

Bα(q, 0, 0) = B(a)
α (q, 0, 0) +B(b)

α (q, 0, 0)

(3.127)

where we have accounted for the expansion of the electron Green’s function to first order.

Evaluating the k sum produces a factor of 4πN(0)τ 3
0 v

2
F qα/d. We then perform the ε
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Re(z)

Im(z)

Im(z) = −Ω

Re(z)

Im(z)

Im(z) = −Ω

⇒

Figure 3.25: Left is the contour initially used to perform the analytic continuation of the
ω sum for the AL diagram. Right shows the deformed contour we use to compute the
integral. The zigzag lines represent the branch cuts at Im[z] = 0, iΩ.

making use of the digamma function derivative

Bα(q, 0, 0) = −N(0)Dqα
2πT

ψ′

(
1

2
+
Dq2 + τ−1

φ

4πT

)
. (3.128)

Since we are only interested in the most singular contributions, we only consider small q,

hence we neglect the Dq2 in the digamma derivative,

Bα(q, 0, 0) = −N(0)Dqα
2πT

ψ′
(

1

2
+

1

4πTτφ

)
. (3.129)

Therefore, our response function becomes

K
(F )
αβ (iΩ) = −e

2N(0)2D2

π2T
ψ′
(

1

2
+

1

4πTτφ

)2∑
ω

∑
q

qαqβL(q, iω)L(q, iω + iΩ). (3.130)

To deal with the analytic structure of the pair propagators we must analytically con-

tinue the frequency sum to a contour integral in complex frequency space. Thus we use

the standard Matsubara counting function trick detailed in appendix M.1,

T
∑
ω

F (ω) =
1

4πi

∮
C

dz coth
( z

2T

)
F (−iz), (3.131)
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for some generic function of the bosonic Matsubara frequency ω, F (ω). Therefore,

K
(F )
αβ (iΩ) = i

e2N(0)2D2

4π3T 2
ψ′
(

1

2
+

1

4πTτφ

)2

×
∑
q

qαqβ

∮
C

dz coth
( z

2T

)
L(q, z)L(q, z + iΩ),

(3.132)

where the contour C is illustrated on the left set axes in fig. 3.25. We then deform this

contour to that shown on the right hand side of fig. 3.25. The form the pair propagator

takes inside each region of the complex plane is defined by whether its frequency argument

is above or below its branch cut,

L(q, z) =


LR(q, z), Im(z) > 0

LA(q, z), Im(z) < 0,

(3.133)

where

LR(q, z) = LA(q, z)∗ =
1

N(0)

[
ln

(
T

Tc

)
+ δψ + ψ′

(
1

2
+

1

4πTτφ

)
Dq2 − iz

4πT

]−1

. (3.134)

Note that we have already accounted for the fact that we are only interested in small

momenta and frequencies in writing this line.

Let us focus on reshaping the contour integral into a more tractable form,

I(q, iΩ) =

∮
C

dz coth
( z

2T

)
L(q, z)L(q, z + iΩ)

=

∫ +∞

−∞
dz coth

( z

2T

) [
LR(q, z)− LA(q, z)

]
LR(q, z + iΩ)

+

∫ +∞−iΩ

−∞−iΩ
dz coth

( z

2T

) [
LR(q, z + iΩ)− LA(q, z + iΩ)

]
LA(q, z)

=

∫ +∞

−∞
dz coth

( z

2T

){[
LR(q, z)− LA(q, z)

]
LR(q, z + iΩ)

+
[
LR(q, z)− LA(q, z)

]
LA(q, z − iΩ)

}
,

(3.135)
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where, in moving from the third line to the fourth line, we let z → z − iΩ in the second

term and made use of the fact that coth(x) is unchanged by a shift x→ z + nπi (n ∈ Z),

alongside Ω = 2πnT being a bosonic Matsubara frequency. Now that we have dealt with

the analytic structure of the pair propagators such that all integrals lie on a single interval

we may analytically continue the external frequency iΩ → Ω + iδ to give the retarded

response function.47 This yields,

IR(q,Ω) = 2i

∫ +∞

−∞
dz coth

( z

2T

) [
LR(q, z + Ω) + LA(q, z − Ω)

]
Im
[
LR(q, z)

]
, (3.136)

and so

K
(F ),R
αβ (Ω) = i

e2N(0)2D2

4π3T 2
ψ′
(

1

2
+

1

4πTτφ

)2∑
q

qαqβI
R(q,Ω). (3.137)

Given that all diagrams cancel when Ω = 0, we are free to expand eq. 3.137 to order

Ω to obtain the DC conductivity correction, KR
αβ(Ω) = −iΩσαβ(Ω). Hence,

σALαβ = −e
2N(0)2D2

4π3T 2
ψ′
(

1

2
+

1

4πTτφ

)2∑
q

qαqβ
∂

∂Ω
IR(q,Ω)

∣∣∣∣
Ω=0

. (3.138)

Evaluating the derivative produces,

∂

∂Ω
IR(q,Ω)

∣∣∣∣
Ω=0

= −4

∫ +∞

−∞
dz coth

( z

2T

)
Im
[
LR(q, z)

] ∂
∂z

Im
[
LR(q, z)

]
= − 1

T

∫ +∞

−∞
dz cosech2

( z

2T

)
Im
[
LR(q, z)

]2
,

(3.139)

where we used integration by parts to get the second line. Substituting this into eq. 3.138

and noting that the conductivity tensor is zero unless α = β, σALαβ = δαβσAL, we obtain

σAL =
e2N(0)2D2

4π3T 3
ψ′
(

1

2
+

1

4πTτφ

)2∑
q

q2

d

∫ +∞

−∞
dz

Im
[
LR(q, z)

]2
sinh2

(
z

2T

) . (3.140)

It turns out that phase breaking has little affect on the AL contribution, so for simplicity

47By mapping onto a single interval, we no longer have to worry about trying to be careful about the
behaviour between Im[z] = 0 and Im[z] = −iΩ.
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let us set τ−1
φ = 0 at this point.48

Next, we substitute in for Im[LR(q, z)], approximate the q sum via an integral over

all space, and make the substitutions

φ =
π

8Tε
z, x2 =

π

8Tε
Dq2, ε = ln

(
T

Tc

)
. (3.141)

This leaves us to evaluate

σAL =
4e2

πd

(
T

D

) d
2
−1(

2

π3

) d
2

Ωd ε
d
2

×
∫ +∞

0

dx

∫ +∞

−∞
dφ

φ2

sinh2
(

4ε
π
φ
) xd+1

[(1 + x2)2 + φ2]2
,

(3.142)

where Ωd is the d dimensional solid angle.49 Lastly, we recall that we are interested only in

temperatures close to Tc, meaning ε = ln(T/Tc)� 1. Thus the most singular contribution

can be obtained by expanding, the φ integrand in powers of ln(T/Tc),

φ2

sinh2
(

4ε
π
φ
) =

π2

16ε2
+O(η0). (3.143)

Therefore, the leading order correction to the electrical conductivity due to the AL term

is given by

σAL =
πe2

2d

(
T

D

) d
2
−1(

2

π3

) d
2

Ωd ε
d
2
−2

∫ +∞

0

dx

∫ +∞

0

dφ
xd+1

[(1 + x2)2 + φ2]2
, (3.144)

where we also noted that the integral was even in φ.

To clarify what we mean by close to Tc, we introduce a quantity known as the reduced

temperature, η,

η =
T − Tc
Tc

, (3.145)

48Keeping τ−1φ 6= 0 is not difficult to deal with, but leads to some rather unpleasant expressions without
providing any significant change.

49For the case of d = 1, this is just a factor of 2 as the integrand is spherically symmetric and so even
in q when in one dimension. Therefore, we simply use this to rewrite the integral from 0 to +∞, rather
than −∞ to +∞.
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Figure 3.26

Figure 3.27: Sign choices for the Matsubara frequencies of the MT diagram in fig. 3.23c
that give rise to the anomalous contribution.

which acts as a measure of distance from Tc. Hence, we define being close to Tc as being

when η � 1. Conveniently, when η � 1 the logarithm can be approximated as

ln

(
T

Tc

)
' η. (3.146)

Therefore, without needing to compute these integrals, we can see that the AL correction

behaves as a simple power law in the reduced temperature,

σAL ∼ η
d
2
−2. (3.147)

For the avid reader, details of evaluating these integrals are given in appendix I.3. We

simply quote the results here,

σAL = e2π
2Ωd

128d

(
2

π3

) d
2
(
T

D

) d
2
−1

η
d
2
−2 ×


3π, d = 3

4, d = 2

π, d = 1.

(3.148)

The d = 2 case coincides with the original result of Aslamzov and Larkin [18, 52]. In

reality a system is 3D, so to regain 3D conductivities for the 1D and 2D cases, we simply

divide the above by the film thickness, w, in 2D or by the cross-sectional area of the wire

of radius a, πa2, in 1D, where w and a are much less than the system size in the extended

dimensions, L, that is w, a� L.
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The MT term

The MT term has two types of contributions, one being the regular part and the other

being the anomalous part. Let us deal with the anomalous part first, which arises from

the sign configuration shown in fig. 3.27. This diagram has the response function50

K
(C3)
αβ (iΩ) = 16πN(0)e2DδαβT 2

×
∑

0<ω<Ω

∑
0<ε<Ω−ω

∑
q

L(q, iω)

(Dq2 + 2ε+ ω + τ−1
φ )

1

(Dq2 + 2Ω− 2ε− ω + τ−1
φ )

+ 8πN(0)e2DδαβT 2
∑

0<ε<Ω

∑
q

L(q, 0)

(Dq2 + 2ε+ τ−1
φ )

1

(Dq2 + 2Ω− 2ε+ τ−1
φ )

.

(3.149)

Since there is only one pair propagator present, we need not worry about the analytic

structure of the ω sum drastically. In fact, since we are only interested in behaviour close

to Tc we can consider only the ω = 0 piece of the response function, K̄
(C3)
αβ (iΩ), to consider

the leading order singular behaviour. This is equivalent to neglecting the dynamical effects

of fluctuations [56]. This is the same as focusing on purely classical fluctuations, which

are what dictate the BCS superconducting transition.

We may rewrite the ω = 0 piece by using partial fractions to yield

K̄
(C3)
αβ (iΩ) = 8πN(0)e2DδαβT 2

∑
q

L(q, 0)

Dq2 + Ω + τ−1
φ

∑
0<ε<Ω

1

Dq2 + 2ε+ τ−1
φ

= 2N(0)e2DδαβT
∑
q

{
1

Dq2 + Ω + τ−1
φ

×

[
ψ

(
1

2
+
Dq2 + 2Ω + τ−1

φ

4πT

)
− ψ

(
1

2
+
Dq2 + τ−1

φ

4πT

)]}
.

(3.150)

We next expand to O(Ω) to find the DC conductivity correction, as we know that all

zeroth order pieces cancel, hence we may ignore the Ω = 0 part of the expansion. To do

this we analytically continue iΩ → Ω to consider the retarded response function, which

does not generate any issues as the digamma function difference appearing in K̄
(C3)
αβ is

sufficiently well behaved, then perform a standard Taylor series expansion in Ω. After

50Details on how to obtain this are given in appendix I.
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finding the O(Ω) piece, we can undo the analytic continuation by letting Ω → iΩ to

consider the Matsubara response function. This process is rather long winded and gives

the exact same result as if we had just treated the Matsubara frequncy Ω as continuous

and differentiated with respect to it to find the first order term.51 In future, when this is

appropriate we shall do this rather than explain the process again.

Performing the expansion, using eq. 3.31, and writing σ
(C3)
αβ = δαβσ

(1)
MT , we find the

DC correction to be

σ
(1)
MT =

e2N(0)D
π

∑
q

L(q, 0)

Dq2 + τ−1
φ

ψ′

(
1

2
+
Dq2 + τ−1

φ

4πT

)
. (3.151)

Clearly, if phase breaking was not accounted for the q sum would diverge in 1D and

2D. This diverging piece, cut-off by τ−1
φ , gives rise to the anomalous MT contributions

originally encountered by Maki [19]. Our interest in small momenta is further justified

by the singular nature of this sum, and so we expand the digamma derivative in powers

of Dq2 + τ−1
φ to first order, as higher orders no longer produce results singular in ε ' η

near Tc. The zeroth order piece is known as the anomalous MT conductivity, σ
(an)
MT , whilst

the first order piece is known as a regular MT conductivity contribution, σ
(reg1)
MT . In this

expansion we assume that τ−1
φ is at most of order T . Hence we may write,

σ
(1)
MT = σ

(an)
MT + σ

(reg1)
MT , (3.152a)

σ
(an)
MT =

e2N(0)D
π

ψ′
(

1

2

)∑
q

L(q, 0)

Dq2 + τ−1
φ

, (3.152b)

σ
(reg1)
MT =

e2N(0)D
4π2T

ψ′′
(

1

2

)∑
q

L(q, 0). (3.152c)

51When applying differentiation the variable with which you are differentiating with respect to should
be continuous. This is because differentiation is a continuous process, is requires taking a limit of δx→ 0,
which cannot be done for a discrete variable that hops suddenly from n = 1 to n = 0. Hence, we should
be careful when we choose to differentiate with respect to a Matsubara frequency rather than a real
continuous frequency.
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To finish off our calculation of the anomalous MT term, we approximate the momen-

tum sum by an integral, and treat τ−1
φ as sufficiently small so that all digamma functions

and their derivatives can be treated as having τ−1
φ = 0. This allows us to use the same

substitution for q as in eq. 3.141. This leaves us with,

σ
(an)
MT =

πe2Ωd

2(2π)d

(
8T

πD

) d
2
−1

η
d
2
−2

∫ +∞

0

dx
xd−1

(x2 + π
8Tτφη

)(1 + x2)

=
πe2Ωd

2(2π)d

(
8T

πD

) d
2
−1

η
d
2
−2 1

1− π
8Tτφη

∫ +∞

0

dx xd−1

(
1

x2 + π
8Tτφη

− 1

1 + x2

)
.

(3.153)

Given we assumed that τ−1
φ � T , we can neglect it outside of the integral.52 Hence,

σ
(an)
MT =

πe2Ωd

2(2π)d

(
8T

πD

) d
2
−1

η
d
2
−2

∫ +∞

0

dx xd−1

(
1

x2 + π
8Tτφη

− 1

1 + x2

)
. (3.154)

The inclusion of larger phase breaking rates is of more interest in the granular case, so

we leave the discussion and effects of that for chapter 5.

The details behind evaluating the integral in eq. 3.154 are given in appendix I.4. Here

we give the results,

σ
(an)
MT =

e2

8

(
8T

πD

) d
2
−1

η
d
2
−2 ×



1, d = 3

ln

(
8Tτφη

π

)
, d = 2

2π

√
8Tτφη

π
, d = 1.

(3.155)

In writing the d = 3 case we have made use of the fact that τ−1
φ is typically extremely small

and negligible.53 Whilst the 2D form may seem to have extremely non-trivial behaviour

in terms of η, the logarithm is slowly varying and remains effectively constant close to

Tc. Hence, we see that the anomalous MT term is just as singular as the AL term, and

should not be neglected.

52Inside the integral it prevents divergence at the lower limit in one and two dimensions.
53This also shows that the phase breaking rate is not needed for a lower cut-off in the momentum sum

in three dimensions.
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(a) (b)

Figure 3.28: Sign choices for the Matsubara frequencies of the MT diagram in fig. 3.23c.
Panels a and b correspond to the K

(C1)
αβ (iΩ) and K

(C2)
αβ (iΩ) respectively.

Before we return to σ
(reg1)
MT , let us consider the other sign configurations of the MT

diagram, shown in fig. 3.28. They give equivalent contributions and again possess a

simple pole structure in ω, so we can approximate their contributions by taking their

ω = 0 piece (details in appendix I.2),

K̄
(C1)
αβ (iΩ) = K̄

(C2)
αβ (iΩ)

= 8πN(0)e2DδαβT 2
∑
ε>0

∑
q

L(q, 0)

(Dq2 + 2ε)

1

(Dq2 + 2ε+ 2Ω)
.

(3.156)

Performing the ε sums then expanding to first order in Ω gives their total DC conductivity

contribution to be,

σ
(reg2)
MT = σ

(C1)
MT + σ

(C2)
MT =

N(0)e2D
4π2T

∑
q

L(q, 0)ψ′′

(
1

2
+
Dq2 + τ−1

φ

4πT

)
. (3.157)

This is extremely similar in form to σ
(reg1)
MT . Since phase breaking rates are not a necessity

in the calculation of the regular terms and do not affect it drastically, we set τ−1
φ = 0

in these terms. Therefore, the two regular MT contributions to the conductivity are

equivalent, so we may write,

σ
(reg)
MT = σ

(reg1)
MT + σ

(reg2)
MT = 2σ

(reg1)
MT =

e2N(0)D
2π2T

ψ′′
(

1

2

)∑
q

L(q, 0). (3.158)

Replacing the momentum sum by an integral and using the same substitution for q as
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before gives (ε ' η)

σ
(reg)
MT =

e2Ωd

2π2(2π)d
ψ′′
(

1

2

)(
8

π

) d
2
(
T

D

) d
2
−1

η
d
2
−1

∫ +∞

0

dx
xd−1

1 + x2
. (3.159)

This integral diverges at the upper limit for d = 2, 3, so we introduce a cut-off, xmax,

based upon our approximation of the digamma functions,

Dq2
max = 4πT x2

max =
π2

2η
. (3.160)

The integral is then trivial to compute (see appendix I.5), and yields

σ
(reg)
MT = −e2 7ζ(3)

4π3

(
8

π

) d
2
(
T

D

) d
2
−1

×



√
2, d = 3

ln

(
π2

2η

)
, d = 2

2π

η1/2
, d = 1.

(3.161)

In writing the above we have used the identity ψ′′(1/2) = −14ζ(3), where ζ(x) is the

Riemann zeta function. This correction is clearly negative, and so reduces the conductivity

due to interference effects. However, this is less singular than both the AL and anomalous

MT terms, and so the conductivity still naturally diverges as we approach the transition.

The DOS term

The simplest diagram to compute is the DOS contribution. Here we find all behaviour

of diagram A comes from the sign configurations shown in fig. 3.29, and that diagram B

cancels half of the correction generated by fig. 3.29b.54 Once again, the pole structure of

the ω sum is simple and so we take the ω = 0 pieces. The response functions we consider

54The details showing this are given in appendix I.1.
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(a) (b)

Figure 3.29: Sign choices for the Matsubara frequencies of the DOS diagram in fig. 3.23a.
Panels a and b correspond to the K

(A2)
αβ (iΩ) and K

(A3)
αβ (iΩ) respectively.

are then

K̄
(A2)
αβ (iΩ) = 8πN(0)e2DδαβT 2

∑
ε>0

∑
q

L(q, iΩ)

(Dq2 + 2ε+ 2Ω + τ−1
φ )2

, (3.162a)

K̄
(A3)
αβ (iΩ) = −2K̄

(B)
αβ (iΩ)

= −16πN(0)e2DδαβT 2
∑
q

∑
0<ε<Ω

L(q, 0)

(Dq2 + 2ε+ τ−1
φ )2

.
(3.162b)

As before, we perform the ε sums and expand to first order in Ω, ignoring the zeroth

order piece, to find the DC conductivity correction. Doing this we find that,

σ
(A2)
DOS = σ

(A3)
DOS + σ

(B)
DOS =

1

2
σ

(A3)
DOS, (3.163)

and so the total correction from the DOS diagrams is found to be

σDOS =
N(0)e2D

2π2T

∑
q

L(q, 0)ψ′′

(
1

2
+
Dq2 + τ−1

φ

4πT

)
. (3.164)

It is worth noting that this is simply twice the second regular MT part, σ
(reg2)
MT . Given

that phase breaking mechanisms do not drastically change the DOS contributions we can

neglect τ−1
φ in eq. 3.164. As before, we focus on small momenta to find the leading order

singular behaviour, so we also ignore the Dq2 term appearing in the second digamma

derivative. Upon accounting for these changes, we see that the DOS contribution is

identical to the regular MT contribution with small phase breaking rates, eq. 3.158.
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Therefore we follow the same steps taken in evaluating σ
(reg)
MT to arrive at,

σDOS = −e2 7ζ(3)

4π3

(
8

π

) d
2
(
T

D

) d
2
−1

×



√
2, d = 3

ln

(
π2

2η

)
, d = 2

2π

η1/2
, d = 1.

(3.165)

The correction due to the DOS terms are negative, as expected. This lines up with the

physical picture we gave earlier, when due to reducing the number of available current

carries in the normal state, there would be some form of negative contribution to the

conductivity. In reality, we see a transition and so the other positive contributions must

overcome this. From our analysis of the AL and MT terms, we have shown that they are

not only positive corrections but also more singular near Tc than the negative contributions

arising from the regular MT and DOS corrections. Therefore, the set of diagrams we have

calculated describe the on set of the superconducting transition.

In summary, we have presented the outline of the calculation of the superconducting

fluctuation corrections to the DC electrical conductivity. In doing this, we created a prop-

agator that described virtual Cooper pairs above Tc and showed that its zero momentum

and frequency pole reproduced the BCS transition temperature. We also encountered in

the case of the anomalous MT term in low dimensionalities that a cut-off was needed in

the form of a phase breaking rate, τ−1
φ . In a similar vein we saw a similar problem arise

in the calculation of weak localisation corrections. Let us now discuss how we can find

the temperature dependence of τ−1
φ .

3.6 Phase Coherence Lifetime

We have mentioned and discussed the physical consequences of phase coherence numerous

times leading up to this section, though we have not given any real insight as to how it

might depend upon temperature, yet alone how to calculate such an object. In this section
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= +

q′ + k,

iε + iΩ
q′ + k′

,

iε + iΩ

−k, iε −k′
, iε

q′ + k,

iε + iΩ
q′ + k′

,

iε + iΩ

−k, iε −k′
, iε

C̃0

q′ + k,

iε + iΩ
q′ + p,

iε + iΩ
q′ + p,

iε + iΩ
q′ + k′

,

iε + iΩ

−k, iε −p, iε −p, iε −k′
, iε

C̃0
Σφ,fl

Figure 3.30: A more accurate diagrammatic representation of the cooperon, where Σφ

contains the processes that generate τ−1
φ in the cooperon, thus mitigating the need for a

phenomenological insertion of phase breaking. C̃0 is the cooperon in the absence of phase
breaking (τ−1

φ = 0 in this part).

we will discuss two contributions to the phase breaking rate, τ−1
φ , that appear naturally

in the systems we consider: the first being due to Coulomb interactions, whilst the second

arises from superconducting fluctuations. Their contributions were considered separately

in 2D systems: Abrahams et. al. [57] calculated the Coulomb piece in 1981 using an

exact eigenstates method, whilst Fukuyama and Abrahams [58] calculated the Coulomb

piece in 1983 using diagrammatics, and Brenig et. al. [59] calculated the superconducting

fluctuation piece in 1985 using diagrammatics in analogy to Fukuyama and Abrahams.

In both diagrammatic treatments, the cooperon series is modified to include diagrams

that can be used to construct τ−1
φ such that it can be written as the Dyson equation

shown in fig. 3.30. Here the cooperon in the absence of phase breaking acts as the zeroth

order component, whilst the object Σφ is related to τ−1
φ and is defined in fig. 3.31 for

Coulomb interactions.55 The diagrams describing the contribution due to superconducting

fluctuations are similar to those in fig. 3.31, but with a pair propagator in place of the

Coulomb interaction and the Green’s function between the interaction’s start and end

55One might ask why we only consider diagrams where the interactions stays on the same Green’s
function line, and not an interaction that goes between the two lines. If we included this type of diagram,
we would find that the impurity ladders to the right and left of the interaction would have different
frequencies entering them.

If the top Green’s function carried the frequency iε + iω and the bottom Green’s function carried iε,
the interaction would move a frequency ω′ from one to the other. After the interaction, we would then
have iε+ iω − iω′ on the top and iε+ iω′ on the bottom. This means that the poles of impurity ladders
either side (cooperons with τ−1φ = 0) would no longer line up. The first ladder would be most singular
when ω = 0, whilst the second ladder would be most singular for ω = 2ω′.

Compare this to the interaction staying to a single line, top or bottom, the impurity ladders either
side of the interaction would have the same frequencies entering them, and so both have the same point
of singularity. I.e: they are both most singular for ω = 0. Consequently, these diagrams are far more
dominant than the exchange interaction case.
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Figure 3.31: Diagrams describing the phase coherence corrections to the cooperon in
homogeneous systems due to Coulomb interactions.

would instead travel from right to left. In either case due to the nature of disorder

averaging, cooperons and diffusons will be generated within Σφ, and so we will eventually

arrive at a self-consistency equation defining τ−1
φ .

To start we shall consider the Coulomb correction in 2D, before we consider its effect

in 3D to allow for comparison to the granular results we derive later. Afterwards, we

consider the superconducting fluctuation contributions in a similar manner for both two

and three dimensions.

3.6.1 Coulomb Phase Breaking Mechanism

For this treatment of the Coulomb contribution to τ−1
φ , we shall follow Fukuyama and

Abrahams’ work [58] to re-derive their result for two dimensions, as well as providing

our result for three dimensions, which coincides with that of Altshuler and Aronov [39].

Written mathematically we see the Dyson equation becomes

C̃(q′, iε+ iΩ, iε) =
1

C̃0(q′, iε+ iΩ, iε)−1 − Σφ

, (3.166a)
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where C̃0(q′, iε+ iΩ, iε) is the cooperon in the absence of phase breaking. To recover eq.

3.78a from this, we therefore require

1

τφ
= − Σφ

2πN(0)τ 2
0

. (3.167)

Hence, we may determine the temperature dependence of τ−1
φ based on the diagrams given

in fig. 3.31.

We begin by calculating diagrams A, B, and C of fig. 3.31, which can be written as

Σ
(A)
φ,ee = −T

∑
k,q

∑
ω

[
V (q, iω)D(q, iε+ iΩ, iε+ iΩ + iω)2G(k, iε+ iΩ)2

×G(k + q, iω + iε+ iΩ)G(k, iε)
]
,

(3.168a)

Σ
(B)
φ,ee = −T

∑
k,k′,q

∑
ω

[
V (q, iω)

2πN(0)τ0

D(q, iε+ iΩ, iε+ iΩ + iω)2G(k, iε+ iΩ)2

×G(k, iε)G(k′, iε+ iΩ)2G(k′ + q, iω + iε+ iΩ)

]
,

(3.168b)

Σ
(C)
φ,ee = −T

∑
q

∑
ω

[
V (q, iω)

2πN(0)τ0

D(q, iε+ iΩ, iε+ iΩ + iω)2

×

(∑
k

G(k, iε+ iΩ)G(k + q, iω + iε+ iΩ)G(k, iε)

)2 ]
,

(3.168c)

where Ω is the Matsubara frequency entering from the cooperon prior to Σφ. We have

also neglected the small momentum, q′, that would enter the Green’s functions from the

external cooperon as they are negligible compared to the fast momentum k. The most

singular contributions to these expressions clearly comes from small q (|q| � |k| ' kF ),

and so we can proceed as we have done before by treating this momentum as our slow or

diffusive mode.

With knowledge of the end result56 we shall expand our Green’s functions to first

order in ω and second order in q, as the leading order pieces of these diagrams cancel

56Perhaps there should be a spoiler warning here.
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exactly.57 We will also consider the case where Ω > 0 without loss of generality, since we

may consider the interactions on the Green’s function entering with a positive frequency,

meaning we are free to define as carrying an extra frequency of Ω > 0 compared to the

other Green’s function entering the cooperon. By making this assumption, we must have

ε+ Ω > 0 and ε < 0.

For ease of reading (and our own sanity), we again give the details of the calculation

in appendix J. The sum of these diagrams yields,

Σ
(ABC)
φ,ee = −T (2πN(0)τ 2

0 )2
∑
q

∑
ω>ε+Ω

D̃(q, iω)V (q, iω), (3.169)

where ε + Ω > 0, and we have used the shorthand notation for the diffuson. We find a

similar expression for diagram D in fig. 3.31. Starting from

Σ
(D)
φ,ee = −T

∑
q

∑
ω

C̃(q, iε+ iΩ + iω, iε)V (q, iω)

×

(∑
k

G(k, iε+ iΩ)G(k + q, iε+ Ω + iω)G(k, iε)

)2 (3.170)

we evaluate the k sum by neglecting the q dependence in the Green’s functions, before

using eq. 3.75, to produce

Σ
(D)
φ,ee = T (2πN(0)τ 2

0 )2
∑
q

∑
ω>−(ε+Ω)

C̃(q, iΩ + iω)V (q, iω). (3.171)

The variants of the diagrams where the interaction appears on the bottom Green’s

function can be simply deduced from eq. 3.169 and eq. 3.171. We can see that for

diagrams A, B, and C we dealt with ε + Ω > 0 and ε + Ω + ω < 0, where as for their

lower branch variants we require ε + ω > 0 whilst ε < 0, so we expect the ω sum to the

A, B, and C variants to be taken over ω < ε. At the same time we would find ω → −ω

57This will generate the leading order non-trivial behaviour that contributes to τ−1φ . The first order
term of our expansion in q vanishes, as it carries an additional factor of vF in the form (vF · q), and so
will become odd in the fast momentum sum.
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compared to the result in eq. 3.169. However, due to the summand being even in ω, we

can let ω → −ω in the variant diagrams so that all values of ω considered are positive.

For the variant of diagram D we cannot simply let ω → −ω as the cooperon depends on

ω+ Ω and not just Ω. Hence, we cannot manipulate both ω sums involving the cooperon

such that they are both solely taken over positive ω with the same summand. Therefore,

the full leading order contribution of Coulomb interactions to Σφ is given by,

Σφ,ee = −(2πN(0)τ 2)2T
∑
q

[( ∑
ω>ε+Ω

+
∑
ω>−ε

)
V (q, iω)D̃(q, iω)

−

( ∑
ω>−(ε+Ω)

+
∑
ω>ε

)
C̃(q, iΩ + iω)V (q, iω)

]
.

(3.172)

Next, we analytically continue these sums to complex frequency space. The diffuson

piece and cooperon pieces must be treated separately, due to the cooperon sum having

terms in both half planes, whilst the diffuson’s sums lie only in the upper half place.

Starting with the diffuson sums, we need only consider one of the two diffuson sums in

some detail as the other can be done in complete analogy. We may write,

T
∑
ω>−ε

V (q, iω)D̃(q, iω) =
1

2πi

∮
C

dz n(z)V R(q, z)D̃R(q, z), (3.173)

where the superscript R denotes the retarded functions, n(z) is the Bose-Einstein distri-

bution, and the contour C is that shown in fig. 3.32a.

By deforming the contour to lie on the line Im(z) = −ε and noting that the integrand

falls off sufficiently fast as |z| → ∞, the integral will collapse,

∮
C

dz n(z)V R(q, z)D̃R(q, z) =

∫ +∞−iε

−∞−iε
dz n(z)V R(q, z)D̃R(q, z). (3.174)

Letting z → z − iε, noting that n(z − iε) = −f(z),58 where l ∈ Z, and then analytically

58Recall that ε = (2n+ 1)πT , where n ∈ Z.
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Re(z)

Im(z)

Im(z) = −ε

O

(a)

Re(z)

Im(z)

Im(z) = ε

(b)

Figure 3.32: (a): contour used in the analytic continuation of the diffuson sum for ω > −ε
in eq. 3.172. (b): contour used in the analytic continuation of the cooperon sum for ω > ε
in eq. 3.172. The dashed line represents the cutoff in the frequency sums, and the zigzag
represents a branch cut.

continuing the fermionic frequency, iε→ ε, we end up at

∫ +∞−iε

−∞−iε
dz n(z)V R(q, z)D̃R(q, z)→ −

∫ +∞

−∞
dzf(z)V R(q, z − ε)D̃R(q, z − ε)

= −
∫ +∞

−∞
dzf(z + ε)V R(q, z)D̃R(q, z),

(3.175)

where we let z → z + ε in obtaining the final line. Therefore, the original sum we

considered in eq. 3.173 becomes

T
∑
ω>−ε

V (q, iω)D̃(q, iω)→ −
∫ +∞

−∞

dz

2πi
f(z + ε)V R(q, z)D̃R(q, z) (3.176)

We can follow the same ideas for the diffuson piece summed for ω > ε + Ω, however we

will also need to analytically continue iΩ → Ω at the same time as we let iε → ε. After

shifting the integral variable appropriately, this will produce a factor of f(z−ε−Ω) inside

the integral instead of the f(z + ε) we had before. Since we wish to consider the leading
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order behaviour, we expand in powers of Ω and take the O(Ω0) piece. This leads to,

T

( ∑
ω>ε+Ω

+
∑
ω>−ε

)
D̃(q, iε+ iΩ + iω, iε+ iΩ)V (q, iω)

→ − 1

2πi

∫ +∞

−∞
dz[f(z + ε) + f(z − ε)]V R(q, z)D̃R(q, z).

(3.177)

Turning our attention towards the cooperon piece, we note that in analytically contin-

uing the ω sums, we must introduce a branch cut along the real axis due to the screened

Coulomb interaction changing from its advanced form in the lower half plane, to its re-

tarded form in the upper half plane. Using the sum taken for ω > ε as an example,

analytic continuation gives

T
∑
ω>ε

V (q, iω)C̃(q, iω + iΩ) =
1

2πi

∮
C′
dz n(z)V (q, z)C̃R(q, z + iΩ), (3.178)

where the contour C ′ is illustrated in fig. 3.32b. By deforming the contours to produce

lines parallel to the branch cut and a line parallel to Im(z) = ε we see,

∮
C′
dz n(z)V (q, z)C̃R(q, z + iΩ) =

∫ +∞+iε

−∞+iε

dz n(z)V A(q, z)C̃(q, z + iΩ)

+

∫ +∞

−∞
dz n(z)

[
V R(q, z)− V A(q, z)

]
C̃(q, z + iω).

(3.179)

We now shift z → z + iε in the first integral, after which we analytically continue iε→ ε

to then shift z → z− ε. Following, we analytically continue iΩ→ Ω, expand in powers of

Ω, and take the O(Ω0) term to isolate the most singular contribution, as in [58]. Hence,

∮
C′
dz n(z)V (q, z)C̃R(q, z + iΩ)

'
∫ +∞

−∞
dz
{

2i n(z) Im
[
V R(q, z)

]
− f(z − ε)V A(q, z)

}
C̃R(q, z),

(3.180)

where we made use of V A(q, z)∗ = V R(q, z). In a similar manner we can show that the

cooperon piece summed over ω > −(ε + Ω) produces the same expression as above but
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with f(z + ε) instead of f(z − ε). Thus, the cooperon piece of Σφ can be rewritten as,

T

( ∑
ω>ε+Ω

+
∑
ω>−ε

)
C̃(q, iε+ iΩ + iω, iε+ iΩ)V (q, iω)

→ 2

π

∫ +∞

−∞
dz n(z) Im

[
V R(q, z)

]
C̃R(q, z)

− 1

2πi

∫ +∞

−∞
dz[f(z + ε) + f(z − ε)]V A(q, z)C̃R(q, z).

(3.181)

Finally, by substituting eq. 3.177 and eq. 3.181 in to eq. 3.172, and then using eq.

3.167 we find,

1

τφ,ee
=N(0)τ 2

0

∑
q

[
− 2

∫ +∞

−∞
dz

{
Im
[
V R(q, z)

]
×
(

[f(z + ε) + f(z − ε)]D̃R(q, z) + 2n(z)C̃R(q, z)
)}

+ i

∫ +∞

−∞
dz[f(z + ε) + f(z − ε)]V A(q, z)

[
D̃R(q, z)− C̃R(q, z)

] ]
.

(3.182)

Clearly the most singular contributions come from small z, and so we shall approximate

our integral in this limit. Therefore we may take

2n(z) ' cosech

(
βz

2

)
' 2 cosech(βz). (3.183)

This is equivalent to assuming βz � 1, so our integral is now taken over the range

z ∈ [−T,+T ]. We further note that the Fermi functions are not singular for small z, and

so terms containing n(z) dominate over those with Fermi functions. Consequently, only

the n(z)C̃R(q, z) term is of any significant importance. Using these approximations we

arrive at the result given in eq. 2.19 of [58], albeit with different limits,

1

τφ,ee
' −4N(0)τ 2

0

∑
q

∫ +T

−T
dz
C̃R(q, z)

sinh(βz)
Im
[
V R(q, z)

]
. (3.184)

From here onwards we will need to consider specific dimensionalities to obtain meaningful
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results.

We provide the details of handling the integrals in appendix J and quote the results

here.59 In computing the integrals we assume that τ−1
φ � T in good metals, which we

find to be true self-consistently. We give the results for two and three dimensions, as

phase coherent effects are of distinct importance in two dimensions, and we will wish to

consider phase breaking rates in three dimensional systems when we compare the theory

of electrical conductivity in granular metals to the experimental results of BNCD.

2D Systems

Upon dealing with the integrals we reproduce Fukuyama and Abraham’s [58] self-consistent

equation for the Coulomb phase breaking rate for 2D disordered metals,

1

τφ,ee
=

T

2εF τ0

ln(Dκ2
2Tτ

2
φ), (3.185)

where κ2 = 4πN(0)e2 = 2mee
2 is the 2D Thomas-Fermi wave vector.60 For systems

without other phase breaking mechanisms present, we can find the leading order contri-

bution to τ−1
φ,ee by letting substituting τφ,ee into itself, and ignoring the nested logarithm,

we recover Abraham et. al.’s [57, 58] result for 2D,

1

τφ,ee
=

T

2εF τ0

ln

(
T1

T

)
, T1 = 4ε2

F τ
2
0Dκ2. (3.186)

As a final note for 2D, Altshuler and Aronov [39] obtain an alternative form for τ−1
φ,ee

under the assumption that the thermal length, LT =
√
D/T , was much larger than the

film thickness, t.61 This lead them to

1

τφ,ee
=

T

kF l
ln

(
kF l

2

)
. (3.187)

59No integrals were harmed in this appendix during their handling.
60Note the Thomas-Fermi wave vector here is given in Gaussian cgs units. To regain the SI base units

form, let 4πe2 → e2/ε0.
61They also considered the case when LT � t, however at sufficiently low temperatures this condition

will no longer be true.

109



CHAPTER 3. TRANSPORT PHENOMENA IN HOMOGENEOUS SYSTEMS

They obtained this result by including the vector potential into the cooperon and aver-

aging over fluctuations in the electromagnetic field. This then generated a Schrödinger

equation with an effective single-particle interaction, for which the cooperon was the ap-

propriate Green’s function.

3D Systems

For 3D, we find a result without the need to solve a self-consistent equation,

1

τφ,ee
=

1
√
εF

(
3T

2εF τ0

)3/2

. (3.188)

This has exactly the same form as that given by Altshuler and Arononv [39].

Clearly, the phase breaking rate due to Coulomb interactions is small compared to

the temperature when in a good metal due to the factor of εF τ0 � 1 appearing in the

denominator. We can further see that we might expect τ−1
φ,ee to be even smaller in 3D

than in 2D, due the small perturbative factor, (εF τ0)−1, being to a higher power and

the additional ratio of
√
T/εF .62 Hence, we rarely expect τ−1

φ,ee, and, in fact, τ−1
φ , to be

large enough to consider a non-zero value in most standard 3D metals. What we can see

from these result though, is that the Coulombic phase breaking rate has a simple power

law dependence upon the temperature, T d/2. Let us now move on to considering the

contribution of superconducting fluctuations to the phase breaking rate.

3.6.2 Superconducting Fluctuations Phase Breaking Mechanism

The calculation of the superconducting fluctuation contribution to τ−1
φ was in first done

by Keller and Korenman in 1971 and 1972 [54, 55]. Here they considered the corrections

to the cooperon vertex piece in the context of the Maki-Thompson diagram, and showed

how one could generate a phase breaking rate without the need for magnetic impurities, or

external mechanisms. Their calculation showed that simply due to the natrual occurrance

62In good metals εF is typically at least of the order of 105K and as large as 106K in the best metals.
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Figure 3.33: Diagrams describing the phase coherence corrections to the cooperon in
homogeneous systems due to superconducting fluctuations.

of superconducting fluctuations, a phase breaking rate was generated. However, their

calculation was not complete.

They considered diagrams of the form shown in diagrams A, B, and C of fig. 3.33,

but did not account for diagram D. It also appears that they did not treat the problem

self-consistently: in their diagrams A, B, and C, the cooperons appearing at the ends

of the pair propagator were not those with τ−1
φ 6= 0, but rather just simple impurity

ladders. Furthermore, for a fully self-consistent treatment, the phase breaking rate due

to Coulomb interactions should also be included. Consequently, they found a fluctuation

phase breaking rate that diverged as one approached the transition from above,63

1

τφ,fl
=

2 ln 2

kF l

T

ε
, ε = ln

(
T

Tc

)
. (3.189)

This was pointed out to be unphysical by Brenig et. al. [59], as an infinite phase breaking

rate would mean Cooper pairs could not form, and so there would be no superconducting

transition. A larger τ−1
φ leads to a greater suppression of Tc. Therefore, an infinite phase

breaking rate would force Tc to zero.

The work of Brenig et. al. in 1985 [59] addresses this divergence by treating τ−1
φ,fl in

a completely self-consistent manner. In doing so, they considered the diagrams shown

63As explained in ref. 22 of Brenig et. al. [59], this is give by 2L2(0) Keller and Korenman’s notation.
This can be seen from eq. 14 of [55].
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in fig. 3.33, in analogy to Fukuyama and Abraham’s earlier treatment of the Coulomb

contribution [58]. In their self-consistent treatment they included τ−1
φ,ee and found the total

phase breaking rate due to Coulomb interactions and superconducting fluctuations. Let

us now reproduce their calculation for two dimensions, and present a new result for three

dimensions.

We leave the details of the calculation to appendix J, and provide the skeleton points

of the calculation here. The methods employed there are extremely similar to those used

in the calculation of τ−1
φ,ee. We find that we must expand in powers of ω and q again to

find a non-trivial result. After considering all possible sign configurations and variations

with the propagator on the top or bottom line, we find,

1

τφ,fl
= (2πN(0)τ 2

0 )2T
∑
q

∑
ω<ε+Ω

C̃(q, iω − 2iε− 2iΩ)2L(q, iω)(Dq2 − ω)

+ (2πN(0)τ 2
0 )2T

∑
q

∑
ω<−ε

C̃(q, iω + 2iε)2L(q, iω)(Dq2 − ω)

− 2πN(0)τ 2
0T
∑
q

∑
ω>ε+Ω

D̃(q, iω − 2iε− iΩ)L(q, iω)

− 2πN(0)τ 2
0T
∑
q

∑
ω>−ε

D̃(q, iω + 2iε+ iΩ)L(q, iω),

(3.190)

where we again use the shorthand forms for the cooperon and diffuson. To analytically

continue these frequency sums we appreciate that the cooperon sums consider poles in

both half planes, so the contour we consider is shown in fig. 3.34, whilst the diffuson sums

are relatively straightforward and use the contour shown in fig. 3.32a. We deform the

cooperon contours to give integrals along the real axis and the line where Im(z) = ε+ ω

(or Im(z) = −ε, depending on the sum), and deform the diffuson contours to give an

integral along the lines where Im(z) = ε+ ω and Im(z) = −ε. Upon shifting all integrals

to lie on the interval z ∈ [−∞,+∞], and expanding to zeroth order in ε and Ω,64 as in

64In the original Brenig et. al. paper [59], they set ε, ε+ Ω→ 0, which is equivalent to our expansion.
We simply choose to think of this in terms of an expansion for the sake of familiarity.
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Re(z)

Im(z)

Im(z) = −ε

Figure 3.34: Here we show the type of contour used in analytically the bosonic sums
involving a Cooperon in eq. 3.190.

the Coulomb calculation, we find

1

τφ,fl
= 2N(0)τ 2

0

∑
q

[
4πN(0)τ 2

0

∫ +∞

−∞
dz n(z) Im

[
LR(q, z)

]
(Dq2 + iz)C̃A(q, z)2

− 2πN(0)τ 2
0 i

∫ +∞

−∞
dzf(z)LR(q, z)(Dq2 + iz)C̃A(q, z)2

+ i

∫ +∞

−∞
dzf(z)LR(q, z)D̃R(q, z)

]
.

(3.191)

This is the same result given by Brenig et. al. [59] in their eq. 7 and eq. 8.

The most singular results occur at small z, and so the most dominant term arises from

those containing n(z). Hence, the leading order contribution to the phase breaking rate

due to superconducting fluctuations is,

1

τφ,fl
' 8πN(0)2τ 4

0T
∑
q

∫ +T

−T

dz

z
Im
[
LR(q, z)

]
(Dq2 + iz)C̃A(q, z)2, (3.192)

where we have taken n(z) ' T/z for small z. Now, let us be precise in how we substitute

in the pair propagator. Following Brenig et. al. [59], we expect the phase breaking rate

to be small compared to the temperature, τ−1
φ � T . In this case, the τ−1

φ appearing in

the digamma functions and their derivatives can be neglected. Therefore, the retarded
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pair propagator can be taken as

LR(q, z) =
1

N(0)

1

ln
(
T
Tc

)
+ π

8T
(Dq2 − iz)

. (3.193)

It will be easier to phrase this problem in terms of the Ginzburg-Landau relaxation rate,

LR(q, z) =
8T

πN(0)

1

τ−1
GL +Dq2 − iz

. (3.194)

Substituting this into eq. 3.192 and performing the frequency integral under the assump-

tion τ−1
φ � T (details in appendix J) we arrive at,

1

τφ,fl
=

16T 2

πN(0)

∑
q

[
1 +

Dq2

Dq2 + τ−1
GL

]
1

(τ−1
φ + τ−1

GL + 2Dq2)2
. (3.195)

We now need to consider the different dimensionalities separately (see appendix J). In

any case, we will be left with a self-consistent equation to solve numerically. Specifically,

we find

1

τφ,fl
=

16T 2τφ
πkF l

[
τ 2
GL

τ 2
GL − τ 2

φ

+
τGLτφ

(τφ − τGL)2
ln

(
2τφ

τφ + τGL

)]
, (3.196)

for d = 2, which is the result derived by Brenig et. al. [59], and

1

τφ,fl
=

T 2

π2N(0)D3/2

√
2

τ−1
GL + τ−1

φ

 1− τ−1
GL


√

2τ−1
GL −

√
τ−1
GL + τ−1

φ

τ−1
GL − τ

−1
φ


2  , (3.197)

for d = 3. To give a final set of self-consistent equations, we will need to include the

Coulomb contribution as well. The total phase breaking rate, τ−1
φ , is simply the sum of

the different contributions,

1

τφ
=

1

τφ,ee
+

1

τφ,fl
. (3.198)

Therefore, the full self-consistent equations come from adding eq. 3.185 to eq. 3.196 in
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2D, and eq. 3.188 to eq. 3.197 in 3D. Thus, we arrive at

1

τφ
=

(
3T

kF l

)3/2
1
√
εF

1 + 2

√
TτGL

1 + τGLτ
−1
φ

 1−

√2−
√

1 + τGLτ
−1
φ

1− τGLτ−1
φ

2

 , (3.199)

for three dimensions, and a few possible expressions for two dimensions.65

Without making more approximations, we find our fully self-consistent solution in 2D

to be

1

τφ
=

T

kF l
ln(Dκ2

2Tτ
2
φ) +

16T 2τφ
πkF l

[
τ 2
GL

τ 2
GL − τ 2

φ

+
τGLτφ

(τφ − τGL)2
ln

(
2τφ

τφ + τGL

)]
. (3.200)

If we instead use the leading order form of τ−1
φ,ee, we see

1

τφ
=

T

kF l
ln

(
T1

T

)
+

16T 2τφ
πkF l

[
τ 2
GL

τ 2
GL − τ 2

φ

+
τGLτφ

(τφ − τGL)2
ln

(
2τφ

τφ + τGL

)]
. (3.201)

This is of a similar approach to Brenig et. al., who used the leading order form of the

Coulomb contribution rather than its self-consistent solution.

Brenig et. al. [59] instead used the phase breaking rate for Coulomb obtained by

Altshuler and Aronov [39], and so obtained the self-consistent equation,

1

τφ
=

T

kF l
ln

(
kF l

2

)
+

16T 2τφ
πkF l

[
τ 2
GL

τ 2
GL − τ 2

φ

+
τGLτφ

(τφ − τGL)2
ln

(
2τφ

τφ + τGL

)]
. (3.202)

The advantage to using this version is that it is fairly material independent, as we only

need to choose a value for kF l that describes a disorded metal, and not worry about the

specfics that determine the diffusion constant for a specific material. However, we shall

see that the three different 2D self-consistent equations produce rather different results

when we use real experimental values.

Before we resort to numerics to decipher the self-consistent equations, we may attempt

to extract the exact value of the phase breaking rate at the transition. In 2D we can only

65Note that we used 2εF τ0 = kF l when including the Coulomb phase breaking rate.
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do this when we replace τ−1
φ,ee by its leading order form or Brenig’s form.66 When T = Tc,

τGL →∞, and so we find for two dimensions,

1

τφ,c
=

Tc
2kF l

[
α̃ +

√
α̃2 +

64kF l

π

]
, (3.203)

where

α̃ =


ln(k2

F l
2Dκ2

2), leading order

ln

(
kF l

2

)
, Brenig.

(3.204)

This is clearly finite, and so corrects the divergence originally seen in the works of Keller

and Korenman [54, 55]. It is possible to recover eq. 3.189 from eq. 3.196 by setting

τ−1
φ = 0 on the right hand side, as shown by Brenig et. al. [59].

Attempting to find a similar expression in three dimensions, we find ourselves facing a

cubic. Naturally the answer will not be elegant and offers little insight. We can, however,

see that τ−1
φ is finite at the transition in 3D from the cubic generated. Verification of

this is most easily done using Descartes’ rule of signs to consider the cubic generated in

terms of x = τ
−1/2
φ for x > 0. We find that there is only one positive root, and either two

negative real or two complex roots.

To look at the numerical solutions to the self-consistent equations, we will need some

experimental parameters. For both 2D and 3D, we shall use values based upon the work of

Gordon et. al. [60], who studied the role of phase breaking rates and the Maki-Thompson

contribution in thin aluminium films.67 In their works, they give the ratio of the room

temperature resistance to the resistance at 4K, Γ, the Fermi velocity, resistance per square

at 4.2K, R�(4.2K), and transition temperature for a t = 15nm thick film as (their sample

830),

Γ = 1.126, vF = 1.3× 106ms−1, R�(4.2K) = 24.3Ω, Tc = 1.84K. (3.205)

66For the full self-consistent equation, we’d just end up with the another self-consistent equation.
67The values of parameters such as the diffusion constant, kF , etc for thin films and bulk materials are

typically in the same ball park.
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In reality the system is 3D, so we use the 3D DOS and diffusion constant to find

typical values for a thin superconducting metallic film. Our aim is to obtain expressions

for D, which relies upon knowing N(0), κ2, kF , and l. Switching back into SI base units

we may write,

N(0) =
1

π2~3

√
m3
e

2

√
εF , σ0 =

1

R�(4.2K)tΓ
,

D =
σ0

2e2N(0)
, κ2 =

mee
2

2πε0~2
,

(3.206)

where we have used the Einstein relation for the diffusion constant, and ε0 is the permit-

tivity of free space. Substituting in the experimental values we find

N(0) ' 4.72× 1046J−1m−3, σ0 ' 2.44× 106Ω−1m−1, D ' 10−3m2s−1,

1

τ0

' 4.25× 1014s−1, kF ' 1.13× 1010m−1, l ' 2.33× 10−9m,
(3.207)

and hence the parameters we insert into eq. 3.200 are,

kF l = 26, κ2 = 3.8× 1010m−1 ⇒ Dκ2
2 = 1.45× 1018s−1 = 1.1× 107K, (3.208)

where we moved back to natural units (~ = 1, kB = 1) in the final equality of Dκ2
2.

The plots in fig. 3.35 show the numerical solutions to the different 2D self-consistent

equations over for the range T ∈ [Tc, 3Tc]. Eq. 3.200 is referred to as the full curve,

eq. 3.201 is labelled as the leading order curve, and eq. 3.202 corresponds to the Brenig

curve. Fig. 3.35 compares the three equations over the full range, and shows clearly that

Brenig et. al.’s result grows near the transition. The other two cases do start to increase

near the transition, albeit extremely little. This may be seen as evidence supporting the

Altshuler-Aronov form for τ−1
φ,ee, as this curve is closer in nature to the Keller-Korenman

result for τ−1
φ,fl. When it comes to granular systems later, however, a fully perturbative

approach will still be taken, akin to that of Fukuyama and Abrahams [58], since it can still

provide physical insight and act as a guide for less perturbative methods in the future.
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Figure 3.35: Numerical solutions to the 2D self-consistent equations for τ−1
φ . The dashed

line marks Tc. These plots are generated using values based on Gordon et. al.’s mea-
surements [60]. (a): Total phase breaking rate for the different approximations we can
solve self-consistently. The blue curve refers to the full self-consistent equation given in
eq. 3.200, the red curve is the solution of the self-consistent equation using the leading
order Coulomb phase breaking rate in eq. 3.201, and the green curve is the solution to
Brenig et. al.’s self-consistent equation in eq. 3.202. (b): focus on the transition of panel
a. (c): comparison of the leading order curve in panel a to the leading order Coulomb
contribution (black). (d): comparison of the Brenig curve in panel a to the Brenig et.
al.’s Coulomb contribution (black).

Fig. 3.35c and fig. 3.35d show that the total phase breaking rate tends to a form

similar to the Coulomb phase breaking rate used in each case for high temperatures. We

see that the curves are almost parallel, even extending the temperature range up to 100K,

we find that the gradient only changes slightly. So, to leading order, τ−1
φ and τ−1

φ,ee have

the same temperature dependence for high temperatures, only their prefactors are slightly

different and a near constant shift is required.
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Figure 3.36: Comparison of Brenig et. al.’s [59] approximate function given in eq. 3.209
(dashed red line) compared to the solution of their self-consistent equation in eq. 3.202
(solid blue line). The dashed black line line marks Tc. (a): comparison over the range
T ∈ [Tc, 3Tc]. (b): focussing in on the transition of panel a.

To approximate the curves generated by eq. 3.202, Brenig et. al. [59] gave the

following function for the total phase breaking rate,

1

τφ
=

T

kF l

[
ln

(
kF l

2

)
+

2 ln 2

ε+ 2 ln 2
γ

]
, (3.209)

where

γ =
1

2

√[ln(kF l
2

)]2

+
64kF l

π
− ln

(
kF l

2

) . (3.210)

We present eq. 3.209 compared to the Brenig et. al.’s self consistent equation in eq. 3.202

in fig. 3.36.

We can see that their approximate function has the same general shape as the self-

consistent solution, though does deviate noticeably. In their own work, Brenig et. al. do

state that this function is accurate to within 10% [59]. The way in which to obtain this

function is neither clear or simple. We have therefore made mention of their result, and

appreciate that it does give a similar curve to their self-consistent solution.

Moving on to the 3D case, we use the same experimental parameters as before, but

in application to eq. 3.199. Fig. 3.37a shows that τ−1
φ is generally small in 3D, and

grows rapidly close to the transition. It is also clear that the phase breaking rate grows
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Figure 3.37: (a): general temperature dependence of the total phase breaking rate in
3D (solid blue line) compared to the Coulomb phase breaking rate in 3D (solid black
line). The dashed black line marks Tc. (b): reduced temperature dependence of the phase
breaking rate in 3D (solid blue line). The dashed red line acts as a power law guide for
an η−0.45 power law.

for larger temperatures, though very slowly and hence remaining small. An interesting

dependence can be seen by plotting this on a log-log scale against the reduced temperature,

η = (T − Tc)/Tc, see fig. 3.37b. Here we see that τ−1
φ changes very little extremely close

to Tc, but grows approximately as η−0.45 close to Tc (10−4 . η . 10−2), before no longer

depending on η in a simple manner.

Given that the curve in fig. 3.37b flattens out extremely close to Tc, it’s clear that

the phase breaking rate in 3D tends towards a finite non-zero value at the transition, as

we expect from a physical standpoint. The rapid change in behaviour further away from

the transition (η & 10−2), which is still close to Tc, can be attributed to the fluctuations

in 3D systems being relatively small compared to their 2D and 1D counterparts, and so

are quickly dominated by the Coulomb contribution to τ−1
φ . As before, we see for higher

temperatures the general T dependence of the curves is extremely similar, but the total

phase breaking rate has a slightly more positive gradient than the Coulomb piece.
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3.7 Chapter Summary

In this chapter we covered a large number of phenomena, and demonstrated how they can

affect the transport of electrical current in disordered homogeneous metals.68 We started

by considering the effects of non-magnetic disorder described by single-particle potentials,

and argued that to determine macroscopic quantities we would need to average over all

possible distributions of the impurities.

Following this, we calculated the Drude conductivity using Kubo’s formula for linear

response, and showed how a diagrammatic language could be used to perform this calcu-

lation. This acted as a proof of concept for the diagrammatic approach, and served as

the simplest stepping stone towards more complicated effects. The simplest correction to

Drude arose in the form of weak localisation, which we were able to calculate by consid-

ering a maximally crossed diagram. This phenomenon was heavily reliant on the concept

of phase coherence, and so we phenomenologically included a phase breaking rate, τ−1
φ .

Afterwards, we considered the Coulomb interactions between electrons, which lead

to a T
d
2
−1 power law in the electrical conductivity for one and three dimensions, whilst

we found a logarithmic dependence it two dimensions, ln(Tτ0). Next we dealt with the

effects of superconducting fluctuations, which appeared as virtual Cooper pairs above the

transition. Here we demonstrated that diagrammatics could explain the divergence in

σ we see near Tc, which grew as a simple power law in the reduced temperature, η
d
2
−2.

However, to avoid divergences for d = 1, 2, we were again forced to include a phase

breaking rate.

The final section of this chapter addressed this seemingly benevolent being τ−1
φ , and

sought to understand its behaviour. Here we showed how one can calculated the tempera-

ture dependence of τ−1
φ using only the effects that arose naturally in our systems, and not

using other contributions due to more specific systems. Examples of these special cases

could include Andreev reflection, magnetic impurities, etc.

68This was an extremely long chapter, I do apologise. I even started to wonder to myself if this chapter
would ever end, and began to think perhaps not. Maybe that was the cabin fever of the pandemic and
lockdown though. Nevertheless, here we are, we got there! Now for the next chapter.

121



CHAPTER 3. TRANSPORT PHENOMENA IN HOMOGENEOUS SYSTEMS

Our aim is to translate as many of these results over to granular systems as possible.

However, to do this we will first need to develop a diagrammatic language in which to

do this. The next chapter will be a shorter analogous version of chapter 2, where we will

show how to include a lattice of grains into the problem via the notion of tunnelling.
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CHAPTER 4

DEVELOPING DIAGRAMMATIC

TECHNIQUES FOR GRANULAR

SYSTEMS

Everything we have dealt with so far has only been for homogeneous systems. In this

chapter, we extend the digrammatic formalism derived in chapter 2 to granular systems.

Consequently, this chapter will bear a lot of resemblance to chapter 2, though we will not

have to provide the same level of detail, as direct comparison can be drawn between the

methods taken to reach the end results.

Historically, much of work on the granular diagrammatic language was done by Be-

loborodov et. al. [61, 62, 63, 64, 65, 66], Biagini et. al. [67, 68], Skrzynski et. al. [69], and

Efetov and Tschersich [70] in the late 1990s and early to mid 2000s, which culminated in

Beloborodov et. al.’s 2007 review paper [26].1 Within this plethora of works many ideas

were discussed and methods used. Beloborodov et. al., Biagini et. al., and Skryzinksi

et. al. primarily used diagrammatic methods to determine corrections to the electrical

conductivity due to effects such as: superconducting fluctuations in strong magnetic fields

[61, 62], superconducting fluctuations with larger intergranular coupling [69], weak locali-

1This list is by no means exhaustive, but refers to the main set of works that the ideas and methods
of this thesis are based upon.
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sation [63, 67], and Coulomb interactions [63, 64]. Further, Belobordov et. al. considered

the effects of Coulomb interactions on MITs [65], whilst Biagini et. al. dealt with the

corrections to the thermal conductivity due to superconducting fluctuations [68].

In contrast to the diagrammatic methods used in these papers, Efetov and Tschersich

used the path integral formulation of QFT to understand the effects of Coulomb interac-

tions at low temperatures on the electrical conductivity either side of the MIT [70]. Within

their work, they derived the result for the granular Drude conductivity, a result that had

been seemingly missing concrete proof in previous literature. However, the diagrammatic

method was still not explicitly shown to obtain the granular Drude conductivity until the

recent publication of Perkins and Smith [37]. After this brief history lesson, let us now

outline the structure of this chapter.

We shall start by defining what we mean by a granular material and how we model

such a system in section 4.1. Following this, we construct the diagrammatic rules needed

to include tunnelling between grains in section 4.2, and how we treat tunnelling as a new

form of disorder. Here we also derive the new single-electron Green’s function. Finally,

in section 4.3, we show how two-particle interactions may be included within a granular

diagrammatic formalism.

4.1 What is a Granular Metal?

A granular metal is defined as being a collection of metallic islands embedded within an

insulating, or less conductive, medium, which maintains metallic behaviour across the

entire system. Alternatively, we can think of this in terms of dimensionless conductance.

If the dimensionless conductance of an isolated grain is given by gg, and the dimensionless

conductance due to tunnelling between grains is given by gT , then we define a granular

metal as one satisfying,

1 � gT � gg. (4.1)
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(a) (b)

Figure 4.1: (a): a generic example of a real 2D granular metal. (b): model of a 2D
granular metal.

These dimensionless conductances can be written in terms of physical parameters char-

acterising a granular metal,

gT =
Γ

δ
, gg =

ETh
δ
, (4.2)

where Γ is the tunnelling rate of electrons between grains at a single interface, δ =

(N(0)ad)−1 is the mean level spacing, a is the typical size of a grain,2 and ETh is the

Thouless energy.3

In terms of modelling a granular metal, reality presents a messy picture, see fig. 4.1a.

Disorder appears in many forms here: grain location, grain shapes, grain sizes, tunnelling

probability, to list a few. However, as theorists, we need a nice and simple model to start

analysing these systems. Thus we make the following set of assumptions,

� All grains are identical in shape and size. We assume the grains to be cubes with a

characteristic size length of a.

� The impurities within a grain act solely within that grain.

� The grains form a lattice, which we assume to be simple cubic of side length a.

2Think of the mean level spacing as the inverse of the single spin DOS.
3The Thouless energy can be thought of as the energy scale associated to the rate at which a particle

diffuses through a system, τ−1D = D/L2 (L is the system’s size), such that ETh = ~τ−1D .
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We illustrate our effective model in fig. 4.1b. Whilst it may seem worrying that we take

the grains to be the same size as the cubic lattice, it is not of concern in the mathematical

model since we still enforce boundaries to the grains, which electrons can only cross via

quantum tunnelling. The biggest advantage of this model is in its realisation of disorder.

All disorder can be treated in terms of the tunnelling matrix elements appearing in the

Hamiltonian, and so we only have to treat these matrix elements in a similar way to the

impurities of section 3.1.

The assumptions we have made above are equivalent to those of Beloborodov et. al.

[26], although we have assumed cubic grains as opposed to spherical grains. This choice

is one of convenience, as more complicated problems become difficult to calculate when

trying to account for spherical degeneracy within a radially symmetric sum. Let us now

show how we include tunnelling into our Hamiltonian, whilst also maintaining the DOFs

internal to a grain.4

4.2 Tunnelling: A New Form of Disorder

Generally, when considering a tunnelling problem we start from the tight binding model

and tack on other parts describing the necessary physics.5 The appropriate term to

describe granular transport is thus,

HT =
∑
i,j

∑
σ

∑
k,p

tkpij c
†
ikσcjpσ, (4.3)

where tkpij is the tunnelling matrix element associated to an electron hopping from mo-

mentum state p on grain j, to momentum state k on grain i.6 Naturally tkpij = 0 for i = j.

Clearly, tunnelling is just another form of single-particle interaction.

4We refer to these as either intragranular DOFs or internal DOFs.
5We are no better than those before us, and this is exactly what we shall do.
6We adopt the convention that the final grain position will be the first grain label, whilst the starting

grain position will be given by the second grain label. I.e. for a generic function Fji, the particle moves
from grain i to grain j. Using this notation, Rji = Rj −Ri is the vector moving from grain i at Ri to
grain j at Rj .
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Now, to construct our granular metal entirely, we need to add the presence of electrons

and disorder within grains. The total Hamiltonian describing a granular metal, in the

absence of two-particle interactions is then,

H (T )
1 =

∑
i

∑
σ

∑
k

ξikc
†
ikσcikσ +

∑
i

∑
σ

∑
k,q

Ui(q)c†ik+qσcikσ

+
∑
i,j

∑
σ

∑
k,p

tkpij c
†
ikσcjpσ

≡Hg +HT ,

(4.4)

where the first term describes free electrons bound to a single grain, the second term

describes the disorder within a grain, and the third term is simply tunnelling between

the grains. We use Hg to represent the Hamiltonian for the set of isolated grains with

internal disorder.7

Before we delve into the disorder averaging over the tkpij , let us first demonstrate how

we can generate a perturbative expansion in terms of these tunnelling events. The ideas we

use are equivalent to those necessary for calculating the tunnelling current of a Josephson

junction, and so we base our approach on Barone and Paternò’s book [71] for a single

tunnel junction.

4.2.1 Single-particle Green’s Function

The major assumption we make, in line with Barone and Paternò [71], is

〈
cikσc

†
jpσ′

〉
dis

= δijδσσ′δkp

〈
cikσc

†
ikσ

〉
dis
, (4.5)

where 〈...〉dis denotes averaging with respect to Hg and over the internal disorder. This is

effectively saying that our theory must be built from the single-particle Green’s functions

internal to a grain.

7Recall that we use the font H to signify that we are in the grand canonical ensemble. When we see
both fonts, H and H, used in the same equation, the part using H contains the chemical potential, and
hence the knowledge that we are working in the GCE.
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Figure 4.2: Diagrammatic representation of eq. 4.6, where we show the first three terms
explicitly.

To obtain a diagrammatic expression for the single-electron Green’s function, we start

from its definition in the interaction picture (eq. 2.56), and treat HT as our interacting

perturbation. Using the expansion of the S-matrix in eq. 2.60, recalling that all dis-

connected diagrams cancel, and lastly performing a Fourier series expansion in terms of

fermionic Matsubara frequencies, we can see that the single-electron Green’s function is

simply given by a sum of consecutive tunnelling events made by the same electron,

Gij(k,p, iν;HT ) = G̃0(k, iν)δijδkp + tkpij G̃0(k, iν)G̃0(p, iν)

+
∑
l

∑
q

tkqil t
qp
lj G̃0(k, iν)G̃0(q, iν)G̃0(p, iν)

+
∑
l,m

∑
s,q

tkqil t
sq
lmt

qp
mjG̃0(k, iν)G̃0(s, iν)G̃0(q, iν)G̃0(p, iν) + ...,

(4.6)

where G̃0 is the homogeneous electron Green’s function for a single isolated grain with

translational invariance.8 For the electronic transport problems we consider in chapter

5, G̃0 will simply be the homogeneous disorder-averaged electron Green’s function from

chapter 3 (eq. 3.14).

We write eq. 4.6 diagrammatically in fig. 4.2. This looks exactly like fig. 2.2, except

now our single-particle scatterings have been replaced by tunnelling events. However, we

cannot collapse this into a more useful form without averaging over the disordered set of

tunnelling events. Before we do this, however, we can already deduce a new diagrammatic

8If the grains did not possess translational invariance, then we would not be able to write our tunnelling
Hamiltonian in a form that tunnels from momentum state p in one grain to momentum state k in another.
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rule for granular systems,

� All homogeneous Green’s functions carry a grain label, which denotes the grain they

belong to (i.e. G̃0 → G̃0i). We then sum over all internal grain labels.

Thus, in the absence of averaging over tunnelling events, we find the following additional

rules to those for single-particle interactions in homogeneous systems, under the premise

that the single-particle interactions within each grain possess translational invariance:9

1. To each solid line we assign an additional grain index, denoted by a Latin charac-

ter (e.g: i), on top of the momentum and frequency it already carries. This line

represents the Green’s function G̃0i(k, iε).

2. Crossed circles represent tunnelling events, which introduce a factor of tkpij to connect

the Green’s functions G̃0i(k, iε) and G̃0j(p, iε), which leave and enter the tunnelling

event respectively.

3. Sum over all internal grain indices.

4.2.2 Single-electron Green’s Function – With Averaging over

Tunnelling Events

Let us now consider a disordered granular metal. In this case, by taking the impurity

disorder average over each grain, we satisfy the need for translational invariance within

a grain. As a result, G̃0 becomes the disorder-averaged electron Green’s function in eq.

3.14. Our next step is to assign a statistical distribution to the tunnelling events.

Previously, we assumed a Gaussian distribution of impurity scattering events (eq. 3.5),

9This statement about internal translational invariance means we can write the homogeneous Green’s
functions in momentum space using only one momentum argument. This property can either be natural,
or obtained by processes akin to disorder averaging.
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Figure 4.3: (a): Diagrammatic representation of the t-averaged electron Green’s function,

where the thin solid lines are G̃0i propagators, and the thick solid lines are the t-averaged
electron Green’s function, Gi. (b): Diagrammatic series for the self-energy describing

t-averaging. Here the solid line represents G̃0l.

so we assume an analogous distribution here,

〈
tkpij

〉(0)

T
= 0,

〈
tkpij t

k′p′

lm

〉(0)

T
=


t2(δimδjl + δilδjm)δk+k′,p+p′ , nearest neighbours

0, otherwise,

(4.7)

where 〈...〉(0)
T denotes the explicit averaging only over tunnelling events – t-averaging. In

writing the average for two tunnelling events, we have assumed only nearest neighbour

tunnelling is allowed.10 Applying this average to eq. 4.6 we find an entirely equivalent

set of diagrams to those in fig. 3.2, which we show in fig. 4.3. The dashed line connect-

ing tunnelling events denotes their correlation. The t-averaged single-particle Green’s

function, Gi(k, iε) = 〈Gij(k,p, iε;HT )〉(0)
T , is therefore given by the Dyson equation

Gi(k, iε) = G̃0i(k, iε) + G̃0i(k, iε) ΣT Gi(k, iε). (4.8)

As in the homogeneous case, crossing terms will be negligible and nested diagrams vanish

for the same reason.

10This is not an unreasonable assumption, and should always be our first port of call in these types of
calculations.
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The consequence of averaging is that each pair of tunnelling events correlated using

eq. 4.7 produces a factor of adt2.11 This is in direct analogy to the factor of (2πN(0)τ0)−1

that is produced in the homogeneous case (eq. 3.6). In the following, we shall write the

factor of ad generated by averaging explicitly, and so we now need to include the factors

of V−1 for the momentum sums explicitly. Note, since the internal momenta are local to a

grain, the volume appearing in the prefactor of momentum sums is just that of the grain,

V = Vg (Vg = ad in our model). This is because the internal momentum is related to the

size of the “internal system”, or, in other words, the size of the grain.

The self-energy for the t-averaged Green’s function is simply,

ΣT = t2
∑
l

∑
p

δ〈il〉G̃0l(p, iε), (4.9)

where

δ〈il〉 =


1, i and l are nearest neighbours

0, otherwise.

(4.10)

Given that the grain index on G̃0l is a formality to help picture the tunnelling processes

occurring, and the homogeneous Green’s function does not depend on the grain label, the

sum over l combined with δ〈il〉 simply produces a factor equal to the number of nearest

11The extra factor of ad acts to cancel the a−d that our original diagrammatic rules would generate
due to the intragranular momentum sum that results from tunnelling to a grain and back. Put explicitly,
for the case of two tunnelling events, we tunnel from grain i to grain j, before then tunnelling back to
grain i. We can view the i label as external to the diagram, and j as an internal label to be summed
over. The Green’s functions at the start and end have the same intragranular momentum courtesy of
our averaging procedure, whilst the Green’s function in grain j has an independent momentum. The
momentum appearing for the Green’s function in j is internal to the diagram, and hence is summed over.

Consequently, our original homogeneous rules would say this carries a factor of a−d. However, this
momentum sum does not have the same origin as those generated in the homogeneous case. Rather,
this momentum sum naturally appears in the Hamiltonian without a factor of a−d in front of it. We
can see that the series generated for the single-electron Green’s function also reflects this in eq. 4.6: the
tunnelling momentum sums do not carry a factor of a−d with them. Hence, since only pairs of tunnelling
events survive our averaging procedure, we correct the original homogeneous rules by including an extra
factor of ad for each pair of correlated tunnelling events. It is quite pleasant to see how this reflects the
associated factor carried by a pair of impurity scattering events in homogeneous systems.
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neighbours to the ith grain. Hence,

ΣT = zt2
∑
p

G̃0(p, iε), (4.11)

where z is the coordination number of the granular lattice. The momentum sum is exactly

the same as in eq. 3.11, but with no suppressed factor of V−1
g = a−d,12 and so

ΣT = −izt2πN(0)adsgn(ε) = −izΓ

2
sgn(ε), (4.12)

where Γ is the electron tunnelling rate at a single grain boundary, which is given by

Fermi’s golden rule

Γ = 2πN(0)adt2. (4.13)

The t-averaged single-electron Green’s function is then given by the Dyson equation,

Gi(k, iε) =
1

G̃0i(k, iε)−1 − ΣT

. (4.14)

Hence, the t-averaged single-electron Green’s function has an entirely analogous form to

that of the homogeneous disorder-averaged electron Green’s function (eq. 3.14),

Gi(k, iε) =
1

iε− ξk + i
2τ

sgn(ε)
, (4.15a)

1

τ
=

1

τ0

+ zΓ. (4.15b)

In comparison to the homogeneous case, we see that τ−1
0 , the impurity scattering rate,

has been replaced with the total scattering rate due to tunnelling and impurity scattering,

τ−1.

As part of our model of a disordered granular metal, whose disorder is both internal

(impurities) and external (tunnelling) to a grain, we make the following assumption:

12Due to our explicit inclusion of volume factors now, this sum will produce a factor ofN(0)Vg = N(0)ad

as opposed to the N(0) we had in the previous chapter.
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� An electron scatters many times off impurities internal to a grain, before tunnelling

to the next grain, i.e. τ−1
0 � zΓ.13

This assumption gives meaning to the idea of disorder within a grain. If tunnelling was to

happen significantly more often than internal impurity scattering, the inclusion of internal

disorder would become redundant, as the motion of electrons within a grain would become

ballistic.

Given the extreme similarity to the single-electron Green’s functions in homogeneous

disordered metals, we might expect many granular results to appear similar to their

homogeneous counterparts. However, before we see whether this is true or not, there

are many more technical aspects we must cover. Let us first write down our new set of

diagrammatic rules.

The set of rules due to averaged tunnelling events, which are in addition to those for

disorder-averaged single-particle interactions in homogeneous systems, are thus,

1. To each solid line we assign an additional grain index, denoted by a Latin charac-

ter (e.g: i), on top of the momentum and frequency it already carries. This line

represents the Green’s function G0i(k, iε).

2. Crossed circles represent tunnelling events, which introduce a factor of tkpij to connect

the Green’s functions G0i(k, iε) and G0j(p, iε), which leave and enter the tunnelling

event respectively.

3. Sum over all internal grain indices.

4. Only diagrams containing an even number of tunnelling events survive t-averaging.

5. Consider all possible combinations where we pair all tunnelling events, with paired

events connected via a dotted line. This conserves intragranular momentum, but

does not effect the energy of a Green’s function, and so obeys the usual conserva-

13This is the same as assuming weak tunnelling, so the matrix elements tkpij are small.
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tion laws. This generates a constant effective two-body interaction in frequency–

intragranular-momentum space, which is given by t2ad.14

6. For weakly disordered systems, kF l � 1 (l is the homogeneous mean free path),

terms involving overlapping (crossed) two-body tunnelling interactions are sub-

dominant at all orders, and so may be neglected.

Having stated the rules we play by for the single-particle interaction that is tunnelling,

let us now derive the diagrammatic rules for two-particle interactions.

4.3 Two-particle Interactions

In chapter 2 we considered a generic two-particle interaction Hamiltonian for a homoge-

neous material. This interaction was included via Hint in eq. 2.55. For a granular metal,

however, the particles can only exist within a grain and not between grains, hence they

cannot be created/annihilated in all of position space. Instead, we should split the vol-

ume integrals up into a sum of volume integrals over each grain, and write all real space

positions as a combination of lattice position and internal position within a grain,

∫
ddr →

∑
i

∫
ddyi , r = Ri + yi , (4.16)

where yi is the position within the ith grain, with the integral taken over the volume of

the ith grain. The field operators then become,

ψσ(Ri + yi) ≡ ψiσ(y), (4.17)

14This is constant in both lattice position space and lattice momentum space. We will see more about
lattice momentum space later.
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and so,

Hint =
1

2

∑
σ,σ′

∑
i,j

∫
ddyi

∫
ddy′j ψ

†
iσ(y)ψ†jσ′(y

′)V (Ri + yi −Rj − y′j)ψjσ′(y
′)ψiσ(y)

=
1

2

∑
σ,σ′

∑
i,j

∫
ddyi

∫
ddy′j ψ

†
iσ(y)ψ†jσ′(y

′)V (Rij + yi − y′j)ψjσ′(y
′)ψiσ(y).

(4.18)

For notational ease, we choose to write

V (Rij + yi − y′j) = V (Rij,yi − y′j) = Vij(yi − y′j). (4.19)

We assume that each grain possesses translational invariance, meaning it is beneficial

to replace the field operators with their second quantised counterparts using a plane wave

basis that is local to a grain. Hence, we use eq. 2.28 with V = ad, and define the momenta

according to the size and shape of the grain, as opposed to the entire system,

ψiσ(r, τ) =
1√
V

∑
k

eik·rcikσ(τ), ψ†iσ(r, τ) =
1√
V

∑
k

e−ik·rc†ikσ(τ). (4.20)

Further, we note that Vij(yi − y′j) has two layers of translational invariance: we can

make a large translation that shifts the lattice, which does not affect the interaction due

to the Rij piece in its argument; we can make a small translation of the system that is of a

size smaller than a grain, which does not affect the interaction due to the difference yi−y′j.

We may therefore define two independent Fourier series expansions of the interaction: this

leads to an internal momentum, q, related to the change in internal position yi−y′j, and

an external momentum, Q, related to the change in lattice position, Rij. However, we

often choose to remain in a mixed representation of internal momentum space and lattice

position space.15 Using these ideas, we have the following representations for a two-body

15I personally feel this is a more intuitive picture to work with when considering problems later on.
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interaction with translational invariance,

Vij(yi − y′j) =
1

V
∑
q

Vij(q)eiq·(yi−y
′
j), (4.21a)

Vij(q) =
1

N
∑
Q

V (Q,q)eiQ·Rij . (4.21b)

We adopt the convention of using lower case letters for internal momenta, and capital

letters for lattice momenta.

Substituting eq. 4.20 and eq. 4.21a into eq. 4.18, we arrive at

Hint =
1

2V
∑
σ,σ′

∑
i,j

∑
k,p,q

c†ik+qσc
†
ipσ′Vij(q)cip+qσ′cikσ. (4.22)

Now, the Green’s function we wish to calculate is the full single-particle Green’s function

in the presence of two-particle interactions,16

G (αα′)
ji (k,p; τ1, τ2) = −

〈
Tτ

{
c̃iα(k, τ1)c̃†jα′(p, τ2)S(β)

}〉
0

〈S(β)〉0
, (4.23)

where the S-matrix has the same definition as before, the tildes on the creation and

annihilation operators signify we are using the interaction picture, and

〈...〉0 =
1

Z0

Tr
[
e−βH

(T )
1 ...

]
, Z0 = Tr

[
e−βH

(T )
1

]
, (4.24)

in analogy to eq. 2.59.

We can now perform an identical treatment to that given in chapter 2 to find the

single-particle Green’s function for a granular system, with two-body interactions and

translationally invariant grains. In chapter 2, we could have chosen to start in momentum

16If we wanted to write this in a more similar form to eq. 2.56, we could put the momentum arguments in
the subscript instead of the grain labels, and put Ri and Rj in the main argument instead of the momenta.

Then by labelling x1 = (Ri, τ1) and x2 = (Rj , τ2), we find ourselves dealing with G
(αα′)
kp (x1, x2). Thus, we

can apply exactly the same ideas as before, where the intragranular momenta are simply carried around
as passengers.
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space as opposed to position space for homogeneous systems, and found a near identical

expression to that in eq. 4.22. The only major difference here is that we have the

additional grain index on the creation and annihilation operators, along with the sums

over grain position. If we simply ignored the presence of the momentum arguments on

the operators, removed the momentum sums, and the factor of V−1 associated to these

sums, this problem would look like the discretised version of section 2.4. Hence, we can

apply the exact same set of steps used to obtain the diagrammatic rules in real space to

obtain entirely analogous rules for a system situated on a lattice: our integrals over all

internal positions in space would be replaced by a sum over all lattice positions.

To regain the granular nature is simple. We appreciate that the momentum arguments,

sums, and factor of V−1 will only be passengers in the treatment mentioned above. Thus,

we can re-insert the momentum arguments onto the operators, sum over all internal

intragranular momenta, and introduce a factor of V−1 for each internal momentum sum,

without any difficulty. Consequently, we find that the Green’s function that acts as our

diagrammatic building block, in analogy to eq. 2.62, is

G (σσ′)
0ij (k,p, iν) = −

〈
Tτ

{
c̃iσ(k, iν)c̃ †jσ′(p, iν)

}〉
0

= −
〈
Tτ

{
c̃iσ(k, iν)c̃ †jσ(p, iν)

}〉
0
δσσ′

= Gij(k,p, iν;HT )δσσ′ = G (σ)
0ij (k,p, iν)δσσ′ ,

(4.25)

.

With this in mind, we may write down the diagrammatic rules for including two-

particle interactions in the single-particle Green’s function of a granular system, which

has translational invariance within each grain,

1. Create all connected, topologically inequivalent diagrams with 2n internal vertices

at nth order, and two external vertices. At each internal vertex, two solid lines and

a wavy line meet.

2. To each solid line we associate the propagator in the absence of two-particle inter-
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actions, G (σσ′)
0ij (k,p, iν), which moves from the state with intragranular momentum

p and spin σ′ in grain j, to the state with intragranular momentum k and spin

σ in grain i, whilst carrying the Matsubara frequency ν, such that intragranular

momentum, energy(frequency), and spin are conserved at each vertex.

3. Each wavy line represents an interaction and is associated to a factor of −Vij(q, iω),

which carries an intragranular momentum q and Matsubara frequency ω from grain

j to grain i.

4. We now sum over all internal Matsubara frequencies, ν, and introduce a factor of

T for each internal frequency summed over.

5. We next sum (integrate) over all internal intragranular momenta, k, and introduce

a factor of V−1 ((2π)−d) for each internal momentum summed (integrated) over.

6. Sum over all internal spin indices. This is equivalent to just multiplying by a factor

of (2S+1) for each closed particle loop, where S is the particle’s spin, and neglecting

the spin indices and sums.

7. Sum over all internal grain labels.

8. For each closed fermion loop we introduce an extra factor of (−1).

We give example diagrams in fig. 4.4, which are the first order corrections to the full

single-particle Green’s function,

G (αα′),(1a)
ij (k1,p1, iν) = − η

V2

∑
l,m

∑
σ,σ′

∑
k,p

[
Vlm(0, 0)G (ασ)

0,il (k1,k, iν)

× G (σα′)
0,lj (k,p1, iν)G (σ′σ′)

0,mm (p,p, iν)
]
,

(4.26a)

G (αα′),(1b)
ij (k1,p1, iν) =

1

V2

∑
l,m

∑
σ,σ′

∑
k,p

[
Vlm(q, iω)G (ασ)

0,im (k1,k, iν)

× G (σ′α′)
0,lj (p,p1, iν)G (σσ′)

0,ml (k + q,p + q, iν + iω)
]
.

(4.26b)

138



4.3. TWO-PARTICLE INTERACTIONS

j i
l

m

(a) (b)

Figure 4.4: (a): Diagrammatic representation of eq. 4.26a. (b): Diagrammatic represen-
tation of eq. 4.26b.

4.3.1 Two-particle Interactions – With Averaging Over Tun-

nelling Events

The rules above are in the absence of t-averaging, and so look quite unpleasant, as do the

resulting expressions. By applying t-averaging, rule 2 of the above set simplifies slightly

as we no longer have to deal with non-interacting Green’s functions that can start in one

grain and end in another. The new non-interacting Green’s function we use is then,

G (σσ′)
0i (k, iν) =

〈
G (σσ′)

0ij (k,p, iν)
〉(0)

T

= 〈Gij(k,p, iν;HT )〉(0)
T δσσ′ = Gi(k, iν)δσσ′ = G (σ)

0i (k, iν)δσσ′ .

(4.27)

Therefore, the new second rule reads as:

� To each solid line we associate the propagator in the absence of two-particle interac-

tions, G (σσ′)
0i (k,p, iν), which starts and ends in grain i, and moves from the spin state

σ′ to the spin state σ, whilst carrying an intragranular momentum of k and Mat-

subara frequency of ν, such that intragranular momentum and energy(frequency)

are conserved at each vertex.

Having outlined how to obtain the diagrammatic rules for granular systems, we are now

in a position to start calculating the electrical conductivity of granular metals.
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CHAPTER 5

TRANSPORT PHENOMENA IN

GRANULAR SYSTEMS

In chapter 3 we discussed, and calculated, the corrections to the electrical conductivity

of disordered homogeneous metals due to a variety of effects. Naturally, we expect these

effects to also be present in granular materials. Therefore, this chapter will show how

we calculate the analogous results in granular metals, and where we might expect new

observations to occur that would not be seen in homogeneous systems.

We start this chapter by covering the details of the granular Drude conductivity cal-

culation in section 5.1. We then consider the effects of interference and calculate the weak

localisation corrections to the electrical conductivity in section 5.2. Next, we calculate the

corrections due to EEIs via Coulomb in section 5.3, before considering superconducting

fluctuations in section 5.4. Finally, in section 5.5, we obtain self-consistent expressions

for the phase breaking rate.

5.1 Drude Conductivity

As was the case in homogeneous systems, the granular Drude conductivity result is one

of the more awkward to calculate using QFT. The granular Drude result was quoted in
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Figure 5.1: Circuit diagram interpretation of a granular metal in 2D.

the literature [61] to be,

σT0 = 2e2N(0)Γa2, (5.1)

and was only explicitly calculated using path integral methods by Efetov and Tschersich

[70]. A diagram was associated to the granular Drude conductivity in [64], but was not

explicitly calculated until recently in the work of Perkins and Smith [37]. However, before

we try to construct a field theory for granular electrical conductivity to verify this result,

let us first start by considering a classical model to compare our answer to.

5.1.1 A Classical model

We can picture a granular system as a d-dimensional simple cubic lattice, where the

vertices of a cube are left empty and we replace the lines connecting vertices with resistors,

see fig. 5.1. In our model, all grains are identical, hence each resistor has the same

resistance, RT . If we wanted to measure the total resistance of this network, could imagine

placing the granular sample between two metal plates (electrodes) that were connected

to some source. This would mean that each grain at the surface of the sample would be

in contact with the electrode, and so we would have the circuit diagram shown in fig. 5.1

in 2D. It is not difficult to see how this generalises for both 1D and 3D, let alone higher

dimensions.
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Clearly, all channels that run parallel to the plates will carry no current. This is

because the voltage entering either side of a single resistor parallel to the plates is equal,

meaning the potential difference across the resistor is zero. Therefore, all current runs

in the channels perpendicular to the plates. If the sample has a length of nx grains, the

resistance of a single channel is then,

R1 = (nx − 1)RT . (5.2)

If the system has a width of ny grains, the resistance of a single plane is given by adding

ny − 1 single channels in parallel,

1

R2

=

ny−1∑
m=1

1

R1

=
ny − 1

R1

,

⇒ R2 =
R1

ny − 1
=
nx − 1

ny − 1
RT .

(5.3)

Finally, if the system has a height of nz grains, the total resistance of the sample is given

by adding nz − 1 single planes in parallel,

R3 =
nx − 1

(ny − 1)(nz − 1)
RT . (5.4)

The conductivity associated to this material is thus,

σT0 =
1

ρT0
=
nynza

2

nxa

nx − 1

(ny − 1)(nz − 1)
RT =

nynz
nx

nx − 1

(ny − 1)(nz − 1)
aRT . (5.5)

For the system to be classed as d-dimensional, it must be extended in each direction,

meaning nx, ny, nz � 1, and so

σT0 =
1

ρT0
= ad−2RT . (5.6)

Here we generalised from three dimensions to d dimensions.
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Now, the resistance for a single tunnel junction is given by Barone and Paternò [71],

which, written in our notation, is

RT =
1

4πN(0)2a2dt2
, (5.7)

where we have used the fact that the DOS for each grain are independent. Substituting

eq. 5.7 into eq. 5.6, and recalling Γ = 2πN(0)adt2, we recover the result given in eq. 5.1.

Having found an expression for σT0 classically, let us now move onto formulating a QFT

description of electrical conductivity in granular metals.

5.1.2 Quantum Field Theory & Linear Response

In this section we closely follow the work of Perkins and Smith [37]. To find an expression

for the electrical conductivity, we need to calculate the linear response of the current

density, J, to the vector potential, A, as in section 3.2. For this, we will need to define

the perturbation to our Hamiltonian due to A, as well as determine the electrical current

operator for a granular system. In our case, the unperturbed Hamiltonian is given in eq.

4.4, which we write here as

H0 =
∑
i

∑
σ

∑
k

ξikc
†
ikσcikσ +

∑
i

∑
σ

∑
k,q

Ui(q)c†ik+qσcikσ

+
∑
i,j

∑
σ

∑
k,p

tkpij c
†
ikσcjpσ

≡Hg +HT

(5.8)

where the subscript on H0 denotes the vector potential’s absence.

We include the vector potential into this Hamiltonian by means of the Peierls substi-

tution [72, 73, 74],

tij → tij exp

(
ie

∫ Ri

Rj

dr ·A(r, t)

)
. (5.9)

This assumes that the vector potential only exists between the grains, which is appropriate
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for small grains. If we further assume that A(r, t) is roughly uniform in space, this

substitution becomes

tij → tije
ieRij ·A(t). (5.10)

Substituting eq. 5.10 into eq. 5.8, and accounting for the fact we only allow nearest-

neighbour hopping on a simple cubic lattice, we find

H (t) =
∑
i

∑
σ

∑
k

ξikc
†
ikσcikσ +

∑
i

∑
σ

∑
k,q

Ui(q)c†ik+qσcikσ

+
∑
i,α

∑
σ

∑
k,p

[
tkpi+αic

†
i+αkσcipσe

ieaAα(t) + tkpii+αc
†
ikσci+αpσe

−ieaAα(t)
]
,

(5.11)

where the sum over α is a sum over the axial directions (x, y, and z in 3D), and we noted

that Rij = ±aeα for nearest-neighbours i and j = i±α. Since we are interested in linear

response, we expand eq. 5.11 to first order in A(t), and neglect higher order terms,

H (t) = H0 + iea
∑
α

Aα(t)
∑
i

∑
σ

∑
k,p

[
tkpi+αic

†
i+αkσcipσ − t

kp
ii+αc

†
ikσci+αpσ

]
. (5.12)

Clearly, the linear perturbation to the Hamiltonian we will use in Kubo’s formula is

H ′ = iea
∑
α

Aα(t)
∑
i

∑
σ

∑
k,p

[
tkpi+αic

†
i+αkσcipσ − t

kp
ii+αc

†
ikσci+αpσ

]
. (5.13)

The current density operator associated to this Hamiltonian is given by1

jα(t) =
1

adN
δH (t)

δAα(t)

=
iea1−d

N
∑
i

∑
σ

∑
k,p

[
tkpi+αic

†
i+αkσcipσe

ieaAα(t) − tkpii+αc
†
ikσci+αpσe

−ieaAα(t)
]
.

(5.14)

1We can also derive the current density using the discretised continuity equation.
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We again expand this to first order in Aα(t) to consider linear response,

jα(t) = j0,α + Aα(t)
e2

ad−2N
∑
i

[
tkpi+αic

†
i+αkσcipσ + tkpii+αc

†
ikσci+αpσ

]
= j0,α + Aα(t)

e2

ad−2N
HT,α,

(5.15)

where j0,α = jα(t; A = 0), and HT,α is the tunnelling Hamiltonian in the αth direction in

the absence of the vector potential (note that HT =
∑

αHT,α).

The macroscopic current density, J(t), is found by taking the thermal average of j(t),

followed by the disorder average over internal impurities, and then the disorder average

over tunnelling events,

J(t) = 〈〈j(t)〉dis〉
(0)
T ≡ 〈j(t)〉T . (5.16)

Applying Kubo’s formula for linear response, we obtain

Jα(t) = 〈j0,α〉0,T + Aα(t)
e2

ad−2N
〈HT,α〉0,T −

∑
β

∫ +∞

−∞
dt′GRαβ(t, t′)Aβ(t′), (5.17)

where 〈...〉0,T denotes thermal averaging taken with respect to H0, before then apply-

ing the internal disorder average followed by the tunnelling disorder average. As in the

homogeneous case,

GRαβ(t, t′) = −i
〈[
j̃0,α(t), j̃0,β(t′)

]〉
0,T
adNΘ(t− t′) (5.18)

is the retarded current-current correlator.

Eq. 5.17 can be simplified quite drastically, by noting that j0,α is the current operator

in the absence of an applied field, hence its average should be zero. Next, the second term

of eq. 5.17 also vanishes. This is a result of our averaging procedure for tunnelling events,

as HT,α only has terms containing a single factor tkpij . Hence, the macroscopic current is

Jα(t) = −
∑
β

∫ +∞

−∞
dt′GRαβ(t, t′)Aβ(t′). (5.19)
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Performing a temporal Fourier transform on eq. 5.19 yields

Jα(ω) = −
∑
β

GRαβ(ω)Aβ(ω). (5.20)

Hence, the retarded electromagnetic response function for a granular system is given by

just the current-current correlator, KR
αβ(ω) = GRαβ(ω), and has no diamagnetic piece that

requires cancelling. Clearly, the same relations exist between the electromagnetic response

function and the conductivity tensor as in the homogeneous case (see eq. 3.30 and eq.

3.31 with zero momentum).

To find GRαβ(ω), we consider its temperature analogue,

Gαβ(τ, τ ′) = −
〈
Tτ{j̃0,α(τ), j̃0,β(τ ′)}

〉
0,T
adN , (5.21)

where the τ and τ ′ appearing in the arguments are imaginary times. Writing eq. 5.21 in

terms of creation and annihilation operators, we find

Gαβ(τ, τ ′) =
e2

ad−2N

×
∑
i,j

∑
σ,σ′

∑
k,p,
k′,p′

〈
Tτ

{[
tkpi+αic

†
i+αkσ(τ)cipσ(τ)− tkpii+αc

†
ikσ(τ)ci+αpσ(τ)

]

×
[
tk
′p′

j+βjc
†
j+βk′σ′(τ

′)cjp′σ′(τ
′)− tk

′p′

jj+βc
†
jk′σ′(τ

′)cj+βp′σ′(τ
′)
]}〉

0,T
.

(5.22)

Multiplying out the square brackets yields

〈
Tτ{c†i+αkσ(τ)cipσ(τ)c†j+βk′σ′(τ

′)cjp′σ′(τ
′)}tkpi+αit

k′p′

j+βj

〉
0,T

+
〈
Tτ{c†ikσ(τ)ci+αpσ(τ)c†jk′σ′(τ

′)cj+βp′σ′(τ
′)}tkpii+αt

k′p′

jj+β

〉
0,T

−
〈
Tτ{c†ikσ(τ)ci+αpσ(τ)c†j+βk′σ′(τ

′)cjp′σ′(τ
′)}tkpii+αt

k′p′

j+βj

〉
0,T

−
〈
Tτ{c†i+αkσ(τ)cipσ(τ)c†jk′σ′(τ

′)cj+βp′σ′(τ
′)}tkpi+αit

k′p′

jj+β

〉
0,T
.

(5.23)

By applying Wick’s theorem, we observe that the first two terms of eq. 5.23 vanish; this
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is because our assumption in eq. 4.5 would lead a factor of δi,j+βδi+α,j in these terms.

Hence, these terms can only be non-zero when i = i + α + β, which is impossible since

α, β > 0 by definition. Thus, only the last two terms are non-zero, leading to

−

〈〈
Tτ{c†ikσ(τ)cjp′σ′(τ

′)}
〉

0,dis

〈
Tτ{ci+αpσ(τ)c†j+βk′σ′(τ

′)}
〉

0,dis
tkpii+αt

k′p′

j+βj

+
〈
Tτ{c†i+αkσ(τ)cj+βp′σ′(τ

′)}
〉

0,dis

〈
Tτ{cipσ(τ)c†jk′σ′(τ

′)}
〉

0,dis
tkpi+αit

k′p′

jj+β

〉(0)

T

,

(5.24)

where 〈...〉0,dis represents the thermal average taken with respect to H0, and averaging

over internal disorder. If we were to substitute eq. 5.24 back into eq. 5.22, we would be

able to identify the current vertices as contributing a factor of

ae
√
ad√
N

tkpii+α. (5.25)

However, when we apply the t-average, this will change the current vertices to an effective

form.

We apply the t-average, and rewrite eq. 5.24 in terms of the single-electron Green’s

functions defined in eq. 4.15a,

t2δαβδijδk+k′,p+p′δσσ′δkp′δpk′
[
Gi(k, τ

′, τ)Gi+α(p, τ, τ ′)+Gi+α(p, τ, τ ′)Gi(k, τ
′, τ)

]
. (5.26)

Here, we have neglected the case where the current vertices’ tunnelling events are corre-

lated with the tunnelling events inside the Green’s functions, since this will generate a

term of order t4, which is clearly smaller than the above leading order term.

Finally, substituting eq. 5.26 into eq. 5.22, we arrive at

Gαβ(τ, τ ′) =
e2t2

ad−2N

×
∑
i

∑
σ

∑
k,p

[
Gi(k, τ

′, τ)Gi+α(p, τ, τ ′) +Gi+α(p, τ, τ ′)Gi(k, τ
′, τ)

]
.

(5.27)
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k + q, iε+ iΩ

i

k, iε

i± α

Figure 5.2: Granular Drude conuctivity diagram. We suppress the dashed line connecting
the current vertices as there are no issues of ambiguity here.

We can obtain a more symmetric form for eq. 5.27, by letting i → i − α in the second

term of eq. 5.27’s summand, as well as relabelling its momenta,

Gαβ(τ − τ ′) =
e2t2

ad−2N
δαβ

×
∑
i

∑
σ

∑
k,p

Gi(k, τ
′ − τ)

[
Gi+α(p, τ − τ ′) +Gi−α(p, τ ′ − τ)

]
.

(5.28)

Here we have also accounted for the fact that single-particle Green’s functions are always

a function of time difference. To find the corresponding Matsubara expression, we first

replace the electron Green’s functions by their Matsubara Fourier series representations.

After this, we write Gαβ(τ − τ ′) as a Matsubara Fourier series, and calculate its Fourier

components in the usual manner. Doing so leads us to

Gαβ(iΩ) =
2e2t2

ad−2N
δαβ
∑
i

∑
k,p

T
∑
ε

Gi(k, iε+ iΩ)
[
Gi+α(p, iε) +Gi−α(p, iε)

]
, (5.29)

where the factor of 2 comes from the spin sum.

We represent eq. 5.29 in fig. 5.2, where the crossed circles with α and β represent the

tunnelling vertices, and the solid lines are the disorder and t-averaged electron Green’s

functions. Revisiting the form of the current vertices, we may now treat them as carrying

a factor of

ae√
N
tkpij , (5.30)

and allow the t-averaging procedure to produce a factor of ad instead.

149



CHAPTER 5. TRANSPORT PHENOMENA IN GRANULAR SYSTEMS

As explained in the homogeneous case, this diagram suffers divergences when we try to

freely swap the order of summation. In fact, the situation appears worse here, as we have

the same number of Green’s functions but now an extra momentum integral. However,

this is not the case and a näıve approach can obtain the correct answer, albeit employing

a few tricks. For completeness, we also provide a rigorous method to calculate σT0 .

5.1.3 The Näıve Approach

Let us first evaluate eq. 5.29 by performing the momentum integrals first. Noting that

Gi+α(p, iε) = Gi−α(p, iε) to give the extra factor of 2, eq. 5.29 becomes

Gαβ(iΩ) =
4e2t2

ad−2N
δαβ
∑
i

T
∑
ε

∑
k

G(k, iε+ iΩ)
∑
p

G(p, iε)

=
4e2t2

ad−2
δαβT

∑
ε

∑
k

G(k, iε+ iΩ)
∑
p

G(p, iε).

(5.31)

We next replace each momentum sum by an integral linearised around the Fermi surface,

and recall from eq. 3.11 and eq. 3.13 that,

1

ad

∑
k

G(k, iε) = −iπN(0)sgn(ε), (5.32)

to write eq. 5.31 as,

Gαβ(iΩ) = −4π2e2N(0)2ad+2t2δαβT
∑
ε

sgn(ε)sgn(ε+ Ω). (5.33)

Following Perkins and Smith [37], we use the fact that

sgn(ε)sgn(ε+ Ω) = 1− 2Θ(−ε(ε+ Ω)), (5.34a)

and

T
∑
ε

Θ(−ε(ε+ Ω)) = T
∑
−Ω<ε<0

1 =
Ω

2π
, (5.34b)
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to get

Gαβ(iΩ) = −4π2e2N(0)2ad+2t2δαβ

(
T
∑
ε

1− Ω

2π

)
. (5.35)

Now, the Matsubara sum appearing in eq. 5.35 is clearly divergent. However, this

sum can be argued to vanish using ideas of analytic continuation [37]. Let us consider the

following sum for a generic Matsubara frequency,

T
∑
ν

1

|ν|m
=

T

(2πT )m

+∞∑
n=−∞

1

|n+ c|m
≡ S(m, c), (5.36)

where c = 0 for bosonic frequencies, and c = 1/2 for fermionic frequencies. This sum can

be written in terms of Hurwitz zeta functions as so,

S(m, c) = ζ(m, c) + ζ(m,−c)− 1

cm
. (5.37)

The Hurwitz zeta function has the property that ζ(0, c) = 1/2 − c, and so S(0, c) = 0.

Therefore, we can make the argument that an infinite sum of unity over all Matsubara

frequencies vanishes.2

Using this argument, eq. 5.35 is simply

Gαβ(iΩ) = 2πe2N(0)2ad+2t2 Ω δαβ = 2e2N(0)Γa2 Ω δαβ. (5.38)

Given that Kαβ(iΩ) = Gαβ(iΩ) here, we can see that the response function indeed vanishes

when Ω = 0, and so describes a normal state system. Unlike the homogeneous case, we

have not had to “hand-wave” the diamagnetic term away. In this circumstance though, the

diamagnetic term vanishes and so does not cause any problems. Since Kαβ(iΩ) = Ωσαβ,

we finally obtain

σT0 = 2e2N(0)Γa2. (5.39)

2I’m so sorry you’ve had to see this beautiful abomination of a method for handling a divergent sum.
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5.1.4 The Careful Approach

To treat this problem carefully, we must deal with the frequency sum first in eq. 5.29. We

start by replacing the Matsubara sum by a contour integral, which has the same structure

as in the homogeneous case, so we use the same contour and deformation shown in fig.

3.8. Thus, we may manipulate the frequency integral in the same way as before (see

the working between eq. 3.48 and eq. 3.49). Upon replacing the momentum sums by

integrals linearised around the Fermi surface, and performing the sum over i, we find the

expression

GRαβ(ω) =− e2N(0)Γa2

π2i

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′

×
∫ +∞

−∞
dzf(z)

[
GR(p, z)−GA(p, z)

] [
GR(k, z + ω) +GA(k, z − ω)

]
,

(5.40)

where ξ = ξk, ξ′ = ξp, and the extra factor of two comes from the lack of grain label

dependence of the electron Green’s functions, Gi+α(p, iε) = Gi−α(p, iε).

The route we take in evaluating the integrals in eq. 5.40 is that taken by Perkins

and Smith [37], which was inspired by the method Rickayzen [29] used to compute the

homogeneous Drude conductivity. We introduce the function g(k, z) such that

GR(k, z)−GA(k, z) = 2i Im
[
GR(k, z)

]
≡ − i

τ
g(k, z), (5.41a)

GR(k, z) +GA(k, z) = 2 Re
[
GR(k, z)

]
≡ 2(ξk − z)g(k, z), (5.41b)

where

g(k, z) = g(z − ξk) =
1

(z − ξk)2 + 1
4τ2

. (5.42)

We first demonstrate that GRαβ(ω) vanishes when ω = 0. In this case

GRαβ(0) =
2e2N(0)Γa2

π2τ

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′
∫ +∞

−∞
dzf(z)g(z − ξ′)g(z − ξ)(z − ξ). (5.43)
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Performing the ξ′ integral by parts,

GRαβ(0) =
2e2N(0)Γa2

π2τ

∫ +∞

−∞
dξ

[
ξ′
∫ +∞

−∞
dzf(z)g(z − ξ′)g(z − ξ)(z − ξ)

]+∞

−∞

− 2e2N(0)Γa2

π2τ

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′ξ′

d

dξ′

∫ +∞

−∞
dzf(z)g(z − ξ′)g(z − ξ)(z − ξ).

(5.44)

Clearly, the surface term vanishes as g(z − ξ′) ∼ 1/ξ′2 for ξ′ → ±∞. Taking the ξ′

derivative inside the z integral, it only acts on g(z − ξ′), and so we can replace the ξ′

derivative of g(z − ξ′) with a z derivative at the cost of introducing a minus sign,

GRαβ(0) =
2e2N(0)Γa2

π2τ

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′ξ′

∫ +∞

−∞
dzf(z)g(z − ξ)(z − ξ) d

dz
g(z − ξ′). (5.45)

Performing the z integral by parts, noticing the surface term vanishes again, we find

GRαβ(0) = −2e2N(0)Γa2

π2τ

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′ξ′

∫ +∞

−∞
dz
df

dz
g(z − ξ)(z − ξ)g(z − ξ′)

− 2e2N(0)Γa2

π2τ

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′ξ′

∫ +∞

−∞
dzf(z)g(z − ξ′) d

dz

[
g(z − ξ)(z − ξ)

]
.

(5.46)

The integrand of the first term of eq. 5.46 contains df/dz, which allows for sufficient

convergence to exchange the orders of integration. However, we can avoid doing any

integration by noting that the integrand has no poles in the space (z, ξ) ∈ R2, the z and

ξ integrals have symmetric limits, df/dz is an even function of z, and g(z − ξ) is an even

function of z − ξ. With these facts in mind, we can see that the first term picks up a

minus sign under the transformations z → −z and ξ → −ξ. Therefore, the first term

equals the negative of itself, and hence must vanish.

Turning to the second term of eq. 5.46, we see that it too vanishes,

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′
∫ +∞

−∞
dzf(z)g(z − ξ′) d

dz

[
g(z − ξ)(z − ξ)

]
= −

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′
∫ +∞

−∞
dzf(z)g(z − ξ′) d

dξ

[
g(z − ξ)(z − ξ)

]
= −

∫ +∞

−∞
dξ

d

dξ

∫ +∞

−∞
dξ′
∫ +∞

−∞
dzf(z)g(z − ξ′)g(z − ξ)(z − ξ),

(5.47)
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which, upon performing the above ξ integral, yields

−
[∫ +∞

−∞
dξ′
∫ +∞

−∞
dzf(z)g(z − ξ′)g(z − ξ)(z − ξ)

]+∞

−∞
= 0. (5.48)

Thus, GRαβ(0), and so KR
αβ(0), vanishes in the limit of zero external frequency. This

confirms the system is in the normal state, and so this diagrammatic method passes the

first test of validity.

To find the finite frequency response, we expand eq. 5.40 in powers of ω, to get

GRαβ(ω) =
e2N(0)Γad+2

π2τ

∞∑
n=0

ωnIn, (5.49a)

In =

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′
∫ +∞

−∞
dz

f(z)

(z − ξ′)2 + 1
4τ2

[
(−1)n(

z−ξ+ i
2τ

)n+1 +
1(

z−ξ− i
2τ

)n+1

]
. (5.49b)

Given I0 = 0, the conductivity is thus

σT0 (ω) =
e2N(0)Γa2i

π2τ

∞∑
n=0

ωnIn+1. (5.50)

The DC conductivity is given by the n = 0 term of eq. 5.50,

σT0 =
e2N(0)Γa2

π2τ 2

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′
∫ +∞

−∞
dz f(z)g(z − ξ′) d

dz
g(z − ξ). (5.51)

Performing the z integral by parts yields,

σT0 =− e2N(0)Γa2

π2τ 2

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′
∫ +∞

−∞
dz

df

dz
g(z − ξ′)g(z − ξ)

− e2N(0)Γa2

π2τ 2

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′
∫ +∞

−∞
dz f(z)g(z − ξ) d

dz
g(z − ξ′).

(5.52)

Clearly, the second term of eq. 5.52 is the negative of eq. 5.51, and so

σT0 = −e
2N(0)Γa2

2π2τ 2

∫ +∞

−∞
dξ

∫ +∞

−∞
dξ′
∫ +∞

−∞
dz
df

dz
g(z − ξ′)g(z − ξ). (5.53)
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With the factor of df/dz in the integrand, we now have sufficient convergence to swap

the order of integration without issue. The energy integrals are trivial, each generating a

factor of 2πτ , which leaves us with

σT0 = −2e2N(0)Γa2

∫ +∞

−∞
dz
df

dz
. (5.54)

The z integral produces a factor of −1, and so we arrive at the granular Drude conduc-

tivity, σT0 = 2e2N(0)Γa2. Regarding the AC Drude conductivity, it can be shown that all

n 6= 0 terms in the sum of eq. 5.50 vanish (see [37] for details).

As a final note about the granular Drude result, we compare it to the Einstein relation

in eq. 3.58. Doing so, we see that granular metals have an effective diffusion constant,

DT = Γa2. We will see the same diffusion constant will appear in the granular analogues

of the diffuson and cooperon.

5.2 Weak Localisation

The phenomenon of weak localisation depends entirely upon interference and phase coher-

ence. We will therefore need to understand the role tunnelling plays in the diffuson and

cooperon, before we can consider WL and more complicated corrections to the electrical

conductivity. In section 5.2.1 we derive the granular diffuson and cooperon. Afterwards,

in section 5.2.2, we calculate the granular WL correction to the conductivity.

5.2.1 Granular Diffusive Propagators

The granular cooperon and diffuson have already been derived by Beloborodov et. al.

[26]; however their diagrammatic series appears to rely on nested diagrams, which can be

included into the definition of the t-averaged electron Green’s function or neglected upon

physical grounds. Therefore, the inclusion of these diagrams in their derivation appears

to double-count the contribution of these terms, see fig. 5.3.
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= +D̃0 D̃0 Σ

(a)

Σ = + +

(b)

Figure 5.3: Diagrammatic series used by Beloborodov et. al. [26] for the granular diffuson.

Here D̃0 is the homogeneous diffuson contained within a grain, and Σ is the diffuson’s self
energy.

To avoid this issue, and to provide a more natural derivation of the granular diffuson,

we instead use the series defined in fig. 5.4. This treats internal disorder and tunnelling

disorder at the same level, and so we can study how their strengths compare to one

another. Writing this diagram mathematically, we have

D̃ji(q, iε+ iω, iε) = D̃0ji + D̃0li Πml(q, iε+ iω, iε) D̃jm(q, iε+ iω, iε), (5.55a)

D̃0ji =
1

2πN(0)τ0

δij + t2adδ〈ij〉, (5.55b)

Πml(q, iε+ iω, iε) =
δlm
ad

∑
k

Gl(k + q, iε+ iω)Gl(k, iε). (5.55c)

The self-energy, Πlm, is evaluated in exactly the same way as in section 3.3.1. We use a

modified diffusive limit where τ replaces τ0; in other words

Dq2, |ω|, T � 1

τ
. (5.56)

Using this limit yields

Πlm(q, iε+ iω, iε) = 2πN(0)τ(1− |ω|τ −Dq2τ)δlm, (5.57)
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= + + +

i j

i j

i j

i j

i j

i j

i l

i l

i l

i l

l m j

jl m

Figure 5.4: Granular diffuson diagrammatic series.

and the same condition that the two frequencies, ε and ε+ ω, must be opposite in sign.

To obtain a compact form for the diffuson, we recall that the granular lattice must be

periodic by definition, so we may expand D̃0ji as a Fourier series,

D̃ji(q, iε, iε+ iΩ) =
1

N
∑
Q

D̃(Q,q, iε, iε+ iΩ)eiQ·Rji , (5.58)

where N is the number of grains, and Rji = Rj −Ri is the vector moving from grain i

located at Ri to grain j located at Rj. If we wanted to replace the Q sum by an integral,

we would let (assuming a simple cubic lattice)3

1

N
∑
Q

→
( a

2π

)d ∫
ddQ. (5.59)

Similarly, D̃0ji and Πml may also be written as Fourier series.

Substituting the Fourier series expressions for D̃0ji, D̃0ji, and Πml into eq. 5.55a yields

1

N
∑
Q

D̃(Q,q, iε, iε+ iΩ)eiQ·Rji

=
1

N
∑
Q

D̃0(Q,q, iε, iε+ iΩ)eiQ·Rji

+
1

N
∑
l,m

∑
Q,P,K

[
D̃0(K,q, iε, iε+ iΩ)Π(P,q, iε, iε+ iΩ)

× D̃(Q,q, iε, iε+ iΩ)eiK·RlieiP·RmleiQ·Rjm

]
.

(5.60)

3We give details of dealing with lattice-type problems and periodic boundaries within these systems
in appendix K. This appendix should help to explain where the factors N appear and cancel.
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This can be simplified by noting that grain label sums produce,

∑
l,m

eiK·RlieiP·RmleiQ·Rjm =
∑
l,m

eiRl·(K−P)eiRm·(P−Q)ei(Rj ·Q−Ri·K)

= N 2 δK,P δQ,P e
iQ·Rji .

(5.61)

Hence,

1

N
∑
Q

D̃(Q,q, iε, iε+ iΩ)eiQ·Rji

=
1

N
∑
Q

[
D̃0(Q,q, iε, iε+ iΩ) + D̃0(Q,q, iε, iε+ iΩ)

× Π(Q,q, iε, iε+ iΩ)D̃(Q,q, iε, iε+ iΩ)
]
eiQ·Rji .

(5.62)

For this to be true, the coefficients of the exponentials in each sum must be equal. There-

fore, we arrive at a Dyson equation with exactly the same form as that we dealt with in

the homogeneous case,

D̃(Q,q, iε, iε+ iΩ) = D̃0(Q,q, iε,iε+ iΩ) + D̃0(Q,q, iε, iε+ iΩ)

× Π(Q,q, iε, iε+ iΩ)D̃(Q,q, iε, iε+ iΩ).

(5.63)

The granular diffuson can thus be calculated using,

D̃(Q,q, iε, iε+ iΩ) =
1

D̃0(Q,q, iε, iε+ iΩ)−1 − Π(Q,q, iε, iε+ iΩ)
. (5.64)

Let us now determine D̃0(Q,q, iε, iε+ iΩ) and Π(Q,q, iε, iε+ iΩ) explicitly by writing

their Kronecker deltas and nearest-neighbour deltas as Fourier series. Doing so, we find

D̃0ji(q, iε, iε+ iω) =
1

2πN(0)τ0

1

N
∑
Q

eiQ·Rji

+
t2ad

N
∑
Q

∑
α

(
eiQ·(Rji+aα) + eiQ·(Rji−aα)

)
,

(5.65a)
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Πml(q, iε, iε+ ω) = (1− ωτ −Dq2τ)
2πN(0)τ

N
∑
Q

eiQ·Rml , (5.65b)

where the second term in eq. 5.65a arises from the nearest-neighbour delta, δ〈ij〉, and

{aα} is the set of primitive lattice vectors. For a simple cubic lattice, these vectors are,

aα = a eα, α = x, y, z, ... (5.66)

The expression in eq. 5.65a can be simplified by introducing an object called the

structure factor [4, 67],

γQ =
1

z

∑
α

(
eiQ·aα + e−iQ·aα

)
(5.67)

This allows us to re-express eq. 5.65a as,

D̃0ji(q, iε+ iω, iε) =
1

2πN(0)

1

N
∑
Q

[
1

τ0

+ zΓγQ

]
eiQ·Rji

=
1

2πN(0)

1

N
∑
Q

[
1

τ
+ zΓ(γQ − 1)

]
eiQ·Rji

=
1

2πN(0)τ

1

N
∑
Q

[
1− τΓλQ

]
eiQ·Rji ,

(5.68)

where

λQ = z(1− γQ), (5.69)

is used for notational convenience. From eq. 5.65b and eq. 5.68, we may deduce the

Fourier series components we need to calculate the granular diffuson,

D̃0(Q,q, iε, iε+ iΩ) =
1

2πN(0)τ
[1− τΓλQ] , (5.70a)

Π(Q,q, iε, iε+ iΩ) = 2πN(0)τ(1− |ω|τ −Dq2τ). (5.70b)

Finally, to get a simple form for the granular diffuson, we recall that τ−1
0 � zΓ and

hence τ−1 � zΓ. Therefore, we can expand D̃−1
0 in powers of zΓτ and retain only terms
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=

i

i
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Figure 5.5: Granular diffuson diagrammatic series with a closed end. The wavy line is a
generic interaction.

up to O(zΓτ).4 This yields,

D̃0(Q,q, iε, iε+ iΩ)−1 = 2πN(0)τ [1 + τΓλQ] . (5.71)

Thus we obtain the granular diffuson by substituting eq. 5.71 and eq. 5.70b into eq. 5.64,

D̃(Q,q, iε, iε+ iω) =
1

2πN(0)τ 2

1

|ω|+Dq2 + ΓλQ
Θ(−ε(ε+ ω))

≡ D̃(Q,q, ω)Θ(−ε(ε+ ω)),

(5.72)

where, as before, we require the two frequencies entering the diffuson to be of opposite

sign.

Clearly, this has an almost identical form to the homogeneous case, where Dq2 has

been replaced with Dq2 + ΓλQ. By setting q = 0, we recover Beloborodov et. al.’s result

[26]. The diffuson we have derived here clearly has both sets of DOFs: those internal to

a grain and those external to a grain, a result not previously seen in the literature.

Considering a diffuson with a closed end, see fig. 5.5, we find the same change in

prefactor as with the homogeneous case,

D(Q,q, iε+ iω, iε) =
1

τ

1

|ω|+Dq2 + ΓλQ
Θ(−ε(ε+ ω))

≡ D(Q,q, iω)Θ(−ε(ε+ ω)).

(5.73)

The same is also true for the granular cooperons with open ends and a single closed end,

4The factor of λQ does not affect this expansion since |λQ| is, at most, of order unity in size.
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Figure 5.6: Diagrammatic series for the open cooperon (top) and half closed cooperon
(bottom) in granular metals.

fig. 5.6a and fig. 5.6b respectively,

C̃(Q,q, iε+ iω, iε) =
1

2πN(0)τ 2

1

|ω|+Dq2 + ΓλQ
Θ(−ε(ε+ ω))

≡ C̃(Q,q, iω)Θ(−ε(ε+ ω)).

(5.74a)

C(Q,q, iε+ iω, iε) =
1

τ

1

|ω|+Dq2 + ΓλQ
Θ(−ε(ε+ ω))

≡ C(Q,q, iω)Θ(−ε(ε+ ω)).

(5.74b)

Before we proceed to consider two-body interactions, let us analyse the form of the

external momentum contribution to the diffuson. In our models, we take the granular

lattice to be simple cubic, meaning z = 2d, and eq. 5.67 can be rewritten as,

γQ =
1

2d

d∑
α=1

(
eiQ·aα + e−iQ·aα

)
=

1

d

d∑
α=1

cos(Qαa), (5.75)

where α = 1 corresponds to the x-component, α = 2 corresponds to the y-component,

etc. Let us now consider the case of small Q, |Q| � a−1. In this case, the structure factor
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k, iε+ iΩ

i

q− k, iε+ iΩ

i± α

q− k, iε

i

k, iε

i± α

Figure 5.7: Diagrammatic representation of the WL correction to electrical conductivity
in granular metals.

can be approximated as,

γQ '
1

d

d∑
α=1

(
1− Q2

αa
2

2

)
= 1− Q2a2

2d
. (5.76)

Hence, in this limit, the external momentum term can be replaced with,

ΓλQ ' Γa2Q2. (5.77)

This means that the diffuson, in the limit of small external momentum, has a dependence

on Q almost identical to its dependence on q. The only difference is the prefactor of Q2

compared to q2. For the internal momentum, the prefactor is the homogeneous diffusion

constant, D, whilst for the external momentum it is Γa2. We therefore identify

DT = Γa2, (5.78)

as the effective granular diffusion constant, as in the works of Beloborodov et. al. [26].

The limit we took to obtain this analogy can be rewritten in a form resembling the

diffusive limit we have previously employed,

DTQ2 � zΓ ⇒ Q� 1

a
, (5.79)

since z = O(1) for real simple cubic lattices. We refer to this as the granular diffusive
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limit. We now proceed to the calculation of the granular weak localisation correction.

5.2.2 Weak Localisation Correction in Granular Metals

The diagram describing the WL correction in granular metals is shown in fig. 5.7. This

was calculated by Biagini et. al. [67], both with and without an applied external magnetic

field. We shall only concern ourselves with the zero field case.

The expression associated to fig. 5.7 is,

Kαα(iΩ) = − 2e2t2

a2d−2N
T
∑
i

∑
ε

∑
k,p,q

[
Gi(k, iε+ iΩ)Gi(q− k, iε)

×
{
Gi+α(p, iε)Gi+α(q− p, iε+ iΩ)C̃ii+α(q, iε+ iΩ, iε)

+Gi−α(p, iε)Gi−α(q− p, iε+ iΩ)C̃ii−α(q, iε+ iΩ, iε)
}]
.

(5.80)

The one subtlety in eq. 5.80 is in the minus sign prefactor. This is the result of one

current vertex being reversed compared to the other. The current-current correlator can

be thought of as measuring the response of an electron moving from one end of a material

to the other, whilst a hole travels in the opposite direction, hence the electron line on the

top in fig. 5.2, and hole line on the bottom. So we can picture the current vertices as

pointing in opposite directions. To be clear, for Drude the left and right current vertices,

jL and jR respectively, tunnel in opposite directions: jL moves from grain i ± α to grain

i, whilst jR goes from grain i to grain i ± α. Hence, we can think of the current-current

correlator of physical concern as being given by a relation of the following nature,

Gαβ(τ − τ ′) ∼ −〈Tτ{j0,i+αi(τ)j0,jj+β(τ ′)}〉0,T , (5.81)

where j0,i+αi is the current vertex travelling from grain i to grain i+ α.5

5We say that we concern ourselves with the correlator of physical concern as the mathematics is not
as enlightening. Mathematically speaking, the minus sign appears as the parts of the current-current
correlator that will survive the averaging process, and generate tunnelling in the same direction, will be
a result of current operator terms with the same sign multiplying together. For example, the first term
of eq. 5.15 with α, multiplied into the first term of eq. 5.15 with β. This clearly differs by just a minus
sign, compared to the result we find when the “cross terms” of opposite signs survive.
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In contrast, one of the WL current vertices is flipped relative to the other: both jL

and jR move from grain i ± α to grain i. So we can think of jR as having been reversed

in its direction of travel compared to Drude. So the diagram in fig. 5.7 can be thought

to have the following correlator,

〈Tτ{j0,i+αi(τ)j0,j+βj(τ
′)}〉0,T , (5.82)

which is not of the current-current correlator’s physical form in eq. 5.81. However, eq.

5.82 can be easily related to the physically relevant correlator, by noting that j0,j+βj(τ
′) =

−j0,jj+β(τ ′).6 Therefore, the correlator in eq. 5.82 can be written as,

〈Tτ{j0,i+αi(τ)j0,j+βj(τ
′)}〉0,T = −〈Tτ{j0,i+αi(τ)j0,jj+β(τ ′)}〉0,T = −Gαβ(τ − τ ′). (5.83)

Hence, given that Kαβ(iΩ) = Gαβ(iΩ), and Gαβ(iΩ) is related to the correlator of fig. 5.7

by a minus sign, we can write the expression for the electromagnetic response function

using our previous rules, with an additional factor of −1.

The result of this discussion is a new diagrammatic rule for calculating the electrical

conductivity,

� If the current vertices describe tunnelling in opposite directions, then we need not

change anything. If the current vertices describe tunnelling in the same direction,

then the diagram produces an additional factor of −1.

Let us return to the calculation of the WL correction.

Noting the Heaviside function of the cooperon, we evaluate the fast momentum sums,

k and p, using eq. 3.75, but with τ in place of τ0. Following this, the Matsubara sum is

the same as in the homogeneous case, so we use the result from eq. 3.44. We then replace

the remaining cooperons with their Fourier series expansions, and perform the sum over

6I.e. the current in one direction along a line, is just the negative of the current travelling in the
opposite direction along the same line.
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i. This leaves us with

Kαα(iΩ) = −4N(0)e2τ 2Γa2

adN
Ω
∑
Q

∑
q

C̃(Q,q, iΩ) cos(Qαa), (5.84)

which obeys the requirement Kαα(0) = 0. The conductivity correction is therefore,

σWL(iΩ) = −2e2Γa2

πadN
∑
Q

∑
q

cos(Qαa)

Ω +Dq2 + ΓλQ + τ−1
φ

. (5.85)

Note that Ω is still a Matsubara frequency here.

Let us discuss the importance of the internal and external momentum pieces appearing

in the denominator. The energy scale of Dq2 is set by the Thouless energy. For a system

with characteristic size, L, see [27],

ETh =
D
L2
. (5.86)

For a homogeneous system, L = L0 is large and so ETh is small. However, for granular

systems, each grain is much smaller than the size of a typical homogeneous system, a�

L0, and hence the Thouless energy of a single grain will be much larger than that of a

homogeneous system.

Now, the momentum q is technically quantised, which is important due to the presence

of the additional external momentum piece. So, let us consider a d-dimensional finite

square well, with length L in each dimension, subject to the boundary condition that no

current can pass through the system’s surface. This boundary condition is a Neumann

boundary condition, and requires the wave function’s gradient to vanish at the surface.

This yields,

q =
π

L
(nx, ny, nz) ⇒ Dq2 = EThπ

2(n2
x + n2

y + n2
z) (5.87)

in three dimensions, where nx, ny, nz ∈ Z. Clearly, Dq2 will be much larger for any choice
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of non-zero momentum in a granular system compared to a homogeneous system.

To understand why this is so important, we recall the presence of ΓλQ appearing next

to Dq2 in our diffusive propagators. From the conditions that define a granular metal

in eq. 4.2, we must have Γ � ETh. Hence, any choice of q 6= 0 will dominate over

the external momentum piece, and lead to a significantly less singular contribution from

the diffusive propagators. Thus, the leading order behaviour will be given by the q = 0

component of the internal momentum sum.

With this in mind, eq. 5.85 becomes,

σWL(iΩ) = −2e2Γa2

πadN
∑
Q

cos(Qαa)

Ω + ΓλQ + τ−1
φ

, (5.88)

which has the same form as Biagini et. al. [67]. We are only interested in the DC

response, so we set Ω = 0, and we work in the granular diffusive limit, so cos(Qαa) ' 1

and ΓλQ ' Γa2Q2. Consequently, the granular WL correction is,

σWL = −2e2DT
πadN

∑
Q

1

DTQ2 + τ−1
φ

. (5.89)

This looks identical to the expression we had for the homogeneous case in eq. 3.83, where

the previously suppressed V−1 factor has been replaced by 1/(Nad).

To evaluate the Q sum, we replace it by an integral and note that the radial integral

no longer has an upper limit of π/a, but rather an upper limit of a−1 due to working in

the granular diffusive limit. Thus, eq. 5.89 becomes,

σWL = −2e2DT
π

Ωd

(2π)d

∫ a−1

0

dQ
Qd−1

DTQ2 + τ−1
φ

, (5.90)

where Ωd is the d-dimensional solid angle. Eq. 5.90 is the same as in the homogeneous
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case, eq. 3.83, with D → DT . Performing this integral yields,7

σWL =



− e
2

π2
lφ,T arctan

(
lφ,T
a

)
, d = 1

− e2

2π2
ln (Γτφ + 1) , d = 2

e2

π3

[
1

lφ,T
arctan

(
lφ,T
a

)
− 1

a

π

2

]
, d = 3.

(5.91)

In the limit that a� lφ,T , which is equivalent to Γ� τ−1
φ , eq. 5.91 becomes

σWL =



− e
2

2π
lφ,T , d = 1

− e2

2π2
ln (Γτφ) , d = 2

e2

2π2

[
1

lφ,T
− 1

a

]
, d = 3.

(5.92)

This is exactly the same as the homogeneous results, with τ−1
0 → Γ, l→ a, and D → DT .

The apparent mapping from the homogeneous results to the granular results makes

sense from a physical standpoint. Previously, τ−1
0 was the typical impurity scattering

rate, whilst in granular metals the “scattering” mechanism that allows for transport is

tunnelling, and so the associated rate is Γ. In a similar vein, a must be the analogue to

l. Let us now move on to including the Coulomb interaction.

5.3 Electron-Electron Interactions

5.3.1 The Screened Coulomb Interaction

The Coulomb interaction in granular systems is a rather non-trivial problem, as the inclu-

sion of both internal and external degrees of freedom will lead to cumbersome expressions

for the bare Coulomb interaction. However, given we will be working in both the standard

and granular diffusive limits, we expect that the disorder-screened Coulomb interaction

7We again choose a slightly different upper limit for the 3D case, as discussed in the footnotes of the
homogeneous case.
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Figure 5.8: Diagrammatic series for the screened Coulomb interaction in a granular metal
within RPA.

might have a similar form to what we found in section 3.4. Given the simple relation be-

tween the homogeneous and granular diffusons, the screened Coulomb interaction would

naturally become,

V (Q,q, iω) =
1

2N(0)

DTQ2 +Dq2 + |ω|
DTQ2 +Dq2

. (5.93)

However, since ETh � Γ, any non-zero choice of the quantised momentum q will lead to

a far less singular interaction. Hence, any terms resulting from terms with q 6= 0 can be

neglected in the problems we consider. Thus, eq. 5.93 can be replaced by the effective

interaction

V (Q, iω) =
1

2N(0)

DTQ2 + |ω|
DTQ2

. (5.94)

This is indeed the form the screened Coulomb interaction takes in the granular diffusive

limit, in accordance with the ideas presented by Beloborodov et. al. [63, 64, 26].

To see this from an RPA perspective, we refer to the series in fig. 5.8, which was

originally considered by Beloborodov et. al. [26] in granular momentum space. The bare

interaction they used is related to the charging energy between grains, Ec,ij,

V0,ij = 2Ec,ija
d =

e2

Cij
ad, (5.95)

where Cij is the capacitance matrix.8 This works under the assumption that the internal

DOFs are negligible, or rather that the long-range part of the Coulomb interaction is the

important piece [63]. We could include q in these calculations; however, we will set it

equal to zero at the end, and so serves us little benefit to continue including it.

8Eq. 5.95 differs from Beloborodov et. al.’s work by a factor of volume, this is to correct for a seeming
dimensional discrepancy. This can be attributed to working in the intragranular momentum space, which
would leads us to work with the internal momentum form of the Coulomb interaction, which carries an
additional factor of volume compared to the position space bare Coulomb interaction.
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The mathematical expression for fig. 5.8,

Vij(iω) = V0,ij + V0,ljΠml(iω)Vim(iω), (5.96a)

Πml(iω) = −2T
∑
ε

∑
k

G(k + q, iε+ iω)G(k, iε)

− 2T
∑
ε

∑
k,k′

[
G(k + q, iε+ iω)G(k, iε)D̃(q, iε+ iω, iε)

×G(k′ + q, iε+ iω)G(k′, iε)
]
,

(5.96b)

can be rewritten in lattice momentum space as

V (Q, iω) = V0(Q) + V0(Q)Π(Q, iω)V (Q, iω), (5.97)

and clearly has the same form as the homogeneous case. It follows that

V (Q, iω) =
|ω|+ ΓλQ

V0(Q)−1(|ω|+ ΓλQ) + 2N(0)ΓλQ
. (5.98)

Working in the granular diffusive limit, the capacitance matrix can be approximated so

that V0(Q) has the same form as in homogeneous systems [26, 64],

V0(Q) =



4πe2

Q2
, d = 3

2πe2

Q
, d = 2

−e2 ln(Q2w2), d = 1.

(5.99)

Substituting eq. 5.99 into eq. 5.97, and computing the polarisation operator as we

did in the homogeneous case, we arrive at

V (Q, iω) =
|ω|+DTQ2

2N(0)



κ2
3

Q2(|ω|+DTQ2) + κ2
3DTQ2

, d = 3,

κ2

Q(|ω|+DTQ2) + κ2DTQ2
, d = 2,

2e2N(0)

2e2N(0)DTQ2 − (|ω|+DTQ2) [ln(Q2w2)]−1 , d = 1.

(5.100)
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(a) (b)

(c) (d)

Figure 5.9: Leading order corrections to the electrical conductivity due to EEIs in granular
metals.

Given that κd � l−1, and Q � a−1 � l−1 in the granular diffusive limit, eq. 5.100 can

be approximated in the exact same way as before. Hence, we recover the result in eq.

5.94. Let us now consider the diagrams describing the EEI corrections to the electrical

conductivity in a granular metal.

5.3.2 EEI Corrections to the Electrical Conductivity

The diagrams shown in fig. 5.9 describe the electrical conductivity corrections arising due

to the Coulomb interaction. The specific placement of the tunnelling events in diagrams

C and D must be included for such terms to exist. This is a direct result of the diffuson

connecting the top and bottom parts of the conductivity bubble. The placement and

correlation of these events give rise to the leading order contributions; any other choices

of tunnelling event position and correlation would lead to higher order corrections. We

will demonstrate the reasoning behind this once we have dealt with diagrams A and B.

In the homogeneous case, we had a third diagram that involved a single impurity

scattering event correlated across one half of the conductivity bubble. We do not have

an analogous diagram in the granular case though. We recall that diagram B of the
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homogeneous EEI calculation cancelled half of the third sign configuration of diagram

A in the homogeneous case. It turns out that in granular metals this cancellation is not

needed, as the contribution of fig. 5.9a gives the granular analogue of the sum of diagrams

A and B from the homogeneous case.

Now, the sum of these diagrams vanished for homogeneous metals. However, this is

not exactly the case in the granular case, and leads to some questions about the limit in

which these methods are applicable. Written in lattice position space, diagrams A (fig.

5.9a) and B (fig. 5.9b) are given, respectively, by

K(A)
αα (iΩ) = −8e2a2t2T 2

Na2d

∑
i,l,m

∑
ε,ω

∑
k,p

[
Vml(iω)Gi(k, iε+ iΩ)2Gi(k, iε+ iΩ + iω)

×
{
Gi+α(p, iε) +Gi−α(p, iε)

}
Dmi(iε+ iΩ, iε+ iΩ + iω)

×Dli(iε+ iΩ, iε+ iΩ + iω)
]
,

(5.101a)

K(B)
αα (iΩ) = −2e2a2t2T 2

Na2d

∑
i,l,m

∑
ε,ω

∑
k,p

[
Vml(iω)Gi(k, iε+ iΩ)Gi(p, iε+ iΩ + iω)

×Dmi(iε+ iΩ, iε+ iΩ + iω)
{
Gi+α(k, iε)Gi+α(p, iε+ iω)

×Dli+α(iε+ iΩ, iε+ iΩ + iω) +Gi−α(k, iε)Gi−α(p, iε+ iω)

×Dli−α(iε+ iΩ, iε+ iΩ + iω)
}]
,

(5.101b)

where we have suppressed the internal momentum argument of the diffusons due to it

being equal to zero. These diagrams have the same sign configurations as those in the

homogeneous case. We now follow the standard procedure for performing the fast internal

momentum sums, shift to lattice momentum space, and evaluate the fermionic Matsubara

frequency sum, to find

K(A)
αα (iΩ) +K(B)

αα (iΩ) =
4N(0)e2

Nad−2d
T
∑
ω>Ω

∑
Q

(ω − Ω)V (Q, iω)
ΓλQ

(ω + ΓλQ)2
. (5.102)
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Clearly, eq. 5.102 does not vanish as it did in the homogeneous case. Worryingly though,

we see that it does not vanish when Ω = 0. Given that diagrams C and D correspond

to diagrams D and E of the homogeneous calculation, and so vanish when Ω = 0, the

non-zero value of diagrams A and B in the zero frequency limit would imply that the set

of diagrams in fig. 5.9 do not describe a normal state metal.

In the works of Beloborodov et. al. [26, 64], it is claimed that this gives rise to a high

temperature behaviour unique to granular systems. This does not address the issue of the

diagrams apparently failing to describe a normal state metal, however. We can reconcile

this discrepancy by working in the granular diffusive limit, in which case

K(A)
αα (iΩ) +K(B)

αα (iΩ) =
2e2

Nad−2d
T
∑
ω>Ω

∑
Q

ω − Ω

ω +DTQ2
, (5.103)

where we approximated ΓλQ ' DTQ2, and we substituted eq. 5.94 in for V (Q, iω). In

this limit, eq. 5.103 corresponds to a higher order correction than the contributions of

diagrams C and D. To see this we analyse the Q sum using power counting.

The process of power counting is simple and gives us an idea as to the style of behaviour

we might expect from the result of an integral. For the Q sum in eq. 5.103, power counting

gives a summand that is of the order Q−2.9 In contrast, the order produced by power

counting diagrams C and D is Q−4, and so the contribution of diagrams A and B is of

a higher order. We therefore see that the contributions of diagrams A and B are not at

leading order,10 and so the diagrams in fig. 5.9 lead to vanishing response functions at

the leading order when Ω = 0.

Moving onto diagrams C and D, we may write their electromagnetic response functions

9To perform power counting, we simply note the largest power of Q occurring in numerator of the
summand, and subtract from it the largest power Q appearing in the denominator. Assuming a spherically
symmetric summand, the entire Q sum can then be thought of as being of the order Qd−2, since we can
think of the summand as an integral which introduces an additional factor Qd−1 into the integrand’s
numerator, which gives the integrand the order Qd−3. Integration simply increases the power by 1, and
so the entire sum/integral has the order Qd−2.

10In short, we could have just treated ΓλQ = 0 in the numerator of eq. 5.102.
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as,

K
(C)
αβ (iΩ) = −4e2a2t4T 2

Na3d

∑
i,j,
l,m

∑
ε,ω

∑
k,k′,
p,p′

[
Vml(iω)Gi(p, iε+ iΩ + iω)Gi(p, iε)

× D̃ji(iε+ iΩ + iω, iε)Gj(p
′, iε+ iΩ + iω)Gj(p

′, iε)

×
{
Gi+α(k, iε+ iΩ)Gi+α(k, iε+ iΩ + iω)Dmi+α(iε+ iΩ, iε+ iΩ + iω)

−Gi−α(k, iε+ iΩ)Gi−α(k, iε+ iΩ + iω)Dmi−α(iε+ iΩ, iε+ iΩ + iω)
}

×
{
Gj+β(k′, iε+ iΩ)Gj+β(k′, iε+ iΩ + iω)Dlj+β(iε+ iΩ, iε+ iΩ + iω)

−Gj−β(k′, iε+ iΩ)Gj−β(k′, iε+ iΩ + iω)Dlj−β(iε+ iΩ, iε+ iΩ + iω)
}]
,

(5.104a)

K
(D)
αβ (iΩ) = −4e2a2t4T 2

Na3d

∑
i,j,
l,m

∑
ε,ω

∑
k,k′,
p,p′

[
Vml(iω)Gi(p, iε+ iΩ + iω)Gi(k, iε)

× D̃ji(iε+ iΩ + iω, iε)Gj(p
′, iε+ iΩ + iω)Gj(p

′, iε)

×
{
Gi+α(k, iε+ iΩ)Gi+α(k, iε+ iΩ + iω)Dmi+α(iε+ iΩ, iε+ iΩ + iω)

−Gi−α(k, iε+ iΩ)Gi−α(k, iε+ iΩ + iω)Dmi−α(iε+ iΩ, iε+ iΩ + iω)
}

×
{
Gj+β(k, iε+ iΩ)Gj+β(k, iε+ iΩ + iω)Dlj+β(iε+ iΩ, iε+ iΩ + iω)

−Gj−β(k, iε+ iΩ)Gj−β(k, iε+ iΩ + iω)Dlj−β(iε+ iΩ, iε+ iΩ + iω)
}]
.

(5.104b)

The minus sign appearing between the ±α terms is due to the reversal of the tunnelling

direction of the current vertex associated to α.11 The same is also true for the minus

sign appearing between the ±β terms. These diagrams have the same sign choices as

their homogeneous analogues as the tunnelling events do not transfer frequency, so we

can simply add tunnelling events to split Green’s functions of the same sign in the sign

choices shown in fig. 3.19 and fig. 3.20 for diagrams C and D respectively.

Evaluating each sign choice, we find that K
(C1)
αβ and K

(D1)
αβ cancel exactly, whilst K

(C2)
αβ

11See our discussion of this for the granular WL correction in section 5.2.2.
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and K
(D2)
αβ add to give

K
(C)
αβ (iΩ) +K

(D)
αβ (iΩ) =− 16e2N(0)Γ2

Nad−2

×
∑
Q

T

[∑
ω>Ω

Ω +
∑

0<ω≤Ω

ω

]
sin(Qαa) sin(Qβa)V (Q, iω)

(ω + ΓλQ)2(ω + Ω + ΓλQ)
.

(5.105)

This expression clearly equals zero when α 6= β. Taking eq. 5.105 in the granular diffusive

limit, sin(Qαa) ' Qαa, and substituting eq. 5.94 in for V (Q, iω), yields

K
(C)
αβ (iΩ) +K

(D)
αβ (iΩ) = − 8e2Γ

Nad−2d
δαβ

×
∑
Q

T

[∑
ω>Ω

Ω +
∑

0<ω≤Ω

ω

]
1

(ω +DTQ2)(ω + Ω +DTQ2)
.

(5.106)

Power counting gives the order of the Q summand to be Q−4, as we stated earlier. There-

fore, to leading order, the total electromagnetic response function due to EEIs is given by

eq. 5.106,

Kαβ(iΩ) = −8e2DT
Nadd

δαβ
∑
Q

T

[∑
ω>Ω

Ω +
∑

0<ω≤Ω

ω

]
1

(ω +DTQ2)(ω + Ω +DTQ2)
. (5.107)

This is exactly the same expression we found in the homogeneous case (see eq. 3.97 and

eq. 3.103), with D → DT and the volume factor written explicitly. However, the major

difference here is that when replacing the Q sum by an integral, the upper limit is set to

a−1, due to working in the granular diffusive limit.

In the homogeneous calculation, we set the upper limit of the q integral to infinity,

despite the fact we were in the diffusive limit, meaning the upper cut-off should have been

l−1. However, the energy associated to the upper limit appearing in the integrand is given

by Dl−2, which is a much larger energy scale than the temperatures we concern ourselves

with in typical transport experiments. Hence, extending the limit to infinity introduces

small, but negligible, errors. Granular systems do not possess this luxury, however, as the

upper limit of the Q integral has the associated energy of Γ, which can be higher or lower
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than the temperature of the system. Hence, we must consider these limits separately.

Replacing the Q sum by an integral, performing said integral, and expanding to first

order in Ω, we find

σEEI = − 4Ωde
2

(2π)dd
T

[
lim
Ω→0

∑
0<ω≤Ω

ω

Ω
+
∑
ω>0

1

]

×



a

ω

√
Γ

ω
arctan

(√
Γ

ω

)
+

Γa

ω

1

Γ + ω
, d = 1

1

ω
− 1

ω + Γ
, d = 2

1√
DTω

[
arctan

(√
Γ

ω

)
−
√

Γω

Γ + ω

]
, d = 3.

(5.108)

These sums can only be done generally for d = 2,

σ
(2D)
EEI = − e2

2π2

[
γ + ψ

(
1 +

Γ

2πT

)
+

Γ

πT
ψ′
(

1 +
Γ

2πT

)]
. (5.109)

For other dimensionalities, we will have to consider their expressions in eq. 5.108 in the

different temperature limits present.

We first consider the low temperature limit, T � Γ, in which eq. 5.108 reproduces

the same form of corrections as in the homogeneous case,

σEEI = − e2

2π2

(
T

DT

) d
2
−1

×


αd

(2π)2− d
2

4− d
2d

ζ

(
2− d

2
, 1

)
, d = 1, 3

ln

(
Γ

2πT

)
, d = 2.

(5.110)

This agrees with the result of Beloborodov et. al. [64].

Considering eq. 5.108 in the high temperature limit, T � Γ, yields

σEEI = − 2Ωdβd
3(2π)dd

e2

ad−2

Γ

T
, where βd =


1, d = 1

3

4
, d = 2

1

3
, d = 3.

(5.111)
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Figure 5.10: Numerical solutions to eq. 5.112a (numerical) in comparison to eq. 5.111
(analytical). (a), (b), and (c) correspond to 1D, 2D, and 3D respectively. Here we have
used Γ = 10−5K.

This is a result not discussed in the literature, and exhibits a temperature dependence

independent of the system’s dimensionality. This is similar to the result Beloborodov et.

al. claim to get from diagrams A and B [64], where they found a logarithmic correction

in the high temperature limit.

The T−1 behaviour in eq. 5.111 in the high temperature limit can even be seen outside

of the granular diffusive limit. To see this, we instead perform the ω sums in eq. 5.105

first, to obtain

σEEI = − 2e2

Nad−2π2d

Γ

T

∑
Q

λ̃Q
λQ

[
2ψ′
(

1 +
ΓλQ
2πT

)
+

ΓλQ
2πT

ψ′′
(

1 +
ΓλQ
2πT

)]
(5.112a)

176



5.3. ELECTRON-ELECTRON INTERACTIONS

(a) (b)

(c) (d)

Figure 5.11: (a) and (b) give examples of alternative placements for the additional tun-
nelling events of diagram C. (c) and (d) give the alternative non-zero tunnelling event
correlations of diagram C.

λ̃Q =
d∑

α=1

sin2(Qαa). (5.112b)

We then replace the momentum sum by an integral, and perform it numerically. We

present the numerical solution to eq. 5.112a in fig. 5.10 in one, two, and three dimensions,

for comparison to the analytic solution obtained in eq. 5.111.

Now, earlier we mentioned different placements and correlations of the tunnelling

events in diagrams C and D, and how these diagrams either vanish or are less singular.

We give two types of alternative placements in fig. 5.11a and fig. 5.11b. These diagrams

will naturally vanish, due to our ability to consider the extra tunnelling event on either

the top or bottom of the bubble: the variant with a tunnelling event on the top half will

carry an extra minus sign compared to when the tunnelling event is on the bottom. This

is true regardless of the correlation we choose between the different tunnelling events.

Considering a different correlation of the tunnelling events, see fig. 5.11c and fig.

5.11d for examples, we find that these variants have one fewer grain label sums, and
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hence we will have an additional lattice momentum compared to that of fig. 5.9c.12 In

assigning internal momenta to the electron lines, we are able to introduce two unique fast

momenta, and two independent slow momenta. The slow momenta can be associated to

the Coulomb interaction and the open diffuson that connects the top and bottom of the

conductivity bubble. Clearly, the most singular terms generated by these diagrams arise

from when the slow momenta are equal to zero.

To determine the size of these diagrams relative to that in fig. 5.9c we will need to

evaluate the fast momentum sums. We note that each of these sums will have the form

G+(k)2G−(k)2, and so will each produce a factor ∼ N(0)τ 2. Therefore, accounting for

volume factors, we see that these variant diagrams will carry a factor of (δτ)2 compared

to those in fig. 5.9. Given that we concern ourselves with granular metals, we recall

that δ � Γ � τ−1. Hence, (δτ)2 is an extremely small prefactor, and so diagrams with

correlations different to that of fig. 5.9c and fig. 5.9d lead to higher order corrections,

and so can be neglected at leading order.

5.4 Superconducting Fluctuations

The effect of virtual Cooper pairs near Tc was the start of Beloborodov et. al.’s study

of granular metals [61, 62]. In these works they focused heavily on the effects of strong

magnetic fields, but did not consider the role of fluctuations in the absence of a field. A

similar set of calculations were performed by Skrzynski et. al. [69] using a larger BCS

interaction. In all of these works, the only DOFs included in two-body propagators were

those of the lattice.13

In contrast to this, Lerner et. al. [27] approached the effects of virtual Cooper pairs

in granular metals from the perspective of the internal DOFs. They focused on the

12This extra lattice momentum is carried by the open diffuson across the conductivity bubble.
13It is worth noting that the thermal conductivity correction due to fluctuations in granular metals has

been calculated in the works of Biagini et. al. [68]. The approach used here appears to bear the greatest
resemblance to the picture we have been working with for granular metals (i.e. setting up the problem
in granular position space), but still focuses only on the lattice DOFs as in Beloborodov et. al.’s works
[26].
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zero field temperature dependence of these corrections, and worked in the case where

Γ . ETh . Tc. In their calculations they argued for the existence of three regions of

behaviour in the reduced temperature dependence of the fluctuation corrections to the

electrical conductivity, σfl, but did not show exactly how these regions were connected.

The boundaries between these regions can be related to the electron tunnelling rate,

and the Thouless energy of an isolated grain. Hence, we adopt the following naming

convention,

� Close-to-Tc region: η . Γ/Tc

� Intermediate region: Γ/Tc . η . ETh/Tc

� Far-from-Tc region: ETh/Tc . η . 1.

We therefore expect crossovers between these regions to happen at η ∼ Γ/Tc (close-

intermediate crossover) and η ∼ ETh/Tc (intermediate-far crossover).

The methods used by Lerner et. al. were based upon the ideas and diagrams of

Varlamov and Dorin [75], who calculated the effects of superconducting fluctuations on the

single-particle tunnelling current of a single Josephson junction. Lerner et. al. predicted

that, for 3D systems,

σfl ∼



η−1/2, η .
Γ

Tc

η−3,
Γ

Tc
. η .

ETh
Tc

η−2,
ETh
Tc
. η . 1.

(5.113)

However, their calculation relied upon a pair propagator confined to a single grain. As a

result, their definition of the order of a process was based upon the number of single-grain

pair propagators. Consequently, their diagram E, which resembles the usual MT diagram,

requires two single grain pair-propagators and appears as a fourth order tunnelling process,

and hence looks like a higher order correction. Because of this, they argued that higher

order corrections (see their diagram D) should also be taken into account if they also

possessed a sensitivity to phase coherence. In contrast, the methods we have developed
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in this thesis allow us to construct a pair propagator that can tunnel between grains. It

follows that diagrams such as Lerner et. al.’s diagram E appear within the infinite set of

diagrams generated by considering the granular pair propagator.

Let us now outline how the granular pair propagator can be calculated with both

internal and external DOFs present, and in doing so, see how the three regions of be-

haviour arise. After this, we shall calculate the correction σfl in granular metals. In these

calculations, we closely follow the work of Perkins et. al. [76].

5.4.1 The Pair Propagator

To include superconductivity into our granular model we assume that the BCS interaction

acts solely within a grain. This is equivalent to introducing the following term into the

Hamiltonian,

H
(T )
BCS = −λ0

∑
i

∑
k,k′,q

c†ik↑c
†
iq−k↓ciq−k′↓cik′↑, (5.114)

where we focus purely on singlet (s-wave) superconductivity. We find that the granular

pair propagator is then given by the diagrammatic series in fig. 5.12, which can be written

mathematically as

Lji(q, iω) = λ0δij + λ0δilΠml(q, iω)Ljm(q, iω). (5.115)

Expanding eq. 5.115 as a Fourier series in lattice momentum space, we find that the

Fourier components are related by,

L(Q, iq, iω) = λ0 + λ0Π(Q, iω)L(Q,q, iω). (5.116)

This is the usual Dyson equation, now with an extra granular momentum being carried

around.
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Figure 5.12: Diagrammatic series for the granular pair propagator mediated by BCS
interactions (wavy lines). The BCS interaction does not allow for tunnelling between
grains.

The granular fluctuation polarisation operator is given by,

Πfl(Q,q, iω) = Πfl,0(Q,q, iω) + Πfl,1(Q,q, iω), (5.117a)

Πfl,0(Q,q, iω) = T
∑
ε

∑
k

G(k + q, iε+ iω)G(−k,−iε), (5.117b)

Πfl,1(Q,q, iω) = T
∑
ε

∑
k

G(k + q, iε+ iω)G(−k,−iε)C(Q,q, iε+ iω, iε), (5.117c)

where we have used the fact that the electron Green’s functions are independent of the

grain label. Eq. 5.117 is exactly the same as eq. 3.108, with the small change Dq2 →

Dq2 + ΓλQ. The granular pair propagator is therefore trivial to derive,

L(Q,q, iω) =
1

N(0)

[
ln

(
T

Tc

)
+ ψ

(
1

2
+
|ω|+Dq2 + ΓλQ + τ−1

φ

4πT

)

− ψ
(

1

2
+

1

4πTcτφ,c

)]−1

.

(5.118)

Now, for our calculations we shall work with an idealised version of Lerner et. al.’s

considerations. In this case we shall assume,

δ � Γ � ETh . Tc. (5.119)

In this case, given we are working with T ≥ Tc, we may expand eq. 5.118 in terms of
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ΓλQ without issue. As in the homogeneous case, we will be considering Cooper pairs with

small frequencies, so we may also expand in powers of ω,

L(Q,q, iω) =
1

N(0)

[
ε(q, T ) + α1(q, T )

|ω|+ ΓλQ
4πT

]−1

, (5.120)

where we have defined

ε(q, T ) = ln

(
T

Tc

)
+ ψ

(
1

2
+
Dq2 + τ−1

φ

4πT

)
− ψ

(
1

2
+

1

4πTcτφ,c

)
, (5.121a)

αn(q, T ) = ψ(n)

(
1

2
+
Dq2 + τ−1

φ

4πT

)
, (5.121b)

for notational convenience. It is important to note that for η � 1, we can approximate

ε(0, T ) ' η when τ−1
φ is sufficiently small. Later on, when we compare theory to experi-

ment, we will be considering values of τ−1
φ such that we cannot use this approximation,

hence the introduction of this notation here.

For the case when ETh � Tc, we can consider a large range of appropriately small

momenta to justify an expansion in terms of Dq2. In this case,

L(Q,q, iω) =
1

N(0)

[
ε̄+ ᾱ1

|ω|+Dq2 + ΓλQ
4πT

]−1

, (5.122)

where ε̄ = ε(0, T ) and ᾱn = αn(0, T ), which is the same as eq. 3.117 with Dq2 →

Dq2 + ΓλQ. In the absence of phase breaking, eq. 5.122 collapses to

L(Q,q, iω) =
1

N(0)

[
ln

(
T

Tc,0

)
+

π

8T
(|ω|+Dq2 + ΓλQ)

]−1

. (5.123)

For temperatures close to the transition, such that ln(T/Tc,0) ' η, we can see from

the denominator of eq. 5.123 why three regions of behaviour exist. If we consider values

of η � Γ/Tc then the internal DOFs will give rise to a far less singular propagator, and

hence less significant contributions to sums involving L(Q,q, iω). Therefore, only the
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q = 0 term will be of any importance. If we consider Γ/Tc � η � ETh/Tc, then the

external DOFs become negligible in the pair propagator, whilst the internal DOFs still

lead to less singular terms. In this case, only the (Q,q) = (0,0) piece of the propagator

will be of any importance. Finally, if ETh/Tc � η � 1, we may still neglect the external

DOFs, however, we may now include the internal DOFs without generating less important

contributions.14

To understand what these regions relate to physically, let us analyse the prefactors of

the internal and external momentum pieces. By pulling out a factor of η from the denom-

inator, these prefactors will become a coherence length. The prefactor of the internal q2

piece is the same as in the homogeneous case,

ξv,g =

√
πD
8Tcη

= a

√
π

8

√
ETh
Tcη

, T > Tc, η � 1, (5.124)

and so represents the coherence length of a Cooper pair confined to a grain. Working in

the granular diffusive limit, ΓλQ ' DTQ2, the prefactor of Q2 introduces a new coherence

length that is based on DT rather than D,

ξv,T =

√
πDT
8Tcη

= a

√
π

8

√
Γ

Tcη
, T > Tc, η � 1, (5.125)

which represents the coherence length of a Cooper pair across many grains.

We can see that the crossovers happen when ξv,T and ξv,g become comparable to the

size of a grain. At the close-intermediate crossover, η ∼ Γ/Tc, meaning ξv,T ∼ a. We

see a similar behaviour in internal coherence length at the intermediate-far crossover,

η ∼ ETh/Tc, where ξv,g ∼ a. To picture what is happening physically, let us consider

moving away from Tc. In the close-to-Tc region, Cooper pairs have a typical size much

greater than that of the grains, and so we associate the external coherence length to these

Cooper pairs, ξv,T . As the temperature increases, the Cooper pairs and ξv,T get smaller,

14In other words, terms with q 6= 0 now become equally important, and we may keep Q = 0 inside the
propagator without any problems.
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where they encounter the close-intermediate crossover when ξv,T becomes comparable to

a grain. So we may think of the close-to-Tc region as where Cooper pairs are much larger

than a grain.

Continuing to higher temperatures, the Cooper pairs continue to get smaller and

encounter the intermediate-far crossover when ξv,g ∼ a. This means that the internal

coherence length of a Cooper pair becomes comparable to the size of a grain at this

crossover. For even higher temperatures, Cooper pairs again continue to get smaller,

alongside ξv,g, such that we can think of Cooper pairs as being confined to a single

grain,15 and so we can associate the internal coherence length to the Cooper pairs in this

region. We may therefore think of Cooper pairs in the far-from-Tc region as being much

smaller than a grain, whilst the intermediate region describes Cooper pairs whose size is

comparable to that of a grain. With this physical picture in mind, and having obtained

the granular pair propagator, we now move onto calculate the fluctuation conductivity in

granular metals.

5.4.2 Fluctuation Conductivity

The diagrams we use to calculate σfl are given in fig. 5.13. Their sum can be shown

to vanish when the external frequency is set to zero in the granular diffusive limit, see

appendix I.6. We also note that the contributions of diagrams C and D to the DC con-

ductivity cancel, in analogy to the cancellation of diagrams D and E in the homogeneous

case, see appendix I.2. We therefore focus on the detailed calculation of the DOS (dia-

gram A), MT (diagram B), and AL (diagram E) terms. The set up of these calculations

is entirely analogous to the homogeneous case, with the added complexity of the grain

labels. We deal with the grain labels in exactly the same way as for all previous granular

calculations, so we shall only provide the key details where the granular calculation differs

from the homogeneous calculation.

We find the following response functions for DOS and MT diagrams in lattice momen-

15I.e. the temperature is large enough such that virtual Cooper pairs cannot travel a length greater
than the size of a grain.
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Figure 5.13: Leading order corrections to the electrical conductivity due to superconduct-
ing fluctuations.

tum space, respectively,

K(A)
αα (iΩ) = −8e2a2t2

Na2d
T 2
∑
ε,ω

∑
Q

∑
k,p,q

[
L(Q,q, iω)C(Q,q, iε+ iΩ, iω − iε− iΩ)2

×G(k, iε+ iΩ)2G(q− k, iω − iε− iΩ)G(p, iε)
]
,

(5.126a)

K(B)
αα (iΩ) =

4e2a2t2

Na2d
T 2
∑
ε,ω

∑
Q

∑
k,p,q

[
cos(Qαa)L(Q,q, iω)C(Q,q, iε, iω − iε)

× C(Q,q, iε+ iΩ, iω − iε− iΩ)G(k, iε+ iΩ)2

×G(q− k, iω − iε− iΩ)G(p, iε)
]
,

(5.126b)

where we have accounted for the fact that the electron Green’s functions are grain label

independent. Note that the MT term has an extra minus sign due to the current vertices

tunnelling in the same direction. Working in the granular diffusive limit, we may take

cos(Qαa) ' 1, and so K
(B)
αα (iΩ) now has the same form as its homogeneous analogue.

The AL diagram has the same block structure as before,

K
(C)
αβ (iΩ) = −4e2a2+dt4

N
T
∑
ω

∑
Q

∑
q

[
Bα(Q,q, iω, iΩ)Bβ(Q,q, iω, iΩ)

× L(Q,q, iω)L(Q,q, iω + iΩ)
]
,

(5.127a)
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Bα(Q,q, iω, iΩ) =
2T

a2d

∑
ε

∑
k,p

[
sin(Qαa)C(Q,q, iε+ iΩ, iω − iε)

× C(Q,q, iε, iω − iε)G(k, iε+ iΩ)G(q− k, iω − iε)

×G(p, iε)G(q− p, iω − iε)
] (5.127b)

In the granular diffusive limit, the sin(Qαa) appearing in the blocks can be replaced by

Qαa, and so resembles the homogeneous AL diagram.

The sign choices we can make for the granular DOS, MT, and AL diagrams are the

same as those for the homogeneous case. We may also apply the same assumptions

made there: we only consider the ω = 0 parts of the K
(A)
αα (iΩ) and K

(B)
αα (iΩ), we may set

ω = Ω = 0 inside the block functions of the AL term, and we may neglect any q appearing

in the electron Green’s functions due to this being a small momentum compared to the

other fast momenta.16

Once we have accounted for all non-zero sign configurations, we can perform the same

analytic continuation as before for the AL term. The expressions we are left with for the

DOS, MT, and AL terms can then be expanded to first order in Ω to find the fluctuation to

the electrical DC conductivity, as we know that all O(Ω0) terms from all diagrams can be

shown to cancel. We therefore find the following corrections to the electrical conductivity,

σDOS =
N(0)DT e2

2π2TNad
∑
Q

∑
q

L(Q,q, 0)ψ′′

(
1

2
+
Dq2 + ΓλQ + τ−1

φ

4πT

)
, (5.128a)

σ
(1)
MT =

N(0)DT e2

πNad
∑
Q

∑
q

L(Q,q, 0)

Dq2 + ΓλQ + τ−1
φ

ψ′

(
1

2
+
Dq2 + ΓλQ + τ−1

φ

4πT

)
, (5.128b)

σ
(reg2)
MT =

N(0)DT e2

4π2TNad
∑
Q

∑
q

L(Q,q, 0)ψ′′

(
1

2
+
Dq2 + ΓλQ + τ−1

φ

4πT

)
, (5.128c)

16Usually we would have to worry about whether this would lead to a vanishing contribution from
a diagram, due to the current vertices carrying a factor of kα in the homogeneous case. If this was
the case, we would need to expand in powers of q to find the leading order contribution. We do not
encounter this issue here though, as the granular current vertices have no factors related to the internal
momenta. Hence, we may neglect the small momenta appearing inside the electron Green’s functions
without consequence.
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σAL =
N(0)2D2

T e
2

4π3T 3Nad+2

∑
Q

∑
q

[
sin2(Qαa)ψ′

(
1

2
+
Dq2 + ΓλQ + τ−1

φ

4πT

)2

×
∫ +∞

−∞
dz

Im
[
LR(Q,q, z)

]2
sinh2

(
z

2T

) ]
.

(5.128d)

Comparing eq. 5.128a, eq.5.128b, eq. 5.128c, and eq. 5.128d to eq. 3.164, eq. 3.151,

eq. 3.157, and eq. 3.140, respectively, we can see that they are complete analogues of

their homogeneous counterparts. This becomes even more evident when we choose to

work in the granular diffusive limit,

σDOS =
N(0)DT e2

2π2TNad
∑
Q

∑
q

α2(q, T )L(Q,q, 0), (5.129a)

σ
(an)
MT =

N(0)DT e2

πNad
∑
Q

∑
q

α1(q, T )
L(Q,q, 0)

Dq2 +DTQ2 + τ−1
φ

, (5.129b)

σ
(reg1)
MT =

N(0)DT e2

4π2TNad
∑
Q

∑
q

α2(q, T )
DTQ2L(Q,q, 0)

Dq2 +DTQ2 + τ−1
φ

, (5.129c)

σ
(reg2)
MT =

N(0)DT e2

4π2TNad
∑
Q

∑
q

α2(q, T )L(Q,q, 0), (5.129d)

σAL =
N(0)2D2

T e
2

4dπ3T 3Nad
∑
Q

∑
q

Q2α1(q, T )2

∫ +∞

−∞
dz

Im
[
LR(Q,q, z)

]2
sinh2

(
z

2T

) . (5.129e)

Here we have also made use of the fact that we are working in the limit where Γ� Tc ≤ T ;

the ΓλQ/(4πT ) inside the digamma functions and their derivatives can be ignored in

all conrtibutions, except for the σ
(1)
MT term. For this piece we expanded the digamma

function’s derivative in powers of DTQ2 to produce the anomalous and regular parts, σ
(an)
MT

and σ
(reg1)
MT respectively.17 Furthermore, in the limit ETh � Tc the expansion generating

these terms can be performed in powers of DTQ2 +Dq2. In this case, the anomalous and

17We do not include τ−1φ in this expansion, as we will wish to consider large phase breaking rates in
chapter 6 for comparison of theory to experiment.
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regular parts become

σ
(an)
MT =

α1(0, T )N(0)DT e2

πNad
∑
Q

∑
q

L(Q,q, 0)

Dq2 +DTQ2 + τ−1
φ

, (5.130a)

σ
(reg1)
MT =

α2(0, T )N(0)DT e2

4π2TNad
∑
Q

∑
q

(DTQ2 +Dq2)L(Q,q, 0)

Dq2 +DTQ2 + τ−1
φ

. (5.130b)

Let us now perform these integrals and sums for a 3D system, as this is what we will

use for comparison to the experimental data of Klemencic et. al. [28] in chapter 6. We

first calculate the DOS term, followed by the AL contribution, and finish with the MT

correction. The η dependence for each of these terms within each region is summarised

in table 5.1.

The DOS term

For all corrections we may replace the Q sum with an integral, and we choose to work in

the granular diffusive limit. The granular momentum integral has one important difference

when compared to the homogeneous momentum integral; the radial integral is no longer

over the range [0,∞], but rather [0, a−1]. Performing this integral yields,

σDOS =
1

π3

e2

a

∑
q

α2(q, T )

α1(q, T )

[
1−

√
4πTε(q, T )

Γα1(q, T )
arctan

(√
Γα1(q, T )

4πTε(q, T )

)]
. (5.131)

The close-to-Tc behaviour is given by the q = 0 component, as any q 6= 0 contributions

will be far less singular and thus less important,

σ
(close)
DOS =

1

π3

e2

a

ᾱ2

ᾱ1

[
1−

√
4πT ε̄

Γᾱ1

arctan

(√
Γᾱ1

4πT ε̄

)]
. (5.132)

The case where τ−1
φ = 0 yields

σ
(close)
DOS = −28ζ(3)

π5

e2

a

[
1−

√
8Tη

πΓ
arctan

(√
πΓ

8Tη

)]
, (5.133)
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which, recalling η � Γ/Tc deep inside the close-to-Tc region, can be approximated as,

σ
(close)
DOS = −28ζ(3)

π5

e2

a
. (5.134)

This result is the expected granular analogue of the 3D result in eq. 3.161. The slight

difference between the homogeneous result and σ
(close)
DOS is due to the upper cut-off in

the momentum integral differing between the granular and homogeneous cases. This

leads to an approximately constant result in granular metals, and a T 1/2 dependence in

homogeneous systems. The important point here though, is that in both cases, the DOS

correction has no dependence upon η, and does not diverge as T → T+
c . In fact, we can

treat the homogeneous correction as approximately constant, since we may take T ' Tc

when η � 1.

The behaviour deep inside the intermediate region, such that Γ/Tc � η � ETh/Tc,

can be found by expanding eq. 5.132 in powers of
√

Γ/(Tε(0, T )).18 This is because all

non-zero choices of q will still contribute less important terms. Performing this expansion

gives19

σ
(int)
DOS =

1

12π4

e2

a

Γ

T

ᾱ2

ε̄
. (5.135)

In the case of negligible phase breaking rates, this simplifies to

σ
(int)
DOS = −7ζ(3)

6π4

e2

a

Γ

T

1

η
. (5.136)

Finally, in the far-from-Tc region, we can begin to include non-zero values of q that are

just as singular as the zero momentum piece. If the Thouless energy is sufficiently small

that ETh � Tc, we can consider large enough values of η that allow us to approximate the

q sum as an integral. Let us consider the ideal case deep inside the far-from-Tc region,

such that ETh/Tc � η � 1.

18Since η � Γ/Tc, we can also take ε(q, T )� Γ/Tc.
19We will have to expand the arctan to third order, as the first order term cancels with the 1 inside

the brackets.
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To find the behaviour here, we take eq. 5.135 and re-include the q 6= 0 terms by

letting ᾱn → αn(q, T ) and ε̄→ ε(q, T ), and sum this expression over all q,

σ
(far)
DOS =

1

12π4

e2

a

Γ

T

∑
q

α2(q, T )

ε(q, T )
. (5.137)

Given we are considering ETh/Tc � η � 1, we may neglect the q dependence inside all

αn(q, T ) appearing outside of ε(q, T ), as the digamma functions decay quickly for large

arguments and the most singular behaviour comes from small momenta. Furthermore,

this limit allows us to write

ε(q, T ) ' ε̄+
ᾱ1

4πT
Dq2. (5.138)

With these ideas in mind, eq. 5.137 becomes,

σ
(far)
DOS =

ᾱ2e
2

24π6

Γa2

T

∫ qc

0

dq
q2

ε̄+ ᾱ1

4πT
Dq2

, (5.139)

where we have replaced the sum by an integral. The upper cut-off is necessary to avoid

a diverging result, and is defined by Dq2
c = 4πT . Performing the integral produces

σ
(far)
DOS =

1

3π4

ᾱ2

ᾱ1

e2

a

√
Γ2T

πE3
Th

[
1−

√
ε̄

ᾱ1

arctan

(√
ᾱ1

ε̄

)]
, (5.140)

which clearly has the same form as the close-to-Tc behaviour in eq. 5.132. Considering

τ−1
φ = 0 and η � 1, eq. 5.140 can be approximated as

σ
(far)
DOS = −28ζ(3)

3π6

e2

a

√
Γ2T

πE3
Th

. (5.141)

Thus we find that the far-from-Tc DOS correction is also independent of η, and can be

treated as approximately constant.

Given our ability to analyse the the DOS correction deep within each region, we may

summarise its behaviour for all η � 1. The most insightful summary we can provide is

for a negligible phase breaking rate, otherwise we would not observe simple power laws
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in terms of η. We therefore summarise the behaviour of the DOS correction deep within

each region, in the absence of phase breaking, as

σDOS ∼ −
e2

a
×



const., η � Γ

Tc
Γ

Tc
η−1,

Γ

Tc
� η � ETh

Tc

const.×

√
Γ2Tc
E3
Th

,
ETh
Tc
� η � 1.

(5.142)

The AL term

We begin by performing the frequency integral in eq. 5.129e, which is dealt with in exactly

the same manner as in the homogeneous case, so we shall not repeat those details here.

We then replace the Q sum by an integral and let x = Qa,

σAL =
Γ2

48π5T 2

e2

a

∑
q

α1(q, T )3

∫ 1

0

dx
x4[

ε(q, T ) + α1(q,T )Γ
4πT

x2
]3 . (5.143)

Computing the x integral yields

σAL =
T

6π2Γ

e2

a

∑
q

[
3

√
Γα1(q, T )

4πTε(q, T )
arctan

(√
Γα1(q, T )

4πTε(q, T )

)

− α1(q, T )Γ
5α1(q, T )Γ + 12πTε(q, T )

[α1(q, T )Γ + 4πTε(q, T )]2

]
.

(5.144)

From eq. 5.144, we see that the close-to-Tc AL behaviour is

σ
(close)
AL =

T

6π2Γ

e2

a

[
3

√
Γᾱ1

4πT ε̄
arctan

(√
Γᾱ1

4πT ε̄

)
− ᾱ1Γ

5ᾱ1Γ + 12πT ε̄

[ᾱ1Γ + 4πT ε̄]2

]
. (5.145)

When phase breaking rates are negligible, this becomes

σ
(close)
AL =

1

6π2

T

Γ

e2

a

[
3

√
πΓ

8Tη
arctan

(√
Γπ

8Tη

)
− πΓ

5πΓ + 24Tη

(πΓ + 8Tη)2

]
, (5.146)
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which can be approximated as

σ
(close)
AL =

1

8

√
T

2πΓ

e2

a

1

η1/2
, (5.147)

when η � Γ/Tc. This is the same as the three-dimensional homogeneous result in eq.

3.148 with D → DT .

The behaviour in the intermediate region is found by expanding eq. 5.145 in powers

of
√

Γ/(Tcε̄), so to leading order

σ
(int)
AL =

ᾱ3
1

240π5

Γ2

T 2

e2

a

1

ε̄3
. (5.148)

For τ−1
φ = 0, this simplifies to

σ
(int)
AL =

π

1920

Γ2

T 2

e2

a

1

η3
. (5.149)

Here we see that the AL contribution leads to a much more singular correction than in

homogeneous systems, when deep inside the intermediate region.

The far-from-Tc behaviour can be found by re-including the q dependence into eq.

5.148, and summing over the internal momentum, as was done for the granular DOS

correction. Applying the same expansions in terms of q, we are left to evaluate

σ
(far)
AL =

ᾱ3
1

240π5

Γ2

T 2

e2

a

∑
q

1[
ε̄+ ᾱ1

4πT
Dq2

]3 . (5.150)

We again replace the momentum sum by an integral, whose radial component is cut-off

according to Dq2
c = 4πT ,

σ
(far)
AL =

ᾱ3
1e

2a2

480π7

Γ2

T 2

∫ qc

0

dq
q2[

ε(0, T ) + ᾱ1

4πT
Dq2

]3 . (5.151)

In evaluating this integral we replace the upper limit by infinity without issue,20 which

20Consider making the substitution x = aq, then the upper limit would become xc =
√

4πT/ETh,
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yields

σ
(far)
AL =

1

1920

√
Γ4

2πE3
ThT

1

ε̄3/2
. (5.152)

When phase breaking mechanisms are negligible, eq. 5.152 becomes

σ
(far)
AL =

1

1920

√
Γ4

2πE3
ThT

1

η3/2
. (5.153)

We therefore summarise AL contribution to the granular fluctuation conductivity as,

σAL ∼
e2

a
×



√
Tc
Γ
η−1/2, η � Γ

Tc
Γ2

T 2
c

η−3,
Γ

Tc
� η � ETh

Tc√
Γ4

E3
ThTc

η−3/2,
ETh
Tc
� η � 1.

(5.154)

The MT term

The contribution of σ
(reg2)
MT is exactly half that of σDOS, so we shall not go through its

calculation here. Let us first turn our attention to σ
(reg1)
MT in eq. 5.129c, which can be

written as

σ
(reg1)
MT =

1

2π3

e2

a

∑
q

α2(q, T )

α1(q, T )

[
1− α1(q, T )Γτφ

4πTτφε(q, T )− α1(q, T )(1 +Dq2τφ)

×
(

4πTε(q, T )

α1(q, T )Γ

)3/2

arctan

(√
α1(q, T )Γ

4πTε(q, T )

)]
+ S

(reg)
φ ,

(5.155a)

S
(reg)
φ =

1

2π3

e2

a

∑
q

[
α2(q, T )Γτφ

4πTτφε(q, T )− α1(q, T )(1 +Dq2τφ)

×
(

1 +Dq2τφ
Γτφ

)3/2

arctan

(√
Γτφ

1 +Dq2τφ

)]
,

(5.155b)

where we note that S
(reg)
φ = 0 when τ−1

φ = 0.

which we take to be large in the case where ETh � Tc.
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In the close-to-Tc region,

σ
(reg1,close)
MT =

1

2π3

e2

a

ᾱ2

ᾱ1

[
1− ᾱ1Γτφ

4πTτφε̄− ᾱ1

×

{(
4πT ε̄

ᾱ1Γ

)3/2

arctan

(√
ᾱ1Γ

4πT ε̄

)
−

arctan(
√

Γτφ)

(Γτφ)3/2

}]
.

(5.156)

When τ−1
φ = 0, eq. 5.156 gives half of the DOS correction in the close region, see eq.

5.133, as expected.

Moving deep into the intermediate region,

σ
(reg1,int)
MT =

1

2π3

e2

a

ᾱ2

ᾱ1

[
1 +

ᾱ1Γτφ
4πTτφε̄− ᾱ1

(
arctan(

√
Γτφ)

(Γτφ)3/2
− 4πT ε̄

ᾱ1Γ
+

1

3

)]
. (5.157)

Eq. 5.157 becomes equal to half of the DOS correction when τ−1
φ = 0, see eq. 5.136.

Finally, in the far-from-Tc region, re-including the non-zero q contributions leads to

σ
(reg1,far)
MT = S

(reg)
φ +

1

2π3

e2

a

×
∑
q

α2(q, T )

α1(q, T )

[
1 +

α1(q, T )Γτφ
4πTτφε(q, T )− α1(q, T )(1 +Dq2τφ)

(
1

3
− 4πTε(q, T )

α1(q, T )Γ

)]
.

(5.158)

Eq. 5.158 is only of use when ETh is not significantly smaller than Tc. For the case where

ETh � Tc we will instead need to use eq. 5.130b, whose Q sum can be evaluated to yield

σ
(reg1)
MT = S̃

(reg)
φ +

ᾱ2

2π3ᾱ1

e2

a

×
∑
q

[
1− 4πΓTτφᾱ1ε̄

4πTτφε̄− ᾱ1

√
4πT ε̄+ ᾱ1Dq2

(ᾱ1Γ)3
arctan

(√
ᾱ1Γ

4πT ε̄+ ᾱ1Dq2

)]
,

(5.159a)

S̃
(reg)
φ =

1

2π3

e2

a

∑
q

ᾱ2Γτφ
4πTτφε̄− ᾱ1

√
1 +Dq2τφ

(Γτφ)3
arctan

(√
Γτφ

1 +Dq2τφ

)
. (5.159b)

Clearly, eq. 5.159a collapses to half of the DOS contribution in eq. 5.141 when phase

breaking rates are negligible.
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In the far-from-Tc region, we may approximate S̃
(reg)
φ by noting that Dq2τφ � Γτφ,

and so we may expand the arctan appearing in S̃
(reg1)
φ to first order in its argument to

obtain the leading order behaviour. Consequently, eq. 5.159a becomes,

σ
(reg1,far)
MT =

2

3π2

ᾱ2TτφΓε̄

4πTτφε̄− ᾱ1

e2

a

∑
q

1

4πT ε̄+ ᾱ1Dq2
. (5.160)

We now replace the momentum sum by an integral, which can be evaluated to give

σ
(reg1,far)
MT =

ᾱ2

12π5ᾱ1

e2

a

(
4πT

ETh

)3/2
Γτφε̄

4πTτφε̄− ᾱ1

[
1−

√
ε̄

ᾱ1

arctan

(√
ᾱ1

ε̄

)]
. (5.161)

If the phase breaking rate is negligible, eq. 5.161 becomes identical to half of the DOS

contribution in eq. 5.141. Otherwise, we will have to compute the S̃
(reg)
φ piece of σ

(reg1,far)
MT

numerically. From the above considerations we can see that σ
(reg1)
MT will not lead to a

singular contribution, and will behave in a similar manner to the DOS term.

Let us now consider the anomalous MT term given in eq. 5.129b,21

σ
(an)
MT = S

(an)
φ − 2Tτφ

π2

e2

a

∑
q

[√
4πTε(q, T )

Γα1(q, T )
arctan

(√
Γα1(q, T )

4πTε(q, T )

)

× α1(q, T )

α1(q, T )(1 +Dq2τφ)− 4πTτφε(q, T )

]
,

(5.162a)

S
(an)
φ =

2Tτφ
π2

e2

a

∑
q

[√
1 +Dq2τφ

Γτφ
arctan

(√
Γτφ

1 +Dq2τφ

)

× α1(q, T )

α1(q, T )(1 +Dq2τφ)− 4πTτφε(q, T )

]
.

(5.162b)

From eq. 5.162, we see that the close-to-Tc behaviour is given by

σ
(an,close)
MT =

2Tτφ
π2

e2

a

ᾱ1

ᾱ1 − 4πTτφε̄

[
arctan(

√
Γτφ)√

Γτφ
−
√

4πT ε̄

Γᾱ1

arctan

(√
Γᾱ1

4πT ε̄

)]
. (5.163)

21We do not need to consider the case where ETh � Tc separately to when ETh � Tc is not true, as

the expansion used to generate the anomalous and regular pieces from σ
(1)
MT only produces complications

for the regular part.

195



CHAPTER 5. TRANSPORT PHENOMENA IN GRANULAR SYSTEMS

Table 5.1: Summary of the regional behaviours of the DOS, anomalous MT, and AL
contributions to the fluctuation conductivity of a granular metal in terms of the reduced
temperature, η. The results here are given in units of e2/a, and are taken in the limit of
negligible phase breaking, τ−1

φ = 0.

Region

η � Γ
Tc

Γ
Tc
� η � ETh

Tc

ETh
Tc
� η � 1

σDOS −const. − Γ
Tc
η−1 −

√
Γ2Tc
E3
Th
× const.

σ
(an)
MT

√
Tc
Γ
η−1/2 η−1

√
Γ2Tc
E3
Th
η−1/2

σAL

√
Tc
Γ
η−1/2 Γ2

T 2
c
η−3

√
Γ4

E3
ThTc

η−3/2

Deep inside the close-to-Tc region, when phase breaking rates are negligible, this expression

simplifies to

σ
(an,close)
MT =

√
T

8πΓ

e2

a

1

η1/2
, (5.164)

which matches the homogeneous result for three dimensions, see eq. 3.155, with D → DT .

In the intermediate region we find,

σ
(an,int)
MT =

2

π2

e2

a

ᾱ1Tτφ
ᾱ1 − 4πTτφε̄

[
arctan(

√
Γτφ)√

Γτφ
− 1

]
, (5.165)

which simplifies to,

σ
(an,int)
MT =

ᾱ1

2π3

e2

a

1

η
, (5.166)

in the absence of phase breaking. Finally, in the far-from-Tc region, we approach S
(an)
φ

with the same approximations we used for S̃
(reg)
φ . We are therefore left to evaluate

σ
(an,far)
MT =

2ᾱ1

3π2
TΓτφ

e2

a

∑
q

1

(1 +Dq2τφ)(4πT ε̄+ ᾱ1Dq2)
. (5.167)
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Performing the momentum integral yields,

σ
(an,far)
MT =

1

6π3

T

ETh

e2

a

ᾱ1Γτφ
4πTτφε̄− ᾱ1

[√
4πT ε̄

ᾱ1ETh
− 1√

EThτφ

]
. (5.168)

When τ−1
φ = 0, eq. 5.168 becomes

σ
(an,far)
MT =

1

6

Γ

ETh

√
T

8π9ETh

1

η1/2
. (5.169)

The behaviour of the anomalous MT term within each region is thus,

σ
(an)
MT ∼

e2

a
×



√
Tc
Γ
η−1/2, η � Γ

Tc

η−1,
Γ

Tc
� η � ETh

Tc√
Γ2Tc
E3
Th

η−1/2,
ETh
Tc
� η � 1.

(5.170)

For ease of reference, we summarise the results for the reduced temperature dependence

of the DOS, anomalous MT, and AL terms in table 5.1. These are true in the ideal case,

Γ� ETh � Tc, in the absence of phase breaking.

5.4.3 Discussion

From table 5.1, we can see that the η behaviour of the DOS and anomalous MT terms

in the close-to-Tc and far-from-Tc regions is the same, unlike the AL term, whose power

laws differ in the close and far regions. This is a consequence of the DOS and MT terms

being O(t2), whilst the AL term is O(t4). In the granular diffusive limit, the terms at

O(t2) do not generate any extra factors of internal or external momenta when moving

lattice position space to lattice momentum space. Hence, the Q and q integrals have the

same form in the close-to-Tc and far-from-Tc regions, and thus give rise to the same power

laws. In contrast, the AL term picks up additional factors of sin(Qαa) ' Qαa inside each

block, due to being O(t4). Clearly, the form of the Q and q integrals will now differ in
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the close-to-Tc and far-from-Tc regions, with simple power counting informing us that the

Q integral will generate an additional factor of η compared to the q integral.

Analysing the relative sizes of these terms, we see that the AL and MT terms are

comparable and dominate in the close-to-Tc region, σAL ∼ σ
(an)
MT . In the intermediate

region, despite the AL correction being the most singular with an η−3 power law, we

note that its prefactor makes it subdominant to the MT term in the absence of phase

breaking. Comparing the intermediate forms for σAL and σ
(an)
MT in this regime, we see that

the AL term will dominate over the MT term only when η < Γ/Tc, which is clearly not

in the region where we expect to see these power laws. Hence, the anomalous MT term

dominates in this region. Comparing the AL and DOS terms, we see that the AL term

will be dominant only when η <
√

Γ/Tc. Hence, the AL term will dominate over the

DOS contribution in part of the intermediate region, if not the entire region. The range

of this dominance will depend upon the size of
√

Γ/Tc compared to ETh/Tc.

In the far-from-Tc region, we again see that the MT term dominates of the AL piece,

despite the more singular relation of AL. The AL term could only dominate over the

anomalous MT contribution if η < Γ/Tc, which is not within this region. Comparing the

AL and DOS terms, we see that the AL term can dominate when η < (Γ/Tc)
2/3, which

may not lie within the far-from-Tc region. The range of AL dominance over the DOS term

depends upon the size of ETh/Tc compared to (Γ/Tc)
2/3.

Given these comparisons, we expect that the anomalous MT term will dominate in

the intermediate and far-from-Tc region, whilst being comparable in size to the AL term

in the close-to-Tc region. This leads us to expect the following observable fluctuation

conductivity in experiments where the phase breaking rate is negligible,

σfl ∼
e2

a
×



√
Tc
Γ
η−1/2, η � Γ

Tc

η−1,
Γ

Tc
� η � ETh

Tc√
Γ2Tc
E3
Th

η−1/2,
ETh
Tc
� η � 1.

(5.171)
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Figure 5.14: Diagrammatic series with the explicit inclusion of Σφ which accounts for the
physical mechanisms generating a phase breaking rate in granular metals.

If we cannot neglect τ−1
φ , the anomalous MT contribution will be suppressed, and the

η−3 behaviour of the AL term may become observable in the intermediate region. This

may occur for large enough phase breaking rates, such that the MT and DOS terms

cancel almost exactly in the intermediate region; the MT and DOS terms have identical

power laws in the intermediate region, and are opposite in sign. Another possibility is

the modification of the anomalous MT term’s power law due to a significant τ−1
φ . To see

whether the presence of phase breaking changes the power law of the MT term in any

of the regions, we will need to perform the granular calculations analogous to those in

section 3.6 to determine the temperature dependence of τ−1
φ in granular superconductors.

5.5 Phase Coherence Lifetime

As in homogeneous systems, we found that phase breaking mechanisms were vital in order

to prevent divergences occurring the in the both 1D and 2D granular WL corrections. The

same is also true for 1D and 2D superconducting fluctuations. In the previous section, we

included a phase breaking rate despite working in 3D, as we do not know with certainty

whether phase breaking rates in granular systems are more prevalent than they are in

homogeneous systems. When comparing the theory of granular superconducting fluctu-

ations to experiment in chapter 6, we find that phase breaking may play an important

role. We therefore need to understand its temperature dependence.

As in homogeneous systems, the phase breaking rate can be included into the cooperon

diagrammatically via the object Σφ shown in fig. 5.14, where C̃0 is the granular cooperon
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in the absence of phase breaking. We must now appreciate that Σφ allows an electron to

travel from grain l to grain m, and so the Dyson equation associated to fig. 5.14 may be

written as

C̃ji(q, iΩ) = C̃0,ji(q, iΩ) +
∑
l,m

C̃li(q, iΩ)Σφ,ml(q, iΩ)C̃jm(q, iΩ). (5.172)

Moving to lattice momentum space, eq. 5.172 yields

C̃(Q,q, iΩ) =
1

C̃0(Q,q, iΩ)−1 − Σφ(Q,q, iΩ)
. (5.173)

To find τ−1
φ we shall only consider the (Q,q) = (0,0) piece of Σφ(Q,q, iΩ). This is in

analogy to the homogeneous calculation in section 3.6, where we are only interested in

the constant leading order behaviour of τ−1
φ .22 Hence, the phase breaking rate is given by

1

τφ
= − Σφ

2πN(0)τ 2
0

. (5.174)

Let us now move on to consider the contributions of EEIs and superconducting fluctuations

to the phase breaking rate.

5.5.1 Coulomb Phase Breaking Mechanism

The diagrams describing the phase breaking rate due to Coulomb interactions between

electrons are given in fig. 5.15. Diagrams A-D look identical to those we considered

in the homogeneous case, except that the cooperons and diffusons appearing here are

now the granular diffusive propagators given in section 5.2.1. We also gain the additional

diagrams E and F which are the tunnelling analogues of diagrams B and C. The calculation

of these terms follows an identical procedure to that of the homogeneous case, so we skip

all unnecessary details here.

22We do not set Ω = 0 here, as the analytic structure of the frequency sums inside of Σφ is sensitive to
the value of Ω before we analytically continue from Matsubara frequencies to continuous real frequencies.
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Figure 5.15: Diagrams describing the phase coherence corrections to the cooperon in
granular systems due to Coulomb interactions.

Diagrams A, B, and C have the following expressions, respectively,

Σ
(A)
φ,ee,ii = − T

a2d

∑
ω

∑
l,m

∑
k

[
Gi(k, iε+ iΩ)2Gi(k, iε+ iΩ + iω)Gi(k, iε)Vml(iω)

×Dmi(iε+ iΩ + iω, iε+ iΩ)Dli(iε+ iΩ + iω, iε+ iΩ)
]
,

(5.175a)

Σ
(B)
φ,ee,ii = − T

2πN(0)τ0a
3d

∑
ω

∑
l,m

∑
k,k′

[
Gi(k, iε+ iΩ)2Gi(k, iε)Gi(k

′, iε+ iΩ)2

×Gi(k
′, iε+ iΩ + iω)Vml(iω)Dmi(iε+ iΩ + iω, iε+ iΩ)

×Dli(iε+ iΩ + iω, iε+ iΩ)
]
,

(5.175b)

Σ
(C)
φ,ee,ii = − T

2πN(0)τ0a
3d

×
∑
ω

∑
l,m

[
Vml(iω)Dmi(iε+ iΩ + iω, iε+ iΩ)Dli(iε+ iΩ + iω, iε+ iΩ)

×

(∑
k

Gi(k, iε+ iΩ)Gi(k, iε+ iΩ + iω)Gi(k, iε)

)]
,

(5.175c)

where Ω is the external bosonic Matsubara frequency carried by the cooperon. These

terms do not carry a small internal momentum associated to the Coulomb interaction,

and hence we need only expand these terms to first order in ω as in the homogeneous

case. Performing the fast momentum sums and moving to lattice momentum space, we
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find the sum of Σ
(A)
φ,ee, Σ

(B)
φ,ee, and Σ

(C)
φ,ee to be

Σ
(ABC)
φ,ee,ii = −(2πN(0)τ 2)Tτ

Nad
∑

ω>ε+Ω

∑
Q

{
V (Q, iω)D(Q, iω)2

×

[
2

(
1− τ

τ0

)2

+ ωτ

(
4
τ

τ0

− 3

)]}
.

(5.176)

If we set τ = τ0, eq. 5.176 is then identical to the homogeneous result if we had not

expanded in q as well (see eq. 3.169).

Let us now consider the expressions for diagrams E and F,

Σ
(E)
φ,ee,ii = −Tt

2

a2d

∑
ω

∑
j,l,m

∑
k,k′

[
Gi(k, iε+ iΩ)2Gi(k, iε)Gj(k

′, iε+ iΩ)2

×Gj(k
′, iε+ iΩ + iω)Vml(iω)Dmj(iε+ iΩ + iω, iε+ iΩ)

×Dlj(iε+ iΩ + iω, iε+ iΩ)δ〈ij〉

]
,

(5.177a)

Σ
(F )
φ,ee,ji = −Tt

2

a2d

∑
ω

∑
l,m

∑
k,k′

[
Gi(k, iε+ iΩ)Gi(k, iε+ iΩ + iω)Gi(k, iε)

×Gj(k
′, iε+ iΩ)Gj(k

′, iε+ iΩ + iω)Gj(k
′, iε)Vml(iω)

×Dmi(iε+ iΩ + iω, iε+ iΩ)Dli(iε+ iΩ + iω, iε+ iΩ)δ〈ji〉

]
.

(5.177b)

This time we do not expand in powers of ω, and simply perform the momentum sums in

eq. 5.177. Upon moving to lattice momentum space this becomes,

Σ
(E)
φ,ee =

2πN(0)τ 4TzΓ

Nad
∑

ω>ε+Ω

∑
Q

V (Q, iω)D(Q, iω)2, (5.178a)

Σ
(F )
φ,ee(K) =

2πN(0)τ 4TzΓ

Nad
∑

ω>ε+Ω

∑
Q

V (Q, iω)D(Q, iω)2γQ+K. (5.178b)

where we see that diagram F carries a lattice momentum external to the sums. Considering

the Dyson equation for the granular cooperon in eq. 5.173, this external lattice momentum

is just the lattice momentum carried by the entire cooperon. We therefore set K = 0 to

202



5.5. PHASE COHERENCE LIFETIME

allow for comparison to the homogeneous result, and hence

Σ
(EF )
φ,ee = Σ

(F )
φ,ee + Σ

(F )
φ,ee =

2πN(0)τ 4TzΓ

Nad
∑

ω>ε+Ω

∑
Q

V (Q, iω)D(Q, iω)2(1 + γQ). (5.179)

To see how these diagrams give a result analogous to the homogeneous case, we next

add eq. 5.176 to eq. 5.179,

Σ
(ABCEF )
φ,ee = −(2πN(0)τ 2)Tτ

Nad
∑

ω>ε+Ω

∑
Q

{
V (Q, iω)D(Q, iω)2

×

[
2

(
1− τ

τ0

)
+ ωτ

(
4
τ

τ0

− 3

)
− zΓτ(1 + γQ)

]}
.

(5.180)

Noting that

τ

τ0

=
1

1 + zΓτ0

' 1− zΓτ0, (5.181)

we now approximate eq. 5.180 to give

Σ
(ABCEF )
φ,ee = −(2πN(0)τ 4

0 )T

Nad
∑

ω>ε+Ω

∑
Q

V (Q, iω)D(Q, iω)2(ω + ΓλQ)

= −(2πN(0)τ 2
0 )2T

Nad
∑

ω>ε+Ω

∑
Q

V (Q, iω)D̃(Q, iω),

(5.182)

where we recalled that D(Q, iω) = (2πN(0)τ)D̃(Q, iω) in the final line of eq. 5.182.

Comparing this to eq. 3.169, we see that the sum of diagrams A, B, C, E, and F give an

entirely analogous result to the homogeneous diagrams of the same type.

Turning our attention towards diagram D, we may write

Σ
(D)
φ,ee,ji =− T

a3d

∑
ω

∑
k,k′

[
Vji(iω)C̃ji(iε+ iΩ + iω, iε)Gi(k, iε)Gi(k, iε+ iΩ)

×Gi(k, iε+ iΩ + iω)Gj(k
′, iε)Gj(k

′, iε+ iΩ)Gj(k
′, iε+ iΩ + iω)

]
.

(5.183)
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Performing the momentum sums and shifting to lattice momentum space, we obtain

Σ
(D)
φ,ee(K) =

(2πN(0)τ 2)2T

Nad
∑

ω>−(ε+Ω)

V (Q, iω)C̃(Q + K, iΩ + iω). (5.184)

As with diagram F, we set K = 0 in eq. 5.184, and then approximating τ ' τ0, leads to

Σ
(D)
φ,ee =

(2πN(0)τ 2
0 )2T

Nad
∑

ω>−(ε+Ω)

V (Q, iω)C̃(Q, iΩ + iω). (5.185)

Finally, the variants of these diagrams with the interaction appearing on the lower

Green’s function can be found in an entirely identical manner to the homogeneous case.

This is due to the fact that tunnelling does not affect the frequency carried by a Green’s

function, and hence the diagrams in fig. 5.15 have the exact same frequency structure as

those for the homogeneous calculation. Therefore, the phase breaking rate generated by

the Coulomb interaction in granular metals is thus

1

τφ,ee
=

2πN(0)τ 2
0T

Nad
∑
Q

[( ∑
ω>ε+Ω

+
∑
ω>−ε

)
D̃(Q, iω)V (Q, iω)

−

 ∑
ω>−(ε+Ω)

+
∑
ω>ε

 C̃(Q, iΩ + iω)V (Q, iω)

]
,

(5.186)

where we set τ ' τ0 in the prefactor of the sums.

The process of analytically continuing the Matsubara sums in eq. 5.186 and expanding

to O(Ω0) is entirely identical to the homogeneous case. We therefore simply read off the

granular expression for τ−1
φ,ee from eq. 3.184,

1

τφ,ee
' −4N(0)τ 2

0

∑
Q

∫ +T

−T
dz
C̃R(Q, z)

sinh(βz)
Im
[
V R(Q, z)

]
, (5.187)

At this point we must consider each dimensionality specifically.
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2D systems

In two dimensions,

Im[V R(Q, z)] ' 2πe2DTκ2z

(κ2DTQ2)2 + z2
, (5.188)

where we have assumed the granular diffusive limit and noted that κ2 � Q. Replacing

the momentum sum by an integral and evaluating the resulting expression yields

1

τφ,ee
=

e2

πDTκ2

∫ +T

−T

dz

sinh(βz)

z

τ−1
φ − iz − z2

DT κ2
2

ln

(
τ−1
φ − iz
z2

DTκ2
2Γ + z2

Γ + τ−1
φ − iz

)
. (5.189)

Since DTκ2
2 is a large energy for disordered granular metals (DTκ2

2 � T ), and we are only

interested in small values of z, we may safely neglect the z2/(DTκ2
2) term appearing in the

denominator outside of the logarithm of the above integrand. We may also approximate

z/ sinh(βz) ' T , as we are only interested in small values of z (see appendix J.1). Inside

the logarithm, we may neglect the z2 appearing in the numerator if DTκ2
2Γ� z2. For the

latter to be true requires κ2a � z/Γ, which is guaranteed when Γ � T . If Γ � T , it is

not immediately clear whether we may neglect the z2 or not. For now let us assume that

κ2a� z/Γ, in which this case eq. 5.189 becomes

1

τφ,ee
=

T

4π2gT

∫ +T

−T

dz

τ−1
φ − iz

ln

(
τ−1
φ − iz
z2

DTκ2
2Γ

Γ + τ−1
φ − iz

)
, (5.190)

where we noted that DTκ2/e
2 = 4πgT .

To recover the granular analogue of the homogeneous result, we assume Γ� T � τ−1
φ

so that Γ� T 2τφ, and hence eq. 5.190 can be approximated as

1

τφ,ee
=

T

4π2gT

∫ +T

−T

dz

τ−1
φ − iz

ln

(
τ−1
φ − iz
z2

DTκ2
2

)

=
T

2π2gT

∫ T

0

dzRe

[
1

τ−1
φ − iz

ln

(
τ−1
φ − iz
z2

DTκ2
2

)]
.

(5.191)

This expression is identical to eq. J.21 for the homogeneous case with D → DT . We
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therefore recover a self-consistent equation with the same form as that for homogeneous

systems,

1

τφ,ee
=

1

4π

T

gT
ln(DTκ2

2Tτ
2
φ). (5.192)

Clearly there are many different limits we can consider due to the large number of energy

scales we have to play with. To write everything in terms of energy scales, we introduce

the Coulomb energy scale,

Vc =
4πe2

a
= κ2aδ. (5.193)

This is a large energy scale: for a system with a ∼ 10−7m, we have Vc ∼ 103K. Using this,

we can see that neglecting the z2 term in the denominator of the logarithm’s prefactor is

equivalent to assuming τ−1
φ � T 2δ/(V 2

c gT ). Recalling that δ is our smallest energy scale,

gT � 1, and Vc � T when considering low temperature phenomena, we see that this

assumption is safe in the systems we concern ourselves with. Let us now consider another

limit to demonstrate how granular and homogeneous systems may differ.23

We now take the limit where T � τ−1
φ � Γ, T 2δ/(V 2

c gT ), and so approximate the

logarithm as

ln

(
τ−1
φ − iz
z2

DTκ2
2Γ + z2

Γ + τ−1
φ − iz

)
= ln

(
1 +
DTκ2

2Γ

z2

)
− ln

(
1 +

Γ

τ−1
φ − iz

)

' ln

(
1 +
DTκ2

2Γ

z2

)
− Γ

τ−1
φ − iz

.

(5.194)

Substituting this into eq. 5.189, letting z → zτ−1
φ , and setting the upper limit of the

integral to infinity, we find24

1

τφ,ee
=

T

2π2gT

∫ ∞
0

1

1 + z2
ln

(
1 +

Γ2τ 2
φκ

2
2a

2

z2

)
. (5.195)

23This thesis is already long enough. It would be unwise to explore all possible limiting behaviours.
24The integral involving the second term of eq. 5.194 simply vanishes.
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Performing the frequency integral gives

1

τφ,ee
=

T

4πgT

[
ln(1− Γτ 2

φDTκ2
2) + 2 artanh(Γτφκ2a)

]
, (5.196)

where artanh(x) is the inverse function of tanh(x). By writing the artanh term in terms

of logarithms, we arrive at

1

τφ,ee
=

T

2πgT
ln(1 + Γτφκ2a). (5.197)

This self-consistent equation differs quite drastically from that in eq. 5.192, and hence

serves as a demonstration of novel phase breaking mechanisms that may be present in

granular metals.

To determine which expression is the most appropriate for a system requires an under-

standing of its material properties. With this knowledge we may then apply the suitable

limits to eq. 5.189. The limit we assumed in obtaining eq. 5.197 turns out to be unphysi-

cal for granular metals, as it subtly violates our assumption that gT � 1. This is because

N(ξ) = me/(2π) is constant in 2D, and so δ is also fixed for a system with a given grain

size. If a ∼ 10−7m, then δ ∼ 0.6K, so in assuming Γ � τ−1
φ � T we inadvertently take

Γ � δ and hence gT � 1. The assumption that τ−1
φ � T 2δ/(V 2

c gT ) may still hold for

a carefully chosen set of parameters. In any case, the important idea illustrated by eq.

5.197 is that new self-consistent equations can be obtained from granular systems, and

hence novel phase breaking behaviour may be observable in granular metals. We now

turn our attention to 3D systems.

3D systems

Unlike 2D systems, we now have the ability to change the mean level spacing by adjusting

the carrier concentration of a material. We will therefore be able to consider more limits
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Figure 5.16: Diagrams describing the phase coherence corrections to the cooperon in
granular systems due to superconducting fluctuations.

that are consistent with the granular metallic regime. In three dimensions,

Im
[
V R(Q, z)

]
' − 4πe2DTκ2

3z

Q2(D2
Tκ

4
3 + z2)

, (5.198)

so substituting this into eq. 5.187, approximating z/(sinh(βz)) ' T , and treating the

momentum sum as an integral gives

1

τφ,ee
=

T

π3gT

1√
Γτφ

∫ Tτφ

0

dz

1 + z2

τ2
φD

2
T κ

4
3

Re

[
1√

1− iz
arctan

(√
Γτφ

1− iz

)]
. (5.199)

We start by considering the limit Γ � T � τ−1
φ , which allows us to recover the

granular result analogous to the homogeneous case, see eq. 3.188,

1

τφ,ee
=

1

π2
√

2Γ

T 3/2

gT
. (5.200)

If we instead take the limit T � τ−1
φ � Γ, eq. 5.199 can be approximated as

1

τφ,ee
=

T

π3gT

∫ Tτφ

0

dz

1 + z2

τ2
φD

2
T κ

4
3

Re

[
1

1− iz

]
. (5.201)
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Evaluating this integral, and noting that κ2
3a

2 = 2Vc/δ, we arrive at a self-consistent

equation for the 3D Coulomb phase breaking rate,

1

τφ,ee
=

4

π3

V 2
c τ

2
φgTT

1− 4V 2
c τ

2
φg

2
T

[
1

2gTVcτφ
arctan

(
T

2VcgT

)
− arctan(Tτφ)

]
. (5.202)

In writing eq. 5.202, we have not let Tτφ →∞ in the intergal limit. Given that Vc � T ,

our assumption T � τ−1
φ , and that we may still take gT � 1, this self-consistent equation

can be simplified drastically to yield

1

τφ,ee
=

1

π3

T

gT
arctan(Tτφ) ' 1

2π2

T

gT
. (5.203)

Eq. 5.203 shows that we may obtain a result for τ−1
φ unique to granular metals. Our

next task is to understand the role of superconducting fluctuations in phase breaking for

granular systems.

5.5.2 Superconducting Fluctuation Phase Breaking Mechanism

As in our calculation for σfl in section 5.4, we shall only consider 3D systems as this is

what will be most relevant for comparison to the experimental results discussed in chapter

6. The diagrams describing τ−1
φ,fl are given in fig. 5.16, and can be shown to give

1

τφ,fl
' 8πN(0)2T

Nadτ−4
0

∑
Q

∑
q

∫ +T

−T
dz

Im
[
LR(Q,q, z)

]
z

(ΓλQ +Dq2 + iz)C̃A(Q,q, z)2, (5.204)

in analogy to eq. 3.192. As in the homogeneous case, we let z → zτ−1
φ , set Tτφ → ∞

in the integral limits, and ignore all τ−1
φ dependence in the pair propagator’s digamma

functions and digamma function derivatives. By further assuming Q� a−1, we find

1

τφ,fl
=

16T 2

πN(0)

×
∑
Q

∑
q

[
1 +

Dq2 +DTQ2

τ−1
GL +Dq2 +DTQ2

]
1[

2(Dq2 +DTQ2) + τ−1
GL + τ−1

φ

]2 .
(5.205)
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Here we have assumed the ideal case for superconducting fluctuation crossovers, where

Γ� ETh � Tc.

As we saw in the calculation of σfl, three regions of behaviour exist inside supercon-

ducting fluctuation contributions due to the nature of the pair propagator. The phase

breaking rate is no exception to this, so we must consider the three different regions of

behaviour separately here too. We apply the same ideas we have used throughout this

thesis, so, for the sake of brevity, we simply give the end results. In the close-to-Tc region

(τ−1
GL � Γ),

1

τφ,fl
=

8T 2

π3gT

[
τ−2
φ − 3τ−1

GLτ
−1
φ − 2τ−2

GL

2(τ−1
φ − τ

−1
GL)2

√
2Γ(τ−1

GL + τ−1
φ )

arctan

(√
2Γ

τ−1
GL + τ−1

φ

)

+
τ−1
GL

(τ−1
GL − τ

−1
φ )2

arctan(
√

ΓτGL)√
ΓτGL

+
1

2

τ−1
φ

τ−1
GL − τ

−1
φ

1

2Γ + τ−1
GL + τ−1

φ

]
,

(5.206)

which gives an equivalent expression to the homogeneous case, see eq. 3.197, in the limit

Γ� τ−1
φ ,

1

τφ,fl
=

T 2

π2gT

√
2

Γ(τ−1
GL + τ−1

φ )

 1− τ−1
GL


√

2τ−1
GL −

√
τ−1
GL + τ−1

φ

τ−1
GL − τ

−1
φ


2  . (5.207)

For a general granular system, eq. 5.206 is a clear indicator of behaviour not seen in

homogeneous metals.

Moving onto the intermediate region (Γ� τ−1
GL � ETh), eq. 5.206 yields

1

τφ,fl
=

8δ

3π3

T 2

(τ−1
GL + τ−1

φ )2
. (5.208)

Finally, in the far-from-Tc region (ETh � τ−1
GL � Tc),

1

τφ,fl
=

T 2

3π4gT

1√
ETh(τ

−1
GL + τ−1

φ )

1− τ−1
GL


√

2τ−1
GL −

√
τ−1
GL + τ−1

φ

τ−1
GL − τ

−1
φ


2 , (5.209)

210



5.5. PHASE COHERENCE LIFETIME

which has a form resembling the homogeneous 3D result, as expected in the far-from-Tc

region.

In summary, we see that the superconducting fluctuation contribution to τ−1
φ has three

distinct regions of temperature dependence. The close-to-Tc behaviour only resembles the

homogeneous 3D result in the limit Γ� τ−1
φ , and produces a new self-consistent equation

otherwise. In the intermediate region, we obtain another novel self-consistent equation

unique to granular media, whilst in the far-from-Tc region, we find a result reflecting the

system’s dimensionality.

To see how the behaviour of τ−1
φ changes compared to the homogeneous case, we plot

numerical solutions to the self-consistent equations given by the sum of τ−1
φ,ee (eq. 5.203)

and τ−1
φ,fl within each fluctuation region.25 The results are shown in fig. 5.17a, where we

have assumed the following parameters,

δ = 10−5K, Γ = 10−3K, ETh = 10−1K, Tc = 10K. (5.210)

We use these parameters as a demonstration of the behaviour we might see in granular

materials.

In fig. 5.17a, the solid blue and solid red lines are calculated using eq. 5.206 and

represent the close-to-Tc and intermediate behaviour. In contrast, the dashed black line is

instead calculated using eq. 5.208 for τ−1
φ,fl. By comparing the dashed black line with the

solid red line, we see that the transition between close-to-Tc and intermediate behaviour

is smooth and relatively quick.

The far-from-Tc behaviour (solid green line) is not connected to the intermediate curve,

as this crossover is not trivial to compute analytically or numerically. For an accurate

description, we would need to perform the q sum numerically, rather than treat it as an

integral at all temperatures. If we were to treat the intragranular momentum sum as an

integral (i.e. q is taken to be continuous), then we would introduce contributions arising

from values of q that are smaller than the minimum non-zero intragranular momentum,

25By using eq. 5.203, we have assumed T � τ−1φ � Γ.
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Figure 5.17: The thin vertical black lines note the boundaries between the fluctuation
behaviour regions. The solid blue and solid red lines show the self-consistent solution
of the total phase breaking rate using eq. 5.206, in the close-to-Tc and intermediate
regions respectively. The solid green line shows the self-consistent solution of the total
phase breaking rate using eq. 5.209 in the far-from-Tc region. (a): solution using the
parameters in eq. 5.210. (b): solution using the parameters in eq. 5.210, but with
δ = 10−4K instead.

such that they would be comparable to Q. This would give rise to more contributions

that would appear as comparably singular to the q = 0 term, which is not physically

reasonable. We are therefore left with the unfortunate situation of not being able to plot

a curve that is smooth over all regions of fluctuation behaviour. Thus, the green curve

should only be used as a guide far away from the intermediate-far boundary. In a similar

sense, the same is also true of the red curve within the intermediate region; we should use

it as a guide far away from the intermediate-far boundary. The point at which we can

consider the curve to be near-exact is not trivial to determine.

In the close-to-Tc region, τ−1
φ varies extremely slowly, and can be treated as approxi-

mately constant. Upon entering the intermediate region, the phase breaking rate begins

to decrease with an apparent η−0.9 power law, before beginning to slow its rate of de-

crease as it approaches the intermediate-far boundary. In the far-from-Tc region, the

phase breaking rate can be seen to continue decreasing, before starting to increase as we

move away from Tc. As discussed above, the exact behaviour around the intermediate-far

transition is not trivial to determine. We may, however, try to qualitatively analyse the
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possible temperature dependence of τ−1
φ between the two regions.

Given that τ−1
φ begins to increase at higher temperatures deep inside the far-from-

Tc region, and that the gradient of τ−1
φ begins to increase in the intermediate region as

the intermediate-far crossover is approached, it is reasonable to assume that the phase

breaking rate has a natural minimum that exists near the intermediate-far crossover. The

region this minimum lies in is not clear, and may vary depending on the parameters chosen.

If the minimum lies inside the far-from-Tc region, we might expect the red curve to be a

fairly good approximation of the intermediate behaviour far away from the intermediate-

far crossover, and so the apparent η−0.9 power law would still be visible over approximately

one order of magnitude in η. In contrast, the minimum might exist in the intermediate

region, and so the red curve will only be reliable further away from the intermediate-far

crossover, in comparison to the previous situation. Additionally, the range over which we

might expect the η−0.9 power law will be reduced, and may not even be visible in this

case.

From a more pessimistic perspective, the behaviour of τ−1
φ might be more comparable

to the green curve close to the intermediate-far crossover, even in the case where the

minimum was located in the far-from-Tc region. Hence, the intermediate behaviour would

appear drastically modified compared to that shown by the red curve in fig. 5.17a. To

determine which of these pictures is correct requires an efficient way to perform the

intragranular momentum sums without approximating them as an integral.

Finally, let us address the power law we see in the intermediate region. By using the

same set of parameters as those listed in eq. 5.210, but taking δ = 10−4K instead, we

plot the reduced temperature dependence of τ−1
φ in fig. 5.17b. Here we find an η−0.3

power law, and so the relation we see between the phase breaking rate and η appears to

be non-trivial. To obtain a relation akin to Brenig et. al.’s [59], see eq. 3.209, does not

seem feasible given the self-consistent forms of τ−1
φ,ee and τ−1

φ,fl in granular systems.
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5.6 Chapter Summary

In summary, this chapter has presented the application of the diagrammatic methods de-

rived in chapter 4 to describe the temperature dependence of the electrical conductivity in

disordered granular metals. We started by presenting both a classical and field theoretic

derivation of the granular equivalent of the Drude conductivity. After this we demon-

strated how to obtain the granular cooperon and diffuson, so that we could calculate the

weak localisation corrections to the electrical conductivity in granular metals. In these

calculations we found straightforward mappings between the homogeneous and granular

results by letting D → DT .

We then considered two-body interactions, choosing to tackle the Coulomb interac-

tion first. Here we found that granular metals produced results analogous to the homo-

geneous case when T � Γ. However, this model gave a new and novel T−1 correction

that was independent of dimensionality when Γ � T . Following this, we calculated the

superconducting fluctuation corrections to the electrical conductivity in the case where

Γ � ETh � Tc, and saw that three regions of behaviour existed within the fluctuation

conductivity. Each of these regions could be interpreted physically by comparing the size

of a grain to the intergain and intragrain coherence lengths of a Cooper pair.

Finally, we calculated the temperature dependence of the phase breaking rate due to

EEIs and virtual Cooper pairs. Here too, we found three regions of behaviour close to

the superconducting transition. Let us now move on to comparing the predictions of this

theory to experiment.
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CHAPTER 6

BORON-DOPED

NANOCRYSTALLINE DIAMOND:

EXPERIMENTAL RESULTS

The work in this thesis was inspired by the experiments of Klemencic et. al. [28], who

measured the electrical resistance of boron-doped nanocrystalline diamond (BNCD) films.

Specfically, they looked at how the electrical resistance changed as the temperature was

varied from room temperature, down to below the superconducting transition temperature

of the BNCD films, Tc . 4K. Within their data, they saw superconducting fluctuation

corrections characteristic of a 3D granular metal in the form of crossovers in the fluctuation

conductance (3D-q0D-3D behaviour). Most interestingly, they saw the η−3 power law

that we would expect from the AL contribution, and so used this as a fitting guide to

determine Tc. After fitting an η−3 power law to a region, they saw very sharp changes

to η−1/2 behaviour either side of the η−3 region. These observations leave us with the

following questions: what might be suppressing the anomalous MT term, such that the

AL term can dominate? Is there a novel phase breaking rate that alters the anomalous

MT behaviour to look like the AL term? Should we expect the crossovers to be sharp?

To answer these questions, we first reproduce Klemencic et. al.’s data analysis, using
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Figure 6.1: The plots above show the data (crosses) taken by Klemencic et. al. [28] on a
339nm thick BNCD film. (a): Fitting 3D EEI corrections and Drude to high temperature
behaviour. (b): focus on the superconducting transition.

the data they presented in [28]. Next, we compare this analysis to the theoretical predic-

tions of chapter 5. Finally, we conclude this chapter with a discussion of the applicability

of the theory to the BNCD films of Klemencic. et. al., and what further work may be

required to deepen our understanding of granular superconductors.

6.1 Data Analysis

Fig. 6.1a presents the data taken by Klemencic et. al. [28] on a 339nm film, and shows a

3D EEI power law, ∼ T 1/2, plus granular Drude fitting to the high temperature behaviour

(T ≥ 10K). To isolate the fluctuation behaviour, we simply subtract the conductance of

this fitting away from the conductance data, which produces fig. 6.2a. Klemencic et.

al. saw an η−3 power law behaviour, which is characteristic of the AL contribution in

the intermediate region. We therefore fit the same power law over the region of η which

appears to have this behaviour. By fitting a power law to the fluctuation data we are able

to extract a value for Tc, which corresponds to the theoretical superconducting transition,

rather than an arbitrary point that is a fraction of the normal state resistance.1 For the

339nm film we find Tc = 3.81K.

1Sometimes Tc is defined experimentally as the temperature at which the resistance of a material is
90%, 50%, or 10% of its normal state value just above the transition (i.e. where η is not small).
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Figure 6.2: The plots above show the fluctuation data we have generated from Klemencic
et. al.’s data [28] from a 339nm BNCD film. (a): Here we guessed Tc = 3.8K, and have
not applied any fitting routine. (b): Fitted fluctuation data, where the shaded regions
indicate areas where the crossovers occur.

After the application of this fitting, see fig. 6.2b, we find two sharp crossovers between

η−3 and η−1/2 power laws. The shaded regions in fig. 6.2b represent the area in which

we expect the boundaries corresponding to Γ/Tc and ETh/Tc to lie. This behaviour can

be seen in multiple different film thicknesses; we present the plots of this analysis for

Klemencic et. al.’s 128nm, 160nm, 168nm, 204nm, and 564nm films in appendix L.

6.2 Theory Versus Experiment

To compare theory to experiment, we use the following parameters,

δ = 5.6× 10−3K, Γ = 2.62× 10−2K, ETh = 1K,

Tc = 3.8K, a = 10−7m,

(6.1)

where a is based upon the average grain size given in [28], and the mean level spacing

corresponds to a carrier concentration of 1027m−3, which is taken from [77].2 With these

parameters, ETh is too large for us to include any non-zero internal momenta associated to

a virtual Cooper pair, such that we can still satisfy our assumption of the diffusive limit.

2For comparison to Klemencic et. al. [28], note that ETh = 1K corresponds to D = 13.1 cm s−1.
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Figure 6.3: Theoretical predictions for the different contributions to the fluctuation con-
ductivity, using the parameters listed in eq. 6.1, in the absence of phase breaking. The
solid black vertical lines mark where η = Γ/Tc and η = ETh/Tc. (a): Total fluctuation
conductivity. (b): DOS and regular MT contribution. (c): AL contribution. (d): Anoma-
lous MT contribution. (These are the plots presented in Perkins et. al. [76].)

Therefore, we shall only consider the q = 0 contributions of the fluctuation conductivity

corrections presented in section 5.4. The theoretical fluctuation conductivity is presented

in fig. 6.3, where we have initially assumed τ−1
φ = 0K.

As expected, the AL contribution is completely dominated by the MT and DOS terms

in the intermediate and far-from-Tc regions. However, we do in fact observe an η−1/2

power law in the far-from-Tc region, despite the fact that we have not included the internal

DOFs of the virtual Cooper pairs. This behaviour can be attributed to the anomalous

MT term, see fig. 6.3d. The reason behind this apparent power law behaviour is not

straightforward, and is unlikely to be as simple as being able to find an approximation
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such that σ
(an)
MT ∼ η−1/2 in this region without the inclusion of internal DOFs. Given that

this power law is seen in the region where 10−1 < η < 1, we cannot take ln(T/Tc) ' η here,

and so the fact we see power law type behaviour theoretically is most likely happenstance.

We should also note that the theory predicts a much more gradual change in power

law behaviour, compared to the sharp crossovers seen in experiment. Additionally, the

close-intermediate crossover in the theory appears at a much lower value of η than we

might initially expect. The theory predicts that the close-to-Tc behaviour should not

be visible within the experimental range of η; i.e. the theoretical close-to-Tc behaviour

appears to start around at most η ∼ 10−4, whilst the experimental fluctuation data is

only in the range 10−3 ≤ η. To shift the close-to-Tc η
−1/2 power law into the experimental

range of η, we might wish to choose a larger value of Γ. It turns out that this does move

the η−1/2 behaviour to higher values of η, but the size of Γ required is much larger than

expected, and still does not give a perfect power law within the experimental η range. We

will return to this point shortly.

Let us now consider the effects of a constant phase breaking rate. This will allow us

to check whether the anomalous MT contribution can be suppressed such that it cancels

almost perfectly with the DOS and regular MT terms, thus allowing the AL term to

be visible in the intermediate region. Fig. 6.4a shows total fluctuation conductivity for

different values of τ−1
φ using the parameters given in eq. 6.1. For large phase breaking,

τ−1
φ ∼ Tc, we find that the η−3 power law does indeed become visible due to the near-

perfect cancellation of the MT and DOS terms. However, we find that this introduces an

uncharacteristic minimum in σfl and still does not give sharp crossovers.

For comparison, let us consider a different set of material parameters,

δ = 5.6× 10−3K, Γ = 0.1K, ETh = 3K,

Tc = 3.8K, a = 10−7m.

(6.2)

Using these values, we obtain the fluctuation conductivity for different constant phase

breaking rates shown in fig. 6.4b. We again find that the η−3 power law only becomes
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Figure 6.4: Total fluctuation conductivity corrections for different constant τ−1
φ , using two

different sets of material parameters. The solid black vertical lines mark where η = Γ/Tc
and η = ETh/Tc using the values for Γ and ETh given in eq. 6.1. The dashed black line
acts as a guide for η−3 behaviour. (a): Here we use the experimental parameters given in
eq. 6.1. (b): Here we use the custom set of parameters given in eq. 6.2. (These are the
plots presented in Perkins et. al. [76].)

visible when τ−1
φ ∼ Tc, and that the same minimum is still obtained. We also note that,

whilst the close-intermediate crossover has move to a higher value of η, the fluctuation

conductivity still has not rolled over to a clear η−1/2 power law within the experimental

η range when in the close-to-Tc region. Furthermore, the value of Γ is much larger than

we might initially expect based upon the fitting in fig. 6.2b. We should also note that

the range over which we see η−3 behaviour is smaller than before too.

Let us now include our model for the temperature dependence of τ−1
φ . By assuming

Γ� τ−1
φ � T , we make use of eq. 5.203 for τ−1

φ,ee and eq. 5.206 for τ−1
φ,fl, and we plot the

resulting solution to the self-consistent equation in fig. 6.5. From this we can see that

our assumption T � τ−1
φ holds true within reason, whilst the assumption τ−1

φ � Γ is not

so clearly supported.3 Within the intermediate region we note that τ−1
φ follows an η−0.55

power law. However, unlike the examples for τ−1
φ behaviour we gave in section 5.5.2,

we have only included the q = 0 components and allowed the close-to-Tc and intermedi-

ate self-consistent solution to run across all η. As a result, we see that the minimum phase

3The notion of a quantity being much larger than 1, or rather sufficiently large is very situational.
Sometimes we find the large parameter limit is reached relatively quickly. So the notion of large is smaller
in some cases than others.
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Figure 6.5: Total phase breaking rate based upon the parameters in eq. 6.1.
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Figure 6.6: Theoretical predictions for the different contributions to the fluctuation con-
ductivity including a temperature dependent phase breaking rate, using the parameters
listed in eq. 6.1. The solid black vertical lines mark where η = Γ/Tc and η = ETh/Tc.
(a): Total fluctuation conductivity. (b): DOS and regular MT contribution. (c): AL
contribution. (d): Anomalous MT contribution.
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breaking rate clearly occurs inside the intermediate region.

Our model of the phase breaking rate assumes that τ−1
φ is small enough such that we

may neglect its presence inside all digamma functions and digamma function derivatives.

Hence, in the equations describing granular fluctuation conductivity in section 5.4, we

take ε(0, T ) ' ln(T/Tc) and αn(0, T ) ' ψ(n)(1/2). With these approximations, we obtain

the plots shown in fig. 6.6, where we see that phase breaking has the effect of suppressing

the anomalous MT contribution in the close-to-Tc region, whilst leaving the AL and DOS

terms unaffected. Additionally, the behaviour of the anomalous MT term appears to be

altered such that it no longer has an η−1 power law in the intermediate region. Rather,

the anomalous MT contribution now appears to have a slight wobble in its behaviour.

Around the close-intermediate boundary it has an approximately η−0.6 power law, in the

middle of the intermediate region an η−1/2 power law can be seen, and finally an η−1

relation around the intermediate-far boundary.

Looking at the far-from-Tc region, we see that the anomalous MT term’s η−1/2 power

law has also been suppressed. In the depths of the far-from-Tc region, the anomalous

MT term begins to decrease with increasing temperature at a faster rate than η−1, and

resembles the DOS and regular MT behaviour in the same region. Combining the AL,

MT, and DOS terms whilst including the temperature dependence of τ−1
φ , see fig. 6.6a,

we find a conductivity that does not possess an η−3 power law in the intermediate region,

and bears no resemblance of Klemencic et. al.’s data. Let us now discuss what we can

deduce from comparing theory to experiment.

6.3 Discussion

In the above we have seen that, without the inclusion of phase breaking mechanisms,

we cannot reproduce a dominant η−3 power law over the range 10−2 . η . 10−1. In a

näıve approach we initially assumed a constant phase breaking rate, and found that only

for τ−1
φ ∼ Tc, were we able to obtain an η−3 power law over approximately one order
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of magnitude in η. Phase breaking rates of a size comparable to Tc have been observed

before in other systems [78, 79], and so we should not be too concerned regarding the size

of τ−1
φ in this case. However, this model introduced an uncharacteristic minimum into σfl,

which is not seen experimentally. The minimum appearing in σfl may seem unphysical;

however the experimental data for Gfl is extremely small, and so is very sensitive to the

fitting of EEIs plus Drude. Hence, a small change in the high temperature fitting may

allow for a minimum to exist in the fluctuation conductivity. Overall, this assumption of

a constant τ−1
φ allowed for a semi-quantitative agreement between theory and experiment.

Despite the lack of η−3 behaviour in the intermediate region when τ−1
φ = 0K, we did

obtain an η−1/2 power law in the far-from-Tc region without the inclusion of intragranular

momenta. This behaviour was a consequence of the anomalous MT term. Whilst this

power law behaviour is serendipitous, we may be able to probe whether it is the result

of the anomalous MT contribution by applying a magnetic field to increase the phase

breaking rate. If the observed far-from-Tc behaviour is due to the anomalous MT term,

we would expect it to be replaced by DOS type behaviour at higher field strengths.

After considering a constant phase breaking rate, we applied our model for the tem-

perature dependence of τ−1
φ and found that τ−1

φ ∼ 10−1K, under the assumption that

Γ � τ−1
φ � T . We saw that the resulting phase breaking rate only varied significantly

in the intermediate region, where it obeyed an η−0.55 power law and reached a minimum

value of τ−1
φ ∼ 0.05K. Upon substituting this into the AL, MT, and DOS terms, we saw

that the total fluctuation conductivity was drastically different to the case with no phase

breaking, and the case of a constant phase breaking rate. The changes we saw lead to

an alteration of the anomalous MT contribution in all regions, such that it was heavily

suppressed in the close-to-Tc and far-from-Tc regions. The intermediate behaviour became

quite muddled, with different power laws appearing for short ranges of η. We therefore

cannot assign a definite form of relation between σ
(an)
MT and η in this region.

In all cases we were unable to produce crossovers that were as sharp as those observed

in experiment. This is a point that remains to be explored and replicated through some
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means. Furthermore, our assumption τ−1
φ � Γ may not be valid, and so the reduced

temperature dependence of τ−1
φ plotted in fig. 6.5 may not be entirely accurate in the

intermediate region. However, in the close-to-Tc region and deep in the far-from-Tc region,

τ−1
φ can be argued to be sufficiently large for our approximations to hold. In any case, we

can expect the phase breaking rate to be in the range 0.01K . τ−1
φ . 0.1K, and so not

suppress the intermediate MT sufficiently to allow the AL term to dominate. Given that

the crossovers in both σfl and τ−1
φ are not sharp changes, it is unlikely that the model

we are currently considering will produce a phase breaking rate sufficient to modify the

anomalous MT term, such that it replicates an η−3 power law in the intermediate region.

Finally, let us address the assumptions behind the fitting procedure. By fitting a

function of the form 1/(aT 1/2 + b) to the high temperature resistance data, we have

assumed the standard homogeneous 3D form for the EEI contribution to the electrical

conductivity. To obtain such behaviour in granular systems requires Γ � T , see section

5.3. However, to see crossovers in the fluctuation conductivity requires us to assume

Γ � Tc, and so the two models we are trying to apply to the data appear to be from

contradicting limits. This leaves us with a very interesting set of questions regarding the

physics observed in BNCD systems that are yet to be answered.

If the high temperature fit is correct, what exactly is the physics we are seeing in the

fluctuation conductivity? Crossovers in σfl are not seen in 3D homogeneous systems,4

so clearly this must be a result of granularity. However, the only model we have seen

describing two crossovers is the one originally presented by Lerner et. al. [27], which

we have extended in this thesis. If other mechanisms are present, we will need to first

understand what is responsible for their presence. It is not currently clear what other

physics may play a role in this system.

If the fluctuation theory is correct, what is the origin of the T 1/2 high temperature

behaviour? Perhaps phonons play a more significant role in granular systems, or BNCD

4Crossovers can be seen in homogeneous thin films, as far from the transition the virtual cooper pair
coherence length is much smaller than the film thickness, and so the material appears 3D. Approaching
Tc, the cooper pair coherence length becomes greater than the film thickness, and so the system now
appears 2D in nature. Hence we see a 3D-2D crossover when approaching the transition from above.
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in particular. To check this would require further work beyond that presented in this

thesis.

On the topic of phonons, perhaps our assumption of the BCS interaction only being

local to a grain is not always applicable. To deal with two-body interactions that have

both internal and external DOFs is an area for further study. We should note that spin

glass behaviour has also been observed by Klemencic et. al. [28] in the same BNCD

films, which suggests the ability for each grain to possess its own superconducting order

parameter. For independent order parameters, a BCS interaction local to a grain would be

an accurate description of the system. However, if the order parameter phases are able to

interact this would suggest some form of Cooper pair interaction between grains. Hence,

an accurate description of BNCD may require a theory of superconducting fluctuations

that allows for an intergranular BCS interaction.
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CHAPTER 7

CONCLUSION

In this thesis we started by deriving the building blocks for diagrammatic quantum field

theory in chapter 2. In chapter 3, we showed how these ideas could be used to calcu-

late the electrical conductivity of a disordered homogeneous metal to obtain the Drude

conductivity and the weak localisation correction to this result. Furthermore, we showed

how to reproduce the temperature dependence of the conductivity corrections due to the

Coulomb interaction between electrons (EEIs), and due to virtual Cooper pairs appear-

ing near the superconducting transition whilst in the normal state; these results are well

known in the literature, see [39] and [56] respectively. Finally, this chapter showed how

to calculate the temperature dependence of the phase breaking rate, τ−1
φ , generated by

EEIs and virtual Cooper pairs. Understanding τ−1
φ is vital in avoiding the divergences

that appear in 1D and 2D systems when considering the effects of weak localisation and

superconducting fluctuations.

Following on from this in chapter 4, we developed a set of diagrammatic rules analogous

to those obtained in chapter 2, which allowed us to construct a field theoretic description

of a granular system. These ideas were based upon the prior works of Beloborodov et. al.

[26], Biagini et. al. [67], Lerner et. al. [27], and Barone and Paternò [71]. Unlike prior

works, however, we incorporated the DOFs internal to a grain and external to a grain

(i.e. the lattice DOFs) simultaneously. We further introduced a statistical distribution to
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describe the random distribution of tunnelling energies associated to each grain bound-

ary. This allowed us to perform a disorder average over tunnelling events, and so obtain

a granular disorder-averaged electron Green’s function which had knowledge of internal

impurity scattering and of tunnelling between grains. This amounted to replacing τ−1
0 ,

the elastic scattering rate of electrons off of impurities, by τ−1 = τ−1
0 + zΓ in the homoge-

neous disorder-averaged electron Green’s function. Here Γ is the electron tunnelling rate

between two grains, and z is the coordination number of grains. The inclusion of both

sets of DOFs also led to two-particle propagators and interactions having two momentum

arguments: internal momenta associated to motion inside a grain, and external/lattice

momenta associated to hopping between grains.

After this, chapter 5 showed how these rules for a granular system could be applied to

a disordered granular metal to obtain the temperature dependence of the electrical con-

ductivity in such materials. Here we provided an explicit derivation of the granular Drude

conductivity, followed by the calculations of the WL, EEI, and superconducting fluctua-

tion corrections to the electrical conductivity. We finished this chapter by calculating the

phase breaking rate present in granular systems, where we found that a large number of

parameters were involved, and hence allowed for several limits to exist in such materials.

We considered two limits: one which gave results analogous to the homogeneous case, and

a second to demonstrate what novel phase breaking rates might be present in disordered

granular metals.

In these calculations we introduced a new limit in analogy to the homogeneous case,

which we named the granular diffusive limit. This limit allowed for a simple mapping

between the homogeneous results and granular results, where by letting D → DT in the

homogeneous corrections we obtained the granular results in the limit Γ� T .

In the limit Γ � T , we obtained new results unique to disordered granular metals

in the case of EEIs, superconducting fluctuations, and phase breaking rates. For EEIs

we saw that, in all dimensionalities, the conductivity correction would have a T−1 power

law. For superconducting fluctuations we found three regions of behaviour to exist near
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Tc, which agreed with the ideas of Lerner et. al. [27]. We found that in the close-to-

Tc region, η � Γ/Tc (η = (T − Tc)/Tc), the fluctuation conductivity, σfl, reflected the

dimensionality of the system. Moving away from the transition into the intermediate

region, Γ/Tc � η � ETh/Tc, we found that the power law dependence of σfl upon η

changed drastically, such that the AL contribution became quasi-0D in exhibiting an η−3

power law, whilst the anomalous MT and DOS terms generated η−1 power laws. Finally,

by moving further away from the transition into the far-from-Tc region, ETh/Tc � η � 1,

the behaviour of the anomalous MT and DOS terms returned to power laws that resembled

the dimensionality of the system: the anomalous MT term behaved as η(d−4)/2, whilst the

DOS term became approximately constant. In contrast, the AL term produced an η(d−6)/2

correction.

In general, the anomalous MT and DOS terms have d-dimensional behaviour in the

close-to-Tc and far-from-Tc regions due to being second order in tunnelling. However,

the AL term is fourth order in tunnelling, and so each block of its diagram generates a

factor of Qαa, where a is the typical grain size, but no analogous factor for the internal

momentum q. Hence, the internal and external momentum integrals give rise to different

power laws.

Regarding the order of each term, we saw that, in the absence of phase breaking,

the AL term was always dominated by the anomalous MT term in the intermediate and

far-from-Tc regions. The DOS was also dominated by the anomalous MT term in these

regions when phase breaking was negligible, and so we expect in granular systems with

Γ� ETh � Tc,

σfl ∼
e2

a
×



√
Tc
Γ
η−1/2, η � Γ

Tc

η−1,
Γ

Tc
� η � ETh

Tc√
Γ2Tc
E3
Th

η−1/2,
ETh
Tc
� η � 1,

(7.1)

when τ−1
φ = 0.
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Furthermore, each region of behaviour can also be related to the coherence length

of a virtual Cooper pair compared to the size of a grain. We showed that the virtual

Cooper pair propagator contained two coherence lengths: one associated to the internal

DOFs, ξv,g, and another associated to the external DOFs, ξv,T . The close-to-Tc region

corresponds to when ξv,g, ξv,T � a, the intermediate region occurs when ξv,g � a� ξv,T ,

and the far-from-Tc region can be seen when a� ξv,g, ξv,T .

Finally, in chapter 6 we compared our model of a disordered granular metal to the

experiments of Klemencic et. al. [77], who measured the temperature variation of resis-

tance in boron-doped nanocrystalline diamond (BNCD) films. In their work they observed

three crossovers in the fluctuation conductivity, and so used the ideas of Lerner et. al.

[27] to determine the values of Γ and ETh in various BNCD films. Specifically, they

saw η−1/2 behaviour in the close-to-Tc and far-from-Tc regions, whilst the intermediate

region possessed an η−3 power law. Hence, the fluctuation conductivity has 3D-q0D-3D

behaviour.

To understand the results of Klemencic et. al. [28], we started the chapter by repro-

ducing their data analysis to obtain the fluctuation conductivity, which required a high

temperature conductivity fitting of the form σ0 +bT 1/2. This would imply that the system

is not only 3D, but also in the limit Γ � T . However, in looking at the data and using

an approximate temperature for where the resistance vanishes, the remaining fluctuation

conductivity clearly exhibited three regions of behaviour, with the intermediate region

displaying an η−3 power law. According to our model, this appears to disagree with the

high temperature fitting, as this would require Γ � ETh � Tc. Not only do we have a

discrepancy, but the intermediate power law is also indicative of the AL term. Under the

assumption that our model for σfl is applicable to BNCD, this would require a significant

phase breaking rate to suppress the anomalous MT term, such that it would cancel almost

perfectly with the DOS term. Without a phase breaking rate, the fluctuation conductiv-

ity gave the same behaviour as that listed in eq. 7.1 and gave rise to gradual crossovers,

rather than the sharp changes at the region boundaries that are seen in experiment.
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The inclusion of a constant phase breaking rate would require τ−1
φ ∼ Tc to produce an

η−3 power law, but then gave rise to a minimum not seen in the fluctuation data. However

the magnitude of the data at this point is rather small, and so can be affected notably by

the high temperature fitting. Therefore, a slight change in the high temperature fitting

might allow for a minimum to arise near the intermediate-far crossover.

Finally, by including our model for a temperature dependent phase breaking rate,

we found that τ−1
φ was significantly smaller than the constant τ−1

φ values we previously

considered. Thus, the AL η−3 power law was not observable with the inclusion of our

model for a temperature dependent phase breaking rate. We also saw that the behaviour

of τ−1
φ modified the anomalous MT contribution, not only by suppressing it slightly, but

also changing its apparent power law behaviour. However, this change in the anomalous

MT term’s behaviour also did not produce an η−3 power law in the intermediate region.

We are therefore left with several questions regarding both the theoretical model and

the physics observed experimentally. The first major point to clarify is can we obtain a

T 1/2 dependence far away from Tc when Γ� Tc? If this behaviour is purely the result of

EEIs, then we will have to search for extra diagrams in the theory that may be of equal

importance to those already considered. Perhaps the behaviour seen experimentally might

correspond to the granular analogue of the intermediate region of behaviour between the

diffusive and ballistic limits. If the T 1/2 dependence is not due to EEIs, we are left needing

to determine what the appropriate mechanism is from both a theoretical and experimental

perspective. One possible avenue is to consider the role of phonons in granular metals

beyond the standard BCS treatment.

In contrast, we could ask: if Γ� T , can we still obtain a fluctuation conductivity with

three regions of behaviour? If so, what do the region boundaries correspond to? These

questions are far less straightforward to answer, as our current understanding leads us to

believe the crossovers can only occur due to the singular nature of the pair propagator

near the transition. Our task would be to see if we are able to introduce other scales

into the pair propagator that allowed for Γ� T , such that η could be smaller or greater
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than the new scales whilst still satisfying η � 1. One possible avenue to explore is the

modification of our BCS term to allow it to couple electrons in different grains.

Given that an η−3 power law is seen in σfl experimentally, it would be reasonable to

attribute this to the AL term we calculated in chapter 5. Our focus should therefore be on

trying to explain how the AL term might dominate over the anomalous MT contribution.

At present, it is not possible to say which route will ensure this to be true, whilst still

producing three regions of behaviour in σfl close to the transition.
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APPENDIX A

SECOND QUANTISATION & THE

PICTURES OF QUANTUM

MECHANICS

In this appendix we provide an outline of the ideas underlying second quantisation, and

how we may write quantum many-body problems in a second-quantised form. We shall

also cover the different pictures of quantum mechanics we may consider when under-

standing the time evolution of observables from the operators and states relevant to the

problem.

A.1 Second Quantisation

Let us first summarise the construction of second quantisation, where we closely follow

the style of [34].1 Starting from a single-particle picture, we define the set of normalised

single-particle states, {|λ〉}, in terms of a set of eigenvalues we collectively refer to as λ,

which also form a set, {λ}.2 We may then construct a many-body state vector with N

1Second quantisation is sometimes referred to as the occupation number representation.
2Example eigenvalues include the energy, spin, and position of the particle. In the case of the hydrogen

atom the eigenvalues we have are the energy level, n, angular momentum, l, and the z-component of
angular momentum m, and so λ = {n, l,m}.
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particles, for a specific realisation of the particles’ distribution amongst {|λ〉}, by taking

a direct product of the N single-particle states,

|λ1, λ2, ..., λN〉′ = |λ1〉1 ⊗ |λ2〉2 ⊗ ...⊗ |λN〉N , (A.1)

where λi is eigenvalue of the ith particle, the subscript on each single-particle state’s ket

emphasises the particle to which the state belongs, and the prime on the many-body state

vector denotes the fact this is not the general N -particle state for a given {λi}, but rather

one possible state we can make with N particles. We also assume a natural ordering to

the set {λi}, such that we have a positive coefficient for the the state with the set of λi

ordered such that i is ascending. This is a simple convention of convenience, as we are

only concerned with the change of phase caused by changing the order of the λi between

different many-body states.

Another possible many-body state that has the same distribution of particles can be

created by simply swapping |λ1〉1 and |λ2〉2 in the direct product,

|λ1, λ2, ..., λN〉′ = −η |λ2〉2 ⊗ |λ1〉1 ⊗ ...⊗ |λN〉N , (A.2)

recalling η = +1 for fermions, and η = −1 for bosons. Clearly, a complete description

of a general N -particle state with a specific {λi} will have to be the superposition of all

possible permutations of {λi}. Therefore, the most general normalised many-body state

vector we can write in this case is,

|λ1, λ2, ..., λN〉 =
1√

N !
∏

λ(nλ!)

∑
P

(−η)
1−sgn(P)

2 |λP1〉P1
⊗ |λP2〉P2

⊗ ...⊗ |λPN 〉PN , (A.3)

where P is the permutation of the {λi}, Pi is the ith element of the permutation, sgn(P) =

±1 for even/odd permutations,3 and nλ is the number of particles with the same set of

3For example, eq. A.1 has P = 1, 2, ..., N and sgn(P) = +1, whilst eq. A.2 has P = 2, 1, ..., N and
sgn(P) = −1.
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eigenvalues, λ.4 The factor of 1/
√
N ! comes from the N ! possible permutations of the

N particles, whilst 1/
√∏

λ(nλ!) is needed to prevent over-counting due to the indistin-

guishability of particles in the same state. Note that for bosons nλ ∈ Z+
0 (all non-negative

integers), whilst nλ ∈ {0, 1} for fermions.

In writing eq. A.3 it becomes clear this will be a rather cumbersome formulation of

many-body quantum mechanics. In fact, we do not need to write down which state each

particle occupies, but rather how many particles are in a specific state. Thus instead of

having to write out the set {λi} we can instead write the set of occupation numbers of

each state λ, {nλ}. Using this idea we can then rewrite the many-body state vector for

N particles as,

|λ1, λ2, ..., λN〉 = |n1, n2, ...〉 = |{nλ}〉 , subject to
∑
λ

nλ = N, (A.4)

where we now let λ = 1, 2, 3, ... for convenience.

Now to construct a many-body state, we can imagine starting from the vacuum state

and adding particles one-by-one until we have the state we wish to consider. In order to

construct operators capable of this we need to generalise the N -particle Hilbert space, HN ,

to allow for changing particle numbers. When constructing the N -particle state vector

in eq. A.3 we worked with a fixed distribution of particles. The complete basis spanning

all of HN is given by considering all possible distributions of the particles amongst the λ

states. Therefore {|{nλ}〉} with
∑

λ nλ = N forms the complete basis for HN .

The space with varying particle number can then be constructed by performing the

direct sum of Hilbert spaces for all possible number of particles,

F = H0 ⊕H1 ⊕H2 ⊕ ... =
∞⊕
N=0

HN . (A.5)

This is called a Fock space. The inclusion of H0 includes the state with no particles, the

4For example, if λ1 = λ2 = λ̃ and all other λi for unique, then nλ = 0 or 1∀λ 6= λ̃ whilst nλ̃ = 2.
Note this is only concerned the single-particle states, and not the particle index.
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vacuum state, which we denote by |0〉. The complete basis spanning the Fock space is

then given by the set of all basis vectors for each Hilbert space in the direct sum,

{|{nλ}〉} =

{
|0〉 , {|λ〉}, {|{nλ}〉}

∣∣∣∑
λ nλ=2

, {|{nλ}〉}
∣∣∣∑

λ nλ=3
, ...

}
. (A.6)

We now define a set of operators responsible for creating and annihilating particles in the

state λ. These allow us to move between the different N -particle Hilbert spaces, and to

build up the many-body state we wish to consider.

Specifically, the operator a†λ creates a particle in state λ, whilst its partner aλ annihilat-

ing a particle in the state λ. Fittingly, these operators are called creation and annihilation

operators respectively. Formally, they act on a many-body state, in an extremely similar

manner to the ladder operators of the harmonic oscillator, according to

a†λ′ |{nλ}〉 = (−η)sλ′
√
nj + 1 |n1, ..., nλ′ + 1, ...〉 ,

aλ′ |{nλ}〉 = (−η)sλ′
√
nj |n1, ..., nλ′ − 1, ...〉 ,

(A.7)

where sλ′ is the number particles that occur in the states λ < λ′ according to our ordering

convention,5

sλ′ =
∑
λ<λ′

nλ. (A.8)

This allows us to write the many-body state vector, and so any basis vector for F , in

terms of creation operators acting upon the vacuum,

|{nλ}〉 =
∏
λ′

1√
nλ′ !

(a†λ′)
nλ′ |0〉 . (A.9)

Clearly acting aλ on a state where nλ = 0 annihilates the state, aλ |..., nλ = 0, ...〉 = 0,

and hence aλ acting on the vacuum will always annihilate the state for any choice of λ.

Similarly, acting a†λ on a state with nλ = 1 for fermions also annihilates the state due to

Pauli exclusion, a†λ |..., nλ = 1, ...〉 = 0. This property is also hidden in eq. A.7. Whilst

5Our ordering convention changes slightly here compared to the case where we listed all λi explicitly.
Our ordering now puts the λ in ascending order.
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it may seem that we can consider nλ′ ≥ 1 without the creation operator producing a

factor of zero, the state itself can be shown to equal zero. Consider acting a†λ′ on a state

with nλ′ = 1, we would then have to pass commute a†λ′ through sλ′ operators before it

arrived next to the a†λ′ operator already present in generating the state. According to eq.

A.7 this would produce a state with nλ′ = 2 with a prefactor of (−1)sλ′
√

2. However,

we can exchange the two a†λ′ operators which produces an additional factor of (−1), but

produces an entirely equivalent state with nλ′ = 2. Hence, the new state is equivalent to

its negative, and hence must be zero.

Using eq. A.7 we can easily obtain the (anti-)commutation relations for (fermionic)

bosonic creation and annihilation operators,

[aλ, a
†
λ′ ]η = δλλ′ , [aλ, aλ′ ]η = 0, [a†λ, a

†
λ′ ]η = 0, (A.10)

where [A,B]η is the generalised commutator given in eq. 2.2.

We now consider a change of basis from the set of single-particle states {|λ〉} to a new

set of single-particle states {|µ〉}. To move our creation operators into the µ basis we

consider the definition of a† in both bases,

|λ〉 = a†λ |0〉 , |µ〉 = a†µ |0〉 . (A.11)

By multiplying |µ〉 by identity, I =
∑

λ |λ〉 〈λ|, we see

|µ〉 =
∑
λ

|λ〉 〈λ|µ〉 =
∑
λ

a†λ 〈λ|µ〉 |0〉 = a†µ |0〉 ,

⇒ a†µ =
∑
λ

〈λ|µ〉 a†λ

⇒ aµ =
∑
λ

〈µ|λ〉 aλ

(A.12)

Hence we have obtained the transformation that moves our creation and annihilation

operators from one basis into another. The inverse transformation to move from {|µ〉}
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back to {|λ〉} is also given by these relations.

For many systems the natural basis to work in is one with a continuous set of quan-

tum numbers (e.g: position coordinates). This is most certainly the case in transport

phenomena where we typically label particles by their position and time coordinates. In

this case we move from a discrete notation of the quantum numbers to a continuous one,

a†λ → a†(x). The transformations in eq. A.12 are left unchanged when moving from the

{|λ〉} basis to the {|x〉} basis. The inverse transformation, however, replaces the sums

with integrals due to the continuous nature of the basis being transformed from. That is

to say,

a†λ =

∫
dx 〈x|λ〉 a†(x), aλ =

∫
dx 〈λ|x〉 a(x),

a†(x) =
∑
λ

〈λ|x〉 a†λ, a(x) =
∑
λ

〈x|λ〉 aλ.
(A.13)

Let us therefore define a special set of operators in the basis of d-dimensional real

space and spin, σ,

ψ†σ(r) =
∑
λ

〈λ|r〉 a†λσ, ψσ(r) =
∑
λ

〈r|λ〉 aλσ. (A.14)

We refer to these operators as field operators, where ψ†σ(r) creates a particle with spin σ at

position r, whilst ψσ(r) annihilates a particle with spin σ at position r. Further connection

can be made to more familiar ideas of first quantisation by noting that 〈r|λ〉 = φλ(r) is

just the time independent wavefunction of a particle in the state λ. We therefore arrive

at the commonly quoted definition of field operators

ψ†σ(r) =
∑
λ

φ∗λ(r)a†λσ, ψσ(r) =
∑
λ

φλ(r)aλσ. (A.15)
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These operators satisfy the generalised equal-time (anti-)commutation relations

[ψσ(r), ψ†σ′(r
′)]η = δ(d)(r− r′)δσσ′ ,

[ψσ(r), ψσ′(r
′)]η = 0, [ψ†σ(r), ψ†σ′(r

′)]η = 0.

(A.16)

We will introduce time dependence to these operators when we consider the different

pictures of quantum mechanics. Currently, these operators are written in the Schrödinger

picture (i.e: they are time independent).

Having outlined the construction of a more intuitive representation of quantum me-

chanics for many-body systems, we now show how one translates general operators de-

scribing particle interactions from first quantisation to second quantisation.

A.1.1 Single-Particle Operators

Single particle operators act upon one particle at a time, and do not model the effects of

interactions between particles. Examples of these operators include the kinetic energy, T̂ ,

and potential Û ,

T̂ =
N∑
i=1

1

2m
p̂2
i , Û =

N∑
i=1

U(x̂i), (A.17)

where p̂i is the momentum operator acting on the ith particle, and x̂i is the position

operator of the ith particle. This section focuses on representing operators of this type on

a second-quantised form.

We start by defining the occupation number operator,

n̂λ = a†λaλ, (A.18)

which simply counts the number of particles occupying the state λ, n̂λ′ |{nλ}〉 = nλ′ |{nλ}〉.

Let us now consider a generic single-particle operator, O1, formed of the individual oper-

ators ôi acting on the ith particle, O1 =
∑

i ôi. The individual operators are diagonal in

the λ basis with eigenvalues oλ, ôi |λ〉i = oλ |λ〉i.
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Using this definition of O1 we see

〈{n′λ}|O1 |{nλ}〉 =

(∑
λ

oλnλ

)
〈{n′λ}|{nλ}〉 = 〈{n′λ}|

(∑
λ

oλn̂λ

)
|{nλ}〉 . (A.19)

Hence we may write the second-quantised form of O1 in a diagonal basis as,

O1 =
∑
λ

〈λ| ô |λ〉 a†λaλ, (A.20)

where ô is the one particle operator acting on a generic particle. Finally, we move to a

general set of bases by inserting the identity between ô and the two state vectors, making

use of eq. A.12, and noting that due to being in a diagonal basis we may write,

O1 =
∑
λ,λ′

〈λ| ô |λ′〉 a†λaλ′ . (A.21)

Using these ideas we arrive at

O1 =
∑
µ,ν

〈µ| ô |ν〉 a†µaν . (A.22)

Thus we have arrived at the general expression for a single-particle operator written in

second-quantised form. For continuous variables eq. A.22 becomes

O1 =

∫
ddr

∫
ddr′ 〈r| ô |r′〉 a†(r)a(r′). (A.23)

The Hamiltonian for a system of non-interacting particles in the presence of a single-

particle potential may now be written as

H =
∑
µ,ν

[Tµν + Uµν ] a
†
µaν . (A.24)

To give this Hamiltonian a more intuitive form in terms of variables we are familiar with,

let us try and write eq. A.24 in real space. Clearly the operator Û is diagonal in the real
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space basis, and so we need only treat the kinetic energy piece differently. We note that

the kinetic energy is diagonal in momentum space, and so we start from this basis

T̂ =

∫
ddp

(2π)d
p2

2m
a†(p)a(p)

=

∫
ddp

(2π)d

∫
ddp′

p · p′

2m
a†(p)a(p′) δ(d)(p− p′)

=

∫
ddp

(2π)d

∫
ddp′

p · p′

2m
a†(p)a(p′)

∫
ddreir·(p

′−p)

=

∫
ddr

1

2m
∇
[∫

ddp

(2π)d/2
e−ip·ra†(p)

]
· ∇
[∫

ddp′

(2π)d/2
eip
′·ra(p′)

]
=

∫
ddr

1

2m
∇ψ†(r) · ∇ψ(r)

= −
∫
ddr ψ†(r)

∇2

2m
ψ(r).

(A.25)

In the last line we integrated by parts in the knowledge that the surface term vanishes.

Therefore we may write our single-particle interaction Hamiltonian as

H =

∫
ddr ψ†(r)

[
−∇2

2m
+ U(r)

]
ψ(r). (A.26)

Looking at the above we can see that the second-quantised form of the Hamiltonian is

easily related to the single-particle operators, which are simply sandwiched between two

field operators and integrated over all space.

A.1.2 Two-particle operators

Let us consider a generic two-particle operator, O2, which is formed of individual two-

body interactions represented by the operator V̂ . For the problems we consider, we further

assume V̂ is symmetric between states, V̂mn = V̂nm, where m and n label the particles in

states m and n respectively. Thus we may write

O2 =
∑
m<n

V̂mn =
1

2

∑
m6=n

V̂mn, (A.27)
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We may rewrite O2 in terms of the number of particles occupying the single-particle state

|λ〉, which we assume to be the diagonal basis [80],

O2 =
1

2

∑
λ 6=λ′

n̂λn̂λ′Vλλ′ +
1

2

∑
λ

n̂λ(n̂λ − 1)Vλλ =
1

2

∑
λ,λ′

n̂λ(n̂λ′ − δλλ′)Vλλ′ ,

Vλλ′ = Vλλ′λ′λ = 〈λ, λ′| V̂ |λ, λ′〉

(A.28)

where the second term of the first line describes a particle interacting with the remaining

particles in the same state, which clearly vanishes in the case of fermions where nλ = 0, 1.

Further progress is made by using the commutation relation,

[aλ, n̂λ′ ] = δλλ′aλ′ , (A.29)

to show

n̂λ(n̂λ′ − δλλ′) = a†λ

(
a†λn̂λ′ − [aλ, n̂λ′ ]

)
= a†λa

†
λ′aλ′aλ.

(A.30)

Consequently, the second-quantised form of a two-particle operator in a diagonal single-

particle basis is

O2 =
1

2

∑
λ,λ′

a†λa
†
λ′Vλλ′aλ′aλ. (A.31)

As before, let us now move to a general non-diagonal basis. To do this we require the

identity operator for a two-particle Hilbert space6,

I2 =
∑
α,β

|α, β〉 〈α, β| . (A.32)

Inserting this between V̂ and the two state vectors in conjunction with eq. A.12, we

6In general a many-body state is written as the direct product of single-particle states, |α, β〉 =
|α〉1 ⊗ |β〉2. Here |α〉 is the single-particle state of particle 1, whilst |β〉 is the single-particle state of
particle 2. See [34, 81] for in depth discussions on this topic.
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obtain the well known second-quantised form for a two-particle operator

O2 =
1

2

∑
α,β,γ,δ

a†αa
†
βVαβγδaγaδ,

Vαβγδ = 〈α, β| V̂ |γ, δ〉 .

(A.33)

In the case of a continuous basis, eq. A.33 becomes

O2 =
1

2

∫
ddr1

∫
ddr2

∫
ddr3

∫
ddr4a

†(r1)a†(r2)V (r1, r2, r3, r4)a(r3)a(r4). (A.34)

As an example consider the Coulomb interaction, V (r, r′) = V (r − r′), which is in

the form of a two-particle operator written in a diagonal single-particle position and spin

basis. The resulting second-quantised operator may therefore be written in terms of field

operators as

Hint =
1

2

∑
σ,σ′

∫
ddr

∫
ddr′ψ†σ(r)ψ†σ′V (r− r′)ψσ′(r

′)ψσ(r). (A.35)

A.1.3 The Pictures of Quantum Mechanics

Within quantum mechanics there exist different ways in which to view the time evolution

of a system. The first, and most intuitive, picture of quantum mechanics most physicists

encounter is the Schrödinger picture, in which all time evolution of a system is carried by

the wave functions (states) of the particles involved. In this case the operators remain

constant whilst the states evolve according to the unitary time evolution operator, U ,

|ψ(t)〉S = U(t) |ψ(0)〉S = e−iHt |ψ(0)〉S , (A.36)

where we have assumed a time independent Hamiltonian.

In contrast to this, we may choose all time evolution to be contained in the operators,

thus leaving us with the time-independent states |ψ〉H = |ψ(0)〉S = eiHt |ψ(t)〉S. This
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leads us to the Heisenberg picture. Here the operators evolve in time via

OH(t) = U †(t)OS U(t) = eiHtOS e−iHt. (A.37)

These two pictures are physically equivalent as they give rise to the same expectation

values of any observable. This can be seen by considering an expectation value in the

Schrödinger picture

S〈ψ(t)|OS |ψ(t)〉S = 〈ψ(0)| U †(t)OS U(t) |ψ(0)〉 = H〈ψ|OH(t) |ψ〉H . (A.38)

A consequence of this picture is a resulting equation of motion for the operators. It is

easy to show

dOH
dt

= i [H,OH ] , (A.39)

which is known as the Heisenberg equation of motion (EOM).

Finally, a third viewpoint can be taken which allows for perturbative treatment of

interactions in a system. Fittingly, this is referred to as the interaction picture. Here

both operators and states evolve in time, though through different relations. Consider

a Hamiltonian described by an exactly soluble (typically non-interatcting) piece, H0,

whose corrseponding single-particle Green’s function can be found through the methods

of section 2.3, and a two-particle interacting piece we wish to focus on, Hint,

H = H0 +Hint. (A.40)

We define the operators and states in the interaction picture as

Õ(t) = eiH0tOS e−iH0t = U †0(t)OS U0(t), (A.41a)

|ψ̃(t)〉 = eiH0t |ψ(t)〉S = U †0(t)U(t) |ψ〉H , (A.41b)

which looks extremely similar to the Heisenberg picture, but with H0 in place of H.
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Näıvely, this can be thought of as removing the non-interacting piece of the time

evolution from the states and putting it on the operators.7 From Heisenberg’s EOM

and eq. A.41, we can show that operators and states in the interaction picture evolve

according to

dÕ
dt

= i
[
H0, Õ

]
, i

d

dt
|ψ̃(t)〉 = H̃int(t) |ψ̃(t)〉 . (A.42)

Clearly both time evolution relations look similar to their respective forms in the Heisen-

berg picture and Schrödinger picture respectively.

Following the formalism of [30], we integrate the second part of eq. A.42 to write

down a solution for the state |ψ̃(t)〉,8

|ψ̃(t)〉 = |ψ̃(t0)〉 − i
∫ t

t0

dt′H̃int(t
′) |ψ̃(t′)〉 . (A.43)

This can be solved iteratively by repeatedly substituting eq. A.43 into itself to produce

an infinite series solution

|ψ̃(t)〉 =
∞∑
n=0

|ψ̃(n)(t)〉 , |ψ̃(0)(t)〉 = |ψ̃(t0)〉 ,

|ψ̃(n)(t)〉 = (−i)n
∫ t

t0

dt1 ...

∫ tn−1

t0

dtn H̃int(t1) ... H̃int(tn) |ψ̃(t0)〉 ,
(A.44)

where t ≥ t1 ≥ t2 ≥ ... ≥ tn. Clearly the state |ψ̃(t0)〉 is a time independent common

factor and may be factorised out of the series given in eq. A.44. This allows us to define

a new type of time evolution operator as the left over series of integrals,

|ψ̃(t)〉 = S(t, t0) |ψ̃0(t0)〉 ,

S(t, t0) =
∞∑
n=0

(−i)n
∫ t

t0

dt1 ...

∫ tn−1

t0

dtn H̃int(t1) ... H̃int(tn).
(A.45)

Next we may simplify this expression by understanding the combinatorics of the nth

7Clearly this isn’t completely true as H0 and Hint do not necessarily commute.
8Since H̃int(t) taken at different times don’t necessarily commute with each other, we cannot employ

the simple solution |ψ̃(t)〉 = const. exp
(∫ t
−∞ dt′H̃int(t

′)
)

.
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term in the above sum. Let us first consider n = 2,

S(2)(t, t0) = (−i)2

∫ t

t0

dt1

∫ t1

t0

dt2H̃int(t1)H̃int(t2). (A.46)

Clearly the dummy variables, t1 and t2, can be exchanged with each other to give an

equivalent contribution to S(2)(t, t0) meaning

S(2)(t, t0) =
(−i)2

2

∫ t

t0

dt1

∫ t1

t0

dt2H̃int(t1)H̃int(t2)

+
(−i)2

2

∫ t

t0

dt2

∫ t2

t0

dt1H̃int(t2)H̃int(t1)

=
(−i)2

2

∫ t

t0

dt1

∫ t

t0

dt2

[
H̃int(t1)H̃int(t2)Θ(t1 − t2)

+ H̃int(t2)H̃int(t1)Θ(t2 − t1)
]

=
(−i)2

2!

∫ t

t0

dt1

∫ t

t0

dt2Tt

{
H̃int(t1)H̃int(t2)

}
,

(A.47)

where Θ(x) is the Heaviside function and Tt is the real time ordering operator. For a set

of operators, A(t), B(t), ..., taken at different times, Tt orders the operators such that the

later occurring operators appear to the left of earlier occurring operators,

Tt {A(t1)B(t2)C(t3)...} =



A(t1)B(t2)C(t3)... t1 > t2 > t3 > ...

(−η)B(t2)A(t1)C(t3)... t2 > t1 > t3 > ...

(−η)A(t1)C(t3)B(t2)... t1 > t3 > t2 > ...

(−η)2B(t2)C(t3)A(t1)... t2 > t3 > t1 > ...

(−η)2C(t3)A(t1)B(t2)... t3 > t1 > t2 > ...

(−η)3C(t3)B(t2)A(t1)... t3 > t2 > t1 > ...,

...

(A.48)

where the factor of (−η)n is due to the swapping of fermionic (η = 1) and bosonic

(η = −1), with n being the number of neighbouring swaps needed to make achieve time
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ordering.

In general, for the nth order contribution to S(t, t0) we see that the number of unique

exchanges of the dummy variables is n!, which yields

S(n)(t, t0) =
(−i)n

n!

∫ t

t0

dt1 ...

∫ t

t0

dtnTt

{
H̃int(t1) ... H̃int(tn)

}
, (A.49)

and hence we may write

S(t, t0) = Tt

{
exp

(
−i
∫ t

t0

dt′H̃int(t
′)

)}
. (A.50)

Here we pulled the time ordering outside of the integrals, as Tt will only act upon the

H̃int(t) operators. We refer to this operator as the double time S-matrix.

At this point it is worth noting a few useful properties of the S-matrix. Clearly

S(t1, t2) = S(t1, t3)S(t3, t2), where t1 > t3 > t2, since

|ψ̃(t1)〉 = S(t1, t3) |ψ̃(t3)〉 = S(t1, t3)S(t3, t2) |ψ̃(t2)〉 = S(t1, t2) |ψ̃(t2)〉 . (A.51)

On top of this S is a unitary matrix, S†(t, t0) = S−1(t, t0), in order to maintain normalised

state vectors, 〈ψ̃(t)|ψ̃(t)〉 = 1.

Now that we understand time evolution in the interaction picture, and how to link

this picture back to the Schrödinger picture, we next aim to find the relation between the

Heisenberg and interaction pictures. We may define

|ψ̃(t)〉 = Q(t) |ψ〉H , (A.52)

where Q(t) is a unitary operator, which together with eq. A.45 implies

Q(t) = S(t, t0)Q(t0). (A.53)
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Table A.1: Summary of the relations between different quantum mechanical pictures.

Schrödinger Heisenberg Interaction

Schrödinger |ψ(t)〉S = |ψ(t)〉 |ψ(t)〉S = U(t) |ψ〉H |ψ(t)〉S = U0(t) |ψ̃(t)〉

Heisenberg |ψ〉H = U †(t) |ψ(t)〉 |ψ〉H = |ψ〉H |ψ〉H = Q†(t) |ψ̃(t)〉

Interaction |ψ̃(t)〉 = U †0(t) |ψ(t)〉 |ψ̃(t)〉 = Q(t) |ψ〉H |ψ̃(t)〉 = |ψ̃(t)〉

Using eq. A.41 we then see

U †0(t)U(t) = S(t, t0)Q(t0),

⇒ Q(t0) = U †0(t0)U(t0), given S(t0, t0) = 1.

(A.54)

Let us now use the idea of an adiabatically turned on interaction, that is to say at t = −∞

the interaction vanishes, and as t increases the interaction is turned on infinitely slowly

to its normal value at finite times. Thus we take t0 → −∞ and note that H = H0 at this

time. Therefore Q(t0) = 1 and we may relate the states of the Heisenberg and interaction

pictures via

|ψ̃(t)〉 = S(t) |ψ〉H , (A.55)

where S(t) = S(t,−∞) is commonly referred to as the S-matrix. Given we can now link

the states of the interaction and Heisenberg pictures, we can easily deduce the relation

between their respective operators,

〈ψ̃(t)| Õ(t) |ψ̃(t)〉 = 〈ψ|H OH |ψ〉H

⇒ Õ(t) = S−1(t)OH(t)S(t).

(A.56)

In this subsection we have discussed the different pictures of quantum mechanics, and

given details on how to derive the interaction picture. We summarise the relations between

these formalisms in table A.1, before moving on to the last topic of this appendix.

Thus far we have not introduced the notion of temperature, and so have been dealing
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purely with zero temperature. Let us now move to considering finite temperature by

moving to the grand canonical ensemble. In this case time evolution is dictated by the

GCE Hamiltonian H = H −µN , where µ is the chemical potential and N is the particle

number operator, that is to say time evolution in the Schrödinger and Heisenberg pictures

is defined by

|ψ(τ)〉S = U (τ) |ψ(0)〉S = U (τ) |ψ〉H , OH(τ) = U †(τ)OS U (τ),

where U (τ) = e−H τ ,

(A.57)

and τ = it is imaginary time. To understand the interaction picture in this language we

closely follow the procedure of Matsubara’s original paper [9].

Let us consider the S-matrix defined by

e−βH = e−βH0S(β) ⇒ −∂S
∂β

= H̃int(β)S(β), (A.58)

subject to S(0) = 1, where H = H0 +Hint, β = 1/T , and

H̃int(β) = eβH0Hinte
−βH0 = U †

0 (β)HintU0(β). (A.59)

We see that S plays a similar role to the S-matrix from before. In fact, this is how we

define the interaction picture for finite temperature, and consequently we write operators

in the interaction picture according to

Õ(τ) = U †
0 (τ)OS U0(τ), (A.60)

where τ is imaginary time defined on the interval of 0 to β. We solve the differential

equation for S(β) in the same manner as the zero temperature case for |ψ̃〉. This yields

S(β) = Tτ

{
exp

(
−
∫ β

0

dτ ′H̃int(τ
′)

)}
. (A.61)

249



APPENDIX A. SECOND QUANTISATION & THE PICTURES OF QUANTUM
MECHANICS

In a similar fasion we define the matrix

S(τ2, τ1) = Tτ

{
exp

(
−
∫ τ2

τ1

dτ ′H̃int(τ
′)

)}
, (A.62)

which has the properties

S(τ2, τ1) = S(τ2, τ3)S(τ3, τ1), τ2 > τ3 > τ1,

S(τ2, τ1) = S(τ2)S−1(τ1).

(A.63)

Now we consider the single-particle Green’s function defined in eq. 2.27, and write

the time evolution of the operators explicitly,

Gαα′(r, τ ; r′, τ ′) = − 1

Z
Tr
[
Tτ

{
e−βH eH τψα(r)e−H τeH τ ′ψ†α′(r

′)e−H τ ′
}]

= − 1

Z
Tr
[
Tτ

{
e−βH0S(β)S−1(τ)eH0τψα(r)e−H0τS(τ)

× S−1(τ ′)eH0τ ′ψ†α′(r
′)e−H0τ ′S(τ ′)

}]
= − 1

Z
Tr
[
e−βH0Tτ

{
S(β, τ)ψ̃α(r, τ)S(τ, τ ′)ψ̃†α′(r

′, τ ′)S(τ ′, 0)
}]

= − 1

Z
Tr
[
e−βH0Tτ

{
ψ̃α(r, τ)ψ̃†α′(r

′, τ ′)S(β)
}]

.

(A.64)

Here we noted that any operator evaluated at imaginary time β will always appear to the

left of all operators, hence why we were able to factor out the e−βH0 term from the time

ordering operation in the third line. In the fourth line we moved all the S matrices through

the field operators to combine them into one S matrix, without incurring any sign changes

due to the bosonic nature of the two-particle interactions represented by Hint appearing in

S. The time ordering operation means that we needn’t worry about commutation relations

too. Lastly we defined the operators ψ̃ and ψ̃† as the finite temperature interaction picture

field operators according to eq. A.60.

To write the single-particle Green’s function more elegantly, we define 〈...〉0 as the

average over the non-interacting Hamiltonian. Next we rewrite the partition function in
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terms of this average,

Z = Tr
[
e−βH

]
= Tr

[
e−βH0S(β)

]
= 〈S(β)〉0 . (A.65)

Therefore, using the non-interacting average definition and eq. A.65, we obtain

Gαα′(r, τ ; r′, τ ′) = −

〈
Tτ

{
ψ̃α(r, τ)ψ̃†(r′, τ ′)S(β)

}〉
0

〈S(β)〉0
. (A.66)
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APPENDIX B

WICK’S THEOREM

This appendix is intended as a reference for how to apply Wick’s theorem, rather than

how it is derived. The statement of Wick’s theorem, based upon Bruus and Flensberg

[31], is as follows,

Any many-particle Green’s function that is taken as a correlation of field

operators with respect to a non-interacting Hamiltonian – one that is quadratic

in field operators – can be decomposed into a sum of single-particle Green’s

function products.

A general N -particle Green’s function is composed of 2N operators, half of which are

creation operators, whilst the other half are annihilation operators. The N -particle tem-

perature Green’s function is therefore

G(x1, x2, ..., xN ;x′1, x
′
2, ..., x

′
N)

= (−1)N
〈
Tτ
{
ψ(x1)ψ(x2)...ψ(xN)ψ†(x′N)...ψ†(x′2)ψ†(x′1)

}〉
.

(B.1)

In applying Wick’s theorem to this Green’s function, we must know the statistics

obeyed by the field operators. This will dictate the way we sum all possible single-

particle Green’s function products generated by the N -particle Green’s function. If we

start from the order of operators given in eq. B.1, we create one realisation of a single-

particle Green’s function product by pairing neighbouring operators, such that the pairs

253



APPENDIX B. WICK’S THEOREM

do not share operators, so that each pair forms a correlator,

G1(x1, x2, ..., xN ;x′1, x
′
2, ..., x

′
N) =(−1)N 〈Tτ {ψ(x1)ψ(x2)}〉 〈Tτ {ψ(x3)ψ(x4)}〉 ...

×
〈
Tτ
{
ψ†(x4)ψ†(x3)

}〉 〈
Tτ
{
ψ†(x2)ψ†(x1)

}〉
,

(B.2)

where the subscript 1 on the N -particle Green’s function denotes this is the first possible

pairing of operators.

In this case the product we find is not actually of single-particle Green’s functions, but

rather we have correlators containing a pair of creation operators or a pair of annihilation

operators.1 Hence, this contribution will vanish.2

To generate other possible products from these operators, we will have to re-order them

by commuting them passed one another. For example, another product we could generate

would be from simply swapping the positions of ψ(x2) and ψ(x3). However, since we have

performed a single commutation, we must introduce the appropriate multiplicative factor

according to their statistics. Thus, we find this second product to be

G1(x1, x2, ..., xN ;x′1, x
′
2, ..., x

′
N) = (−1)N(−η) 〈Tτ {ψ(x1)ψ(x3)}〉

× 〈Tτ {ψ(x2)ψ(x4)}〉 ...
〈
Tτ
{
ψ†(x4)ψ†(x3)

}〉 〈
Tτ
{
ψ†(x2)ψ†(x1)

}〉
,

(B.3)

where we recall

η =


+1, fermions

−1, bosons.

(B.4)

Again, this realisation vanishes, but it acts as a simple demonstration as to how we gen-

erate different products and how we account for their multiplicative permutation factors.

So, to get contributions that are actually products of single-particle Green’s functions

we will have to perform several permutations. In generating new products, we will never

1If N is even, then all the correlators would be a pair of just creation operators or just annihilation
operators. If N is odd, then we will find just one correlator of a creation and annihilation operator.

2Technically, in systems like superconductors the correlator −〈Tτ {ψ(x1)ψ(x2)}〉 does not vanish, since
cooper pairs and cooper hole pairs exist in these systems. These are refered to as anomalous Green’s
functions. See [29, 30, 31] for a more in depth discussion of this.
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consider a product that differs from another through swapping the order of operators

within a pair. More generally, the pairs we will consider will always be ordered such that

the leftmost operator of a pair, prior to pairing, will appear to the left within the pair.

Let us show this mathematically.

Using the Green’s function in eq. B.1, an allowed pairing, which generates a single-

particle Green’s function, is 〈
Tτ
{
ψ(x1)ψ†(x1)

}〉
. (B.5)

However, we are not allowed the pairing

〈
Tτ
{
ψ†(x1)ψ(x1)

}〉
, (B.6)

as ψ(x1) is the leftmost operator of the pair in the original ordering of the operators in

eq. B.1, and so should appear to the left within the pairing, as in eq. B.5.

To demonstrate the application of Wick’s theorem, let us look at the two-particle and

three-particle Green’s functions explicitly. These are defined as

G(x1, x2;x′1, x
′
2) =

〈
Tτ
{
ψ(x1)ψ(x2)ψ†(x′2)ψ†(x′1)

}〉
, (B.7a)

G(x1, x2, x3;x′1, x
′
2, x
′
3) = −

〈
Tτ
{
ψ(x1)ψ(x2)ψ(x3)ψ†(x′3)ψ†(x′2)ψ†(x′1)

}〉
, (B.7b)

respectively. Using Wick’s theorem on these Green’s functions gives

G(x1, x2;x′1, x
′
2) =

〈
Tτ
{
ψ(x1)ψ†(x′1)

}〉 〈
Tτ
{
ψ(x2)ψ†(x′2)

}〉
− η

〈
Tτ
{
ψ(x1)ψ†(x′2)

}〉 〈
Tτ
{
ψ(x2)ψ†(x′1)

}〉
= G(x1, x

′
1)G(x2, x

′
2)− ηG(x1, x

′
2)G(x2, x

′
1),

(B.8a)
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G(x1, x2,x3;x′1, x
′
2, x
′
3)

=
〈
Tτ
{
ψ(x1)ψ†(x′1)

}〉 〈
Tτ
{
ψ(x2)ψ†(x′2)

}〉 〈
Tτ
{
ψ(x3)ψ†(x′3)

}〉
− η

〈
Tτ
{
ψ(x1)ψ†(x′2)

}〉 〈
Tτ
{
ψ(x2)ψ†(x′1)

}〉 〈
Tτ
{
ψ(x3)ψ†(x′3)

}〉
− η

〈
Tτ
{
ψ(x1)ψ†(x′3)

}〉 〈
Tτ
{
ψ(x2)ψ†(x′2)

}〉 〈
Tτ
{
ψ(x3)ψ†(x′1)

}〉
− η

〈
Tτ
{
ψ(x1)ψ†(x′1)

}〉 〈
Tτ
{
ψ(x2)ψ†(x′3)

}〉 〈
Tτ
{
ψ(x3)ψ†(x′2)

}〉
+
〈
Tτ
{
ψ(x1)ψ†(x′2)

}〉 〈
Tτ
{
ψ(x2)ψ†(x′3)

}〉 〈
Tτ
{
ψ(x3)ψ†(x′1)

}〉
+
〈
Tτ
{
ψ(x1)ψ†(x′3)

}〉 〈
Tτ
{
ψ(x2)ψ†(x′1)

}〉 〈
Tτ
{
ψ(x3)ψ†(x′2)

}〉
= −G(x1, x

′
1)G(x2, x

′
2)G(x3, x

′
3) + ηG(x1, x

′
2)G(x2, x

′
1)G(x3, x

′
3)

+ ηG(x1, x
′
3)G(x2, x

′
2)G(x3, x

′
1) + ηG(x1, x

′
1)G(x2, x

′
3)G(x3, x

′
2)

+G(x1, x
′
2)G(x2, x

′
3)G(x3, x

′
1) +G(x1, x

′
3)G(x2, x

′
1)G(x3, x

′
2).

(B.8b)

We have so far demonstrated how to calculate many-particle Green’s functions using

Wick’s theorem in a very hands on approach. We can, however, write down a compact

equation that naturally generates all allowed decompositions of a many-particle Gren’s

function into a sum over single-particle Green’s function products. The most compact

form of Wick’s theorem we can write, given by Bruus and Flensberg [31], is thus

G1(x1, x2, ..., xN ;x′1, x
′
2, ..., x

′
N) =


detM, fermions

perm M, bosons,

(B.9a)

M =


G(x1, x

′
1) ... G(x1, x

′
N)

...
. . .

...

G(xN , x
′
1) ... G(xN , x

′
N)

 , Mji = G(xj, x
′
i). (B.9b)

Here perm M is the permanent of the matrix M. This function is similar to the deter-

minant, except that no minus signs appear in the permanent. I.e. all the minus signs in

the determinant become plus signs in the permanent.
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THE DENSITY MATRIX

In the following discussion of the density matrix we follow the ideas explored in [31] and

[81]. The density matrix is an extremely useful object to consider, and is related to the

probability of finding a system in a certain state. Consider a many body system that

has access to the ensemble of states {|ψ〉}, where each |ψ〉 represents a different overall

configuration of the many body system (i.e: particle number, occupation number, total

energy, etc can all vary). We define the density matrix as being the statistical collection

of these states,

ρ(t) =
∑
ψ

pψ |ψ(t)〉 〈ψ(t)| , (C.1)

where we have allowed for time evolution and pψ is the statistical weighting of the state

|ψ〉.

To better understand the time evolution of ρ(t), we take it’s partial time derivative

(~ = 1),

i
∂ρ

∂t
=
∑
ψ

pψ

[(
i
∂

∂t
|ψ(t)〉

)
〈ψ(t)|+ |ψ(t)〉

(
i
∂

∂t
〈ψ(t)|

)]
=
∑
ψ

pψ

[
H |ψ(t)〉 〈ψ(t)| − |ψ(t)〉 〈ψ(t)|H

]
= [H, ρ(t)].

(C.2)
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In obtaining the second line we used the Schrödinger equation,

i
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 , −i ∂

∂t
〈ψ(t)| = 〈ψ(t)|H, (C.3)

where H is the Hamiltonian of the system. Therefore the time evolution of the density

matrix is governed by

i
∂ρ

∂t
= [H, ρ]. (C.4)

Thinking about this in terms of statistical mechanics, when the system occupies a

specific state, say |φ〉 ∈ {|ψ〉}, the remaining states form a reservoir with which the

system can interact through energy and particle exchange. Assuming the system is in

thermal equilibrium, pψ is just the statistical weight for the GCE,

pψ =
1

Z
e−β(Eψ−µNψ), (C.5)

where Eψ is the energy of state |ψ〉, Nψ is the number of particles in state |ψ〉, µ is the

chemical potential, and Z =
∑

ψ e
−β(Eψ−µNψ) is the partition function. In writing this,

we have subtly assumed that {|ψ〉} are eigenstates of the Hamiltonian and the number

operator. So in the basis of eigenstates the density matrix is

ρ =
1

Z
∑
ψ

e−β(Eψ−µNψ) |ψ〉 〈ψ| , (C.6)

where {|ψ〉} are now stationary states.

As a final step we can write our density matrix without defining a basis by noting that

H and the number operator, N , are diagonal in |ψ〉 we can write

ρ =
1

Z
e−β(H−µN). (C.7)

Therefore we may choose a basis to write our operators, H and N , in and hence the

basis ρ is written in. It is worth noting the only basis that we interpret physically is the
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eigenbasis. We may now define the partition function generally as

Z = Tr
[
e−β(H−µN)

]
, (C.8)

which ensures that Tr [ρ] = 1.

Lastly, we stress that the expressions given in eq. C.7 and eq. C.8 are only true for

a system in equilibrium. If an external field is applied or another form of perturbation

is introduced, then we cannot treat ρ as being written simply in terms of an exponenti-

ated Hamiltonian. This point is of importance when deriving Kubo’s formula for linear

response.
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APPENDIX D

DISORDER AVERAGING,

SELF-ENERGY, AND THE BORN

APPROXIMATION

In chapter 3 we considered the effects of impurities and how they adjust the electron

Green’s function. There we simply stated the consequence of impurity averaging, and

approximated the electron self-energy via the first non-zero impurity scattering term after

averaging, which is commonly known as the first order Born approximation. In this

appendix we will show how the results quoted in chapter 3 are obtained, and how we may

include higher order corrections. We start by providing the details of how to perform

disorder averaging, before turning our attention to relaxing our approximations step by

step to consider higher order corrections, following closely the ideas set out in [31].

D.1 Disorder Averaging - The Gruesome Details

Let us start by calculating the averages given in eq. 3.4 explicitly. We begin by assuming

our system has periodic boundary conditions and a total volume V , which allows us to
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1

〈 〉(0)

dis

=

Figure D.1: Diagrammatic representation of the first order correction to the electron
Green’s function after disorder averaging. The dashed line and cross represent the inter-
action due to eq. D.2, and the solid lines denote G0.

rewrite the impurity potential as a Fourier series,

U(xn) =
1

V
∑
i

∑
k

vn(k)eik·(rn−Ri)δ(τn), (D.1)

where we have introduced the subscript n to the single impurity potential to denote the

cross vn(k) is associated to in the diagram of fig. 2.2. This will be important when

averaging more than two impurity potentials. Applying 〈...〉(0)
dis to rq. D.1 simply yields

〈U(x1)〉(0)
dis =

δ(τ1)

V
∑
i

∑
k1

v1(k1)eik·r1
〈
e−ik1·Ri

〉(0)

dis

=
δ(τ1)

V
∑
i

∑
k1

v1(k1)eik1·r1
1

V

∫
ddRi e

−ik1·Ri

=
δ(τ1)

V
∑
i

∑
k1

v1(k1)eik1·r1δk1,0

= nimpv(0)δ(τ1),

(D.2)

where nimp = Nimp/V . In the last line we used the fact that v(k) = vn(k) ≡ vm(k) ∀ n,

m, as the subscript is purely a label of convenience. We represent this diagrammatically

by moving the cross off the free electron Green’s function lines and connecting it back to

the Green’s function lines via a dashed line, as illustrated in fig. D.1 This represents the

electron scattering off the impurity through some interaction. This allows us to represent

multiple scatterings from the same impurity with ease.1

1The process of multiple scatterings is only possible at second order and higher, where the number of
impurity scatterings equals the order of the perturbative expansion.
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Moving on to the second order term we see

〈U(x1)U(x2)〉(0)
dis =

δ(τ1)δ(τ2)

V2

∑
i,j

∑
k1,k2

v1(k1)v2(k2)eik1·r1+ik2·r2
〈
e−ik1·Rie−ik2·Rj

〉(0)

dis

=
δ(τ1)δ(τ2)

V2

∑
k1,k2

v1(k1)v2(k2)eik1·r1+ik2·r2

×
[∑
i 6=j

1

V2

∫
ddRi

∫
ddRj e

−ik1·Ri−ik2·Rj

+
∑
i

1

V

∫
ddRi e

−iRi·(k1+k2)

]
=
δ(τ1)δ(τ2)

V2

∑
k1,k2

v1(k1)v2(k2)eik1·r1+ik2·r2

× [Nimp(Nimp − 1)δk1,0δk2,0 +Nimpδk1,−k2 ]

=
δ(τ1)δ(τ2)

V2

[
Nimp(Nimp − 1)v(0)2

+Nimp

∑
k

v1(−k)v2(k)e−ik·(r1−r2)

]
.

(D.3)

Applying our assumption that the impurity positions can be treated as independent (the

sum over i 6= j becomes the sum over i, j) we may approximate this expression as

〈U(x1)U(x2)〉(0)
dis =

[
n2

impv(0)2 +
nimp

V
∑
k

v1(−k)v2(k)e−ik·(r1−r2)

]
δ(τ1)δ(τ2). (D.4)

This approximation introduces an error of order 1/Nimp to the constant correction. Given

we are dealing with disordered systems we may assume that Nimp � 1, and so this error

becomes negligible.

The first term of eq. D.4 corresponds to two isolated impurities, analogous to what we

saw in the first order correction.2 In comparison, the second term looks like an effective

two body interaction connecting two crosses, where a momentum k leaves the first cross

and re-enters at the second cross.

2By this point in the literature most texts would argue that v(0) = 0, as a non-zero value would only
give an uninteresting constant shift to the ground state energy (see [29, 30]). However, we shall maintain
a non-zero value for the time being and demonstrate how this statement can be realised. Though this is
clearly going to become a painful decision when calculating higher order corrections.
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1 2〈 〉(0)

dis

= +

(a)

1 2 3〈 〉(0)

dis

= +

+ +

+

(b)

Figure D.2: Diagrammatic representation of the second (a) and third (b) order corrections
to the electron Green’s function after disorder averaging.

Turning to the diagrammatic representation of the second order contribution to the

Green’s function, we see that the first term of eq. D.4 leads to the first term in fig.

D.2a. The second term in the diagrammatic series represents the correlated scattering

events appearing in the second term of eq. D.4, where the cross represents the scattering

events being due to the same impurity. In general we shall represent disorder averaging

diagrammatically by using a single cross connected to Green’s function via dashed lines

to denote scattering from the same impurity.

In a similar vain we see that the third order term becomes

〈U(x1)U(x2)U(x3)〉(0)
dis = δ(τ1)δ(τ2)δ(τ3)

{
n3

impv(0)3

+
n2

imp

V
v(0)

∑
k

[
v1(−k)v2(k)e−ik·(r1−r2) + v1(−k)v3(k)e−ik·(r1−r3)

+ v2(−k)v3(k)e−ik·(r2−r3)
]

+
nimp

V2

∑
k,q

v1(−k− q)v2(k)v3(q)e−i(k+q)·(r1−r2−r3)

}
,

(D.5)
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which leads to the diagrammatic correction in fig. D.2b. The first and second terms are

clearly responsible for the first two terms of fig. D.2b, whilst the third term gives rise to

a cross connected to the Green’s functions by three dashed lines.

Lastly, at fourth order we find

〈U(x1)U(x2)U(x3)U(x4)〉(0)
dis = δ(τ1)δ(τ2)δ(τ3)δ(τ4)

{
n4

impv(0)4

+
n3

impv(0)2

V
∑
k

[
v1(−k)v2(k)e−ik·(r1−r2) + v1(−k)v3(k)e−ik·(r1−r3)

+ v1(−k)v4(k)e−ik·(r1−r4) + v2(−k)v3(k)e−ik·(r2−r3)

+ v2(−k)v4(k)e−ik·(r2−r4) + v3(−k)v4(k)e−ik·(r3−r4)
]

+
n2

imp

V
∑
k,q

[
v1(−k)v2(k)v3(−q)v4(q)e−ik·(r1−r2)e−iq·(r3−r4)

+ v1(−k)v3(k)v2(−q)v4(q)e−ik·(r1−r3)e−iq·(r2−r4)

+ v1(−k)v4(k)v2(−q)v4(q)e−ik·(r1−r3)e−iq·(r2−r3)
]

+
n2

impv(0)

V2

∑
k,q

[
v1(−k− q)v2(k)v3(q)e−i(k+q)·(r1−r2−r3)

+ v1(−k− q)v2(k)v4(q)e−i(k+q)·(r1−r2−r4)

+ v1(−k− q)v3(k)v4(q)e−i(k+q)·(r1−r3−r4)

+ v2(−k− q)v3(k)v4(q)e−i(k+q)·(r2−r3−r4)
]

+
nimp

V3

∑
k,q,
p

v1(−k− q− p)v2(k)v3(q)v4(p)

}
.

(D.6)

This term gives rise to the correction represented in fig. D.3, where variations refers to the

different possible correlated scattering events that have a similar structure to their prior

term. The first term is trivially four unconnected scatterings. The second line deals with

two correlated events and two uncorrelated events, and is generated by the second term

in eq. D.6. The third and fourth lines all depict two sets of connected scattering events,

and are the most significant contributions to the Green’s function at this order. These

lines are a consequence of the third term of eq. D.6. The fifth line denotes the fourth
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1 2 3 4〈 〉(0)

dis

=

+ +

+ +

+

+ +

+

variations

variations

Figure D.3: Diagrammatic representation of the fourth order correction to the electron
Green’s function after disorder averaging.

term of eq. D.6, and the final line represents all four scattering events being correlated

and hence describes the fifth term of eq. D.6.

Clearly, continuing this procedure analytically will quickly become unwieldy. We can

see from these diagrams, however, that a clear pattern emerges where we consider all

possible variations of connecting n impurities at the nth order, such that these connections

can leave an arbirtary number of scattering events unconnected. This pattern can be

realised both diagrammatically and mathematically by using an object called the self-

energy, Σ. The self-energy is defined as the collection of diagrams that are one particle

irreducible. That is to say, it is formed of diagrams that may not be split into two separate

pieces by cutting an internal propagator.3

3For example, consider fig. D.1: we may not cut any propagator here as there are no internal propa-
gators to cut. Therefore it is one particle irreducible. The first term of fig. D.2a can be cut through it’s
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Σ = + + +

+ + +

=

...

(a)

= + + + ...

= +

(b)

Figure D.4: (a): Diagrammatic series for the self-energy describing impurity averaging.
Here solid lines represent G0. (b): Diagrammatic representation of the Dyson equation,
where the thin solid lines are G0 propagators, and the thick solid lines are the full disorder-
averaged electron Green’s function, G.

In the case of disorder averaging, the self-energy may be written diagrammatically

as shown in fig. D.4a. We may then insert this into the series describing the disorder-

averaged electron Green’s function in fig. D.4b. It is at this point we can begin to

take different approximations to calculate the self-energy, and thus the resulting Green’s

function.

D.2 The First Order Born Approximation

The “first” order contribution to Σ(k) is simply nimpv(0), which clearly just leads to a

constant shift to the energy of the system. Therefore, we may neglect it by absorbing it

middle propagator, to form two separate pieces. Therefore, this term is not one particle irreducible. In
contrast the second term in fig. D.2a is one particle irreducible.
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into the ground state energy of the system, or equivalently set v(0) = 0. Clearly, this

means any diagrams we previously considered with an isolated impurity would vanish,

leaving diagrams where all scattering events are correlated in some way.

So the real first (leading) order contribution to the self-energy is actually the second

term in fig. D.4a,

Σ(1)(k, iε) =
nimp

V
∑
k′

|v(k− k′)|2G0(k′, iε)

= −nimp

V
∑
k′

|v(k− k′)|2 iε+ ξk′

ε2 + ξ2
k′
,

(D.7)

Here we used vn(k) = vm(k) ≡ v(k), along with the knowledge that V (r − r′) is a real

potential and hence gives v(k)∗ = v(−k). We also shifted our momentum variables, so

that the free Green’s function only had one momentum variable in its argument.

As before, we focus on energies close to the Fermi surface, ξk′/εF � 1 (εF is the Fermi

energy), as this region provides the most singular contribution. Approximating the sum

via an integral, we find

Σ(1)(k, iε) = −nimpN(0)

∫ +∞

−∞
dξ′|v(k− k′)|2 iε+ ξ′

ε2 + ξ′ 2
. (D.8)

Next, we assume that the function v(k−k′) does not vary significantly for small variations

of k′ about the Fermi surface, so we may take it to be constant v(k−k′) ' v(kF ). Lastly,

by identifying

nimp|v(kF )|2 =
1

2πN(0)τ0

, (D.9)

we recover eq. 3.12, and thus proceed as in the main text.

To begin including higher order corrections, let us remove our last assumption. This

means the reasoning used in moving from eq. 3.12 to eq. 3.13, in which we argued that the

second term of the integrand appearing in the first equation was odd and hence vanished,

is no longer necessarily true. Being completely honest and maintaining v(k) as being a
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non-constant function of k, means we must deal with

Σ(1)(k, iε) = −nimp

∫ +∞

−∞
dξ′N(ξ′)|v(k− k′)|2 iε+ ξ′

ξ′2 + ε2
. (D.10)

This leads to a real and imaginary part of Σ(1). The real part clearly arises from the

second term, and simply leads to a constant contribution in the denominator of the

disorder-averaged electron Green’s function. Hence, we may absorb it into the definition

of the chemical potential, and so this terms has no physical significance. The parity

argument can only be made when we focus on the behaviour in the region about the

Fermi surface, where |v(k− k′)| can be treated as a slowly varying function, and extend

it across the entire domain of ξ′ ∈ (−∞,+∞).4

Now, let us take another step back in writing Σ(1). By using the first line of eq. D.7

and performing analytic continuation to consider the retarded and advanced forms of Σ(1),

iε→ ω ± iδ, we obtain

Σ(1),R/A(k, ω) =
nimp

V
∑
k′

|v(k− k′)|2 1

ω − ξk′ ± iδ

=
nimp

V
∑
k′

|v(k− k′)|2
[

1

ω − ξk′
∓ iπδ(ω − ξk′)

]
,

(D.11)

where we used the sum form of the Plemelj formula to get the second line. The first term

is real and so may be ignored. Let us now assume that the spectral function, A(k, ω), cor-

responding to the disorder-averaged electron Green’s function is strongly peaked around

ξk, so that choices of ω far from ξk are negligible. This assumption is equivalent to saying

that the number of states that may be accessed by the addition of a particle with mo-

mentum k and energy ω + µ is small. This is ensured by focussing on energies close to

the Fermi surface, meaning that ξk is small and hence few states are accessible. In any

4In treating |v(k − k′)| as effectively constant near Fermi surface, we’ve technically accounted for
the effect of screening. That is to say that the electrons redistribute themselves to screen the impurity
charges. More details are given in [31].
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case, this assumption means we may set ω = ξk in the self-energy,

Σ(1),R/A(k) = ∓iπnimp

V
∑
k′

|v(k− k′)|2δ(ξk − ξk′). (D.12)

To further simplify the self-energy, we introduce the characteristic scattering time

1

τ0,k

= 2π
nimp

V
∑
k′

|v(k− k′)|2δ(ξk − ξk′). (D.13)

Thus, the more accurately written first Born self-energy is

Σ(1),R/A(k) = ∓ i

2τ0,k

, (D.14)

which corresponds to

Σ(1)(k, iε) = − i

2τ0,k

sgn(ε), (D.15)

in the Matsubara formalism.

To check for self-consistency we use this to determine the spectral function. Recalling

from eq. 2.21 that the spectral function is related to the imaginary part of the retarded

Green’s function, it is straight forward to show that

A(k, ω) =
1

2πτ0,k

1

(ω − ξk)2 + (2τ0,k)−2
, (D.16)

which is just a Lorentzian centred on ω = ξk with width 2τ−1
0,k. Since the energies we focus

on are close to εF , and for disordered metals εF � τ−1
0,k, our argument that the spectral

function is strongly peaked about ξk is self-consistent.

Finally, let us show how we can obtain the real time retarded and advanced Green’s

functions and the position space Green’s function from the disordered electron Matsubara

Green’s function. For the sake of simplicity, we shall use approximate τ0,k ' τ0. To obtain

the retarded and advanced Green’s functions we need only find one, as the other is simply

the complex conjugate of the other. First we analytically continue iε → ω + iδ in the
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disordered electron Green’s function, before making use of the inverse Fourier transform

defined in eq. 2.10 to get

GR(k, t) =

∫ +∞

−∞
dω

e−i(ω+iδ)t

ω − ξk + i
2τ0

. (D.17)

In writing eq. D.17 we have neglected the +iδ term appearing in the denominator as

it is an infinitesimal, which is much smaller than i/(2τ0). The analytic structure re-

mains unchanged by this, as the sign of the impurity correction is the same as the re-

tarded/advanced infinitesimal.

Now let us analytically continue ω into the complex plane and consider the pole

structure of the integrand. For all choices of t there is a simple pole in the lower half

plane at ω = ξ − i/(2τ0), however there exists an additional pole in the case where t > 0.

Specifically, when Im[ω] → +∞ the integrand again diverges when t > 0. Therefore, for

t < 0 we may choose to close our usual semi-circle contour in the upper half plane without

generating any additional contributions due to the contour at infinity. Given there are

no poles in the upper half plane, this contour encloses no poles, and hence the integral

vanishes. In contrast to this, the t > 0 case has poles in both half planes and so does not

necessarily vanish.

The easiest contour to consider is the semi-circle closed in the lower half plane, where

the contour at infinity does not encounter any poles and gives no contribution. Thus the

integral is given simply by the simple pole enclosed here at ω = ξ − i/(2τ0). This leads

us to writing

GR(k, t) =


−i e−iξkt e−(1/(2τ0)−δ)t, t > 0

0, t < 0.

(D.18)

We may write this concisely by using the Heavisde function and appreciating that we may

neglect δ,

GR(k, t) = −i e−iξkt e−t/(2τ0) Θ(t). (D.19)

Hence, we have reproduced the result we quote in eq. 3.18.
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Turning our attention to the three dimensional real space picture we choose to write

our problem in terms of spherical coordinates due to the symmetry of the system,

GR(r, ω) =

∫ +∞

0

dk

(2π)3
k2

∫ π

0

dθ sin(θ)

∫ 2π

0

dφ
eik·r

ω − ξk + 1
2τ0

. (D.20)

At this point we are free to choose the orientation of our axes, so for convenience we

choose r to be aligned with the kz axis so that k ·r = kr cos(θ). This allows us to perform

both the polar and azimuthal integrals by inspection,

GR(r, ω) =

∫ +∞

0

dk

2π2

k

r

sin(kr)

ω − ξk + i
2τ0

. (D.21)

As with most transport problems we shall change variables to an integral over ξ, and

approximate this about the Fermi surface in the usual fashion. This allows us to write,

GR(r, ω) =
N(0)

kF r

∫ +∞

−∞
dξ

sin(kr)

ω − ξ + i
2τ0

. (D.22)

To further approximate this integral, we use (k − kF ) ' mξ/kF and rewrite sin(kr) in

terms of exponentials5

GR(r, ω) =
N(0)

2ikF r

[∫ +∞

−∞
dξ

exp
(
ikF r + imr

kF
ξ
)

ω − ξ + i
2τ0

−
∫ +∞

−∞
dξ

exp
(
−ikF r − imrkF ξ

)
ω − ξ + i

2τ0

]
.

(D.23)

Whilst this may seem ugly, we can quickly notice that the second term vanishes as all

of its poles lie in the upper half plane. Hence, by complex analysis, we may consider a

contour integral, whose contour is closed in the lower half plane thus enclosing no poles,

to show this vanishes. In contrast, the first term has a simple pole in the upper half plane

at ξ = ω + i/(2τ0), as well as a singularity in the lower half plane as Im[ξ] → −∞. We

5To see this approximation of (k − kF ) more clearly, consider expanding ξk = k2/(2m) − k2F /(2m)
about kF with the assumption that |k − kF | � kF .
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therefore choose to close our contour in the upper half plane for simplicity, thus enclosing

the simple pole. This yields

GR(r, ω) = −πN(0)

kF r
exp

(
ikF r + i

mω

kF
r

)
e−r/l, (D.24)

where l = vF τ0 is the mean free path. In many situations involving metals we may

consider ω � εF due to the sheer scale of the Fermi energy. In this case the retarded real

space Green’s function simplifies to

GR(r, ω) = −πN(0)

kF r
eikF re−r/l. (D.25)

Let us now move on to consider how to include the other diagrams appearing in the

self-energy for the disordered electron gas.

D.3 The Full Born Approximation

In the full Born approximation (FBA), we not only account for diagrams describing the

first order approximation, but also all diagrams that involve multiple scattering events

connected to the same impurity. However, we ignore all nested diagrams6 and those that

involve crossings of the impurity scattering lines. We illustrate this self-energy, ΣFBA,

in fig. D.5. This expansion can be written in terms of a transition matrix, tk,k′ , whose

diagonal elements are equal to ΣFBA(k). The equation corresponding to fig. D.5 is

ΣFBA(k, iε) = nimpv(0) +
1

V
∑
k′

v(k− k′)G0(k′, iε)tk,k′ , (D.26a)

tk,k′ = nimpv(k− k′) +
1

V
∑
q

v(k′ − q)G0(q, iε)tk,q. (D.26b)

6These are the diagrams that have a set of correlated scattering events contained completely within
another set of correlated scattering events. The sixth term of fig. D.4a is the simplest example of this.
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Σ
FBA

= + + +

+ + ...

= + + + + ...

Figure D.5: Diagrammatic series for the self-energy in the FBA. The term written in the
brackets after the second equality is the transition matrix, tk,k′ .

Since we are only interested in electrons near the Fermi surface, we note that the real

part of the diagonal elements of the transition matrix are close to constant. As such we

may again ignore Re[tk,k] by absorbing it into the definition of the chemical potential.

Thus all the physics of the problem is contained in Im[tk,k]. To extract the imaginary

part, we rewrite eq. D.26b as a matrix equation,

t = nimp u+
1

V
uG0 t, (D.27)

where the matrix u has the elements uk,p = v(k−p), and the matrix G0 has the elements

G0,k,p = G0(k, iε)δk,p. Taking the Hermitian conjugate of t yields

t† = nimp u+
1

V
t†G†0u, (D.28)

where we noted that u is Hermitian. Rearranging this equation, we see that

u =
1

nimp

t† − 1

Vnimp

t†G†0u, (D.29)
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which can be substituted back into eq. D.27 to give

t = nimpu−
1

V2nimp

t†G†0uG0t+
1

Vnimp

t†G0t. (D.30)

Taking the diagonal components of this it is easy to see that the imaginary part of the

transition matrix is determined solely by the final term above, due to being the only

non-Hermitian contribution to tk,k′ .
7 Therefore we have shown

Im[tk,k] =
1

Vnimp

Im
[
〈k| t†G0(iε)t |k〉

]
=

1

Vnimp

Im

[∑
k′

t†k,k′G0(k′, iε)t†k′k

]
. (D.31)

Using the fact that Im[ΣFBA(k, iε)] = Im[tk,k] and ignoring real part of the self-energy,

we find the correction to the disorder-averaged electron Green’s function is

i Im[ΣFBA(k, iε)] =
i

Vnimp

Im

[∑
k′

|tk,k′|2G0(k′, iε)

]
. (D.32)

Comparing this to the first order Born approximation, we see this calculation is now

identical, but with nimp|v(k− k′)|2 replaced by |tk,k′ |2/nimp. This leads us to redefine the

characteristic scattering time as

1

τ0,k

=
2π

Vnimp

∑
k′

|tk,k′|2δ(ξk − ξk′). (D.33)

This leads to an identical form for the self-energy, and hence disordered electron Green’s

function, where only the characteristic scattering rate changes.

D.4 The Self-Consistent Born Approximation

As the name suggests, the self-consistent Born approximation (SCBA) leads to an equa-

tion that must be solved self-consistently. In this case we use the same diagrammatic

7The fact we are looking at the diagonal is important here since the diagonal elements of Hermitian
matrices are always real.
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series as the FBA, see fig. D.5, but we now replace the free electron Green’s function lines

with the disorder-averaged electron Green’s function. This accounts for all non-crossing

diagrams that can occur in the scattering process. The corresponding equation is thus

ΣSCBA(k, iε) = nimpv(0) +
1

V
∑
k′

v(k− k′)G(k, iε) tSCBA
k,k′

= nimpv(0) +
1

V
∑
k′

v(k− k′) tSCBA
k,k′

1

iε− ξk′ − ΣSCBA(k′, iε)
.

(D.34)

We repeat the same process as used for the FBA section, where we absorb the real

part of the self-energy into the chemical potential and focus entirely on the imaginary

part, to arrive at

Im
[
ΣSCBA(k, iε)

]
= Im

[
1

Vnimp

∑
k′

|tSCBA
k,k′ |2

iε− ξk′ − i Im [ΣSCBA(k′, iε)]

]
. (D.35)

Rewriting this as

Im
[
ΣSCBA(k, iε)

]
= − 1

Vnimp

∑
k′

|tSCBA
k,k′ |2

ε− Im
[
ΣSCBA(k′, iε)

]
ξ2
k′ + (ε− Im [ΣSCBA, R/A(k′, ω)])

2 , (D.36)

we note that the ansatz

Im
[
ΣSCBA(k, iε)

]
= −γksgn(ε), (D.37)

where γk > 0, satisfies the sign necessary for the self-energy. If we did not include the

sgn(ε) factor, then choices of ε could exist that would lead to a contradiction in eq. D.36.

Next, we analytically continue eq. D.35, iε→ ω ± iδ, to yield

Im
[
ΣSCBA, R/A(k, ω)

]
=

1

Vnimp

∑
k′

|tSCBA
k,k′ |2

Im
[
ΣSCBA, R/A(k′, ω)

]
(ω − ξk′)2 + (Im [ΣSCBA, R/A(k′, ω)])

2 . (D.38)

The factor multiplying |tSCBA
k,k′ |2 has a Lorentzian form of width Im

[
ΣSCBA(k′, iε)

]
and

centred on ξk′ . Under the assumption that the width is small, such that the Lorentzian,

and hence A(k, ω), is strongly peaked around ξk, we may approximate it by a delta
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function as in the FBA,8

Im
[
ΣSCBA, R/A(k, ω)

]
= ∓ π

Vnimp

∑
k′

|tSCBA
k,k′ |2δ(ξk − ξk′). (D.39)

Here we have included the ∓ to fix the sign generated by analytically continuing the ansatz

in eq. D.37, as well as a factor of π to draw analogy to the first order Born approximation

and FBA. This clearly has a similar form to the result we obtained using the FBA. Hence,

by letting γk = (2τ0k)−1, we identify the characteristic scattering rate as

1

τ0,k

=
2π

Vnimp

∑
k′

|tSCBA
k,k′ |2δ(ξk − ξk′). (D.40)

Again, the general form of the self-energy is the same and hence the disorder-averaged

electron Green’s function takes the same form as in the FBA and first order approximation.

This should come as no surprise as we can quickly show that all nested diagrams give

no contribution in the weak scattering limit. In all nested diagrams, there will exist two

or more Greens functions with the same momentum frequency arguments. Thus, when

performing the momentum integrals as energy integrals linearised about the Fermi surface,

all the poles of the integrand lie in the same half plane of the complex energy space. We

may therefore choose to close our contour in the opposite half plane, which contains zero

poles, and hence produce a vanishing result.

For example, consider the sixth term of fig. D.4a which depends on the following sums

1

V2

∑
k,k′

G0(k, iε)2G0(k′, iε) =
1

V
∑
k′

G0(k′, iε)

∫ +∞

−∞
dξ

1

(iε− ξ)2
. (D.41)

The integral in the second line is clearly zero as the integrand’s pole exists in only one

half plane, and not on the real axis. This reasoning can be applied to higher order nested

terms to justify their vanishing. Therefore, the fact that the SCBA gives a near identical

answer in the limit of weak scattering is to be expected.

8If we did not assume weak scattering, then this would not be a simple delta function. In the case of
strong scattering more thought has to be put into what this function could be.
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(a) (b)

Figure D.6: Left: Simplest crossing term correction to the disordered electron Green’s
function. Right: Second order term of the leading order approximation correction. The
solid lines here represent free electron Green’s functions.

D.5 Crossing Terms

So far we have included all types of diagrams besides those with crossing interactions. For

a good conductor, that is one with kF l � 1 (εF τ0 � 1) where l is the mean free path,

these diagrams are negligible to those at the same order in scattering. Let us consider the

simplest case shown in fig. D.6a, where the solid lines are free electron Green’s functions.

Written mathematically, with an input momentum p and frequency iε, this diagram

yields

1

(2πN(0)τ0)2

1

V2

∑
k,k′

G0(k, iε)G0(k′, iε)G0(p + k′ − k, iε). (D.42)

We shall compare this to the second order contribution to the Green’s function generated

in the first order Born approximation, see fig. D.6b.9 This term has the form,

1

(2πN(0)τ0)2

(
1

V
∑
k

G0(k, iε)

)2

. (D.43)

Now, we start by appreciating that the free electron Green’s functions are most singular

close to the Fermi surface (i.e: sharply peaked about k = kF ), and so our sums give their

most significant contributions when the Green’s function momentum arguments are close

to kF . Given our earlier analysis of the spectral function, which we showed to be a

Lorentzian of width (2τ0)−1, for the disordered electron gas, we expect that the electrons

that give rise to significant contributions lie within (2τ0)−1 of the Fermi energy. Therefore

9We could choose to compare the crossing term to the nested diagram of the same order, and thus
focus purely on the self-energy, which is entirely valid. The same argument applies, since both this
diagram and the nested diagram have access to the full Fermi shell about the Fermi surface, and so have
the same structure of summation. Though this assumes the nested diagram is non-vanishing.
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(a)

k′ k

(b)

Figure D.7: Visualisation of the overlap of the Green’s function momentum arguments.
The shaded regions represent the parts where the product of Green’s functions is signif-
icant. The solid circles are the Fermi surfaces at k = kF , and the dashed lines are the
shells of size l about the Fermi momentum. Left: significant momentum contributions for
the crossed term. Right: significant momentum contributions for fig. D.43.

we wish to focus on the regions of momentum space that allow for the Green’s function

momentum arguments to be within (2τ−1
0 ) of the Fermi energy.

Whilst this gives us a region to work with in energy space, we wish to work in mo-

mentum space. Given there exists a small region about εF that leads to significant contri-

butions, there must exist a corresponding small parameter, ∆k, characterising the region

about kF in momentum space.10 With this in mind we may say that

εF +
1

τ0

=
(kF + ∆k)2

2m
' k2

F

2m
+ vF∆k, (D.44)

where vF = kF/m. This clearly gives ∆k = (vF τ0)−1 = l−1, which is just the inverse

of the mean free path, l. Therefore, only momenta within l−1 of kF lead to significant

contributions.

Let us now consider the crossed term in eq. D.42. We can see that if we were to sum

freely over one of the two internal momenta, say k, then the k′ sum would be constrained

in order to ensure that the magnitude of the argument |k′ + p − k| was also close to

kF , whilst simultaneously keeping k′ close to kF . This is difficult to imagine without a

diagram, so we refer to fig. D.7a to help visualise this line of argument.

Here we can see two annuli of radius kF and thickness l−1. The leftmost annulus is

10By saying we treat ∆k as small, we mean in comparison to the Fermi momentum, kF . Note that we
also assume ∆k is parallel to kF , hence we only need to consider their magnitudes.
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centred on the origin, whilst the other is centred on k′ + p. The left annulus represents

the momentum space in which G0(k′, iε) is notably singular, whilst the right annulus

represents the region in which both G0(k, iε) and G0(k′+ p− k, iε) are notably singular.

Thus, we need only focus on the regions of overlap (the grey regions) between these

Green’s functions where they are all significant.

For comparison fig. D.7b shows the regions summed over for eq. D.43, which is clearly

much larger than that of the crossed term. In this case there are no restrictions on the

internal momenta, and so we may sum over all momentum space inside the annuli without

concern. The volume of the phase space for a single sum ∼ kF/l, and so the phase space

accessible to eq. D.43 is Ωind. ∼ (kF/l)
2.

Turning to the crossed term, we can easily see that the volume of accessible phase space

is comparable to Ωcross ∼ kF/l
3, where a factor of kF/l comes from performing either the

entire k or k′ sum, and a factor of l−2 comes from the remaining sum. Therefore

Ωcross

Ωind.

∼ 1

kF l
, (D.45)

which shows that the significant phase space of the crossed term is smaller than the

leading order term by a factor of kF l (assuming kF l > 1). In the case of good conductors,

where we must have kF l � 1, we see that all cross terms are sub-dominant to the terms

generator by the first order Born approximation. Therefore, we may neglect all terms

involving crossings of impurity lines in the transport theory of metals.

As a final note, these ideas are applicable to different dimensionalities, but will give

the same result that we have provided here. This concludes our appendix on the self-

energy and the many different types of Born approximations one might want to apply to

the problem of disorder averaging.
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APPENDIX E

KUBO’S FORMULA AND LINEAR

RESPONSE

Kubo originally derived his formula for linear response to determine the electrical con-

ductivity tensor [10] as the linear response of the electrical current density to an applied

electric field. In this appendix we present the most general form of Kubo’s formula based

on the books of Rickayzen [29] and Bruus & Flensberg [31].

Given the statistical nature of condensed matter field theory, we wish to understand

and calculate the statistical averages of observables. We therefore concern ourselves with

determining the quantity 〈M〉 when we wish to measure the observable M . This average,

represented by the angled brackets, contains both a quantum average and a statistical

average at finite temperature in the grand canonical ensemble.1 Hence, the system’s

behaviour and measurable quantities are determined by its density matrix, ρ. This average

is given in eq. 2.3, but we quote it here for ease of reference

〈...〉 = Tr [ρ ...] , ρ =
1

Z
e−β(H−µN), Z = Tr

[
e−β(H−µN)

]
, (E.1)

1We can think of statistical averaging as “classical” averaging. The ideas used for this part of the
averaging procedure are those used in statistical mechanics. The technical points and ideas behind
quantum and statistical averages are of great importance in many-body systems, where mixed states are
the dominant objects of concern, rather than simple many-body pure states. It is best to spend some
time reading and thinking about what pure and mixed states are to truly appreciated the mathematics
in condensed matter field theory.
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where N is the number operator, µ is the chemical potential, and H is the Hamiltonian

of our system. The trace can be written in terms of the eigenstates of H as

Tr [...] =
∑
n

〈n| ... |n〉 , (E.2)

where the eigenstate |n〉 has the eigenvalue En. We shall use the same shorthand notation

we defined in section 2.1 to take these eigenvalues relative to the chemical potential,

Ẽn = En − µNn.

Let us now consider a system with an initial time independent and particle conserving

Hamiltonian, H0, which can be solved exactly (i.e. it can diagonalised/we can find its

appropriate Green’s function). We also assume the system is in equilibrium before the

application of an external field. This last statement is equivalent to assuming the density

matrix is time independent before any external field is applied. Suppose now that we

apply a time dependent external field to the system described by the Hamiltonian H ′(t),

which acts for times t ≥ t0 as a small perturbation. Our Hamiltonian for times greater

than t0 is the combination H +H ′(t). In general we may write our full Hamiltonian as

H = H0 +H ′(t)Θ(t− t0). (E.3)

To find how the expectation value of an observable, M , evolves in time we need to

understand how the density matrix evolves in time. Equivalently, we can ask how the

eigenstates of H evolve with time. We explore the details behind the time evolution of

the density matrix in appendix C, and so we start from the differential equation defining

its time evolution

i
∂

∂t
ρ(t) = [H(t), ρ(t)]. (E.4)

Next we apply a transformation to move our density matrix from the Schrödinger
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picture, ρ(t), to the interaction picture (see appendix A.1.3), ρ̃(t), which yields

i
∂ρ̃

∂t
=[H̃ ′(t), ρ̃ ],

ρ(t) = U0(t) ρ̃(t)U †0(t) H̃ ′(t) = U †0(t)H ′(t)U0(t)

(E.5)

For t ≤ t0 the system is in equilibrium so ρ(t ≤ t0) = ρ0, and the external field has not

yet been applied meaning ρ and U0(t) commute. Therefore, we have the initial condition

ρ̃(t ≤ t0) = ρ0. (E.6)

Integrating the first line of eq. E.5 with respect to t generates a self-consistent integral

equation,

ρ̃(t) = ρ0 − i
∫ t

t0

dt′[H̃ ′(t′), ρ̃(t′)]. (E.7)

To obtain the linear response we only wish to retain terms that are either constant or

linear in H ′, therefore can substitute eq. E.7 into itself and drop any O(H ′2) terms or

higher. Doing so gives the density matrix, in the Schrödinger picture, to first order in H ′

to be

ρ(t) = ρ0 − iU0(t)

∫ t

t0

dt′[H̃ ′(t′), ρ0]U †0(t). (E.8)

We may now consider the expectation value of an observable, M . Using eq. E.8 we

see that

〈M〉 = Tr [ρ(t)M ]

= Tr [ρ0M ]− iTr

[
MU0(t)

∫ t

t0

dt′[H̃ ′(t′), ρ0]U †0(t)

]
= 〈M〉0 + i

∫ t

t0

dt′Tr
[
ρ0[H̃ ′(t′), M̃(t)]

]
,

= 〈M〉0 + δ 〈M〉0

(E.9)

where M̃(t) = U †0(t)MU0(t) is just the observable’s operator in the interaction picture.

This is the famous Kubo formula.
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As a generic example, let us choose H ′(t) = A(t)B, where A(t) is the applied field

and B is an operator belonging to the system.2 The linear response of the observable can

then be written as

δ 〈M〉0 = i

∫ t

t0

dt′A(t′)Tr
[
ρ0[B̃(t′), M̃(t)]

]
=

∫ +∞

t0

dt′A(t′)GR(t, t′),

(E.10)

where

GR(t, t′) = −i
〈

[M̃(t), B̃(t′)]
〉

0
Θ(t− t′) (E.11)

is a retarded Green’s function.

E.1 Electrical Current

Here let us consider the case of electrical current specifically. We gave the result in section

3.2 when we derived the Drude conductivity for a homogeneous system, so we shall give

the details skipped in obtaining eq. 3.26.

By applying an electric field, E, to a system, the electrical current density, J, response

is determined by the conductivity tensor, σαβ,

Jα(r, t) =
∑
β

∫ +∞

−∞
dt′
∫
ddr′σαβ(r− r′, t− t′)E(r′, t′). (E.12)

By working in the Coulomb gauge we may write the electric field purely in terms of the

vector potential, A,

E = −∂A

∂t
. (E.13)

To find the temporal Fourier transform of the current density, we write σ and A in terms

2Using the example given by Rickayzen [29], the field could be a magnetic field whilst the operator
could be the magnetic moment density operator.
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of their inverse Fourier transforms,

Jα(r, t) = −
∑
β

∫ +∞

−∞
dt′
∫
ddr′

∫ +∞

−∞

dω

2π
σαβ(r− r′, ω)e−iω(t−t′)

× ∂

∂t′

∫ +∞

−∞

dω′

2π
Aβ(r′, ω′)e−iω

′t′

=
∑
β

∫
ddr′

∫ +∞

−∞

dω

2π

∫ +∞

−∞
dω′σαβ(r− r′, ω)e−iωtiω′Aβ(r′, ω′)

×
∫ +∞

−∞

dt′

2π
ei(ω−ω

′)t′

=
∑
β

∫
ddr′

∫ +∞

−∞

dω

2π

∫ +∞

−∞
dω′σαβ(r− r′, ω)e−iωtiω′Aβ(r′, ω′)δ(ω − ω′)

=
∑
β

∫
ddr′

∫ +∞

−∞

dω

2π
iωσαβ(r− r′, ω)Aβ(r′, ω)e−iωt

=

∫ +∞

−∞

dω′

2π
Jα(r, ω)e−iωt.

(E.14)

Therefore we arrive at

Jα(r, ω) = iω
∑
β

∫
ddr′σαβ(r− r′, ω)Aβ(r′, ω). (E.15)

From this it is clear that the conductivity tensor is given by the linear response of the

current density to the vector potential. Next, we need to determine the perturbation to

the Hamiltonian created by the external field’s vector potential. We will only consider the

linear behaviour of the Hamiltonian, as we are concerning ourselves with weak changes

meaning higher orders in A are negligible.

In the presence of a vector potential the GC Hamiltonian for a disordered system

written in terms of field operators is (see eq. 3.23)

H =
∑
σ

∫
ddr ψ†σ(r)

[
(−i∇− eA(r, t))2

2m
+ U(r)− µ

]
ψσ(r). (E.16)
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If we expand this to isolate terms containing A this becomes

H =
∑
σ

∫
ddr ψ†σ(r)

[
−∇

2

2m
− µ+ U(r)

]
ψσ(r)

+ i
∑
σ

∫
ddr ψ†σ(r)

[
ie

2m
∇ ·A +

ie

2m
A · ∇+

e2

2m
A2

]
ψσ(r)

= H0 +
∑
σ

∫
ddr

[
ie

2m

[
ψ†σ(r) {∇ψσ(r)} − {∇ψ†σ(r)}ψσ(r)

]
+

e2

2m
Aψ†σ(r)ψσ(r)

]
·A

(E.17)

where in the second line we integrated by parts to shift the gradient operator from acting

on Aψ to act on ψ†.

Now, in retaining only terms that are at most linear in A, we may write H =

H0 +H ′(t) with

H ′(t) = −
∫
ddr j0(r) ·A(r, t), (E.18)

Here, j0 is the electrical current density operator in the absence of a vector potential,

j0(r) = − ie

2m

∑
σ

[
{∇ψ†σ(r)}ψσ(r)− ψ†σ(r)∇ψσ(r)

]
. (E.19)

The full current operator in the presence of a vector potential is found by minimally

coupling j0,

j(r, t) = j0(r)− e2

m
A(r, t)

∑
σ

ψ†σ(r)ψσ(r), (E.20)

Given the current density operator and linearised Hamiltonian, we may now apply

Kubo’s formula from eq. E.9 (more specifically eq. E.10) to determine the response of

the total current density of the system, j, to an electric field applied for times t ≥ t0. In
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applying Kubo’s formula, we find

〈jα(r, t)〉 = 〈j0(r)〉 − e2

m
Aα(r, t)

∑
σ

〈
ψ†σ(r)ψσ(r)

〉

' 〈j0(r)〉0 − i
∑
β

∫
ddr′

∫ t

t0

dt′Aβ(r′, t′)Tr
[
ρ0[ j̃0β(r′, t′), j̃0α(r, t) ]

]
− e2

m
Aα(r, t)

∑
σ

〈
ψ†σ(r)ψσ(r)

〉
0

= 〈j0α(r)〉0 − i
∑
β

∫
ddr′

∫ +∞

t0

dt′Aβ(r′, t′)GRαβ(r, t; r′, t′)

− n′(r)e2

m
Aα(r, t),

(E.21)

where n′(r) =
∑

σ

〈
ψ†σ(r)ψσ(r)

〉
0

is the electron number density for a specific impurity

distribution, and

GRαβ(r, t; r′, t′) = −i
〈[
j̃0α(r, t), j̃0β(r′, t′)

]〉
0

Θ(t− t′), (E.22)

is the retarded microscopic current-current correlator. Lastly, to isolate the driven re-

sponse of the system we extend the lower limit of the t′ integral to −∞. This ensures

that the transient response due to switching the electric field on at t0 decays by the time

of measurement, t.

So far we have considered a specific distribution of impurities, and thus a microscopic

current density. If we wish to model the macroscopic current density we observe, we need

to average over all possible impurity distributions. That is to say J(r, t) = 〈〈j(r, t)〉〉(0)
dis =

〈j(r, t)〉dis. We shall also assume after disorder averaging that the electron number density

is constant and uniform, n = 〈n′(r)〉(0)
dis.

After averaging over impurity distributions, we arrive at the linear response of the

electrical current density to the application of an external electric field described by the
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vector potential A,

Jα(r, t) = 〈j0,α(r, t)〉dis −
ne2

m
Aα(r, t)

−
∑
β

∫ +∞

−∞
dt′
∫
ddr′ GRαβ(r, t; r′, t′)Aβ(r′, t′),

(E.23)

where

GRαβ(r, t; r′, t′) = −i
〈[
j̃0,α(r, t), j̃0,β(r′, t′)

]〉
0,dis

Θ(t− t′), (E.24)

is the retarded current-current correlator.
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APPENDIX F

OBSERVING WEAK

LOCALISATION

In section 3.3.2 we found the temperature dependence of WL corrections to the elec-

trical DC conductivity, so it is only natural to ask “how might we observe such a phe-

nomenon experimentally?”, to which there is a simple answer: we apply a magnetic field.

This works because the cooperon lacks time reversal symmetry, unlike the diffuson; the

cooperon is a particle-particle (hole-hole) propagator which is mapped onto a hole-hole

(particle-particle) propagator by time reversal. In comparison, the diffuson is a particle-

hole propagator, so under time reversal it remains a particle-hole propagator.

Alternatively, we could imagine threading a self-intersecting loop with the magnetic

field. This means the phase picked up by an electron traversing the loop in one direction

will be different to the phase obtained by travelling in the opposite direction around the

loop. Naturally, we would expect this to produce oscillatory behaviour in the magneto-

resistance of a material, as certain field strengths would allow for the two phases to differ

by an integer multiple of 2π.

To show how oscillatory behaviour appears in the magneto-resistance, let us start by

considering the experiments of Sharvin et. al. [49] and Al’tshuler et. al. [50]. These

experiments used a thin metallic cylinder threaded with a magnetic field, which we illus-
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Figure F.1: Set up of a thin metal cylinder threaded by a magnetic field. The alignment
of our coordinate axes is also shown.

trate in fig. F.1. The extent of the cylinder along the z axis dictates whether the observed

phenomenon will be one or two dimensional in nature. These correspond to a short and

long cylinder respectively.

The magnetic field dependence of the WL corrections in d = 1 and d = 2 was developed

theoretically in 1981 by Al’tshuler et. al. [82]. In this work they showed that the WL

correction oscillated as a function of the magnetic flux threading the cylinder, ΦB, with

a period of the magnetic flux quantum Φ0 = hc/(2e) (not using natural units).1

To obtain these results from the diagrammatics, we need to introduce the knowledge

of a magnetic field into the cooperon. Let us consider the Green’s functions that build

the cooperon, G(q + k, iε + iω) and G(−k, iε). We define our magnetic field in terms

of a vector potential, A, which varies slowly in space (i.e. weak spatial dependence).

This allows us to neglect the commutators between the momentum operator and vector

potential. As a result the free electron piece of the Hamiltonian transforms according to

1The magnetic flux quantum written here is in Gaussian cgs units, which is a more convenient choice
when dealing with electromagnetic phenomena. If we were to write this in SI units it would simply be
Φ0 = h/(2e).
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(c = 1),

H0 =
∑
σ

∑
k

[
k2

2m
− µ

]
c†kσck,σ →

∑
σ

∑
k

[
1

2m
(k + eA)2 − µ

]
c†kσck,σ. (F.1)

Hence, the inclusion of a vector potential simply replaces k2 with (k + eA)2. We may

therefore deduce the disorder-averaged electron Green’s function in the presence of A to

be,

G(k, iε; A) = G(k + eA, iε) =
1

iε+ ξk+eA + i
2τ0

sgn(ε)
. (F.2)

Now, the cooperon is determined by G(q+k, iε+ iω)G(−k, iε), which becomes G(q+

eA + k, iε + iω)G(eA − k, iε) upon A’s inclusion, summed over the “fast” momentum,

k.2 We may freely transform this momentum by k→ k + eA without affecting the sum.

Doing so gives the cooperon self-energy to be

∑
k

G(q + 2eA + k, iε+ ω)G(−k, iε), (F.3)

which is the same as shifting q → q + 2eA in the original problem. Thus, the cooperon

in the presence of a vector potential (with weak spatial dependence) is simply,

C̃(q, iε+ iω, iε; A) =
1

2πN(0)τ 2
0

1

D(q + 2eA)2 + |ω|+ τ−1
φ

. (F.4)

This approach is exactly the same as that used in [34].

It is clear to see that the cooperon has become less singular for q, ω → 0, and therefore

reduces the size of the WL correction. If we now use this cooperon, we find the general

formula for the WL correction in the presence of a magnetic field to be,

σWL(iΩ) = −2e2D
π

∑
q

1

D(q + 2eA)2 + Ω + τ−1
φ

. (F.5)

2The momentum k we can typically associate to being the electron’s initial momentum before being
affected by the “transfer” momentum q. Since we generally take k to be near the Fermi surface, it is
characteristically large and hence a fast momentum.
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Here the system’s dimensionality and geometry become extremely important. We shall

now consider the system to be a thin cylinder that is either quasi-1D or quasi-2D to

compare to the observations in [49, 50]. Hence, we closely follow the methodology of [82].

We model this as a system that is extended in both the y and z axes (d = 2) or just

the y axis (d = 1), and impose periodic boundary conditions along the y axis. This means

we align the axes as shown in fig. F.1, where the x axis is radial, the y axis runs along the

circumference of the thin cylinder, and the z axis runs parallel to the applied magnetic

field.

We may rewrite eq. F.5 as a hybrid between an integral and sum. The x and z

components of the momentum are integrated over, as they can be viewed as extended

without periodic boundary conditions, and so are effectively continuous. However, the

y component of momentum is quantised according to 2πn/Ly, where Ly = 2πR is the

circumference of the cylinder, andR is the cylinder’s radius.3 This quantisation arises from

the requirement that the electron wave function must satisfy φ(x, y, z) = φ(x, y + Ly, z)

due to periodic boundary conditions.

The hybrid form of eq. 3.84 in the DC limit is then

σWL =
2e2D
π

1

Ly

∫
dqxdqz
(2π)2

+∞∑
n=−∞

1

D(q2
x + q2

z) +D(2πn
Ly
− 2eA)2 + τ−1

φ

=
2e2

π

1

Ly

∫
dqxdqz
(2π)2

+∞∑
n=−∞

1

q2
x + q2

z + ( 2π
Ly

)2(n− ΦB
Φ0

)2 + l−1
φ

,

(F.6)

where the factor of L−1
y comes from us accounting for the factor of V−1 explicitly, and we

have chosen a gauge that makes the y component of A its only non-zero component. By

writing V = LxLyLz, the x and z system lengths are cancelled by replacing their sums

with integrals, leaving just Ly. To relate ΦB to A, we used

ΦB =

∫
S

B · dS =

∮
C

A · dr = LyA, (F.7)

3Ly is just the system’s size in the y direction within a unit cell.
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where in the last equality we used the fact that A is purely along the y axis, and therefore

parallel to the contour traversed, C.

Given the cylinder is thin, we may neglect the qx component and treat the system as

being two dimensional. If we further restrict the cylinder to be short in the z axis, then

we have a quasi-one dimensional system meaning we may ignore the qz component as

well. Let us only consider the d = 1 case as a way to illustrate the oscillatory behaviour.4

Here we use the identity (see appendix M.3)

+∞∑
n=−∞

1

α2(n− β)2 + γ2
=

π

2αγ

[
coth

(πγ
α

+ iπβ
)

+ coth
(πγ
α
− iπβ

)]
=

π

αγ

sinh
(

2πγ
α

)
cosh

(
2πγ
α

)
− cos (2πβ)

,

(F.8)

to yield

σWL =
e2

π
lφ

sinh
(
Ly
lφ

)
cosh

(
Ly
lφ

)
− cos

(
2πΦB

Φ0

) , (d = 1). (F.9)

Clearly the the WL correction oscillates as a function of the magnetic flux threading the

cylinder with a period of the flux quantum Φ0.

The appearance of the flux quantum implies that the charge carrier responsible for

this process has a charge of 2e, due to the 2e in the denominator of Φ0. This is a direct

reflection of the underlying physical process responsible for weak localisation. Specifically,

it is a result of the coherent back scattering of an electron (hole), which is equivalent to

particle-particle (hole-hole) diffusion and so the diffusive process is described by a particle

of charge 2e.

4For those interested in the 2D case, the calculation is performed by Al’tshuler et. al. in [50].
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APPENDIX G

ELECTRON-ELECTRON

INTERACTION – CALCULATION

DETAILS

In this appendix we give the details behind the calculation of the screened Coulomb

interaction using RPA in section G.1. In section G.2, we provide the details for the

EEI correction to the electrical conductivity regarding the cancellation of the first three

diagrams, A-C. Finally, in section G.3, we show how to deal with the integrals and sums

appearing in the EEI correction to the electrical conductivity in different dimensions.

G.1 Screened Coulomb and RPA

Here we evaluate the first term of the screened Coulomb interaction’s polarisation bubble,

Π0(q, iω), in eq. 3.89, following ideas similar to Rickayzen’s analysis of the Drude con-

ductivity [29].1 We start by approximating the momentum sum as an integral linearised

1Other approaches to computing this term exist, see [34] for example. However, I would also like to
thank Jacob Spink in finding this approach to computing the empty bubble.
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around the Fermi surface and writing the Green’s functions in spectral form,

Π0(q, iε) = −2N(0)

∫
dΩ̂d

∫ +∞

−∞
dξ

×
∫ +∞

−∞
dx

∫ +∞

−∞
dy T

∑
ε

A(k + q, x)A(k, y)

[i(ε+ ω)− x][iε− y]
.

(G.1)

We must perform the frequency sum first due to issues of convergence in the summand

preventing us from freely swapping the order of summation. With the details given in

appendix M.4, we find

Π0(q, iε) = −2N(0)

∫
dΩ̂d

∫ +∞

−∞
dξk

×
∫ +∞

−∞
dx

∫ +∞

−∞
dy
A(k + q, x)A(k, y)[f(y)− f(x)]

y − x+ iω
.

(G.2)

Using eq. 2.21, we see that

A(k, x) =
1

2πτ0

1

(x− ξk)2 + 1
4τ2

0

. (G.3)

We then perform the the x integral for the term containing f(y) and the y integral for

the term containing f(x) to yield2

Π0(q, iω) = −2N(0)

∫
dΩ̂d

∫ +∞

−∞
dξk

×
∫ +∞

−∞
dxf(x)

[
A(k, x)

x− ξk+q + iω + i
2τ0

− A(k + q, x)

ξk − x+ iω + i
2τ0

]
.

(G.4)

Since only the electrons near the Fermi surface contribute significantly and k is the mo-

mentum of the electron Green’s function, we see that only small momentum transfers, q,

are of notable importance. Given this condition, q � k ∼ kF , we may approximate

ξk+q ' ξk +
k · q
m
' ξk + vF · q. (G.5)

2We use complex analysis with semi-circular contours closed in the upper half plane (y integral) and
the lower half plane (x integral) to evaluate these integrals.
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Substituting this into eq. G.4 produces an integral of the form

I =

∫ +∞

−∞
dξ

∫ +∞

−∞
dxf(x)F (x− ξ), (G.6)

inside the angular integral. We now use the same trick as Rickayzen by integrating this

expression by parts, whilst assuming F (x− ξ) ∼ ξ−n with n > 1 for |ξ| → ∞,3 to obtain

I = −
∫ +∞

−∞
dξξ

d

dξ

∫ +∞

−∞
dxf(x)F (x− ξ)

= −
∫ +∞

−∞
dξξ

∫ +∞

−∞
dxf(x)

d

dξ
F (x− ξ)

=

∫ +∞

−∞
dξξ

∫ +∞

−∞
dxf(x)

d

dx
F (x− ξ)

= −
∫ +∞

−∞
dξξ

∫ +∞

−∞
dx
df

dx
F (x− ξ).

(G.7)

In the final line we performed integration by parts on the x integral. We may now freely

interchange the orders of integration as df/dx is sufficiently convergent as |x| → ∞.

Hence,

Π0(q, iω) =2N(0)

∫
dΩ̂d

∫ +∞

−∞
dx
df

dx

×
∫ +∞

−∞
dξξ

[
A(k, x)

x− ξ − vF · q + iω + i
2τ0

− A(k + q, x)

ξ − x+ iω + i
2τ0

]
.

(G.8)

Performing the ξ integral via complex analysis gives

Π0(q, iω) = 2N(0)

∫
dΩ̂d

∫ +∞

−∞
dx
df

dx

vF · q− i
τ0

iω + i
τ0
− vF · q

. (G.9)

The x integral is trivial and yields

Π0(q, iω) = −2N(0)

∫
dΩ̂d

vF · q− i
τ0

iω+ i
τ0
−vF · q

= −2N(0)

∫
dΩ̂d

τ0vF · q− i
i(1+ωτ0)−τ0vF · q

. (G.10)

3This is to ensure that all surface terms vanish.
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We may neglect the ωτ0 piece in the imaginary part of the denominator as we are in the

diffusive limit. Therefore we see that Π0(q, iω) = 2N(0) for any choice of dimensionality.

G.2 Cancellation of Diagrams A, B, and C

We begin by calculating the diagrams A and B in fig. 3.18a and fig. 3.18b respectively,4

in the presence of an electric field with Matsubara frequency Ω > 0. The electromagnetic

response functions these diagrams are

K
(A)
αβ (iΩ) = −4e2

m2
T 2
∑
ε,ω

∑
k,q

[
kαkβV (q, iω)G(k, iε+ iΩ)2G(k, iε)

×G(k + q, iε+ iΩ + iω)D(q, iε+ iΩ + iω, iε+ iΩ)2
]
,

(G.11a)

K
(B)
αβ (iΩ) = −4e2

m2

T 2

2πN(0)τ0

∑
ε,ω

∑
k,k′,q

[
kαkβV (q, iω)G(k, iε+ iΩ)2G(k, iε)

×G(k′, iε+ iΩ)2G(k′ + q, iε+ iΩ + iω)

×D(q, iε+ iΩ + iω, iε+ iΩ)2

]
.

(G.11b)

The factors of 4 out front in these expressions come from a factor of 2 for electron spin,

and an additional factor of 2 for the variant diagrams with the interaction, and single

correlated impurity scattering event, on the lower half of the diagram. The minus sign is

due to the interaction carrying a minus sign.5

The presence of the diffusons at either end of the interaction only allow for certain

sign choices of the frequencies to give non-zero contributions to the diagram’s correction.

The Green’s functions involved with the diffuson must be of opposite sign, and so we are

left with three possible sign choices, as illustrated in fig. G.1. In the case of fig. 3.18a

we may break the electromagnetic response function into three parts: ε, (ε+ Ω) < 0 and

ε+ Ω +ω > 0 (fig. G.1a), which gives K
(A1)
αβ ; ε, (ε+ Ω) > 0 and ε+ Ω +ω < 0 (fig. G.1b),

which gives K
(A2)
αβ ; ε+ Ω > 0 and ε, (ε+ Ω +ω) < 0 (fig. G.1c), which gives K

(A3)
αβ . These

4These are sometimes referred to as DOS type diagrams.
5Recall an interaction introduces −V (q, iω).
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(a) (b) (c)

Figure G.1: Sign choices for the DOS diagram in fig. 3.18a. (a), (b), and (c) correspond
to the A1, A2, and A3 contributions respectively. (c) is also the only possible sign
configuration for fig. 3.18b, as the single impurity line does not change the electron’s
energy.

response functions are given by,

K
(A1)
αβ (iΩ) = −4e2

m2
T 2

×
∑
ω>0

∑
−(Ω+ω)<ε<−Ω

∑
k,q

[
kFαkFβV (q, iω)G−(k)3G+(k)D(q, iω)2

]
,

(G.12a)

K
(A2)
αβ (iΩ) = −4e2

m2
T 2

×
∑
ω<−Ω

∑
0<ε<−(Ω+ω)

∑
k,q

[
kFαkFβV (q, iω)G+(k)3G−(k)D(q, iω)2

]
,

(G.12b)

K
(A3)
αβ (iΩ) = −4e2

m2
T 2

 ∑
−Ω≤ω<0

∑
−Ω<ε<−(Ω+ω)

+
∑
ω<−Ω

∑
−Ω<ε<0


×
∑
k,q

[
kFαkFβV (q, iω)G+(k)2G−(k)2D(q, iω)2

]
.

(G.12c)

Here we have already accounted for the fact that only the electrons close to Fermi surface

contribute significantly the sums and hence transport, |k| ' kF . In doing this, we have

also assumed that q is small compared to kF .6

The electron momenta, k, are summed over using the diffusive momentum sum identity

in eq. 3.75. We then let ω → −ω in eqs. G.12b and G.12c, making note that V (q, iω)

6This is natural as larger values of q would give rise to less singular contributions, as G(k + q, iε +
iΩ + iω) will significantly smaller for larger q.
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and D(q, iω) are unaffected by this,7 to yield

K
(A1)
αβ (iΩ) =

8πN(0)e2k2
F τ0

m2d
δαβ T

2
∑
ω>0

∑
−(Ω+ω)<ε<−Ω

∑
q

V (q, iω)

(ω +Dq2)2
, (G.13a)

K
(A2)
αβ (iΩ) =

8πN(0)e2k2
F τ0

m2d
δαβ T

2
∑
ω>Ω

∑
0<ε<ω−Ω

∑
q

V (q, iω)

(ω +Dq2)2
, (G.13b)

K
(A3)
αβ (iΩ) = −16πN(0)e2k2

F τ0

m2d
δαβ T

2

×

[ ∑
0<ω≤Ω

∑
−Ω<ε<ω−Ω

+
∑
ω>Ω

∑
−Ω<ε<0

]∑
q

V (q, iω)

(ω +Dq2)2
.

(G.13c)

These expressions have ε independent summands, meaning the ε sums can be evaluated

with ease. We are thus left with

K
(A1)
αβ (iΩ) = 4N(0)e2D δαβ T

∑
ω>0

∑
q

ω
V (q, iω)

(ω +Dq2)2
, (G.14a)

K
(A2)
αβ (iΩ) = 4N(0)e2D δαβ T

∑
ω>Ω

∑
q

(ω − Ω)
V (q, iω)

(ω +Dq2)2
, (G.14b)

K
(A3)
αβ (iΩ) = −8N(0)e2D δαβ T

[ ∑
0<ω≤Ω

ω +
∑
ω>Ω

Ω

]∑
q

V (q, iω)

(ω +Dq2)2
. (G.14c)

Now, considering fig. 3.18b it might appear that the same sign choices can be made

as in fig. 3.18a. However, the presence of the single impurity line causes the first and

second sign choices to vanish, as the Green’s functions with momentum k will all have

poles in the same half plane, meaning the k sum, when analytically continued, can have

its contour closed in the empty half plane. Therefore, we need only evaluate the third

7Look back at their expressions in eq. 3.94 and eq. 3.74 and see that they depend upon |ω|.
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G.2. CANCELLATION OF DIAGRAMS A, B, AND C

(a) (b)

Figure G.2: Sign choices for the diagram in fig. 3.18c. Panels a and b correspond to the
C1 and C2 contributions respectively.

sign choice. The resulting contribution is then8

K
(B)
αβ (iΩ) = 4N(0)e2D δαβ T

[ ∑
0<ω≤Ω

ω +
∑
ω>Ω

Ω

]∑
q

V (q, iω)

(ω +Dq2)2
, (G.15)

which is clearly −K(A3)
αβ (iΩ)/2.

Moving on to diagram C in fig. 3.18c, we may write the response function

K
(C)
αβ (iΩ) = −2e2

m2
T 2
∑
ω,ε

∑
k,q

[
kα(k + q)βV (q, iω)G(k, iε+ iΩ)G(k, iε)

×G(k + q, iε+ iΩ + iω)G(k + q, iε+ iω)

×D(q, iε+ iω, iε)D(q, iε+ iΩ, iε+ iΩ + iω)
]
.

(G.16)

First we note that the momentum k is the electron momentum, and so is close to the

Fermi momentum. In comparison, q is a small momentum exchange in the diffusive limit,

such that we may approximate (k+q)β ' kβ. Next, the diffusons enforce the two possible

sign choices shown in fig. G.2; ε, (ε + Ω) < 0 and (ε + Ω + ω), (ε + ω) > 0 (fig. G.2a),

which corresponds to K
(C1)
αβ (iΩ); ε, (ε + Ω) > 0 and (ε + Ω + ω), (ε + ω) < 0 (fig. G.2b),

which corresponds to K
(C2)
αβ (iΩ). Performing the k sum in the diffusive limit followed by

the ε sum, we find that both sign choices give the same result, K
(C1)
αβ (iΩ) = K

(C2)
αβ (iΩ).

Thus,

K
(C)
αβ (iΩ) = −8N(0)e2D δαβ T

∑
ω>Ω

∑
q

(ω − Ω)
V (q, iω)

(ω +Dq2)2
, (G.17)

8We skip the details here, as we have given a large amount of detail on how to perform these types of
calculations when dealing with fig. 3.18a. Extra details will only be included where necessary from here
onwards. For example, in the case of tricks or new technical points.
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which is just −2K
(A2)
αβ (iΩ).

Combining the contributions of the first three diagrams we see that,

K
(A)
αβ (iΩ) +K

(B)
αβ (iΩ) +K

(C)
αβ (iΩ)

= K
(A1)
αβ (iΩ) +K

(A2)
αβ (iΩ) +K

(A3)
αβ (iΩ) +K

(B)
αβ (iΩ) +K

(C)
αβ (iΩ)

= K
(A1)
αβ (iΩ) +

1

2
K

(A3)
αβ (iΩ)−K(A2)

αβ (iΩ)

= 0.

(G.18)

The last line is most easily seen by noting that the ω > Ω sum of K
(A3)
αβ (iΩ) and the term

with Ω in the numerator of K
(A2)
αβ (iΩ) cancel in the above combination. The remaining

pieces of K
(A2)
αβ (iΩ) and K

(A3)
αβ (iΩ) in the above then sum to give −K(A1)

αβ (iΩ), and hence

a trivial result for the sum of the first three diagrams.

G.3 EEI Corrections in Different Dimensions

In this section we provide the details for calculating eq. 3.103 for different dimensionalities,

Kαβ(iΩ) = −16N(0)e2D2

d
δαβ T

[ ∑
0<ω≤Ω

ω +
∑
ω>Ω

Ω

]∑
q

q2V (q, iω)

(Dq2+ω)2(Dq2+ω+Ω)
. (G.19)

For d = 2 we can perform the momentum sum followed by the frequency sum without

issue, though the momentum sum will require an appropriate upper cut-off. However, the

d = 1 and d = 3 cases do not require the same cut-off to obtain convergent results.9

Starting with d = 2 and we approximating the sum by an integral, we are left to

evaluate ∫ ∞
0

dq

2π

q

(Dq2 + ω)2
=

1

4πD

∫ 1/τ0

0

dx

(x+ ω)2
, (G.20)

where we used eq. 3.97 for V (q, iω) due to being in the diffusive limit, and x = Dq2.

We also introduced a cut-off in the upper limit for consistency with the diffusive limit,

9Technically all dimensions should have a cut-off based on the diffusive limit, Dq2c = τ−10 , but we
can obtain the same approximate results by replacing this with infinity for d = 1 and d = 3 due to the
convergent nature of their integrals.
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Dq2 � τ−1
0 .10 Performing the integral yields,

1

4πD

∫ 1/τ0

0

dx

(x+ ω)2
=

1

4πD

(
1

ω
− τ0

1 + ωτ0

)
' 1

4πDω
, (G.21)

where we have approximated using the diffusive limit, ωτ0 � 1. This thus leaves,

Kαβ(iΩ) = −e
2

π
δαβT

[ ∑
0<ω≤Ω

1 +
∑
ω>Ω

Ω

ω

]
. (G.22)

The first of these sums is trivial and gives Ω/(2πT ), whilst the second sum diverges

logarithmically at its upper limit. As with the momentum integral, we can introduce

a physical cut-off to the upper limit based upon the diffusive limit. Since ω = 2πnT

and ωτ0 � 1, we define nmax = (2πTτ0)−1. Similarly, since ω > Ω we also define

nmin = Ω/(2πT ) + 1. Hence, we may write the second sum as

1

2πT

nmax∑
n=nmin

Ω

n
=

1

2πT

nmax−nmin∑
n=0

Ω

n+ Ω
2πT

+ 1
. (G.23)

We evaluate this sum as a difference of digamma functions, ψ(x),11

1

2πT

1
2πTτ0

− Ω
2πT
−1∑

n=0

Ω

n+ Ω
2πT

+ 1
=

Ω

2πT

[
ψ

(
1

2πTτ0

)
− ψ

(
Ω

2πT
+ 1

)]
. (G.24)

In the limit x � 1, ψ(x) ' ln(x), which can be applied to the first digamma function in

eq. G.24 due to the diffusive limit, Tτ0 � 1, to give

1

2πT

1
2πTτ0

− Ω
2πT
−1∑

n=0

Ω

n+ Ω
2πT

+ 1
=

[
ln

(
1

2πTτ0

)
− ψ

(
Ω

2πT
+ 1

)]
. (G.25)

10We simply set the upper limit to be equal to the largest scale set by the limit. In this case the largest
“allowed” value of Dq2 is τ−10 .

11Details of this function are given in appendix N.

303



APPENDIX G. ELECTRON-ELECTRON INTERACTION – CALCULATION
DETAILS

We therefore find

Kαβ(iΩ) = −e
2Ω

2π2
δαβ

[
1 + ln

(
1

2πTτ0

)
− ψ

(
Ω

2πT
+ 1

)]
' −e

2Ω

2π2
δαβ

[
ln

(
1

2πTτ0

)
− ψ

(
Ω

2πT
+ 1

)]
.

(G.26)

Finally, by using Kαβ(iΩ) = Ωσαβ(iΩ) = Ωδαβσ(iΩ),12 we arrive at the corrections to

the electrical conductivity for a disordered thin metallic film,

σ
(2D)
EEI (iΩ) = − e2

2π2

[
ln

(
1

2πTτ0

)
− ψ

(
Ω

2πT
+ 1

)]
. (G.27)

Hence, the DC conductivity is simply

σ
(2D)
EEI = − e2

2π2
ln

(
1

2πTτ0

)
, (G.28)

as ψ(1) = −γ, where γ the Euler-Mascheroni constant, is at most of order unity.

To find the d = 1 and d = 3 results, let us return to eq. G.19 and again perform the

momentum integral. However, we are only interested in the leading order behaviour in

Ω, so we may expand to O(Ω).13 This yields

σEEI = − e2

2π2

αd
d
D1− d

2T

[
lim
Ω→0

1

Ω

∑
0<ω≤Ω

ω
d
2
−1 +

∑
ω>0

ω
d
2
−2

]
, (G.29)

where

αd =


4π2, d = 1

2π, d = 3.

(G.30)

12This simplification is not true in general, but in all the cases we explore in this thesis we will only
encounter diagonal conductivity tensors.

13This trick can be shown to produce the correct answer if we consider the sum using the standard
analytic continuation tricks.
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Manipulating the frequency sums produces Hurwitz zeta functions,14

∑
ω>0

ω
d
2
−2 =

1

(2πT )2− d
2

∞∑
n=1

n
d
2
−2

=
1

(2πT )
d
2
−2

∞∑
n=0

1

(n+ 1)2− d
2

=
1

(2πT )2− d
2

ζ

(
2− d

2
, 1

)
,

(G.31a)

1

Ω

∑
0<ω≤Ω

ω
d
2
−1 =

1

(2πT )1− d
2

1

Ω

Ω
2πT∑
n=1

n
d
2
−1

=
1

(2πT )1− d
2

1

Ω

 ∞∑
n=1

n
d
2
−1 −

∞∑
n= Ω

2πT
+1

n
d
2
−1


=

1

(2πT )1− d
2

1

Ω

[
ζ

(
1− d

2
, 1

)
− ζ

(
1− d

2
, 1 +

Ω

2πT

)]
Ω→0
= − 1

(2πT )2− d
2

d

dx

[
ζ

(
1− d

2
, x

)] ∣∣∣∣
x=1

=
1

(2πT )2− d
2

(
1− d

2

)
ζ

(
2− d

2
, 1

)
.

(G.31b)

Substituting these into eq. G.29 leads to

σ
(d=1,3)
EEI = − e2

2π2

(
T

D

) d
2
−1

αd

(2π)2− d
2

4− d
2d

ζ

(
2− d

2
, 1

)
, (G.32)

which is exactly what was given in eq. 3.104.

14See appendix N for its properties.
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APPENDIX H

THE PAIR PROPAGATOR: AN

HONEST DERIVATION

In this appendix we shall follow Larkin and Varlamov [56] to show how the pair propagator

term with no impurity scattering between BCS interactions is included. To do this we

must calculate the vertex part denoted by the hatched region in fig. 3.22. We shall

associate Γc(q, iε1, iε2) to this object with a closed end, see fig. H.1. This vertex part is

given by the self-consistent equation1

Γc(q, iε+ iω,−iε) = 1 +
∑
k

G(k + q, iε+ iω)G(−k,−iε)
2πN(0)τ0

Γc(q, iε+ iω,−iε)

= 1 + Σc Γc(q, iε+ iω,−iε).
(H.1)

This can be easily rearranged to give Γc in terms of Σc, and so leaves us to evaluate the k

sum. Before we assume that we are in the diffusive limit, let us show how we can obtain

the expression given in eq. 5.26 of [56].

1This type of equation is also known as a Bethe-Salpeter equation, see [34].
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= +

= +

Figure H.1: Modified cooperon vertex part to include no scatterings between the Green’s
functions.

As usual, we linearise the momentum integral about the Fermi surface to produce,

∑
k

G(k + q, iε+ iω)G(−k,−iε)

' −N(0)

∫
dΩ̂d

∫ +∞

−∞
dξ

[
1

iε+ ξ + i
2τ0

sgn(ε)

× 1

iε+ iω − ξ − vF · q + i
2τ0

sgn(ε+ ω)

]

= πiN(0)

∫
dΩ̂d

Θ(ε(ε+ ω))[sgn(ε+ ω) + sgn(ε)]

2iε+ iω − vF · q + i
2τ0

[sgn(ε+ ω) + sgn(ε)]

= 2πiN(0)

∫
dΩ̂d

Θ(ε(ε+ ω))sgn(2ε+ ω)

2iε+ iω − vF · q + i
τ0

sgn(2ε+ ω)

= 2πiN(0)

∫
dΩ̂d

Θ(ε(ε+ ω))

i|2ε+ ω| − vF · q + i
τ0

= 2πN(0)

∫
dΩ̂d

Θ(ε(ε+ ω))

|2ε+ ω|+ 1
τ0

+ ivF · q
.

(H.2)

At this point, Larkin and Varlamov [56] expand in powers of vF · q by considering only

small momenta, and retain terms up to order (vF ·q)2. This is entirely analogous to what

we did for the diffuson in section 3.3.1, however we have not assumed the diffusive limit
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here as we have not stated anything about the relative size of T (and hence the Matsubara

frequencies ε and ω) compared to τ−1
0 . This expansion gives,

∑
k

G(k + q, iε+ iω)G(−k,−iε)

' 2πN(0)

|2ε+ ω|+ 1
τ0

∫
dΩ̂d

(
1− (vF · q)2

(|2ε+ ω|+ 1
τ0

)2

)
Θ(ε(ε+ ω))

=
2πN(0)

|2ε+ ω|+ 1
τ0

(
1− 1

(|2ε+ ω|+ 1
τ0

)2

v2
F q

2

d

)
Θ(ε(ε+ ω)),

(H.3)

and hence

Σc =
1

τ0

1

|2ε+ ω|+ 1
τ0

(
1− 1

(|2ε+ ω|+ 1
τ0

)2

v2
F q

2

d

)
Θ(ε(ε+ ω)). (H.4)

For comparison to [56], we have assumed that our Fermi surface is spherical in com-

puting the angular integral for the (vF · q)2 piece. If the Fermi surface was not trivial

(i.e. anisotropic) the angular integral would give a different result, and may not even be

possible to calculate in general. In this case, the (vF ·q)2 term can be thought of as being

averaged over the Fermi surface, which is exactly how Larkin and Varlamov [56] treat this

problem. In their notation, instead of performing the angular integral for the (vF · q)2

term, they simply write it as 〈(vF · q)2〉F.S. to denote the average over the Fermi surface.

Substituting eq. H.4 into eq. H.1 and rearranging for Γc, we see,

Γc(q, iε+ iω,−iε) =
|2ε+ ω|+ 1

τ0

|2ε+ ω|+ 1
τ0

+ ( 1
|2ε+ω|τ0+1

Dq2 − 1
τ0

)Θ(ε(ε+ ω))
, (H.5)

which is an entirely identical result to Larkin and Varlamov’s eq. 5.26 [56] for a spheri-

cally symmetric Fermi surface. If we now apply the diffusive limit, where Tτ0 � 1 and so

|2ε + ω|τ0 � 1, eq. H.5 simply collapses to the result we’re used to dealing with, where

we did not include the term with no scatterings between the Green’s functions,
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= +

Figure H.2: Alternate, but equivalent, way of writing the diagrammatic series for the pair
propagator given in fig. 3.22.

Γ̃c(q, iε+ iω,−iε) ' Θ(−ε(ε+ ω)) +
1

τ0

Θ(ε(ε+ ω))

|2ε+ ω|+Dq2

' 1

τ0

Θ(ε(ε+ ω))

|2ε+ ω|+Dq2

= C(q, iε+ iω,−iε).

(H.6)

Now, we can write the pair propagator as a Dyson equation based on the series show in

fig. H.2. This diagram is entirely equivalent to what we dealt with previously in section

3.5.1. The pair propagator’s self-energy (fluctuation ploarisation operator), which was

originally split up into Πfl,0(q, iω) and Πfl,1(q, iω), can now be written as one compact

object,

Πfl(q, iω) = T
∑
ε

∑
k

G(k + q, iε+ iω)G(−k,−iε)Γ̃c(q, iε+ iω,−iε). (H.7)

In applying the diffusive limit, Γ̃c(q, iε+iω,−iε) ' C(q, iε+iω,−iε), and so Πfl(q, iω) '

Πfl,1(q, iω). We therefore see that the contribution of Πfl,0(q, iω) is negligible in the

diffusive limit.
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APPENDIX I

FLUCTUATION CONDUCTIVITY

– CALCULATION DETAILS

In this appendix we provide the details behind some of the points made in the section

3.5.3, as well as section 5.4.2. Namely, we will show how sum of the diagrams in fig.

3.23 vanishes in the limit of zero external frequency, as well as why we choose to focus

on diagrams A, B, C, and F. In doing this, we provide the outline of how to set up the

response functions we quote in the main text. In a similar manner, we also show how the

analogous diagrams for granular systems, see fig. 5.13, sum to zero in the absence of a

non-zero external frequency.

Showing that the sum of all diagrams vanish when the external frequency is zero is

vital to assuring that we have accounted for all diagrams. Since this only justifies that

we have accounted for all diagrams and does not provide any insight into the physics

we observe, these details would have simply clogged the main body of this thesis. In a

similar vain, we need only worry about the parts of calculation unique to superconducting

fluctuations in the main text. Therefore, the necessary, but repetitive, procedure of setting

up the response functions, determining their non-zero sign choices, and the contributions

arising from each choice would have also made chapter 3 bloated and an arduous read.

We therefore expand upon these details here.
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I.1 Vanishing Zero Frequency Response – Homoge-

neous Metals

The total leading order correction to the conductivity due to superconducting fluctu-

ations is given by the diagrams in fig. 3.23. Let us begin by writing each diagram’s

electromagnetic response function,

K
(A)
αβ (iΩ) = −4e2

m2
T 2
∑
ε,ω

∑
k,q

[
kαkβG(k, iε+ iΩ)2G(q− k, iω − iε− iΩ)

×G(k, iε)C(q, iε+ iΩ, iω − iε− iΩ)2L(q, iω)
]
,

(I.1a)

K
(B)
αβ (iΩ) = −4e2

m2

T 2

2πN(0)τ0

∑
ε,ω

∑
k,k′,q

[
kαkβG(k, iε+ iΩ)2G(k, iε)

×G(k′, iε+ iΩ)2G(q− k′, iω − iε− iΩ)

× C(q, iε+ iΩ, iω − iε− iΩ)2L(q, iω)
]
,

(I.1b)

K
(C)
αβ (iΩ) = −2e2

m2
T 2
∑
ε,ω

∑
k,q

[
kα(q− k)βG(k, iε+ iΩ)G(q− k, iω − iε− iΩ)

×G(k, iε)G(q− k, iω − iε)C(q, iε+ iΩ, iω − iε− iΩ)

× C(q, iε, iω − iε)L(q, iω)
]
,

(I.1c)

K
(D)
αβ (iΩ) = −4e2

m2
T 2
∑
ε,ω

∑
k,k′,q

[
kαk

′
βG(k, iε+ iΩ)G(q− k, iω − iε− iΩ)

×G(k, iε)G(k′, iε)G(k′, iε+ iΩ)G(q− k′, iω − iε− iΩ)

× C(q, iε+ iΩ, iω − iε− iΩ)2C̃(q, iω − iε− iΩ, iε)L(q, iω)
]
,

(I.1d)

K
(E)
αβ (iΩ) = −4e2

m2
T 2
∑
ε,ω

∑
k,k′,q

[
kαk

′
βG(k, iε+ iΩ)G(q− k, iω − iε− iΩ)

×G(k, iε)G(k′, iω − iε− iΩ)G(q− k′, iε)G(k′, iω − iε)

× C(q, iε+ iΩ, iω − iε− iΩ)C(q, iε, iω − iε)

× C̃(q, iω − iε− iΩ, iε)L(q, iω)
]
,

(I.1e)
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K
(F )
αβ (iΩ) = −4e2

m2
T 3
∑
ε,ε′,ω

∑
k,k′,q

[
G(k, iε+ iΩ)G(q− k, iω − iε)G(k, iε)

× C(q, iε+ iΩ, iω − iε)C(q, iε, iω − iε)G(k′, iε′ + iΩ)

×G(q− k′, iω − iε′)G(k′, iε′)C(q, iε′ + iΩ, iω − iε′)

× C(q, iε′, iω − iε′)L(q, iω)L(q, iω + iΩ)
]
.

(I.1f)

The minus signs appearing in diagrams A-E are due to L(q, iω) being an effective inter-

action, and hence carrying an extra minus sign according to the standard diagrammatic

rules. The additional factors of 2 in the DOS type diagrams is a result of their two vari-

ations: the ones shown in fig. 3.23, and the same with the pair propagator on the lower

branch. Similarly, diagram E carries an extra factor of 2 due to its variants: the pair

propagator and cooperon can be crossed in the order shown in fig. 3.23e, as well as in the

opposite order. Finally, the minus sign in diagram F is due to the second closed fermion

loop.

First, we shall focus on diagrams A-E as these are relatively straightforward. Diagram

F has a few nuances that will require a little more attention. A lot of the ideas used in

the EEI calculation can be used here, but let us give a brief outline of the process.

Each diagram has an allowed set of sign choices yielding non-zero values due to the

cooperons present. These are illustrated in fig. I.1. Any current vertices containing both

fast and slow momenta we approximate as (q−k)β ' −kβ, and similarly we approximate

the arguments of the electron Green’s functions in the same way where appropriate.

However, if the fast momentum sum is odd in k due to the current vertex, we expand the

Green’s functions dependent on q to first order, so that we produce factors that look like

kβ(k · q), which do not vanish upon summation over k. This expansion is the same trick

we used for diagrams D and E of the EEI corrections. By doing this we find the leading

order contributions to the electrical conductivity. We lastly assume Ω > 0 without loss

of generality.
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(a)

(b)

(c)

(d)

(e)

Figure I.1: Sign choices for diagrams A-E describing superconducting fluctuation correc-
tions to the electrical conductivity in disordered homogeneous metals.
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The maths behind each diagram and sign choice is long and arduous, so we simply

quote the results of performing the fast momentum sums (those over k and k′). By

following the ideas listed above, and using the EEI calculation as a reference point, one

can reproduce the following,

K
(A1)
αβ (iΩ) = 16πN(0)e2DδαβT 2

∑
ω>0

∑
ε>0

∑
q

L(q, iω)

(Dq2 + 2ε+ ω)2

+ 8πN(0)e2DδαβT 2
∑
ε>0

∑
q

L(q, 0)

(Dq2 + 2ε)2
,

(I.2a)

K
(A2)
αβ (iΩ) = 8πN(0)e2DδαβT 2

×
∑
ε>0

∑
q

[∑
ω>Ω

L(q, iω)

(Dq2 + 2ε+ ω)2
+
∑
ω<Ω

L(q, iω)

(Dq2 + 2ε+ 2Ω− ω)2

]

+ 8πN(0)e2DδαβT 2
∑
ε>0

∑
q

L(q, iΩ)

(Dq2 + 2ε+ Ω)2

(I.2b)

K
(A3)
αβ (iΩ) = −2K

(B)
αβ (iΩ)

= −16πN(0)e2DδαβT 2

×
∑
q

[∑
ω≤0

∑
0<ε<Ω

+
∑

0<ω<Ω

∑
0<ε<Ω−ω

]
L(q, iω)

(Dq2 + 2ε+ |ω|)2
,

(I.2c)

K
(C1)
αβ (iΩ) = K

(C2)
αβ (iΩ)

= 16πN(0)e2DδαβT 2

×
∑
ω>0

∑
ε>0

∑
q

L(q, iω)

(Dq2 + 2ε+ ω)

1

(Dq2 + 2ε+ 2Ω + ω)

+ 8πN(0)e2DδαβT 2
∑
ε>0

∑
q

L(q, 0)

(Dq2 + 2ε)

1

(Dq2 + 2ε+ 2Ω)
,

(I.2d)

K
(C3)
αβ (iΩ) = 16πN(0)e2DδαβT 2

×
∑

0<ω<Ω

∑
0<ε<Ω−ω

∑
q

L(q, iω)

(Dq2 + 2ε+ ω)

1

(Dq2 + 2Ω− 2ε− ω)

+ 8πN(0)e2DδαβT 2
∑

0<ε<Ω

∑
q

L(q, 0)

(Dq2 + 2ε)

1

(Dq2 + 2Ω− 2ε)
,

(I.2e)
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K
(D1)
αβ (iΩ) = −64πN(0)e2D2T 2

×
∑
ω>0

∑
ε>0

∑
q

L(q, iω)

(Dq2 + 2ε+ ω)2

qαqβ
(Dq2 + 2ε+ Ω + ω)

− 32πN(0)e2D2T 2
∑
ε>0

∑
q

L(q, 0)

(Dq2 + 2ε)2

qαqβ
(Dq2 + 2ε+ Ω)

,

(I.2f)

K
(D2)
αβ (iΩ) = −32πN(0)e2D2T 2

×
∑
ε>0

∑
q

qαqβ

[∑
ω<Ω

L(q, iω)

(Dq2 + 2ε+ 2Ω− ω)2

1

(Dq2 + 2ε+ Ω− ω)

+
∑
ω>Ω

L(q, iω)

(Dq2 + 2ε+ ω)2

1

(Dq2 + 2ε+ ω − Ω)

]

− 32πN(0)e2D2T 2
∑
ε>0

∑
q

L(q, iΩ)

(Dq2 + 2ε+ Ω)2

qαqβ
(Dq2 + 2ε)

,

(I.2g)

K
(E1)
αβ (iΩ) = K

(E2)
αβ (iΩ)

= −64πN(0)e2D2T 2

×
∑
ω>0

∑
ε>0

∑
q

qαqβ

[
L(q, iω)

(Dq2 + 2ε+ ω)

× 1

(Dq2 + 2ε+ 2Ω + ω)

1

(Dq2 + 2ε+ Ω + ω)

]

− 32πN(0)e2D2T 2

×
∑
ε>0

∑
q

qαqβ
L(q, 0)

(Dq2 + 2ε)

1

(Dq2 + 2ε+ 2Ω)

1

(Dq2 + 2ε+ Ω)
.

(I.2h)

For simplicity we have ignored the phase breaking rate, τ−1
φ , in the cooperons. However,

their inclusion would not change the result of what we show here. The mathematics would

simply become more cumbersome and filled with more parameters to keep track of. The

simplest way to re-include τ−1
φ would be to letDq2 → Dq2+τ−1

φ in the denominators. Later

on this would simply amount to doing the same replacement inside digamma functions.

Turning our attention towards diagram F, we may deal with each block of electron

Green’s functions (the triangles) appearing either side of the diagram independently from
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(a) (b)

Figure I.2: Sign choices of the blocks appearing in the AL diagram. Panel a corresponds
to B

(a)
α (q, iω, iΩ), whilst panel b corresponds to B

(b)
α (q, iω, iΩ).

the other. These blocks are entirely equivalent, and so we only need to calculate a single

block. The sign choices of a single Green’s function block are shown in fig. I.2.

However, before we rush in to calculating the contributions of these sign choices, we

first need to understand the analytic structure of the ω sum due to the presence of two

pair propagators with different frequencies. If we were to analytically continue the ω sum

in the response function for diagram F, we would find two branch cuts in the complex

ω plane. These different branch cuts are the result of the pair propagators switching

from retarded to advanced Green’s functions at different points in the complex plane.

Therefore we should consider three different regions of the ω sum,

ω+Ω > 0

ω ≥ 0

Region I

,

ω+Ω ≤ 0

ω < 0

Region II

,

ω+Ω > 0

ω < 0

Region III

, (I.3)

where region I is the retarded-retarded part, region II is the advanced-advanced part, and

region III is the retarded-advanced part. Finally, for notational ease, let us first rewrite

the response function in terms of the block functions,

Bα(q, iω, iΩ) = T
∑
ε

∑
k

[
kα
m
G(k, iε+ iΩ)G(k, iε)G(q− k, iω − iε)

× C(q, iε+ iΩ, iω − iε)C(q, iε, iω − iε)
]
,

(I.4)
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so that

K
(F )
αβ (iΩ) = −4e2T

∑
ω

∑
q

Bα(q, iω, iΩ)Bβ(q, iω, iΩ)L(q, iω + iΩ)L(q, iω). (I.5)

Clearly each block vanishes unless we expand G(q−k, iω−iε) in terms of q. Expanding

to leading order in q yields1

Bα(q, iω, iΩ) = −T
∑
ε

∑
k

[
kα(k · q)

m2
G(k, iε+ iΩ)G(k, iε)G(k, iω − iε)2

× C(q, iε+ iΩ, iω − iε)C(q, iε, iω − iε)
]
.

(I.6)

Considering each sign choice then gives (approximated about the Fermi surface)

B(a)
α (q, iω, iΩ) = 4πN(0)Dqα T

∑
ε

′ 1

Dq2 + |2ε+ Ω− ω|
1

Dq2 + |2ε− ω|
,

B(b)
α (q, iω, iΩ) = 4πN(0)Dqα T

∑
ε

′′ 1

Dq2 + |2ε+ Ω− ω|
1

Dq2 + |2ε− ω|
,

(I.7)

where the primes on the sums denote a restricted sum over ε based upon the sign choices

of the block and the region we are considering.

Let us now calculate a block inside each region of ω. We present the ε summation

range within each ω region for a given block sign configuration in table I.1, and list how

we then manipulate the Matsubara sums within the brackets of each case.2 Using the

above we find,

B(I,a)
α (q, iω, iΩ) = B(II,a)

α (q, iω, iΩ)

= 4πN(0)Dqα T
∑
ε>0

1

Dq2 + 2ε+ Ω + ω

1

Dq2 + 2ε+ 2Ω + ω
,

(I.8a)

1The extra minus sign appearing in the block here comes from the fact that G(q − k, iω − iε) has a
minus sign difference between k and q. Thus +(v ·q) appears in the denominators of the Green’s function
rather than −(v · q).

2In the case of region II, we use the transformation ω → −ω − Ω to regain an ω sum that is for
ω > 0. We may use this transformation since L(q, iω) is unaffected by ω → −ω, hence the combination
L(q, iω)L(q, iω + iΩ) is unaffected by ω → −ω − Ω.
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Table I.1: Ranges of ε that give a non-zero contribution to K
(F )
αβ . The brackets within

each resultant cell gives the transformation we use to manipulate the Matsubara sums
to obtain the results given in eq. I.8. For multiple transformations in the same cell, the
order they are written is the order in which they are applied.

Block sign choice

a

(ε+ Ω < 0, ε < 0, ω − ε > 0)

b

(ε+ Ω > 0, ε > 0, ω − ε < 0)

Region I

(ω ≥ 0)

ε < −Ω

(ε→ −ε− Ω)

ε > ω

(ε→ ε+ ω)

Region II

(ω ≤ −Ω)

ε < ω

(ε→ −ε+ ω,

ω → −ω − Ω, ⇒ ω ≥ 0)

ε > 0

(ω → −ω − Ω, ⇒ ω ≥ 0)

Region III

(−Ω < ω < 0)

ε < −Ω

(ε→ −ε− Ω)
ε > 0

B(I,b)
α (q, iω, iΩ) = B(II,b)

α (q, iω, iΩ)

= 4πN(0)Dqα T
∑
ε>0

1

Dq2 + 2ε+ Ω + ω

1

Dq2 + 2ε+ ω
,

(I.8b)

B(III,a)
α (q, iω, iΩ) = 4πN(0)Dqα T

∑
ε>0

1

Dq2 + 2ε+ Ω + ω

1

Dq2 + 2ε+ 2Ω + ω
, (I.8c)

B(III,b)
α (q, iω, iΩ) = 4πN(0)Dqα T

∑
ε>0

1

Dq2 + 2ε+ Ω− ω
1

Dq2 + 2ε− ω
. (I.8d)

To use these block expressions, we note that the AL response function is simply the sum

of the response functions within each ω region, R,

K
(F )
αβ (iΩ) = K

(F,I)
αβ (iΩ) +K

(F,II)
αβ (iΩ) +K

(F,III)
αβ (iΩ), (I.9a)

K
(F,R)
αβ (iΩ) = −4e2T

∑
ω∈R

∑
q

{[
B(R,a)
α (q, iω, iΩ) +B(R,b)

α (q, iω, iΩ)
]

×
[
B

(R,a)
β (q, iω, iΩ) +B

(R,b)
β (q, iω, iΩ)

]
L(q, iω + iΩ)L(q, iω)

}
.

(I.9b)
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We choose to deal with the regional contributions of the AL response function instead

of the complete AL response function, as they allow for an easy demonstration of a

vanishing zero frequency response. The regional contributions are thus,

K
(F,I)
αβ (iΩ) = K

(F,II)
αβ (iΩ)

= −64e2π2N(0)2D2T
∑
ω≥0

{∑
q

qαqβL(q, iω)L(q, iω + iΩ)

×

(
T
∑
ε>0

[
1

Dq2 + 2ε+ ω
+

1

Dq2 + 2ε+ 2Ω + ω

]
1

Dq2 + 2ε+ Ω + ω

)2} (I.10a)

K
(F,III)
αβ (iΩ) = −64e2π2N(0)2D2T

∑
−Ω<ω<0

{∑
q

qαqβL(q, iω)L(q, iω + iΩ)

×

(
T
∑
ε>0

[
1

Dq2 + 2ε+ Ω− ω
1

Dq2 + 2ε− ω

+
1

Dq2 + 2ε+ 2Ω + ω

1

Dq2 + 2ε+ Ω + ω

])2}
.

(I.10b)

Let us now set Ω = 0 and consider the sum of all the response functions we have

listed in eq. I.2 and eq. I.10. Clearly K
(A3)
αβ (iΩ), K

(B)
αβ (iΩ), K

(C3)
αβ (iΩ), and K

(F,III)
αβ (iΩ) all

vanish. This leaves us with summing the following,

K
(A1)
αβ (0) = K

(A2)
αβ (0) = K

(C1)
αβ (0) = K

(C2)
αβ (0)

= 16e2πN(0)DδαβT 2
∑
ω>0

∑
q

∑
ε>0

L(q, iω)

(Dq2 + 2ε+ ω)2

+ 8e2πN(0)DδαβT 2
∑
q

∑
ε>0

L(q, 0)

(Dq2 + 2ε)2
,

(I.11a)

K
(D1)
αβ (0) = K

(D2)
αβ (0) = K

(E1)
αβ (0) = K

(E2)
αβ (0)

= −64e2πN(0)D2T 2
∑
ω>0

∑
q

∑
ε>0

qαqβL(q, iω)

(Dq2 + 2ε+ ω)3

− 32πN(0)e2D2T 2
∑
ε>0

∑
q

qαqβ
L(q, 0)

(Dq2 + 2ε)3
,

(I.11b)
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K
(F,I)
αβ (0) = K

(F,II)
αβ (0)

= −256e2π2N(0)2D2T

×
∑
ω>0

∑
q

qαqβL(q, iω)2

(
T
∑
ε>0

1

(Dq2 + 2ε+ ω)2

)2

− 128e2π2N(0)2D2T
∑
q

qαqβL(q, 0)2

(
T
∑
ε>0

1

(Dq2 + 2ε)2

)2

.

(I.11c)

In the above we have separated out the ω = 0 pieces explicitly, as these have different

prefactors compared to the ω 6= 0 pieces. There is one subtlety we used in writing eq.

I.11c. The ω sum written in eq. I.10a would imply the ω = 0 and ω 6= 0 pieces would

have the same prefactor. However, if we consider how each region is written, we can see

that we would double count the ω = 0 term if we used this expression with Ω = 0. This is

easily seen by recalling that region I considers ω ≥ 0 whilst region II considers ω ≤ −Ω.

So in taking Ω = 0, we would have region II being over ω ≤ 0, and hence we double count

ω = 0. Therefore, when we set Ω = 0, the ω = 0 component of the sum simply carries an

additional factor 1/2 compared to the ω 6= 0 components.

Next we tidy up these expressions by replacing the ε sums with digamma function

derivatives (see appendix N for the definition of the digamma function and its derivatives

in terms of sums). Specifically, we note that

T
∑
ε>0

1

(Dq2 + 2ε+ ω)2
=

1

16π2T
ψ′
(

1

2
+
Dq2 + ω

4πT

)
, (I.12a)

T
∑
ε>0

1

(Dq2 + 2ε+ ω)3
= − 1

128π3T 2
ψ′′
(

1

2
+
Dq2 + ω

4πT

)
. (I.12b)
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So the total zero frequency response function is given by

Kαβ(0) = K
(A1)
αβ (0) +K

(A2)
αβ (0) +K

(C1)
αβ (0) +K

(C2)
αβ (0)

+K
(D1)
αβ (0) +K

(D2)
αβ (0) +K

(E1)
αβ (0) +K

(E2)
αβ (0)

+K
(F,I)
αβ (0) +K

(F,II)
αβ (0),

=
4e2N(0)D

π
δαβ
∑
ω>0

∑
q

L(q, iω)ψ′
(

1

2
+
Dq2 + ω

4πT

)
+

2e2N(0)D
π2T

∑
ω>0

∑
q

qαqβL(q, iω)ψ′′
(

1

2
+
Dq2 + ω

4πT

)

− 2e2N(0)2D2

π2T 2

∑
ω>0

∑
q

qαqβL(q, iω)2ψ′
(

1

2
+
Dq2 + ω

4πT

)2

+ (ω = 0 terms)

(I.13)

Here we have avoided writing the ω = 0 piece explicitly as this simply carries an

additional factor of 1/2 and no ω sum. Hence, any tricks we use for the ω 6= 0 part can

be equally applied to the ω = 0 part, provided it does not involve manipulating the ω

sum. We now make use of the pair propagator’s explicit form in eq. 3.116 in the absence

of phase breaking,

L(q, iω) =
1

N(0)

[
ln

(
T

Tc

)
+ ψ

(
1

2
+
|ω|+Dq2

4πT

)
− ψ

(
1

2

)]−1

. (I.14)

To progress, let us consider taking derivatives of the function

ln

[
ln

(
T

Tc

)
+ ψ

(
1

2
+
|ω|+Dq2

4πT

)
− ψ

(
1

2

)]
. (I.15)

The derivatives of this function are,

∂

∂qβ
ln

[
ln

(
T

Tc

)
+ ψ

(
1

2
+
|ω|+Dq2

4πT

)
− ψ

(
1

2

)]
= N(0)L(q, iω)ψ′

(
1

2
+
|ω|+Dq2

4πT

)
Dqβ
2πT

(I.16a)
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∂2

∂qα∂qβ
ln

[
ln

(
T

Tc

)
+ ψ

(
1

2
+
|ω|+Dq2

4πT

)
− ψ

(
1

2

)]
= N(0)L(q, iω)ψ′

(
1

2
+
|ω|+Dq2

4πT

)
δαβ
2πT

+N(0)L(q, iω)ψ′′
(

1

2
+
|ω|+Dq2

4πT

)
D2qαqβ
4π2T 2

−N(0)2L(q, iω)2ψ′
(

1

2
+
|ω|+Dq2

4πT

)2 D2qαqβ
4π2T 2

.

(I.16b)

Clearly the first, second, and third lines of eq. I.16b are related to the first, second, and

third lines of the second equality in eq. I.13, respectively. The expression in eq. I.13 can

thus be rewritten as

Kαβ(0) = 8e2T
∑
ω>0

∑
q

∂2

∂qα∂qβ
ln

[
ln

(
T

Tc

)
+ ψ

(
1

2
+
|ω|+Dq2

4πT

)
− ψ

(
1

2

)]
+ (ω = 0 terms)

= 8e2T
∑
ω>0

∑
q

eα · ∇
∂

∂qβ
ln

[
ln

(
T

Tc

)
+ ψ

(
1

2
+
|ω|+Dq2

4πT

)
− ψ

(
1

2

)]
+ (ω = 0 terms),

(I.17)

where eα is a unit vector in the α direction. Next, we replace the q sum by a volume

integral and use the divergence theorem to rewrite this as a surface integral over the

surface S, whose normal vector is n̂, to obtain

Kαβ(0) = 8e2T
∑
ω>0

×
∮
S

dd−1q eα · n̂
∂

∂qβ
ln

[
ln

(
T

Tc

)
+ ψ

(
1

2
+
|ω|+Dq2

4πT

)
− ψ

(
1

2

)]
+ (ω = 0 terms)

=
4e2N(0)D

π

∑
ω>0

∮
S

dd−1q eα · n̂L(q, iω)ψ′
(

1

2
+
|ω|+Dq2

4πT

)
qβ

+ (ω = 0 terms).

(I.18)

By taking the surface to infinity, we find that the integrand vanishes, and hence the
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surface integral must also vanish.3 Thus, Kαβ(0) = 0 as desired, therefore confirming

that we have accounted for all diagrams when calculating the correction to the electrical

conductivity due to superconducting fluctuations.

Technically speaking, the upper limit of the surface should be qmax = 1/
√
Dτ0 = 1/l

due to the diffusive limit. However, this is much larger than T , and hence the argument

of the digamma function appears to be large. So by taking this to infinity is yet another

approximation, but at least within reason.

I.2 Non-Singular Contributions

In the main body of the thesis we argued that the most singular behaviour arose from

diagrams A, B, C, and F of fig. 3.23, and that diagrams D and E were unimportant. Let

us now show that these are indeed less singular than the other diagrams.

In the previous section we found the electromagnetic response functions for diagrams

D and E, and so let us consider their ω = 0 components as they only possess a single pair

propagator. The expressions we therefore concern ourselves with are

K̄
(D)
αβ (iΩ) = −32πN(0)e2D2T 2

×
∑
q

∑
ε>0

qαqβL(q, 0)

Dq2 + 2ε+ Ω

[
1

(Dq2 + 2ε)2
+

1

(Dq2 + 2ε+ 2Ω)2

]
,

(I.19a)

K̄
(E)
αβ (iΩ) = −64πN(0)e2D2T 2

×
∑
ε>0

∑
q

qαqβ
L(q, 0)

(Dq2 + 2ε)

1

(Dq2 + 2ε+ 2Ω)

1

(Dq2 + 2ε+ Ω)
.

(I.19b)

For ease of comparison to σDOS and σ
(reg)
MT , we wish to perform the fermionic Matsubara

sums to obtain digamma functions and derivatives of the digamma function. Hence, we

split the fractions in eq. I.19 using partial fractions, which leaves us to evaluate the

3The integrand falls of as 1/q as we take q to infinity. This is due to the digamma function derivative
falling off sufficiently fast, ψ′(x) ∼ 1/x when x� 1.
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following ε sums for diagrams D and E respectively,

∑
ε>0

[
1

Ω2

(
2

Dq2 + 2ε+ Ω
− 1

Dq2 + 2ε
− 1

Dq2 + 2ε+ 2Ω

)

+
1

Ω

(
1

(Dq2 + 2ε)2
− 1

(Dq2 + 2ε+ 2Ω)2

)]
,

(I.20a)

−1

2

∑
ε>0

1

Ω2

[
2

Dq2 + 2ε+ Ω
− 1

Dq2 + 2ε
− 1

Dq2 + 2ε+ 2Ω

]
. (I.20b)

Writing these sums in terms of digamma functions, and derivatives thereof, and sub-

stituting them into their respective response functions, we see

K̄
(D)
αβ (iΩ) = −32πN(0)e2D2T 2

∑
q

qαqβL(q, 0)

×

{
1

4πT

1

Ω2

[
ψ

(
1

2
+
Dq2

4πT

)
+ ψ

(
1

2
+
Dq2 + 2Ω

4πT

)
− 2ψ

(
1

2
+
Dq2 + Ω

4πT

)]

+
1

(4πT )2

1

Ω

[
ψ′
(

1

2
+
Dq2

4πT

)
− ψ′

(
1

2
+
Dq2 + 2Ω

4πT

)]}
,

(I.21a)

K̄
(E)
αβ (iΩ) =

8N(0)e2D2T

Ω2

∑
q

qαqβL(q, 0)

×
[
ψ

(
1

2
+
Dq2

4πT

)
+ ψ

(
1

2
+
Dq2 + 2Ω

4πT

)
− 2ψ

(
1

2
+
Dq2 + Ω

4πT

)]
.

(I.21b)

We can then perform our usual trick of analytically continuing Ω → iΩ to consider

the retarded response function, expand in power of Ω, and then convert back to the

Matsubara formalism, since there is no odd pole structure in the digamma functions.

This is equivalent to simply treating the Mastubara Ω as continuous for the purpose of

differentiation to obtain an expansion in terms of Ω. So, without worrying about the

analytic continuation, we expand the above expressions to third order in Ω to consider

the O(Ω) piece as this gives the DC conductivity, σ(D,E). We find that the O(Ω−2) and

O(Ω−1) pieces have vanishing coefficients, as expected, since there were no divergence
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issues before we used partial fractions. We then ignore the O(Ω0) piece as we have shown

that this cancels when all diagrams are considered. We therefore find

σ(D) = −N(0)e2D2

8dπ3T 2
ψ(3)

(
1

2

)∑
q

q2L(q, 0), (I.22a)

σ(E) =
N(0)e2D2

8dπ3T 2
ψ(3)

(
1

2

)∑
q

q2L(q, 0), (I.22b)

where we have neglected the Dq2 in the digamma function as we are only interested in

small momenta. We have also accounted for the factor of 1/d that appears in the diagonal

part of the conductivity tensor due to the qαqβ factor in the summand.

Clearly, these contributions are equal and opposite, meaning they cancel exactly in the

DC limit. If their prefactors were different, or if we considered higher order terms where

they do not cancel exactly, we can see that their contributions will be less singular than

the DOS and MT diagrams. In both cases, the extra factor of q2 generates an additional

factor of η in the result. This is easy to see through power counting q after converting

the momentum sum to an integral. So neither diagram is singular in η. Thus we can

simply neglect their contribution when calculating the DC conductivity corrections due

to superconducting fluctuations.

I.3 AL Integration Details

Let us consider the d = 2 case separately to the d = 1 and d = 3 cases. In the 2D case

eq. 3.144 becomes

σAL =
e2

π
ε−1

∫ +∞

0

dx

∫ +∞

0

dφ
x3

[(1 + x2)2 + φ2]2
. (I.23)

By letting y = x2, this simplifies to

σAL =
e2

2π
ε−1

∫ +∞

0

dy

∫ +∞

0

dφ
y

[(1 + y)2 + φ2]2
. (I.24)
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Let us focus on the integrals for now,

∫ +∞

0

dy

∫ +∞

0

dφ
y

[(1 + y)2 + φ2]2

=

∫ +∞

0

dφ

∫ +∞

0

dy

[
1 + y

[(1 + y)2 + φ2]2
− 1

[(1 + y)2 + φ2]2

]
=

1

2

∫ +∞

0

dφ
1

1 + φ2
−
∫ +∞

0

dφ

∫ +∞

0

dy
1

[(1 + y)2 + φ2]2
.

(I.25)

The remaining y integral can be computed by noting that the use of partial fractions

gives

1

[(1 + y)2 + φ2]2
=

1

2φ2

1

(1 + y)2 + φ2
− 1

4φ2

(
1

(1 + y + iφ)2
+

1

(1 + y − iφ)2

)
. (I.26)

Substituting this into eq. I.25 leaves us to perform the remaining y integral,

∫ +∞

0

dy
1

[(1 + y)2 + φ2]2

=

[
1

2φ3
arctan

(
y + 1

φ

)
+

1

4φ2

(
1

(1 + y + iφ)
+

1

(1 + y − iφ)

)]+∞

0

=
1

2φ3

[
π

2
− arctan

(
1

φ

)]
− 1

2φ2

1

1 + φ2

=
1

2φ3
arctanφ− 1

2φ2

1

1 + φ2
,

(I.27)

where we used the reflection formula,

arctanφ =
π

2
− arctan

(
1

φ

)
, φ > 0, (I.28)

to obtain the last line. Now, putting eq. I.27 into eq. I.25 gives

∫ +∞

0

dy

∫ +∞

0

dφ
y

[(1 + y)2 + φ2]2
=

1

2

∫ +∞

0

dφ

[
1

φ2
− 1

φ3
arctanφ

]
. (I.29)

The leftover φ integral might seem to have divergence issues at φ = 0, however the

divergences of the two terms are equal and opposite as φ → 0, meaning the integrand is
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well behaved at the lower limit. The φ integral can be resolved as follows: we start by

integrating the first term simply and use integration by parts on the second term,

1

2

∫ +∞

0

dφ

[
1

φ2
− 1

φ3
arctanφ

]
=

1

2

[
−1

φ
+

1

2φ2
arctanφ

]+∞

0

− 1

4

∫ +∞

0

dφ

φ2

1

1 + φ2
. (I.30)

Then we use partial fractions on the new φ integral,

∫ +∞

0

dφ

φ2

1

1 + φ2
=

∫ +∞

0

dφ

(
1

φ2
− 1

1 + φ2

)
= −

[
1

φ
+ arctanφ

]+∞

0

. (I.31)

Hence,

∫ +∞

0

dy

∫ +∞

0

dφ
y

[(1 + y)2 + φ2]2
=

1

4

[
1

φ2
arctanφ− 1

φ
+ arctanφ

]+∞

0

=
π

8
, (I.32)

since the first two terms cancel when φ → 0. As we are working close to Tc, ε ' η, and

so the 2D AL conductivity is simply,

σ
(2D)
AL =

e2

16

1

η
. (I.33)

In reality, a thin film is still three dimensional, albeit with a thin thickness of δ in the

short dimension. Therefore, in experiment the observable conductivity would be,

σ
(film)
AL =

e2

16δ

1

η
. (I.34)

Let us now consider a more general method that will allow us to consider the other

dimensionalities at the same time as d = 2.

Starting again from eq. 3.144, we now perform the φ integral first. This is most easily
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calculated by considering an integral of the form,

∫ +∞

0

dφ
1

(φ2 + a2)2
= − d

d(a2)

∫ +∞

0

dφ
1

φ2 + a2

= − 1

2a

d

da

[
1

a
arctan

(
φ

a

)]+∞

0

= − 1

2a

d

da

π

2a
=

π

4a3
.

(I.35)

Clearly, this is the same as the φ integral in eq. 3.144 with a = 1 + x2. Hence, we are left

to evaluate

π

4

∫ +∞

0

xd+1

(1 + x2)3
, (I.36)

which converges for d < 4. This integral is straightforward to calculate using integration

by parts, and so we find

∫ +∞

0

dx

∫ +∞

0

dφ
xd+1

[(1 + x2)2 + φ2]2
=

π

64
×


3π, d = 3

4, d = 2

π, d = 1.

(I.37)

Substituting this back into eq. 3.144 gives the result we quote in eq. 3.148.

As a final note, the conductivity we would expect to see in a real experiment for the

1D case would correspond to a thin wire of radius a. Thus in reality, the conductivity for

a quasi-1D system would be

σ
(wire)
AL =

e2

a2

π3/2
√

2

256

√
D
T

1

η1/2
, (I.38)

which is just the d = 1 case of eq. 3.148 divided by the wire’s cross-sectional area.

The reason for division by πa2 in the 1D case, and δ in the 2D case can be justified

by considering the the replacement of the q sum by an integral. In our calculations we

usually ignore the factor of volume that appears with each momentum sum, however, let
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us include it explicitly here. Written accurately the momentum sum appears as

1

V
∑
q

(I.39)

where V is the system volume. For d = 3, replacing the momentum sum via an integral

is simple and neatly cancels the factor of V−1,

1

V
∑
q

→
∫

d3q

(2π)3
. (I.40)

However, for d = 2 the volume can be written as V = δLxLy, where Lx and Ly are the

system’s lengths in the extended dimensions. Therefore, when we replace the sum via a

2D momentum integral we see only the extended length factors are cancelled

1

V
∑
q

→ 1

δ

∫
d2q

(2π)2
. (I.41)

This idea can be applied in exactly the same way for d = 1, where V = πa2Lx,

1

V
∑
q

→ 1

πa2

∫
dq

2π
. (I.42)

I.4 Anomalous MT Integration Details

The integral in eq. 3.154 cannot be done in a nice simple manner that encompasses all

choices of dimensionality at once, so we have to compute each case separately. Thankfully

these integrals are relatively straightforward. Let us start with the integral for d = 3,

∫ +∞

0

dx x2

(
1

x2 + π
8Tτφη

− 1

1 + x2

)
=

∫ +∞

0

dx

(
1

1 + x2
− π

8Tτφη

1

x2 + π
8Tτφη

)

=

[
arctanx−

√
π

8Tτφη
arctan

(√
8Tτφη

π
x

)]+∞

0

=
π

2

(
1−

√
π

8Tτφη

)
' π

2
,

(I.43)
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where in the last line we recalled that we are working with small phase breaking rates,

τ−1
φ � T . For d = 2 the integral becomes,

∫ +∞

0

dx x

(
1

x2 + π
8Tτφη

− 1

1 + x2

)
=

[
1

2
ln

(
x2 + π

8Tτφη

x2 + 1

)]+∞

0

=
1

2
ln

(
8Tτφη

π

)
, (I.44)

whilst for d = 1,

∫ +∞

0

dx

(
1

x2 + π
8Tτφη

− 1

1 + x2

)

=

[√
8Tτφη

π
arctan

(√
8Tτφη

π
x

)
− arctanx

]+∞

0

=
π

2

√
8Tτφη

π
.

(I.45)

Clearly, τφ is vital to preventing the 1D and 2D results from diverging.

Finally, to produce the prefactor given in eq. 3.155, we note

πΩd

2(2π)d
×



π
2
, d = 3

1
2
, d = 2

π
2
, d = 1

=


1
8
, d = 2, 3

π
4
, d = 1.

(I.46)

I.5 Regular MT & DOS Integration Details

Here we focus on the case when τ−1
φ is small, as we may neglect its role in the regular

MT and DOS contributions. In this case, the two regular MT parts become equivalent

and so σ
(reg)
MT = σDOS. If we did not have this luxury, then σ

(reg2)
MT = σDOS/2 and σ

(reg1)
MT

would be stand-alone contributions. This is the case we study in granular systems, and

is discussed in section 5.4.

Let us compute the integral in eq. 3.159 for the different dimensionalities. Starting

with d = 3 we see that

∫ +∞

0

dx
x2

1 + x2
=

∫ +∞

0

dx

(
1− 1

1 + x2

)
, (I.47)
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which has a divergence due to the first term. However, in obtaining these integrals we

made assumptions about the size of the virtual Cooper pair momentum, q, as so we have

a natural upper cut-off for q and hence x. There two possible cut-offs we could pick:

in taking the diffusive limit we may take Dq2
c = 1/τ0; but in neglecting Dq2 inside the

digamma function and its derivatives we could also define Dq2
c = 4πT . Due to the latter

being more restrictive, we use this to define the cut-off. In this case, the upper limit of

the x integral’s diverging piece is given by

xc =
π√
2ε
, (I.48)

and so ∫ +∞

0

dx
x2

1 + x2
' π√

2ε
− π

2
. (I.49)

Considering that we are looking at temperatures close to Tc, ε ' η � 1, the above

integral can be approximated by its first term. Given that the regular MT and DOS type

contributions have a factor of ηd/2−1 outside the integral, we see that the 3D reduced

temperature dependence of these terms is constant.

For the choice d = 2 the integral is trivial to evaluate,

∫ +∞

0

dx
x

1 + x2
=

[
1

2
ln(1 + x2)

]+∞

0

, (I.50)

which suffers an ultra-violet divergence similar to the 3D case. Using the same cut-off as

before, we see that

∫ +∞

0

dx
x

1 + x2
' 1

2
ln

(
1 +

π2

2ε

)
' 1

2
ln

(
π2

2η

)
(I.51)

The integral for d = 1 is a standard integral, so we do not provide the details of its

calculation here.
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=
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Figure I.3: Leading order corrections to the electrical conductivity due to superconducting
fluctuations in granular metals.

I.6 Vanishing Zero Frequency Response – Granular

Metals

For reference, the diagrams describing the fluctuation conductivity in disordered granular

metals are shown in fig. I.3. The diagrams shown here have the same sign choices as their

homogeneous analogues, so we use the same labelling convention employed in section I.1

to denote each sign choice.4 Given the similarity in the method and results of the granular

and homogeneous response functions, we shall simply quote the contributions generated

by each sign choice. The response functions for each sign contribution are as follows,

K
(A1)
αβ (iΩ) =

16πN(0)e2DT
Nad

δαβT
2
∑
ω>0

∑
ε>0

∑
Q

∑
q

L(Q,q, iω)

(ΓλQ +Dq2 + 2ε+ ω)2

+
8πN(0)e2DT
Nad

δαβT
2
∑
ε>0

∑
Q

∑
q

L(Q,q, 0)

(ΓλQ +Dq2 + 2ε)2
,

(I.52a)

4The only diagram that has no analogue here is diagram B of the homogeneous calculation, though
its analogous contribution is effectively absorbed into the calculation of the granular analogue of the
homogeneous A3 contribution.
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K
(A2)
αβ (iΩ) =

8πN(0)e2DT
Nad

δαβT
2

×
∑
ε>0

∑
Q

∑
q

[∑
ω>Ω

L(Q,q, iω)

(ΓλQ +Dq2 + 2ε+ ω)2

+
∑
ω<Ω

L(Q,q, iω)

(ΓλQ +Dq2 + 2ε+ 2Ω− ω)2

]

+
8πN(0)e2DT
Nad

δαβT
2
∑
ε>0

∑
Q

∑
q

L(Q,q, iΩ)

(ΓλQ +Dq2 + 2ε+ Ω)2

(I.52b)

K
(A3)
αβ (iΩ) = −8πN(0)e2DT

Nad
δαβT

2

×
∑
Q

∑
q

[∑
ω≤0

∑
0<ε<Ω

+
∑

0<ω<Ω

∑
0<ε<Ω−ω

]
L(Q,q, iω)

(ΓλQ +Dq2 + 2ε+ |ω|)2
,

(I.52c)

K
(B1)
αβ (iΩ) = K

(B2)
αβ (iΩ)

=
16πN(0)e2DT
Nad

δαβT
2

×
∑
ω>0

∑
ε>0

∑
Q

∑
q

L(Q,q, iω)

(ΓλQ +Dq2 + 2ε+ ω)

cos(Qαa)

(ΓλQ+Dq2+2ε+2Ω+ω)

+
8πN(0)e2DT
Nad

δαβT
2

×
∑
ε>0

∑
Q

∑
q

L(Q,q, 0)

(ΓλQ +Dq2 + 2ε)

cos(Qαa)

(ΓλQ +Dq2 + 2ε+ 2Ω)
,

(I.52d)

K
(B3)
αβ (iΩ) =

16πN(0)e2DT
Nad

δαβT
2
∑

0<ω<Ω

∑
0<ε<Ω−ω

×
∑
Q

∑
q

L(Q,q, iω)

(ΓλQ +Dq2 + 2ε+ ω)

cos(Qαa)

(ΓλQ +Dq2 + 2Ω− 2ε− ω)

+
8πN(0)e2DT
Nad

δαβT
2
∑

0<ε<Ω

×
∑
Q

∑
q

L(Q,q, 0)

(ΓλQ +Dq2 + 2ε)

cos(Qαa)

(ΓλQ +Dq2 + 2Ω− 2ε)
,

(I.52e)
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K
(C1)
αβ (iΩ) = −64πN(0)e2D2

T

Nad+2
T 2
∑
ω>0

∑
ε>0

×
∑
Q

∑
q

L(Q,q, iω)

(ΓλQ +Dq2 + 2ε+ ω)2

sin(Qαa) sin(Qβa)

(ΓλQ +Dq2 + 2ε+ Ω + ω)

− 32πN(0)e2D2
T

Nad+2
T 2
∑
ε>0

×
∑
Q

∑
q

L(Q,q, 0)

(ΓλQ +Dq2 + 2ε)2

sin(Qαa) sin(Qβa)

(ΓλQ +Dq2 + 2ε+ Ω)
,

(I.52f)

K
(C2)
αβ (iΩ) = −32πN(0)e2D2

T

Nad+2
T 2
∑
ε>0

∑
Q

∑
q

sin(Qαa) sin(Qβa)

×

[∑
ω<Ω

L(Q,q, iω)

(ΓλQ +Dq2 + 2ε+ 2Ω− ω)2

1

(ΓλQ +Dq2 + 2ε+ Ω− ω)

+
∑
ω>Ω

L(Q,q, iω)

(ΓλQ +Dq2 + 2ε+ ω)2

1

(ΓλQ +Dq2 + 2ε+ ω − Ω)

]

− 32πN(0)e2D2
T

Nad+2
T 2

×
∑
ε>0

∑
Q

∑
q

L(Q,q, iΩ)

(ΓλQ +Dq2 + 2ε+ Ω)2

sin(Qαa) sin(Qβa)

(ΓλQ +Dq2 + 2ε)
,

(I.52g)

K
(D1)
αβ (iΩ) = K

(D2)
αβ (iΩ)

= −64πN(0)e2D2
T

Nad+2
T 2
∑
ω>0

∑
ε>0

∑
Q

×
∑
q

[
L(Q,q, iω)

(ΓλQ +Dq2 + 2ε+ ω)

sin(Qαa) sin(Qβa)

(ΓλQ +Dq2 + 2ε+ 2Ω + ω)

× 1

(ΓλQ +Dq2 + 2ε+ Ω + ω)

]

− 32πN(0)e2D2
T

Nad+2
T 2
∑
ε>0

∑
Q

×
∑
q

[
L(Q,q, 0)

(ΓλQ +Dq2 + 2ε)

sin(Qαa) sin(Qβa)

(ΓλQ +Dq2 + 2ε+ 2Ω)

× 1

(ΓλQ +Dq2 + 2ε+ Ω)

]
.

(I.52h)
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K
(E,I)
αβ (iΩ) = K

(E,II)
αβ (iΩ)

= −64e2π2N(0)2D2
T

Nad+2
T
∑
ω≥0

{∑
Q

∑
q

sin(Qαa) sin(Qβa)L(Q,q, iω)

× L(Q,q, iω + iΩ)

(
T
∑
ε>0

{[
1

ΓλQ +Dq2 + 2ε+ ω

+
1

ΓλQ +Dq2 + 2ε+ 2Ω + ω

]
1

ΓλQ +Dq2 + 2ε+ Ω + ω

})2}
(I.52i)

K
(E,III)
αβ (iΩ) = −64e2π2N(0)2D2

T

Nad+2
T

∑
−Ω<ω<0

{∑
Q

∑
q

sin(Qαa) sin(Qβa)

× L(Q,q, iω)L(Q,q, iω + iΩ)

(
T
∑
ε>0

[
1

ΓλQ +Dq2 + 2ε+ Ω− ω

× 1

ΓλQ +Dq2 + 2ε− ω
+

1

ΓλQ +Dq2 + 2ε+ 2Ω + ω

× 1

ΓλQ +Dq2 + 2ε+ Ω + ω

])2}
.

(I.52j)

In the granular diffusive limit, Q� a−1, we may approximate cos(Qαa) ' 1, sin(Qαa) '

Qαa, and ΓλQ ' DTQ2. Doing so, the above response functions collapse to forms equiv-

alent to the homogeneous case, such that they obey the typical mapping D → DT in the

prefactor, and Dq2 → Dq2 +DTQ2 in the diffusive propagators. We may then handle the

sum of these functions for Ω = 0 in exactly the same manner as before, where we instead

focus on the Q sum rather than the q sum. We thus find

Kαβ(0) = K
(A1)
αβ (0) +K

(A2)
αβ (0) +K

(B1)
αβ (0) +K

(B2)
αβ (0)

+K
(C1)
αβ (0) +K

(C2)
αβ (0) +K

(D1)
αβ (0) +K

(D2)
αβ (0)

+K
(E,I)
αβ (0) +K

(E,II)
αβ (0)

=
8e2

Nad+2
T
∑
ω>0

∑
Q

∑
q

∂2

∂Qα∂Qβ

ln

[
ln

(
T

Tc

)
+ψ

(
1

2
+
ω+Dq2+ΓλQ

4πT

)
−ψ

(
1

2

)]
+ (ω = 0 terms).

(I.53)
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By replacing the Q sum by an integral, we again manipulate it into a surface integral and

take the surface to infinity where the integrand vanishes.

On a technical point, taking the surface to infinity might seem unreasonable as we

have assumed the granular diffusive limit, which imposes a finite upper limit. However,

even in the homogeneous case, where we assume the regular diffusive limit, we have a

finite upper limit, q � l−1. We therefore have to appreciate that the vanishing of Kαβ(0)

is an approximate result.

If we wanted to show that all diagrams cancelled exactly in the zero frequency limit,

we would need to repeal our assumption of the granular diffusive limit and consider di-

agrams that would otherwise appear as higher order corrections. This would correspond

to including diagrams that produce extra factors of Dq2τ0 in the homogeneous case, of

which there is an infinite set.5 In the case of granular systems, we would need to include

diagrams containing extra factors of Qαa. In homogeneous metals, this set of circum-

stances is known as the intermediate limit ; disorder is still present in the system and

cannot be neglected, but it is not as abundant as in the diffusive limit.6 Hence, to get

exact cancellation in the granular case, we would need to consider the granular analogue

of the intermediate limit.

So, let the set of diagrams generated in the granular intermediate limit produce the

electromagnetic response function K
(X)
αβ (iΩ). Now, let us suppose that K

(X)
αβ (iΩ) produces

the following contributions to Kαβ(iΩ),

K
(X1)
αβ (iΩ) = −16πN(0)e2DT

Nad
δαβT

2
∑
ω>0

∑
ε>0

∑
Q

∑
q

L(Q,q, iω)(1− cos(Qαa))

(ΓλQ +Dq2 + 2ε+ ω)2

− 8πN(0)e2DT
Nad

δαβT
2
∑
ε>0

∑
Q

∑
q

L(Q,q, 0)(1− cos(Qαa))

(ΓλQ +Dq2 + 2ε)2
,

(I.54a)

5We could have diagrams that produce Dq2τ0, (Dq2τ0)2, etc, which would all become relevant outside
of the diffusive limit.

6The intermediate limit is the middle ground between diffusive and ballistic behaviour. In the former,
disorder is extremely abundant and scattering happens more frequently. In contrast, ballistic behaviour
is related to clean systems, where electrons move far more freely inside the material, and hence scatter
off the material’s edges more often than they do off internal impurities.
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K
(X2)
αβ (iΩ) = −8πN(0)e2DT

Nad
δαβT

2

×
∑
ε>0

∑
Q

∑
q

[∑
ω>Ω

L(Q,q, iω)(1− cos(Qαa))

(ΓλQ +Dq2 + 2ε+ ω)2

+
∑
ω<Ω

L(Q,q, iω)(1− cos(Qαa))

(ΓλQ +Dq2 + 2ε+ 2Ω− ω)2

]

− 8πN(0)e2DT
Nad

δαβT
2
∑
ε>0

∑
Q

∑
q

L(Q,q, iΩ)(1− cos(Qαa))

(ΓλQ +Dq2 + 2ε+ Ω)2

(I.54b)

K
(X3)
αβ (iΩ) =

8πN(0)e2DT
Nad

δαβT
2

×
∑
Q

∑
q

[∑
ω≤0

∑
0<ε<Ω

+
∑

0<ω<Ω

∑
0<ε<Ω−ω

]
L(Q,q, iω)(1− cos(Qαa))

(ΓλQ +Dq2 + 2ε+ |ω|)2
.

(I.54c)

In the granular diffusive limit, K
(X)
αβ (iΩ) clearly carries an extra factor of (Qαa)2 compared

to K
(A)
αβ (iΩ), and hence is a higher order correction. The sum of K

(X)
αβ (iΩ) and K

(A)
αβ (iΩ)

produces

K̂
(A1)
αβ (iΩ) =

16πN(0)e2DT
Nad

δαβT
2
∑
ω>0

∑
ε>0

∑
Q

∑
q

L(Q,q, iω) cos(Qαa)

(ΓλQ +Dq2 + 2ε+ ω)2

+
8πN(0)e2DT
Nad

δαβT
2
∑
ε>0

∑
Q

∑
q

L(Q,q, 0) cos(Qαa)

(ΓλQ +Dq2 + 2ε)2
,

(I.55a)

K̂
(A2)
αβ (iΩ) =

8πN(0)e2DT
Nad

δαβT
2

×
∑
ε>0

∑
Q

∑
q

[∑
ω>Ω

L(Q,q, iω) cos(Qαa)

(ΓλQ +Dq2 + 2ε+ ω)2

+
∑
ω<Ω

L(Q,q, iω) cos(Qαa)

(ΓλQ +Dq2 + 2ε+ 2Ω− ω)2

]

+
8πN(0)e2DT
Nad

δαβT
2
∑
ε>0

∑
Q

∑
q

L(Q,q, iΩ) cos(Qαa)

(ΓλQ +Dq2 + 2ε+ Ω)2

(I.55b)
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K̂
(A3)
αβ (iΩ) = −8πN(0)e2DT

Nad
δαβT

2

×
∑
Q

∑
q

[∑
ω≤0

∑
0<ε<Ω

+
∑

0<ω<Ω

∑
0<ε<Ω−ω

]
L(Q,q, iω) cos(Qαa)

(ΓλQ +Dq2 + 2ε+ |ω|)2
,

(I.55c)

where K̂
(A)
αβ (iΩ) = K

(A)
αβ (iΩ)+K

(X)
αβ (iΩ). Clearly K̂

(A)
αβ (iΩ) resembles K

(A)
αβ (iΩ), but has an

extra factor of cos(Qαa) in the summand. Note that K̂
(A)
αβ (iΩ) ' K

(A)
αβ (iΩ) in the granular

diffusive limit, as expected.

With the extra contributions of K
(X)
αβ (iΩ), the zero frequency response function is now

given by

Kαβ(0) = K̂
(A1)
αβ (0) + K̂

(A2)
αβ (0) +K

(B1)
αβ (0) +K

(B2)
αβ (0)

+K
(C1)
αβ (0) +K

(C2)
αβ (0) +K

(D1)
αβ (0) +K

(D2)
αβ (0)

+K
(E,I)
αβ (0) +K

(E,II)
αβ (0)

=
8e2

Nad+2
T

×
∑
ω>0

∑
Q

∑
q

∂2

∂Qα∂Qβ

ln

[
ln

(
T

Tc

)
+ψ

(
1

2
+
ω+Dq2+ΓλQ

4πT

)
−ψ

(
1

2

)]
+ (ω = 0 terms).

(I.56)

The second equality of eq. I.56 is found using the same approach we implemented in

obtaining eq. I.16b. By rewriting Kαβ(0) in terms of a surface integral in Q-space,

Kαβ(0) =
8e2T

a2

∑
ω>0

∑
q

×
∮
S

dd−1Q eα · n̂
∂

∂Qβ

ln

[
ln

(
T

Tc

)
+ ψ

(
1

2
+
|ω|+Dq2 + ΓλQ

4πT

)
− ψ

(
1

2

)]
+ (ω = 0 terms)

= −4e2N(0)Γ

πa2

∑
ω>0

∑
q

×
∮
S

dd−1Q eα · n̂L(Q,q, iω)ψ′
(

1

2
+
|ω|+Dq2 + ΓλQ

4πT

)
sin(Qβa)

+ (ω = 0 terms),

(I.57)
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and taking the surface to the boundary of the first Brillouin zone,7 which is a cube in our

case, we see that Kαβ(0) vanishes. This is because the surfaces on opposite sides of the

Brillouin zone produce the near identical contributions to the integral, where they only

differ in sign due to the factor of eα · n̂.

We therefore expect that a diagram, or set of diagrams, would produce the response

function K
(X)
αβ (iΩ). These diagrams are not included in those shown in fig. I.3, and

must be related to higher order corrections in the granular diffusive limit. Therefore, the

diagrams shown in fig. I.3 constitute the full set of diagrams describing the first order

contributions to the fluctuation conductivity in the granular diffusive limit.

The diagrams generating K
(X)
αβ (iΩ) only become relevant in the granular intermediate

limit, where Qαa ∼ 1 is allowed. This is analogous to the intermediate limit of the

homogeneous case (q ∼ l−1). To determine the set of diagrams that become relevant in

the granular intermediate limit, we should first understand the set of diagrams describing

the fluctuation conductivity in the intermediate limit for homogeneous systems.

I.6.1 EEI Side Note

A similar argument can be made for the vanishing of the electromagnetic response function

for granular EEIs. In section 5.3.2, we saw that diagrams A and B did not cancel exactly,

unlike their homogeneous analogues. However, we did see that their sum was a higher

order correction due to the factor of 1−cos(Qαa) ∼ (Qαa)2 in the granular diffusive limit.

Terms analogous to this would only appear in the homogeneous calculation if we chose to

work in the intermediate limit, as opposed to the diffusive limit.

Here, we again suggest that there may be a set of diagrams that we have not accounted

for that are relevant in the granular intermediate limit, such that their inclusion would

amount to adding an extra factor of cos(Qαa) into the summand of K
(A)
αβ (iΩ). This would

lead to the exact cancellation of diagrams A and B with the extra set of diagrams. This is

entirely analogous to what we proposed above for granular superconducting fluctuations.

7This is analogous to the surface to infinity in the homogeneous case
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APPENDIX J

PHASE BREAKING RATES IN

HOMOGENEOUS SYSTEMS –

CALCULATION DETAILS

In this appendix we provide the details of how to calculate the phase breaking rates,

τ−1
φ , due to electron-electron interactions via Coulomb and superconducting fluctuations

in disordered homogeneous metals. In section J.1 we look at the EEI contribution, after

which we provide the details for the superconducting fluctuation contribution in section

J.2.

J.1 Coulomb Contribution

In this section we concern ourselves with the calculation of the diagrams in fig. J.1, where

the wavy lines represent the screened Coulomb interaction. To the diagrams A, B, and C

we may associate

Σ
(A)
φ,ee = −T

∑
k,q

∑
ω

[
V (q, iω)D(q, iε+ iΩ, iε+ iΩ + iω)2G(k, iε+ iΩ)2

×G(k + q, iω + iε+ iΩ)G(k, iε)
]
,

(J.1a)
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Σ
(B)
φ,ee = −T

∑
k,k′,q

∑
ω

[
V (q, iω)

2πN(0)τ0

D(q, iε+ iΩ, iε+ iΩ + iω)2G(k, iε+ iΩ)2

×G(k, iε)G(k′, iε+ iΩ)2G(k′ + q, iω + iε+ iΩ)

]
,

(J.1b)

Σ
(C)
φ,ee = −T

∑
q

∑
ω

[
V (q, iω)

2πN(0)τ0

D(q, iε+ iΩ, iε+ iΩ + iω)2

×

(∑
k

G(k, iε+ iΩ)G(k + q, iω + iε+ iΩ)G(k, iε)

)2 ]
,

(J.1c)

respectively. We shall assume ε+ Ω > 0 and ε < 0 without loss of generality, as explained

in the main body of the thesis. The diffusons present in these diagrams enforce ω+ε+Ω <

0. Hence, we may rewrite these expressions as

Σ
(A)
φ,ee = −T

∑
k,q

∑
ω<−(ε+Ω)

V (q, iω)D(q, iω)2G+(k)2G−(k + q, iω + iε+ iΩ)G−(k), (J.2a)

Σ
(B)
φ,ee = −T

∑
k,k′,q

∑
ω<−(ε+Ω)

[
V (q, iω)

2πN(0)τ0

D(q, iω)2G+(k)2

×G−(k)G+(k′)2G−(k′ + q, iω + iε+ iΩ)

]
,

(J.2b)

Σ
(C)
φ,ee = −T

∑
q

∑
ω<−(ε+Ω)

[
V (q, iω)

2πN(0)τ0

D(q, iω)2

×

(∑
k

G+(k)G−(k + q, iω + iε+ iΩ)G−(k)

)2 ]
.

(J.2c)

We next expand the electron Green’s functions in powers of q and ω, retaining leading

order terms that are not zeroth order,1 and linearise the fast momentum sums (k and k′)

around the Fermi surface. This yields,

1Terms containing a single power of q vanish due to carrying a factor of k, and hence is odd in k.
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Figure J.1: Diagrams describing the phase coherence corrections to the cooperon in ho-
mogeneous systems due to Coulomb interactions.

Σ
(A)
φ,ee = −T

∑
k,q

∑
ω<−(ε+Ω)

{
V (q, iω)D(q, iω)2G+(k)2G−(k)

×
[
G−(k)− iωG−(k)2 + (vF · q)2G−(k)3

]}
,

(J.3a)

Σ
(B)
φ,ee = −T

∑
k,k′,q

∑
ω<−(ε+Ω)

{
V (q, iω)

2πN(0)τ0

D(q, iω)2G+(k)2G−(k)G+(k′)2

×
[
G−(k′)− iωG−(k′)2 + (v′F · q)2G−(k′)3

]}
,

(J.3b)

Σ
(C)
φ,ee = −T

∑
q

∑
ω<−(ε+Ω)

{
V (q, iω)

2πN(0)τ0

D(q, iω)2

×

(∑
k

G+(k)G−(k)
[
G−(k)− iωG−(k)2 + (vF · q)2G−(k)3

])2}
,

(J.3c)

where the prime on the v′F reminds us that it comes from k′, and so is independent of

the k sum but not the k′ sum.

We next evaluate the fast momentum sums using the diffusive momentum sum identity

in eq. 3.75. This produces,

Σ
(A)
φ,ee = −2πN(0)τ 3

0T
∑
k,q

∑
ω<−(ε+Ω)

V (q, iω)D(q, iω)2(2 + 3ωτ0 − 4Dq2τ0), (J.4a)

343



APPENDIX J. PHASE BREAKING RATES IN HOMOGENEOUS SYSTEMS –
CALCULATION DETAILS

Σ
(B)
φ,ee = −2πN(0)τ 3

0T
∑
k,k′,q

∑
ω<−(ε+Ω)

V (q, iω)D(q, iω)2(−1− 2ωτ0 + 3Dq2τ0), (J.4b)

Σ
(C)
φ,ee = −2πN(0)τ 3

0T
∑
q

∑
ω<−(ε+Ω)

V (q, iω)D(q, iω)2(−1− 2ωτ0 + 2Dq2τ0), (J.4c)

where we retained terms up to order ω and Dq2 in eq. J.4c. By adding these contributions

together, we find

Σ
(ABC)
φ,ee = −2πN(0)τ 4

0T
∑
q

∑
ω<−(ε+Ω)

V (q, iω)D(q, iω)2(Dq2 − ω)

= −2πN(0)τ 2
0T
∑
q

∑
ω<−(ε+Ω)

V (q, iω)
Dq2 − ω

(Dq2 + |ω|)2
.

(J.5)

Recalling eq. 3.73, noting that |ω| = −ω in the above Matsubara frequency sum, and

letting ω → −ω, we can rewrite eq. J.5 as

Σ
(ABC)
φ,ee = −T (2πN(0)τ 2

0 )2
∑
q

∑
ω>ε+Ω

D̃(q, iε+ iΩ + iω, iε+ iΩ)V (q, iω), (J.6)

which is exactly the result we quote for the sum of diagrams A, B, and C in eq. 3.169.

The counterpart to the sum of diagrams A, B, and C where the interaction is on the

bottom electron Green’s function can be calculated using the exact same ideas as above.

The only change is that the ω sum is taken over the range ω > −ε. We shall not show

this explicitly, as this would simply repeat what we have just done.

Diagram D is given by,

Σ
(D)
φ,ee = −T

∑
q

∑
ω

C̃(q, iε+ iΩ + iω, iε)V (q, iω)

×

(∑
k

G(k, iε+ iΩ)G(k + q, iε+ Ω + iω)G(k, iε)

)2

' −T
∑
q

∑
ω<−(ε+Ω)

C̃(q, iΩ + iω)V (q, iω)

(∑
k

G+(k)G−(k)2

)2

,

(J.7)
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where in the second equality we appreciated that |k| ' kF , so only small q are significant

(|q| � kF ), hence we may neglect its presence inside the electron Green’s functions.

Evaluating the k sum using eq. 3.75, we find the expression quoted in eq. 3.171

Σ
(D)
φ,ee = T (2πN(0)τ 2

0 )2
∑
q

∑
ω>−(ε+Ω)

C̃(q, iΩ + iω)V (q, iω). (J.8)

In complete analogy to the counterpart to diagrams A, B, and C, the counterpart to

diagram D which has the interaction appearing on the bottom electron Green’s function

will have exactly same form as above, but with the Matsubara sum taken for ω > ε.

Again, we shall not give the details for the calculation of this piece as it simply repeats

the process we presented above.

To progress further, we next need to perform analytic continuation for the ω sums.

These details are given in chapter 3, so we shall not repeat them here. What we shall do

next, however, is give the details for evaluating the integral and sum in eq. 3.184 for two

and three dimensions. For reference, eq. 3.184 is

1

τφ,ee
' −4N(0)τ 2

0

∑
q

∫ +T

−T
dz
C̃R(q, z)

sinh(βz)
Im
[
V R(q, z)

]
. (J.9)

In both cases, we will need to approximate the screened Coulomb interaction,

V R(q, z) =
V0,d(q)

1 +
κd−1
d Dq3−d

Dq2−iz

, d = 2, 3, (J.10)

where V0,d(q) is the unscreened Coulomb interaction in d dimensions, see eq. 3.87, and

κd is the Thomas-Fermi wave vector in d dimensions. In general, κd � |q|, and hence

V R(q, z) = V0,d(q)
Dq2 − iz

Dq2 − iz + κd−1
d Dq3−d

' V0,d(q)
Dq2 − iz

κd−1
d Dq3−d − iz

.

(J.11)
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Therefore,

Im[V R(q, z)] = zV0,d(q)
Dq2 − κd−1

d Dq3−d

(κd−1
d Dq3−d)2 + z2

' −zV0,d(q)
κd−1
d Dq3−d

(κd−1
d Dq3−d)2 + z2

.

(J.12)

Finally, we note that

C̃R(q, z) =
1

2πN(0)τ 2
0

1

Dq2 − iz + τ−1
φ

. (J.13)

J.1.1 Two Dimensions

Let us now consider d = 2 and substitute eq. J.12 and eq. J.13 into eq. J.9,

1

τφ,ee
= 4e2Dκ2

∑
q

∫ +∞

−∞

dz

sinh(βz)

1

Dq2 − iz + τ−1
φ

z

D2κ2
2q

2 + z2
. (J.14)

We now replace the q sum by an integral,

1

τφ,ee
=

2e2Dκ2

π

∫ +∞

−∞
dz

z

sinh(βz)

∫ ∞
0

dq q
1

Dq2 − iz + τ−1
φ

1

D2κ2
2q

2 + z2
. (J.15)

We shall focus on performing the q integral first,

I(z) =

∫ ∞
0

dq q
1

q2 + a

1

q2 + b2
, (J.16a)

where

a =
τ−1
φ − iz
D

, b =
z

Dκ2

, (J.16b)

and

1

τφ,ee
=

2e2

πD2κ2

∫ +∞

−∞
dz

z

sinh(βz)
I(z). (J.17)
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We evaluate eq. J.16a as follows,

I(z) =

∫ ∞
0

dq q

[
1

q2+a
− 1

q2+b2

]
1

b2−a
=

1

b2−a

[
ln

(
q2+a

q2+b2

)]∞
0

=
1

b2−a
ln

(
b2

a

)
. (J.18)

Next, by appreciating that we will only be interested in small values of z (which have the

most singular contributions to the z integral), we may write

b2 − a =
z2

D2κ2
2

+
iz

D
−
τ−1
φ

D
'
iz − τ−1

φ

D
. (J.19)

Therefore, upon substituting eq. J.19 into eq. J.18, and the result of this into eq. J.17,

we find that

1

τφ,ee
=

e2

πDκ2

∫ +∞

−∞

dz

sinh(βz)

z

τ−1
φ − iz

ln

(
Dκ2

2(τ−1
φ − iz)

z2

)

=
2e2

πDκ2

∫ +∞

0

dz
z

sinh(βz)
Re

[
1

τ−1
φ − iz

ln

(
Dκ2

2(τ−1
φ − iz)

z2

)]
,

(J.20)

where, in writing the second line, we appreciated that the integrand of the first line had

the property g(−z) = g(z)∗.2 We again make use of the fact that only values of z � T

contribute significantly to the integral, so sinh(βz) ' βz. Consequently, eq. J.20 can be

approximated as

1

τφ,ee
=

2e2T

πDκ2

∫ T

0

dzRe

[
1

τ−1
φ − iz

ln

(
Dκ2

2(τ−1
φ − iz)

z2

)]
. (J.21)

By letting z → zτ−1
φ , this expression becomes

1

τφ,ee
=

2e2T

πDκ2

Re

[∫ τφT

0

dz
1 + iz

1 + z2
ln

(
Dκ2

2τφ(1− iz)

z2

)]

=
2e2T

πDκ2

Re

[∫ τφT

0

dz
1 + iz

1 + z2

(
ln
(
Dκ2

2τφ
)

+ ln(1− iz)− 2 ln z
)]

=
2e2T

πDκ2

(I1 − 2I2 + Re [I3]),

(J.22)

2Here g(z) is some generic function.
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where

I1 =

∫ τφT

0

dz
ln (Dκ2

2τφ)

1 + z2
, I2 =

∫ τφT

0

dz
ln z

1 + z2
, I3 =

∫ τφT

0

dz
ln(1− iz)

1− iz
. (J.23)

Simplifying eq. J.22 comes down to our ability to evaluate I1, I2, and I3. Since we

expect τ−1
φ � T , we may set the Tτφ → ∞ in the upper limits of I1 and I2, as their

integrands converge sufficiently fast for z →∞. This is not the case for I3, however.

The first integral, I1, is trivial to evaluate, and yields

I1 =
π

2
ln
(
Dκ2

2τφ
)
. (J.24)

We tackle I2 as follows,

I2 =

∫ ∞
0

dz
ln z

1 + z2

=

∫ 1

0

dz
ln z

1 + z2
+

∫ ∞
1

dz
ln z

1 + z2

=

∫ 1

0

dz
ln z

1 + z2
−
∫ 0

1

dz

z2

ln(z−1)

1 + z−2
,

(J.25)

where we let z → z−1 in the second integral to obtain the final line. Clearly this integral

vanishes, I2 = 0.

Finally, we compute I3,

I3 =

∫ τφT

0

dz
1

1− iz
ln(1− iz)

=

[
i

2

(
ln (1− iz)

)2
]Tτφ

0

=
i

2

[
ln (1− iT τφ)

]2

.

(J.26)

To take the real part of this, we note that

ln(x+ iy) =
1

2
ln(x2 + y2) + i arctan

(y
x

)
, (J.27)
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which gives

Re [I3] =
1

2
ln(1 + T 2τ 2

φ) arctan(Tτφ). (J.28)

Recalling our expectation that 1� Tτφ, eq. J.28 becomes

Re [I3] =
π

2
ln(1 + Tτφ). (J.29)

Substituting our results for I1, I2, and I3 into eq. J.22, we find

1

τφ,ee
=
e2T

Dκ2

ln(Dκ2
2Tτ

2
φ). (J.30)

Recalling that κ2 = 4πN(0)e2 = 2me2, we recover the self-consistent result quoted in eq.

3.185.

J.1.2 Three Dimensions

Again we substitute eq. J.12 and eq. J.13 into eq. J.9, replace the q sum by a 3D integral,

and apply the fact that only z � T contributions are important, to produce

1

τφ,ee
=

4Dκ2
3e

2

π2
T

∫ +T

−T

dz

D2κ4
3 + z2

∫ ∞
0

dq
1

Dq2 − iz + τ−1
φ

=
2
√
Dκ2

3e
2

π
T

∫ +T

−T

dz

D2κ4
3 + z2

1√
τ−1
φ − iz

=
4
√
Dκ2

3e
2

π
T

∫ T

0

dz

D2κ4
3 + z2

Re

 1√
τ−1
φ − iz

 .
(J.31)

In obtaining the final line, we used the same trick that we used for the 2D case in eq.

J.20. Next, we appreciate that Dκ2
3 � T , and so Dκ2

3 � z, so we may approximate eq.

J.31 as

1

τφ,ee
=

4e2

πD3/2κ2
3

T

∫ T

0

dzRe

 1√
τ−1
φ − iz

 (J.32)

349



APPENDIX J. PHASE BREAKING RATES IN HOMOGENEOUS SYSTEMS –
CALCULATION DETAILS

Figure J.2: Diagrams describing the phase coherence corrections to the cooperon in ho-
mogeneous systems due to superconducting fluctuations.

Letting z → τ−1
φ z,

1

τφ,ee
=

4e2τ
−1/2
φ

πD3/2κ2
3

T Re

[∫ Tτφ

0

dz
1√

1− iz

]

=
4e2τ

−1/2
φ

πD3/2κ2
3

T Re
[
2i(
√

1− iT τφ − 1)
]

= −
8e2τ

−1/2
φ

πD3/2κ2
3

T Im
[√

1− iT τφ
]
.

(J.33)

In taking the imaginary part of this complex square root, we must take the negative sign

choice since τ−1
φ,ee must be positive,

Im
[√

1− iT τφ
]

= −

√√√√−1 +
√

1 + T 2τ 2
φ

2
'
√
Tτφ. (J.34)

Substituting eq. J.34 into eq. J.33 gives

1

τφ,ee
= − 8e2

πD3/2κ2
3

T 3/2. (J.35)

Recalling that

κ2
3 = 8πN(0)e2, N(0) =

1

π2

√
m3
e

2
εF , (J.36)

we arrive at the answer we gave in eq. 3.188.
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J.2 Superconducting Fluctuations Contribution

The diagrams describing the superconducting fluctuation contribution to the phase break-

ing rate are shown in fig. J.2. The expressions corresponding to diagrams A, B, and C

respectively are,

Σ
(A)
φ,fl = −T

∑
k,q

∑
ω

[
L(q, iω)C(q, iε+ iΩ, iω − iε− iΩ)2G(k, iε+ iΩ)2

×G(q− k, iω − iε− iΩ)G(k, iε)
]
,

(J.37a)

Σ
(B)
φ,efl = −T

∑
k,k′,q

∑
ω

[
L(q, iω)

2πN(0)τ0

C(q, iε+ iΩ, iω − iε− iΩ)2G(k, iε+ iΩ)2

×G(k, iε)G(k′, iε+ iΩ)2G(q− k′, iω − iε− iΩ)

]
,

(J.37b)

Σ
(C)
φ,fl = −T

∑
q

∑
ω

[
L(q, iω)

2πN(0)τ0

C(q, iε+ iΩ, iω − iε− iΩ)2

×

(∑
k

G(k, iε+ iΩ)G(q− k, iω − iε− iΩ)G(k, iε)

)2 ]
,

(J.37c)

Again, we consider the case where ε + Ω > 0 and ε < 0 without loss of generality, and

so the cooperons in these diagrams enforce that ω > ε + Ω. As before, we expand these

Green’s function in powers of ω and q, keeping only terms up to first order in ω and

second order in q. This yields

Σ
(A)
φ,fl = −T

∑
k,q

∑
ω>ε+Ω

{
L(q, iω)C(q, iω − 2iε− 2iΩ)2G+(k)2G−(k)

×
[
G−(k)− iωG−(k)2 + (vF · q)2G−(k)3

]}
,

(J.38a)

Σ
(B)
φ,fl = −T

∑
k,k′,q

∑
ω>ε+Ω

{
L(q, iω)

2πN(0)τ0

C(q, iω − 2iε− 2iΩ)2G+(k)2G−(k)G+(k′)2

×
[
G−(k′)− iωG−(k′)2 + (v′F · q)2G−(k′)3

]}
,

(J.38b)

Σ
(C)
φ,fl = −T

∑
q

∑
ω>ε+Ω

{
L(q, iω)

2πN(0)τ0

C(q, iω − 2iε− 2iΩ)2

×

(∑
k

G+(k)G−(k)
[
G−(k)− iωG−(k)2 + (vF · q)2G−(k)3

])2}
.

(J.38c)
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By evaluating the fast momentum sums using eq. 3.75, we find

Σ
(A)
φ,fl = −2πN(0)τ 3

0T
∑
k,q

∑
ω>ε+Ω

[
L(q, iω)C(q, iω − 2iε− 2iΩ)2

× (2 + 3ωτ0 − 4Dq2τ0)
]
,

(J.39a)

Σ
(B)
φ,fl = −2πN(0)τ 3

0T
∑
k,k′,q

∑
ω>ε+Ω

[
L(q, iω − 2iε− 2iΩ)C(q, iω)2

× (−1− 2ωτ0 + 3Dq2τ0)
]
,

(J.39b)

Σ
(C)
φ,fl = −2πN(0)τ 3

0T
∑
q

∑
ω>ε+Ω

[
L(q, iω)C(q, iω − 2iε− 2iΩ)2

× (−1− 2ωτ0 + 2Dq2τ0)
]
,

(J.39c)

and hence

Σ
(ABC)
φ,fl = −2πN(0)τ 4

0T
∑
q

∑
ω>ε+Ω

L(q, iω)C(q, iω − 2iε− 2iΩ)2(Dq2 − ω)

= −(2πN(0)τ 2
0 )3T

∑
q

∑
ω>ε+Ω

L(q, iω)C̃(q, iω − 2iε− 2iΩ)2(Dq2 − ω).

(J.40)

If we consider the variations of diagrams A, B, and C with the pair propagator on the

bottom electron Green’s function, we find the same expression as above, but with the

sum taken over ω < −ε, and C(q, iω + 2iε) in place of C(q, iω − 2iε − 2iΩ). Therefore,

eq. J.40, and its variant, give the first and second lines of eq. 3.190 respectively.

Diagram D can be written as,

Σ
(D)
φ,fl = −T

∑
q

∑
ω

D̃(q, iε+ iΩ + iω, iε)L(q, iω)

×

(∑
k

G(k, iε+ iΩ)G(q− k, iω − iε− Ω)G(k, iε)

)2

' −T
∑
q

∑
ω>ε+Ω

D̃(q, iω − 2iε− iΩ)L(q, iω)

(∑
k

G+(k)G−(k)2

)2

.

(J.41)
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Evaluating the fast momentum sum yields,

Σ
(D)
φ,fl = T (2πN(0)τ 2

0 )2
∑
q

∑
ω>ε+Ω

D̃(q, iω − 2iε− iΩ)L(q, iω). (J.42)

The variant of diagram D with the pair propagator on the bottom Green’s function, is

found using the same approach. This variant is given by eq. J.42 with the Matsubara

sum taken over ω > −ε, and D̃(q, iω− 2iε− iΩ) replaced by D̃(q, iω+ 2iε+ iΩ). Hence,

eq. J.42, and its variant, give the third and fourth lines of eq. 3.190 respectively.

The details regarding the analytic continuation of the ω sum are discussed in section

3.6.2, and so we do not provide these details here. Instead, we turn our attention to

evaluating the result of analytic continuation in eq. 3.192. Substituting eq. 3.194 for the

retarded pair propagator in to eq. 3.192, we see

1

τφ,fl
= 64N(0)τ 4

0T
2
∑
q

∫ +T

−T
dz

1

(Dq2 + τ−1
GL)2 + z2

(Dq2 + iz) C̃A(q, z)2. (J.43)

Noting that C̃A(q, z) = C̃R(q, z)∗, we write

1

τφ,fl
=

16

π2N(0)
T 2
∑
q

∫ +T

−T
dz

1

(Dq2 + τ−1
GL)2 + z2

Dq2 + iz

(Dq2 + τ−1
φ + iz)2

' 32

π2N(0)
T 2
∑
q

∫ T

0

dz
1

(Dq2 + τ−1
GL)2 + z2

Re

[
Dq2 + iz

(Dq2 + τ−1
φ + iz)2

]
.

(J.44)

Letting z → τ−1
φ z,

1

τφ,fl
=

32(Tτφ)2

π2N(0)

∑
q

∫ ∞
0

dz
1

(τφDq2 + τφτ
−1
GL)2 + z2

Re

[
τφDq2 + iz

(τφDq2 + 1 + iz)2

]
=

32(Tτφ)2

π2N(0)

×
∑
q

∫ ∞
0

dz
1

(τφDq2 + τφτ
−1
GL)2 + z2

τφDq2(τφDq2 + 1)2 + z2(τφDq2 + 2)

[(τφDq2 + 1)2 + z2]2

(J.45)

where we let the upper limit Tτφ →∞, as we expect Tτφ � 1.
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To evaluate eq. J.45, we define the following integrals,

Ĩ(a, b) =

∫ ∞
0

dz
1

(a2 + z2)(b2 + z2)
, (J.46a)

I(a, b) = − ∂Ĩ

∂(a2)
= − 1

2a

∂Ĩ

∂a
=

∫ ∞
0

dz
1

(a2 + z2)2(b2 + z2)
, (J.46b)

J̃(a, b) =

∫ ∞
0

dz
z2

(a2 + z2)(b2 + z2)
, (J.46c)

J(a, b) = − ∂J̃

∂(a2)
= − 1

2a

∂J̃

∂a
=

∫ ∞
0

dz
z2

(a2 + z2)2(b2 + z2)
, (J.46d)

which allow us to write

1

τφ,fl
=

32(Tτφ)2

π2N(0)

∑
q

[
τφDq2(τφDq2 + 1)2 I(τφDq2 + 1, τφDq2 + τφτ

−1
GL)

+ (τφDq2 + 2) J(τφDq2 + 1, τφDq2 + τφτ
−1
GL)
]
.

(J.47)

The only integrals we are now required to evaluate directly, are those in eq. J.46a and

eq. J.46c. Below we show how these are calculated,

Ĩ(a, b) =
1

b2 − a2

∫ ∞
0

dz

[
1

a2 + z2
− 1

b2 + z2

]
=

1

b2 − a2

[
1

a
arctan

(z
a

)
− 1

b
arctan

(z
b

)]∞
0

=
π

2

1

b2 − a2

(
1

a
− 1

b

)
=
π

2

1

ab(a+ b)
,

(J.48)

and

J̃(a, b) =
1

b2 − a2

∫ ∞
0

dz

[
z2

a2 + z2
− z2

b2 + z2

]
=

1

b2 − a2

∫ ∞
0

dz

[
b2

b2 + z2
− a2

a2 + z2

]
=

1

b2 − a2

[
b arctan

(z
b

)
− a arctan

(z
a

)]∞
0

=
π

2

b− a
b2 − a2

=
π

2

1

a+ b
.

(J.49)
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Hence, substituting eq. J.48 and eq. J.49 into eq. J.46b and eq. J.46d, we find

I(a, b) =
π

4

b+ 2a

a3b(a+ b)2
, (J.50a)

J(a, b) =
π

4

1

a(a+ b)2
. (J.50b)

To simplify the expression,

τφDq2(τφDq2 + 1)2 I(τφDq2 + 1, τφDq2 + τφτ
−1
GL)

+ (τφDq2 + 2) J(τφDq2 + 1, τφDq2 + τφτ
−1
GL)

(J.51)

appearing in eq. J.47, we let x = τφτ
−1
GL and y = τφDq2. Using these variables, we

substitute eq. J.50a and eq. J.50b into eq. J.51 to get

π

4

[
y(y + 1)2(3y + 2 + x)

(y + 1)3(y + x)(2y + 1 + x)2
+

y + 2

(y + 1)(2y + 1 + x)2

]
=
π

4

1

(2y + 1 + x)2

[
2y

y + x
+

y

y + 1
+

1

y + 1
+ 1

]
=
π

2

1

(2y + 1 + x)2

[
y

y + x
+ 1

]
.

(J.52)

Finally, by substituting eq. J.52, with the definitions for x and y, into eq. J.47, we arrive

at

1

τφ,fl
=

16T 2

πN(0)

∑
q

[
1 +

Dq2

Dq2 + τ−1
GL

]
1

(τ−1
φ + τ−1

GL + 2Dq2)2
, (J.53)

which is exactly what we gave in the main body of the thesis, see eq. 3.195.

J.2.1 Two Dimensional Systems

In 2D systems, eq. J.53 becomes

1

τφ,fl
=

8T 2

π2N(0)

∫ ∞
0

dq q

[
1 +

Dq2

Dq2 + τ−1
GL

]
1

(τ−1
φ + τ−1

GL + 2Dq2)2
. (J.54)
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By making the substitution x = Dq2, this simplifies to

1

τφ,fl
=

4T 2

π2N(0)D

∫ ∞
0

dx

[
1 +

x

x+ τ−1
GL

]
1

(τ−1
φ + τ−1

GL + 2x)2
. (J.55)

The first term of the integral is solved trivially,

∫ ∞
0

dx
1

(τ−1
φ + τ−1

GL + 2x)2
=

1

2

1

τ−1
φ + τ−1

GL

, (J.56)

whilst the second term can be handled by considering an integral of the form

I(a, b) =

∫ ∞
0

dx
x

(x+ a)(2x+ b)2
. (J.57)

Using partial fractions on the integrand of I(a, b), we find

I(a, b) =

∫ ∞
0

dx

[
a

(2a− b)2

(
2

2x+ b
− 1

x+ a

)
− b

2a− b
1

(2x+ b)2

]
=

a

(2a− b)2
ln

(
2a

b

)
− 1

2

1

2a− b

(J.58)

Therefore, using the results in eq. J.56 and eq. J.58, with a = τ−1
GL and b = τ−1

GL + τ−1
φ , in

eq. J.55, we obtain

1

τφ,fl
=

4T 2τφ
π2N(0)D

[
τφτGL

(τφ − τGL)2
ln

(
2τφ

τφ + τGL

)
+

τ 2
GL

τ 2
GL − τ 2

φ

]
. (J.59)

By recalling that N(0) = me/(2π) and D = vF τ0/2, we arrive at the result given in eq.

3.196.

J.2.2 Three Dimensional Systems

In 3D systems, eq. J.53 becomes

1

τφ,fl
=

8T 2

π3N(0)

∫ ∞
0

dq q2

[
1 +

Dq2

Dq2 + τ−1
GL

]
1

(τ−1
φ + τ−1

GL + 2Dq2)2
. (J.60)
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which we simplify by making the substitution x =
√
Dq,

1

τφ,fl
=

8T 2

π3N(0)D3/2

∫ ∞
0

dx x2

[
2− τ−1

GL

x2 + τ−1
GL

]
1

(τ−1
φ + τ−1

GL + 2x2)2
. (J.61)

We first focus on the first term of eq. J.61,

∫ ∞
0

dx
2x2

(τ−1
φ + τ−1

GL + 2x2)2
=

∫ ∞
0

dx

[
1

τ−1
φ + τ−1

GL + 2x2
−

τ−1
φ + τ−1

GL

(τ−1
φ + τ−1

GL + 2x2)2

]
. (J.62)

To evaluate this integral, we note that the second term of its integrand is related to its

first term by simple differentiation,

∫ ∞
0

dx
τ−1
φ + τ−1

GL

(τ−1
φ + τ−1

GL + 2x2)2
= −(τ−1

φ + τ−1
GL)

d

db

[∫ ∞
0

dx
1

b+ 2x2

] ∣∣∣∣
b=τ−1

φ +τ−1
GL

. (J.63)

The integral inside the derivative, which is just the first term of eq. J.62’s integrand, is

trivial to compute, and so

∫ ∞
0

dx
1

τ−1
φ + τ−1

GL + 2x2
=

π

2
√

2

1√
τ−1
φ + τ−1

GL

, (J.64a)

∫ ∞
0

dx
τ−1
φ + τ−1

GL

(τ−1
φ + τ−1

GL + 2x2)2
=

π

4
√

2

1√
τ−1
φ + τ−1

GL

. (J.64b)

Thus, eq. J.62 becomes

∫ ∞
0

dx
2x2

(τ−1
φ + τ−1

GL + 2x2)2
=
π

8

√
2

τ−1
φ + τ−1

GL

. (J.65)

Turning our attention towards the second term of eq. J.61, we note that

∫ ∞
0

dx
x2

(x2 + τ−1
GL)(τ−1

φ + τ−1
GL + 2x2)2

= − ∂

∂b
J(a, b)

∣∣∣∣a=τ−1
GL

b=τ−1
φ +τ−1

GL

, (J.66)
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where

J(a, b) =

∫ ∞
0

dx
x2

(x2 + a)(2x2 + b)
. (J.67)

Hence, our ability to evaluate the second term of eq. J.61 depends on our ability to

perform the integral J(a, b). We start by writing

J(a, b) =
1

2

∫ ∞
0

dx

[
1

x2 + a
− b

(x2 + a)(2x2 − b)

]
=

1

2

∫ ∞
0

dx

[
1

x2 + a
− b

b− 2a

(
1

x2 + a
− 2

2x2 + b

)]
.

(J.68)

This integral is now straightforward to compute and yields,

J(a, b) =
π

4

2
√
a−
√

2b

2a− b
. (J.69)

Therefore, we find that

∫ ∞
0

dx
x2

(x2+τ−1
GL)(τ−1

φ +τ−1
GL+2x2)2

=
π

8

√
2

τ−1
GL + τ−1

φ


√

2τ−1
GL −

√
τ−1
GL + τ−1

φ

τ−1
GL − τ

−1
φ


2

. (J.70)

Finally, by substituting eq. J.65 and eq. J.70 into eq. J.61, we obtain

1

τφ,fl
=

T 2

π2N(0)D3/2

√
2

τ−1
GL + τ−1

φ

1− τ−1
GL


√

2τ−1
GL −

√
τ−1
GL + τ−1

φ

τ−1
GL − τ

−1
φ


2  . (J.71)

Recalling that,

N(0) =
1

π2

√
m3
e

2
εF , D =

v2
F τ0

3
, (J.72)

in 3D, we see that eq. J.70 is the same result we gave in eq. 3.199.
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APPENDIX K

LATTICES AND PERIODIC

BOUNDARY CONDITIONS

This appendix acts as background to the ideas we use when modelling granular materials,

which we assume to form lattices with periodic boundary conditions. The ideas we present

here are based upon Simon’s book [4].

Consider a d-dimensional lattice with N sites, whose locations form the set {Ri},

which is spanned by the set of primitive lattice vectors {aα}. In this case, any site

location can be written as

Ri =
d∑

α=1

ni,αaα, ni,1, ni,2, ... ∈ Z. (K.1)

The corresponding reciprocal lattice’s site locations form the set {Gi}. The reciprocal

lattice is spanned by the set of primitive reciprocal lattice vectors {bi}, and so any site

on the reciprocal lattice can be expressed as

Gi =
d∑

α=1

mi,αbα, mi,1,mi,2, ... ∈ Z. (K.2)
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The spanning vectors, {ai} and {bi}, are related by

ai · bj = 2πδij. (K.3)

With these definitions in mind, we may now tackle how to write a Fourier series expansion

for a function subject to periodic boundary conditions.

We define our lattice to be periodic such that there are Nα sites in the direction of

aα, before looping back round. As a result, any function existing inside the lattice that

depends upon position must exhibit the same periodicity,

F (r +Nαaα) = F (r), α = 1, 2, ..., d. (K.4)

We also note that the total number of sites is simply the product of the periodic lengths,

N =
d∏

α=1

Nα. (K.5)

Now, let us expand the function F (r) as a Fourier series with an arbitrary normalisation

constant, A,

F (r) = A
∑

Q∈VB1

F̃ (Q)eiQ·r, F̃ (Q) =

∫
V
ddrF (r)e−iQ·r, (K.6)

where V is the volume of the lattice and VB1 is the volume of the first Brillouin zone. In

writing the momentum sum to only be over the modes within the first Brillouin zone, we

have appreciated that all unique modes occur in this region of reciprocal space: modes

outside this can be mapped back to the the first Brillouin zone by shifts using the reciprocal

lattice vectors in eq. K.2.

For eq. K.6 to obey the periodic boundary conditions in eq. K.4, we must have

eiNαQ·aα = 1. (K.7)
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By writing the lattice momentum, Q, in terms of the primitive reciprocal lattice vectors,

Q =
d∑

α=1

cαbα, (K.8)

we see that the components are quantised according to

cα =
lα
Nα

, lα ∈ Z, −Nα
2
≤ lα <

Nα
2
. (K.9)

The inequality above ensures that we do not double count momenta leading to the same

physical mode: all unique components of Q lie within the first Brillouin zone. That is to

say, the lattice is periodic on the length |aα| in the α direction.1

The volume associated to each mode is given by the appropriate formula for the volume

of a d-dimensional parallelepiped, whose edges are described by the fundamental vectors

composing Q,

VQ = Vd
({

bα
Nα

})
= Vd({bα})

d∏
α=1

1

Nα
. (K.10)

For d = 1, 2, and 3 this function is,

Vd({bα}) =


b1 · (b2 × b3), d = 3

|b1 × b2|, d = 2

|b1|, d = 1.

(K.11)

However, the function Vd({bα}) is just the volume of the first Brillouin zone, which, in

conjunction with eq. K.5, yields

VQ =
VB1

N
. (K.12)

Therefore, there are N momentum modes in the first Brillouin zone.

1It is worth noting that there are two levels of periodicity at play here. The first period we mentioned
was the system’s periodicity, where we loop the lattice back round onto itself in each direction. The
second period we have just mentioned is that of the lattice, which is inherently smaller than the system’s
periodicity. The period of the lattice defines the first Brillouin zone in reciprocal space, and leads to a
reciprocal lattice with period 2π/|aα| in the direction of bα. In contrast, the system’s periodicity defines
the modes within the first Brillouin zone, which are given by eq. K.8 and eq. K.9
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To make use of this fact, we write eq. K.6 as

F (r) = A

∫
V
ddr′F (r′)

∑
Q∈VB1

eiQ·(r−r
′)

= A

∫
V
ddr′F (r′)N δ(d)(r− r′).

(K.13)

Hence, we define A = 1/N . If we instead chose to treat Q as continuous,2 we would write

eq. K.6 using an integral over Q instead of a sum,

F (r) = A

∫
VB1

ddQF̃ (Q)eiQ·r, F̃ (Q) =

∫
V
ddrF (r)e−iQ·r. (K.14)

Substituting F̃ (Q) into F (r) produces,

F (r) = A

∫
V
ddr′F (r′)

∫
VB1

ddQeiQ·(r−r
′)

= A

∫
V
ddr′F (r′)VB1 δ

(d)(r− r′),

(K.15)

therefore meaning we must choose A = 1/VB1 in this case.

So in general, we may write any function that is position dependent in the lattice in

terms of a sum over Q when we have discrete quantised modes, or an integral over Q

when the reciprocal space is continuous. This leads to the expressions,

F (r) =
1

N
∑

Q∈VB1

F̃ (Q)eiQ·r, F (r) =
1

VB1

∫
VB1

ddQF̃ (Q)eiQ·r. (K.16)

For the granular systems we consider in the main body of this thesis, we assume the

lattice is simple cubic with side length a. Therefore, the volume of the first Brillouin zone

is trivially,

VB1 =

(
2π

a

)d
. (K.17)

2This is the same as letting Nα →∞∀α. Consequently, V becomes the volume over all space.
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APPENDIX L

ANALYSIS OF RESISTANCE

VERSUS TEMPERATURE DATA

FOR VARIOUS BNCD FILMS

This appendix reproduces the data analysis of Klemencic et. al.’s experimental work

in [28]. We use the same methods as those detailed in chapter 6, and consider films

of thickness 564nm, 204nm, 168nm, 160nm, and 128nm, in addition to the 329nm film

presented earlier. Table L.1 presents the values of Tc and a found for each film, as well as

the range of possible values for Γ and ETh.

Table L.1: Summary of the Tc and a values found to various BNCD films, and the range
of values Γ and ETh might take.

Thickness (nm) Tc (K) a (nm) Γ (×10−2K) ETh (K)

564 3.83 102 2.6 < Γ < 7.2 0.9 < ETh < 1.2

339 3.81 102 2.7 < Γ < 6.8 0.825 < ETh < 1

204 3.72 79.0 3.4 < Γ < 6.3 0.8 < ETh < 1

168 3.61 71.9 3.6 < Γ < 6.5 1 < ETh < 1.2

160 3.34 64.3 3 < Γ < 6.7 0.9 < ETh < 1.1

128 2.83 56.9 4 < Γ < 9.9 1.2 < ETh < 1.5
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Figure L.1: The plots above show the fittings to Klemencic et. al.’s data [28] for a 564nm
BNCD film. (a): EEI fitting to high temperature data. (b): focus on the superconducting
transition. (c): Fitted fluctuation data, where the shaded regions indicate areas where
the crossovers may exist.
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Figure L.2: The plots above show the fittings to Klemencic et. al.’s data [28] for a 204nm
BNCD film. (a): EEI fitting to high temperature data. (b): focus on the superconducting
transition. (c): Fitted fluctuation data, where the shaded regions indicate areas where
the crossovers may exist.
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Figure L.3: The plots above show the fittings to Klemencic et. al.’s data [28] for a 168nm
BNCD film. (a): EEI fitting to high temperature data. (b): focus on the superconducting
transition. (c): Fitted fluctuation data, where the shaded regions indicate areas where
the crossovers may exist.
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Figure L.4: The plots above show the fittings to Klemencic et. al.’s data [28] for a 160nm
BNCD film. (a): EEI fitting to high temperature data. (b): focus on the superconducting
transition. (c): Fitted fluctuation data, where the shaded regions indicate areas where
the crossovers may exist.
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Figure L.5: The plots above show the fittings to Klemencic et. al.’s data [28] for a 128nm
BNCD film. (a): EEI fitting to high temperature data. (b): focus on the superconducting
transition. (c): Fitted fluctuation data, where the shaded regions indicate areas where
the crossovers may exist.

368



APPENDIX M

SUMMIN’ ABOUT SUM

IDENTITIES

M.1 Matsubara Sums

In general a Matsubara sum is dealt with by performing analytic continuation so that

we may consider an integral in the complex plane taken over some contour C, which

can be shown to be related to our original sum of interest. This Matsubara trick is

heavily used when dealing with sums over Matsubara frequencies, but can be applied

very generally. Given the focus of this thesis, we will phrase this method in terms of

Matsubara frequenices, however we will use a generalisation of the ideas presented in this

section to derive the “difference of coths” identity quoted in eq. F.8 in section M.3.

Let us start by considering some function, F (iν), that depends on the Matsubara

frequency ν, which can be bosonic or fermionic, and is summed over this frequency,

S =
∑
ν

F (iν) (M.1)

We now make a key assumption that underpins the Matsubara trick: we assume that the

function F (z), where z ∈ C, has a finite number of poles whose locations form the set

{z0}, but none of which occur at z = iν. In this case we may analytically continue our
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Re(z)

Im(z)

C

C
⇒

Re(z)

Im(z)

C′

C′

Figure M.1: Reinterpretation of the contour integral over C as a contour integral over C ′.
The crosses represent poles, with bare crosses arising from the counting function, p(z),
and the circled crosses being generated by F (z). The dashed line on C represents the
contour being taken to infinity on the imaginary axis.

Matsubara sum into the complex plane by introducing some counting function, p(z), and

letting iν → z. This counting function has poles at z = iν, so when we consider our

contour of integration in the complex plane we can enclose only the poles of p(z) meaning

the residue theorem sums over all the Matsubara frequencies. Written mathematically

this reads ∮
C

dz p(z)F (z) = 2πi
∑
ν

F (iν)Res (p(z), iν) , (M.2)

where the contour C is illustrated on the left set of axes in fig. M.1. If the counting

function has the same residue at each pole, R0 = Res (p(z), iν1) = Res (p(z), iν2) = ...,

then we recover our original sum of interest

∮
C

dz p(z)F (z) = 2πiR0S. (M.3)

Next, let us reinterpret the contour integral in eq. M.3. Instead of considering the

poles inside the contour, we may instead consider the poles outside of the contour which

introduces an additional minus sign due to the reversal of contour direction in the per-

spective of the poles “enclosed”. We may picture this as taking the integral over the

contour C ′ as shown in fig. M.1.

The poles exterior to C, but enclosed by C ′, are the poles associated to F (z). Provided
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that F (z) decays sufficiently quickly,

lim
|z|→∞

|zp(z)F (z)| = 0, (M.4)

we may write the integral as a sum over these poles

∮
C

dz p(z)F (z) =

∮
C′
dz p(z)F (z) = −2πi

∑
z0

p(z0)Res (F (z), z0) . (M.5)

Thus, by combining eq. M.3 and eq. M.5 we may evaluate a Matsubara type sum using

∑
ν

F (iν) = − 1

R0

∑
z0

p(z0)Res (F (z), z0) (M.6)

Now the type of Matsubara frequency becomes important as bosonic and fermionic

frequencies have different counting functions. For each type there are two common choices

for p(z) which we present in table M.1, where f(z) is the Fermi-Dirac distribution and

n(z) is the Bose-Einstein distribution,

f(z) =
1

eβz + 1
, n(z) =

1

eβz − 1
. (M.7)

Using the statistical distributions is quite intuitive and gives the correct Matsubara fre-

quencies, however the second set of choices may appear less obvious. We can relate

coth(βz/2) and tanh(βz/2) back to the distributions with ease using

tanh

(
βz

2

)
= 1− 2f(z), coth

(
βz

2

)
= 1 + 2n(z). (M.8)

Given that a simple constant has no poles (here that constant is just 1), we can ignore

it inside the contour integral as it will simply give zero. Therefore, the poles of f(z) and

tanh(βz/2) are identical, but due to the factor of 2 relating these functions the residue

of tanh(βz/2) is twice that of f(z) at their poles. The same is clearly true for n(z) and

coth(βz/2), where they have identical pole structures and the residue of coth(βz/2) is
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Table M.1: Choices of Matsubara counting functions and their residues for fermionic and
bosonic frequencies, ε = (2n+ 1)πT and ω = 2πnT respectively.

Choice 1 Choice 2

p(z) Res (p(z), iν) p(z) Res (p(z), iν)

Fermions (ν = ε) f(z) −T tanh
(
βz
2

)
−2T

Bosons (ν = ω) n(z) T coth
(
βz
2

)
2T

twice that of n(z) at the poles due the factor of 2 relating them.

If we now use these counting functions we see

p(z) = f(z) ⇒ T
∑
ε

F (iε) =
∑
z0

f(z0)Res (F (z), z0) ,

p(z) = tanh

(
βz

2

)
⇒ T

∑
ε

F (iε) =
1

2

∑
z0

tanh

(
βz0

2

)
Res (F (z), z0) ,

p(z) = n(z) ⇒ T
∑
ε

F (iε) = −
∑
z0

n(z0)Res (F (z), z0) ,

p(z) = coth

(
βz

2

)
⇒ T

∑
ε

F (iε) = −1

2

∑
z0

coth

(
βz0

2

)
Res (F (z), z0) .

(M.9)

M.2 Momentum Sums in the Diffusive Limit

Here we study two sums. The first is the most commonly used result through this thesis,

and the second is a special case. Both sums relate to a sum over momentum of a number

of disorder averaged Green’s functions in the diffusive limit, which we recall as being

defined as,

q � 1

l
, T � 1

τ0

, (M.10)

where q is the momentum difference between Green’s functions, l is the elastic mean free

path, and τ−1
0 is the elastic scattering rate.

Let us now consider the sum of two Green’s functions with the same momentum1 but

1This is the point we arrive at after neglecting the small momentum difference between the Green’s
functions.
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O
O

Re(z)

Im(z)

Re(z)

Im(z)

Figure M.2: Contour choices for the integral in eq. M.13.

differing frequencies, ε and ε+ω. The sum we construct will contain an arbitrary integer

power of each Green’s function. Written mathematically the sum reads,2

S =
∑
k

G(k, iε)mG(k, iε+ iω)n, m, n ∈ Z+. (M.11)

We approximate this sum via an integral to yield

S =

∫
ddk

(2π)d
1

[iε− ξk + i
2τ0

sgn(ε)]m
1

[iε+ iω − ξk + i
2τ0

sgn(ε+ ω)]n

= N(0)

∫ +∞

−∞
dξ

1

[iε− ξ + i
2τ0

sgn(ε)]m
1

[iε+ iω − ξ + i
2τ0

sgn(ε+ ω)]n
,

(M.12)

where N(0) is the single spin DOS per unit volume.

Given that m, n ≥ 1, the integrand falls off sufficiently rapidly for us to write it as an

integral over a semi-circular contour whose radius is taken to infinity.3 This means the

sum becomes,

S = (−1)n+mN(0)

∮
C

dz
1

[z − iε− i
2τ0

sgn(ε)]m
1

[z − i(ε+ ω)− i
2τ0

sgn(ε+ ω)]n
, (M.13)

where C is the semi-circular contour we integrate over. The two choices for this type

of contour are shown in fig. M.2. This integral’s value is thus dictated by its poles at

2Recall we are using the standard convention of dropping the volume factor of V−1 in front of the
momentum sum.

3I.e: the integral over the semi-circle arc at infinity vanishes.
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z = iε+ i sgn(ε)/(2τ0) and z = i(ε+ ω) + i sgn(ε+ ω)/(2τ0). These poles are of order m

and n respectively.

If both frequencies, ε and ε+ ω, have the same sign, then both poles in the integrand

will lie in the same half plane. We may then choose our contour to close in the opposite

half plane (that with no poles), meaning this case trivially gives S = 0. However, if the

frequencies are of opposite sign, then we are unable to choose a contour that does not

enclose any poles. Both choices shown in fig. M.2 we will enclose one of the poles.

For simplicity we assume ε+ω > 0 and ε < 0, and close our contour in the upper half

plane. Cauchy’s residue theorem allows us to write

S =
2πi(−1)n+mN(0)

(m− 1)!

dm−1

dzm−1

[
1

(z − iε+ i
2τ0

)n

] ∣∣∣∣∣
z=i(ε+ω)+i/(2τ0)

=
2πi(−1)n−1N(0)

(m− 1)!

n(n+ 1)(n+ 2)...(n+m− 4)(n+m− 3)(n+m− 2)

( i
τ0

+ iω)n+m−1

= 2πN(0)
(m+ n− 2)!

(m− 1)!(n− 1)!

1

(1 + ωτ0)

(−1)n−1

i(n+m−1)
τn+m−1

0 i

= 2πN(0)
(m+ n− 2)!

(m− 1)!(n− 1)!

1

(1 + ωτ0)
(−iτ0)m(iτ0)n−1i

(M.14)

Recalling that we are working in the diffusive limit, T � τ−1
0 , and that ω = 2πLT

(L ∈ Z) is a bosonic Matsubara frequency, we may take ωτ0 � 1. Using this limit we see

that the result for frequencies of opposite sign does not depend upon the actual value of

frequencies at all. We thus arrive at our final answer for a diffusive sum of Matsubara

Green’s functions,

∑
k

G+(k)mG−(k)n = 2πN(0)
(m+ n− 2)!

(m− 1)!(n− 1)!
(−iτ0)m(iτ0)n−1i, (M.15)

for m, n ∈ Z+, where we have used G± to denote a Green’s function with a positive or

negative frequency respectively.
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M.2.1 A Single Green’s Function

Let us now consider the momentum sum of a single disorder averaged electron Green’s

function of any frequency,

S0 =
∑
k

G(k, iε). (M.16)

This sum is of notable importance when calculating the self energy of the disorder average

electron Green’s function’s Dyson equation.

We can approach this in two ways: analytically continue the sum to the complex plane

and use Cauchy’s residue theorem (Method 1 ); or standard algebraic tricks inside a real

integral (Method 2 ). In both approaches we will start from the integral approximation of

eq. M.16,

S0 = N(0)

∫ +∞

−∞
dξ

1

iε− ξ + i
2τ0

sgn(ε)
(M.17)

Method 1

We start by considering the contour integral

JR =

∮
CR

dz
1

z − iε− i
2τ0

sgn(ε)

=

∫ +R

−R
dx

1

x− iε− i
2τ0

+

∫
ΓR

dz
1

z − iε− i
2τ0

sgn(ε)
,

(M.18)

where CR is the contour defined by a semi-circle of radius R, and ΓR is the contour running

along the arc of the semi-circle. We may choose CR to be one of two variants as before,

see fig. M.2. The integrand has a simple pole at z = iε + isgn(ε)/(2τ0), and falls of as

z−1 as |z| → ∞ meaning the integral along ΓR does not necessarily vanish.

In the limit R → ∞ the first term produces S0 upon multiplication by −N(0). We

may calculate JR using Cauchy’s residue theorem, so our choice of contour is important.

Since the integrand has just one pole, we may choose to close our contour in the empty

half plane (i.e: that which doesn’t contain the pole) to produce JR = 0. Therefore eq.
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M.18 in the limit R→∞ yields

S±0 = lim
R→∞

N(0)

∫
ΓR

dz
1

z − iε∓ i
2τ0

= lim
R→∞

N(0)i

∫ ∓π
0

dθ
Reiθ

Reiθ − iε∓ i
2τ0

= N(0)i

∫ ∓π
0

dθ

= ∓πN(0)i,

(M.19)

where the ± on S±0 refers to the sign of ε. In the second line of eq. M.19 we let z = Reiθ

on the contour ΓR, where the upper limit of θ was dictated by whether we closed the CR

in the lower (ε > 0) or upper (ε < 0) half plane.

So the final result for the momentum sum of a single disorder averaged electron Green’s

function in the diffusive limit is,

∑
k

G(k, iε) = −iπN(0)sgn(ε) (M.20)

Method 2

We may rewrite the integral in eq. M.17 as

S0 = −N(0)

∫ +∞

−∞
dξ

ξ + iε+ i
2τ0

sgn(ε)

ξ2 +
(
ε+ 1

2τ0
sgn(ε)

)2 . (M.21)

The real part vanishes due to being odd in ξ, whilst the imaginary part is easily evaluated

to give,

S0 = −N(0)i

[
arctan

(
ξ

ε+ 1
τ0

sgn(ε)

)]+∞

−∞

. (M.22)

Clearly the integral produces a factor of +π when ε > 0, and a factor of −π when ε < 0.

This therefore reproduces the result given in eq. M.20.
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M.3 A Difference of coths

We use this identity in evaluating the inclusion of a vector potential A into the weak

localisation corrections of a 1D cylinder (appendix F). Let us start by considering the

sum

S =
+∞∑

n=−∞

1

α2(n− β)2 + γ2

=
1

α2

+∞∑
n=−∞

1

(n− β)2 + γ̃2
,

(M.23)

where γ = αγ̃. We now use the standard Matsubara trick using coth(az) as our pole

counting function, where a is to be determined such that we can recover the correct

summand. This counting function has poles at z = iπn/a, where n ∈ Z, each with a

residue of a−1. Letting

F (n) =
1

(n− β)2 + γ̃
, (M.24)

we may write

I =

∮
C

dz coth(az)F (z) =
2πi

a

+∞∑
n=−∞

F

(
iπn

a

)
. (M.25)

Therefore by letting a = iπ we recover the original sum in eq. M.25, such that I = 2α2S.

Now, by considering the poles outside the contour C, which arise at z± = b ± ia due

to F (z), we may also write

I = −2πi [coth(z+)Res (F (z), z+) + coth(z−)Res (F (z), z−)] . (M.26)

This is then easily shown to be

I =
π

γ̃
[coth(πγ̃ + iπβ) + coth(πγ̃ − iπβ)], (M.27)

and hence

S =
π

2αγ

[
coth

(πγ
α

+ iπβ
)

+ coth
(πγ
α
− iπβ

)]
. (M.28)
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Thus we have obtained the result given in the first line of eq. F.8.

To get the second line, we write the coth functions in their exponential form and

construct a common denominator. In doing this we see that

coth(x+ iy) + coth(x− iy) = 2
e2x − e−2x

e2x + e−2x − (e2iy + e−2iy)

= 2
sinh(2x)

cosh(2x)− cos(2y)
.

(M.29)

Using this in conjunction with eq. M.28 we arrive at the final identity quoted in eq. F.8

S =
π

αγ

sinh
(

2πγ
α

)
cosh

(
2πγ
α

)
− cos (2πβ)

. (M.30)

M.4 A Sum of a Product of Green’s Functions in

Spectral Function Form

In computing the empty bubble of the polarisation operator for the screened Coulomb

interaction in appendix G, we encountered the following sum,

S = T
∑
ε

A(k + q, x)A(k, y)

[i(ε+ ω)− x][iε− y]
. (M.31)

Here A(k, x) is the spectral function of the disorder-averaged Green’s function for a ho-

mogeneous metal,

G(k, iε) =
1

iε− ξk + i
2τ0

sgn(ε)
, (M.32)

ε is a fermionic Matsubara frequency, and ω is a bosonic Matsubara frequency. To evaluate

this sum we will employ the same method used by Rickayzen in [29], where the sum in

eq. M.31 appeared in the calculation of the Drude conductivity.
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FUNCTION FORM

Using the standard Matsubara trick, we may rewrite the sum in eq. M.31 as

S = A(k + q, x)A(k, y)
i

2π

∮
C

dz
f(z)

(z + iω − x)(z − y)

= − i

2π
A(k + q, x)A(k, y)

∮
C′
dz

f(z)

(z + iω − x)(z − y)
,

(M.33)

where C and C ′ are the contours shown in fig. M.1. The contour integral taken over C ′

is then evaluated using the calculus of residues to yield

S = A(k + q, x)A(k, y)

[
f(x− iω)

x− y − iω
+

f(y)

y − x+ iω

]
. (M.34)

Given that ω is a bosonic Matsubara frequency, we see that f(x− iω) = f(x) and hence

S = A(k + q, x)A(k, y)
f(y)− f(x)

y − x+ iω
. (M.35)

This is exactly the result that connects eq. G.1 and eq. G.2.
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APPENDIX N

SPECIAL FUNCTIONS

This appendix serves as a quick reference for properties of the special functions used in

this thesis. All identities and properties shown here are given in [83], or can be obtained

from the identities listed there.

N.1 The Digamma Function

The digamma function, ψ(x), is defined as the logarithmic derivative of the Gamma

function, Γ(x), [83],

ψ(x) =
d

dx
ln [Γ(x)] . (N.1)

The digamma function also has the following series representation,

ψ(x) = −γ −
∞∑
n=0

[
1

x+ n
− 1

n+ 1

]
, (N.2)

where γ is the Euler-Mascheroni constant. Other series representations exist, but this is

the one we will make most use of here. From eq. N.2, we may write,

ψ(x+m)− ψ(x) =
m−1∑
n=0

1

x+ n
. (N.3)
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Furthermore, eq. N.2 allows us to write the mth derivative of the digamma function as

ψ(m)(x) = (−1)m+1m!
∞∑
n=0

1

(x+ n)m+1
. (N.4)

Finally, let us note some useful values for the digamma function and its derivatives,

ψ(1) = −γ,

ψ

(
1

2

)
= −γ − 2 ln 2,

ψ′(1) =
π2

2
,

ψ′
(

1

2

)
=
π2

2
,

ψ′′
(

1

2

)
= −14ζ(3).

(N.5)

N.2 The Hurwitz Zeta Function

The Hurwtiz zeta function, ζ(x, a), is a generalisation of the Riemann zeta function, ζ(x).

The Hurwitz zeta function can be represented by the series [83]

ζ(z, a) =
∞∑
n=0

1

(n+ a)z
, Re[z] > 1, a /∈ Z−0 , (N.6)

where Z−0 is the set of negative integers and zero. We note that eq. N.6 helps to illustrate

ζ(z, 1) = ζ(z). By differentiating eq. N.6 with respect to a we find [84]

d

da
ζ(z, a) = −zζ(z + 1, a). (N.7)

Another useful identity, which can be used to prove ψ′′(1/2) = −14ζ(3), is

ζ

(
z,

1

2

)
= (2z − 1)ζ(z), Re[z] > 1. (N.8)
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