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ABSTRACT14

We introduce general models of evolving, inhomogeneous random structures, where in each15

of the models either one or several nodes arrive at a time, and are equipped with random,16

independent weights. In the two evolving tree models we study, an existing vertex is chosen17

at each time-step with probability proportional to its fitness function, which is a function18

of its weight, and possibly the weights of its neighbours, and the newly arriving node(s)19

connect to it. The third models, with parameter d consist of evolving sequences of pd ´ 1q-20

dimensional simplicial complexes. At each time-step a pd ´ 1q-simplex is sampled with21

probability proportional to a function of the weights of the vertices the pd ´ 1q-simplex22

contains. In both variants, Model A and Model B, for each subset S of size pd´ 2q, we add23

the simplex consisting of S and the single new-coming vertex. Additionally, in Model B, the24

selected simplex is removed from the simplicial complex.25

In each of the models we study the limiting proportion of vertices in the structure26

with a given degree, showing that, in general, this limit exists in probability, and behaves27

like a type of generalised geometric distribution. In the evolving tree models, we actually28

study a more general quantity: the empirical measures associated with the number of vertices29

with a given degree and weight. With regards to this quantity, when normalised by the size30

of the network, we also show that the limit exists and belongs to a certain universal class.31

Depending on various assumptions, we prove that for any measurable set, the measure of that32

set converges either almost surely or in probability to its measure under this deterministic33

limit.34
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In the evolving tree models, we also study another quantity: the empirical measure35

corresponding to the proportion of edges in the structure with endpoint having a given36

weight. We show that, when normalised by the number of edges in the tree, under certain37

assumptions, this quantity also converges to a deterministic limiting measure, in the sense38

that for any measurable set, the measure of that set converges either almost surely. However,39

when the trees take certain forms, which we call the GPAF-tree, or the PANI-tree, we40

show that interesting, non-trivial behaviour can emerge when these assumptions fail. In41

particular, with regards to the GPAF-tree, we show that this model can exhibit condensation42

where a positive proportion of edges accumulate around vertices with weight that maximises43

the reinforcement of their fitness, or, more drastically, have a degenerate limiting degree44

distribution where the entire proportion of edges accumulate around these vertices. We also45

show that the condensation phenomenon extends to the more general PANI-tree model. As46

we will show, the latter two models have limiting distribution of degrees that behaves like47

an ‘averaged’ power law, which may be of interest when considering them as toy models for48

the evolution of complex networks.49
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Chapter One169

Introduction170

This chapter is an important foundational chapter in the reading of this thesis. In Sec-171

tion 1.1, we start with some motivation behind the areas of study this thesis concerns,172

namely, the probabilistic analysis of evolving inhomogeneous structures inspired by complex173

networks found in many applications. This section will be a rather gentle reading, and in174

Section 1.1.1 we include a number of pictures as illustrative examples. Section 1.2 may be175

regarded as a general review of the mathematical, and some of the physics literature related176

to this area. In Section 1.2, we start with some useful definitions in Section 1.2.1, review177

the well known preferential attachment and other recursive models in Section 1.2.2, review178

some evolving inhomogeneous models in Section 1.2.3 and, finally, some ‘higher dimensional’179

models in Section 1.2.4. Then, in Section 1.3, we describe the models we introduce in this180

thesis, with helpful illustrations. In Section 1.3.1, we introduce some notation used through-181

out the thesis, the model of generalised recursive trees with fitnesses in Section 1.3.2, the182

model of preferential attachment with neighbourhood influence in Section 1.3.3 and finally,183

the dynamical models of random simplicial complexes in Section 1.3.4. Next, in Section 1.4184

we describe the major quantities of interest in this thesis, namely, degree distributions in185

Section 1.4.1 and edge distributions in Section 1.4.2. Finally, in Section 2.1.2, we provide an186

general overview of the results of this thesis, stated and proved in the subsequent chapters.187
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Introduction

In general, in this thesis, we will assume the reader has a good understanding of188

probability theory, including, for example, theory related to ‘couplings’, Markov chains and189

martingales, and a rudimentary, minimal understanding of graph theory. This chapter, and190

especially Section 1.1, however, are quite mild. The subsequent chapters in this thesis are191

ordered by increasing difficulty, and the interested reader may wish to skip some of the more192

technical arguments in Chapter 4 upon first reading.193

1.1 Introduction to Complex Networks194

Networks are ubiquitous structures, found almost everywhere in nature and society. When195

used to model complex systems, networks find applications in areas as diverse as computer196

science, biology and sociology. Advances in science over the last 30 years have led to an197

increased understanding of the properties of these networks, see, for example, [66, 77, 16, 67].198

These advances have shown that while these networks may come from diverse settings, they199

possess typical, non-trivial features. In particular, they are generally large, of the order200

of billions of nodes; yet sparse, which means that the number of links in the network is201

at most the same order of magnitude as the size of the network. They are also dynamic,202

which refers to the fact that the nodes and links in a network are constantly evolving. In203

addition, networks are known to exhibit a small world phenomenon. This phenomenon, first204

popularised by Milgram in [60], refers to the fact that, despite the large size of the network205

and the fact that it is sparse, the typical distance between nodes is generally very ‘small’.206

Finally, these networks are known to display scale-free degree distributions. The degree of207

a node is the number of links incident to it, and this latter property refers to the fact that208

the proportion of nodes of degree k in the network tends to scale like k´α for some α ą 0;209

often with α between 2 and 3. This latter property means that, if one plots the logarithm of210

number of nodes against the logarithm of the degree, one obtains a linear plot, as illustrated211

2



Introduction

in Figure 1.1 below. Indeed, if Nk denotes the number of nodes with degree k, then if212

Nk « k´α,213

logNk « ´α log k,214

which results in a linear relationship.215

Scale-Free Degree Distributions

Figure 1.1: This plot, from a well known paper [35], is a log-log plot of

number of nodes against their degree in a sub-network of the internet

known as an ‘autonomous system’. The data seems to indicate a power

law relationship.

3



Introduction

1.1.1 Illustrative Examples of Complex Networks216

Below are some illustrative examples of complex networks. The first example relates to the217

‘blogosphere’, consisting of nodes from the internet corresponding to ‘blogs’.218

The Blogosphere

Figure 1.2: This illustration shows the links in the network associated with

the blogosphere, where two nodes, associated with blogs, are linked one

blog refers to the other. Taken from https://datamining.typepad.com/

gallery/blog-map-gallery.htm - [42].
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Introduction

Our next examples are ‘protein-protein interaction’ network, which are common net-219

works found in biological applications. In these networks, the nodes represent proteins and220

two nodes are connected by a link if their respective proteins take part in a common chemical221

reaction.222

Protein-Protein Interaction Network: Yeast Cell

Figure 1.3: This illustration shows the nodes and links in the protein-

protein interaction network associated with a yeast cell. Taken from [46].

5
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Protein-Protein Interaction Network: Human Body

Figure 1.4: This illustration shows the nodes and links in the protein-

protein interaction network associated with the human body. Taken

from [71].

1.2 Generative Models of Evolving Complex Networks223

There are a number of existing models in the literature that aim to generate networks with224

similar properties to the complex networks described in the previous section. The benefit225

of these models is that they offer insights into the possible mechanisms that lead to the226

6
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emergence of some of the particular features associated with complex networks, which may227

in turn yield a deeper understanding of the way these networks behave. In this section228

we describe some of these models and some of the mathematical results associated with229

them. First, however, we provide a brief overview of definitions related to trees, graphs and230

simplicial complexes, as these structures will be the main object of study in this thesis.231

1.2.1 Trees, Graphs and Simplicial Complexes232

We first recall the definitions of graphs and directed graphs.233

Definition 1.2.1. A graph G “ pV,Eq is an ordered pair, where V is a finite set of vertices,234

and E is a finite set of pairs tv, v1u Ď V . A directed graph, or digraph D is an ordered pair235

pV,Aq, where V is a finite set of vertices and A is a set of directed edges or arcs consisting236

of ordered pairs of vertices in V .237

Simplicial complexes are defined somewhat similarly:238

Definition 1.2.2. An abstract simplicial complex K “ pV, F q, where V is a finite set of239

vertices and F is a family of subsets of V , called faces, that is downwards closed, which240

means that for any σ P F , if σ1 Ď σ then σ1 P F . A vertex set V together with an arbitrary241

family F may be turned into a simplicial complex in the natural way by taking the downwards242

closure, that is, adding the minimal number of subsets to F to make F downwards closed.243

Often, to simplify notation with graphs (or digraphs), we simply write G for a graph244

pV,Eq, and to specify a particular edge, we write e P G rather than e P E. We apply a similar245

convention with simplicial complexes, so that, to specify a face σ in a simplicial complex, we246

write σ P K. Note also that there is a natural simplicial complex obtained from a graph, by247

choosing the set of faces to be the downwards closure of the set of edges corresponding to248

the graph.249
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Definition 1.2.3. Given a face σ in a simplicial complex K, we say σ has dimension s if250

it has cardinality s ` 1. We also call it an s-face or an s-simplex. For s P N Y t0,´1u, we251

denote by Kpsq the subset of K consisting of all its s-faces. The dimension of K is defined to252

be the maximum s such that Kpsq is non-empty. If K “ ∅ we say it has dimension ´1.253

Just as one often interprets, or visualises, a graph geometrically as a collection of254

‘dots’, representing vertices, connected by ‘lines’ representing edges, it is often useful to255

identify simplicial complexes with their geometric realisation, which means that we view a256

d-face as the convex hull of d` 1 points in Rd. Thus, a 0-face may be interpreted as a point,257

a 1-face as a line, a 2-face as a triangle and a 3-face as a tetrahedron. This is also the reason258

for the use of the term ‘dimension’.259

Simplices in Dimensions 0, 1, 2 and 3.

Figure 1.5: This illustration shows how one may interpret the faces of

dimension 0, 1, 2 and 3 in a simplicial complex.

Finally, we recall the important concepts of neighbourhood and degree.260

Definition 1.2.4. Given a vertex v in a graph G, the neighbourhood of v in G is the set261

N pv,Gq :“ tv1 P G : tv, v1u P Gu. Likewise, if D is a directed graph, given a vertex v P D,262

8
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the out-neighbourhood of v in D is the set N`pv,Dq :“ tv1 P D : pv, v1q P Du, and similarly263

the in-neighbourhood of v in D is the set N´pv,Dq :“ tv1 P D : pv1, vq P Du. Finally, the264

s-neighbourhood of a vertex v in a simplicial complex K is the set N psqpv,Kq :“ tσ P K :265

σ Y tvu P Kps`1qu.266

Thus, the 0-neighbourhood of a vertex v in a simplicial complex K coincides with the267

neighbourhood of the vertex v in the graph underlying the simplicial complex. We call this268

graph the skeleton graph associated with the complex. Finally, the degree corresponds to269

the size of the relevant neighbourhood:270

Definition 1.2.5. Given a vertex v in a graph G, the degree of v in G is degpv,Gq :“271

|N pv,Gq|. Likewise, for a vertex v in a directed graph D, the out-degree of v in D is272

deg`pv,Dq :“ |N`pv,Dq| and similarly, the in-degree of v is deg´pv,Dq :“ |N´pv,Dq|.273

Finally, the s-degree of a vertex v in a simplicial complex K is degpsqpv,Kq :“
ˇ

ˇN psqpv,Kq
ˇ

ˇ.274

For brevity, we also write degpv,Kq :“ degp0q pv,Kq.275

1.2.2 Preferential Attachment and other Recursive Models276

A common framework for generating graphs that behave like complex networks is to consider277

evolving models where vertices arrive one at a time, and connect to existing vertices in the278

graph. These models are inherently dynamic, by construction, and if the number of edges279

added at each time-step is uniformly bounded from above, will also produce sparse graphs.280

In addition, in their seminal paper [8], Albert and Barabási, observed that the properties of281

being scale-free and having a small-world phenomenon emerged naturally in a model where282

vertices arrive one at a time, and display a “preference” to popular vertices - more precisely,283

connect to existing vertices with probability proportional to their degree. This model was284

later studied rigorously in [19, 62]. One of the main implications of this research is that285

it offers a possible explanation as to why complex networks display the features that they286

9



Introduction

do: it is the result of the ‘rich-gets-richer’ postulate, that is, the simple hypothesis that287

more popular nodes are more likely to acquire more neighbours, and thus become even more288

popular over time. Indeed this so called “preferential attachment” model has been applied289

in other contexts, outside the generation of networks, to explain the emergence of power law290

distributions: first by Yule in the context of evolution in [79] and by Simon in [74], and Price291

in [27], who both observed the these distributions in a variety of contexts.292

An example of the preferential attachment model, is that of an evolving tree, where293

one vertex arrives at a time and connects to a single existing vertex with probability pro-294

portional to its degree. This is a particular example of a recursive tree model, where an295

existing vertex is chosen according to an arbitrary probability distribution. Recursive trees296

generated in this manner have attracted widespread study, motivated by, for example, their297

applications to the evolution of languages [64], the analysis of algorithms [56] and the study298

of complex networks, see, for example, [78, Chapter 8.1]. Other applications include mod-299

elling the spread of epidemics, pyramid schemes and constructing family trees of ancient300

manuscripts (e.g. [33, page 14]). Whilst recursive tree models may display an inherent de-301

ficiency, as real world networks are hardly ever trees, they are often easier to analyse than302

more general evolving graph models. In addition, these models may be extended so that303

newly arriving vertices make m ě 1 new connections. One way of doing this is to consider304

m copies of the new vertex each throwing one new connection to the existing network and305

then identifying them as one vertex, hence forming a multigraph. See Chapter 8 in [77] for306

a detailed description.307

In the context of recursive trees, the preferential attachment model has been studied308

many times, under various guises: under the name nonuniform recursive trees by Szymański309

in [76], random plane oriented recursive trees in [55, 57], random heap ordered recursive310

trees [24] and scale-free trees [19, 75, 18]. Random ordered recursive trees, or plane-oriented311

recursive trees, are so named because the process stopped after n vertices arrive is distributed312
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like a tree chosen at random from the set of rooted labelled trees on n vertices embedded in313

the plane where descendants of a node are ordered from left to right. This model has been314

extended to a number of interesting generalisations of the classical preferential attachment315

model, including the case that vertices are chosen according to a super-linear function of316

their degree in [68], or indeed any positive function of the degree [72], assuming a certain317

technical condition is satisfied. In [41], the latter model is generalised to arbitrary non-318

negative functions of the degree and is referred to as generalised preferential attachment.319

1.2.3 Inhomogeneous Models320

Models Exhibiting Condensation321

Whilst the preferential attachment model is successful in reproducing the properties of com-322

plex networks, it is generally the earlier arriving vertices that are more likely to have higher323

degrees, since they have more time to acquire new neighbours, which in turn reinforces the324

growth of their degree. In other words, they have extra time to become ‘rich’ which allows325

them to acquire more ‘wealth’. Indeed, a result of [30] shows that, from a certain time point326

onward, the vertex with maximal degree remains fixed in this model. Whilst this may be a327

realistic assumption in the context of the distribution of wealth in the world, in the context328

real world models it is often newly arriving nodes that quickly acquire a large number of329

links, for example, in the world wide web. Motivated by this, in [11], Bianconi and Barabási330

introduced their well-known inhomogeneous model, sometimes called preferential attachment331

with multiplicative fitness. There, vertices arrive one at a time, and, upon arrival, each ver-332

tex is equipped with a random weight sampled independently from a fixed distribution. At333

each time-step, the newly arriving vertex u connects to an existing vertex v with probability334

proportional to the product of the weight of v and its degree. Thus, the random weight335

may be interpreted as a measure of the intrinsic “attractiveness” of a vertex. Bianconi and336
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Barabási postulated the emergence of an interesting dichotomy in this model which they337

called Bose-Einstein condensation, motivated by similar phenomena in statistical physics.338

This condensation phenomenon refers to the fact that under a certain critical con-339

dition on the weight distribution, a positive proportion of all the edges in tree accumulate340

around vertices of maximum weight. This dichotomy was first proved rigorously by Borgs341

et al. in [20] in the case that the weight distribution is supported on an interval, and abso-342

lutely continuous with respect to Lebesgue measure. However, they note that other classes of343

weight distribution are possible. They also showed that in this model, the degree distribution344

of vertices with a given weight follows an ‘averaged’ power law, with exponent depending on345

the weights of the vertex. A similar condensation phenomenon was observed in a variant of346

this model by Dereich in [28], and later, in a more general, robust setting, (in the sense that347

the results apply to wide variety of model specifications) in [31].348

The condensation phenomenon observed by Bianconi and Barabási is closely related349

to the condensation phenomenon observed in other models. Indeed, it was first studied in350

a similar, yet simpler manner, in the context of evolution by Kingman in [51]. In [29], the351

authors studied condensation in models of reinforced branching processes that generalises a352

branching process associated with the Bianconi-Barabási model, showing that the condensa-353

tion is non-extensive: whilst a positive proportion of edges in the family tree of the process354

accumulate around vertices of maximal weight, the maximal degree of the tree remains sub-355

linear. Thus, this condensation phenomenon seems to be ubiquitous, and associated with356

other models outside the arena of complex networks.357

Inhomogeneous models have also been studied in the context of models with choice358

in [38, 40], with the appearance of more fascinating condensation phenomena. In this model359

vertices are equipped with weights, at each time step r vertices are chosen with probability360

proportional to their degree, and out of these r vertices, a random vertex is chosen as the361
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neighbour of the new-coming vertex. Here, the probability distribution by which the random362

vertex is chose, may depend on the weights of the vertices. In [38], the authors showed that,363

in the case that the maximal weight vertex is chosen, extensive condensation may occur,364

that is, under a critical condition on the weight distribution, a positive proportion of edges365

accumulate around the vertex of maximal degree. In addition, in [40], the authors showed366

that in certain cases, with random choice rules, the distribution of edges with endpoint having367

certain weight converges weakly to a random measure where multiple condensation can occur368

with positive probability, that is, positive proportions of edges accumulate around vertices369

of multiple weights. In addition, they showed that multiple condensation cannot occur370

when deterministic choice rules are used, and there exist phase transitions for condensation371

occurring with probability 0 or 1.372

Other Inhomogeneous Recursive Models373

There are a number of other interesting variations of inhomogeneous recursive tree models.374

In the preferential attachment with additive fitness introduced by Ergün and Rodgers in375

[34], newly arriving vertices now connect to existing vertices with probability proportional376

to the sum of their weight and degree, whilst in the weighted recursive tree introduced in377

[21], newly arriving vertices now connect to existing vertices with probability proportional to378

just their weight. In [73], Sénizergues showed that the preferential attachment with additive379

fitness with deterministic weights, is equal in distribution to a particular weighted random380

recursive tree with random weights, and used this to derive results related to a number of381

properties of both models, such as the degree sequence and the height. Moreover, recently382

in [69], Pain and Sénizergues derived sharper estimates for the heights of both models, in the383

case of random, identically distributed weights. Finally, in [54, 53], Lodewijks and Ortgiese384

uncovered an interesting dichotomy in the maximal degrees of these models, in a robust,385

evolving graph setting.386
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In [47], Jordan studies a model of preferential attachment where vertices belong to387

two types, and new vertices connect to one according to an additive fitness mechanism,388

and the other via a multiplicative fitness. Geometric models have also been considered in389

[48]: here, new vertices are equipped with a location in a metric space, and connect to390

existing vertices with probability proportional to the product of their degree, and a positive391

function of the distance between them. This positive function is known as an attractiveness392

function. In [48], the authors demonstrate a dichotomy, depending on the attractiveness393

function, between behaviour according to the model of Albert and Barabási, and a well394

known geometric model known as the on line nearest neighbour model.395

1.2.4 Higher Dimensional Preferential Attachment Mechanisms396

All the previously described models are 1-dimensional in the sense that newly arriving ver-397

tices are attached to single vertices. Our motivation is to consider attachment mechanisms398

in which newly arriving vertices join groups of vertices, where the attachment takes into399

account intrinsic features of a group of vertices, and thus encodes more complexity.400

Simplicial complexes are a natural choice for incorporating this higher dimensional401

complexity at a local level. Furthermore, complex networks appearing in applications are402

typically locally dense: that is, although they form sparse graphs, the neighbourhood of a403

typical vertex is dense. This is usually measured by the clustering coefficient. The classic404

preferential attachment models do not satisfy this, as the graph that is formed is tree-405

like within a short distance from a randomly chosen vertex. However, this ‘local density’406

arises naturally from the fact that simplicial complexes are downwards closed. Hence, a407

preferential attachment model which involves higher order interactions encapsulates these408

features naturally. Additionally, (random) simplicial complexes have already been used in409

applications such as topological data analysis (see, for example, [22]), and recent theories of410
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quantum gravity (see, for example, [1]).411

One model that realises higher order interactions is the Random Apollonian Network.412

It was first introduced in [4] and independently in [32] as a model for complex networks and413

was subsequently extended by Zhang et al. [80, 81]. Here, in dimension d, we begin with a414

d-simplex, all of whose pd´ 1q-dimensional faces are active. In each step, an active pd´ 1q-415

dimensional face is selected uniformly at random and d new pd´ 1q-faces are formed by the416

union of a new-coming vertex and each subset of the selected face of size d´1. Subsequently,417

the selected pd ´ 1q-dimensional face is deactivated, so that the number of active pd ´ 1q-418

faces in the complex increases by d ´ 1 at each step. As each of the d new pd ´ 1q-faces,419

together with the selected face σ form a d-face, we can interpret this step geometrically as420

a d-face being ‘glued’ onto the face σ, with the set of active faces being the boundary of the421

complex see Figure 4.1, in Section 1.3 below. Note that, when a node v enters the network,422

its degree is equal to d and the number of active faces containing it is equal to d. Moreover,423

every time an active face containing v is selected, the degree of v increases by one and the424

number of active faces containing v increases by d ´ 2. Therefore, the number of active425

faces containing a given vertex v is pd ´ 2q degpvq ´ dpd ´ 3q. Thus, if d ą 2 the number426

of active faces containing a vertex is proportional to its degree, and hence this model gives427

rise to a preferential attachment mechanism. In [52] and independently in [39], the authors428

determined that the degree distribution of this model for d ą 2, gives rise to a power law429

with exponent τ “ 2d´3
d´2

“ 2 ` 1
d´2

.1 For d “ 3 the same model has been studied under430

the name random stack-triangulations by Albenque and Marckert in [2], where they proved431

that the sequence of complexes with graph distance metric rescaled by
?
n considered as a432

compact metric space converges in the Gromov-Hausdorff topology to the continuum random433

tree of Aldous [3].434

1Note that often in the literature surrounding Apollonian networks, rather than using the dimension of

the initial simplex, authors use the number of vertices in an ‘active’ face as the parameter of the model.

Thus the Apollonian network with parameter d is the same as the Apollonian network in dimension d´ 1.
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Inhomogeneous Higher Dimensional Evolving Models435

In the Apollonian network the choice among the active pd´1q-faces is uniform. In particular,436

there is no preferential attachment mechanism directly associated with the evolution of the437

vertices. This motivates the study of mechanisms in which these high-dimensional sub-438

structures are inhomogeneous and have some intrinsic fitness which is a function of the439

weights of their members.440

Specific implementations of this idea were introduced by Bianconi, Rahmede, and441

other co-authors motivated by applications in physics ([12, 15, 25, 13, 14, 26]). For example,442

random triangulations have been considered in the context of quantum gravity [1]. The443

model of Complex Quantum Network Manifolds (CQNMs) described in [12] in dimension444

d ą 1 can be viewed as a generalisation of the Random Apollonian Network, where vertices445

are equipped with independent, identically distributed (i.i.d.) weights, called energies in this446

context, and each pd´ 1q-face σ of the evolving d-dimensional simplicial complex has energy447

εσ given by the sum of the energies of its vertices. The simplicial complex evolves in the448

same way as the Random Apollonian network, with the only difference being that at each449

time-step, a new vertex selects an active pd´1q-face σ with probability proportional to e´βεσ450

instead of uniformly at random; where β ě 0 is a fixed constant, usually interpreted as the451

“inverse temperature”. In [12], the authors argue that when d “ 2 the underlying graph has452

degree distribution with exponential tail whilst, when d ě 3 the degree distribution follows453

a power law with exponent that depends on d, β and the distribution of the weights. In this454

thesis, we verify a rigorous version of this result when the energies are bounded (see Section455

4.2.3).456
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Figure 1.6: This illustration shows the different behaviour of Complex

Quantum Network Manifolds in dimension 2 vs dimension 3, observed by

the authors of [12]. In dimension 3, we obtain a model with scale-free

degree distributions, reminiscent of complex networks in real world appli-

cations, whilst in dimension 2 we obtain a model with degree distributions

having exponential tails. Image sourced from [12].

In [13], Bianconi and Rahmede introduce a more general model called the network457

geometry with flavour (NGFs). The network geometry with flavour, in dimension d and458

flavour s P t´1, 0, 1u proceeds as follows. As before, vertices are equipped with i.i.d. energies459

and each pd´1q-face σ of the evolving d-dimensional simplicial complex has energy εσ which460

is equal to the sum of the energies of its vertices. At each time-step, a new vertex selects461

a pd ´ 1q-face σ with probability proportional to e´βεσ p1` s degd pσq ´ sq, where β ě 0 is462

a fixed constant. In the case s “ ´1, Bianconi and Rahmede [12] argue that when d “ 2463
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the underlying skeleton graph has degree distribution with exponential tail, whilst when464

d ě 3 the degree distribution obeys a power law, with an exponent that depends on d as465

well as on β and the distribution of the weights. Moreover, in [15], Bianconi, Rahmede and466

Wu argue that for d “ 2, if s “ ´1 the underlying skeleton graph has degree distribution467

with exponential tail, whilst if s “ 0, the underlying skeleton graph has power law tails.468

We will prove weaker versions of both these results rigorously in this thesis, in the sense469

that the degree distribution has a tail bounded from above and below by a power law. See470

Section 4.2.3 for more details.471

1.3 Our Models: Evolving Inhomogeneous Random Struc-472

tures473

In this thesis, we study evolving, inhomogeneous models that are closely related to many of474

the models studied in Section 1.2. In this section we provide a formal description of each of475

these models, and indicate the chapters associated with each model. We first provide a brief476

overview of the notation used in this thesis. Although the notation we introduce is closely477

related across each of the models, some notation varies depending on the context; however,478

this should be clear based on which model the notation relates. Subsequently we provide an479

overview of the main types of results we will prove in this thesis in Section 1.4.480

1.3.1 Notation Applied Throughout the Thesis481

In this thesis we generally set N0 :“ N Y t0u and R` :“ r0,8q. In addition, for s P N, we482

denote by rss the set t1, . . . , su. In addition, for ` P N, we denote by rss` the `-fold Cartesian483

product rss ˆ ¨ ¨ ¨ ˆ rss. Given a set S Ă S, we denote by Sc the complement of this set, and,484
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if S has a topology made clear from context, we denote by S the topological closure of S.485

Finally, given a set S, we denote by 1Spxq the indicator function associated with this set,486

so that 1Spxq “ 1 if x P S and 0 otherwise. Moreover, if 1Spxq is a random variable on a487

probability space pΩ,F,Pq, we omit the dependence on x P Ω, and simply write 1S.488

Weights, Weight Distribution, Support, Essential Supremum489

In this thesis we will consider inhomogeneous models where vertices have weights assigned to490

them. In general, these weights take values in R` and are sampled from a fixed probability491

measure µ. We generally denote by W a generic random variable sampled from µ.492

In general, we assume that the space R` is equipped with its Borel sigma algebra B.493

Often it will be the case that we need to deal with weights that take bounded values. We494

denote by Supp pµq the support of the measure µ, that is the set of all points x in R`, for495

whom every open neighbourhood Ox has positive measure496

Supp pµq :“ tx P R` : µpOxq ą 0, for all open sets Ox such that x P Oxu .497

In certain cases, we will need to assume that the support is bounded, so that Supp pµq Ď498

r0, w˚s, where w˚ :“ sup pSupp pµqq. Moreover, for a measurable function g : R` Ñ R` we499

define ess sup pgq such that500

ess sup pgq :“ inf ta P R` : µ ptx : gpxq ą auq “ 0u .

501

1.3.2 Generalised Recursive Trees with Fitness502

Our first model, which we study in Chapter 2 is a unified model that encompasses most of503

the models described in Section 1.2.2 and Section 1.2.3 above.504
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In order to define the model, we first require a probability measure µ supported on505

R` and a fitness function, which is a measurable function f : N0 ˆ R` Ñ R`. We consider506

evolving sequences of weighted oriented trees T :“ pTnqnPN0
; these are trees with directed507

edges, where vertices have real valued weights assigned to them. The model also has an508

additional parameter ` P N. We start with an initial tree T0 consisting of a single vertex 0509

with weight W0 sampled from µ. To ensure that the evolution of the model is well-defined,510

we assume fp0,W0q ą 0 almost surely. Then, we define Tn`1 recursively as follows:511

(i) Sample a vertex j from Tn with probability512

fpdeg`pj, Tnq{`,Wjq

Zn
,513

where deg`pj, Tnq denotes the out-degree of the vertex j in the oriented tree Tn and514

Zn :“
ř`n
j“0 fpdeg`pj, Tnq{`,Wjq is the partition function associated with the process.515

(ii) Introduce ` new vertices n ` 1, n ` 2, . . . , n ` ` with weights Wn`1,Wn`2, . . . ,Wn``516

sampled independently from µ and the directed edges pj, n` 1q, pj, n` 2q, . . . , pj, n` `q517

oriented towards the newly arriving vertices. We say that j is the parent of the new-518

coming vertices, and that the new-coming vertices are its offspring.519

Note that, since ` new vertices are connected to a parent at each time-step, for any vertex i520

in the tree, ` divides the out-degree of i. Moreover, the evolution of the out-degree of vertex i521

with weight Wi is determined by the values pfpj,WiqqjPN0 . In general, when the distribution522

µ, fitness function f and ` are specified, we refer to this model as a pµ, f, `q-recursive tree523

with independent fitnesses, often abbreviated as a “pµ, f, `q -RIF tree” for brevity. Here524

‘independent fitnesses’ refers to the fact that the fitness associated with a given vertex does525

not depend on the weights of its neighbours, in contrast to, for example, the other models526

of preferential attachment with neighbourhood influence and dynamical simplicial complexes527

we will study. The following figure illustrates a possible evolution of this model over the first528

three steps.529
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A Sample Evolution of the pµ, f, `q -RIF tree with ` “ 2530

0

fp0,W0q

(a): At time 0, there is only one vertex with

weight W0 and fitness fp0,W0q ą 0, so this

vertex is selected in the first step.

0

fp1,W0q

1fp0,W1q 2 fp0,W2q

(b) This vertex connects to two new neigh-

bours 1 and 2 with weights W1, and W2 and

fitnesses fp0,W1q and fp0,W2q. The fitness

associated with 0 is now updated to fp1,W0q.

0

fp1,W0q

1fp0,W1q 2 fp0,W2q

(c) A vertex is selected with probability pro-

portional to its fitness function, and note that

it now may be the case that fp1,W0q “ 0. In

this case, vertex 1 is selected.

0

fp1,W0q

1fp1,W1q 2 fp0,W2q

3fp0,W3q 4

fp0,W4q

(d) Vertex 1 produces offspring 3 and 4, and

its fitness is updated accordingly.

0

fp1,W0q

1fp1,W1q 2 fp0,W2q

3fp0,W3q 4 fp0,W4q

(e) Again, a vertex is sampled with probability

proportional to its fitness. Here, vertex 1 is

selected.

0

fp1,W0q

1fp2,W1q 2 fp0,W2q

3fp0,W3q 4 fp0,W4q

5fp0,W5q 6 fp0,W6q

(f) Vertex 1 produces offspring 5 and 6, and

its fitness is adjusted accordingly.

Figure 1.7: A sample evolution of the first three steps of the pµ, f, `q -RIF tree when ` “ 2.

Steps (b), (d) and (f) illustrate the trees T1, T2 and T3 respectively.
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1.3.3 Preferential Attachment Trees with Neighbourhood Influence531

A particular case of the pµ, f, `q -RIF tree introduced in Section 1.3.2 is the case that f532

is affine, of the form gpW qi ` hpW q, where g and h are measurable functions. As we will533

show in Section 2.3 in Chapter 2, this particular case of the model displays many interest-534

ing properties, including a condensation phenomenon. We call this generalised preferential535

attachment with fitness, or GPAF-tree.536

This motivates us to consider a ‘higher dimensional’ form of this model, which we537

call preferential attachment tree with neighbourhood influence, or PANI-tree, where the538

attachment mechanism considers not only the weight of a given vertex, but also the weights539

of its neighbours. For brevity, in this model we only consider the case where only a single540

vertex arrives at each time-step ; in the context of the pµ, f, `q -RIF tree this corresponds541

to the case that ` “ 1.542

As in Section 1.3.2, we consider a model of weighted directed trees pTnqnPN0 . Let T543

denote the set of all such weighted trees, and given a tree T P T and a vertex j P T , (abusing544

the notation for the out-neighbourhood slightly) let N`pj, T q be the weighted tree consisting545

of j and all of its out-neighbours. In order to define the model, we will require a probability546

measure µ, which is supported on a subset of an interval r0, w˚s, for some w˚ ą 0 and a547

fitness function f : TÑ R`. One may interpret this as an analogue of the fitness function in548

Section 1.3.2 that may take into account the weights of neighbours of a given vertex. In the549

model we consider, we start with an initial tree T0 consisting of a single vertex with random550

weight W0 sampled from µ. Then, given Ti, the model proceeds recursively as follows:551

(i) Sample a vertex j from Ti with probability fpN`pj,Tiqq
Zi , where Zi :“

ři
k“0 fpN`pk, Tiqq552

is the partition function associated with the process.553

(ii) Form Ti`1 by adding the edge pj, i`1q, and assigning vertex i`1 weight Wi`1 sampled554
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independently from µ.555

In this thesis, with regards to this model, we define f so that556

fpN`
pv, T qq “ hpWvq `

ÿ

pv,uqPT

gpWv,Wuq, (1.1)557

where h : r0, w˚s Ñ r0,8q and g : r0, w˚s ˆ r0, w˚s Ñ r0,8q are bounded and measurable.558

To ensure that the evolution of the model is well-defined, in all of our results we condition559

on W0 satisfying hpW0q ą 0, which we assume is an event that has positive probability.560

Remark 1.3.1. The form of the fitness function in (1.1) is sufficiently general to encompass561

some existing models. In the case where g and h are a single constant, we obtain the classic562

preferential attachment tree of Albert and Barabási. The case gpx, yq “ hpxq “ x is the563

Bianconi-Barabási model, whilst the case gpx, yq ” 1, hpxq “ x is the preferential attachment564

tree with additive fitness. Finally, the case gpx, yq “ g1pxq, for some bounded measurable565

function of a single variable is a particular case of the pµ, f, `q -RIF tree we call the GPAF-566

tree, which is studied in Section 2.3 of Chapter 2.567

Remark 1.3.2. As in the pµ, f, `q -RIF tree, we may also analyse this model when ` vertices568

connect to the selected vertex during each time-step. However, for brevity, we restrict our569

analysis to the case that ` “ 1.570

We illustrate a possible evolution of this model below.571

23



Introduction

A Sample Evolution of the PANI-Tree572

0

hpW0q

(a): At time 0, there is only one vertex with

weight W0 and fitness hpW0q ą 0, so this ver-

tex is selected in the first step.

0

hpW0q ` gpW0,W1q

1

hpW1q

(b) This vertex connects to a new neigh-

bours 1 with weight W1 and fitness hpW1q.

The fitness associated with 0 is now in-

creased by gpW0,W1q; note that, unlike the

pµ, f, `q -RIF tree illustrated in Figure 1.7,

this change also depends on W1.

0

hpW0q ` gpW0,W1q

1

hpW1q

(c) A vertex is selected with probability pro-

portional to its fitness function; note that

either vertex may be selected with positive

probability. In this case, vertex 0 is selected.

0

hpW0q ` gpW0,W1q ` gpW0,W2q

1

hpW1q

2

hpW2q

(d) Vertex 0 connects to the new vertex 2, and

its fitness is updated accordingly.

0

hpW0q ` gpW0,W1q ` gpW0,W2q

1

hpW1q

2

hpW2q

(e) Again, a vertex is sampled with probability

proportional to its fitness. Here, vertex 2 is

selected.

0

hpW0q ` gpW0,W1q ` gpW0,W2q

1

hpW1q

2 hpW2q ` gpW2,W3q

3 hpW3q

(f) Vertex 2 connects to 3, and its fitness is

adjusted accordingly.

Figure 1.8: A sample evolution of the first three steps of the preferential attachment model

with local dependencies. Steps (b), (d) and (f) illustrate the trees T1, T2 and T3 respectively.
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1.3.4 Dynamical Models for Random Simplicial Complexes573

The final model we consider in this thesis involves even more dependence between the evo-574

lution of vertices and their neighbours: we consider a sequences of simplicial complexes575

pKnqně0 of fixed parameter d ě 0. In this case, again we assume that the weight distribution576

µ is supported on a subset of an interval r0, w˚s, and, as an additional parameter we have a577

fitness function, which in this context is a positive, symmetric function f : r0, w˚sd Ñ R`.578

For all n ě 0, Kn`1 is obtained by adding one vertex labelled n` 1 to Kn and assigning that579

vertex a random weight sampled independently according to µ.580

At each time-step n, a pd´1q-face σ is sampled from the complex Kn with probability581

proportional to its fitness fpσq, which is the image by f of the vector of the weights of the582

vertices that belong to σ (as the function f is symmetric, this image does not depend on583

the order of the weights in the vector). Then a new vertex n` 1 arrives, with an associated584

independent weightWn`1, and subdivides the selected face, as illustrated in Figure 1.9 below.585

In Model A, the selected face σ remains in the complex, whilst in Model B the selected face586

is removed from the complex.587
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A Sample Evolution of the Dynamical Simplex Model in Dimension 3588

-2

-1

0

(a): At time 0 we begin with an arbitrary

pd ´ 1q-dimensional simplicial complex with

vertices labelled by non-positive integers. In

this case, we have a 2-simplex.

-2

-1

0

(b) A pd´ 1q-face σ is sampled with probabil-

ity proportional to its fitness fpσq, a positive

function of the weights of the vertices in σ. In

this case, there is only one 2-face, t´2,´1, 0u,

which must be selected.

-2

-1

0

1

(c) A new coming vertex 1 arrives, and for each subset σ1 of 2 of the selected face σ “ t´2,´1, 0u,

we add the face σ1 Y t1u. In Model B, the selected face is also removed from the complex. We

may interpret this geometrically as a 3-dimensional tetrahedron being ‘glued’ onto the 2-face; thus

in Model B we may associate the set of faces in the complex with the boundary of a 3-dimensional

simplex.
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-2

-1

0

1

(d) Now, the face t´2, 0, 1u is selected.

-2

-1

0

1

2

(e) A new-coming vertex 2 arrives, and again

subdivides the selected face.

-2

-1

0

1

2

(f) Next, the fact t´2,´1, 1u is selected.

-2

-1

0

1

2

3

(g) This face is subdivided by the vertex 3.

Figure 1.9: A sample evolution of the dynamical simplex model with parameter 3. This

particular evolution may be an instance of either Model A or Model B.

1.4 Important Quantities of Interest in this Thesis589

Despite the variations in each of the models we have described, we will see in this thesis that590

their recursive nature means that each of these models are amenable to similar techniques.591
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In general in this thesis we will be interested in two main quantities: the distribution of the592

proportion of nodes with a given degree and weight and the distribution of the proportion of593

edges with endpoint having a given weight. As we will see, the prior quantity seem to have594

a universal limiting behaviour, described by pλkp¨q defined in (1.4), below.595

1.4.1 Degree Distributions596

The first main quantity we will be concerned with in this thesis relates to degree distributions.597

In general in this thesis, we denote by Nkpnq the number of vertices in the respective model598

at time n that have been selected k times in the evolution of this model, and Nkpn, ¨q the599

empirical measure corresponding to the number in the respective model at time n that have600

been selected k times with a given weight. We will also use the notation Někpnq and Někpn, ¨q601

to denote the number of vertices selected at least k times, and the number of vertices with602

a given weight selected at least k times, respectively.603

More precisely,604

1. With regards to the pµ, f, `q -RIF tree, given a Borel set B Ď R`, the quantity605

Nkpn,Bq denotes the number of vertices v in the tree Tn with out-degree k` and weight606

Wv P B, that is,607

Nkpn,Bq :“
ÿ

vPTn:deg`pv,Tnq“k`

1BpWvq. (1.2)608

Also, Nkpnq :“ Nkpn,R`q. With regards to the preferential attachment model with609

neighbourhood influence, or PANI-tree, Nkpn,Bq is defined identically, however, we610

have ` “ 1.611
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2. Similarly, the quantity Někpn,Bq is defined such that612

Někpn,Bq :“
ÿ

vPTn:deg`pv,Tnqěk`

1BpWvq,

613

and with ` “ 1 in the PANI-tree.614

3. In the dynamical simplices model, up to a constant factor depending on the initial615

complex K0, the quantity Nkpnq denotes the number of vertices with degree (or 0-616

degree) k`d. For brevity, with regards to this model we will generally state and prove617

results for Nkpnq, although similar analysis may be performed for quantities analogous618

to Nkpn, ¨q.619

Now, suppose Vn denotes the vertex set in each of the models, so that in the pµ, f, `q -RIF tree,620

|Vn| scales like `n, whilst in the other models, |Vn| scales like n. We will then be interested621

in the limiting behaviour of the quantity Nkpn,Bq when re-scaled by the size of the network,622

|Vn|, in each of the models. It is reasonable to expect that the almost sure limit of Nkpn,Bq
|Vn|

623

behaves like its expected value624

|Vn|
ÿ

i“0

P pWi P B, tvertex i has been selected exactly k timesuq {|Vn|. (1.3)625

Suppose that the probability of selecting vertex i, with weight Wi, once this vertex has626

already been selected j times is approximately pCjpWiqqjě0. Also, if we informally, sup-627

pose that the partition function Zn behaves like λn, for some λ ą 0, the probability of a628

vertex i, with weight Wi, arriving at i0 and receiving out-neighbours at times i1, . . . , ik, is629

approximately630

i1´i0´1
ź

j“1

ˆ

1´
C0pWiq

λpi0 ` jq

˙

C0pWiq

λi1
¨

i2´i1´1
ź

j“1

ˆ

1´
C1pWiq

λpi1 ` jq

˙

C1pWiq

λi2
¨ ¨ ¨

¨ ¨ ¨

ik´ik´1´1
ź

j“1

ˆ

1´
Ck´1pWiq

λpik´1 ` jq

˙

Ck´1pWiq

λik
¨

n´ik
ź

j“1

ˆ

1´
CkpWiq

λpik ` jq

˙

.
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Now, if we can approximate the expected value in (1.3) by considering summands i ą ηn,631

where η is a ‘small’ constant, we may write the products in the previous display as ratios of632

Gamma functions, which may then be approximated using Stirling’s approximation. Then,633

for each i, taking the sum over possible choices pi1, . . . , ikq, by applying suitable summation634

arguments, i.e., Corollary 2.4.6 in Section 2.4.2, Chapter 2, we obtain635

λ

CkpWiq ` λ

k´1
ź

j“0

CjpWiq

CjpWiq ` λ
.636

Taking expectations overWi P B, it is therefore reasonable to expect that the limit of Nkpn,Bq
|Vn|

637

belongs to the family638

pλkpBq :“ E

«

λ

CkpW q ` λ

k´1
ź

j“0

CjpW q

CjpW q ` λ
1BpW q

ff

, (1.4)639

for λ ą 0. The expectation on the right hand side of (1.4) is with regards to the path640

of a suitable random companion process pCjpWiqqjě0, depending on the weight Wi. The641

precise form of the companion process depends on the model we consider. In particular, this642

companion process is such that643

1. In the pµ, f, `q -RIF tree the value CjpWiq is Wi-measurable, and given by fpj,Wiq.644

2. In the PANI-tree, C0pWiq “ hpWiq, and, given CjpWiq, Cj`1pWiq “ gpWi,W
1q`CjpWiq,645

where W 1 is sampled independently from µ. Thus, CjpWiq ´ hpWiq “
ř`
`“1 gpWi,W

1
`q,646

where eachW 1
` is independently sampled from µ. In particular, CjpWiq´hpWiq is given647

by a sum of random variables, which are conditionally independent and identically648

distributed given Wi.649

3. In the dynamical simplicial complex model, the values of CjpWiq depend on the fitnesses650

in the pd ´ 1q-neighbourhood of i. Thus, CjpWiq is a process that depends on the651

‘typical’ evolution of the pd´ 1q-neighbourhood of a vertex arriving sufficiently ‘late’.652
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In this thesis, we will prove various forms of the limiting degree distribution, showing that653

the family ppλkp¨qqkPN0 is universal across all models. We also make the intuition outlined654

before (1.4) rigorous in Section 2.4 in Chapter 2 and Chapter 4. The assumption that the655

partition function Zn behaves like λn, for some λ ą 0, is made rigorous by requiring that656

Zn
n
Ñ λ almost surely, (1.5)657

and applying Egorov’s theorem. The convergence in (1.5) is assumed directly in Section 2.4658

in Chapter 2, while proved in various forms in Section 4.3 in Chapter 4.659

1.4.2 Edge Distributions and Condensation660

With regards to the evolving tree models we study in this thesis, i.e, the pµ, f, `q -RIF tree661

and the PANI-tree, we will also be interested in another quantity: the distribution of the662

proportion of edges with endpoint having a given weight.663

1. In both the pµ, f, `q -RIF tree and the PANI-tree, given a Borel set B Ď R`, the664

quantity Ξpn,Bq will denote the number of directed edges pv, v1q in the respective tree665

model Tn such that Wv P B, that is,666

Ξpn,Bq :“
ÿ

pv,v1qPTn

1BpWvq. (1.6)667

2. With regards to the PANI-tree, we will also study a higher dimensional analogue of this

quantity: given a Borel set A Ď R2
`, the quantity Ξp2qpn,Aq will denote the number of

edges pv, v1q in the tree Tn such that pWv,Wv1q P A, that is,

Ξp2qpn,Aq :“
ÿ

pv,v1qPTn

1ApWv,Wv1q.

Our emphasis will be on results related to the quantity Ξpn,Bq. Suppose ` corresponds to668

the parameter ` when referring to the pµ, f, `q -RIF tree, and 1 when referring to the PANI-669
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tree. Then, note that for every n P N0, by computing the number of directed edges pv, v1q in670

Tn with Wv P B in two different ways, we have671

Ξpn,Bq “
n
ÿ

k“0

`kNkpn,Bq. (1.7)672

When we normalise by the number of vertices in the tree, |Vn| “ `n, if, for k P N0 the limit673

of Nkpn,Bq
|Vn|

is pαk pBq, as described in (1.4), by an application of Fatou’s lemma we get674

lim inf
nÑ8

Ξpn,Bq

`n
ě

8
ÿ

k“0

`kpαk pBq, (1.8)675

which motivates the definition of the following family:676

mpλ,Bq :“
8
ÿ

k“0

`kpλkpBq “ ` ¨ E

«

8
ÿ

n“1

n´1
ź

j“0

CjpW q

CjpW q ` λ
1BpW q

ff

. (1.9)677

Now, if the limit exists, since we add ` directed edges at each time-step, the measures678

Ξpn, ¨q{`n are probability measures. However, if mpλ, ¨q is not a probability distribution679

(applying a similar argument to the proof of Theorem 2.2.2 in Section 2.2 of Chapter 2) we680

can show that there exists a measurable set B such that681

lim sup
nÑ8

Ξpn,Bq

`n
ą mpλ,Bq.682

In this case, the inequality in (1.8) is strict, so that, after normalising by `n, the operations of683

taking limits in k and in n in (1.7) do not commute. Thus, the set B has acquired additional684

“mass” in the limit, and this phenomenon is known as condensation. In Section 2.3.2 of685

Chapter 2 we derive an example of this in the GPAF-tree, i.e., the pµ, f, `q -RIF tree in686

the case that fpi,W q “ gpW qi ` hpW q for measurable functions g and h. In this case, we687

assume that g and h are bounded and non-decreasing. As the PANI-tree generalises this688

model further, we undertake a more refined analysis of the condensation phenomenon in689

Chapter 3 in Section 3.3.690
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Example: the pµ, f, `q -RIF tree when ` “ 2691

0

fp1, w0q

1fp1, w1q 2 fp0, w2q

3fp0, w3q 4

fp0, w4q

Figure 1.10: In the above instance of T4 in the pµ, f, `q -RIF tree, N1p4, ¨q “ δw0p¨q ` δw1p¨q

and Ξp4, ¨q “ 2 pδw0p¨q ` δw1p¨qq.

1.5 Overview of Thesis692

In this thesis we analyse the quantities outlined in Section 1.4, in each of the models described693

in Section 1.3. In particular,694

• In Chapter 2 we analyse the pµ, f, `q -RIF tree.695

• In Chapter 3 we analyse the PANI-tree. The results of this chapter may be read696

independently of Chapter 2, however, are closely related to the results of Section 2.3.2697

of Chapter 2, and as a result, we encourage the reader to at least review this section.698

• In Chapter 4 we analyse the dynamical simplices model. However, the results of this699

chapter rely on certain results proved and stated in Chapter 2. In particular, the700

analysis in Section 4.4 is closely related to the analysis presented in Section 2.4 of701

Chapter 2, and applies the summation arguments proved in Section 2.4.2. In addition,702

the analysis in Section 4.3 of Chapter 4 applies results related to Pólya urns, and these703
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stochastic processes play a crucial role in the analysis of Chapter 3, in particular, in704

Section 3.2. We thus encourage the reader to read Chapter 4 after reading Chapter 2705

and Chapter 3. Moreover, as previously mentioned, the interested reader may wish to706

skip some of the more technical proofs in this chapter upon first reading.707

Note that each of the chapters rely closely on the specification of the model in Section 1.3708

and the definitions of the quantities outlined in Section 1.4. The information in Section 1.2709

may also be useful, especially the definitions in Section 1.2.1 - in particular with regards to710

the dynamical simplicial complexes model in Chapter 4.711
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Chapter Two712

Generalised Recursive Trees with Fitness713

2.1 Introduction714

In this chapter, we consider the model of the generalised recursive tree with fitness described715

in Section 1.3.2 of Chapter 1, and prove limiting results regarding the degree distributions716

and edge distributions in relation to this model when re-scaled by the number of edges in717

the model, `n. Here we recall that these quantities, and their expected limiting behaviour718

was described in Section 1.4 of Chapter 1.719

In relation to the pµ, f, `q -RIF tree, the candidates pλkp¨q and mpλ, ¨q, described720

in (1.4) and (1.9) of Chapter 1 have a specific form; in particular, we have721

pλkpBq “ E

«

λ

fpk,W q ` λ

k´1
ź

i“0

fpi,W q

fpi,W q ` λ
1BpW q

ff

, (2.1)722

and723

mpλ,Bq “
8
ÿ

k“0

`kpλkpBq “ ` ¨ E

«

8
ÿ

n“1

n´1
ź

i“0

fpi,W q

fpi,W q ` λ
1BpW q

ff

. (2.2)724

Since we only study the pµ, f, `q -RIF tree in this chapter, in this chapter we may regard (2.1)725

and (2.2) as the definitions of the quantities pλkp¨q and mpλ, ¨q respectively. Moreover, using726

the heuristic outlined in Section 1.4.1 of Chapter 1, we expect the limiting behaviour of727
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the re-scaled degree distribution Nkpn,¨q
`n

to belong to the family (2.1), for a suitable choice728

λ “ α ą 0. In addition, if no condensation occurs, i.e., ifmpα, ¨q is a probability distribution,729

we expect the limit of Ξpn,¨q
`n

to be mpα, ¨q.730

2.1.1 Open Problems731

We conjecture that, in general, the parameter α makes mpλ, ¨q ‘as close as possible’ to a732

probability distribution, so that733

α “

$

’

’

&

’

’

%

inf tλ ą 0 : mpλ,R`q ď 1u if mpλ,R`q ă 8 for some λ ą 0

8 otherwise.
(2.3)734

Conjecture 2.1.1. Let T be a pµ, f, `q -RIF tree, with α as defined in (2.3). Then, for each735

k P N0 and measurable set B, almost surely, we have736

Nkpn,Bq

`n
nÑ8
ÝÝÝÑ

$

’

’

&

’

’

%

pαk pBq, if α ă 8,

µpBq1t0upkq, otherwise.
737

The conjectured limit in the case when α “ 8 is obtained by taking the limit of pαk pBq738

as αÑ 8. This limit is 0 unless k “ 0, in which case it is µpBq.739

The discussion in Section 1.4 of Chapter 1 described the parameter α as being closely740

related to the partition function pZnqnPN0 . As a result, we also conjecture:741

Conjecture 2.1.2. Let T be a pµ, f, `q -RIF tree, with α as defined in (2.3). Then we have742

Zn
n

nÑ8
ÝÝÝÑ α, almost surely.743
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2.1.2 Important Technical Conditions and Overview of Results744

In this chapter, we make partial progress towards the proofs of Conjecture 2.1.1 and Con-745

jecture 2.1.2. We will refer to the following technical conditions:746

C1 With mpλ, ¨q as defined in (2.2), there exists some λ ą 0 such that747

1 ă mpλ,R`q ă 8. (2.4)748

Under this condition, by monotonicity, there exists a unique α ą 0 such thatmpα,R`q “749

1, we call this the Malthusian parameter associated with the process.750

C2 There exists α ą 0 such that751

lim
nÑ8

Zn
n
“ α.

752

Note that in (2.3), Conditions C1 and C2, we use the same symbol α. This is because we753

conjecture that these coincide in general. In general, as we only assume either C1 or C2 at754

a time, the definition will be clear from context.755

The chapter will be structured as follows:756

757

Section 2.2: We analyse the model under Condition C1.758

• In Theorem 2.2.1 we prove Conjecture 2.1.1 under ConditionC1, and as a consequence,759

in Theorem 2.2.2 we show that for any measurable set B, Ξpn,Bq{`n converges almost760

surely to mpα,Bq.761

• In Theorem 2.2.5 we derive a condition under which C1 implies C2. In particular, this762

proves Conjecture 2.1.2 under this condition and C1.763
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• The approaches used in this section are well-established, applying classical results in764

the theory of Crump-Mode-Jagers branching processes, in a similar manner to the765

approaches taken by the authors of [72, 41, 9, 29]. Nevertheless, these theorems have766

novel applications: we apply these theorems to the evolving Cayley tree considered by767

Bianconi in Example 2.2.4 and the weighted random recursive tree.768

Section 2.3: We analyse a particular case of the model when the fitness function fpi,W q “769

gpW qi`hpW q, which we call the generalised preferential attachment tree with fitness (GPAF-770

tree). This extends the existing models of preferential attachment with additive fitness, i.e.,771

fpi,W q “ i`1`W , and multiplicative fitness, i.e., fpi,W q “ pi`1qW . When the functions772

g, h are non-decreasing, we also treat the cases where Condition C1 can fail. Let α be as773

defined in (2.3), and also define Λ :“ tλ ą 0 : mpλ,R`q ă 8u.774

• We consider the situation in which Condition C1 fails by having mpλ,R`q ď 1 for775

all λ P Λ. In this case, mpλ,R`q converges for some λ ą 0, but never exceeds 1, so776

that mpα,R`q ď 1. In Theorem 2.3.1 we prove Conjecture 2.1.1 and Conjecture 2.1.2777

in this case, showing, in particular, that if mpα,R`q ă 1 the GPAF-tree exhibits a778

condensation phenomenon.779

• Alternatively, Condition C1 may fail by having α “ 8. Theorem 2.3.3 also confirms780

Conjecture 2.1.1 in this case, showing that the limiting degree distribution is degener-781

ate: almost surely the proportion of leaves in the tree tends to 1. Moreover, we show782

that the fittest take all of the mass of the distribution of edges according to weight, in783

the sense that all of the edges accumulate around vertices with maximum weight.784

• The techniques in this section are inspired by the coupling techniques exploited in785

[20] and [29], and extend the well known phase transition associated with the model786

of preferential attachment with multiplicative fitnesses studied in [20, 31, 29]. This787
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generalisation shows that the phase-transition depends on the parameter h too, so788

that, in some circumstances, condensation occurs, but vanishes if h is increased enough789

pointwise (see Section 2.3.2). This is interesting because hpW q may be interpreted as790

the ‘initial’ popularity of a vertex when it arrives in the tree, showing that in order for791

the condensation to occur, there needs to be sufficiently many vertices of ‘low enough’792

initial popularity. As far as the author is aware, these results are not only novel in the793

mathematical literature, but also in the general scientific literature concerning complex794

networks.795

Section 2.4: We analyse the model under Condition C2, proving general results for the796

distribution of vertices with a given degree and weight.797

• If the term α in Condition C2 is finite, Theorem 2.4.1 and Theorem 2.4.4 confirm a798

weaker analogue of Conjecture 2.1.1 under this condition.799

2.2 Analysis of pµ, f, `q -RIF trees assuming C1800

In order to apply Condition C1 in this section, we study a branching processes with a family801

tree made up of individuals and their offspring whose distribution is identical to the discrete802

time model at the times of the branching events. In Section 2.2.1, we describe this continuous803

time model, state Theorem 2.2.1 and state and prove Theorem 2.2.2. In Section 2.2.2 we804

include the relevant theory of Crump-Mode-Jagers branching processes and use this to prove805

Theorem 2.2.1. In Section 2.2.3 we apply the same theory, along with some technical lemmas806

to state and prove a strong law of large numbers for the partition function in Theorem 2.2.5.807

We conclude the section with some interesting examples in Section 2.2.4.808
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2.2.1 Description of Continuous Time Embedding809

In the continuous time approach, we begin with a population consisting of a single vertex 0810

with weightW0 sampled from µ and an associated exponential clock with parameter fp0,W0q.811

Then recursively, when the ith birth event occurs in the population, with the ringing of an812

exponential clock associated to vertex j:813

(i) Vertex j produces offspring `pi´1q`1, . . . , `i with independent weightsW`pi´1q`1, . . . ,W`i814

sampled from µ and exponential clocks with parameters fp0,W`pi´1q`1q, . . . , fp0,W`iq.815

(ii) Suppose the number of offspring of j before the birth event was m, so that its out-816

degree in the family tree is m. Then, the exponential random variable associated with817

j is updated to have rate fpm{``1, wjq. If fpm{``1, wjq “ 0, then j ceases to produce818

offspring and we say j has died.819

Now, if we let Zi´1 denote the sum of rates of the exponential clocks in the population when820

the population has size i´ 1, the probability that the clock associated with j is the first to821

ring is fpm{`,Wjq{Zi´1. Hence, the family tree of the continuous time model at the times822

of the birth events pσiqiě0 has the same distribution as the associated pµ, f, `q -RIF tree.823

The continuous time branching process is actually a Crump-Mode-Jagers branching process,824

which we will describe in more depth in Section 2.2.2.825

To describe the evolution of the degree of a vertex in the continuous time model, we826

define the pure birth process with underlying probability space pΩ,F ,Pq and state space `N827

as follows: first sample a weightW and set Y p0q “ 0. Let Pw denote the probability measure828

associated with the process when the weight sampled is w. Then, define the birth rates of829

Y such that830

Pw pY pt` hq “ pk ` 1q` | Y ptq “ k`q “ fpk, wqh` ophq. (2.5)831
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In other words, the time taken to jump from k` to pk` 1q` is exponentially distributed with832

parameter fpk, wq.833

Let ρ denote the point process corresponding to the times of the jumps in Y and834

denote by Ew rρp¨qs the intensity measure when the weight W “ w. Also, denote by ρ̂w the835

Laplace-Stieltjes transform, i.e.,836

ρ̂wpλq :“

ż 8

0

e´λtEw rρpdtqs .837

Note that, by Fubini’s theorem, we have838

ρ̂wpλq “

ż 8

0

ˆ
ż 8

t

λe´λsds

˙

Ew rρpdtqs “
ż 8

0

λe´λs
ˆ
ż s

0

Ew rρpdtqs
˙

ds (2.6)

“

ż 8

0

λe´λsEw rY psqs ds.

Moreover, if we write τk for the time of the kth jump in Y , we have ρ “
ř8

k“0 `δτk . Note that,839

if the weight of Y is w, τk is distributed as a sum of independent exponentially distributed840

random variables with rates fp0, wq, fp1, wq, . . . , fpk ´ 1, wq (we follow the convention that841

an exponential distributed random variable with rate 0 is 8). Thus, we have that842

ρ̂wpλq “ `
8
ÿ

n“1

Ew
“

e´λτn
‰

“ `
8
ÿ

n“1

n´1
ź

i“0

fpi, wq

fpi, wq ` λ
, (2.7)843

where in the last equality we have used the facts that a Laplace-Stieltjes transform of a844

convolution of measures is the product of Laplace-Stieltjes transforms and the Laplace-845

Stieltjes transform X̂pλq of an exponential distributed random variable with parameter s846

is
ş8

0
e´λtse´stdt “ s

λ`s
. Therefore, we see that E rρ̂W pλqs “ mpλ,R`q as defined in (2.4),847

and Condition C1 implies that there exists some λ ą 0 such that 1 ă E rρ̂W pλqs ă 8. In848

addition, the Malthusian parameter α appearing in Condition C1 is the unique solution such849

that850

E rρ̂W pαqs “ mpα,R`q “ ` ¨ E

«

8
ÿ

n“1

n´1
ź

i“0

fpi,W q

fpi,W q ` α

ff

“ 1. (2.8)851

Our first result is the following:852
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Theorem 2.2.1 (Convergence of the Degree Distribution underC1). Let T be a pµ, f, `q -RIF tree853

satisfying Condition C1 with Malthusian parameter α. Then, with Nkpn,Bq as defined in854

(1.2) and pαk pBq as defined in (1.4), we have855

Nkpn,Bq

`n
nÑ8
ÝÝÝÑ pαk pBq,856

almost surely.857

The limiting formula for Theorem 2.2.1 has appeared in a number of contexts, and858

generalises many known results. Under Condition C1 this result was proved by Rudas, Tóth859

and Valkó [72] in the case that W is constant and ` “ 1. The cases fpi,W q “ W pi` 1q and860

fpi,W q “ i`1`W with ` “ 1 correspond respectively to the preferential attachment models861

with multiplicative and additive fitness mentioned in the introduction. In the multiplicative862

model, the result was first proved in [20] and later in [9]. In [9], Bhamidi also first proved863

the result for the case fpi,W q “ i ` 1 `W . These models are examples of the generalised864

preferential attachment tree with fitness, which we study in more depth in Section 2.3.865

Finally, the case fpi,W q “ W , ` “ 1 corresponds to a model of weighted random recursive866

trees (see Example 2.2.4). We postpone the proof of Theorem 2.2.1 to the end of Section 2.2.2.867

Remark 2.2.1. The limiting value has an interesting interpretation as a generalised geomet-868

ric distribution. Consider an experiment where W is sampled from µ and, given W , coins869

are flipped, where the probability of heads in the ith coin flip is proportional to fpi,W q and870

tails proportional to α. Then, the limiting distribution in Theorem 2.2.1 is the distribution871

of first occurrence of tails. Note that, by C1, the probability of infinite sequences of heads is872

0.873

Remark 2.2.2. Note that Y ptq ă 8 for all t ě 0 almost surely if τ8 :“ limkÑ8 τk “ 8874

almost surely. The latter is satisfied if there exists λ ą 0 such that for almost all w875

Ew
“

e´λτ8
‰

“ lim
nÑ8

Ew
“

e´λτn
‰

“ lim
nÑ8

n
ź

i“0

fpi, wq

fpi, wq ` λ
“ 0,876
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which is implied by C1. In the literature concerning pure-birth Markov chains, this property877

is known as non-explosivity.878

Remark 2.2.3. In this chapter, we have considered the case where the function f , and thus879

the birth process Y as defined in (2.5), depends on a single random variable W taking values880

in R`. However, there is no loss of generality in assuming the random variable W takes881

values in an arbitrary measure space, so long as the function f is measurable. In particular,882

we may consider the case where the weight is given by a vector pW1,W2q where W1 and W2883

are possibly correlated random variables.884

Now, recall the definitions of Ξpn, ¨q from (1.6) andmpα, ¨q from (1.9). In the case that885

mpα, ¨q is a probability distribution, the almost sure convergence of Nkpn,Bq{`n to pαk pBq886

for any measurable set B is enough to imply that for any measurable set B the quantity887

Ξpn,Bq converges almost surely to mpα,Bq. Note that this condition is weaker than directly888

assuming C1. In particular, we have the following.889

Theorem 2.2.2. Assume T is a pµ, f, `q -RIF tree with limiting degree distribution of the890

form ppαk p¨qqkPN0 and such that the quantity mpα,R`q “ 1. Then, for any measurable set B,891

almost surely, we have892

Ξpn,Bq

`n
nÑ8
ÝÝÝÑ mpα,Bq.893

To prove this theorem, we will apply the following elementary lemma:894

Lemma 2.2.3. For any two sequences panqnPN, pbnqnPN, such that either lim infnÑ8 an ą ´8895

or lim supnÑ8 bn ă 8, we have896

lim inf
nÑ8

pan ` bnq ď lim inf
nÑ8

an ` lim sup
nÑ8

bn ď lim sup
nÑ8

pan ` bnq.897

Proof. We only prove the left inequality, as the right inequality is similar (or indeed is898

implied by the left combined with the fact that, for any sequence panqnPN, lim supnÑ8p´anq “899
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´ lim infnÑ8 an). Let ε ą 0 be given and suppose lim supnÑ8 bn “ b. Then, by definition,900

there exists N ą 0 such that for all n ą N we have bn ď b` ε. But then,901

lim inf
nÑ8

pan ` bnq ď lim inf
nÑ8

pan ` b` εq “ lim inf
nÑ8

an ` b` ε.902

Sending ε to 0 proves the result.903

Proof of Theorem 2.2.2. Recall that, by (1.7), for each n, we have Ξpn,Bq “
řn
k“1 k`Nkpn,Bq.904

Also note that905

8
ÿ

k“0

k`pαk pBq “ ` ¨ E

«˜

8
ÿ

k“1

kα

fpk,W q ` α

k´1
ź

i“0

fpi,W q

fpi,W q ` α

¸

1BpW q

ff

“ ` ¨ E

«˜

8
ÿ

k“1

k ¨

ˆ

1´
fpk,W q

fpk,W q ` α

˙ k´1
ź

i“0

fpi,W q

fpi,W q ` α

¸

1BpW q

ff

“ ` ¨ E

«

8
ÿ

k“1

˜

k
k´1
ź

i“0

fpi,W q

fpi,W q ` α
´ k

k
ź

i“0

fpi,W q

fpi,W q ` α

¸

1BpW q

ff

“ ` ¨ E

«˜

8
ÿ

k“1

k´1
ź

i“0

fpi,W q

fpi,W q ` α

¸

1BpW q

ff

“ mpα,Bq,

where the second to last equality follows from the telescoping nature of the sum inside the906

expectation. Thus, by Fatou’s lemma, almost surely we have907

mpα,Bq “
8
ÿ

k“0

k`pαk pBq “
8
ÿ

k“0

k` lim inf
nÑ8

Nkpn,Bq

`n
ď lim inf

nÑ8

Ξpn,Bq

`n
; (2.9)908

and likewise, almost surely, lim infnÑ8
Ξpn,Bcq
`n

ě mpα,Bcq. Now, since we add ` edges at909

every time-step, Ξpn,R`q “ `n. Thus, by Lemma 2.2.3910

1 “ lim inf
nÑ8

ˆ

Ξpn,Bq

`n
`

Ξpn,Bcq

`n

˙

ď lim inf
nÑ8

Ξpn,Bcq

`n
` lim sup

nÑ8

Ξpn,Bq

`n

ď lim sup
nÑ8

ˆ

Ξpn,Bq

`n
`

Ξpn,Bcq

`n

˙

“ 1.

But, mpα, ¨q is a probability measure, this is only possible if911

lim inf
nÑ8

Ξpn,Bcq

`n
“ mpα,Bc

q and lim sup
nÑ8

Ξpn,Bq

`n
“ mpα,Bq almost surely. (2.10)912

Combining (2.9) and (2.10) completes the proof.913
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2.2.2 Crump-Mode-Jagers Branching Processes914

In the continuous time setting, it is convenient to not only identify individuals of the branch-915

ing process according to the order they were born, but also record their lineage, in such a way916

that the labelling encodes the structure of the tree. Therefore we also identify individuals of917

the branching process with elements of the infinite Ulam-Harris tree U :“
Ť

ně0 Nn, where918

N0 “ ∅ is the root. In this case, an individual u “ u1u2 . . . uk is to be interpreted recursively919

as the ukth child of the u1 . . . uk´1. For example, 1, 2, . . . represent the offspring of ∅.920

In Crump-Mode-Jagers (CMJ) branching processes, individuals u P U are equipped921

with independent copies of a random point process ξ on R`. The point process ξ associates922

birth times to the offspring of a given individual, and we also may assume that ξ has some923

dependence on a random weight W associated with that individual. The process, together924

with birth times may be regarded as a random variable in the probability space pΩ,Σ,Pq “925

ś

xPUpΩx,Σx,Pxq where each pΩx,Σx,Pxq is a probability space with pξx,Wxq having the926

same distribution as pξ,W q. We denote by pσxi qiPN points ordered in the point process ξx927

and, for brevity, assume that ξpt0uq “ 0. We also drop the superscript when referring to the928

point process associated to ∅, so that σi :“ σ∅
i . Now, we set σ∅ :“ 0 and recursively, for929

x P U , σxi :“ σx ` σ
x
i . Finally, we set Tt “ tx P U : σx ď tu and note that for each t ě 0, Tt930

may be identified with the family tree of the process in the natural way. Informally, Tt can931

be described as follows: at time zero, there is one vertex ∅, which reproduces according to932

pξ∅,W∅q. Thereafter, at times corresponding to points in ξ∅, descendants of ∅ are formed,933

which in turn produce offspring according to the same law. A crucial aspect of the study934

of CMJ processes are characteristics φx associated to each element x P U . For x P U ,935

let Ux :“ txu : u P Uu. Then, the processes φx are identically distributed, non-negative936

stochastic processes on the space pΩ,Σ,Pq associated with individuals x, which may depend937

on pξz,WzqzPUx . Intuitively, these are processes that track ‘characteristics’ not only of the938
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individual x, but on its potential offspring txy : y P Uu. We then define the general branching939

process counted with characteristic as940

Zφ
ptq :“

ÿ

xPU :σxďt

φxpt´ σxq;941

thus this function keeps a ‘score’ of characteristics of individuals in the family tree associated942

with the process up to time n. Let ν be the intensity measure of ξ, that is, νpBq :“ E rξpBqs943

for measurable sets B Ď R`. A crucial parameter in the study of CMJ processes is the944

Malthusian parameter α defined as the solution (if it exists) of945

E
„
ż 8

0

e´αuξpduq



“ 1.946

Assume that ν is not supported on any lattice, i.e., for any h ą 0 Supp pνq Ĺ t0, h, 2h, . . .u,947

and that the first moment of e´αuνpduq is finite, i.e.,
ş8

0
ue´αuνpduq ă 8. Nerman [65]948

proved the following theorem.949

Theorem 2.2.4 ([65, Theorem 6.3]). Suppose that there exists λ ă α satisfying950

E
„
ż 8

0

e´λsξpdsq



ă 8. (2.11)951

Then, for any two càdlàg characteristics φp1q, φp2q such that E
“

suptě0 e
´λtφpiqptq

‰

ă 8, i “952

1, 2, we have953

lim
nÑ8

Zφp1qptq

Zφp2qptq
“

ş8

0
e´αsE

“

φp1qpsq
‰

ds
ş8

0
e´αsE rφp2qpsqs ds

,954

almost surely on the event t|Tt| Ñ 8u.955

Recall the definition of ρ as the point process associated with the jumps in the process956

Y defined in (2.5). Then, the continuous time model outlined in Section 2.2.1 is a CMJ957

process having ρ as its associated random point process and weight W . In this case, the958

Malthusian parameter is given by α in (2.8) and moreover, Condition C1 implies that the959

first moment
ş8

0
te´αtρ̂µpdtq ă 8.960

Theorem 2.2.1 is now an immediate application of Theorem 2.2.4.961
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Proof of Theorem 2.2.1. Consider the continuous time branching process outlined in Sec-962

tion 2.2.1 and denote by σ11 ă σ12 ¨ ¨ ¨ the times of births of individuals in the process. Then,963

Tn has the same distribution as the family tree Tσ1n . For any measurable set B Ď R, define964

the characteristics φp1qptq “ 1tY ptq“k`,WPBu and φp2qptq “ 1ttě0u, where W denotes the weight965

of the process Y . Note that, Zφp1qptq is the number of individuals with k` offspring and966

weight belonging to B up to time t, while Zφp2qptq “ |Tt|. Thus,967

lim
tÑ8

Zφp1qptq

Zφp2qptq
“ lim

nÑ8

Nkpn,Bq

`n
.968

Note that both φp1qptq and φp2qptq are càdlàg and bounded and moreover, Condition C1969

implies that (2.11) is satisfied. Moreover, the assumption that fp0,W q ą 0 almost surely970

implies that |Tt| Ñ 8 almost surely. Thus, by applying Theorem 2.2.4,971

lim
tÑ8

Zφp1qptq

Zφp2qptq
“ α

ż 8

0

e´αsE
“

1tY psq“k`,WPBu
‰

ds “ E
“

EW
“`

e´ατk ´ e´ατk`1
˘‰

1BpW q
‰

(2.12)972

where the last equality follows from Fubini’s theorem and we recall that τk is the time of973

the kth event in the process YW ptq. Now, since, when W “ w, τk is distributed as a sum974

of independent exponentially distributed random variables with rates fp0, wq, fp1, wq . . ., we975

have976

E
“

EW
“

e´ατk
‰

1BpW q
‰

“ E

«˜

k´1
ź

i“0

fpi,W q

fpi,W q ` α

¸

1BpW q

ff

. (2.13)977

The result follows from combining (2.12) and (2.13).978

Remark 2.2.4. As noted by the authors of [72], Theorem 2.2.4 can be applied to deduce a979

number of other properties of the tree, in particular the analogue of [72, Theorem 1] applies980

in this case as well.981

2.2.3 A Strong Law for the Partition Function982

We can also apply Theorem 2.2.4 to show that the Malthusian parameter α emerges as the983

almost sure limit of the partition function, under certain conditions on the fitness function984
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f .985

Theorem 2.2.5. Let pTnqně0 be a pµ, f, `q -RIF tree satisfying C1 with Malthusian param-986

eter α. Moreover, assume that there exists a constant C ă α and a non-negative function ϕ987

with E rϕpW qs ă 8 such that, for all k P N0, fpk,W q ď Ck ` ϕpW q almost surely. Then,988

almost surely989

Zn
n

nÑ8
ÝÝÝÑ α.990

In order to apply Theorem 2.2.4, we need to bound E
“

suptě0 e
´λtφp1qptq

‰

for an appro-991

priate choice of characteristic φp1q that tracks the evolution of the partition function associ-992

ated with the process. In order to do so, using the assumptions on fpi,W q, we will couple the993

process Y defined in (2.5) with an appropriate pure birth process pYptqqtě0 (Lemma 2.2.9) and994

apply Doob’s maximal inequality to a martingale associated with pYptqqtě0 (Lemma 2.2.8).995

In order to define Yptq, first sample a weightW and set Yp0q “ 0. Then, if Pw denotes996

the probability measure associated with the process when the weight is w, define the rates997

such that998

Pw pYpt` hq “ k ` 1 | Yptq “ kq “ pCk ` ϕpwqqh` ophq.1

999

We also let Yw denote the process with the same transition rates, but deterministic weight1000

w.1001

It will be beneficial to state a more general result, about pure birth processes pX ptqqtě01002

with linear rates, from the paper by Holmgren and Janson [41]. For brevity, we adapt the1003

notation and only include some specific statements from both theorems.1004

Lemma 2.2.6 ([41, Theorem A.6 & Theorem A.7]). Let pX ptqqtě0 be a pure birth process1005

with X p0q “ x0 and rates such that1006

P pX pt` hq “ k ` 1 | X ptq “ kq “ pc1k ` c2qh` ophq,1007

1This process, when C “ 1 and ϕpwq ” 0, is often known as a Yule process.
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for some constants c1, c2 ą 0. Then, for each t ě 01008

E rX ptqs “
ˆ

x0 `
c2

c1

˙

ec1t ´
c2

c1

. (2.14)1009

Moreover, if x0 “ 0 the probability generating function is given by1010

E
“

zX ptq
‰

“

ˆ

e´c1t

1´ z p1´ e´c1tq

˙c2{c1

. (2.15)1011

We also state a version of Doob’s maximal inequality.1012

Lemma 2.2.7 (Doob’s Lp Maximal Inequality, e.g. [Proposition 6.16, [49]]). Let pXtqtě0 be1013

a sub-martingale and St :“ sup0ďsďtXs. Then, for any T ě 0, p ą 11014

E r|ST |ps ď
ˆ

p

p´ 1

˙p

E r|XT |
p
s .1015

Finally, we will require Lemma 2.2.8 and Lemma 2.2.9.1016

Lemma 2.2.8. For any w ą 0, the process pe´Ct pYwptq ` ϕpwq{Cqqtě0 is a martingale with1017

respect to its natural filtration pFtqtě0. Moreover,1018

E
„

sup
tě0

`

e´CtYptq
˘



ă 8.1019

Proof. The process pYwptqqtě0 is a pure birth process satisfying the assumptions of Lemma 2.2.6,1020

with c1 “ C and c2 “ ϕpwq. Therefore, by (2.14) and the Markov property, for any t ą s ą 01021

we have1022

E rYwptq | Fss “ E rYwptq | Ywpsqs “
ˆ

Ywpsq `
ϕpwq

C

˙

eCpt´sq ´
ϕpwq

C
,1023

which implies the martingale statement.1024

Moreover, applying (2.15) for the probability generating function, differentiating twice1025

and evaluating at z “ 1, we obtain1026

E rYwptq pYwptq ´ 1qs “
ϕpwq pC ` ϕpwqq

C2

`

eCt ´ 1
˘2
,1027
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and thus1028

E
“

pYptq ` ϕpwq{Cq2
‰

“
ϕpwq pC ` ϕpwqq

C2

`

eCt ´ 1
˘2

` p2ϕpwq{C ` 1q
ϕpwq

C

`

eCt ´ 1
˘

` pϕpwq{Cq2 .

after some manipulations, we find that for all t ě 01029

E
“

e´2Ct
pYwptq ` ϕpwq{Cq2

‰

ď
ϕpwq2

C2
`
ϕpwq

C

`

1´ e´Ct
˘

.1030

Thus, we find that there exist constants A,B depending only on C such that for all t ě 01031

2
b

E
“

e´2Ct pYwptq ` ϕpwq{Cq2
‰

ď A`Bϕpwq.1032

Combining this L2 quadratic bound with Doob’s maximal inequality, we have1033

E
„

sup
tě0

`

e´CtYwptq
˘



ď E
„

sup
tě0

`

e´Ct pYwptq ` ϕpwq{Cq
˘



ď

g

f

f

eE

«

ˆ

sup
tě0
pe´Ct pYwptq ` ϕpwq{Cqq

˙2
ff

ď 2
b

E
“

e´2Ct pYwptq ` ϕpwq{Cq2
‰

ď A`Bϕpwq.

Thus,1034

E
„

sup
tě0

`

e´CtYptq
˘



“ E
„

sup
tě0

`

e´CtYW ptq
˘



ď A`BE rϕpW qs ă 8.1035

1036

Lemma 2.2.9. Recall the definition of Y in (2.5) and assume that there exists a constant1037

C ă α and a non-negative function ϕ with E rϕpW qs ă 8 such that, for all k P N0, fpk,W q ď1038

Ck ` ϕpW q almost surely. Then, there exists a coupling pŶ ptq, Ŷptqqtě0 of pY ptqqtě0 and1039

pYptqqtě0 such that, for all t ě 01040

Ŷ ptq ď ` ¨ Ŷptq.1041
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In the following proof, we denote by Exp prq the exponential distribution with param-1042

eter r.1043

Proof. First, we sample Ŵ from µ and use this as a common weight for Ŷ and Ŷ . Now, let1044

pςiqiě0 be independent Exp
´

fpi, Ŵ q
¯

distributed random variables. Then, for all k ą 0 set1045

τ̂k “
řk´1
i“0 ςi and1046

Ŷ ptq “
8
ÿ

k“1

k`1τ̂kďtăτ̂k`1
.1047

The ςi can be interpreted as the intermittent time between jumps from state i to i` `. For1048

all t ą 0 construct the jump times of pŶptqqtě0 iteratively as follows:1049

• Note that by assumption fp0, Ŵ q ď ϕpŴ q. Let e0 „ Exp
´

ϕpŴ q ´ fp0, Ŵ q
¯

and set1050

ς 10 “ min te0, ς0u. We may interpret ς 10 as the time for Ŷ to jump from 0 to 1.1051

• Given ς 10, . . . , ς 1j, let qj :“
řj
i“0 ς

1
i and define mj :“ Ŷ pqjq{`, i.e., the value of Ŷ {` once1052

Ŷ has reached j ` 1. Assume inductively that mj ď j ` 1 and set1053

ej`1 „ Exp
´

Cpj ` 1q ` ϕpŴ q ´ fpmj, Ŵ q
¯

and ς 1j`1 “ min
 

ej, ςmj
(

.1054

Observe that, since ς 1j`1 ď ςmj`1, we have mj`1 ď j ` 2, so we may iterate this procedure.1055

It is clear that pŶ ptqqtě0 is distributed like pY ptqqtě0 and using the properties of the1056

exponential distribution, one readily confirms that pŶptqqtě0 is distributed like pYptqqtě0.1057

Finally, the desired inequality follows from the fact that Ŷptq always jumps before or at the1058

same time as Ŷ ptq.1059

Proof of Theorem 2.2.5. Consider the continuous time embedding of the pµ, f, `q -RIF tree1060

and define the characteristics φp1qptq :“
ř8

k“0 fpk,W q1tY ptq“k`u and φ
p2qptq :“ 1ttě0u. Recall1061

that we denote by pτiqiě1 the times of the jumps in Y and that, for all k ě 0, fpk,W q ď1062
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Ck ` ϕpW q . Then, by Lemma 2.2.9, Lemma 2.2.8 and the assumptions of the theorem,1063

E
„

sup
tě0

`

e´Ctφp1qptq
˘



Lem. 2.2.9
ď E

„

sup
tě0

`

e´Ct pCYW ptq ` ϕpW qq
˘



Lem. 2.2.8
ă 8.1064

Now, in this case Zφp1qptq is the total sum of fitnesses of individuals born up to time t, while1065

Zφp2qptq “ |Tt|. Thus, by Theorem 2.2.4 and Fubini’s theorem in the second equality, almost1066

surely we have1067

lim
nÑ8

Zn
`n
“ α

ż 8

0

e´αsE

«

8
ÿ

k“0

fpk,W q1tY psq“k`u

ff

ds (2.16)

“ E

«

8
ÿ

k“0

fpk,W q
`

e´ατk ´ e´ατk`1
˘

ff

“ E

«

8
ÿ

k“1

αfpk,W q

fpk,W q ` α

k´1
ź

i“0

fpi,W q

fpi,W q ` α

ff

.

Now, recall that by (2.8) we have1068

E

«

8
ÿ

k“1

fpk,W q

fpk,W q ` α

k´1
ź

i“0

fpi,W q

fpi,W q ` α

ff

“
1

`
,1069

and combining this with (2.16) proves the result.1070

2.2.4 Examples of Applications of Theorem 2.2.11071

Weighted Cayley Trees1072

Consider the model where fpk,W q “ 0 for k ě 1 and fp0,W q “ gpW q. Thus, at each step,1073

a vertex with degree 0 is chosen and produces ` children and thus this model produces an1074

p``1q-Cayley tree, i.e., a tree in which each node that is not a leaf has degree ``1. Without1075

loss of generality, by considering the pushforward of µ under g if necessary, we may assume1076

that gpW q “ W . In this case, ρ̂µpλq “ ` ¨ E
“

W
W`λ

‰

and thus C1 is satisfied as long as ` ě 2.1077

Thus, pαk pBq “ 0 for all k ě 2 and1078

p0pBq “ E
„

α

W ` α
1BpW q



, p1pBq “ E
„

W

W ` α
1BpW q



.1079
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This rigorously confirms a result of Bianconi [10]. Note however, that in [10], α is described1080

as the almost sure limit of the partition function and we may only apply Theorem 2.2.51081

under the assumption that E rW s ă 8.1082

In the notation of [10], the weights W are called ‘energies’, using the symbol ε, the1083

function gpεq :“ eβε, where β ą 0 is a parameter of the model, and α :“ eβµF is described as1084

the limit of the partition function. Thus, the proportion of vertices with out-degree 0 with1085

‘energy’ belonging to some measurable set B is1086

E
„

1

eβpε´µF q ` 1
1BpW q



,1087

which is known as a Fermi-Dirac distribution in physics.1088

Weighted Random Recursive Trees1089

In the case that fpk,W q “ W , we obtain a model of weighted random recursive trees with1090

independent weights andC1 is satisfied with α “ E rW s provided E rW s ă 8. Theorem 2.2.11091

then implies that1092

Nkpn,Bq

`n
nÑ8
ÝÝÝÑ E

«

`E rW sW k

pW ` `E rW sqk`1
1BpW q

ff

,1093

almost surely. This was observed in the case ` “ 1 by the authors of [37, Proposition 3]. Note1094

also that in this case Theorem 2.2.5 coincides with the usual strong law of large numbers.1095

The weighted random recursive tree has a natural generalisation to affine fitness func-1096

tions. This is the topic of the next section.1097
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2.3 Generalised Preferential Attachment Trees with Fit-1098

ness1099

In this section, we study pµ, f, `q -RIF trees in the specific case when the function f takes1100

an affine form, that is, fpi,W q “ igpW q ` hpW q, for positive, measurable functions g, h.1101

We call this particular case of the model a generalised preferential attachment tree with1102

fitness (which we abbreviate as a GPAF-tree). The affine form of this model mean that it is1103

tractable to apply the coupling methods outlined in Section 2.3.2, when Condition C1 fails,1104

and the functions g and h are non-decreasing. Moreover, this model is general enough to be1105

an extension of not only the weighted random recursive tree, but also of the additive and1106

multiplicative models studied in [20, 9].1107

The results, and techniques used in this section will inspire us to study a further1108

generalisation of this model, the preferential attachment tree with neighbourhood influence1109

(PANI-tree) in Chapter 3; in the latter the fitness function is affine, but also incorporates1110

information about the weights of the neighbours of a given vertex. Below, in Section 2.3.11111

we apply the theory of the previous section to this model when C1 is satisfied. In the rest1112

of Section 2.3, we assume that the associated functions g and h are non-decreasing. In1113

Section 2.3.2, we analyse the model when Condition C1 fails by having mpλ,R`q ď 1 for all1114

λ ą 0 such that mpλ,R`q ă 8, stating and proving Theorem 2.3.1. Then, in Section 2.3.31115

we analyse the model when Condition C1 fails by having mpλ,R`q “ 8 for all λ ą 0, stating1116

and proving Theorem 2.3.3.1117

Note that in this section, we formulate our results in terms of functions g and h de-1118

pending on a random variable W taking values in R`. However, in the vein of Remark 2.2.3,1119

we expect these results to extend to cases where g and hmay depend on more general random1120

variables. For example, there is no loss of generality in assuming g and h depend on possibly1121
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correlated random variables W1 and W2 assigned to a given vertex. In this case, the cou-1122

pling technique applied in Section 2.3.2 needs to be adjusted accordingly, with appropriate1123

“truncations” of the vector pW1,W2q.1124

2.3.1 When the GPAF-tree satisfies Condition C11125

In the context of the GPAF-tree, Condition C1 states that there exists λ ą 0 such that1126

mpλ,R`q “ ` ¨ E

«

8
ÿ

n“1

n´1
ź

i“0

gpW qi` hpW q

gpW qi` hpW q ` λ

ff

ą 1.1127

First recall the definition of the birth process Y from (2.5) in Section 2.2, with fpk, wq “1128

gpW qk ` hpW q. By applying (2.14) from Lemma 2.2.6 and the initial condition Y p0q “ 0,1129

for any w P R` we have1130

Ew rY ptqs “
ˆ

hpwq

gpwq

˙

e`gpwqt ´
hpwq

gpwq
.1131

Now, (2.6) and (2.7) in Section 2.2 showed that1132

` ¨
8
ÿ

n“1

n´1
ź

i“0

gpW qi` hpW q

gpW qi` hpW q ` λ
“

ż 8

0

λe´λsEw rY psqs ds “

$

’

’

&

’

’

%

hpwq
λ{`´gpwq

if λ{` ą gpwq;

8 otherwise.
(2.17)1133

For a measurable function g : R` Ñ R` we define ess sup pgq such that1134

ess sup pgq :“ inf ta P R` : µ ptx : gpxq ą auq “ 0u .

1135

Therefore by (2.17), for λ ě ` ¨ ess sup pgq we have mpλ,R`q “ E
”

hpW q
λ{`´gpW q

ı

, while if λ ă1136

` ¨ ess sup pgq we have mpλ,R`q “ 8. Thus, Condition C1 is satisfied if ess sup pgq ă 8,1137

E rhpW qs ă 8 and, for some λ ě ` ¨ ess sup pgq1138

1 ă E
„

hpW q

λ{`´ gpW q



ă 8.

1139
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As a result, the Malthusian parameter α appearing in Condition C1 is given by the unique1140

α ą 0 such that1141

E
„

hpW q

α{`´ gpW q



“ 1. (2.18)1142

Note that the parameter ` in the model has the effect of re-scaling the Malthusian parameter1143

α. Also, since α ě ` ¨ ess suppgq, if E rhpW qs ă 8, Theorem 2.2.5 applies and α may also1144

be interpreted as the almost sure limit of the partition function associated with the process.1145

Now, in the context of this model, the limiting value pαk p¨q from Theorem 2.2.1 is such that1146

pαk pBq “ E

«

α

gpW qk ` hpW q ` α

k´1
ź

i“0

gpW qi` hpW q

gpW qi` hpW q ` α
1BpW q

ff

. (2.19)1147

Now, recall Stirling’s approximation, which states that1148

Γpzq “ p1`Op1{zqq zz´
1
2 e´z. (2.20)1149

If gpW q ą 0 on B, by dividing the numerator and denominator of terms inside the product1150

in (2.19), we obtain a ratio of Gamma functions. Thus, by applying Stirling’s approximation,1151

on any measurable set B on which g, h are bounded, we have1152

pαk pBq “ p1`Op1{kqqE
”

cBk
´p1` α

gpW qq1BpW q
ı

,1153

where cB, which comes from the term outside the product in (2.19), depends on g and h but1154

not k. Thus, the distribution of ppαk pBqqkPN0 follows what one might describe as an ‘averaged’1155

power law. Moreover, in the case ` “ 1, α ě ess suppgq, thus,1156

E
”

cBk
´p1` α

gpW qq1BpW q
ı

ě c1k´2
1157

for some c1 ą 0. It has been observed that real world complex networks, have power law1158

degree distributions where the observed power law exponent lies between 2 and 3 (see, for1159

example, [77]). Note that by (2.18), α depends on both h and g, so that keeping g fixed and1160

making h smaller has the effect of reducing the exponent of the power law.1161

In the remainder of this section we set ` “ 1, for brevity. The arguments may be1162

adapted in a similar manner to the case ` ą 1.1163
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2.3.2 A Condensation Phenomenon when Condition C1 Fails1164

Recall that, in the GPAF-tree, if λ ě ess sup pgq we have1165

mpλ,R`q “ E
„

hpW q

λ´ gpW q



, (2.21)1166

and if λ ă ess sup pgq, we have mpλ,R`q “ 8. If we define

Λ :“ tλ ą 0 : mpλ,R`q ă 8u ,

in this subsection, we consider the case that the GPAF-tree fails to satisfy Condition C11167

by having mpλ,R`q ď 1 for all λ P Λ. We show that in this case the GPAF-tree satisfies1168

a formula for the degree distribution of the same form as (1.4). Moreover, if λ˚ :“ inf pΛq1169

and mpλ˚,R`q ă 1, this model exhibits a condensation phenomenon, as described in The-1170

orem 2.3.1. We remark that such results have been proved for the case of the preferential1171

attachment tree with multiplicative fitness, i.e., the case h ” g, in [31], in a more general1172

framework; that is to say encompassing other models apart from a tree.1173

In Section 2.3.2 we state our main result, Theorem 2.3.1 and discuss interesting impli-1174

cations in Section 2.3.2. In Section 2.3.2 we state and prove Lemma 2.3.2 which is the crucial1175

tool used in proofs of the theorem. The proof of Theorem 2.3.1 is deferred to Section 2.3.2.1176

Note that in the case that g and h are bounded, we have λ̃ “ ess suppgq ă 8. Without1177

loss of generality, we re-scale the measure µ and re-define g and h such that Supp pµq Ď1178

r0, w˚s, where w˚ :“ sup pSupp pµqq ă 8. For example, we may replace W by arctanpW q1179

and g and h by g ˝ tan and h ˝ tan. Such a re-scaling does not affect the monotonicity of1180

g, h and the boundedness assumption implies that gpw˚q, hpw˚q ă 8. Moreover, if T does1181

not satisfy C1, the monotonicity of g implies that µ does not have an atom at w˚, since in1182

this case ess suppgq “ gpw˚q. Thus, for each ε ą 0, we have1183

µprw˚ ´ ε, w˚sq ą 0, (2.22)1184
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and, re-defining g such that gpw˚q “ limεÑ0 gpw
˚ ´ εq if necessary, we may assume without1185

loss of generality that g is continuous at w˚. We adopt these assumptions for the rest of this1186

subsection.1187

Theorem 2.3.1: Condensation in the GPAF-tree1188

Our main result in this subsection is the following theorem, which demonstrates the possi-1189

bility of condensation in this model. Define the measure πp¨q such that, for any measurable1190

set B,1191

πpBq “ E
„

hpW q

gpw˚q ´ gpW q
1BpW q



`

ˆ

1´ E
„

hpW q

gpw˚q ´ gpW q

˙

δw˚pBq.1192

Theorem 2.3.1. Suppose T “ pTnqně0 is a GPAF-tree, with associated functions g, h, where1193

g, h are non-decreasing and bounded and Condition C1 fails. Then we have the following1194

assertions:1195

• With regards to the weak topology,1196

Ξpn, ¨q

`n
nÑ8
ÝÝÝÑ πp¨q, almost surely.1197

In particular, if E
”

hpW q
gpw˚q´gpW q

ı

ă 1, this model exhibits a condensation phenomenon,1198

as described before Conjecture 2.1.1 in Section 1.4.1199

• For any measurable set B, almost surely we have1200

Nkpn,Bq

n
nÑ8
ÝÝÝÑ E

«

gpw˚q

gpW qk ` hpW q ` gpw˚q

k´1
ź

i“0

gpW qi` hpW q

gpW qi` hpW q ` gpw˚q
1BpW q

ff

,

1201

i.e., Nkpn,Bq
n

nÑ8
ÝÝÝÑ p

gpw˚q
k pBq almost surely.1202

• The partition function1203

Zn
n

nÑ8
ÝÝÝÑ gpw˚q, almost surely.1204
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Remark 2.3.1. By applying a more refined coupling argument to the one presented in1205

Lemma 2.3.2, we can actually improve this result to remove the assumption that h is non-1206

decreasing. We omit the details, but instead refer the reader to Section 3.3 in Chapter 3,1207

where we present a more refined coupling.1208

Some Interesting Implications of the Condensation Phenomenon1209

The condensation result in Theorem 2.3.1 has interesting implications for the GPAF-tree.1210

Informally, the parameter gpwq measures the extend to which the ‘popularity’ of a vertex1211

with weight w is reinforced by the number of its neighbours, while the parameter hpwq1212

represents its ‘initial popularity’. The condensation phenomenon then depends on both µ1213

and h, in the sense that condensation occurs if vertices of high weight are ‘rare enough’ and1214

the initial popularity is ‘low enough’. More precisely, if we assume g, h are non-decreasing1215

and bounded, we can see two particular regimes of the tree:1216

1. If µ is such that E
”

1
gpw˚q´gpW q

ı

“ 8, then, for any non-decreasing bounded function1217

h, Condition C1 is satisfied in this model, and thus, the model does not demonstrate1218

a condensation phenomenon.1219

2. Otherwise, if g is such that E
”

1
gpw˚q´gpW q

ı

“ C ă 8, then either1220

E
„

hpW q

gpw˚q ´ gpW q



ą 1 or E
„

hpW q

gpw˚q ´ gpW q



ď 1.1221

In the first case, Condition C1 is satisfied, but fails in the second case. However, in1222

the second case, if the inequality is strict, condensation arises. Therefore, for fixed g,1223

condensation in this model arises by reducing h sufficiently point-wise, for example, by1224

replacing h by K ¨ h where K ă 1{C is a constant.1225

Remark 2.3.2. Note that the first regime shows that whenever g attains its essential supre-1226

mum on a set of positive measure, Condition C1 is satisfied. This will be important in the1227
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couplings employed in in the rest of the section.1228

A Coupling Lemma1229

In order to prove Theorem 2.3.1, we first prove an additional lemma. For each ε ą 0 such1230

that ε ă w˚, let T `ε “ pT `εn qně0 and T ´ε “ pT ´εn qně0 denote GPAF-trees with the same1231

functions g, h, but with weights W p`εq,W p´εq distributed like1232

W1r0,w˚´εspW q ` w
˚1pw˚´ε,w˚spW q and W ^ pw˚ ´ εq respectively.1233

The motivation behind these choices of T `ε and T ´ε is that they have distributions with1234

atoms at the value maximising g almost everywhere. Thus, by (2.22) and Remark 2.3.2,1235

these trees satisfy Condition C1, and we may apply the theorems from Section 2.2 with1236

regards to these trees. Then, provided these trees provide sufficiently good ‘approximations’1237

of the tree T , we may deduce certain results by sending ε to 0.1238

In this vein, let N`ε
ěkpn,Bq, Někpn,Bq and N

´ε
ěkpn,Bq denote the number of vertices1239

with out-degree ě k and weight belonging to the set B in T `εn , Tn and T ´εn respectively.1240

In their respective trees, we also denote by W
p`εq
i ,Wi and W

p´εq
i the weight of a vertex1241

i and Z`εn ,Zn and Z´εn the partition functions at time n. Finally, for brevity, we write1242

f
p`εq
n pvq, fnpvq and f

p´εq
n pvq for the fitness of a vertex v at time n in each of these models. In1243

other words, fnpvq “ gpWvq deg`pv, Tnq ` hpWvq.1244

Lemma 2.3.2. There exists a coupling pT̂ `ε, T̂ , T̂ ´εq of these processes such that for all1245

n P N0,1246

• For any x ă w˚ ´ ε we have Ξ`εpn, r0, xsq ď Ξpn, r0, xsq ď Ξ´εpn, r0, xsq,1247

• For all measurable sets B Ď r0, w˚ ´ εq and k P N0, we have1248

N`ε
ěkpn,Bq ď Někpn,Bq ď N´ε

ěkpn,Bq,1249
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• Z´εn ď Zn ď Z`εn .1250

Proof of Lemma 2.3.2. Initialise the trees with a vertex 0 having weight W0 sampled in-1251

dependently from µ in T̂0 and weights W p`εq
0 “ W01r0,w˚´εspW0q ` w˚1pw˚´ε,w˚spW0q and1252

W
p´εq
0 “ W0 ^ pw

˚ ´ εq in T̂ `ε0 and T̂ ´ε0 . Assume, that at the nth time-step,1253

pT̂ `εt q0ďtďn „ pT `εt q0ďtďn, pT̂tq0ďtďn „ pTtq0ďtďn and pT̂ ´εt q0ďtďn „ pT ´εt q0ďtďn.1254

In addition, assume, by induction, that we have Z´εn ď Zn ď Z`εn and for each vertex v with1255

W
p`εq
v “ Wv “ W

p´εq
v ă w˚ ´ ε we have1256

deg`pv, T̂ `εn q ď deg`pv, T̂nq ď deg`pv, T̂ ´εn q. (2.23)1257

Note that (2.23) implies the first and the second assertions of the lemma up to time n. As1258

a result, for each vertex v with Wv ă w˚ ´ ε we have f p`εqn pvq ď fnpvq ď f
p´εq
n pvq. Now, for1259

the pn` 1qst step1260

• Introduce a vertex n ` 1 with weight Wn`1 sampled independently from µ and set1261

W
p`εq
n`1 “ Wn`11r0,w˚´εspWn`1q ` w

˚1pw˚´ε,w˚spWn`1q and W
p´εq
n`1 “ Wn`1 ^ pw

˚ ´ εq.1262

• Form T̂ ´εn`1 by sampling the parent v of n ` 1 independently according to the law of1263

T ´ε, i.e., with probability proportional to f p´εqn pvq. Then, in order to form T̂n`1 sample1264

an independent uniformly distributed random variables U1 on r0, 1s.1265

– If U1 ď
Z´εn fnpvq

Znf p´εqn pvq
and W p´εq

v ă w˚ ´ ε, select v as the parent of n ` 1 in T̂n`1 as1266

well.1267

– Otherwise, form T̂n`1 by selecting the parent v1 of n` 1 with probability propor-1268

tional to fnpv1q out of all all the vertices with weight Wv1 ě w˚ ´ ε.1269

• Then form T̂ `εn`1 in a similar manner. Sample an independent uniform random variable1270

U2 on r0, 1s.1271
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– If a vertex v with weight Wv ă w˚ ´ ε was chosen as the parent of n` 1 in T̂n`11272

and also U2 ď
Znf p`εqn pvq

Z`εn fnpvq
, also select v as the parent of n` 1 in T̂ `εn`1.1273

– Otherwise, form T̂ `εn`1 by selecting the parent v2 of n` 1 with probability propor-1274

tional to f p`εqn pv2q out of all all the vertices with weight Wv2 “ w˚.1275

It is clear that T̂ ´εn`1 „ T ´εn`1. On the other hand, in T̂n`1 the probability of choosing a parent1276

v of n` 1 with weight Wv ă w˚ ´ ε is1277

Z´εn fnpvq

Znf p´εqn pvq
ˆ
f
p´εq
n pvq

Z´εn
“
fnpvq

Zn
,1278

whilst the probability of choosing a parent v1 with weight Wv1 ě w˚ ´ ε is1279

fnpv
1q

ř

v:Wvěw˚´ε
fnpvq

¨

˝

ÿ

v:W
p´εq
v ăw˚´ε

˜

1´
Z´εn fnpvq

Znf p´εqn pvq

¸

f
p´εq
n pvq

Z´εn

˛

‚

`
fnpv

1q
ř

v:Wvěw˚´ε
fnpvq

¨

˝

ÿ

v:W
p´εq
v “w˚´ε

f
p´εq
n pvq

Z´εn

˛

‚

“
fnpv

1q
ř

v:Wvěw˚´ε
fnpvq

¨

˝

ÿ

v

f
p´εq
n pvq

Z´εn
´

ÿ

v:W
p´εq
v ăw˚´ε

fnpvq

Zn

˛

‚

“
fnpv

1q
ř

v:Wvěw˚´ε
fnpvq

˜

1´

ř

v:W
p´εq
v ăw˚´ε

fnpvq

Zn

¸

“
fnpv

1q

Zn
,

where we use the fact that
ř

v fnpvq “ Zn. Thus, we have T̂n`1 „ Tn`1. Moreover, either1280

the same vertex is chosen as the parent of n ` 1 in both T̂ ´εn`1 and T̂n`1, or a vertex of1281

higher weight, at least w˚ ´ ε, is chosen as the parent of n` 1 in T̂n`1. This implies the left1282

inequality in (2.23) and in addition, when combined with the fact that W p´εq
n`1 ď Wn`1 and1283

g, h are non-decreasing, guarantees that Z´εn`1 ď Zn`1. The proof that T̂ `εn`1 „ T `εn`1, the right1284

inequality in (2.23) and Zn`1 ď Z`εn`1 are similar, so we may thus iterate the coupling.1285
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Proof of Theorem 2.3.11286

In order to prove Theorem 2.3.1, we first define the auxiliary GPAF-trees T `ε and T ´ε1287

according to Lemma 2.3.2.1288

Proof of Theorem 2.3.1. For the first assertion, by the definition of weak convergence, we1289

need only check that1290

Ξpn, r0, xsq

`n
nÑ8
ÝÝÝÑ πpr0, xsq1291

almost surely, at any point where x ÞÑ πpr0, xsq is continuous. Suppose x ă w˚. For ε ą 01292

sufficiently small that x ă w˚ ´ ε, define the corresponding quantities Ξ`εpn, ¨q, Ξ´εpn, ¨q1293

associated with T `ε and T ´ε. Then, from the coupling in Lemma 2.3.2, we have1294

Ξ`εpn, r0, xsq

n
ď

Ξpn, r0, xsq

n
ď

Ξ´εpn, r0, xsq

n
.1295

Note that the auxiliary trees T `ε and T ´ε have associated weight distributions which contain1296

an atom at their maximum value and thus, by Remark 2.3.2, satisfy Condition C1, with1297

Malthusian parameters αp´εq ą gpw˚ ´ εq and αp`εq ą gpw˚q. Moreover, note that, by the1298

definition of W p´εq,1299

E
„

hpW p´εqq

gpw˚q ´ gpW p´εqq



ď E
„

hpW q

gpw˚q ´ gpW q



ď 1,

so that, recalling (2.18), αp´εq ď gpw˚q. Thus, since x ă w˚´ ε, by Lemma 2.3.2, dominated1300

convergence and continuity of g at w˚, almost surely we have1301

lim sup
nÑ8

Ξpn, r0, xsq

n
ď lim

εÑ0
E
„

hpW q

αp´εq ´ gpW q
1r0,xspW q



“ E
„

hpW q

gpw˚q ´ gpW q
1r0,xspW q



.1302

Now, αp`εq is non-increasing in ε, and we have limεÑ0 α
p`εq “ gpw˚q. Indeed, suppose1303

by way of a contradiction that limεÑ0 α
p`εq “ α1 ą gpw˚q. Then,1304

hpw˚q

α1 ´ gpw˚q
ă 8,1305
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and thus by dominated convergence,1306

1 “ lim
εÑ0

E
„

hpW p`εqq

αp`εq ´ gpW p`εqq



“ E
„

hpW q

α1 ´ gpW q



.1307

But then, (2.18) is satisfied for λ such that gpw˚q ă λ ă α1, contradicting the assumption1308

that Condition C1 fails for T .1309

It follows that limεÑ0 α
p`εq “ gpw˚q and thus, by Lemma 2.3.2 and dominated con-1310

vergence, almost surely we have1311

lim inf
nÑ8

Ξpn, r0, xsq

n
ď lim

εÑ0
E
„

hpW q

αp`εq ´ gpW q
1r0,xspW q



“ E
„

hpW q

gpw˚q ´ gpW q
1r0,xspW q



.1312

The first assertion follows.1313

For the second assertion, given a measurable set B, for each ε ą 0, set Bε :“ B X1314

r0, w˚ ´ εq. In addition, note that, conditional on taking values in Bε the random variables1315

W,W p´εq and W p`εq are identically distributed. Combining these facts with Lemma 2.3.2,1316

almost surely we have1317

lim sup
nÑ8

Někpn,Bq

n
ď lim inf

εÑ0

˜

E

«

k´1
ź

i“0

gpW p´εqqi` hpW p´εqq

gpW p´εqqi` hpW p´εqq ` αp´εq
1BεpW q

ff

` µprw˚ ´ ε, w˚s

¸

“ lim inf
εÑ0

E

«

k´1
ź

i“0

gpW qi` hpW q

gpW qi` hpW q ` αp´εq
1BεpW q

ff

“ E

«

k´1
ź

i“0

gpW qi` hpW q

gpW qi` hpW q ` gpw˚q
1BpW q

ff

,

where we have applied dominated convergence in the final equality. Similarly, almost surely,1318

lim inf
nÑ8

Někpn,Bq

n
ě lim sup

εÑ0
E

«

k´1
ź

i“0

gpW p`εqqi` hpW p`εqq

gpW p`εqqi` hpW p`εqq ` αp`εq
1BεpW q

ff

“ lim sup
εÑ0

E

«

k´1
ź

i“0

gpW qi` hpW qq

gpW qi` hpW q ` αp`εq
1BεpW q

ff

“ E

«

k´1
ź

i“0

gpW qi` hpW qq

gpW qi` hpW q ` gpw˚q
1BpW q

ff

.
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Finally, for the last assertion, by Lemma 2.3.2, for each n P N0 we have1319

Z´εn
n

ď
Zn
n
ď
Z`εn
n
.1320

Taking limits as n goes to infinity and applying Theorem 2.2.5, the result follows in a similar1321

manner to the previous assertions.1322

2.3.3 Degenerate Degrees when Condition C1 Fails1323

In this subsection, we show that if the GPAF-tree fails to satisfy Condition C1 by having1324

mpλ,R`q “ 8 for all λ ą 0, almost surely the proportion of vertices that are leaves tends to 1.1325

Consequentially, the limiting mass of edges ‘escapes to infinity’, as described in Theorem 2.3.31326

below. Note that Condition C1 fails in this manner in the GPAF tree if ess sup pgq “ 81327

or E rhpW qs “ 8. We remark that similar results to Theorem 2.3.3 have been shown in1328

preferential attachment model with multiplicative fitness with µ having finite support [20,1329

Theorem 6] and preferential attachment model with additive fitness (the extreme disorder1330

regime in [54, Theorem 2.6]. These cases correspond to hpxq ” 0 and gpxq ” 1 respectively.1331

As in the previous subsection, we re-scale the measure µ and re-define g and h such1332

that Supp pµq Ď r0, w˚s, where w˚ :“ sup pSupp pµqq. In this case, however, we have either1333

gpw˚q “ 8 or hpw˚q “ 8, and since gpW q, hpW q ă 8 almost surely in order for the model1334

to be well-defined, this implies that µ does not contain an atom at w˚.1335

Theorem 2.3.3. Suppose T “ pTnqně0 is a GPAF-tree, with associated functions g, h, with1336

g, h non-decreasing such that ess sup pgq “ 8 or E rhpW qs “ 8. Then we have the following1337

assertions:1338

• With regards to the weak topology1339

Ξpn, ¨q

`n
nÑ8
ÝÝÝÑ δw˚p¨q, almost surely.1340
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• For any measurable set B Ď r0, w˚s, we have1341

N0pn,Bq

n
nÑ8
ÝÝÝÑ µpBq, almost surely. (2.24)1342

Proof. This is similar to the proof of Theorem 2.3.1. For each ε ą 0 set Bε :“ BXr0, w˚ ´ εs,1343

let T ´ε “ pT ´εn qně0 denote the GPAF-tree, with weightsW p´εq distributed likeW^pw˚ ´ εq.1344

Let N´ε
ěkpn,Bq, Někpn,Bq denote the number of vertices with out-degree ě k and weight1345

belonging to B in T ´εn and Tn respectively. The following claim follows in an analogous1346

manner to Lemma 2.3.2:1347

Claim. There exists a coupling pT̂ , T̂ ´εq of T and T ´ε such that for all n P N0 we have the1348

following:1349

• For all x ă w˚ ´ ε we have Ξpn, r0, xsq ď Ξ´εpn, r0, xsq.1350

• For all measurable sets B Ď r0, w˚ ´ εq we have Někpn,Bq ď N´ε
ěkpn,Bq.1351

Now note that T ´ε has a weight distribution with an atom at its maximum value,1352

and thus, by Remark 2.3.2, satisfies C1, with Malthusian parameter αp´εq. Moreover, note1353

αp´εq is monotonically increasing as ε decreases. In addition, the assumptions on g and h1354

imply that mpλ,R`q as defined in (2.21) is infinite for all λ ą 0. Therefore,1355

lim
εÑ0

αp´εq “ 8.1356

Now, for the first assertion, as in the proof of Theorem 2.3.1, we need only check that1357

Ξpn, r0, xsq

`n
nÑ8
ÝÝÝÑ 0,1358

almost surely, for all x ă w˚. But now, for ε sufficiently small that x ă w˚´ ε, by the claim1359

we have1360

lim sup
nÑ8

Ξpn, r0, xsq

n
ď lim sup

nÑ8

Ξ´εpn, r0, xsq

n
“ E

„

hpW q

αp´εq ´ gpW q
1r0,xspW q



.1361
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Taking the limit as εÑ 0 proves the result.1362

For the second assertion, by the claim and applying, for example, dominated conver-1363

gence in the right hand inequality, for all k ě 1 we have1364

lim sup
nÑ8

Někpn,Bq

n
1365

ď lim inf
εÑ0

˜

E

«

k´1
ź

i“0

gpW p´εqqi` hpW p´εqq

gpW p´εqqi` hpW p´εqq ` αp´εq
1BεpW q

ff

` µpBzBε
q

¸

“ 0.1366

1367

Then (2.24) follows from the strong law of large numbers, which implies that Ně0pn,Bq
n

Ñ µpBq1368

almost surely.1369

2.4 Analysis of pµ, f, `q -RIF trees assuming C21370

By Theorem 2.2.5, under certain conditions on the fitness function f and C1, Condition C21371

is satisfied, i.e.,1372

Zn
n

nÑ8
ÝÝÝÑ α, almost surely.1373

However, Theorem 2.3.1 shows that this condition may be satisfied despite Condition C11374

failing. Therefore, in this section, we analyse the model under Condition C2. In particular,1375

we make the heuristic outlined in Section 1.4.1 of Chapter 1 precise, showing that the limit1376

of Nkpn, ¨q{`n is closely linked to the almost sure limit of the partition function.1377

The methods applied in this section are closely related to those of Section 4.4 of1378

Chapter 4, which also apply the summation arguments stated and proved in Section 2.4.21379

below. However, the results in this section have significantly fewer technical difficulties, and,1380

in addition, we present a much shorter proof of convergence of the mean of Nkpn,Bq{`n.1381

Therefore, we recommend the reader study this section closely before reading Chapter 4.1382

We state and prove Theorem 2.4.1 below and state Theorem 2.4.4, leaving the details to the1383
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reader. These proofs rely on Proposition 2.4.2, proved in Section 2.4.3 and Section 2.4.4;1384

and Proposition 2.4.3, proved in Section 2.4.5.1385

2.4.1 Convergence in probability of Nkpn,Bq{`n under C21386

Theorem 2.4.1. Assume C2. Then, for any measurable set B we have

Nkpn,Bq

`n
nÑ8
ÝÝÝÑ E

«

α

fpk,W q ` α

k´1
ź

s“0

fps,W q

fps,W q ` α
1BpW q

ff

“ pαk pBq, in probability.

In order to prove Theorem 2.4.1, we define the following family of sets:1387

F :“ tB : B is measurable and @s P N0, fps, wq is bounded for w P Bu . (2.25)1388

We also require Proposition 2.4.2 and Proposition 2.4.3, proved in Section 2.4.4 and Sec-1389

tion 2.4.5. These proofs rely on the results stated in Section 2.4.2 and Section 2.4.3.1390

Proposition 2.4.2. For any set B P F , for each k P N0 we have1391

lim
nÑ8

E rNkpn,Bqs

`n
“ pαk pBq.1392

Proposition 2.4.3. For any B P F and k P N0 we have1393

lim
nÑ8

E

«

pNkpn,Bqq
2

`2n2

ff

“ ppαk pBqq
2.1394

Proof of Theorem 2.4.1. The result follows for all B P F by combining Proposition 2.4.2,1395

Proposition 2.4.3 and applying Chebyshev’s inequality.1396

Now, let B be an arbitrary measurable set and let ε ą 0 be given. Then, since, by1397

the definition of the model in Section 1.3.2 of Chapter 1, for each s P t1, . . . , ku the map1398

w ÞÑ fps, wq is measurable, by Lusin’s theorem we can find a compact set E Ď B such that1399
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µpB X Ecq ă ε{3 and for each s P t1, . . . , ku the map w ÞÑ fps, wq is continuous on E.1400

Moreover, note that pαk pBq ´ pαk pB X Eq ď µpB X Ecq ă ε{3. Then,1401

P
ˆ
ˇ

ˇ

ˇ

ˇ

Nkpn,Bq

`n
´ pαk pBq

ˇ

ˇ

ˇ

ˇ

ą ε

˙

ď P
ˆˆ

ˇ

ˇ

ˇ

ˇ

Nkpn,Bq

`n
´
Nkpn,B X Eq

`n

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

Nkpn,B X Eq

`n
´ pαk pB X Eq

ˇ

ˇ

ˇ

ˇ

` |pαk pB X Eq ´ p
α
k pBq|

˙

ą ε

˙

ď P
ˆˇ

ˇ

ˇ

ˇ

Nkpn,B X Eq

`n
´ pαk pB X Eq

ˇ

ˇ

ˇ

ˇ

ą ε{3

˙

` P
ˆ
ˇ

ˇ

ˇ

ˇ

Nkpn,Bq

`n
´
Nkpn,B X Eq

`n

ˇ

ˇ

ˇ

ˇ

ą ε{3

˙

. (2.26)

Now, note that by the strong law of large numbers, and Egorov’s theorem, for any δ ą 01402

there exists an event G with PpGq ă δ such that1403

lim sup
nÑ8

ˆ

Nkpn,Bq

`n
´
Nkpn,B X Eq

`n

˙

“ lim sup
nÑ8

Nkpn,B X E
cq

`n
ď µpB X Ec

q1404

on the complement of G. Therefore, the result follows from (2.26), Proposition 2.4.2 and1405

Proposition 2.4.3 by taking limits as n tends to infinity.1406

Using the approach to the upper bound for the mean in the next subsection, and1407

applying Corollary 2.4.6 stated below with k “ 1 and e0, e1 “ 0, if Ně1pn,Bq denotes the1408

number of vertices of out-degree at least 1 in the tree with weight belonging to B, we actually1409

have1410

lim sup
nÑ8

E rNě1pn,Bqs

`n
ď

1

α1
E rfp0,W q1BpW qs ,1411

as long as lim infnÑ8
Zn
n
ě α1. By sending α1 to infinity, this yields the following analogue1412

of Theorem 2.3.3:1413

Theorem 2.4.4. Suppose T is a pµ, f, `q -RIF tree such that limnÑ8
Zn
n
“ 8. Then for1414

any measurable set B Ď r0,8q, we have1415

N0pn,Bq

n
tÑ8
ÝÝÝÑ µpBq, in probability.1416
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2.4.2 Summation Arguments1417

Here we state and prove some summation arguments required for the subsequent proofs, in1418

particular, the proofs in the rest of this section, as well as in the proofs of Section 4.4 of1419

Chapter 4. For e0, . . . , ek ě 0, 0 ď η ă 1, let1420

Snpe0, . . . , ek, ηq :“
1

n

ÿ

ηnăi0ă¨¨¨ăikďn

k´1
ź

j“0

ˆˆ

ij
ij`1

˙ej

¨
1

ij`1 ´ 1

˙ˆ

ik
n

˙ek

.1421

Lemma 2.4.5. Uniformly in e0, . . . , ek ě 0, 0 ď η ď 1{2, we have1422

Snpe0, . . . , ek, ηq “
k
ź

j“0

1

ej ` 1
` θpηq `O

˜

1

n1{pk`2q
`

řk
j“0 ej logk`1

pnq

n

¸

.1423

Here, θpηq is a term satisfying |θpηq| ďMη1{pk`2q for some universal constant M depending1424

only on k.1425

Corollary 2.4.6. For e0, . . . , ek, f0, . . . , fk´1 ě 0, 0 ď η ď 1{2, we have1426

1

n

ÿ

ηnăi0ďn

ÿ

IkPpt
i0`1,...,nu

k q

k´1
ź

j“0

ˆˆ

ij
ij`1

˙ej

¨
fj

ij`1 ´ 1

˙ˆ

ik
n

˙ek

“
1

ek ` 1

k´1
ź

j“0

fj
ej ` 1

` θ1pηq `O

ˆ

1

n1{pk`2q

˙

.

Here, θ1pηq is a term satisfying |θ1pηq| ď M 1η1{pk`2q for some universal constant M 1 de-1427

pending only on k and f0, . . . , fk´1, and the constant in the big O-term may depend on1428

e0, . . . , ek, f0, . . . , fk.1429

To prepare the proof of the lemma, we rewrite the relevant sums using probabilistic1430

language. Let U0, . . . , Uk be k ` 1 independent random variables uniformly distributed on1431

r0, 1s. We write Up0q ď . . . ď Upkq for their order statistics. Let Ij “ rUpjqns, j P t0, . . . , ku.1432

Then, In “ pI0, . . . , Ikq is the vector of order statistics of k`1 independent random variables1433

with uniform distribution on t1, . . . , nu. Let An be the event that these random variables1434
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are distinct. Then, for e0, . . . , ek ě 0, 0 ă η ď 1{2, we have1435

Snpe0, . . . , ek, ηq “
1

n

ÿ

ηnăi0ă¨¨¨ăikďn

k´1
ź

j“0

ˆˆ

ij
ij`1

˙ej

¨
1

ij`1 ´ 1

˙ˆ

ik
n

˙ek

“
1

pk ` 1q!
¨ E

«

k´1
ź

j“0

ˆˆ

Ij
Ij`1

˙ej

¨
n

Ij`1 ´ 1

˙ˆ

Ik
n

˙ek

1An1I0ąηn

ff

.

Here, the pk ` 1q! term corresponds to the pk ` 1q! ways a vector of k ` 1 uniform random1436

variables on t1, . . . , nu can be pe0, . . . , ekq. Note that, given Upiq, Upi`1q, . . . , Upkq, the random1437

variables Up0q, . . . , Upi´1q are distributed like the order statistics of i independent random1438

variables with the uniform distribution on r0, Upiqs. Now, Upkq is distributed like U1{pk`1q,1439

where U follows the uniform distribution on r0, 1s; indeed, for any x P r0, 1s1440

P
`

Upkq ď x
˘

“ xk`1
“ P

`

U1{pk`1q
ď x

˘

.1441

Moreover, for any i P t0, . . . , k ´ 1u,1442

P
`

Upiq ď x |Upi`1q

˘

“

ˆ

x

Upi`1q

˙i`1

^ 1 “ P
´

U
1{i`1
i ¨ Upi`1q ď x |Upi`1q

¯

,1443

for an independent random variable Ui uniformly distributed on r0, 1s. Thus, setting1444

Vi :“ U
1{pi`1q
i U

1{pi`2q
i`1 ¨ ¨ ¨U

1{pk`1q
k , for i P t0, . . . , ku,1445

the random vectors pUp0q, . . . , Upkqq and pV0, . . . , Vkq are equal in distribution. Therefore, by1446

applying the dominated convergence theorem, for η “ 0 we have1447

lim
nÑ8
Snpe0, . . . , ek, 0q “

1

pk ` 1q!
¨ E

«

k´1
ź

j“0

ˆˆ

Upjq
Upj`1q

˙ej

¨
1

Upj`1q

˙

U ek
pkq

ff

.1448

The last term is equal to1449

1

pk ` 1q!
¨ E

«

k´1
ź

j“0

ˆ

Vj
Vj`1

˙ej

¨ V ek
k

k´1
ź

j“0

1

Vj`1

ff

“
1

pk ` 1q!
¨ E

«

k
ź

j“0

U
ej{pj`1q
j

k
ź

j“0

U
´j{pj`1q
j

ff

1450

“

k
ź

j“0

1

ej ` 1
.1451

1452
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Proof of Lemma 2.4.5. We start with the term involving η. Note that
śk´1

j“0
n

Ij`1´1
1An ď1453

2
śk´1

j“0 U
´1
pj`1q, since on the event An, we have I1 ě 2. Thus,1454

E

«

k´1
ź

j“0

ˆˆ

Ij
Ij`1

˙ej

¨
n

Ij`1 ´ 1

˙ˆ

Ik
n

˙ek

1An1I0ďηn

ff

1455

ď 2E

«

k´1
ź

j“0

U´1
pj`1q1I0ďηn

ff

ď 2E

«

k´1
ź

j“0

U
´pk`2q{pk`1q
pj`1q

ffpk`1q{pk`2q

P pI0 ď ηnq1{pk`2q
1456

ď 2 pk ` 1qp1`kpk`1qq{pk`2q η1{pk`2q.1457
1458

Here, in the last step, we have used P pI0 ď ηnq ď P
`

Up0q ď η
˘

“ 1´ p1´ ηqk`1 ď pk ` 1qη.1459

Next, let ∆j`1 “
n

Ij`1´1
´ 1

Upj`1q
. In the computation of1460

E

«

k´1
ź

j“0

ˆˆ

Ij
Ij`1

˙ej

¨
n

Ij`1 ´ 1

˙ˆ

Ik
n

˙ek

1An

ff

,1461

we can now successively replace n
Ij`1´1

by 1
Upj`1q

`∆j`1 for j P t0, . . . , k ´ 1u. As ∆j`1 Ñ 01462

almost surely, it follows from the dominated convergence theorem, that1463

E

«

k´1
ź

j“0

ˆˆ

Ij
Ij`1

˙ej

¨

ˆ

1

Upj`1q

`∆j`1

˙˙ˆ

Ik
n

˙ek

1An

ff

1464

“ E

«

k´1
ź

j“0

ˆˆ

Ij
Ij`1

˙ej

¨

ˆ

1

Upj`1q

˙˙ˆ

Ik
n

˙ek

1An

ff

` op1q.1465

1466

As E
”

|∆j`1|1tUp0qą1{nu

ı

“ Oplog n{nq, it follows easily that the convergence rate in the last1467

display is Oplog n{nq. Next, let ∆1
j “

Ij
Ij`1

´
Upjq
Upj`1q

. Note that, for any positive real numbers1468

x, y, we have1469

´y

px` 1qx
ď

rys

rxs
´
y

x
ď

1

x
,1470

and thus, on An1471

∆1
j P r´pnUpj`1qq

´1, pnUpj`1qq
´1
s.1472

Hence, by the mean value theorem, if s ě 1, for j P t0, . . . , k ´ 1u,
ˇ

ˇ

ˇ

´

Ij
Ij`1

¯s

´

´

Upjq
Upj`1q

¯sˇ
ˇ

ˇ
ď1473

s{pnUpj`1qq. In the case that s ă 1, observe that1474

min

ˆ

Ij
Ij`1

,
Upjq
Upj`1q

˙

ě
nUpjq

nUpj`1q ` 1
ě

Upjq
2Upj`1q

,1475
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since I1 ą 1, and thus,1476

max

˜

ˆ

Ij
Ij`1

˙s´1

,

ˆ

Upjq
Upj`1q

˙s´1
¸

ď

ˆ

Upjq
2Upj`1q

˙s´1

ď
2Upj`1q

Upjq
.1477

Thus, by a similar application of the mean value theorem, if 0 ď s ď 1, then,1478

ˇ

ˇ

ˇ

ˇ

ˆ

Ij
Ij`1

˙s

´

ˆ

Upjq
Upj`1q

˙sˇ
ˇ

ˇ

ˇ

ď 2s{pnUpjqq.1479

Now, for j P t0, . . . , ku, we have1480

E

«

U´1
pjq

k´1
ź

i“0

U´1
pi`1q1An1tI0ą1u

ff

ď E

«

k
ź

i“0

U´1
i 1tUiąn´iu

ff

“ Oplogk`1
pnqq.1481

Note that we only need I0 ą 1 when s ă 1, in order to ensure that Up0q ą 1{n. Thus,1482

successively replacing Ij
Ij`1

by Upjq
Upj`1q

`∆1
j shows1483

E

«

k´1
ź

j“0

ˆˆ

Ij
Ij`1

˙ej

¨

ˆ

1

Upj`1q

˙˙ˆ

Ik
n

˙ek

1An1tI0ą1u

ff

1484

“ E

«

k´1
ź

j“0

ˆ

Upjq
Upj`1q

˙ej

¨

k´1
ź

j“0

1

Upj`1q

ˆ

Ik
n

˙ek

1An1tI0ą1u

ff

`O

˜

řk´1
j“0 ej logk`1

pnq

n

¸

.1485

1486

Replacing Ik{n by Upkq gives rise to an error term of order at most ek logk`1
pnq{n. As1487

P pAcnq “ Op1{nq and P pI0 “ 1q “ Op1{nq, an application of Hölder’s inequality shows that1488

we may drop the indicators 1An and 1tI0ą1u at the cost of an error term of order n´1{pk`2q.1489

2.4.3 Upper bound for the Mean of Nkpn,Bq{`n1490

In the following subsections, unless otherwise specified, we let B denote an arbitrary element1491

of the family F defined in (2.25). Let Nη,kpn,Bq be the number of vertices of degree k` with1492

weight inB that arrived after time ηn. Then, sinceNη,kpn,Bq ď Nkpn,Bq ď Nη,kpn,Bq`η`n,1493

we have1494

E
„
ˇ

ˇ

ˇ

ˇ

Nη,kpn,Bq

`n
´
Nkpn,Bq

`n

ˇ

ˇ

ˇ

ˇ



ď η. (2.27)1495
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Thus, to obtain an upper bound for the convergence of the mean, it suffices to prove that1496

lim sup
ηÑ0

lim sup
nÑ8

E
„

Nη,kpn,Bq

`n



“ pαk pBq.1497

In what follows, we use the notation dipnq to denote the out-degree at time n of the vertex1498

i born at time i0 :“ ti{`u. We then have,1499

E rNη,kpn,Bqs “
ÿ

ηnăi0ďn´k

` ¨ P pdipnq “ k,Wi P Bq ,1500

since the probability is identical for each of the ` vertices born at each time i0. In what1501

follows, for a given i we denote by Ik :“ ti1, . . . , iku a collection of natural numbers i0 ă1502

i1 ă . . . ă ik ď n. For ease of notation we exclude the dependence of Ik on i.1503

For a natural number s ą i0, we use the notation i „ s to denote that i is the vertex1504

chosen at the sth time-step, hence i gains ` new neighbours at time s. Likewise, the notation1505

i  s denotes that i is not chosen at the sth time-step. Then, let EipIk, Bq denote the event1506

that Wi P B and for all s P ti0 ` 1, . . . , nu, i „ s if and only if s P Ik. Clearly, we have1507

P pdipnq “ k,Wi P Bq “
ÿ

IkPpt
i0`1,...,nu

k q

P pEipIk, Bqq .1508

where
`

ti0`1,...,nu
k

˘

denotes the set of all subsets of ti0 ` 1, . . . , nu of size k. For ε ą 0 and1509

n ě 0 and natural numbers N1 ď N2, we let1510

Gεpnq “ t|Zn ´ αn| ă εαnu , and GεpN1, N2q “

N2
č

t“N1

Gεpnq. (2.28)1511

Moreover, for n ě 1, we denote by Tn the σ-field generated by pTsq1ďsďn, containing all1512

the information generated by the process up to time n. By the assumption of almost sure1513

convergence and Egorov’s theorem, for any δ, ε ą 0, there exists N 1 “ N 1pε, δq such that, for1514

all n ě N 1, P pGεpN 1, nqq ě 1´ δ. Thus, for n ě N 1{η, we have1515

E rNη,kpn,Bqs ď E
“

Nη,kpn,Bq1GεpN 1,nq
‰

` `n p1´ P pGεpN 1, nqqq (2.29)

ď `

¨

˚

˝

ÿ

ηnăi0ďn

ÿ

IkPpt
i0`1,...,nu

k q

P pEipIk, Bq X Gεpi0, nqq ` δn

˛

‹

‚

.
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We use the shorthand α˘ε :“ p1˘ εqα.1516

Proposition 2.4.7. Let B P F and 0 ă ε, η ď 1{2. As n Ñ 8, uniformly in ηn ă i0 ď1517

n´ k, Ik “ ti1, . . . , iku P
`

ti0`1,...,nu
k

˘

and the choice of ε, we have1518

P pEipIk, Bq X Gεpi0, nqq

ď p1`Op1{nqqE

«

ˆ

ik
n

˙fpk,W q{α`ε k´1
ź

j“0

ˆ

ij
ij`1

˙fpj,W q{α`ε fpj,W q

α´εpij`1 ´ 1q
1BpW q

ff

.

Corollary 2.4.8. Let B P F and 0 ă δ, ε, η ď 1{2. Then, there exists N “ Npδ, ε, ηq such1519

that, for all n ě N ,1520

E rNη,kpn,Bqs

`n
ď p1`δq

ˆ

1` ε

1´ ε

˙k

E

«

α`ε
fpk,W q ` α`ε

k´1
ź

j“0

fpj,W q

fpj,W q ` α`ε
1BpW q

ff

`Cη1{pk`2q
`δ,1521

where the constant C may depend on k and B but not on n and not on the choices of δ, ε, η.1522

In particular, for each B P F and k P N0,1523

lim sup
nÑ8

E rNkpn,Bqs {`n ď pαk pBq.1524

Proof. This follows from applying (2.29) and Proposition 2.4.7 and then applying Corol-1525

lary 2.4.6 with ej “ fpj,W q{α`ε and fj “ fpj,W q{α´ε to bound the sum over the collection1526

of indices. Note that the term
`

1`ε
1´ε

˘k comes from replacing α´ε by α`ε.1527

We proceed towards the proof of Proposition 2.4.7. Let ε, η be given such that 0 ă1528

ε, η ď 1{2. For ηn ă i0 ď n and Ik “ ti1, . . . , iku P
`

ti0`1,...,nu
k

˘

for each s P ti0 ` 1, . . . , nu,1529

we define1530

Ds :“

$

’

’

&

’

’

%

ti „ su , if s P Ik,

ti  su , otherwise,
1531

and D̃s “ DsXGεpsq. We also define D̃i0 “ Gεpi0qX tWi P Bu, and for simplicity of notation,1532

write Dj and D̃j for the indicator random variables 1Dj and 1D̃j respectively. Note that1533
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EipIk, Bq X Gεpi0, nq “
Şn
j“i0
D̃j. To bound the probability of this event, we define1534

Xs “ E

«

n
ź

j“is`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tis

ff

D̃is , s P t0, . . . , ku1535

and observe that E rX0s “ P
´

Şn
s“i0
D̃s

¯

is the sought after probability.1536

Lemma 2.4.9. For s P t0, . . . , ku, we have1537

Xs ď

n
ź

u“ik`1

ˆ

1´
fpk,W q

α`εpu´ 1q

˙

¨

˝

k´1
ź

j“s

fpj,W q

α´εpij`1 ´ 1q

ij`1´1
ź

j1“ij`1

ˆ

1´
fpj,W q

α`εpj1 ´ 1q

˙

˛

‚D̃is , (2.30)1538

where we interpret any empty products (for example when ik “ n) as equal to 1. In particular,

E rX0s ď E

»

–

n
ź

u“ik`1

ˆ

1´
fpk,W q

α`εpu´ 1q

˙

¨

˝

k´1
ź

j“0

fpj,W q

α´εpij`1 ´ 1q

ij`1´1
ź

j1“ij`1

ˆ

1´
fpj,W q

α`εpj1 ´ 1q

˙

˛

‚1BpW q

fi

fl .

(2.31)

Proof. We prove (2.30) by backwards induction. For the base case, s “ k, if ik “ n, the1539

inequality is trivial, as Xk “ D̃ik . Thus, assuming ik ă n, by the tower property,1540

E

«

n
ź

j“ik`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tik

ff

“ E

«

E
„

D̃n

ˇ

ˇ

ˇ

ˇ

Tn´1

 n´1
ź

j“ik`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tik

ff

ď E

«

E
„

Dn

ˇ

ˇ

ˇ

ˇ

Tn´1

 n´1
ź

j“ik`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tik

ff

“ E

«

ˆ

1´
fpk,W q

Zn´1

˙ n´1
ź

j“ik`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tik

ff

ď

ˆ

1´
fpk,W q

α`εpn´ 1q

˙

E

«

n´1
ź

j“ik`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tik

ff

,

and iterating this argument with the conditional expectation on the right hand side proves1541

the base case. Now, note that for s P t0, . . . , k ´ 1u1542

Xs “ E

«

Xs`1

is`1´1
ź

j“is`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tis

ff

D̃is .1543
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Applying the induction hypothesis, it suffices to bound the term E
„

śis`1

j“is`1 D̃j

ˇ

ˇ

ˇ

ˇ

Tis



, and,1544

similar to the base case, we may assume is ă is`1 ´ 1. But, then, we have1545

E

«

is`1
ź

j“is`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tis

ff

“ E

«

E
„

D̃is`1

ˇ

ˇ

ˇ

ˇ

Tis`1´1

 is`1´2
ź

j“is`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tis

ff

ď E

«

E
„

Dis`1

ˇ

ˇ

ˇ

ˇ

Tis`1´1

 is`1´2
ź

j“is`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tis

ff

ď
fps,W q

α´εpis`1 ´ 1q
E

«

is`1´2
ź

j“is`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tis

ff

ď
fps,W q

α´εpis`1 ´ 1q
E

«

E
„

Dis`1´1

ˇ

ˇ

ˇ

ˇ

Tis`1´1

 is`1´2
ź

j“is`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tis

ff

ď
fps,W q

α´εpis`1 ´ 1q

ˆ

1´
fps,W q

α`ε pis`1 ´ 2q

˙

E

«

is`1´2
ź

j“is`1

D̃j

ˇ

ˇ

ˇ

ˇ

Tis

ff

.

Iterating these bounds the inductive step follows in a similar manner to the base case. Finally,1546

noting that 1D̃i ď 1BpW q proves (2.31).1547

The next lemma follows from a simple application of Stirling’s formula, i.e., (2.20):1548

Lemma 2.4.10. Let η, C ą 0. Then, uniformly over ηn ď a ď b and 0 ď β ď C, we have1549

b´1
ź

j“a`1

ˆ

1´
β

j ´ 1

˙

“

´a

b

¯β
ˆ

1`O

ˆ

1

n

˙˙

.1550

1551

Proof of Proposition 2.4.7. We take the upper bound E rX0s from Lemma 2.4.9 and bound1552

each of the products by applying Lemma 2.4.10.1553

2.4.4 Deducing Convergence of the Mean of Nkpn,Bq{`n1554

In this subsection we deduce a lower bound on lim infnÑ8 E rNkpn,Bqs {`n on measurable1555

sets B P F . In what follows, denote by NěMpn,Bq the number of vertices of out-degree1556
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ě `M with weight belonging to B. Moreover, let Npn,Bq “ Ně0pn,Bq denote the total1557

number of vertices at time n with weight belonging to B.1558

Lemma 2.4.11. For any measurable set B, we have, lim supnÑ8
NěM pn,Bq

`n
ď 1

M
almost1559

surely.1560

Proof. Since we add ` vertices at each time-step, we have lim supnÑ8
|Tn|
`n
“ 1. However,1561

|Tn| ě MNěMpn,Rq, since the right-side only provides a lower bound for the number of1562

vertices in the tree incident to those with out-degree at least M . The result follows by1563

dividing both sides by M`n and sending n to infinity.1564

Proof of Proposition 2.4.21565

Proof of Proposition 2.4.2. Recall that Corollary 2.4.8 showed that for each B P F and1566

k P N0,1567

lim sup
nÑ8

E rNkpn,Bqs {`n ď pαk pBq.1568

Now, suppose that Proposition 2.4.2 fails, so that, in particular there exists some set B1 P F1569

and k1 P N0 such that1570

lim inf
nÑ8

E rNk1pn,B
1qs

`n
ă pαk1pB

1
q.1571

Thus, for some ε1 ą 0, we have lim infnÑ8
ErNk1 pn,B1qs

`n
ď pαk1pBq´ε

1. Now, using Lemma 2.4.11,1572

choose M ą max
 

k1, 2
ε1

(

, so that lim supnÑ8
NěM pn,B

1q

`n
ă ε1{2. Then, recalling Lemma 2.2.3,1573

lim inf
nÑ8

E

«

M
ÿ

k“0

Nkpn,B
1q

`n

ff

ď lim inf
nÑ8

E
„

Nk1pn,B
1q

`n



`
ÿ

k‰k1

lim sup
nÑ8

E
„

Nkpn,B
1q

`n



(2.32)

ď

˜

8
ÿ

k“0

pαk pB
1
q

¸

´ ε1 ď µpB1q ´ ε1.
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On the other hand, by Fatou’s Lemma, we have1574

lim inf
nÑ8

E

«

M
ÿ

k“0

Nkpn,B
1q

`n

ff

ě E

«

lim inf
nÑ8

M
ÿ

k“0

Nkpn,B
1q

`n

ff

(2.33)

“ E
„

lim inf
nÑ8

ˆ

Npn,B1q

`n
´
NěMpn,B

1q

`n

˙

ě µpB1q ´ ε1{2,

where the last inequality follows from the strong law of large numbers. But then, combin-1575

ing (2.32) and (2.33), we have µpB1q ´ ε1 ě µpB1q ´ ε1{2, a contradiction.1576

2.4.5 Second Moment Calculations1577

In order to bound the second moment, we apply similar calculations to the start of the section1578

to compute asymptotically the number of pairs of vertices of out-degree k` born after time1579

ηn. For vertices i and j, as in Section 2.4.3, we set i0 :“ ti{`u and j0 :“ tj{`u, and note that1580

E
“

pNη,kpn,Bqq
2
‰

“
ÿ

ηnăi0,j0ďn´k

ÿ

j:tj{`u“j0

ÿ

i:ti{`u“i0

P pdipnq “ k,Wi P B, djpnq “ k,Wj P Bq .

(2.34)1581

Note that, in a similar manner to (2.27), we have1582

E

«
ˇ

ˇ

ˇ

ˇ

ˇ

pNη,kpn,Bqq
2

`2n2
´
pNkpn,Bqq

2

`2n2

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď η1583

so that it suffices to prove that1584

lim sup
ηÑ0

lim sup
nÑ8

E

«

pNη,kpn,Bqq
2

`2n2

ff

ď ppαk pBqq
2.1585

Recall that, for a given i we denote by Ik a collection of natural numbers i0 ă i1 ă

¨ ¨ ¨ ă ik ď n. Moreover, for a given j, we denote by Jk a collection of natural numbers

j0 ă j1 ă ¨ ¨ ¨ ă jk ď n. Similar to Section 2.4.3, for s ą j we use the notation j „ s to

denote that j is the vertex chosen at the sth time-step and likewise, we let EjpJk, Bq denote

the event that Wj P B and for all s P tj0 ` 1, . . . , nu, j „ s if and only if s P Jk. Then we
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have

P pdipnq “ k,Wi P B, djpnq “ k,Wj P Bq

“
ÿ

JkPpt
j0`1,...,nu

k q

ÿ

IkPpt
i0`1,...,nu

k q

P pEipIk, Bq X EjpJk, Bqq .

Note that the contribution to the above sum corresponding to terms with Ik XJk ‰ ∅, and

i ‰ j, is zero, since it is impossible for distinct vertices to be chosen in a single time-step.

But then, the terms corresponding to i “ j contribute at most E rNη,kpn,Bqs ď `n to the

right side of (2.34). Next, for any choice of indices with Ik X Jk “ ∅, there are at most

`2 pairs of vertices pi, jq born at respective times pi0, j0q contributing to the sum in (2.34).

Recalling the definitions of Gεpnq,GεpN1, N2q and N 1 “ N 1pε, δq from (2.28) and below in the

previous subsection, in a similar manner to (2.29) we have, for n ě N 1{η,

E
“

pNη,kpn,Bqq
2
‰

ď `2

˜

ÿ

ηnăi0,j0ďn´k

ÿ

IkXJk“∅
P pEipIk, Bq X EjpJk, Bq X Gεpi0, nqq ` δn2

¸

` `n. (2.35)

We then have the following:1586

Proposition 2.4.12. Let B P F and 0 ă ε, η ď 1{2. As n Ñ 8, uniformly in ηn ă i0 ď1587

j0 ď n´ k and Ik P
`

ti0`1,...,nu
k

˘

, Jk P
`

tj0`1,...,nu
k

˘

such that Ik XJk “ ∅, and the choice of ε,1588

we have1589

P pEipIk, Bq X EjpJk, Bq X Gεpi0, nqq

ď p1`Op1{nqqE

«

ˆ

ik
n

˙fpk,W q{α`ε

¨

k´1
ź

s“0

˜

ˆ

is
is`1

˙fps,W q{α`ε fps,W q

α´εpis`1 ´ 1q

¸

1BpW q

ff

ˆ E

«

ˆ

jk
n

˙fpk,W q{α`ε

¨

k´1
ź

s“0

˜

ˆ

js
js`1

˙fps,W q{α`ε fps,W q

α´εpjs`1 ´ 1

¸

1BpW q

ff

.

(2.36)

We leave the details of the proof of this proposition to the reader, as it follows an1590

analogous approach to the proof of Proposition 2.4.7, using a backwards induction argument.1591
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Proof Sketch. Let u1, . . . , u2k denote the indices in Ik Y Jk, and fxpiq, fxpjq denote the fit-1592

nesses associated with vertex i and vertex j at time x. Then, when we bound the probabilities1593

ti  xu X tj  xu for all x P tus ` 1, . . . , us`1 ´ 1u from above we obtain terms of the form1594

us`1´1
ź

x“us`1

ˆ

1´
fxpiq ` fxpjq

α`εpx´ 1q

˙

“

ˆ

us
us`1

˙fxpiq`fxpjqˆ

1`O

ˆ

1

n

˙˙

,1595

where the right side follows from Lemma 2.4.10. Then, when we evaluate the expectation1596

analogous to the expectation appearing in (2.31), we obtain an expectation involving prod-1597

ucts of terms dependent on Wi and Wj, i.e., the weights associated with vertex i and vertex1598

j. These terms separate into a product of expectations by the independence of the ran-1599

dom variables Wi, Wj, and finally, many of the products telescope to yield the right side1600

of (2.36).1601

Proof of Proposition 2.4.31602

Proof. We apply Proposition 2.4.12 to bound the summands in (2.35). Then, as we are1603

looking for an upper bound, we may drop the condition Ik X Jk “ ∅ when evaluating the1604

sum. But then, by Corollary 2.4.6, we have, uniformly in ε and η,1605

ÿ

ηnăi0,j0ďn

ÿ

Ik,Jk

E

«

ˆ

ik
n

˙fpk,W q{α`ε

¨

k´1
ź

s“0

ˆ

is
is`1

˙fps,W q{α`ε fps,W q

α´εpis`1 ´ 1q
1BpW q

ff

ˆ E

«

ˆ

jk
n

˙fpk,W q{α`ε

¨

k´1
ź

s“0

ˆ

js
js`1

˙fps,W q{α`ε fps,W q

α´εpjs`1 ´ 1q
1BpW q

ff

ď

ˆ

1` ε

1´ ε

˙2k
˜

E

«

α`ε
fpk,W q ` α`ε

k´1
ź

s“0

fps,W q

fps,W q ` α`ε
1BpW q

ff¸2

`O
`

n´1{pk`2q
˘

` C 1η1{k`2,

for some universal constant C 1 ą 0, depending only on B, f . The result follows.1606
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Chapter Three1607

Preferential Attachment Trees with1608

Neighbourhood Influence1609

3.1 Introduction1610

In Section 2.3 of Chapter 2, we saw that the particular case of the pµ, f, `q -RIF tree when1611

f is affine displays many interesting properties, including the condensation phenomenon,1612

proved in Section 2.3.2. This motivates our study of the ‘higher dimensional’ analogue1613

of this model, the PANI-tree, as described in Section 1.3.3 of Chapter 1. Note that in1614

this chapter, for brevity, we only consider the case that 1 vertex arrives at each time-step,1615

corresponding to the case that ` “ 1 in the GPAF-tree. However, the description of the1616

model, and analogues of the statements we prove may readily be generalised to the case that1617

` ą 1 using the same techniques. We first briefly recall the dynamics of this model, but, for1618

a more precise description, encourage the reader to refer back to Section 1.3.3 of Chapter 1.1619

Recall that in this model, at each time-step n a vertex v is selected with probability1620

proportional to its fitness fpN`pv, Tnqq, which is a function of the weights of the vertices in1621
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the out-neighbourhood of v. In this model, we define f such that1622

fpN`
pv, Tnqq :“ hpWvq `

ÿ

pv,uqPTn

gpWv,Wuq, (3.1)1623

where h : r0, w˚s Ñ r0,8q and g : r0, w˚s ˆ r0, w˚s Ñ r0,8q are bounded and measurable.1624

A newcomer, n ` 1 then arrives, with its own independent weight Wn`1 P r0, w
˚s sampled1625

independently from the weight distribution µ, and the directed edge pv, n ` 1q is added to1626

Tn to form Tn`1.1627

Dynamics of the PANI-Tree

0 1 0 1

0

1

2

Figure 3.1: A sample transition from T1 to T2. In T1, 0 is chosen with

probability proportional to fpN`p0, T1qq “ hpW0q ` gpW0,W1q, while 1

is chosen with probability proportional to fpN`p1, T1qq “ hpW1q. In this

evolution, 1 is chosen, so the newcomer 2 arrives as an out-neighbour of

1.

Remark 3.1.1. One may interpret pTnqnPN0 in the context of reinforced branching processes1628

as follows: we begin with an individual 0 belonging to its own family that reproduces after an1629

exponentially distributed amount of time, with parameter hpW0q. We say that the ancestral1630

weight of the family is W0. Then, recursively, when a birth event occurs in the ith family,1631

with ancestral weight Wi, a new individual with random weight W joins the ith family, repro-1632

ducing after an ExppgpWi,W qq distributed amount of time, where ExppgpWi,W qq denotes1633
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the exponential distribution with parameter gpWi,W q; and simultaneously, an individual of1634

weight W begins its own family, with ancestral weight W . The out-neighbourhood of a vertex1635

i in the tree Tn, including the vertex i itself, then represents individuals in the ith family in1636

the branching process, at the time of the nth birth event.1637

Remark 3.1.2. One can extend the model from the previous remark further by supplant-1638

ing it with constants 0 ď β, γ ď 1, so that when a birth event occurs, independently with1639

probability β, an individual with random weight W joins the ith family, and with probability1640

γ, an individual with random weight W 1 (also sampled from µq initiates its own family with1641

ancestral weight W 1. While not immediately clear from the way we have defined the model,1642

our methods also extend to this case - this link becomes clearer when viewing individuals as1643

“loops” and “edges” in a Pólya urn similar to Urn E see Figure 3.2 in Section 3.2.1 below).1644

In this extended model, the case gpx, yq “ hpxq “ x, and this terminology, was introduced in1645

[29], as a stochastic analogue of the model of Kingman [51].1646

3.1.1 Statements of Main Results1647

The results in this chapter depend on two sets of conditions. One set of conditions describes1648

the ‘non-condensation’ regime, which one might interpret as the analogue of Condition C11649

with regards to the GPAF-tree analysed in Section 2.3.1 of Chapter 2, whilst the other1650

describes the ‘condensation’ regime which one might interpret as an analogue of the conden-1651

sation phenomenon analysed in Section 2.3.2 of Chapter 2. Note that, with regards to the1652

GPAF-tree we also studied a third phenomenon when Condition C1 fails in Section 2.3.3 of1653

Chapter 2: degenerate degrees. We expect a similar phenomenon to be generalised to the1654

PANI-tree, but do not pursue this in this chapter.1655

In order to emphasise the connection between the PANI-tree and the pµ, f, `q -RIF tree1656

of the previous chapter, we incorporate some of the same notation: the Condition C1 ap-1657
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pearing below may be interpreted as an analogue of the Condition C1 defined in Chapter 2.1658

However, one should not similarly interpret Condition C2 appearing below as an analogue1659

of C2 as these conditions are very different.1660

The Non-Condensation Regime of the PANI-tree1661

The first main conditions are the following: recalling g and h as defined in (3.1), assume1662

C1 There exists some λ˚ ą g̃˚ such that1663

E
„

hpW q

λ˚ ´ g̃pW q



“ 1,

1664

where g̃pxq :“ E rgpx,W qs and g̃˚ :“ E
“

supxPr0,w˚s gpx,W q
‰

. We call λ˚ theMalthusian1665

parameter of the process.1666

C2 For some J ą 0, N P N, there exist measurable functions φpiqj : r0, w˚s Ñ r0, Js, j “ 1, 2,1667

i P rN s, and a bounded continuous function κ : r0, Js2N Ñ R` such that1668

gpx, yq “ κ
´

φ
p1q
1 pxq, . . . , φ

pNq
1 pxq, φ

p1q
2 pyq, . . . , φ

pNq
2 pyq

¯

.

1669

Remark 3.1.3. We expect similar results under the weaker hypothesis that g and h are1670

measurable and bounded rather than Condition C2. However, this condition still allows1671

many “reasonable” choices of bounded measurable functions g. This includes the GPAF-tree1672

of Section 2.3, Chapter 2, the case where g is continuous, as well as functions of the form1673

gpx, yq “ αφ1pxq ` βφ2pyq or gpx, yq “ φ1pxqφ2pyq, where φ1, φ2 are bounded and measurable1674

and α, β ě 0.1675

Our first theorem concerns the partition function of the process,1676
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Theorem 3.1.1. Assume Conditions C1 and C2. Then we have1677

lim
nÑ8

Zn
n
Ñ λ˚1678

almost surely, where Zn and λ˚ respectively denote the partition function and Malthusian1679

parameter of the process.1680

Recall from Section 1.4.2 in Chapter 1 that in the PANI-tree we also study a higher1681

dimensional analogue of the edge distribution Ξpn, ¨q: given a product, Borel measurable1682

set A, the quantity Ξp2qpn,Aq denotes the number of edges pv, v1q in the tree Tn such that1683

pWv,Wv1q P A, that is,1684

Ξp2qpn,Aq :“
ÿ

pv,v1qPTn

1ApWv,Wv1q.

1685

Under this notation, we have Ξpn,Bq “ Ξp2qpn,B ˆ r0, w˚sq almost surely. Also, define1686

ψpxq :“ hpxq{pλ˚ ´ g̃pxqq, and denote by ψ˚µ the pushforward measure of µ under ψ - i.e.1687

the measure such that for any measurable set A1688

pψ˚µqpAq “ E
„

hpW q

λ˚ ´ g̃pW q
1ApW q



.

1689

Theorem 3.1.2. Assume Conditions C1 and C2. Then, with Ξp2qpn, ¨q as defined in (1.6),1690

we have1691

Ξp2qpn, ¨q

n
Ñ pψ˚µˆ µqp¨q,

1692

almost surely, in the sense of weak convergence. Here ψ˚µˆ µ denotes the product measure1693

of ψ˚µ and µ on r0, w˚s2 equipped with the Borel sigma algebra.1694

We include the proofs of Theorem 3.1.1 and Theorem 3.1.2 in Section 3.2.2 and1695

Section 3.2.2. We also prove theorems related to the degree distribution. In view of Sec-1696

tion 1.4.1 of Chapter 1, in order to describe this result, we first describe a companion process1697
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pSipwqqiě0 that describes the evolution of the fitness of a vertex with weight w as its neigh-1698

bourhood changes. First, let W1,W2, . . . be independent µ-distributed random variables and1699

let w P r0, w˚s. We then define the random process pSipwqqiě0 inductively so that1700

S0pwq :“ hpwq; Si`1pwq :“ Sipwq ` gpw,Wi`1q, i ě 0. (3.2)1701

In the following theorem, Er¨s denotes expectation with respect to the path of SipW0q, i.e.,1702

expectations with respect to the product measure involving the termsW0,W1,W2, . . . ,Wk´1.1703

Also recall that Někpn,Bq denotes the number of vertices of out-degree at least k in the tree1704

Tn with weight belonging to B.1705

We then have the following theorem:1706

Theorem 3.1.3. Assume Conditions C1 and C2. Then, for any measurable set B Ď r0, w˚s,1707

we have1708

lim
nÑ8

Někpn,Bq

n
“ E

«

k´1
ź

i“0

ˆ

SipW0q

SipW0q ` λ˚

˙

1BpW0q

ff

, (3.3)1709

almost surely.1710

A particular consequence of Theorem 3.1.3 is that, for any measurable set B, almost1711

surely, we have1712

Nkpn,Bq

n
Ñ pλ

˚

k pBq.1713

where pλ˚k p¨q is the quantity described in (1.4) of Section 1.4.1, Chapter 1. We prove Theo-1714

rem 3.1.3 in Section 3.2.3.1715

Remark 3.1.4. One may interpret the right hand side of (3.3) as the probability of a sequence1716

of at least k consecutive heads before a first tail when, sampling W0 at random, and flipping1717

the ith coin heads with probability proportional to Si´1pW0q.1718

In a manner analogous to the end of Section 2.2.1 in Chapter 2, Theorem 3.1.3 allows1719

us to deduce, for any measurable set B, almost sure convergence of the quantity Ξpn,Bq{n.1720

First we require the following lemma, which may be of independent interest:1721
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Lemma 3.1.4. Let pSipwqqiě0 denote the process defined in (3.2) in terms of bounded, mea-1722

surable functions g, h, suppose g̃pxq :“ E rgpx,W qs and g̃` “ supxPr0,w˚s g̃pxq. Then, for any1723

w P r0, w˚s, and λ ě g̃` we have1724

8
ÿ

k“1

E

«

k´1
ź

i“0

ˆ

Sipwq

Sipwq ` λ

˙

ff

“
hpwq

λ´ g̃pwq
, (3.4)1725

where the right hand side is infinite if gpwq “ g̃` and λ “ g̃` “ g̃pwq. In particular,1726

8
ÿ

k“1

E

«

k´1
ź

i“0

ˆ

SipW0q

SipW0q ` λ

˙

1BpW0q

ff

“ E
„

hpW0q

λ´ g̃pW0q
1BpW0q



.1727

As the proof of this lemma detracts from the main techniques used in this chapter,1728

we delay its proof to the end of the chapter, in Section 3.4.1.1729

Remark 3.1.5. One may interpret (3.4) as a generalisation of the classic geometric series1730

formula: if we set gpx, yq ” 0, and q :“ hpwq{phpwq ` λq, the left hand side of (3.4) is1731

ř8

i“1 q
i “

hpwq
λ
“

q
1´q

. Indeed, as Remark 3.1.4 shows, one may interpret the left hand side1732

as the expected value of a generalised geometrically distributed random variable.1733

Lemma 3.1.4 allows us to strengthen the weak convergence result of Theorem 3.1.2.1734

One may interpret this result as an analogue of Theorem 2.2.2 from Chapter 2, indeed the1735

proof of this theorem is almost identical to the proof of Theorem 2.2.2.1736

Theorem 3.1.5. Assume Condition C1. Then, for any measurable set A Ď r0, w˚s we have1737

Ξpn,Aq

n
Ñ pψ˚µqpAq,

almost surely.1738

Remark 3.1.6. Lemma 3.1.4 shows that the limiting measure pψ˚µqp¨q is the same as the1739

quantity mpλ˚, ¨q, where mpλ˚, ¨q is the quantity described in (1.9) of Section 1.4.1, Chapter 1.1740

Remark 3.1.7. As the limiting measure appearing in Theorem 2.3.1 is absolutely continuous1741

with respect to µ, and hence almost surely with respect to the measures Ξpn, ¨q, one might1742
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expect to improve this convergence to almost sure convergence in the total variation norm.1743

Indeed, in the simplified model first analysed by Kingman in [51] the convergence takes place1744

in the total variation norm (in this context, however, the sequence of measures he consid-1745

ered was deterministic). Note that Kingman described the non-condensation regime as the1746

“democratic” regime.1747

The Condensation Regime of the PANI-tree1748

In this chapter we undertake a more nuanced investigation into the condensation phe-1749

nomenon in the GPAF-tree, from Section 2.3.2 of Chapter 2. We first make a more precise1750

definition of what condensation means.1751

Definition 3.1.6. Suppose we are given a µ-null set S Ď r0, w˚s. We say that condensation1752

occurs around the set S, if for some nested collection of sets pSεqεě0, 1 with Sε Ó S as εÑ 01753

we have1754

lim
εÑ0

lim
nÑ8

Ξpn, Sεq

n
ą 0,1755

with positive probability.1756

Remark 3.1.8. Informally, condensation means that, in the limit of the random measure1757

Ξpn, ¨q{n, the set S acquires more mass than one ‘would expect’. Indeed, if we swap limits,1758

lim
nÑ8

lim
εÑ0

Ξpn, Sεq

n
“ lim

nÑ8

Ξpn, Sq

n
“ 0,1759

almost surely, since µpSq “ 0.1760

Our main assumptions are now as follows:1761

D1 We have1762

E
„

hpW q

g̃˚ ´ g̃pW q



ă 1. (3.5)1763

1That is, a collection of sets such that if ε1 ă ε2, Sε1 Ď Sε2 .
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D2 The function g satisfies Condition C2.1764

D3 There exists a (maximal) set of pointsM Ď Supp pµq, such that, for any x˚ PM,1765

max
pPr0,w˚s

gpp,W q “ gpx˚,W q P´ a.s.1766

We denote by x˚ a generic point inM.1767

D4 For all ε ą 0 sufficiently small, and a measurable function uε : r0, w˚s Ñ R` with1768

limεÑ0 uε “ 0 pointwise, for x˚ PM, we have1769

Mε :“ tx : P pgpx˚,W q ´ gpx,W q ă uεpW qq “ 1u

“ tx : P pgpx˚,W q ´ gpx,W q ă uεpW qq ą 0u . (3.6)

Under this assumption, we have µpMεq ą 0.1770

Remark 3.1.9. Note that, by the measurability of gp¨, qq for any q P r0, w˚s, the function1771

p ÞÑ ess supqPr0,w˚s tgpx
˚, qq ´ gpp, qq ´ uεpqqu1772

is also measurable - see, e.g. [17, Theorem 4.7.1.]. This ensures that the setMε is measur-1773

able.1774

Example 3.1.10. In the case that gpx, yq “ φ1pxqφ2pyq for bounded, measurable φ1, φ2, if1775

φ1pxq is maximised on a set M and φ2pyq ą 0 µ-a.e., for ε ą 0 and x˚ PM we may take1776

uε “ ε ¨ φ2 and1777

Mε :“ tx : φ1px
˚
qφ2pW q ´ φ1pxqφ2pW q ă εφ2pW qu “ tx : φ1px

˚
q ´ φ1pxq ă εu .

A condition that guarantees that this set has positive measure is assuming continuity of φ11778

at some point x˚ PM, as this implies thatMε is a neighbourhood of x˚.1779

Remark 3.1.11. Conditions D1 and D2 may be interpreted as analogues of Conditions C11780

and C2 in the condensation regime. One may regard M from D3 as a “dominating set”,1781
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in the sense that P-a.s., upon arrival of a new vertex into its neighbourhood, the change of1782

the fitness of any vertex is at most the change of the fitness of a vertex with weight with1783

weight inM. Condition D4 ensures that this “dominating property” is captured by setsMε1784

of positive measure.1785

Indeed the right hand side of (3.6) implies that the change of the fitness of any vertex1786

with weight inMc
ε is at most the change of the fitness of a vertex having weight inMε. Note1787

thatMε ÓM as εÑ 0. This accounts for the formation of the condensate in Theorem 3.1.71788

below, since g̃ is maximised onM, by D1 it must be the case that µpMq “ 0.1789

The following theorem may be viewed as an analogue of Theorem 2.3.1 from Chapter 2.1790

Theorem 3.1.7. Assume Conditions D1-D4. Then,1791

• We have limnÑ8
Zn
n
Ñ g̃˚ “ gpx˚q, almost surely.1792

• For any measurable set A Ď r0, w˚s such that, for ε ą 0 sufficiently small AXMε “ ∅,1793

we have1794

Ξpn,Aq

n
Ñ pψ˚µqpAq, almost surely. (3.7)1795

In addition,1796

lim
εÑ0

lim
nÑ8

Ξpn,Mεq

n
“ 1´ pψ˚µqpr0, w

˚
sq ą 0, (3.8)1797

so that condensation occurs aroundM.1798

• For any measurable set B, almost surely, we have1799

lim
nÑ8

Někpn,Bq

n
“ E

«

k´1
ź

i“0

ˆ

SipW q

SipW q ` g̃˚

˙

1BpW q

ff

.1800

Remark 3.1.12. As the condensation occurs around the “dominating set” M, in the context1801

of reinforced branching processes as described in Remark 3.1.1 and Remark 3.1.2, one may1802

interpret this is families with maximum reinforced ‘fitness’ acquiring a positive proportion of1803
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individuals in the population in the limit. In this context, ‘fitness’ refers to the ability of an1804

individual to produce offspring quickly. This has an interesting interpretation in the context1805

of evolution.1806

We have the following corollary:1807

Corollary 3.1.8. Assume Conditions D1-D4, and the setsMε in D4 are such thatMε Ó1808

M as ε Ñ 0, recalling that Mε denotes the topological closure of Mε. Also, suppose that1809

M “ tx˚u, and define the measure Πp¨q such that, for any measurable set B Ď r0, w˚s1810

ΠpBq “ pψ˚µqpBq ` p1´ pψ˚µqpr0, w
˚
sqq δx˚pBq.1811

Then,1812

Ξpn, ¨q

n
Ñ Πp¨q almost surely,1813

in the sense of weak convergence.1814

Example 3.1.13. In the case that gpx, yq “ φ1pxqφ2pyq for a bounded, continuous function1815

φ1 and bounded measurable function φ2, if φ1pxq is maximised at a unique point x˚ and1816

φ2pyq ą 0 µ-a.e., we may take uε andMε as defined in Example 3.1.10. Indeed, in this case1817

Mε “ tx : φ1px
˚
q ´ φ1pxq ď εu ,

so thatMε Ó tx
˚u as εÑ 0.1818

3.1.2 An Informal Discussion of the Main Results1819

In this subsection, we provide an informal discussion of some of the implications of our main1820

results.1821
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Averaged Power-Law Degrees in the PANI-tree1822

First note that by Theorem 3.1.3, almost surely1823

lim
nÑ8

Nkpn,Bq

n
“ pλ

˚

k pBq “ E

«

λ˚

SkpW q ` λ˚

k´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

1BpW q

ff

.

Now by the strong law of large numbers, one would expect, at least asymptotically, SipW q „1824

hpW q ` ig̃pW q, and thus it is natural to expect1825

lim
nÑ8

Nkpn,Bq

n
„ E

«

λ˚

kg̃pW q ` λ˚

k´1
ź

i“0

ˆ

hpW q ` ig̃pW q

hpW q ` ig̃pW q ` λ˚

˙

ff

.1826

We therefore expect the degrees in this model to behave asymptotically like the GPAF-tree1827

analysed in Section 2.3 of Chapter 2, with ` “ 1 and associated functions h and g̃. Recall1828

that in Section 2.3.1 of Chapter 2, we showed that on any measurable set B where g̃ and h1829

are bounded1830

E

«

λ˚

kg̃pW q ` λ˚

k´1
ź

i“0

ˆ

hpW q ` ig̃pW q

hpW q ` ig̃pW q ` λ˚

˙

ff

“ E
”

cBk
´p1`λ˚{g̃pW qq1BpW q

ı

,1831

where cB depends on g and h but not k. Thus, informally, like the GPAF-tree, the PANI-1832

tree displays a degree distribution that satisfies an ‘averaged’ power law that depends on the1833

distribution µ. Noting also that λ˚{g̃pW q ą 1, the exponent of this power law is larger than1834

2. A similar analysis can be applied to the condensation regime by applying Theorem 3.1.7.1835

The Growth of the Neighbourhood of Fixed Vertex in the PANI-tree1836

In the following proposition, we let fnpvq “ fpN`pv, Tnqq denote the fitness, as defined1837

in (3.1), of a vertex labelled v P N0, with weight wv in the tree at time n. In addition, let1838

pRiqiěv denote the filtration generated by the tree process pTiqiěv. Next, set1839

Mnpvq :“
fnpvq

śn´1
s“v

´

Zs`g̃pwvq
Zs

¯ .1840
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Proposition 3.1.9. For any vertex v, pMnpvqqněv is a martingale with respect to the filtra-1841

tion pRiqiěv.1842

Proof. Using the definition of the process, for n ě v we compute1843

E rfn`1pvq|Rns “
fnpvq

Zn
pfnpvq ` g̃pwvqq `

ˆ

1´
fnpvq

Zn

˙

fnpvq

“ fnpvq

ˆ

Zn ` g̃pwvq
Zn

˙

.

The result follows from the definition of pMnpvqqněv.1844

Now, here we note two things: first, if deg`t pvq denotes the out-degree of vertex v at1845

time n, then we expect fnpvq „ deg`n pvq. In fact, by applying Wald’s lemma, one can show1846

E rfnpvqs “ hpwvq ` E
“

deg`n pvq
‰

g̃pwvq. Second, by Theorems 3.1.1 and 3.1.7, we expect1847

Zi „ λ˚i and g̃˚i in the non-condensation and condensation regimes respectively. Thus, we1848

expect1849

deg`n pvq „
n´1
ź

s“v

ˆ

Zs ` g̃pwvq
Zs

˙

„

$

’

’

&

’

’

%

ng̃pwvq{λ
˚

, under Conditions C1 and C2;

ng̃pwvq{g̃
˚

, under Conditions D1-D4.
1850

Therefore, in the non-condensation regime, we expect each individual vertex to grow like1851

ng̃pwvq{λ
˚

ď ng̃
˚{λ˚ ă n, whereas, in the condensation regime, vertices with weight wv such1852

that gpwvq is closer and closer to g̃˚ grow at a rate closer and closer to linearity with respect1853

to the size of the network. Note that to turn this argument into a rigorous result in terms1854

of E
“

deg`n pvq
‰

, one requires L1 convergence of the martingale in Proposition 3.1.9.1855
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3.1.3 Overview and Techniques1856

Overview of this Chapter1857

In Section 3.2 we prove results about the model related to the non-condensation regime. We1858

first review some background theory about Pólya urns in Section 3.2.1, and then, the results1859

of Section 3.2.2 are used in order to prove Theorem 3.1.1 and Theorem 3.1.2 in Section 3.2.21860

and Section 3.2.2 respectively. Next, the results of Section 3.2.3 are used to prove Theo-1861

rem 3.1.3 and Theorem 3.1.5 in Section 3.2.3 and Section 3.2.3. In Section 3.3 we extend these1862

results to the condensation regime, proving Theorem 3.1.7 and Corollary 3.1.8 Section 3.3.11863

and Section 3.3.2 and respectively. Finally, we prove Lemma 3.1.4 in Section 3.4.1.1864

Techniques used in this Chapter1865

The results in this chapter generalise the techniques used in [20] for the study of the Bianconi-1866

Barabási model, using a Pólya urn approximation. However, the generalisation of this model1867

to bounded measurable functions h, functions g satisfying Condition C2, and the possibility1868

of arbitrary weight distributions lead to technical challenges, somewhat analogous to those1869

arising from using a measure-theoretic approach to integration as opposed to the Riemann1870

integral. Applying this approach to studying the degree distribution in the case of uncount-1871

ably supported weight distributions also appears to be novel. The couplings used in the1872

Pólya urn approximation, Proposition 3.2.6 and Proposition 3.2.12 and the coupling used to1873

extend the results to the condensation regime, Lemma 3.3.2, are closely related to that used1874

in Lemma 2.3.2 in Chapter 2, and thus we encourage the reader to quickly review the latter1875

coupling before reading the rest of this chapter.1876

One might imagine that many of the results here may follow easily from an application1877

of the theory of Crump-Mode-Jagers branching processes, for example as in Section 2.2 of1878
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Chapter 2. However, the dependence between the point processes associated with a parent1879

and its offspring means that the classic theory is not immediately applicable. This in turn1880

raises the question of whether one can develop a theory of C-M-J branching processes with1881

dependencies between the point-processes associated with individuals.1882

3.2 The Non-Condensation Regime1883

3.2.1 A Brief Introduction to Generalised Pólya Urns1884

Generalised Pólya urns are a well studied family of stochastic processes representing the1885

composition of an urn containing balls with certain types. If T denotes the set of possible1886

types, associated to a ball of type t P T is a non-negative activity aptq, which depends on1887

the type. The process then evolves in discrete time so that, at each time-step, a ball of type1888

t is sampled at random from the urn with probability proportional to its activity aptq, and1889

replaced with balls of a number of different types according to a possibly random replacement1890

rule.1891

In the case that T is finite, the configuration of the urn after n replacements may be1892

represented as a composition vector pXnqnPN0 with entries labelled by type, and the activities1893

encoded in an activity vector a. In this vector, the ith entry corresponds to the number of1894

balls of type i P T . Let pξijqi,jPT be the matrix whose ijth component denotes the random1895

number of balls of type j added, if a ball of type i is drawn, and (following the notation1896

of Janson in [45]) define the matrix A such that Aij :“ ajE rξjis. The expected evolution1897

of the urn in the pn ` 1qst step, may therefore be obtained by applying the matrix A to1898

the composition vector Xn. A type i P T is said to be dominating if, for any j P T , it is1899

possible to obtain a ball of type j starting with a ball of type i. If we write i „ j for the1900
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equivalence relation where i „ j if it is possible to obtain j starting from a ball of type i, and1901

vice versa. This partitions the types into equivalence classes. A class C Ď T is dominating1902

if, for every i P C , i is dominating. Moreover, the eigenvalues of A may be obtained by the1903

restriction of A to its classes; we say an eigenvalue belongs to a dominating class if it is an1904

eigenvalue of the restriction of A to this class. Finally, we say that the urn, or the matrix1905

A, is irreducible if there is only one dominating class. Note the difference when compared to1906

irreducible matrices in the context of Markov chains: here it is possible for diagonal entries1907

to be negative. Now, assume the following conditions are satisfied:1908

(A1) For all i, j P T , ξij ě 0 if i ‰ j and ξii ě ´1.1909

(A2) For all i, j P T , E
“

ξ2
ij

‰

ă 8.1910

(A3) The largest real eigenvalue λ1 of A is positive.1911

(A4) The largest real eigenvalue λ1 is simple.1912

(A5) We start with at least one ball of a dominating type.1913

(A6) λ1 belongs to the dominating class.1914

The following is a well known result of Janson from 2004 building on previous work1915

by by Athreya and Karlin (for example, [6, Proposition 2] and [5, Theorem 5]):1916

Theorem 3.2.1 ([45, Theorem 3.16]). Assume Conditions (A1)-(A6), and suppose that v11917

denotes the right eigenvector, corresponding to the leading eigenvalue λ1 of A, normalised so1918

that aTv1 “ 1. Then, we have1919

Xn

n
nÑ8
ÝÝÝÑ λ1v1,1920

almost surely, conditional on essential non-extinction, i.e., non-extinction of balls of domi-1921

nating type.1922
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In addition, the following lemma by Janson provides convenient criteria for satisfying1923

(A1)-(A6):1924

Lemma 3.2.2 ([45, Lemma 2.1]). If A is irreducible, (A1) and (A2) hold,
ř

jPT E rξijs ě 01925

for all i P T , with the inequality being strict for some i P T , then (A1) - (A6) are satisfied1926

and essential extinction does not occur.1927

We will not only analyse the PANI-tree using generalised Pólya urns, but also the1928

dynamical model of random simplicial complexes, in Section 4.3 of Chapter 4.1929

Analysing the PANI-tree using Pólya Urns1930

The idea behind analysing the distribution of edges with a given weight, and the degree1931

distribution in this model, is to consider two different types of Pólya urns, which we call Urn1932

E and Urn D respectively. We illustrate the evolution of both these urns below. Recall,1933

Figure 3.1 illustrates a possible evolution of a step of the process pTiqiPN0 ; Figures 3.2 and1934

3.3 illustrate the corresponding steps in Urn E and Urn D.1935

In Urn E, we consider a generalised Pólya urn with balls of two types: singletons1936

x, and tuples px, yq, corresponding to ‘edges’ and ‘loops’. A ball of type px, yq has activity1937

gpx, yq and a ball of type x has activity hpxq. At each step, if a ball of type given by either x1938

or px, yq is selected, we introduce two new balls, of which one has random type W , and the1939

other has type px,W q. In relation to the evolving tree, this corresponds to the event that a1940

vertex of weight x has been sampled in the subsequent step.1941

98



Preferential Attachment Trees with Neighbourhood Influence

0 1

(W0,W1)

W0 W1 0 1

(W0,W1)

W0 W1
0

1

2

(W0,W1)

W0

W1

(W1,W2)

W2

Figure 3.2: The evolution of the tree from T1 to T2 from Figure 3.1 viewed

as a transition in Urn E. The event vertex 1 is selected may be interpreted

as the event that the ‘loop’ W1 is selected in the Pólya urn - and thus the

arrival of the vertex 2 corresponds to the arrival of the ‘loop’ W2 and the

‘edge’ pW1,W2q in the Pólya urn.

In Urn D, we consider a generalised Pólya urn with balls of types corresponding to1942

tuples of varying lengths. A ball of type px0, . . . , xkq has activity hpx0q `
řk
i“1 gpx0, xiq, and1943

at each step, if a ball this type is selected, we remove it and introduce two new balls: one1944

of random type W , and one of type px0, . . . , xk,W q. In relation to the evolving tree, this1945

corresponds to the event that a vertex v of weight x0 has been sampled when proceeding to1946

the subsequent step, with neighbours of v listed in order of arrival having weights x1, . . . , xk.1947
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W0,W1 W1 W0,W1 W1

W0,W1

W1,W2

W2

Figure 3.3: The evolution of the tree from T1 to T2 from Figure 3.1 viewed

as a transition in Urn D. The event vertex 1 is selected may be interpreted

as the event that the ball W1 is selected in the Pólya urn - and thus the

arrival of the vertex 2 corresponds to the addition of the balls W2 and

pW1,W2q. The latter ball represents the addition of vertex 2 into the

neighbourhood of vertex 1.

Note that, in the manner we have described Urns E and D, the set of possible types1948

may be infinite: the measure µ may have infinite support so that W may take on infinite1949

values, and the neighbourhoods of vertices (in Urn D) may be infinite. Whilst there is some1950

theory related to infinite type Pólya urns within the framework of measure-valued Pólya1951

processes (see, for example, [59]), these results are often non-trivial to apply in practice,1952

as we will see in Section 4.3 of Chapter 4. We instead opt for a different approach by1953

approximating these infinite urns with urns of finitely many types - enough to approximate1954

the sigma algebras generated by W, gpW,W 1q and hpW q, where W,W 1 are i.i.d random1955

variables sampled according to µ. In Section 3.2.2 we apply this analysis to Urn E, and in1956

Section 3.2.3 we apply it to Urn D. We first introduce some extra notation specific to this1957

section.1958
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Some More Notation and Terminology used in this Section1959

Recall from Section 1.3.1 of Chapter 2, that for a natural number N P N, we denote by rN s1960

the set t1, . . . , Nu. In order to apply the finite Pólya urn theory, given a set of types T , we1961

denote by VT the free vector space over the field R generated by T , i.e., the vector space1962

where vectors are indexed by the elements of T . We will generally view an urn with types1963

T as a stochastic process taking values in VT . In addition we will generally identify vectors1964

v P VT interchangeably with functions v : T Ñ R. Thus, for x P T , vpxq denotes the entry1965

of the vector corresponding to x, and for v1,v2 P VB, we have pv1v2qpxq “ v1pxqv2pxq. For1966

x P T , we define δx P VT such δxpyq “ 1 if y “ x and 0 otherwise.1967

For a Borel measurable set S Ď R, and a finite set A of Borel measurable subsets of1968

S, we say that A “ tA1, . . . , Asu forms a good partition of S if, given any two nonempty1969

sets Ai, Aj P A, Ai X Aj ‰ ∅ ùñ Ai “ Aj, and
Ťs
i“1Ai “ S. Note that, given two good1970

partitions A1,A2 of S, the set1971

tA1 X A2 : A1 P A1, A2 P A2u (3.9)1972

also forms a good partition of S. In addition, if A is a good partition of S, we say that1973

A1 forms a refined good partition of A, if, for any A1 P A1 there exists A P A such that1974

A1 Ď A. Often, we will simply write refined partition for a refined good partition. The1975

following lemma, which is well-known, justifies the use of the word ‘refined’.1976

Lemma 3.2.3. Suppose A is a good partition of a set S, and A1 is a refined partition of1977

A. Then, for any set A P A, there exist sets X1, . . . , Xs P A1 such that A “
Ťs
i“1Xi. In1978

particular, tXiuiPrss forms a good partition of A.1979

Proof. ForA P A, define the sub-family X :“ tA1 P A1 : A1 Ď Au . Suppose U :“ p
Ť

XPX Xq ‰1980

A. Then, there exists x P AzU , and since A1 partitions S, x P V 1, for some set V 1 P A1 with1981

V 1 Ę A. But then, since A1 is a refined partition of A, V 1 Ď V for some V P A. But then,1982
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this implies that either V X A ‰ ∅, contradicting the fact that A is a good partition of S,1983

or V “ A, contradicting the fact that V 1 Ę A.1984

3.2.2 Analysing the PANI-tree by Coupling with Urn E1985

In this subsection we will refer to Conditions C1 and C2. We will analyse the process under1986

these conditions by coupling the tree process pTnqnPN0 with Pólya urn processes, parame-1987

terised by m P N. These may be interpreted as finite approximations of Urn E. Now, for1988

each x P R and m P N we define a good partition of the interval r0, xs into 2m intervals, i.e.,1989

a dyadic partition. Set1990

Dm1 pxq :“ r0, 2´mxs, and Dmi pxq :“ ppi´ 1q ¨ 2´mx, i ¨ 2´mxs, i P r2mszt1u.

For i P r2ms, we also denote the closure of Dmi pxq by D
m

i pxq, so that1991

Dmi pxq “ rpi´ 1q ¨ 2´mx, i ¨ 2´mxs.1992

Supposing h : r0, w˚s Ñ R` takes values in r0, hmax s, and recalling the functions φpjq1 , φ
pjq
2 , j P1993

rN s from Condition C2, for each i P r2ms, j P rN s and k P r2s, we set1994

Hm
i :“ h´1

pDmi phmaxqq and Φm
k pi, jq :“

´

φ
pjq
k

¯´1

pDmi pJqq .

By the measurability assumptions on the functions φpjqk and h, for each i P r2ms, j P rN s and1995

k P r2s, the sets Hm
i and Φm

i pj, kq are measurable, and thus, the collections of sets tHm
i uiPr2ms1996

and tΦm
k pi, jquiPr2ms form good partitions of r0, w˚s. We now split the latter family of sets to1997

form a refined partition: for i “ pi1, . . . , iNq, j “ pj1, . . . , jNq P r2msN , if we set1998

Φm
1 piq “ Φm

1 pi1, 1q X Φm
1 pi2, 2q X ¨ ¨ ¨ X Φm

1 piN , Nq and,

Φm
2 pjq “ Φm

2 pj1, 1q X Φm
2 pj2, 2q X ¨ ¨ ¨ X Φm

2 pjN , Nq, (3.10)
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by iteratively applying (3.9), the families of sets tΦm
1 piquiPr2msN and tΦm

2 pjqujPr2msN also form1999

good partitions of r0, w˚s. Now, given v “ pv1, . . . , vNq P r2
msN , set2000

Dmv pJq :“ Dmv1pJq ˆD
m

v2
pJq ˆ ¨ ¨ ¨ ˆDmvN pJq,2001

and observe that, given i, j P r2msN , the construction of the sets in (3.10) are such that2002

px, yq P Φm
1 piq ˆ Φm

2 pjq implies that2003

´

φ
p1q
1 pxq, . . . , φ

pNq
1 pxq, φ

p1q
2 pyq, . . . , φ

pNq
2 pyq

¯

P Dmi pJq ˆD
m

j pJq2004

Now, recalling the function κ : r0, Js2N Ñ r0, gmaxs from Condition C2, for each i, j P r2msN ,2005

by continuity on the compact set Dmi pJq ˆD
m

j pJq, for px, yq P Φm
1 piq ˆ Φm

2 pjq we have2006

κ
´

φ
p1q
1 pxq, . . . , φ

pNq
1 pxq, φ

p1q
2 pyq, . . . , φ

pNq
2 pyq

¯

ě inf
u,vPDmi pJqˆD

m
j pJq

tκpu,vqu

“ min
u,vPDmi pJqˆD

m
j pJq

tκpu,vqu “: κ´pi, jq, (3.11)

and likewise,2007

κ
´

φ
p1q
1 pxq, . . . , φ

pNq
1 pxq, φ

p1q
2 pyq, . . . , φ

pNq
2 pyq

¯

ď sup
u,vPDmi pJqˆD

m
j pJq

tκpu,vqu

“ max
u,vPDmi pJqˆD

m
j pJq

tκpu,vqu “: κ`pi, jq. (3.12)

Now, set2008

g´px, yq :“
ÿ

i,jPr2msN

κ´pi, jq1Φm1 piqˆΦm2 pjq
px, yq, g`px, yq :“

ÿ

i,jPr2msN

κ`pi, jq1Φm1 piqˆΦm2 pjq
px, yq;2009

and2010

h´pxq :“
2m
ÿ

i“1

pi´ 1q ¨ 2´mhmax1Hi
pxq, h`pxq :“

2m
ÿ

i“1

i ¨ 2´mhmax1Hi
pxq.2011

One should interpret these functions as lower and upper approximations to g and h, indeed,2012

by construction, we now have the following lemma:2013

Lemma 3.2.4. We have g´ Ò g, h´ Ò h, g` Ó g and h` Ó h uniformly, as mÑ 8.2014
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Proof. We prove the statements regarding h´ and g´; the others follow analogously (in the2015

case of g` using (3.12) instead of (3.11)). Since the sets pHm
i qiPr2ms form a good partition of2016

r0, w˚s, for each m P N, given x P r0, w˚s, we have x P Hm
j for some j P r2ms, and thus2017

h´pxq “ pj ´ 1q ¨ 2´mhmax ď hpxq ď h´pxq ` 2´mhmax.2018

The convergence result for h´ follows. Now, note that by uniform continuity of κ on the2019

compact set r0, Js2N , for ε ą 0, let M be sufficiently large so that for all u,v P r0, Js2N2020

}u´ v} ă
?

2N ¨ 2´MJ ùñ |κpuq ´ κpvq| ă ε.

2021

Now, for any m ąM , given px, yq P r0, w˚sˆ r0, w˚s, there exists a unique set Φm
1 piqˆΦm

2 pjq2022

containing px, yq, which implies that2023

´

φ
p1q
1 pxq, . . . , φ

pNq
1 pxq, φ

p1q
2 pyq, . . . , φ

pNq
2 pyq

¯

P Dmi pJq ˆD
m

j pJq.2024

Thus, for each j P rN s, combining this equation with the definition of κ´pi, jq from (3.11),2025

we have2026

κ´pi, jq ď κ
´

φ
p1q
1 pxq, . . . , φ

pNq
1 pxq, φ

p1q
2 pyq, . . . , φ

pNq
2 pyq

¯

ď κ´pi, jq ` ε,2027

and thus2028

g´px, yq ď gpx, yq ď g´px, yq ` ε.2029

The result now follows.2030

Now, using the good partitions tHm
i uiPr2ms, tΦm

1 piquiPr2msN , tΦm
2 pjqujPr2msN2031

and tDmi pw˚quiPr2ms, we will form an even more refined partition, which we will use as the2032

“building blocks” of the evolution of the Pólya urn approximations. For each m, define the2033

good partition I m such that2034

I m :“

"

I Ď r0, w˚s : I “ Hm
p XDmq pw˚q X Φm

1 piq X Φm
2 pjq, p, q P r2

m
s, i, j P r2msN

*

. (3.13)

104



Preferential Attachment Trees with Neighbourhood Influence

Intuitively, this family of sets is such that the finite σ-algebra σpI mq, is “fine enough" to2035

approximate the Borel sigma algebra on r0, w˚s, and also capture the behaviour of g and h.2036

Observe that, for m1 ă m2, I m2 is a refined partition of I m1 .2037

Suppose |I m| “ Dm; then we label the sets in I m arbitrarily as pImi qiPrDms. Now,2038

for each px, yq P Imi ˆ Imj , g´px, yq and g`px, yq are constant, depending only on pi, jq, and2039

likewise, for each x P Im` , h´pxq and h`pxq are constant, depending on `. Motivated by this,2040

for each pi, jq P rDms ˆ rDms, we define the following quantities:2041

gmin pi, jq :“ g´px, yq, gmax pi, jq :“ g`px, yq, px, yq P Imi ˆ Imj ,

and likewise, for each ` P rDms, we define2042

hmin p`q :“ h´pxq, hmax p`q :“ h`pxq, x P Im` ,

We also set2043

rpxq :“
Dm
ÿ

i“1

i1Imi pxq,2044

so that rpxq “ i if x P Imi . In addition, set2045

pmi :“ µ pImi q , i P rDms, g˚pjq :“ max
iPrDms

tgmax pi, jqu ,

g̃´piq :“
Dm
ÿ

j“1

pmj gmin pi, jq, g̃`piq :“
Dm
ÿ

j“1

pmj gmax pi, jq, and g̃˚` :“
Dm
ÿ

j“1

pmj g
˚
pjq.(3.14)

Recall that g̃pxq “ E rgpx,W qs, and note that g̃´prpxqq “ E rg´px,W qs, g̃`prpxqq “2046

E rg`px,W qs and g̃˚` “ E
“

maxxPr0,w˚s g
`px,W q

‰

. Then, observe that by Lemma 3.2.4 and2047

dominated convergence, g̃´prpxqq Ò g̃pxq, g̃`prpxqq Ó g̃pxq and2048

g̃˚` Ó E

«

sup
xPr0,w˚s

gpx,W q

ff

“ g̃˚, as mÑ 8.2049

The Definition of Urn E2050

We are now ready to define the urn process pUnqnPN0 . For i P N, set2051

rDms
i :“ rDms ˆ rDms ¨ ¨ ¨ ˆ rDms “ tpu0, . . . ui´1q : u0, . . . , ui´1 P rDmsu ,2052

105



Preferential Attachment Trees with Neighbourhood Influence

and2053

B :“ rDms Y rDms
2
Y ptDm ` 1u ˆ rDmsq ;

this will represent the set of types in Urn E. We now define parameters γ such that, for2054

x P rDms Y rDms ˆ rDms,2055

γpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

gmin pi,jq
gmax pi,jq

, x “ pi, jq P rDms
2, gmax pi, jq ą 0;

hmin piq
hmax piq

, x “ i P rDms, hmax piq ą 0;

0, otherwise.

(3.15)

Then, we define the urn process pUmn qnPN0 as the urn process with activities a such that2056

apxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

gmax pi, jq if x “ pi, jq, i, j P rDms

g˚max pjq if x “ pi, jq, i “ Dm ` 1, j P rDms

hmax piq if x “ i P rDms;

(3.16)

and a replacement matrix M such that, for x, x1 P VB,2057

Mx1,x “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

pγaqpxqpm` , if x1 “ pi, `q, x P ptiu ˆ rDmsq Y tiu, i, ` P rDms;

pa´ γaqpxqpm` , if x1 “ pDm ` 1, `q , x P B;

apxqpm` , if x1 “ `, x P B;

0 otherwise.

Note that it is not necessarily the case thatM is irreducible: it may be the case that apxq “ 02058

for certain x P B (this is possible if hmax piq “ 0 or gmax pi, jq “ 0), or it may be the case2059

that pm` “ 0 for certain choices of `. We therefore define the following subsets of B:2060

U1 :“ tx P B : Mx1x “ 0 @x1 P Bu “ tx P B : apxq “ 0u ,2061

and2062

U2 :“ tx1 P B : Mx1x “ 0 @x P Bu .2063
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Also assume that U1XU2 “ ∅; if not, we replace U1 by U1zU2. We then setR “ BzpU1YU2q,2064

and letMR be the restriction ofM to R. It is easy to check thatMR is irreducible, and thus,2065

by Lemma 3.2.2, has a unique largest positive eigenvalue λm with corresponding eigenvector2066

uR. But then, writing M in block form (with columns and rows labelled by R,U1,U2) for2067

suitable matrices A,B,C, we have2068

M “

R U1 U2
¨

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‚

MR 0 B R

A 0 C U1

0 0 0 U2

.2069

Thus,M has the same largest positive eigenvalue, with corresponding right eigenvector given2070

(in block form) by2071

um “

»

—

—

—

—

–

uR
`

λ´1
R

˘

AuR

0

fi

ffi

ffi

ffi

ffi

fl

.2072

Here, we assume um is normalised so that a ¨ um “ 1. In addition, assuming we begin2073

with a single ball x P R, one readily verifies that the restriction of M to R and U1 satisfies2074

conditions (A1)-(A6) of Subsection 3.2.1. Note also, that at each time-step the probability2075

of adding a ball of type x P U2 is 0 and thus, for each n P N0, Unpxq “ 0 almost surely.2076

Therefore, combining this fact with Theorem 3.2.1, we have the following corollary.2077

Corollary 3.2.5. With um, λm and R as defined above, assuming we begin with a ball x P R,2078

we have2079

Umn
n

nÑ8
ÝÝÝÑ λmum (3.17)2080

almost surely. In particular, almost surely2081

a ¨ Umn
n

nÑ8
ÝÝÝÑ λm. (3.18)2082
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In the coupling below, the assumption of a ball x P R is met by the tree process being2083

initiated by a vertex 0 with weight W0 sampled at random from µ and satisfying hpW0q ą 0.2084

Coupling Urn E with the PANI-tree Process2085

For a product measurable set A Ď r0, w˚s ˆ r0, w˚s, recall the definition of Ξp2qpA, nq from2086

(1.6): this is the number of directed edges pv, v1q of Tn where pWv,Wv1q P A.2087

Proposition 3.2.6. There exists a coupling ppÛmn qmPN, T̂nqnPN0 of the Pólya urn processes2088

tpUmn qnPN0 ,m P Nu and the tree process pTnqnPN0 such that, for each m P N, almost surely2089

(on the coupling space), Ûm0 “ δ` for an initial ball of type ` P R and, in addition, for2090

pi, jq P rDms
2, we have2091

Ûmn ppi, jqq ď Ξp2qpn, Imi ˆ Imj q, (3.19)

ÿ

pi,jqPrDms2

´

Ξp2qpn, Imi ˆ Imj q ´ Ûmn ppi, jqq
¯

“

Dm
ÿ

j“1

Ûmn ppDm ` 1, jqq, (3.20)

and2092

pγaq ¨ Ûmn ď Zn ď a ¨ Ûmn . (3.21)

for all n P N0.2093

Proof. First sample the entire tree process pT̂nqnPN0 ; we will use this to define the evolution2094

of the urn processes. Moreover, for i P rDms let2095

ηnpiq :“
ÿ

vPTn:rpvq“i

fpN`
pv, Tnqq;2096

i.e., the sum of fitnesses of vertices with weight belonging to Imi . Also, for i P rDms define2097

θnpiq :“ pγ a Ûmn qpiq `
Dm
ÿ

j“1

pγ a Ûmn qppi, jqq.2098
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Finally, recall that Zn denotes the partition function associated with the tree at time n.2099

Assume that at time 0 the tree consists of a single vertex 0 such that rpW0q “ ` P rDms.2100

Then, set Ûm0 “ δ`. Using the definition of r, since W0 P Im`2101

0 ă Z0 “ hpW0q ď hmax p`q “ a ¨ Ûm0 ,2102

and by the choice of γ, we have2103

η0p`q “ hpW0q ě hmin p`q “ pγ a Ûm0 qp`q “ θ0p`q.2104

In this case, (3.19) and (3.20) are trivially satisfied since both sides of both equations are 0.2105

Now, assume inductively that after n steps in the urn process, (3.19) and (3.20) are satisfied,2106

we have2107

ηnpkq ě θnpkq for each k P rDms , (3.22)

and moreover, Zn ď a ¨ Ûmn . Note that (3.22) implies the left hand side of (3.21), since2108

pγaq ¨ Ûmn “
Dm
ÿ

k“1

θnpkq ď
Dm
ÿ

k“1

ηnpkq “ Zn.2109

Let s be the vertex sampled from Tn in the pn`1qst step, and assume that rpWsq “ `1,2110

rpWn`1q “ k. Then, for the pn`1qth step in the urn: sample an independent random variable2111

Un`1 uniformly distributed on r0, 1s. Then:2112

• If Un`1 ď
θnp`1qZn
ηnp`1qa¨Ûmn

, add balls of type p`1, kq and k to the urn, i.e., set Ûmn`1 “ Ûmn `2113

δp`1,kq ` δk.2114

• Otherwise, add balls of type pDm ` 1, kq , k.2115

Note that, in the first case, we have2116

Ξp2qpn` 1, Im`1 ˆ Imk q “ Ξp2qpn, Im`1 ˆ Imk q ` 1 ě Ûmn pp`1, kqq ` 1 “ Ûmn`1pp`
1, kqq
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and for i ‰ `1 or j ‰ k2117

Ξp2qpn` 1, Imi ˆ Imj q “ Ξp2qpn, Imi ˆ Imj q ě Ûmn ppi, jqq “ Ûmn`1ppi, jqq.2118

Also, in this case2119

ηn`1p`
1
q “ ηnp`

1
q ` gpWs,Wn`1q ě θnp`

1
q ` gmin p`

1, kq “ θn`1p`
1
q,2120

and similarly,2121

ηn`1pkq “ ηnpkq ` hpWn`1q ě θnpkq ` hmin pkq “ θn`1pkq,2122

so that (3.22) is satisfied. Finally, in this case,2123

Zn`1 “ Zn ` gpWs,Wn`1q ` hpWn`1q ď a ¨ Ûmn ` gmax p`
1, kq ` hmax pkq “ a ¨ Ûmn`1.2124

Meanwhile, in the second case Ξp2qpn, Im`1 ˆ Imk q and ηnp`1q increase, while
řDm
j“1 Ûmn pp`1, jqq2125

and θnp`
1q remain the same, and thus (3.19) is satisfied and ηn`1p`

1q ě θn`1p`
1q. As this2126

is the only case when Ξp2qpn, Im`1 ˆ Imk q ´ Ûmn pp`1, kqq increases, and we add a ball of type2127

pDm ` 1, kq, (3.20) also follows. Both ηnpkq and θnpkq increase as in the first case. Next,2128

Zn`1 “ Zn ` gpWs,Wn`1q ` hpWn`1q ď a ¨ Ûmn ` g˚max pkq ` hmax pkq “ a ¨ Ûmn`1.2129

As all other quantities remain the same, (3.22) is satisfied, and moreover, Zn`1 ď a ¨ Ûmn`1.2130

To complete the proof, it remains to prove the following claim.2131

Claim 3.2.7. For each m P N, almost surely (on the coupling space), the urn process Ûm “2132

pÛmn qnPN0 is distributed like the Pólya urn process pUmn qnPN0 with Um0 “ δ` for an initial ball2133

of type ` P R.2134

Proof. First note that, since W0 is sampled from µ, conditionally on the positive probability2135

event thpW0q ą 0u, we have2136

P pW0 P Im` , hpW0q ą 0q ď P pW0 P Im` q “ pm` ,2137
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and thus, P-a.s., we have W0 P Im` with pm` ą 0. This, combined with the fact that 0 ă2138

hpW0q ď hmax p`q, implies that P-a.s., the initial ball ` P R.2139

Now, note that in every step in pÛmn qnPN0 , we add a ball of type k for k P rDms with2140

probability pmk , which is the same as in pUmn qnPN0 . Moreover, given Ûmn , the probability of2141

adding balls of type pk, `q is2142

pm`

˜

ηnpkq

Zn
ˆ

θnpkqZn
ηnpkqa ¨ Ûmn

¸

“ pm`
θnpkq

a ¨ Ûmn
,2143

which also agrees with the Pólya urn scheme. Finally, the probability of adding a ball of2144

type pDm ` 1, `q is2145

pm`

Dm
ÿ

j“1

«˜

1´
θnpjqZn

ηnpjqa ¨ Ûmn

¸

ηnpjq

Zn

ff

“ pm`

˜

1´
Dm
ÿ

j“1

θnpjq

a ¨ Ûmn

¸

,2146

as required.2147

2148

Note also, that, since the functions h`, g` are non-increasing pointwise in m, on the2149

coupling we have that for any fixed n, a ¨ Umn is non-increasing in m. Combining this result2150

with Corollary 3.2.5, we have the following corollary.2151

Corollary 3.2.8. The sequence pλmqmPN is non-increasing in m. In particular, there exists2152

a limit λ8 ě 0 such that2153

λm Ó λ82154

as mÑ 8.2155

The Limiting Vectors of Urn Schemes Associated with Urn E2156

We now calculate the limiting vector um and the limiting eigenvalue λm. First note that by2157

the definition of the urn process, for each n P N0, ` P rDms we have that Umn`1p`q ´ Umn p`q2158

111



Preferential Attachment Trees with Neighbourhood Influence

is Bernoulli distributed with parameter pm` . Thus, by the strong law of large numbers and2159

Corollary 3.2.5, we have, for each ` P rDms,2160

ump`q “
pm`
λm

. (3.23)

Next, for any i, j P rDms using the definitions of γ and a ((3.15) and (3.16)) we have2161

λmumppi, jqq “ pmj

Dm
ÿ

`“1

pγ aumqppi, `qq ` p
m
j pγ aumqpiq

“ pmj

Dm
ÿ

`“1

gmin pi, `qumppi, `qq ` p
m
j hmin piqumpiq

(3.23)
“ pmj

Dm
ÿ

`“1

gmin pi, `qumppi, `qq `
pmj p

m
i hmin piq

λm
. (3.24)

We now define2162

Ai :“
Dm
ÿ

`“1

gmin pi, `qumppi, `qq.2163

Multiplying both sides of (3.24) by gmin pi, jq and taking the sum over j P rDms, recalling2164

the definition of g̃´piq in (3.14), we get2165

λmAi “
ˆ

Ai `
pmi hmin piq

λm

˙ Dm
ÿ

j“1

pmj gmin pi, jq

“

ˆ

Ai `
pmi hmin piq

λm

˙

g̃´piq.

Thus, solving for Ai2166

Ai “
pmi hmin piq g̃´piq

λmpλm ´ g̃´piqq
. (3.25)

Substituting (3.25) into (3.24), we have2167

λmumppi, jqq “ pmj

ˆ

pmi hmin piq g̃´piq

λmpλm ´ g̃´piqq
`
pmi hmin piq

λm

˙

“ pmj
pmi hmin piq

λm ´ g̃´piq
. (3.26)
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Meanwhile, for each j P rDms we have2168

λmumppDm ` 1, jqq “ pmj

˜

Dm
ÿ

`“1

paumqppDm ` 1, `qq `
Dm
ÿ

i“1

Dm
ÿ

`“1

pa´ γ aqppi, `qq `
Dm
ÿ

i“1

pa´ γ aqpiq

¸

“ pmj

˜

Dm
ÿ

`“1

g˚p`qumppDm ` 1, `qq `
Dm
ÿ

i“1

Dm
ÿ

`“1

pgmax pi, `q ´ gmin pi, `qqumppi, `qq

`

Dm
ÿ

i“1

phmax piq ´ hmin piqqumpiq

¸

“: pmj pBm ` Emq ; (3.27)

where, in the last equation we set2169

Bm :“
Dm
ÿ

`“1

g˚p`qumppDm ` 1, `qq2170

and2171

Em :“
Dm
ÿ

i“1

Dm
ÿ

`“1

pgmax pi, `q ´ gmin pi, `qqumppi, `qq `
Dm
ÿ

i“1

phmax piq ´ hmin piqqumpiq.2172

Multiplying both sides of (3.27) by g˚pjq and taking the sum over j, we have2173

λmBm “

˜

Dm
ÿ

j“1

pmj g
˚
pjq

¸

pBm ` Emq “ g̃˚`pBm ` Emq2174

and thus2175

Bm “
g̃˚`

λm ´ g̃˚`
Em. (3.28)

Note that all of the previous analysis implicitly applied Condition C2. We now apply2176

Condition C1 in the following lemma:2177

Lemma 3.2.9. Assume Conditions C1 and C2. Then, we have λ8 :“ limmÑ8 λm ą g̃˚.2178

Proof. Note that, since we add two balls to the urn at each time-step, we have2179

}Umn`1}1 ´ }Umn }1 “ 2.2180
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Thus, by (3.17), we have }λmum}1 “ 2. Now, by (3.23), we have λm
řDm
`“1 ump`q “ 1, and2181

thus, by (3.26), we have2182

Dm
ÿ

j“1

Dm
ÿ

i“1

λmumppi, jqq “ E
„

hmin pr pW qq

λm ´ g̃´ pr pW qq



ď 1.

Note that as mÑ 8, hmin pr pW qq Ò hpW q and g̃´ pr pW qq Ò g̃pW q. Thus, by the monotone2183

convergence theorem, we have2184

E
„

hpW q

λ8 ´ g̃pW q



“ lim
mÑ8

E
„

hmin pr pW qq

λm ´ g̃´ pr pW qq



ď 1.2185

Now, since the eigenvectors um are non-negative, by (3.28), we have2186

λm ě g̃˚`,2187

and thus, λ8 “ limmÑ8 λm ě limmÑ8 g̃
˚
` “ g̃˚. But, if λ8 “ g̃˚, since the expression in (2.4)2188

is decreasing in λ˚, we would have a contradiction to Condition C1. The result follows.2189

Lemma 3.2.10. Assume Conditions C1 and C2. Then, we have Bm Ó 0 and Em Ó 0 as2190

mÑ 8. In particular,2191

E
„

hpW q

λ8 ´ g̃pW q



“ 1,

so that λ8 “ λ˚.2192

Proof. First, note that by Corollary 3.2.8 and Lemma 3.2.9, for each m P N, we have2193

λm ě λ8 ą g̃˚. Combining this fact with the boundedness of g and h we observe that2194

sup
xPr0,w˚s

"

hpxq

λm pλm ´ g̃pxqq
,

1

λm

*

ă sup
xPr0,w˚s

"

hpxq

g̃˚ pλ8 ´ g̃pxqq
,

1

λ8

*

“: C ă 8,2195

where the bound on the right is independent of m. Now, given ε ą 0, by applying2196

Lemma 3.2.4, let m be sufficiently large that for all x, y P r0, w˚s2197

`

g`px, yq ´ g´px, yq
˘

ă
ε

2C
and

`

h`pxq ´ h´pxq
˘

ă
ε

2C
.2198
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Then we have2199

Em “
Dm
ÿ

i“1

Dm
ÿ

j“1

pgmax pi, jq ´ gmin pi, jqqumppi, jqq `
Dm
ÿ

`“1

phmax p`q ´ hmin p`qqump`q

(3.23),(3.26)
“

Dm
ÿ

i“1

Dm
ÿ

j“1

pgmax pi, jq ´ gmin pi, jqq
hminpiqp

m
i p

m
j

λmpλm ´ g̃´piqq
`

Dm
ÿ

`“1

phmax p`q ´ hmin p`qq
pm`
λm

ă
ε

2C
¨ C

˜

Dm
ÿ

i“1

Dm
ÿ

j“1

pmi p
m
j

¸

`
ε

2C
¨ C

˜

Dm
ÿ

`“1

pm`

¸

“ ε.

The result for Bm then follows from the fact that g̃˚` Ó g̃˚, and Lemma 3.2.9.2200

We are now ready to prove our main results of this subsection.2201

Proof of Theorem 3.1.12202

Proof of Theorem 3.1.1. Note that, by (3.21) from Proposition 3.2.6, we have2203

0 ď a ¨ Umn ´ Zn ď pa´ γaq ¨ Umn .2204

Dividing by n and taking limits as nÑ 8, by (3.18) we have2205

0 ď λm ´ lim sup
nÑ8

Zn
n
ď λm ´ lim inf

nÑ8

Zn
n
ď lim sup

nÑ8

ˆ

pa´ γaq ¨
Umn
n

˙

“ Bm ` Em.

The result follows by applying Lemma 3.2.10.2206

In addition, recalling the definition of I m from (3.13), note that2207

σpI m
q “

#

S Ď r0, w˚s : S “
ď

iPI

Imi , I Ď rDms

+

. (3.29)

In other words, the σ-algebra generated by I m is the set of finite unions of sets in I m.2208

Recalling that I m2 is a refined partition of I m1 for m1 ă m2, by Lemma 3.2.3 we have2209

σpI m1q Ď σpI m2q. (3.30)

We now prove Theorem 3.1.2.2210
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Proof of Theorem 3.1.22211

Proof of Theorem 3.1.2. We begin by proving the result for Cartesian products of the form2212

S ˆ S 1 with S, S 1 P σpI m1q, for m1 P N. Note that, by the definition of Ξp2qpn, ¨q, we clearly2213

have finite additivity, that is, for any measurable sets S1, S2, S3 Ď r0, w
˚s if S1 X S2 “ ∅, we2214

have2215

Ξp2qpn, pS1 Y S2q ˆ S3q “ Ξp2qpn, S1 ˆ S3q ` Ξp2qpn, S2 ˆ S3q, and similarly,2216
2217

Ξp2qpn, S3 ˆ pS1 Y S2qq “ Ξp2qpn, S3 ˆ S1q ` Ξp2qpn, S3 ˆ S2q.2218

Combining these facts with Proposition 3.2.6, Corollary 3.2.5 and (3.26), for sets SˆS 1 with2219

S, S 1 P σpI m1q we have, for each m ą m1,2220

E
„

h´pW q

λm ´ g̃´ pr pW qq
1SpW q



µpS 1q ď lim inf
nÑ8

Ξp2qpn, S ˆ S 1q

n

ď lim sup
nÑ8

Ξp2qpn, S ˆ S 1q

n

ď E
„

h´pW q

λm ´ g̃´ pr pW qq
1SpW q



µpS 1q ` Bm ` Em.

Taking limits as m Ñ 8 and applying Lemma 3.2.10, this proves the result for this family2221

of sets.2222

Now, by the Portmanteau Theorem, we need only prove that for all sets U P O, where2223

O denotes the class of open subsets of r0, w˚s ˆ r0, w˚s, we have2224

lim inf
nÑ8

Ξp2qpn, Uq

n
ě pψ˚µˆ µqpUq. (3.31)

Now, let2225

ImpUq :“
ď

i,jPrDms:Imi ˆImj ĎU

Imi ˆ Imj .

Note that, since U is open, and I m is fine enough that the set of dyadic intervals2226

tDmi pw˚quiPr2ms Ď σpI mq, we have2227

1ImpUqpW q Ò 1UpW q pointwise as mÑ 8. (3.32)
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In addition, since ImpUq Ď U , for each m P N2228

pψ˚µˆ µqpImpUqq “ lim inf
nÑ8

Ξp2qpn, ImpUqq
n

ď lim inf
nÑ8

Ξp2qpn, Uq

n
.

Then, (3.31) follows by taking limits as mÑ 8.2229

3.2.3 Analysing the PANI-tree by Coupling with Urn D2230

In order to analyse the degree distribution in this model under Conditions C1 and C2, we2231

introduce another collection of Pólya urns pVK1n qnPN0 , which not only depend on m, but also2232

depends on a parameter K 1 P N. These may be regarded as finite approximations of Urn D.2233

For brevity of notation, wherever possible in this subsection we will omit the dependence of2234

these parameters on m. For i P N, define rDms
i so that2235

rDms
i :“ tpu0, . . . ui´1q : u0, . . . , ui´1 P rDmsu .2236

Now, we set2237

B1 :“

˜

K1`1
ď

i“1

rDms
i

¸

Y ptDm ` 1u ˆ rDmsq.2238

The urn process pVK1n qně0 is then a vector-valued stochastic process taking values in VB1 . We2239

now define the vectors a1, γ 1 associated with the urn process such that2240

a1pxq “

$

’

’

&

’

’

%

hmax pu0q `
řk
j“1 gmax pu0, ujq if x “ pu0, . . . , ukq P rDms

k`1

g˚max p`q if x “ pDm ` 1, `q;

and,2241

γ 1pxq “

$

’

’

&

’

’

%

hmin pu0q`
řk
j“1 gmin pu0,ujq

hmax pu0q`
řk
j“1 gmax pu0,ujq

, if x “ pu0, . . . , ukq P rDms
k`1, k ă K 1, a1pxq ą 0;

0, otherwise.

Now, given u “ pu0, . . . , ukq P rDms
k`1, k ă K 1, and ` P rDms, we define their concatenation2242

pu, `q P rDms
k`2 such that2243

pu, `q :“ pu0, . . . , uk, `q.2244
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Then, we define the replacement matrix M 1 of the urn pVK1n qnPN0 such that, given x, x1 P B1,2245

M 1
x1,x “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´pγ 1a1qpxq if x1 “ x, x P rDms
k, k ď K 1;

pγ 1a1qpxqpm` , if x1 “ px, `q, ` P rDms, x P B1;

pa1 ´ γ 1a1qpxqpm` , if x1 “ pDm ` 1, `q, ` P rDms, x P B1;

a1pxqpm` , if x1 “ `, x P B1;

0 otherwise.

2246

Again, note that it may be the case that M 1 is not irreducible, if either a1pxq “ 0 for2247

certain x P B1 or pm` “ 0 for certain choices of `. Nevertheless, we define the sets2248

U 1
1 :“ tx P B1 : M 1

x1x “ 0 @x1 P B1u “ tx P B1 : a1pxq “ 0u ,

and2249

U 1
2 :“ tx1 P B1 : M 1

x1x “ 0 @x P B1ztx1uu .

Again, we assume that U 1
1 X U 1

2 “ ∅; if not, we replace U 1
1 by U 1

1 zU
1

2 . We then set2250

R1 “ B1zpU 1
1 Y U 1

2 q, and let M 1
R1 be the restriction of M 1 to R1. As in Section 3.2.2, M 1

R12251

satisfies the conditions of Lemma 3.2.2, and thus has a unique largest positive eigenvalue2252

λ1R1 with corresponding eigenvector VR1 . But then, writing M 1 in block form in a manner2253

analogous to Section 3.2.2, M has the same largest positive eigenvalue, with corresponding2254

right eigenvector given, in block form, by2255

VK1 “

»

—

—

—

—

–

VR1

pλ1R1q
´1A1VR1

0

fi

ffi

ffi

ffi

ffi

fl

.2256

Here, we assume VK1 is normalised so that a1 ¨ VK1 “ 1. Also in a manner similar to the2257

Section 3.2.2, assuming we begin with a ball of type x P R1, one readily verifies that the2258

restriction of M 1 to R1 and U 1
1 satisfies conditions (A1)-(A6) of Section 3.2.1, and also, that2259
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for each x P U 1
2 and n P N0, Unpxq “ 0 almost surely. Therefore, applying Theorem 3.2.12260

again, we have the following corollary:2261

Corollary 3.2.11. With VK1 , λ
1
K1 and R

1 as defined above, assuming we begin with a ball2262

x P R1, we have2263

VK1n

n
nÑ8
ÝÝÝÑ λ1K1VK1

almost surely. In particular, we have2264

a ¨ VK1n

n
nÑ8
ÝÝÝÑ λ1K1 . (3.33)

As in Section 3.2.2, in the coupling below, the assumption of a ball x P R1 is met by2265

the tree process being initiated by a vertex 0 with weight W0 sampled at random from µ and2266

satisfying hpW0q ą 0.2267

Coupling Urn D with the PANI-tree Process2268

Recall that we denote by Někpn,Bq the number of vertices of out-degree at least k having2269

weight belonging to a measurable set B Ď r0, w˚s. We also define the analogue Děkpn, jq for2270

n P N0 and j P rDms such that2271

Děkpn, jq :“
K1`1
ÿ

j“k

ÿ

ujPrDmsj

VK1n pujq1tjupu0q. (3.34)

This represents the number of balls in the urn VK1n with type u “ pu0, . . .q having dimension2272

at least k ` 1, with u0 “ j. We then have the following analogue of Proposition 3.2.6:2273

Proposition 3.2.12. There exists a coupling pV̂K1n , T̂nqnPN0 of the Pólya urn process2274

pVK1n qnPN0 and the tree process pTnqnPN0 such that, almost surely (on the coupling space),2275
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VK10 consists of a single ball ` P R1 and for all n P N0, k P t0u Y rK 1s, we have2276

Děkpn, jq ď Něk
`

n, Imj
˘

and (3.35)
Dm
ÿ

j“1

`

Něk
`

n, Imj
˘

´Děkpn, jq
˘

ď

Dm
ÿ

j“1

V̂K1n ppDm ` 1, jq. (3.36)

In addition, we have2277

pγ 1a1q ¨ V̂K1n ď Zn ď a1 ¨ V̂K1n . (3.37)

Proof. We proceed in a somewhat similar manner to Proposition 3.2.6, however, in this2278

case, we first introduce a “labelled” Pólya urn pLnqně0 where balls carry integer labels from2279

t´Dm, . . . , 0, . . . , nu. In addition, for j P t0u Y rns, the label is independent of the type of2280

the ball: we denote by bnpjq the type of a ball with label j at time n. One may interpret2281

the ball with label j as representing the evolution of vertex j in the tree process - in this2282

sense, the label may be interpreted as a “time-stamp”. Balls of type pDm ` 1, jq, j P rDms,2283

however, are labelled ´j - we denote by dnpjq the number of balls with this label, since2284

here, multiple balls may share the same label. We describe the labelled urn process Ln as2285

an evolving vector in B1 ˆ Z, so that Ln “
řDm
j“1 dnpjq ¨ δpbnpjq,jq `

řn
i“0 δpbnpiq,iq. We set2286

a1pLnq “
´1
ÿ

j“´Dm

dnpjq ¨ a
1
pbnpjqq `

n
ÿ

i“0

a1pbnpiqq, and pγ 1a1qpLnq “
n
ÿ

i“0

pγ 1a1qpbnpiqq.2287

Now, we use Ln`1 to define V̂K1n`1 by “forgetting” labels, so that,2288

if Ln`1 “

´1
ÿ

j“´Dm

dnpjq¨δpbn`1pjq,jq`

n`1
ÿ

i“0

δpbn`1pjq,iq, we set V̂K1n`1 “

´1
ÿ

j“´Dm

dnpjq¨δbn`1pjq`

n`1
ÿ

i“0

δbn`1piq.2289

Sample the entire tree process pT̂nqnPN0 . If, at time 0, the tree consists of a single2290

vertex 0 with weight W0 P I
m
` then, we set L0 “ δp`,0q, and note that we have2291

pγ 1a1qpL0q “ hmin p`q ď hpW0q “ Z0 ď a1pL0q “ hmax p`q,2292

and2293

fpN`
p0, T̂0qq “ hpW0q ě pγ

1 a1q pb0p0qq “ hmin p`q.2294
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Now, assume inductively that after n steps in the process, for each i P t0u Y rns we have2295

fpN`
pi, T̂nqq ě pγ 1 a1q pbnpiqq, deg`pi, Tnq ě dimpbnpiqq ´ 1, (3.38)

n
ÿ

i“0

`

deg`pi, Tnq ´ dimpbnpiqq ` 1
˘

“

Dm
ÿ

j“1

V̂K1n ppDm ` 1, jq, (3.39)

and (3.37) is satisfied.2296

Let s be the vertex sampled in the tree in the pn ` 1qst step, assume that rpsq “ `12297

and that rpn ` 1q “ k. Then, for the pn ` 1qth step in the urn: sample an independent2298

random variable Un`1 uniformly distributed on r0, 1s. Then:2299

• If dim pbnpsqq ď K 1 and Un`1 ď
pγ1a1qpbnpsqqZn

fpN`ps,T̂nqqa1pLnq
, remove the ball pbnpsq, sq from the urn,2300

and add balls ppbnpsq, kq, sq and pk, n` 1q to the urn, i.e., set Ln`1 “ Ln` δppbnpsq,`q,sq`2301

δpk,n`1q ´ δpbnpsq,sq. We call this step Case 1.2302

• Otherwise, add balls of type ppDm ` 1, kq,´kq , pk, n` 1q - we call this Case 2.2303

First note that2304

pγ 1a1qpbn`1psqq ´ pγ
1a1qpbnpsqq “

$

’

’

&

’

’

%

gmin p`
1, kq, in Case 1

0, in Case 2

ď gpWs,Wn`1q “ fpN`
ps, T̂n`1qq ´ fpN

`
ps, T̂nqq,

and likewise2305

pγ 1a1qpbn`1pn` 1qq “ hmin p`q ď hpWn`1q “ fpN`
pn` 1, T̂n`1qq.2306

Additionally, in Case 1 the dimension of bnpsq and the degree of s in T̂n both increase, whilst2307

in Case 2 only the degree of s increases whilst the dimension of bnpsq remains the same. This2308

proves (3.38) at time n` 1. In addition, Case 2 coincides with the addition of a ball of type2309
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pDm ` 1, `q, which yields (3.39). Finally,2310

pγ 1a1q ¨
´

V̂K1n`1 ´ V̂K
1

n

¯

“

$

’

’

&

’

’

%

hmin pkq ` gmin p`
1, kq, in Case 1

hmin pkq, in Case 2

ď hpWn`1q ` gpWs,Wn`1q “ Zn`1 ´ Zn

ď

$

’

’

&

’

’

%

hmax pkq ` gmax p`
1, kq, in Case 1

hmax pkq ` g
˚
max pkq, in Case 2

ď pa1q ¨ pV̂K1n`1 ´ V̂K
1

n q;

which shows that (3.37) is also satisfied at time n` 1.2311

Claim 3.2.13. Almost surely (on the coupling space), the urn process V̂K1 “ pV̂K1n qnPN0 is2312

distributed like the Pólya urn pVK1n qnPN0 with VK10 consisting of an initial ball ` P R1.2313

Proof. The fact that, P-a.s., the initial ball ` P R1 follows immediately from the fact that2314

the initial weight W0 is sampled from µ conditionally on the event thpW0q ą 0u (analogous2315

to in Claim 3.2.7). Moreover, in every step in V̂K1 , we add a ball of type k for k P rDms2316

with probability pmk , which is the same as in VK1 . Furthermore, given V̂K1n the probability of2317

removing a ball of type u with dimu ď K 1 and adding a ball of type pu, `q is2318

pm`
ÿ

sPLn:bnpsq“u

pγ 1a1qpbnpsqqZn
fpN`ps, T̂nqqa1pLnq

ˆ
fpN`ps, T̂nqq

Zn
“ pm`

ÿ

sPLn:bnpsq“u

pγ 1a1qpbnpsqq

a1pLnq

“ pm`
V̂K1n puq

Zn
,

which also agrees with the transition law of the Pólya urn scheme V . Finally, the probability2319
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of adding a ball of type pDm ` 1, `q is2320

pm`
ÿ

sPLn:dim bnpsqąK1

fpN`ps, T̂nqq
Zn

` pm`
ÿ

sPLn:dim bnpsqďK1

˜

1´
pγ 1a1qpbnpsqqZn

fpN`ps, T̂nqqa1pLnq

¸

fpN`ps, T̂nqq
Zn

“ pm`
ÿ

sPLn

˜

fpN`ps, T̂nq
Zn

¸

´ pm`
ÿ

sPLn:dim bnpsqďK1

pγ 1a1qpbnpsqq

a1pLnq

“ pm`

¨

˝1´
ÿ

uPV̂K1n :dimuďK1

pγ 1a1qpV̂Kpuqq
a1pV̂Kn q

˛

‚,

which agrees with transition rule of VK1 .2321

Finally, to complete the proof, we verify the following claim.2322

Claim 3.2.14. For all n P N0, (3.35) and (3.36) are satisfied for all k P t0u Y rK 1s.2323

Proof. If we define bnpiq|0 such that bnpiq|0 “ x0 if bnpiq “ px0, . . . , xkq, then, by construction2324

of the labelled urn process pLnqnPN0 , bnpiq|0 “ x0 ùñ rpWiq “ x0, so that Wi P Imx0 .2325

Therefore, for each k P t0u Y rK 1s, j P rDms,2326

Děkpn, jq “
ÿ

bnpiq:dimpbnpiqqěk`1

1tjupbnpiq|0q
(3.38)
ď

ÿ

i:deg`pi,T̂nqěk

1Imj pWiq “ Někpn, Imj q.

Moreover, by (3.39),2327

Dm
ÿ

j“1

V̂K1n ppDm ` 1, jq “
n
ÿ

i“0

´

deg`pi, T̂nq ´ dimpbnpiqq ` 1
¯

“

n
ÿ

k“0

Dm
ÿ

j“1

``

Něk
`

n, Imj
˘

´Děkpn, jq
˘˘

,

which implies (3.36).2328

2329
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The Limiting Vectors of the Urn Schemes Associated with Urn D2330

We now calculate the limiting vector VK and limiting eigenvalue λ1K of the Pólya urn scheme2331

pVK1n qně0. We first introduce some more notation: for any vector u “ pu0, . . . , uk´1q P rDms
k,2332

and i P t0u Y rk ´ 1s, denote by u|i :“ pu0, . . . , uiq P rDms
i`1. We also define the following2333

quantities:2334

RK1 :“
Dm
ÿ

`“1

a1ppDm ` 1, `qqVK1ppDm ` 1, `qq, (3.40)

EK1 :“
ÿ

u:dimuďK1

pa1 ´ γ 1a1qpuqVK1puq, and

2335

FK1 :“
ÿ

v:dimv“K1`1

a1pvqVK1pvq. (3.41)2336

Proposition 3.2.15. Let λ1K1 and VK1 denote the limiting leading eigenvalue and corre-2337

sponding right eigenvector of M 1, respectively. Then, denoting the components of a vector u2338

by u0, u1, . . . , the eigenvector VK1 satisfies2339

λ1K1VK1pxq “

$

’

’

&

’

’

%

pukλ
1
K1

pγ1a1qpuq`λ1
K1

śk´1
i“0

”

pmui

´

pγ1a1qpu|iq
pγ1a1qpu|iq`λ1K1

¯ı

, x “ u P rDms
k`1, 0 ď k ă K 1;

pmuK1
śK1´1

i“0

”

pmui

´

pγ1a1qpu|iq
pγ1a1qpu|iq`λ1K1

¯ı

, x “ u P rDms
K1`1,

(3.42)

where we set the empty product of terms, when k “ 0 equal to 1. In addition, we have2340

RK1 “
EK1 ` FK1
λ1K1 ´ g

˚
`

. (3.43)2341

Proof. First note that, for each u0 P rDms, since we add a ball of type u0 with probability2342

pmu0 at each time-step, and remove such a ball with probability proportional to pγ 1a1qpu0q, we2343

have2344

λ1K1VK1pu0q “ pmu0 ´ pγ
1a1qpu0qVK1pu0q, (3.44)2345

this implies the case k “ 0 in (3.42). Next, for k ą 0, we have2346

λ1K1VK1puq “

$

’

’

&

’

’

%

pmukpγ
1a1qpu|k´1qVK1pu|k´1q ´ pγ

1a1qpuqVK1puq, u P rDms
k`1, k ă K 1;

pmuK1 pγ
1a1qpu|K1´1qVK1pu|K1´1q; u P rDms

K1`1;

(3.45)
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so that, if u P rDms
k`1, 1 ď k ď K 1 ´ 1,2347

VK1puq “
pmukpγ

1a1qpu|k´1qVK1pu|k´1q

pγ 1a1qpuq ` λ1K1
. (3.46)

Applying (3.45) and (3.46), recursing backwards, and using the fact that VK1pu0q “2348

pmu0{ppγ
1a1qpu0q ` λ

1
K1q from (3.44), completes the proof of (3.42). Finally, for each j P rDms,2349

we have2350

λ1K1VK1ppDm ` 1, jqq “pmj

˜

Dm
ÿ

`“1

a1ppDm ` 1, `qqVK1ppDm ` 1, `qq

`
ÿ

u:dimuďK1

pa1 ´ γ 1a1qpuqVK1puq `
ÿ

v:dimv“K1`1

a1pvqVK1pvq

¸

“ pmj pRK1 ` EK1 ` FK1q ; (3.47)

where, in the last equation we recall the definitions in (3.40) and (3.41). Now, multiplying2351

both sides of (3.47) by a1ppDm ` 1, jqq “ g˚pjq and taking the sum over j, we have2352

λ1K1RK1 “

˜

Dm
ÿ

j“1

pmj g
˚
pjq

¸

pRK1 ` EK1 ` FK1q “ g̃˚` pRK1 ` EK1 ` FK1q .2353

Rearranging this proves (3.43), thus completing the proof of the proposition.2354

Now, we recall the definition of the companion process pSipwqqiě0 from Section 3.1.12355

in (3.2): Recall that W1,W2, . . . were defined to be independent µ-distributed random vari-2356

ables and let w P r0, w˚s. We then defined the random process pSipwqqiě0 inductively so that2357

S0pwq “ hpwq and for all i ě 0, we have Si`1pwq “ Sipwq ` gpw,Wi`1q. Now, we also define2358

the lower companion process pS´i pwqqiě0 in a similar way, but instead with functions h´, g´2359

respectively, so that2360

S´0 pwq :“ h´pwq; S´i`1pwq :“ S´i pwq ` g
´
pw,Wi`1q, i ě 0. (3.48)2361

Lemma 3.2.16. Assume Conditions C1 and C2. Then we have2362

lim
K1Ñ8

lim
mÑ8

FK1 “ 0.2363
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Proof. Note that by (3.42), with J 1 being an upper bound on maxth, gu, we have2364

FK1 “
ÿ

u:dimu“K1`1

a1puqVK1puq

“
ÿ

u:dimu“K1`1

a1puq pmuK1

K1´1
ź

i“0

„

pmui

ˆ

pγ 1a1qpu|iq

pγ 1a1qpu|iq ` λ1K1

˙

ď J 1pK 1
` 1q ¨

ÿ

u:dimu“K1`1

pmuK1

K1´1
ź

i“0

„

pmui

ˆ

pγ 1a1qpu|iq

pγ 1a1qpu|iq ` λ1K1

˙

“ J 1pK 1
` 1q ¨

ÿ

u:dimu“K1

¨

˝

ÿ

uK1PrDms

pmuK1

˛

‚

K1´1
ź

i“0

„

pmui

ˆ

pγ 1a1qpu|iq

pγ 1a1qpu|iq ` λ1K1

˙

“ J 1pK 1
` 1q ¨

ÿ

u:dimu“K1

K1´1
ź

i“0

„

pmui

ˆ

pγ 1a1qpu|iq

pγ 1a1qpu|iq ` λ1K1

˙

“ J 1pK 1
` 1q ¨ E

«

K1´1
ź

i“0

ˆ

S´i pW q

S´i pW q ` λ
1
K1

˙

ff

,

where we recall the definition of pS´i pwqqiě0 from (3.48). Now, note that for all m P N,2365

S´pW q is stochastically bounded above by SpW q, and by Theorem 3.1.1 and (3.33) and2366

(3.37), λ1K1 is bounded below by λ˚ uniformly in m and K 1. Therefore, since the function2367

x ÞÑ x
x`λ

is increasing in x and decreasing in λ, we may bound the previous display above2368

so that2369

J 1pK 1
` 1q ¨ E

«

K1´1
ź

i“0

ˆ

S´i pW q

S´i pW q ` λ
1
K1

˙

ff

ď J 1pK 1
` 1q ¨ E

«

K1´1
ź

i“0

ˆ

SipW q

SipW q ` λ1K1

˙

ff

ď J 1pK 1
` 1q ¨ E

«

K1´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

.

We complete the proof by proving the following claim.2370

Claim 3.2.17. We have2371

lim
kÑ8

k ¨ E

«

k´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

“ 02372

Proof. First observe that2373

E

«

8
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

ď

8
ź

i“1

ˆ

J 1i

J 1i` λ˚

˙

“

8
ź

i“0

ˆ

1´
λ˚

J 1i` λ˚

˙

ď e´
ř8
i“1

λ˚

J1i`λ˚ “ 0.
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Therefore, we have2374

k ¨ E

«

k´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

“ k ¨
8
ÿ

j“k

E

«

ˆ

1´
SjpW q

SjpW q ` λ˚

˙ j´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

“ k ¨
8
ÿ

j“k

E

«

λ˚

SjpW q ` λ˚

j´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

ď

8
ÿ

j“k

j ¨ E

«

λ˚

SjpW q ` λ˚

j´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

.

The series on the right of the previous display consists of non-negative terms, and for each2375

N P N, we have2376

N
ÿ

j“1

j ¨ E

«

λ˚

SjpW q ` λ˚

j´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

(3.49)

“

N
ÿ

j“1

˜

j ¨ E

«

j´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

´ j ¨ E

«

j
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff¸

“

N
ÿ

j“1

E

«

j´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

´N ¨ E

«

N
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

ď

N
ÿ

j“1

E

«

j´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

.

Now, note that by Lemma 3.1.4, we have2377

8
ÿ

j“1

E

«

j´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

ă 8,2378

and thus by (3.49) and the monotone convergence theorem, we also have2379

8
ÿ

j“1

j ¨ E

«

λ˚

SjpW q ` λ˚

j´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

ă 8.2380

Therefore,2381

lim
kÑ8

k ¨ E

«

k´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

ď lim
kÑ8

8
ÿ

j“k

j ¨ E

«

λ˚

SjpW q ` λ˚

j´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

ff

“ 0.

2382

2383
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Lemma 3.2.18. Assume Conditions C1 and C2. Then we have2384

lim
K1Ñ8

lim
mÑ8

EK1 “ 0, and lim
K1Ñ8

lim
mÑ8

RK1 “ 0. (3.50)2385

In addition,2386

lim
K1Ñ8

lim
mÑ8

λ1K1 “ λ˚. (3.51)2387

Proof. The proof is similar to that of Lemma 3.2.10. First, let ε ą 0 be given, and, by2388

Lemma 3.2.4, let m be sufficiently large that for all x, y P r0, w˚s2389

`

g`px, yq ´ g´px, yq
˘

ă
ελ1K1

K 1
and

`

h`pxq ´ h´pxq
˘

ă
ελ1K1

K 1
. (3.52)2390

The inequalities in (3.52) now imply that for any u “ pu0, . . . , uK1´1q P rDms
K1 , and each2391

i P t0u Y rK 1 ´ 1s we have (taking the empty sum to be zero when i “ 0)2392

pa1 ´ γ 1a1qpu|iq “ hmax pu0q ´ hmin pu0q `

i´1
ÿ

j“1

pgmax pu0, ujq ´ gmin pu0, ujqq

ă
ελ1K1

K 1
¨K 1

“ ελ1K1 (3.53)

Now, using the u|i notation as a shorthand, we can write2393

EK1 “
ÿ

uPrDmsK
1

K1´1
ÿ

i“0

ppa1 ´ γ 1a1qpu|iqqVK1pu|iq

(3.42)
“

ÿ

uPrDmsK
1

K1´1
ÿ

i“0

ppa1 ´ γ 1a1qpu|iqq p
m
ui

pγ 1a1qpu|iq ` λ1K1

i´1
ź

j“0

„

pmuj

ˆ

pγ 1a1qpu|jq

pγ 1a1qpu|jq ` λ1K1

˙

(3.53)
ď ε ¨

ÿ

uPrDmsK
1

K1´1
ÿ

i“0

λ1K1p
m
ui

pγ 1a1qpu|iq ` λ1K1

i´1
ź

j“0

„

pmuj

ˆ

pγ 1a1qpu|jq

pγ 1a1qpu|jq ` λ1K1

˙

“ ε ¨ E

«

K1´1
ÿ

i“0

λ1K1

S´i pW q ` λ
1
K1

i´1
ź

j“0

S´j pW q

S´j pW q ` λ
1
K1

ff

ă ε,

where we recall the definition of pS´j pwqqjě0 from (3.48), and observe that the sum in the2394

final line of the display telescopes. The first equation in (3.50) follows. Next, (3.43),2395
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Lemma 3.2.16, and the facts that λ1K1 ě λ˚ and limmÑ8 g̃
˚
` “ g̃˚ ă λ˚ together imply2396

the second limit in (3.50). Finally, by (3.37), Proposition 3.2.15 and Theorem 3.1.1 we have2397

λ1K1 ´ λ
˚
ď EK1 ` FK1 `RK1 ,

so that (3.51) follows by taking limits as mÑ 8 and K 1 Ñ 8.2398

Proof of Theorem 3.1.32399

Proof of Theorem 3.1.3. First, recalling the definition of Děkpn, ¨q from (3.34), by Proposi-2400

tion 3.2.15 for any ` P rDms we have2401

lim
nÑ8

Děkpn, `q

n
“

K1
ÿ

j“k

ÿ

uPrDmsK
1`1

VK1pu|jq1t`upu0q

“
ÿ

uPrDmsK
1`1

˜

pmuK1

K1´1
ź

i“0

„

pmui

ˆ

pγ 1a1qpu|iq

pγ 1a1qpu|iq ` λ1K1

˙

`

K1´1
ÿ

j“k

pmujλ
1
K1

pγ 1a1qpu|jq ` λ1K1

j´1
ź

i“0

„

pmui

ˆ

pγ 1a1qpu|iq

pγ 1a1qpu|iq ` λ1K1

˙

¸

1t`upu0q.

Now, as with the proofs of Lemma 3.2.16 and Lemma 3.2.18, recalling the definition of2402

pS´i pwqqiě0 from (3.48), we may write the last equation as2403

“ E

«

K1´1
ź

i“0

ˆ

S´i pW q

S´i pW q ` λ
1
K1

˙

1Im` pW q

ff

`

K1´1
ÿ

j“k

E

«

λ1K1

S´j pW q ` λ
1
K1

j´1
ź

i“0

ˆ

S´i pW q

S´i pW q ` λ
1
K1

˙

1Im` pW q

ff

“ E

«

k´1
ź

i“0

ˆ

S´i pW q

S´i pW q ` λ
1
K1

˙

1Im` pW q

ff

. (3.54)

For m1 P N, (3.54) allows us to prove the result for sets S P σpI m1q, where we recall2404

the definition of I m1 in (3.13), and (3.29) and (3.30). Since Npn, ¨q is finitely additive, if2405
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S P σpI mq, by (3.35) and (3.54) we have2406

E

«

k´1
ź

i“0

ˆ

S´i pW q

S´i pW q ` λ
1
K1

˙

1SpW q

ff

ď lim inf
nÑ8

Někpn, Sq

n
ď lim sup

nÑ8

Někpn, Sq

n

ď E

«

k´1
ź

i“0

ˆ

S´i pW q

S´i pW q ` λ
1
K1

˙

1SpW q

ff

`RK1 ` EK1 ` FK1 .

Taking limits asmÑ 8 and then asK 1 Ñ 8, and applying Lemma 3.2.16 and Lemma 3.2.182407

now proves the result for sets in σpI m1q. Now, note that for each k P N0, and measurable2408

sets S 1 Ď r0, w˚s, we have2409

lim sup
nÑ8

Někpn, S
1q

n
ď lim sup

nÑ8

Ně0pn, S
1q

n
“ µpS 1q almost surely, (3.55)2410

where the last equality applies the strong law of large numbers.2411

We now prove the result for sets U P O where O denotes the class of all open subsets of2412

r0, w˚s. For a fixed open set U P O, and m P N, recall that ImpUq :“
Ť

jPrDms:Imj ĎU
Imj . Also2413

recall (3.32), which states that 1ImpUqpW q Ò 1UpW q pointwise as m Ñ 8. Now, since each2414

ImpUq P σpI mq, by applying (3.55) for each k ď K 1 we have2415

E

«

k´1
ź

i“0

ˆ

SipW q

SipW q ` λ1K1

˙

1ImpUqpW q

ff

ď lim inf
nÑ8

Někpn, Uq

n
ď lim sup

nÑ8

Někpn, Uq

n

ď E

«

k´1
ź

i“0

ˆ

SipW q

SipW q ` λ1K1

˙

1ImpUqpW q

ff

` µpUzImpUqq.

Taking limits as mÑ 8 and then K 1 Ñ 8 now proves the result for sets belonging to O.2416

Finally, note that since µ is a regular measure, for any measurable set A Ď r0, w˚s we2417

have2418

µpAq “ inf
UPO:AĎU

tµpUqu .2419

Thus, for a given measurable set A, and any ε ą 0, there exists an open set Uε such that2420

µpUεzAq ď ε.2421

Therefore by finite additivity and (3.55)2422

lim
nÑ8

Někpn, Uεq

n
´ ε ď lim inf

nÑ8

Někpn,Aq

n
ď lim sup

nÑ8

Někpn,Aq

n
ď lim

nÑ8

Někpn, Uεq

n
.2423
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The proof for the general case now follows by applying the result for the class O, and sending2424

εÑ 0.2425

Theorem 3.1.3 now allows us to prove Theorem 3.1.5.2426

Proof of Theorem 3.1.52427

The proof of this theorem is almost identical to that of Theorem 2.2.2 in Chapter 2. Recall2428

that, if Nkpn,Aq denotes the number of vertices of out-degree k in the tree at time n having2429

weight in A, by counting the edges in the tree in two ways we have2430

Ξpn,Aq “
n
ÿ

k“1

kNkpn,Aq “
n
ÿ

k“1

Někpn,Aq.2431

Proof of Theorem 3.1.5. By Lemma 3.1.4, and using Fatou’s Lemma in the last inequality,2432

we have,2433

pψ˚qµpAq “ E
„

hpW q

λ˚ ´ g̃pW q
1ApW q



“

8
ÿ

k“1

E

«

k´1
ź

i“0

ˆ

SipW q

SipW q ` λ˚

˙

1ApW q

ff

“

8
ÿ

k“1

lim inf
nÑ8

Někpn,Aq

n
ď lim inf

nÑ8

Ξpn,Aq

n
;

and likewise, lim infnÑ8
Ξpn,Acq

n
ě pψ˚µqpA

cq. Now, since we add one edge at each time-step,2434

it follows that Ξpn, r0, w˚sq “ n. Thus, by finite additivity,2435

1 “ lim inf
nÑ8

ˆ

Ξpn,Aq

n
`

Ξpn,Acq

n

˙

ď lim sup
nÑ8

Ξpn,Aq

n
` lim inf

nÑ8

Ξpn,Acq

n

ď lim sup
nÑ8

ˆ

Ξpn,Aq

n
`

Ξpn,Acq

n

˙

“ 1.

But, since (2.4) implies that pψ˚µqp¨q is a probability measure, this is only possible if2436

lim sup
nÑ8

Ξpn,Aq

n
“ pψ˚µqpAq and lim inf

nÑ8

Ξpn,Acq

n
“ pψ˚µqpA

c
q almost surely.

The result follows.2437
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3.3 The Condensation Regime2438

In this section, we extend the results of Section 3.2 to the condensation regime. This section2439

is closely related to Section 2.3.2 of Chapter 2, and indeed, Lemma 3.3.2 should be viewed2440

as the analogue of Lemma 2.3.2, as we also couple the PANI-tree process T with auxiliary2441

processes T pεq, T p´εq, ε ą 0. However, the coupling we present is a refinement: rather than2442

constructing the trees with truncated weights as we did in Lemma 2.3.2, we instead use the2443

same weights, but instead adjust the function g in the processes T pεq and T p´εq.2444

In particular, given ε ą 0, and Mε as defined in (3.6), define the functions gε, g´ε2445

such that2446

gεpp, qq :“ 1Mc
ε
ppqgpp, qq ` 1Mεppqgpx

˚, qq2447

and2448

g´εpp, qq :“ 1Mc
ε
ppqgpp, qq ` 1Mεppqpgpx

˚, qq ´ uεpqqq;2449

and let T pεq, T p´εq be the evolving trees with measure µ, and associated functions gε, h2450

and g´ε, h respectively. We also denote by pZpεqn qně0 and pZp´εqn qně0 the partition functions2451

associated with T pεq, T p´εq, respectively.2452

Lemma 3.3.1. Assume Conditions D1-D4. Then, for each ε ą 0 sufficiently small, T pεq2453

and T p´εq satisfy Conditions C1 and C2. In addition, if λε, λ´ε denote the Malthusian2454

parameters associated with T pεq, T p´εq, then λε Ó g̃˚ and λ´ε Ò g̃˚ as ε Ó 0.2455

Proof. First, since by D2 g satisfies Condition C2, we have2456

gpx, yq “ κ
´

φ
p1q
1 pxq, . . . , φ

pNq
1 pxq, φ

p1q
2 pyq, . . . , φ

pNq
2 pyq

¯

,2457

for measurable functions φij : r0, w˚s Ñ r0, Js, j “ 1, 2, i P rN s and a bounded continuous2458

function κ : r0, Js2N Ñ R`. Now, if we set φpN`1q
1 pxq :“ 1Mεpxq, φ

pN`2q
1 pxq :“ 1Mc

ε
pxq,2459
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φ
pN`1q
2 pyq :“ gpx˚, yq ´ uεpyq and define κ1 such that2460

κ1pc1, . . . , cN`2, d1, . . . dN`1q :“ cN`2κpc1, . . . , cN , d1, . . . , dNq ` cN`1dN`1,2461

we clearly have that φpN`1q
1 , φ

pN`2q
1 , φ

pN`1q
2 are bounded, non-negative measurable functions,2462

and κ1 is bounded and continuous, taking values in R`. Noting that2463

g´εpx, yq “ κ1
´

φ
p1q
1 pxq, . . . , φ

pN`2q
1 pxq, φ

p1q
2 pyq, . . . , φ

pN`1q
2 pyq

¯

,2464

it follows that g´ε satisfies Condition C2. The proof of C2 for gε is similar.2465

For C1, since h is bounded, for sufficiently large λ ą g̃˚, we have2466

E
„

hpW q

λ´ g̃εpW q



ă 1.2467

Meanwhile, since, by ConditionD4, µpMεq ą 0 and g̃εpxq “ g̃˚ for any x PMε, by monotone2468

convergence2469

lim
λÓg̃˚

E
„

hpW q

λ´ g̃εpW q



“ E
„

hpW q

g̃˚ ´ g̃εpW q



“ 8.2470

Thus, by continuity in λ, Condition C1 is satisfied for T pεq. A similar argument also works2471

for T p´εq: if g̃˚´ε denotes the maximum value of g̃´εpxq, then this value is also attained on2472

Mε which has positive measure. If λε, λ´ε denote the associated Malthusian parameters2473

associated with the trees, then, for each ε ą 0, λε ą g̃˚ and λ´ε ą g̃˚´ε. Moreover, since2474

gε is non-increasing pointwise as ε decreases, λε is non-increasing in ε; likewise, λ´ε is2475

non-decreasing in ε. Now, suppose limεÓ0 λε “ λ` ą g̃˚. Then we may apply dominated2476

convergence, and2477

1 “ lim
εÓ0

E
„

hpW q

λε ´ g̃εpW q



“ E
„

lim
εÓ0

hpW q

λε ´ g̃εpW q



“ E
„

hpW q

λ` ´ g̃pW q



,2478

contradicting (3.5). The case for λ´ε follows identically.2479

Lemma 3.3.2. There exists a coupling pT̂ p´εq, T̂ , T̂ pεqq of these processes such that, almost2480

surely (on the coupling space), for all n P N0,2481

Zp´εqn ď Zn ď Zpεqn , (3.56)
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and, for each vertex v with Wv PMc
ε, we have2482

fpN`
pv, T̂ pεqn qq ď fpN`

pv, T̂nqq ď fpN`
pv, T̂ p´εqn qq (3.57)

and2483

deg pv, T̂ pεqn q ď deg pv, T̂nq ď deg pv, T̂ p´εqn q. (3.58)

Proof. We initialise the trees with a single vertex 0 having weightW0 sampled independently2484

from µ, conditioned on thpW0q ą 0u and will construct copies of these three tree processes2485

on the same vertex set, which is identified with N0. Now, assume that at the nth time-step,2486

pT̂ p´εqj q0ďjďn „ pT̂ p´εqj q0ďjďn, pT̂jq0ďjďn „ pTjq0ďjďn and pT̂ pεqj q0ďjďn „ pT pεqj q0ďjďn.2487

In addition, assume that (3.56) and (3.57) are satisfied up to time n.2488

Now, for the pn` 1qst step:2489

• Introduce vertex n ` 1 with weight Wn`1 sampled independently from µ in T̂ p´εqn , T̂n2490

and T̂ pεqn .2491

• Form T̂ p´εqn`1 by sampling the parent v of n ` 1 independently according to the law of2492

T p´εq, i.e., with probability proportional to fpN`pv, T̂ p´εqn qq. Then, in order to form2493

T̂n`1 sample an independent uniformly distributed random variables U1 on r0, 1s.2494

– If U1 ď
Zp´εqn fpN`pv,T̂nqq
ZnfpN`pv,T̂ p´εqn qq

and Wv PMc
ε, select v as the parent of n ` 1 in T̂n`1 as2495

well.2496

– Otherwise, form T̂n`1 by selecting the parent v1 of n` 1 with probability propor-2497

tional to fpN`pv1, T̂nqq out of all all the vertices with weight Wv1 PMε.2498

• Then form T̂ pεqn`1 in a similar manner. Sample an independent uniform random variable2499

U2 on r0, 1s.2500
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– If vertex v (with weight Wv PMc
ε) was chosen as the parent of n` 1 in T̂n`1 and2501

U2 ď
ZnfpN`pv,T̂ pεqn qq

Zpεqn fpN`pv,T̂nqq
, also select v as the parent of n` 1 in T̂ εn`1.2502

– Otherwise, form T̂ pεqn`1 by selecting the parent v2 of n` 1 with probability propor-2503

tional to fpN`pv2, T pεqn qq out of all the vertices with weight Wv2 PMε.2504

Clearly T̂ p´εqn`1 „ T p´εqn`1 . On the other hand, in T̂n`1 the probability of choosing a certain2505

parent v of n` 1 with weight Wv PMc
ε is2506

Zp´εqn fpN`pv, T̂nqq
ZnfpN`pv, T̂ p´εqn qq

ˆ
fpN`pv, T̂ p´εqn qq

Zp´εqn

“
fpN`pv, T̂nqq

Zn
,2507

whilst the probability of choosing a parent v1 with weight Wv1 PMε is2508

fpN`pv1, T̂nqq
ř

v1:Wv1PMε
fpN`pv1, T̂nqq

˜

ÿ

v:WvPMc
ε

˜

1´
Zp´εqn fpN`pv, T̂nqq
ZnfpN`pv, T̂ p´εqn qq

¸

fpN`pv, T̂ p´εqn qq

Zp´εqn

¸

`
fpN`pv1, T̂nqq

ř

v1:Wv1PMε
fpN`pv1, T̂nqq

˜

ÿ

v:WvPMε

fpN`pv, T̂ p´εqn qq

Zp´εqn

¸

“
fpN`pv1, T̂nqq

ř

v1:Wv1PMε
fpN`pv1, T̂nqq

˜

ÿ

v

fpN`pv, T̂ p´εqn qqq

Zp´εqn

´
ÿ

v:WvPMc
ε

fpN`pv, T̂nqq
Zn

¸

“
fpN`pv1, T̂nqq

ř

v1:Wv1PMε
fpN`pv1, T̂nqq

˜

1´

ř

v:WvPMc
ε
fpN`pv, T̂nqq
Zn

¸

“
fpN`pv1, T̂nqq

Zn
,

where we use the fact that
ř

v fpN
`pv, T̂nqq “ Zn. Thus, we have T̂n`1 „ Tn`1. Now, note2509

that if the parent v of n ` 1 in T̂ p´εqn`1 is such that Wv PMc
ε, the same parent is chosen in2510

T̂n`1. Since Wv PMc
ε, we have2511

fpN`
pv, T̂ p´εqn`1 qq ´ fpN

`
pv, T̂ p´εqn qq “ g´εpWv,Wn`1q “ gpWv,Wn`1q

“ fpN`
pv, T̂n`1qq ´ fpN

`
pv, T̂nqq.

Otherwise, the parent of n ` 1 in T̂n`1 has weight which belongs to Mε, and2512

thus fpN`pv, T̂ p´εqn qq increases whilst fpN`pv, T̂nqq stays the same. An increase in2513

fpN`pv, T̂ p´εqn qq coincides with the increase of deg pv, T̂ p´εqn q, and thus the right hand sides2514

of (3.57) and (3.58) are satisfied for time n` 1.2515
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Now, note that2516

Zp´εqn`1 ´ Zp´εqn “ hpWn`1q ` g´εpWv,Wn`1q, and Zn`1 ´ Zn “ hpWn`1q ` gpWv1 ,Wn`1q,2517

where v, v1 denote the parent of n` 1 in T̂n and T̂ pεqn respectively. Then we either have:2518

• v “ v1, so that g´εpWv,Wn`1q “ gpWv1 ,Wn`1q.2519

• v PMc
ε and v1 PMε, in which case, P-a.s, using D42520

g´εpWv,Wn`1q “ gpWv,Wn`1q ď gpx˚,Wn`1q ´ uεpWn`1q ă gpWv1 ,Wn`1q.2521

• Both v, v1 PMε, in which case, P-a.s.,2522

g´εpWv,Wn`1q “ gpx˚,Wn`1q ´ uεpWn`1q ă gpWv1 ,Wn`1q.2523

In every case we have Zp´εqn`1 ´ Z
p´εq
n ď Zn`1 ´ Zn, and thus (3.56) is also satisfied at time2524

n` 1.2525

Each of the statements concerning T̂ pεq follow in an analogous manner, applying2526

Condition D3.2527

3.3.1 Proof of Theorem 3.1.72528

The proof of Theorem 3.1.7 uses the auxiliary trees T pεq and T p´εq, and Lemma 3.3.2.2529

Proof of Theorem 3.1.7. For the first statement, note that by (3.56) in Lemma 3.3.2 and2530

Theorem 3.1.1, for each ε ą 0 we have, P-a.s.,2531

λ´ε “ lim
nÑ8

Zp´εqn

n
ď lim inf

nÑ8

Zn
n
ď lim sup

nÑ8

Zn
n
“ lim

nÑ8

Zpεqn
n

“ λε.2532

The statement follows by sending εÑ 0, using Lemma 3.3.1.2533
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Next, by assumption, for each ε ą 0 sufficiently small, we have A Ď Mc
ε. Next,2534

applying (3.58), if Ξpεq and Ξp´εq denote the edge distributions in the coupled trees T̂ pεq, T̂ p´εq,2535

respectively, then for each n P N02536

Ξpεqpn,Aq ď Ξpn,Aq ď Ξp´εqpn,Aq,2537

and thus, by Theorem 3.1.5, we have2538

E
„

hpW q

λε ´ g̃εpW q
1ApW q



ď lim inf
nÑ8

Ξpn,Aq

n

ď lim sup
nÑ8

Ξpn,Aq

n
ď E

„

hpW q

λ´ε ´ g̃´εpW q
1ApW q



. (3.59)

Now, noting that g̃´ε “ g̃ “ g̃ε on A, and λ´ε ą g̃˚´ε ě supxPA g̃pxq and is non-decreasing in2539

ε, by applying Lemma 3.3.1 and dominated convergence we have2540

lim
εÑ0

E
„

hpW q

λε ´ g̃εpW q
1ApW q



“ lim
εÑ0

E
„

hpW q

λ´ε ´ g̃´εpW q
1ApW q



“ E
„

hpW q

g̃˚ ´ g̃pW q
1ApW q



. (3.60)

Then, (3.7) follows by combining (3.59) and (3.60). Moreover, for each ε1 ą 0, by setting2541

A “Mc
ε1 ,2542

lim
nÑ8

Ξpn,Mε1q

n
“ lim

nÑ8

ˆ

1´
Ξpn,Mc

ε1q

n

˙

“ 1´ E
„

hpW q

g̃˚ ´ g̃pW q
1Mc

ε1
pW q



.2543

But then, again by dominated convergence,2544

lim
ε1Ñ0

E
„

hpW q

g̃˚ ´ g̃pW q
1Mc

ε1
pW q



“ E
„

hpW q

g̃˚ ´ g̃pW q



,2545

and (3.8) follows.2546

Finally, for the last statement, recall the definition of the companion process pSiqiě02547

in (3.2), and that, for any measurable B Ď r0, w˚s, Někpn,Bq denotes the number of vertices2548

of out-degree at least k with weight belonging to B at time n. Then, for ε ą 0, note that2549

Někpn,B XMc
εq

n
ď
Někpn,Bq

n
ď
Někpn,B XMc

εq

n
`
Ně0pn,Mεq

n
.2550
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Now, by the strong law of large numbers, in the limit as n Ñ 8, as in (3.55), the second2551

quantity tends to µpMεq, and thus,2552

lim inf
nÑ8

Někpn,B XMc
εq

n
ď lim sup

nÑ8

Někpn,Bq

n
(3.61)

ď lim sup
nÑ8

Někpn,B XMc
εq

n
` µpMεq.

Now, let N p´εq
ěk pn, ¨q, N

pεq
ěkpn, ¨q denote the associated quantities in the trees T p´εq, T pεq, and2553

denote by pSp´εqi qiě0 and pSpεqi qiě0 the companion processes defined in terms of the functions2554

h, g´ε and h, g`ε respectively. Then, by (3.58), on the coupling in Lemma 3.3.2, we have2555

N
pεq
ěkpn,B XM

c
εq ď Někpn,B XMc

εq ď N
p´εq
ěk pn,B XM

c
εq.2556

Therefore, by Theorem 3.1.3, recalling the definitions of λε, λ´ε in Lemma 3.3.1,2557

E

«

k´1
ź

i“0

˜

S
pεq
i pW q

S
pεq
i pW q ` λε

¸

1BXMc
ε
pW q

ff

ď lim inf
nÑ8

Někpn,B XMc
εq

n

ď lim sup
nÑ8

Někpn,B XMc
εq

n

ď E

«

k´1
ź

i“0

˜

S
p´εq
i pW q

S
p´εq
i pW q ` λ´ε

¸

1BXMc
ε
pW q

ff

,

and thus, by (3.61), we have2558

E

«

k´1
ź

i“0

˜

S
pεq
i pW q

S
pεq
i pW q ` λε

¸

1BXMc
ε
pW q

ff

ď lim inf
nÑ8

Někpn,Bq

n
(3.62)

ď lim sup
nÑ8

Někpn,Bq

n

ď E

«

k´1
ź

i“0

˜

S
p´εq
i pW q

S
p´εq
i pW q ` λ´ε

¸

1BXMc
ε
pW q

ff

` µpMεq.

Now, by dominated convergence, as εÑ 02559

E

«

k´1
ź

i“0

˜

S
pεq
i pW q

S
pεq
i pW q ` λε

¸

1BXMεpW q

ff

Ñ E

«

k´1
ź

i“0

ˆ

SipW q

SipW q ` g̃˚

˙

1BpW q

ff

, and

E

«

k´1
ź

i“0

˜

S
p´εq
i pW q

S
p´εq
i pW q ` λ´ε

¸

1BXMεpW q

ff

Ñ E

«

k´1
ź

i“0

ˆ

SipW q

SipW q ` g̃˚

˙

1BpW q

ff

,

and, since, by (3.5),M is a µ-null set, µpMεq Ñ 0. Combining these statements with (3.62)2560

completes the proof.2561
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3.3.2 Proof of Corollary 3.1.82562

Proof of Corollary 3.1.8. By the Portmanteau theorem, it suffices to show that, P-a.s.2563

lim
nÑ8

Ξpn,Aq

n
“ ΠpAq,2564

for any measurable set A Ď r0, w˚s with µ pBAq “ 0. Now, since µpMq “ 0, it suffices to prove2565

this equation for measurable sets A Ď r0, w˚s with A XM “ ∅. In view of Theorem 3.1.7,2566

we need only show that for all ε ą 0 sufficiently small, we have AXMε “ ∅. Indeed, if this2567

were not the case, then, since pAXM1{nqnPN is a nested sequence of closed sets, by Cantor’s2568

intersection theorem,2569

∅ ‰
č

nPN

`

AXM1{n

˘

“ AX
č

nPN

M1{n “ AXM,2570

a contradiction.2571

3.4 A Generalised Geometric Series2572

3.4.1 Proof of Lemma 3.1.42573

Lemma 3.1.4 may be interpreted as an extension of (2.17) in Section 2.3.1 of Chapter 2,2574

where we proved an analogous result in regards to the companion process associated with2575

the GPAF-tree. In that section, the approach was to apply the analysis of Section 2.2 in2576

Chapter 2, computing the Laplace transform of an appropriate pure-jump process in two2577

different ways. Here we adopt a slightly different approach: we also introduce an auxiliary2578

piece-wise constant, continuous time Markov process but instead compute its expected value2579

at an independent, exponentially distributed stopping time in two different ways.2580

More precisely, we define a process pYwptq, rwptqqtě0 taking values in N ˆ r0,8q. Let2581

pWiqiě0 be independent µ-distributed random variables, and define pSipwqqiě0 according to2582
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(3.2), that is,2583

S0pwq :“ hpwq; Si`1pwq :“ Sipwq ` gpw,Wi`1q, i ě 0.2584

In addition, set τ0 “ 0, and define pτiqiě1 recursively so that, given Sipwq2585

τi`1 ´ τi „ ExppSipwqq; (3.63)

where ExppSipwqq denotes the exponential distribution with parameter Sipwq. Then, we set2586

Ywptq :“
8
ÿ

n“1

1rτn,8qptq, and rwptq :“
8
ÿ

n“0

Snpwq1rτn,τn`1qptq.2587

Now, let pFtqtě0 denote the filtration generated by the process pYwptq, rwptqqtě0.2588

Claim 3.4.1. The process Ywptq ´
şt

0
rwpsqds is a martingale with respect to the filtration2589

pFtqtě0.2590

Proof. This follows from the fact that the difference between jump times is exponentially2591

distributed, and by applying, for example, [44, Theorem 1.33, page 149].2592

In addition,2593

Claim 3.4.2. For all t P r0,8q, we have E rYwptqs ă 8 almost surely. In particular, for2594

each t P r0,8q,2595

E rYwptqs “
ż t

0

E rrwpsqs ds. (3.64)2596

Proof. Let α be an independent exponentially distributed random variable with parameter2597

a ą 0, and set Ywpαq :“ inftěαpYwptqq. Then,2598

E
“

1tYwpαqěku|Sk´1pwq,1tYwpαqěk´1u

‰

“ E
“

1tαěτku|Sk´1pwq,1tYwpαqěk´1u

‰

“ P pmin pα ´ τk´1, τk ´ τk´1q “ τk ´ τk´1|Sk´1pwqq

ˆ 1tYwpαqěk´1u

“
Sk´1pwq

a` Sk´1pwq
1tYwpαqěk´1u, (3.65)
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where in the last equality we have used (3.63) and the memory-less property of the2599

exponential distribution. Note also, that for any j ď k ´ 1, the random variables2600

pSjpwq, . . . , Sk´1pwqq and 1tYwpαqěju are conditionally independent given the random vari-2601

ables Sj´1pwq,1tYwpαqěj´1u. Indeed, for each ` P tj, . . . , k ´ 1u,2602

S`pwq “ Sj´1pwq `
ÿ̀

i“j

gpw,Wiq,2603

where Wj, . . . ,Wk´1 are independent random variables sampled from µ, while2604

1tYwpαqěju “ 1tYwpαqěj´1u ˆ 1tminpτj´τj´1,α´τj´1q“τj´τj´1u,2605

where, we recall τj ´ τj´1 is an independent exponentially distributed random variable with2606

parameter Sj´1pwq and thus conditionally independent of pSjpwq, . . . , Sk´1pwqq. As a result,2607

we have2608

E

«˜

k´1
ź

i“j

Sipwq

Sipwq ` a

¸

1tYwpαqěju

ˇ

ˇ

ˇ

ˇ

Sj´1pwq,1tYwpαqěj´1u

ff

(3.66)

“ E

«˜

k´1
ź

i“j

Sipwq

Sipwq ` a

¸

ˇ

ˇ

ˇ

ˇ

Sj´1pwq,1tYwpαqěj´1u

ff

E
„

1tYwpαqěju

ˇ

ˇ

ˇ

ˇ

Sj´1pwq,1tYwpαqěj´1u



.

Therefore, we have2609

P pYwpαq ě kq “ E
“

1tYwpαqěku
‰

“ E
“

E
“

1tYwpαqěku|Sk´1pwq,1tYwpαqěk´1u

‰‰

(3.65)
“ E

„

Sk´1pwq

a` Sk´1pwq
1tYwpαqěk´1u



“ E
„

E
„

Sk´1pwq

a` Sk´1pwq
1tYwpαqěk´1u

ˇ

ˇ

ˇ

ˇ

Sk´2pwq,1tYwpαqěk´2u



(3.66)
“ E

„

E
„

Sk´1pwq

a` Sk´1pwq

ˇ

ˇ

ˇ

ˇ

Sk´2pwq,1tYwpαqěk´2u



ˆ E
“

1tYwpαqěk´1u|Sk´2pwq,1tYwpαqěk´2u

‰



(3.65)
“ E

„

E
„

Sk´1pwq

a` Sk´1pwq
ˆ

Sk´2pwq

a` Sk´2pwq
1tYwpαqěk´2u

ˇ

ˇ

ˇ

ˇ

Sk´2pwq,1tYwpαqěk´2u



“ E
„

Sk´1pwq

a` Sk´1pwq
ˆ

Sk´2pwq

a` Sk´2pwq
1tYwpαqěk´2u



.
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Iterating in this manner and noting that Ywpαq ě 0 almost surely, we deduce that the2610

previous expression is E
”

śk´1
i“0

Sipwq
a`Sipwq

ı

. This now implies that2611

E rYwpαqs “
8
ÿ

k“1

E

«

k´1
ź

i“0

Sipwq

a` Sipwq

ff

. (3.67)2612

Now, the display on the right is increasing in Sipwq, and using the fact that g and h are2613

bounded by J 1, we may bound this above by2614

8
ÿ

k“1

k
ź

i“1

J 1i

J 1i` a
ă 8 for all a ą J 1, by applying, for example, Stirling’s approximation.2615

Thus, for a suitable choice of a, E rYwpαqs is finite, so that, in particular, for each t P r0,8q,2616

since the random variable Ywptq is independent of the event tα ě tu which occurs with2617

positive probability,2618

E rYwptqs ď
E
“

Ywpαq1tαětu
‰

P pα ě tq
ă 8.2619

Now (3.64) follows from Claim 3.4.1.2620

We require an additional claim:2621

Claim 3.4.3. We have2622

E rrwptqs “ hpwq ` E rgpw,W qsE rYwptqs “ hpwq ` g̃pwqE rYwptqs . (3.68)2623

Proof. First note that, since rwptq jumps by gpw,W q whenever Ywptq jumps, we have2624

E rrwptqs ´ hpwq “ E

«Ywptq
ÿ

i“1

gpw,Wiq

ff

.2625

Assume that gpw,Wiq are bounded by J 1. In addition, for each n P N,2626

E
“

gpw,Wnq1tYwptqěnu
‰

“ E rgpw,Wnqs ´ E
“

gpw,Wnq1tYwptqănu
‰

“ E rgpw,Wnqs p1´ P pYwptq ă nqq “ E rgpw,WnqsP pYwptq ě nq ,

where the second to last equality follows from the fact that the event tYwptq ă nu depends2627

only on pSipwqqi“0,...,n´1, and is thus independent ofWn. Finally, by Claim 3.4.2, E rYwptqs ă2628

8, and thus the result follows by applying Wald’s Lemma.2629
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Proof of Lemma 3.1.4. First note that by (3.64) and (3.68), we have2630

d

dt
E rYwptqs “ g̃pwqE rYwptqs ` hpwq,2631

and solving this differential equation, with initial condition E rYwp0qs “ 0, we have2632

E rYwptqs “
hpwq

g̃pwq
peg̃pwqt ´ 1q. (3.69)2633

Now, let Λ be an exponentially distributed random variable with parameter λ. Then, on the2634

one hand, by (3.67)2635

E rYwpΛqs “
8
ÿ

k“1

E

«

k´1
ź

i“0

Sipwq

Sipwq ` λ

ff

.2636

On the other hand,2637

E rYwpΛqs “
ż 8

0

λe´λuE rYwpΛq|Λ “ us du “

ż 8

0

λe´λuE rYwpuqs du
(3.69)
“

hpwq

λ´ g̃pwq

where, in order to evaluate the integral to get the last equality, we have used the fact that2638

λ ą g̃`. The result follows.2639
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Chapter Four2640

Dynamical Models for Random2641

Simplicial Complexes2642

4.1 Introduction2643

So far in this thesis we have studied evolving trees of a recursive nature, where one vertex2644

arrives at each time-step. In this chapter we study the higher dimensional recursive models2645

of simplicial complexes, described in Section 1.3.4 of Chapter 1. While the PANI-tree model2646

studied in Chapter 3 also incorporated some degree of “neighbourhood influence”, the models2647

we study in this chapter have a lot more dependencies, and thus will require the use of more2648

technical tools. As a result, for brevity we only study the quantity Nkpnq, the number of2649

vertices with degree k ` d rather than empirical measure associated with the number of2650

vertices with degree k` d and a certain weight, although we remark similar analysis may be2651

performed for the latter quantity. We first present a more formal description of the dynamics2652

of the models.2653
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4.1.1 Description of the Models2654

Recall from Section 1.3.4 of Chapter 1 that in the models of simplicial complexes we study,2655

vertices are equipped with weights sampled independently from µ, supported on a subset of2656

an interval r0, w˚s. Given a parameter d ě 1, the models we study are of fixed dimension2657

pd ´ 1q ě 0. In addition, the models also have a fitness function associated to them, which2658

is a positive, symmetric function f : r0, w˚sd Ñ R`. Using the weights of the vertices, we2659

define the fitness of a face σ as the value of f when applied to the vector ωpσq of the weights2660

of the vertices that belong to that face. Abusing notation slightly, we sometimes write fpσq2661

instead of fpωpσqq. Since f is assumed to be symmetric, the order of the coordinates of ωpσq2662

is not relevant.2663

Motivated by this symmetry, for all s ě 0, we view the type ωpσq of an s-dimensional2664

face σ as an element of Cs :“ r0, w˚ss`1{ „, where „ denotes the equivalence relation where2665

vectors are the same under permutation of their entries. Unless otherwise stated, we identify2666

entries of Cs with the set tpx0, . . . , xsq P r0, w
˚ss`1 : x0 ď . . . ď xsu and equip Cs with the2667

max-norm inherited from r0, w˚ss`1.2668

We consider two versions of the model: Model A and Model B. These models are2669

defined as follows: first, let K0 be an arbitrary pd´ 1q-dimensional simplicial complex, with2670

finite vertex set V0 Ď ´N0 and each vertex assigned a fixed weight chosen from Supp pµq. In2671

this thesis, we will show that our limiting results do not depend on this choice of weights.2672

Then, recursively for all n ě 0:2673

(i) Define the random empirical measure2674

Πn “
ÿ

σPKpd´1q
n

δωpσq (4.1)2675

on Cd´1 and the associated probability measure on the set Kpd´1q
n of pd´1q-dimensional2676
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faces:2677

Π̂n “
1

Zn

ÿ

σPKpd´1q
n

fpσqδσ, where Zn :“

ż

Cd´1

fpxqdΠnpxq. (4.2)2678

We call Zn the partition function associated with the process pKnqně0 at time n.2679

(ii) Select a face σ1 “ pσ10, . . . , σ1d´1q P Kpd´1q
n according to the measure Π̂n.2680

(iii) In both ModelsA andB, for each σ2 P Kpd´2q
n such that σ2 Ă σ1, add the face σ2Ytn`1u2681

to Kn (here it may be useful to recall that Kp´1q
n “ ∅). Moreover, in Model B remove2682

the set σ1 from Kn. Then, take the downwards closure, recalling Definition 1.2.2, to2683

form Kn`1.2684

Note that, in Model A the existing faces always remain in the complex, whilst in Model B2685

the selected face is removed at every step. We call step (iii) applied to a chosen face σ12686

a subdivision of σ1 by vertex n ` 1. Equivalently we say σ1 has been subdivided by vertex2687

n` 1. Recall Figure 1.9 from Section 1.3.4 of Chapter 1 which illustrated a possible sample2688

evolution of either of the models with parameter 3. We present a smaller illustration of this2689

evolution in Figure 4.1 below.2690

Remark 4.1.1. For general d, Model A may be considered as a generalisation of the Network2691

Geometry with Flavour model introduced in [13], and outlined in Section 1.2.4, with flavour2692

s “ 0, and bounded energies. We recall that when s “ 0, each face σ is selected with2693

probability proportional to e´βεσ , where εσ is the (random) energy of face σ. Model B may be2694

considered as a generalisation of CQNMs with bounded energies (this model was also outlined2695

in Section 1.2.4). However, note that for brevity, rather than ‘deactivating’ selected faces,2696

we simply remove them from the complex: this does not affect any of the results we will be2697

interested in this thesis.2698

Remark 4.1.2. The models we introduced can be further generalised. For example, instead2699

of selecting a pd´1q-face to subdivide, one may consider a setting where a face of dimension2700
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s may be selected and subsequently subdivided, with the addition of an ps ` 1q-dimensional2701

face.2702

Dynamics of Model A and Model B with Parameter 3.
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Figure 4.1: A possible evolution of steps K0 to K3 in either Model A or

Model B with parameter 3. At each step, a 2-face (triangle) is chosen

randomly according to step (i), and subdivided. In Model B, the chosen

face is then removed from the complex.

Before we describe our main results we first introduce some notation specific to this2703

chapter.2704
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4.1.2 Some More Notation Specific to Chapter 42705

Recall that for all s ě 0, Cs “ tpx0, . . . , xsq P r0, w
˚ss`1 : x0 ď . . . ď xsu. For all x “2706

px0, . . . , xsq P Cs and i P t0, . . . , su, we set x̃i :“ px0, . . . , xi´1, xi`1, . . . , xsq P Cs´1 and define2707

the empirical measure νx “
řs
i“0 δx̃i on Cs´1. Next, for w ě 0 and y P Cs, let y Y w P Cs`12708

denote the vector obtained by adding a coordinate equal to w to the vector y and reordering2709

the coordinates of this ps ` 1q-dimensional vector in non-decreasing order. In addition, for2710

i P t0, . . . , su, we write xiÐw :“ x̃i Y w. With this notation, when a face of type x is2711

subdivided by a vertex of weight w, we add to the complex d new pd´ 1q-faces of respective2712

types xiÐw for i P t0, . . . , d´ 1u. Moreover, for a vector x “ px0, . . . , xj, w, xj`1 . . . , xsq P Cs,2713

we denote by xztwu the element px0, . . . , xj, xj`1, . . . , xsq P Cs´1.2714

For a vertex v in a pd ´ 1q-dimensional simplicial complex K, we define the star of2715

v in K, which we denote by stvpKq, to be the subset of Kpd´1q consisting of those pd ´ 1q-2716

faces which contain v. Finally, we write 0 and 1 for the vectors p0, . . . , 0q and p1, . . . , 1q2717

respectively, in any dimension.2718

4.1.3 Statements of Main Results of Chapter 42719

This analysis, as we will see, applies the heuristic outlined in Section 1.4.1 of Chapter 1.2720

Applying this approach requires two main steps, both of which are non-trivial: deriving a2721

strong law of large numbers for the partition function associated with the model, and the2722

empirical measure pΠnqně0, from (4.1), describing the type ωpσq of a face σ to be chosen in2723

the nth step; and an approach analogous to Section 2.4 of Chapter 2 to deduce convergence2724

in probability of the degree distribution.2725
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Part I: Convergence of the Partition Function2726

We will refer to the following hypotheses throughout the text:2727

H1. The measure µ is finitely supported, the fitness function f is positive and |Kpd´1q
n | Ñ 82728

as n Ñ 8, where we recall that Kpd´1q
n is the set of all pd ´ 1q-faces in the random2729

simplicial complex Kn at time n.2730

H2. The process pKnqně0 evolves according to Model A and µpt1uq “ 0. Moreover, the2731

fitness function f is continuous, monotonically increasing in each argument, positive2732

and such that, for a random variable W with distribution µ,2733

Erfp10ÐW qs ă

ˆ

1`
1

d

˙

Erfp00ÐW qs. (4.3)2734

Remark 4.1.3. It is reasonable to believe that Assumption H2, and in particular (4.3) which2735

ensures that the function f is not “too steep” on its domain of definition, is not necessary for2736

our results to hold true. Our main result on the asymptotic degree distribution holds under2737

Assumptions (a-d) of Remark 4.1.7 below. We use Assumption H2 to show that Assumptions2738

(c-d) hold: this is done in Proposition 4.1.1 and Proposition 4.1.2. Their proofs, in the case2739

of µ having infinite support, rely on recent results of [59] on the convergence of infinitely2740

many type Pólya urns; more precisely, Assumption H2 ensures that the assumptions of [59,2741

Theorem 1] hold. The case when µ has continuous support is more difficult to treat because2742

the coupling arguments analogous to those applied in Section 3.2 of Chapter 3 allowing one2743

to apply the theory of finite type Pólya urns, do not seem to work in this case.2744

Note that |Kpd´1q
n | Ñ 8 as long as d ą 1 in Model B, and for all d ě 1 in Model A.2745

Proposition 4.1.1. Assume H1 or H2, and let Yn, n ě 1, be the Cd´1-valued random2746

variable that equals the type of the face chosen to be subdivided in the n-th step. Then, Yn2747

converges to a Cd´1-valued random variable Y8 in distribution when n tends to infinity.2748
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Given any sub-complex K̃ Ď Kn define2749

F pK̃q :“
ÿ

σPK̃pd´1q

fpσq. (4.4)2750

and note that F pKnq “ Zn, the partition function associated with the process defined in (4.2).2751

Proposition 4.1.2. Assume H1 or H2. Then, there exists λ ą 0 such that, almost surely,2752

Zn
n
“
F pKnq
n

ÝÑ λ, as nÑ 8.2753

Remark 4.1.4. The distribution of the limiting random variable Y8 and the value of λ do2754

not depend on the choice of the initial complex K0.2755

Remark 4.1.5. Because under either condition H1 or H2 the function f is bounded, we2756

have trivial deterministic bounds on Zn “ F pKnq, and therefore on λ. In particular, if we2757

let2758

fmin “ mintfpxq : x P Cd´1u and fmax “ maxtfpxq : x P Cd´1u (4.5)2759

be the minimum and the maximum respectively of the fitness function on its domain of2760

definition, then λ P rdfmin, dfmaxs in Model A, whereas λ P rpd´ 1qfmin, pd´ 1qfmaxs in Model2761

B.2762

Remark 4.1.6. The monotonicity requirement and (4.3) in H2 may be used to cover a2763

particular case of the Network Geometry with Flavour, the model from [13] outlined in Sec-2764

tion 1.2.4 in Chapter 1. Namely, we may cover the case with ‘flavour’ s “ 0, in which each2765

face σ is selected with probability proportional to e´βεσ , where εσ is the energy of face σ, and2766

the selected faces remain in the complex. We may do this by setting the weights wi :“ p1´ εiq2767

where εi are the energies assigned to the vertices. We therefore assume that the distribution2768

of εi does not have an atom at 0, the energies are bounded, and (4.3) is satisfied, that is, the2769

“inverse temperature” β satisfies β ă 1
d´1

log
`

1` 1
d

˘

.2770

Both Proposition 4.1.1 and Proposition 4.1.2 are corollaries of a more general almost2771

sure limit theorem for the empirical measure Πn, n ě 0 associated with the types of faces in2772
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the complex, namely Theorem 4.3.1 proved in Section 4.3. While this result, and therefore2773

the two propositions, follows from the standard Pólya urn theory outlined in Section 3.2.12774

of Chapter 3 under H1, for H2 we need to make use of general results for measure-valued2775

Pólya urn processes recently established in [59] to cover the general case. See, in particular,2776

Section 4.3 in this work.2777

4.1.4 The companion star process2778

In this model the companion process that tracks the probability of selecting a vertex as its2779

degree evolves (as outlined in Section 1.4.1 of Chapter 1) takes the form of a simplicial com-2780

plex valued stochastic process pS˚nqně0. Informally, this process approximates the evolution2781

of the star of a fixed vertex i in pKnqně0, assuming that i is sufficiently large, namely, large2782

enough for the distribution of Yi, the type of the face selected by node i when it enters2783

the network, to be close enough to the distribution of Y8 from Proposition 4.1.1). Let π82784

denote the distribution of the random variable Y8. Then, sample a face type from π8, and2785

form a pd´ 1q-simplex on vertex set t1´ d, . . . , 0u with weights corresponding to this type.2786

Subdivide this face (using the mechanisms of Model A or B) by a new vertex labelled r with2787

weight W sampled from µ, and form the simplicial complex S˚0 consisting of the pd´1q-faces2788

containing r. We call r the centre of S˚0 . Then, recursively:2789

(i) Select a face σ from pS˚nq
pd´1q with probability proportional to its fitness, and subdi-2790

vide it by a new vertex n ` 1 obeying the subdivision rules of Model A or Model B2791

respectively.2792

(ii) Form the simplicial complex S˚n`1 consisting only of the pd ´ 1q-faces containing r.2793

Essentially this means removing all the pd ´ 1q-faces formed during the subdivision2794

step not containing r.2795

151



Dynamical Models for Random Simplicial Complexes

Dynamics of the Companion Process with Parameter 3.

-2

-1

0 -2

-1

0

r

-2

-1

0

r

-2

-1

0

r

1

-2

-1

0

r

1

-2

-1

0

r

1

2

Figure 4.2: The evolution of the companion process, S˚0 to S˚2 in Model B

with parameter 3. A face with type selected from π8 is formed on vertices

t´2,´1, 0u and subdivided with a vertex labelled r to form S˚0 in the

second square. Subsequently, a face is chosen randomly and subdivided

according to step (i), and then faces not containing r are deleted. Since

this is Model B, the chosen face is also removed from the complex.

A more formal construction of this process is provided in Section 4.3.3. We set2796

F pS˚nq :“
ÿ

σPpS˚n qpd´1q

fpσq. (4.6)2797
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4.1.5 Main results, Part II: Convergence of the Degree Distribution2798

Theorem 4.1.3. Assume H1 or H2 and for all n ě 1, k ě 0, let Nkpnq denote the number2799

of nodes of degree k` d in the random simplicial complex Kn at time n. Then, for all k ě 0,2800

we have, with convergence in probability,2801

lim
nÑ8

1

n
Nkpnq “ E

«

λ

F pS˚k q ` λ

k´1
ź

j“0

F pS˚j q

F pS˚j q ` λ

ff

“: pk,2802

where the star process S˚ and its fitness function F are defined respectively in Section 4.1.42803

and (4.6).2804

In fact, we have a more general result. Recall, from Definition 1.2.5 in Section 1.2.1 of2805

Chapter 1, that the s-degree of a face is the number of distinct s-faces that contain it. Then,2806

suppose that N psq
k pnq denotes the number of vertices of s-degree

`

d
s

˘

`
`

d´1
s´1

˘

k, for 1 ď s ă d.2807

Corollary 4.1.4. Assume H1 or H2. For all k ě 0, we have, independent of the initial2808

complex K0, with convergence in probability,2809

lim
nÑ8

1

n
N
psq
k pnq “ pk.2810

Remark 4.1.7. In fact, in the proof of Theorem 4.1.3, we show that the conclusion of the2811

theorem holds if one assumes the following weaker conditions instead of H1 or H2:2812

(a) The measure µ is an arbitrary probability distribution on R`.2813

(b) The fitness function f is non-negative, symmetric, bounded and continuous.2814

(c) If for all n ě 1, Yn is the type of face that is subdivided at time n, then pYnqně1 converges2815

in distribution when nÑ `8.2816

(d) There exists λ ą 0 such that, almost surely when nÑ `8, F pKnq{nÑ λ.2817
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One may interpret these assumptions as the analogue of Condition C2 used to analyse the2818

pµ, f, `q -RIF tree in Section 2.4 of Chapter 2.2819

Remark 4.1.8. Note that the boundedness of f implies that2820

$

’

’

&

’

’

%

pd` pd´ 1qnqfmin ď F pS˚nq ď pd` pd´ 1qnqfmax, in Model A;

pd` pd´ 2qnqfmin ď F pS˚nq ď pd` pd´ 2qnqfmax, in Model B,
(4.7)2821

where we recall that fmin and fmax are the minimum and the maximum of the fitness function2822

f (see (4.5)).2823

Remark 4.1.9. For an r-face σ with r ă d´1, the degree of σ is the number of pd´1q-faces2824

which contain σ. One can derive the analogue of Theorem 4.1.3 for the degree distribution2825

of r-faces by considering a star companion process for an r-face. Here, the star of an r-face2826

will simply consist of the pd ´ 1q-faces that contain it. As long as the process is such that2827

a.s. the total weight of the star tends to infinity, then one could derive a formula as in2828

Theorem 4.1.3.2829

Outline of the rest of Chapter 42830

In Section 4.2 we discuss the connection of our main results to existing models. This will2831

include classifying the values of d that ensure that the degree distributions follows a power2832

law, which are consistent with analysis from [12] and [13].2833

Section 4.3 is dedicated to the study of the empirical measure Πn, n ě 0, and in2834

particular, to the proofs of Proposition 4.1.1 and Proposition 4.1.2. As we remarked earlier2835

(see Remark 4.1.3), these propositions make use of the recent theory of measure-valued Pólya2836

processes. To our knowledge this is the first application of this theory, rather than finite2837

type Pólya urns, in the context of evolving networks.2838
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In Section 4.4 we apply the results of Section 4.3 to prove Theorem 4.1.3. This2839

approach is similar to the approach used in Section 2.4 used in Chapter 2. However, due2840

to the increased complexity in this model, there are additional technicalities used to find an2841

upper bound for the limit of the mean of Nkpnq{n in Section 4.4.2. Moreover, rather than2842

applying the shorter, indirect approach used to deduce convergence of the mean applied in2843

Section 2.4.4 of Chapter 2, we apply a more direct approach, finding a lower bound for the2844

limit of the mean of Nkpnq{n in Section 4.4.4. While details of the proof in Section 4.4.42845

are much more technical, this approach is favourable as the methods used to derive a lower2846

bound may be useful in other contexts, for example, in studying the evolution of the degree2847

of a fixed vertex in related recursive network models.2848

We defer the proofs of some technical probabilistic lemmas to the end of the chapter,2849

so as to not interrupt the general flow of the chapter.2850

4.2 Discussion and Examples2851

4.2.1 Constant fitness function2852

In the case that the fitness functions are constant, so that fpxq “ f0, we have deterministic2853

formulas for F pS˚nq and λ. These cases correspond to models where the face chosen to be2854

subdivided at time n`1 is chosen uniformly at random from the set Kpd´1q
n . Here we use the2855

asymptotic approximation of the ratio of two gamma functions: for fixed a P R as tÑ 82856

Γ pt` aq

Γ ptq
“ p1`Op1{tqqta. (4.8)2857

This is a straightforward result of Stirling’s approximation, i.e., (4.8) from Chapter 2, and2858

will be used often throughout this paper.2859
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1. In Model A we have F pS˚nq “ ppd ´ 1qn ` dqf0, and λ “ df0. Theorem 4.1.3 implies2860

that2861

pk “
d

pd´ 1qk ` 2d

k´1
ź

j“0

pd´ 1qj ` d

pd´ 1qj ` 2d
.2862

If d ą 1, using (4.8)2863

pk “

ˆ

1`
1

d´ 1

˙

Γ
`

k ` d
d´1

˘

Γ
`

2d
d´1

˘

Γ
`

k ` 1` 2d
d´1

˘

Γ
`

d
d´1

˘ „ k´
2d´1
d´1 .2864

This is a new result. For d “ 1 we obtain pk “ 2´k, which is an old result of Na and2865

Rapoport for the random recursive tree [63].2866

2. Model B with constant fitness function (with K0 given by a d-simplex) is the same as2867

the Random Apollonian Network. In this case, if d ě 2, F pS˚nq “ ppd´ 2qn` dqf0 and2868

λ “ pd´ 1qf0. Applying Theorem 4.1.3 we get,2869

pk “
d´ 1

pd´ 2qk ` 2d´ 1

k´1
ź

j“0

pd´ 2qj ` d

pd´ 2qj ` 2d´ 1
.2870

Note that if d “ 1, ΠnpCd´1q “ |V0| (where V0 is the set of vertices of the initial2871

complex K0), so Theorem 4.1.3 does not apply. However, in this case it is easy to see2872

that p1 “ 1. In the case d “ 2, we have pk “ 2k´1

3k
. For d ě 3, using (4.8), we get2873

pk “

ˆ

1`
1

d´ 2

˙

Γ
`

k ` d
d´2

˘

Γ
`

2d´1
d´2

˘

Γ
`

k ` 1` 2d´1
d´2

˘

Γ
`

d
d´2

˘ „ k´
2d´3
d´2 .2874

This is the same exponent proved in [52] and [39].2875

4.2.2 Weighted Random Recursive Trees2876

The case d “ 1 in Model A with initial simplicial complex given by a single vertex, is2877

the weighted random recursive tree, the specific case of the pµ, f, `q -RIF tree analysed in2878

Section 2.2.4 of Chapter 2.1 In this case, the fitness of the new vertex arriving at each time-2879

step is independent of the rest of the complex, so the strong law of large numbers implies2880

1Note that Model B is trivial for d “ 1 as the tree is a single path.
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that λ in Proposition 4.1.2 is given by E rfpW qs. Moreover, the simplicial complex pS˚j qjě02881

is a fixed vertex, so that F pS˚j q “ fpW q for all j ě 0, where W is the weight of the vertex.2882

Thus, Theorem 4.1.3 implies the following:2883

Proposition 4.2.1. As nÑ `8, we have2884

Nkpnq

n
Ñ E

„

λfpW qk

pfpW q ` λqk`1



, in probability.2885

This is a weaker version of the statements related to this model from Section 2.2.4 of2886

Chapter 2.2887

4.2.3 Tails of the Distribution2888

In this subsection, we will require the additional assumption that2889

ˇ

ˇKpd´2q
n

ˇ

ˇ

nÑ8
ÝÑ 8. (4.9)2890

Note that this assumption is satisfied as long as d ą 1 in Model A and d ą 2 in Model B. It2891

is this assumption that leads to the emergence of scale-free behaviour for d ą 2 in Complex2892

Quantum Network Manifolds observed by Bianconi and Rahmede in [12] (recall Figure 1.62893

from Chapter 1) and the scale-free behaviour for all d ą 1 in the Network Geometry with2894

Flavour from [13]. In the case µ is not finitely supported, we will require an analogue of2895

(4.3). For brevity, we define the following additional hypotheses:2896

H1*. Assume H1 and (4.9) holds.2897

H2*. Assume H2 and (4.9) holds. Moreover, for all w P Supp pµq, the function f̃x : Cd´2 Ñ2898

R, f̃xpvq “ fpv Y xq satisfies2899

Erf̃xp10ÐW qs ă

ˆ

1`
1

pd´ 1q

˙

Erf̃xp00ÐW qs.2900
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Remark 4.2.1. Similarly to H2, we do not believe that Assumption H2* is necessary for2901

our results to hold. We use it to apply [59, Theorem 1] in the proof of Proposition 4.2.2.2902

In order to analyse the tails of the distribution from Theorem 4.1.3, we require the2903

following proposition, similar to Proposition 4.1.2. In the statement of the following propo-2904

sition, we allow S˚0 to have a centre with a fixed weight w instead of a random weight W2905

with distribution µ. In the construction of S˚0 , however, we still choose the face according to2906

π8. We use Pw and Ew for probabilities and expectations, respectively with regards to this2907

initial state.2908

Proposition 4.2.2. Assume H1* or H2*. Then, if the centre of S˚0 has weight w P2909

Supp pµq, there exists λ˚w such that, Pw-almost surely2910

F pS˚nq

n
Ñ λ˚w.2911

We postpone the proof of Proposition 4.2.2 to Section 4.3.3. The following proposition2912

holds under H1*: Under Assumption H1*, µ has finite support and thus maxtλ˚w : w P2913

Supp pµqu exists and is attained at some value w` P Supp pµq; we set λ˚w` “ maxtλ˚w : w P2914

Supp pµqu.2915

Proposition 4.2.3. Assume H1*. With pk as defined in Theorem 4.1.3, we have2916

lim inf
kÑ8

logk pk ě ´

˜

1`
λ

λ˚w`

¸

. (4.10)2917

Proof. Suppose P pW “ w`q “ κ (recall that under H1* µ is finitely supported). Then, by2918

the definition of pk, we have2919

pk “ E

«

λ

F pS˚k q ` λ

k´1
ź

j“0

F pS˚j q

F pS˚j q ` λ

ff

ě Ew`

«

λ

F pS˚k q ` λ

k´1
ź

j“0

F pS˚j q

F pS˚j q ` λ

ff

κ.2920

2921

Fix δ, ε1 ą 0. By Proposition 4.2.2 (and Egorov’s theorem), there exists k0 “ k0pε, δq such2922

that for all k ě k02923

Pw`
ˆˇ

ˇ

ˇ

ˇ

F pS˚k q

k
´ λ˚w`

ˇ

ˇ

ˇ

ˇ

ă ε

˙

ą 1´ δ.2924
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Let G˚ε,δ be the associated event in the previous display. We may bound the product2925

śk0´1
j“0

F pS˚j q

F pS˚j q`λ
below by a constant by applying (4.7). Moreover, for all k ą k0, on G˚ε,δ,2926

we have2927

λ

F pS˚k q ` λ

k´1
ź

`“k0

F pS˚` q

F pS˚` q ` λ
ą
λ pkpλ˚w˚ ´ εq ` λq

kpλ˚w˚ ` εq ` λ
¨

1

kpλ˚w˚ ´ εq ` λ

k´1
ź

`“k0

`pλ˚w` ´ εq

`pλ˚w` ´ εq ` λ
2928

“
kpλ˚w˚ ´ εq ` λ

kpλ˚w˚ ` εq ` λ
¨

λ

λ˚w˚ ´ ε
¨

Γpk0 `
λ

λ˚w`´ε
q

Γpk0 ´ 1q

Γpkq

Γpk ` 1` λ
λ˚w`´ε

q
.2929

2930

Therefore, by applying (4.8), we find that there exists a constant c “ cpk0, δ, ε, κq such that2931

logk pk ě logk c´

˜

1`
λ

λ˚w` ´ ε

¸

.2932

The equation (4.10) follows from taking limits as k Ñ 8, and sending ε to 0.2933

Further Discussion2934

Applying (4.7), it is easy to show that, whenever (4.9) holds,2935

lim inf
kÑ8

logk pk ě

$

’

’

&

’

’

%

´

´

1` λ
pd´1qfmin

¯

, in Model A;

´

´

1` λ
pd´2qfmin

¯

, in Model B,
2936

and likewise,2937

lim sup
kÑ8

logk pk ď

$

’

’

&

’

’

%

´

´

1` λ
pd´1qfmax

¯

, in Model A;

´

´

1` λ
pd´2qfmax

¯

, in Model B.
2938

Thus, when d ą 1 in Model A and d ą 2 in Model B, the degree distribution is bounded2939

above and below by a power law. This leads to the scale-free behaviour observed in [12] and2940

[13].2941

In general, by counting the edges in the complex in two different ways, we find that2942

ř8

k“0 kpk ď d, so that pk cannot obey a power law with a fixed exponent less than 2,2943

otherwise the sum would diverge. However, we cannot deduce from these methods that2944
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the degree distribution in each case follows a power law with a fixed exponent. Instead,2945

we believe that the degree distribution obeys an ‘averaged’ power law, as described in the2946

GPAF-tree and the PANI-tree in Section 2.3.1 of Chapter 2 and Section 3.1.2 of Chapter 32947

respectively.2948

4.3 Convergence of the empirical distribution2949

The aim of this section is to prove the following almost sure limit theorem for the empirical2950

distribution Πn.2951

Theorem 4.3.1. Assume H1 or H2. Then, there exists a deterministic, positive, finite2952

measure π on Cd´1, which does not depend on the choice of K0 such that, almost surely,2953

Πn

n
Ñ π2954

with respect to the weak topology.2955

Proposition 4.1.2 and Proposition 4.1.1 both follow from Theorem 4.3.1 above, with2956

λ “
ş

Cd´1
fpxq dπpxq in Proposition 4.1.2 and Y8 from Proposition 4.1.1 having law π82957

defined by2958

π8pAq “

ş

A
fpxqdπpxq

ş

Cd´1
fpxqdπpxq

,2959

for any measurable set A Ď Cd´1.2960

4.3.1 Proof of Theorem 4.3.1 Assuming Hypothesis H12961

To prove Theorem 4.3.1 assuming H1, we view the collection of faces as balls in a generalised2962

Pólya urn process, the family of stochastic processes previously applied in Section 3.2 (and2963

briefly described in Section 3.2.1) of Chapter 3.2964
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Recall from Section 3.2.1 of Chapter 3 that in this set-up, one considers an urn2965

consisting of balls with a finite number of possible types. A ball of type j is sampled at2966

random from the urn with probability proportional to its activity aj, and replaced with2967

balls of a number of different types according to a possibly random replacement rule. In2968

the common set-up, the configuration of the urn after n replacements is represented as a2969

composition vector Xn with entries labelled by type, and the activities associated with the2970

types are encoded in an activity vector a. In this vector, the ith entry corresponds to the2971

number of balls of type i. Let pξijq be the matrix whose ijth component denotes the random2972

number of balls of type j added, if a ball of type i is drawn. The following theorem is implied2973

by Theorem 3.2.1 and Lemma 3.2.2 from Chapter 3, which we recall were due to Janson [45].2974

Theorem 4.3.2 ([45]). Assume ξii ě ´1, ξij ě 0 for i ‰ j, and the matrix Aij :“ ajE rξjis is2975

irreducible. Moreover, denote by λ1 the principal eigenvalue of A, and v1 the corresponding2976

right-eigenvector normalised so that aTv1 “ 1. For any non-empty initial configuration of2977

the urn, we have2978

Xn

n
nÑ8
ÝÝÝÑ λ1v1,2979

almost surely, and independently of the initial configuration of the urn.2980

Note that when µ is finitely supported, the number of possible face types ωpσq in the2981

complex is finite. We denote this finite set of possible types by Cfd´1 Ď Cd´1. The empirical2982

distribution of face types then corresponds to the distribution of balls in a generalised Pólya2983

urn; where the types of the balls in the urn correspond to the types of the pd ´ 1q-faces,2984

and the activities are the fitnesses. In each step, we draw a ball of type x in the urn with2985

probability proportional to its activity fpxq, choose a weight W independently according to2986

µ, and add d new balls of respective types xiÐW , for i P t0, . . . , d´ 1u. In Model B we also2987

remove the ball we drew from the urn.2988

Proof of Theorem 4.3.1, assuming H1. Recall that, under H1, the random weight W has2989
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finite support, and thus, for some M ą 0, W P tw1, . . . , wMu almost surely. Let Xn “2990

pXxpnqqxPCfd´1
denote the vector whose coordinate Xxpnq counts the number of balls of type2991

x in the urn after n steps. For x P Cfd´1 and k P t1, . . . ,Mu, let nxpkq be the number of entries2992

in x equal to wk. We call x ‰ x1 neighbours if x1 can be obtained from x by changing exactly2993

one entry `1 “ `1px, x
1q into w`2 , where `2 “ `2px, x

1q (and then re-ordering the entries in2994

non-decreasing order).2995

In Model A, this urn has the following replacement rule:2996

ξxx1 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

řM
k“1 nxpkq1twkupW q x “ x1,

nxp`1q1tw`2px,x1qu
pW q if x, x1 are neighbours,

0 otherwise;

2997

whilst in Model B the replacement rule is2998

ξxx1 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

řM
k“1 nxpkq1twkupW q ´ 1 x “ x1,

nxp`1q1tw`2px,x1qu
pW q if x, x1 are neighbours,

0 otherwise.

2999

If we define the matrix Axx1 “ fpx1qE rξx1xs, since f ą 0 it is easy to see that A is irreducible.3000

Thus we may deduce Theorem 4.3.1 by applying Theorem 4.3.2.3001

4.3.2 Proof of Theorem 4.3.1 Assuming Hypothesis H23002

In order to prove Theorem 4.3.1 assuming H2, we show that Πn, n ě 0 is a measure-valued3003

Pólya process (MVPP), a recent extension of the finite type generalised Pólya urn theory3004

introduced in [7] and [58]. We then apply results from [59]. In the process, we will state a3005

few lemmas, whose proofs we defer to the end of the section in Section 4.3.4. For brevity,3006

for the rest of the section, we set3007

w˚ “ 1,3008
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so that the maximum possible value a weight can take is 1. This is done purely for convenience3009

of notation, and the results easily extend to other values of w˚ P R`.3010

Let S be a locally compact Polish space andMpSq be the set of finite, non-negative3011

measures on S. Recall thatMpSq is also Polish when equipped with the Prokhorov metric,3012

which metrises the weak topology when we viewMpSq as the dual of the space of bounded3013

continuous functions from S to R. For a given kernel P on S and µ PMpSq, we define the3014

measure3015

pµb P qp¨q :“

ż

S
Pxp¨q dµpxq.3016

Thanks to, e.g., [50, Section 4.1], and because of the local compactness, a random function3017

R with values in MpSq is a random variable, i.e., measurable, if and only if, for all Borel3018

sets B Ď S, RpBq is a real-valued random variable. We call a family Rx, x P S of random3019

variables with values in MpSq a random kernel if, almost surely, x ÞÑ Rx is continuous.3020

Note that, for a random kernel Rx, x P S, the annealed quantity R̄xp¨q “ E rRxp¨qs is a3021

kernel on S and the map x ÞÑ R̄x is continuous. We call two random kernels Rx, R
1
x for3022

x P S independent if, for all x P S, the random measures Rx, R
1
x are independent.3023

Definition 4.3.3. Let pRpnq
x , x P Sqně1 be a sequence of i.i.d. random kernels. The measure-3024

valued Pólya process with m0 PMpSq satisfying m0pSq ą 0, replacement kernels pRpnq
x , x P3025

Sqně1 and non-negative weight kernel P is the sequence of random non-negative measures3026

pmnqně0 defined recursively as follows: given mn´1, n ě 1:3027

(i) Sample a random variable ξ from S according to the probability measure3028

pmn´1 b P qp ¨ q

pmn´1 b P qpSq
.3029

(ii) Set mn “ mn´1 `R
pnq

ξ .3030

The next lemma allows us to express the empirical distribution of the pd´ 1q-faces in3031

Model A as an MVPP.3032
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Lemma 4.3.4. For all n ě 1 and x P Cd´1 let3033

Rpnq

x “

d´1
ÿ

i“0

δxiÐWn .3034

The sequence Πn, n ě 0, is the MVPP with initial composition Π0, replacement kernel3035

pRpnq
x , x P Cd´1qně1 and weight kernel Px “ fpxqδx, x P Cd´1.3036

Proof. Let σ be the face chosen and subdivided at step n and ξ be its type. By construction,3037

Πn “ Πn´1 `

d´1
ÿ

i“0

δξiÐWn “ Πn´1 `R
pnq

ξ ,3038

and, for all Borel sets B Ď Cd´1,3039

P pξ P B|Πn´1q “

ř

σPKpd´1q
n

fpσqδωpσqpBq
ř

σPKpd´1q
n

fpσq
“

pΠn´1 � P qpBq

pΠn´1 � P qpCd´1q
.3040

This concludes the proof.3041

We now state [59, Theorem 1]. We will apply this theorem to the MVPP Πn, n ě 03042

to deduce Theorem 4.3.1. We require the following definitions. For an i.i.d. sequence of3043

random kernels pRpnq
x , x P Sqně1 and a weight kernel P , let R̄xp¨q “ E rRp1q

x p¨qs and3044

Qpnqx p¨q :“ pRpnq

x � P qp¨q “

ż

S
Pyp¨q dRpnq

x pyq and Q̄xp¨q :“ pR̄x � P qp¨q “

ż

S
Pyp¨q dR̄xpyq.3045

Theorem 4.3.5 (Mailler & Villemonais [59]). Let pmnqně0 be the MVPP on S with initial3046

composition m0, replacement kernel pRpnq
x , x P Sqně1 and weight kernel P . Assume that:3047

A1 For all x P S, Q̄xpSq ď 1, and there exists a probability distribution η ‰ δ0 on R` such3048

that, for all x P S, the law of Qp1q
x pSq stochastically dominates η.3049

A2 The space S is compact.3050

A3 Denote by pXtqtě0 the continuous-time Markov process defined on S Y t∅u absorbed3051

at ∅ with infinitesimal generator given by Q̄x ´ δx ` p1 ´ Q̄xpSqqδ∅. There exists a3052
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probability distribution ν such that3053

PxpXt P ¨ |Xt ‰ ∅q Ñ νp¨q,3054

with respect to the total variation distance on Cd´1 uniformly over x P Cd´1.3055

A4 For all bounded and continuous functions g : S Ñ R, the functions x ÞÑ
ş

S gpyqdR̄xpyq3056

and x ÞÑ
ş

S gpyqdQ̄xpyq are continuous.3057

Then, almost surely as n Ñ 8, mn{n converges to ν b R̄ with respect to the weak topology3058

onMpSq.3059

Proof of Theorem 4.3.1, assuming H2. The idea of the proof is to apply Theorem 4.3.5 to3060

the MVPP pΠnqně0 (see Lemma 4.3.4). In this set-up, we have, for all x P Cd´1,3061

Qpnq

x p¨q “ pR
pnq

x b P qp¨q “
d´1
ÿ

i“0

fpxiÐWnq δxiÐWn p¨q,3062

and3063

Q̄xp¨q “ pR̄x b P qp¨q “ E

«

d´1
ÿ

i“0

fpxiÐW q δxiÐW p¨q

ff

.3064

In order to satisfy the normalization requirements in Theorem 4.3.5, we consider a3065

suitable re-scaling. We define3066

M “ d ¨ Erfp10ÐW qs, (4.11)3067

and for all n ě 0, set Π1n “ Πn{M . It is immediate (using Lemma 4.3.4) that pΠ1nqně0 is a3068

MVPP with weight kernel P whose replacement kernel and associated Q-kernel are given by3069

Rpnq

x “
Rpnq
x

M
, Qpnqx “

Qpnq
x

M
.3070

The corresponding annealed kernels are defined analogously by R̄xp¨q “ E rRp1q
x p¨qs and3071

Q̄xp¨q “ E rQp1qx p¨qs. Note that, by monotonicity of f in all its coordinates, and symmetry,3072

sup
xPCd´1

E

«

d´1
ÿ

i“0

fpxiÐW q

ff

ď d ¨ E
“

fp10ÐW q
‰

,3073
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implying that, for all x P Cd´1, Q̄xpCd´1q ď 1. We also have that, for all x P Cd´1, by3074

monotonicity of f3075

Qp1qx pCd´1q ě
d ¨ fp0q

M

(4.11)
“

d ¨ fp0q

d ¨ Erfp10ÐW qs
ě
fp0q

fp1q
ą 0,3076

implying that Assumption A1 of Theorem 4.3.5 is satisfied with η “ δfp0q{fp1q. Assump-3077

tion A2 is immediately satisfied since Cd´1 is compact. Next, as
ş

Cd´1
gpyqdR̄xpyq “3078

řd´1
i“0 E rgpxiÐW qs, continuity of x ÞÑ

ş

Cd´1
gpyqdR̄xpyq for a bounded and continuous function3079

g : Cd´1 Ñ R is immediate. Analogously, one can prove the statement for the Q-kernel and3080

establish Assumption A4 as the rescaling leaves continuity properties unaltered.3081

It thus remains to check that the rescaled Pólya process pΠ1nqně0 satisfies Assumption A3.3082

Let pXtqtě0 be the jump-process with infinitesimal generator Q̄x´ δx`p1´ Q̄xpCd´1qqδ∅, for3083

all x P Cd´1. By definition, when Xt sits at x, it jumps to ∅ at rate3084

1´
1

M

d´1
ÿ

i“0

ErfpxiÐW qs,3085

and, at rate 1
M

řd´1
i“0 ErfpxiÐW qs, it jumps to a random position chosen according to the3086

probability distribution3087
řd´1
i“0 ErfpxiÐW qδxiÐW p¨qs
řd´1
i“0 ErfpxiÐW qs

.3088

Thus, in total, X jumps at rate 1 at all times. In particular, discrete skeleton and jump3089

times of the process are independent.3090

To prove A3, we apply [23, Theorem 3.5 and Lemma 3.6] to the jump process pXtqtě0,3091

where we take t1 “ t2 “ 12. Since X is a pure jump process and satisfies the strong Markov3092

property, condition (F0) in [23, Theorem 3.5] is satisfied. It is therefore enough to prove3093

that there exist a set L Ď Cd´1 and a probability measure % on L such that:3094

B1 There exist c1 ą 0 such that, for all x P L, PxpX1 P ¨q ě c1%p¨XLq, where Pxp¨q denotes3095

the probability measure associated with the Markov process X initiated by x.3096

2Note that, although this is not clear in the current version of [23], t1 and t2 need to be positive.
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B2 There exist 0 ă γ1 ă γ2 such that3097

sup
xPCd´1

Exrγ´τL^τ∅1 s ă `8, and γ´t2 PxpXt P Lq Ñ `8 when tÑ `8p@x P Lq,3098

where τ∅ and τL stand for the respective hitting times of ∅ and L.3099

B3 There exists c2 ą 0 such that3100

sup
tě0

supyPL Pypt ă τ∅q

infyPL Pypt ă τ∅q
ď c2.3101

In order to prove the above, we define the partial order ‘ď’ on Cd´1 such that for x, y P Cd´1,3102

x ď y if and only if, for all i P t0, . . . , d ´ 1u, xi ď yi (recall that the coordinates of x and3103

y are ordered in increasing order). We then define L “ Lpεq “ tx P Cd´1 : x ď p1 ´ εq1u.3104

Proof of B1: We denote by pσiqiě1 the random jump-times of X. In order for these times3105

to be well-defined for all n ě 1, we let the process jump from ∅ to ∅ at rate one. Fix a3106

Borel set B Ď Cd´1. Then, by monotonicity and symmetry, we have3107

PxpXσ1 P Bq “
1

M

d´1
ÿ

i“0

ErfpxiÐW q1BpxiÐW qs ě
fp0q

M

d´1
ÿ

i“0

PpxiÐW P Bq.3108

By the strong Markov property, we have3109

Px pXσ2 P B |Xσ1 “ x1q “
1

M

d´1
ÿ

i“0

Erfpx1iÐW q1Bpx1iÐW qs ě
fp0q

M

d´1
ÿ

i“0

P px1iÐW P Bq ,3110

so that,3111

ż

Cd´1

Px pXσ2 P B |Xσ1 “ x1qPxpXσ1 P dx1q ě

ż

Cd´1

fp0q

M

d´1
ÿ

i“0

P px1iÐW 1 P BqPx pXσ1 P dx1q3112

ě

ˆ

fp0q

M

˙2
ÿ

0ďi,jďd´1

P ppxjÐW qiÐW 1 P Bq3113

3114

for i.i.d copies W,W 1. Iterating this argument, we obtain3115

PxpXσd P Bq ě

ˆ

fp0q

M

˙d
ÿ

i0,...,id´1Pt0,...,d´1ud

P
´

``

pxi0ÐW0qi1ÐW1

˘

. . .
˘

id´1ÐWd´1
P B

¯

,3116
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where W0, . . . ,Wd´1 are i.i.d. random variables with law µ. Let Wp0q ď Wp1q ď . . . ď Wpnq3117

denote the order statistics of W0, . . . ,Wd´1. Then, for an appropriate (random) choice of3118

i0, . . . , id´1 we have
``

pxi0ÐW0qi1ÐW1

˘

. . .
˘

id´1ÐWd´1
“ pWp0q, . . . ,Wpd´1qq. Therefore3119

PxpXσd P Bq ě

ˆ

fp0q

M

˙d

E

»

–

ÿ

i0,...,id´1Pt0,...,d´1ud

1B

´

``

pxi0ÐW0qi1ÐW1

˘

. . .
˘

id´1ÐWd´1

¯

fi

fl3120

ě

ˆ

fp0q

M

˙d

P
`

pWp0q, . . . ,Wpd´1qq P B
˘

.3121

3122

As the probability that X jumps exactly d times before time 1 is positive and skeleton and3123

jump times are independent, because X always jumps with rate 1, B1 is satisfied with %3124

being the probability distribution induced by µbd restricted to L in the natural way.3125

Proof of B2: For x P Cd´1, let nxpxiq denotes the number of co-ordinates of x equal to xi.3126

X jumps from a position x such that xi ą 1´ ε to a position xiÐv for some v ď 1´ ε at rate3127

nxpxiqE
“

fpxiÐW q1Wď1´ε

‰

M
ě
nxpxiqErfp00ÐW q1Wď1´εs

M
“: nxpxiq$ε,3128

for all i P t0, . . . , d ´ 1u (where we have applied the symmetry and monotonicity of f).3129

Similarly, the walk jumps from a position x such that xi ď 1´ ε to a position xiÐv for some3130

v ą 1´ ε at rate3131

nxpxiqE
“

fpxiÐW q1Wą1´ε

‰

M
ď
nxpxiqErfp10ÐW q1Wą1´εs

M
“: nxpxiqϑε,3132

for all i P t0, . . . , d´ 1u. Let C pXtq denote the number of coordinates of Xt that are larger3133

than 1´ ε, where we set C p∅q “ 0. Consider a pure jump Markov process with rates given3134

in Figure 4.3.3135

0 1 2 3 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ d´ 1 d

$ε 2$ε

pd´ 1qϑε

3$ε

pd´ 2qϑε ϑε

d$ε

Figure 4.3: Jump rates of the associated Markov chain N ε.
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If for some t ě 0 this Markov chain has the same non-zero value as C pXtq then it3136

jumps upwards (resp. downwards) at a faster (resp. lower) rate than C pXtq. This observation3137

motivates the following lemma whose proof is given in Section 4.3.5. Note that τL ^ τ∅ is3138

the first time t when C pXtq “ 0.3139

Lemma 4.3.6. For all sufficiently small ε ą 0, there exists a coupling of the process X with3140

a realisation N ε of the Markov process with jump rates given in Figure 4.3 and N ε
0 “ C pX0q3141

such that, C pXtq ď N ε
t for all t ď τL ^ τ∅.3142

The proof of Lemma 4.3.6 is where we use the assumption µpt1uq “ 0. By3143

Lemma 4.3.6, we deduce that3144

Px pτL ^ τ∅ ě tq ď PC pxq pN
ε
t ‰ 0q . (4.12)3145

Here, we use the notation P`, ` P t0, . . . , du to indicate that the Markov process N ε
t , t ě 0 is3146

initiated at position `. Note that, since µ does not contain an atom at 1, we have ϑε Ñ 03147

and $ε Ñ Erfp00ÐW qs{M “: $0 P p0, 1s as ε Ñ 0. Therefore, as ε Ñ 0 the generator Lε of3148

the Markov chain N ε converges to the generator3149

L “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 . . . 0

$0 ´$0 0 . . . 0

0 2$0 ´2$0 0 . . . 0

. . . . . .
. . . . . .

0 . . . 0 d$0 ´d$0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

3150

whose eigenvalues are 0,´$0, . . . ,´d$0 (and thus whose spectral gap is $0), and whose3151

stationary distribution on t0, . . . , du is given by δ0 as 0 is an absorbing state.3152

Since Lε converges entry-wise to L when ε Ñ 0, their respective characteristic poly-3153

nomials converge, and thus the eigenvalues of Lε converge to the eigenvalues of L. Since3154

169



Dynamical Models for Random Simplicial Complexes

the eigenvalues of L are all distinct it follows that for ε sufficiently small all eigenvalues of3155

Lε are simple. Thus, Lε is diagonalisable, and may be written as Lε “ V ´1
ε DεVε, where Dε3156

is a diagonal matrix consisting of the eigenvalues of Lε, and the rows of V ´1
ε are the corre-3157

sponding unit-norm (left) eigenvectors. This condition allows us to apply [61, Theorem 3.1].3158

Since, for each ε ą 0, the stationary distribution of N ε is δ0, for all ` P t0, . . . , du and for all3159

t ě 0,3160

|P`pN ε
t “ 0q ´ 1| ď Cpεqe´ρpεqt, (4.13)3161

where ρpεq is the spectral gap of the generator of N ε, and Cpεq “ }Vε}8}V ´1
ε }8. Here } ¨ }83162

denotes the 8-norm, i.e. maximum absolute row sum. Note that as ε Ñ 0, ρpεq Ñ $0.3163

Moreover, using the basis of unit-norm (left) eigenvectors introduced above, we have Cpεq “3164

}Vε}8}V
´1
ε }8 Ñ C :“ }V }8}V

´1}8, as εÑ 0, where the rows of V ´1 are a basis of unit-norm3165

(left) eigenvectors of L. Now, by (4.12) and (4.13), we have3166

PxpτL ^ τH ě tq ď PC pxqpN
ε
t ‰ 0q “ 1´ PC pxqpN

ε
t “ 0q ď Cpεq expp´ρpεqtq. (4.14)3167

Therefore, for all γ1 ă 1 and x P Cd´1, using the fact that log γ1 ă 0 in the second3168

equality,3169

Exrγ´τL^τ∅1 s “ 1`

ż 8

1

Pxpγ´τL^τ∅1 ě uqdu “ 1`

ż 8

1

Px

¨

˝τL ^ τ∅ ě
log u

log
´

1
γ1

¯

˛

‚du3170

(4.14)
ď 1`

ż 8

1

Cpεqu
´ρpεq{ log

´

1
γ1

¯

du ă `83171

3172

as long as log
´

1
γ1

¯

ă ρpεq. Also note that, for all x P L,3173

PxpXt P Lq ě PxpXσi P L for all 0 ď i ď Nptqq,3174

where Nptq is the number of jumps of X by time t, and3175

PxpXσ1 P Lq “
1

M

d´1
ÿ

i“0

ErfpxiÐW q1xiÐW PLs “
1

M

d´1
ÿ

i“0

ErfpxiÐW q1Wď1´εs3176

(4.11)
ě

Erfp00ÐW q1Wď1´εs

Erfp10ÐW qs
“: χε.3177

3178
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Since the walk jumps at rate one, we have that the number of jumps before time t is Poisson3179

distributed with parameter t. As skeleton and jump times are independent, it follows that,3180

for all x P L,3181

PxpXt P Lq ě PxpXσi P L for all 0 ď i ď Nptqq ě ErχNptqε s “ e´p1´χεqt.3182

If 1´ χε ă log
´

1
γ2

¯

, then γ´t2 PxpXt P Lq Ñ `8 as required. In other words, B2 is satisfied3183

if we can choose γ1 ă γ2 ă 1 such that3184

1´ χε ă log

ˆ

1

γ2

˙

ă log

ˆ

1

γ1

˙

ă ρpεq.3185

As ε Ñ 0, we have χε Ñ Erfp00ÐW qs{Erfp10ÐW qs “ d$0 while ρpεq Ñ $0 ą 1 ´ d$0 by3186

(4.3). It is thus possible to choose ε small enough such that 1´ χε ă ρpεq. For this value of3187

ε, a choice of γ1 and γ2 is possible, which concludes the proof of B2.3188

Proof of B3: We require the following coupling lemma, where we adopt the convention3189

that ∅ ď x for all x P Cd´1 and ∅ ď ∅. We defer the proof of this lemma to Section 4.3.63190

Lemma 4.3.7. Let x, y P Cd´1 with x ď y. There exist processes Xpxq, Xpyq such that Xpxq is3191

distributed as X with respect to Px and Xpyq is distributed as X with respect to Py satisfying3192

that, almost surely, Xpxq
t ď X

pyq
t for all t ě 0.3193

Thanks to Lemma 4.3.7, we have that, if x ď y P Cd´1, then3194

Pxpt ă τ∅q ď Pypt ă τ∅q. (4.15)3195

In particular, this implies that3196

inf
yPL

Pypt ă τ∅q “ P0pt ă τ∅q, and sup
yPL

Pypt ă τ∅q “ Pp1´εq1pt ă τ∅q.3197

Also, since 1 P Supp pµq, with positive probability, every coordinate of pXtqtě0 is at least3198

1´ ε after d jumps. If we denote this probability by κ1 “ κ1pεq, we obtain3199

P0pt ă τ∅q ě P0pσd ă t ă τ∅q ě κ1P0 pσd ă t ă τ∅ | p1´ εq1 ď Xσdq ,3200
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where p1´ εq1 ď Xτd denotes the event that all coordinates of Xτd are at least 1´ ε. Next,3201

observe that for all t ď 1,3202

Pp1´εq1 pt ă τ∅q

P0 pt ă τ∅q
ď

1

e´1
“ e,3203

since the probability the process has not jumped by time t is e´t. Now, by (4.15) and the3204

strong Markov property, for Lebesgue almost all 0 ď u ď 1 ă t,3205

P0 pt ă τ∅ | p1´ εq1 ď Xσd , σd “ uq “ E0

“

PXσd pt´ u ă τ∅q | p1´ εq1 ď Xσd , σd “ u
‰

3206

ě Pp1´εq1 pt´ u ă τ∅q ě Pp1´εq1 pt ă τ∅q .3207
3208

Thus, for t ą 1, since jump times and skeleton are independent3209

P0pt ă τ∅q ě κ1P0pσd ď 1 ď t ă τ∅ | p1´ εq1 ď Xσdq3210

ě κ1

ż 1

0

P0 pt ă τ∅ | p1´ εq1 ď Xσd , σd “ uqP0 pσd P du | p1´ εq1 ď Xσdq3211

“ κ1

ż 1

0

P0 pt ă τ∅ | p1´ εq1 ď Xσd , σd “ uqP0 pσd P duq3212

“ κ1P0 pσd ă 1qPp1´εq1 pt´ u ă τ∅q ě κ1P0 pσd ă 1qPp1´εq1 pt´ u ă τ∅q .3213
3214

Thus, if we set P0 pσd ă 1q :“ κ2, taking c2 “ max
!

1
κ1κ2

, e
)

completes the proof.3215

4.3.3 The Star Process3216

We now revisit the companion Markov process pS˚nqně0 defined in Section 4.1.4. We wish to3217

apply the same theory of Pólya processes to study the distribution of pd´1q-faces in pS˚nqně0.3218

Note, however, that by definition, in this process every face contains the central vertex of3219

S˚0 . Therefore, if the central vertex has weight x, we may view the empirical distribution of3220

pd´ 1q-faces as a measure on Cd´2, which represents the weights of the other vertices in the3221

pd´ 1q-faces in S˚n.3222

Thus, we can interpret the evolving empirical measure as a homogeneous Markov3223

172



Dynamical Models for Random Simplicial Complexes

process pSnqně0 on C 1 :“ R` ˆMpCd´2q, where we recall that MpCd´2q is the space of3224

non-negative, finite measures on Cd´2.3225

Given Sn “ px, νq P C 1 for some n ě 0:3226

(i) Set c˚ “
ş

Cd´2
fppx, yqqdνpyq and sample z P Cd´2 according to the distribution admit-3227

ting density fppx, yqq{c˚ with respect to ν.3228

(ii) Let W be a random variable with distribution µ which is independent of the past of3229

the process. Then, set3230

Sn`1 “

$

’

’

&

’

’

%

px, ν `
řd´2
i“0 δziÐW q, in Model A,

px, ν `
řd´2
i“0 δziÐW ´ δzq, in Model B.

3231

For a completely rigorous definition, we also set Sn`1 “ Sn if the measure component of Sn3232

is the zero measure and step (i) cannot be executed. We write P˚
px,νq,E˚px,νq for probabilities3233

and expectations, respectively with respect to this process when the initial state S0 satisfies3234

S0 “ px, νq. Note that this implies that the first component of Sn remains equal to x for3235

all n ě 0. Let us write Sn for the measure component of Sn. Then, provided that S0 is a3236

non-trivial sum of Dirac measures, we have3237

SnpCd´2q “

$

’

’

&

’

’

%

pd´ 1qn` S0pCd´2q, in Model A,

pd´ 2qn` S0pCd´2q, in Model B.
3238

Upon identifying faces with their types, we may consider stipKnq as a C 1-valued random3239

variable by separating the weight of vertex i from the remaining vertices. Let τ0 “ i (which3240

is the time of arrival of vertex i) and, for n ě 1, let τn be the n-th time, the randomly chosen3241

face in the construction of pKmqmě0 contains vertex i. Formally, letting σn denote the face3242

chosen and subdivided in step n, we have3243

τn :“ inftm ą τn´1 : i P σmu, n ě 1.3244
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It is easy to see that τn ă 8 almost surely for all n ě 1. Indeed, under either Hypothesis3245

H1 or H2, we have Zn “ F pKnq ď fmaxpn ` |Kpd´1q

0 |q, and if τk´1 ď n ă τk, F pstipKnqq ě3246

fminpd ´ 1qpk ´ 1q. Therefore, (analogous to proof of the Borel-Cantelli lemma) one can3247

bound the probability3248

P pτk “ 8 | τk´1 “ Nq ď
8
ź

j“N`1

ˆ

1´
fminpd´ 1qpk ´ 1q

fmaxpj ` |Kpd´1q

0 |q

˙

ď e
´
ř8
j“N`1

fminpd´1qpk´1q

fmaxpj`|K
pd´1q
0 |q “ 0;3249

and the result follows by induction on k.3250

Furthermore, the sequence of random variables3251

¨

˝Wi,
ÿ

σPstipKτn q

δωpσqztWiu

˛

‚

ně0

3252

is equal in distribution to Sn, n ě 0 with respect to P˚
px,νq, when the configuration px, νq is3253

chosen with respect to the law of pWi,
ř

σPstipKiq δωpσqztWiuq.3254

Let ϕ : R` ˆ Cd´1 Ñ C 1 “ R` ˆMpCd´2q be the map3255

ϕpw, xq “

˜

w,
d´1
ÿ

i“0

δx̃i

¸

, (4.16)3256

where we recall that for all x P Cd´1, x̃i P Cd´2 is the vector x from which we have removed3257

the i-th coordinate. We also let ψ : R` ˆ Cd´2 Ñ Cd´1 be such that3258

ψpw, xq “ w Y x, (4.17)3259

where we recall that wYx is obtained by adding a coordinate equal to w to the vector x, and3260

reordering the coordinates of the obtained vector in non-decreasing order. For pw, νq P C 1,3261

we define the fitness3262

F pw, νq “

ż

Cd´1

f dψ˚pδw b νq, (4.18)3263

where ψ˚pδw b νq is the pushforward of δw b ν under ψ. In other words, ψ˚pδw b νq is the3264

distribution of ψpw,Xq where X P Cd´2 is a ν-distributed random variable). Note that,3265

when S0 is chosen according to the law of pW,Y8q, we have pF pSnqqně0 “ pF pS˚nqqně0 in3266
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distribution. Moreover, for any x P Supp ppµqq, assuming H1* or H2*, Theorem 4.3.13267

implies almost sure convergence of the re-scaled measure valued process p 1
n
Snqną0 on Cd´2 to3268

a positive limiting measure depending on x. Thus, we get the following:3269

Theorem 4.3.8. Assume H1* or H2* and recall the definition of ψ in (4.17), and that3270

Sn denotes the measure-valued component of the star process Sn P C 1. Then, for any x P3271

Supp ppµqq, there exists a positive measure m˚
x on Cd´1, such that, for any positive non-zero3272

measure ν PMpCd´2q, we have3273

1

n
ψ˚pδx b Snq Ñ m˚

x, P˚px,νq-almost surely as nÑ 8,3274

with respect to the weak topology.3275

By continuity and boundedness of f , this implies that3276

F pSnq

n
Ñ λ˚x :“

ż

Cd´1

fpyq dm˚
xpyq ą 0, P˚px,νq-almost surely when nÑ 8.3277

This yields Proposition 4.2.2 by setting the initial state to be S0 “ ϕpw, Y8q, where Y8 is3278

defined in Proposition 4.1.1 and ϕ in (4.16).3279

4.3.4 Proofs of Additional Lemmas used to prove Theorem 4.3.13280

4.3.5 Proof of Lemma 4.3.63281

For brevity, we omit the superscript ε when referring to the process N ε, and in the notation3282

of other parameters depending on ε.3283

Proof of Lemma 4.3.6. Let ε ą 0 be small enough such that $ ą ϑ (this is possible because3284

µ does not contain an atom at 1). Then, i$ ` pd ´ iqϑ ď 1 for i P t1, . . . , du. Let θi “3285

1 ´ i$ ´ pd ´ iqϑ, i P t0, . . . , du. The Markov chain N has the following dynamics: jump3286
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times are exponentially distributed with unit mean while the skeleton process performs a3287

random walk on t0, . . . , du according to the following rules: the process is absorbed at 0 and,3288

given that its current state is i P t1, . . . , du, it moves to i ` 1 with probability pd ´ iqϑ and3289

to i´ 1 with probability i$, while it remains at i with probability θi.3290

We construct the process N from a realisation of X. First, we use the jump times3291

σn, n ě 1 of the X-process for the jump times of N . We define Nσn by induction, starting3292

with Nσ0 “ C pXσ0q, where σ0 :“ 0. Let n ě 1 and suppose Xσn´1 “ x and C pXσn´1q “ j3293

(recalling that C p∅q “ 0). If 0 ď j ă Nσn´1 , then choose Nσn arbitrarily obeying the3294

dynamics of the random walk (for example by using additional external randomness). If3295

Nσn´1 “ 0, set Nσn “ 0. Finally, assume that Nσn´1 “ j ą 0. Let3296

sÒ “
d´1´j
ÿ

i“0

E rfpxiÐW q1Wą1´εs

M
ď pd´ jqϑ, sÓ “

d´1
ÿ

i“d´j

E rfpxiÐW q1Wď1´εs

M
ě j$.3297

Let A be an event that has probability j${sÓ P r0, 1s which is independent of the past of the3298

process given Xσn´1 .3 Let3299

E “ tXσn “ ∅u Y ptC pXσnq “ C pXσn´1q ´ 1u X Acq Y tC pXσnq “ C pXσn´1qu.3300

We first define Npσnq on Ec as follows: we set3301

Nσn “

$

’

’

&

’

’

%

Nσn´1 ` 1 on tC pXσnq “ C pXσn´1q ` 1u,

Nσn´1 ´ 1 on tC pXσnq “ C pXσn´1q ´ 1u X tXσn ‰ ∅u X A.
3302

Provided that Nσn P tNσn´1 , Nσn´1 ` 1u on E, this guarantees that C pXσnq ď Nσn . Finally,3303

we ensure that the coupling respects the dynamics of the process N by using additional3304

randomness where required. For example, we can proceed as follows: let B be an event that3305

has probability ppd´ jqϑ´ sÒq{p1´ sÒ ´ j$q which is independent of the past of the process3306

given Xσn´1 (note that the denominator in the last expression is the probability of the event3307

E given Xσn´1 “ x). Then, set Nσn “ Nσn´1 ` 1 on B XE and Nσn “ Nσn´1 on Bc XE. By3308

construction, we have C pXtq ď Nt for all t ď τL ^ τ∅.3309

3For example A “ tU P r0, j${sÓsu for an independent uniformly distributed random variable U .
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4.3.6 Proof of Lemma 4.3.73310

Proof of Lemma 4.3.7. First note that since both X pxq and X pyq jump at rate one, we can3311

couple them so that they jump at the same times, which we denote by pσiqiPN. At the first3312

jump, for any measurable set A Ď Cd´1 we should have3313

PpX pxq

σ1
P Aq “

1

M

d´1
ÿ

i“0

E
“

fpxiÐW q1ApxiÐW q
‰

; PpX pyq

σ1
P Aq “

1

M

d´1
ÿ

i“0

E
“

fpyiÐW q1ApyiÐW q
‰

,3314

and both processes jump to t∅u with probability equal to the remaining mass. We can3315

interpret these measures as sums of d` 1 measures given by
`

1
M
E
“

fpxiÐW qδxiÐW p¨q
‰˘

0ďiďd´1
3316

and cpxqδ∅p¨q, where cpxq :“ 1 ´
řd´1
i“0 E

“

fpxiÐW q
‰

{M , for X pxq; similarly for X pyq. On3317

Figure 4.4, we draw the unit interval vertically and divide it in sub-intervals of respective3318

lengths E
“

fpyiÐW q
‰

{M . On each of these intervals, we draw, from bottom to top as i3319

increases from 0 to d´ 1,3320

F pxq

i : u ÞÑ bi `

ż

r0,us

fpxiÐvqdµpvq{M

ˆ

resp. F pyq

i : u ÞÑ bi `

ż

r0,us

fpyiÐvqdµpvq{M

˙

3321

in orange (resp. purple), where for i P t0, . . . , d ´ 1u, bi “
ři´1
j“0 E

“

fpyjÐW q
‰

{M. Note that,3322

by monotonicity of f , both F pxq

i and F pyq

i are non-decreasing, and since x ď y, F pxq

i ď F pyq

i3323

pointwise.3324
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0

1

Ef(y0←W )
M

Ef(y1←W )
M

Ef(y2←W )
M

c(y)

1

U

0

1

1

U

b1

b2

b1

b2

Figure 4.4: A visual aid for the proof of Lemma 4.3.7. For the sake of presentation, we have

chosen d “ 3.

Now, consider a uniformly distributed random variable U on r0, 1s. If U lands in the3325

top-most interval (that is, if U ě
řd´1
i“0 E rfpyiÐW qs), then we set X pxq

σ1
“ X pyq

σ1
“ ∅. If U3326

lands in the i-th interval (numbered from the bottom of the picture), we consider two cases:3327

• If U lands into the orange part of the i-th interval (see left-hand-side of Figure 4.4), we3328

set X pxq
σ1
“ x

iÐpF
pxq
i q´1pUq

and X pyq
σ1
“ y

iÐpF
pxq
i q´1pUq

(if F pxq

i is not strictly increasing, we3329

choose the left-continuous version of the inverse pF pxq

i q
´1pwq :“ infty P r0, 1s : F pxq

i pyq ě3330

wu).3331

• If U lands in the rest of the i-th interval (right-hand-side example on Figure 4.4), we3332

set X pxq
σ1
“ ∅. Set Gi “ F pyq

i ´F pxq

i and note that this function is non-negative on r0, 1s3333
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and non-decreasing. Indeed, for all u ă v, we have3334

Gipvq ´Gipuq “

ż

pu,vs

`

fpyiÐwq ´ fpxiÐwq
˘

dµpwq{M ě 0.3335

We can thus define the left-continuous inverse G´1
i pwq :“ infty P r0, 1s : Gpxq

i pyq ě wu,3336

and set X pyq
σ1
“ y

iÐG´1
i pU´F

pxq
i p1qq

.3337

Let us prove that, with these definition, X pxq
σ1

and X pyq
σ1

have the correct distributions3338

and that Xpxq
σ1 ď X

pyq
σ1 . First note that, if X pyq

σ1
“ ∅, then U fell into the topmost interval and3339

thus X pxq
σ1
“ ∅, hence Xpxq

σ1 ď X
pyq
σ1 . If X pxq

σ1
‰ ∅, then U fell in the orange part of an interval3340

and thus X pxq
σ1
“ xiÐV ď yiÐV “ X pyq

σ1
(where V “ pF pxq

i q
´1pUq), since x ď y.3341

Let us now check that X pxq
σ1

defined in the coupling above has the right distribution.3342

It is equal to ∅ if and only if U landed in the topmost interval, or it did not land in an3343

orange sub-interval, and thus3344

PpX pxq

σ1
“ ∅q “ cpyq `

d´1
ÿ

i“0

`

F pyq

i p1q ´ F
pxq

i p1q
˘

3345

“ 1´
1

M

d´1
ÿ

i“0

ErfpyiÐW qs `
1

M

d´1
ÿ

i“0

ż

r0,1s

fpyiÐvqdµpvq ´
1

M

d´1
ÿ

i“0

ż

r0,1s

fpxiÐvqdµpvq3346

“ 1´
1

M

d´1
ÿ

i“0

ErfpxiÐW qs “ cpxq.3347

3348

For all Borel sets A Ď Cd´1, we have3349

PpX pxq

σ1
P Aq “

d´1
ÿ

i“0

PpX pxq

σ1
P A and F pxq

i p0q ď U ď F pxq

i p1qq3350

“

d´1
ÿ

i“0

ż F
pxq
i p1q

F
pxq
i p0q

1A

´

x
iÐpF

pxq
i q´1puq

¯

du3351

“

d´1
ÿ

i“0

ż

r0,1s

1ApxiÐvqfpxiÐvqdµpvq{M,3352

3353

by definition of F pxq

i and by the change of variable u “ F pxq

i pvq. This proves the claim.3354

Let us now check that X pyq
σ1

also has the right distribution under the coupling. First3355
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note that PpX pyq
σ1
“ ∅q is equal to the probability that U lands in the topmost interval, which3356

is of length cpyq, and thus PpX pyq
σ1
“ ∅q “ cpyq.3357

For all Borel sets A Ď Cd´1, we have3358

PpX pyq

σ1
P Aq “

d´1
ÿ

i“0

PpX pyq

σ1
P A and F pxq

i p0q ď U ď F pxq

i p1qq3359

`

d´1
ÿ

i“0

PpX pyq

σ1
P A and F pxq

i p1q ă U ď F pyq

i p1qq.3360

3361

The first sum is similar to the calculation above when checking the distribution of X pxq
σ1
:3362

d´1
ÿ

i“0

PpX pyq

σ1
P A and F pxq

i p0q ď U ď F pxq

i p1qq “
1

M

d´1
ÿ

i“0

ErfpxiÐW q1ApyiÐW qs.3363

For the second sum, we have3364

d´1
ÿ

i“0

PpX pyq

σ1
P A and F pxq

i p1q ă U ď F pyq

i p1qq3365

“

d´1
ÿ

i“0

Ppy
iÐG´1

i pU´F
pxq
i p1qq

P A and F pxq

i p1q ă U ď F pyq

i p1qq3366

“

d´1
ÿ

i“0

ż F
pyq
i p1q

F
pxq
i p1q

1A

´

y
iÐG´1

i pu´F
pxq
i p1qq

¯

du3367

“

d´1
ÿ

i“0

ż

r0,1s

1A pyiÐvq pfpyiÐvq ´ fpxiÐvqqdµpvq{M,3368

3369

by definition of Gi and by the change of variable u “ Gipvq ` F pxq

i p1q. We thus conclude3370

that, in total,3371

PpX pyq

σ1
P Aq “

1

M

d´1
ÿ

i“0

ErfpyiÐW q1ApyiÐW qs,3372

as claimed. We can now iterate this coupling at each jump-time until X pxq becomes absorbed.3373

After X pxq reaches ∅, we let X pyq evolve independently according to its dynamics. This3374

concludes the proof.3375
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4.4 The degree profile3376

In this section we determine the degree profile associated with the sequence of simplicial3377

complexes pKnqně0. Throughout this section we assume that the conclusion of Theorem 4.3.13378

holds, and that f : r0, w˚sd Ñ p0,8q is continuous and symmetric.3379

Let π˚ be the distribution of the random variable ϕpW,Y8q, where W and Y8 are3380

independent, W is µ-distributed and Y8 is as in Proposition 4.1.1. We now prove the3381

following equivalent of Theorem 4.1.3; the only difference in the two statements being that3382

we now use the notation of Section 4.3.3. In particular the process S with initial distribution3383

π˚ is equal in distribution to the process S˚ from Theorem 4.1.3.3384

Theorem 4.4.1. Denote by Nkpnq the number of vertices of degree d ` k in Kn. For all3385

k ě 0, we have, in probability,3386

lim
nÑ8

1

n
Nkpnq “ E˚π˚

«

λ

F pSkq ` λ

k´1
ź

`“0

F pS`q

F pS`q ` λ

ff

“ pk3387

with λ as in Proposition 4.1.2.3388

Recall, from Remark 2.2.1 in Chapter 2 that ppkqkě0 may thus be regarded as a3389

generalised geometric distribution, where probability of success at the ith step is given by3390

λ{pF pSi´1q ` λq.3391

The proof of Theorem 4.4.1 is analogous to the proof of Theorem 2.4.1 in Chapter 2.3392

Recall that this approach was to first show convergence of the corresponding mean, and3393

then study the variance of Nkpnq to show convergence in probability by an application of3394

Chebychev’s inequality.3395

To prove convergence of the mean, as in Chapter 2, it is convenient to consider only3396

vertices that arrive after a certain time ηn where η ą 0 is a small constant; this allows us to3397
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work in the asymptotic regime of the sequence of simplicial complexes. Hence, let Nη,kpnq3398

be the number of vertices of degree k ` d in Kn which arrived after time ηn. Obviously,3399

Nη,kpnq ď Nkpnq ď ηn`Nη,kpnq,3400

and therefore,3401

lim
ηÑ0

lim sup
nÑ8

1

n
|E rNkpnqs ´ E rNη,kpnqs| “ 0.3402

Most of this section is thus devoted to proving that, for all k ě 0,3403

lim
ηÑ0

lim
nÑ8

1

n
E rNη,kpnqs “ pk.3404

Let d̂npiq be the number of vertices which are neighbours of node i that arrived after node3405

i. By construction, we have that3406

E rNη,kpnqs “
ÿ

ηnăiďn´k

P
´

d̂npiq “ k
¯

. (4.19)3407

Henceforth, we use the simplified notation Ik “ ti1, . . . , iku for a collection of natural numbers3408

i ă i1 ă . . . ă ik ď n. Let EipIkq denote the event that i „ `, that is ` connects to i, for all3409

` P Ik and i  ` for all ` R Ik with ` P ti` 1, . . . , nu. We have3410

P
´

d̂npiq “ k
¯

“
ÿ

IkPpti`1,...,nu
k q

P pEipIkqq , (4.20)3411

where
`

ti`1,...,nu
k

˘

denotes the set of all subsets of ti` 1, . . . , nu of size k. For k “ 0, the sum3412

consists only of the term I0 “ ∅.3413

Overview of the proof of Theorem 4.4.13414

The proof now consists of three steps. First, we provide sufficient upper and lower bounds3415

for Ppd̂npiq “ kq using the fact that, by Proposition 4.1.2, for i ą ηn, with high probability,3416

for all i ď j ď n, the partition function Zj is concentrated around λj. On the event of3417
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concentration, we can estimate the probability that insertions in the star of vertex i or its3418

complement occur, similar to as in the proof of Theorem 2.4.1 in Chapter 2. Second, we use3419

Proposition 4.1.1 to incorporate the stationary distribution of the Markov chain Yn when3420

passing to the limit as n Ñ 8. Third, we apply a probabilistic argument to evaluate the3421

sums in (4.19) and (4.20). In Section 4.4.1, we state the necessary tools to work out the3422

second and third step. The proof of Proposition 4.4.2 may be omitted on first reading.3423

The main part of the work involves exploiting the concentration of the partition3424

function to derive upper and lower bounds on (a variant of) P pEipIkqq and are proved3425

in Section 4.4.2 and Section 4.4.4, respectively. Note that the proof of the upper bound3426

in Section 4.4.2 is significantly less technical, as we can ‘drop’ the event of concentration3427

from probability computations. We recommend the reader to study this case first. Second3428

moment calculations which allow one to deduce stochastic convergence from convergence of3429

the mean in Theorem 4.4.1 are presented in Section 4.4.3 and follow the arguments developed3430

in Section 4.4.2 closely. The proof of the lower bound in Section 4.4.4 deviates from the3431

indirect approach used in the proof of Theorem 2.4.1 in Section 2.4.4, and directly estimates3432

the aforementioned variant of P pEipIkqq. Thus, this proof requires additional work, due,3433

in part, to the ‘migration’ of faces into the complement on the event of an insertion into3434

the star of vertex i (see Figure 4.2). We deal with this technical challenge by bounding3435

the total number of ‘descendants’ of a small number of faces by the sum of geometrically3436

distributed random variables with sufficiently small success probability in Lemma 4.4.15 and3437

Lemma 4.4.16). The rest of the proof then involves some lengthy computations to control3438

error terms.3439
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4.4.1 Technical Lemmas used in the proof of Theorem 4.4.13440

This subsection is dedicated to the statements of some technical lemmas that will be impor-3441

tant in the sequel. The proof of Lemma 4.4.2 may be omitted on first reading.3442

A Continuity Statement for the star Markov Chain3443

The following result concerns continuity of the k-step transition kernel of the star Markov3444

chain with respect to its starting point. Recall that the function F is defined in (4.4), and3445

the process pSnqně0 has been defined in Section 4.3.3.3446

Proposition 4.4.2. Let k ě 0, w P R` and x, x1, x2, . . . P Cd´1 with xn Ñ x. Then, in the3447

sense of weak convergence on Rk`1
` , we have, as nÑ 8,3448

P˚ϕpw,xnqppF pS0q, F pS1q, . . . , F pSkqq P ¨q Ñ P˚ϕpw,xqppF pS0q, F pS1q, . . . , F pSkqq P ¨q.3449

Proof. Let C 1f Ď C 1 be the set of elements of the form pz,
řm
i“1 δyiq for z ě 0,m ě 1 and3450

y1, y2, . . . , ym P Cd´2. Here, we viewMpCd´2q as a metric space under the Prokhorov metric,3451

and view C 1 “ R` ˆMpCd´2q as a product metric space with 8 product metric (where3452

the distance is the maximum co-ordinate wise distance). First of all, we prove that there3453

exists a function h : C 1f ˆ r0, 1s ˆ R` Ñ C 1f such that, for independent and identically3454

distributed random variables pU1,W1q, pW2, U2q . . ., where Ui,Wi are independent, Ui has3455

the uniform distribution on r0, 1s and Wi follows the distribution µ (as before), we obtain3456

a realisation of the Markov chain starting at x1 P C 1f by setting S0 “ x1 and, recursively,3457

Sn`1 “ hpSn, Un`1,Wn`1q for n ě 0. We then couple the two Markov chains started at3458

ϕpw, xnq and ϕpw, xq using the same sequence pU1,W1q, pU2,W2q, . . ., and write Spnq0 , S
pnq
1 , . . .3459

and S0, S1, . . . for these chains. The construction of h is straightforward. Let x1 “ pz, νq P C 1f3460
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with ν “
řm
i“1 δyi P C 1f and u P r0, 1s, w1 ě 0. Order y1, . . . , ym lexicographically and define3461

s0 “ 0 and si “
i
ÿ

j“1

fpyj Y zq, 1 ď i ď m. (4.21)3462

Then, let 1 ď p ď m be such that sp´1 ă usm ď sp. We now set3463

hppz, νq, u, w1q “

$

’

’

&

’

’

%

pz, ν `
řd´2
i“0 δpypqiÐw1 q, in Model A,

pz, ν `
řd´2
i“0 δpypqiÐw1 ´ δypq, in Model B.

3464

It follows immediately from the dynamics of the Markov chain, that the function h has the3465

desired properties. Next, we show that, for the coupled Markov chains:3466

for any k ě 0, we have Spnqk Ñ Sk almost surely. (4.22)3467

By continuity of f , this implies that F pSpnqk q Ñ F pSkq almost surely, which concludes3468

the proof. To prove (4.22), we proceed by induction. The case k “ 0 is trivial as3469

the function ϕ is continuous. Assume that we have already proved the statement for all3470

j P t0, . . . , k ´ 1u. Recall that Sk “ hpSk´1, Uk,Wkq and S
pnq
k “ hpS

pnq
k´1, Uk,Wkq. Condition-3471

ing on Sk´1, S
p0q
k´1, S

p1q
k´1, . . . shows that3472

P
´

S
pnq
k Û Sk

¯

ď ErLebptu P r0, 1s : there exist v1, v2, . . . P C 1f and w1 ě 03473

such that lim
`Ñ8

v` “ Sk´1 but hpv`, u, zq Û hpSk´1, u, zquqs3474
3475

We conclude the proof by showing that, almost surely, the set u P r0, 1s for which v`, ` ě 1 and3476

w1 ě 0 exist satisfying v` Ñ Sk´1 as ` Ñ 8 and hpv`, u, w1q Û hpSk´1, u, w
1q is a Lebesgue3477

null set. To this end, we prove the following stronger statement: for x1 “ pz,
řm
i“1 δyiq P C 1f ,3478

we have that, for all u R ts1{sm, . . . , 1u, where s1, . . . , sm are as in (4.21) for this particular3479

x1, it holds that, for any sequence x1` Ñ x1 and w1 ě 0, we have hpx1`, u, w1q Ñ hpx1, u, w1q.3480

To see this, let x1` “ pz`,
řm`
i“1 δyp`qi

q be a sequence with x1` Ñ x1. This implies that mn “ m3481

for all sufficiently large n and that yp`qi Ñ yi for all 1 ď i ď m as ` Ñ 8. By continuity of3482

f , for the values sp`qi defined in (4.21) for x1`, we have sp`qi Ñ si for all 1 ď i ď m. Hence,3483

if u R ts1{sm, . . . , 1u, again using continuity, we have that pp`q “ p for all ` sufficiently large3484

and the desired result follows.3485
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Summation Arguments3486

Here, we recall the statements of Lemma 2.4.5 and Corollary 2.4.6, which were proved in3487

Section 2.4.2 of Chapter 2. Recall that for e0, . . . , ek ě 0, 0 ď η ă 1, let3488

Snpe0, . . . , ek, ηq :“
1

n

ÿ

ηnăi0ă¨¨¨ăikďn

k´1
ź

j“0

ˆˆ

ij
ij`1

˙ej

¨
1

ij`1 ´ 1

˙ˆ

ik
n

˙ek

.3489

Lemma 4.4.3. Uniformly in e0, . . . , ek ě 0, 0 ď η ď 1{2, we have3490

Snpe0, . . . , ek, ηq “
k
ź

j“0

1

ej ` 1
` θpηq `O

˜

1

n1{pk`2q
`

řk
j“0 ej logk`1

pnq

n

¸

.3491

Here, θpηq is a term satisfying |θpηq| ďMη1{pk`2q for some universal constant M depending3492

only on k.3493

Corollary 4.4.4. For e0, . . . , ek, f0, . . . , fk´1 ě 0, 0 ď η ď 1{2, we have3494

1

n

ÿ

ηnăi0ďn

ÿ

IkPpt
i0`1,...,nu

k q

k´1
ź

j“0

ˆˆ

ij
ij`1

˙ej

¨
fj

ij`1 ´ 1

˙ˆ

ik
n

˙ek

“
1

ek ` 1

k´1
ź

j“0

fj
ej ` 1

` θ1pηq `O

ˆ

1

n1{pk`2q

˙

.

Here, θ1pηq is a term satisfying |θ1pηq| ď M 1η1{pk`2q for some universal constant M 1 de-3495

pending only on k and f0, . . . , fk´1, and the constant in the big O-term may depend on3496

e0, . . . , ek, f0, . . . , fk.3497

4.4.2 Upper Bound for the Mean of E rNη,kpnqs {n3498

The aim of this section is to prove that3499

lim
ηÑ0

lim sup
nÑ8

E rNη,kpnqs {n ď pk. (4.23)3500

Recall that we write Πn “
ř

σPKpd´1q
n

δwpσq for the empirical distribution of the weights of3501

all pd ´ 1q-faces in the complex after the nth step. We also define the partition function3502
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associated with Kn by Zn “
ş

Cd´1
fpxqdΠnpxq. For ε ą 0 and n ě 0 and natural numbers3503

N1 ď N2, we let3504

Gεpnq “ t|Zn ´ λn| ă ελnu and GεpN1, N2q “

N2
č

n“N1

Gεpnq. (4.24)3505

Moreover, for n ě 1, we denote by Gn the σ-field generated by pK`,W`q, 1 ď ` ď n containing3506

all information about the process up to time n.3507

By Proposition 4.1.2 and Egorov’s theorem, for any δ, ε ą 0, there exists N 1 “ N 1pδ, εq3508

such that, for all n ě N 1, PpGεpN 1, nqq ě 1´ δ. Therefore, for all n ě N 1{η, we have3509

E rNη,kpnqs ď E
“

Nη,kpnq1GεpN 1,nq
‰

` np1´ PpGεpN 1, nqqq3510

ď
ÿ

ηnăiďn

ÿ

IkPpti`1,...,nu
k q

PpEipIkq X Gεpi, nqq ` δn. (4.25)3511

3512

Finally, for x ą 0 and α P R, we set α˘x :“ αp1˘xq. The following proposition gives an upper3513

bound on the summands in the right-hand side of (4.25). For simplicity, we subsequently3514

write3515

stipKnq “
´

Wi,
ÿ

σPstipKnq

δωpσqztWiu

¯

P C 1 “ R` ˆMpCd´2q (4.26)3516

when considering the C 1-valued random variable associated with the star around vertex i at3517

step n.3518

Proposition 4.4.5. Let 0 ă ε, η ď 1{2. As n Ñ 8, uniformly in ηn ă i ď n ´ k,3519

Ik “ ti0, . . . , ik´1u P
`

ti`1,...,nu
k

˘

and the choice of ε, we have3520

P pEipIkq X Gεpi, nqq3521

ď

ˆ

1`O

ˆ

1

n

˙˙

E

«

E˚stipKiq

«

ˆ

ik
ik`1

˙F pSkq{λ`ε

¨

k´1
ź

`“0

ˆ

i`
i``1

˙F pS`q{λ`ε F pS`q

λ´εpi``1 ´ 1q

ffff

.3522

3523

Applying Corollary 4.4.4 to this, we will deduce the following upper bound.3524
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Corollary 4.4.6. Let 0 ă δ, ε, η ď 1{2. Then, there exists N “ Npδ, ε, ηq such that, for all3525

n ě N ,3526

E rNη,kpnqs

n
ď p1` δq

ˆ

1` ε

1´ ε

˙k

E˚π˚

«

λ`ε
F pSkq ` λ`ε

k´1
ź

`“0

F pS`q

F pS`q ` λ`ε

ff

` Cη1{pk`2q
` δ,3527

where the constant C may depend on k, f and µ but not on n and not on the choices of3528

δ, ε, η. In particular, (4.23) is satisfied.3529

To prove Proposition 4.4.5, let 0 ă ε, η ď 1{2. For ηn ă i ď n and Ik P
`

ti`1,...,nu
k

˘

,3530

set i0 :“ i, ik`1 :“ n` 1. Then, for j P ti` 1, . . . , nu, let3531

Dj :“

$

’

’

&

’

’

%

ti „ ju, if j P Ik,

ti  ju, otherwise,
and D̃j “ Dj X Gεpjq, (4.27)3532

where Gεpjq is defined as in (4.24). For simplicity, we write Dj and D̃j for the indicator3533

random variables 1Dj and 1D̃j respectively. Note that EipIkq X Gεpi, nq “
Şn
j“i D̃j. To3534

estimate the probability of this event, we decompose the indices j P ti, . . . , nu into groups3535

ti`, . . . , i``1 ´ 1u for ` P t0, . . . , ku. More precisely, we define3536

X` “ E

«

n
ź

j“i``1

D̃j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

D̃i` , ` P t0, . . . , ku.

3537

To prove Proposition 4.4.5, we need to estimate E rX0s “ P
´

Şn
j“i D̃j

¯

.3538

From the tower property of conditional expectation, it follows that3539

X` “ E

«

i``1´1
ź

j“i``1

D̃j X``1

ˇ

ˇ

ˇ

ˇ

Gi`

ff

D̃i` , ` P t0, . . . , k ´ 1u, (4.28)3540

which suggests a backwards recursive approach. We need more notation: for S P C 1 “3541

R` ˆMpCd´2q and ` P t0, . . . , ku, we let3542

h`pSq “

i``1´1
ź

j“i``1

ˆ

1´
F pSq

λ`εpj ´ 1q

˙

, (4.29)3543
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where F is as defined in (4.18), and set3544

fk “ hk and f`pSq “
F pSq

λ´εpi``1 ´ 1q
h`pSq, 0 ď ` ď k ´ 1. (4.30)3545

For the sake of presentation, we do not indicate that the definitions of the D̃j, X`, h`, f`3546

depend on Ik and ε.3547

Lemma 4.4.7. For ` P t0, . . . , ku, and h` as defined in (4.29), we have3548

E

«

i``1´1
ź

j“i``1

D̃j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

ď h`pstipKi`qq. (4.31)3549

Recall that, by definition, stipKi`q P C 1 (see (4.26)) and thus h`pstipKi`qq is well-defined.3550

Proof. First note that for all ` P t1, . . . , ku, by the tower property,3551

E

«

i``1´1
ź

j“i``1

D̃j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

“ E

«

E
„

D̃i``1´1

ˇ

ˇ

ˇ

ˇ

Gi``1´2

 i``1´2
ź

j“i``1

D̃j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

3552

ď E

«

E
„

Di``1´1

ˇ

ˇ

ˇ

ˇ

Gi``1´2

 i``1´2
ź

j“i``1

D̃j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

,3553

3554

where we have used the fact that, by definition, D̃j “ Dj X Gεpjq and thus D̃j ď Dj (recall3555

that the latter denote the indicators of the events D̃j and Dj respectively). If i``1 ´ 1 R Ik3556

we have that3557

E
“

Di``1´1

ˇ

ˇGi``1´2

‰

“ PpDi``1´1

ˇ

ˇGi``1´2q “ 1´
F pstipKi``1´2qq

Zi``1´2

,3558

where we recall that F pstipKi``1´2qq is the sum of the fitnesses of the faces in the complex3559

that contains node i at time i``1 ´ 2 (see (4.4)). Thus,3560

E

«

i``1´1
ź

j“i``1

D̃j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

ď E

«

ˆ

1´
F pstipKi``1´2qq

Zi``1´2

˙ i``1´2
ź

j“i``1

D̃j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

3561

ď

ˆ

1´
F pstipKi`qq
λ`εpi``1 ´ 2q

˙

E

«

i``1´2
ź

j“i``1

D̃j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

,3562

3563
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where we recall that, by definition, λ`ε “ λp1 ` εq and F pstipKi``1´2qq “ F pstipKi`qq. In3564

the last inequality, we have used the fact that on the event D̃i``1´2, we have Zi``1´2 ď3565

λ`εpi``1 ´ 2q. Iterating the argument shows the claim.3566

We now use the Lemma 4.4.7 to derive an almost-sure upper bound for X`.3567

Proposition 4.4.8. For ` P t0, . . . , ku, and f` as defined in (4.30), we have3568

X` ď E˚stipKi` q

«

k
ź

j“`

fjpSj´`q

ff

D̃i` .3569

In particular,3570

E rX0s ď E

«

E˚stipKiq

«

k
ź

j“0

fjpSjq

ffff

.3571

Proof. We proceed by backwards induction. For ` “ k, the statement is identical to the one3572

in Lemma 4.4.7. Now, assume the claim holds for some 1 ď ` ď k. Using (4.28) and the3573

induction hypothesis in the second inequality, we get3574

X`´1 “ E

«

i`´1
ź

j“i`´1`1

D̃j X`

ˇ

ˇ

ˇ

ˇ

Gi`´1

ff

D̃i`´1
3575

ď E

«

E

«

E˚stipKi` q

«

k
ź

j“`

fjpSj´`q

ff

Di`

ˇ

ˇ

ˇ

ˇ

Gi`´1

ff

i`´1
ź

j“i`´1`1

D̃j

ˇ

ˇ

ˇ

ˇ

Gi`´1

ff

D̃i`´1
. (4.32)3576

3577

The event Di` “ ti` „ iu indicates that an insertion has been made into stipKi`´1q. Therefore,3578

conditionally on Gi`´1, on the event Di` , the sequence pS0, . . . , Sk´`q initiated by stipKi`q is3579

equal in distribution to pS1, . . . , Sk´``1q initiated by stipKi`´1q. Thus,3580

E

«

E˚stipKi` q

«

k
ź

j“`

fjpSj´`q

ff

Di`

ˇ

ˇ

ˇ

ˇ

Gi`´1

ff

“ P pDi` |Gi`´1qE˚stipKi`´1q

«

k
ź

j“`

fjpSj´``1q

ff

3581

“
F pstipKi`´1qq

Zi`´1

E˚stipKi`´1q

«

k
ź

j“`

fjpSj´``1q

ff

.(4.33)3582

3583

On the other hand, on the events D̄j, j P ti`´1`1, . . . , i`´1u, we have stipKi`´1q “ stipKi`´1
q,3584

and thus F pstipKi`´1qq “ F pstipKi`´1
qq. Combining (4.32) and (4.33) and the fact that on3585
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D̃i`´1, Zi`´1 ě λ´εpi` ´ 1q in the first inequality, we obtain3586

X`´1 ď E˚stipKi`´1
q

«

F pS0q

λ´εpi` ´ 1q

k
ź

j“`

fjpSj´``1q

ff

E

«

i`´1
ź

j“i`´1`1

D̃j

ˇ

ˇ

ˇ

ˇ

Gi`´1

ff

D̃i`´1
3587

(4.31)
ď E˚stipKi`´1

q

«

F pS0q

λ´εpi` ´ 1q

k
ź

j“`

fjpSj´``1q

ff

h`´1pstipKi`´1
qqD̃i`´1

3588

“ E˚stipKi`´1
q

«

k
ź

j“`´1

fjpSj´``1q

ff

D̃i`´1
.3589

3590

This concludes the induction argument, and thus the proof.3591

The following elementary lemma is an easy consequence of Stirling’s approximation,3592

using (4.8), so we state it without proof.3593

Lemma 4.4.9. Let δ, C ą 0. Then, as mÑ 8, uniformly over δm ď a ď b and 0 ď β ď C,3594

we have3595

b´1
ź

j“a`1

ˆ

1´
β

j ´ 1

˙

“

´a

b

¯β
ˆ

1`O

ˆ

1

m

˙˙

.3596

The statement of Proposition 4.4.5 follows immediately from Proposition 4.4.8 and3597

Lemma 4.4.9.3598

Proof of Corollary 4.4.6. In view of the statement of Proposition 4.4.5, it remains to replace3599

stipKiq by its distributional limit ϕpW,Y8q and to evaluate the sum over the possible values3600

of i, i1, . . . , ik. We start with the first task and show that, for any 0 ă δ, ε, η ď 1{2, there3601

exists N “ Npδ, ηq such that, for all ηn ă i ď n´ k, Ik P
`

ti`1,...,nu
k

˘

and n ě N , we have3602

P pEipIkq X Gεpi, nqq3603

ď p1` δqE˚π˚

«

ˆ

ik
ik`1

˙F pSkq{λ`ε

¨

k´1
ź

`“0

ˆ

i`
i``1

˙F pS`q{λ`ε F pS`q

λ´εpi``1 ´ 1q

ff

. (4.34)3604

3605

Note that the statement of Corollary 4.4.6 follows immediately from this identity and3606

Corollary 4.4.4. To verify the last statement, let π˚n be the law of stnpKnq considered as3607
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C 1-valued random variable, that is, ϕpWn, Ynq (see (4.16) for the definition of ϕ). Thanks to3608

Proposition 4.4.5, it is sufficient to prove that, uniformly in ηn ă i ă i1 ă i2 ă . . . ă ik ď n3609

and ε P p0, 1{2s, as nÑ 83610

E˚π˚i

«

ˆ

ik
ik`1

˙F pSkq{λ`ε

¨

k´1
ź

`“0

ˆ

i`
i``1

˙F pS`q{λ`ε

F pS`q

ff

3611

´ E˚π˚

«

ˆ

ik
ik`1

˙F pSkq{λ`ε

¨

k´1
ź

`“0

ˆ

i`
i``1

˙F pS`q{λ`ε

F pS`q

ff

Ñ 0. (4.35)3612

3613

To this end, we prove the following stronger statement: uniformly in η ď x0, . . . , xk ď 1 and3614

the choice of ε, as nÑ 8,3615

E˚π˚n

«

x
F pSkq{λ`ε
k ¨

k´1
ź

`“0

x
F pS`q{λ`ε
` F pS`q

ff

´ E˚π˚

«

x
F pSkq{λ`ε
k ¨

k´1
ź

`“0

x
F pS`q{λ`ε
` F pS`q

ff

Ñ 0.3616

By continuity of ϕ, Proposition 4.1.1 and Proposition 4.4.2, we have3617

P˚
π˚n
ppF pS0q, . . . , F pSkqq P ¨q Ñ P˚π˚ppF pS0q, . . . , F pSkqq P ¨q weakly. Note that, for all3618

0 ď ` ď k, F pS`q ď C, where C “ pd ` 1qpk ` 1qfmax and we recall that fmax is the3619

maximum of the fitness function f . For all η ď x0, . . . , xk ď 1 and 0 ď ε ď 1{2, the function3620

Jpy0, . . . , ykq “ x
yk{λ`ε
k ¨

śk´1
`“0 x

y`{λ`ε
` y` defined on r0, Csk`1 satisfies3621

}∇J} ď αη :“ Ck
p1´ log η{λq (4.36)3622

uniformly in x0, . . . , xk, ε. For any two probability distributions ν and ν 1 on r0, Csk`1, let3623

dpν, ν 1q “ sup
gPF

ˇ

ˇ

ˇ

ˇ

ż

gdν ´

ż

gdν 1
ˇ

ˇ

ˇ

ˇ

(4.37)3624

where F :“ tg : r0, Csk`1
Ñ R | @x, y P r0, Csk`1

|gpxq ´ gpyq| ď αη}x´ y}u.3625
3626

It is well-known that dpνn, νq Ñ 0 if and only if νn Ñ ν weakly (see for example, Example3627

19, page 74 [70]). This concludes the proof of (4.35) and of Corollary 4.4.6.3628

4.4.3 Stochastic convergence: second moment calculations3629

By counting the number of unordered pairs of vertices with degree d` k, arguments similar3630

to those applied in Section 4.4.2 allow us to compute asymptotically the second moment of3631
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Nη,kpnq (recall this is the number of vertices of degree k ` d in Kn that arrived after time3632

ηn). Note that3633

E
“

pNη,kpnqq
2
‰

“
ÿ

ηnăi,jďn

P
´

d̂npiq “ k, d̂npjq “ k
¯

.3634

We prove that3635

lim
ηÑ0

lim sup
nÑ8

E rpNη,kpnqq
2s

n2
ď p2

k. (4.38)3636

This shows that limnÑ8 E rpNη,kpnqq
2s {n2 “ p2

k which is sufficient to deduce the conver-3637

gence in probability stated in Theorem 4.4.1 from convergence of the mean by a standard3638

application of Chebychev’s inequality.3639

Recall that we use the notation Ik “ ti1, . . . , iku for a collection of natural numbers3640

i ă i1 ă . . . ă ik ď n. Similarly, we write Jk “ tj1, . . . , jku for a collection of natural3641

numbers such that j ă j1 ă . . . ă jk ď n. As before, we let EipIkq denote the event i „ ` for3642

i ă ` ď n if and only if ` P Ik and define the event EjpJkq analogously for j, j1, . . . , jk.3643

With these definitions, we have3644

E
“

pNη,kpnqq
2
‰

“
ÿ

ηnăi,jďn

ÿ

Ik,Jk

P pEi pIkq X Ej pJkqq , (4.39)3645

where the inner sum is over all Ik P
`

ti`1,...,nu
k

˘

and Jk P
`

tj`1,...,nu
k

˘

. As in Section 4.4.2, we3646

fix 0 ď δ, ε ď 1{2 and choose N 1 such that for all n ě N 1, P pGεpN 1, nqq ě 1´ δ.3647

Note that, on EipIkq X EjpJkq, if Ik X Jk ‰ ∅ we either have i “ j or i „ j. If i “ j3648

then Ik “ Jk, and the contribution of these terms to the right hand side of (4.39) is at3649

most E rNη,kpnqs ď n. On the event td̂npiq “ ku we have F pstipK`qq ď pk ` 1qdfmax for all3650

i` 1 ď ` ď n. Therefore, for ηn ă i ă j ď n, we have3651

P
´!

d̂npiq “ k
)

X

!

d̂npjq “ k
)

X tj „ iu X Gεpi, nq
¯

3652

ď P
´

tj „ iu | Gε pi, j ´ 1q , d̂j´1piq ď k
¯

ď
pk ` 1qdfmax

λ´εηn
.3653

3654
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It follows that, for all n sufficiently large, depending on δ, ε and η,3655

E
“

pNη,kpnqq
2
‰

ď 2
ÿ

ηnăiăjďn

ÿ

IkXJk“∅
P pEi pIkq X Ej pJkq X Gεpi, nqq ` δn2

` Cn{η,3656

for a constant C ě 0 which is independent of n, δ, ε and η. The following proposition is the3657

analogue of Proposition 4.4.5.3658

Proposition 4.4.10. Let 0 ă ε, η ď 1{2. As n Ñ 8, uniformly in ηn ă i ă j ď n ´ k,3659

Ik P
`

ti`1,...,nu
k

˘

and Jk P
`

tj`1,...,nu
k

˘

with Ik X Jk “ ∅ and the choice of ε, we have3660

P pEi pIkq X Ej pJkq X Gεpi, nqq3661

ď

ˆ

1`O

ˆ

1

n

˙˙

E

«

E˚stipKiq

«

ˆ

ik
n

˙F pSkq{λ`ε

¨

k´1
ź

`“0

ˆ

i`
i``1

˙F pS`q{λ`ε F pS`q

λ´εpi``1 ´ 1q

ff

3662

E˚stjpKjq

«

ˆ

jk
n

˙F pSkq{λ`ε

¨

k´1
ź

`“0

ˆ

j`
j``1

˙F pS`q{λ`ε F pS`q

λ´εpj``1 ´ 1q

ffff

.3663

3664

The proof of this proposition is completely analogous to the proof of Proposition 4.4.53665

and relies on a backward induction argument and an application of Lemma 4.4.9. We omit3666

the details as no new arguments are necessary at this point. We move on to show the3667

following analogue of (4.34): for any 0 ă δ, ε, η ď 1{2, there exists N “ Npδ, ηq such that,3668

for all n ě N , ηn ă i ă j ď n´ k and disjoint sets Ik,Jk, we have3669

P pEi pIkq X Ej pJkq X Gεpi, nqq3670

ď p1` δq

ˆ

E˚π˚

«

ˆ

ik
n

˙F pSkq{λ`ε

¨

k´1
ź

`“0

ˆ

i`
i``1

˙F pS`q{λ`ε F pS`q

λ´εpi``1 ´ 1q

ff

3671

E˚π˚

«

ˆ

jk
n

˙F pSkq{λ`ε

¨

k´1
ź

`“0

ˆ

j`
j``1

˙F pS`q{λ`ε F pS`q

λ´εpj``1 ´ 1q

ff

˙

. (4.40)3672

3673

The details are very similar to the approach in Section 4.4.2, and we only give the necessary3674

additional results entering the proof.3675

Proposition 4.4.11. As n,mÑ 8 with n ‰ m, we have pYn, Ymq Ñ pY8, Y
1
8q, in distribu-3676

tion, for independent random variables Y8, Y 18 both distributed according to π˚.3677
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Proof. This follows easily from Theorem 4.3.1. Let g1, g2 : Cd´1 Ñ R be bounded and3678

continuous and Y8, Y 18 be independent realisations of π˚. We have3679

|E rg1pYnqg2pYmqs ´ E rg1pY8qg2pY
1
8qs| (4.41)3680

ď |E rg1pYnqg2pYmqs ´ E rg1pYnqsE rg2pY
1
8qs|3681

` |E rg1pYnqsE rg2pY
1
8qs ´ E rg1pY8qg2pY

1
8qs| .3682

3683

Since Y8, Y 18 are independent, the second term on the right hand side is equal to3684

|E rg2pY8qs | ¨ |E rg1pYnqs ´ E rg1pY8qs |. (4.42)3685

As n Ñ 8, (4.42) converges to zero by Theorem 4.3.1. For n ă m, we have3686

E rg1pYnqg2pYmqs “ E rg1pYnqE rg2pYmq | Gm´1ss. Hence, the first term on the right hand3687

side of (4.41) is bounded from above by3688

}g1} ¨ E r|E rg2pYmq | Gm´1s ´ E rg2pY8qs |s . (4.43)3689

Write νm for the law of Ym given Gm´1, that is, for all measurable A Ď Cd´1,3690

νmpAq “

ş

A
fpxqdΠm´1pxq

ş

Cd´1
fpxqdΠm´1pxq

.3691

By Theorem 4.3.1, we have, almost surely, νm Ñ π˚ weakly. Thus, E rg2pYmq | Gm´1s Ñ3692

E rg2pY8qs. Hence, by the dominated convergence theorem, (4.43) converges to zero as3693

m Ñ 8. This concludes the proof for n,m Ñ 8 with n ă m and the case n ą m can be3694

treated analogously.3695

In the remainder, we write P˚˚x,x1 and E˚˚x,x1 with x, x1 P C 1 for probabilities and ex-3696

pectations, respectively, involving a pair of independent copies of the star Markov chain3697

pS0, S
1
0q, pS1, S

1
1q, . . ., where S0 “ x and S 10 “ x1.3698

Proposition 4.4.12. Let k ě 0, w,w1 ě 0 and x, x1, x1, x
1
1, x2, x

1
2, . . . P Cd´1 with xn Ñ x3699
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and x1n Ñ x1. Then, in the sense of weak convergence on R2k`2
` , we have, as nÑ 8,3700

P˚˚ϕpw,xnq,ϕpw1,x1nqppF pS0q, F pS
1
0q, F pS1q, F pS

1
1q, . . . , F pSkq, F pS

1
kqq P ¨q3701

Ñ P˚˚ϕpw,xq,ϕpw1,x1qppF pS0q, F pS
1
0q, F pS1q, F pS

1
1q, . . . , F pSkq, F pS

1
kqq P ¨q.3702

3703

Proof. This follows from the independence of the two star processes involved and Proposi-3704

tion 4.4.2.3705

Using Proposition 4.4.11 and Proposition 4.4.12, the continuity of ϕ, and an argument3706

analogous to the proof of Corollary 4.4.6 (using a probability metric similar to (4.37)), (4.40)3707

follows upon verifying the following: For any η ď x0, x
1
0, . . . , xk, x

1
k ď 1 and 0 ď ε ď 1{2,3708

with the function3709

J 1py0, y
1
0, . . . , yk, y

1
kq “ x

yk{λ`ε
k ¨

k´1
ź

`“0

x
y`{λ`ε
` y` ¨ px

1
kq
y1k{λ`ε ¨

k´1
ź

`“0

px1`q
y1`{λ`εy1`3710

defined on r0, Cs2k`2, we have that }∇J 1} is bounded uniformly in x0, . . . , xk, x10, . . . , x1k and3711

ε. This follows from that the fact that J 1 factorizes, }J 1} ď C2k, and (4.36).3712

Now, when evaluating the sum over ηn ă i ‰ j ď n and disjoint Ik P
`

ti`1,...,nu
k

˘

,Jk P3713

`

tj`1,...,nu
k

˘

in (4.40), since the summands are non-negative, and we are looking for an upper3714

bound, we may remove the conditions i ‰ j and Ik X Jk “ ∅. But Corollary 4.4.4 shows3715

that, uniformly in ε and η,3716

ÿ

ηnăi,jďn

ÿ

Ik,Jk

E˚π˚

«

ˆ

ik
n

˙F pSkq{λ`ε

¨

k´1
ź

`“0

ˆ

i`
i``1

˙F pS`q{λ`ε F pS`q

λ´εpi``1 ´ 1q

ff

3717

ˆ E˚π˚

«

ˆ

jk
n

˙F pSkq{λ`ε

¨

k´1
ź

`“0

ˆ

j`
j``1

˙F pS`q{λ`ε F pS`q

λ´εpj``1 ´ 1q

ff

3718

ď

ˆ

1` ε

1´ ε

˙2k
˜

E˚π˚

«

λ`ε
F pSkq ` λ`ε

k´1
ź

`“0

F pS`q

F pS`q ` λ`ε

ff¸2

`O
`

n´1{pk`2q
˘

` C 1η1{k`2,3719

3720

for some universal constant C 1 ą 0. From here, identity (4.38) follows easily as in Sec-3721

tion 4.4.2.3722
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4.4.4 Lower bound for the Mean of Nkpnq{n3723

In this section, we prove that, for all k ě 0,3724

lim
ηÑ0

lim inf
nÑ8

E rNη,kpnqs

n
ě pk, (4.44)3725

where we recall that Nη,kpnq is the number of vertices of degree k`d in Kn that arrived after3726

time ηn, and pk is defined in Theorem 4.4.1. Recall that in order to prove the analogue of3727

(4.44) with regards to the pµ, f, `q -RIF tree, we adopted an indirect approach, using a proof3728

by contradiction in Section 2.4.4 of Chapter 2. This approach is also applicable here, and3729

the interested reader may consider applying this approach as an exercise. However, in this3730

subsection we adopt a more direct proof of (4.44). Whilst this proof is much more technical,3731

this approach is favourable as the techniques may transfer to the analysis of other quantities3732

related to recursive network models, for example, the study of the evolution of the degree of3733

a fixed vertex.3734

To apply this approach, we need more notation. First, let C be the set of all finite3735

pd ´ 1q-dimensional simplicial complexes with integer vertices. To add weights, let Cw “3736

CˆRZ
`, where, for t “ pc, xq P Cw, xi, i P Z keeps track of the weight assigned to the vertex3737

i - if no such vertex exists, set xi “ 0. We then consider Kn as a Cw-valued random variable3738

incorporating vertex weights. For a simplicial complex K P C, let Kzi :“ tσ P K : i R σu be3739

the sub-complex obtained from K, when we remove the faces which contain vertex i. We set3740

Kzi :“ K if i R K. When applied to the random dynamical process, we write Knzi for pKnqzi.3741

Let3742

Πnzi “
ÿ

σPKpd´1q
nzi

δωpσq, and Znzi “
ż

Cd´1

fpxqdΠnzipxq

3743

be the empirical measure of the types of active faces in Knzi and the corresponding partition3744

function, respectively. Note that Kpd´1q
n “ Kpd´1q

nzi Y stipKnq, where the union is disjoint and3745

therefore Zn “ Znzi ` F pstipKnqq.3746
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To prove a suitable lower bound on the probability that vertex i receives edges at3747

certain times, we need to control Znzi throughout the process. It is reasonable to expect Znzi3748

to behave similarly to Zn. To this end, for all ε ą 0, n ě i ě 1 and m ě 1, we let3749

Gpiqε pnq “
 ˇ

ˇZnzi ´ λn
ˇ

ˇ ă ελn
(

and Gεpn;mq “ t|Zn ´ λm| ă ελmu . (4.45)3750

Note the difference between the notation Gεpn;mq and the notation for concentration along3751

an interval GεpN1, N2q defined in Section 4.4.2.3752

For 1 ď i ď n, Ik P
`

ti`1,...,nu
k

˘

and j “ i, . . . , n, we let3753

ppjq P t0, . . . , ku be such that ippjq ď j ď ippjq`1 ´ 1, (4.46)3754

where we recall that we use the conventions i0 “ i and ik`1 “ n` 1.3755

As opposed to the arguments in Section 4.4.2, the inductive proof in this section3756

requires us to modify the value of ε in different intervals ti`, . . . , i``1 ´ 1u, ` “ 0, . . . , k. We3757

thus need more notation. First, for a fixed ε ą 0, and ` P t0, . . . , ku we set ε` :“ p1 ` `qε.3758

We only apply this notation to the symbol ε, to avoid confusion with subscripts. Next, for3759

j P ti` 1, . . . , nu, recalling the events Dj from (4.27), and Gpiqε pjq, Gεpi; iq from (4.45), we set3760

D̄jpεq “ Dj X Gpiqεppjqpjq and D̄ipεq “ Gεpi; iq.

3761

Similarly to before, we write Djpεq :“ 1Djpεq and D̄jpεq :“ 1D̄jpεq. With this notation, we3762

have3763

E rNη,kpnqs ě
ÿ

ηnăiďn

ÿ

IkPpti`1,...,nu
k q

P
ˆ n
č

j“i

D̄jpεq
˙

. (4.47)3764

We then have the following analogue of Proposition 4.4.5.3765

Proposition 4.4.13. Let 0 ă δ, ε, η ď 1{2. There exists a constant C 1 ą 0, N “ Npδ, ε, ηq3766
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and 0 ď % ď 1 such that, for all n ě N ,3767

E rNη,kpnqs ě ´C
1δn3768

` %p1´ δq ¨
ÿ

ηnăiďn

ÿ

IkPpti`1,...,nu
k q

E

»

–E˚stipKiq

»

–

ˆ

ik
ik`1

˙

F pSkq

λ´εk
¨

k´1
ź

`“0

ˆ

i`
i``1

˙

F pS`q

λ´ε` F pS`q

λ`ε`pi``1 ´ 1q

fi

fl

fi

fl ,

(4.48)

3769

3770

where % depends only on ε, η and, for any fixed 0 ă η ď 1{2, we have %Ñ 1 as εÑ 0.3771

Similar arguments leading from Proposition 4.4.5 to Corollary 4.4.6 then give the3772

following result.3773

Corollary 4.4.14. Let 0 ă δ, ε, η ď 1{2. Then, there exists N “ Npδ, ε, ηq and a universal3774

constant C ą 0 not depending on any of these parameters, such that, for all n ě N ,3775

E rNη,kpnqs

n
ě %p1´ δq

ˆ

1´ εk
1` εk

˙k

¨ E˚π˚

«

λ´εk
F pSkq ` λ´εk

k´1
ź

`“0

F pS`q

F pS`q ` λ´ε`

ff

3776

´ Cpη1{pk`2q
` 1{n1{pk`2q

q ´ δ,3777
3778

where % is as in the Proposition 4.4.13. In particular, (4.44) holds.3779

We now define analogues of h` and f` from (4.29) and (4.30) in Section 4.4.2. Here,3780

however, it is necessary to indicate the dependence of these functions on ε. For S P C 1 and3781

` P t0, . . . , ku, let3782

hε`pSq “

i``1´1
ź

j“i``1

ˆ

1´
F pSq

λ´ε`pj ´ 1q

˙

(4.49)3783

and, for ` P t0, . . . , k ´ 1u,3784

fε`pSq “
F pSq

F pSq ` λ`ε`pi``1 ´ 1q
hε`pSq while fεk “ hεk. (4.50)3785

We follow the arguments from the proof of the upper bound in Section 4.4.2 and show3786

analogues of Lemma 4.4.7 and Proposition 4.4.8. To this end, we need to make use of the3787
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more general framework introduced at the beginning of this subsection: we write Pxp¨q,Exp¨q3788

for probabilities and expectations respectively, when the initial weighted configuration is3789

equal to x “ pc, zq with c P C, z P RZ
`. Here, if m P Z is the maximum vertex label3790

occurring in c, then the vertex inserted in step i of the process carries label m` i. Then, for3791

a real-valued function g depending on the path of the process and upxq “ ExrgppKnqně0qs,3792

we use the slightly inaccurate but standard notation EXrgppKnqně0qs for upXq and a random3793

variable X which is typically defined in terms of Kn, n ě 0. Probabilities P and expectations3794

E appearing in the following without subscript are with respect to the initial process with3795

given K0.3796

Proving analogues of Lemma 4.4.7 and Proposition 4.4.8 becomes more intricate since3797

we can no longer drop the concentration conditions relying on the events Gεpjq as we did3798

in Section 4.4.2. Nevertheless, ignoring the dependency structure of the evolution of the3799

process in the star of vertex i and outside, intuitively we still expect to bound P
´

Şn
j“i D̄j

¯

3800

from below by a term similar to3801

E

«

EKizi

«

n´k
ź

j“i`1

1Gεppjq pj´i;j`ppjqq

ff

E˚stipKiq

«

k
ź

j“0

fεjpSjq

ffff

. (4.51)3802

The two main hurdles to prove such a lower bound are the following: first, while the process3803

outside the star of vertex i follows the Markovian transition rule, there is a subtle dependence3804

between the star and its complement as the addition of faces to the star adds faces to its3805

complement. More formally, on Di` , we have Ki`zi ‰ Kpi`´1qzi. The reason is that when a3806

face in stipKi`´1q is subdivided during step i`, one of the faces that are created does not3807

contain vertex i and therefore migrates into Ki`zi (this is the face that is removed at each3808

step in Figure 4.2). Second, in order to exploit the concentration of the partition function3809

Zj for j ě i ą ηn, an argument is needed to replace PKizi by PKi . In order to overcome3810

these difficulties, we use the following two lemmas, whose proofs we delay to the end of the3811

section.3812

Lemma 4.4.15. For any δ, ε ą 0, 0 ă η ă 1, there exists N “ Npδ, ε, ηq such that, for all3813
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n ě N, ηn ă i ă n´ k, we have3814

E

«

PKizi

˜

n
č

j“i`1

Gεpj ´ i; jq

¸ff

ě 1´ δ.3815

Lemma 4.4.16. For any ε1, ε2, ε3 ą 0, 0 ă η1 ă 1 and C1, C2 ą 0, there exists N depending3816

on these six quantities, such that the following is satisfied for all n ě N : for any weighted3817

simplicial complexes X ,Y P Cw such that3818

(i) |X pd´1q4Ypd´1q| ď C1, where X pd´1q4Ypd´1q “ pX pd´1qzYpd´1qq Y pYpd´1qzX pd´1qq;3819

(ii) any vertex contained in a face in X pd´1qXYpd´1q has the same weight in both complexes;3820

(iii) each face in X pd´1q4Ypd´1q has at most fitness C2 in the complex it belongs to;3821

(iv) F pX q ě ε1u for some η1n ď u ď n (where we recall that F pX q is the sum of fitnesses3822

of faces in X ),3823

we have, for any u ă m ď n, that3824

PX

˜

m
č

j“u`1

Gε2pj ´ u; jq

¸

ě PY

˜

m
č

j“u`1

Gε2{2pj ´ u; jq

¸

´ ε3.3825

Intuitively, Lemma 4.4.15 states that, for the process initiated by Kizi, the partition3826

function remains concentrated with high probability at each of the n ´ i steps after the3827

arrival of vertex i. Lemma 4.4.16 states that any sufficiently large simplicial complexes X3828

and Y , in the sense of being linear in n, which differ by at most a constant number of faces,3829

have partition functions that evolve in a similar manner. This is due to the fact that the3830

contribution of the descendants of faces in X4Y may be bounded by the sum of geometrically3831

distributed random variables with small success parameter, and is thus negligible.3832

For brevity, for all ` P t0, . . . , ku and ε ą 0, recalling the definition of ppjq in (4.46),3833

we define3834

G`pεq “

n´pk´`q
č

j“i``1

Gεppjqpj ´ i`; j ` ppjq ´ `q and α`pK, εq “ PKpG`pεqq, K P Cw. (4.52)3835
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Thus, in α`pKi`zi, εq the term Gεppjqpj ´ i`; j ` ppjq ´ `q represents concentration of Zj´i`3836

(initiated with Ki`zi) around λpj ` ppjq ´ `q. When ppjq increases, the values of εppjq and3837

j ` ppjq ´ ` change to account for the additional ‘step’ that has occurred in the underlying3838

process without a step occurring in the process initiated with Ki`zi. Lemma 4.4.16 has the3839

following corollary which justifies this notation, showing that the migration of the additional3840

face into Ki`zi at the step i` is insignificant.3841

Corollary 4.4.17. For any 0 ă η, δ, ε1 ă 1, there exists N “ Npδ, ε1, ηq such that the3842

following holds for all n ě N : for all 0 ă ε ă 1{p2k ` 2q, ` P t1, . . . , ku and ηn ă i ă i1 ă3843

. . . ă ik ď n, on the event Gpiqε` pi`q, with α` as defined in (4.52), we have3844

α`pKi`zi, ε
1
q ě α`pKpi`´1qzi, ε

1
{4pk ` 1qq ´ δ. (4.53)3845

Proof. For sufficiently large n, depending on ε1 and η, we clearly have that, for all K P Cw
3846

α`pK, ε1q ě PK

˜

n´pk´`q
č

j“i``1

G3ε1`{4
pj ´ i`; jq

¸

3847

and3848

PK

˜

n´pk´`q
č

j“i``1

G3ε1`{8
pj ´ i`; jq

¸

ě α`pK, ε1{4pk ` 1qq. (4.54)3849

Note that, on Gpiqε` pi`q, we have Zi`zi ě λi`{2. Hence, Lemma 4.4.16 applied with ε1 “3850

λ{2, ε2 “ 3ε1`{4, ε3 “ δ, u “ i`, η1 “ η,Y “ Kpi`´1qzi,X “ Ki`zi, C1 “ d ` 1, C2 “ fmax shows3851

that, on the event Gpiqε` pi`q,3852

PKi`zi

˜

n´pk´`q
č

j“i``1

G3ε1`{4
pj ´ i`; jq

¸

ě PKpi`´1qzi

˜

n´pk´`q
č

j“i``1

G3ε1`{8
pj ´ i`; jq

¸

´ δ (4.55)3853

for n sufficiently large, depending on δ, ε1, η. Then the equations (4.54) and (4.55) together3854

imply (4.53).3855

Once we have Corollary 4.4.17, the arguments to prove the lower bound are similar3856

to the upper bound, however, the details are more technical. The following lemma is the3857

analogue of Lemma 4.4.7.3858
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Lemma 4.4.18. For any 0, δ, η ă 1 and 0 ă ε ă 1{p2k`2q there exists N “ Npδ, ε, ηq, such3859

that, for all n ě N and ηn ă i ă i1 ă . . . ă ik ď n, with hεj as defined in (4.49), we have3860

P

˜

n
č

j“ik`1

D̄jpεq
ˇ

ˇ

ˇ

ˇ

Gik

¸

D̄ikpεq ě pαkpKpik´1qzi, ε{p4pk ` 1qqq ´ δqhεkpstipKikqqD̄ikpεq (4.56)3861

and, for all ` P t1, . . . , k ´ 1u,3862

E

«

i``1´1
ź

j“i``1

D̄jpεq α``1pKpi``1´1qzi, εq

ˇ

ˇ

ˇ

ˇ

Gi`

ff

D̄i`pεq3863

ě pα`pKpi`´1qzi, pk ` 1qq ´ δqhε`pstipKi`qqD̄i`pεq, while,3864

E

«

i1´1
ź

j“i`1

D̄jpεq α1pKpi1´1qzi, εq

ˇ

ˇ

ˇ

ˇ

Gi

ff

D̄ipεq ě α0pKizi, εqhε0pstipKiqqD̄ipεq.3865

3866

Proof. We write D̄j for D̄jpεq throughout the proof. If ik ‰ n, we have3867

E

«

n
ź

j“ik`1

D̄j

ˇ

ˇ

ˇ

ˇ

Gik

ff

“ E

«

E
„

D̄n

ˇ

ˇ

ˇ

ˇ

Gn´1

 n´1
ź

j“ik`1

D̄j

ˇ

ˇ

ˇ

ˇ

Gik

ff

3868

“ E

«

ˆ

1´
F pstipKn´1qq

Zn´1

˙

PKpn´1qzi
pGεkp1;nqq

n´1
ź

j“ik`1

D̄j

ˇ

ˇ

ˇ

ˇ

Gik

ff

,(4.57)3869

3870

because, by definition (see (4.45)), Gεkp1;nq “ t|Z1 ´ λn| ă εkλnu. First note that, on the3871

event
Şn´1
j“ik`1 D̄j, we have, for any j “ ik ` 1, . . . , n ´ 1, F pstipKjqq “ F pstipKikqq. On the3872

event D̄j we have3873

1´
F pstipKn´1qq

Zj
ě 1´

F pstipKikqq
λ´εkj

. (4.58)3874

Furthermore, by the tower property, we may substitute3875

E
„

PKpn´1qzi
pGεkp1;nqq D̄n´1

ˇ

ˇ

ˇ

ˇ

Gn´2



for PKpn´1qzi
pGεkp1;nqq D̄n´13876

inside the conditional expectation, and together with (4.57) and (4.58), this gives3877

E

«

n
ź

j“ik`1

D̄j

ˇ

ˇ

ˇ

ˇ

Gik

ff

ě

ˆ

1´
F pstipKikqq
λ´εkpn´ 1q

˙

E

«

E
„

PKpn´1qzi
pGεkp1;nqq D̄n´1

ˇ

ˇ

ˇ

ˇ

Gn´2

 n´2
ź

j“ik`1

D̄j

ˇ

ˇ

ˇ

ˇ

Gik

ff

.

(4.59)3878
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Then, if ik ‰ n´ 1 we also have3879

E
„

PKpn´1qzi
pGεkp1;nqq D̄n´1

ˇ

ˇ

ˇ

ˇ

Gn´2



“

ˆ

1´
F pstipKn´2qq

Zn´2

˙

PKpn´2qzi
pGεkp1;n´ 1q X Gεkp2;nqq .

(4.60)3880

Thus, using (4.59) and (4.60) in the first inequality, and (4.58) in the second,3881

E

«

n
ź

j“ik`1

D̄j

ˇ

ˇ

ˇ

ˇ

Gik

ff

3882

ě

ˆ

1´
F pstipKikqq
λ´εkpn´ 1q

˙

E

«

ˆ

1´
F pstipKn´2qq

Zn´2

˙

PKpn´2qzi
pGεkp1;n´ 1q X Gεkp2;nqq

n´2
ź

j“ik`1

D̄j

ˇ

ˇ

ˇ

ˇ

Gik

ff

3883

ě

ˆ

1´
F pstipKikqq
λ´εkpn´ 1q

˙ˆ

1´
F pstipKikqq
λ´εkpn´ 2q

˙

E

«

PKpn´2qzi
pGεkp1;n´ 1q X Gεkp2;nqq

n´2
ź

j“ik`1

D̄j

ˇ

ˇ

ˇ

ˇ

Gik

ff

.3884
3885

Iterating this process gives us3886

P

˜

n
č

j“ik`1

D̄jpεq
ˇ

ˇ

ˇ

ˇ

Gik

¸

D̄ikpεq ě αkpKikzi, εqh
ε
kpstipKikqqD̄ik .3887

Applying (4.53) from Corollary 4.4.17 concludes the proof of (4.56) as D̄ik Ď G
piq
εk pikq.3888

We use the same ideas to prove the general case, for ` P t0, . . . , k ´ 1u. Here, we3889

want to provide a lower bound to E
„

α``1pKpi``1´1qzi, εq
śi``1´1

j“i``1 D̄j

ˇ

ˇ

ˇ

ˇ

Gi`



. First, for any3890

j “ i` ` 1, . . . , i``1 ´ 1, we have F pstipKjqq “ F pstipKi`q. Thus, on the event D̄j, we have3891

1´
F pstipKjqq
Zj

ě 1´
F pstipKi`qq
λ´ε`j

. (4.61)3892

Second, using the tower property, we substitute3893

E
„

α``1pKpi``1´1qzi, εq D̄i``1´1

ˇ

ˇ

ˇ

ˇ

Gi``1´2



for α``1pKpi``1´1qzi, εqD̄i``1´1 (4.62)3894

inside the conditional expectation. Third, if i``1 ´ 1 ‰ i`,3895

E
„

α``1pKpi``1´1qzi, εq D̄i``1´1

ˇ

ˇ

ˇ

ˇ

Gi``1´2



“

ˆ

1´
F pstipKi``1´2qq

Zi``1´2

˙

ˆ3896

PKpi``1´2qzi

˜

Gε`p1; i``1 ´ 1q X

n´pk´`´1q
č

j“i``1`1

Gεppjqpj ´ i``1 ` 1; j ` ppjq ´ `´ 1q

¸

.3897
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So we write:3898

E

«

α``1pKpi``1´1qzi, εq

i``1´1
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

3899

(4.62)
“ E

«

E
„

α``1pKpi``1´1qzi, εq D̄i``1´1

ˇ

ˇ

ˇ

ˇ

Gi``1´2

 i``1´2
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

3900

(4.63)
“ E

«

ˆ

1´
F pstipKi``1´2qq

Zi``1´2

˙ i``1´2
ź

j“i``1

D̄jˆ3901

PKpi``1´2qzi

˜

Gε`p1; i``1 ´ 1q X

n´pk´`´1q
č

j“i``1`1

Gεppjqpj ´ i``1 ` 1; j ` ppjq ´ `´ 1q

¸

ˇ

ˇ

ˇ

ˇ

Gi`

ff

.3902

3903

Now, the lower bound of (4.61) yields:3904

E

«

α``1pKpi``1´1qzi, εq

i``1´1
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

3905

ě

ˆ

1´
F pstipKi`qq
λ´ε`pi``1 ´ 2q

˙

E

«

PKpi``1´2qzi

˜

n´pk´`q
č

j“i``1´1

Gεppjqpj ´ i``1 ` 2; j ` ppjq ´ `q

¸

i``1´2
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

.3906
3907

By the tower property again, we substitute3908

E

«

PKpi``1´2qzi

˜

n´pk´`q
č

j“i``1´1

Gεppjqpj ´ i``1 ` 2; j ` ppjq ´ `q

¸

D̄i``1´2 |Gi``1´3

ff

3909

for PKpi``1´2qzi

˜

n´pk´`q
č

j“i``1´1

Gεppjqpj ´ i``1 ` 2; j ` ppjq ´ `q

¸

D̄i``1´2.3910

Also, if i``1 ´ 2 ‰ i`,3911

E

«

PKpi``1´2qzi

˜

n´pk´`q
č

j“i``1´1

Gεppjqpj ´ i``1 ` 2; j ` ppjq ´ `q

¸

D̄i``1´2 |Gi``1´3

ff

“3912

ˆ

1´
F pstipKi``1´3qq

Zi``1´3

˙

PKpi``1´3qzi

˜

n´pk´`q
č

j“i``1´2

Gεppjqpj ´ i``1 ` 3; j ` ppjq ´ `q

¸

.3913

Bounding the first factor as in (4.61), and combining (4.64) and (4.65) give3914

E

«

α``1pKpi``1´1qzi, εq

i``1´1
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

3915

ě

ˆ

1´
F pstipKi`qq
λ´ε`pi``1 ´ 2q

˙ˆ

1´
F pstipKi`qq
λ´ε`pi``1 ´ 3q

˙

ˆ3916

E

«

PKpi``1´3qzi

˜

n´pk´`q
č

j“i``1´2

Gεppjqpj ´ i``1 ` 3; j ` ppjq ´ `q

¸

i``1´3
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

.3917

3918
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Iterating the argument shows that the right hand side multiplied by D̄i` is bounded from3919

below by α`pKi`zi, εqhε`pstipKi`qqD̄i` . We conclude the proof by applying (4.53) from Corol-3920

lary 4.4.17.3921

Lemma 4.4.19. For any δ ą 0, 0 ă η ă 1 and 0 ă ε ă 1{p2k`2q, there exists N “ Npδ, ε, ηq3922

such that, for all n ě N , ` P t1, . . . , ku and ηn ă i ă i1 ă . . . ă ik ď n, with fεj as defined in3923

(4.50) we have3924

E

«

α``1pKpi``1´1qzi, εq E˚stipKi``1
q

«

k
ź

j“``1

fεjpSj´`´1q

ff

minpi``1,nq
ź

j“i``1

D̄jpεq

ˇ

ˇ

ˇ

ˇ

Gi`

ff

D̄i`pεq3925

ě pα`pKpi`´1qzi, ε{p4pk ` 1qqq ´ δqE˚stipKi` q

«

k
ź

j“`

fεjpSj´`q

ff

D̄i`pεq, (4.66)3926

3927

where we use the convention αk`1p¨q “ 1, while3928

E

«

α1pKpi1´1qzi, εq E˚stipKi1 q

«

k
ź

j“1

fεjpSj´`´1q

ff

i1
ź

j“i`1

D̄jpεq

ˇ

ˇ

ˇ

ˇ

Gi

ff

D̄ipεq3929

ě α0pKizi, εqE˚stipKiq

«

k
ź

j“0

fεjpSjq

ff

D̄ipεq.3930

3931

Proof. The inequality (4.66) coincides with (4.56) from Lemma 4.4.18 when ` “ k. Let3932

0 ď ` ď k ´ 1. Note that, for all 1 ď i ď n, we have |Znzi ´ Zpn´1qzi| ď pd ` 1qfmax. Thus,3933

for all n sufficiently large, depending on ε and η, we have3934

Di``1
X Gpiqε` pi``1 ´ 1q Ď Gpiqε``1

pi``1q. (4.67)3935

Using this observation in the second step, we deduce3936

E

«

α``1pKpi``1´1qzi, εq E˚stipKi``1
q

«

k
ź

j“``1

fεjpSj´`´1q

ff

i``1
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

D̄i`3937

“ E

«

E

«

D̄i``1
E˚stipKi``1

q

«

k
ź

j“``1

fεjpSj´`´1q

ff

ˇ

ˇ

ˇ

ˇ

Gi``1´1

ff

α``1pKpi``1´1qzi, εq

i``1´1
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

D̄i`3938

(4.67)
ě E

«

E

«

Di``1
E˚stipKi``1

q

«

k
ź

j“``1

fεjpSj´`´1q

ff

ˇ

ˇ

ˇ

ˇ

Gi``1´1

ff

α``1pKpi``1´1qzi, εq

i``1´1
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

D̄i` .3939
3940
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Recall that (analogous to in the Proof of Proposition 4.4.8), conditionally on Gi``1´1, on the3941

event Di``1, the random variable stipKi``1
q is distributed as S1 for the star Markov process3942

starting at stipKi``1´1q. This yields:3943

E

«

Di``1
E˚stipKi``1

q

«

k
ź

j“``1

fεjpSj´`´1q

ff

ˇ

ˇ

ˇ

ˇ

Gi``1´1

ff

“ P
`

Di``1
|Gi``1´1

˘

¨ E˚stipKi``1´1q

«

k
ź

j“``1

fεjpSj´`q

ff

3944

“
F pstipKi``1´1qq

Zi``1´1

¨ E˚stipKi``1´1q

«

k
ź

j“``1

fεjpSj´`q

ff

.3945
3946

We deduce that3947

E

«

α``1pKpi``1´1qzi, εq E˚stipKi``1
q

«

k
ź

j“``1

fεjpSj´`´1q

ff

i``1
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

D̄i`3948

ě E

«

F pstipKi`qq
Zi``1´1

E˚stipKi` q

«

k
ź

j“``1

fεjpSj´`q

ff

α``1pKpi``1´1qzi, εq

i``1´1
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

D̄i` .3949

3950

But on the event associated with D̄i``1
we have3951

F pstipKi`qq
Zi``1´1

ě
F pstipKi`qq

F pstipKi`qq ` λ`ε`pi``1 ´ 1q
.3952

So the previous inequality continues as follows:3953

F pstipKi`qq
F pstipKi`qq ` λ`ε`pi``1 ´ 1q

ˆ3954

E˚stipKi` q

«

k
ź

j“``1

fεjpSj´`q

ff

¨ E

«

α``1pKpi``1´1qzi, εq

i``1´1
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

D̄i` .3955

3956

We bound the last term from below using Lemma 4.4.18:3957

E

«

α``1pKpi``1´1qzi, εq

i``1´1
ź

j“i``1

D̄j

ˇ

ˇ

ˇ

ˇ

Gi`

ff

D̄i` ě pα`pKpi`´1qzi, ε{p4pk ` 1qqq ´ δqhε`pstipKi`qqD̄i` .3958

By (4.50), we have3959

F pstipKi`qq
F pstipKi`qq ` λ`ε`pi``1 ` 1q

hε`pstipKi`qqE˚stipKi` q

«

k
ź

j“``1

fεjpSj´`q

ff

“ E˚stipKi` q

«

k
ź

j“`

fεjpSj´`q

ff

,3960

so the claim follows.3961
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The lemma allows us to bound P
`
Şn
j“i`1 D̄j

˘

from below by a term similar to3962

(4.51) using a backward induction argument which is of the same nature as the proof3963

of Proposition 4.4.8. This result needs to be prepared with the following definition. For3964

0 ă ε ă 1{p2k ` 2q, 0 ă η ă 1 and C ą 0, set3965

γpε, η, Cq “ γkpε, η, Cq
kpk`1q{2, γ`pε, η, Cq “ p1´ ε`q η

2Cε`{λ, ` “ 1, . . . , k. (4.68)3966

Note that these terms decrease as ε or C increase.3967

Lemma 4.4.20. For 0 ă ε ă 1{p2k ` 2q, 0 ă η ă 1 and C ą 0 there exists N “ Npε, η, Cq3968

such that, for all n ě N , ηn ă i ă i1 ă . . . ă ik ď n and 0 ă ε1 ď ε3969

fε`pSq ě γ`pε, η, Cqf
ε1

` pSq for all S P C 1 with F pSq ď C.3970

Proof. Recalling that λ`ε` “ λp1` ε`q we deduce that3971

F pSq

F pSq ` λ`ε`pi``1 ´ 1q
ą

F pSq

p1` ε`qpF pSq ` λpi``1 ´ 1qq
ą p1´ ε`q

F pSq

F pSq ` λpi``1 ´ 1q
.3972

This statement requires no bounds on F pSq or i`. Hence, it is sufficient to prove that3973

hε`pSq ě η2Cε`{λhε
1

` pSq for sufficiently large n. By Lemma 4.4.9, we have3974

hε`pSq “

ˆ

i`
i``1

˙F pSq{λ´ε`
ˆ

1`O

ˆ

1

n

˙˙

,3975

where the O-term can be chosen uniformly in ε, i`, i``1 and S for given η and C. Note that3976

hε`pSq increases as ε decreases. Therefore, it is enough to prove that for each ` P t0, . . . , k`1u3977

ˆ

i`
i``1

˙F pSq{λ´ε`

ą η2Cε`{λ

ˆ

i`
i``1

˙F pSq{λ

3978

for all S with F pSq ď C. This follows easily from the bound on F , the fact that ε ă 1{p2k`2q3979

(so that for each ` we have 1{p1´ ε`q ď 2) and each ratio satisfies η ď i`
i``1

ă 1.3980

Proposition 4.4.21. For δ ą 0, 0 ă η ă 1 and 0 ă ε ă 1{p2k ` 2q, there exists N “3981

Npδ, ε, ηq ą 0 such that, for all n ě N and ηn ă i ď i1 ă . . . ă ik ď n, with γk “3982
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γkpε, η, pd` 1qpk ` 1qfmaxq and γ “ γpε, η, pd` 1qpk ` 1qfmaxq, we have,3983

P

˜

n
č

j“i`1

D̄jpεq

¸

ěγE

«

α0

`

Kizi, ε{p4pk ` 1qqk`1
˘

E˚stipKiq

«

k
ź

j“0

fεjpSjq

ff

D̄ipε{p4pk ` 1qqk`1
q

ff

3984

´ δ
k
ÿ

`“1

E

«

i
ź̀

j“i`1

D̄jpεqE˚stipKi` q

«

ź̀

j“0

f
ε{p4pk`1qqk

k`j´` pSjq

ff

D̄ipεq

ff

. (4.69)3985

3986

Proof. By Lemma 4.4.18, we have3987

P

˜

n
č

j“i`1

D̄jpεq

¸

“ E

«

P

˜

n
č

j“ik`1

D̄jpεq
ˇ

ˇ

ˇ

ˇ

Gik

¸

ik
ź

j“i`1

D̄jpεq

ff

3988

(4.56)
ě E

«

αkpKpik´1qzi, ε{p4pk ` 1qqqE˚stipKik qrf
ε
kpS0qs

ik
ź

j“i`1

D̄jpεq

ff

3989

´ δE

«

E˚stipKik qrf
ε
kpS0qs

ik
ź

j“i`1

D̄jpεq

ff

.3990

3991

In order to apply Lemma 4.4.19 again in the first term, we may replace D̄jpεq by D̄jpε{p4pk`3992

1qqq. Moreover, by Lemma 4.4.20 and as F pS`q ď pd ` 1qpk ` 1qfmax for ` P t0, . . . , ku, we3993

may replace fεkpS0q by γkf
ε{p4pk`1qq
k pS0q for sufficiently large n. Hence, applying Lemma 4.4.193994

again after this step, we deduce that the first term in the last display is bounded from below3995

by3996

γkE

«

αk´1pKpik´1´1qzi, ε{16qE˚stipKik´1
q

”

f
ε{p4pk`1qq
k´1 pS0qf

ε{p4pk`1qq
k pS1q

ı

ik´1
ź

j“i`1

D̄jpε{p4pk ` 1qqq

ff

3997

´ δγkE

«

E˚stipKik´1
q

”

f
ε{p4pk`1qq
k´1 pS0qf

ε{p4pk`1qq
k pS1q

ı

ik´1
ź

j“i`1

D̄jpε{p4pk ` 1qqq

ff

.3998

3999

We now iterate these steps until the main term contains α0. In particular, with the4000
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leading term, at the p`` 1qth step we get an expression of the form4001

E

«

αk´`pKpik´`´1qzi, ε{p4pk ` 1qq``1
qE˚stipKik´` q

«

ź̀

j“0

f
ε{p4pk`1qq`

k`j´` pSjq

ff

ik´
ź̀

j“i`1

D̄j

`

ε{p4pk ` 1qq`
˘

ff

4002

ě

˜

ź̀

j“0

γk´j

¸

E
”

αk´p``1qpKpik´p``1q´1qzi, ε{p4pk ` 1qq``2
q4003

ˆE˚stipKik´p``1q
q

«

``1
ź

j“0

f
ε{p4pk`1qq``1

k`j´p``1q pSjq

ff

ik´p``1q
ź

j“i`1

D̄jpε{p4pk ` 1qq``1
q

ff

4004

´ δ

˜

ź̀

j“0

γk´j

¸

E

«

E˚stipKik´p``1q
q

«

``1
ź

j“0

f
ε{p4pk`1qq``1

k`j´p``1q pSjq

ff

ik´p``1q
ź

j“i`1

D̄jpε{p4pk ` 1qq``1
q

ff

.4005

4006

Now, thanks to monotonicity, when we iterate this expression, we may do the following4007

replacements in the procedure. First, for the term not involving δ, any factors of type4008

γ`pε
1, η, pd` 1qpk` 1qfmaxq with 0 ă ε1 ă ε may be bounded from below by γk. Thus, at the4009

p` ` 1qth step, we multiply a product of γ``1
k to the co-efficient of the main term, leading4010

to the co-efficient γ as defined in (4.68). Moreover, in the final product
śk

j“0 f
ε{p4pk`1qqk

j pSjq,4011

we may replace ε{p4pk ` 1qqk by ε to get a lower bound. This leads to the first term in the4012

statement of the proposition. Next, in the error term involving δ, we bound each γ` from4013

above by 1, and bound each of the factors of the form f
ε{p4pk`1qq`

k`j´` from above by f
ε{p4pk`1qqk`1

k`j´` .4014

This gives us the error term as stated in (4.69).4015

We are finally ready to prove Proposition 4.4.13. Recalling (4.47), we bound4016

E rNη,kpnqs from below by summing the lower bound stated in Proposition 4.4.21 over4017

ηn ă i ă i1 ă . . . ă ik ď n. We start with the error term. Upon dropping the indica-4018

tor variables D̄jpεq and bounding fεj from above by fj defined in (4.30) from Section 4.4.2,4019

the absolute value of the error term is bounded from above by4020

δ
ÿ

ηnăiăn

ÿ

IkPpti`1,...,nu
k q

E

«

E˚stipKiq

«

k
ź

j“0

fjpSjq

ffff

. (4.70)4021

From the proof of Corollary 4.4.6 in Section 4.4.2, we know that the double sum converges4022

after re-scaling by n. Hence, there exist C1 ą 0 and a natural number N both depending on4023
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ε, η, such that, for all n ě N , (4.70) is bounded from above by C1δn.4024

To treat the main term, assume for now that there exists a constant C2 “ C2pε, ηq ą 04025

such that, for all ηn ă i ď n, we have4026

ÿ

IkPpti`1,...,nu
k q

E˚stipKiq

«

k
ź

j“0

fεjpSjq

ff

ď C2. (4.71)4027

We shall use the following inequality: for a non-negative random variable X satisfying X ď4028

C, for some C ą 0, and indicator random variables I1, I2 we have4029

E rXs ď E rXI1I2s ` CpE r1´ I1s ` E r1´ I2sq.4030

Thanks to this inequality, the main term in the lower bound from Proposition 4.4.21 summed4031

over i ă i1 ă . . . ă ik ď n (for fixed ηn ă i ď n) can be bounded from below by4032

γ
ÿ

IkPpti`1,...,nu
k q

E

«

E˚stipKiq

«

k
ź

j“0

fεjpSjq

ffff

´C2γ
´

1´ E
”

α0

´

Kizi,
ε

4k`1

¯ı

` 1´ E
”

D̄i

´ ε

4k`1

¯ı¯

.

(4.72)4033

Let δ1 ą 0. Thanks to Lemma 4.4.15 and the fact that P
´

Gpiq
ε{p4pk`1qqk`1piq

¯

Ñ 1 as n Ñ 84034

uniformly in ηn ă i ď n, there exists a natural number N “ Npδ1, ε, ηq ą 0 such that,4035

for all n ě N , the absolute value of the second term in (4.72) is bounded from above by4036

C2γδ
1 ď C2δ

1. Collecting all bounds and using Lemma 4.4.9 concludes the proof of (4.48)4037

upon setting % “ γ. (Note that we may remove the additional F pSjq in the denominator4038

of fε`pSjq in the final statement as F pSjq is bounded by pk ` 1qpd ` 1qfmax.) Therefore, it4039

remains to establish the existence of C2 satisfying (4.71). To this end, we shall bound fεj4040

from above by fj (as defined in (4.30)). Note that if i ě 2, then 1
i´1

ď 2
ηn
. Thus, by applying4041
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Stirling’s formula and recalling that F pS`q ď pd`1qpk`1qfmax for all ` P t0, . . . , ku, we have4042

ÿ

IkPpti`1,...,nu
k q

k
ź

j“0

fjpSjq4043

ď

ˆ

1`O

ˆ

1

n

˙˙

ÿ

iăi1ă...ăikďn

k´1
ź

`“0

¨

˝

ˆ

i`
i``1

˙

F pS`q

λ`ε

¨
F pS`q

λ´εpi``1 ´ 1q

˛

‚

ˆ

ik
n

˙

F pSkq

λ`ε

4044

ď
2
śk´1

`“0 F pS`q

λ´εη

ˆ

1`O

ˆ

1

n

˙˙

ˆ4045

1

n

ÿ

ηnăi0ă...ăik´1ďn

k´2
ź

`“0

¨

˝

ˆ

i`
i``1

˙

F pS``1q

λ`ε

¨
1

λ´εpi``1 ´ 1q

˛

‚

ˆ

ik´1

n

˙

F pSkq

λ`ε

,4046

4047

where the O-term depends only on η. From Corollary 4.4.4 (applied with k ´ 1 instead of4048

k) it follows that the right hand side is uniformly bounded for any ε and η.4049

Proofs of Additional Lemmas used to prove Proposition 4.4.134050

We conclude the section with the proofs of Lemmas 4.4.15 and 4.4.16.4051

Proof of Lemma 4.4.15. Let i P N and X P Cw contain a vertex with label i and at most d4052

active faces containing i, where each pd ´ 1q-face containing i has fitness at most fmax. In4053

the random dynamical process Kj, j ě 0 initiated with complex X , at time j ě 1, to each4054

face σ P Kpd´1q

j , we can associate a unique ancestral pd´1q-dimensional face in X . (Formally,4055

the ancestral face of a face in X is the face itself. The ancestral face of any other face σ4056

is defined recursively as the ancestral face of the face which was subdivided when σ was4057

formed.) Let Kj Ú i Ď Kj be the sub-complex of faces of Kj whose ancestral face does not lie4058

in stipX q. Note that Kj Ú i Ď Kjzi and that this inclusion is typically strict due to migration of4059

faces to the outside of the star at times of insertion in the star. For j ě 1, let ςj be j-th time4060

the face chosen in the construction of the simplicial complex has its ancestral face in Xzi.4061

Set ς0 “ 0. Note that ςj ě j and that ςj ´ j is non-decreasing in j. The crucial observation4062

is that the sequence Kςj Ú i, j ě 0 under PX is distributed as the sequence Kj, j ě 0 under4063
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PXzi upon disregarding vertex labels which are irrelevant here. Formally, this follows from4064

Kς0 Ú i “ Xzi under PX and the fact that Kςj Ú i, j ě 0 is Markovian with the same transition rule4065

as Kj, j ě 0. For an integer K ą 0, on the event ς` ď ``K and for any initial configuration4066

X as described at the beginning of the proof, we have |F pK`q ´ F pKς` Ú iq| ď p2d` 1qKfmax.4067

Hence, for all n sufficiently large, depending on ε, η and K,4068

E

«

PKizi

˜

n
č

j“i`1

Gεpj ´ i; jqu

¸ff

ě E

«

PKi

˜

n
č

j“i`1

t|F pKςj´i Ú iq ´ λj| ă ελju

¸

¨ 1|ςn´i´pn´iq|ďK

ff

4069

ě E

«

PKi

˜

n`K
č

j“i`1

Gε{2pj ´ i; jq

¸ff

4070

´ E rPKip|ςn´i ´ pn´ iq| ą Kqs4071

ě E

«

PKi

˜

8
č

j“i`1

Gε{2pjq

¸ff

´ E rPKip|ςn´i ´ pn´ iq| ą Kqs .4072

4073

By Proposition 4.1.2, for all n sufficiently large, the first term in the last display is at least4074

1 ´ δ{2 for all ηn ă i ď n. Further, we can choose K large enough, such that the absolute4075

value of the second term is bounded from above by δ{2 for all ηn ă i ď n and all n sufficiently4076

large. To see this, note that Pxp|ςn´n| ě Kq is the probability that the number of faces with4077

ancestral face in stipxq chosen to be subdivided up to time n exceeds K. Let 1 ď τ1 ă τ2 ă4078

¨ ¨ ¨ be the instances, when such faces are chosen. Then, the sought after quantity equals4079

PxpτK ď nq. Note that τK can be bounded from below stochastically by X1 ` ¨ ¨ ¨ `XK for4080

independent summands, where X` follows the geometric distribution with success parameter4081

minppd ` 1q`fmax{F pxq, 1q, which implies that E rX1 ` ¨ ¨ ¨ `XKs ě F pxq logK
pd`1qfmax

. Thus, if4082

F pxq ě ληn{2, then, for a given ε1 ą 0, for any K large enough, depending on η, and all n4083

sufficiently large, depending on ε1, η and K, we have PxpτK ď nq ď ε1 for all n ě 1. This4084

follows from a straightforward application of Chebychev’s inequality, whose details we omit.4085

The fact that F pKiq ě ληn{2 with high probability for sufficiently large n, depending on η,4086

concludes the proof of the lemma.4087

Proof of Lemma 4.4.16. The proof is very similar to the previous. Let KjÓX be the sub-4088
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complex of Kj of faces whose ancestral face lies in X . For j ě 1, let ςXj be the jth time a4089

face with ancestral face in X is subdivided. Set ςX0 “ 0. As before, we have ςXj ě j and4090

ςXj ´ j is non-decreasing. Define KjÓY and ςYj analogously. Thanks to (ii), under PX , the4091

sequence KςYj ÓY , j ě 0 is distributed as KςXj ÓX , j ě 0 under PY . Thus, it is enough to show4092

that, under the conditions (i) - (iv), for sufficiently large n, we have4093

PY

˜

m
č

j“u`1

Gε2pj ´ u, jq

¸

´ ε3{2 ď PY

˜

m
č

j“u`1

t|F pKςXj´uÓX q ´ λj| ă 3ε2j{2u

¸

4094

and4095

PX

˜

m
č

j“u`1

t|F pKςYj´uÓYq ´ λj| ă 3ε2j{2u

¸

ď PX

˜

m
č

j“u`1

G2ε2pj ´ u, jq

¸

` ε3{2.4096

We only show the second statement, as the first can be proved by similar arguments. Note4097

that, for any natural number K, we have4098

PX

˜

m
č

j“u`1

t|F pKςYj´uÓYq ´ λj| ă 3ε2λj{2u

¸

4099

ď

K
ÿ

p“0

PX

˜

m
č

j“u`1

t|F pKςYj´uÓYq ´ λj| ă 3ε2λj{2, ς
Y
n´u “ n´ u` pu

¸

4100

` PX p|ς
Y
n´u ´ pn´ uq| ě Kq.4101

4102

On ςYn´u “ n´ u` p, 0 ď p ď K, we have, using (i) and (iii),4103

|F pKςYj´uÓYq ´ F pKj´uq| ď Kpd` 1qfmax ` F
`

X pd´1q4Ypd´1q
˘

ď Kpd` 1qfmax ` C1C2.4104

Here, F
`

X pd´1q4Ypd´1q
˘

denotes the sum of all finesses of faces in X pd´1q4Ypd´1q. Thus, for4105

all n sufficiently large, depending on η, ε2 and K, we can bound the right hand side of the4106

last display from above by4107

K
ÿ

p“0

PX

˜

m`p
č

j“u`1

G2ε2pj ´ u, jq X tς
Y
n´u “ n´ u` pu

¸

` PX p|ς
Y
n´u ´ pn´ iq| ě Kq4108

ď PX

˜

m
č

j“u`1

G2ε2pj ´ u, jq

¸

` PX p|ς
Y
n´u ´ pn´ uq| ě Kq.4109

4110
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Now, the same arguments relying on a stochastic bound involving sums of independent4111

geometric random variables used in the previous proof show that the second summand can4112

be made smaller than ε3{2 for sufficiently large, but fixed, K and all n sufficiently large,4113

depending on η, ε1, ε3, C1 and C2. Here, one uses (iv) and the fact that F pX pd´1q4Ypd´1qq ď4114

C1C2 to bound the success probabilities of the geometric random variables suitably.4115

215



Bibliography4116

[1] M.E. Agistein and A.A. Migdal, Simulations of four-dimensional simplicial quantum4117

gravity as dynamical triangulation, Modern Physics Letters A 07 (1992), no. 12, 1039–4118

1061.4119

[2] Marie Albenque and Jean-François Marckert, Some families of increasing planar maps,4120

Electron. J. Probab. 13 (2008), no. 56, 1624–1671. MR 24388174121

[3] David Aldous, The continuum random tree. III, Ann. Probab. 21 (1993), no. 1, 248–289.4122

MR 12072264123

[4] José S. Andrade, Hans J. Herrmann, Roberto F. S. Andrade, and Luciano R. da Silva,4124

Apollonian networks: Simultaneously scale-free, small world, euclidean, space filling,4125

and with matching graphs, Phys. Rev. Lett. 94 (2005), 018702.4126

[5] Krishna B. Athreya and Samuel Karlin, Limit theorems for the split times of branching4127

processes, J. Math. Mech. 17 (1967), 257–277. MR 02165924128

[6] , Embedding of urn schemes into continuous time Markov branching processes4129

and related limit theorems, Ann. Math. Statist. 39 (1968), 1801–1817. MR 2324554130

[7] Antar Bandyopadhyay and Debleena Thacker, A new approach to Pólya urn schemes4131

and its infinite color generalization, arXiv preprint arXiv:1606.05317, 2016.4132

216



BIBLIOGRAPHY

[8] Albert-László Barabási and Réka Albert, Emergence of scaling in random networks,4133

Science 286 (1999), no. 5439, 509–512. MR 20916344134

[9] Shankar Bhamidi, Universal techniques to analyze preferential attachment trees: global4135

and local analysis, 2007, Preprint available at https://pdfs.semanticscholar.org/e7fb/4136

8c999ff62a5f080e4c329a7a450f41fb1528.pdf.4137

[10] Ginestra Bianconi, Growing Cayley trees described by a Fermi distribution, Phys. Rev.4138

E 66 (2002), 036116.4139

[11] Ginestra Bianconi and Albert-László Barabási, Bose-Einstein condensation in complex4140

networks., Phys. Rev. Lett. 86 (2001), 5632–5.4141

[12] Ginestra Bianconi and Christoph Rahmede, Complex Quantum Network Manifolds in4142

Dimension d ą 2 are Scale-Free, Sci. Rep. 5 (2015), 13979.4143

[13] Ginestra Bianconi and Christoph Rahmede, Network geometry with flavor: from com-4144

plexity to quantum geometry, Phys. Rev. E 93 (2016), 032315. MR 36577914145

[14] , Emergent Hyperbolic Network Geometry, Sci. Rep. 7 (2017), 41974.4146

[15] Ginestra Bianconi, Christoph Rahmede, and Zhihao Wu, Complex quantum network4147

geometries: Evolution and phase transitions, Phys. Rev. E 92 (2015), 022815.4148

[16] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Complex networks:4149

Structure and dynamics, Physics Reports 424 (2006), no. 4, 175 – 308.4150

[17] V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. MR 22676554151

[18] Béla Bollobás and Oliver Riordan, Shortest paths and load scaling in scale-free trees.,4152

Phys. Rev. E (3) 69 (2004), 036114.4153

217

https://pdfs.semanticscholar.org/e7fb/8c999ff62a5f080e4c329a7a450f41fb1528.pdf
https://pdfs.semanticscholar.org/e7fb/8c999ff62a5f080e4c329a7a450f41fb1528.pdf
https://pdfs.semanticscholar.org/e7fb/8c999ff62a5f080e4c329a7a450f41fb1528.pdf


BIBLIOGRAPHY

[19] Béla Bollobás, Oliver Riordan, Joel Spencer, and Gábor Tusnády, The degree sequence4154

of a scale-free random graph process, Random Structures Algorithms 18 (2001), no. 3,4155

279–290. MR 18242774156

[20] Christian Borgs, Jennifer Chayes, Constantinos Daskalakis, and Sebastien Roch, First to4157

market is not everything: an analysis of preferential attachment with fitness, STOC’07—4158

Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New4159

York, 2007, pp. 135–144. MR 24024374160

[21] K. A. Borovkov and V. A. Vatutin, On the asymptotic behaviour of random recursive4161

trees in random environments, Adv. in Appl. Probab. 38 (2006), no. 4, 1047–1070. MR4162

22856934163

[22] Gunnar Carlsson, Topology and data, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 2,4164

255–308. MR 24764144165

[23] Nicolas Champagnat and Denis Villemonais, General criteria for the study of quasi-4166

stationarity, arXiv preprint arXiv:1712.08092, 2017.4167

[24] Wen-Chin Chen and Wen-Chun Ni, Internal path length of the binary representation of4168

heap-ordered trees, Inform. Process. Lett. 51 (1994), no. 3, 129 – 132.4169

[25] Owen T. Courtney and Ginestra Bianconi, Weighted growing simplicial complexes, Phys.4170

Rev. E 95 (2017), 062301.4171

[26] Diamantino C. da Silva, Ginestra Bianconi, Rui A. da Costa, Sergey N. Dorogovtsev,4172

and José F. F. Mendes, Complex network view of evolving manifolds, Phys. Rev. E 974173

(2018), 032316.4174

[27] Derek J. de Solla Price, Networks of scientific papers, Science 149 (1965), no. 3683,4175

510–515.4176

218



BIBLIOGRAPHY

[28] Steffen Dereich, Preferential attachment with fitness: unfolding the condensate, Elec-4177

tron. J. Probab. 21 (2016), Paper No. 3, 38. MR 34853454178

[29] Steffen Dereich, Cécile Mailler, and Peter Mörters, Nonextensive condensation in re-4179

inforced branching processes, Ann. Appl. Probab. 27 (2017), no. 4, 2539–2568. MR4180

36935334181

[30] Steffen Dereich and Peter Mörters, Random networks with sublinear preferential at-4182

tachment: degree evolutions, Electron. J. Probab. 14 (2009), no. 43, 1222–1267. MR4183

25112834184

[31] Steffen Dereich and Marcel Ortgiese, Robust analysis of preferential attachment models4185

with fitness, Combin. Probab. Comput. 23 (2014), no. 3, 386–411. MR 31894184186

[32] Jonathan P. K. Doye and Claire P. Massen, Self-similar disk packings as model spatial4187

scale-free networks, Phys. Rev. E (3) 71 (2005), no. 1, 016128, 12. MR 21393254188

[33] Michael Drmota, Random trees: An interplay between combinatorics and probability,4189

Mathematics and Statistics, Springer Vienna, 2009.4190

[34] G. Ergün and G.J. Rodgers, Growing random networks with fitness, Phys. A. 303 (2002),4191

no. 1, 261 – 272.4192

[35] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos, On power-law relationships4193

of the internet topology, Proceedings of the Conference on Applications, Technologies,4194

Architectures, and Protocols for Computer Communication (New York, NY, USA),4195

SIGCOMM ’99, Association for Computing Machinery, 1999, p. 251–262.4196

[36] Nikolaos Fountoulakis and Tejas Iyer, Condensation phenomena in preferential attach-4197

ment trees with neighbourhood influence, arxiv preprint arxiv:2101.02734, 2021.4198

[37] Nikolaos Fountoulakis, Tejas Iyer, Cécile Mailler, and Henning Sulzbach, Dynamical4199

models for random simplicial complexes, arXiv preprint arXiv:1910.12715, 2019.4200

219



BIBLIOGRAPHY

[38] Nic Freeman and Jonathan Jordan, Extensive condensation in a model of preferential4201

attachment with fitness, Electron. J. Probab. 25 (2020), Paper No. 68, 42 pp. MR4202

41157374203

[39] Alan Frieze and Charalampos E. Tsourakakis, On certain properties of random Apollo-4204

nian networks, Algorithms and models for the web graph, Lecture Notes in Comput.4205

Sci., vol. 7323, Springer, Heidelberg, 2012, pp. 93–112. MR 29837794206

[40] John Haslegrave, Jonathan Jordan, and Mark Yarrow, Condensation in preferential4207

attachment models with location-based choice, Random Structures Algorithms 56 (2020),4208

no. 3, 775–795. MR 40841894209

[41] Cecilia Holmgren and Svante Janson, Fringe trees, Crump-Mode-Jagers branching pro-4210

cesses and m-ary search trees, Probab. Surv. 14 (2017), 53–154. MR 36265854211

[42] Matthew Hurst, Data mining: Mapping the blogosphere, https://datamining.typepad.4212

com/gallery/blog-map-gallery.htm, 2006, Accessed: 04-04-2019.4213

[43] Tejas Iyer, Degree distributions in recursive trees with fitnesses, arxiv preprint4214

arxiv:2005.02197, 2020.4215

[44] Jean Jacod and Albert N. Shiryaev, Limit theorems for stochastic processes, second ed.,4216

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-4217

matical Sciences], vol. 288, Springer-Verlag, Berlin, 2003. MR 19438774218

[45] Svante Janson, Functional limit theorems for multitype branching processes and gener-4219

alized Pólya urns, Stochastic Process. Appl. 110 (2004), no. 2, 177–245. MR 20409664220

[46] H. Jeong, S. P. Mason, A. L. Barabási, and Z. N. Oltvai, Lethality and centrality in4221

protein networks, Nature 411 (2001), no. 6833, 41–42.4222

[47] Jonathan Jordan, Preferential attachment graphs with co-existing types of different fit-4223

nesses, J. Appl. Probab. 55 (2018), no. 4, 1211–1227. MR 38999374224

220

https://datamining.typepad.com/gallery/blog-map-gallery.htm
https://datamining.typepad.com/gallery/blog-map-gallery.htm
https://datamining.typepad.com/gallery/blog-map-gallery.htm


BIBLIOGRAPHY

[48] Jonathan Jordan and Andrew R. Wade, Phase transitions for random geometric prefer-4225

ential attachment graphs, Adv. in Appl. Probab. 47 (2015), no. 2, 565–588. MR 33603904226

[49] Olav Kallenberg, Foundations of modern probability, second ed., Springer, New York,4227

2002.4228

[50] , Random measures, theory and applications, Springer, 2017. MR 36423254229

[51] J. F. C. Kingman, A simple model for the balance between selection and mutation, J.4230

Appl. Probability 15 (1978), no. 1, 1–12. MR 4652724231

[52] István Kolossváry, Júlia Komjáthy, and Lajos Vágó, Degrees and distances in random4232

and evolving Apollonian networks, Adv. in Appl. Probab. 48 (2016), no. 3, 865–902.4233

MR 35688964234

[53] Bas Lodewijks and Marcel Ortgiese, The maximal degree in random recursive graphs4235

with random weights, arxiv preprint arxiv:2007.05438, 2020.4236

[54] , A phase transition for preferential attachment models with additive fitness,4237

arXiv preprint arXiv:2002.12863, 2020.4238

[55] Hosam M. Mahmoud, Distances in random plane-oriented recursive trees, J. Comput.4239

Appl. Math. 41 (1992), no. 1-2, 237–245, Asymptotic methods in analysis and combi-4240

natorics. MR 11817234241

[56] , Evolution of random search trees, Wiley-Interscience series in Discrete Mathe-4242

matics and Optimization, Wiley, 1992.4243

[57] Hosam M. Mahmoud, R. T. Smythe, and Jerzy Szymański, On the structure of ran-4244

dom plane-oriented recursive trees and their branches, Random Structures Algorithms4245

4 (1993), no. 2, 151–176. MR 12066744246

221



BIBLIOGRAPHY

[58] Cécile Mailler and Jean-François Marckert, Measure-valued Pólya urn processes, Elec-4247

tron. J. Probab. 22 (2017), Paper No. 26, 33. MR 36298704248

[59] Cécile Mailler and Denis Villemonais, Stochastic approximation on non-compact measure4249

spaces and application to measure-valued Pólya processes, Ann. Appl. Probab. 20 (2020),4250

no. 5, 2393–2438. MR 41495324251

[60] Stanley Milgram, The small-world problem, Psychology Today 1 (1967), no. 1, 61–67.4252

[61] A. Yu. Mitrophanov, Stability and exponential convergence of continuous-time Markov4253

chains, J. Appl. Probab. 40 (2003), no. 4, 970–979. MR 20126804254

[62] T. F. Móri, On random trees, Studia Sci. Math. Hungar. 39 (2002), no. 1-2, 143–155.4255

MR 19091534256

[63] Hwa Sung Na and Anatol Rapoport, Distribution of nodes of a tree by degree, Math.4257

Biosci. 6 (1970), 313–329. MR 2789854258

[64] D. Najock and C. C. Heyde, On the number of terminal vertices in certain random trees4259

with an application to stemma construction in philology, J. Appl. Probab. 19 (1982),4260

no. 3, 675–680. MR 6648524261

[65] Olle Nerman, On the convergence of supercritical general (C-M-J) branching processes,4262

Z. Wahrsch. Verw. Gebiete 57 (1981), no. 3, 365–395. MR 6295324263

[66] M. E. J. Newman, The structure and function of complex networks, SIAM Review 454264

(2003), no. 2, 167–256.4265

[67] Mark Newman, Networks, Oxford University Press, 2010.4266

[68] Roberto Oliveira and Joel Spencer, Connectivity transitions in networks with super-4267

linear preferential attachment, Internet Math. 2 (2005), no. 2, 121–163. MR 21931574268

222



BIBLIOGRAPHY

[69] Michel Pain and Delphin Sénizergues, Correction terms for the height of weighted re-4269

cursive trees, arXiv preprint arXiv:2101.01156, 2021.4270

[70] David Pollard, Convergence of stochastic processes, Springer Series in Statistics,4271

Springer-Verlag, New York, 1984. MR 7629844272

[71] JF Rual, K Venkatesan, T Hao, T Hirozane-Kishikawa, A Dricot, N Li, GF Berriz,4273

FD Gibbons, M Dreze, N Ayivi-Guedehoussou, N Klitgord, C Simon, M Boxem, S Mil-4274

stein, J Rosenberg, DS Goldberg, LV Zhang, SL Wong, G Franklin, S Li, JS Albala,4275

J Lim, C Fraughton, E Llamosas, S Cevik, C Bex, P Lamesch, RS Sikorski, J Vanden-4276

haute, HY Zoghbi, A Smolyar, S Bosak, R Sequerra, L Doucette-Stamm, ME Cusick,4277

DE Hill, FP Roth, and M. Vidal, Towards a proteome-scale map of the human protein-4278

protein interaction network, Nature 437 (2005), no. 7062, 1173–1178.4279

[72] Anna Rudas, Bálint Tóth, and Benedek Valkó, Random trees and general branching4280

processes, Random Structures Algorithms 31 (2007), no. 2, 186–202. MR 23437184281

[73] Delphin Sénizergues, Geometry of weighted recursive and affine preferential attachment4282

trees, arXiv preprint arXiv:1904.07115, 2019.4283

[74] Herbert A. Simon, On a class of skew distribution functions, Biometrika 42 (1955),4284

425–440. MR 730854285

[75] Gábor Szabó, Mikko Alava, and János Kertész, Shortest paths and load scaling in scale-4286

free trees, Phys. Rev. E (3) 66 (2002), 026101.4287

[76] Jerzy Szymański, On a nonuniform random recursive tree, Random graphs ’85 (Poznań,4288

1985), North-Holland Math. Stud., vol. 144, North-Holland, Amsterdam, 1987, pp. 297–4289

306. MR 9304974290

223



BIBLIOGRAPHY

[77] Remco van der Hofstad, Random graphs and complex networks. Vol. 1, Cambridge4291

Series in Statistical and Probabilistic Mathematics, [43], Cambridge University Press,4292

Cambridge, 2017. MR 36173644293

[78] Remco van Der Hofstad, Random Graphs and Complex Networks Volume 2, 2020,4294

Preprint available at https://www.win.tue.nl/~rhofstad/NotesRGCNII.pdf.4295

[79] G. Udny Yule, A mathematical theory of evolution, based on the conclusions of Dr. J.4296

C. Willis, F.R.S., Philosophical Transactions of the Royal Society of London. Series B,4297

Containing Papers of a Biological Character 213 (1925), 21–87.4298

[80] Z. Zhang, L. Rong, and F. Comellias, High-dimensional random apollonian networks,4299

Physica A 364 (2006), 610–618.4300

[81] Z. Zhang, L. Rong, and S. Zhou, Evolving apollonian networks with small-world scale-4301

free topologies, Phys. Rev. E 74 (2006), 046105.4302

224

https://www.win.tue.nl/~rhofstad/NotesRGCNII.pdf

	Title Page
	Abstract
	Abstract

	Acknowledgments
	Statement of Originality
	1 Introduction
	1.1 Introduction to Complex Networks
	1.1.1 Illustrative Examples of Complex Networks

	1.2 Generative Models of Evolving Complex Networks
	1.2.1 Trees, Graphs and Simplicial Complexes
	1.2.2 Preferential Attachment and other Recursive Models
	1.2.3 Inhomogeneous Models
	1.2.4 Higher Dimensional Preferential Attachment Mechanisms

	1.3 Our Models: Evolving Inhomogeneous Random Structures
	1.3.1 Notation Applied Throughout the Thesis
	1.3.2 Generalised Recursive Trees with Fitness
	1.3.3 Preferential Attachment Trees with Neighbourhood Influence
	1.3.4 Dynamical Models for Random Simplicial Complexes

	1.4 Important Quantities of Interest in this Thesis
	1.4.1 Degree Distributions
	1.4.2 Edge Distributions and Condensation

	1.5 Overview of Thesis

	2 Generalised Recursive Trees with Fitness
	2.1 Introduction
	2.1.1 Open Problems
	2.1.2 Important Technical Conditions and Overview of Results

	2.2 Analysis of  assuming 
	2.2.1 Description of Continuous Time Embedding
	2.2.2 Crump-Mode-Jagers Branching Processes
	2.2.3 A Strong Law for the Partition Function
	2.2.4 Examples of Applications of Theorem 2.2.1

	2.3 Generalised Preferential Attachment Trees with Fitness
	2.3.1 When the -tree satisfies Condition 
	2.3.2 A Condensation Phenomenon when Condition  Fails
	2.3.3 Degenerate Degrees when Condition  Fails

	2.4 Analysis of  assuming 
	2.4.1 Convergence in probability of  under 
	2.4.2 Summation Arguments
	2.4.3 Upper bound for the Mean of 
	2.4.4 Deducing Convergence of the Mean of 
	2.4.5 Second Moment Calculations


	3 Preferential Attachment Trees with Neighbourhood Influence
	3.1 Introduction
	3.1.1 Statements of Main Results
	3.1.2 An Informal Discussion of the Main Results
	3.1.3 Overview and Techniques

	3.2 The Non-Condensation Regime
	3.2.1 A Brief Introduction to Generalised Pólya Urns
	3.2.2 Analysing the -tree by Coupling with Urn E
	3.2.3 Analysing the -tree by Coupling with Urn D

	3.3 The Condensation Regime
	3.3.1 Proof of Theorem 3.1.7
	3.3.2 Proof of Corollary 3.1.8

	3.4 A Generalised Geometric Series
	3.4.1 Proof of Lemma 3.1.4


	4 Dynamical Models for Random Simplicial Complexes
	4.1 Introduction
	4.1.1 Description of the Models
	4.1.2 Some More Notation Specific to Chapter 4
	4.1.3 Statements of Main Results of Chapter 4
	4.1.4 The companion star process
	4.1.5 Main results, Part II: Convergence of the Degree Distribution

	4.2 Discussion and Examples
	4.2.1 Constant fitness function
	4.2.2 Weighted Random Recursive Trees
	4.2.3 Tails of the Distribution

	4.3 Convergence of the empirical distribution
	4.3.1 Proof of Theorem 4.3.1 Assuming Hypothesis H1
	4.3.2 Proof of Theorem 4.3.1 Assuming Hypothesis H2
	4.3.3 The Star Process
	4.3.4 Proofs of Additional Lemmas used to prove Theorem 4.3.1
	4.3.5 Proof of Lemma 4.3.6
	4.3.6 Proof of Lemma 4.3.7

	4.4 The degree profile
	4.4.1 Technical Lemmas used in the proof of Theorem 4.4.1
	4.4.2 Upper Bound for the Mean of 
	4.4.3 Stochastic convergence: second moment calculations
	4.4.4 Lower bound for the Mean of 



	References

