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ABSTRACT

We introduce general models of evolving, inhomogeneous random structures, where in each
of the models either one or several nodes arrive at a time, and are equipped with random,
independent weights. In the two evolving tree models we study, an existing vertex is chosen
at each time-step with probability proportional to its fitness function, which is a function
of its weight, and possibly the weights of its neighbours, and the newly arriving node(s)
connect to it. The third models, with parameter d consist of evolving sequences of (d — 1)-
dimensional simplicial complexes. At each time-step a (d — 1)-simplex is sampled with
probability proportional to a function of the weights of the vertices the (d — 1)-simplex
contains. In both variants, Model A and Model B, for each subset S of size (d — 2), we add
the simplex consisting of S and the single new-coming vertex. Additionally, in Model B, the

selected simplex is removed from the simplicial complex.

In each of the models we study the limiting proportion of vertices in the structure
with a given degree, showing that, in general, this limit exists in probability, and behaves
like a type of generalised geometric distribution. In the evolving tree models, we actually
study a more general quantity: the empirical measures associated with the number of vertices
with a given degree and weight. With regards to this quantity, when normalised by the size
of the network, we also show that the limit exists and belongs to a certain universal class.
Depending on various assumptions, we prove that for any measurable set, the measure of that
set converges either almost surely or in probability to its measure under this deterministic

limit.
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In the evolving tree models, we also study another quantity: the empirical measure
corresponding to the proportion of edges in the structure with endpoint having a given
weight. We show that, when normalised by the number of edges in the tree, under certain
assumptions, this quantity also converges to a deterministic limiting measure, in the sense
that for any measurable set, the measure of that set converges either almost surely. However,
when the trees take certain forms, which we call the GPAF-tree, or the PANI-tree, we
show that interesting, non-trivial behaviour can emerge when these assumptions fail. In
particular, with regards to the GPAF-tree, we show that this model can exhibit condensation
where a positive proportion of edges accumulate around vertices with weight that maximises
the reinforcement of their fitness, or, more drastically, have a degenerate limiting degree
distribution where the entire proportion of edges accumulate around these vertices. We also
show that the condensation phenomenon extends to the more general PANI-tree model. As
we will show, the latter two models have limiting distribution of degrees that behaves like
an ‘averaged’ power law, which may be of interest when considering them as toy models for

the evolution of complex networks.
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Is that which was the beginning
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Chapter One

Introduction

This chapter is an important foundational chapter in the reading of this thesis. In Sec-
tion 1.1, we start with some motivation behind the areas of study this thesis concerns,
namely, the probabilistic analysis of evolving inhomogeneous structures inspired by complex
networks found in many applications. This section will be a rather gentle reading, and in
Section 1.1.1 we include a number of pictures as illustrative examples. Section 1.2 may be
regarded as a general review of the mathematical, and some of the physics literature related
to this area. In Section 1.2, we start with some useful definitions in Section 1.2.1, review
the well known preferential attachment and other recursive models in Section 1.2.2, review
some evolving inhomogeneous models in Section 1.2.3 and, finally, some ‘higher dimensional’
models in Section 1.2.4. Then, in Section 1.3, we describe the models we introduce in this
thesis, with helpful illustrations. In Section 1.3.1, we introduce some notation used through-
out the thesis, the model of generalised recursive trees with fitnesses in Section 1.3.2, the
model of preferential attachment with neighbourhood influence in Section 1.3.3 and finally,
the dynamical models of random simplicial complexes in Section 1.3.4. Next, in Section 1.4
we describe the major quantities of interest in this thesis, namely, degree distributions in
Section 1.4.1 and edge distributions in Section 1.4.2. Finally, in Section 2.1.2, we provide an

general overview of the results of this thesis, stated and proved in the subsequent chapters.
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Introduction

In general, in this thesis, we will assume the reader has a good understanding of
probability theory, including, for example, theory related to ‘couplings’, Markov chains and
martingales, and a rudimentary, minimal understanding of graph theory. This chapter, and
especially Section 1.1, however, are quite mild. The subsequent chapters in this thesis are
ordered by increasing difficulty, and the interested reader may wish to skip some of the more

technical arguments in Chapter 4 upon first reading.

1.1 Introduction to Complex Networks

Networks are ubiquitous structures, found almost everywhere in nature and society. When
used to model complex systems, networks find applications in areas as diverse as computer
science, biology and sociology. Advances in science over the last 30 years have led to an
increased understanding of the properties of these networks, see, for example, [66, 77, 16, 67].
These advances have shown that while these networks may come from diverse settings, they
possess typical, non-trivial features. In particular, they are generally large, of the order
of billions of nodes; yet sparse, which means that the number of links in the network is
at most the same order of magnitude as the size of the network. They are also dynamic,
which refers to the fact that the nodes and links in a network are constantly evolving. In
addition, networks are known to exhibit a small world phenomenon. This phenomenon, first
popularised by Milgram in [60], refers to the fact that, despite the large size of the network
and the fact that it is sparse, the typical distance between nodes is generally very ‘small’.
Finally, these networks are known to display scale-free degree distributions. The degree of
a node is the number of links incident to it, and this latter property refers to the fact that
the proportion of nodes of degree k£ in the network tends to scale like k=% for some o > 0;
often with o between 2 and 3. This latter property means that, if one plots the logarithm of

number of nodes against the logarithm of the degree, one obtains a linear plot, as illustrated
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in Figure 1.1 below. Indeed, if N, denotes the number of nodes with degree k, then if
N, ~ k™,

log N, ~ —alogk,
which results in a linear relationship.

Scale-Free Degree Distributions

10000 ¢ . e : —
i "981205.0ut" <
exp(8.11393) * x ** ( -2.20288 )
1000 F -:
100 F :
10 | E
1 X L L | L & L
1 10 100

Figure 1.1: This plot, from a well known paper [35], is a log-log plot of
number of nodes against their degree in a sub-network of the internet
known as an ‘autonomous system’. The data seems to indicate a power

law relationship.
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26 1.1.1 Illustrative Examples of Complex Networks

217 Below are some illustrative examples of complex networks. The first example relates to the

218 ‘blogosphere’, consisting of nodes from the internet corresponding to ‘blogs’.

The Blogosphere

Figure 1.2: This illustration shows the links in the network associated with
the blogosphere, where two nodes, associated with blogs, are linked one
blog refers to the other. Taken from https://datamining.typepad.com/

gallery/blog-map-gallery.htm - [42].
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Our next examples are ‘protein-protein interaction’ network, which are common net-

works found in biological applications. In these networks, the nodes represent proteins and

two nodes are connected by a link if their respective proteins take part in a common chemical

reaction.

Protein-Protein Interaction Network: Yeast Cell

Figure 1.3: This illustration shows the nodes and links in the protein-

protein interaction network associated with a yeast cell. Taken from [46].
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Protein-Protein Interaction Network: Human Body

Figure 1.4: This illustration shows the nodes and links in the protein-
protein interaction network associated with the human body. Taken

from [71].

1.2 Generative Models of Evolving Complex Networks

There are a number of existing models in the literature that aim to generate networks with
similar properties to the complex networks described in the previous section. The benefit

of these models is that they offer insights into the possible mechanisms that lead to the
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Introduction

emergence of some of the particular features associated with complex networks, which may
in turn yield a deeper understanding of the way these networks behave. In this section
we describe some of these models and some of the mathematical results associated with
them. First, however, we provide a brief overview of definitions related to trees, graphs and

simplicial complexes, as these structures will be the main object of study in this thesis.

1.2.1 Trees, Graphs and Simplicial Complexes

We first recall the definitions of graphs and directed graphs.

Definition 1.2.1. A graph G = (V, E) is an ordered pair, where V' is a finite set of vertices,
and E is a finite set of pairs {v,v'} € V. A directed graph, or digraph D is an ordered pair
(V, A), where V is a finite set of vertices and A is a set of directed edges or arcs consisting

of ordered pairs of vertices in V.

Simplicial complexes are defined somewhat similarly:

Definition 1.2.2. An abstract simplicial complex K = (V| F'), where V is a finite set of
vertices and F' is a family of subsets of V', called faces, that is downwards closed, which
means that for any o € F, if ' < o then o' € F. A vertex set V together with an arbitrary
family F may be turned into a simplicial complex in the natural way by taking the downwards

closure, that is, adding the minimal number of subsets to F' to make I downwards closed.

Often, to simplify notation with graphs (or digraphs), we simply write G for a graph
(V, E), and to specify a particular edge, we write e € GG rather than e € . We apply a similar
convention with simplicial complexes, so that, to specify a face ¢ in a simplicial complex, we
write o € K. Note also that there is a natural simplicial complex obtained from a graph, by
choosing the set of faces to be the downwards closure of the set of edges corresponding to

the graph.



250

251

252

253

254

256

257

258

259

260

261

Introduction

Definition 1.2.3. Given a face o in a simplicial complex IC, we say o has dimension s if
it has cardinality s + 1. We also call it an s-face or an s-simplex. For s € Nu {0,—1}, we
denote by KK) the subset of IC consisting of all its s-faces. The dimension of K is defined to

be the mazimum s such that K is non-empty. If K = @ we say it has dimension —1.

Just as one often interprets, or visualises, a graph geometrically as a collection of
‘dots’, representing vertices, connected by ‘lines’ representing edges, it is often useful to
identify simplicial complexes with their geometric realisation, which means that we view a
d-face as the convex hull of d + 1 points in R?. Thus, a O-face may be interpreted as a point,
a 1-face as a line, a 2-face as a triangle and a 3-face as a tetrahedron. This is also the reason

for the use of the term ‘dimension’.

Simplices in Dimensions 0, 1, 2 and 3.

Figure 1.5: This illustration shows how one may interpret the faces of

dimension 0, 1, 2 and 3 in a simplicial complex.

Finally, we recall the important concepts of neighbourhood and degree.

Definition 1.2.4. Given a vertex v in a graph G, the neighbourhood of v in G is the set

22 N(v,G) :={v € G:{v,v'} € G}. Likewise, if D is a directed graph, given a vertex v € D,
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the out-neighbourhood of v in D is the set N (v, D) := {v' € D : (v,v') € D}, and similarly
the in-neighbourhood of v in D is the set N~ (v, D) := {v' € D : (v',v) € D}. Finally, the
s-neighbourhood of a vertex v in a simplicial complex K is the set N©®(v,K) := {o € K :
ou {v}e KDY,

Thus, the 0-neighbourhood of a vertex v in a simplicial complex K coincides with the
neighbourhood of the vertex v in the graph underlying the simplicial complex. We call this
graph the skeleton graph associated with the complex. Finally, the degree corresponds to

the size of the relevant neighbourhood:

Definition 1.2.5. Given a vertex v in a graph G, the degree of v in G is deg(v,G) =
N (v,GQ)|. Likewise, for a vertex v in a directed graph D, the out-degree of v in D is
deg® (v, D) := |[N"(v,D)| and similarly, the in-degree of v is deg” (v, D) := [N~ (v, D).
Finally, the s-degree of a vertex v in a simplicial complex K is deg(s)(v, K):= |N(S) (v, IC)‘

For brevity, we also write deg(v, K) := deg® (v, K).

1.2.2 Preferential Attachment and other Recursive Models

A common framework for generating graphs that behave like complex networks is to consider
evolving models where vertices arrive one at a time, and connect to existing vertices in the
graph. These models are inherently dynamic, by construction, and if the number of edges
added at each time-step is uniformly bounded from above, will also produce sparse graphs.
In addition, in their seminal paper [8], Albert and Barabasi, observed that the properties of
being scale-free and having a small-world phenomenon emerged naturally in a model where
vertices arrive one at a time, and display a “preference” to popular vertices - more precisely,
connect to existing vertices with probability proportional to their degree. This model was
later studied rigorously in [19, 62]. One of the main implications of this research is that

it offers a possible explanation as to why complex networks display the features that they
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do: it is the result of the ‘rich-gets-richer’ postulate, that is, the simple hypothesis that
more popular nodes are more likely to acquire more neighbours, and thus become even more
popular over time. Indeed this so called “preferential attachment” model has been applied
in other contexts, outside the generation of networks, to explain the emergence of power law
distributions: first by Yule in the context of evolution in [79] and by Simon in [74], and Price

in [27], who both observed the these distributions in a variety of contexts.

An example of the preferential attachment model, is that of an evolving tree, where
one vertex arrives at a time and connects to a single existing vertex with probability pro-
portional to its degree. This is a particular example of a recursive tree model, where an
existing vertex is chosen according to an arbitrary probability distribution. Recursive trees
generated in this manner have attracted widespread study, motivated by, for example, their
applications to the evolution of languages [64], the analysis of algorithms [56] and the study
of complex networks, see, for example, [78, Chapter 8.1|. Other applications include mod-
elling the spread of epidemics, pyramid schemes and constructing family trees of ancient
manuscripts (e.g. [33, page 14]). Whilst recursive tree models may display an inherent de-
ficiency, as real world networks are hardly ever trees, they are often easier to analyse than
more general evolving graph models. In addition, these models may be extended so that
newly arriving vertices make m > 1 new connections. One way of doing this is to consider
m copies of the new vertex each throwing one new connection to the existing network and
then identifying them as one vertex, hence forming a multigraph. See Chapter 8 in [77] for

a detailed description.

In the context of recursive trees, the preferential attachment model has been studied
many times, under various guises: under the name nonuniform recursive trees by Szymanski
in 76|, random plane oriented recursive trees in [55, 57|, random heap ordered recursive
trees [24] and scale-free trees [19, 75, 18|. Random ordered recursive trees, or plane-oriented

recursive trees, are so named because the process stopped after n vertices arrive is distributed

10
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like a tree chosen at random from the set of rooted labelled trees on n vertices embedded in
the plane where descendants of a node are ordered from left to right. This model has been
extended to a number of interesting generalisations of the classical preferential attachment
model, including the case that vertices are chosen according to a super-linear function of
their degree in [68], or indeed any positive function of the degree [72], assuming a certain
technical condition is satisfied. In [41], the latter model is generalised to arbitrary non-

negative functions of the degree and is referred to as generalised preferential attachment.

1.2.3 Inhomogeneous Models

Models Exhibiting Condensation

Whilst the preferential attachment model is successful in reproducing the properties of com-
plex networks, it is generally the earlier arriving vertices that are more likely to have higher
degrees, since they have more time to acquire new neighbours, which in turn reinforces the
growth of their degree. In other words, they have extra time to become ‘rich’ which allows
them to acquire more ‘wealth’. Indeed, a result of [30] shows that, from a certain time point
onward, the vertex with maximal degree remains fixed in this model. Whilst this may be a
realistic assumption in the context of the distribution of wealth in the world, in the context
real world models it is often newly arriving nodes that quickly acquire a large number of
links, for example, in the world wide web. Motivated by this, in [11]|, Bianconi and Barabési
introduced their well-known inhomogeneous model, sometimes called preferential attachment
with multiplicative fitness. There, vertices arrive one at a time, and, upon arrival, each ver-
tex is equipped with a random weight sampled independently from a fixed distribution. At
each time-step, the newly arriving vertex u connects to an existing vertex v with probability
proportional to the product of the weight of v and its degree. Thus, the random weight

may be interpreted as a measure of the intrinsic “attractiveness” of a vertex. Bianconi and
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Barabasi postulated the emergence of an interesting dichotomy in this model which they

called Bose-Finstein condensation, motivated by similar phenomena in statistical physics.

This condensation phenomenon refers to the fact that under a certain critical con-
dition on the weight distribution, a positive proportion of all the edges in tree accumulate
around vertices of maximum weight. This dichotomy was first proved rigorously by Borgs
et al. in [20] in the case that the weight distribution is supported on an interval, and abso-
lutely continuous with respect to Lebesgue measure. However, they note that other classes of
weight distribution are possible. They also showed that in this model, the degree distribution
of vertices with a given weight follows an ‘averaged’ power law, with exponent depending on
the weights of the vertex. A similar condensation phenomenon was observed in a variant of
this model by Dereich in [28], and later, in a more general, robust setting, (in the sense that

the results apply to wide variety of model specifications) in [31].

The condensation phenomenon observed by Bianconi and Barabési is closely related
to the condensation phenomenon observed in other models. Indeed, it was first studied in
a similar, yet simpler manner, in the context of evolution by Kingman in [51]. In [29], the
authors studied condensation in models of reinforced branching processes that generalises a
branching process associated with the Bianconi-Barabési model, showing that the condensa-
tion is non-extensive: whilst a positive proportion of edges in the family tree of the process
accumulate around vertices of maximal weight, the maximal degree of the tree remains sub-
linear. Thus, this condensation phenomenon seems to be ubiquitous, and associated with

other models outside the arena of complex networks.

Inhomogeneous models have also been studied in the context of models with choice
in [38, 40|, with the appearance of more fascinating condensation phenomena. In this model
vertices are equipped with weights, at each time step 7 vertices are chosen with probability

proportional to their degree, and out of these r vertices, a random vertex is chosen as the
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neighbour of the new-coming vertex. Here, the probability distribution by which the random
vertex is chose, may depend on the weights of the vertices. In [38], the authors showed that,
in the case that the maximal weight vertex is chosen, extensive condensation may occur,
that is, under a critical condition on the weight distribution, a positive proportion of edges
accumulate around the vertex of maximal degree. In addition, in [40], the authors showed
that in certain cases, with random choice rules, the distribution of edges with endpoint having
certain weight converges weakly to a random measure where multiple condensation can occur
with positive probability, that is, positive proportions of edges accumulate around vertices
of multiple weights. In addition, they showed that multiple condensation cannot occur
when deterministic choice rules are used, and there exist phase transitions for condensation

occurring with probability 0 or 1.

Other Inhomogeneous Recursive Models

There are a number of other interesting variations of inhomogeneous recursive tree models.
In the preferential attachment with additive fitness introduced by Ergiin and Rodgers in
[34], newly arriving vertices now connect to existing vertices with probability proportional
to the sum of their weight and degree, whilst in the weighted recursive tree introduced in
[21], newly arriving vertices now connect to existing vertices with probability proportional to
just their weight. In 73], Sénizergues showed that the preferential attachment with additive
fitness with deterministic weights, is equal in distribution to a particular weighted random
recursive tree with random weights, and used this to derive results related to a number of
properties of both models, such as the degree sequence and the height. Moreover, recently
in [69], Pain and Sénizergues derived sharper estimates for the heights of both models, in the
case of random, identically distributed weights. Finally, in [54, 53|, Lodewijks and Ortgiese
uncovered an interesting dichotomy in the mazimal degrees of these models, in a robust,

evolving graph setting.
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In [47], Jordan studies a model of preferential attachment where vertices belong to
two types, and new vertices connect to one according to an additive fitness mechanism,
and the other via a multiplicative fitness. Geometric models have also been considered in
[48]: here, new vertices are equipped with a location in a metric space, and connect to
existing vertices with probability proportional to the product of their degree, and a positive
function of the distance between them. This positive function is known as an attractiveness
function. In [48], the authors demonstrate a dichotomy, depending on the attractiveness
function, between behaviour according to the model of Albert and Barabési, and a well

known geometric model known as the on line nearest neighbour model.

1.2.4 Higher Dimensional Preferential Attachment Mechanisms

All the previously described models are 1-dimensional in the sense that newly arriving ver-
tices are attached to single vertices. Our motivation is to consider attachment mechanisms
in which newly arriving vertices join groups of vertices, where the attachment takes into

account intrinsic features of a group of vertices, and thus encodes more complexity.

Simplicial compleres are a natural choice for incorporating this higher dimensional
complexity at a local level. Furthermore, complex networks appearing in applications are
typically locally dense: that is, although they form sparse graphs, the neighbourhood of a
typical vertex is dense. This is usually measured by the clustering coefficient. The classic
preferential attachment models do not satisfy this, as the graph that is formed is tree-
like within a short distance from a randomly chosen vertex. However, this ‘local density’
arises naturally from the fact that simplicial complexes are downwards closed. Hence, a
preferential attachment model which involves higher order interactions encapsulates these
features naturally. Additionally, (random) simplicial complexes have already been used in

applications such as topological data analysis (see, for example, [22]), and recent theories of
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quantum gravity (see, for example, [1]).

One model that realises higher order interactions is the Random Apollonian Network.
It was first introduced in [4] and independently in [32] as a model for complex networks and
was subsequently extended by Zhang et al. [80, 81]. Here, in dimension d, we begin with a
d-simplex, all of whose (d — 1)-dimensional faces are active. In each step, an active (d — 1)-
dimensional face is selected uniformly at random and d new (d — 1)-faces are formed by the
union of a new-coming vertex and each subset of the selected face of size d—1. Subsequently,
the selected (d — 1)-dimensional face is deactivated, so that the number of active (d — 1)-
faces in the complex increases by d — 1 at each step. As each of the d new (d — 1)-faces,
together with the selected face o form a d-face, we can interpret this step geometrically as
a d-face being ‘glued’ onto the face o, with the set of active faces being the boundary of the
complex see Figure 4.1, in Section 1.3 below. Note that, when a node v enters the network,
its degree is equal to d and the number of active faces containing it is equal to d. Moreover,
every time an active face containing v is selected, the degree of v increases by one and the
number of active faces containing v increases by d — 2. Therefore, the number of active
faces containing a given vertex v is (d — 2) deg(v) — d(d — 3). Thus, if d > 2 the number
of active faces containing a vertex is proportional to its degree, and hence this model gives
rise to a preferential attachment mechanism. In [52] and independently in [39], the authors
determined that the degree distribution of this model for d > 2, gives rise to a power law
with exponent 7 = % =2+ ﬁ.l For d = 3 the same model has been studied under
the name random stack-triangulations by Albenque and Marckert in [2]|, where they proved
that the sequence of complexes with graph distance metric rescaled by 1/n considered as a

compact metric space converges in the Gromov-Hausdorff topology to the continuum random

tree of Aldous [3].

!Note that often in the literature surrounding Apollonian networks, rather than using the dimension of
the initial simplex, authors use the number of vertices in an ‘active’ face as the parameter of the model.

Thus the Apollonian network with parameter d is the same as the Apollonian network in dimension d — 1.
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Inhomogeneous Higher Dimensional Evolving Models

In the Apollonian network the choice among the active (d —1)-faces is uniform. In particular,
there is no preferential attachment mechanism directly associated with the evolution of the
vertices. This motivates the study of mechanisms in which these high-dimensional sub-
structures are inhomogeneous and have some intrinsic fitness which is a function of the

weights of their members.

Specific implementations of this idea were introduced by Bianconi, Rahmede, and
other co-authors motivated by applications in physics (|12, 15, 25, 13, 14, 26]). For example,
random triangulations have been considered in the context of quantum gravity [1]. The
model of Complex Quantum Network Manifolds (CQNMs) described in [12| in dimension
d > 1 can be viewed as a generalisation of the Random Apollonian Network, where vertices
are equipped with independent, identically distributed (i.i.d.) weights, called energies in this
context, and each (d — 1)-face o of the evolving d-dimensional simplicial complex has energy
€, given by the sum of the energies of its vertices. The simplicial complex evolves in the
same way as the Random Apollonian network, with the only difference being that at each
time-step, a new vertex selects an active (d — 1)-face o with probability proportional to e~#¢
instead of uniformly at random; where § > 0 is a fixed constant, usually interpreted as the
“inverse temperature”. In [12|, the authors argue that when d = 2 the underlying graph has
degree distribution with ezponential tail whilst, when d > 3 the degree distribution follows
a power law with exponent that depends on d, 8 and the distribution of the weights. In this
thesis, we verify a rigorous version of this result when the energies are bounded (see Section

4.2.3).
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Complex Quantum Network Manifold
In Dimension d
=2 =3

(Exponential) . (Scale-free)
; 5 -y
- ' ool ¥ ?‘. ‘
j ‘ 3 * : : i, b\ j
" L Al .

Figure 1.6: This illustration shows the different behaviour of Complex
Quantum Network Manifolds in dimension 2 vs dimension 3, observed by
the authors of [12]. In dimension 3, we obtain a model with scale-free
degree distributions, reminiscent of complex networks in real world appli-
cations, whilst in dimension 2 we obtain a model with degree distributions

having exponential tails. Image sourced from [12].

In [13], Bianconi and Rahmede introduce a more general model called the network
geometry with flavour (NGFs). The network geometry with flavour, in dimension d and
flavour s € {—1,0, 1} proceeds as follows. As before, vertices are equipped with i.i.d. energies
and each (d —1)-face o of the evolving d-dimensional simplicial complex has energy €, which
is equal to the sum of the energies of its vertices. At each time-step, a new vertex selects
a (d — 1)-face o with probability proportional to e=#« (1 + sdeg, (o) — s), where 8 = 0 is

a fixed constant. In the case s = —1, Bianconi and Rahmede [12| argue that when d = 2
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the underlying skeleton graph has degree distribution with exponential tail, whilst when
d > 3 the degree distribution obeys a power law, with an exponent that depends on d as
well as on ( and the distribution of the weights. Moreover, in [15], Bianconi, Rahmede and
Wu argue that for d = 2, if s = —1 the underlying skeleton graph has degree distribution
with exponential tail, whilst if s = 0, the underlying skeleton graph has power law tails.
We will prove weaker versions of both these results rigorously in this thesis, in the sense
that the degree distribution has a tail bounded from above and below by a power law. See

Section 4.2.3 for more details.

1.3 Our Models: Evolving Inhomogeneous Random Struc-

tures

In this thesis, we study evolving, inhomogeneous models that are closely related to many of
the models studied in Section 1.2. In this section we provide a formal description of each of
these models, and indicate the chapters associated with each model. We first provide a brief
overview of the notation used in this thesis. Although the notation we introduce is closely
related across each of the models, some notation varies depending on the context; however,
this should be clear based on which model the notation relates. Subsequently we provide an

overview of the main types of results we will prove in this thesis in Section 1.4.

1.3.1 Notation Applied Throughout the Thesis

In this thesis we generally set Ny := N U {0} and R, := [0,0). In addition, for s € N, we
denote by [s] the set {1,...,s}. In addition, for £ € N, we denote by [s]* the ¢-fold Cartesian

product [s] x --- x [s]. Given a set S < S, we denote by S¢ the complement of this set, and,
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if S has a topology made clear from context, we denote by S the topological closure of S.
Finally, given a set S, we denote by 1g(x) the indicator function associated with this set,
so that 1g(x) = 1 if x € S and 0 otherwise. Moreover, if 15(x) is a random variable on a

probability space (2, F,[P), we omit the dependence on x € 2, and simply write 1.

Weights, Weight Distribution, Support, Essential Supremum

In this thesis we will consider inhomogeneous models where vertices have weights assigned to
them. In general, these weights take values in R, and are sampled from a fixed probability

measure . We generally denote by W a generic random variable sampled from pu.

In general, we assume that the space R, is equipped with its Borel sigma algebra 4.
Often it will be the case that we need to deal with weights that take bounded values. We
denote by Supp (u) the support of the measure p, that is the set of all points = in R, for

whom every open neighbourhood O, has positive measure
Supp (@) :={z e Ry : u(O,) > 0, for all open sets O, such that x € O,}.

In certain cases, we will need to assume that the support is bounded, so that Supp (u) <
[0, w*], where w* := sup (Supp (u)). Moreover, for a measurable function g : R, — R, we

define esssup (¢g) such that

esssup (¢) :==inf{a e R, : p({z: g(x) > a}) = 0}.

1.3.2 Generalised Recursive Trees with Fitness

Our first model, which we study in Chapter 2 is a unified model that encompasses most of

the models described in Section 1.2.2 and Section 1.2.3 above.
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In order to define the model, we first require a probability measure p supported on
R, and a fitness function, which is a measurable function f : Ny x R, — R,. We consider

: these are trees with directed

evolving sequences of weighted oriented trees T := (Tp),en,;

edges, where vertices have real valued weights assigned to them. The model also has an
additional parameter ¢ € N. We start with an initial tree 7y consisting of a single vertex 0
with weight Wy sampled from p. To ensure that the evolution of the model is well-defined,

we assume f(0,Wy) > 0 almost surely. Then, we define 7, recursively as follows:

(i) Sample a vertex j from 7, with probability

f(deg™ (j, ) /0, W)
Z, ’

where deg™(j,7,) denotes the out-degree of the vertex j in the oriented tree 7, and

Z, = Zﬁio f(deg® (4, T,)/t, W;) is the partition function associated with the process.

(ii) Introduce ¢ new vertices n + 1,n + 2,...,n + ¢ with weights Wy, W yo, ..., Wiy
sampled independently from p and the directed edges (j,n+1), (j,n+2),...,(j,n+{)
oriented towards the newly arriving vertices. We say that j is the parent of the new-

coming vertices, and that the new-coming vertices are its offspring.

Note that, since ¢ new vertices are connected to a parent at each time-step, for any vertex i
in the tree, ¢ divides the out-degree of i. Moreover, the evolution of the out-degree of vertex i
with weight W; is determined by the values (f(j, W;))jen,. In general, when the distribution
i, fitness function f and ¢ are specified, we refer to this model as a (u, f, £)-recursive tree
with independent fitnesses, often abbreviated as a “(u, f,¢)-RIF tree” for brevity. Here
‘independent fitnesses’ refers to the fact that the fitness associated with a given vertex does
not depend on the weights of its neighbours, in contrast to, for example, the other models
of preferential attachment with neighbourhood influence and dynamical simplicial complexes
we will study. The following figure illustrates a possible evolution of this model over the first

three steps.
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f(07 WO)

©

(a): At time 0, there is only one vertex with
weight Wy and fitness f(0, Wp) > 0, so this

vertex is selected in the first step.

f(la WO)

f(0, W) @‘/@\‘

(c) A vertex is selected with probability pro-

f(ov WQ)

portional to its fitness function, and note that
it now may be the case that f(1,7Wy) = 0. In

this case, vertex 1 is selected.

f(17 WO)

e

0W3@

(e) Again, a vertex is sampled with probability

f(0,Ws)

f(0,Wy)

proportional to its fitness. Here, vertex 1 is

selected.

s A Sample Evolution of the (y, f,¢)-RIF tree with ¢ = 2

f(la WO)

PO

10, (1)

(b) This vertex connects to two new neigh-

f(ov WQ)

bours 1 and 2 with weights W7, and Wy and
fitnesses f(0,W7) and f(0,W3). The fitness

associated with 0 is now updated to f(1, Wp).

f(17 WO)

/@\/@\

(d) Vertex 1 produces offspring 3 and 4, and

f(0,Ws)

its fitness is updated accordingly.

f(LWO)

f<27W1) f(oa WQ)

ro.ws) (3)/ \ (1) £0.w)
f(0,W5) @ @ f(0, Ws)

(f) Vertex 1 produces offspring 5 and 6, and

its fitness is adjusted accordingly.

Figure 1.7: A sample evolution of the first three steps of the (u, f,¢)-RIF tree when ¢ = 2.

Steps (b), (d) and (f) illustrate the trees 71,75 and T3 respectively.
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1.3.3 Preferential Attachment Trees with Neighbourhood Influence

A particular case of the (u, f,¢)-RIF tree introduced in Section 1.3.2 is the case that f
is affine, of the form g(W)i + h(WW), where g and h are measurable functions. As we will
show in Section 2.3 in Chapter 2, this particular case of the model displays many interest-

ing properties, including a condensation phenomenon. We call this generalised preferential

attachment with fitness, or GPAF-tree.

This motivates us to consider a ‘higher dimensional’ form of this model, which we
call preferential attachment tree with neighbourhood influence, or PANI-tree, where the
attachment mechanism considers not only the weight of a given vertex, but also the weights
of its neighbours. For brevity, in this model we only consider the case where only a single
vertex arrives at each time-step ; in the context of the (u, f,¢)-RIF tree this corresponds

to the case that ¢ = 1.

As in Section 1.3.2, we consider a model of weighted directed trees (Ty,)nen,. Let T
denote the set of all such weighted trees, and given a tree 7 € T and a vertex j € T, (abusing
the notation for the out-neighbourhood slightly) let N (5, T) be the weighted tree consisting
of 7 and all of its out-neighbours. In order to define the model, we will require a probability
measure g, which is supported on a subset of an interval [0,w*], for some w* > 0 and a
fitness function f: T — R,. One may interpret this as an analogue of the fitness function in
Section 1.3.2 that may take into account the weights of neighbours of a given vertex. In the
model we consider, we start with an initial tree 7 consisting of a single vertex with random
weight W, sampled from p. Then, given 7;, the model proceeds recursively as follows:

(i) Sample a vertex j from 7; with probability W, where Z; := 3" fN*(k, T7))

is the partition function associated with the process.
(ii) Form 7;4; by adding the edge (j,7+ 1), and assigning vertex ¢ + 1 weight W;,; sampled

22



555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

Introduction

independently from p.

In this thesis, with regards to this model, we define f so that
FNF (0, T) = h(Wy) + > g(W, W), (1.1)
(v,u)eT
where h : [0,w*] — [0,00) and g : [0, w*] x [0,w*] — [0,00) are bounded and measurable.
To ensure that the evolution of the model is well-defined, in all of our results we condition

on Wy satisfying h(Wy) > 0, which we assume is an event that has positive probability.

Remark 1.3.1. The form of the fitness function in (1.1) is sufficiently general to encompass
some existing models. In the case where g and h are a single constant, we obtain the classic
preferential attachment tree of Albert and Barabdsi. The case g(x,y) = h(x) = x is the
Bianconi-Barabdsi model, whilst the case g(x,y) = 1, h(x) = x is the preferential attachment
tree with additive fitness. Finally, the case g(x,y) = ¢'(z), for some bounded measurable
function of a single variable is a particular case of the (p, f, ) -RIF tree we call the GPAF-

tree, which is studied in Section 2.3 of Chapter 2.

Remark 1.3.2. As in the (u, f,¢) -RIF tree, we may also analyse this model when ¢ vertices
connect to the selected vertex during each time-step. However, for breuvity, we restrict our

analysis to the case that { = 1.

We illustrate a possible evolution of this model below.
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s2 A Sample Evolution of the PANI-Tree

h(Ws)

©

(a): At time 0, there is only one vertex with
weight Wy and fitness h(Wy) > 0, so this ver-

tex is selected in the first step.

h(Wo) + g(Wy, Wh)
@

(c) A vertex is selected with probability pro-
portional to its fitness function; note that
either vertex may be selected with positive

probability. In this case, vertex 0 is selected.

h(Wo) + g(Wo, Wh) + g(Wo, Ws)

h(W1) h(W2)

O @

(e) Again, a vertex is sampled with probability
proportional to its fitness. Here, vertex 2 is

selected.

h(Wo) + g(Wy, Wh)
e

(b) This vertex connects to a new neigh-
bours 1 with weight W) and fitness h(W7).
The fitness associated with 0 is now in-
creased by g(Wy, W1); note that, unlike the
(i, f,€)-RIF tree illustrated in Figure 1.7,

this change also depends on Wj.

h(Wo) + g(Wo, Wh) + g(Wo, Wa)

h(Wr) h(Ws)

O ©

(d) Vertex 0 connects to the new vertex 2, and

its fitness is updated accordingly.

h(Wo) + g(Wo, Wh) + g(Wo, Wa)

U

(3) h(wy)

(f) Vertex 2 connects to 3, and its fitness is

h W2 +g W27W3)

adjusted accordingly.

Figure 1.8: A sample evolution of the first three steps of the preferential attachment model

with local dependencies. Steps (b), (d) and (f) illustrate the trees 77, T and T3 respectively.
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1.3.4 Dynamical Models for Random Simplicial Complexes

The final model we consider in this thesis involves even more dependence between the evo-
lution of vertices and their neighbours: we consider a sequences of simplicial complexes
(Kn),so of fixed parameter d > 0. In this case, again we assume that the weight distribution
 is supported on a subset of an interval [0, w*], and, as an additional parameter we have a
fitness function, which in this context is a positive, symmetric function f : [0, w*]¢ — R,.
For all n = 0, KC,, ;1 is obtained by adding one vertex labelled n + 1 to IC,, and assigning that

vertex a random weight sampled independently according to pu.

At each time-step n, a (d—1)-face o is sampled from the complex /C,, with probability
proportional to its fitness f(o), which is the image by f of the vector of the weights of the
vertices that belong to o (as the function f is symmetric, this image does not depend on
the order of the weights in the vector). Then a new vertex n + 1 arrives, with an associated
independent weight W, 1, and subdivides the selected face, as illustrated in Figure 1.9 below.
In Model A, the selected face o remains in the complex, whilst in Model B the selected face

is removed from the complex.
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s3s A Sample Evolution of the Dynamical Simplex Model in Dimension 3

-1

-2

e}

9 0

(b) A (d—1)-face o is sampled with probabil-
(a): At time 0 we begin with an arbitrary
ity proportional to its fitness f(o), a positive

(d — 1)-dimensional simplicial complex with
function of the weights of the vertices in o. In

vertices labelled by non-positive integers. In
this case, there is only one 2-face, {—2, —1, 0},

this case, we have a 2-simplex.
which must be selected.

-2 0

(¢) A new coming vertex 1 arrives, and for each subset o’ of 2 of the selected face o = {—2,—1,0},
we add the face o/ U {1}. In Model B, the selected face is also removed from the complex. We
may interpret this geometrically as a 3-dimensional tetrahedron being ‘glued’ onto the 2-face; thus

in Model B we may associate the set of faces in the complex with the boundary of a 3-dimensional

simplex.
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-2

jesY

9 0
(e) A new-coming vertex 2 arrives, and again

(d) Now, the face {—2,0,1} is selected.
subdivides the selected face.

-1 -1

-2

9 0

6

(f) Next, the fact {—2,—1,1} is selected. (g) This face is subdivided by the vertex 3.

Figure 1.9: A sample evolution of the dynamical simplex model with parameter 3. This

particular evolution may be an instance of either Model A or Model B.

= 1.4 Important Quantities of Interest in this Thesis

so0 Despite the variations in each of the models we have described, we will see in this thesis that

so1 their recursive nature means that each of these models are amenable to similar techniques.
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In general in this thesis we will be interested in two main quantities: the distribution of the
proportion of nodes with a given degree and weight and the distribution of the proportion of
edges with endpoint having a given weight. As we will see, the prior quantity seem to have

a universal limiting behaviour, described by p;(+) defined in (1.4), below.

1.4.1 Degree Distributions

The first main quantity we will be concerned with in this thesis relates to degree distributions.
In general in this thesis, we denote by Ni(n) the number of vertices in the respective model
at time n that have been selected k times in the evolution of this model, and Ng(n,-) the
empirical measure corresponding to the number in the respective model at time n that have
been selected k times with a given weight. We will also use the notation N> (n) and Nxg(n, -)
to denote the number of vertices selected at least k times, and the number of vertices with

a given weight selected at least k& times, respectively.

More precisely,

1. With regards to the (u, f,¢)-RIF tree, given a Borel set B < R,, the quantity
Ni(n, B) denotes the number of vertices v in the tree 7, with out-degree k¢ and weight
W, € B, that is,

Ni(n, B) := > 15(W,). (1.2)
V€T deg™ (v, Ty )=kt

Also, Ni(n) := Ni(n,R.). With regards to the preferential attachment model with
neighbourhood influence, or PANI-tree, Ny(n, B) is defined identically, however, we

have ¢ = 1.
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2. Similarly, the quantity Nsx(n, B) is defined such that

N>k(n,B) = Z ]-B(W’U)a

V€T :deg ™ (v, Tn) =kt
and with ¢ = 1 in the PANI-tree.

3. In the dynamical simplices model, up to a constant factor depending on the initial
complex Ky, the quantity Ni(n) denotes the number of vertices with degree (or 0-
degree) k + d. For brevity, with regards to this model we will generally state and prove
results for Ni(n), although similar analysis may be performed for quantities analogous

to Nk(n, )

Now, suppose V,, denotes the vertex set in each of the models, so that in the (p, f, ¢) - RIF tree,
|V,.| scales like ¢n, whilst in the other models, |V;,| scales like n. We will then be interested

in the limiting behaviour of the quantity Ny (n, B) when re-scaled by the size of the network,

|Vo.|, in each of the models. It is reasonable to expect that the almost sure limit of %
behaves like its expected value
|Va|
2 P (W; € B, {vertex i has been selected exactly k times}) /|V,,|. (1.3)
i=0

Suppose that the probability of selecting vertex i, with weight W,, once this vertex has
already been selected j times is approximately (C;(W;));s0. Also, if we informally, sup-

pose that the partition function Z, behaves like An, for some A\ > 0, the probability of a

vertex ¢, with weight W;, arriving at iq and receiving out-neighbours at times i1, ..., 1, is
approximately
ilﬁl (1 _ Go(Wy) ) Co(W3) .iril*l (1 D ) G
I Mio+4)) N1 43 A +7)) e
ig—ip_1—1 n—i
) " lk_f <1 G (W) ) Coa(W3) 1—f (1 _ G(W) )
11 Ain_1 + J) Nie Ak +7))
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Now, if we can approximate the expected value in (1.3) by considering summands i > nn,
where 7 is a ‘small’ constant, we may write the products in the previous display as ratios of
Gamma functions, which may then be approximated using Stirling’s approximation. Then,
for each 4, taking the sum over possible choices (i1, ..., i), by applying suitable summation

arguments, i.e., Corollary 2.4.6 in Section 2.4.2, Chapter 2, we obtain

A kﬂ Cy(Wy)
Cr(W3) + A i C;(Wy)+ A

Taking expectations over W; € B, it is therefore reasonable to expect that the limit of %
belongs to the family
P ) S SRR (14)
KA Cr(W) + X 1§ C3(W) + A ’ '

for A > 0. The expectation on the right hand side of (1.4) is with regards to the path
of a suitable random companion process (C;(W;));=0, depending on the weight W;. The
precise form of the companion process depends on the model we consider. In particular, this

companion process is such that

1. In the (u, f,€)- RIF tree the value C;(W;) is W;-measurable, and given by f(j, W;).

2. In the PANI-tree, Co(W;) = h(W;), and, given C;(W;), C;41(W;) = g(W;,, W')+C;(W;),
where W is sampled independently from p. Thus, C;(W;) — h(W;) = S_, g(W;, W}),
where each W is independently sampled from . In particular, C;(W;) —h(W;) is given
by a sum of random variables, which are conditionally independent and identically

distributed given W;.

3. In the dynamical simplicial complex model, the values of C;;(W;) depend on the fitnesses
in the (d — 1)-neighbourhood of i. Thus, C;(W;) is a process that depends on the

‘typical’ evolution of the (d — 1)-neighbourhood of a vertex arriving sufficiently ‘late’.
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In this thesis, we will prove various forms of the limiting degree distribution, showing that
the family (pp(-))ken, is universal across all models. We also make the intuition outlined
before (1.4) rigorous in Section 2.4 in Chapter 2 and Chapter 4. The assumption that the
partition function Z, behaves like An, for some A > 0, is made rigorous by requiring that

Zn
— — A almost surely, (1.5)
n

and applying Egorov’s theorem. The convergence in (1.5) is assumed directly in Section 2.4

in Chapter 2, while proved in various forms in Section 4.3 in Chapter 4.

1.4.2 Edge Distributions and Condensation

With regards to the evolving tree models we study in this thesis, i.e, the (u, f,£)-RIF tree
and the PANI-tree, we will also be interested in another quantity: the distribution of the

proportion of edges with endpoint having a given weight.

1. In both the (u, f,¢)-RIF tree and the PANI-tree, given a Borel set B < R, the
quantity =(n, B) will denote the number of directed edges (v, v’) in the respective tree

model 7, such that W, € B, that is,

=E(n, B) := 15(W,). (1.6)
(v,0")ETn

2. With regards to the PANI-tree, we will also study a higher dimensional analogue of this

quantity: given a Borel set A € R%, the quantity Z®(n, A) will denote the number of

edges (v,v’) in the tree 7, such that (WW,, W,/) € A, that is,

E@(n, A) = > 1a(W,, W),
(v,0")ETn

Our emphasis will be on results related to the quantity =Z(n, B). Suppose ¢ corresponds to

the parameter ¢ when referring to the (u, f,¢)- RIF tree, and 1 when referring to the PANI-
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tree. Then, note that for every n € Ny, by computing the number of directed edges (v,v’) in
T, with W, € B in two different ways, we have
E(n,B) = ), tkNy(n, B). (1.7)
k=0

When we normalise by the number of vertices in the tree, |V, | = ¢n, if, for £ € Ny the limit

of Nk|vn |B) is p{(B), as described in (1.4), by an application of Fatou’s lemma we get
. .2Z(n,B) _ A,
>
h?{bli)loglf — = k_Eoﬁk;pk(B), (1.8)

which motivates the definition of the following family:

0 n—1
lk =/(-E Wl. 1.9
Z (B S g S (1.9
Now, if the limit exists, since we add ¢ directed edges at each time-step, the measures
=(n,-)/fn are probability measures. However, if m(J,-) is not a probability distribution
(applying a similar argument to the proof of Theorem 2.2.2 in Section 2.2 of Chapter 2) we

can show that there exists a measurable set B such that

=(n,B
lim sup (n, B)
n—o0 é?’L

m(A, B).

In this case, the inequality in (1.8) is strict, so that, after normalising by ¢n, the operations of
taking limits in £ and in n in (1.7) do not commute. Thus, the set B has acquired additional
“mass” in the limit, and this phenomenon is known as condensation. In Section 2.3.2 of
Chapter 2 we derive an example of this in the GPAF-tree, i.e., the (u, f,¢)-RIF tree in
the case that f(i, W) = g(W)i + h(W) for measurable functions g and h. In this case, we
assume that g and h are bounded and non-decreasing. As the PANI-tree generalises this

model further, we undertake a more refined analysis of the condensation phenomenon in

Chapter 3 in Section 3.3.
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Example: the (u, f,¢)-RIF tree when ¢ = 2

f(17w0>

F(1,w) @ £(0,w)
f(0,ws) @ @

f(07 ’LU4)

Figure 1.10: In the above instance of T4 in the (u, f,£)-RIF tree, N1(4,-) = 0y, (-) + 0w, (*)
and Z(4, ) = 2 (8w, (+) + 6w, (+))-

1.5 Overview of Thesis

In this thesis we analyse the quantities outlined in Section 1.4, in each of the models described

in Section 1.3. In particular,

e In Chapter 2 we analyse the (y, f,£)-RIF tree.

e In Chapter 3 we analyse the PANI-tree. The results of this chapter may be read
independently of Chapter 2, however, are closely related to the results of Section 2.3.2

of Chapter 2, and as a result, we encourage the reader to at least review this section.

e In Chapter 4 we analyse the dynamical simplices model. However, the results of this
chapter rely on certain results proved and stated in Chapter 2. In particular, the
analysis in Section 4.4 is closely related to the analysis presented in Section 2.4 of
Chapter 2, and applies the summation arguments proved in Section 2.4.2. In addition,

the analysis in Section 4.3 of Chapter 4 applies results related to Pdlya urns, and these
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stochastic processes play a crucial role in the analysis of Chapter 3, in particular, in
Section 3.2. We thus encourage the reader to read Chapter 4 after reading Chapter 2
and Chapter 3. Moreover, as previously mentioned, the interested reader may wish to

skip some of the more technical proofs in this chapter upon first reading.

Note that each of the chapters rely closely on the specification of the model in Section 1.3
and the definitions of the quantities outlined in Section 1.4. The information in Section 1.2
may also be useful, especially the definitions in Section 1.2.1 - in particular with regards to

the dynamical simplicial complexes model in Chapter 4.
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Chapter Two

(Generalised Recursive Trees with Fitness

2.1 Introduction

In this chapter, we consider the model of the generalised recursive tree with fitness described
in Section 1.3.2 of Chapter 1, and prove limiting results regarding the degree distributions
and edge distributions in relation to this model when re-scaled by the number of edges in
the model, /n. Here we recall that these quantities, and their expected limiting behaviour

was described in Section 1.4 of Chapter 1.

In relation to the (u, f,¢)-RIF tree, the candidates pp(-) and m(},-), described

in (1.4) and (1.9) of Chapter 1 have a specific form; in particular, we have

A LG W)
p(B) =E [f(k’w)ﬂgf(i’W)HlB(W)], (2.1)
and
Zﬁkpk )=1¢- E[;Hfl T (W)]. (2.2)

Since we only study the (u, f, f) -RIF tree in this chapter, in this chapter we may regard (2.1)
and (2.2) as the definitions of the quantities py(-) and m(}, -) respectively. Moreover, using

the heuristic outlined in Section 1.4.1 of Chapter 1, we expect the limiting behaviour of
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78 the re-scaled degree distribution % to belong to the family (2.1), for a suitable choice
720 A = a > 0. In addition, if no condensation occurs, i.e., if m(c, -) is a probability distribution,

730 we expect the limit of % to be m(a, -).

= 2.1.1 Open Problems

722 We conjecture that, in general, the parameter av makes m(A,-) ‘as close as possible’ to a

733 probability distribution, so that

inf {A>0:m(\R;) <1} if m(A\R;) < o for some A >0
734 a = (23)

0 otherwise.

735 Conjecture 2.1.1. Let T be a (i, f,¢) -RIF tree, with « as defined in (2.3). Then, for each

36 k€ Ny and measurable set B, almost surely, we have

Nk(n7B) n—00 pg(B)a ZfCY < 0,
n

737

w(B) 1y (k), otherwise.

738 The conjectured limit in the case when a = oo is obtained by taking the limit of p(B)

739 as @ — 0. This limit is 0 unless k£ = 0, in which case it is pu(B).

740 The discussion in Section 1.4 of Chapter 1 described the parameter a as being closely

721 related to the partition function (Z,),en,. As a result, we also conjecture:

722 Conjecture 2.1.2. Let T be a (u, f,0) -RIF tree, with o as defined in (2.3). Then we have

Z’T'L n—aoo
743 — —— «a, almost surely.
n
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2.1.2 Important Technical Conditions and Overview of Results

In this chapter, we make partial progress towards the proofs of Conjecture 2.1.1 and Con-

jecture 2.1.2. We will refer to the following technical conditions:

C1 With m(),-) as defined in (2.2), there exists some A > 0 such that
I <m(\Ry) < 0. (2.4)

Under this condition, by monotonicity, there exists a unique o > 0 such that m(a, R, ) =

1, we call this the Malthusian parameter associated with the process.

C2 There exists a > 0 such that

Note that in (2.3), Conditions C1 and C2, we use the same symbol «. This is because we
conjecture that these coincide in general. In general, as we only assume either C1 or C2 at

a time, the definition will be clear from context.

The chapter will be structured as follows:

Section 2.2: We analyse the model under Condition C1.

e In Theorem 2.2.1 we prove Conjecture 2.1.1 under Condition C1, and as a consequence,
in Theorem 2.2.2 we show that for any measurable set B, =(n, B)/{n converges almost

surely to m(«, B).

e In Theorem 2.2.5 we derive a condition under which C1 implies C2. In particular, this

proves Conjecture 2.1.2 under this condition and C1.
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e The approaches used in this section are well-established, applying classical results in
the theory of Crump-Mode-Jagers branching processes, in a similar manner to the
approaches taken by the authors of |72, 41, 9, 29]. Nevertheless, these theorems have
novel applications: we apply these theorems to the evolving Cayley tree considered by

Bianconi in Example 2.2.4 and the weighted random recursive tree.

Section 2.3: We analyse a particular case of the model when the fitness function f(i, W) =
g(W)i+h(W), which we call the generalised preferential attachment tree with fitness (GPAF-
tree). This extends the existing models of preferential attachment with additive fitness, i.e.,
f(i,W) =i+ 1+ W, and multiplicative fitness, i.e., f(i, W) = (i+1)W. When the functions
g, h are non-decreasing, we also treat the cases where Condition C1 can fail. Let o be as

defined in (2.3), and also define A := {A > 0: m(\,R;) < oo}.

e We consider the situation in which Condition C1 fails by having m(A\,R;) < 1 for
all A € A. In this case, m(A,R;) converges for some A > 0, but never exceeds 1, so
that m(a,R;) < 1. In Theorem 2.3.1 we prove Conjecture 2.1.1 and Conjecture 2.1.2
in this case, showing, in particular, that if m(a,R,) < 1 the GPAF-tree exhibits a

condensation phenomenon.

e Alternatively, Condition C1 may fail by having a = c0. Theorem 2.3.3 also confirms
Conjecture 2.1.1 in this case, showing that the limiting degree distribution is degener-
ate: almost surely the proportion of leaves in the tree tends to 1. Moreover, we show
that the fittest take all of the mass of the distribution of edges according to weight, in

the sense that all of the edges accumulate around vertices with maximum weight.

e The techniques in this section are inspired by the coupling techniques exploited in
[20] and [29], and extend the well known phase transition associated with the model

of preferential attachment with multiplicative fitnesses studied in [20, 31, 29]. This
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generalisation shows that the phase-transition depends on the parameter h too, so
that, in some circumstances, condensation occurs, but vanishes if A is increased enough
pointwise (see Section 2.3.2). This is interesting because h(W) may be interpreted as
the ‘initial’ popularity of a vertex when it arrives in the tree, showing that in order for
the condensation to occur, there needs to be sufficiently many vertices of ‘low enough’
initial popularity. As far as the author is aware, these results are not only novel in the
mathematical literature, but also in the general scientific literature concerning complex

networks.

Section 2.4: We analyse the model under Condition C2, proving general results for the

distribution of vertices with a given degree and weight.

e [f the term « in Condition C2 is finite, Theorem 2.4.1 and Theorem 2.4.4 confirm a

weaker analogue of Conjecture 2.1.1 under this condition.

2.2 Analysis of (u, f,¢)-RIF trees assuming C1

In order to apply Condition C1 in this section, we study a branching processes with a family
tree made up of individuals and their offspring whose distribution is identical to the discrete
time model at the times of the branching events. In Section 2.2.1, we describe this continuous
time model, state Theorem 2.2.1 and state and prove Theorem 2.2.2. In Section 2.2.2 we
include the relevant theory of Crump-Mode-Jagers branching processes and use this to prove
Theorem 2.2.1. In Section 2.2.3 we apply the same theory, along with some technical lemmas
to state and prove a strong law of large numbers for the partition function in Theorem 2.2.5.

We conclude the section with some interesting examples in Section 2.2.4.
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2.2.1 Description of Continuous Time Embedding

In the continuous time approach, we begin with a population consisting of a single vertex 0
with weight W} sampled from p and an associated exponential clock with parameter f(0, Wp).
Then recursively, when the ith birth event occurs in the population, with the ringing of an

exponential clock associated to vertex j:

(i) Vertex j produces offspring £(i—1)+1, ..., ¢i with independent weights W _1y11,. .., Wy

sampled from p and exponential clocks with parameters f(0, Wyi—1y41), ..., f(0, Wg).

(ii) Suppose the number of offspring of j before the birth event was m, so that its out-
degree in the family tree is m. Then, the exponential random variable associated with
Jj is updated to have rate f(m/(+1,w;). If f(m/¢+1,w;) = 0, then j ceases to produce

offspring and we say j has died.

Now, if we let Z;_; denote the sum of rates of the exponential clocks in the population when
the population has size ¢ — 1, the probability that the clock associated with j is the first to
ring is f(m/¢,W;)/Z;,_1. Hence, the family tree of the continuous time model at the times
of the birth events (0;);>0 has the same distribution as the associated (u, f,?)-RIF tree.
The continuous time branching process is actually a Crump-Mode-Jagers branching process,

which we will describe in more depth in Section 2.2.2.

To describe the evolution of the degree of a vertex in the continuous time model, we

define the pure birth process with underlying probability space (€2, F,P) and state space {N

as follows: first sample a weight W and set Y (0) = 0. Let P, denote the probability measure

associated with the process when the weight sampled is w. Then, define the birth rates of
Y such that

P, Y(t+h)=(k+1)|Y(t)=kl) = f(k,w)h + o(h). (2.5)
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In other words, the time taken to jump from k¢ to (k + 1) is exponentially distributed with

parameter f(k,w).

Let p denote the point process corresponding to the times of the jumps in Y and
denote by E, [p(+)] the intensity measure when the weight W = w. Also, denote by p,, the

Laplace-Stieltjes transform, i.e.,

Note that, by Fubini’s theorem, we have

w0 = [ ([ 2eas) Bulotan] = [“re ([ malpant)as 2o

= LOO Ae MK, [Y(s)] ds.

Moreover, if we write 7, for the time of the kth jump in Y, we have p = >};7 ¢4, . Note that,
if the weight of Y is w, 7, is distributed as a sum of independent exponentially distributed
random variables with rates f(0,w), f(1,w),..., f(k —1,w) (we follow the convention that

an exponential distributed random variable with rate 0 is 00). Thus, we have that

pu(N) = ¢ ;Ew [e™] = ¢ Z_]l | % (2.7)

where in the last equality we have used the facts that a Laplace-Stieltjes transform of a
convolution of measures is the product of Laplace-Stieltjes transforms and the Laplace-

Stieltjes transform X (M) of an exponential distributed random variable with parameter s

is §; e Mse~*'dt = ;2. Therefore, we see that E [py(A)] = m(A,Ry) as defined in (2.4),
and Condition C1 implies that there exists some A > 0 such that 1 < E [pw(\)] < c0. In
addition, the Malthusian parameter o appearing in Condition C1 is the unique solution such

that

o n—1
E [ow(a)] = m(a,R,) = £-E [Z H ] 1 2.8)
—ico /
Our first result is the following:
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sss Theorem 2.2.1 (Convergence of the Degree Distribution under C1). Let T be a (p, f,¢) -RIF tree
ssa  satisfying Condition C1 with Malthusian parameter a. Then, with Ni(n, B) as defined in
s (1.2) and pY(B) as defined in (1.4), we have

Ni(n,B)
856 k(é;: ) 2 pg(B)7
g5z almost surely.
858 The limiting formula for Theorem 2.2.1 has appeared in a number of contexts, and

gso generalises many known results. Under Condition C1 this result was proved by Rudas, Téth
sso and Valko [72] in the case that W is constant and ¢ = 1. The cases f(i, W) = W (i + 1) and
g1 f(i,W) =1+1+W with £ = 1 correspond respectively to the preferential attachment models
g2 with multiplicative and additive fitness mentioned in the introduction. In the multiplicative
ss3 model, the result was first proved in [20] and later in [9]. In [9], Bhamidi also first proved
ssa  the result for the case f(i,W) =i+ 1+ W. These models are examples of the generalised
ses preferential attachment tree with fitness, which we study in more depth in Section 2.3.
sss Finally, the case f(i,W) =W, ¢ =1 corresponds to a model of weighted random recursive

ss7  trees (see Example 2.2.4). We postpone the proof of Theorem 2.2.1 to the end of Section 2.2.2.

sss Remark 2.2.1. The limiting value has an interesting interpretation as a generalised geomet-
seo  1ic distribution. Consider an experiment where W is sampled from p and, given W, coins
sro are flipped, where the probability of heads in the ith coin flip is proportional to f(i,W) and
s tails proportional to «. Then, the limiting distribution in Theorem 2.2.1 is the distribution
sz of first occurrence of tails. Note that, by C1, the probability of infinite sequences of heads is
13 0.

sza Remark 2.2.2. Note that Y(t) < oo for all t = 0 almost surely if 7, = limy 4 7 = ©

srs  almost surely. The latter is satisfied if there exists X\ > 0 such that for almost all w

AT 13 AT — 1 —_—
876 Ew [6 ] = 7}1_1}30 Ew [e ] - 7}1_{130 il f(l, w) + A N
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which is implied by C1. In the literature concerning pure-birth Markov chains, this property

1s known as non-explosivity.

Remark 2.2.3. In this chapter, we have considered the case where the function f, and thus
the birth process Y as defined in (2.5), depends on a single random variable W taking values
i R,. However, there is no loss of generality in assuming the random variable W takes
values in an arbitrary measure space, so long as the function f is measurable. In particular,
we may consider the case where the weight is given by a vector (Wi, Ws) where Wy and Wy

are possibly correlated random variables.

Now, recall the definitions of Z(n, -) from (1.6) and m(«, -) from (1.9). In the case that
m(a, ) is a probability distribution, the almost sure convergence of Ni(n, B)/{n to p¢(B)
for any measurable set B is enough to imply that for any measurable set B the quantity
=(n, B) converges almost surely to m(«, B). Note that this condition is weaker than directly

assuming C1. In particular, we have the following.

Theorem 2.2.2. Assume T is a (u, f,0) -RIF tree with limiting degree distribution of the
form (p§(+))ken, and such that the quantity m(a,R.) = 1. Then, for any measurable set B,
almost surely, we have

=(n,B) now

i — m(a, B).

To prove this theorem, we will apply the following elementary lemma:

Lemma 2.2.3. For any two sequences (ay)nen, (bp)nen, such that either liminf, . a, > —©

or limsup,,_,, b, < o0, we have

liminf(a, + b,) < liminf a, + limsup b, < limsup(a,, + b,).

n—o n—w n—00 n—0

Proof. We only prove the left inequality, as the right inequality is similar (or indeed is

implied by the left combined with the fact that, for any sequence (ay,)nen, limsup,, . (—a,) =
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—liminf, ., a,). Let € > 0 be given and suppose limsup,,_,, b, = b. Then, by definition,

there exists N > 0 such that for all n > N we have b, < b + . But then,

liminf (a,, + b,) < liminf (a, + b+ ¢) = liminfa, + b + €.

n—0o0 n—o0 n—0o0

Sending € to 0 proves the result. O

Proof of Theorem 2.2.2. Recall that, by (1.7), for each n, we have =(n, B) = Y 7_, k{Ny(n, B).

Also note that

0 s o Z7W
kz_;k@?(B):ﬂE_<Z f(/{?W +a1_[fl, )4)_&) 13(W)]

k=1

e FleW) N fGW)
—£.E_<gk.<1 A )Qf(i,W)+a>1B(W>]

k=1

IR RSN S & R ACLUO R s S (LN
={-E Z( o S W) +a klljf(i,W)%—oz) 1B(W)]

=N

k= 0

N A )1B<w>] ~ (. B)

E (
| \k

where the second to last equality follows from the telescoping nature of the sum inside the

f@, W)+«

11:=0

expectation. Thus, by Fatou’s lemma, almost surely we have

a0 0 —
Ni(n, B) _.. .  E(n,B)
B) = klpS, k(i f——— <1 f ———; 2.9
)= > k(B Z im inf = im inf = (2.9)
and likewise, almost surely, liminf, E(ch) > m(«, B¢). Now, since we add ¢ edges at

every time-step, =(n, R, ) = ¢n. Thus, by Lemma 2.2.3

=(n,B =(n, B¢ =(n, B¢ =(n,B
< (n, )—l- (n, )><liminf—(n7 )—i—limsup (n, B)

n In n—00 n n—00 n

Z(n,B) Z(n,B°¢
<limsup< (n, )—l— (n, ))21.

n—00 ‘n In

1 = lim inf
n—aoo

But, m(q, ) is a probability measure, this is only possible if

=(n, B¢ =(n,B
lim infM = m(a, B°) and limsup (n, B)
n—00 n n—00 n

= m(a, B) almost surely. (2.10)

Combining (2.9) and (2.10) completes the proof. O
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2.2.2 Crump-Mode-Jagers Branching Processes

In the continuous time setting, it is convenient to not only identify individuals of the branch-
ing process according to the order they were born, but also record their lineage, in such a way
that the labelling encodes the structure of the tree. Therefore we also identify individuals of
the branching process with elements of the infinite Ulam-Harris tree U := | J,., N", where
N° = & is the root. In this case, an individual u = ujus . .. u; is to be interpreted recursively

as the ugth child of the uy...ug_;. For example, 1,2, ... represent the offspring of &.

In Crump-Mode-Jagers (CM.J) branching processes, individuals u € U are equipped
with independent copies of a random point process & on R, . The point process £ associates
birth times to the offspring of a given individual, and we also may assume that £ has some
dependence on a random weight W associated with that individual. The process, together
with birth times may be regarded as a random variable in the probability space (2, X, P) =
[ 1ey (s, 22, P;) where each (€,,%,,P,) is a probability space with (&;,W,) having the
same distribution as (£, W). We denote by (07);eny points ordered in the point process &,
and, for brevity, assume that £({0}) = 0. We also drop the superscript when referring to the
point process associated to &, so that o; := 0. Now, we set oy := 0 and recursively, for
r €U, 0y =0, + oF. Finally, we set T, = {x € U : 0, < t} and note that for each ¢ = 0, T,
may be identified with the family tree of the process in the natural way. Informally, T; can
be described as follows: at time zero, there is one vertex @, which reproduces according to
(x5, Wy). Thereafter, at times corresponding to points in &y, descendants of & are formed,
which in turn produce offspring according to the same law. A crucial aspect of the study
of CMJ processes are characteristics ¢, associated to each element x € U. For x € U,
let U, := {zu:wueU}. Then, the processes ¢, are identically distributed, non-negative

stochastic processes on the space (2, 3, P) associated with individuals x, which may depend

on (&, W,).eu,. Intuitively, these are processes that track ‘characteristics’ not only of the
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individual z, but on its potential offspring {zy : y € U}. We then define the general branching
process counted with characteristic as

Z(t) == Z Oz (t — 04);

rEU: 0, <t

thus this function keeps a ‘score’ of characteristics of individuals in the family tree associated
with the process up to time n. Let v be the intensity measure of £, that is, v(B) := E [£(B)]
for measurable sets B < R,. A crucial parameter in the study of CMJ processes is the

Malthusian parameter o defined as the solution (if it exists) of

B[ et -1

Assume that v is not supported on any lattice, i.e., for any h > 0 Supp (v) < {0, h, 2h, ...},
and that the first moment of e~“v(du) is finite, ie., § ue *v(du) < . Nerman [65]

proved the following theorem.

Theorem 2.2.4 (|65, Theorem 6.3|). Suppose that there exists A < a satisfying
0
E U eksg(ds)] < . (2.11)
0
Then, for any two cadlag characteristics ¢V, ¢? such that E [supt20 e Mol (t)] < o0, 1=

1.2, we have
2 e [0]ds
im = ,
0 Z09(1) {7 e B [6P)(s)] ds

almost surely on the event {|T;| — oo}.

Recall the definition of p as the point process associated with the jumps in the process
Y defined in (2.5). Then, the continuous time model outlined in Section 2.2.1 is a CMJ
process having p as its associated random point process and weight 1. In this case, the
Malthusian parameter is given by « in (2.8) and moreover, Condition C1 implies that the

first moment { " te=*!p, (dt) < 0.
Theorem 2.2.1 is now an immediate application of Theorem 2.2.4.
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Proof of Theorem 2.2.1. Consider the continuous time branching process outlined in Sec-
tion 2.2.1 and denote by ¢} < o} --- the times of births of individuals in the process. Then,
T, has the same distribution as the family tree T,/ . For any measurable set B = R, define
the characteristics ¢(V)(t) = 1¢yv(t)=ke,wepy and o (t) = 1¢>0, where W denotes the weight
of the process Y. Note that, Z¢" (t) is the number of individuals with k¢ offspring and
weight belonging to B up to time ¢, while Z¢® () = |T,|. Thus,

z29Y@t) .. Ni(n,B)

oo Z0®(¢)  atw n

Note that both ¢()(¢) and ¢®(t) are cadlag and bounded and moreover, Condition C1
implies that (2.11) is satisfied. Moreover, the assumption that f(0,WW) > 0 almost surely

implies that |T;| — co almost surely. Thus, by applying Theorem 2.2.4,

A () . —ar, _ —ar
75w g Oéfo e B [Lyy(=rewem | ds = E [Ew [ (7 — ™) [15(W)] (2.12)

where the last equality follows from Fubini’s theorem and we recall that 7 is the time of
the kth event in the process Yy (t). Now, since, when W = w, 7 is distributed as a sum
of independent exponentially distributed random variables with rates f(0,w), f(1,w)..., we

have

E[Ew [e*™]15(W)] =E [(H %) 1B(W)] . (2.13)

The result follows from combining (2.12) and (2.13). O

Remark 2.2.4. As noted by the authors of [72], Theorem 2.2.4 can be applied to deduce a
number of other properties of the tree, in particular the analogue of [72, Theorem 1] applies

in this case as well.

2.2.3 A Strong Law for the Partition Function

We can also apply Theorem 2.2.4 to show that the Malthusian parameter o emerges as the

almost sure limit of the partition function, under certain conditions on the fitness function
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f.

Theorem 2.2.5. Let (T,)n=0 be a (u, f,0) -RIF tree satisfying C1 with Malthusian param-
eter a. Moreover, assume that there exists a constant C' < « and a non-negative function ¢
with E [o(W)] < « such that, for all k € Ny, f(k,W) < Ck + (W) almost surely. Then,

almost surely

Zn n—0o0
—_—

n

In order to apply Theorem 2.2.4, we need to bound E [supt20 e Mol (t)] for an appro-
priate choice of characteristic ¢ that tracks the evolution of the partition function associ-
ated with the process. In order to do so, using the assumptions on f(i, W), we will couple the
process Y defined in (2.5) with an appropriate pure birth process (Y(t));=0 (Lemma 2.2.9) and

apply Doob’s maximal inequality to a martingale associated with ()(t)):>o (Lemma 2.2.8).

In order to define Y(t), first sample a weight W and set }(0) = 0. Then, if P,, denotes
the probability measure associated with the process when the weight is w, define the rates
such that

P, (V(t+h) =k +1| V() =k) = (Ck + p(w))h + o(h).!

We also let ), denote the process with the same transition rates, but deterministic weight

w.

It will be beneficial to state a more general result, about pure birth processes (X (%)),
with linear rates, from the paper by Holmgren and Janson [41]. For brevity, we adapt the

notation and only include some specific statements from both theorems.

Lemma 2.2.6 ([41, Theorem A.6 & Theorem A.7]). Let (X(t)),., be a pure birth process

with X(0) = zo and rates such that

PX(t+h)=k+1]|X(t)=Ek)=(c1k+ ca)h + o(h),

IThis process, when C' = 1 and op(w) = 0, is often known as a Yule process.
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w008 for some constants ci,co > 0. Then, for eacht = 0

E [X(t)] = <$0 + @) et — 2, (2.14)

C1 8]

w10 Moreover, if g = 0 the probability generating function is given by

e—cit cz/c1
1011 E [ZX(t)] = (1 (1 — t)> . (2.15)
—z(l—e™

1012 We also state a version of Doob’s maximal inequality.

113 Lemma 2.2.7 (Doob’s LP Maximal Inequality, e.g. |[Proposition 6.16, [49]]). Let (X;)i=o be

w4 a sub-martingale and Sy := supy<,<; Xs. Then, for any T >0, p > 1

p
1015 p L p
E [|S7|"] < (p—l) E [|X7|"].

1016 Finally, we will require Lemma 2.2.8 and Lemma 2.2.9.

1017 Lemma 2.2.8. For any w > 0, the process (e~ (Vu(t) + p(w)/C))i=0 is a martingale with

wis  respect to its natural filtration (Fy)i=o. Moreover,

E [Sup (eCty(t))] < .

t=0

w20 Proof. The process (Vy(t))i>0 is a pure birth process satisfying the assumptions of Lemma 2.2.6,
w21 with ¢; = C and ¢ = ¢(w). Therefore, by (2.14) and the Markov property, for any ¢t > s > 0

1022 we have

w w
B DL 7] = ED0) | Rulol] = (ule) + 50 ) e - £
1024 which implies the martingale statement.
1025 Moreover, applying (2.15) for the probability generating function, differentiating twice

1026 and evaluating at z = 1, we obtain

o E [V (t) Vul(t) — 1)] = o(w) (%j o(w)) (eCt . 1)2 :
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1028 and thus

B[00 + pw)/0)] = LT (o’

+ (20(w)/C + 1) p(w) (€9 = 1) + (p(w)/C)?.

1020 after some manipulations, we find that for all ¢ > 0

E [e72 (Vu(t) + p(w)/C)?] < 90(0“? + ‘P((;ﬁ“) (1—e 0.

1031 Thus, we find that there exist constants A, B depending only on C' such that for all ¢ > 0

2B [ (Vult) + p(w)/C)*] < A+ Bo(w).

1033 Combining this L? quadratic bound with Doob’s maximal inequality, we have

E [Sup (e_Ctyw(t))] <E [sup (€7 Vult) + p(w)/C ))]

=0 t=0

< J E [(p (=0t (Vu(t) + so(w)/c»)gl

< 2\/]]1: [e72C (W (t) + p(w)/C)7]

< A+ Bp(w).
1034 Thus,
1035 E lsup (e_Cty(t))] =E lsup (e_CtyW(t))] < A+ BE [p(W)] < .
=0 20
1036 D

w3z Lemma 2.2.9. Recall the definition of Y in (2.5) and assume that there exists a constant
s C' < a and a non-negative function @ with E [o(W)] < oo such that, for allk € Ny, f(k, W) <
wo Ck + (W) almost surely. Then, there exists a coupling (Y (£),Y(t))iso of (Y ()0 and
wa0  (Y(t))e=0 such that, for all t =0

1041 Y(t) </ ji(t)
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In the following proof, we denote by Exp () the exponential distribution with param-

eter r.

Proof. First, we sample W from 1 and use this as a common weight for Y and ). Now, let
(Si);=o be independent Exp ( £, W)) distributed random variables. Then, for all £ > 0 set
Ty = Zi:ol ¢; and
ee}
Y(t) = > kllscics,,,
k=1
The ¢; can be interpreted as the intermittent time between jumps from state ¢ to 7 + ¢. For

all t > 0 construct the jump times of (Y(t))io iteratively as follows:

e Note that by assumption f(0, 1) < @(W). Let ey ~ Exp (@(W) — f(0, W)) and set

¢, = min {ep, s0}. We may interpret ¢/ as the time for Y to jump from 0 to 1.

e Given g, ...,¢}, let ¢; := 7o) and define m; := Y (g;)/¢, i.e., the value of Y /¢ once

Y has reached J + 1. Assume inductively that m; < j + 1 and set

ejr1 ~ Exp (O(J +1) + (W) — f(my, W)) and  ¢j,, = min{ej,Gn, } -

Observe that, since ¢/, | < G, 41, we have mjy1 < j + 2, so we may iterate this procedure.

~

It is clear that (Y (¢))i>o is distributed like (Y (¢));>0 and using the properties of the
exponential distribution, one readily confirms that (J(t))eso is distributed like (V(t))iso.
Finally, the desired inequality follows from the fact that y (t) always jumps before or at the

same time as Y(t). O

Proof of Theorem 2.2.5. Consider the continuous time embedding of the (u, f,¢)-RIF tree
and define the characteristics ¢ (t) := Yoo f(k, W)Ly py=rey and ¢ () := 150;. Recall

that we denote by (7;);>1 the times of the jumps in Y and that, for all & > 0, f(k,W) <
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Ck + (W) . Then, by Lemma 2.2.9, Lemma 2.2.8 and the assumptions of the theorem,

E lsup (e‘Ctng(l)(t))] g {sup (e~ (CYw (t) + go(W)))] bem 228 o

t=0 t=0

Now, in this case A (t) is the total sum of fitnesses of individuals born up to time ¢, while
Z9? (t) = |7;]. Thus, by Theorem 2.2.4 and Fubini’s theorem in the second equality, almost

surely we have

T}E}o % = QL e YR [kZ:;) f(k‘, W)l{y(s)kg}] ds (2.16)
0 0 k—1 .
— T —QT+1 f(,l’ W)
:ELZ_Of(k’W)(e —C ] [Z k:W +all_£f(i,W)+a

Now, recall that by (2.8) we have

fi 1
[kaw +al_[sz ] A

0

and combining this with (2.16) proves the result. O

2.2.4 Examples of Applications of Theorem 2.2.1
Weighted Cayley Trees

Consider the model where f(k,W) =0 for k > 1 and f(0, W) = g(W). Thus, at each step,
a vertex with degree 0 is chosen and produces ¢ children and thus this model produces an
(£+1)-Cayley tree, i.e., a tree in which each node that is not a leaf has degree £+ 1. Without
loss of generality, by considering the pushforward of pu under g if necessary, we may assume

that g(W) = W. In this case, p,(A) = (- E [ and thus C1 is satisfied as long as ¢ > 2

Wil

Thus, p¢(B) = 0 for all k > 2 and

o
W+ «

po(B) = E l
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This rigorously confirms a result of Bianconi [10]. Note however, that in [10], « is described
as the almost sure limit of the partition function and we may only apply Theorem 2.2.5

under the assumption that E [W] < oo.

In the notation of [10], the weights W are called ‘energies’, using the symbol e, the
function g(e) := ¢, where 3 > 0 is a parameter of the model, and « := e#F is described as
the limit of the partition function. Thus, the proportion of vertices with out-degree 0 with
‘energy’ belonging to some measurable set B is

E [;13(%],

eﬁ(G*NF) —+ 1

which is known as a Fermi-Dirac distribution in physics.

Weighted Random Recursive Trees

In the case that f(k,WW) = W, we obtain a model of weighted random recursive trees with
independent weights and C1 is satisfied with o = E [W] provided E [W] < oo. Theorem 2.2.1

then implies that

Ne(n, B) noe | E[W]W*
tn (W + (E [W])
almost surely. This was observed in the case ¢ = 1 by the authors of [37, Proposition 3|. Note

k+1 B( ) )

also that in this case Theorem 2.2.5 coincides with the usual strong law of large numbers.

The weighted random recursive tree has a natural generalisation to affine fitness func-

tions. This is the topic of the next section.
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2.3 Generalised Preferential Attachment Trees with Fit-

ness

In this section, we study (i, f,¢)-RIF trees in the specific case when the function f takes
an affine form, that is, f(i,W) = ig(W) + h(W), for positive, measurable functions g, h.
We call this particular case of the model a generalised preferential attachment tree with
fitness (which we abbreviate as a GPAF-tree). The affine form of this model mean that it is
tractable to apply the coupling methods outlined in Section 2.3.2, when Condition C1 fails,
and the functions g and h are non-decreasing. Moreover, this model is general enough to be
an extension of not only the weighted random recursive tree, but also of the additive and

multiplicative models studied in [20, 9].

The results, and techniques used in this section will inspire us to study a further
generalisation of this model, the preferential attachment tree with neighbourhood influence
(PANI-tree) in Chapter 3; in the latter the fitness function is affine, but also incorporates
information about the weights of the neighbours of a given vertex. Below, in Section 2.3.1
we apply the theory of the previous section to this model when C1 is satisfied. In the rest
of Section 2.3, we assume that the associated functions g and h are non-decreasing. In
Section 2.3.2, we analyse the model when Condition C1 fails by having m(A,R;) < 1 for all
A > 0 such that m(\,R,) < oo, stating and proving Theorem 2.3.1. Then, in Section 2.3.3
we analyse the model when Condition C1 fails by having m (A, Ry ) = oo for all A > 0, stating

and proving Theorem 2.3.3.

Note that in this section, we formulate our results in terms of functions g and A de-
pending on a random variable W taking values in R, . However, in the vein of Remark 2.2.3,
we expect these results to extend to cases where g and h may depend on more general random

variables. For example, there is no loss of generality in assuming g and h depend on possibly
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correlated random variables W; and W, assigned to a given vertex. In this case, the cou-
pling technique applied in Section 2.3.2 needs to be adjusted accordingly, with appropriate

“truncations” of the vector (Wy, Ws).

2.3.1 When the GPAF-tree satisfies Condition C1

In the context of the GPAF-tree, Condition C1 states that there exists A > 0 such that

m(A,RY) =€-IE[

First recall the definition of the birth process Y from (2.5) in Section 2.2, with f(k,w) =

g(W)k + h(W). By applying (2.14) from Lemma 2.2.6 and the initial condition Y (0) = 0,
for any w € R, we have

]E'w [Y(t)] _ (h(w)) 6Eg(w)t o h(U))

g(w) g(w)

Now, (2.6) and (2.7) in Section 2.2 showed that

w0 n—1 ) h(w) if )\/g - ( )
g(W)i + h(W) foo s Ni—g(w) ! g w);
0 - = xe VE, Y ds = 2.17
2 G s = ) e e e
0 otherwise.

For a measurable function g : R, — R, we define esssup (¢g) such that

esssup (¢) :==inf{a e R, : p({z: g(x) > a}) = 0}.

Therefore by (2.17), for A > £ - esssup (g) we have m(\,R;) = E [%} while if A <
¢ - esssup (g) we have m(\,R;) = oo. Thus, Condition C1 is satisfied if esssup (g) < o,
E [A(W)] < o0 and, for some A = £ - esssup (g)
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As a result, the Malthusian parameter o appearing in Condition C1 is given by the unique

«a > 0 such that
h(W) _
2| | =1

Note that the parameter ¢ in the model has the effect of re-scaling the Malthusian parameter

(2.18)

a. Also, since a = (- esssup(g), if E[h(W)] < oo, Theorem 2.2.5 applies and o may also
be interpreted as the almost sure limit of the partition function associated with the process.

Now, in the context of this model, the limiting value p¢(-) from Theorem 2.2.1 is such that

Wi(B) =

a Bl (Wi + (W)
[g(W)k: +h(W) +a ll o) + A +a 2| (2.19)

Now, recall Stirling’s approximation, which states that
T(z) = (1+0(1/z2)) 2" 2e " (2.20)

If g(W) > 0 on B, by dividing the numerator and denominator of terms inside the product
in (2.19), we obtain a ratio of Gamma functions. Thus, by applying Stirling’s approximation,

on any measurable set B on which g, h are bounded, we have
pR(B) = (1+ O(1/R)E |epk™ (U ain) 15(w)

where cp, which comes from the term outside the product in (2.19), depends on g and h but
not k. Thus, the distribution of (p(B))ken, follows what one might describe as an ‘averaged’

power law. Moreover, in the case ¢ = 1, a > esssup(g), thus,
E [ch*(“%)lB(W)] > k2

for some ¢ > 0. It has been observed that real world complex networks, have power law
degree distributions where the observed power law exponent lies between 2 and 3 (see, for
example, [77]). Note that by (2.18), a depends on both h and g, so that keeping g fixed and

making h smaller has the effect of reducing the exponent of the power law.

In the remainder of this section we set ¢ = 1, for brevity. The arguments may be

adapted in a similar manner to the case £ > 1.

56



1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

Generalised Recursive Trees with Fitness

2.3.2 A Condensation Phenomenon when Condition C1 Fails

Recall that, in the GPAF-tree, if A > esssup (g) we have

h(W)
m(\R,) = E [T(W)] , (2.21)

and if A\ < esssup (g), we have m(A\, R, ) = co. If we define
A:={A>0:m(\R;) <0},

in this subsection, we consider the case that the GPAF-tree fails to satisfy Condition C1
by having m(A\,R;) < 1 for all A € A. We show that in this case the GPAF-tree satisfies
a formula for the degree distribution of the same form as (1.4). Moreover, if A\* := inf (A)
and m(A\*,R;) < 1, this model exhibits a condensation phenomenon, as described in The-
orem 2.3.1. We remark that such results have been proved for the case of the preferential
attachment tree with multiplicative fitness, i.e., the case h = ¢, in [31], in a more general

framework; that is to say encompassing other models apart from a tree.

In Section 2.3.2 we state our main result, Theorem 2.3.1 and discuss interesting impli-
cations in Section 2.3.2. In Section 2.3.2 we state and prove Lemma 2.3.2 which is the crucial

tool used in proofs of the theorem. The proof of Theorem 2.3.1 is deferred to Section 2.3.2.

Note that in the case that g and h are bounded, we have \ = ess sup(g) < oo. Without
loss of generality, we re-scale the measure p and re-define g and h such that Supp (1) <
[0, w*], where w* := sup (Supp (1)) < o0. For example, we may replace W by arctan(1V)
and g and h by g o tan and h o tan. Such a re-scaling does not affect the monotonicity of
g, h and the boundedness assumption implies that g(w*), h(w*) < oo. Moreover, if T does
not satisfy C1, the monotonicity of g implies that u does not have an atom at w*, since in

this case esssup(g) = g(w*). Thus, for each £ > 0, we have
pl[w* =, w*]) >0, (2.22)
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and, re-defining g such that g(w*) = lim._,o g(w* — ¢) if necessary, we may assume without
loss of generality that g is continuous at w*. We adopt these assumptions for the rest of this

subsection.

Theorem 2.3.1: Condensation in the GPAF-tree

Our main result in this subsection is the following theorem, which demonstrates the possi-
bility of condensation in this model. Define the measure 7(-) such that, for any measurable

set B,

#(B) - E %13(%] + (1 _E {#%D Sue (B).

Theorem 2.3.1. Suppose T = (Ty),, is a GPAF-tree, with associated functions g, h, where
g, h are non-decreasing and bounded and Condition C1 fails. Then we have the following

assertions:

e With regards to the weak topology,

E(”? ) n—9©, (-

= ()

almost surely.

In particular, if E [g(w:f&

)_g(W)] < 1, this model exhibits a condensation phenomenon,

as described before Conjecture 2.1.1 in Section 1.4.

e For any measurable set B, almost surely we have

Ni(. B) oz [ g(w*) [T 90+ (i)

n 0k + h(W) + g(w) L gi)i = h(y + gy 22|

1=0

i.e., w e, pi(w*)(B) almost surely.

o The partition function

Zn n—
I, g(w*),  almost surely.
n
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Remark 2.3.1. By applying a more refined coupling argument to the one presented in
Lemma 2.3.2, we can actually improve this result to remove the assumption that h is non-
decreasing. We omit the details, but instead refer the reader to Section 3.3 in Chapter 3,

where we present a more refined coupling.

Some Interesting Implications of the Condensation Phenomenon

The condensation result in Theorem 2.3.1 has interesting implications for the GPAF-tree.
Informally, the parameter g(w) measures the extend to which the ‘popularity’ of a vertex
with weight w is reinforced by the number of its neighbours, while the parameter h(w)
represents its ‘initial popularity’. The condensation phenomenon then depends on both u
and h, in the sense that condensation occurs if vertices of high weight are ‘rare enough’ and
the initial popularity is ‘low enough’. More precisely, if we assume ¢, h are non-decreasing
and bounded, we can see two particular regimes of the tree:
1. If p is such that E [m] = o0, then, for any non-decreasing bounded function
h, Condition C1 is satisfied in this model, and thus, the model does not demonstrate

a condensation phenomenon.

2. Otherwise, if g is such that E [g;] = (' < o0, then either

(w*)—g(W)
® s om | 7 = s e

In the first case, Condition C1 is satisfied, but fails in the second case. However, in

< L.

the second case, if the inequality is strict, condensation arises. Therefore, for fixed g,
condensation in this model arises by reducing h sufficiently point-wise, for example, by

replacing h by K - h where K < 1/C' is a constant.

Remark 2.3.2. Note that the first regime shows that whenever g attains its essential supre-

mum on a set of positive measure, Condition C1 is satisfied. This will be important in the
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couplings employed in in the rest of the section.

A Coupling Lemma

In order to prove Theorem 2.3.1, we first prove an additional lemma. For each £ > 0 such
that ¢ < w*, let T = (7,)n=0 and T ° = (7, °)n>0 denote GPAF-trees with the same

functions ¢, h, but with weights W) W (=9 distributed like
Whouws—a(W) + w* i —cwx)(W) and W A (w* —¢) respectively.

The motivation behind these choices of 7% and 7 ¢ is that they have distributions with
atoms at the value maximising ¢g almost everywhere. Thus, by (2.22) and Remark 2.3.2,
these trees satisfy Condition C1, and we may apply the theorems from Section 2.2 with
regards to these trees. Then, provided these trees provide sufficiently good ‘approximations’

of the tree 7, we may deduce certain results by sending ¢ to 0.

In this vein, let NZ;(n, B), N>x(n, B) and NZ;(n, B) denote the number of vertices
with out-degree > k and weight belonging to the set B in 7 7T, and 7, ¢ respectively.
In their respective trees, we also denote by VVZHE), W; and VVZ-(_E) the weight of a vertex
i and Z¢ Z, and Z ¢ the partition functions at time n. Finally, for brevity, we write
fire) (v), fn(v) and ffl_a)(v) for the fitness of a vertex v at time n in each of these models. In

other words, f,(v) = g(W,)deg™ (v, T,) + h(W,).
Lemma 2.3.2. There exists a coupling ('7:*5,72, ’7:*5) of these processes such that for all
n € Ny,
e For any x < w* — & we have Z7¢(n, [0, x]) < E(n,[0,x]) < E7%(n, [0, z]),
e For all measurable sets B < [0, w* —€) and k € Ny, we have
N;Z(n, B) < Nzy(n, B) < N2 (n, B),
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e Z < Z,< 2t

n

Proof of Lemma 2.53.2. Initialise the trees with a vertex 0 having weight W, sampled in-
dependently from g in 7, and weights WOHS) = Woljow—a(Wo) + w*L(wx—c ) (Wo) and

Wé_e) = Wy A (w* —¢) in T3 and T;°. Assume, that at the nth time-step,
(T, %)o<ten ~ (T o<y (Tosien ~ (Tosien and (T, %)o<ren ~ (T, %)o<t<n.

In addition, assume, by induction, that we have Z.¢ < Z,, < Z¢ and for each vertex v with

o) W, = W < w* — ¢ we have

A

deg® (v, T.7°) < deg™ (v, Tp) < deg™ (v, T,9). (2.23)

Note that (2.23) implies the first and the second assertions of the lemma up to time n. As
a result, for each vertex v with W, < w* — & we have f\™(v) < fa(v) < £ (v). Now, for

the (n + 1)st step

e Introduce a vertex n + 1 with weight W, ; sampled independently from g and set

W(ii) = Wn+11[0,w*—5]<Wn+1> + w*l(w*—s,w*](Wn+1> and WT(L:? = Wn+1 A (w* - 5)-

n

e Form 7:;51 by sampling the parent v of n + 1 independently according to the law of
T ¢, i.e., with probability proportional to fr(fs) (v). Then, in order to form 7,.+1 sample
an independent uniformly distributed random variables U; on [0, 1].

A

- IfU; < %’;)((v)) and er) < w* — ¢, select v as the parent of n + 1 in 7,41 as

well.

— Otherwise, form 72+1 by selecting the parent v’ of n + 1 with probability propor-

tional to f,(v’) out of all all the vertices with weight W, > w* — ¢.

e Then form 7.5 in a similar manner. Sample an independent uniform random variable

U2 on [0, 1]
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1272 — If a vertex v with weight W,, < w* — ¢ was chosen as the parent of n + 1 in ’YA;H
(+¢) ~

1273 and also U, < %, also select v as the parent of n 4+ 1 in 7,"5.

1274 — Otherwise, form 7T -5 by selecting the parent v” of n + 1 with probability propor-

1275 tional to i (v") out of all all the vertices with weight W,» = w*.

1276 It is clear that 7;:1 ~ T.,.5- On the other hand, in 711 the probability of choosing a parent
v of n+ 1 with weight W, < w* — ¢ is

Zofa0) SO0 fal)
Z 5w ErT z,’

1278

1270 whilst the probability of choosing a parent v' with weight W, > w* — ¢ is

Fa(v) 20\ A7)
oWy swt—e Jn(V) ,Z (1 znfn—6>(v)) Z.e

v W T cw* e
fa(¥) 3 i ()
Z’U:WUZ’W*—E fn(U) — Z’;E

v:ng &) _w* e

R AC 9w J0)
- Zv We=w*—¢ fn Z E Z Zn

0 WET) <wt e

fn (UI) 1— Z“1}:1/[/1576)<u}*—6 fn <U> fn (U/)
Z’U:Wva*fg fn(v) Zn

+

120 where we use the fact that ) f,(v) = Z,. Thus, we have Toi1 ~ Tns1. Moreover, either
1281 the same vertex is chosen as the parent of n + 1 in both ’7; 25 and ’72“, or a vertex of
1282 higher weight, at least w* — ¢, is chosen as the parent of n + 1 in ’7;“. This implies the left
12e3 inequality in (2.23) and in addition, when combined with the fact that Wé;i) < Wyt and

1284 ¢, h are non-decreasing, guarantees that Z_ 7, < Z,,1. The proof that 7 8~ Tok5, the right

es inequality in (2.23) and Z,.; < 2,7, are similar, so we may thus iterate the coupling. O

62



1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

Generalised Recursive Trees with Fitness

Proof of Theorem 2.3.1

In order to prove Theorem 2.3.1, we first define the auxiliary GPAF-trees 7 and 7 ¢

according to Lemma 2.3.2.

Proof of Theorem 2.3.1. For the first assertion, by the definition of weak convergence, we

need only check that

=(n,[0,7]) now

- ([0, 2])

almost surely, at any point where z — 7([0, x]) is continuous. Suppose x < w*. For ¢ > 0
sufficiently small that © < w* — ¢, define the corresponding quantities =*(n,-), =¢(n, )

associated with 7€ and 7 . Then, from the coupling in Lemma 2.3.2, we have

=*4(n, [0, z]) < =(n, [0, x]) - ="%(n, [0, z])

Note that the auxiliary trees 7 ¢ and 7 ¢ have associated weight distributions which contain
an atom at their maximum value and thus, by Remark 2.3.2, satisfy Condition C1, with
Malthusian parameters (=) > g(w* — ¢) and a(*®) > g(w*). Moreover, note that, by the

definition of W2,

<1

Y

. lgw*h)(KV g(;if)w)} =E l%]

so that, recalling (2.18), o'~ < g(w*). Thus, since < w* — ¢, by Lemma 2.3.2, dominated

convergence and continuity of g at w*, almost surely we have

(n.[0,]) B
n Lﬂ—@ ~ o) ”“”W)] -F {g<w*> ~ ()

[1]

<lmE

lim sup )
E—>

n—0o0
Now, {*¢) is non-increasing in £, and we have lim._,o o(*9) = g(w*). Indeed, suppose
by way of a contradiction that lim._oa(*® = o/ > g(w*). Then,

h(w*)

—_ < 0
a’ = g(w*)

b
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1306 and thus by dominated convergence,

. h(W (+9)) h(W)
1307 1= ll_l,T(l)E al+e) — g(W(+E))] -k [O/——g(VV) .

1os  But then, (2.18) is satisfied for A such that g(w*) < A < o/, contradicting the assumption

1300 that Condition C1 fails for 7.

1310 It follows that lim._,a(™®) = g(w*) and thus, by Lemma 2.3.2 and dominated con-

131 vergence, almost surely we have

=(n, [0, z]) . h(W) _ h(W)
1313 The first assertion follows.
1314 For the second assertion, given a measurable set B, for each ¢ > 0, set B := B n

ws [0, w* —¢). In addition, note that, conditional on taking values in B the random variables
e W, W) and W) are identically distributed. Combining these facts with Lemma 2.3.2,

1317 almost surely we have

N=(n, B) = )i 4+ h(W ) ) i
hgl_ilolp - hmmf (E [H S 5) T ROV ) 5 ol )IBE(W) + u([w* — e, w*|

= liminf E

e—0

b i+ h(W)
[ g(W z+h(W)+a(—s)1BE(W)]

g(W)i+ h(W)
-F [H S )i + h(W) +g<w*>1B(W)] ’

=

1318 where we have applied dominated convergence in the final equality. Similarly, almost surely,

.. New(n,B) [ (WD) + R(W )
lim inf —=F0 20 E 15 (W
Et e\ | Loty 1wt 1 ama o ()
[ k—1 .
. g(W)i + h(W))
== 1 ]E € W
P Ll gy () el (W)

e T 9W)i+ (W)
“E\L L= am + ot 1B(W)] |
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Finally, for the last assertion, by Lemma 2.3.2, for each n € Ny we have

Z—€ Z, Zte
n n n

Taking limits as n goes to infinity and applying Theorem 2.2.5, the result follows in a similar

manner to the previous assertions. ]

2.3.3 Degenerate Degrees when Condition C1 Fails

In this subsection, we show that if the GPAF-tree fails to satisfy Condition C1 by having
m(A, Ry ) = oo for all A > 0, almost surely the proportion of vertices that are leaves tends to 1.
Consequentially, the limiting mass of edges ‘escapes to infinity’, as described in Theorem 2.3.3
below. Note that Condition C1 fails in this manner in the GPAF tree if esssup (g) = o
or E[h(W)] = 0. We remark that similar results to Theorem 2.3.3 have been shown in
preferential attachment model with multiplicative fitness with p having finite support |20,
Theorem 6| and preferential attachment model with additive fitness (the extreme disorder

regime in [54, Theorem 2.6]. These cases correspond to h(z) = 0 and g(x) = 1 respectively.

As in the previous subsection, we re-scale the measure p and re-define g and h such
that Supp (1) < [0, w*], where w* := sup (Supp (x)). In this case, however, we have either
g(w*) = o or h(w*) = oo, and since g(W), h(W) < oo almost surely in order for the model

to be well-defined, this implies that u does not contain an atom at w*.

Theorem 2.3.3. Suppose T = (T,)ns0 is a GPAF-tree, with associated functions g, h, with
g, h non-decreasing such that esssup (g) = o0 or E [h(W)] = co. Then we have the following

assertions:

o With regards to the weak topology

almost surely.
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e For any measurable set B < [0, w*], we have

n

w(B), almost surely. (2.24)

Proof. This is similar to the proof of Theorem 2.3.1. For each ¢ > 0 set B* := Bn|[0,w* — ¢],
let 775 = (7,7%)ns0 denote the GPAF-tree, with weights W (=¢) distributed like W A (w* — ).
Let N2 (n,B), Nxi(n, B) denote the number of vertices with out-degree > k and weight
belonging to B in 7, ° and 7, respectively. The following claim follows in an analogous

manner to Lemma 2.3.2:

Claim. There exists a coupling (7A’, 7275) of T and T ¢ such that for all n € Ny we have the

following:

o [or all x < w* — e we have Z(n, [0,z]) < Z7¢(n, [0, x]).

e For all measurable sets B < [0, w* — €) we have Nxi(n, B) < N2 (n, B).

Now note that 7 ¢ has a weight distribution with an atom at its maximum value,
and thus, by Remark 2.3.2, satisfies C1, with Malthusian parameter o). Moreover, note
(=) is monotonically increasing as ¢ decreases. In addition, the assumptions on ¢ and h

imply that m(A,R,) as defined in (2.21) is infinite for all A > 0. Therefore,

lim ™9 = oo,

e—0
Now, for the first assertion, as in the proof of Theorem 2.3.1, we need only check that

=(n,[0,2]) now

In

0,

almost surely, for all z < w*. But now, for ¢ sufficiently small that © < w* — ¢, by the claim

we have

_ =(n,[0,2]) . =(n,[0,2])
fmsup = shmswp = = B e )
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Taking the limit as € — 0 proves the result.

For the second assertion, by the claim and applying, for example, dominated conver-

gence in the right hand inequality, for all £ > 1 we have

N B
lim sup —Zk(n’ )

n—00
k—1 _ . _
o g(W )i + h(W )
< lim inf (E [LIO SV 5 W) + ara 1er V)

+ u(B\B€)> ~ 0.

Then (2.24) follows from the strong law of large numbers, which implies that W — u(B)

almost surely. |

2.4 Analysis of (u, f,¢)-RIF trees assuming C2

By Theorem 2.2.5, under certain conditions on the fitness function f and C1, Condition C2
is satisfied, i.e.,
Zn n—a0

— —— «, almost surely.
n

However, Theorem 2.3.1 shows that this condition may be satisfied despite Condition C1
failing. Therefore, in this section, we analyse the model under Condition C2. In particular,
we make the heuristic outlined in Section 1.4.1 of Chapter 1 precise, showing that the limit

of Ni(n,-)/fn is closely linked to the almost sure limit of the partition function.

The methods applied in this section are closely related to those of Section 4.4 of
Chapter 4, which also apply the summation arguments stated and proved in Section 2.4.2
below. However, the results in this section have significantly fewer technical difficulties, and,
in addition, we present a much shorter proof of convergence of the mean of N(n,B)/(n.
Therefore, we recommend the reader study this section closely before reading Chapter 4.

We state and prove Theorem 2.4.1 below and state Theorem 2.4.4, leaving the details to the
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reader. These proofs rely on Proposition 2.4.2, proved in Section 2.4.3 and Section 2.4.4;

and Proposition 2.4.3, proved in Section 2.4.5.

2.4.1 Convergence in probability of Ni(n, B)/¢{n under C2

Theorem 2.4.1. Assume C2. Then, for any measurable set B we have

Nk(n,B) n—00 « " f(S,W)
‘n = f(k,W)+aEf(s,W)+a

15(W) | = pg(B), in probability.

In order to prove Theorem 2.4.1, we define the following family of sets:
F :={B: B is measurable and Vs € Ny, f(s,w) is bounded for w € B}. (2.25)

We also require Proposition 2.4.2 and Proposition 2.4.3, proved in Section 2.4.4 and Sec-

tion 2.4.5. These proofs rely on the results stated in Section 2.4.2 and Section 2.4.3.

Proposition 2.4.2. For any set B € %, for each k € Ny we have

L E[Ni(n, B)]

=pY(B).
e in pk( )

Proposition 2.4.3. For any B € . and k € Ny we have

lim E [—(Nk<”’ 5) ] — (i (B))*.

n—00 V2n2

Proof of Theorem 2.4.1. The result follows for all B € % by combining Proposition 2.4.2,

Proposition 2.4.3 and applying Chebyshev’s inequality.

Now, let B be an arbitrary measurable set and let € > 0 be given. Then, since, by
the definition of the model in Section 1.3.2 of Chapter 1, for each s € {1,...,k} the map

w — f(s,w) is measurable, by Lusin’s theorem we can find a compact set £ < B such that
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uo (B n E°) < ¢/3 and for each s € {1,...,k} the map w — f(s,w) is continuous on E.

uor  Moreover, note that p{(B) — pf(B n E) < u(B n E°) < ¢/3. Then,

(2]

< P((‘Nk(gn, B)  Nig(n,Bn E)’ N ’Nk(n,gB NE)
n

- - (B B)
+ (B 0 B) - ()] ) > <)

N, BnFE
gp(‘%_pg@mm
n

- e/3)

+P(P%ZBLJWW£“EW>d@. (2.26)

o2 Now, note that by the strong law of large numbers, and Egorov’s theorem, for any § > 0

13 there exists an event G with P(G) < § such that

) Ni(n, B n E°)
= lim sup

n— 00 g?’L

< u(B n EY)

Ni(n,B)  Nig(n, B n E)>

1404 lim sup ( n n

n—00
uos on the complement of G. Therefore, the result follows from (2.26), Proposition 2.4.2 and

1206 Proposition 2.4.3 by taking limits as n tends to infinity. O

1407 Using the approach to the upper bound for the mean in the next subsection, and
s applying Corollary 2.4.6 stated below with & = 1 and eg,e; = 0, if N>1(n, B) denotes the
1400 number of vertices of out-degree at least 1 in the tree with weight belonging to B, we actually
1410 have

1411 lim sup ENoaln, B)) < i/E [f(0,W)1g(W)],

P00 In «Q

112 as long as liminf,_, % > /. By sending o/ to infinity, this yields the following analogue

1413 Of Theorem 2.3.3:

we Theorem 2.4.4. Suppose T is a (u, f, () -RIF tree such that lim,_, 2= = co. Then for

s any measurable set B < [0, 00), we have

No(n, B) ¢+
1416 0, B) oo wu(B), in probability.
n
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2.4.2 Summation Arguments

Here we state and prove some summation arguments required for the subsequent proofs, in
particular, the proofs in the rest of this section, as well as in the proofs of Section 4.4 of
Chapter 4. For eq,...,e,. = 0,0 <n <1, let

st BT )

nm<ip<--<ip<n j=0

Lemma 2.4.5. Uniformly in eq,..., e, =0, 0 <n < 1/2, we have
k k k+1
1 1 2lj—o€jlog" (n)
Sn(eo; .- ex,n) = 1_[[) P +6(n) + 0O (nl/(k+2) T n :
i

Here, 0(n) is a term satisfying |0(n)| < Mn"*+2) for some universal constant M depending

only on k.

Corollary 2.4.6. Foreq,... ek, fo,---, fr1=0,0<n<1/2, we have

LEoz IE) =)0

nn<10<n ({ZD+1 ,,,,, n}) J
k

-1
. ja / 1
_ek+1ne]~|—1+9 )+O nl/(k+2) | -

Jj=0

Here, 0'(n) is a term satisfying |0'(n)| < M'nY*+2) for some universal constant M' de-

pending only on k and fo,..., fr_1, and the constant in the big O-term may depend on

607---7€k7f07-~~7fk-

To prepare the proof of the lemma, we rewrite the relevant sums using probabilistic
language. Let Up,...,U; be k + 1 independent random variables uniformly distributed on
[0,1]. We write U < ... < Uy, for their order statistics. Let I; = [Uynl,j € {0,..., k}.
Then, I,, = (ly, ..., I;) is the vector of order statistics of k + 1 independent random variables

with uniform distribution on {1,...,n}. Let A, be the event that these random variables
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wss  are distinct. Then, for ey, ..., e > 0,0 <n < 1/2, we have

k—1 . : .
1 i; \“ 1 i\ *
Sn(€0>---,€k,77)25 H i Z -1 E
nn<io<--<ip<n j=0 I+l I+l

1 ML \Y n I\
=——E I : L I VP e
(k+1)! Lzo (<Ij+1) L1 — 1) <n> oz ]

s Here, the (k + 1)! term corresponds to the (k + 1)! ways a vector of k£ + 1 uniform random

w3z variables on {1,...,n} can be (e, ..., ex). Note that, given Uy, Ujss1y, - - -, Ugy, the random
wss variables U, ..., Uq_1) are distributed like the order statistics of ¢ independent random
13 variables with the uniform distribution on [0,U;]. Now, Uy, is distributed like U 1/(k+1)

10 where U follows the uniform distribution on [0, 1]; indeed, for any = € [0, 1]

1441 P (U(k) < Z‘) — gl =P (Ul/(k+1) < I‘) .
ws2  Moreover, for any i € {0,..., k — 1},
NG '
1443 P (U(i) S | U(i+1)) = < ) ANl=P (Uil/ﬁ_l : U(i+1) <z | U(i+1)> s
Uli+1)

1as for an independent random variable U; uniformly distributed on [0, 1]. Thus, setting
1445 V; = UZ-I/(PFI)UZ-I_{(;JFQ) s U;/(kJrl), for i€ {0, cey ]{Z},

uss  the random vectors (U, ..., Uwy) and (Vo, ..., V;) are equal in distribution. Therefore, by

1247 applying the dominated convergence theorem, for n = 0 we have

k—1 €;
1
44 1 Sn PR 70 . Uek ’
1443 JYim Sn(eo, - ex,0) = k+1 [H«Uml) U(j+1>> (k)]

j
140 The last term is equal to

k—1 V. €; . k—1 1
Ho (Vj-jH) virll Vj

= j=0 "I+l

LS|
1451 — H + 1
6.

1452 j=0 7

1

(k+1)!'E

1450

[H Uea/(ﬁl 1_[ U i/ J+1)]

7=0
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ws3  Proof of Lemma 2.4.5. We start with the term involving 7. Note that ]_[] 0T ﬁ 714, <
1454 Hk ! U]Jlrl), since on the event A,,, we have I; > 2. Thus,
k—1 i e ]
n Ik F
1455 — ]-Anl <nn
| ()" 770) (2) veteem
b1 b1 1 (k+1)/(k+2)
_ (k+2)/(k+1) 1/(k+2
1456 < 2E [H U(j}rl)lfognn] < H ]+1+ )/(k+ P (1o < 1) /(k+2)
§=0 3=0 |

<2(k+ 1)(1+k(k+1))/(k+2) Ul/(k+2)-

1457
1458

uso Here, in the last step, we have used P (Iy < nn) <P (Ugy <n) =1 — (1 =" < (k+ 1)n.

uso Next, let A = 1]+—7:—1 — U<J+1) In the computation of

k—1 e; e
I; 7 n Ik F
E _ﬂ> —)(_) 1a |,
6 Lljo <(Ij+1 Iisn—=1) \n A

ue2 We can now successively replace [jﬁ_l by U(;ﬂ) + Ajiq for je{0,....,k—1}. As Aj; — 0

163 almost surely, it follows from the dominated convergence theorem, that

S (AR [N
- o @D e

1466

usr As E []Aj+1|1{U(O)>1/n}] = O(logn/n), it follows easily that the convergence rate in the last

ues  display is O(logn/n). Next, let A’ = & %1 - U((](jt)l Note that, for any positive real numbers
J

160 T,Y, we have
i S U] G A

(x+1Dz |z z =z
171 and thus, on A,
1472 A; € [—(TLU(]'_H))_I, (TLU(]-_H))_I].

I; s U( N s

wrz  Hence, by the mean value theorem, if s > 1, for j € {0,.. — 1}, <[J—il) — (Til)) ’ <

wra 5/(nUgj41)). In the case that s < 1, observe that

I, U U U
Lars min< i (4) )> (€ ) ’
Livi Ugeny )~ UGy + 172U
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since [; > 1, and thus,

s—1 s—1 s—1
. ( I; ) ( U) > - < Ui > - 2U41)
I "\ Ugi+1) 2U(j41) Ui

Thus, by a similar application of the mean value theorem, if 0 < s < 1, then,

) -(@2)
Ij Ui+

Now, for j € {0,...,k}, we have

k
[UJ>1 [ [Uii1a, 1{Io>1}] [H Ui ' Lviniy
=0

Note that we only need Iy > 1 when s < 1, in order to ensure that Uy > 1/n. Thus,

< 25/(nUg)).

= O(log"*"!(n)).

U

k—1 . .
]: J 1 ]k k
B H ) =] 1Ih,1
’j—(] <(Ij+1> <U(j+1))) (n) An {]0>1}]

T Y ¢ k-1 k+1
|[ Ug) >a 1 ([k)k S 1ogh ()
=K V) . 141 L0 . |
[j—O ( (j+1) 0 i/(jJrl) n {Ip>1} -

J

successively replacing 1 = by (’) + A’ shows

Replacing I/n by Uy gives rise to an error term of order at most ey long( )/n. As
P(AS) = O(1/n) and P (Iy = 1) = O(1/n), an application of Holder’s inequality shows that

we may drop the indicators 14, and 17,1} at the cost of an error term of order n=/*+2_ [J

2.4.3 Upper bound for the Mean of Ny(n, B)/(n

In the following subsections, unless otherwise specified, we let B denote an arbitrary element
of the family .% defined in (2.25). Let N, x(n, B) be the number of vertices of degree k¢ with
weight in B that arrived after time nn. Then, since N, x(n, B) < Ni(n, B) < N, x(n, B)+nin,

we have

E HN"”“(”’ B) _ N’“(ZL B)H <. (2.27)
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Thus, to obtain an upper bound for the convergence of the mean, it suffices to prove that

[Nmk(n, B)

li li E = pp(B).
im sup lim sup o ] P (B)

n—0 n—00

In what follows, we use the notation d;(n) to denote the out-degree at time n of the vertex

i born at time ig := |i/¢|]. We then have,

E[Ny(n,B)]= >, €-P(di(n)=FkW;eB),

nmm<ig<n—k

since the probability is identical for each of the ¢ vertices born at each time 7. In what
follows, for a given i we denote by Zj := {iy,...,i;} a collection of natural numbers ig <

11 < ... <1 < n. For ease of notation we exclude the dependence of Z; on i.

For a natural number s > 73, we use the notation i ~ s to denote that ¢ is the vertex
chosen at the sth time-step, hence i gains ¢ new neighbours at time s. Likewise, the notation
i # s denotes that ¢ is not chosen at the sth time-step. Then, let &(Zy, B) denote the event

that W; € B and for all s € {ig + 1,...,n}, i ~ s if and only if s € Z;. Clearly, we have

P(di(n) =k W,eB)= > P& B)).

where ({i0+1,;“"”}) denotes the set of all subsets of {ig + 1,...,n} of size k. For ¢ > 0 and

n = 0 and natural numbers N; < Ny, we let

G:(n) = {|Z, — an| < ean}, and G.(Ny, N;) = ﬂ G.(n (2.28)

t=N1

Moreover, for n > 1, we denote by 7, the o-field generated by (7;)1<s<n, containing all
the information generated by the process up to time n. By the assumption of almost sure

convergence and Egorov’s theorem, for any d,e > 0, there exists N’ = N’(g,6) such that, for

alln > N, P(G.(N',n)) = 1— 6. Thus, for n = N'/n, we have

E [Ny i(n, B)] < E [Nyi(n, B)lg,(vm] + tn (1= P (G(N',n))) (2.29)

</ Z > P(&(Z. B) 0 Gelig, m)) + on
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We use the shorthand a4, := (1 + ¢)a.

Proposition 2.4.7. Let Be€ % and 0 < g,n < 1/2. As n — oo, uniformly in nn < iy <

n—k, Iy = {i1,...,ix} € ({i°+1,€’""”}) and the choice of £, we have

P (gl(I]g, B) M ga<i07 TL))

-\ f(EW)/aye k=1 , . FGW)fate .

Uk 5 f(.]v W)

< (14+0(1 El|(— —J) ———15(W)|.
( (1/m)) [(n) =0 (Zj+1 a_c(ijy —1) a( >]

Corollary 2.4.8. Let Be€ .% and 0 < §,e,n < 1/2. Then, there exists N = N(d,e,n) such
that, for alln > N,

E [Ny x(n, B)] L+e\ i ymals
g—n < (1+9) (1—_8) E [f(k, W)+ e 55 W) + a+slB(W)

+On* D) 46,

where the constant C' may depend on k and B but not on n and not on the choices of 6,e,1.
In particular, for each B € % and k € Ny,

limsup E [Nk (n, B)] /fn < p}(B).

n—o0

Proof. This follows from applying (2.29) and Proposition 2.4.7 and then applying Corol-
lary 2.4.6 with e; = f(j,W)/ay. and f; = f(j,W)/a_. to bound the sum over the collection

of indices. Note that the term (E)k comes from replacing a_. by a.. O]

We proceed towards the proof of Proposition 2.4.7. Let £,7n be given such that 0 <
e,n < 1/2. For nmn < ig < n and Zy = {iy,..., i} € ({"Oﬂk’“""}) for each s € {ip +1,...,n},

we define

{i ~s}, ifsel,
D, =

{i # s}, otherwise,
and D, = Dy N G.(s). We also define D;, = G.(io) n {W; € B}, and for simplicity of notation,

write D; and Dj for the indicator random variables 1p, and 113j respectively. Note that

1)
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w30 E(Ly,, B) N G-(ig,n) = ﬂ?:io f)j. To bound the probability of this event, we define

1535 XS:IE[ﬁ[)
is+1

c%s] Disﬂ SE{O,...,I{I}

S§=1

13 and observe that E [Xo] =P < " . f)s) is the sought after probability.

1537 Lemma 2.4.9. For s € {0,...,k}, we have
n ’L]+171 .
W 5
1538 X, < 1_[ <1 — f ) 1_[ f ;W H (1 — f(]’—/)) D;,, (230)
i are(u—1 (i1 — 1) et a, (7 —1)

where we interpret any empty products (for example when i, = n) as equal to 1. In particular,
n 1j41—1 .
feW) fG.wW)  F fG,W)
E|lXy <E 1-— 11— ——= ) |15(W
ol u=l;[+1 ( Cre(u — 1 H (i1 = 1) ]'U—i—l (' —1) W)
J

(2.31)

1530 Proof. We prove (2.30) by backwards induction. For the base case, s = k, if iy = n, the

1540 inequality is trivial, as X, = Dzk Thus, assuming 7, < n, by the tower property,

n—1

E[ [] D %klz]E ]El[)n ﬂnl] [] Di| %
j=ik+1 | =g+l |
- - -

<E ]E[Dn %_11 [] Di| %

L J=ir+1 i

s few)y
. <1__ZM)W ]
A

<<1—ai(k%) [H D,

Jj=ip+1

|

1sa1  and iterating this argument with the conditional expectation on the right hand side proves

12 the base case. Now, note that for s € {0,..., k — 1}

1543 X,=E [X8+1 I] D
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similar to the base case, we may assume i, < 1541 —

is+1

E [ I] D
Jj=is+1

E |:Dis+1

%S] = ]E

E E[D

N

1s4+1

ICAL

T 1)

a(is+1 -

f(s, W)

T a_(igy — 1)

f(s, W)

h Oé—a(is+l - 1)

Ts41— 1]
y]

h+1 -2
E

| J= zg—&-l

E

(1

[ is+1—1

1. But,

Is+1—2

[] D
J=ts+1

is41—2

[1 D

|2

J=is+1

f(s, W)

lep1—2
W Ve |TT b,
(075 (Zs—i-l — 2)) [ 1_[ !

Z.s+1 2
izin1 D

J

9] and,

then, we have

is+1—2

[1 D

5+1 1]

]::ls‘Fl

Iterating these bounds the inductive step follows in a similar manner to the base case. Finally,

noting that 15

< 15(W) proves (2.31).

[]

The next lemma follows from a simple application of Stirling’s formula, i.e., (2.20):

Lemma 2.4.10. Let n,C > 0. Then, uniformly over nn <

(o)

b—1

(-55)

j=a+1

a<band0<pB<C, we have

Proof of Proposition 2.4.7. We take the upper bound E [Xj] from Lemma 2.4.9 and bound

each of the products by applying Lemma 2.4.10.

[]

2.4.4 Deducing Convergence of the Mean of Ny(n, B)/(n

In this subsection we deduce a lower bound on liminf,,_,. E [Ng(n, B)] /¢n on measurable

sets B € %.

7

In what follows, denote by Ns,(n, B) the number of vertices of out-degree
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> (M with weight belonging to B. Moreover, let N(n, B) = Nx¢(n, B) denote the total

number of vertices at time n with weight belonging to B.

Lemma 2.4.11. For any measurable set B, we have, limsupnqw%f@ < ﬁ almost
surely.
Proof. Since we add ¢ vertices at each time-step, we have limsup,,_, ., % = 1. However,

|T.| = MNsp(n,R), since the right-side only provides a lower bound for the number of
vertices in the tree incident to those with out-degree at least M. The result follows by

dividing both sides by M¥¢n and sending n to infinity. O

Proof of Proposition 2.4.2

Proof of Proposition 2.4.2. Recall that Corollary 2.4.8 showed that for each B € % and
ke No,
limsup E [Ng(n, B)] /fn < pi(B).

n—0o0

Now, suppose that Proposition 2.4.2 fails, so that, in particular there exists some set B’ € .F

and k' € Ny such that

E [Ny (n, B
lim inf E [N (n, B)) < pu(B).
n—00 In

B[N (n,B")]
In

N}]\{(’n,B/)
In

Thus, for some ¢ > 0, we have lim inf,,_,, < p(B)—¢. Now, using Lemma 2.4.11,

choose M > max {k:’, %}, so that limsup,,_,, < €//2. Then, recalling Lemma 2.2.3,

lim inf [f M] < liminf E lM] + ) limsupE lM] (2.32)

n—oo = n n—o n o o n

< (2 p%(B/)> —d<p(B) <.
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On the other hand, by Fatou’s Lemma, we have

M
N, B’ Ni(
lim inf B [Z %] E [hﬁ%.%f >, MR

k=0 =0

n, B) (2.33)

~E {lim inf (N(”’ B) _ Now(n, Bl))] > u(B') — €2,

In

n—0o0

where the last inequality follows from the strong

In

law of large numbers. But then, combin-

ing (2.32) and (2.33), we have u(B') — ¢ = u(B’) — € /2, a contradiction. O

2.4.5 Second Moment Calculations

In order to bound the second moment, we apply similar calculations to the start of the section

to compute asymptotically the number of pairs of vertices of out-degree k¢ born after time

nn. For vertices i and j, as in Section 2.4.3, we set iy := |i/¢] and jo := |j/¢], and note that

E[(Ny(,B)] = 3 ) Z

nn<io,jos<n—Fk j:|j/l|=jo i:|i/¢]=

Note that, in a similar manner to (2.27), we have

n) = k,W; € B,d;(n) = k,W; € B).

(2.34)

02n?

. ” (Nyu(n, B)® _ (Ni(n, B))*

so that it suffices to prove that

lim sup lim sup [E
n—0 n—00

02n?2

[(Nn,km, B))’

02n? ‘

] < (rR(B))*".

Recall that, for a given ¢ we denote by Z; a collection of natural numbers 7y < i; <

- < 1, < n. Moreover, for a given j, we denote by J; a collection of natural numbers

Jo < J1 < -+- < Jr < n. Similar to Section 2.4.3,

denote that j is the vertex chosen at the sth time-

the event that W; € B and for all s € {jo +1,...

79

for s > j we use the notation j ~ s to

step and likewise, we let £;(Jy, B) denote

,n}, j ~ s if and only if s € J,. Then we
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have

P (di(n) = k, W; € B,d;(n) = k, W, € B)

P (& (T, B) ~ (T, B)).

Note that the contribution to the above sum corresponding to terms with Z, n J, # <, and
1 # 7J, is zero, since it is impossible for distinct vertices to be chosen in a single time-step.
But then, the terms corresponding to ¢ = j contribute at most E [N, x(n, B)] < {n to the
right side of (2.34). Next, for any choice of indices with Z, n J, = @, there are at most
% pairs of vertices (i, ) born at respective times (ig, jo) contributing to the sum in (2.34).
Recalling the definitions of G.(n), G-(Ny, No) and N’ = N'(¢,§) from (2.28) and below in the

previous subsection, in a similar manner to (2.29) we have, for n = N'/n,
E [(Ny(n, B))’]
< 2 ( > > P(&(Z, B) N E{(Tr, B) N Gelio, n)) + 5n2> +0n. (2.35)
nn<io,josn—k ynJp=9

We then have the following:

Proposition 2.4.12. Let B€ % and 0 < e,n < 1/2. As n — o0, uniformly in nn < ig <
jo<n—kand I € ({i°+1,;""”}), T € ({jo+2’“""}) such that I, n Ji = @, and the choice of €,

we have

P (£(Zy, B) n &;(Tx, B) N Ge(ig, n))

[ 1 f(k“7W)/a+€ k-1 : f(S,W)/Oé+E T
Lk s f(S,W)

<(1+01/n)E || — : . ; 1.(W
( ) _(n) Q <<Zs+1> ac(isgp1 — 1) d )_
[/ N\ SRW) e k=1 LN (W) oy 7

xE <J_k> . (?s ) _fsW) 1(W)|.

| n $=0 Js+1 0575<.73+1 —1 |

(2.36)

We leave the details of the proof of this proposition to the reader, as it follows an

analogous approach to the proof of Proposition 2.4.7, using a backwards induction argument.
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Proof Sketch. Let uq, ..., us denote the indices in Z U Ji, and f,(7), f(7) denote the fit-
nesses associated with vertex ¢ and vertex j at time x. Then, when we bound the probabilities

{i ¢z} n{j»a}forall ze{us+1,...,us11 — 1} from above we obtain terms of the form

Us+1—1 fz('l> +fa:(j) B U, fa(8)+f2(5) 1
L) -GE) T (D)

where the right side follows from Lemma 2.4.10. Then, when we evaluate the expectation
analogous to the expectation appearing in (2.31), we obtain an expectation involving prod-
ucts of terms dependent on W; and W, i.e., the weights associated with vertex ¢ and vertex
j. These terms separate into a product of expectations by the independence of the ran-
dom variables W;, W;, and finally, many of the products telescope to yield the right side
of (2.36). m

Proof of Proposition 2.4.3

Proof. We apply Proposition 2.4.12 to bound the summands in (2.35). Then, as we are
looking for an upper bound, we may drop the condition Z, n J, = @ when evaluating the

sum. But then, by Corollary 2.4.6, we have, uniformly in ¢ and 7,

ST [ ( )f<k,W>/a+e k-1 <Zs+l)f<s,w>/a+5 % 1B(W)]

nn<io,jo<n Ly, J =0
S W) are k=1 o N Fs W) W

:1

n s=0 Js-i—l a—s(]s-ﬁ-l - 1)
1+e¢ 2k Q ’
< E +e 1-(W O —1/(k+2) Cl 1/k+2
(1—5) ( [fk:WjLaﬁgfsW )+ ag. 5 )]) +0(n )+ ’

for some universal constant C’ > 0, depending only on B, f. The result follows. m
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Chapter Three

Preferential Attachment Trees with

Neighbourhood Influence

3.1 Introduction

In Section 2.3 of Chapter 2, we saw that the particular case of the (u, f,¢)-RIF tree when
f is affine displays many interesting properties, including the condensation phenomenon,
proved in Section 2.3.2. This motivates our study of the ‘higher dimensional’ analogue
of this model, the PANI-tree, as described in Section 1.3.3 of Chapter 1. Note that in
this chapter, for brevity, we only consider the case that 1 vertex arrives at each time-step,
corresponding to the case that ¢ = 1 in the GPAF-tree. However, the description of the
model, and analogues of the statements we prove may readily be generalised to the case that
¢ > 1 using the same techniques. We first briefly recall the dynamics of this model, but, for

a more precise description, encourage the reader to refer back to Section 1.3.3 of Chapter 1.

Recall that in this model, at each time-step n a vertex v is selected with probability

proportional to its fitness f(N* (v, 7T,)), which is a function of the weights of the vertices in

82



1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

Preferential Attachment Trees with Neighbourhood Influence

the out-neighbourhood of v. In this model, we define f such that
FNT (0, T) == (W) + > g(W,, W), (3.1)
(v,u)eTn
where h : [0,w*] — [0,00) and g : [0, w*] x [0,w*] — [0,00) are bounded and measurable.
A newcomer, n + 1 then arrives, with its own independent weight W, ,; € [0, w*] sampled
independently from the weight distribution u, and the directed edge (v,n + 1) is added to
T, to form 7,1.

Dynamics of the PANI-Tree

O—0 = 0—@ 0

Figure 3.1: A sample transition from 7; to 75. In 7y, 0 is chosen with

probability proportional to f(N*(0,71)) = h(Wy) + g(Wy, W1), while 1
is chosen with probability proportional to f(N*(1,71)) = h(W;). In this
evolution, 1 is chosen, so the newcomer 2 arrives as an out-neighbour of

1.

Remark 3.1.1. One may interpret (Tp)nen, in the context of reinforced branching processes
as follows: we begin with an individual 0 belonging to its own family that reproduces after an
exponentially distributed amount of time, with parameter h(Wy). We say that the ancestral
weight of the famuly is Wy. Then, recursively, when a birth event occurs in the ith family,
with ancestral weight W;, a new individual with random weight W joins the ith family, repro-

ducing after an Exp(g(W;, W)) distributed amount of time, where Exp(g(W;, W)) denotes
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the exponential distribution with parameter g(W;, W); and simultaneously, an individual of
weight W begins its own family, with ancestral weight W. The out-neighbourhood of a vertex
1 in the tree T,, including the vertex i itself, then represents individuals in the ith family in

the branching process, at the time of the nth birth event.

Remark 3.1.2. One can extend the model from the previous remark further by supplant-
ing it with constants 0 < B,v < 1, so that when a birth event occurs, independently with
probability B, an individual with random weight W joins the ith family, and with probability
v, an individual with random weight W' (also sampled from p) initiates its own family with
ancestral weight W'. While not immediately clear from the way we have defined the model,
our methods also extend to this case - this link becomes clearer when viewing individuals as
“loops” and “edges” in a Pdélya wrn similar to Urn E see Figure 3.2 in Section 3.2.1 below).
In this extended model, the case g(x,y) = h(x) = x, and this terminology, was introduced in

[29], as a stochastic analogue of the model of Kingman [51].

3.1.1 Statements of Main Results

The results in this chapter depend on two sets of conditions. One set of conditions describes
the ‘non-condensation’ regime, which one might interpret as the analogue of Condition C1
with regards to the GPAF-tree analysed in Section 2.3.1 of Chapter 2, whilst the other
describes the ‘condensation’ regime which one might interpret as an analogue of the conden-
sation phenomenon analysed in Section 2.3.2 of Chapter 2. Note that, with regards to the
GPAF-tree we also studied a third phenomenon when Condition C1 fails in Section 2.3.3 of
Chapter 2: degenerate degrees. We expect a similar phenomenon to be generalised to the

PANI-tree, but do not pursue this in this chapter.

In order to emphasise the connection between the PANI-tree and the (u, f, () - RIF tree

of the previous chapter, we incorporate some of the same notation: the Condition C1 ap-
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pearing below may be interpreted as an analogue of the Condition C1 defined in Chapter 2.
However, one should not similarly interpret Condition C2 appearing below as an analogue

of C2 as these conditions are very different.

The Non-Condensation Regime of the PANI-tree

The first main conditions are the following: recalling g and h as defined in (3.1), assume

C1 There exists some A* > g* such that

h(W) ]

ol ILANA Y
[A* - g(W)

where g(z) := E [g(z,W)] and g* := E [SUPxe[o,w*] g(z, W)]. We call \* the Malthusian

parameter of the process.

C2 For some J > 0, N € N, there exist measurable functions ¢§-i) [0, w*] — [0, J], 7 =1,2,

i € [N], and a bounded continuous function « : [0, J]*¥ — R, such that

g@.y) =k (6 @),.. 0V (@) 6 W),V ()

Remark 3.1.3. We expect similar results under the weaker hypothesis that g and h are
measurable and bounded rather than Condition C2. However, this condition still allows
many “reasonable” choices of bounded measurable functions g. This includes the GPAF-tree
of Section 2.3, Chapter 2, the case where g is continuous, as well as functions of the form

g(x,y) = adi(z) + Boa(y) or g(x,y) = d1(x)Pa(y), where g1, po are bounded and measurable

and o, B = 0.

Our first theorem concerns the partition function of the process,
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Theorem 3.1.1. Assume Conditions C1 and C2. Then we have

. Zn
lim — — \*
n—o0 N

almost surely, where Z, and \* respectively denote the partition function and Malthusian

parameter of the process.

Recall from Section 1.4.2 in Chapter 1 that in the PANI-tree we also study a higher
dimensional analogue of the edge distribution =(n,-): given a product, Borel measurable
set A, the quantity Z()(n, A) denotes the number of edges (v,v’) in the tree 7, such that
(W,, W) € A, that is,

=3 (n, A) := 14(W,, Wy).
(v,0)€Tn
Under this notation, we have Z(n, B) = Z®(n, B x [0,w*]) almost surely. Also, define
W(x) == h(z)/(\* — g(x)), and denote by 1, pu the pushforward measure of p under ¢ - i.e.

the measure such that for any measurable set A

h(W)

(Yep)(A) = E )\*——g(W)lA(W)

Theorem 3.1.2. Assume Conditions C1 and C2. Then, with 2@ (n,-) as defined in (1.6),

we have

(1]

@) (y,.
=) ek w0,

almost surely, in the sense of weak convergence. Here 1, x pu denotes the product measure

of Ve and p on [0, w*]* equipped with the Borel sigma algebra.

We include the proofs of Theorem 3.1.1 and Theorem 3.1.2 in Section 3.2.2 and
Section 3.2.2. We also prove theorems related to the degree distribution. In view of Sec-

tion 1.4.1 of Chapter 1, in order to describe this result, we first describe a companion process
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(Si(w))i=o that describes the evolution of the fitness of a vertex with weight w as its neigh-
bourhood changes. First, let Wy, W5, ... be independent p-distributed random variables and

let w € [0,w*]. We then define the random process (S;(w));>o inductively so that

In the following theorem, E[-] denotes expectation with respect to the path of S;(Wj), i.e.,
expectations with respect to the product measure involving the terms Wy, Wy, Wa, ..., Wy_4.
Also recall that N>(n, B) denotes the number of vertices of out-degree at least k in the tree

T, with weight belonging to B.

We then have the following theorem:

Theorem 3.1.3. Assume Conditions C1 and C2. Then, for any measurable set B < [0, w*],

we have
. Nug(n, B S
fi S 2 [H (o) 1B<W0>] ’ 33

almost surely.

A particular consequence of Theorem 3.1.3 is that, for any measurable set B, almost

surely, we have
Nk (n7 B)
n

where pg*() is the quantity described in (1.4) of Section 1.4.1, Chapter 1. We prove Theo-

— ppy (B).

rem 3.1.3 in Section 3.2.3.

Remark 3.1.4. One may interpret the right hand side of (3.3) as the probability of a sequence
of at least k consecutive heads before a first tail when, sampling Wy at random, and flipping

the ith coin heads with probability proportional to S;_1(Wy).

In a manner analogous to the end of Section 2.2.1 in Chapter 2, Theorem 3.1.3 allows
us to deduce, for any measurable set B, almost sure convergence of the quantity =(n, B)/n.

First we require the following lemma, which may be of independent interest:
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Lemma 3.1.4. Let (S;(w));=0 denote the process defined in (3.2) in terms of bounded, mea-
surable functions g, h, suppose §(z) := E [g(z, W)] and gy = sup,e(g,+ §(x). Then, for any

e [0, w*], and A = g, we have

o[ sw) V] k)
2E [H( <w>+A)]‘A—a<w>’ 34

where the right hand side is infinite if g(w) = g, and A = gy = g(w). In particular,

S |1 (st ) o) == 52 Ggecrn |

As the proof of this lemma detracts from the main techniques used in this chapter,

we delay its proof to the end of the chapter, in Section 3.4.1.

Remark 3.1.5. One may interpret (3.4) as a generalisation of the classic geometric series
formula: if we set g(x,y) = 0, and q := h(w)/(h(w) + X), the left hand side of (3.4) is
Z;il g = @ = %}. Indeed, as Remark 3.1.4 shows, one may interpret the left hand side

as the expected value of a generalised geometrically distributed random variable.

Lemma 3.1.4 allows us to strengthen the weak convergence result of Theorem 3.1.2.
One may interpret this result as an analogue of Theorem 2.2.2 from Chapter 2, indeed the

proof of this theorem is almost identical to the proof of Theorem 2.2.2.

Theorem 3.1.5. Assume Condition C1. Then, for any measurable set A < [0, w*] we have

E(n, A)

n

= (Yupt)(A),
almost surely.

Remark 3.1.6. Lemma 3.1.4 shows that the limiting measure (. u)(-) is the same as the

quantity m(\*, ), where m(\*, ) is the quantity described in (1.9) of Section 1.4.1, Chapter 1.

Remark 3.1.7. As the limiting measure appearing in Theorem 2.3.1 is absolutely continuous

with respect to p, and hence almost surely with respect to the measures Z(n,-), one might
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expect to improve this convergence to almost sure convergence in the total variation norm.
Indeed, in the simplified model first analysed by Kingman in [51] the convergence takes place
in the total variation norm (in this context, however, the sequence of measures he consid-
ered was deterministic). Note that Kingman described the non-condensation regime as the

“democratic” regime.

The Condensation Regime of the PANI-tree

In this chapter we undertake a more nuanced investigation into the condensation phe-
nomenon in the GPAF-tree, from Section 2.3.2 of Chapter 2. We first make a more precise

definition of what condensation means.

Definition 3.1.6. Suppose we are given a p-null set S < [0, w*]. We say that condensation
occurs around the set S, if for some nested collection of sets (S:).so0, * with S. | S ase — 0

we have

[1]

lim lim —(n, 5)
e—>0n—ow0 n

> 0,
with positive probability.

Remark 3.1.8. Informally, condensation means that, in the limit of the random measure

=(n,-)/n, the set S acquires more mass than one ‘would expect’. Indeed, if we swap limits,

lim limM = lim =(n, 5) =0,
n—o0 e—0 n n—o0 n

almost surely, since u(S) = 0.
Our main assumptions are now as follows:

D1 We have

E [gh_(—‘;v()m] <1 (3.5)

IThat is, a collection of sets such that if e; < €9, S., € S.,.
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D2 The function g satisfies Condition C2.

D3 There exists a (maximal) set of points M < Supp (), such that, for any z* € M,

max g(p,W) =g(z*, W) P—as.
pe[0,w*]

We denote by z* a generic point in M.

D4 For all € > 0 sufficiently small, and a measurable function w. : [0,w*] — R, with

lim,_,o u. = 0 pointwise, for x* € M, we have

M. ={x:P(g(z*, W) —g(x, W) <u(W)) =1}

={z:P(g(z*, W) —g(z, W) <u(W)) > 0}. (3.6)
Under this assumption, we have pu(M.) > 0.

Remark 3.1.9. Note that, by the measurability of g(-,q) for any q € [0, w*], the function

P > €SS SUP 4e[0,uw%] {9(z*,q) — 9(p, @) — uc(q)}

is also measurable - see, e.g. [17, Theorem 4.7.1.]. This ensures that the set M. is measur-

able.

Example 3.1.10. In the case that g(z,y) = ¢1(x)P2(y) for bounded, measurable ¢y, do, if
¢1(x) is maximised on a set M and ¢o(y) > 0 p-a.e., for e > 0 and z* € M we may take

Us = €+ g and

M. = {x: 1(2")p2(W) — ¢1(2)2(W) < edo(W)} = {z : $1(2%) — ¢ (x) < e}

A condition that guarantees that this set has positive measure is assuming continuity of ¢,

at some point x* € M, as this implies that M. is a neighbourhood of x*.

Remark 3.1.11. Conditions D1 and D2 may be interpreted as analogues of Conditions C1

and C2 in the condensation regime. One may regard M from D38 as a “dominating set”,
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in the sense that P-a.s., upon arrival of a new vertex into its neighbourhood, the change of
the fitness of any vertex is at most the change of the fitness of a vertex with weight with
weight in M. Condition D4 ensures that this “dominating property” is captured by sets M.

of positive measure.

Indeed the right hand side of (3.6) implies that the change of the fitness of any vertex
with weight in M¢ is at most the change of the fitness of a vertex having weight in M.. Note
that M. | M as e — 0. This accounts for the formation of the condensate in Theorem 3.1.7

below, since g is maximised on M, by D1 it must be the case that u(M) = 0.

The following theorem may be viewed as an analogue of Theorem 2.3.1 from Chapter 2.

Theorem 3.1.7. Assume Conditions D1-D4. Then,

o We have lim,,_, i" — §* = g(x*), almost surely.

e For any measurable set A < [0, w*] such that, for e > 0 sufficiently small An M. = @,

we have
E(n, A
<7Z ) — (ep)(A), almost surely. (3.7)
In addition,
g tim =M g 0,0) > 0, (33)
e—=>Un— n

so that condensation occurs around M.

e For any measurable set B, almost surely, we have
 New(nB) | (L SiOV)
lim ————= =E ——— | 15(W)|.
711211) n !;;! :5% (]/Lf) + gj* B ( )
Remark 3.1.12. As the condensation occurs around the “dominating set” M, in the context
of reinforced branching processes as described in Remark 3.1.1 and Remark 3.1.2, one may

interpret this is families with maximum reinforced ‘fitness’ acquiring a positive proportion of
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indiwiduals in the population in the limit. In this context, ‘fitness’ refers to the ability of an
individual to produce offspring quickly. This has an interesting interpretation in the context

of evolution.

We have the following corollary:

Corollary 3.1.8. Assume Conditions D1-D4, and the sets M. in D4 are such that M, |
M as € — 0, recalling that M. denotes the topological closure of M.. Also, suppose that

M = {z*}, and define the measure I1(-) such that, for any measurable set B < [0, w*|

[(B) = ($up)(B) + (1 = (¢up) ([0, w7])) 02+ (B).

Then,

(1]

(n,) — TI(-) almost surely,
n

in the sense of weak convergence.

Example 3.1.13. In the case that g(x,y) = ¢1(x)p2(y) for a bounded, continuous function
¢1 and bounded measurable function ¢o, if ¢1(x) is maximised at a unique point x* and

¢2(y) > 0 p-a.e., we may take u. and M. as defined in Example 3.1.10. Indeed, in this case
M. = {z:41(z") — d1(2) < e},

so that M. | {x*} as e — 0.

3.1.2 An Informal Discussion of the Main Results

In this subsection, we provide an informal discussion of some of the implications of our main

results.
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Averaged Power-Law Degrees in the PANI-tree

First note that by Theorem 3.1.3, almost surely

. Ny(n,B) X S
lim ———= = B)=E|———— ———— | 15(W)|.
Now by the strong law of large numbers, one would expect, at least asymptotically, S;(W) ~

h(W) +ig(W), and thus it is natural to expect

. Ni(n,B) A* 0 (W) +ig(W)
T [WH <h<w> +ig(W) +A*)] |

1=0

We therefore expect the degrees in this model to behave asymptotically like the GPAF-tree
analysed in Section 2.3 of Chapter 2, with ¢ = 1 and associated functions h and §. Recall
that in Section 2.3.1 of Chapter 2, we showed that on any measurable set B where ¢ and h
are bounded

¥ k—1 h(W) + ig(W) B (e
¢ [WH (h(W) +ig(W) + )\>] = E |eph™ M 1,())

=0

where cp depends on g and h but not k. Thus, informally, like the GPAF-tree, the PANI-
tree displays a degree distribution that satisfies an ‘averaged’ power law that depends on the
distribution . Noting also that A*/g(W) > 1, the exponent of this power law is larger than

2. A similar analysis can be applied to the condensation regime by applying Theorem 3.1.7.

The Growth of the Neighbourhood of Fixed Vertex in the PANI-tree

In the following proposition, we let f,(v) = f(N*(v,7,)) denote the fitness, as defined
in (3.1), of a vertex labelled v € Ny, with weight w, in the tree at time n. In addition, let
(R;)isv denote the filtration generated by the tree process (7;)i=». Next, set

jzl(zj) )
7! <ZS+Z§S(wv)>

M, (v) :=
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Proposition 3.1.9. For any vertex v, (M, (v))n>y is a martingale with respect to the filtra-

tion (Ri)iZU .

Proof. Using the definition of the process, for n > v we compute

E (] = 252 (o) + gt + (1- 252 1)
- gty (E ),
The result follows from the definition of (M, (v));5- O

Now, here we note two things: first, if deg;" (v) denotes the out-degree of vertex v at
time n, then we expect f,(v) ~ deg’ (v). In fact, by applying Wald’s lemma, one can show
E [fa(v)] = h(w,) + E [deg; (v)] (w,). Second, by Theorems 3.1.1 and 3.1.7, we expect
Z; ~ A1 and g*1 in the non-condensation and condensation regimes respectively. Thus, we

expect

. n—1 Z, + §(w,) nd@o)/A*  under Conditions C1 and C2;
dogf (o) ~ [ (Z2) ~

S=v

nd@»)/5* - under Conditions D1-D4.

Therefore, in the non-condensation regime, we expect each individual vertex to grow like
ndwo)/A* < nd* 2 < . whereas, in the condensation regime, vertices with weight w, such
that g(w,) is closer and closer to §* grow at a rate closer and closer to linearity with respect
to the size of the network. Note that to turn this argument into a rigorous result in terms

of E [deg;! (v)], one requires L' convergence of the martingale in Proposition 3.1.9.
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3.1.3 Overview and Techniques

Overview of this Chapter

In Section 3.2 we prove results about the model related to the non-condensation regime. We
first review some background theory about Pdlya urns in Section 3.2.1, and then, the results
of Section 3.2.2 are used in order to prove Theorem 3.1.1 and Theorem 3.1.2 in Section 3.2.2
and Section 3.2.2 respectively. Next, the results of Section 3.2.3 are used to prove Theo-
rem 3.1.3 and Theorem 3.1.5 in Section 3.2.3 and Section 3.2.3. In Section 3.3 we extend these
results to the condensation regime, proving Theorem 3.1.7 and Corollary 3.1.8 Section 3.3.1

and Section 3.3.2 and respectively. Finally, we prove Lemma 3.1.4 in Section 3.4.1.

Techniques used in this Chapter

The results in this chapter generalise the techniques used in [20] for the study of the Bianconi-
Barabasi model, using a Pdlya urn approximation. However, the generalisation of this model
to bounded measurable functions A, functions g satisfying Condition C2, and the possibility
of arbitrary weight distributions lead to technical challenges, somewhat analogous to those
arising from using a measure-theoretic approach to integration as opposed to the Riemann
integral. Applying this approach to studying the degree distribution in the case of uncount-
ably supported weight distributions also appears to be novel. The couplings used in the
Poélya urn approximation, Proposition 3.2.6 and Proposition 3.2.12 and the coupling used to
extend the results to the condensation regime, Lemma 3.3.2, are closely related to that used
in Lemma 2.3.2 in Chapter 2, and thus we encourage the reader to quickly review the latter

coupling before reading the rest of this chapter.

One might imagine that many of the results here may follow easily from an application

of the theory of Crump-Mode-Jagers branching processes, for example as in Section 2.2 of
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Chapter 2. However, the dependence between the point processes associated with a parent
and its offspring means that the classic theory is not immediately applicable. This in turn
raises the question of whether one can develop a theory of C-M-J branching processes with

dependencies between the point-processes associated with individuals.

3.2 The Non-Condensation Regime

3.2.1 A Brief Introduction to Generalised Pélya Urns

Generalised Polya urns are a well studied family of stochastic processes representing the
composition of an urn containing balls with certain types. If .7 denotes the set of possible
types, associated to a ball of type t € 7 is a non-negative activity a(t), which depends on
the type. The process then evolves in discrete time so that, at each time-step, a ball of type
t is sampled at random from the urn with probability proportional to its activity a(t¢), and
replaced with balls of a number of different types according to a possibly random replacement

rule.

In the case that .7 is finite, the configuration of the urn after n replacements may be
represented as a composition vector (X, )nen, With entries labelled by type, and the activities
encoded in an activity vector a. In this vector, the ith entry corresponds to the number of
balls of type i € 7. Let ()i ez be the matrix whose ijth component denotes the random
number of balls of type j added, if a ball of type i is drawn, and (following the notation
of Janson in [45]) define the matrix A such that A;; := a;E [{;;]. The expected evolution
of the urn in the (n + 1)st step, may therefore be obtained by applying the matrix A to
the composition vector X,,. A type ¢ € 7 is said to be dominating if, for any j € 7, it is

possible to obtain a ball of type j starting with a ball of type i. If we write ¢ ~ 7 for the
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equivalence relation where ¢ ~ j if it is possible to obtain j starting from a ball of type ¢, and
vice versa. This partitions the types into equivalence classes. A class ¢ < 7 is dominating
if, for every i € €, i is dominating. Moreover, the eigenvalues of A may be obtained by the
restriction of A to its classes; we say an eigenvalue belongs to a dominating class if it is an
eigenvalue of the restriction of A to this class. Finally, we say that the urn, or the matrix
A, is irreducible if there is only one dominating class. Note the difference when compared to
irreducible matrices in the context of Markov chains: here it is possible for diagonal entries

to be negative. Now, assume the following conditions are satisfied:

(Al) Foralli,je 7, &; >0ifi # j and §; > —1.

(A2) Foralli,je 7, E[&] < 0.

(A3) The largest real eigenvalue \; of A is positive.

(A4) The largest real eigenvalue \; is simple.

(A5) We start with at least one ball of a dominating type.

(A6) A; belongs to the dominating class.

The following is a well known result of Janson from 2004 building on previous work

by by Athreya and Karlin (for example, [6, Proposition 2| and |5, Theorem 5|):

Theorem 3.2.1 ([45, Theorem 3.16]). Assume Conditions (A1)-(A6), and suppose that v
denotes the right eigenvector, corresponding to the leading eigenvalue Ay of A, normalised so

that aTv, = 1. Then, we have

almost surely, conditional on essential non-extinction, i.e., non-extinction of balls of domi-

nating type.
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In addition, the following lemma by Janson provides convenient criteria for satisfying

(A1)-(A6):

Lemma 3.2.2 (|45, Lemma 2.1). If A is irreducible, (A1) and (A2) hold, 3, > E [§;] = 0
for alli e 7, with the inequality being strict for some i € T, then (A1) - (A6) are satisfied

and essential extinction does not occur.

We will not only analyse the PANI-tree using generalised Polya urns, but also the

dynamical model of random simplicial complexes, in Section 4.3 of Chapter 4.

Analysing the PANI-tree using Pé6lya Urns

The idea behind analysing the distribution of edges with a given weight, and the degree
distribution in this model, is to consider two different types of Polya urns, which we call Urn
E and Urn D respectively. We illustrate the evolution of both these urns below. Recall,
Figure 3.1 illustrates a possible evolution of a step of the process (7;)ien,; Figures 3.2 and

3.3 illustrate the corresponding steps in Urn E and Urn D.

In Urn E, we consider a generalised Polya urn with balls of two types: singletons
x, and tuples (x,y), corresponding to ‘edges’ and ‘loops’. A ball of type (z,y) has activity
g(x,y) and a ball of type x has activity h(z). At each step, if a ball of type given by either z
or (x,y) is selected, we introduce two new balls, of which one has random type W, and the
other has type (x,W). In relation to the evolving tree, this corresponds to the event that a

vertex of weight = has been sampled in the subsequent step.
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(Wo, W1) (Wo, W)

wo[ (o) (1) |wi el Wi (0) (1)

Figure 3.2: The evolution of the tree from 77 to 75 from Figure 3.1 viewed
as a transition in Urn E. The event vertex 1 is selected may be interpreted
as the event that the ‘loop’ W is selected in the Polya urn - and thus the
arrival of the vertex 2 corresponds to the arrival of the ‘loop” W5 and the

‘edge’ (W7, Ws) in the Polya urn.

In Urn D, we consider a generalised Polya urn with balls of types corresponding to
tuples of varying lengths. A ball of type (o, . ..,xx) has activity h(zo) + 35, g(0, 2;), and
at each step, if a ball this type is selected, we remove it and introduce two new balls: one
of random type W, and one of type (xq,...,zx, W). In relation to the evolving tree, this
corresponds to the event that a vertex v of weight xy has been sampled when proceeding to

the subsequent step, with neighbours of v listed in order of arrival having weights x1, ..., z.

99



1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

Preferential Attachment Trees with Neighbourhood Influence

@ ™) @ ™ 0

Figure 3.3: The evolution of the tree from 77 to 75 from Figure 3.1 viewed
as a transition in Urn D. The event vertex 1 is selected may be interpreted
as the event that the ball W is selected in the Poélya urn - and thus the
arrival of the vertex 2 corresponds to the addition of the balls W5 and
(W1, Ws). The latter ball represents the addition of vertex 2 into the

neighbourhood of vertex 1.

Note that, in the manner we have described Urns E and D, the set of possible types
may be infinite: the measure p may have infinite support so that W may take on infinite
values, and the neighbourhoods of vertices (in Urn D) may be infinite. Whilst there is some
theory related to infinite type Poélya urns within the framework of measure-valued Polya
processes (see, for example, [59]), these results are often non-trivial to apply in practice,
as we will see in Section 4.3 of Chapter 4. We instead opt for a different approach by
approximating these infinite urns with urns of finitely many types - enough to approximate
the sigma algebras generated by W, g(W,W’) and h(W), where W, W' are i.i.d random
variables sampled according to p. In Section 3.2.2 we apply this analysis to Urn E, and in
Section 3.2.3 we apply it to Urn D. We first introduce some extra notation specific to this

section.
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Some More Notation and Terminology used in this Section

Recall from Section 1.3.1 of Chapter 2, that for a natural number N € N, we denote by [N]
the set {1,..., N}. In order to apply the finite Pélya urn theory, given a set of types 7, we
denote by V4 the free vector space over the field R generated by .7, i.e., the vector space
where vectors are indexed by the elements of 7. We will generally view an urn with types
7 as a stochastic process taking values in V». In addition we will generally identify vectors
v € V7 interchangeably with functions v : .7 — R. Thus, for z € 7, v(x) denotes the entry
of the vector corresponding to z, and for vy, vy € Vi, we have (vivy)(x) = vy(z)va(z). For

x € T, we define §, € V4 such J,(y) = 1 if y = 2 and 0 otherwise.

For a Borel measurable set S € R, and a finite set A of Borel measurable subsets of
S, we say that A = {A;,..., A} forms a good partition of S if, given any two nonempty
sets A;, Aj e A, A;nA; # @ — A, = A;, and |J_; A, = S. Note that, given two good

partitions A;, A of S, the set
{Al M AQ : Al S Al,AQ S ./42} (39)

also forms a good partition of S. In addition, if A is a good partition of S, we say that
A’ forms a refined good partition of A, if, for any A’ € A’ there exists A € A such that
A" € A. Often, we will simply write refined partition for a refined good partition. The

following lemma, which is well-known, justifies the use of the word ‘refined’.

Lemma 3.2.3. Suppose A is a good partition of a set S, and A’ is a refined partition of
A. Then, for any set A € A, there exist sets Xy,..., X, € A such that A = |J_, X;. In

particular, {X;}icrs) forms a good partition of A.

Proof. For A € A, define the sub-family X := {A"e A" : A’ < A}. Suppose U := (| Jyer X) #
A. Then, there exists z € A\U, and since A’ partitions S, z € V', for some set V' € A’ with

V' & A. But then, since A’ is a refined partition of A, V' < V for some V € A. But then,
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this implies that either V' n A # @, contradicting the fact that A is a good partition of S,

or V = A, contradicting the fact that V' & A. O

3.2.2 Analysing the PANI-tree by Coupling with Urn E

In this subsection we will refer to Conditions C1 and C2. We will analyse the process under
these conditions by coupling the tree process (7, )nen, With Polya urn processes, parame-
terised by m € N. These may be interpreted as finite approximations of Urn E. Now, for
each x € R and m € N we define a good partition of the interval [0, z] into 2™ intervals, i.e.,

a dyadic partition. Set
D' (z) :=[0,27"z], and D (x):=((1—1)-2""z,i-2""z], i€ [2™]\{1}.
For i € [2™], we also denote the closure of D™ (z) by D, (z), so that

D' (x) =[(i—1)-27™x,i-27™z].

1

Supposing h : [0, w*] — R, takes values in [0, Ayay |, and recalling the functions gbgj ), ¢(2j ), j€
[N] from Condition C2, for each i € [2™], j € [N] and k € [2], we set

M = b (D] () and B1(1,5) = (o) (DF'().

By the measurability assumptions on the functions ¢,(€j ) and h, for each i € [2™], j € [N] and

k € [2], the sets H;" and ®}"(j, k) are measurable, and thus, the collections of sets {H;"},.jgm

and { @} (7, j)},c[gm) form good partitions of [0, w*]. We now split the latter family of sets to
form a refined partition: for i = (i1,...,inx), j = (j1,...,jn5) € [2™]V, if we set
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by iteratively applying (3.9), the families of sets {®7"(i) }icfgmv and {®3'(j)}jepm v also form

good partitions of [0,w*]. Now, given v = (vy,...,vy) € [27]V, set

m

D, (J) :=D,, (J) x D,.(J) x -+ x D, _(J),

and observe that, given i,j € [2™]V, the construction of the sets in (3.10) are such that

(x,y) € D7*(i) x ®*(j) implies that

(6@, V@), 68w, 68 ) € DY () < D} ()

Now, recalling the function & : [0, J|* — [0, gmax] from Condition C2, for each i,j € [2™]",
by continuity on the compact set D; (J) x 5}”((]), for (x,y) € ®7"(i) x ®5*(j) we have
f (0@ 0@, o) e ) = il fk(u,v))
u,veD; (J)xDj (J)

=  min {k(u,v)} =1k (i,j), (3.11)
u,veD;n(J)xf;n(J)

and likewise,
f (0@ 0@, 0w W) < s fk(u,v))
u,veD;" (J)xD;" (J)

=  max {k(u,v)} =:k"(1,j). (3.12)
u,veD;" (J)xD;" (J)

Now, set
g (@,y) = D K Li)lepaxepn(@y), g (@)= D &L )Lepaxep(,y);
ije[2m]N ije[2m]N
and
2m 2m
W (@) o= D (0= 1) - 2 e gy, (2),  hF () i= D i 2 " Ly, ().
i=1 =1

One should interpret these functions as lower and upper approximations to g and h, indeed,

by construction, we now have the following lemma:

Lemma 3.2.4. We have g~ 1 g, h= 1 h, gt | g and h* | h uniformly, as m — oo.
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Proof. We prove the statements regarding h~ and g~ ; the others follow analogously (in the

case of g* using (3.12) instead of (3.11)). Since the sets (H;")ic[2m] form a good partition of

7

[0, w*], for each m € N, given z € [0, w*], we have x € HT* for some j € [2™], and thus
h=(z) = (5 — 1) 27" hmax < h(x) < A7 (x) + 27" hypax.

The convergence result for h~ follows. Now, note that by uniform continuity of x on the

compact set [0, J|*V, for e > 0, let M be sufficiently large so that for all u,v € [0, J|*¥
lu—v|<v2N-27MJ] —  |k(u)—k(v)| <e.

Now, for any m > M, given (x,y) € [0, w*] x [0, w*], there exists a unique set ®7*(i) x PL(j)

containing (z,y), which implies that

(6@, .. 6V @), 68w, ... 68V (w)) € DY (J) x ().

Thus, for each j € [N], combining this equation with the definition of £~ (i,j) from (3.11),

we have
K (1d) < 5 (6@, 0V @) 04 ), 08V ()) < HGD) +
and thus
g (v,y) < g(x,y) <g (v,y) +e
The result now follows. O

Now, using the good partitions {H;"}pmy, AT (Dlicpmpy, {92 () }jepmyn
and {D]"(w*)},cjgm), we will form an even more refined partition, which we will use as the
“building blocks” of the evolution of the Polya urn approximations. For each m, define the

good partition #™ such that

i {12 0T L =1 D) A 0P6) 93, pge 2 e 27 L (313)
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Intuitively, this family of sets is such that the finite o-algebra o(.#™), is “fine enough" to
approximate the Borel sigma algebra on [0, w*], and also capture the behaviour of g and h.

Observe that, for m; < mo, #™2 is a refined partition of .#™.

Suppose [ ™| = D,,; then we label the sets in ™ arbitrarily as (Z;"),(p, - Now,

for each (z,y) € /" x I, g~ (v,y) and g*(z,y) are constant, depending only on (4, ), and
likewise, for each x € Z;*, h™(z) and h*(z) are constant, depending on ¢. Motivated by this,
for each (i,7) € [Dp] % [ D], we define the following quantities:

Iuin (1, 7) == 9 (%, Y);  Gmax (1,7) := g*(x,y), (z,y) € ;" x IJ’.”’

and likewise, for each ¢ € [D,,], we define

We also set
D
r(z) = Zilzim(x),
i=1

so that r(z) =i if x € Z/". In addition, set

pt = (") i€ [Dn],  ¢°(j) = nax {gmax (1, 7)} ,

Dy, D, Do,
G-(1) = > P Gunin (1,4), G4 (0) = > Pl (1,5),  and g% = > plg*(4)-(3.14)
j=1 j=1 J=1

Recall that g(z) = E[g(z,W)], and note that g_(r(z)) = E[g (z,W)], g+(r(z)) =
E [g*(z,W)] and §* = E [max,ejow* 97 (2, W)]. Then, observe that by Lemma 3.2.4 and

dominated convergence, g_(r(z)) 1 g(x), g+ (r(z)) | g(x) and

giiE[ sup g(x,W)] =g*, asm — ow.

z€[0,w*]
The Definition of Urn FE

We are now ready to define the urn process (U, )nen,. For i € N, set
[Dm]z = [Dm] X [Dm] e X [Dm] = {(UO, .. ui_l) CUYy ..., U1 € [-Dm]} s
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and
B :=[Dy,] U [Dn]? U ({Di + 1} x [Dn]);

this will represent the set of types in Urn E. We now define parameters « such that, for

z € [Din] U [Dy] % [Din],

fwintell = (i,5) € [Din]? gmax (i,§) > 0;

gmax (1,5)’
v(x) = 1 il g =i € [Dyn], B (1) > 03 (3.15)
0, otherwise.

\

Then, we define the urn process (U)*)nen, as the urn process with activities a such that

-

Gmax (i,7) if & = (i,]), i,j € [Dn]

a(x) =1g¢* (j) ifx=(ij),i=Dn+1je[Dn] (3.16)

Pmax (7) if v =i€[Dy];

\

and a replacement matriz M such that, for x, 2’ € Vp,

-

(va)(@)py", if o' = (i, ),z € ({i} x [Di]) v {i}, 1, € € [Dy];
(a—~a)(z)p)', ifa' = (Dy+1,0),x€b;
Mx/@ = <
a(x)py, ifa' =/ xebB;
0 otherwise.

Note that it is not necessarily the case that M is irreducible: it may be the case that a(x) = 0
for certain x € B (this is possible if hpax (1) = 0 or gmax (4,7) = 0), or it may be the case

that pj* = 0 for certain choices of ¢. We therefore define the following subsets of B:
U :={xeB: My, =0V2' € B} ={xeB:a(x) =0},

and

Uy :={x' €B: My, =0VreB}.
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Also assume that %N %, = &, if not, we replace % by % \%. We then set R = B\(721 v ),
and let Mg be the restriction of M to R. It is easy to check that My is irreducible, and thus,
by Lemma 3.2.2, has a unique largest positive eigenvalue \,, with corresponding eigenvector
ug. But then, writing M in block form (with columns and rows labelled by R, %4, %) for

suitable matrices A, B, C', we have

Thus, M has the same largest positive eigenvalue, with corresponding right eigenvector given

(in block form) by

Up

Un = | (A\g') Aug

0
Here, we assume u,, is normalised so that a - u,, = 1. In addition, assuming we begin
with a single ball z € R, one readily verifies that the restriction of M to R and % satisfies
conditions (A1)-(A6) of Subsection 3.2.1. Note also, that at each time-step the probability
of adding a ball of type x € % is 0 and thus, for each n € Ny, U,,(x) = 0 almost surely.

Therefore, combining this fact with Theorem 3.2.1, we have the following corollary.

Corollary 3.2.5. With u,,, A, and R as defined above, assuming we begin with a ball x € R,

we have
Un” noon, AU, (3.17)
n

almost surely. In particular, almost surely

a - Zl;ﬁ n—o0

A 3.18
- (318)
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In the coupling below, the assumption of a ball x € R is met by the tree process being

initiated by a vertex 0 with weight W} sampled at random from p and satisfying h(W;) > 0.

Coupling Urn E with the PANI-tree Process

For a product measurable set A < [0, w*] x [0, w*], recall the definition of Z? (A, n) from

(1.6): this is the number of directed edges (v,v’) of T, where (W,, W) € A.

A

Proposition 3.2.6. There exists a coupling (U™ )men, Tn)nen, 0f the Pdlya wrn processes

{{U ) neny» m € N} and the tree process (Tp)nen, such that, for each m € N, almost surely

(on the coupling space), Z;{g‘ = 0, for an initial ball of type ¢ € R and, in addition, for

(i,7) € [Dm]’, we have

up((i,j) <22 (n, " x I, (3.19)
Dy, R
Y (EQmI < T —U6,9) = MU ((Dn+1,9),  (320)
(4,9)€[Dm]? 7=1
and
(va) UM < Z, <a U (3.21)

for all n € Ny.

Proof. First sample the entire tree process (ﬁ)neNo; we will use this to define the evolution
of the urn processes. Moreover, for i € [D,,] let
m(i) = > J(N* (0, To));
V€T r(v)=1

i.e., the sum of fitnesses of vertices with weight belonging to Z!™. Also, for i € [D,,] define

(i) = (rally) (i) + Y, (v aldy) (i),
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2000 Finally, recall that Z,, denotes the partition function associated with the tree at time n.
2100 Assume that at time 0 the tree consists of a single vertex 0 such that r(Wy) = £ € [D,,].

200 Then, set U* = §,. Using the definition of 7, since W € Z}"

2102 0< Zy = h(Wo) < hpax (€) = a- U,
2103 and by the choice of 7, we have

2104 mo(€) = h(Wo) = huin (£) = (¥ aLA{g”‘)(é) = 0o (0).

2105 In this case, (3.19) and (3.20) are trivially satisfied since both sides of both equations are 0.
2106 Now, assume inductively that after n steps in the urn process, (3.19) and (3.20) are satisfied,

2100 'We have
(k) = 0,(k) for each ke [D,], (3.22)

20s and moreover, Z, < a-U™. Note that (3.22) implies the left hand side of (3.21), since

D, D,
2100 (va) - U = > 0u(k) < Y (k) = Z,.
k=1 k=1
2110 Let s be the vertex sampled from 7, in the (n+1)st step, and assume that r(W;) = ¢,

an r(Wy41) = k. Then, for the (n+1)th step in the urn: sample an independent random variable

2112 Upyq uniformly distributed on [0, 1]. Then:

2113 o If U, ;1 < %, add balls of type (¢, k) and k to the urn, i.e., set Z;{ﬁl = L?,T +

2114 5(2’,k) + (Sk

2115 e Otherwise, add balls of type (D,, + 1,k), k.

2116 Note that, in the first case, we have

~

EOn+ LI x ") = E®(n, I x ) + L= UM, k) + 1 =UT (¢ F))
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and for ¢ # (' or j # k

EO(n+1,Z" x ) = ED(n, 2" x T™) = U™((i, 7)) = U™ ((i,5)).
Also, in this case
N 1(€) = 0o (0) + (W, Wii1) = 0,(0) + grin (k) = Onia (),
and similarly,
M1 (K) = 0 (k) + h(Whi1) 2 0n(F) + hain (k) = On i1 (F),
so that (3.22) is satisfied. Finally, in this case,
Zoi1 = 2o+ g(We, Woi1) + h(Whit) < a-U™ + goax (0, ) + hnax () = a- U™ .

Meanwhile, in the second case = (n,Z? x T/*) and 1, (¢') increase, while Z].D:ml ur(¢, 7))
and 60,,(¢') remain the same, and thus (3.19) is satisfied and 7,.1(¢') = 6,.1(¢'). As this
is the only case when Z®) (n, T x Z") — U™((¢', k)) increases, and we add a ball of type

(D, + 1, k), (3.20) also follows. Both 7, (k) and 6,,(k) increase as in the first case. Next,
Zn+1 = Zn + Q(W& Wn+1) + h(Wn+1> <a- Z/A{;ZL + grtlax (k> + hmax (k> =a- LA{;Z-I

As all other quantities remain the same, (3.22) is satisfied, and moreover, Z,,; < a - Z]ﬁl

To complete the proof, it remains to prove the following claim.

Claim 3.2.7. For each m € N, almost surely (on the coupling space), the urn process Um =

(Z;lm)neNo is distributed like the Pdlya urn process (U )nen, with UJ* = 0, for an initial ball

n n

of type L € R.

Proof. First note that, since Wy is sampled from p, conditionally on the positive probability

event {h(Wpy) > 0}, we have
IP)(WOEI?,h(WO) >O) <]P’(W06IZ") :pqu’
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and thus, P-a.s., we have W, € Z;* with pj* > 0. This, combined with the fact that 0 <

h(Wo) < hmax (€), implies that P-a.s., the initial ball £ € R.

Now, note that in every step in (U™)nen,, we add a ball of type k for k € [D,,] with

n

probability p}*, which is the same as in (U)")nen,- Moreover, given Z/AITT, the probability of

n

adding balls of type (k,¢) is

m [ (k) y On (k) 2, o m On(k)
“\ 2 nuka-um “Ca-um

which also agrees with the Polya urn scheme. Finally, the probability of adding a ball of
type (D, + 1,0) is

nzlhn . 0n(j) 20 N (7)
" [(1 wa.am> 2

n

=y (1 —Di 9"(]3n> :

as required. O

Note also, that, since the functions h™, g™ are non-increasing pointwise in m, on the
coupling we have that for any fixed n, a- U is non-increasing in m. Combining this result

with Corollary 3.2.5, we have the following corollary.

Corollary 3.2.8. The sequence (Ay,)men S non-increasing in m. In particular, there exists
a limit Ay = 0 such that

Am | Ao

as m — 0.

The Limiting Vectors of Urn Schemes Associated with Urn E

We now calculate the limiting vector u,, and the limiting eigenvalue \,,. First note that by

the definition of the urn process, for each n € Ny, ¢ € [D,,]| we have that U] ,(¢) — U} ({)

n
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2150 i1s Bernoulli distributed with parameter pj*. Thus, by the strong law of large numbers and

2100 Corollary 3.2.5, we have, for each ¢ € [D,,],
u,(0) = 22 (3.23)

2161 Next, for any 4, j € [D,,] using the definitions of v and a ((3.15) and (3.16)) we have

Dy,
A (i, 9)) = pJ' ) (v auy) (i, 0)) + p} (v aw,,) (i)
D
= ;1 Guin (1, 0) W ((2,0)) + P homin (i) Wy (0)
(3.23) o . . P;'D{" hnin (4)
= pr ;gmin (3, 0) W ((4,0)) + s (3.24)
2162 We now define B
A= 3 i 5 un(3,0)
-1

216a - Multiplying both sides of (3.24) by gmin (¢,7) and taking the sum over j € [D,,], recalling

2165 the definition of §_(7) in (3.14), we get

)\mA7,:<A+Z min )ijgmmlj
= (Ai + B Towin 1) h;\n: <Z)> g-(4).

2166 Thus, solving for A;

Ai _ p;nh’min (Z) g_(l) (325)

2167 Substituting (3.25) into (3.24), we have

Nt (,5)) = P (; }f“““f) <(>§ * Zhin: @)
—p;nfl min (( )) (326>
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Dy D Dy,

AW (D + 1, 7)) = py’ (i(aum)((Dm +1,0) + Z Z(a —va)((i,0)) + E(a - Va)(l)>

(=1

i=1/4=1 i=1
D D,

D,
<Zg Y (D + 1,0) + > (gmax (6,6) = Gunin (i,0))

=:p" (Bm + Em) ;

where, in the last equation we set

and

DTVL D’!?L

gm = Z Z(gmax (ng) — GUmin (2,6))

i=1/¢=1

i=1/4=1

W ((1,0)) + Y (hmax (1) = hanin (1)) (3).

=1

Multiplying both sides of (3.27) by ¢*(j) and taking the sum over j, we have

(Zp ) (B + Em) = G5 (B + Em)

and thus

B, =

)‘m_gj-

i o

W ((2,€))

(3.27)

(3.28)

Note that all of the previous analysis implicitly applied Condition C2. We now apply

Condition C1 in the following lemma:

Lemma 3.2.9. Assume Conditions C1 and C2. Then, we have Ay := lim,, o A\,

Proof. Note that, since we add two balls to the urn at each time-step, we have

Un'alr =

Uy = 2.
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Thus, by (3.17), we have |A\,u,,|1 = 2. Now, by (3.23), we have A\, Zf:"i u,(¢) =1, and
thus, by (3.26), we have

Baln o[ P rO9)
22 () < |52 s <.

j=li=1
Note that as m — o0, hy, (1 (W)) 1 A(W) and g— (r (W)) 1 g(W). Thus, by the monotone

convergence theorem, we have

v T R e e A

m—0o0
Now, since the eigenvectors u,, are non-negative, by (3.28), we have
>\m > gja

and thus, Aoy = limy, o0 Ay, = limy,, 00 G5 = §*. But, if A, = §*, since the expression in (2.4)

is decreasing in A\*, we would have a contradiction to Condition C1. The result follows. [

Lemma 3.2.10. Assume Conditions C1 and C2. Then, we have B,, | 0 and &,, | 0 as

m — 0. In particular,

so that Ay = \*.

Proof. First, note that by Corollary 3.2.8 and Lemma 3.2.9, for each m € N, we have
Am = A > ¢*. Combining this fact with the boundedness of g and h we observe that

su { hiz) i} < su { iz) i} =(C<w
xe[O,g*] Am (Am = G()) A xe[O,E*] 7* (Ao — 9(2))" As ' ’

where the bound on the right is independent of m. Now, given ¢ > 0, by applying

Lemma 3.2.4, let m be sufficiently large that for all z,y € [0, w*]

€

(6" (@y) =g (@.y) < 55 and (h*(x) = h™(2) < 5.
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2100 Then we have

= Z Z gmaX — Omin (Z ])) um((z ] + Z max E) - hmin (6)) um(@

i=1j=1 (=1

)
3
~3

3.23),(3.26 hanin ()7 P]"
( L( ) ;; (gmax (Z,]) — GUmin (Z,])) )\m()\nf )_pgf)(z» + ;1 (hmax (E) - hmin (6))

>/|’B
3

2200 The result for B,, then follows from the fact that g7 | §*, and Lemma 3.2.9. O]

2201 We are now ready to prove our main results of this subsection.

202 Proof of Theorem 3.1.1

2203 Proof of Theorem 3.1.1. Note that, by (3.21) from Proposition 3.2.6, we have

2204 O<a-MTT—Zn<(a—7a)-Um.

n

2205 Dividing by n and taking limits as n — oo, by (3.18) we have

Z Z, m
0 <\, — limsup —= < \,, — liminf == < limsup ((a—'ya) - u—”) =B, + &E.
n

n—o0 n n—00 n n—00

206 The result follows by applying Lemma 3.2.10. [

2207 In addition, recalling the definition of .#™ from (3.13), note that

o(IM) = {S clow]:S=|JI" 1< [Dm]} . (3.29)

iel
208 In other words, the g-algebra generated by .#™ is the set of finite unions of sets in .#™.

200 Recalling that .#™2 is a refined partition of .#™! for m; < ms, by Lemma 3.2.3 we have
o(I™) < a(IF™). (3.30)
2210 We now prove Theorem 3.1.2.
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Proof of Theorem 3.1.2

Proof of Theorem 3.1.2. We begin by proving the result for Cartesian products of the form
S x S" with S, 5" € o(#™), for m’ € N. Note that, by the definition of 23 (n, -), we clearly
have finite additivity, that is, for any measurable sets S, Sz, S35 < [0, w*] if S} N Sy = &, we

have
E®(n, (81 U Ss) x S3) = E@(n, Sy x S5) + 2@ (n, S5 x S5),  and similarly,
= (n, Sy x (Sy U Sy)) = 5(2)(n, Ss x S1) + E(2)(n, S3 % Ss).

Combining these facts with Proposition 3.2.6, Corollary 3.2.5 and (3.26), for sets S x S" with

S, S" € o(F#™) we have, for each m > m’,
h=(W)

=@ (n,S x )
E[Am-—gv<wo>

1S(W)] w(S") < liminf =

n—ao0 n

, E@(n,S x 5
< lim sup

n—:00 n
<E [ h” (W)
>\m —g- (T (W))

Taking limits as m — o0 and applying Lemma 3.2.10, this proves the result for this family

1SUV4;ASU—+Bm—+5m.

of sets.

Now, by the Portmanteau Theorem, we need only prove that for all sets U € O, where

O denotes the class of open subsets of [0, w*] x [0, w*], we have

=@ (n, U
i int = U) (
n—a0 n

Gt (U, (3.31)
Now, let

7U) = U " x I

i,je[Dm]:Iime;.ﬂgU
Note that, since U is open, and .#™ is fine enough that the set of dyadic intervals
{Dlm(w*)}ie[w] - U(fm), we have

1zm@y (W) 1 1y(W)  pointwise as m — oo. (3.32)
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In addition, since Z™(U) < U, for each m e N

=@ (n, 7m™(U =@ (n. U
(Yupe x p)(Z™(U)) = lim inf (n, 27(V)) < lim inf = Y).
n—0 n n—00 n
Then, (3.31) follows by taking limits as m — . []

3.2.3 Analysing the PANI-tree by Coupling with Urn D

In order to analyse the degree distribution in this model under Conditions C1 and C2, we

introduce another collection of Pélya urns (VX /)neNO, which not only depend on m, but also

depends on a parameter K’ € N. These may be regarded as finite approximations of Urn D.

For brevity of notation, wherever possible in this subsection we will omit the dependence of

these parameters on m. For i € N, define [D,,]* so that

[Dpn] = {(ug, ... ui—1) : Ug, ..., U1 € [Dp]}.

Now, we set
B = ( U [Dm]l> U ({Dy, + 1} x [Dy]).

The urn process (VX'),=¢ is then a vector-valued stochastic process taking values in V. We

n

now define the vectors a’, 4" associated with the urn process such that

hmax (UO) + Z?:l Gmax (u07 uj) if v = (u(]? v >uk) € [Dm]k+1

al(z) =
and,
hmin (uO)""Z?:l 9min ('U‘O:uj) f D k+1 k, / / .
= m k< K7, > 0;
7/(1‘) _ hmax (UO)"FZ?:lgmax (U07uj)7 1I = (U07 ;U/k‘) € [ ] a (1‘)
0, otherwise.
Now, given u = (ug, ..., ux) € [D,,]**!, k < K’, and { € [D,,], we define their concatenation

(u,?) € [D,,]**? such that

(w,0) := (ug, ..., ub).
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Then, we define the replacement matrix M’ of the urn (Vf/)neNO such that, given z,2’ € B/,

-

—(v'a’)(z) if o/ = 2,0 €[D,]* k < K';
(v'a')(z)p}, if ' = (z,0),0 € [|Dy,],z € B,
My o =1 (a —v'a) (2)pl", if 2’ = (D +1,0),0€ [Dy],z € B

a'(z)py, ifa' =0 el

0 otherwise.
\

Again, note that it may be the case that M’ is not irreducible, if either a’(z) = 0 for

certain x € B’ or pj* = 0 for certain choices of /. Nevertheless, we define the sets
U ={xeB M, =0Vad'eB}={reB :a(xr)=0},
and
Uy = {x'eB : M, =0vVreB\{z'}}.

Again, we assume that %/ n %) = @; if not, we replace %/ by %/\%,. We then set
R' = B\(% v %), and let M}, be the restriction of M’ to R’. As in Section 3.2.2, M,
satisfies the conditions of Lemma 3.2.2, and thus has a unique largest positive eigenvalue
A with corresponding eigenvector V. But then, writing M’ in block form in a manner
analogous to Section 3.2.2, M has the same largest positive eigenvalue, with corresponding

right eigenvector given, in block form, by
Vg
Vi =1 (Np) AV
0
Here, we assume Vg is normalised so that a’ - Vg = 1. Also in a manner similar to the

Section 3.2.2, assuming we begin with a ball of type x € R, one readily verifies that the

restriction of M’ to R’ and %/ satisfies conditions (A1)-(A6) of Section 3.2.1, and also, that
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for each x € %) and n € Ny, U,,(x) = 0 almost surely. Therefore, applying Theorem 3.2.1

again, we have the following corollary:

Corollary 3.2.11. With Vi, Ny, and R as defined above, assuming we begin with a ball

x € R, we have

S

n n—00 !

In PN Ve
n

almost surely. In particular, we have

a - ]}}(/ n—00 12
n s N, 3.33

X g (33
As in Section 3.2.2, in the coupling below, the assumption of a ball x € R’ is met by

the tree process being initiated by a vertex 0 with weight Wj, sampled at random from p and

satisfying h(WWy) > 0.

Coupling Urn D with the PANI-tree Process

Recall that we denote by Nsi(n, B) the number of vertices of out-degree at least k having
weight belonging to a measurable set B < [0, w*]. We also define the analogue Z-y(n, j) for

n € Ny and j € [D,,] such that
+
Dor(n, 7) Z Z K () 153 (uo).- (3.34)
j=k u;€[Dm

This represents the number of balls in the urn VX' with type u = (uq, . ..) having dimension

at least k + 1, with uy = j. We then have the following analogue of Proposition 3.2.6:

Proposition 3.2.12. There exists a coupling (IA/K/,ﬁ)neNO of the Pdlya urn process

n

(VE)eno and the tree process (Tp)nen, Such that, almost surely (on the coupling space),
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VE' consists of a single ball { € R and for alln € Ny, k € {0} U [K'], we have

D=r(n,j) < Noi (n,Z")  and (3.35)
D D

DT (Nok (0, T) = Dok(n, ) < K (D +1,7). (3.36)
j=1 j=1

In addition, we have

(v'a)-VE' <z, <a - VK. (3.37)

Proof. We proceed in a somewhat similar manner to Proposition 3.2.6, however, in this
case, we first introduce a “labelled” Polya urn (L,),,., where balls carry integer labels from
{=Dy,...,0,...,n}. In addition, for j € {0} U [n], the label is independent of the type of
the ball: we denote by b,(j) the type of a ball with label j at time n. One may interpret
the ball with label j as representing the evolution of vertex j in the tree process - in this
sense, the label may be interpreted as a “time-stamp”. Balls of type (D, + 1,7), j € [Dn],
however, are labelled —j - we denote by d,,(j) the number of balls with this label, since
here, multiple balls may share the same label. We describe the labelled urn process £,, as

an evolving vector in B’ x Z, so that £, = Z].D:ml dn(5)  Obn()g) T 2o O(bn(i)i)- We set

n n

2 du(j) - @ (ba(5)) + D @ (0a(0)), and (v'&)(La) = Y (v'a)(ba(d)).

j=—Dnm i=0 i=0

Now, we use L, 1 to define fiﬁl by “forgetting” labels, so that,

n+1 n+1

if £n+1 Z d bn+1 +Z 5(bn+1 i) s we set f}ﬁl = 2 d 5bn+1 +Z 5bn+1

=0

Sample the entire tree process (ﬁb)neNO. If, at time 0, the tree consists of a single

vertex 0 with weight Wy € Ij)" then, we set Ly = d(1,0), and note that we have

(v'a")(Lo) = humin (€) < h(Wo) = Zo < @'(Lo) = fraax (£),

and

FINT(0,70)) = h(Wo) = (7' &) (00(0)) = hoayin (0).
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Now, assume inductively that after n steps in the process, for each i € {0} U [n] we have

FINT(,To)) = (7 &) (ba(d),  deg™ (i, Tn) = dim(b (i) — 1, (3.38)
i (deg™( — dim(b, (i) + 1) = i VE (D, + 1, 7), (3.39)

and (3.37) is satisfied.

Let s be the vertex sampled in the tree in the (n + 1)st step, assume that r(s) = ¢
and that r(n + 1) = k. Then, for the (n + 1)th step in the urn: sample an independent

random variable U,,;; uniformly distributed on [0, 1]. Then:

e If dim (b,(s)) < K’ and Uy, < f((N+(i(Tn§§2(£ ;> remove the ball (bu(s), s) from the urn,

and add balls ((b,(s), k), s) and (k,n+1) to the urn, i.e., set L,11 = Ly 4 O((bn(s),0),5) +

O(kn+1) — O(bn(s),s)- We call this step Case 1.

e Otherwise, add balls of type ((D,,, + 1, k), —k), (k,n + 1) - we call this Case 2.

First note that

. Gmin (¢, k), in Case 1
(v'a") (bns1(s)) — (v'a

in Case 2

g(WSa Wn+l = (N+(S7 7:1-1-1)) - f(N+(3> 7;1))’
and likewise
(¥a) (g1 (n 4 1)) = huin () < B(Woi1) = F(NT(n+ 1, Tog)).

Additionally, in Case 1 the dimension of b, (s) and the degree of s in 7., both increase, whilst
in Case 2 only the degree of s increases whilst the dimension of b, (s) remains the same. This

proves (3.38) at time n + 1. In addition, Case 2 coincides with the addition of a ball of type
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(D, + 1,¢), which yields (3.39). Finally,

. ) ’ .
(,yla/) . (ij/ . ]}K/> . hmln (k> + Gmin (€ s k), in Case 1
n+1 n -

hnin (K), in Case 2

< h(Wn-i-l) + g(WS7 Wn+1) = Zn+1 - Zn

Pmax (k) + Gmax (¢, k), in Case 1
<

Pomax (K) + g5 (K), in Case 2
< (@) Vi = V)
which shows that (3.37) is also satisfied at time n + 1.

Claim 3.2.13. Almost surely (on the coupling space), the urn process VK = ())f/)neNo 18

distributed like the Pdlya urn (VE

KT eny with VE' consisting of an initial ball £ € R

Proof. The fact that, P-a.s., the initial ball £ € R’ follows immediately from the fact that
the initial weight W is sampled from p conditionally on the event {h(WWj) > 0} (analogous
to in Claim 3.2.7). Moreover, in every step in VE' we add a ball of type k for k € (D]
with probability pi", which is the same as in V& ". Furthermore, given ]A}f/ the probability of

removing a ball of type u with dimu < K’ and adding a ball of type (u, ¢) is

" 'a’)(b,(s))Z, N*+(s, T, ” 'a’) (b, (s
3 (v'a’) (bn(s)) JINT(s,Tn)) 3 (v'a’) (ba(s))

Py X =Dy

SELp:bp(s)=u f<N+ (87 ﬁ))a/<£n) Z” SELp:bn (s)=u a/(ﬁn)
R A
A Zn 3

which also agrees with the transition law of the Polya urn scheme V. Finally, the probability
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230 of adding a ball of type (D,, + 1,/) is

Py

FIN* (s, T)) {_ (v'a’)(bn(s)) 2, FIN*(s,T5))
v T z( - ) t

Z
S$ELy:dim by (s)>K' n s€Ly:dim by,

N7 5,7;1 m 'a’) (b, (s
:pyz(u) py

Z
seLn " s€Lp:dim by (s)<K’

™ ]A}K u
3 (v'a')(V* (u))

= pzl - VK )
ueVE' :dim u< K’ a (Vn )
sz which agrees with transition rule of VX' O
2322 Finally, to complete the proof, we verify the following claim.

223 Claim 3.2.14. For all n € Ny, (3.35) and (3.36) are satisfied for all k € {0} v [K'].

2224 Proof. If we define b,,()|o such that b,(i)|o = x¢ if b, (i) = (zo, ..., 2x), then, by construction
225 of the labelled urn process (L,)neng, On(i)lo = zo = 1(W;) = x0, so that W; e I.".
236 Therefore, for each k € {0} U [K'],j € [Du],
. (339 -
D=1 (n, j) = > Ly (bn(i)]o) < >, 1(W) = Nag(n, I77).
b (2):dim(bp (¢)) Zk+1 i:degt (4,Tn)=k

2327 Moreover, by (339),

D

2V (D +1,5) =

j=1

2328 which implies (3.36). O

2329 D
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The Limiting Vectors of the Urn Schemes Associated with Urn D

We now calculate the limiting vector Vg and limiting eigenvalue A} of the Polya urn scheme
(VE"),1=0. We first introduce some more notation: for any vector u = (ug, ..., ug_1) € [Dp],

and i € {0} U [k — 1], denote by ul; := (uo,...,u;) € [D,,]"™'. We also define the following

quantities:
l)7n
Ry = Y, (D + 1,0))Vir((Dy + 1,0)), (3.40)
(=1
Ex = Y, (@ —+a)(u)Vi(u), and
w:dim u< K’
Froi= Y, aV)Vi(v). (3.41)

v:dimv=K’+1

Proposition 3.2.15. Let Xy, and Vg denote the limiting leading eigenvalue and corre-
sponding right eigenvector of M', respectively. Then, denoting the components of a vector u

by ug, uy, ..., the eigenvector Vg satisfies

Pug Nr Hk—l [ m ( (v'a’)(uls) )] k+1 /.
Tol 7 i=0 | Pu; vy , T=u€|D,]"" 0<k< K/
'V /(I) (v'a’)(u)+A}, 0 (v'a’)(uf)+X, (342>

m K'—1]| m (v'a’)(uli) _ K'+1
Py, | [pu (m)] ; r=uce[D,]**,
where we set the empty product of terms, when k = 0 equal to 1. In addition, we have

Exr + Fror

N = 9%

Ry = (3.43)

Proof. First note that, for each ug € [D,,], since we add a ball of type uy with probability
Py at each time-step, and remove such a ball with probability proportional to (y'a’)(ug), we
have

N Vi (uo) = piy — (v'@") (u0) Vi (uo), (3.44)

this implies the case k = 0 in (3.42). Next, for k£ > 0, we have
, P (v'a) (ule-1) Vi (uli-1) — (&) (0) Vi (u), ue[Dy|" k< K
K/VK/(LI) = (345)

v, (Y'a') (ul 1) Vier (ul 1) ue [D, )5+
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so that, if ue [D,,]*!, 1 <k < K' -1,

P, (Y'a) (uf—1) Vi (1)
(v'a’) () + Ny '

Applying (3.45) and (3.46), recursing backwards, and using the fact that Vg (ug) =

Vi (u) = (3.46)

pu/((v'a") (ug) + N) from (3.44), completes the proof of (3.42). Finally, for each j € [Dy,],

we have

D

N Vi ((Dm +1,7)) =p}' ( a'((Dy +1,0)Vi((Dyy + 1,0))

3

Il
—

+ ) @)WV + D] a'(v)vK,<v))

w:dimu<K’ vidimv=K’+1

=p;' (Ri + Exr + Frr) 5 (3.47)

where, in the last equation we recall the definitions in (3.40) and (3.41). Now, multiplying

both sides of (3.47) by a'((D,, + 1,7)) = ¢*(j) and taking the sum over j, we have
/\,K/RK’ = (2]7 > RK/-i-gK/-f-./—"K/) —g+ (RK/-f—gK/—i—,/_"K/)

Rearranging this proves (3.43), thus completing the proof of the proposition. ]

Now, we recall the definition of the companion process (S;(w));=o from Section 3.1.1
n (3.2): Recall that Wi, W, ... were defined to be independent p-distributed random vari-
ables and let w € [0, w*]. We then defined the random process (5;(w));>o inductively so that
So(w) = h(w) and for all ¢ > 0, we have S;41(w) = S;(w) + g(w, Wi11). Now, we also define
the lower companion process (S; (w))i=o in a similar way, but instead with functions h~, g~

respectively, so that
Sy (w) :=h™(w); Siq(w) =8 (w) + g (w,W;41), i = 0. (3.48)
Lemma 3.2.16. Assume Conditions C1 and C2. Then we have

lim lim Fx = 0.
K'’—00 m—o0
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236 Proof. Note that by (3.42), with J’ being an upper bound on max{h, g}, we have

Frr = Z a'(u) Vi (u)

wdimu=K'+1

oy <>pu,{,ﬁ[pm<<,,;> ?%lf&;{,ﬂ

wdimu=K'+1

(
<J'(K'+1
(K +1)- p“K’ 'ya’ u| —i—XK,)]

udlmu K'+1

= J(K'+1)- ) DI :)1 [pw (Wga()uk)x )]

wdimu=K’" \ uys€[Dm]

—J(K 1) Y Hlpm( ))|(L)X/>]

wdimu=K’ =0

i e

=0

23s where we recall the definition of (S; (w));so from (3.48). Now, note that for all m € N,

a6 S (W) is stochastically bounded above by S(W), and by Theorem 3.1.1 and (3.33) and

aer (3.37), Ny, is bounded below by A* uniformly in m and K’. Therefore, since the function

2368 & — —— is increasing in x and decreasing in A, we may bound the previous display above
T+

2369 SO that

. st w - (50
o2 [T (st o) | <o o2 1T (s )

< 2| ]| (—sﬁv@»)] |

2370 We complete the proof by proving the following claim.

2snn Claim 3.2.17. We have
k—1
. Si(W) _

2313 Proof. First observe that
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2374

Therefore, we have

Si

S;(W) 4+ A*

(W)

)

p

E_(l_

o)

j—1

7j—1

Si(W)
S; (W) + A*

st

=0

- A* Si(W)

AT S+ E <Sl-(W) +)\*)_
N D S =N (1 WA

= ;kj N eSS g (&(W) n A*)_

2375 The series on the right of the previous display consists of non-negative terms, and for each

we N €N, we have
ij - [Sj(ﬂj>*+ » (s 7 A)] (349
:i (‘7 - m (5(?/1/(){/?/\)] Ik m S(?/V()Mi),\)]>
2= | )| = |11 (55|

2377

Now, note that by Lemma 3.1.4, we have
j—1

5 | (s

2378

2379

2 NI S(W)
2380 Z:: [ )+)\*H(SZ(W)—|—)\*> < Q0.
2381 Therefore,
k—1 0 Jj—1

lim k- E < lm » j- =0.

k—0 L_O (Si(W) + A ] Hoo;ﬂ [ W) + \* H Si(W) + A*
2382 O
2383 O
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28 Lemma 3.2.18. Assume Conditions C1 and C2. Then we have

2385 lim lim g =0, and lim lim Ry =0. (3.50)

K'—00 m—0o0 K'—00 m—o0

286 In addz’tz’on,

2387 lim lim )‘K/ = )\* (351)

K’'—00 m—0o0

238 Proof. The proof is similar to that of Lemma 3.2.10. First, let ¢ > 0 be given, and, by
230 Lemma 3.2.4, let m be sufficiently large that for all z,y € [0, w*]

¢ 8)\/}(/

_ eN) _
2300 (97 (z,y) — g (z,y)) < KI’{ and (h*(z) —h™(z)) < o (3.52)
2301 The inequalities in (3.52) now imply that for any u = (ug,...,ux_1) € [Dn]¥, and each
2302 1 € {0} U [K’ — 1] we have (taking the empty sum to be zero when ¢ = 0)
i—1
(@' =) (uli) = o (40) = hunin (0) + Y (Gimax (0, 25) = Gruin (0, ;)
j=1
e /
Kff K = ey, (3.53)

2303 Now, using the ul|; notation as a shorthand, we can write

fo= Y3 () ul) Vie(ul

ue[D,, K" =0

o Z hl afy;f72| +Xjuzﬁl (73721T(;E)A%')]

K’ =0 Jj=0
(3.53) K/pu - [ m ( (v'a’)(ul;) )]
< £ - L pu
UEZ L e s (g +
N, oSy W)
— . F K — <&,
Z S ( +)\}(,E)Sj (W) + N

230 where we recall the definition of (S} (w));>o from (3.48), and observe that the sum in the

235 final line of the display telescopes. The first equation in (3.50) follows. Next, (3.43),
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2306 Lemma 3.2.16, and the facts that N, > A\* and lim,,_., ¢* = ¢* < A* together impl
K 9+ g g ply

2307 the second limit in (3.50). Finally, by (3.37), Proposition 3.2.15 and Theorem 3.1.1 we have
N — N < Er + Frr + R,

238 80 that (3.51) follows by taking limits as m — o0 and K’ — o0, O

2300 Proof of Theorem 3.1.3

200 Proof of Theorem 3.1.8. First, recalling the definition of Z-.(n,-) from (3.34), by Proposi-

2200 tion 3.2.15 for any ¢ € [D,,]| we have

lim 22600 _ DD Vie(uly) Ly (u)

n—00 n , )
j=k ue[Dy, | K'+1

_— (pil";, ﬁl [pm (<VIS/3;L(>UPA'K,)]

ue[Dy, K/ +1 =0

! Z e L[ (WIS{FIQTS“K;)]) Hotto)

1=0

2202 Now, as with the proofs of Lemma 3.2.16 and Lemma 3.2.18, recalling the definition of

203 (ST (w))i=o from (3.48), we may write the last equation as
5|11 (o) 100
. 2 . [ e H (o) WW)]
-E [ﬁ <%) 1IF(W)] . (3.54)

20 For m’ € N, (3.54) allows us to prove the result for sets S € o(#™), where we recall

205 the definition of #™ in (3.13), and (3.29) and (3.30). Since N(n,-) is finitely additive, if
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Seoa(F™), by (3.35) and (3.54) we have

k—1 —
So(W) .. Neg(n,S) . Nxi(n, S)
E | | —t ) 1(W <1 f—=—" -~ L1 =
L:o (S._(W) + XK,) s )] e n 11;n_)8£p n

(2

k—1 _
S; (W)
<E —————— | 1s(W) | + R + Exr + Fir.
[H (s o) >] ot Sk
Taking limits as m — oo and then as K’ — o0, and applying Lemma 3.2.16 and Lemma 3.2.18
now proves the result for sets in o(.#™). Now, note that for each k € Ny, and measurable

sets S’ < [0, w*], we have

_ N=p(n, S’ .
lim sup L < lim sup
n—ao n n—0o0

]\[ !
M = u(S") almost surely, (3.55)
n

where the last equality applies the strong law of large numbers.

We now prove the result for sets U € O where O denotes the class of all open subsets of
[0, w*]. For a fixed open set U € O, and m € N, recall that Z™(U) := Uje[Dm]:Ij’.”gU 7" Also
recall (3.32), which states that 1zm)(W) 1 1y(W) pointwise as m — 0. Now, since each
Z™(U) € o(F™), by applying (3.55) for each k < K’ we have

k-1
Si(W) . Nep(n,U) Nzi(n, U)
" L_O (m> 1Im<U)(W)] < liminf =20 < fimsup =2

i=0 ¢

<E [ﬁ (sr) 1Im<U><W>] = u(U\T"(O)).

Taking limits as m — o0 and then K’ — o0 now proves the result for sets belonging to O.

Finally, note that since yu is a regular measure, for any measurable set A < [0, w*]| we

have

u(A) = inf {p(U)}.

UeO:AcU

Thus, for a given measurable set A, and any ¢ > 0, there exists an open set U, such that
n(U-\A) <e.

Therefore by finite additivity and (3.55)

. Nsi(n, U, .. . Nep(n, A
llrrl ___:;_E__l__:iz — € sg llIIllIlf __;:;_E__l___z
n—0o0 n n—0o0 n n—00 n n—0a0 n



2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

Preferential Attachment Trees with Neighbourhood Influence

The proof for the general case now follows by applying the result for the class O, and sending

e — 0. OJ

Theorem 3.1.3 now allows us to prove Theorem 3.1.5.

Proof of Theorem 3.1.5

The proof of this theorem is almost identical to that of Theorem 2.2.2 in Chapter 2. Recall
that, if Ni(n, A) denotes the number of vertices of out-degree k in the tree at time n having

weight in A, by counting the edges in the tree in two ways we have
E(n,A) = Y kNi(n, A) = Y Nog(n, A).
k=1 k=1

Proof of Theorem 3.1.5. By Lemma 3.1.4, and using Fatou’s Lemma in the last inequality,

we have,
(b )u(A) = E [M’i(—vgv()mu(vv)] - VE [H (%) 1A(W>]

o0 i
— 2 hminfw < hminfﬂ'
n—0o0

n n—0 n

b
Il
—

2(n,A°)

and likewise, liminf,_, > (14p)(A°). Now, since we add one edge at each time-step,

it follows that =(n, [0,w*]) = n. Thus, by finite additivity,

Z(n,A) Z(n, A° Z(n, A Z(n, A°
1= liminf< (n, 4) + (n, )) < limsup (n, 4) + lim inf (n, A°)
n—o0 n n n—00 n n—0 n
=(n, A =(n, A°
< limsup ( (n, 4) + (. )> =1
n—00 n n

But, since (2.4) implies that (¢o.p)(+) is a probability measure, this is only possible if

=(n, A =(n, A°
lim sup (n, 4) = (Yep)(A) and liminf =(n, 4% = () (A°) almost surely.
n—00 n—o
The result follows. ]
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3.3 The Condensation Regime

In this section, we extend the results of Section 3.2 to the condensation regime. This section
is closely related to Section 2.3.2 of Chapter 2, and indeed, Lemma 3.3.2 should be viewed
as the analogue of Lemma 2.3.2, as we also couple the PANI-tree process 7 with auxiliary
processes T T(=9) ¢ > 0. However, the coupling we present is a refinement: rather than
constructing the trees with truncated weights as we did in Lemma 2.3.2, we instead use the

same weights, but instead adjust the function ¢ in the processes 7 and 7(-9).

In particular, given ¢ > 0, and M. as defined in (3.6), define the functions g.,g_.

such that

9:(P, @) = Lpme(P)g(P, @) + Laa. (p)g(z™, q)

and
9—(p,q) == Lame(P)g(p, ) + I (p)(9(z, q) — uc(q));

and let 7 7(=%) be the evolving trees with measure p, and associated functions g.,h
and g_., h respectively. We also denote by (Z}{s))@o and (Z,(fa))@o the partition functions

associated with 7, T7(=9) respectively.

Lemma 3.3.1. Assume Conditions D1-DJ. Then, for each € > 0 sufficiently small, T
and T2 satisfy Conditions C1 and C2. In addition, if ., A_. denote the Malthusian

parameters associated with T, T2 then \. | §* and A\_. 1 §* ase | 0.

Proof. First, since by D2 g satisfies Condition C2, we have

g@.y) =k (6 @),. . 0V (@). 6 W),V ).

for measurable functions ¢’ : [0,w*] — [0,.J], j = 1,2, i € [N] and a bounded continuous

function  : [0,J]2¥ — R,. Now, if we set ¢\" "V(z) = 1o (2), ¢V (2) = 1o (),
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qﬁgNH)(y) = g(2*,y) — u:(y) and define £’ such that

! P
K'(c1, .. engo,di, .o odyir) == engak(cr, .o enyd, .o dy) 4 enpadna,

we clearly have that gngH), ¢§N+2)a gNH) are bounded, non-negative measurable functions,

and ' is bounded and continuous, taking values in R, . Noting that

gcla,y) = (@), o @) 6 W), V).

it follows that g_. satisfies Condition C2. The proof of C2 for g. is similar.

For C1, since h is bounded, for sufficiently large A > g*, we have

E[%] <1

Meanwhile, since, by Condition D4, 1(M.) > 0 and g.(z) = ¢* for any € M_, by monotone

convergence

Thus, by continuity in A, Condition C1 is satisfied for 7(). A similar argument also works
for 7=9): if §*_ denotes the maximum value of §_.(z), then this value is also attained on
M. which has positive measure. If A\., \_. denote the associated Malthusian parameters

associated with the trees, then, for each ¢ > 0, \. > ¢* and A_. > g*_. Moreover, since

.
g- is non-increasing pointwise as £ decreases, A. is non-increasing in ¢; likewise, \_. is
non-decreasing in €. Now, suppose lim. oA = Ay > g*. Then we may apply dominated

convergence, and

e[ m] -2 lSm] -2 []

contradicting (3.5). The case for A_. follows identically. O

Lemma 3.3.2. There exists a coupling (72(_5)’ T, 7’(5)) of these processes such that, almost

surely (on the coupling space), for all n € Ny,

z-9 < 2, < 29, (3.56)
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and, for each vertex v with W, € M¢, we have

FIN* (0, T9)) < fFIN*(0,T0) < F(NF (0, T,09)) (3.57)
and
deg (v, T19) < deg (v, T,,) < deg (v, TL79). (3.58)

Proof. We initialise the trees with a single vertex 0 having weight W, sampled independently
from p, conditioned on {h(WW,) > 0} and will construct copies of these three tree processes

on the same vertex set, which is identified with Ny. Now, assume that at the nth time-step,
FE (R N (T 4 (FOY o (T
( j )0<g<n ( j )0<J<na ( J)0<J<n ( J)0<g<n an ( j )0<g<n ( y )0<]<n'
In addition, assume that (3.56) and (3.57) are satisfied up to time n.
Now, for the (n + 1)st step:
e Introduce vertex n + 1 with weight W, sampled independently from p in 7;(_8), 7T,
and 7,

e Form 7;(;15 ) by sampling the parent v of n + 1 independently according to the law of

T(=9), i.e., with probability proportional to f(N* (v, 7;(_5))). Then, in order to form

~

711 sample an independent uniformly distributed random variables U; on [0, 1].

(—e) S N
- IfU; < ;”f(]\ffzﬁ(lffg)))) and W, € M¢, select v as the parent of n + 1 in 7,41 as

well.

— Otherwise, form 7,1 by selecting the parent v/ of n + 1 with probability propor-

A

tional to f(N7*(v',7,)) out of all all the vertices with weight W, € M..

e Then form 7;(?1 in a similar manner. Sample an independent uniform random variable

U2 on [0, 1]
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2501 — If vertex v (with weight W, € M¢) was chosen as the parent of n + 1 in 71 and
>(g) ~

2502 U; < %m, also select v as the parent of n + 1 in 77, .

2503 — Otherwise, form 7. w1 by selecting the parent v” of n + 1 with probability propor-

2504 tional to f(NT(v", 7, )) out of all the vertices with weight W,» € M..

05 Clearly 7,02 ~ T2 On the other hand, in 7,41 the probability of choosing a certain

206 parent v of n + 1 with weight W, € M¢ is

Z W 0, T) | SO, 7)) SN (0, T)

2507 —
)

Z f(N*(0, T,.T7) z{ N zZ,

2s0s whilst the probability of choosing a parent v" with weight W,, € M. is

FIN*W,T)) i ( Z (1 ZU9 F(N (v ,72))> f(NT(v, An(_e))))
S em. FINFW T0)) oo Z,f(N*(v,T379)) zi

SN T) ( 5 f(N*(v,ﬁ(_a)))>
z(=9)

2w em. SN (W oI pe M.
N, ( pIPAGME T( M) ooy W v, >>)
- Zv’:W/eME 72 v W,eMe
_ v 72 <1 vw,,eMcﬂN*(vﬁ;))) _ f(N*(v'ﬁ;))
Zv/:Wv/EMe 7; Zn Zn ,
2500 where we use the fact that >, f(N*(v,7, 7.)) = Z,. Thus, we have T,,,; ~ T,.1. Now, note

2510 that if the parent v of n 4+ 1 in 7;;16 is such that W, € M¢, the same parent is chosen in
2511 ’7;+1. Since W, € M¢, we have

f( ( 7:1(-{-16))) - f(N+<le7A:L(_€))) = g—a(anWn-H) = g(Wv7Wn+1)

= F(NT (0, Tsr)) = F(N* (0, T2)).
2512 Otherwise, the parent of n + 1 in ’7A;L+1 has weight which belongs to M., and
213 thus f(N*(v,’f?L(_a))) increases whilst f(N*(v,7;)) stays the same. An increase in

s f(NT(v, 7}(_8))) coincides with the increase of deg (v, 7% =), and thus the right hand sides

215 of (3.57) and (3.58) are satisfied for time n + 1.
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2516 Now, note that

s 207 = 209 = h(Woh) + g (W, Wap), and Zpyy — Z, = h(Way) + 9(Wer, Wis),

n

2518 where v, v" denote the parent of n + 1 in 7,, and 7, respectively. Then we either have:

2510 e v =10 sothat g_.(W,, Wyi1) = gWy, Wyy1).

2520 e ve M and v € M., in which case, P-a.s, using D4

2521 GeWo, Wiy1) = g(Wo, Woi1) < g™, Woga) — ue(Wip1) < g(Wer, Wiia).
2522 e Both v,v' € M., in which case, P-a.s.,

2523 Ge(Wo, Wii1) = g(x™, Wii1) — ue(Wii1) < g(Wer, Wigr).

22 In every case we have 2079 — 2079 < Z,,1 — Z,, and thus (3.56) is also satisfied at time

22 1+ 1.
2526 Each of the statements concerning T7© follow in an analogous manner, applying
2527 Condition D3. [

»ss 3.3.1 Proof of Theorem 3.1.7

220 The proof of Theorem 3.1.7 uses the auxiliary trees 7 and 7(-%), and Lemma 3.3.2.

30 Proof of Theorem 3.1.7. For the first statement, note that by (3.56) in Lemma 3.3.2 and

2531 Theorem 3.1.1, for each € > 0 we have, P-a.s.,

(—e) z z Z(E)
2532 A = lim = — <liminf =2 < limsup == = lim = = \..
n—00 n n—oo n n—00 n n—w n

2533 The statement follows by sending ¢ — 0, using Lemma 3.3.1.
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Next, by assumption, for each ¢ > 0 sufficiently small, we have A < M¢. Next,
applying (3.58), if 2(9) and Z(=%) denote the edge distributions in the coupled trees T, T,

respectively, then for each n € Ny
2@ (n, A) < Z(n, A) < 29 (n, A),

and thus, by Theorem 3.1.5, we have

h(W) .. .=(n,A)
E T lA(W)] < hyrlrilcgf -
. Em,A) h(W)
< hgljogp < E () 1,W).  (3.59)

Now, noting that g_. = § = g- on A, and A_. > §*_ > sup,.4 §(z) and is non-decreasing in

e, by applying Lemma 3.3.1 and dominated convergence we have

: h(W) W . h(W) W
ll_I}(l)E As_gs(”)lA( )] :E—I)%El)‘—s_g—sul >1A( )]
_ h(W)
=K {g* ST 1A(W)] . (3.60)

Then, (3.7) follows by combining (3.59) and (3.60). Moreover, for each ¢ > 0, by setting
A - Mg/,

=E(n, M) _ im (1 B :(n,./\/lg,)) _q —E[ h(W

n

But then, again by dominated convergence,

and (3.8) follows.

Finally, for the last statement, recall the definition of the companion process (.S;)i=0
in (3.2), and that, for any measurable B < [0, w*|, N>x(n, B) denotes the number of vertices

of out-degree at least k with weight belonging to B at time n. Then, for € > 0, note that

N)k(?’%B M Mg) < N}k(n, B) < N)k(?’L,B M Mg) I N)O(’TL,M&)
n h n h n n '
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sss1 Now, by the strong law of large numbers, in the limit as n — o0, as in (3.55), the second
252 quantity tends to p(M.), and thus,

Nei(n, B n M9) N=i(n, B)

lim inf < limsup (3.61)
n—00 n n—00
N. B ¢
< lim sup se(n, B o M) + pu(M,).

n—0o0 n
253 Now, let N;CE) (n,-), Ng (n,-) denote the associated quantities in the trees 7% T and
2554 denote by (SZ-({))@O and (S (E)),L';(] the companion processes defined in terms of the functions

(2

55 h,g_. and h, g, respectively. Then, by (3.58), on the coupling in Lemma 3.3.2, we have

NE)(n, B A ME) < Nay(n, B M) < NS (n, B M),

/

2557 Therefore, by Theorem 3.1.3, recalling the definitions of A., A\_. in Lemma 3.3.1,

Al (o)
E [H <LM/))\> 1BmMg(W)] < lim inf N=p(n, B n MS)

SEOW) + n—o0 n
Nzp(n, B n M)

< lim sup
Nn—00 n
k—1 (—e)
S (W
<E|]]| == W), rme(W) |
=0 Sz (W) + )‘—s
ssse and thus, by (3.61), we have
k—1 (a) N. B
E (?& 1pame(W) | < liminf No(n, B) (3.62)
i—o \Si (W) + A nme n
lim sup Nei(n, B)
n—0o0 n
k—1 (—e)
S (W)
<E — 1pame(W) | + (M)
[H <5< W)+ m)

E [ﬁ ( 85(5)(;/[2 ) 1 m.( ] [ﬁ ( ) 1B(W)] , and
k—1 (- 5) k—1 ,
E [H ( % > leM5<W>] —E [H <%) 1B(W)] ;

1=0

2se0  and, since, by (3.5), M is a p-null set, p(M.) — 0. Combining these statements with (3.62)

61 completes the proof. O
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3.3.2 Proof of Corollary 3.1.8

Proof of Corollary 3.1.8. By the Portmanteau theorem, it suffices to show that, P-a.s.

=(n, A
lim —(n, )

lim ——— =1I(4),

for any measurable set A < [0, w*] with i (0A) = 0. Now, since u(M) = 0, it suffices to prove
this equation for measurable sets A < [0, w*] with A n M = &. In view of Theorem 3.1.7,
we need only show that for all £ > 0 sufficiently small, we have A n M. = @. Indeed, if this

were not the case, then, since (Z N M, Jn)nen s a nested sequence of closed sets, by Cantor’s

intersection theorem,

D # ﬂ(ﬁmﬂl/n) ZZﬁ ﬂﬂl/nZZﬁM,
neN

neN

a contradiction. O

3.4 A Generalised Geometric Series

3.4.1 Proof of Lemma 3.1.4

Lemma 3.1.4 may be interpreted as an extension of (2.17) in Section 2.3.1 of Chapter 2,
where we proved an analogous result in regards to the companion process associated with
the GPAF-tree. In that section, the approach was to apply the analysis of Section 2.2 in
Chapter 2, computing the Laplace transform of an appropriate pure-jump process in two
different ways. Here we adopt a slightly different approach: we also introduce an auxiliary
piece-wise constant, continuous time Markov process but instead compute its expected value

at an independent, exponentially distributed stopping time in two different ways.

More precisely, we define a process (Y, (t), 74 (t)):=0 taking values in N x [0,0). Let

(W3)i=0 be independent p-distributed random variables, and define (S;(w));>o according to
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(3.2), that is,
So(w) := h(w);  Sip1(w) := Si(w) + g(w, Wiy1), i = 0.

In addition, set 7o = 0, and define (7;);>1 recursively so that, given S;(w)
Tiv1 — Ti ~ Exp(S(w)); (3.63)
where Exp(S;(w)) denotes the exponential distribution with parameter S;(w). Then, we set

Vu(t) = > Aoy (1), and (1) = Y Su(w)lpr, ) (1),
n=1 n=0

Now, let (F;):=o denote the filtration generated by the process (Y (t), 7w (t))i=0-

=

Claim 3.4.1. The process YV, (t) — Sé rw(8)ds is a martingale with respect to the filtration
(Ft)e=0-

Proof. This follows from the fact that the difference between jump times is exponentially

distributed, and by applying, for example, [44, Theorem 1.33, page 149]. ]

In addition,

Claim 3.4.2. For all t € [0,0), we have E [V, (t)] < oo almost surely. In particular, for

each t € [0, 0),
¢

E [V, (1)] = J E [ry(s)] ds. (3.64)

0

Proof. Let a be an independent exponentially distributed random variable with parameter

a >0, and set YV, (a) := inf;>, (M (t)). Then,

E (1. @zwSk-1(w), Ly, @zk-1] = E [Lazn[Si-1(w), Ly, @zk-1y]

=P (min (o — Tp—1, 7o — Te-1) = 7% — Th—1|Sk—1(w))

X Ly (a)=k-1)

Sk,l(w)
e AV P 3.65
T S (w) L@ (3.65)
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where in the last equality we have used (3.63) and the memory-less property of the
exponential distribution. Note also, that for any ;7 < k — 1, the random variables
(Sj(w), ..., Sk—1(w)) and 1y, (a)>;} are conditionally independent given the random vari-
ables S;_1(w), 1{y, (a)>j-1}- Indeed, for each ¢ € {j,... k — 1},

Se(w) = Sj_1(w) + Zg(w,VVi),

i=j

where W;, ..., Wj;_, are independent random variables sampled from g, while

L@z = Lu(@=i-13 X Ymin(rj—rj_1.a—7_1)=1-7_1}>

where, we recall 7; — 7;_; is an independent exponentially distributed random variable with

parameter S;_;(w) and thus conditionally independent of (S;(w), ..., Sk—1(w)). As a result,

we have
k-1
Si(w)
. [ H Si(w) + a) Ly (@)= Si-1(w), 1{yw(a>>j—1}] (3.66)
i=j ¢
k—1
Si(w)
-k (H Si(w) + a) Si=1(w), 1{3’w(0‘)>j—1}] E {1{%(&)%‘} Si—1(w), Ly, ()=j-1
i=j Tt

Therefore, we have

P (Vu(a) 2 k) = B [1py@zk] = B [B [Lyy@en]Se1(w), Lyy@zs]]

(35) g [ Sy—1(w)

Loy (orop.
G+Sk_1(UJ) {Vw(a)=k 1}:|

Skfl(U))
=E|E —1 )= , 1 Q) >k—
B | gt omomicn s Lo
(3.66) Sk-1(w)
="E|IE|———— 1 Sh_
l la+Sk1(w) Sk—2(w), Ly, (a)=k 2}]

< E [Lyy @zl Se-a(w), Ly, i 2}]]
(3.65) Sk—1(w) Sy—_2(w)
- E [E [a + Sk_l(w) % a + Sk_Q( )1{3’w( a)=k—2}

-E Sp—1(w) « Sk—a2(w) 1
a+ Sk:—l(w) a + Sk;—Q(w) {Vw(a)=k-2} | -

S—2(w), 1{yw(a)>k—2}] ]
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[terating in this manner and noting that ), (a) > 0 almost surely, we deduce that the

k—1 ‘Si(zu
1=0 a+S;(w)

] This now implies that

Z [H #;u())] (3.67)

Now, the display on the right is increasing in S;(w), and using the fact that g and h are

previous expression is E [H

bounded by J’, we may bound this above by

Z H — <o for all a > J', by applying, for example, Stirling’s approximation.
=it

Thus, for a suitable choice of a, E [V, («)] is finite, so that, in particular, for each ¢ € [0, o),
since the random variable ), (t) is independent of the event {« > ¢} which occurs with

positive probability,
E [Vi(a)lazy]

E [Vu(t)] < Plas1) < .
Now (3.64) follows from Claim 3.4.1. O
We require an additional claim:
Claim 3.4.3. We have
E[ry(t)] = h(w) + E [g(w, W)]E [Vu(t)] = h(w) + g(w)E [Vu(£)] . (3.68)

Proof. First note that, since r,(t) jumps by g(w, W) whenever ), (t) jumps, we have
Vi (t)

E [r,(t)] — h(w) = E [ > glw, Wi)] :

i=1
Assume that g(w, W;) are bounded by J’. In addition, for each n € N,
E [g(w, W)l wzn] = E [g(w, Wa)] = E [g(w, Wa) Ly, t)<n)]
= Efg(w, Wo)] (1 =P (Vu(t) <n)) = E [g(w, Wu)] P (Vu(t) = n),
where the second to last equality follows from the fact that the event {),(t) < n} depends

only on (S;(w))i=o...n—1, and is thus independent of W,,. Finally, by Claim 3.4.2, E [Y,,(¢)] <

77777

o0, and thus the result follows by applying Wald’s Lemma. O]
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Proof of Lemma 3.1.4. First note that by (3.64) and (3.68), we have

%]E V()] = Gw)E [Vu ()] + h(w),

and solving this differential equation, with initial condition E [)),,(0)] = 0, we have

E[V.(t)] = (et _ 1), (3.69)

Now, let A be an exponentially distributed random variable with parameter A. Then, on the

one hand, by (3.67)

On the other hand,

E [V, (A)] = JO " ANE [V, (A)A = ] du = L " AME [V, (u)] du O %

where, in order to evaluate the integral to get the last equality, we have used the fact that

A > g,. The result follows. O
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Chapter Four

Dynamical Models for Random

Simplicial Complexes

4.1 Introduction

So far in this thesis we have studied evolving trees of a recursive nature, where one vertex
arrives at each time-step. In this chapter we study the higher dimensional recursive models
of simplicial complexes, described in Section 1.3.4 of Chapter 1. While the PANI-tree model
studied in Chapter 3 also incorporated some degree of “neighbourhood influence”, the models
we study in this chapter have a lot more dependencies, and thus will require the use of more
technical tools. As a result, for brevity we only study the quantity Nj(n), the number of
vertices with degree k + d rather than empirical measure associated with the number of
vertices with degree k + d and a certain weight, although we remark similar analysis may be
performed for the latter quantity. We first present a more formal description of the dynamics

of the models.
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4.1.1 Description of the Models

Recall from Section 1.3.4 of Chapter 1 that in the models of simplicial complexes we study,
vertices are equipped with weights sampled independently from pu, supported on a subset of
an interval [0,w*]. Given a parameter d > 1, the models we study are of fixed dimension
(d —1) = 0. In addition, the models also have a fitness function associated to them, which
is a positive, symmetric function f : [0,w*]? — R,. Using the weights of the vertices, we
define the fitness of a face o as the value of f when applied to the vector w(o) of the weights
of the vertices that belong to that face. Abusing notation slightly, we sometimes write f(o)
instead of f(w(c)). Since f is assumed to be symmetric, the order of the coordinates of w(o)

is not relevant.

Motivated by this symmetry, for all s > 0, we view the type w(o) of an s-dimensional
face o as an element of C, := [0, w*|*™!/ ~, where ~ denotes the equivalence relation where
vectors are the same under permutation of their entries. Unless otherwise stated, we identify
entries of C, with the set {(zg,...,zs) € [0,w*]*"! : 2y < ... < z,} and equip C, with the

max-norm inherited from [0, w*]**1.

We consider two versions of the model: Model A and Model B. These models are
defined as follows: first, let Ky be an arbitrary (d — 1)-dimensional simplicial complex, with
finite vertex set Vy € —Nj and each vertex assigned a fixed weight chosen from Supp (). In
this thesis, we will show that our limiting results do not depend on this choice of weights.

Then, recursively for all n > 0:

(i) Define the random empirical measure

I, = > u (4.1)

UEIC,(id_ D

on C4_1 and the associated probability measure on the set K=" of (d — 1)-dimensional
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faces:

1L, = Zi Z f(0)ds, where Z, := f(z)dIlL,(z). (4.2)

relc(@D Ca—1

We call Z,, the partition function associated with the process (K,,),=0 at time n.
(ii) Select a face o’ = (a},...,0,_,) € K according to the measure II,,.

(iii) In both Models A and B, for each ¢” € K~ such that 0” < ¢’, add the face 6" U{n+1}
to KC,, (here it may be useful to recall that ™" = @&). Moreover, in Model B remove
the set o’ from K,. Then, take the downwards closure, recalling Definition 1.2.2, to

form K, 1.

Note that, in Model A the existing faces always remain in the complex, whilst in Model B
the selected face is removed at every step. We call step (iii) applied to a chosen face o’
a subdivision of o’ by vertex n + 1. Equivalently we say ¢’ has been subdivided by vertex
n + 1. Recall Figure 1.9 from Section 1.3.4 of Chapter 1 which illustrated a possible sample

evolution of either of the models with parameter 3. We present a smaller illustration of this

evolution in Figure 4.1 below.

Remark 4.1.1. For general d, Model A may be considered as a generalisation of the Network
Geometry with Flavour model introduced in [13], and outlined in Section 1.2.4, with flavour
s = 0, and bounded energies. We recall that when s = 0, each face o is selected with
probability proportional to e "¢ where €, is the (random) energy of face o. Model B may be
considered as a generalisation of CQNMs with bounded energies (this model was also outlined
in Section 1.2.4). However, note that for brevity, rather than ‘deactivating’ selected faces,
we simply remove them from the complex: this does not affect any of the results we will be

interested in this thesis.

Remark 4.1.2. The models we introduced can be further generalised. For example, instead

of selecting a (d—1)-face to subdivide, one may consider a setting where a face of dimension
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201§ may be selected and subsequently subdivided, with the addition of an (s + 1)-dimensional

2702 face.

Dynamics of Model A and Model B with Parameter 3.

-1 -1 -1

|
[N}
()
|
[N}
(e}
|
[N}
O

Figure 4.1: A possible evolution of steps Ky to K3 in either Model A or
Model B with parameter 3. At each step, a 2-face (triangle) is chosen
randomly according to step (i), and subdivided. In Model B, the chosen

face is then removed from the complex.

2703 Before we describe our main results we first introduce some notation specific to this

ar0a - chapter.
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4.1.2 Some More Notation Specific to Chapter 4

Recall that for all s = 0, Cs = {(xg,...,7s) € [0,w*]*™t : 7y < ... < x,}. For all x =
(x0,...,25) €Cs and i € {0, ..., s}, we set &; := (xq,...,Ti1,Tit1,-..,2s) € Cs_1 and define
the empirical measure v, = >.7_,dz, on Cs_1. Next, for w = 0 and y € Cy, let y U w € Cypq
denote the vector obtained by adding a coordinate equal to w to the vector y and reordering
the coordinates of this (s + 1)-dimensional vector in non-decreasing order. In addition, for
i € {0,...,s}, we write x;,, := Z; U w. With this notation, when a face of type x is
subdivided by a vertex of weight w, we add to the complex d new (d — 1)-faces of respective
types ey, for i € {0,...,d —1}. Moreover, for a vector x = (zo,...,2j,w,ZTjt1...,s) € Cs,

we denote by x\{w} the element (xo,..., 2, j41,...,2T5) € Cs_1.

For a vertex v in a (d — 1)-dimensional simplicial complex I, we define the star of
v in K, which we denote by st,(K), to be the subset of K“™" consisting of those (d — 1)-
faces which contain v. Finally, we write 0 and 1 for the vectors (0,...,0) and (1,...,1)

respectively, in any dimension.

4.1.3 Statements of Main Results of Chapter 4

This analysis, as we will see, applies the heuristic outlined in Section 1.4.1 of Chapter 1.
Applying this approach requires two main steps, both of which are non-trivial: deriving a
strong law of large numbers for the partition function associated with the model, and the
empirical measure (II,,),>0, from (4.1), describing the type w(o) of a face o to be chosen in
the nth step; and an approach analogous to Section 2.4 of Chapter 2 to deduce convergence

in probability of the degree distribution.

148



2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

Dynamical Models for Random Simplicial Complexes

Part I: Convergence of the Partition Function

We will refer to the following hypotheses throughout the text:

H1. The measure y is finitely supported, the fitness function f is positive and |[K~"| —
as n — o0, where we recall that "™V is the set of all (d — 1)-faces in the random

simplicial complex IC,, at time n.

H2. The process (K,).>0 evolves according to Model A and pu({1}) = 0. Moreover, the
fitness function f is continuous, monotonically increasing in each argument, positive

and such that, for a random variable W with distribution u,

BLf(acw)] < (1+ 3 ) BLFO0cw)] (13)

Remark 4.1.3. It is reasonable to believe that Assumption H2, and in particular (4.3) which
ensures that the function f is not “too steep” on its domain of definition, is not necessary for
our results to hold true. Our main result on the asymptotic degree distribution holds under
Assumptions (a-d) of Remark 4.1.7 below. We use Assumption H2 to show that Assumptions
(c-d) hold: this is done in Proposition 4.1.1 and Proposition 4.1.2. Their proofs, in the case
of p having infinite support, rely on recent results of [59] on the convergence of infinitely
many type Pdlya urns; more precisely, Assumption H2 ensures that the assumptions of [59,
Theorem 1] hold. The case when p has continuous support is more difficult to treat because
the coupling arguments analogous to those applied in Section 3.2 of Chapter 3 allowing one

to apply the theory of finite type Polya urns, do not seem to work in this case.

Note that || — oo as long as d > 1 in Model B, and for all d > 1 in Model A.

Proposition 4.1.1. Assume H1 or H2, and let Y,,n = 1, be the Cy_1-valued random
variable that equals the type of the face chosen to be subdivided in the n-th step. Then, Y,

converges to a Cq_1-valued random variable Yy, in distribution when n tends to infinity.
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Given any sub-complex K < KC,, define

F(K):= > flo) (4.4)
and note that F'(KC,,) = Z,,, the partition function associated with the process defined in (4.2).

Proposition 4.1.2. Assume H1 or H2. Then, there exists A\ > 0 such that, almost surely,
Z, F(K,)

= — A\, asn — .
n n

Remark 4.1.4. The distribution of the limiting random variable Yo, and the value of A do

not depend on the choice of the initial complex Ky.

Remark 4.1.5. Because under either condition H1 or H2 the function f is bounded, we
have trivial deterministic bounds on Z, = F(K,), and therefore on X. In particular, if we

let
fmin = min{f(x) :x € Cy_1} and  fuax = max{f(x):xeCy_1} (4.5)
be the minimum and the mazimum respectively of the fitness function on its domain of

definition, then X € [dfmin, fmax] in Model A, whereas A € [(d— 1) fiin, (d — 1) fimax]| in Model
B.

Remark 4.1.6. The monotonicity requirement and (4.3) in H2 may be used to cover a
particular case of the Network Geometry with Flavour, the model from [13] outlined in Sec-
tion 1.2.4 in Chapter 1. Namely, we may cover the case with ‘flavour’ s = 0, in which each
face o is selected with probability proportional to e %, where €, is the energy of face o, and
the selected faces remain in the complex. We may do this by setting the weights w; :== (1 —¢;)
where €; are the energies assigned to the vertices. We therefore assume that the distribution
of €; does not have an atom at 0, the energies are bounded, and (4.3) is satisfied, that is, the

“lnverse temperature” 3 satisfies f < ﬁ log (1 + é)

Both Proposition 4.1.1 and Proposition 4.1.2 are corollaries of a more general almost

sure limit theorem for the empirical measure I1,,, n > 0 associated with the types of faces in
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the complex, namely Theorem 4.3.1 proved in Section 4.3. While this result, and therefore
the two propositions, follows from the standard Poélya urn theory outlined in Section 3.2.1
of Chapter 3 under H1, for H2 we need to make use of general results for measure-valued
Polya urn processes recently established in [59] to cover the general case. See, in particular,

Section 4.3 in this work.

4.1.4 The companion star process

In this model the companion process that tracks the probability of selecting a vertex as its
degree evolves (as outlined in Section 1.4.1 of Chapter 1) takes the form of a simplicial com-
plex valued stochastic process (S¥),>0. Informally, this process approximates the evolution
of the star of a fixed vertex i in (K,,),>0, assuming that 7 is sufficiently large, namely, large
enough for the distribution of Y;, the type of the face selected by node ¢ when it enters
the network, to be close enough to the distribution of Y., from Proposition 4.1.1). Let 7
denote the distribution of the random variable Y. Then, sample a face type from m, and
form a (d — 1)-simplex on vertex set {1 —d,...,0} with weights corresponding to this type.
Subdivide this face (using the mechanisms of Model A or B) by a new vertex labelled r with
weight W sampled from p, and form the simplicial complex S§ consisting of the (d —1)-faces

containing r. We call r the centre of S§. Then, recursively:

(i) Select a face o from (S*)@1) with probability proportional to its fitness, and subdi-
vide it by a new vertex n 4+ 1 obeying the subdivision rules of Model A or Model B

respectively.

(ii) Form the simplicial complex S}, consisting only of the (d — 1)-faces containing r.
Essentially this means removing all the (d — 1)-faces formed during the subdivision

step not containing 7.
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Dynamics of the Companion Process with Parameter 3.

-1 -1 -1

|
[N}
(e}
|
[S)
o
[N]
[e)

2N\

Figure 4.2: The evolution of the companion process, S§ to S5 in Model B

[N
o

-2 0

with parameter 3. A face with type selected from 7, is formed on vertices
{—2,—1,0} and subdivided with a vertex labelled r to form S§ in the
second square. Subsequently, a face is chosen randomly and subdivided
according to step (i), and then faces not containing r are deleted. Since

this is Model B, the chosen face is also removed from the complex.

2706 A more formal construction of this process is provided in Section 4.3.3. We set

F(Sp) = >, flo). (4.6)

oe(SE)d=1)
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4.1.5 Main results, Part II: Convergence of the Degree Distribution

Theorem 4.1.3. Assume H1 or H2 and for alln > 1, k > 0, let Ni(n) denote the number
of nodes of degree k+ d in the random simplicial complex IC,, at time n. Then, for all k = 0,

we have, with convergence in probability,

1 DW=y A (!
lim ~Ny(n) = E A
dim o Ne(n) PSp + A LR 0| T

J

where the star process S*™ and its fitness function F are defined respectively in Section 4.1.4

and (4.6).

In fact, we have a more general result. Recall, from Definition 1.2.5 in Section 1.2.1 of
Chapter 1, that the s-degree of a face is the number of distinct s-faces that contain it. Then,

suppose that N, ,ES) (n) denotes the number of vertices of s-degree (f) + (‘Sij)k, for 1 <s <d.

Corollary 4.1.4. Assume H1 or H2. For all k = 0, we have, independent of the initial

complex Kq, with convergence in probability,

Lo os
lim —N,g )(n) = Dg.

n—o N

Remark 4.1.7. In fact, in the proof of Theorem 4.1.3, we show that the conclusion of the
theorem holds if one assumes the following weaker conditions instead of H1 or H2:
(a) The measure p is an arbitrary probability distribution on R..

(b) The fitness function f is non-negative, symmetric, bounded and continuous.

(c) If for allmn = 1,Y, is the type of face that is subdivided at time n, then (Y, ),>1 converges

n distribution when n — +o0.

(d) There exists A > 0 such that, almost surely when n — 400, F(KC,)/n — .
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One may interpret these assumptions as the analogue of Condition C2 used to analyse the

(i, f,€) -RIF tree in Section 2.4 of Chapter 2.

Remark 4.1.8. Note that the boundedness of f implies that

(d+ (d—1)n) fmin < F(SF) < (d+ (d — 1)n) fnax, 0 Model A; @
4.7

(d+ (d—2)n) fuin < F(S¥) < (d+ (d —2)n) fnax, in Model B,

where we recall that fi, and fuax are the minimum and the mazimum of the fitness function

f (see (4.5)).

Remark 4.1.9. For an r-face o withr < d—1, the degree of o is the number of (d—1)-faces
which contain 0. One can derive the analogue of Theorem 4.1.3 for the degree distribution
of r-faces by considering a star companion process for an r-face. Here, the star of an r-face
will simply consist of the (d — 1)-faces that contain it. As long as the process is such that
a.s. the total weight of the star tends to infinity, then one could derive a formula as in

Theorem 4.1.35.

Outline of the rest of Chapter 4

In Section 4.2 we discuss the connection of our main results to existing models. This will
include classifying the values of d that ensure that the degree distributions follows a power

law, which are consistent with analysis from [12] and [13].

Section 4.3 is dedicated to the study of the empirical measure II,,, n > 0, and in
particular, to the proofs of Proposition 4.1.1 and Proposition 4.1.2. As we remarked earlier
(see Remark 4.1.3), these propositions make use of the recent theory of measure-valued Polya
processes. To our knowledge this is the first application of this theory, rather than finite

type Polya urns, in the context of evolving networks.
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In Section 4.4 we apply the results of Section 4.3 to prove Theorem 4.1.3. This
approach is similar to the approach used in Section 2.4 used in Chapter 2. However, due
to the increased complexity in this model, there are additional technicalities used to find an
upper bound for the limit of the mean of Ni(n)/n in Section 4.4.2. Moreover, rather than
applying the shorter, indirect approach used to deduce convergence of the mean applied in
Section 2.4.4 of Chapter 2, we apply a more direct approach, finding a lower bound for the
limit of the mean of Ni(n)/n in Section 4.4.4. While details of the proof in Section 4.4.4
are much more technical, this approach is favourable as the methods used to derive a lower
bound may be useful in other contexts, for example, in studying the evolution of the degree

of a fixed vertex in related recursive network models.

We defer the proofs of some technical probabilistic lemmas to the end of the chapter,

so as to not interrupt the general flow of the chapter.

4.2 Discussion and Examples

4.2.1 Constant fitness function

In the case that the fitness functions are constant, so that f(z) = f, we have deterministic
formulas for F'(S¥) and A. These cases correspond to models where the face chosen to be
subdivided at time n + 1 is chosen uniformly at random from the set KD Here we use the

asymptotic approximation of the ratio of two gamma functions: for fixed a € R as t — o0

I'(t+a)

o = (Lo, (4.8)

This is a straightforward result of Stirling’s approximation, i.e., (4.8) from Chapter 2, and

will be used often throughout this paper.
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1. In Model A we have F(S}) = ((d — 1)n + d) fy, and A = dfy. Theorem 4.1.3 implies

that

d—1)j+d
PE=a— k+2d]H0 (d—1)j+2d
If d > 1, using (4.8)

1 (b+a5) D) e
)F( <

=1+
P ( d—1) T (k+1+2)T (%)
This is a new result. For d = 1 we obtain p; = 27%, which is an old result of Na and

Rapoport for the random recursive tree [63].

2. Model B with constant fitness function (with &y given by a d-simplex) is the same as
the Random Apollonian Network. In this case, if d = 2, F(S}) = ((d — 2)n + d) f, and

A= (d—1)fo. Applying Theorem 4.1.3 we get,

B d—1 ﬁ (d—2)j+d
BTk 21 @921

Note that if d = 1, I1,,(C4_1) = |Vo| (where Vj is the set of vertices of the initial

complex Ky), so Theorem 4.1.3 does not apply. However, in this case it is easy to see

> 3, using (4.8), we get

L Tl T
>< ~

pk:<1+d—2 k:+1~|—2d1)r(d%d2> -

This is the same exponent proved in [52] and [39].

that p; = 1. In the case d = 2, we have p;, = 2';;

4.2.2 Weighted Random Recursive Trees

The case d = 1 in Model A with initial simplicial complex given by a single vertex, is
the weighted random recursive tree, the specific case of the (u, f,¢)-RIF tree analysed in
Section 2.2.4 of Chapter 2.! In this case, the fitness of the new vertex arriving at each time-

step is independent of the rest of the complex, so the strong law of large numbers implies

I'Note that Model B is trivial for d = 1 as the tree is a single path.
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that A in Proposition 4.1.2 is given by E [f(W)]. Moreover, the simplicial complex (S¥);=0
is a fixed vertex, so that F'(S7) = f(W) for all j > 0, where W is the weight of the vertex.

Thus, Theorem 4.1.3 implies the following:

Proposition 4.2.1. As n — +o0, we have

Nulr) _ [ A0V

n (f(W) + )\)k+1i| ., in probability.

This is a weaker version of the statements related to this model from Section 2.2.4 of

Chapter 2.

4.2.3 Tails of the Distribution

In this subsection, we will require the additional assumption that
L2 25 o0, (4.9)

Note that this assumption is satisfied as long as d > 1 in Model A and d > 2 in Model B. It
is this assumption that leads to the emergence of scale-free behaviour for d > 2 in Complex
Quantum Network Manifolds observed by Bianconi and Rahmede in [12] (recall Figure 1.6
from Chapter 1) and the scale-free behaviour for all d > 1 in the Network Geometry with
Flavour from [13]. In the case p is not finitely supported, we will require an analogue of

(4.3). For brevity, we define the following additional hypotheses:

H1*. Assume H1 and (4.9) holds.

H2*. Assume H2 and (4.9) holds. Moreover, for all w € Supp (1), the function f, : Cq_y —

R, fo(v) = f(v U z) satisfies

Hﬂﬂwwﬂ<(k% 1 )mﬂmwwn
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Remark 4.2.1. Similarly to H2, we do not believe that Assumption H2* is necessary for

our results to hold. We use it to apply [59, Theorem 1] in the proof of Proposition 4.2.2.

In order to analyse the tails of the distribution from Theorem 4.1.3, we require the
following proposition, similar to Proposition 4.1.2. In the statement of the following propo-
sition, we allow S; to have a centre with a fixed weight w instead of a random weight W
with distribution . In the construction of S, however, we still choose the face according to
Tew. We use P, and E,, for probabilities and expectations, respectively with regards to this

initial state.

Proposition 4.2.2. Assume H1* or H2*. Then, if the centre of S§ has weight w €

Supp (p), there exists A% such that, Py-almost surely
RS
n v
We postpone the proof of Proposition 4.2.2 to Section 4.3.3. The following proposition
holds under H1*: Under Assumption H1* u has finite support and thus max{\’ : w €

Supp (u)} exists and is attained at some value wy € Supp (u); we set Aj, = max{\} : w €
Supp (11)}-

Proposition 4.2.3. Assume H1*. With p; as defined in Theorem 4.1.3, we have

A
lilgn inf log;, pr, = — (1 + ) : (4.10)
—00

*
Ay

Proof. Suppose P (W = w,) = k (recall that under H1* 1 is finitely supported). Then, by

the definition of p;, we have

A L A i\ k=l pg
pk:E <j) >Ew+ (]) K.
F(SE) + A i F(S¥) + A F(SE) + A i F(S¥) + A
Fix 6,¢’ > 0. By Proposition 4.2.2 (and Egorov’s theorem), there exists kg = ko(e,0) such

that for all £ > kg

*
_ )\w+

P, (|12

<5)>1—5.
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Let GXs be the associated event in the previous display. We may bound the product

Hkofl F(S]*)

=0 TS below by a constant by applying (4.7). Moreover, for all k& > ky, on JyPR

we have
A ﬁ F(S7)  _ Mk(Xoe =) + ) 1 ’i—[l LNy, —e)
F(SH+ALEF(SH+A T ke +)+X k(b —o) + A L1 On, —2) + 2
A
KOR, —e)+x a LTt gi=) (k)

k(i )+ A Ma—c  Tho—1) T(k+1+2—)
w4

Therefore, by applying (4.8), we find that there exists a constant ¢ = c(ko, 0, £, k) such that

A
1 > 1 -1+ .
08y, Pr = 108y, € ( N — e)

The equation (4.10) follows from taking limits as k& — oo, and sending ¢ to 0. O

Further Discussion

Applying (4.7), it is easy to show that, whenever (4.9) holds,

-

- (1 + +> , in Model A;
liin inf log,, pr = < (d—1) fmin
—00

/\ .
k— (1 + m) , 1n Model B,

and likewise,

r

A : .
. — (1 + m) , 1n Model A,
lim sup log;, pr. < <

k—o0

by .
\— (1 + m) , 1n Model B.
Thus, when d > 1 in Model A and d > 2 in Model B, the degree distribution is bounded
above and below by a power law. This leads to the scale-free behaviour observed in [12] and

[13].

In general, by counting the edges in the complex in two different ways, we find that
ZZO:O kpi. < d, so that p, cannot obey a power law with a fixed exponent less than 2,

otherwise the sum would diverge. However, we cannot deduce from these methods that
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the degree distribution in each case follows a power law with a fixed exponent. Instead,
we believe that the degree distribution obeys an ‘averaged’ power law, as described in the
GPAF-tree and the PANI-tree in Section 2.3.1 of Chapter 2 and Section 3.1.2 of Chapter 3

respectively.

4.3 Convergence of the empirical distribution

The aim of this section is to prove the following almost sure limit theorem for the empirical

distribution II,,.

Theorem 4.3.1. Assume H1 or H2. Then, there exists a deterministic, positive, finite

measure m on Cq_1, which does not depend on the choice of Ko such that, almost surely,

with respect to the weak topology.

Proposition 4.1.2 and Proposition 4.1.1 both follow from Theorem 4.3.1 above, with
A = Scd,l f(z)dnr(z) in Proposition 4.1.2 and Y, from Proposition 4.1.1 having law 7,

defined by
~ $af@)dn(z)

) = ()

for any measurable set A < Cy_;.

4.3.1 Proof of Theorem 4.3.1 Assuming Hypothesis H1

To prove Theorem 4.3.1 assuming H1, we view the collection of faces as balls in a generalised
Pdélya urn process, the family of stochastic processes previously applied in Section 3.2 (and

briefly described in Section 3.2.1) of Chapter 3.
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Recall from Section 3.2.1 of Chapter 3 that in this set-up, one considers an urn
consisting of balls with a finite number of possible types. A ball of type j is sampled at
random from the urn with probability proportional to its activity a;, and replaced with
balls of a number of different types according to a possibly random replacement rule. In
the common set-up, the configuration of the urn after n replacements is represented as a
composition vector X, with entries labelled by type, and the activities associated with the
types are encoded in an activity vector a. In this vector, the ith entry corresponds to the
number of balls of type i. Let (&;;) be the matrix whose ijth component denotes the random
number of balls of type j added, if a ball of type ¢ is drawn. The following theorem is implied

by Theorem 3.2.1 and Lemma 3.2.2 from Chapter 3, which we recall were due to Janson [45].

Theorem 4.3.2 ([45]). Assume &; = —1, & = 0 fori # j, and the matriz A;j 1= o;E [£;;] is
irreducible. Moreover, denote by A\, the principal eigenvalue of A, and vy the corresponding
right-eigenvector normalised so that a’v, = 1. For any non-empty initial configuration of

the urn, we have

almost surely, and independently of the initial configuration of the urn.

Note that when p is finitely supported, the number of possible face types w(o) in the
complex is finite. We denote this finite set of possible types by chlc_l € C4_1. The empirical
distribution of face types then corresponds to the distribution of balls in a generalised Poélya
urn; where the types of the balls in the urn correspond to the types of the (d — 1)-faces,
and the activities are the fitnesses. In each step, we draw a ball of type z in the urn with
probability proportional to its activity f(x), choose a weight W independently according to
i, and add d new balls of respective types z;w, for i € {0,...,d — 1}. In Model B we also

remove the ball we drew from the urn.

Proof of Theorem 4.3.1, assuming H1. Recall that, under H1, the random weight W has
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finite support, and thus, for some M > 0, W € {wy,...,wy} almost surely. Let X, =
(Xx(n))xec£_1 denote the vector whose coordinate X, (n) counts the number of balls of type
2 in the urn after n steps. For z € CJ_, and k € {1,..., M}, let n,(k) be the number of entries
in = equal to wy. We call z # 2’ neighbours if 2’ can be obtained from x by changing exactly
one entry ¢, = {1(z,2') into wy,, where ¢y = ly(z,2’) (and then re-ordering the entries in

non-decreasing order).

In Model A, this urn has the following replacement rule:
M
D Na(k) Ly (W) a =2/,
oo = < ”x(gl)l{wz ( ,>}(W) if x, 2’ are neighbours,
2(z,x

0 otherwise;
\

whilst in Model B the replacement rule is
(
S () Ly (W) =1 a2 =2/,

Eow = < nx(gl)l{wé ( /)}(W) if =, 2" are neighbours,

0 otherwise.
\

If we define the matrix A, = f(2')E [{y.], since f > 0 it is easy to see that A is irreducible.

Thus we may deduce Theorem 4.3.1 by applying Theorem 4.3.2. [

4.3.2 Proof of Theorem 4.3.1 Assuming Hypothesis H2

In order to prove Theorem 4.3.1 assuming H2, we show that Il,,,n > 0 is a measure-valued
Pdélya process (MVPP), a recent extension of the finite type generalised Polya urn theory
introduced in [7] and [58]. We then apply results from [59]. In the process, we will state a
few lemmas, whose proofs we defer to the end of the section in Section 4.3.4. For brevity,

for the rest of the section, we set
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so that the maximum possible value a weight can take is 1. This is done purely for convenience

of notation, and the results easily extend to other values of w* € R,.

Let S be a locally compact Polish space and M(S) be the set of finite, non-negative
measures on S. Recall that M(S) is also Polish when equipped with the Prokhorov metric,
which metrises the weak topology when we view M (S) as the dual of the space of bounded
continuous functions from S to R. For a given kernel P on S and pu € M(S), we define the

measure

(1® P)() = f Po() du(x).

S

Thanks to, e.g., [50, Section 4.1], and because of the local compactness, a random function
R with values in M(S) is a random variable, i.e., measurable, if and only if, for all Borel
sets B € S, R(B) is a real-valued random variable. We call a family R,,z € S of random
variables with values in M(S) a random kernel if, almost surely,  — R, is continuous.
Note that, for a random kernel R,, z € S, the annealed quantity R,(-) = E[R,(")] is a
kernel on S and the map = — R, is continuous. We call two random kernels R,, R/, for

x € § independent if, for all z € S, the random measures R,, R/, are independent.

Definition 4.3.3. Let (R{",x € 8),>1 be a sequence of i.i.d. random kernels. The measure-
valued Pdlya process with my € M(S) satisfying mo(S) > 0, replacement kernels (R{V, x €

S)n=1 and non-negative weight kernel P is the sequence of random non-negative measures

(My)n=0 defined recursively as follows: given my,_1,n > 1:

(i) Sample a random variable & from S according to the probability measure

(my—1 @ P)(-)
(mn1® P)(S)

(i1) Set my =m,_1 + Ré").

The next lemma allows us to express the empirical distribution of the (d — 1)-faces in

Model A as an MVPP.
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Lemma 4.3.4. For alln>1 and x € Cy_; let

d—1

(n) _
Rm - Z 533i<7Wn'
1=0

The sequence Il,,n = 0, is the MVPP with wnitial composition 1ly, replacement kernel

(R, x € Cq_1)n>1 and weight kernel P, = f(2)0;, x € Cq_1.

Proof. Let o be the face chosen and subdivided at step n and £ be its type. By construction,

d—1
I, =Mooy + ) Gy, = ooy + R,
=0

and, for all Borel sets B < Cyq_1,

de,cgldfl) f(U)(L(@(B) B (Il,—; ® P)(B)
dem(ld—l) f(U) B (Hn—l ® P) (Cd_l)'

P(¢e BN, ) -
This concludes the proof. n
We now state [59, Theorem 1]. We will apply this theorem to the MVPP II,,,n = 0

to deduce Theorem 4.3.1. We require the following definitions. For an i.i.d. sequence of

random kernels (R, z € S),>1 and a weight kernel P, let R,(-) = E[R®(-)] and

QU() = (R® ® P)() = f P()ARD(y)  and Ou() = (Re @ P)() = f P,() dR.(y).

Theorem 4.3.5 (Mailler & Villemonais [59]). Let (my)n=0 be the MVPP on S with initial

composition my, replacement kernel (RV,x € 8)y>1 and weight kernel P. Assume that:
Al Forallze S, Q.(S) <1, and there exists a probability distribution n # 8 on R, such
that, for all x € S, the law of QP (S) stochastically dominates n.
A2 The space S is compact.

A3 Denote by (Xi)i=o the continuous-time Markov process defined on S U {@} absorbed

at @ with infinitesimal generator given by Q. — 6, + (1 — Q.(S))dy. There exists a
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probability distribution v such that
]P)ac(Xt € |Xt 7 ®> - V(')7
with respect to the total variation distance on Cq_1 uniformly over x € Cyq_1.

A4 For all bounded and continuous functions g : S — R, the functions x — Ssg VAR, (y)

and x — {5 g(y) (y)dQ.(y) are continuous.

Then, almost surely as n — o, m,/n converges to v ® R with respect to the weak topology

on M(S).

Proof of Theorem 4.3.1, assuming H2. The idea of the proof is to apply Theorem 4.3.5 to

the MVPP (I1,,),,>0 (see Lemma 4.3.4). In this set-up, we have, for all x € C4_1,

QY () = (RY" @ P)(- Zf (Ticw,) 6ai, (),

and

Qu(-) = (R, ® P)( [foww wo]-

In order to satisfy the normalization requirements in Theorem 4.3.5, we consider a

suitable re-scaling. We define

M = d-E[f(Low)], (4.11)

and for all n > 0, set I/, = II,,/M. It is immediate (using Lemma 4.3.4) that (II]),>o is a

MVPP with weight kernel P whose replacement kernel and associated ()-kernel are given by

R Qw
R — () _ Xz
v M’ < M

The corresponding annealed kernels are defined analogously by R.(-) = E[RY(-)] and

Q.(-) =E[QV(-)]. Note that, by monotonicity of f in all its coordinates, and symmetry,

sup E [Zf Ticw ] < d-E[f(lOHW)],

xeCd 1 i=0

165



3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

Dynamical Models for Random Simplicial Complexes

implying that, for all z € C4_1, Qx(Cd_l) < 1. We also have that, for all x € C4_1, by

monotonicity of f

- d- f(0) (4.11) d- f(0) S /(0)
M d-E[f(Loew)] ~— f(1)

implying that Assumption A1l of Theorem 4.3.5 is satisfied with n = 07)/f1). Assump-

QL (Cq-1)

> 0,

tion A2 is immediately satisfied since C;_; is compact. Next, as Scd—l g(y)dR,(y) =
Z?;OI E [g(zi—w)], continuity of x — Scd—l g(y)dR,(y) for a bounded and continuous function
g : C4_1 — R is immediate. Analogously, one can prove the statement for the @)-kernel and

establish Assumption A4 as the rescaling leaves continuity properties unaltered.

It thus remains to check that the rescaled Polya process (IT),),>o satisfies Assumption A3.
Let (X;);>0 be the jump-process with infinitesimal generator Q, — 6, + (1 — Q,(C4_1))dy, for

all x € C4_1. By definition, when X, sits at x, it jumps to @ at rate

and, at rate % f:_ol E[f(z;w)], it jumps to a random position chosen according to the

probability distribution
S0 B (i) O]
S0 ELf (iew)]

Thus, in total, X jumps at rate 1 at all times. In particular, discrete skeleton and jump

times of the process are independent.

To prove A3, we apply |23, Theorem 3.5 and Lemma 3.6] to the jump process (X}):=o,
where we take t; = t, = 12. Since X is a pure jump process and satisfies the strong Markov
property, condition (F0) in [23, Theorem 3.5] is satisfied. It is therefore enough to prove

that there exist a set L < C;_; and a probability measure o on L such that:

B1 There exist ¢; > 0 such that, for all z € L, P,(X; € -) = ¢10(- n L), where P, (-) denotes

the probability measure associated with the Markov process X initiated by x.

ZNote that, although this is not clear in the current version of [23|, t; and ¢ need to be positive.
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3007 B2 There exist 0 < y; < 7, such that

3008 sup E.[v; *"™] < +0, and v, 'P,(X; € L) — +0o0 when t — 4o (Vz € L),
aceCd_l
3099 where 75 and 77, stand for the respective hitting times of @ and L.

s.0 B3 There exists ¢o > 0 such that

sup,er, Py (t < 75)
3101 sup - <
=0 infyer Py(t < 75)

sz In order to prove the above, we define the partial order ‘<’ on C;_; such that for x,y € Cy_1,
s x <X y if and only if, for all i € {0,...,d — 1}, x; < y; (recall that the coordinates of = and
sia y are ordered in increasing order). We then define L = L(e) = {x € Cq—1: 2 < (1 — ¢)1}.

sis  Proof of B1: We denote by (0;);>1 the random jump-times of X. In order for these times

s t0 be well-defined for all n > 1, we let the process jump from @ to & at rate one. Fix a

sz Borel set B € C4_1. Then, by monotonicity and symmetry, we have

= £(0) d—1
Po(Xo, € B) = DB (@icw)1p(ziew)] = S 2 Plaicw € B).
i=0 i=0
3100 By the strong Markov property, we have
= £(0) d—1
o P(Xe € BI Xpy =) = = 3 B[y Lp(#he )] = L2 VP (e € B),
i=0 1=0
3111 SO that,
/ / (0> L= / /
3112 P, (Xy, € B| Xy, = 2" )P (X,, eda’) = — > P(z;_y € B)P, (X,, €da’)
Ca—1 Ca—1 M i=0
o)\ 2
3113 = <% P ((xjHI/V)u—W’ € B)
3114 0<i,j<d—1

sus  for i.i.d copies W, W’. Iterating this argument, we obtain

we  Py(X,, €B) > <% >d 5 P (@i w)iyews) )iy sy, € B)

i0yeyig_1€{0,...,d—1}%
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where Wy, ..., Wy_; are i.i.d. random variables with law p. Let Wiy < W) < ... < Wiy,

denote the order statistics of Wy, ..., Wy_1. Then, for an appropriate (random) choice of

10, - .., %q—1 we have ((("Ei()‘—Wo)ilewl) . ')z'd,p—Wd,l = (Wio), - - -, W(4—1)). Therefore

P, (X, € B) = (%O))dE Z L <(((xi°‘_W°)i1‘_Wl) o ')idfl‘—WdA)

i05ererig—1€{0,...,d—1}4

= (%) P ((W(o), ey W(d—l)) € B) .

As the probability that X jumps exactly d times before time 1 is positive and skeleton and
jump times are independent, because X always jumps with rate 1, B1 is satisfied with p

being the probability distribution induced by u®? restricted to L in the natural way.

Proof of B2: For x € Cy4_1, let n,(z;) denotes the number of co-ordinates of = equal to x;.

X jumps from a position x such that z; > 1 — ¢ to a position z;., for some v < 1 —¢ at rate

e () ELf(zicw)lw< ] - Na(@)E[f(Oocw)lw<i—]

A > v =: n,(z;)we.,

for all i € {0,...,d — 1} (where we have applied the symmetry and monotonicity of f).
Similarly, the walk jumps from a position x such that z; < 1 —¢ to a position z;., for some

v>1— ¢ at rate

1y (@) E[f (icw) 1ws1—] - e () ELf (Locw ) Lws1—c]
M R M

=: ng(x;)Ve,

for all i € {0,...,d — 1}. Let €(X;) denote the number of coordinates of X; that are larger
than 1 — e, where we set (@) = 0. Consider a pure jump Markov process with rates given

in Figure 4.3.

(d—1)9. (d—2)v. 9.
() W .........

Figure 4.3: Jump rates of the associated Markov chain N°.
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If for some ¢ > 0 this Markov chain has the same non-zero value as €' (X;) then it
jumps upwards (resp. downwards) at a faster (resp. lower) rate than %’(X;). This observation

motivates the following lemma whose proof is given in Section 4.3.5. Note that 7, A 74 is

the first time ¢ when €(X;) = 0.

Lemma 4.3.6. For all sufficiently small € > 0, there exists a coupling of the process X with
a realisation N¢ of the Markov process with jump rates given in Figure 4.3 and N§ = € (X,)

such that, € (X;) < Nf for allt < 1 A Tp.

The proof of Lemma 4.3.6 is where we use the assumption p({1}) = 0. By

Lemma 4.3.6, we deduce that
P, (TL ATy = 75) < ]P)cg(w) (Nte #* 0) . (412)

Here, we use the notation Py, £ € {0,...,d} to indicate that the Markov process N7, ¢t > 0 is
initiated at position ¢. Note that, since u does not contain an atom at 1, we have ¥, — 0
and w. — E[f(0pew)]/M =: wy € (0,1] as € — 0. Therefore, as ¢ — 0 the generator L. of

the Markov chain N® converges to the generator

0 0 0
woy —TWo 0 NP 0
0 2wy —2wg 0 ... 0
[ 0 0
0 ce 0 dwo —dwo
whose eigenvalues are 0, —wy, ..., —dwy (and thus whose spectral gap is wy), and whose
stationary distribution on {0, ...,d} is given by dy as 0 is an absorbing state.

Since L. converges entry-wise to £ when € — 0, their respective characteristic poly-

nomials converge, and thus the eigenvalues of L. converge to the eigenvalues of £. Since
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the eigenvalues of £ are all distinct it follows that for e sufficiently small all eigenvalues of
L. are simple. Thus, L. is diagonalisable, and may be written as £. = V. "' D.V., where D,
is a diagonal matrix consisting of the eigenvalues of L., and the rows of V.~ are the corre-
sponding unit-norm (left) eigenvectors. This condition allows us to apply [61, Theorem 3.1].
Since, for each € > 0, the stationary distribution of N¢ is dy, for all £ € {0, ...,d} and for all
t =0,

[Pe(Nf = 0) — 1] < C(e)e ", (4.13)

where p(¢) is the spectral gap of the generator of N°, and C'(e) = |V.|o| V.o Here | - [|o
denotes the oo-norm, i.e. maximum absolute row sum. Note that as ¢ — 0, p(e) — wo.
Moreover, using the basis of unit-norm (left) eigenvectors introduced above, we have C(g) =
Vel |V o = C i= V]|V oo, as € — 0, where the rows of V! are a basis of unit-norm

(left) eigenvectors of L. Now, by (4.12) and (4.13), we have

Pm«(TL ANTy = t) < ]P)cg(w)(NtE # 0) =1- Pg(x)(NtE = 0) < C(a’:‘) exp(—p(s)t). (414)

Therefore, for all vy < 1 and = € C4_1, using the fact that logv; < 0 in the second
equality,

0

0]
— T AT —TL AT 1
Exl}yl L g] = 1 + L Pm(71 Lore = U)du =1 + L Pm L N\ Ty = Ogu

log (%)

du

4.14 ©
( < ! 1+ J C’(e)u_p(e)/log<“/1>du < 4w
1

as long as log (711) < p(e). Also note that, for all x € L,
P.(X:e L) =P.(X,, € Lforall 0<i< N(t)),

where N (t) is the number of jumps of X by time ¢, and

d—1 d—1

1
P,(X,, € L) ZE (Ticw) e, yer] = ZE (wicw)lw<i <]

(4;1) E[f(Ooew)1W<lf€]
= E[f(1oew)]

= Xe-
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Since the walk jumps at rate one, we have that the number of jumps before time ¢ is Poisson
distributed with parameter ¢. As skeleton and jump times are independent, it follows that,

for all x € L,
P.(X;e L) =P (X, €L forall 0<i<N(t)=E[ V] = )

If 1 —y. < log (%), then v, ‘P, (X; € L) — +00 as required. In other words, B2 is satisfied

if we can choose 7; < 75 < 1 such that

1 1
1—x. <log <—> < log (—) < p(e).
V2 g4!

As e — 0, we have x. — E[f(0p—w)]/E[f(locw)] = dwy while p(¢) — wy > 1 — dwy by
(4.3). It is thus possible to choose ¢ small enough such that 1 — x. < p(e). For this value of

g, a choice of 7, and 7, is possible, which concludes the proof of B2.

Proof of B3: We require the following coupling lemma, where we adopt the convention

that @ < x for all x € C4_1 and @ < @. We defer the proof of this lemma to Section 4.3.6

Lemma 4.3.7. Let x,y € Cq_1 with x < y. There exist processes X @ X W) such that X is
distributed as X with respect to P, and X is distributed as X with respect to P, satisfying
that, almost surely, Xt(z) < Xt(y) for allt = 0.
Thanks to Lemma 4.3.7, we have that, if x < y € C4_1, then
P.(t < 75) < Pyt < 7). (4.15)

In particular, this implies that

inf Py(t < 75) = Po(t < 7p), and supP,(t < 75) = Pu_o1(t < 75).

yeL yel

Also, since 1 € Supp (u), with positive probability, every coordinate of (X;);>o is at least

1 — € after d jumps. If we denote this probability by x; = k1(¢), we obtain
Po(t <7p) = Polog <t <1y) = riPo(oa<t<ts|(l—¢)1<X,,),
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where (1 — €)1 < X, denotes the event that all coordinates of X, are at least 1 —e. Next,

observe that for all t < 1,
]P)(l—z-:)l (t < Tg) < 1
PO (t < Tg) h e 1

since the probability the process has not jumped by time ¢ is e”*. Now, by (4.15) and the

strong Markov property, for Lebesgue almost all 0 < u <1 < t,

Po(t <75 (1—6)1< Xy, 04=u)=Eq[Px, (t—u<7p)|(1—-e)1<X,, 04=ul

= ]P(l—a)l (t —u < T@) = P(l—a)l (t < T@) .
Thus, for ¢t > 1, since jump times and skeleton are independent

]P)()(t < T@) = /il]ID()(O'd <1l<t< T@|<1 —6)1 < ng)

1
2/{1J Po(t <7p|(1—¢)1<X,,,00=1u)Py(ogedu|(l—e)1<X,,)
0

1
:HIJ Bo (t < 7| (1 — €)1 < X, 00 = 1) Po (04 € du)
0

= "fl]P)O (O'd < 1) P(1,€)1 (t —u< 7'@) = /Ql]P)O (O'd < 1) P(1,E)1 (t —u< Tg) .

Thus, if we set Py (04 < 1) := Ko, taking ¢y = max {%2, e} completes the proof. O

K1

4.3.3 The Star Process

We now revisit the companion Markov process (S7),>¢ defined in Section 4.1.4. We wish to
apply the same theory of Polya processes to study the distribution of (d—1)-faces in (S}),0.
Note, however, that by definition, in this process every face contains the central vertex of
Sg. Therefore, if the central vertex has weight =, we may view the empirical distribution of

(d — 1)-faces as a measure on Cq_o, which represents the weights of the other vertices in the

(d — 1)-faces in S}.
Thus, we can interpret the evolving empirical measure as a homogeneous Markov
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process (S,)ns0 on C’ := R, x M(Cy_2), where we recall that M(Cy_o) is the space of

non-negative, finite measures on C;_s.

Given S, = (z,v) € C’ for some n = 0:

(i) Set ¢* = SC(H f((z,y))dr(y) and sample z € C4_2 according to the distribution admit-

ting density f((z,y))/c* with respect to v.

(ii) Let W be a random variable with distribution p which is independent of the past of
the process. Then, set

(@, v+ 0 Oopew), in Model A,
Sn+1 =

(z,v+ 3726, cw —6.), in Model B.

For a completely rigorous definition, we also set S,,; 1 = S,, if the measure component of S,

*
(zv)

is the zero measure and step (i) cannot be executed. We write IP’Z*I V) E for probabilities
and expectations, respectively with respect to this process when the initial state Sy satisfies
So = (z,v). Note that this implies that the first component of S,, remains equal to x for

all n > 0. Let us write S,, for the measure component of .S,,. Then, provided that S, is a

non-trivial sum of Dirac measures, we have

(d — l)n + S()(Cd,g), in Model A,
Sn(cd—Q) =
(d—2)n+ So(Cq—2), in Model B.

Upon identifying faces with their types, we may consider st;(K,) as a C’-valued random
variable by separating the weight of vertex i from the remaining vertices. Let 7o = ¢ (which
is the time of arrival of vertex i) and, for n > 1, let 7,, be the n-th time, the randomly chosen
face in the construction of (KC,,)m=0 contains vertex . Formally, letting o, denote the face

chosen and subdivided in step n, we have
T, :=inf{m > 7, 1 :i€0,}, n=>=1.
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It is easy to see that 7,, < o0 almost surely for all n > 1. Indeed, under either Hypothesis
H1 or H2, we have Z, = F(K,) < foa(n + |K§77]), and if 7y < n < 73, F(sty(K,)) =
Jmin(d — 1)(k — 1). Therefore, (analogous to proof of the Borel-Cantelli lemma) one can

bound the probability

I3 = 00 = |OO| — — 0 fmin(d—1)(k—1)

min d 1 ]{? 1 — 2N+ mln—(_)

. i1 = ) < <1 - J; <(] |)Ié(d—1)‘))> <e " i egTD 0;
max 0

j=N+1

and the result follows by induction on k.

Furthermore, the sequence of random variables

Wi, Do buopm

oest; (Krp,) >0

is equal in distribution to S,,n > 0 with respect to P, ), when the configuration (z,v) is

7,/) )

chosen with respect to the law of (W}, Zoesti(Ki) Sw(o)\ (Wi} )-

Let o : Ry xCy1 = C' =R, x M(Cy_2) be the map

d—1
o(w, ) = (w, Z 533) , (4.16)

where we recall that for all z € Cy_1, ; € C4_s is the vector x from which we have removed

the ¢-th coordinate. We also let ¢/ : R, x C4_5 — C4_1 be such that
Y(w,z) =w v, (4.17)

where we recall that wu x is obtained by adding a coordinate equal to w to the vector z, and
reordering the coordinates of the obtained vector in non-decreasing order. For (w,v) € C’,

we define the fitness

F(w>y) = fd'l/)*(éw@V), (418)

Ca—1
where 1, (6, ® v) is the pushforward of d,, ® v under . In other words, 1,(d, ® ) is the

distribution of ¢(w, X)) where X € C4_5 is a v-distributed random variable). Note that,

when Sy is chosen according to the law of (W,Y,), we have (F(S,))ns0 = (F(S%))n=0 in
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distribution. Moreover, for any = € Supp ((u)), assuming H1* or H2* Theorem 4.3.1
implies almost sure convergence of the re-scaled measure valued process (%Sn)n>0 on Cy_s to
a positive limiting measure depending on z. Thus, we get the following:

Theorem 4.3.8. Assume H1* or H2* and recall the definition of ¥ in (4.17), and that
S, denotes the measure-valued component of the star process S, € C'. Then, for any x €

Supp ((u)), there exists a positive measure m* on Cq_1, such that, for any positive non-zero

measure v € M(Cq_2), we have

1
—u(0: ®Sy) — my, P, -almost surely as n — 0,
n bl

x?

with respect to the weak topology.

By continuity and boundedness of f, this implies that

F(5n)

— A\ = f(y)dmy(y) >0, Pf, -almost surely when n — o0.
n Cq—1 7

This yields Proposition 4.2.2 by setting the initial state to be Sy = p(w, Yy), where Yy, is

defined in Proposition 4.1.1 and ¢ in (4.16).

4.3.4 Proofs of Additional Lemmas used to prove Theorem 4.3.1

4.3.5 Proof of Lemma 4.3.6

For brevity, we omit the superscript € when referring to the process N¢, and in the notation

of other parameters depending on €.

Proof of Lemma 4.3.6. Let € > 0 be small enough such that w > 9 (this is possible because
p does not contain an atom at 1). Then, iw + (d — i)Y < 1 for i € {1,...,d}. Let 0; =

1 —iw —(d—1i)v,i € {0,...,d}. The Markov chain N has the following dynamics: jump
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times are exponentially distributed with unit mean while the skeleton process performs a
random walk on {0, ..., d} according to the following rules: the process is absorbed at 0 and,
given that its current state is i € {1,...,d}, it moves to i + 1 with probability (d — )¢ and

to ¢ — 1 with probability ¢z, while it remains at ¢ with probability 6;.

We construct the process N from a realisation of X. First, we use the jump times

on,n = 1 of the X-process for the jump times of N. We define N, by induction, starting

1

with N,, = € (X,,), where 0y := 0. Let n > 1 and suppose X, |, = x and €(X,,_,) =]

(recalling that (@) = 0). If 0 < j < N, then choose N, arbitrarily obeying the

n—17

dynamics of the random walk (for example by using additional external randomness). If

N, , =0,set N, = 0. Finally, assume that N, , =j > 0. Let

d—1-j
o ZJ E [f(Xicw)lws1-] < (d—j),

Si =
1=0 M i=d—j

d—1
E iew )1 e .
Z [f(x ]V\V/_/) W<l—e] > i,

Let A be an event that has probability jw/s, € [0, 1] which is independent of the past of the

process given X, _,.% Let

E={X,, =g} ({€(X,,) = C(Xs,.,) =1} 0 A) U {F(X,,) = C(X,, )}
We first define N(o,) on E° as follows: we set

N, ,+1 on{¥%(X,,)=%¢X,,_,)+1},
N, =

n

Ny, ,—1 on{¥(X,,) =%¢X,,_,)—1} n{X,, # 3} nA.

Provided that N, € {N,, ., N,

On—1

+ 1} on E, this guarantees that € (X,,) < N,,. Finally,

n—17

we ensure that the coupling respects the dynamics of the process N by using additional
randomness where required. For example, we can proceed as follows: let B be an event that
has probability ((d —j)9 — s')/(1 — s" — jow) which is independent of the past of the process
given X, , (note that the denominator in the last expression is the probability of the event

E given X, |, =x). Then, set N,, = N, ,+1on BnE and N,, =N, , on B°n E. By

1

construction, we have €(X;) < N; for all t < 7, A 7. O

3For example A = {U € [0,jw/s,]} for an independent uniformly distributed random variable U.
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4.3.6 Proof of Lemma 4.3.7

Proof of Lemma 4.3.7. First note that since both X® and X® jump at rate one, we can
couple them so that they jump at the same times, which we denote by (0;)en. At the first

jump, for any measurable set A < C;_; we should have

d—1

P(X<z S A 2 xzeW 1,4(.73191/1/')] ]P)(X;yl) € A) = % Z E[f(yzeWﬂ-A(yzeW)]’

i=0
and both processes jump to {@} with probability equal to the remaining mass. We can
interpret these measures as sums of d + 1 measures given by (E[f(zicw)0s,.  (1)]) O<icd_1
and c(x)dy(-), where c(z) = 1 — Zd 1E[ f(@iew)]/M, for X@; similarly for X®. On
Figure 4.4, we draw the unit interval vertically and divide it in sub-intervals of respective
lengths E[f(yicw)]/M. On each of these intervals, we draw, from bottom to top as
increases from 0 to d — 1,

Ff: u e by + f(@ico)dp(v)/M < resp. F;": u— b +
[0,u]

f<yw>du<v>/M>

[0,u]
in orange (resp. purple), where for ¢ € {0, .. — 1}, b; = Zl ! IE[ (yjew)]/M. Note that,
by monotonicity of f, both F” and F\* are non-decreasing, and since = < y, F,” < F*

pointwise.
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l—— 1

c(y)

Ef(y2ew)
M

by

Ef(Jh—W)

.' -/
| by
JU%*VV :

Figure 4.4: A visual aid for the proof of Lemma 4.3.7. For the sake of presentation, we have

chosen d = 3.

Now, consider a uniformly distributed random variable U on [0, 1]. If U lands in the
top-most interval (that is, if U = Y% E[f(yicw)]), then we set XP =XV =2 IfU

lands in the i-th interval (numbered from the bottom of the picture), we consider two cases:

e If U lands into the orange part of the i-th interval (see left-hand-side of Figure 4.4), we

(@) —
set X2 =

i (F®)=1(0) and X((;";) =y

e ()1 (1) (if F{* is not strictly increasing, we

choose the left-continuous version of the inverse (F.*))~!(w) := inf{y € [0,1]: F”(y) =

w}).

e If U lands in the rest of the i-th interval (right-hand-side example on Figure 4.4), we

set X&) = @, Set G; = F}” — F{” and note that this function is non-negative on [0, 1]
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and non-decreasing. Indeed, for all u < v, we have

Gi0) = Ga(w) = | (i) — Flaac) ) M > .

(u,v]
We can thus define the left-continuous inverse G; ' (w) := inf{y € [0,1]: G”(y) = w},

and set XV = Yie G (U—F® (1))

Let us prove that, with these definition, X{* and X have the correct distributions
and that Xéaf) < Xt(ff). First note that, if X' = @, then U fell into the topmost interval and
thus X{” = &, hence Xc(,f) < Xé?). If X # @, then U fell in the orange part of an interval

and thus X» = 2, v < yiev = X (where V = (F”)71(U)), since z < y.

Let us now check that X{* defined in the coupling above has the right distribution.
It is equal to @ if and only if U landed in the topmost interval, or it did not land in an

orange sub-interval, and thus

d—1
P(XS) = @) =cly) + ), (F(1) = F2(1))
i=0
= K= =
=1-— ELf(yiew)] + — J fyicw)dp(v) — — f J(@iey)dpu(v)
M ;) M ;) [0,1] M ;) [0,1]
=
=1- M Z E[f(zicw)] = c(x).
i=0
For all Borel sets A < C4_1, we have
d—1
P(X() e A) = Y P(X[) e Aand F2(0) < U < F”(1))
i=0
d=1 ~F® (1)

= Z J 14 (xzk—(Fi(z))*l(u)) du

by definition of F{* and by the change of variable u = F”(v). This proves the claim.
Let us now check that X also has the right distribution under the coupling. First
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note that P(X{ = @) is equal to the probability that U lands in the topmost interval, which

is of length c(y), and thus P(X$¥ = @) = c(y).

For all Borel sets A < C4_1, we have

T

1

P(XM eA) =) P(X¥eAand F{”(0) <U < F{”(1))

)

=0

d—1

+ Y P(XY e Aand F(1) < U < F¥(1)).
i=0

The first sum is similar to the calculation above when checking the distribution of X

d—1 d—1
1
Zﬂ%Xﬁef“mdeWD<11<FYVU)=EZEZEU@44WLMwewﬂ
i=0 1=0
For the second sum, we have
d—1
Y P(XY e Aand F(1) <U < F" (1))
i=0
d—1
= D P g y_pwqy € A and F7(1) <U < FV(1))
P 7 7
a1 V)
= —1 T (1
FJ%m>A@wG<FWm>“
d—1
= 0.1] ]-A (yzev) (f(yzev) - f(xlev))d:u(v)/M’
i=0 Y[0,1

by definition of G; and by the change of variable u = G;(v) + F”(1). We thus conclude
that, in total,

d—1

P(XE € A) = 2 3 Elf (g w)Lalicw)]

1=0

as claimed. We can now iterate this coupling at each jump-time until X becomes absorbed.
After X reaches @, we let X evolve independently according to its dynamics. This

concludes the proof. O
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4.4 The degree profile

In this section we determine the degree profile associated with the sequence of simplicial
complexes (KC,,),=0. Throughout this section we assume that the conclusion of Theorem 4.3.1

holds, and that f : [0, w*]? — (0,0) is continuous and symmetric.

Let 7* be the distribution of the random variable p(W,Y,,), where W and Y., are
independent, W is p-distributed and Y, is as in Proposition 4.1.1. We now prove the
following equivalent of Theorem 4.1.3; the only difference in the two statements being that
we now use the notation of Section 4.3.3. In particular the process S with initial distribution

7* is equal in distribution to the process S* from Theorem 4.1.3.

Theorem 4.4.1. Denote by Ni(n) the number of vertices of degree d + k in K,. For all

k = 0, we have, in probability,

1 A F(S)
lim = Ny(n) = B, _
dim SN(n) =B | 5o H F(S)+ x| Px

with X\ as in Proposition 4.1.2.

Recall, from Remark 2.2.1 in Chapter 2 that (py)r=o may thus be regarded as a
generalised geometric distribution, where probability of success at the ith step is given by

M(F(Si—1) + A).

The proof of Theorem 4.4.1 is analogous to the proof of Theorem 2.4.1 in Chapter 2.
Recall that this approach was to first show convergence of the corresponding mean, and
then study the variance of Ni(n) to show convergence in probability by an application of

Chebychev’s inequality.

To prove convergence of the mean, as in Chapter 2, it is convenient to consider only

vertices that arrive after a certain time nn where n > 0 is a small constant; this allows us to
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work in the asymptotic regime of the sequence of simplicial complexes. Hence, let IV, x(n)

be the number of vertices of degree k£ + d in K, which arrived after time nn. Obviously,
Ny p(n) < Ni(n) < nn+ N, i(n),

and therefore,

lim lim sup % |E [Ni(n)] — E[N,x(n)]| = 0.

=0 poowo

Most of this section is thus devoted to proving that, for all k£ > 0,

1
lim lim —E [N, x(n)] = px.

n—0n—oo N

Let d,(i) be the number of vertices which are neighbours of node i that arrived after node
1. By construction, we have that
E[Nam)]= Y P (dn(i) - k) . (4.19)
nm<is<n—k
Henceforth, we use the simplified notation Z, = {iy, ..., i} for a collection of natural numbers
i <ip <...<ip<n. Let &(Z) denote the event that i ~ ¢, that is ¢ connects to i, for all

teTyand i » { for all £ ¢ ), with £ € {i+1,...,n}. We have

P(dn(i)zk)z Y PET). (4.20)

where ({i+1,’€'"’"}) denotes the set of all subsets of {i + 1,...,n} of size k. For k = 0, the sum

consists only of the term Zy = 9.

Overview of the proof of Theorem 4.4.1

The proof now consists of three steps. First, we provide sufficient upper and lower bounds

A

for P(d,, (i) = k) using the fact that, by Proposition 4.1.2, for i > nn, with high probability,

for all ¢ < j < n, the partition function Z; is concentrated around Aj. On the event of
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concentration, we can estimate the probability that insertions in the star of vertex i or its
complement occur, similar to as in the proof of Theorem 2.4.1 in Chapter 2. Second, we use
Proposition 4.1.1 to incorporate the stationary distribution of the Markov chain Y,, when
passing to the limit as n — oo. Third, we apply a probabilistic argument to evaluate the
sums in (4.19) and (4.20). In Section 4.4.1, we state the necessary tools to work out the

second and third step. The proof of Proposition 4.4.2 may be omitted on first reading.

The main part of the work involves exploiting the concentration of the partition
function to derive upper and lower bounds on (a variant of) P (&;(Z;)) and are proved
in Section 4.4.2 and Section 4.4.4, respectively. Note that the proof of the upper bound
in Section 4.4.2 is significantly less technical, as we can ‘drop’ the event of concentration
from probability computations. We recommend the reader to study this case first. Second
moment calculations which allow one to deduce stochastic convergence from convergence of
the mean in Theorem 4.4.1 are presented in Section 4.4.3 and follow the arguments developed
in Section 4.4.2 closely. The proof of the lower bound in Section 4.4.4 deviates from the
indirect approach used in the proof of Theorem 2.4.1 in Section 2.4.4, and directly estimates
the aforementioned variant of P (&;(Z;)). Thus, this proof requires additional work, due,
in part, to the ‘migration’ of faces into the complement on the event of an insertion into
the star of vertex i (see Figure 4.2). We deal with this technical challenge by bounding
the total number of ‘descendants’ of a small number of faces by the sum of geometrically
distributed random variables with sufficiently small success probability in Lemma 4.4.15 and
Lemma 4.4.16). The rest of the proof then involves some lengthy computations to control

error terms.
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4.4.1 Technical Lemmas used in the proof of Theorem 4.4.1

This subsection is dedicated to the statements of some technical lemmas that will be impor-

tant in the sequel. The proof of Lemma 4.4.2 may be omitted on first reading.

A Continuity Statement for the star Markov Chain

The following result concerns continuity of the k-step transition kernel of the star Markov
chain with respect to its starting point. Recall that the function F is defined in (4.4), and

the process (S, )n>0 has been defined in Section 4.3.3.

Proposition 4.4.2. Let k > 0,w € R, and x,x1, 2o, ... € Cq_q1 with x, — x. Then, in the

sense of weak convergence on Rﬁ“, we have, as n — 0,

P7 (F(So), F(S1), -, F(Sk)) € 1) = Pl (F(S0), F(S1), .-, F(Sk)) € ).

w,acn)

Proof. Let C} < C' be the set of elements of the form (z,>.",4,,) for z = 0,m > 1 and
Y1, Y2y - - - Ym € Cq_o. Here, we view M(Cy_2) as a metric space under the Prokhorov metric,
and view C' = R, x M(Cy_2) as a product metric space with oo product metric (where
the distance is the maximum co-ordinate wise distance). First of all, we prove that there
exists a function h : C} x [0,1] x Ry — C} such that, for independent and identically
distributed random variables (U, W), (Ws, Us) ..., where U;, W; are independent, U; has
the uniform distribution on [0, 1] and W; follows the distribution p (as before), we obtain
a realisation of the Markov chain starting at 2’ € C} by setting Sy = 2’ and, recursively,
Spt+1 = h(Sn, Ups1,Wyi1) for n = 0. We then couple the two Markov chains started at
o(w, z,) and p(w, z) using the same sequence (U, W), (Ua, W3), .. ., and write Sé"), S{n), o

and Sy, S1, . . . for these chains. The construction of A is straightforward. Let 2’ = (z,v) € Cy
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with v =>", 4, € Cy and uw € [0,1], w’ = 0. Order yi, ..., yn lexicographically and define
sp = 0 and si:Zf(yjuz),léigm. (4.21)
j=1
Then, let 1 < p < m be such that s, < us,, < s,. We now set

(z,v + Zf;2 Oy ) in Model A,
B((2,v), u, ') = o

(zv+ 202 O(yp)s s — Oy,), in Model B.
It follows immediately from the dynamics of the Markov chain, that the function h has the

desired properties. Next, we show that, for the coupled Markov chains:
for any k£ > 0, we have S,g") — S, almost surely. (4.22)

By continuity of f, this implies that F (S,i”)) — F(Sk) almost surely, which concludes
the proof. To prove (4.22), we proceed by induction. The case £k = 0 is trivial as
the function ¢ is continuous. Assume that we have already proved the statement for all
j€{0,...,k—1}. Recall that Sy = h(Sk_1, Uy, W) and Slin) = h(S;(i)l, Uk, W}). Condition-

ing on Si_1, S,i(i)l, 5197)17 ... shows that
(n) ) : / /
P (Sk —- Sk> < E[Leb({u € [0,1] : there exist vy, vy,...€Cy and w' = 0
such that Zlim v = Sk—1 but h(ve,u,z) - h(Sk_1,u,2)})]
—00

We conclude the proof by showing that, almost surely, the set u € [0, 1] for which vy, £ > 1 and
w' = 0 exist satisfying vy — Sk_1 as £ — oo and h(vg, u,w') - h(Sk_1,u,w’) is a Lebesgue
null set. To this end, we prove the following stronger statement: for @’ = (2,3 ,,) € Ch,
we have that, for all u ¢ {s1/sm,...,1}, where s1,...,s,, are as in (4.21) for this particular
', it holds that, for any sequence x, — 2z’ and w’ = 0, we have h(x}, u,w') — h(z', u,w’).
To see this, let ) = (z¢, >0 5y§e)) be a sequence with 2, — 2. This implies that m, = m
for all sufficiently large n and that yi(e) — y; for all 1 <7 < m as { — co. By continuity of
f, for the values SZ(-Z) defined in (4.21) for x}, we have SZ(-Z) — s; for all 1 < i < m. Hence,
if u¢ {s1/5m,...,1}, again using continuity, we have that p'¥) = p for all £ sufficiently large

and the desired result follows. O
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Summation Arguments

Here, we recall the statements of Lemma 2.4.5 and Corollary 2.4.6, which were proved in

Section 2.4.2 of Chapter 2. Recall that for eg,...,e > 0,0 <n <1, let

1 k—1 ) 1 Zk n
Sn(eo,...,ek,n) = — (( ) » ) (_) .
n 77n<zo<Z:<7,k<n]1:([) ZJ+1 141 — 1 n

Lemma 4.4.3. Uniformly in e, ..., e =0, 0 <n < 1/2, we have
k k k+1
1 1 2j-0€ilog" " (n)
Sn(e())"'uekan) = H)€]+ 1 +0(7]) +0 <n1/(7€+2) + n '
j=

Here, 0(n) is a term satisfying |0(n)| < Mn"*+2) for some universal constant M depending

only on k.

Corollary 4.4.4. Foreq,... ek, fo,---, fr1 =0, 0<n<1/2, we have

D22 ) ) )

nn<zg<nzk€({zo+1 ,,,,, )
k

; 1
= + 0 +0 | —= ).
ep+112e +1 (n) <n1/(’f+2))

Here, 0'(n) is a term satisfying |0'(n)] < M'nY**2) for some universal constant M’ de-

pending only on k and fy,..., fr_1, and the constant in the big O-term may depend on

607"‘a6k7f07"'7fk-

4.4.2 Upper Bound for the Mean of E [N, ;(n)] /n

The aim of this section is to prove that

lim limsup E [N, x(n)] /n < pg. (4.23)

n— n—00
Recall that we write II,, = Zo_e’c(d—l) duw(o) for the empirical distribution of the weights of

all (d — 1)-faces in the complex after the nth step. We also define the partition function
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associated with IC,, by Z,, = Scd—l f(z)dIl,(z). For ¢ > 0 and n > 0 and natural numbers
Ny < Ny, we let
G-(n) = {|Z, — M| <exn} and G.(Ny, N,) = ﬂ G-(n (4.24)
n=N1
Moreover, for n > 1, we denote by ¥, the o-field generated by (s, W;),1 < ¢ < n containing

all information about the process up to time n.

By Proposition 4.1.2 and Egorov’s theorem, for any d, ¢ > 0, there exists N’ = N'(9, ¢)
such that, for all n > N, P(G.(N’,n)) = 1 — 4. Therefore, for all n = N’/n, we have

E[Nyi(n)] < E[Nyr(n)lg.vm| +n(l —P(G(N',n)))

< D > PE(T) A Ge(i,n)) + on. (4.25)

nn<z<nz e({z+1%..,n )

Finally, for z > 0 and a € R, we set a4, := a(1l+x). The following proposition gives an upper
bound on the summands in the right-hand side of (4.25). For simplicity, we subsequently

write

st,(Kn) = (W 3 5w(,,)\{wi}> eC' =R, x M(Ca_s) (4.26)

oest; (Kn)

when considering the C’-valued random variable associated with the star around vertex i at

step n.

Proposition 4.4.5. Let 0 < e,p < 1/2. As n — oo, uniformly in nmn < i < n —k,

Ty = {ig,...,ix_1} € ({”ll’ﬁ‘“’"}) and the choice of €, we have
P (&(Zy) n G-(i,n))

o 1 - i F(Sk)/A4e k-1 iy F(Se)/A+e F(Sg)
+1 ;i 0+1 —e(le+1

Applying Corollary 4.4.4 to this, we will deduce the following upper bound.

Il
=}
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Corollary 4.4.6. Let 0 < §,e,m < 1/2. Then, there exists N = N(6,e,n) such that, for all

n=N,

E[N%k’(n)] < (1 + 5) (1 +5)k * [ )‘+8 ﬁ F<S€) + Cnl/(k+2) +6
~ 1 F )

n T F(Sk) + Aye 45 F(S0) + Ae

where the constant C' may depend on k, f and p but not on n and not on the choices of

d,e,m. In particular, (4.23) is satisfied.

To prove Proposition 4.4.5, let 0 < e,9 < 1/2. For nn < i < n and Zj € ({”1]’6‘“’"}),

set 49 1= 1,441 :=n+ 1. Then, for je {i + 1,...,n}, let

{i~j} ifjel, g

{i # j}, otherwise,

where G.(j) is defined as in (4.24). For simplicity, we write D; and D; for the indicator

random variables 1p, and 1p respectively. Note that &(Zy) n G-(i,n) = i D,. To
estimate the probability of this event, we decompose the indices j € {i,...,n} into groups

{ig, ... igs1 — 1} for £ € {0, ..., k}. More precisely, we define

ngE[ ﬁ D,

j=ig+1

g] Di,, (e{0,...,k}.

To prove Proposition 4.4.5, we need to estimate E [X,] = P ( ;.L:l. f?j)

From the tower property of conditional expectation, it follows that

tgy1—1

XzZE[ H DjXEJrl

j=ig+1

%] D;,, (e{0,...,k—1}, (4.28)

which suggests a backwards recursive approach. We need more notation: for S € C' =

R, x M(Cyq_2) and £ € {0, ..., k}, we let

he(S) = Hl (1 - &> , (4.29)

j=ig+1 Ave(d —1)
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where F is as defined in (4.18), and set

F(S)

fk = hk and fg(S) = m

he(S), 0<l<k—1. (4.30)

For the sake of presentation, we do not indicate that the definitions of the f)j,Xg, he, fo

depend on Zj and e.

Lemma 4.4.7. For (€ {0,...,k}, and h; as defined in (4.29), we have

ipp1—1
E [ [] D

j=ig+1

%gl < he(StZ(ICW)) (431)
Recall that, by definition, st;(KC;,) € C" (see (4.26)) and thus hy(st;(/C;,)) is well-defined.

Proof. First note that for all £ € {1,...,k}, by the tower property,

ipp1—1 . B loy1—2
E[ H D] %é] :E ElDze+1 1 zg+1 2] H D

J=tg+1 B j=ipg+1

5|D,

toy1—2

%£+12] H Dj

j=ig+1

N
&=

EAR

te41—1

where we have used the fact that, by definition, D; = D; n G.(j) and thus D; < D; (recall
that the latter denote the indicators of the events f)j and D; respectively). If ip41 — 1 ¢ Z,

we have that

F(Sti (Ki£+1—2))
Zi ’

412

E[Dleﬂ 1‘ fgp1— 2] :P(Dleﬂ 1‘ fpp1— 2)_1_

where we recall that F'(st;(/C;,,,—2)) is the sum of the fitnesses of the faces in the complex

%]

that contains node i at time i,,1 — 2 (see (4.4)). Thus,

AR (O e NI

ip+1—2

J=t¢+1 J=te+1
tp41—2

< (1 _ F(St—) H D
)\+E(Z€+1 —2 J=ig41
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where we recall that, by definition, A;. = A(1 + ¢€) and F(st;(K;,,,—2)) = F(st;(K;,)). In

the last inequality, we have used the fact that on the event D;

is—2, We have Z;, 5 <

Aie(igy1 — 2). Tterating the argument shows the claim. O

We now use the Lemma 4.4.7 to derive an almost-sure upper bound for X,.

Proposition 4.4.8. For (€ {0,...,k}, and f,; as defined in (4.30), we have

k
Xe <Ef k., [H fj(Sj—é)] D;,.
iy

In particular,

o]

Proof. We proceed by backwards induction. For ¢ = k, the statement is identical to the one
in Lemma 4.4.7. Now, assume the claim holds for some 1 < ¢ < k. Using (4.28) and the

induction hypothesis in the second inequality, we get
8%41] Z>w71

<E [ st (KCi,) [ny J= 15]

ig—1
X =E| [] D;X,

| j=t¢—1+1

ip—1
Zz 1] 1_[ D

J=tp—1+1

<, ] Di, .. (4.32)

The event D;, = {i, ~ i} indicates that an insertion has been made into st;(C;,—1). Therefore,
conditionally on ¥, 1, on the event D;,, the sequence (Sy, ..., Sk_¢) initiated by st;(/C;,) is

equal in distribution to (Si,. .., Sk—s+1) initiated by st;(K;,—1). Thus,

k . )
E [E:ti(lcie) [H fj(Sjé)] D;, %gl] =P (Die ’%gﬂ)E;i(,@eﬂ) Hfj(Sj*f+1)
j=£ L _
F Stz ’Ci/— " [ k T
- (zi(»—il))Esti<'<¢z1> [ T£(Sj—en) | (4.33)
p— _j::e |

On the other hand, on the events D;, j € {i;_1+1,...,5,— 1}, we have st;(K;,_1) = st;(K;,_, ),

and thus F'(st;(IC;,—1)) = F(st;(K;,_,)). Combining (4.32) and (4.33) and the fact that on
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ZZ 1]

ssse Dj,—1, Zi,—1 = A_c(iy — 1) in the first inequality, we obtain

k ip—1
3587 Xg_l < ]E:ti(icié,l) [ K — 1 Hf] j— €+1 ] [ 1_[ D

] J=tp—1+1
(4.31) (So) T .
3588 < Bl ) [m [ T£(Sjmex) | hema(sta(Ki, ) D,
3589 Ki,_ 1 [ H fj j—0+1 ] ip_1°
3590 J=£-1
sso1 ' This concludes the induction argument, and thus the proof. O
3502 The following elementary lemma is an easy consequence of Stirling’s approximation,

103 using (4.8), so we state it without proof.

ss0a  Lemma 4.4.9. Let 0,C > 0. Then, as m — o0, uniformly over ém < a < b and 0 < < C,

3505 WeE have
b—1
B a\ s 1
3596 H <1_j——1 (g) 1+0 E .
Jj=a+1
3507 The statement of Proposition 4.4.5 follows immediately from Proposition 4.4.8 and

ss08  Lemma 4.4.9.

ss00  Proof of Corollary 4.4.6. In view of the statement of Proposition 4.4.5, it remains to replace
ss00  st;(KC;) by its distributional limit ¢(W,Y,,) and to evaluate the sum over the possible values
so1 Of 4,41,... 4. We start with the first task and show that, for any 0 < d,e,n7 < 1/2, there

w02 exists N = N(§,n) such that, for all nn <i <n—k,Z; € ({Hl;{'“’"}) and n = N, we have

3603 P (5, (Ik) M ge (i, n))
: F(Sk)/Ave k-1 F(Se)/A+e
23 F (S€>
a < (1+4+6)E: — . 4.34
360 ( ) B [(Zkﬂ) g (Z£+1) Ae(ipsr — 1) ( )
3605
3606 Note that the statement of Corollary 4.4.6 follows immediately from this identity and

ssor  Corollary 4.4.4. To verify the last statement, let 7} be the law of st,(K,) considered as
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C’-valued random variable, that is, ¢(W,,,Y,,) (see (4.16) for the definition of ¢). Thanks to
Proposition 4.4.5, it is sufficient to prove that, uniformly in nn <i <14, <iy < ... <4 <n

and ¢ € (0,1/2], as n — o

i F(Sk)/Aye k-1 Zlf F(Se)/A+e
e (8) () e

(e .e o \ et
ik F(Sk)/Aye k-1 Z'Z F(Se)/Aye
—Ex. <—) 11 (—) F(S)| —0.  (4.35)
tk+1 7—o \l+1
To this end, we prove the following stronger statement: uniformly in n < zg, ...,z <1 and

the choice of €, as n — o0,

k—1 k—1

E*, [xg(sk)//\w . H xf(se)/AHF(SZ)] —E*, [xg(sk)//\w . H xf(sé)//\JrEF(Sg)] 0.
" =0 =0

By continuity of ¢, Proposition 4.1.1 and Proposition 4.4.2, we have

P ((F(So), ..., F'(Sk)) € ) — PL((F(So),...,F(Sk)) € -) weakly. Note that, for all
0 </l <k F(S) < C, where C = (d 4+ 1)(k + 1) fmax and we recall that fu.x is the
maximum of the fitness function f. For all n < z¢,...,2x < 1 and 0 < & < 1/2, the function

J(Wo, .. y) = /. " 2*+=y, defined on [0, C]**! satisfies
IVJ|| < a, := CF (1 —logn/\) (4.36)
uniformly in zo, ..., 2y, . For any two probability distributions v and v/ on [0, CT**1, let
d(v,v') = sup

f gdv — Jgdyl
geF

where F := {g: [0,C]*""" - R | Vz,y € [0,CT*" |g(z) — g9(y)| < oz — y]]}-

(4.37)

It is well-known that d(v,,v) — 0 if and only if v,, — v weakly (see for example, Example

19, page 74 [70]). This concludes the proof of (4.35) and of Corollary 4.4.6. O

4.4.3 Stochastic convergence: second moment calculations

By counting the number of unordered pairs of vertices with degree d + k, arguments similar

to those applied in Section 4.4.2 allow us to compute asymptotically the second moment of
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N, k(n) (recall this is the number of vertices of degree k + d in K,, that arrived after time

nn). Note that

nm<i,J<n
We prove that
E[(N, 2
lim lim sup M < i (4.38)
=0 nowo n

This shows that lim, . E[(N,r(n))?] /n* = p? which is sufficient to deduce the conver-
gence in probability stated in Theorem 4.4.1 from convergence of the mean by a standard

application of Chebychev’s inequality.

Recall that we use the notation Zj, = {iy,...,ix} for a collection of natural numbers
i < i < ...< i < n. Similarly, we write J, = {j1,...,Jx} for a collection of natural
numbers such that j < j; < ... < jr < n. As before, we let £;(Z;) denote the event i ~ ¢ for

i < { < nif and only if £ € Z;, and define the event &;(Jj) analogously for j, ji, ..., jk.

With these definitions, we have

E[(Nyk()’] = 2, > PET)NE (), (4.39)

nm<s,j<n Ly, Jy

fix 0 < 0, < 1/2 and choose N’ such that for all n > N', P(G.(N',n)) =1 —9.

Note that, on &(Zy) N E;(Tk), it Iy N Ty # @ we either have i = jori ~ j. If i = j
then Z,, = Ji, and the contribution of these terms to the right hand side of (4.39) is at
most E [N, x(n)] < n. On the event {d,(i) = k} we have F(st;(Ks)) < (k + 1)dfmayx for all

1+ 1 < ¢ < n. Therefore, for nn <1 < j < n, we have

P ({dn(i) . k} A {dn(j) . k} A{~i)n ga(z',n))

<P ((i~ i} |G i —1).diali) < k) < (k + D

A_emn
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It follows that, for all n sufficiently large, depending on ¢, ¢ and 7,

E[(Nye(m)?]<2 > Z & (L) 0 & (Ti) 0 Ge(in)) + 6n® + Cn/i,

m<i<jsnZpnJr=
for a constant C' = 0 which is independent of n, d, e and 1. The following proposition is the

analogue of Proposition 4.4.5.

Proposition 4.4.10. Let 0 < e, < 1/2. As n — o, uniformly innmn < i < j <n —k,

P (& (Zk) 0 & (Ti) N Ge(i,n))

“(i+0 1 | g ix F(Sk)/Ate k-1 i F(Se)/A+e F(Sg)
- n sti(K2) n _ Loyl Ae (UH - 1)
1

e F(SK)/A+e k js F(Se)/A+e F(Sy)
ES . — : I A (jer—D ||
ot () (n) =0 J€+1> Ae(Jes1 — 1)

The proof of this proposition is completely analogous to the proof of Proposition 4.4.5

|~
|

/\O

and relies on a backward induction argument and an application of Lemma 4.4.9. We omit
the details as no new arguments are necessary at this point. We move on to show the
following analogue of (4.34): for any 0 < §,e,n7 < 1/2, there exists N = N(d,7) such that,

foralln > N, nn <1 < j < n — k and disjoint sets Zj, Ji, we have

P (& (Z) 0 & (Tk) N G-(i,n))

- (1 N 6) . Z_k F(Sk)/)‘+s ﬁ ; F(Sl)/A-#s F(Sg)
h ™1\ n 0 ier1 A c(igyr — 1)

. <%>F(Sk)/A+s 'k 1 <j_e)F(S£)/>\+s F(Sg) ) (4 40)
" n 0 Je+1 Ae(fer1 — 1) . .

The details are very similar to the approach in Section 4.4.2, and we only give the necessary

T

additional results entering the proof.

Proposition 4.4.11. As n,m — o with n # m, we have (Y,,Yy,) — (Yoo, YL), in distribu-

tion, for independent random variables Y, Y., both distributed according to m*.
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Proof. This follows easily from Theorem 4.3.1. Let ¢1,9o : C4-1 — R be bounded and

continuous and Y, Y, be independent realisations of 7*. We have

[E [91(Yn)g2(Ym)] = E [91(Yoo ) g2 (Yo (4.41)
< |E [9:(Ya)g2(Yom)] = E [g2(Ya) ] E [g2(Yo0)]]

+ B [91(Yo)] E [g2(Y2)] — E [91(Yao) g2(Y0)]] -

Since Y, Y, are independent, the second term on the right hand side is equal to

|E [92(Yeo)] | - [E [91(Yn)] — E [g1(Yo0)] |- (4.42)

As n — o, (4.42) converges to zero by Theorem 4.3.1. For n < m, we have
E[g1(Yn)g2(Yim)] = E[g1(Yo)E [92(Yon) | 9m-1]]- Hence, the first term on the right hand

side of (4.41) is bounded from above by

lgall - EE [g2(Yim) | Fm-1] — E [g2(Yoo)] [] - (4.43)

Write v, for the law of Y,,, given ¥,,_1, that is, for all measurable A < Cyq_,

5 @)l ()
Te, . F @), (2)

Vm<A>

By Theorem 4.3.1, we have, almost surely, v,, — 7* weakly. Thus, E [g2(Y,,) | 1] —
E [g2(Y)]. Hence, by the dominated convergence theorem, (4.43) converges to zero as
m — 0. This concludes the proof for n,m — oo with n < m and the case n > m can be

treated analogously. O

In the remainder, we write P}%, and E;*, with z,2" € C’ for probabilities and ex-
pectations, respectively, involving a pair of independent copies of the star Markov chain

(S0, 50), (S1,57), - .., where Sy = x and S}, = 2.

Proposition 4.4.12. Let k > 0, w,w’ > 0 and z, o', 21,2, 29,2, ... € Cqq with x, — x
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sro  and x), — a'. Then, in the sense of weak convergence on Ri’”z, we have, as n — o,

3701 ;?w,zn),cp(w’,zgl)((F(SO)’ F(S(I))v F(Sl)7 F(Si)7 R F(Sk)7 F<Sl/c)) € )

g;gi - P:;Tw,x),cp(w’,:c’)((F(So)?F(S[I))7F(‘Sl)?F(Sﬁll)7 s 7F(Sk)aF(Sl/§)> € )

sroa Proof. This follows from the independence of the two star processes involved and Proposi-

3705 tion 4.4.2. O

3706 Using Proposition 4.4.11 and Proposition 4.4.12, the continuity of ¢, and an argument
sror - analogous to the proof of Corollary 4.4.6 (using a probability metric similar to (4.37)), (4.40)
sos follows upon verifying the following: For any n < xg,z{,..., 25,2, < 1 and 0 < e < 1/2,

s700  with the function

k-1
ario T (o Ybs - Ys Yh) = e H RN CA LTt Il [CALS

=0
s defined on [0, C]?**2 we have that |[V.J'| is bounded uniformly in zy, ..., z, 75, . .., ) and

sz €. This follows from that the fact that J’ factorizes, ||.J/| < C%*, and (4.36).

3713 Now, when evaluating the sum over nn < ¢ # 7 < n and disjoint Z; € ({i+1l’€'"’”}), Ji €
3714 ({j H,;‘“’”}) in (4.40), since the summands are non-negative, and we are looking for an upper
sns  bound, we may remove the conditions ¢ # j and Zy n J, = &. But Corollary 4.4.4 shows
sne  that, uniformly in € and 7,

S e He ™ )

nn<i,j<n Ly, Tk /=0

. (]k) F(Sk)/A+e k= < e ) F(Se)/A+e F(Sg)
3718 x E S e A—
n 7—0 Jet1 A (o1 — 1)

1 2k
3719 < ( + 5) (E;:*
1—c¢

Ao 2 F(S)
3720

2
+0 n—l/(k;-s—Q) + ' 1/k+2
F(St) + Mie g F(S,) + AJ) ( )+

sr21 for some universal constant €’ > 0. From here, identity (4.38) follows easily as in Sec-

sr22 tion 4.4.2.
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4.4.4 Lower bound for the Mean of Ny(n)/n

In this section, we prove that, for all £ > 0,

lim lim inf —]E [Nnkm)]
n—0 n—o0 n

where we recall that N, (n) is the number of vertices of degree k+d in KC,, that arrived after
time nn, and p; is defined in Theorem 4.4.1. Recall that in order to prove the analogue of
(4.44) with regards to the (u, f, ) - RIF tree, we adopted an indirect approach, using a proof
by contradiction in Section 2.4.4 of Chapter 2. This approach is also applicable here, and
the interested reader may consider applying this approach as an exercise. However, in this
subsection we adopt a more direct proof of (4.44). Whilst this proof is much more technical,
this approach is favourable as the techniques may transfer to the analysis of other quantities
related to recursive network models, for example, the study of the evolution of the degree of

a fixed vertex.

To apply this approach, we need more notation. First, let C be the set of all finite
(d — 1)-dimensional simplicial complexes with integer vertices. To add weights, let C¥ =
C x RZ, where, for t = (c,z) € C¥, x;,1 € Z keeps track of the weight assigned to the vertex
1 - if no such vertex exists, set x; = 0. We then consider IC,, as a C"”-valued random variable
incorporating vertex weights. For a simplicial complex IC € C, let K\; := {c € K : i ¢ o} be
the sub-complex obtained from K, when we remove the faces which contain vertex i. We set
K\ := K if i ¢ K. When applied to the random dynamical process, we write /C,; for (Kp,)\;.

Let

Hn\'L = Z 5w(0)7 and Zn\z = ($)dHn\l($)

seic(d=D Ca—1

n\i

be the empirical measure of the types of active faces in K;,\; and the corresponding partition
function, respectively. Note that K=V = Kfj\;” U st;(KC,,), where the union is disjoint and

therefore Z, = Z,\; + F(st;(IC,,)).
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To prove a suitable lower bound on the probability that vertex i receives edges at
certain times, we need to control Z,; throughout the process. It is reasonable to expect Z,;

to behave similarly to Z,,. To this end, for alle >0, n>i>1 and m > 1, we let
GO (n) = {|Zni —An| <exn} and  G.(nym) = {|Z, — Am| < eAm}. (4.45)

Note the difference between the notation G.(n;m) and the notation for concentration along

an interval G.(Ny, N2) defined in Section 4.4.2.

Forl1<i<n, I, € ({”1];'“’"}) and j =1,...,n, we let

p(j) € {0,...,k} be such that lp(j) S J < lpy+1 — 1, (4.46)
where we recall that we use the conventions 7 = 7 and 7,1 =n + 1.

As opposed to the arguments in Section 4.4.2, the inductive proof in this section
requires us to modify the value of € in different intervals {i, ..., ip1 — 1}, =10,... k. We
thus need more notation. First, for a fixed ¢ > 0, and ¢ € {0,...,k} we set g/ := (1 + {)e.
We only apply this notation to the symbol €, to avoid confusion with subscripts. Next, for

je{i+1,...,n}, recalling the events D; from (4.27), and G (), G-(¢;7) from (4.45), we set

Di(e) =Dy Gl () and  Di(e) = G.(isi).

Similarly to before, we write D;(g) := 1p,() and D;(e) := 1p,(c)- With this notation, we

have

E[Nyi(n)] > )] D P( D, (e)). (4.47)

nn<i<nzke<{i+1%u,n}) 7=t

We then have the following analogue of Proposition 4.4.5.

Proposition 4.4.13. Let 0 < §,e,n < 1/2. There exists a constant C' > 0, N = N(d,¢e,n)
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and 0 < o < 1 such that, for alln > N,

E[N,x(n)] = —C'on

F(Sk) F(Sy)

m<isn g, E({H»l ..... n ) Z£+1 1041

o

(4.48)

where o depends only on e,m and, for any fited 0 < n < 1/2, we have o — 1 as e — 0.

Similar arguments leading from Proposition 4.4.5 to Corollary 4.4.6 then give the

following result.

Corollary 4.4.14. Let 0 < §,e,mn < 1/2. Then, there exists N = N(0,¢,1) and a universal

constant C' > 0 not depending on any of these parameters, such that, for alln > N,

Mo YT F(S)
F(Sk) + A F(Sg) + )\,EZ

E [Nyu(n)] 1—o\*
— BV > 1—9§ .E**
n Q( ) 1+ ¢ T

o C(Ul/(k+2) + 1/n1/(k+2)) o 57

€k =0

where o is as in the Proposition 4.4.13. In particular, (4.44) holds.

We now define analogues of hy and f, from (4.29) and (4.30) in Section 4.4.2. Here,

however, it is necessary to indicate the dependence of these functions on €. For S € C’' and

0e{0,... k}, let
T F(S)
7(S) = - 4.4
and, for £ €{0,..., k— 1},
2(S) = F(S) h7(S) while f;, = b;. (4.50)

F(S) + Mo lies — 1)

We follow the arguments from the proof of the upper bound in Section 4.4.2 and show

analogues of Lemma 4.4.7 and Proposition 4.4.8. To this end, we need to make use of the

199



3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

Dynamical Models for Random Simplicial Complexes

more general framework introduced at the beginning of this subsection: we write P,(+), E,(-)
for probabilities and expectations respectively, when the initial weighted configuration is
equal to z = (¢,z) with ¢ € C,z € R_%. Here, if m € Z is the maximum vertex label
occurring in ¢, then the vertex inserted in step ¢ of the process carries label m + i. Then, for
a real-valued function g depending on the path of the process and u(z) = E,[g((K,)n=0)]
we use the slightly inaccurate but standard notation Ex [g((XC;,)n=0)] for u(X) and a random
variable X which is typically defined in terms of K,,,n = 0. Probabilities P and expectations
E appearing in the following without subscript are with respect to the initial process with

given K.

Proving analogues of Lemma 4.4.7 and Proposition 4.4.8 becomes more intricate since
we can no longer drop the concentration conditions relying on the events G.(j) as we did
in Section 4.4.2. Nevertheless, ignoring the dependency structure of the evolution of the
process in the star of vertex ¢ and outside, intuitively we still expect to bound P ( i 12)

from below by a term similar to

D [E]Ci\i [ ﬁ 1g. () =65 +p( ] E:t !H ]] (4.51)

j=i+1

The two main hurdles to prove such a lower bound are the following: first, while the process
outside the star of vertex ¢ follows the Markovian transition rule, there is a subtle dependence
between the star and its complement as the addition of faces to the star adds faces to its
complement. More formally, on D;,, we have K;,; # K;,—1);. The reason is that when a
face in st;(KC;,—1) is subdivided during step i,, one of the faces that are created does not
contain vertex ¢ and therefore migrates into /C;,; (this is the face that is removed at each
step in Figure 4.2). Second, in order to exploit the concentration of the partition function
Zj for j =4 > nn, an argument is needed to replace Py, by Px,. In order to overcome
these difficulties, we use the following two lemmas, whose proofs we delay to the end of the

section.

Lemma 4.4.15. For any 6, > 0,0 <n < 1, there exists N = N(,&,n) such that, for all
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e N = Nmn <i<n—k, we have

3815 E [PICZ-\Z- ( ﬁ gs(] - Z:]))

j=i+1

=>1-0.

;6 Lemma 4.4.16. For any €1,e9,63 > 0,0 <ny <1 and Cy,Cy > 0, there exists N depending
17 on these six quantities, such that the following is satisfied for all m = N: for any weighted

ssis simplicial complexes X,) € CV such that

se0 (1) [XEDAYED| < O, where XD AYED = (x(@=1\ Pld=1)) (Y= y(d-1).
s20  (ii) any vertex contained in a face in XY A Y=Y has the same weight in both compleves;
21 (ili) each face in X"V AYEY has at most fitness Cy in the complex it belongs to;

22 (iv) F(X) = equ for some mn < u < n (where we recall that F(X) is the sum of fitnesses

3823 of faces in X),

320 we have, for any u < m < n, that

3825 Px ( ﬂ g@(j —U;j)> >Py ( ﬂ 952/20 —U;j)) — &3.

j=u+1 j=u+1

3826 Intuitively, Lemma 4.4.15 states that, for the process initiated by KC;;, the partition
327 function remains concentrated with high probability at each of the n — ¢ steps after the
a2 arrival of vertex ¢. Lemma 4.4.16 states that any sufficiently large simplicial complexes X
320 and Y, in the sense of being linear in n, which differ by at most a constant number of faces,
sg30 have partition functions that evolve in a similar manner. This is due to the fact that the
sg31  contribution of the descendants of faces in X AY may be bounded by the sum of geometrically

332 distributed random variables with small success parameter, and is thus negligible.

3833 For brevity, for all £ € {0,...,k} and € > 0, recalling the definition of p(j) in (4.46),
83 we define
n—(k—4£)
3835 G@(g) = ﬂ Qap(j)(j — ig;j + p(]) — f) and Ofg(lc,g) = ]P)}C(Gg(e)), KeCv. (452)
Jj=ip+1
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Thus, in o (Kipi,€) the term G (j — igj + p(j) — £) represents concentration of Z;
(initiated with KC;,\;) around A(j + p(j) — £). When p(j) increases, the values of e,;) and
j + p(j) — ¢ change to account for the additional ‘step’ that has occurred in the underlying
process without a step occurring in the process initiated with IC;,\;. Lemma 4.4.16 has the
following corollary which justifies this notation, showing that the migration of the additional

face into IC;,\; at the step i, is insignificant.

Corollary 4.4.17. For any 0 < 1,0, < 1, there exists N = N(d,&',n) such that the
following holds for allm = N: for all0 <e <1/(2k+2), (e {l,....,k} andnn <i < i, <

. <ip <mn, on the event gsz (i¢), with oy as defined in (4.52), we have

ozg(/CiN, 5/) = @((K(ilfl)\i, 8//4(k + 1)) — 0. (453)

Proof. For sufficiently large n, depending on &’ and 7, we clearly have that, for all I € C*

n—(k—£)
ay(K, < ﬂ Gaerya(d — e ))

J=te+1

and

( ﬂ Gaerjs(j — is3 J )) > ag(K, &' /Ak + 1)). (4.54)

J=tp+1

Note that, on gé?(z'g), we have Z;,; = Mig/2. Hence, Lemma 4.4.16 applied with &, =
N2,e0 = 3ey/de5 = 0,u = ig,m =10, Y = Kipmipi, X = Kipiy Cr = d + 1,05 = finax shows
that, on the event G” (i¢),

n—(k—£) n—(k—2¢)

J=tp+1 J=t¢+1

for n sufficiently large, depending on d,¢’,n. Then the equations (4.54) and (4.55) together
imply (4.53). O

Once we have Corollary 4.4.17, the arguments to prove the lower bound are similar
to the upper bound, however, the details are more technical. The following lemma is the

analogue of Lemma 4.4.7.
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ss0 Lemma 4.4.18. For any 0,0, <1 and 0 < e < 1/(2k+2) there exists N = N(0,e,n), such

sseo  that, for allmn > N and nn <i <iy <... <iy <n, with h5 as defined in (4.49), we have

3861 ]P( ﬁ 'Dj(é)

J=ir+1

%) Di,(e) = (o (K -1y, e/ (4(k + 1))) = 6)b(st:(Ki,)) Di, (e)  (4.56)

sz and, for all (€ {1,... k— 1},

’Lg+1 1
3863 E 1_[ D aZ+1 (2g+1—1)\ia 5) giz] D;, (5)
| j=t¢+1
3864 = (Ozg(/C(ie,l)\i, (]C + 1)) - 5)h§(st,(l€,£))[)u (6), while,
i1
3865 E H Dj(&) al(lc(il—l)\iag) %] Dl(ﬁ) =« ( z\w )f]o(St ( ))Dz(é)
3866 Lj=i+1

sss7  Proof. We write D; for D;(g) throughout the proof. If iy # n, we have

n n—1
IE[ [] Di|%. Ean gl] [] D%,
j=ik+1 J=ig+1
F(sti(Kn-1))
2860 -E (1—2—1 Pic, 1y (Ge,(15m) ]_[ D, (4.57)
3870 B n= j=ip+1

ssr1 because, by definition (see (4.45)), G, (1;n) = {| 21 — A\n| < exAn}. First note that, on the

ez event (|7, ., Dj, we have, for any j =i, +1,...,n— 1, F(st;(K;)) = F(st;(K;,)). On the

]z+1

3873 event Dj we have

F(st;(Kn-1)) S F(sti(Kiy))

- 4.58
Zj /\—Ek] ( )

3874 1 -

375 Furthermore, by the tower property, we may substitute

3876 E |:]P)IC(,L1N (gak (1§ TL)) Dn—l

gn—Q] for ]P)/C(nq)\i (Ge,,(1;m)) Dyy

ssr7 inside the conditional expectation, and together with (4.57) and (4.58), this gives

E[ﬁpj% >< (Uc’ki) H]HD

E|E|[Pc .. (G, (1; _
2L /\_gk( )> [ [ Kn—1)\ ( ( n)) L
3878 (459)

] |
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ss70  Then, if 7, # n — 1 we also have

E lP,C(n o (Ge (1;1)) Dy %2] = (1 - W) Pinsy (Ger(1;m = 1) N G, (2m)).

3880 (460)

sss1 Thus, using (4.59) and (4.60) in the first inequality, and (4.58) in the second,

] |

w2 I [ ﬁ D;|%,
j=ip+1
o > (1 _ %) E [(1 - W) Picy ay, (Go (1 — 1) 0 Gy (2 ””ji D; |4,
> (1 _ %) <1 _ %) E [IP’,C(HQ)\Z. (G-, (1in = 1) N G-, (Zn)) J EIHD
Iterating this process gives us
3887 P ( ﬁ 1173'(5) gzk> Dy (e) = o (Kii, )05 (st (K3, ) Dy,
i

sess Applying (4.53) from Corollary 4.4.17 concludes the proof of (4.56) as D;, < Gl (ig).

3889 We use the same ideas to prove the general case, for £ € {0,...,k — 1}. Here, we

@.

e

800 want to provide a lower bound to E [angl(lC(ig =1\ €) H;";le;ll D; ] First, for any
sso1 j=ip+ 1,...,9041 — 1, we have F(st;(K;)) = F(st;(K;,). Thus, on the event D;, we have

F(sti(K)) _ Psti(Kq,))

3892 1-— = - (461)
Zj )\_gé]

3803 Second, using the tower property, we substitute

3894 E [Oéeﬂ(lc(i“l—l)\uéf) Di, 1 %H12] for o1 (Kip,y—1)\is€) Diyry 1 (4.62)

ss0s inside the conditional expectation. Third, if i, — 1 # 1,

— F(stz(lCz _2))
3896 E [04€+1(’C(ig+11)\i75) Die+1—1 gi£+1_2:| = (1 — = 041 X
i€+1_2
—(k—£-1)
3897 IP)/C(ie+172>\i (ggg(]~7 Z@-‘rl - 1) ﬂ gEP(J)( Zé"rl + 1 ] + p( ) - g - 1))
J=tey1+1
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3808 S0 We write:

Z@+1—1
3899 E O-/K-i-l( (tpr1—1)\is € H D ]
J=tp+1
(4.62) _ et
3900 = K Elaul(lc(ml—l)\uéf) Di, 1 gz‘gﬂ—zl H D; g@]
J=tp+1
F Sti ’Cl — Raking —
2001 (4£3)E <1_ ( ( 041 2))) 1_[ DjX
Zip—2 j=ig+1
—(k—t—1)
3902 Plcuul,g)\i (gsg(l;iéﬂ - 1) ﬂ ge (] —dpp1+ 1 +p( ) — (- 1)) %Lg]
3903 J=tey1+1
s0a  Now, the lower bound of (4.61) yields:
te41—1
005 [ Oé£+1( (tg41—1)\ir € H D
Jj=tig+1
’I’L—(k) Z) Zj+1—2
F(sti(Ks,)) ) -
>1-———F—— |E . — 1+ 257+ l D,
z 2 () B P ) Gt vz 00000 112

3008 By the tower property again we substitute

3909 E [ ICWH 2\ ( ﬂ QEP J) ZZ+1 + 2; j +p( ) €)> igy1— 2|gze+1 3

J=tg+1—1

n—(k—2¢)
3910 for Le+1 2\ < ﬂ gap(J) U—i—l + 2; ] +p( ) E)) Tpy1—2

J=tey1—1

soi1 Also, if ip01 — 2 # iy,

(k—0)
3012 E [ K(ipyq—2\ < ﬂ Qgp o\J — 1+ 257 +p( ) @)) ior1—2 ‘ %2+13] =

J=te+1—1

F(sti(Ki,,,-3)) A
3013 (1 - =z s PK(@'Z_*J?S)\'L' ﬂ gap(J)( — 1+ 35 +p( ) E) .
Ge+1=3 J=iep1—2

so1s  Bounding the first factor as in (4.61), and combining (4.64) and (4.65) give
top1—1

a“‘l(lc(iul*l)\i?g) H Dj glé]
3916 > <1 — M) <1 _ F<Stz(lcu)) ) %
A EZ<ZZ+1 - 2) )\_52 (/Lg+1 — 3)

n—(k—{¢) ig41—3
w17 E[ S < () Gepiy U —ier + 35 +p(5) — 6)) [] D

J=te+1—2

3915 HE

3918
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[terating the argument shows that the right hand side multiplied by D;, is bounded from
below by a,(Ki, i, €)h5(st;(K;,))Di,. We conclude the proof by applying (4.53) from Corol-
lary 4.4.17. O]

Lemma 4.4.19. Foranyd > 0,0 <n <1 and0 < e < 1/(2k+2), there exists N = N(d,e,n)
such that, for alln > N, L€ {1,... k} andnn <i < iy < ... <i, <n, with §5 as defined in

(4.50) we have

k min(ig41,n)
E | apa (K -0 €) Bk, ) [ 1] f;(Sj—€—1>] [ D) %] D;,(e)
j=0+1 j=tig+1

k
> (ae(Kiipayir €/ (4(k + 1)) = O)EG (k) [Hfﬁ(sje) Dy, (e), (4.66)

Proof. The inequality (4.66) coincides with (4.56) from Lemma 4.4.18 when ¢ = k. Let
0 < ¢ <k —1. Note that, for all 1 < i <n, we have |Z,\; — Z4_1)| < (d + 1) fmax. Thus,

for all n sufficiently large, depending on e and 7, we have
Dipry 0 G (i1 — 1) € G (ig4). (4.67)

Using this observation in the second step, we deduce

(78]
&£+1(K(i4+1—1)\i7 st (’C7‘2+1 [H f j /-1 ] H D] g[

j=t+1 j=ie+1

E

ig+1—1
- E []E Dy Bk, ) [H 1508501 ] 5%“1] g1 (Kiyy—1)» €) H D; %Z] D;,
j=L+1 Jj=te+1
(4.67) teximl _
> E|E|Di, B} «,, ) H f5(Sj—e-1) ‘%Hl_l g1 (Kiyy—1)\» €) H D; %, | D,
j=0+1 j=tig+1

206



3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

Dynamical Models for Random Simplicial Complexes

Recall that (analogous to in the Proof of Proposition 4.4.8), conditionally on ¥;

£+

,—1, on the

event D;, .1, the random variable st;(/C;,,, ) is distributed as S, for the star Markov process

starting at st;(/C;,,,—1). This

E [DZZJAE; '”2+1) [ H f j—L-1

j=0+1

We deduce that

E | am1(Kg 100 €)

Zi B st (

r+1—1

R [F(smm)E*

But on the event associated with D,

F(Stz

yields:

] ‘ iop1— 1] =P (Die+1 |gié+1*1) 'E:ti(lciﬁl—

F(Sti (]Cieﬂ*l)) .

st(lClu_1 [Hf Jél

j=0+1

j=t+1

i, We have

Zi

e+1—1

'LZ+1

Jj= Zg-i-l

k
Ki,) [ H f;(sj—é)] 1 (Kipy—1)» € H

St (’Clul 1)

a2

Z,

+1—1

(L)) F(st:(Ki,))

So the previous inequality continues as follows:

F(sti(Ki,))

X
F(sti(Ki,)) + Aye, (T4 — 1)

k
B c.,) [ H f5(Sj-e)

j=t+1

] -E [O&g+1(lc(i4+1—1)\i75>

T F(sti(KCi,)) + Ak, (G011 —

We bound the last term from below using Lemma 4.4.18:

M+1 1

a€+1( (tgg1—1)\ir € H

J=te+1

E

By (4.50), we have

F(sti(Ki,))

F(sti(lCi,z)) + )‘+€z (ig.H + 1)

so the claim follows.

D;

b (st (K3 ) B, ) [
J

207
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j=

1)

I1 b

io+1

|

J

o).

] i = (K1 €/ (4(k + 1)) — 6)b(sti(Ki,)) Dy,

k
11 508;-

j=l+1

[Hf i

{+1

l

|
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The lemma allows us to bound IP’( ?:Z. +11_?j) from below by a term similar to
(4.51) using a backward induction argument which is of the same nature as the proof
of Proposition 4.4.8. This result needs to be prepared with the following definition. For

0<e<1/(2k+2),0<n<1and C >0, set
Y(en, C) = (e, n, CYFF 2 vy(e,n,C) = (1 —e) * P, =1,... k. (4.68)
Note that these terms decrease as € or C' increase.

Lemma 4.4.20. For 0 <e < 1/(2k+2),0 <n <1 and C > 0 there exists N = N(g,1,C)

such that, for alln > N, mn<i<i;<... <z <nand0<e <e¢

§2(S) = (e, n, C)E (S)  for all S € C' with F(S) < C.

Proof. Recalling that A\ ., = A(1 + &) we deduce that

F(S) F(S)

y F(S)
F(S) 4+ A, (tes1— 1)~ (L +e0)(F(S) + A(igg1 — 1))

F(S) + A(igs1 — 1)

> (1 —¢y)

This statement requires no bounds on F(S) or 7,. Hence, it is sufficient to prove that

b5(S) = n?“=/Aps (S) for sufficiently large n. By Lemma 4.4.9, we have

i \ TP 1
=) (o (7))

where the O-term can be chosen uniformly in ¢, 7,71 and S for given n and C. Note that

h3(S) increases as € decreases. Therefore, it is enough to prove that for each ¢ € {0,..., k+1}

i) \ P, NCTE
(_) = PO (_)
Tp+1 Lo+1

for all S with F'(S) < C. This follows easily from the bound on F', the fact that ¢ < 1/(2k+2)

(so that for each ¢ we have 1/(1 — ¢/) < 2) and each ratio satisfies < l;ﬁ <1 O

Proposition 4.4.21. For 6 > 0,0 <n < 1 and 0 < ¢ < 1/(2k + 2), there exists N =

N(d,e,m) > 0 such that, for allmn = N and mn < i < iy < ... < ix < n, with v, =
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Ye(e,m, (d + 1)(k + 1) funax) and v = (g, 1, (d + 1)(k + 1) finax), we have,
j=it+1
- 521@

a0 (i e/(4(k + 1)) EE, [Hf ] (k+1))'f+1)]

H D Sti(’Cze [H flc—m k£+1

Jj=i+1

)| Di(e) (4.69)

Proof. By Lemma 4.4.18, we have

]P’(ﬁ Dj(&?)) zE[IP’ (ﬁ D;j(e)

4.56
(2 ) E

%) 11 Dj<e>]

(K- e/ (4(k + 1))E, i, 5 [F7(50)] | _j(g)]

j=i+1

E [JE iG] T Dj<e>] .

j=it1
In order to apply Lemma 4.4.19 again in the first term, we may replace D;(¢) by D;(e/(4(k+
1))). Moreover, by Lemma 4.4.20 and as F\(Sy) < (d + 1)(k + 1) funax for £ € {0,... k}, we
may replace §7.(Sy) by fykfi/ (4(k+1)) (Sp) for sufficiently large n. Hence, applying Lemma 4.4.19
again after this step, we deduce that the first term in the last display is bounded from below
by
ig—1

e/(4(k+1 e/(4(k+1
7E [ak1(’C(ik_1—1)\u5/16)E:ti(icik1) [fk/_(1( () ))(51)]

j=i+1

Ig—1
~ nE [E:wcik_ﬂ[z/fi“““”wo)fz“ sy | TT Dite/a k+1>>>]

j=i+1

We now iterate these steps until the main term contains ay. In particular, with the
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leading term, at the (¢ + 1)th step we get an expression of the form

E

e (Kig_p1yir &/ (40k + 1) B, ) [Hfiﬁg“’z“ ] [T D (/4 k+1>>)]

j=i+1

¢
= (H '7k—j> E [O-/k—(ﬁ-i-l)(K(ik,<g+1>—l)\i7 5/(4“{5 + 1))“2)
j=0

0+1 /le+1)z+1 Tk—(£+1) ,
€ N 1
XS kaﬂ w S TT Dite/eatk + 1)

j=i+1
. i /(4(k+1) )e+1 f-Ca 0+1
=5 ([T ) B|Ehk, ) ]_[f,w won S TT Dite/(ak +1)h |
j=0 j=i+1

Now, thanks to monotonicity, when we iterate this expression, we may do the following
replacements in the procedure. First, for the term not involving ¢, any factors of type
Ye(e',m, (d+ 1)(k 4+ 1) fmax) With 0 < €’ < € may be bounded from below by ~,. Thus, at the
(¢ 4+ 1)th step, we multiply a product of ”yﬁ“ to the co-efficient of the main term, leading
to the co-efficient ~y as defined in (4.68). Moreover, in the final product [ % =0 fa/ (k+1))* (S5),
we may replace €/(4(k + 1))* by € to get a lower bound. This leads to the first term in the
statement of the proposition. Next, in the error term involving d, we bound each v, from

(k+1))¢

above by 1, and bound each of the factors of the form ka v from above by fs/(4 B

k+j—¢

This gives us the error term as stated in (4.69). O

We are finally ready to prove Proposition 4.4.13. Recalling (4.47), we bound
E [N, k(n)] from below by summing the lower bound stated in Proposition 4.4.21 over
m < i <1 <...<i, <n. We start with the error term. Upon dropping the indica-
tor variables D;(e) and bounding f5 from above by f; defined in (4.30) from Section 4.4.2,
the absolute value of the error term is bounded from above by

23 >, E [ (1) [H fj(Sj)” : (4.70)
n ) i=0

nmMm<i<n e({l+1 44444

From the proof of Corollary 4.4.6 in Section 4.4.2, we know that the double sum converges

after re-scaling by n. Hence, there exist C; > 0 and a natural number N both depending on

210



4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

Dynamical Models for Random Simplicial Complexes

e, n, such that, for all n > N, (4.70) is bounded from above by C}n.

To treat the main term, assume for now that there exists a constant Cy = Cy(e,7) > 0

such that, for all nn < ¢ < n, we have

k
:E: ngzi(Kh) I;[_I fj(é;j>
7=0

<O, (4.71)

We shall use the following inequality: for a non-negative random variable X satisfying X <

C, for some C' > 0, and indicator random variables Iy, I, we have
E[X]|<E[XLL|+CE[l-L]+E[l-1L]).

Thanks to this inequality, the main term in the lower bound from Proposition 4.4.21 summed
over i <ij < ...< i, <n (for fixed nn < i < n) can be bounded from below by
k
1 3w |00 (-2l (B <120 ().
)
(4.72)
Let 6’ > 0. Thanks to Lemma 4.4.15 and the fact that P (gs(j)(4(k+1))k+1(i)) —lasn— ©
uniformly in nn < ¢ < n, there exists a natural number N = N(¢’,¢,17) > 0 such that,
for all n = N, the absolute value of the second term in (4.72) is bounded from above by
Cyyd' < Cy0'. Collecting all bounds and using Lemma 4.4.9 concludes the proof of (4.48)
upon setting o = 7. (Note that we may remove the additional F'(S;) in the denominator
of §7(S;) in the final statement as F'(S;) is bounded by (k + 1)(d + 1) fmax.) Therefore, it
remains to establish the existence of Cy satisfying (4.71). To this end, we shall bound f3

from above by f; (as defined in (4.30)). Note that if ¢ > 2, then -1 < nln Thus, by applying
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Stirling’s formula and recalling that F'(S;) < (d+1)(k+1) fimax for all £ € {0, ..., k}, we have

F(Se) F(Sg)

1 fr(f%) T\ e
< |1 — R St 2 K
(o (D)2 TGS) T i) (3)
k—1
—en n
F(Sgq1) F(Sg)

2 (™ )
n ie41 Ac(igyr — 1) n ’

7]7‘L<i0< <Zk 1<Tl€ 0

where the O-term depends only on 7. From Corollary 4.4.4 (applied with & — 1 instead of

k) it follows that the right hand side is uniformly bounded for any e and 7.

Proofs of Additional Lemmas used to prove Proposition 4.4.13
We conclude the section with the proofs of Lemmas 4.4.15 and 4.4.16.

Proof of Lemma 4.4.15. Let i € N and X € C" contain a vertex with label ¢ and at most d
active faces containing i, where each (d — 1)-face containing ¢ has fitness at most fyay. In
the random dynamical process K;,j > 0 initiated with complex X, at time j > 1, to each
face o € IC;d_”, we can associate a unique ancestral (d —1)-dimensional face in X'. (Formally,
the ancestral face of a face in X is the face itself. The ancestral face of any other face o
is defined recursively as the ancestral face of the face which was subdivided when o was

formed.) Let K;;; < K; be the sub-complex of faces of K; whose ancestral face does not lie

it S

in st;(X). Note that K;;; < KC;\; and that this inclusion is typically strict due to migration of

g =
faces to the outside of the star at times of insertion in the star. For j > 1, let ¢; be j-th time
the face chosen in the construction of the simplicial complex has its ancestral face in &j;.

Set ¢o = 0. Note that ¢; > j and that ¢; — j is non-decreasing in j. The crucial observation

is that the sequence K ;;,7 = 0 under Py is distributed as the sequence K;,7 > 0 under
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Py, upon disregarding vertex labels which are irrelevant here. Formally, this follows from
Ko = X under Py and the fact that K,};, j = 0 is Markovian with the same transition rule
as KC;,j = 0. For an integer K > 0, on the event ¢, < £+ K and for any initial configuration
X as described at the beginning of the proof, we have |F(IC;) — F(K,y;)| < (2d + 1)K fiax-

Hence, for all n sufficiently large, depending on ¢,7 and K,

E [chi\i < () G:-G —i;j)}>] > E | P, ( () {IF(Ky_ ) — Nl < 5/\j}> '1|cn_i—<n—i)|<f<]

Jj=i+1 J=1+1
[ n+K
>E |Px, ( () GG — m‘))]
i j=it+1
—E [P]Cz( Sn—i — (n - Z)| > K)]

i — (n = 9)[ > K)].

By Proposition 4.1.2, for all n sufficiently large, the first term in the last display is at least
1 —§/2 for all nn < ¢ < n. Further, we can choose K large enough, such that the absolute
value of the second term is bounded from above by §/2 for all nn < i < n and all n sufficiently
large. To see this, note that P,(|s, —n| = K) is the probability that the number of faces with
ancestral face in st;(z) chosen to be subdivided up to time n exceeds K. Let 1 <7y <75 <
-+ be the instances, when such faces are chosen. Then, the sought after quantity equals
P,(7x < n). Note that 7 can be bounded from below stochastically by X; + - -+ + X for
independent summands, where X, follows the geometric distribution with success parameter

min((d + 1)€ fmax/F (), 1), which implies that E [X; + --- + Xk| = F(2) (diolg)f‘;ax' Thus, if

F(z) = Ann/2, then, for a given ¢’ > 0, for any K large enough, depending on 7, and all n
sufficiently large, depending on €’,n and K, we have P,(7x < n) < ¢’ for all n > 1. This
follows from a straightforward application of Chebychev’s inequality, whose details we omit.
The fact that F(KC;) = Ann/2 with high probability for sufficiently large n, depending on 7,

concludes the proof of the lemma. O

Proof of Lemma 4.4.16. The proof is very similar to the previous. Let K; x be the sub-
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complex of K; of faces whose ancestral face lies in X. For j > 1, let ng be the jth time a
face with ancestral face in X is subdivided. Set ¢ = 0. As before, we have ¢ > j and
gjf“/ — j is non-decreasing. Define K; 3 and qjy analogously. Thanks to (ii), under Py, the
sequence ]ngy 1y»J = 0 1s distributed as ngjx 1x»J = 0 under Py. Thus, it is enough to show
that, under the conditions (i) - (iv), for sufficiently large n, we have
Py < M -0 —w’)) —e3/2 <Py ( () {IF(Kex12) = Nl < 3523'/2})
j=ut1 j=u+1
and
Py ( ﬂ {|F<’C<}’w¢y> —Aj| < 3€2j/2}> < Px ( ﬂ Gy (J — UJ)) + €3/2.
j=ut1 j=u+1
We only show the second statement, as the first can be proved by similar arguments. Note
that, for any natural number K, we have

Py ( () (1F(Ky 1y) =Ml < 352)\3'/2})

Jj=u+1

K m
<) Py ( N IF(Ky y) =Ml <3e2Xj/2,, =n—u +p})

p=0 Jj=u+1

+Pa(|Y, — (n—u)| = K).
On¢’ ,=n—u+p, 0<p<K, we have, using (i) and (iii),

IF(Ko 1y) = F(Kj—)| < K(d+ 1) finax + F (XD AYED) < K(d+ 1) frnax + C1Co.

J—u

Here, F (X(dfl)Ay(dfl)) denotes the sum of all finesses of faces in XY AV Thus, for
all n sufficiently large, depending on 7,5 and K, we can bound the right hand side of the

last display from above by

K m+p
ZPX< ﬂ g252(J—U7J>ﬁ{gg_u:n_u"‘p})+]P>X(|§3L)—u_(n_l)|>K>
p=0 Jj=u+1

< Py ( ﬁ gQag(j_uaj)> +Px(l), — (n—u)| = K).

Jj=u+1
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Now, the same arguments relying on a stochastic bound involving sums of independent
geometric random variables used in the previous proof show that the second summand can
be made smaller than e3/2 for sufficiently large, but fixed, K and all n sufficiently large,
depending on 7, €1, €3, C; and C,. Here, one uses (iv) and the fact that F(X@"DAYE-) <

C1C5 to bound the success probabilities of the geometric random variables suitably. O
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