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ABSTRACT

The gravitational wave detections of the past five years were a culmination of decades worth
of research. To increase the detection rates and horizon of detectability going forwards,
much more work is yet required for identifying the sources of noise in ground-based, laser
interferometer observatories, understanding how these can couple into the differential arm
motion and, hence, developing strategies by which such noise can be reduced; for both
current and future detectors. One of the principle subjects in this regard is the impact
of the transverse, spatial properties of laser beams on the sensitivity of gravitational wave
detectors.

In this thesis I will highlight my contributions to the detector instrumentation field on this
subject. A central theme underlying this work is the impact that larger beams, planned for
future detectors, will have on the optical design of such facilities and, thus, the overall sen-
sitivity of these new observatories. With regards to this, a novel design for mode matching
telescopes in the arms of each Einstein Telescope interferometer is analysed for feasibility
and adaptive mode matching potential. The results of this work indicate that such a design
could be viable, and initial design values are provided as a good starting point for future
trade-off studies. The effect that larger beams may have on the alignment to longitudinal
coupling noise is also studied, in the context of third-generation gravitational wave detec-
tors. Conclusions from these analyses indicate that the negative impact this has can be
counteracted through careful tuning of the optical design.

Due to the complicated nature of the physics involved with these, and other closely related,
topics, it is vital to be able to computationally model such phenomena in a fast and reliable
way. As a result of this, running parallel to the aforementioned studies, in this thesis I will
also address the task of building essential modelling tools in this regard. My contributions
to a new open-source package, Finesse 3, designed to tackle complex interferometer mod-
elling, are detailed; with particular attention paid to my work on implementing the tools
for simulating spatial beam effects in interferometers. The uses of these newly developed
tools are given throughout the research tasks within this document. The final chapter of
this thesis is dedicated to the overall design of Finesse 3, highlighting how these features
address the need, in the instrumentation community, for such a tool going forwards.
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STATEMENT OF ORIGINALITY

The contents of this thesis consist of my own research work conducted, during the course of
my PhD, between September 2017 and May 2021.

Chapter 1 contains a brief summary of the current state of the gravitational wave instru-
mentation field, including an introduction to the design of ground-based detectors and an
overview of their current sensitivity limitations. This chapter also introduces the framework
for describing light field interactions at optics for interferometry and methods by which these
can be modelled numerically. These topics provide a background for the physics covered in
the subsequent chapters.

Chapter 2 details my work on implementing the current higher-order spatial mode features of
Finesse 3 — a new software package for simulating interferometers in the frequency domain.
A major aspect of this chapter is dedicated to the new beam tracing library I implemented,
which was used to produce the results found in both Chapters 3 and 4.

Chapter 3 describes my work on investigating the feasibility of a new recycling cavity design
for the Einstein Telescope (ET) in which mode matching telescopes are placed in the inter-
ferometer arms. This work was published in: Samuel Rowlinson et al. “Feasibility Study of
Beam Expanding Telescopes in the Interferometer Arms for the Einstein Telescope,” Phys.
Rev. D 103 (2 Jan. 2021) [1]. In this chapter I demonstrate that the use of beam expansion
telescopes in the detector arms is viable, and I provide a potential initial design for such
a mode matching system for both the low-frequency (ET-LF) and high-frequency (ET-HF)
detectors.

Chapter 4 provides a follow-up analysis consisting of my work towards analysing the adap-
tive mode matching potential of the previous arm telescope design in ET-HF. This chapter
consists of an investigation into possible actuation strategies via utilisation of the arm tele-
scope mirrors. In this study I demonstrate that actuation on the telescope mirror ZM2 could
provide a means for correcting small ITM thermal lens induced mode mismatches. Addi-
tionally, I provide an estimate of a suitable initial phase space region for the SRC mode —
predicated upon actuators at ZM2 and the recycling mirrors, using ranges based on existing
technology at aLIGO.

Chapter 5 describes my work on projecting how alignment to longitudinal noise coupling
will scale with larger beam sizes for future detector design. In this chapter I provide an
analytical result yielding a nominal scaling relation for this coupling as the beam size to the
power of six. This result is backed up with my modelling work on a full aLIGO detector
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file to validate this derivation. A key outcome of this chapter is to show that this nominal
scaling with the beam size only provides part of the full picture, as the increased coupling to
first order modes will also increase alignment signals allowing for a reduction in the residual
misalignment.

Chapter 6 gives a summary of the overarching design of Finesse 3, a package which is a
complete re-work (from the ground up) of the original software. Development of this package
started at the beginning of my PhD and it has been a focal point of my work throughout. I
detail my key role in the development of Finesse 3 in this chapter whilst also highlighting
the overall structure of the software and the motivating reasons behind the design choices
made therein.

Appendix A delves into the technical details of my implementation of the beam tracing
library in Finesse 3, which was first introduced in Chapter 2.

Appendix B provides my analytic derivations for the WS phase space overlap quantity used
in Chapter 4. These are given as the overlap on an infinite plane and also the overlap for a
finite circular aperture, for completion.

Appendix C gives the mathematics behind the scaling of the alignment to longitudinal noise
coupling with the beam size. This work consists of my derivation of the field couplings for a
DC and AC misaligned Fabry-Perot cavity in terms of the fundamental and first order modes
at carrier and signal frequencies. These couplings are expressed in terms of the beam size of
the cavity eigenmode to provide useful formulae which are then used directly in Chapter 5.
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“We are lost, aren’t we, most perspicacious of pathfinders?”

Lurk Snitchtongue, in Gotrek and Felix, Dragonslayer; by William King [4]
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Chapter One

Introduction

The recent first detections of gravitational waves (GWs) from both binary black hole (BBH)
[5] and binary neutron star (BNS) [6, 7] mergers herald a new era of modern astronomy.
These detections have not only solidified our understanding of General Relativity, they also
have the potential to open up new, unexplored avenues of astronomical observations — such
as being able to probe the inner structure of neutron stars via a deeper predictability of their
equations of state [8, 9]. Tens of GW candidates have now been detected [10, 11] from BBH
mergers, with the majority found during the third (and latest, as of writing) observing run
(O3) [12]. In addition to the Advanced LIGO (aLIGO) [13] detectors, Advanced VIRGO [14]
became a permanent addition to the GW detector network during O3 whilst KAGRA [15]
is expected to join before the fourth observing run (O4), improving the sky localisation
prospects of GW signal sources [16]. Despite these successes, enhancements to the sensitivity
of current and future GW detectors are still required to increase the rates of detection [17]
going forward, particularly for BNS mergers, and the distance to which such detections can
be reliably made.

Detecting GWs is not a simple task. The initial observations seen in the last few years were
a culmination of decades worth of effort, with research and construction expertise spanning
most continents. Understanding why gravitational waves are so difficult to detect requires
quantification of the amplitude of these waves. This amplitude, as a scalar value, can be
defined by [18]

h(r) =
2G

c4

1

r

d2I

dt2
, (1.1)

which is a dimensionless quantity most commonly referred to as the strain of the gravitational
wave — a name chosen due to its description of how space-time is stretched and squashed
by the passing of a GW. The terms of this equation are as follows: G is the gravitational
constant, c is the speed of light, r gives the distance to the source and I represents the
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quadrupole moment of the source (which depends upon the density of the system). The
factor G/c4 is incredibly small and, coupled with a typical distance of r ∼ 10 Mpc, gives

h ∼ 10−68 d2I

dt2
, (1.2)

in SI units. Correspondingly, for a BNS inspiral with neutron star masses of 1.4M�, one
obtains a strain of h ∼ 10−21 (see Section 2.4.2 of [18]).

Due to the strain effect a GW has on space-time, one can characterise the deviation, δL, in
a length measurement L by [18]

δL = hL. (1.3)

If we apply the length of the aLIGO detector arms (L ∼ 4 km) and the strain amplitude from
above to this equation, we obtain a deviation δL ∼ 10−18 m. It is this magnitude of distance
change that GW detectors must (and indeed can) measure in order to detect gravitational
waves — a significant challenge given such a tiny value.

1.1 Interferometers as gravitational wave detectors

Laser interferometry provides an incredibly precise method for measuring small distance
differentials, making it an ideal system through which GWs can be detected. The design,
and implementation, of current GW detectors employs a modified Michelson interferometer
[13], where the underlying principle of operation is that a passing GW will effect a differential
change in the optical path length between the interferometer arms — realised as a phase
shift in the light. This relative phase shift then results in a change to the optical power at
the output, commonly referred to as the anti-symmetric (AS) port, of the interferometer;
due to the interference of the beams from the arms.

The optical design of the Advanced LIGO detectors is shown in Figure 1.1. This design
forms the basis of the current, state-of-the-art LIGO Livingston Observatory (LLO) and
LIGO Hanford Observatory (LHO) facilities. In this figure we show the key optics of the
configuration — consisting of the input path, which includes the phase-modulator (EOM)
and the input mode-cleaner (IMC) cavity, the core interferometer, including the recycling
cavities (PRC, SRC) and Fabry-Perot arm cavities (XARM, YARM), and finally also the
output beam path containing the output mode-cleaner (OMC) cavity and detection pho-
todiodes (DCPDs). Not included in this figure are the squeezer and related optics, which
were installed for O3 to suppress quantum noise at high frequencies (see §1.2.1 for more
details). The radio-frequency (RF) sidebands produced by the EOM, at 9 MHz and 45 MHz,
propagate through the central interferometer. These sideband fields are picked off at special
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1.1 Interferometers as gravitational wave detectors

ports on reflection from the PRC (giving the REFL signal) and transmission through PR2
(yielding the POP signal), and are then used as error signals for sensing and control of the
length and alignment degrees of freedom in the interferometer [19]. The length degrees of
freedom refer to the distances between the core optics in terms of their positions along the
optical axis, whilst the alignment variables are the angular pitch (rotation around the x-axis)
and yaw (rotation around the y-axis) motions of these optics.

Cavities

YARM XARM

PRC SRC

IMC OMC

Arm cavities

Recycling cavities

Mode-cleaner cavities

YARM

XARM

Main
Laser

EOM

IMC

PRM
PR2

PR3

ITMY

ETMY

ITMX ETMX

BS

SR3

SR2

SRM
OMC DCPDs

PRC

SRC

Figure 1.1: A schematic of the aLIGO detectors showing the main input optics, the core
interferometer and the key output path components. Highlighted prominently on this figure
are each of the optical cavities present in this type of GW detector — i.e. the arm cavi-
ties, recycling cavities and mode-cleaner cavities. Also shown is the electro-optic modulator
(EOM), which generates radio-frequency (RF) sidebands used for controlling the interfer-
ometer, and the output DC photodiodes (DCPDs) which detect a signal which depends
upon the differential arm length (DARM); i.e. the degree of freedom that contains the GW
information.

We will now discuss the role played by each of the main optical cavities, shown in Figure 1.1,
over the course of the following sections. The details are intended to be brief; one can find
much more in-depth analyses of these sub-systems in the literature [13, 20, 21].

1.1.1 Arm cavities

The Fabry-Perot cavities in the arms of the interferometer serve several purposes. First and
foremost, the presence of these optical resonators allow the light field to build up in the
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arms hence increasing the storage time of photons in the interferometer. In addition the arm
cavities, by their very nature, increase the power in the interferometer arms which acts to
increase the signal-to-noise ratio (SNR) via relative suppression of the shot noise. This is
particularly important for the noise profile of the detectors at high frequencies, as we will
see in §1.2.

A secondary benefit of using arm cavities is the ability they provide for shifting the highest
concentration of power away from the central beam splitter. Without resonators in the arms
the power on the central beam splitter is relatively high (when attempting to achieve similar
levels of shot noise reduction), which then induces thermal lensing in the beam splitter
substrate (a phenomenon identified and characterised at GEO600 [22]).

1.1.2 Recycling cavities

Present at the core of the interferometer are a set of overlapping optical cavities, broadly
termed the “recycling” cavities; this arrangement is often called dual-recycling. These cavities
can be separated into two distinct types: the power recycling cavities (PRC) and signal
recycling cavities (SRC). Note that we use plurality here as the PRC really consists of the
power recycling cavities from the PRM to ITMX (often denoted as PRX) and also from PRM
to ITMY (denoted as PRY); and similarly for the signal recycling paths, from the SRM to
each input test mass.

The power recycling cavity, as its name implies, is responsible for increasing the power in
the carrier field which then circulates throughout the core (through the symmetric port
of the central beam splitter) and arms of the interferometer [23]. Again, this increase in
power is useful for increasing the SNR due to a smaller amount of shot noise relative to the
field (which is “generated” from the main carrier light via sidebands at the GW frequency)
containing the GW information.

Signal recycling is a newer feature of the current GW detectors, having been implemented in
aLIGO [13] whilst power recycling was a feature of initial LIGO. This type of field recycling
is currently used to enable the detector bandwidth to be broadened over a larger range of
frequencies [23, 24]. It should be noted that this type of recycling also has the potential to be
used in a different way in the future, whereby the peak sensitivity at a particular frequency
is increased rather than operating in a broadband resonant sideband extraction scheme.

1.1.3 Mode-cleaner cavities

The final two cavities highlighted in Figure 1.1 are the mode-cleaner cavities, IMC and
OMC. The former sits in the input path, prior to the power recycling cavity, whilst the
latter lies just before the output photodiodes. Both cavities fulfill similar roles but with
subtle variations in their tasks. In both cases, these cavities clean the spatial profile of the
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beam such that transmission of light in the fundamental carrier mode (HG00 in the case of
aLIGO) is maximised, inherently minimising any power in higher-order modes. See §1.3.2.3
for details on the spatial properties of laser beams. The OMC is also tuned such that the
RF sidebands are filtered out from the carrier light, ensuring that only the fields containing
the GW signal reach the output photodiodes. Meanwhile the IMC is tuned in such a way as
to allow transmission of these RF fields, as these are used for length and alignment sensing
required for controlling the core optics of the interferometer. In addition, the IMC serves as
a frequency stabiliser for the carrier field and also provides passive polarisation filtering [25].

1.2 Overview of current detector sensitivity limitations

In this section we will give a very brief overview of the sensitivity limitations of the current
detector facilities, in terms of the primary noise sources in different frequency regimes of the
detection band. For a more thorough discussion of the current status of all noise sources,
see, for example, [26, 27].
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Figure 1.2: This figure shows the current noise budget for aLIGO. The primary noise sources
are given as solid lines whilst other, less important, sources are shown as dashed lines. The
solid grey line gives the total spectral density of the noise; i.e. the sum of all the individual
traces. This noise budget was produced using pygwinc [28]. The BNS and BBH ranges were
calculated from this design curve using the inspiral_range package [29] (see also [30, 31]).

Figure 1.2 shows the current (design) noise budget for aLIGO, as produced by the software
package pygwinc [28]. Displayed on this figure are the key noise sources, plotted in terms of
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their amplitude spectral density, over a range of frequencies describing the detection band
of these facilities. The first trace, given by the solid grey line, represents the sum of all the
individual noise sources — giving the total noise budget, often referred to as the “design
curve” of the detector(s). The data at the top of the figure are the inspiral ranges, computed
from this design curve, for both BNS and BBH mergers, assuming some fixed standard
masses for each as shown [32, 30]. We will now briefly discuss the key noise sources, i.e.
those which currently limit the sensitivity, from Figure 1.2, along with ongoing and future
plans for reducing the impact of these sources.

1.2.1 Quantum vacuum noise

The predominant noise source across most of the detection band for current GW detec-
tors is the quantum vacuum noise [33]; often simply referred to as the “quantum noise”.
From Figure 1.2 one can observe that this dominates the design noise curve in the regions
f ∈ [12, 50] Hz and f ' 150 Hz. The quantum noise itself consists of two principle ef-
fects — quantum radiation pressure noise (QRPN), which is important at low frequencies
(f / 100 Hz), and shot noise, dominating at high frequencies (f ' 100 Hz). The QRPN is
caused by small amplitude fluctuations of the light field in the arms of the interferometer,
thereby inducing displacement noise at the optics via the net force of these fluctuations [34].
Meanwhile, the shot noise is an effect of Poisson statistics [35] arising from the uncertainty
in the arrival time of photons at the output photodiode. This latter noise source can be
suppressed via utilising a higher power laser beam, as the increased power in the arm cav-
ities commensurately increases the ratio of the signal to the shot noise; this can also be
interpreted as a simple statistical effect whereby increasing the photon count of the signal
then lessens the effect of the “photon-counting” uncertainty. Increased power, however, will
also amplify the amplitude fluctuations of the field, thus increasing the QRPN. This is not
an issue given the current practical limits of the aLIGO detectors, as technical noise sources
instead dominate at the frequencies at which the QRPN would be expected to be prevalent;
as outlined broadly in Section III of [26].

Reduction of the quantum noise, at high frequencies, was achieved in O3 via the application
of “squeezing” [36] - a novel technique which is an area of highly active research due to its
potential to significantly improve both current and future detector sensitivities. A simple
description of squeezing is as follows: a vacuum state may be prepared in such a way that
the quantum uncertainty is not equal in the amplitude and phase quadratures of the field
[37]. By injecting such a state, squeezed in the phase-quadrature, into the interferometer,
the shot noise at the output photodiodes can be pushed below the standard quantum limit
(SQL); thus increasing the detector sensitivity at high frequencies1. A side-effect of such
a scheme however, comes from the uncertainty principle. Squeezing the phase-quadrature

1The astrophysical motivation behind increasing particularly the high-frequency sensitivity of GW de-
tectors, lies in the information behind the BNS merger stage being encoded in GWs at such frequencies.
Obtaining these data will offer the ability to probe the equation of state of neutron stars. See, for example,
[9, 38].

6



1.2 Overview of current detector sensitivity limitations

of the vacuum field necessitates that the amplitude quadrature is then in a state of “anti-
squeezing”. The implication of this is that the amplitude fluctuations of the field in the
arms of the interferometer increase when injecting such a squeezed field — leading to larger
QRPN effects and, therefore, a reduction in the sensitivity at lower frequencies. Again, this
is not an issue currently due to technical noises dominating at these frequencies; however it
may become a problem in the future as these control-induced noises are reduced. A proposed
scheme for solving this issue is known as frequency-dependent squeezing [39, 40, 41]. In short,
this is a technique which can allow for amplitude-quadrature squeezing at low frequencies and
phase-quadrature squeezing at high frequencies; thereby providing broad-band improvements
to the detector sensitivity. Frequency-dependent squeezing can be achieved via reflection of
the injected vacuum state from a filter cavity which has a pole at the cross-over frequency of
QRPN and shot noise; effectively achieving phase-rotation of the squeezed field. This type
of quantum noise reduction scheme is planned for the upcoming aLIGO upgrade, A+ [42,
43], as well as third generation GW detectors, e.g. the Einstein Telescope (ET) [44] and
Cosmic Explorer (CE) [45].

1.2.2 Coating thermal noise

Displayed prominently via the red trace on Figure 1.2 is the coating Brownian noise. This
is a type of thermal noise, associated with the coatings of the optics, which can produce
fluctuations of the mirror surfaces [46] — thereby inducing displacement noise which may
contribute to the differential arm (DARM) motion. As shown on the aLIGO noise budget,
this noise source dominates the design curve at frequencies f ∈ [50, 150] Hz. The coating
thermal noise is predominantly an effect for the arm cavity mirrors and, in particular, the
ITMs. This is due to the high optical power passing through these mirrors, which causes the
mirror surface (and substrate) to heat up. The Brownian noise, in terms of the amplitude
spectral density, scales with mirror temperature as

√
T ; see Equation (1.4) below. Reducing

the Brownian thermal noise is an area of active research involving, for example, investigations
of different types of optic coatings [47, 48].

Suppression of the coating thermal noise via larger beams, for future ground-based GW
detectors, is a topic which surfaces several times throughout this thesis — in particular in
Chapters 3 and 5. Therefore, it makes sense to quantify the thermal noise contributions
explicitly here for reference. The power spectal density of the thermal noise, Sx(f), is given
by [49]

Sx(f) =
2kBT

π2fYsub

d

w2

(
Ycoat

Ysub

φ‖ +
Ysub

Ycoat

φ⊥

)
, (1.4)

where kB is Boltzmann’s constant, T is the temperature of the mirror, Ysub and Ycoat are the
Young’s moduli of the substrate and coating materials, respectively, and d is the thickness
of the mirror coating. The values φ‖ and φ⊥ are the mechanical loss-angles of the coating
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Chapter 1 Introduction

parallel and perpendicular to the layers of the coating [47], respectively. The key variable
for us here is w, which is the radius of the beam (see §1.3.2.2) impinging on the mirror
coating. Given the 1/w dependence of the amplitude spectral density (

√
Sx(f)) on the

thermal noise, we can note that increasing the beam size on the arm cavity mirrors will
improve the sensitivity of detectors; particularly in the mid-frequency band where this noise
source dominates. See the introduction of Chapter 5 for an overview of the detector proposals
which include larger beams impinging on (larger) arm cavity mirrors.

1.2.3 Seismic and suspension noise

The other key traces in Figure 1.2, at the lower end of the frequency spectrum, are the seismic
(brown) and suspension thermal (blue) noises. Seismic noise refers to the coupling of ground
motion to motion at the test masses. This is minimised, in aLIGO, via the deployment of
a four-stage (quadruple pendulum) suspension system where the test masses form the final
stage of this system [50, 51]. Even with this advanced scheme, however, seismic noise remains
a dominant noise source at f / 8 Hz. Research is currently ongoing into the design of new
seismic isolation systems to use for third-generation detectors; see [52].

Similarly to the brownian motion of the coating, thermally induced displacement of the sus-
pension system can also occur — translating into motion at the test mass. This is known
as the suspension thermal noise, which can be computed via application of the fluctuation-
dissipation theorem [53, 54]. In addition to new isolation schemes, research is also ongoing
for reducing specifically this type of noise in both current and future detectors. The KA-
GRA detector [15] was the first modern GW detector to (recently, as of writing) demonstrate
cryogenic cooling of test masses for this purpose [55]. Furthermore, considering future detec-
tor design, the low-frequency (LF) interferometers of ET (denoted as ET-LF) are currently
planned to also use cryogenics (see Sections 6.10.2 and 6.11 of [44]) for cooling the test-masses
and suspensions in order to suppress the suspension thermal noise, as well as the thermal
noise of the mirror coatings and substrates.

1.3 Mathematical description of light fields for
laser interferometry

As a theoretical background to the concepts discussed throughout this thesis, we will now
describe the laser beams used in GW detectors in terms of their mathematical properties. In
§1.3.1 the description of light fields using a plane-wave basis is given. This is mostly just to
provide a foundation, including common notation, for the more complete description using
higher-order modes (HOMs) found in §1.3.2. The vast majority of topics in this thesis are
based on this latter field picture, due to the capability for modelling transverse beam shape
effects that such a framework provides.
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1.3 Mathematical description of light fields for laser interferometry

1.3.1 The plane-wave picture

The time-varying electric field component of an infinite, plane-parallel and monochromatic
(with angular frequency ω) electromagnetic wave can be defined by

E(z, t) = E0 cos (ωt− kz + ϕ), (1.5)

with E0 ≡ E0(t) as the amplitude of the field and k = ω/c as the wavenumber, whilst
z describes the propagation of the field along the optical axis (i.e. perpendicular to the
wavefront in this case). The quantity ϕ ≡ ϕ(t) is an absolute phase offset. It is almost
always more convenient to express the field as a complex quantity, and so we can recast it
as follows (noting that each variable in Equation (1.5) is a real number):

E(z, t) = <{E0 exp (i(ωt− kz + ϕ))}

= <{E ′0 exp (i(ωt− kz))},
(1.6)

where E ′0 ≡ E ′0(t) is then given by

E ′0 = E0 exp (iϕ). (1.7)

We can use Equation (1.6) to then express our field as

a(z, t) = E ′0 exp (i(ωt− kz)), (1.8)

whilst noting that the only term with any physical meaning here is <{a(z, t)}— i.e. the field
amplitude. The full terms, a(z, t) and E ′0, are “complex amplitudes” which simply provide a
clean mathematical notation that is easier to work with. Throughout this document, such
complex amplitudes will typically be denoted with the symbols a and b when referring to
single-field amplitudes, and E when referring to sums over these fields.

1.3.2 Gaussian beams and Higher-Order spatial Modes

Whilst the description of laser beams via infinite plane-parallel wavefronts is sufficient for
simpler analyses of interferometric systems, it fails to pick up some of the more complicated
couplings which exist in practice. In reality the spatial profile of a laser beam is not flat but
can be approximated as a Gaussian distribution. The mathematical description of beams
as Gaussian modes stems from the use of spherical mirror optical cavities in interferometry;
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Chapter 1 Introduction

more details on this can be found later in §2.2.2. In §1.3.2.2 of this section, we will give an
overview of the properties of beams described in a Gaussian basis.

Simply using a pure Gaussian mode to describe beam shapes is, however, still not enough to
capture the physics involved with complex interferometric systems. In a real interferometer
we have, for example, misalignments of optical axes, mode mismatches between resonators,
clipping due to finite optic sizes (often referred to as apertures) and imperfections of optical
surfaces. All of these effects lead to distortions of the beam away from the ideal Gaussian
model. To mathematically describe such distortions we use a sum of spatial components
called higher order modes (HOMs). A brief introduction to this concept, in the specific
context of the Hermite-Gauss (HG) modal basis, is given in §1.3.2.3.

The physics detailed in this section are intended to cover only those aspects of HOMs which
will be depended upon in the following chapters. There are several sources which contain
more thorough reviews of HOMs and Gaussian beams, these include [56, 57, 58, 59]. Note,
also, that we will focus only on the HG mode basis; another set of solutions to the paraxial
wave equation are the Laguerre-Gauss (LG) modes, details of which can be found in, for
example, [60, 61, 62].

1.3.2.1 The wave equation and paraxial approximation

The general wave equation for electromagnetic waves, as derived from the Maxwell equations
in a vacuum, can be written as [63]

Ë = c2∇2E, (1.9)

where E ≡ E(t;x, y, z) is the temporal and spatial varying electric field vector. We can
assume that the tranverse profile of the electric field (i.e. the beam shape) is described by
a time-independent spatial distribution function u(x, y, z), such that the normalised electric
field, as a scalar quantity, is then

E(t;x, y, z) = u(x, y, z) exp (−i(kz − ωt)), (1.10)

with k = ω/c as the wavenumber and ω as the angular frequency of the field. Substituting
this field into Equation (1.9), and computing the time differential, yields

−ω
2

c2
u(x, y, z) exp (−i(kz − ωt)) = ∇2 (u(x, y, z) exp (−i(kz − ωt))) . (1.11)

Re-arranging this, expanding the Laplacian and evaluating the derivatives of the z dependent
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1.3 Mathematical description of light fields for laser interferometry

terms then gives,

(
∂2

∂x2
+

∂2

∂y2

)
u(x, y, z) +

∂2u(x, y, z)

∂z2
− 2ik

∂u(x, y, z)

∂z
= 0, (1.12)

where we have already noted that −k2 + ω2/c2 = 0 (by definition) and cancelled out the
common exp (−i(kz − ωt)) terms of the electric field vector.

We can now make an assumption, known as the paraxial approximation [64, 65], that the
spatial profile u(x, y, z) is a function which varies slowly over the beam axis z. This allows
us to state that

∣∣∣∣∂2u(x, y, z)

∂z2

∣∣∣∣� ∣∣∣∣2k∂u(x, y, z)

∂z

∣∣∣∣ , (1.13)

so that we can neglect the left-hand side term of this in Equation (1.12). It then trivially
follows that we can write the partial differential equation of the spatial distribution as

(
∂2

∂x2
+

∂2

∂y2

)
u(x, y, z)− 2ik

∂u(x, y, z)

∂z
= 0, (1.14)

which is the paraxial wave equation. A general solution to this equation in the form of a
linear superposition of HG modes is shown in §1.3.2.3. First, however, we will discuss the
properties of the lowest order of this modal solution set — namely the pure Gaussian beam.

1.3.2.2 Properties of Gaussian beams

Gaussian beams exhibit a classic radial profile in the transverse (x-y) plane, characterised
by an intensity distribution I(r), at a radius r from the centre of the beam, of [56]

I(r) = I(0) exp

(
− 2r2

w2(z)

)
; with I(0) =

2P

πw2(z)
, (1.15)

where w is the radius of the beam2. This is defined as the radius at which the intensity drops
off by 1/e2 from the maximum intensity I(0). The quantity P is simply the total power of
the beam. The beam size evolves with the distance the beam propagates over the z-axis
and is at a minimum (termed the “waist size” and denoted with w0) when the Gaussian

2Note that throughout this thesis we will typically refer to this quantity as simply the “beam size”, as it
is often written in the literature (e.g. [56, 58]).
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beam is at its waist position (a coordinate denoted as z0). A pure Gaussian beam, of a
known wavelength, is completely defined in terms of the w0 and z0 parameters — with these
quantities a number of other useful properties can be derived.

The concept of a Gaussian beam, with a fixed waist size and position, is shown in an
illustrative sense in Figure 1.3. In this figure there is the added detail of a potentially
astigmatic beam, which is a beam consisting of different radii in the x-z (tangential) and
y-z (sagittal) planes3. For the equations which follow in this section we will assume a non-
astigmatic beam, however such quantities can also be applied equally to the two separate
planes; as implied by the symbols given on Figure 1.3. An important aspect to note from
this figure is that the profile of a Gaussian beam can be separated into two “longitudinal”
regimes, namely the near-field and far-field regimes. The former is the zone near to the
beam waist and is quantified by the Rayleigh range zR, which is defined as

zR =
πw2

0

λ
, (1.16)

where w0 is the waist size and λ is the wavelength of the beam. The latter regime is then
defined by a position z � zR — i.e. far beyond the waist position of the beam. We can use
the Rayleigh range, in combination with the waist position, to define an expression yielding
the size of the beam at any point along the z-axis [58]:

w(z) = w0

√
1 +

(
z − z0

zR

)2

. (1.17)

Again, this is shown conceptually in Figure 1.3.

A key quantity also displayed in Figure 1.3 is the radius of curvature of the beam wavefront.
This is defined as the “surface” across the transverse plane of the beam which has a uniform
phase [56]. The radius of curvature can be computed as

RC(z) = z − z0 +
z2
R

z − z0

. (1.18)

This property is particularly important as it is necessary to quantify when designing optical
resonators, and optics for interferometry in general. For standing wave cavities, the radius of
curvature of optical surfaces (e.g. of mirrors and beam splitters) must be equal to RC(z), at
a given position z along the beam axis, for the surface to be mode matched to the beam at
that point. The concept of mode matching will be covered in more detail in §2.2.3.2. Another

3In some cases in the literature this is referred to as an “elliptical” beam, whilst an astigmatic beam
is explicitly the case where the waist positions differ between the two transverse planes. Throughout this
thesis, however, we will use the term “astigmatism” to refer to both of these scenarios.
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1.3 Mathematical description of light fields for laser interferometry

Beam waist

Near-field

Far-field

Figure 1.3: An illustration of the transverse and longitudinal profiles of a Gaussian beam.
The cross-sections (in the x-y plane) show the radial intensity distribution of such a beam,
whilst the propagation over the z-axis displays the near-field and far-field regimes; as de-
scribed in the text. At the longitudinal location z = z0 the beam is at its waist-position;
with the radius of the beam given by w0,x and w0,y in the x-z (tangential) plane and y-z
(sagittal) plane, respectively. After propagating some distance z1 − z0, these radii values
are then wx(z1) and wy(z1) as shown. The angles Θx|y are the divergence (or diffraction)
angles of the beam in each plane, representing the far-field angle between the z-axis and the
beam radius. Note that the left-handed coordinate system (traversing with the beam, in the
positive z direction) used here corresponds to the convention we use in Finesse 3.

useful quantity, inexorably linked to RC(z), is the curvature of the wavefront, defined by

S(z) =
1

RC(z)
=

(z − z0)

(z − z0)2 + z2
R

. (1.19)

The curvature of the beam is characterised by the following values:

S(z) =


0, if z = z0

1/2zR, at z − z0 = zR

1/z, when z � zR,

(1.20)

which corresponds to an anti-symmetric (around z0) function which is linear around zero
in the near-field regime and falls-off as the reciprocal of the propagated distance from the
waist in the far-field. The curvature value of zero at the beam waist indicates that the
wavefront is flat at this point. As we will see in Chapter 4 the curvature is a useful property,
in combination with the beam size, for crafting mode mismatch contours and visualising
actuator responses in this variable space.
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Finally, the last symbol shown on Figure 1.3 is the divergence (also called the diffraction or
far-field) angle of the beam — denoted by Θ. This quantity represents the angle between the
propagation axis and the axis constructed via a projection from the waist to the beam size
in the far-field (see the solid black lines extending from the waist position on Figure 1.3).
The divergence angle can be computed by

Θ = arctan

(
w0

zR

)
≈ λ

πw0

, (1.21)

where the approximation here assumes that this angle is small4. This angle is important
especially for modelling HOMs, as it forms the metric by which one can estimate the order
of scattering into higher order modes given the misalignment angle between two optical axes.
We will touch upon this further in §2.3.3.1, whilst in Chapter 5 a practical example of this,
in terms of the misalignments of an aLIGO arm cavity, is given.

1.3.2.3 Spatial distortions as Higher-Order Hermite-Gauss modes

Solutions to Equation (1.14) can take many forms. In this section (and throughout this
thesis) we will refer to only one such family of solutions known as HG modes. We can write
the HG-based solution to the paraxial wave equation as a linear combination of these modes
[58]:

u(x, y, z) =
∑
n,m

anm unm(x, y, z) (1.22)

where n, m are the tangential and sagittal mode indices, respectively, and anm are the
complex amplitudes of each mode. The quantities unm(x, y, z) are then the spatial profiles
of each HGnm mode. The order of any given mode is defined as the sum of its mode indices,
i.e. n + m. The orthonormality of the HG modes means that we can separate the spatial
distribution by plane as follows [57]:

unm(x, y, z) = un(x, z)um(y, z) (1.23)

4In fact, a re-cast form of the paraxial approximation given in §1.3.2.1 requires that the divergence angle
is sufficiently small (i.e. Θ� 1).
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1.3 Mathematical description of light fields for laser interferometry

with un(x, z) then defined as [56]

un(x, z) =

(
2

π

) 1
4
(

exp (i(2n+ 1)ψx(z))

2nn!wx(z)

) 1
2

Hn

( √
2x

wx(z)

)
exp

(
−i kx2

2RC,x(z)
− x2

w2
x(z)

)
,

(1.24)

where Hn(x′) are the physicist’s Hermite polynomials and wx(z), RC,x(z) are the explicitly
tangential plane selections of the beam size and radius of curvature of the wavefront (as
defined in §1.3.2.2). The expression for um(y, z) is equivalent in form, swapping n → m,
x → y and wx, RC,x, ψx → wy, RC,y, ψy. Again, for a non-astigmatic beam one can simply
define w(z) = wx(z) = wy(z); and similarly for the other properties.

The quantity ψx|y(z) is the Gouy phase [66] which is defined by

ψx|y(z) = arctan

(
z − z0,[x|y]

zR,[x|y]

)
. (1.25)

This describes the additional phase picked up by a Gaussian beam as compared to a plane-
wave field. For higher-order modes in general, the extra phase accumulated is

Ψnm(z) =

(
1

2
+ n

)
ψx(z) +

(
1

2
+m

)
ψy(z), (1.26)

or for a non-astigmatic beam with ψ(z) = ψx(z) = ψy(z),

Ψnm(z) = (1 + n+m)ψ(z), (1.27)

i.e. proportional to the order of the HG mode. This higher order phase accumulation
term shows up in the equations, in the first exponential term, inherently when taking the
product of un(x, z) and um(y, z) as Equation (1.23) requires. The mode order dependency
of the HOM phase accumulation is an important concept as it indicates differing phases for
resonance conditions of disparate modes. This is a phenomenon which is exploited by mode
cleaner cavities, for allowing transmission of certain modes whilst filtering out others; as
implied in §1.1.3.

The transverse shapes of unm(x, y, z), for a single point z on the beam axis, are displayed in
Figure 1.4 — using HG modes up to the second order in either plane. These profiles show
the intensity distributions of each mode, i.e. the quantity unm(x, y, z)u∗nm(x, y, z); see §2.4.1
for a more general definition including the complex amplitudes of the fields.
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Figure 1.4: This figure shows a grid of the intensity patterns of HG modes up to a mode
index of two for both the tangential mode index (on the x-axis), n, and sagittal mode index
(on the y-axis), m. The mode index, in either plane, corresponds to the number of “dark-
fringes” in that plane of the profiles of each spatial mode. Note that the HG00 mode is just
a simple Gaussian distribution. This set of profiles was produced using the beam imaging
capabilities of Finesse 3, see §2.4 for further details.

1.3.2.4 The Gaussian beam parameter

A very powerful encapsulation of the properties of a Gaussian beam is the “beam parameter”
qx|y(z), defined as [59]

1

qx|y(z)
=

1

RC,[x|y](z)
− iλ

πw2
x|y(z)

, (1.28)

or often more conveniently:

qx|y(z) = (z − z0,[x|y]) + izR,[x|y]. (1.29)

This is a complex number consisting of the distance to the waist position as the real part
and the Rayleigh range as the imaginary part. Recall from §1.3.2.2 that one can completely
define a Gaussian beam with the waist size and position, thus with Equation (1.29) we have a
quantity which encapsulates both of these properties in one complex variable. Each of these
properties defined in §1.3.2.2 can be re-written in terms of the Gaussian beam parameter

16



1.4 Modelling interferometers in the frequency-domain

and, equally, the spatial profile unm(x, y, z) can also be re-defined in terms of this. Section
9.8 of [56] gives a good summary of these re-formatted terms. Note that each z term in
unm(x, y, z) will then be implicitly included in the beam parameter q(z), often leading to
an alternative form of this function appearing as unm(x, y; q) — or, more explicitly for an
astigmatic beam, unm(x, y;~q) ≡ unm(x, y; qx, qy). Such nomenclature will be used later on
in §2.3, when dealing with coupling coefficients between HG modes.

In addition to providing a concise and complete description of a pure Gaussian beam, the
beam parameter is also useful for defining a mathematical treatment of the interactions of
Gaussian beams with optics. See §2.2.1 for details on this framework.

1.4 Modelling interferometers in the frequency-domain

GW detectors are designed to operate in a steady-state, where control loops act to keep the
interferometer locked at operating points. In addition, the interaction of light fields with the
optics used in these detectors can be well-described by linear couplings. Furthermore, the
laser sources themselves are incredibly stable (at a wavelength of λ = 1064 nm in the case of
aLIGO) [67, 68] which enables us to model the main, carrier light field as being monochro-
matic. We can assume that the frequency of the light field produced by these lasers does
not vary with time. It is for these reasons that modelling interferometers for GW detectors
is typically best suited to frequency-domain analyses. As we will see throughout the course
of this thesis, the size of the system of linear equations (as well as the length and complex-
ity of the equations themselves) grows quickly with the number of components, frequencies
and HOMs included in a model. Thus, it has become a necessity to build interferometer
simulation tools for numerically modelling such configurations — especially when consider-
ing complicated spatial effects involving full detector models. Fortunately, computational
modelling lends itself well to solving the types of linear couplings associated with frequency-
domain interferometry. Calculating solutions to sets of linear equations is a well-established
field of scientific computing [69, 70, 71], with many fast matrix-based algorithms having been
developed for performing such tasks [72].

One of the most widely-used interferometer simulation tools in the GW detector community
is Finesse [73] along with the Python package Pykat [74] which acts as a wrapper and set
of utilities around this software. Finesse is a frequency-domain modelling program which
is used for solving optical couplings in interferometric systems. At its heart, the code boils
down to the inversion of an (often large) sparse matrix of couplings between fields, at different
locations in the modelled interferometer, in order to resolve these field amplitudes; this will
be detailed briefly in §1.4.3.

A significant portion of this thesis is dedicated to the topic of the new version of this software,
Finesse 3 [75], which has been under development since the start of my PhD. This new
version will address challenges faced in modelling future GW detectors. See Chapter 2 for
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details on my implementation of HOM features in Finesse 3, and Chapter 6 for an overview
(including motivations) of the design of this new Finesse version. The underlying principles
of solving optical couplings in interferometers, in the frequency-domain, given in this section
apply equally to both Finesse 3 and older versions of the software.

1.4.1 Time-independent light field amplitudes

In §1.3.1 we gave a general formula for the electric field component of a (monochromatic,
planar) electromagnetic wave via Equation (1.8). By entering into the frequency-domain, we
can (by definition) state a fixed time for any analyses. Naturally, it makes sense to choose
t = 0 such that this equation simply becomes

E(z) = E ′0 exp (−ikz). (1.30)

Similarly in the modal picture, using HG modes (see §1.3.2.3), our electric field equation is
then

E(x, y, z) = exp (−ikz)
∑
n,m

anm unm(x, y, z) (1.31)

where each symbol here corresponds to those given previously in Equation (1.22). These
equations form the framework of optical field descriptions for steady-state interferometer
simulations in plane wave and modal bases, respectively.

1.4.2 Component field interactions as coupling matrices

We will now summarise a convenient representation of optical field couplings, in the form
of matrices where each element describes how a single field, as measured at a specific point,
couples into another field. This section will treat only plane wave, monochromatic couplings
to keep the equations compact. In addition, we will look at only propagation over free spaces
and couplings at a surface which is at a normal to the optical axis (simply termed a mirror in
Finesse nomenclature); these concepts can be equally applied to other local systems, such
as couplings at lenses or non-normal incidence surfaces (i.e. beam splitters). An expanded
treatment, including HOMs, for the coupling matrices of a mirror is given later on in §2.3.2.2.
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1.4.2.1 Propagation over a space

Figure 1.5 gives a picture of the fields present in a free space type system as used by Finesse.
The input fields, i.e. the fields propagating into the space, are denoted as a1 and b1, whilst
the output field, traversing out of the space, are given as a2 and b2. If the length of the space
is L, and it can be described by a medium with refractive index nr, then, as Equation (1.30)
implies, the couplings can be defined by

a2 = exp (−iknrL) a1, and b2 = exp (−iknrL) b1. (1.32)

Note that the equations for the propagation in both directions are equal. From now on, in
this section, the symbol bin represents both a1 and b1 whilst bout represents a2 and b2. As we
are working in the frequency-domain, it is often useful to rewrite this explicitly in terms of
the frequency of the light field:

bout = exp

(
−i2π

λ
nrL

)
bin = exp

(
−iωnrL

c

)
bin, (1.33)

where ω is then the angular frequency of the field and c is the speed of light.

Space

Figure 1.5: A representation of the couplings for the propagation of the “input” fields, a1

and b1, to the “output” fields, a2 and b2, over a free space of length L described by a medium
with refractive index nr. In terms of Finesse, a space can be some distance between two
optics (where we typically set nr = 1) or it can represent the substrate of, e.g., a mirror
which then takes on a refractive index value corresponding to the substrate material.

In Finesse all field frequencies are given as offsets, ∆ω = ω−ω0, from the default frequency
ω0 (which is determined from the default wavelength of the model, i.e. ω0 = 2πc/λ0). This is
necessary to avoid numerical errors which would arise from using (large) absolute frequency
values and also provides a convenient way of enabling default resonance conditions. As a
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result of this, we can recast Equation (1.33) as5

bout = exp

(
−i∆ωnrL

c

)
bin. (1.34)

We can write these simple, linear equations in a compact form using a notation referred to
as the “coupling matrix”. In this case:

(
a2

b2

)
=

(
0 s12

s21 0

)(
a1

b1

)
, (1.35)

where s12 = s21 = exp (−i∆ωnrL/c). Moving to the modal picture simply requires including
the necessary Gouy phase terms in the exponent of these coefficients; this is predicated on the
convention, used in Finesse, that mode mismatches occur only at component boundaries
rather than across spaces. More details on this can be found in §2.3.2.1.

1.4.2.2 Coupling matrices at a mirror

The other local field couplings we will cover now are those at a mirror — defined in Finesse
as a thin surface, with associated reflectivity, transmissivity and loss values, which is normal
to the optical axis. In addition to the transmission couplings a mirror also sees reflection
interactions and, hence, each output field can then be represented as a linear sum of the two
corresponding input fields. This is shown conceptually in Figure 1.6 using a flat surface with
the input fields as a1 and b1, and outputs as a2 and b2.

Similarly to §1.4.2.1, we can describe these interactions using a matrix of individual couplings:

(
a2

b2

)
=

(
m11 m21

m12 m22

)(
a1

b1

)
. (1.36)

The elementsm12,m21 are the transmission couplings from the front to back surface and vice-
versa, and are equally given by m12 = m21 = it; where t is the amplitude transmissivity of
the mirror. This employs the Finesse convention of a 90 degree phase shift on transmission
through a surface (see Section 3.3.1 of [76]).

5There is a subtlety here in the way in which Finesse handles resonance conditions. Spaces are always,
by default, resonant for the carrier light. Shifting these resonances involves tuning the microscopic positions
of surfaces; as we will see in §1.4.2.2. Good summaries of these conventions are documented in Section 3.3.2
of [76] and Section 2.5 of [56].
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1.4 Modelling interferometers in the frequency-domain

Mirror

Figure 1.6: This figure shows a conceptual overview of the local field couplings at a mirror
(which is treated as being infinitesimally thin), via the plane-wave picture, in terms of how
Finesse handles such interactions of the light with the surface. The quantity φ is the
“tuning” of the mirror, which describes the microscopic displacement as a unitless value.
This value is inexorably linked to the wavelength of the beam, whereby φ = 360◦ means that
the mirror is displaced by one wavelength. In Finesse, the convention used for the direction
of φ is that positive values are those tunings which traverse with the normal angle to the
front surface of the mirror; as shown. The variables r and t shown on this figure are the
amplitude reflectivity and transmissivity of the mirror, respectively.

The couplings on reflection are slightly more complicated as they depend upon the micro-
scopic displacement of the surface — a quantity referred to as the “tuning” (φ), described
in the caption of Figure 1.6. In terms of the angular frequency, ω, of the light field, these
reflection couplings can be written as [76]

m11 = r exp

(
i 2φ

ω

ω0

)
, and m22 = r exp

(
−i 2φ

ω

ω0

)
, (1.37)

where r is the amplitude reflectivity of the mirror and ω0 is the default carrier field frequency.
In §2.3.2.2 we will investigate how the inclusion of HOMs expands upon this coupling matrix
picture for light interactions at a mirror.

1.4.3 Solving optical interferometer couplings via sparse matrix
inversion

From the coupling matrix framework, it follows logically that we can express the steady-
state optical field couplings in an interferometer via a single system of linear equations. This
allows us to define one equation to be solved in order to obtain the complex field amplitudes
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Chapter 1 Introduction

at each node of the configuration:

MIFO
~x = ~y. (1.38)

Here MIFO is the full interferometer coupling matrix which describes all the couplings be-
tween fields (at each frequency and of each HOM) at all the optical nodes of the model. The
vector ~x represents the solution vector containing each of these complex field amplitudes,
meanwhile ~y is the vector of right-hand sides (RHS) which consists of the injected field quan-
tities; i.e. from input laser beams in the model. Solving Equation (1.38) requires inverting
the full interferometer matrix, i.e:

~x = M−1
IFO

~y. (1.39)

This is a computationally expensive process, especially for simulations involving many nodes,
field frequencies and HOMs as the order of MIFO (i.e. number of rows, or columns as this
matrix is always square) scales linearly with each of these. Fortunately, this interferometer
matrix is inherently sparse6 due to, in general, no cross couplings existing between fields of
nodes which are separated by more than one space (as implied by the coupling matrices of
the previous section). This allows us to store the matrix via a sparse data structure format
for memory efficiency. In Finesse 3 we use the compressed sparse column (CSC) format
for improved performance, compared to other sparse formats, in terms of column slicing
and computing the products of the matrix with a vector [77, 78]. In addition, this format
is compatible with KLU [79] which is a well-established and efficient library for solving
sparse systems of linear equations. This library is employed by Finesse as the core tool for
calculating Equation (1.39) as required.

A good overview of how the interferometer matrix is structured in Finesse, in terms of the
individual coupling matrices of the components included in a model, can be found in Section
1.3.3 of [80].

1.5 Thesis overview

The central theme of this thesis lies in the impact of the transverse properties of laser beams
for future gravitational wave detectors — with particular focus placed on consequences for
the Einstein Telescope. More specifically, the topic of larger beams in such detectors is an
important subject throughout this document. The impact this will have is a key motivation

6In fact MIFO tends to be very sparse, especially for large configurations such as representations of full
GW detector files. For a typical aLIGO file, with 5 frequency bins and no HOMs, a rough estimate of
the sparsity is 99.9% (or a density of just 0.1%). This sparsity value would typically be even larger when
including HOMs.
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1.5 Thesis overview

of Chapter 3, in which a novel design for mode matching telescopes in the arms of the
ET detector interferometers is introduced and analysed. The results of this chapter, also
published in my paper “Feasibility Study of Beam Expanding Telescopes in the Interferometer
Arms for the Einstein Telescope” [1], demonstrate that it is (to first order) viable to employ
such a recycling cavity design. These results also provide a good starting point from which
future studies on, e.g., the astigmatism requirements for such a design can be carried out.
As a follow up to this initial telescope design, Chapter 4 then includes an analysis of the
feasibility of using the arm telescope mirrors for adaptive mode matching. A key conclusion,
from this chapter, is that actuating on the radius of curvature of the mirror ZM2 provides a
potential method for correcting for small thermal lens distortions (up to around fth ∼ 65 km)
at the ITM in ET-HF. Another outcome from this analysis is a characterisation of the initial
area of phase space that the ET-HF SRC mode could occupy, whilst retaining the ability to
recover mode matching to the arm cavities, via actuations on the ZM2 optics and recycling
mirrors.

Another important aspect related to the topic of larger beams is the potential impact on
the alignment to longitudinal noise coupling. This is the subject of Chapter 5. In this
chapter an analytical treatment of this noise coupling is given in terms of its scaling with
the size of the beams in the arm cavities of an interferometer; where a nominal w6 relation is
derived. A numerical validation of this scaling relation is also provided, using a full aLIGO
detector file to model the beam size to alignment coupling transfer function via Finesse.
Despite the problematic-looking beam size to the power of six result, this chapter ends by
clarifying that this increased noise coupling can be overcome due to the increased strength
of alignment signals that comes with this, and the potential to tune the design via, e.g., the
arm cavity finesse to significantly reduce this scaling. Order of magnitude estimates for the
“true” alignment to longitudinal coupling, as ratios to aLIGO, are provided to further show
that the real impact of increased beam sizes is minimal for most of the currently planned
third-generation GW detectors.

Due to the complexity of accurately modelling the spatial mode effects discussed both in this
thesis and otherwise, it is vital (for any research where HOMs are involved) that a reliable,
fast and well-documented set of free and open-source simulation tools is available. A major
aspect of this thesis is therefore dedicated to my contributions towards the new version of
Finesse 3 — a new interferometer modelling software package. The overarching design of
this suite is discussed in Chapter 6; including the key motivating reasons for developing
this set of tools and how the design chosen should future-proof the software for many years
to come. As this thesis focuses principally on HOMs, a whole chapter (see Chapter 2) is
allocated for delving into my implementation of modal simulation features in Finesse 3. In
particular, the new beam tracing library is discussed in detail — the utility that this already
provides is highlighted further again in Chapters 3 and 4 where these new tools were used for
my aforementioned ET design work. Additional outcomes from Chapter 2 demonstrate that
the HOM modelling capabilities of Finesse 3 provide significant performance improvements
over previous versions of the software — an important development given the need for fast
turn-around of simulation results, particularly for detector commissioning related tasks.
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Chapter Two

Modelling Higher-Order Spatial Modes
in Gravitational Wave Detectors with
Finesse 3

Parts of this chapter contain modified text and figures from my work documenting the Higher-
Order Mode features [81] of Finesse 3.

Higher-order modes can arise from several sources in gravitational wave detectors. Misalign-
ments of the optical axes of each cavity (see §§ 1.1.1 to 1.1.3), as well as mode mismatches
(see §2.2.3.2) between these cavities, will lead to scattering into HOMs. In particular, the
latter effect can specifically arise from thermal aberrations in the mirror substrates (partic-
ularly the ITMs) caused by non-uniform temperature distributions as a result of localised
heating by the beam [82]. This thermal lensing is especially strong for high power laser
beams [83]; an important consideration due to the necessity for future GW detectors to go
to higher powers for suppressing shot noise (see §1.2 for a very brief overview of current
sensitivity limits).

As HOMs typically do not contain any of the GW signal, any light in these modes can
be considered as “junk-light” as it will be detected at the output photodiode and lead to
increased shot noise; causing a degradation of the detector sensitivity in the high-frequency
regime. In addition, this light can couple back into the fundamental carrier light via, e.g.,
alignment noise coupling; as we will investigate later in Chapter 5. The suppression of this
“alignment to longitudinal” coupling via alignment control schemes [84] can also contribute to
the low-mid frequency regime of the detection band [26]. Other detector phenomena which
involve HOMs include (but are not limited to) parametric instabilities [85, 86, 87], point
absorbers [88] and the degradation of squeezing due to mode mismatches [89, 90]. All of
these effects are complicated and can affect, and / or be affected by, very high mode orders.

Due to these, and other, HOM related issues in GW detectors it is important to understand
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Chapter 2 Modelling HOMs with Finesse 3

the overall effect that they can have on detector sensitivity and how these repercussions can
be mitigated. The complicated, and sometimes untractable, analytics involved with HOMs
often means that modelling them via simulations is the best solution for understanding their
effects in the interferometer. In this chapter, we will cover how HOMs can be modelled
via Hermite-Gauss (HG) modes, using coupling coefficients, in the context of our software
package Finesse 3. In §2.2 we will explore how the modal bases are set at each node of
an interferometer network, and why this choice of beam parameter can be important for
computing HOM couplings. Then we will show how coupling coefficients are calculated and
used to model scattering of light into HOMs via modal scattering matrices in §2.3. Finally,
the detection of HOM content in light fields is discussed, in the context of capturing images
of the beam shape, in §2.4. First, however, it is important to understand the capabilities
of current interferometer modelling software with regards to modal simulations — and why
specific changes and improvements have been made in Finesse 3 to build upon this existing
framework.

2.1 Motivation and current software review

There are several existing interferometer modelling tools in the GW instrumentation com-
munity, each of which is designed with specific tasks and goals in mind. As an example,
Optickle [91, 92] is an opto-mechanical modelling tool which can be used to simulate inter-
ferometers with a single light wavelength; in addition to RF sidebands. This tool is designed
for quick interferometer studies where HOM effects are not an issue — thus, Optickle only
models light fields up to the first HG order. As a result of this Optickle is not the best tool to
use for modelling the spatial properties of beams, especially in the case of mode mismatches
(see §2.3 for more information on this topic). A different class of simulation type which
can handle additional HOM effects is FFT propagation. The main packages employing this
method of simulation are SIS [93], FOGP [94] and OSCAR [95] — all of which are Matlab
based FFT suites. This type of simulation is suitable for modelling simple cavities which
include HOM considerations. In particular, it is useful for modelling scenarios which are not
easily covered by modal-type simulations (more on this class of simulation in a moment) such
as: diffraction losses in both stable and unstable optical cavities [96] and intensity profiles
of beams in unstable resonators. The disadvantage of such codes is that they are often not
general (e.g. OSCAR can only deal with linear, Fabry-Perot cavities) and the execution
times of such simulations tend to be longer than modal simulation types.

A prominent tool, of this modal type, used by the community is Finesse 2 [73], in combi-
nation with the “wrapper” and utilities package Pykat [74]. This is the predecessor software
to the new version (Finesse 3) which is discussed in the context of modal simulations in
this chapter and then more extensively in Chapter 6. Finesse 2 allows for modelling of
HG modes up to an “arbitrary” order, taking into account effects such as mode mismatches
and misalignments of beams so long as these distortions do not violate the paraxial approx-
imation (see §1.3.2.1). It uses beam tracing and coupling coefficient calculations to perform
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2.2 Beam tracing

modal simulations — the framework of which was used for Finesse 3 to build upon (as will
be outlined later in this chapter). This method of simulating the transverse properties of
beams is applicable to many optical interactions and is also fast (as compared to other code
types), making it a preferable option for modelling HOMs over, e.g., FFT propagation codes.

One key motivation behind improving the HOM-related capabilities of Finesse lies in the
beam tracing library. There are several reasons for this which will be outlined briefly here.
Firstly, it is important that the modal basis used to compute HOM couplings is defined
in a clear and customisable way. This is because the value of beam parameters at nodes,
and the order in which they get set, can determine the location and magnitude of coupling
coefficients at each component in the model. More details, including examples, on this will
be given throughout §2.2 (in particular §2.2.3.5), however it is important to note here that
Finesse 3 will, in general, allow for greater customisation and flexibility in how beam traces
are performed on a model — both initially and during a modal simulation. Another point
of motivation behind an improved beam tracing library is the increasing necessity to be able
to easily access model beam parameters, ABCD matrices, cavity stabilities and so on. One
such example of the usefulness of these tools can be found in Chapter 3; in which a science
task which uses the beam tracing capabilities of Finesse 3, for the design of arm telescopes
in ET, is covered.

Modal interferometer simulations have the potential to be very computationally expensive,
especially when the level of mode mismatch and / or misalignment between optical axes is
large — requiring high mode orders to converge to the correct solutions for field amplitudes
(see §2.3.3.1 for more details). Whilst extensive work has been done [97] to reduce the
simulation time of modal simulations in Finesse 2, more improvements can yet be made to
increase performance even further. Several avenues have been explored in this regard and
details on the speed-ups obtained with Finesse 3 thus far can be found in the latter parts
of §2.3 and §2.4. In addition, a physically motivated new feature for reducing the number of
modes which need to be modelled, for certain types of simulations, is introduced in §2.3.3.

2.2 Beam tracing

Beam tracing, in the context of modal-based interferometer modelling, is the process by
which beam parameters (see §1.3.2.4) are propagated through an arbitrary configuration.
In order for HOM coupling coefficients to be computed at components (such as mirrors), a
modal basis in the form of beam parameters is required at every node of the interferometer
network. We will cover coupling coefficient calculations in more detail in §2.3, however
the important consideration to note for now is that Finesse 3 uses these coefficients, in
combination with the local coupling matrices of components, to calculate the light fields at
each node.

As well as being vital for running any modal simulation, the beam tracing functionality of
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Chapter 2 Modelling HOMs with Finesse 3

Finesse 3 is also provided as a standalone library — providing tools for executing propa-
gation analyses on any arbitrary interferometer configuration. An exemplary science case of
these features is covered by the contents of Chapter 3, the results of which were all obtained
via the beam tracing capabilities of Finesse 3.

In this section we will cover the mathematical framework in which beam tracing is performed
(§2.2.1), how optical cavities define their own modal basis (§2.2.2) and the exact mechanism
by which Finesse 3 structures and orders the tracing of beams (§2.2.3). Included in this
latter section are the nuances of how overlapping optical cavities are handled and the options
available for modifying the priority of specific dependency traces in simulations.

2.2.1 ABCD matrices and beam parameter transformation

A beam parameter is, in general, transformed when a beam passes from one medium into
another by interacting with some optical surface or propagating over any distance. We
can use the ABCD matrix formalism [56, 58] to treat these transformations — giving us the
mechanics to describe how HOMs couple between these interfaces. ABCD matrices represent
optical diffraction processes, at optical interfaces or across propagation distances, which have
been simplified down to a 2×2 matrix. Mathematically, one can interpret the ABCD matrix
as a “ray transfer matrix” [58]:

(
r2

θ2

)
=

(
A B
C D

)(
r1

θ1

)
(2.1)

acting on a vector ~r = (r, θ) which describes the position (r) of the wavefront and the angle
(θ) relative to the optical axis. The ABCD matrix then defines how a beam is transformed
when transitioning to a new frame. This method of representing the transformation of the
beam geometry is useful when combined with the Gaussian beam parameter (see §1.3.2.4).

Figure 2.1: Conceptual view of the transformation of a beam defined by the basis q1, by a
component S, into a new basis q2. The refractive indices of the media on either side of the
component are shown as n1 and n2, respectively. Note that these indices are often equal,
with n1 = n2 = 1, in interferometer modelling due to an assumed perfect vacuum; except
for in special cases such as modelling of substrates.
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2.2 Beam tracing

Consider Figure 2.1, here a beam described by the modal basis q1 propagates through a
medium with index of refraction n1. This beam is then incident upon some interaction
component S (which can itself be a length of free space), transforming the modal basis into
a new beam parameter q2 in the subsequent medium with a refractive index of n2. The
equation describing this transformation is known as the ABCD law [59] and is defined by

q2 = n2

A q1
n1

+B

C q1
n1

+D
, (2.2)

where A, B, C andD are the corresponding elements of the ABCDmatrix associated with the
interaction S. This equation forms the fundamental basis of the beam tracing performed by
Finesse 3. It is via Equation (2.2) that beam parameters are transformed when propagating
any arbitrary modal basis through a configuration. Each component present in Finesse
3 has an associated ABCD matrix [81] (stored both symbolically and numerically) which
is used when computing the beam parameter transformation. For any component which
does not transform the modal basis, i.e. thin components with no focusing elements, this
ABCD matrix is simply an identity matrix. Definitions for the ABCD matrices of common
components, such as mirrors, beam splitters and thin lenses, can be found in [56, 58, 81].

2.2.2 Optical cavities

Optical cavities, sometimes called resonators or just cavities, store light in a transverse sense
as well as longitudinally. In the modal picture, the resonance condition for cavities includes
a consideration of the spatial properties of the beam in addition to the wavelength as seen
in the plane-wave case. This concept is known as the eigenmode of the cavity and can be
defined as the optical field with a spatial profile matching that of the injected field after a
round-trip of the cavity [56]. In all cases throughout this thesis we consider only optical
cavities with spherical mirrors, such that our eigenmodes can be described by the Gaussian
beam parameter (see §1.3.2.4).

2.2.2.1 Eigenmodes

To define the eigenmode mathematically, we can invoke the ABCD law given in Equation
(2.2). By defining the cavity eigenmode as qc, and assuming a vacuum inside the cavity such
that n1 = n2 = 1, this becomes

Aq1 +B

Cq1 +D
= q1 = qc, (2.3)

where A, B, C and D are now the elements of the combined ABCD matrices of all the

29



Chapter 2 Modelling HOMs with Finesse 3

components in the cavity; known as the round-trip ABCD matrix, MRT. This is computed
by simpy multiplying each of these matrices together in reverse order (as measured from the
end of the chain of interactions), i.e:

MRT =
N∏
i

Mi, (2.4)

where N is the number of interactions, across free-spaces or components, in the cavity and
Mi are then each of the ABCD matrices associated with these interactions over the cavity
round-trip. More specifically, N can be defined in the following way:

N =

{
2Nc, if Nc = Ns

4Ns, otherwise,
(2.5)

where Nc is the number of components inside the cavity and Ns is the number of free-spaces.
The former case typically applies to ring [98] (such as the aLIGO input mode-cleaner, IMC)
and bow-tie (such as the aLIGO output mode-cleaner, OMC [21]) type cavities, whilst the
latter generally applies to linear style cavities.

The equation identifying the eigenmode is then simply, after re-arranging Equation (2.3) for
q1 = qc, equivalent to a form of the quadratic equation:

Cq2
c + (D − A)qc −B = 0. (2.6)

Due to the nature of this equation, one can note that, mathematically, there are two solutions
in general for qc. In practice there can be only one solution, and this is defined as the qc
which has a positive imaginary part (or Rayleigh range zR as seen in §1.3.2.4) — i.e. the
condition

zR ≡ πw2
0/λ > 0, (2.7)

must be satisfied in order for the cavity to be considered “stable”. A more compact description
of this condition, in terms of the round-trip ABCD matrix of the cavity, will be given in the
next sub-section (§2.2.2.2).

Cavity eigenmodes are calculated in Finesse 3 via Equation (2.6). These eigenmode values
are automatically updated when MRT changes, as discussed briefly in §2.2.2.4 and §2.2.3.1.

30



2.2 Beam tracing

2.2.2.2 Stability of optical cavities

As mentioned previously, a cavity is only stable when there exists a complex eigenmode
with a real waist-size. This is ensured when the determinant of Equation (2.6) is negative
[56]. We can re-cast this requirement into a more useful, and commonly used, form via the
g-factor [58], defined as:

g =
A+D + 2

4
, (2.8)

where A and D are the usual elements of the round-trip ABCD matrix of the cavity. A
cavity is stable when the following condition is satisfied:

0 ≤ g ≤ 1. (2.9)
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Figure 2.2: The round-trip Gouy phase, ψRT, plotted against the g-factor of a cavity. High-
lighted in the shaded regions are sensible approximations for a stable cavity which is not in
a near-unstable regime. The requirement 20◦ ≤ ψRT ≤ 160◦ will be used later on in Chapter
3 for constraining solution spaces to suitable signal recycling cavity (SRC) designs in ET.

Another useful metric for determining the stability of a cavity is a quantity called the round-
trip Gouy phase, ψRT. This value can be more useful than the g-factor alone as it also
provides information on the modal resonance structure of a cavity. The round-trip Gouy
phase determines which order of optical modes are resonant within a cavity [56] due to the
Gouy phase accumulated by an higher-order mode being proportional to the order, n+m, of
the mode (see Equation (1.26)). This quantity can be computed using the round-trip ABCD
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matrix, and is inexorably linked to the cavity g-factor [99]:

ψRT = 2 arccos

(
sign(B)

√
A+D + 2

4

)
= 2 arccos (sign(B)

√
g). (2.10)

The closer g is to 0 or 1, i.e. ψRT → 180◦ or ψRT → 0◦, respectively, the smaller the tolerances
are on any of the geometric properties of the cavity before it becomes unstable [100, 101].
Due to this, it can be useful to approximate a range of round-trip Gouy phases that give
a stable cavity which is not in the near-unstable regime. Such an approximation is given
in Figure 2.2. From this figure, one can see that the selected ψRT regions cover most of
the g-space, excluding only the extrema of this range such that near-unstable cavities are
avoided.

2.2.2.3 Round-trip Gouy phase and mode spacing

One can equally define the round-trip Gouy phase in terms of the individual Gouy phases
measured from the start, position z1, of the cavity to the end, position z2, (i.e. half a
round-trip), via:

ψRT = 2 (ψ(z2)− ψ(z1)) = 2

(
arctan

(
z2

zR

)
− arctan

(
z1

zR

))
, (2.11)

where zR is the Rayleigh range of the corresponding cavity eigenmode qc. The modal reso-
nance separation, δφ, defined as the phase difference in the resonance peaks for each mode
order, can be given in terms of ψRT:

δφ =
ψRT

2
, (2.12)

This is a useful quantity for verifying the modal resonance structure when performing a
cavity scan in Finesse 3, as shown briefly in §2.2.3.4. Converting this phase shift into a
frequency yields a quantity known as the mode-separation frequency, defined as

δf =
ψRT

2π
∆ν, (2.13)

where ∆ν is the free spectral range (FSR) of the cavity. This value then describes the
mode-spacing of contiguous higher-order modes in terms of the frequency separation of their
resonance peaks.
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2.2.2.4 Example: The Fabry-Perot cavity

Figure 2.3: A representation of the ABCD matrices of a Fabry-Perot cavity. The separate
ABCD matrices of the components which make up the cavity are highlighted in different
colours; note that the ABCD matrix for the propagation over the length of the cavity is the
same in both directions [58]. The round-trip matrix MRT is computed using Equation (2.4)
as applied to this configuration; recalling that the order of multiplication is important, such
that the product shown here represents the reverse chain of operations from the location of
q1. Also shown here is the progression of the radius of curvature of the wavefront over the
cavity, for illustration. The radius of the curvature of wavefront of the beam defined by the
cavity eigenmode must be equal to the radius of curvature of the mirrors of the resonator.

Here we will consider the simple case of a two mirror resonator, i.e. a Fabry-Perot cavity [102],
as an example. Figure 2.3 shows a pictorial representation of the ABCD matrices involved
in the path of such a cavity, with the corresponding round-trip matrix formula given. Using
this equation, and the definitions of the mirror reflection and free-space propagation ABCD
matrices also given in the figure, we can derive this round-trip matrix to be

MRT =

 1− 2L

RC,2

2L− 2L2

RC,2

4L

RC,1RC,2

− 2

RC,1

− 2

RC,2

1 +
4L2

RC,1RC,2

− 2L

RC,2

− 4L

RC,1

 , (2.14)
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where L is the cavity length and RC,1|2 are the RoCs of the cavity mirrors. These round-trip
matrices are computed automatically in Finesse 3 and are updated, both inside the context
of a simulation and outside, whenever a dependent parameter (such as a cavity mirror RoC,
in this case) changes. The updating of these matrices uses the TraceTree data structure of
Finesse 3 for efficiency, more details on this structure will be given in §2.2.3.1.

Applying Equation (2.8) to Equation (2.14), we obtain the following expression for the
Fabry-Perot cavity g-factor:

gFP =

(
1− L

RC,1

)(
1− L

RC,2

)
= g1g2, (2.15)

where g1 and g2 are then the individual g-factors for the two cavity mirrors. Similarly,
we can apply Equation (2.10) to Equation (2.14) to obtain a specialised expression for the
round-trip Gouy phase of a Fabry-Perot cavity:

ψRT,FP = 2 arccos (sign(g2)
√
g1g2), (2.16)

where we have noted that, in this case

sign(B) = sign

(
2L

(
1− L

RC,2

))
= sign(g2). (2.17)

Figure 2.4 shows the different regions in which a Fabry-Perot cavity is stable, as a function
of the curvatures of the cavity mirrors. The left plot shows the values of Equation (2.15)
whilst the right shows the corresponding round-trip Gouy phases via Equation (2.16). Both
cases assume a fixed cavity length. On the left plot we see two special cases of critically
stable cavities - confocal, where the RoCs of both cavity mirrors equal the cavity length, and
concentric, where both RoCs are equal to half the cavity length. The former corresponds to
the smallest ratio of the beam size on the mirrors to the waist size whilst the latter represents
a cavity with a “point-waist” (i.e. w0 = 0m). On the right plot the region where the sign of
the B element of the round-trip ABCD matrix MRT flips is framed, illustrating where the
cavity round-trip Gouy phase ψRT switches quadrant.
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Figure 2.4: Regions of stability for a Fabry-Perot cavity of a fixed length, L, as a function
of the RoCs of the mirrors, RC,1 and RC,2. The left plot gives the g-factors of the cavity
and the right gives the values of ψRT. Note that when either of the mirror RoCs equals
the length of the cavity, the corresponding g-factor is zero — leading to a critically stable
cavity. Highlighted on the left plot are two special cases of critically stable cavities. All
white regions, on both plots, represent unstable cavities with g > 1 or g < 0.

2.2.3 Propagating beams through an interferometer

Now that we have covered the mathematical framework for transforming beam parameters
(§2.2.1) and the basics of optical cavity modes (§2.2.2.1), in this section the mechanics
behind the beam tracing algorithms of Finesse 3 can be explored. An understanding of how
Finesse 3 propagates modal bases throughout a configuration is essential due to the impact
this can have on HOM couplings — both in terms of the magnitude and locations of these
couplings. The combination of these affects the mode mismatches (see §2.2.3.2) and hence
the quantities of fields in HOMs at various points in the modelled interferometer. In §2.2.3.5
we will discuss the utility that Finesse 3 provides for defining the locations of such mode
mismatches. The contents of this section consist entirely of my work on implementing beam
tracing within Finesse 3. For a more in-depth coverage of the technical implementation of
beam tracing in Finesse 3, refer to Appendix A.

As a practical example, the beam propagation will be discussed in the context of the core
aLIGO optics — as shown by Figure 2.5. This figure displays all of the key optical cavities
present in the central interferometer. Additional optics, modelling the mirror and beam
splitter substrates, as well as the recycling cavity telescope mirrors, will be ignored to reduce
the verbosity of these beam propagation examples.

Modelling the modal bases of the recycling cavities is complicated due to the split paths
at the central beam splitter. This is an important consideration as it implies overlapping,
coupled cavities. The choice of beam parameters in such a configuration is not well-defined
and has the potential to lead to unexpected mode mismatches. A brief discussion of how
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Finesse 3 can be used to explicitly declare, and clarify, which cavity to use or is being used
is given in §2.2.3.6 on the topic of overlapping cavities.

PR
Y

PRX

SRY
SRX

Cavities

Figure 2.5: A schematic of the core advanced LIGO interferometer optics, with the arm
cavities (XARM, YARM) and dual-recycling cavities (PRC, SRC) highlighted. Due to the
nature of these recycling cavities, each one must be separated at the beam splitter such that,
e.g., the PRC really consists of both the PRX and PRY cavities, as displayed (and similarly
for the SRC).

2.2.3.1 Tree structure

Finesse 3 uses a nodal, directed-graph [103] based system for representing interferometer
configurations. In such a system it is assumed that any component can only split the beam
across, at most, two paths; e.g. light hitting a beam splitter will be transmitted parallel (and
continuously) to the incident beam in one path and reflected orthogonal to the incident beam
in the other path. Any geometric offsets in the beams are instead modelled via HOMs using
coupling coefficients. Given this, a natural, and convenient, way to represent a propagated
beam is via a binary tree [104] type structure — denoted as a TraceTree in Finesse 3 syntax.
The TraceTree structure stores optical nodes at each tree node and contains references to its
“left” and “right” sub-trees (if they exist), with the ABCDmatrices for these couplings and the
refractive index associated with the optical node also stored for efficiency and convenience.

The TraceTree for an optical cavity simply decays to a linked list as there can only ever be
one direction in which the beam traverses on a round-trip of any given cavity. This allows for
simple and efficient computation of the round-trip ABCD matrix (and, commensurately, the
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eigenmode), via Equation (2.4), through recursing the uni-directional “tree”. Performing a
beam trace on the internal path of the cavity (defined as an internal cavity trace) is equally as
simple, where Equation (2.2) is applied at each node of the cavity tree. This is demonstrated
pictorially in Figure 2.6 for the simple case of a Fabry-Perot cavity; equivalent to the picture
already seen in Figure 2.3. An important aspect of the Finesse 3 beam tracing is introduced
in Figure 2.6 — namely, the storage of beam parameters at the node rather than port level;
a useful distinction which improves on the initial framework which Finesse 2 provided [76].
This separation of beam parameter directions simplifies the mode mismatch (§2.2.3.2) and
coupling coefficient (§2.3) calculations, as well as allowing a new type of “asymmetric” beam
tracing (see §2.2.3.3).

TraceTree:

Symmetric tracing Asymmetric tracingSource node (q = eigenmode)

Figure 2.6: A representation of the TraceTree for a Fabry-Perot cavity. The beam parame-
ters computed and stored for each node are shown on the right, using (2.2) and the ABCD
matrices given in Figure 2.3. Note that the default behaviour of beam tracing in Finesse
3 is so-called “symmetric” tracing — where the beam parameter for nodes opposite to those
that have been traversed are reversed, flipping the sign of the distance to the waist. More
details on this, and the alternative “asymmetric” tracing, are given in §2.2.3.3.

As indicated via §2.2.2.1, the light fields in most optical cavities can be safely described
in terms of their eigenmodes [76]. Furthermore, in GW detectors, the fields are typically
dominated by the behaviour of the key cavities (see §1.1). For these reasons, cavities are a
sensible choice for using as beam tracing dependencies; i.e. points from which the other beam
parameters in a configuration can be obtained. An example highlighting the importance of
using cavity modes for modal simulations is given in §2.2.3.4.

Most interferometer configurations will contain several trace trees due to the existence of
multiple dependencies (e.g. cavities) — see Figure 2.5 for example. The intersection of
trees from different trace dependencies indicate the locations (in terms of the nodal graph
structure) at which possible mode mismatches can occur if the dependencies are not mode
matched to each other; more details of this will follow in §2.2.3.2. The positions of these
mode mismatches determine the point(s) at which light is scattered into HOMs, thereby
affecting the results of modal simulations of this type. It is important, consequently, that
the structure of these multiple trees is well-defined. In Finesse 3 these trace trees are stored
in a TraceForest, where the order in which each tree gets traced is given implicitly by the
index of the tree in the forest.
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Figure 2.7: A conceptual overview of the “trace forest” structure for a dual-recycled Michelson
interferometer. In this schematic, only the arm cavities (XARM and YARM) are enabled as
tracing dependencies — this is to illustrate the branching taking place and also to highlight
how the modal bases are set at each node when a given cavity, in this case XARM, takes
priority. The numbers next to each tree define the beam tracing order.

An example of a TraceForest for the configuration shown previously (in Figure 2.5) is given
in Figure 2.7; where only the arm cavities are enabled now as documented. In this figure the
XARM cavity is given the highest beam tracing priority (see §2.2.3.5 for a brief discussion
on the ordering definition), resulting in the beam parameters at the input and output of the
Michelson interferometer being set based on the propagation of the eigenmode of XARM. If
this tracing priority was switched around, then the beam parameters at these nodes would,
consequently, be set via the propagation of the YARM eigenmode. This structuring of beam
tracing priorities is highly flexible in Finesse 3; there will be a brief discussion on this
in §2.2.3.5. From the trace trees shown on the figure, one can see that the traces from
the two arm cavity trees intersect at the couplings: BS.p2.i → BS.p4.o and BS.p2.i →
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BS.p1.o; i.e. the output and input of the Michelson interferometer, respectively. There is
then a potential for mismatches, and hence scattering into HOMs, at these locations. Further
exploration of this continues in the next section.

For more technical details on the TraceTree and TraceForest structures, as well as dis-
cussions of tree intersections and the implications of these for modal simulations, see Ap-
pendix A.

2.2.3.2 Mode mismatches

Consider Figure 2.8 which shows a zoomed-in version of Figure 2.7 at the beam splitter. As
mentioned previously, the two trace trees dependent on each of the arm cavities intersect at
this component. This figure illustrates the concept of mode mismatches in the context of
this example, where the beam parameters at the input ports (two and three) are propagated
to port four via Equation (2.2) as usual.

A useful figure-of-merit for the overlap, in terms of the field amplitudes, between two beam
parameters, q1 and q2, is (Page 143 of [105])

O(q1, q2) =
4|={q1}={q2}|
|q∗1 − q2|2

. (2.18)

This quantity returns values O ∈ [0, 1], where unity indicates a full mode match between
the two beam parameters and zero gives complete mode mismatch. The mode mismatch
is then simply M(q1, q2) = 1 − O(q1, q2). Both of these quantities will be used frequently
throughout this thesis to quantify the amount of mode mismatch present in various systems.

1

2

3

4

with

with
BS

Figure 2.8: Beam tracing of XARM (red) and YARM (blue) dependent trace trees to the
beam splitter corresponding to Figure 2.7. As the XARM trace has the highest priority,
the beam parameter at BS.p4.o is set from the beam parameter at BS.p3.i as that figure
shows. If the beam parameter propagated from the YARM dependent tree to BS.p4.o is not
equal to this former beam parameter, then there is a mode mismatch present at this node.
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When mode mismatches are present, light will be scattered into HOMs — specifically, into
modes spaced by even orders (see §2.3.3.1). Assuming that the carrier light consists of a
pure HG00 mode, this means that the modes HG02/20, HG04/40 and so on will be created.
Smaller values of O will result in larger magnitudes for scattering into higher-order fields. A
simple example of this is shown in Figure 2.9 which is based on the mismatch scenario given
in Figure 2.8. In this figure the XARM and YARM cavities are mismatched, thus leading
to scattering into HOMs due to the resultant mismatch at the beam splitter. The mismatch
values on the x-axis are computed viaM(q1, q2), scaled to a percentage. Note that we define
the “fractional HOM power” (left-hand y-axis) as the ratio of the power in all HOMs to the
total detected power. Expressed mathematically this is

FHOM =

∑
n,m

anma
∗
nm [n 6= 0, m 6= 0]∑
n,m

anma
∗
nm

, (2.19)

where anm are the complex amplitudes for the fields with modes HGnm. As a brief aside, this
quantity is simple to compute in Finesse 3 via the use of mode index masks on photodiodes;
whereby only the field amplitudes of non-masked modes contribute to such detector outputs.
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Figure 2.9: Scattering of carrier light into HOMs for a given percentage mismatch between
the XARM and YARM cavity modes (as propagated to the beam splitter). This is based
on the configurations shown in Figure 2.7 and Figure 2.8. As expected, larger mismatches
between these arm modes result in a higher fractional power of HOMs; as detected at the anti-
symmetric (AS) port of the beam splitter (i.e. the output of the Michelson interferometer).
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2.2.3.3 Symmetric vs asymmetric tracing

As noted previously in Figure 2.6, the default behaviour of the Finesse 3 beam tracing
algorithm is to set the beam parameters at nodes opposite to those traversed by reversing
the sign of the distance to waist. In mathematical terms, this operation can simply be
expressed as

qn′ = −q∗n, (2.20)

where n is a node that has been traversed and n′ is the corresponding opposite optical node
at that traversed port. In this section we will rationalise the logic behind this decision and
briefly discuss the limitations; whilst offering an alternative option provided by the Finesse
3 beam tracing algorithm.

Consider Figure 2.10, which shows the wavefronts of a beam incident on and reflected from a
surface orthogonal to the beam axis. The incident beam is described by the beam parameter
q1 = z′+izR, where z′ is the distance from the beam waist to the mirror surface and zR is the
Rayleigh range of this beam. Upon reflection from the surface, the wavefront of the beam
is necessarily reversed (as the beam changes direction of travel). This can be treated as the
case where the reflected beam has a virtual waist positioned behind the surface (relative to
the direction of propagation), at a distance of z′ from the surface (i.e. 2z′ from the real waist
position of the incident beam). If we project this coordinate system transformation into that
of the incident beams’, then we obtain a beam parameter q2 of the reflected beam:

q2 = z′ − z0 − 2z′ + izR

= −z′ + izR

= −q∗1.
(2.21)

It is important to note that this method of setting the beam parameters will only result
in complete mode matching, on reflection from a surface, when the beams on both sides
of the surface are fully matched to each other. Referring again to Figure 2.10, this means
that there will be no mode mismatches in this system only when q3 = q1; assuming that the
refractive indices of the media on both sides of the surface are equal, such that the surface
transmission ABCD matrix is the identity matrix. If q3 6= q1 (i.e. mismatched beams across
the surface) then, along with the expected mode mismatch on transmission, one would also
see a mismatch on reflection at the front surface when setting beam parameters in this way,
as in general (using Equation (2.2) and the reflection ABCD matrix for mirrors [56])

q2 =
q1

1− 2
RC
q1

6= −q∗1. (2.22)
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Real waist Virtual waist
Incident 

beam Reflected beam

Figure 2.10: A schematic showing the wavefront of a beam incident (red) upon a mirror
described by beam parameter q1. The reflected beam (blue) has a reversed wavefront, with a
beam parameter q2, which can be projected behind the mirror to a virtual waist as displayed.
The beam parameters q3 and q4 represent the beam on the other side of the surface, if it
exists — see text for details on why these are important when performing symmetric traces.

There is an additional subtlety here in that, as implied earlier, this symmetric tracing will
only result in no mode mismatch (referring again to Figure 2.10) if there is indeed a beam
parameter propagated from the right hand side too; e.g. if this mirror represents the input
mirror of a cavity. Considering a case where we have a laser shining onto this mirror, this
provides us with a simple example of how the option of “asymmetric” tracing, in Finesse
3, can be used to remove spurious mismatches in some configurations. Asymmetric tracing
simply means that opposite direction nodes are not given the reverse beam parameter (unless
there is no other option), instead the beam parameters at these opposite nodes are computed
using the ABCD matrices of their interacting components. In the context of Figure 2.10
again, this means that q2 will be set using the left-hand side of Equation (2.22) rather than
the right. Table 2.1 provides an example for the effect on the HOM couplings for such a
configuration when performing the beam tracing with these different algorithms.

Another, more practical, example where asymmetric tracing can help to remove spurious
mode mismatches is a simple Michelson interferometer with flat mirrors. Figure 2.11a shows
the specific configuration considered here, where the input beam has a waist before the
interferometer as indicated. This location of the beam waist leads to a higher degree of
mismatch at the mirrors in the arms when performing symmetric beam tracing. In fact, for
the specific configuration chosen, this mode mismatch on reflection from the arm mirrors
is M ∼ 95%. This is an extremely large mismatch value and, as such, leads to significant
coupling into very high order HOMs in the simulation. If, however, we choose to perform
the beam tracing asymmetrically instead, then our mode mismatch at these mirrors isM =
0%. This is due to the reasons discussed above — namely, that the beam parameter on
reflection from a flat mirror should be identical to the incident beam parameter according
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Table 2.1: Power in even-order (see §2.3.3.1) HG modes, on reflection from the mirror (with
R = 1) in Figure 2.10, using a 1 mm waist size position 0.5 metres from the mirror surface.
The symmetric tracing simulation gives non-zero HOM couplings due to Equation (2.22)
whilst the asymmetric tracing version yields no scattering into these HG modes as one would
expect. Using the beam parameter stated above, the symmetric tracing gives an overlap
between q1 and q2 of O ≈ 0.9 using Equation (2.18) — i.e. a mismatch of approximately
10%.

Modal power on reflection Symmetric Tracing Asymmetric Tracing
HG00 0.8971 W 1 W
HG02 0.0462 W 0 W
HG04 0.0036 W 0 W
HG06 0.0003 W 0 W

to Equation (2.2). These ideas, and their resulting effect on the power recorded at the
Michelson interferometer output, are captured in Figure 2.11b. It should be noted that the
maximum TEM orders (maxtem) shown on this figure only incude modes of even-order due
to only mode mismatches being present here; more details on this mode selection feature can
be found in §2.3.3.
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(a) A “flat Michelson” interferometer where the
waist of the input beam is positioned before the
beam splitter.
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(b) Power detected at the Michelson interferome-
ter output photodiode as a function of the tuning
of the mirror in the y-arm, mY.

Figure 2.11: A configuration consisting of a Michelson interferometer with flat mirrors is
shown in (a). This setup exemplifies the behaviour of symmetric vs asymmetric beam tracing.
In (b) we perform simulations in which the tuning of the mirror mY is scanned. The blue
traces give the total power, as a ratio of the input power, at the output whilst the red traces
shows the modal power — i.e. excluding the power in the HG00 mode. One can see that
for the asymmetric tracing curves we get the expected “light” and “dark” fringe behaviour,
where all of the power is always within the fundamental mode. For the symmetric tracing
simulations, however, we see that the modal power dominates and a very large maximum
mode order would be required to reach the expected power (due to significant power in very
high order HG modes).
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2.2.3.4 Importance of defining cavity modes

It is important in any analysis involving optical cavities that HOM couplings, for cavity
nodes, are computed using their respective cavity eigenmode as the bases. If the beam
parameters at nodes inside a cavity get set to values which do not correspond to the associated
cavity eigenmode then this can result in mismatches being present where there shouldn’t be
any and / or mode matching where there should be mismatches in practice. Such a scenario
will often lead to unexpected HOM couplings being present when computing power build-ups
or transfer functions.
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Figure 2.12: This plot highlights the importance of using the cavity eigenmode to define
its own basis (blue traces) rather than using a different manual basis defined elsewhere in
the system (red traces). The cavity power is plotted against the mirror radii of curvature,
showing significant drops for the non-cavity mode simulations due to large mode mismatches
inside the cavity. Meanwhile the simulations where a cavity basis is used result in a small
mode mismatch which comes from the non-unity overlap of the updated cavity eigenmode
with the input beam parameter.

An example of this is shown in Figure 2.12. This plot uses an ET-LF style arm cavity (see
Chapter 3, Table 3.1 for details) as the base configuration. The input beam is mode matched
to the nominal cavity — i.e. matched when the radii of curvature of both cavity mirrors are
Rc = 5580 m. In the following simulations we scan around this matched RoC value, setting
both cavity mirrors simultaneously such that the cavity remains symmetric. The blue traces
show the circulating power, for different maximum mode orders MT , when tracing via a
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cavity object. The red traces give the cavity power when using the input beam parameter as
the only beam tracing dependency. In the former case the cavity eigenmode is re-computed
at each data point, giving a consistent and optimal modal basis when calculating coupling
coefficients at the mirrors. The small dip in the cavity power when shifting away from
Rc = 5580 m comes from the mode mismatch that results between the cavity eigenmode and
the input beam parameter. This mismatch is encapsulated in the corresponding blue trace
on the lower sub-plot of Figure 2.12, the values of which were computed usingM(q1, q2) (see
Equation (2.18)).

When tracing with only the input beam parameter, we get a sharp drop in the cavity power
after shifting away from the matched point. This is a result of using a non-optimal mode
base such that any geometric changes to the cavity yield mode mismatches on reflection from
the cavity mirrors — due to the symmetric beam tracing procedure outlined in §2.2.3.3.
The mode mismatch values in this case, shown as the red curve on the lower sub-plot of
Figure 2.12, have been computed with q1 as the input beam parameter, to a cavity mirror,
propagated via reflection and q2 as the output beam parameter stored on reflection; this
value was then doubled due to this mismatch taking place on reflection from both mirrors.

2.2.3.5 Order of beam tracing

The order in which trace dependencies (i.e. cavities and manually set beam parameters) in
a model are propagated can affect the results of modal simulations. We can see immediately
from Figure 2.7 that if the priorities of the two cavities in this interferometer were switched,
then the beam parameters in the input and output paths would be set based on propagation
from the YARM cavity rather than the XARM. Another typical case where this could apply
is an identical configuration to this figure, where the only difference now is that a beam
parameter is set at the input laser (a common case, as this is often known and well-defined).
It is this scenario which we consider and model in Figure 2.13. In this simulation we sweep
over the waist size of the laser beam as a deviation to the waist size which mode matches
the laser to both the XARM and YARM cavities (i.e. ∆w0 = 0 is the fully mode matched
case). The output modal power, at the anti-symmetric port of the beam splitter, is plotted
as a fraction of the total power at this point — see Equation (2.19) for how this quantity is
calculated. The central beam splitter is detuned slightly such that the interferometer is not
operating exactly on the dark fringe.

The blue curve on Figure 2.13 shows the output power when prioritising the input laser
beam during the beam tracing — resulting in the beam parameters at all the nodes in the
central interferometer being set using the propagation of this beam. Conversely, the red
curve uses the XARM cavity as the first tracing dependency whilst the input laser is traced
last — resulting in beam parameters being set according to the trace forest structure given
in Figure 2.7. Increased power is detected, in both cases, at the interferometer output when
the input laser is not mode matched to the arm cavities. This is simply due to scattering into
HOMs which accumulate extra phases dependent upon their mode order (i.e. Gouy phase).
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Larger mismatches, and thus a greater degree of scattering into HOMs, occurs for the blue
curve due to the extra mode mismatches upon reflection from the arm cavity input mirrors
(see §2.2.3.3 for details on this). One can correct for mismatches of this type by instead
tracing with the cavity modes first. This essentially shifts the mode mismatch locations
from the ITMs to the central beam splitter, the latter case being covered by the view shown
in Figure 2.8.
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Figure 2.13: This figure shows the difference in the output power of a detuned Michelson
interferometer where the beam tracing priorities of the input laser mode and cavity modes are
swapped between simulations. These power values are plotted as a function of the input laser
waist size such that mismatches will occur between this laser and the cavity eigenmodes when
∆w0 6= 0. Prioritising the input laser mode in the beam tracing results in larger mismatches,
and hence greater modal scattering, than when tracing one of the cavity modes first. This is
due to the symmetric tracing behaviour, which causes mode mismatches on reflections from
the input cavity mirrors, described previously in §2.2.3.3.

Finesse 3 provides a great deal of flexibility in ordering beam traces, where each tracing
dependency object has a priority value associated with it. The underlying TraceForest built
before beam tracing is then constructed via the descending order of dependency priorities.
Each priority value can be changed between simulations, allowing for different beam tracing
orders to be executed depending upon the simulation being executed. This flexibility provides
the user with ways to limit spurious mode mismatches, as we have seen in this section. It
also gives fine-tunable control over, and easy access to, the modal bases of each node in a
configuration. More details on some further implications of trace dependency ordering can
be found in Appendix A.2.
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2.2.3.6 Overlapping cavities

In more complicated optical systems cavities can overlap with each other, causing the eigen-
mode of such a system to not be well-defined. A pertinent example of this is the recycling
cavities in an aLIGO-style GW detector. This is something implied previously in Figure 2.5.
To resolve the ambiguity as to which modal basis is used when overlapping cavities are
present, Finesse 3 simply uses the aforementioned beam trace ordering logic outlined in
§2.2.3.5.

An example, based on the central interferometer of aLIGO from Figure 2.5, is shown in
Figure 2.14. In this figure the trace order of the cavities is listed from first to last and the
corresponding trace-trees for these cavities are given, colour coded by the specific cavity they
depend upon. With this specific chosen trace order, the cavity PRY has no effect on the
modal basis used by the nodes inside the recycling cavities. This is because the PRX cavity
sets the beam parameters from the PRM to BS whilst, beforehand as it is a higher priority
dependency, the beam parameters from BS to ITMY are set from the SRY trace.

One can easily change the order in which these types of overlapping cavities are traced by
simply changing the priority values of each cavity in the model. These priority values apply
to both the internal cavity traces, as seen in this section, and traces from cavities (external
traces) as noted in §2.2.3.5.

Cavities
SRX
SRY
PRX
PRY

SRM BS ITMX

BS ITMY

PRM BS

Beam tracing order

SRM

BS ITMX

ITMY

PRM

Figure 2.14: This figure focuses on the overlapping recycling cavities in the central interfer-
ometer of an aLIGO-style detector. Each cavity is listed in the top right by the order in
which they will be traced in this particular example. Using this cavity ordering, the trace
trees which are constructed for the beam tracing are then given in the lower right. One may
note that the PRY cavity has no effect on the beam parameters set in the recycling cavities
here, as the other cavity instances cover all the nodes in these cavities already.
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2.2.4 Beam tracing as a library

In addition to being the foundation of modal simulations, beam tracing in Finesse 3 is also
provided as a standalone library. The core algorithm (described throughout this section)
used for setting beam parameters at each node of a configuration is exposed to the user,
allowing convenient access to the modal bases across a model — thereby making it easier to
check for mode mismatches, and perform “chained” simulations.

One common problem encountered during the design of GW detectors is the task of building
beam expansion telescopes. This was a task previously required for aLIGO in the context
of the recycling cavity design [20] and it is also an ongoing area of research for the Einstein
Telescope; forming the basis of Chapters 3 and 4. Given the planned larger arm cavity
beam sizes for future GW detectors, it is a task which will be just as important in detector
design in the coming decades. The design of such telescopes requires knowledge of the beam
parameters and accumulated Gouy phase over the full path of the system when testing
different configurations.

As a solution to this, and indeed other related tasks, a generic beam propagation function
was implemented in Finesse 3. This tool allows one to propagate an arbitrary beam (i.e.
with any initial beam parameter) through any optical path of a configuration — thus yielding
a set of the beam parameters, accumulated Gouy phases and ABCD matrices corresponding
to this propagation. The optical path is bi-directional, allowing for back-propagations of
beams in addition to forward propagation. This function was used extensively throughout
Chapter 3 to obtain the results noted there; note in particular Figures 3.9 and 3.10 in that
chapter, which correspond to direct plots of the return of this function for the given telescope
designs.

Furthermore, the implementation of this tracing functionality is also motivated by the in-
creasing need for such automated tools in many aspects of detector design. For example,
the layout of optics for frequency-dependent squeezing relies heavily on mode matching tele-
scopes; see, e.g., [106]. Providing the ability to design such systems with a fast and robust
algorithm, alongside a useful interface for observing beam changes over optical paths, is
something that the Finesse 3 beam tracing library offers.

2.2.4.1 Symbolic beam propagation

The beam propagation tool is also capable of storing the symbolic form of beam parameters,
ABCD matrices and properties dependent on these at each node of an interferometer model.
This is a powerful feature, which allows leveraging of the speed of NumPy [107] to compute
properties of the beam as a function of any of its dependent parameters. More details on
this can be found in [108].
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Figure 2.15: This shows an example where symbolic beam propagation has been utilised to
demonstrate tuning of the aLIGO PRC telescope, giving both the beam size on the PRM
and the total accumulated Gouy phase in the PRC.

1 import finesse
2 import numpy as np
3

4 IFO = finesse.Model()
5 # Parse an aLIGO file
6 IFO.parse_file("design.kat")
7

8 # Propagate a beam from ITMY to PRM with symbolic expressions
9 beam = IFO.propagate_beam(IFO.ITMY.p2.i, IFO.PRM.p2.i, symbolic=True)

10 # Symbolic expressions for accumulated Gouy phase and spot-size at PRM
11 ACC_GOUY_SYM = beam.total_acc_gouy
12 W_PRM_SYM = beam.w(beam.end_node)
13

14 # Define a range of distance shifts in mm
15 dchanges = np.linspace(-200, 200, 201)
16 # Make a corresponding array of distance changes
17 # to length between PR2 and PR3 mirrors
18 distances = IFO.spaces.lp2.L.value + dchanges * 1e-3
19

20 # Evaluate the symbolic expressions from above
21 subs = {IFO.spaces.lp2.L: distances}
22 acc_gouys = ACC_GOUY_SYM.eval(subs=subs)
23 ws = W_PRM_SYM.eval(subs=subs)

Listing 1: Python source code for calculations which produce the traces shown in Figure 2.15.
Note the concise nature of this script and the interoperability with NumPy.
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A typical use case of this symbolic beam propagation, in the context of the more generic
aforementioned telescope design problem, is given in Figure 2.15. Here we perform a common
task of sweeping over the distance between telescope mirrors, in this case the PR2 and PR3
optics in the aLIGO PRC, and calculate the beam size at the PRM along with the Gouy
phase accumulated in the cavity. These are important values as the former is limited in the
design by the mirror size whilst the latter gives us a metric for the PRC stability (as we saw
in §2.2.2.2) and is also constrained to certain values to allow the alignment sensing system
to operate. With the Finesse 3 symbolic beam propagation capabilities, computations such
as this can be performed with only a few lines of code — see Listing 1.

There is scope for more work on this feature of Finesse 3 in the future — including simpli-
fication of these symbolic expressions, providing the opportunity to obtain concise, analytic
representations of beam parameters, and associated properties, in an optical path.

2.2.4.2 Matrix-less simulations

It is worth noting too that the beam tracing also forms the core part of another type of
simulation which can performed in Finesse 3 — namely “matrix-less” simulations. These are
simulations in which the interferometer matrix itself doesn’t need to be solved, simulations
of this type are created automatically when the only detectors present in a model are those
which do not need the field amplitudes to compute their outputs. Such detectors include,
but are not limited to, beam property detectors (which probe a specific property of a beam
parameter at a node), accumulated Gouy phase detectors (for summing the Gouy phases
accumulated over a path) and mode mismatch detectors (which calculate one minus the
overlap, see Equation (2.18), for a coupling at a component). Given that no scattering
matrix calculations, component matrix filling nor solving of the full interferometer matrix
occurs in such simulations, these are typically very fast to execute.

Matrix-less simulations are covered in terms of the “flow” of the program for such model
types in §6.4. That section will also compare the logic of how these simulations are executed
with more typical matrix simulations.

2.3 Mode scattering matrices

As mentioned previously in §2.2, Finesse 3 uses modal coupling coefficients, computed in
a Hermite-Gauss basis (see §1.3.2.3), to calculate field amplitudes for higher-order modes.
These coupling coefficients describe how the modal components of an electric field defined
by a modal basis q1 couple into the modal components of a field defined by another basis
q2. This, therefore, has mathematical consequences for when mode mismatches (see §2.2.3.2)
are present in a system due to the non-zero coupling to HOMs that then occurs between
these differing bases. In addition to providing a framework for computing couplings due
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to mismatches, coupling coefficient calculations can also be used for describing misaligned
optical systems; e.g. where the optical axes of two cavities do not overlap.

In this section we will cover the necessary mathematical details for coupling coefficient cal-
culations (§2.3.1) using the Bayer-Helms [109] formalism, explore how matrices of coupling
coefficients (termed “scattering matrices”) are computed in Finesse 3 (§2.3.2) and briefly
discuss how HOM simulations may be optimised by avoiding the computation of unnecessary
coupling coefficients (§2.3.3).

2.3.1 Coupling coefficients and the overlap integral

Figure 2.16: The transformation of coordinate systems across two different beam segments.
The input beam is described by beam parameter q1 and is in the coordinate system (x, y, z)
whilst the output beam can be described with q2 and is in a new coordinate system (x′, y′, z′).
This latter coordinate system is obtained by rotating the former system around the y-axis
by a misalignment angle γ. Note that if q1 = q2 then we have a case of pure misalignment
with no mismatch. Simplified coupling coefficients for such a scenario can be found in [109].

Consider Figure 2.16, here a beam described by the basis q1 in a coordinate system (x, y, z)
encounters a “boundary” (i.e. typically an optical surface) where the subsequent beam is
given by the basis q2 in a new coordinate system (x′, y′, z′). This new coordinate system
is found by rotating the x-z plane by an angle γ. We can refer to this as optical axis
misalignment. If the spatial distribution of the input beam is un′m′(x, y; q1) and of the
output beam is unm(x, y; q2), then we can define the amplitude of a given mode, HGn′m′ , for
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the output beam as [56]

unm(x, y; q2) exp (i (ωt− kz)) =
∑
nm

knmn′m′un′m′(x, y; q1) exp (i (ωt− kz′)), (2.23)

where the complex values knmn′m′ are then the coupling coefficients from the modes HGn′m′

into HGnm. Here we have assumed that the spatial distributions are described in the Hermite-
Gauss basis. Given that HG modes are orthonormal, as described in §1.3.2.3, the computa-
tion of these coupling coefficients can be performed via the overlap integral [109]:

knmn′m′ = exp
(
i2kz′ sin2

(γ
2

))∫∫
dx′ dy′un′m′ exp (ikx′ sin γ)u∗nm. (2.24)

Whilst Equation (2.24) can be calculated via numerical integration methods, this operation
can be computationally expensive — especially for cases with both mode mismatches and
misalignments. Instead, Finesse 3 uses an analytic solution to Equation (2.24), provided
by the framework from Bayer-Helms [109], to compute coupling coefficients efficiently. An
excellent summary of this analytic solution can be found in Section 9.16 of [56].

2.3.2 Computing coupling coefficients in Finesse 3

Coupling coefficients are calculated in modal Finesse 3 simulations both initially (based
on the starting state of the model) and whenever a dependent parameter, such as a beam
parameter or tilt angle, changes during an axis scan. The exact form that these calcula-
tions take, in the context of applying them to component coupling matrices, is covered by
the example of applying such computations to a mirror component in §2.3.2.2. First, how-
ever, we will clarify a subtlety between the Bayer-Helms solution [109] and the Finesse 3
implementation.

2.3.2.1 Gouy phase shifts and coupling coefficients

A subtle difference between the conventions of Finesse 3 and the mathematical derivation
of the Bayer-Helms coefficients lies in how Gouy phase shifts are applied. In Finesse 3,
this phase shift is included as part of the propagation of a field through a space component.
Consequently, the equation describing the evolution of the amplitude of a field through a
medium with refractive index nr and total distance L is [76]

bout = bin exp

(
−i
(
nrL∆ω

c
+

(
1

2
+ n

)
Ψx +

(
1

2
+m

)
Ψy

))
, (2.25)
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where ∆ω is the offset to the default frequency (i.e. ω − ω0) and Ψx and Ψy are the Gouy
phases accumulated over the space in the tangential and sagittal planes, respectively. These
Gouy phase accumulations are defined as

Ψ[x|y] =

∣∣∣∣arctan

(
zout,[x|y]

zR,out,[x|y]

)
− arctan

(
zin,[x|y]

zR,in,[x|y]

)∣∣∣∣ . (2.26)

The effect of this convention is such that Gouy phase shifts are explicitly included in the
amplitude coefficients, anm, of the field (single frequency, ω):

E(t, x, y, z) =
∑
n,m

anm unm(x, y; ~q) exp (i (ωt− kz)). (2.27)

This is in contrast to the Bayer-Helms coefficients, which have been derived assuming that
the Gouy phase is included in the spatial profile, unm(x, y; ~q), of this formula. To rectify
this difference in Gouy phase application, each coupling coefficient, knmn′m′ , in Finesse 3 is
rotated (in complex space) by an angle

φr =

[(
1

2
+ n′

)
ψx,2 +

(
1

2
+m′

)
ψy,2

]
−
[(

1

2
+ n

)
ψx,1 +

(
1

2
+m

)
ψy,1

]
, (2.28)

where ψ[x|y],1 and ψ[x|y],2 are the Gouy phases of the input and output beams, respectively.
Qualitatively, this is equivalent to removing the Gouy phase of the input beam parameter
and adding the Gouy phase of the output beam parameter; an operation referred to as
“reversing” the Gouy phase in Finesse 3 parlance.

A result, and indeed an intended goal, of this convention is that mode mismatches never occur
across spaces in Finesse 3. Instead, they will always occur at component boundaries (as we
will see by the example of a mirror in the next section). An advantage to this representation
is that computationally expensive scattering matrix calculations can be avoided entirely
for space components (which are inevitably numerous, especially in large optical layouts);
without any loss of generality, as scattering into HOMs will still occur as necessary.

2.3.2.2 Example: Scattering matrices at a mirror

Here we will explore how coupling coefficients can be used alongside the coupling matrix
framework already covered in §1.4.2. To do this, we will use the example of a mirror —
observing how the overall coupling matrix for this type of component is modified for modal
simulations, and why matrices of coupling coefficients (scattering matrices) are useful con-
structs. See Figure 2.17 for a pictorial representation of the terms used in this section.
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Considering Figure 2.17, and recalling the mirror input-output relations from §1.4.2.2, we
can write the full, modal coupling matrix (for fields of a single frequency) as



a1o, 00

a1o, 01
...

a2o, 00

a2o, 01
...


=



m11 k0000 m11 k0001 . . . m21 ρ0000 m21 ρ0001 . . .
m11 k0100 m11 k0101 . . . m21 ρ0100 m21 ρ0101 . . .

...
... . . . ...

... . . .
m12 p0000 m12 p0001 . . . m22 κ0000 m22 κ0001 . . .
m12 p0100 m12 p0101 . . . m22 κ0100 m22 κ0101 . . .

...
... . . . ...

... . . .





a1i, 00

a1i, 01
...

a2i, 00

a2i, 01
...


, (2.29)

where the coupling coefficents from modes nm into n′m′ are noted as k for the front surface
reflection, κ for the back surface reflection, p for the front to back surface transmission and ρ
for the back to front surface transmission. The terms m11, m22, m12 and m21 are identical to
those given previously in §1.4.2.2. Finally, the quantities a(1|2)[i|o], nm give the field amplitude
at the specified node for the corresponding HGnm mode.

From Equation (2.29) it is clear to see that, by using this matrix structure, we can write

K11 =

k0000 k0001 . . .
k0100 k0101 . . .
...

... . . .

 K22 =

κ0000 κ0001 . . .
κ0100 κ0101 . . .
...

... . . .



K12 =

p0000 p0001 . . .
p0100 p0101 . . .
...

... . . .

 K21 =

ρ0000 ρ0001 . . .
ρ0100 ρ0101 . . .
...

... . . .

 .

(2.30)

The matrices in Equation (2.30) are the scattering matrices for a mirror, and correspond to
the symbols of the same names in Figure 2.17. Using these matrices we can write a more
compact form of the mirror coupling matrix in Equation (2.29) as

M =

(
m11 K11 m21 K21

m12 K12 m22 K22

)
. (2.31)

This same procedure can be applied to other components — e.g. beam splitters, lenses —
such that the computation of scattering matrices is a generic operation applicable across
modal Finesse 3 simulations.
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Figure 2.17: Scattering matrices, as a function of their dependent beam parameters, asso-
ciated with each coupling at a mirror. Each of q1i,t, q1i,r, q2i,r, q2i,t represent the respective
input beam parameters transformed according to the reflection (r) and transmission (t) mir-
ror ABCD matrices using Equation (2.2). Note that the Knm matrices here will also be
dependent upon the tilt angle(s) of the mirror relative to the optical axis in the full picture.

2.3.2.3 Performance

The implementation of Bayer-Helms based coupling coefficient calculations programmed into
Finesse 3 is heavily optimised. Extensive use of variable caching, including contiguous
caching of complex powers, is performed to significantly improve the performance of scatter-
ing matrix calculations over other implementations of this type of code. A direct example
of this is shown in Figure 2.18a, where scattering matrices for a pair of mismatched and
misaligned beams are computed for different maximum TEM orders. Note that this maxi-
mum order value is a triangular number coefficient, meaning that the total number of HOMs
scales as

NHOMs =
(MT + 1)(MT + 2)

2
, (2.32)

whereMT is the maximum TEM order (as given on the x-axis of Figure 2.18a). On this plot,
we show the same scattering matrix computations using both Pykat [74] and Finesse 3. The
Finesse 3 benchmarking results are split between single-threaded and multi-threaded modes.
The other plot shown in Figure 2.18 gives an indirect comparison for the scattering matrix
performance between Finesse 3 and Finesse 2. This is done because directly comparing
the performance of this code for Finesse 2 is non-trivial, due to the nature of the code-base.
The indirect comparison uses a typical modal simulation of an input beam mode mismatched
to a Fabry-Perot cavity whilst sweeping over the tilt misalignment of the input mirror.
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(a) Direct comparison of calculation times for scattering matrices,
computed via the Bayer-Helms analytic method, in Finesse 3 versus
Pykat [74].
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(b) Indirect comparison of scattering matrix computation performance
in Finesse 3 versus Finesse 2. These data were obtained via a
simulation dominated by coupling coefficient calculations.

Figure 2.18: Benchmarking scattering matrix computation times both directly (a) and indi-
rectly (b). The indirect comparison uses a simulation dominated by calculations of coupling
coefficients. More specifically, the model it uses constitutes an input beam mismatched to a
cavity where we sweep over the tilt of the input mirror of the cavity with an axis scan. This
means that coupling coefficients with both mismatch and misalignment constituents must
be computed (between all modes up to the given order) at this input mirror at each data
point. On both sub-figures the red and blue dots represent single and multi threaded (using
a 4-core, 8-thread processor) computations of scattering matrices in Finesse 3, respectively.

56



2.3 Mode scattering matrices

2.3.3 Selecting the mode indices to model

One new feature of Finesse 3 (not implemented by previous versions of the code) is the
ability to explicitly select which mode indices to include before running a modal simulation.
This mode-selection feature is physically motivated by the “mode index invariance” of, for
example, Equation (2.29). That is to say that it doesn’t matter which modes are included
— so long as coupling coefficients are computed between all of them such that the scattering
matrices are square in all cases. Non-contiguous jumps between mode indices will not affect
the results of a modal simulation, so long as the couplings between the selected modes and
filtered-out modes would be zero anyway. This invariance provides the option of significant
performance enhancements to specific modal simulations. An example of this will be given
in §2.3.3.2. Before we cover this example, however, we will first rationalise the motivation
behind this feature and indicate the types of mode selection patterns which can be useful.

2.3.3.1 Misalignments and mode mismatches as additions of HOMs

From §1.3.2.3, we have seen that we can write the spatial profile of Hermite-Gauss modes in
the tangential plane as

un(x, z) =

(
2

π

) 1
4
(

exp (i(2n+ 1)ψ(z))

2nn!w(z)

) 1
2

Hn

(√
2x

w(z)

)
exp

(
−i kx2

2RC(z)
− x2

w2(z)

)
. (2.33)

In this section we will consider “distortions” to this distribution in terms of mode mismatches
and misalignments. To simplify the maths here, we can set z = 0 such that we are at the
waist position of the beam. Doing so reduces Equation (2.33) to

un(x, z = 0) =

(
2

π

) 1
4
(

1

2nn!w0

) 1
2

Hn

(√
2x

w0

)
exp

(
− x

2

w2
0

)
, (2.34)

where we have noted that the Gouy phase ψ(z = 0) = 0 (using the definition via Equa-
tion (1.25)) and the wavefront radius of curvature at the waist is Rc(z = 0) = ∞. The
fundamental mode (n = 0), i.e. a pure Gaussian profile, at the waist can then be written as

u0(x) =

(
2

πw2
0

) 1
4

exp

(
− x

2

w2
0

)
. (2.35)

It is from Equation (2.35) that we can now deduce couplings to HOMs when applying defects.
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Firstly we will consider the case of misalignment in the tangential plane. We can describe
this as [110, 56]:

utilt(x) = u0(x) exp (i kx sinα) ≈ u0(x) exp (i kαx), (2.36)

where α is the angle of rotation of the beam from the initial optical axis and is assumed to
be small. We can expand the exponential in Equation (2.36) to give us

utilt(x) = u0(x)
∞∑
j=0

(i kαx)j

j!
. (2.37)

From this equation we can see that small tilt angles yield HOM terms in ∼ αj xj with
j ∈ Z>0. This means that a tilt in the tangential plane can be described as additions of
modes HGj0; and, similarly for a tilt in the sagittal plane, modes HG0j. One may then select
only these modes, up to a given order (determined by the magnitude of the misalignment),
in Finesse 3 if modelling a system with either of these tilts — assuming that the incident
beam of such a system is an aligned, fundamental Gaussian (i.e. HG00). An example of the
former case (tangential plane tilts) is given in §2.3.3.2.

We can perform a similar treatment in the case of a mode mismatch. Note that beams can
be mismatched in both waist size and / or waist position, however we will only cover the
former case; the same principles apply to the latter case, one can find a treatment of this in
[110]. We can describe a small fractional offset, ε, to the original beam waist size (w0 in the
equations above) via:

w′0 = (1 + ε)w0. (2.38)

This allows us to express the spatial profile of the waist size mismatched beam as

usize(x) =

(
2

πw2
0

) 1
4 √

1 + ε exp

(
− x

2

w2
0

(1 + ε)2

)

=

(
2

πw2
0

) 1
4

exp

(
− x

2

w2
0

)√
1 + ε exp

(
−εx

2

w2
0

(2 + ε)

)

= u0(x)
√

1 + ε exp

(
−εx

2

w2
0

(2 + ε)

)

≈ u0(x)
√

1 + ε exp

(
− 2ε

w2
0

x2

)
,

(2.39)
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where we have neglected the ε2 term in the exponential by assuming this value is small.
Again, we can expand this exponential yielding:

usize(x) = u0(x)
√

1 + ε
∞∑
j=0

(−1)j

(
2ε
w2

0
x2
)j

j!
. (2.40)

From this equation then, we see that terms in ∼ εjx2j, with j ∈ Z>0 as before, are obtained.
This translates to couplings only to evenly-spaced modes. Consequently, if the incident beam
is described purely by HG00, then a mismatch (in waist size) with a different beam will lead
to scattering into the HG(2j)0 modes. Note that this waist-size mismatch applies equally to
the sagittal plane, so that HG0(2j) modes (as well as the “cross-modes” HG(2nj)(2mj) where
n,m ∈ Z>0) are also produced.

In both cases of misalignment and mismatch, one can note that the coefficients of higher
order x terms scale as cj (where c = α for misalignment and c = ε for waist size mismatch).
Thus, for larger misalignments and mismatches, greater HOM orders are required to describe
the resulting imperfection(s) between the beams. Note that as this analysis (and Finesse
3) uses HG modes, any misalignment and mismatch must obey the paraxial approximation
(see §1.3.2.1) in order to be able to be modelled accurately. Furthermore, the analytical
framework provided by Bayer-Helms [109] also assumes that the order of mode mismatch
and / or beam axis misalignment between two frames is relatively small. See Section 4.9 of
[76] for a good summary of the limits to the paraxial approximation as pertaining to the
coupling of HOMs.

2.3.3.2 Example: Scanning yaw angle of a beam splitter

An exemplary case of how mode-selection can significantly improve the performance of cer-
tain modal simulations is highlighted in Figure 2.19. This is based on a model where the light
power on reflection from a yawing (i.e. rotating around the y-axis) beam splitter is detected.
Included in the plot are computation times for this simulation using all modes up to a given
maximum order MT (see Equation (2.32)); for both Finesse 2 (red dots) and Finesse 3
(black dots). Compare these data to the blue markers, which show simulation run-times in
Finesse 3 where only tangential plane modes (i.e. HGn0 with n ∈ [0,MT ]) are included now;
using the information provided in §2.3.3.1. The results of the simulation are the same in all
cases, as tilting the beam splitter in this way will only scatter the incident light (assuming
this is purely HG00) into tangential modes; if the plane of rotation was swapped to rotating
around the y-axis then only sagittal modes would be produced.

Even with this small example, given by Figure 2.19, the performance benefits are very
significant. At a maximum mode order MT = 15, one can see that the mode selection
simulation is ∼ 200 times faster than Finesse 2 and ∼ 20 times faster than Finesse 3 with
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all modes up to MT modelled.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Maximum TEM order

10−2

10−1

100

101

102
C

om
pu

ta
ti

on
ti

m
e

[s
]

Finesse 2
Finesse 3 (all modes)
Finesse 3 (x modes)

Figure 2.19: Benchmarking the performance of a modal simulation detecting power on reflec-
tion from a beam splitter where the yaw angle is scanned. Both the Finesse 2 and red-dot
Finesse 3 data are from simulations in which no explicit mode selection is performed,
whereas the blue-dot Finesse 3 data selects only tangential modes due to the nature of this
simulation.

2.3.4 Future work

The planned work for the near-future, as pertaining to coupling coefficients in Finesse 3,
is to implement scattering matrix calculations for surface maps and clipping due to finite
apertures. Both of these features were previously implemented for Finesse 2, however they
use purely numerical integration routines for computing these types of coupling coefficents.
This is an area for potential improvement, both in terms of performance and documenting the
calculations, in which the Finesse 3 implementation ideally would include analytic solutions
for modal scattering due to surface distortions and apertures. For the latter case, there are
possible recipes in the literature [60] which can be followed.

Another prospective improvement is the ability to define small lateral displacements of optics.
This is a feature which was not implemented in Finesse 2, however solutions exist in both
the Bayer-Helms (see, in particular, Section III B of [109]) and other (e.g. Section 3.3.3 in
[60]) formalisms for describing translations of beams in terms of coupling coefficients. This
will be a particularly useful feature to implement, as it would avoid the current necessity to
mimick beam shifts through the use of an off-axis telescope with tilt angles applied to both
optics (see, for example, [111, 112]).
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2.4 Capturing beam images

One way of probing the modal content of light fields in Finesse 3 is to detect the beam
image itself. This detection is separated into two camera types — CCDs and “complex
cameras”. The former computes the intensity per unit area (acting like a CCD camera in
an experimental setup), see §2.4.1, whilst the latter calculates the amplitude and phase, per
pixel, of the beam at a specific frequency, see §2.4.2. Each method relies on using the complex
field amplitudes, anm, at the probed location(s) in the configuration. As these quantities are
computed via the modal scattering framework (see §2.3), it follows that the beam images
themselves are formed via the computed coupling coefficients.

2.4.1 CCDs

The detector output function for a single pixel at coordinates (x, y) of a CCD type camera
in Finesse 3 is [76]

s(x, y) =
∑

ij

∑
nm

unm(x, y;~q)u∗nm(x, y;~q) ainma
∗
jnm with { i, j | i, j ∈ N0 ∧ ωi = ωj } ,

(2.41)

where ω is the (angular) frequency of a field and aknm are the amplitude coefficients for the
HGnm field at frequency ωk. The quantity unm(x, y;~q) ≡ unm(x, y; qx, qy) is the full spatial
profile function of a HGnm mode (see §1.3.2.3 for details). The value of s(x, y) is then a real
number representing the intensity per unit area of the beam.

2.4.2 Complex cameras

Complex type cameras detect the amplitude and phase of a field at a single frequency, as
a function of the coordinates (x, y) of each pixel. Commensurately, the equation describing
this output is [76]:

z(x, y) =
∑

j

∑
nm

unm(x, y;~q) ajnm with { j | j ∈ N0 ∧ ωj = ωp } , (2.42)

where ωp is the “probing” frequency — i.e. the frequency of the field to detect. Note that,
as opposed to CCD type detectors, the output value, z(x, y), now is a complex number
as it contains both the amplitude and phase information for the probed field at the given
coordinates.
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2.4.3 Dimensionality of camera-type detectors

A significant improvement to beam imaging in Finesse 3, as compared to previous versions,
is the ability to detect the intensity1 with different dimensions of detector. Each camera
probe is separated into three categories — Pixel, ScanLine and Image classes. With Pixel
cameras, one can detect the intensity at a single coordinate in the transverse plane; defaulting
to the central pixel if not specified. The ScanLine cameras provide the ability to detect this
quantity over a slice of the beam profile, and, naturally, Image type cameras compute the
full beam profile over both the x and y axes of the transverse plane. A consequence of
this is the relative ease for now executing higher-order simulations over multiple parameters
whilst calculating a specific dimension of a beam profile. The simulation example in the next
sub-section, §2.4.4, is one such demonstration of this. In that example, the beam profile is
generated in “one-pass” with a single parameter sweep. This is in contrast to Finesse 2
where one would need to explicitly scan over both axes of the camera to produce each beam
image. Executing a single parameter sweep, whilst using Image type cameras in Finesse 3,
also enables one to automatically produce animated plots of the resulting beam profile over
the scanned value. An example of this functionality can be found in [113].

In addition to providing a convenient interface, this separation by dimensionality also yields
significant performance enhancements. The detector output implementations of the Image
and ScanLine camera types leverage OpenMP [114] for executing multi-threaded compu-
tations of Equations (2.41) and (2.42) over the given coordinate data. A benchmarking
example of the Finesse 3 CCD image camera implementation, versus Finesse 2, is given
in §2.4.5.

2.4.4 Example: Mode scan of misaligned aLIGO arm cavity

A typical use-case of camera probes in Finesse is for verification of the beam shape when
dealing with a misaligned and / or mismatched system. As an example, in this section we will
look at an aLIGO arm cavity which has an optical axis misaligned, in the tangential plane, to
the incident beam by 0.8µrad — approximately 3% of the divergence angle (Θ ≈ 28µrad) of
the cavity eigenmode. This misalignment will excite HGn0 modes, as described by §2.3.3.1.
Note that this misalignment angle is fairly extreme, this is just for illustration and is not
indicative of the magnitude of residual misalignment observed in the aLIGO arm cavities.

Figure 2.20 demonstrates this example, performed by Finesse 3 using a photodiode and
CCD to detect the circulating power and intensity profile, respectively. Figure 2.20a shows
the circulating power when scanning the de-tuning of the cavity. This de-tuning is given
as a normalised quantity such that the HG00 resonance lies at φ = 0◦. From the resulting
resonance structure, we obtain the expected mode-spacing of δφ ∼ 24.4◦ — equivalent to the

1When we say “intensity” in this part, note that one may interchange this freely with “amplitude and
phase” as outlined by the detector types earlier.
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value calculated via Equation (2.12). Corresponding to this cavity scan, in Figure 2.20b we
plot the intensity profiles of the circulating beam at the detunings of each HGn0 resonance
peak. The beam shapes correspond to the expected profiles seen previously in §1.3.2.3. The
small offsets of each intensity profile from x = 0 are implicitly due to the misalignment in
the tangential plane.
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(a) Circulating cavity power mode scan. The de-
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Figure 2.20: A cavity scan of an aLIGO cavity with a misalignment of 0.8µrad at the
end mirror. On the left we see the expected modal resonance structure, showing scattering
into tangential HG modes. In the right sub-plot the intensity profiles of the beam, at
each resonance peak, are given — again showing the expected shape corresponding to the
resonance of each mode. Note that the axes of the intensity profiles are given in units of the
cavity waist size. This modal simulation was performed to maximum order of 8, with only
tangential modes selected (see §2.3.3 for mode selection details).

2.4.5 Performance

Again, as with scattering matrix calculations (see §2.3.2.3), my implementation of beam
image detection, via Equations (2.41) and (2.42), in Finesse 3 is well-optimised. As a short
benchmarking example, Figure 2.21 shows the run-times of a simulation where the intensity
profile of a fundamental Gaussian beam (HG00) is computed for increasing image resolutions.
On the resulting plot we compare Finesse 3 to Finesse 2 for the same simulations. One
can see that Finesse 3 is consistently and significantly faster than Finesse 2 for this type
of simulation.
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Figure 2.21: A comparison of execution times for simulating the intensity profile of an
HG00 beam, using different pixel resolutions. The Finesse 3 simulations are consistently
∼ 100 times faster than Finesse 2 in this case, as a result of the optimised camera output
implementation.

2.5 Summary

The presence of HOMs in GW detectors is an issue which requires careful analysis for gaining
an understanding of the underlying physics. Due to the inherently messy nature of the ana-
lytics involved with HOMs, modelling these extra fields via interferometer simulation tools
is required in most cases. The current software packages in the detector community used
for these types of modal modelling tasks provide an excellent toolset in this regard. How-
ever, improvements, optimisations and new features can always be built upon these existing
frameworks. In this chapter I have introduced some of the HOM simulation capabilities of
one such new package — Finesse 3 — which builds upon the work of previous Finesse,
and related software, versions [73, 74].

A short summary of the aspects of HOM modelling tools I have developed are as follows.
For improved modelling capabilities my implementation of asymmetric tracing (§2.2.3.3)
and flexible dependency ordering (§2.2.3.5) provide the means for greater control of mode
mismatches. On the topic of speeding up HOM simulations, my work on implementing ef-
ficient coupling coefficient calculations (§2.3.2.3), beam imaging computations (§2.4.5) and
the mode selection feature (§2.3.3) provide significant performance improvements over Fi-
nesse 2. Finally, as utilities outside of typical simulations, the beam tracing tools (§2.2.4)
I implemented allow for easy propagation analysis of arbitrary paths in an interferometer-
type setup; we will cover such a use case in the next chapter. The symbolic beam tracing
framework also provides the potential for further development in the future — for example,
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for limiting the impact of numerical errors on mode mismatches by way of simplification of
analytically expressed terms.

One of the key developments in Finesse 3 is the implementation of a flexible and cus-
tomisable beam tracing library. This library uses the well-established framework of beam
parameter propagation via ABCD matrices as well as the analytics behind optical cavity
eigenmodes, as covered in §2.2.1 and §2.2.2, respectively. My implementation of the beam
tracing is covered in more detail in §2.2.3. Specifically, in this section we showed how the
TraceForest and TraceTree structures are useful representations of the beam propagation
paths in an interferometer. A key aspect of Finesse 3 beam tracing is the ability to clearly
define the priorities of propagation from different dependencies. In §2.2.3.5 we showed that
this is important due to the effect that these trace orders can have on the results of certain
modal simulations. The addition of the asymmetric tracing feature delivers a way to limit,
and in some cases remove as we saw in Table 2.1 and Figure 2.11, simulation-specific mode
mismatches which would not exist in a real experimental set-up.

Calculating coupling coefficients, from one modal basis into another, underpins the core of
how Finesse 3 models HOM effects in interferometers. Thus, it is important that these
computations are well-defined and efficiently implemented. My work in this area focuses
towards the latter consideration here. As we saw earlier in §2.3.2.3, my implementation
of Bayer-Helms [109] based scattering matrix calculations provide significant performance
improvements over previous iterations. On the topic of clearly detailing the nuances of
this implementation, §2.3.2.1 provides in-depth definitions of the “reverse Gouy” operation
carried out by Finesse 3. We will recall the analytics of coupling coefficients in Chapter 5,
for the specific case of a beam misaligned to the optical axis of an aLIGO arm cavity.

Capturing images of beams in an interferometer can be a good method for checking the
modal content of the beam. We have shown, in §2.4, how this can be achieved in Finesse
3 — both in terms of the intensity profile (as an analog to a CCD in an experiment) and
the amplitude, phase of the field. Due to the complicated nature of these calculations,
requiring the computation of the spatial distribution unm(x, y; q) for each coordinate, it is
important for these to be well-optimised. This is especially true of simulations requiring lots
of modes (e.g. for large mismatches and/or misalignments). It was shown in §2.4.5 that my
implementation of these calculations provides a significant speed-up over previous iterations
of the Finesse software.

In summary, in this section we have outlined the importance of modelling HOMs, how
Finesse 3 performs modal simulations and, importantly, improvements that I have made to
modal modelling capabilities. Over the next few chapters we will explore specific use cases
of Finesse 3 for simulating modal effects in GW detectors, in terms of design related tasks
for the Einstein Telescope.
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Chapter Three

Feasibility Study of Beam Expanding
Telescopes in the Interferometer Arms
for the Einstein Telescope

This chapter is a reformatted and edited version of my paper: Samuel Rowlinson, Artemiy
Dmitriev, Aaron Jones, Teng Zhang, and Andreas Freise, “Feasibility Study of Beam Expand-
ing Telescopes in the Interferometer Arms for the Einstein Telescope” [1]. I am the principal
author of this paper and was the lead of all of the modelling work. The beam tracing tools
used to carry out this modelling work were also developed by me, the details of which can be
found in §2.2. Figures 3.5 and 3.10 were not included in this paper and have been added here
for extra information. In addition, §3.4.1 was added as a further exploration of the ET-HF
telescope design flexibility.

The Einstein Telescope (ET) is a proposed third-generation gravitational wave detector [44].
Once constructed, ET will provide an unprecedented level of sensitivity enabling: precise
tests of General Relativity, studies of compact binary coalesces involving both intermediate
black holes and neutron stars, and will be sensitive enough to test several dark matter
candidates [115]. ET combines a unique layout and design combining well-proven concepts
from current gravitational-wave detectors with new technology. Figure 3.1 shows a sketch
with the basic features of the layout: the ET observatory is composed of three detectors
that together form an equilateral triangle. Each detector consists of two interferometers,
one low-frequency detector (ET-LF) with its sensitivity optimised for low frequencies from
3Hz to 30Hz and another high-frequency detector (ET-HF) with its sensitivity optimised
for high frequencies from 30Hz to 10 kHz.

Similarly to current generation gravitational wave detectors, i.e. Advanced LIGO [13] and
Advanced Virgo [14], each interferometer in ET is a Fabry-Perot Michelson interferometer
with power and signal recycling cavities (PRC & SRC) for arm cavity power enhancement
and shaping the signal response [116], respectively. This interferometer configuration pre-
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sented in [44] represents the initial detector anticipated to be installed, with upgrades and
refinements to be implemented over several decades. The details of the design of the initial
detector will be prepared, in sync with research and development of the required technology,
over the next years.

Figure 3.1: The diagram on the top right shows a general overview of the ET observatory
layout, with 3 detectors forming a equilateral triangle of 10 km length. Bottom left is a
sketch that shows that each detector consists of two interferometers, one optimised for high
frequencies (HF) and one for low frequencies (LF). The core interferometer layout is based
on a Michelson interferometer with Fabry-Perot cavities in the arms and recycling.

3.1 Motivation

The Fabry-Perot cavities in the arms of the detectors are designed to have large beam
sizes on the test mass mirrors, i.e. the input test mass (ITM) and end test mass (ETM),
for reducing the impact of thermal noise of the optics on the detector sensitivity. Beam-
expander telescopes are used to match input light with smaller beam diameters to the larger
beams in the arm cavities. In Advanced LIGO such telescopes are located between the beam
splitter and the recycling mirrors [20], and in Advanced Virgo similar telescopes are part of
the input-output optics outside the main interferometer [117].

However, in the ET the beam sizes on the main mirrors are significantly larger, requiring a
very large substrate for the central beam splitter, larger than the main optics, due to the
angle of incidence of 60 deg. In this chapter we investigate the feasibility of an alternative
layout with beam-expander telescopes located between the main beam splitter (BS) and the
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arm cavities. Such telescopes would provide smaller beam sizes in the central interferome-
ter formed by the beam splitter, power recycling mirror (PRM) and signal recycling mirror
(SRM), allowing for the use of much smaller optical components. This not only reduces
the cost and complexity of these optics and their suspension systems, but also simplifies
the mitigation of secondary reflections and scattered light, and reduces the effect of beam
jitter [118]. Figure 3.2 shows a sketch of the optical layout in the lower left corner of the
ET triangle, including possible locations for the beam expansion telescopes. An additional
advantage of positioning the telescopes between the beam splitter and arm cavity is that
Z-shaped telescopes provide flexibility in beam steering, for example they provide the possi-
bility to steer the ET-HF beam around the suspension system of the ET-LF ITM, and they
decouple the angle of incidence on the main beam splitter from the angle between the long
interferometer arms [119, 120].
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Top view of left lower corner of one tunnel
in the triangle,  showing ITMs of one detector, 
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Figure 3.2: This is a sketch of the lower left corner of the triangle, showing an example
implementation of the optical layout, the vacuum system for the main optics and the corre-
sponding cavern layout. In particular this shows the possible location of Z-shaped telescope
systems for ET-LF and ET-HF detectors. In this example the telescopes have been placed
to achieve an angle of incidence of 45◦ on the ET-HF beam splitter.

In this chapter we analyse different arm telescope designs with the target of achieving a
6mm large beam waist at the main beam splitter. The constraint on the size of this waist
(and thus the spot size on the beam splitter) is rationalised in §3.2, where other constraints
stemming from the design of the central interferometer and the arm cavities [44] are discussed
as well. Regions of interest in our parameter searches, covered in §3.3 for ET-LF and in §3.4
for ET-HF, are defined as regimes where the telescope configuration gives this 6 mm waist
positioned at the beam splitter, whilst the SRC is stable.

In §3.5, we present an analysis on the sensitivity of the ET-LF telescope solution to each
free parameter. Following on from this, a preliminary study quantifying the necessary active
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changes (for mode matching) to the telescope mirror curvatures in the presence of thermal
lensing in the ITM, is given. The results in this chapter were obtained using beam param-
eter propagation [59] via the symbolic ABCD matrix capabilities of Finesse 3 [75]. The
methodology involved grid-based searches of the parameter space to find regions satisfying
the aforementioned requirements. In this context, grid-based searches are defined as analyses
of high dimensional scans over any given free parameters. An independent verification of the
results was performed using a new analytical framework for optimisation of beam expansion
telescopes in coupled cavities [121].

3.2 Arm cavity eigenmode and telescope constraints

The maximal beam sizes on test masses is set via the tolerance on power lost through clipping
at the mirror edge. This clipping loss (in terms of power) due to a finite aperture for LG
modes1 is given by [56]

lclip = 1− p!(p+ |l|)!
p∑

m=0

p∑
n=0

(−1)n+m

(p− n)!(p−m)!

1

(|l|+ n)!(|l|+m)!n!m!
γ(|l|+ n+m+ 1, X),

(3.1)

where X = 2R2/w2, with R as the mirror radius and w as the radius of the beam impinging
on the mirror, and γ is the lower incomplete gamma function.

The HG00 mode is equivalent to the LG00 mode, allowing us to use Equation (3.1) for the
ET-D optics (setting p = l = 0). Given this, we can express the clipping loss for the mirrors
in both the ET-LF and ET-HF arm cavities as simply

lclip = exp

(
−2R2

w2

)
. (3.2)

The relation then, for the maximum beam size wmax permissible to achieve a minimum
clipping loss lclip is given by:

wmax =

√√√√ 2

log
(

1
lclip

)R. (3.3)

The resulting beam sizes, and corresponding mirror radii of curvature, for ET-HF and ET-LF
1We use a formula for LG modes here as clipping losses due to circular apertures are more simply expressed

in terms of LG symmetry, as opposed to using an equation based on HG modes.
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that satisfy the requirement2 of a clipping loss of ∼ 1 ppm are listed in Table 3.1. Note that
the diameters of the mirrors shown in this table were taken directly from [122, 44] but do not
necessarily represent final design values. The arm cavity parameters shown in Table 3.1 are
used to define the arm cavity model serving as the starting point of the beam propagation
analyses in §3.3.

Table 3.1: A summary of the key parameters of the ET-LF and ET-HF arm cavities. Note
that we have assumed symmetric arm cavities for simplicity here.

ET-HF ET-LF
Wavelength (λ) 1064 nm 1550 nm
Cavity length (L) 10 km 10 km

Free spectral range (∆ν) 15 kHz 15 kHz
ITM/ETM diameter (Md) 62 cm 45 cm
ITM/ETM curvature (RC) 5070 m 5580 m

Beam radius on ITM/ETM (w) 12.0 cm 9.0 cm
Beam radius at cavity waist (w0) 1.42 cm 2.90 cm

Rayleigh range (zR) 591 m 1702 m
Distance to waist from ITM (z0) 5 km 5 km

Cavity stability factor (g) 0.95 0.63
Round-trip Gouy phase (ψRT) 333◦ 285◦

Mode separation frequency (δf) 1.1 kHz 3.1 kHz

3.2.1 Telescope parameter constraints

A simplified schematic of one beam-expander telescope is shown in Fig. 3.3. In order to
reduce the impact of thermal noise on the sensitivity, ET-LF will make use of cryogenics to
cool down the test masses to ∼ 10 to 20K. Cryoshields of around 40m length will be used
along the beam before and after the cryogenic mirrors [122], placing a lower limit on the
distance between the telescope mirrors and the ITM. Thus, commensurately setting a lower
limit for the SRC length for ET-LF. In §3.3.2 and §3.3.3 this distance is kept fixed at the
current design value of 52.5m.

The picture is different for ET-HF, where a signal recycling cavity length of 100 m or less is
preferred in order to improve the quantum-noise limited higher-frequency sensitivity [123].

2The total losses are typically dominated by scattering and absorption, however this standard clipping
loss value (which is small by comparison) is used to allow for small beam mis-centering.
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ET-HF does not use cryogenics, so that the lower limit on the SRC length is given only by
the minimum distance allowed between the vacuum tanks.

As stated in §3.1, we targeted a waist size of 6mm at the beam splitter. The final design for
the size of the beam on the central beam splitter will be based on a trade-off study including
the following considerations. In Advanced LIGO the main beam splitter sits between the
telescopes and the arm cavities [20] — resulting in a spot size on the central beam splitter
comparable to the beam size on the ITMs; and thus requiring a large beam splitter to avoid
clipping losses. In contrast, in this work, we propose placing the telescopes between the
beam splitter and the arms, to allow use of a smaller beam splitter, an idea briefly discussed
in [124]. Assuming a beam splitter radius of 15 cm and 60 degree intersection angle of two
incident beams, sub part per million clipping losses are achieved with beam sizes smaller
than ∼10mm, setting an upper bound on the acceptable beam size at the beam splitter.

BS

ZM2

ZM1

ITM

to other arm

SRM

to PRM

ITM
lens

ETM

L = 10 km

Figure 3.3: Schematic of an ET arm telescope with a lens at the ITM. This type of config-
uration is used for the analyses in this section, where the Z mirrors are flat in §3.3.1 whilst
the lens has an infinite focal length in §3.3.2.

Similarly to GEO600 [125], ET-HF will operate with ∼ kW levels of power on the central
beam splitter [122]. As such, this circulating power will induce thermal lensing in the beam
splitter substrate, as is the case for GEO600 [22]. This thermal lensing causes an undesirable
excitation of higher-order modes and reduces the interferometric visibility. The strength of
this lensing is related to the beam intensity and thus reduced with larger beams at the central
beam splitter. For consistency between both solutions, a waist size of 6mm at the central
beam splitter was targeted for both ET-LF and ET-HF. It is important to note, however,
that, in the case of ET-HF, this may contribute undesirably to scattering into higher-order
modes. The strength of this effect will require further studies.

Note that although the targeted beam size on the beam splitter is 15 to 20 times smaller than
that on the test masses of ET-LF and ET-HF, respectively, the thermal noise contribution
from the main beam splitter is still much smaller than that from arm cavity mirrors, taking
into account the arm cavity finesse, at around 900, and the fact that the beam splitter will
have fewer coating layers and a smaller substrate volume.
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3.3 ET-LF arm telescope design

In this section we analyse potential arm telescope configurations focusing on achieving a
stable SRC whilst keeping a waist size of w0 ∼ 6 mm near to the beam splitter. The analyses
in this section are performed for ET-LF. In this and the following sections we will describe
beam-expander telescopes with curved mirrors with a non-normal angle of incidence. With
the commonly used spherical mirrors, such telescopes would suffer from astigmatism which
would reduce the mode matching in the interferometer. Note that the following computations
assume spherical mirrors with small angles of incidence and negligible astigmatism. The
schematic layout shown in Figure 3.2 however implies relatively large angles of incidence;
requiring non-spherical mirrors. If the final optical design will include significant angles of
incidence, our results provide a good starting point for designing the required non-spherical
surfaces, based on the desired beam parameters along the optical path.

3.3.1 Flat Z mirrors

The simplest beam-expander configuration possible is one based on a lens at the ITM whilst
keeping the Z mirrors flat (i.e. they are just steering mirrors). Using our target waist size,
we can deduce an ITM lens focal length value for this setup, which is shown in Figure
3.4. Also displayed in that figure are the distances to the beam waist from the ITM. This
figure demonstrates that a distance of ∼ 1 km is necessary for maintaining a waist, of the
appropriate size, at (or near to) the beam splitter. Given the impracticality of this distance
(implying a comparable SRC length), we can reject this type of configuration.

3.3.2 Curved telescope mirrors, and no lens at ITM

Allowing the mirrors in the Z-configuration to have some curvature gives another type of
beam-expander configuration which can be explored for feasibility. Based on the results in
the single lens case we expect ZM2 to have a positive RoC for converging the beam rapidly
and ZM1 to have a negative RoC in order to achieve a small beam size on the beam splitter
over a short distance.

Another criterion comes from the stability of the SRC. The setup has significant number of
free degrees of freedom, i.e. RoCs of ZM1 and ZM2 , the telescope distance (the distance
between ZM1 and ZM2) and other free spaces in the SRC, which determine the round trip
Gouy phase. But the basic behaviour of this system can be understood intuitively when
combining a basic understanding of beam propagation and our simulation results. Firstly,
the accumulated Gouy phase contribution from ITM to ZM2 can be ignored, since this
distance is much smaller than the Rayleigh range of the beam from the arm cavities which
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Figure 3.4: The waist-size (blue) and distance to waist from ITM (red) of a beam matched to
the arm cavity for different ITM lens focal lengths. Highlighted on this plot is the focal length
value which corresponds to our targeted waist size. Note that even with some flexibility on
the waist size of a few millimeter, the required distance from the ITM to the waist is still on
the order of at least 0.5 km.

is ∼ 1.7 km as shown in Table. 3.1 and the Gouy phase is calculated as,

ψ = arctan

(
z

zR

)
. (3.4)

Secondly, the main Gouy phase contribution comes from the distance from SRM to the
telescope, because the Gouy phase changes faster near to the beam waist position, see Eq. 3.4.
For our analyses, a very short distance from the waist to the SRM of 10 m is assumed. Finally,
a minimal distance ∼ 100m between the beam-expander mirrors helps to reduce the overall
SRC length to ∼ 250m whilst retaining a 6mm beam waist.

Figure 3.5 displays the round-trip Gouy phase in this SRC over the curvatures of the telescope
mirrors, plotted at two distinct intra-telescope distances (between ZM1 and ZM2) of 50m
and 100m, to identify the regions of interest. In Figure 3.5a the interesting parameter
space is defined by a ∼ 6mm waist size and round-trip Gouy phase ψRT ∈ [20◦, 160◦] or
ψRT ∈ [200◦, 340◦]; i.e. representing a stable SRC which is not near-unstable (see Figure 2.2
in §2.2.2.2). This leads to a distance to the waist of the order of > 300m. To reduce this
distance the analysis was repeated for a longer distance between the Z mirrors as shown in
Figure 3.5b. Here the region of interest, defined as above, corresponds to a distance to the
waist from ZM1 of less than 150m.

The results shown in Figure 3.6 were obtained after the wide parameter space search demon-
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3.3 ET-LF arm telescope design

strated in Figure 3.5. This figure shows that a stable SRC is possible, however, a relatively
long SRC is required – on the order of 250m on average - whilst the RoC of ZM1 is small
relative to the ZM2 RoC. We can trade off the achievable SRC length and the required cur-
vature of ZM1, i.e. a shorter SRC can be achieved by reducing the radius of curvature of this
mirror – this ultimately comes down to a design choice, based on other design parameters
outside the scope of this work.
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Figure 3.6: ZM1 and ZM2 RoC combinations yielding a 6 mm waist size where the position
of this waist is less than 150 m from ZM1. The blue trace shows the round-trip Gouy phase,
ψRT, in the SRC. All the values in this trace satisfy the condition 20◦ ≤ ψRT ≤ 160◦ so
that every solution shown in this figure represents a stable SRC. The red trace gives the
corresponding length of the SRC for each of the RoC combinations.

3.3.3 Curved telescope mirrors with a lens at the ITM

The previous solutions, shown in Figure 3.6, lead to a relatively long SRC, > 100m. In this
section we will investigate how adding a lens at the ITM can be used to reduce the length
of the SRC and relax the requirements on the radius of curvature of ZM1.

We produced a set of animated plots of the round-trip Gouy phase to gain an intuition of
how the solution regions evolve. Similarly to §3.3.2, the content shown here is based on these
wide parameter searches and thus only shows the conclusions. We find short focal lengths
(f / 100 m) that result in a real waist beyond the ZM1 optic give solutions satisfying our
requirements. A focal length of f = 75 m was chosen for a more in-depth analysis. Note
that any focal length comparable to this value will result in similar telescope behaviour but
with slightly different solutions for the ZM1 and ZM2 curvatures and distances to the waist.
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(a) ψRT with 50 m telescope length.
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(b) ψRT with 100 m telescope length.

Figure 3.5: Round-trip Gouy phase in the SRC. The z contours here represent the distance
to the waist as measured from the ZM1 optic. All white regions are masked out as they
describe configurations in which there is a real waist between ZM1 / ZM2 or a virtual waist
behind ZM2. Plot (a) shows that there are two distinct regions in which the w0 = 6 mm
contour intersects with a stable round-trip Gouy phase - see the blue regions in the upper-
left and lower-right quadrants. The lower sub-figure, (b), then shows the same upper-left
quadrant for an increased distance between the Z mirrors, where this larger distance leads
to smaller distances to the waist from ZM1. This also corresponds to smaller round-trip
Gouy phase values due to the majority of the Gouy phase being accumulated from ZM1 to
the waist, allowing for a stable SRC in a wider range of curvatures as can be seen from (b).
Note that in (a) the small region where the round-trip Gouy phase is 720◦ occurs due to two
beam waists being present in the, unstable, SRC for configurations of this type.
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3.3 ET-LF arm telescope design

Using this focal length, and a distance between the Z mirrors of 50m, Figure 3.7 was produced
– giving the SRC round-trip Gouy phase over the ZM RoCs, with contours for the 6mm
waist size and distances to the waist (from ZM1) of 50 and 150m overlaid on the plot. These
contours, along with the color-map, frame the region which provides potential configurations
for achieving a stable SRC of a suitable length. It is immediately apparent from this figure
that the range of possible ZM1 curvatures which give solutions is much larger than for the
configuration with no lens at the ITM. Here the lens takes the role of focusing the beam such
that both ZM1 and ZM2 have negative RoCs and act together to collimate the beam from
the arm cavity. By inspecting Figure 3.7 we find that this solution region approximately
corresponds to ZM1 RoC ∈ [−130 m,−30 m], ZM2 RoC ∈ [−70 m,−90 m]. This region is
shown in Figure 3.8.
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Figure 3.7: SRC round-trip Gouy phase for an ITM lens of focal length f = 75 m and a
distance between the Z mirrors of 50 m. Note that the solutions now require the curvatures
of ZM1 and ZM2 to both be negative - this is because the ITM lens, of the focal length used
here, is responsible for focusing the beam to a waist from the arm cavity. ZM1 collimates
the beam going towards the beam splitter, whilst ZM2 acts as a “beam expander” to prevent
the beam (as propagated from the arm cavity) from focusing down to a waist too quickly.

We can use Figure 3.8 to pick a reference solution for the telescope parameters. One such
solution set is given in Table 3.2, where the curvature combinations were chosen such that a
relatively short SRC is obtained (important for ET-HF, see §3.2.1) whilst the edges of the
solution range are avoided (i.e. avoiding a near-unstable SRC). The resulting g-factor of
the signal recycling cavity for this solution set is g ∼ 0.37. In addition, this solution yields
> 99.9% mode matching between the SRC and arm cavity. A discussion of the ET-HF
results, also stated in Table 3.2, is given in §3.4.
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Figure 3.8: The key take-away from this plot is that by introducing a lens, shorter SRC
lengths can be obtained along with the option of less demanding (i.e. larger) ZM1 RoCs.
Taking ZM1 RoC = −40 m as an example data point, we see from this plot that this corre-
sponds to an SRC length of approximately 170 m and a round-trip Gouy phase of approx.
110◦. Compare this to the same ZM1 RoC value on Figure 3.6 which gives around 310 m
and 155◦ for these quantities, respectively.

Table 3.2: Parameters of the telescopes chosen using Figure 3.8, with values for the beam size
and accumulated Gouy phase associated with these given at each optic in the configuration.
Note that the computed values have been given to 2 significant figures to avoid unnecessary
precision at this stage. Where appropriate, values for LF and HF have been given separately.
See Figure 3.9 for a visual representation of these data for ET-LF. The focal length of the
ITM lens, in both cases, is 75m.

Optic SRM BS ZM1 ZM2

RoC [m] LF -9410 inf -50 -82.5
HF -630 -63.2

Beam radius [mm] LF 6.1 6.2 8.9 30
HF 6.3 6.4 8.3 38

Space SRM-BS BS-ZM1 ZM1-ZM2 ZM2-ITM

Length [m] LF 10 70 50 52.5HF 80

Gouy phase [deg] LF 7.5 39 5.3 0.6 Total accumulated
Gouy phase [deg]

52
HF 4.8 26 4.9 0.2 36
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Figure 3.9: The ET-LF telescope design from the arm cavity to the SRM is shown; where the
beam size and accumulated Gouy phase are plotted over the distance propagated through the
SRC. Note that the beam is roughly collimated from ZM1 to the SRM; this is an important
consideration for Figure 3.11.

3.4 ET-HF arm telescope design

The ET-LF solution given in Table 3.2 was used as a starting point for a similar analysis
on the ET-HF arm telescope. The results are then given in the same table, denoted with
HF to distinguish the values from LF where appropriate. The larger beam size (impinging
on the arm cavity mirrors, see Table 3.1), and shorter wavelength of ET-HF, result in the
requirement for a longer telescope length when considering the same waist size target of 6mm.
This increased length requirement can potentially be relaxed by decreasing this waist size
target, however the required trade-off study is beyond the scope of this work. The solution
given for ET-HF in Table 3.2 is optimised given this waist (and stable SRC) requirement.
Note, also, that the ET-HF solution uses the same ITM lens focal length (f = 75m) as the
ET-LF solution found in §3.3.3. The resulting g-factor of the signal recycling cavity for this
solution set is g ∼ 0.65. The solution stated also yields > 99.9% mode matching between
the SRC and arm cavity. A trace of the ET-HF SRC beam is shown in Figure 3.10.
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Figure 3.10: The ET-HF telescope design from the arm cavity to the SRM is shown; where
the beam size and accumulated Gouy phase are plotted over the distance propagated through
the SRC. Again, similarly to Figure 3.9, the beam is approximately collimated from the ZM1
optic to the SRM.
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Figure 3.11: The accumulated round-trip Gouy phase in the SRC and radius of the beam
impinging on BS for both ET-LF and ET-HF wherethe distance between the ZM1 and BS
is decreased from its nominal value given in Table 3.2. All other telescope parameters are
kept constant.
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3.4 ET-HF arm telescope design

Given that both the solutions for ET-LF and ET-HF result in a beam that is roughly
collimated between ZM1 and the SRM (see Figures 3.9 and 3.10), we can alter the distance
between BS and ZM1 without affecting the beam size on the beam splitter by much more
than a few hundred microns. This is demonstrated in Figure 3.11. Even by reducing this
distance significantly, e.g. to 10m, a stable SRC can still be obtained for both ET-LF and
ET-HF (with ψRT ≈ 60 and ψRT ≈ 40 degrees, respectively); where the beam size on the
beam splitter would then be around 5.7mm and 5.9mm for ET-LF and ET-HF, respectively.
Of particular importance to ET-HF, this could allow for a nominal reduction in the SRC
length from 210m to around 150m whilst keeping the other telescope parameters, shown in
Table 3.2, constant.

3.4.1 Further flexibility of the telescope design

As implied in §3.2.1, the small beam size on the central BS is an area of potential concern
for ET-HF due to the increased thermal lensing this could induce in the substrate. This
thermal distortion could then increase the contrast defect thereby reducing the detector
sensitivity. For this reason, it can be interesting to investigate the flexibility of this initial
ET-HF telescope design with regards to the spot size on the BS versus the stability of the
recycling cavities.

There are a number of ways in which an increased beam size on the BS can be achieved, in
terms of varying the previously obtained telescope design. One of the simplest investigations
in this regard, however, is performed by scanning the RoC of the telescope mirror ZM1 and
observing the effect this has on the beam size in the central interferometer as well as the
round-trip Gouy phase of the SRC. This is shown in Figure 3.12. This plot gives the beam
sizes on the BS (solid blue trace) and SRM (dashed blue trace), and the round-trip Gouy
phase of the SRC (red curve), as a function of a scan of the ZM1 RoC away from its nominal
design value. It is clear from the resulting data that one may reduce the (absolute) ZM1 RoC
to increase the beam size on the BS. This is to be expected due to the stronger divergence
effect that such a RoC would bring. A side effect of this is that the SRC is pushed further
towards instability, as the values of the round-trip Gouy phase suggest. However, even with
a change in the ZM1 RoC from −50 m to, e.g., −40 m the spot size at the beam splitter can
be pushed to around 12 mm whilst the round-trip Gouy phase would then be approximately
40◦; i.e. still comfortably within a region of geometric stability.

A trade-off analysis which takes into account more concrete requirements for the beam size
at the BS will be needed for ET-HF in the future. Such an investigation can take place once a
study into the potential thermal lensing impact of small beams in the central interferometer
is carried out. The results shown here, in the mean time, provide a picture of this telescope
design flexibility in terms of tuning the geometric parameters to fit new requirements.
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Figure 3.12: This figure shows the effect that changing the ZM1 RoC design value has on
the beam sizes on the BS and SRM, along with the resultant changes to the SRC round-trip
Gouy phase. The nominal design value, RC = 50 m, is shown via the dashed green line. We
can see from this plot that by decreasing the (absolute) RoC value of ZM1, a larger beam
can be attained at the BS whilst still maintaining a stable SRC.

3.5 Parameter sensitivity and mode matching

Taking the results found in the end of §3.3.3 as our baseline configuration, we can determine
the critical parameters of, for example, our ET-HF telescope design. These can be determined
by deviating the key free parameters of the system to observe the effect on the SRC waist
size, round-trip Gouy phase and mode matching to the arm cavity. Figure 3.13 displays the
results of such an analysis, where the left plots give the aforementioned target parameters as
a function of the distances between the optics whilst the right plots are based on deviations
in the radii of curvature of the Z mirrors and the focal length of the ITM lens.

The mode matching quantity shown in Figure 3.13 is defined by the “overlap” (O) figure-
of-merit given previously via Equation (2.18) in §2.2.3.2. In this case q1 represents the
eigenmode of the SRC propagated to the arm cavity and q2 is the arm cavity mode itself.
Recall that this quantity returns values O ∈ [0, 1], where unity indicates a full mode match
between the two beam parameters and zero gives complete mode mismatch.

From Figure 3.13 we can deduce, in terms of the optic geometries, that this telescope con-
figuration is most sensitive to the focal length of the lens at the ITM. Thus the next step
of this analysis will focus solely on the ITM lens focal length changes as a result of thermal
aberrations in the beam. Thermal lensing is investigated, in particular, due to it, potentially,
being responsible for the largest effective changes to the ITM lens focal length — as shown
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at the end of the next section.
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Figure 3.13: SRC waist-size, round-trip Gouy phase and mode overlap with the arm cavity
as functions of the key distances between optics, (a), and the curvatures of the telescope
optics, (b). Each deviation is given in relative terms where a value of zero corresponds
to the (ET-HF) baseline value given in Table 3.2. From (a) we can see that the distance
between the ITM and ZM2 is the most critical length. Whilst, in (b), we find that the focal
length of the ITM lens is the critical parameter in terms of the optic geometries. Note that
the mode matching values in the lower sub-plot were computed via Equation (2.18).

3.5.1 Mode matching in the presence of thermal lensing

Surface deformation and refractive index differentials, caused by temperature distributions
in the mirror substrates, lead to thermal aberrations (lensing) in the beam in ground-based
GW detectors [82]. This thermal lensing results in mode mismatches between the arm and
recycling cavities. In terms of the optics present in our configuration, the thermal lensing
acts to modify the effective focal length of the ITM lens, thereby altering the geometry of
the beam in the signal recycling cavity (see the black traces in Figure 3.13 for this effect in a
broad sense). To minimise these distortions, adaptive optics are required [126, 127]. This is
one of the tasks which could be performed by the arm telescopes of the ET detectors, thus in
this section we will quantify the required deviations to the telescope mirror curvatures, for
recovering mode matching to the arm cavities, in the presence of varied thermal lens focal
lengths. In this case the ET-HF telescope (plus arm cavity) configuration is used, as this
detector is designed to operate at high power [44, 122] where thermal lensing will be more
prevalent.

Figure 3.14 quantifies the necessary modifications to the radii of curvature of ZM1 and ZM2
in order to recover > 99.9% mode matching of the SRC to the arm cavity; for an assumed
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Chapter 3 Feasibility of Telescopes in ET Interferometer Arms

range of thermal lens focal lengths of fth ∈ [100 km, 15 km]. Note that for a strong focal
length of 15 km from the thermal lens, the effective focal length of the ITM lens reduces to
f ≈ 74.63 m; i.e. a deviation of about 0.5% from the target value of 75 m noted in §3.5.
This focal length distortion results in a mode mismatch, between the arm cavity and signal
recycling cavity, of approximately 20%. At this extreme thermal lens, the modifications
to the Z mirror radii of curvature indicated by Figure 3.14 reduce this mode mismatch to
effectively 0%.

20 30 40 50 60 70 80 90 100

Thermal lens focal length [km]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

R
eq

ui
re

d
ch

an
ge

in
ZM

R
oC

[%
] ZM1 RoC change

ZM2 RoC change

Figure 3.14: Simultaneous changes in Z mirror RoCs required for recovering “complete” mode
matching from the SRC to the arm cavity. At the extreme of fth = 15 km on this plot, the
required deviation in the RoC of ZM1 is approximately 1.4% whilst for ZM2 it is 1.9%.

A more in-depth analysis of the suitability of these ET arm telescope mirrors as actuation
points, for more general mode mismatch corrections, continues in Chapter 4.

3.6 Summary

In this chapter we investigated arm telescope configurations, for both ET-LF and ET-HF,
which are suitable for the optical layout in the ET 2020 design update [44]. These telescope
configurations are motivated by smaller beams on the optics in the central part of the inter-
ferometer. The beam expanders also provide the ability to steer the ET-HF beam around
the ET-LF ITM suspension systems; with the added benefits of decoupling the angle of inci-
dence on the beam splitter from the beam axes in the interferometer arms. Our requirements
for this telescope can be summarised as targeting a 6mm waist size positioned at the main
beam splitter whilst maintaining a stable SRC (quantified approximately as having a length
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of the same order as the Rayleigh range of the beam). Further details on these requirements
were given in §3.2.1.

We demonstrated that it is possible to achieve a stable SRC, of a sensible length, with
telescopes in the arms of both the ET-LF and ET-HF interferometers. Reducing the length
of the SRC, in accordance with [123], can be attained via the introduction of a lens at
the ITM for pre-focusing the beam from the arm cavity. Our baseline solutions for such a
configuration are given in Table 3.2. Further reductions to the length of the SRC, whilst
changing the spot size on the beam splitter by only a few hundred microns, are possible via
decreasing the distance from ZM1 to BS - see Figure 3.11 for details.

Our baseline configuration for ET-HF was analysed in §3.5 where we found that the focal
length of the ITM lens is the critical parameter in terms of the sensitivity for mode matching
and SRC stability. However, in §3.5.1, we found that effective changes in this focal length
due to thermal lensing can be compensated with actuation on the curvatures of the telescope
mirrors. In particular, we saw that the mode mismatch (of approximately 20%) due to a
strong thermal lens, with fth ∼ 15 km, can be fully corrected with changes of approximately
1.4% and 1.9% in the RoCs of ZM1 and ZM2, respectively.

The results presented here provide evidence for the feasibility of beam-expander telescopes in
the interferometer arms of ET and provide essential input for trade-off studies of the optical
layout. Further studies are required to study other aspects of this setup, in particular the
effects of astigmatism in specific telescope implementations, and the possible negative impact
on the contrast defect due to having the telescopes in a configuration that allows differential
beam tuning.
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Chapter Four

Adaptive Mode Matching with Arm
Telescopes in the Einstein Telescope

Following on from the previous chapter, we can now use our initial ET arm telescope (and,
by extension, recycling cavity) design to investigate the potential for active mode matching
with the telescope mirrors; referred to as ZM1 and ZM2 as before. In §3.5.1 we provided
an initial analysis of how these mirrors could correct for thermal lensing in the input test
masses (ITMs) of ET-HF. This is, however, only one of a number of distortions which can
lead to mode mismatches in the interferometer; and, additionally, it does not necessarily tell
us that actuation of the Z mirrors is practical. In this chapter we will address this question
of actuation suitability in terms of the types of mode mismatch that may occur in the central
interferometer. Note that we will focus solely on ET-HF for these analyses, due to both the
planned higher operating power for this detector (inducing stronger thermal lensing effects,
as briefly discussed in §3.5.1, see also §4.2.1) and a better understanding of actuation limits
and surface deformations of fused silica optics.

In addition to adaptive optics [126], it is also interesting to consider actuation strategies for
dealing with static mode mismatches. An example of this could be the deviation of procured
optics from design parameters during the manufacturing process — e.g. a difference in the
measured focal length of an ITM lens versus the design specification. In this such example
one can predict, based on the results shown in Figure 3.14, that the Z mirrors could be used
to correct for this type of static distortion. We will, however, explore this idea more carefully
(along with adaptive matching) in §4.5.

To assist in the visualisation of the mode mismatches and mirror actuations, we will make
extensive use of the “WS phase space” technique first introduced in [128] and later expanded
upon by [129]. This concept will be briefly described in §4.1, including an analytic expression
for the dimensionless modal power overlap (derived in Appendix B) which was not given in
these previously cited works.
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All of the results shown in this section have been obtained using Finesse 3, including the
implementation of the analytic WS phase space overlap function as noted in §4.1. The plots
showing traces in phase space for optic distortions and telescope mirror actuations rely on
the beam tracing functionality of Finesse 3, which was covered extensively in §2.2.

4.1 WS phase space

As we saw previously in §1.3.2.4, the Gaussian beam parameter can be defined via Equa-
tion (1.28). We can “re-cast” the real-part of this equation as a quantity known as the
Gaussian defocus S:

S =
1

Rc

=
z

z2 + z2
R

, (4.1)

where Rc is the wavefront radius of curvature, z is the distance to the waist and zR is
the Rayleigh range. Note that, as we can see from the latter part of Equation (4.1), this
quantity is simply equivalent to the curvature of the wavefront — a property of Gaussian
beams which was also introduced in §1.3.2.2. Using the defocus, we can then simply write
the beam parameter, q, as

1

q
= S − iλ

πW 2
, (4.2)

where W is the beam radius1. In this way, a pure Gaussian beam is completely defined in
terms of the W and S parameters. Similarly to §2.2.3.2 then, where we defined an overlap
quantity via Equation (2.18) in terms of two beam parameters, we can define a metric from
which we can obtain the loss due to mismatch between two modes in WS phase space;
termed “WS space” for short notation. From [129], we can define this quantity, O(W,S), as
a dimensionless “power” equivalent expression via a product of overlap integrals:

O(W,S) =

∫∫
E(W,S)E(WP , SP )∗dx dy ×

∫∫
E(W,S)∗E(WP , SP ) dx dy, (4.3)

where (WP , SP ) describe the point in the phase space for some primary mode (to which we

1Note that we typically denote this beam size quantity as w, however in this chapter we will use W to
be consistent with the literature [128, 129].
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4.1 WS phase space

compare all other modes given by each of (W,S)). These overlap integrals act on the fields,

E(W,S) =

√
2

π

1

W
exp

(
−(x2 + y2)

(
1

W 2
+ ik

S

2

))
. (4.4)

Solving Equation (4.3) analytically (see Appendix B), we obtain:

O(W,S) =
4

W 2W 2
P

1(
1

W 2
+

1

W 2
P

)2

+
k2

4
(S − SP )2

. (4.5)

This form of the WS space overlap function has been implemented in Finesse 3 as a utility
tool [81]. Similarly to Equation (2.18), this equation yields values O(W,S) ∈ [0, 1] where a
value of unity indicates full mode matching between the mode (W,S) and the primary mode
(WP , SP ).

An example of how we will use Equation (4.5) is shown in Figure 4.1; where contours of
overlap computed via this equation are plotted as a function of both W and S. This figure
uses the ET-HF arm telescope and SRC design, from Table 3.2 in §3.4 of the previous chapter,
as a baseline configuration. Here the signal recycling cavity (SRC) and arm cavity (ARM)
eigenmodes are propagated to the same longitudinal plane of the interferometer, which is,
in this case, the position at which the beam splitter (BS) sits. We take the SRC mode as
the primary mode and use Equation (4.5) to plot the contours of overlap with this mode.
One can see, as expected from the results of the previous chapter, that the ARM mode is
mode matched to the SRC mode with > 99.9% overlap when considering the system with
no distortions.

In addition to providing a concrete example of WS space in the context of our ET recycling
cavity design, Figure 4.1 also represents the foundation from which the mode matching
and actuation analyses in this chapter are built. Any optic distortion, or actuation, or
longitudinal position shift will be propagated, via the beam tracing formalism described in
§2.2, to the plane of the beam splitter for comparison to the original SRC mode. The use of
the beam splitter as the reference plane for these WS space calculations is motivated by §3.2,
in which we asserted that the beam size at, and waist position near to, the beam splitter is
a key constraint for ensuring a stable SRC with a sensible spot size on the BS. It is worth
noting that, as highlighted in Section IV C of [129], one can easily propagate this phase space
to any other plane in the interferometer; which can be useful if performing comparisons at
that new plane assists with some other mode matching analysis.
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Figure 4.1: Contours of overlap, computed via Equation (4.5), against the SRC mode for
the ET-HF configuration described by Table 3.2. The primary mode, by definition, always
occupies the point of 100% overlap on these types of plots. For comparison, the ARM mode
is also propagated to the same plane as the SRC mode (the beam splitter in this case). As
we explicitly designed the arm telescopes to mode match the SRC to the arm cavities, the
overlap between these two modes is almost perfect (� 99.9%) as expected.

4.2 Core ET mode mismatches in WS space

The mode mismatches we will explore can be summarised as distortions to the recycling
mirror curvatures, distortions to the arm cavity mirror curvatures and thermal lensing in
the ITMs of the arm cavities. This latter phenomenon can be described as modifying the
effective focal length of the lens in the ITM (by appling the thin lens formula) as noted in
§3.5.1. The effect of shifting the curvatures, as well as positions, of the telescope mirrors are
to be referred to broadly as “actuations” on the telescope mirrors; these will be investigated,
by comparison to the mode mismatches, in §4.5.

Other distortions (static or dynamic) can, of course, occur in the interferometer — such as
deviations to the mode cleaner cavity mirrors. We will only focus on the “core” interferometer
optics of ET-HF for these analyses, however, as mode mismatches between the arm and
recycling cavities will have the biggest effect in terms of scattering into HOMs in the central
interferometer.
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Figure 4.2: Mode mismatches due to RoC distortions of the core optics in ET-HF, propagated
to the plane of the beam splitter. The primary mode to which the comparisons are made is
the SRC mode as before in Figure 4.1. A key take-away of the plot is the angle between each
distortion displacement vector. We can see that the area, in phase space, covered by these
mismatches is potentially very large as a result of the near-orthogonality of the thermal lens
and recycling mirror lines. Note that the lengths of each displacement vector are currently
just for illustrative purposes.

Examples of each of the aforementioned distortions are shown on Figure 4.2. Note that
the lengths of each trace are purely illustrative in this case and do not represent typical
or expected values for the mode mismatches due to each curvature deformation. See §4.5
for more realistic values as compared to the possible actuation spaces. The dashed traces
on this figure represent distortions to the mirror curvatures, grouped by colors according to
the locations of the mirrors. The dash-dotted line gives the mode mismatch as a result of
thermal lensing in the ITM. The modal basis changes according to each of these variations
are all propagated to the longitudinal plane of the beam splitter as before. The purple
and blue traces give distortions to the high-reflective (HR) surfaces of the ITM and ETM,
respectively, resulting in changes to the arm cavity mode. Due to the Gouy phase separation
of ∆ψ ∼ 36◦ between the ITM lens and recycling mirrors (see Table 3.2), the displacement
vectors for the thermal lens and recycling mirror distortions are almost orthogonal (details
on why this is can be found in §4.4 and [129]). The implication of this is that the area covered
by these distortions, in WS space, is potentially quite large — this is dependent also upon
the magnitude of these distortions. As a result, to correct for these mismatches one would
require a set of actuators which also, potentially, cover a large (and coincident) area of phase
space. We will explore some of the theory behind this actuation effectiveness in §4.4, then
investigate the suitability of the telescope mirrors as actuation points for compensating for
the different distortions. First, however, a projection of the extreme values of the thermal
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Chapter 4 Adaptive Mode Matching in ET

lensing, for both ET-LF and ET-HF, is provided.

4.2.1 Quantifying the thermal lens focal lengths

We can predict the most extreme values of the thermal lens focal lengths fth, for both ET-LF
and ET-HF, by using a simple model (see page 40 of [130]):

fth =
πkthw

2

Pabsβ
, (4.6)

where kth is the thermal conductivity of the substrate, w is the beam size, Pabs is the total
optical power absorbed in the substrate and β ≡ dn/ dT is the change in refractive index n
with the temperature T .

For ET-LF, which will use silicon for the test masses, we have kth ∼ 5×103 W m−1 K−1, β ∼
2×10−5 K−1 (see page 160 of [130]), w ∼ 9 cm (from Table 3.1) and Pabs = 18 kW×1 ppm×2
where 18 kW is the projected ET-LF arm cavity power (see Table 6.1 of [44]), a coating
absorption of 1 ppm is assumed and the factor of two assumes equivalent power absorbed in
the substrate and coating [131]. Using these values we obtain fth ∼ 180× 103 km. This is a
very small thermal lens effect, corresponding to an effective dioptre2 shift of approximately
5 nD. For this reason, it is not so interesting to investigate possible adaptive mode matching
compensation of such thermally induced distortions in ET-LF.

Conversely for ET-HF, in which the substrate material is projected to be fused silica, the
values for the dependencies of Equation (4.6) are as follows: kth ∼ 1.4 W m−1 K−1, β ∼
1 × 10−5 K−1 [132], w ∼ 12 cm (see Table 3.1) and Pabs = 3 MW × 1 ppm × 2 (again,
see Table 6.1 of [44]). Given these values the corresponding focal length for ET-HF is then
fth ∼ 1 km. A thermal lens of this magnitude will require a compensation system via heating
of the edges of the test masses or compensation plates adjacent to the ITMs.

4.3 Types of actuation for adaptive mode matching

In this section we will briefly cover the different types of wavefront actuator used for adaptive
mode matching, and consider those which would be practical at the arm telescope mirrors of
the ET detectors. A more complete overview of actuators in aLIGO can be found in [126].
The key types of wavefront actuation employed by current GW detectors rely on the following
effects: thermo-elastic deformation of surface curvatures and thermo-refractive gradients in

2A dioptre is a unit of measurement (denoted with the symbol D) for lenses which is equivalent to the
reciprocal of the focal length. For surfaces (i.e. mirrors and beam splitters), a dioptre is simply twice the
reciprocal of the radius of curvature.
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optic substrates. The geometry of the former actuator is to heat the rear of a mirror causing
the front surface to bend (thermo-elastically) and actuate on the incident beam on reflection.
Conversely, the latter actuator relies on the thermo-refractive effect whereby a thermal lens
is introduced in a mirror substrate via a CO2 laser beam projected onto the rear surface of
the mirror; this then provides actuation on the incident beam on transmission.

Given that the ET arm telescope mirrors are designed to be used on reflection (refer back to
Figure 3.3 for the proposed recycling cavity configuration), the actuator geometry is assumed
to consist of rear panel heaters for inducing thermo-elastic deformations of the fronts of the
mirror surfaces. Actuation on the recycling mirrors assumes a thermo-refractive gradient
effect, based on the analysis given in Appendix A of [129]. Finally, wavefront actuation at
the ET-HF test masses will assume ring heater actuators of a similar design to aLIGO (see
Section 4 of [126]). Projected actuation ranges, based on the existing technology, for each of
these cases are given in §4.5.1. As we will see in this section, the use of realistic values for
the actuator ranges, and the utility that they provide, further demonstrate the feasibility of
the proposed telescope design.

4.4 Determining actuation effectiveness in WS space

In Section IV D of [129], Perecca et al demonstrate that, in general, the degree of orthogo-
nality γ between two actuators (acting on the RoC of optics) placed at longitudinal planes
separated by a Gouy phase ∆ψ, is

γ = |sin (2∆ψ)| . (4.7)

In this context, the degree of orthogonality defines the ability of a pair of RoC actuators
(of fixed ranges) for actuating on orthogonal quadratures. The maxima (γ is unity, indicat-
ing actuator orthogonality) and minima (γ is zero, indicating actuator degeneracy) of this
function occur at

γ =

{
1, when ∆ψ = πn+ π/4; n ∈ Z
0, when ∆ψ = πn+ πm/2; n,m ∈ Z.

(4.8)

This corresponds to a Gouy phase separation of ∆ψ = 45◦ giving orthogonality and ∆ψ = 0◦

or ∆ψ = 90◦ yielding degeneracy. As the Gouy phase separation of longitudinal planes
defines the angles between their distortion displacement vectors in WS space, something we
saw in §4.2 with the recycling mirror versus thermal lens traces, we can readily infer the
degree of orthogonality from such phase space plots. In fact, if the angle of separation of
two vectors in WS space is φ then the degree of orthogonality between these is simply given
by γ = |sinφ|.
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The Gouy phase separation between the actuation longitudinal planes is not enough to
completely infer the effectiveness of a pair of actuators. One must also consider the actuation
strength (or range) — i.e. the maximum possible shift in the defocus of the beam upon
actuation on the optic. This value controls the length of the displacement vector associated
with the actuation in WS space. Together, the angle between the displacement vectors and
the lengths of these vectors map out an area in phase space which then defines the available
zone in which the actuators are able to operate. Pairs of actuators with larger actuation
ranges, and a greater degree of orthogonality, project to a larger area of phase space; and,
thus, a better mode matching capability.

4.5 Suitability of telescope mirror actuation

In this section we will explore the feasibility of correcting for the distortions shown in §4.2
using the telescope mirrors (ZM1, ZM2) of an ET-HF interferometer arm. The information
provided by §4.4 will assist in determining how suitable RoC actuators at these optics are (see
§4.5.1) and also the effect of shifting the positions of these telescope mirrors (see §4.5.2).
The results of these actuation analyses will then be used to guide a recipe for obtaining
an estimate of the initial region of phase space that the SRC mode could occupy, whilst
maintaining the ability to recover mode matching to the arm cavities. This will be covered
in §4.5.3.

4.5.1 RoC actuators at ZM1 and ZM2

Similarly to the other optic distortions, to obtain traces in phase space for the ZM RoC
actuations we scan over these degrees of freedom separately and compare the resulting beam
parameters at the plane of the beam splitter; using the original SRC mode as the primary
mode as before. The results of such a simulation are shown in Figure 4.3. On this plot
the actuation traces for ZM1 and ZM2 are shown as solid blue and red lines, respectively.
Each of the other optic distortions (which result in mode mismatches), previously shown in
Figure 4.2 of §4.2, are also given here too for comparison.

The Gouy phase accumulated between the two telescope mirrors is ∼ 4.9◦ (using Table 3.2)
and so one would expect to see a relatively small angle of separation between the traces for
ZM1 and ZM2. This is exactly what we see on Figure 4.3. Further to this, we can also see
that the ZM2 (solid red) and thermal lens (dash-dotted green) traces lie almost parallel to
each other. Again this is to be expected due to almost no Gouy phase being accumulated
from the ITM to ZM2. The actuation ranges shown on Figure 4.3 are as follows: 40µD for
the test masses (from pp. 13-14 of [126]), 50 mD for the recycling mirrors (see Section III
B.2 of [129]) and 150µD for the telescope mirrors (based on [133, 134]). These values use
the aLIGO optics and compensation systems as a reference, the actual values will depend

94



4.5 Suitability of telescope mirror actuation

upon the design of each of these optics in ET (as well as the design of actuation systems) —
however these should provide a good starting point for this type of feasibility analysis.
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Figure 4.3: This figure shows the actuation displacement traces for the telescope mirrors,
ZM1 (blue) and ZM2 (red), as compared to distortions (or actuations) on the other core
optics. The shapes at the end of each trace describe the approximate limit on the relevant
actuation ranges; see the text for details, including references, on these values. From the
ZM1, ZM2 actuation traces we can note the relative degeneracy between these two potential
actuator locations, arising due to the small Gouy phase separation in these longitudinal
planes. The range of thermal lens focal lengths is given for comparison to the ZM2 actuation,
it is not indicative of projected values for such thermal distortions.

The triangles at the extrema of the ZM1 and ZM2 actuation traces in Figure 4.3 represent
the maximum actuation strength from above. We can note, from these, that actuation on
ZM1 is largely ineffectual relative to actuating on ZM2. This is to be expected, given the
results shown in Figure 3.13b of §3.5. The green dash-dotted curve shows the mismatches
as a result of a range of thermal lens focal lengths of fth ∈ [∞, 65] km. In §4.2.1 we found
that the predicted thermal lens for ET-HF is fth ∼ 1 km; a distortion which requires thermal
compensation as noted previously. Actuation on ZM2 could then be used to perform fine
tuning of the mode matching for such distortions — allowing the initial actuator to be
coarse. The thermal lens focal length range given above highlights the extent of this fine
tuning potential by comparison to the ZM2 actuation trace in Figure 4.3.
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4.5.2 Shifting the positions of ZM1 and ZM2

Another potential option which we consider here, just for completion, is the possibility of
actively shifting the relative positions of the telescope mirrors — again, for the purpose of
adaptive mode matching. A corresponding representation of this is shown in Figure 4.4,
where the longitudinal locations of ZM1 and ZM2 are shifted. The blue trace shows the
effect of increasing the distance between the central BS and ZM1, the red line represents
the distance between the two telescope mirrors and, finally, the green curve is as a result
of moving ZM2 relative to the ITM (of either arm). The corresponding triangles are the
maxima of the distance shifts used; 1 cm for each deviation in this case.
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Figure 4.4: The effect on the SRC mode given shifts in the positions of the telescope mirrors.
Each distance deviation is given an upper limit of 1 cm. This shows that, for this particular
design, such shifts do not have any significant impact and are therefore likely not suitable
for adaptive mode matching purposes.

It is clear from this figure that shifting the positions of the telescope optics has no significant
impact on the SRC mode — particularly for the blue and red traces. The green trace (ITM
to ZM2 shift) has the most meaningful effect, as shown, however this is still negligible in
comparison to RoC actuation on ZM2 as indicated by the previous sub-section (see §4.5.1).
One can observe why this is the case by inspecting Table 4.1, in which the Rayleigh range
values across each segment of the SRC are given. The large zR values for the spaces BS-ZM1
and ZM1-ZM2 imply that one would need (impractical) distance shifts of several metres
(or many tens of metres in the former case) to have any significant impact on the mode
matching.
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Table 4.1: The values of the Rayleigh range in each segment of the ET-HF SRC, based on
our initial arm telescope design from §3.4. Distances between the optics in this recycling
cavity are also given for completion. See Table 3.2 for other details on the SRC design, such
as accumulated Gouy phases.

SRM-BS BS-ZM1 ZM1-ZM2 ZM2-ITM
Distance z [m] 10 70 80 52.5

Rayleigh range zR [m] 114 114 2.46 0.137

4.5.3 Estimating the available phase space regions

Returning to the surface RoC actuation picture, we can begin to build up an estimate for
the available region (as represented in WS space) that the ET-HF SRC mode could occupy
whilst maintaining the potential to recover ≥ 99.9% mode matching to the arm cavities. To
perfom such an analysis, we will use the results obtained from §4.5.1. More specifically, we
assume that our available actuators are those acting on the ZM2 telescope mirror and on
the recycling mirrors, independently. The estimated ranges of these actuations were given
previously; in the legend of Figure 4.3.

The recipe used for obtaining an available region in phase space was adapted from the
process outlined in Section V B of [129]. In this analysis we will propagate our phase space
to the output of the SRM, rather than using the previous representation at the beam splitter.
Given that the beam is approximately collimated in the ZM1 to SRM path (as shown in §3.4),
this makes little difference to the parameters and, hence, to the mode matching contours.
The logic behind propagating to this plane will become clear from the following outline
of the recipe. For each mode that exists within the 99.9% mode matched contour, at the
longitudinal plane of the SRM, we propagate this mode backwards to the ZM2 optic (in
either arm). The first step of this propagation involves a reflection ABCD matrix transform
at the SRM. In this backwards propagation, we apply actuations to the SRM and ZM2
mirrors — sweeping over each combination within the given ranges. The resulting mode
at ZM2 is then propagated back to the SRM using the non-actuated RoC values for each
mirror. This then gives us a new beam parameter, at the SRM, which represents a mode
that can be displaced back into the 99.9% mode matched contour by actuating on it with the
corresponding ZM2, SRM actuation combination. The results of this analysis are given in
Figure 4.5. Note that the choice of the SRM as the primary plane here should be intuitive.
In particular, using this plane as the reference simplifies the above process — as it only
requires a single backwards and forwards propagation per mode due to the SRM and ZM2
RoCs affecting both of these in a single pass. The beam propagation function of Finesse
3, covered in §2.2.4, was employed as a core tool for performing the aforementioned reverse
and forward mode traces required for this analysis.
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Figure 4.5: This figure shows an estimate of the initial region of WS space that the SRC
mode could occupy, with actuation on the RoCs of ZM2 and SRM of the specified strengths.
Modes in this highlighted zone can be displaced to a mode matching value of ≥ 99.9%
through actuations on these optics; up to the specified limits. See the text for a description
of the recipe used to obtain this region. Darker red tones indicate modes which can be
more readily shifted back into a mode matched state. More specifically, there exists a
higher relative number of actuation value combinations, which result in at least 99.9% mode
matching, for these modes when compared to the lighter red regions.

The red distribution shown in Figure 4.5 represents a Gaussian kernel density estimate
(KDE) of the propagated mode data. The darker tones of this colour-map indicate SRC
mode values which were produced more frequently as a result of the procedure outlined
above. Commensurately, for such regions, there exists a larger number of combinations
of actuation values for displacing these modes back into the 99.9% mode matched region;
as compared to those modes in the distribution with a lighter red tone. Consequently, the
darker red regions represent SRC configurations which require less adjustment to the nominal
parameters (i.e. RoCs of SRM and telescope mirrors), to achieve mode matching to the arm
cavities. This KDE was produced via utilisation of the distributions module of the software
package seaborn [135].

4.6 Summary

Adaptive optics are important in GW detectors for dealing with, for example, thermal distor-
tions that can arise due to high laser power slightly deforming optical surfaces and substrates.
In the case of the Einstein Telescope, it is ET-HF which will be most affected by such phe-
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nomena; where the impact of these distortions may be much greater than the effects observed
in current facilities, due to the significantly increased beam power. The novel recycling cav-
ity design in the ET interferometers, involving telescopes in the arms (as discussed in detail
in Chapter 3), also presents an acute challenge with regards to reducing real-time losses due
to mode mismatches. For these reasons, it is important to develop a robust set of strategies
for actuating on the necessary optics in order to keep the interferometer well mode matched.

In this chapter we covered an initial study in this regard. The recycling cavity design,
including arm telescopes, of ET-HF from the preceding chapter was analysed in terms of the
suitability of actuation on the key optics for recovering from mode mismatches. To perform
this work, we made extensive use of the WS phase space technique developed by Perecca
et al [129]. An extension to this in the form of a new overlap function, see Equation (4.5),
and Appendix B for the derivation, was introduced and used for calculating and plotting the
contour plots shown throughout this chapter. We saw in §4.5 that, due to the small Gouy
phase separation of the ITM and ZM2 longitudinal planes, the actuation trace for ZM2 in
phase space lies almost parallel to the curve representing thermal lens distortions at the
ITM. As a result of this, actuation on this optic could be suitable for correcting for small
thermal distortions — up to a thermal lens focal length of approximately 65 km assuming
an actuation range of 150µD; see Figure 4.3 for the details. Using this figure we also noted
that, in this initial configuration, actuation on the telescope mirror ZM1 would be relatively
ineffectual. Furthermore, in §4.5.2, we showed that small displacements of the telescope
optics would also not have any significant impact on the real-time mode matching. However,
the position of ZM2 could potentially be shifted as a pre-matching step during installation
to correct for small static offsets of curvatures from design values.

Finally, using the results obtained above, in §4.5.3 we estimated the initial region in phase
space that the SRC mode could occupy; whilst retaining the ability to recover to an ac-
ceptable level of mode matching. This was predicated on the existence of actuators at ZM2
and the recycling mirrors, with actuation ranges of 150µD and 50 mD, respectively. The
resulting distribution highlighted the zones of phase space from which it would then be easier
to recover back to a mode matched state.

Further studies on the actuation strategies for the ET interferometers will be required, how-
ever these analyses provide a good starting point and concrete recipes for performing such
investigations. Any changes to the underlying recycling cavity designs will still be able to
rely upon the processes described and used here. One outstanding challenge, which remains
to be tackled thoroughly, is the task of quantifying the requirements for the telescope design
and actuation on the corresponding mirrors when taking into account differential arm effects.
This will be an important issue for ensuring that any contrast defect can be minimised.
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Chapter Five

Scaling of Alignment Noise Coupling
with Larger Beams

Alignment control noise is one of the dominant noise sources, in current GW detectors, in
the low-mid frequency regime [26, 136]. In particular the angular control scheme in aLIGO,
used to keep the interferometer optics aligned, contributes a significant amount of noise to
the differential arm (DARM) motion at frequencies below 20 Hz [26, 84]. A good visual
indication of how alignment control affects DARM can be found in Figure 2 of [26], where
measured data for the full noise budgets (including the angular control noise) are given for
both the LIGO Hanford Observatory (LHO) and LIGO Livingston Observatory (LLO) for
the third observing run (O3). Note that the reduction of angular control noise is a topic of
ongoing research within the detector community [52].

The alignment of the optics will be particularly important for future detectors operating
at higher powers, e.g. ET-HF, where radiation pressure could be more of a concern. The
increased circulating power in the arm cavities of such detectors can potentially drive larger
torques on the test masses due to this radiation pressure effect [137, 138]. This is an effect
which has been studied in detail [139] and can lead to a decrease in the stability of the arm
cavities when they are in a “soft” mode regime due to the mirrors being pushed further out
of alignment. It should be noted, however, that future detectors will likely use heavier test
masses to somewhat nullify this increased radiation pressure effect; for example, see Sections
6.1 and 6.5 of [44] where the masses of the mirror for ET are briefly discussed.

Due to the effect alignment control has on the overall detector noise, it is therefore important
to understand how the optic misalignments themselves couple into longitudinal signals and
therefore why they are necessary to control, and, in particular, how this is relevant for future
ground-based GW detectors. In this chapter we will specifically focus on the question of
how larger beams could affect alignment noise coupling, and hence consider the implications
this has for future alignment control schemes. The topic of larger beam sizes in future
detectors is a common one throughout this thesis, as we saw in Chapter 3 with regards
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Chapter 5 Scaling of Alignment Noise Coupling with Larger Beams

to the implications for recycling cavity designs in ET, and therefore it is investigated here
as part of this concurrent, and important, research topic. To briefly highlight why larger
beams are vital to understand, one can note that proposals for essentially all future ground-
based GW detectors include larger mirrors as a key upgrade. These include, for example,
LIGO Voyager [140, 27], ET [44], Cosmic Explorer (CE) [45], Advanced Virgo Plus upgrades
[141] and the proposed Neutron Star Extreme Matter Observatory (NEMO) [142]. A good
summary of the baseline parameters, which includes the projected beam sizes, for a selection
of these future detectors can be found in Table 2, Section LT-3.4.2, of [27].

From prior research [143] we expect that, in general, the alignment to longitudinal noise
coupling will increase significantly with increased beam sizes. By investigating the mathe-
matical details of this coupling in more detail, however, we can reveal which parameters can
be tuned to offer suppression of this noise; this topic will be discussed in §5.4. This is a
key goal of this chapter and, thus, a significant portion of it will be dedicated to clarifying
the analytics involved with this type of noise coupling (see §5.2). As a supplement to these
analytical scalings, Appendix C provides an in-depth derivation of the field couplings for
the type of misalignment we are considering (highlighted in §5.1). To validate the derived
scaling relationship, we will then apply this type of misalignment to a full aLIGO model in
§5.3, using Finesse to simulate the resulting couplings.

5.1 Static and oscillatory misalignments

AC misalignment
at frequency

DC misalignment

ITM ETM

Figure 5.1: This is a schematic of the type of alignment coupling being considered, where a
static (DC) misalignment, from the optical axis of the incident beam, of βDC is applied at
the input mirror (ITM) of a cavity whilst the end mirror is tilted (in the same rotational
degree of freedom) by βAC at a signal frequency of ωm. See Appendix C for a more detailed
picture including the fields present in this type of system.
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5.1 Static and oscillatory misalignments

Figure 5.1 shows the type of alignment noise coupling we are considering in this chapter.
This involves a static (DC) misalignment of the input mirror of a Fabry-Perot cavity from an
incident beam. In addition, the end mirror of the cavity tilts at some “signal” frequency ωm.
The alignment fluctuations in this system are then a sum of the static (DC) and oscillatory
(AC) terms [144]. The combination of these two misalignments cause a coupling from the
incident mode (assumed to be a pure HG00 mode) to the HG01 mode at the frequency ωm.
This latter field then couples back into the fundamental mode at this sideband frequency —
a phenomenon often called alignment to longitudinal coupling. A more in-depth look at the
specific field couplings at each frequency can be found in Appendix C. Note that here we
are considering only small mirror tilts in the sagittal plane such that, firstly, the generated
couplings are only to first order and, secondly, HG01 modes are scattered into and not HG10.
This type of analysis works equally well when considering only small tilts in the tangential
plane too, in which case the latter modes are generated instead of the former.

DC regime Signal sideband regime

Figure 5.2: A representation of Figure 5.1 in the modal picture. Here the specific field
couplings in both the carrier (DC) and signal sideband (AC) regimes are shown. In this
picture, as the carrier fields are resolved initially, we can treat the DC model as an initial
system where only the static tilt is applied at the input mirror. This results in the circulation
of fields in both the HG00 and HG01 modes in the cavity. These fields are then applied to
the signal picture, such that the tilt modulation applied to the end mirror produces signal
sidebands (at the modulation frequency ωm) of these fields as shown.

The view given in Figure 5.2 describes the exact couplings we are considering in more explicit
detail. In this figure the fields present are separated into two regimes — the DC (carrier
light) regime and AC (signal sideband) regime — corresponding to the two distinct solving
steps performed by a modal-based simulation like Finesse. Note that in this modal picture,
the carrier fields (left) are necessarily resolved before calculating the signal sideband fields
(right). It should be noted that the principle of small tilt modulations (to the end mirror,
in the context of this figure) is important here. Through this we are able to neglect second-
order frequency shifts, e.g. ω0 + ωm → ω0 + 2ωm, by assuming that the field quantities at
these higher modulations are negligible.
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Chapter 5 Scaling of Alignment Noise Coupling with Larger Beams

Using the field couplings from Figure 5.2, we can determine the form of the signal which will
be detected at the photodiode (of the corresponding system in Figure 5.1). One important
aspect to note, in relation to this signal, is that HG00 and HG01 modes do not beat on the
photodiode. This means that, in first order, without any modulated light (from the AC
couplings) no alignment fluctuations would be visible as noise in the GW channel. It is for
this reason that it is important to include AC misalignment terms, rather than just static
misalignments, for modelling this effect. We can write the signal detected at the photodiode
as

P ∼ a∗00(ω0) a00(ω0 + ωm) + a00(ω0) a∗00(ω0 − ωm)+

a∗01(ω0) a01(ω0 + ωm) + a01(ω0) a∗01(ω0 − ωm),
(5.1)

where the quantity anm(ω) represents the field described by the mode HGnm at a frequency
ω; with ω0 as the carrier frequency. One can see from Equation (5.1) that it is important to
include the static misalignment at the input mirror for modelling this alignment coupling,
otherwise the field a01(ω0) = 0 and, commensurately, both terms a00(±ωm) = 0; leading to
a “null” response when only an AC misalignment is modelled.

The scattering of light in the field HG01 at the carrier frequency back into HG00 light at
the signal frequency is the key effect here; i.e. the terms a00(ω0 + ωm) and a∗00(ω0 − ωm) of
Equation (5.1), which are “generated” according to Figure 5.2. If at any point the oscillation
frequency ωm matches a GW signal frequency, then this will cause coupling of light into the
GW channel — mimicking a longitudinal signal.

5.2 Approximating the scaling of alignment noise
coupling for larger beams

In this section we will approximate the alignment noise coupling as a function of the spot
size of the beam impinging on the cavity mirrors from Figure 5.1. We will find from this
that this type of alignment noise, coupled into the longitudinal GW channel, scales as w6;
where w is the symmetric beam size in the cavity. This work is based on [143] where this
approximation was originally introduced — we will derive this result in more detail in this
section. As a follow-up to this, we will then validate this approximation using an aLIGO
Finesse model in §5.3.

A derivation of the coupling relations for each field, up to first order, associated with Fig-
ure 5.1 can be found in Appendix C. We will briefly use some results from this appendix to
rationalise why the specific quantities in this section are expressed in terms of the beam size.
In this appendix, we find that the circulating carrier HG01 field, a01, and signal sideband

104



5.2 Approximating the scaling of alignment noise coupling for larger beams

(either upper or lower) field, a01, can be computed as

a01 ≈
√

R

1−R
Rk01 exp

(
−i(ψRT − π

2
)
)

1−R exp (−iψRT)
and a01 ≈

√
R

1−R
κ01 exp

(
−i(ψRT

2
− π

2
)
)

1−R exp (−iψRT)
,

(5.2)

where R is the power reflectivity of both cavity mirrors and ψRT is the cavity round-trip
Gouy phase. The quantities k01, κ01 are the coupling coefficients from the HG00 mode to the
HG01 mode on reflection from the input mirror (rear surface) and end mirror (front surface),
respectively. It is important, therefore, to know how these coupling coefficients scale with the
beam size — this will be investigated in the next sub-section, §5.2.1. One can observe that
the denominators for these fields are common factors, known as the resonance enhancement
factor d, and in this case are denoted as

dHG01 =
1

1−R exp (−iψRT)
, (5.3)

i.e. the resonance enhancement factor for the HG01 mode. Again, to determine the amplitude
scaling of the alignment coupling with beam size, it is important to understand how |dHG01|
changes with w too. This is explored in §5.2.2. A summary of the analytic treatment,
including all these factors, is given in §5.2.3.

5.2.1 Coupling coefficient from HG00 to HG01

Equation (5.2) defines the terms which multiply to give the signal response as detected at
the photodiode of Figure 5.1. It is clear from these terms that the couplings from the HG00

to HG01 mode are important. For this reason, here we will derive an expression for the
corresponding coupling coefficient k0100 (see the definition of knmn′m′ in §2.3.1) as a function
of the misalignment angle, γ, and the beam size w. Note that this coupling coefficient applies
for both the static (DC) and oscillatory (AC) pictures, as indicated by Figure 5.2. In the
former case this coefficient is dependent upon γDC whilst in the latter it is dependent upon
γAC ∼ sin (ωmt). The derivation of this coupling coefficient is identical otherwise. Also note
that, as shown in [109], we can use the orthogonality of Hermite-Gauss modes to separate
knmn′m′ into knmn′m′ = knn′ kmm′ . This means that the coupling coefficient we will derive
here can be given as k00 k01.

As we are considering a case of only angular misalignment with no mode mismatches, we
can use a significantly simplified form of the coupling coefficients. In Section III C of [109]
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Chapter 5 Scaling of Alignment Noise Coupling with Larger Beams

an expression for the partial coupling coefficient knn′ for a mode matched system is given as

knn′ = (−1)n
′
E(x)
√
n!n′!

min(n,n′)∑
µ=0

(−1)µX
n−µ

Xn′−µ

µ!(n− µ)!(n′ − µ)!
, (5.4)

where

X = −
(
z2

zR
+ i

)
γ

γ0

, X = X∗, E(x) = exp

(
−XX

2

)
(5.5)

assuming that the lateral displacement terms are zero. The terms z2, zR and γ0 represent
the distance to the waist, Rayleigh range and divergence angle of the beam in the second
medium. Given that we are only considering couplings on reflection from the cavity mirrors,
this second medium is equivalent to the first — thus meaning that these quantities are equal
to the equivalent quantities for the cavity itself. Using this information, and noting that the
divergence angle is

γ0 =
λ

πw0

=
w0

zR
, (5.6)

we can re-write the term X from Equation (5.5) as

X = −
(
z

zR
+ i

)
γzR
w0

= − (z + izR)
γ

w0

, (5.7)

where z is the distance to the waist, zR is the Rayleigh range and w0 is the waist size of the
cavity mode. Furthermore, we can write the exponential misalignment term as

E(x) = exp

(
−XX

2

)
= exp

(
−1

2

γ2

w2
0

(z2 + z2
R)

)

= 1− 1

2

(
γ2

w2
0

(z2 + z2
R)

)
+O(γ2n).

(5.8)

By assuming that γ is small, and noting that only terms which are linear in γ need to be
considered for the alignment coupling transfer function, we can see that E(x) ≈ 1+O(γ2) ≈ 1
as there are no terms linear in γ. Using this, and resolving the sum in Equation (5.4), we
find a simple expression for the partial coupling coefficient from the fundamental mode to
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5.2 Approximating the scaling of alignment noise coupling for larger beams

n′-th order modes as

k0n′ =
(−X)n

′

√
n′!

. (5.9)

Applying this to the first order mode n′ = 1, as is our focus here, we obtain

k01 = −X = (z + izR)
γ

w0

. (5.10)

At this point we can note that k00 = 1, implying that the coupling coefficient from HG00

to HG01 will be given purely by the expression for the partial coefficient k01. Taking the
modulus of Equation (5.10), we obtain

|k01| =
γ

w0

|z + izR|

=
γ

w0

√√√√z2
R

(
1 +

(
z

zR

)2
) (5.11)

from here we can note, from Equation (1.17), that
√

1 + (z/zR)2 = w(z)/w0, which lets us
write

|k01| =
γ

w0

w

w0

zR

=
π

λ
γw.

(5.12)

Commensurately, we can express k01 as

k01 =
π

λ
γw exp (iϕ), (5.13)

where ϕ is the angle of the cavity eigenmode — i.e. ϕ = arctan (zR/z), or for a symmetric
cavity ϕ = arctan (cot (ψRT/4)) with ψRT as the round-trip Gouy phase of the cavity.

Figure 5.3 shows how the magnitude of Equation (5.13) compares against the values com-
puted using Finesse 3 (which does not use the approximations noted in this section). These
values are plotted as a function of the misalignment angle γ which is given as a fraction of
the divergence angle γ0 of the beam. The model used for this specific example is a sym-
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Chapter 5 Scaling of Alignment Noise Coupling with Larger Beams

metric ET-HF arm cavity; see Table 3.1 for the data representing this type of configuration.
One can see from Figure 5.3 that Equation (5.13) is only valid for very small tilt angles
(γ/γ0 / 0.02).
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Angular misalignment γ/γ0
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Analytic approximation
Actual value (via Finesse 3)

Figure 5.3: A comparison of |k01| using Finesse 3, black line, versus the approximation
in Equation (5.13), red dashed line. The values are given as a function of the fractional
misalignment angle — i.e. the angle of misalignment over the divergence angle of the beam.
This figure implies that the analytic approximation derived in this section is only valid for
very small tilt angles.

5.2.2 Resonance enhancement factor

The reciprocal of the denominator of a transfer function (on transmission or reflection) for
a Fabry-Perot cavity is known as the resonance enhancement (or suppression) factor. For a
cavity of length L, this quantity is defined by [143]

d =
1

1− r1r2 exp (−i (2kL+ (1 + n+m)ψRT))
, (5.14)

where r1, r2 are the amplitude reflectivities of the input and end mirrors, respectively, and
ψRT is the round-trip Gouy phase of the cavity (see Equation (2.11) for the relevant definition
in this case). The values n and m represent the indices of any given HG mode as usual.
We can assume that the cavity is tuned such that the carrier HG00 mode is resonant — i.e.
2kL+ψRT = 2πN with N ∈ Z. This then simplifies the exponential term of Equation (5.14)
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5.2 Approximating the scaling of alignment noise coupling for larger beams

as follows:

exp (−i (2kL+ (1 + n+m)ψRT)) = exp (−i (2kL+ ψRT)) exp (−i ((n+m)ψRT))

= exp (−i ((n+m)ψRT)),
(5.15)

which, in turn, reduces d to,

d =
1

1− r1r2 exp (−i(n+m)ψRT)
. (5.16)

The magnitude of d can then be computed as,

|d| =
√

1

1 +R1R2 − 2r1r2 cos ((n+m)ψRT)
, (5.17)

where R1 and R2 are now the power reflectivities of each cavity mirror. The magnitude of
the enhancement factor for the HG01 mode follows:

|d|HG01
=

√
1

1 +R1R2 − 2r1r2 cosψRT

. (5.18)

Now we recall, using Equation (2.10), that for a symmetric Fabry-Perot cavity the round-trip
Gouy phase can be written as

ψRT(g) = 2 arccos (g), (5.19)

where g1 = g2 = g is the stability factor of both cavity mirrors; as introduced in §2.2.2.4.
We note that

cosψRT = cos (2 arccos g) = 2 cos2 (arccos g)− 1 = 2g2 − 1, (5.20)

and use this to write Equation (5.18) as

|d|HG01
=

√
1

1 +R1R2 − 2r1r2(2g2 − 1)
. (5.21)
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We can make the assumption now that the cavity is of high finesse such that R1R2 ≈ 1, this
then yields

|d|HG01
≈

√
1

2− 2(2g2 − 1)

=
1

2

√
1

1− g2
.

(5.22)

The g-factor can be expressed as a function of the beam size on the mirrors using

g(w) =

√
1−

(
Lλ

πw2

)2

, (5.23)

which then allows us to write

|d|HG01
≈ 1

2

π

Lλ
w2. (5.24)

From Equation (5.24) we can deduce that, for a high-finesse cavity of fixed length L, the
resonance enhancement factor scales as the square of the radius of the beam impinging on
the cavity mirrors for first order HG modes. The consequence of this is that the HG01 (and
HG10) field amplitude for the cavity is enhanced by a factor of the beam size squared. As a
numeric example, the ratio of Equation (5.24) for the ET-HF to aLIGO arm cavities would
be approximately two — using data from Table 3.1 and Table 1 of [145], respectively.

5.2.3 Scaling of the alignment noise coupling

A full analytic treatment of the field couplings for this system can be found in Appendix C,
here we will simply state the final result obtained. It was determined in this appendix that
one can express the beating between the HG01 fields at DC and AC, reflected from the cavity,
as

|a∗01(ω0) a01(ω0 + ωm)| ≈ R2

2

(π
λ

)4 w6

L2
|βDC βAC| |i0|2, (5.25)

where R is the power-reflectivity of the mirrors (assuming an impedance matched cavity),
L is the cavity length and i0 is the amplitude of the HG00 mode, at the carrier frequency,
incident upon the cavity. A comprehensive list of the assumptions made can be found at the
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start of the aforementioned appendix. The values βDC and βAC are the angles as given in
Figure 5.1.

From Equation (5.25) we obtain the previously noted (see §5.2) beam size to the power
of six scaling. Note that this expression also depends upon the cavity length (which is
inexorably linked to the beam size), the mirror reflectivities and the wavelength of the beam.
Considerations following from these dependencies will be discussed in §5.4. First however,
we will validate and compare this beam size scaling relation to a numerical simulation using
a full aLIGO model — a scenario in which it is not simple to prepare an analytic formula.

5.3 Numerical experiment for scaling validation
with Finesse

To validate the approximate scaling relation given in Equation (5.25) of §5.2.3, we will show
the results of a simulation using a full advanced LIGO model in this section; see Figure 1.1
in §1.1 for the reference configuration. Misalignments of the type previously described, and
illustrated in Figure 5.1, are applied to both of the arm cavities present in the model. The
exact magnitudes of these misalignments will be discussed in §5.3.2. First, however, we will
explore a suitable range of beam sizes on which to test the alignment coupling relation.

5.3.1 Selecting a range of arm cavity beam sizes

The current aLIGO design values, for both arm cavities, utilise RoCs of 1934 m and 2245 m
for the ITM and ETM, respectively [145]. These values, coupled with the arm cavity length
of L ∼ 4 km, yield beam sizes of wITM ∼ 5.3 cm and wETM ∼ 6.2 cm; with a cavity g-factor
of g ∼ 0.83 [146]. In this section we select a beam size space to use, focusing on values
which yield beams larger than the current design. For simplicity, and consistency with the
analytics shown in §5.2, the following analyses will assume symmetric arm cavities. As a
result of this the data points for the cavity geometries, which give our different beam sizes,
must be shifted from the design values given above; whilst remaining consistent with the
near-concentric regime of the arm cavities.

From Equation (5.23) we know that the beam size w at the cavity mirrors for a symmetric
cavity is given by

w2 =
Lλ

π

√
1

1− gc
, (5.26)

where L is the cavity length and gc = g2 is the stability factor of the cavity. For the
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Chapter 5 Scaling of Alignment Noise Coupling with Larger Beams

simulations in this section we will keep L fixed, therefore the only parameter which can be
varied to alter w is the radius of curvature of the cavity mirrors. As gc depends on this radius
of curvature, and w increases as gc increases, a large range of beam sizes can be obtained
by using a range of cavity stabilities from the current (design) g-factor, given above, to
gc → 1. An appropriate way to visualise this is by plotting the arm cavity gc values as a
function of the cavity mirror RoCs. This will show us a suitable range of RoCs yielding a
symmetric arm cavity which sits in the concave-concave regime. Figure 5.4a demonstrates
this with gc plotted as the colour-map. Highlighted on this plot are two contours — the first
corresponds to the current g-factor from the design, whilst the second is the critically stable
factor corresponding to the “maximum” beam size on the cavity mirrors. Also given on this
plot is the location at which the current design sits, as noted at the start of this section.
The red line represents a symmetric arm cavity in the near-concentric regime, with g-factors
stretching from the current design to the critically stable contour. Corresponding to this line
of symmetric RoCs, in Figure 5.4b, are the beam sizes impinging on the arm cavity mirrors
for each of these values. It is this range of curvatures, and associated beam sizes, which will
be used throughout the rest of this analysis.
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Figure 5.4: This figure gives a representation of the arm cavity geometry regimes used
for the alignment coupling analyses. In (a) the cavity stability factors are shown, with a
corresponding line (highlighted in red) giving symmetric arm cavities in the near-concentric
regime. Plot (b) then displays the beam sizes on the cavity mirrors corresponding to this
selected symmetric cavity space. The point corresponding to the current aLIGO design
values for the cavity mirror RoCs is given in (a) for illustrative purposes.
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5.3 Numerical experiment for scaling validation with Finesse

5.3.2 Magnitudes of DC and AC misalignments

One key aspect of the simulation to consider is the size of the misalignment angles on the
cavity mirrors. We recognise from §5.1, and Equation (5.1) in particular, that the static
misalignment of the ITMs for the arm cavities must be non-zero in order for the detected
alignment response to be non-zero. This is not the only consideration, however, as Figure 5.3
previously demonstrated. In that figure we saw that our derived analytic approximation for
the alignment scaling depends upon the misalignment angles being very small compared to
the divergence angle of the beam. Refer back to Figure 5.1 for the symbols βDC and βAC

used in this section.
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Figure 5.5: This figure shows the fractional angular misalignment (γ divided by the diver-
gence angle of the cavity mode, γ0) as a function of the beam sizes selected via Figure 5.4.
Recall from Figure 5.3 that values γ/γ0 ' 0.02 result in significant errors for the analytic
approximation of |k01|. We can avoid this issue by staying in a regime where the misalign-
ment angle is significantly smaller than the divergence angle of the cavity, for all values of
the cavity eigenmode.

We will now rationalise the choice of the oscillatory misalignment angle βAC; the same logic
here applies to the static misalignment angle, which was set to βDC = 1 nrad using the error
estimation analysis of Appendix C.4.1. The divergence angle of the cavity mode scales as the
inverse of the waist size, as noted from Equation (5.6), and the waist size decreases as the
beam size at the mirrors increases [146]. Thus, the divergence angle increases as the beam
size w increases — implying that our limit on the misalignment angle is constrained more
at smaller values of w. This is demonstrated in Figure 5.5 where the beam sizes obtained
from Figure 5.4b are used to find contours of the quantity γ/γ0, also as a quantity of the
misalignment angle γ. We see from this plot that ideally, to avoid issues with a break-down
of the approximation given by Equation (5.13), the value of the angle βAC should be chosen
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Chapter 5 Scaling of Alignment Noise Coupling with Larger Beams

such that it lies in the black region of the filled contours. It is also important to use a value
large enough to avoid numerical errors due to very small detected alignment coupling signals
in the simulation. For these reasons, a value of βAC = 0.1µrad was chosen; this corresponds
to an actual misalignment angle, between the coordinate systems, of γ = 0.2µrad.

5.3.3 Mode matching the arm cavities to the recycling cavities

A side effect, which must be taken into consideration when modelling these types of geometric
changes in a GW detector model, is that significant mode mismatches will occur in the central
interferometer if no compensations are made. In this case, as the eigenmodes of the arm
cavities change whilst scanning over the arm cavity mirror RoCs, the mode mismatches to
the recycling cavities will increase as we shift further from the operating points. These mode
mismatches would cause significant couplings to HOMs at the output of the interferometer,
as noted in §2.2.3.2. The magnitude of this issue is highlighted in Figure 5.6a where the
mismatch between the arm cavities and each recycling cavity is given as a function of the pre-
determined range of beam sizes on the arm cavity mirrors. One can see from this figure that,
at the most extreme beam size shift, the mismatch from the arm cavity to both recycling
cavities hits ∼ 75%.

60 80 100 120 140 160 180

Beam size on arm cavity mirrors [mm]

0

10

20

30

40

50

60

70

80

M
od

e
m

is
m

at
ch

[%
]

ARMs to SRC
ARMs to PRC

(a) Arm to recycling cavity mode mismatches.
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(b) Recycling cavity round-trip Gouy phases.

Figure 5.6: These figures together provide the picture of the mode mismatch issue when
shifting the arm cavity eigenmodes (denoted as ARMs) to obtain larger beam sizes and
the effect of the matched solutions on the recycling cavity stabilities. In (a) the mode
mismatches, computed via one minus Equation (2.18) as a percentage, between the arm
cavities and recycling cavities are given as a function of the beam size range previously
discussed. To correct for these mode mismatches, the radii of curvature of PR2, PR3 and
SR2, SR3 were optimised to minimise these mismatch values. The resulting effect on the
recycling cavity round-trip Gouy phase, ψRT, is shown in (b).

To compensate for these mismatches, prior to detecting the alignment coupling signal we
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5.3 Numerical experiment for scaling validation with Finesse

optimised the radii of curvature of the recycling cavity telescope mirrors — namely PR2,
PR3 of the PRC and SR2, SR3 of the SRC; see §1.1.2 again for the locations of these optics.
The RoCs of these mirrors were optimised such that the mismatch values between the arm
and corresponding recycling cavities were minimised; see [147] for the optimisation routine
used for this. The effect of the RoC shifts to these mirrors, for each data point, is shown
on Figure 5.6b in terms of the round-trip Gouy phase (and hence, stability) of the recycling
cavities. One can observe from this plot that, as might be expected, increasing the beam
size at the arm cavity mirrors pushes the recycling cavities (and especially the SRC) further
towards instability due to the larger beam then present in the central interferometer.

5.3.4 Detecting the alignment coupling signal

Now that we have covered the prerequisite steps necessary for computing the alignment
signal with suitable parameters, and in an optimal modal basis, we can discuss the exact
simulation performed and its results. A flow chart detailing the steps undertaken by the
Finesse simulation used in this analysis is displayed in Figure 5.7. Boxes 1 and 2 in this
figure were covered by §5.3.2, whilst A and B were discussed in §5.3.1 and §5.3.3, respectively.
The next step, after mode matching the central interferometer and the arms, is to ensure
that the interferometer is at a sensible operating point — at a basic level this means keeping
the arm cavities on resonance for the carrier HG00 mode and minimising the SRC power
in this mode. This is the step shown in box C, whereby the locking loops which control
each of the degrees of freedom of the interferometer (i.e. DARM, CARM, MICH, PRCL
and SRCL [148]) are executed and the resulting feedback is applied to the optics. Step D
then simply involves detecting the output signal, which is computed via Equation (5.1), by
placing amplitude detectors for the HG01 mode (at probing frequencies of both ω0 and ωm)
after the signal recycling mirror.

Mode match recycling
cavities to arms

Apply static
      at ITMs

Make       signal at
    frequency 

Set arm cavity
RoCs

Run locks and apply
feedback

Detect alignment
signal

1 2 A B

CD

Figure 5.7: An overview of the simulation steps undertaken for modelling the alignment
coupling signal, as outlined and detailed throughout this section.

The results of this simulation are captured in Figure 5.8. In this figure the beam sizes
impinging on the symmetric arm cavity mirrors are given on the x-axis, whilst the y-axis
gives the alignment coupling to photodiode signal detected on transmission through the SRC.
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Chapter 5 Scaling of Alignment Noise Coupling with Larger Beams

One can see from the resulting trace, and the curve fitted to it, that we obtain an alignment
scaling approximately in-line with the expected relation in §5.2.3. The reason behind the
relatively poorer fitting function quality at small values of the beam size (as compared to
larger beams), lies in how the divergence angle of the cavity eigenmode scales with the spot
size. As noted in §5.3.2, the divergence angle increases as the beam size at the cavity mirror
increases. A consequence of this is that the ratio of, e.g., the static misalignment angle to
the divergence angle increases for smaller beams — leading to a deterioration in the derived
scaling relation, as noted in §5.2.1 (and in Appendix C). This argument applies equally to
the oscillatory misalignment too as the magnitude of this tilt angle term is also fixed during
the simulation.
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Figure 5.8: This figure shows the alignment to longitudinal coupling signal as a function of
the beam sizes impinging on the arm cavity mirrors. The dashed red line gives the power-law
curve fit to these data, indicating a scaling of P ∼ w6 as expected. Note that the fit function
given is in the units where w is in metres. The poorer quality of fit for smaller beam sizes
was hinted at in §5.3.2. As the divergence angle of the cavity mode scales with the size of
the beam on the mirrors, the ratio of the misalignment angle (considering either residual or
AC terms) to this divergence angle thus increases for smaller beams.

5.3.4.1 Higher order couplings

There can be a few additional reasons as to why the blue data curve shown in this Figure 5.8
does not match the scaling relation exactly. Firstly, in §5.2.1 we assumed that the misalign-
ment angle γ is small such that non-linear terms in this variable were neglected. Whilst it
is true that the misalignment angle chosen was small, these higher order coupling terms are
still non-zero. Further to this, our scaling relation only considers terms in the first order HG
mode. In the simulation, and in practice, the couplings to higher modes (e.g. HG02) will
also be non-zero; and thus contribute to the detected signal at the output. Lastly, we also
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5.3 Numerical experiment for scaling validation with Finesse

assumed in §5.2.2 that the arm cavities were of large enough finesse such that the product
of the mirror reflectivities is unity. This is also an approximation which is not applied in the
simulation.

An additional consideration is the presence of mode mismatches in the simulated interfer-
ometer. Whilst the recycling cavities are explicitly mode matched to the arm cavities, as
detailed in §5.3.3, the optimisation routine employed for this mode matching is not perfect,
and, consequently, small mismatches between the arms and recycling cavities do occur. As
a result of this, a very small portion of the light is scattered into the HG02|20 modes, and
ends up propagating to the anti-symmetric port of the interferometer. Again, power in these
modes complicates the scaling (with beam size) of the field then detected at this point. To
optimally alleviate the effect of mode mismatches between the cavities, the IMC and OMC
were both removed from the model when performing the simulation which produced Fig-
ure 5.8; preventing the need for an extra step in matching these mode cleaner cavities to the
recycling cavities.
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Figure 5.9: Plotted here are the amplitudes of various HOM fields, on transmission through
the SRC, as detected by the Finesse simulation used to obtain the results in Figure 5.8.
The product of the black traces gives the coupling shown in that figure. The red traces show
the amplitude in the HG20 mode, for both carrier and sideband fields, which are a result of
mode mismatches in the interferometer; between the arm and recycling cavities (including
inter-dependent mismatches) as noted in the text. The blue traces are more complicated as
these comprise both mode mismatch and higher order misalignment contributions.

The combinations of the above effects are demonstrated in Figures 5.9 and 5.10. The former
provides evidence for the couplings discussed in this section through the contributions seen
in the red and blue traces. The red data show field amplitudes for the HG20 mode, at both
carrier and sideband frequencies. These field amplitudes can only be present due to mode
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Chapter 5 Scaling of Alignment Noise Coupling with Larger Beams

mismatches in the interferometer; as there are no yaw misalignments applied to any of the
optics. Meanwhile, the blue curves give amplitudes in the HG02 mode; again for the fields
at both carrier and sideband frequencies. The power in these fields is more complicated
as they will consist of contributions from both higher order pitch misalignment terms as
well as the aforementioned mode mismatches (due to mode mismatches scattering into even
order modes, as detailed in §2.3.3.1). Figure 5.10 gives a detailed break-down of the mode
mismatches, during the simulation, between each core cavity within the modelled aLIGO file.
Combinations of these mismatches lead to scattering into even order modes which result in
the red traces of Figure 5.9, as well as contributions to the blue traces on that figure. All of
the shown mismatch values are relatively small, reaching a maximum of only ∼ 3×10−5 % at
the largest spot size, such that the degradative effect that this has on the simulation results
is not an overly limiting factor. However, the net result of all the above effects leads to an
observed numerical scaling in the alignment to longitudinal coupling which does not quite
obey a power law of w6.
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Figure 5.10: The mode mismatches between all the core cavities in the aLIGO file, as a
function of the spot size on the arm cavity mirrors. The y-axis values were computed
via unity minus Equation (2.18), averaged over the tangential and sagittal planes, as a
percentage. These traces represent the mismatches after employing the optimisation routine
mentioned in §5.3.3. The largest mismatches here are between the split SRCs in the X and Y
arms (magenta), the split PRC and SRC in the Y and X arms, respectively, (cyan), and the
XARM cavity and the SRC in this arm (dashed blue). Essentially all of these mismatches
increase with the spot size on the arm cavity mirrors, however this is likely just a side-effect
of the aforementioned optimisation routine.
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5.4 Implications and potential for suppression

Whilst the approximate w6 scaling of alignment to longitudinal coupling may seem alarming
at first, there are some subtleties and nuances in this scaling relation which can serve to
lessen its impact. For convenience, we will again show the key equations which constitute
this scaling relationship. Firstly, the magnitude of the coupling coefficient from HG00 to
HG01 which is given by

|k01| ≈
π

λ
γw, (5.27)

where λ is the beam wavelength, γ is the misalignment angle between the incident beam and
the cavity axis and w is the size of the beam as before. Secondly, the resonance enhancement
factor for the first order mode is the other contributing factor:

|d|HG01
≈ 1

2

π

Lλ
w2, (5.28)

where L is the length of the cavity. It is also useful to re-state the full scaling relationship
derived from these previous quantities, we will now denote this as Prefl,01 in accordance with
the nomenclature used in Appendix C:

Prefl,01 ≈
R2

2

(π
λ

)4 w6

L2
|βDC βAC| |i0|2, (5.29)

where R is the reflectivity of both cavity mirrors, the β factors are the tilt angles (in the
pitch degree of freedom) of the mirrors and i0 is the amplitude of the input field in the HG00

mode. We will now consider each of these equations individually.

5.4.1 Stronger alignment signals

First and foremost, Equation (5.27) shows us a linear scaling of k01 with the beam size. This,
in turn, causes stronger coupling into first order HG modes for larger beams, which will also
increase the power in the alignment signals [143] used in alignment control schemes [26, 84].
The alignment sensing in GW detectors uses split photodiodes for detecting beats between
different mode orders [149]. Consequently, in the context of this coupling, such photodiodes
would detect the beat of the HG00 and HG01 modes (at both DC and AC frequencies). From
the derivations in Appendix C we can determine that this detected beat is effectively the
square root of Equation (5.29), as we only have one contribution of the k01 coefficient and
the resonance enhancement factor dHG01 for such a signal. We will denote this quantity as
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P refl,01 which is thus defined as

P refl,01 ≈
R√

2

(π
λ

)2 w3

L
|β| |i0|, (5.30)

where β can be either βDC or βAC depending upon which frequency we are looking at. As this
beating quantity is used in the alignment scheme, this effectively allows for a reduction in the
residual DC misalignment by this value — essentially suppressing the “static” misalignment
term. Note that this assumes a well-behaved control loop whose performance is limited by
the sensor noise. Commensurately, we can argue that the “real” scaling of the alignment to
longitudinal noise coupling is effectively equal to Equation (5.30); i.e. the corresponding and
equal left-over term of Equation (5.29) that is then not suppressed by the alignment scheme.
This modified scaling relation then only has a w3 dependence.

As a result of this, it is interesting then to express an order of magnitude version of Equa-
tion (5.30) as a function of the parameters which are expected (or known) to change for
future GW detectors:

P refl,01 ∼
1

λ2

1

L
w3. (5.31)

Using this equation, and the projected values for each of these variables for third generation
detectors (from Table 2, Section LT-3.4.2, of [27]), we can estimate the approximate scaling
of the alignment noise coupling in each case. This is shown in Table 5.1, where values of
Equation (5.31) are given for the planned third generation detectors, normalised to the value
for aLIGO (using approximate values λ ∼ 1µm, L ∼ 4 km and w ∼ 5 cm). The values in this
table provide a glimpse into how the alignment noise may scale for these future detectors.
When inspecting the ET detector values, it is important to note that ET-LF is the more
important case as the alignment control noise dominates at lower frequencies; the scaling
for ET-HF is less important, but still needs to be considered. The scaling ratios of 1.04 for
ET-LF and 1.38 for CE (pess) indicate that the actual alignment noise scaling is far less
concerning than the initial w6 relation. In addition, for CE the absolute scaling is estimated
to actually decrease relative to aLIGO — due to the longer wavelength coupled with the
much longer arm cavity, whilst the beam size increase is relatively small by comparison. The
only detector for which this absolute alignment noise scaling increase is very significant is
ET-HF, where this large ratio arises due to the projected beam size being relatively large
(compared to aLIGO) in comparison to the arm length.

It is important to remember that the alignment noise coupling ratios given here are just
estimates based on simplified analytics. A more precise prediction of how this noise may
scale for future detectors will require thorough simulation work using established model files
for each detector.
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Table 5.1: This table gives approximations of the scaling of the alignment to longitudinal
noise coupling for future detectors, determined via Equation (5.31), as ratios to the estimated
aLIGO value. Note that these are order of magnitude estimates and do not represent precise
projections of the alignment noise scaling for the listed detectors. CE (pess) refers to the
“pessimistic” initial design scenario for Cosmic Explorer [27].

aLIGO ET-LF ET-HF CE (pess) CE
Beam Wavelength [µm] 1 1.5 1 1 1.5

Arm Length [km] 4 10 10 40 40
Beam Size (on mirrors) [cm] 5 9 12 12 14

Normalised P refl,01 1 1.04 5.53 1.38 0.98

5.4.2 Scaling with the other dependent variables

Another important point comes from the assumption made in §5.2.2, namely that the cavity
is of very high finesse such that (in the case of an impedance matched cavity) R2 ∼ 1. By
lowering the finesse of the cavity sufficiently, this approximation is no longer valid and thus
the resonance enhancement factor for the first order mode does not then scale as w2. The
scaling is more complicated when removing this assumption, however an idea of the effect
can be seen from Equation (5.29) whereby reducing the value of R (hence lowering the cavity
finesse) decreases Prefl,01, commensurately.

We can continue to look at Equation (5.29) for hints at how the various dependent parameters
by themselves provide different scaling relationships for the alignment coupling. Firstly, we
can note the nominal 1/λ4 dependence in this equation. By substituting in the beam size
from Equation (5.26), we obtain

Prefl,01 ≈
R2

2

1

L

(π
λ

)3
(

1

1− gc

) 3
2

|βDC βAC| |i0|2, (5.32)

where gc = (1− L/RC)2 is the g-factor of the cavity. In other words, the scaling we obtain
with the wavelength of the beam is Prefl,01 ∼ 1/λ3 — and, thus, using a longer wavelength
beam would act to suppress this coupling. Furthermore, Equation (5.32) provides us with
an approximate scaling of this alignment coupling against the length of the cavity L. If we
assume that the stability factor, gc, of the cavity remains constant for a given design then
one can note that this scaling then has a dependence of Prefl,01 ∼ 1/L. Thus, by increasing
L (and the radius of curvature of the cavity mirrors by the same amount to keep gc fixed)
one could theoretically suppress this alignment scaling. It is important to note however,
that both of the choices of L and λ are fundamental to the design of a ground-based GW
detector as the values of these parameters have consequences across many aspects of the
interferometer. These include, for example, considerations for the optic coatings in the
case of the beam wavelength, and Sidles-Sigg instabilities [139] for the cavity length — as
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increasing this whilst keeping gc fixed would lead to a larger waist size of the arm cavity
mode.

More work remains to be done on this topic of alignment noise scaling for future detectors.
In particular, the impact these types of scaling relations have on alignment control schemes
will be important to understand. This is due to the aforementioned issue of the alignment
control system itself being a dominant noise source at low frequencies in current detectors;
rather than the noise couplings due to misalignments themselves.

5.5 Summary

Alignment noise is currently an important source of noise to understand in GW detectors.
This statement will hold equally true for future detectors, such as ET-HF, where higher power
could potentially result in stronger coupling to pitch and yaw motions on the arm cavity
test masses. Given that future detectors will also typically utilise larger beams to reduce
coating Brownian thermal noise [27], it is important to understand how the alignment noise
can scale with the beam size. We have investigated such an issue in this chapter, including
my work, extended from [143], on characterising the analytically based approximation for
alignment to longitudinal coupling (§5.2), followed by a numerical validation of the ensuing
w6 scaling relation in §5.3. This modelling work was carried out by myself, using Finesse
to obtain the results highlighted in this chapter.

We saw in §5.3.4 that the results of the alignment coupling simulation broadly agree with the
approximate analytical scaling derived. The slight deviations in the simulation data were
discussed in this section. These deviations can be briefly summarised as contributions of
higher order misalignment terms, and HG mode couplings, being assumed to be negligible in
the analytical approximation — whilst in the simulation (and in practice) this is not quite
true.

In §5.4 we discussed the implications of this scaling. An important point here is that the
increased coupling into first order modes for larger beams also provides the potential for
stronger alignment signals, yielding a benefit to future alignment control systems. This
section also highlights that this scaling can be suppressed through careful tuning of the arm
cavity design; for example, lowering the cavity finesse would assist in dampening the effect
of this increased beam size scaling.

There is scope for future work on this specific aspect of alignment coupling. In particular,
a concrete recipe for tuning the cavity design to optimally suppress the increased beam size
scaling would be an interesting direction of development. This could be done by carefully
selecting values of the scaling dependent parameters, L (cavity length), λ (beam wavelength)
and R (reflectivities of the mirrors), to potentially obtain a scaling relation of reduced impact.
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Chapter Six

Finesse 3 Software Design

The use and development of Finesse 3 has been a common theme throughout this thesis.
In Chapter 2 we covered the motivation behind developing this software for modelling HOM
effects in interferometers, including examples of the improvements built upon previous ver-
sions in this regard. We have also seen use cases for Finesse 3 involving specific science
tasks in Chapter 3, for a feasibility study on a novel telescope design for ET, and Chapter 4,
in which the modelling of adaptive mode matching for ET is investigated in the context of
this telescope design. The results behind several mode matching related figures in Chapter
5 also utilised Finesse 3. In this chapter we will focus on the overarching software design
of Finesse 3 as a whole, with specific attention paid to the motivation behind the design
choices therein.

The Finesse software package was originally conceptualised and implemented in an initial
form in 1997 [150], and has been used extensively in the GW detector instrumentation
community ever since [151, 152]. It remains one of the major software suites in the field
to this day. The new version, Finesse 3, which is the topic of this chapter, is a complete
re-development of both the original software, and its eventual wrapper and utility code
Pykat [74], from the ground up. Development on Finesse 3 began around three years
ago (in late 2017) and has continued with a core team of around five developers (see the
GitLab page which hosts the project [75] and the documentation [81]); a number which is
expected to grow in the coming years. Over the course of my PhD, I became lead developer
on the following aspects of the software: the extension from simple plane waves to the
use of optics and beams with transverse spatial properties, integration with Cython and
the documentation. My implementation of the HOM modelling capabilities of Finesse 3
are given in detail in Chapter 2, however in summary these include, but are not limited
to, a new beam tracer (providing, for example, convenient access to beam parameters and
mode mismatches), efficient computation of coupling coefficients for modal calculations and
improved performance of transverse beam profile imaging. The integration with Cython is
vital for performing efficient calculations, improving the performance of the code significantly
over a pure Python implementation; and even resulting in faster simulations when compared
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to the previous C implementation of Finesse 2. The use of Python as the main language
for Finesse 3 initially gave cause for concern, due to the potential performance limitations,
at the beginning of the development of this package. However, our work on “cythonising”
the key back-end code (and, in particular, my contributions in the form of efficient HOM
implementations) confirmed this package structure as a sensible choice. See §6.2 for more
details on the Cython extensions. Finally, the documentation is implemented using state-
of-the-art development tools — providing a useful, and modern, set of pages complete with
an automated API reference, details on the physics behind the code and examples on using
it. This documentation will allow users to build complicated models more easily and also
provides a platform for more people to contribute to the project in the future. My overall
contributions to Finesse 3 in general have been extensive, covering almost all aspects of the
code and documentation1 — where necessary, I will highlight these specific contributions.

We will begin this chapter by discussing one of the key design choices for Finesse 3, namely
the use of Python as the high-level package and interface to the software, in §6.1.1. Tightly
coupled to this is the use of Cython [154] for performing the necessary low-level calculations,
including the solving of the interferometer matrix. This separation of concerns will be ex-
plored briefly in §6.2. As a follow-up to the use of Cython, we will discuss a core concept
behind Finesse 3 which is the use of a “workspace” pattern — for optimising simulations as
well as providing a convenient interface for users to extend the code for their own require-
ments. Combining these topics together, we will then give an overview of the “flow” of the
software in terms of running a simulation, from making the model to accessing the results,
in §6.4 — highlighting the steps taken, with links back to Chapter 2 where appropriate.
Finally, in §6.5, the documentation [81] of Finesse 3 will be briefly discussed; this a topic in
which my contributions were particularly important, being the lead developer of this aspect
of the software.

6.1 Motivation

Several motivating reasons lie behind the development of a new and improved version of the
popular and widely used interferometer modelling tool Finesse. The key factors of these
will be discussed in this section. The motivation behind improving the modal aspects of
Finesse was covered extensively already in §2.1, and so is not repeated here.

One of the major points behind the development of Finesse 3 is a purely structural consid-
eration, whereby each element of the code-base is separated into its own sub-module based
on the type of physics tasks it is required to perform. This creates a clean package which is
easy to work with, as highlighted in §6.1.1, and, just as importantly, is flexible for users and
developers to extend to suit their own requirements necessary for completing some science
task; this will be discussed briefly in §6.3.

1As of writing, over 900 commits to the Finesse 3 repository have been authored by myself [153].
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The use of a modern code-base was, and is, a key point in the implementation of Finesse 3.
In addition to the modular structure of the source code itself, we now also have a dedicated
test-suite (utilising the pytest [155] framework to write and run all of our tests) and a set of
documentation pages included in the same project (see the host page at [75]). Both of these
aspects of the software are factored into the development cycle via the continuous integration
capabilities of GitLab, whereby all the tests are executed and documentation is built on a
per-commit basis to the main repository. These development tools are consistent with any
major, modern, open-source software package and should help to future-proof Finesse 3
for the next couple of decades. This is important from a scientific perspective due to the
robustness that the continuous testing and documenting will provide to users relying on the
sofware; especially in the case of detector commissioning tasks which often require quick
response for modelling calls.

More technical reasons for developing Finesse 3 include [156] (but are not limited to):
the ability to model closed-loop control systems with electrical couplings, the inclusion of
mechanical components with explicit motional degrees-of-freedom (e.g. pitch and yaw for
suspension systems) and the implementation of beating between distinct carrier light fields;
required for modelling proposed schemes for limiting quantum noise (such as the unstable
opto-mechanical filter [157], and EPR squeezing [158]). All of these additional features and
improvements will assist in modelling efforts for the design and commissioning of third-
generation GW detectors going forward. It is worth noting also, as mentioned in Chapter
2, that the improved beam tracing capabilities of Finesse 3 have already been used for
science tasks in the form of arm telescope feasibility studies; as detailed in Chapter 3 and,
by extension, Chapter 4.

6.1.1 Modular structure and API

The use of Python as the packaging and API language naturally leads to the modular
structure of the Finesse 3 code-base. As is typical with a well-structured Python pack-
age, Finesse 3 consists of several sub-modules and packages, each of which is targeted
towards a specific aspect of the code — both in terms of the physics involved (e.g. the
finesse.knm sub-package contains code for coupling coefficient calculations) and utility
tools (e.g. finesse.plotting is made up of classes and functions for conveniently plotting
results from simulations). This clean separation of concerns is advantageuous in several re-
gards. Firstly, it reduces development time due to being inherently more understandable as
a code-base. This applies to both the core developers of Finesse 3 and users who want to
extend the code for their modelling requirements; see §6.3. Secondly, it improves the testing
framework by allowing for functional and unit tests on separate parts of the code. Finally,
this modular structure lends itself well to the documentation side of the project — again,
making it clearer as to where each feature lives in the code-base and providing the means to
document the equations therein in a clean way. See §6.5 for details on the documentation.
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Figure 6.1: A reference chart showing a (partial) network representation of the modular
structure of Finesse 3; based on the current status of the code-base. Common sub-modules
and packages have been grouped together in the boxes of different colours, predicated on the
“domain” in which these parts of the code operate. For example, the “Simulation domain”
shown in the upper-left includes the analyses, matrix solvers, solution objects and plotting
modules, as these all pertain to a typical simulation process in Finesse 3. One may note that
the domain containing component and detector code has been marked as “highly-extendable”.
We will touch upon this concept in §6.3.

Figure 6.1 gives a network representation of this modular structure employed by Finesse 3.
The information contained in this figure is relatively densely encoded, however the important
point is to realise the separation of parts of the code-base according to the “domain” in which
they operate. One key point to note is that the “model” and “script” modules are core to
the package as a whole. These represent the object used to store the configuration and the
process by which kat-script files are parsed into these configuration models, respectively.
Each sub-module shown on Figure 6.1 is colour-coded in terms of the type of module it is
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— i.e. Python, Cython or a mix of the two. The red sub-modules are those which have not
yet been implemented, but are planned for the future. The solid arrows represent one-way
communication between any two modules (e.g. the simulation code relies on the beam tracing
module, but not vice-versa). On the other hand, dashed lines mean two-way communication
between the sub-modules. Note that, in the interests of reducing complexity, Figure 6.1
only displays modules associated with the optical to optical couplings in Finesse 3. Other
sub-modules which deal with mechanical and electric couplings also exist but have not been
included in this figure.

6.2 Cython extensions

Cython [154] is an “intermediate-level” extension to the Python programming language,
providing the ability to write Python-esque code, with extensive optional optimisations, in
modules which are then compiled into C code; typically in the form of shared object files. The
codes in these files are then exposed to Python, and other Cython modules, in a well-defined
way; as detailed in a concise manner in [159]2.

This ability to write optimised code with hooks into the Python application programming
interface (API) is ideal for Finesse 3. It enables the code-base to remain consistent with
the modular structure detailed in §6.1.1 whilst facilitating the use of highly-streamlined C
code. By making extensive use of explicit typing, contiguous memory-views (and pointers to
C arrays) and fast C function calls (including in-lined calls), we are able to achieve C level
speed for our simulation code. We covered some examples of the impressive performance of
Finesse 3, in the context of modal simulations, when compared to Finesse 2 (a pure C
code-base) in Chapter 2 — see specifically, §2.3.2.3, §2.3.3 and §2.4.5.

The reason why Finesse 3 requires such well-optimised code lies in the complexity of the
calculations performed and, inexorably coupled to this, the “tight” loops over quantities such
as the number of HOMs. We saw a glimpse of the complexity of HOM calculations specifi-
cally in §2.3.1, where the computation of coupling coefficients relies on an analytic solution,
derived by Bayer-Helms [109], which contains three-fold sums with sizes proportional to the
number of modes. Furthermore, the solving of the sparse interferometer matrix itself requires
interaction with a C-based optimised solver, KLU [79], for performance reasons. This is due
to the number of equations Neq, i.e. the order of the interferometer matrix, scaling as

Neq = Nnodes ×Nfreqs ×NHOMs, (6.1)

which is simply the product of the number of nodes, frequencies and HOMs in the system. An
expression for the number of HOMs, as a function of the maximum modelled mode order,

2This source also provides a good overview of the different ways of declaring functions in Cython, including
benchmarking results using a typical numerical example.
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can be found in Equation (2.32); note, however, that this expression does not take into
account explicit mode selection as detailed in §2.3.3. For a typical GW detector file, we have
Nnodes ∼ 400, Nfreqs ∼ 5 (at DC, assuming carrier plus RF sidebands) — giving Neq ∼ 2000
even before including any HOMs3. Such a sparse matrix requires heavily optimised code for
both filling and solving.

One especially useful feature of Cython extensions is that they essentially operate from the
same Python code as any pure Python module — i.e. one can write a naive extension in
exactly the same syntax as a Python file. This is, and will continue to be, a particularly
important aspect of developing Finesse 3, as one can easily convert any Python code to
a Cython extension if a bottleneck in this piece of code is identified. Indeed, even by
simply using the same code (which is then compiled via Cython) one can, potentially, obtain
significant speed-ups (see [160] for example) even before using typed variables and other
low-level features. This provides the ability to develop in a pattern of “scaled-optimisations”
— avoiding any premature optimisations whilst continually drilling down into the Cython
extensions with lower and lower level code when necessary (after profiling flags up bottlenecks
in such code).

6.3 Simulation workspace pattern

A central part of the Finesse 3 pipeline is the “workspace” pattern used for optimising
simulations and providing a clean separation between the Python API and C back-end.
When a simulation is triggered, each component (also referred to as “connectors”) in the
model will provide a low-level version of itself known as its workspace. These workspaces
then store the component connection information, required for assigning the correct sub-
matrix view of the full interferometer matrix, as well as other data — such as the C level
versions of each parameter of that connector and, if the simulation is modal, scattering
matrices (see §2.3) for each coupling associated with the component connections. A visual
representation of this can be found in Figure 6.2.

In this figure a broad overview of the sequence of events for workspace initialisation, as
related to a simulation, is given. The process shown here applies equally to workspaces for
detectors in Finesse 3, albeit much simpler as these typically only need low-level output
functions to be assigned to them. One can observe from Figure 6.2 that workspaces have a
lifetime limited to the lifetime of the associated simulation — control is essentially handed
back to the connector object once the simulation is complete, allowing its parameters to be
changed via the Python API once again.

An important cornerstone of the workspace pattern is its extensibility through custom con-
nector creation. This means that any user wanting to extend Finesse 3 with an extra

3Here we have used the aLIGO design kat-script file (see, for example, Appendix E of [80]) where the
optical nodes were counted using the network model property [103] in Finesse 3.
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ConnectorWorkspace
initialised

initialise connections
make low-level parameters struct
set matrix filling function

assign ABCD matrix views
allocate scattering matrices

if modal
simulation

ConnectorWorkspace
destroyed

Python API

Simulation backend

Component

_get_workspace
       called

parameters frozen parameters unfrozen

Simulation created
add workspace
to simulation

use workspace during simulation
Simulation completed

Figure 6.2: A representation of the workspace pattern for a typical component of a Finesse
3 model and simulation. This highlights the process by which components are “converted”
into optimised workspaces when a simulation is created, providing a separation of the Python
facing connector object and intermediate-level Cython code associated with this connector.
Note that this is quite a broad overview, there are other steps (such as determining which
sub-matrices are changing, which scattering matrices need to be re-computed, etc.) taken in
addition to those shown here.

component can do so by simply defining a _get_workspace method in this new object, as
implied by Figure 6.2, in which the necessary attributes of a connector workspace are set.
All of the lower-level handling is then carried out automatically, allowing the full power of
the Cython extensions to be utilised for any such custom component. The process by which
a user would implement a custom component is shown conceptually in Figure 6.3, from their
initial idea through to the realisation of this via interfacing with the Finesse 3 API. In
this figure the user can code their new component entirely in Python, without needing to
write any Cython code nor worry about the underlying Cython extensions. This is possible
via various interface methods to the low-level code which initialise quantities such as scat-
tering matrices and tell the connector workspace to use specific matrix filling methods; as
highlighted in the steps 4 and 5 in the “implementation” box of this figure.

6.4 Program flow

Now that we have given an overview of the structure and some of the inner-workings of
Finesse 3, it makes sense to summarise these concepts through a logical flow-chart of the
procedure undertaken by the program. Such a chart is displayed in Figure 6.4. In this
figure the run-time “state” of the program is separated into four distinct categories — the
Model, the Simulation, the Output and Error-Handling. The Model region describes all the
interactions and processes followed within the main interface through which configurations
are constructed. It is from this object that the Simulation is typically first created. As
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3) Define the derived workspace

4) Set the methods for filling the local
    coupling matrices

5) Implement the _get_workspace method

Base workspace should depend upon
the type of connector it represents

The 'mat' object here is a view
to the component sub-matrix

K11 is the scattering
matrix on reflection
(see below)

6) Check that the new component works in
    a simulation

7) Optionally write tests using the
    pytest framework

Idea Design

Implementation

1) Make the connector-type class

Class Definition Setting up the workspace Using and testing

1   Field couplings

Gratings in Finesse 3

2   ABCD matrices

3   Coupling coefficients

2) Optionally define additional properties,
    such as ABCD matrices

1   Field couplings

Gratings in Finesse 3

2   ABCD matrices
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This will create a scattering
matrix for the given coupling
and auto-compute it efficiently
via Cython

Determines which parameters of the
component are changing such that
`is_changing` is a set of these

Figure 6.3: An overview of the idea to implementation process for creating a custom compo-
nent in Finesse 3. This highlights the steps necessary for writing a custom connector type
object, which can then be used in conjunction with simulations. Note that at no point dur-
ing the implementation phase is a user required to write or touch any Cython code; various
interfacing functions are available through the API to initialise, in a very general way, the
necessary variables for executing the low-level code required for running simulations.
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described earlier, in terms of the component workspaces (see §6.3), this realm is the low-level,
heavily-optimised space in which the interferometer matrices are filled, scattering matrices
are computed and beam traces are performed, as and when required over the axis scan(s)
of the analysis being executed. When the analysis is completed, the simulation is destroyed
(de-allocating the potentially memory-expensive attributes such as the interferometer matrix
itself) and a solution object is handed to the user — as shown in theOutput zone of Figure 6.4.
This is where the user may interact with their solved system by accessing specific detector
outputs, plotting the solution etc. Concurrent to all these domains is the Error-Handling
section. This, as the name implies, handles and raises any exceptions which may be raised
during the whole file-running process. The form in which errors are displayed to the user is
dependent upon the environment in which they are running their Finesse model.

In the Simulation domain there are a few distinct modes of operation — matrix-solver
simulations (with the optional signal matrix solving) and so-called “matrix-less” simulations.
Both of these derive from the main thread shown in this domain, where common tasks (such
as initialising the workspaces) are performed. The latter type of simulation is typically for
models containing detectors which only require knowledge of the modal basis, rather than
needing any field amplitudes. We briefly covered such a type of simulation, and the benefits
of separating it out, in this context in §2.2.4.2. It is important to note that the existing subtle
separation of simulation types will become more distinguished in the future, stemming from
the plans to implement such simulation types as, e.g., time-domain and FFT solvers.

6.5 Documentation

Finesse 3 uses the Sphinx Python documentation generator [161] as the framework and
tool for writing and producing comprehensive documentation — in both HTML (see [81]
for the latest online version) and LATEX formats. Both of these are produced automatically
as part of the LIGO GitLab repository pipeline on the master branch, resulting in online
documentation which is always consistent with the latest development version. I was the
principal developer of the documentation — most features mentioned in this section were
implemented by myself.

The documentation is separated into different sections — introduction (including installation
instructions), the manual (containing detailed physics behind the features used in Finesse
3), using Finesse (examples of using the software for different tasks), the syntax reference
(to refer to the kat-script syntax), API documentation (covering all accessible classes and
functions exposed by the API), a developer guide (for information on how to contribute to
the software) and other miscellaneous sections such as a bibliography and contributions list.
Note that, as of writing, Finesse 3 is in an alpha state of development and so the above
sections are in no way complete at this stage. The framework for writing more content for
the documentation is, however, in a stable state. This will make it much easier for current,
and future, developers to contribute to the pages.

131



Chapter 6 Finesse 3 Software Design

Has field dependent
detector(s)

Model

Simulation

Error Handling
Parse file

Syntax error 
in file?

Initialise Model

Build Model

Do pre-build
checks pass?

Toggle tunable parameters

Determine simulation type

Raise error from
parsing

Throw exception from
Model building

Build Simulation

Construct low-level
Model data Matrix

Initialise workspaces
Allocate matrices

Matrix-less

Assign sub-matrices

Initialise TraceForest Compute initial
scattering matrices

Run simulation loop

Update parameters Retrace

Recompute changing
scattering matrices

Re-fill sub-matrices

Solve IFO matrixCompute detector
output(s)

Make via API

No detector requiring fields

Perform initial
beam trace

Raise error from
beam tracing

Output

The flow
of

Finish simulation
analysis Clean up memory

Hand over Solution
object to user

Whilst scan
still active

When parameter
sweep complete

Access detector
output(s)

Plot output(s)

Save solution

No stable cavities
nor manual beam

parameters

Checks failed

Checks passed

File parsed
successfully

Figure 6.4: This figure displays the flow of the typical pipeline of a Finesse modelling task
— from parsing an input file to handling the output data. Each shaded region describes
a distinct state of the program being executed. The Model, Output and Error-Handling
realms serve as Python API points; i.e. the user can easily interact with these parts through
standard Python object-oriented interfaces. Meanwhile, the Simulation zone is at a much
lower-level for optimisation purposes; as described in §6.2 and expanded upon in §6.3. The
boxes with dotted boundaries represent steps required only for modal simulations. Note
that, in the interests of reducing figure complexity, steps associated with signal simulations
are not shown here. These steps are similar to those shown in the matrix simulation area
already, but acting on a separate “signal” matrix.
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6.5.1 API documentation

The API pages of the documentation are generated automatically via an external tool I
developed called reslate [162]. This tool ensures that all of the API pages are consistent
with the current state of the source code. In this section of the documentation, the accessible
parts of the Finesse 3 API are listed and documented using the “doc-strings” of each of
these exposed modules, classes and functions. One can use Sphinx to combine these native
doc-strings with externally produced images — providing the potential for detailed API
documentation pages. One such example of this is shown in Figure 6.5, where a screenshot
of the current documentation page for the Mirror.ABCD method is displayed. In this figure
one can see that we have included graphics to help guide the reader on the conventions used
for this part of the code — a feature that is extendable to the doc-strings of any other object
in the source code.

Figure 6.5: This figure shows an example from the API documentation, displaying the page
for the ABCD method of the mirror class. Sphinx allows us to use both rendered equations
and images in the doc-strings for any object in the source code, providing the ability to
produce pages such as this.

As an aside, another aspect of the API pages that we can glean from Figure 6.5 is the
presence of the navigation sidebar. Each sub-module is listed in this bar, grouped into the
sub-packages in which they sit and ordered alphabetically for convenience. This view, along
with the search function, provides easy access to all the API documentation and also provides
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an insight into how the code is structured; as implied earlier from Figure 6.1.

6.6 Current status and future work

Considerable progress has already been made on Finesse 3, with most of the core features
having been successfully ported from the previous version of the software. These features
have also been improved, particularly in the case of modal aspects of the code as was outlined
throughout Chapter 2, and optimised for better performance. A completely new parser for
KatScript, implemented by S. Leavey, has been built into the code and thoroughly tested.
This new parser contains powerful features including support for symbolic expressions, key-
word arguments in commands, better syntax for connecting components together and a clean
separation of the configuration versus analyses to perform. As of writing there is currently a
suite of over 2000 tests which all pass in the project pipeline; these include core physics val-
idation tests which check a variety of systems, in both plane wave and modal cases, against
analytic solutions. The project also contains automatically generated and built documenta-
tion pages for the API already, as outlined in §6.5.

With this current state of the code, we can run tasks using full detector files (such as the
aLIGO design file). This includes being able to run complex models on the full interferometer
(plus input & output optics) containing mode mismatches and misalignments, radiation
pressure effects on surfaces and various types of signal injections including (but not limited
to) — pitch and yaw motions of optics, GW strain inputs for free-spaces (based on [163])
and quantum noise couplings at open ports. At the end of April 2021, an initial “Alpha 1”
version of Finesse 3 was released. This is currently being tested by a small selection of
expert users of previous versions of the software.

The work beyond Alpha 1 will be defined by the feedback obtained during this stage of de-
velopment. Each subsequent pre-release version is intended for increasingly larger audiences
— i.e. the alpha stage will involve expert users, whilst beta will include the GW detector
community more broadly. In this way, the future development of Finesse 3 can take place
incrementally based on the feedback of an expanding user base. This cycle of development
allows for “crowd-sourcing” of bug fixes (as our current test suite is comprehensive, but still
cannot cover all eventualities at this stage due to the scope of the project) and a steady
stream of feature requests which can then be implemented leading up to the release version
of the package.

6.6.1 Longer-term plans and ideas

Beyond the release-requirements of Finesse 3, several other features are planned for the
longer-term. These include, but are not limited to, a time-domain solver, FFT propagation
based simulation and the ability to model closed-loop control systems complete with electrical
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couplings. With regards to the first two especially, hints at how these might be hooked into
the existing code structure are given via Figure 6.1. In that figure, we previously saw that
one such planned sub-module could be components.fft — existing alongside the current
components.modal which provides workspaces and functions for solving the given system via
the modal method (covered extensively throughout Chapter 2). This new FFT sub-package
would then, correspondingly, provide a different set of workspaces required for executing a
simulation through FFT propagation instead. The existing framework is built in such a way
as to allow these different types of simulations, with corresponding workspace definitions, to
be implemented relatively easily. This idea can be extended to other types of system solvers
too, for example a time-domain simulation solver as mentioned earlier.

The extension of the software to provide alternative solvers would, in principle, not require
any major changes to the core API of Finesse 3. As we have covered previously in this
chapter, the model object is the main interface for the user when it comes to interacting with
their configuration. This object is simply a representation of the provided optical system
and so would be identical whether looking at modal simulations, FFT, time-domain or some
other simulation based solver. Further to this, the KatScript syntax and associated parser
(mentioned earlier in this section) will also provide a consistent interface regardless of the
simulation type required. In fact this new parser implementation is flexible and extensible,
meaning that new commands (which could include different types of analyses) can be added
to the specification in a much easier way than previous versions of Finesse.

6.7 Summary

In this chapter I have introduced the overarching design of the new version of Finesse, a
software package to which my contributions have been vital (including the HOM modelling
capabilities covered in Chapter 2) and broad (consisting of developing the documentation,
contributing to most areas of the code and writing several tests within the framework devel-
oped principally by S. Leavey, as detailed in the documentation [81]).

The motivation for developing Finesse 3 in the first place was discussed in §6.1. In summary
of this, as well as technical reasons for implementing new features, one of the major points
in favour of a new version is the ability to create a modular structure which is easy to
work with and provides an interface through which new users can mould the code for their
own requirements. This also links heavily into the future work (see §6.6), giving existing
developers of Finesse 3 the tools necessary to implement different simulation types — e.g.
a time-domain solver — in the longer term.

The aforementioned modular structure of the code-base is shown in some detail in §6.1.1, with
Figure 6.1 in particular displaying a reference network of the current state of the package.
Through this figure, we explored the different domains / libraries that the software consists
of; highlighting the effort that has been put into keeping logical separation of varying physics
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topics associated with the elements of the code.

In §6.2 and §6.3, the requirement for highly-optimised back-end code whilst maintaining a
clear and convenient Python API was detailed. The pattern of converting Python objects to
low-level workspaces when simulations are triggered is key to this necessity, whilst simulta-
neously providing the means for new users and / or developers to “hook” into the fast code
with custom components as explained via Figure 6.3. Tightly coupled to this, in §6.4 we
detailed the procedure by which models in Finesse 3 are executed — Figure 6.4 displays a
flow-chart outlining this process.

Maintaining a consistent and useful set of documentation for such a large software package
is vital for its longevity and, thus, in §6.5 a brief overview of the framework for the Finesse
3 documentation was given. In short, the use of Sphinx [161] and internally developed tools
provide us with the means to generate automatically up-to-date documentation of the API.
These tools also allow us to craft well-designed pages which detail the recommended uses and
applications of Finesse 3; as well as providing a central location for describing the physics
associated with each part of the code.

Finally, in §6.6, we discussed potential future lines of work which are planned for susbse-
quent releases of Finesse 3. Given the vast size of the field of interferometric modelling,
in the contexts of both GW detectors and otherwise, there are many as-yet unexplored av-
enues of development for a package such as Finesse 3. I believe that this new version of
Finesse provides an excellent platform from which to launch new features over the coming
decade, as and when they are needed, whilst the design and construction of third generation
gravitational wave detectors enters a new, and exciting, phase.
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Chapter Seven

Summary and Conclusions

Understanding the effects that transverse beam shapes have on interferometric GW detectors
is a broad topic, and one of increasing importance as the sensitivity of current and future
detectors is increased even further. In this thesis I have explored the impact of larger beams
in upcoming facilities, focusing particularly on ET, and proposed an innovative design of the
core interferometer as pertaining to modal effects.

The impact of larger beams was discussed in an indirect sense in Chapter 3, where a key
motivation for designing new mode matching systems comes from the greater beam sizes
which will be used in future detectors for reducing coating thermal noise. As discussed in
that chapter, larger beams require either a very large central beam splitter optic or beam
expanders in the interferometer arms. We analysed Z-shaped telescopes for ET-LF and ET-
HF, providing a nominal initial set of design values which result in a small beam at the beam
splitter whilst maintaining stable recycling cavities. In this work it was also demonstrated
that this initial design is flexible in terms of changes required by future trade-off studies.
The contents of that chapter were also published in my paper “Feasibility Study of Beam
Expanding Telescopes in the Interferometer Arms for the Einstein Telescope” [1].

A follow up to this work was presented in Chapter 4. This chapter contains an analysis of
the possible actuation strategies for adaptive mode matching in ET-HF given the telescope
design obtained in the previous chapter. Using this design, we determined that actuation
on the RoC of ZM2 could provide the means to correct for small thermal lens distortions,
whilst deformation of the ZM1 surface were shown to be relatively ineffectual in comparison.
Furthermore, we demonstrated that adaptive displacement shifting of the telescope mirrors
would also have an insignificant impact on real-time mode matching. An additional outcome
of this chapter was a characterisation of the initial region of phase space that the SRC mode
could hold, whilst retaining adaptive mode matching potential of at least 99.9% to the arm
cavities. This area estimate was predicated upon actuators being present at the ZM2 and
recycling mirror optics; with actuation ranges based on existing technology in aLIGO.
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In Chapter 5 a more direct consequence of larger beams in future detectors was discussed,
this time in the context of the impact on the alignment to longitudinal coupling. Here I
used both simplified analytics and a more complicated aLIGO model to demonstrate that,
nominally, the scaling of alignment noise coupling goes as approximately the beam size to
the power of six. My modelling work in this chapter also provided an insight into the process
of simulating these types of effects for a full detector file, whereby geometric changes in the
arm cavity designs required careful mode matching of the recycling cavities to ensure that
scattering into even order modes was minimised. As an additional investigation, I highlighted
the nuances and caveats in this otherwise-startling scaling relationship. In particular, the
final remarks in this chapter note that the larger beams will also result in stronger alignment
signals and, thus, a reduction in the residual misalignment of the arm cavity mirrors.

Concurrently running throughout this thesis, I have also highlighted how the computational
modelling of HOMs via modal simulations is vital for furthering knowledge in this domain.
Implicit in this regard, I have also demonstrated the need for better modal modelling tools
going forwards and, correspondingly, shown that my contributions to the new interferometer
simulation tool Finesse 3 are key in providing such tools.

As the design of third-generation GW detectors ramps up over the coming years, one area of
increasing and immediate interest will be the formulation of new optical configurations based
on different beam geometries (as compared to those in current detectors). The modelling
efforts in relation to this topic will necessitate smarter tools for tracing beams — in particular
for easily finding mode mismatches, calculating accumulated Gouy phases and plotting beam
sizes. A large portion of Chapter 2, see §2.2.3 in particular, was dedicated to highlighting
my work in this regard. The new and flexible beam propagation library I have implemented
in Finesse 3 will provide a good interface in the area of testing proposed interferometer
designs for geometrically-related beam issues.

The performance of modal simulations is a key concern for modelling transverse spatial
effects in GW detectors. The complexity of the calculations required combined with the
“volume” of computations necessary for accurately simulating high order effects means that
such simulations can take a significant time to execute; often due to requiring high mode
orders to converge to a solution. My work on implementing very efficient modal calculations
in Finesse 3 was shown in Chapter 2 — and, specifically for coupling coefficients, in §2.3.2.3.
The significant performance enhancement that these coupling computations provides over
the previous versions of Finesse will be of great utility for executing models in a much
shorter time span; as well as allowing for larger and higher resolution parameter spaces to
be explored in future modelling based research. This is of paramount importance when
simulation results are required on short notice, e.g., for detector commissioning tasks.

Given that the development and use of Finesse 3 was a primary theme throughout this
thesis, and indeed throughout my PhD as a whole, I provided a broad overview of the design
of this new interferometer modelling tool in Chapter 6. This new version of Finesse is a
complete re-development of the already popular software (used extensively in our field) and
I have played a leading role in shaping the form of this tool such that it is “future-proofed”
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for many years to come. My contributions to the code include (but are not limited to)
development of all of the current modal modelling capabilities, as detailed in Chapter 2,
integrating Cython extensions into the software to leverage low-level code performance and
implementing the documentation. With the package modernised in this way, Finesse 3
should provide an excellent tool for the optical modelling of interferometers in general — a
task of great importance now that third generation GW detectors are on the horizon.

139



140



Appendix A

Beam Tracing with Trees

In this appendix we will explore the more technical aspects of the Finesse 3 beam tracer
in terms of its specific implementation, this should be read in the context of the concepts
introduced already in §2.2.3 and §2.2.3.1. In addition to the core logic of the tracing library,
we will also explore how this implementation is used for handling complicated simulations
— for example, dealing with regions of parameter scans which result in unstable optical
cavities.

The TraceTree object is central to the beam tracing algorithm implemented in Finesse 3.
This data structure represents a single optical node in the interferometer network, with links
then to the other physically connected nodes (i.e. via transmission, reflection and free-space
propagation couplings) and the ABCD matrices associated with such couplings. Each tree
also stores a reference to the trace dependency object which it relies upon — these can be
optical cavities or manually defined beam parameters (called Gauss objects in Finesse 3
nomenclature). A simplified visual representation of the TraceTree structure is shown in
Figure A.1. Note that if the node stored at a tree is an output node, then only the left
sub-tree can exist — as one output node can only ever map to a single input node. This
also means that the ABCD matrix to the left sub-tree will always correspond to propagation
over a free-space in this case.

Executing a beam trace through a single TraceTree, from top to bottom, is a simple task
using this data structure. The procedure undertaken is a case of recursing through the tree:
getting the beam parameter from the parent tree node, applying the relevant ABCD matrix
to this parameter then storing the result at the entry for the next tree node. This occurs
until all branches of the tree are exhausted; i.e. when there are no more sub-trees for all
recursed paths. A slightly simplified version of this is shown in Listing 2. This block of code
represents the algorithm used in Finesse 3 for recursively propagating a beam through a
TraceTree. Note that this is implemented in Cython for performance reasons (see §6.2 for
details on Cython extensions in Finesse 3 in general). The simple and concise nature of this
algorithm is beneficial in multiple ways. Firstly it offloads the complicated logic involved
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with deciding how to piece together all the trace trees into a separate, initial stage. This
provides a boost in terms of the performance of the code and allows for easier debugging and
testing of the beam tracing. In relation to this, it also ensures that the act of beam tracing
itself is robust — i.e. not prone to bugs. The main testing of the beam tracer can then be
written in terms of planting of the TraceForest, rather than the propagation of the beam
itself.
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Figure A.1: This figure shows a simplified representation of the TraceTree structure imple-
mented in Finesse 3. This data structure is employed as the core object through which
a beam trace from a given trace dependency is executed. Each TraceTree instance keeps
references to its parent tree, left sub-tree and right sub-tree (if any of these exist) whilst the
data it stores are the optical node it represents, a reference to the trace dependency it relies
upon and the value of the refractive index of the associated medium. If the left sub-tree
exists then it will also keep a view to the ABCD matrix corresponding to this coupling, and
similarly for the right sub-tree.

As detailed in §2.2.3.1, the TraceForest structure serves as the container for all the different
TraceTree instances associated with a given optical network. The order in which each tree
appears in the forest is given by the priority value of the trace dependency referenced by
that tree; a concept which was briefly covered in §2.2.3.5 and, again, in Figure 2.7 using the
example of a Michelson interferometer with Fabry-Perot cavities in the arms. We will cover
the internal implementation of this in the next section. Applying the algorithm detailed in
Listing 2 to a full TraceForest is a simple case of iterating over each stored TraceTree in
order and propagating the beam through each of these trees via this code.
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1 cdef void propagate(TraceTree tree, dict trace, bint symmetric):
2 """Recursively trace a beam through a TraceTree."""
3 cdef TraceTree ltree = tree.left
4 cdef TraceTree rtree = tree.right
5

6 # Get the beam parameter at the current tree
7 qx1, qy1 = trace[tree.node]
8

9 # If the left tree exists...
10 if ltree is not None:
11 # ... transform q by applying ABCDs for node -> left node coupling
12 qx2 = transform_q(tree.left_abcd_x, qx1, tree.nr, ltree.nr)
13 qy2 = transform_q(tree.left_abcd_y, qy1, tree.nr, ltree.nr)
14

15 # and store the result for the left tree node
16 trace[ltree.node] = qx2, qy2
17 if symmetric:
18 trace[ltree.node.opposite] = qx2.reverse(), qy2.reverse()
19

20 # then continue propagating through the left tree
21 propagate(ltree, trace, symmetric)
22

23 # If the right tree exists...
24 if rtree is not None:
25 # ... transform q by applying ABCDs for node -> right node coupling
26 qx2 = transform_q(tree.right_abcd_x, qx1, tree.nr, rtree.nr)
27 qy2 = transform_q(tree.right_abcd_y, qy1, tree.nr, rtree.nr)
28

29 # and store the result for the right tree node
30 trace[rtree.node] = qx2, qy2
31 if symmetric:
32 trace[rtree.node.opposite] = qx2.reverse(), qy2.reverse()
33

34 # then continue propagating through the right tree
35 propagate(rtree, trace, symmetric)

Listing 2: Slightly simplified code corresponding to the recursive tracing algorithm imple-
mented in Finesse 3. This function is called on all branches through a TraceTree until all
of these paths are exhausted. Note that the transform_q function shown here implements
the ABCD law given by Equation (2.2) exactly.

A.1 Planting a forest

The planting of a TraceForest refers to the procedure carried out for constructing each
TraceTree and piecing these together in the forest container by the order in which each
should be traced when triggering a beam trace on the forest. This action occurs, whenever a
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beam trace is called on a model, only if a fundamental change has been made to the model
since the last time the forest was planted — i.e. if any optical components have been added
or removed or if any trace dependency priorities were changed. Figure A.2 contains a visual
aide for interpreting how trace forests are planted, in terms of an arbitrary list of ordered
beam trace dependencies. For a practical example of this, refer back to Figure 2.7.
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Figure A.2: This diagram gives a conceptual overview of how TraceForest structures are
planted, from an arbitrary list of ordered dependencies, in Finesse 3. The same type of
procedure applies to any other ordered dependency list. The trees highlighted with dashed
boxes represent the internal trace trees of cavity instances — hence why they decay to linked
lists as shown. These types of trees are always planted first, in the order that each cavity
appears in the trace order, to ensure that beam parameters at cavity nodes will be set
according to the trace of the cavity eigenmode. After these trees are planted, all the other
(“external”) trace trees are then constructed and set in the forest according to the ordering
of their dependency object. The shaded nodes represent tree nodes which depend upon the
node of an internal cavity tree. Note that a cavity dependency may have no external trace
trees if these nodes were covered by previous trace trees; this is implied for the cavC in this
example. Also note that the different sizes of the internal cavity trees here simply implies
varying geometries of such cavities.

A.2 Constructing the changing trace forest

Whilst Appendix A.1 shows how the full TraceForest of a model is planted, this structure
is not the one which gets used during a simulation in which a geometric parameter1 is being
swept. Instead, using the aforementioned full forest, a changing trace forest is constructed
based on the trace dependencies and / or intermediate parameters (between dependencies)
which will be changing during the simulation. This is an optimisation which provides two
principle functions. Firstly, it ensures that only those beam parameters which can change

1A geometric parameter, in this context, is defined as a parameter which is a dependency of any compo-
nents’ ABCD matrix. This includes, for example, distances between components and radii of curvature of
surfaces.
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A.2 Constructing the changing trace forest

during a given simulation will get updated — all other beam parameters, at nodes which
are not part of the changing forest, are fixed at their initial values. And secondly, it allows
us to pre-determine which node couplings will be potentially mode mismatched during a
simulation — a feature which will be detailed in Appendix A.3.

Changing trace forest: Changing trace forest:
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Figure A.3: Four examples of different changing trace forest structures based on a Fabry-
Perot Michelson interferometer, where varied geometric parameters are marked as tunable.
In (a) the arm cavity mirror RoCs are tuned, leading to the changing beam parameters
consisting of both arm paths and the output, or anti-symmetric (AS), port of the central
beam splitter. Boxes (b) and (c) consist of the cases where a parameter of the gauss object at
the laser is varied (i.e. w0 and / or z); where box (c) shows the changing structure when this
gauss is prioritised in the tracing order. Finally, (d) gives a scenario where an intermediate
geometric parameter, in this case the length ly, is swept — such that the changing beam
parameters are only from this point onwards (until other dependencies are encountered).

The easiest way to understand how changing forests are built is through examples, and,
thus, in Figure A.3 we show several cases centred around the same type of configuration —
namely a Michelson interferometer with Fabry-Perot cavities in the arms. Each box in this
figure highlights a different forest of changing beam parameters based on varied geometric
parameters being scanned at alternate points in the interferometer. These examples capture
most of the types of changing forest structures which can occur, with differing trace depen-
dency orders framing how this priority also affects the changing beam propagation during
simulations. More complicated configurations, such as full detector files, will still follow the
core logic given in these simpler examples.
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A.3 Finding potentially varying mode mismatch couplings

Using the changing trace forest, we can begin performing some smart, pre-simulation loop,
functions for optimisation. One such stage, carried out immediately after constructing this
forest, is to find the optical node couplings which will be potentially mode mismatched
(with changing mismatch values) during the simulation. For both symmetric and asymmet-
ric beam traces, these couplings will be the intersection points between trees with different
dependencies in the changing forest and the full model trace forest. In addition, for simula-
tions which employ symmetric tracing, the node couplings corresponding to “self-reflections”
(i.e. at mirror-type components) will also have possibly changing mode mismatches during
the simulation — see §2.2.3.3 for details on symmetric vs asymmetric tracing.

Output node

Input node
Changing mismatch
coupling

Port 1

Port 2

Port 3

Port 4

From cavY

From gauss

From cavX*

Figure A.4: A zoomed-in view of the central beam splitter corresponding to box (a) shown
on Figure A.3. This figure demonstrates the potentially mode mismatched node couplings in
such a scenario, due to the three different trace trees intersecting at the beam splitter. The
full (stored by the model) and changing (kept by the simulation) TraceForest structures
in Finesse 3 provide the ability to pre-determine all the node couplings which will exhibit
changing mode mismatches during a simulation. This feature is useful for the user, for
inspecting mismatch locations in their configuration, and also confers significant performance
benefits to any modal simulation where geometric parameters are being swept.

We can utilise the configuration from Figure A.3, and specifically box (a) of this diagram, to
give an example of how this works. This is shown in Figure A.4, where we have focused in
on the central beam splitter to demonstrate the intersection of the three different trace trees
at this component. Each port of the beam splitter is indicated by a shaded oval, where the
colour corresponds to the trace dependency / tree that will set the beam parameters of the
nodes at this port. The modal basis of the nodes at ports 3 and 4 are controlled by the trace
from the cavity in the X-arm, as this cavity has the highest tracing priority (see Figure A.3
(a)). The black arrows on this figure then display the couplings which will have changing
mode mismatch values during the simulation.
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A.4 Dealing with unstable tracing regions

In simulations where geometric parameters are being scanned, regions of these parameter
spaces can often yield unstable cavities — this is especially true for multi-dimensional scans
over large ranges. The previous versions of Finesse did not handle such regions and, instead,
simply raised errors indicating that an unstable cavity was encountered. This is now handled
in a smarter way in Finesse 3, as we will detail in this section.

Central to the logic of dealing with unstable cavity regions is the “contingent” trace forest.
As the changing forest structure is built using the specified trace dependencies, if one of
these cavity-type dependencies becomes unstable at certain data points of a simulation (due
to an associated geometric parameter being swept) then this structure cannot be applied,
in general, for these points. Instead a new trace forest (termed a “contingent” trace forest),
corresponding to the combination of unstable cavities at those points, is built and used as a
substitute structure to trace the beam. This contingent forest is also cached in the simulation
object such that it will be used for future data points where the exact same combination of
unstable cavities occurs; preventing the need to build such structures multiple times.
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Figure A.5: This figure gives an hypothetical 2D geometric parameter scan involving a model
with two cavities, A and B, where at certain, arbitrary points these cavities become unstable.
These highlighted regions then show how the beam tracing is performed, in a broad sense, at
these regions of different cavity instabilities. In the blue region only cavity B is unstable and,
hence, a contingent forest F 〈B〉 is constructed and cached once this region of the simulation
is encountered. Whilst, in the red region, both cavities A and B are unstable leading to a
new contingent forest F 〈A,B〉 in this zone of the parameter space. Note that, in this latter
case, if no other stable tracing dependencies exist in the model then no contingent forest is
built — details on what happens in such a scenario will be given in the next section.
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Figure A.5 contains a conceptual example of how the contingent forest logic works, in the
context of a simulation in which two geometric parameters (affecting two separate optical
cavities, A and B) are scanned. One can observe from this figure that for the majority of
data points the main changing forest is used to trace the beam — i.e. when both cavities
are geometrically stable. In this example, cavity B becomes unstable in the blue region
and so a new contingent forest with this cavity removed is constructed and then used for
any data points in which this cavity is unstable. Similar behaviour then applies to other
regions where different combinations of cavities are unstable — e.g. the red region. The
dots on the boundaries of these two regions indicate where each contingent forest is built
and cached for future use; assuming that the parameter scan propagates from the lower-left
corner of this plot. Finally, the solid boundaries at the right edges of these zones correspond
to “exit-points” from the unstable regime(s) in the simulation. These points are where the
simulation switches back to the main changing forest.

The behaviour of unstable cavities in practice underpins the physical motivation for handling
such simulation regimes in this way. A geometrically unstable cavity generally experiences
large diffraction losses [100, 164, 165], especially for large order HOMs. In modal simulations
this can be modelled as the optical cavity ceasing to act as a resonator for any light field,
thereby losing power quickly. In the frequency-domain this will translate to sharp drops
in the circulating cavity power for those data points which result in the cavity becoming
geometrically unstable.

A.4.1 What happens when there are no stable trace dependencies?

In the previous section we detailed how contingent trace forests are built and used when
unstable cavity regions are encountered. However, in some scenarios it may occur that,
during a geometric parameter scan (or scans), all of the cavities in a model become unstable
whilst no other trace dependencies are present. In such a case, the configuration as a whole
becomes “undefined” from a modal basis perspective as there is then no way for any beam
parameters to be propagated throughout the system. To deal with this situation in a user-
friendly way, rather than simply raising an error and crashing out of the simulation, the
simulation registers when this occurs and masks the corresponding data point(s) of the
parameter scan(s) for any detector which requires a modal basis to be set in order to compute
its output. The output data, exposed to the user, for such detectors are then masked NumPy
arrays [107] which can be used in an established, and well-defined, way in mathematical
operations and plotting.

To demonstrate the utility of such an approach, Figure A.6 gives an exemplary case of this
simulation masking. In this example we scan the length of an aLIGO arm cavity L ∈ [1, 5] km
and detect the spot size on both cavity mirrors whilst also probing the g-factor of the cavity.
The former detectors require the modal basis to be defined2 whilst the latter does not. The

2This is because the beam size at a given node is computed via w(q) = |q|
√

λ
πnr={q} in Finesse 3.

148



A.4 Dealing with unstable tracing regions

effect of this is that the beam size detector outputs are masked at the points where the
arm cavity becomes unstable — as there are no other trace dependencies present in this
simple file. On the other hand, the g-factor detector output array is not masked at these
points; providing us with the ability to see where these values breach the stable limits on the
plot. This behaviour is automatic in Finesse 3 in that only those detectors which require a
defined modal basis will have their outputs masked in completely unstable trace regions.
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Figure A.6: An example of detector output masking in simulations. This uses an aLIGO
arm cavity, with an ITM RoC of 1934 m and an ETM RoC of 2245 m, where the length
of the cavity is scanned. The detectors placed in the model were probes for the beam sizes
at the mirrors (blue traces) and the cavity stability factor g (red trace). As the beam size
detectors require the modal basis to be defined, the outputs of these are masked when the
cavity becomes unstable — showing up as gaps in the data in the plot. The g-factor probe,
on the other hand, only requires the cavity round-trip ABCD matrix and so the output data
for this entry in the solution are not masked in the unstable regime. This also lets us observe
where the g-factor enters unstable regions; as seen from the plot.
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Appendix B

Analytic solution to WS phase space
overlap integrals

In §4.1 we have seen that the overlap between any mode, represented in WS space as (W,S),
and a primary mode, (WP , SP ), can be computed by:

O(W,S) =

∫∫
E(W,S)E(WP , SP )∗dx dy ×

∫∫
E(W,S)∗E(WP , SP ) dx dy, (B.1)

where the field E(W,S) is given as

E(W,S) =

√
2

π

1

W
exp

(
−(x2 + y2)

(
1

W 2
+ ik

S

2

))
. (B.2)

In this appendix we will derive an analytic expression for Equation (B.1) by solving the
overlap integrals therein. This will be performed for both an infinite plane (Appendix B.1)
and also a finite circular aperture (Appendix B.2) for completeness.

First we will define some convenience symbols, namely we will let:

a =

√
2

π

1

W
, ap =

√
2

π

1

WP

, α =
1

W 2
+ ik

S

2
, αp =

1

W 2
P

+ ik
SP
2
. (B.3)
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We can then express the overlap integrands as,

E(W,S)E(WP , SP )∗ = aap exp (−α(x2 + y2)) exp
(
−α∗p(x2 + y2)

)
= aap exp

(
−(α + α∗p)(x

2 + y2)
)
,

(B.4)

and

E(W,S)∗E(WP , SP ) = aap exp (−α∗(x2 + y2)) exp (−αp(x2 + y2))

= aap exp (−(α∗ + αp)(x
2 + y2)).

(B.5)

It is useful to use a shorthand at this point of α+α∗p = β, and so, commensurately, α∗+αp =
β∗. We can then write Equation (B.1) as

O(W,S) =

∫∫
aap exp

(
−β(x2 + y2)

)
dx dy ×

∫∫
aap exp

(
−β∗(x2 + y2)

)
dx dy

= a2a2
p

∫∫
exp

(
−βx2

)
exp

(
−βy2

)
dx dy ×

∫∫
exp

(
−β∗x2

)
exp

(
−β∗y2

)
dx dy.

(B.6)

B.1 Overlap on an infinite plane

Now, assuming that we are integrating over an infinite plane, we can note that

∫ +∞

−∞

∫ +∞

−∞
exp

(
−bx2

)
exp

(
−by2

)
dx dy =

π

b
, (B.7)

which, operating on Equation (B.6) in turn, yields

O(W,S) = a2a2
p

π

β

π

β∗

= a2a2
p

π2

|β|2
.

(B.8)
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Using the expressions for a, ap and β from earlier, and noting that

β = α + α∗p =
1

W 2
+

1

W 2
P

+ i
k

2
(S − SP ) , (B.9)

we can expand the final expression out to
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4
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(B.10)

This exact form of the WS space overlap quantity is given in Equation (4.5) and used
throughout Chapter 4 as the foundation from which each phase space plot is built.

B.2 Computing the overlap for a finite circular aperture

For completeness, we will now investigate how the overlap quantity changes when computing
the overlap integrals in Equation (B.6) for a finite aperture (with a circular profile) rather
than an infinite plane. We will label this “aperture overlap” now as OA(W,S).

Similarly to the previous section, we can note that integrating Gaussian profiles over a disk
of radius R yields

∫∫
x2+y2<R2

exp
(
−bx2

)
exp

(
−by2

)
dx dy =

π

b

(
1− exp

(
−bR2

))
, (B.11)

which recovers back to the result in Equation (B.7) when R→∞, as expected. If we apply

153



Appendix B Analytic solution to WS phase space overlap integrals

this now to Equation (B.6), we obtain

OA(W,S) = a2a2
p

π2

|β|2
(1− exp (−βR2)) (1− exp (−β∗R2))

= (1− exp (−βR2)) (1− exp (−β∗R2))O(W,S)

= [1 + exp (−2<{β}R2)− (exp (−βR2) + exp (−β∗R2))]O(W,S),

(B.12)

where O(W,S) is the WS phase space overlap for an infinite plane, as given by Equation (4.5).
At this point we can simplify Equation (B.12) by noting that

exp (−βR2) + exp (−β∗R2) = exp (−<(β)R2) (exp (i=(β)R2) + exp (−i=(β)R2))

= 2 cos (=(β)R2) exp (−<(β)R2).
(B.13)

Plugging this into Equation (B.12) then yields,

OA(W,S) = [1 + exp (−2<{β}R2)− 2 cos (={β}R2) exp (−<{β}R2)]O(W,S)

=
[
1 +

(
exp (−<{β}R2)− 2 cos (={β}R2)

)
exp (−<{β}R2)

]
O(W,S).

(B.14)

Now we can recall, using Equation (B.9), that

<{β} =
1

W 2
+

1

W 2
P

, and ={β} =
k

2
(S − SP ) , (B.15)

which allows us to finally express OA(W,S) as,

OA(W,S) =

[
1 +

(
exp

(
−
(
r2 + r2

p

))
− 2 cos

(
kR2

2
∆S

))
exp

(
−
(
r2 + r2

p

))]
O(W,S),

(B.16)

where we have defined r = R/W , rp = R/WP and ∆S = S−Sp for convenience. The former
shorthand variables here are the ratios of the aperture radius to the given beam radii, whilst
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the latter is simply the difference in defocus of the two compared modes. For a mode equal
to the primary mode, i.e. W = WP and S = SP , Equation (B.16) reduces to:

OA(WP , SP ) = 1− 2 exp
(
−2r2

p

)
+ exp

(
−4r2

p

)
. (B.17)

Just for fun we can plot Equation (B.17), resulting in Figure B.1. As expected, for rp < 1 we
see a sharp fall in the overlap of the primary mode with itself, whilst for rp ' 2 this quantity
is approximately unity; as a tiny portion of the beam amplitude is clipped at this point.
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Figure B.1: A simple plot showing the overlap of a primary mode (WP , SP ) with itself for
increased ratios of a circular aperture radius to the beam size. For large apertures one
recovers the form of the overlap function on an infinite plane — leading to OA(WP , SP )
tending towards unity.
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Appendix C

Field couplings for a DC and AC
misaligned Fabry-Perot cavity

In chapter 5, specifically §5.1, we saw that the first order alignment scaling for a DC plus
AC misaligned cavity is (with only the upper sideband included in this equation),

P ∼ a∗01(ω0) a01(ω0 + ωm), (C.1)

where ω0 is the carrier field frequency and ωm is the modulation frequency of the tilt of
one of the mirrors of the cavity. Here P is simply the signal that would be detected on the
photodiode corresponding to the configuration in Figure 5.1. Given that our goal was to find
the alignment scaling with the beam size of the cavity mode in the aforementioned chapter,
in this appendix we will thus derive an expression for Equation (C.1) in terms of this beam
size.

To assist with this derivation, Figure C.1 gives a repeat view of the configuration under
consideration — but now with each field quantity present. The fields highlighted in blue are
the sideband fields around the carrier, created as a result of the modulated tilt of the end
mirror. We will represent these tilt modulation couplings as “injections” of the field i2. Note
that, whilst both upper and lower sidebands are shown on this figure, we will only consider
the upper sideband fields when looking at the AC picture in this appendix. All couplings
determined in this regime will equally apply to the lower sideband. For the static tilt at the
input mirror, we will similarly represent this as an injection of the field i1 upon reflection
from this mirror. This tilt will couple to the first order mode at the carrier frequency.
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r1,t1 r2,t2

Figure C.1: This shows the reference configuration for a DC plus AC misaligned Fabry-Perot
cavity. The circulating carrier fields are given at each location. The i1|2 terms represent
“injections” of fields caused by the tilt couplings for the DC tilt at the input and AC tilt at
the output mirror, respectively. The incident field is given by i0 and is assumed to be a pure
HG00 mode.

We will only consider pitched tilts of the mirrors for the maths that follows, allowing us to
set the tangential mode index n = 0 in all cases. This means that whenever the symbols aj,m

are used, these really expand to aj,0m — i.e. the field at position j (according to Figure C.1)
in the mode HG0m. An additional convention which we will use is to refer to coupling
coefficients on reflection from the input mirror with k (e.g. k01 is the coefficient for the mode
HG0 to HG1 for this coupling), and on reflection from the end mirror with κ (e.g. κ01 is the
coefficient for the mode HG0 to HG1, but this time for AC couplings).

For all of the following analyses we will assume that the cavity is tuned such that the HG0

field at the carrier frequency is resonant. This effectively means that we can ignore fields
in the HG1 mode when considering HG0 couplings; as aj,0 � aj,1 under this assumption.
Additionally, we will assume that the tilt angles of the mirrors are sufficiently small such
that the coupling coefficients k00, k11 and κ00, κ11 are all approximately unity. Finally, we
will assume an impedance matched cavity for convenience — i.e. the amplitude reflectivities
and transmissivities shown on Figure C.1 obey r = r1 = r2 and t = t1 = t2.

When referring to fields at DC (i.e. at the carrier frequency ω0) we will simply use aj,m,
whilst fields at AC (i.e. at the upper sideband frequency ω0 +ωm) will be labelled as aj,m to
distinguish these quantities.

For the analyses that follow, our overarching goal is to find expressions for the fields a4,1 and
a4,1 — i.e. the circulating HG1 mode at both the carrier and signal sideband frequencies.
These can then be applied directly via Equation (C.1) to obtain a scaling relation for this
quantity as a function of the beam size. Note that, evidently, the signal at the photodiode
will not be equal to the beating of the fields at this location, however the extra coupling
terms after a4 will be simple transmission (through the input mirror) and reflection (from
the beam splitter) terms and so will not affect the scaling relation in this case.
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C.1 HG00 field couplings at DC

The simplest regime to consider is solving for the circulating field in the fundamental mode
(HG00) at the carrier frequency. In such a case, the injected field terms i1 and i2 are zero.
The system of linear equations for our field terms in this regime are then

a1,0 = ra4,0 + iti0

a2,0 = exp (−i(kL+ ψ))a1,0

a3,0 = ra2,0

a4,0 = exp (−i(kL+ ψ))a3,0,

(C.2)

where ψ is the Gouy phase accumulated over the intra-cavity space. Note that here we have
used the Finesse convention of a 90◦ phase-shift on transmission through a surface, hence
the factor of i shown in the expression for a1,0. Solving this set of equations, we find

a4,0 =
itr exp (−i(2kL+ ψRT))

1−R exp (−i(2kL+ ψRT))
i0, (C.3)

where we have noted that 2ψ = ψRT is the round-trip Gouy phase of the cavity. Again, as we
are treating this cavity as being tuned to the resonance of the fundamental mode, it follows
that 2kL+ ψRT = 2πN with N ∈ Z. This reduces Equation (C.3) to simply,

a4,0 =
itr

1−R i0. (C.4)

By noting that r =
√
R and t =

√
1−R (assuming loss-less mirrors), we can further simplify

this to,

a4,0 = i

√
R

1−R i0. (C.5)

C.2 HG01 field couplings at DC

Now that we have an expression for the circulating field in the fundamental mode in Equa-
tion (C.5), we can find a complete equation for the circulating field in the HG1 mode at the
carrier frequency. This mode is excited via the static pitch misalignment of the input mirror,
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as indicated by Figure C.1, and so we now have a non-zero i1 as an injected coupling. The
injected terms i0 and i2 are both zero in this case — the former because the incident beam
is a pure HG0 mode and the latter due to the AC tilt of the end mirror having no effect on
the fields at this frequency.

Our set of linear equations for this mode and frequency is then

a1,1 = ra4,1 + i1

a2,1 = exp (−i(kL+ 2ψ))a1,1

a3,1 = ra2,1

a4,1 = exp (−i(kL+ 2ψ))a3,1,

(C.6)

where the phase accumulation over a single trip of the cavity is now 2ψ due to the accu-
mulated Gouy phase for a mode being linearly dependent upon the mode order (see Equa-
tion (1.26)). We can solve for a4,1 to yield

a4,1 =
r exp (−i(2kL+ 2ψRT)) i1

1−R exp (−i(2kL+ 2ψRT))
. (C.7)

As before, in Appendix C.1, we can use the assumption that the fundamental carrier mode
is resonant (such that exp (−i(2kL+ ψRT)) = 1) to further simplify this to

a4,1 =
r exp (−iψRT) i1

1−R exp (−iψRT)
. (C.8)

As the injected term in this case represents the static misalignment of the input mirror, we
can thus write this term as i1 = rk01a4,0. Using this, a4,1 is then

a4,1 =
Rk01 exp (−iψRT)

1−R exp (−iψRT)
a4,0. (C.9)

We can now begin to express this in terms of the beam size w of the cavity mode at the
mirrors. Firstly, we can recognise that the denominator of Equation (C.9) is equivalent to
the reciprocal of Equation (5.16) with n = 0 and m = 1; we shall refer to this quantity as
d1. From the Equation (5.24) in §5.2.2 we know that this term is given approximately by

d1 =
1

2

π

Lλ
w2 exp (iφd1), (C.10)
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where L is the cavity length and φd1 is the phase of the complex resonance enhancement
factor, and, as an aside, can be shown to be equivalent to

φd1 = arctan

(
sin

(
ψRT

2

)
tan

(
ψRT

2

))
. (C.11)

The other term in Equation (C.9) which we can substitute out is k01 — using the approxi-
mation given in Equation (5.13). Putting all this together, we obtain

a4,1 ≈
1

2

( π

Lλ

)
w2 exp (iφd1)R

π

λ
wγDC exp (iϕ) exp (−iψRT)a4,0

=
R

2

(π
λ

)2 w3

L
γDC exp (i(φd1 + ϕ− ψRT))a4,0,

(C.12)

where, recalling from §5.2.1, ϕ = arctan (cot (ψRT/4)) meaning that all the phase terms
here can be expressed in terms of only the round-trip Gouy phase. Now substituting in
Equation (C.5) for a4,0, and noting that i = exp (iπ/2), yields

a4,1 ≈
√

R3

1−R
(π
λ

)2 w3

L
βDC exp

(
i
(π

2
+ φd1 + ϕ− ψRT

))
i0, (C.13)

where we have also noted that the static misalignment angle γDC = 2βDC; the tilt angle
βDC is shown on Figure C.1. One can note immediately that this field amplitude has a w3

dependence.

To check that Equation (C.13) is approximately correct for small static misalignment angles,
we can compute this quantity as a function of βDC and compare it to the results of a Finesse
3 simulation. This is shown on Figure C.2, using an aLIGO-like symmetric and impedance
matched arm cavity. The x-axis is given as a misalignment angle as a fraction of the cavity
divergence, similarly to the |k01| comparison plot shown earlier in Figure 5.3. On the y-axis
the amplitude of a4,1 is shown. As expected, given the aforementioned results of Figure 5.3,
the analytical approximation of Equation (C.13) is valid as long as the misalignment angle
is small — i.e. γDC � γ0; where γ0 is the cavity divergence angle.

C.3 HG01 field couplings at AC

Contrary to the carrier solutions, we do not require knowledge of the HG0 mode field ampli-
tudes at the signal sideband frequency in order to find an expression for a4,1 to first order.
Given this, we can set the injected terms i0 and i1 to zero — where the former is true as
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Figure C.2: This figure gives a comparison of the analytical approximation of |a4,1| against
a Finesse 3 simulation. The basis of these results is an aLIGO-style arm cavity but with
symmetric cavity mirror RoCs and in an impedance matched regime. As expected, the
approximation agrees well with the simulation for small tilt angles βDC = γDC/2.

the incident beam is a pure fundamental mode at the carrier frequency. Thus, our set of
equations in this regime is

a1,1 = ra4,1

a2,1 = exp (−i(kL+ 2ψ))a1,1

a3,1 = ra2,1 + i2

a4,1 = exp (−i(kL+ 2ψ))a3,1,

(C.14)

where we are making the assumption that the tilt modulation frequency of the end mirror
is small enough such that k = k + km ≈ k; with km = ωm/c as the wavenumber of the
modulated field. Solving for a4,1 yields

a4,1 =
exp (−i(kL+ ψRT)) i2

1−R exp (−iψRT)
, (C.15)

in which we have again noted that exp (−i(2kL+ ψRT)) = 1 given our assumption that the
HG0 mode is resonant, at the carrier frequency, inside the cavity. The injected term, i2, here
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represents the modulated tilt of the end mirror and so we can write this as

i2 = rκ01a2,0, (C.16)

which is, qualitatively, the coupling of the HG0 mode at the carrier frequency into the HG1

mode at the signal frequency due to this tilt modulation. We can now use the derivations
in Appendix C.1 to express the field a2,0 as

a2,0 = exp (−i(kL+ ψ)) [ra4,0 + iti0]

= exp (−i(kL+ ψ))

[
ir

√
R

1−R i0 + iti0

]

= i
1√

1−R
exp (−i(kL+ ψ)) i0.

(C.17)

Substituting these terms into Equation (C.15) then gives us

a4,1 = i
rκ01 exp (−i(kL+ ψRT))

1−R exp (−iψRT)

1√
1−R exp (−i(kL+ ψ)) i0

= i

√
R

1−R
κ01 exp

(
−iψRT

2

)
1−R exp (−iψRT)

i0.

(C.18)

Similarly to Appendix C.2, we can now express this in terms of the beam size w. The
procedure is identical to the aforementioned section, with the only difference now being that
the κ01 term is dependent upon the AC misalignment angle γAC = 2βAC. After a short
amount of algebra we obtain

a4,1 ≈
1

2

√
R

1−R
(π
λ

)2 w3

L
βAC exp

(
i

(
π

2
+ φd1 + ϕ− ψRT

2

))
i0. (C.19)

C.4 Computing the signal beat at the photodiode

As noted at the start of this appendix, the signal beat which we want to quantify is given
by Equation (C.1) — thus we now need to compute

∣∣a∗4,1a4,1

∣∣. This quantity can be quickly
obtained from the expressions in Equation (C.13) and Equation (C.19). First we can note
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that

a∗4,1a4,1 ≈
1

2

R2

1−R
(π
λ

)4 w6

L2
βDC βAC exp

(
i
ψRT

2

)
i20. (C.20)

Then the amplitude of this field is simply

∣∣a∗4,1a4,1

∣∣ ≈ 1

2

R2

1−R
(π
λ

)4 w6

L2
|βDC βAC| |i0|2. (C.21)

Thus we have shown that, to first order, the alignment to longitudinal coupling scales as
approximately the beam size to the power of six.

We noted earlier that this is the beating of the circulating fields in the the first order mode,
rather than the actual beat on the photodiode upon reflection from the cavity. This is not
an important point in this case as the main goal was to show the dependence upon the beam
size — which will not be altered, to first order, by the ensuing couplings from this point.
However, for completeness, if we label the reflected field in the mode HG1 as arefl,1 then the
corresponding beat at this “node” will be given by

Prefl,1 =
∣∣a∗refl,1arefl,1

∣∣ ≈ R2

2

(π
λ

)4 w6

L2
|βDC βAC| |i0|2, (C.22)

i.e. a factor of t2 = 1 − R difference due to the transmission through the input mirror for
both a4,1 and a4,1. This is, again, assuming an impedance matched cavity and assuming that
the reflection coupling, into first order modes at the front surface of the statically pitched
input mirror, is negligible.

C.4.1 Error estimation

We can use Finesse to perform an estimation of the error on the derived approximation
in Equation (C.22). To do so, a model was set-up using an aLIGO-style arm cavity with
symmetric RoCs (RC = 2090m) in a loss-less, impedance matched regime. The beating of
the carrier and signal sideband fields in the HG01 mode were detected upon reflection from
the cavity, corresponding to the quantity given by Equation (C.22). Figure C.3 then shows
the absolute difference between the two methods, computed as a function of the mirror tilt
angles βDC and βAC. As one would expect, and as implied previously for the carrier-only
regime by Figure C.2, the analytical approximation Prefl,1 agrees well with the Finesse
simulation as long as the angles of misalignment are relatively small.
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Figure C.3: The plot here gives an estimation on the error for the derived analytical approx-
imation of the alignment signal in Equation (C.22), as a function of the tilt angles of the
cavity mirrors. Plotted as contours are the absolute errors of this equation against the results
of a Finesse simulation — detecting the same quantity upon reflection from an aLIGO-style
arm cavity with mirrors of equal reflectivities (and zero loss).

165



166



Bibliography

[1] Samuel Rowlinson et al. “Feasibility study of beam-expanding telescopes in the in-
terferometer arms for the Einstein Telescope”. In: Phys. Rev. D 103 (2 Jan. 2021),
p. 023004. doi: 10.1103/PhysRevD.103.023004. url: https://link.aps.org/doi/10.
1103/PhysRevD.103.023004 (cit. on pp. iii, 23, 67, 137).

[2] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science &
Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55 (cit. on p. vi).

[3] Alexander Franzen. ComponentLibrary: a vector graphics library for illustration of
optics experiments. http ://www.gwoptics .org/ComponentLibrary/. 2006 (cit. on
p. vi).

[4] W. King. Dragonslayer. A Warhammer novel. Games Workshop Pub., 2000. isbn:
9780743411578. url: https://books.google.co.uk/books?id=50UAAAAACAAJ (cit.
on p. vii).

[5] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black Hole
Merger”. In: Phys. Rev. Lett. 116 (6 Feb. 2016), p. 061102. doi: 10.1103/PhysRevLett.
116.061102. url: https://link.aps.org/doi/10.1103/PhysRevLett.116.061102 (cit. on
p. 1).

[6] B. P. Abbott et al. “GW170817: Observation of Gravitational Waves from a Binary
Neutron Star Inspiral”. In: Phys. Rev. Lett. 119 (16 Oct. 2017), p. 161101. doi: 10.
1103/PhysRevLett.119.161101. url: https://link.aps.org/doi/10.1103/PhysRevLett.
119.161101 (cit. on p. 1).

[7] B. P. Abbott et al. “Multi-messenger Observations of a Binary Neutron Star Merger”.
In: The Astrophysical Journal 848.2 (Oct. 2017), p. L12. doi: 10.3847/2041-8213/
aa91c9. url: https://doi.org/10.3847/2041-8213/aa91c9 (cit. on p. 1).

[8] F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz. “Neutron Skins and Neutron
Stars in the Multimessenger Era”. In: Phys. Rev. Lett. 120 (17 Apr. 2018), p. 172702.
doi: 10.1103/PhysRevLett.120.172702. url: https://link.aps.org/doi/10.1103/
PhysRevLett.120.172702 (cit. on p. 1).

[9] Eemeli Annala et al. “Gravitational-Wave Constraints on the Neutron-Star-Matter
Equation of State”. In: Phys. Rev. Lett. 120 (17 Apr. 2018), p. 172703. doi: 10.1103/
PhysRevLett.120.172703. url: https://link.aps.org/doi/10.1103/PhysRevLett.120.
172703 (cit. on pp. 1, 6).

167

https://doi.org/10.1103/PhysRevD.103.023004
https://link.aps.org/doi/10.1103/PhysRevD.103.023004
https://link.aps.org/doi/10.1103/PhysRevD.103.023004
https://doi.org/10.1109/MCSE.2007.55
http://www.gwoptics.org/ComponentLibrary/
https://books.google.co.uk/books?id=50UAAAAACAAJ
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://link.aps.org/doi/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://link.aps.org/doi/10.1103/PhysRevLett.119.161101
https://link.aps.org/doi/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.1103/PhysRevLett.120.172702
https://link.aps.org/doi/10.1103/PhysRevLett.120.172702
https://link.aps.org/doi/10.1103/PhysRevLett.120.172702
https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.1103/PhysRevLett.120.172703
https://link.aps.org/doi/10.1103/PhysRevLett.120.172703
https://link.aps.org/doi/10.1103/PhysRevLett.120.172703


BIBLIOGRAPHY

[10] LIGO. LIGO Detection Companion Papers. url: https ://www. ligo .caltech .edu/
page/detection-companion-papers (cit. on p. 1).

[11] B. P. Abbott et al. “GWTC-1: A Gravitational-Wave Transient Catalog of Compact
Binary Mergers Observed by LIGO and Virgo during the First and Second Observing
Runs”. In: Phys. Rev. X 9 (3 Sept. 2019), p. 031040. doi: 10.1103/PhysRevX.9.
031040. url: https://link.aps.org/doi/10.1103/PhysRevX.9.031040 (cit. on p. 1).

[12] GraceDB — O3 gravitational-wave candidate event database. https://gracedb.ligo.
org/superevents/public/O3/. 2021 (cit. on p. 1).

[13] J Aasi et al. “Advanced LIGO”. In: Classical and Quantum Gravity 32.7 (Mar. 2015),
p. 074001. doi: 10.1088/0264-9381/32/7/074001 (cit. on pp. 1, 2, 3, 4, 67).

[14] F Acernese et al. “Advanced Virgo: a second-generation interferometric gravitational
wave detector”. In: Classical and Quantum Gravity 32.2 (Dec. 2014), p. 024001. doi:
10.1088/0264-9381/32/2/024001. url: https://doi.org/10.1088%2F0264-9381%
2F32%2F2%2F024001 (cit. on pp. 1, 67).

[15] T. Akutsu et al. “KAGRA: 2.5 generation interferometric gravitational wave detector”.
In: Nature Astronomy 3.1 (Jan. 2019), pp. 35–40. issn: 2397-3366. doi: 10.1038/
s41550-018-0658-y. url: https://doi.org/10.1038/s41550-018-0658-y (cit. on pp. 1,
8).

[16] B. P. Abbott et al. “Prospects for observing and localizing gravitational-wave tran-
sients with Advanced LIGO, Advanced Virgo and KAGRA”. In: Living Reviews in
Relativity 23.1 (Sept. 2020), p. 3. issn: 1433-8351. doi: 10.1007/s41114-020-00026-9.
url: https://doi.org/10.1007/s41114-020-00026-9 (cit. on p. 1).

[17] J Abadie et al. “Predictions for the rates of compact binary coalescences observable
by ground-based gravitational-wave detectors”. In: Classical and Quantum Gravity
27.17 (2010), p. 173001. url: http://stacks.iop.org/0264-9381/27/i=17/a=173001
(cit. on p. 1).

[18] B. S. Sathyaprakash and Bernard F. Schutz. “Physics, Astrophysics and Cosmology
with Gravitational Waves”. In: Living Reviews in Relativity 12.1 (Dec. 2009), p. 2.
issn: 1433-8351. doi: 10.12942/lrr-2009-2. url: https://doi.org/10.12942/lrr-2009-2
(cit. on pp. 1, 2).

[19] Kiwamu Izumi and Daniel Sigg. “Advanced LIGO: length sensing and control in a
dual recycled interferometric gravitational wave antenna”. In: Classical and Quantum
Gravity 34.1 (Dec. 2016), p. 015001. doi: 10.1088/0264-9381/34/1/015001. url:
https://doi.org/10.1088/0264-9381/34/1/015001 (cit. on p. 3).

[20] Muzammil A. Arain and Guido Mueller. “Design of the Advanced LIGO recycling
cavities”. In: Opt. Express 16.14 (July 2008), pp. 10018–10032. doi: 10.1364/OE.16.
010018. url: http://www.opticsexpress.org/abstract.cfm?URI=oe- 16- 14- 10018
(cit. on pp. 3, 48, 68, 72).

[21] Koji Arai et al. Output Mode Cleaner (OMC) Design. Tech. rep. T1000276-v5. 2011.
url: https://dcc.ligo.org/LIGO-T1000276/public (cit. on pp. 3, 30).

168

https://www.ligo.caltech.edu/page/detection-companion-papers
https://www.ligo.caltech.edu/page/detection-companion-papers
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://link.aps.org/doi/10.1103/PhysRevX.9.031040
https://gracedb.ligo.org/superevents/public/O3/
https://gracedb.ligo.org/superevents/public/O3/
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088%2F0264-9381%2F32%2F2%2F024001
https://doi.org/10.1088%2F0264-9381%2F32%2F2%2F024001
https://doi.org/10.1038/s41550-018-0658-y
https://doi.org/10.1038/s41550-018-0658-y
https://doi.org/10.1038/s41550-018-0658-y
https://doi.org/10.1007/s41114-020-00026-9
https://doi.org/10.1007/s41114-020-00026-9
http://stacks.iop.org/0264-9381/27/i=17/a=173001
https://doi.org/10.12942/lrr-2009-2
https://doi.org/10.12942/lrr-2009-2
https://doi.org/10.1088/0264-9381/34/1/015001
https://doi.org/10.1088/0264-9381/34/1/015001
https://doi.org/10.1364/OE.16.010018
https://doi.org/10.1364/OE.16.010018
http://www.opticsexpress.org/abstract.cfm?URI=oe-16-14-10018
https://dcc.ligo.org/LIGO-T1000276/public


BIBLIOGRAPHY

[22] H. Wittel et al. “Matrix heater in the gravitational wave observatory GEO 600”. In:
Opt. Express 26.18 (Sept. 2018), pp. 22687–22697. doi: 10.1364/OE.26.022687. url:
http://www.opticsexpress.org/abstract.cfm?URI=oe-26-18-22687 (cit. on pp. 4, 72).

[23] Brian J. Meers. “Recycling in laser-interferometric gravitational-wave detectors”. In:
Phys. Rev. D 38 (8 Oct. 1988), pp. 2317–2326. doi: 10.1103/PhysRevD.38.2317.
url: https://link.aps.org/doi/10.1103/PhysRevD.38.2317 (cit. on p. 4).

[24] J. Mizuno et al. “Resonant sideband extraction: a new configuration for interfero-
metric gravitational wave detectors”. In: Physics Letters A 175.5 (1993), pp. 273–
276. issn: 0375-9601. doi: https://doi.org/10.1016/0375-9601(93)90620-F. url:
https://www.sciencedirect.com/science/article/pii/037596019390620F (cit. on p. 4).

[25] Chris Mueller. Detector Characterization IMC Overview Presentation. https://dcc.
ligo.org/LIGO-G1400096/public. 2014. url: https://dcc.ligo.org/LIGO-G1400096/
public (cit. on p. 5).

[26] A. Buikema et al. “Sensitivity and performance of the Advanced LIGO detectors in
the third observing run”. In: Phys. Rev. D 102 (6 Sept. 2020), p. 062003. doi: 10.1103/
PhysRevD.102.062003. url: https://link.aps.org/doi/10.1103/PhysRevD.102.062003
(cit. on pp. 5, 6, 25, 101, 119).

[27] LIGO Scientific Collaboration. Instrument Science White Paper 2020. Tech. rep.
T2000407. 2020. url: https://dcc.ligo.org/LIGO-T2000407/public (cit. on pp. 5,
102, 120, 121, 122).

[28] J. G. Rollins, E. Hall, and C. Wipf. pygwinc: Python Gravitational Wave Interferom-
eter Noise Calculator. https://git.ligo.org/gwinc/pygwinc. 2020 (cit. on p. 5).

[29] J. G. Rollins and J. D. E. Creighton. GW detector inspiral range calculation tools.
https://git.ligo.org/gwinc/inspiral-range. 2020 (cit. on p. 5).

[30] Hsin-Yu Chen et al. “Distance measures in gravitational-wave astrophysics and cos-
mology”. In: Classical and Quantum Gravity 38.5 (Jan. 2021), p. 055010. doi: 10.
1088/1361-6382/abd594. url: https://doi.org/10.1088/1361-6382/abd594 (cit. on
pp. 5, 6).

[31] John Miller. Inspiral range with cosmology. Tech. rep. T1500491. 2015. url: https:
//dcc.ligo.org/LIGO-T1500491 (cit. on p. 5).

[32] Lee Samuel Finn. “Binary inspiral, gravitational radiation, and cosmology”. In: Phys.
Rev. D 53 (6 Mar. 1996), pp. 2878–2894. doi: 10.1103/PhysRevD.53.2878. url:
https://link.aps.org/doi/10.1103/PhysRevD.53.2878 (cit. on p. 6).

[33] Alessandra Buonanno and Yanbei Chen. “Quantum noise in second generation, signal-
recycled laser interferometric gravitational-wave detectors”. In: Phys. Rev. D 64 (4
July 2001), p. 042006. doi: 10.1103/PhysRevD.64.042006. url: https://link.aps.org/
doi/10.1103/PhysRevD.64.042006 (cit. on p. 6).

[34] Carlton M. Caves. “Quantum-Mechanical Radiation-Pressure Fluctuations in an In-
terferometer”. In: Phys. Rev. Lett. 45 (2 July 1980), pp. 75–79. doi: 10.1103/PhysRevLett.
45.75. url: https://link.aps.org/doi/10.1103/PhysRevLett.45.75 (cit. on p. 6).

169

https://doi.org/10.1364/OE.26.022687
http://www.opticsexpress.org/abstract.cfm?URI=oe-26-18-22687
https://doi.org/10.1103/PhysRevD.38.2317
https://link.aps.org/doi/10.1103/PhysRevD.38.2317
https://doi.org/https://doi.org/10.1016/0375-9601(93)90620-F
https://www.sciencedirect.com/science/article/pii/037596019390620F
https://dcc.ligo.org/LIGO-G1400096/public
https://dcc.ligo.org/LIGO-G1400096/public
https://dcc.ligo.org/LIGO-G1400096/public
https://dcc.ligo.org/LIGO-G1400096/public
https://doi.org/10.1103/PhysRevD.102.062003
https://doi.org/10.1103/PhysRevD.102.062003
https://link.aps.org/doi/10.1103/PhysRevD.102.062003
https://dcc.ligo.org/LIGO-T2000407/public
https://git.ligo.org/gwinc/pygwinc
https://git.ligo.org/gwinc/inspiral-range
https://doi.org/10.1088/1361-6382/abd594
https://doi.org/10.1088/1361-6382/abd594
https://doi.org/10.1088/1361-6382/abd594
https://dcc.ligo.org/LIGO-T1500491
https://dcc.ligo.org/LIGO-T1500491
https://doi.org/10.1103/PhysRevD.53.2878
https://link.aps.org/doi/10.1103/PhysRevD.53.2878
https://doi.org/10.1103/PhysRevD.64.042006
https://link.aps.org/doi/10.1103/PhysRevD.64.042006
https://link.aps.org/doi/10.1103/PhysRevD.64.042006
https://doi.org/10.1103/PhysRevLett.45.75
https://doi.org/10.1103/PhysRevLett.45.75
https://link.aps.org/doi/10.1103/PhysRevLett.45.75


BIBLIOGRAPHY

[35] Vladimir B. Braginsky, Farid Ya Khalili, and Kip S. Thorne. Quantum Measurement.
1992 (cit. on p. 6).

[36] M. Tse et al. “Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-
Wave Astronomy”. In: Phys. Rev. Lett. 123 (23 Dec. 2019), p. 231107. doi: 10.1103/
PhysRevLett.123.231107. url: https://link.aps.org/doi/10.1103/PhysRevLett.123.
231107 (cit. on p. 6).

[37] Carlton M. Caves and Bonny L. Schumaker. “New formalism for two-photon quantum
optics. I. Quadrature phases and squeezed states”. In: Phys. Rev. A 31 (5 May 1985),
pp. 3068–3092. doi: 10.1103/PhysRevA.31.3068. url: https://link.aps.org/doi/10.
1103/PhysRevA.31.3068 (cit. on p. 6).

[38] C Markakis et al. “Neutron star equation of state via gravitational wave observations”.
In: Journal of Physics: Conference Series 189 (Oct. 2009), p. 012024. doi: 10.1088/
1742-6596/189/1/012024. url: https://doi.org/10.1088/1742-6596/189/1/012024
(cit. on p. 6).

[39] M. Evans et al. “Realistic filter cavities for advanced gravitational wave detectors”.
In: Phys. Rev. D 88 (2 July 2013), p. 022002. doi: 10.1103/PhysRevD.88.022002.
url: https://link.aps.org/doi/10.1103/PhysRevD.88.022002 (cit. on p. 7).

[40] F. Ya. Khalili. “Optimal configurations of filter cavity in future gravitational-wave
detectors”. In: Phys. Rev. D 81 (12 June 2010), p. 122002. doi: 10.1103/PhysRevD.
81.122002. url: https://link.aps.org/doi/10.1103/PhysRevD.81.122002 (cit. on p. 7).

[41] P. Kwee et al. “Decoherence and degradation of squeezed states in quantum filter
cavities”. In: Phys. Rev. D 90 (6 Sept. 2014), p. 062006. doi: 10.1103/PhysRevD.90.
062006. url: https://link.aps.org/doi/10.1103/PhysRevD.90.062006 (cit. on p. 7).

[42] David Reitze. The Future of Ground-based Gravitational-wave Detectors. Tech. rep.
G1800292. 2018. url: https://dcc.ligo.org/LIGO-G1800292/public (cit. on p. 7).

[43] L. McCuller et al. “Frequency-Dependent Squeezing for Advanced LIGO”. In: Phys.
Rev. Lett. 124 (17 Apr. 2020), p. 171102. doi: 10.1103/PhysRevLett.124.171102.
url: https://link.aps.org/doi/10.1103/PhysRevLett.124.171102 (cit. on p. 7).

[44] ET Steering Committee Editorial Team. Einstein Telescope design report update 2020.
Einstein Telescope Collaboration, Sept. 2020. url: https://apps.et-gw.eu/tds/ql/
?c=15418 (cit. on pp. 7, 8, 67, 68, 69, 71, 83, 84, 92, 101, 102).

[45] David Reitze et al. “Cosmic Explorer: The U.S. Contribution to Gravitational-Wave
Astronomy beyond LIGO”. In: 51 (July 2019) (cit. on pp. 7, 102).

[46] V.B. Braginsky and S.P. Vyatchanin. “Thermodynamical fluctuations in optical mir-
ror coatings”. In: Physics Letters A 312.3 (2003), pp. 244–255. issn: 0375-9601. doi:
https://doi.org/10.1016/S0375-9601(03)00473-0. url: https://www.sciencedirect.
com/science/article/pii/S0375960103004730 (cit. on p. 7).

170

https://doi.org/10.1103/PhysRevLett.123.231107
https://doi.org/10.1103/PhysRevLett.123.231107
https://link.aps.org/doi/10.1103/PhysRevLett.123.231107
https://link.aps.org/doi/10.1103/PhysRevLett.123.231107
https://doi.org/10.1103/PhysRevA.31.3068
https://link.aps.org/doi/10.1103/PhysRevA.31.3068
https://link.aps.org/doi/10.1103/PhysRevA.31.3068
https://doi.org/10.1088/1742-6596/189/1/012024
https://doi.org/10.1088/1742-6596/189/1/012024
https://doi.org/10.1088/1742-6596/189/1/012024
https://doi.org/10.1103/PhysRevD.88.022002
https://link.aps.org/doi/10.1103/PhysRevD.88.022002
https://doi.org/10.1103/PhysRevD.81.122002
https://doi.org/10.1103/PhysRevD.81.122002
https://link.aps.org/doi/10.1103/PhysRevD.81.122002
https://doi.org/10.1103/PhysRevD.90.062006
https://doi.org/10.1103/PhysRevD.90.062006
https://link.aps.org/doi/10.1103/PhysRevD.90.062006
https://dcc.ligo.org/LIGO-G1800292/public
https://doi.org/10.1103/PhysRevLett.124.171102
https://link.aps.org/doi/10.1103/PhysRevLett.124.171102
https://apps.et-gw.eu/tds/ql/?c=15418
https://apps.et-gw.eu/tds/ql/?c=15418
https://doi.org/https://doi.org/10.1016/S0375-9601(03)00473-0
https://www.sciencedirect.com/science/article/pii/S0375960103004730
https://www.sciencedirect.com/science/article/pii/S0375960103004730


BIBLIOGRAPHY

[47] J. Steinlechner. “Development of mirror coatings for gravitational-wave detectors”.
In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 376.2120 (2018), p. 20170282. doi: 10.1098/rsta.2017.0282.
eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2017.0282. url:
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2017.0282 (cit. on pp. 7, 8).

[48] William Yam, Slawek Gras, and Matthew Evans. “Multimaterial coatings with re-
duced thermal noise”. In: Phys. Rev. D 91 (4 Feb. 2015), p. 042002. doi: 10.1103/
PhysRevD.91.042002. url: https://link.aps.org/doi/10.1103/PhysRevD.91.042002
(cit. on p. 7).

[49] Gregory M Harry et al. “Thermal noise in interferometric gravitational wave detectors
due to dielectric optical coatings”. In: Classical and Quantum Gravity 19.5 (Feb. 2002),
pp. 897–917. doi: 10.1088/0264-9381/19/5/305. url: https://doi.org/10.1088/0264-
9381/19/5/305 (cit. on p. 7).

[50] S M Aston et al. “Update on quadruple suspension design for Advanced LIGO”. In:
Classical and Quantum Gravity 29.23 (Oct. 2012), p. 235004. doi: 10.1088/0264-
9381/29/23/235004. url: https://doi.org/10.1088/0264-9381/29/23/235004 (cit. on
p. 8).

[51] F Matichard et al. “Seismic isolation of Advanced LIGO: Review of strategy, instru-
mentation and performance”. In: Classical and Quantum Gravity 32.18 (Aug. 2015),
p. 185003. doi: 10.1088/0264-9381/32/18/185003. url: https://doi.org/10.1088/
0264-9381/32/18/185003 (cit. on p. 8).

[52] C M Mow-Lowry and D Martynov. “A 6D interferometric inertial isolation system”.
In: Classical and Quantum Gravity 36.24 (Nov. 2019), p. 245006. doi: 10.1088/1361-
6382/ab4e01. url: https://doi.org/10.1088/1361-6382/ab4e01 (cit. on pp. 8, 101).

[53] Herbert B. Callen and Theodore A. Welton. “Irreversibility and Generalized Noise”.
In: Phys. Rev. 83 (1 July 1951), pp. 34–40. doi: 10 . 1103/PhysRev . 83 . 34. url:
https://link.aps.org/doi/10.1103/PhysRev.83.34 (cit. on p. 8).

[54] Peter R. Saulson. “Thermal noise in mechanical experiments”. In: Phys. Rev. D 42 (8
Oct. 1990), pp. 2437–2445. doi: 10.1103/PhysRevD.42.2437. url: https://link.aps.
org/doi/10.1103/PhysRevD.42.2437 (cit. on p. 8).

[55] T. Akutsu et al. “The status of KAGRA underground cryogenic gravitational wave
telescope”. In: Journal of Physics: Conference Series 1342 (Jan. 2020), p. 012014.
doi: 10 .1088/1742- 6596/1342/1/012014. url: https ://doi .org/10 .1088/1742-
6596/1342/1/012014 (cit. on p. 8).

[56] C. Bond et al. “Interferometer techniques for gravitational-wave detection”. In: Living
Reviews in Relativity 19 (Feb. 2017). doi: 10.1007/s41114-016-0002-8 (cit. on pp. 10,
11, 12, 15, 17, 20, 28, 29, 31, 41, 52, 58, 70).

[57] H. Kogelnik and T. Li. “Laser beams and resonators”. In: Proceedings of the IEEE
54.10 (1966), pp. 1312–1329. doi: 10.1109/PROC.1966.5119 (cit. on pp. 10, 14).

171

https://doi.org/10.1098/rsta.2017.0282
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2017.0282
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2017.0282
https://doi.org/10.1103/PhysRevD.91.042002
https://doi.org/10.1103/PhysRevD.91.042002
https://link.aps.org/doi/10.1103/PhysRevD.91.042002
https://doi.org/10.1088/0264-9381/19/5/305
https://doi.org/10.1088/0264-9381/19/5/305
https://doi.org/10.1088/0264-9381/19/5/305
https://doi.org/10.1088/0264-9381/29/23/235004
https://doi.org/10.1088/0264-9381/29/23/235004
https://doi.org/10.1088/0264-9381/29/23/235004
https://doi.org/10.1088/0264-9381/32/18/185003
https://doi.org/10.1088/0264-9381/32/18/185003
https://doi.org/10.1088/0264-9381/32/18/185003
https://doi.org/10.1088/1361-6382/ab4e01
https://doi.org/10.1088/1361-6382/ab4e01
https://doi.org/10.1088/1361-6382/ab4e01
https://doi.org/10.1103/PhysRev.83.34
https://link.aps.org/doi/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRevD.42.2437
https://link.aps.org/doi/10.1103/PhysRevD.42.2437
https://link.aps.org/doi/10.1103/PhysRevD.42.2437
https://doi.org/10.1088/1742-6596/1342/1/012014
https://doi.org/10.1088/1742-6596/1342/1/012014
https://doi.org/10.1088/1742-6596/1342/1/012014
https://doi.org/10.1007/s41114-016-0002-8
https://doi.org/10.1109/PROC.1966.5119


BIBLIOGRAPHY

[58] A.E. Siegman. Lasers. University Science Books, 1986. isbn: 9780935702118. url:
https://books.google.co.uk/books?id=1BZVwUZLTkAC (cit. on pp. 10, 11, 12, 14,
28, 29, 31, 33).

[59] Herwig Kogelnik. “On the Propagation of Gaussian Beams of Light Through Lenslike
Media Including those with a Loss or Gain Variation”. In: Appl. Opt. 4.12 (Dec. 1965),
pp. 1562–1569. doi: 10.1364/AO.4.001562. url: http://ao.osa.org/abstract.cfm?
URI=ao-4-12-1562 (cit. on pp. 10, 16, 29, 70).

[60] (Virgo Collaboration) J.Y. Vinet. The Virgo Physics Book, Vol. II: Optics and Related
Topics. 2006 (cit. on pp. 10, 60).

[61] Jean-Yves Vinet. “On Special Optical Modes and Thermal Issues in Advanced Grav-
itational Wave Interferometric Detectors”. In: Living Reviews in Relativity 12.1 (Dec.
2009), p. 5. issn: 1433-8351. doi: 10.12942/lrr-2009-5. url: https://doi.org/10.
12942/lrr-2009-5 (cit. on p. 10).

[62] E. Abramochkin and V. Volostnikov. “Beam transformations and nontransformed
beams”. In: Optics Communications 83.1-2 (May 1991), pp. 123–135. doi: 10.1016/
0030-4018(91)90534-K (cit. on p. 10).

[63] D. Speiser. Discovering the Principles of Mechanics 1600-1800. Birkhauser Basel,
2008. isbn: 978-3-7643-8564-4. url: https://www.springer.com/gp/book/9783764385644
(cit. on p. 10).

[64] Joseph W. Goodman. Introduction to Fourier optics. 1995 (cit. on p. 11).

[65] Melvin Lax, William H. Louisell, and William B. McKnight. “From Maxwell to parax-
ial wave optics”. In: Phys. Rev. A 11 (4 Apr. 1975), pp. 1365–1370. doi: 10.1103/
PhysRevA.11.1365. url: https :// link.aps .org/doi/10.1103/PhysRevA.11.1365
(cit. on p. 11).

[66] Robert W. Boyd. “Intuitive explanation of the phase anomaly of focused light beams”.
In: J. Opt. Soc. Am. 70.7 (July 1980), pp. 877–880. doi: 10.1364/JOSA.70.000877.
url: http://www.osapublishing.org/abstract.cfm?URI=josa-70-7-877 (cit. on p. 15).

[67] P. Kwee et al. “Stabilized high-power laser system for the gravitational wave detector
advanced LIGO”. In: Opt. Express 20.10 (May 2012), pp. 10617–10634. doi: 10.1364/
OE.20.010617. url: http://www.opticsexpress.org/abstract.cfm?URI=oe-20-10-
10617 (cit. on p. 17).

[68] Fabian Thies et al. “Nd:YVO4 high-power master oscillator power amplifier laser
system for second-generation gravitational wave detectors”. In: Opt. Lett. 44.3 (Feb.
2019), pp. 719–722. doi: 10.1364/OL.44.000719. url: http://ol.osa.org/abstract.
cfm?URI=ol-44-3-719 (cit. on p. 17).

[69] A. Householder. “Some Numerical Methods for Solving Systems of Linear Equations”.
In: American Mathematical Monthly 57 (1950), p. 453 (cit. on p. 17).

[70] G.H. Golub et al. Matrix Computations. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, 1996. isbn: 9780801854149. url: https:
//books.google.co.uk/books?id=mlOa7wPX6OYC (cit. on p. 17).

172

https://books.google.co.uk/books?id=1BZVwUZLTkAC
https://doi.org/10.1364/AO.4.001562
http://ao.osa.org/abstract.cfm?URI=ao-4-12-1562
http://ao.osa.org/abstract.cfm?URI=ao-4-12-1562
https://doi.org/10.12942/lrr-2009-5
https://doi.org/10.12942/lrr-2009-5
https://doi.org/10.12942/lrr-2009-5
https://doi.org/10.1016/0030-4018(91)90534-K
https://doi.org/10.1016/0030-4018(91)90534-K
https://www.springer.com/gp/book/9783764385644
https://doi.org/10.1103/PhysRevA.11.1365
https://doi.org/10.1103/PhysRevA.11.1365
https://link.aps.org/doi/10.1103/PhysRevA.11.1365
https://doi.org/10.1364/JOSA.70.000877
http://www.osapublishing.org/abstract.cfm?URI=josa-70-7-877
https://doi.org/10.1364/OE.20.010617
https://doi.org/10.1364/OE.20.010617
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-10-10617
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-10-10617
https://doi.org/10.1364/OL.44.000719
http://ol.osa.org/abstract.cfm?URI=ol-44-3-719
http://ol.osa.org/abstract.cfm?URI=ol-44-3-719
https://books.google.co.uk/books?id=mlOa7wPX6OYC
https://books.google.co.uk/books?id=mlOa7wPX6OYC


BIBLIOGRAPHY

[71] L.N. Trefethen and D. Bau. Numerical Linear Algebra. Other Titles in Applied Math-
ematics. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street,
Floor 6, Philadelphia, PA 19104), 1997. isbn: 9780898719574. url: https://books.
google.co.uk/books?id=JaPtxOytY7kC (cit. on p. 17).

[72] Timothy A. Davis. “Front Matter”. In: Direct Methods for Sparse Linear Systems,
pp. i–xii. doi: 10.1137/1.9780898718881.fm. eprint: https://epubs.siam.org/doi/
pdf/10.1137/1.9780898718881.fm. url: https://epubs.siam.org/doi/abs/10.1137/1.
9780898718881.fm (cit. on p. 17).

[73] Daniel David Brown and Andreas Freise. Finesse. You can download the binaries and
source code at http://www.gwoptics.org/finesse. May 2014. doi: 10.5281/zenodo.
821364. url: https://doi.org/10.5281/zenodo.821364 (cit. on pp. 17, 26, 64).

[74] Daniel D. Brown et al. “Pykat: Python package for modelling precision optical in-
terferometers”. In: SoftwareX 12 (2020), p. 100613. issn: 2352-7110. doi: https :
//doi . org/10 . 1016/ j . softx . 2020 . 100613. url: http : //www. sciencedirect . com/
science/article/pii/S2352711020303265 (cit. on pp. 17, 26, 55, 56, 64, 123).

[75] Daniel Brown et al. Finesse 3. https://git. ligo.org/finesse/finesse3. 2020 (cit. on
pp. 17, 70, 123, 125).

[76] Andreas Freise, Daniel Brown, and Charlotte Bond. Finesse 2.0 User manual. 2014
(cit. on pp. 20, 21, 37, 52, 59, 61).

[77] Aydın Buluç et al. “Parallel sparse matrix-vector and matrix-transpose-vector multi-
plication using compressed sparse blocks”. In: IN SPAA. 2009, pp. 233–244 (cit. on
p. 22).

[78] I. S. Duff, Roger G. Grimes, and John G. Lewis. “Sparse Matrix Test Problems”. In:
ACM Trans. Math. Softw. 15.1 (Mar. 1989), pp. 1–14. issn: 0098-3500. doi: 10.1145/
62038.62043. url: https://doi.org/10.1145/62038.62043 (cit. on p. 22).

[79] Timothy A. Davis and Ekanathan Palamadai Natarajan. “Algorithm 907: KLU, A
Direct Sparse Solver for Circuit Simulation Problems”. In: ACM Trans. Math. Softw.
37 (2010), 36:1–36:17 (cit. on pp. 22, 127).

[80] D Brown. “Interactions of light and mirrors: Advanced techniques for modelling future
gravitational wave detectors”. PhD thesis. University of Birmingham, 2015 (cit. on
pp. 22, 128).

[81] Samuel Rowlinson et al. Finesse 3 Documentation. https://finesse.docs. ligo.org/
finesse3/. 2020 (cit. on pp. 25, 29, 89, 123, 124, 131, 135).

[82] Hello, Patrice and Vinet, Jean-Yves. “Analytical models of thermal aberrations in
massive mirrors heated by high power laser beams”. In: J. Phys. France 51.12 (1990),
pp. 1267–1282. doi: 10.1051/jphys:0199000510120126700. url: https://doi.org/10.
1051/jphys:0199000510120126700 (cit. on pp. 25, 83).

173

https://books.google.co.uk/books?id=JaPtxOytY7kC
https://books.google.co.uk/books?id=JaPtxOytY7kC
https://doi.org/10.1137/1.9780898718881.fm
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718881.fm
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718881.fm
https://epubs.siam.org/doi/abs/10.1137/1.9780898718881.fm
https://epubs.siam.org/doi/abs/10.1137/1.9780898718881.fm
http://www.gwoptics.org/finesse
https://doi.org/10.5281/zenodo.821364
https://doi.org/10.5281/zenodo.821364
https://doi.org/10.5281/zenodo.821364
https://doi.org/https://doi.org/10.1016/j.softx.2020.100613
https://doi.org/https://doi.org/10.1016/j.softx.2020.100613
http://www.sciencedirect.com/science/article/pii/S2352711020303265
http://www.sciencedirect.com/science/article/pii/S2352711020303265
https://git.ligo.org/finesse/finesse3
https://doi.org/10.1145/62038.62043
https://doi.org/10.1145/62038.62043
https://doi.org/10.1145/62038.62043
https://finesse.docs.ligo.org/finesse3/
https://finesse.docs.ligo.org/finesse3/
https://doi.org/10.1051/jphys:0199000510120126700
https://doi.org/10.1051/jphys:0199000510120126700
https://doi.org/10.1051/jphys:0199000510120126700


BIBLIOGRAPHY

[83] Antonello Cutolo, Paolo Gay, and Salvatore Solimeno. “Mirror Deformations and
Wavefront Aberrations Caused by C.w. High Power Laser Beams”. In: Optica Acta:
International Journal of Optics 27.8 (1980), pp. 1105–1116. doi: 10.1080/713820360.
eprint: https://doi.org/10.1080/713820360. url: https://doi.org/10.1080/713820360
(cit. on p. 25).

[84] L Barsotti, M Evans, and P Fritschel. “Alignment sensing and control in advanced
LIGO”. In: Classical and Quantum Gravity 27.8 (Apr. 2010), p. 084026. doi: 10.1088/
0264-9381/27/8/084026. url: https://doi.org/10.1088/0264-9381/27/8/084026
(cit. on pp. 25, 101, 119).

[85] M. Evans, L. Barsotti, and P. Fritschel. “A general approach to optomechanical para-
metric instabilities”. In: Physics Letters A 374.4 (2010), pp. 665–671. issn: 0375-
9601. doi: https://doi.org/10.1016/j.physleta.2009.11.023. url: https://www.
sciencedirect.com/science/article/pii/S0375960109014558 (cit. on p. 25).

[86] Matthew Evans et al. “Observation of Parametric Instability in Advanced LIGO”. In:
Phys. Rev. Lett. 114 (16 Apr. 2015), p. 161102. doi: 10.1103/PhysRevLett.114.161102.
url: https://link.aps.org/doi/10.1103/PhysRevLett.114.161102 (cit. on p. 25).

[87] A C Green et al. “The influence of dual-recycling on parametric instabilities at Ad-
vanced LIGO”. In: Classical and Quantum Gravity 34.20 (Sept. 2017), p. 205004. doi:
10.1088/1361-6382/aa8af8. url: https://doi.org/10.1088/1361-6382/aa8af8 (cit. on
p. 25).

[88] Aidan F. Brooks et al. Point absorbers in Advanced LIGO. 2021. arXiv: 2101.05828
[physics.ins-det] (cit. on p. 25).

[89] J. Aasi et al. “Enhanced sensitivity of the LIGO gravitational wave detector by using
squeezed states of light”. In: Nature Photonics 7.8 (Aug. 2013), pp. 613–619. issn:
1749-4893. doi: 10.1038/nphoton.2013.177. url: https://doi.org/10.1038/nphoton.
2013.177 (cit. on p. 25).

[90] E. Oelker et al. “Squeezed light for advanced gravitational wave detectors and beyond”.
In: Opt. Express 22.17 (Aug. 2014), pp. 21106–21121. doi: 10.1364/OE.22.021106.
url: http://www.opticsexpress.org/abstract.cfm?URI=oe- 22- 17- 21106 (cit. on
p. 25).

[91] Matthew Evans. Optickle Technical Report. Tech. rep. T070260-v1. 2007. url: https:
//dcc.ligo.org/T070260/public (cit. on p. 26).

[92] Matthew Evans and Nic Smith. Optickle, Lentickle and Pickle. url: https://awiki.
ligo-wa.caltech.edu/wiki/ISC_Modeling_Software (cit. on p. 26).

[93] Hiro Yamamoto. Stationary Interferometer Simulation. Tech. rep. G0900912. 2009.
url: https://dcc.ligo.org/LIGO-G0900912/public (cit. on p. 26).

[94] Hiro Yamamoto. FOGPrime 13 Manual. Tech. rep. T1300942. 2018. url: https://
dcc.ligo.org/LIGO-T1300942 (cit. on p. 26).

[95] Jérôme Degallaix. “OSCAR a Matlab based optical FFT code”. In: Journal of Physics:
Conference Series 228 (May 2010), p. 012021. doi: 10.1088/1742-6596/228/1/012021.
url: https://doi.org/10.1088/1742-6596/228/1/012021 (cit. on p. 26).

174

https://doi.org/10.1080/713820360
https://doi.org/10.1080/713820360
https://doi.org/10.1080/713820360
https://doi.org/10.1088/0264-9381/27/8/084026
https://doi.org/10.1088/0264-9381/27/8/084026
https://doi.org/10.1088/0264-9381/27/8/084026
https://doi.org/https://doi.org/10.1016/j.physleta.2009.11.023
https://www.sciencedirect.com/science/article/pii/S0375960109014558
https://www.sciencedirect.com/science/article/pii/S0375960109014558
https://doi.org/10.1103/PhysRevLett.114.161102
https://link.aps.org/doi/10.1103/PhysRevLett.114.161102
https://doi.org/10.1088/1361-6382/aa8af8
https://doi.org/10.1088/1361-6382/aa8af8
https://arxiv.org/abs/2101.05828
https://arxiv.org/abs/2101.05828
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1364/OE.22.021106
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-17-21106
https://dcc.ligo.org/T070260/public
https://dcc.ligo.org/T070260/public
https://awiki.ligo-wa.caltech.edu/wiki/ISC_Modeling_Software
https://awiki.ligo-wa.caltech.edu/wiki/ISC_Modeling_Software
https://dcc.ligo.org/LIGO-G0900912/public
https://dcc.ligo.org/LIGO-T1300942
https://dcc.ligo.org/LIGO-T1300942
https://doi.org/10.1088/1742-6596/228/1/012021
https://doi.org/10.1088/1742-6596/228/1/012021


BIBLIOGRAPHY

[96] Pablo Barriga et al. “Numerical calculations of diffraction losses in advanced inter-
ferometric gravitational wave detectors”. In: J. Opt. Soc. Am. A 24.6 (June 2007),
pp. 1731–1741. doi: 10.1364/JOSAA.24.001731. url: http://josaa.osa.org/abstract.
cfm?URI=josaa-24-6-1731 (cit. on p. 26).

[97] D Brown, R J E Smith, and A Freise. “Fast simulation of Gaussian-mode scattering
for precision interferometry”. In: Journal of Optics 18.2 (Jan. 2016), p. 025604. doi:
10.1088/2040-8978/18/2/025604. url: https://doi.org/10.1088/2040-8978/18/2/
025604 (cit. on p. 27).

[98] Wen Qiao et al. “Simple method of optical ring cavity design and its applications”. In:
Opt. Express 22.12 (June 2014), pp. 14782–14791. doi: 10.1364/OE.22.014782. url:
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-12-14782 (cit. on p. 30).

[99] Koji Arai. On the accumulated round-trip Gouy phase shift for a general optical cavity.
https://dcc.ligo.org/LIGO-T1300189/public. 2015. url: https://dcc.ligo.org/LIGO-
T1300189/public (cit. on p. 32).

[100] A. E. Siegman. “Unstable Optical Resonators”. In: Appl. Opt. 13.2 (Feb. 1974),
pp. 353–367. doi: 10.1364/AO.13.000353. url: http://ao.osa.org/abstract.cfm?
URI=ao-13-2-353 (cit. on pp. 32, 148).

[101] H Wang. “Beware of Warped Surfaces: Near-Unstable Cavities for Future Gravita-
tional Wave Detectors”. PhD thesis. University of Birmingham, 2017 (cit. on p. 32).

[102] “The Fabry Perot Resonator”. In: Laser Resonators and Beam Propagation: Funda-
mentals, Advanced Concepts and Applications. New York, NY: Springer New York,
2005, pp. 189–215. isbn: 978-0-387-25110-3. doi: 10.1007/0-387-25110-3_5. url:
https://doi.org/10.1007/0-387-25110-3_5 (cit. on p. 33).

[103] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring Network Struc-
ture, Dynamics, and Function using NetworkX”. In: Proceedings of the 7th Python
in Science Conference. Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod Millman.
Pasadena, CA USA, 2008, pp. 11–15 (cit. on pp. 36, 128).

[104] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Funda-
mental Algorithms. USA: Addison Wesley Longman Publishing Co., Inc., 1997. isbn:
0201896834 (cit. on p. 36).

[105] C Mueller. “Techniques for Resonant Optical Interferometry with Applications to the
Advanced LIGO Gravitational Wave Detectors”. PhD thesis. University of Florida,
2014 (cit. on p. 39).

[106] L. McCuller, S. Biscans, and L. Barsotti. Frequency Dependent Squeezing Final Optical
Layout. Tech. rep. T1900649. 2019. url: https://dcc.ligo.org/LIGO-T1900649 (cit.
on p. 48).

[107] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/10.
1038/s41586-020-2649-2 (cit. on pp. 48, 148).

175

https://doi.org/10.1364/JOSAA.24.001731
http://josaa.osa.org/abstract.cfm?URI=josaa-24-6-1731
http://josaa.osa.org/abstract.cfm?URI=josaa-24-6-1731
https://doi.org/10.1088/2040-8978/18/2/025604
https://doi.org/10.1088/2040-8978/18/2/025604
https://doi.org/10.1088/2040-8978/18/2/025604
https://doi.org/10.1364/OE.22.014782
http://www.opticsexpress.org/abstract.cfm?URI=oe-22-12-14782
https://dcc.ligo.org/LIGO-T1300189/public
https://dcc.ligo.org/LIGO-T1300189/public
https://dcc.ligo.org/LIGO-T1300189/public
https://doi.org/10.1364/AO.13.000353
http://ao.osa.org/abstract.cfm?URI=ao-13-2-353
http://ao.osa.org/abstract.cfm?URI=ao-13-2-353
https://doi.org/10.1007/0-387-25110-3_5
https://doi.org/10.1007/0-387-25110-3_5
https://dcc.ligo.org/LIGO-T1900649
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2


BIBLIOGRAPHY

[108] Samuel Rowlinson. Finesse 3 Documentation Beam propagation. https://finesse.docs.
ligo.org/finesse3/usage/homs/propagating_beams.html. 2020 (cit. on p. 48).

[109] F. Bayer-Helms. “Coupling coefficients of an incident wave and the modes of a spher-
ical optical resonator in the case of mismatching and misalignment”. In: Appl. Opt.
23.9 (May 1984), pp. 1369–1380. doi: 10.1364/AO.23.001369. url: http://ao.osa.
org/abstract.cfm?URI=ao-23-9-1369 (cit. on pp. 51, 52, 59, 60, 65, 105, 127).

[110] Dana Z. Anderson. “Alignment of resonant optical cavities”. In: Appl. Opt. 23.17
(Sept. 1984), pp. 2944–2949. doi: 10.1364/AO.23.002944. url: http://ao.osa.org/
abstract.cfm?URI=ao-23-17-2944 (cit. on p. 58).

[111] Mischa Sallé. Shift and phase change from tilted beamsplitters - part 1: theory. https:
//logbooks.ifosim.org/pykat/blog/shift-and-phase-change-from-tilted-beamsplitters-
part-1-theory/. 2021 (cit. on p. 60).

[112] Mischa Sallé. Shift and phase change from tilted beamsplitters - part 2: finesse exam-
ples. https://logbooks.ifosim.org/pykat/blog/shift-and-phase-change-from-tilted-
beamsplitters-part-2-finesse-examples/. 2021 (cit. on p. 60).

[113] Samuel Rowlinson. Finesse 3 Documentation Animated Beam Images. https://finesse.
docs . ligo.org/finesse3/usage/homs/imaging_beams.html#producing- animated-
beam-images. 2020 (cit. on p. 62).

[114] Leonardo Dagum and Ramesh Menon. “OpenMP: An Industry-Standard API for
Shared-Memory Programming”. In: IEEE Comput. Sci. Eng. 5.1 (Jan. 1998), pp. 46–
55. issn: 1070-9924. doi: 10.1109/99.660313. url: https://doi.org/10.1109/99.660313
(cit. on p. 62).

[115] Michele Maggiore et al. “Science case for the Einstein telescope”. In: Journal of Cos-
mology and Astroparticle Physics 2020.03 (Mar. 2020), pp. 050–050. doi: 10.1088/
1475-7516/2020/03/050. url: https://doi.org/10.1088%2F1475-7516%2F2020%
2F03%2F050 (cit. on p. 67).

[116] Alessandra Buonanno and Yanbei Chen. “Scaling law in signal recycled laser interfer-
ometer gravitational-wave detectors”. In: Phys. Rev. D 67 (6 Mar. 2003), p. 062002.
doi: 10 . 1103 /PhysRevD . 67 . 062002. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevD.67.062002 (cit. on p. 67).

[117] C Buy et al. “Design of a high-magnification and low-aberration compact catadioptric
telescope for the Advanced Virgo gravitational-wave interferometric detector”. In:
Classical and Quantum Gravity 34.9 (Apr. 2017), p. 095011. doi: 10 .1088/1361 -
6382/aa65e3. url: https ://doi .org/10 .1088%5C%2F1361- 6382%5C%2Faa65e3
(cit. on p. 68).

[118] Teng Zhang et al. “Effects of static and dynamic higher-order optical modes in bal-
anced homodyne readout for future gravitational waves detectors”. In: Phys. Rev.
D 95 (6 Mar. 2017), p. 062001. doi: 10 .1103/PhysRevD.95 .062001. url: https :
//link.aps.org/doi/10.1103/PhysRevD.95.062001 (cit. on p. 69).

176

https://finesse.docs.ligo.org/finesse3/usage/homs/propagating_beams.html
https://finesse.docs.ligo.org/finesse3/usage/homs/propagating_beams.html
https://doi.org/10.1364/AO.23.001369
http://ao.osa.org/abstract.cfm?URI=ao-23-9-1369
http://ao.osa.org/abstract.cfm?URI=ao-23-9-1369
https://doi.org/10.1364/AO.23.002944
http://ao.osa.org/abstract.cfm?URI=ao-23-17-2944
http://ao.osa.org/abstract.cfm?URI=ao-23-17-2944
https://logbooks.ifosim.org/pykat/blog/shift-and-phase-change-from-tilted-beamsplitters-part-1-theory/
https://logbooks.ifosim.org/pykat/blog/shift-and-phase-change-from-tilted-beamsplitters-part-1-theory/
https://logbooks.ifosim.org/pykat/blog/shift-and-phase-change-from-tilted-beamsplitters-part-1-theory/
https://logbooks.ifosim.org/pykat/blog/shift-and-phase-change-from-tilted-beamsplitters-part-2-finesse-examples/
https://logbooks.ifosim.org/pykat/blog/shift-and-phase-change-from-tilted-beamsplitters-part-2-finesse-examples/
https://finesse.docs.ligo.org/finesse3/usage/homs/imaging_beams.html#producing-animated-beam-images
https://finesse.docs.ligo.org/finesse3/usage/homs/imaging_beams.html#producing-animated-beam-images
https://finesse.docs.ligo.org/finesse3/usage/homs/imaging_beams.html#producing-animated-beam-images
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1088/1475-7516/2020/03/050
https://doi.org/10.1088/1475-7516/2020/03/050
https://doi.org/10.1088%2F1475-7516%2F2020%2F03%2F050
https://doi.org/10.1088%2F1475-7516%2F2020%2F03%2F050
https://doi.org/10.1103/PhysRevD.67.062002
https://link.aps.org/doi/10.1103/PhysRevD.67.062002
https://link.aps.org/doi/10.1103/PhysRevD.67.062002
https://doi.org/10.1088/1361-6382/aa65e3
https://doi.org/10.1088/1361-6382/aa65e3
https://doi.org/10.1088%5C%2F1361-6382%5C%2Faa65e3
https://doi.org/10.1103/PhysRevD.95.062001
https://link.aps.org/doi/10.1103/PhysRevD.95.062001
https://link.aps.org/doi/10.1103/PhysRevD.95.062001


BIBLIOGRAPHY

[119] Riccardo DeSalvo. Considerations on Michelson beam splitters for third generation
Gravitational Wave Observatories. https ://dcc . ligo .org/LIGO-G1900927/public.
2020. url: https://dcc.ligo.org/LIGO-G1900927/public (cit. on p. 69).

[120] Riccardo DeSalvo et al. Beam expander telescopes for the Michelson beam splitters in
third generation Gravitational Wave Observatories. paper in preparation. 2020 (cit.
on p. 69).

[121] A Dmitriev et al. Optmisation of beam expansion telescopes for third-generation grav-
itational wave detectors. (in preparation). 2020 (cit. on p. 70).

[122] The ET Science Team. Einstein gravitational wave Telescope conceptual design. Eu-
ropean Commission, June 2011. url: http://www.et-gw.eu/index.php/relevant-et-
documents (cit. on pp. 71, 72, 83).

[123] Philip Jones et al. “Implications of the quantum noise target for the Einstein Telescope
infrastructure design”. In: Phys. Rev. D 101 (8 Apr. 2020), p. 082002. doi: 10.1103/
PhysRevD.101.082002. url: https://link.aps.org/doi/10.1103/PhysRevD.101.082002
(cit. on pp. 71, 85).

[124] M Granata et al. “Design of the Advanced Virgo non-degenerate recycling cavities”. In:
Journal of Physics: Conference Series 228 (May 2010), p. 012016. doi: 10.1088/1742-
6596/228/1/012016. url: https://doi.org/10.1088%2F1742-6596%2F228%2F1%
2F012016 (cit. on p. 72).

[125] H Lück et al. “The upgrade of GEO 600”. In: Journal of Physics: Conference Series
228 (May 2010), p. 012012. doi: 10.1088/1742- 6596/228/1/012012. url: https :
//doi.org/10.1088%5C%2F1742-6596%5C%2F228%5C%2F1%5C%2F012012 (cit. on
p. 72).

[126] Aidan F. Brooks et al. “Overview of Advanced LIGO adaptive optics”. In: Appl.
Opt. 55.29 (Oct. 2016), pp. 8256–8265. doi: 10 . 1364/AO.55 . 008256. url: http :
//ao.osa.org/abstract.cfm?URI=ao-55-29-8256 (cit. on pp. 83, 87, 92, 93, 94).

[127] A Rocchi et al. “Thermal effects and their compensation in Advanced Virgo”. In:
Journal of Physics: Conference Series 363 (June 2012), p. 012016. doi: 10.1088/1742-
6596/363/1/012016. url: https://doi.org/10.1088%2F1742-6596%2F363%2F1%
2F012016 (cit. on p. 83).

[128] A. F. Brooks et al. Active wavefront control in and beyond Advanced LIGO. Tech.
rep. T1500188–v1. 2015. url: https://dcc.ligo.org/LIGO-T1500188/public (cit. on
pp. 87, 88).

[129] Antonio Perreca et al. “Analysis and visualization of the output mode-matching re-
quirements for squeezing in Advanced LIGO and future gravitational wave detectors”.
In: Phys. Rev. D 101 (10 May 2020), p. 102005. doi: 10.1103/PhysRevD.101.102005.
url: https://link.aps.org/doi/10.1103/PhysRevD.101.102005 (cit. on pp. 87, 88, 89,
91, 93, 94, 97, 99).

[130] Jérôme Degallaix. “Compensation of strong thermal lensing in advanced interferomet-
ric gravitational waves detectors”. PhD thesis. University of Western Australia, 2006
(cit. on p. 92).

177

https://dcc.ligo.org/LIGO-G1900927/public
https://dcc.ligo.org/LIGO-G1900927/public
http://www.et-gw.eu/index.php/relevant-et-documents
http://www.et-gw.eu/index.php/relevant-et-documents
https://doi.org/10.1103/PhysRevD.101.082002
https://doi.org/10.1103/PhysRevD.101.082002
https://link.aps.org/doi/10.1103/PhysRevD.101.082002
https://doi.org/10.1088/1742-6596/228/1/012016
https://doi.org/10.1088/1742-6596/228/1/012016
https://doi.org/10.1088%2F1742-6596%2F228%2F1%2F012016
https://doi.org/10.1088%2F1742-6596%2F228%2F1%2F012016
https://doi.org/10.1088/1742-6596/228/1/012012
https://doi.org/10.1088%5C%2F1742-6596%5C%2F228%5C%2F1%5C%2F012012
https://doi.org/10.1088%5C%2F1742-6596%5C%2F228%5C%2F1%5C%2F012012
https://doi.org/10.1364/AO.55.008256
http://ao.osa.org/abstract.cfm?URI=ao-55-29-8256
http://ao.osa.org/abstract.cfm?URI=ao-55-29-8256
https://doi.org/10.1088/1742-6596/363/1/012016
https://doi.org/10.1088/1742-6596/363/1/012016
https://doi.org/10.1088%2F1742-6596%2F363%2F1%2F012016
https://doi.org/10.1088%2F1742-6596%2F363%2F1%2F012016
https://dcc.ligo.org/LIGO-T1500188/public
https://doi.org/10.1103/PhysRevD.101.102005
https://link.aps.org/doi/10.1103/PhysRevD.101.102005


BIBLIOGRAPHY

[131] Jérôme Degallaix. Private Communication. 2021 (cit. on p. 92).

[132] Crystran. Silica Glass Product Data. https://www.crystran.co.uk/optical-materials/
silica-glass-sio2. 2012 (cit. on p. 92).

[133] Aidan F. Brooks. SR3 heater test. LLO aLOG 27262. 2016. url: https://alog.ligo-
la.caltech.edu/aLOG/index.php?callRep=27262 (cit. on p. 94).

[134] Aidan Brooks. Private Communication. 2021 (cit. on p. 94).

[135] Michael L. Waskom. “seaborn: statistical data visualization”. In: Journal of Open
Source Software 6.60 (2021), p. 3021. doi: 10.21105/joss.03021. url: https://doi.
org/10.21105/joss.03021 (cit. on p. 98).

[136] D. V. Martynov et al. “Sensitivity of the Advanced LIGO detectors at the beginning
of gravitational wave astronomy”. In: Phys. Rev. D 93 (11 June 2016), p. 112004. doi:
10.1103/PhysRevD.93.112004. url: https://link.aps.org/doi/10.1103/PhysRevD.93.
112004 (cit. on p. 101).

[137] Katherine L. Dooley et al. “Angular control of optical cavities in a radiation-pressure-
dominated regime: the Enhanced LIGO case”. In: J. Opt. Soc. Am. A 30.12 (Dec.
2013), pp. 2618–2626. doi: 10.1364/JOSAA.30.002618. url: http://josaa.osa.org/
abstract.cfm?URI=josaa-30-12-2618 (cit. on p. 101).

[138] Eiichi Hirose et al. “Angular instability due to radiation pressure in the LIGO grav-
itational wave detector”. In: Appl. Opt. 49.18 (June 2010), pp. 3474–3484. doi: 10.
1364/AO.49.003474. url: http://ao.osa.org/abstract.cfm?URI=ao-49-18-3474
(cit. on p. 101).

[139] John A. Sidles and Daniel Sigg. “Optical torques in suspended Fabry–Perot inter-
ferometers”. In: Physics Letters A 354.3 (2006), pp. 167–172. issn: 0375-9601. doi:
https://doi.org/10.1016/j.physleta.2006.01.051. url: https://www.sciencedirect.
com/science/article/pii/S0375960106001381 (cit. on pp. 101, 121).

[140] Brett Shapiro et al. “Cryogenically cooled ultra low vibration silicon mirrors for grav-
itational wave observatories”. In: Cryogenics 81 (2017), pp. 83–92. issn: 0011-2275.
doi: https : / / doi . org / 10 . 1016 / j . cryogenics . 2016 . 12 . 004. url: https : / /www .
sciencedirect.com/science/article/pii/S0011227516302818 (cit. on p. 102).

[141] Raffaele Flaminio. “Status and plans of the Virgo gravitational wave detector”. In:
Ground-based and Airborne Telescopes VIII. Ed. by Heather K. Marshall, Jason Spy-
romilio, and Tomonori Usuda. Vol. 11445. International Society for Optics and Pho-
tonics. SPIE, 2020, pp. 205–214. doi: 10.1117/12.2565418. url: https://doi.org/10.
1117/12.2565418 (cit. on p. 102).

[142] K. Ackley et al. “Neutron Star Extreme Matter Observatory: A kilohertz-band grav-
itational wave detector in the global network”. In: Publications of the Astronomical
Society of Australia 37 (2020), e047. doi: 10.1017/pasa.2020.39 (cit. on p. 102).

[143] Andreas Freise. Alignment coupling with large beams. Tech. rep. Dec. 2017. url: https:
//dcc.ligo.org/LIGO-G1702391 (cit. on pp. 102, 104, 108, 119, 122).

178

https://www.crystran.co.uk/optical-materials/silica-glass-sio2
https://www.crystran.co.uk/optical-materials/silica-glass-sio2
https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=27262
https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=27262
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.1103/PhysRevD.93.112004
https://link.aps.org/doi/10.1103/PhysRevD.93.112004
https://link.aps.org/doi/10.1103/PhysRevD.93.112004
https://doi.org/10.1364/JOSAA.30.002618
http://josaa.osa.org/abstract.cfm?URI=josaa-30-12-2618
http://josaa.osa.org/abstract.cfm?URI=josaa-30-12-2618
https://doi.org/10.1364/AO.49.003474
https://doi.org/10.1364/AO.49.003474
http://ao.osa.org/abstract.cfm?URI=ao-49-18-3474
https://doi.org/https://doi.org/10.1016/j.physleta.2006.01.051
https://www.sciencedirect.com/science/article/pii/S0375960106001381
https://www.sciencedirect.com/science/article/pii/S0375960106001381
https://doi.org/https://doi.org/10.1016/j.cryogenics.2016.12.004
https://www.sciencedirect.com/science/article/pii/S0011227516302818
https://www.sciencedirect.com/science/article/pii/S0011227516302818
https://doi.org/10.1117/12.2565418
https://doi.org/10.1117/12.2565418
https://doi.org/10.1117/12.2565418
https://doi.org/10.1017/pasa.2020.39
https://dcc.ligo.org/LIGO-G1702391
https://dcc.ligo.org/LIGO-G1702391


BIBLIOGRAPHY

[144] A Freise, A Bunkowski, and R Schnabel. “Phase and alignment noise in grating
interferometers”. In: New Journal of Physics 9.12 (Dec. 2007), pp. 433–433. doi:
10.1088/1367-2630/9/12/433. url: https://doi.org/10.1088/1367-2630/9/12/433
(cit. on p. 103).

[145] J Aasi et al. “Advanced LIGO”. In: Classical and Quantum Gravity 32.7 (Mar. 2015),
p. 074001. doi: 10.1088/0264-9381/32/7/074001. url: https://doi.org/10.1088/0264-
9381/32/7/074001 (cit. on pp. 110, 111).

[146] Samuel Rowlinson. cavcalc. https://cavcalc.readthedocs.io/en/latest/. 2020 (cit. on
pp. 111, 113).

[147] Coralia Cartis et al. “Improving the Flexibility and Robustness of Model-Based Deriva-
tive Free Optimization Solvers”. In: ACM Trans. Math. Softw. 45.3 (Aug. 2019). issn:
0098-3500. doi: 10.1145/3338517. url: https://doi.org/10.1145/3338517 (cit. on
p. 115).

[148] D Martynov. “Lock Acquisition and Sensitivity Analysis of Advanced LIGO Interfer-
ometers”. PhD thesis. California Institute of Technology, 2015 (cit. on p. 115).

[149] Euan Morrison et al. “Automatic alignment of optical interferometers”. In: Appl. Opt.
33.22 (Aug. 1994), pp. 5041–5049. doi: 10.1364/AO.33.005041. url: http://ao.osa.
org/abstract.cfm?URI=ao-33-22-5041 (cit. on p. 119).

[150] A. Freise. Introduction to Finesse: Motivation and History. https://finesse.docs.ligo.
org/finesse3/introduction/index.html#motivation-and-history. 2021 (cit. on p. 123).

[151] A. Freise. History and impact of the finesse simulation tool. http://www.gwoptics.
org/finesse/impact.php. 2017 (cit. on p. 123).

[152] A Freise et al. “Frequency-domain interferometer simulation with higher-order spatial
modes”. In: Classical and Quantum Gravity 21.5 (2004). Finesse is available at http:
/ /www . gwoptics . org /finesse., S1067–S1074. url: http : / / stacks . iop . org / 0264 -
9381/21/S1067 (cit. on p. 123).

[153] Finesse 3 Contributors Page. https://git.ligo.org/finesse/finesse3/-/graphs/master.
2021 (cit. on p. 124).

[154] Stefan Behnel et al. “Cython: The best of both worlds”. In: Computing in Science &
Engineering 13.2 (2011), pp. 31–39 (cit. on pp. 124, 127).

[155] Holger Krekel et al. pytest 6.2. 2004. url: https://github.com/pytest-dev/pytest
(cit. on p. 125).

[156] Philip Jones, Samuel Rowlinson, and Andreas Freise. Finesse 3 Presentation LVC
March 2019. LVK. Mar. 2019. url: https://dcc.ligo.org/LIGO-G1900515 (cit. on
p. 125).

[157] Haixing Miao et al. “Enhancing the Bandwidth of Gravitational-Wave Detectors with
Unstable Optomechanical Filters”. In: Phys. Rev. Lett. 115 (21 Nov. 2015), p. 211104.
doi: 10.1103/PhysRevLett.115.211104. url: https://link.aps.org/doi/10.1103/
PhysRevLett.115.211104 (cit. on p. 125).

179

https://doi.org/10.1088/1367-2630/9/12/433
https://doi.org/10.1088/1367-2630/9/12/433
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://cavcalc.readthedocs.io/en/latest/
https://doi.org/10.1145/3338517
https://doi.org/10.1145/3338517
https://doi.org/10.1364/AO.33.005041
http://ao.osa.org/abstract.cfm?URI=ao-33-22-5041
http://ao.osa.org/abstract.cfm?URI=ao-33-22-5041
https://finesse.docs.ligo.org/finesse3/introduction/index.html#motivation-and-history
https://finesse.docs.ligo.org/finesse3/introduction/index.html#motivation-and-history
http://www.gwoptics.org/finesse/impact.php
http://www.gwoptics.org/finesse/impact.php
http://www.gwoptics.org/finesse
http://www.gwoptics.org/finesse
http://stacks.iop.org/0264-9381/21/S1067
http://stacks.iop.org/0264-9381/21/S1067
https://git.ligo.org/finesse/finesse3/-/graphs/master
https://github.com/pytest-dev/pytest
https://dcc.ligo.org/LIGO-G1900515
https://doi.org/10.1103/PhysRevLett.115.211104
https://link.aps.org/doi/10.1103/PhysRevLett.115.211104
https://link.aps.org/doi/10.1103/PhysRevLett.115.211104


BIBLIOGRAPHY

[158] Y. Ma et al. “Proposal for gravitational-wave detection beyond the standard quantum
limit through EPR entanglement.” In: Nature Physics 13 (8 Aug. 2017), pp. 776–780.
doi: 10.1038/nphys4118. url: https://doi.org/10.1038/nphys4118 (cit. on p. 125).

[159] Paul Ross. Musings on Cython. https://notes-on-cython.readthedocs.io/en/latest/
index.html. 2014 (cit. on p. 127).

[160] Paul Ross. The Performance of Python, Cython and C on a Vector. https://notes-
on-cython.readthedocs.io/en/latest/std_dev.html. 2014 (cit. on p. 128).

[161] Georg Brandl. Sphinx Python Documentation Generator. https://www.sphinx-doc.
org/en/master/. 2021 (cit. on pp. 131, 136).

[162] Samuel Rowlinson. Reslate. https ://gitlab.com/sjrowlinson/reslate. 2021 (cit. on
p. 133).

[163] Charlotte Bond, Daniel Brown, and Andreas Freise. “Interferometer responses to grav-
itational waves: Comparing FINESSE simulations and analytical solutions”. In: arXiv
e-prints (June 2013). arXiv: 1306.6752 [physics.optics] (cit. on p. 134).

[164] Walter K. Kahn. “Unstable Optical Resonators”. In: Appl. Opt. 5.3 (Mar. 1966),
pp. 407–413. doi: 10.1364/AO.5.000407. url: http://ao.osa.org/abstract.cfm?URI=
ao-5-3-407 (cit. on p. 148).

[165] Lee W. Casperson and Susan D. Lunnam. “Gaussian Modes in High Loss Laser Res-
onators”. In: Appl. Opt. 14.5 (May 1975), pp. 1193–1199. doi: 10.1364/AO.14.001193.
url: http://ao.osa.org/abstract.cfm?URI=ao-14-5-1193 (cit. on p. 148).

180

https://doi.org/10.1038/nphys4118
https://doi.org/10.1038/nphys4118
https://notes-on-cython.readthedocs.io/en/latest/index.html
https://notes-on-cython.readthedocs.io/en/latest/index.html
https://notes-on-cython.readthedocs.io/en/latest/std_dev.html
https://notes-on-cython.readthedocs.io/en/latest/std_dev.html
https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/
https://gitlab.com/sjrowlinson/reslate
https://arxiv.org/abs/1306.6752
https://doi.org/10.1364/AO.5.000407
http://ao.osa.org/abstract.cfm?URI=ao-5-3-407
http://ao.osa.org/abstract.cfm?URI=ao-5-3-407
https://doi.org/10.1364/AO.14.001193
http://ao.osa.org/abstract.cfm?URI=ao-14-5-1193

	Title Page
	Abstract
	Abstract
	Statement of Originality
	Acknowledgments
	List of Figures
	List of Tables
	List of Source Codes
	Acronyms
	Finesse Nomenclature
	1 Introduction
	1.1 Interferometers as gravitational wave detectors
	1.1.1 Arm cavities
	1.1.2 Recycling cavities
	1.1.3 Mode-cleaner cavities

	1.2 Overview of current detector sensitivity limitations
	1.2.1 Quantum vacuum noise
	1.2.2 Coating thermal noise
	1.2.3 Seismic and suspension noise

	1.3 Mathematical description of light fields for laser interferometry
	1.3.1 The plane-wave picture
	1.3.2 Gaussian beams and Higher-Order spatial Modes
	1.3.2.1 The wave equation and paraxial approximation
	1.3.2.2 Properties of Gaussian beams
	1.3.2.3 Spatial distortions as Higher-Order Hermite-Gauss modes
	1.3.2.4 The Gaussian beam parameter


	1.4 Modelling interferometers in the frequency-domain
	1.4.1 Time-independent light field amplitudes
	1.4.2 Component field interactions as coupling matrices
	1.4.2.1 Propagation over a space
	1.4.2.2 Coupling matrices at a mirror

	1.4.3 Solving optical interferometer couplings via sparse matrix inversion

	1.5 Thesis overview

	2 Modelling Higher-Order Spatial Modes in Gravitational Wave Detectors with Finesse 3
	2.1 Motivation and current software review
	2.2 Beam tracing
	2.2.1 ABCD matrices and beam parameter transformation
	2.2.2 Optical cavities
	2.2.2.1 Eigenmodes
	2.2.2.2 Stability of optical cavities
	2.2.2.3 Round-trip Gouy phase and mode spacing
	2.2.2.4 Example: The Fabry-Perot cavity

	2.2.3 Propagating beams through an interferometer
	2.2.3.1 Tree structure
	2.2.3.2 Mode mismatches
	2.2.3.3 Symmetric vs asymmetric tracing
	2.2.3.4 Importance of defining cavity modes
	2.2.3.5 Order of beam tracing
	2.2.3.6 Overlapping cavities

	2.2.4 Beam tracing as a library
	2.2.4.1 Symbolic beam propagation
	2.2.4.2 Matrix-less simulations


	2.3 Mode scattering matrices
	2.3.1 Coupling coefficients and the overlap integral
	2.3.2 Computing coupling coefficients in Finesse 3
	2.3.2.1 Gouy phase shifts and coupling coefficients
	2.3.2.2 Example: Scattering matrices at a mirror
	2.3.2.3 Performance

	2.3.3 Selecting the mode indices to model
	2.3.3.1 Misalignments and mode mismatches as additions of HOMs
	2.3.3.2 Example: Scanning yaw angle of a beam splitter

	2.3.4 Future work

	2.4 Capturing beam images
	2.4.1 CCDs
	2.4.2 Complex cameras
	2.4.3 Dimensionality of camera-type detectors
	2.4.4 Example: Mode scan of misaligned aLIGO arm cavity
	2.4.5 Performance

	2.5 Summary

	3 Feasibility Study of Beam Expanding Telescopes in the Interferometer Arms for the Einstein Telescope
	3.1 Motivation
	3.2 Arm cavity eigenmode and telescope constraints
	3.2.1 Telescope parameter constraints

	3.3 ET-LF arm telescope design
	3.3.1 Flat Z mirrors
	3.3.2 Curved telescope mirrors, and no lens at ITM
	3.3.3 Curved telescope mirrors with a lens at the ITM

	3.4 ET-HF arm telescope design
	3.4.1 Further flexibility of the telescope design

	3.5 Parameter sensitivity and mode matching
	3.5.1 Mode matching in the presence of thermal lensing

	3.6 Summary

	4 Adaptive Mode Matching with Arm Telescopes in the Einstein Telescope
	4.1 WS phase space
	4.2 Core ET mode mismatches in WS space
	4.2.1 Quantifying the thermal lens focal lengths

	4.3 Types of actuation for adaptive mode matching
	4.4 Determining actuation effectiveness in WS space
	4.5 Suitability of telescope mirror actuation
	4.5.1 RoC actuators at ZM1 and ZM2
	4.5.2 Shifting the positions of ZM1 and ZM2
	4.5.3 Estimating the available phase space regions

	4.6 Summary

	5 Scaling of Alignment Noise Coupling with Larger Beams
	5.1 Static and oscillatory misalignments
	5.2 Approximating the scaling of alignment noise coupling for larger beams
	5.2.1 Coupling coefficient from HG00 to HG01
	5.2.2 Resonance enhancement factor
	5.2.3 Scaling of the alignment noise coupling

	5.3 Numerical experiment for scaling validation with Finesse
	5.3.1 Selecting a range of arm cavity beam sizes
	5.3.2 Magnitudes of DC and AC misalignments
	5.3.3 Mode matching the arm cavities to the recycling cavities
	5.3.4 Detecting the alignment coupling signal
	5.3.4.1 Higher order couplings


	5.4 Implications and potential for suppression
	5.4.1 Stronger alignment signals
	5.4.2 Scaling with the other dependent variables

	5.5 Summary

	6 Finesse 3 Software Design
	6.1 Motivation
	6.1.1 Modular structure and API

	6.2 Cython extensions
	6.3 Simulation workspace pattern
	6.4 Program flow
	6.5 Documentation
	6.5.1 API documentation

	6.6 Current status and future work
	6.6.1 Longer-term plans and ideas

	6.7 Summary

	7 Summary and Conclusions
	A Beam Tracing with Trees
	A.1 Planting a forest
	A.2 Constructing the changing trace forest
	A.3 Finding potentially varying mode mismatch couplings
	A.4 Dealing with unstable tracing regions
	A.4.1 What happens when there are no stable trace dependencies?


	B Analytic solution to WS phase space overlap integrals
	B.1 Overlap on an infinite plane
	B.2 Computing the overlap for a finite circular aperture

	C Field couplings for a DC and AC misaligned Fabry-Perot cavity
	C.1 HG00 field couplings at DC
	C.2 HG01 field couplings at DC
	C.3 HG01 field couplings at AC
	C.4 Computing the signal beat at the photodiode
	C.4.1 Error estimation


	Bibliography

