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Abstract

Probabilistic model-checking is a field which seeks to automate the formal analysis of

probabilistic models such as Markov chains. In this thesis, we study and develop the

stochastic Markov reward model (sMRM) which extends the Markov chain with rewards as

random variables. The model recently being introduced, does not have much in the way of

techniques and algorithms for their analysis. The purpose of this study is to derive such

algorithms that are both scalable and accurate.

Additionally, we derive the necessary theory for probabilistic model-checking of sMRMs

against existing temporal logics such as PRCTL. We present the equations for comput-

ing first-passage reward densities, expected value problems, and other reachability problems.

Our focus however is on finding strictly numerical solutions for first-passage reward den-

sities. We solve for these by firstly adapting known direct linear algebra algorithms such

as Gaussian elimination, and iterative methods such as the power method, Jacobi and

Gauss-Seidel. We provide solutions for both discrete-reward sMRMs, where all rewards dis-

crete (lattice) random variables. And also for continuous-reward sMRMs, where all rewards

are strictly continuous random variables, but not necessarily having continuous probability

density functions (pdfs). Our solutions involve the use of fast Fourier transform (FFT) for

faster computation, and we adapted existing quadrature rules for convolution to gain more

accurate solutions, rules such as the trapezoid rule, Simpson’s rule or Romberg’s method.

In the discrete-reward setting, existing solutions are either derived by hands, or a combi-

nation of graph-reduction algorithms and symbolically solving them via computer algebra

systems. The symbolic approach is not scalable, and for this we present strictly numerical

but relatively more scalable algorithms. We found each - direct and iterative - capable of

solving problems with larger state spaces. The best performer was the power method, owed

partially to its simplicity, leading to easier vectorization of its implementation. Whilst, the

Gauss-Seidel method was shown to converge with fewer iterations, it was slower due to costs

of deconvolution. The Gaussian Elimination algorithm performed poorly relative to these.

In the continuous-reward setting, existing solutions are adaptable from literature on semi-

Markov processes. However, it appears that other algorithms should still be researched for

the cases where rewards have discontinuous pdfs. The algorithm we have developed has

the ability to resolve such a case, albeit the solution does not appear as scalable as the

discrete-reward setting.
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Chapter 1

Introduction

Probabilistic models have been utilized effectively in many areas of research and have nu-

merous industrial applications. By abstracting real world systems, and making some sound

assumptions of how they behave, we can use such models to represent a simplification of

a natural phenomenon, or an artificial or engineered one. Doing so grants us a less expen-

sive representation, one that we can study for insights as to how the true system actually

behaves. The understanding we obtain is useful for many reasons. If the system being mod-

elled is artificial, we can use the knowledge to determine whether the true system meets

safety specifications. If it is a real world phenomena, we can use it to make predictions and

forecasts, or perhaps to develop or prove scientific theories.

A probabilistic model is one which models systems predictable only through relative ratios

of outcomes, i.e. systems best characterized as random. These models can then be used

to determine the likelihood of certain critical events, such as failure rates of an industrial

facility [94], the likelihood of cancer re-emission or death [96] or the survivability of coronary

patients [95]. Other applications of these models could be for weather-forecasting, speech-

recognition, in the field of computational biology and robotics. A sufficiently flexible model

that is well developed has the capacity to model complex real world problems. A flexible

model is one that imposes fewer requirements on real-world systems, to be representable.

The field of probabilistic verification comprises various formal techniques to investi-

gate behaviours of probabilistic models. These models range from simple structures such

as Markov chains and probabilistic Petri nets to complicated models such as those written

with probabilistic programming languages. A contribution to this field would be for exam-

ple designing methods for investigating behaviours of models not previously analysable. Or

alternatively, presenting new models. One new class of model in literature is the stochastic

Markov reward model (sMRM) [14], a model which captures the accumulation of rewards

over a random (Markov) process. These rewards are random themselves, and are accumu-

lated as independent increments. Its development is recent, and we do not find much work
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directly on them. In this thesis, we develop algorithms for investigating a set of questions

concerning them. We consider both the discrete-reward and continuous-reward variants of

these models, and we focus mostly on a class of problems known as reachability problems.

The techniques investigated in probabilistic verification are various, however one popular

family of methods is probabilistic model checking. The method allows us to investigate both

qualitative and quantitative properties of particular probabilistic models, via a combination

of specification languages of which are usually temporal logics - to write what we intend

to investigate of a model, and a set of model checking algorithms that consists of logic

translators, model transformers, and numerical algorithms such as Gaussian elimination,

or the Gauss-Seidel methods and their variants. We focus on designing scalable practical

numerical algorithms for sMRMs, implementing and experimenting with them.

1.1 Motivation

Let us consider for the time being application in robotics. The ability to automate robots

such that they succeed at their tasks without risk of failure opens the door for many an

industrial application. For example, they may be used to investigate the sea floors for

undetonated mines left from previous wars or used in nuclear facilities where humans are

at risk from radiation poisoning. Or mundane tasks within factories or farming.

We motivate our research into a class of probabilistic models - stochastic Markov reward

models - with the following problem: A robot leaves a charging station to perform a set

of tasks in its surrounding environment. The tasks consist of performing inspections on

physical structures. The order in which it performs its tasks is determined by some planner;

it visits a set of objects and inspects them before returning to recharge. Each movement or

inspection consumes energy and time of the robot, both being random variables.

Concerning such a robot, we can ask some questions about its behaviour: 1) What is the

probability that the robot runs out of energy during any of its missions? 2) Is it possible

for the robot to complete the mission under some time bound t? 3) What is the likelihood

that it fails to complete more than x number of tasks due to running out of energy?

Problems like these can be modelled with discrete-time Markov chains (DTMCs), a model

which allows us to approximate all possible behaviour of the robot with a finite set of

configurations known as states, and which captures its behaviour evolution through time

by using transitions between these states. For example, the mission can be modelled as

a DTMC where the state of a robot is two variables: location, and whether the robot

is inspecting or not. The state transitions represent movements of the robot from one

location to another, and they also represent the starting, continuation and ending of an
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inspection task. To represent the energy and time costs, we have the choice of integrating

these costs into the state space of the DTMC, that is the state of the robot will also include

the amount of energy the robot currently has and how much time it has spent away from

the recharging station. For complicated models however, this approach would blow up the

memory requirements exponentially, thus leading us to considering better techniques.

Another solution is to use a related model known as the Markov reward model (MRM).

In these models, rewards (or synonymously costs) can be represented in a manner whereby

they are not integrated into the state space. Thus, the memory requirements are gener-

ally lesser than using DTMCs. An MRM is essentially a DTMC with a reward structure

connected to it. Both the DTMC and the reward structure can be represented as indi-

vidual matrices of equal size. We can represent time/energy costs more efficiently with

these models. However, the MRM is more restrictive than a regular DTMC allowing only

non-negative rewards/costs over transitions. For example with MRMs, we cannot transi-

tion to states which would reduce time spent on the mission or increase the robot’s current

energy amount (by recharging for example). This is not a problem we focus on at this time.

Note that modelling both time/energy costs leads to a bi-dimensional (bi-variate) reward

structure, thus two matrices (of equal size) are required for it instead of one.

A drawback with MRMs is that it only deals with deterministic rewards, i.e. it only

allows us to model the energy between movements as fixed amounts. A more recent model

has been introduced into literature at the time of this work [14], which allows these rewards

to be random variables. These models are referred to as stochastic Markov reward models

(sMRM). It is this class of model that is the focus of this thesis and what it builds upon.

However, a challenge with sMRMs is that multivariate random variable rewards (or ran-

dom vector rewards) are not generally composed of mutually independent univariate ran-

dom variables, unlike MRMs with deterministic rewards (i.e. degenerate random variables),

where they are always independent of each other. Unfortunately, this blow up in complexity

whilst important to us, we have no general solution for. The focus therefore is solely on

univariate reward structures, or random vectors with mutually independent components.

One might propose another set of models instead of sMRMs, known as (transition-based)

hidden Markov models (HMMs). This model extends DTMCs, by allowing there to be a

further set of states called hidden states. Hence the original set of states of the underlying

DTMC are known as observable states. The complete state space of the model is the

Cartesian product {hidden states× observable states}. A required property of the model is

that the likelihood of being in a hidden state at any particular time step is solely dependent

on the transition made at the previous time step (between two observable states) by the
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HMM, and not on any other (previous) step.1 One might try to model question 1 above

using an HMM by first using the observable states to represent the location of the robot

and whether the robot is inspecting or not, just like with the DTMC. Then, introducing two

hidden states for the model: the robot still has energy, and the robot has run out of energy.

When the robot transits between observable states, e.g. moves location, it has a likelihood

of running out of energy, or still having energy, i.e. it has a likelihood of ending up in one

of the two hidden states. If the process is to be modelled as a HMM, the likelihood of being

in a hidden state (e.g. having no energy) at any time must be modelled as a function of

the most recent transition the robot took. However, this is theoretically unsound as the

likelihood of having no energy is dependent on all previous transitions and not just the

most recent. As for a formal explanation, we delay this until after we have defined sMRMs

properly (see Section 5.7.1).

If the robot does not yet have a plan of action (or mission), and we have a set of actions

we can program the robot to do at any given state, if we were to ask a fourth question - for

any state the robot is in, what is the best action the robot can take, in terms of preventing

the robot from running out of energy and increasing the likelihood of completing a set of

inspections? Then, a more general model or framework is required to answer this. One

way to handle this is by extending previous models (DTMCs, MRMs, or sMRMs) with

an action set which is used to annotate each state with actions we want the robot to be

able to make. State transitions are now dependent on the action chosen by the robot at

a given state. These modified models can then be studied to find the best action to make

at any state given a particular problem. Extending DTMCs this way gives us the class of

models known as Markov decision processes (MDPs). In the case of MRMs or sMRMs, we

can call their extensions Markov reward decision processes (MRDPs) or stochastic MRDPs

(sMRDPs). However, we have explained that the HMM is not a valid choice of model for

our problem, and therefore its extension, called the partially observable Markov decision

process (POMDP) cannot be considered. However, an alternative manner of solving this

is by using a black-box (or off-the-shelf) optimization algorithm that produces a plan of

action. The black-box algorithm chooses a set of actions for the robot, one for each state.

This set of actions then translates to a set of behaviours for the robot which can be modelled

as previously via a DTMC, MRM or sMRM. The models are then investigated to see if for

example the robot will run out of energy. If it is proven that the plan is sufficient (e.g.

the robot will not run out of energy with high probability), the robot can be configured to

run the plan. If not, the black-box algorithm will attempt to find a better plan through

a new set of actions. Therefore an iteration between plan generation (via the black box

algorithm), and plan verification (via the sMRM or other) is needed to determine a good set

of actions that would be sufficient. In this thesis, we will not focus on planning problems.

1In a state-based HMM, the likelihood of being in a hidden state at a particular time instance solely
depends on the state the HMM is in at that time instance.
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Rather the focus is strictly on sMRMs. However, as just explained, sMRMs can still be

used as part of an optimization procedure to generate usable plans for a robot.

The robot problem serves to introduce the class of models being investigated in this thesis.

It is not however our main focus, but it does clarify how these models can be used.

1.2 Objectives and contributions

The stochastic Markov reward models (sMRMs) were recently introduced by [14]. The

authors would analyse their behaviour via simulation techniques. We seek to derive nu-

merical algorithms for reachability problems defined over sMRMs, that are scalable and

accurate. We avoid simulation techniques which offer generally statistical guarantees on

the accuracy of the result, in favour of numerical approaches which can give formal guaran-

tees. Additionally, simulation techniques are considered slow when accuracy is of concern.

Our contributions are as follows:

1. We tie together model-checking with sMRMs using a temporal logic called PRCTL

- probabilistic reward control tree logic. [10]. We lay a foundation for sMRM theory

and present theoretical solutions for several problems.

2. We present algorithms for our main problem, the computation of the the passage-time

reward mass functions (described later), over the discrete-reward sMRMs that are fast

and scalable. The algorithms involve adapting existing solutions for solving systems

of linear equations: The Gaussian elimination algorithm, the power, Jacobi and Gauss

Seidel methods.

3. Algorithms for the continuous-reward sMRMs were also derived, that are fast but

only slightly scalable. We discovered new quadrature rules for convolution that are

amenable for use within the sMRMs that can provide more accurate answers. The

solution we provide is perhaps a more general solution relative to some algorithms

in literature which are adaptable for use, allowing us to solve problems that other

algorithms cannot do without further development.

1.3 Thesis layout

The remainder of this thesis is organized as follows. The following chapter discusses relevant

literature to the sMRM models. It discusses probabilistic model checking in the context of

such models, as well as existing numerical algorithms utilizable for solving some problems

of these models. Chapter 3 presents the necessary background for the thesis. It discusses

Markov models, temporal logics and the algorithms for resolving properties over Markov
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models. Chapter 4 presents the theoretical foundations for sMRMs, introducing the system

of convolution equations and provides proofs for the basis of our work. Chapter 5 begins with

deriving an exact solution for discrete-reward sMRM problems via the Gaussian elimination

algorithm. Chapter 6 introduces iterative methods for solving discrete-reward sMRMs via

the power, Jacobi and Gauss-Seidel method. These methods are more scalable relative

to the direct Gaussian elimination method. Chapter 7 concerns an attempt to resolve

continuous-reward sMRMs. Finally, Chapter 8 concludes this thesis and presents direction

for future work.

1.4 Computer details

For the experiments found in this thesis, two different computers were used. Additionally,

the algorithms we present are implemented in python. We made heavy use of the following

python libraries: 1) numpy [74, 89] for their numerical algorithms and matrix operations.

2) fftw, a python wrapper for the FFTW library [43] for FFT operations. 3) PaCal [65] -

a probabilistic arithmetic calculator. This was used heavily as a benchmarking tool for the

algorithms we develop.

The specs. of the two computers are as follows.

1. Computer 1: A laptop with 7.7GB of RAM, and an Intel Core i7-5500U CPU (@

2.40GHz x 4). Here, we are using the OPENBLAS [3] package as a back-end for

numpy, but multi-threading was turned off.

2. Computer 2: A desktop PC with 31.9GB of RAM, and an AMD Ryzen 5 3600 6-Core

CPU (@ 3.593GHz x 6).

Computer 1 is our default computer, and unless mentioned otherwise, can be assumed

to be the computer used for a particular experiment in this thesis.
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Chapter 2

Related work

2.1 Introduction

In this chapter, we discuss models related to the sMRM such as the Markov reward model

(MRM) with deterministic rewards, and semi-Markov processes (SMP). We also delve into

probabilistic model checking with temporal logics, an area concerned with solving general

problems over probabilistic models such as DTMCs, MRMs, and others. Doing so will give

us a reference as to what questions may be asked of sMRM behaviour. Then, we also discuss

our focus and compare the algorithms derived here with possible algorithms that exist in

literature.

2.2 Probabilistic model checking

Probabilistic model checking is a wide field covering formal methods used to verify, prove

or investigate the behaviour of probabilistic models. Models can be as specific as software

code, or an abstraction of real-word systems. These models can be developed by hand,

or generated automatically by software. When it is the latter, work to prevent memory

overflow include using symbolic representations [29], and SAT methods [26]. Once these

models have been generated, there are a host of algorithms to analyse them, with results

from fields including logic theory, automata theory, numerical methods and graph theory.

The set of techniques we focus on are discussed in the book [21], involving state spaces and

temporal logics (or more generally specification languages).

Probabilistic model checking with temporal logics consists of a combination of three sep-

arate components, the first two being: A probabilistic model, and a specification language

(e.g. a temporal logic). The model is used to represent the phenomena or system at hand,

whilst the language allows us to write questions (synonymous to statements or properties

or problems) we want to investigate concerning the model. We have seen briefly what the

models and questions could be in the introduction. For those questions that are decidable
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and solutions exist for them which are unique, the algorithms that resolve them are an

integral part of model checking, and form the third component.

A more formal understanding is that these logics present a way to express particular

behaviours of the model by allowing us to write properties it may potentially exhibit. Then,

the goal is to determine whether the model has these properties, or formally that the model

satisfies these properties. The action of determining so, is termed model-checking.

We summarize below previously investigated problems on probabilistic specific models

related to sMRMs, and also detail some existing temporal logics defined over them. The

relevant logics are detailed in the following chapter and specific algorithms related to our

work for proving satisfaction of their properties on models are presented.

2.2.1 DTMCs

The discrete time Markov chain (DTMC) forms the foundation for sMRMs and has been

studied extensively. Problems for sMRMs that are independent of notions of rewards re-

duces to problems for DTMCs. Such problems can be partitioned into two: the long term

behaviour of a Markov chain, and the short-term (or bounded) behaviour. The former in-

cludes investigating (i) expected first passage/arrival times - the expected number of steps

to reach a state j beginning from another state i, (ii) equilibrium/steady state distribution

- the probability distribution over being in each state of a Markov chain as time tends to

infinity, (iii) and the mean recurrence time - the expected amount of steps it takes for a

Markov chain to return to state i beginning from the same state. See the textbook [63]

for further details. For bounded behaviour, we have for example (iv) transient state prob-

abilities - the probability distribution over being in a particular state at some given time

n.

Probabilistic model-checking is a field which also studies DTMCs. The authors Hansson

and Jonsson [50] introduced a temporal logic PCTL - probabilistic computation tree logic,

which allows the expression of particular properties for DTMCs. All properties written

in PCTL are entirely computable, and the algorithms developed to solve PCTL problems

cover the entire class. The logic allows expression for a wide range of properties, which in

turns allows us to solve problems including determining (i) first passage (or reachability)

probabilities - the probability of first entering a state j from each state of the process, (ii)

step-bounded reachability probabilities - the probability of first entering a state j from each

state under n steps, transient state probabilities, and (iii) repeated reachability and persis-

tence probabilities - the probability that the DTMC repeatedly enters a set of states, and

the probability of a DTMC transitioning only within a particular set of states respectively.

See the textbook [21] for an exposition to the subject.
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A property written in such specification languages is to be resolved over its respective

DTMCs. If a DTMC satisfies a property, then we mean by this that the DTMC is guar-

anteed to exhibit such a behaviour. The algorithms involved for resolving properties over

DTMCs can be categorized into three groups: 1) Translating the logical property into an

equivalent form amenable to simpler computation. This would involve logic theory. 2)

Transforming the DTMC with respect to the new property, preparing it for computation.

This yields a simpler property as well. This is a combination of results and algorithms from

graph theory and automata theory. 3) Solving the transformed DTMC with respect to the

remaining property. As for algorithms for solving PCTL statements, they include those

that range from being numerical or symbolic, global or local (on-the-fly), and deterministic

or statistical. See for example [21, 38, 68, 99]. If numerical approaches are used, then part

of the solution may involve solving a system of linear equations, or repeated matrix-vector

multiplications depending on the statement.

Whilst PCTL is our language of focus, there are other languages which allow resolving of

other properties over DTMCs. For example there is PCTL* - probabilistic computation tree

logic star by [13]. It is a logic that includes as subsets PCTL, and LTL - linear temporal

logic introduced by [77], which allows resolving of ω-regular properties over DTMCs.

Additionally from model checking literature, is the problem of parametric model checking,

the problem where models are not completely described and have parameters instead, and

the goal is to determine if such models satisfy particular logical properties for a range of

different values of these parameters. For DTMCs, see [38]. Additionally the problem of

repairing Markov models has also been studied for controllable DTMCs [24], where if such

a DTMC does not satisfy a logical property, another closely related DTMC is sought to

ensure the satisfaction of that property. PCTL has also been studied for DTMCs with

continuous state spaces, where transition matrices are replaced with kernels instead [80].

Solutions may involve analogues of existing numerical solutions of finite-space DTMCs, see

[86] as a guide. Available general surveys on probabilistic model checking include [61, 66].

2.2.2 Discrete-time MRMs and sMRMs

Markov reward models (MRMs) are essentially (discrete-time) Markov chains extended

with a reward structure, allowing us to weight the occurrence of events of the process with

a reward (or dually, cost) function. Then, we can ask not only for probabilities of events

as with DTMCs but also the expected reward accumulated for these events. These rewards

are either attached to states [21], or attached to transitions of the process [34], and the

process accumulates these rewards when being in a state or transitioning between them

respectively. If the rewards are deterministic, then we have regular MRMs. If they are

random variables, then we have stochastic MRMs (sMRMs).
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The study of Markov reward models similarly includes determining long-term and short-

term behaviour. As for the former, it includes (i) the expected cumulated reward for reaching

a set of states B beginning in any particular state, (ii) and a conditional variant where we

have the expected reward to reach B under the condition that B is eventually reached,

called conditional expected cumulated reward. (iii) Also, we have long running averages

of states - the expected cumulated reward earned when beginning in a state s, and (iv)

quantile probabilities - the minimum reward bound such that the probability of reaching a

set of states B from each state s whilst earning a reward less than the bound, is greater

than a pre-specified probability p [18, 88], and this is generalized for multivariate rewards

by [48].

One existing specification language for MRM is PRCTL - probabilistic reward computation

tree logic, introduced by [10]. It is an extension of PCTL, but allows the computation of

various expected value problems over MRMs that includes those above (except for quantile

probabilities) but provides algorithms to other properties also. See the paper for details.

As for existing work directly on sMRMs, the variance of the cumulated reward has al-

ready been studied, as has the covariance of cumulated reward between two sMRMs with

algorithms for both found in [90]. As for those who introduced the sMRM and gave it its

name [14], they presented Monte-Carlo algorithms for model-checking a class of (dependent)

multivariate-reward sMRMs with the logic PRCTL. They presented an example problem

where they solved for the probability of reaching a set of states B from a particular state i,

with the mean cumulated reward being less than or equal to r. We however chose to focus

on deriving numerical algorithms instead and focused on multivariate-rewards that are mu-

tually independent as a first. Additionally, it would appear that expected value problems

for sMRMs can draw ideas from regular MRMs, as we will show in Chapter 4, two expected

value problems including the one above can use solutions similar to that for regular MRMs.

2.2.3 Continuous-time Markov models

Other related models include continuous-time Markov chains (CTMCs) and semi-Markov

processes (SMPs).

As for CTMCs, this is an extension of DTMCs, where transition times are now random

and distributed by exponential distributions. CTMCs have been studied to solve for the

steady state distribution, and for the Kolmogorov forward and backward equations, with

the latter being considered a major goal for CTMCs [63]. Roughly speaking, the forward

equation describes the probability of being in a state j at some time t+h, given that it was

in state i at time zero. The backwards equation is the reverse of this, it gives the probability

of being in state i at time zero, given that the process is in state j at time t + h. Within
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CTMCs are other popular models, such as birth-processes and birth-death processes, both

of which forward and backward equations are studied for.

In probabilistic model checking, the temporal logic CSL - continuous stochastic logic

has been introduced for CTMCs by [12], which is a continuous-time variant of PCTL,

hence similar properties can be model-checked. It is extended by [20] who also presented

approximate model checking algorithms for the logic. The logic allows writing properties

for (i) determining the probability of reaching a set of states (from a particular initial state)

within a specific time interval, (ii) finding the probability of remaining within a set of states

within a specific time interval, and others.

If CTMCs are extended with (deterministic) rewards, then the new model is called a

continuous MRM (CMRM). CMRMs are a subset of univariate sMRMs, where each reward

is distributed as an exponential distribution, and is related to time. Here, CSRL - continuous

stochastic reward logic has been introduced for model-checking CMRMs by [19]. It includes

as sub-logics, both CSL and CRL - continuous reward logic. CSRL allows writing properties

similar to CSL, they can be used additionally for (i) determining the probability of reaching

a set of states (from a particular initial state) within a specified time interval and within

a specified reward interval, (ii) finding the probability of remaining within a set of states

within a specific time interval and within a specified reward interval.

If we remove the model’s restriction on transition time distributions being exponential

distributions, we obtain the semi-Markov process (SMP) model. Hence, CTMCs are subsets

of SMPs. Further, SMPs are syntactically univariate sMRMs (with non-negative rewards

[i.e. time]) and are one of the closest models to it. Therefore much of their theory can

be borrowed. Problems for SMPs include computing (i) first-passage time densities - the

probability distribution function over the reward accumulated when starting from a state s

and reaching a set of states B [94], (ii) their moments [51], (iii) the cumulative distributions

for said densities and (iv) the hazard functions derived from these densities [95]. Addition-

ally, the (v) mean recurrence time (as defined earlier for DTMCs) and (vi) asymptotic state

probabilities - the probability an SMP is in state j given that it began in state i, when time

tends to infinity [94].

Summarily, these various models presented help lay the foundation for sMRM theory.

Not just their theory can be borrowed but also the practical algorithms developed for them

for problem solving.

More generalized models can be studied that are beyond the scope of this thesis. For

example by adding actions to DTMCs, we arrive at an important model, the Markov deci-

sion process (MDP). This can be annotated with rewards, yielding Markov reward decision
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processes (MRDPs or sMRDPs). SMPs have a parametrized variant where covariates have

been introduced to them [59]. There is also work on stochastic hybrid systems [6, 39, 30]

and probabilistic programming languages [46], both being quite general models. There are

other probabilistic models which exist that have been extended with reward structures. For

example, Markov automata [47] and stochastic Petri nets [33].

2.3 Algorithms for sMRMs

Our main focus is in resolving first passage reward densities or reward reachability densities

- the distribution function over cumulated reward for first reaching a set of states B, having

begun from any state of the sMRM. The reason for this focus is that reachability problems

are cornerstones of probabilistic model checking, and solving them enables us to solve a

large class of problems. An understanding of this can be grasped after reading the next two

chapters.

We intend to determine these densities for two types of sMRMs: Continuous-reward and

discrete-reward sMRMs. Their definitions will be given formally in Chapter 4, however

the distinction is that continuous-reward sMRMs have their rewards all characterized by

continuous random variables, whilst discrete-reward sMRMs have rewards characterized by

discrete (lattice) random variables. These two classes are chosen as we have found them to

have forms amenable to faster computations.

2.3.1 Continuous-Reward sMRM and SMPs

Syntactically, a semi-Markov process (SMP) is a stochastic Markov reward model, where

the rewards are univariate random variables and represent time. Therefore many problems

for semi-Markov processes are analogous to problems for sMRMs. Likewise are we able to

adapt their solutions for use.

When solving for first passage time densities in an SMP or equivalently, first passage

reward densities in an sMRM, we are generally confronted with a system of equations

to solve [94]. Then, we have found that traditional algorithms apply: Direct numerical

methods such as Gaussian elimination can be used, iterative numerical methods such as the

power, Jacobi or Gauss-Seidel methods, or symbolic approaches for small problems.

In the original form, the system to solve is a system of convolution equations (described

later in Chapter 4). This system is transformable into a particular system of linear equa-

tions, where each term is a function. A solution to the system is usually computed at samples

of these functions. Thus, a numerical approach generally requires solving a system of equa-

tions for each sample. This space-complexity blow up means that symbolic approaches for
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small problems are useful, as solving the system avoids sampling the functions.

One algorithm for solving first passage time densities consists of three sub-algorithms: 1)

Transforming the system into a set of linear equations. 2) Solving the system. 3) Inverse

transforming the solution to obtain the densities.

Transforming the system can be done via the continuous Fourier transform, discrete

Fourier, or Laplace. This is done exactly either algebraically by hand, or via a computer

algebra system (CAS). If neither are possible, it can be approximated numerically. Note

that the Laplace transform does not exist for every random variable, whilst the continuous

Fourier does. The discrete Fourier is used as an approximation to the problem and is always

done numerically.

Solving the system can be done as previously mentioned, either numerically, or alge-

braically (i.e. symbolically). However, combining numerical and symbolic approaches is

also possible.

Inverse transforming the solution is less straightforward than the initial transformation of

the system. This is because inversion problems can be ill-conditioned. The inverse Laplace

transform is considered one of them [40]. However, for SMPs the inversion procedure

appears unaffected since the transform is applied to a special class of functions - non-

negative random variables, that are absolutely continuous with respect to the Lebesgue

measure, this stated in [95]. However, in general sMRMs may contain random variables

that are not non-negative. Nevertheless, there appears to be quite a few different algorithms

for inverse transforms of the continuous Fourier, for example [8, 97] and Laplace, where we

have a multitude [52, 35].

As for existing solutions to SMPs, we find [28] using the Laplace transform, the power

method, and two inversions transforms: Laplace-Euler [9] or Laplace-Laguerre [7], as their

three sub-algorithms. The paper details solving a system with more than a million states

(under 10 minutes), hence showing the scalability of their approach. Another solution is by

[94] who also uses the Laplace transform, a perhaps direct numerical approach for solving

the system, and the Laplace-Euler inversion. Their problems included one with 9 states,

and is mentioned to be resolvable under a second. An earlier paper by the same authors

[58], used the Laplace transform, a graph reduction algorithm which they have described

for solving the system and experimented with two inversion algorithms: the Laplace-Euler

and a saddlepoint approximation algorithm. For each of the inversion procedures, the paper

describes a case where they would perform poorly. It would appear that the Laplace-Euler

does not work for empirical distributions naively. They did propose a fix for this, however
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it is specifically for empirical Laplace transforms (ELTs) [36]1. Additionally from paper

[58], the Laplace transforms of the empirical distributions are numerically derived, and

for a problem with around three states (and therefore up to nine transitions/pmfs) would

take several minutes, which is slow. Another approach is [59] which uses the continuous

Fourier transform, and experimented with two inverse transforms: The algorithm by [8],

and a saddlepoint approximation via [85]. The paper showed that the former inversion to

be better relative to the saddlepoint approximation. The models they presented were small

and algebraic solutions were presented for the first passage time densities.

Another algorithm from SMP literature available for finding first passage reward densities

involves using the moments of these densities to infer the density itself. This is done using a

vector of (non-negative integer moments) via the method of moments algorithm presented

by [11]. It appears that whilst these algorithms may be useful as an approximation if using a

few moments, may lead to representation explosion if high precision is required, this stated

in [28]. As a vector is required for each state of the system to store the moments, these

vectors will grow as long as the required accuracy of the density has not been achieved.

Yet the most recent work [14], that of which introduced the sMRM model into literature,

resorted to sampling. This choice is perhaps due to sMRMs having generally n-dimensional

reward random vectors, and therefore the complexity of such algorithms would be too high

to resolve n-dimensional pdfs numerically. However, if the reward random vector consists of

mutually independent random variables, then this reduces to solving 1-dimensional sMRMs

n times, which is significantly more tractable. This was the case with regular MRMs, where

the reward random vector is solely composed of degenerate random variables (or constants),

and hence are always independent of each other. Therefore independence between non-

degenerate random variables is still a step up, and not sidewards. Sampling is generally

regarded as slow, when high precision is required.

As for general n-dimensional reward random vectors. This is presumably future work.

Whatever future technique is to be considered, one has to keep in mind the dangers of

representation explosion or time-complexity growth when moving away from lattice repre-

sentations.

In our thesis, we focus on univariate sMRMs. When rewards are continuous, we ap-

proximate the density via the discrete Fourier transform (DFT), which benefits from some

quadrature rules we have developed. The system is solved via the power method only. The

transform is numerical and fast, and the inverse appears to work over discontinuous dis-

tributions, which was a problem with the popular Laplace-Euler technique for the Laplace

1This paper may not be visible to the public, and we could not find access to it.
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inversion transform. In fact, [95] suggested to consider the DFT for the case of discontin-

uous distributions, or perhaps more generally, for problems where the Laplace inversion is

generally ill-posed for. The power method was a good choice, as [28] showed how scalable it

could be in solving problems with millions of states, although it is not sure if our algorithm

scales as well with the DFT. Additionally the DFT requires just the pdf of these random

variables, whether analytical or empirical. This is unlike the Laplace transform of a pdf

which does not always exist. And the DFT is strictly numerical and can be computed

quickly without requiring algebraic derivations or precise numerical integrations.

2.3.2 Discrete-reward sMRMs and SMPs

As for work on solving first passage time mass functions for discrete-time SMPs numerically,

the only work we are familiar with is that by [94], which used the continuous Fourier trans-

form of a function when known, and the discrete Fourier when not known. The inversion

was done by the inverse discrete Fourier transform. They presented a problem with 3 states,

which was solvable algebraically by hand. In this case, the discrete Fourier transform is

used as an approximation to the solution. We will reproduce their problem later in Section

5.6.2. The authors stated that they were deterred from the Laplace transform (perhaps due

to the difficulty of inversion with discrete random variables).

For the case where rewards are discrete, we develop solutions for solving first passage

reward mass functions, using the discrete Fourier transform and inverse transform. We are

able to develop algorithms obtaining machine precision, via iterative methods such as the

power method, Jacobi and Gauss-Seidel. Secondly, we also present a direct (exact) solution

via the Gaussian elimination algorithm adapted for the system of convolution equations,

which may prove useful for slowly converging problems that are not too big (due to its time

complexity), if they occur. Thus, we move away from algebraic solutions found by hand (or

computers) towards numerical algorithms.
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Chapter 3

Preliminaries

3.1 Introduction

We introduce here the theoretical foundations for probabilistic model checking for sMRMs

with univariate rewards. To do so, we first define DTMCs, and use it to introduce the

language PCTL - probabilistic tree control logic. Then MRMs are introduced as well as

PRCTL - probabilistic reward control tree logic.

Furthermore, theory is presented on the topics of summations of random variables, and

characteristic functions due to their relevance to sMRMs. Within the topic of summation

of random variables, is the topic of convolution (as is seen later). We find it necessary to

also introduce the inverse operation of (discrete) convolution; deconvolution, which will be

used for subsequent chapters.

This chapter partially summarizes the book [21] on the topics of probabilistic model

checking. Thus further results and more in-depth explanations can be found there. We will

also adopt their notation quite considerably. Additionally, some main derivations presented

in this thesis will be adaptations of a strategy found in [90]. The technique they presented

is helpful in deriving solutions. Their notation will also be in this thesis.

3.2 DTMCs and PCTL

Discrete time Markov chains are a class of probabilistic models that is used to represent a

system consisting of a (finite) number of states, and where the system can only be in one

state at any given time. As time passes, the system can transition between states randomly.

Randomness is represented quantitatively as probabilities. Additionally, the model being

Markovian assumes that if the system is in a particular state, the probability of transiting

into another state must not be dependent on the previous states that the model was in.

Definition 3.1. Formally, A DTMC M is a tuple (S,P, iinit), where:
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� S is the state space, with the size being finite, i.e. |S| <∞,

� P : S × S → [0, 1] is a map for the transition probabilities between any two states of

the Markov chain. We set P to be constant with respect to time, hence it is stationary.

� iinit : S → [0, 1] is the initial distribution function of the chain, with
∑

s∈S iinit(s) = 1.

This is to specify in which state the Markov chain (the system) is likely to have started

in.

Sample space, events, and a probability measure

Let us define a sequence of states as a path, e.g. a path could be s0, s1, s2, · · · sn with each

si ∈ S. A path can then be used to denote a possible outcome of the DTMC starting from

state s0, transiting consecutively to states s1, s2, · · · , sn−1, and ending in sn. Then the set

of all unique infinite length paths a DTMC exhibits defines a sample space. Any measurable

subset of the sample space is generally called an event.

The manner in which probabilities are assigned to events must satisfy Kolmogorov’s

axioms, to be a valid classical probability theory. However, we can define the probability

of a finite path s0, s1, s2, · · · sn without much complication, written as Pr(s0, s1, s2, · · · sn),

which is equal to the probability that the system began in s0, and performs transitions until

it reaches sn. Since the process is Markovian, we have

Pr(s0, s1, s2, · · · sn) = Pr(s0)Pr(s1|s0)Pr(s2|s1, s0) · · · · Pr(sn|sn−1 · · · , s0)

= Pr(s0)Pr(s1|s0)Pr(s2|s1)Pr(s3|s2) · · · · Pr(sn|sn−1)

= iinit(s0)P(s0, s1)P(s1, s2) · · ·P(sn−1, sn)

Let π be an arbitrary finite path, and Ωπ be the set of all infinite paths that begin with

π. Then it must be the case that

Pr(Ωπ) = Pr(π)

Therefore, we are now able to talk about the probability of certain events.

In literature, Ωπ is called the cylinder set of π. Let Π be the set of all finite paths possible

through a DTMC. Then the set {Ωπ|π ∈ Π} characterises the set of all basis events, and

the smallest σ-algebra derived from it represents the event space.

Then let S be the sample space, and E be the event space (or σ-algebra). We can define

a complete probability space for DTMCs as (S ,E , P r).
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By definition, the empty path fragment π = {} = S (the sample space), occurs with

probability 1, i.e. Pr(π) = 1.

PCTL notation for events and probability

We can define a grammar to specify events using probabilistic computation tree logic

(PCTL) [50]. The logic introduces the following operators: 3,2,#,U, which translates

loosely as eventually, always, next, and until.

Define B,C, both to be arbitrary subsets of S. Then for example:

1. 3B - means the set of paths of a DTMC which eventually reaches B, i.e. all outcomes

where a transition into a state of B occurred,

2. C U B - denotes the event, the collection of all outcomes, where the DTMC was in

C (until) before directly transiting into B. This excludes all outcomes not beginning

in C, or not eventually transiting into B.

3. C U≤n B - denotes an event similar to above, however the set of outcomes is restricted

only to those that transit into B under n steps, where n ∈ N.

4. 2B - the set of outcomes that never transition out of the states of B, i.e. always

remaining within these states.

5. #B - the set of outcomes that enter B after the next (immediate) transition.

Let si ∈ S be some state. Additionally from PCTL, the notation

si � 3B

means that the event 3B holds for si. In terms of events, this is conditioning the sample

space to the set of paths beginning strictly from si, and restricting the set of paths to those

satisfying 3B. Thus in [21], this is creating a new DTMC with si as a deterministic initial

state, which leads us to a new sample space Ss and then determining the event 3B. An

alternative representation could be

3B | (initial state is si)

Finally, PCTL is specifically used to ask for the probability of these events, therefore we

can ask for Pr(si � 3B). Then

Pr(si � 3B) = Pr(3B| initial state is si)

21



PCTL grammar

Valid statements of PCTL are determined by the following grammar. For the probability

of the event ψ beginning in a state s, i.e. Pr(s � ψ), ψ can be defined from any of:

ψ ::= #Φ | Φ1 U Φ2 | Φ1 U≤n Φ2

Φ ::= true | C | Φ1 ∩ Φ2 | ¬Φ | P[a,b](ψ)

where C ⊆ S and

P[a,b](ψ) = Pr(ψ) ∈ [a, b]

denoting whether or not the probability of the event ψ is within some interval [a, b] ⊆ [0, 1]

(excluding the empty-set {}), and where n ∈ N. In the literature, Φ is termed a state

formula, whilst ψ is termed a path formula. A state s satisfies a state formula Φ when

s ∈ Φ, and a path π satisfies a path formula ψ when π � ψ, or π ∈ ψ if we interpret ψ as

an event in a probability space.

The grammar is written quite concisely, hiding the inclusion of the other operators pre-

viously mentioned. For example, the remaining logical operators: OR ∨, and implication

→, can be derived using ¬,∧ alone. Additionally, the temporal-logic operators 2, 3, are

both derivable using the until operator U. For example, (perhaps intuitively) we have

3B ≡ true U B, and �B ≡ ¬3¬B. The operator U≤n is called constrained -until or

step-bounded -until. Other constrained operators can be defined, e.g. 3≤n, or 2≤n.

Reachability problems The event 3Φ characterizes the class of reachability problems.

The phrase 3Φ is synonymous to the set of paths where the set of states satisfying the state

formula Φ is eventually reached. This is important since by logic theory, all unconstrained

statements above reduces to mostly resolving strictly 3B1 or #B2 statements, i.e. the

complexity of all non-constrained PCTL statements is not significantly much more than

being able to resolve reachability statements and next statements.

Notice that the state formula Φ always reduces to a set of states B ⊆ S. In total therefore,

there are only three main algorithms required for resolving PCTL statements. An algorithm

for next statements, e.g. #B, until statements B2 U B2, and constrained-until statements

e.g. B2 U≤n B2, where B,B1, B2 are arbitrary subsets of S. Repeating from above, it is

provable that until, and constrained-until statements for a DTMCM reduces to reachability

and constrained reachability of a new DTMC M′ [21]. Aside from the algorithm needed

for this transformation, we mostly only need to solve statements of the form #B,3B1 and

3≤rB2.
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Thesis focus In this thesis, we focus solely on solving unconstrained reachability prob-

lems. Hence, we will not delve much into #Φ properties, nor constrained properties such

as Φ1 U≤n Φ2. For model checking algorithms for these, please refer to [21]. Reachability

problems for sMRMs will be defined in the next chapter. We detail below the means of

computing reachability probabilities - Pr(s � 3B).

Solution to reachability statements: Pr(s � 3B)

Given the event ψ = 3B, then the set of all paths in ψ can be uniquely defined as the

set consisting of all cylinder sets of all unique finite paths π = s0, s1, · · · , sn, where s0 = s,

with s1, · · · , sn−1 /∈ B and sn ∈ B. Then let this set of finite paths be Πψ, and the set

Ωψ = {Ωπ|π ∈ Πψ}. In this case, the elements of Ωπ do not overlap , i.e. there are no two

cylinder sets Ωπ1 ,Ωπ2 such that Ωπ1 ∈ Ωπ2 . Then,

Pr(ψ) =
∑

Ωπ∈Ωψ

Pr(Ωπ) =
∑
π∈Πψ

Pr(π)

Notation Before we proceed further, for the derivations to come, we will typically reserve

letters s, t to denote states, and symbols π̂, ψ̂ to denote paths. Additionally, when we write

Π.t, we mean the set of paths of Π that begin from state t, i.e. {π̂ ∈ Π| π̂[0] = t}. We can

concatenate states and paths via dot notation, for example P (s.π̂) denotes the probability

of a path event, one that begins with state s and is followed by path π̂.

Given a DTMC M, let B be a set of target states we are interested in. Given an

initial state s, the probability of the event that B is eventually reached is defined to be

the collection of finite paths Π3B, where each path s0, s1, · · · , sn−1, sn has sn ∈ B, and

s0, · · · sn−1 /∈ B. Let Π3B.s denote the set of paths satisfying 3B beginning from s. Then,

Pr(s � 3B) =
∑

π∈Π3B .s

Pr(π)

=
∑
t∈S

∑
π∈Π3B .t

Pr(s.π)

=
∑
t∈S

∑
π∈Π3B .t

P(s, t)Pr(π)

=
∑
t∈S

P(s, t)
∑

π∈Π3B .t

Pr(π)

=
∑
t∈S

P(s, t)Pr(t � 3B)
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We also have Pr(s � 3B) = 1 for all s ∈ B. Thus, the above is equivalent to

Pr(s � 3B) =
∑
q∈S?

P(s, q)Pr(q � 3B) +
∑
u∈B

P (s, u)

with S? being the set of states that reach B with non-zero probability but are not within

it.

One way to solve this for DTMCs with finite state spaces, is to represent the problem as

a system of linear equations. Let xs , Pr(s � 3B) for all s ∈ S, then

xs =
∑
t∈S?

P(s, t)xt +
∑
u∈B

P(s, u)

Then let x be the vector (x)s∈S?
, and b = (

∑
u∈B P(s, u))s∈S?

, and we define a matrix A

where Ai,j = P(i, j). Now we can write the system as

x = Ax + b

with the solution being

x = (I−A)−1b

Methods available for solving the system could be Gaussian-elimination, the power method,

Jacobi or Gauss-Seidel methods.

3.3 MRMs and PRCTL

Markov reward models (MRMs) extend DTMCs, by allowing transitions to be detailed

with rewards or costs.1 Thus, this process not only transitions from state to state as time

progresses (like a DTMC), but also accumulates reward along these transitions. MRMs

can then be used to study the expected rewards of reaching a particular state beginning in

another, for example.

Definition 3.2. An MRM is a tuple (M, rew), where:

� M is a DTMC, i.e. M = (S,P, iinit).

� rew : S × S → R+ is a reward function, that assigns a reward to each transition

s → t in M for all s, t ∈ S. Note that the rewards are strictly non-negative for each

transition.

1Rewards and costs are synonymous in this thesis. However, in the context of a problem, the use of one
may be more suitable than the other.
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Let π = s0, s1, · · · , sn be a finite path, then the cumulated reward over π, denoted Rew(π)

is defined as

Rew(π) = rew(s0, s1) + rew(s1, s2) + rew(s2, s3) + · · ·+ rew(sn−1, sn)

The probability of this path occurring, i.e. Pr(π), is defined as it was for DTMCs. The

same probability space as DTMCs can be used for MRMs.

Contingent expected rewards

One important measure for MRMs is to compute the expected (or mean) cumulated reward

earned for a particular event, beginning in some state s. Let us denote this as ExpRew(ψ),

for the event ψ. Recall that the definition of the expected value of a discrete random variable

defined over the real line is typically:

E[X] =
∑
x

x · f(x)

In the context of MRMs, the expected (cumulated) reward with respect to the sample

space S has to be defined in a manner that avoids ∞ being introduced unnecessarily. One

consideration is that like DTMCs we can make use of cylinder sets. Let Ωπ be an event,

where π is a finite path. Then define the cumulated reward earned by the event Ωπ as

Rew(π). Thus all basis events Ωπ are well defined and less than ∞.

An event of interest can be decomposed into a set of non-overlapping cylinder sets (or

basis events). Let this event be ψ, and Ωψ be the set of non-overlapping cylinder sets that

describes all paths of the event. Define also Πψ = {π| Ωπ ∈ Ωψ} . Then we define the

expected reward contingent on this event as:

E[ψ] =
∑

Ωπ∈Ωψ

Rew(π) · Pr(Ωπ) =
∑
π∈Πψ

Rew(π) · Pr(π)

However, ψ being decomposable into cylinder sets is not enough to guarantee that E[ψ] 6=
∞. This is since an event can characterize a single infinite path π ∈ S , of which generally

accumulates infinite reward. Thus, a possible consideration (in certain applications) is to

assign zero-reward to such events.

Expected rewards of reachability problems The class of expected rewards contingent

on the event s � 3Φ with Φ being a PCTL state formula and satisfying the condition that

Pr(s � 3Φ) = 1 for all s ∈ S, is known to always be finite. I.e. E[s � 3Φ] < ∞ for any

Φ. This class of reward problems is added to PCTL in an extension known as PRCTL -

probabilistic reward computation tree logic [10].
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PRCTL grammar

The grammar for PRCTL extends PCTL with two terms:

1. E(Φ) - the expected reward for reaching a set of states determined by the state formula

Φ. Its definition is

E[c,d](Φ) = ExpRew(s � 3Φ)

2. Φ1 U≤r Φ2 - reachability probabilities constrained on bounded rewards. Elaborating,

this is the event where Φ2 is reached without accumulating more than r ∈ N in reward,

with the DTMC being in states Φ1 up till that point. From this formula, we can derive

reward-bounded reachability problems of the form 3≤rΦ - the event where Φ is reached

without accumulating more than r reward. These formulas are used to compute the

probabilities of such events, i.e. Pr(s � 3≤rΦ).

The full PRCTL grammar is as follows:

ψ ::= #Φ | Φ1 U Φ2 | Φ1 U≤n Φ2| Φ1 U≤r Φ2

Φ ::= true | B | Φ1 ∩ Φ2 | ¬Φ | P[a,b](ψ)| E[c,d](Φ)

where [c, d] ⊆ [0,∞), and [a, b] ⊆ [0, 1] excluding the empty-set, and both n, r ∈ N and

E[c,d](Φ) = ExpRew(s � 3B) ∈ [c, d]

The grammar above can be made to include the term Φ1 U[a,b] Φ2 - the event where Φ2

is reached in accumulating reward only between a and b (both in N), but the DTMC also

remaining within Φ1 until transitioning into Φ2. Then the computation Pr(Φ1 U[a,b] Φ2) is

equivalent to

Pr(Φ1 U≤b Φ2)− Pr(Φ1 U≤a Φ2)

Hence knowing how to solve for the reward-bounded reachability is all that is required.

Reachability problems Note that ExpRew(s � 3Φ) reduces to ExpRew(s � 3C), for

some C ⊆ S. Also, determining the probability of Pr(s � Φ1 U≤r Φ2) is not much harder

than determining Pr(s � 3≤r B) for some B ⊆ S [21]. We proceed to present algorithms

for these two reachability reward problems.

Solution to expected reward of reachability statements: E(B) = ExpRew(s � 3B)

Given an MRM R, let B ⊆ S. Let us denote Π3B.s as the set of paths of the event s � 3B.

Then
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ExpRew(s � 3B) =
∑

π∈Π3B .s

Rew(π)Pr(π)

=
∑
t∈S

∑
π∈Π3B .t

Rew(s.π)Pr(s.π)

=
∑
t∈S

∑
π∈Π3B .t

(rew(s, t) +Rew(π)) ·P(s, t)Pr(π)

=
∑
t∈S

P(s, t)
∑

π∈Π3B .t

rew(s, t)Pr(π) +Rew(π)Pr(π)

=
∑
t∈S

P(s, t)
( ∑
π∈Π3B .t

rew(s, t)Pr(π) +
∑

π∈Π3B .t

Rew(π)Pr(π)
)

=
∑
t∈S

P(s, t)
(
rew(s, t)

∑
π∈Π3B .t

Pr(π) + ExpRew(t � 3B)
)

=
∑
t∈S

P(s, t)
(
rew(s, t)Pr(t � 3B) + ExpRew(t � 3B)

)
(3.1)

where we have also defined ExpRew(t � 3B) = 0, for all t ∈ B. I.e. the expected

cumulated reward for states already in B is zero. Note that the result above is strange

in that typically we do not find the term Pr(t � 3B) within the derivation. For example

[90, 21] both do not present such a term. However, in both, their derivations assumed that

Pr(s � 3B) = 1.

If Pr(s � 3B) = 1 for all s ∈ S, then the above is equivalent to:

ExpRew(s � 3B) =
∑
t∈S

P(s, t)
(
rew(s, t) + ExpRew(t � 3B)

)
=
∑
t∈S?

P(s, t)
(
rew(s, t) + ExpRew(t � 3B)

)
+
∑
u∈B

P(s, u)rew(s, u)

with S? being the set of states that can reach B with non-zero probability, but not in B,

i.e. S \B since Pr(s � 3B) = 1 for all s ∈ S.

Let rs , ExpRew(s � 3B), and xs , Pr(s � 3B) for all s ∈ S. Then the general form

(3.1) can be written as

rs =
∑
t∈S

P(s, t)(rew(s, t) · xt + rt)
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Then define

r , (rs)s∈S?

b , (
∑
t∈S?

P (s, t)rew(s, t)xs +
∑
u∈B

P(s, u)rew(s, u)s∈S?

A , (Ai,j)i,j∈S2
?
, (P(i, j)))i,j∈S2

?

Now we can write a system of equations in the form r = Ar + b. And the solution is

r = (I−A)−1b

Solution to reward-bounded reachability probabilities: Pr(s � 3≤rB)

The approach in [21] solves this problem as follows:

Pr(s � 3≤rB) =
∑

π∈Π3B .s

Pr(Rew ≤ r|π)Pr(π)

=
∑
t∈S

∑
π∈Π3B .t

Pr(Rew ≤ r|s.π)Pr(s.π)

=
∑
t∈S

∑
π∈Π3B .t

Pr(Rew ≤ r|s.π)P(s, t)Pr(π)

=
∑
t∈S

P(s, t)
∑

π∈Π3B .t

Pr(Rew ≤ r − rew(s, t)|π)Pr(π)

=
∑
t∈S

P(s, t)Pr(t � 3≤(r−rew(s,t)) B)

Also, we have Pr(s � 3≤rB) = 1 if s ∈ B. This is the same for Pr(s � 3≤qB) for any

q ∈ N, when s ∈ B. This is since no reward is accumulated for these states, thus they satisfy

the inequality (Rew ≤ r) immediately. If s /∈ B, then Pr(Rew ≤ r − rew(s, t)|π) = 0 if

rew(s, t) > r, for any t ∈ S, since it is impossible to reach B through t satisfying (Rew ≤ r).
We also assume that Pr(s � 3B) = 1 for all s ∈ S.

Let xs,r , Pr(s � 3≤rB) for all s ∈ S. Then the results above can be written as

xs,r =
∑
t∈S

P(s, t)xt,(r−rew(s,t))

Notice that xs,p can be computed independently from all xt,q where q > p, and t ∈ S.

Thus, xs,r is solved by computing successively, the terms

(xs,0)s∈S?
, (xs,1)s∈S?

, · · · , (xs,r−1)s∈S?
, (xs,r)s∈S?
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where each (xs,p)s∈S?
uses the previous terms as is seen in the equation above.

The above solution requires recursive computations, but yields a system of equations to

solve when zero-rewards exist, i.e. when there exists rew(s, t) = 0, for some s, t ∈ S2. For

a state t, let St,0 be the set of states such that rew(t, u) = 0 for all u ∈ S. Then, we can

write the solution above as:

xs,r =
∑

t∈S\St,0

P(s, t)xt,(r−rew(s,t)) +
∑
q∈St,0

P(s, t)xt,r

Define

xp , (xs,p)s,p∈S×{0,1,··· ,r}

b , (
∑

t∈S\St,0

P(s, t)xt,(r−rew(s,t)))s∈S

A , (Ai,j)i,j∈S2 ,

(P(i, j)) rew(i, j) = 0

0 otherwise

)
i,j∈S2

Now we can write a system of equations in the form xp = Axp + b with the solution

being just xp = (I−A)−1b. In this way we can compute

x0,x1, · · · ,xr

consecutively, to solve the problem.

3.4 SMPs

A semi-Markov process is a DTMC, except that transitions do not occur deterministically

with respect to time, but rather by random. This randomness is characterized by transi-

tion time distributions. Semi-Markov processes define a rich class of probabilistic models,

including the DTMC and CTMC.

Definition 3.3. A semi-Markov process is a tuple (M,G) where:

� M is a DTMC, i.e. M = (S,P, iinit).

� G: (S×S)→ f is a map between every state transition t ∈ S×S of the DTMC, and

a probability distribution f that determines the transition time distribution.

The difference between an SMP and a univariate sMRM is that G is generalized to not

be related to time. It is just a map over state transitions to reward distributions. Due

to the closeness of these models, we choose not to present reachability problems and their
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theoretical solutions for SMPs here to prevent overlapping results. Instead, the details are

presented only for sMRMs in the next chapter.

3.5 Random variables and characteristic functions

3.5.1 Representation of random variables

Given two random variables X, Y, they can be represented in a variety of ways, e.g. using

their densities (pdf) fX(x), fY (y), or their cumulative distributions FX(x), FY (y), or their

characteristic functions φX(τ), φY (τ). For any random variable X, its probability density

function fX(x) can be transformed to a characteristic function φX(τ), and then inverse

transformed back into fX(x).

Definition 3.4. A characteristic function of a random variable X, written as φX(τ) can

be derived via the formula: φX(τ) = E[eiτX ]. Therefore if X is continuous, then E[eiτX ] =∫∞
−∞ e

τixfX(x)dx and if X is a discrete (lattice) random variable, for example if it has N as

a support, then E[eiτX ] =
∑∞

x=−∞ e
τixfX(x)

The characteristic functions can equivalently be derived by applying the correct Fourier

transforms to either the pdf or pmf of X.

Definition 3.5. The continuous Fourier transform (FT) applied to a function f is written

as F{f} and defined as F{f}(τ) =
∫∞
−∞ e

τixf(x)dx. The inverse continuous FT applied to

a function φ is written as F−1{φ} with definition F−1{φ}(x) =
∫∞
−∞ φ(τ)e2πixτdτ .

The discrete-time FT applied to a function g is written Fd{g} and defined as Fd{g}(τ) =∑∞
x=−∞ e

τixg(x). The inverse discrete-time FT applied to a function ψ is written as

F−1
d {ψ} with definition F−1

d {ψ}(x) =
∑∞
−∞ ψ(τ)e2πixτ .

Let X be a random variable. If X is continuous, then φX(τ) = E[eiτX ] = F{fX}(τ). If X

is a discrete lattice defined over N, then E[eiτX ] = Fd{fX}(τ). Each of these characteristic

functions can then be transformed back to the pdf or pmf with the respective inverse Fourier

transform. Note that in the future we may drop the subscript d from Fd, and therefore the

type of Fourier transform is to be inferred from the context.

Note however that there are random variables that have characteristic functions but no

analytical expressions are known for their probability density function (e.g. the Stable

distribution). Nevertheless, every random variable has a characteristic function. This is

due to the proposition below.

Proposition 3.6. For any random variable X, we have that |φX(τ)| ≤ 1 for all τ . Hence,

the integral (or summation) above in F{fX}(τ) absolutely converges and always exists. See

[62, page 97] for proof and details (of the continuous case).
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A random variable Z defined as a result of a sum of two other (independent) random

variables X,Y , e.g Z = X + Y , can be represented as a density function, derived from a

convolution operation on the other two respective probability density functions: fZ(z) =∫∞
−∞ fX(y)fY (y − z)dy. We will denote this operation as fZ(z) = fX ∗ fY where we use ∗

as the symbol for the linear convolution operator.

If we use characteristic functions instead, then the summation of these random variables

can be performed via multiplication instead: φZ(τ) = φX(τ)φY (τ) .

Convolution and deconvolution

Convolution and deconvolution are two operators, each the inverse of the other. In this work

we will denote convolution as ∗ and deconvolution as D . The properties of convolution

and deconvolution are similar to that of multiplication and division. Let f, g, h denote

probability density functions or discrete lattice functions (i.e. arrays or vectors). Then, it

is known that convolution is:

� Commutative: f ∗ g = g ∗ f

� Associative: f ∗ (g ∗ h) = (f ∗ g) ∗ h

� Distributive: f ∗ (g + h) = (f ∗ g) + (f ∗ h)

Additionally, we have that f ∗ δx,0 = f and that a(f ∗ g) = (af) ∗ g, where a is a

constant, and δx,0 is the Dirac delta if f, g, h are continuous, or the Kronecker delta if

discrete (lattices).

With respect to equations involving deconvolutions, then deconvolution has the proper-

ties:

� Right distributive: ((f + g) D h) = (f D h) + (g D h), but not left distributive:

h D (f + g) 6= (f D h) + (g D h). This is like division.

� Yields the identity: f D f = δk,0, where δk,0 is the Dirac or Kronecker delta, depending

whether f is continuous or discrete respectively.

Therefore for example we have that ((f + g)Dh)− ((f + k)Dh) ≡ (g − k)Dh.

Additionally, the following properties hold between convolution and deconvolution:

� (f ∗ g)Dh = (fDh) ∗ g.
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Proof: Let F{f} = F be the Fourier transform of the pdf f . Then F{(f ∗g)Dh} =
F ·G
H = F

GH = F{(fDh)∗g}. Applying the inverse Fourier transform both sides of this

yields the result.

� |f ∗ g| ≤ |f | ∗ |g| and |fDg| ≥ |f |D|g|.

Proof: For convolution we have |f ∗ g|(t) = |
∫
x dx · f(t − x)g(x)| ≤

∫
x dx · |f(t −

x)||g(x)| = (|f | ∗ |g|)(t). For deconvolution, then since we have |f | = |g ∗h| ≤ |g| ∗ |h|,
deconvolving both sides by |h| yields, |f | D |h| ≤ |g|. Also we have |g| = |f D h|.
Therefore |g| = |f D h| ≥ |f | D |h|.

3.6 Summary

In this chapter we defined DTMCs and MRMs, and presented an introduction to model

checking with temporal logics, more specifically PCTL and PRCTL. For particular prob-

lems, we explained their solutions, and by doing so we introduced much of the notation we

will be using in this thesis.

More importantly, we highlighted that reachability problems are one of the main problems

for model-checking DTMCs as the event Φ1 U Φ2 for a DTMCM1 can be reduced to some

an event 3B in a transformed DTMC M2. This holds true for sMRMs too.

In the next chapter, we lay the theoretical foundations of sMRMs and define several

problems of interest over them.
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Chapter 4

Stochastic Markov Reward Models

(sMRMs)

4.1 Introduction

In this chapter, we introduce the theory on stochastic MRMs (sMRMs), an extension of

the traditional MRMs which allows rewards to be random variables (or random vectors).

The theory on sMRM was introduced into probabilistic model checking recently by [14]. In

the literature, sMRMs may be known previously as Markov processes with random rewards

[25], statistical flowgraphs [58], simply rewards defined over Markov chains [90]. Whilst we

present here derivations and theory of our own, literature on Markov chains with rewards

and SMPs exists that share a similar theory, for example see the previously cited articles

and [28].

The Markov chain in Figure 4.1 captures the movement of a robot within a building.

The robot begins in position l0 of the building, and by moving probabilistically between

places, it ends up eventually in l2 or l4. These states are its final destination, and we want

to determine if it is capable of reaching such positions without running out of energy.

The energy cost of each transition is a random variable. Assuming we know these ran-

dom variables in advance, we are able to incorporate them into our Markov chain to form

stochastic Markov reward models.

Definition 4.1. A stochastic Markov reward model (sMRM) is a tuple (M, rew) where:

� M is a DTMC, a tuple (S,P, iinit).

� rew : (S × S) → f is a map between every state transition t ∈ S × S of the DTMC,

and a probability distribution f .
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Figure 4.1: A Markov chain with two absorbing states l2, l4.

If the rewards are discrete random variables, then f is a probability mass function (pmf),

defined over lattices i.e. f : L → [0, 1], where L is a countable lattice subset of R. f is a

pdf if the rewards are continuous instead.

f may be a joint distribution in the case where the rewards are random vectors (or mul-

tivariate). Whilst we focus however on the univariate case, mutually independent piecewise

multivariate rewards can be solved by considering each variable separately.

The sample space of the sMRM is represented as the product Π × R, where Π is the

set of all paths that the underlying DTMC can generate and R is the set of values for the

reward. The basis events for Π are the cylinder sets, whereas the basis events for rewards is

E = {(−∞, x]|x ∈ R}. The event space for rewards is the Borel σ-algebra, whilst the event

space for paths is the smallest σ-algebra over the set of all cylinder sets. Let us denote

them as Σ1 and Σ2 respectively. Then, we can define the product σ-algebra as Σ1 ×Σ2, or

the product event space.

The probability space can be defined as (S = Π× R,E = Σ1 × Σ2, P r).

For the majority of this work, we enforce that for all states in s ∈ S, the probability of

reaching B is one, i.e.

Pr(s � 3B) = 1

A manner to remove this restriction will be detailed later (see Sec. 4.2.5). Also, for the

remainder of the thesis, we only solve for the case where each reward random variable

rew(s, t) is strictly non-negative, for all pairs s, t ∈ S2.
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4.2 Reachability problems

Given an sMRM RM , there are several reachability problems we can try to solve:

1. Pr(s � 3=rB) - The probability of accumulating r reward, and eventually reaching

B ⊆ S starting from a state s ∈ S. However, we will use the notation Pr(Rew = r ∩ s �

3B) instead, and it will frequently be seen shortened as

Pr(r ∩ s � 3B)

Let Π be the set of paths starting from s and ending in B, (i.e. those that satisfy s � 3B)

then we have that

Pr(r ∩ s � 3B) = Pr(r ∩ Π) =
∑
π̂∈Π

Pr(r ∩ π̂) =
∑
π̂∈Π

Pr(π̂)Pr(r|π̂) (4.1)

where Pr(r|π̂) is the probability density (or mass) function of the accumulated reward

given a particular path π̂ = s0, · · · , sn, i.e. it is the pdf of the random variable Rew(r; π̂) =

rew(s0, s1) + rew(s1, s2) + rew(s2, s3) + · · ·+ rew(sn−1, sn).

If
∑

π̂∈Π Pr(π̂) = 1, then Pr(r ∩ s � 3B) is a convex combination of probability density

functions; a mixture distribution. This is what we call the first-passage reward density (or

mass function), the focus of our work. In the model checking literature, this may be better

termed as reachability reward density. This may be a pmf or pdf depending on whether it

is a discrete-reward sMRM or continuous-reward. The semantics is slightly different

to PRCTL for MRMs as now we can interpret Pr(Rew = r ∩ s � 3B) as a function where

r is the variable of the function, i.e. we can denote it as fs�3B(r) instead, or fs(r) if the

property is obvious.

2. Pr(s � 3≤rB) - The probability of reaching a set B from s with the cumulated reward

being less than or equal to r. This is equivalent to reward-bounded reachability probability

from PRCTL. Alternative notation would be Pr(Rew ≤ r ∩ s � 3B). If interpreted as a

function, this is the cumulative distribution function (cdf) of Pr(Rew = r ∩ s � 3B), and

is denoted as Fs�3B(r) or Fs(r).

3. Pr(s � 3E[≤r]B) - the probability of reaching a set B from s, with the mean cumulated

reward being less than or equal to r. An example of this appeared in [14] for sMRMs.

4. ExpRew(s � 3B) - The expected amount of reward accrued when starting from a state

s before reaching the target set B. This value is a scalar in R. This is the expected reward

for reachability from PRCTL.
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5. Pr(s � 3≤?B) > p - asks for the minimal reward bound r such that the probability of

reaching B from s is greater than p. This is known as a quantile query [18].

6. Pr(s � 3≤t=rB) - The constrained (or step-bounded) variant of Pr(s � 3=rB). Alterna-

tive notation for this is Pr(r ∩ s � 3≤tB), which is a pdf/pmf. A cdf variant of this can

be constructed.

7. Pr(s � #=rB) - The probability of reaching B in the next step, beginning from s,

whilst accumulating r reward. The alternative notation for this is Pr(r ∩ s � #B), again

a pdf/pmf, and we can have a cdf variant of this as well.

Hence, after learning how to solve for these properties, we can define PRCTL for sMRMs.

The grammar is identical as for regular MRMs (see Section 3.3). The PCTL subset of

PRCTL can be resolved with DTMC algorithms. Resolution of the expected value problems

(3, 4) for sMRMs is almost identical for those of MRMs. Only, (1, 2, 5, 6, 7) are differently

computed, with (1) being able to borrow solution ideas from SMP theory.

The focus of this thesis will be on problem (1) above. As for (2), then this is just the

numerical integration of (1). As for (5), the quantile query is the smallest r of the cdf

Pr(s � 3≤rB), such that the probability is greater than p. Hence having solved (1), we

have the ability to derive this. The solution for (6, 7) can be derived indirectly from the

power method algorithm for solving (1). This is shown in Theorem A.2.

We proceed to derive the solutions for the reachability problems of (3,4,2,5,1) in that

respective order. We have left (1) for last as this is the main focus and will be elaborated.
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4.2.1 ExpRew(s � 3B) properties

This is computed as

ExpRew(s � 3B) = E[
∑

π∈Π3B .s

Rew(π)Pr(π)]

=
∑

π∈Π3B .s

E[Rew(π)]Pr(π)

=
∑
t∈S

∑
π∈Π3B .t

E[Rew(s.π)]Pr(s.π)

=
∑
t∈S

∑
π∈Π3B .t

E[(rew(s, t) +Rew(π))] ·P(s, t)Pr(π)

=
∑
t∈S

P(s, t)
∑

π∈Π3B .t

E[rew(s, t)]Pr(π) + E[Rew(π)]Pr(π)

=
∑
t∈S

P(s, t)
( ∑
π∈Π3B .t

E[rew(s, t)]Pr(π) +
∑

π∈Π3B .t

E[Rew(π)]Pr(π)
)

=
∑
t∈S

P(s, t)
(
E[rew(s, t)]

∑
π∈Π3B .t

Pr(π) + ExpRew(t � 3B)
)

=
∑
t∈S

P(s, t)
(
E[rew(s, t)]Pr(t � 3B) + ExpRew(t � 3B)

)
or equivalently since Pr(s � 3B) = 1 for all s ∈ S,

ExpRew(s � 3B) =
∑
t∈S

P(s, t)
(
E[rew(s, t)] + ExpRew(t � 3B)

)
which is just a system of linear equations as before.

Therefore, all that is needed is to be able to compute the expected value of all rewards,

e.g. E[rew(s, t)], then the computation is identical to that of regular MRMs.

4.2.2 Pr(s � 3E[≤r]B) properties

It can be shown that

Pr(s � 3E[≤r]B) =
∑
t∈S

P(s, t)Pr(t � 3E[≤(r−rew(s,t))] B)

using a similar derivation for MRMs described in Section (3.3). Therefore the algorithm

for solving this property can borrow the algorithm from Section (3.3). Like the previous

property, we are required first to compute the expected value of all rewards E[rew(s, t)].
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4.2.3 Pr(s � 3≤rB) properties

Assume for now we can already compute Pr(r ∩ s � 3B). Let us denote this pdf/pmf as

fs(x) for short, and let Π be the set of finite paths starting from s and ending in B, (i.e.

those that satisfy s � 3B). Then we have

Pr(s � 3≤rB) =

∫ r

x=0
fs(x)dx

since

Pr(s � 3≤rB) =
∑
π̂

Pr(π̂ ∩ (Rew ≤ r)) =
∑
π̂

Pr(π̂)Pr(Rew ≤ r|π̂)

=
∑
π̂

Pr(π̂)

∫ r

x=0
fRew(π̂)(x)dx =

∫ r

x=0

∑
π̂

Pr(π̂)fRew(π̂)(x)dx

=

∫ r

x=0
fs(x)dx

Hence, if we have already computed fs(x), we can compute reward-bounded reachability

probabilities by integration.

Note that if we compute the cdf

Fs(r) =

∫ r

x=0
fs(x)dx

then we can obtain

Pr(s � 3[a,b]B) = Fs(b)− Fs(a)

the probability that B is reached from s with reward accumulated only within the interval

[a, b].

Multivariate mutually-independent rewards

Consider an sMRM problem where the rewards are random vectors of dimension n. Then

let Rew be the random vector, denoting the multivariate accumulated reward. Firstly, we

have Pr(s � 3≤rB) = Pr(Rew ≤ r ∩ s � 3B). Then define

Pr(Rew ≤ ~r, s0 � B)

to be the probability that we can reach the set of states B from s0 with reward accumulated

under or equal to ~r, where Rew ≤ ~r = ∩ni=1Rewi ≤ ri. If the components of the random
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vectors are mutually independent of each other, then

Pr(Rew ≤ ~r, s0 � B) = Pr(∩ni=1Rewi ≤ ri, s0 � B) =
n∏
i=1

Pr(Rewi ≤ ri, s0 � B)

where for each i, Pr(Rewi ≤ ri, s0 � B) can be solved independently.

The solution above also gives us a means to compute quantile queries for multivariate

independent rewards, which was studied for regular MRMs in [48].

4.2.4 Pr(s � 3≤?B) > p quantile queries

The quantile query can be solved via interpolation of Fs(x). Given Fs(x), we are to find

the smallest r such that Fs(r) > p. A naive algorithm based on trial-and-error is to sample

the distribution and compare it to p and then move towards the direction of p knowing that

F is monotonic. The algorithms for computing Fs(x) in our thesis only computes Fs(x) for

values x ∈ [0, k]. If Fs(k) < p, we have to recompute the problem with larger k, otherwise

an algorithm can be used to find the point. However, whilst typically limr→∞ Fs(r) = 1, if

Pr(s � 3B) < 1, then this no longer holds. See Section 4.2.5.

However, in the setting where this is true, i.e. when Pr(s � 3B) = 1, a guide to arrive

at a sufficiently large interval [0, k] at which Fs(k) = 1 is to use the expected value and

variances of the first passage-reward density, for example

k = ExpRew(s � 3B) + γV arRew(s � 3B)

where γ is a parameter used to increase the range involved. The computation for V arRew(s �

3B) can be found in [90].

4.2.5 Pr(r ∩ s � 3B) properties

System of convolution equations We present a computation of Pr(r ∩ s � 3B) for

each state of a finite sMRM with a common graph-based technique. Let us first state the

solution, and leave the derivation till later.

Firstly for any states in B, then their cumulated rewards are assigned to zero. We

also make them entirely self-absorbent, and we fix the reward transition distributions (for

these self-loops) as the zero distribution, expressed by the Dirac delta (or Kronecker in the

discrete case) δx,0(x). Consequently then, for any path absorbed by B, further reward is

not cumulated in the sMRM process after entering B.
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We can shorten Pr(r ∩ s � 3B) to fs,B(r). However, if we write fs(r) it is assumed that

the set of states to reach is B. Then define frew(s,t)(r) as the reward pdf for the transition

s→ t. Let Pre∗(B) denotes the set of states that reach B with non-zero probability. Then

define S? = Pre∗(B)\B, to be the set of states that reach B but are not in it. Firstly, since

for each state u ∈ B its reward is zero, we have

fu(r) = δx,0(r)

which is the zero distribution (returns zero with probability one). Then for the remaining

states, we have

fs(r) =
∑
t∈S

(P(s, t)frew(s,t) ∗ ft)(r)

=
∑
t∈S?

(P(s, t)frew(s,t) ∗ ft)(r) +
∑
u∈B

P(s, u)frew(s,u)(r) ∗ fu(r)

=
∑
t∈S?

(P(s, t)frew(s,t) ∗ ft)(r) +
∑
u∈B

P(s, u)frew(s,u)(r) ∗ δx,0(r)

=
∑
t∈S?

(P(s, t)frew(s,t) ∗ ft)(r) +
∑
u∈B

P(s, u)frew(s,u)(r) (4.2)

for all s ∈ S?. This then yields what we call a system of convolution equations.

Then since S? ∪ B = S (due to all states reaching B with probability 1), we have a

solution for all states. Intuitively, the expression means that the reward accumulated from

a state s before arriving at B, is the convex combination of the rewards accumulated by all

states that s can immediately transition into (the combination weighted by the probability

of entering these states).

Instead of solving a system of convolution equations, we can convert it to a set of systems

of linear equations via the Fourier transform. Let the characteristic function transform

operator (or Fourier transform) be represented as F , and the transform applied to a function

f(x) be denoted as F{f(x)}. Then, the Fourier transform of Pr(r ∩ s � 3B) (which is fs

from (4.2)) is

F{Pr(r ∩ s � 3B)} = F{
∑
π̂∈Π

Pr(π̂)Pr(r|π̂)} =
∑
π̂∈Π

Pr(π̂)F{Pr(r|π̂)} (4.3)

which always exists, since Fourier transforms of pdfs and pmfs always exist.

From now on, we will denote F{Pr(r ∩ s � 3B)} as φs(τ). And F{Pr(r|π̂)} as

φRew(π̂)(τ). We also assume that the temporal logic property is always 3B. Now we
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rewrite the equation (4.3) above as

φs(τ) =
∑
π̂∈Π

Pr(π̂)φRew(π̂)(τ)

The results above can be derived knowing the properties for Fourier transforms over

functions; its linearity with respect to constants and addition. Alternatively, using the

law of total expectation: using traditional probability notation, then for two dependent

random variables X,Y we have F{X} = E[eitX ] = E[E[eitX |Y ] =
∑

ŷ∈Y P (ŷ) ∗ E[eitX |ŷ] =∑
ŷ∈Y P (ŷ) ∗F{X|y}. If this is not clear, let X ∼ Pr(Rew = r) with the domain being the

real line, and Y ∼ Pr(π̂) with the domain being Π, then the above holds.

If using characteristic functions instead, i.e. using φs(τ) = F{Pr(r ∩ s � 3B)}, we have

φs(τ) =
∑
t∈S?

P(s, t)φrew(s,t)(τ)φt(τ) +
∑
u∈B

P(s, u)φrew(s,u)(τ) (4.4)

providing us with a system of linear equations, for each τ . And for each u ∈ B,

φu(r) = F{δr,0(r)} = 1

There is a one-to-one correspondence between the two formulas (4.4) and (4.2). This is

due to the Fourier transform being bijective.

Example 4.2. We now solve the problem presented in Sec. 4.1. The characteristic functions

will be used instead of pdfs.

For each transition s → t of the system we assign the symbolic reward rew(s, t)(r), of

which the Fourier transform is F{rew(s, t)(r)} = φrew(s,t)(τ). The goal is to compute φs(τ),

for the temporal property 3B, where B = {l2, l4}. In the following, we may drop (τ) from

our notation for a simpler representation.

Firstly, since B = {l2, l4}, then we make them self-looping and assign the loop reward

transition the characteristic function of the Dirac delta. Then, using equation (4.4), we

arrive at the following linear system of equations for this sMRM:
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l0start l1

l2

l3 l4
0.2φrew(0,1)

0.8φrew(0,2)

0.9φrew(1,3)

0.1φrew(1,2)

φδ

0.4φrew(3,1)

0.6φrew(3,4)

φδ

Figure 4.2: A stochastic Markov reward model (sMRM) with two absorbing states l2, l4.
Each transition has been annotated with the probabilities multiplied by the Fourier trans-
form of the reward/cost distribution (which we have left as variables rather than define
them explicitly).

φ0 = 0.2φrew(0,1)φ1 + 0.8φrew(0,2)φ2

φ1 = 0.1φrew(1,2)φ2 + 0.9φrew(1,3)φ3

φ2 = φδ

φ3 = 0.4φrew(3,1)φ1 + 0.6φrew(3,4)φ4

φ4 = φδ

One can then derive manually that the solution for φ0, φ1, φ3 (i.e. characteristic functions

for state s0, s1, s3) is

φ0 = 0.2φrew(0,1)φ1 + 0.8φrew(0,2)φδ

φ3 = 0.4φrew(3,1)φ1 + 0.6φrew(3,4)φδ

φ1 =
0.1φrew(1,2) + 0.9φrew(1,3)0.6φrew(3,4)

1− (0.9φrew(1,3)0.4φrew(3,1))

The manual solution here can be automated via a symbolic solver such as Sympy, but as

we shall see later, we will need to move away from solving the solution symbolically due to

symbolic solvers not being very scalable. The reason is simply the intractability that comes

with symbolic solvers.

We proceed to detail how equation (4.4) was derived. It derives indirectly the equation

(4.2).
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Theorem 4.3 (Derivation of the set of systems of linear equations). We are given an sMRM

with state space S, with a set of goal states B ⊂ S. Let it be the case that every state

in S can reach B. Then we assign to each state u ∈ B zero rewards, such that the first-

passage reward density is the (Dirac or Kronecker) delta δ(r). Let S? = S\B be the set of

states not in B (but can reach B). For each s ∈ S, let φs(τ) be the Fourier transform of

Pr(r ∩ s � 3B), the first-passage reward density, i.e. φs(τ) = F{Pr(r ∩ s � 3B)}. Thus

for each state u ∈ B, we immediately have φu(τ) = F{δ}(τ) = φδ(τ) = 1.

Then, for each state s ∈ S?, we have the equivalence

φs(τ) =
∑
t∈S?

P(s, t)φrew(s,t)(τ)φt(τ) +
∑
u∈B

P(s, u)φrew(s,u)(τ)

Proof: Our derivation methodology is analogous to that found in [90], except there the

author derived solutions for the expected reachability reward (see Question 4.), and the

variance of the reachability reward. This type of derivation allows us to obtain the set

equations via paths.

Let us define Π.s to be the set of (finite) paths starting in s ending at a state in B. This

is a shortened variant of the earlier notation which would require us to write Π3B.s instead.
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Then for each s ∈ S?:

φs(τ)

= {definition of φs(τ)}∑
π̂∈Π.s

Pr(π̂)φRew(π̂)(τ)

= {letting π̂ = s.ψ̂. Then since s /∈ B, ψ̂ 6= ∅.}∑
t∈S

∑
ψ̂∈Π.t

Pr(s.ψ̂)φrew(s.ψ̂)(τ)

= {definition of path probability: Pr(s.ψ̂) = P(s, t)Pr(ψ̂) }∑
t∈S

∑
ψ̂∈Π.t

P(s, t)Pr(ψ̂)φrew(s.ψ̂)(τ)

= {sum of 2 rvs using their cfs: φrew(s.ψ̂)(τ) = φrew(s,t)(τ)φrew(ψ̂)(τ)}∑
t∈S

∑
ψ̂∈Π.t

P(s, t)Pr(ψ̂)φrew(s,t)(τ)φrew(ψ̂)(τ)

= {distribute P(s,t) and φrew(s,t)(τ) outside since they are independent of ψ̂}∑
t∈S

P(s, t)φrew(s,t)(τ)
∑
ψ̂∈Π.t

Pr(ψ̂)φrew(ψ̂)(τ)

= {simplify since by definition
∑
ψ̂∈Π.t

Pr(ψ̂)φrew(ψ̂)(τ) = φt(τ)}

∑
t∈S

P(s, t)φrew(s,t)(τ)φt(τ)

However, since we have that φu(τ) , φδ(τ) for all states u ∈ B, we now have that

φs(τ) =
∑
t∈S?

P(s, t)φrew(s,t)(τ)φt(τ) +
∑
u∈B

P(s, u)φrew(s,u)(τ)φu(τ)

=
∑
t∈S?

P(s, t)φrew(s,t)(τ)φt(τ) +
∑
u∈B

P(s, u)φrew(s,u)(τ)

which completes the proof.

Remark: If we apply the inverse Fourier transform to the formula above, we arrive at

fs(r) =
∑
t∈S?

((P(s, t)frew(s,t)) ∗ ft)(r) +
∑
u∈B

P(s, u)frew(s,u)(r)

which provides us with a system of convolution equations.
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Matrix notation

We now present the solution to Pr(r ∩ s � 3B) in matrix form. Define

f , (fs)s∈S?

A , (P(s, t))s,t∈S?

G , (Gs,t)s,t∈S?
, (f(rew(s,t)))s,t∈S?

h , (hs)s∈S?
, (
∑
u∈B

P(s, u)frew(s,u))s∈S?

where each pdf of fs, frew(s,i) with s ∈ S?, i ∈ S can be represented as an analyti-

cal function, denoted symbolically (or algebraically). Alternatively, we can use vectors to

represent them, such that

fs = (fs(r))r∈R

frew(s,i) = (frew(s,i)(r))r∈R

This implies that G is a ‘three-dimensional matrix’, i.e. a hypermatrix, and both f,h are

two-dimensional vectors, or hypervectors. We will use the latter representation for

the majority of our work however we do avoid it in the examples of this chapter. Using

this representation, in the continuous case, G has dimensions (R×S?×S?), whilst f,h have

dimensions (R× S?).

Notation From now on, we will write regular vectors and matrices in the ordinary manner

e.g. f, g for vectors and A,B as matrices. Hypervectors and hypermatrices are similar

except bold instead, e.g. h,z for hypervectors and C,D for hypermatrices. This also applies

to vectors and matrices of functions. There will be some exceptions to this, for example

P is the probability matrix, or map over Markov chain transitions. Additionally, when we

index hypermatrices or hypervectors, we generally make their letters light again, e.g. G,

but Gs,t, or Gs,t(r). We do not change cases for subscripted terms, e.g. not ai,j , but Ai,j

for a matrix A.

Now we can rewrite (4.2) in matrix form as

f = (A ◦G) ∗Of + h (4.5)

where ∗O denotes hypermatrix convolution, analogous to matrix multiplication, and A◦G
is the element-wise hypermatrix-matrix multiplication between the matrix A and hyperma-

trix G. Let us now explicate the definition of the operators on hypermatrices.

Definition 4.4. Let A,B,C be three hypermatrices, with dimensions (R×N ×M), (R×
M × L) and (R×M × L) respectively. Then,
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1. The hypermatrix convolution product D = A ∗OB, is defined with dimensions (R×N ×
L), of which values Di,j(r), for all i ∈ N, j ∈ L, r ∈ R, are determined by

Di,j(r) =
N−1∑
q=0

(Ai,q ∗Bq,j)(r)

2. The hypermatrix multiplication product U = AB, is defined with dimensions (R×N×L)

of which values Ui,j(r), for all i ∈ N, j ∈ L, r ∈ R, are determined by

Ui,j(r) =

N−1∑
q=0

Ai,q(r)Bq,j(r)

or U(r) = A(r)B(r) where the right-hand side is a matrix multiplication.

3. The resulting sum/subtraction S = B ± C, is defined with dimensions equal to B of

which values Si,j(r), for all i ∈M, j ∈ L, r ∈ R, are determined by

Si,j(r) = Ai,j(r)±Bi,j(r)

or S(r) = A(r)±B(r).

We now define operators between hypermatrices and matrices.

Definition 4.5. Let D be a matrix of dimensions (N ×M) and A the hypermatrix with

dimensions (R×N ×M). Then,

1. The hypermatrix-matrix Hadamard product H = D ◦A = A ◦D is a hypermatrix with

dimensions equal to A, with values Hi,j(r) determined by

Hi,j(r) = Di,jAi,j(r) = Ai,j(r)Di,j

for i, j ∈ (N ×M) and r ∈ R, or alternatively H(r) = D ◦A(r) = A(r) ◦D where D ◦A(r)

is the Hadamard product (or element-wise product) between the two matrices.

2. Let E be a matrix with dimensions (O × N). The hypermatrix-matrix multiplication

product Z = EA is a hypermatrix with dimensions equal to (R × O ×M), with values

Zi,j(r) determined by

Zi,j(r) =
N−1∑
q=0

Ei,qAq,j(r)

or Z(r) = EA(r).

3. The hypermatrix-matrix sum/subtraction F = A ±D = ∓D + A, is defined with size
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equal to A, with values Fi,j(r) determined by

Fi,j(r) = Ai,j(r)±Di,j = ∓Di,j +Ai,j(r)

or F (r) = A(r)±D = ∓D +A(r).

Moving forward, if we use characteristic functions to represent our problem, then firstly

define

x , (xs)s∈S?
, (φs)s∈S?

(4.6)

C , (Cs,t)s,t∈S?
, (φ(rew(s,t)))s,t∈S?

d , (ds)s∈S?
, (
∑
u∈B

P(s, u)φrew(s,u))s∈S?

Then the set of equations (4.4) has the hypermatrix form,

x(τ) = (A ◦C(τ))x(τ) + d(τ) (4.7)

The solution of which is just

x = (I − (A ◦C))−1d (4.8)

with I being the identity matrix of size |S?| × |S?|. The inverse of a square hypermatrix

B−1 (having an equal number of rows and columns) is defined such that B−1B = I ◦1 with

1 having size equal to B. If we use the analytical (or symbolic) form of these characteristic

functions, the general solution to this system will give us rational characteristic functions

as we have seen in an earlier example and was shown earlier by for example [91, 94].

Proposition 4.6 (Weak and irreducibly diagonal dominance). The system in (4.7) can be

rewritten in the form

(I − (A ◦C))x = d (4.9)

Then, the matrix Z(τ) = (I − A ◦ C(τ)) is weak and irreducibly diagonally dominant,

i.e. there exists a set of states q ∈ Q ⊆ S?, such that Z(τ)q,q(τ) exhibits strict diagonal

dominance, i.e. ∑
t∈S?\q

|Z(τ)q,t(τ)| < |Z(τ)q,q(τ)| (4.10)
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and for any remaining states s ∈ S? \Q, we have weak diagonal dominance, i.e.∑
t∈S?/s

|Z(τ)s,t(τ)| ≤ |Z(τ)s,s(τ)| (4.11)

Proof: Making use of the fact that for all τ , |Cs,t(τ)| ≤ 1 (see Definition 3.5), and that

As,t = P(s, t) ≤ 1, for all s, t ∈ S2
? , we can easily deduce that Z(τ) is weakly diagonally

dominant. To show that it is also irreducibly diagonally dominant, then for some row i of

Z, we have that
∑

t∈S?
Ai,t < 1. This is since there must be some state that reaches B with

non-zero probability. Knowing this, it is trivial to show that for any row such as i, Z is

strictly diagonally dominant.

Theorem 4.7 (Unique solution). The system of equations (4.7) has a unique solution, and

therefore (4.8) is resolvable.

Proof: From Proposition 4.6, we know that (I − A ◦ C(τ)) is weak and irreducibly

diagonally dominant. Then, this is a sufficient condition to prove that a unique solution

exists, a proof of which can be found in [54, Theorem 6.2.27]. Hence, we have a unique

solution for all τ .

Corollary, this theorem proves that reward random variables positive and negative can

be used together within a single sMRM and a unique solution will still exist. As another

corollary, this implies that a unique solution exists in the time domain (i.e. without having

transformed the equations), i.e. since the Fourier transform is bijective and always exists

for random variables.

Example 4.8 (Matrix (symbolic) approach). Continuing with the study problem in Ex-

ample 4.2, instead of solving the system manually, we can now solve it automatically via

symbolic matrix solvers. One such solver is Sympy [71]. Note that in this example, we use

characteristic functions once more and also forgo the vector representation and use symbolic

terms, as previously done in Example 4.2.

Firstly, let us denote terms in the form pi,jφrew(i,j) as σi,j for each pair i, j ∈ S2
? . Then

we rewrite the set of linear equations in matrix form (4.7) for states in S? = l0, l1, l3 giving:φ0

φ1

φ3

 =

0 σ0,1 0

0 0 σ1,3

0 σ3,1 0


φ0

φ1

φ3

+

σ0,2

σ1,2

σ3,4
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Then by (4.8), φ0

φ1

φ3

 =

1 −σ0,1 0

0 1 −σ1,3

0 −σ3,1 1


−1σ0,2

σ1,2

σ3,4


Solving this system (symbolically) via (4.8), gives:φ0

φ1

φ3

 = α

σ0,1(−σ3,4σ1,3 − σ1,2) + σ0,2(σ3,1σ1,3 − 1)

σ3,4σ1,3 + σ1,2

σ3,1σ1,2 + σ3,4


where α , 1

σ3,1σ1,3−1 .

These equations are equal to the equations found manually earlier. This was proven using

Sympy [71] to show that these equations have the same solution set with the corresponding

equations manually derived earlier.

Partial passage-reward densities

When presenting the solution to find the first-passage reward density fs(r) = Pr(s � 3=rB)

(Question 1.), we enforced earlier that all states s ∈ S could reach B. And thus for the set

of paths Π that reach B beginning from s0, we had∑
π̂∈Π.s0

Pr(π̂) = 1

Let us relax this assumption in two ways. Firstly, let there always be absorbing states

within our sMRM which every state will eventually reach. Then we define this set of states

as Abs, a subset of S, and let Πα.s be the set of paths that end in a state α ∈ Abs, beginning

in s. We now get ∑
α∈Abs

∑
π̂∈Πα.s

Pr(π̂) = 1 =
∑
α∈Abs

Pr(s � 3α)

If we set B = Abs, we have Pr(s � 3B) =
∑

α∈Abs Pr(s � 3α) = 1 and if B ⊂ Abs,

then Pr(s � 3B) ≤ 1. Therefore with respect to accumulated rewards, we have in the case

where B = Abs, ∫
dr · fs(r) =

∫
dr · Pr(r ∩ s � 3B) = 1

49



And if B ⊂ Abs,∫ ∞
−∞

dr · fs(r) =

∫ ∞
−∞

dr · Pr(r ∩ s � 3B)

=

∫ ∞
−∞

dr ·
∑
α∈B

∑
π̂∈Πα.s

Pr(π̂)Pr(r|π̂)

=
∑
s∈B

∑
π̂s∈Πα.s

Pr(π̂)

∫ ∞
−∞

dr · Pr(r|π̂)

=
∑
s∈B

∑
π̂s∈Πα.s

Pr(π̂)

∫ ∞
−∞

dr · frew(π̂)(r)

=
∑
s∈B

∑
π̂s∈Πα.s

Pr(π̂) · 1

= Pr(s � 3B)

≤ 1

of which implies that fs(r) generally represents a partial probability density function (seeing

that it no longer always integrates to 1).

To obtain the first-passage reward density for such a system above, it is sufficient to

remove all states that do not reach B first and then solve it (e.g. via matrix inversion in

Example 4.8). More generally if B ⊂ Abs, which includes the case where B ∩Abs = ∅, then

to determine the first-passage reward density Pr(s � 3=rB), we first modify the sMRM

such that states in B are absorbing artificially. After this we remove any states that do not

reach B from the system and then solve.

4.3 Experimenting with symbolic inversion

We have found that symbolic matrix inversion (using the Sympy package for python [71]),

is generally intractable for complete (square) matrices with more than six dimensions (or

states in our case).

For the problem

(I − (A ◦C))x = d

where C,x,d are matrices (or vectors) of functions. Let (I−(A◦C)) be completely symbolic

(hence we are not using the vector representation of characteristic functions). For example

for a 2× 2 matrix, we have (
a b

c d

)
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where a, b, c, d are strictly variables. Then our goal is to find (I − (A ◦C))−1 symbolically.

From some basic experiments, we found the following results:
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Figure 4.3: The time taken to invert the (dense) matrix I− (A ◦C) blows up drastically.

where we have given up trying to solve problems larger than six states. Whilst the above

shows a bottleneck, it is not a fair analysis alone as usually there is only one variable x of

a univariate-reward sMRM.


x 2+x 3x+5 2x+10 11x−9 8x−20

2+x x 2+x x 27x−10 15x−20
x 2+x 5x−3 30x+1 x+50−10 11x+12x2

x+5−10x 20x+x2+x3 x+8−10 2+x 42 36x
x+5−10x+10x3 6x x+8−10−25∗3+x2 10+x −15x 16x−4

x+x2+3 6∗x+12 x−10 2x x2 x−15

 (4.12)

When using a single variable x, we find that solving times does get easier. For example,

inverting the 6 × 6 matrix above (4.12) took around 8.5 seconds. However, the resulting

matrix from the inversion was unwieldy, being over hundreds of thousands of characters long.

A simplification procedure exists in Sympy which took roughly 215 seconds to complete. The

result however was still quite large being around 11000 characters long. One might argue

that the matrix above is not a true representation of an sMRM problem as the functions

above are arbitrary and not characteristic functions. Whilst true, certain characteristic

functions have more complicated forms, such as those of the Weibull distribution, Gaussian

or log-normal distribution. Thus with such functions, it may be better to use a separate

variable to represent them. This however leads to the blow-up previously shown.

Therefore our current bottleneck is in the inversion process (sympy uses Gaussian elimina-

tion as the default algorithm [1] which is known to have a complexity of O(n3) for a matrix

of dimensions n× n)). Whilst better symbolic algorithms could be researched, to mitigate
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this problem, we proceed to replacing the symbolic step with a numerical one; the solutions

presented in the next two chapters for discrete-reward sMRMs, and one subsequent chapter

for continuous-reward sMRMs.

4.4 Summary

In this chapter, we presented the theoretical foundations for sMRM model checking. We

explained that many problems for sMRMs reduce to solving for the first-passage reward

density Pr(Rew = r ∩ s � 3B). Expected value problems were found to reduce to

algorithms similar to that for MRMs.

In the subsequent chapters, we move forward to deriving numericals solutions for the

first-passage reward density. We first present a direct approach for solving the system of

convolution equations, and in the following chapter we present iterative algorithms.

Note that whilst we have presented techniques in the following chapters for solving the

system of convolution equations previously derived, there are other ways to derive the first-

passage reward densities, for example see [60, 95].
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Chapter 5

Direct Methods for sMRMs

5.1 Introduction

In this chapter, direct algorithms for solving Pr(r ∩ s � 3B) numerically are presented.

A direct algorithm is one that terminates under a finite number of steps, and provides

a full solution only upon termination. The first algorithm we present is the naive Gauss

elimination algorithm, but adapted for systems of convolution equations. The second is an

approximation algorithm. To summarize this chapter, our major finding is that Gaussian

elimination can be adapted for the system of convolution equations by carefully replacing

multiplication with convolution and division by deconvolution. Addition and subtraction

amounts to piecewise addition or subtraction of vectors.

We shall restrict ourselves to using probability mass functions, i.e. discrete reward random

variables (defined only over N). Continuous rewards are treated in Chapter 7. Secondly, we

present a computation of Pr(r ∩ s � 3B) only for r ∈ {0, 1, 2, · · · , k}, for some k ∈ N. For

any sMRM, we assume that all states s ∈ S can reach B with probability one. We also

continue to focus on univariate reward random variable. We first present the necessary

definitions for this chapter (of which will be used in subsequent chapters). We then define

the algorithms aforementioned.

5.2 Motivation

As previously discussed, the reason for finding new algorithms is due to the symbolic ap-

proach presented in the previous chapter being intractable. The papers [94, 83] provide

for us the basis of the following work. They suggest replacing characteristic functions of

probability density functions with the discrete Fourier transform (DFT) instead via dis-

cretization of the characteristic function. This is useful as there exists a fast numerical

implementation of the DFT known as the fast Fourier transform (FFT) with which we can

perform linear convolutions. However in this case we restrict ourselves to probability mass
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functions (e.g. discrete R.V.s) by choice, and therefore any distribution to be used that is

continuous should be discretized first, or a discrete analogue found for it. For example see

[31] for a survey of analogues.

Before we present the Gaussian elimination algorithm, we will first define the convolution

and deconvolution operations that will be used.

5.3 Discrete convolution and deconvolution

Given a non-negative discrete lattice random variable X defined over N, let pX [x] be its

probability mass function (pmf). From now on, we represent pmfs as vectors (arrays)

(with indices in N), and are not expressed analytically (algebraically). Additionally, for the

computation of Pr(r ∩ s � 3B), we will restrict ourselves to r ∈ {0, 1, 2, · · · , k} ∈ N only.

Therefore for example, fs[r] will be computed only for such a range.

The discrete Fourier transform operator D applied to the pmf of a random variable X

is written as D{pX [x]}, with its result being denoted as ϕX [τ ]. Then when applying D to

Pr(r ∩ s � 3B), we write this transform as

D{Pr(r ∩ s � 3B)} = ϕs�3B[τ ]

or ϕs[τ ] for short.

Sums of random variables & linear convolution via DFTs

Given two independent random variables X,Y defined over N (for simplicity), with pmfs

pX , pY respectively, then the pmf of the operation X+Y is determined via a discrete linear

convolution, i.e.

pZ(k) = (X + Y )(k) =

k∑
x=0

pX(x)pY (k − x) (5.1)

If we intend to compute the first k values of pZ(x), i.e. for all x ∈ {0, 1, · · · , k−1}, then

using DFTs to perform the convolution, the pmf of Z can be computed as

pZ(k) = D−1{D{p̃X [x]}D{p̃Y [x]}}(k) (5.2)
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where D−1 is the inverse DFT operator, and p̃i is defined as

p̃i[x] ,

pi[x] 0 ≤ x ≤ k

0 k < x ≤ 2k − 1
(5.3)

for each i ∈ {X,Y }. Note that p̃i is just pi truncated and zero padded (with k − 1 zeroes).

The zero-padding is necessary with DFTs to prevent a known problem called time-aliasing.

Ultimately, the above states that the convolution requires two vectors of length 2k − 1, to

determine the first k values of pZ exactly.

Let us introduce the function

convk(v1, v2) , D−1{D{ṽ1[x]}D{ṽ2[x]}}

as notation to specify the convolution of vector v1 with v2 via FFTs for up to k points

only. If v1, v2 are derived from analytical pmfs, only the first k values are sampled, and the

resulting vector padded with k − 1 zeroes. The length of both ṽ1, ṽ2 is 2k − 1.

Efficient algorithms exist to compute DFTs (and their inverses) via the fast Fourier trans-

form (FFT) with complexity O(nlog2n) where n is the size of the vector being transformed.

For example see [43]. Thus the computation of (5.2) has complexity 3 · O(nlog2n) + O(n)

where n = 2k − 1. This is since D is used twice, D−1 once and element-wise vector multi-

plication is performed once. Asymptotically, this is equivalent to O(klog2k).

Linear deconvolution via polynomial division

Given three non-negative discrete lattice random variables X,Y, Z defined over N, where

Z = X + Y , and X is independent of Y . Then the deconvolution operation is sought when

we know for example the pmfs of Z and Y only but we would like to find the pmf of X.

Algebraically, then the pmf pX is computed as

pX [k] =
1

pY [0]
(pZ [k]−

k−1∑
x=0

pX [x]pY [k − x]) (5.4)

and for clarity, pX [0] = pZ [0]
pY [0] .
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This can be validated by simply rearranging the definition of convolution. Or if starting

from the result above, we obtain

pX [k] =
1

pY [0]
(pZ [k]−

k−1∑
x=0

pX [x]pY [k − x])

pX [k]pY [0] = pZ [k]−
k−1∑
x=0

pX [x]pY [k − x]

pZ [k] = pX [k]pY [0] +
k−1∑
x=0

pX [x]pY [k − x]

pZ [k] =

k∑
x=0

pX [x]pY [k − x]

pZ [k] = (X + Y )[k]

which is the original definition of pZ [k].

Note that deconvolution is computed recursively as seen above (unlike convolution).

As such, computing pX [k] requires an ordered computation, i.e. computing (in order)

pX [0], pX [1], · · · , pX [k − 1] before pX [k]. In another sense, deconvolution is a recursive

filter, but convolution is non-recursive.

An important thing to note is that if pY [0] = 0, the computation above will lead to a

division by zero, i.e. 1/pY [0]. Generally, it is only possible to resolve this if pX , pY are not

of fixed length, e.g. infinitely long. Starting from the third equation above, then

pZ [k] = pX [k]pY [0] +

k−1∑
x=0

pX [x]pY [k − x]

= 0 +
k−1∑
x=0

pX [x]pY [k − x]

= pX [k − 1]pY [1] +
k−2∑
x=0

pX [x]pY [k − x]
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Then, we can rearrange the result to obtain pX [r]:

pZ [k] = pX [k − 1]pY [1] +

k−2∑
x=0

pX [x]pY [k − x]

pX [k − 1] =
1

pY [1]
(pZ [k]−

k−2∑
x=0

pX [x]pY [k − x])

pX [k] =
1

pY [1]
(pZ [k + 1]−

k−1∑
x=0

pX [x]pY [k + 1− x])

pX [k] =
1

pY [1]
(pZ [k + 1]−

k−1∑
x=0

pX [x]pY [k + 1− x])

where pX [0] = pZ [1]
pY [1] . From a computational point of view, this result is equal to computing

pX = pZ [1 :] D pY [1 :], where for example pZ [1 :] is the vector pZ with each element shifted

left by one place. However this latter computation requires the values of pZ [1 : k + 1] to

compute the first k values of pX . If we only have access to the first k values of pZ this

computation will yield therefore only k − 1 values which is problematic for our system of

convolution equations since the vectors are fixed to some finite length k. In the context of

finitely long vectors, let us define a full deconvolution f D g to be where g[0] 6= 0. We

will call g a full deconvolutor.

Another area where convolution arises is with polynomial multiplication. This is since

the coefficients of the polynomial resulting from multiplication are derived via convolution

of the coefficients of the multiplicands. For example, we can encode a pmf pX [r] (with

r = 0, 1, · · · , k − 1) as a polynomial of degree k − 11 by

Pk−1(x) = pX [0] + pX [1]x+ pX [2]x2 + · · ·+ pX [k]xk−1

and we will denote Pk−1(x; pX) to mean that the coefficients of the polynomial is encoded via

the vector pX . Then for example, we have the multiplication Pk−1(x; pX)× Pk−1(x; pY ) =

P2k−2(x; pZ) where pZ = pX ∗ pY .

Likewise, the inverse operation - polynomial division - can be used to reverse the process,

e.g. P2k−2(x; pZ)/Pk−1(x; pY ) = Pk−1(x; pX) +R(x), where R is the remainder polynomial

and Pk−1(x; pX) is termed the quotient. Hence, we can use polynomial division for deconvo-

lution since the quotient obtains pX = pZ D pY . Note that the remainder R is not required

and can be discarded. The division above assumes pZ is known up to 2k − 1 values, and

pY up to k values. However, if we are given only k values of pZ and pY we can still obtain

Pk−1(x; pX) (and therefore the first k values of pX) by zero-padding pZ with k-1 zeroes.

1Note that the degree of the polynomial is one less than the length of pX .
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This is provided that we have a full deconvolutor.

Let v1, v2 be vectors of length k. Then define the polynomial

Pk−1(x; v3) +R = P2k−2(x; ṽ1)/Pk−1(x; v2)

where ṽ1 is equal to v1 zero padded with k − 1 zeroes. Then, we introduce the function

deconvk(v1, v2) , coeffs(Pk−1(x; v3))

where coeffs(Pk−1(x; v3)) = v3, i.e. coeffs returns the coefficients of the polynomial.

The subscript k in front of deconv denotes that the first k points of deconvolution is

obtained.

Let pX , pY be pmfs. Then to obtain the quotient pZ [x] = pX D pY for x = 0, 1, · · · , k−1,

define v1[x] = pX [x], v2[x] = pY [x] for x = 0, 1, · · · , k − 1. Then pZ [x] = deconvk(v1, v2).

There appears to be algorithms that compute polynomial divisions using FFTs, for ex-

ample see the lecture notes [41, 4]. They are stated to have the same worst-case complexity

as the convolution case with the FFT - O(nlog2n) where n = 2k− 1 for the computation of

deconvk. Note however that the deconvolution operation is generally numerically unstable.

5.4 Naive Gaussian elimination

We can rearrange (4.5) into the form

((I ◦∆x,0)−A ◦G) ∗O f = h (5.5)

where ∆x,0 is a hypermatrix where each element is the Kronecker delta δx,0 with mass 1

over zero (and thus a hypermatrix overall). Thus (I ◦∆x,0) returns a diagonal hypermatrix

instead, which represents the equivalent of the identity matrix in traditional linear algebra.

Using vectors for pmfs (of discrete (lattice) random variables), then each of f, (A ◦G), and

h is a three dimensional hypermatrix or hypervector. Again, we will restrict ourselves to

r ∈ {0, 1, 2, · · · , k} ∈ N only, e.g. (Gs,t[r])s,t∈S2
?

is defined for r = 0, 1, 2, · · · . Since, we are

interested in computing Pr(r ∩ s � 3B) only for r = 0, 1, 2, · · · , k − 1, i.e. just k values,

it suffices to fix the sizes of each term as

1. (1× S?| × |S?|) for A and I.

2. (k × |S?| × |S?|) for G and ∆x,0.

3. (k × |S?| × 1) for f and h.
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Let us denote ((I ◦∆x,0)−A ◦G) as A, leaving us with

A ∗O f = h

We refer to the second and third dimension as the rows and columns of the hypermatrix

respectively, i.e. A has size (k × no. rows× no. columns). Hence Ai,j(r) refers to indexing

the hypermatrix by the ith row, the jth column, and the rth value. The indices start from

zero, i.e. i = 0, 1, · · · , |S?| − 1. The ith equation of the system is denoted as

(A ∗O f)i =
∑
j

Ai,j ∗ fj = hi

We now present a Gaussian elimination (GE) type algorithm to solve for f in the system

above. It is helpful to realise at this stage that convolution and deconvolution are used

for the same purposes as multiplication and division in the traditional algorithm (for lin-

ear equations), whilst addition and subtraction are just element-wise vector addition and

subtraction.

Description of GE: Gaussian elimination solves the system in two stages: The first

stage involves eliminating from each equation i where i ≥ 1, all terms fj where j ≤ i.

The procedure is done algorithmically: Starting from equation 0, this equation is used to

eliminate from equation i for all i ≥ 1, the term f0. This can be done by subtracting from

each equation i a convolution (multiple) of equation 0. That is, we replace equation i with

(
∑
j

Ai,j ∗ fj)− σi ∗ (
∑
j

A0,j ∗ fj) = hi − (σi ∗ h0) (5.6)

where σi , Ai,0 D A0,0 is the convolution (multiple) term. and it is assumed that A0,0

(called a pivot in the literature on Gaussian elimination) is a full deconvolutor (described

in Section 5.3). This assumption is proved true in Theorem 5.4.1. The update for equation

i (5.6) can also be written as ∑
j

A′i,j ∗ fj = h
′
i

where A′i,j = (Ai,j − σi ∗ A0,j), and h
′
i = hi − (σi ∗ h0). Note then that

A′i,0 = Ai,0 − (Ai,0 D A0,0) ∗ A0,0 = Ai,0 −Ai,0 = ~0

Thus, f0 is eliminated from equation i.

Given a system of convolution equations, substituting an equation by a sum of itself and

a multiple of another does not change the solution set (see Proposition 5.2). Hence, the

system after being repeatedly updated (via (5.6)) will still have the same solution.
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The procedure above ensures f0 is eliminated from equations i, for all i ≥ 1. Then,

re-assign A := A′, and h := h′, and the elimination procedure repeats as before, but now

starting with equation 1, and eliminating f1 from equations i, for all i ≥ 2. This repetition

continues, e.g. starting with equation j = 2, 3, · · · , |S?| − 2, and eliminating fj , from all

equations i where i > j. The end product of all of this is the system:

A′0,0 A′0,1 A′0,2 · · · · · · A′0,|S?|−1

~0 A′1,1 A′1,2 · · · · · · A′1,|S?|−1

~0 ~0 A′2,2 · · · · · · A′2,|S?|−1
...

...
. . .

. . .
. . .

...

~0 ~0 ~0 · · · A′|S?|−2,|S?|−2 A′|S?|−1,|S?|−2

~0 ~0 ~0 · · · ~0 A′|S?|−1,|S?|−1


∗O



f0

f1

f2

...

f|S?|−2

f|S?|−1


=



h′0
h′1
h′2
...

h′|S?|−2

h′|S?|−1


(5.7)

or written in matrix form,

A′ ∗Of = h′

The resulting hypermatrix A′ is upper-triangular, that is the entries A′i,j = ~0 for all

i > j.

Next, the second stage of Gauss elimination (known as back-substitution) begins. Note

from (5.7) that the solution hypervector f can be determined via the reverse order f|S?|−1,

f|S?|−1, · · · , f0. Starting from the last equation of the system (5.7) i.e. equation |S?| − 1,

we have

A′|S?|−1,|S?|−1 ∗ f|S?|−1 = h
′

|S?|−1

and deconvolving both sides by A′|S?|−1,|S?|−1 gives

f|S?|−1 = h
′
i D A

′

|S?|−1,|S?|−1

yielding solution for f|S?|−1. Knowing f|S?|−1, then f|S?|−2 can be determined, since by

rearranging equation |S?| − 2, we obtain

f|S?|−2 = (h
′

|S?|−1 −A
′

|S?|−2,|S?|−1 ∗ f|S?|−1) D A′|S?|−2,|S?|−2

of which the terms on the RHS are all known. In the same vein, we can determine fi, in

the order i = |S?| − 3, |S?| − 4, · · · , 0, via the formula

fi = (h′i −
|S?|−1∑
j=i

A′i,j ∗ fj) D A′i,i (5.8)

which results in solving for f completely. Note that the pivots (A′l,l)l∈S?
are assumed to be

full deconvolutors.
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Whilst we have fixed the sizes of the hypermatrices in (5.5) (see Section 5.4), the operators

(∗,D) will cause the system to grow in size. For example, the convolution of two vectors of

length k will result in a vector of length 2k − 1. Hence, for a practical implementation, we

substitute these operators with (convk, deconvk) which will ensure that the results are fixed

to length k. This does not affect the solution set as the set of all vector operators in Gaussian

elimination do not require values beyond the kth value (assuming that deconvolutions are

only performed with full deconvolutors). Precisely speaking, for any vector operator � ∈
{/, ·,+,−, ∗,D} with the first four being element-wise operators, then (f � g)[r] is always

independently computed of (f � g)[r+ l] for all l > 0. Hence, values r where r ≥ k− 1 are

irrelevant for the computation for the first k values of the solution set.

5.4.1 Full deconvolutions

Earlier, it was assumed that the pivots (A′l,l)l∈S?
were full deconvolutors for both stages of

GE (where A′ is the final hypermatrix in upper-triangular form). Firstly, note that if this

assumption holds in the first stage, it immediately holds in the second. This is since the

pivots used for deconvolution in the first stage, are unchanged in the second stage. If this

assumption does not hold, either divisions by zero will be introduced, or full deconvolution

cannot occur.

With linear systems, one way to handle pivots that lead to divisions by zero, is by utilizing

pivoting strategies and are described for example in [37, p. 150]. However, for particular

systems pivoting is not required and our system is such a case. The proof is as follows.

Theorem 5.1. Let A′ be the final updated hypermatrix (i.e. when it is upper-triangular)

obtained after the first stage of GE, and A be the original hypermatrix. Then, A′i,j has the

closed form

A′i,j = Ai,j −
i−1∑
j=0

σj ∗ Aj,i (5.9)
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where σj = A′i,j D A
′
j,j . Then, we have that

A′i,j [0] = Ai,j [0]− (

i−1∑
j=0

σj ∗ Aj,i)[0]

= Ai,j [0]−
i−1∑
j=0

σj [0]Aj,i[0]

= Ai,j [0]−
i−1∑
j=0

(A′i,j D A
′
j,j)[0]Aj,i[0]

= Ai,j [0]−
i−1∑
j=0

A′i,j [0]

A′j,j [0]
Aj,i[0] (5.10)

implying that A′ [0] is only dependent on A[0].

Then, we have that A′l,l[0] 6= 0 for all l ∈ S?. This ensures that A′l,l is a full deconvolutor,

as described in Section 5.3.

Proof: Eq. (5.10) is the update rule for Gaussian elimination for linear systems. Hence

Gaussian elimination with our convolution equations reduces to Gaussian elimination with

linear equations at the zeroth value, i.e. for the system (A ∗O f)[0] = h[0]. The pivots

for GE with this linear system are (A′l,l[0])s∈S?
. We can deduce that the matrix A[0] is

diagonally dominant, i.e. for all l ∈ S?, we have

Al,l[0] ≥
∑
j∈S?

Al,j [0]

Then, Dahlquist & Björk [37, p. 151-152] states that diagonal dominance is a sufficient

condition to ensure that A′l,l[0] are non-zero for all l ∈ S?, without using pivoting. Hence,

full deconvolutions are guaranteed for our system of convolution equations.

5.4.2 Same solution set

The first stage of Gaussian elimination (known as forward elimination or Gauss reduction)

preserves the solution of the system, such that solving with the hypermatrix A′ (being upper

triangular) yields the same answer as solving directly from the original hypermatrix A . The

hypermatrix A′ and the corresponding hypervector h′ are achieved using at most different

four operations (detailed in Proposition 5.2), each of which do not change the solution set.

We now state this formally as a theorem. It is a simple restating of a theorem for systems

of linear equations found in [53, Theorem 1.5], but now for convolution equations.

Proposition 5.2. Given a system of convolution equations E ∗Of = h, with equations

E0, E2, · · ·EN , and the unique solution x (a hypervector), where each Ei represents the
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equation ∑
j

Ei,j ∗ fj = hi

If the system is transformed via these two updating operations:

1. replacing an equation by a convolution of itself with a non-zero vector.

2. replacing an equation with the equation itself added to another equation that has

been convolved with a non-zero vector.

then the transformed system will still have the same solution set x, with the exception of

the case where columns are swapped. Due to the simplicity of the statements here, we

present the proof to the Appendix, see Theorem A.1.

5.4.3 The algorithm in pseudocode

The algorithm for reducing the system into upper-triangular form is as follows:

Algorithm 1: Gauss reduction (without pivoting)

Data: A,h
Result: A in upper-triangular form, and the corresponding hypervector h

1 foreach j = 0, 1, 2, · · · , |S?| − 2 do

2 foreach i = j + 1, j + 2, · · · , |S?| − 1 do

3 σi = deconvk(Ai,j ,Aj,j);
4 foreach l = j, j + 1, · · · , |S?| − 1 do

5 Ai,l = Ai,l − convk(Aj,l, σi)

6 hi = hi − convk(hj , σi)

Once the algorithm terminates, then as previously described, A is now in upper-triangular

form. Note that the updates for A,h are done in-place in the algorithm above. Now solving

for f, then

Algorithm 2: Back substitution

Data: A in upper-triangular form, and the corresponding hypervector h

Result: f, the solution hypervector

1 foreach i = |S?| − 1, |S?| − 2, · · · , 1, 0 do

2 fi = deconvk(hi −
∑|S?|−1

j=i+1 convk(Ai,j , fj),Ai,i);

Theoretically, the algorithm terminates with the true f (disregarding numerical instabil-

ities, and issues related to pivoting).
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Algorithmic complexity

For reducing the system into upper-triangular form, for each row we need to perform up

to |S?| convolutions. For the reduction phase, i.e. converting the augmented matrix into

upper-triangular form, setting the pivot to a row j ∈ [1, 2, · · · , |S?| − 1], where j = 1 is the

second-last row and j = |S?| − 1 being the upper-most, then the complexity for each j is:

1) O(j) deconvk operations, 2) O(j2) convk operations and 3) O(jk) subtractions. Then,

assuming deconvk and convk have complexity O(klog2(k)), this results in a row-complexity

O(jklog2(k)) +O(j2klog2(k)) +O(jk) = O(j2klog2(k))

with a total complexity of
∑|S?|−1

j=1 O(j2klog2(k)) = O(|S?|3klog2(k)), which is therefore

cubic in |S?| and linearithmic in k.

Example 5.3. Let us solve a toy system of two equations: a∗f1 +b∗f2 = h1, c∗f1 +d∗f2 =

h2. Then, in matrix form, we have:(
a b

c d

)
∗O

(
f1

f2

)
=

(
h1

h2

)

and this can be written in augmented-matrix form as(
a b h1

c d h2

)

To reduce the above into upper-triangular form, we simply need to zero c. To do so we

calculate σ = deconvk(c, a). Then we convolve the first row by σ and then subtract the

result from the second row. This giving:(
a b h1

0 (d− convk(b, σ)) h2 − convk(h1, σ)

)

Now having the equations in upper-triangular form, f2 can now be computed. Let h̄2 =

h2 − convk(h1, σ), and d̄ = (d− convk(b, σ). Then

f2 = deconvk(h̄2, d̄)

Finally, f1 can be computed using f2:

f1 = deconvk(h1 − convk(b, f2), a)
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5.5 Approximate Gaussian elimination

It is possible to derive an approximate solution to the system (4.5) by applying the DFT

transform to both sides of the equations giving

xs[τ ] =
∑
t∈S?

P(s, t)D{ ̂frew(s,t)}[τ ]xt[τ ] +
∑
u∈B

P(s, u)D{ ̂frew(s,u)}[τ ] (5.11)

where D−1{xs}[r] ≈ fs[r], and we define

p̂i[x] ,

pi[x] 0 ≤ x ≤ k

0 k < x ≤ n+ k
(5.12)

which introduces a parameter n, the amount of zero-padding we will use. Note that p̂i = p̃i

when n = k − 1.

In matrix notation, we arrive at a form similar to (4.7), i.e.

x(τ) = (A ◦Cn(τ))x(τ) + dn(τ) (5.13)

where

1. (As,t)s,t∈S2
?

= (P(s, t))s,t∈S2
?
.

2. (Cs,t)s,t∈S2
?

= D{ ̂frew(s,t)}s,t∈S2
?
.

3. (ds)s∈S?
= (
∑

u∈B P(s, u)D{ ̂frew(s,u)})s∈S?
.

with the sizes:

1. x : ((n+ k)× |S?| × 1).

2. A ◦C : ((n+ k)× |S?| × |S?|).

3. d : ((n+ k)× |S?| × 1).

In this setting, the system has the solution

x(τ) = ((I −A) ◦Cn(τ))−1dn(τ) (5.14)

which can be solved via mature linear algebra libraries or tools (for systems of linear

equations) for each τ = 0, 1, 2, · · · , (n+ k− 1). After solving, we use (D−1{xs})s∈S?
to give

us an approximation of (fs[r])s∈S?
, for r = 0, 1, · · · , k− 1. It is proven later in Theorem 5.4

that the system above has a unique solution. Additionally, Theorem 5.5 proves that when

taking the limit n → ∞, then the approximate solution equals the exact solution of (4.5)

at least for the first k values.
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Note that GE can be optimized via particular decompositions such as LU and Cholesky

decompositions. Later in our experiment we shall use a library for the approximate variant

here, that uses the LU decomposition with GE. In the remainder of this thesis, we refer

to this method as either the LU approx. method or the approximate LU method.

Although, more appropriately, we should have referred to it as the approximate GE-LU

method.

Algorithmic complexity

For this approximate solution, the worst case complexity for solving a linear system (directly,

e.g. by Gaussian elim.) for each τ ∈ [0, 1, · · · , (n+ k− 1)] is O(|S?|3). Therefore the overall

complexity is O(|S?|3(n+k)), which is cubic in |S?| and linear in n+k. However creating the

system in the first place has O(|S?|2klog2k) complexity, which is a power less than solving it.

Therefore, the time-complexity is slightly better than (exact) Gaussian elimination, which

is linearithmic in k.

Theorem 5.4 (Unique approximate solution via DFTs). The Fourier transform of the

system of convolution equations defined in (4.7) has a unique solution x(τ) = (xs(τ))s∈S?

for all τ ∈ {0, 1, · · · , n+ k − 1}.

Proof: The proof is nearly identical to Theorem 4.7. Essentially, we can replace the

characteristic functions (continuous Fourier transforms) with the DFT in the theorem, and

pdfs are replaced with pmfs and this is sufficient to prove uniqueness. A property that is

required of DFTs to ensure the theorem is possible is that for any pmf vector pX [r], then

its DFT D{p̂X} is absolutely bounded, i.e. |D{p̂X}[τ ]| = |
∑n+k−1

r=0 p̂X [r]e−j2π·r·τ/n+k| ≤∑n+k−1
r=0 p̂X [r]|e−j2π·r·τ/n+k| ≤ 1. This is similar to characteristic functions being absolutely

bounded by 1 with pdfs.

Theorem 5.5 (Convergence with increased padding). Let n be the zero padding length

used in (5.12), for defining the system of equations (5.13). We have that as n → ∞ =⇒
|f̂s[r] − fs[r]| → ~0, where f̂s[r] is the approximate solution via (5.14) and fs[r] is the true

solution of (5.5). Additionally, the sizes of the hypermatrices in the approximate system

and exact system are exactly those described in Sec. 5.5 and Sec. 5.4 respectively.

Proof: For each state s ∈ S?, it can be shown that by analogy of (4.1),

f̂s[r] =
∑
π̂∈Π.s

Pr(π̂)f̂Rew(π̂)[r] (5.15)

where Π.s is the set of paths beginning from s ending in B. That is, the approximate pmf

f̂s[r] is equal to a convex combination of (approximate) pmfs each signifying the accumulated

reward over a unique path in Π.s. Note that the widehat notation was introduced in (5.12).
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For the true solution, then from (5.15),

fs[r] =
∑
π̂∈Π.s

Pr(π̂)fRew(π̂)[r]

For any path π̂ ∈ Π.s,

f̂Rew(π̂)[r] = D−1{D{ ̂frew(π[0],π[1])}D{ ̂frew(π[1],π[2])} · · · D{ ̂frew(π[|π|−2],π[|π|−1]}} (5.16)

where f̂Rew(π̂)[r] is a vector strictly of length n + k. However, we have for the exact com-

putation,

fRew(π̂)[r] = frew(π[0],π[1]) ∗ frew(π[1],π[0]) ∗ · · · ∗ frew(π[|π|−2],π[|π|−1]) (5.17)

where we have defined each frew(i,j) (for i, j ∈ S2) to be of length k (see Sec. 5.4). Let

m = |π| − 1, then fRew(π̂)[r] is of length mk − (m− 1) since we have m convolutions (over

vectors of length k).

For any path π̂ ∈ Π.s, The approximation is exact when n = mk − (m − 1) − k. If n is

less, errors will be introduced, or if using terminology from signal processing, we can say

that the resulting vector is time-aliased or affected by wrap-around error. If n is more, the

approximation is still exact, although relative to the case where n = mk − (m − 1) − k, it

will have an additional (mk− (m− 1))− (n+ k) zeros appended to the end of the resulting

vector.

Next, let us partition the set of paths Π.s into two sets: 1) A set of paths each with length

(i.e. the number of steps) less than or equal to m, and 2) the set of paths each having length

greater than m. We denote these sets as Π.s[0 : m] and Π.s[m :∞] respectively. Trivially,

Π.s[0 : m] ∪Π.s[m :∞] = Π.s. Now we obtain

f̂s[r] =
∑
π̂∈Π.s

Pr(π̂)f̂Rew(π̂)[r] =
∑

π̂∈Π.s[0:m]

Pr(π̂)f̂Rew(π̂)[r] +
∑

π̂∈Π.s[m:∞]

Pr(π̂)f̂Rew(π̂)[r]

(5.18)

Hence, for the approximate solution (5.18), if we keep increasing n indefinitely, paths

longer than m will also be computed correctly (for their first k values). Hence, as n→∞,

we have m→∞.
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We can now prove formally that the absolute error converges:

lim
n→∞

4ε = lim
n→∞

|f̂s[r]− fs[r]|

= lim
m→∞

|
( ∑
π̂∈LΠ3B .s[0:m]

Pr(π̂)f̂Rew(π̂)[r] +
∑

π̂∈LΠ3B .s[m:∞]

Pr(π̂)f̂Rew(π̂)[r]
)

−
( ∑
π̂∈LΠ3B .s[0:m]

Pr(π̂)fRew(π̂)[r] +
∑

π̂∈LΠ3B .s[m:∞]

Pr(π̂)fRew(π̂)[r]
)
|

= lim
m→∞

|
∑

π̂∈LΠ3B .s[m:∞]

Pr(π̂)f̂Rew(π̂)[r]−
∑

π̂∈LΠ3B .s[m:∞]

Pr(π̂)fRew(π̂)[r]|

= lim
m→∞

|
∑

π̂∈LΠ3B .s[m:∞]

Pr(π̂)(f̂Rew(π̂)[r]− fRew(π̂)[r])|

≤ lim
m→∞

∑
π̂∈LΠ3B .s[m:∞]

Pr(π̂)|(f̂Rew(π̂)[r]− fRew(π̂)[r])|

≤ lim
m→∞

∑
π̂∈LΠ3B .s[m:∞]

Pr(π̂)

= 1− lim
m→∞

∑
ˆψ∈LΠ3B .s[0:m]

P (π̂)

= 1− 1

The third equality above is due to the fact that the first m paths are correctly computed

and therefore the error between the approximate solution and the exact solution is zero

for r = 0, 1, · · · , k − 1. The last inequality is obtained after proving that |f̂Rew(π̂)[r] −
fRew(π̂)[r])| ≤ 1, due to both f̂Rew(π̂)[r] and fRew(π̂)[r]) being bounded in [0, 1]. The ap-

proximate pmf f̂Rew(π̂)[r] can be shown to be bounded in this interval by firstly showing

that its absolute value is less than or equal to one via (5.16), for r = 0, 1, · · · , n + k − 1.

And secondly, by proving that (5.16) is equivalent to performing circular convolutions over

vectors each of length k and having non-negative entries. This of which results in a non-

negative vector. Thus we have shown that the absolute error tends to zero for each s ∈ S?

as n→∞.

Special case for approximation

Note that for a given sMRM if all pmf reward vectors have masses concentrated within some

finite interval [0, L]. Then if our original interval of interest is [0, k], convergence is also met

if we keep increasing k beyond L and just use the N − 1 padding scheme (see (5.3)). This

is since each pmf vector will be non-zero for length L before being strictly zero up to the

kth point. Therefore this becomes equivalent to the approximate solution, with the added

benefit of not truncating non-zero values of the reward pmf vectors.
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5.6 Experiments

We proceed to experiment with the direct algorithms developed in this section. We present

firstly two problems as a sanity check for our work, one a toy problem, the other a potential

real world problem from literature. We then compare the scalability of Gaussian elimination

with the approximate variant. The computer used for this entire section is Computer 1.

See Section 1.4 for details of the computer and software used.

Implementation details Note that we implemented the convk operations of Gaussian

elimination with a time complexity of O(klog2k). The deconvk operations were implemented

with a complexity of O(k2), although there are algorithms with complexity O(klog2k). The

LU approximation method (see Section 5.5) was solved for each τ using numpy ’s solve

function via Gaussian elimination with LU decomposition.

5.6.1 Example 1: Toy problem

We are given an sMRM with five states {s0, s1, s2, s3, s4}, with each state being able to

reach the goal state s4. The property we are interested in is Pr(r ∩ s � 3s4), for all

s ∈ S? = {s0, s1, s2, s3} and r = 0, 1, 2, · · · , N − 1, where N = 150.

We define a matrix A to represent transition probabilities between states in S? and a

vector b to represent the probability of transiting from a state in S? to s4.

A =

s0 s1 s2 s3


s0 0.1288838 0.38242891 0.12495781 0.13139189

s1 0.27758284 0.09654253 0.15592425 0.24690511

s2 0.10418887 0.18054794 0.1492027 0.32815053

s3 0.33540355 0.31410283 0.16746947 0.1316041

b =

s0 s1 s2 s3( )
0.23233759 0.22304527 0.23790995 0.05142005

Transition probabilities from si to the three other states corresponds to the ith row of the

matrix A. Likewise, its probability of entering B immediately is the ith element of b. The

respective (underlying) DTMC of the sMRM is shown in Figure 5.1.

We define the reward random variable for every transition to be equal to the binomial

distribution with parameters n = 100, p = 0.5. We denote the pmf of this distribution as

binomn,p[r]. From this we can write a system of convolution equations f = (A ◦G) ∗Of + h

where Gi,j [r] = binomn,p[r], and hi[r] = bi · binomn,p[r] for r = 0, 1, · · · , N − 1. Figure
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5.1 can be used to represent the sMRM if we annotate each transition with the binomial

random variable.

s0start s1

s2 s3

s4

0.1288838

0.23233759

0.09654253

0.22304527

0.1492027
0.23790995

0.1316041

0.05142005

1

Figure 5.1: A DTMC with one absorbing state s4. We annotated only some of the prob-
abilities of A, b, to reduce clutter. The figure also represents a stochastic Markov reward
model (sMRM) if we annotate each transition with the binomial distribution for the reward
random variable.

In Fig. 5.2, we compare the approximate LU method (see Section 5.5) with naive Gaussian

elimination. For the LU method, we compute Pr(r ∩ s � 3s4) for each s ∈ S? (with

B = s4) and for r = 0, 1, · · · , T , where T = N + n, and n is the zero padding length

(described in Section 5.5). We also plot the absolute (approximate) error between the

Gaussian elimination solution and the approximations. As previously described, the errors

between the pmfs obtained via the approximation solutions and Gaussian elimination are

the effects of time-aliasing (or wrap-around error) relating to the choice of padding length

T − N . This example shows that the longer the padding length, the more accurate the

result.
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Figure 5.2: Top figure: The pmf of the accumulated reward from s0 until s4, (truncated)
up to the N th point. Bottom figure: the absolute error between the approximate solutions
relative to Gaussian elimination. For the LU approximations, the different padding lengths
can be determined by T −N where T stands for Total length.

The times taken for each method are found in Table 5.1. The times measured include both

the time taken for solving the system of equations (the solving phase), as well as time

taken creating the hypermatrices required for solving the system (i.e. the preparation

phase). This is how we will time all our algorithms in the future unless mentioned otherwise.

Next, we sampled 10000 traces from the sMRM starting from state s0, computed the

cumulated reward over each trace, and then computed the relative frequencies of the cumu-

lated rewards to form the pmf Pr(r ∩ s � 3s4) for r = 0, 1, · · · , N − 1 (see Fig. 5.3) . The

length of each trace was determined by the sampling termination conditions: 1) Entering

the goal state s4. 2) Accumulating reward equal to or greater than N . We find that the

results from sampling align with those obtained from Gaussian elimination providing vali-

dation for the numerical algorithm. The total time taken for the sampling algorithm was

1.77 secs (2dp).
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Method Total time taken (seconds)
LU approximation (T=300) 0.006050586700439453
LU approximation (T=600) 0.00644683837890625
LU approximation (T=150) 0.007096052169799805
LU approximation (T=2250) 0.00864100456237793
Gaussian elimination 0.14485812187194824

Table 5.1: Time taken to solve the problem for various direct methods, ordered from fastest
to slowest. Gaussian elimination (GE) took about 18 times longer than the LU method
with T = 2250. However, the respective LU method required 15 (2250/150) times more
space.
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Figure 5.3: The pmf obtained via sampling aligns with that obtained via Gaussian elimina-
tion. However, the naive sampling method did take around 12 times longer to achieve this
result.

5.6.2 Example 2: Waste treatment semi-Markov process

This problem comes from [94], with the model originally from [23], who studied the com-

putation of the passage-time density for a waste treatment model. The sMRM represents

a discrete-time semi-Markov process, therefore giving us a discrete-reward sMRM, where

reward represents time.

Figure 5.4 captures a model of the waste treatment in a textile factory. The factory has a

production which generates waste and also a waste treatment facility to handle such waste.

If the facility fails, untreated waste can be stored in a holding tank. However, if the facility

fails for too long, for example if repairs are not carried out fast enough, the holding tank

fills completely and production of the factory stops.

72



s0

Working

s1

Treatment failed,
tank not full

s2

Treatment failed,
tank full

frew(0,1)

0.95frew(1,0)

0.05frew(1,2)
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Figure 5.4: A graphical representation of the sMRM modelling a function of the textile
factory.

The reward distributions frew(i,j) are defined as

frew(0,1) ∼ geometric(0.8)

frew(1,0) ∼ discreteWeibull(0.3, 0.5)

frew(1,2) ∼ discreteWeibull(0.5, 0.7)

frew(2,0) ∼ discreteWeibull(0.6, 0.9)

and the discrete Weibull distribution is given as

f(t; q, b) =

q(t−1)b − qtb t ∈ [1, 2, 3, · · · ]

0 otherwise

The authors of [94] computed the probability of reaching state s2, the state where produc-

tion halts, starting from s0 when the treatment facility is functional, i.e. Pr(r ∩ s0 � 3s2).

We compute this distribution for r = 0, 1, · · · , N − 1 where N = 100 and present the

pmf below for the cumulated reward (which is time in this case). We used the Gaussian

elimination method to solve this problem.
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Figure 5.5: Top figure: The pmf over time elapsed before treatment has failed and the
tank is full (s2), starting from s0. After replacing the DTFT with the DFT in the paper’s
implementation, it aligned better with our results. Bottom figure: The difference in pmf
values relative to the naive Gaussian elimination algorithm.

When comparing our solution to those presented in [94] (see Fig. 5.5), our results (via

Gaussian elimination) mostly align with theirs. We experimented with their code to find

that they had not used the DFT for the geometric distribution, but rather used the known

algebraic DTFT (characteristic function) of the distribution (as was mentioned in their

paper), thus leading to their slightly incorrect results. When we modified their implemen-

tation by using the DFT for the geometric distribution, the values of the resulting pdf is

nearer to that obtained from Gaussian elimination. From our understanding, the inverse

DFT cannot be used naively to invert the continuous FT.

5.6.3 Scalability of GE vs LU approximation

We experimented with Markov chains with random discrete reward random variables, and

timed how long it took to solve for the property Pr(r ∩ s � 3B). Both the preparation phase

and solving phase are included in the timing. We measure the performance of the Gaussian
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elimination algorithm with the LU approximation method. With the latter method, we

used the numpy package in python to solve each linear system using the LU decomposition

as part of the procedure. Therefore the test is not fair, however the comparison may still

be useful.

To measure the performance of the algorithms, we vary two variables (each independently

of the other): 1) |S?|, the size of the set of states that can eventually reach B our goal

states. 2) k, such that Pr(r ∩ s � 3B) is computed for r = 0, 1, · · · , k− 1. Performance is

characterized only by time. When varying |S?| alone, k was fixed to 501. And when varying

k alone, |S?| was fixed to six.

For any valuation of the parameters (|S?|, k), 200 sMRMs were sampled with these pa-

rameters, their average and worst times recorded and plotted. For each of these 200 sMRMs,

the underlying Markov chain probability matrix is generated randomly and uniformly. We

have also only one goal state. The rewards are generated as follows: If the reward is on a

transition between a state s ∈ S? and the goal state, it is distributed via a geometric dis-

tribution with its parameter p1 randomly and uniformly sampled from [0, 1]. If it is other

than that (i.e. transitions between states of S?), then the reward is a binomial distribution,

with its parameters (n = kβ,p = p2), where k is the interval length above, and both β and

p2 are randomly and uniformly sampled from [0, 1]. Thus for any transition si → B for each

si ∈ S?, we have

frew(si,B)(r) = Geo(r; p1) = (1− p1)r−1p1

and for transitions si → sj for each si, sj ∈ S2
? , then

frew(si,sj)(r) = Binomial(r; kβ, p2) =

(
kβ

r

)
pr2(1− p2)n−r

Then with the system generated, the property Pr(r ∩ s � 3B) is solved with the differ-

ent methods (for each experiment). This choice of distributions allows us to sample tail

distributions (by the Geometric) and peak distributions (by the Binomial).

The results (Fig. 5.6) show that the exact algorithm is significantly less scalable than the

approximate algorithm in terms of time complexity. Furthermore, doubling the padding

size of the approximate algorithm did not increase the time taken by much. In fact, adding

together the times to compute both LU approximation (with 5k and 10k padding) still beats

the average time for GE when either |S?| or k are large. Additionally, by computing both

of these LU approximations we are able to determine the relative absolute error (by taking

the maximal difference of their pmfs) and thus determine the accuracy of the approximate

solutions. Therefore an iterative algorithm involving the LU approximations may prove

useful and solve faster overall. Note however that when the LU approximations are padded
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with n zeros, then GE will typically have a lower space complexity when n > k − 1.
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Figure 5.6: Time taken to solve Pr(r ∩ s � 3B) for various values of |S?| and k. For the top
graph, k = 501, and for the bottom |S?| = 6. For each graph, a total of 1000 experiments
are performed. We find that the LU approximation method scales significantly better than
GE in time. In the legend, (pad = 5k) means that the LU approx. method uses a padding
length (see (5.12)) of 5k.

5.7 Summary and discussion

In this chapter, we presented direct algorithms for solving discrete-reward sMRMs. We

presented the Gaussian elimination algorithm for a system of convolution equations, as well

as an approximate variant of the algorithm, which has the benefit of being able to be solved

directly from existing numerical algebra tools. These algorithms allow us to solve problems

with more than six states, as shown from the previous examples and therefore improves

upon the symbolic approach in such a manner.

5.7.1 Alternative models

DTMCs For reachability problems such as Pr(r ∩ s � 3B) or Pr(s � 3≤kB), the ap-

proach here with the sMRM is better than naively using DTMCs (defined in Definition 3.1),
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in that it yields better space complexity. For example, if we integrate into the state space

of a DTMC our reward space, then the new state space is S×{0, 1, · · · , k}, which means in

the worst-case the space complexity of our transition matrix P is O((S × {0, 1, · · · , k}) ×
(S×{0, 1, · · · , k})). Compare this with an sMRM, where the largest term is the matrix G,

with a worst-case complexity of S × S × {0, 1, · · · , k}.

HMMs For the property Pr(s � 3≤kB), it is question as to whether we can use a

(transition-based) Hidden Markov model (HMM) instead of an sMRM to reduce the com-

putational costs. Firstly, let Π.s be the set of paths that begin in state s and end in B.

Then,

Pr(s � 3≤kB) =
∑
π̂∈Π.s

Pr(π̂)Pr(Rew ≤ k|π̂) =
∑
π̂∈Π.s

Pr(π̂)FRew(π̂)(k)

where for each path π̂, the probability of accumulating ≤ k reward is determined by the cdf

FRew(π̂). The probability FRew(π̂)(k) is dependent on the whole path π̂. It is not possible

to define the probability of accumulating ≤ k reward at any step n in π̂ to be strictly

dependent on the transition made at time n− 1.

To elaborate, to use an HMM instead of an sMRM, we need to firstly replace the reward

structure (see Def. 4.1) with a set of hidden states. Let us first give a formal definition of

HMMs.

Definition 5.6. A HMM is a tuple (M, O,Po), where:

� M is a DTMC, i.e. M = (S,P, iinit).

� O is the hidden state space (or observation state space).

� Po : S × S × O → R is a map for the emission probabilities of states in O, for each

transition s→ t, with s, t ∈ S2.

A property of HMMs is that at time step n, the probability of being in a hidden state o

is dependent on the transition s→ t that the HMM is made at time step n− 1.

Thus, let us create two hidden states: less-than-equal-to-k and more-than-k. The prob-

ability of being in less-than-equal-to-k at a given time is only dependent on the transition

made just prior to that time. Let pn denote the probability of being in less-than-equal-to-k

at step n. Thus for a path π̂ = s0, s1, · · · , s|π̂|−1, we want

FRew(π̂)(k) = Pr( p1 ∩ p2 ∩ · · · ∩ p|π̂|−1 | π̂)) =

|π̂|−2∏
i=0

Pr( pi+1 | si → si+1)
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for some definition of Pr( pi+1 | si → si+1). There are no general definitions available

that would satisfy the equality above. One false definition would be Pr( pi+1 | si → si+1) =

Frew(si,si+1)(k). Therefore, we cannot define an HMM (or Markov risk model) this way.

In the next chapter, we move towards deriving iterative algorithms instead: The power,

Jacobi and Gauss-Seidel methods from existing literature will be adapted for sMRMs.
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Chapter 6

Iterative Methods for sMRMs

6.1 Introduction

In this chapter we propose adaptations of existing iterative algorithms to solve the set of

equations (4.5) for the discrete case. Iterative methods begin with an initial guess for the

solution, and for those that converge, they continuously produce better solutions at each

iteration of the method. Iterative methods are regarded as being more scalable than direct

algorithms such as Gaussian elimination, i.e. they can be more efficient when |S?| or k

is large. Additionally, an advantage over direct algorithms is that the (numerical) error

produced by the algorithm can be controlled quite well. However, a possible disadvantage

is that the time it takes to solve a problem is not generally known in advance, i.e. it is

problem dependent, unlike for direct methods.

Here, we will discuss the power, Jacobi and Gauss-Seidel methods. Like Gaussian elimi-

nation, these algorithms also have an approximate form. A few theorems are also presented

to show that results for systems of linear equations exist in a similar fashion for systems

of convolution equations. We also empirically evaluate the performance of these methods,

with the results presented at the end of the chapter.

The definitions of terms from the previous chapter will be used here, for example of

convolution, deconvolution, and symbols like p̃i and p̂i, from equations (5.3) and (5.12)

respectively.

6.2 The power method

Let us devise an iterative sequence using the set of equations (4.5):

f(n+1) = (A ◦G) ∗Of(n) + h (6.1)
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of which if we let

f(0) = 0 (6.2)

then we have limn→∞ f(n) = f, where f is the solution for (4.5). The proof of this is given

later in Theorem 6.1. This method is a generalization of the power method described in

[21, 101]. As for the historical origins of the method, in discussion of it, the article [45]

states that

Householder [55] called this Simple Iteration, and attributed the first treatment of it

to Müntz [73]. Bodewig [17, p. 250] attributes the power method to von Mises [72], and

acknowledges Müntz for computing approximate eigenvalues from quotients of minors of the

explicitly computed matrix Ak, for increasing values of k.

We can approximate limn→∞ f(n) by iterating through n and stopping when the absolute

max error between the approximation at time n, and n+ 1 is small enough. In effect when

max|f(n) − f(n+1)| ≤ ε (6.3)

where ε is the absolute error tolerance level, and where we have defined

max|f(n+1) − f(n)| , maxs,r|fs[r](n+1) − fs[r](n)|

The termination or stopping criterion above however is not sound, in that it does not

prove that max|f(n)− f(n+M)| ≤ ε for some large natural number M . For an example of false

convergence, see [49]. A way to extend this algorithm in a manner that ensures soundness

is detailed in Section 6.7.

A practical form of (6.1) is achieved by replacing ∗, D with convk, deconvk, i.e. for each

s ∈ S?, we have

fs[r]
(n+1) =

∑
t∈S?

convk(As,tGs,t, f
(n)
t ) + hs[r] (6.4)

where fs[r]
(n+1) is computed only for r = 0, 1, · · · , k − 1. The size of each term is defined

as in Gaussian elimination, Section (5.4).

Since the FFT is used for convolution above, each iteration has a worst-case complexity

of O(|S?|2(2k − 1)log2(2k − 1)). However, we can improve upon this if we realise that the

hypermatrix A ◦ G is constant and so for each iteration, we do not need to repeatedly

compute their DFT transforms used in convk. Let us introduce the hypermatrix G with
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size (2k− 1× |S?| × |S?|) where Gi,j [τ ] = D{Ãi,jGi,j}[τ ]. Of which we introduce the matrix

notation as

G = D{Ã ◦G}

Then, we can use the iteration

f(n+1) = D−1{G(D{̃f
(n)
})}+ h (6.5)

where we have overloaded the definition of D as just previously. The proof that this iterative

system converges to the true solution f[r] for r = 0, 1, · · · , k − 1, is presented in Theorem

6.4.

Algorithmic complexity

The DFT transform of Ã ◦G has complexity O(|S?|2(2k − 1)log2(2k − 1)), but only has to

be performed once. Next, in each iteration we perform a DFT transform and an inverse

transform over a hypervector. This has total complexity O(2|S?|(2k − 1)log2(2k − 1)).

Convolutions are now multiplications, and we require O(|S?|2(2k−1)) multiplications. The

number of additions required is O((|S?|2(2k − 1) + |S?|k). The convergence check has

O(|S?|(2k − 1)) subtractions and O(|S?|(2k − 1)) scans to find the maximum value. Thus

for each iteration, asymptotically in the worst-case we have

O(|S?|(2k − 1)log2(2k − 1)) +O(|S?|2(2k − 1))

with a one-time cost of

O(|S?|2(2k − 1)log2(2k − 1))

for the preparation-phase of the solution.

6.2.1 Fixed point characterization

We reproduce here the three sub-theorems presented in [21, Theorem 10.15], in the context

of sMRMs. These theorems were originally presented for Markov chains. Note that whilst

we prove these statements for the discrete case (i.e. with pmfs), they also hold for the

continuous case (with pdfs).

Theorem 6.1 (Fixed point characterization (for pmfs)). The cumulated reward hypervec-

tor f = (f[r])r∈N = (fs�3B[r])r∈N,s∈S?
= (Pr(r∩s � 3B))r∈N,s∈S?

is the (unique) fixed point

of the operator Υ : [0, 1]N×S?×1 → [0, 1]N×S?×1. This operator is defined as:

Υ(f) = ((A ◦G) ∗O f) + h
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Additionally, let f(0) = 0, and f(n+1) = Υ(f(n)) where n ≥ 0. Then, for any r ∈ N and

s ∈ S? the following three statements hold:

1. f
(n)
s [r] = Pr( r ∩ [s � 3≤nB]), for all n ≥ 0.

2. lim
n→∞

f
(n)
s [r] = fs[r].

3. f
(0)
s [r] ≤ f (1)

s [r] ≤ f (2)
s [r] ≤ · · · ≤ fs[r].

where statement 2. states that the solution converges to a fixed point, and 3. states that

the convergence is monotonic. Due to the simplicity of these statements, we have presented

the proofs in the Appendix, see Theorem A.2.

Corollary 6.2 (Uniqueness of the fixed-point solution). Note that the solution to the fixed

point operator defined in Theorem 6.1 is unique.

Proof: This follows from Theorem 4.7. Whilst the proof was given for the system in the

Fourier domain, since there is a one-to-one relationship between pmfs and characteristic

functions, then φs being unique =⇒ fs is unique.

6.2.2 Convergence of the exact power method

For the iterative sequence

f(n+1) = (A ◦G) ∗Of(n) + h

we want to make sure that the computation is correct for each iteration n, up to the kth

point, i.e. that f (n)[r] is computed correctly for r = 0, 1, · · · , k − 1, and for any n ≥ 0. As

shown from the following lemma, this ensures that limn→∞ f(n)[0 : k] = f[0 : k] is computed

correctly.

Lemma 6.3 (Convergence of the first k values). Note that the pmf vector f
(n+1)
s can be

split into a concatenation of two vectors: f
(n+1)
s = f

(n+1)
s [0 : k]_f

(n+1)
s [k :∞].

Then limn→∞ f
(n)
s [0 : k] converges without requiring the computation of limn→∞ f

(n)
s [k :

∞]. In effect, we can compute f
(1)
s [0 : k], f

(2)
s [0 : k], · · · , f (n)

s [0 : k], · · · and this is sufficient

for the convergence of limn→∞ f
(n)
s [0 : k].

Proof: For any f
(n+1)
s [r], we have that

f (n+1)
s [r] =

∑
t∈S?

P(s, t)(
r∑
i=0

)frew(s,t)[r − i]f
(n)
t [r] +

∑
u∈B

P(s, u)frew(s,u)[r]
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Therefore to calculate f
(n+1)
s [r] we only need values (f

(n)
t [i])t∈S?

for all i s.t. i ≤ r. Thus

(f
(n+1)
s [0 : k])s∈S?

requires only the values (f
(n)
t [0 : k])t∈S?

, and therefore does not re-

quire computing (f
(n+1)
s [k : ∞])s∈S?

. Hence limn→∞ f
(n)
s [0 : k] can be determined without

limn→∞ f
(n)
s [k :∞].

Note that the same result also holds for continuous rewards (with pdfs).

The following theorem presents a way to compute f(n)[0 : k] correctly for any n ≥ 0 and

using DFTs. Using this theorem and Lemma 6.3, we can iterate towards limn→∞ f
(n)
s [0 : k]

correctly.

Theorem 6.4 (Convergence of the (practical) power method). The iterative sequence via

the practical form of the power method (6.5) converges to the true solution fs[r] for r =

0, 1, · · · , k − 1 and for all s ∈ S?.

Proof: We prove that the following equivalence

((A ◦G) ∗Of(n))[r] ≡ D−1{D{Ã ◦G}(D{̃f
(n)
})}[r]

holds for r = 0, 1, · · · , k − 1. This will then ensure that f(n+1)[0 : k] is computed correctly

for all n. First define the hypervectors g = (A ◦G) ∗Of(n), and l = D−1{Ã ◦G}(D{̃f
(n)
})}.

Then gs[r] =
∑

t∈S?
(As,tGs,t ∗ f (n)

t )[r] and ls[r] =
∑

t∈S?
D−1{D{Ãs,tGs,t}D{f̃ (n)

t }}[r]. By

(5.2), for any s, t ∈ S2
? , we have

(As,tGs,t ∗ f (n)
t )[r] = D−1{D{Ãs,tGs,t}D{f̃ (n)

t }}[r]

for r = 0, 1, · · · , k − 1. This is sufficient to deduce that gs[0 : k] ≡ ls[0 : k] proving the

equivalence. Then, f(n+1)[0 : k] = g[0 : k] + h[0 : k] = l[0 : k] + h[0 : k]. Hence, we

can compute f(n)[0 : k] correctly for any n via the practical form of the power method.

By Lemma 6.3, we only need to correctly compute f(n)[0 : k] for each n ≥ 0, to iterate

towards the fixed point limn→∞ f(n)[0 : k]. By Corollary 6.2, we then have convergence to

f[0 : k].

6.3 The approximate power method

To speed up computation, we may employ the iterative analogue of the approximate direct

solution in Section 5.5. Doing so, we obtain the iterative sequence

x(n+1) = (A ◦Cm)x(n) + dm

where the sizes of terms and definitions remain identical (see Section 5.5). Note however

that m is used to identify the zero padding length used in (5.12). We do not use n as
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notation since we are already using it for the iteration count.

This power method is termed approximate since limn→∞D−1{x(n+1)} ≈ f. With the

same reasoning, we term the previous power method as exact. For a given padding length

m, the solution from the LU approximate method (see Section 5.5) equals the limit of the

approximate power method limn→∞D−1{x(n)}. Therefore, as with the LU approximation

method, when m→∞, then limn→∞D−1{x(n+1)} = f.

In a similar fashion as with the exact power method, we can simplify the above by

calculating Gm , (A ◦ Cm), and ηm , dm, with the subscript m highlighting the zero-

padding length used. We can then use the iteration

x(n+1)(τ) = Gm(τ)x(n)(τ) + ηm(τ) (6.6)

with x(0)(τ) = 0 as the initial hypervector.

Since x is a complex number, we can define one convergence criteria as(
maxs,τ |Real(x(n+1))−Real(x(n))| ≤ ε

)
∩
(
maxs,τ |Imag.(x(n+1))− Imag.(x(n))| ≤ ε

)
(6.7)

where the threshold is applied to the real and imaginary parts of φd,m separately. Another

convergence criteria is simply maxs,τ |x(n+1) − x(n)| ≤ ε.

Algorithmic complexity

For each iteration, asymptotically in the worst-case we have a complexity of O(|S?|2(m+k))

attributed to the multiplications and additions. There is still a one-time cost of O(|S?|2(m+

k)log2(m+ k)) for the preparation-phase of the solution, attributed to the computation of

(A ◦Cm).

Theorem 6.5 (Convergence of the approximate power method). The approximate power

method (6.6) converges to a unique solution x of the set of equations

(I − Gm(τ))x(τ) = ηm(τ)

Proof: Firstly, the proof that a unique solution exists for the system above is due to

Theorem 5.4. Then, let e(n+1) = x(n+1)(τ)− x(τ). Substituting the terms on the RHS, we

obtain e(n+1) = Gm(τ)e(n). The absolute value of the error gives |e(n+1)| ≤ |Gm(τ)||e(n)|.
Since the matrix |Gm(τ)| is substochastic, that is each row sums up to at most one, with

at least one row summing up to strictly less than one, then [54, Theorem 6.2.27] proves
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this is a necessary condition for |Gm(τ)| to be convergent (to the zero matrix). Since

|e(n)| ≤ |Gm(τ)|(n)|e(0)|, then limn→∞ |e(n)| = 0.

6.4 The Jacobi and Gauss-Seidel methods

We proceed to derive analogues of other common iterative methods - the Jacobi and Gauss-

Seidel methods. These algorithms belong to a larger family of iterative algorithms known

as coordinate descent methods.

6.4.1 The Jacobi method

The Jacobi method can be derived from the original equations (4.5) as follows. For each

s ∈ S? we have

fs =
∑
t∈S?

(As,tGs,t ∗ ft) + hs

fs − (As,sGs,s ∗ fs) =
∑
t∈S?/s

(As,tGs,t ∗ ft) + hs

fs ∗ (δ −As,sGs,s) =
∑
t∈S?/s

(As,tGs,t ∗ ft) + hs

fs =
∑
t∈S?/s

((As,tGs,t D (δ −As,sGs,s)) ∗ ft) + (hs D (δ −As,sGs,s)) (6.8)

Then the Jacobi method is just the above but in iterative form, i.e.

f (n+1)
s =

∑
t∈S?/s

((As,tGs,t D (δ −As,sGs,s)) ∗ f (n)
t ) + (hs D (δ −As,sGs,s)) (6.9)

or alternatively, if we are solving for the property Pr(r ∩ s � 3B), for r = 0, 1, · · · , k− 1,

then we have the practical form

f (n+1)
s =

∑
t∈S?/s

convk(deconvk(As,tGs,t, δ −As,sGs,s), f
(n)
t ) + deconvk(hs, δ −As,sGs,s)

where again we have limn→∞ f(n+1) converging to the solution for (4.5). The proof for this

is presented later. In the derivation above, it is helpful to know that ∗ and D behave like

multiplication and division respectively.

The algorithm for the Jacobi method is the same as the power method, except that

the update rule above is used instead. Before analysing the time complexity of the al-

gorithm, let us make the following improvements. Let us define a hypervector κ where

κs , deconvk(hs, δ − As,sGs,s), and a hypermatrix H where Hs,t , deconvk(As,tGs,t, δ −
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As,sGs,s), but Hs,s = 0, for all s, t ∈ S?. Then the equations simplify to

f (n+1)
s =

∑
t∈S?/s

convk(Hs,t, f
(n)
t ) + κs (6.10)

which gives us the same equational form as the power method, of which we can simplify

again by defining a hypermatrix H where Hi,j [τ ] , D{H̃i,j}[τ ], and therefore the Jacobi

method in matrix notation reduces to

f(n+1) = D−1{H(D{̃f
(n)
})}+ κ

Algorithmic complexity

The complete time complexity is almost identical to the power method. In fact, per

iteration the time complexity is still the same; asymptotically in the worst-case we still

have O(|S?|(2k−1)log2(2k−1))+O(|S?|2(2k−1)). However, there are now additional costs

to transform the original equations into the form above. Firstly, κ has complexity roughly

O(|S?|klog2k), H has complexity roughly O(|S?|2klog2k), and finally H has complexity

O(|S?|2(2k − 1)log2(2k − 1)).

If no fast deconvolution library is available, and one has to repeatedly deconvolve multiple

terms by some constant divisor, then one can make use of the equality:

deconvk(a, b) = convk(a, deconvk(δ, b))

where deconvk(δ, b) can be saved and used when required. Thus deconvolution is only

needed |S?| times at most, once for each row.

6.4.2 The Gauss-Seidel method

The Gauss-Seidel method is similar to the Jacobi method. Firstly we change the indices of

our hypervector f from fs[r], ft[r], fu[r], · · · to an ordered set of indices f0[r], f1[r], f2[r], · · · , f|S?|−1.

Then for example, we can write the Jacobi method as

f
(n+1)
i =

|S?|−1∑
j=0,j 6=i

convk(Hi,j , f
(n)
j ) + κi

The Gauss-Seidel method is simply

f
(n+1)
i =

|S?|−1∑
j=i+1

convk(Hi,j , f
(n)
j ) +

i∑
j=1

convk(Hi,j , f
(n+1)
j ) + κi (6.11)
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and notice that to compute f
(n+1)
i , we require terms f

(n+1)
j for all j ≤ i. Hence, a sequential

computation is required, i.e. we compute f
(n+1)
i in the order i = 0, 1, · · · , |S?| − 1.

To improve time complexity, let H be defined as previously. Then, we can partition the

hypermatrix into the strictly lower and strictly upper hypermatrix via H[τ ] = HL[τ ] +

HU [τ ]. Note that the diagonal entries (Hs,s)s∈S?
are all zero.

Then, the Gauss-Seidel method can be written in matrix form as

f(n+1) = D−1{HU (D{̃f
(n)
}) + HL(D{̃f

(n+1)
})}+ κ

Algorithmic complexity

The time complexity is the same as the Jacobi method. The difference however is that

the solution vector of the Jacobi method can be computed in parallel, i.e. computing

f0[r], f1[r], · · · , f|S?|−1[r] in parallel, but the naive Gauss-Seidel method requires a sequen-

tial computation. However, the Gauss-Seidel method offers a better convergence rate (see

Section 6.5).

Approximate variants

Just like the LU approximation method (Sec. 5.5) and the approximate power method (Sec.

6.3), we can derive an approximate Jacobi and Gauss-Seidel methods. We have chosen not

to elaborate on them however. The difference in algorithm is mainly two: 1) The inverse

DFT is not applied to the solution hypervector after each iteration, but rather only after

convergence is met. 2) A parameter n (or m) is introduced which denotes the zero-padding

size that, if increased, reduces the effects of time-aliasing, as discussed previously.

6.4.3 Convergence of the Jacobi & Gauss-Seidel methods

The Jacobi method in the Fourier domain (i.e. taking the Fourier transform of (6.9)) is

x(n+1)(τ) = Q(τ)x(n)(τ) + z(τ) (6.12)

and the Gauss-Seidel method is

x(n+1)(τ) = QL(τ)x(n)(τ) + QU (τ)x(n+1)(τ) + z(τ) (6.13)

where zs(τ) , D{hs D δ −As,sGs,s}, and Qs,t , D{As,tGs,t D δ −As,sGs,s}.

Theorem 6.6 (Convergence of the Jacobi and Gauss-Seidel methods). Both the Jacobi

(6.13) and Gauss-Seidel (6.12) methods converge to the true solution of the system defined

in (4.7), i.e. limn→∞ x(n) = x.
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Proof: From Proposition 4.6, (I − (A ◦C)(τ)) is weak and irreducibly diagonally dom-

inant. Then, [15] proves that this condition is sufficient to ensure that the Jacobi and

Gauss-Seidel methods above converge for each τ . The methods also converge to a unique

fixed-point due to the matrix (I−(A◦C)(τ)) being non-singular [15]. By taking the inverse

Fourier transform of the solution, we obtain limn→∞ f(n) = f, with f being the solution to

(4.5), and f(n) is the nth iteration of the Jacobi or Gauss-Seidel method in the time domain,

e.g. via equation (6.9) for the Jacobi method.

6.5 Convergence rate analysis

The convergence rate of the exact power, Jacobi, and Gauss-Seidel methods for convolution

systems can be studied in the Fourier domain. The system of equations to be solved is

(4.9), i.e.

(I − (A ◦C)(τ))x = d

Let us denote (I − (A ◦ C)(τ)) as AAA (τ). Then, both the Jacobi (6.12) and Gauss-Seidel

(6.13) methods can be written in the form

x(n+1)(τ) = B(τ)x(n)(τ) + c(τ)

From [37, p. 190] , we can decompose AAA (τ) into a lower triangular, diagonal and upper

triangular matrix, in the manner AAA (τ) = D(τ)(L(τ)+I+U(τ)) where D(τ) = diag(Ai,i(τ)).

Then, for both methods we have c(τ) = D(τ)−1d(τ), but for the Jacobi method BJ(τ) =

−(L(τ) + U(τ)) whilst for the Gauss-Seidel, BGS(τ) = −(I + L(τ))−1U(τ).

From [37, p. 191], the asymptotic convergence rate of both methods is

R(τ) = −log10(ρ(B(τ)))

where ρ(B(τ)) is the spectral radius of B(τ). It is expected that the convergence rate of

Gauss-Seidel is faster than the Jacobi since x
(n+1)
j (τ) can be computed using the updated

values x
(n+1)
i (τ) for all i < j. Whereas for the Jacobi method, x

(n+1)
j (τ) will only use the

values x
(n)
i (τ). However, for general problems, [76, pg. 291] states that the Gauss-Seidel

method may diverge to some problems where the Jacobi method converges.

Before detailing the convergence rate of the power method, it is helpful to rewrite the

system of convolution of equations in a different form. From Theorem 4.3, we saw that

φs(τ) =
∑
t∈S

P(s, t)φrew(s,t)(τ)φt(τ)
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which equates to the system x(τ) = A(τ)x(τ) where (As,t)s,t∈S2 = (P(s, t)φrew(s,t)(τ))s,t∈S2

and x(τ) = (φs(τ))s∈S . Then, the (normalization-free) power method [101] is written as

x(n+1)(τ) = A(τ)x(n)(τ)

which is equivalent to the Fourier transform of (6.1), and has a convergence rate

R(τ) =
λ2(τ)

λ1(τ)

where λ1(τ), λ2(τ) are the dominant and sub-dominant eigenvalues respectively, of the ma-

trix A(τ). Baier & Katoen [21, p. 754] states that the convergence of the power method is

often less efficient than the Jacobi and Gauss-Seidel methods. Hence, one may expect that

the Gauss-Seidel is the fastest, followed by the Jacobi and then the power method.

Note that the rates above are for each τ . If we require the convergence rate for all τ ,

then it is determined by the smallest rate, i.e. minτ (R(τ)). However, if we assume that

Rpow(τ) ≤ RJ(τ) ≤ RGS(τ) for all τ , then we know that the Gauss-Seidel method is fastest

for all τ . And therefore, in the time-domain, the Gauss-Seidel is expected to be fastest

there too (for convolution systems).

Note that the same results hold for the approximate variants of the iterative methods when

applied to sMRMs with discrete-lattice reward. However, the discrete Fourier transform is

to be used in Theorem 6.6 when deriving the system AAA x = d.

6.6 Experiments

We investigate here how different Markov chain structures and types of probability mass

functions (pmfs) may affect the convergence rates of the power, Jacobi and Gauss-Seidel

methods (with respect to sMRMs). We experiment with four types of Markov chains (Fig.

6.1), and well as four types of pmfs (Fig. 6.2). We first construct sMRMs with different

combinations of MC and pmf type, and then solve for the property Pr(r ∩ s � 3B)

over them with the aforementioned iterative methods. The main metric for determining

convergence rate is the number of iterations taken to solve for the property. The time taken

to solve is also measured, however the metric is not as useful due to the implementation

of the iterative methods not being equally optimized. For each method, the recorded time

is both the solving time, i.e. the time until convergence (solving phase), and the time

required to build the relevant system of equations (preparation phase) (e.g. G,h). As for

computer and software specs., the first two experiments (Sec. 6.6.1 and Sec. 6.6.2) are done

on Computer 1, and the remainder with Computer 2. See Section 1.4 for computer and

software details.
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The Markov chains are of four types: N-pass, Block, Uniform and Sparse. The Uniform

model is used to simulate dense MCs, the Block for MCs with somewhat strongly connected

components, the N-pass is a sparse model that is generated differently to Sparse. The

probability matrix of each model is generated as follows. The Uniform and Sparse models

are generated by creating matrices of which elements are sampled uniformly between zero

and one. Then each row is normalized to ensure that each row sums to one forming the

probability matrix P. For the Sparse model, roughly 10% of P will have values. The Block

model is created by repeatedly adding one to a random block of indices to a matrix with

values all initially set to zero. Then, the resulting matrix is row-normalized. For our

experiments we used 200 blocks to generate these matrices. Lastly, the N -pass model is

a model that involves no normalization. Firstly, a set of states Q are sampled of which

their probabilities of reaching the goal state are generated uniformly in [0, 1). Then, for N

steps, at each step, the probability for each state entering a random state in Q is generated,

however in such a way that normalization is not required. For implementations of these

algorithms, please refer to Appendix C.

The pmfs are of four types: Binomial, (discrete) Gumbel, Geometric, and discrete Weibull.

Each pmf has different characteristics that may affect the convergence rate. In particular,

we are interested in whether the tail properties of these pmfs may be a significant factor.

The Weibull is considered to have the heaviest tail, followed by the Geometric, and lastly

the Gumbel. The Binomial has a tail which does not extend infinitely, i.e. it’s distribution

has a bounded support. Each pmf has a free single parameter that will be varied for the

experiments. Their definitions are as follows:

1. Binomial(n = 1501, p)(t) =
(

1501
t

)
pt(1− p)n−t

2. Gumbel(p, a = 5)(t) = e−5pt+1 − e−5pt

3. Geometric(p)(t) = (1− p1)t−1p1

4. Weibull(q, b = 0.5)(t) = f(t; q, 0.5) =

q(t−1)0.5 − qt0.5 t ∈ [1, 2, 3, · · · ]

0 otherwise

The free parameter is p for the first three pmf above, and q for the Weibull. The fixed

parameters above are chosen in a way to allow us to increase the tail strengths for the

pmfs with tails, and to move the peak of the binomial distribution across the interval

[0, 1, · · · , 1501]. The discrete Weibull comes from [94], and the discrete Gumbel is from

[32].

Experiment set-up The experiments below consist of randomly generating sMRMs, to

solve Pr(r ∩ s � 3B) via the system of equations (4.5). The sMRM is generated via a
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random sample of a selected MC type and pmf type. All the reward random variables for

a given sMRM are of the same type. Their free parameters are sampled uniformly within a

selected range shown later. For all experiments below, unless otherwise mentioned, we set

S? = 30, and we solve for Pr(r ∩ s � 3B), for r = 0, 1, · · · , N − 1 with N = 1501. For

each iterative method, we used the following termination criteria

maxs,r|f(n+1) − f(n)| ≤ ε

where ε = 1e− 7. Additionally, a max iteration of 2000 was used to terminate the method

if convergence was too slow.
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Figure 6.1: A sample of each type of Markov chain used in the experiments, represented via
a heatmap. Each rectangle above represents a probability matrix of a MC. The last column
is used as the probability of entering the (set of) goal states B.
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Figure 6.2: The different distributions used for the reward random variables. Each has
one free parameter which we varied. The Weibull is used for testing sMRMs with long-tail
distributions. The geometric is used for representing medium-tail distributions, whilst the
Gumbel is used for light tailed distributions. The Binomial distribution is bounded in the
interval [0, N − 1].

6.6.1 Comparison of the exact iterative methods

The average number of iterations taken by each of the exact iterative methods is presented

in Fig. 6.3, with box-plots shown in Fig. 6.5. The average time taken (secs.) is shown in

Fig. 6.4. For each combination of (MC type, pmf type, pmf param.), we obtain 50 samples.

In effect, each triplet of bars in Fig. 6.3 is the average result of 50 unique samples. Hence,

each cell is the result of 200 samples, with a total of 3200 samples for the whole plot.

For both the Weibull and Gumbel pmf, a consistent trend is that as the parameter range

increases, i.e. as the heaviness of their tails increases, then the iteration count decreases.

However, for the Geometric pmf, we have the inverse effect. A reason could be because the

Weibull and Gumbel distribution reduces its ‘peakiness’ as the parameter range increases,

whilst the Geometric pmf increases in ’peakiness’. Hence, a consistent hypothesis is that the

peakiness of the distribution near zero leads to longer convergence rates. For the binomial

pmf, the further away from zero its sampled mean, the lower the average number of iteration.

This appears consistent with the previous hypothesis. However, an alternative hypothesis

is that the further the mean is centred nearer N , the more likely the mean of the cumulated
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Figure 6.3: Average no. of iterations with each method for a given sMRM type. Each
triplet of bars (blue, orange, green) is an average of 50 unique samples. The free parameter
ranges are labelled on the x-axis. The free parameter of each pmf of an sMRM is sampled
within that range.

reward pmf is centred outside the interval [0, 1, · · · , N ]. Thus, the values in this interval

could be really small, meaning that convergence can be achieved faster.

As for the effects of MC types, the most prominent result from the plot is that the N -pass

MC took the fewest (average) iterations. The Block MC took the most, whilst the Sparse

and Uniform MC had similar averages. From the box-plots (Fig. 6.5), the Sparse MC yields

results with the largest spread, followed by N -pass. Some Sparse problems took longer than

problems with the Uniform MC type, and others took near zero iterations. This latter case

can happen if probability matrices that have been generated do not have any states reaching

B. We found that the iterative methods applied to such MCs would terminate after one

iteration, which is a correct result.

Lastly, we find that the convergence rate (in terms of number of iterations) ordered by

fastest to slowest is the Gauss-Seidel, followed by the Jacobi and then the power method.

As for the times taken, then we find the power method being optimal due to implementation
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Figure 6.4: Average time (secs.) taken for a given sMRM type. Whilst the Gauss-Seidel
uses the fewest iteration, it’s solving speed is slower as a result of how the method was
implemented.

reasons.

6.6.2 Comparison of the exact and approximate power methods

We now compare the exact and approximate method power using the same experiment as

above. Hence, the samples of this experiment are identical to the previous one. The average

number of iterations taken by each method is presented in Fig. 6.6 with the average time

taken shown in Fig. 6.7, and the box-plot for the time taken shown in Fig. 6.8.

We set the approximate method’s padding length to N − 1, which makes it identical

to the exact power method in terms of space requirements. Therefore the main difference

between the two methods is that the exact power method requires the DFT and the inverse

DFT to be applied in each iteration, whereas the approximate method does not. For the

exact power method, the same convergence threshold is used as before. For the approximate

power method, we used the termination criteria defined in (6.7) with the same threshold -

ε = 1e-7. A max iteration of 2000 was also used to terminate the method if convergence
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Figure 6.5: Box-plot results for the number of iterations are shown for each (MC,pmf,pmf
param.) combination, over 50 samples. The white diamond represents the mean, whilst the
circle dots are outliers. The median is the black solid line between the interquartile range.

was too slow, just like the power method.

A prominent trend is that the approximate power method requires more iterations on

average than the exact method for any cell in Fig. 6.6. We find that the average no.

of iteration for the approx. method is near equal for the first three rows. An exception

is in the Weibull column for the parameter range [0.75, 0.99) where it decreases. This

trend also highlights the Binomial column, where the average iteration count of the exact

method reduces as the parameter range increases, but the average for the approximate

method remains near constant. As for the time taken to solve (see Fig. 6.7), then for the

Binomial column, it appears that the exact method is the optimal choice, whereas for the

other columns, the results are mixed, although there appears to be some discernible albeit

complex rule to determine roughly which method leads to faster times.
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Figure 6.6: Average no. of iterations for specific sMRMs. The no. of iterations themselves
do not paint a full picture for solving times. Although, it is almost obvious that for the
Binomial column, the exact method is faster.

6.6.3 Scalability of selected methods

We study here how solving speeds are affected by increasing |S?| and N . We test just three

methods: exact power, approx. power and approx. LU methods. We also investigate the

approximate maximum (abs.) error between the approximate methods and the exact power

method.

Varying |S?|

The experiment setup is as before. For each combination of MC type and pmf type and

parameter value, we generate 50 samples. Our first experiment involves generating samples

for different values of |S?| whilst keeping N fixed to 251. For the Binomial pmf, its fixed

parameter n was set to 251. The free-parameters of all pmf types are sampled uniformly in

the range [0.3, 0.6]. The average time taken (secs.) is shown in Fig. 6.9 with the box-plots

for time shown in Fig. 6.11. The average maximum error for the approximate methods are

found in Fig. 6.10, with box-plots shown in Fig. 6.12.
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Figure 6.7: Average time (secs.) taken for specific sMRMs.

In each plot,the x-axis labels (i1, i2, i3, i4) correspond to the intervals [10, 30), [30, 50), [50, 100)

and [100, 150) respectively. For each interval, for each sMRM sample generated, |S?| was

randomly and uniformly selected between that interval. Note that for all results, for the

Geometric column and the Sparse row, the interval (i1) uses only 49 samples since a sample

resulted in failure when using the LU approx. method. This is due to a slice (matrix) of

the hypermatrix used being singular, which can happen.

In terms of average time, for the Binomial column, the exact power method is consistently

best. For the N -pass row, the approx. LU method is consistently worst. For the remaining

columns and rows, the approx. power method becomes worse than the exact power method

as the number of states increases. As for the surprising upwards kink shown by the approx.

LU method in the cell for the Gumbel pmf and Uniform MC, then the box-plot of Fig. 6.11

shows that this is due to an outlier.

Studying the error, we should find that the results are equal for each cell. However,

surprisingly, the approx. LU method returns extremely wrong results in the cells of the

Block MC row. A hypothesis may be that Block MCs are more susceptible to severe round-
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Figure 6.8: Box-plot results for solving time. Definitions of symbols are as in Fig. 6.5.

off errors. Another observation is that the Binomial pmf is hardest to obtain good accuracy,

and that sMRMs with the N -pass MC is easiest to obtain good accuracy.
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Figure 6.9: Average time taken (secs.). For each cell, each interval involves computing 50
unique samples.
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Figure 6.11: Box-plot results for time taken. Definitions of symbols are as in Fig. 6.5.
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Figure 6.10: Average max abs. error. Notice the huge gap in error for the Block column.
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Figure 6.12: Box-plot results for error of approximations. Definitions of symbols are as in
Fig. 6.5. The results do not show outliers being the cause of the discrepancy between the
errors in the Block row.
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Varying N

Our second experiment involves generating samples for different values ofN whilst keeping

|S?| fixed to 30. The free parameters of the pmfs are once more sampled uniformly in the

range [0.3, 0.6]. The average time taken, and the average approximate max abs. errors

are plotted in Fig. 6.13 and 6.14 respectively. In each plot,the x-axis labels (i1, i2, i3,

i4,i5) correspond to the intervals [1, 251), [251, 501), [501, 1501), [1501, 3001) and [3001, 6001)

respectively. Note that for the Binomial pmf, the fixed parameter n is set to N .

For the first row of results (Sparse) of both Fig 6.13 and 6.14, five samples out of 1000

yielded singular matrices and therefore failure for the approximate LU method. One sample

was from the Weibull column, with interval (i4). The remaining samples were from the

Geometric column, with one from (i1), two from (i3) and one from (i4).
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Figure 6.13: Average time taken (secs.). In each plot,the x-axis labels (i1, i2, i3, i4,i5)
correspond to the intervals [1, 251), [251, 501), [501, 1501), [1501, 3001) and [3001, 6001) re-
spectively. Comparing the speeds of the approximate methods here to their respective errors
in Fig. 6.14, neither approximate methods appear to be valuable.

The results show that the time complexity of each method is similar, which is expected.

As for the error of the approximate methods, we find the same strange result where the

approx. LU method fails drastically for sMRMs with the Block MC type.
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Figure 6.14: Average max approximate abs. error. We find that increasing N , leads to a
worser solution for the Block MC & Weibull cell.

6.7 Summary and discussion

In this chapter, we presented iterative algorithms that employ the FFT for solving discrete-

univariate non-negative reward sMRMs. For each of them we also presented approximate

variants that could have been considered initially to be faster at solving. But it turns out

when comparing the power method to its approximate variant, the results show that they

may not be very useful. The iterative methods are optimizable making their solving easier,

resulting in only the solution vector that requires transforming and inverting per iteration.

We find that the power method is practical and can scale to small-moderate size problems

without space optimizations.

We also found that the algorithms here are more scalable relative to the existing symbolic

approach as we could solve problems with 80 states and k = 1000 on our laptop, whereas

previously we could not solve a problem with six states (of a full graph) symbolically.

6.7.1 Limitations of the iterative methods

A limitation of our solution is that the reward random variables must be defined only

over the same lattice set (e.g. N). A reason to avoid arbitrary spaces is that convolution

with lattices does not require us to keep track of the abscissas. Otherwise, our solution
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(hyper-)vector grows per iteration, and the algorithm suffers from representation explosion.

Using lattices also allows use of the DFT, hence the FFT. Thus reward r.v.s not defined on

lattices, should be approximated by lattices if possible. Even, with (non-stochastic) MRMs,

the benefit of using lattices was that an algorithm for solving quantile probabilities can be

done in pseudo-polynomial time, but generally exponential-time otherwise [88].

The iterative methods presented here used for regular systems of linear equations have

a deficiency in that they may prematurely converge to the wrong solution possibly due to

extremely slow convergence. For example, given the iteration x(n) = Ax(n−1) + b. Then

x(l) is the solution after l iterations, and x(l+M) is the solution after l+M iterations where

M is a really large whole number. Assume that the maximum error between each iteration

between l and l + M is less than the absolute error tolerance level ε. Then, it is not

necessarily the case that x(l) − x(l+M) ≤ ε.

An example of where convergence to a wrong result for DTMCs is found in [49]. To

overcome this, they presented an algorithm called interval value iteration which solves the

problem twice, once from above giving an over-approximation and another from below

giving an underapproximation. Both however converge to the true solution when allowed

to iterate infinitely (theoretically). Note that value iteration algorithms are usable over

DTMCs, whilst being defined for Markov decision processes (MDPs). And that even though

the algorithm is written for systems of linear equations, this is adaptable for systems of

convolution equations. Alternatively, [79] also provides a solution to the problem, which

is stated to yield faster convergence for a particular set of problems. The solution by

[49] however requires values of the solution vector to be bounded between [0, 1], e.g. be

probabilities, hence it cannot be used for expected rewards. An algorithm to resolve this

was presented by [22], and can be adapted for variance (and covariance) problems (see [90]).

Even with these methods, interval value iteration [79] does not guarantee fast convergence,

i.e. convergence meeting the error tolerance level ε under reasonable time. See for example

the criticism by [70] and their resolution via exact model checking - an algorithm to sharpen

approximate solutions derived via value iteration or interval value iteration.

6.7.2 Direct convolution vs FFT convolution

The benefit of using direct convolution versus the DFT and therefore the FFT is that the

sparsity of reward random variables can be maintained. Take for example a discrete random

variable defined on the points [1, 25, 50]. If we wanted to determine the probability of the

accumulated reward being in [0, 99] (using the FFT) we will need to expand these three

points into a vector of 2 ∗ 100 − 1 = 199 elements. Thus whilst we may gain speed-up

using the FFT for dense problems, we worsen the space complexity. However, if we keep

the sparse representation of the random variable, we are left with the direct convolution
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algorithm which is less tractable for large intervals (O(n2) vs O(nlogn)), and therefore

we worsen time complexity. Note that whilst the hypervector h of (6.4) can be kept in

sparse form, it is not the main contributor to space complexity growth, but rather the main

contributor is the computation (A ◦G) ∗Of.

Realise that with the power method (at least), we can always partition convolutions (in

((A ◦ G) ∗Of)) into those more efficiently done with the FFT, and those done via direct

convolution or otherwise. Therefore sparse regions can be isolated if necessary.

Optimizations via overlap-add and overlap-save is possible, and appear to be suitable

areas to explore. For example, one may try to devise an algorithm to determine the optimal

partition length for overlap add/save. This would be done before solving the system of equa-

tions once. Research into optimal kernel tiling [75] and vector packing [81] can be studied

to reduce this blow up in space complexity without affecting time complexity drastically.

Alternatively, hyper-graphs may be used [28].
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Chapter 7

Iterative Methods with Continuous

Random Variables

7.1 Introduction

In this chapter we present numerical algorithms for solving first passage-reward densities

(i.e. the property Pr(r ∩ s � 3B)) for continuous-reward sMRMs. The approach uses

the DFT with numerical quadrature algorithms, as opposed to the continuous Fourier or

Laplace transform as found in literature for SMPs. We adapt some well-known quadrature

rules like: The trapezoid rule, Simpson’s rule and Romberg’s method, for convolution.

Then, the passage-reward densities can be solved for by combining these quadrature rules

with the power method derived in the previous chapter for example.

With the iterative methods already defined, then if we want to extend our numerical

solutions to probability density functions, i.e. to compute Pr(r ∩ s � 3B) for the bounded

continuous interval [0, k] for k ∈ R+, all that is required is that we are able to perform at

least two operations over pdfs; summation/subtraction and convolution. This is sufficient

for the power method. However, we are required to be able to perform deconvolution for

the Jacobi/Gauss-Seidel iterative methods and the Gaussian elimination algorithm.

We have mentioned previously in the literature review that there are existing algorithms

for semi-Markov processes (SMP) that can be adapted for sMRMs. In fact, it is probably

wise, for absolutely-continuous distributions to use these SMP techniques when possible,

namely the Laplace-Euler technique [28]. However, it was stated that other techniques

should also be considered for non-continuous pdfs [95], for example by the DFT. We present

here a study of how the DFT can be used in such a case and investigates how well it succeeds

with discontinuous pdfs. Such distributions can be derived from interpolated empirical cu-

mulative distribution functions (ecdf), or known distributions like the Uniform distribution,

or compositions of continuous and discontinuous distributions. Note that discontinuous pdfs
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themselves can be approximated as smooth (absolutely continuous) distributions via a pro-

cess known as mollification, said to have been introduced by [42]. The process involves

smoothing the discontinuous distribution by convolving it with another distribution that is

infinitely differentiable called a (Friedrich) mollifier, named after the person who introduced

it. Pacal is a (python) library that allows us to do this (by providing a mollifier distribu-

tion), and we see quite good results for the mollified Uniform distribution. However, upon

smoothing a discontinuous pdf f(x) (of a non-negative random variable) with a mollifier

distribution, the resulting smoothed pdf f̂(x) will naturally have some error introduced.

For example, it is possible that has
∫ 0
∞ f̂(x)dx > 0, hence it is no longer a pdf of a strictly

non-negative random variable.

Another approach we could have taken is to use classes of functions (such as polynomials)

to approximate our convolution integrals and convex combinations of pdfs. Then two issues

arise in general when using analytical representations:

1. The analytical representations will usually require a set of coefficients to represent.

Then, convolutions of any two functions may yield a larger set of coefficients. In

essence, for the finite case earlier, the re-zeroing of our DFT solution vector after each

iteration (see Theorem 6.4) (preventing either time-aliasing, or the growing of our

DFT vector by subsequent zero-padding), will require an analogous counterpart in

the continuous case. One simple solution for this is to re-approximate these resulting

pdfs by a set of functions with a fixed finite number of coefficients, thus mitigating

coefficient-growth, or representation explosion [28].

2. The second issue we have is that of convergence. To determine if the current ap-

proximation of the solution is good relative to the previous solution, we can use mea-

sures like the Kullback-Leibler divergence criteria, the Kolmogorov-Smirnov test, or

Akaike’s information criterion. However, we will still need to prove that convergence

is guaranteed when enforcing a finite coefficient set for each function.

In this chapter, we experiment with perhaps a simpler approach, and experiment with

variants of one method to deal with continuous random variables that are continuous over

the non-negative real line (though it may be used with discontinuous pdfs). We will approx-

imate convolutions via quadrature rules which will allow us to approximate the convolution

of continuous random variables. This idea is already known, for example see [78]. As we

shall see, this method allows us to rewrite our problem in the same form as the discrete

case, and so we obtain similar time complexities as the algorithms for pmfs.

In the remainder of this chapter, we first introduce numerical convolution and deconvolu-

tion techniques. We then present iterative methods for solving Pr(r ∩ s � 3B) over sMRMs

with continuous reward random variables, using these techniques. Finally, empirical results
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on the performance of the iterative methods are shown. Note that for the continuous reward

random variables, we make the assumption in this chapter that no singularities exists for

them.

7.2 Numerical Convolution

In this section we develop rules for numerical convolution via old and simple ideas. We

develop the Riemann sum approximations, the trapezoid rule, and the Romberg’s method

in that respective order. We will later show how these rules can be used to solve for the

property Pr(r ∩ s � 3B) within sMRMs. In this section, we assume that any functions

defined below are Riemann integrable (or continuous almost everywhere).

7.2.1 Riemann sum approximation

Let X,Y be two non-negative continuous random variables distributed as f(t), g(t) re-

spectively and these pdfs are continuous (or continuous almost everywhere) also. Their

summation gives us a new random variable Z = X+Y with pdf h(t), which can be approx-

imated via the right Riemann sum with N points as

h(t) = (f ∗ g)(t) =

∫ t

0
f(t− x)g(x)dx ≈ t

N − 1

N−1∑
i=1

f(t− xi)g(xi) = hR(t)

or the left Riemann sum with N points as

h(t) ≈ t

N − 1

N−2∑
i=0

f(t− xi)g(xi) = hL(t)

where xj = j t
N−1 for j = 0, 1, · · · , N − 1. It is known that as N →∞, then h(t) = hR(t) =

hL(t).

Then, the values (hR(xj))0≤j<N and (hL(xj))0≤j<N can be computed via a discrete con-

volution. Since xs(t,N) is equidistant, we can employ the FFT to perform the convolution

operation.

Let x = {xj}0≤j<N = {j k
N−1}0≤j<N be the set of N equidistant points between [0, k].

For a given continuous function l, let l̄ denote a vector of length N where (l̄[j])0≤j<N =

(l(xj))0≤j<N . Let l̄0 denote the same vector but where l̄0[0] = 0. Then, the right Riemann

sum above can be written as

hR(xj) =
k

N − 1
convN(f̄ , ḡ0)[j]
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and the left Riemann sum is

hL(xj) =
k

N − 1
convN(f̄0, ḡ)[j]

for j = 0, 1, · · · , N − 1.

7.2.2 Trapezoid rule

Previously, we presented rules for the Riemann approximation of h(t). Now we present a

way to compute the approximation via the trapezoid rule.

The trapezoid rule for h(t) is simply

h(t) ≈ 1

2
(hL(t) + hR(t)) = hT (t)

that is, it can be computed as the average of the left and right Riemann sum.

Define x = {xj}0≤j<N = {j k
N−1}0≤j<N . Then, the trapezoid rule can be computed as

hT (xj) =
k

2(N − 1)
(convN(f̄ , ḡ0)[j] + convN(f̄0, ḡ)[j])

for j = 0, 1, · · · , N − 1. Since the trapezoid rule is the average of the left & right Riemann

sums, it follows that as N →∞, then h(t) = hT (t).

7.2.3 Romberg’s method

Romberg’s method [76, p. 169] named after W. Romberg who introduced it in [82], allows us

to achieve higher-order approximations and relies on the trapezoid rule. Romberg’s method

for h(t) is defined recursively as

h(t) ≈ hRl,N (t) =
4l−1

4l−1 − 1
hRl−1,(2N−1)(t) +

1

4l−1 − 1
hRl−1,N (t)

where l is the level or order of the approximation with l ≥ 2, N is the number of points

used, and hR1,N (t) is equal to the trapezoid rule approximation hTN (t) with N equidistant

point used.

To compute hRl,N (t), we first obtain the trapezoidal approximations hTN (t), hT2N−1(t),

hT4N−3(t), · · · , hT
(2l−1N)−(2l−1−1)

(t). Then, from these terms, we compute the set of approx-

imations hRo,N (t), hRo,2N−1(t), · · · , hR
o,(2l−oN)−(2l−o−1)

(t), in the order o = 2, 3, · · · , l.
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For example, if we let l = 2, then the Romberg method is equal to

h(t) ≈ hR2,N (t) =
4

3
hR1,(2N−1)(t) +

1

3
hR1,N (t) =

4

3
hT2N−1(t) +

1

3
hTN (t)

which is equal to a rule called Simpson’s rule. Define x = {xj}0≤j≤2N−1 = {j k
2N−2}0≤j≤2N−1,

and y = {yj}0≤j<N = {j k
N−1}0≤j<N . Then,

hR2,N (yj) =
4

3
hT2N−1(yj) +

1

3
hTN (yj)

=
4

3

k

2(2N − 2)
(conv2N−1(f̄x, ḡx0)[2j] + conv2N−1(f̄x0 , ḡx)[2j])

+
1

3

k

2(N − 1)
(convN(f̄y, ḡy0

)[j] + convN(f̄y0
, ḡy)[j])

for j = 0, 1, · · · , N − 1, and where for example f̄x is equal to f̄ derived from the set of

points x. As N → ∞, then h(t) = hR(t), furthermore as l increases, the order of the

accuracy increases. See Section 7.7 for details. An example of the Romberg method used

for convolution is shown in Appendix B.3.

7.3 Numerical Deconvolution

To use the iterative Jacobi/Gauss-Seidel algorithms, we will need to be able to numerically

deconvolve. Care has to be taken when performing numerical deconvolution since it cannot

be naively integrated into the convolution equations (5.5) as it involves dealing with func-

tions that have singularities. Additionally, numerical deconvolution is generally unstable,

for example see [27].

Note however, that the deconvolution operations within these iterative algorithms all take

the same form - pfX D (δx0 − qfY ) - where fX , fY are pdfs, δx,0 is the Dirac delta, and p, q

are probabilities such that 0 ≤ p + q ≤ 1, but q 6= 1. We exclude the case where q = 0,

since this is trivial, as pfX D (δx0− qfY ) = pfX . See for example the Jacobi equation (6.9).

Deriving a numerical algorithm for this deconvolution operation is made difficult due to the

singularity introduced by the Dirac delta, combined with the fact that deconvolution is not

distributive.

However, note that this form is analogous to the limit of a geometric series. For example,

by taking the FT of the deconvolution operation, we obtain

pFX(τ)

1− qFY (τ)
= pFX(τ) + pFX(τ)qFY (τ) + pFX(τ)q2F 2

Y (τ) + · · · =
∞∑
k=0

pFX(τ)qkF kY (τ)
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where |qFY (τ)| < 1. Taking the inverse FT of the above gives us

pfX D (δx0 − qfY ) = pfX + pfX ∗ qfY + pfX ∗ (qfY ∗ qfY ) + pfX ∗ (qfY ∗ qfY ∗ qfY ) + · · ·
(7.1)

Then, the continuous convolutions above can be approximated via one of the quadra-

ture rules previously described. For example, if using the right Riemann sum, let x =

{xj}0≤j<N = {j k
N−1}0≤j<N . Denote v1 = pfX , and v2 = δ − qfY . Then, we can introduce

the deconvolution operation using convolutions via the right Riemann sum as

dvcN,m
R(v1, v2) = v̄1 +

m∑
n=1

convN(v̄1, h
(n)
N0

) (7.2)

where h
(n)
N = convN(h̄

(n−1)
N , v̄20), and h

(1)
N = v̄2. As n → ∞ and N → ∞, the geometric

series converges to the true solution.

7.4 The continuous power method

We present a way to solve the set of equations (4.5), i.e.

f = (A ◦G) ∗Of + h

for the property Pr(r ∩ s � 3B), using the power method

f(n+1) = (A ◦G) ∗Of(n) + h

and by incorporating the numerical convolution methods previously described. We assume

that all pdfs in the system above are Riemann integrable (continuous almost everywhere).

7.4.1 The power method with Riemann sums

Define x = {xj}0≤j<N = {j k
N−1}0≤j<N , the set of equidistant points between the interval

[0, k]. Then, for each n, we can approximate f
(n+1)
s with the right Riemann sum as

f (n+1)
s (xi) =

∑
t∈S?

((As,tGs,t) ∗ ft)(xi) + hs(xi)

≈
∑
t∈S?

k

N − 1
convN(As,tḠs,t, f̄

(n)
t0

)[i] + hs(xi)
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for i = 0, 1, · · · , N − 1. Thus, repeating this approximation for each n, the power method

with the right Riemann sum is

fR(n+1)
s (xi) =

∑
t∈S?

k

N − 1
convN(As,tḠs,t, f̄

R(n)
t0

)[i] + hs(xi) (7.3)

where f
R(0)
s (xi) = 0. The power method with the left Riemann sum is derived similarly.

The power method with the left and right Riemann sums have the respective matrix forms

f̄
L(n+1)

=
k

N − 1
(A ◦ Ḡ0) ∗Of̄

L(n)
+ h̄ f̄

R(n+1)
=

k

N − 1
(A ◦ Ḡ) ∗Of̄

R(n)
0 + h̄

(7.4)

7.4.2 The power method with the trapezoid rule

Let x be defined as above, then f
(n+1)
s can be approximated with the trapezoid rule using

f (n+1)
s (xi) =

∑
t∈S?

((As,tGs,t) ∗ ft)(xi) + hs(xi)

≈
∑
t∈S?

k

2(N − 1)
(convN(As,tḠs,t, f̄

(n)
t0

)[i] + convN(As,tḠs,t0 , f̄
(n)
t )[i])

+ hs(xi)

for i = 0, 1, · · · , N − 1. Then, repeating the approximation for each n, the power method

with the trapezoid rule is

fT (n+1)
s (xi) =

∑
t∈S?

k

2(N − 1)
(convN(As,tḠs,t, f̄

T (n)
t0

)[i] + convN(As,tḠs,t0 , f̄
T (n)
t )[i])

+ hs(xi) (7.5)

The matrix form for this method is

f̄
T (n+1)

=
k

2(N − 1)
((A ◦ Ḡ) ∗Of̄

T (n)
0 + (A ◦ Ḡ0) ∗Of̄

T (n)
) + h̄

7.4.3 The power method with Romberg’s method

Define x = {xj}0≤j≤2N−1 = {j k
2N−2}0≤j≤2N−1, and y = {yj}0≤j<N = {j k

N−1}0≤j<N . Then

the power method with Romberg’s method with level l is

f (n+1)
s (yi) ≈ fR(n+1)

s(l,N)
(yi)

=
4l−1

4l−1 − 1
fR(n+1)
s(l−1,2N−1)

(yi) +
1

4l−1 − 1
fR(n+1)
s(l−1,N)

(yi)

111



for i = 0, 1, · · · , N − 1. To compute the above, we begin from the order o = 1, 2, · · · , l. For

example, let l = 2, then

f (n+1)
s (yi) ≈ fR(n+1)

s(2,N)
(yi)

=
4

3
fR(n+1)
s(1,2N−1)

(yi) +
1

3
fR(n+1)
s(1,N)

(yi) =
4

3
fT (n+1)
s(2N−1)

(yi) +
1

3
fT (n+1)
s(N)

(yi)

where we iterate using the power method with the trapezoid rule (until convergence) twice:

once with the set of points x to obtain the approximation fTs(2N−1)
, and a second time with

y to obtain fTs(N)
. Then, their weighted averages are taken as above.

7.5 The continuous Jacobi method

This time, we use the Jacobi iterative sequence (6.9),

f(n+1) =
∑
t∈S?/s

H ∗Of(n) + κ

where Hs,t = (As,tGs,t D (δ −As,sGs,s)) and κs = hs D (δ −As,sGs,s).

We elaborate here only the Jacobi method with the Riemann sum approximations. The

method with other numerical integration rules are derived in the same fashion as with the

power method. Replacing Jacobi with Gauss-Seidel is by analogy of Section 6.4.2.

7.5.1 The Jacobi method with Riemann sums

Define x = {xj}0≤j<N = {j k
N−1}0≤j<N , the set of equidistant points between the interval

[0, k]. Then, for each n, we can approximate f
(n+1)
s with the right Riemann sum as

f (n+1)
s (xi) =

∑
t∈S?/s

((As,tGs,t D (δ −As,sGs,s)) ∗ f (n)
t )(xi) + (hs D (δ −As,sGs,s))(xi)

≈
∑
t∈S?

k

N − 1
convN(H̄

R
s,t, f̄

(n)
t0

)[i] + κRs (xi)

where H̄R
s,t(xi) = dvcN,m

R(As,tGs,t, δ−As,sGs,s)[i] and κRs (xi) = dvcN,m
R(hs, δ−As,sGs,s)[i],

for i = 0, 1, · · · , N − 1. Thus, repeating this approximation for each n, the Jacobi method

with the right Riemann sum is

fR(n+1)
s (xi) =

∑
t∈S?

k

N − 1
convN(H̄

R
s,t, f̄

R(n)
t0

)[i] + κRs (xi) (7.6)
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where f
R(0)
s (xi) = 0. The Jacobi method with the left and right Riemann sums have the

respective matrix forms

f̄
L(n+1)

=
k

N − 1
(A ◦ H̄

L
0 ) ∗Of̄

L(n)
+ κ̄L f̄

R(n+1)
=

k

N − 1
(A ◦ H̄

R
) ∗Of̄

R(n)
0 + κ̄R

(7.7)

7.6 Convergence analysis

For any variant of the power method described above, as the number of points used to

approximate the convolution integrals increases, i.e. as N → ∞, then the summations

converge to the convolution integrals. Then, by Theorem 4.7, a unique solution exists.

And by Theorem 6.1, the power method converges to the unique solution as the number of

iteration n tends to infinity.

If using the Jacobi/Gauss-Seidel methods, as N → ∞, by Theorem 6.6, they both con-

verge to a unique solution. Additionally, the numerical deconvolution procedure described

in Section 7.3 also converges to the analytical deconvolution operation as N → ∞, and as

more terms of the geometric series are computed.

7.7 Error analysis

Let f be the solution to the system (4.5) and f̂N , f̂M be approximate solutions derived by

one of the methods described in this chapter, with f̂N for example, using N points for

quadrature. Let M > N , then a general and practical way of approximating the absolute

truncation error (or absolute true error) |E| = |̂fN − f|, is by using the absolute approximate

error, i.e. |E| ≈ |̂fN − f̂M |. Hence, we can use the accuracy criteria

maxs,r|f̂sN [r]− f̂sM [r]| ≤ ε

to gauge if the accuracy is good enough (of either approximations). We know that as

N → ∞, and with M > N , then |E| → 0. We may also use multiple approximations with

the number of points N < M < · · · < Q, and use the criteria above repeatedly for each

consecutive pair to obtain a more secure estimate of the error.

For some systems we may be able to determine an error bound EN , such that |̂fN (t) −
f(t)| = |EN (t)| ≤ |EN (t)|. Under certain conditions, one might to use the truncation error

EN (t) for the quadrature rules (Riemann, trapezoid, Simpson & Romberg) to determine

EN . We now proceed to derive the error bounds.
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Firstly, we define the truncation error for the quadrature rules above for one-dimensional

convolution integrals. Define p, q to be pdfs of non-negative random variables, then let

z(t) = (p ∗ q)(t) =
∫ b
a p(x)q(t − x)dx =

∫ b
a f(x, t)dx. Define x as the set of N equidistant

points between the interval [a, b] that will be used for quadrature and let h = (b−a)
N denote

the step size between these points. Each quadrature rule can be written in the form

∫ b

a
f(x, t)dx =

N∑
i=0

wif(xi, t) + EN (t) (7.8)

where EN (t) is the truncation error. For simplicity, we assume that f is infinitely differen-

tiable. Then, the errors for the various quadrature rules (taken from [76]) are as follows.

1. For both the left and right Riemann sums, EN (t) = (b−a)h2f
′
(ξ, t), for some ξ ∈ [a, b],

and where f
′
(x, t) is the first derivative with respect to x. The truncation error is of

order O(h).

2. For the trapezoid rule, EN (t) = −(b− a)h
2

12f
′′
(ξ, t) ∼ O(h2).

3. For Simpson’s rule, EN (t) = −(b− a) h
4

180f
′′′′

(ξ, t) ∼ O(h4).

4. Romberg’s method has a truncation error of order O(h2l+2) where l is the level for

the method. From [76, pg. 170], we obtain

EN (t) = α0h
2(l+1)E2(l+1)(t) + α1h

4(l+1)E4(l+1)(t) + α2h
6(l+1)E6(l+1)(t) · · ·

for some constants a0, a1, a2, · · · , where E2(r) = (f(2r−1)x(b, t) − f(2r−1)x(a, t)), and

f(2r−1)x denotes the partial derivative ∂(2r−1)f/∂x(2r−1). A more precise formula is

given in the reference, that enables the determination of the constants a0, a1, a2, · · · .

The truncation errors above can be written in a more general form. Let f(x, ~y) be a

multivariable function being integrated over x as above. Then, the error bounds above take

the form

(b− a)g(h)fcx(ξ~y, ~y)

where fcx denotes the partial derivative ∂cf/∂xc, g is a function of h, and ξ~y is value in

[a, b] that depends on the values ~y. For the derivations later, note that for the degenerate

function f(x, ~y) ≡ 1, its partial derivatives are all strictly zero (as are all further partial

derivatives). Hence, the truncation error is zero. Therefore the quadrature rules above can

all integrate degenerate functions over any interval [a, b] without error.

Secondly, when approximating multiple integrals by using the same quadrature rule for

each dimension, we find that the truncation error is of the same order. Philips & Taylor [76]

showed how the error bounds for Simpson’s rule can be generalized for double integrals. We
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further generalize this to multiple integrals with any of the rules above. The error bounds

are derived as follows. Define the multiple integral

z(t) =

∫
· · ·
∫ b

a
f(~x, t) d~x (7.9)

where ~x = (x0, x2, · · · , xω−1). Let I = {0, 1, · · · , N}. For i = (i0, i1, i2, · · · , ik−1) ∈ Ik,

we write xki = (xi0 , xi1 , · · · , xik−1
) ∈ xk to denote a k-dimensional point from the set of

equidistant points xk defined on the grid [a, b]k. Let the set of N weights for the quadrature

rule being used be denoted as w. Then wk
i = (wi0 , wi1 , · · · , wik−1

) ∈ wk is the weight

associated to the k-dimensional point xki .

Now, the approximation of z(t) can be written as

z(t) ≈
∑
i∈Iω

wi0 · · ·wiω−1f(xi0 , · · · , xiω−1 , t) =
N∑
i∈Iω

(
∏
j

wω
i,j)f(xωi , t)

As for determining the error bounds, applying a quadrature rule to the innermost integral

of equation (7.9) yields∫ b

a
f(x0, x1, · · · , xω−1, t)dx0 =

∑
i∈I

wi0f(xi0 , x1, · · · , xω−1, t) + Ex0(t)

where Ex0(t) =(b − a)g(h)fcx0(ξ, x1, · · · , xω−1, t). Then, applying the quadrature rule to

the next innermost integral for each i0 leads to∫ b

a

(∑
i∈I

wi0f(xi0 , x1, · · · , xω−1, t) + Ex0(t)
)
dx1

=
∑
i∈I2

wi1wi0f(xi0 , xi1 , · · · , xω−1, t) + wi0Ex1(t, i0) +

∫ b

a
Ex0(t)dx1

where Ex1(t, i0) =(b− a)g(h)fcx1(xi0 , ξ, x2, · · · , xω−1, t). In this fashion, after applying the

quadrature rule to all integrals, we find for example that the error from the 1st quadrature

accumulates to Êx0(t) defined as

Êx0(t) =

∫
· · ·
∫ b

a
Ex0(t) dx1 · · · dxω−1

We find generally that the total error accumulated from the γth quadrature, where γ =

1, · · · , ω, is

Êxγ−1(t) =
∑

i∈Iγ−1

wi0 · · ·wiγ−2

∫
· · ·
∫ b

a
Exγ−1(t, i0, · · · , iγ−2) dxγ · · · dxω−1 (7.10)

115



where Exγ−1(t, i0, · · · , iγ−2) =(b− a)g(h)fcγ−1(xi0 , · · · , xiγ−2 , ξ, xγ , · · · , xω−1, t). When γ =

0, there are no summation variables, i.e. since I0 = {}. When γ = ω, there are no

integration variables, since dxω > dxω−1 . The total truncation error is then

ω−1∑
j=0

Êxj (t) (7.11)

Note however, that if the modulus of fcxj (· · · , t) is bounded above by Mx(t), for each of

j = 0, 1, · · · , ω − 1. Then,

|Êxj (t)| ≤ (b− a)|g(h)|Mxj (t)
∑
i∈Ij

wi0 · · ·wij−1

∫
· · ·
∫ b

a
1 dxj+1 · · · dxω−1

= (b− a)|g(h)|Mxj (t)
∑
i∈Ij

wi0 · · ·wij−1(b− a)(ω−1)−j

= (b− a)|g(h)|Mxγ−1(t)(b− a)j(b− a)(ω−1)−j

= (b− a)ω|g(h)|Mxγ−1

The integrals above are applied over the constant 1, and therefore integrate to (b −
a)(ω−1)−j . The summations with weights wi0 · · ·wij−1 can be interpreted as applying a

quadrature approximation to an integral of a degenerate function g(x0, · · · , xj−1) ≡ 1,

which therefore leads to no truncation error and we obtain the result (b− a)j .

Hence, the total truncation error (7.11) is bounded above as

|
ω−1∑
j=0

Êxj (t)| ≤ (b− a)ω|g(h)|
ω−1∑
j=0

Mxj (t) = (b− a)ω|g(h)|
∑

~Mf (t)

We can now address the truncation error and its order for the methods described in this

chapter for solving systems of convolution equations. The pdf fs has the form

fs(x) =
∑
π̂∈Π.s

Pr(π̂)fRew(π̂)(x)

where each fRew(π̂)(xi) is equal to a series of convolutions between the pdfs on each transition

in π̂. The series of convolution equates to an (|π̂| − 1)-dimensional integral, i.e.

fRew(π̂)(t) = (frew(s0,s1) ∗ frew(s1,s2) ∗ · · · ∗ frew(s|π̂|−2,s|π̂|−1))(t)

=

∫
· · ·
∫ t

0
f(x0, x1, · · · , x|π̂|−2, t) dx0 · · · dx|π̂|−2
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for some function f . Let f̂Rew(π̂)(t) be the approximation of the integral via a quadrature

rule. Denote the length |π̂| − 1 = p, then

|f̂Rew(π̂)(t)− fRew(π̂)(t)| ≤ tp|g(h)|
∑

~MfRew(π̂)
(t)

hence,

|f̂s(t)− fs(t)| ≤
∑
π̂∈Π.s

Pr(π̂)tp|g(h)|
∑

~MfRew(π̂)
(t) (7.12)

or in terms of the truncation error order,

|f̂s(t)− fs(t)| ≤
∑
π̂∈Π.s

Pr(π̂)O(|g(h)|) = O(|g(h)|) (7.13)

The order proves that the various quadrature rules converge at rates identical to the

one-dimensional convolution case. As for generally using the error bounds in practice, then

it does not appear to be tractable due to the requirement of computing ~MfRew(π̂)
(t) for

example. This involves convolving all pdfs of the path analytically, being able to derive its

partial derivatives, and then the ability to determine the maximum value of their moduli.

7.8 Experiments with sMRMs

We move forward to experimenting with continuous-reward sMRMs. We will use the power

method as the iterative algorithm of choice.

7.8.1 Example 1a: A toy problem with discontinuities

In this problem, each reward random variable of a given sMRM is the same - a mixture

of uniform distributions; a discontinuous distribution. We seek to determine the first-

passage reward density between the interval [0, 100], of reaching B from a state s0. We also

investigate if mollification of our reward pdfs - the smoothing of our discontinuous reward

pdfs, can help us attain better accuracy. We used the power method to derive the solution

and the absolute error tolerance level was set to 1e-8.

Let us use the following problem to evaluate our results. We will re-use the matrix and

vector A, b respectively from the previous problem in Section 5.6.1:
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A =

s0 s1 s2 s3


s0 0.1288838 0.38242891 0.12495781 0.13139189

s1 0.27758284 0.09654253 0.15592425 0.24690511

s2 0.10418887 0.18054794 0.1492027 0.32815053

s3 0.33540355 0.31410283 0.16746947 0.1316041

b =
(

0.23233759 0.22304527 0.23790995 0.05142005
)

The transition probabilities from si to the three other states corresponds to the ith row

of the matrix A. Likewise, its probability of entering B immediately is the ith element of b.

As for the rewards, each element is the mixture of uniform distributions:

frew(s,t)(x) =
1

3
fU(0,2)(x) +

1

3
fU(0.5,4)(x) +

1

6
fU(2,8)(x) +

1

6
fU(6,15)(x)

where fU (a, b) is the pdf of the uniform distribution defined in the interval [a, b]. We also

mollify the distribution using the Pacal library, via a mollifier distribution. The mollifier

distribution is added to the reward random variable (i.e. their pdfs are convolved via Pacal)

to smooth it out. It has a parameter to determine how much smoothing occurs, which we

set to 0.05. The mixture distribution, unadulterated and mollified, is shown in Figure 7.1.

Note that the mollification procedure causes the distribution to have a slight measure for

values x < 0.

0 2 4 6 8 10 12 14
x

0.00

0.05

0.10

0.15

0.20

0.25

pd
f(x

)

Mollified distribution
Original distribution

Figure 7.1: Pdf of a mixture of uniform distributions.
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The density for Pr(r ∩ s0 � 3B) is plotted in Figure 7.2. Romberg’s method of various

levels and the trapezoid rule with various numbers of samples were used. The error plotted

is the absolute error relative to Romberg’s method, at the 6th level (or order). The error

is also shown for the same set of points of each solution. This is possible with the use of

equidistant points, as well as the number of points used.

We find that a considerable number of points are required to attain an absolute error

around four decimal places. With an increase of points, mollification appears to either

converge more slowly or to the wrong solution. Since mollification introduces error, we

should expect convergence to a slightly wrong solution. The approximate pdf has values

strictly less than two decimal places, therefore true accuracy is better measured beyond two

decimal places.

The respective cdfs and their absolute errors are also plotted in Figure 7.3. The cdfs

are derived using the cumulative trapezoid rule over the pdfs. We find some rules, like

the trapezoid rule with mollification, gain a significant digit in error. No rule obtains four

decimal places of error. Note that when determining probabilities with cdfs or computing

quantile queries, we may have to interpolate them which potentially introduces further

error.
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Figure 7.2: Top: Approximations of the pdf fs0(r) = Pr(r∩s0 � 3B) via various quadrature
rules and number of points N . Bottom: Error of approximate pdfs relative to the 6th level
Romberg approximation. T is the maximum number of points needed, i.e. the solution via
the power method with the trapezoid rule at N = T is required.
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Figure 7.3: Top: Approximations of the cdf Fs0(r) = Pr(Rew ≤ r ∩ s0 � 3B) via various
quadrature rules and number of points N . Bottom: Error of cdfs relative to the 6th level
Romberg approximation.

7.8.2 Example 1b: A toy problem without discontinuities

This problem is identical to the previous problem 1a, except that each reward distribution

is replaced with the Weibull distribution with parameters k = 3, λ = 1, hence each reward

pdf is continuous. The power method was used again, but the absolute error tolerance level

ε was set to 1e-16.

We find in this case greater accuracy (or low absolute error relative to Romberg’s method

at level 6) can be achieved with far fewer points. The pdfs and their respective errors are
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plotted in Figure 7.4.
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Figure 7.4: Approximations of the pdf fs0(r) = Pr(r ∩ s0 � 3B) via various quadrature
rules and number of points N . Bottom: Error of approximate pdfs relative to the 6th level
Romberg approximation.

7.8.3 Example 2: Movement of coronary patients

We obtain a problem from [95] with a model originally from [60], that captures the move-

ment of myocardial infarction positive patients in a hospital. The model approximates the

likelihood of patients transiting between 9 states: coronary care unit (CCU), post-coronary

care unit (PCCU), intensive-care unit (ICU), medical unit (MED), surgery (SERG), am-

bulatory care (AMB), extended care facility (ECF), HOME and DIED. The model is an
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sMRM, represented by the probability matrix P and the reward matrix rew below. In this

instance the reward represents time, and thus the sMRM is an SMP. Such a model may be

useful for operational research purposes, i.e. to aid in planning or decision making.

The following is the probability matrix of the sMRM:

P =

CCU PCCU ICU MED SURG AMB ECF HOME DIED



CCU 0.0000 0.7447 0.0084 0.1339 0.0042 0.0063 0.0000 0.0063 0.0962
PCCU 0.0192 0.0000 0.0137 0.0247 0.0027 0.0027 0.0577 0.8298 0.0495
ICU 0.0000 0.5833 0.0000 0.1667 0.0833 0.0000 0.0000 0.0000 0.1667
MED 0.0000 0.0135 0.0405 0.0000 0.0135 0.0270 0.0811 0.7028 0.1216
SURG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
AMB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
ECF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
HOME 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
DIED 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

The reward matrix consists of only five unique Weibull(γ, θ) distributions:

f1 ∼Weibull(4.738025, 4566277818.13)

f2 ∼Weibull(2.207438, 14541.6089)

f3 ∼Weibull(0.766338, 16.6991)

f4 ∼Weibull(2.303331, 1017649.5158)

f6 ∼Weibull(1.623492, 4707.3132)

and where the Weibull distribution is defined as

f(k; γ, θ) =
θ

γ
kγ−1e−(kγ/θ)

with k > 0, γ > 0, θ > 0. The random cost in this problem is the amount of time elapsed.

The reward/cost (pdf) matrix is defined as

rew =



f1 f1 f1 f1 f2 f2 f3

f4 f1 f4 f1 f1 f4 f4 f6

f4 f1 f1 f3

f4 f4 f4 f4 f4 f4 f6

f4

f4
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where empty spaces are placeholders for the (zero) Dirac delta distribution δk,0. Now, we

can use both P and rew to obtain the set of terms: A,G and h for each problem we are

required to solve below. Note that there appears to be a discrepancy between the reward

matrix of [95] and [60], in the second row of the second-to-last column on page 690 (of

matrix H1). The latter had the element as blank, but the former used f4 instead. It may

be that there is a typographical error in the latter, and so we will plot our experiments

relative to [95]. Perhaps the validity of this is that in doing so, our experiments align more

closely with the results of both works.

Formally, we are solving for the reward-bounded reachability probability Pr(s � 3≤rB),

described in Section 4.2. This as we have mentioned is considered a cumulative distribution

function with the variable r. The set of absorbing states is Abs = {ECF, HOME, DIED}.
In this problem we are interested in the cdf Pr(CCU �≤r B) where B ∈ Abs. We solve

this by computing the passage-reward density Pr(r ∩ CCU � 3B) or fCCU�3B, and then

integrating it to obtain the cdf. Hence, we solved three systems of convolution equations,

once for each state in Abs, each system with the form f = A ◦G ∗Of + h, defined in Section

4.2.5.

The power method with the trapezoid rule was used with N = 4001 (the number of

points for quadrature). After obtaining an approximation for f, each fs was integrated via

the cumulative trapezoid rule. Note that since Pr(s � 3B) ≤ 1 (because B is a proper

subset of Abs), then each f is a hypervector of partial pdfs (see Section 4.2.5). Ultimately,

we obtain three partial cdfs of the form FCCU�3B(r) for each B ∈ Abs.

We plot the (partial) cdf of reaching each absorbing state in Fig. 7.5 starting from the

state CCU. The result appears similar to that found in [60] who used a different discretiza-

tion technique instead. The plot is read by drawing a vertical line from the x-axis, and the

proportion of colour intersecting the line is the probability of being in the state with that

respective color, at the chosen time. The cdf FCCU�3Abs(r) can be computed as

FCCU�3Abs(r) ≡
∑
B∈Abs

FCCU�3B(r)

and is represented by the uppermost edge, i.e. where the white density intersects the black

density. If the survival functions are computed instead (i.e. flipping the graph below upside

down), then the results are similar to those of [95] for their plot of time vs. the probability

of being in a particular state.
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Figure 7.5: The partial cdfs of being in state DIED, HOME and ECF are plotted against
time. The process started in the state CCU. The cdfs are stacked on top of each other
(by addition) to create a full cdf that converges to 1 as time tends to infinity. Each colour
encapsulates the regions of a particular cdf.

7.8.4 Empirical evaluation of convergence rate, time and error

We investigate here the effectiveness of the Romberg method for solving specific classes

of sMRMs. Specifically, this experiment is similar to the experiment found in Section

6.6. Thus, it should be read first. The difference now is that we are working with four

continuous reward random variables. Additionally, the iterative methods of choice are:

Romberg’s method of levels 1, 2 and 3, with the power method. This corresponds to the

power method with the trapezoid rule, Simpson’s rule and Boole’s rule respectively. Once

more, we use the four MC types to generate the probability matrices (see Fig. 6.1), but

now we have four types of pdfs (see Fig. 7.6). The computer used for this entire section is

Computer 2. See Section 1.4 for details of the computer and software used.

The pdfs are of four types: A mixture of uniform distributions (we name this as Dis-

continuous), (Modified) PERT, Exponential, and Weibull. We test two tail distributions:
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Weibull (heavy-tail) and Exponential (medium-tail). We use two distributions with bounded

support: PERT and Discontinuous, with the latter providing us results for discontinuous

distributions. Their definitions are as follows:

1. Discontinuous(n)(t) =
∑n

i=1 pifU [xi,xi+hqi](t), where fU [c,d] is the pdf of a uniform

distribution supported on the interval [c, d]. Then, pi, qi ∈ [0, 1]2, but we also have∑
i pi = 1. Lastly, {xj}0≤j<n = {j b

n−1}0≤j<n is the set of n equidistant points between

[0, b], with h being the step size.

2. PERT (l = 0, p, u = 200, γ = 1000)(t). This is the modified variant of the PERT

distribution, extending it with a γ parameter that controls the shape of the tail values

of the distribution. This is stated to have been proposed by Vose [92]. A definition of

the pdf can be found in [2]. In it, the symbols l, p, u are replaced by min,mode,max

respectively.

3. Exponential(λ)(t). This is defined as per usual.

4. Weibull(k, λ = 10)(t). This is defined as per usual.

The free parameters of these distributions are n, p, λ and k respectively. The fixed pa-

rameters above are chosen in a way to allow us to increase the tail strengths for the pdf

with unbounded tails, and to move the peak of the PERT distribution across the interval

[0, 200]. The other PERT parameters are chosen such that the shape is similar to that

of the discrete binomial distribution (used for the experiments on discrete-reward sMRMs

(see Fig. 6.2)). For each Discontinuous variable, the values (pi)i≤n, (qi)i≤n are sampled

uniformly between [0, 1], and the pi’s are then normalized to sum to one.

Experiment set-up The experiments below consist of randomly generating sMRMs, to

solve Pr(r ∩ s � 3B) via the system of equations (4.5). The sMRM is generated via a

random sample of a selected MC type and pmf type. All the reward random variables for

a given sMRM are of the same type. Their free parameters are sampled uniformly within

a selected range shown later. For all experiments below, unless otherwise mentioned, we

set S? = 30, and we solve for Pr(r ∩ s � 3B) (for all s ∈ S?), for each r ∈ x ⊂ [0, b]

with b = 200, and where x = {xj}0≤j<N = {j b
N−1}0≤j<N is the set of N equidistant

points between [0, b]. We set N = 801. For each iterative method, we used the following

termination criteria

maxs,r|f(n+1) − f(n)| ≤ ε

where ε = 1e− 7. Additionally, a max iteration of 2000 was used to terminate the method

if convergence was too slow. For each combination of MC type, pdf type and parameter

range, 50 unique sMRMs were sampled.
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Exponential Column

Parameter Range

MC type [10,7.5) [7.5,5) [5,1) [1,0)

Sparse 26 38 50 50
Uniform 0 17 50 50

Block 0 0 50 50
N -pass 48 50 50 50

Table 7.1: No. of samples out of 50, where the iterative method converges, for a given
parameter range and MC type, of the Exponential column.

The average no. of iterations required for the power method with the trapezoid rule to

converge, is plotted in Fig. 7.7. The terms L1, L2, L3 in the legend refers to the trapezoid

rule with N, 2N − 1, 4N − 2 points. Then, these rules are combined to form the N point

Romberg approximation of level 2 and level 3, i.e. Simpson’s and Boole’s approximation.

See Section (7.2.3) for details. In Fig. 7.8, we plot the average time the methods take to

solve the problems and the box-plots for time are in Fig. 7.10. The time taken includes

the time to build the relevant hypermatrices, but excludes the time it takes to combine

the trapezoid rules to form the higher level approximations. The average max absolute

approximate error is shown in Fig. 7.9 with box-plots for the error in Fig. 7.11. Note

that for all our results, the Exponential pdf prevented convergence in particular situations,

hence some samples were excluded (and we did not re-sample). The no. of samples included

are shown in Table 7.1. We assumed divergence if the max error between two iterations is

larger than 1e2, i.e. if

maxs,r|f(n+1) − f(n)| > 1e2

127



0 25 50 75 100 125 150 175 200
10 30

10 26

10 22

10 18

10 14

10 10

10 6

10 2

Discontinuous(n)

n = 1
n = 3
n = 5

0 25 50 75 100 125 150 175 200
10 30

10 26

10 22

10 18

10 14

10 10

10 6

10 2

PERT(l=0,p,u=200,gamma=1000)

p = 20
p = 100
p = 180

0 25 50 75 100 125 150 175 200
10 30

10 26

10 22

10 18

10 14

10 10

10 6

10 2

Exponential(lambda)
lambda = 9
lambda = 5
lambda = 1

0 25 50 75 100 125 150 175 200
10 30

10 26

10 22

10 18

10 14

10 10

10 6

10 2

Weibull(k,lambda=10)
k = 5
k = 2.5
k = 1

Figure 7.6: The shapes of the various distributions used in the experiment. Weibull is
considered a heavy tail-distribution whilst the Exponential is a medium (weight)-tail distri-
bution. The PERT and Discontinuous (piecewise uniform) distribution have pdfs supported
on the bounded interval [0, 200].

Studying the no. of iterations, a consistent hypothesis is that convergence is fastest when

either concentration of the pdf’s density is close to the zeroth point (of the abscissa). In

fact, having a high concentration near zero may be responsible for the lack of convergence

seen in the Exponential column (see Table 7.1). Note that increasing the parameter range

introduces more density to the Weibull near zero, but reduces that of PERT and Exponential

types. It would appear that setting the zeroth value of each pdf to zero in a sMRM can

help ensure convergence. Although, it is false to state that it guarantees convergence. A

simple counterexample consisting of mixtures of extremely tall uniformly distributed pdfs

(defined strictly on the lattice of points for quadrature) can be used to demonstrate this.

Next, the error for the Exponential column improves as the parameter range increases,

whilst the Weibull increases. A hypothesis for this may be tied to the fact that as its

parameter range increases, the Weibull increases in density around zero, whilst for the Ex-

ponential it decreases. However, the theory is quite weak in our eyes. Another observation

is that the PERT distribution decreases in error as the mean shifts towards b. A hypothesis

for this may be that having the mean of each reward pdf further away from b implies that

the mean of the accumulated reward pdf is more likely to lie outside of the interval [0, N ],
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Figure 7.7: Average no. of iterations. L1, L2, L3 refers to the Trapezoid rule with N, 2N −
1, 4N−2 points respectively (between [0,200]). The Exponential column is separated due to
some of its values being significantly larger than the remainder of the plots. Additionally,
some entries are blank due to lack of convergence. See Table 7.1. For each triplet of bars,
50 unique sMRMs were sampled.

thus the density is not likely centred in [0, N ] suggesting that the values of the pdf there is

small, hence easier to obtain accuracy for.

7.9 Summary and discussion

In this chapter we presented a new quadrature methodology for convolutions of functions

defined over [0, k]. The method was based on equidistant points and allowed us to use the

FFT once more. We also found a manner in which we could adapt Romberg’s method for

convolution, and displayed it’s capability of improving accuracy further. Additionally, we

derived some proofs concerning convergence of particular iterative algorithms, but more

work is needed to be done here, e.g. to find a general condition for convergence with the

trapezoid rule.

As stated in the literature review, the benefit of our DFT approach is that it removes the

need of algebraically transforming pdfs, or numerically integrating them to derive the trans-

forms, hence simplifying the overall problem. Additionally we stated that the Laplace-Euler
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Figure 7.8: Avg. time taken (secs.). The time excludes the combining of the trapezoid rules
to form the Romberg approximations. This latter procedure is easy and does not take much
time. The average time taken is not surprising and is reflective of the no. of iterations (see
Fig. 7.7). However, it does help gauge the speed of the methods.

algorithm was shown not accurate for discontinuous distributions. For this, perhaps our

algorithm can be recommended in this case. We cannot however recommend our algorithm

generally (for continuous pdfs for example) without having it first experimentally compared

to [28] which used the Laplace transform, with the power method, and the Laplace-Euler

inversion algorithm.

For future work, one may want to consider experimenting with the continuous Fourier

transform instead of the Laplace. And using the inverse Fourier transform to derive the

pdfs once the system has been solved in the Fourier domain. One reason being that there

appears to be some work towards numerically inverting characteristic functions; Fourier

transforms of random variables defined also on the negative-real line. The foundation of

one direction of work was by Gil-Palaez in [44]. A unified and multivariate approach is

presented in [84]. However, more recently the inversion can now be done with FFTs as

shown by [97], based on the earlier work of [56].

Aside from using point-based methods, there are still other approaches left for exper-

imentation and investigation. For example, one may attempt instead to derive a theory
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Figure 7.9: Average (approximate) max abs. error (compared to Boole’s). We find for the
Discontinuous distribution, the max error is quite large for all MC types. Note that some
entries above are blank due to lack of convergence (see 7.1).

for sMRMs using Fourier extensions and the convolution algorithm presented by [98] such

that it leads to convergent and unique results. Alternatively, faster function approximation

and convolution algorithms relative to the Pacal library [65] may be attempted instead,

along with proving convergence and uniqueness. Alternatively, the complexity within the

Pacal library could be relaxed, i.e. the handling of operations including both discrete and

continuous random variables together can be removed, and the handling of singularities

also.

Lastly, we are aware of convolution quadrature techniques [69]. Without having delved

deep into the theory, these formulas here appear unrelated to our formulas of convolution

quadrature. Additionally, the trapezoid rule for convolution quadrature [87] is not neces-

sarily the same one as the trapezoid rule presented here.

7.9.1 Drawbacks of the proposed algorithms

Firstly, we have previously mentioned in Section 6.7.1, that iterative methods may pre-

maturely converge in particular scenarios. The solution by [49] requires the values of the

solutions to be bounded in [0, 1]. However, pmfs and not pdfs satisfy this property. Whilst

the passage-reward densities are not bounded in this interval, the cdf of these densities are.
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Figure 7.10: Box-plots for time taken (secs.). Apart from the Exponential column, the
results appear to be relatively close to the mean. For sMRMs of the Exponential type and
Uniform MC type, notice the outlier (for the [5,1) param. range) that has pulled up the
mean significantly. It is not clear what has caused that result, which took more than 2
hours to complete. Definitions of symbols in the plot are given in Fig. 6.5.

Therefore one could try adapting the algorithm for the cdfs instead to determine conver-

gence more soundly. Alternatively, rather than computing the passage-reward densities, we

could instead compute their cdfs directly. Let Pr(Rew ≤ r ∩ � 3B) = Fs(r) =
∫ r

0 fs(x)dx.

Then the system of convolution equations become

F = (A ◦G) ∗O F + H

where G is still a the matrix of reward pdfs, i.e. we have Gs,t = frew(s,t). However

Hs =
∑

u∈B Ps,uFrew(s,u) is a vector of reward (partial) cdfs. Solving this instead may be

preferred as it avoids having to numerically integrate the passage-reward densities.

Secondly, [28] presented a comprehensive algorithm that can be used for resolving Pr(r ∩
s � 3B) over an sMRM. The algorithm involves taking the Laplace transform of the system

of convolution equations (4.5). This leads to a system identical in form to (4.7), i.e.

x(s) = (A ◦C(s))x(s) + d(s) (7.14)
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Figure 7.11: Box-plots for the (approximate) max abs. error (compared to Boole’s). The
long (lower) whiskers for the Sparse row is potentially due to Sparse MC’s being sampled
of which have states that can reach B. In this case, the result will just be the zero vector.
This issue was discussed previously in Section 6.6. It is not clear what is causing there to
be large interquantile ranges for the Exponential column. Definitions of symbols in the plot
are given in Fig. 6.5.

where s is a complex number. The definitions of the terms above are now using the Laplace

transform and not the FT, i.e.

C , (Cs,t)s,t∈S?
, (L{f(rew(s,t))})s,t∈S?

d , (ds)s∈S?
, (
∑
u∈B

P(s, u)L{frew(s,u)})s∈S?

with the Laplace operator L applied to a function f being defined as

L{f}(σ + iω) =

∫ ∞
0

f(t)e(σ+iω)tdt

Then, the power method is used to resolve each linear system in (7.14) for a set of N

sampled points (si)0<i≤N−1. Once the power method converges (for each si), either the

Laplace-Euler or the Laplace-Laguerre inversion algorithms is applied to x(s) (described in

[28]) to obtain the passage-reward density f(r) atM points, i.e. for each r ∈ Q ⊂ [a, b], where

|Q| = M . For the Laplace-Euler inversion algorithm (their general strategy), then M = N/c

for a choice of c ∈ {15, 16, . . . , 50}, which determines the accuracy of the inversion. It is
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expected that as c increases, the accuracy increases. For the Laguerre inversion algorithm,

which is less applicable, N is fixed to 400, and M is independent of N .

This technique has perhaps two main advantages over our algorithms. Using their algo-

rithm, the property Pr(r ∩ s � 3B) can be resolved for the set of points r ∈ Q ⊂ [a, b].

Our algorithm enforces that Q be a set of equidistant points between [0, b] only. Secondly,

for strictly continuous pdfs, their algorithm appears to be quite efficient in obtaining high

accuracy for the M points for the pdfs, relative to N , the number points sampled from the

Laplace transforms. However, a disadvantage of their method could be that it requires the

analytical Laplace transforms of pdfs to be known, whereas ours do not. Nevertheless, these

transforms may be approximated numerically or obtained via a CAS (computer algebra sys-

tem). If the approximations are poor, then like our algorithm, the power method may fail

to converge. Disregarding the accuracy of solutions, the worst-case time complexities for

both ours and their power method are similar.
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Chapter 8

Conclusion

We began our thesis presenting the theoretical derivations for reachability problems over a

new class of models (in the model-checking literature) - stochastic Markov reward models.

We were also able to find practical algorithms for model-checking reachability properties

via the DFT for the univariate reward problem. This solution extends to the case where

our rewards are random vectors, with mutually independent components.

We found in the discrete-reward setting that the best algorithm (relative to our exper-

iments) turns out to just be the naive exact-power method. The direct algorithms are

quite slow, and our experiments show that the power method outperforms its approximate

counterpart, and also the approximate direct method (i.e. the LU approximation method).

The other iterative algorithms were slower due to our deconvolution algorithm not being

optimized (via the FFT). Additionally, it was harder to vectorize the computations of the

Gauss-Seidel algorithm to take effective use of the numpy library. Note however, we did not

experiment with approximate variants of the other iterative methods. But they suffer from

the same problem as their exact counterparts. Nevertheless, at this time we recommend

the exact-power method for use.

We stated earlier that some optimizations possible would be: 1) That zero-padding can

be removed almost entirely by the work of [81], and 2) that kernel tiling algorithms can

be used for improving speed [75]. However, it is worth considering whether algebraic de-

cision diagrams (ADD) [16] can be used in the discrete-reward setting for reducing space

complexity. Current model-checking tools such as [67] employ decision diagrams such as

the multi-terminal binary decision diagrams (MTBDD) to help circumvent state space ex-

plosion. The paper [16] presents an algorithm for matrix multiplication when matrices are

represented as ADDs, and the exact-power method for example requires not much more

than that in terms of unique operations.
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In the continuous-reward setting, we showed that our algorithm via the DFT can handle

discontinuous distributions. Unfortunately, many samples were required to ensure sufficient

accuracy. If improving on our approach, one may consider replacing Romberg’s method

with another algorithm of a similar form, e.g. [100]. Additionally, we have stated that there

exists different equations for deriving the first-passage reward densities [60, 95]. These

approaches may yield better convergence properties.

Whilst our solution works for continuous pdfs and of which required fewer samples for

sufficient accuracy, we have not compared our results with the algorithm of [28] using the

Laplace transform and the Laplace-Euler inversion algorithm, with the power method yet

due to lack of time. We have, however, discussed their effectiveness in the literature review.

Thus, we cannot recommend our algorithm over theirs for problems with continuous-pdfs

yet.

8.1 Future work

Negative rewards The sMRM affords random variables being negative, or having pos-

itive measure over the negative portion of the real line. It is not clear how the DFT can

be used since it leads to representation growth of the solution vector if applied naively.

Alternatively if the continuous Fourier Transform is employed, no representation growth

occurs. Then, future work is in determining both highly precise numerical methods for the

transform itself (hence not relying on algebraic techniques) and its inversion. Numerical

algorithms for the transform include those that use the FFT, for example [97], based on the

work of [56].

Non-determinism It is possible to extend sMRMs with actions creating stochastic Markov

reward Decision Processes. That is, at any state, the process makes a non-deterministic

choice between a set of actions, each of which has a transition probability distribution over

the set of states of the process. The goal here would be to design efficient algorithms for

problems over this class of models. Such problems may involve determining optimal policies

or determining the maximum/minimum probability of reaching a set of states B.
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analogues transcendants. CR Acad. Sci. Paris, 156:43–46, 1913.

[74] T. E. Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[75] K. Pavel and S. David. Algorithms for efficient computation of convolution. Design

and Architectures for Digital Signal Processing, pages 179–208, 2013.

[76] G. M. Phillips and P. J. Taylor. Theory and applications of numerical analysis. Else-

vier, 1996.

[77] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations

of Computer Science (sfcs 1977), pages 46–57. IEEE.

[78] J. Qiang. A high-order fast method for computing convolution integral with smooth

kernel. Computer Physics Communications, 181(2):313–316, 2010.

[79] T. Quatmann and J.-P. Katoen. Sound value iteration. In International Conference

on Computer Aided Verification, pages 643–661. Springer, 2018.

142



[80] F. Ramponi, D. Chatterjee, S. Summers, and J. Lygeros. On the connections be-

tween pctl and dynamic programming. In Proceedings of the 13th ACM international

conference on Hybrid Systems: Computation and Control, pages 253–262. ACM, 2010.

[81] J. Robertson. The computation of aggregate loss distributions. In Proceedings of the

Casualty Actuarial Society, volume 79, pages 57–133, 1992.

[82] W. Romberg. Vereinfachte numerische integration. Norske Vid. Selsk. Forh., 28:30–

36, 1955.

[83] J. Sakamoto, Y. Mori, and T. Sekioka. Probability analysis method using fast fourier

transform and its application. Structural Safety, 19(1):21–36, 1997.

[84] N. G. Shephard. From characteristic function to distribution function: a simple

framework for the theory. Econometric theory, pages 519–529, 1991.

[85] R. L. Strawderman. Computing tail probabilities by numerical fourier inversion: The

absolutely continuous case. Statistica Sinica, pages 175–201, 2004.

[86] A. Townsend and L. N. Trefethen. Continuous analogues of matrix factorizations.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,

471(2173):20140585, 2015.

[87] L. N. Trefethen and J. Weideman. The exponentially convergent trapezoidal rule.

siam REVIEW, 56(3):385–458, 2014.

[88] M. Ummels and C. Baier. Computing quantiles in markov reward models. In Interna-

tional Conference on Foundations of Software Science and Computational Structures,

pages 353–368. Springer, 2013.

[89] S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The NumPy array: a structure

for efficient numerical computation. Computing in Science & Engineering, 13(2):22,

2011.

[90] T. Verhoeff. Reward variance in markov chains: A calculational approach. Proceedings

of Eindhoven FASTAR Days, 2004.

[91] J. Vidal, A. Bonafonte, and N. Fernández. Rational characteristic functions and

markov chains: application to modeling probability density functions. Signal process-

ing, 84(12):2287–2296, 2004.

[92] D. Vose. Risk Analysis: A Quantitative Guide. Canada, Origins and Options Series.

Wiley, 2000.

[93] Q. Wang. Convergence of Jacobi and Gauss Seidel for diagonally dominant matrices.

https://www.youtube.com/watch?v=nownnej7A9Y, 2001–. [accessed 16/08/2019].

143

https://www.youtube.com/watch?v=nownnej7A9Y


[94] R. L. Warr. Numerical approximation of probability mass functions via the in-

verse discrete fourier transform. Methodology and Computing in Applied Probability,

16(4):1025–1038, 2014.

[95] R. L. Warr and D. H. Collins. An introduction to solving for quantities of interest in

finite-state semi-markov processes. arXiv preprint arXiv:1212.1440, 2012.

[96] G. H. Weiss and M. Zelen. A semi-markov model for clinical trials. Journal of Applied

Probability, pages 269–285, 1965.

[97] V. Witkovsky. Numerical inversion of a characteristic function: An alternative tool

to form the probability distribution of output quantity in linear measurement models.

ACTA IMEKO, 5(3):32–44, 2016.

[98] K. Xu, A. P. Austin, and K. Wei. A fast algorithm for the convolution of functions with

compact support using fourier extensions. SIAM Journal on Scientific Computing,

39(6):A3089–A3106, 2017.

[99] H. L. Younes and R. G. Simmons. Probabilistic verification of discrete event sys-

tems using acceptance sampling. In International Conference on Computer Aided

Verification, pages 223–235. Springer, 2002.

[100] M. B. Youngberg. Alternative to the romberg method of estimating the definite

integral. arXiv preprint arXiv:1207.6067, 2012.

[101] I. Zapreev and J.-P. Katoen. Safe on-the-fly steady-state detection for time-bounded

reachability. In Third International Conference on the Quantitative Evaluation of

Systems-(QEST’06), pages 301–310. IEEE, 2006.

144



Appendices

145



Appendix A

Supplementary Proofs

A.1 Proof of Theorem 5.2

Proposition A.1. Given a system of convolution equations E ∗Of = h, with equations

E0, E2, · · ·EN , and the unique solution x (a hypervector), where each Ei represents the

equation ∑
j

Ei,j ∗ fj = hi

If the system is transformed via these two updating/substitution operations:

1. replacing an equation by a convolution of itself with a non-zero vector.

2. replacing an equation with the equation itself added to another equation that has

been convolved with a non-zero vector.

or these two pivoting operations:

1. swapping one equation with another (i.e. swapping rows of E).

2. changing the order of terms in each and every equation (i.e. swapping columns of E).

then the transformed system will still have the same solution set x, with the exception of

the case where columns are swapped. In this latter situation, the transformed system will

have a solution set that is a reordering of the terms of x.

Proof: Let Ei(x) be the equation Ei where the unknown terms f are replaced with

the solution x. Then the conjunction E0(x) ∩ E1(x) ∩ · · · ∩ EN (x) is true. Concerning

the substitution rules, note that convolving any equation Ei both sides by any non-zero

vector g will also maintain the truth of the conjunction, e.g. E0(x) ∩ · · · ∩ g ∗ Ei(x) ∩
· · · ∩ EN (x) holds. And secondly, replacing any equation by adding the equation itself to

another equation convolved with a non-zero vector g will also maintain the conjunction, e.g.

E0(x) ∩ · · · ∩ (g ∗ Ej(x)) + Ei(x) ∩ · · · ∩ EN (x).
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Concerning pivoting rules, we can re-arrange the order of the equations and the conjunc-

tion will remain true, e.g. swapping the first two rows, we have E1(x)∩E0(x)∩· · ·∩EN (x).

Lastly, if we swap the order of the terms in f, e.g. the term fj with fk, then let E′i denote

equation i after the terms Ei,j and Ei,k are swapped. Let x have its indices swapped in the

same fashion as f and denote this x′. Then the conjunction E′1(x′) ∩E′1(x′) ∩ · · · ∩E′N (x′)

holds.

A.2 Proof of Theorem 6.1

Theorem A.2 (Fixed point characterization (for pmfs)). The cumulated reward hyper-

vector f = (f[r])r∈N = (fs�3B[r])r∈N,s∈S?
= (Pr(r ∩ s � 3B))r∈N,s∈S?

is the (unique) fixed

point of the operator Υ : [0, 1]N×S?×1 → [0, 1]N×S?×1. This operator is defined as:

Υ(f) = ((A ◦G) ∗O f) + h

Additionally, let f(0) = 0, and f(n+1) = Υ(f(n)) where n ≥ 0. Then, for any r ∈ N and

s ∈ S? the following three statements hold:

1. f
(n)
s [r] = Pr( r ∩ [s � 3≤nB]), for all n ≥ 0.

2. lim
n→∞

f
(n)
s [r] = fs[r].

3. f
(0)
s [r] ≤ f (1)

s [r] ≤ f (2)
s [r] ≤ · · · ≤ fs[r].

where statement 2. states that the solution converges to a fixed point, and 3. states that

the convergence is monotonic.

Proof of 1.: The proof involves induction on n. Firstly with the base case n = 0,

f
(0)
s [r] = 0 ≡ Pr( r ∩ [s � 3≤0B]) = Pr( r ∩ [s � B]) = 0 for all s ∈ S? (since S? ⊆ S−B).

This proves the base case. Now to prove the inductive step. Firstly, note that the event

[s � 3(≤n+1)B] is equal to

[s �©B] ∪ [s �©S? ∩ s � 3(≤n+1)B]

i.e. the event of reaching B under or equal to n+ 1 steps, is equal to the event of reaching

B in the next step OR the event of reaching B under n+1 steps on the condition of passing

through S? at the next step. Note that [s �©B] is disjoint to [s �©S?], hence

Pr([s � 3(≤n+1)B]) = Pr([s �©B]) + Pr([s �©S? ∩ s � 3(≤n+1)B])
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Now, starting the proof with a top-down approach, we have

f (n+1)
s [r] = Pr(r ∩ [s � 3(≤n+1)B])

= Pr(r ∩ [s �©B]) + Pr(r ∩ [s �©S? ∩ s � 3(≤n+1)B])

where Pr(r ∩ [s � ©B]) =
∑

u∈B P(s, u)frew(s,u)[r] = hs[r]. Therefore this corresponds to

the h portion of the Υ() operator. Next, by letting Π.s denote the set of all paths beginning

in s, satisfying [s �©S? ∩ s � 3(≤n+1)B], we have

Pr(r ∩ [s �©S? ∩ s � 3(≤n+1)B])

=
∑
π̂∈Π.s

Pr(π̂)fRew(π̂)[r]

=
∑
t∈S?

P(s, t)(frew(s,t) ∗ (
∑
φ̂∈Π.t

(Pr(φ̂)frew(φ̂))))[r]

=
∑
t∈S?

As,t(Gs,t ∗ f (n)
t )[r]

where f
(n)
t [k] = Pr(k ∩ [s � 3≤nB]); the induction hypothesis which we have assumed

correct. Note that the result corresponds to the A ◦G portion of the Υ() operator. Thus

we have that

f (n+1)
s [r] = Pr(r ∩ [s � 3≤n+1B])

= Pr(r ∩ [s �©S? ∩ s � 3(≤n+1)B]) + Pr(r ∩ [s �©B])

=
∑
t∈S?

((As,tGs,t) ∗ f (n)
t )[r] + hs[r]

which proves the equivalence.

Proof of 2.: We know that the event [s � 3B] is equal to the event [limn→∞ s � 3≤nB].

Thus

fs[r] = Pr(r ∩ s � 3B) = lim
n→∞

Pr(r ∩ s � 3≤nB) = lim
n→∞

f (n)
s [r]

Proof of 3.: It is true that [s � 3≤nB] ⊆ [s � 3≤(n+1)B]. Then for any r ∈ N,

[Rew = r ∩ [s � 3≤nB]] ⊆ [Rew = r ∩ [s � 3≤n+1B]]

From statement 1. we know that f
(n)
s [r] = Pr( r ∩ [s � 3≤nB]). Thus,

f (n)
s [r] = Pr( r ∩ [s � 3≤nB]) ≤ Pr( r ∩ [s � 3≤n+1B]) = f (n+1)

s [r]
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Appendix B

Supplementary Results

We present here additional experiments that we have performed, but deemed to not be

as useful as the results in the main thesis. For the empirical results in this chapter, unless

stated otherwise, only the uniform Markov chain was used (see Fig. 6.1). That is, given a

fixed size empty matrix, we sampled values uniformly between zero and one for each and

normalized the matrix to ensure the rows would sum to one. This resulting matrix would

then be a valid probability matrix. Uniform pmfs were sampled in a similar fashion.

B.1 Experiments with exact and approximate power method

B.1.1 Previous toy problem

We solve the same problem earlier from Section 5.6.1, this time including solutions from the

power method - both exact and approximate. For the power method, we use an absolute

tolerance level of 1e−16 for convergence ((6.3)). The property being solved for is Pr(r ∩ s �
3s4), for all s ∈ S? = {s0, s1, s2, s3} and r = 0, 1, 2, · · · , N − 1, where N = 150. The

Gaussian elimination algorithm, and the exact power method computes Pr(r ∩ s � 3s4)

for r = 0, 1, 2, · · · , N − 1, whilst the approximate LU method, and approximate power

method computes the property for r = 0, 1, · · ·T , where T = N + n, and n is the zero

padding length (needed for the approximate methods).

The results are shown in Fig. B.1. We find that the approximate power methods align

with the LU approximate method of equal T . There appears to be a discrepancy between

them when T = 12000 possibly due to numerical errors. In fact, the approximate power

method could not converge under 1000 iterations - a hard-limit for the number of iterations

we enforced. Increasing the limit to 10,000 iterations, the algorithm still did not converge

(see Table B.1).
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The plot on the bottom of Fig. B.1 is the absolute (approximate) error relative to the

exact power method, and not Gaussian elimination as previously. We find that Gaussian

elimination is not as accurate as the power method. Supporting this is the fact that the

approximate methods’ accuracy nears that of the power method for large T . R This may be

attributed to rounding errors, and methods to mitigate such problems (for linear systems)

are presented in [37]. More specifically, it could be due to the numerical instability of

deconvolution, which is less known. Nevertheless, if accuracy is important, in practice the

results of Gaussian elimination can be used as an initial guess for an iterative method like

the power method, since solutions can be made more precise via successive iterations.

Method Total time taken (seconds) Total no. of iterations

LU approximation (T=600) 0.006691694259643555 N/A

Power method 0.0070302486419677734 4

LU approximation (T=2250) 0.008358478546142578 N/A

(Approximate) power (T=600) 0.019854307174682617 180

LU approximation (T=12000) 0.024901390075683594 N/A

(Approximate) power (T=2250) 0.05249190330505371 179

Gaussian elimination 0.14049911499023438 N/A

(Approximate) power (T=12000) 14.99451470375061 10000

Table B.1: The approximate power method (with T=12000) did not converge (reaching the
maximum iteration limit of 10000), probably due to the really small threshold. The LU
approximation (with T=12000) method is significantly faster than Gaussian elimination and
also achieved greater accuracy rel. to the power method (shown in Fig. B.1). Although, it
did require significantly more space (×12000

150 ).

We see in Table B.1 that the exact power method required fewer iterations relative to the

approximate power method to reach convergence. For T = 12000, whilst the approximate

power method failed to converge under 10000 iterations, Fig. B.1 suggests (at least for state

s0) that the hypervector has converged seeing that the absolute error relative to the power

method is near 1e-16.

In this one experiment, in comparison to the exact power method, the approximate power

method was slower. Gaussian elimination was non-competitive for either speed or accuracy.

The LU approximation would not be considered competitive if high speed and accuracy

are required. However from a more general perspective, if we know the characteristics

of an sMRM problem beforehand, we may select the direct algorithms if for example it

is known that the iterative algorithms will fail to converge quickly, and then apply the

iterative methods on top of their results to improve their accuracies. However if |S?| is

large, both the LU approximation method and GE have time complexities which are cubic

in |S?|. Therefore, from a scalability perspective the iterative algorithms may be considered

more scalable with respect to |S?|, and therefore preferred. However, whilst we cannot offer
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Figure B.1: Similar to Fig. 5.2. We also include results for the power method. Note in
the bottom plot that the approximate (direct and iterative) methods for a given T overlap
one another in error. For the LU approximations, the different padding lengths can be
determined by T −N where T stands for Total length.
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a general recommendation for which algorithm to use (without a problem context), our

current preferred choice would be to use the iterative algorithms as a first.

We now proceed to evaluate the usefulness of the approximate power method relative to

the exact power method. The following series of tests show that it is not necessarily faster

at convergence.

B.1.2 Convergence performance of exact vs approximate power method

We investigated the performance of the approximate power method and the exact power

method over random systems, and timed how long they took to solve for the property

Pr(r ∩ s � 3B). These experiments should help us determine whether the exact power

method’s requirement for transforms and inversions of the solution hypervector (for each

iteration) contributes significantly to solving time. We found three factors that determine

the solving time: 1) |S?|, the size of the set of states that can eventually reach B our goal

states. 2) k, such that Pr(r ∩ s � 3B) is computed for r = 0, 1, · · · , k − 1. 3) λ, which

defines the points r = 0, 1, · · · , bλkc − 1 for which frew(s,t)[r] is allowed to be non-zero in,

for all s, t ∈ S2. Note that
∑bλkc−1

x=0 frew(s,t)[x] = 1, and frew(s,t)[r] = 0 for r > bλkc − 1.

Therefore each frew(s,t) is still a pmf.

We set the approximate method’s padding length to k−1, which makes it identical to the

exact power method in terms of space requirements. Therefore the main difference between

the two methods is that the exact power method requires the DFT and the inverse DFT to

be applied in each iteration, whereas the approximate method does not.

For the exact power method, we used the following termination criteria

maxs,r|f(n+1) − f(n)| ≤ ε

where ε = 1e− 7. For the approximate power method (Sec. 6.3), the criteria is the same,

maxs,r|x(n+1) − x(n)| ≤ ε

where it is to be noted that x(n) is a complex number.

Experiment set-up For our experiment, we varied each of the factors above, whilst

keeping others fixed. Firstly, we will set as fixed k = 1000, |S?| = 30, and λ = 0.5. Then we

will vary each parameter separately to get a measure of their contribution to time. For any

valuation of the parameters (k, |S?|, λ), 200 experiments are performed, their average and

worst times recorded and plotted. For each of these 200 experiments, since we are solving
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for the property Pr(r ∩ s � 3B), we randomly and uniformly generated the terms in the

system

f = (A ◦G) ∗Of + h

i.e. A,G,h are randomly generated. The pmfs (Gs,t[r])s,t∈S?
and (hs[r])s∈S?

are generated

to satisfy λ.

For each experiment, we only recorded the solving time, i.e. time until convergence

(solving phase). We did not record the time required to build the relevant system of

equations (preparation phase) (e.g. G,h) since it is the same for both methods.

Our first experiment (Fig. B.2) is to vary λ. We find generally that for λ ∈ [0, 1], the

exact power method is faster at terminating. However for λ > 1, the approximate method

increases in competitiveness.
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Figure B.2: Experiments performed with k = 1000, |S?| = 30 and λ was varied. The top
graph was achieved using 7×200 experiments, whilst the bottom took 6×200 experiments.
Each experiment consisted of a different randomly generated system. For the top graph,
the values of lambda were [0.1, 0.5, 0.9, 1.3, 10, 25, 40]. For the bottom, the values were
[0.1, 0.2, 0.4, 0.6, 0.8, 1.0].

Next, we experimented with k. We see in Figure B.3 that when λ = 20, the time taken

for each method was generally small, which corresponds with our previous results shown in

Fig. B.2. With λ = 0.5, we find there to be a significant growth in time requirements for

the approximate method.
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Figure B.3: Experiments performed with |S?| = 30 and k was varied. The top and bottom
graphs were achieved with 1000 experiments each.

Finally, we investigated the complexity of the system when increasing S? (Fig. B.4). In

this setting the exact power method seems to prevail for λ = 20, but we find these methods

perform similarly when λ = 0.5.
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Figure B.4: Experiments performed with k = 1000 and S? was varied. The top and bottom
graphs were achieved with 1400 experiments each.

To conclude our findings, there does not currently appear to be much benefit in using

the approximate power method for time savings alone. If further testing the effectiveness

of the methods, the pmfs (frew(s,t)[r])s,t∈S2 could be sampled instead from known tailed

random variables that vary in their tails’ strength: light, medium and heavy. Our pmfs

were randomly generated, where we sampled values between [0, 1] for each frew(s,t)[r] and

then normalized to sum to one.

B.2 Experiments with exact iterative methods

Implementation details For the following experiments, any conclusions derived for time

should take into consideration that the different methods used do not have fully optimized
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implementations. For example, any deconvolutions performed was computed via an algo-

rithm with O(k2) time complexity (where k is the length of the resulting vector) whilst there

are O(klog2k) algorithms. Another reason would be that the numpy package in python was

used to implement a portion of the iterative methods. However, its usage was not equal

between the three exact methods: power, Jacobi, and Gauss-Seidel. The package would

enable us to speed up the methods significantly. Hence, the fairest indicator of performance

for the iterative methods would be the number of iterations required to solve a problem.

B.2.1 Scalability of exact iterative methods

Our next experiment is almost identical to that described in Section 5.6.3. It differs in

that it includes results from the exact Jacobi and Gauss-Seidel methods.

As before, |S?| and k are varied independently. Now, performance is characterized by

time and number of iterations. When varying |S?|, k was fixed to 1501. And when varying

k, |S?| was fixed to ten. For each valuation of the parameters (|S?|, k), 200 experiments

are performed. For each experiment, the system of convolution equations to be solved is

sampled as before, their average and worst solving times (for each method) is recorded and

plotted. Additionally, we now also record the number of iterations taken by the iterative

methods to solve the problem. The convergence threshold set once more to 1e-16.

In Figure B.5 we plot the results for when |S?| is varied. As expected, the Gauss-Seidel

algorithm requires the fewest iterations on average. However, due to the time complexity

of our deconvolution algorithm and the lack of an optimized implementation, the libraries

used to implement these algorithms lead to the power method being quickest on average.

The LU approximation algorithm was found to be the least scalable. When we varied k

instead (see Fig. B.6), similar results are obtained.
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Figure B.5: The LU approximation algorithm requires no iterations, therefore it does not
have a plot in the top graph. As |S?| increases, there is a slight growth in the average no.
of iterations for each method. Additionally, the discrepancy between the worst and average
no. of iterations decreases. In the legend, (pad = 10k) means that the LU approx. method
uses a padding length (see (5.12)) of 10k. Each graph (top and bottom) was achieved after
performing (200× 6) experiments.
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Figure B.6: The LU approx. method is the worst performer here in terms of (average
and worst) time. Each graph (top and bottom) was achieved after performing (200 × 5)
experiments.

B.3 An example with the Romberg method

In Figure B.7, we apply the Romberg method of different levels to approximate the con-

volution integral of a Gamma distribution with parameters (k = 2, θ = 2), and a Weibull

distribution with parameters (k = 3, λ = 1). We find here that Romberg’s method at

level three shows an equivalence to Simpson’s method derived using the midpoint rule (not

presented in this thesis). Additionally, the trapezoid rule with 8001 points yields weaker

accuracy relative to Simpson’s rule with 1001 points (but using a total of around 2002 points

for computing the Midpoint and trapezoid rule).
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The last sub-figure of Fig. B.7 shows what happens when we interpolate our pdf approx-

imations. We find there to be a significant loss of accuracy with Romberg at level five and

less so at level 3. The trapezoid rule and midpoint rule do not appear to be affected much.
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Figure B.7: Top: The approximation of the convolution via some quadrature rules and
also Pacal. Middle: The absolute error of certain rules (not specifically those from Top)
with respect to the Romberg method. Bottom: The absolute error of these rules when
interpolated via a cubic spline relative to Pacal. Selected rules were chosen again for each
plot.
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Appendix C

Markov Chain Simulation

We present here the four algorithms used to simulate the respective Markov chains in the

experiment section of Chapter 6. They are written in python and tested to run on python

3.8. Firstly, the necessary imports are:

import matplotlib.pyplot as plt

import numpy as np

import sparse

import seaborn as sns

The code to generate uniform MCs is directly below.

def generate_random_MC_uniform(num_states):

P_matrix = np.random.random (( num_states + 1, num_states))

P_matrix += 0.01 #prevents columns summing to zero (highly improbable)

P_matrix = (P_matrix / P_matrix.sum(0)).T

b_vector = P_matrix[:, -1]

A_matrix = P_matrix[:, :-1]

return A_matrix , b_vector , P_matrix

Next is the code to generate block MCs. For our experiments, we used the default param-

eters.

def generate_random_MC_block(num_states , num_pass=200 , block_scale=5):

P_matrix = np.zeros ((num_states , num_states + 1))

full_state_idxs = np.arange(num_states)

# for each state , create the probability that it can reach B

reach_idxs = np.random.choice(full_state_idxs , int(num_states * np.

random.rand()), replace=False)

reach_probs = np.random.rand(len(reach_idxs))

P_matrix[reach_idxs , -1] = reach_probs

161



# perform n passes

for _ in range(num_pass):

block_size = int((np.random.rand() * num_states) / (2 * block_scale))

initial_idx = np.maximum ((np.random.rand(2) * num_states).astype(int) -

block_size , [0, 0])

P_matrix[initial_idx[0]:initial_idx[0] + 2 * block_size ,

initial_idx[1]:initial_idx[1] + 2 * block_size] += 1

row_sums = P_matrix.sum(0) # for each col , sum up all the rows

non_zero_idxs = row_sums.nonzero ()

P_matrix[:, non_zero_idxs] /= row_sums[non_zero_idxs]

b_vector = P_matrix[:, -1]

A_matrix = P_matrix[:, :-1]

return A_matrix , b_vector , P_matrix

Then, we have the algorithm to generate N -pass MCs. Again, the default parameter is

used.

def generate_random_MC_npass(num_states , num_pass=1000):

P_matrix = np.zeros ((num_states , num_states + 1))

full_state_idxs = np.arange(num_states)

# for each state , create probabilty that it can reach B

reach_idxs = np.random.choice(full_state_idxs , np.maximum(1, int(

num_states * np.random.rand())),

replace=False)

reach_probs = np.random.rand(len(reach_idxs))

P_matrix[reach_idxs , -1] = reach_probs

# perform n passes

for _ in range(num_pass):

sel_states = np.random.permutation(full_state_idxs)

choices = np.random.choice(reach_idxs , num_states , replace=True)

temp = np.random.uniform(0, 1 - P_matrix[sel_states , :].sum(1), len(

sel_states))

P_matrix[sel_states , choices] += temp

reach_idxs = sel_states

b_vector = P_matrix[:, -1]

A_matrix = P_matrix[:, :-1]

return A_matrix , b_vector , P_matrix

Lastly, we have the algorithm to sample sparse MCs. Once more, the default param. is
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used.

def generate_random_MC_sparse(num_states , density=0.1):

P_matrix = sparse.random (( num_states + 1, num_states), density)

P_matrix = P_matrix.todense ()

full_state_idxs = np.arange(num_states)

# for each state , create probabilty that it can reach B

reach_idxs = np.random.choice(full_state_idxs , np.maximum(1, int(

num_states * np.random.rand())),

replace=False)

reach_probs = np.random.rand(len(reach_idxs))

P_matrix[reach_idxs , -1] = reach_probs

# normalize

row_sums = P_matrix.sum(0)

non_zero_idxs = row_sums.nonzero ()

P_matrix[:, non_zero_idxs] /= row_sums[non_zero_idxs]

P_matrix = P_matrix.T

b_vector = P_matrix[:, -1]

A_matrix = P_matrix[:, :-1]

return A_matrix , b_vector , P_matrix
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