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ABSTRACT 

The aim of this research is to improve the ability of the Bees Algorithm to tackle global optimisation 

problems. The Bees Algorithm was formulated and inspired by the foraging behaviour of honeybees. The 

proposed enhancements target the initialisation and global search stages of the algorithm. The reason for this 

is that the initialisation stage could save efforts by directing the search earlier towards the more promising 

areas of the search space, leading to a better optimised result. Targeting during the global search is due to the 

researcher’s belief that the neighbourhood search depends on it and any improvement will positively affect 

the neighbourhood search. 

In this research, three enhancements were formulated based on the manipulation of the search space. 

The first enhancement (BAwSSR) involves continuous and gradual reduction of the search space with 

different scenarios that vary according to the starting point of reduction. The second enhancement (BADS) 

deals with the segmentation of search space into independent segments while using two sampling approaches 

to tackle a wide variety of problems. The third enhancement (BAOSS) also involves the segmentation of 

search space but divides it into independent segments to increase flexibility in handling a wider range of 

problems.  

These proposed algorithms were tested on 24 benchmark functions with a broad range of 

characteristics. This test involves performance comparisons with the Quick Artificial Bee Colony (qABC) 

and the Standard Particle Swarm Optimisation 2011 (SPSO2011) algorithms. The obtained test data 

indicated noticeable improvements with an adequate level of stability over the original Bees Algorithm. The 

results were supported by the Mann–Whitney significance test, showing the improvements are statically 

significant for both accuracy and speed. Additionally, the proposed algorithms were tested on two 

engineering problems that included a comparison with a group of competitor algorithms. However, only the 

first proposed algorithm (BAwSSR) showed an obvious improvement. The other two algorithms (BADS) 

and (BAOSS) did not reveal any improvement. 



v 

 

  



vi 

 

 

ACKNOWLEDGEMENTS 

First of All, I would like to prise and thank Allah SWT for all his blessings and for guiding me during the 

difficult time and giving me the strength to accomplish this research until it is completed. 

 My special thanks to, Professor Duc Truong Pham, my supervisor for giving me the opportunity to conduct 

the research and for his invaluable guidance and regular advice until the last minute of submitting this thesis.  

A special gratitude to my research colleagues, Mr. Syahril Bahari, Mr. Shafie Kamaruddin for providing the 

knowledge and patiently answering my questions. I would like to also express my sincere thanks to all of my 

research colleagues who have been always supportive special my colleague Ismail Asrul which have been 

always ready to help. 

To my parents who always initiated the hope and aspiration with their prayers. Special dedication to my 

mother, who throughout her life believed in me and assured me during the difficult circumstances.  

To my wife for her endless encouragement and who patiently endured the stressful period   

during my busy tim. To my children who enriched me with their warm love. 

To my brothers and sisters who have been always proud of me and I cannot express enough my appreciation 

for their reassurance words.  

This thesis was copy edited for conventions of language, spelling, and grammar by Paulina S. Cossette, 

Ph.D., at eContent Pro International. 



vii 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... iv 

ACKNOWLEDGEMENTS ........................................................................................................... vi 

TABLE OF CONTENTS ..............................................................................................................vii 

LIST OF FIGURES ......................................................................................................................... x 

LIST OF TABLES ......................................................................................................................... xi 

LIST OF ABBREVIATIONS ...................................................................................................... xiv 

LIST OF SYMBOLS .................................................................................................................... xvi 

Chapter 1 INTRODUCTION .......................................................................................................... 1 

1.1 Background ................................................................................................................... 1 

1.2 Motivation ..................................................................................................................... 2 

1.3 Aim and Objectives ...................................................................................................... 3 

1.4 Research Methods ......................................................................................................... 4 

1.5 Thesis Outline ............................................................................................................... 5 

Chapter 2 LITERATURE REVIEW OF OPTIMISATION ALGORITHMS ................................ 7 

2.1 Preliminaries ................................................................................................................. 7 

2.2 Optimisation .................................................................................................................. 7 

2.3 Classification of Optimisation Algorithms ................................................................... 8 

2.4 Metaheuristics ............................................................................................................... 9 

2.4.1 Single-Solution-Based Metaheuristics ................................................................... 9 

2.4.2 Population-Based Metaheuristics ......................................................................... 14 

2.5 Summary ..................................................................................................................... 26 

Chapter 3 THE BEES ALGORITHM WITH SEARCH SPACE REDUCTION (BAwSSR) ...... 28 

3.1 Preliminaries ............................................................................................................... 28 

3.2 Bracketing-Region Elimination Method ..................................................................... 29 

3.3 The BA with Search Space Reduction (BAwSSR) .................................................... 31 

3.4 Experiment Setup ........................................................................................................ 35 

3.5 Results and Discussion ............................................................................................... 39 

3.5.1 Solution Quality (Accuracy) ................................................................................ 39 

3.5.2 SR and NFEs ........................................................................................................ 49 

3.6 Summary ..................................................................................................................... 55 

Chapter 4 BEES ALGORITHM IMPROVEMENT USING DOMAIN SEGMENTATION (BADS) 57 

4.1 Preliminaries ............................................................................................................... 57 

4.2 Domain Segmentation Sampling Method ................................................................... 57 



viii 

 

4.3 Search Space Mobile Subset Sampling ...................................................................... 60 

4.4 Experiment Setup ........................................................................................................ 61 

4.5 Results and Discussion ............................................................................................... 62 

4.5.1 Solution Quality (Accuracy) ................................................................................ 62 

4.5.2 SR and NFEs ........................................................................................................ 71 

4.6 Summary ..................................................................................................................... 76 

Chapter 5 BEES ALGORITHM IMPROVEMENT USING OVERLAPPING SEGMENTATION OF 

SEARCH SPACE (BAOBSS) ....................................................................................................... 78 

5.1 Preliminaries ............................................................................................................... 78 

5.2 The Overlapping Segmentation of the Search Space Method .................................... 78 

5.2.1 Search Space Overlap Segmentation ................................................................... 79 

5.2.2 Tracking Promising Domain Intervals ................................................................. 81 

5.3 Experiment Setup ........................................................................................................ 81 

5.4 Results and Discussion ............................................................................................... 82 

5.4.1 Solution Quality (Accuracy) ................................................................................ 82 

5.4.2 SR and NFEs ........................................................................................................ 90 

5.5 Summary ..................................................................................................................... 96 

Chapter 6 APPLICATIONS .......................................................................................................... 97 

6.1 Single-Objective Functions Without Constraints ....................................................... 97 

6.2 Single-Objective Functions with Constraints ............................................................. 99 

6.3 Summary ................................................................................................................... 102 

Chapter 7 CONCLUSION ........................................................................................................... 104 

7.1 Conclusion ................................................................................................................ 104 

7.2 Contribution .............................................................................................................. 105 

7.3 Future work ............................................................................................................... 106 

REFERENCES  ........................................................................................................................... 109 

APPENDICES ............................................................................................................................. 120 

APPENDIX A GEAR TRAIN DESIGN PROBLEM ................................................................. 121 

APPENDIX B COMPRESSION TENSION SPRING ............................................................... 122 

APPENDIX C LIST OF CHARTS FOR BAwSSR ALGORITHM ........................................... 123 

APPENDIX D LIST OF CHARTS FOR BADS ALGORITHM ................................................ 131 

APPENDIX E LIST OF CHARTS FOR BAOSS ALGORITHM .............................................. 139 

APPENDIX F LIST OF BENCHMARKFUNCTIONS .............................................................. 147 

 

 



ix 

 

 

  



x 

 

LIST OF FIGURES 

Figure 2.2 Pseudo code for ILS ............................................................................................ 12 

Figure 2.3 Pseudo code of VNS ........................................................................................... 14 

Figure 3.1 Region elimination method ................................................................................. 30 

Figure 3.1 Search scenario 1 ................................................................................................ 32 

Figure 3.2 Search scenario 2 ................................................................................................ 33 

Figure 3.3 Search scenario 3 ................................................................................................ 33 

Figure 3.4 Search scenario 4 ................................................................................................ 34 

Figure 3.5 Search scenario 5 ................................................................................................ 34 

Figure 3.7 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Rosenbrock 10D function 42 

Figure 3.6 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Quartic 30D function 43 

Figure 3.7 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Ackley 10D function 43 

Figure 3.8 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Schaffer’s 2D function 43 

Figure 3.11 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Easom 2D function 43 

Figure 3.12 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Rastrigin 10D function 44 

Figure 3.13 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Shekel 4D function 44 

Figure 3.14 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Langerman 10D function 44 

Figure 3.15 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Griewank 10D function 45 

Figure 4.1 First sampling approach from segmented search space ...................................... 59 

Figure 4.2 Second approach sampling from segmented search space .................................. 59 

Figure 4.3 Sampling from a mobile subset of search space ................................................. 61 

Figure 4.4 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Rosenbrock   10D function 64 

Figure 4.5 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Quatric 30D function 64 

Figure 4.6 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Ackley 10D function 64 

Figure 4.7 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Schaffer 2D function 65 

Figure 4.8 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Easom 2D function 65 

Figure 4.9 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Rastrigin 2D function 65 

Figure 4.10 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Shekel 4D function 66 

Figure 4.11 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Langerman 10D function 66 

Figure 5.1 Illustration 1 1of dividing the search space into overlapping segments for the Colville function.

 .............................................................................................................................................. 80 

Figure 5.2 Illustration 2 of dividing the search space into overlapping segments for the Colville function. 80 

Figure 5.3 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Rosenbrock 10D function 84 

Figure 5.4 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Quartic 30D   function 84 

Figure 5.5 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Ackley 10D function 84 

Figure 5.6 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Schaffer 2D function 85 

Figure 5.7 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Easom 2D    function 85 

Figure 5.8 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Rastrigin 10D  function 85 

Figure 5.9 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on  Shekel 4D function 86 

Figure 5.10 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Langerman   10D function

 .............................................................................................................................................. 86 

Figure 5.11 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Griewank  10D function 86 

Figure A.1 Gear train design scheme ................................................................................. 120 

Figure B.1 Compression/tension spring ............................................................................. 121 

 



xi 

 

 

 

 

 

 

LIST OF TABLES 

Table 3.1 List of test functions and their properties ............................................................. 36 

Table 3.2 List of parameter values used for testing BAwSSR ............................................. 39 

Table 3.3 List of parameter values used for testing BBA .................................................... 40 

Table 3.4 qABC parameter settings ...................................................................................... 41 

Table 3.5 SPSO2011 parameter settings .............................................................................. 41 

Table 3.6 Best performance figures for BAwSSR, BBA, qABC, and SPSO2011 for accuracy values 41 

Table 3.7 Mean and standard deviation of best accuracy values for BAwSSR and BBA obtained through 50 

independent runs on test functions f1–f24 ............................................................................ 46 

Table 3.8 Mean, and standard deviation of best accuracy values obtained through 50 independent runs on test 

functions f1–f24 for BAwSSR and qABC ........................................................................... 46 

Table 3.9 Mean, and standard deviation of best accuracy values obtained through 50 independent runs on test 

functions f1–f24 for BAwSSR and SPSO2011 .................................................................... 47 

Table 3.10 P-values using the Mann–Whitney test (a = 0.05) for accuracy acquired by BAwSSR over ABC, 

BBA, and SPSO2011 ............................................................................................................ 48 

Table 3.11 SR of BAwSSR compared with BBA, SPSO2011, and qABC, based on NFEs obtained through 

50 independent runs on test functions f1–f24 ....................................................................... 49 

Table 3.12 Best performance of the BAwSSR, BBA, SPSO2011, and qABC for the NFEs obtained through 

50 independent runs on test functions f1–f24 ....................................................................... 51 

Table 3.13 Means and standard deviations of NFEs obtained through 50 independent runs on test functions 

f1–f24 ................................................................................................................................... 52 

Table 3.14 Means and standard deviations of NFEs for qABC obtained through 50 independent runs on test 

functions f1–f24 .................................................................................................................... 53 

Table 3.15 Means and standard deviations of NFEs obtained through 50 independent runs on test functions 

f1–f24 ................................................................................................................................... 54 

Table 3.16 P-values using the Mann–Whitney test (a = 0.05) for NFEs acquired by BAwSSR over the BBA

 .............................................................................................................................................. 55 

Table 4.1 List of parameter values used for testing BADS .................................................. 61 

Table 4.2 Best performance figures for BADS, BBA, qABC, and SPSO2011 for accuracy values 63 

Table 4.3 Means and standard deviations of best accuracy values for BADS and the BBA through 50 

independent runs on functions f1–f24 .................................................................................. 67 

Table 4.4 Means and standard deviations of accuracy values through 50 runs on functions f1–f24 for BADS 

and qABC ............................................................................................................................. 68 

Table 4.5 Means, and standard deviations of accuracy values obtained through 50 runs on test functions f1–

f24 for BADS and SPSO2011 .............................................................................................. 69 

Table 4.6 P-values using Mann–Whitney test (a = 0.05) for accuracy acquired by BADS over qABC, BBA, 

and SPSO2011 ...................................................................................................................... 70 



xii 

 

Table 4.7 SR of the BADS, BBA, SPSO2011, and qABC algorithms based on NFEs obtained through 50 

runs on functions f1–f24 ....................................................................................................... 71 

Table 4.8 Best performance of BADS, SPSO2011, and qABC for the NFEs obtained through 50 runs on test 

functions f1–f24 .................................................................................................................... 72 

Table 4.9 Means and standard deviations of the NFEs obtained through 50 runs for BADS and the BBA on 

test functions f1–f24 ............................................................................................................. 73 

Table 4.10 Means and standard deviations of NFEs obtained through 50 runs for BADS and qABC on test 

functions f1–f24 .................................................................................................................... 74 

Table 4.11 Means and standard deviations of NFEs obtained through 50 runs for BADS and SPSO2011 on 

test functions f1–f24 ............................................................................................................. 75 

Table 4.12 P-values using the Mann–Whitney test (a = 0.05) for NFEs acquired by BADS over the BBA 76 

Table 5.1 Sample of the calculated segment’s limits ........................................................... 80 

Table 5.2 List of parameter values used for testing BAOSS ................................................ 81 

Table 5.3 Best performance figures for the BAOSS, BBA, qABC, and SPSO2011 for accuracy values 83 

Table 5.4 Means and standard deviations of best accuracy values for the BAOSS and BBA obtained through 

50 independent runs on test functions f1–f24 ....................................................................... 87 

Table 5.5 Means and standard deviations of accuracy values for the BAOSS and qABC obtained through 50 

runs on test functions f1–f24 ................................................................................................ 88 

Table 5.6 Means and standard deviations of best accuracy values for the BAOSS and SPSO2011 obtained 

through 50 independent runs on test functions f1–f24 ......................................................... 89 

Table 5.7 P-values using the Mann–Whitney test (a = 0.05) for accuracy acquired by BAOSS over qABC, 

BBA, and SPSO2011 ............................................................................................................ 90 

Table 5.8 SR of the BAOSS compared with BBA, SPSO2011, and qABC based on NFEs obtained through 

50 runs on test functions f1–f24 ........................................................................................... 91 

Table 5.9 Best performance of BAOSS, SPSO2011, and qABC for NFEs obtained through 50 independent 

runs on test functions f1–f24 ................................................................................................ 92 

Table 5.10 Means and standard deviations of the NFEs obtained through 50 independent runs for BAOSS 

and BBA on test functions f1–f24 ........................................................................................ 93 

Table 5.11 Means and standard deviations of NFEs obtained through 50 runs for BAOSS and qABC on test 

functions f1–f24 .................................................................................................................... 93 

Table 5.12 Means and standard deviations of NFEs obtained through 50 runs for BADS and SPSO2011 on 

test functions f1–f24 ............................................................................................................. 94 

Table 5.13 P-values using the Mann–Whitney test (a = 0.05) for NFEs acquired by BAOSS over BBA 95 

Table 6.1 Gear train problem parameters ............................................................................. 98 

Table 6.2 Performance figures comparing the qABC, SPSO2011, BBA, BAwSSR, BADS, and BAOSS on 

the gear train problem. .......................................................................................................... 99 

Table 6.3 Performance figures for the ABC, PSO–GA, CS, BAwSSR, BADS, and BAOSS on the gear train 

problem ................................................................................................................................. 99 

Table 6.4 Tension/compression spring parameter values ................................................... 100 

Table 6.5 Performance figures comparison for the qABC, SPSO2011, BBA, BAwSSR, BADS, and BAOSS 

on the tension/compression spring problem ....................................................................... 101 

Table 6.6 Comparison of the figures of group of competitor algorithms with the proposed algorithms on the 

tension/compression spring problem for each algorithm ................................................... 101 

Table 6.7 List of variable and constraint values achieved by the BAwSSR, BADS, and BAOSS algorithms

 ............................................................................................................................................ 101 

Table 6.8 Mann–Whitney significance test at < 0.05 on tension/compression spring for BAwSSR and BADS

 ............................................................................................................................................ 102 



xiii 

 

Table 6.9 Mann–Whitney significance test on tension/compression spring for BAOSS and BAwSSR 102 

Table 6.10 Mann–Whitney significance test on tension/compression spring for BAOSS and BADS 102 

 

  



xiv 

 

LIST OF ABBREVIATIONS 

ABC    Artificial Bee Colony 

ACO    Ant Colony Optimisation 

AS    Ant System  

BA Bees Algorithm 

BADS Bees Algorithm with Domain Segmentation 

BAOSS Bees Algorithm with Overlapping Search Space Segmentation 

BAwSSR Bees Algorithm w Search Space Reduction 

BCO Bee Colony Optimisation  

BS Bee System  

CPU Central Processing Unit  

DE Differential Evolution  

DPSO Discrete Particle Swamp Optimisation 

EAS  Elitist Ant System 

GA Genetic Algorithm  

GCPSO Guaranteed Convergence Particle Swarm Optimiser 

GVNS General Variable Neighbourhood Search 

HACO Hybrid Ant Colony Optimisation 

JSP Job Shop Scheduling Problem 

MMAS Max–Min Ant System 

MMO  Multimodal Optimisation  

NFE    Number of Function Evaluations  

NP  Non-deterministic Polynomial-time  

OPF    Optimal Power Flow  

OR    Operation Research  

PSO    Particle Swarm Optimisation  

QAP Quadratic Assignment Problem 

qABC  Quick Artificial Bee Colony  



xv 

 

RAS Rank Based Ant System 

RVNS Reduced Variable Neighbourhood Search 

SA    Simulated Annealing  

SI    Swarm Intelligence  

SR Success Rate  

Std. Dev. Standard Deviation  

TS    Tabu Search  

TSP    Travelling Salesman Problem  

VRP    Vehicle Routing Problem  

VNS Variable Neighbourhood Search 

VND Variable Neighbourhood Decent 

  



xvi 

 

LIST OF SYMBOLS 

𝑐1    Cognitive coefficient for Standard Particle Swarm Optimisation 

𝑐2    Social coefficient for Standard Particle Swarm Optimisation 

𝑑    Number of dimensions  

𝑓    Objective or cost function(s)  

𝐾    Number of informants for Standard Particle Swarm Optimisation 

𝑙    Limit for abandonment in Quick Artificial Bee Colony  

𝑁  Number of decision variables 

𝑛𝑏    Number of best sites in the Bees Algorithm  

𝑛𝑒    Number of elite sites in the Bees Algorithm  

𝑛𝑔ℎ    Size of patches including site and its neighbourhood in the Bees Algorithm  

𝑛𝑟𝑏    Number of bees recruited for (𝑏−𝑒) sites in the Bees Algorithm  

𝑛𝑟𝑒    Number of bees recruited for 𝑒 sites in the Bees Algorithm  

𝑛𝑠    Number of scout bees in the Bees Algorithm  

𝑝    Size of the bees’ population in the Bees Algorithm  

𝑟    Neighbourhood radius for Quick Artificial Bee Colony  

𝑟𝑎𝑛𝑑  Random vector element between 0 and 1 following the uniform distribution  

𝑆  Swarm size for Standard Particle Swarm Optimisation  

𝑠𝑡𝑙𝑖𝑚 Stagnation limit for the Bees Algorithm 

𝑇   Matrix transpose  

𝑥    
Parameter to be optimised; design or decision variable(s); can be 

continuous, discrete, or a mixture of both  

𝑤    Inertia weight for Standard Particle Swarm Optimisation 

 



1 

 

Chapter 1  INTRODUCTION 

1.1 Background 

Optimisation is an everyday activity. In fact, it is a property of the human mind. For 

example, a person performing a task for the first time might face difficulties. However, 

after performing the task several times, the brain starts to discover better ways of 

performing these tasks. Moreover, at a higher level, for activities such as determining 

investments or shopping at a grocery store, the mind will naturally evaluate available 

options to find the best ones. Previous experiences are recalled or an analogy to the current 

situation is drawn, and strategies developed to solve problems that are regularly 

encountered. 

As humanity began to modernise and industrialise, more complicated problems 

emerged. This is when the Operation Research discipline, which includes metaheuristics 

and exact methods, arose (Sorensen et al., 2017). Researchers then began to formulate 

strategies to tackle such problems; one of the earliest efforts was G. Polya’s book, How to 

Solve It, which introduces high-level strategies for solving some complicated problems 

(Sorensen et al., 2017). However, for some problems, using exact methods is infeasible; 

this includes problems for which processing time increases exponentially as the size of the 

problem increases, meaning that they cannot be solved in polynomial time (or NP-hard 

problems). Some examples are the Travelling Salesman Problem (TSP), the Vehicle 

Routing Problem (VRP), and the Knapsack Problem (KP). This situation necessitated the 

use of stochastic techniques, which are usually employed in metaheuristic methods. Many 
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metaheuristic methods have borrowed their inspiration from nature; therefore, they are 

referred to as nature-inspired algorithms. 

For example, evolutionary algorithms, which are considered one of the earliest 

existing optimisation algorithms, are based on the theory of evolution, or what is commonly 

known as Darwinian theory. Evolutionary algorithms borrowed some principles of 

evolutionary theory, such as survival of the fittest and natural selection. Other algorithms 

are inspired by the social behaviour of some insects and animals. For example, the Ant 

Colony Optimisation algorithm (ACO) mimics the foraging behaviour of ants in their 

search for food. The Bees Algorithm (BA), Artificial Bee Colony (ABC), and Bee Colony 

Optimisation (BCO) are motivated by the foraging activity of Bees in nature. Others, like 

Particle swarm Optimisation (PSO), are inspired by the swarm of groups of birds. 

Metaheuristics also include algorithms based on natural phenomenon, such as the annealing 

of some physical material like steel and iron. Metaheuristics are applied successfully in 

many problems such as robotics, circuit design, radio signal processing, cloud computing, 

internet load and traffic balancing, and even vehicle fuel consumption. 

1.2 Motivation  

With their potential to solve complicated problems, the successful application of 

metaheuristics in many essential aspects of people’s lives has attracted significant attention. 

Hence, the development rate of new methods has increased, and existing algorithms with 

improved variations and hybridised versions have been released. These efforts aim to 

further improve the performance of these algorithms and to tackle some of the critical 

issues affecting their performance. The present research focuses on leveraging the 
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performance of the BA by treating some of its weaknesses. One of these issues is the high 

degree of randomness and bias in initial and global search sampling due to the nature of 

randomly extracted samples and their uneven distribution across the search space. This lack 

of diversification and its effect on global search has been highlighted by Yuce et al., (2017) 

and Packianather et al., (2014). With the BA method of sampling, the process is highly 

likely to overlook certain areas of the search space where the optimum value might be 

located, causing the neighbourhood search to fail and to become trapped in local optima. 

The exploitative ability of the BA has been noted by Pham and Castellani (2015), who 

indicate its sensitivity to the absence of information about search direction. Moreover, the 

evenly extracted sample is likely to positively affect the search convergence speed with 

such informative sampling. Search convergence speed is another critical issue facing 

several metaheuristic algorithms. This research also addresses another BA vulnerability—

slow convergence when optimising smooth unimodal functions (Pham et al., 2008; Pham 

and Castellani, 2015). 

1.3 Aim and Objectives 

The general aim of this research is to improve the performance and optimisation 

capabilities of the BA in terms of accuracy and speed through search space manipulation of 

problems with continuous domains. To accomplish this, the following specific objectives 

have been set: 

1. To develop an enhanced version of the BA with a gradual search space decrease 

during the initialisation and global search stages with different decreasing scenarios.  
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2. To develop a search space segmentation strategy with two types of sampling 

procedures. The first one is to takes each sample from one different segment. The 

second one to take every parameter from the same sample from different segment to 

handle different optimisation problem types of values. Additionally, a new 

procedure to sample from a mobile subset of the search space method will be used.  

3. To develop a search space segmentation strategy with overlapping segments to 

handle different types of parameter values for optimisation problems. 

1.4 Research Methods 

The research methods used to achieve the above aims and objectives include: 

• Surveying metaheuristic methods with a special focus on population-based, nature-

inspired algorithms to figure out the current gaps and to identify performance 

issues.  

• Reviewing research literature around the BA and its variants and applications to 

identify weaknesses and strengths to develop appropriate enhancements. 

• Developing the proposed enhancements in R Studio using R programming.  

• Assessing the proposed enhancements to performance on a wide variety of 

mathematically formulated benchmark functions with continuous domains.  

• Evaluating the proposed algorithms on well-known, constrained, engineering 

problems.  

• Conducting tests to identify the statistical significance of the improved performance 

of the proposed algorithms. 
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1.5 Thesis Outline 

This thesis is organised as follows. 

Chapter 2 reviews the literature on various optimisation metaheuristic methods 

with a special discussion of the concept of optimisation. It also discusses the main 

categories of metaheuristic methods, highlighting several, with special emphasis on 

population-based and nature-inspired methods. The chapter provides additional details of 

some of the widely adopted population-based methods, including their variants, 

hybridisation, and application. The weaknesses of these algorithms are discussed and 

analysed.  

Chapter 3 presents the first proposed enhancement of the BA and the strategy of 

gradual decrease, with a discussion of its theoretical background. It also introduces the five 

implementations of the proposed strategy and lists the benchmark functions for testing the 

algorithm. The chapter also provides an analysis of the performance of the new BA on 

benchmark functions in terms of accuracy, speed, consistency and stability of the achieved 

result. The analysis includes a comparison with the original BA and two other algorithms 

widely used in the optimisation literature—ABC and PSO. A discussion of the analysis of 

the statistical significance of improvement is provided.  

Chapter 4 introduces the second proposed enhancement of the BA and the strategy 

of search space segmentation for different sampling orientations to accommodate diverse 

types of parameter values. The chapter reviews the test results on benchmark functions 

compared with those for ABC and PSO. The results are analysed and discussed in terms of 

accuracy, speed, robustness, and reliability. Further, the results of the Mann–Whiney 
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significance test are analysed. This is followed by a discussion of the statistical significance 

of the improvement.  

Chapter 5 highlights the third suggested improvement of the BA, based on search 

space overlapping segmentation. The performance test results for benchmark functions are 

reviewed, and comparisons with ABC and PSO are discussed according to accuracy, speed, 

robustness, and reliability. Moreover, the outcome of the Mann–Whitney statistical 

significance test is reviewed.  

Chapter 6 discusses the application of the three proposed BA enhancements on two 

well-known engineering problems. Both problems involve single objectives. The first, the 

Gear Train problem, is an unconstraint optimisation problem; the second, the 

tension/compression spring, is a constrained optimisation problem. The test results are 

compared using figures taken from the literature for the other algorithms examined.  

Chapter 7 concludes this thesis, summarises the contributions of the research and 

suggests potential future work. 
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Chapter 2  LITERATURE REVIEW OF OPTIMISATION 

ALGORITHMS 

2.1 Preliminaries 

This chapter surveys some of the popular techniques used in optimisation and their 

different applications. A classification of these techniques is presented based on their 

stochastic features. Although these techniques include swarm and non-swarm intelligence 

methods, the survey focuses more on swarm intelligence methods for continuous domain 

problems. 

2.2 Optimisation 

Optimisation is concerned with finding the best solution possible with available resources 

(Chinneck, 2000). Here, “best” means the fittest solution in the search space, although there 

is no guarantee that a global solution exists. Mathematically, optimisation is defined as the 

use of innovative strategies to find a set of values that minimises an objective function. This 

definition also applies to maximisation without loss of generality. This can be achieved by 

inverting the sign of the objective function. Mathematically, optimisation can be formulated 

as follows: 

 

min
 𝜒∈ℝΝ 

𝑓(𝑥),  χ = (𝜒1,𝜒2, . . . 𝜒Ν)     (2.1) 

 

where:   

f = the objective (cost) function(s), defined in ℝΝ, which is the search space or 

search solution defined in the set of real numbers; and 
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Χ = the parameters or the design variables of the objective functions; these 

parameters can be discrete, continuous, or a mix of both. 

2.3 Classification of Optimisation Algorithms 

Optimisation techniques are widely applied in a large variety of research subjects, such as 

math and physics, as well as business and decision-making processes. Currently, there 

exists a plethora of optimisation algorithms. However, according to the “no free lunch” 

theorem of Wolpert and Macready (1997), there is no algorithm that can solve all kinds of 

problems. 

Optimisation algorithms can be separated into two main categories: deterministic and 

stochastic. Deterministic algorithms are often applied when the problem to optimise is not 

too complicated or the dimensionality of the problem is not too high, rendering the 

optimisation process infeasible or time consuming (Weise, 2009). Examples of these types 

of algorithms are branch and bound, state space search, and algebraic geometry. On the 

other hand, stochastic algorithms are concerned with the types of problems considered to 

have high complexity, according to the computational theory of complexity, such as NP-

hard and NP-complete (Abidin et al., 2011). The heavy consumption of resources required 

to solve these problems makes a deterministic approach infeasible, which is where 

metaheuristics comes into play (Alia and Mandava, 2011; Glover, 2006; Bianchi et al., 

2009). The metaheuristics method is a group of algorithms that aims to find optimal or 

near-optimal solutions within a designated polynomial time and with available resources. 

However, metaheuristics does not guarantee that the exact global optimum solution will be 

reached, nor does it provide a universal algorithm that can solve all kinds of problems.  
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2.4 Metaheuristics 

Metaheuristics can be classified into two main groups: single-solution-based and 

population-based algorithms. Single-solution-based algorithms, also known as trajectory 

methods (Boussaïd et al., 2013), can find solutions following a trajectory pathway in a 

search space (Baghel et al., 2012). 

2.4.1 Single-Solution-Based Metaheuristics 

Single-solution-based metaheuristics initially create one individual solution and gradually 

improve it. Tabu search, simulated annealing, iterated local search, and variable 

neighbourhood search are examples of this type of algorithm. 

2.4.1.1 Tabu Search  

The Tabu Search (TS) algorithm uses memory as an element to store a search history in a 

list of solutions. The aim is to prevent the search from endlessly revisiting the same search 

area (Boussaïd et al., 2013), which is usually a characteristic of being trapped in local 

optima. This enforces more explorative behaviour in the search for the optimum. The type 

of memory used can vary from short-term memory to intermediate and long-term memory 

(Boussaïd et al., 2013; Glover, 1990), which affects the algorithm’s explorative traits. 

Because TS was devised by Glover in 1978, there were many attempts to hybridise it with 

the BA (Shafia et al., 2011; Imanguliyev, 2013) and (ACO; Eswaramurthy et al., 2009). TS 

works better with discrete search spaces than with continuous spaces because it needs to 

visit the exact value stored in the list; this is possible when there is a limited number of 

values, as in a discrete domain. This is particularly difficult in a continuous domain, where 

the search space can be divided infinitely, making it extremely large, especially with high-
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dimensionality problems. Hence, in a continuous domain, TS becomes inefficient with the 

extremely large search space, which will eventually make the list grow massively and 

become exceedingly costly in terms of processing power and time. Moreover, the existence 

of an infinite number of values will cause the search to become inefficient, as it is highly 

unlikely that one value will be searched again (Luke, 2013).  

2.4.1.2 Simulated Annealing  

Simulated annealing (SA), which appeared in the early 1990s, is one of the earliest 

algorithms devised (Kirkpatrick et al., 1983). It is a popular single-solution-based 

algorithm derived from the process of heating and cooling of metallurgical materials. To 

achieve the desired properties for the material, such as hardness, flexibility, and ductility, 

the heating process requires starting with a higher temperature and gradually decreasing it. 

The temperature affects the atomic movement of the material, which is more random at 

higher temperatures. As the temperature cools, the random movement of the atoms 

decreases, and they are frozen and linked with strong bonds (Nolle et al., 2011). The 

critical factor is the gradual cooling of the temperature, governed by the Boltzmann 

probability factor, which enables control of the material’s desired attributes. An analogous 

concept was adopted in the SA algorithm. That algorithm works by generating an initial 

solution S; if, in the following iteration, a better—or at least similar—solution 𝑆∗ is 

generated, the new solution will be considered the current solution, and the search will 

continue. If the generated solution is worse than the current one, it will be accepted with 

probability ℯ
△

𝑇 , where △ = 𝑓(𝑆) − 𝑓(𝑆∗), and 𝑇 is a factor corresponding to the 

temperature in the annealing process. SA was applied effectively to many continuous and 
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discrete optimisation problems (Boussaïd et al., 2013). It has also been applied successfully 

to machine learning and neural networks to escape local minima (Owen and Abunawass, 

1993). Figure 2.1 shows the pseudo code of SA. 

 

  

Figure 2.1 Pseudo code of simulated annealing algorithm (SA) 

 

2.4.1.3 Iterated Local Search 

Iterated local search (ILS) is an improved version of hill-climbing algorithms (Luke, 2013) 

with frequent random restarts. It is a single-solution-based algorithm. The main idea behind 

ILS is to generate a random solution; it will then select a point in the vicinity of the current 

local optimum to find a better solution. This happens by a perturbation in the current local 

1  Select initial solution S randomly. 

2  Select initial temperature T. 

3  While stopping criteria not met, repeat. 

4  Generate 𝑆∗. 

5  If  𝑓(𝑆) ≥ 𝑓(𝑆∗), then 

6 𝑆 ←  𝑆∗ 

7 else 

8 𝑆 ←  𝑆∗ when ℯ
△

𝑇  > random (0,1). 

9 End. 

10 Reduced T. 

11  If stopping criteria not met, continue. 

12  End. 
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optimum (Boussaïd et al., 2013). The point should not be too far or too close to the current 

local optimum. It keeps moving from one local optimum to another within the search space 

during the consecutive iterations (Luke, 2013). However, the solution will need to be 

verified by acceptance criteria that control the balance between diversification and 

intensification (Boussaïd et al., 2013). Many combinatorial optimisation problems have 

been successfully optimised with ILS (Lourenço et al., 2003). Some examples of these 

problems are the TSP and the job scheduling (JS) problem, including a wide variety of 

problem settings, from single-machine to complex-multimachine scheduling. Figure 2.2 

includes the pseudo codes for ILS.

 

Figure 2.2 Pseudo code for ILS 

 

2.4.1.4 Variable Neighbourhood Search 

Mladenović and Hansen (1997) established the Variable Neighbourhood Search (VNS). It 

suggests that the search around a randomly generated solution should be within a 

1 Generate initial solution randomly S. 

2 Using local search, generate S* from S. 

3 Repeat. 

4 Get solution P from S* via perturbation. 

5 Using local search, generate P* from P. 

6 Apply acceptance criteria. 

7          If P* satisfy the acceptance criteria, then 

8               S* ←  𝑃 ∗ 

9         End. 

10  Until the stopping criterion is met. 

11 End. 
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dynamically changing neighbourhood area. First, the structures of the neighbourhood are 

randomly initialised: Ν1Ν2 . . . . Ν𝑛 𝑚𝑎𝑥. The next step is to generate an initial solution 𝑠 that 

is followed by the initiation of the VNS main cycle, where 𝑠′ is arbitrarily selected from the 

nth neighbourhood of the current solution s. A method of local searching is then used on 𝑠′ 

to generate 𝑠″. If 𝑠″ is better than 𝑠, then 𝑠″ will replace the current solution 𝑠. The search 

then continues with the next neighbourhood structure, Ν2, restarting the cycle. The 

pseudocode of VNS is shown in Figure 2.3. However, some solutions might be searched 

many times due to overlapping neighbourhood structures that affect search efficacy 

(Boussaïd et al., 2013; Battiti et al., 2008). VNS was primarily used for combinatorial 

problems and later for problems with continuous domains, using a Gaussian distribution to 

generate noise. Many variations of VNS have been produced, such as the deterministic 

version of variable neighbourhood descent (VND). Reduced VNS (RVNS) is another 

variation in which random points of neighbourhood structure Ν𝑘(𝑥) are selected. It is 

somewhat similar to the Monte Carlo method but with more controlled randomisation. 

Many other versions of VNS exist, such as Skewed VNS (SVNS) and general VNS 

(GVNS). In SVNS, the search tries to go further from the incompetent solutions, whereas in 

GNS, VNS itself will be embedded in a local search. Historically, VNS has been applied to 

a wide variety of problems, such as vehicle routing problems (VRP), single and parallel 

scheduling problems, time tabling, and the Knapsack problem (Hansen et al., 2008). 
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Figure 2.3 Pseudo code of VNS 

 

2.4.2 Population-Based Metaheuristics 

Rather than relying on a single solution, population-based metaheuristics generate a 

collection of candidate solutions. The fact that population-based methods are expected to 

provide a better quality of solution, or at least to converge faster, is intuitive, given that 

more solutions will be tried in every iteration during the search process. Population-based 

methods have a long history of borrowing concepts from nature; this is how a nature-

inspired algorithm came into existence. As noted above, methods like evolutionary 

algorithms were inspired by Darwinian theory. However, algorithms such as ACO, ABC, 

and BA are based on what is known as swarm intelligence (SI). SI describes a form of 

1 Generate neighbourhood structure  Ν𝑛, 𝑛 = 1,2, . . . 𝑛𝑚𝑎𝑥. 

2 Randomly select initial solution s. 

3 Repeat. 

4 𝑛 ←  1 

5       While 𝑛 < 𝑚𝑎𝑥 do 

6 Arbitrarily choose solution  𝑠′   from the nth neighbourhood of the Ν𝑛(𝑠) s. 

7 Using local search, generate 𝑠″ from 𝑠′. 

8     If 𝑠″ is better than 𝑠′, 

9        s ← 𝑠″ 

10      𝑛 ←  1 

11   else 

12 𝑛 ←  𝑛 + 1 

13   End. 

14  End. 

15 Until the stopping criterion is met. 
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intelligence derived from the behaviour of social insects living in swarms, such as ants, 

bees, birds, and animal herds (Blondin, 2009). The concept of SI emerged from the group 

collective intelligence and self-organised behaviour of simple entities operating collectively 

within a decentralised system for the whole group’s benefit (Bonabeau et al., 1999). This 

system has certain characteristics, such as self-organisation, homogeneous membership, 

internal communication, decentralised decision-making, and allocation of tasks. Self-

organisation is supposed to be the outcome of decision-making and the allocation of tasks. 

Decision-making requires a form of local communication that could be happening directly 

or indirectly (Yang et al., 2018). The allocation takes place without direct commands to 

individuals (Gordon, 1996). However, task allocation does not happen arbitrarily; it 

involves a division of labour in which every group performs specialised tasks. This could 

be easily observed in bees when each swarm of bees in the hive is assigned a specialised 

task. For example, scout bees are responsible for finding and collecting information about 

new flower patches and must inform other groups of worker bees, called foragers, who are 

responsible for collecting nectar from those flower patches. In an ant colony, one group of 

ants is responsible for building the nest, while others, called a task force, oversee the 

protection of the colony (Seeley, 2002). This communication involves an exchange of 

information through performing different dances or by exchanging signals (Anderson and 

Ratnieks, 1999), a crucial property of SI. 

2.4.2.1 Genetic Algorithm 

The genetic algorithm (GA) is one of the most popular optimisation algorithms. It was first 

established by John Holland and his students in 1975 (Whitley, 1994). As mentioned 

before, the GA was inspired by the principles of survival of the fittest and natural selection. 
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Based on these concepts, the fittest individuals of a population are most likely to survive to 

the next generation. These individuals are called chromosomes. Chromosomes in biology 

consist of genes that correspond in the GA literature to the decision variables sampled from 

the search space. To achieve the survival of the fittest concept, individuals are subject to 

selection, crossover, and mutation operations introduced in the GA to encourage 

evolutionary growth to produce enhanced offspring. First, the selection operator is used to 

select individuals with the highest fitness to be mated via crossover operators. To locate the 

fittest of chromosomes, the fitness function is applied. To enhance the selected 

chromosomes, the crossover operator is applied to exchange and recombine genes from 

selected chromosomes. This random recombination could take place at one point of the 

gene, or at two points or more (Davis, 1991; Maini et al., 1994). The chromosomes are 

encoded either as binaries or as real-number schemes. A real-number scheme is more 

appealing for the continuous domain, whereas a binary scheme fits into a combinatorial 

domain (Herrera et al., 1998). The aim is to guarantee that the best individuals are moved 

to the next generation. Thus, in the case that the evolutionary operators have yielded no 

better individuals, the selected parents themselves are moved to the next generation. 

Finally, the mutation operator is applied; here, small parts of the chromosome are 

perturbed to ensure local diversity of the improved result by the crossover operator. 

Mutation effects are akin to neighbourhood search in the BA, where it is perturbing the 

existing solution to generate an improved one. However, a crossover job is more of an 

exploratory search within the dimensions of the initial sample (Qi and Palmieri, 1994). This 

limits the GA’s ability to explore the search space evenly and to produce a diversity of 

solutions. There have been many variations of GA, such as the elitism GA, the steady-state 
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GA, generation gap methods, and GA-with-a-tree-style genetic programming (Luke, 2013). 

These variations include attempts to hybridise GA with other algorithms, as in hill climbing 

(Luke, 2013), ABC (Kumar and Kumar, 2017), and PSO (Hyma et al., 2010). GAs have 

also been applied to a broad spectrum of applications, such as circuit design, robotics, 

pattern recognition, and biology (i.e., to study the immune system). Additionally, the GA 

was applied in software testing (Aljahdali et al., 2010) and flow shop scheduling (Murata 

and Ishibuchi, 1994) with acceptable performance. 

2.4.2.2 Particle Swarm Optimisation 

In 1995, PSO was proposed by Eberhart and Kennedy (1995) as a simple optimisation 

algorithm. This SI algorithm simulates the behaviour of a flock of birds or a school of fish 

living and travelling in groups where individuals move in harmony in their search for food. 

The particles in the PSO represent the candidate solution. The simulation of swarms of 

birds moving freely in space corresponds to the candidate solutions changing their position 

in the search space. Every particle has its own velocity and position, and the particles 

continuously update their position and velocity according to neighbouring particles and 

their previous experience. PSO is one of the most popular algorithms and is commonly 

used in real-life optimisation problems; this is due to its easy integration with other 

algorithms and to its simplicity, which makes it easy to use, even for non-expert researchers 

(Resende et al., 2018). Moreover, PSO can benefit from modern computer technology 

because it has no consecutive stages and can be executed in parallel (Resende et al., 2018). 

As with many other widely used algorithms, there are some weaknesses that need to 

be addressed. One weakness in PSO when solving multimodal problems is premature 

convergence (Liang et al., 2006; Resende et al., 2018). When the search space is too 
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complex, having many local optima, PSO can easily become stuck in one of these local 

optima when particle velocity is restricted to update only from the best global position. This 

restriction is usually implemented to force PSO to converge faster. To solve this problem, 

Liang et al. (2006) suggested using the comprehensive PSO in which the velocity is 

updated according to the history of the best velocity of all particles. One of the earliest 

improvements of PSO was the velocity clamping PSO (Resende et al., 2018), which was 

suggested to tackle a known PSO phenomenon called the swarm explosion effect, where 

the velocity factor in the PSO increases arbitrarily at an extremely high rate. Intuitively, the 

proposed solution was to stipulate a maximum value that velocity could not exceed. Van 

den Bergh and Engelbrecht (2002) suggested the guaranteed convergence particle swarm 

optimiser (GCPSO) as one of the variants of PSO that was proposed to tackle its inability to 

converge in certain cases. Originally, PSO was suggested for optimising problems with 

continuous domains and later for discrete PSO (DPSO); however, DPSO was proposed to 

address problems with discrete domains, such as JS problems, vehicle routing, and the TSP 

(Kennedy and Eberhart, 1997). 

Laskari et al. (2002) also attempted to address discrete problems by proposing three 

PSO variants: PSO-In, PSO-Bo, and PSO-Co. According to Laskari, these variants were 

tested on seven test problems with remarkable success, proving the ability of PSO to handle 

integer-optimisation problems. Over time, PSO has been widely hybridised with some well-

known algorithms, such as ABC, to optimise neural networks (Wang et al., 2015). It has 

also been hybridised with GA (Gandelli et al., 2005) to produce a more effective algorithm 

called GSO. However, PSO has been applied to a wide variety of real-life problems, such as 

neural networks (Niu et al., 2007; Wang et al., 2015). Other applications of PSO have been 
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in image classification (Omran, 2004) and to determine the ideal location of gas and oil 

wells (Onwunalu and Durlofsky, 2010). 

2.4.2.3 Ant Colony Optimisation 

ACO is another SI algorithm inspired by ant swarm foragers in their search for food. It 

appeared as a proposal by M. Dorigo and his colleagues (Dorigo and Caro, 1999; Dorigo et 

al., 2006). Originally, the ant system (AS) was suggested to solve combinatorial 

optimisation problems and was applied to solve the TSP problem, the quadratic assignment 

problem (QAP), and the JS problem (Dorigo et al., 1991; Dorigo et al., 1996). 

Consequently, ACO was proposed by Dorigo et al. (1996) as a new optimisation algorithm. 

The concept of ACO is that, during their search for food, ants naturally secrete a substance 

called a pheromone to enable follower ants to recognise the path to the food. Likewise, the 

follower ants secrete pheromones as they pass along that path, enforcing the existing 

pheromones and attracting more ants to follow (Shtovba, 2005). However, if the food 

source is too far or if it starts to decrease and is finally exhausted, the pheromones will 

evaporate because fewer ants will follow, until consequently no further pheromones are 

deposited, and the path is eventually abandoned. 

With ACO gaining more attention, many variants and hybrids have been produced, 

such as Max–Min Ant System (MMAS), Elitist Ant System (EAS), and Rank-Based Ant 

System (RAS), which address the TSP and handle the problem of being trapped in local 

optima (Chaparro and Valdez, 2013; Prakasam and Savarimuthu, 2016). Another ACO 

variant has been developed for the continuous optimisation domain to handle the protein–

ligand docking problem and to predict the protein–ligand structure (Korb et al., 2007). 

Additionally, ACO was hybridised with the Fuzzy C-means technique to produce the 
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hybrid ACO (HACO) algorithm, which was applied to classify power signal disturbance 

patterns (Biswal et al., 2011). According to Biswal et al. (2011), HACO is capable of 

classifying signal disturbance patterns. Further, ACO has been hybridised with the 

biogeography-based optimisation (BBO) technique (Savsani et al., 2014) to improve 

performance. Generally, ACO has performed well in the combinatorial field, especially for 

problems like telecommunication. 

2.4.2.4 Artificial Bee Colony 

ABC is an optimisation method inspired by the behaviour of bees foraging for honey. It 

was proposed by Dervis Karaboga in 2005 (Karaboga 2005; Karaboga and Basturk, 2007). 

Initially, ABC was suggested for continuous domain problems and it was adapted later for 

the combinatorial domain where a new version for discrete optimisation applied to job shop 

scheduling (DABC) was released (Pan et al., 2010; Thammano and Phu-ang, 2013). Many 

attempts have been made to introduce new variants to improve ABC. One of these attempts, 

by Zhu and Kwong (2010), was to incorporate global-best-guided ABC (GABC), which 

was inspired by the global-best concept in PSO. The aim was to improve ABC’s 

exploitation ability. 

The main concept of ABC is based on dividing the bee colony into three groups: 

employed bees, onlooker bees, and scout bees. The bees in the colony are divided equally 

as employed bees and onlooker bees. Employed bees are placed arbitrarily on food sources, 

with each bee associated with one food source. Every food source corresponds to a fitness 

solution. Employed bees return to the hive and share the information about the food source 

with the onlooker bees after attempting to improve it within the neighbourhood size. The 
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selection of the food source to recruit onlooker bees will depend on its individual fitness 

relative to the fitness of the overall food sources found so far. If food sources become 

exhausted, the employed bees will begin serving as scout bees, and they will start the 

search for new food. Food will be considered exhausted after a certain number of iterations 

without improvements. 

Although the ABC algorithm is one of the most competitive, it suffers from some 

weaknesses, specifically, boor exploitation (Zhu and Kwong, 2010). To tackle this problem, 

Zhu and Kwong (2010) suggested borrowing the g-best concept from PSO. Another ABC 

weakness, as reported by Qiu et al. (2013), is the problem of getting stuck in local optima at 

an early stage of the search and converging exceptionally slowly to the optimum. However, 

this common problem in stochastic optimisation algorithms is due to the lack of balance 

between exploration and exploitation (Santos and Alotto, 2011). Santos and Alotto (2011) 

suggested introducing the Gaussian distribution to generate candidate solutions. 

Nevertheless, ABC has gained great popularity and was hybridised with some other 

popular algorithms, such as PSO and GA. For instance, ABC was combined with PSO to 

benefit from the direct exchange of information about the global solution. This was 

essential to improve performance in terms of exploration and exploitation (Kıran and 

Gündüz, 2013). Another attempt was to hybridise ABC with GA to improve the large 

tuning parameters of the FOFP-FOPID 2-DOF robotic system (Kumar and Kumar, 2017). 

To improve ABC further, its author, Dervis Karaboga, released quicker ABC (qABC), in 

which he introduced critical alterations to the original algorithm (Karaboga and Gorkemli, 

2012). In the original form, only three parameters existed: colony size, the limit of trials 
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before food will be abandoned, and the number of cycles (i.e., the maximum number of 

iterations). However, with qABC, a new parameter ‘r’ was introduced, which represents the 

neighbourhood radius for the Euclidean distance from the selected solution position for 

more intensified and exploitative search. This updates the solution position of onlooker 

bees with the aim of improving the overall performance of ABC. Additionally, a new limit 

calculation was introduced, which considers the dimensions of the problems in hand. The 

author reported significant improvement by qABC. In general, ABC has performed 

remarkably in many applications. When applied to automatically generate software testing 

cases, satisfactory performance was also reported by the researcher (Dahiya et al., 2010). 

Finally, ABC was used in power systems to optimise the performance of fault section 

estimation and performed effectively (Huang and Liu, 2013).  

2.4.2.5 Bees Algorithm 

BA, developed by Pham et al. (2005), is one of the major contributors in the field of 

metaheuristic algorithms. As mentioned previously, BA was designed based on the 

foraging behaviour of bees in nature. It begins with the initialisation stage when several 

scout bees (n) are arbitrarily distributed in the search area. The next stage—the local search 

or neighbourhood search—is when the bees are recruited for the neighbourhood search 

around the best locations (m) within a certain distance factor (ngh) according to the ranking 

created for the initial sample using the fitness function. The elite bees (e) are selected from 

the fittest m that was previously selected. More bees are recruited to search around the elite 

bees (e), while fewer bees are recruited to search around the non-elite (m−e). The 

remaining scout bees (n−m) are assigned to search randomly in the search space, which 
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takes place in the global search. The overall bees, which consist of (e + (m−e) + (n−m)), 

constitute the new population that will be used in the next iterations to continue the search. 

The search continues until the stopping criterion is met. The stopping criterion is usually 

either reaching a certain number of iterations or finding a satisfactory value for the 

optimum (or near the optimum). The following is a list of BA parameters that need to be 

initialised by the user: 

i. number of scout bees (ns), 

ii. number of best sites (nb) out of sites visited by ns, 

iii. number of elite sites out of nb selected sites (ne), 

iv. number of bees recruited for ne sites (nre), 

v. number of bees recruited for the other nb-ne selected sites (nrb), and 

vi. size of neighbourhood (ngh). 

The stopping criterion can be either a predefined maximum function evaluation or finding 

the optimum defined with a stipulated threshold. The steps for the BA in its basic form are: 

1. Initialise the scout population with random solutions. 

2. Evaluate fitness of the population. 

3. While (stopping criterion not met) //Forming the new population. 

4. Select sites for the neighbourhood search. 

5. Recruit bees for selected sites (more bees for elite sites) and evaluate fitness. 

6. Select the fittest bee from each patch. 

7. Assign remaining bees to search randomly and evaluate their fitness. 

8. End While. 
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The BA, like many other population-based metaheuristics, experiences some 

problems due to its stochastic nature. These problems include being trapped in local optima 

in functions such as Rosenbrock, Langerman, and Bukin6, and the slow convergence to the 

optimum due to the lack of search guidance. Although the BA exhibits reliable performance 

in noisy problems, it shows weaknesses when optimising smooth unimodal functions like 

Rosenbrock (Hansen et al., 2009) where it experiences slow performance (Pham et al., 

2008b, 2008a). While the BA sample generation depends greatly on randomness, it 

contains a greater number of control parameters that need to be tuned, which implies that 

the process of parameter tuning by itself is an optimisation problem. 

From its inception in 2005, the significance of the BA as a metaheuristic method 

has grown constantly (Kamsani, 2016) and it has been subject to many improvements and 

hybridisations. One of the attempts proposed by the original developer of the BA, Pham et 

al. (2008c), incorporates the neighbourhood shrinking and the abandonment procedures 

into the basic BA (BBA). The shrinking procedure is applied if a solution does not yield 

any results that improve upon what has been achieved so far; in so doing, the search 

neighbourhood area around that solution is decreased by 80%. However, if a solution has 

been searched more than a certain limit, that solution will be abandoned and a new one will 

be generated to replace it. 

Hussein et al. (2014) also attempted to improve the initialisation phase of the BA 

through incorporating levy flight in the neighbourhood search. Levy flight takes the shape 

of a random walk with varying lengths of steps, from short to long, and the researchers 

reported significant improvement over the BA (Hussein et al., 2014). Another attempt, by 
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Shatnawi et al. (2013), introduced the BA with two types of memory-based lists (local and 

global); here, the researchers claim a minimum of 59% improvement over the BA. In a 

subsequent attempt, Yuce et al. (2013) proposed the use of adaptive neighbourhood search 

that shrinks and enlarges according to fitness values for both the shrinking and 

abandonment procedures. The findings confirmed that the proposed method performed 

significantly better than the BA, and it was particularly better in high-dimension problems 

(Yuce et al., 2013). 

Although the BA was originally proposed for continuous domains, a new BA 

version for combinatorial domains has been formulated. It was used, first, to solve the 

single machine scheduling problem (Pham et al., 2007). Subsequently, an attempt to 

enhance the BA was made using the TRIZ methodology to optimise printed circuit board 

(PCB) assemblies (Mei et al., 2010). Meanwhile, Ozbakir et al. (2010) attempted to solve 

the generalised assignment problem (GAP). The authors assumed the outcome of the 

experiment exhibited the capability of the BA to solve larger GAP problems. 

Furthermore, the BA has been applied to a wide variety of applications. For 

example, in the field of electrical and electronic engineering (EEE), it was applied to the 

optimal power flow (OPF) model (Anantasate et al., 2010), with the researchers reporting 

productive results and the capacity to apply the BA to any size of OPF. Another application 

of the BA in the EEE field is to power systems (Satheesh, 2013) through the hybridisation 

of the BA with neural networks; this indicates the ability of the hybrid method to preserve 

system stability. An important application of the BA was to improve power–torque 

distribution in hybrid electric vehicles (Derakhshan and Shirazi, 2014). The results reported 
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for the experiment showed improved control performance along with a reduction of fuel 

consumption and pollution. 

Another field where the BA has been applied is in computer science and 

engineering. It was used in software testing with an acceptable result, although not the best 

among all methods involved in the performance evaluation (Zabil and Zamli, 2013). Yang 

et al. (2015) applied the BA in wireless communications and signal recognition. The 

researchers used a hybridised version of the BA with a neural network (Yang et al., 2015). 

The field of robotics has also attracted researchers’ attention. One attempt to use the BA 

was by Pham et al. (2009), who maintained two-link acrobatic robot (ACROBOT) balance 

and stability using a fuzzy logic controller. According to the researchers, the BA exhibited 

good performance in tuning the fuzzy logic controller. Another attempt in robotics, by 

Eldukhri and Kamil (2015), involved the tuning of the robot gymnast (Robogymnast) 

swing-up control parameters. The results indicated stability and a significant decrease in 

swing-up time (Eldukhri and Kamil, 2015). 

2.5 Summary 

In this chapter, a survey of wide variety of metaheuristic methods has been conducted, 

giving more consideration to population-based and nature-inspired algorithms. The survey 

included details about when these algorithms were created, their variance, and their 

applications. Additionally, a review to some weaknesses of these methods is presented. A 

common problem recognised among these algorithms is keeping a good balance between 

their two main aspects: exploration and exploitation. If an algorithm performs exploration 

excessively, this might result in premature convergence to the local optima. If the algorithm 
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is too explorative, it might result in a slow convergence to the solution. However, the BA 

has some of its unique weaknesses, which are highlighted in this chapter. Briefly, these 

problems are related to the number of parameters that need to be set up before initiating the 

algorithm. Moreover, a reduction of the degree of randomness could help to improve 

performance. This creates room for further improvement of the BA. In the following 

chapters, new techniques will be proposed to tackle these problems and to improve overall 

performance. 
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Chapter 3 THE BEES ALGORITHM WITH SEARCH SPACE 

REDUCTION (BAwSSR) 

3.1 Preliminaries 

Although metaheuristics follow an approximate approach to find an optimal solution, many 

of these algorithms experience slow convergence rates, getting trapped in local optima and 

long computational times, particularly for hard problems (Liang, 2006; Beheshti and 

Shamsuddin, 2013). This can be attributed to the stochastic nature of these algorithms and 

the high number of iterations they must perform. BA is not an exception (Pham and 

Darwish, 2010; Alfi and Khosravi, 2012; Yuce et al., 2015; Kamsani, 2016). This chapter 

presents a new method for improving the BA, targeting the initialisation and the global 

search stages. The interest in focusing on these two stages is based on the researcher’s 

belief that the neighbourhood search stage largely depends on what the initialisation and 

global search stages are providing to it. A neighbourhood search refines what has been 

given to it. The proposed technique is based on applying the gradual reduction of search 

space in the initialisation and global search stages. 

The review of the literature of BA improvements indicates that most of the attempts 

to use search space manipulation have targeted the neighbourhood search phase. One such 

attempt, proposed by Ghanbarzadeh (2007), aims to increase the exploitability of the 

neighbourhood search area with a large patch size parameter. In this process, the BA 

neighbourhood search parameter, ngh, is initially selected with a relatively wide size, and a 

reduction in size follows if no promising patches are discovered. Unlike Ghanbarzadeh’s 

attempt, the proposed technique by Azfanizam (2014) involves increasing the size of the 
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neighbourhood search area around the selected patch if no improvement is achieved; here, 

the goal is to expand the radius of the neighbourhood area, assuming that this will speed up 

the convergence to the optimal solution (Azfanizam, 2014). Additionally, the author 

assumes that this proposal helps us to escape the local optima (Azfanizam, 2014). To the 

best of this researcher’s knowledge, no attempt has been made to apply the concept of 

search space reduction in the global search or initialisation stages. Furthermore, the 

literature on the BA reveals that the initialisation and global search stages have not been 

given enough consideration in terms of enhancements of the BA (Hussein et al., 2014).  

The proposed method is inspired by two numerical optimisation methods, namely, 

bracketing and region elimination. It employs an adapted notion of the region elimination 

concept to achieve abandonment and reduction of search space within the BA. 

Additionally, to make global searches more intelligent, the roles of bees for searching in the 

global search stage have been varied, with different swarms of bees performing their 

searches in different parts of the search area. 

 

3.2 Bracketing-Region Elimination Method 

Bracketing methods comprise two approaches: exhaustive search and bounding phase 

methods (Deb, 2012). The algorithm proposed here is derived from bracketing–exhaustive 

search in addition to the region elimination method. The exhaustive search involves 

exploring the whole search space to find the optima at equally located intervals (Nievergelt 

et al., 1995; Deb, 2012). 
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In the region elimination method, the core concept is to consecutively eliminate some parts 

of the search space until the exact minimum is found. The steps of the region elimination 

method are as follows: 

1. A search space region will be specified, for example (a, b), where a < b. 

2. Two points will be selected, x1 and x2, where x1 < x2. 

3. f(x1) will be evaluated, and 

• If f(x1) < f(x2), the minimum cannot exist beyond x2 in the period (x2, b), 

and the segment (x2, b) is abandoned from the search space.  

• If f(x1) > f(x2), the minimum cannot exist before x1 in the period (a, x1), 

therefore, the segment (a, x1) is abandoned from the search space 

(Bhattacharjya, 2009). An illustration is provided in Figure 3.1. 

 
Figure 3.1 Region elimination method 

the  
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3.3 The BA with Search Space Reduction (BAwSSR) 

To adapt the region elimination method for this proposed algorithm, a few fundamental 

changes should be applied. The region elimination method was primarily designed for 

optimising unimodal functions; however, the proposed method should cater to multimodal 

problems where there are more than one local and/or global optimum. Another fundamental 

change is that, while the region elimination method is a deterministic optimisation approach 

used to find the exact minimum, the minimum or near-minimum will satisfy the 

requirements for the BA as a metaheuristic approximation method. Hence, the following 

modifications to the region elimination method were introduced: 

• The search space region (a, b) is considered as the whole search domain 

specified for the problem being tested, where a < b , and L= (b−a) 

• The number of points selected should be equal to the initial sample parameter n 

of the BA (x1, x2, … xn). 

• The elimination interval is noted as S = Δx = (b−a)/n, where n is the number of 

initial samples.  

• F(x), {X = (x1, x2, … xn) is evaluated, and 

a. If (f(x)–f optm > 0.001, the segments (b , b−Δx) and (a , a+Δx) will be 

eliminated from the search space. The new search space should include 

only the segment (b−Δx, a+Δx), and the process should continue.  

b.  If (f(x)–f optm ≤ 0.001, the search will be terminated. 

• If the search does not yield values close to the optimum within the specified 

error value, this process is restarted from the original region (a, b), and the 
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search for the optimum is repeated until the maximum number of function 

evaluations (NFEs) is reached (500,000).  

Furthermore, to better use the global search, bees are assigned to search in different areas of 

the search space. There are five search scenarios for the search space: 

• Searching the whole search space, which decreases gradually from both ends of 

the search space by the elimination factor S = (b−a)/n (Figure 3.2). 

• Searching after the first quarter from the two ends of the search space, which 

gradually decreases from both ends by the elimination factor S (Figure 3.3). 

• Searching the area between the centre and the left end of the search space (a), 

which gradually decreases from both sides by the elimination factor S (Figure 

3.4). 

• Searching only the area between the centre and the right end of the search space 

(b), which gradually decreases from both sides by the elimination factor S 

(Figure 3.5). 

• Searching the whole search space, which gradually decreases from the left end 

(a) by elimination factor S (Figure 3.6). 

 
   Figure 3.1 Search scenario 1 
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Figure 3.2 Search scenario 2 

 

 
Figure 3.3 Search scenario 3 
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Figure 3.4 Search scenario 4 

 

 
Figure 3.5 Search scenario 5 

 

The pseudocode for the BAwSSR algorithm is: 

• Initialise the population with random solutions using the search space reduction 

technique. 

• Evaluate the fitness of the population. 

• While (stopping criterion not met), forming new bee population. 

• Select best and elite bees for neighbourhood search. 

• Recruit bees around selected sites and evaluate fitness. 
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• Select the fittest bee from each site. 

• Assign remaining bees to search randomly using the search space reduction 

technique with the five scenarios and evaluate their fitness. 

• If (stopping criterion not met), reduce the search space by L. 

• End while. 

The algorithm requires several control parameters that the user must determine: 

1. Number of scout bees (ns), 

2. Number of best sites (nb) out of sites visited by ns, 

3. Number of elite sites out of nb selected sites (ne), 

4. Number of bees recruited for ne sites (nre), 

5. Number of bees recruited for the other nb–ne selected sites (nrb), and 

6. Size of neighbourhood (ngh). 

3.4 Experiment Setup 

One well-known method of measuring optimisation algorithm performance is to use test 

functions, or what are commonly known as benchmark functions. These functions represent 

complex mathematical problems used to challenge the performance of optimisation tools. 

Because many of these functions represent real-world problems, they have been used 

widely as performance indicators in a variety of scientific disciplines, such as 

manufacturing, physics, and economics (Imanguliyev, 2013; Kamsani, 2016). For example, 

the Sphere and Rosenbrock functions, respectively, represent real-world cost curve and cost 

minimisation problems (Imanguliyev, 2013; Rosenbrock, 1960). However, the Ackley 
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functions relate to the representation of the surfaces of some material particles, such as 

protein (Imanguliyev, 2013; Dieterich and Hartke, 2012). 

The criteria for selecting benchmark functions for testing were designed to account 

for the varying degrees of search space topography, complexity, separability, and modality. 

This was essential for ensuring testing objectivity and reliability (Jamil and Yang, 2013). 

Complexity includes separability and dimensionality. Separability refers to the 

interdependency between function parameters; non-separable functions are typically harder 

to solve than are separable functions. The dimensionality of a function demonstrates its 

number of decision variables, or what are sometimes called parameters. As the number of 

dimensions in a function increases, it becomes harder to optimise. Modality is a property 

related to the number of peaks in the search space; the function is unimodal if it has only 

one global optimum, otherwise, with many global and/or local optima, it is regarded as 

multimodal (Jamil and Yang, 2013). The 24 test functions used in this research are listed 

and classified according to their properties in Table 3.1. Although more than half of these 

are two-dimensional, they are predominantly multimodal and non-separable, which adds to 

the difficulty of solving them. 

Table 3.1 List of test functions and their properties 

Functions  Differentiability  Separability  Scalability  Modality 

Sphere (10D) Yes No Yes Unimodal 

Rosenbrock (10D) Yes No Yes Unimodal 

Quartic (30D) Yes Yes Yes Unimodal 

Ackley (10D) Yes No Yes Multimodal 

Schaffer (2D) Yes No Yes Multimodal 

Easom (2D) Yes Yes No Multimodal 

Rastrigin (10D) Yes Yes Yes Multimodal 

Shekel (4D) Yes Yes Yes Multimodal 

Langerman (10D) Yes No Yes Multimodal 

Griewank (10D) Yes No Yes Multimodal 

Branin (2D) Yes No No Multimodal 

Sumpow (10D) Yes Yes Yes Unimodal 
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Bukin6 (2D) No No No Multimodal 

Crossit (2D)  No No No Multimodal 

Drop (2D) No Yes No Multimodal 

Shubert (2D) Yes Yes No Multimodal 

Beale (2D) Yes No No Multimodal 

McCorm (2D) Yes No No Multimodal 

Camel6 (2D) Yes No No Multimodal 

Boha1 (2D) Yes No No Multimodal 

Colville (2D) Yes No No Multimodal 

Powersum (2D) Yes   Unimodal 

Salomon (2D) Yes No Yes Multimodal 

Alpine (2D) Yes Yes No Multimodal 

 

The test designed for this study investigated the performance of the proposed 

algorithm. The three key performance metrics used in this investigation were: the fitness 

value, the success rate (SR), and the NFE. The fitness value refers to the accuracy of the 

optimum found when compared to the standard. It can also be described as the quality of 

the solution. The SR refers to the number of times the algorithm was able to converge to the 

optimum within the maximum NFEs permitted in all the runs. The NFE denotes the number 

of times the benchmark functions used in testing were executed for every individual run. It 

also can be described as the speed with which the algorithm converged with the optimum. 

This is clear, as the algorithm needs less time to converge if the function under testing is 

executed only a few times. The approach of this research was to preliminarily consider the 

quality of the solution or its accuracy, and then to look at the SR and the function 

evaluation. Hence, this research should contribute to the quality of the solution. The results 

of the test are compared to those of the BBA and two other well-known and popular 

algorithms, PSO and ABC. As discussed in Chapter 1, there are many versions of PSO. 

However, SPSO2011 was selected primarily because it is one of the latest versions of PSO, 

in addition to its dimensionality features and its remarkable performance against separable 

and unimodal functions (Zambrano-Bigiarini et al., 2013). On the other hand, the qABC 
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version of ABC is one of the latest versions of the ABC algorithm and the quick version of 

ABC (Kamsani, 2016); this means that it could converge rapidly to the optimum, which 

makes it attractive for testing.  

The algorithm should run until the stopping criteria are met. The stopping criteria 

are defined as follows:  

• Either the global optimum is found with an acceptable error rate (ER; chosen here 

as ER < 0.001), or 

• The maximum NFEs is reached (stipulated in this research as 500,000). 

Fifty independent runs were conducted for every function. The results obtained from these 

runs were then analysed using the mean and standard deviation. The mean, standard 

deviation, and quality of the solution together reflect the reliability and robustness of the 

solution achieved (Shanghooshabad and Abadeh, 2016). This is because the algorithm, 

stuck in the same local optima in every run, might generate small means and standard 

deviations even though performance is poor. These statistics were additionally collected 

from the BBA, the SPSO2011, and the qABC for performance comparison. Finally, a 

statistical significance test was conducted to demonstrate the significance of the proposed 

algorithm’s performance over that of the other algorithms used in the comparisons. This 

was calculated using the Mann–Whitney test. This test was selected because it is used when 

the figures obtained are without specific distribution or when it is not possible to predict 

how the obtained variables will be dispersed throughout the search space (Nachar, 2008). 

This makes it more appropriate for the research, given the stochastic aspect of the 
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algorithms involved. The final decision about performance was made according to the 

statistical significance of the accuracy value obtained as well as the NFE’s. 

3.5 Results and Discussion 

3.5.1 Solution Quality (Accuracy) 

To assess solution quality, the test was conducted according to the parameter settings listed 

in Tables 3.2 and 3.3 for BAwSSR and BBA, respectively. The test was also carried out to 

compare the proposed algorithm’s performance with the qABC and SPSO2011 using the 

parameter settings in Tables 3.4 and 3.5, respectively. Table 3.6 contains the results 

comparing the performance of the BAwSSR and BBA algorithms in terms of accuracy. It 

reveals that the proposed algorithm, BAwSSR, performed better than the BBA in all 24 

functions. Table 3.6 also presents the results that compare BAwSSR’s performance against 

that of the SPSO2011 and qABC. The findings indicate an improvement by BAwSSR. 

Specifically, it outperformed SPSO2011 and qABC in 22 and 20 functions, respectively. 

The above findings indicate BAwSSR was able to find more accurate optimum than other 

algorithms; nevertheless, to assess stability and consistency, the acquired figures need to be 

analysed using statistical measures like the mean and standard deviation. 

Table 3.2 List of parameter values used for testing BAwSSR 

No.  Functions  n m nsp e nep ngh stlim 

1  Sphere (10D) 11 4 10 2 30 0.003 10 

2 Rosenbrock (10D) 11 4 10 2 30 0.003 10 

3 Quartic (30D) 13 4 10 2 30 0.005 10 

4 Ackley (10D) 11 4 10 2 30 0.00001 10 

5 Schaffer (2D) 11 4 10 2 30 0.01 10 

6 Easom (2D) 100 4 10 2 30 0.0009 10 

7 Rastrigin (10D) 11 4 10 2 30 0.003 10 

8 Shekel (4D) 1,000 4 10 2 30 0.001 10 
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9 Langerman (10D) 1,000 4 10 2 30 0.09 10 

10 Griewank (10D) 17 10 10 2 30 0.001 10 

11 Branin (2D) 15 10 10 2 30 0.01 10 

12 Sumpow (10D) 20 4 10 2 30 0.0001 10 

13 Bukin6 (2D) 10 4 10 2 30 0.00001 10 

14 Crossit (2D)  15 4 10 2 30 0.05 10 

15 Drop (2D) 11 4 10 2 30 0.01 10 

16 Shubert (2D) 1,000 4 10 2 30 0.0005 10 

17 Beale (2D) 45 4 10 2 30 0.045 10 

18 McCorm (2D) 10 4 10 2 30 0.05 10 

19 Camel6 (2D) 100 4 10 2 30 0.005 10 

20 Boha1 (2D) 11 4 10 2 30 0.05 10 

21 Colville (2D) 10 4 10 2 30 0.01 10 

22 Powersum (2D) 10 4 10 2 30 0.01 10 

23 Solomon (2D) 10 4 10 2 30 0.001 10 

24 Alpine (2D) 13 4 10 2 30 0.001 10 

 

Table 3.3 List of parameter values used for testing BBA 
No.  Functions  n m nsp e nep ngh stlim 

1 Sphere (10D) 11 4 10 2 30 0.003 10 

2 Rosenbrock (10D) 10 4 10 2 30 0.003 10 

3 Quartic (30D) 13 4 10 2 30 0.005 10 

4 Ackley (10D) 10 4 10 2 30 0.01 10 

5 Schaffer (2D) 10 4 10 2 30 0.01 10 

6 Easom (2D) 10 4 10 2 30 0.01 10 

7 Rastrigin (10D) 10 4 10 2 30 0.03 10 

8 Shekel (4D) 10 4 10 2 30 0.01 10 

9 Langerman (10D) 10 4 10 2 30 0.09 10 

10 Griewank (10D) 10 10 10 2 30 0.1 10 

11 Branin (2D) 10 10 10 2 30 0.001 10 

12 Sumpow (10D) 10 4 10 2 30 0.1 10 

13 Bukin6 (2D) 10 4 10 2 30 0.0001 10 

14 Crossit (2D)  10 4 10 2 30 0.1 10 

15 Drop (2D) 10 4 10 2 30 0.01 10 

16 Shubert (2D) 10 4 10 2 30 0.1 10 

17 Beale (2D) 10 4 10 2 30 0.05 10 

18 McCorm (2D) 10 4 10 2 30 0.5 10 

19 Camel6 (2D) 10 4 10 2 30 0.05 10 

20 Boha1 (2D) 10 4 10 2 30 0.05 10 
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21 Colville (2D) 10 4 10 2 30 0.0005 10 

22 Powersum (2D) 10 4 10 2 30 0.1 10 

23 Solomon (2D) 10 4 10 2 30 0.01 10 

24 Alpine (2D) 13 4 10 2 30 0.001 10 

 
Table 3.4 qABC parameter settings 

Parameter Value 

Population size  10 

Cycles (max number) 100 

Employed bees ne  5 

Onlooker bees ne  4 

Random scouts  1 

Stagnation limit for site (abandonment stlim) 200 

ra  1 

 

Table 3.5 SPSO2011 parameter settings 
Parameter Value 

Population size  100 

PSO cycles (max number) T 500,000 

Connectivity Default:3 

Maximum velocity Default:1.1 

C1 Default:1.1 

C2 200 

Wmax Default:0.7  

Wmin Default:0.7 

 

Table 3.6 Best performance figures for BAwSSR, BBA, qABC, and SPSO2011 for accuracy values 

No. Functions 
Result of 50 runs Result of 50 runs Result of 50 runs  

BAwSSR qABC BAwSSR SPSO2011 BAwSSR BBA 

1 Sphere (10D) 50 0 50 0 50 0 

2 Rosenbrock (10D) 50 0 41 9 50 0 

3 Quartic (30D) 50 0 49 1 50 0 

4 Ackley (10D) 50 0 50 0 50 0 

5 Schaffer (2D) 50 0 50 0 50 0 

6 Easom (2D) 19 31 50 0 32 18 

7 Rastrigin (10D) 50 0 50 0 50 0 

8 Shekel (4D) 20 30 50 0 34 16 

9 Langerman (10D) 36 14 50 0 27 23 

10 Griewank (10D) 50 0 50 0 50 0 

11 Branin (2D) 19 31 0 50 39 11 

12 Sumpow (10D) 37 13 38 12 45 5 

13 Bukin6 (2D) 42 8 48 2 38 12 
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14 Crossit (2D)  31 19 50 0 28 22 

15 Drop (2D) 50 0 50 0 50 0 

16 Shubert (2D) 14 36 50 0 46 4 

17 Beale (2D) 34 16 28 22 33 17 

18 McCorm (2D) 28 22 50 0 29 21 

19 Camel6 (2D) 28 22 50 0 38 12 

20 Boha1 (2D) 50 0 50 0 50 0 

21 Colville (2D) 47 3 25 25 38 12 

22 Powersum (2D) 48 2 39 11 28 22 

23 Solomon (2D) 50 0 50 0 50 0 

24 Alpine (2D) 50 0 50 0 50 0 

 Total 

BAwSSR: 20 BAwSSR: 22 BAwSSR: 24  

BBA: 0 
qABC: 4 SPSO2011: 1 

  No winner: 1 

 

Figures 3.7–3.15 below exhibit the performance in terms of accuracy by all the 

algorithms involved. 

 
Figure 3.7 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Rosenbrock 

10D function 
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Figure 3.6 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Quartic 30D 

function 

 

 
Figure 3.7 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Ackley 10D 

function 

 

 
Figure 3.8 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Schaffer’s 2D 

function 

 

 
Figure 3.11 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Easom 2D 

function 
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Figure 3.12 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Rastrigin 10D 

function 

 
Figure 3.13 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Shekel 4D 

function 

 

  
Figure 3.14 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Langerman 

10D function 
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Figure 3.15 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Griewank 

10D function 

 

When examining the figures for the means and standard deviations in Table 3.7, 

captured for 50 runs, the data indicate that BAwSSR had lower means in 23 functions. 

However, lower than the above for the standard deviations showing that BAwSSR it is 
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comparison between BAwSSR and SPSO2011 support the enhanced performance, with 

BAwSSR exceling in 22 and 20 functions for the mean and standard deviation, respectively. 

Furthermore, the proposed algorithm was able to find the exact minimum in the following 

functions: Shaffer, Rastrigin, Griewank, and Drop. Additionally, the analysis of the figures 

demonstrates that, among all the algorithms examined, BAwSSR was enhanced in 18 

functions, more than half of which were multimodal, non-separable, scalable, and 

differentiable. The overall conclusion is that BAwSSR was able to find more accurate 

optimum than the competitor algorithms while exhibiting good level of consistency. 
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However, to investigate whether BAwSSR’s performance against the other 

algorithms was statistically significant, the Mann–Whitney test was conducted. 

Table 3.7 Mean and standard deviation of best accuracy values for BAwSSR and BBA obtained 

through 50 independent runs on test functions f1–f24 
 

No. Functions 
BBA BAwSSR 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 8.19E -04 1.27E-04 4.10E-32 1.31E-32 

2 Rosenbrock 

(10D) 
1.80E+00 9.23E-01 9.55E-04 3.72E-05 

3 Quartic (30D) 3.70E+00 7.34E-01 4.18E-03 2.14E-02 

4 Ackley (10D) 1.38E+01 1.25E+00 1.42E-14 2.25E-15 

5 Schaffer (2D) 2.57E-04 2.61E-04 0.00E+00 0.00E+00 

6 Easom (2D) 4.56E-04 2.64E-04 3.41E-04 2.29E-04 

7 Rastrigin (10D) 1.33E+01 3.84E+00 0.00E+00 0.00E+00 

8 Shekel (4D) 6.67E-04 1.96E-04 5.01E-04 2.26E-04 

9 Langerman 

(10D) 
2.74E-01 1.79E-01 3.21E-01 1.50E-01 

10 Griewank (10D) 5.68E-01 7.78E-02 0.00E+00 0.00E+00 

11 Branin (2D) 6.43E-04 1.96E-04 3.85E-04 2.95E-04 

12 Sumpow (10D) 6.86E-04 2.44E-04 2.17E-04 3.05E-04 

13 Bukin6 (2D) 1.59E-02 4.93E-03 1.02E-02 4.07E-03 

14 Crossit (2D)  4.23E-04 2.71E-04 3.77E-04 2.57E-04 

15 Drop (2D) 4.06E-04 2.48E-04 0.00E+00 0.00E+00 

16 Shubert (2D) 5.24E-03 4.89E-03 4.93E-04 2.60E-04 

17 Beale (2D) 4.82E-04 2.74E-04 4.21E-04 2.72E-04 

18 McCorm (2D) 5.26E-04 2.92E-04 4.68E-04 2.60E-04 

19 Camel6 (2D) 4.87E-04 2.86E-04 2.63E-04 2.94E-04 

20 Boha1 (2D) 4.68E-04 2.92E-04 0.00E+00 0.00E+00 

21 Colville (2D) 9.28E-04 7.65E-05 8.45E-04 1.45E-04 

22 Powersum (4D) 6.84E-04 2.26E-04 6.42E-04 2.10E-04 

23 Solomon (2D) 5.49E-04 2.57E-04 1.06E-15 3.07E-16 

24 Alpine (2D) 6.25E-04 2.41E-04 1.07E-16 3.93E-17 

Total  1 5 23 19 

 

Table 3.8 Mean, and standard deviation of best accuracy values obtained through 50 independent 

runs on test functions f1–f24 for BAwSSR and qABC 
No. Functions qABC  BAwSSR 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 6.24E-04 2.49E-04 4.10E-32 1.31E-32 

2 Rosenbrock (10D) 4.09E-01 8.85E-01 9.55E-04 3.72E-05 

3 Quartic (30D) 5.23E-01 2.88E-01 4.18E-03 2.14E-02 

4 Ackley (10D) 3.11E-03 3.05E-03 1.42E-14 2.25E-15 

5 Schaffer (2D) 9.65E-04 8.04E-04 0.00E+00 0.00E+00 

6 Easom (2D) 2.73E-04 3.28E-04 3.41E-04 2.29E-04 

7 Rastrigin (10D) 6.22E-04 2.78E-04 0.00E+00 0.00E+00 

8 Shekel (4D) 2.34E-02 1.61E-01 5.01E-04 2.26E-04 
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9 Langerman (10D) 3.50E-01 1.63E-01 3.21E-01 1.50E-01 

10 Griewank (10D) 4.65E-02 2.19E-02 0.00E+00 0.00E+00 

11 Branin (2D) 2.63E-04 2.76E-04 3.85E-04 2.95E-04 

12 Sumpow (10D) 3.82E-04 1.12E-04 2.17E-04 3.05E-04 

13 Bukin6 (2D) 2.81E-02 1.61E-02 1.02E-02 4.07E-03 

14 Crossit (2D)  5.65E-04 3.01E-04 3.77E-04 2.57E-04 

15 Drop (2D) 1.12E-02 2.17E-02 0.00E+00 0.00E+00 

16 Shubert (2D) 2.69E-04 3.13E-04 4.93E-04 2.60E-04 

17 Beale (2D) 1.98E-03 3.49E-03 4.21E-04 2.72E-04 

18 McCorm (2D) 5.06E-04 2.83E-04 4.68E-04 2.60E-04 

19 Camel6 (2D) 4.01E-04 3.26E-04 2.63E-04 2.94E-04 

20 Boha1 (2D) 3.20E-04 2.78E-04 0.00E+00 0.00E+00 

21 Colville (2D) 3.43E-02 3.10E-02 8.45E-04 1.45E-04 

22 Powersum (4D) 7.13E-03 8.58E-03 6.42E-04 2.10E-04 

23 Solomon (2D) 4.80E-02 4.88E-02 1.06E-15 3.07E-16 

24 Alpine (2D) 5.58E-04 2.84E-04 1.07E-16 3.93E-17 

Total 3 2 21 22 

 

Table 3.9 Mean, and standard deviation of best accuracy values obtained through 50 independent 

runs on test functions f1–f24 for BAwSSR and SPSO2011 

No. Functions SPSO2011  BAwSSR 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10 D) 7.98E-04 1.44E-04 4.10E-32 1.31E-32 

2 Rosenbrock (10D) 8.88E+00 4.36E+01 9.55E-04 3.72E-05 

3 Quartic (30 D) 1.18E-01 6.70E-02 4.18E-03 2.14E-02 

4 Ackley (10D) 3.70E-01 6.35E-01 1.42E-14 2.25E-15 

5 Schaffer (2D) 2.69E-04 2.60E-04 0.00E+00 0.00E+00 

6 Easom (2D) 1.00E+00 2.74E-06 3.41E-04 2.29E-04 

7 Rastrigin (10D) 1.93E+01 1.01E+01 0.00E+00 0.00E+00 

8 Shekel (4D) 9.32E+00 3.44E-01 5.01E-04 2.26E-04 

9 Langerman (10D) 7.06E-01 9.64E-05 3.21E-01 1.50E-01 

10 Griewank (10D) 1.38E-01 8.28E-02 0.00E+00 0.00E+00 

11 Branin (2D) 3.58E-07 0.00E+00 3.85E-04 2.95E-04 

12 Sumpow (10D) 5.48E-04 2.73E-04 2.17E-04 3.05E-04 

13 Bukin6 (2D) 7.35E-02 3.97E-02 1.02E-02 4.07E-03 

14 Crossit (2D)  4.43E-02 4.49E-02 3.77E-04 2.57E-04 

15 Drop (2D) 2.25E-01 1.14E-01 0.00E+00 0.00E+00 

16 Shubert (2D) 7.88E+01 4.48E+01 4.93E-04 2.60E-04 

17 Beale (2D) 1.58E-02 1.07E-01 4.21E-04 2.72E-04 

18 McCorm (2D) 1.58E-01 1.32E-01 4.68E-04 2.60E-04 

19 Camel6 (2D) 4.44E-01 2.85E-01 2.63E-04 2.94E-04 

20 Boha1 (2D) 4.12E-04 2.65E-04 0.00E+00 0.00E+00 

21 Colville (2D) 8.08E-04 1.76E-04 8.45E-04 1.45E-04 

22 Powersum (2D) 8.31E-04 2.21E-04 6.42E-04 2.10E-04 

23 Solomon (4D) 2.64E-03 1.39E-02 1.06E-15 3.07E-16 

24 Alpine (2 D) 6.69E-04 2.35E-04 1.07E-16 3.93E-17 

Total 2 4 22 20 
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According to the Mann–Whitney test results shown in Table 3.10, among the 24 

benchmark functions, BAwSSR performed significantly better than the BBA in 19 

functions, while no significant differences were observed for the remaining five functions. 

However, the values for BAwSSR and qABC reveal that the former was significantly better 

in 18 functions; while no significant differences noted for three functions, and qABC won 

the remaining three functions. Regarding SPSO2011, BAwSSR was significantly better in 

21 functions; there were no statistically significant differences in two functions, and 

SPSO2011 performed significantly better in one function. Although this seems less than the 

accuracy values achieve, overall, BAwSSR performed significantly better, collectively, in 

13 of the functions, with many of them having challenging features. Nonetheless, neither 

the proposed algorithm nor the other algorithms were able to converge in Langerman and 

Bukin6 functions.  

As a conclusion, these findings indicate that the method used to enhance the 

standard BA in the BAwSSR, positively affected the performance over the algorithms used 

in this experiment. 

Table 3.10 P-values using the Mann–Whitney test (a = 0.05) for accuracy acquired by BAwSSR 

over ABC, BBA, and SPSO2011 
No. Functions BAwSSR–qABC BAwSSR–SPSO2011 BAwSSR–BBA 

 

p-value Significant p-value Significant p-value Significant 

1 Sphere (10D) 7.07E-18 Yes 7.07E-18 Yes 7.07E-18 Yes 

2 Rosenbrock (10D) 7.07E-18 Yes 7.75E-09 Yes 7.07E-18 Yes 

3 Quartic (30D) 1.08E-17 Yes 6.34E-17 Yes 7.07E-18 Yes 

4 Ackley (10D) 1.86E-18 Yes 1.82E-18 Yes 1.86E-18 Yes 

5 Schaffer (2D) 3.31E-20 Yes 3.31E-20 Yes 3.31E-20 Yes 

6 Easom (2D) 7.40E-03 qABC 9.12E-20 Yes 2.40E-02 Yes 

7 Rastrigin (10D) 3.31E-20 Yes 3.29E-20 Yes 3.31E-20 Yes 

8 Shekel (4D) 1.43E-01 No 7.07E-18 Yes 2.92E-04 Yes 

9 Langerman (10D) 4.22E-04 Yes 7.07E-18 Yes 6.97E-01 No 

10 Griewank (10D) 3.31E-20 Yes 3.31E-20 Yes 3.31E-20 Yes 

11 Branin (2D) 1.43E-02 qABC 3.31E-20 SPSO2011 8.87E-06 Yes 
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12 Sumpow (10D) 3.95E-05 Yes 1.58E-07 Yes 4.71E-10 Yes 

13 Bukin6 (2D) 5.89E-08 Yes 5.85E-15 Yes 1.84E-07 Yes 

14 Crossit (2D)  2.13E-03 Yes 7.07E-18 Yes 4.18E-01 No 

15 Drop (2D) 3.31E-20 Yes 3.31E-20 Yes 3.31E-20 Yes 

16 Shubert (2D) 2.99E-05 qABC 7.07E-18 Yes 8.11E-13 Yes 

17 Beale (2D) 1.25E-04 Yes 6.03E-02 No 2.43E-01 No 

18 McCorm (2D) 5.74E-01 No 7.07E-18 Yes 3.26E-01 No 

19 Camel6 (2D) 6.72E-02 No 7.07E-18 Yes 9.14E-05 Yes 

20 Boha1 (2D) 3.31E-20 Yes 3.31E-20 Yes 3.31E-20 Yes 

21 Colville (2D) 1.35E-13 Yes 4.18E-01 No 3.90E-04 Yes 

22 Powersum (2D) 2.03E-14 Yes 5.90E-07 Yes 2.63E-01 No 

23 Solomon (4D) 6.06E-18 Yes 7.07E-18 Yes 7.07E-18 Yes 

24 Alpine (2D) 7.07E-18 Yes 7.07E-18 Yes 7.07E-18 Yes 

Total BAwSSR: 18 

qABC: 3 

None: 3 

BAwSSR: 21 

SPSO2011: 1 

None: 2 

BAwSSR: 19 

BBA: 0 

None: 5 

 

3.5.2 SR and NFEs 

The investigation of the SR result listed in the Table 3.11 achieved by the four algorithms 

involved in this study, displays that the proposed algorithm achieved the highest average SR 

of 92% with 100% in all but three functions. However, BAwSSR could not converge in the 

Bukin6 and Langerman functions obtaining 0% SR in both. However, qABC achieved poor 

result as well getting 2% while BBA got 30% 

Table 3.11 SR of BAwSSR compared with BBA, SPSO2011, and qABC, based on NFEs obtained 

through 50 independent runs on test functions f1–f24 

No. Functions qABC 

success 

rate 

SPSO2011 

success 

rate 

BBA 

success 

rate 

BAwSSR 

success 

rate 

1 Sphere (10D) 100% 100% 100% 100% 

2 Rosenbrock (10D) 0% 74% 0% 100% 

3 Quartic (30 D) 36% 0% 0% 96% 

4 Ackley (10D) 22% 74% 0% 100% 

5 Schaffer (2D) 64% 100% 100% 100% 

6 Easom (2D) 100% 100% 100% 100% 

7 Rastrigin (10D) 98% 0% 0% 100% 

8 Shekel (4D) 98% 100% 100% 100% 

9 Langerman (10D) 2% 100% 30% 18% 

10 Griewank (10D) 0% 0% 0% 100% 

11 Branin (2D) 100% 0% 100% 100% 

12 Sumpow (10D) 100% 100% 100% 100% 

13 Bukin6 (2D) 4% 4% 0% 0% 

14 Crossit (2D)  100% 100% 100% 100% 
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15 Drop (2D) 74% 100% 100% 100% 

16 Shubert (2D) 100% 100% 14% 100% 

17 Beale (2D) 76% 98% 100% 100% 

18 McCorm (2D) 100% 100% 100% 100% 

19 Camel6 (2D) 100% 100% 100% 100% 

20 Boha1 (2D) 100% 100% 100% 100% 

21 Colville (2D) 10% 100% 100% 100% 

22 Powersum (2D) 16% 100% 100% 100% 

23 Solomon (4D) 48% 96% 100% 100% 

24 Alpine (2 D) 100% 100% 100% 100% 

SR average 65% 77% 69% 92% 

 

To draw the full picture of the proposed algorithm’s performance, the NFEs need to 

be considered in this analysis. Briefly, the NFEs, or speed, represent the number of times the 

functions were executed by the algorithm while converging to the optimum; in other words, 

how fast was the algorithm able to converge to the minimum? Hence, lower NFE values 

mean that less time is needed to find the optimum. After considering the results shown in 

Table 3.12, which compares BAwSSR against the BBA, qABC, and SPSO2011, it can be 

clearly observed that the BAwSSR was faster than the BBA in 20 functions, whereas the 

latter was faster in only 3 functions, and there was no winner in 1 function. Additionally, 

among all the functions, BAwSSR converged faster than BBA in all the 50 runs of 14 

functions. The comparison with qABC reveals similar findings, with BAwSSR excelling in 

19 functions and with full performance in 10 functions for all 50 runs. However, qABC was 

faster in only five functions. Conversely, the figures for the comparison with SPSO2011 

show that BAwSSR was faster in only 14 functions, while SPSO2011 was faster in 10 

functions. However, in eight of the ten functions in which SPSO2011 excelled, the algorithm 

could neither find the optimum nor come close to it, which cannot be considered an indication 

of good performance. Yet, BAwSSR converged faster in all 50 runs in eight functions. 

Moreover, functions like Drop Sphere, Ackley, and Rastrigin needed only 102 NFEs, while 
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functions like Griewank needed a little more, with 110 NFEs. The abovementioned figures 

demonstrate that BAwSSR performed better in terms of NFEs as well as the SR. 

Table 3.12 Best performance of the BAwSSR, BBA, SPSO2011, and qABC for the NFEs obtained 

through 50 independent runs on test functions f1–f24 

No. Functions Result of 50 runs  Result of 50 runs Result of 50 runs 

BAwSSR qABC BAwSSR  SPSO2011 BAwSSR BBA 

1 Sphere (10 D) 50 0 50 0 50 0 

2 Rosenbrock (10D) 50 0 44 6 50 0 

3 Quartic (30 D) 40 10 48 2 50 0 

4 Ackley (10D) 50 0 50 0 50 0 

5 Schaffer (2D) 50 0 50 0 50 0 

6 Easom (2D) 19 31 0 50 45 4 

7 Rastrigin (10D) 50 0 50 0 50 0 

8 Shekel (4D) 7 43 0 50 25 25 

9 Langerman (10D) 9 41 0 50 8 42 

10 Griewank (10D) 50 0 50 0 50 0 

11 Branin (2D) 30 20 50 0 49 1 

12 Sumpow (10D) 49 1 50 0 50 0 

13 Bukin6 (2D) 26 24 0 50 3 46 

14 Crossit (2D)  39 11 2 48 37 4 

15 Drop (2D) 50 0 0 50 50 0 

16 Shubert (2D) 8 42 0 50 50 0 

17 Beale (2D) 47 3 44 6 12 33 

18 McCorm (2D) 46 4 0 50 36 12 

19 Camel6 (2D) 17 33 0 50 24 19 

20 Boha1 (2D) 50 0 50 0 50 0 

21 Colville (2D) 46 4 7 43 50 0 

22 Powersum (2D) 50 0 39 11 45 5 

23 Solomon (4D) 50 0 50 0 50 0 

24 Alpine (2 D) 50 0 50 0 50 0 

 Total BAwSSR: 19 

qABC: 5 

BAwSSR: 14 

SPSO2011:10 

BAwSSR: 20 

BBA: 3 

None: 1 

 

Nevertheless, to discover other aspects of the performance, such as robustness and 

reliability, this assessment needs to compute the mean and standard deviation figures. Table 

3.13 indicates that BAwSSR performed better than the BBA, having lower mean values in 

21 functions, and lower standard deviations in 20 functions. The interpretation of these 

figures confirms the conclusion that the BAwSSR algorithm performed consistently faster 

in finding the minimum. Similarly, in the comparison with qABC (Table 3.14), BAwSSR 

acquired lower mean and standard deviation values in 20 and 21 functions, respectively, 
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suggesting that BAwSSR consistently performed faster. On the Contrary, the figures for 

BAwSSR and SPSO2011 in Table 3.15 demonstrate that the former performed faster in 

only 14 functions only, whereas SPSO2011 performed faster in 10 functions. However, in 

seven functions (Easom, Shekel, Langerman, Crossit, Drop, Shubert, and McCorm), the 

mean was lower due to SPSO2011 converging prematurely after 100 NFEs, with an 

optimum value far from the standard one. This phenomenon was discussed in Chapter 2 as 

one of the weaknesses of PSO in general. As stated above, this cannot be considered an 

indication of better performance as the calculated optimum by SPSO2011 had low 

accuracy. On the other hand, BAwSSR itself could not converge and was trapped in local 

optima in the Langerman and Bukin6 functions.  

The overall conclusion is that the achieved improvement could be attributed to the 

use of the search space reduction technique in BAwSSR. The use of this method in the 

initialisation and global stages via the five scenarios, helped the algorithm to conduct more 

focused sampling rather than routinely repeating the same search procedure in every 

iteration. Moreover, the samples taken via the search space reduction technique eventually 

guided the neighbourhood search to locate the optimum in more promising locations. 

Table 3.13 Means and standard deviations of NFEs obtained through 50 independent runs on test 

functions f1–f24 
No. Functions BBA BAwSSR 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 9180.34 2588.57 102.00 0.00 

2 Rosenbrock (10D) 500042.22 5.54 55705.44 2036.26 

3 Quartic (30) 500068.04 1.96 160903.42 151059.84 

4 Ackley (10D) 500039.02 3.61 102.00 0.00 

5 Schaffer (2D) 5066.22 2679.38 102.00 0.00 

6 Easom (2D) 4060.24 1381.89 1972.66 814.79 

7 Rastrigin (10D) 500068.86 3.86 102.00 0.00 

8 Shekel (4D) 62742.04 32020.36 51442.88 11641.98 

9 Langerman (10D) 385919.18 184710.55 431486.76 150993.14 
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10 Griewank (10D) 500045.52 3.98 110.00 0.00 

11 Branin (2D) 4115.46 1758.67 857.66 388.14 

12 Sumpow (10D) 951.20 179.34 75.68 47.38 

13 Bukin6 (2D) 500012.54 5.56 500031.94 14.00 

14 Crossit (2D)  400.84 227.00 164.24 69.92 

15 Drop (2D) 27392.88 30397.32 102.00 0.00 

16 Shubert (2D) 460845.84 106902.97 10468.80 3658.40 

17 Beale (2D) 654.84 294.37 954.96 349.25 

18 McCorm (2D) 1319.68 451.89 598.82 332.08 

19 Camel6 (2D) 1025.76 692.52 874.40 300.75 

20 Boha1 (2D) 93133.46 93331.19 102.00 0.00 

21 Colville (2D) 90739.72 32563.57 31410.62 17993.65 

22 Powersum (2D) 74731.52 65000.37 11361.32 8803.96 

23 Solomon (2D) 38934.28 39767.45 102 0 

24 Alpine (2D) 3546.60 1631.45 102 0 

 Total  3 4 21 20 

 

Table 3.14 Means and standard deviations of NFEs for qABC obtained through 50 independent runs 

on test functions f1–f24 
No. Functions qABC  BAwSSR 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 33446.14 9643.90 102.00 0.00 

2 Rosenbrock (10D) 500048.88 25.90 55705.44 2036.26 

3 Quartic (30) 377869.86 180710.93 160903.42 151059.84 

4 Ackley (10D) 468309.60 70444.77 102.00 0.00 

5 Schaffer (2D) 233117.16 235650.01 102.00 0.00 

6 Easom (2D) 2650.48 4249.69 1972.66 814.79 

7 Rastrigin (10D) 180555.66 92942.62 102.00 0.00 

8 Shekel (4D) 43292.62 96619.86 51442.88 11641.98 

9 Langerman (10D) 491350.46 60942.64 431486.76 150993.14 

10 Griewank (10D) 500049.58 27.24 110.00 0.00 

11 Branin (2D) 1052.04 885.35 857.66 388.14 

12 Sumpow (10D) 150.00 0.00 75.68 47.38 

13 Bukin6 (2D) 490635.52 57616.16 500031.94 14.00 

14 Crossit (2D)  274.00 115.86 164.24 69.92 

15 Drop (2D) 236593.44 196388.31 102.00 0.00 

16 Shubert (2D) 5662.18 9603.01 10468.80 3658.40 

17 Beale (2D) 180170.24 213103.40 954.96 349.25 

18 McCorm (2D) 13572.06 17897.62 598.82 332.08 

19 Camel6 (2D) 790.00 369.86 874.40 300.75 

20 Boha1 (2D) 1872.26 1145.41 102.00 0.00 

21 Colville (2D) 453006.78 141528.21 31410.62 17993.65 

22 Powersum (2D) 463048.28 94270.83 11361.32 8803.96 

23 Solomon (2D) 273926.74 238028.51 102.00 0.00 

24 Alpine (2D) 2344.00 8793.92 102.00 0.00 

Total 4 3 20 21 
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Table 3.15 Means and standard deviations of NFEs obtained through 50 independent runs on test 

functions f1–f24 

No. Functions SPSO2011 BAwSSR 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 5884.00 437.89 102.00 0.00 

2 Rosenbrock (10D) 209694.00 190711.63 55705.44 2036.26 

3 Quartic (30 D) 500000.00 0.00 160903.42 151059.84 

4 Ackley (10D) 139692.00 213573.00 102.00 0.00 

5 Schaffer (2D) 2122.00 544.53 102.00 0.00 

6 Easom (2D) 100.00 0.00 1972.66 814.79 

7 Rastrigin (10D) 500000.00 0.00 102.00 0.00 

8 Shekel (4D) 100.00 0.00 51442.88 11641.98 

9 Langerman (10D) 100.00 0.00 431486.76 150993.14 

10 Griewank (10D) 500000.00 0.00 110.00 0.00 

11 Branin (2D) 500000.00 0.00 857.66 388.14 

12 Sumpow (10D) 1502.00 327.10 75.68 47.38 

13 Bukin6 (2D) 490634.00 65562.00 500031.94 14.00 

14 Crossit (2D)  100.00 0.00 164.24 69.92 

15 Drop (2D) 100.00 0.00 102.00 0.00 

16 Shubert (2D) 100.00 0.00 10468.80 3658.40 

17 Beale (2D) 11656.00 69765.16 954.96 349.25 

18 McCorm (2D) 100.00 0.00 598.82 332.08 

19 Camel6 (2D) 120.00 44.72 874.40 300.75 

20 Boha1 (2D) 4992.00 742.12 102.00 0.00 

21 Colville (2D) 14160.00 4506.00 31410.62 17993.65 

22 Powersum (2D) 23094.00 23524.03 11361.32 8803.96 

23 Solomon (2D) 26946.00 96573.06 102.00 0.00 

24 Alpine (2D) 2912.00 1601.83 102.00 0.00 

Total 10 

 

10 

 

14 

 

11 

None = 3 

 

 

To determine the significance of the improvements exhibited by the proposed 

algorithm, the Mann–Whitney test was carried out on the NFE figures, and the findings are 

presented in Table 3.16. The findings reveal that, in the comparison between BAwSSR and 

the BBA, BAwSSR’s performance was significantly better in 19 functions, the BBA’s was 

better in two, and neither was superior in three. Similarly, the comparison with qABC 

reveals that BAwSSR was significantly better in 17 functions, while qABC was better in 

five, and neither was better in two. On the other hand, the BAwSSR–SPSO2011 

comparison indicates that BAwSSR was significantly better in 14 functions and SPSO2011 

was better in 10. As noted above, this result cannot be considered an indication of good 
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performance. Nonetheless, the result presents convincing evidence for the effect of the 

technique used in the proposed algorithm. 

Table 3.16 P-values using the Mann–Whitney test (a = 0.05) for NFEs acquired by BAwSSR over 

the BBA 
No. Functions BAwSSR–qABC BAwSSR–SPSO2011 BAwSSR–BBA 

P-value Significant P-value Significant P-value Significant 

1 Sphere (10D) 3.31E-20 Yes 1.72E-20 Yes 3.28E-20 Yes 

2 Rosenbrock (10D) 6.84E-18 Yes 3.05E-11 Yes 6.69E-18 Yes 

3 Quartic (30 D) 4.58E-08 Yes 1.73E-17 Yes 6.21E-18 Yes 

4 Ackley (10D) 3.30E-20 Yes 1.59E-20 Yes 3.11E-20 Yes 

5 Schaffer (2D) 3.30E-20 Yes 1.72E-20 Yes 3.30E-20 Yes 

6 Easom (2D) 1.21E-02 qABC 2.50E-20 SPSO2011 2.11E-13 Yes 

7 Rastrigin (10D) 3.31E-20 Yes 1.59E-23 Yes 3.16E-20 Yes 

8 Shekel (4D) 2.10E-10 qABC 2.55E-20 SPSO2011 2.98E-01 No 

9 Langerman (10D) 2.65E-08 qABC 2.46E-20 SPSO2011 1.46E-09 BBA 

10 Griewank (10D) 3.30E-20 Yes 1.59E-23 Yes 3.04E-20 Yes 

11 Branin (2D) 9.96E-02 No 2.44E-20 Yes 3.41E-16 Yes 

12 Sumpow (10D) 5.98E-21 Yes 1.24E-18 Yes 1.69E-18 Yes 

13 Bukin6 (2D) 2.17E-01 No 3.63E-20 SPSO2011 3.88E-13 BBA 

14 Crossit (2D)  1.42E-07 Yes 8.39E-18 SPSO2011 5.54E-09 Yes 

15 Drop (2D) 3.31E-20 Yes 1.59E-23 SPSO2011 3.31E-20 Yes 

16 Shubert (2D) 7.67E-10 qABC 2.38E-20 SPSO2011 6.34E-18 Yes 

17 Beale (2D) 1.36E-14 Yes 3.55E-12 Yes 3.23E-05 BBA 

18 McCorm (2D) 1.14E-12 Yes 2.32E-20 SPSO2011 4.92E-08 Yes 

19 Camel6 (2D) 2.02E-02 qABC 2.86E-19 SPSO2011 1.71E-01 No 

20 Boha1 (2D) 3.19E-20 Yes 1.74E-20 Yes 3.31E-20 Yes 

21 Colville (2D) 7.63E-14 Yes 2.96E-12 SPSO2011 3.77E-15 Yes 

22 Powersum (2D) 7.06E-18 Yes 1.07E-03 Yes 8.59E-12 Yes 

23 Solomon (2D) 3.30E-20 Yes 1.78E-20 Yes 3.31E-20 Yes 

24 Alpine (2D) 3.11E-20 Yes 1.76E-20 Yes 3.28E-20 Yes 

Total  BAwSSR: 17 

qABC: 5 

 None: 2 

BAwSSR: 14 

SPSO2011: 10 

None: 0 

BAwSSR: 19 

BBA: 2 

None: 3 

 

3.6 Summary  

In this chapter, a new enhancement to the BA optimisation method was proposed. The core 

of this proposal is based on the gradual reduction of the search space, a technique borrowed 

from the numerical method of bracketing. This enhancement was applied to the initial and 

global search stages of the BA due to the researcher’s assumption that the neighbourhood 



56 

 

search stage job is large extent dependent on these two stages. The proposed method was 

tested in 24 benchmark functions with a wide variety of surface topography and 

complexity. It was then compared with the latest versions of two of the highly popular 

algorithms, SPSO2011 and qABC. According to the Mann–Whitney statistical significance 

test, the results demonstrated significantly better performance by the proposed method in at 

least three-quarters of the functions tested in terms of accuracy as well as speed. The 

introduced method was able to find the exact minimum at a remarkably high speed, even 

for functions such as Ackley, Rastrigin, and Griewank, which create difficulties for many 

algorithms due to their highly pocketed topography. Moreover, it is worth noting that the 

test was carried out with a range of functions that are mostly differentiable and with limited 

dimensionality, where more than half of the functions were only two-dimensional. This 

implies the need for more thorough testing of the proposed method in a wider range of test 

functions. 
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Chapter 4 BEES ALGORITHM IMPROVEMENT USING 

DOMAIN SEGMENTATION (BADS) 

 

4.1 Preliminaries 

The BA, like many other metaheuristic algorithms, depends on randomisation to explore more 

solutions. This approach creates one of the problems hindering optimisation algorithms’ search 

for the optimum—the inability of the extracted sample to be evenly distributed throughout the 

search space or being scattered nearby. This renders the generated samples biased, as it is highly 

likely that certain areas of the search space will be ignored. Hence, more processing time and 

computational resources will be needed, eventually causing the search process for the optima to 

become exceedingly costly. In general, more representative samples will be needed to achieve an 

exhaustive search, thus, smarter optimised search. 

4.2 Domain Segmentation Sampling Method 

To resolve the aforementioned problem, this chapter introduces a new technique based on 

segmenting the search space and sampling from each segment. The BA is a well-known 

algorithm and has been subject to a wide variety of developments and improvements by many 

researchers. To the best of this researcher’s knowledge, hardly any BA improvements have been 

employed in the segmentation of the search space for the sake of diversifying the obtained 

solution. With the current sampling procedure of the BBA, there is no guarantee that the 

extracted sample will not ignore certain parts of the search space. With search space partitioning, 

each section will be independent from the others. The proposed algorithm will be applied to two 

of the BA stages: initialisation and global search. As mentioned in Chapter 3, these two stages 

have undergone fewer improvement attempts by researchers (Hussein et al., 2014), so giving 
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them more consideration is worthwhile. This focus is also due to the author’s belief that these 

two stages have more impact in the BA’s overall performance than does the neighbourhood 

search stage. In truth, as discussed in Chapter 3, neighbourhood search is highly dependent on 

these two stages. However, solely dividing the search space into independent segments might 

introduce its own problems if each different segment will be used to generate one different 

sample with all its parameters are taken from the same segment. The arising problem is related to 

the way the parameter values for some benchmarking or real-life engineering problems are 

distributed throughout the search space. Although, segmentation has proven to be effective in 

problems where parameters have the same value, but for other numerical benchmark functions 

and engineering design problems, the values of the parameters are not identical which means 

they might be located in different areas of the search space and hence different segments; thus, 

taking a full sample from one segment at a time means it is likely to miss some parameter values 

ending up with the search trapped at some point and cannot move forward. The suggested 

solution is to provide the option to extract the sample in two approaches: 

1. The whole sample is extracted from one independent segment; the number of segments is 

equal to the number of samples (Figure 4.1). For example, for the function Griewank, 

where search space is [-600, 600], the segment length will be calculated as follows: 

 

  Segment length (S) = L/n = 1200/10 = 120      (4.1) 

 

where n is the number of samples = 10, and L is the length space, calculated as 

 

  L = (600− (−600)) = 1200        (4.2) 
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Figure 4.1 First sampling approach from segmented search space 

 

2. Every parameter of the same sample will be taken from a different segment; the number 

of segments will be equal to the number of variables (Figure 4.2). For example, for 

function Colville, the search space is [-10, 10], and the number of parameters (D) = 4:  

Search space length  L = (10− (−10)) = 20      (4.3) 

 

Length of Segment  S = L/D = 20/4 = 5    (4.4) 

 
Figure 4.2 Second approach sampling from segmented search space 

 

However, to optimise the above two search approaches to focus on promising areas of 

search space, these areas will be tracked according to the best parameters found that give the 

closest optimum to the standard. When these promising areas are identified, the search for the 
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optimum will be reduced to these areas. This is an ongoing process that will be performed 

repeatedly to optimise the search. Thus, the proposed method will be named the BA domain 

(BADS) segmentation. 

4.3 Search Space Mobile Subset Sampling 

Another sampling method used in this proposed enhancement in this chapter is the mobile small 

subset of the search space. In this method, a small subset of the search will be used to extract the 

sample. The search will be limited to small subset, generated from the whole space to 

concentrate the effort for generating sample. at first, the subset will start from the left end of the 

domain up to the added small subset. For example, for function Colville, where search space is 

limited between [-10, 10] (Figure 4.3): 

 

at the start of the search 𝑎𝑖 = −10, 𝑖 = 1,2, … 𝑛           (4.5) 

 where aI is the first segment of the search space , n is the number of samples.  

the length of the search space L = (10− (−10)) = 20              (4.6) 

𝑏𝑖 = 𝑎𝑖 + 𝑆,   𝑤ℎ𝑒𝑟𝑒 𝑆 =    randum (0.001, 0.01)     (4.7) 

The next subset will be calculated as: 

 𝑎𝑖+1 = 𝑎𝑖 + 𝐿/(2 ∗ 𝑛), L is           (4.8) 

The process will continue until the right end of the search space is reached; the search then will 

return from the left end where it started.  
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Figure 4.3 Sampling from a mobile subset of search space 

 

4.4 Experiment Setup 

An improved version of the BA based on the proposed method described in Sections 4.2 and 4.3 

was tested, and the results are reported here. The test was carried out on the same list of 

benchmark functions used in Chapter 3, but with different parameter settings for the proposed 

algorithm. These settings are described in Table 4.1. However, the parameter settings for the 

BBA, qABC, and SPSO2011 remained the same. Furthermore, the exact performance metrics, 

which consist of the accuracy, SR, and NFE, were used. These metrics were applied to the results 

obtained from 50 runs, with the same stopping criteria and evaluation procedure as described in 

Chapter 3. Similarly, the Mann–Whitney statistical significance test was performed on the 

acquired test results and was used to evaluate and compare the performance of all the algorithms 

involved. 

Table 4.1 List of parameter values used for testing BADS 

No.  Functions  n m nsp e nep ngh stlim 

1 Sphere (10D)  13  4  10  2  30  0.03 10 

2 Rosenbrock (10D)  100  4  10  2  30  0.0001 10 

3 Quartic (30D)  13  4  10  2  30  0.005 10 

4 Ackley (10D)  13  4  10  2  30  0.00001 10 
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5 Schaffer (2D)  13  4  10  2  30  0.01 10 

6 Easom (2D)  100  4  10  2  30 0.00009 10 

7 Rastrigin (10D)  13  4  10  2  30 0.003 10 

8 Shekel (4D)  1,000  4  10  2  30 0.001 10 

9 Langerman (10D)  100  4  10  2  30  0.09 10 

10 Griewank (10D)  17  4  10  2  30 0.001 10 

11 Branin (2D)  15  4  10  2  30  0.01 10 

12 Sumpow (10D)  20  4  10  2  30 0.000` 10 

13 Bukin6 (2D)  11  4  10  2  30  0.01 10 

14 Crossit (2D)   15  4  10  2  30  1 10 

15 Drop (2D)  13  4  10  2  30  0.01 10 

16 Shubert (2D)  20  4  10  2  30  0.0005 10 

17 Beale (2D)  1,000  4  10  2  30  0.45 10 

18 McCorm (2D)  100  4  10  2  30  0.05 10 

19 Camel6 (2D)  13  4  10  2  30  0.005 10 

20 Boha1 (2D)  13  4  10  2  30  0.05 10 

21 Colville (2D)  13  4  10  2  30  0.0005 10 

22 Powersum (2D)  13  4  10  2  30  0.01 10 

23 Solomon (2D)  13  4  10  2  30  0.001 10 

24 Alpine (2D)  100  4  10  2  30  0.0001 10 

 

4.5 Results and Discussion 

4.5.1 Solution Quality (Accuracy) 

Table 4.2 presents the overall difference in performance for every function in 50 runs by the 

involved algorithms. As indicated by these values, the proposed algorithm, BADS, exhibited 

more instances of improved performance than all other algorithms in no less than two-thirds of 

the functions tested. The best result was in testing BADS against SPSO2011, where BADS 

achieved better accuracy performance in 22 of the functions (91%), while SPSO2011 performed 

better in only 1 function. The result of testing against the BBA was next in terms of best 

accuracy performance, as BADS performed better in 21 functions (90%), while the BBA was 

better in only 3 functions. However, qABC showed slightly better performance than SPSO2011 

and obtained better results in 5 functions, while BADS was superior in 19 functions (80%). In 
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general, the results demonstrate outstanding performance by the proposed algorithm in, for 

example, Rosenbrock (10D), Quartic (30D), Ackley (10D), Rastrigin (10D), Griewank (10D), 

and Solomon (2D) functions, where it performed better in most of the 50 runs. These functions 

used to represent a challenge for many optimisation algorithms due to their complex topography. 

Table 4.2 Best performance figures for BADS, BBA, qABC, and SPSO2011 for accuracy values 

No. Functions 
Result of 50 runs Result of 50 runs Result of 50 runs 

BADS qABC BADS SPSO2011 BADS BBA 

1 Sphere (10D) 42 8 41 9 46 4 

2 Rosenbrock (10D) 50 0 50 0 50 0 

3 Quartic (30D) 49 1 48 2 50 0 

4 Ackley (10D) 49 1 50 0 50 0 

5 Schaffer (2D) 45 5 44 6 43 7 

6 Easom (2D) 27 23 50 0 35 15 

7 Rastrigin (10D) 49 1 50 0 50 0 

8 Shekel (4D) 34 16 50 0 47 3 

9 Langerman (10D) 5 45 49 1 0 50 

10 Griewank (10D) 50 0 50 0 50 0 

11 Branin (2D) 14 36 0 50 37 13 

12 Sumpow (10D) 39 11 42 8 45 5 

13 Bukin6 (2D) 1 49 25 25 1 49 

14 Crossit (2D)  36 14 50 0 31 19 

15 Drop (2D) 45 5 50 0 42 8 

16 Shubert (2D) 16 34 50 0 46 4 

17 Beale (2D) 37 13 27 23 31 19 

18 McCorm (2D) 29 21 50 0 27 23 

19 Camel6 (2D) 21 29 50 0 28 22 

20 Boha1 (2D) 38 12 35 15 43 7 

21 Colville (2D) 48 2 46 4 49 1 

22 Powersum (2D) 46 4 31 19 18 32 

23 Solomon (2D) 50 0 46 4 50 0 

24 Alpine (2D) 46 4 47 3 48 2 

 Total 

BADS: 19 BADS: 22 BADS: 21 

qABC: 5 SPSO2011: 1 BBA: 3 

  None: 1   
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Figures 4.4–4.12 are the performance charts in terms of accuracy by all the algorithms involved. 

    

 
Figure 4.4 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Rosenbrock   

10D function 

 

 
Figure 4.5 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Quatric 30D 

function 

 

 
Figure 4.6 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Ackley 10D 

function 
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Figure 4.7 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Schaffer 2D 

function 

 

 
Figure 4.8 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Easom 2D 

function 

  

 
Figure 4.9 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Rastrigin 2D 

function 

 

 

 

0.00E+00

1.00E-03

2.00E-03

3.00E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Fi

tn
es

s

No. Runs

BBA qABC SPSO2011 BADS

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

1.37E-09
1.37E-08
1.37E-07
1.37E-06
1.37E-05
1.37E-04
1.37E-03
1.37E-02
1.37E-01
1.37E+00
1.37E+01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS



66 

 

 
Figure 4.10 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Shekel 4D 

function 

 

 
Figure 4.11 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Langerman 

10D function 

 
Figure 4.12 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Griewank 10D 

function 
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The values in Table 4.3 compare the means and standard deviations of the BBA and 

BADS. It can be noticed that, while the mean values for BADS were better than BBA in 21 

functions, the standard deviations did not perform equally well, having better values in only 16 

functions. However, the values for two functions were eliminated because of their deficient 

performance. In the Langerman and Bukin6 functions, BADS was stuck in local optima and 

could not converge, where as in Powersum function BBA performed than BADS. The overall 

result suggests that BADS performed consistently better in 13 functions, where the means and 

standard deviations were collectively better than those for BBA. This comprises slightly more 

than half of the functions tested, which suggests that the proposed algorithm was not fully 

consistent. 

Table 4.3 Means and standard deviations of best accuracy values for BADS and the BBA through 50 

independent runs on functions f1–f24 
 

No. 

Functions BBA BADS 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 8.19E-04 1.27E-04 4.19E-04 2.93E-04 

2 Rosenbrock (10D) 1.80E+00 9.23E-01 3.53E-04 3.20E-05 

3 Quartic (30D) 3.70E+00 7.34E-01 2.45E-02 1.29E-01 

4 Ackley (10D) 1.38E+01 1.25E+00 1.95E-04 1.96E-04 

5 Schaffer (2D) 2.57E-04 2.61E-04 3.53E-04 2.19E-04 

6 Easom (2D) 4.56E-04 2.64E-04 3.53E-04 2.28E-04 

7 Rastrigin (10D) 1.33E+01 3.84E+00 9.14E-05 2.56E-04 

8 Shekel (4D) 6.67E-04 1.96E-04 3.53E-04 1.55E-04 

9 Langerman (10D) 2.74E-01 1.79E-01 7.00E-01 1.37E-02 

10 Griewank (10D) 5.68E-01 7.78E-02 3.36E-04 3.57E-04 

11 Branin (2D) 6.43E-04 1.96E-04 3.99E-04 3.10E-04 

12 Sumpow (10D) 6.86E-04 2.44E-04 3.53E-04 3.17E-04 

13 Bukin6 (2D) 1.59E-02 4.93E-03 5.22E-02 2.68E-02 

14 Crossit (2D)  4.23E-04 2.71E-04 3.53E-04 2.98E-04 

15 Drop (2D) 4.06E-04 2.48E-04 3.53E-04 2.86E-04 

16 Shubert (2D) 5.24E-03 4.89E-03 5.49E-04 2.82E-04 

17 Beale (2D) 4.82E-04 2.74E-04 3.53E-04 3.09E-04 

18 McCorm (2D) 5.26E-04 2.92E-04 3.53E-04 2.78E-04 

19 Camel6 (2D) 4.87E-04 2.86E-04 3.53E-04 2.41E-04 

20 Boha1 (2D) 4.68E-04 2.92E-04 3.53E-04 2.30E-04 

21 Colville (2D) 9.28E-04 7.65E-05 3.53E-04 2.68E-04 

22 Powersum (4D) 6.84E-04 2.26E-04 7.61E-04 2.08E-04 

23 Solomon (2D) 5.49E-04 2.57E-04 3.53E-04 2.15E-04 

24 Alpine (2D) 6.25E-04 2.41E-04 1.33E-04 1.23E-04 
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Total 3 8 21 16 

 

The values in Table 4.4, which compares the means and standard deviations of qABC and 

BADS, indicate clearly that BADS exhibited more stable performance than qABC. BADS 

achieved better means and standard deviations in 19 functions. The standard deviation values for 

the Langerman and Bukin6 functions were excluded even though BADS obtained better standard 

deviations, as qABC acquired better solutions in most of the runs (45). However, neither 

algorithm could converge within the limit of NFEs. 

Table 4.4 Means and standard deviations of accuracy values through 50 runs on functions f1–f24 for 

BADS and qABC 
No. Functions qABC  BADS 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 6.24E-04 2.49E-04 2.43E-04 2.96E-04 

2 Rosenbrock (10D) 4.09E-01 8.85E-01 7.65E-05 2.72E-05 

3 Quartic (30D) 5.23E-01 2.88E-01 3.57E-02 1.50E-01 

4 Ackley (10D) 3.11E-03 3.05E-03 1.44E-04 1.80E-04 

5 Schaffer (2D) 9.65E-04 8.04E-04 7.00E-05 1.85E-04 

6 Easom (2D) 2.73E-04 3.28E-04 2.33E-04 2.23E-04 

7 Rastrigin (10D) 6.22E-04 2.78E-04 2.15E-05 1.38E-04 

8 Shekel (4D) 2.34E-02 1.61E-01 1.72E-04 1.99E-04 

9 Langerman (10D) 3.50E-01 1.63E-01 5.80E-01 7.44E-02 

10 Griewank (10D) 4.65E-02 2.19E-02 1.49E-04 3.02E-04 

11 Branin (2D) 2.63E-04 2.76E-04 4.20E-04 2.82E-04 

12 Sumpow (10D) 3.82E-04 1.12E-04 1.62E-04 2.75E-04 

13 Bukin6 (2D) 2.81E-02 1.61E-02 8.74E-02 2.45E-02 

14 Crossit (2D)  5.65E-04 3.01E-04 3.42E-04 2.67E-04 

15 Drop (2D) 1.12E-02 2.17E-02 1.20E-04 2.71E-04 

16 Shubert (2D) 2.69E-04 3.13E-04 4.37E-04 2.50E-04 

17 Beale (2D) 1.98E-03 3.49E-03 4.22E-04 2.81E-04 

18 McCorm (2D) 5.06E-04 2.83E-04 4.43E-04 2.37E-04 

19 Camel6 (2D) 4.01E-04 3.26E-04 4.26E-04 2.70E-04 

20 Boha1 (2D) 3.20E-04 2.78E-04 1.32E-04 2.21E-04 

21 Colville (2D) 3.43E-02 3.10E-02 3.88E-04 3.54E-04 

22 Powersum (4D) 7.13E-03 8.58E-03 7.61E-04 2.08E-04 

23 Solomon (2D) 4.80E-02 4.88E-02 2.96E-05 1.16E-04 

24 Alpine (2D) 5.58E-04 2.84E-04 1.14E-04 9.20E-05 

Total 5 4 19 20 

 

The data in Table 4.5, which compares the performance of SPSO2011 against BADS, 

indicate similar discrepancies between these two statistical measures in Table 4.3. The BADS 

mean figures were better in 22 functions, whereas its standard deviations were better in only 17 
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functions. However, the figures for Bukin6 were not considered because it performed poorly and 

did not converge to the optimum at all, winning only half of the 50 runs against SPSO2011. 

Similarly, Langerman should be excluded as BADS could not converge within the NFEs limit. 

Moreover, many functions performed well in most of the 50 runs, such as Sphere, Quartic, and 

Easom, but the standard deviations were not better than those of SPSO2011, which suggests 

performance inconsistency. In general, BADS did not show stable behaviour in almost one-third 

of the functions. Additionally, ngh parameter tuning was needed to improve the result, 

demonstrating sensitive behaviour by BADS. 

Table 4.5 Means, and standard deviations of accuracy values obtained through 50 runs on test functions 

f1–f24 for BADS and SPSO2011 

No. Functions SPSO2011  BADS 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 7.98E-04 1.44E-04 2.43E-04 2.96E-04 

2 Rosenbrock (10D) 8.88E+00 4.36E+01 7.65E-05 2.72E-05 

3 Quartic (30D) 1.18E-01 6.70E-02 3.57E-02 1.50E-01 

4 Ackley (10D) 3.70E-01 6.35E-01 1.44E-04 1.80E-04 

5 Schaffer (2D) 2.69E-04 2.60E-04 7.00E-05 1.85E-04 

6 Easom (2D) 1.00E+00 2.74E-06 2.33E-04 2.23E-04 

7 Rastrigin (10D) 1.93E+01 1.01E+01 2.15E-05 1.38E-04 

8 Shekel (4D) 9.32E+00 3.44E-01 1.72E-04 1.99E-04 

9 Langerman (10D) 7.06E-01 9.64E-05 5.80E-01 7.44E-02 

10 Griewank (10D) 1.38E-01 8.28E-02 1.49E-04 3.02E-04 

11 Branin (2D) 3.58E-07 0.00E+00 4.20E-04 2.82E-04 

12 Sumpow (10D) 5.48E-04 2.73E-04 1.62E-04 2.75E-04 

13 Bukin6 (2D) 7.35E-02 3.97E-02 8.74E-02 2.45E-02 

14 Crossit (2D)  4.43E-02 4.49E-02 3.42E-04 2.67E-04 

15 Drop (2D) 2.25E-01 1.14E-01 1.20E-04 2.71E-04 

16 Shubert (2D) 7.88E+01 4.48E+01 4.37E-04 2.50E-04 

17 Beale (2D) 1.58E-02 1.07E-01 4.22E-04 2.81E-04 

18 McCorm (2D) 1.58E-01 1.32E-01 4.43E-04 2.37E-04 

19 Camel6 (2D) 4.44E-01 2.85E-01 4.26E-04 2.70E-04 

20 Boha1 (2D) 4.12E-04 2.65E-04 1.32E-04 2.21E-04 

21 Colville (2D) 8.08E-04 1.76E-04 3.88E-04 3.54E-04 

22 Powersum (2D) 8.31E-04 2.21E-04 7.61E-04 2.08E-04 

23 Solomon (4D) 2.64E-03 1.39E-02 2.96E-05 1.16E-04 

24 Alpine (2 D) 6.69E-04 2.35E-04 1.14E-04 9.20E-05 

Total 2 7 22 17 

 

Although the above analysis and discussion suggest a proper level of improvement was 

achieved by the proposed algorithm, the Mann–Whitney test must be used to verify whether this 
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improvement is statistically significant. The p-values in Table 4.6 reveal that BADS was 

significantly better than qABC in 17 functions, which is equivalent to the figures against the 

BBA. On the other hand, BADS was significantly better than SPSO2011 in 21 functions. The 

overall significant test results indicate that BADS exhibited significantly better performance in at 

least 70% of the functions tested. In general, BADS exhibited the ability to calculate accurate 

optimum with a level of consistency in the average. Nonetheless, considering the number of 

functions used in the experiment, it is highly unlikely that the improved performance of the BA 

happened arbitrarily and not as an effect of employing the domain segmentation method. 

Table 4.6 P-values using Mann–Whitney test (a = 0.05) for accuracy acquired by BADS over qABC, 

BBA, and SPSO2011 

 

No. Functions BADS–qABC BADS–SPSO2011 BADS–BBA 

P-value Significant P-value Significant P-value Significant 

1 Sphere (10D) 2.60E-08 Yes 4.76E-14 Yes 2.26E-14 Yes 

2 Rosenbrock (10D) 7.07E-18 Yes 7.03E-18 Yes 7.07E-18 Yes 

3 Quartic (30D) 9.92E-16 Yes 2.95E-14 Yes 7.07E-18 Yes 

4 Ackley (10D) 1.01E-17 Yes 6.92E-18 Yes 7.07E-18 Yes 

5 Schaffer (2D) 1.82E-14 Yes 3.23E-11 Yes 3.55E-11 Yes 

6 Easom (2D) 6.92E-01 No 9.12E-20 Yes 2.01E-05 Yes 

7 Rastrigin (10D) 1.20E-16 Yes 7.02E-18 Yes 7.07E-18 Yes 

8 Shekel (4D) 2.45E-03 Yes 7.07E-18 Yes 2.80E-14 Yes 

9 Langerman (10D) 2.16E-13 qABC 7.07E-18 Yes 7.07E-18 BBA 

10 Griewank (10D) 7.07E-18 Yes 7.07E-18 Yes 7.07E-18 Yes 

11 Branin (2D) 3.14E-03 qABC 3.31E-20 SPSO2011 5.93E-05 Yes 

12 Sumpow (10D) 2.25E-07 Yes 5.14E-10 Yes 5.05E-12 Yes 

13 Bukin6 (2D) 2.05E-15 qABC 1.51E-01 No 7.12E-17 BBA 

14 Crossit (2D)  4.56E-04 Yes 7.07E-18 Yes 1.03E-01 No 

15 Drop (2D) 6.13E-12 Yes 7.07E-18 Yes 2.89E-10 Yes 

16 Shubert (2D) 5.19E-04 qABC 7.07E-18 Yes 3.43E-13 Yes 

17 Beale (2D) 1.52E-04 Yes 8.30E-02 No 2.93E-01 No 

18 McCorm (2D) 2.37E-01 No 7.07E-18 Yes 3.06E-01 No 

19 Camel6 (2D) 4.84E-01 No 7.07E-18 Yes 1.76E-01 No 

20 Boha1 (2D) 1.42E-06 Yes 7.45E-09 Yes 1.34E-09 Yes 

21 Colville (2D) 2.13E-16 Yes 1.03E-08 Yes 5.57E-14 Yes 

22 Powersum (2D) 6.00E-13 Yes 2.91E-02 Yes 8.30E-02 No 

23 Solomon (4D) 1.24E-16 Yes 7.12E-17 Yes 2.14E-16 Yes 

24 Alpine (2D) 3.10E-12 Yes 1.07E-16 Yes 3.79E-16 Yes 

Total  BADS: 17 

qABC: 4 

None: 3 

BADS: 21 

SPSO2011: 1 

None: 2 

BADS: 17 

BBA: 2 

None: 5 
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4.5.2 SR and NFEs 

When examining Table 4.7, it is evident that BADS achieved the highest SR average, with 91% 

obtained for all functions. This result was affected by the poor performance of Langerman and 

Bukin6, the two functions that could not converge getting 0% SR, suggesting that they were 

trapped in some local optima. Those two functions have always been too difficult to solve for all 

the proposed algorithms in this research. Additionally, the function Quartic achieved only 92% 

SR. The figures for the other algorithms are as follows: SPSO2011 77%, BBA 69%, and qABC 

65%. 

Table 4.7 SR of the BADS, BBA, SPSO2011, and qABC algorithms based on NFEs obtained through 50 

runs on functions f1–f24 

No. Functions qABC 

success 

rate 

SPSO2011 

success 

rate 

BBA 

success 

rate 

BADS 

success 

rate 

1 Sphere (10 D) 100% 100% 100% 100% 

2 Rosenbrock 

(10D) 0% 74% 0% 100% 

3 Quartic (30D) 36% 0% 0% 92% 

4 Ackley (10D) 22% 74% 0% 100% 

5 Schaffer (2D) 64% 100% 100% 100% 

6 Easom (2D) 100% 100% 100% 100% 

7 Rastrigin (10D) 98% 0% 0% 100% 

8 Shekel (4D) 98% 100% 100% 100% 

9 Langerman 

(10D) 2% 100% 30% 0% 

10 Griewank (10D) 0% 0% 0% 100% 

11 Branin (2D) 100% 0% 100% 100% 

12 Sumpow (10D) 100% 100% 100% 100% 

13 Bukin6 (2D) 4% 4% 0% 0% 

14 Crossit (2D)  100% 100% 100% 100% 

15 Drop (2D) 74% 100% 100% 100% 

16 Shubert (2D) 100% 100% 14% 100% 

17 Beale (2D) 76% 98% 100% 100% 

18 McCorm (2D) 100% 100% 100% 100% 

19 Camel6 (2D) 100% 100% 100% 100% 

20 Boha1 (2D) 100% 100% 100% 100% 

21 Colville (2D) 10% 100% 100% 100% 

22 Powersum (2D) 16% 100% 100% 100% 

23 Solomon (4D) 48% 96% 100% 100% 

24 Alpine (2 D) 100% 100% 100% 100% 

SR average 65% 77% 69% 91% 
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As mentioned in Chapter 3, NFE measures how quickly an algorithm finds the optimum. 

It is a common indicator used in the literature on optimisation algorithms because it is more 

objective than CPU time. From Table 4.8, BADS outperformed the BBA and qABC, performing 

faster than the BBA in 21 functions and faster than qABC in 20 functions. While SPSO2011 

appears to function efficiently, were it achieved better NFE values in 11 functions (or one-third 

of the total); nonetheless, its performance in eight of the functions was not an improvement, as 

the marginal difference for the optimum found by SPSO2011 was at least twice that of the 

standard optimum due to the premature convergence phenomenon that was highlighted in 

previous chapters. Yet, the overall inference from the figures is that BADS exhibited a noticeable 

improvement, outperforming the other algorithms involved in the testing. However, to evaluate 

the consistent and stability behaviour of the proposed algorithm, the means and standard 

deviations should be calculated to provide adequate performance comparisons with the other 

algorithms. 

Table 4.8 Best performance of BADS, SPSO2011, and qABC for the NFEs obtained through 50 runs on 

test functions f1–f24 

No. Functions Result of 50 runs  Result of 50 runs Result of 50 runs 

BADS qABC BADS SPSO2011 BADS BBA 

1 Sphere (10D) 50 0 50 0 50 0 

2 Rosenbrock (10D) 50 0 50 0 50 0 

3 Quartic (30D) 41 9 48 2 48 2 

4 Ackley (10D) 50 0 50 0 50 0 

5 Schaffer (2D) 47 3 49 1 50 0 

6 Easom (2D) 46 4 0 50 46 4 

7 Rastrigin (10D) 50 0 50 0 50 0 

8 Shekel (4D) 49 1 0 50 50 0 

9 Langerman (10D) 0 50 0 50 35 15 

10 Griewank (10D) 50 0 50 0 50 0 

11 Branin (2D) 47 3 50 0 50 0 

12 Sumpow (10D) 50 0 50 0 50 0 

13 Bukin6 (2D) 19 30 0 50 2 47 

14 Crossit (2D)  44 6 1 49 39 2 

15 Drop (2D) 49 1 0 50 49 0 

16 Shubert (2D) 20 30 0 50 50 0 

17 Beale (2D) 26 24 1 49 0 50 

18 McCorm (2D) 48 2 0 50 18 26 

19 Camel6 (2D) 13 37 0 50 45 3 
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20 Boha1 (2D) 49 1 50 0 50 0 

21 Colville (2D) 50 0 50 0 50 0 

22 Powersum (2D) 50 0 12 38 32 18 

23 Solomon (4D) 50 0 50 0 50 0 

24 Alpine (2 D) 50 0 50 0 49 1 

 Total BADS: 20 

qABC: 4 

BADS: 13 

SPSO2011: 11 

BADS: 21 

BBA: 3 

 

From Table 4.9, it can easily concluded that the mean values confirm the performance 

figures based on NFEs. However, the standard deviations for BADS disperse more in few 

functions while consistently being located close to the mean in 17 functions. In general, BADS’s 

performance was better than that of the BBA in most of the functions, with consistent 

performance in general.  

Table 4.9 Means and standard deviations of the NFEs obtained through 50 runs for BADS and the BBA 

on test functions f1–f24 

No. Functions BBA BADS 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 9180.34 2588.57 360.10 208.53 

2 Rosenbrock (10D) 500042.22 5.54 276.00 0.00 

3 Quartic (30) 500068.04 1.96 175511.40 158655.66 

4 Ackley (10D) 500039.02 3.61 468.68 201.10 

5 Schaffer (2D) 5066.22 2679.38 425.96 214.16 

6 Easom (2D) 4060.24 1381.89 3153.50 10513.18 

7 Rastrigin (10D) 500068.86 3.86 550.56 208.31 

8 Shekel (4D) 62742.04 32020.36 1946.88 349.66 

9 Langerman (10D) 385919.18 184710.55 500136.60 11.39 

10 Griewank (10D) 500045.52 3.98 470.84 233.53 

11 Branin (2D) 4115.46 1758.67 419.04 137.60 

12 Sumpow (10D) 951.20 179.34 68.00 48.00 

13 Bukin6 (2D) 500012.54 5.56 500045.52 22.54 

14 Crossit (2D)  400.84 227.00 146.04 58.01 

15 Drop (2D) 27392.88 30397.32 509.62 220.96 

16 Shubert (2D) 460845.84 106902.97 5037.34 7030.16 

17 Beale (2D) 654.84 294.37 11523.28 2290.54 

18 McCorm (2D) 1025.76 451.89 1018.72 305.43 

19 Camel6 (2D) 1319.68 692.52 374.34 125.12 

20 Boha1 (2D) 93133.46 93331.19 465.12 187.40 

21 Colville (2D) 90739.72 32563.57 1626.48 964.71 

22 Powersum (2D) 74731.52 65000.37 37856.06 41498.56 

23 Solomon (2D) 38934.28 39767.45 522.08 238.84 

24 Alpine (2D) 3546.60 1631.45 272.48 24.64 

 Total 3 7 21 17 
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The BADS and qABC means figures in Table 4.10 reinforce the observations made in 

Table 4.8 about the best accuracy performance. Here, in 21 functions the standard deviations 

spread close to the minimum. In general, BADS outperformed qABC in terms of NFEs or speed 

while exhibiting more consistent performance.  

Table 4.10 Means and standard deviations of NFEs obtained through 50 runs for BADS and qABC on test 

functions f1–f24 

No. Functions qABC  BADS 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 33446.14 9643.90 360.10 208.53 

2 Rosenbrock (10D) 500048.88 25.90 276.00 0.00 

3 Quartic (30) 377869.86 180710.93 175511.40 158655.66 

4 Ackley (10D) 468309.60 70444.77 468.68 201.10 

5 Schaffer (2D) 233117.16 235650.01 425.96 214.16 

6 Easom (2D) 2650.48 4249.69 3153.50 10513.18 

7 Rastrigin (10D) 180555.66 92942.62 550.56 208.31 

8 Shekel (4D) 43292.62 96619.86 1946.88 349.66 

9 Langerman (10D) 491350.46 60942.64 500136.60 11.39 

10 Griewank (10D) 500049.58 27.24 470.84 233.53 

11 Branin (2D) 1052.04 885.35 419.04 137.60 

12 Sumpow (10D) 150.00 0.00 68.00 48.00 

13 Bukin6 (2D) 490635.52 57616.16 500045.52 22.54 

14 Crossit (2D)  274.00 115.86 146.04 58.01 

15 Drop (2D) 236593.44 196388.31 509.62 220.96 

16 Shubert (2D) 5662.18 9603.01 5037.34 7030.16 

17 Beale (2D) 180170.24 213103.40 11523.28 2290.54 

18 McCorm (2D 13572.06 17897.62 374.34 125.12 

19 Camel6 (2D) 790.00 369.86 1018.72 305.43 

20 Boha1 (2D) 1872.26 1145.41 465.12 187.40 

21 Colville (2D) 453006.78 141528.21 1626.48 964.71 

22 Powersum (2D) 463048.28 94270.83 37856.06 41498.56 

23 Solomon (2D) 273926.74 238028.51 522.08 238.84 

24 Alpine (2D) 2344.00 8793.92 272.48 24.64 

Total 4 3 20 21 

 

As it has been noted before, the data for SPSO2011 shown in Table 4.11 look different 

than the results for the other algorithms giving an indication of good performance. The means for 

SPSO2011, however, are aligned with those in Table 3.8, while the standard deviations looks 

like an improvement, with zero deviation in some functions. This can be predicted on the light of 

what is known about the original PSO weakness of premature convergence.  

 



75 

 

Table 4.11 Means and standard deviations of NFEs obtained through 50 runs for BADS and SPSO2011 

on test functions f1–f24 

No. Functions SPSO2011 BADS 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 5884.00 437.89 360.10 208.53 

2 Rosenbrock (10D) 209694.00 190711.63 276.00 0.00 

3 Quartic (30D) 500000.00 0.00 175511.40 158655.66 

4 Ackley (10D) 139692.00 213573.00 468.68 201.10 

5 Schaffer (2D) 2122.00 544.53 425.96 214.16 

6 Easom (2D) 100.00 0.00 3153.50 10513.18 

7 Rastrigin (10D) 500000.00 0.00 550.56 208.31 

8 Shekel (4D) 100.00 0.00 1946.88 349.66 

9 Langerman (10D) 100.00 0.00 500136.60 11.39 

11 Griewank (10D) 500000.00 0.00 470.84 233.53 

10 Branin (2D) 500000.00 0.00 419.04 137.60 

12 Sumpow (10D) 1502.00 327.10 68.00 48.00 

13 Bukin6 (2D) 490634.00 65562.00 500045.52 22.54 

14 Crossit (2D)  100.00 0.00 146.04 58.01 

15 Drop (2D) 100.00 0.00 509.62 220.96 

16 Shubert (2D) 100.00 0.00 5037.34 7030.16 

17 Beale (2D) 11656.00 69765.16 11523.28 2290.54 

18 McCorm (2D) 100.00 0.00 374.34 125.12 

19 Camel6 (2D) 120.00 44.72 1018.72 305.43 

20 Boha1 (2D) 4992.00 742.12 465.12 187.40 

21 Colville (2D) 14160.00 4506.00 1626.48 964.71 

22 Powersum (2D) 23094.00 23524.03 37856.06 41498.56 

23 Solomon (2D) 26946.00 96573.06 522.08 238.84 

24 Alpine (2D) 2912.00 1601.83 272.48 24.64 

Total 10 13 14 11 

 

The earlier discussion indicated that the proposed algorithm, BADS, outperformed the 

others in terms of speed with an acceptable level of stability. However, to ensure that the 

acquired result is statistically significant and occurred as result of introducing the new method, 

rather than occurring randomly, the Mann–Whitney test was again used. According to Table 

4.12, which illustrates the comparison with the BBA, BADS was significantly better in terms of 

NFEs in 21 functions, meaning that it converged more quickly to the optimum than did the BBA. 

The comparison with qABC indicates significance in only 17 functions, which indicate a lower 

significant performance than against the BBA. Furthermore, the results in Table 4.12 indicate 

that BADS performed significantly better in more than half of the functions while SPSO2011’s 
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appear to be functioning higher than that of the BBA and qABC. However, as per the previous 

discussion, this cannot be taken as an indication of improved performance.  

Table 4.12 P-values using the Mann–Whitney test (a = 0.05) for NFEs acquired by BADS over the BBA 
No. Functions BADS–qABC BADS–SPSO2011 BADS–BBA 

P-value Significant P-value Significant P-value Significant 

1 Sphere 3.25E-18 Yes 2.20E-18 Yes 4.08E-18 Yes 

2 Rosenbrock 3.30E-20 Yes 1.56E-20 Yes 3.21E-20 Yes 

3 Quartic (30D) 4.04E-07 Yes 6.93E-15 Yes 2.05E-15 Yes 

4 Ackley (10D) 4.82E-18 Yes 3.05E-18 Yes 4.60E-18 Yes 

5 Schaffer (2D) 4.69E-15 Yes 4.14E-18 Yes 6.20E-18 Yes 

6 Easom (2D) 3.08E-12 Yes 5.79E-21 PSO 1.58E-13 Yes 

7 Rastrigin (10D) 6.45E-18 Yes 2.30E-20 Yes 6.22E-18 Yes 

8 Shekel (4D) 3.64E-18 Yes 2.91E-22 PSO 2.12E-19 Yes 

9 Langerman (10D) 6.99E-18 QABC 2.56E-20 PSO 5.70E-04 Yes 

10 Griewank (10D) 5.43E-18 Yes 1.86E-20 Yes 5.09E-18 Yes 

11 Branin (2D) 8.93E-15 Yes 1.99E-20 Yes 5.73E-18 Yes 

12 Sumpow (10D) 6.78E-21 Yes 1.36E-18 Yes 1.86E-18 Yes 

13 Bukin6 (2D) 3.70E-01 No 3.64E-20 PSO 1.83E-14 BBA 

14 Crossit (2D)  6.71E-11 Yes 1.88E-19 PSO 8.48E-11 Yes 

15 Drop (2D) 2.40E-17 Yes 2.29E-20 PSO 3.28E-17 Yes 

16 Shubert (2D) 8.54E-02 No 2.57E-20 PSO 6.78E-18 Yes 

17 Beale (2D) 3.39E-01 No 8.22E-17 PSO 5.71E-18 BBA 

18 McCorm (2D) 2.34E-14 Yes 1.93E-20 PSO 6.46E-01 No 

19 Camel6 (2D) 2.92E-05 QABC 2.61E-19 PSO 4.27E-13 Yes 

20 Boha1 (2D) 6.14E-18 Yes 2.98E-18 Yes 4.39E-18 Yes 

21 Colville (2D) 2.44E-17 Yes 4.77E-18 Yes 6.98E-18 Yes 

22 Powersum (2D) 1.07E-17 Yes 4.02E-01 No 5.05E-04 Yes 

23 Solomon (2D) 6.54E-18 Yes 4.48E-18 Yes 6.56E-18 Yes 

24 Alpine (2D) 4.45E-20 Yes 3.59E-20 Yes 1.24E-18 Yes 

Total BADS: 19 

qABC: 3 

None: 2 

BADS: 13 

SPSO2011: 10 

None: 1 

BADS: 21 

BBA: 2 

None: 1 

 

4.6 Summary 

In this chapter, a discussion about the testing of another proposed method used to improve the 

BA. The test was carried out on a high number of functions with a wide variety of topography 

and features. The results revealed that the method improved the performance of the BA in terms 

of accuracy in at least 70% of the functions tested. However, in terms of stability, an appropriate 

level was maintained. Considering that the method used is a hybridisation of two methods of 

sampling, this most probably prevented the algorithm from achieving a higher level of stability, 
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as noticed for the BAwSSR algorithm examined in Chapter 3. In terms of speed, it also 

performed better than all other algorithms, reaching significant improvements in more than half 

of the total functions. However, it maintained a high SR score, close to that of the previous 

method, BAwSSR, gaining 91% SR. The overall conclusion from the obtained results indicate 

that the segmentation methods used positively affected in the enhancement of the BA. 
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Chapter 5 BEES ALGORITHM IMPROVEMENT USING 

OVERLAPPING SEGMENTATION OF SEARCH SPACE 

(BAOSS) 

5.1 Preliminaries 

In this chapter, another new method is introduced to improve the BA. As in the preceding 

chapters, this method was applied to the BA initialisation and global search stages. The primary 

technique used in this proposed algorithm was to divide the search space into overlapping 

segments. A discussion of the concept of dividing search space into independent segments was 

presented in Chapter 4. While segmentation of the domain helps diversify the samples to cover 

more areas of the search space, extracting one sample with all its parameters from the same 

segment might negatively affect performance in certain cases. This is due to some functions’ 

parameters having different values hence being distributed throughout the search space, making 

it impossible to reach the optimum. This contrary to the case when all the parameters of a 

functions are having identical values, thus, in the previous chapter, two sampling approaches to 

handle these problems were used. However, the implementation of overlapping segmentations 

could help address this problem by allowing the same sample to fall into more than one segment 

with the same sampling approach. Additionally, another search technique is included to support 

the search capability of the proposed algorithm. The aim of this technique is to track the most 

promising search intervals that yield better values and, hence, guide the search to extract better 

optimum. It will also work to lead the search accordingly to avoid infeasible search efforts.  

5.2 The Overlapping Segmentation of the Search Space Method 

The core of this method is to segregate the search space of the function being optimised to a 

uniformly sized overlapping segment. The number of segments should be equal to or more than 

the stipulated initial sample parameter. The aim of this segmentation is to increase the 
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probability that the extracted sample will be diversely located throughout the search space, while 

not restricting the parameters themselves to be in certain areas. 

5.2.1 Search Space Overlap Segmentation 

Every two consecutive segments overlap in half of their segment size. This means that the 

second segment starts from the centre of the first segment, which renders them as sharing half of 

their segment size. This process continues for the rest of the segments (Figure 5.1 & Figure 5.2). 

Taking the Colville function as an example, with its search space defined on the area [−10, 10], 

the length of the search space then will be calculated as follows: 

 

L = (10− (−10)) = 20         (5.1) 

 

and the length of the segment (S) is calculated as follows: 

 

S = L/n          (5.2) 

 

where n is the number of samples and L is the length of the search space. If n = 20, then, 

applying equation 5.2, S = 20/20 = 1 The general formula to calculate the segment’s start and 

end values is the following:  

if [𝑎1, 𝑏1] is the first segment, it will be calculated as 

[𝑎1, 𝑏1]= [𝑎1, 𝑏1-S]         (5.3)   

𝑎1 will be the starting point.  

, the second segment will be calculated as calculated as 

[𝑎2, 𝑏2]=[𝑎1-(S/2), 𝑏1-S]        (5.4) 



80 

 

and the n segment will be 

 [𝑎𝑛, 𝑏𝑛]=[𝑎𝑛−1-(S/2), 𝑏𝑛−1-S]      (5.5) 

 

As in Colville functions, 𝑎1= 10, starting from the right end of the domain, then 𝑏1= 𝑎1−S, which 

will be the interval [10, 9]. The second interval is [𝑎2, 𝑏2]=[𝑎1-(S/2), 𝑏1-S] = [9.5, 8.5], and the 

process continues. For a sample of segments calculated limits, see Table 5.1. 

 
Figure 5.1 Illustration 1 1of dividing the search space into overlapping segments for the Colville function. 

 

 
Figure 5.2 Illustration 2 of dividing the search space into overlapping segments for the Colville function. 

 

Table 5.1 Sample of the calculated segment’s limits 

-10 -9 

- - 

- - 

5.5 6.5 

6 7 

6.5 7.5 

7 8 

7,5 8.5 
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8 9 

8.5 9.5 

9 10 

 

5.2.2 Tracking Promising Search Space Intervals 

To track the promising interval of the search space in every iteration, the best population 

parameters are inspected for their minimum and maximum values. The search space then is 

restricted to these two extreme values: 

• The minimum parameter value of the best population u = min (xm, n), and 

• The maximum parameter value of the best population v = max (xm,n),  

where m is the number of variables of a function and n is the number of samples. This will limit 

the search to the [v, u] interval. 

 

5.3 Experiment Setup 

The experiment to test this proposed method will follow the same performance assessment 

criteria used for the previously introduced algorithms. This includes accuracy value, SR, and 

NFE. The metrics described in Chapter 3 will be applied with the same stopping criteria in all 50 

runs. Similarly, the Mann–Whitney test will be run on the results to evaluate the performance of 

all algorithms involved. 

The same benchmark functions used with the previously proposed algorithms will also be 

used. Similarly, the parameter values for the BBA, SPSO2011, and qABC algorithms involved in 

the performance comparison will be retained (see Tables 3.3, 3.4, and 3.5 in Chapter 3). 

However, the proposed algorithm, BAOSS, will use different parameter values, as shown in 

Table 5.2. 

Table 5.2 List of parameter values used for testing BAOSS 

No. Functions n m nsp e nep ngh stlim 
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1 Sphere (10D) 100  4  10  2  30 0.03 10 

2 Rosenbrock (10D) 100  4  10  2  30 0.001 10 

3 Quartic(30D) 100  4  10  2  30 0.005 10 

4 Ackley (10D) 100  4  10  2  30 0.0001 10 

5 Schaffer (2D) 100  4  10  2  30 0.01 10 

6 Easom (2D) 100  4  10  2  30 0.009 10 

7 Rastrigin (10D) 100  4  10  2  30 0.0003 10 

8 Shekel (4D) 100  4  10  2  30 0.001 10 

9 Langerman(10D) 10  4  10  2  30 0.5 10 

10 Griewank (10D) 100  4  10  2  30 0.0001 10 

11 Branin (2D) 100  4  10  2  30 0.001 10 

12 Sumpow (10D) 100  4  10  2  30 0.001 10 

13 Bukin6 (2D) 15  4  10  2  30 0.001 10 

14 Crossit (2D)  100  4  10  2  30 0.05 10 

15 Drop (2D) 100  4  10  2  30 0.1 10 

16 Shubert (2D) 100  4  10  2  30 0.0005 10 

17 Beale (2D) 18  4  10  2  30 0.05 10 

18 McCorm (2D) 100  4  10  2  30 0.05 10 

19 Camel6 (2D) 20  4  10  2  30 0.005 10 

20 Boha1 (2D) 150  4  10  2  30 0.05 10 

21 Colville (2D) 150  4  10  2  30 0.0005 10 

22 Powersum (2D) 15  4  10  2  30 0.01 10 

23 Solomon (2D) 20  4  10  2  30 0.01 10 

24 Alpine (2D) 100  4  10  2  30 0.01 10 

 

5.4 Results and Discussion 

5.4.1 Solution Quality (Accuracy) 

The values in Table 5.3 reveal improved performance by the BAOSS. It outperformed the all the 

algorithms involved. The best performance was against SPSO2011, where BAOSS excelled in 

23 of the 24 functions while outperforming the BBA and qABC in 21 functions. It is worth 

mentioning that BAOSS’s performance was outstanding against the three algorithms particularly 

in the functions Sphere, Rosenbrock, Ackley, Griewank, Rastrigin, Quartic, Sumpow, and 

Colville wining most of the 50 runs. From those functions, Rosenbrock, Ackley, Griewank, and 

Rastrigin represent challenges to optimisation algorithms due to their multipocketed topography 
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and complex landscapes. However, the next step is to explore other aspects of performance 

concerning consistency and stability. 

Table 5.3 Best performance figures for the BAOSS, BBA, qABC, and SPSO2011 for accuracy values 

No. Functions 
Result of 50 runs Result of 50 runs Result of 50 runs  

BAOSS qABC BAOSS SPSO2011 BAOSS BBA 

1 Sphere (10D) 50 0 49 1 50 0 

2 
Rosenbrock 

(10D) 
50 0 50 0 50 0 

3 Quartic (30D) 46 4 43 7 50 0 

4 Ackley (10D) 50 0 50 0 50 0 

5 Schaffer (2D) 43 7 32 18 30 20 

6 Easom (2D) 34 16 50 0 40 10 

7 Rastrigin (10D) 47 3 50 0 50 0 

8 Shekel (4D) 31 19 50 0 47 3 

9 Langerman 32 18 50 0 4 46 

10 Griewank (10D) 50 0 50 0 50 0 

11 Branin (2D) 16 34 0 50 39 11 

12 Sumpow (10D) 48 2 50 0 50 0 

13 Bukin6 (2D) 1 49 29 21 0 50 

14 Crossit (2D)  41 9 50 0 37 13 

15 Drop (2D) 39 11 50 0 39 11 

16 Shubert (2D) 16 34 48 2 44 6 

17 Beale (2D) 39 11 37 13 32 18 

18 McCorm (2D) 27 23 50 0 30 20 

19 Camel6 (2D) 28 22 50 0 36 14 

20 Boha1 (2D) 35 15 34 16 40 10 

21 Colville (2D) 48 2 46 4 50 0 

22 Powersum (2D) 44 6 28 22 15 35 

23 Solomon (2D) 39 11 44 6 37 13 

24 Alpine (2D) 32 18 38 12 39 11 

 Total 
BAOSS: 21 BAOSS: 23 BAOSS: 21 

qABC: 3 SPSO2011: 1 BBA: 3 

 

 

 

Figures 5.3–5.11 show the performance charts in terms of accuracy by all the algorithms 

involved.  
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Figure 5.3 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Rosenbrock 

10D function 

 

 
Figure 5.4 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Quartic 30D   

function 

  

 
Figure 5.5 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Ackley 10D 

function 
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Figure 5.6 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Schaffer 2D 

function 

 

 
 Figure 5.7 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Easom 2D    

function 

  

 
 Figure 5.8 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Rastrigin 10D  

function 
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 Figure 5.9 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on  Shekel 4D 

function 

 

 
 Figure 5.10 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Langerman   

10D function 

  

 
Figure 5.11 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Griewank  

10D function 

 

When exploring the means and standard deviations in Table 5.4 for BAOSS against the 

BBA, the means reveal that BAOSS performed better in 20 functions. The standard deviation 

reveals that BAOSS improved in only 17 functions indicating inconsistent performance in three 
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functions from the best 20 of mean value. However, the Langerman, Bukin6, and Powersum 

functions should be excluded as BAOSS performed worse than its opponent although, the two 

algorithms were not able to converge in those functions. This an indication of BAOSS inability 

to exhibit highly stabilised performance. This might be due to applying two methods to 

uniformly generate samples, which causes the performance to become inconsistent. 

Table 5.4 Means and standard deviations of best accuracy values for the BAOSS and BBA obtained 

through 50 independent runs on test functions f1–f24 

 

No. 

Functions BBA BAOSS 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 8.19E-04 1.27E-04 2.64E-05 1.03E-04 

2 Rosenbrock (10D) 1.80E+00 9.23E-01 4.60E-04 2.70E-04 

3 Quartic (30D) 3.70E+00 7.34E-01 7.63E-02 1.99E-01 

4 Ackley (10D) 1.38E+01 1.25E+00 3.65E-04 1.46E-04 

5 Schaffer (2D) 2.57E-04 2.61E-04 1.95E-04 2.61E-04 

6 Easom (2D) 4.56E-04 2.64E-04 1.62E-04 2.61E-04 

7 Rastrigin (10D) 1.33E+01 3.84E+00 7.87E-05 2.31E-04 

8 Shekel (4D) 6.67E-04 1.96E-04 2.56E-04 1.59E-04 

9 Langerman 2.74E-01 1.79E-01 3.68E-01 9.28E-02 

10 Griewank (10D) 5.68E-01 7.78E-02 9.15E-06 2.42E-05 

11 Branin (2D) 6.43E-04 1.96E-04 4.09E-04 2.84E-04 

12 Sumpow (10D) 6.86E-04 2.44E-04 2.64E-05 3.49E-05 

13 Bukin6 (2D) 1.59E-02 4.93E-03 5.22E-02 1.41E-03 

14 Crossit (2D)  4.23E-04 2.71E-04 2.06E-04 1.55E-04 

15 Drop (2D) 4.06E-04 2.48E-04 1.91E-04 3.22E-04 

16 Shubert (2D) 5.24E-03 4.89E-03 5.05E+00 1.71E+01 

17 Beale (2D) 4.82E-04 2.74E-04 3.36E-04 2.52E-04 

18 McCorm (2D) 4.87E-04 2.86E-04 2.88E-04 2.96E-04 

19 Camel6 (2D) 5.26E-04 2.92E-04 4.66E-04 2.72E-04 

20 Boha1 (2D) 4.68E-04 2.92E-04 2.00E-04 2.55E-04 

21 Colville (2D) 9.28E-04 7.65E-05 3.30E-04 2.63E-04 

22 Powersum (2D) 6.84E-04 2.26E-04 8.32E-04 1.58E-04 

23 Solomon (2D) 5.49E-04 2.57E-04 2.44E-04 2.93E-04 

24 Alpine (2D) 6.25E-04 2.41E-04 3.87E-04 3.34E-04 

Total            4 7 20 17 

 

Table 5.5 compares the BAOSS against qABC and reveals that the means are identical to 

the accuracy performance data presented in Table 5.3. BAOSS performed better in 20 functions 

in terms of the means, and in 21 functions in terms of the standard deviations. It worth noting 

that the standard deviation figures here showing unexpectedly higher values than against the 
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other two algorithms. Nonetheless, BAOSS’s mean value for Langerman was worse than that of 

qABC, although it was better at finding the accurate optimum. However, neither algorithm was 

able to converge to the optimum within the stipulated NFE value for Langerman or Bukin6. It 

can be concluded that BAOSS outperformed qABC in terms of accuracy while exhibiting an 

adequate level of consistency. 

Table 5.5 Means and standard deviations of accuracy values for the BAOSS and qABC obtained through 

50 runs on test functions f1–f24 

 

No. 

Functions qABC BAOSS 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 6.24E-04 2.49E-04 2.64E-05 1.03E-04 

2 Rosenbrock 10D) 4.09E-01 8.85E-01 4.60E-04 2.70E-04 

3 Quartic (30D) 5.23E-01 2.88E-01 7.63E-02 1.99E-01 

4 Ackley (10D) 3.11E-03 3.05E-03 3.65E-04 1.46E-04 

5 Schaffer (2D) 9.65E-04 8.04E-04 1.95E-04 2.61E-04 

6 Easom (2D) 2.73E-04 3.28E-04 1.62E-04 2.61E-04 

7 Rastrigin (10D) 6.22E-04 2.78E-04 7.87E-05 2.31E-04 

8 Shekel (4D) 2.34E-02 1.61E-01 2.56E-04 1.59E-04 

9 Langerman 3.50E-01 1.63E-01 3.68E-01 9.28E-02 

10 Griewank (10D) 4.65E-02 2.19E-02 9.15E-06 2.42E-05 

11 Branin (2D) 2.63E-04 2.76E-04 4.09E-04 2.84E-04 

12 Sumpow (10D) 3.82E-04 1.12E-04 2.64E-05 3.49E-05 

13 Bukin6 (2D) 2.81E-02 1.61E-02 5.22E-02 1.41E-03 

14 Crossit (2D)  5.65E-04 3.01E-04 2.06E-04 1.55E-04 

15 Drop (2D) 1.12E-02 2.17E-02 1.91E-04 3.22E-04 

16 Shubert (2D) 2.69E-04 3.13E-04 5.05E+00 1.71E+01 

17 Beale (2D) 1.98E-03 3.49E-03 3.36E-04 2.52E-04 

18 McCorm (2D) 4.01E-04 3.26E-04 2.88E-04 2.96E-04 

19 Camel6 (2D) 5.06E-04 2.83E-04 4.66E-04 2.72E-04 

20 Boha1 (2D) 3.20E-04 2.78E-04 2.00E-04 2.55E-04 

21 Colville (2D) 3.43E-02 3.10E-02 3.30E-04 2.63E-04 

22 Powersum (2D) 7.13E-03 8.58E-03 8.32E-04 1.58E-04 

23 Solomon (2D) 4.80E-02 4.88E-02 2.44E-04 2.93E-04 

24 Alpine (2D) 5.58E-04 2.84E-04 3.87E-04 3.34E-04 

Total 4 3 20 21 

 

Table 5.6 shows an enhanced performance in terms of the means for BAOSS versus 

SPSO2011 in 22 functions whereas the standard deviation revealing an aspect of inconsistency 

achieving better in 17 functions only. This was noticed in five functions where the standard 

deviations spreading away from the means. Nonetheless, in four functions—Quartic, Easom, 
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Langerman, and Colville—BAOSS outperformed SPSO2011 by an enormous difference. It is 

important to note that the tuning of the ngh parameter positively affected the BAOSS’s 

performance, suggesting that it was sensitive to the change in this parameter. Yet, the Mann–

Whitney statistical significance test is required to validate the significance of BAOSS’s 

improvement.  

Table 5.6 Means and standard deviations of best accuracy values for the BAOSS and SPSO2011 obtained 

through 50 independent runs on test functions f1–f24 

 

No. 

Functions SPSO2011 BAOSS 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 7.98E-04 1.44E-04 2.64E-05 1.03E-04 

2 Rosenbrock (10D) 8.88E+00 4.36E+01 4.60E-04 2.70E-04 

3 Quartic (30D) 1.18E-01 6.69E-02 7.63E-02 1.99E-01 

4 Ackley (10D) 3.70E-01 6.35E-01 3.65E-04 1.46E-04 

5 Schaffer (2D) 2.69E-04 2.60E-04 1.95E-04 2.61E-04 

6 Easom (2D) 1.00E+00 2.74E-06 1.62E-04 2.61E-04 

7 Rastrigin (10D) 1.93E+01 1.01E+01 7.87E-05 2.31E-04 

8 Shekel (4D) 9.32E+00 3.44E-01 2.56E-04 1.59E-04 

9 Langerman 7.05E-01 9.64E-05 3.68E-01 9.28E-02 

10 Griewank (10D) 1.38E-01 8.27E-02 9.15E-06 2.42E-05 

11 Branin (2D) 3.58E-07 0.00E+00 4.09E-04 2.84E-04 

12 Sumpow (10D) 5.48E-04 2.73E-04 2.64E-05 3.49E-05 

13 Bukin6 (2D) 7.35E-02 3.97E-02 5.22E-02 1.41E-03 

14 Crossit (2D)  4.43E-02 4.49E-02 2.06E-04 1.55E-04 

15 Drop (2D) 2.25E-01 1.14E-01 1.91E-04 3.22E-04 

16 Shubert (2D) 7.88E+01 4.48E+01 5.05E+00 1.71E+01 

17 Beale (2D) 1.57E-02 1.07E-01 3.36E-04 2.52E-04 

18 McCorm (2D) 1.58E-01 1.32E-01 2.88E-04 2.96E-04 

19 Camel6 (2D) 4.44E-01 2.85E-01 4.66E-04 2.72E-04 

20 Boha1 (2D) 4.12E-04 2.65E-04 2.00E-04 2.55E-04 

21 Colville (2D) 8.08E-04 1.76E-04 3.30E-04 2.63E-04 

22 Powersum (2D) 8.31E-04 2.21E-04 8.32E-04 1.58E-04 

23 Solomon (2D) 2.64E-03 1.39E-02 2.44E-04 2.93E-04 

24 Alpine (2D) 6.69E-04 2.35E-04 3.87E-04 3.34E-04 

Total:           2 7 22 17 

 

Table 5.7 presents the p-values obtained using the Mann–Whitney test for all the 

algorithms involved in this experiment. According to the results, BAOSS exhibited noteworthy 

performance in achieving accurate optima against all other algorithms. The comparisons of 

BAOSS against qABC, BBA, and SPSO2011 show that BAOSS significantly outperformed 
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them in 18, 20, and 22 functions, respectively. In total, there was a significant improvement by 

BAOSS in at least two-thirds of the functions.  

Table 5.7 P-values using the Mann–Whitney test (a = 0.05) for accuracy acquired by BAOSS over qABC, 

BBA, and SPSO2011 

No. Functions BAOSS–qABC BAOSS–SPSO2011 BAOSS–BBA 

 

P-value Significant P-value Significant P-value Significant 

1 Sphere (10 D) 4.21E-17 Yes 1.84E-17 Yes 1.63E-17 Yes 

2 Rosenbrock (10D) 7.07E-18 Yes 1.07E-17 Yes 7.07E-18 Yes 

3 Quartic (30D) 1.85E-13 Yes 2.32E-09 Yes 7.07E-18 Yes 

4 Ackley (10D) 3.32E-17 Yes 9.35E-18 Yes 7.07E-18 Yes 

5 Schaffer (2D) 1.32E-08 Yes 2.07E-02 Yes 3.96E-02 Yes 

6 Easom (2D) 2.81E-02 Yes 9.12E-20 Yes 1.74E-08 Yes 

7 Rastrigin (10D) 4.51E-14 Yes 7.02E-18 Yes 7.07E-18 Yes 

8 Shekel (4D) 1.23E-01 No 7.07E-18 Yes 1.92E-14 Yes 

9 Langerman (10D) 5.41E-03 Yes 7.07E-18 Yes 8.97E-13 BBA 

10 Griewank (10D) 7.07E-18 Yes 7.07E-18 Yes 7.07E-18 Yes 

11 Branin (2D) 2.68E-03 qABC 3.31E-20 SPSO2011 7.48E-05 Yes 

12 Sumpow (10D) 6.48E-17 Yes 1.21E-17 Yes 7.07E-18 Yes 

13 Bukin6 (2D) 7.49E-16 qABC 1.69E-01 No 7.07E-18 BBA 

14 Crossit (2D)  1.36E-07 Yes 7.07E-18 Yes 4.55E-05 Yes 

15 Drop (2D) 2.30E-08 Yes 7.07E-18 Yes 1.69E-06 Yes 

16 Shubert (2D) 2.23E-03 qABC 5.97E-16 Yes 7.95E-10 Yes 

17 Beale (2D) 2.14E-06 Yes 1.15E-03 Yes 6.81E-03 Yes 

18 McCorm (2D) 1.36E-01 No 7.07E-18 Yes 4.33E-04 Yes 

19 Camel6 (2D) 5.24E-01 No 7.07E-18 Yes 3.57E-01 No 

20 Boha1 (2D) 4.27E-03 Yes 2.14E-05 Yes 1.32E-06 Yes 

21 Colville (2D) 3.51E-17 Yes 4.42E-13 Yes 7.12E-17 Yes 

22 Powersum (2D) 1.72E-12 Yes 1.57E-01 No 6.04E-04 BBA 

23 Solomon (4D) 2.34E-08 Yes 2.23E-09 Yes 1.26E-11 Yes 

24 Alpine (2D) 1.87E-06 Yes 4.36E-09 Yes 2.69E-04 Yes 

Total  BAOSS: 18 

qABC: 3        None:3 

BAOSS: 21 

SPSO2011:       None:3 

 

BAOSS: 20 

BBA: 3     None:1    

 

 

5.4.2 SR and NFEs 

Table 5.8 indicates that the SRs for BAOSS are far higher than those of all other algorithms 

examined in this experiment demonstrating robust behaviour. Although BAOSS could not 

achieve 100% SR convergence in four functions, the achieved SR is almost the same as that 

achieved by the other two proposed algorithms: BAwSSR and BADS. Function Bukin6 is the 

most difficult for all the algorithms involved in this research, with an SR of 0% reached by the 
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BBA and BAOSS, 4% achieved by qABC and SPSO2011. Langerman also a difficult function, 

with qABC, BAOSS, and BBA achieving SR values of 2%, 6%, and 30%, respectively. 

Although SPSO2011 achieved an SR of 100% in Langerman, having this value for Langerman 

and for some other functions cannot be considered an indication of enhanced performance, 

whereas SPSO2011 could not come any closer to the optimum due to suffering from premature 

convergence. 

Table 5.8 SR of the BAOSS compared with BBA, SPSO2011, and qABC based on NFEs 

obtained through 50 runs on test functions f1–f24 
No. Functions qABC 

success 

rate 

SPSO2011 

success 

rate 

BBA 

success 

rate 

BAOSS 

success 

rate 

1 Sphere (10D) 100% 100% 100% 100% 

2 Rosenbrock (10D) 0% 74% 0% 100% 

3 Quartic (30D) 36% 0% 0% 84% 

4 Ackley (10D) 22% 74% 0% 100% 

5 Schaffer (2D) 64% 100% 100% 100% 

6 Easom (2D) 100% 100% 100% 100% 

7 Rastrigin (10D) 98% 0% 0% 100% 

8 Shekel (4D) 98% 100% 100% 100% 

9 Langerman (10D) 2% 100% 30% 6% 

10 Griewank (10D) 0% 0% 0% 100% 

11 Branin (2D) 100% 0% 100% 100% 

12 Sumpow (10D) 100% 100% 100% 100% 

13 Bukin6 (2D) 4% 4% 0% 0% 

14 Crossit (2D)  100% 100% 100% 100% 

15 Drop (2D) 74% 100% 100% 100% 

16 Shubert (2D) 100% 100% 14% 92% 

17 Beale (2D) 76% 98% 100% 100% 

18 McCorm (2D) 100% 100% 100% 100% 

19 Camel6 (2D) 100% 100% 100% 100% 

20 Boha1 (2D) 100% 100% 100% 100% 

21 Colville (2D) 10% 100% 100% 100% 

22 Powersum (2D) 16% 100% 100% 100% 

23 Solomon (4D) 48% 96% 100% 100% 

24 Alpine (2D) 100% 100% 100% 100% 

SR Average 65% 77% 69% 91% 

 

Table 5.9 demonstrates the NFE figures acquired from evaluating the performance of the 

BAOSS algorithm. The figures for the BBA, qABC, and SPSO2011 versus BAOSS are 20, 17, 

and 14, respectively which means that the best performance was against the BBA, followed by 

the qABC and then SPSO2011. The results suggest that BAOSS was not particularly fast against 
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qABC and then SPSO2011 algorithms although it attained an improved performance. 

Nonetheless, as noted before, the SPSO2011 figures is not indication of an improved 

performance. However, it is essential to look at other performance statistics to evaluate the 

algorithm’s behaviour consistency. 

Table 5.9 Best performance of BAOSS, SPSO2011, and qABC for NFEs obtained through 50 

independent runs on test functions f1–f24 

No. Functions Result of 50 runs  Result of 50 runs Result of 50 runs 

BAOSS qABC BAOSS SPSO2011 BAOSS BBA 

1 Sphere (10 D) 50 0 50 0 50 0 

2 Rosenbrock (10D) 50 0 50 0 50 0 

3 Quartic(30D) 30 20 42 8 42 8 

4 Ackley (10D) 50 0 49 1 50 0 

5 Schaffer (2D) 45 5 50 0 50 0 

6 Easom (2D) 39 11 0 50 49 1 

7 Rastrigin (10D) 50 0 50 0 50 0 

8 Shekel (4D) 50 0 0 50 50 0 

9 Langerman (10D) 37 13 0 50 36 14 

10 Griewank (10D) 50 0 50 0 50 0 

11 Branin (2D) 7 43 50 0 45 5 

12 Sumpow(10D) 0 50 50 0 0 50 

13 Bukin6 (2D) 21 29 0 49 8 `41 

14 Crossit (2D)  16 34 0 50 33 17 

15 Drop (2D) 49 1 0 49 49 1 

16 Shubert (2D) 2 48 0 50 49 1 

17 Beale (2D) 48 2 46 4 11 39 

18 McCorm (2D) 48 12 0 50 42 8 

19 Camel6 (2D) 0 50 0 50 1 49 

20 Boha1 (2D) 24 26 40 10 49 1 

21 Colville (2D) 49 1 49 1 50 0 

22 Powersum (2D) 50 0 12 38 29 21 

23 Solomon (4D) 47 3 46 4 47 3 

24 Alpine (2 D) 49 1 50 0 49 1 

 Total BAOSS: 17  qABC: 7 BAOSS: 14  SPSO2011: 

10 

BAOSS: 20  BBA: 4 

 

The data in Tables 5.10, 5.11, and 5.12 show the means and standard deviations of NFE 

values for the algorithms involved. Obviously, these data conform with those for best 

performance (Table 5.9) getting 17,13 and 20 for qABC, SPSO2011 and BBA, respectively. 

BAOSS displayed its best performance against the BBA (Table 5.10). However, the results 

demonstrate a gap between the means and standard deviations against BBA with values of 20 for 

the mean and 16 for standard deviation, which means the generated values spreading away from 
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the mean. In general, the standard deviations for BAOSS appear to be particularly low obtaining 

values of 17, 13 and 16 respectively, indicating inconsistent performance. To evaluate the 

significance of BAOSS’s improvement, the Mann–Whitney statistical significance test was 

conducted (Table 5.13). 

Table 5.10 Means and standard deviations of the NFEs obtained through 50 independent runs for BAOSS 

and BBA on test functions f1–f24 

No. Functions BBA BAOSS 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 9180.34 2588.57 452.00 0.00 

2 Rosenbrock (10D) 500042.22 5.54 511.84 204.07 

3 Quartic (30) 500068.04 1.96 228396.52 169464.98 

4 Ackley (10D) 500039.02 3.61 1099.68 2052.33 

5 Schaffer (2D) 5066.22 2679.38 557.60 308.88 

6 Easom (2D) 4060.24 1381.89 853.28 649.09 

7 Rastrigin (10D) 500068.86 3.86 617.44 73.92 

8 Shekel (4D) 62742.04 32020.36 508.32 187.72 

9 Langerman (10D) 385919.18 184710.55 471314.88 113721.09 

10 Griewank (10D) 500045.52 3.98 635.04 49.28 

11 Branin (2D) 4115.46 1758.67 1356.64 238.76 

12 Sumpow (10D) 951.20 179.34 276.00 0.00 

13 Bukin6 (2D) 500012.54 5.56 500047.38 25.40 

14 Crossit (2D)  400.84 227.00 276.00 0.00 

15 Drop (2D) 27392.88 30397.32 1575.08 1515.25 

16 Shubert (2D) 460845.84 106902.97 101874.72 153655.38 

17 Beale (2D) 654.84 294.37 1010.64 388.56 

18 McCorm (2D 1025.76 451.89 3412.32 380.24 

19 Camel6 (2D) 1319.68 692.52 521.12 141.47 

20 Boha1 (2D) 93133.46 93331.19 7839.68 22692.12 

21 Colville (2D) 90739.72 32563.57 2256.32 2540.24 

22 Powersum (2D) 74731.52 65000.37 47143.56 39059.28 

23 Solomon (2D) 38934.28 39767.45 2528.50 2726.19 

24 Alpine (2D) 3546.60 1631.45 395.68 102.26 

 Total      4 8 20 16 

 

Table 5.11 Means and standard deviations of NFEs obtained through 50 runs for BAOSS and qABC on 

test functions f1–f24 
No. Functions qABC BAOSS 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 33446.14 9643.90 452.00 0.00 

2 Rosenbrock (10D) 500048.88 25.90 511.84 204.07 

3 Quartic (30) 377869.86 180710.93 228396.52 169464.98 

4 Ackley (10D) 468309.60 70444.77 1099.68 2052.33 

5 Schaffer (2D) 233117.16 235650.01 557.60 308.88 

6 Easom (2D) 2650.48 4249.69 853.28 649.09 
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7 Rastrigin (10D) 180555.66 92942.62 617.44 73.92 

8 Shekel (4D) 43292.62 96619.86 508.32 187.72 

9 Langerman (10D) 491350.46 60942.64 471314.88 113721.09 

10 Griewank (10D) 500049.58 27.24 635.04 49.28 

11 Branin (2D) 1052.04 885.35 1356.64 238.76 

12 Sumpow (10D) 150.00 0.00 276.00 0.00 

13 Bukin6 (2D) 490635.52 57616.16 500047.38 25.40 

14 Crossit (2D)  274.00 115.86 276.00 0.00 

15 Drop (2D) 236593.44 196388.31 1575.08 1515.25 

16 Shubert (2D) 5662.18 9603.01 101874.72 153655.38 

17 Beale (2D) 180170.24 213103.40 1010.64 388.56 

18 McCorm (2D) 790.00 369.86 3412.32 380.24 

19 Camel6 (2D) 13572.06 17897.62 521.12 141.47 

20 Boha1 (2D) 1872.26 1145.41 7839.68 22692.12 

21 Colville (2D) 453006.78 141528.21 2256.32 2540.24 

22 Powersum (2D) 463048.28 94270.83 47143.56 39059.28 

23 Solomon (2D) 273926.74 238028.51 2528.50 2726.19 

24 Alpine (2D) 2344.00 8793.92 430.88 114.82 

 Total       7 6 17 17 

 

Table 5.12 Means and standard deviations of NFEs obtained through 50 runs for BADS and SPSO2011 

on test functions f1–f24 
No. Functions SPSO2011 BAOSS 

Mean Std. Dev. Mean Std. Dev. 

1 Sphere (10D) 5884.00 437.89 452.00 0.00 

2 Rosenbrock (10D) 209694.00 190711.63 511.84 204.07 

3 Quartic (30D) 500000.00 0.00 228396.52 169464.98 

4 Ackley (10D) 139692.00 213573.00 1099.68 2052.33 

5 Schaffer (2D) 2122.00 544.53 557.60 308.88 

6 Easom (2D) 100.00 0.00 853.28 649.09 

7 Rastrigin (10D) 500000.00 0.00 617.44 73.92 

8 Shekel (4D) 100.00 0.00 508.32 187.72 

9 Langerman (10D) 100.00 0.00 471314.88 113721.09 

10 Griewank (10D) 500000.00 0.00 635.04 49.28 

11 Branin (2D) 500000.00 0.00 1356.64 238.76 

12 Sumpow (10D) 1502.00 327.10 276.00 0.00 

13 Bukin6 (2D) 490634.00 65562.00 500047.38 25.40 

14 Crossit (2D)  100.00 0.00 276.00 0.00 

15 Drop (2D) 100.00 0.00 1575.08 1515.25 

16 Shubert (2D) 100.00 0.00 101874.72 153655.38 

17 Beale (2D) 11656.00 69765.16 1010.64 388.56 

18 McCorm (2D) 100.00 0.00 521.12 141.47 

19 Camel6 (2D) 120.00 44.72 3412.32 380.24 

20 Boha1 (2D) 4992.00 742.12 7839.68 22692.12 

21 Colville (2D) 14160.00 4506.00 2256.32 2540.24 

22 Powersum (2D) 23094.00 23524.03 47143.56 39059.28 

23 Solomon (2D) 26946.00 96573.06 2528.50 2726.19 

24 Alpine (2D) 2912.00 1601.83 430.88 114.82 

 Total  11  13 13 10 
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The p-values in Table 5.13 match with the findings from examining the data on NFE best 

performance in Table 5.9. Specifically, the performance by BAOSS was significantly better than 

that of the BBA in 21 functions and that of the qABC and SPSO2011 in 17 and 14 functions, 

respectively. While this reflects satisfactory performance against the BBA, it did not achieve the 

same level of excellence against the qABC. In general, the figures indicated an acceptable 

convergence speed to find the optimum suggesting that the method used positively impacted 

BAOSS for good performance.  

Table 5.13 P-values using the Mann–Whitney test (a = 0.05) for NFEs acquired by BAOSS over BBA 
No. Functions BAOSS–qABC BAOSS–SPSO2011 BAOSS–BBA 

P-values Significant P-values Significant P-values Significant 

1 Sphere (10D) 3.31E-20 Yes 1.72E-20 Yes 3.28E-20 Yes 

2 Rosenbrock (10D) 5.25E-19 Yes 3.40E-19 Yes 5.11E-19 Yes 

3 Quartic (30) 2.08E-03 Yes 2.35E-10 Yes 4.45E-09 Yes 

4 Ackley (10D) 1.23E-19 Yes 8.62E-19 Yes 1.16E-19 Yes 

5 Schaffer(2D) 4.56E-14 Yes 9.32E-18 Yes 5.03E-18 Yes 

6 Easom (2D) 1.23E-06 Yes 1.20E-20 SPSO2011 2.23E-17 Yes 

7 Rastrigin (10D) 2.13E-19 Yes 2.92E-22 Yes 2.04E-19 Yes 

8 Shekel (4D) 1.75E-19 Yes 2.08E-22 SPSO2011 1.63E-19 Yes 

9 Langerman (10D) 2.60E-06 Yes 2.51E-20 SPSO2011 2.03E-04 Yes 

10 Griewank (10D) 4.72E-20 Yes 4.15E-23 Yes 4.35E-20 Yes 

11 Branin (2D) 8.97E-11 qABC 1.90E-20 Yes 5.31E-13 Yes 

12 Sumpow (10D) 2.63E-23 qABC 1.61E-20 Yes 2.84E-20 Yes 

13 Bukin6 (2D) 3.34E-01 No 1.33E-19 SPSO2011 1.52E-09 BBA 

14 Crossit (2D)  8.44E-04 qABC 1.59E-23 SPSO2011 3.19E-03 Yes 

15 Drop (2D) 1.51E-15 Yes 7.31E-20 SPSO2011 1.23E-14 Yes 

16 Shubert (2D) 8.41E-17 qABC 2.58E-20 SPSO2011 2.75E-16 Yes 

17 Beale (2D) 3.55E-14 Yes 3.20E-10 Yes 5.27E-06 BBA 

18 McCorm (2D) 5.60E-18 qABC 2.02E-20 SPSO2011 6.18E-18 BBA 

19 Camel6 (2D) 6.75E-13 Yes 2.41E-19 SPSO2011 3.53E-10 Yes 

20 Boha1 (2D) 4.83E-01 No 2.90E-06 Yes 3.40E-14 Yes 

 21 Colville (2D) 1.77E-17 Yes 1.01E-17 Yes 4.17E-18 Yes 

22 Powersum (2D) 1.01E-17 Yes 2.28E-05 SPSO2011 4.75E-02 Yes 

 23 Solomon (2D) 1.41E-14 Yes 9.75E-13 Yes 5.99E-13 Yes 

24 Alpine (2D) 3.19E-17 Yes 1.08E-18 Yes 3.75E-17 Yes 

 Total BAOSS: 17 

qABC: 5 

None: 2 

BAOSS: 14 

SPSO2011: 10 

BAOSS: 21 

BBA: 3 
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5.5 Summary 

This chapter has introduced a new method based on partitioning the search space into 

overlapping segments to help generate samples evenly while permitting the diversification of 

parameter values to accommodate different types of problems to optimise the sampling process. 

These techniques were applied to the initialisation and global search stages. They were tested on 

24 functions with a wide variety of topography and complexity traits. The experimental results of 

the proposed algorithm, BAOSS, successfully indicated a level of accuracy in 75% of the 

functions while maintaining acceptable performance in terms of speed. 
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Chapter 6 APPLICATIONS 

6.1 Single-Objective Functions Without Constraints  

The proposed algorithms were tested on the gear train problem to evaluate how it is performing 

on engineering problems. The gear train design problem is an engineering problem that aims to 

minimise the gear ratio to be particularly close to 1/6.931 (Parsopoulos and Vrahatis, 2005). The 

design variables used here represent the number of teeth for every gear, restricted to values 

between 12 and 60. 

To reduce the error value, the gear ratio should be as close as possible to 1/6.931 (Kannan 

and Kramer, 1994). To calculate the error value: 

 

Error value (%) = 
𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜−(1

6.931 ⁄ )

( 1 6.931)⁄
× 100%     (6.1) 

 

Gear ratio = 
𝑥3𝑥2

𝑥1𝑥4
        (6.2) 

 

For details about the gear train problem, its objective function, and its diagram, see Appendix A. 

The results of the experiment were obtained through 20 runs, and the algorithm was 

forced to conduct a minimum of 100 iterations to acquire a good result. The stopping criteria 

used are the same as those used to test the algorithm with benchmark functions, or 500,000 

NFEs. The selection of parameter values for the proposed algorithms, as listed in Table 6.1, was 

partially decided through trial and error and partially from the literature review of other 

algorithms that have attempted to improve the BA. The results obtained by the test were 
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compared with some of those found in the literature for the ABC (Akay and Karaboga, 2010), 

CS (Gandomi et al., 2013), and PSO–GA (Garg, 2016). 

Table 6.1 Gear train problem parameters 
Parameter Parameter value 

BAwSSR BADS BAOSS 

Number of scout bees, n 20 20 20 

Number of selected bees, m 4  4 4 

Number of elite bees, e 2 2 2 

Number of forager bees for elite bee, nep  30 30 30 

Number of foragers for selected bee, nsp  10 10 10 

Neighbourhood size, ngh  0.1 0.1 0.1 

 

The data in Tables 6.2 and 6.3 present the results of testing the qABC, SPSO2011, BBA, 

BAwSSR, BADS, BAOSS, PSO–GA, ABC, and CS on the gear train problem. The best solution 

was achieved by PSO–GA, BAwSSR, ABC, and CS. They obtained a gear train value of 0.14428 

with an error rate of 0.001%. This was among the best results found when reviewing the 

literature on solving the gear train problem. Nevertheless, according to the means and standard 

deviations, BAwSSR in general did not perform as consistently and robustly as PSO–GA, ABC, 

and CS. Yet, this result is an indication of the ability of the BAwSSR algorithm to improve its 

performance. On the other hand, the qABC and SPSO2011 as well as BADS and BAOSS, 

acquired the lowest solution values among all algorithms involved. Likewise, BADS and 

BAOSS acquired error values of 0.5% and 0.12%, respectively, which are the lowest in the 

group. The conclusion is that the proposed method used in the BAwSSR algorithm was more 

effective at optimising the gear train parameters than were the methods used in BADS and 

BAOSS. Moreover, regarding speed, it can be stated that ABC was the fastest, as it needed only 

60 NFEs to achieve its best result, which is the lowest among all, while CS and BAwSSR needed 

5,000 and 14,555 function evaluations, respectively. 
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Table 6.2 Performance figures comparing the qABC, SPSO2011, BBA, BAwSSR, BADS, and BAOSS 

on the gear train problem. 

Item qABC SPS02011 BBA BAwSSR BADS BAOSS 

Mean 0.0001642317 0.0001754215 1.580352 E-05  6.12116 E-05 1.934146E-05 3.632972E-05 

Std. Dev 0.0002518493 0.000262571 1.874908 E-05 7.858313 E-05 3.236422E-05 1.52026E-05 

Best 

solution 2.357641 E-09 1.11729 E-09 9.745653 E-10 2.700857E-12 6.654886 E-09 3.064532E-08 

X1 48 51 47 49 35 43 

X2 12 15 24 19 16 19 

X3 30 27 13 16 12 17 

X4 52 55 46 43 38 52 

Gear ratio 0.1442308 0.144385 0.1443108 0.144281 0.1443609 0.1444544 

Error % 0.004% 0.01% 0.003% 0.001% 0.5% 0.12% 

Evaluations 150 100 14,526 14,555 9,725 14,542 

 

Table 6.3 Performance figures for the ABC, PSO–GA, CS, BAwSSR, BADS, and BAOSS on the gear 

train problem 

Item ABC PSO–GA CS BAwSSR BADS BAOSS 

Mean 3.641339 E-10 1.2149 E- 10 1.9841E-9 6.12116e-05 1.934146E-05 3.632972E-05 

Std. Dev. 5.525811E-10 8.7787 E-10 3.5546 E-9 7.858313 E-05  3.236422E-05 

 

1.52026E-05 

 

Best 

solution 

2.700857 E-12  2.70085 E-12  

 

2.7009 E-12 2.700857E-12 

 

6.654886E09 

 

3.064532E-08 

 

X1 49 43 43 49 35 43 

X2 16 16 16 19 16 19 

X3 19 19 19 16 12 17 

X4 43 49 49 43 38 52 

Gear ratio 0.144281  

 

0.14428096 0.144281 0.144281 

 

0.1443609 

 

0.1444544 

 

Error % 0.001%  0.001% 0.001% 0.001% 0.5% 0.12% 

Evaluations 60 NA 5,000 14,555 9,725 14,542 

 

6.2 Single-Objective Functions with Constraints  

The engineering problem selected to apply the proposed algorithms here is the 

tension/compression spring, a single-objective function with constraints. The aim of this problem 

is to reduce the spring steel wire volume, which means decreasing the weight of the spring (Guo, 

2004). More details on tension/compression springs are included in Appendix B. Engineering 

design problems are predominantly complex and nonlinear, with many variables and constraints 

that must be satisfied to achieve an optimised solution (Gandomi et al., 2013). 
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To ensure the variables were restricted to the domain of the values, a check point was 

implemented to ensure that the variables’ values located within the limit of their domains and to 

regenerate them if they were located outside their domains. With regards to the constraints, at the 

end of every iteration, only the feasible solutions that satisfied all the constraints were 

considered. One hundred runs were performed, and every run was forced to achieve at least 100 

iterations. To evaluate the performance of the three proposed algorithms, firstly they were 

compared with the qABC, SPSO2011, and BBA, which is the set of algorithms used for testing 

benchmark problems and using the same parameter settings applied previously. Next, their 

performance was compared with a collection of algorithms that were applied successfully on the 

tension/compression spring, as selected from the literature. They are the following: evolutionary 

strategies ((μ + λ)−ES; Mezura-Montes and Coello, 2005), PSO (He et al., 2004), ABC (Akay 

and Karaboga, 2010), society and civilisation algorithm (SCA; Ray and Liew, 2003), and unified 

particle swarm optimisation (UPSOm; Parsopoulos and Vrahatis, 2005). Table 6.3 shows the 

parameters used to apply the proposed algorithms on the tension/compression spring. 

 
Table 6.4 Tension/compression spring parameter values 
Algorithm n  m  nsp  e  nep  ngh  

BAwSSR 100 4 10 2 30 0.0001 

BADS 20 4 10 2 30 0.001 

BAOSS 20 4 10 2 30 0.001 

 

Tables 6.5 and 6.6 show the values acquired by all three algorithms applied to the 

tension/compression spring as well as the other algorithms involved. The figures reveal that the 

BBA achieved the best minimum value for the weight of tension/compression springs compared 

to the other algorithms. BAwSSR comes next while ABC, SCA, (μ + λ)−ES, and SPSO2011 

exhibited similar performance. However, some algorithms—qABc, UPSOm, BADS, and 

BAOSS—exhibited poor performance in general. 
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The means and standard deviations in Tables 6.5 and 6.6 reveal that the BBA and 

BAwSSR could not maintain their enhanced performance in all the runs, although the BBA was 

the fastest in terms of NFEs, with 8,099 function evaluations. Nevertheless, PSO exhibited the 

best performance with great accuracy and stable performance. Generally, BAwSSR performed 

better than BADS and BAOSS, which suggests that the method used to enhance it might be more 

efficient than the method used on the other two. Although BAwSSR could not outperform the 

original BBA algorithm, the above findings imply an acceptable performance by BAwSSR and 

its potential if further enhancements are applied. 

Table 6.5 Performance figures comparison for the qABC, SPSO2011, BBA, BAwSSR, BADS, and 

BAOSS on the tension/compression spring problem 
Tension/ 

compression 

spring qABC SPSO2011 BBA BAwSSR BADS BAOSS 

Best solution 

0.012903

96 0.01266856 0.0061625 0.008838 0.0147636 0.0151 

Mean 0.067087 0.01274005 0.01378989 0.035154 0.1605027 0.055040 

Std. Dev 0.044828 0.00021 0.013025 0.012017 0.0852746 0.053895 

Evaluations 23,661 N/A 8,099 17,889 9,719 10,684 

 

Table 6.6 Comparison of the figures of group of competitor algorithms with the proposed algorithms on 

the tension/compression spring problem for each algorithm 
Tension/ 

compression 

spring  

ABC SCA  

 

(μ + λ)-ES  

 

UPSOm  

 

PSO BAwSSR BADS BAOS

S 

Best solution 0.012665  0.012669  0.012689  0.0131200  0.012665  0.008838 0.0147636 0.0151 

Mean  0.012709  0.012923  0.013165  0.0229478  0.012702  0.035154 

0.1605027 

0.0550

4 

Std. Dev.  0.012813 0.00059  0.00039  0.0072  0.000041  0.012017 0.053895 0.0553 

Evaluations  30,000 25,167  30,000 100,000 15,000 17,889  9,719 10,684 

 

  
Table 6.7 List of variable and constraint values achieved by the BAwSSR, BADS, and BAOSS 

algorithms 

Variables and constraints  BAwSSR BADS BAOSS 

x1 0.0685 0.0599 0.0518 

x2 0.5667 0.573 0.3469 

x3 12.204 5.160 14.1675 

g1 -0.40 0.0495 -0.1440 

g2 -0.341 -0.0243 -0.0281 

g3 -1.456 -3.960 -3.2676 

g4 -0.576 -0.577 -0.7342 
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To evaluate the significance of improvements among the proposed algorithms, the Mann–

Whitney tests were performed. The results revealed that BAwSSR was significantly better than 

BADS and BAOSS. However, these two algorithms performed equally; none of them improved 

significantly over the other. Tables 6.8, 6.9, and 6.10. 

 
Table 6.8 Mann–Whitney significance test at < 0.05 on tension/compression spring for BAwSSR and 

BADS 
 BAwSSR  BADS  p-value 

Significance Yes NO 0.001 

 

Table 6.9 Mann–Whitney significance test on tension/compression spring for BAOSS and BAwSSR 

 BAOSS BAwSSR p-value 

Significance No Yes 0.004 

 

Table 6.10 Mann–Whitney significance test on tension/compression spring for BAOSS and BADS 
 BAOSS BADS  p-value 

Significance  NO Yes 0.420 

 

It can be confirmed from the above analysis that, among all the proposed algorithms, 

BAwSSR outperformed the others on the tension/compression spring problem. The inference 

from these findings is that the search space gradual reduction was the most effective 

improvement among all other methods suggested.  

6.3 Summary 

In this chapter, the three proposed algorithms were tested on two well-known unconstrained and 

constrained engineering problems—the gear train problem and the tension/compression spring. 

To evaluate the performance of these algorithms, the results were compared against a collection 

of alternatives that were applied successfully to the two engineering problems. Twenty runs were 

performed to acquire stable figures. Parameters were elicited partially through trial and error and 

partially from the literature review. In the gear train problem, BAwSSR achieved equal 

performance with the ABC, PSO–GA, and CS, which was the best among all the algorithms. For 



103 

 

the tension/compression spring problem, BAwSSR achieved the best minimum value. However, 

it could not maintain the same improved performance in all the runs. Nevertheless, the other 

proposed algorithms, BADS and BAOSS, exhibited the worst performance. It can be assumed 

that BAwSSR demonstrated improved performance both in the engineering problems and among 

all three proposed algorithms. This suggests that the search space reduction technique used in 

BAwSSR proved to be effective. However, its inability to sustain the satisfactory performance in 

all the testing runs suggests the need for further improvement. Regarding the 

tension/compression spring, BADS performed remarkably better than all other algorithms 

involved in the experiment. However, it was not the fastest, even though it needed a slightly 

higher NFE to achieve its best results. 
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Chapter 7 CONCLUSION 

This chapter summarises the contributions that have been made in this research and offers a 

conclusion for the whole study. Additionally, it provides suggestions for further enhancements to 

the methods proposed here.  

7.1 Conclusion 

To conclude this research, it is worth noting that all objectives stipulated in Chapter 1 have been 

satisfied. The study aimed at improving the performance of the BA. All proposed enhancements 

targeted the initialisation and global search stages. The first objective was to enhance the BA 

using the gradual decrease of the search space to direct the search process to become faster and 

more focused. The results indicated that this improvement affected the accuracy and speed 

positively. It also showed an acceptable level of consistent and stable behaviour. The second 

objective was to use the segmentation of search space into independent samples to improve the 

BA. The sampling process itself was performed by using one segment to extract one sample with 

all its different parameters; this is a one-sample-per-segment approach. Another approach was to 

extract every parameter of the same sample from different segments; this is a one-parameter-per-

segment approach. The obtained data showed noticeably consistent behaviour and good 

improvement in terms of both accuracy and speed.  

The third objective was to develop an overlapping segmentation strategy of the search 

space. This strategy is the opposite of segmenting the search space into independent segments. It 

allowed the BA to handle different types of problems with one sampling approach, and the 

outcome had noticeable improvements. 
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 All the previous methods were shown to improve the BA successfully, even in functions 

with multipocketed topography, except for a few functions, such as Langerman and Bukin6, 

which always represented a challenge to all algorithms involved in the testing. Some of the 

proposed enhancements were able find the exact optimum. However, in some functions, tuning 

of the ngh and n parameters affected the performance positively, which involved a sensitivity 

issue. Except for BAwSSR, the other two proposed algorithms, BADS and BAOSS, performed 

poorly on the engineering problems. This might be understood in light of the No Free Lunch 

Theorem, which states that no one algorithm can exhibit average performance on all classes of 

problems (Wolpert and Macready, 1997). 

7.2 Contribution 

This research examined possibilities for improving the BA by manipulating the search space 

with different techniques focusing on the global search and initialisation stages. The work 

explored the effects of improving these two stages on the overall performance of the BA.  

• The research contributed to proving the ability to improve the overall performance of the 

BA in terms of accuracy via improving the initialisation and global search stages. The 

proposed methods showed positive effects in reducing the number of function evaluations 

(NFEs) and improving the success rate (SR), which accelerated the search for the 

optimum. 

• One of the research contributions was to improve the accuracy of the BA with the ability 

to find the exact minimum in some benchmark problems. A new search method was 

introduced based on continuous and gradual decreases in search space with different 

scenarios to better utilise the generated samples. The additional results for two 

engineering problems indicated enhanced performance.  
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• Another contribution was to introduce two sampling techniques: 

1. To take all the parameters of one sample from the same segments.  

2. To take every parameter of one sample from different segments.  

  

The effectiveness of this method is due to its flexibility in handling different types of 

problems. The testing of this method indicated considerable enhancements in 

performance. 

• A new method of segmentation was introduced based on overlapping segmentation of the 

search space. The purpose was to permit flexible handling of different types of problems 

while using the same sampling technique. The testing of this method indicated positive 

effects on performance. 

 

7.3 Future work 

One of the methods used in this research was based on the gradual decrease of search space in 

five scenarios. Expansions rather than a decrease of search space could have also been used. 

Additionally, the selection of these scenarios was not based on a guaranty of their 

optimality; rather, it was based on trial and error. Logically, many other scenarios could have 

been used and need further investigation. Some of the methods formulated in this research used a 

fixed segmentation approach; however, a variable segmentation approach could also be used. 

While good results were obtained from targeting only the initialisation and global search 

stages, they could also be extended to apply to neighbourhood searches. Another critical issue in 

this research is the poor performance of BADS and BAOSS in engineering problems, which 

contradicts the good performance on the benchmark function. There is a need to investigate this 
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weakness and to further improve the method used. While BAwSSR was able to obtain a high 

value among the best values found, the means and standard deviations indicate that it could not 

sustain the good performance in all the runs; this implies the potential for further enhancement. 

Moreover, during the testing of the engineering problems, the handling of parameters of different 

domains of values, as well as inequality constraints, represented a challenge in the search for the 

optimum. Better handling of the constraints would affect a decrease in the processing time and 

accuracy. 

During the testing of the suggested techniques, it was noted that they are sensitive to the 

ngh and n parameters. An exploration of this issue will likely help the proposed algorithms to 

become more robust and reliable. None of the proposed algorithms were applied on 

combinatorial domain problems, and it is worth investigating the effects on segmentation on 

combinatorial problems. However, major modifications to these algorithms might be required to 

handle these types of problems. Furthermore, the field of multi-objective optimisation has not 

been studied in this research and it is worth investigating how to apply the developed algorithms 

on multi-objective problems. 
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Appendix A GEAR TRAIN DESIGN PROBLEM 
 

 
Figure A.1 Gear train design scheme 

 

Figure A.1 represents the gear train design problem scheme. The gear train consists of two sets 

of gear wheels: a–d and b–f. The formula for the gear ratio is as follows:  

gear ratio = 
𝑇𝑑𝑇𝑏

𝑇𝑎𝑇𝑓
 . 

This ratio is required to be close enough to the value 1/6.931. The objective functions of this 

problem can be formulated as: 

Min f (x) = (
1

6.931
−

𝑥3𝑥2

𝑥1𝑥4
)

2

 Subject to 12 ≤ 𝑥𝑖 ≤ 60 𝔦 = 1,2,3,4 

where x1, x2, x3, and x4 are the numbers of teeth in the gears d, b, a, and f and they take only 

integer values. 
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Appendix B COMPRESSION TENSION SPRING 
 

Figure B.1 Compression/tension spring 

 

Assuming that 𝑑 = 𝑥1 , 𝐷 = 𝑥2 , 𝑃 = 𝑥3, the formula of the compression/tension spring is  

 

Min f (x) = (𝒙𝟑  +  𝟐)𝒙𝟐𝒙𝟏
𝟐 

 

subject to the following constraints: 

 

𝑔1(𝑥) = 1 −
𝑥2

3𝑥3

71785𝑥1
4 ≤ 0 

𝑔2(𝑥) =
4𝑥2

2 − 𝒙𝟏𝒙𝟐

12566(𝑥2 𝑥1
3−𝑥1

4)
+

1

5108𝑥1
2  − 1 ≤ 0 

𝑔_3 (𝑥) = 1 − (140.45𝑥_1)/(𝑥_2^2 𝑥_3 ) ≤ 0 

𝒈_𝟒 (𝒙) = (𝒙_𝟐 + 𝒙_𝟏)/(𝟏. 𝟓)  − 𝟏 ≤ 𝟎. 
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Appendix C LIST OF CHARTS FOR BAWSSR ALGORITHM 
 

 

Accuracy figures of 50 runs- Sphere function 

 

Accuracy figures for 50 runs-Rosenbrock function 

 

Accuracy figures for 50 runs- Quartic function 
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Accuracy figures for 50 runs- Ackley function 

 

 

Accuracy figures for 50 runs- Schaffer function 
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Accuracy figures for 50 runs-Rastrigin function 
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Accuracy figures for 50 runs-Langerman function 
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Accuracy figures for 50 runs- Griewank function 

 

Accuracy figures for 50 runs- Branin function 

 

Accuracy figures for 50 runs- Sum of powers function 
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Accuracy figures for 50 runs-Bukin6 function 

 

Accuracy figures for 50 runs-Crossit function 

 

Accuracy figures for 50 runs-Drop function 
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Accuracy figures for 50 runs-Shubert function 

 

Accuracy figures for 50 runs-Beale 

 

Accuracy figures for 50 runs-McCorm function 
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Accuracy figures for 50 runs-Camel6 function 

 

Accuracy figures for 50 runs- Bohachevsk function 

 

Accuracy figures for 50 runs-Colville function 
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Accuracy figures for 50 runs- Powersum 

 

Accuracy figures for 50 runs-Salomon function 

  

Accuracy figures for 50 runs-Alpine function  
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Appendix D List of Charts for BADS Algorithm 
 

 

Accuracy figures of 50 runs- Sphere function 

 

Accuracy figures for 50 runs-Rosenbrock function 

 

Accuracy figures for 50 runs- Quartic function 
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Accuracy figures for 50 runs- Ackley function 

 

Accuracy figures for 50 runs- Schaffer function 

 

Accuracy figures for 50 runs- Easom function 
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Accuracy figures for 50 runs-Rastrigin function 

 

Accuracy figures for 50 runs -Shekel function 

 

Accuracy figures for 50 runs-Langerman function 
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Accuracy figures for 50 runs- Griewank function 

 

Accuracy figures for 50 runs- Branin function 

 

Accuracy figures for 50 runs- Sum of powers function 
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Accuracy figures for 50 runs-Bukin6 function 

 

Accuracy figures for 50 runs-Crossit function 

 

Accuracy figures for 50 runs-Drop function 
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Accuracy figures for 50 runs-Shubert function 

 

Accuracy figures for 50 runs-Beale function 
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Accuracy figures for 50 runs-McCorm function 
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Accuracy figures for 50 runs- Powersum function 

 

Accuracy figures for 50 runs-Salomon function 

 

Accuracy figures for 50 runs-Alpine function 
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Appendix E LIST OF CHARTS FOR BAOSS ALGORITHM 
 

 

Accuracy figures of 50 runs- Sphere function 
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Accuracy figures for 50 runs- Quartic function 
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Accuracy figures for 50 runs- Ackley function 

 

Accuracy figures for 50 runs- Schaffer function 

 

 

 

 

 

 

 

Accuracy figures for 50 runs- Easom function 
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Accuracy figures for 50 runs-Rastrigin function 

 

Accuracy figures for 50 runs -Shekel function 

 

Accuracy figures for 50 runs-Langerman function 

1.37E-09
1.37E-08
1.37E-07
1.37E-06
1.37E-05
1.37E-04
1.37E-03
1.37E-02
1.37E-01
1.37E+00
1.37E+01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

2.69E-06

2.69E-04

2.69E-02

2.69E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS



141 

 

 

Accuracy figures for 50 runs- Griewank function 

 

Accuracy figures for 50 runs- Branin function 

 

Accuracy figures for 50 runs- Sum of powers function 

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

0.00E+00

5.00E-04

1.00E-03

1.50E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs
BBA qABC acc SPSO2011 BAOVSS



142 

 

 

Accuracy figures for 50 runs-Bukin6 function 

 

Accuracy figures for 50 runs-Crossit function 

 

Accuracy figures for 50 runs-Drop function 
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Accuracy figures for 50 runs-Shubert function 

 

Accuracy figures for 50 runs-Beale 

 

Accuracy figures for 50 runs-Camel6 function 
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Accuracy figures for 50 runs-Mcorm function 

 

Accuracy figures for 50 runs-Bohachevsky function 

 

Accuracy figures for 50 runs-Colville function 
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Accuracy figures for 50 runs- Powersum 

 

Accuracy figures for 50 runs-Salomon function 

 

Accuracy figures for 50 runs-Alpine function 
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Appendix F LIST OF BENCHMARK FUNCTIONS 
 

Function Equation Search range & 
Minimum 

Sphere (10D) 

𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑑

𝑖=1

 

 xi ∈ [-5.12, 5.12] 
 
𝑓(𝑥) = 0, at 𝑥= (0…0) 

Rosenbrock 
(10D) 
 

 

∑[100(𝑥𝑖+1 − 𝑥𝑖  
2 )2    +  (𝑥𝑖 − 1)2]

𝑑

𝑖=1

  

 

xi ∈ [-2.048, 2.048] 
 
𝑓(𝑥) = 0, at 𝑥= (1…1) 

Quartic(30D) 
𝑓(𝑥) = ∑ 𝑖𝑥𝑖

4

𝑑

𝑖=1

+ random[0,1) 
xi ∈ [−1.28,1.28] 
 
𝑓(𝑥) = 0 +random 
noise 
 at 𝑥= (0…0)  

Ackley (10D) 

𝑓(𝑥) = −𝑎𝑒𝑥𝑝 (−𝑏√
1

𝑑  
∑ 𝑥𝑖

2

𝑑

𝑖=1

)  

− 𝑒𝑥𝑝 (−𝑏√
1

𝑑  
∑ cos(𝑐𝑥𝑖)

𝑑

𝑖=1

) + 𝑎

+ exp(1) 

a = 20, b = 0.2 and c = 
2π 
 
xi ∈ [-32.768, 32.768] 
 
𝑓(𝑥) = 0  at 𝑥= (0…0)  

Shaffer (2D) 
𝑓(𝑥)=0.5+

sin2(x1 
2 -x2

2 )-0.5  

 [1+0.001 ( x1 
2 +x2 

2 )]2
 

xi ∈ [-100, 100] 
 
𝑓(𝑥) = 0, 𝑎𝑡 𝑥 = (0, 0) 

Easom (2D) 𝑓(𝑥) = − cos(𝑥1)\𝑐𝑜𝑠 (𝑥2)

\𝑒𝑥𝑝 (−(𝑥1 − 𝜋){2 } − (𝑥2 − 𝜋)2) 

xi ∈ [-100, 100] 
 
𝑓(𝑥) = −1, 𝑎𝑡 𝑥 =
(𝜋 , 𝜋) 

Rastrigin 
(10D) 𝑓(𝑥) = 10𝑑 + ∑[𝑥𝑖

2 − 10 𝑐𝑜𝑠 (2𝜋𝑥𝑖)]

𝑑

𝑖=1

 

xi ∈ [-5.12, 5.12] 
 
𝑓(𝑥) = 0  at 𝑥= (0…0)  

Shekel (4D) 

𝑓(𝑥) = − ∑ (∑(𝑥𝑗 − 𝐶𝑗𝑖)
2

+ 𝛽𝑖

4

𝑖=𝑗

)

𝑚

𝑖=1

−1

 

xi ∈ [0, 10] 
 
𝑎𝑡 𝑚 = 10, 𝑓(𝑥) =
10.5364  
 at 𝑥= (0…0) 

Langerman 
(10D) 𝑓(𝑥) = ∑ 𝑐𝑖 exp (−

1

𝜋
∑(𝑥𝑖 − 𝐴𝑖𝑗)

2
𝑑

𝑗=1

)   cos (π ∑(𝑥𝑖

𝑑

𝑗=1

𝑚

𝑖=1

− 𝐴𝑖𝑗)
2

) 

xi ∈ [0, 10] 
 
𝑓(𝑥) = −1.4 

Griewank 
(10D) 𝑓(𝑥) = ∑

𝑥𝑖
2

4000

𝑑

𝑖=1

− ∏ 𝑐𝑜𝑠

𝑑

𝑖=1

(
𝑥𝑖

√𝑖
) + 1 

xi ∈ [-600, 600] 
 
𝑓(𝑥) = 0  at 𝑥= (0…0) 
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Branin (2D) 𝑓(𝑥) = 𝑎(𝑥2 − 𝑏𝑥2
1 + 𝑐𝑥1 − 𝑟)2  + 𝑠(1 − 𝑡)𝑐𝑜𝑠(𝑥1) + 𝑠 x1 ∈ [-5, 10]  x2 ∈ [0, 15] 

 
𝑓(𝑥) = 0.37887, 𝑎𝑡 𝑥 
= (−𝜋, 12.275), (𝜋, 2.275), 
(9.42478,2.475) 

Sum of 
Different 
Powers 
(Sumpow) 
(10D) 

𝑓(𝑥) = ∑|𝑥𝑖|
𝑖+1

𝑑

𝑖=1

 

xi ∈ [-1, 1] 
 
𝑓(𝑥) = 0, 𝑎𝑡 𝑥𝑖
= (0. . .0) 

Bukin 

Function No.6 

(Bukin6) 

(2D) 

𝑓(𝑥) = 100√|𝑥2 − 0.01𝑥2
1| + 0.01|𝑥1 + 10| x1 ∈ [-15, -5], x2 ∈ [-3, 3] 

 
𝑓(𝑥) = 0, 𝑎𝑡 𝑥
= (−10,1) 

Cross-In-Tray 

(Crossit) (2D) 

 

𝑓(𝑥)  = −0.0001 (|𝑠𝑖𝑛(𝑥1)𝑠𝑖𝑛(𝑥2)𝑒𝑥𝑝 (|100

−
√𝑥1

2 + 𝑥2
2

𝜋
|)| + 1)

0.1

 

xi ∈ [-10, 10] 
𝑓(𝑥) = −2.06261, 
𝑎𝑡 𝑥
= (1.3491, −1.3491), 
(1.3491,1.3491), 
(−1.3491,1.3491) 

Drop-Wave 

function 

(Drop)2D 

𝑓(𝑥) = −
1 + 𝑐𝑜𝑠(12√𝑥1

2 + 𝑥2
2

0.5(𝑥1
2 +  𝑥2

2) + 2
 

xi ∈ [-5.12, 5.12] 
 
𝑓(𝑥) = −1, 𝑎𝑡 𝑥 = (0,0) 

Shubert 

Function (2D) 𝑓(𝑥) = (∑ 𝑖𝑐𝑜𝑠((𝑖 + 1)𝑥1 + 𝑖)

5

𝑖=1

) (∑ 𝑖𝑐𝑜𝑠((𝑖 + 1)𝑥2 + 𝑖)

5

𝑖=1

) 

xi ∈ [-10, 10] 
 
𝑓(𝑥) = −186.7309, 𝑎𝑡 
= (−7.0835,4.8580), 
𝑎𝑛𝑑 𝑚𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟𝑠 

Beale 
function (2D) 

𝑓(𝑥) = (1.5 − 𝑥1 + 𝑥1𝑥2)2 + (2.25 − 𝑥1 + 𝑥1𝑥2
2)2

+ (2.625 − 𝑥1 + 𝑥1𝑥3
2)2

 

xi ∈ [-4.5, 4.5] 
𝑓(𝑥) = 0, 𝑎𝑡 𝑥 = (3,0.5) 

Six-Hump 

Camel 

Function 

(camel6) (2D) 

𝑓(𝑥) = (4 − 2.1𝑥2
1 +

𝑥4
1

3
) 𝑥2

1 + 𝑥1𝑥2 + (−4 + 4𝑥2
2)𝑥2

2 

x1 ∈ [-3, 3], x2 ∈ [-2, 2] 
 
𝑓(𝑥) = −1.0316, 𝑎𝑡 
𝑥 = (0.0898, −0.7126), 
(−0.0898,0.7126), 

McCormick 
function 
(Mccorm) 
(2D) 

 

𝑓(𝑥) = 𝑠𝑖𝑛(𝑥1 + 𝑥2)  + (𝑥1 − 𝑥2)2 −  1.5𝑥1 +  2.5 𝑥2 + 1 

x1 ∈ [-1.5, 4], x2 ∈ [-3, 4] 
 
𝑓(𝑥) = −1.9133, 𝑎𝑡 
𝑥
= (−0.54719, −1.54719) 

Bohachevsky 

function 

(Boha1) (2D) 

𝑓(𝑥)7 = 7𝑥2
1 + 2𝑥22 − 0.3𝑐𝑜𝑠(3𝜋𝑥1) − 0.4𝑐𝑜𝑠(4𝜋𝑥2)

+ 0.7 

xi ∈ [-100, 100] 
 
𝑓(𝑥) = 0, 𝑎𝑡 𝑥 = (0,0) 

Colville 

Function (2D) 

 

𝑓(𝑥) = 100(𝑥2
1 − 𝑥2)2  + (𝑥1 − 1)2  + (𝑥3 − 1)2

 

+90(𝑥2
3 − 𝑥4)2 + 10.1 ((𝑥2 − 1)2 +  (𝑥4 − 1)2) 

+19.8(𝑥2 − 1)(𝑥4 − 1) 

xi ∈ [-10, 10] 
 
𝑓(𝑥) = 0, 𝑎𝑡𝑥 
= (1,1,1,1) 

Power Sum 

Function 

(Powersum) 

(4D) 

 

𝑓(𝑥) = ∑ [(∑

𝑑

𝑗=1

𝑥𝑖
𝑗) − 𝑏𝑖]

2
𝑑

𝑖=1

 

xi ∈ [0, 4] 
 
𝑓(𝑥) = 0, 𝑎𝑡 = (1,2,2,3) 
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Salomon 
function (2D) 𝑓(𝑥) = 1 − 𝑐𝑜𝑠 (2𝜋 ∑ 𝑥𝑖

2

𝑑

𝑖=1

) + 0.1 ∑ 𝑥𝑖
2

𝑑

𝑖=1

 

xi ∈ [-100, 100] 
 
𝑓(𝑥) = 0, 𝑎𝑡 = (0,0) 

Alpine N.1 
function  
(Alpine) (2D) 

𝑓(𝑥) = ∑|𝑥𝑖sin(𝑥𝑖) + 0.1𝑥𝑖|

𝑑

𝑖=1

 

xi ∈ [-10, 10] 
 
𝑓(𝑥) = 0, 𝑎𝑡 = (0,0) 

 

 

 

 

 

 
 

 

 

 




