
ii

ENHANCING THE BEES ALGORITHM FOR GLOBAL OPTIMISATION USING

SEARCH SPACE MANIPULATION

by

TURKI BIN BAKIR

A thesis submitted to the University of Birmingham for the degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical Engineering

School of Engineering

College of Engineering and Physical Sciences

University of Birmingham

January 2021

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

UNIVERSITYDF
BIRMINGHAM

iv

ABSTRACT

The aim of this research is to improve the ability of the Bees Algorithm to tackle global optimisation

problems. The Bees Algorithm was formulated and inspired by the foraging behaviour of honeybees. The

proposed enhancements target the initialisation and global search stages of the algorithm. The reason for this

is that the initialisation stage could save efforts by directing the search earlier towards the more promising

areas of the search space, leading to a better optimised result. Targeting during the global search is due to the

researcher’s belief that the neighbourhood search depends on it and any improvement will positively affect

the neighbourhood search.

In this research, three enhancements were formulated based on the manipulation of the search space.

The first enhancement (BAwSSR) involves continuous and gradual reduction of the search space with

different scenarios that vary according to the starting point of reduction. The second enhancement (BADS)

deals with the segmentation of search space into independent segments while using two sampling approaches

to tackle a wide variety of problems. The third enhancement (BAOSS) also involves the segmentation of

search space but divides it into independent segments to increase flexibility in handling a wider range of

problems.

These proposed algorithms were tested on 24 benchmark functions with a broad range of

characteristics. This test involves performance comparisons with the Quick Artificial Bee Colony (qABC)

and the Standard Particle Swarm Optimisation 2011 (SPSO2011) algorithms. The obtained test data

indicated noticeable improvements with an adequate level of stability over the original Bees Algorithm. The

results were supported by the Mann–Whitney significance test, showing the improvements are statically

significant for both accuracy and speed. Additionally, the proposed algorithms were tested on two

engineering problems that included a comparison with a group of competitor algorithms. However, only the

first proposed algorithm (BAwSSR) showed an obvious improvement. The other two algorithms (BADS)

and (BAOSS) did not reveal any improvement.

v

vi

ACKNOWLEDGEMENTS

First of All, I would like to prise and thank Allah SWT for all his blessings and for guiding me during the

difficult time and giving me the strength to accomplish this research until it is completed.

 My special thanks to, Professor Duc Truong Pham, my supervisor for giving me the opportunity to conduct

the research and for his invaluable guidance and regular advice until the last minute of submitting this thesis.

A special gratitude to my research colleagues, Mr. Syahril Bahari, Mr. Shafie Kamaruddin for providing the

knowledge and patiently answering my questions. I would like to also express my sincere thanks to all of my

research colleagues who have been always supportive special my colleague Ismail Asrul which have been

always ready to help.

To my parents who always initiated the hope and aspiration with their prayers. Special dedication to my

mother, who throughout her life believed in me and assured me during the difficult circumstances.

To my wife for her endless encouragement and who patiently endured the stressful period

during my busy tim. To my children who enriched me with their warm love.

To my brothers and sisters who have been always proud of me and I cannot express enough my appreciation

for their reassurance words.

This thesis was copy edited for conventions of language, spelling, and grammar by Paulina S. Cossette,

Ph.D., at eContent Pro International.

vii

TABLE OF CONTENTS

ABSTRACT ... iv

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS ..vii

LIST OF FIGURES ... x

LIST OF TABLES ... xi

LIST OF ABBREVIATIONS .. xiv

LIST OF SYMBOLS .. xvi

Chapter 1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Motivation ... 2

1.3 Aim and Objectives .. 3

1.4 Research Methods ... 4

1.5 Thesis Outline ... 5

Chapter 2 LITERATURE REVIEW OF OPTIMISATION ALGORITHMS 7

2.1 Preliminaries ... 7

2.2 Optimisation .. 7

2.3 Classification of Optimisation Algorithms ... 8

2.4 Metaheuristics ... 9

2.4.1 Single-Solution-Based Metaheuristics ... 9

2.4.2 Population-Based Metaheuristics ... 14

2.5 Summary ... 26

Chapter 3 THE BEES ALGORITHM WITH SEARCH SPACE REDUCTION (BAwSSR) 28

3.1 Preliminaries ... 28

3.2 Bracketing-Region Elimination Method ... 29

3.3 The BA with Search Space Reduction (BAwSSR) .. 31

3.4 Experiment Setup .. 35

3.5 Results and Discussion ... 39

3.5.1 Solution Quality (Accuracy) .. 39

3.5.2 SR and NFEs .. 49

3.6 Summary ... 55

Chapter 4 BEES ALGORITHM IMPROVEMENT USING DOMAIN SEGMENTATION (BADS) 57

4.1 Preliminaries ... 57

4.2 Domain Segmentation Sampling Method ... 57

viii

4.3 Search Space Mobile Subset Sampling .. 60

4.4 Experiment Setup .. 61

4.5 Results and Discussion ... 62

4.5.1 Solution Quality (Accuracy) .. 62

4.5.2 SR and NFEs .. 71

4.6 Summary ... 76

Chapter 5 BEES ALGORITHM IMPROVEMENT USING OVERLAPPING SEGMENTATION OF

SEARCH SPACE (BAOBSS) ... 78

5.1 Preliminaries ... 78

5.2 The Overlapping Segmentation of the Search Space Method 78

5.2.1 Search Space Overlap Segmentation ... 79

5.2.2 Tracking Promising Domain Intervals ... 81

5.3 Experiment Setup .. 81

5.4 Results and Discussion ... 82

5.4.1 Solution Quality (Accuracy) .. 82

5.4.2 SR and NFEs .. 90

5.5 Summary ... 96

Chapter 6 APPLICATIONS .. 97

6.1 Single-Objective Functions Without Constraints ... 97

6.2 Single-Objective Functions with Constraints ... 99

6.3 Summary ... 102

Chapter 7 CONCLUSION ... 104

7.1 Conclusion .. 104

7.2 Contribution .. 105

7.3 Future work ... 106

REFERENCES ... 109

APPENDICES ... 120

APPENDIX A GEAR TRAIN DESIGN PROBLEM ... 121

APPENDIX B COMPRESSION TENSION SPRING ... 122

APPENDIX C LIST OF CHARTS FOR BAwSSR ALGORITHM ... 123

APPENDIX D LIST OF CHARTS FOR BADS ALGORITHM .. 131

APPENDIX E LIST OF CHARTS FOR BAOSS ALGORITHM .. 139

APPENDIX F LIST OF BENCHMARKFUNCTIONS .. 147

ix

x

LIST OF FIGURES

Figure 2.2 Pseudo code for ILS .. 12

Figure 2.3 Pseudo code of VNS ... 14

Figure 3.1 Region elimination method ... 30

Figure 3.1 Search scenario 1 .. 32

Figure 3.2 Search scenario 2 .. 33

Figure 3.3 Search scenario 3 .. 33

Figure 3.4 Search scenario 4 .. 34

Figure 3.5 Search scenario 5 .. 34

Figure 3.7 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Rosenbrock 10D function 42

Figure 3.6 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Quartic 30D function 43

Figure 3.7 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Ackley 10D function 43

Figure 3.8 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Schaffer’s 2D function 43

Figure 3.11 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Easom 2D function 43

Figure 3.12 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Rastrigin 10D function 44

Figure 3.13 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Shekel 4D function 44

Figure 3.14 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Langerman 10D function 44

Figure 3.15 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Griewank 10D function 45

Figure 4.1 First sampling approach from segmented search space 59

Figure 4.2 Second approach sampling from segmented search space 59

Figure 4.3 Sampling from a mobile subset of search space ... 61

Figure 4.4 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Rosenbrock 10D function 64

Figure 4.5 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Quatric 30D function 64

Figure 4.6 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Ackley 10D function 64

Figure 4.7 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Schaffer 2D function 65

Figure 4.8 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Easom 2D function 65

Figure 4.9 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Rastrigin 2D function 65

Figure 4.10 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Shekel 4D function 66

Figure 4.11 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Langerman 10D function 66

Figure 5.1 Illustration 1 1of dividing the search space into overlapping segments for the Colville function.

 .. 80

Figure 5.2 Illustration 2 of dividing the search space into overlapping segments for the Colville function. 80

Figure 5.3 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Rosenbrock 10D function 84

Figure 5.4 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Quartic 30D function 84

Figure 5.5 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Ackley 10D function 84

Figure 5.6 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Schaffer 2D function 85

Figure 5.7 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Easom 2D function 85

Figure 5.8 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Rastrigin 10D function 85

Figure 5.9 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Shekel 4D function 86

Figure 5.10 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Langerman 10D function

 .. 86

Figure 5.11 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Griewank 10D function 86

Figure A.1 Gear train design scheme ... 120

Figure B.1 Compression/tension spring ... 121

xi

LIST OF TABLES

Table 3.1 List of test functions and their properties ... 36

Table 3.2 List of parameter values used for testing BAwSSR ... 39

Table 3.3 List of parameter values used for testing BBA .. 40

Table 3.4 qABC parameter settings .. 41

Table 3.5 SPSO2011 parameter settings .. 41

Table 3.6 Best performance figures for BAwSSR, BBA, qABC, and SPSO2011 for accuracy values 41

Table 3.7 Mean and standard deviation of best accuracy values for BAwSSR and BBA obtained through 50

independent runs on test functions f1–f24 .. 46

Table 3.8 Mean, and standard deviation of best accuracy values obtained through 50 independent runs on test

functions f1–f24 for BAwSSR and qABC ... 46

Table 3.9 Mean, and standard deviation of best accuracy values obtained through 50 independent runs on test

functions f1–f24 for BAwSSR and SPSO2011 .. 47

Table 3.10 P-values using the Mann–Whitney test (a = 0.05) for accuracy acquired by BAwSSR over ABC,

BBA, and SPSO2011 .. 48

Table 3.11 SR of BAwSSR compared with BBA, SPSO2011, and qABC, based on NFEs obtained through

50 independent runs on test functions f1–f24 ... 49

Table 3.12 Best performance of the BAwSSR, BBA, SPSO2011, and qABC for the NFEs obtained through

50 independent runs on test functions f1–f24 ... 51

Table 3.13 Means and standard deviations of NFEs obtained through 50 independent runs on test functions

f1–f24 ... 52

Table 3.14 Means and standard deviations of NFEs for qABC obtained through 50 independent runs on test

functions f1–f24 .. 53

Table 3.15 Means and standard deviations of NFEs obtained through 50 independent runs on test functions

f1–f24 ... 54

Table 3.16 P-values using the Mann–Whitney test (a = 0.05) for NFEs acquired by BAwSSR over the BBA

 .. 55

Table 4.1 List of parameter values used for testing BADS .. 61

Table 4.2 Best performance figures for BADS, BBA, qABC, and SPSO2011 for accuracy values 63

Table 4.3 Means and standard deviations of best accuracy values for BADS and the BBA through 50

independent runs on functions f1–f24 .. 67

Table 4.4 Means and standard deviations of accuracy values through 50 runs on functions f1–f24 for BADS

and qABC ... 68

Table 4.5 Means, and standard deviations of accuracy values obtained through 50 runs on test functions f1–

f24 for BADS and SPSO2011 .. 69

Table 4.6 P-values using Mann–Whitney test (a = 0.05) for accuracy acquired by BADS over qABC, BBA,

and SPSO2011 .. 70

xii

Table 4.7 SR of the BADS, BBA, SPSO2011, and qABC algorithms based on NFEs obtained through 50

runs on functions f1–f24 ... 71

Table 4.8 Best performance of BADS, SPSO2011, and qABC for the NFEs obtained through 50 runs on test

functions f1–f24 .. 72

Table 4.9 Means and standard deviations of the NFEs obtained through 50 runs for BADS and the BBA on

test functions f1–f24 ... 73

Table 4.10 Means and standard deviations of NFEs obtained through 50 runs for BADS and qABC on test

functions f1–f24 .. 74

Table 4.11 Means and standard deviations of NFEs obtained through 50 runs for BADS and SPSO2011 on

test functions f1–f24 ... 75

Table 4.12 P-values using the Mann–Whitney test (a = 0.05) for NFEs acquired by BADS over the BBA 76

Table 5.1 Sample of the calculated segment’s limits ... 80

Table 5.2 List of parameter values used for testing BAOSS .. 81

Table 5.3 Best performance figures for the BAOSS, BBA, qABC, and SPSO2011 for accuracy values 83

Table 5.4 Means and standard deviations of best accuracy values for the BAOSS and BBA obtained through

50 independent runs on test functions f1–f24 ... 87

Table 5.5 Means and standard deviations of accuracy values for the BAOSS and qABC obtained through 50

runs on test functions f1–f24 .. 88

Table 5.6 Means and standard deviations of best accuracy values for the BAOSS and SPSO2011 obtained

through 50 independent runs on test functions f1–f24 ... 89

Table 5.7 P-values using the Mann–Whitney test (a = 0.05) for accuracy acquired by BAOSS over qABC,

BBA, and SPSO2011 .. 90

Table 5.8 SR of the BAOSS compared with BBA, SPSO2011, and qABC based on NFEs obtained through

50 runs on test functions f1–f24 ... 91

Table 5.9 Best performance of BAOSS, SPSO2011, and qABC for NFEs obtained through 50 independent

runs on test functions f1–f24 .. 92

Table 5.10 Means and standard deviations of the NFEs obtained through 50 independent runs for BAOSS

and BBA on test functions f1–f24 .. 93

Table 5.11 Means and standard deviations of NFEs obtained through 50 runs for BAOSS and qABC on test

functions f1–f24 .. 93

Table 5.12 Means and standard deviations of NFEs obtained through 50 runs for BADS and SPSO2011 on

test functions f1–f24 ... 94

Table 5.13 P-values using the Mann–Whitney test (a = 0.05) for NFEs acquired by BAOSS over BBA 95

Table 6.1 Gear train problem parameters ... 98

Table 6.2 Performance figures comparing the qABC, SPSO2011, BBA, BAwSSR, BADS, and BAOSS on

the gear train problem. .. 99

Table 6.3 Performance figures for the ABC, PSO–GA, CS, BAwSSR, BADS, and BAOSS on the gear train

problem ... 99

Table 6.4 Tension/compression spring parameter values ... 100

Table 6.5 Performance figures comparison for the qABC, SPSO2011, BBA, BAwSSR, BADS, and BAOSS

on the tension/compression spring problem ... 101

Table 6.6 Comparison of the figures of group of competitor algorithms with the proposed algorithms on the

tension/compression spring problem for each algorithm ... 101

Table 6.7 List of variable and constraint values achieved by the BAwSSR, BADS, and BAOSS algorithms

 .. 101

Table 6.8 Mann–Whitney significance test at < 0.05 on tension/compression spring for BAwSSR and BADS

 .. 102

xiii

Table 6.9 Mann–Whitney significance test on tension/compression spring for BAOSS and BAwSSR 102

Table 6.10 Mann–Whitney significance test on tension/compression spring for BAOSS and BADS 102

xiv

LIST OF ABBREVIATIONS

ABC Artificial Bee Colony

ACO Ant Colony Optimisation

AS Ant System

BA Bees Algorithm

BADS Bees Algorithm with Domain Segmentation

BAOSS Bees Algorithm with Overlapping Search Space Segmentation

BAwSSR Bees Algorithm w Search Space Reduction

BCO Bee Colony Optimisation

BS Bee System

CPU Central Processing Unit

DE Differential Evolution

DPSO Discrete Particle Swamp Optimisation

EAS Elitist Ant System

GA Genetic Algorithm

GCPSO Guaranteed Convergence Particle Swarm Optimiser

GVNS General Variable Neighbourhood Search

HACO Hybrid Ant Colony Optimisation

JSP Job Shop Scheduling Problem

MMAS Max–Min Ant System

MMO Multimodal Optimisation

NFE Number of Function Evaluations

NP Non-deterministic Polynomial-time

OPF Optimal Power Flow

OR Operation Research

PSO Particle Swarm Optimisation

QAP Quadratic Assignment Problem

qABC Quick Artificial Bee Colony

xv

RAS Rank Based Ant System

RVNS Reduced Variable Neighbourhood Search

SA Simulated Annealing

SI Swarm Intelligence

SR Success Rate

Std. Dev. Standard Deviation

TS Tabu Search

TSP Travelling Salesman Problem

VRP Vehicle Routing Problem

VNS Variable Neighbourhood Search

VND Variable Neighbourhood Decent

xvi

LIST OF SYMBOLS

𝑐1 Cognitive coefficient for Standard Particle Swarm Optimisation

𝑐2 Social coefficient for Standard Particle Swarm Optimisation

𝑑 Number of dimensions

𝑓 Objective or cost function(s)

𝐾 Number of informants for Standard Particle Swarm Optimisation

𝑙 Limit for abandonment in Quick Artificial Bee Colony

𝑁 Number of decision variables

𝑛𝑏 Number of best sites in the Bees Algorithm

𝑛𝑒 Number of elite sites in the Bees Algorithm

𝑛𝑔ℎ Size of patches including site and its neighbourhood in the Bees Algorithm

𝑛𝑟𝑏 Number of bees recruited for (𝑏−𝑒) sites in the Bees Algorithm

𝑛𝑟𝑒 Number of bees recruited for 𝑒 sites in the Bees Algorithm

𝑛𝑠 Number of scout bees in the Bees Algorithm

𝑝 Size of the bees’ population in the Bees Algorithm

𝑟 Neighbourhood radius for Quick Artificial Bee Colony

𝑟𝑎𝑛𝑑 Random vector element between 0 and 1 following the uniform distribution

𝑆 Swarm size for Standard Particle Swarm Optimisation

𝑠𝑡𝑙𝑖𝑚 Stagnation limit for the Bees Algorithm

𝑇 Matrix transpose

𝑥
Parameter to be optimised; design or decision variable(s); can be

continuous, discrete, or a mixture of both

𝑤 Inertia weight for Standard Particle Swarm Optimisation

1

Chapter 1 INTRODUCTION

1.1 Background

Optimisation is an everyday activity. In fact, it is a property of the human mind. For

example, a person performing a task for the first time might face difficulties. However,

after performing the task several times, the brain starts to discover better ways of

performing these tasks. Moreover, at a higher level, for activities such as determining

investments or shopping at a grocery store, the mind will naturally evaluate available

options to find the best ones. Previous experiences are recalled or an analogy to the current

situation is drawn, and strategies developed to solve problems that are regularly

encountered.

As humanity began to modernise and industrialise, more complicated problems

emerged. This is when the Operation Research discipline, which includes metaheuristics

and exact methods, arose (Sorensen et al., 2017). Researchers then began to formulate

strategies to tackle such problems; one of the earliest efforts was G. Polya’s book, How to

Solve It, which introduces high-level strategies for solving some complicated problems

(Sorensen et al., 2017). However, for some problems, using exact methods is infeasible;

this includes problems for which processing time increases exponentially as the size of the

problem increases, meaning that they cannot be solved in polynomial time (or NP-hard

problems). Some examples are the Travelling Salesman Problem (TSP), the Vehicle

Routing Problem (VRP), and the Knapsack Problem (KP). This situation necessitated the

use of stochastic techniques, which are usually employed in metaheuristic methods. Many

2

metaheuristic methods have borrowed their inspiration from nature; therefore, they are

referred to as nature-inspired algorithms.

For example, evolutionary algorithms, which are considered one of the earliest

existing optimisation algorithms, are based on the theory of evolution, or what is commonly

known as Darwinian theory. Evolutionary algorithms borrowed some principles of

evolutionary theory, such as survival of the fittest and natural selection. Other algorithms

are inspired by the social behaviour of some insects and animals. For example, the Ant

Colony Optimisation algorithm (ACO) mimics the foraging behaviour of ants in their

search for food. The Bees Algorithm (BA), Artificial Bee Colony (ABC), and Bee Colony

Optimisation (BCO) are motivated by the foraging activity of Bees in nature. Others, like

Particle swarm Optimisation (PSO), are inspired by the swarm of groups of birds.

Metaheuristics also include algorithms based on natural phenomenon, such as the annealing

of some physical material like steel and iron. Metaheuristics are applied successfully in

many problems such as robotics, circuit design, radio signal processing, cloud computing,

internet load and traffic balancing, and even vehicle fuel consumption.

1.2 Motivation

With their potential to solve complicated problems, the successful application of

metaheuristics in many essential aspects of people’s lives has attracted significant attention.

Hence, the development rate of new methods has increased, and existing algorithms with

improved variations and hybridised versions have been released. These efforts aim to

further improve the performance of these algorithms and to tackle some of the critical

issues affecting their performance. The present research focuses on leveraging the

3

performance of the BA by treating some of its weaknesses. One of these issues is the high

degree of randomness and bias in initial and global search sampling due to the nature of

randomly extracted samples and their uneven distribution across the search space. This lack

of diversification and its effect on global search has been highlighted by Yuce et al., (2017)

and Packianather et al., (2014). With the BA method of sampling, the process is highly

likely to overlook certain areas of the search space where the optimum value might be

located, causing the neighbourhood search to fail and to become trapped in local optima.

The exploitative ability of the BA has been noted by Pham and Castellani (2015), who

indicate its sensitivity to the absence of information about search direction. Moreover, the

evenly extracted sample is likely to positively affect the search convergence speed with

such informative sampling. Search convergence speed is another critical issue facing

several metaheuristic algorithms. This research also addresses another BA vulnerability—

slow convergence when optimising smooth unimodal functions (Pham et al., 2008; Pham

and Castellani, 2015).

1.3 Aim and Objectives

The general aim of this research is to improve the performance and optimisation

capabilities of the BA in terms of accuracy and speed through search space manipulation of

problems with continuous domains. To accomplish this, the following specific objectives

have been set:

1. To develop an enhanced version of the BA with a gradual search space decrease

during the initialisation and global search stages with different decreasing scenarios.

4

2. To develop a search space segmentation strategy with two types of sampling

procedures. The first one is to takes each sample from one different segment. The

second one to take every parameter from the same sample from different segment to

handle different optimisation problem types of values. Additionally, a new

procedure to sample from a mobile subset of the search space method will be used.

3. To develop a search space segmentation strategy with overlapping segments to

handle different types of parameter values for optimisation problems.

1.4 Research Methods

The research methods used to achieve the above aims and objectives include:

• Surveying metaheuristic methods with a special focus on population-based, nature-

inspired algorithms to figure out the current gaps and to identify performance

issues.

• Reviewing research literature around the BA and its variants and applications to

identify weaknesses and strengths to develop appropriate enhancements.

• Developing the proposed enhancements in R Studio using R programming.

• Assessing the proposed enhancements to performance on a wide variety of

mathematically formulated benchmark functions with continuous domains.

• Evaluating the proposed algorithms on well-known, constrained, engineering

problems.

• Conducting tests to identify the statistical significance of the improved performance

of the proposed algorithms.

5

1.5 Thesis Outline

This thesis is organised as follows.

Chapter 2 reviews the literature on various optimisation metaheuristic methods

with a special discussion of the concept of optimisation. It also discusses the main

categories of metaheuristic methods, highlighting several, with special emphasis on

population-based and nature-inspired methods. The chapter provides additional details of

some of the widely adopted population-based methods, including their variants,

hybridisation, and application. The weaknesses of these algorithms are discussed and

analysed.

Chapter 3 presents the first proposed enhancement of the BA and the strategy of

gradual decrease, with a discussion of its theoretical background. It also introduces the five

implementations of the proposed strategy and lists the benchmark functions for testing the

algorithm. The chapter also provides an analysis of the performance of the new BA on

benchmark functions in terms of accuracy, speed, consistency and stability of the achieved

result. The analysis includes a comparison with the original BA and two other algorithms

widely used in the optimisation literature—ABC and PSO. A discussion of the analysis of

the statistical significance of improvement is provided.

Chapter 4 introduces the second proposed enhancement of the BA and the strategy

of search space segmentation for different sampling orientations to accommodate diverse

types of parameter values. The chapter reviews the test results on benchmark functions

compared with those for ABC and PSO. The results are analysed and discussed in terms of

accuracy, speed, robustness, and reliability. Further, the results of the Mann–Whiney

6

significance test are analysed. This is followed by a discussion of the statistical significance

of the improvement.

Chapter 5 highlights the third suggested improvement of the BA, based on search

space overlapping segmentation. The performance test results for benchmark functions are

reviewed, and comparisons with ABC and PSO are discussed according to accuracy, speed,

robustness, and reliability. Moreover, the outcome of the Mann–Whitney statistical

significance test is reviewed.

Chapter 6 discusses the application of the three proposed BA enhancements on two

well-known engineering problems. Both problems involve single objectives. The first, the

Gear Train problem, is an unconstraint optimisation problem; the second, the

tension/compression spring, is a constrained optimisation problem. The test results are

compared using figures taken from the literature for the other algorithms examined.

Chapter 7 concludes this thesis, summarises the contributions of the research and

suggests potential future work.

7

Chapter 2 LITERATURE REVIEW OF OPTIMISATION

ALGORITHMS

2.1 Preliminaries

This chapter surveys some of the popular techniques used in optimisation and their

different applications. A classification of these techniques is presented based on their

stochastic features. Although these techniques include swarm and non-swarm intelligence

methods, the survey focuses more on swarm intelligence methods for continuous domain

problems.

2.2 Optimisation

Optimisation is concerned with finding the best solution possible with available resources

(Chinneck, 2000). Here, “best” means the fittest solution in the search space, although there

is no guarantee that a global solution exists. Mathematically, optimisation is defined as the

use of innovative strategies to find a set of values that minimises an objective function. This

definition also applies to maximisation without loss of generality. This can be achieved by

inverting the sign of the objective function. Mathematically, optimisation can be formulated

as follows:

min
 𝜒∈ℝΝ

𝑓(𝑥), χ = (𝜒1,𝜒2, . . . 𝜒Ν) (2.1)

where:

f = the objective (cost) function(s), defined in ℝΝ, which is the search space or

search solution defined in the set of real numbers; and

8

Χ = the parameters or the design variables of the objective functions; these

parameters can be discrete, continuous, or a mix of both.

2.3 Classification of Optimisation Algorithms

Optimisation techniques are widely applied in a large variety of research subjects, such as

math and physics, as well as business and decision-making processes. Currently, there

exists a plethora of optimisation algorithms. However, according to the “no free lunch”

theorem of Wolpert and Macready (1997), there is no algorithm that can solve all kinds of

problems.

Optimisation algorithms can be separated into two main categories: deterministic and

stochastic. Deterministic algorithms are often applied when the problem to optimise is not

too complicated or the dimensionality of the problem is not too high, rendering the

optimisation process infeasible or time consuming (Weise, 2009). Examples of these types

of algorithms are branch and bound, state space search, and algebraic geometry. On the

other hand, stochastic algorithms are concerned with the types of problems considered to

have high complexity, according to the computational theory of complexity, such as NP-

hard and NP-complete (Abidin et al., 2011). The heavy consumption of resources required

to solve these problems makes a deterministic approach infeasible, which is where

metaheuristics comes into play (Alia and Mandava, 2011; Glover, 2006; Bianchi et al.,

2009). The metaheuristics method is a group of algorithms that aims to find optimal or

near-optimal solutions within a designated polynomial time and with available resources.

However, metaheuristics does not guarantee that the exact global optimum solution will be

reached, nor does it provide a universal algorithm that can solve all kinds of problems.

9

2.4 Metaheuristics

Metaheuristics can be classified into two main groups: single-solution-based and

population-based algorithms. Single-solution-based algorithms, also known as trajectory

methods (Boussaïd et al., 2013), can find solutions following a trajectory pathway in a

search space (Baghel et al., 2012).

2.4.1 Single-Solution-Based Metaheuristics

Single-solution-based metaheuristics initially create one individual solution and gradually

improve it. Tabu search, simulated annealing, iterated local search, and variable

neighbourhood search are examples of this type of algorithm.

2.4.1.1 Tabu Search

The Tabu Search (TS) algorithm uses memory as an element to store a search history in a

list of solutions. The aim is to prevent the search from endlessly revisiting the same search

area (Boussaïd et al., 2013), which is usually a characteristic of being trapped in local

optima. This enforces more explorative behaviour in the search for the optimum. The type

of memory used can vary from short-term memory to intermediate and long-term memory

(Boussaïd et al., 2013; Glover, 1990), which affects the algorithm’s explorative traits.

Because TS was devised by Glover in 1978, there were many attempts to hybridise it with

the BA (Shafia et al., 2011; Imanguliyev, 2013) and (ACO; Eswaramurthy et al., 2009). TS

works better with discrete search spaces than with continuous spaces because it needs to

visit the exact value stored in the list; this is possible when there is a limited number of

values, as in a discrete domain. This is particularly difficult in a continuous domain, where

the search space can be divided infinitely, making it extremely large, especially with high-

10

dimensionality problems. Hence, in a continuous domain, TS becomes inefficient with the

extremely large search space, which will eventually make the list grow massively and

become exceedingly costly in terms of processing power and time. Moreover, the existence

of an infinite number of values will cause the search to become inefficient, as it is highly

unlikely that one value will be searched again (Luke, 2013).

2.4.1.2 Simulated Annealing

Simulated annealing (SA), which appeared in the early 1990s, is one of the earliest

algorithms devised (Kirkpatrick et al., 1983). It is a popular single-solution-based

algorithm derived from the process of heating and cooling of metallurgical materials. To

achieve the desired properties for the material, such as hardness, flexibility, and ductility,

the heating process requires starting with a higher temperature and gradually decreasing it.

The temperature affects the atomic movement of the material, which is more random at

higher temperatures. As the temperature cools, the random movement of the atoms

decreases, and they are frozen and linked with strong bonds (Nolle et al., 2011). The

critical factor is the gradual cooling of the temperature, governed by the Boltzmann

probability factor, which enables control of the material’s desired attributes. An analogous

concept was adopted in the SA algorithm. That algorithm works by generating an initial

solution S; if, in the following iteration, a better—or at least similar—solution 𝑆∗ is

generated, the new solution will be considered the current solution, and the search will

continue. If the generated solution is worse than the current one, it will be accepted with

probability ℯ
△

𝑇 , where △ = 𝑓(𝑆) − 𝑓(𝑆∗), and 𝑇 is a factor corresponding to the

temperature in the annealing process. SA was applied effectively to many continuous and

11

discrete optimisation problems (Boussaïd et al., 2013). It has also been applied successfully

to machine learning and neural networks to escape local minima (Owen and Abunawass,

1993). Figure 2.1 shows the pseudo code of SA.

Figure 2.1 Pseudo code of simulated annealing algorithm (SA)

2.4.1.3 Iterated Local Search

Iterated local search (ILS) is an improved version of hill-climbing algorithms (Luke, 2013)

with frequent random restarts. It is a single-solution-based algorithm. The main idea behind

ILS is to generate a random solution; it will then select a point in the vicinity of the current

local optimum to find a better solution. This happens by a perturbation in the current local

1 Select initial solution S randomly.

2 Select initial temperature T.

3 While stopping criteria not met, repeat.

4 Generate 𝑆∗.

5 If 𝑓(𝑆) ≥ 𝑓(𝑆∗), then

6 𝑆 ← 𝑆∗

7 else

8 𝑆 ← 𝑆∗ when ℯ
△

𝑇 > random (0,1).

9 End.

10 Reduced T.

11 If stopping criteria not met, continue.

12 End.

12

optimum (Boussaïd et al., 2013). The point should not be too far or too close to the current

local optimum. It keeps moving from one local optimum to another within the search space

during the consecutive iterations (Luke, 2013). However, the solution will need to be

verified by acceptance criteria that control the balance between diversification and

intensification (Boussaïd et al., 2013). Many combinatorial optimisation problems have

been successfully optimised with ILS (Lourenço et al., 2003). Some examples of these

problems are the TSP and the job scheduling (JS) problem, including a wide variety of

problem settings, from single-machine to complex-multimachine scheduling. Figure 2.2

includes the pseudo codes for ILS.

Figure 2.2 Pseudo code for ILS

2.4.1.4 Variable Neighbourhood Search

Mladenović and Hansen (1997) established the Variable Neighbourhood Search (VNS). It

suggests that the search around a randomly generated solution should be within a

1 Generate initial solution randomly S.

2 Using local search, generate S* from S.

3 Repeat.

4 Get solution P from S* via perturbation.

5 Using local search, generate P* from P.

6 Apply acceptance criteria.

7 If P* satisfy the acceptance criteria, then

8 S* ← 𝑃 ∗

9 End.

10 Until the stopping criterion is met.

11 End.

13

dynamically changing neighbourhood area. First, the structures of the neighbourhood are

randomly initialised: Ν1Ν2 Ν𝑛 𝑚𝑎𝑥. The next step is to generate an initial solution 𝑠 that

is followed by the initiation of the VNS main cycle, where 𝑠′ is arbitrarily selected from the

nth neighbourhood of the current solution s. A method of local searching is then used on 𝑠′

to generate 𝑠″. If 𝑠″ is better than 𝑠, then 𝑠″ will replace the current solution 𝑠. The search

then continues with the next neighbourhood structure, Ν2, restarting the cycle. The

pseudocode of VNS is shown in Figure 2.3. However, some solutions might be searched

many times due to overlapping neighbourhood structures that affect search efficacy

(Boussaïd et al., 2013; Battiti et al., 2008). VNS was primarily used for combinatorial

problems and later for problems with continuous domains, using a Gaussian distribution to

generate noise. Many variations of VNS have been produced, such as the deterministic

version of variable neighbourhood descent (VND). Reduced VNS (RVNS) is another

variation in which random points of neighbourhood structure Ν𝑘(𝑥) are selected. It is

somewhat similar to the Monte Carlo method but with more controlled randomisation.

Many other versions of VNS exist, such as Skewed VNS (SVNS) and general VNS

(GVNS). In SVNS, the search tries to go further from the incompetent solutions, whereas in

GNS, VNS itself will be embedded in a local search. Historically, VNS has been applied to

a wide variety of problems, such as vehicle routing problems (VRP), single and parallel

scheduling problems, time tabling, and the Knapsack problem (Hansen et al., 2008).

14

Figure 2.3 Pseudo code of VNS

2.4.2 Population-Based Metaheuristics

Rather than relying on a single solution, population-based metaheuristics generate a

collection of candidate solutions. The fact that population-based methods are expected to

provide a better quality of solution, or at least to converge faster, is intuitive, given that

more solutions will be tried in every iteration during the search process. Population-based

methods have a long history of borrowing concepts from nature; this is how a nature-

inspired algorithm came into existence. As noted above, methods like evolutionary

algorithms were inspired by Darwinian theory. However, algorithms such as ACO, ABC,

and BA are based on what is known as swarm intelligence (SI). SI describes a form of

1 Generate neighbourhood structure Ν𝑛, 𝑛 = 1,2, . . . 𝑛𝑚𝑎𝑥.

2 Randomly select initial solution s.

3 Repeat.

4 𝑛 ← 1

5 While 𝑛 < 𝑚𝑎𝑥 do

6 Arbitrarily choose solution 𝑠′ from the nth neighbourhood of the Ν𝑛(𝑠) s.

7 Using local search, generate 𝑠″ from 𝑠′.

8 If 𝑠″ is better than 𝑠′,

9 s ← 𝑠″

10 𝑛 ← 1

11 else

12 𝑛 ← 𝑛 + 1

13 End.

14 End.

15 Until the stopping criterion is met.

15

intelligence derived from the behaviour of social insects living in swarms, such as ants,

bees, birds, and animal herds (Blondin, 2009). The concept of SI emerged from the group

collective intelligence and self-organised behaviour of simple entities operating collectively

within a decentralised system for the whole group’s benefit (Bonabeau et al., 1999). This

system has certain characteristics, such as self-organisation, homogeneous membership,

internal communication, decentralised decision-making, and allocation of tasks. Self-

organisation is supposed to be the outcome of decision-making and the allocation of tasks.

Decision-making requires a form of local communication that could be happening directly

or indirectly (Yang et al., 2018). The allocation takes place without direct commands to

individuals (Gordon, 1996). However, task allocation does not happen arbitrarily; it

involves a division of labour in which every group performs specialised tasks. This could

be easily observed in bees when each swarm of bees in the hive is assigned a specialised

task. For example, scout bees are responsible for finding and collecting information about

new flower patches and must inform other groups of worker bees, called foragers, who are

responsible for collecting nectar from those flower patches. In an ant colony, one group of

ants is responsible for building the nest, while others, called a task force, oversee the

protection of the colony (Seeley, 2002). This communication involves an exchange of

information through performing different dances or by exchanging signals (Anderson and

Ratnieks, 1999), a crucial property of SI.

2.4.2.1 Genetic Algorithm

The genetic algorithm (GA) is one of the most popular optimisation algorithms. It was first

established by John Holland and his students in 1975 (Whitley, 1994). As mentioned

before, the GA was inspired by the principles of survival of the fittest and natural selection.

16

Based on these concepts, the fittest individuals of a population are most likely to survive to

the next generation. These individuals are called chromosomes. Chromosomes in biology

consist of genes that correspond in the GA literature to the decision variables sampled from

the search space. To achieve the survival of the fittest concept, individuals are subject to

selection, crossover, and mutation operations introduced in the GA to encourage

evolutionary growth to produce enhanced offspring. First, the selection operator is used to

select individuals with the highest fitness to be mated via crossover operators. To locate the

fittest of chromosomes, the fitness function is applied. To enhance the selected

chromosomes, the crossover operator is applied to exchange and recombine genes from

selected chromosomes. This random recombination could take place at one point of the

gene, or at two points or more (Davis, 1991; Maini et al., 1994). The chromosomes are

encoded either as binaries or as real-number schemes. A real-number scheme is more

appealing for the continuous domain, whereas a binary scheme fits into a combinatorial

domain (Herrera et al., 1998). The aim is to guarantee that the best individuals are moved

to the next generation. Thus, in the case that the evolutionary operators have yielded no

better individuals, the selected parents themselves are moved to the next generation.

Finally, the mutation operator is applied; here, small parts of the chromosome are

perturbed to ensure local diversity of the improved result by the crossover operator.

Mutation effects are akin to neighbourhood search in the BA, where it is perturbing the

existing solution to generate an improved one. However, a crossover job is more of an

exploratory search within the dimensions of the initial sample (Qi and Palmieri, 1994). This

limits the GA’s ability to explore the search space evenly and to produce a diversity of

solutions. There have been many variations of GA, such as the elitism GA, the steady-state

17

GA, generation gap methods, and GA-with-a-tree-style genetic programming (Luke, 2013).

These variations include attempts to hybridise GA with other algorithms, as in hill climbing

(Luke, 2013), ABC (Kumar and Kumar, 2017), and PSO (Hyma et al., 2010). GAs have

also been applied to a broad spectrum of applications, such as circuit design, robotics,

pattern recognition, and biology (i.e., to study the immune system). Additionally, the GA

was applied in software testing (Aljahdali et al., 2010) and flow shop scheduling (Murata

and Ishibuchi, 1994) with acceptable performance.

2.4.2.2 Particle Swarm Optimisation

In 1995, PSO was proposed by Eberhart and Kennedy (1995) as a simple optimisation

algorithm. This SI algorithm simulates the behaviour of a flock of birds or a school of fish

living and travelling in groups where individuals move in harmony in their search for food.

The particles in the PSO represent the candidate solution. The simulation of swarms of

birds moving freely in space corresponds to the candidate solutions changing their position

in the search space. Every particle has its own velocity and position, and the particles

continuously update their position and velocity according to neighbouring particles and

their previous experience. PSO is one of the most popular algorithms and is commonly

used in real-life optimisation problems; this is due to its easy integration with other

algorithms and to its simplicity, which makes it easy to use, even for non-expert researchers

(Resende et al., 2018). Moreover, PSO can benefit from modern computer technology

because it has no consecutive stages and can be executed in parallel (Resende et al., 2018).

As with many other widely used algorithms, there are some weaknesses that need to

be addressed. One weakness in PSO when solving multimodal problems is premature

convergence (Liang et al., 2006; Resende et al., 2018). When the search space is too

18

complex, having many local optima, PSO can easily become stuck in one of these local

optima when particle velocity is restricted to update only from the best global position. This

restriction is usually implemented to force PSO to converge faster. To solve this problem,

Liang et al. (2006) suggested using the comprehensive PSO in which the velocity is

updated according to the history of the best velocity of all particles. One of the earliest

improvements of PSO was the velocity clamping PSO (Resende et al., 2018), which was

suggested to tackle a known PSO phenomenon called the swarm explosion effect, where

the velocity factor in the PSO increases arbitrarily at an extremely high rate. Intuitively, the

proposed solution was to stipulate a maximum value that velocity could not exceed. Van

den Bergh and Engelbrecht (2002) suggested the guaranteed convergence particle swarm

optimiser (GCPSO) as one of the variants of PSO that was proposed to tackle its inability to

converge in certain cases. Originally, PSO was suggested for optimising problems with

continuous domains and later for discrete PSO (DPSO); however, DPSO was proposed to

address problems with discrete domains, such as JS problems, vehicle routing, and the TSP

(Kennedy and Eberhart, 1997).

Laskari et al. (2002) also attempted to address discrete problems by proposing three

PSO variants: PSO-In, PSO-Bo, and PSO-Co. According to Laskari, these variants were

tested on seven test problems with remarkable success, proving the ability of PSO to handle

integer-optimisation problems. Over time, PSO has been widely hybridised with some well-

known algorithms, such as ABC, to optimise neural networks (Wang et al., 2015). It has

also been hybridised with GA (Gandelli et al., 2005) to produce a more effective algorithm

called GSO. However, PSO has been applied to a wide variety of real-life problems, such as

neural networks (Niu et al., 2007; Wang et al., 2015). Other applications of PSO have been

19

in image classification (Omran, 2004) and to determine the ideal location of gas and oil

wells (Onwunalu and Durlofsky, 2010).

2.4.2.3 Ant Colony Optimisation

ACO is another SI algorithm inspired by ant swarm foragers in their search for food. It

appeared as a proposal by M. Dorigo and his colleagues (Dorigo and Caro, 1999; Dorigo et

al., 2006). Originally, the ant system (AS) was suggested to solve combinatorial

optimisation problems and was applied to solve the TSP problem, the quadratic assignment

problem (QAP), and the JS problem (Dorigo et al., 1991; Dorigo et al., 1996).

Consequently, ACO was proposed by Dorigo et al. (1996) as a new optimisation algorithm.

The concept of ACO is that, during their search for food, ants naturally secrete a substance

called a pheromone to enable follower ants to recognise the path to the food. Likewise, the

follower ants secrete pheromones as they pass along that path, enforcing the existing

pheromones and attracting more ants to follow (Shtovba, 2005). However, if the food

source is too far or if it starts to decrease and is finally exhausted, the pheromones will

evaporate because fewer ants will follow, until consequently no further pheromones are

deposited, and the path is eventually abandoned.

With ACO gaining more attention, many variants and hybrids have been produced,

such as Max–Min Ant System (MMAS), Elitist Ant System (EAS), and Rank-Based Ant

System (RAS), which address the TSP and handle the problem of being trapped in local

optima (Chaparro and Valdez, 2013; Prakasam and Savarimuthu, 2016). Another ACO

variant has been developed for the continuous optimisation domain to handle the protein–

ligand docking problem and to predict the protein–ligand structure (Korb et al., 2007).

Additionally, ACO was hybridised with the Fuzzy C-means technique to produce the

20

hybrid ACO (HACO) algorithm, which was applied to classify power signal disturbance

patterns (Biswal et al., 2011). According to Biswal et al. (2011), HACO is capable of

classifying signal disturbance patterns. Further, ACO has been hybridised with the

biogeography-based optimisation (BBO) technique (Savsani et al., 2014) to improve

performance. Generally, ACO has performed well in the combinatorial field, especially for

problems like telecommunication.

2.4.2.4 Artificial Bee Colony

ABC is an optimisation method inspired by the behaviour of bees foraging for honey. It

was proposed by Dervis Karaboga in 2005 (Karaboga 2005; Karaboga and Basturk, 2007).

Initially, ABC was suggested for continuous domain problems and it was adapted later for

the combinatorial domain where a new version for discrete optimisation applied to job shop

scheduling (DABC) was released (Pan et al., 2010; Thammano and Phu-ang, 2013). Many

attempts have been made to introduce new variants to improve ABC. One of these attempts,

by Zhu and Kwong (2010), was to incorporate global-best-guided ABC (GABC), which

was inspired by the global-best concept in PSO. The aim was to improve ABC’s

exploitation ability.

The main concept of ABC is based on dividing the bee colony into three groups:

employed bees, onlooker bees, and scout bees. The bees in the colony are divided equally

as employed bees and onlooker bees. Employed bees are placed arbitrarily on food sources,

with each bee associated with one food source. Every food source corresponds to a fitness

solution. Employed bees return to the hive and share the information about the food source

with the onlooker bees after attempting to improve it within the neighbourhood size. The

21

selection of the food source to recruit onlooker bees will depend on its individual fitness

relative to the fitness of the overall food sources found so far. If food sources become

exhausted, the employed bees will begin serving as scout bees, and they will start the

search for new food. Food will be considered exhausted after a certain number of iterations

without improvements.

Although the ABC algorithm is one of the most competitive, it suffers from some

weaknesses, specifically, boor exploitation (Zhu and Kwong, 2010). To tackle this problem,

Zhu and Kwong (2010) suggested borrowing the g-best concept from PSO. Another ABC

weakness, as reported by Qiu et al. (2013), is the problem of getting stuck in local optima at

an early stage of the search and converging exceptionally slowly to the optimum. However,

this common problem in stochastic optimisation algorithms is due to the lack of balance

between exploration and exploitation (Santos and Alotto, 2011). Santos and Alotto (2011)

suggested introducing the Gaussian distribution to generate candidate solutions.

Nevertheless, ABC has gained great popularity and was hybridised with some other

popular algorithms, such as PSO and GA. For instance, ABC was combined with PSO to

benefit from the direct exchange of information about the global solution. This was

essential to improve performance in terms of exploration and exploitation (Kıran and

Gündüz, 2013). Another attempt was to hybridise ABC with GA to improve the large

tuning parameters of the FOFP-FOPID 2-DOF robotic system (Kumar and Kumar, 2017).

To improve ABC further, its author, Dervis Karaboga, released quicker ABC (qABC), in

which he introduced critical alterations to the original algorithm (Karaboga and Gorkemli,

2012). In the original form, only three parameters existed: colony size, the limit of trials

22

before food will be abandoned, and the number of cycles (i.e., the maximum number of

iterations). However, with qABC, a new parameter ‘r’ was introduced, which represents the

neighbourhood radius for the Euclidean distance from the selected solution position for

more intensified and exploitative search. This updates the solution position of onlooker

bees with the aim of improving the overall performance of ABC. Additionally, a new limit

calculation was introduced, which considers the dimensions of the problems in hand. The

author reported significant improvement by qABC. In general, ABC has performed

remarkably in many applications. When applied to automatically generate software testing

cases, satisfactory performance was also reported by the researcher (Dahiya et al., 2010).

Finally, ABC was used in power systems to optimise the performance of fault section

estimation and performed effectively (Huang and Liu, 2013).

2.4.2.5 Bees Algorithm

BA, developed by Pham et al. (2005), is one of the major contributors in the field of

metaheuristic algorithms. As mentioned previously, BA was designed based on the

foraging behaviour of bees in nature. It begins with the initialisation stage when several

scout bees (n) are arbitrarily distributed in the search area. The next stage—the local search

or neighbourhood search—is when the bees are recruited for the neighbourhood search

around the best locations (m) within a certain distance factor (ngh) according to the ranking

created for the initial sample using the fitness function. The elite bees (e) are selected from

the fittest m that was previously selected. More bees are recruited to search around the elite

bees (e), while fewer bees are recruited to search around the non-elite (m−e). The

remaining scout bees (n−m) are assigned to search randomly in the search space, which

23

takes place in the global search. The overall bees, which consist of (e + (m−e) + (n−m)),

constitute the new population that will be used in the next iterations to continue the search.

The search continues until the stopping criterion is met. The stopping criterion is usually

either reaching a certain number of iterations or finding a satisfactory value for the

optimum (or near the optimum). The following is a list of BA parameters that need to be

initialised by the user:

i. number of scout bees (ns),

ii. number of best sites (nb) out of sites visited by ns,

iii. number of elite sites out of nb selected sites (ne),

iv. number of bees recruited for ne sites (nre),

v. number of bees recruited for the other nb-ne selected sites (nrb), and

vi. size of neighbourhood (ngh).

The stopping criterion can be either a predefined maximum function evaluation or finding

the optimum defined with a stipulated threshold. The steps for the BA in its basic form are:

1. Initialise the scout population with random solutions.

2. Evaluate fitness of the population.

3. While (stopping criterion not met) //Forming the new population.

4. Select sites for the neighbourhood search.

5. Recruit bees for selected sites (more bees for elite sites) and evaluate fitness.

6. Select the fittest bee from each patch.

7. Assign remaining bees to search randomly and evaluate their fitness.

8. End While.

24

The BA, like many other population-based metaheuristics, experiences some

problems due to its stochastic nature. These problems include being trapped in local optima

in functions such as Rosenbrock, Langerman, and Bukin6, and the slow convergence to the

optimum due to the lack of search guidance. Although the BA exhibits reliable performance

in noisy problems, it shows weaknesses when optimising smooth unimodal functions like

Rosenbrock (Hansen et al., 2009) where it experiences slow performance (Pham et al.,

2008b, 2008a). While the BA sample generation depends greatly on randomness, it

contains a greater number of control parameters that need to be tuned, which implies that

the process of parameter tuning by itself is an optimisation problem.

From its inception in 2005, the significance of the BA as a metaheuristic method

has grown constantly (Kamsani, 2016) and it has been subject to many improvements and

hybridisations. One of the attempts proposed by the original developer of the BA, Pham et

al. (2008c), incorporates the neighbourhood shrinking and the abandonment procedures

into the basic BA (BBA). The shrinking procedure is applied if a solution does not yield

any results that improve upon what has been achieved so far; in so doing, the search

neighbourhood area around that solution is decreased by 80%. However, if a solution has

been searched more than a certain limit, that solution will be abandoned and a new one will

be generated to replace it.

Hussein et al. (2014) also attempted to improve the initialisation phase of the BA

through incorporating levy flight in the neighbourhood search. Levy flight takes the shape

of a random walk with varying lengths of steps, from short to long, and the researchers

reported significant improvement over the BA (Hussein et al., 2014). Another attempt, by

25

Shatnawi et al. (2013), introduced the BA with two types of memory-based lists (local and

global); here, the researchers claim a minimum of 59% improvement over the BA. In a

subsequent attempt, Yuce et al. (2013) proposed the use of adaptive neighbourhood search

that shrinks and enlarges according to fitness values for both the shrinking and

abandonment procedures. The findings confirmed that the proposed method performed

significantly better than the BA, and it was particularly better in high-dimension problems

(Yuce et al., 2013).

Although the BA was originally proposed for continuous domains, a new BA

version for combinatorial domains has been formulated. It was used, first, to solve the

single machine scheduling problem (Pham et al., 2007). Subsequently, an attempt to

enhance the BA was made using the TRIZ methodology to optimise printed circuit board

(PCB) assemblies (Mei et al., 2010). Meanwhile, Ozbakir et al. (2010) attempted to solve

the generalised assignment problem (GAP). The authors assumed the outcome of the

experiment exhibited the capability of the BA to solve larger GAP problems.

Furthermore, the BA has been applied to a wide variety of applications. For

example, in the field of electrical and electronic engineering (EEE), it was applied to the

optimal power flow (OPF) model (Anantasate et al., 2010), with the researchers reporting

productive results and the capacity to apply the BA to any size of OPF. Another application

of the BA in the EEE field is to power systems (Satheesh, 2013) through the hybridisation

of the BA with neural networks; this indicates the ability of the hybrid method to preserve

system stability. An important application of the BA was to improve power–torque

distribution in hybrid electric vehicles (Derakhshan and Shirazi, 2014). The results reported

26

for the experiment showed improved control performance along with a reduction of fuel

consumption and pollution.

Another field where the BA has been applied is in computer science and

engineering. It was used in software testing with an acceptable result, although not the best

among all methods involved in the performance evaluation (Zabil and Zamli, 2013). Yang

et al. (2015) applied the BA in wireless communications and signal recognition. The

researchers used a hybridised version of the BA with a neural network (Yang et al., 2015).

The field of robotics has also attracted researchers’ attention. One attempt to use the BA

was by Pham et al. (2009), who maintained two-link acrobatic robot (ACROBOT) balance

and stability using a fuzzy logic controller. According to the researchers, the BA exhibited

good performance in tuning the fuzzy logic controller. Another attempt in robotics, by

Eldukhri and Kamil (2015), involved the tuning of the robot gymnast (Robogymnast)

swing-up control parameters. The results indicated stability and a significant decrease in

swing-up time (Eldukhri and Kamil, 2015).

2.5 Summary

In this chapter, a survey of wide variety of metaheuristic methods has been conducted,

giving more consideration to population-based and nature-inspired algorithms. The survey

included details about when these algorithms were created, their variance, and their

applications. Additionally, a review to some weaknesses of these methods is presented. A

common problem recognised among these algorithms is keeping a good balance between

their two main aspects: exploration and exploitation. If an algorithm performs exploration

excessively, this might result in premature convergence to the local optima. If the algorithm

27

is too explorative, it might result in a slow convergence to the solution. However, the BA

has some of its unique weaknesses, which are highlighted in this chapter. Briefly, these

problems are related to the number of parameters that need to be set up before initiating the

algorithm. Moreover, a reduction of the degree of randomness could help to improve

performance. This creates room for further improvement of the BA. In the following

chapters, new techniques will be proposed to tackle these problems and to improve overall

performance.

28

Chapter 3 THE BEES ALGORITHM WITH SEARCH SPACE

REDUCTION (BAwSSR)

3.1 Preliminaries

Although metaheuristics follow an approximate approach to find an optimal solution, many

of these algorithms experience slow convergence rates, getting trapped in local optima and

long computational times, particularly for hard problems (Liang, 2006; Beheshti and

Shamsuddin, 2013). This can be attributed to the stochastic nature of these algorithms and

the high number of iterations they must perform. BA is not an exception (Pham and

Darwish, 2010; Alfi and Khosravi, 2012; Yuce et al., 2015; Kamsani, 2016). This chapter

presents a new method for improving the BA, targeting the initialisation and the global

search stages. The interest in focusing on these two stages is based on the researcher’s

belief that the neighbourhood search stage largely depends on what the initialisation and

global search stages are providing to it. A neighbourhood search refines what has been

given to it. The proposed technique is based on applying the gradual reduction of search

space in the initialisation and global search stages.

The review of the literature of BA improvements indicates that most of the attempts

to use search space manipulation have targeted the neighbourhood search phase. One such

attempt, proposed by Ghanbarzadeh (2007), aims to increase the exploitability of the

neighbourhood search area with a large patch size parameter. In this process, the BA

neighbourhood search parameter, ngh, is initially selected with a relatively wide size, and a

reduction in size follows if no promising patches are discovered. Unlike Ghanbarzadeh’s

attempt, the proposed technique by Azfanizam (2014) involves increasing the size of the

29

neighbourhood search area around the selected patch if no improvement is achieved; here,

the goal is to expand the radius of the neighbourhood area, assuming that this will speed up

the convergence to the optimal solution (Azfanizam, 2014). Additionally, the author

assumes that this proposal helps us to escape the local optima (Azfanizam, 2014). To the

best of this researcher’s knowledge, no attempt has been made to apply the concept of

search space reduction in the global search or initialisation stages. Furthermore, the

literature on the BA reveals that the initialisation and global search stages have not been

given enough consideration in terms of enhancements of the BA (Hussein et al., 2014).

The proposed method is inspired by two numerical optimisation methods, namely,

bracketing and region elimination. It employs an adapted notion of the region elimination

concept to achieve abandonment and reduction of search space within the BA.

Additionally, to make global searches more intelligent, the roles of bees for searching in the

global search stage have been varied, with different swarms of bees performing their

searches in different parts of the search area.

3.2 Bracketing-Region Elimination Method

Bracketing methods comprise two approaches: exhaustive search and bounding phase

methods (Deb, 2012). The algorithm proposed here is derived from bracketing–exhaustive

search in addition to the region elimination method. The exhaustive search involves

exploring the whole search space to find the optima at equally located intervals (Nievergelt

et al., 1995; Deb, 2012).

30

In the region elimination method, the core concept is to consecutively eliminate some parts

of the search space until the exact minimum is found. The steps of the region elimination

method are as follows:

1. A search space region will be specified, for example (a, b), where a < b.

2. Two points will be selected, x1 and x2, where x1 < x2.

3. f(x1) will be evaluated, and

• If f(x1) < f(x2), the minimum cannot exist beyond x2 in the period (x2, b),

and the segment (x2, b) is abandoned from the search space.

• If f(x1) > f(x2), the minimum cannot exist before x1 in the period (a, x1),

therefore, the segment (a, x1) is abandoned from the search space

(Bhattacharjya, 2009). An illustration is provided in Figure 3.1.

Figure 3.1 Region elimination method

the

31

3.3 The BA with Search Space Reduction (BAwSSR)

To adapt the region elimination method for this proposed algorithm, a few fundamental

changes should be applied. The region elimination method was primarily designed for

optimising unimodal functions; however, the proposed method should cater to multimodal

problems where there are more than one local and/or global optimum. Another fundamental

change is that, while the region elimination method is a deterministic optimisation approach

used to find the exact minimum, the minimum or near-minimum will satisfy the

requirements for the BA as a metaheuristic approximation method. Hence, the following

modifications to the region elimination method were introduced:

• The search space region (a, b) is considered as the whole search domain

specified for the problem being tested, where a < b , and L= (b−a)

• The number of points selected should be equal to the initial sample parameter n

of the BA (x1, x2, … xn).

• The elimination interval is noted as S = Δx = (b−a)/n, where n is the number of

initial samples.

• F(x), {X = (x1, x2, … xn) is evaluated, and

a. If (f(x)–f optm > 0.001, the segments (b , b−Δx) and (a , a+Δx) will be

eliminated from the search space. The new search space should include

only the segment (b−Δx, a+Δx), and the process should continue.

b. If (f(x)–f optm ≤ 0.001, the search will be terminated.

• If the search does not yield values close to the optimum within the specified

error value, this process is restarted from the original region (a, b), and the

32

search for the optimum is repeated until the maximum number of function

evaluations (NFEs) is reached (500,000).

Furthermore, to better use the global search, bees are assigned to search in different areas of

the search space. There are five search scenarios for the search space:

• Searching the whole search space, which decreases gradually from both ends of

the search space by the elimination factor S = (b−a)/n (Figure 3.2).

• Searching after the first quarter from the two ends of the search space, which

gradually decreases from both ends by the elimination factor S (Figure 3.3).

• Searching the area between the centre and the left end of the search space (a),

which gradually decreases from both sides by the elimination factor S (Figure

3.4).

• Searching only the area between the centre and the right end of the search space

(b), which gradually decreases from both sides by the elimination factor S

(Figure 3.5).

• Searching the whole search space, which gradually decreases from the left end

(a) by elimination factor S (Figure 3.6).

 Figure 3.1 Search scenario 1

33

Figure 3.2 Search scenario 2

Figure 3.3 Search scenario 3

34

Figure 3.4 Search scenario 4

Figure 3.5 Search scenario 5

The pseudocode for the BAwSSR algorithm is:

• Initialise the population with random solutions using the search space reduction

technique.

• Evaluate the fitness of the population.

• While (stopping criterion not met), forming new bee population.

• Select best and elite bees for neighbourhood search.

• Recruit bees around selected sites and evaluate fitness.

35

• Select the fittest bee from each site.

• Assign remaining bees to search randomly using the search space reduction

technique with the five scenarios and evaluate their fitness.

• If (stopping criterion not met), reduce the search space by L.

• End while.

The algorithm requires several control parameters that the user must determine:

1. Number of scout bees (ns),

2. Number of best sites (nb) out of sites visited by ns,

3. Number of elite sites out of nb selected sites (ne),

4. Number of bees recruited for ne sites (nre),

5. Number of bees recruited for the other nb–ne selected sites (nrb), and

6. Size of neighbourhood (ngh).

3.4 Experiment Setup

One well-known method of measuring optimisation algorithm performance is to use test

functions, or what are commonly known as benchmark functions. These functions represent

complex mathematical problems used to challenge the performance of optimisation tools.

Because many of these functions represent real-world problems, they have been used

widely as performance indicators in a variety of scientific disciplines, such as

manufacturing, physics, and economics (Imanguliyev, 2013; Kamsani, 2016). For example,

the Sphere and Rosenbrock functions, respectively, represent real-world cost curve and cost

minimisation problems (Imanguliyev, 2013; Rosenbrock, 1960). However, the Ackley

36

functions relate to the representation of the surfaces of some material particles, such as

protein (Imanguliyev, 2013; Dieterich and Hartke, 2012).

The criteria for selecting benchmark functions for testing were designed to account

for the varying degrees of search space topography, complexity, separability, and modality.

This was essential for ensuring testing objectivity and reliability (Jamil and Yang, 2013).

Complexity includes separability and dimensionality. Separability refers to the

interdependency between function parameters; non-separable functions are typically harder

to solve than are separable functions. The dimensionality of a function demonstrates its

number of decision variables, or what are sometimes called parameters. As the number of

dimensions in a function increases, it becomes harder to optimise. Modality is a property

related to the number of peaks in the search space; the function is unimodal if it has only

one global optimum, otherwise, with many global and/or local optima, it is regarded as

multimodal (Jamil and Yang, 2013). The 24 test functions used in this research are listed

and classified according to their properties in Table 3.1. Although more than half of these

are two-dimensional, they are predominantly multimodal and non-separable, which adds to

the difficulty of solving them.

Table 3.1 List of test functions and their properties

Functions Differentiability Separability Scalability Modality

Sphere (10D) Yes No Yes Unimodal

Rosenbrock (10D) Yes No Yes Unimodal

Quartic (30D) Yes Yes Yes Unimodal

Ackley (10D) Yes No Yes Multimodal

Schaffer (2D) Yes No Yes Multimodal

Easom (2D) Yes Yes No Multimodal

Rastrigin (10D) Yes Yes Yes Multimodal

Shekel (4D) Yes Yes Yes Multimodal

Langerman (10D) Yes No Yes Multimodal

Griewank (10D) Yes No Yes Multimodal

Branin (2D) Yes No No Multimodal

Sumpow (10D) Yes Yes Yes Unimodal

37

Bukin6 (2D) No No No Multimodal

Crossit (2D) No No No Multimodal

Drop (2D) No Yes No Multimodal

Shubert (2D) Yes Yes No Multimodal

Beale (2D) Yes No No Multimodal

McCorm (2D) Yes No No Multimodal

Camel6 (2D) Yes No No Multimodal

Boha1 (2D) Yes No No Multimodal

Colville (2D) Yes No No Multimodal

Powersum (2D) Yes Unimodal

Salomon (2D) Yes No Yes Multimodal

Alpine (2D) Yes Yes No Multimodal

The test designed for this study investigated the performance of the proposed

algorithm. The three key performance metrics used in this investigation were: the fitness

value, the success rate (SR), and the NFE. The fitness value refers to the accuracy of the

optimum found when compared to the standard. It can also be described as the quality of

the solution. The SR refers to the number of times the algorithm was able to converge to the

optimum within the maximum NFEs permitted in all the runs. The NFE denotes the number

of times the benchmark functions used in testing were executed for every individual run. It

also can be described as the speed with which the algorithm converged with the optimum.

This is clear, as the algorithm needs less time to converge if the function under testing is

executed only a few times. The approach of this research was to preliminarily consider the

quality of the solution or its accuracy, and then to look at the SR and the function

evaluation. Hence, this research should contribute to the quality of the solution. The results

of the test are compared to those of the BBA and two other well-known and popular

algorithms, PSO and ABC. As discussed in Chapter 1, there are many versions of PSO.

However, SPSO2011 was selected primarily because it is one of the latest versions of PSO,

in addition to its dimensionality features and its remarkable performance against separable

and unimodal functions (Zambrano-Bigiarini et al., 2013). On the other hand, the qABC

38

version of ABC is one of the latest versions of the ABC algorithm and the quick version of

ABC (Kamsani, 2016); this means that it could converge rapidly to the optimum, which

makes it attractive for testing.

The algorithm should run until the stopping criteria are met. The stopping criteria

are defined as follows:

• Either the global optimum is found with an acceptable error rate (ER; chosen here

as ER < 0.001), or

• The maximum NFEs is reached (stipulated in this research as 500,000).

Fifty independent runs were conducted for every function. The results obtained from these

runs were then analysed using the mean and standard deviation. The mean, standard

deviation, and quality of the solution together reflect the reliability and robustness of the

solution achieved (Shanghooshabad and Abadeh, 2016). This is because the algorithm,

stuck in the same local optima in every run, might generate small means and standard

deviations even though performance is poor. These statistics were additionally collected

from the BBA, the SPSO2011, and the qABC for performance comparison. Finally, a

statistical significance test was conducted to demonstrate the significance of the proposed

algorithm’s performance over that of the other algorithms used in the comparisons. This

was calculated using the Mann–Whitney test. This test was selected because it is used when

the figures obtained are without specific distribution or when it is not possible to predict

how the obtained variables will be dispersed throughout the search space (Nachar, 2008).

This makes it more appropriate for the research, given the stochastic aspect of the

39

algorithms involved. The final decision about performance was made according to the

statistical significance of the accuracy value obtained as well as the NFE’s.

3.5 Results and Discussion

3.5.1 Solution Quality (Accuracy)

To assess solution quality, the test was conducted according to the parameter settings listed

in Tables 3.2 and 3.3 for BAwSSR and BBA, respectively. The test was also carried out to

compare the proposed algorithm’s performance with the qABC and SPSO2011 using the

parameter settings in Tables 3.4 and 3.5, respectively. Table 3.6 contains the results

comparing the performance of the BAwSSR and BBA algorithms in terms of accuracy. It

reveals that the proposed algorithm, BAwSSR, performed better than the BBA in all 24

functions. Table 3.6 also presents the results that compare BAwSSR’s performance against

that of the SPSO2011 and qABC. The findings indicate an improvement by BAwSSR.

Specifically, it outperformed SPSO2011 and qABC in 22 and 20 functions, respectively.

The above findings indicate BAwSSR was able to find more accurate optimum than other

algorithms; nevertheless, to assess stability and consistency, the acquired figures need to be

analysed using statistical measures like the mean and standard deviation.

Table 3.2 List of parameter values used for testing BAwSSR

No. Functions n m nsp e nep ngh stlim

1 Sphere (10D) 11 4 10 2 30 0.003 10

2 Rosenbrock (10D) 11 4 10 2 30 0.003 10

3 Quartic (30D) 13 4 10 2 30 0.005 10

4 Ackley (10D) 11 4 10 2 30 0.00001 10

5 Schaffer (2D) 11 4 10 2 30 0.01 10

6 Easom (2D) 100 4 10 2 30 0.0009 10

7 Rastrigin (10D) 11 4 10 2 30 0.003 10

8 Shekel (4D) 1,000 4 10 2 30 0.001 10

40

9 Langerman (10D) 1,000 4 10 2 30 0.09 10

10 Griewank (10D) 17 10 10 2 30 0.001 10

11 Branin (2D) 15 10 10 2 30 0.01 10

12 Sumpow (10D) 20 4 10 2 30 0.0001 10

13 Bukin6 (2D) 10 4 10 2 30 0.00001 10

14 Crossit (2D) 15 4 10 2 30 0.05 10

15 Drop (2D) 11 4 10 2 30 0.01 10

16 Shubert (2D) 1,000 4 10 2 30 0.0005 10

17 Beale (2D) 45 4 10 2 30 0.045 10

18 McCorm (2D) 10 4 10 2 30 0.05 10

19 Camel6 (2D) 100 4 10 2 30 0.005 10

20 Boha1 (2D) 11 4 10 2 30 0.05 10

21 Colville (2D) 10 4 10 2 30 0.01 10

22 Powersum (2D) 10 4 10 2 30 0.01 10

23 Solomon (2D) 10 4 10 2 30 0.001 10

24 Alpine (2D) 13 4 10 2 30 0.001 10

Table 3.3 List of parameter values used for testing BBA
No. Functions n m nsp e nep ngh stlim

1 Sphere (10D) 11 4 10 2 30 0.003 10

2 Rosenbrock (10D) 10 4 10 2 30 0.003 10

3 Quartic (30D) 13 4 10 2 30 0.005 10

4 Ackley (10D) 10 4 10 2 30 0.01 10

5 Schaffer (2D) 10 4 10 2 30 0.01 10

6 Easom (2D) 10 4 10 2 30 0.01 10

7 Rastrigin (10D) 10 4 10 2 30 0.03 10

8 Shekel (4D) 10 4 10 2 30 0.01 10

9 Langerman (10D) 10 4 10 2 30 0.09 10

10 Griewank (10D) 10 10 10 2 30 0.1 10

11 Branin (2D) 10 10 10 2 30 0.001 10

12 Sumpow (10D) 10 4 10 2 30 0.1 10

13 Bukin6 (2D) 10 4 10 2 30 0.0001 10

14 Crossit (2D) 10 4 10 2 30 0.1 10

15 Drop (2D) 10 4 10 2 30 0.01 10

16 Shubert (2D) 10 4 10 2 30 0.1 10

17 Beale (2D) 10 4 10 2 30 0.05 10

18 McCorm (2D) 10 4 10 2 30 0.5 10

19 Camel6 (2D) 10 4 10 2 30 0.05 10

20 Boha1 (2D) 10 4 10 2 30 0.05 10

41

21 Colville (2D) 10 4 10 2 30 0.0005 10

22 Powersum (2D) 10 4 10 2 30 0.1 10

23 Solomon (2D) 10 4 10 2 30 0.01 10

24 Alpine (2D) 13 4 10 2 30 0.001 10

Table 3.4 qABC parameter settings

Parameter Value

Population size 10

Cycles (max number) 100

Employed bees ne 5

Onlooker bees ne 4

Random scouts 1

Stagnation limit for site (abandonment stlim) 200

ra 1

Table 3.5 SPSO2011 parameter settings
Parameter Value

Population size 100

PSO cycles (max number) T 500,000

Connectivity Default:3

Maximum velocity Default:1.1

C1 Default:1.1

C2 200

Wmax Default:0.7

Wmin Default:0.7

Table 3.6 Best performance figures for BAwSSR, BBA, qABC, and SPSO2011 for accuracy values

No. Functions
Result of 50 runs Result of 50 runs Result of 50 runs

BAwSSR qABC BAwSSR SPSO2011 BAwSSR BBA

1 Sphere (10D) 50 0 50 0 50 0

2 Rosenbrock (10D) 50 0 41 9 50 0

3 Quartic (30D) 50 0 49 1 50 0

4 Ackley (10D) 50 0 50 0 50 0

5 Schaffer (2D) 50 0 50 0 50 0

6 Easom (2D) 19 31 50 0 32 18

7 Rastrigin (10D) 50 0 50 0 50 0

8 Shekel (4D) 20 30 50 0 34 16

9 Langerman (10D) 36 14 50 0 27 23

10 Griewank (10D) 50 0 50 0 50 0

11 Branin (2D) 19 31 0 50 39 11

12 Sumpow (10D) 37 13 38 12 45 5

13 Bukin6 (2D) 42 8 48 2 38 12

42

14 Crossit (2D) 31 19 50 0 28 22

15 Drop (2D) 50 0 50 0 50 0

16 Shubert (2D) 14 36 50 0 46 4

17 Beale (2D) 34 16 28 22 33 17

18 McCorm (2D) 28 22 50 0 29 21

19 Camel6 (2D) 28 22 50 0 38 12

20 Boha1 (2D) 50 0 50 0 50 0

21 Colville (2D) 47 3 25 25 38 12

22 Powersum (2D) 48 2 39 11 28 22

23 Solomon (2D) 50 0 50 0 50 0

24 Alpine (2D) 50 0 50 0 50 0

 Total

BAwSSR: 20 BAwSSR: 22 BAwSSR: 24

BBA: 0
qABC: 4 SPSO2011: 1

 No winner: 1

Figures 3.7–3.15 below exhibit the performance in terms of accuracy by all the

algorithms involved.

Figure 3.7 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Rosenbrock

10D function

8.55E-04

8.55E-02

8.55E+00

1 3 5 7 9 1113151719212325272931333537394143454749

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1 3 5 7 9 1113151719212325272931333537394143454749

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

43

Figure 3.6 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Quartic 30D

function

Figure 3.7 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Ackley 10D

function

Figure 3.8 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Schaffer’s 2D

function

Figure 3.11 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Easom 2D

function

7.55E-15

7.55E-12

7.55E-09

7.55E-06

7.55E-03

7.55E+00

1 3 5 7 9 1113151719212325272931333537394143454749

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

44

Figure 3.12 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Rastrigin 10D

function

Figure 3.13 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Shekel 4D

function

Figure 3.14 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Langerman

10D function

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

2.69E-06

2.69E-05

2.69E-04

2.69E-03

2.69E-02

2.69E-01

2.69E+00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

e
ss

No. Runs

BBA

qABC

SPSO2011

BAwSSR

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

45

Figure 3.15 Result of 50 runs for BAA, BAwSSR, qABC, and SPSO2011 on Griewank

10D function

When examining the figures for the means and standard deviations in Table 3.7,

captured for 50 runs, the data indicate that BAwSSR had lower means in 23 functions.

However, lower than the above for the standard deviations showing that BAwSSR it is

spreading closer to the mean in only 19 functions. In general, these results support the above

conclusion about the improved performance of BAwSSR although not behaving fully

consistent. The values in Table 3.8, which compare BAwSSR against qABC, also confirm

the good performance, with BAwSSR achieving better means and standard deviations in 21

and 22 functions, respectively. Similarly, the findings presented in Table 3.9 for the

comparison between BAwSSR and SPSO2011 support the enhanced performance, with

BAwSSR exceling in 22 and 20 functions for the mean and standard deviation, respectively.

Furthermore, the proposed algorithm was able to find the exact minimum in the following

functions: Shaffer, Rastrigin, Griewank, and Drop. Additionally, the analysis of the figures

demonstrates that, among all the algorithms examined, BAwSSR was enhanced in 18

functions, more than half of which were multimodal, non-separable, scalable, and

differentiable. The overall conclusion is that BAwSSR was able to find more accurate

optimum than the competitor algorithms while exhibiting good level of consistency.

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

46

However, to investigate whether BAwSSR’s performance against the other

algorithms was statistically significant, the Mann–Whitney test was conducted.

Table 3.7 Mean and standard deviation of best accuracy values for BAwSSR and BBA obtained

through 50 independent runs on test functions f1–f24

No. Functions
BBA BAwSSR

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 8.19E -04 1.27E-04 4.10E-32 1.31E-32

2 Rosenbrock

(10D)
1.80E+00 9.23E-01 9.55E-04 3.72E-05

3 Quartic (30D) 3.70E+00 7.34E-01 4.18E-03 2.14E-02

4 Ackley (10D) 1.38E+01 1.25E+00 1.42E-14 2.25E-15

5 Schaffer (2D) 2.57E-04 2.61E-04 0.00E+00 0.00E+00

6 Easom (2D) 4.56E-04 2.64E-04 3.41E-04 2.29E-04

7 Rastrigin (10D) 1.33E+01 3.84E+00 0.00E+00 0.00E+00

8 Shekel (4D) 6.67E-04 1.96E-04 5.01E-04 2.26E-04

9 Langerman

(10D)
2.74E-01 1.79E-01 3.21E-01 1.50E-01

10 Griewank (10D) 5.68E-01 7.78E-02 0.00E+00 0.00E+00

11 Branin (2D) 6.43E-04 1.96E-04 3.85E-04 2.95E-04

12 Sumpow (10D) 6.86E-04 2.44E-04 2.17E-04 3.05E-04

13 Bukin6 (2D) 1.59E-02 4.93E-03 1.02E-02 4.07E-03

14 Crossit (2D) 4.23E-04 2.71E-04 3.77E-04 2.57E-04

15 Drop (2D) 4.06E-04 2.48E-04 0.00E+00 0.00E+00

16 Shubert (2D) 5.24E-03 4.89E-03 4.93E-04 2.60E-04

17 Beale (2D) 4.82E-04 2.74E-04 4.21E-04 2.72E-04

18 McCorm (2D) 5.26E-04 2.92E-04 4.68E-04 2.60E-04

19 Camel6 (2D) 4.87E-04 2.86E-04 2.63E-04 2.94E-04

20 Boha1 (2D) 4.68E-04 2.92E-04 0.00E+00 0.00E+00

21 Colville (2D) 9.28E-04 7.65E-05 8.45E-04 1.45E-04

22 Powersum (4D) 6.84E-04 2.26E-04 6.42E-04 2.10E-04

23 Solomon (2D) 5.49E-04 2.57E-04 1.06E-15 3.07E-16

24 Alpine (2D) 6.25E-04 2.41E-04 1.07E-16 3.93E-17

Total 1 5 23 19

Table 3.8 Mean, and standard deviation of best accuracy values obtained through 50 independent

runs on test functions f1–f24 for BAwSSR and qABC
No. Functions qABC BAwSSR

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 6.24E-04 2.49E-04 4.10E-32 1.31E-32

2 Rosenbrock (10D) 4.09E-01 8.85E-01 9.55E-04 3.72E-05

3 Quartic (30D) 5.23E-01 2.88E-01 4.18E-03 2.14E-02

4 Ackley (10D) 3.11E-03 3.05E-03 1.42E-14 2.25E-15

5 Schaffer (2D) 9.65E-04 8.04E-04 0.00E+00 0.00E+00

6 Easom (2D) 2.73E-04 3.28E-04 3.41E-04 2.29E-04

7 Rastrigin (10D) 6.22E-04 2.78E-04 0.00E+00 0.00E+00

8 Shekel (4D) 2.34E-02 1.61E-01 5.01E-04 2.26E-04

47

9 Langerman (10D) 3.50E-01 1.63E-01 3.21E-01 1.50E-01

10 Griewank (10D) 4.65E-02 2.19E-02 0.00E+00 0.00E+00

11 Branin (2D) 2.63E-04 2.76E-04 3.85E-04 2.95E-04

12 Sumpow (10D) 3.82E-04 1.12E-04 2.17E-04 3.05E-04

13 Bukin6 (2D) 2.81E-02 1.61E-02 1.02E-02 4.07E-03

14 Crossit (2D) 5.65E-04 3.01E-04 3.77E-04 2.57E-04

15 Drop (2D) 1.12E-02 2.17E-02 0.00E+00 0.00E+00

16 Shubert (2D) 2.69E-04 3.13E-04 4.93E-04 2.60E-04

17 Beale (2D) 1.98E-03 3.49E-03 4.21E-04 2.72E-04

18 McCorm (2D) 5.06E-04 2.83E-04 4.68E-04 2.60E-04

19 Camel6 (2D) 4.01E-04 3.26E-04 2.63E-04 2.94E-04

20 Boha1 (2D) 3.20E-04 2.78E-04 0.00E+00 0.00E+00

21 Colville (2D) 3.43E-02 3.10E-02 8.45E-04 1.45E-04

22 Powersum (4D) 7.13E-03 8.58E-03 6.42E-04 2.10E-04

23 Solomon (2D) 4.80E-02 4.88E-02 1.06E-15 3.07E-16

24 Alpine (2D) 5.58E-04 2.84E-04 1.07E-16 3.93E-17

Total 3 2 21 22

Table 3.9 Mean, and standard deviation of best accuracy values obtained through 50 independent

runs on test functions f1–f24 for BAwSSR and SPSO2011

No. Functions SPSO2011 BAwSSR

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10 D) 7.98E-04 1.44E-04 4.10E-32 1.31E-32

2 Rosenbrock (10D) 8.88E+00 4.36E+01 9.55E-04 3.72E-05

3 Quartic (30 D) 1.18E-01 6.70E-02 4.18E-03 2.14E-02

4 Ackley (10D) 3.70E-01 6.35E-01 1.42E-14 2.25E-15

5 Schaffer (2D) 2.69E-04 2.60E-04 0.00E+00 0.00E+00

6 Easom (2D) 1.00E+00 2.74E-06 3.41E-04 2.29E-04

7 Rastrigin (10D) 1.93E+01 1.01E+01 0.00E+00 0.00E+00

8 Shekel (4D) 9.32E+00 3.44E-01 5.01E-04 2.26E-04

9 Langerman (10D) 7.06E-01 9.64E-05 3.21E-01 1.50E-01

10 Griewank (10D) 1.38E-01 8.28E-02 0.00E+00 0.00E+00

11 Branin (2D) 3.58E-07 0.00E+00 3.85E-04 2.95E-04

12 Sumpow (10D) 5.48E-04 2.73E-04 2.17E-04 3.05E-04

13 Bukin6 (2D) 7.35E-02 3.97E-02 1.02E-02 4.07E-03

14 Crossit (2D) 4.43E-02 4.49E-02 3.77E-04 2.57E-04

15 Drop (2D) 2.25E-01 1.14E-01 0.00E+00 0.00E+00

16 Shubert (2D) 7.88E+01 4.48E+01 4.93E-04 2.60E-04

17 Beale (2D) 1.58E-02 1.07E-01 4.21E-04 2.72E-04

18 McCorm (2D) 1.58E-01 1.32E-01 4.68E-04 2.60E-04

19 Camel6 (2D) 4.44E-01 2.85E-01 2.63E-04 2.94E-04

20 Boha1 (2D) 4.12E-04 2.65E-04 0.00E+00 0.00E+00

21 Colville (2D) 8.08E-04 1.76E-04 8.45E-04 1.45E-04

22 Powersum (2D) 8.31E-04 2.21E-04 6.42E-04 2.10E-04

23 Solomon (4D) 2.64E-03 1.39E-02 1.06E-15 3.07E-16

24 Alpine (2 D) 6.69E-04 2.35E-04 1.07E-16 3.93E-17

Total 2 4 22 20

48

According to the Mann–Whitney test results shown in Table 3.10, among the 24

benchmark functions, BAwSSR performed significantly better than the BBA in 19

functions, while no significant differences were observed for the remaining five functions.

However, the values for BAwSSR and qABC reveal that the former was significantly better

in 18 functions; while no significant differences noted for three functions, and qABC won

the remaining three functions. Regarding SPSO2011, BAwSSR was significantly better in

21 functions; there were no statistically significant differences in two functions, and

SPSO2011 performed significantly better in one function. Although this seems less than the

accuracy values achieve, overall, BAwSSR performed significantly better, collectively, in

13 of the functions, with many of them having challenging features. Nonetheless, neither

the proposed algorithm nor the other algorithms were able to converge in Langerman and

Bukin6 functions.

As a conclusion, these findings indicate that the method used to enhance the

standard BA in the BAwSSR, positively affected the performance over the algorithms used

in this experiment.

Table 3.10 P-values using the Mann–Whitney test (a = 0.05) for accuracy acquired by BAwSSR

over ABC, BBA, and SPSO2011
No. Functions BAwSSR–qABC BAwSSR–SPSO2011 BAwSSR–BBA

p-value Significant p-value Significant p-value Significant

1 Sphere (10D) 7.07E-18 Yes 7.07E-18 Yes 7.07E-18 Yes

2 Rosenbrock (10D) 7.07E-18 Yes 7.75E-09 Yes 7.07E-18 Yes

3 Quartic (30D) 1.08E-17 Yes 6.34E-17 Yes 7.07E-18 Yes

4 Ackley (10D) 1.86E-18 Yes 1.82E-18 Yes 1.86E-18 Yes

5 Schaffer (2D) 3.31E-20 Yes 3.31E-20 Yes 3.31E-20 Yes

6 Easom (2D) 7.40E-03 qABC 9.12E-20 Yes 2.40E-02 Yes

7 Rastrigin (10D) 3.31E-20 Yes 3.29E-20 Yes 3.31E-20 Yes

8 Shekel (4D) 1.43E-01 No 7.07E-18 Yes 2.92E-04 Yes

9 Langerman (10D) 4.22E-04 Yes 7.07E-18 Yes 6.97E-01 No

10 Griewank (10D) 3.31E-20 Yes 3.31E-20 Yes 3.31E-20 Yes

11 Branin (2D) 1.43E-02 qABC 3.31E-20 SPSO2011 8.87E-06 Yes

49

12 Sumpow (10D) 3.95E-05 Yes 1.58E-07 Yes 4.71E-10 Yes

13 Bukin6 (2D) 5.89E-08 Yes 5.85E-15 Yes 1.84E-07 Yes

14 Crossit (2D) 2.13E-03 Yes 7.07E-18 Yes 4.18E-01 No

15 Drop (2D) 3.31E-20 Yes 3.31E-20 Yes 3.31E-20 Yes

16 Shubert (2D) 2.99E-05 qABC 7.07E-18 Yes 8.11E-13 Yes

17 Beale (2D) 1.25E-04 Yes 6.03E-02 No 2.43E-01 No

18 McCorm (2D) 5.74E-01 No 7.07E-18 Yes 3.26E-01 No

19 Camel6 (2D) 6.72E-02 No 7.07E-18 Yes 9.14E-05 Yes

20 Boha1 (2D) 3.31E-20 Yes 3.31E-20 Yes 3.31E-20 Yes

21 Colville (2D) 1.35E-13 Yes 4.18E-01 No 3.90E-04 Yes

22 Powersum (2D) 2.03E-14 Yes 5.90E-07 Yes 2.63E-01 No

23 Solomon (4D) 6.06E-18 Yes 7.07E-18 Yes 7.07E-18 Yes

24 Alpine (2D) 7.07E-18 Yes 7.07E-18 Yes 7.07E-18 Yes

Total BAwSSR: 18

qABC: 3

None: 3

BAwSSR: 21

SPSO2011: 1

None: 2

BAwSSR: 19

BBA: 0

None: 5

3.5.2 SR and NFEs

The investigation of the SR result listed in the Table 3.11 achieved by the four algorithms

involved in this study, displays that the proposed algorithm achieved the highest average SR

of 92% with 100% in all but three functions. However, BAwSSR could not converge in the

Bukin6 and Langerman functions obtaining 0% SR in both. However, qABC achieved poor

result as well getting 2% while BBA got 30%

Table 3.11 SR of BAwSSR compared with BBA, SPSO2011, and qABC, based on NFEs obtained

through 50 independent runs on test functions f1–f24

No. Functions qABC

success

rate

SPSO2011

success

rate

BBA

success

rate

BAwSSR

success

rate

1 Sphere (10D) 100% 100% 100% 100%

2 Rosenbrock (10D) 0% 74% 0% 100%

3 Quartic (30 D) 36% 0% 0% 96%

4 Ackley (10D) 22% 74% 0% 100%

5 Schaffer (2D) 64% 100% 100% 100%

6 Easom (2D) 100% 100% 100% 100%

7 Rastrigin (10D) 98% 0% 0% 100%

8 Shekel (4D) 98% 100% 100% 100%

9 Langerman (10D) 2% 100% 30% 18%

10 Griewank (10D) 0% 0% 0% 100%

11 Branin (2D) 100% 0% 100% 100%

12 Sumpow (10D) 100% 100% 100% 100%

13 Bukin6 (2D) 4% 4% 0% 0%

14 Crossit (2D) 100% 100% 100% 100%

50

15 Drop (2D) 74% 100% 100% 100%

16 Shubert (2D) 100% 100% 14% 100%

17 Beale (2D) 76% 98% 100% 100%

18 McCorm (2D) 100% 100% 100% 100%

19 Camel6 (2D) 100% 100% 100% 100%

20 Boha1 (2D) 100% 100% 100% 100%

21 Colville (2D) 10% 100% 100% 100%

22 Powersum (2D) 16% 100% 100% 100%

23 Solomon (4D) 48% 96% 100% 100%

24 Alpine (2 D) 100% 100% 100% 100%

SR average 65% 77% 69% 92%

To draw the full picture of the proposed algorithm’s performance, the NFEs need to

be considered in this analysis. Briefly, the NFEs, or speed, represent the number of times the

functions were executed by the algorithm while converging to the optimum; in other words,

how fast was the algorithm able to converge to the minimum? Hence, lower NFE values

mean that less time is needed to find the optimum. After considering the results shown in

Table 3.12, which compares BAwSSR against the BBA, qABC, and SPSO2011, it can be

clearly observed that the BAwSSR was faster than the BBA in 20 functions, whereas the

latter was faster in only 3 functions, and there was no winner in 1 function. Additionally,

among all the functions, BAwSSR converged faster than BBA in all the 50 runs of 14

functions. The comparison with qABC reveals similar findings, with BAwSSR excelling in

19 functions and with full performance in 10 functions for all 50 runs. However, qABC was

faster in only five functions. Conversely, the figures for the comparison with SPSO2011

show that BAwSSR was faster in only 14 functions, while SPSO2011 was faster in 10

functions. However, in eight of the ten functions in which SPSO2011 excelled, the algorithm

could neither find the optimum nor come close to it, which cannot be considered an indication

of good performance. Yet, BAwSSR converged faster in all 50 runs in eight functions.

Moreover, functions like Drop Sphere, Ackley, and Rastrigin needed only 102 NFEs, while

51

functions like Griewank needed a little more, with 110 NFEs. The abovementioned figures

demonstrate that BAwSSR performed better in terms of NFEs as well as the SR.

Table 3.12 Best performance of the BAwSSR, BBA, SPSO2011, and qABC for the NFEs obtained

through 50 independent runs on test functions f1–f24

No. Functions Result of 50 runs Result of 50 runs Result of 50 runs

BAwSSR qABC BAwSSR SPSO2011 BAwSSR BBA

1 Sphere (10 D) 50 0 50 0 50 0

2 Rosenbrock (10D) 50 0 44 6 50 0

3 Quartic (30 D) 40 10 48 2 50 0

4 Ackley (10D) 50 0 50 0 50 0

5 Schaffer (2D) 50 0 50 0 50 0

6 Easom (2D) 19 31 0 50 45 4

7 Rastrigin (10D) 50 0 50 0 50 0

8 Shekel (4D) 7 43 0 50 25 25

9 Langerman (10D) 9 41 0 50 8 42

10 Griewank (10D) 50 0 50 0 50 0

11 Branin (2D) 30 20 50 0 49 1

12 Sumpow (10D) 49 1 50 0 50 0

13 Bukin6 (2D) 26 24 0 50 3 46

14 Crossit (2D) 39 11 2 48 37 4

15 Drop (2D) 50 0 0 50 50 0

16 Shubert (2D) 8 42 0 50 50 0

17 Beale (2D) 47 3 44 6 12 33

18 McCorm (2D) 46 4 0 50 36 12

19 Camel6 (2D) 17 33 0 50 24 19

20 Boha1 (2D) 50 0 50 0 50 0

21 Colville (2D) 46 4 7 43 50 0

22 Powersum (2D) 50 0 39 11 45 5

23 Solomon (4D) 50 0 50 0 50 0

24 Alpine (2 D) 50 0 50 0 50 0

 Total BAwSSR: 19

qABC: 5

BAwSSR: 14

SPSO2011:10

BAwSSR: 20

BBA: 3

None: 1

Nevertheless, to discover other aspects of the performance, such as robustness and

reliability, this assessment needs to compute the mean and standard deviation figures. Table

3.13 indicates that BAwSSR performed better than the BBA, having lower mean values in

21 functions, and lower standard deviations in 20 functions. The interpretation of these

figures confirms the conclusion that the BAwSSR algorithm performed consistently faster

in finding the minimum. Similarly, in the comparison with qABC (Table 3.14), BAwSSR

acquired lower mean and standard deviation values in 20 and 21 functions, respectively,

52

suggesting that BAwSSR consistently performed faster. On the Contrary, the figures for

BAwSSR and SPSO2011 in Table 3.15 demonstrate that the former performed faster in

only 14 functions only, whereas SPSO2011 performed faster in 10 functions. However, in

seven functions (Easom, Shekel, Langerman, Crossit, Drop, Shubert, and McCorm), the

mean was lower due to SPSO2011 converging prematurely after 100 NFEs, with an

optimum value far from the standard one. This phenomenon was discussed in Chapter 2 as

one of the weaknesses of PSO in general. As stated above, this cannot be considered an

indication of better performance as the calculated optimum by SPSO2011 had low

accuracy. On the other hand, BAwSSR itself could not converge and was trapped in local

optima in the Langerman and Bukin6 functions.

The overall conclusion is that the achieved improvement could be attributed to the

use of the search space reduction technique in BAwSSR. The use of this method in the

initialisation and global stages via the five scenarios, helped the algorithm to conduct more

focused sampling rather than routinely repeating the same search procedure in every

iteration. Moreover, the samples taken via the search space reduction technique eventually

guided the neighbourhood search to locate the optimum in more promising locations.

Table 3.13 Means and standard deviations of NFEs obtained through 50 independent runs on test

functions f1–f24
No. Functions BBA BAwSSR

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 9180.34 2588.57 102.00 0.00

2 Rosenbrock (10D) 500042.22 5.54 55705.44 2036.26

3 Quartic (30) 500068.04 1.96 160903.42 151059.84

4 Ackley (10D) 500039.02 3.61 102.00 0.00

5 Schaffer (2D) 5066.22 2679.38 102.00 0.00

6 Easom (2D) 4060.24 1381.89 1972.66 814.79

7 Rastrigin (10D) 500068.86 3.86 102.00 0.00

8 Shekel (4D) 62742.04 32020.36 51442.88 11641.98

9 Langerman (10D) 385919.18 184710.55 431486.76 150993.14

53

10 Griewank (10D) 500045.52 3.98 110.00 0.00

11 Branin (2D) 4115.46 1758.67 857.66 388.14

12 Sumpow (10D) 951.20 179.34 75.68 47.38

13 Bukin6 (2D) 500012.54 5.56 500031.94 14.00

14 Crossit (2D) 400.84 227.00 164.24 69.92

15 Drop (2D) 27392.88 30397.32 102.00 0.00

16 Shubert (2D) 460845.84 106902.97 10468.80 3658.40

17 Beale (2D) 654.84 294.37 954.96 349.25

18 McCorm (2D) 1319.68 451.89 598.82 332.08

19 Camel6 (2D) 1025.76 692.52 874.40 300.75

20 Boha1 (2D) 93133.46 93331.19 102.00 0.00

21 Colville (2D) 90739.72 32563.57 31410.62 17993.65

22 Powersum (2D) 74731.52 65000.37 11361.32 8803.96

23 Solomon (2D) 38934.28 39767.45 102 0

24 Alpine (2D) 3546.60 1631.45 102 0

 Total 3 4 21 20

Table 3.14 Means and standard deviations of NFEs for qABC obtained through 50 independent runs

on test functions f1–f24
No. Functions qABC BAwSSR

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 33446.14 9643.90 102.00 0.00

2 Rosenbrock (10D) 500048.88 25.90 55705.44 2036.26

3 Quartic (30) 377869.86 180710.93 160903.42 151059.84

4 Ackley (10D) 468309.60 70444.77 102.00 0.00

5 Schaffer (2D) 233117.16 235650.01 102.00 0.00

6 Easom (2D) 2650.48 4249.69 1972.66 814.79

7 Rastrigin (10D) 180555.66 92942.62 102.00 0.00

8 Shekel (4D) 43292.62 96619.86 51442.88 11641.98

9 Langerman (10D) 491350.46 60942.64 431486.76 150993.14

10 Griewank (10D) 500049.58 27.24 110.00 0.00

11 Branin (2D) 1052.04 885.35 857.66 388.14

12 Sumpow (10D) 150.00 0.00 75.68 47.38

13 Bukin6 (2D) 490635.52 57616.16 500031.94 14.00

14 Crossit (2D) 274.00 115.86 164.24 69.92

15 Drop (2D) 236593.44 196388.31 102.00 0.00

16 Shubert (2D) 5662.18 9603.01 10468.80 3658.40

17 Beale (2D) 180170.24 213103.40 954.96 349.25

18 McCorm (2D) 13572.06 17897.62 598.82 332.08

19 Camel6 (2D) 790.00 369.86 874.40 300.75

20 Boha1 (2D) 1872.26 1145.41 102.00 0.00

21 Colville (2D) 453006.78 141528.21 31410.62 17993.65

22 Powersum (2D) 463048.28 94270.83 11361.32 8803.96

23 Solomon (2D) 273926.74 238028.51 102.00 0.00

24 Alpine (2D) 2344.00 8793.92 102.00 0.00

Total 4 3 20 21

54

Table 3.15 Means and standard deviations of NFEs obtained through 50 independent runs on test

functions f1–f24

No. Functions SPSO2011 BAwSSR

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 5884.00 437.89 102.00 0.00

2 Rosenbrock (10D) 209694.00 190711.63 55705.44 2036.26

3 Quartic (30 D) 500000.00 0.00 160903.42 151059.84

4 Ackley (10D) 139692.00 213573.00 102.00 0.00

5 Schaffer (2D) 2122.00 544.53 102.00 0.00

6 Easom (2D) 100.00 0.00 1972.66 814.79

7 Rastrigin (10D) 500000.00 0.00 102.00 0.00

8 Shekel (4D) 100.00 0.00 51442.88 11641.98

9 Langerman (10D) 100.00 0.00 431486.76 150993.14

10 Griewank (10D) 500000.00 0.00 110.00 0.00

11 Branin (2D) 500000.00 0.00 857.66 388.14

12 Sumpow (10D) 1502.00 327.10 75.68 47.38

13 Bukin6 (2D) 490634.00 65562.00 500031.94 14.00

14 Crossit (2D) 100.00 0.00 164.24 69.92

15 Drop (2D) 100.00 0.00 102.00 0.00

16 Shubert (2D) 100.00 0.00 10468.80 3658.40

17 Beale (2D) 11656.00 69765.16 954.96 349.25

18 McCorm (2D) 100.00 0.00 598.82 332.08

19 Camel6 (2D) 120.00 44.72 874.40 300.75

20 Boha1 (2D) 4992.00 742.12 102.00 0.00

21 Colville (2D) 14160.00 4506.00 31410.62 17993.65

22 Powersum (2D) 23094.00 23524.03 11361.32 8803.96

23 Solomon (2D) 26946.00 96573.06 102.00 0.00

24 Alpine (2D) 2912.00 1601.83 102.00 0.00

Total 10

10

14

11

None = 3

To determine the significance of the improvements exhibited by the proposed

algorithm, the Mann–Whitney test was carried out on the NFE figures, and the findings are

presented in Table 3.16. The findings reveal that, in the comparison between BAwSSR and

the BBA, BAwSSR’s performance was significantly better in 19 functions, the BBA’s was

better in two, and neither was superior in three. Similarly, the comparison with qABC

reveals that BAwSSR was significantly better in 17 functions, while qABC was better in

five, and neither was better in two. On the other hand, the BAwSSR–SPSO2011

comparison indicates that BAwSSR was significantly better in 14 functions and SPSO2011

was better in 10. As noted above, this result cannot be considered an indication of good

55

performance. Nonetheless, the result presents convincing evidence for the effect of the

technique used in the proposed algorithm.

Table 3.16 P-values using the Mann–Whitney test (a = 0.05) for NFEs acquired by BAwSSR over

the BBA
No. Functions BAwSSR–qABC BAwSSR–SPSO2011 BAwSSR–BBA

P-value Significant P-value Significant P-value Significant

1 Sphere (10D) 3.31E-20 Yes 1.72E-20 Yes 3.28E-20 Yes

2 Rosenbrock (10D) 6.84E-18 Yes 3.05E-11 Yes 6.69E-18 Yes

3 Quartic (30 D) 4.58E-08 Yes 1.73E-17 Yes 6.21E-18 Yes

4 Ackley (10D) 3.30E-20 Yes 1.59E-20 Yes 3.11E-20 Yes

5 Schaffer (2D) 3.30E-20 Yes 1.72E-20 Yes 3.30E-20 Yes

6 Easom (2D) 1.21E-02 qABC 2.50E-20 SPSO2011 2.11E-13 Yes

7 Rastrigin (10D) 3.31E-20 Yes 1.59E-23 Yes 3.16E-20 Yes

8 Shekel (4D) 2.10E-10 qABC 2.55E-20 SPSO2011 2.98E-01 No

9 Langerman (10D) 2.65E-08 qABC 2.46E-20 SPSO2011 1.46E-09 BBA

10 Griewank (10D) 3.30E-20 Yes 1.59E-23 Yes 3.04E-20 Yes

11 Branin (2D) 9.96E-02 No 2.44E-20 Yes 3.41E-16 Yes

12 Sumpow (10D) 5.98E-21 Yes 1.24E-18 Yes 1.69E-18 Yes

13 Bukin6 (2D) 2.17E-01 No 3.63E-20 SPSO2011 3.88E-13 BBA

14 Crossit (2D) 1.42E-07 Yes 8.39E-18 SPSO2011 5.54E-09 Yes

15 Drop (2D) 3.31E-20 Yes 1.59E-23 SPSO2011 3.31E-20 Yes

16 Shubert (2D) 7.67E-10 qABC 2.38E-20 SPSO2011 6.34E-18 Yes

17 Beale (2D) 1.36E-14 Yes 3.55E-12 Yes 3.23E-05 BBA

18 McCorm (2D) 1.14E-12 Yes 2.32E-20 SPSO2011 4.92E-08 Yes

19 Camel6 (2D) 2.02E-02 qABC 2.86E-19 SPSO2011 1.71E-01 No

20 Boha1 (2D) 3.19E-20 Yes 1.74E-20 Yes 3.31E-20 Yes

21 Colville (2D) 7.63E-14 Yes 2.96E-12 SPSO2011 3.77E-15 Yes

22 Powersum (2D) 7.06E-18 Yes 1.07E-03 Yes 8.59E-12 Yes

23 Solomon (2D) 3.30E-20 Yes 1.78E-20 Yes 3.31E-20 Yes

24 Alpine (2D) 3.11E-20 Yes 1.76E-20 Yes 3.28E-20 Yes

Total BAwSSR: 17

qABC: 5

 None: 2

BAwSSR: 14

SPSO2011: 10

None: 0

BAwSSR: 19

BBA: 2

None: 3

3.6 Summary

In this chapter, a new enhancement to the BA optimisation method was proposed. The core

of this proposal is based on the gradual reduction of the search space, a technique borrowed

from the numerical method of bracketing. This enhancement was applied to the initial and

global search stages of the BA due to the researcher’s assumption that the neighbourhood

56

search stage job is large extent dependent on these two stages. The proposed method was

tested in 24 benchmark functions with a wide variety of surface topography and

complexity. It was then compared with the latest versions of two of the highly popular

algorithms, SPSO2011 and qABC. According to the Mann–Whitney statistical significance

test, the results demonstrated significantly better performance by the proposed method in at

least three-quarters of the functions tested in terms of accuracy as well as speed. The

introduced method was able to find the exact minimum at a remarkably high speed, even

for functions such as Ackley, Rastrigin, and Griewank, which create difficulties for many

algorithms due to their highly pocketed topography. Moreover, it is worth noting that the

test was carried out with a range of functions that are mostly differentiable and with limited

dimensionality, where more than half of the functions were only two-dimensional. This

implies the need for more thorough testing of the proposed method in a wider range of test

functions.

57

Chapter 4 BEES ALGORITHM IMPROVEMENT USING

DOMAIN SEGMENTATION (BADS)

4.1 Preliminaries

The BA, like many other metaheuristic algorithms, depends on randomisation to explore more

solutions. This approach creates one of the problems hindering optimisation algorithms’ search

for the optimum—the inability of the extracted sample to be evenly distributed throughout the

search space or being scattered nearby. This renders the generated samples biased, as it is highly

likely that certain areas of the search space will be ignored. Hence, more processing time and

computational resources will be needed, eventually causing the search process for the optima to

become exceedingly costly. In general, more representative samples will be needed to achieve an

exhaustive search, thus, smarter optimised search.

4.2 Domain Segmentation Sampling Method

To resolve the aforementioned problem, this chapter introduces a new technique based on

segmenting the search space and sampling from each segment. The BA is a well-known

algorithm and has been subject to a wide variety of developments and improvements by many

researchers. To the best of this researcher’s knowledge, hardly any BA improvements have been

employed in the segmentation of the search space for the sake of diversifying the obtained

solution. With the current sampling procedure of the BBA, there is no guarantee that the

extracted sample will not ignore certain parts of the search space. With search space partitioning,

each section will be independent from the others. The proposed algorithm will be applied to two

of the BA stages: initialisation and global search. As mentioned in Chapter 3, these two stages

have undergone fewer improvement attempts by researchers (Hussein et al., 2014), so giving

58

them more consideration is worthwhile. This focus is also due to the author’s belief that these

two stages have more impact in the BA’s overall performance than does the neighbourhood

search stage. In truth, as discussed in Chapter 3, neighbourhood search is highly dependent on

these two stages. However, solely dividing the search space into independent segments might

introduce its own problems if each different segment will be used to generate one different

sample with all its parameters are taken from the same segment. The arising problem is related to

the way the parameter values for some benchmarking or real-life engineering problems are

distributed throughout the search space. Although, segmentation has proven to be effective in

problems where parameters have the same value, but for other numerical benchmark functions

and engineering design problems, the values of the parameters are not identical which means

they might be located in different areas of the search space and hence different segments; thus,

taking a full sample from one segment at a time means it is likely to miss some parameter values

ending up with the search trapped at some point and cannot move forward. The suggested

solution is to provide the option to extract the sample in two approaches:

1. The whole sample is extracted from one independent segment; the number of segments is

equal to the number of samples (Figure 4.1). For example, for the function Griewank,

where search space is [-600, 600], the segment length will be calculated as follows:

 Segment length (S) = L/n = 1200/10 = 120 (4.1)

where n is the number of samples = 10, and L is the length space, calculated as

 L = (600− (−600)) = 1200 (4.2)

59

Figure 4.1 First sampling approach from segmented search space

2. Every parameter of the same sample will be taken from a different segment; the number

of segments will be equal to the number of variables (Figure 4.2). For example, for

function Colville, the search space is [-10, 10], and the number of parameters (D) = 4:

Search space length L = (10− (−10)) = 20 (4.3)

Length of Segment S = L/D = 20/4 = 5 (4.4)

Figure 4.2 Second approach sampling from segmented search space

However, to optimise the above two search approaches to focus on promising areas of

search space, these areas will be tracked according to the best parameters found that give the

closest optimum to the standard. When these promising areas are identified, the search for the

60

optimum will be reduced to these areas. This is an ongoing process that will be performed

repeatedly to optimise the search. Thus, the proposed method will be named the BA domain

(BADS) segmentation.

4.3 Search Space Mobile Subset Sampling

Another sampling method used in this proposed enhancement in this chapter is the mobile small

subset of the search space. In this method, a small subset of the search will be used to extract the

sample. The search will be limited to small subset, generated from the whole space to

concentrate the effort for generating sample. at first, the subset will start from the left end of the

domain up to the added small subset. For example, for function Colville, where search space is

limited between [-10, 10] (Figure 4.3):

at the start of the search 𝑎𝑖 = −10, 𝑖 = 1,2, … 𝑛 (4.5)

 where aI is the first segment of the search space , n is the number of samples.

the length of the search space L = (10− (−10)) = 20 (4.6)

𝑏𝑖 = 𝑎𝑖 + 𝑆, 𝑤ℎ𝑒𝑟𝑒 𝑆 = randum (0.001, 0.01) (4.7)

The next subset will be calculated as:

 𝑎𝑖+1 = 𝑎𝑖 + 𝐿/(2 ∗ 𝑛), L is (4.8)

The process will continue until the right end of the search space is reached; the search then will

return from the left end where it started.

61

Figure 4.3 Sampling from a mobile subset of search space

4.4 Experiment Setup

An improved version of the BA based on the proposed method described in Sections 4.2 and 4.3

was tested, and the results are reported here. The test was carried out on the same list of

benchmark functions used in Chapter 3, but with different parameter settings for the proposed

algorithm. These settings are described in Table 4.1. However, the parameter settings for the

BBA, qABC, and SPSO2011 remained the same. Furthermore, the exact performance metrics,

which consist of the accuracy, SR, and NFE, were used. These metrics were applied to the results

obtained from 50 runs, with the same stopping criteria and evaluation procedure as described in

Chapter 3. Similarly, the Mann–Whitney statistical significance test was performed on the

acquired test results and was used to evaluate and compare the performance of all the algorithms

involved.

Table 4.1 List of parameter values used for testing BADS

No. Functions n m nsp e nep ngh stlim

1 Sphere (10D) 13 4 10 2 30 0.03 10

2 Rosenbrock (10D) 100 4 10 2 30 0.0001 10

3 Quartic (30D) 13 4 10 2 30 0.005 10

4 Ackley (10D) 13 4 10 2 30 0.00001 10

62

5 Schaffer (2D) 13 4 10 2 30 0.01 10

6 Easom (2D) 100 4 10 2 30 0.00009 10

7 Rastrigin (10D) 13 4 10 2 30 0.003 10

8 Shekel (4D) 1,000 4 10 2 30 0.001 10

9 Langerman (10D) 100 4 10 2 30 0.09 10

10 Griewank (10D) 17 4 10 2 30 0.001 10

11 Branin (2D) 15 4 10 2 30 0.01 10

12 Sumpow (10D) 20 4 10 2 30 0.000` 10

13 Bukin6 (2D) 11 4 10 2 30 0.01 10

14 Crossit (2D) 15 4 10 2 30 1 10

15 Drop (2D) 13 4 10 2 30 0.01 10

16 Shubert (2D) 20 4 10 2 30 0.0005 10

17 Beale (2D) 1,000 4 10 2 30 0.45 10

18 McCorm (2D) 100 4 10 2 30 0.05 10

19 Camel6 (2D) 13 4 10 2 30 0.005 10

20 Boha1 (2D) 13 4 10 2 30 0.05 10

21 Colville (2D) 13 4 10 2 30 0.0005 10

22 Powersum (2D) 13 4 10 2 30 0.01 10

23 Solomon (2D) 13 4 10 2 30 0.001 10

24 Alpine (2D) 100 4 10 2 30 0.0001 10

4.5 Results and Discussion

4.5.1 Solution Quality (Accuracy)

Table 4.2 presents the overall difference in performance for every function in 50 runs by the

involved algorithms. As indicated by these values, the proposed algorithm, BADS, exhibited

more instances of improved performance than all other algorithms in no less than two-thirds of

the functions tested. The best result was in testing BADS against SPSO2011, where BADS

achieved better accuracy performance in 22 of the functions (91%), while SPSO2011 performed

better in only 1 function. The result of testing against the BBA was next in terms of best

accuracy performance, as BADS performed better in 21 functions (90%), while the BBA was

better in only 3 functions. However, qABC showed slightly better performance than SPSO2011

and obtained better results in 5 functions, while BADS was superior in 19 functions (80%). In

63

general, the results demonstrate outstanding performance by the proposed algorithm in, for

example, Rosenbrock (10D), Quartic (30D), Ackley (10D), Rastrigin (10D), Griewank (10D),

and Solomon (2D) functions, where it performed better in most of the 50 runs. These functions

used to represent a challenge for many optimisation algorithms due to their complex topography.

Table 4.2 Best performance figures for BADS, BBA, qABC, and SPSO2011 for accuracy values

No. Functions
Result of 50 runs Result of 50 runs Result of 50 runs

BADS qABC BADS SPSO2011 BADS BBA

1 Sphere (10D) 42 8 41 9 46 4

2 Rosenbrock (10D) 50 0 50 0 50 0

3 Quartic (30D) 49 1 48 2 50 0

4 Ackley (10D) 49 1 50 0 50 0

5 Schaffer (2D) 45 5 44 6 43 7

6 Easom (2D) 27 23 50 0 35 15

7 Rastrigin (10D) 49 1 50 0 50 0

8 Shekel (4D) 34 16 50 0 47 3

9 Langerman (10D) 5 45 49 1 0 50

10 Griewank (10D) 50 0 50 0 50 0

11 Branin (2D) 14 36 0 50 37 13

12 Sumpow (10D) 39 11 42 8 45 5

13 Bukin6 (2D) 1 49 25 25 1 49

14 Crossit (2D) 36 14 50 0 31 19

15 Drop (2D) 45 5 50 0 42 8

16 Shubert (2D) 16 34 50 0 46 4

17 Beale (2D) 37 13 27 23 31 19

18 McCorm (2D) 29 21 50 0 27 23

19 Camel6 (2D) 21 29 50 0 28 22

20 Boha1 (2D) 38 12 35 15 43 7

21 Colville (2D) 48 2 46 4 49 1

22 Powersum (2D) 46 4 31 19 18 32

23 Solomon (2D) 50 0 46 4 50 0

24 Alpine (2D) 46 4 47 3 48 2

 Total

BADS: 19 BADS: 22 BADS: 21

qABC: 5 SPSO2011: 1 BBA: 3

 None: 1

64

Figures 4.4–4.12 are the performance charts in terms of accuracy by all the algorithms involved.

Figure 4.4 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Rosenbrock

10D function

Figure 4.5 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Quatric 30D

function

Figure 4.6 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Ackley 10D

function

2.21E-05

2.21E-03

2.21E-01

2.21E+01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

7.55E-15

7.55E-10

7.55E-05

7.55E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

65

Figure 4.7 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Schaffer 2D

function

Figure 4.8 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Easom 2D

function

Figure 4.9 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Rastrigin 2D

function

0.00E+00

1.00E-03

2.00E-03

3.00E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Fi

tn
es

s

No. Runs

BBA qABC SPSO2011 BADS

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

1.37E-09
1.37E-08
1.37E-07
1.37E-06
1.37E-05
1.37E-04
1.37E-03
1.37E-02
1.37E-01
1.37E+00
1.37E+01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

66

Figure 4.10 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Shekel 4D

function

Figure 4.11 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Langerman

10D function

Figure 4.12 Result of 50 runs for the BBA, BADS, qABC, and SPSO2011 on Griewank 10D

function

Nonetheless, these findings must be validated using the means and standard deviations

obtained for the performance figures to inspect the consistency and stability of the suggested

technique. However, as mentioned in Chapter 3, in certain cases, the standard deviation values

might not be true reflections of consistent behaviour, as one algorithm might consistently

produce same optimum value even though its worse than its counterparts in terms of accuracy.

2.69E-06

2.69E-04

2.69E-02

2.69E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Fi

tn
es

s

No. Runs

BBA qABC SPSO2011 BADS

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

1.00E-13

1.00E-09

1.00E-05

1.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

67

The values in Table 4.3 compare the means and standard deviations of the BBA and

BADS. It can be noticed that, while the mean values for BADS were better than BBA in 21

functions, the standard deviations did not perform equally well, having better values in only 16

functions. However, the values for two functions were eliminated because of their deficient

performance. In the Langerman and Bukin6 functions, BADS was stuck in local optima and

could not converge, where as in Powersum function BBA performed than BADS. The overall

result suggests that BADS performed consistently better in 13 functions, where the means and

standard deviations were collectively better than those for BBA. This comprises slightly more

than half of the functions tested, which suggests that the proposed algorithm was not fully

consistent.

Table 4.3 Means and standard deviations of best accuracy values for BADS and the BBA through 50

independent runs on functions f1–f24

No.

Functions BBA BADS

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 8.19E-04 1.27E-04 4.19E-04 2.93E-04

2 Rosenbrock (10D) 1.80E+00 9.23E-01 3.53E-04 3.20E-05

3 Quartic (30D) 3.70E+00 7.34E-01 2.45E-02 1.29E-01

4 Ackley (10D) 1.38E+01 1.25E+00 1.95E-04 1.96E-04

5 Schaffer (2D) 2.57E-04 2.61E-04 3.53E-04 2.19E-04

6 Easom (2D) 4.56E-04 2.64E-04 3.53E-04 2.28E-04

7 Rastrigin (10D) 1.33E+01 3.84E+00 9.14E-05 2.56E-04

8 Shekel (4D) 6.67E-04 1.96E-04 3.53E-04 1.55E-04

9 Langerman (10D) 2.74E-01 1.79E-01 7.00E-01 1.37E-02

10 Griewank (10D) 5.68E-01 7.78E-02 3.36E-04 3.57E-04

11 Branin (2D) 6.43E-04 1.96E-04 3.99E-04 3.10E-04

12 Sumpow (10D) 6.86E-04 2.44E-04 3.53E-04 3.17E-04

13 Bukin6 (2D) 1.59E-02 4.93E-03 5.22E-02 2.68E-02

14 Crossit (2D) 4.23E-04 2.71E-04 3.53E-04 2.98E-04

15 Drop (2D) 4.06E-04 2.48E-04 3.53E-04 2.86E-04

16 Shubert (2D) 5.24E-03 4.89E-03 5.49E-04 2.82E-04

17 Beale (2D) 4.82E-04 2.74E-04 3.53E-04 3.09E-04

18 McCorm (2D) 5.26E-04 2.92E-04 3.53E-04 2.78E-04

19 Camel6 (2D) 4.87E-04 2.86E-04 3.53E-04 2.41E-04

20 Boha1 (2D) 4.68E-04 2.92E-04 3.53E-04 2.30E-04

21 Colville (2D) 9.28E-04 7.65E-05 3.53E-04 2.68E-04

22 Powersum (4D) 6.84E-04 2.26E-04 7.61E-04 2.08E-04

23 Solomon (2D) 5.49E-04 2.57E-04 3.53E-04 2.15E-04

24 Alpine (2D) 6.25E-04 2.41E-04 1.33E-04 1.23E-04

68

Total 3 8 21 16

The values in Table 4.4, which compares the means and standard deviations of qABC and

BADS, indicate clearly that BADS exhibited more stable performance than qABC. BADS

achieved better means and standard deviations in 19 functions. The standard deviation values for

the Langerman and Bukin6 functions were excluded even though BADS obtained better standard

deviations, as qABC acquired better solutions in most of the runs (45). However, neither

algorithm could converge within the limit of NFEs.

Table 4.4 Means and standard deviations of accuracy values through 50 runs on functions f1–f24 for

BADS and qABC
No. Functions qABC BADS

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 6.24E-04 2.49E-04 2.43E-04 2.96E-04

2 Rosenbrock (10D) 4.09E-01 8.85E-01 7.65E-05 2.72E-05

3 Quartic (30D) 5.23E-01 2.88E-01 3.57E-02 1.50E-01

4 Ackley (10D) 3.11E-03 3.05E-03 1.44E-04 1.80E-04

5 Schaffer (2D) 9.65E-04 8.04E-04 7.00E-05 1.85E-04

6 Easom (2D) 2.73E-04 3.28E-04 2.33E-04 2.23E-04

7 Rastrigin (10D) 6.22E-04 2.78E-04 2.15E-05 1.38E-04

8 Shekel (4D) 2.34E-02 1.61E-01 1.72E-04 1.99E-04

9 Langerman (10D) 3.50E-01 1.63E-01 5.80E-01 7.44E-02

10 Griewank (10D) 4.65E-02 2.19E-02 1.49E-04 3.02E-04

11 Branin (2D) 2.63E-04 2.76E-04 4.20E-04 2.82E-04

12 Sumpow (10D) 3.82E-04 1.12E-04 1.62E-04 2.75E-04

13 Bukin6 (2D) 2.81E-02 1.61E-02 8.74E-02 2.45E-02

14 Crossit (2D) 5.65E-04 3.01E-04 3.42E-04 2.67E-04

15 Drop (2D) 1.12E-02 2.17E-02 1.20E-04 2.71E-04

16 Shubert (2D) 2.69E-04 3.13E-04 4.37E-04 2.50E-04

17 Beale (2D) 1.98E-03 3.49E-03 4.22E-04 2.81E-04

18 McCorm (2D) 5.06E-04 2.83E-04 4.43E-04 2.37E-04

19 Camel6 (2D) 4.01E-04 3.26E-04 4.26E-04 2.70E-04

20 Boha1 (2D) 3.20E-04 2.78E-04 1.32E-04 2.21E-04

21 Colville (2D) 3.43E-02 3.10E-02 3.88E-04 3.54E-04

22 Powersum (4D) 7.13E-03 8.58E-03 7.61E-04 2.08E-04

23 Solomon (2D) 4.80E-02 4.88E-02 2.96E-05 1.16E-04

24 Alpine (2D) 5.58E-04 2.84E-04 1.14E-04 9.20E-05

Total 5 4 19 20

The data in Table 4.5, which compares the performance of SPSO2011 against BADS,

indicate similar discrepancies between these two statistical measures in Table 4.3. The BADS

mean figures were better in 22 functions, whereas its standard deviations were better in only 17

69

functions. However, the figures for Bukin6 were not considered because it performed poorly and

did not converge to the optimum at all, winning only half of the 50 runs against SPSO2011.

Similarly, Langerman should be excluded as BADS could not converge within the NFEs limit.

Moreover, many functions performed well in most of the 50 runs, such as Sphere, Quartic, and

Easom, but the standard deviations were not better than those of SPSO2011, which suggests

performance inconsistency. In general, BADS did not show stable behaviour in almost one-third

of the functions. Additionally, ngh parameter tuning was needed to improve the result,

demonstrating sensitive behaviour by BADS.

Table 4.5 Means, and standard deviations of accuracy values obtained through 50 runs on test functions

f1–f24 for BADS and SPSO2011

No. Functions SPSO2011 BADS

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 7.98E-04 1.44E-04 2.43E-04 2.96E-04

2 Rosenbrock (10D) 8.88E+00 4.36E+01 7.65E-05 2.72E-05

3 Quartic (30D) 1.18E-01 6.70E-02 3.57E-02 1.50E-01

4 Ackley (10D) 3.70E-01 6.35E-01 1.44E-04 1.80E-04

5 Schaffer (2D) 2.69E-04 2.60E-04 7.00E-05 1.85E-04

6 Easom (2D) 1.00E+00 2.74E-06 2.33E-04 2.23E-04

7 Rastrigin (10D) 1.93E+01 1.01E+01 2.15E-05 1.38E-04

8 Shekel (4D) 9.32E+00 3.44E-01 1.72E-04 1.99E-04

9 Langerman (10D) 7.06E-01 9.64E-05 5.80E-01 7.44E-02

10 Griewank (10D) 1.38E-01 8.28E-02 1.49E-04 3.02E-04

11 Branin (2D) 3.58E-07 0.00E+00 4.20E-04 2.82E-04

12 Sumpow (10D) 5.48E-04 2.73E-04 1.62E-04 2.75E-04

13 Bukin6 (2D) 7.35E-02 3.97E-02 8.74E-02 2.45E-02

14 Crossit (2D) 4.43E-02 4.49E-02 3.42E-04 2.67E-04

15 Drop (2D) 2.25E-01 1.14E-01 1.20E-04 2.71E-04

16 Shubert (2D) 7.88E+01 4.48E+01 4.37E-04 2.50E-04

17 Beale (2D) 1.58E-02 1.07E-01 4.22E-04 2.81E-04

18 McCorm (2D) 1.58E-01 1.32E-01 4.43E-04 2.37E-04

19 Camel6 (2D) 4.44E-01 2.85E-01 4.26E-04 2.70E-04

20 Boha1 (2D) 4.12E-04 2.65E-04 1.32E-04 2.21E-04

21 Colville (2D) 8.08E-04 1.76E-04 3.88E-04 3.54E-04

22 Powersum (2D) 8.31E-04 2.21E-04 7.61E-04 2.08E-04

23 Solomon (4D) 2.64E-03 1.39E-02 2.96E-05 1.16E-04

24 Alpine (2 D) 6.69E-04 2.35E-04 1.14E-04 9.20E-05

Total 2 7 22 17

Although the above analysis and discussion suggest a proper level of improvement was

achieved by the proposed algorithm, the Mann–Whitney test must be used to verify whether this

70

improvement is statistically significant. The p-values in Table 4.6 reveal that BADS was

significantly better than qABC in 17 functions, which is equivalent to the figures against the

BBA. On the other hand, BADS was significantly better than SPSO2011 in 21 functions. The

overall significant test results indicate that BADS exhibited significantly better performance in at

least 70% of the functions tested. In general, BADS exhibited the ability to calculate accurate

optimum with a level of consistency in the average. Nonetheless, considering the number of

functions used in the experiment, it is highly unlikely that the improved performance of the BA

happened arbitrarily and not as an effect of employing the domain segmentation method.

Table 4.6 P-values using Mann–Whitney test (a = 0.05) for accuracy acquired by BADS over qABC,

BBA, and SPSO2011

No. Functions BADS–qABC BADS–SPSO2011 BADS–BBA

P-value Significant P-value Significant P-value Significant

1 Sphere (10D) 2.60E-08 Yes 4.76E-14 Yes 2.26E-14 Yes

2 Rosenbrock (10D) 7.07E-18 Yes 7.03E-18 Yes 7.07E-18 Yes

3 Quartic (30D) 9.92E-16 Yes 2.95E-14 Yes 7.07E-18 Yes

4 Ackley (10D) 1.01E-17 Yes 6.92E-18 Yes 7.07E-18 Yes

5 Schaffer (2D) 1.82E-14 Yes 3.23E-11 Yes 3.55E-11 Yes

6 Easom (2D) 6.92E-01 No 9.12E-20 Yes 2.01E-05 Yes

7 Rastrigin (10D) 1.20E-16 Yes 7.02E-18 Yes 7.07E-18 Yes

8 Shekel (4D) 2.45E-03 Yes 7.07E-18 Yes 2.80E-14 Yes

9 Langerman (10D) 2.16E-13 qABC 7.07E-18 Yes 7.07E-18 BBA

10 Griewank (10D) 7.07E-18 Yes 7.07E-18 Yes 7.07E-18 Yes

11 Branin (2D) 3.14E-03 qABC 3.31E-20 SPSO2011 5.93E-05 Yes

12 Sumpow (10D) 2.25E-07 Yes 5.14E-10 Yes 5.05E-12 Yes

13 Bukin6 (2D) 2.05E-15 qABC 1.51E-01 No 7.12E-17 BBA

14 Crossit (2D) 4.56E-04 Yes 7.07E-18 Yes 1.03E-01 No

15 Drop (2D) 6.13E-12 Yes 7.07E-18 Yes 2.89E-10 Yes

16 Shubert (2D) 5.19E-04 qABC 7.07E-18 Yes 3.43E-13 Yes

17 Beale (2D) 1.52E-04 Yes 8.30E-02 No 2.93E-01 No

18 McCorm (2D) 2.37E-01 No 7.07E-18 Yes 3.06E-01 No

19 Camel6 (2D) 4.84E-01 No 7.07E-18 Yes 1.76E-01 No

20 Boha1 (2D) 1.42E-06 Yes 7.45E-09 Yes 1.34E-09 Yes

21 Colville (2D) 2.13E-16 Yes 1.03E-08 Yes 5.57E-14 Yes

22 Powersum (2D) 6.00E-13 Yes 2.91E-02 Yes 8.30E-02 No

23 Solomon (4D) 1.24E-16 Yes 7.12E-17 Yes 2.14E-16 Yes

24 Alpine (2D) 3.10E-12 Yes 1.07E-16 Yes 3.79E-16 Yes

Total BADS: 17

qABC: 4

None: 3

BADS: 21

SPSO2011: 1

None: 2

BADS: 17

BBA: 2

None: 5

71

4.5.2 SR and NFEs

When examining Table 4.7, it is evident that BADS achieved the highest SR average, with 91%

obtained for all functions. This result was affected by the poor performance of Langerman and

Bukin6, the two functions that could not converge getting 0% SR, suggesting that they were

trapped in some local optima. Those two functions have always been too difficult to solve for all

the proposed algorithms in this research. Additionally, the function Quartic achieved only 92%

SR. The figures for the other algorithms are as follows: SPSO2011 77%, BBA 69%, and qABC

65%.

Table 4.7 SR of the BADS, BBA, SPSO2011, and qABC algorithms based on NFEs obtained through 50

runs on functions f1–f24

No. Functions qABC

success

rate

SPSO2011

success

rate

BBA

success

rate

BADS

success

rate

1 Sphere (10 D) 100% 100% 100% 100%

2 Rosenbrock

(10D) 0% 74% 0% 100%

3 Quartic (30D) 36% 0% 0% 92%

4 Ackley (10D) 22% 74% 0% 100%

5 Schaffer (2D) 64% 100% 100% 100%

6 Easom (2D) 100% 100% 100% 100%

7 Rastrigin (10D) 98% 0% 0% 100%

8 Shekel (4D) 98% 100% 100% 100%

9 Langerman

(10D) 2% 100% 30% 0%

10 Griewank (10D) 0% 0% 0% 100%

11 Branin (2D) 100% 0% 100% 100%

12 Sumpow (10D) 100% 100% 100% 100%

13 Bukin6 (2D) 4% 4% 0% 0%

14 Crossit (2D) 100% 100% 100% 100%

15 Drop (2D) 74% 100% 100% 100%

16 Shubert (2D) 100% 100% 14% 100%

17 Beale (2D) 76% 98% 100% 100%

18 McCorm (2D) 100% 100% 100% 100%

19 Camel6 (2D) 100% 100% 100% 100%

20 Boha1 (2D) 100% 100% 100% 100%

21 Colville (2D) 10% 100% 100% 100%

22 Powersum (2D) 16% 100% 100% 100%

23 Solomon (4D) 48% 96% 100% 100%

24 Alpine (2 D) 100% 100% 100% 100%

SR average 65% 77% 69% 91%

72

As mentioned in Chapter 3, NFE measures how quickly an algorithm finds the optimum.

It is a common indicator used in the literature on optimisation algorithms because it is more

objective than CPU time. From Table 4.8, BADS outperformed the BBA and qABC, performing

faster than the BBA in 21 functions and faster than qABC in 20 functions. While SPSO2011

appears to function efficiently, were it achieved better NFE values in 11 functions (or one-third

of the total); nonetheless, its performance in eight of the functions was not an improvement, as

the marginal difference for the optimum found by SPSO2011 was at least twice that of the

standard optimum due to the premature convergence phenomenon that was highlighted in

previous chapters. Yet, the overall inference from the figures is that BADS exhibited a noticeable

improvement, outperforming the other algorithms involved in the testing. However, to evaluate

the consistent and stability behaviour of the proposed algorithm, the means and standard

deviations should be calculated to provide adequate performance comparisons with the other

algorithms.

Table 4.8 Best performance of BADS, SPSO2011, and qABC for the NFEs obtained through 50 runs on

test functions f1–f24

No. Functions Result of 50 runs Result of 50 runs Result of 50 runs

BADS qABC BADS SPSO2011 BADS BBA

1 Sphere (10D) 50 0 50 0 50 0

2 Rosenbrock (10D) 50 0 50 0 50 0

3 Quartic (30D) 41 9 48 2 48 2

4 Ackley (10D) 50 0 50 0 50 0

5 Schaffer (2D) 47 3 49 1 50 0

6 Easom (2D) 46 4 0 50 46 4

7 Rastrigin (10D) 50 0 50 0 50 0

8 Shekel (4D) 49 1 0 50 50 0

9 Langerman (10D) 0 50 0 50 35 15

10 Griewank (10D) 50 0 50 0 50 0

11 Branin (2D) 47 3 50 0 50 0

12 Sumpow (10D) 50 0 50 0 50 0

13 Bukin6 (2D) 19 30 0 50 2 47

14 Crossit (2D) 44 6 1 49 39 2

15 Drop (2D) 49 1 0 50 49 0

16 Shubert (2D) 20 30 0 50 50 0

17 Beale (2D) 26 24 1 49 0 50

18 McCorm (2D) 48 2 0 50 18 26

19 Camel6 (2D) 13 37 0 50 45 3

73

20 Boha1 (2D) 49 1 50 0 50 0

21 Colville (2D) 50 0 50 0 50 0

22 Powersum (2D) 50 0 12 38 32 18

23 Solomon (4D) 50 0 50 0 50 0

24 Alpine (2 D) 50 0 50 0 49 1

 Total BADS: 20

qABC: 4

BADS: 13

SPSO2011: 11

BADS: 21

BBA: 3

From Table 4.9, it can easily concluded that the mean values confirm the performance

figures based on NFEs. However, the standard deviations for BADS disperse more in few

functions while consistently being located close to the mean in 17 functions. In general, BADS’s

performance was better than that of the BBA in most of the functions, with consistent

performance in general.

Table 4.9 Means and standard deviations of the NFEs obtained through 50 runs for BADS and the BBA

on test functions f1–f24

No. Functions BBA BADS

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 9180.34 2588.57 360.10 208.53

2 Rosenbrock (10D) 500042.22 5.54 276.00 0.00

3 Quartic (30) 500068.04 1.96 175511.40 158655.66

4 Ackley (10D) 500039.02 3.61 468.68 201.10

5 Schaffer (2D) 5066.22 2679.38 425.96 214.16

6 Easom (2D) 4060.24 1381.89 3153.50 10513.18

7 Rastrigin (10D) 500068.86 3.86 550.56 208.31

8 Shekel (4D) 62742.04 32020.36 1946.88 349.66

9 Langerman (10D) 385919.18 184710.55 500136.60 11.39

10 Griewank (10D) 500045.52 3.98 470.84 233.53

11 Branin (2D) 4115.46 1758.67 419.04 137.60

12 Sumpow (10D) 951.20 179.34 68.00 48.00

13 Bukin6 (2D) 500012.54 5.56 500045.52 22.54

14 Crossit (2D) 400.84 227.00 146.04 58.01

15 Drop (2D) 27392.88 30397.32 509.62 220.96

16 Shubert (2D) 460845.84 106902.97 5037.34 7030.16

17 Beale (2D) 654.84 294.37 11523.28 2290.54

18 McCorm (2D) 1025.76 451.89 1018.72 305.43

19 Camel6 (2D) 1319.68 692.52 374.34 125.12

20 Boha1 (2D) 93133.46 93331.19 465.12 187.40

21 Colville (2D) 90739.72 32563.57 1626.48 964.71

22 Powersum (2D) 74731.52 65000.37 37856.06 41498.56

23 Solomon (2D) 38934.28 39767.45 522.08 238.84

24 Alpine (2D) 3546.60 1631.45 272.48 24.64

 Total 3 7 21 17

74

The BADS and qABC means figures in Table 4.10 reinforce the observations made in

Table 4.8 about the best accuracy performance. Here, in 21 functions the standard deviations

spread close to the minimum. In general, BADS outperformed qABC in terms of NFEs or speed

while exhibiting more consistent performance.

Table 4.10 Means and standard deviations of NFEs obtained through 50 runs for BADS and qABC on test

functions f1–f24

No. Functions qABC BADS

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 33446.14 9643.90 360.10 208.53

2 Rosenbrock (10D) 500048.88 25.90 276.00 0.00

3 Quartic (30) 377869.86 180710.93 175511.40 158655.66

4 Ackley (10D) 468309.60 70444.77 468.68 201.10

5 Schaffer (2D) 233117.16 235650.01 425.96 214.16

6 Easom (2D) 2650.48 4249.69 3153.50 10513.18

7 Rastrigin (10D) 180555.66 92942.62 550.56 208.31

8 Shekel (4D) 43292.62 96619.86 1946.88 349.66

9 Langerman (10D) 491350.46 60942.64 500136.60 11.39

10 Griewank (10D) 500049.58 27.24 470.84 233.53

11 Branin (2D) 1052.04 885.35 419.04 137.60

12 Sumpow (10D) 150.00 0.00 68.00 48.00

13 Bukin6 (2D) 490635.52 57616.16 500045.52 22.54

14 Crossit (2D) 274.00 115.86 146.04 58.01

15 Drop (2D) 236593.44 196388.31 509.62 220.96

16 Shubert (2D) 5662.18 9603.01 5037.34 7030.16

17 Beale (2D) 180170.24 213103.40 11523.28 2290.54

18 McCorm (2D 13572.06 17897.62 374.34 125.12

19 Camel6 (2D) 790.00 369.86 1018.72 305.43

20 Boha1 (2D) 1872.26 1145.41 465.12 187.40

21 Colville (2D) 453006.78 141528.21 1626.48 964.71

22 Powersum (2D) 463048.28 94270.83 37856.06 41498.56

23 Solomon (2D) 273926.74 238028.51 522.08 238.84

24 Alpine (2D) 2344.00 8793.92 272.48 24.64

Total 4 3 20 21

As it has been noted before, the data for SPSO2011 shown in Table 4.11 look different

than the results for the other algorithms giving an indication of good performance. The means for

SPSO2011, however, are aligned with those in Table 3.8, while the standard deviations looks

like an improvement, with zero deviation in some functions. This can be predicted on the light of

what is known about the original PSO weakness of premature convergence.

75

Table 4.11 Means and standard deviations of NFEs obtained through 50 runs for BADS and SPSO2011

on test functions f1–f24

No. Functions SPSO2011 BADS

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 5884.00 437.89 360.10 208.53

2 Rosenbrock (10D) 209694.00 190711.63 276.00 0.00

3 Quartic (30D) 500000.00 0.00 175511.40 158655.66

4 Ackley (10D) 139692.00 213573.00 468.68 201.10

5 Schaffer (2D) 2122.00 544.53 425.96 214.16

6 Easom (2D) 100.00 0.00 3153.50 10513.18

7 Rastrigin (10D) 500000.00 0.00 550.56 208.31

8 Shekel (4D) 100.00 0.00 1946.88 349.66

9 Langerman (10D) 100.00 0.00 500136.60 11.39

11 Griewank (10D) 500000.00 0.00 470.84 233.53

10 Branin (2D) 500000.00 0.00 419.04 137.60

12 Sumpow (10D) 1502.00 327.10 68.00 48.00

13 Bukin6 (2D) 490634.00 65562.00 500045.52 22.54

14 Crossit (2D) 100.00 0.00 146.04 58.01

15 Drop (2D) 100.00 0.00 509.62 220.96

16 Shubert (2D) 100.00 0.00 5037.34 7030.16

17 Beale (2D) 11656.00 69765.16 11523.28 2290.54

18 McCorm (2D) 100.00 0.00 374.34 125.12

19 Camel6 (2D) 120.00 44.72 1018.72 305.43

20 Boha1 (2D) 4992.00 742.12 465.12 187.40

21 Colville (2D) 14160.00 4506.00 1626.48 964.71

22 Powersum (2D) 23094.00 23524.03 37856.06 41498.56

23 Solomon (2D) 26946.00 96573.06 522.08 238.84

24 Alpine (2D) 2912.00 1601.83 272.48 24.64

Total 10 13 14 11

The earlier discussion indicated that the proposed algorithm, BADS, outperformed the

others in terms of speed with an acceptable level of stability. However, to ensure that the

acquired result is statistically significant and occurred as result of introducing the new method,

rather than occurring randomly, the Mann–Whitney test was again used. According to Table

4.12, which illustrates the comparison with the BBA, BADS was significantly better in terms of

NFEs in 21 functions, meaning that it converged more quickly to the optimum than did the BBA.

The comparison with qABC indicates significance in only 17 functions, which indicate a lower

significant performance than against the BBA. Furthermore, the results in Table 4.12 indicate

that BADS performed significantly better in more than half of the functions while SPSO2011’s

76

appear to be functioning higher than that of the BBA and qABC. However, as per the previous

discussion, this cannot be taken as an indication of improved performance.

Table 4.12 P-values using the Mann–Whitney test (a = 0.05) for NFEs acquired by BADS over the BBA
No. Functions BADS–qABC BADS–SPSO2011 BADS–BBA

P-value Significant P-value Significant P-value Significant

1 Sphere 3.25E-18 Yes 2.20E-18 Yes 4.08E-18 Yes

2 Rosenbrock 3.30E-20 Yes 1.56E-20 Yes 3.21E-20 Yes

3 Quartic (30D) 4.04E-07 Yes 6.93E-15 Yes 2.05E-15 Yes

4 Ackley (10D) 4.82E-18 Yes 3.05E-18 Yes 4.60E-18 Yes

5 Schaffer (2D) 4.69E-15 Yes 4.14E-18 Yes 6.20E-18 Yes

6 Easom (2D) 3.08E-12 Yes 5.79E-21 PSO 1.58E-13 Yes

7 Rastrigin (10D) 6.45E-18 Yes 2.30E-20 Yes 6.22E-18 Yes

8 Shekel (4D) 3.64E-18 Yes 2.91E-22 PSO 2.12E-19 Yes

9 Langerman (10D) 6.99E-18 QABC 2.56E-20 PSO 5.70E-04 Yes

10 Griewank (10D) 5.43E-18 Yes 1.86E-20 Yes 5.09E-18 Yes

11 Branin (2D) 8.93E-15 Yes 1.99E-20 Yes 5.73E-18 Yes

12 Sumpow (10D) 6.78E-21 Yes 1.36E-18 Yes 1.86E-18 Yes

13 Bukin6 (2D) 3.70E-01 No 3.64E-20 PSO 1.83E-14 BBA

14 Crossit (2D) 6.71E-11 Yes 1.88E-19 PSO 8.48E-11 Yes

15 Drop (2D) 2.40E-17 Yes 2.29E-20 PSO 3.28E-17 Yes

16 Shubert (2D) 8.54E-02 No 2.57E-20 PSO 6.78E-18 Yes

17 Beale (2D) 3.39E-01 No 8.22E-17 PSO 5.71E-18 BBA

18 McCorm (2D) 2.34E-14 Yes 1.93E-20 PSO 6.46E-01 No

19 Camel6 (2D) 2.92E-05 QABC 2.61E-19 PSO 4.27E-13 Yes

20 Boha1 (2D) 6.14E-18 Yes 2.98E-18 Yes 4.39E-18 Yes

21 Colville (2D) 2.44E-17 Yes 4.77E-18 Yes 6.98E-18 Yes

22 Powersum (2D) 1.07E-17 Yes 4.02E-01 No 5.05E-04 Yes

23 Solomon (2D) 6.54E-18 Yes 4.48E-18 Yes 6.56E-18 Yes

24 Alpine (2D) 4.45E-20 Yes 3.59E-20 Yes 1.24E-18 Yes

Total BADS: 19

qABC: 3

None: 2

BADS: 13

SPSO2011: 10

None: 1

BADS: 21

BBA: 2

None: 1

4.6 Summary

In this chapter, a discussion about the testing of another proposed method used to improve the

BA. The test was carried out on a high number of functions with a wide variety of topography

and features. The results revealed that the method improved the performance of the BA in terms

of accuracy in at least 70% of the functions tested. However, in terms of stability, an appropriate

level was maintained. Considering that the method used is a hybridisation of two methods of

sampling, this most probably prevented the algorithm from achieving a higher level of stability,

77

as noticed for the BAwSSR algorithm examined in Chapter 3. In terms of speed, it also

performed better than all other algorithms, reaching significant improvements in more than half

of the total functions. However, it maintained a high SR score, close to that of the previous

method, BAwSSR, gaining 91% SR. The overall conclusion from the obtained results indicate

that the segmentation methods used positively affected in the enhancement of the BA.

78

Chapter 5 BEES ALGORITHM IMPROVEMENT USING

OVERLAPPING SEGMENTATION OF SEARCH SPACE

(BAOSS)

5.1 Preliminaries

In this chapter, another new method is introduced to improve the BA. As in the preceding

chapters, this method was applied to the BA initialisation and global search stages. The primary

technique used in this proposed algorithm was to divide the search space into overlapping

segments. A discussion of the concept of dividing search space into independent segments was

presented in Chapter 4. While segmentation of the domain helps diversify the samples to cover

more areas of the search space, extracting one sample with all its parameters from the same

segment might negatively affect performance in certain cases. This is due to some functions’

parameters having different values hence being distributed throughout the search space, making

it impossible to reach the optimum. This contrary to the case when all the parameters of a

functions are having identical values, thus, in the previous chapter, two sampling approaches to

handle these problems were used. However, the implementation of overlapping segmentations

could help address this problem by allowing the same sample to fall into more than one segment

with the same sampling approach. Additionally, another search technique is included to support

the search capability of the proposed algorithm. The aim of this technique is to track the most

promising search intervals that yield better values and, hence, guide the search to extract better

optimum. It will also work to lead the search accordingly to avoid infeasible search efforts.

5.2 The Overlapping Segmentation of the Search Space Method

The core of this method is to segregate the search space of the function being optimised to a

uniformly sized overlapping segment. The number of segments should be equal to or more than

the stipulated initial sample parameter. The aim of this segmentation is to increase the

79

probability that the extracted sample will be diversely located throughout the search space, while

not restricting the parameters themselves to be in certain areas.

5.2.1 Search Space Overlap Segmentation

Every two consecutive segments overlap in half of their segment size. This means that the

second segment starts from the centre of the first segment, which renders them as sharing half of

their segment size. This process continues for the rest of the segments (Figure 5.1 & Figure 5.2).

Taking the Colville function as an example, with its search space defined on the area [−10, 10],

the length of the search space then will be calculated as follows:

L = (10− (−10)) = 20 (5.1)

and the length of the segment (S) is calculated as follows:

S = L/n (5.2)

where n is the number of samples and L is the length of the search space. If n = 20, then,

applying equation 5.2, S = 20/20 = 1 The general formula to calculate the segment’s start and

end values is the following:

if [𝑎1, 𝑏1] is the first segment, it will be calculated as

[𝑎1, 𝑏1]= [𝑎1, 𝑏1-S] (5.3)

𝑎1 will be the starting point.

, the second segment will be calculated as calculated as

[𝑎2, 𝑏2]=[𝑎1-(S/2), 𝑏1-S] (5.4)

80

and the n segment will be

 [𝑎𝑛, 𝑏𝑛]=[𝑎𝑛−1-(S/2), 𝑏𝑛−1-S] (5.5)

As in Colville functions, 𝑎1= 10, starting from the right end of the domain, then 𝑏1= 𝑎1−S, which

will be the interval [10, 9]. The second interval is [𝑎2, 𝑏2]=[𝑎1-(S/2), 𝑏1-S] = [9.5, 8.5], and the

process continues. For a sample of segments calculated limits, see Table 5.1.

Figure 5.1 Illustration 1 1of dividing the search space into overlapping segments for the Colville function.

Figure 5.2 Illustration 2 of dividing the search space into overlapping segments for the Colville function.

Table 5.1 Sample of the calculated segment’s limits

-10 -9

- -

- -

5.5 6.5

6 7

6.5 7.5

7 8

7,5 8.5

81

8 9

8.5 9.5

9 10

5.2.2 Tracking Promising Search Space Intervals

To track the promising interval of the search space in every iteration, the best population

parameters are inspected for their minimum and maximum values. The search space then is

restricted to these two extreme values:

• The minimum parameter value of the best population u = min (xm, n), and

• The maximum parameter value of the best population v = max (xm,n),

where m is the number of variables of a function and n is the number of samples. This will limit

the search to the [v, u] interval.

5.3 Experiment Setup

The experiment to test this proposed method will follow the same performance assessment

criteria used for the previously introduced algorithms. This includes accuracy value, SR, and

NFE. The metrics described in Chapter 3 will be applied with the same stopping criteria in all 50

runs. Similarly, the Mann–Whitney test will be run on the results to evaluate the performance of

all algorithms involved.

The same benchmark functions used with the previously proposed algorithms will also be

used. Similarly, the parameter values for the BBA, SPSO2011, and qABC algorithms involved in

the performance comparison will be retained (see Tables 3.3, 3.4, and 3.5 in Chapter 3).

However, the proposed algorithm, BAOSS, will use different parameter values, as shown in

Table 5.2.

Table 5.2 List of parameter values used for testing BAOSS

No. Functions n m nsp e nep ngh stlim

82

1 Sphere (10D) 100 4 10 2 30 0.03 10

2 Rosenbrock (10D) 100 4 10 2 30 0.001 10

3 Quartic(30D) 100 4 10 2 30 0.005 10

4 Ackley (10D) 100 4 10 2 30 0.0001 10

5 Schaffer (2D) 100 4 10 2 30 0.01 10

6 Easom (2D) 100 4 10 2 30 0.009 10

7 Rastrigin (10D) 100 4 10 2 30 0.0003 10

8 Shekel (4D) 100 4 10 2 30 0.001 10

9 Langerman(10D) 10 4 10 2 30 0.5 10

10 Griewank (10D) 100 4 10 2 30 0.0001 10

11 Branin (2D) 100 4 10 2 30 0.001 10

12 Sumpow (10D) 100 4 10 2 30 0.001 10

13 Bukin6 (2D) 15 4 10 2 30 0.001 10

14 Crossit (2D) 100 4 10 2 30 0.05 10

15 Drop (2D) 100 4 10 2 30 0.1 10

16 Shubert (2D) 100 4 10 2 30 0.0005 10

17 Beale (2D) 18 4 10 2 30 0.05 10

18 McCorm (2D) 100 4 10 2 30 0.05 10

19 Camel6 (2D) 20 4 10 2 30 0.005 10

20 Boha1 (2D) 150 4 10 2 30 0.05 10

21 Colville (2D) 150 4 10 2 30 0.0005 10

22 Powersum (2D) 15 4 10 2 30 0.01 10

23 Solomon (2D) 20 4 10 2 30 0.01 10

24 Alpine (2D) 100 4 10 2 30 0.01 10

5.4 Results and Discussion

5.4.1 Solution Quality (Accuracy)

The values in Table 5.3 reveal improved performance by the BAOSS. It outperformed the all the

algorithms involved. The best performance was against SPSO2011, where BAOSS excelled in

23 of the 24 functions while outperforming the BBA and qABC in 21 functions. It is worth

mentioning that BAOSS’s performance was outstanding against the three algorithms particularly

in the functions Sphere, Rosenbrock, Ackley, Griewank, Rastrigin, Quartic, Sumpow, and

Colville wining most of the 50 runs. From those functions, Rosenbrock, Ackley, Griewank, and

Rastrigin represent challenges to optimisation algorithms due to their multipocketed topography

83

and complex landscapes. However, the next step is to explore other aspects of performance

concerning consistency and stability.

Table 5.3 Best performance figures for the BAOSS, BBA, qABC, and SPSO2011 for accuracy values

No. Functions
Result of 50 runs Result of 50 runs Result of 50 runs

BAOSS qABC BAOSS SPSO2011 BAOSS BBA

1 Sphere (10D) 50 0 49 1 50 0

2
Rosenbrock

(10D)
50 0 50 0 50 0

3 Quartic (30D) 46 4 43 7 50 0

4 Ackley (10D) 50 0 50 0 50 0

5 Schaffer (2D) 43 7 32 18 30 20

6 Easom (2D) 34 16 50 0 40 10

7 Rastrigin (10D) 47 3 50 0 50 0

8 Shekel (4D) 31 19 50 0 47 3

9 Langerman 32 18 50 0 4 46

10 Griewank (10D) 50 0 50 0 50 0

11 Branin (2D) 16 34 0 50 39 11

12 Sumpow (10D) 48 2 50 0 50 0

13 Bukin6 (2D) 1 49 29 21 0 50

14 Crossit (2D) 41 9 50 0 37 13

15 Drop (2D) 39 11 50 0 39 11

16 Shubert (2D) 16 34 48 2 44 6

17 Beale (2D) 39 11 37 13 32 18

18 McCorm (2D) 27 23 50 0 30 20

19 Camel6 (2D) 28 22 50 0 36 14

20 Boha1 (2D) 35 15 34 16 40 10

21 Colville (2D) 48 2 46 4 50 0

22 Powersum (2D) 44 6 28 22 15 35

23 Solomon (2D) 39 11 44 6 37 13

24 Alpine (2D) 32 18 38 12 39 11

 Total
BAOSS: 21 BAOSS: 23 BAOSS: 21

qABC: 3 SPSO2011: 1 BBA: 3

Figures 5.3–5.11 show the performance charts in terms of accuracy by all the algorithms

involved.

84

Figure 5.3 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Rosenbrock

10D function

Figure 5.4 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Quartic 30D

function

Figure 5.5 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Ackley 10D

function

2.21E-05

2.21E-03

2.21E-01

2.21E+01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

7.55E-15

7.55E-11

7.55E-07

7.55E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

85

Figure 5.6 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Schaffer 2D

function

 Figure 5.7 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Easom 2D

function

 Figure 5.8 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Rastrigin 10D

function

0.00E+00

1.00E-03

2.00E-03

3.00E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

1.37E-09
1.37E-08
1.37E-07
1.37E-06
1.37E-05
1.37E-04
1.37E-03
1.37E-02
1.37E-01
1.37E+00
1.37E+01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

86

 Figure 5.9 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Shekel 4D

function

 Figure 5.10 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Langerman

10D function

Figure 5.11 Result of 50 runs for the BBA, BAOSS, qABC, and SPSO2011 on Griewank

10D function

When exploring the means and standard deviations in Table 5.4 for BAOSS against the

BBA, the means reveal that BAOSS performed better in 20 functions. The standard deviation

reveals that BAOSS improved in only 17 functions indicating inconsistent performance in three

2.69E-06

2.69E-04

2.69E-02

2.69E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

87

functions from the best 20 of mean value. However, the Langerman, Bukin6, and Powersum

functions should be excluded as BAOSS performed worse than its opponent although, the two

algorithms were not able to converge in those functions. This an indication of BAOSS inability

to exhibit highly stabilised performance. This might be due to applying two methods to

uniformly generate samples, which causes the performance to become inconsistent.

Table 5.4 Means and standard deviations of best accuracy values for the BAOSS and BBA obtained

through 50 independent runs on test functions f1–f24

No.

Functions BBA BAOSS

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 8.19E-04 1.27E-04 2.64E-05 1.03E-04

2 Rosenbrock (10D) 1.80E+00 9.23E-01 4.60E-04 2.70E-04

3 Quartic (30D) 3.70E+00 7.34E-01 7.63E-02 1.99E-01

4 Ackley (10D) 1.38E+01 1.25E+00 3.65E-04 1.46E-04

5 Schaffer (2D) 2.57E-04 2.61E-04 1.95E-04 2.61E-04

6 Easom (2D) 4.56E-04 2.64E-04 1.62E-04 2.61E-04

7 Rastrigin (10D) 1.33E+01 3.84E+00 7.87E-05 2.31E-04

8 Shekel (4D) 6.67E-04 1.96E-04 2.56E-04 1.59E-04

9 Langerman 2.74E-01 1.79E-01 3.68E-01 9.28E-02

10 Griewank (10D) 5.68E-01 7.78E-02 9.15E-06 2.42E-05

11 Branin (2D) 6.43E-04 1.96E-04 4.09E-04 2.84E-04

12 Sumpow (10D) 6.86E-04 2.44E-04 2.64E-05 3.49E-05

13 Bukin6 (2D) 1.59E-02 4.93E-03 5.22E-02 1.41E-03

14 Crossit (2D) 4.23E-04 2.71E-04 2.06E-04 1.55E-04

15 Drop (2D) 4.06E-04 2.48E-04 1.91E-04 3.22E-04

16 Shubert (2D) 5.24E-03 4.89E-03 5.05E+00 1.71E+01

17 Beale (2D) 4.82E-04 2.74E-04 3.36E-04 2.52E-04

18 McCorm (2D) 4.87E-04 2.86E-04 2.88E-04 2.96E-04

19 Camel6 (2D) 5.26E-04 2.92E-04 4.66E-04 2.72E-04

20 Boha1 (2D) 4.68E-04 2.92E-04 2.00E-04 2.55E-04

21 Colville (2D) 9.28E-04 7.65E-05 3.30E-04 2.63E-04

22 Powersum (2D) 6.84E-04 2.26E-04 8.32E-04 1.58E-04

23 Solomon (2D) 5.49E-04 2.57E-04 2.44E-04 2.93E-04

24 Alpine (2D) 6.25E-04 2.41E-04 3.87E-04 3.34E-04

Total 4 7 20 17

Table 5.5 compares the BAOSS against qABC and reveals that the means are identical to

the accuracy performance data presented in Table 5.3. BAOSS performed better in 20 functions

in terms of the means, and in 21 functions in terms of the standard deviations. It worth noting

that the standard deviation figures here showing unexpectedly higher values than against the

88

other two algorithms. Nonetheless, BAOSS’s mean value for Langerman was worse than that of

qABC, although it was better at finding the accurate optimum. However, neither algorithm was

able to converge to the optimum within the stipulated NFE value for Langerman or Bukin6. It

can be concluded that BAOSS outperformed qABC in terms of accuracy while exhibiting an

adequate level of consistency.

Table 5.5 Means and standard deviations of accuracy values for the BAOSS and qABC obtained through

50 runs on test functions f1–f24

No.

Functions qABC BAOSS

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 6.24E-04 2.49E-04 2.64E-05 1.03E-04

2 Rosenbrock 10D) 4.09E-01 8.85E-01 4.60E-04 2.70E-04

3 Quartic (30D) 5.23E-01 2.88E-01 7.63E-02 1.99E-01

4 Ackley (10D) 3.11E-03 3.05E-03 3.65E-04 1.46E-04

5 Schaffer (2D) 9.65E-04 8.04E-04 1.95E-04 2.61E-04

6 Easom (2D) 2.73E-04 3.28E-04 1.62E-04 2.61E-04

7 Rastrigin (10D) 6.22E-04 2.78E-04 7.87E-05 2.31E-04

8 Shekel (4D) 2.34E-02 1.61E-01 2.56E-04 1.59E-04

9 Langerman 3.50E-01 1.63E-01 3.68E-01 9.28E-02

10 Griewank (10D) 4.65E-02 2.19E-02 9.15E-06 2.42E-05

11 Branin (2D) 2.63E-04 2.76E-04 4.09E-04 2.84E-04

12 Sumpow (10D) 3.82E-04 1.12E-04 2.64E-05 3.49E-05

13 Bukin6 (2D) 2.81E-02 1.61E-02 5.22E-02 1.41E-03

14 Crossit (2D) 5.65E-04 3.01E-04 2.06E-04 1.55E-04

15 Drop (2D) 1.12E-02 2.17E-02 1.91E-04 3.22E-04

16 Shubert (2D) 2.69E-04 3.13E-04 5.05E+00 1.71E+01

17 Beale (2D) 1.98E-03 3.49E-03 3.36E-04 2.52E-04

18 McCorm (2D) 4.01E-04 3.26E-04 2.88E-04 2.96E-04

19 Camel6 (2D) 5.06E-04 2.83E-04 4.66E-04 2.72E-04

20 Boha1 (2D) 3.20E-04 2.78E-04 2.00E-04 2.55E-04

21 Colville (2D) 3.43E-02 3.10E-02 3.30E-04 2.63E-04

22 Powersum (2D) 7.13E-03 8.58E-03 8.32E-04 1.58E-04

23 Solomon (2D) 4.80E-02 4.88E-02 2.44E-04 2.93E-04

24 Alpine (2D) 5.58E-04 2.84E-04 3.87E-04 3.34E-04

Total 4 3 20 21

Table 5.6 shows an enhanced performance in terms of the means for BAOSS versus

SPSO2011 in 22 functions whereas the standard deviation revealing an aspect of inconsistency

achieving better in 17 functions only. This was noticed in five functions where the standard

deviations spreading away from the means. Nonetheless, in four functions—Quartic, Easom,

89

Langerman, and Colville—BAOSS outperformed SPSO2011 by an enormous difference. It is

important to note that the tuning of the ngh parameter positively affected the BAOSS’s

performance, suggesting that it was sensitive to the change in this parameter. Yet, the Mann–

Whitney statistical significance test is required to validate the significance of BAOSS’s

improvement.

Table 5.6 Means and standard deviations of best accuracy values for the BAOSS and SPSO2011 obtained

through 50 independent runs on test functions f1–f24

No.

Functions SPSO2011 BAOSS

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 7.98E-04 1.44E-04 2.64E-05 1.03E-04

2 Rosenbrock (10D) 8.88E+00 4.36E+01 4.60E-04 2.70E-04

3 Quartic (30D) 1.18E-01 6.69E-02 7.63E-02 1.99E-01

4 Ackley (10D) 3.70E-01 6.35E-01 3.65E-04 1.46E-04

5 Schaffer (2D) 2.69E-04 2.60E-04 1.95E-04 2.61E-04

6 Easom (2D) 1.00E+00 2.74E-06 1.62E-04 2.61E-04

7 Rastrigin (10D) 1.93E+01 1.01E+01 7.87E-05 2.31E-04

8 Shekel (4D) 9.32E+00 3.44E-01 2.56E-04 1.59E-04

9 Langerman 7.05E-01 9.64E-05 3.68E-01 9.28E-02

10 Griewank (10D) 1.38E-01 8.27E-02 9.15E-06 2.42E-05

11 Branin (2D) 3.58E-07 0.00E+00 4.09E-04 2.84E-04

12 Sumpow (10D) 5.48E-04 2.73E-04 2.64E-05 3.49E-05

13 Bukin6 (2D) 7.35E-02 3.97E-02 5.22E-02 1.41E-03

14 Crossit (2D) 4.43E-02 4.49E-02 2.06E-04 1.55E-04

15 Drop (2D) 2.25E-01 1.14E-01 1.91E-04 3.22E-04

16 Shubert (2D) 7.88E+01 4.48E+01 5.05E+00 1.71E+01

17 Beale (2D) 1.57E-02 1.07E-01 3.36E-04 2.52E-04

18 McCorm (2D) 1.58E-01 1.32E-01 2.88E-04 2.96E-04

19 Camel6 (2D) 4.44E-01 2.85E-01 4.66E-04 2.72E-04

20 Boha1 (2D) 4.12E-04 2.65E-04 2.00E-04 2.55E-04

21 Colville (2D) 8.08E-04 1.76E-04 3.30E-04 2.63E-04

22 Powersum (2D) 8.31E-04 2.21E-04 8.32E-04 1.58E-04

23 Solomon (2D) 2.64E-03 1.39E-02 2.44E-04 2.93E-04

24 Alpine (2D) 6.69E-04 2.35E-04 3.87E-04 3.34E-04

Total: 2 7 22 17

Table 5.7 presents the p-values obtained using the Mann–Whitney test for all the

algorithms involved in this experiment. According to the results, BAOSS exhibited noteworthy

performance in achieving accurate optima against all other algorithms. The comparisons of

BAOSS against qABC, BBA, and SPSO2011 show that BAOSS significantly outperformed

90

them in 18, 20, and 22 functions, respectively. In total, there was a significant improvement by

BAOSS in at least two-thirds of the functions.

Table 5.7 P-values using the Mann–Whitney test (a = 0.05) for accuracy acquired by BAOSS over qABC,

BBA, and SPSO2011

No. Functions BAOSS–qABC BAOSS–SPSO2011 BAOSS–BBA

P-value Significant P-value Significant P-value Significant

1 Sphere (10 D) 4.21E-17 Yes 1.84E-17 Yes 1.63E-17 Yes

2 Rosenbrock (10D) 7.07E-18 Yes 1.07E-17 Yes 7.07E-18 Yes

3 Quartic (30D) 1.85E-13 Yes 2.32E-09 Yes 7.07E-18 Yes

4 Ackley (10D) 3.32E-17 Yes 9.35E-18 Yes 7.07E-18 Yes

5 Schaffer (2D) 1.32E-08 Yes 2.07E-02 Yes 3.96E-02 Yes

6 Easom (2D) 2.81E-02 Yes 9.12E-20 Yes 1.74E-08 Yes

7 Rastrigin (10D) 4.51E-14 Yes 7.02E-18 Yes 7.07E-18 Yes

8 Shekel (4D) 1.23E-01 No 7.07E-18 Yes 1.92E-14 Yes

9 Langerman (10D) 5.41E-03 Yes 7.07E-18 Yes 8.97E-13 BBA

10 Griewank (10D) 7.07E-18 Yes 7.07E-18 Yes 7.07E-18 Yes

11 Branin (2D) 2.68E-03 qABC 3.31E-20 SPSO2011 7.48E-05 Yes

12 Sumpow (10D) 6.48E-17 Yes 1.21E-17 Yes 7.07E-18 Yes

13 Bukin6 (2D) 7.49E-16 qABC 1.69E-01 No 7.07E-18 BBA

14 Crossit (2D) 1.36E-07 Yes 7.07E-18 Yes 4.55E-05 Yes

15 Drop (2D) 2.30E-08 Yes 7.07E-18 Yes 1.69E-06 Yes

16 Shubert (2D) 2.23E-03 qABC 5.97E-16 Yes 7.95E-10 Yes

17 Beale (2D) 2.14E-06 Yes 1.15E-03 Yes 6.81E-03 Yes

18 McCorm (2D) 1.36E-01 No 7.07E-18 Yes 4.33E-04 Yes

19 Camel6 (2D) 5.24E-01 No 7.07E-18 Yes 3.57E-01 No

20 Boha1 (2D) 4.27E-03 Yes 2.14E-05 Yes 1.32E-06 Yes

21 Colville (2D) 3.51E-17 Yes 4.42E-13 Yes 7.12E-17 Yes

22 Powersum (2D) 1.72E-12 Yes 1.57E-01 No 6.04E-04 BBA

23 Solomon (4D) 2.34E-08 Yes 2.23E-09 Yes 1.26E-11 Yes

24 Alpine (2D) 1.87E-06 Yes 4.36E-09 Yes 2.69E-04 Yes

Total BAOSS: 18

qABC: 3 None:3

BAOSS: 21

SPSO2011: None:3

BAOSS: 20

BBA: 3 None:1

5.4.2 SR and NFEs

Table 5.8 indicates that the SRs for BAOSS are far higher than those of all other algorithms

examined in this experiment demonstrating robust behaviour. Although BAOSS could not

achieve 100% SR convergence in four functions, the achieved SR is almost the same as that

achieved by the other two proposed algorithms: BAwSSR and BADS. Function Bukin6 is the

most difficult for all the algorithms involved in this research, with an SR of 0% reached by the

91

BBA and BAOSS, 4% achieved by qABC and SPSO2011. Langerman also a difficult function,

with qABC, BAOSS, and BBA achieving SR values of 2%, 6%, and 30%, respectively.

Although SPSO2011 achieved an SR of 100% in Langerman, having this value for Langerman

and for some other functions cannot be considered an indication of enhanced performance,

whereas SPSO2011 could not come any closer to the optimum due to suffering from premature

convergence.

Table 5.8 SR of the BAOSS compared with BBA, SPSO2011, and qABC based on NFEs

obtained through 50 runs on test functions f1–f24
No. Functions qABC

success

rate

SPSO2011

success

rate

BBA

success

rate

BAOSS

success

rate

1 Sphere (10D) 100% 100% 100% 100%

2 Rosenbrock (10D) 0% 74% 0% 100%

3 Quartic (30D) 36% 0% 0% 84%

4 Ackley (10D) 22% 74% 0% 100%

5 Schaffer (2D) 64% 100% 100% 100%

6 Easom (2D) 100% 100% 100% 100%

7 Rastrigin (10D) 98% 0% 0% 100%

8 Shekel (4D) 98% 100% 100% 100%

9 Langerman (10D) 2% 100% 30% 6%

10 Griewank (10D) 0% 0% 0% 100%

11 Branin (2D) 100% 0% 100% 100%

12 Sumpow (10D) 100% 100% 100% 100%

13 Bukin6 (2D) 4% 4% 0% 0%

14 Crossit (2D) 100% 100% 100% 100%

15 Drop (2D) 74% 100% 100% 100%

16 Shubert (2D) 100% 100% 14% 92%

17 Beale (2D) 76% 98% 100% 100%

18 McCorm (2D) 100% 100% 100% 100%

19 Camel6 (2D) 100% 100% 100% 100%

20 Boha1 (2D) 100% 100% 100% 100%

21 Colville (2D) 10% 100% 100% 100%

22 Powersum (2D) 16% 100% 100% 100%

23 Solomon (4D) 48% 96% 100% 100%

24 Alpine (2D) 100% 100% 100% 100%

SR Average 65% 77% 69% 91%

Table 5.9 demonstrates the NFE figures acquired from evaluating the performance of the

BAOSS algorithm. The figures for the BBA, qABC, and SPSO2011 versus BAOSS are 20, 17,

and 14, respectively which means that the best performance was against the BBA, followed by

the qABC and then SPSO2011. The results suggest that BAOSS was not particularly fast against

92

qABC and then SPSO2011 algorithms although it attained an improved performance.

Nonetheless, as noted before, the SPSO2011 figures is not indication of an improved

performance. However, it is essential to look at other performance statistics to evaluate the

algorithm’s behaviour consistency.

Table 5.9 Best performance of BAOSS, SPSO2011, and qABC for NFEs obtained through 50

independent runs on test functions f1–f24

No. Functions Result of 50 runs Result of 50 runs Result of 50 runs

BAOSS qABC BAOSS SPSO2011 BAOSS BBA

1 Sphere (10 D) 50 0 50 0 50 0

2 Rosenbrock (10D) 50 0 50 0 50 0

3 Quartic(30D) 30 20 42 8 42 8

4 Ackley (10D) 50 0 49 1 50 0

5 Schaffer (2D) 45 5 50 0 50 0

6 Easom (2D) 39 11 0 50 49 1

7 Rastrigin (10D) 50 0 50 0 50 0

8 Shekel (4D) 50 0 0 50 50 0

9 Langerman (10D) 37 13 0 50 36 14

10 Griewank (10D) 50 0 50 0 50 0

11 Branin (2D) 7 43 50 0 45 5

12 Sumpow(10D) 0 50 50 0 0 50

13 Bukin6 (2D) 21 29 0 49 8 `41

14 Crossit (2D) 16 34 0 50 33 17

15 Drop (2D) 49 1 0 49 49 1

16 Shubert (2D) 2 48 0 50 49 1

17 Beale (2D) 48 2 46 4 11 39

18 McCorm (2D) 48 12 0 50 42 8

19 Camel6 (2D) 0 50 0 50 1 49

20 Boha1 (2D) 24 26 40 10 49 1

21 Colville (2D) 49 1 49 1 50 0

22 Powersum (2D) 50 0 12 38 29 21

23 Solomon (4D) 47 3 46 4 47 3

24 Alpine (2 D) 49 1 50 0 49 1

 Total BAOSS: 17 qABC: 7 BAOSS: 14 SPSO2011:

10

BAOSS: 20 BBA: 4

The data in Tables 5.10, 5.11, and 5.12 show the means and standard deviations of NFE

values for the algorithms involved. Obviously, these data conform with those for best

performance (Table 5.9) getting 17,13 and 20 for qABC, SPSO2011 and BBA, respectively.

BAOSS displayed its best performance against the BBA (Table 5.10). However, the results

demonstrate a gap between the means and standard deviations against BBA with values of 20 for

the mean and 16 for standard deviation, which means the generated values spreading away from

93

the mean. In general, the standard deviations for BAOSS appear to be particularly low obtaining

values of 17, 13 and 16 respectively, indicating inconsistent performance. To evaluate the

significance of BAOSS’s improvement, the Mann–Whitney statistical significance test was

conducted (Table 5.13).

Table 5.10 Means and standard deviations of the NFEs obtained through 50 independent runs for BAOSS

and BBA on test functions f1–f24

No. Functions BBA BAOSS

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 9180.34 2588.57 452.00 0.00

2 Rosenbrock (10D) 500042.22 5.54 511.84 204.07

3 Quartic (30) 500068.04 1.96 228396.52 169464.98

4 Ackley (10D) 500039.02 3.61 1099.68 2052.33

5 Schaffer (2D) 5066.22 2679.38 557.60 308.88

6 Easom (2D) 4060.24 1381.89 853.28 649.09

7 Rastrigin (10D) 500068.86 3.86 617.44 73.92

8 Shekel (4D) 62742.04 32020.36 508.32 187.72

9 Langerman (10D) 385919.18 184710.55 471314.88 113721.09

10 Griewank (10D) 500045.52 3.98 635.04 49.28

11 Branin (2D) 4115.46 1758.67 1356.64 238.76

12 Sumpow (10D) 951.20 179.34 276.00 0.00

13 Bukin6 (2D) 500012.54 5.56 500047.38 25.40

14 Crossit (2D) 400.84 227.00 276.00 0.00

15 Drop (2D) 27392.88 30397.32 1575.08 1515.25

16 Shubert (2D) 460845.84 106902.97 101874.72 153655.38

17 Beale (2D) 654.84 294.37 1010.64 388.56

18 McCorm (2D 1025.76 451.89 3412.32 380.24

19 Camel6 (2D) 1319.68 692.52 521.12 141.47

20 Boha1 (2D) 93133.46 93331.19 7839.68 22692.12

21 Colville (2D) 90739.72 32563.57 2256.32 2540.24

22 Powersum (2D) 74731.52 65000.37 47143.56 39059.28

23 Solomon (2D) 38934.28 39767.45 2528.50 2726.19

24 Alpine (2D) 3546.60 1631.45 395.68 102.26

 Total 4 8 20 16

Table 5.11 Means and standard deviations of NFEs obtained through 50 runs for BAOSS and qABC on

test functions f1–f24
No. Functions qABC BAOSS

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 33446.14 9643.90 452.00 0.00

2 Rosenbrock (10D) 500048.88 25.90 511.84 204.07

3 Quartic (30) 377869.86 180710.93 228396.52 169464.98

4 Ackley (10D) 468309.60 70444.77 1099.68 2052.33

5 Schaffer (2D) 233117.16 235650.01 557.60 308.88

6 Easom (2D) 2650.48 4249.69 853.28 649.09

94

7 Rastrigin (10D) 180555.66 92942.62 617.44 73.92

8 Shekel (4D) 43292.62 96619.86 508.32 187.72

9 Langerman (10D) 491350.46 60942.64 471314.88 113721.09

10 Griewank (10D) 500049.58 27.24 635.04 49.28

11 Branin (2D) 1052.04 885.35 1356.64 238.76

12 Sumpow (10D) 150.00 0.00 276.00 0.00

13 Bukin6 (2D) 490635.52 57616.16 500047.38 25.40

14 Crossit (2D) 274.00 115.86 276.00 0.00

15 Drop (2D) 236593.44 196388.31 1575.08 1515.25

16 Shubert (2D) 5662.18 9603.01 101874.72 153655.38

17 Beale (2D) 180170.24 213103.40 1010.64 388.56

18 McCorm (2D) 790.00 369.86 3412.32 380.24

19 Camel6 (2D) 13572.06 17897.62 521.12 141.47

20 Boha1 (2D) 1872.26 1145.41 7839.68 22692.12

21 Colville (2D) 453006.78 141528.21 2256.32 2540.24

22 Powersum (2D) 463048.28 94270.83 47143.56 39059.28

23 Solomon (2D) 273926.74 238028.51 2528.50 2726.19

24 Alpine (2D) 2344.00 8793.92 430.88 114.82

 Total 7 6 17 17

Table 5.12 Means and standard deviations of NFEs obtained through 50 runs for BADS and SPSO2011

on test functions f1–f24
No. Functions SPSO2011 BAOSS

Mean Std. Dev. Mean Std. Dev.

1 Sphere (10D) 5884.00 437.89 452.00 0.00

2 Rosenbrock (10D) 209694.00 190711.63 511.84 204.07

3 Quartic (30D) 500000.00 0.00 228396.52 169464.98

4 Ackley (10D) 139692.00 213573.00 1099.68 2052.33

5 Schaffer (2D) 2122.00 544.53 557.60 308.88

6 Easom (2D) 100.00 0.00 853.28 649.09

7 Rastrigin (10D) 500000.00 0.00 617.44 73.92

8 Shekel (4D) 100.00 0.00 508.32 187.72

9 Langerman (10D) 100.00 0.00 471314.88 113721.09

10 Griewank (10D) 500000.00 0.00 635.04 49.28

11 Branin (2D) 500000.00 0.00 1356.64 238.76

12 Sumpow (10D) 1502.00 327.10 276.00 0.00

13 Bukin6 (2D) 490634.00 65562.00 500047.38 25.40

14 Crossit (2D) 100.00 0.00 276.00 0.00

15 Drop (2D) 100.00 0.00 1575.08 1515.25

16 Shubert (2D) 100.00 0.00 101874.72 153655.38

17 Beale (2D) 11656.00 69765.16 1010.64 388.56

18 McCorm (2D) 100.00 0.00 521.12 141.47

19 Camel6 (2D) 120.00 44.72 3412.32 380.24

20 Boha1 (2D) 4992.00 742.12 7839.68 22692.12

21 Colville (2D) 14160.00 4506.00 2256.32 2540.24

22 Powersum (2D) 23094.00 23524.03 47143.56 39059.28

23 Solomon (2D) 26946.00 96573.06 2528.50 2726.19

24 Alpine (2D) 2912.00 1601.83 430.88 114.82

 Total 11 13 13 10

95

The p-values in Table 5.13 match with the findings from examining the data on NFE best

performance in Table 5.9. Specifically, the performance by BAOSS was significantly better than

that of the BBA in 21 functions and that of the qABC and SPSO2011 in 17 and 14 functions,

respectively. While this reflects satisfactory performance against the BBA, it did not achieve the

same level of excellence against the qABC. In general, the figures indicated an acceptable

convergence speed to find the optimum suggesting that the method used positively impacted

BAOSS for good performance.

Table 5.13 P-values using the Mann–Whitney test (a = 0.05) for NFEs acquired by BAOSS over BBA
No. Functions BAOSS–qABC BAOSS–SPSO2011 BAOSS–BBA

P-values Significant P-values Significant P-values Significant

1 Sphere (10D) 3.31E-20 Yes 1.72E-20 Yes 3.28E-20 Yes

2 Rosenbrock (10D) 5.25E-19 Yes 3.40E-19 Yes 5.11E-19 Yes

3 Quartic (30) 2.08E-03 Yes 2.35E-10 Yes 4.45E-09 Yes

4 Ackley (10D) 1.23E-19 Yes 8.62E-19 Yes 1.16E-19 Yes

5 Schaffer(2D) 4.56E-14 Yes 9.32E-18 Yes 5.03E-18 Yes

6 Easom (2D) 1.23E-06 Yes 1.20E-20 SPSO2011 2.23E-17 Yes

7 Rastrigin (10D) 2.13E-19 Yes 2.92E-22 Yes 2.04E-19 Yes

8 Shekel (4D) 1.75E-19 Yes 2.08E-22 SPSO2011 1.63E-19 Yes

9 Langerman (10D) 2.60E-06 Yes 2.51E-20 SPSO2011 2.03E-04 Yes

10 Griewank (10D) 4.72E-20 Yes 4.15E-23 Yes 4.35E-20 Yes

11 Branin (2D) 8.97E-11 qABC 1.90E-20 Yes 5.31E-13 Yes

12 Sumpow (10D) 2.63E-23 qABC 1.61E-20 Yes 2.84E-20 Yes

13 Bukin6 (2D) 3.34E-01 No 1.33E-19 SPSO2011 1.52E-09 BBA

14 Crossit (2D) 8.44E-04 qABC 1.59E-23 SPSO2011 3.19E-03 Yes

15 Drop (2D) 1.51E-15 Yes 7.31E-20 SPSO2011 1.23E-14 Yes

16 Shubert (2D) 8.41E-17 qABC 2.58E-20 SPSO2011 2.75E-16 Yes

17 Beale (2D) 3.55E-14 Yes 3.20E-10 Yes 5.27E-06 BBA

18 McCorm (2D) 5.60E-18 qABC 2.02E-20 SPSO2011 6.18E-18 BBA

19 Camel6 (2D) 6.75E-13 Yes 2.41E-19 SPSO2011 3.53E-10 Yes

20 Boha1 (2D) 4.83E-01 No 2.90E-06 Yes 3.40E-14 Yes

 21 Colville (2D) 1.77E-17 Yes 1.01E-17 Yes 4.17E-18 Yes

22 Powersum (2D) 1.01E-17 Yes 2.28E-05 SPSO2011 4.75E-02 Yes

 23 Solomon (2D) 1.41E-14 Yes 9.75E-13 Yes 5.99E-13 Yes

24 Alpine (2D) 3.19E-17 Yes 1.08E-18 Yes 3.75E-17 Yes

 Total BAOSS: 17

qABC: 5

None: 2

BAOSS: 14

SPSO2011: 10

BAOSS: 21

BBA: 3

96

5.5 Summary

This chapter has introduced a new method based on partitioning the search space into

overlapping segments to help generate samples evenly while permitting the diversification of

parameter values to accommodate different types of problems to optimise the sampling process.

These techniques were applied to the initialisation and global search stages. They were tested on

24 functions with a wide variety of topography and complexity traits. The experimental results of

the proposed algorithm, BAOSS, successfully indicated a level of accuracy in 75% of the

functions while maintaining acceptable performance in terms of speed.

97

Chapter 6 APPLICATIONS

6.1 Single-Objective Functions Without Constraints

The proposed algorithms were tested on the gear train problem to evaluate how it is performing

on engineering problems. The gear train design problem is an engineering problem that aims to

minimise the gear ratio to be particularly close to 1/6.931 (Parsopoulos and Vrahatis, 2005). The

design variables used here represent the number of teeth for every gear, restricted to values

between 12 and 60.

To reduce the error value, the gear ratio should be as close as possible to 1/6.931 (Kannan

and Kramer, 1994). To calculate the error value:

Error value (%) =
𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜−(1

6.931 ⁄)

(1 6.931)⁄
× 100% (6.1)

Gear ratio =
𝑥3𝑥2

𝑥1𝑥4
 (6.2)

For details about the gear train problem, its objective function, and its diagram, see Appendix A.

The results of the experiment were obtained through 20 runs, and the algorithm was

forced to conduct a minimum of 100 iterations to acquire a good result. The stopping criteria

used are the same as those used to test the algorithm with benchmark functions, or 500,000

NFEs. The selection of parameter values for the proposed algorithms, as listed in Table 6.1, was

partially decided through trial and error and partially from the literature review of other

algorithms that have attempted to improve the BA. The results obtained by the test were

98

compared with some of those found in the literature for the ABC (Akay and Karaboga, 2010),

CS (Gandomi et al., 2013), and PSO–GA (Garg, 2016).

Table 6.1 Gear train problem parameters
Parameter Parameter value

BAwSSR BADS BAOSS

Number of scout bees, n 20 20 20

Number of selected bees, m 4 4 4

Number of elite bees, e 2 2 2

Number of forager bees for elite bee, nep 30 30 30

Number of foragers for selected bee, nsp 10 10 10

Neighbourhood size, ngh 0.1 0.1 0.1

The data in Tables 6.2 and 6.3 present the results of testing the qABC, SPSO2011, BBA,

BAwSSR, BADS, BAOSS, PSO–GA, ABC, and CS on the gear train problem. The best solution

was achieved by PSO–GA, BAwSSR, ABC, and CS. They obtained a gear train value of 0.14428

with an error rate of 0.001%. This was among the best results found when reviewing the

literature on solving the gear train problem. Nevertheless, according to the means and standard

deviations, BAwSSR in general did not perform as consistently and robustly as PSO–GA, ABC,

and CS. Yet, this result is an indication of the ability of the BAwSSR algorithm to improve its

performance. On the other hand, the qABC and SPSO2011 as well as BADS and BAOSS,

acquired the lowest solution values among all algorithms involved. Likewise, BADS and

BAOSS acquired error values of 0.5% and 0.12%, respectively, which are the lowest in the

group. The conclusion is that the proposed method used in the BAwSSR algorithm was more

effective at optimising the gear train parameters than were the methods used in BADS and

BAOSS. Moreover, regarding speed, it can be stated that ABC was the fastest, as it needed only

60 NFEs to achieve its best result, which is the lowest among all, while CS and BAwSSR needed

5,000 and 14,555 function evaluations, respectively.

99

Table 6.2 Performance figures comparing the qABC, SPSO2011, BBA, BAwSSR, BADS, and BAOSS

on the gear train problem.

Item qABC SPS02011 BBA BAwSSR BADS BAOSS

Mean 0.0001642317 0.0001754215 1.580352 E-05 6.12116 E-05 1.934146E-05 3.632972E-05

Std. Dev 0.0002518493 0.000262571 1.874908 E-05 7.858313 E-05 3.236422E-05 1.52026E-05

Best

solution 2.357641 E-09 1.11729 E-09 9.745653 E-10 2.700857E-12 6.654886 E-09 3.064532E-08

X1 48 51 47 49 35 43

X2 12 15 24 19 16 19

X3 30 27 13 16 12 17

X4 52 55 46 43 38 52

Gear ratio 0.1442308 0.144385 0.1443108 0.144281 0.1443609 0.1444544

Error % 0.004% 0.01% 0.003% 0.001% 0.5% 0.12%

Evaluations 150 100 14,526 14,555 9,725 14,542

Table 6.3 Performance figures for the ABC, PSO–GA, CS, BAwSSR, BADS, and BAOSS on the gear

train problem

Item ABC PSO–GA CS BAwSSR BADS BAOSS

Mean 3.641339 E-10 1.2149 E- 10 1.9841E-9 6.12116e-05 1.934146E-05 3.632972E-05

Std. Dev. 5.525811E-10 8.7787 E-10 3.5546 E-9 7.858313 E-05 3.236422E-05

1.52026E-05

Best

solution

2.700857 E-12 2.70085 E-12

2.7009 E-12 2.700857E-12

6.654886E09

3.064532E-08

X1 49 43 43 49 35 43

X2 16 16 16 19 16 19

X3 19 19 19 16 12 17

X4 43 49 49 43 38 52

Gear ratio 0.144281

0.14428096 0.144281 0.144281

0.1443609

0.1444544

Error % 0.001% 0.001% 0.001% 0.001% 0.5% 0.12%

Evaluations 60 NA 5,000 14,555 9,725 14,542

6.2 Single-Objective Functions with Constraints

The engineering problem selected to apply the proposed algorithms here is the

tension/compression spring, a single-objective function with constraints. The aim of this problem

is to reduce the spring steel wire volume, which means decreasing the weight of the spring (Guo,

2004). More details on tension/compression springs are included in Appendix B. Engineering

design problems are predominantly complex and nonlinear, with many variables and constraints

that must be satisfied to achieve an optimised solution (Gandomi et al., 2013).

100

To ensure the variables were restricted to the domain of the values, a check point was

implemented to ensure that the variables’ values located within the limit of their domains and to

regenerate them if they were located outside their domains. With regards to the constraints, at the

end of every iteration, only the feasible solutions that satisfied all the constraints were

considered. One hundred runs were performed, and every run was forced to achieve at least 100

iterations. To evaluate the performance of the three proposed algorithms, firstly they were

compared with the qABC, SPSO2011, and BBA, which is the set of algorithms used for testing

benchmark problems and using the same parameter settings applied previously. Next, their

performance was compared with a collection of algorithms that were applied successfully on the

tension/compression spring, as selected from the literature. They are the following: evolutionary

strategies ((μ + λ)−ES; Mezura-Montes and Coello, 2005), PSO (He et al., 2004), ABC (Akay

and Karaboga, 2010), society and civilisation algorithm (SCA; Ray and Liew, 2003), and unified

particle swarm optimisation (UPSOm; Parsopoulos and Vrahatis, 2005). Table 6.3 shows the

parameters used to apply the proposed algorithms on the tension/compression spring.

Table 6.4 Tension/compression spring parameter values
Algorithm n m nsp e nep ngh

BAwSSR 100 4 10 2 30 0.0001

BADS 20 4 10 2 30 0.001

BAOSS 20 4 10 2 30 0.001

Tables 6.5 and 6.6 show the values acquired by all three algorithms applied to the

tension/compression spring as well as the other algorithms involved. The figures reveal that the

BBA achieved the best minimum value for the weight of tension/compression springs compared

to the other algorithms. BAwSSR comes next while ABC, SCA, (μ + λ)−ES, and SPSO2011

exhibited similar performance. However, some algorithms—qABc, UPSOm, BADS, and

BAOSS—exhibited poor performance in general.

101

The means and standard deviations in Tables 6.5 and 6.6 reveal that the BBA and

BAwSSR could not maintain their enhanced performance in all the runs, although the BBA was

the fastest in terms of NFEs, with 8,099 function evaluations. Nevertheless, PSO exhibited the

best performance with great accuracy and stable performance. Generally, BAwSSR performed

better than BADS and BAOSS, which suggests that the method used to enhance it might be more

efficient than the method used on the other two. Although BAwSSR could not outperform the

original BBA algorithm, the above findings imply an acceptable performance by BAwSSR and

its potential if further enhancements are applied.

Table 6.5 Performance figures comparison for the qABC, SPSO2011, BBA, BAwSSR, BADS, and

BAOSS on the tension/compression spring problem
Tension/

compression

spring qABC SPSO2011 BBA BAwSSR BADS BAOSS

Best solution

0.012903

96 0.01266856 0.0061625 0.008838 0.0147636 0.0151

Mean 0.067087 0.01274005 0.01378989 0.035154 0.1605027 0.055040

Std. Dev 0.044828 0.00021 0.013025 0.012017 0.0852746 0.053895

Evaluations 23,661 N/A 8,099 17,889 9,719 10,684

Table 6.6 Comparison of the figures of group of competitor algorithms with the proposed algorithms on

the tension/compression spring problem for each algorithm
Tension/

compression

spring

ABC SCA

(μ + λ)-ES

UPSOm

PSO BAwSSR BADS BAOS

S

Best solution 0.012665 0.012669 0.012689 0.0131200 0.012665 0.008838 0.0147636 0.0151

Mean 0.012709 0.012923 0.013165 0.0229478 0.012702 0.035154

0.1605027

0.0550

4

Std. Dev. 0.012813 0.00059 0.00039 0.0072 0.000041 0.012017 0.053895 0.0553

Evaluations 30,000 25,167 30,000 100,000 15,000 17,889 9,719 10,684

Table 6.7 List of variable and constraint values achieved by the BAwSSR, BADS, and BAOSS

algorithms

Variables and constraints BAwSSR BADS BAOSS

x1 0.0685 0.0599 0.0518

x2 0.5667 0.573 0.3469

x3 12.204 5.160 14.1675

g1 -0.40 0.0495 -0.1440

g2 -0.341 -0.0243 -0.0281

g3 -1.456 -3.960 -3.2676

g4 -0.576 -0.577 -0.7342

102

To evaluate the significance of improvements among the proposed algorithms, the Mann–

Whitney tests were performed. The results revealed that BAwSSR was significantly better than

BADS and BAOSS. However, these two algorithms performed equally; none of them improved

significantly over the other. Tables 6.8, 6.9, and 6.10.

Table 6.8 Mann–Whitney significance test at < 0.05 on tension/compression spring for BAwSSR and

BADS
 BAwSSR BADS p-value

Significance Yes NO 0.001

Table 6.9 Mann–Whitney significance test on tension/compression spring for BAOSS and BAwSSR

 BAOSS BAwSSR p-value

Significance No Yes 0.004

Table 6.10 Mann–Whitney significance test on tension/compression spring for BAOSS and BADS
 BAOSS BADS p-value

Significance NO Yes 0.420

It can be confirmed from the above analysis that, among all the proposed algorithms,

BAwSSR outperformed the others on the tension/compression spring problem. The inference

from these findings is that the search space gradual reduction was the most effective

improvement among all other methods suggested.

6.3 Summary

In this chapter, the three proposed algorithms were tested on two well-known unconstrained and

constrained engineering problems—the gear train problem and the tension/compression spring.

To evaluate the performance of these algorithms, the results were compared against a collection

of alternatives that were applied successfully to the two engineering problems. Twenty runs were

performed to acquire stable figures. Parameters were elicited partially through trial and error and

partially from the literature review. In the gear train problem, BAwSSR achieved equal

performance with the ABC, PSO–GA, and CS, which was the best among all the algorithms. For

103

the tension/compression spring problem, BAwSSR achieved the best minimum value. However,

it could not maintain the same improved performance in all the runs. Nevertheless, the other

proposed algorithms, BADS and BAOSS, exhibited the worst performance. It can be assumed

that BAwSSR demonstrated improved performance both in the engineering problems and among

all three proposed algorithms. This suggests that the search space reduction technique used in

BAwSSR proved to be effective. However, its inability to sustain the satisfactory performance in

all the testing runs suggests the need for further improvement. Regarding the

tension/compression spring, BADS performed remarkably better than all other algorithms

involved in the experiment. However, it was not the fastest, even though it needed a slightly

higher NFE to achieve its best results.

104

Chapter 7 CONCLUSION

This chapter summarises the contributions that have been made in this research and offers a

conclusion for the whole study. Additionally, it provides suggestions for further enhancements to

the methods proposed here.

7.1 Conclusion

To conclude this research, it is worth noting that all objectives stipulated in Chapter 1 have been

satisfied. The study aimed at improving the performance of the BA. All proposed enhancements

targeted the initialisation and global search stages. The first objective was to enhance the BA

using the gradual decrease of the search space to direct the search process to become faster and

more focused. The results indicated that this improvement affected the accuracy and speed

positively. It also showed an acceptable level of consistent and stable behaviour. The second

objective was to use the segmentation of search space into independent samples to improve the

BA. The sampling process itself was performed by using one segment to extract one sample with

all its different parameters; this is a one-sample-per-segment approach. Another approach was to

extract every parameter of the same sample from different segments; this is a one-parameter-per-

segment approach. The obtained data showed noticeably consistent behaviour and good

improvement in terms of both accuracy and speed.

The third objective was to develop an overlapping segmentation strategy of the search

space. This strategy is the opposite of segmenting the search space into independent segments. It

allowed the BA to handle different types of problems with one sampling approach, and the

outcome had noticeable improvements.

105

 All the previous methods were shown to improve the BA successfully, even in functions

with multipocketed topography, except for a few functions, such as Langerman and Bukin6,

which always represented a challenge to all algorithms involved in the testing. Some of the

proposed enhancements were able find the exact optimum. However, in some functions, tuning

of the ngh and n parameters affected the performance positively, which involved a sensitivity

issue. Except for BAwSSR, the other two proposed algorithms, BADS and BAOSS, performed

poorly on the engineering problems. This might be understood in light of the No Free Lunch

Theorem, which states that no one algorithm can exhibit average performance on all classes of

problems (Wolpert and Macready, 1997).

7.2 Contribution

This research examined possibilities for improving the BA by manipulating the search space

with different techniques focusing on the global search and initialisation stages. The work

explored the effects of improving these two stages on the overall performance of the BA.

• The research contributed to proving the ability to improve the overall performance of the

BA in terms of accuracy via improving the initialisation and global search stages. The

proposed methods showed positive effects in reducing the number of function evaluations

(NFEs) and improving the success rate (SR), which accelerated the search for the

optimum.

• One of the research contributions was to improve the accuracy of the BA with the ability

to find the exact minimum in some benchmark problems. A new search method was

introduced based on continuous and gradual decreases in search space with different

scenarios to better utilise the generated samples. The additional results for two

engineering problems indicated enhanced performance.

106

• Another contribution was to introduce two sampling techniques:

1. To take all the parameters of one sample from the same segments.

2. To take every parameter of one sample from different segments.

The effectiveness of this method is due to its flexibility in handling different types of

problems. The testing of this method indicated considerable enhancements in

performance.

• A new method of segmentation was introduced based on overlapping segmentation of the

search space. The purpose was to permit flexible handling of different types of problems

while using the same sampling technique. The testing of this method indicated positive

effects on performance.

7.3 Future work

One of the methods used in this research was based on the gradual decrease of search space in

five scenarios. Expansions rather than a decrease of search space could have also been used.

Additionally, the selection of these scenarios was not based on a guaranty of their

optimality; rather, it was based on trial and error. Logically, many other scenarios could have

been used and need further investigation. Some of the methods formulated in this research used a

fixed segmentation approach; however, a variable segmentation approach could also be used.

While good results were obtained from targeting only the initialisation and global search

stages, they could also be extended to apply to neighbourhood searches. Another critical issue in

this research is the poor performance of BADS and BAOSS in engineering problems, which

contradicts the good performance on the benchmark function. There is a need to investigate this

107

weakness and to further improve the method used. While BAwSSR was able to obtain a high

value among the best values found, the means and standard deviations indicate that it could not

sustain the good performance in all the runs; this implies the potential for further enhancement.

Moreover, during the testing of the engineering problems, the handling of parameters of different

domains of values, as well as inequality constraints, represented a challenge in the search for the

optimum. Better handling of the constraints would affect a decrease in the processing time and

accuracy.

During the testing of the suggested techniques, it was noted that they are sensitive to the

ngh and n parameters. An exploration of this issue will likely help the proposed algorithms to

become more robust and reliable. None of the proposed algorithms were applied on

combinatorial domain problems, and it is worth investigating the effects on segmentation on

combinatorial problems. However, major modifications to these algorithms might be required to

handle these types of problems. Furthermore, the field of multi-objective optimisation has not

been studied in this research and it is worth investigating how to apply the developed algorithms

on multi-objective problems.

108

REFERENCES

Abidin, Z. Z., Arshad, M. R. and Ngah, U. K., 2011. A Simulation Based Fly

Optimization Algorithm for Swarms of Mini Autonomous Surface Vehicles Application.

indian Journal of Geo-Marine Sciences, 40(2), pp.250-266,

Ahmad, S. A., Pham, D. T., Ng, K. W. and Ang, M. C., 2012. TRIZ-inspired Asymmetrical

Search Neighborhood in the Bees Algorithm. In IEEE 2012 Sixth Asia Modelling Symposium

(AMS), Bali 2012, pp.29-33. doi: 10.1109/AMS.2012.30.

Akay, B. and Karaboga D. 2012. Artificial bee colony algorithm for large-scale problems

and engineering design optimization. Journal of intelligent manufacturing, 23(4), pp.1001–

1014, https://doi.org/10.1007/s10845-010-0393-4

Alfi, A. and Khosravi, A., 2012. Constrained Nonlinear Optimal Control via a Hybrid BA-SD.

International Journal of Engineering-Transactions C: Aspects [Online], 25(3): 197-204.

Available from http://www.ije.ir [Accessed 10 July 2020].

Aljahdali, S.H, Ghiduk, A.S and El-Telbany, M. 2010. The limitations of genetic

algorithms in software testing. In ACS/IEEE International Conference on Computer

Systems and Applications-AICCSA, Hammamet 2010, pp. 1–7,
 doi: 10.1109/AICCSA.2010.5586984.

Anantasate, S., Chokpanyasuwan, C. and Bhasaputra, P., 2010. Optimal power flow by using

bees algorithm. In ECTI-CON2010: The 2010 ECTI International Confernce on Electrical

Engineering/Electronics, Computer, Telecommunications and Information Technology, Chiang

Mai, Thailand, pp. 430-434.

Anderson,C. and Ratnieks, F. 1999. Worker allocation in insect societies: coordination of

nectar foragers and nectar receivers in honeybee (Apis mellifera) colonies. Behavioral

Ecology and Sociobiology, 46(2), pp.73–81, https://doi.org/10.1007/s002650050595

Azfanizam, A.S., Pham, D.T., Faieza, A.A., 2014. Combination of Adaptive

Enlargement and Reduction in the Search Neighbourhood in the Bees Algorithm.

AMM 564, pp.614–618, https://doi.org/10.4028/www.scientific.net/amm.564614

[Accessed 12 July 2020].

Baghel, M, Agrawal S, Silakari S, 2012. Survey of metaheuristic algorithms for

combinatorial optimization. International Journal of Computer Applications, 58(19),

pp. 21-31.

Battiti, R. and Brunato, M., 2010. Reactive search optimization: learning while optimizing.

In Handbook of Metaheuristics (pp. 543-571). Springer, Boston, MA,

109

https://doi.org/10.1007/978-1-4419-1665-5_18

Beheshti, Z. and Shamsuddin, S.M.H., 2013. A review of population-based meta-heuristic

algorithms. Int. J. Adv. Soft Comput. Appl, 5(1), pp.1-35.

Bhattacharjya, R.K. 2009. CE 602: Optimization Method, Region Elimination Method, Indian

Institute of Technology, Guwahati.

Biswal, B., Dash, P.K. and Mishra, S., 2011. A hybrid ant colony optimization technique

for power signal pattern classification. Expert Systems with Applications, 38(5), pp.6368-

6375, https://doi.org/10.1016/j.eswa.2010.11.102.

Blondin, J., 2009. Particle swarm optimization: A tutorial. Availaible from site:

 http://cs.armstrong.edu/saad/csci8100/pso_tutorial.Pdf , [Accessed 15 July 2020].

Bonabeau, E., Dorigo, M. and Theraulaz, G., 1999. From Natural to Artificial Swarm

Intelligence. Oxford University Press, Inc., USA.

Boussaïd, I., Lepagnot, J. and Siarry, P., 2013. A survey on optimization

metaheuristics. Information sciences, 237, pp.82–117,

https://doi.org/10.1016/j.ins.2013.02.041.

Chaparro, I. and Valdez, F., 2013. Variants of ant colony optimization: a metaheuristic for

solving the traveling salesman problem. Recent Advances on Hybrid Intelligent

Systems, Springer, Berlin, 451,pp. 323-331, https://doi.org/10.1007/978-3-642-33021-

6_26.

Chinneck, J.W., 2006. Practical optimization: a gentle introduction. Systems and

Computer Engineering), Carleton University, Ottawa, Canada [online] Available

http://www. sce. carleton. ca/faculty/chinneck/po. html, p.11. [Accessed 14 july 2020]

Dahiya, S.S., Chhabra, J.K. and Kumar, S., 2010. Application of artificial bee colony algorithm

to software testing. In 2010 21st Australian software engineering conference, Auckland, pp. 149-

154, doi: 10.1109/ASWEC.2010.30.

Deb, K., 2012. Optimization for engineering design: Algorithms and examples. PHI Learning

Pvt. Ltd., New Delhi, India.

Derakhshan, M. and Shirazi, K.H., 2014. Optimized fuzzy controller for a power–torque

distribution in a hybrid vehicle with a parallel configuration. Proceedings of the Institution of

Mechanical Engineers, Part D: Journal of Automobile Engineering, 228(14), pp.1654-1674,

https://doi.org/10.1177/0954407013496183.

Dieterich, J.M. and Hartke, B., 2012. Empirical Review of Standard Benchmark Functions

Using Evolutionary Global Optimization. Applied Mathematics, 3, pp.1552-1564

http://cs.armstrong.edu/saad/csci8100/pso_tutorial.Pdf
https://doi.org/10.1007/978-3-642-33021-
https://doi.org/10.1177%2F0954407013496183

110

Ding, Q., Hu, X., Sun, L. and Wang, Y., 2012. An improved ant colony optimization and its application

to vehicle routing problem with time windows. Neurocomputing, 98, pp.101-107.

Dorigo, M., Maniezzo, V. and Colorni, A.,1991. Positive feedback as a search strategy.

Technical Report 91-016, viewed 14th August 2020, Dipartimento di Elettronica, Politecnico

di Milano, Milan, Italy, https://doi.org/10.1016/j.neucom.2011.09.040

Dorigo, M., Maniezzo, V. and Colorni, A., 1996. Ant system: optimization by a colony of

cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 26(1), pp.29–41, doi: 10.1109/3477.484436.

Dorigo, M. and Di Caro, G., 1999. Ant colony optimization: a new meta-heuristic.

In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No.

99TH8406) , IEEE, Washington, DC, USA, 2, pp. 1470–147, doi:10.1109/CEC.1999.782657.

Dorigo, M., Birattari, M. and Stutzle, T., 2006. Ant colony optimization. IEEE

computational intelligence magazine, 1(4), pp.28–39, doi: 10.1109/MCI.2006.329691.

Dos Santos Coelho, L. and Alotto, P., 2011. Gaussian artificial bee colony algorithm approach applied to

Loney's solenoid benchmark problem. IEEE Transactions on Magnetics, 47(5), pp.1326-1329.

Eldukhri, E.E. and Kamil, H.G., 2015. Optimisation of swing-up control parameters for a

robot gymnast using the Bees Algorithm. Journal of Intelligent Manufacturing, 26(5),

pp.1039-1047, doi: 10.1109/TMAG.2010.2087317.

Eswaramurthy, V.P. and Tamilarasi, A., 2009. Hybridizing tabu search with ant colony

optimization for solving job shop scheduling problems. The International Journal of

Advanced Manufacturing Technology, 40(9–10), pp.1004–1015,

DOI: 10.1007/s00170-008-1404-x

Gandelli, A., Grimaccia, F., Mussetta, M., Pirinoli, P. and Zich, R.E., 2007.

Development and validation of different hybridization strategies between GA and PSO.

In 2007 IEEE Congress on Evolutionary Computation, pp. 2782–2787,

doi: 10.1109/CEC.2007.4424823.

Gandomi, A.H., Yang, X.S. and Alavi, A.H., 2013. Cuckoo search algorithm: a

metaheuristic approach to solve structural optimization problems. Engineering with

computers, 29(1), pp.17–35, DOI 10.1007/s00366-011-0241-y

Garg, H., 2016. A hybrid PSO-GA algorithm for constrained optimization

problems. Applied Mathematics and Computation, 274, pp.292–305,

https://doi.org/10.1016/j.amc.2015.11.001

https://doi.org/10.1016/j.neucom.2011.09.040
https://doi.org/10.1016/j.amc.2015.11.001

111

Glover, F., 1990. Tabu search: A tutorial. Interfaces, 20(4), pp.74-94,

https://doi.org/10.1287/inte.20.4.74

Glover, F.W. and Kochenberger, G.A. eds., 2006. Handbook of metaheuristics,

International Series in Operations Research & Management Science,57, Springer Science

& Business Media, Boston.

Gordon, D.M., 1996. The organization of work in social insect

colonies. Nature, 380(6570), pp.121–124.

Guo, C.X., Hu, J.S., Ye, B. and Cao, Y.J., 2004. Swarm intelligence for mixed-variable

design optimization. Journal of Zhejiang University-SCIENCE A, 5(7), pp.851–860,

https://doi.org/10.1631/jzus.2004.0851.

Hansen, P., Mladenović, N. and Pérez, J.A.M., 2008. Variable neighbourhood search:

methods and applications. Operational Research, 6(4), pp.319–360,

https://doi.org/10.1007/s10479-009-0657-6.

Hansen N., Finck S., Raymond Ros R., Anne Auger A., 2009. Real-Parameter Black-Box

Optimization Benchmarking 2009: Noiseless Functions Definitions. [Research Report] RR-

6829, 2009. <inria-00362633>

He, S., Prempain, E. and Wu, Q.H., 2004. An improved particle swarm optimizer for

mechanical design optimization problems. Engineering optimization, 36(5), pp.585–605.

Herrera, F., Lozano, M. and Verdegay, J.L., 1998. Tackling real-coded genetic algorithms:

Operators and tools for behavioural analysis. Artificial intelligence review, 12(4),

pp.265–319, https://doi.org/10.1023/A:1006504901164.

Hu, X., Ding, Q. and Wang, Y., 2010. A hybrid ant colony optimization and its application

to vehicle routing problem with time windows. In Life System Modelling and Intelligent

Computing,Wuxi, China, Springer, Berlin, Germany, pp. 70-76,

https://doi.org/10.1007/978-3-642-15853-7_10

Huang, S.J. and Liu, X.Z., 2013. Application of artificial bee colony-based optimization for fault

section estimation in power systems. International Journal of Electrical Power & Energy

Systems, 44(1), pp.210-218, https://doi.org/10.1016/j.ijepes.2012.07.012.

Hussein, W.A., Sahran, S. and Abdullah, S.N.H.S., 2014. Patch-Levy-based initialization

algorithm for Bees Algorithm. Applied Soft Computing, 23, pp.104–121,

https://doi.org/10.1016/j.asoc.2014.06.004.

Hyma, J., Jhansi, Y. and Anuradha, S., 2010. A new hybridized approach of PSO & GA for ‘

https://doi.org/10.1287/inte.20.4.74
https://doi.org/10.1007/978-3-642-15853-7_10

112

document clustering. International Journal of Engineering Science and Technology, 2(5),

pp.1221–1226.

Imanguliyev, A., 2013. Enhancements for the Bees Algorithm (Doctoral dissertation,

Cardiff University).

Jamil, M. And Yang, X., 2013. A Literature Survey of Benchmark Functions for Global

Optimisation Problems. Journal of Numerical Optimisation, 4(2), pp. 150-194,

https://doi.org/10.1504/IJMMNO.2013.055204

Kamsani, S.H., 2016. Improvements on the bees algorithm for continuous optimisation

problems (Doctoral dissertation, University of Birmingham).

Kannan, B. K. and Kramer, S. N. 1994. Augmented Lagrange Multiplier Based Method for

Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical

Design. Journal of Mechanical Design, Transactions of the ASME 116(2), pp. 405-411,

https://doi.org/10.1115/1.2919393

Karaboga, D., 2005. An idea based on honeybee swarm for numerical optimization, pp. 1-10,

Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.

Karaboga, D. and Basturk, B., 2007. A powerful and efficient algorithm for numerical function

optimization: artificial bee colony (ABC) algorithm. Journal of global optimization, 39(3),

pp.459-471, DOI 10.1007/s10898-007-9149-x

Karaboga, D. and Gorkemli, B., 2012. A quick artificial bee colony-qABC-algorithm for

optimization problems. 2012 International symposium on innovations in intelligent systems and

applications, IEEE, Trabzon, Turkey, pp. 1-5, https://doi.org/10.1023/A:1006504901164

Kennedy, J. and Eberhart, R., 1995. Particle swarm optimization. In Proceedings

of ICNN'95-International Conference on Neural Networks, IEEE, Perth, WA, Australia, 4,

pp. 1942–1948, doi: 10.1109/ICNN.1995.488968.

Kennedy, J. and Eberhart, R.C., 1997. A Discrete Binary Version of the Particle

Swarm Algorithm. 1997 IEEE International conference on systems, man, and cybernetics.

Computational cybernetics and simulation, IEEE, Orlando, FL, USA 5, pp. 4104–4108, doi:

10.1109/ICSMC.1997.637339.

Kıran, M.S. and Gündüz, M., 2013. A recombination-based hybridization of particle swarm

optimization and artificial bee colony algorithm for continuous optimization problems. Applied

Soft Computing, 13(4), pp.2188-2203, https://doi.org/10.1016/j.asoc.2012.12.007.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., 1983. Optimization by simulated

annealing. science, 220(4598), pp.671–680, DOI: 10.1126/science.220.4598.671

113

Korb, O., Stützle, T. and Exner, T.E., 2007. An ant colony optimization approach to

flexible protein–ligand docking. Swarm Intelligence, 1(2), pp.115–134,

https://doi.org/10.1007/s11721-007-0006-9

Kumar, A. and Kumar, V., 2017. Hybridized ABC-GA optimized fractional order fuzzy

pre- compensated FOPID Control design for 2-DOF robot manipulator. AEU-International

Journal of Electronics and Communications, 79, pp. 219–233,

https://doi.org/10.1016/j.aeue.2017.06.008.

Laskari, E.C., Parsopoulos, K.E. and Vrahatis, M.N., 2002. Particle swarm optimization

for integer programming. In Proceedings of the 2002 Congress on Evolutionary

Computation. CEC'02 (Cat. No. 02TH8600),IEEE, Honolulu, HI, USA, 2, pp. 1582–1587.

Liang, J.J., Qin, A.K., Suganthan, P.N. and Baskar, S., 2006. Comprehensive learning

particle swarm optimizer for global optimization of multimodal functions. IEEE

transactions on evolutionary computation, 10(3), pp.281–295,

doi: 10.1109/TEVC.2005.857610.

Lourenço, H.R., Martin, O.C. and Stützle, T., 2003. Iterated local search, In: Glover F.,

Kochenberger G.A. (eds)Handbook of metaheuristics, Springer, Boston, MA, 57. pp. 320–

353, https://doi.org/10.1007/0-306-48056-5_11

Luke, S., 2013. Essentials of metaheuristics,Lulu. available online at

http://cs.gmu.edu/∼sean/book/metaheuristics/ [Accessed on 11 July 2020]

Mei, C.A., Pham, D.T., Anthony, J.S. and Kok, W.N., 2010. PCB assembly optimisation using

the Bees Algorithm enhanced with TRIZ operators. IECON 2010-36th Annual Conference on

IEEE Industrial Electronics Society, Glendale, AZ, USA, pp. 2708-2713, doi:

10.1109/IECON.2010.5675114.

Mezura-Montes, E. and Coello, C. A. 2005. Useful infeasible solutions in engineering

optimization with evolutionary algorithms. MICAI 2005: Advances in Artificial Intelligence.

MICAI 2005, Springer, Berlin, Germany, pp. 652-662, https://doi.org/10.1007/11579427_66

Mladenović, N. and Hansen, P., 1997. Variable neighborhood search. Computers &

operations research, 24(11), pp.1097-1100, https://doi.org/10.1016/S0305-0548(97)00031-

2.

Murata, T. and Ishibuchi, H., 1994. Performance evaluation of genetic algorithms for

flowshop scheduling problems. In Proceedings of the First IEEE Conference on

Evolutionary Computation. IEEE World Congress on Computational Intelligence, ,

Orlando, FL, USA, 2, pp. 812–817, doi: 10.1109/ICEC.1994.349951.

Nachar, N., 2008. The Mann-Whitney U: A test for assessing whether two independent

https://doi.org/10.1016/S0305-0548(97)00031-

114

samples come from the same distribution. Tutorials in Quantitative Methods for

Psychology, 4(1), pp.13–20.

Nievergelt, J., Gasser, R., Mäser, F. and Wirth, C., 1995. All the needles in a haystack: Can

exhaustive search overcome combinatorial chaos? In Computer Science Today,

1000, pp. 254-274, https://doi.org/10.1007/BFb0015248.

Niu, D., Gu, Z. and Xing, M., 2007. Research on neural networks based on culture

particle swarm optimization and its application in power load forecasting. In Third

International Conference on Natural Computation (ICNC 2007), Haikou, China, IEEE, 1,

 pp.270–274, doi: 10.1109/ICNC.2007.627.

Nolle, L., Köppen, M., Schaefer, G. and Abraham, A., 2011. Intelligent computational

optimization in engineering: Techniques and applications. Studies in Computational

Intelligence, Springer, 366, pp. 1-24, https://doi.org/10.1007/978-3-642-21705-0_1.

Owen, C.B. and Abunawass, A.M., 1993. Application of simulated annealing to the

backpropagation model improves convergence. In Proceedings of the SPIE Conference on

Science of Artificial Neural Networks II, Orlando, FL, USA,1966, SPIE, pp. 269–276,

https://doi.org/10.1117/12.152626.

Omran, M.G., Engelbrecht, A.P. and Salman, A., 2004. Image classification using particle

swarm optimization. In Recent advances in simulated evolution and learning, pp. 347–365.

Onwunalu, J.E. and Durlofsky, L.J., 2010. Application of a particle swarm optimization

algorithm for determining optimum well location and type. Computational

Geosciences, 14(1), pp.183–198, DOI 10.1007/s10596-009-9142-1

Packianather, M.S., Yuce, B., Mastrocinque, E., Fruggiero, F., Pham, D.T. and Lambiase, A.,

2014. Novel Genetic Bees Algorithm applied to single machine scheduling problem. In 2014

World Automation Congress (WAC), Waikoloa, HI, USA, IEEE, pp. 906-911,

doi: 10.1109/WAC.2014.6936194.

Pan, Q.K., Tasgetiren, M.F., Suganthan, P.N. and Chua, T.J., 2011. A discrete artificial bee

colony algorithm for the lot-streaming flow shop scheduling problem. Information

sciences, 181(12), pp.2455-2468, https://doi.org/10.1016/j.ins.2009.12.025.

Parsopoulos, K.E. and Vrahatis, M.N., 2005. Unified particle swarm optimization for

solving constrained engineering optimization problems. First International conference on

natural computation, ICNC 2005, Changsha, China, Springer, Berlin, Germany, pp. 582–

591, https://doi.org/10.1007/11539902_71

115

Pham, D.T. and Castellani, M., 2015. A comparative study of the Bees Algorithm as a tool for

function optimisation. Cogent Engineering, 2(1), pp.1-28,

https://doi.org/10.1080/23311916.2015.1091540

Pham, D.T., Castellani, M. and Fahmy, A.A., 2008b. Learning the inverse kinematics of a robot

manipulator using the bees algorithm. In 2008 6th IEEE International Conference on Industrial

Informatics, IEEE, pp. 493-498, doi: 10.1109/INDIN.2008.4618151.

Pham, D.T. and Darwish, H.A., 2010. Using the bees algorithm with Kalman filtering to

train an artificial neural network for pattern classification. Proceedings of the Institution of

Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 224(7),

pp.885–892, https://doi.org/10.1243/09596518JSCE1004

Pham, D.T., Haj Darwish, A. and Eldukhri, E.E., 2009. Optimisation of a fuzzy logic controller

using the bees algorithm. International Journal of Computer Aided Engineering and

Technology, 1(2), pp.250-264, https://doi.org/10.1504/IJCAET.2009.02279

Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M., 2005. The bees

algorithm Technical Note, Manufacturing Engineering Centre, Cardiff University, UK.

Pham, D.T., Koc, E., Lee, J.Y. and Phrueksanant, J., 2007. Using the bees algorithm to schedule

jobs for a machine. In Proceedings Eighth International Conference on Laser Metrology, CMM

and Machine Tool Performance, LAMDAMAP, Euspen, UK, Cardiff, pp. 430-439.

Pham, D.T., Pham, Q.T., Ghanbarzadeh, A. and Castellani, M., 2008a. Dynamic optimisation of

chemical engineering processes using the bees algorithm. IFAC Proceedings Volumes, 41(2),

pp.6100-6105, https://doi.org/10.3182/20080706-5-KR-1001.01030.

Prakasam, A. and Savarimuthu, N., 2016. Metaheuristic algorithms and probabilistic

behaviour: a comprehensive analysis of Ant Colony Optimization and its variants. Artificial

Intelligence Review, 45(1), pp.97–130, DOI 10.1007/s10462-015-9441-y

Qi, X. and Palmieri, F., 1994. Theoretical analysis of evolutionary algorithms with an

infinite population size in continuous space. Part II: Analysis of the diversification role of

crossover. IEEE Transactions on Neural Networks, 5(1), pp.120–129,

doi:10.1109/72.265965

Qiu, J., Yang, D. and Xie, J., 2013. An artificial bee colony algorithm with modified search strategies for

global numerical optimization, Journal of Theoretical and Applied Information Technology, 48(1)

pp.1-10

Ray, T. and Liew, K. M. 2003. Society and civilization: An optimization algorithm based on the

simulation of social behavior. IEEE Transactions on Evolutionary Computation 7(4), pp. 386-396,

doi: 10.1109/TEVC.2003.814902.

Resende, M.G., Martí, R. and Panos, P., 2018. Handbook of Heuristics, Springer, Cham,

Switzerland

https://doi.org/10.3182/20080706-5-KR-1001.01030

116

Rosenbrock, H., 1960. An automatic method for finding the greatest or least value of a

function. The Computer Journal, 3(3), pp.175–184, https://doi.org/10.1093/comjnl/3.3.175

Satheesh, A. and Manigandan, T. Maintaining Power System Stability with Facts Controller

using Bees Algorithm and NN, Journal of Theoretical and Applied Information Technology, 49,

(1), pp. 38-47

Savsani, P., Jhala, R.L. and Savsani, V., 2014. Effect of hybridizing biogeography-based

optimization (BBO) technique with artificial immune algorithm (AIA) and ant colony

optimization (ACO). Applied Soft Computing, 21, pp. 542–553,

https://doi.org/10.1016/j.asoc.2014.03.011.

Sun, P., Zhang, Y., Liu, J. and Bi, J., 2020 "An Improved Atom Search Optimization With

Cellular Automata, a Lévy Flight and an Adaptive Weight Strategy," in IEEE Access, 8,

pp. 49137-49159, doi: 10.1109/ACCESS.2020.2979921.

Seeley, T.D., 2002. When is self-organization used in biological systems? The Biological

Bulletin, 202(3), pp. 314–318.

Shafia, M.A., Moghaddam, M.R., & Tavakolian, R.,2011. A Hybrid Algorithm for Data

Clustering Using Honey Bee Algorithm, Genetic Algorithm and K-Means Method. Journal

of Advanced Computer Science and Technology, 1, pp.110-125.

Shanghooshabad, A.M. and Abadeh, M.S., 2016. Robust, interpretable, and high quality

fuzzy rule discovery using krill herd algorithm. Journal of Intelligent & Fuzzy

Systems, 30(3), pp.1601–1612.

Shatnawi, N., Sahran, S. and Faidzul, M., 2013. A memory-based Bees Algorithm: an

enhancement. JApSc, 13(3), pp.497-502, DOI: 10.3923/jas.2013.497.502.

Shtovba, S.D., 2005. Ant algorithms: theory and applications. Programming and Computer

Software, 31(4), pp.167–178, https://doi.org/10.1007/s11086-005-0029-1

Sorensen, K., Sevaux, M. and Glover, F., 2017. A history of metaheuristics. arXiv preprint

arXiv:1704.00853.

Thammano, A. and Phu-ang, A., 2013. A hybrid artificial bee colony algorithm with local

search for flexible job-shop scheduling problem. Procedia computer science, 20,

pp.96-101, https://doi.org/10.1016/j.procs.2013.09.245.

Van den Bergh, F. and Engelbrecht, A.P., 2002. A new locally convergent particle

swarm optimiser. In IEEE International conference on systems, man, and cybernetics,

117

Yasmine Hammamet, Tunisia, IEEE,3, pp. 1-6, doi: 10.1109/ICSMC.2002.1176018.

Wang, S., Zhang, Y., Dong, Z., Du, S., Ji, G., Yan, J., Yang, J., Wang, Q., Feng, C. and

Phillips, P., 2015. Feed‐forward neural network optimized by hybridization of PSO and

ABC for abnormal brain detection. International Journal of Imaging Systems and

Technology, 25(2), pp.153–164, https://doi.org/10.1002/ima.22132.

Weise, T., 2009. Global optimization algorithms-theory and application. Self-Published

Thomas Weise.

Whitley, D., 1994. A genetic algorithm tutorial. Statistics and computing, 4(2), pp.65–85,

https://doi.org/10.1007/BF00175354

Wolpert, D.H. and Macready, W.G., 1997. No free lunch theorems for optimization. IEEE

transactions on evolutionary computation, 1(1), pp.67–82, doi: 10.1109/4235.585893.

Yang, F., Li, Z. and Fan, Y., 2015. A Specific Combination Scheme for Communication

Modulation Recognition Based on the Bees Algorithm. In 2015 International Conference on

Mechatronics, Electronic, Industrial and Control Engineering (MEIC-15), Atlantis Press,

pp.185-188, https://doi.org/10.2991/meic-15.2015.45

Yang, X.S., Deb, S., Zhao, Y.X., Fong, S. and He, X., 2018. Swarm intelligence: past, present

and future. Soft Computing, 22(18), pp.5923-5933, https://doi.org/10.1007/s00500-017-2810-5

Yuce, B., Fruggiero, F., Packianather, M.S., Pham, D.T., Mastrocinque, E., Lambiase, A.

and Fera, M., 2017. Hybrid Genetic Bees Algorithm applied to single machine scheduling

with earliness and tardiness penalties. Computers & Industrial Engineering, 113,

pp.842-858, https://doi.org/10.1016/j.cie.2017.07.018

Yuce, B., Pham, D.T., Packianather, M.S. and Mastrocinque, E., 2015. An enhancement to

the Bees Algorithm with slope angle computation and Hill Climbing Algorithm and its

applications on scheduling and continuous-type optimisation problem. Production &

Manufacturing Research, 3(1), pp.3–19, https://doi.org/10.1080/21693277.2014.976321

Zambrano-Bigiarini, M., Clerc, M. and Rojas, R., 2013. Standard particle swarm

optimisation 2011 at cec-2013: A baseline for future pso improvements. In 2013 IEEE

Congress on Evolutionary Computation (pp. 2337-2344). IEEE,

DOI: 10.1109/CEC.2013.6557848

Zabil, M.H.M. and Zamli, K.Z., 2013. Implementing a T-way test generation strategy using Bees

Algorithm. International Journal of. Advances in Soft Computing and its Applications, 5, (3) [,

pp.116-126.

118

Zhu, G. and Kwong, S., 2010. Gbest-guided artificial bee colony algorithm for numerical

function optimization. Applied mathematics and computation, 217(7), pp.3166-3173,

https://doi.org/10.1016/j.amc.2010.08.049

Zukhri, Z. and Paputungan, I.V., 2013. A hybrid optimization algorithm based on genetic

algorithm and ant colony optimization. International Journal of Artificial Intelligence &

Applications, 4(5), p.1-13, DOI : 10.5121/ijaia.2013.4505

119

APPENDICES

120

Appendix A GEAR TRAIN DESIGN PROBLEM

Figure A.1 Gear train design scheme

Figure A.1 represents the gear train design problem scheme. The gear train consists of two sets

of gear wheels: a–d and b–f. The formula for the gear ratio is as follows:

gear ratio =
𝑇𝑑𝑇𝑏

𝑇𝑎𝑇𝑓
 .

This ratio is required to be close enough to the value 1/6.931. The objective functions of this

problem can be formulated as:

Min f (x) = (
1

6.931
−

𝑥3𝑥2

𝑥1𝑥4
)

2

 Subject to 12 ≤ 𝑥𝑖 ≤ 60 𝔦 = 1,2,3,4

where x1, x2, x3, and x4 are the numbers of teeth in the gears d, b, a, and f and they take only

integer values.

121

Appendix B COMPRESSION TENSION SPRING

Figure B.1 Compression/tension spring

Assuming that 𝑑 = 𝑥1 , 𝐷 = 𝑥2 , 𝑃 = 𝑥3, the formula of the compression/tension spring is

Min f (x) = (𝒙𝟑 + 𝟐)𝒙𝟐𝒙𝟏
𝟐

subject to the following constraints:

𝑔1(𝑥) = 1 −
𝑥2

3𝑥3

71785𝑥1
4 ≤ 0

𝑔2(𝑥) =
4𝑥2

2 − 𝒙𝟏𝒙𝟐

12566(𝑥2 𝑥1
3−𝑥1

4)
+

1

5108𝑥1
2 − 1 ≤ 0

𝑔_3 (𝑥) = 1 − (140.45𝑥_1)/(𝑥_2^2 𝑥_3) ≤ 0

𝒈_𝟒 (𝒙) = (𝒙_𝟐 + 𝒙_𝟏)/(𝟏. 𝟓) − 𝟏 ≤ 𝟎.

122

Appendix C LIST OF CHARTS FOR BAWSSR ALGORITHM

Accuracy figures of 50 runs- Sphere function

Accuracy figures for 50 runs-Rosenbrock function

Accuracy figures for 50 runs- Quartic function

0.00E+00

5.00E-04

1.00E-03

1.50E-03

1 3 5 7 9 1113151719212325272931333537394143454749

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

8.55E-04

8.55E-02

8.55E+00

1 3 5 7 9 1113151719212325272931333537394143454749

Fi
tn

e
ss

No. Runs

BBA

qABC

SPSO2011

BAwSSR

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1 3 5 7 9 1113151719212325272931333537394143454749

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

123

Accuracy figures for 50 runs- Ackley function

Accuracy figures for 50 runs- Schaffer function

Accuracy figures for 50 runs- Easom function

7.55E-15

7.55E-12

7.55E-09

7.55E-06

7.55E-03

7.55E+00

1 3 5 7 9 1113151719212325272931333537394143454749

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

124

Accuracy figures for 50 runs-Rastrigin function

Accuracy figures for 50 runs -Shekel function

Accuracy figures for 50 runs-Langerman function

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

2.69E-06

2.69E-05

2.69E-04

2.69E-03

2.69E-02

2.69E-01

2.69E+00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

125

Accuracy figures for 50 runs- Griewank function

Accuracy figures for 50 runs- Branin function

Accuracy figures for 50 runs- Sum of powers function

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Fi
tn

es
s

No. Runs

BBA

qABC acc

SPSO2011

BAwSSR

126

Accuracy figures for 50 runs-Bukin6 function

Accuracy figures for 50 runs-Crossit function

Accuracy figures for 50 runs-Drop function

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

1.40E-01

1 3 5 7 9 1113151719212325272931333537394143454749

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1 3 5 7 9 1113151719212325272931333537394143454749

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

1.12E-10

1.12E-08

1.12E-06

1.12E-04

1.12E-02

1 3 5 7 9 1113151719212325272931333537394143454749

Fi
tn

es
s

No. Runs

BBA

qABC

127

Accuracy figures for 50 runs-Shubert function

Accuracy figures for 50 runs-Beale

Accuracy figures for 50 runs-McCorm function

1.12E-06

1.12E-04

1.12E-02

1.12E+00

1.12E+02

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

e
ss

No. Runs

BAA qABC SPSO2011 BAwSSR

2.58E-06

2.58E-05

2.58E-04

2.58E-03

2.58E-02

2.58E-01

1 3 5 7 9 1113151719212325272931333537394143454749

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

8.01E-05

8.01E-04

8.01E-03

8.01E-02

1 3 5 7 9 11 13 15 1719 21 23 2527 29 31 3335 37 39 4143 45 47 49

Fi
tn

es
s

No. Runs

BBA

qABC

128

Accuracy figures for 50 runs-Camel6 function

Accuracy figures for 50 runs- Bohachevsk function

Accuracy figures for 50 runs-Colville function

3.13E-07

3.13E-06

3.13E-05

3.13E-04

3.13E-03

3.13E-02

3.13E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA

qABC

SPSO2011

BAwSSR

0.00E+00

5.00E-04

1.00E-03

1.50E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAwSSR

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAwSSR

129

Accuracy figures for 50 runs- Powersum

Accuracy figures for 50 runs-Salomon function

Accuracy figures for 50 runs-Alpine function

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC acc SPSO2011 BAwSSR

1.00E-16

1.00E-12

1.00E-08

1.00E-04

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAwSSR

0.000E+00

5.000E-04

1.000E-03

1.500E-03

0 10 20 30 40 50

Fi
tn

es
s

No Runs

BBA qABC SPSO2011 BAwSSR

130

Appendix D List of Charts for BADS Algorithm

Accuracy figures of 50 runs- Sphere function

Accuracy figures for 50 runs-Rosenbrock function

Accuracy figures for 50 runs- Quartic function

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

2.21E-05

2.21E-03

2.21E-01

2.21E+01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

131

Accuracy figures for 50 runs- Ackley function

Accuracy figures for 50 runs- Schaffer function

Accuracy figures for 50 runs- Easom function

7.55E-15

7.55E-11

7.55E-07

7.55E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

0.00E+00

1.00E-03

2.00E-03

3.00E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

132

Accuracy figures for 50 runs-Rastrigin function

Accuracy figures for 50 runs -Shekel function

Accuracy figures for 50 runs-Langerman function

1.37E-09
1.37E-08
1.37E-07
1.37E-06
1.37E-05
1.37E-04
1.37E-03
1.37E-02
1.37E-01
1.37E+00
1.37E+01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

2.69E-06

2.69E-04

2.69E-02

2.69E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

133

Accuracy figures for 50 runs- Griewank function

Accuracy figures for 50 runs- Branin function

Accuracy figures for 50 runs- Sum of powers function

1.00E-13

1.00E-09

1.00E-05

1.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

0.00E+00

5.00E-04

1.00E-03

1.50E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

e
ss

No. Runs

BBA qABC SPSO2011 BADS

0.00E+00

5.00E-04

1.00E-03

1.50E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC acc SPSO2011 BADS

134

Accuracy figures for 50 runs-Bukin6 function

Accuracy figures for 50 runs-Crossit function

Accuracy figures for 50 runs-Drop function

0.00E+00

5.00E-02

1.00E-01

1.50E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

1.00E-06

1.00E-04

1.00E-02

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

1.12E-10

1.00E-01

2.00E-01

3.00E-01

4.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

135

Accuracy figures for 50 runs-Shubert function

Accuracy figures for 50 runs-Beale function

Accuracy figures for 50 runs-Camel6 function

1.12E-06

1.12E-03

1.12E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Fi

tn
e

ss

No. Runs

BBA qABC SPSO2011 BADS

2.58E-06

2.58E-04

2.58E-02

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

3.13E-07
3.13E-06
3.13E-05
3.13E-04
3.13E-03
3.13E-02
3.13E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

136

Accuracy figures for 50 runs-McCorm function

Accuracy figures for 50 runs-Bohachevsky function

Accuracy figures for 50 runs-Colville function

8.01E-05

8.01E-04

8.01E-03

8.01E-02

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

0.00E+00

5.00E-04

1.00E-03

1.50E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

1.00E-10

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

137

Accuracy figures for 50 runs- Powersum function

Accuracy figures for 50 runs-Salomon function

Accuracy figures for 50 runs-Alpine function

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

e
ss

No. Runs

BBA qABC acc SPSO2011 BADS

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BADS

0.00E+00

5.00E-04

1.00E-03

1.50E-03

0 10 20 30 40 50

Fi
tn

es
s

No Runs

BBA qABC SPSO2011 BADS

138

Appendix E LIST OF CHARTS FOR BAOSS ALGORITHM

Accuracy figures of 50 runs- Sphere function

Accuracy figures for 50 runs-Rosenbrock function

Accuracy figures for 50 runs- Quartic function

0.00E+00

5.00E-04

1.00E-03

1.50E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

2.21E-05

2.21E-03

2.21E-01

2.21E+01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

1.00E-05

1.00E-03

1.00E-01

1.00E+01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

139

Accuracy figures for 50 runs- Ackley function

Accuracy figures for 50 runs- Schaffer function

Accuracy figures for 50 runs- Easom function

7.55E-15

7.55E-11

7.55E-07

7.55E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

0.00E+00

1.00E-03

2.00E-03

3.00E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs
BBA qABC SPSO2011 BAOVSS

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

140

Accuracy figures for 50 runs-Rastrigin function

Accuracy figures for 50 runs -Shekel function

Accuracy figures for 50 runs-Langerman function

1.37E-09
1.37E-08
1.37E-07
1.37E-06
1.37E-05
1.37E-04
1.37E-03
1.37E-02
1.37E-01
1.37E+00
1.37E+01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

2.69E-06

2.69E-04

2.69E-02

2.69E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

141

Accuracy figures for 50 runs- Griewank function

Accuracy figures for 50 runs- Branin function

Accuracy figures for 50 runs- Sum of powers function

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

0.00E+00

5.00E-04

1.00E-03

1.50E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs
BBA qABC acc SPSO2011 BAOVSS

142

Accuracy figures for 50 runs-Bukin6 function

Accuracy figures for 50 runs-Crossit function

Accuracy figures for 50 runs-Drop function

0.00E+00

5.00E-02

1.00E-01

1.50E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

2.23E-08

2.23E-06

2.23E-04

2.23E-02

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

143

Accuracy figures for 50 runs-Shubert function

Accuracy figures for 50 runs-Beale

Accuracy figures for 50 runs-Camel6 function

1.12E-06

1.12E-04

1.12E-02

1.12E+00

1.12E+02

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

e
ss

No. Runs

BBA qABC SPSO2011 BAOVSS

2.58E-06

2.58E-04

2.58E-02

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

3.13E-07
3.13E-06
3.13E-05
3.13E-04
3.13E-03
3.13E-02
3.13E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs
BBA qABC SPSO2011 BAOVSS

144

Accuracy figures for 50 runs-Mcorm function

Accuracy figures for 50 runs-Bohachevsky function

Accuracy figures for 50 runs-Colville function

8.01E-05

8.01E-04

8.01E-03

8.01E-02

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

0.00E+00

5.00E-04

1.00E-03

1.50E-03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

1.00E-07

1.00E-05

1.00E-03

1.00E-01

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

145

Accuracy figures for 50 runs- Powersum

Accuracy figures for 50 runs-Salomon function

Accuracy figures for 50 runs-Alpine function

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC acc SPSO2011 BAOVSS

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Fi
tn

es
s

No. Runs

BBA qABC SPSO2011 BAOVSS

0.00E+00

5.00E-04

1.00E-03

1.50E-03

0 10 20 30 40 50

Fi
tn

es
s

No Runs

BBA qABC SPSO2011 BAOVSS

146

Appendix F LIST OF BENCHMARK FUNCTIONS

Function Equation Search range &
Minimum

Sphere (10D)

𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑑

𝑖=1

 xi ∈ [-5.12, 5.12]

𝑓(𝑥) = 0, at 𝑥= (0…0)

Rosenbrock
(10D)

∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑑

𝑖=1

xi ∈ [-2.048, 2.048]

𝑓(𝑥) = 0, at 𝑥= (1…1)

Quartic(30D)
𝑓(𝑥) = ∑ 𝑖𝑥𝑖

4

𝑑

𝑖=1

+ random[0,1)
xi ∈ [−1.28,1.28]

𝑓(𝑥) = 0 +random
noise
 at 𝑥= (0…0)

Ackley (10D)

𝑓(𝑥) = −𝑎𝑒𝑥𝑝 (−𝑏√
1

𝑑
∑ 𝑥𝑖

2

𝑑

𝑖=1

)

− 𝑒𝑥𝑝 (−𝑏√
1

𝑑
∑ cos(𝑐𝑥𝑖)

𝑑

𝑖=1

) + 𝑎

+ exp(1)

a = 20, b = 0.2 and c =
2π

xi ∈ [-32.768, 32.768]

𝑓(𝑥) = 0 at 𝑥= (0…0)

Shaffer (2D)
𝑓(𝑥)=0.5+

sin2(x1
2 -x2

2)-0.5

 [1+0.001 (x1
2 +x2

2)]2

xi ∈ [-100, 100]

𝑓(𝑥) = 0, 𝑎𝑡 𝑥 = (0, 0)

Easom (2D) 𝑓(𝑥) = − cos(𝑥1)\𝑐𝑜𝑠 (𝑥2)

\𝑒𝑥𝑝 (−(𝑥1 − 𝜋){2 } − (𝑥2 − 𝜋)2)

xi ∈ [-100, 100]

𝑓(𝑥) = −1, 𝑎𝑡 𝑥 =
(𝜋 , 𝜋)

Rastrigin
(10D) 𝑓(𝑥) = 10𝑑 + ∑[𝑥𝑖

2 − 10 𝑐𝑜𝑠 (2𝜋𝑥𝑖)]

𝑑

𝑖=1

xi ∈ [-5.12, 5.12]

𝑓(𝑥) = 0 at 𝑥= (0…0)

Shekel (4D)

𝑓(𝑥) = − ∑ (∑(𝑥𝑗 − 𝐶𝑗𝑖)
2

+ 𝛽𝑖

4

𝑖=𝑗

)

𝑚

𝑖=1

−1

xi ∈ [0, 10]

𝑎𝑡 𝑚 = 10, 𝑓(𝑥) =
10.5364
 at 𝑥= (0…0)

Langerman
(10D) 𝑓(𝑥) = ∑ 𝑐𝑖 exp (−

1

𝜋
∑(𝑥𝑖 − 𝐴𝑖𝑗)

2
𝑑

𝑗=1

)   cos (π ∑(𝑥𝑖

𝑑

𝑗=1

𝑚

𝑖=1

− 𝐴𝑖𝑗)
2

)

xi ∈ [0, 10]

𝑓(𝑥) = −1.4

Griewank
(10D) 𝑓(𝑥) = ∑

𝑥𝑖
2

4000

𝑑

𝑖=1

− ∏ 𝑐𝑜𝑠

𝑑

𝑖=1

(
𝑥𝑖

√𝑖
) + 1

xi ∈ [-600, 600]

𝑓(𝑥) = 0 at 𝑥= (0…0)

147

Branin (2D) 𝑓(𝑥) = 𝑎(𝑥2 − 𝑏𝑥2
1 + 𝑐𝑥1 − 𝑟)2 + 𝑠(1 − 𝑡)𝑐𝑜𝑠(𝑥1) + 𝑠 x1 ∈ [-5, 10] x2 ∈ [0, 15]

𝑓(𝑥) = 0.37887, 𝑎𝑡 𝑥
= (−𝜋, 12.275), (𝜋, 2.275),
(9.42478,2.475)

Sum of
Different
Powers
(Sumpow)
(10D)

𝑓(𝑥) = ∑|𝑥𝑖|
𝑖+1

𝑑

𝑖=1

xi ∈ [-1, 1]

𝑓(𝑥) = 0, 𝑎𝑡 𝑥𝑖
= (0. . .0)

Bukin

Function No.6

(Bukin6)

(2D)

𝑓(𝑥) = 100√|𝑥2 − 0.01𝑥2
1| + 0.01|𝑥1 + 10| x1 ∈ [-15, -5], x2 ∈ [-3, 3]

𝑓(𝑥) = 0, 𝑎𝑡 𝑥
= (−10,1)

Cross-In-Tray

(Crossit) (2D)

𝑓(𝑥) = −0.0001 (|𝑠𝑖𝑛(𝑥1)𝑠𝑖𝑛(𝑥2)𝑒𝑥𝑝 (|100

−
√𝑥1

2 + 𝑥2
2

𝜋
|)| + 1)

0.1

xi ∈ [-10, 10]
𝑓(𝑥) = −2.06261,
𝑎𝑡 𝑥
= (1.3491, −1.3491),
(1.3491,1.3491),
(−1.3491,1.3491)

Drop-Wave

function

(Drop)2D

𝑓(𝑥) = −
1 + 𝑐𝑜𝑠(12√𝑥1

2 + 𝑥2
2

0.5(𝑥1
2 + 𝑥2

2) + 2

xi ∈ [-5.12, 5.12]

𝑓(𝑥) = −1, 𝑎𝑡 𝑥 = (0,0)

Shubert

Function (2D) 𝑓(𝑥) = (∑ 𝑖𝑐𝑜𝑠((𝑖 + 1)𝑥1 + 𝑖)

5

𝑖=1

) (∑ 𝑖𝑐𝑜𝑠((𝑖 + 1)𝑥2 + 𝑖)

5

𝑖=1

)

xi ∈ [-10, 10]

𝑓(𝑥) = −186.7309, 𝑎𝑡
= (−7.0835,4.8580),
𝑎𝑛𝑑 𝑚𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟𝑠

Beale
function (2D)

𝑓(𝑥) = (1.5 − 𝑥1 + 𝑥1𝑥2)2 + (2.25 − 𝑥1 + 𝑥1𝑥2
2)2

+ (2.625 − 𝑥1 + 𝑥1𝑥3
2)2

xi ∈ [-4.5, 4.5]
𝑓(𝑥) = 0, 𝑎𝑡 𝑥 = (3,0.5)

Six-Hump

Camel

Function

(camel6) (2D)

𝑓(𝑥) = (4 − 2.1𝑥2
1 +

𝑥4
1

3
) 𝑥2

1 + 𝑥1𝑥2 + (−4 + 4𝑥2
2)𝑥2

2

x1 ∈ [-3, 3], x2 ∈ [-2, 2]

𝑓(𝑥) = −1.0316, 𝑎𝑡
𝑥 = (0.0898, −0.7126),
(−0.0898,0.7126),

McCormick
function
(Mccorm)
(2D)

𝑓(𝑥) = 𝑠𝑖𝑛(𝑥1 + 𝑥2) + (𝑥1 − 𝑥2)2 − 1.5𝑥1 + 2.5 𝑥2 + 1

x1 ∈ [-1.5, 4], x2 ∈ [-3, 4]

𝑓(𝑥) = −1.9133, 𝑎𝑡
𝑥
= (−0.54719, −1.54719)

Bohachevsky

function

(Boha1) (2D)

𝑓(𝑥)7 = 7𝑥2
1 + 2𝑥22 − 0.3𝑐𝑜𝑠(3𝜋𝑥1) − 0.4𝑐𝑜𝑠(4𝜋𝑥2)

+ 0.7

xi ∈ [-100, 100]

𝑓(𝑥) = 0, 𝑎𝑡 𝑥 = (0,0)

Colville

Function (2D)

𝑓(𝑥) = 100(𝑥2
1 − 𝑥2)2 + (𝑥1 − 1)2 + (𝑥3 − 1)2

+90(𝑥2
3 − 𝑥4)2 + 10.1 ((𝑥2 − 1)2 + (𝑥4 − 1)2)

+19.8(𝑥2 − 1)(𝑥4 − 1)

xi ∈ [-10, 10]

𝑓(𝑥) = 0, 𝑎𝑡𝑥
= (1,1,1,1)

Power Sum

Function

(Powersum)

(4D)

𝑓(𝑥) = ∑ [(∑

𝑑

𝑗=1

𝑥𝑖
𝑗) − 𝑏𝑖]

2
𝑑

𝑖=1

xi ∈ [0, 4]

𝑓(𝑥) = 0, 𝑎𝑡 = (1,2,2,3)

148

Salomon
function (2D) 𝑓(𝑥) = 1 − 𝑐𝑜𝑠 (2𝜋 ∑ 𝑥𝑖

2

𝑑

𝑖=1

) + 0.1 ∑ 𝑥𝑖
2

𝑑

𝑖=1

xi ∈ [-100, 100]

𝑓(𝑥) = 0, 𝑎𝑡 = (0,0)

Alpine N.1
function
(Alpine) (2D)

𝑓(𝑥) = ∑|𝑥𝑖sin(𝑥𝑖) + 0.1𝑥𝑖|

𝑑

𝑖=1

xi ∈ [-10, 10]

𝑓(𝑥) = 0, 𝑎𝑡 = (0,0)

