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Abstract

Biological invasion of alien species usually has an adverse impact on ecology as alien species are

often regarded as harmful species to the local ecosystems. A comprehensive understanding of

spatial patterns of species spread during biological invasion is needed for efficient monitoring and

control of harmful alien pests. Various growth-dispersal-type models of population dynamics

predict that invasive species spread can follow two qualitatively different scenarios: propagation

of a continuous population front and ‘no-front’ patchy invasion. Distinguishing between those

two types of spatial pattern is important as patchy invasion may require a different approach

to monitoring and control. However, a mathematical theory of patchy invasion is still missing

and it remains unclear which parameter values in the underlying model result in the formation

of patchy spatial patterns and how much this dynamical regime is different from the continuous

front propagation.

In this thesis we address the problem of spatial patterns recognition in biological invasion

in terms of two biologically meaningful mathematical models. We employ several topological

characteristics of spatial pattern to investigate various spatial density distributions. The topol-

ogy of continuous front and patchy spatial structures will be carefully compared and conclusions

about sensitivity and ‘topological stability’ of those spatial patterns will be derived.
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CHAPTER 1

INTRODUCTION

When living creatures are brought to a new environment where they are not native, they

can begin to propagate and disperse. This phenomenon is called biological invasion, and the

species are called alien (exotic) species, or invasive species. An invasive species can be an

animal, plant or fungus, all of which usually spread quickly after being introduced because of

the absence of natural enemies in the new environment. Biological invasion is regarded as one of

the major threats to ecosystems around the world [93, 96] as it often has a significant negative

effect on agriculture, forestry, fishery, etc., with direct and indirect economic losses being in

the order of hundreds of billions of dollars [90, 73]. It is therefore essential to understand the

underlying mechanism of biological invasion as this can enable harmful invasive species to be

effectively managed and controlled.

One example of biological invasion is the Japanese beetle (Popillia japonica) in North

America. This species is native to Japan and is not very destructive in its own country as it

has natural predators that control its propagation. However, in North America it is a harmful

invasive species for about 200 species of plants, such as rose bushes, grapes, birch trees, linden

trees, and many others [39]. The ways that the Japanese beetle disperses includes flying and
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human-assisted dispersal.

The Japanese beetle was firstly discovered in the United States (US) in a nursery near

Riverton, New Jersey in 1916 when just only a dozen were found. By 1920, the infested area

was estimated to be 120 km2 and the infested area increased to 700 km2 in 1922. In the summer

of 1923, the infested area by the Japanese beetle was estimated to be 1,800km2 and the beetles

inflicted a lot of damage on the local forestry and agriculture [11]. In less than 30 years, the

Japanese beetle invaded the whole of the eastern US (see Fig. 1.1), while it started to spread

into Canada by the late 1930s [39]. As of 2015, only nine western US states were considered

free of Japanese beetles [91].

Another example is the muskrat (Ondatra zibethicus) (Fig. 1.2). The muskrat is a native

species in the US, and was introduced to Europe and Asia as an invasive species. These animals

mostly inhabit wetlands where they have an important effect on the ecology of wetlands because

they contribute to the abundance of the plant species by selectively removing their preferred

plant types [29]. The muskrat is also a resource of food and fur for humans so it is not always

(a)
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FIGURE 8.1: Geographical spread of Japanese beetle in the United States
from the place of its original introduction. Alternating grey and black colors
show the areas invaded during successive time intervals (from United States
Bureau of Entomology and Plant Quarantine, 1941).

An attempt to explain the nature of accelerating waves has been made by
means of linking them to “non-Gaussian” diffusion when every single event
of dispersal follows not the normal distribution but a distribution with much
slower rate of decay at large distances (see Section 2.2). Mathematically, it
means that the models should be based on integral-difference equations, not
diffusion-reaction ones. Indeed, for some plant species this approach works
very well, cf. Clark et al. (1998). For insect species, however, the situation is
different. While in the case of seed or pollen spreading its fat-tailed dispersal
can be linked to the peculiarity of turbulent wind mixing, in the case of
insects, they are not just passively born by the wind. A mechanistic theory of
insects’ dispersal accounting for their ability to self-motion is lacking and the
existing data are usually of poor accuracy so that they can be easily fitted by

(b)

Figure 1.1: (a) Photograph of Japanese beetle and (b) Maps of Japanese beetle distribution in
the US [39]
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(a) (b)

Figure 1.2: (a) Photograph of a muskrat; (b) Maps of muskrat invasion in eastern Europe [39].

considered a harmful invasive species. However, in some European countries, such as Belgium,

France, and the Netherlands, the muskrat is regarded as an invasive pest, as its burrowing

damages the dams and dykes that are used to prevent flooding in these low-lying countries

[58]. Muskrats were brought to Dobrisch in Bohemia by Prince Colloredo-Mansfeld in 1905.

Between 1905 and 1914, the radius of expansion amounted to between four and 30 km yearly

and by the end of this period, the whole of Bohemia was colonised by the muskrat. By 1914,

the total number of muskrats in Bohemia was estimated at two million. Further, in 1923 and

1924, the muskrat migration in Bavaria was said to have increased by 50–70 km annually [51].

There are four clearly distinguishable stages in biological invasion: introduction, establish-

ment, spread and impact [85, 79]. At the introduction stage, non-native species are introduced

locally and this transport is often as a result of human activity rather than natural forces. If

the transport of individuals is caused by natural forces, then the movement is called dispersal.

Introduction can occur deliberately or accidentally. For instance, horticultural trade and the

pet trade are examples of deliberate introduction and it is estimated that approximately 60%
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of naturalised plants in the US were deliberately introduced [47]. Meanwhile, accidental intro-

duction can occur through seed contaminants, shipping materials and ballast water discharge.

Once a species has been introduced to a new environment, it will become established locally

if it survives, but the establishment of species is not always successful. Indeed, only 10% of

introduced species become established [96, 97]. The next stage is spread; if the species survive

the establishment stage, the individuals start propagating and spreading. The propagation rate

and spread speed of different species vary according to their species traits. The final stage is

impact. Biological invasions usually have an adverse impact on ecosystems, e.g. native species

may be driven to extinction which may result in considerable economic losses [73]. Therefore,

corresponding measures should be taken to control the alien species.

Because of its negative economic and ecological impact, biological invasion has been a focus

of intense research for several decades. It is necessary to have a comprehensive understanding

of the biological invasion in order to efficiently control and manage the alien species. Common

research approaches include data collection, statistical analysis of the data, and mathematical

modelling. The latter approach is especially useful as, given the spatial and temporal scales

of biological invasion, it can offer considerable savings in the resource required to carefully

investigate this phenomenon, while various biological hypotheses can be tested at relatively low

cost to reveal the underlying mechanisms of biological invasion [22, 85]. Therefore, there is a

need to set up appropriate mathematical models to simulate biological invasion where in our

work we are mostly interested in the spatial spread of invasive species.

In 1937, Fisher proposed a diffusion-reaction equation to describe the spatial spread of the

mutation among the population [14], this diffusion-reaction equation is known as the Fisher’s

equation. The Fisher’s equation can also be used to describe the process of biological invasion
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and conventional studies on biological invasion by Skellam [87], Andow et al. [5], and Dwyer

[10] were based on Fisher’s results.

Reaction-diffusion models are very popular in the study of biological invasion and a variety

of reaction-diffusion models have been comprehensively studied. The KISS (Kierstead, Slobod-

kin and Skellam) models with linear growth and Fickian diffusion have been used to study the

red tide outbreaks [30]. The Fisher’s equation with logistic growth and Fickian diffusion [14]

has a simple travelling wave solution. In a different context, a single-species PDE of reaction-

diffusion type where nonlinear function describing the reaction term has properties consistent

with the Allee effect (i.e., a sigmoidal shape), the equation is known as Nagumo equation [55].

Although reaction-diffusion models are useful for studying the spatial population dynamics

of alien species, they have some defects in modelling biological invasion. Firstly, reaction-

diffusion models are not appropriate for long-distance dispersal as the dispersal is reduced

to diffusion so that only short-distance dispersal is considered [81]. In addition, in reaction-

diffusion models, it is assumed that population has overlapping generations which means that

the population size grows continuously. However, in the real world many species are stage-

structured, births occur at regular times, known as breeding seasons. For stage-structured

species, another mathematical model based on integro-difference equation was developed by

Kot and Schaffer [33], Anderson [4], and Neubert et al. [57].

When the spread stage of biological invasion is investigated, the crucial question concerns

the spatial patterns that arise when the invasive species propagates into the space. The seminal

results in the theory of biological invasion obtained in [14], [32] and [87] have stated the existence

of a continuous population front which separates the invaded area behind the front from the

non-invaded area. Their results indicate that a travelling population front exists (Fig. 1.3)
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during the biological invasion. The travelling population front is defined as a gradient in the

population density which separates the invaded and non-invaded area. In the realistic 2-D case,

such a front forms a continuous boundary that separates the invaded and non-invaded areas

[5].

Propagation of a population front was a paradigm of biological invasion for several decades

[14, 32, 87]. More recently, however, there has been a growing understanding that the invading

species can proliferate into space by creating isolated patches or colonies but without forming

any continuous population front [67, 86]; see Fig. 1.4. Patchy invasion, as this invasion scenario

was eventually named, is a phenomenon of considerable theoretical and practical importance;

it has been observed in several field studies [8, 40, 42, 46] and in a variety of different mathe-

matical models [37, 50, 86] including PDEs [24, 53] and, recently, integral-difference equations

[77]. However, despite the intense study of patchy invasion in recent years, many questions re-

main open and a comprehensive understanding is lacking. The mathematical theory of patchy

(a) (b)

Figure 1.3: (a) Example of a continuous population front in a 2D domain obtained in numerical
simulations using a single-species diffusion-reaction model with logistic growth. (b) Cross-
sectional version of the population front u(x) in the x direction.
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Figure 1.4: Patchy spatial distribution of the density of invasive species obtained as a result of
numerical solution of the mathematical model of biological invasion.

invasion is not well developed and the appearance of patchy structures cannot be predicted in

advance even in mathematical models that are used to simulate the spatio-temporal dynam-

ics of invasive species. The situation is further exacerbated by the fact that the formation of

patchy structures in the wake of a continuous front is possible for many invasion regimes that

are generated in simulations, as seen in [24, 64].

Patchy invasion can be attributed to several factors, one of which is that it can occur in

particular landscapes such as small islands [98]. Moreover, it can also occur as a result of the

influence of predators [50, 67], pathogens [24, 68, 69], or multi-species interactions [8, 54]. In

particular, in this thesis we will focus specifically on the patchy invasion arising as a result of

inter-species interactions.

One issue that we aim to investigate is whether the scenario of patchy invasion is robust

with respect to the mathematical and computational model employed to simulate the spatio-

temporal dynamics of the invasive species. Although the previous studies [50, 24, 77] have

demonstrated that patchy spatial distribution of the invasive species is not an artifact of a
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specific modelling framework, it is still unclear how sensitive the spatial pattern is, e.g. patchy

or not, to the dispersal properties of the interacting species. Namely, it is well-known that

spread speed can be affected by the properties of the dispersal kernel [4, 33] when integro-

difference equations are employed to simulate biological invasion; yet it is still unclear how

much the definition of a dispersal kernel may affect the spatial pattern of the invasive species,

so this issue will be examined in detail in this work. In particular, one goal of our study is to

reveal the effect of the long-distance dispersal (described by fat-tailed dispersal kernels) on the

spatial pattern and spread speed of the invasive species.

Another goal of our study is to quantify the patchiness itself. Understanding the topological

properties of spatial patterns of alien species spread during biological invasion is a problem

of considerable theoretical and practical importance [39, 71]. The question of distinguishing

between continuous front and patchy spatial distributions is of particular interest as it is closely

related to the problem of monitoring and control of invasive species. On the one hand, timely

recognition of patchy invasion regimes is important as its monitoring may require more careful

resource allocation than the monitoring of continuous front spatial distributions. The grid of

sampling locations used in discontinuous spatial patterns monitoring must be fine enough to

capture sufficient information about the population distribution (e.g. see [63, 62]). It has been

argued in [63] that patches with the non-zero population density will be partially or completely

missed if the distance between sampling locations is greater than the patch size. On the other

hand, once a discontinuous spatial pattern has been accurately identified, its control may only

require practitioners to deal with the areas occupied by separate density patches and more

targeted means of control may therefore be applied to prevent the spatial spread of invasive

species.
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The importance of accurate classification and quantification of ecological patterns have

been acknowledged by scientists since long ago [16, 23] and developing reliable and efficient

methods for analysing spatial pattern remains an important stream of research in ecology.

Various approaches have been developed in recent decades [43, 78] yet the question of accurate

recognition of spatial patterns is still far away from a definitive solution. Given the wealth

of spatial patterns arising in the problem of biological invasion, it is difficult to elaborate

universal criteria to compare spatial distributions to each other and make conclusions about

their similarity. Consider, for example, spatial patterns in Fig. 1.5. Is the spatial pattern in

Fig. 1.5b similar to the spatial distribution in Fig. 1.5a because the pattern in Fig. 1.5b has

similar patchy structure behind the front? On the other hand, is the pattern of Fig. 1.5b

topologically closer to the spatial distribution of Fig. 1.5c because both of them are continuous

fronts? In this example, there may be a range of opinions about pattern similarity, while

any conclusions that are suggested after a visual inspection of the patterns in Fig. 1.5 will

be subjective since it is only based on human perception and aesthetic preferences. More

rigorous methods should take into account some problem-specific criteria to decide whether or

not two spatial distributions are similar to each other. The simplest example of such criteria

is to state that two patterns are similar if both of them are patchy (or continuous front).

Comparison between two patterns then becomes straightforward as it is now based on counting

the number of objects in the image of spatial distribution. Any continuous front is considered

as a single object, while a ‘no front’ patchy structure can be thought of as several separate

objects in the spatial domain. However, given that continuous front spatial pattern may have

a complex patchy spatial structure behind the front (cf. Fig. 1.5a and 1.5b) more careful

analysis of topological properties may be required to conclude about the similarity of patchy
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(a) (b) (c)

Figure 1.5: Examples of spatial distributions in a spatial domain where x ∈ [0, 600] and y ∈ [0, 600].

The regions of non-zero population density are shown in black. Are these spatial patterns similar

or different? (a) Patchy spatial distribution of the density of invasive species obtained as a result

of numerical solution of the mathematical model of biological invasion; (b) Continuous front density

distribution obtained from the same model. The spatial pattern has patchy structure behind the front.

(c) Continuous front density distribution with quasi-regular oscillations behind the front.

and continuous front density distributions or, indeed, about the similarity of two continuous

fronts.

In our work we provide primary topological analysis of spatial patterns arising in the

problem of biological invasion; see also [64, 65, 66]. The aim is to understand whether reliable

criteria for classification and comparison can be elaborated for spatial patterns that arise in

various models of biological invasion. Therefore, the basic topological indices of spatial patterns

(including the number of objects, the fragmentation rate, etc.) will be analysed for a variety

of spatial distributions arising to ascertain whether the spatial pattern type can be recognised

correctly by using any of the quantities above.

Given the objectives of this thesis, this work will focus on two mathematical models of

biological invasion. The first model is given by two coupled integro-difference equations used

to simulate a predator-prey interaction where the prey is thought of as an invasive species. The

model allows for consideration of both short-distance dispersal and long-distance dispersal [77]

and the effect of the long-distance dispersal on the formation of patchy spatial patterns will be

investigated. In this thesis, it will be demonstrated that patchy invasion can be observed for
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species spread by both short-distance dispersal and long-distance dispersal. We then introduce

a topological classification of spatial patterns and investigate what factors will influence the

formation of topologically different spatial patterns. Finally, we introduce some topological

indices to classify those spatial patterns.

The second model that we investigate is a diffusion-reaction model used to simulate the

biological invasion of the gypsy moth in the North America. The employment of a reaction-

diffusion model to simulate the spatio-temporal dynamics of biological invasion has previously

been studied in [24]. The model allows for generating spatial distributions that are visually

very close to each other, yet some of those distributions are continuous fronts while the others

are patchy spatial patterns. Hence we want to understand whether a slight increment in the

model parameters results in a slight increment in topological indices (i.e. the production of

spatial patterns with similar topological properties). If the above is true then reliable criteria

for classification and comparison can be elaborated for spatial patterns arising in the model.

However, if spatial patterns of biological invasion are not ‘topologically stable’ in the sense

above and the spatial patterns obtained for closed values of system parameters may have a

very different topological structure then practitioners should take into account the ‘topological

volatility’ of spatial patterns of biological invasion in further design of monitoring and control

protocols.

The thesis is organized as follows. In Chapter 2, we discuss non-spatial models of biolog-

ical invasion and analyse the stability of steady states. In Chapter 3-6 we introduce integro-

difference equations to simulate the spatial patterns that arises in biological invasion and analyse

these spatial distributions. In chapter 7 we study a model given by partial differential equations

to simulate the biological invasion of the gypsy moth which have overlapping generations.
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CHAPTER 2

NON-SPATIAL MODELS OF BIOLOGICAL INVASION

Although biological invasion is a spatio-temporal phenomenon, non-spatial models should

be studied as a foundation before the more complicated spatio-temporal models are investigated.

Non-spatial models can show us how the population size changes over time.

In nature, some species have overlapping generations so that continuous-time models can be

used to describe their population dynamics. For the other species who do not have overlapping

generations, their reproduction only takes place during a particular time of each year, and in

this case, the population dynamics can be described by discrete-time models.

2.1 Continuous-time models

We consider a species N whose population size at time t is described by N(t). After a

small time interval ∆t, the change of population over this time interval can be written as:

∆N(t,∆t) = N(t+ ∆t)−N(t) = B(t,∆t)−D(t,∆t) +M(t,∆t), (2.1)
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where B(t,∆t) denotes the number of births between time t and t + ∆t, D(t,∆t) denotes the

number of deaths in the same time interval, and M(t,∆t) is the number of individuals that

joined or left during this period [39]. For convenience, it is assumed there is no migration so

that M(t) ≡ 0 for any t.

Now we consider that species N has overlapping generation and its population grows

continuously in time. We assume that ∆t is sufficiently small, so that

B(t,∆t) ≈ bN(t)∆t, D(t,∆t) ≈ dN(t)∆t, (2.2)

where b is the reproductive rate of an individual and d is the probability of an individual dying.

We assume that both b and d are constants, therefore equation (2.1) can be rewritten as

∆N(t,∆t) = (b− d)N(t)∆t = F (N)∆t = f(N)N(t)∆t. (2.3)

F (N) = (b− d)N(t) is called the intrinsic growth rate and the f(N) = b− d is called the per

capita growth rate of population.

We divide through equation (2.3) by ∆t, and take the limit ∆t→ 0 to obtain

∆N(t,∆t)

∆t
=
N(t+ ∆t)−N(t)

∆t
≈ dN(t)

dt
= (b− d)N(t). (2.4)

This equation (2.4) can be solved with an initial condition N(0) = N0, and the solution is

obtained by integrating both sides of (2.4),

N(t) = N0e
(b−d)t. (2.5)
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If the death rate is greater than the birth rate, i.e., b < d, then the population density will

decrease exponentially with time and finally extinct. If the death rate is less than the birth

rate, i.e. b > d, then the population density will grow exponentially, which is not realistic.

2.1.1 Logistic growth

In the above, the per capita growth rate r = b− d is a constant, which means it is density-

independent. However, in the real world, there are many factors regulating the growth of

population, such as food, water, habitat and other environmental features, so in most cases the

per capita growth rate is density-dependent. When the population density is very high, the

death rate will also be very high; the species then reaches its maximum population density,

which is known as the carrying capacity.

We now consider the case when the per capita growth rate decreases linearly with popu-

lation density, and the carrying capacity takes the value of K. We have

1

N

dN

dt
= f(N) = r(1− N

K
). (2.6)

In this model, the growth rate decreases to zero when the population density reaches the

carrying capacity K. Equation (2.6) is known as the logistic equation. The growth rate of

population density is described by a quadratic function of the population density:

dN

dt
= F (N) = rN(1− N

K
). (2.7)
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The solution to equation (2.7) is

N(t) =
K

1 + ( K
N0
− 1)e−rt

. (2.8)

and this model has an S-shaped growth curve (see Fig. 2.1). It can be seen that when the

population density N(t) reaches the carrying capacity K, the growth rate is dN
dt

= 0, and the

population density no longer changes.

t

N
(t

)

Figure 2.1: Growth curve of the logistic model

We have to emphasize that the per capita growth rate does not have to be linear. The

logistic model is the simplest model to give the property that per capita growth rate decreases

with respect to density. More generally, the per capita growth rate function f(N) can have

other forms which satisfy the following:

df(N)

dN
< 0 and f(K) = 0 (2.9)
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2.1.2 The Allee effect

However, the per capita growth rate does not always decrease as population density in-

creases. In the 1930s, Warder Clyde Allee found that the population size of goldfish increases

more quickly when there are more goldfish in the tank [1]. This phenomenon is called the

Allee effect. The reason for this phenomenon is that individuals cooperate within the species,

working together to defend against predators, find mates, and search for resources. Therefore,

the per capita growth function f(N) is not monotonic if the species N is affected by the Allee

effect, but rather increases for small density and decreases for large density. The Allee effect

can be classified into two types, the strong Allee effect and the weak Allee effect. The difference

between the two mechanisms is, whether the growth rate is positive or negative when popula-

tion when density is low. For the strong Allee effect, the growth rate F (N) has the following

conditions:

F (N) < 0 for 0 < N < c and N > K, (2.10)

F (N) > 0 for c < N < K, (2.11)

where c is called the critical density, more generally, the threshold density under which the

species could not survive. The relationship between growth rate and population density for

strong Allee effect is shown in Fig. 2.2(a). For example, if the initial density is less than c,

then the growth rate is negative, which will result in the population density decreasing. As a

result, the density is always less than c, the growth rate is always negative as well. Finally,

the population density decreases to zero. However, if the initial density is larger than c, the

population density will keep increasing until it reaches the carrying capacity K.
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For the weak Allee effect, there is no such threshold density, so the corresponding growth

rate is positive when density is low,

F (N) > 0 for 0 < N < K, (2.12)

F (N) < 0 for N > K. (2.13)

N

dN
/d

t

strong Allee effect

(a) Strong Allee effect

N

d
N

/d
t

weak Allee effect

(b) Weak Allee effect

Figure 2.2: Growth rate of species influenced by (a) the strong Allee effect and (b) weak Allee
effect

The relationship between growth rate and population density for the weak Allee effect is

shown in Fig. 2.2(b).

One simple example of the Allee effect is given by the growth rate function described by a

cubic polynomial with respect to N :

dN

dt
= aN(N − c)(1− N

K
). (2.14)

Equation (2.14) represents the strong Allee effect when 0 < c < K, and represents the weak

Allee effect when −K < c < 0. When c < −K, there is no Allee effect.
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2.1.3 Continuous-time models: multiple species system

We now investigate a more sophisticated model as interaction between species will be

required to model biological invasion in our further study.

There is usually more than one species in an ecosystem, and those species interact with

each other in various ways. The relationship of the species involved in the food chain could be

predation (e.g., wolves and rabbits), competition (e.g., wolves and foxes), or mutualism (e.g.,

rhinoceros and horn-bill). This section will study two-species models which can reveal some

basic mechanisms of interacting species. Let N(t) be the density of species N and P (t) be the

density of species P , then the growth rate of the two species can be described by:

dN

dt
= F (N,P ), (2.15)

dP

dt
= G(N,P ), (2.16)

where F (N,P ) is the growth rate of species N , and G(N,P ) is the growth rate of species P .

Model (2.15)-(2.16) can describe various relationships between the species.

Competition: Competition occurs due to limited resources, such as food, water, and

territory. Therefore, an increase in the density of species P will result in a decrease in the

growth rate of species N :

∂F

∂P
< 0,

∂G

∂F
< 0. (2.17)

Mutualism: Mutualism is the relationship in which different species benefit from each

other, which can be described by

∂F

∂P
> 0,

∂G

∂F
> 0. (2.18)
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Predation: Prey is the food of the predator. Thus, an increase in the density of prey N

will lead to an increase in the growth rate of predator P , while an increase in predator density

will result in a decrease in the growth rate of prey:

∂F

∂P
< 0,

∂G

∂F
> 0. (2.19)

If the growth rate is equal to 0, the population densities will not change with time. In this

case, the system is said to be in a steady state, that is:

dN

dt
=F (N∗, P ∗) = 0 (2.20)

dP

dt
=G(N∗, P ∗) = 0, (2.21)

where N∗ and P ∗ are the population densities when the system is in equilibrium.

The question remains that how a community in a steady state responds to perturbations?

We consider at time t, the density is

N(t) = N∗ + n(t), (2.22)

where n(t) is sufficiently small. The steady state is said to be stable if the perturbed community

tends to return to the steady state, so that

n(t)→ 0 as t→∞, (2.23)

otherwise unstable.

19



We apply the Taylor series expansion

d(N∗ + n)

dt
=
dn

dt
= F (N∗ + n, P ∗ + p) (2.24)

= F (N∗, P ∗) + FN(N∗, P ∗)n+ FP (N∗, P ∗)p+ ... (2.25)

≈ FN(N∗, P ∗)n+ FP (N∗, P ∗)p, (2.26)

and

d(P ∗ + p)

dt
=
dp

dt
= G(N∗ + n, P ∗ + p) (2.27)

= F (N∗, P ∗) +GN(N∗, P ∗)n+GP (N∗, P ∗)p+ ... (2.28)

≈ GN(N∗, P ∗)n+GP (N∗, P ∗)p, (2.29)

Combining (2.26) and (2.29) we have

d

dt

 n

p

 =

 FN(N∗, P ∗) FP (N∗, P ∗)

GN(N∗, P ∗) GP (N∗, P ∗)


 n

p

 , (2.30)

where

J =

 fN(N∗, P ∗) fP (N∗, P ∗)

gN(N∗, P ∗) gP (N∗, P ∗)

 =

 a11 a12

a21 a22

 (2.31)

is known as the Jacobian matrix of system (2.15)-(2.16). The system is stable if n(t) → 0

and p(t) → 0 as t → ∞. For the system of linear ordinary differential equations y′ = Jy,

the solution has the form y = xeλt. Hence y′ = λxeλt = Jxeλt or λx = Jx, where λ is the

eigenvalue and x is the corresponding eigenvector. The eigenvalues of matrix J can be found
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by solving

det(J− λI) =

∣∣∣∣∣∣∣∣
a11 − λ a12

a21 a22 − λ

∣∣∣∣∣∣∣∣ = 0 (2.32)

or

λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0 (2.33)

The behaviour of the species is determined by the eigenvalues [34]:

Figure 2.3: Basic types of stationary points. The classification of stationary points is taken
from [34]

We consider a example given by

du(t)

dt
= γu(u− β)(1− u)− uv, (2.34)

dv(t)

dt
= uv −mv. (2.35)

There are four steady states: s1 = (0, 0), s2 = (1, 0), s3 = (β, 0), and s4 = (m, γ(m−β)(1−m)).

We notice that s1, s2 and s3 always exist while s4 is feasible for m < 1 and β < m. We need

know the stability of these steady states which depends on the eigenvalues of the corresponding
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Jacobian matrix

J =

 γ[−3u2 + 2(β + 1)u− β]− v −u

v u−m

 . (2.36)

The eigenvalues are given by

λ1,2 =
1

2

(
tr(J)∓

√
tr(J)2 − 4det(J)

)
, (2.37)

where tr(J) and det(J) are the trace and the determinant of the Jacobian matrix J.

Then we can obtain four pairs of eigenvalues computed at steady states s1, s2, s3 and s4

respectively. The stability analysis reveals that s1 is always stable, s2 is stable for m > 1 and

β < 1, and the steady state s3 would only be stable when β < m and β > 1. The eigenvalues λ1

and λ2 computed at the coexistence state s4 are given by (2.37) where tr(J) = γm(1− 2m+β)

and det(J) = mγ(m− β)(1−m). Let us introduce function F (β) as

F (β) ≡ tr(J)2 − 4det(J) = γ2m2(β − 2m+ 1)2 − 4γm(β −m)(m− 1).

To find sub-domains in the parametric plane (m,β) where the eigenvalues λ1,2 are complex

numbers we factorize F (β) = (β − β1(m))(β − β2(m)). We have

β1,2(m) = 2m− 1 +
2(m− 1)

γm

(
1∓

√
γm+ 1

)
.

The structure of the parameter plane (m,β) is shown in Fig. 2.4 where the curves β1(m) and

β2(m) are shown for m > 0 and β > 0 as two dashed lines in the figure. We have β1(m) > β2(m)

for 0 < m < 1 and β1(m) < β2(m) for m > 1. Thus F (β) < 0 in sub-domains where m < 1,

β2(m) < β < β1(m) and m > 1, β1(m) < β < β2(m), respectively. The eigenvalues λ1,2 are
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complex numbers in those sub-domains and temporal dynamics is oscillatory. Further analysis

reveals that the coexistence state s4 is unstable when tr(J) > 0 i.e. β > 2m− 1.

0
0

=2m-1

m*

2
(m)

=1

m

=m

1
(m)

m=1

Figure 2.4: Parameter plane of β and m for system (2.34)-(2.35). The extinction state is stable
when β > γ, and the coexistence state is stable when β < 2m− 1.

Let us note that β1(m) > 0 for m > 0 and the only positive root m∗ > 0 of function β2(m)

is given by

m∗ =
γ − 1 +

√
2γ + 1

2γ
.

Thus, the location of root m∗ and therefore the size of the domain β2(m) < β < β1(m) depends

on parameter γ where the asymptotic limits are m∗(γ) → 1 as γ → 0 and m∗(γ) → 1/2 as

γ →∞.

2.2 Discrete-time models

Partial differential equations are very popular in modelling the biological invasion of species

whose population has overlapping generations. If the reproduction occurs during a particular

period of each year, then we consider discrete-time models described by difference equations.

23



For discrete-time models, the stability analysis is different from that in continuous models.

For convenience, we scale the time step ∆t to be 1. So the population density at time t

can be described by Nt. Let us suppose that the population density at time step t + 1 only

depends on the population density in the previous time step t, i.e.,

Nt = F (Nt−1), t ≥ 1. (2.38)

In this general discrete-time model, the steady states are determined by Nt+1 = Nt. The steady

state, N∗, is characterised by

N∗ = F (N∗). (2.39)

Once the population density reaches the steady state at some moment Nt = N∗, the population

density remains the same in the next time step,

Nt+1 = F (Nt) = F (N∗) = N∗, (2.40)

and hence remains the same in the following time steps.

To investigate the stability, we consider a small perturbation of N∗, Nt = N∗ + nt. So we
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have

nt+1 = Nt+1 −N∗ (2.41)

= F (N∗ + nt)−N∗ (2.42)

≈ F (N∗) + F ′(N∗)nt −N∗ (2.43)

= F ′(N∗)nt. (2.44)

Taking absolute values on both sides of (2.44),

|nt+1| = |F ′(N∗)||nt|. (2.45)

Therefore, the steady state is stable if |F ′(N∗)| < 1, otherwise unstable.

2.2.1 General multiple species models

For multiple species models,

Nt+1 = F (Nt, Pt), (2.46)

Pt+1 = G(Nt, Pt). (2.47)

The steady states, N∗ and P ∗ are determined by N∗ = F (N∗, P ∗) and P ∗ = G(N∗, P ∗). Now

consider small perturbations to steady states at time t, Nt = N∗ + nt and Pt = P ∗ + pt. We
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apply Taylor expansions,

nt+1 = Nt+1 −N∗ (2.48)

= F (Nt, Pt)− F (N∗, P ∗) (2.49)

= F (N∗ + nt, P
∗ + pt)− F (N∗, P ∗) (2.50)

= F (N∗, P ∗) + FN(N∗, P ∗)nt + FP (N∗, P ∗)pt + ...− F (N∗, P ∗) (2.51)

≈ FN(N∗, P ∗)nt + FP (N∗, P ∗)pt, (2.52)

and similarly

pt+1 = GN(N∗, P ∗)nt +GP (N∗, P ∗)pt. (2.53)

Combining (2.52) and (2.53) we obtain

 nt+1

pt+1

 =

 FN(N∗, P ∗) FP (N∗, P ∗)

GN(N∗, P ∗) GP (N∗, P ∗)


 nt

pt

 , (2.54)

then we will demonstrate the stability of steady states is determined by the eigenvalues of the

Jacobian matrix of the system,

J =

 FN(N∗, P ∗) FP (N∗, P ∗)

GN(N∗, P ∗) GP (N∗, P ∗)

 =

 a11 a12

a21 a22

 . (2.55)

Then the eigenvalues can be obtained by solving

λ2 − (a11 + a22)λ+ a11a22 − a21a12 = 0 (2.56)
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or

λ2 − Tr(J)λ+ det(J) = 0. (2.57)

To analyse the stability of the steady states, we have to introduce a theorem, the detailed

proof is discussed in [2].

Theorem 2.2.1 Let X(t+ 1) = AX(t) where X(t) = (x1(t), x2(t), ..., xk(t))
T. And Let A be a

k × k matrix. We have limt→∞X(t) = 0 iff ρ(A) < 1 where ρ(A) = max
i∈{1,2,...,k}

{|λi|}.

Therefore, we have

 nt+1

pt+1

→
 0

0

 as t→∞ iff |λ1| < 1 and |λ2| < 1. (2.58)

2.2.2 Multiple species models affected by the Allee effect

We now consider the predator-prey system where the prey density at the moment t is

described by Nt, and the predator density is described by Pt. It is assumed that the prey is

affected by a strong Allee effect. As mentioned previously, for the strong Allee effect, (i) there

exist a threshold density under which the population goes to extinction; (ii) the correlation

between the capita growth rate and population density is positive.

The growth function of prey influence by the strong Allee effect can be written as

F1(N) =
A(Nt)

2

1 +B2(Nt)2
, (2.59)

where A is the intrinsic growth rate and 1/B is the density for which its per capita growth rate

reaches its maximum [50]. Then we take into account the effect of predator. Predation leads

27



to the a decrease in prey. We assume the prey decreases exponentially as a result of predation.

Then at time step t, the function F (N,P ) can be chosen as

F (N,P ) =
A(Nt)

2

1 +B2(Nt)2
exp (−κPt), (2.60)

where κ is the predator efficiency.

We assume that the predator is a specialist predator. A specialist species can only thrive

when its prey exists, so the predator cannot survive without the prey. The predator growth

rate is assumed to be proportional to the rate at which the predators and the prey meet. Then

function G(N,P ) can be chosen as

G(N,P ) = δNtPt, (2.61)

where δ is the predator growth rate.

Combining (2.60)-(2.61) with (2.46)-(2.47) we obtain

Nt+1 =
A(Nt)

2

1 +B2(Nt)2
exp (−κPt), (2.62)

Pt+1 = δNtPt. (2.63)

For convenience, (2.62)-(2.63) is non-dimensionalised by scaling

N ′t = δNt and P ′t = κPt, (2.64)
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then equation (2.62) and (2.63) can be transformed to (the “′” has been dropped here)

Nt+1 =
a(Nt)

2

1 + b(Nt)2
exp (−Pt), (2.65)

Pt+1 = NtPt, (2.66)

where a = A/δ and b = (B/δ)2 .

The steady states can be found by by solving Nt+1 = Nt and Pt+1 = Pt and we can obtain

four steady states, (0, 0), (N∗1 , 0), (N∗2 , 0) and (N∗, P ∗), where

N∗1 =
a−
√
a2 − 4b

2b
,N∗2 =

a+
√
a2 − 4b

2b
(2.67)

(N∗, P ∗) = (1, ln(
a

b+ 1
)). (2.68)

The prey-only states (N∗1 , 0) and (N∗2 , 0) are only valid for a > 2
√
b. For the coexistence

state (N∗, P ∗), population can not be negative so a > b+ 1 is required.

The Jacobian matrix of system (2.65) and (2.66) is given by

J =

 2an∗

(1+b(n∗)2)2
− a(n∗)2

1+b(n∗)2
exp (−p∗)

p∗ n∗

 , (2.69)

From Theorem 2.2.1, the steady states are stable if −1 < λ < 1.

If (n∗, p∗) = (0, 0), then the eigenvalue of the Jacobian matrix (2.69) is 0. It can be

concluded that this extinction state is always stable.
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If (n∗, p∗) = (N∗1 , 0) or (N∗2 , 0), the Jacobian matrix (2.69) becomes


2aN∗

i

(1+b(N∗
i )2)2

− a(N∗
i )2

1+b(N∗
i )2

0 N∗i

 , i = 1, 2. (2.70)

There are two eigenvalues of matrix (2.70), λ1 =
2aN∗

i

(1+b(N∗
i )2)2

and λ2 = N∗i . For equilibrium

(N∗1 , 0), λ1 > 1 hence unstable. For (N∗2 , 0), the equilibrium is stable on condition that 2 <

a < b+ 1.

If (n∗, p∗) = (N∗, P ∗), then the Jacobian matrix (2.69) turns to

 2
1+b

−1

ln( a
b+1

) 1

 , (2.71)

so that the steady state of coexistence is stable if a < acr = (b+ 1) exp( b−1
b+1

).

Figure 2.5: Parameter plane of a and b [76].

All of these constraints above divide the parameter plane (b, a) into six domains (see
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Fig. 2.5). The straight dotted line represents a = b+ 1 , and the solid curve represents a = acr.

The short dashed curve corresponds to a = 2
√
b. The long dashed curve is obtained numerically.

The coexistence state is stable for parameters from domain 1. The coexistence equilibrium loses

stability and population dynamics oscillates for parameters inside domain 2. When crossing

the long dashed curve, the only attractor is the extinction state in the domain 3 [76].

Through the stability analysis of the steady states in the non-spatial models, we are able

to understand the population dynamics for various parameters, e.g, we will be aware whether

an alien species will invade successfully and whether a native species can survive when an alien

species is introduced as their predator or competitor.
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CHAPTER 3

SPATIAL PATTERNS OF BIOLOGICAL INVASION
OF STAGE-STRUCTURED SPECIES

In the previous chapter we have introduced two non-spatial models to simulate the bi-

ological invasion, however, biological invasion is a spatio-temporal phenomenon. The spatial

pattern of invasive species change with time.

This chapter will introduce a spatio-temporal model which describes biological invasion of

stage-structured species [77]. This model is described by two kernel-based integro-difference

equations. In this chapter we introduce two different dispersal kernels–the Gaussian kernel

can be used to simulate the short-distance dispersals while the Cauchy kernel can be used to

simulation long-distance dispersals.

3.1 Integro-difference model with Allee effect

We follow the work in [76, 77]. We consider both predator and prey are stage-structured

and have a similar life cycle. We denote the prey density located at position r = (x, y) in

generation t by Nt(r) and predator density by Pt(r). During the reaction stage, the two species
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reproduce and interact with each other. Then their densities change to

Ñt(r) = f(Nt(r), Pt(r)), (3.1)

P̃t(r) = g(Nt(r), Pt(r)), (3.2)

where functions Ñt and P̃t are the population densities after reproduction. Once the reaction

stage is completed, the species starts dispersing. The population density species N and P in

generation t+ 1 is given by:

Nt+1(r) =

∫
Ω

Ñt(r
′) kN(r, r′)dr′, (3.3)

Pt+1(r) =

∫
Ω

P̃t(r
′) kP (r, r′)dr′, (3.4)

where Ω is the dispersal domain. The dispersal kernels kN and kP give the probability densities

of an individual moving from position r′ to position r after dispersal. We assume that the

probability of the movement only depends on the distance between two positions, i.e., ki(r, r
′) =

ki(|r− r′|), i = N,P .

Then we substitute equations (3.1)–(3.2) into (3.3)–(3.4) to obtain the integro-difference

equations

Nt+1(r) =

∫
Ω

f(Nt(r
′), Pt(r

′)) kN(r, r′)dr′, (3.5)

Pt+1(r) =

∫
Ω

g(Nt(r
′), Pt(r

′)) kP (r, r′)dr′. (3.6)

For the model (3.5)–(3.6) we consider that the density of prey N is influenced by the strong
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Allee effect and function f is chosen the same as in (2.60),

f =
A(Nt)

2

1 +B2(Nt)2
exp (−κPt), (3.7)

where κ is the predator efficiency.

Species P is considered a specialist predator, and function g is chosen the same as in (2.61),

g = δNtPt, (3.8)

where δ is the predator growth rate.

Therefore, using (2.64), (3.7) and (3.8) can be transformed to

f(Nt, Pt) =
a(Nt)

2

1 + b(Nt)2
exp (−Pt), (3.9)

g(Nt, Pt) = NtPt, (3.10)

where a = A/δ and b = (B/δ)2.

3.2 Classification of dispersal kernels

Dispersal is a process that an individual or multiple individuals move form one location to

another location. If the transport of a species to another location is caused by natural forces

(e.g., the spread of seeds by the wind) and the new location is far away from the species’ main

range, it is called long-distance dispersal [39].

We consider two types of dispersal kernels. One is the Gaussian dispersal kernel with a

thin tail which corresponds to high frequency of short-distance travel. The other is the Cauchy
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dispersal kernel with a fat tail which corresponds to a higher rate of long-distance travel.

The short-distance dispersal can be described by the Gaussian kernel

ki(|r− r′|) =
1

2πα2
i

exp(−|r− r′|2

2α2
i

), i = N,P, (3.11)

where parameter αi quantifies the scale of the dispersal. This corresponds to normal distribution

so that larger αi corresponds to wider boundaries of the invasive area, hence the dispersal has

a faster spread speed.

It has been shown that long-distance dispersal will take place if the probability distribution

of the movement over the distance d has a power-law tail [31, 92]:

k(d) ∼ d−µ, 1 < µ < 3, (3.12)

for one-dimensional space. Therefore, the corresponding two-dimensional expression is

k(d) ∼ |d|−(µ+1), (3.13)

Here we consider two types of Cauchy kernels which describes the long dispersal,

ki(|r− r′|) =
βi

π(βi + |r− r′|)3
, (3.14)

where βi > 0, i = N,P , and

ki(|r− r′|) =
γi

2π(γ2
i + |r− r′|2)3/2

, (3.15)
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where γi > 0, i = N,P . Equation (3.14) and (3.15) is called Cauchy kernel type I and Cauchy

kernel type II. Obviously, (3.14) and (3.15) have the same power-law tail.

3.3 Initial conditions and boundary conditions

The problem (3.5)-(3.6) must be complemented by initial conditions. We consider two

initial conditions:

The first is the symmetrical initial condition. Both prey and predator are located at the

centre of the dispersal domain:

N0(x, y) =


N∗2 , for − 1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1,

0, otherwise,

(3.16)

P0(x, y) =


P ∗, for − 0.1 ≤ x ≤ 0.1 and − 1 ≤ y ≤ 1,

0, otherwise.

(3.17)

The second is asymmetrical initial condition. In this case, the prey is still located in the

same region as (3.16) while the predator is located in an acentric region:

N0(x, y) =


N∗2 , for − 1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1,

0, otherwise,

(3.18)

P0(x, y) =


P ∗, for − 1 ≤ x ≤ 0.2 and − 0.9 ≤ y ≤ 0.4,

0, otherwise.

(3.19)

The system (3.5)-(3.6) are integrals that can be solved numerically given initial conditions.

In this condition, we have to consider a computational domain Ω. This computational domain
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should be chosen carefully in order to make the computational error sufficiently small since a

certain number of individuals leave the computational domain Ω at each time step. Therefore,

a large enough domain W should be chosen to ensure that few individuals will leave the domain

during the observation period.

3.4 Numerical simulation: the FFT method

The simplest and most straightforward way to solve the problem (3.5)-(3.6) would be

numerical integration such as Newton-Cotes method. However, this approach is very computa-

tionally expensive so an alternative numerical technique will be used that is provided the Fast

Fourier Transform (FFT) method.

The Fourier transform of the function f(x) is described by,

f̂(s) =

∫ ∞
−∞

f(x)e−2πisxdx, (3.20)

and the inverse Fourier transform is

f(x) =

∫ ∞
−∞

f̂(s)e2πisxds. (3.21)

The convolution of function f(x) and g(x) is defined as

h(x) = f ∗ g(x) =

∫ ∞
−∞

f(x− y)g(y)dy. (3.22)

The convolution theorem states that the Fourier transform of the convolution is equal to
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the product of the Fourier transforms f̂(s) and ĝ(s) [61],

ĥ(s) = f̂ ∗ g(s) = f̂(s)ĝ(s). (3.23)

Therefore, let F−1 be the inverse Fourier transform operator, we have

h(x) = F−1(f̂(s)ĝ(s)). (3.24)

The system (3.5)-(3.6) can only be solved numerically. So we consider the discrete Fourier

transform (DFT) of function f , g and k. We discretise f(x) over the computational interval

(a, b),

fk = f(xk), gk = g(xk), xk = a+ hk, k = 0, 1, ..., N − 1, (3.25)

where h = b−a
N−1

is the step size. The discrete Fourier transform of the sequence [fk] is

Fs =
N−1∑
k=0

fke
−2iπsk/N , (3.26)

and the corresponding inverse transform is

fk =
N−1∑
s=0

Fse
2iπsk/N . (3.27)

The discrete Fourier transform is periodic, shown as follows:

Fs+N =
N−1∑
k=0

fke
−2iπ(s+N)k/N =

N−1∑
k=0

fke
−2iπsk/Ne−2πik = Fs, (3.28)
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and

Fs =
N−1∑
k=0

fke
−2iπsk/N (3.29)

=

N/2−1∑
k=0

f2ke
−2iπs(2k)/N +

N/2−1∑
k=0

f2k+1e
−2iπs(2k+1)/N (3.30)

=

N/2−1∑
k=0

f2ke
−2iπsk/(N/2) + e−

2πis
N

N/2−1∑
k=0

f2k+1e
−2iπs(k+1)/(N/2) (3.31)

= Es + e−
2πis
N Os (3.32)

Notice that Es denotes the sum of the even components of Fs, while Os denotes the sum of the

odd components of Fs. Thanks to the periodicity of the discrete Fourier transform, we have

Es+N
2

= Es, and Os+N
2

= Os if N is even. (3.33)

Thus Fs can be rewritten as

Fs =


Es + e−

−2πi
N

sOs for 0 ≤ s < N/2,

Es−N/2 + e−
−2πi
N

sOs−N/2 for N/2 ≤ s < N.

(3.34)

We notice that

e
−2πi
N

(s+N/2) =e
−2πis
N
−πi (3.35)

=e−πie
−2πis
N (3.36)

=− e
−2πis
N . (3.37)
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Fs can be rewritten as

Fs = Es + e
−2πis
N Os, (3.38)

Fs+N
2

= Es − e
−2πis
N Os. (3.39)

Thus, a size-N DFT can be represented as two size-N/2 DFTs. This process was developed

by Danielson and Lanczos in 1942, which is known as Danielson-Lanczos Lemma [74]. If N

takes values of N = 2s, s is any positive integer. The number of computations for (3.26) can

be reduced from O(N2) to O(N log2N), by using a Fast Fourier transform (FFT) [74].

The convolution theorem is also valid for discrete Fourier transform. If we apply the FFT

to two-dimensional integration (3.5), the number of computations is O(N2 log2N) while the

corresponding number for the trapezoidal rule is O(N4).

3.5 Numerical validation

As there is no analytical solution to the problem, we need to choose the numerical methods

carefully to ensure the accuracy of the solutions. And the only way to validate the solution is

to compare the results of two numerical methods. As a grid is refined they must converge to

the same answer. Thus, this section will compare the results of FFT with those obtained in

numerical solution by the trapezoidal rule.

At the beginning, let us recall the computation of an integral by the trapezoidal rule.

Consider a definite integral:

I =

∫ b

a

f(x)dx. (3.40)
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In order to obtain the numerical value of integral (3.40) , we divide the interval (a, b) into n

subintervals of equal length h = (b− a)/n so that there are n+ 1 grid nodes on the interval,

x0 = a, xi = x0 + hi, i = 1, 2, ..., n. (3.41)

If in each subinterval (xi−1, xi) we approximate the integrand by the a linear equation

connecting f(xi−1) and f(xi), the integral on each subinterval (xi−1, xi) can be approximated

by hf(xi−1)+f(xi)
2

, then the integral (3.40) can be approximated by

∫ b

a

f(x)dx ≈ h

2

n∑
i=1

(f(xi−1) + f(xi)), (3.42)

which is known as the trapezoidal rule [6]. The error of the trapezoidal rule is

error =
nh3

12
f ′′(ξ), a ≤ ξ ≤ b. (3.43)

Now that we have two numerical methods at hand, then we can investigate the accuracy

of the FFT method. For doing it we introduce the numerical error for a specific problem.

We consider one-dimensional integro-difference equations for single species

Nt(x) =

∫
Ω

k(x, y)f(Nt−1(y))dy, (3.44)

f(N) =rN exp(−N), (3.45)

k(x, y) =
1√

2πα2
exp(−(x− y)2

2α2
), (3.46)
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with the initial condition

N0(x) =
1√

2πα2
0

exp(−(y − µ)2

2α2
0

). (3.47)

The system (3.44)-(3.47) can not be solved analytically. Hence we use the trapezoidal

rule to obtain the numerical solution. As there is no analytical solution to the problem, the

computational error cannot be directly calculated.

In this case, we consider an ‘exact’ solution obtained by the trapezoidal rule on a very fine

grid of Kf = 213 + 1 = 8193 nodes and denote it N exact(x). Then we perform the trapezoidal

rule on coarse grids of K = 2s + 1, s = 1, 2, ..., 12 nodes. All the grids are considered uniform,

so for any node xi located on the coarse grid, there is a node xj with the same value on the

fine grid. Therefore the solution error can be obtained by

ei = |N exact(t, xi)− Ñ(t, xi)|, i = 1, 2...K. (3.48)

And the error norm is given by

‖e‖ = max
i=1,2,...,K

ei. (3.49)

The error norm is computed when K = 2s + 1, s = 4, 5, ..., 12, and they are plotted in

Fig. 3.1. Then we use the FFT to compute the solutions on the same grids described above,

and their error norm is the same as shown in Fig. 3.1. Besides, the solutions obtained by the

FFT is very close to the solution obtained by the trapezoidal rule when they are computed on

the same grid ( the absolute difference between them is less than 10−10).

Therefore, it can be concluded that the two methods have the same accuracy. Moreover,

it is observed that the error norm is approximately 10−15 when K > 1025 which is sufficiently

small to conclude that the solution has very good accuracy.
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Figure 3.1: The plot of error norms for different number of grid nodes. Parameters are α0 =
1.0, µ = 0, α = 0.1, t = 20, L = 15, r = 7.0.

Now we consider a system of two interacting species N and P which is given by

Nt+1(x) =

∫
Ω

k(x, y)f(Nt(y), Pt(y))dy, (3.50)

Pt+1(x) =

∫
Ω

k(x, y)g(Nt(y), Pt(y))dy, (3.51)

where

f(Nt, Pt) =
a(Nt)

2

1 + b(Nt)2
· exp(−Pt), (3.52)

g(Nt, Pt) =NtPt, (3.53)
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with the initial condition:

N0(x) =
a+

√
(a2 − 4b)

2b
or − 1 ≤ x ≤ 1 and N0(x, y) = 0 otherwise, (3.54)

P0(x) = ln(
a

b+ 1
) for 0.1 ≤ x ≤ 0.1 and P0(x) = 0 otherwise. (3.55)

Taking a = 4.5 and b = 1.0, we can otain the following results by FFT method:

This chapter introduced a system of kernel-based integro-difference equations that de-

scribes biological invasion of stage-structured species. Both short-distance dispersal and long-

distance dispersal are considered in this model. This model cannot be solved analytically,

therefore we employ numerical methods to solve this problem. We introduced the FFT method

in section 3.4 as it is much more efficient than numerical integration. Then in section 3.5 we

validate the FFT method and the results show that the numerical solution converges as we

refine a computational grid. Now that we are certain about the accuracy of our numerical

approach we can move to simulation of more sophisticated 2-D problem.
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(a)

(b)

(c)

Figure 3.2: The density distribution of species N at time (a)t = 20, (b)t = 40 and (c)t = 200;

parameters are a = 4.5, b = 1, αN = 0.1, αP = 0.125, L = 20.
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CHAPTER 4

SIMULATION RESULTS FOR STAGE-STRUCTURED
POPULATION WITH SHORT-DISTANCE AND

LONG-DISTANCE DISPERSAL

In chapter 3 we have demonstrated that the FFT method can be used to solve the integro-

difference equations accurately and efficiently. This chapter will solve the the two-dimensional

system (3.5)-(3.10) at different parameter values and show some typical spatial patterns. We

will investigate short distance and long distance dispersal in the two-dimensional case in this

chapter. Some spatial distributions have a population front while some spatial patterns do

not have, the latter is called patchy distribution. Simulation results in this chapter show that

patchy invasion can be observed in the short distance dispersal as well as in the long distance

dispersal.

Now we apply the FFT to solving the two dimensional system (3.5)-(3.10)

Nt+1(r) =

∫
Ω

f(Nt(r
′), Pt(r

′)) kN(r, r′)dr′,

Pt+1(r) =

∫
Ω

g(Nt(r
′), Pt(r

′)) kP (r, r′)dr′,
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where

f(Nt, Pt) =
a(Nt)

2

1 + b(Nt)2
exp (−Pt),

g(Nt, Pt) = NtPt.

Firstly we choose a dispersal domain Ω = [−L,L]× [−L,L] and discretise the domain by

K ×K grids nodes uniformly, so that

xk+1 = xk + ∆, x1 = −L, xK = L, and yk+1 = yk + ∆, y1 = −L, yK = L, (4.1)

where ∆ = 2L/(K − 1) is the lattice spacing.

When implementing numerical methods, it is important to be careful about the computa-

tional errors. It is therefore necessary to choose a sufficiently large number of grid nodes K to

ensure that the lattice spacing ∆ is small enough.

The computational domain Ω should be large enough so that few individuals are moving

out of the domain during the observation period (up to t=200), i.e., the population front must

be sufficiently far from the domain boundary. We performed simulations up to t = 200 to

eliminate the impact of initial conditions on the spatio-temporal dynamics. For a Gaussian

kernel that decays rapidly, L = 20 is sufficiently large to guarantee that the population is not

close to the domain boundary at time t = 200 in our test cases provided with certain parameters

and initial conditions as specified in (3.16)-(3.17), where we have N∗2 = a+
√
a2−4b
2b

, P ∗ = ln( a
b+1

).

In this thesis we choose 210 × 210 nodes which can ensure that computational errors are small

enough, i.e. if we further refine the grid, then the computational error does not drop down

significantly. For Cauchy kernels which have fatter tails, the spread speed of the population is
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much faster so we have to choose a larger domain in order to be able to make our computation

up to time t = 200 and guarantee that the population has not approach the domain boundary

yet, therefore we take L = 80 and 212 × 212 nodes.

From the analysis of the non-spatial system in Fig. 2.5, it is known that for parameters (a, b)

from domain 1, the population dynamics tend to be tends to be non-oscillatory continuous front

(the density is constant behind the front); in domain 2, the population dynamics are oscillatory;

in domain 3, the only attractor is extinction state. Now we are interested in whether these

conclusions are the same when we deal with two-dimensional system (3.5)-(3.10).

Due to the property of dispersal kernels (3.11), (3.14) and (3.15) the population density

is greater than zero anywhere in the domain at any time t > 0. However, far away from the

population front the density values are very low and can be neglected. In the population density

distributions figures Fig. 4.1, Fig. 4.4, Fig. 4.6 and Fig. 4.7, the areas marked in white colour

implies the population density is zero. But it does not mean that of density is strictly zero in

the white areas. Hence, a ‘cutoff’ is applied to low densities, see (4.2). The chosen cutoff value

for these figures is 0.05 (this choice of the cutoff value is further justified in Chapter 6, which

means that densities below this value are treated as zero.

The modified population distribution N̂ is given below:

N̂(x, y) = N(x, y) for N > C, N̂(x, y) = 0 for N ≤ C, (4.2)

where C is the cutoff value. In this chapter, we choose C = 0.05, which is approximately 1%

of the maximum density value Nmax, further discussion of the cutoff value will be provided in

Chapter 6.
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4.1 Simulation results for the Gaussian dispersal kernel

In this section we solve the problem (3.5)-(3.10) with Gaussian kernel (3.11) and parameters

αN and αP have been chosen the same as in [77], where αN = 0.1, αP = 0.125. We vary

parameters a and b in the domains 1, 2,and 3 in Fig. 2.5 and obtain the following conclusions.

For parameters from domain 1 of Fig. 2.5, the population density behind the front is

constant, which is identical to non-spatial model (2.65)-(2.66). An example is shown in Fig. 4.1

where it is observed that the prey population is distributed in a circle at time t = 50, t = 100,

t = 150 and t = 200. Fig. 4.2 gives a cross-section view of prey distribution when x = 0.

Fig. 4.3(a) records the corresponding radius at time t = 50, t = 100, t = 150 and t = 200, and

it is known that the spread speed of prey and predator are constants (the speed of predator

are not presented here) [39]. The propagation speed has been evaluated in our numerical

simulation as follows: from t = 50 to t = 200, the radius of prey distribution increases by

6.7969−2.7734 = 4.0235, so the spreading speed is vprey = (6.7969−2.7734)/(200−50) = 0.0268.

Therefore, it can be predicted where the population front is located at each moment. Moreover,

once the species density arrives at the constant value and this value does not change any longer.

Thus, the spatial distribution of prey and predator is possible to predict at any time without

complicated computation.

For the parameters from domain 2 of Fig. 2.5, the spatial density distribution behind the

front oscillates, which is the same as the non-spatial model (2.65)-(2.66). Fig. 4.4 shows an

example of oscillatory distribution for a = 6.0 and b = 2.4 and Fig. 4.5 is the cross-sectional

view of it. Although the spreading speed of prey appears to be constant (see Fig. 4.3(b)), we

cannot predict the exact spatial shape of the density distribution at any moment of time.

For parameters in domain 3, the population density distributions are more complicated.
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(a) (b)

(c) (d)

Figure 4.1: Examples of spatial distributions of the prey species in a spatial domain where
x ∈ [−20, 20] and y ∈ [−20, 20] at time (a) t = 50, (b) t = 100, (c) t = 150 and (d) t = 200
respectively. Parameters are αN = 0.1, αP = 0.125, a = 4.0 and b = 2.4. Initial conditions are
given by (3.16)-(3.17).

Some examples are shown in Fig. 4.6. Fig. 4.6(a) and Fig. 4.6(c) are examples of patchy

invasion, so called because they do not have a continuous population front which separates the

invaded and non-invaded areas. The spatial patterns in Fig. 4.6(b), and Fig. 4.6(d)-Fig. 4.6(f)

have continuous fronts, yet their topology are different. In Fig. 4.6(b) and Fig. 4.6(d), the

population fronts are concave, whereas the distributions in Fig. 4.6(e) and Fig. 4.6(f) have

convex continuous fronts.
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(a) (b)

(c) (d)

Figure 4.2: A cross-sectional view of Fig. 4.1 at y = 0.

4.2 Simulation results for Cauchy dispersal kernel

When long-distance dispersal frequently occurs during the invasion, the Cauchy kernels

that have fat tails are considered as such dispersal kernels can be used to simulate long-distance

dispersal [77]. We performed numerical simulations for Cauchy kernel type I (3.14) where

βN = 0.0488 and βP = 0.098 at different time steps and the results are shown in Fig. 4.7. This

shows that patchy invasion can also occur for long-distance dispersal.

We simulated various invasion regimes in this chapter and obtained various spatial patterns.

We have shown that, in a certain parameter range, the invasion takes place by a somewhat
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(a) (b)

Figure 4.3: Radius of prey density distribution at time t=50, 100, 150 and t=200 respectively.
Parameters are (a) a = 4.0, b = 2.4 and (b) a = 6.0, b = 2.4.

(a) (b)

(c) (d)

Figure 4.4: Examples of spatial distributions in a spatial domain where x ∈ [−20, 20] and
y ∈ [−20, 20]. Contour plots of prey density Nt(x, y) at time (a) t = 50, (b) t = 100, (c)
t = 150 and (d) t = 200 respectively. Parameters are αN = 0.1, αP = 0.125, a = 6.0 and
b = 2.4. Initial conditions are given by (3.16)-(3.17).
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(a) (b)

(c) (d)

Figure 4.5: A cross-sectional view of Fig. 4.4 at x = 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Examples of spatial distributions in a spatial domain where x ∈ [−20, 20] and
y ∈ [−20, 20]. Contour plots of prey density N(x, y) generated at time t = 200, as obtained for
the Gaussian kernel (3.11) and initial conditions (3.16)-(3.17). Parameters are αN = 0.1, αP =
0.125 and (a) a = 6.2, b = 0.700; (b) a = 6.2, b = 0.704; (c) a = 6.2, b = 0.720; (d) a = 6.2,
b = 0.724; (e) a = 6.2, b = 0.740; (f) a = 6.2, b = 0.750.
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(a) (b)

(c) (d)

Figure 4.7: Contour plots of prey density N(x, y) at time (a) t = 20, (b) t = 100, (c) t = 140
and t = 190, as obtained for Cauchy kernel and asymmetric initial conditions (3.18)-(3.19).
Parameters are βN = 0.0488, βP = 0.098, a = 4.5 and b = 0.68.

unusual scenario where there is no population front and the species are spreading into space

through the dynamics of separate patches of high population density. This scenario has been

called ‘the patchy invasion’ in [35] and in this chapter we confirm formation of separate patches

when both Gaussian and Cauchy dispersal kernels are used in the model. It is important to

distinguish between patchy distributions and distributions that have a continuous population

front, as patchy distributions are much more challenging in monitoring the biological invasions.
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CHAPTER 5

CLASSIFICATIONS OF SPATIAL PATTERNS

In chapter 4 we noticed a special invasion regime that does not have a continuous population

front, which is called patchy invasion. Similation results in Chapter 4 show that patchy invasion

occurs inside a particular parameter domain (where the corresponding non-spatial population

goes to extinction, cf. domain 3 in Fig. 2.5) but little is known about the fine structure of

the parametric plane. However, identification of relevant parameters is very important for the

purposes of monitoring and control. Therefore, the first goal of this chapter is to introduce a

classification of spatial patterns and reveal the corresponding structure of the parameter space

by performing extensive numerical simulations.

Another goal of this chapter is to distinguish between continuous-front spatial patterns and

patchy spatial pattern, because agglomeration of separate patches located close to each other

looks often like a continuous front spatial distribution and visual inspection of those patterns

may easily result in a wrong conclusion about the type of biological invasion. Hence introduction

of more reliable means of identification of spatial patterns is required and in this chapter we

investigate several topological characteristics that can potentially help us to distinguish between

continuous front and patchy spatial patterns. It will be shown that, among the other topological
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quantities such as the fragmentation rate and the density of objects, the number of objects in

the binary map of a spatial distribution remains the most reliable topological characteristics

when it is required to conclude whether or not spatial pattern is a patchy structure.

5.1 Structure of parametric plane

In order to investigate the spatial patterns for various pairs of parameters a and b in the

model (3.5)-(3.10), we performed numerical simulations for the parameters a and b in the range

a ∈ [3.9, 6.5] and b ∈ [0.686, 0.766], which is a sub-domain taken from domain 3 in Fig. 2.5. I

varied parameters a and b in this sub-domain with an increment of δa = 0.1 and δb = 0.002.

The spatial patterns are examined for each pair of (b, a) at the moment t = 200. Our numerical

simulations show that this time is sufficient for the spatial pattern to establish, i.e., the spatial

pattern will not transform from patchy distribution to continuous front distribution at times

t > 200.

In this chapter we first consider the symmetrical initial conditions given in equations (3.16)-

(3.17) and the spatial patterns of each computation are summarised in Fig. 5.1. In this figure,

the blue region indicates that populations become extinct for parameters located in this region.

The green region means that patchy invasion occurs when the parameters are chosen from this

range. The orange region shows that every distribution here has a concave continuous front.

And the grey region indicates that a convex continuous front can be found for each distribution.

It can be concluded that for any a from Fig. 5.1, the population goes to extinction when b is

less than b1 = 0.688 while the spatial pattern has a convex continuous front for b > b2 = 0.752.

But there are no threshold values that separate continuous-front spatial distributions from

patchy spatial distributions. The spatial patterns between b1 and b2 are complicated. While
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Figure 5.2: Comparison of spatial patterns under symmetrical initial conditions (3.16)-
(3.17) (left), and asymmetrical initial conditions (3.18)-(3.19) (right). Parameters varies in
a ∈ [3.9, 4.9], b ∈ [0.702, 0.71]

the distribution with concave continuous front occurs in the range b ∈ [0.688, 0.752], the patchy

invasion only appears in a narrower range b ∈ [0.688, 0.732].

The results in Fig. 5.1 are obtained with the symmetrical initial conditions (3.16)-(3.17).

Then we are going to investigate the simulation results with the asymmetrial initial conditions

(3.18)-(3.19). Fig. 5.2 shows the comparison between the results obtained with symmetrical and

asymmetrical initial conditions; all of them were obtained at time t = 200 and 3.9 ≤ a ≤ 4.9,

0.702 ≤ b ≤ 0.710. It can be seen from the figure that the two maps are not the same. Thus it

can concluded that different initial conditions will result in different spatial patterns.

5.2 Topological indices

In this section, three topological indices are employed to classify the different kinds of

spatial patterns. These indices are the number of objects, the fragmentation rate and the

density of objects.
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5.2.1 The number of objects

In the previous sections, spatial patterns were classified visually, which is not always re-

liable. A reliable technique was therefore developed to distinguish whether or not a spatial

pattern is patchy. We define an object as a region of the non-zero density with a closed ex-

ternal boundary. A continuous front density distribution can be classified as a single object.

The MATLAB code of this technique is given in Appendix. It can count the number of sepa-

rate patches. In order to implement this technique, the original density distribution has to be

converted to a binary matrix. Equation (5.1) illustrates how a matrix can be converted to a

binary matrix.

Ñ(x, y) = 1 for N(x, y) > C, and Ñ(x, y) = 0 for N(x, y) ≤ C (5.1)

where C is the cut-off value.

Two examples of binary image are shown in Fig. 5.3. Both of them are obtained at the

cutoff value C = 0.05. Fig. 5.3(a) shows a concave front distribution while Fig. 5.3(b) shows

a patchy distribution. It is clear that Fig. 5.3(a) has a continuous front that indicates there is

only one object in this graph; for Fig. 5.3(b), it can be seen that there are three objects in the

graph.

Then we investigate the number of objects of spatial patterns for each pair of parameters

(b, a) in the range a ∈ [3.9, 6.5] and b ∈ [6.90, 7.38] because we conclude from our previous

numerical simulations that patchy distributions may appear for this range of parameters. The

increment in parameter a is δa = 0.1 and the increment in parameter b is δb = 0.002 as before.

All solutions were obtained at t = 200 as well. The results are shown in Fig. 5.4. From the table,
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(a) (b)

Figure 5.3: Examples of Binary images in a spatial domain where x ∈ [−20, 20] and y ∈ [−20, 20]
obtained at C0 = 0.05 and t = 200. (a) A concave-front distribution obtained for parameters
a = 4.1 and b = 0.71. (b) A patchy distribution obtained for parameters a = 4.0 and b = 0.73.

it can be concluded that no particular threshold exists that separates the patchy distributions

from the continuous front patterns. Moreover, from Fig. 5.4 it can be seen that the spatial

patterns are very sensitive to the parameters a and b. For instance, when a = 5.8 and b = 0.710

the solution is found to be patchy distribution at t = 200. However, if b is slightly increased or

decreased by 0.002, the corresponding density distribution has a continuous front.

The result of Fig. 5.4 is obtained at the cut-off value C = 0.05, it would change when the

cut-off value varies. However, we mention it here that, for those values of the number of objects

that equal to 1 (i.e. the corresponding spatial pattern has a continuous population front), they

remains 1 even at a relatively large cut off value (e.g. C = 0.2); for those values of the number

of objects that larger than 1 (i.e. the patchy distribution), the values will change if we slightly

increase the cul-off value. The investigation on the sensitivity of the spatial patterns to the

cut-off value will be discussed in Chapter 6.
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a
3.9 0 0 0 0 0 0 0 1 1 0 0 8 1 1 1 5 1 5 1 1 1 1 1 1 1

4 0 0 0 0 0 1 1 1 0 0 3 3 11 1 1 1 7 13 3 1 3 1 1 1 1

4.1 0 0 0 1 1 1 0 0 1 1 1 6 1 3 1 1 1 1 1 1 1 1 1 1 3

4.2 0 0 1 1 0 0 0 1 1 1 1 1 1 9 1 1 1 1 1 1 1 1 3 1 1

4.3 0 3 1 0 0 2 13 1 1 1 1 7 1 3 1 1 1 1 1 1 1 1 1 1 1

4.4 7 1 0 0 15 5 1 7 1 1 1 1 3 3 1 1 1 1 1 1 3 1 1 1 1

4.5 1 0 0 0 5 3 1 1 1 7 1 3 11 1 1 1 11 9 1 1 1 1 1 1 1

4.6 0 0 0 3 1 1 1 1 1 2 1 7 3 1 1 9 3 11 1 1 1 1 1 1 1

4.7 0 0 1 1 3 1 5 1 1 1 1 1 1 1 5 7 3 3 1 1 1 1 1 1 1

4.8 0 0 5 1 14 3 9 1 5 1 1 1 1 1 11 1 5 1 1 1 1 1 1 1 1

4.9 0 1 5 1 1 1 1 1 1 1 1 1 3 7 1 3 1 1 1 1 1 1 1 1 1

5 0 9 1 1 1 1 1 1 1 1 1 1 1 19 1 1 1 1 1 1 1 1 1 1 1

5.1 0 1 1 0 13 3 1 1 3 1 1 1 7 3 1 5 1 1 1 1 1 1 1 1 1

5.2 1 5 1 0 1 1 1 7 1 1 7 1 29 7 41 1 1 1 1 1 1 1 1 1 1

5.3 1 1 1 0 3 1 1 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1 1 1

5.4 19 7 0 0 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1

5.5 12 1 0 0 1 1 1 1 1 11 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1

5.6 15 1 0 0 17 1 1 5 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1

5.7 2 0 0 0 5 1 3 1 1 1 1 1 5 1 7 1 1 1 1 1 1 1 1 1 1

5.8 0 0 3 0 31 1 1 1 1 1 13 1 21 1 17 1 1 1 1 1 1 1 1 1 1

5.9 0 0 0 0 1 5 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 0 1 0 0 0 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1

6.1 0 0 1 1 0 1 1 7 1 1 9 25 1 41 1 1 1 1 1 1 1 1 1 1 1

6.2 0 0 0 0 0 13 5 1 1 19 1 1 11 1 1 7 3 1 1 1 1 1 1 1 1

6.3 0 0 1 1 0 1 1 1 1 37 1 1 1 1 5 1 1 1 1 1 1 1 25 1 1

6.4 0 0 0 0 1 0 1 1 16 1 35 1 9 1 1 3 1 1 49 1 1 1 1 1 1

6.5 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1

b*10 6.9 6.92 6.94 6.96 6.98 7 7.02 7.04 7.06 7.08 7.1 7.12 7.14 7.16 7.18 7.2 7.22 7.24 7.26 7.28 7.3 7.32 7.34 7.36 7.38

Figure 5.4: The number of objects in the spatial pattern as a function of parameters a and b.
All solutions in this table is obtained at time t = 200 and cut-off value C = 0.05.

5.2.2 The fragmentation rate and the density of objects

The number of objects is not enough to exhibit detailed information of a spatial pattern,

so we introduce the fragmentation rate to measure the fragmented level of a spatial pattern.

Consider, for example, two hypothetical spatial patterns shown in Fig. 5.5. The number of

objects n = 3 is the same in both patterns. Moreover, the total area of the objects is the same

and is equal to 11 units where we consider the area of any square cell equal to one in the figure.

However, the fragmentation rate is different. The fragmentation rate in Fig. 5.5a is equal to

0.2, while the fragmentation rate of Fig. 5.5 is 0.4.
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(b)

Figure 5.5: Spatial patterns in a hypothetical spatial domain are shown in black. The pattens have

the same area of the non-zero density and the same number of objects but their fragmentation rate is

different. (a) The fragmentation rate calculated is fr = 0.2 (b) the fragmentation rate is fr = 0.4.

The computation of fragmentation rate is described by equations (5.2)–(5.6) which was

developed by Harary [18].

We assume that function u(x, y) is defined on a square Ω = [−L,L] × [−L,L] and the

square is divided into N ×N identical subsquares Ωi, we compute

p(u) =
1

N ×N

∫
Ω

u(x, y)dxdy, (5.2)

s(u) =
1

2

N2∑
i=1

∑
uj∈V (ui)

1{ui(x, y) = uj(x, y) = 1}, (5.3)

where 1{P} is the indicator function, e.g. 1{P} = 1 if P is true. V (ui) is a four-neighbourhood

system described by

V (ui,j) = {ui−1,j, ui,j−1, ui+1,j, ui,j+1}. (5.4)

B[p] := 2n+ − d2
√
n+e, (5.5)

where n+ = p×N2 and d2√n+e is the smallest integer that is larger than or equal to d2√n+e.
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fr(u) = 1− s(u)

B[p(u)]
. (5.6)

We can think about equation (5.6) as follows. Let 1 in the equation be presented as

s(u)/s(u), then the second term gives us the measure of to what extent the pattern is uniform.

The fragmentation rate (5.6) can range from 0 to 1. The larger the fragmentation rate is, the

more fragmented the corresponding spatial pattern is. Fig. 5.5(a) and Fig. 5.5(b) have the

same number of objects, population abundance p = 11
49

, but have different fragmentation rates.

In this example, fr(a) < fr(b) implies that Fig. 5.5(a) is relatively more aggregated while

Fig. 5.5(b) is more fragmented.

The fragmentation rates for all spatial patterns in Fig. 5.4 are sumarised in Fig. 5.6 where

blank spaces indicate that populations go to extinction for parameters taken from this region.

It can be concluded from the table that, while the fragmentation rate gives us information

about the topological structure of a given spatial distribution, the fragmentation rate cannot

help us to identify the topological structure of different spatial patterns. In other words, we

cannot predict the value of the fragmentation rate if we give a small increment to the problem

parameters. For instance, the spatial pattern obtained at a = 6.1 and b = 0.712 is a patchy

distribution (n = 25) with the fragmentation rate fr = 0.0265. Meanwhile, spatial pattern

obtained at a = 6.1 and b = 0.714 is a continuous-front distribution (n = 1) with the same

fragmentation rate fr = 0.0265.

It is clear from the data in Fig. 5.6 that, similarly to the number of objects in the spatial

pattern, we do not have any distinct continuous range of a and b where we can expect formation

of patchy patterns only in spatial density distributions. Variations in the fragmentation rate

may stem from the fact that a concave continuous front has a complex density distribution
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a
3.9 1.89 1.76 2.76 1.63 2.31 1.92 2.09 1.84 2.17 1.81 2.12 1.7 1.98 1.8 2.15 1.87

4 2.04 1.97 1.9 2.34 2.03 2.02 2.09 1.95 2.1 2.19 2.48 1.66 1.99 2.04 1.89 1.96 1.87 2.05

4.1 2.79 2.6 2.01 2.01 2.17 1.76 1.89 1.87 1.94 1.9 1.82 2.03 1.92 2.06 1.93 1.82 1.76 2.1 2.09 1.9

4.2 2.06 2.62 2.29 2.69 1.88 1.61 1.88 2.41 2.28 1.87 2.1 2.01 1.9 1.97 1.89 2.1 2.18 1.84 1.99 1.86

4.3 2.06 2.19 3.39 2.41 2.1 1.9 2.01 1.72 2.07 2.16 2.14 2.3 1.79 2.05 2.06 2.23 1.94 1.98 1.9 1.97 2.08 2.34

4.4 2.07 2.04 2.53 2.22 2.33 1.79 1.97 1.89 1.89 2.19 2.41 2.46 2.16 1.81 2.3 2.34 2.34 1.94 1.94 1.78 2.12 2.07 2.29

4.5 2.54 1.96 1.91 2.25 2.45 1.98 2.41 3 2.92 2.14 2.29 1.9 2.49 2.54 2.12 2.19 2.03 1.98 2.38 2.11 2.39 2.03

4.6 2.35 2.01 2.5 2.31 1.95 2.51 2.29 1.77 2.06 2.48 1.95 2.08 2.33 2.19 2.08 2 2.06 2.21 2.19 2.25 2.25 2.08

4.7 2.11 2.63 2.11 1.93 2.17 1.89 2.41 2.22 2.03 2.36 1.88 2.09 2.29 2.03 2.23 2.12 2.23 2.22 2.21 2.09 1.89 2.09 2.08

4.8 1.95 2.16 2.2 1.76 2.23 2.55 2.64 1.71 1.92 2.31 2.26 2.2 2.34 2.09 2.28 2.02 2.33 2.15 1.91 2.07 2.1 2.04 2.09

4.9 2.39 2.42 2.13 2.33 2.56 2.24 2.42 1.93 2.72 2.02 2.39 2.37 2.27 2.22 2.17 2.17 2.36 2.16 2.49 2.02 1.92 2.24 2.42 2.16

5 2.56 1.74 2.48 4.15 2.02 2.21 2.03 2.31 2.21 2.24 2.28 2.31 2.38 2.16 2.27 2.03 2.33 2.3 2.03 2.05 2.33 1.91 2.18 2.13

5.1 2.61 2.2 2.51 2.34 2.1 2.28 1.98 2 2.37 2.14 2.35 2.3 2.15 2.14 2.31 2.44 2.12 2.2 2.09 2.3 2.27 2.08 2.21

5.2 2.25 2.34 2.13 2.65 2.34 2.16 3.04 1.98 2.22 2.32 2.14 2.55 2.36 2.36 2.27 2.61 2.43 2.38 2.05 2.3 2.23 2.22 2.3 2.16

5.3 2.41 2.33 2.06 2.23 2.2 1.98 2.43 2.25 2.48 2.31 2.41 2.34 2.27 2.29 2.29 2.44 2.14 2.1 2.21 2.37 2.35 2.47 2.39 1.95

5.4 2.87 2.23 2.43 2.35 2.81 2.36 2.13 2.52 2.25 2.37 2.47 2.24 2.28 2.34 2.28 2.35 2.17 2.23 2.53 2.24 2.45 2.34 2.06

5.5 2.47 2.34 2.51 2.13 2.61 2.13 2.21 2.6 2.56 2.44 2.43 2.38 2.44 2.2 2.29 2.33 2.48 2.47 2.47 2.06 2.25 2.48 2.09

5.6 2.4 2.73 2.83 2.4 2.71 2.47 2.52 2.52 2.38 2.32 2.62 2.6 2.28 2.41 2.41 2.48 2.56 2.4 2.66 2.25 2.55 2.34 2.14

5.7 2.5 2.14 2.48 2.39 2.85 2.51 2.43 2.53 2.42 2.66 2.41 2.67 2.18 2.4 2.32 2.48 2.4 2.32 2.35 2.59 2.47 2.28

5.8 1.66 2.5 2.37 2.37 2.01 2.57 2.35 2.44 2.66 2.57 2.64 2.46 2.32 2.51 2.42 2.65 2.34 2.63 2.19 2.72 2.31 2.31

5.9 2.38 2.33 2.11 2.27 2.1 2.38 2.81 2.4 2.47 2.63 2.47 2.68 2.42 2.23 2.44 2.51 2.45 2.33 2.61 2.47 2.37

6 2.24 2.48 2.14 2.23 2.4 2.39 2.52 2.48 2.5 2.61 2.82 2.43 2.19 2.66 2.31 2.44 2.49 2.46 2.66 2.69 2.17

6.1 2.23 2.01 2.81 2.64 2.66 2.23 2.29 2.3 2.65 2.65 2.69 2.48 2.75 2.49 2.51 2.92 2.65 2.51 2.44 2.29 2.4 2.42

6.2 2.54 2.44 2.56 2.63 2.5 2.64 2.59 2.45 2.49 2.3 2.42 2.58 2.75 2.63 2.65 2.38 2.43 2.4 2.75 2.6

6.3 2.85 2.33 2.58 2.5 2.56 2.97 2.59 2.4 2.52 2.51 2.76 2.43 2.26 2.65 2.47 2.7 2.38 2.27 2.57 2.53 2.54 2.67

6.4 2.22 2.39 2.66 2.51 2.46 2.73 2.61 2.77 2.5 2.56 2.6 2.38 2.49 2.67 2.69 2.5 2.42 2.44 2.59 2.57

6.5 3.91 2.61 2.93 2.61 2.62 2.56 2.27 2.52 2.55 2.64 2.39 2.5 2.83 2.39 2.7 2.59 2.56 2.5 2.27 2.8

b*10 6.9 6.92 6.94 6.96 6.98 7 7.02 7.04 7.06 7.08 7.1 7.12 7.14 7.16 7.18 7.2 7.22 7.24 7.26 7.28 7.3 7.32 7.34 7.36 7.38

Figure 5.6: The fragmentation rate for spatial patterns whose classification is presented in
Fig. 5.4. The values of fragmentation rate have been multiplied by 100. Blank spaces in the
table correspond to the extinction regime (i.e. no objects in the spatial domain).

behind the front (cf. Fig. 5.7). We want therefore to introduce the density of objects to take

the density distribution behind the front into account. We define the density of objects as

d =
ñ

A
, (5.7)

where ñ is the number of objects (the definition of ñ is given in subsection 5.2.1) and A is

the area occupied by those objects, i.e., the larger ñ is, the more objects we have in the same

area. Remark: when we consider ñ for the continuous front patterns, the patches behind the
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Figure 5.7: A example of spatial pattern that has a concave continuous front, which is obtained
for parameters a = 4.0 and b = 0.716.

continuous front are taken into account. Densities of objects for Fig. 5.4 are shown in Fig. 5.8.

It can be seen from Fig. 5.8 that the density of objects does not help us to distinguish

between continuous and patchy distributions. Similarly to the fragmentation rate, we cannot

see any distinct trend in the value of d when continuous front pattern transforms into patchy

pattern and vice versa. Consider, for example, patchy spatial pattern obtained for a = 4.4

and b = 0.698. The density of objects for that pattern is d = 0.138. This is a very high value

in comparison with d = 0.0303, the density of objects we have for a continuous front spatial

pattern obtained forthe same a = 4.4 and b = 0.702. However, we cannot conclude that the

density of objects for patchy distributions is always distinctly higher than the density of objects

for continuous front distributions. Continuous front spatial pattern obtained for a = 6.1 and

b = 0.7 has the density of objects d = 0.1426 while patchy pattern with a = 4.1 and b = 0.738

has d = 0.019.

In this chapter, we introduced some topological indices in order to distinguish between

patchy spatial patterns with continuous-front spatial patterns. Clearly recognition of spatial

pattern is particular important in the problem of biological invasion as accurate identification
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of spatial pattern may help practitioners to apply better, more targeted, means of control to

prevent an invasive species spreading into the space. Recognition of a spatial distribution as

continuous front pattern often implies that the entire area behind the front will be considered

for a control action (e.g. application of pesticide), while having a patchy spatial distribution

may only require dealing with the areas occupied by patches of the invasive species.

Our study in this chapter reveals that continuous front and patchy spatial distributions may

have a very similar topological structure behind the front and may therefore be easily confused

with each other when simple visual inspection of those patterns is made. Moreover, the analysis

a
3.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.72 0.84 0.00 0.00 8.69 0.55 2.71 1.65 3.36 1.38 2.70 3.77 1.44 0.40 4.86 2.32 2.51 1.85

4 0.00 0.00 0.00 0.00 0.00 3.48 1.41 0.75 0.00 0.00 2.84 2.88 8.60 3.48 5.31 2.70 3.45 9.29 1.87 1.95 3.07 0.92 1.52 0.60 0.32

4.1 0.00 0.00 0.00 6.72 4.74 0.56 0.00 0.00 3.22 1.49 0.68 2.89 0.44 1.30 0.37 0.28 0.79 1.58 0.40 1.21 0.26 1.69 0.93 1.54 0.85

4.2 0.00 0.00 0.91 6.35 0.00 0.00 0.00 0.07 0.07 0.02 0.83 1.93 5.12 3.19 0.67 3.75 1.99 1.90 2.08 0.27 2.20 2.13 2.72 0.74 0.25

4.3 0.00 5.56 5.86 0.00 0.00 11.37 8.59 4.43 0.60 1.29 1.78 3.57 2.87 4.55 4.45 1.64 3.03 2.36 1.52 2.03 1.71 0.79 0.74 2.95 0.84

4.4 3.44 0.57 0.00 0.00 13.80 8.56 3.03 3.73 1.34 1.17 1.54 0.87 8.25 4.56 1.29 1.30 4.00 1.15 3.80 1.32 0.75 1.63 1.33 0.76 1.56

4.5 10.63 0.00 0.00 0.00 4.26 2.85 2.74 5.58 1.45 4.12 6.59 5.57 4.60 0.67 0.72 3.54 4.58 2.81 4.13 0.25 1.97 2.66 2.44 5.46 2.99

4.6 0.00 0.00 0.00 1.78 0.48 6.35 2.29 0.41 1.15 5.56 5.10 2.37 4.39 0.69 2.35 3.04 4.17 2.79 2.34 3.19 1.29 1.44 0.73 4.18 1.59

4.7 0.00 0.00 3.14 6.97 1.46 1.31 3.66 0.31 5.06 4.27 0.40 3.19 1.63 1.97 3.45 2.70 1.64 2.66 1.94 5.21 0.23 2.50 1.62 1.10 2.42

4.8 0.00 0.00 7.22 0.49 10.82 2.77 4.96 7.35 8.31 0.68 1.25 3.42 2.36 1.71 6.30 0.88 2.73 1.28 2.96 2.15 0.63 1.28 2.12 2.97 1.23

4.9 0.00 3.09 8.20 0.70 0.63 4.32 3.31 4.00 1.44 5.54 0.74 6.72 4.42 2.83 4.39 1.78 0.66 2.88 3.66 1.93 1.02 0.58 4.14 3.68 3.06

5 0.00 5.97 0.52 7.56 2.01 1.73 2.75 4.79 1.11 0.87 7.42 3.70 3.04 6.53 3.30 2.47 2.23 4.28 5.20 1.00 1.50 3.03 0.94 2.02 2.58

5.1 0.00 6.12 0.58 0.00 12.23 4.34 2.42 1.01 2.76 0.94 3.77 1.90 3.81 3.12 3.82 1.15 1.15 4.03 2.96 3.99 1.90 2.16 1.69 1.16 5.04

5.2 3.50 2.24 1.09 0.00 12.12 3.85 0.34 8.37 1.18 4.73 3.29 1.32 7.75 5.91 8.81 3.84 5.71 3.08 7.73 1.57 0.59 3.39 3.84 2.77 3.04

5.3 0.80 5.82 1.00 0.00 2.86 4.54 7.02 2.35 1.69 8.78 1.88 4.24 2.55 3.97 1.97 2.47 3.68 1.81 2.55 3.15 1.03 3.00 2.63 4.24 2.21

5.4 13.91 5.17 0.00 0.00 0.72 2.17 8.25 2.80 3.70 4.86 1.23 3.04 2.95 1.00 3.00 3.22 1.43 2.55 1.17 0.59 5.42 5.86 3.81 4.04 4.36

5.5 7.78 4.94 0.00 0.00 1.56 1.93 2.61 0.67 1.41 5.47 5.84 1.18 2.97 3.10 3.71 3.78 1.78 4.25 7.00 3.95 5.14 3.07 1.31 4.29 6.99

5.6 7.53 6.29 0.00 0.00 13.23 8.49 7.83 6.88 7.66 2.51 1.32 3.62 4.79 7.64 2.25 8.91 5.11 4.83 3.76 3.68 5.46 2.58 6.15 4.57 3.39

5.7 13.77 0.00 0.00 0.00 1.52 9.78 4.33 11.23 6.27 3.00 4.89 5.66 7.44 6.63 2.38 1.58 3.15 2.11 4.20 2.10 4.46 3.92 6.73 6.96 3.30

5.8 0.00 0.00 4.90 0.00 11.53 6.20 2.66 1.95 7.46 0.96 4.53 5.50 4.94 7.86 4.66 4.99 6.10 4.93 6.13 4.05 5.26 2.84 7.93 3.99 4.70

5.9 0.00 0.00 0.00 0.00 4.32 4.39 3.60 4.54 0.88 4.28 5.35 4.09 4.61 4.05 5.35 5.46 3.51 0.57 6.95 2.28 8.04 4.31 6.95 4.19 7.78

6 0.00 5.53 0.00 0.00 0.00 4.75 3.72 2.49 5.70 0.81 3.10 7.46 1.34 4.37 11.40 2.17 1.29 5.97 2.76 6.43 4.08 6.36 5.03 3.37 3.19

6.1 0.00 0.00 5.10 1.17 0.00 14.26 8.95 9.31 4.85 2.92 6.12 6.44 10.97 9.63 3.25 5.26 5.94 7.30 8.32 10.46 2.67 2.76 3.19 4.06 6.74

6.2 0.00 0.00 0.00 0.00 0.00 5.34 5.47 5.45 8.59 8.53 8.43 6.45 8.67 4.40 2.83 8.06 7.09 11.64 5.45 5.60 4.58 3.52 8.52 6.16 6.92

6.3 0.00 0.00 2.01 6.34 0.00 2.76 3.88 6.34 10.04 13.84 3.55 1.90 10.42 7.99 6.93 3.78 4.26 5.31 1.93 2.56 1.50 1.24 5.38 3.01 8.59

6.4 0.00 0.00 0.00 0.00 2.60 0.00 4.71 3.28 5.69 1.37 10.40 3.91 12.45 4.10 5.09 12.84 5.83 5.41 9.51 3.26 3.30 4.70 3.80 7.39 5.98

6.5 0.00 0.00 0.00 0.00 0.00 9.04 7.64 13.17 4.65 1.57 4.36 2.82 3.97 7.72 4.09 1.71 2.34 9.85 4.87 6.06 6.61 9.03 6.11 2.48 6.66

b*10 6.9 6.92 6.94 6.96 6.98 7 7.02 7.04 7.06 7.08 7.1 7.12 7.14 7.16 7.18 7.2 7.22 7.24 7.26 7.28 7.3 7.32 7.34 7.36 7.38

Figure 5.8: The density of objects for spatial patterns whose classification is presented in
Fig. 5.4. Density of objects d is multiplied by the factor of 100 for the sake of convenience
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of the basic topological characteristics such as the number of objects, the fragmentation rate

and the density of objects showed that the only reliable index of spatial distributions arising

in the model is the number of objects in the pattern.

One important observation about the problem is that the number of objects in the visual

image of the spatial distribution presents us with a very generic denition of patchy pattern.

Indeed, every separate object in the visual image counts as a patch when the number of objects

is analysed, no matter how large the size of the patch is and how large the density is within

the patch. Furthermore, the definition of patch based on the number of objects implies that,

in case we are allowed to neglect a complex spatial distribution behind the front, a continuous

front spatial structure can be formally considered as a single large patch. Under more realis-

tic conditions, however, the definition of patch may incorporate some additional restrictions.

Indeed, practitioners may be interested just in identification of large patches with high popu-

lation density and they may wish to neglect those patches where the population density in the

patch and/or the patch size are relatively small. Hence the definition of patch will depend on

additional parameters and different definitions of patch will then lead to different conclusions

about spatial pattern. While we do not discuss this topic in more detail we notice that it

requires further investigation when classification of spatial patterns is considered.
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CHAPTER 6

SENSITIVITY OF SPATIAL PATTERNS TO THE
PARAMETERS OF MONITORING PROTOCOL

It has been demonstrated in Chapter 5 that, for any of the topological characteristics

we studied there, there are no threshold values that would separate continuous front spatial

distributions from patchy spatial distributions. Furthermore, it is clearly seen from Fig. 5.4

that the solution to (3.5)-(3.10) is very sensitive to the choice of parameters and small variation

in either parameter a or b may result in transformation of continuous front pattern into patchy

pattern and vise versa. In the absence of a well defined boundary between continuous and

patchy regimes in parametric plane (a, b) the question arises as to how strongly spatial patterns

can be affected by the occasional loss of information about a spatial density distribution. In

other words, how much information about the spatial distribution should we have in order to

make a reliable conclusion about its topological characteristics? We further investigate the

above question in this chapter.

6.1 Sensitivity of spatial patterns to the cutoff value

When collecting ecological data, it is often impossible to detect very small values of the
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population density due to limitations of sampling/monitoring techniques, the minimum de-

tectable density being called the “detection threshold”. Such a “detection threshold” we used

in this thesis is known as cutoff value, denoted by C

Ñ(x, y) = 1 for N(x, y) > C, and Ñ(x, y) = 0 for N(x, y) ≤ C. (6.1)

Using the equation (6.1) we are able to convert the original density distribution to a binary

image. All of the results obtained in the previous chapter are under the assumption that the

cut-off value C = 0.05. Consider the concave-front spatial pattern in Fig. 6.1(a). Its topological

structure become a patchy pattern at a different cutoff value, see Fig. 6.1(b). Our investigation

also shows that the number of objects in a patchy invasion will tend to increase when the cut-off

value increases. Fig. 6.2(a) obtained at C = 0.05 has three separate patches, the number of

patches increased to nine at C = 0.130 seen in Fig. 6.2(b).

(a) (b)

Figure 6.1: Examples of Binary images in Fig. 5.3(a) at cut-off (a) C = 0.05; a concave
continuous front pattern (n=1) (b) C = 0.865; patchy distribution with six separate patches
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(a) (b)

Figure 6.2: Examples of Binary images in Fig. 5.3(b) at cut-off (a) C = 0.05; a patchy distribu-
tion with three separate patches (b) C = 0.130; patchy distribution with nine separate patches

Consider the results presented in Fig. 6.3 and Fig. 6.4. The two figures shows the number

of objects, n(C), as a function of cutoff value, C. In Fig. 6.3, there are two functions of n(C)

for two concave-front distributions while Fig. 6.4 give three functions of n(C) for three patchy

distributions.

(a) (b)

Figure 6.3: The number of objects n(C) as a function of the cut-off C for two concave-front
distributions. Parameters of model (3.5)-(3.10) are (a) a = 6.0, b = 0.710 and (b) a = 5.7,
b = 0.711.

After comparing the behaviour of concave-front distributions and patchy distributions, it
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(a) (b) (c)

Figure 6.4: The number of objects n(C) as a function of the cut-off C for three patchy distri-
butions. Parameters of model (3.5)-(3.10) are: (a) a = 5.2, b = 0.71, (b) a = 6.4, b = 0.71 and
(c) a = 5.9 and b = 0.71.

can be seen that concave spatial patterns keep their topological structure as a single object in

a wide range of cut-off values, e.g., n(C) = 1 for C ∈ [0.05, 0.32] in Fig. 6.3(a) and n(C) = 1

for C ∈ [0.05, 0.47] in Fig. 6.3(b). However, for the spatial patterns in Fig. 6.3, a slight increase

in cutoff value C from 0.05 to 0.12 will result in a sharp increase in the number of objects.

It is also observed in Fig. 6.3 and Fig. 6.4 that n(C) is not monotonous increasing. Let

us have a look at Fig. 6.3(a) for example. When the cutoff value is increased from C = 0.511

to C = 0.512. The number of objects decreases from 19 to 15. This is because some patches

whose densities under 0.512 are removed from the spatial density distribution. Remark: this is

just one example but in our other computations we have obtained similar results.

Let us also investigate the sensitivity of the other topological indices to the cut-off value.

Consider two similar spatial patterns given in Fig. 6.5. Fig. 6.5(a) is a concave-front distribution

while Fig. 6.5(b) is a patchy distribution. The corresponding topological quantities are shown

as functions of the cutoff value in Fig. 6.6.

From Fig. 6.6(a), we can see the continuous front pattern Fig. 6.5(a) break into patchy

pattern at a very high cut-off density, which is C = 0.4. Hence our chosen cutoff value C = 0.05

is small enough to distinguish the continuous-front pattern and the patchy pattern.

However, the values of the fragmentation rate and the density of objects are similar to
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Sensitivity of spatial patterns. Snapshots of the spatial density distribution are shown

at time t = 200 for a = 5.1. A small variation in parameter b results in random transition between

continuous front and patchy spatial patterns. (a), (d), (f) continuous front spatial distributions

obtained for parameters b = 0.712, b = 0.718 and b = 0.722 respectively; (b), (c), (e) patchy spatial

patterns obtained for parameters b = 0.714, b = 0.716 and b = 0.720 respectively

each other when we compute them for the continuous front pattern and patchy pattern in

Fig. 6.5(a) and Fig. 6.5(b) respectively. The graphs in Fig. 6.6 demonstrate that those topo-

logical quantities alone cannot be used to distinguish between continuous front and patchy

patterns appearing when we vary the cut-off value.

6.2 Reconstruction of spatial patterns from sparse data

We could see in the previous section that continuous and patchy spatial patterns are not

sensitive to the loss of information about the population density related to increasing the cut-off

parameter in the problem, i.e. the situation when small values of the population density are

replaced by zero at spatial locations that belong to a computational grid. It is still possible
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Figure 6.6: The topological characteristics of spatial pattern as a function of the the cutoff density C

(a)–(c) The number of objects, the fragmentation rate, and the density of objects as functions of the

cutoff value for the continuous front in Fig. 6.5(a); (d)–(f) The number of objects, the fragmentation

rate, and the density of objects as functions of the cutoff value for the patchy distribution in Fig. 6.5(b)

to distinguish between spatial patterns of the two invasion regimes when an inadequately large

cut-off parameter is employed (e.g. C = 0.5Nmax, where Nmax is the maximum density in the

spatial domain) and some information about the population density is therefore lost. While

the results of our computational experiment are preliminary and further investigation of a

parametric plane is required we notice that variations in the cut-off parameter are not the main

source of uncertainty when spatial pattern is reconstructed from data collected in the monitoring

routine, the number of traps installed in the monitoring routine is also limited by the resource

[42]. Below we discuss sensitivity of spatial patterns to the number N of sampling locations

(i.e., the locations where traps are installed) which is crucial when a patchy distribution has to

be distinguished from a continuous front distribution.

The images of spatial patterns we have analysed in the previous section have been generated
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from the numerical solution of equations (3.5)–(3.6). That solution is defined at nodes of

a computational grid where we have used a very fine grid of 1025 nodes in each direction

to guarantee that the numerical solution has been computed with sufficient accuracy, this is

confirmed in section 3.5. Hence, as a result of our computation, we have information about

the population density at 1025 × 1025 = 1050625 spatial locations (i.e. points (x, y) whose

coordinates x and y are prescribed by the grid definition). That information allows us to

reconstruct a spatial distribution with very good resolution and clearly distinguish between

continuous front and patchy regimes.

Let us now assume for the sake of discussion that spatial distributions we have generated

in our model exist in reality and we want to collect information about them. How much

information about the population density is collected depends then on the number of sampling

locations used in a monitoring routine. The grid of sampling locations must be fine enough to

capture sufficient information about the population distribution in order to represent the spatial

pattern adequately. Typically, we cannot use the same grid of 1050625 sampling locations

and we have to employ a much coarser grid to make our simulation of the monitoring routine

realistic. Furthermore, if we collect data about the population density on a coarse sampling grid

then the spatial distribution we reconstruct from that data will be different from the original

spatial distribution we have obtained on the grid of 1050625 nodes. One example illustrating

the above statement is shown in Fig. 6.7 where we assume that the spatial density distribution

in Fig. 6.5(b) exists in reality and we want to collect data on the population density by installing

a regular ‘sampling grid’ of N × N locations in the domain. We simulate installation of the

sampling grid in the domain by considering our original grid and taking every ith node from

it. Let us choose N = 65 and take every 16th node from the original grid. As a result we have

75



(a) (b)

Figure 6.7: Examples of spatial pattern reconstruction on (a) coarse (N = 65) and (b) very coarse

(N = 9) regular Cartesian grids, where N is the number of grid nodes at each direction. The original

spatial distribution has been obtained on a fine grid with N = 1025 for parameters a = 5.1 and

b = 0.714; see Fig. 6.5b. The population density values are taken at every 16th node and 128th node

of the original grid to simulate the density distribution on the coarse grid and the very coarse grid

respectively

4225 spatial locations where information about the population density is available as opposed

to 1050625 points on the original grid. We then reconstruct a spatial distribution from the

information we have collected in our ‘sampling routine’ where the result is shown in Fig. 6.7(a).

It can be seen from the figure that spatial pattern reconstructed from the information we have

at 4225 sampling locations differs from the pattern reconstructed on the original grid yet it

remains patchy. We then choose N = 9 to generate a very coarse grid of 81 sampling points

and reconstruct spatial pattern on that grid as shown in Fig. 6.7(b). It is clear from the figure

that we now have a continuous front density distribution, so the information we collect about

the population density on a grid with N = 9 is not sufficient to recognise the type of spatial

pattern correctly.

Hence, we want to understand to what extent any conclusion about spatial pattern can

be affected by the number of sampling locations used to collect information and reconstruct a

spatial distribution. We first numerically solve system (3.5)–(3.6) on very fine computational
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grid G that has N = 2m+1 grid nodes at each direction. We choose m = 10 in our computation

and consider the result obtained on that fine grid as the ‘true’ spatial density distribution.

We then pretend that the spatial distribution is monitored and information about it can be

collected at nodes of regular ‘sampling’ grid Gs only. Those ‘sampling’ grids Gs are generated

from original grid G by taking the number of nodes at each direction as N = 2s + 1, 1 ≤ s ≤ 9.

As in our previous example, if we want to consider a ‘sampling’ grid with N = 26 + 1 = 65

nodes at each direction we choose s = 6 and take every 2m−sth node from the original fine

grid. It is clear that information about the population density is readily available at nodes of

any coarse ‘sampling’ grid we consider in our procedure because those nodes also belong to

original grid G. Hence we can easily make our ‘sampling’ grid as coarse (fine) as we want by

removing (adding) grid nodes, which is difficult in empirical field studies. Correspondingly, we

can investigate how the type of spatial pattern we reconstruct from the data collected on a

given sampling grid depends on the number of grid nodes.

Consider continuous front pattern shown in Fig. 6.5(a) and let us analyse information we

have about the pattern on a sequence of ‘sampling’ grids obtained from the original grid as

described above. We first reconstruct it on a grid of 29 + 1 nodes at each direction where the

resulting pattern is visually identical to the pattern we have on the original grid. The same can

be said when we have spatial pattern reconstructed on the grid of 28 +1 nodes at each direction.

That pattern still appears as a continuous front and the number of objects n in the image is

therefore n = 1. We go on with this procedure and coarsen our sampling grid to see whether

continuous front pattern breaks into several isolated patches for some threshold number Nt of

grid nodes on a sampling grid. The results are shown in Fig. 6.8(a) where we generate the

number of objects n in the image of spatial pattern as a function of the number of grid points
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N on a grid where the pattern is reconstructed. Clearly, the number of objects is n = 1 when

the number of grid nodes is very large. When we decrease the number N of grid points the

pattern transforms as we lose information about it and the image appears as a collection of

n = 23 isolated objects when the number of grid points is N = 65 at each direction. Hence the

threshold number Nt is identified in this example as Nt = 65. A further decrease in the number

of grid points results in an increase in the number of objects and we have n = 35 objects when

the pattern is reconstructed on a grid with N = 33 nodes at each direction. However, the

number of objects is again n = 1 on a coarser grid of N = 17 nodes. This happens because all

information about relatively small patches is now lost on a coarse ‘sampling’ grid and the image

appears again as a continuous front spatial structure. We further investigate this problem for

continuous fronts in Fig. 6.5(d) and Fig. 6.5(f). It can be seen from Fig. 6.8(d) and Fig. 6.8(f)

respectively that the threshold number remains Nt = 65 and on sampling grids with a larger

number of grid nodes a continuous front density distribution is always recognised correctly as

a single object.

Consider now patchy pattern shown in Fig. 6.5(b) and let us repeat the analysis above. We

are now interested in the threshold number Nt when the patchy distribution is reconstructed

as a continuous front based on data taken from a sampling grid of Nt points at each direction.

The results are shown in Fig. 6.8(b). It can be concluded from the graph that a patchy

spatial pattern is not sensitive to the loss of information as it remains patchy until the grid is

coarsened to Nt = 9 nodes at each direction. The other patchy patterns shown in Fig. 6.5(c) and

Fig. 6.5(e) demonstrate similar properties. It follows from the analysis of graphs in Fig. 6.8(c)

and Fig. 6.8(e) that the spatial distributions remain patchy until an extremely coarse grid of

N = 3 points is considered.
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Figure 6.8: The number of objects as a function of the number of grid points in a sampling grid used

to reconstruct the visual image of spatial pattern. Graphs (a)–(f) in the figure have been obtained

when spatial patterns in Fig. 6.5 (a)–(f) are reconstructed on a sequence of sampling grids. The

number of grid points is shown on the logarithmic scale

In this chapter we have studied the sensitivity of spatial patterns to variations in the

cutoff density and the number of grid points used to reconstruct the density distribution in the

domain.

In section 6.1 we have shown that the spatial patterns resulting from the continuous front

propagation and from the patchy invasion respond differently to cutoff value. In both cases, the

number of disconnected patches increases along with an increase in the cutoff value, such an

increase starts when the cutoff value exceeds a certain critical value. However, the critical value

of the cutoff value is consistently several times larger for the continuous-front pattern than for

the patchy-invasion pattern, even when visually the patterns may have similar properties.

It has been demonstrated in section 6.2 that patchy spatial patterns are very robust and
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their topology can still be recognised when a lot of information about the population density is

missed, that is when we either increase the cutoff value or decrease the number of grid nodes. In

particular, we have demonstrated in all our numerical test cases that patchy spatial patterns are

present until the density values are collected on a very coarse sampling grid. While this result

is model specific it gives us some useful insight into the accuracy of measurements required to

recognise the type of spatial pattern.
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CHAPTER 7

SPATIAL PATTERNS ARISING IN
REACTION-DIFFUSION MODELS

In Chapters 3-6 we have studied spatial patterns in integro-difference models. In this

chapter we employ an alternative model to simulate spatio-temporal dynamics and see if we

still have the wealth of spatial patterns of biological invasion.

This chapter will consider a mathematical model of biological invasion given by two coupled

diffusion-reaction PDEs. The model has been previously introduced in [24] where basic classifi-

cation of spatial patterns has been done. The model allows for generating spatial distributions

that are visually very similar to each other, yet some of those distributions are continuous fronts

while the others are patchy spatial patterns. The ultimate goal of our study is to understand

whether reliable criteria for classification and comparison can be elaborated for spatial patterns

arising in the model. Hence basic topological indices of spatial pattern (the number of objects,

the fragmentation rate, etc.) have been analysed for a variety of spatial distributions arising

in the model to see if the spatial pattern type can be recognised correctly by using any of the

quantities above.

It will be shown that a slight increment in the model parameters results in slight increment
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in topological indices (i.e. production of spatial patterns with similar topological properties)

when topology of continuous front that has no patches behind the front is considered. The

above, however, is not true when we analyse continuous front density distributions that have

patchy patterns behind the front and, most of all, spatial distributions consisting of separate

patches. In the latter case a slight change in the model parameters results in random fluctu-

ations of topological indices as spatial pattern with very different topology may appear. The

‘random’ behaviour of patchy patterns is further studied to understand whether or not patchy

spatial structure can transform itself into a continuous front spatial distribution as time pro-

gresses. It will be argued in this chapter that information about spatial pattern alone is not

sufficient to conclude about the type of spatial distribution (i.e. patchy pattern vs. contin-

uous front) and spatio-temporal dynamics must be taken into account when formation and

propagation of patchy structures is considered.

7.1 Model

The model is formulated as follows:

∂U(X, Y, T )

∂T
= D1

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+ P (U)− E(U, V ), (7.1)

∂V (X, Y, T )

∂T
= D2

(
∂2V

∂X2
+
∂2U

∂Y 2

)
+ E(U, V )−MV. (7.2)

Here U and V in (7.1)-(7.2) are the densities of susceptible population and infected pop-

ulation, respectively, at time T (T > 0) and location (X, Y ). Coefficients D1 and D2 de-

scribe species diffusivity due to the movement of the individuals and below we assume that
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D1 = D2 = D for the sake of simplicity. The function E(U, V ) describes disease transmission,

P (U) describes the local population growth where infected individuals do not contribute to the

growth rate (as the disease is terminal) and M is the mortality rate for the infected population.

The growth rate P is selected as to incorporate the strong Allee effect into the model (e.g. see

[9, 44]:

P (U) =

(
4ν

(K − U0)2

)
U(U − U0)(K − U), (7.3)

where parameter K is the carrying capacity of the susceptible population, U0 is the Allee

threshold density (0 < U0 < K), ν is the maximum per capita growth rate. The transmission

function E is considered in the form of the mass-action law

E(U, V ) = AUV, (7.4)

where A is the rate of infection transmission.

In order to obtain the population distributions, the system (7.1)–(7.2) is solved numerically

by a finite difference method. For convenience, we first introduce dimensionless variables.

The carrying capacity K makes a convenient scale for the population density, u = U/K and

v = V/K. We also introduce parameter a = AK to make the coordinates x = X(a/D)1/2 and

y = Y (a/D)1/2 and the dimensionless time is t = aT . Equations (7.1)–(7.2) then take the

following form:
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∂u(x, y, t)

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+ γu(u− β)(1− u)− uv, (7.5)

∂v(x, y, t)

∂t
=
∂2v

∂x2
+
∂2v

∂y2
+ uv −mv. (7.6)

where β = U0/K < 1, γ = 4νK(A(K − U0))2, m = M/a are dimensionless parameters.

Species u and v are considered to propagate in a square domain Ω. The domain size of Ω

is [0, L]× [0, L]. In our model we consider no flux boundary conditions.

As for the initial conditions, we assume both species are located in the centre of the

domain Ω. The population density is uniform in a square subdomain at time t = 0. The

domain occupied by species u is a square whose length is 10. And the domain taken by species

v is also a square whose length is equal to 5. The initial conditions can be described as below:

u0(x, y) =


0.5, for |x− L

2
| < 10 and |y − L

2
| < 10,

0, otherwise,

(7.7)

v0(x, y) =


0.5, for |x− L

2
| < 5 and |y − L

2
| < 5,

0, otherwise.

(7.8)

These initial conditions simulate the original distribution of the invasive species when it is

located in a subdomain whose size is small in comparison with the size of the entire domain.

84



7.2 Numerical approach

We will use the explicit finite difference method (FDM) to solve the problem (7.5)–(7.6).

We choose δt = 0.01 and δx = δy = 1. The length and width of the domain is L = 600 so there

are 601× 601 grid nodes in total. The x and y coordinates are

xi =(i− 1)δx = i− 1, i = 1, 2, ..., 601, (7.9)

yj =(j − 1)δy = j − 1, j = 1, 2, ..., 601. (7.10)

Applying explicit FDM method, we can approximate ∂u
∂t

and ∂2u
∂x2

+ ∂2u
∂y2

numerically:

∂u

∂t
=
ut+1(xi, yj)− ut(xi, yj)

δt
, (7.11)

∂2u

∂x2
+
∂2u

∂y2
=ut(xi−1, yj) + ut(xi+1, yj) + ut(xi, yj+1) + ut(xi, yj−1)− 4ut(xi, yj). (7.12)

So the equations (7.5)-(7.6) can be approximated by

ut+1(xi, yj)− ut(xi, yj)
δt

=(ut(xi−1, yj) + ut(xi+1, yj) + ut(xi, yj+1) + ut(xi, yj−1)− 4ut(xi, yj)

+ γut(xi, yj)(ut(xi, yj)− β)(1− ut(xi, yj)− ut(xi, yj)vt(xi, yj),

(7.13)

vt+1(xi, yj)− vt(xi, yj)
δt

=ut(xi, yj)vt(xi, yj)−mvt(xi, yj). (7.14)

The computational implementation of the FDM to solve problem (7.5)-(7.6) on MATLAB

is shown in the Appendix.
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7.3 Stability analysis

In Chapter 3-6, we have studied the integro-difference model and found that patchy invasion

only occurs in the parameter range where the extinction state is the only stable solution of the

non-spatial system, see Fig. 5.1. So in this section we are going to investigate which factors

will lead to the appearance of patchy invasions.

The corresponding non-spatial model of system (7.5)-(7.6) is given by

du(t)

dt
= γu(u− β)(1− u)− uv, (7.15)

dv(t)

dt
= uv −mv. (7.16)

The stability analysis of system (7.5)-(7.6) has been demonstrated in section 2.1.3. The struc-

ture of the parameter plane (m,β) is shown in Fig. 7.1(a).

We now go back to the spatio-temporal problem (7.5)-(7.6). For any fixed value of γ, the

parameter m is varied along the line β =const where we focus our attention at the ‘transitional’

zone between the extinction state (the region β > m) and the stable coexistence state (the region

β < 2m− 1). A fragment of the parametric plane (m,β) along with the solution type obtained

for every pair (m,β) at time t = 600 for γ = 6.0 is shown in Fig. 7.1(b). Pairs (m,β) in the

parametric plane resulting in different spatial patterns are colour-coded in the figure as blue

stars for the extinction, red triangles for patchy invasion (no continuous front), green circles for

continuous front spatial distributions. We note that Fig. 7.1 (b) only shows the distribution of

the types of spatial patterns over the parametric plane at the time t=600 and that distribution

will be different if we consider a different moment of time. The temporal dynamics is further
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discussed in Section 7.5 where we introduce the concept of topological stability.

Let us fix the value of β and decrease parameter m as we move along the line β = const

in the parametric plane of Fig. 7.1(b). Typical examples of spatial distributions obtained in

numerical solution of model (7.5-7.6) when m is varied are shown in Fig. 7.2. All spatial

patterns in the figure have been generated for β = 0.21 and γ = 6.0 at time t = 600. The

size of computational domain has been varied under the requirement that the invasive species

must not approach the domain boundary at t = 600, i.e., the domain must be large enough

(areas with zero population density are shown in white in the figure). The above requirement

resulted in computations with the domain size of L = 600 in some cases while in other com-

putations we have used L = 800 or 1200. A convex continuous front in Fig. 7.2(a) obtained

for m = 0.60 presents the simplest pattern from a topological viewpoint and we should expect

similar spatial distributions for m > 0.60. Meanwhile, as we slightly decrease m to m = 0.59

regular oscillations appear in the front wake; see Fig. 7.2(b). Further decrease in m results in

0
0
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=m
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Figure 7.1: (a) The parametric plane (m,β) for non-spatial equations (7.15-7.16) (See section
2.1.3 for the stability analysis of the system (7.15-7.16)). (b) Various spatial patterns obtained
in numerical solution of the spatial system (7.5-7.6) at time t = 600. Parameters m and
β are taken in Domain A (see Fig. 7.1a) of the parametric plane and are varied with a small
increment, parameter γ = 6.0. Pairs (m,β) in the parametric plane resulting in different spatial
patterns are color-coded as follows: blue stars for extinction, red triangles for patchy invasion
(no continuous front), green circles for continuous front spatial distributions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.2: Typical examples of spatial distributions arising in the model (7.5)-(7.6) (see also
Fig. 7.1(b)). Snapshots of the spatial density distribution obtained for various values of parame-
ter m at time t = 600. The other problem parameters are β = 0.21 and γ = 6.0. The white colour in
each panel corresponds to zero populaiton density (not shown in the figure legend). (a) m = 0.600:
continuous front with no oscillations in the front wake; (b) m = 0.59: continuous front with regular
oscillations in the front wake; (c) m = 0.57: continuous front with irregular oscillations in the wake;
(d) m = 0.53: irregular oscillations become more distinct in the wake; (e) m = 0.38675: irregular
oscillations in the wake are located in a narrow domain close to the front; (f) m = 0.3860: continuous
front with patchy pattern formation in the wake; (g) m = 0.379: patchy pattern in the wake of con-
tinuous front becomes more distinct as m decreases; (h) m = 0.378: continuous front breaks down as
m further decreases; (i) m = 0.366: patchy pattern consisting of few separate patches appears before
the population extincts at smaller values of parameter m.
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(a) (b)

Figure 7.3: The spatial distribution of Fig. 7.2(e). (a) Zooming in the spatial density distribution
in a subdomain where x ∈ [350, 450] and y ∈ [80, 160]. (b) A cross section of the spatial distribution
along the line y=400.

irregular oscillations in the wake as shown in Fig. 7.2(c) obtained for m = 0.57. Those irregular

oscillations can be seen in a larger domain behind the front at smaller values of parameter

m; see Fig. 7.2(d) with m = 0.53. For smaller values of m the topology of spatial pattern

changes again as all oscillations are now located at a narrow ring-shaped spatial domain close

to the front as shown in Fig. 7.2(e) obtained for m = 0.38675 (see Fig. 7.3 for a zoom-in view

of Fig. 7.2(e)). The spatial distribution in the wake then breaks down as m decreases and

formation of patches occurs behind the front as shown in Fig. 7.2(f) with m = 0.3860. The

patchy pattern in the wake of continuous front includes more small patches as m decreases;

see Fig. 7.2(g) obtained for m = 0.379. If we further decrease the value of m a continuous

front breaks down and the topology of the spatial pattern undergo another significant change

as spatial patterns will appear as a collection of separate patches of non-zero density. One

example of patchy spatial distribution is shown in Fig. 7.2(h) for m = 0.378 (cf. Fig. 7.1(b)).

Further evolution of a patchy pattern as m decreases can be seen in Fig. 7.2(i) where the spatial

pattern obtained for m = 0.366 now consists of few separate patches with no resemblance to
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continuous fronts in Figs. 7.2(a)–7.2(e). Finally, the population extincts when m < 0.365; cf.

the results in Fig. 7.1(b).

To better distinguish spatial patterns, we will analyse those results with topological indices

in the next section.

7.4 Topological indices of spatial patterns

7.4.1 Number of objects and density of objects

Now we fix γ = 6.0 and β = 0.21 and have a look at how the number of objects n changes

as a function of parameter m. The function n(m) is given in Fig. 7.4a. It can be seen from the

figure that patchy invasion occurs in the region m ∈ [0.365, 0.379]. The corresponding densitity

of objects d(m) changes rapidly in this region as well (see Fig. 7.4b).

n(m) = 0, if the corresponding density distribution is an extinction state, (7.17)

n(m) = 1, if the corresponding density distribution has a continuous front, (7.18)

n(m) > 1, if the corresponding density distribution is a patchy spatial pattern. (7.19)

7.4.2 The Morisita index and the fragmentation rate

We could see in Chapter 5 that the fragmentation rate is not a reliable topological index

when we want to make any prediction about location of patchy and continuous front spatial

distributions on the parametric plane. Thus, in this section we introduce another topological
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(a) (b)

Figure 7.4: Topological indices of spatial patterns as a function of parameter m in the model
(7.5)–(7.6) with the initial conditions (7.7)–(7.8) and parameters β = 0.21, γ = 6.0. The spatial
distributions have been obtained for various m at time t = 600. (a) the number of objects,
n(m); (b) the density of objects, d(m).

index to see whether it may be more reliable in comparison with the fragmentation rate when

different spatial patterns are analysed.

The Morisita index [52] is defined as

IM = Q

∑Q
k=1 nk(nk − 1)

N(N − 1)
, (7.20)

where N is the total number of ‘population units’, Q is the number of quadrats (i.e. the

number of auxiliary sub-domains used to count the ‘population units’) and nk is the number

of ‘population units’ in the kth quadrat. The Morisita index provides a measure of how likely

it is that two randomly selected individuals in a given distribution are found within the same

quadrat compared to that of a uniform random distribution. Given two distributions, the

clustered one has smaller Morisita Index IM [27]. For example, both Fig. 7.5(a) and Fig. 7.5(b)

have 12 ‘population unitis’ distributed in a 8×8 units domain. We have the cell populated if it
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is shown in black with the population density equal to 1. Unpopulated cells are shown in white

with the population density equal to zero. Then we divide the entire domain into 4 quadrats

to compute their Morisita Indices respectively. Fig. 7.5(a) is more dispersed so it has a smaller

Morisita Index IM = 0.73. Therefore Fig. 7.5(b) has a greater Morisita Index IM = 1.82.

We now go back to problem (7.5)-(7.6) and compute Morisita index IM as a function of

m. The population units are now defined as grid cells on our computational grid used for

numerical solution of problem (7.5)-(7.6). and we choose number of quadrants Q = 18. The

graph IM(m) is shown in Fig. 7.6(a). The analysis of IM reveals that the Morisita index allows

one to distinguish between topologically different patterns: a sharp jump in the Morisita index

at m = 0.386 corresponds to topological transition from continuous front patterns with no

patches (m > 0.386) and a high degree of aggregation to formation of separate patches behind

the front (m ≤ 0.386) that results in less spatially aggregated patterns; cf. Fig. 7.2(e) and

Fig. 7.2(g). The Morisita index then becomes almost constant (IM ≈ 2.1) at m ∈ [0.379, 0.386]

(a) (b)

Figure 7.5: Hypothetical spatial patterns with different topological indices. (a)-(b) The degree
of spatial aggregation in the two patterns measured by the Morisita index is different: (a)
quasi-uniform density distribution, IM = 0.73; (b) highly aggregated density distribution with
the same area of the non-zero density IM = 1.82;
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(a) (b)

Figure 7.6: Topological indices of spatial patterns as a function of parameter m in the model
(7.5)–(7.6) with the initial conditions (7.7)–(7.8) and parameters β = 0.21, γ = 6.0. The
topological indices are computed at time t = 600. (a) the Morisita index, IM(m); (b) the
fragmentation rate, Ifr(m).

where spatial patterns are continuous fronts with patches behind the front. Meanwhile IM

starts increasing when transition from continuous front to patchy spatial distributions occurs at

m = 0.379. The spatial pattern appearing at m = 0.366 before the transition to the extinction

sub-domain m ≤ 0.365 has the highest Morisita index IM = 10.1 as the image consists of a

small number of patches (cf. Fig. 7.2(i)) which is considered as a high degree of aggregation

according to definition (7.20). However, despite the Morisita index showing a trend to grow

as m decreases in the ‘patchy’ parametric sub-domain, we notice several occasional jumps in

IM when m varies in the ‘patchy’ range. We hypothesize that those jumps occur because the

number of spatial patches changes randomly when we give a small increment to the parameter

m.

The graph Ifr(m) is shown in Fig. 7.6(b) where Ifr = 0 corresponds to the extinction

regime (i.e. no objects in the spatial domain) by the definition of the fragmentation rate.

It is seen from the graph that the fragmentation rate increases when we decrease parameter
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m and patchy structures become more distinct. However, although the topological index Ifr

has been employed to distinguish between various fine spatial structures of patchy patterns,

it does not even define accurately the range of parameter m where patchy spatial patterns

appear. Random variations in the fragmentation rate may stem from the fact that continuous

front spatial patterns have a complex density distribution behind the front (cf. Fig. 7.2(g) and

Fig. 7.2(h)) and therefore images of continuous front patterns and patchy patterns may have a

similar fragmentation rate.

To conclude this section we notice that topological indices allow one to distinguish between

various continuous front topological regimes yet we cannot rely upon the topological indices

when we want to compare two patchy spatial distributions to each other. Patchy patterns

obtained for close values of parameter m (while the other problem parameters remain the

same) may have very different topological structures. Our study of graphs in Fig. 7.4 and

Fig. 7.6 reveals that we cannot predict what transformation the spatial pattern will undergo

when we give a small increment to m in the parametric sub-domain corresponding to formation

of patchy spatial distributions.

7.5 Topological stability

In our study of spatial patterns we have identified two basic topological structures: a

continuous front and a patchy spatial distribution. If a spatial pattern stops changing to another

topological structure as time increases (e.g. patchy pattern to continuous front pattern or vice

versa), then we say this spatial pattern is topologically stable. Let us define transition time

t∗ as a time over which transition from the initial condition to the topologically stable spatial

distribution occurs, i.e. if a spatial pattern has a certain topological structure (continuous front
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or patchy distribution) at time t∗, then the same type of topological structure will remain at

later time t > t∗. A continuous front spatial structure at small times can evolve into patchy

spatial pattern over time interval t ∈ [0, t∗] and it will then remain patchy at t > t∗. However,

the evolution from a continuous spatial structure to a patchy one is not monotone, as multiple

switches between continuous front and patchy spatial patterns can be observed at t < t∗.

Furthermore, spatial structures that are classified as continuous fronts after the transition time

show similar behaviour with multiple transformations back and forth to patchy distributions

before the end of the transient regime.

Consider, for example, line β = 0.22 in the parametric plane of Fig. 7.1(b). One simple

illustration of transient spatio-temporal dynamics is shown in Table 7.1 where we compare

spatial patterns that appear at time t = 300 and t = 600. It is seen from the table that the

spatial pattern we have at time t = 300 is not topologically stable: a patchy spatial structure

observed at time t = 300 for m = 0.399 evolves into a continuous front at t = 600, while a

continuous front at t = 300 for m = 0.398 becomes a patchy spatial distribution at t = 600.

Our numerical tests reveal that similar transient dynamics is observed for other values of m

and β in the parametric plane.

m ≤ 0.386 0.387 ≤ m ≤ 0.395 0.396 0.397 0.398 0.399 ≥ 0.400
Nt=300 e p p c c p c
Nt=600 e p c c p c c

Table 7.1: Comparison of spatial patterns for β = 0.22, γ = 6.0 and various m at times
t = 300 and t = 600. The legend in the table is as follows: e - extinction, p - patchy spatial
distribution, c - continuous front spatial distribution; see also Fig. 7.1(b). Spatial distributions
are not topologically stable as switches between continuous front and patchy structures are
observed.

Given the volatile spatio-temporal dynamics in the table, our next goal is to evaluate time

t∗ in order to conclude about topological stability of given spatial pattern. In a computational
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(a) (b)

Figure 7.7: The number of objects n as a function of time t for spatio-temporal dynamics
with β = 0.21 and γ = 6.0: (a) m = 0.381: convergence to continuous front spatio-temporal
dynamics, n(t) = 1 at any time t > t∗ = 310 (b) m = 0.374: convergence to patchy spatio-
temporal dynamics; n(t) > 1 at any time t > t∗ = 280.

routine we employ for this purpose the spatio-temporal dynamics is traced over time T , where

we require that T � t∗, and the number of objects n is recorded at every time tk+1 = tk + ∆t,

k = 1, · · · , K−1 to form the dataset n(tk) (see Fig. 7.7). The total time T is defined empirically

in our computation, i.e. we have repeated each computation several times with increasing value

of T to check that all conditions of our computational tests are satisfied.

We define a simple topological index It of the spatial distribution at given time tk, k =

1, · · · , K as It = 0 if we are in the extinction regime at time tk (i.e. n(tk) = 0). We also define

It = 1 for continuous front pattern (n(tk) = 1) and It = 2 for patchy pattern (n(tk) > 1). The

number of objects in the dataset n(tk) is then replaced by index It(k). The most straightforward

way to define transition time t∗ is to find number k∗ that satisfies condition i(k) = i(K) for

any k > k∗. Given k∗, the transition time t∗ is evaluated as t∗ = k∗∆t.

Consider Fig. 7.7 where the number of objects is shown as a function of time for spatio-

temporal dynamics defined by parameters β = 0.21, γ = 6.0 and we have m = 0.381 in
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Fig. 7.7(a) and m = 0.374 in Fig. 7.7(b). It is readily seen from the graph in Fig. 7.7(a)

that spatial pattern appears as a continuous front (n = 1) at any time t > t∗ = 310, while

spatial patterns are not topologically stable (i.e. the number of objects varies) at times t < t∗.

Examples of topologically different spatial distributions before transition time t∗ are shown in

(a) (b)

(c) (d)

Figure 7.8: Examples of occasional switches between patchy and continuous front spatial distri-
butions over transition period 0 < t < t∗. The system parameters are as in Fig. 7.7. (a)-(b) The
spatio-temporal dynamics of Fig. 7.7a, the transition time to continuous front spatial pattern
is t∗ = 310. (a) continuous front pattern at time t1 = 200 < t∗, (b) patchy pattern at time
t2 = 250 where t1 < t2 < t∗; (c)-(d) The spatio-temporal dynamics of Fig. 7.7b, the transition
time to patchy spatial pattern is t∗ = 280. (c) patchy pattern at time t1 = 230 < t∗, (d)
continuous front pattern at time t2 = 270 where t1 < t2 < t∗;
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Fig. 7.8a and Fig. 7.8(b). Similarly, the analysis of Fig. 7.7(b) reveals that it is always patchy

spatial pattern for time t > t∗ = 280 while occasional transitions to a continuous front appear

at t < t∗; see also examples of spatial distributions in Fig. 7.8(c) and Fig. 7.8(d). We would

like to emphasise here that both continuous front and patchy spatio-temporal dynamics may

experience switches between the two regimes when time t < t∗; this is contrary to conclusion

in [24] where it was suggested that only a continuous front regime may exhibit topological

instability at t < t∗.

7.6 Topological stability of invasion regimes

It immediately follows from the example of Fig. 7.7 that transition time t∗ depends on

the system parameters m, β and γ. Hence, in line with our approach in the previous section

we now investigate how time t∗ varies when we vary parameter m for β = 0.21 and γ = 6.0.

The graph t∗(m) is shown as a solid curve in Fig. 7.9. Every point on curve t∗(m) in the

figure presents transition time t∗ evaluated according to the procedure described in Section 7.5

for spatio-temporal dynamics obtained from the evolution of initial condition (7.7) with given

value of m. Open circles on the curve correspond to transition to the spatio-temporal dynamics

of propagating continuous front after t∗ while closed circles correspond to spatio-temporal

dynamics resulting in propagation of patchy spatial patterns after t∗. The analysis of the graph

reveals that the following classification of spatial patterns appearing in the system when m

is varied can be made for t > t∗: the invasive population extincts for m < 0.365 (extinction

happens at t∗ ≈ 50 for that range of parameter m and the range of m leading to extinction

is not shown in the figure for the sake of convenience), the invasive population spreads into

the space as a collection of separate density patches for m ∈ [0.365, 0.379], the invasive species
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Figure 7.9: The transient dynamics of model (7.5–7.6) with initial conditions (7.7–7.8) and
parameters β = 0.21, γ = 6.0. Transition time t∗ (solid blue curve, open and closed circles) and
time tD required for the invasive species to spread over square domain D of linear size L = 600
(dashed red curve, red stars) are shown as functions of the parameter m. Open circles on
graph t∗(m) show time t∗ required for transition to continuous front spatio-temporal dynamics,
while closed blue and red circles correspond to spatio-temporal dynamics resulting in patchy
patterns after t∗. For m < 0.365 transition to extinction happens at t∗ ≈ 50 (not shown in
the figure). For m > 0.386 the initial ‘continuous front’ density distribution given by (7.7–7.8)
never experiences switches to patchy spatial pattern, i.e. t∗ = 0. Closed blue circles on graph
t∗(m) show topologically stable spatio-temporal dynamics in domain D, while closed red circles
show topologically unstable dynamics in D (see further explanation on the domain size in the
text).

propagates as a continuous front with oscillations in the wake for m ∈ [0.380, 0.386], and the

propagating continuous front has no oscillations in the wake for m > 0.386 (cf. Fig. 7.2).

An essential feature of graph t∗(m) is that the range of transition time t∗ is much larger

when m is taken from ‘patchy’ topological zone m ∈ [0.365, 0.379]. While time t∗ is in good

agreement with the estimate made in [24] for spatio-temporal dynamics of continuous fronts

arising when m is selected not very close to the boundary of the ‘patchy’ range (i.e. we have

t∗ < 300 for m > 0.382), the maximum transition time we have observed in our computation of

patchy spatio-temporal dynamics is t∗ = 1750� 300 obtained for m = 0.379. It also is worth
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noticing here that for the above-mentioned ‘patchy’ range of m the number of random switches

between patchy and continuous front patterns registered at t < t∗ does not decrease as time

increases and gets closer to t∗. One example is shown in Fig. 7.10a where we have recorded all

switches between patchy (number of objects n > 1) and continuous front (n = 1) regimes over

time interval t ∈ [0, 1500] for m = 0.379 (we recall that t∗ = 1750). It is seen from the figure

that time t = 600 can be erroneously thought of as transition time t∗ as there are no switches

at time t ∈ [600, 950]. However, after t = 950 random jumps between patchy and continuous

front regimes resume. The transitional dynamics is further presented in Fig. 7.10b where the

number of switches s over the same time interval t ∈ [0, 1500] is shown as a function of m. It is

seen from the figure that indeed the largest number of switches occurs when m belongs to the

‘patchy’ range, m ∈ [0.365, 0.379].

One important observation about time t∗ is that in practical consideration it has to be

(a) (b)

Figure 7.10: (a) Example of multiple random switches between continuous front and patchy
spatial distributions. The number of objects n is shown as a function of time t ∈ [0, 1500] for
m = 0.379, β = 0.21, γ = 6.0. Parameter m = 0.379 presents the boundary between patchy
and continuous front topological zones. (b) The number of switches s between patchy and
continuous front regimes over time t = 1500 as a function of parameter m. The time increment
in the graphs is ∆t = 10.
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compared to time tD required for invasive species to spread over spatial domain D where the

species is monitored. Indeed, if we want to identify the invasion regime (continuous vs. patchy)

in some spatial domain D to make an adequate control decision on the invasion prevention, we

have to collect reliable information about spatial pattern before domain D will be fully invaded.

Hence if t∗ > tD then we cannot give any recommendation on invasion control based on the

type of spatial pattern. In other words, we will still have a transient regime at time tD where

we cannot say for sure what spatial pattern we deal with in domain D, while the domain is

already completely invaded at t = tD and it therefore is too late to make a control decision.

Time tD required for invasive species in model (7.5-7.6) to spread over square domain D

with linear size L is shown as a function of parameter m for L = 600 in Fig. 7.9; see a dashed

red line in the figure. In all cases presented in the figure computation has been performed

in a larger spatial domain where the square domain D has been considered as a sub-domain

placed at the center of the computational domain. We do not show time tD in the graph for

extinction regime m < 0.365 because extinction of the invasive species happens at t∗ ≈ 50,

i.e. well before domain D becomes fully invaded. It is seen from the figure that for continuous

front regimes with m > 0.379 the transition time is always t∗ < tD. The conclusion about

relationship between t∗ and tD is, however, different when we consider the range of parameter

m ∈ [0.365, 0.379] resulting in patchy spatio-temporal dynamics. We have t∗ > tD for several

values of m in the figure. Moreover, transition time t∗(m) is not a monotone function over the

interval m ∈ [0.365, 0.379] and we cannot therefore predict what happens to the transition time

if m is slightly changed. Thus, if we take an arbitrary value of m from the above interval it

is likely that the invasion type cannot not be determined in spatial domain D where we are

interested in the control of invasive species.
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Consider now arbitrary spatial domain D and let us introduce the ratio

r(m) = t∗(m)/tD(m), (7.21)

where times t∗(m) and tD(m) are defined as above. For any given value of m, we will say that

spatial pattern is topologically stable in domain D if ratio r obtained for that m is r < 1 and

the pattern is topologically unstable in D if r ≥ 1. Clearly, r depends on domain size L and we

have r → 0 as L → ∞. Meanwhile, another case resulting in r = 0 is when transition time is

t∗ = 0, i.e. when the spatio-temporal dynamics does not undergo any switches between patchy

and continuous states. We will call the latter topological type of spatio-temporal dynamics

unconditionally stable.

Let us apply the above classification to the spatio-temporal dynamics of Fig. 7.9. The

range m ∈ [0.365, 0.379] resulting in patchy spatio-temporal dynamics can be subdivided as

follows: we have topologically stable patchy patterns in domain D for m ∈ [0.365, 0.376] and

topologically unstable ‘quasi-patchy’ patterns in D for m ∈ (0.376, 0.379]. Meanwhile all contin-

uous front patterns remain topologically stable in D, all of them being unconditionally stable

for m > 0.386. Hence, we cannot make any conclusion about the topology of spatial pat-

tern in domain D when spatio-temporal dynamics is induced by the demographic parameter

m ∈ [0.365, 0.376], while the topological classification of spatio-temporal patterns obtained for

all other values of m can be decided upon before spatial domain D is fully invaded.

The transition time t∗ has to be taken into account when the topological indices introduced

in Section 7.4 are analysed. Consider, for example, the graphs of Fig. 7.4 and Fig. 7.6. We recall

that all topological indices presented in those figures have been computed for time t̃ = 600.

Once the transition time has been defined for every spatial pattern whose topological indices are
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computed, we have t̃ > t∗ for continuous front distributions generated when m > 0.379. Those

spatial patterns are topologically stable (most of them are unconditionally stable) in a spatial

domain where computation has been made and a small increment in parameter m results in a

relatively small change of topological properties, i.e. spatial distributions generated for similar

values of m will look similar. However, most spatial patterns obtained at time t̃ = 600 with

m taken from the ‘patchy’ range have t̃ < t∗ and the topology of spatial pattern is not well

defined at t = t̃. Hence our next step is to check whether the presence of random oscillations in

topological indices is an inherent feature of patchy spatial patterns and those oscillations will

not disappear when patchy spatial patterns are analysed at time t > t∗.

Several values of parameter m taken with a small increment from the ‘patchy’ range are

shown in Table 7.2. For each m in the table the transition time has been defined and we have

then selected the maximum value t∗max from the range of transition times. In our computation

we had t∗max = 790 and spatial patterns have therefore been analysed at time t = 810 > t∗max

to ensure that all spatial patterns obtained at that time are already topologically stable. The

topological indices of spatial patterns generated at time t = 810 are compared to the topological

indices calculated for the same range of m at time t = 600 in the table.

7.7 Topological indices of field data: gypsy moth in the

United States

What we have discussed in the previous sections are theoretical models that are subject

to symmetrical initial conditions. However, in reality when we noticed invasive species in an

area, they have already established and spread. The individuals are usually distributed asym-

metrically. In addition, the local ecosystem can be very complex and there might be more than
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m 0.3750 0.3752 0.3754 0.3756 0.3758 0.3760
n, t = 600 37 1 89 105 89 84
n, t = 810 181 115 133 152 142 193

d× 10−4, t = 600 8.0 7.0 10.0 15.0 12.0 10.0
d× 10−4, t = 810 12.0 9.0 10.0 11.0 12.0 15.0
Ifr × 10−2, t = 600 4.97 4.83 5.08 5.62 5.52 5.18
Ifr × 10−2, t = 810 5.17 5.27 5.15 5.37 5.30 5.77

IM , t = 600 3.20 3.36 3.20 3.25 3.45 3.26
IM , t = 810 1.78 2.25 2.23 1.97 2.03 2.06

Table 7.2: Topological indices of spatial patterns as a function of parameter m in the model (7.5)–

(7.6) with the initial conditions (7.7)–(7.8) and parameters β = 0.21, γ = 6.0. The values of m taken

with a small increment at the interval m ∈ [0.375, 0.376] result in patchy spatio-temporal dynamics

after transition time t∗. The number of objects n, the density of objects d, the Morisita index IM ,

and the fragmentation rate Ifr are compared at time t = 600 < t∗ and t = 810 > t∗.

two interacting species which means that it is difficult to construct an accurate mathematical

model to simulate biological invasion in the real world. However, we can use mathematical

techniques to analyse their spatial patterns which might be helpful for the management of the

invasive species.

The gypsy moth eats the leaves of over 500 species of plants, trees and shrubs and is

generally regarded as pest that is destructive to the local ecosystem. The gypsy moth (Fig. 7.11)

was introduced into Medford, Massachusetts from Europe in 1869 and by 2007, it had invaded

Michigan, Minnesota, Virginia, West Virginia, Illinois, and Wisconsin. In this section, we will

investigate the spatial patterns of the gypsy moth in the United States. Data are collected by

the ‘Slow the Spread’ program.

It was discovered that the pheromone could be extracted from adult females and used as

baits in traps [80]. In order to collect data, the ‘Slow the Spread’ program place 70,000 to

90,000 baited traps in the areas infested by the the gypsy moth. The data is composed of 3

columns: the index of each trap, the number of individuals in each trap and the location of

each trap.
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(a) (b)

Figure 7.11: (a) Adult gypsy moth and (b) gypsy moth caterpillar

(a) (b)

Figure 7.12: interpolated density distribution of gypsy moth in (a) year 2015; (b) year 2016

Now let us consider the spatial density distribution of gypsy moth in the region Ω =

[−95◦W,−90◦W] × [40◦N, 45◦W] which is shown in Fig. 7.12. Fig. 7.12 (a) is the distribution

of gypsy moth in year 2015 and Fig. 7.12 (b) is its distribution in year 2016. In this region

we can find many isolated colonies and a clear continuous front is not apparent. Compared to

2015, many remote colonies had been eradicated by 2016.

We compute the number of objects and fragmentation rate of the gypsy moth in year 2015
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and 2016 and obtain: N2015 = 208, fr2015 = 0.0292, N2016 = 163, fr2016 = 0.0171. The number

of objects decreased and the spatial pattern became more clustered, which means that the

efforts made to control the spread of gypsy moth in this area were successful in this year.

The results above are obtained at cutoff value C = 1 and the number of grid nodes installed

is 1025× 1025. Then let us investigate how will the topological indices of the spatial patterns

in Fig. 7.12 (a) change when the cutoff value and number of grid nodes change. From Fig. 7.13,

it can be seen that the number of objects decreases as the cutoff values increases. Meanwhile,

the fragmentation rate will decrease at first before increasing.

(a) (b)

Figure 7.13: (a) The number of objects as a function of the cut-off value for Fig. 7.12a (b)The
fragmentation rate as a function of the cut-off value for Fig. 7.12a

The Fig. 7.14 shows the the topological indices as a function of the number of grid nodes.

When the number of grid nodes decreases from 1025 to 513, both topological indices change

slightly. However, if the number of grid nodes keeps decreasing, the topological indices will

change significantly. In conclusion, the traps installed in the region Ω = [−95◦W,−90◦W] ×

[40◦N, 45◦W] should be greater than 513× 513 to preserve as much information as possible.

The next step is to compare spatial patterns between three neighbouring region taken from
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(a) (b)

Figure 7.14: (a) The number of objects as a function of the number of grid nodes for Fig. 7.12a
(b)The fragmentation rate as a function of the number of grid nodes for Fig. 7.12a

[−95◦W,−90◦W]×[40◦N, 45◦W] ; these are Ω1 = [−93,−92]×[44, 45], Ω2 = [−92,−91]×[44, 45]

and highly infested region Ω3 = [−91,−90]×[44, 45]. Spatial patterns are given in Fig. 7.15. The

population in Ω1 is significantly low with a maximum density less than 10, while the maximum

density in Ω2 is 488 and that in Ω3 is 783. Then we calculate the number of objects and

fragmentation rate for them. Those indices are N1 = 42, fr1 = 0.1064, N2 = 35, fr1 = 0.0393,

N3 = 1, fr3 = 0.0003.

(a) (b) (c)

Figure 7.15: interpolated density distribution of gypsy moth in region (a) Ω1 = [−93,−92] ×
[44, 45]; (b) Ω2 = [−92,−91]× [44, 45] and (c) Ω3 = [−91,−90]× [44, 45]

Our study of spatial patterns has been based on results of a mathematical model which
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is capable of producing a great variety of spatial density distributions depending on the model

parameters. Basic topological characteristics of spatial pattern such as the number of objects,

the density of objects, the degree of aggregation (as given by the Morisita index), and the frag-

mentation rate have been employed to analyse spatial distributions arising in the model. We

have checked whether the spatial pattern type can be recognised correctly and two spatial pat-

terns can be compared to each other by using the topological indices above. It has been shown

in the chapter that close values of the model parameters generate spatial patterns with similar

topological indices when simple topology of continuous front is considered. The conclusion,

however, is different when we deal with complex topological structures such as continuous front

density distributions with patches behind the front or patchy distributions that do not form a

continuous propagation front. In particular, transition from continuous front spatial patterns

to patchy spatial distributions as model parameters vary does not result in any distinct and

predictable change in the density of objects, the Morisita index, and the fragmentation rate,

although the number of objects does identify correctly the topological type of spatial pattern.

In our attempt to explain variations in topological indices observed when close values

of the system parameters are considered we have investigated spatio-temporal dynamics of the

invasive species to see whether those fluctuations will disappear as time progresses. Our study of

temporal evolution of spatial patterns resulted in the conclusion that, along with the topological

indices, transition time t∗ required for ‘topological stabilisation’ of spatial pattern must be

taken into account. If spatial pattern is considered at time t < t∗ its topological properties may

significantly change with time, i.e. continuous front spatial pattern may transform itself into

patchy pattern and vice versa. Thus, spatial patterns can only be identified after transition

time t∗ and it appears that the transition time can be much greater for patchy invasion regimes
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than for continuous front regimes. Moreover, it has been found in the chapter that for spatio-

temporal dynamics resulting in formation of patchy patterns the transition time can also be

much greater than time tD required for the invasive species to spread over some spatial domain

D where invasive species is monitored. The latter case is true for most patchy regimes considered

in the chapter and those regimes have been labelled as ‘topologically unstable’ in domain D. By

the definition of topologically unstable patterns their topological type cannot not be determined

in domain D where we want to control the spread of invasive species.

Our study reveals that propagation of patchy density distributions present the most difficult

case of the spatio-temporal dynamics of invasive species when topological properties of spatial

distribution have to be determined. It has been argued in the chapter that patchy spatial

patterns obtained for closed values of system parameters may have very different topological

structure even after the transition time and we therefore cannot rely upon the topological

indices if two patchy spatial distributions are compared to each other.

Finally, we would like to emphasise here that, according to the results in Section 7.5 and

7.6, registration of separate patches at any time t < t∗ cannot serve as a reliable indicator

of patchy invasion as separate patches can be transformed into a continuous front after the

transition time. Thus, another conclusion of our study is that timely recognition of patchy

invasion regimes may be a challenging issue that may require allocation of additional monitoring

resource and therefore determination of reliable ‘early signs’ of patchiness should consist another

topic of future work.

109



CHAPTER 8

CONCLUSION AND DISCUSSION

The spread of invasive species has been in the focus of ecological research in recent decades.

Propagation of a population front was a paradigm of biological invasion for several decades

[14, 32, 87]. More recently, however, there has been a growing understanding that the invading

species can proliferate into space by creating isolated patches or colonies but without forming

any continuous population front [67, 86]. Patchy invasion has been observed in several field

studies [8, 40, 42, 46] and in a variety of different mathematical models [37, 50, 86] including

PDEs [24, 53] and, recently, integral-difference equations [77].

Patchy invasion can be attributed to several factors, one of which is that it can occur in

particular landscapes such as small islands [98]. Moreover, it can also occur as a result of the

influence of predators [50, 67], pathogens [24, 68, 69], or multi-species interactions [8, 54].

In this thesis, we have studied two models of biological invasion. The first one is an integro-

difference system simulating the predator-prey system influenced by the strong Allee effect,

both prey and predator are stage-structured species. The second one is a reaction diffusion

model simulating predator-prey system influenced by the strong Allee effect, both species have

overlapping generations in this model.
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In Chapters 3,4,5 and 6 we have studied the stage-structured model simulating the predator-

prey system influenced by the strong Allee effect. This model is formed of two integro-difference

equations that can take into account the effect of both short-distance and long-distance dis-

persal. We have observed patchy spatial distribution in the model with short distance and

long distance dispersal to confirm preliminary conclusions made in [76, 77]. Furthermore, we

have investigated how formation of patchy patterns depend on the parameter range used in

the problem. In addition, we have investigated several topological characteristics of the spa-

tial pattern that can be employed to distinguish between continuous and discontinuous spatial

distributions.

From the discussion in Chapter 4, we know the propagation rates for spatial patterns

obtained for the parameters from domain for parameters from domains that correspond to

stable temporal dynamics in the non-spatial problem are constants (cf. domain 1 and 2 in

Fig. 2.5). In this case, the location of the population front of a spatial pattern is predictable. For

those parameters where we have unstable equilibrium in the non-spatial problem (cf. domain

3 in Fig. 2.5), pattern formation in the spatial problem is complicated and difficult to predict,

and the propagation rate is not constant. Therefore, a comprehensive recognition of the spatial

patterns that arise in biological invasion is important for the management and control of invasive

species. Once a spatial pattern has been recognised, a continuous front distribution only requires

addressing the area behind the population front to eradicate the invasive species. Meanwhile,

having a collection of separate patches in a spatial domain requires having a more carefully

designed control protocol from the practitioner.

Based on the simulation results in Chapter 5, we found that the spatial distribution is

sensitive to the choice of problem parameters. Our results show that patchy spatial distribu-
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tions and concave-front spatial distributions occur on the edge of extinction, yet concave-front

distributions occur within a broader parameter range. We have also investigated the case of

asymmetric initial conditions to confirm that it still results to formation of various (i.e., patchy

and continuous front) spatial patterns yet patchy patterns correspond to different choice of

problem parameters. In this chapter, we developed some topological characteristics to assist

with the classification of the spatial patterns and reveal the properties of a spatial pattern.

These characteristics include the number of objects, the fragmentation rate, the density of ob-

jects and the Morisita Index. The number of objects can help to distinguish whether a spatial

pattern has a continuous front. We have demonstrated that, some simulation results may have

very similar spatial patterns, yet some of them should be classified as patchy distributions while

the others are continuous front distributions. We have shown in our work that the number of

objects is the only reliable topological index to distinguish between these two types of distri-

bution. The remaining characteristics, that is the fragmentation rate, the density of objects

and the Morisita index, do not show any significant difference between patchy distribution and

continuous-front distribution.

In chapter 6, we simulated the data collection routine in the field study of biological

invasion. A practitioner might neglect the patches with low densities. In this case, we vary

the cut-off values in the simulation results to investigate the changes. On the other hand, a

practitioner may collect data on a very coarse grid, which implies some smaller patches will

be neglected. We have investigated how topology of spatial patterns changes when we change

the conditions under which information about the spatial pattern is collected. It has been

demonstrated in Chapter 6 that patchy spatial patterns are very robust and their topology

can still be recognised when a lot of information about the population density is missed. In
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particular, the numerical test cases in this thesis have demonstrated that patchy spatial patterns

are present until the density values are collected on a very coarse sampling grid (see Fig. 6.8 in

Chapter 6). While this result is model specific it gives us some useful insight into the accuracy

of measurements required to recognise the type of spatial pattern.

This thesis has mainly focused on the spatial patterns of short-distance dispersal species.

While we have briefly investigated spatial patterns arising as a result of long-distance dispersal

to confirm that patchy spatial distribution may appear when Cauchy dispersal kernels are

considered. While it has been confirmed in the thesis that long distance dispersal may result in

patchy spatial patterns the influence of parameters on those patterns is still unclear and future

work is required. Whether patchy invasion is more or less likely to occur in long-distance than

short-distance dispersal species is a question we need to investigate in the future work.

The second model we studied in chapter 7 is the reaction-diffusion model, this model

is proposed by [24] where basic classification of spatial patterns has been done. The model

allows for generating spatial distributions that are visually very close to each other, yet some

of those distributions are continuous fronts while the others are patchy spatial patterns. The

ultimate goal of our study has been to understand whether reliable criteria for classification and

comparison can be elaborated for spatial patterns arising in the model. Hence basic topological

indices of spatial pattern (the number of objects, the fragmentation rate, etc.) have been

analysed for a variety of spatial distributions arising in the model to see if the spatial pattern

type can be recognised correctly by using any of the quantities above.

It has been shown in the Chapter 7 that a slight increment in the model parameters results

in slight increment in topological indices (i.e. production of spatial patterns with similar topo-

logical properties) when topology of continuous front that has no patches behind the front is
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considered. The above, however, is not true when we analyse continuous front density distribu-

tions that have patchy patterns behind the front and, most of all, spatial distributions consisting

of separate patches. In the latter case a slight change in the model parameters results in random

fluctuations of topological indices as spatial pattern with very different topology may appear.

In our attempt to explain random fluctuations of topological indices observed when close val-

ues of the system parameters are considered we have investigated spatio-temporal dynamics of

the invasive species to see whether those fluctuations will disappear as time progresses. Our

study of temporal evolution of spatial patterns resulted in the conclusion that, along with the

topological indices, transition time t∗ required for ‘topological stabilisation’ of spatial pattern

must be taken into account. If spatial pattern is considered at time t < t∗ its topological

properties may significantly change with time, i.e. continuous front spatial pattern may trans-

form itself into patchy pattern and vice versa. Thus, spatial patterns can only be identified

after transition time t∗ and it appears that the transition time can be much greater for patchy

invasion regimes than for continuous front regimes. Moreover, it has been found in the thesis

that for spatio-temporal dynamics resulting in formation of patchy patterns the transition time

can also be much greater than time tD required for the invasive species to spread over some

spatial domain D where invasive species is monitored. The latter case is true for most patchy

regimes considered in the thesis and those regimes have been labelled as ‘topologically unstable’

in domain D. By the definition of topologically unstable patterns their topological type cannot

not be determined in domain D where we want to control the spread of invasive species.

Chapter 7 also investigated the example of spatial distribution of gypsy moth in the US in

the years 2015 and 2016, showing that the dispersal of the gypsy moth in the US is a patchy

invasion. In order to slow the spread of the gypsy moth, a pest management strategy called
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‘Slow the Spread’ program was developed. We analysed the data collected in a ‘transition zone’

between the infested area and uninfested area to give a suggestion about the minimum number

of traps required to resolve a spatial pattern and determine accurately its topological type.
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APPENDIX

MATLAB CODES

FFT method

The codes below solves the problem (3.5)–(3.6) using the fast Fourier transform (FFT).

1 function [n] = FFTGaussian(a,b,t)

2

3 n=2049; alphaN =0.1; alphaP =0.125;

4 L=40; h=2*L/(n-1); n_old=zeros(n,n); p_old=zeros(n,n);

5 x=zeros(1,n); y=zeros(1,n); kP=zeros(n,n); kN=zeros(n,n);

6 ff=zeros (2*n-1,2*n-1); gf=zeros (2*n-1,2*n-1);

7 knf=zeros (2*n-1,2*n-1); kpf=zeros (2*n-1,2*n-1);

8

9 for i=1:n

10 x(i)=-L+(i-1)*h;

11 for j=1:n

12 y(j)=-L+(j-1)*h;

13

14 if (x(i) >-1)&&(x(i) <1)&&(y(j) >-1)&&(y(j) <1)

15 n_old(i,j)=(a+sqrt(a^2-4*b))/(2*b);

16

17 end

18 if (x(i) >-0.1)&&(x(i) <0.1)&&(y(j) >-1)&&(y(j) <1)

19 p_old(i,j)=log(a/(b+1));

116



20

21 end

22

23

24 kN(i,j)=exp(-(x(i)^2+y(j)^2) /(2* alphaN .^2))/(2*pi*alphaN .^2);

25 kP(i,j)=exp(-(x(i)^2+y(j)^2) /(2* alphaP .^2))/(2*pi*alphaP .^2);

26

27 end

28 end

29

30 n_old=gpuArray(n_old); p_old=gpuArray(p_old);

31 kN=gpuArray(kN); kP=gpuArray(kP);

32 ff=gpuArray(ff); gf=gpuArray(gf);

33 knf=gpuArray(knf);kpf=gpuArray(kpf);

34

35 for j=1:t

36

37 f=exp(-p_old).*(a*n_old .^2) ./(1+b*n_old .^2);

38 g=n_old .*p_old;

39 ff(1:n,1:n)=f; gf(1:n,1:n)=g;

40 knf (1:n,1:n)=kN;

41 kpf (1:n,1:n)=kP;

42 z1=ifft2(fft2(ff).*fft2(knf))*h*h;

43 z2=ifft2(fft2(gf).*fft2(kpf))*h*h;

44 z1=real(z1); z2=real(z2);

45 n_old (513:1537 ,513:1537)=z1 (1537:2561 ,1537:2561);

46 p_old (513:1537 ,513:1537)=z2 (1537:2561 ,1537:2561);

47

48 end

49

50 n=real(n_old);
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Finite difference method

The codes below solves the partial differential equations (7.5)-(7.6) with finite difference

method.

1 function [u] = FDM(tmax ,beta ,gamma ,m)

2

3 dt =0.01; d=1; L=600; h=1;

4 N=L/h+1;

5 % initial conditions

6 u0=zeros(N,N);

7 v0=zeros(N,N);

8 x=linspace(0,L,N);

9 y=linspace(0,L,N);

10 for i=1:N

11 for j=1:N

12 if (x(i) >295)&&(x(i) <305)&&(y(j) >295)&&(y(j) <305)

13 v0(i,j)=0.5;

14 end

15 if (x(i) >290)&&(x(i) <310)&&(y(j) >290)&&(y(j) <310)

16 u0(i,j)=1-v0(i,j);

17 end

18 end

19 end

20

21 % boundary conditions

22 u=zeros(N,N); v=zeros(N,N);

23

24 % explicit method

25 u_old=u0; v_old=v0;

26 u_old=gpuArray(u_old);

27 v_old=gpuArray(v_old);

28 u=gpuArray(u);

29 v=gpuArray(v);

30 for t=0:dt:tmax -dt
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31

32 F1=d*( u_old (3:N,2:N-1) -4*u_old (2:N-1,2:N-1)+u_old (1:N-2,2:N-1)+

u_old (2:N-1,3:N)+u_old (2:N-1,1:N-2))/(h^2)+gamma*u_old (2:N-1,2:N-1).*(

u_old (2:N-1,2:N-1)-beta*ones(N-2,N-2)).*( ones(N-2,N-2)-u_old (2:N-1,2:N-1)

)-u_old (2:N-1,2:N-1).*v_old (2:N-1,2:N-1);

33

34 u(2:N-1,2:N-1)=u_old (2:N-1,2:N-1)+dt*F1;

35

36 F2=d*( v_old (3:N,2:N-1) -4*v_old (2:N-1,2:N-1)+v_old (1:N-2,2:N-1)+

v_old (2:N-1,3:N)+v_old (2:N-1,1:N-2))/(h^2)+u_old (2:N-1,2:N-1).*v_old (2:N

-1,2:N-1)-m*v_old (2:N-1,2:N-1);

37

38 v(2:N-1,2:N-1)=v_old (2:N-1,2:N-1)+dt*F2;

39

40 u(1,:)=u(2,:);

41 u(N,:)=u(N-1,:);

42 u(:,1)=u(:,2);

43 u(:,N)=u(:,N-1);

44

45 v(1,:)=v(2,:);

46 v(N,:)=v(N-1,:);

47 v(:,1)=v(:,2);

48 v(:,N)=v(:,N-1);

49

50 u_old=u;

51 v_old=v;

52

53 end
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Number of objects

The codes below count the number of objects in a binary image. Remark: the objects

behind the population front are neglected.

1 function [N]= objects6(BM)

2 [B,L,N]= bwboundaries(BM ,4,’noholes ’);

3 n=length(B);

4 count =0;

5

6 for i=1: length(B)

7 value =0;

8 for j=1: length(B)

9 if i==j

10 break;

11 else

12 B1=B{i}; B2=B{j};

13 end

14

15 x1=B1(:,1) ’; y1=B1(:,2) ’;

16 x2=B2(:,1) ’; y2=B2(:,2) ’;

17 in = inpolygon(x1 ,y1 ,x2 ,y2);

18 value=value+sum(in);

19 end

20 if value ==0

21 count=count +1;

22 end

23 end

24

25 N=count;
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