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Abstracts  
 

1) Diffuse glioma is one of the most devastating cancers know in terms of 

morbidity and mortality. During the last decade, the mortality rate has seen a 

very modest change. Due to the rapid improvement in understanding the 

glioma-genesis, evolution, and genetic landscape, a new classification has 
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emerged, improving the diagnostic accuracy. However, the new knowledge 

acquired has not been translated into novel therapeutic therapies. The 

treatment regime has mostly relied on maximal surgical resection and 

chemo/radiotherapy. Nevertheless, gross macroscopic surgical resection is 

allowing for a significant number of tumour cells to be left behind. Glioma Stem 

Cells (GSCs) left behind can acquire chemo-resistant properties and exhibit a 

plethora of characteristics that enable cell survival and growth, leading to an 

aggressive tumour recurrence. It is now increasingly recognised that IDH 

mutations are linked to the development of glioma and tumour reoccurrence. 

IDH mutations can lead to genetic and epigenetic changes promoting cell 

proliferation, tumour invasion and immune evasion as well as preventing 

differentiation. Understanding these pathways will allow for new rational 

therapeutic interventions in an attempt to improve patient outcomes. 

2) Gene delivery is the process whereby foreign genomic material is inserted into 

a host cell or organism. A number of viral and non-viral gene transfer system 

have been developed in the last few decades. However, no system to date has 

been used without certain limitations. Here we critically appraise and outline, 

the advantages, disadvantages, and common uses of viral and non-viral 

methods. 

3) The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) 

pandemic brings new challenges to the management of neuro-oncology 

patients. In the West Midlands (WM) a population of 5.7 million is served by 

three neuro-oncology centres. NHS service delivery was reconfigured to cope 

with SARS-CoV-2 infections. Here we report the impact at three centres with 
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low (CLOW), medium (CMED) and high (CHIGH) levels of SARS-COV-2 mortality 

on referrals and diagnosis, surgical safety and quality and clinical management 

during the pandemic. 

Data were collected either prospectively or retrospectively using electronic 

clinical records from each centre during period 1 (before lockdown) and period 

2 of SARS-CoV-2 (complete lockdown). 

Referral into specialist care pathways fell by 40% leading to reductions in 

diagnostic surgery of over 30% as a result of SARS-COV-2 related changes in 

healthcare provision and help-seeking behaviour. For SARS-COV-2 negative 

patients, surgical morbidity, 30-day readmission and 30-day mortality were 

unaffected by changes in management, but operations took longer, and there 

was an increase in patients with post-operative residual disease. There were 

no readmissions with SARS-COV-2 infection within 30 days of surgery. Access 

to radiotherapy and chemotherapy was reduced with patients suffering from the 

most aggressive cancers being more severely impacted. 

Future planning should consider accelerating access to advanced molecular 

diagnostic technologies to refine clinical decision making and the use of 

chemotherapy. Regional networking solutions could optimise the use of 

resources and maintain a higher standard of care, allowing patients to continue 

to receive the best possible care. 
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Chapter 1 
 

DIFFUSE GLIOMA: A LITERATURE REVIEW ON 

CHEMORESISTANCE TUMOUR RECURRENCE IDH 

MUTATION RELATED MECHANISM AND THERAPEUTIC 

TARGETING 
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1.1 Introduction  
 

1.1.1 Brain Tumours and Glioma 
 

A brain tumour is developed when there are aberrant proliferation and growth of cells, 

leading to a space-occupying lesion, confined within and/or surrounding the brain. The 

brain tumours can be broadly classified into the cancerous (malignant), which are 

associated with poor prognosis and the non-cancerous (benign), which are most of 

the time curable. Cancerous tumours can be further classified into primary and 

secondary. Secondary malignant tumours are lesions arising from cancerous cells that 

have haematologically or otherwise spread to the brain, also commonly referred to as 

metastatic brain tumours. On the other hand, primary malignant tumours originate 

from cells within the central nervous system (CNS). Composing the CNS, neurones 

and glia (also referred to as glial or neuroglia), are the two main cell types. Neurones 

act as communicators, conveying signals as electrical impulses, whereas glia forms 

the myelin sheath surrounding neurones providing support and protection as well as 

maintaining homeostasis [1]. In the CNS, astrocytes, oligodendrocytes, microglia and 

ependymal cells, are all types of glial cells. Tumours arising from glial cells are termed 

as gliomas.  

 

According to the World Health Organisation (WHO), gliomas can fall under four broad 

categories: i) diffuse astrocytic and oligodendroglioma tumour, ii) other astrocytic 

tumours iii) ependymal tumours and iv) other gliomas [2] (Table 1.1). The WHO 2007 

classification, has grouped tumours of the CNS based on histopathological criteria, 

cell type and grading (Grades: I-IV), referring to similarities on known cells of origin 

and stages of differentiation [3]. Diffuse astrocytic and oligodendroglioma tumours are 
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otherwise known as “diffuse gliomas”, were classified into: i) grade II 

oligodendroglioma (O) and diffuse astrocytoma (A), with low proliferative and 

metastatic potential, commonly seen to grow 2-4 mm per year [4], with 50-70% 

transforming into a higher grade tumour within 7-8 years [5], ii) grade III anaplastic 

oligodendroglioma (AO) and astrocytoma (AO), which are aggressive, spreading and 

invading nearby tissues, iii) grade IV glioblastoma (GB), which is the most aggressive 

and incurable. Further, gliomas can be commonly classified into low-grade glioma 

(LGG), grades I-II, and high-grade glioma (HGG), grades III-IV. 

 

1.1.2 Epidemiology 
 

Out of all primary malignant brain tumours in adults, gliomas are the most common 

(75%) [6]. Regards to primary malignant tumours of the CNS, between 2012-2016,  

GB, accounted for 48.3% of the cases in the U.S.A, while astrocytoma and 

oligodendroglioma, 16.7% and 4.5% respectively [6]. It is estimated that 15,832 people 

are diagnosed with a “diffuse glioma” in the U.S.A every year. 11,833 patients are 

diagnosed with the most aggressive and currently incurable brain tumour, the GB [6], 

while 2,903 with an astrocytoma and 1,096 with oligodendroglioma. Recently, a study 

found that there was a significant increase in the incidence rate of GB from 1995 to 

2015, more than doubling from 2.4 to 5.0 per 100,000 people in the UK, while the rest 

of diffuse gliomas remained stable [7]. In addition, the future in the U.S.A is also 

disheartening, with an estimated rise in GB diagnosis for the next 30 years [8].  

 

The devastating prognosis of “diffuse gliomas” is well known. Between 2000 to 2015, 

the 5-year survival rate of GB patients was 6.8%. On the contrary, patients with 
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histological diagnosis of O or AO, have the best prognosis with 82.7% and 60.2% 5-

year survival rate, respectively. Astrocytomas have a worse prognosis than 

oligodendrogliomas. The 5-year survival rate of A was 51.6% whereas 30.2% of AA. 

Despite advances in management, the prognosis has not been drastically altered [9] 

(Table 1.2). To date, clinical trials, testing new therapeutic options, fail to show a 

survival benefit. In an attempt to develop rational therapeutic strategies, the scientific 

community has made significant progress in understanding the function of the 

associated genetic mutations and the role of the immune environment in the complex 

interplay of tumour formation, progression and evolution. 
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1.2 New Genetic Classification of Adult Diffuse Gliomas  
 

Since the rapid emergence of a plethora of genomic and molecular pathology 

advancements, a new era of CNS tumour neurobiology has been demarcated. In 

response to the gain of knowledge and understanding of the disease, the WHO has 

allowed for major reconstruction of categorisation of CNS tumours, leading to the 

WHO updated 2016 classification. While in the past, the classification has grouped 

together tumours, based on the histological diagnosis only [3], since 2016 all diffusely 

infiltrated gliomas have been grouped primary based on their shared genetic driver 

mutations in the Isocitrate Dehydrogenase genes one and two (IDH1,IDH2) (Table 

1.3). The new classification now combines genetic and histopathological 

nomenclature, where the phenotypic name precedes the genetic classification (i.e. 

glioblastoma, IDH wildtype) [10]. The importance of the new genetic classification can 

be appreciated further since the WHO 2016 recommendation clarifies that in the case 

of discordance between histological and genetic description, the latter overrides. The 

concept that genomic classification trumps histopathological observation allows us to 

move towards a new diagnostic and therapeutic approach based on objective 

genotypic identification rather than a subjective observational description.  

 

Based on a hallmark alteration, “diffuse gliomas” are now classified into two groups, 

IDH wildtype (non-mutant) and mutants. IDH mutations are somatic changes that are 

found to be mostly acquired during the primitive stages of glioma-genesis [11] with the 

most common being a heterozygous mutation on the Arg 132 (R132H) of the IDH one 

gene. Normally, IDH converts isocitrate in -Ketoglutarate (-KG) but when mutated 

this enzyme acquires neomorphic activity by reducing -KG to D-2-Hydroxyglutarate 
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(D-2HG) [12]. D-2HG is primarily competitively inhibiting -KG-dependent 

dioxygenases and acting as an oncometabolite via histone and DNA 

hypermethylation, inhibiting differentiation, aiding the production of reactive oxygen 

species (ROS), contributing to tumour invasion and micro-vessel formation [13-15].  

 

90% of GBs, which are formed de novo, 30% of DAs and AAs are falling under the 

IDH wildtype “diffuse glioma” arm, [16,17]. Further, it has been established that IDH 

wildtype GB is usually accompanied by other mutations. 72% have a mutation within 

the core promoter of the telomerase reverse transcriptase (TERT) gene [18,19], which 

leads to aberrant telomerase activity, an important step towards cell immortalisation 

[20]. It has been shown that IDH wildtype GB has 27% mutation rate in the tumour 

suppressor TP53 gene, 24% Phosphatase and Tensin homolog (PTEN) deletion, and 

35% mutation and thus aberrant activation in the absence of signalling of epidermal 

growth factor receptor (EGFR) [21,22]. In addition, IDH wildtype GB has alterations in 

the pro-oncogenic pathway such as dysregulation of the receptor tyrosine kinase 

(RTK), Ras and Phosphatidyl Inositol 3-kinase (PI3K) pathways have been reported 

as a result of PTEN, EGFR, as well as mutations in the Neurofibromin 1 (NF1) gene 

and the platelet-derived growth factor receptor-A (PDGFRA) [21]. IDH wildtype “diffuse 

gliomas” are correlated with worse prognosis compared to IDH mutants [2-3,23].  

 

All Os and AOs are found to fall under the IDH mutant arm, in addition to 70% of DAs 

and AAs as well as 10% of GBs. IDH mutants can be further subclassified into two 

prognostic and diagnostic groups. The first subgroup corresponds to 

oligodendrogliomas both the diffuse and anaplastic (grade II-III), of which 100% show 
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a co-deletion of chromosome 1p and 19q, leading to a transformation of a non-

balanced centromeric translocation t(1:19)(q10;p10). The codeletion has been 

correlated to better response to temozolomide (TMZ) chemotherapy and better overall 

prognosis [2,17,23-25]. Despite the fact that 1p/19q co-deletion was originally 

mentioned about two decades ago, little progress has been made to understand its 

functional impact on tumour development [26]. Further, the literature suggests that 

TERT promoter mutation is also prevalent within 1p/19q co-deleted IDH mutant 

oligodendrogliomas [27]. The mutation leads to an increase in the TERT promoter 

transcriptional activity, leading to an increase in telomerase activity and thus ultimately 

a decisive progression to immortalisation [20,28]. Whole exosome studies have further 

shown that the Capicua transcriptional repressor gene (CIC), is mutated the majority 

of times along with 1p/19q co-deleted oligodendrogliomas [29,30]. 1p/19q co deleted 

CIC mutant oligodendrogliomas are found to proliferate and grow faster than the non-

CIC mutated tumours [31,32], thus the CIC mutation is speculated to be of prognostic 

significance. However, to date, the WHO 2016 did not incorporate this mutation into 

the new classification. The second subgroup lacks 1p/19q codeletion. However, IDH 

mutant DAs, AAs and GBs, which belong to this subgroup carry a transcriptional 

regulator ATRX mutations and a TP53 mutations [33]. The role of ATRX mutations 

regards to tumour formation, propagation and invasion have not been deciphered to 

date. There is some evidence to suggest that its role might be related to cell cycle 

regulation, histone regulation and chromatin remodelling [34]. 

 

The WHO 2016 classification has majorly refined the definition of the type of tumour 

that has always been controversial, the oligoastrocytoma. Previously, 
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histopathologists have heterogeneously reported the existence of a tumour that 

shares common histological characteristics of oligodendroglioma and astrocytoma, 

and thus not been able to comment for sure as to whether it is one nor the other [3]. 

However, based on the new classification, the oligoastrocytomas and anaplastic 

oligoastrocytomas fall under an IDH not otherwise specified (NOS) category. The 

importance of the new genotypic and phenotypic description has been demonstrated 

since now only rare reports exist able to classify a tumour as a “true” oligoastrocytoma, 

which consists of astrocytic (ATRX-mutated) and oligodendroglia (1p/19q co-deleted) 

mixed population of cells that are genetically and histologically distinct [35,36]. 

Previously classified astrocytomas can now be reported as pure 

oligodendrogliomas/astrocytomas with the aid of genetic testing [37,38]. Therefore the 

genetic advancements led to oligoastrocytomas only to be identified if the diagnostic 

molecular testing is absent or inconclusive or when tumour sample shares histological 

and genetic features of both oligodendrogliomas and astrocytomas - the genetic and 

molecular understanding of the disease allowed for tumour diagnosis objectively. 

However, despite the progress made, the knowledge acquired has not been translated 

into effective therapies, which can ultimately have a strong impact on the prognosis of 

these tumours.  
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1.3 Current Treatments for Diffuse Glioma   
 

1.3.1 Surgery for Diffuse Glioma 
 

The current management of GB is based on three pillars: surgery, radiotherapy and 

chemotherapy. “Diffuse glioma” surgery has been drastically improved and to an 

extent, transformed over the last ten years. This is due to a combination of major 

improvement in brain tumour visualisation and imaging, aiding preoperative surgically 

planning as well as intraoperative surgical resection. Intraoperative technologies and 

neurosurgical techniques have also been improved. The philosophy of treatment is 

maximal safe resection, aiding to improve symptoms but also prolong progression-

free survival (PFS) and overall survival (OS). Currently, the relationship of the extent 

of surgical resection (EOR) for LGG and clinical outcomes is incompletely understood 

through a number of articles emerged to show that EOR prolongs survival [39,40]. 

However, the consensus regards to HGG resection is that resection is correlated with 

increased survival [41,20]. With as little at 78% of resection of contrast-enhancing 

tumour (CET) on T1-weighted Magnetic Resonance Imaging (MRI), an exponential 

increase in survival has been shown, from 12 months median survival to 16 months 

[41,42]. Nevertheless, the way the EOR is assessed in randomised control trials (RCT) 

has been questioned, hindering achievement of level-one evidence linking EOR and 

survival. For HGG, although near-complete resection of CET is correlated to better 

outcomes, the operating neurosurgeon is challenged to preserve non-cancerous 

neurological tissue, minimising the risk of impact on morbidity, postoperatively. The 

fine balance between the gain of a few extra months of survival should be balanced 

against a functional outcome. Failure to preserve eloquent regions of the brain can 

compromise patients’ quality of life and possibly preventing them from being eligible 
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for chemo and/or radiotherapy with consequent prognostic implications [43,44]. The 

maximal resection for both LGG and HGG has been encouraged and incorporated into 

European and UK guidelines [45,46]. Numerous intraoperative technologies have now 

been developed and are still under evaluation, primarily aiming to equip better 

surgeons’ ability to identify and resect tumour boundaries, while preserving “normal” 

eloquent brain tissue.  

 

Fluorescence guided surgery for HGG allows for real-intraoperative identification of 

tumour. Currently, the gold-standard and recommended intraoperative fluorescence 

imaging technology is 5-aminolevulinic acid (5-ALA) [47]. 5-ALA is orally administered 

4 hours prior to the operation resulting in accumulation of protoporphyrin IX (PpIX) in 

proliferating HGG cells, which under the violet-blue excitation light is seen to fluoresce 

in a bright pink colour. The colour is used to guide the resection of cancerous tissue 

and leaving behind “normal” tissue. The first RCT, conducted in 2006, showed a 29% 

reduction in the proportion of HGG patients who had residual enhancing disease on 

postoperative T1-weighted MRI imaging with contrast [48]. This led to an increase in 

PFS at six months and OS.  

 

Functional organisation of the cortex varies considerably amongst individuals. In 

addition, a growing space-occupying lesion like a glioma is likely to distort normal and 

thus the expected neuroanatomy, and/or lead to reorganisation of neural networks as 

such surgical tools have been developed to help identify eloquent brain regions. 

Intraoperative neurophysiological monitoring and mapping, as well as direct electrical 

stimulation of brain regions in question either during an awake or under anaesthesia 
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patients, aim to identify reliable cortical and subcortical pathways involved in higher 

cognitive functions locations such as motor, sensory and language areas [49-51]. 

Subsequently, these areas can be avoided by preserving the normal physiological 

function of the brain. A systematic review and meta-analysis have evaluated the 

benefit of intraoperative stimulation, leading to a conclusion that upon usage, severe 

neurological deficits are reduced without compromising EOR [52]. Furthermore, 5-ALA 

combined with neurophysiological monitoring resulted in an increase in the EOR 

versus 5ALA alone, reducing mortality [53]. Combining subcortical mapping of motor 

areas and 5-ALA has also been shown to enable an increase in the EOR [54].  

 

Recent developments in surgical intraoperative tumour visualisation technologies, 

such as intraoperative MRI (iMRI), intraoperative ultrasound (iUS) and 

neuronavigation have offered an additional and important group of tools in the 

surgeon’s quiver in an attempt to achieve safe resection of CET [55-59]. A novel 

integrated imaging modality is the multimodal neuronavigation whereby a single 

software is able to combine functional and structural imaging data with the end goal to 

allow a surgeon to know the precise location of the tumour in real-time. This 

technology is ultimately assisting safe, maximal resection of a “diffuse glioma” 

adjacent to eloquent brain regions. Furthermore, functional MRI and diffusion tensor 

imaging (DTI) MRI enable the neurosurgeon to incorporate functional data into the 

software aiding pre-operative surgical planning as well as intraoperative navigation 

[60]. The choice of the aforementioned intraoperative adjuncts lies within the discretion 

of the operative surgeon. Interestingly, a recent Cochrane review by Jenkinson et al., 

recently concluded that while iMRI and 5-ALA evidently aid maximal safe resection. 
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However, the quality of evidence with regards to the impact of OS and PFS is low [61]. 

Technologies continue to improve and are refined, minimising possible disadvantages 

and maximising the surgical benefit.  

 

1.3.2 Chemotherapy and Radiotherapy for Diffuse Glioma  
 

Following resection, “diffuse glioma” surgery patients may undergo through cycles of 

chemotherapy and/or radiotherapy. DA and O patients are usually stratified into low-

risk and high-risk patients. Though the stratification of those patients is highly variable 

and still lacks concrete evidence [62], a number of criteria exist to help with this 

process. Patients who are under 40 years of age and underwent complete resection 

with subsequent good, postoperative neurological function, which are found to have a 

mutation in the IDH gene are deemed as low-risk [63,64]. For this group of patients,  

the European Organisation for Research and Treatment of Cancer (EORTC) 22845 

analysis, suggests watch-and-wait with regular MRI scans policy [63]. The current 

evidence relies on a retrospective comparison, which showed similar overall survival 

for patients who had immediate radiotherapy versus differed radiotherapy [46]. No 

prospective evidence exists to solidify these data. More, RCTs are needed to provide 

level-one evidence for this group of patients. According to the EORTC 22033-26033 

[65] and the Radiation Therapy Oncology Group (RTOG) 9802 [66,67], patients who 

are older than 40 years of age, had a large tumour (>5cm) and reduced post-operative 

function or did not have complete resection are deemed as high-risk. The genetic 

addition to the WHO 2016  has a pivotal impact on the LGG patients’ treatment regime. 

LGG tumours, which are found to be IDH wildtype, are expected to behave like an 

HGG tumour, in terms of metastatic potential and reoccurrence [10]. A such, patients 
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with an LGG IDH wildtype tumour are deemed as high-risk. The high-risk patients who 

had surgery are advised to undergo radiotherapy, with does between 50 to 54 Gray, 

followed by adjuvant procarbazine, lomustine and vincristine (PCV), therapy of 6 

cycles [68,69].  

 

HGG  patients are deemed as high-risk. The standard post-operative treatment regime 

for these tumours is predominantly based on the results from a phase 3 RCT and the 

CATNON trial interim analysis data [17,71]. This included 60 Gray radiotherapy with 

adjuvant six cycle PCV or concurrent and adjuvant TMZ. The CATNON interim 

analysis has demonstrated that 1p19q co-deleted AAs can potentially benefit from 12 

cycles of TMZ instead of 6 as well. Currently, the RCT called CODEL is investigating 

whether PCV is to be replaced with TMZ in the treatment of 1p19q co-deleted 

oligodendrogliomas without sacrificing survival [72]. Furthermore, the POLCA trial, 

which is in progress, is currently evaluating whether PCV can replace radiotherapy for 

1p19q co-deleted oligodendrogliomas [73]. For GB patients, a treatment combination 

of 60 Gray radiotherapy for a cycle of 6 weeks with concurrent daily TMZ followed by 

another six cycles TMZ therapy has been the gold-standard regime, also known as 

the “Stupp” protocol [74]. In addition, recently, it has been reported that adding 

electrical field therapy to adjuvant TMZ may lead to an excess of 5-month additional 

survival benefit [75,76]. The survival benefit shown was independent of subgroup 

prognostic co-factors, i.e. complete resection of enhancing disease. The Nordic and 

NOA-08 trials have presented important information regarding patients who are older 

than 70 years of age who have been histologically diagnosed with GB [77,78]. For this 

group of patients, TMZ therapy can only show a survival benefit for those who harbour 
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the methylated promoter region of the DNA repair enzyme O6-methylguanine-DNA 

methyltransferase (MGMT), an important prognostic marker.  

 

Currently, studies have shown that the concentration of TMZ within the tumour might 

not be high enough to successfully eliminate glioma stem cells (GSC) left behind after 

surgical resection [79]. As such novel drug delivery systems are under development 

aiming to improve spatial and temporal delivery of TMZ within the CNS. These include 

implantable controlled-release polymer systems, injectable nanoparticles and 

convention-enhanced delivery using a catheter-based approach to an agent placed 

directly to the tumour cavity [80]. Furthermore, a Food and Drug Administration 

(F.D.A.) – approved delivery system, called the Carmustine (BCNU) loaded wafer has 

been developed and used. Wafers are placed along the surface of the resected cavity 

delivering chemotherapy locally for a period of days to weeks [81]. This technology 

was primarily based on the assumption that a local delivery chemotherapeutic agent 

is most likely to achieve higher concentration levels and thus eliminate the remaining 

of the tumours cells left behind. A John Hopkins based group led by Henry Brem has 

shown that BCNU usage can show significant improvement in median survival (31 

weeks) compared to placebo (23 weeks) [82]. The usage of the BCNU wafers has 

been controversial due to concerns regarding infection rates and the need for 

complete resection for glioma patients [83,84]. However, more studies have emerged 

to show survival benefit upon usage [85]. Despite the number of studies conducted 

and workforce/resources invested towards identifying the best treatment regime for 

“diffuse glioma” patients, the prognosis remains devastating and largely unchanged. 

Systematic non-targeted therapy seems to have reached its limits. The new molecular 
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paradigm has allowed for a new classification of tumours. However, no targeted 

translational therapies, such as direct drug inhibitors have been licensed to date.  

 

1.3.3 Immunotherapy and Targeted Therapy  
 
During the past decade, the brain has been considered an immune-privileged organ. 

This leads to the conclusion that the full effects of the immune system are not expected 

to be seen for any lesion within the blood-brain barrier (BBB) [86]. This has been 

derived from the notion than no lymphatics exist in the brain and that the BBB 

efficiently and selectively prevent an influx of immune-related chemokines and cells. 

However, it is now appreciated that the brain has an interaction with the immune 

system and vice-versa [87]. Importantly, it has been increasingly recognised that the 

brain tumours, including gliomas, are actively evading and suppressing the immune 

system, by minimising the expression of the major histocompatibility complex (MHC) 

receptors, reducing cell activation and expressing pro-apoptotic factors [88]. 

Numerous studies have shown that gene expression, evolution and aggressiveness 

of gliomas are regulated by a complex interplay between cancer cells and dynamic 

tumour microenvironment [89-91]. Consequently, delineating and overcoming the 

immune evading mechanisms is an emerging field of exciting new research.  

 

Active immunotherapy, cytokine therapy and passive immunotherapy are the three 

main methods currently studied for overcoming the tumour-induced 

immunosuppression. Active immunotherapy has primarily been aiming to prime the 

immune response against know tumour targets by vaccination and adoptive T-cells 

therapeutic regimes [92-94]. On the other hand, cytokine therapy research has mainly 
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concentrated on activating and enhancing the immune system, which will 

concomitantly fight tumour cells [95]. Currently, passive immunotherapy research is 

focusing on utilising conjugated antibodies targeting tumour expressing antigens, with 

the second antibody inhibiting downstream effectors or indirectly killing the cells [96].  

 

To date, direct pathway inhibition either by extracellular receptor binding or 

downstream effector inhibition such as tyrosine kinase molecules has been an 

emerging field of study. However, oncogenic pathway inhibition involving PDGFR and 

EGFR and intracellular downstream pathways have been trialled without meeting 

primary outcomes [97]. A number of ongoing trials exist; however, to date, no RCT 

has reported positive results.  

 

Several clinical trials have been conducted to date, testing the efficacy of new drugs. 

The vast majority were unable to progress from phase II to phase III, and/or meeting 

their primary endpoints, failing to show superior outcomes versus conventional 

therapy in terms of OS and/or progression-free survival PFS [98-102]. Despite 

substantial progress in revealing the underpinnings of GB [103], few effective 

therapies remain, and thus new therapeutic strategies are needed.  

 

1.4 Glioma Stem Cell Resistance to Chemotherapy and 
Glioblastoma Recurrence  
 

1.4.1 Glioma Stem Cell  
 

Despite the current evidence-based optimal therapy, the prognosis for “diffuse 

glioma”, especially for the HGG, is devastating. GB is the most common “diffuse 
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glioma” and has the worst prognosis. In the light of the aggressiveness of this tumour, 

GB patients undergo surgery and chemo/radiotherapy. However, malignant 

recurrence is seen and identified as the hallmark of poor prognosis [104]. For a new 

tumour to be formed, there has to be a group of cells that are able to resist therapy 

and survive. Thereafter they should be able to proliferate, multiply, invade nearby 

tissue leading to tumour re-genesis. GB formation is a result of the complex interplay 

between a dynamic microenvironment and new epi/genetic mutations leading to a 

heterogeneous group of cell types across space and time, with various proliferating 

and differentiating potentials, within the same bulk of tumour [105-110]. GB formation 

occurs through evolution across time, whereby a phenotypically and genetically 

heterogeneous cluster of cells, the clones, are generated, with a subsequent rise to 

daughter cells from each clone and/or combination of clones, within the same tumour 

[105,111,112]. For a tumour to form, there has to be a subpopulation of cells, which 

preserve higher stem-like properties compared to the rest.  

 

The last two decades, a number of manuscripts have emerged proposing the notion 

of functional intra-tumour heterogeneity, implying the existence of a hierarchal model 

of tumorigenesis, whereby a cell type, the GSC, can demonstrate multi-potency and 

aberrant self-renewal capacity [106,113-115]. Thus it was proposed the GSC is the 

most tumorigenic and hence the founder clone [116-119]. GSC is able to rapidly 

proliferate, and self-renew, leading the conclusion that is the perfect candidate to be 

responsible for therapeutic resistance and malignant reoccurrence [120,121].  
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1.4.2 Glioma Stem Cell in Relation to Surgical Resection and Temozolomide 
Administration  
 

The current surgical paradigm includes using intraoperative technologies for the 

resection of CET. It is widely agreed that one of the main reasons explaining poor 

prognosis despite optimal surgical resection, is the existence of GSC, leading to 

progression and malignant recurrence [117,122]. After complete resection of CET and 

adjuvant therapy, recurrence is commonly seen at the peripheries of the tumour cavity 

[122,123], at which GSC are commonly found as distinct “niches” [124,125]. Recently, 

a large comparative study from Mayo Clinic, University Californian San Francisco and 

Cleveland Clinic highlighted the need to resect tumour beyond the contrasted 

enhanced margin, as seen on T1-weighted MRI with contrast, since it can prolong 

survival regardless of molecular subgroup [126]. Taking into consideration that GB 

recurrence requires a cell type capable of tumorigenesis, there is speculation that 

GSCs may sit and extent beyond the CET tumour. Therefore a population of GSCs 

may remain unresected, allowing for tumour re-genesis following therapy. Further 

evidence exists, suggesting that infiltrating GSCs are found beyond the CET, 

supporting the notion that resection up to the CET margin may hinder survival 

outcomes [127-130]. Thus the philosophy of surgical resection for this tumour is 

currently under reconceptualisation.  

 

TMZ is the main chemotherapeutic agent used for the GB management, which is 

systemically administered; however, not exhibit the first-pass metabolism. BBB is very 

highly selective, preventing a significant amount of the agent from reaching the tumour 

cavity [131]. Studies have shown that the concentration of TMZ found within the 

cerebrospinal fluid (CSF) surrounding the CNS ranges from 17.8% to 20% compared 
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to plasma [132-134]. In addition, other studies have found that 5uM of TMZ found in 

CSF compared to 50uM found in plasma is not able to have a drastic impact on cell 

death [135,136]. This is due to the fact the 5uM was shown to deplete on half of GB 

cell in vitro [135,136]. The BBB is disrupted at the tumour cavity. However, GSCs 

residing adjacent to the tumour may be surrounded by an intact BBB, and thus 

subjected to 5uM of TZM only [137]. Therefore understanding whether the 

concentration of TMZ within the tumour is reaching the expected and proposed levels 

are important. Nevertheless, quantifying the actual concentration and evaluate its 

efficacy in eradicating the remaining tumour should be prioritised.  

 

1.4.3 Glioma Stem Cell Biology Favouring Survival Tumour Recurrence   
 

For any cell type supposed to be responsible to tumour reoccurrence, it is paramount 

to retain properties enabling resistance to therapy and ultimately survival. Pertinent to 

their therapeutic role, surgical resection and chemo/radiotherapy can create 

conditions within the tumour cavity that are unfavourable to cell growth and survival. 

Disruption of blood supply can create low-tissue oxygen tension. At the extremes, 

oxygen tension can be significantly impaired and thus being low. This leads to 

inadequate ATP production and thus, lack of energy for the cells. It has been shown 

that GSCs are found within regions of mild to moderate hypoxia, consequently 

impaired oxygen tension [138]. Within these regions, these cell types were found to 

express increased hypoxia-inducible factors (HIF1/2), both at their very baseline and 

in recognition of decreased oxygen availability. Hypoxia has led to promote GSC 

expansion through activation of HIF-1a [139] as well as regulating tumorigenic 

potential [118]. Therefore GSCs are able to utilise the HIF signalling pathway for 
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survival. Furthermore, low oxygen tension increased the expression of stem-cell 

markers and induced clonogenicity [140]. Through upregulation of downstream 

effectors and induction of GSC-associated genes, HIFs are able to enhance the GSC 

potential. Thus, resistance to hypoxia is pivotal to promote GSC survival to therapy.  

 

Resistance to hypoxia is not the only attribute needed for survival and ultimately 

tumour recurrence. An element of immune evasion and suppression has to be in place, 

to prevent tumour cells from being recognised by the immune system whilst the patient 

is under treatment as well as after the duration of the therapy. GSCs are known to be 

able to manipulate the tumour microenvironment [141]. A plethora of literature exists 

describing how GSCs are able to evade the cancer-immunity cycle at various stages. 

GSCs are able to utilise the signal transducer and activator of transcription 3 (STAT3) 

pathway and via the release of Interleukin 10 (IL10) to shape gene expression, 

activation and proliferation of resting primary macrophages (IL-10) [142,143]. Further, 

IL10 release is able to regulate the cytotoxicity potential of natural killer cells (NK) and 

neutrophils, which are the first few cells to arrive at the site of tumour cavity following 

therapy responsible for recognising engulfing tumour cells [143]. The STAT3 pathway 

activation is held responsible for the release of a number of other anti-inflammatory 

mediators such as prostaglandin (PG) E2, tissue growth factor-beta (TGF-ß), which 

have a unique role in i) downregulating the Th1-mediated cytotoxicity and ii) inducing 

Th17 cells activation which is immunosuppressive and iii) inducing T-reg and inhibit 

T-cell proliferation, respectively [144-147]. Further, they can manipulate the 

expression of the cell-surface receptors of dendritic cells (DT) such as MHC II, CD80 

and IL-12, preventing the DT-T-cell interaction, which can generate antitumor 
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immunity [148]. GSCs are able to evade the immune response increases the 

probability of survival.  

 

For a new tumour to be formed, there has to be adequate blood supply. GSCs are 

found in perivascular niches, having a close interaction with blood vessels [149]. It is 

established that vascular endothelial cells are supervising survival of GSCs [150-152]. 

However, GSCs might also interact with adjacent vascular endothelial cells embracing 

vascular bed formation within the growing tumour [153,154]. Skog and colleagues 

have shown that tumour cells are able to secrete extracellular vesicles containing 

angiogenic factors [155]. A recent paper found that vascular endothelial growth factor 

A (VEGF-A) is also released in extracellular vesicles by the perivascular GSCs [156]. 

Indeed, a scoping review on the “crosstalk between glioma stem cells and their 

microenvironment”, concluded that GSCs play a dominant role in tumour angiogenesis 

via i) releasing extracellular pro-angiogenic vesicles ii) recruitment of endothelial cells 

and iii) direct differentiation into endothelial cells [157]. Therefore, GSCs are aiding 

tumour reoccurrence via angiogenesis.  

 

A key feature enabling tumour recurrence is the GSC plasticity and intra-tumour 

genetic, phenotypic and functional heterogeneity. Within an HGG, three main 

phenotypes of cells exist: proneural, mesenchymal and classical [110]. The proneural, 

common in young adults, corresponds to a secondary GB subtype, associated with 

IDH1 mutation or PDGFR an amplification and a p53 mutations, which are linked to 

favourable outcomes [110]. On the contrary, mesenchymal and classical phenotypes 

are associated with the worst outcomes [158]. The classical phenotype was found to 



 25 

 

be associated with amplified EGFR signalling pathway, while the mesenchymal that is 

associated with older adults harbour no mutations on IDH1 but rather an NF1 

deregulated gene expression. It has been shown that a phenotypic shift within the 

same tumour is possible. Tumour recurrence and thus, worst outcomes were 

associated with a shift from proneural to mesenchymal [159]. In addition, it is possible 

that more than two different phenotypes exist within the same tumour [159]. 

Concomitantly, phenotypic heterogeneity within the same tumour has been linked to 

worse survival [107]. Moreover, the same study showed that it is possible for cells can 

simultaneously “score” highly for two phenotypes. This means that a cell can be a 

product of two different phenotypic cells. Therefore this leads to the conclusion that 

the existence of “hybrid” states is possible, reflecting aberrant developmental 

programmes. Thus, within the same tumour, there might be a number of different GSC 

subpopulations. The deletion of one could mean the enrichment of another.  

 

During optimal, surgical and adjuvant therapy, a certain subpopulation of cells will 

show greater vulnerability than others. This applies a selective pressure to the rest of 

the subpopulations, which may remain. Meaning a new set of subpopulations will arise 

and proliferate. These new population could have survived due to drug induce 

mutations, making them resistant to treatment or existence of resistant clones due to 

‘natural’ tumour progression even before therapeutic intervention. In fact, GB resistant 

subclones were found to acquire the cellular information pertinent to tumour 

reoccurrence at the early stages of their development, rather than the accumulation of 

mutations over time [160]. The subclones will persist after treatment and repopulate 

over time, leading to tumour reoccurrence.  
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Interestingly, recent discoveries denote that non-GSCs can acquire proliferative 

potential [155,161]. It has also been demonstrated in animal models that glioma cells, 

which did not express stem cells markers were able to de-differentiate and gain stem 

cell properties [162]. Dahan et al., have discussed the importance of cellular plasticity 

in chemoresistance [163]. They showed that cells that had no GSC-like properties 

were able to dedifferentiate into GSCs following radiation. Similarly, other studies 

proposed that GSCs were able to interconvert to non-GSCs induced by TMZ therapy 

also [164]. In fact, TMZ may create cellular stressors such as hypoxia and acidity, 

which may be responsible for the GSC conversion. Furthermore, the loss of von 

Hippel-Lindau and/or PTEN, have been proposed to induce GSC conversion 

[165,166]. It can be concluded that even if all GSCs subpopulations are eliminated, 

the surrounding cells can be induced to acquire oncogenic potentials, which may lead 

to tumour recurrence (Figure 1.1). Therefore understanding why systemic therapies 

have failed and developing inhibitors based on the new molecular classification, which 

reflects the biology of the disease, will allow us to move towards an era of precision 

medicine with fewer side effects and hopefully improved outcomes. 
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1.4.4 Glioma Stem Cells and TMZ Chemoresistance 
 

GSCs remain at the centre of attention, held responsible for current treatment failures 

and therapeutic resistance. GSCs were shown to circumvent chemotherapy, the 

hallmark of HGG treatment, in a plethora of ways. Preventing the high accumulation 

of TMZ within the cell, increasing expression of specific enzymes counteracting 

cytotoxic effects of TMZ as well as altering expression of DNA repair mechanisms are 

but a few examples (Figure 1.2). It has been questionable whether TMZ’s 

concentration reaching the remnants of the tumour is adequate for the eradication of 

remaining tumour cells. Cellular bioavailability is further hindered by a unique cell 

surface transported, the ATP binding cassette (ABC) transporter channels. The ABC 

transporter was found to be increasingly expressed in GSCs [167,168]. Its main 

function is to actively carry molecules such as TMZ, using ATP, out of the cell as well 

as the BBB [169]. ABC-G2 is the main transporter of reference, which has been 

associated with small stem-like subpopulations showing multidrug resistance and 

ultimately, survival [170]. Denoting to its functions in cancer progression, ABC 

transported has also been described as a cancer driver [171].   

 

GB cells exhibit TMZ cytotoxicity via methylation of the O6-position of guanine base 

in DNA. This creates a change in DNA structure, which can be detected by other 

cellular mechanisms and if the damage cannot be repaired, inducing apoptotic 

pathways and thus cell death. However, the methyl residue added by TMZ on the DNA 

molecule can be removed by an MGMT repair enzyme that is variably expressed. 

MGMT’s promoter region can be arbitrarily methylated leading to inactivation of the 

MGMT enzyme and thus inability to repair the methylation gain in DNA molecule. Cell 
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cycle checkpoint inhibitors can detect the DNA change, and if not repaired, cell cycle 

arrest can be induced [172-174]. Whereas if methylation of the MGMT promoter is low, 

an increased MGMT ability to remove methyl residue from DNA will reduce 

cytotoxicity, leading to poor prognosis. MGMT repair enzyme is found to be 

disproportionally increased in GSCs, leading to TMZ resistance [175]. Notably, TMZ 

was shown unable to block the renewal properties of GSCs, expressing MGMT [176]. 

On the contrary, TMZ was found to be effective in eradicating MGMT negative GSCs. 

[177].  

 

DNA repair aberrations have been previously described and accounted for treatment 

resistance and recurrence. TMZ leads to methylation of a guanine base. This base 

pair change is a common target for intercellular DNA repair mechanisms [178]. The 

mismatch repair (MMR) mechanism, is responsible for recognising the base-pair 

mismatches and deletions, including the O6-methylguanine produced by TMZ [179]. 

Thereafter if a base change is irreparable, the DNA breaks, followed by the initiation 

of apoptotic pathways for self-destruction [178]. In GSCs, MMR is found to be 

inactivated or at least dysfunctional [180]. TMZ main mechanism of action is thus 

bypassed. This allows for cell cycle and replication to continue without correction, 

leading to an accumulation of mutations.  

 

Via the poly ADP-ribose polymerase (PARP-1) pathway, another way of recognising 

DNA damage, cells can activate the DNA repair systems [180]. PARP-1 was also 

found to be upregulated in glioma [181]. A base excision repair (BER) mechanism is 

aiding the correction of the base pairs detected [182]. BER is able to excise the 



 30 

 

common chemo/radiotherapeutic-induced DNA changes detected [182]. 

Subsequently, damaged DNA base pairs can be removed via a DNA glycosylate 

and/or apurinic/apyrimidinic endonuclease (APE1) enzyme. Following this, a DNA 

polymerase will add the correct bases and a ligase with enable collect closure of the 

DNA molecule [183]. PARP-1 is affecting both the MMR and BER systems. These 

systems are hyperactive in malignancy, herein GB cells, leading to a cumulative effect 

of a drastic increase in repair DNA damage induced by therapy.  

 

The role of checkpoint inhibitors in cancer biology has been well-known [184]. DNA 

checkpoints, specifically ChK1 and Chk2 kinases, are known to detect possible DNA 

alterations, prevent cycle progression and activate genes aiding correction of DNA 

changes [185]. Chk1 is active, in the S and G2 cycle phase, without the detection of a 

DNA change. On the contrary, Chk2 protein is activated upon the detection of DNA 

damage at any point in the cell cycle. Chk1 has found to be overexpressed in a number 

of tumours including breast and colon as well as being correlated with tumour grade 

and recurrence [186-190]. Enhanced Chk1 has led to chemo/radiotherapeutic 

resistance of cancer cells, not only in GB but also in prostate and lung [191-194]. 

Increased expression of Chk1 has also been specifically linked to resistance to 

chemotherapy [194]. Chk1 is known to be essential for cell survival and viability. The 

increased expression may lead to increased survival because the higher the Chk1 

protein concentration is, the higher the ability to detect and handle DNA damage 

induced by therapies [195]. Cell cycle checkpoint proteins have an overwhelming role 

in therapeutic resistance, and thus are extensively studied, hoping to provide future 

targets for therapy.  
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Combining a variety of intracellular counteracting chemotherapeutic mechanisms, 

specifically to TMZ, the GSC antitherapeutic abilities, are an area of research and 

discovery. Despite the finding of myriad chemo-resistant mechanisms, no clinical 

translation improving overall prognosis has been made. New drug targets, combined 

with precision medicine protocols, may offer hope to one of the most feared 

malignancies known to humankind.  

 

GSCs exist in quiescence and active states, able to switch from between functional 

states influenced by the micro-environment. They play a key role in tumour 

reoccurrence. They are able to release key pro-angiogenic mediators and induce 

blood vessel formation. Further, they can downregulate the expression of pro-

inflammatory mediators and suppress cell induce cytotoxicity and antibody production. 

Their properties allow for new tumour to be formed. TMZ is the gold-standard 

chemotherapeutic agent for GB. However, adequacy of its bioavailability within a 

tumour is debatable. GSCs are not only able to survive but can resist the action of 

TMZ. Firstly, they can increase the expression of ABC transporters, effectively 

pumping out TMZ of the cells. Secondly, they show increase expression of MGMT, an 

enzyme which can efficiently correct TMZ-methylation induced changes to the DNA. 

Thirdly, they demonstrated an alteration of MMR mechanism allowing for the 

accumulation of TMZ-induced DNA changes without arresting the cell cycle. However, 

for the DNA changes that are detrimental to the cell, they exhibit an increase in ChK1 

and Chk2 kinase expression, and thus an enhanced ability to handle pertinent DNA 

chemotherapeutic-induced damage. 
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1.5 IDH Mutation  
 

1.5.1 Introduction  
 

The prevalence of IDH mutations in “diffuse gliomas” has been previously mentioned. 

It is now increasingly recognised that IDH mutations are linked to the development of 

glioma and tumour reoccurrence. Taking into consideration that current therapies fail 

to demonstrate improvement in outcomes, IDH induced biochemical alterations should 

be adequately understood and assessed as potential targets. 

 

IDH enzymes play a role in the Krebs cycle, lipogenesis, glutamine metabolism and 

redox regulation [196-198]. There are three isoforms: i) IDH1 that is located in the 

cytoplasm and peroxisomes; ii) IDH2 and IDH3, which are found in the mitochondrial 

matrix [199]. All IDH enzymes catalyse the same chemical reaction, the oxidative 

decarboxylation of isocitrate to -KG. However, while the chemical reaction catalysed 

by IDH1/2 id reversible and require binding of the nicotinamide adenine dinucleotide 

phosphate (NADP+) as a co-factor, which is converted to NADPH [200]. On the 

contrary, the chemical reaction of IDH3 is irreversible, and requires the binding of 

NAD+, which is reduced to NADH. IDH1/2 work as homodimer, while IDH3 is 

heterotetrameric enzyme, composed by two IDH3α catalytic subunits, one IDHβ and 

one IDH3, which are involved in the allosteric regulation of the enzyme function [201]. 

The active site is frequently mutated in many cancers, including gliomas. In addition 

to diffuse LGG and HGG, IDH mutations have been described in chondrosarcomas 

(56%), intrahepatic cholangiocarcinomas (23%), acute myeloid leukaemia (16% 

prevalence), as well as to a lower extend, myelodysplastic syndrome and 
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angioimmunoblastic T-cell lymphoma, as detected by RNA, DNA and antibody patient-

sample analyses [202-207].  

 

IDH cancer-related mutations affect predominantly IDH1/2, most of the times tending 

to localise to the arginine residues of IDH1 (R132) and IDH2 (R172, R140) [208]. The 

arginine residue is crucial for the recognition of isocitrate. A highly positively charged 

arginine residue at position 132,  is replaced by lower polarity amino acids such as 

histidine, cysteine or lysine. This missense mutation intervenes with the alpha and 

beta carboxyl sites of isocitrate [209, 210]. This results in a weak affinity for isocitrate 

in addition to raised NADPH levels, since less is going to be used as a co-factor for a 

forward reaction. In gliomas, the IDH mutations are heterozygous, most commonly 

affecting the amino acid residue R132H. IDH mutations produce a dimeric  enzyme 

composed of a wildtype and mutant monomer. Consequently, in IDH mutant cells, the 

wildtype part of the dimer leads to the conversion of isocitrate to -KG producing 

NADPH, whereas the mutant monomer   by using the NADPH as a co-factor, converts 

-KG to D-2-hydroxyglutarate (D-2-HG) exhibiting neomorphic activity [211]. IDH 

mutations have a biological impact both intracellularly as well as part of the tumour 

microenvironment favouring tumour formation and recurrence.  

 

1.5.2 Metabolic Alterations  
 

The accumulation of D-2HG as a result of IDH enzyme mutation leads to significant 

reduction and drainage of Krebs Cycle substrates and thus carbohydrate sources 

[211,212]. Consequently, the Krebs cycle is forced to adjust and drain other sources 

to yield ATP [213]. The loss of -KG and depletion of cellular metabolism, results in 
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the recruitment of other carbohydrate sources [214,215]. A study found, that glutamate 

dehydrogenase 2 catalysing the conversion of glutamate to -KG, is highly expressed 

in IDH mutant brain cells [216]. In addition, IDH-mutated glioma cells were found to be 

highly sensitive to the inhibition of glutaminase, an enzyme that contributes to the lysis 

of glutamate, further adding to the notion that IDH mutated cells are glutamate-

dependent [217]. Furthermore, the depletion of NADPH for the formation of D-2HG, 

leads to the reduction of intracellular lipogenesis, resulting in a great dependence in 

exogenous lipid sources [197] and as such, partly explaining the slow but steady 

growth of IDH mutant gliomas.  

 

In the majority of cancers, the need for an adequate supply of energy is mediated by 

the increased expression of lactate dehydrogenase (LDH) [218]. LDH catalyses the 

transformation of pyruvate, the end product of glycolysis, to L-lactate [219]. L-lactate 

can serve as immediate fuel for the increased demands for energy, to match the rapid 

proliferative potential of the cancer cells. On the contrary, in IDH mutated glioma 

patient-derived samples, the LDH is silenced [220, 221]. Hypermethylation of the 

promoter region of the LDH gene was found to be the main reason for the lack of LDH 

expression [220, 221]. This epigenetic silencing might explain the slow-growing nature 

of IDH mutants compared to IDH wild-type gliomas [221, 222]. 

 

IDH mutations result in significant alterations and reprogramming of the cellular 

metabolic pathways. Glutamine derivatives can serve as key substrates to the Krebs 

cycle compensating for the depletion of isocitrate. IDH mutate gliomas show a 

distinctive metabolic behaviour compared to other tumours, most notably reduced 
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glycolysis, which not only partially explains the slow-growing nature but provides 

useful metabolic targets for future glioma therapies.  

 

1.5.3 Epigenetic Modifications  
 

Several studies have reported that IDH mutant glioma is associated with CpG island 

hypermethylation [223,224]. Neomorphic IDH1 mutant activity leads to histone as well 

as DNA hypermethylation. However, the extend of hypermethylation is highly variable 

[225]. Understanding the pathogenesis of IDH mutant gliomas in relation to the 

hypermethylation patterns might lead to rational therapeutic targets identified. 

Methyltransferases and demethylases are able to control the DNA methylation pattern.  

Within the demethylation process, 5-methylcytosine is converted to 5-

hydroxymethylcytocine (5-hmC) catalysed by the ten-eleven translocation methyl 

cytosine dioxygenase (TET), in an -KG and iron-dependent manner. In addition, TET 

concomitantly catalyses cytosine demethylation steps by converting 5hmC to 5-

carcboxylcytosine (5-caC) and -formyl cytosine. Thymine DNA glycosylase BER 

enzymes will eventually convert 5ac-C to cytosine [226]. However, in IDH mutant 

gliomas, the TET activity is stopped due to D-2HG structural similarity to -KG 

[227,228]. Therefore the demethylation process cannot take place. IDH mutations are 

adequate in inducing a hypermethylated phenotype [229,230]. Follow up studies have 

shown that once the hypermethylation happens, it is irreversible and thus playing a 

pivotal role in malignant transformation and recurrence [231].  

 

Furthermore, D-2-HG is aiding histone methylation by inhibiting histone demethylases.  

A notable example will be lysine-specific demethylase (KDM) [227,232]. Histone 
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methylation is predominantly regulated via histone methyltransferases, which add the 

methyl group as well as demethylases (such as KDM), which remove the methyl 

group. Due to the fact that D-2HG is playing a catalytic role in these reactions, in a 

similar way as with the aforementioned TET, the increased levels of -KG 

competitively block the reactions [232]. It is now recognised that these histone and 

CpG island hypermethylation patterns are predominantly found in IDH mutant GSCs 

[233]. Studies have shown that CpG hypermethylation leads to inactivation of tumour 

suppressor genes (TSG) as well as altered gene expression related to cell 

differentiation [234]. Thus the IDH mutations ultimately block cell differentiation and 

cell cycle regulation, leading to uncontrolled proliferation, with concomitant 

accumulation of new somatic mutations, which are acquired across time and remain 

undetected. However, the development of glioma not only requires seeds (GSCs) with 

uncontrolled proliferation but also a fertile soil (tumour micro-environment). 

 

1.5.4 Redox Imbalance  
 

IDH mutations lead to the increased affinity for NADPH and -KG, leading to the 

conclusion that the mutant glioma cells will prefer using NADPH and not NADP+ 

[211,235]. The high consumption of NADPH disrupts the reducing equivalents of 

biochemical reactions that are needed for important ROS processes, leading to the 

accumulation of ROS [236,237]. ROS are involved in genomic instability, cellular 

motility and acquisition of invasive characteristics [238,239]. Excessive ROS leads to 

DNA and protein damage, disrupting enzymatic reactions and gene expression. The 

alteration of gene expression might lead to new mutations, which are oncogenic. 

Consequently, the ROS accumulation is fundamental and a hallmark to cancer 
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biology, especially for the IDH mutated gliomas. A number of studies have shown that 

cells derived from IDH1 mutated gliomas exhibit strong oxidative stress, evident by 

the increased expression of ROS such as manganese superoxide dismutase [240]. 

The elevated stress was confirmed with further evaluation shown that IDH mutated 

cells are prone to oxidative damage [241,242]. In the face of the raised oxidative profile 

enhancing antioxidant pathways, such as synthesis of glutathione, maybe be a 

valuable strategy to downplay the oncogenic effects of ROS [243].  

 

1.5.5 Tumour Microenvironment  
 

IDH mutant glioma cells alter not only an intercellular biochemical cascade of events 

but also their surrounding environment. It has been documented that IDH1/2 mutant 

cells are able to promote the genesis of new micro-vessel bed formation via the 

increase of VEGF [244]. Aberrant proliferation requires constant energy supply, which 

in turn will be supplied by nutrients and oxygen delivered by the bloodstream. Studies 

found that the expression of VEGF was significantly higher in IDH mutated gliomas 

cells versus IDH wildtype [245,246]. The HIF-1α released by GSCs in hypoxic 

conditions has been correlated to increased transcription of the VEGF gene [246]. As 

previously mentioned, GSCs are able to release pro-angiogenic factors. IDH mutated 

cells can upregulate VEGF to promote angiogenesis as well as inhibiting the 

breakdown of HIF-1α, leading to more VEGF production [247]. IDH1/2 mutations can 

positively affect their surroundings to create favourable conditions for aberrant cell 

proliferation and propagation.  
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1.5.6 Propagation and Invasion 

  
Glioma invasiveness is one of the main reasons for tumour recurrence and thus poor 

prognosis. As previously discussed, GSCs resist therapy, and some are left behind 

even after surgical resection. IDH1/2 mutations play a pivotal role in this process. The 

rapid growth of cells and the uncontrolled proliferation leads to pressure for nutrients. 

Therefore the invasive process of GSCs and their daughter cells allow them to escape 

the adversity of the surrounding environment. IDH2 mutations may lead to HIF-1a and 

beta-catenin accumulation, which have been correlated to tumour invasion [248]. 

Furthermore, IDH mutant cells lead to an increased expression of PDGF. PDGF-

induced glioma models exhibit invasive properties [249,250]. Further, the invasion of 

nearby tissue leads to rapid accumulation of microglia, a factor that has also been 

correlated to the invasive potential of glioma cells [249,250]. It is speculated that both 

PDGR and HIF-1α are released in response to tumour hypoxia. These factors 

contribute towards resistance to lack and acquisition of more oxygen. It is worth 

highlighting that HIF-1a is partially regulated via the prolyl hydroxylase PhD (PHD), 

which is an -KG dependent dioxygenase [247]. IDH mutations cause -KG-

dependent dioxygenase to be inhibited. [211]. As such, the HIF-1α regulation is lost 

due to IDH mutations. In addition, the aberrant expression of HIF-1α is found in cells 

at the peripheries of the necrotic tumour centre areas, which are commonly described 

to exhibit migration patterns [251]. One can hypothesise that glioma tumour cells are 

acquiring HIF-1α and PDGF expression to escape the necrotic core and invade nearby 

tissues. The exact mechanisms, which link HIF-1α and PDGF, are yet to be delineated.  
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1.6 Novel Therapeutic Options for IDH Mutant Glioma in the 
Molecular Era  
 

1.6.1 Direct Inhibition of IDH  
 

The mutant IDH gene and subsequently the enzyme have been correlated as 

explained above, with neomorphic activity and tumour recurrence. As such, in an 

attempt to identify novel but rational drug targets, direct inhibition of the mutant IDH 

has been pursued. AGI-5198 has been reported as the first novel, synthetic, direct 

enzyme inhibitor of the IDH mutant enzyme [252]. This drug was able to block the 

generation of D-2-HG, which is aberrantly produced in IDH mutant gliomas, impairing 

xenograft progression in vivo [252]. As reported, the drug was able to induce the 

expression of a gene that is related to differentiation, leading to reduced proliferation. 

AG-120 (ivosidenib) and AG-881 (vorasidenib) and AG-221 (enasidenib) are the 

second generations selective, reversible drug inhibitors produced, which are approved 

by F.D.A. for the treatment of acute myeloid leukaemia [253,254]. AG-221 was the first 

drug to be approved by F.D.A in 2017. Interestingly, the drug was tested in a clinical 

trial for gliomas and other IDH mutant tumour in 2014. The drug showed inhibitory 

effects for these tumours. However, appropriate dosing was an issue. A number of 

clinical trials are underway, currently evaluating the efficacy and safety profile of  AG-

120 and AG-881 [255]. Since the discovery that IDH1 R132H is the most common 

mutation in “diffuse” gliomas, more clinical trials have emerged [256-261]. Recently, 

Agios Pharmaceuticals has conducted a multicentre clinical study on recurrent LGG 

with IDH mutation using an AG-120 and AG-881 [256]. The primary outcome was to 

compare the D-2-HG concentrations in surgically removed tumours, which were 

treated versus not treated with the drug inhibitors. Clinical safety, dosage, tolerance 
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and pharmacokinetics will also be studied. This safety, feasibility trial will provide 

appropriate dosing for future studies. It is worth noting that the new inhibitors exhibit a 

good CSF-plasma ratio [262]. On the contrary, the main issue with the most common 

chemotherapeutic agent for HGG, the TMZ, was whether the amount of the drug 

reaching the tumour might not be enough to eliminate the remaining of the cells.  

BAY1436032 is also a new inhibitor, predominantly tested in myeloid leukaemia, 

showing tumour-suppressing potential in experimental trials [263, 264].  

 

Despite the positive results, the success of IDH-mutant inhibitors is found to have a 

plethora of limitations. A study showed that despite the fact that AGI-5198 reduces 

neomorphic activity, it also does not alleviate the DNA and histone hypermethylation 

phenotype since histone methylation was found to be high [265]. Further, Sulkowski 

and colleagues demonstrated that AGI-5198 is preventing DNA damage in cancer 

cells, leading to the conclusion that this might allow for resistance to DNA damage 

agents like current chemo and radiotherapeutic options [266]. This has also been 

confirmed by another study, suspected that IDH1 mutated cells under the action of 

AGI-5198 gain radioprotective abilities [267].  Currently, a number of other novel 

molecular inhibitors are tested. Those can be combined with IDH inhibitors to 

overcome possible drawbacks of each.  

 

1.6.2 IDH Vaccine  
 

Currently, there are three trials under investigation for and IDH1 peptide vaccine [259-

261]. Initially, a spontaneous immune response to the IDH mutation has been 

documented [268]. The researchers used a 15 amino acid-base construct to generate 
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an IDH1 peptide, with the R132H mutation and injected to mice. In animal models, it 

was reported that IDH1 mutated cells could be prevented from growing in the CNS 

and the vaccine preserved the normal physiological function of IDH1 wildtype gene 

[268]. To date, the German National Cancer Centre, Duke University and the Tiantan 

Hospital in China initiated 3 RCTs for IDH1 vaccines.  

 

1.6.3 Modulating Epigenetic Alterations  

  
As previously mentioned, the IDH mutation leads to histone and DNA 

hypermethylation patterns [223-234]. The hypermethylation phenotype might lead to 

neomorphic and oncogenic activities. Therefore intervening with the epigenetic 

changes has been postulated as a potential therapeutic option for IDH mutant gliomas. 

Flavahan and colleagues have demonstrated that glioma CpG island methylator 

phenotype (G-CIMP) is linked to hypermethylation at sites for cohesion and CCCTC-

binding factor (CTCF), leading to the reduced affinity of this protein [249]. The CTFC 

reduced binding affinity allows for enhancer mediated expression of PDGFR-A. 

PDGFR-A is a known mitogen that has been linked to glioma-genesis [269]. By 

administrating a demethylating agent, the showed that the CTCF binding is partially 

restored and the PDGFR-A expression is reduced. The notion that by inhibiting 

hypermethylation, might be beneficial has also been documented by another study. 

Decitabine, a DNA methyltransferase inhibitor was able to suppress the proliferation 

both in vitro and in vivo, of IDH mutant glioma cells [270]. Concomitantly, with the 

usage of 5-azacytidine, an analogue that controls the DNA methyltransferase activity, 

has led to reduced proliferation of IDH-mutated xenograft glioma model [271]. 
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However, epigenetic changes are only a piece of the puzzle. Combinatorial therapies 

might be needed to tackle the oncogenic potential induced by IDH mutations.  

 

1.6.4 Inhibiting Metabolic Pathways 
 

IDH mutated glioma cells develop new metabolic changes in response to depletion of 

carbohydrates from the Krebs cycle and the decrease in -KG. Therefore 

understanding and delineating the new metabolic alterations, will allow us to evaluate 

potential druggable target as novel therapeutic options. In IDH mutated glioma, the de 

novo production of NAD is reduced due to epigenetic silencing of nicotinamide 

phosphoribosyltransferase (NAPRT1). NAD is an important co-factor, pertinent to 

electron transport and metabolism of redox reactions, as it is able to carry H+ ions and 

is derived from de novo and salvage pathways [272]. As a result, the only option for 

IDH mutant cells is to rely on salvage pathways to generate NAD [272,273]. It can be 

concluded that mutated cell can be potentially be influenced by blockage of the 

pathway that is the only option for NAD production. A small molecule that potentially 

inhibits the production of NAD is nicotine phosphoribosyltransferase (NAMPT) [274].  

 

Moreover, glutaminolysis has been shown to be the major pathway of metabolic 

compensation [216] due to lack of isocitrate and thus targeting glutamine/ate 

metabolism might deplete the energy sources and thus inhibit major anabolic functions 

of the cell. For instance, bis-2-[5-9phenylacetamide)-1,3,4-thiadiazol-2y]ethyl sulfide 

has been shown to block glutaminase and thus blocking the glutamate metabolism 

and reducing proliferation and growth in IDH mutant AML cell [217,275]. Further, 

another drug called Zaprinast was able to block glutaminase and reduce the 
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proliferation of IDH-mutated cells [276]. Further, a drug called telaglenastat (CB-839) 

is a glutamine inhibitor that was shown to cause reduced D-2-HG production inducing 

glioma differentiation [277]. A phase 1 RCT is about to start recruiting, combining TMZ 

and radiotherapy and CB-839, a glutaminase blocker, in IDH mutated DAs and AAs 

[278]. By suppressing the glutaminolysis, tumour growth, proliferation might cease, 

and differentiation might take place.  

 

1.6.5 Modulating Redox Homeostasis  
 

ROS are predominantly elevated in IDH mutated tumours [235-243]. It was found that 

glutamine/ate and glutathione are reduced in IDH-mutated glioma cell compared to 

adjacent areas of normal tissues. D-2-HG is negatively correlated with the levels of 

glutathione, implying that glutathione is essential for the maintenance of redox 

homeostasis [279]. Increased consumption and thus, reduction of glutathione, 

suggests the increased burden of ROS scavenging. Therefore understanding these 

relationships will allow for therapies able to intervene with redox homeostasis. Limiting 

the ROS scavenging, which is driven by glutathione, could be an add-on therapy to 

the existing or under trial therapies. As previously mentioned, CB-839 can lead to 

blockage of glutamine metabolism and thus impaired redox homeostasis as well as 

sensitisation to radiotherapy [280].  

 

1.6.6 Inhibiting DNA Repair 
 

D-2-HG is able to compromise DNA repair mechanisms, such as inhibiting AlkB 

homologue 2/3 in addition to the homologous recombination DNA repair process 

[266,281,282]. D-2-HG is not able to compromise all repair mechanism, is thus 
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inhibiting some of the remaining will be detrimental. This might be a good alternative 

therapeutic option in addition to others as a combinatorial therapy. Several groups 

have shown that combining the effect of small drug inhibitors of the poly-ADP ribose 

polymerase (PARP) could be an important and effective strategy [283,284]. Serious 

DNA repair defects could be seen due to suppression of the homologous 

recombination pathways. Genomic integrity under stress is highly dependent on the 

PARP mediated BER [285,286]. Enhanced apoptotic changes can be with PARP 

inhibitor usage on IDH-mutant gliomas due to homologous recombination DNA repair 

[287]. In another study, it was demonstrated that by depleting NAD+, which is needed 

for PARP during TMZ induced BER, using GMX1778 as well as inhibiting NAMPT 

using FK866, eliminates the PARP remaining of repair activity [273,288].  This induces 

a specific metabolic stress response to TMZ-induced DNA damage and improves the 

duration of therapy response. IDH-mutated gliomas develop unique DNA repair 

mechanism compared to IDH wild-type cells. For instance, RAD51 recombinase is 

involved in the homologous recombination and protects TMZ induced DNA alterations 

[289]. Nunez and colleague, have shown that by depleting the TP53 and/or ATRX in 

IDH mutated cells, the DNA undergoes damage, highlighted by upregulating ATM 

signalling and resistance to radiotherapy [290]. It can be concluded that genomic 

instability and glioma metabolism is interrelated and thus offer a unique area to explore 

therapeutic strategies.  

 

1.7 Conclusion  
 

The substantial progress made in delineating the neurobiology of glioma formation has 

allowed for the new genetic and histopathological glioma classification, which 
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profoundly revolutionised the diagnostic accuracy of the disease. Despite the 

significant translation of the scientific knowledge to clinical care, the gliomas continue 

to be mostly incurable. GSCs play a crucial role in tumour recurrence. They are able 

to release key pro-angiogenic mediators and induce blood vessel formation. Further, 

they can downregulate the expression of pro-inflammatory mediators and suppress 

cell induce cytotoxicity and antibody production. Their properties allow for new tumour 

to be formed. TMZ is the gold-standard chemotherapeutic agent for GB. However, 

adequacy of its bioavailability within a tumour is debatable. GSCs are not only able to 

survive but can resist the action of TMZ. Firstly, they can increase the expression of 

ABC transporters, effectively pumping out TMZ of the cells. Secondly, they show 

increase expression of MGMT, an enzyme which can efficiently correct TMZ-

methylation induced changes to the DNA. Thirdly, they demonstrated an alteration of 

MMR mechanism allowing for the accumulation of TMZ-induced DNA changes without 

arresting the cell cycle. However, for the DNA changes that are detrimental to the cell, 

they exhibit an increase in ChK1 and Chk2 kinase expression, and thus an enhanced 

ability to handle pertinent DNA chemotherapeutic-induced damage.  

 

The discovery of the IDH mutation not only adds to the landscape of glioma genetics 

but also allows us to understand its role in oncogenesis and tumour recurrence deeply 

as well as to develop rational therapeutic approaches to intervene with the intracellular 

genetic, epigenetic and metabolic changes. IDH mutations are able to inhibit the 

differentiation of GSC, upregulated the tumour micro-environment and enable tumour 

invasion and propagation. Further, the IDH-related biochemical changes allow for 

compensatory metabolic and redox alterations. These changes potentially contribute 
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to tumour formation. However, more research is needed to establish the precise 

pathways in which these changes lead to tumour genesis. Nevertheless, IDH is an 

important target for the treatment of gliomas. The upcoming years, clinical trials 

conducted evaluating new therapies are likely to be increased. IDH vaccine trials are 

now underway, and it remains to be established whether these attempts are going to 

yield desirable outcomes. Furthermore, exploiting the metabolic and redox imbalance 

as a result of the IDH mutation is another therapeutic option. Without further 

randomised studies, based on current knowledge, we will never be able to provide 

hope to glioma patients. The scientific community will continue to explore new avenues 

in pursuit of improving patient outcomes. 
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Chapter 2 
 

CRITICAL APPRAISAL OF GENE TRANSFER 

TECHNOLOGIES  
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2.1 Introduction 
 

Since 2004 when the human genome was sequenced [291], a number of new genes 

have been identified, playing a role in disease progression and maintenance. In 2013, 

the somatic genomic landscape of gliomas had been defined [110]. From this point 

onwards, the study of genes identified became a global effort. Techniques are allowing 

the study novel genes were instrumental in delineating the functional role in tumour 

progression, invasion, evolution and reoccurrence. To do so, manipulating genes and 

by either deleting some or inserting others was a common practice. However, the 

means to transfer genes became available, only a couple of decades ago [292]. 

Herpes and adenoviral gene transfer techniques were proven effective in transducing 

neurons, which were subsequently used to study the function of genes in animal 

systems [292]. Thereafter, scientists have begun to develop a number of ways 

optimising the technologies and thus the vectors for gene transfer. The gold standard 

gene transfer vector should have specific characteristics such as i) being able to 

transfer genes in infant and adult animal, ii) having high efficiency in transducing, iii) 

enabling high expression but also a long-term feeling of genes, iv) causing minimal or 

no toxicity, v) not generating an elevated immune response, vi) allowing for long DNA 

to be inserted and thus incorporated to the host genome so that the transgene of 

interest to be accommodated and vii) mediating regulated expression. Nevertheless, 

these characteristics are optimal and thus not common to find in single gene transfer 

vector system. Therefore a plethora of delivery systems have been developed with 

their own advantages and disadvantages. These can be broadly classified into viral 

and non-viral methods.  
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2.2 Non-Viral Methods for Gene Transfer  
 

Non-viral technologies consist of physical and chemical means to transfer genes, such 

as liposomes and polymers, encapsulate the genetic information, thereafter 

incorporating it to the host cell. The efficiency of this vector is much less than viral 

methods. However, they are much more cost-effective, readily available, and their 

crucial characteristic is that they do not induce an immune response. Moreover, they 

usually allow for a large DNA to be incorporated and delivered [293,294]. Physical 

methods can be applied both in vivo and in vitro. The permit for cell membrane contact 

and immediately penetrating through, via mechanical, electrical, hydrodynamic, 

ultrasonic or laser-based energy providing a force for the DNA to enter the cell.  

 

2.2.1 Gene Gun 

  
Naked DNA particle can be bombarded by a gene gun whereby is pushed through and 

injected into the cell. In order for the DNA to be heavy and hard enough, gold or 

tungsten particles (1-3μm) are coating the DNA particle, and then with the aid of a 

pressurised gas allowing for acceleration in a very high speed, the particle can 

penetrate through the target tissue [295]. This technique is a similar concept with the 

“biolistic” technique, which was initially developed for plant transgenesis [296].  

 

2.2.2 Electroporation  
 

Electroporation is a method whereby two pair of electrodes are inserted onto the cell 

membrane, passing on electricity and as such destabilising the lipid membrane. DNA 

is found in particles in a media surrounding the tissue. Once the membrane is 

destabilised, DNA is able to penetrate into the cytoplasm [297,298]. However, this 



 51 

 

method is highly inefficient, with only 0.01% of the DNA able to be integrated into the 

host genome [299]. This method has been predominantly used in vivo, for muscle, 

lung and skin tissue as well as tumour treatment [300-303]. Significant drawbacks of 

this method also include controlling the voltage not to damage the tissue as well as 

the genomic DNA stability [304].  

 

2.2.3 Hydrodynamic 

  
A highly efficient and straightforward method is hydrodynamic delivery. This method 

allows for water-soluble molecules to be directly delivered to the cell and particles to 

organs [305]. It is predominantly used in vivo, with higher efficiency than alternative 

non-viral techniques. This gene transfer system has demonstrated high efficiency for 

rodent liver gene transfer allowing the expression of inflammatory factors [306], 

erythropoietin [307] and growth factors in mice [308] but it has never been used in 

humans yet.   

 

2.2.4 Ultrasound  
 

Ultrasound energy is utilised to make nonameric pores through the cell membrane 

allowing for and facilitating intercellular gene delivery in cells. The size of the pores 

formed is usually limited; thus, the size of the plasmid used to deliver the DNA should 

also be limited [309,310]. A significant drawback includes low in vivo efficiency.  

 

2.2.5 Magnetofection 

  
Magnetofection is a relatively new method that combines the advantages of the 

biochemical non-viral techniques (cationic lipids) and physical transfection methods 



 52 

 

(electroporation, gene gun) with high efficiency, in a single system. In addition, the 

drawbacks of low efficiency and toxicity are very much minimised. In this technique, 

there is the usage of magnetic fields allow of a concentrate bulk of magnetic particles 

encapsulating or attached to the nucleic acid to be landed on cell membranes of target 

cells [311,312]. The magnetic field allows for a force to be generated, which is exerted 

on the membrane so that 100% of the cells can attach on the membrane of the cells. 

Magnetofection can be used for all types of nucleic acids such as DNA, RNA and 

mRNA. It has been used for a range of cell lines and primary cells [313,314].  

 

2.2.6 Cationic Liposomes 
 

Cationic liposomes are a prevalent and commercially available non-viral gene transfer 

method whereby negatively charged nucleic acids form nanomeric complexes. The 

formation of cationic liposomes allows for the incorporation of both hydrophilic and 

hydrophobic molecules, minimal activation of the immune system and negligible 

toxicity as well as targeted delivery [315-317]. However, there are two significant 

disadvantages that need to be considered when using such a system. The liposomes 

can be easily degraded via the reticuloendothelial system, thus preventing the 

prolonged sustained delivery. Nevertheless, the modification of the liposomes using 

polyethene glycol (PEG) on the surface and the integration of pre-encapsulated 

liposomes withing polymer-based systems have entertained the major drawbacks 

[318]. The liposomes consist of fatty acids and alkyl moieties, which can be 12-18 

carbons long, with a positively charged polar head group. Since 1987 [319], when the 

first cationic lipid was synthesised, a plethora of new micelle systems have emerged 

to be used for gene transfer. To date, the efficiency of the system depends on the 
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specific structure, the size and the charge ratio between the DNA and liposome. 

Cationic systems allow for membrane fusion between lipoplexes and endosomal 

membrane, allowing for high gene expression [320,321]. This technique is ideal for in 

vivo when the cationic liposome/nucleic acid ratio is >1 [322-323] and in vitro, when it 

is closer to 1[324-327]. Liposomes have been used for gene transfer in a variety of 

cells (lung, skeletal, spleen, kidney) [328-335]. The liposome-based technologies 

continue to improve from the first generation vesicles to stealth and targeted liposomes 

[336,337].  

 

2.3 Viral Methods 

  
Viruses have been evolving since their existence. Independent of their family or order, 

their strategies to evade cells have been fine-tuned over the millennia. Their innate 

ability to efficiently do so and express genetic information into the host cell has been 

exploited by scientists over the decades. The viruses used for gene deliver are 

replication-defective vectors [338] most likely derived from wildtype viruses, in which 

the genes of interest are inserted replacing the genes needed for the replication. This 

prevents the cytotoxic effects of aberrant exploitation of the host genome. The lytic 

cycle genes can be replaced by trans-acting factors through specific cell line 

production or via the aid of helped virus in the manufacturing process [339-341]. The 

majority of viral vectors now used for targeting cells of the CNS have been readily 

derived from retroviruses, adeno and adeno-associated viruses and rarely now herpes 

simplex viruses [342-344]. These vectors have many differences with regards to their 

cell tropism, payload capacity and efficiency that can inevitably affect the duration of 
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the transgene expression. In addition, each virus has advantages and disadvantages 

if to be used for gene therapy and CNS applications.  

 

2.3.1 Retroviral/Lentiviral Vectors 

  
The retroviridae family consists of small RNA viruses that commonly replicate through 

a DNA intermediate. Gamma-Retrovirus and lentivirus belong to the aforementioned 

family [345]. Retroviral vectors are one of the most common viral method utilised for 

gene delivery in somatic and germline therapy. Due to the fact that retroviruses are 

able to linearly integrate into the host genome as well as not being very efficient in 

infecting non-dividing cells and thus difficult to reach high viral titers, are readily used 

for ex vivo delivery of somatic cells [346]. An example can be their usage in human 

gene therapy for the x-linked recessive single-gender disorder [347-352]. Retrovirus 

is able to transfect dividing cells because they are able to enter the cells by passing 

through the nuclear pores, making them good candidates for in situ treatment 

[353,354]. In addition, it is worth mentioning that if all viral genes are removed, there 

is 8kb space for transgenic incorporation. Notable limitations of retroviruses included 

low in vivo efficiency, immunogenic stimulation and inability to transduce non-dividing 

cells and risk of insertion, which might lead to oncogene activation or tumour 

suppressor inactivation [347-352].  

 

Lentiviruses, however, are very good at infecting both proliferating and quiescence 

cells ensuing long-term stable expression of the transgene without immune reaction 

[355-358]. Lentiviral vectors can also deliver 8kb of sequence. Due to the fact that 

lentivirus has a strong tropism for neural stem cells, they have been commonly used 
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for the ex vivo gene delivery in the CNS with minimal side effects. Examples include 

animal models of a neurological disorder such as Parkinson’s, Alzheimer’s and 

Huntington’s disease as well as spinal injury models [359-364]. High infection 

efficiency though comes with the drawback of insertional mutagenesis. Nevertheless, 

gene editing has allowed developing safe lentiviruses [365]. To prevent the potential 

of recombinant virus fenestration and thus increase the safety, the viral genome can 

be split in multiple plasmids [366]. Additionally, the envelope glycoproteins can be 

pseudo-typed to direct the viral load to other targets [367,368].  

 

2.3.2 Adenoviral Vectors  
 

Adenoviruses are DNA viruses that are double-stranded encoding for 30-40 genes, 

and their size varies between 35-40kb. Around 57 adenoviruses are able to infect 

humans.  They are classified into seven groups from A to G based on their differences 

in cellular tropism [369,370]. Group C virus [371] and types 2 and 5 are the ones, 

which are commonly used for gene delivery and therapy [372]. Adenoviruses are used 

as vectors, able to deliver large DNA particles, up to 38kb, transducing efficiently non-

dividing and dividing cells with minimal risk of integration in the host cell genome [370]. 

Adenoviral vectors have been readily used for the study of tumours [373,374] as well 

as developing preclinical rodent models of neurodegenerative disorders [375,376]. 

Their main disadvantages are the short-term, transient gene expression [377], high 

immunogenicity and significant cytotoxicity [378]. However, the new generation of 

viruses is able to overcome some of these limitations [379].  
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2.3.3 Adeno-Associated Viral Vectors  
 

Adeno-associated viruses belong to the Parvoviridae family number. They are 

relatively small single-stranded DNA viruses that are non-enveloped. Despite their 

small size, they are very promising vectors for gene transfer therapies for the CNS. 

Their main advantages include being safe and highly efficient in transducing both non-

dividing and dividing cells while maintaining long-term gene expression [380]. There 

are more than 150 clinical trials showing that the adeno-associated viruses have a 

good safety profile and clinical benefit for gene therapies [381]. Their genome has only 

three genes: one for replication, assembly and capsid, needed for viral replication, 

integration and packaging [382,383]. To date, nearly 12 different viruses have been 

isolated [384], and each is having unique features. These include differences in 

cellular tropism based on their unique surface proteins [385-387], differences in 

transduction efficiency and differences in the immunogenicity [388,389]. A number of 

serotypes are able to transduce neurones glial cells with high efficiency [390,391]. The 

viruses have been significantly refined, enabling increased uptake via mixing genome 

and serial genotypes, insertion of capsid proteins and peptide motifs from phage 

libraries and enrichment of capsids through the incorporation of peptide motifs 

[392,393]. A major limitation is their small sizes genome not allowing to accommodate 

more than 5kb of DNA [394,395]. However, a plethora of strategies are under 

development to enable incorporation of larger genes such as using truncated genes 

and promoters that retain the necessary protein expression of the full-length 

counterpart [396,397]. Another strategy is to take advantage of the ability of the virus 

to undergo intermolecular recombination that can lead to head-to-tail DNA 

concatamerisation [398]. In this way, the DNA sequence needed can be split and 
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package in two or three vectors [399-401]. Thereafter, upon transduction, multiple 

vectors can give rise to DNA concatemers, that are able to form the whole cassette 

[401]. As expected, the efficiency of this strategy is compromised [402]. The 

therapeutic potential of adeno-associated viral gene therapy has been tested in a 

variety of neurological disease [403-408].  

 

2.3.4 Herpes Simplex Viral Vectors 

  
Herpes viral vectors are enveloped double-stranded DNA viruses. They are 

characterised by the short replication cycle and their innate ability to infect the CNS 

and via retrograde axonal transport to attach the sensory neurones, establishing life-

long latency [409]. To date, there are three main forms of herpes viral vectors 

developed: i) replication-competent, ii) replication-defective and iii) amplicon vectors 

[410]. The replication-competent viral vectors are predominantly used in oncology 

since they are able to complete lytic cycles in the presence of permissive environments 

[411]. On the other hand, replication-defective viruses are used for gene delivery in 

the CNS [412]. Herpes virus encodes for approximately 80 genes (152kb). Regards to 

replication-defective viruses, half are usually removed and thus accommodate around 

50kb of foreign DNA, whereas amplicon vectors almost all genes (150kb) can be 

removed [413]. Herpes viruses are very infective [414]. However, major limitations 

include toxicity [415] and short term expression of transgene due to silencing 

mechanisms [416].  
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2.5 Conclusion 
 

The last three decades a number of non-viral and viral gene transfer systems have 

been developed, all of them having their unique advantages and disadvantages. To 

date, no perfect delivery system is yet to be designed for gene therapy and/or gene 

delivery for in vivo and in vitro applications. The process of developing optimal non-

viral vectors is still at its infancy and will most likely continue to evolve rapidly. In 

general, the key steps in developing effective gene transfer methods include the 

following: i) improving extracellular targeting, ii) improving intracellular delivery, iii) 

enable long-term gene expression, iv) reduce cytotoxicity and v) minimise 

immunogenicity. However, a key lesson learned throughout the last decade is that not 

a single delivery tool is able to adapt to all applications, but rather each should be 

chosen based on the specific situation’s needs and requirements. 
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Chapter 3 
 

THE IMPACT OF COVID-19 ON NEUROSURGICAL 

ONCOLOGY PATHWAY IN THE WEST MIDLANDS UK: A 

COMPARATIVE STUDY OF NEUROSURGICAL OUTCOMES 

AND CLINICAL DECISION 
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3.1 Introduction  
 

The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) pandemic 

brings new challenges to the management of neuro-oncology patients. The rapid 

increase of confirmed SARS-COV-2 test positive cases in the UK [417,418], resulted 

in lockdown measures being introduced on 23/03/2020. In response to the anticipated 

surge of SARS-COV-2 positive patients [419] requiring early intubation and respiratory 

support, hospitals augmented their critical care capacity, including converting 

operating theatres/recovery areas into overflow critical care units. To support the high 

volume of intubated patients, specialist health care professionals, including 

neurosurgeons, were redeployed to support critical care units. As per Public Health 

England (PHE) advice, healthcare workers who were vulnerable were required to 

shield at home, and those with suspected SARS-COV-2 symptoms required self-

isolating for 14 days [420]. These changes led to a profound decrease in the 

availability of specialist services and healthcare professionals. Consequently, cancer 

care was limited to clinical emergencies only, throughout the whole clinical pathway. 

In the face of the anticipated decrease in availability of neurosurgical specialty 

services, we hypothesised that the number of patients referred for a specialist review 

to the neuro-oncology multidisciplinary meeting (MDT or tumour board) would change. 

Accordingly evaluating the impact of SARS-COV-2 measures on neuro-oncology 

referral patterns and clinical management would provide more robust evidence 

describing management changes and clinical complications. These data will allow 

clinicians, hospital managers and policy makers to objectively anticipate the clinical 

demand during phase 2 recovery from SARS-COV-2 and facilitate future planning. 
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In order to aid MDT decision making and stratify patients with brain tumours requiring 

surgery during the SARS-COV-2 pandemic the Society of British Neurological 

Surgeons (SBNS), British Neuro-oncology Society (BNOS), the National Institute of 

Health and Care Excellence (NICE) and NHS England (NHS) released new guidance 

[421-424]. The objective was to identify high-priority patients and facilitate optimal, 

timely active treatment including prioritization of patients undergoing systemic cancer 

therapy and radiotherapy [421]. As per the NHS coronavirus action plan all cancer 

patients should expect to receive the best possible clinical care [425]. For brain cancer 

patients this includes maximal surgical resection followed by radiotherapy and 

chemotherapy. However, a number of patients may not have been offered the 

standard of care previously provided. Clinical care could be compromised by 

pressures to delay or reduce the duration of operations, lack of support from allied 

health professionals such as speech therapists or neurophysiologists, restricted 

access to surgical adjuncts and reduced radiotherapy and chemotherapy resources. 

 

The West Midlands region of the UK has a population of 5.7 million [426] and 

experienced one of the highest mortalities from SARS-COV-2 in the UK with age 

standardised mortality of 92.6 per 100,000 population compared to 81.9 per 100,000 

for England as a whole [427]. Brain tumour patients within this region are served by 

three neurosurgical oncology centres that were differently affected by SARS-COV-2. 

These three centres experienced an estimated mortality of 102 (CHIGH), 54 (CMED) and 

27 (CLOW) deaths per 100,000 population respectively1. From 23/03/20 onwards 

 
1 Estimated unadjusted morbidity for each centre was calculated up to 6/6/2020 using published NHS trust specific COVID-19 
death rates (https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-daily-deaths/) normalised by the 
corresponding trust population footprint (https://www.england.nhs.uk/digitaltechnology/connecteddigitalsystems/digital-
roadmaps/footprints/) accessed 24/6/20 

https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-daily-deaths/
https://www.england.nhs.uk/digitaltechnology/connecteddigitalsystems/digital-roadmaps/footprints/
https://www.england.nhs.uk/digitaltechnology/connecteddigitalsystems/digital-roadmaps/footprints/
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(complete lockdown), all three centres adopted the SARS-COV-2 pandemic neuro-

oncology NICE and BNOS guidelines [421-424].  

 

Here we report the impact of the SARS-COV-2 pandemic on: i) Changes in referral 

patterns and clinical workload in specialist care pathways for brain cancer patients, ii) 

Surgical safety, management and quality of surgical outcomes, iii) Changes in clinical 

oncology management. We report the initial impact of reconfiguration of health care 

delivery pathways in response to the SARS-COV-2 pandemic. We reveal how the 

health care restrictions due to the pandemic have impacted on clinical management 

of brain cancer patients and pave the way for future long term outcome studies. We 

hope that our data will inform clinical policy making and guideline formation for future 

SARS-COV-2 surges or new pandemics.  
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3.2 Methods  
 

3.2.1 Study Design  
 

A West Midlands UK ambi-spective study was conducted in three parts. All datasets 

were collected from the three neurosurgical centres (CHIGH, CMED, CLOW) across the 

West Midlands region. In Part 1, we collected data reporting the number of neuro-

oncology MDT referrals and surgical operations.  In Part 2, we collected data reporting 

surgical outcomes, morbidity and 30-day mortality. In the datasets from both Part 1 

and Part 2, comparison was made between a one-month baseline period before the 

pandemic lockdown (Period 1, retrospective data collection 03/02 – 28/02/2020) and 

one-month period during the complete pandemic lockdown (Period 2, prospective data 

collection 01/04 – 28/04/2020). In Part 3, we prospectively recorded changes in MDT 

decision making and oncology management over a 7-week period (23/03 - 08/05/20) 

during period 2, complete lockdown, at the height of the UK pandemic.  

 

3.2.2 Patient Identification  
 

For Part 1 of the study, we included any patient referred to and discussed at the neuro-

oncology MDT and any adult patient who underwent surgical resection with 

subsequent diagnosis of a tumour of the CNS. For Part 2 of the study, we included 

adult patients who underwent surgical resection, with a histological diagnosis of a 

malignant or benign tumour of primary neuroepithelial tissue, or the meninges. In 

addition primary CNS lymphoma and metastatic brain tumour were included. Tumours 

of the sellar region were excluded. For Part 3 of the study, we included all newly 

diagnosed brain tumour patients or new recurrence/progression from previously 
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diagnosed brain tumours that were discussed in the MDT together with all patients 

seen in the neuro-oncology clinic with a histological diagnosis of a brain tumour.  

 

3.2.3 Data Collection  
 

Data were collected from hospital electronic MDT records, clinic letters, operative and 

imaging notes. A trainee was responsible for the initial data collection at each centre. 

Prospective MDT data required members of the authorship team to be present at every 

MDT in each centre to capture data. Consultants were able to verify information case-

by-case to ascertain accuracy of data collection. For Part 2 of the study, pre-operative, 

operative and post-operative/follow-up data were collected for both time periods. Pre-

operative data included, gender and age as well as functional status (WHO 0-4). 

Operative data included duration of the operation. Postoperative data and follow up 

data collected included: i) post-operative deficit and complications, ii) resection rate, 

gross total resection (GTR) or subtotal resection (STR), iii) length of stay in hospital, 

iv) 30-day readmission, v) complications, vi) histological diagnosis and vii) 30-day 

mortality. GTR was defined as greater than 90% resection of contrast enhancing 

disease seen on the post-operative MRI scan obtained within 72 hours of operation 

as per NICE guidelines [428]. For Part 3 of the study, baseline demographics, 

radiological, histopathological and molecular diagnosis were documented. 

 

3.2.4 Statistical Analysis 
 

Continuous variables were reported using medians and interquartile ranges due to 

the non-normality of the data and categorical variables were reported as numbers 

and percentages. Tables and bar charts were generated to display relevant data. 
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Analysis and plots were generated using Excel sheets and SPSS (IBM) version 26. 

Data distributions were assessed visually using a histogram. The Sankey plot was 

created in R studio (Version 1.3.959) using the riverplot and Rcolorbrewer packages. 

 

3.2.5 Ethical Approval and Consent 

  
This study has been registered as a qualitative improvement study/audit under the 

local Research and Audit department and thus no ethical approval was needed. No 

patient identifiable factors were shared amongst centres. No consent was required for 

this manuscript.  
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3.3 Results 
 

3.3.1 SARS-COV-2 in the West Midlands 
 

A comparison between the 3 neurosurgical oncology centres serving the West 

Midlands is summarised in Table 3.1. Briefly, the centre with the highest number of 

SARS-CoV-2 patients admitted to hospital (CHIGH) reported 3251 cases with a mortality 

of 102/100,000 compared to 694 cases and a mortality of 57/100,000 in CMED and 964 

cases and a mortality of 27/100,000 for the centre with the lowest number of SARS-

CoV-2 patient deaths (CLOW). Referral patterns into specialist care pathways at the 

height of the pandemic in April 2020 were reduced in each centre with the greatest 

impact in the centre with the highest impact from SARS-CoV-2 infections (Table 3.1). 

 

3.3.2 Neurosurgical Workload during Phase 1 of COVID 
 

Across all three centres, 183 patients were referred to the neuro-oncology MDT in 

period 1 (before lock down; February), compared to 111 in period 2 (complete 

lockdown April), with a 39.3% overall decrease, (Table 3.1). Comparison between 

period 1 and 2 showed that CHIGH, CMED and CLOW had a 48.3%, 23.1% and 40.5% 

decrease in the number of referrals respectively, with CHIGH facing the largest reduction 

(Figure 3.1). Regarding the neurosurgical oncology procedures: 56 were conducted 

in period 1 (February) and 36 in period 2 (April) across all three centres, representing 

a 35.7% reduction overall, (Table 3.2a, 3.2b). CHIGH and CLOW showed large 

reductions in the number of neurosurgical operations between February and April, 

37.0% and 52.9% respectively, whereas for CMED only a small reduction was recorded, 

8.3% (Figure 3.2). 
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3.3.3 Surgical Management during Phase 1 of COVID 
 

Across centres, demographics of patients who had surgery in period 1 (February) 

versus period 2 (April), were fairly similar in terms of age and gender (Table 3.2a, 

3.2b). Operations during the complete lockdown (April) lasted longer than in February. 

(Table 3.2a, 3.2b, Figure 3.3). 77.8% of operations lasted longer than 3 hours in April, 

versus 17.9% in February. The number of patients with GTR in February was higher 

(77.8%) compared to April (48.1%), (Table 3.2a, 3.2b). We found limited differences 

with regards to length of stay in hospital (Figure 3.4) or histological diagnosis. Across 

all centres during both period 1 and period 2, high-grade glioma was the most common 

histological diagnosis, with metastatic tumour being second most common. Across 

centres, two recognized post-operative complications occurred in February (2.9%): 

one patient with non-COVID pneumonia who died within 30 days and one patient with 

wound dehiscence. Three recognized post-operative complications occurred in April 

(8.3%): one wound dehiscence, one post-operative seizure and one with post-

operative oedema with reduced consciousness that required a decompressive 

craniectomy. Regarding 30-day readmissions: one patient was readmitted in February 

and one in April (with a wound dehiscence). No patients died within 30 days of surgery 

that took place in Period 2 (April). No patients in these cohorts were SARS-COV-2 

positive at the time of operation and no patients were readmitted within thirty days of 

surgery with SARS-COV-2 infections.  

 

Regarding differences between centres: CHIGH recorded the largest reduction in the 

number of patients with a GTR (42.3%) in April compared to February, whereas CMED 

and CLOW recorded 37.5% and 11.5%, respectively, (Table 3.2a, 3.2b). CHIGH was the 
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only centre that demonstrated an increase in median length of post-operative stay in 

hospital, 2 days in February versus 3 days in April (Table 3.2). A low number of post-

operative complications, 30-day readmissions and 30-day morality rates was seen 

across centres. 
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3.3.4 MDT Decisions and Management during Phase 1 of COVID  
 

Across the centres over the seven weeks from 23/03/2020 (complete lockdown) 152 

new patients were discussed at the neurosurgical oncology MDT, of which 23 (15.1%) 

had a change in MDT management, (Table 3.3). The MDT decision before and during 

complete lockdown due to the SARS-CoV-2 pandemic are depicted in the Sankey 

diagram in Figure 3.5. Surgery was the most common management plan before 

lockdown (n=56, 36.8%), and represented the largest proportion of patients who 

experienced change in clinical management due to SARS-CoV-2. Out of 56 patients 

considered for surgery (biopsy n=13, resection n=43), 19 (33.9%) were offered an 

alternative including radiotherapy or stereotactic radiosurgery (SRS; n=12, 21.4%), 

chemotherapy (n=1, 1.8%) or interval monitoring (n=1). Out of 6 patients considered 

for chemotherapy before SARS-CoV-2, 50% were offered an alternative including best 

supportive care (BSC, n=2, 33.3%) or radiotherapy (n=1, 16.6%), (Table 3.4). Age 

and gender appeared similar for those who had a change in MDT management, 

compared to those who didn’t. Of the patients impacted in this way, 19 (83%) had 

cerebral metastatic disease or suspected HGG. The commonest change in 

management 52.2% (n=12) was to offer radiotherapy (RT) or stereotactic radiosurgery 

(SRS) without a histological diagnosis (Table 3.4). A further 21.7% (n=5), were offered 

best supportive case (BSC) instead of any other ‘active’ treatment, (Table 3.4). These 

changes in management, away from standard of care, were predominantly in CHIGH 

where 18.6% patients in CHIGH (n=18) were affected compared to 8.3% in CMED (n = 2) 

and 9.7% in CLOW (n=3) (Table 3.3). 
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3.3.5 Oncology Management during Phase 1 of COVID 
 

187 patients were seen by a clinical oncologist over a 7-week period during complete 

lockdown (23/03 - 08/05/20), with 56/137 (30%) having a change of management 

following consideration of UK SARS-COV-2 guidelines (Table 3.5). CLOW (72.2%) had 

the largest change in oncology management followed by CHIGH (26.0%) and CMED 

(6.4%). There was no difference in the baseline demographics of age, gender and 

histological diagnosis between patients who did and did not have a change in clinical 

management between centres. Patients with a diagnosis of GB were more likely to 

have treatment changed (Figure 3.5), which usually involved postponing alkylating 

chemotherapy, 36/56 patients (63.2%; Table 3.5). MGMT promotor methylation status 

was not available to inform clinicians when these decisions were made at the post-op 

MDT meetings or in clinic. Interestingly, clinical decision making was impacted by the 

IDH status. Patients with less aggressive isocitrate dehydrogenase mutant (IDH 

mutant) tumours were more likely to have chemotherapy postponed or stopped or 

radiation dose reduced compared to IDH wild type tumours (Figure 3.7). This was 

particularly noticeable for oligodendroglia tumours. One patient became infected with 

SARS-CoV-2 during chemotherapy for a primary CNS lymphoma (PCNSL). No other 

infections during chemotherapy were reported
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3.3.6 Illustrative Case-Study of Patient Impacted by SARS-COV-2 
 

A 57 year old patient was referred to the specialist neuro-oncology MDT, just prior to 

the implementation of period 2 SARS-COV-2 (complete lockdown). MRI demonstrated 

a right periventricular contrast enhancing lesion and following clinical review the 

patient was recommended for a burr-hole biopsy for tissue diagnosis. However, due 

to SARS-COV-2 guidelines the management plan was altered. The patient was 

presumptively treated with one cycle of chemotherapy for suspected PCNSL based 

on radiological evaluation and discussion at the neuro-oncology MDT. The patient 

failed to respond to chemotherapy and deteriorated with neutropenic sepsis and a 

seizure. Repeat imaging revealed disease progression in keeping with a glioblastoma. 

Following an image guided stereotactic biopsy the patient was formally diagnosed with 

a glioblastoma (WHO IV astrocytoma, IDH wild type, MGMT promotor unmethylated). 

The patient had a fifty-day delay between initial presentation and formal 

histopathological diagnosis. This was compounded by inappropriate chemotherapy 

and treatment-related neutropenia. Only after formal tissue diagnosis was the patient 

able to receive appropriate chemoradiotherapy. 
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3.4 Discussion  
 

Globally, the UK is one of the most heavily affected by the SARS-COV-2 pandemic 

[429]. Reports are emerging on how routine clinical care has been affected in different 

disciplines [430-432]. However, a comparison of the management of brain cancer 

patients before and during the pandemic has yet to be described. Here we report the 

impact on patients with brain cancer of NHS service delivery reconfiguration to 

manage SARS-CoV-2 infections for an ethnically diverse population of 5.7 million 

people. We compare three cancer centres managing brain tumour patients that report 

significantly different SARS-COV-2 mortality including one centre managing one of the 

highest mortality rates in Western Europe.  

 

3.4.1 Specialist referral and diagnosis 
 

Our study confirms that the SARS-COV-2 related changes in healthcare provision 

such as the decrease in available manpower, the redeployment of staff and the 

conversion of operating theatres to intensive care units led to a significant decline of 

nearly 40% in referrals into the specialist care pathways and a reduction of surgical 

workload by over 30%. Our findings are consistent with Cancer Research UK (CRUK) 

estimates of 75% reduction of urgent cancer referrals was seen the first 4-weeks post-

lockdown with a subsequent 50% reduction in weeks 4 to 10 of the lockdown and an 

estimated 60% reduction in cancer surgery [433]. A national report from the 

Netherlands reported up to 26% reduction in cancer diagnosis [434] and a global, 

large-scale study estimated that elective cancer surgery cancellation rates were 

between 35.3% to 39.6%, with 2.3 million elective cancer cases cancelled worldwide 

[435]. Two international surveys compiling data from 96 and 60 countries respectively, 
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reported an up to 57.5% and 52.5% cancellation of neurosurgical operation and clinics 

across the globe [436,437]. The significant delays of cancer surgery are likely to 

impact on survival. A 3-month delay in surgery across all Stage 1-3 cancers is 

predicted to result in over 4,700 attributable deaths per year in England [438]. 

 

We postulate that in response to the “Stay at home, Stay safe, Protect the NHS” [439] 

strategy patients did not want go to hospital due to the perceived risk of developing 

corona virus infections. Our data suggests that this is unlikely even in centres 

managing very high SARS-CoV-2 caseloads.  

 

The reduction of referrals and operative cases has the additional potential to impact 

on neurosurgical training [440-443] as well as having major financial burden due to 

the surgical backlog in the upcoming months [444]. Our study is the first to document 

the decrease in diagnostic workload for neuro-oncology services using real-time 

evidence. Regional variation in the impact of SARS-CoV-2 on diagnostic surgery for 

brain cancer patients has implications for future network-based strategies to mitigate 

the reduction in access to resources in future SARS-CoV-2 surges. There is growing 

concern amongst clinicians that in the coming weeks and months there will be an 

increase in late presentation of brain cancer patients who may no longer be eligible 

for treatment. A flexible strategy of referring patients from regions of high impact to 

regions of lower impact will improve opportunities for all cancer patients to receive the 

best possible clinical care [425].  
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3.4.2 Delivering standard of care for patients 
 

During period 2, SARS-CoV-2 complete lockdown, regional brain cancer care shifted 

to an emergency-based pathway in each centre in accordance with national guidelines 

[421-424]. By comparing the clinical management of patients during period 1, before 

lockdown with period 2, complete lockdown we were able to examine the effect these 

changes had on clinical management. These data may inform future planning and 

update clinical guidelines. 

 

Despite loss of specialist clinical care pathways surgical complications, 30-day 

readmission rates and 30-day mortality rates were not impacted confirming that the 

safety of surgery was maintained. The perceived increased risk of SARS-COV-2 

infection among patients going to hospital for diagnostic surgery was not 

substantiated. All patients were SARS-COV-2 negative at the time of surgery and no 

patient returned with a SARS-COV-2 infection within 30 days of surgery. Diagnostic 

surgery for brain cancer patients is safe and fear of SARS-CoV-2 infection should not 

deter patients from going to hospital for help. 

 

Our data confirmed that operations lasted longer and the number of GTR achieved 

was reduced in the emergency-based system compared to a normal urgent elective 

standard of care pathway. The benefits of elective care pathways for brain cancer 

patients are well established [445] and the unit that had the largest SARS-COV-2 

caseload, CHIGH, suffered the greatest impact on surgical services. The changes were 

not due to variation in age, gender or radiological diagnosis. Possible contributing 

factors to longer operating times may include the impact on the theatre team of 
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wearing full PPE and increased complexity of some of the urgent cases that were 

prioritised.  

 

Complete surgical resection of brain cancers including HGG and cerebral metastasis 

is associated with improved overall and progression-free survival, [446-448] and 

SARS-COV-2 related consensus management guidance, suggested that patients 

should still be offered GTR when deemed feasible [449]. The reduction in GTR rates 

seen during the pandemic is likely to be multifactorial including: 1) cases being 

managed on an emergency list with inherent difficulty utilizing surgical adjuncts, 2) 

difficulty providing 5-ALA 2-4 hours pre-operatively, 3) limited access to 

neurophysiological monitoring and awake craniotomy with speech mapping and 4) 

some operations being performed by consultant surgeons not in the oncology core 

team. It has been suggested that awake surgery and extended operation times may 

lead to more complications and extend the post-operative hospital stay in SARS-CoV-

2 hot environments [450]. However, our comparative data before & during SARS-CoV-

2 does not show any differences in complication rates or 30-day mortality. 

 

Our data reveal changes to standard of surgical care in approximately 15% of patients, 

with those with high grade gliomas or metastasis being more adversely affected. 

Whilst age was a well-recognised risk for fatal SARS-COV-2 infection [451,452], we 

observed no age related differences in referral patterns or MDT planning, suggesting 

this was not a relevant factor in neuro-oncology SARS-COV-2 decision making.  

The centre with highest SARS-COV-2 caseload and morbidity reported the greatest 

number of changes from normal standard of care. The most important prognostic 
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factor, especially for HGG is surgical resection [446] and surgery plus RT has superior 

prognostic outcomes than RT alone for brain metastasis [447]. Despite this, 

approximately three quarters of patients who had a change in management were not 

offered surgery but rather another form of active treatment typically RT/SRS without a 

tissue diagnosis. We report a clinical case-study illustrating the profound dangers of 

this approach. 

 

Similarly, there was a change in oncology standard of care management in 30% of 

patients, with HGG patients again the most adversely affected. Typical changes 

involved postponement in their chemotherapy due to concerns over pancytopenia and 

increased susceptibility to corona virus infection. These data are consistent with a 

study of 800 cancer patients from 55 cancer centres in the UK showing that 22% of 

patients had a change of oncology management [453]. In our study, a high proportion 

of patients with IDH-1 mutations received radiotherapy alone with any chemotherapy 

being deferred. The rationale was based on the better prognosis of IDH mutant 

tumours and the possible increased risk of SARS-CoV-2 infection if there was 

myelosuppression. A shift toward surveillance may be acceptable for low-grade brain 

tumours in the short term. However, moves away from standard of care for aggressive 

brain tumours (defined by NICE guidance NG99 [428]) should be avoided whenever 

possible [425]. Importantly, faster access to molecular diagnostic stratification tools for 

brain tumour patients will aid critical clinical decision making in a timely manner at the 

MDT meetings in future surges.  
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Overall these data suggest that SARS-COV-2 related changes in resources and care 

pathways have impacted the quality but not the safety of clinical management of brain 

cancer patients. Importantly, the correct usage of PPE and early adoption of hospital 

protocols provided high levels of protection for both patients and healthcare 

professionals. Follow-up studies will be needed to evaluate the long term impact of 

these changes in clinical management. Despite the ethical challenges of clinical 

decision making during the pandemic, our results demonstrate that oncologists 

effectively used the existing evidence and guidelines to manage changes in oncology 

management  

 

3.4.3 Limitations of this study 
 

Our scientific approach had to be developed rapidly in the face of the evolving SARS-

COV-2 pandemic. We recognize the inherent limitations of retrospective data and a 

small sample size. Nevertheless, these data provide an initial “snapshot” of the impact 

of SARS-COV-2 on the management of brain cancer patients in the UK that has the 

potential to inform future guidelines and strategies to mitigate the impact on brain 

cancer patients of future surges and new pandemics. For patients undergoing a 

change in management further follow-up studies are required to understand if their 

treatment during SARS-COV-2 will impact on their overall survival.  

 

3.5 Conclusion  
 

Here we report the impact on patients with brain cancer of NHS service delivery 

reconfiguration to manage the SARS-CoV-2 pandemic. We compared three cancer 

centres managing brain tumour patients for a population of 5.7M that reported 
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significantly different SARS-COV-2-related mortality. We compared period 1 before 

the pandemic lockdown (February 2020) with a period at the height of the SARS-CoV-

2 complete lockdown in the UK (April 2020). Our data show that referral of brain cancer 

patients into specialist care pathways fell by 40% leading to reductions in diagnostic 

surgery of over 30% as a result of SARS-COV-2 related changes in healthcare 

provision and help-seeking behaviour. Surgical safety was not impacted by high levels 

of SARS-CoV-2 infections, but the quality of surgical results was reduced by the shift 

to emergency-based care leading to increased incidence of residual disease post-

operatively and longer operation times. Clinical decision making and management 

after diagnosis was compromised with patients suffering from the most aggressive 

cancers being most severely affected by reduced access to chemotherapy. In the 

future we recommend that accelerated access to molecular diagnostics will refine 

clinical decision making and help balance risk/benefit evaluations for individual 

patients. Regional networking could provide a flexible strategy of referring patients 

from regions of high SARS-CoV-2 to regions of lower SARS-CoV-2 incidence and 

improve opportunities for all cancer patients to receive the best possible clinical care. 
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