

GENETIC CONSERVATION AND SUSTAINABLE USE OF INDONESIAN MEDICINAL PLANTS

By

RIA CAHYANINGSIH

A thesis submitted to the

University of Birmingham for the

degree of

DOCTOR OF PHILOSOPHY

School of Biosciences College of Life and Environmental Sciences University of Birmingham February 2021

UNIVERSITY^{OF} BIRMINGHAM

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.

Copyright by RIA CAHYANINGSIH, 2021

All Rights

Reserved

ABSTRACT

As a biodiversity hotspot and the centre of origin of many cultivated plants, including medicinal plant species, Indonesia is a country of precious value to its own people and the world at large. However, Indonesia faces the issues of severe population growth, land conversion, deforestation and climate change that threatens its biological richness. Considering the importance of these species, well-planned and pro-active research efforts, are essential to ensuring their long-term conservation and sustainable utilisation. The empiric chapters in this thesis represented some of these efforts, consisted of prioritisation of species on the checklist according to defined criteria, in situ and ex situ gap-analysis, a climate change risk assessment, and the study of DNA barcoding for medicinal plant species. These priority listings nominate 233 medicinal plant species in need of conservation and appropriate utilisation. The gap analysis resulted in the determination of where in situ and ex situ conservation of priority medicinal plants in Indonesia should be done and provided some related recommendation. In addition, based on climate change analysis, the total of 28 priority species are identified to be more threatened in the future and become species target for highest conservation action. Meanwhile, according to DNA barcoding study, we found that matK can be the core DNA barcoding and might be supported with ITS2 and rbcL. New DNA barcoding regions of studied Indonesian medicinal plants have also been provided. Generally, the results of this project will lead to a recommendation that supports National Priority Program included in the Mid-Term National Development Plans of Indonesia and in meeting the expectations of the Convention on Biological Diversity (CBD), particularly the Aichi targets and the Global

Strategy for Plant Conservation (GSPC). Besides, this result is fully in line with Indonesia's National Policy on Traditional Medicines, known by the acronym KOTRANAS (Kebijakan Obat Tradisional Nasional).

DECLARATION

The work presented in Chapter 2, Chapter 3, Chapter 4, and Chapter 5 has been prepared for publication in journals. The content of each chapter is largely identical to the manuscript presented for publication, however that text was written by me and all chapters presented here were written in their entirety by me.

Chapter 2 (published)

Cahyaningsih, R., Magos Brehm, J., and Maxted, N. (2021) Setting the priority medicinal plants for conservation in Indonesia. *Genetic Resources and Crop Evolution*, 68, 2019-2050 (https://doi.org/10.1007/s10722-021-01115-6)

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by R.C. The first draft of the manuscript was written by R.C and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Chapter 3 (published)

Cahyaningsih, R., Magos Brehm, J., and Maxted, N. (2021) Gap analysis of Indonesian priority medicinal plant species as part of their conservation planning. *Global Ecology and Conservation*, 26, [e01459]. https://doi.org/10.1016/j.gecco.2021.e01459)

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by R.C. The first draft of the manuscript was written by R.C and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Chapter 4 (submitted)

Cahyaningsih, R., Phillips, J., Magos Brehm, J., Gaisberger, H., and Maxted, N. (2021). Climate Change Impact on Medicinal Plants in Indonesia

R.C, J.MB, and N.M contributed to the study conception and design. Material preparation, data collection and analysis were performed by R.C. The first draft of the manuscript was written by R.C and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Chapter 5 (submitted)

Cahyaningsih, R., Leach, L., Rahayu, S., Magos Brehm, J., and Maxted, N. (2021). Role of DNA barcoding in facilitating conservation and use of plant species: a case of Indonesian medicinal plant (submitted)

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by R.C. The first draft of the manuscript was written by R.C and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Signed:

Ria Cahyapingsih

Professor Nigel Maxted

Date: 15.05/21

Date: 03.06/21

The prophet (peace be upon him) said:

When the human being dies, his deeds end except for three: ongoing charity, beneficial knowledge, or a righteous child who prays for him [narrated by

Muslim]

and

The best of people are those that **bring most benefit** to the rest of *humankind* [narrated by Daraqutni].

ACKNOWLEDGMENTS

Having this PhD has been a never forgotten life journey for me and immense gratitude to God for sending many kind people to support and guide to finish the journey.

I would like to express my special appreciation to my supervisor Prof. Nigel Maxted, who has been remarkable to me, for all the support, encouragement, and patience during my PhD period. In addition, a great thank you goes to all of my cosupervisors, namely Dr Joana Brehm, Dr Lindsey Leach, and Dr Sri Rahayu (from Bogor Botanic Gardens-Indonesian Institute of Sciences) for guidance and constant feedback. This PhD would not have been achievable without all of their supports.

I would like to thank the Ministry of Finance Indonesia for financial support through the Endowment Fund for Education (LPDP scholarship). Gratitudes are sent to R. Syamsul Hidayat, MSi (Indonesian Botanic Gardens, Indonesian Institute of Sciences (LIPI)), Dr Bob Alkin (Medicinal Plant Names Services-RBG Kew), Prof. Pete Hollingsworth (Royal Botanic Garden Edinburgh), Hannes Gaisberger, MSc (Alliance of Bioversity International and CIAT, Rome, Italy) for valuable and warm discussion regarding the empiric chapter in the thesis.

I acknowledge institutions and team for providing me data during my study with hospitality, namely the Indonesian herbarium (Herbarium Bogoriense) -Indonesian Institute of Sciences (Dr Atik Retnowati and team) and Bogor Botanic Gardens-Indonesian Institute of Sciences (Agus Suhatman, MP and team); Cibodas Botanic Gardens-Indonesian Institute of Sciences (Anggun Ratna Gumilang, SSi and team), Natural History Museum-NHM (Jacek Wajer, MSc and team), Royal Botanic Gardens Kew-RBGK (Renata Borosova and Marcella Corcoran), Royal Botanic Gardens Edinburgh-RBGE (Dr Peter Wilkie and team), Naturalis (Roxali Bijmoer), and Hortus Botanicus Leiden (Dr Gerda A. van Uffelen and team).

A very special thank you to Wiguna, Nolipher, Jade, Maria, Moza, Aremi, Sami and Ali for good friends and for valuable time for discussion during studying period. Thank you to Dr Graham Eagleton and Dale for English discussion.

I would also like to say heartfelt thank you to my husband and kids for always being next to me, believing in me, understanding and helping me reach my dreams with unconditional love. My sincere thanks go to my beloved mum, brother, and sisters who always pray for my blissful life from my home country. Last but not least, I thank all my relatives and my best friends who always support me, especially with their positivity and encouragement.

TABLE OF CONTENTS

CHAPTER 1. GENERAL INTRODUCTION 1.1. Background	1 1	
 1.1.1. Biodiversity and ecosystem services	1 2 3 7 8 10 10 14 19	
1.3. Thesis Outline	20	
CHAPTER 2. SETTING THE PRIORITY MEDICINAL PLANTS H CONSERVATION IN INDONESIA	FOR 22 23	
 2.2. Methods	25 31 31 32 37	
 2.4.1. Checklist of Indonesian medicinal plants 2.4.2. Priority of Indonesian medicinal plants, their current conservation and conservation planning 2.5. Conclusion 	37 n 39 42	
CHAPTER 3. GAP ANALYSIS OF PRIORITY INDONESIAN MEDICIN PLANT SPECIES AS PART OF THEIR CONSERVATION PLANNING 3.1. Introduction	JAL 43 44	
3.2. Methods	47	
3.3. Results and Discussion	50	
 3.3.1. Species' richness and bias map of Indonesian priority medicinal plants 3.3.2. <i>In situ</i> and <i>ex situ</i> gap analysis of Indonesian priority medicinal plants 3.4. Conclusion	50 55 65	
CHAPTER 4. CLIMATE CHANGE IMPACT ON MEDICINAL PLANTS INDONESIA	IN 68 69	
4.2. Materials and Methods		
4.2.1. Medicinal plants and occurrence records	71	

4.2.2.	Environmental variables for current and future analyses	72
4.2.3.	Species Distribution Modeling (SDM)	74
4.2.4.	Impact of Climate Change	75
4.3. Results a	and Discussion	76
4.3.1.	Species Richness of Medicinal Plants in Indonesia Under Current	
and Futu	ire Scenarios	76
4.3.2.	Loss and gain of the distribution area	81
4.3.3.	Turnover	85
4.3.4.	Identifying target species for highest conservation	86
4.4. Conclusi	ions	90
CHAPTER CONSERVA	5. ROLE OF DNA BARCODING IN FACILITATIN ATION AND USE OF PLANT SPECIES: A CASE OF INDONESIA	JG NN
5 1 Introduce	L FLANIS	92
5.1. Introduc	11011	93
5.2. Methods	3	95
5.2.1.	Sample and literature collection	95
5.2.2.	DNA barcoding analysis	98
5.2.3.	Sequence analyses and data interpretation	99
5.3. Result a	nd Discussion	01
5.3.1. medicina	Description of <i>ITS2</i> , <i>matK</i> , <i>rbcL</i> , and <i>trnL</i> region of Indonesian al plants	03
5.3.2.	Identification of Indonesian medicinal plants using their sequences	3
of <i>ITS2</i> ,	matK, rbcL, and trnL region	05
5.3.3.	Understanding the use of DNA barcoding for Indonesian medicina	1
plants		08
5.4. Conclusi	ion1	11
CHAPTER 6	5. GENERAL DISCUSSION1	12
6.1. Backgro	und1	12
6.2. Conserva	ation strategy for Indonesian medicinal plants1	13
6.3. Limitatio	on of The Research1	15
6.4. Recomm	nendations: Future Research1	18
6.5. Conclusi	ions1	18
REFERENC	ES1	20

LIST OF FIGURES

Figure 1.1	. A diagram depicts the linkage between ecosystem services and constituents of well-being (Millennium Ecosystem Assessment, 2005)
Figure 1.2.	Map of Indonesia generated by DIVA-GIS version 74
Figure 1.3.	A diagram listing the 17 Sustainable Development Goals (SDGs) by UN www.unfoundation.org)10
Figure 2.1.	Flowchart of setting checklist of medicinal plants of Indonesia27
Figure 2.2.	Flowchart of setting prioritisation of medicinal plants of Indonesia30
Figure 2.3.	The families represented in the Indonesian Medicinal Plant Species Checklist with priority species for conservation from the highest priority number
Figure 2.4.	Venn diagram of priority medicinal plant species grouped into prioritisation criteria
Figure 3.1.	Species richness map of priority medicinal species (grid of 50 km x 50 km)
Figure 3.2.	Bias of observation map of priority medicinal species in Indonesia (grid of 50 km x 50 km)
Figure 3.3.	The complementary network areas map (grid of 50 km x 50 km) which conserve priority medicinal plant species in Indonesia and overlapped with PA (in light green) for <i>in situ</i> conservation of priority medicinal plants in Indonesia
Figure 3.4.	<i>Ex situ</i> gap map of priority medicinal plant species conservation in Indonesia (grid of 50 km x 50 km)
Figure 4.1.	The predicted species richness of 43 medicinal plants in Indonesia under the current climatic conditions with a grid cell resolution of five minutes (approximately equal to 10 x 10 km2) used
Figure 4.2.	The predicted future species richness of 43 medicinal plants in Indonesia under the RCP4.5 scenario year of 2050 (above) and 2080 (below) with a grid cell resolution of five minutes (approximately equal to 10 x 10 km2) used
Figure 4.3.	The predicted future species richness of 43 medicinal plants in Indonesia under the RCP8.5 scenario year of 2050 (above) and 2080 (below) with a grid cell resolution of five minutes (approximately equal to 10 x 10 km2) used

Figure 4.4.	The predicted loss and gain of 43 medicinal plants in Indonesia distribution under the RCP4.5 scenario year of 2050 (above) and 2080 (below) with a grid cell resolution of five minutes (approximately equal to $10 \times 10 \text{ km}^2$) used, with insert map where highest loss
	predicted
Figure 4.5.	The predicted loss and gain of 43 medicinal plants in Indonesia distribution under the RCP8.5 scenario year of 2050 (above) and 2080 (below) with a grid cell resolution of five minutes (approximately equal to 10 x 10 km2) used, with insert map where highest loss predicted
Figure 4.6.	The predicted number of threatened medicinal plants in Indonesia per future scenario, as determined by the IUCN category A3(c)
Figure 5.1.	Box plots of the sequence length (left) and GC content (right) per region of <i>ITS2</i> , <i>matK</i> , <i>rbcL</i> , and <i>trnL</i> of Indonesian medicinal plants
Figure 5.2.	Scatterplot of Identification accuracy vs Sequence length (bp), GC Content (%), Species number per genus, and Percentage of Identity
Figure 5.3.	Venn diagrams for correct identification in species level, in genus level, and in family level
Figure 5.4.	Summary of DNA Barcoding Use for Medicinal Plant Conservation in Indonesia110

LIST OF TABLES

Table 2. Level of endemism of priority medicinal plant species within Indonesia
Table 3.1. Site proposed for <i>in situ</i> conservation of priority medicinal plant species of Indonesia
Table 1.2. Priority Indonesian medicinal plants species with less than five occurrence points
Table 2.1. Environmental variables used for the analyses 72
Table 4.2. Overall descriptive value of species richness of medicinal plants in Indonesia under different scenarios
Table 4.3. Overall descriptive value of loss and gain of medicinal plant's distribution area in Indonesia per future scenario
Table 4.4. Overall descriptive value of turnover rate per future scenario
Table 4.5. Observation on all studied medicinal plant species impacted by climate changes per future scenario
Table 4.6. List of target species for highest conservation due to predicted climate changes impact
Table 5.1. 61 Indonesian medicinal plants used in this study
Table 5.2. Primers used for amplification of DNA regions of <i>ITS2</i> , matK, rbcL, and trnL
Table 5.3. Success percentage in each DNA barcoding step's result101
Table 5.4. Identification success rates of each region through the BLAST method
Table 5.3. K2P pairwise genetic distances (%) of each region summary at different species levels

LIST OF APPENDICES

Table Appendix 2.1. Indonesian priority medicinal plant species

- Table Appendix 2.2. Indonesian medicinal plants with threat status (IUCN), whether

 they are listed in CITES Appendix II and national legislations
- Table Appendix 3.
 Priority medicinal plant species included in gap analysis study
- Table Appendix 4.1. Species used for the climate change analysis and maxent result for its validity
- Table Appendix 4.2. Impacts of climate change on the predicted distribution areas of priority medicinal plants in Indonesia for two emission scenarios (RCP4.5 and RCP8.5) for 2050 and 2080
- Table Appendix 5.1. Summary of DNA barcoding result with related information per species
- Table Appendix 5.2. Summary DNA Barcoding Region Use for MP Conservation in Indonesia

LIST OF ACRONYMS AND ABBREVIATIONS

APETOI	Association of Traditional Medicinal Plant Exporters
BBG	Bogor Botanic Gardens
BOLD	the Barcode of Life Data System
CBD	Convention on Biological Diversity
CBG	Cibodas Botanic Gardens
CBOL	Consorsium for the Barcode of Life
CITES	The Convention on International Trade in Endangered Species of Wild Fauna and Flora
CR	Critically Endangered
DD	Data Deficient
EN	Endangered
DNA	Deoxyribonucleic acid
FAO	Food and Agriculture Organization
GBIF	The Global Biodiversity Information Facility
GSPC	Global Strategy for Plant Conservation
IBSAP	Indonesia Biodiversity Strategy and Action Plan
IPCC	Intergovernmental Panel on Climate Change
IUCN	International Union for Conservation of Nature
KOTRANAS	Kebijakan Obat Tradisional Nasional (Indonesia's National Policy on Traditional Medicines)
MA	Millennium Ecosystem Assesment
MDGs	Millennium Development Goals
MPNS	Medicinal Plant Names Services
MPSG	Medicinal Plant Specialist Group

MPs	Medicinal Plants
NCBI	The National Center for Biotechnology Information
NHM	Natural History Museum (UK)
PA	Protected Area
PCR	Polymerase Chain Reaction
POWO	Plants of the World Online
PROSEA	Plant Resources of South-East Asia
RBGK	Royal Botanic Gardens, Kew (UK)
RBGE	Royal Botanic Gardens, Edinburgh (UK)
RCP	Representative Concentration Pathway
SDGs	Sustainable Development Goals
TRNS	Taxonomic Name Resolution Service
UN	United Nation
VU	Vulnerable
WDPA	World Database on Protected Areas
WHP	Wild Harvested Plants

CHAPTER 1. GENERAL INTRODUCTION

1.1. Background

1.1.1. Biodiversity and ecosystem services

Biodiversity is the variety of all living organisms at each level from gene level, within species, species, genera, family and any higher taxonomic level to community and the variety of the ecosystem (Wilson, 1992). It is the main element of the ecosystem (Millennium Ecosystem Assessment, 2003). It is not distributed evenly around the globe. There are 36 biodiversity hotspots where high diversity living organism exist in that area yet they are threatened (CEPF, 2020).

Wilson (1992) defines ecosystems as "the organism living in a particular environment, such as a lake or a forest (or, in increasing scale, an ocean or the whole planet) and the physical part of the environment that impinges on them", whilst ecosystem services are described as "the role played by organism in creating a healthful environment for human beings, from production of oxygen to soil genesis and water detoxification". The Millennium Ecosystem Assessment (MA) defines the ecosystem services simply as everything that people benefited from the ecosystem which comprises four categories namely supporting, provisioning, regulating and cultural services (Figure 1.1). Biodiversity and ecosystem health are linked to prosperity of human health and well-being. If biodiversity and ecosystem Assessment, 2005). Furthermore, biodiversity loss and ecosystems degradation can result in a reduced well-being (Sandifer *et al.*, 2015). The linkage of biodiversity and human well-being is also described in Figure 1.1.

Figure 1.1. A diagram depicts the linkage between ecosystem services and constituents of well-being (Millennium Ecosystem Assessment, 2005)

1.1.2. What are medicinal plants?

Medicinal plants are plant genetic resources that have identified uses for medicinal purposes (Hawkins, 2008; WHO, 2003) arising from the bioactive properties of particular secondary metabolites they contain (de Padua *et al.*, 1999) whether harvested from the wild and cultivation (WHO, 2003). However, these plants are often wild-harvested from the forest, thus they are included in non-wood forest products, among other valuable biological items besides wood from the forest (NWFPs) (FAO, 1995). In broader view, medicinal plants are part of the biodiversity that also has a role as a provisioning service in ecosystems (Millennium Ecosystem Assessment, 2005).

More than 50,000 higher plant species are estimated to have actual or potential medicinal value (Hawkins, 2008). People worldwide have been using

medicinal plants since ancient times, regardless of whether these plants' effects have received validation from modern science (Soejarto *et al.*, 2012). De Padua *et al.* (1999) and Cragg and Newman (2013) record that medicinal plants may be used directly, or for their extracts, or by processing into modern medicines. Walujo (2008) mentioned how to use the medicinal plants directly in traditional medication for examples as a concoction or decoction for internal uses and as a herb-bath and massage for external uses.

1.1.3. Floristic background to Indonesian medicinal plants

The nation of Indonesia is an archipelago consisting of more than 17,000 islands (Figure 1.2). Its land mass is 1,919,440 km² (though, including ocean, the total territory covers 3,257,483 km²). There are five large islands, two groups of medium sized islands, and a multitude of smaller islands. Indonesia is situated between two great oceans — the Indian Ocean and the Pacific Ocean — between latitudes 6° N and 11° S, and longitudes 95° E and 141° E (Ministry of Environment and Forestry of Indonesia, 2014). The five large islands are Sumatera (47.5 million ha), Java (13.25 million ha), Kalimantan (the southern part of Borneo, 53.5 million ha), Sulawesi (18.6 million ha) and Papua (the western half of New Guinea, 41.5 million ha). The two groups of medium sized islands are Lesser Sunda Islands (8 million ha) and Maluku (7.8 million ha).

Each of the major islands has unique geographical and biological characteristics (Kolberg and Piterson, 1996). The Indonesian archipelago, straddling then divide between Sundaland and Wallacea, and extending to the western reaches of the Sahul shelf (Myers *et al.*, 2000). They partitioned by its flora and fauna into a distinct pattern that was first described by Wallace (Wallace 1856

and 1910 *in* Ministry of Environment and Forestry of Indonesia, 2014) and then confirmed by many other studies (Weber 1904 and Lydekker 1896 *in* Ministry of Environment and Forestry of Indonesia, 2014). Moreover, all those areas are inhabited by more than 350 ethnicities, each with unique characteristics, that comprise the Indonesian population (Ministry of Environment and Forestry of Indonesia, 2014).

Figure 1.2. Map of Indonesia generated by DIVA-GIS version 7.5

Floristically, Indonesia is a part of the Indo Malayan Centre, one of the Centres of Origin of Cultivated Plants and therefore home to many cultivated plants (crops) used as sources of food, medicines, and material for other ethnobotanical purposes (Vavilov, 1935). Besides this, Indonesia is recognised as a "megadiverse" country and considered as a biodiversity hotspot with 30,000-40,000 plants (Myers *et al.*, 2000; Ministry of National Development Planning, 2016) out of the 90,000-100,000 vascular plant species dispersed throughout Asia (Ma, 2010) and it is estimated about 10% of global plant species (Walujo, 2008).

A number of the world's important medicinal and spice plants are of Indonesian origin (Vavilov, 1935), including ginger (*Zingiber officinale* Roscoe), candlenut (*Aleurites moluccanus* (L.) Willd.), black pepper (*Piper nigrum* L.) and nutmeg (*Myristica fragrans* Houtt.). Spices of significant commercial value exported from Indonesia include cloves (*Syzygium aromaticum* (L.) Merr. & L.M.Perry), cinnamon (*Cinnamomum verum* J.Presl) and nutmeg (Hermawan, 2015). These have traditionally been used as medicines in Indonesia. This was since Dutch colonisation, in the 17th-18th centuries, Indonesia has been cultivating cloves, nutmeg, and coffee (*Coffea arabica* L.) (Ceertz, 1963 *in* Brockway, 1979). Meanwhile, cinchona (*Cinchona officinalis* L.) (Allen and Donnithorne, 1962 *in* Brockway, 1979), coffee and cinchona were introduced species by Dutch (Brockway, 1979).

Medicinal plants have an ancient history in Indonesia. Some were depicted in stone reliefs on Javanese temples such as Borobudur, Prambanan, Penataran and Sukuh. Among the medicinal plants depicted in stone were *Aegle marmelos* (L.) Correa, *Antidesma bunius* (L.) Sprengel, *Borassus flabellifer* L., *Calophyllum inophyllum* L., *Datura metel* L. and *Syzygium cumini* (L.) Skeels. The earliest European information concerning medicinal plants in Indonesia was gathered by the Dutch physician Bontius (1658), who compiled a list of Java medicinal plants, describing their healing power and uses (de Padua *et al.*, 1999). The first detailed descriptions of Indonesian medicinal plants were recorded by Rumphius in his monumental work entitled *Het Amboinsche kruidboek* (*Herbarium Amboinense*). This multi-volume compendium was based on Rumphius's detailed observation and experience of Indonesian people and their use of indigenous flora and fauna during the Dutch colonisation of Indonesia, especially in the Ambon area (Rumphius, 1741–1755). Other significant works on Indonesian medicinal plants, published in the twentieth century, include those of Heyne (1927), Van Steenis-Kruseman (1953) and Burkill (1966). More recently, de Padua *et al.* (1999) have comprehensively reviewed the medicinal plants (plus poisonous plants) of South East Asia, including those of Indonesia.

In Indonesia, medicinal plants are defined as those plants and/or their components used as drugs, cosmetics, or in promoting good health. It has been estimated that there are around 7,500 species of medicinal plants grown in Indonesia, of which around 187 species are used as the key ingredients in the traditional medicine industry (Hamid and Sitepu, 1990), however, Erdelen *et al.* (1999) estimated only 10% of the total plant species are medicinal. The Medicinal Herb Index in Indonesia published by PT Eisai (1995), lists more than 2500 plant species that have medical uses. Most of these plants are processed within country to produce traditional medicines (jamu) and ingredients for cosmetics (Kolberg and Piterson, 1996).

The medicinal plants as a group can be divided into rhizomatous plants (e.g. from the Zingiberaceae family) and non-rhizomatous. Many medicinal species are horticultural plants like ginger and galangal, while some of them are grown as estate crops, including pepper, cloves, and jatropha (Ministry of Agriculture, 2014, 2017). Whilst the traditional medicines based on biological activity can be grouped into (1) anticancer, (2) antiviral, (3) antimalarial and antiparasitic, (4) anti-inflammatory, antirheumatic, antipyretic and analgesic, (5) hepatoprotective, (6) antidiabetic, (7) antimicrobial and antifungal, (8) gastroprotective, (9)

cardioprotective, (10) anti-asthma, antitussive and anti-allergic, (11) antihypertensive, (12) immunostimulating, (13) Central nervous system (CNS) activity, and (13) others (Elfahmi *et al.*, 2014). Nugraha and Keller (2011) have grouped Indonesian traditional medicinal plants by anti-infective agent, that is anti-viral, antimalarial, anti-bacterial and anti-fungal medicinal plants.

The medicinal plants also belong to the non-timber product group (FAO, 1995) and have twice the value of timber or are valued at US\$ 14.6 billion (Ministry of Environment The Republic of Indonesia, 2013). Furthermore, 31 species are used in the wider (non-traditional) medicinal and condiment industry, as well as for export, which amounts to more than 1,000 tons/year. Out of these 31 species, 18 are cultivated (Pribadi, 2009).

1.1.4. Medicinal plant value, production and trade in Indonesia and the world at large

Globally, the international wildlife trade in medicinal plants is valued at US\$ 13 billion (McNeely and Mainka, 2009). However, medicinal plant trade is extensive and could be a hundred times larger than the value of the international trade, since it is not possible to monitor all uses of medicinal plants in developing countries where people use plants directly to cure sickness and disease (de Padua *et al.*, 1999). Apart from this direct local use of medicinal plants for healing purpose, de Padua *et al.* (1999) record that medicinal plants have significant economic value as traded commodities, while Hawkins (2008) notes that medicinal plants can contribute very importantly to the livelihoods of local communities who trade in them. Hamilton (2004) clarifies the community as medicinal plant farmer and marketer.

As for many ornamental plants, the trade in medicinal plants in Indonesia has been trending upwards in recent times, such that for some types of plants demand cannot be met by current levels of supply (Ministry of Health, 2007; Ministry of Agriculture, 2015). Two institutions regularly record statistics on the medicinal (and spice) plant trade, namely the Directorate General of Horticulture-Ministry of Agriculture and Statistics Indonesia (Ministry of Agriculture, 2014, 2017). Most medicinal plants traded are cultivated on a horticultural scale (Ministry of Agriculture, 2014, 2017) and only few medicinal plant species provide raw materials on an industrial scale for strategic importance commodities in the economy (Ministry of Agriculture, 2015). The trade record consists not only of medicinal plants and their seeds or seedlings but also of derived products scale (Ministry of Agriculture, 2014, 2017).

Globally, Indonesia is recorded as an exporter and importer of group 0910 that is Ginger, saffron, turmeric (curcuma), thyme, bay leaves, curry and other spices. The three main products being imported and exported around the world are ginger, spices, and turmeric. The export and import values (US\$) have fluctuated between 18.51M - 36.39M and 6.95M - 22.86M in 2015-2019 respectively (TrendEconomy, 2021).

1.1.5. Threats to medicinal plants

Medicinal plants like other plant genetic resources (plant biodiversity) are threatened by land conversion and deforestation in order to provide for more food and housing due to increasing human population need. Climate changes also threatens the medicinal plant population (Harish *et al.*, 2012). In Indonesia, industries of oil palm, logging, fibre, and mining are the main contributors to deforestation (Abood *et al.*, 2015). Especially, palm oil plantation which is the biggest in Indonesia that comprises 8.6M ha (BPS-Statistics Indonesia, 2019). Apart from these factors, threats can come from over-exploitation in the commercial trade of medicinal plants (Hawkins, 2008), invasive species and climate change (Ma, 2010), seasonal forest fires, land and water pollution, and various natural disasters (Tambunan, 2008).

Traditionally, many ethnic communities in Indonesia have acquired considerable knowledge of their local flora's medicinal value that has been passed down from generation to generation (Chuthaputti, 2010). In some rural areas of Indonesia, apart from this communally acquired local knowledge, there are recognised specialists in traditional therapeutic practices known as 'dukuns' who have a highly developed knowledge of their local flora's potential medicinal value. A dukun often knows the specific medicinal plants that can be used for curing particular diseases, as well as how to use them. This knowledge and skill are often passed on from generation to generation within a family who become acknowledged for such expertise. Unfortunately, nowadays, this locally acquired expertise is gradually being lost in many areas, except in those rural area isolated from the mainstream society (Stevenson, 1998). The loss of dukun is thus another factor threatening medicinal plant biodiversity. Once there are no more dukuns, there is the risk that medicinally important local plants will no longer be recognised as such by the broader society. Hamilton (2004) depicted declines in local medication knowledge, other than the loss and availability of the medicinal plants as a concern.

1.1.6. International and national legislation for conservation of medicinal plants as part of plant genetic resources

Globally, since 2015 the United Nations have had a program for people and the planet that has 17 goals to achieve by 2030 known as SDGs (Sustainable Development Goals) (Figure 1.3). Before that, the UN had the MDGs (Millennium Development Goals) program that had eight goals to achieve by 2015. In terms of medicinal plant conservation, goal number 3 (Good Health and Well-being) is the most relevant of the SDGs; goals 1 and 2 (No poverty and Zero hunger) are also relevant; and at the end goal number 15 (Life on Land) would be relevant. People health and well-being are highly connected with poverty alleviation and food security that are successfully achieved. Conserving medicinal plants may help to guarantee people sustainable income, keep people healthy, and uncover the new potential medicine discovery in the future (Sharrorck and Jackson, 2017). This has been reflected in the international Convention on Biological Diversity (CBD) in 1988.

Figure 1.3. A diagram listing the 17 Sustainable Development Goals (SDGs) by UN (www.unfoundation.org)

In 1988, the United Nations Organization flagged its intention to develop an international Convention on Biological Diversity (CBD). This convention was put forward for ratification by member nations for the first time at the Earth Summit in Brazil (Rio de Janeiro) in 1992, resulting in a multilateral treaty aimed at saving global biodiversity. The CBD itself came into effect on 29 December 1993 with three primary objectives: to conserve biodiversity, to use it sustainably, and with just and equitable sharing of the benefits from utilisation of natural genetic resources. Until 2018, there have been fourteen meetings of the Conference of Parties (COP) to the Convention on Biological Diversity (CBD, 2010). Furthermore, at Nagoya, Japan, in 2010, signatories to the Convention agreed to a CBD Strategic Plan contributing to biodiversity conservation, including plant genetic conservation (CBD, 2010). The form of this contribution was described in the framework of the CBD Global Strategy for Plant Conservation (GSPC) 2011 – 2020. The GSPC has six objectives and sixteen targets to be achieved by 2020 (BGCI, 2012). The objectives and targets have been applied by many botanic garden communities around the world. Despite being unsuccessful in the main goal of halting the species diversity loss by 2020, the GSPC has been successful in facilitating the communities to participate with CBD and contribute to reach GSPC's goals. However, redefining the objectives and targets after 2020 up to 2030 would be crutial to maintain the commitment of all conservation stakeholders (Sharrock et al., 2018).

The global target set out in the GSPC reads: "By 2020, the genetic diversity of cultivated plants and farmed and domesticated animals and of wild relatives, including other socio-economically as well as culturally valuable species, is maintained, and strategies have been developed and implemented for minimising genetic erosion and safeguarding their genetic diversity". One aspect of this target, strategic goal C, aims to improve the status of biodiversity by safeguarding ecosystems, species and genetic diversity (CBD, 2010). This goal has also been a stimulus to the global agreement for biodiversity management defined under the Aichi Targets and Nagoya Protocol. The Aichi targets define a global target to reduce genetic loss, while the Nagoya Protocols is an agreement that manages the access and benefit-sharing from the biodiversity use among the stakeholders (Ministry of Environment and Forestry of Indonesia, 2014). Sterling *et al.* (2017) define "stakeholders can be directly or indirectly involved in an endeavour" to achieve plant genetic conservation.

Pre-dating such global concerns, the 1945 constitution of the Republic of Indonesia, Article 33, Clause 3, stated that "*earth, water, and space, and the natural riches contained therein, shall be controlled by the state and used for the greatest welfare of the people*". This clause infers that the natural resources, including the genetic resources of indigenous medicinal plants are to be conserved and used sustainably for the people's benefit under the auspices of the state. Therefore, Indonesia has implemented legislation to manage conservation and use of plant genetic resources. The management of plant genetic resources includes the conservation, use, and benefit-sharing by all stakeholders as prescribed in the CBD (Ministry of Environment and Forestry of Indonesia, 2014). For example, there is legislation regarding plant conservation, that derives from Indonesian government action at several levels, from the president, through relevant ministries, down to local government instrumentalities.

The plant species' requiring particular conservation focus are listed explicitly in the Decree of the Minister of Home Affairs No. 48 Year 1989 regarding 33 plant species as representative of each province of Indonesia; in Government Regulation No. 7 Year 1999 regarding the natural genetic resources and ecosystem; Decree of Forestry Ministry No 57/MENHUT-II/2008 regarding Strategy Direction of National Species Conservation 2008-2018; Decree of Environmental Forestry Ministry No. and P.20/MENLHK/SETJEN/KUM.1/6/2018 regarding the Protected Flora and Fauna Species; Decree of Environmental Forestry and Ministry P.106/MENLHK/SETJEN/KUM.1/12/2018 revised decree of Environmental and Forestry Ministry P.92/MENLHK/SETJEN/KUM.1/8/2018 (replaced the Decree of Environmental and Forestry Ministry No. P.20/MENLHK/SETJEN/KUM.1/6/2018) regarding the Protected Flora and Fauna Species, and IBSAP (Indonesia Biodiversity Strategy and Action Plan) based on Rifai et al. (1992) and Zuhud et al. (2001) in The National Development Planning Agency (2003). For example, the Decree of the Minister of Home Affairs No. 48 Year 1989 nominated, while Government Regulation No. 7 Year 1999 listed 294 plant species including members of Palmae (Arecaceae), Rafflessiaceae, Orchidaceae, Nephentaceae, and Dipterocarpaceae.

Furthermore, the Ministry of Agriculture has issued Decree No. 511 Year 2006, revised with Decree No. 141 Year 2019, and revised with Decree No. 104 Year 2020 listed horticultural plants list of which medicinal plants included to be

13

developed that is relevant to and might strengthen the conservation effort to avoid loss as well as guarantee the sustainable use of the plant. Other than that, biodiversity and ecosystem resource conservation efforts were strengthened by the government in its National Priority Program included in the Mid-Term National Development Plans of 2010-2014 and 2015-2019. In addition, ratification of CBD goals has been endorsed by several government institutions in Indonesia specialised in the use and management of Indonesian biodiversity, such as the Ministry of Environment, the Ministry of Forestry, the Ministry of Maritime Affairs and Fisheries, the Ministry of Agriculture, and the Indonesian Institute of Sciences. Concern for genetic biodiversity has always been included in their strategic plans (Ministry of Environment and Forestry of Indonesia, 2014).

1.1.7. Current *in situ* and *ex situ* conservation actions in Indonesia

Globally, medicinal plants have received attention from the IUCN (International Union for Conservation of Nature) with regard to the conservation and sustainable use of plant biodiversity. The IUCN commits to safeguard biodiversity from the level of the gene, through species level, up to whole ecosystems. The focus on biodiversity conservation of medicinal plants is mainly at the species level, with concentration on their direct curative properties; however, the way we manage medicinal plant biodiversity will also have a more general influence on human health (McNeely and Mainka, 2009). The medicinal plant specialist group (MPSG) was established by the IUCN based on the recommendation of the Plant Conservation Subcommittee in 1994 and had 50 members chaired by Dr A. B. Cunningham and Dr U. Schippman. This group is just one of about 140 specialist groups working under the Species Survival Commission

(SSC), whose network embraces 7,500 volunteers such as scientists and policyholders from 169 countries (see Kasparek *et al.*, 1996). Up to now, the MPSG has recorded 283,928 scientific names of medicinal plants of which only about 10% are derived from medicinal plant publications, while the other 90% are from Kew's database (MPSG, 2017).

Since at least the year 1980, Indonesia has adopted the Integrated Conservation and Development Project (ICDP) approach to protecting its national biodiversity. This policy links the conservation of biodiversity in a protected area (PA) to the interests of the resident people who inhabit PA surroundings and their economic development. It considers the ways in which local communities benefit from the natural resources of their protected areas while at the same time being motivated to give equal consideration to conserving the biodiversity on which they depend. Local communities were highlighted to be involved in most of the program design and implementation. Based on studies under this approach, it has been found that there are both direct and indirect threats to Indonesian biodiversity posed by economic development efforts. The direct threats can come from the way local people earn their livelihoods from activities like small-scale mining, logging, nonforest product harvesting, domestic agriculture, as well as from fishing. On the other hand, the indirect threats come from large-scale development activities regulated by the government, such as construction, large agricultural plantations, transmigration projects, and tourism, although it gave local people a benefit in terms of employment (Wells et al., 1999).

Some biodiversity conservation efforts have been generated at the local level, such as by the development of medicinal plant lists and by collecting plants

15

for *ex situ* cultivation. For example, in Riau Province (in Sumatera Island) a survey resulted in 114 species was done by Grosvenor *et al.* (1995). In West Java, where Sundanese ethnic groups live, there are 117 medicinal plants (Roosita *et al.*, 2008). In Central Kalimantan Province (Kalimantan Island) identified 21 species characterised among several species (Krismawati and Sabran, 2004). In addition, in smaller areas such as on Wawonii island, Southeast Sulawesi Province (Sulawesi Island) surveys resulted in 73 species (Rahayu *et al.*, 2006; Roosita *et al.*, 2008)

Nationally, since 2007, with the Decree of the Minister of Health No. 381/Menkes/SK/III/2007, Indonesia has pursued a comprehensive policy regarding traditional medicines that links together all stakeholders; beginning from cultivation of the medicinal resources, through to their conservation, and considering both producers and consumers. Indonesia's National Policy on Traditional Medicines is known by the acronym KOTRANAS (Kebijakan Obat Tradisional Nasional). The government acts to monitor the policy. Producers and consumers of medicinal plants in Indonesia may be individuals or industrial groups, and they can be either government or non-government stakeholders. Both producers and consumers of medicinal plant products can be researchers (like plant-breeders and conservationists), farmers or residents. On the commercial level, medicinal plant enterprises can comprise home scale industry through to large-scale industry, as well as their associations such as the Association of Traditional Medicinal Plant Exporters (APETOI) (Ministry of Health, 2007).

Some medicinal plants of Indonesia are also included in IUCN Red List (iucnredlist.org), and the appendices of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). This comes about because Indonesia is defined as part of Asia, which as a whole has experienced much illegal trade in medicinal plants as well as in orchids, leading to large losses of plant diversity (Ma, 2010). For example, one of Indonesia's medicinal plants, *Taxus sumatrana* (Miq.) de Laub. contains recognised anti-cancer agents (taxane or paclitaxel or Taxol®) has experienced a decline in its natural population and has been listed as an Endangered Species (IUCN, 2016). Many people, worldwide, have been looking for this plant because cancer is one of the highest causes of death in the world (WHO-UICC, 2003). Apart from this species, *Euphorbia prostrata* Aiton is another species found in Indonesia (though originating from the Caribbean) that is included in the IUCN Red List as Critically Endangered, and in the CITES Appendix II, due to the fact that cultivation of the species has not kept pace with the rate of wild harvesting.

The overall strategy for conservation and sustainable use of Indonesian medicinal plant diversity has been described by Zuhud (1989). He reports that this strategy is essential because continual growth in human populations continues to diminish the nation's natural resources. A point has come when the demand for many medicinal plant commodities threatens to outstrip supply. Zuhud (1989) has recommended five solutions to overcome this problem: (1) conservation of medicinal plants *in situ* and *ex situ*; (2) domestication and propagation of medicinal plants (jamu); (3) research and development of underutilised medicinal plants; (4) development and training for the medicinal industry and dissemination to the people at large; (5) legislation and government regulation. The aim is to ensure that supply can keep up with demand. However, Hawkins (2008) has advised that medicinal plant conservation also needs to be managed on a wide front, employing several

different groups with specialist expertise such as agronomists, conservationists, and ethnobotanists. Tambunan (2008) suggests that in order to ensure the preservation of the archipelago's rare and vulnerable medicinal plant life there needs to be a national strategy to provide a sustainable supply of the raw materials required by the pharmaceutical industry. This can be achieved by means of *in situ* and *ex situ* conservation, systematic cultivation, and biotechnology; a strategy that would coordinate and integrate all stakeholders in a combined effort. Chen *et al.* (2016) underlined that in situ and ex situ conservation and cultivation as the medicinal plant conservation strategy should be acknowledged to save the plants harvested from the wild and to guarantee sustainable use, whilst biotechnology can be used to provide the higher yield and modified potency needed by the pharmaceutical industry.

Convention on Biological Diversity (UN, 1992) defines *in situ* conservation as "the conservation of ecosystems and natural habitats and the maintenance and recovery of viable populations of species in their natural surroundings where they have developed their distinctive properties" and *ex situ* conservation as "the protection of components of biological diversity outside their natural habitats". In regards to medicinal plant conservation implementation in Indonesia, governmental and private stakeholders have been doing the *in situ* and *ex situ* conservation whether locally or nationally. There are around 646 protected areas covering about 226,249 km² (11.87%) out of a total land area of 1,906,555 km² (UNEP-WCMC and IUCN, 2017). There is no current estimation for the percentage of medicinal plants conserved in particular *in situ* areas. It is reported that the botanical gardens of Indonesia are contributing to the GSPC Target 8's efforts to include "60% of
threatened plant species in accessible *ex situ* collections, preferably in the country of origin, and 10% of them included in recovery and restoration programs" (Ma, 2010).

1.2. Aims and Objectives

Considering the value of Indonesian medicinal plants, as well as threats to them, there is a crucial need for well-planned, pro-active, and sustained, conservation efforts to head off this erosion in medicinal plant resources. It also should be acknowledged that to date, Indonesia, despite its rich floral resources, has perhaps lagged behind neighbouring Asia-Pacific countries such Indian and China, and even Malaysia and the Philippines, in placing emphasis on the need for the conservation and research of medicinal plants (Batugal *et al.*, 2004). Thus, conservation and sustainable utilisation of medicinal plants needs to be recognised as crucial research priorities for Indonesia.

This project aims to contribute to the recommendation for a national strategic action plan for the conservation and use of Indonesian medicinal plants. The specific objectives of this project are:

- To produce a priority list of medicinal plants of Indonesia, by means of an inventory data of current checklists (including the IUCN Red List, CITES appendix 2, and in National Legislation),
- 2. To undertake conservation gap-analysis of both *in situ* and *ex situ* holdings for the priority species for conservation,
- 3. To evaluate the effect of climate change on priority species, and
- 4. To investigate the effectiveness of used DNA barcoding region (*ITS2*, *MatK*, *rbcL*, and *trnL*) for DNA barcoding in Indonesian medicinal plant species to aid

identification and conservation and to provide new DNA barcoding of those species (if any).

1.3. Thesis Outline

This thesis comprises five chapters. Chapter 1 introduces the PhD project Genetic Conservation and Sustainable Use of Medicinal Plants of Indonesia. This chapter includes a review of available literature that point to research topics. Chapter 2 presents the priority list of medicinal plants of Indonesia for conservation: this chapter analyses many existing literature and data concerning Indonesian medicinal plants for active *in situ* and *ex situ* conservation, to create the Indonesian medicinal plants and to define a priority species. Chapter 3 presents conservation gap-analysis for the priority list: this chapter provides information about where the richest areas of Indonesian priority medicinal plant species are found, where additional *ex situ* priority medicinal plant species should be collected, and recommendations related to *in situ* and *ex situ* conservation the Indonesian priority medicinal plant species. Chapter 4 presents climate change analysis study on the priority list: this chapter provides information about where and what species will be impacted by climate changes and what conclusions will come in terms of in situ and ex situ conservation strategies for medicinal plants in Indonesia and at regional and global levels. Chapter 5 presents DNA barcoding for supporting Indonesian medicinal plant conservation: this study uses a pair of ITS2, matK, rbcL, and *trnL* primers to aid identification of the medicinal plants in Indonesia and to decide which primers among them can identify the plants effectively and efficiently. Chapter 6 presents the general discussion of empirical chapters (Chapter 2, 3, 4, and 5), including discussion of the limitations of the study and recommendation for future research.

CHAPTER 2. SETTING THE PRIORITY MEDICINAL PLANTS FOR CONSERVATION IN INDONESIA

Abstract

Setting priority species for conservation planning in a large and biodiverse country such as Indonesia is crucial. At least 80% of the medicinal plant species in South East Asia can be found in Indonesia, whether native or introduced. However, their conservation is currently ineffective due to limited human and financial resources. By examining factors such as species occurrence status, rarity and part of the plant harvested, the various Indonesian medicinal plant species can be prioritised for conservation planning. In this study, various threatened plant species have been included in the priority list as well as those listed in related legislation. Some 233 species within 161 genera and 71 families are recommended for prioritisation. An inventory of these priority species was produced presenting compiled data including vernacular names, plant habit, harvested plant part, uses, distribution, whether it is conserved *ex situ*, and their DNA barcoding. Significantly 41.20% of priority species have no information on their current conservation status in either *in situ* or *ex situ* national or international genebanks.

Keywords: Prioritisation, priority, conservation, medicinal plants, Indonesia

2.1. Introduction

For centuries, the diversity and wealth of Indonesian medicinal plants have been recognised worldwide. This was first noted by the French botanist Bontius (1658) in the list of Java medicinal plants compilation (de Padua *et al.*, 1999) and the Portuguese botanist Georgius Everhardus Rumphius (1627–1702) in his work entitled *Het Amboinsche kruidboek* (Herbarium Amboinense) (Rumphius, 1741– 1755; Veldkamp, 2011). Medicinal plants are still widely used in Indonesian traditional medicine (Jamu), a tradition that is similar to Ayurveda in India and Traditional Chinese Medicine (TCM) in China (WHO, 2009). These traditional Indonesian remedies remain widely used today, in urban as well as rural areas and among all social classes. About two-fifths of the national population use traditional medicine, and most traditional healers in Indonesia use Indonesian indigenous medicine (WHO, 2009).

As a country rich in medicinal plants, it is difficult to quantify the exact number of plants in Indonesia, but it is estimated that 2,000 (Erdelen *et al.*, 1999; WHO, 2009) to 7,500 medicinal plants (Hamid and Sitepu, 1990) are regularly used out of a total of around 30,000–40,000 plant species within the country (Ministry of National Development Planning, 2016). There are high levels of endemicity and expected medicinal plant uniqueness in Indonesia is estimated to be at about 40%– 50% of the total flora of each island, except Sumatera which has only 23% (Ministry of National Development Planning, 2016).

Medicinal plants are valuable species not only for personal health care (de Padua *et al.*, 1999) but also for their economic value as they are traded by local communities (Hawkins, 2008). Indonesia's medicinal plants' economic value equates to as much as US\$14.6 billion annually (Ministry of Environment The Republic of Indonesia, 2013). Globally, the trade of medicinal plants in 2005 was more than US\$3 billion (Jenkins *et al.*, 2018) and this is estimated to grow to be worth US\$5 trillion by 2050 (WHO, 2009).

Indonesia is a vast country, with a land area of 1,919,440 km spread over thousands of islands (Ministry of Environment and Forestry of Indonesia, 2014). Conservation of Indonesian species is thus challenging and costly. Human population growth, land conversion, deforestation and climate change all contribute to medicinal plant loss, as well as overharvesting for medicinal trade (Voek, 2004; Hawkins, 2008; Ma *et al.*, 2010). Hamilton (2004) argues that the loss of local knowledge regarding medicinal plants and their use is a global concern.

The economic value of medicinal plants in Indonesia, coupled with other threats and a lack of resources for their conservation, makes it urgent that active conservation programmes are put in place. An obvious initial step would be for some form of prioritisation of species and an assessment of the criteria which might be used. This has not been previously attempted in Indonesia, however a number of studies have been conducted elsewhere. Dhar *et al.* (2000) did undertake such an exercise in the Indian Himalayas prioritising consumers (using medicinal plants) and biologists (concerned about their conservation). The outcome was to prioritise conservation for species that are harvested in a destructive manner, that have restricted distribution and for which there are limited propagation techniques. van Andel *et al.* (2015) prioritised the medicinal plants in West Africa based on commercial demand, whether they are wild-harvested, and their occurrence in undisturbed vegetation types. Dery *et al.* (1999) conducted prioritisation in the Shinyanga Region of Tanzania involving local people with the necessary knowledge and scored their appraisal. Allen *et al.* (2014) prioritised European medicinal plants by selecting only native species.

Producing checklists that consist of the name of the species, the author details, inventories and additional information is essential to formulating the conservation strategies (Magos Brehm *et al.*, 2017) and these form the groundwork for further action. Establishing priorities for conservation can be based on current conservation status, the threat to genetic diversity from genetic erosion, and legislation (Maxted *et al.*, 1997). Inventory is also needed to describe a country's species richness: an essential tool in conservation management (Magos Brehm *et al.*, 2008). Considering these arguments, the economic value of medicinal plants in Indonesia and the need to prioritise conservation efforts, this project aims to analyse available data concerning Indonesian medicinal plants for active *in situ* and *ex situ* conservation and to provide a priority list of species.

2.2. Methods

The checklist of medicinal plants of Indonesia was compiled in Excel from relevant literature. The literature used was as follow:

 Plant Resources of South-East Asia (PROSEA) book series, specifically: Medicinal and Poisonous Plants 1 (de Padua *et al.*, 1999), Medicinal and Poisonous Plants 2 (van Valkenburg and Bunyapraphatsara, 2002), Medicinal and Poisonous Plants 3 (Lemmens and Bunyapraphatsara, 2003), and Spices (de Guzman and Siemonsma, 1999). Only species distributed in Indonesia were selected. Poisonous plants were included but in lower number and only if they had a medicinal function (de Padua *et al.*, 1999) Spice plant species were included as well because traditional people use them in medication (de Guzman and Siemonsma, 1999).

- 2. Indonesian Medicinal Plant Indexes (Eisai, 1986; 1995).
- Atlas of Indonesian Medicinal Plants series 1–6 (Dalimartha, 1999, 2000, 2003, 2006, 2008, 2009). *Ganoderma lucidum* (Curtis) P.Karst. (Ganodermataceae) was excluded from the list as it is fungi.
- The Useful Plants of Indonesia (Heyne, 1987). Only species with records of medicinal use was selected.
- 5. Rare Indonesian Medicinal Plants stated in IBSAP (Indonesia Biodiversity Strategy and Action Plan) based on Rifai *et al.* (1992) and Zuhud *et al.* (2001) (The National Development Planning Agency, 2003). Usnea misaminensis (Vain.) Motyka, which belongs to the Parmeliaceae family, was excluded as it is fungi.

The taxonomic names were checked against the online taxonomic name resolution service tool by checking "Constrain by higher taxonomy" under "Best match settings", which is effective for spelling errors and for merging all the synonyms into a single accepted name (Boyle *et al.*, 2013). The steps are described in Figure 2.1.

Figure 2.1. Flowchart of setting checklist of medicinal plants of Indonesia

After the literature review, prioritising the checklist was done serially with the collected information, namely, (a) occurrence status, (b) rarity, (c) part of the plant harvested, (d) threat status, and (e) legislation (Figure 2.2).

- a. Native status. Similarly to Allen *et al.* (2014), only species native to Indonesia were prioritised.
- b. Rarity. This criterion is based on the distribution of the species in Indonesia. Only medicinal plant species that are endemic, distributed on one of seven major areas in Indonesia (*i.e.* the main islands of Sumatera, Java, Kalimantan, Sulawesi, and Papua, and the area of the Lesser Sunda Islands and Maluku) regardless of their global distribution, and that has never been introduced elsewhere (with data obtained from literature and online through http://POWO.science.kew.org/; POWO, 2020) are listed as a priority. Plants never introduced elsewhere could describe their slow natural distribution and unavailability of propagation technique.

- c. Part of the plant harvested. The species for which the root or non-aerial parts such as tuber and rhizomes, complete bark, or whole plants are harvested were prioritised (as suggested by Dhar *et al.*, 2000) as this is detrimental to the persistence of the species in the wild.
- d. Threat status. Since Indonesia does not have a national red list, the threat status at the global level for each species was retrieved from the IUCN RedList (https://www.iucnredlist.org/).

The medicinal plant species that have been assessed as Critically Endangered (CR), Endangered (EN) and Vulnerable (VU) are considered a priority.

- e. Legislation. This criterion refers to the prioritisation of those species included in national or global legislation. This is very important because it depicts that the listed species need conservation and the government should be responsible for them (Magos Brehm *et al.*, 2010). At a global level, the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) was used. Thus, the species threatened with extinction(listed in Appendix I) and the species which may be threatened with extinction if their trade is not closely monitored (listed in Appendix II of CITES (UNEP-WCMC (Comps.), 2014)) were prioritised. At the national level, the legislation related to medicinal plant conservation included the following:
 - Indonesian Government Regulation Act. 7 of 1999 regarding Natural Genetic Resources and Its Ecosystem.
 - Decree of Forestry Ministry No 57/MENHUT-II/2008 regarding Strategy Direction of National Species Conservation 2008–2018.

- Decree of Environmental and Forestry Ministry No.P.20/MENLHK/SETJEN/KUM.1/6/2018 regarding the Protected Flora and Fauna Species.
- 4. Decree of Environmental Forestry Ministry and P.106/MENLHK/SETJEN/KUM.1/12/2018 revised decree of Environmental and Forestry Ministry P.92/MENLHK/SETJEN/KUM.1/8/2018 (replaced the Decree of Environmental and Forestry Ministry No.P.20/MENLHK/SETJEN/KUM.1/6/2018) regarding the ProtectedFlora and Fauna Species.
- IBSAP (Indonesia Biodiversity Strategy and Action Plan) based on Rifai *et al.* (1992) and Zuhud *et al.* (2001) in The National Development Planning Agency (2003).

The listed plant species protected by Indonesian laws are classified as requiring protection due to their limited or small population, decreasing number of individuals and endemicity. The medicinal plants that were included in the related legislation are considered priority.

Figure 2.2. Flowchart of setting prioritisation of medicinal plants of Indonesia

Due to the primary data for prioritisation, the checklist that consists of a scientific name and author are obtained online from POWO (2020). An inventory of priority medicinal plant species was compiled with their vernacular names, plant habit. used and DNA barcoding plant parts, uses. data (http://www.boldsystems.org/; Ratnasingham and Hebert, 2007). Group plants that were selected based on criteria of limited distribution, destructive harvest, CITES, IUCN, and National legislation were showcased with a Venn diagram generated by Bioinformatics and Evolutionary Genomics (http://bioinformatics.psb.ugent.be/cgi-bin/liste/Venn/calculate_venn.htpl).

Ex situ conservation status information on whether the species has been collected or not was obtained from Indonesian botanic gardens through direct communication with Bogor Botanic Gardens, and by mining data online from Purwodadi Botanic Garden (http://www.krpurwodadi.lipi.go.id/koleksi/) and Cibodas Botanic Garden (http://sindata.krcibodas.lipi.go.id/Cibodas-Botanic-Gardens-Record/CBGR/) as well as from Genesys (https://www.genesys-pgr.org/).

2.3. Result

2.3.1. Establishing the checklist of Indonesian medicinal plants

Indonesia has a total of 5490 medicinal plant taxa, of which 5408 are identified species, and 82 can only be identified at the genus level. No further information can be identified for the 82 genus-level species; hence it cannot be concluded that they are new species. The 5408 Indonesian medicinal plant species are within 245 families and 1809 genera; 3312 are native (61.24%), 1754 (32.43%) are introduced, and 342 species (6.32%) are of unknown status. Most medicinal

plants (8.84%) belong to the Fabaceae family (Figure 2.3) since it is one of the biggest families of medicinal plants in the world (Willis, 2017). There is estimated to be a total of 27,734 medicinal plant species around the world (MPNS, 2020), meaning that Indonesia's medicinal species make up around 20% of the global population.

2.3.2. Prioritising and inventorying Indonesian medicinal plants

A total of 233 species of Indonesian medicinal plants, within 161 genera and 71 families, were prioritised for conservation (Table Appendix 2.1) according to the criteria discussed above (Figure 2.3). The higher priority medicinal plant families belong to the Orchidaceae (34 species or 14.59%) and Dipterocarpaceae (26 species or 11.16%). Most of these are included in Appendix II of CITES or have been assessed as threatened in the IUCN Red List (Table Appendix 2.2). Some 127 out of the 233 priority species are known as medicinal plants worldwide (MPNS, 2020), whereas 106 species are used as commercial timber (Dipterocarpaceae), ornamental plants (Orchidaceae) and sources of fibre (Nepenthaceae).

Figure 2.3. The families represented in the Indonesian Medicinal Plant Species Checklist with priority species for conservation from the highest priority number

Some 96 out of 233 (41.20%) major priority medicinal plants are distributed in one major area/island and harvested in a destructive manner. Based on the Figure 2.4, some species are included on the priority list solely based on the IUCN threatened list (2), CITES Appendix II list (25), and in Indonesian legislation (11), but no species become priority based on solely destructive harvesting and limited distribution, or a combination of all five criteria.

Figure 2.4. Venn diagram of priority medicinal plant species grouped into prioritisation criteria

The rest of the species in the CITES Appendices may represent global demand, and da Silva and Conde (2019) have used it for their own prioritisation. Moreover, the CITES Appendices are managed based on trading data and are very important in Indonesia. Throughout Asia, as Ma *et al.* (2010) argue, the illegal trade in medicinal plants like orchids cause losses in plant diversity. However, it is difficult to assess this adequately in Indonesia due to its size and large remote areas.

Most of the medicinal plants that can be classed as priority (77.25%) are harvested destructively either by removing the rooting parts (root, rhizome, or tuber), bark, or harvesting the entire plant. The remaining plants (14.59%) are harvested through other parts such as their leaves, sap, stems, fruits, or flowers. Some 8.15% of the priority species have no information regarding how they are harvested, as their harvesting methods were not necessarily designed solely for medicinal use. Harvesting non-aerial parts of the plant (root, rhizome and tuber, bark and rhizome) makes the plants highly susceptible to failure or can directly kill the plants. Other parts of the plant, such as leaves, flowers, and seeds, are excluded from the prioritisation criteria, although they can also affect the plant's vigour and fitness. Nevertheless, the harvesting of root and bark might affect mostly shrubs and trees, whereas the collection of seed affects mainly annuals and biannuals (Schippmann and Cunningham, 2002).

In terms of the habit types of priority medicinal species, the majority type consists of trees (32.62%), shrubs (27.03%), herbs (24.03%), lianas (6.44%), climbers (6.01%), tree like-palms (3.00%), and holoparasite (0.86%). Some 97of the 233 priority species have been identified through DNA barcoding and provided online (http://www.boldsystems.org/; Ratnasingham and Hebert, 2007). The taxonomic identification via DNA barcoding is of high importance for conservation. Since plant phenotypic characteristics are affected by physiology and environmental factors (Chen *et al.*, 2010; Techen *et al.*, 2014), it may become difficult to identify certain species. Thus, for conservation purposes, consistent results of DNA barcoding can help to prevent deception and theft of protected and commercial species (Kress *et al.*, 2014; Mishra *et al.*, 2016). Furthermore, it also protects the rights of consumers to use authentic plant species for their medicines, as the barcoding can be conducted on both fresh and dried plants (Dick and Webb, 2012) as well as on market products (Eurlings *et al.*, 2013; Newmaster *et al.*, 2013).

Regarding their distribution, 53 priority species are endemic to Indonesia (see Table 2), 179 species are distributed in both Asia and Australia, and one species

(*Dodonaea viscosa* Jacq. subsp. *angustifolia* (L.f.) J.G.West) is distributed worldwide. Sundaland and Wallacea, with 93 and 24 endemic medicinal plant species respectively, are included in the hotspot areas identified by Myers *et al.* (2000) and Mittermeier *et al.* (2011) as having significant endemism and threats. The number of native medicinal plants in Indonesia showcases how rich Indonesia's biodiversity is, a point also noted by Vavilov (1935) who identified it as a centre of origin/diversity of cultivated plants.

Distribution	Endemic to one major island	Endemic to ≥ 2 islands/areas	Total occurrence
Sumatera ^a	43	78	121
Java ^a	33	62	95
Kalimantan ^a	17	68	85
Papua ^c	13	35	48
LSI ^b	12	44	56
Maluku ^b	11	37	48
Sulawesib	1	43	44

Table 2. Level of endemism of priority medicinal plant species within Indonesia

Biogeographical regions of Southeastern Asia: ^aSundaland, ^bWallacea, ^cAustralia (according to Myers *et al.*, 2000, Mittermeier *et al.*, 2011).

Indonesian people in villages often intensively use a traditional medicinal plant that they collect from the wild and plant in their home gardens (Astutik *et al.*, 2019). Nevertheless, we could not identify the priority species data regarding their collection and planting locally as medicinal plants. In addition, *ex situ* conservation institutions have been actively collecting priority medicinal plants. More than half of the 233 species have been planted in nurseries or botanical gardens either nationally or internationally. Some 137 priority species are cultivated in the Indonesian Botanic Garden–Indonesian Institutes of Sciences and one species [*Phyllodium elegans* (Lour.) Desv.] can be found at the International Livestock Research Institute (ILRI) (Ethiopia) with Forages as its common name. Despite

being distributed in more than two islands/areas, 107 priority species that are threatened globally have been listed in national legislation. Likewise, *Borassus flabellifer* L. (Arecaceae) and *Dalbergia latifolia* Roxb. (Fabaceae) are threatened based on IUCN red list criteria but have been introduced to other parts of Indonesia as well as to other countries. *Borassus flabellifer* has been introduced into other countries, such as China, Thailand, and Mauritania, meanwhile *Dalbergia latifolia* has been introduced into Australia, Sri Lanka, and Tanzania (POWO, 2020).

2.4. Discussion

2.4.1. Checklist of Indonesian medicinal plants

As Paton *et al.* (2016) have argued, plant species names serve as "a key to communicating and managing information about plants". Creating a national checklist of Indonesian medicinal plant species, and annotating with additional data to allow for prioritisation, is essential groundwork for conservation. As the information is currently located in different sources and is arguably incomplete, there are many areas of literature and numerous journals that discuss medicinal plants that need to be collected and reviewed. The Medicinal Plant Names Services (MPNS, 2020) can be useful to access the global information for medicinal plants and to build up understanding amongst both scientific and non-scientific users. Many journals report ethnobotanical studies of Indonesian people that are rich in ethnicity, but the MPNS to date has little information regarding Indonesia plants. For this project, the literature that is estimated to have a complete species list of Indonesian medicinal plants was selected for further study.

Using the TRNS tool (Taxonomic Name Resolution Service; Boyle *et al.*, 2013) to help with the taxonomical check name was helpful for this research but some issues were unable to be resolved. Homonyms and ambiguous names needed to be checked manually. Some plant names are Rumphius-related names such as *Sampacea montana* Rumph. and *Arbor spiculorum aeruginea* Rumph. that are prebinomial names, not binomial. This is because Rumphius' works had not been recorded in Species Plantarum, the starting point of binomial names by Linnaeus (1753) (Margulis and Raven, 2009) and was resolved by available synonyms in the available literature (Eisai, 1986). The value of this "resolution" is also constrained by the quality of the underlying taxonomic resources available. To resolve the taxonomic status would allow for better tracking of the plant to the names employed in original publications, enabling them to be matched to modern comprehensive nomenclatural and taxonomic datasets.

Allkin (2014) and Rivera *et al.* (2014) describe the frequent use of ambiguous names and even misleading names that exist in the literature, scientific journals, and international legislation in terms of medicinal plant names. Some 3,445 names out of 9,178 Latin names from 308 scientific articles were incorrect, as identified by Rivera *et al.* (2014). This might happen because, in certain circumstances, more than one name can refer to a plant, while on the other hand, one name can refer to more than one plant, or the name can keep changing (Allkin, 2014). Dauncey *et al.* (2016) suggested authors use the proper and unambiguous scientific plant(s) names of medicinal plants or their products before publishing their articles in order to maintain scientific integrity. The confusion concerning the identity of plants employed is made even more complex because of the widespread

use in health legislation of common, trade, product and pharmaceutical names (the latter also written in Latin) which are inherently ambiguous (Allkin, 2014). Labelling plant materials correctly and unambiguously is a key step in researching medicinal plant use (Allkin and Patmore, 2018).

The checklist resulting from this study might not be perfect and can only reduce the pitfall of medicinal scientific names, that is synonym names and homonyms (Allkin and Patmore, 2018). However, it can also be a reasonable basis for future research and coordination in discussing whole species to conserve, considering many medicinal plants can be found in Indonesia. As the ethnobotanical knowledge, especially regarding new medicinal plants, is still increasing this study serves as a foundation for future work.

2.4.2. Priority of Indonesian medicinal plants, their current conservation and conservation planning

Prioritisation has been done for some plant taxa in Indonesia, but this research was not specifically for medicinal plants. Studies include those by Mogea (2001), Risna *et al.* (2010), and Hamidi *et al.* (2019). Mogea *et al.* (2001) listed 200 rare plant species in Indonesia and 29 priority medicinal plants are included in his list, namely *Anaxagorea javanica* Blume (Annonaceae), *Pimpinella pruatjan* Molk. (Apiaceae), *Alstonia scholaris* (L.) R.Br., *Alyxia halmaheirae* Miq., *A. reinwardtii* Blume, *Rauvolfia serpentina* (L.) Benth. ex Kurz, *Urceola laevigata* (Juss.) D.J.Middleton & Livsh., *Voacanga grandifolia* (Miq.) Rolfe (Apocynaceae), *Caryota no* Becc., *Phoenix paludosa* Roxb. (Arecaceae), *Oroxylum indicum* (L.) Kurz (Bignoniaceae), *Cibotium barometz* (L.) J.Sm. (Cibotiaceae), *Shorea palembanica* Miq. (Dipterocarpaceae), *Euchresta horsfieldii* (Lesch.) Benn.,

Koompassia malaccensis Maingay, Parkia intermedia Hassk., P. timoriana (DC.) Merr. (Fabaceae), Scutellaria javanica Jungh (Lamiaceae), Cinnamomum culilaban (L.) J.Presl, C. sintoc Blume, Cryptocarya massoy (Oken) Kosterm. (Lauraceae), Strychnos ignatii Bergius, S. lucida R.Br. (Loganiaceae), Vanda miniata (Lindl.) L.M.Gardiner (Orchidaceae), Kadsura scandens (Blume) Blume (Schisandraceae), Symplocos odoratissima (Blume) Choisy ex Zoll (Symplocaceae), Aquilaria hirta Ridl. (Thymelaeaceae), Amomum sumatranum (Valeton) Skornick. & Hlavatá, and Curcuma petiolate Roxb. (Zingiberaceae). Risna et al. (2010) prioritised the family of Arecaceae, Cyatheceae, Nepenthaceae, and Orchidaceae as a taxa unit considering the nature of each plant and the natural habitat, with the result of ex situ conservation recommendations on some taxa. Three priority medicinal plants are in line with other results and are *Nepenthes reinwardtiana* Miq., *Johannesteijsmannia* altifrons (Rchb.f. & Zoll.) H.E. Moore, and Nepenthes ampullaria. Anisoptera costata Korth. (Dipterocarpaceae), Castanopsis argentea (Blume) A.DC. (Fagaceae), and Eusideroxylon zwageri Teijsm. & Binn. (Lauraceae) are also included in priority plant taxa that need to be conserved in Indonesia (Hamidi et al., 2019). Moreover, the Ministry of Agriculture published Decree No. 511 Year 2006, which was first revised with Decree No. 141 Year 2019, and finally revised with Decree No. 104 Year 2020, which lists horticultural plants grown in Indonesia. This includes a number of medicinal plants that are produced and processed for market. Three priority species, Curcuma aeruginosa Roxb., Lunasia amara Blanco, and Rauvolfia serpentina (L.) Benth. ex Kurz, have already been included in horticulture plant priority lists since 2006. Thus, some priority Indonesian medicinal plants identified in this study have been confirmed as priority species by

other studies. These depict the need for a priority conservation list for sustainable use.

This priority list can be used to help formulate *in situ* and *ex situ* conservation plans through the National Priority Program included in the Mid-Term National Development Plans of Indonesia, in line with the Convention on Biological Diversity regarding the conservation of biodiversity and its sustainable use (CBD, 2010). The priority list also helps to achieve the Global Strategy for Plant Conservation 2011–2020 objectives and its targets: objective I ("Plant diversity is well understood documented and recognised"), II ("Plant diversity is urgently and effectively conserved"), III ("Plant diversity is used in a sustainable and equitable manner"), IV ("Education and awareness about plant diversity, its role in sustainable livelihoods and importance for all life on earth is promoted"), and V ("The capacities and public engagement necessary to implement the strategy have been developed").

The stakeholders involved in the conservation and use of medicinal plants, particularly in Indonesia, can use the priority list of medicinal plants developed here as a basis for coordinated and systematic active conservation work. It is clear that conservation efforts on Indonesian medicinal plants have already been made, but the information and network of stakeholders either does not currently exist or is difficult to access, hence the need to make it more widespread and strengthened. This network will find what has and what has not been done regarding conservation so that active conservation may utilise its limited resources on the conserving those Indonesian medicinal plants that most need it.

2.5. Conclusion

This study has identified a total of 5490 medicinal plant species of which 233 are a priority for conservation. Not all priority species are well-known as medicinal plants, such as those that belong to Dipterocarpaceae (mostly timber plants) and Orchidaceae (mostly ornamental plants). An inventory of priority medicinal species was developed, and it is hoped that this can be used to help the medicinal plant's stakeholders, mainly comprising researchers and government officials working on the systematic conservation of priority Indonesian medicinal plants. This priority list can be used to help formulate *in situ* and *ex situ* conservation plans at regional and national levels. Furthermore, dissemination to a wider public will help in raising knowledge and awareness of medicinal plants, which is essential towards the conservation of these valuable resources.

CHAPTER 3. GAP ANALYSIS OF PRIORITY INDONESIAN MEDICINAL PLANT SPECIES AS PART OF THEIR CONSERVATION PLANNING

Abstract

Indonesia is a country rich in medicinal plant biodiversity. The conservation and sustainable use of such species in Indonesia are critical because of incipient population growth, changing land usage, forest clearance, and climate change in a country where most of the population depends on traditional medicines for their health care and wellbeing. Identifying the conservation gap is crucial for planning the genetic conservation of Indonesian priority medicinal plant species. These are native plants with limited distribution, wild harvested (often to destruction) and/or included on the IUCN Red List, CITES appendices, and national legislation. Ecogeographic data were collated from online database, herbarium specimens and living collections and then subjected to *in situ* and *ex situ* gap analysis. The results of this gap analysis support our recommendation that *in situ* active conservation reserves for priority plants be established in areas of Indonesia with the greatest diversity of species. Medicinal plant species with no occurrence points in Indonesia or less than five seed samples are needed to be surveyed further. Other recommendations for active in situ and ex situ conservation are provided in this article which will help to ensure conservation of medicinal plants in Indonesia.

Keywords: conservation, gap analysis, Indonesia, medicinal plant species.

3.1. Introduction

Medicinal plants are useful and valuable. They are defined as all higher plants that have identified uses for medicinal purposes (Hawkins, 2008; WHO, 2003) arising from the bioactive properties of particular secondary metabolites they contain (de Padua *et al.*, 1999), and have effects relevant to health as drugs, whether their use has been proven clinically or not (Farnsworth and Soejarto, 2001). These plants might be used as food and cosmetic (Astutik, Pretzsch and Kimengsi, 2019) and might be harvested from the wild and cultivation (WHO, 2003). People traditionally used plant parts, extracts, and complex products to cure illness (de Padua *et al.*, 1999; Cragg and Newman, 2013). More than 50,000 higher plant species worldwide are estimated to be classed as medicinal plants (Schippmann *et al.*, 2002). These plants are economically valuable to various communities (de Padua *et al.*, 1999; Hamilton, 2004; Hawkins, 2008), but to estimate their value is a complicated process which presumably leads to undervaluation (Org and Brandon, 2014). Nonetheless, in 2018, medicinal plants and related products' global export value was estimated at \$3.3 billion (Timoshyna *et al.*, 2020).

Indonesia is a country rich in biodiversity (Vavilov, 1935; Ma *et al.*, 2010) with 30,000–40,000 plant species (Myers *et al.*, 2000; Ministry of National Development Planning, 2016), and 2,500–7,500 of these species are medicinal plants (Hamid and Sitepu, 1990; Eisai, 1995; Erdelen *et al.*, 1999), whether native or introduced species, and whether wild or cultivated species (de Padua *et al.*, 1999). Their value has been recognised around the globe for centuries (Vavilov, 1935; de Padua *et al.*, 1999), for the use as drugs and cosmetics, and their use in

both traditional and contemporary ways (Kolberg and Piterson, 1996; Ministry of Agriculture, 2014; 2015).

Due to illegal trade, overexploitation and invasive species, medicinal plant species populations in Indonesia are declining (Hawkins, 2008, Ma *et al.*, 2010). Additionally, as with all biodiversity, plants are also lost due to forest fires, and deforestation during land conversion intended to construct plantations and public facilities (The World Bank, 2016; Gaveau *et al.*, 2018). On a broader level, medicinal plants would also be negatively affected by climate change, especially because of rising sea levels, wave heights, and ocean temperatures (Bellard *et al.*, 2014, Zikra *et al.*, 2015), the soil temperature rise (Sentinella *et al.*, 2020), and human activity (Nurse *et al.*, 2014). In addition, the waning local knowledge and skills needed to use medicinal plants (Stevenson, 1998) might contribute to their loss, as well as a general lack of concern over these plants facing the aforementioned threats (Hamilton, 2004).

Generally speaking, conservation and conservation planning are not advanced practices in Indonesia, which is largely due to the reserved areas for the livestock and sacred areas for the religious purposes owned by local peoples (Carew-Reid, 2002). So far, *in situ* and *ex situ* conservation have been carried out in Indonesia for plant species to some extent. *In situ* conservation is defined as "the conservation of ecosystems and natural habitats and the maintenance and recovery of viable populations of species in their natural surroundings where they have developed their distinctive properties" and *ex situ* conservation as "the protection of components of biological diversity outside their natural habitats" by Convention on Biological Diversity (UN, 1992). The home gardens as *in situ* conservation, called TOGA (Tanaman Obat Keluarga) or Family Medicinal Plant, are already considered a form of *in situ* conservation, where local people maintain the genetic diversity of these species (Watson and Eyzaguirre, 2001; Maxted *et al.*, 2013a), in Indonesia National Policy on Traditional Medicines (KOTRANAS) (Ministry of Health, 2007). *Ex situ* field collections of medicinal plants have been undertaken in Java island, like at the Tawangmangu gardens in Central Java under the Department of Health of the Ministry of Health, two highland gardens (Manoko and Gunung Putri) and three lowland gardens (Cikampek, Sukamulya and Cimanggu) under the Research Center for Spices and Medicinal Plants (Indonesia-FAO, 2011). The Sriwijaya regional botanical garden in Sumatra islands also collects medicinal plants, other than wetlands plants (Purnomo *et al.*, 2015). Traditional medicine industries also usually have a medicinal plants collection where *ex situ* or *in situ* gap analysis can be done (Indonesia-FAO, 2011). However, in light of the numerous medicinal plants and Indonesia's size in general, there is a big gap in their plants conservation.

To assist in conservation planning, gap analysis has been done in many flora species and groups. For example, it has been done in wild *Hordeum* species (Vincent *et al.*, 2012), *Aegilops* species (Maxted *et al.*, 2008), Crop Wild Relative (CWR) groups (Meilleur and Hodgkin, 2004; Fielder, 2015; Tas *et al.*, 2019; Phillips *et al.*, 2019), and threatened medicinal plants (Chi *et al.*, 2017). Gap analysis is a method to identify areas in which selected elements of biodiversity are under-represented, whether on a local, national or global scale, and whether *in situ* or and *ex situ* (Burley, 1988; Margules and Pressey, 2000). Technically, it involves defining the species or species groups that would be conserved, assessing current *in situ* and *ex situ* analysis, reformulating conservation strategy, and defining future challenge gaps (Maxted *et al., 2008*). This study aims to analyse current Indonesian priority medicinal plant species diversity (see Chapter 2, Cahyaningsih *et al., 2021*) and provide recommendations for *in situ* and *ex situ* conservation action. Meanwhile, there are three specific objectives, namely (1) to identify the richest area of Indonesian priority medicinal plant species (2) to identify areas where additional *ex situ* priority medicinal plant species should be collected, and (3) to recommend existing protected sites and sites outside protected areas (PAs) that might create the basis of *in situ* genetic reserves to conserve the Indonesian priority medicinal plant species.

3.2. Methods

We used 233 Indonesian priority medicinal plant species in gap analysis study (see Chapter 2, Cahyaningsih *et al.*, 2021; Table A.3.1). The applied methods on gap analysis were adapted from Maxted *et al.* (2008), Fielder (2015), Tas *et al.* (2019), and Phillips *et al.* (2019). Data for priority medicinal plant species of Indonesia were collated from online database that was from GBIF (http://www.gbif.org; GBIF, 2020), Genesys (https://www.genesys-pgr.org; Genesys, 2020), BOLD database (http://www.boldsystems.org; Ratnasingham and Hebert, 2007), Missouri Botanical Garden's Tropicos database (Tropicos.org, 2020) and herbarium databases from Indonesia (Herbarium Bogoriense and), and abroad (Royal Botanic Gardens, Kew; Royal Botanic Garden, Edinburgh; and The Natural History Museum in the United Kingdom, and also Naturalis herbarium in the Netherlands) and living collection database from Bogor Botanic Gardens– Indonesian Institute of Sciences in Indonesia. The occurrence data were recorded as longitude and latitude decimals and nomenclature followed from Plants of the World Portal (http://plantsoftheworldonline.org/, POWO, 2020). The majority of specimens lacked coordinates; therefore, these were found from location data in Google Earth (http://www.cartographic.info). In some cases, some inaccurate specimens' records, for example, they were only found on the main island without exact location but the collector was available, the occurrences were tracked from http://www.nationaalherbarium.nl/FMCollectors/Home.htm. All collected data were examined using DIVA-GIS 7.5 software to identify locations on land and inside the Indonesia border, otherwise to re-examine the data and either correct the record or exclude it.

An examination of the richness of species and potential bias of observation analyses were undertaken in the DIVA-GIS 7.5 (Hijmans *et al.*, 2001). Country boundary files were obtained from www.diva-gis.org. The species richness was used to identify diversity hotspots that contain the highest number of different medicinal plant species in Indonesia. The bias was used to identify areas where a majority of species (or collections or observations) are located based on occurrence data. Species richness was assessed using the Point to Grid function. The parameter of species name was selected. A new grid was created with a grid cell size set at 0.45 (equivalent to 50 km x 50 km or 2500 km²), the point to grid procedure of Simple was selected, and the output variable was set as Richness with No Data hidden. For observational bias, the steps were the same; however, the output variable selected was set at Number of Observations. The program automatically defined the number class, the value in each class of species richness, and the observation bias.

A complementarity analysis (reserve selection) was conducted in DIVA-GIS 7.5 by selecting Reverse Selection in the Point to Grid function. The scoring approach parameters used was Equal weight with the maximum number of iterations chosen. This analysis was undertaken with the Point to Grid procedure. To establish an effective network (reserve site) for in situ conservation, grid cells were selected that capture a maximum number of plant species (Hijmans et al., 2001). The application was used to adapt the work of Rebelo (1994), in that the study selected the grid cells with the highest number of species, and then selected species within the cell were excluded from the analysis (this is repeated until all species have been selected). The complementary analysis value was obtained by the Arc-Map 10.4.1 tool, that is number of different species in a cell compared to previous cells (unique species). The results were overlapped with 733 protected areas (PAs) in Indonesia, which were downloaded from the World Database on Protected Areas (the "WDPA Materials") available at the ProtectedPlanet.net website (UNEP-WCMC and IUCN, 2018). The complementarity map would be the proposed *in situ* reserve site, which will help to conserve most Indonesian medicinal plant species efficiently. An ex situ gap analysis was undertaken by comparing the maps of all species richness (= all observations) with ex situ collected species richness using the overlay function in DIVA GIS 7.5.

3.3. Results and Discussion

3.3.1. Species' richness and bias map of Indonesian priority medicinal plants

A map of species' richness and observation bias of priority medicinal plant species in Indonesia was created from a total of 6,704 occurrence points. The map of species richness (Figure 3.1) showed that the richest area (red colour) is in the western part of Java, particularly around the West Java and Banten province region, Mount Gede-Pangrango and Mount Halimun-Salak. Here, 67–82 priority species are found per area of 2,500 km² (grid size) and are mostly found within PAs, for example, Gunung Halimun Salak National Park; Gunung Gede Pangrango Nature Park; and Gunung Mega Mendung Nature Reserve.

Medicinal plant species are distributed across all the major islands but there is at least one grid cell that is richer than its surrounding area (other cells), apart from Papua. The richness map shows the Sundalands which encompasses Sumatra, Java, and Kalimantan island, the Wallacea which encompasses the Lesser Sunda Islands (LSI), Sulawesi, and Maluku islands, and the Australia area which encompasses Papua. According to Myers *et al.* (2000), Sundalands and Wallacea are included in a hotspot meaning they have richer biodiversity than Australia area, although it is allegedly because there has been less collection in Papua than in other areas.

Figure 3.1. Species richness map of priority medicinal species (grid of 50 km x 50 km)

The observational bias map of Indonesian priority medicinal plant species (Figure 3.2) shows that almost all of the species rich areas occur also contain high number of species observations, particularly in the western part of Java island with 291-363 priority species per one grid cell (2,500 km²). Western Java, especially Bogor Regency and its surroundings, are mountainous areas such as Mount Salak and Mount Gede-Pangrango where many plants are located, as well as the nearby capital city of Jakarta. Most research on medicinal plant species is currently conducted in the Natural Reserve of Mount Gede Pangrango (Fahrurozi *et al.*, 2016; Astutik *et al.*, 2016). Jepson and Whittaker (2002) stated that botanists collect plants in easy-to-access areas more often than not so most of the sites with species richness may be due to the ease of plant collection rather than reflecting true diversity itself. However, since western Java island, namely Banten, West Java, and the Special Region for the Capital City Jakarta (DKI Jakarta) province have the highest population density in Indonesia (BPS-Statistics Indonesia, 2019), it is a concern for the area to save the medicinal plant species in active *in situ* conservation.

The identified areas where observation bias occurred can be traced to a current lack of knowledge for most species or species group distribution; this is known as the Wallacean shortfall (Bini *et al.*, 2006; Hortal *et al.*, 2014). Wallacean shortfall is defined as "the paucity of information on the geography of nature" (Lomolino, 2004). This mostly occurs in tropical biodiversity hotspot areas (Bini *et al.*, 2006), when high plant diversity in one area is in line with a high collection number, then the area may not represent the actual plant diversity that occurs in reality (Monsarrat *et al.*, 2019). Distribution modelling of species may rectify the bias in data since it will reveal the predicted distribution of the plants that represent

the diversity, regardless of the attractiveness of area to plant collectors (Bini *et al.*, 2006, Monsarrat *et al.*, 2019).

Figure 3.2. Bias of observation map of priority medicinal species in Indonesia (grid of 50 km x 50 km)
3.3.2. In situ and ex situ gap analysis of Indonesian priority medicinal plants

The complementary analysis resulted in 41 grid cells of networks (reserve sites), shown in Figure 3.3 and Table 3.1. Some 33 out of 41 reserve sites overlap with protected areas (PAs) and can be found in Indonesia's major islands. These overlapping areas currently have passive conservation for Indonesian priority medicinal plant species that could be sites for future active conservation plans for medicinal plants. In addition, outside of the current PAs, eight reserve sites are recommended for priority purposes as potential new protected areas, four in Kalimantan, three in Sumatra and one in Java island (Figure 3.3).

In situ conservation of Indonesian priority medicinal plant species is very important because it would protect three conditions: conservation of ecosystems, viable populations, and natural habitats (UN, 1992; Badola and Aitken, 2003). Medicinal plants have been passively conserved in existing PA, therefore species management and monitoring are conducted as a form of active conservation (Iriondo *et al.*, 2012). In existing PA, the *in situ* conservation could be done onfarm (Watson and Eyzaguirre, 2001; Maxted *et al.*, 2013b). "Quasi in situ", or a bridge between *in situ* and *ex situ*, species conservation could be initiated, as the maintaining space for collection will be less and costs will be lower, within highly suitable environments allowing for natural maintenance for medicinal plants (Volis and Blecher, 2010). The human populations surrounding PAs could either actively conserve as a priority or contribute to plants' extinction. To help with *in situ* conservation action, the government could introduce legislation regarding how to protect and use medicinal plants and how to promote conservation education by conservationists (Volis, 2019).

Figure 3.3. The complementary network areas map (grid of 50 km x 50 km) which conserve priority medicinal plant species in Indonesia and overlapped with PA (in light green) for *in situ* conservation of priority medicinal plants in Indonesia

Reserve		No. Protected	No. Unique	Lessting (Drasings)	Mainpieles 1
site	PA area	Species	species	Location (Province)	Major Island
	Gunung Pancar Nature Recreation Park;				
	Gunung Halimun Salak National Park;				
	Gunung Gede Pangrango Nature Park;				
1	Pancoran Mas Grand Forest Park; Rompi	82	82	West Java, Banten, Jakarta	Java
	Nature Recreation Park; Arca Domas				
	Nature Reserve; Gunung Mega Mendung				
	Nature Reserve				
2	Padang Sugihan Wildlife Reserve	34	20	South Sumatera	Sumatera
	Ir. H. Juanda Grand Forest Park; Gunung				
	Burangrang Nature Reserve; Gunung				
3	Tangkuban Parahu Nature Recreation Park;	33	8	West Java	Iovo
3	Gunung Masigit Kareumbi Hunting Park;	55	0	west Java	Java
	Kawah Kamojang Nature Reserve; Gunung				
	Tilu Nature Reserve				
	Gunung Halimun Salak National Park;				
	Gunung Gede Pangrango Nature Park;	31			
	Takokak Nature Reserve; Tangkuban Prahu				
4	Pelabuhan Ratu Nature Reserve;		4	West Java	Iava
т	Situgunung Nature Recreation Park;		7	West Java	Java
	Cibodas Biosphere Reserve (Gunung Gede-				
	Pangrango) UNESCO-MAB Biosphere				
	Reserve				
5	Teluk Ambon Marine Multiple Use	30	10	Maluku	Maluku
5	Reserve	50	10	Maraka	Waraka
	Gebukan Nature Reserve; Sepakung Nature				
6	Reserve; Gunung Merbabu National	28	1	Central Java, Yogyakarta	Java
0	Park;Gunung Merapi National Park;	20	Ŧ	Contar Suva, 1055 anarta	Juru
	Gunung Bunder Grand Forest Park; Imogiri				

Table 3.1. Site proposed for *in situ* conservation of priority medicinal plant species of Indonesia

	National Reserve; Paliyan Wildlife				
	Reserve; Plawangan Turgo Nature				
	Recreation Park				
	Gunung Merapi National Park; Gunung				
7	Bunder Grand Forest Park; Imogiri	26	15	Vogyakarta, Cantral Java	Iovo
7	National Reserve; Paliyan Wildlife	20	15	Togyakarta, Central Java	Java
	Reserve; Plawangan Turgo Nature Reserve				
	Lembah Harau Nature Reserve; Lembah				
	Harau Nature Recreation Park; Gunung				
8a	Sago Malintang Nature Recreation Park;	23	10	West Sumatera	Sumatera
ou	Gunung Marapi Nature Recreational Park;	23	10	West Sumatora	Sumatora
	Singgalang Tandikat Nature Recreation				
	Park; Batang Palupuh Nature Reserve				
8b	Ale Aisio Wildlife Reserve; KKPN Laut	23	4	East Nusa Tenggara	LSI
	Sawu Marine National Park	-		66	
8c	Sigogor Nature Reserve; Picis Nature	23	2	East Java	Java
0.1	Reserve				
8d	Getas Nature Reserve	23	1	Central Java	Java
9	No	20	2	Central Java, Yogyakarta	Java
10	No	18	4	North Sumatera	Sumatera
11	No	17	2	Jambi	Sumatera
	Gunung Lokon National Park; Gunung				
12a	Manembo-nembo Wildlife Reserve;	16	6	North Sulawesi	Sulawesi
	Bunaken Marine National Park				
12b	Gunung Meja Nature Recreation Park;	16	6	West Papua	Papua
120	Pegunungan Arfak Nature Reserve	10	Ũ		- up uu
12c	Bukit Rimbang Bukit Baling Wildlife	16	4	West Sumatera, Riau	Sumatera
	Reserve; Batang Pangean I Nature Reserve			···,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
12d	KPPD Kepulauan Derawan dan Perairan	16	1	East Kalimantan	Kalimantan
	Sekitarnya Coastal and Small Island Park	-			

	Gunung Celering Nature Reserve; Keling I				
13	Nature Reserve; Keling II/III Nature Reserve	15	1	Central Java	Java
14	Rimbo Panti Nature Recreation Park; Malampah Alahan Panjang Wildlife Reserve	11	2	West Sumatera, North Sumatera, Riau	Sumatera
15	Bukit Baka-Bukit Raya National Park	10	7	Central Kalimantan, West Kalimantan	Kalimantan
17	Bukit Dua Belas National Park	8	3	Jambi	Sumatera
16a	no	9	3	East Kalimantan, North Kalimantan	Kalimantan
16b	Bukit Barisan Selatan Grand Forest Park; Tinggi Raja Nature Reserve; Martelu Purba Nature Reserve	9	2	North Sumatera	Sumatera
18a	no	7	2	North Kalimantan	Kalimantan
18b	Kutai National Park	7	1	East Kalimantan	Kalimantan
18c	Rawa Cipanggang Nature Reserve	7	1	West Java, Central Java	Java
19a	KKPD Kabupaten Tapanuli Tengah, Kawasan Konservasi Perairan Daerah Kabupaten Tapanuli Tengah Locally Managed Marine Area	6	2	North Sumatera	Sumatera
19b	no	6	1	West Kalimantan	Kalimantan
19c	Gunung Leuser National Park; Rawa Singkil Wildlife Reserve	6	1	Aceh; North Sumatera	Sumatera
20a	Bintan Locally Managed Marine Area	5	3	Bangka Belitung	Sumatera
20b	Gunung Ambang Nature Reserve; Bogani Nani Wartanobe National Park	5	1	North Sulawesi	Sulawesi
20c	Pegunungan Arfak Nature Reserve	5	1	West Papua	Papua
21a	Bukit Batu Wildlife Reserve	4	1	Riau	Sumatera
21b	Malampah Alahan Panjang Wildlife Reserve; Maninjau Nature Reserve; KKPD	4	1	West Sumatera	Sumatera

	Kabupaten Agam, Kawasan Konservasi				
	Perairan Daerah Kabupaten Agam Locally				
	Managed Marine Area				
22a	Batang Gadis National Park	3	1	North Sumatera	Sumatera
22b	Sultan Thaha Syaifuddin Grand Forest Park; Durian Luncuk I, II Nature Reserve;	3	1	Jambi, South Sumatera	Sumatera
23a	Batang Gadis National Park; Barumun Nature Reserve	2	1	North Sumatera, Riau	Sumatera
23b	no	2	1	North Sumatera, West Sumatera	Sumatera
24a	KKPN Kepulauan Anambas dan Laut Sekitarnya Marine Recreation Park	1	1	Riau Islands	Sumatera
24b	no	1	1	West Kalimantan	Kalimantan

Noted: LSI= the Lesser Sunda Islands

The *ex situ* gap analysis showed that the area most in need of further collection is the Western part of Java and Maluku (Figure 3.4). These areas are habitats where Indonesian priority medicinal species are found most frequently but have not been collected for *ex situ* conservation. Taking into account their habitat degradation, especially due to high recorded deforestation (average forest loss reaches 1.3M ha/year, 2000-2017) (FWI, 2020), *ex situ* conservation for Indonesian priority medicinal species is crucial.

Thirty-eight Indonesian priority medicinal plant species are undercollected species (having less than five occurrence records) (Table 3.2). Twelve species out of 38 undercollected species have no recorded occurrence in wild collections. In addition, six priority species out of them have been conserved in *ex situ* sites. These species should take first place in conservation planning that is to conduct surveys in wild habitats to record their occurrences. They would be maintained and propagated outside of their habitat using conventional methods as well as advanced biotechnology (Ford-Lloyd *et al.*, 2011), and would be well-documented, as a genetically representative collection (BGCI, 2012) that could be in the form of seed, pollen, DNA, in vitro storage, field gene bank, or even in a botanic garden (Maxted *et al.*, 2013b). Living collections in botanic gardens would facilitate propagation and botany research, public education, species reintroduction and habitat restoration programmes (IPGRI, 2004; BGCI, 2012).

Figure 3.4. *Ex situ* gap map of priority medicinal plant species conservation in Indonesia (grid of 50 km x 50 km)

No.	Scientific name (POWO, 2020)	Family	Ex situ	Occ. points	Note
1	Avicennia marina var. rumphiana (Hallier f.) Bakh.	Acanthaceae	A	2	
2	<i>Myriopteron extensum</i> (Wight) K.Schum.	Apocynaceae	А	0	Unclear location
3	Alocasia cuprea K.Koch	Araceae	А	0	No Indonesia
4	Johannesteijsmannia altifrons (Rchb.f. and Zoll.) H.E.Moore	Arecaceae	А	1	
5	Saribus woodfordii (Ridl.) Bacon and W.J.Baker	Arecaceae	А	0	No Indonesia (PNG)
6	Balanophora fungosa subsp. indica (Arn.) B.Hansen	Balanophoraceae	А	1	
7	Garcinia amboinensis Spreng.	Clusiaceae	А	0	cultivated in Bogor BG
8	Rourea fulgens Planch.	Connaraceae	А	1	
9	Erycibe aenea Prain	Convolvulaceae	А	3	
10	<i>Fimbristylis falcata</i> (Vahl) Kunth	Cyperaceae	А	0	No Indonesia (PNG)
11	Homalanthus longistylus K.Schum. and Lauterb.	Euphorbiaceae	А	0	No Indonesia (PNG)
12	Entada spiralis Ridl.	Fabaceae	А	1	
13	Gnetum tenuifolium Ridl.	Gnetaceae	А	1	
14	Hibiscus celebicus Koord	Malvaceae	А	4	
15	<i>Dissochaeta punctulata</i> Hook.f. ex Triana	Melastomataceae	А	3	
16	Heynea trijuga Roxb.	Meliaceae	А	3	
17	Nepenthes ampullacea Jack	Nepenthaceae	А	1	
18	Dendrobium faciferum J.J.Sm.	Orchidaceae	P (N)	4	
19	Dendrobium hymenanthum Rchb.f.	Orchidaceae	А	0	No Indonesia (Asean)
20	Dendrobium utile J.J.Sm.	Orchidaceae	P (N)	0	No gbif data
21	<i>Erythrorchis altissima</i> (Blume) Blume	Orchidaceae	А	3	
22	Hetaeria obliqua Blume	Orchidaceae	P (N)	3	
23	Oberonia mucronata (D.Don) Ormerod and Seidenf.	Orchidaceae	А	1	
24	Strongyleria pannea (Lindl.) Schuit., Y.P.Ng and H.A.Pedersen	Orchidaceae	P (N)	1	
25	<i>Vanda miniata</i> (Lindl.) L.M.Gardiner	Orchidaceae	А	1	
26	Vanilla abundiflora J.J.Sm.	Orchidaceae	P (N)	3	
27	Vanilla griffithii Rchbf	Orchidaceae	P (N)	3	
28	Pandanus robinsonii Merr.	Pandanaceae	А	2	
29	<i>Piper attenuatum</i> BuchHam. ex Miq.	Piperaceae	А	1	
30	<i>Oldenlandia recurva</i> (Korth.) Miq.	Rubiaceae	А	0	No gbif data
31	Prismatomeris tetrandra subsp. malayana (Ridl.) J.T.Johanss.	Rubiaceae	А	1	

Table 4.2. Priority Indonesian medicinal plants species with less than five occurrence points

32	<i>Rennellia morindiformis</i> (Korth.) Ridl.	Rubiaceae	А	4	
33	Uncaria homomalla Miq	Rubiaceae	А	1	
34	Palaquium hispidum H.J.Lam	Sapotaceae	А	0	No Indonesia (Malaysia)
35	Pipturus asper Wedd.	Urticaceae	А	3	· · · ·
36	Ampelocissus cinnamomea (Wall.) Planch.	Vitaceae	А	2	
37	Amomum sumatranum (Valeton) Skornick. and Hlavatá	Zingiberaceae	А	0	No gbif data
38	Kaempferia undulata Wender.	Zingiberaceae	А	0	Unclear location

Notes: A: Absent, P: Present in national ex situ conservation

The effective *in situ* and *ex situ* conservation of Indonesian medicinal plant species should be a regional and global priority. Considering Indonesia is one of the biggest archipelagos in South East Asia with vast size and rich biodiversity (Myers *et al., 2000*, van Welzen *et al., 2011*, Mittermeier *et al., 2011*). Moreover, the country is home to an estimated 10% of world plant species (Walujo, 2008). It is one of the Centres of Origin of Cultivated Plants, accommodating many cultivated plants for many ethnobotanical purposes (Vavilov, 1935).

There is a large conservation gap in Indonesian priority medicinal plant species forming part of conservation planning, although those species are part of 60–90% of global wild harvested medicinal plants and have faced a threefold increase in trade since 1999 (Jenkins, Timoshyna and Cornthwaite, 2018). Thus, *in situ* and *ex situ* conservation for Indonesian priority medicinal plant species have to be combined, principally in propagation to support reintroduction and to provide suitable environmental conditions for further domestication (Baričevič, 2009). Both approaches to conservation are inter-linked as they are complementary and provide a safety back-up (Maxted *et al.*, 2020). Conservation action applied to crop wild relatives, such as management and monitoring following the quality standards of genetic reserves (Iriondo *et al.*, 2012), could also be applied to Indonesian

medicinal plant species, which is generally for maximising their availability for users in a sustainable manner (Maxted *et al.*, 1997). The complementary analysis within the current PA network might be more economical because it requires only a few adaptions to existing management plans (Maxted and Kell, 2009). The success of medicinal plant species conservation needs to be managed within broad fields, namely several different groups with their expertise such as agronomy, conservation, ethnobotany (Hawkins, 2008). Moreover, conducting *in situ* conservation in many reserves sites and further plant collections for *ex situ* conservation would be possible when local stakeholders seriously take conservation action (Phillips, Whitehouse and Maxted, 2019).

3.4. Conclusion

We propose four recommendations to conserve the Indonesian priority medicinal plant species actively for the short term and long term and to support the sustainable availability of material for related stakeholders, that are as follows:

- Establish species distribution models for Indonesian priority medicinal plant species as base maps to decrease the bias of observation and conduct further surveying for the current population study. Scientists like botany researchers, plant conservationists and ethnobotanists from government or private institutions might complete this surveying.
- 2. Create active conservation in current protected areas for bridging *in situ* and *ex situ* conservation (Volis and Blecher, 2010) of Indonesian priority medicinal plant species which are used to passive conservation, and the establishment of new protected areas to strengthen the conservation of priority medicinal plant

species in order to maximise the PA roles in priority conservation (Figure 3.3 and Table 3.1). These *in situ* reserve sites could protect priority species with threatened status assessed by IUCN, and that are threatened by international trade in wild-harvested material (included in CITES Appendix II), providing important information for medicinal plant species stakeholders. Contreras-Toledo (2018) recommended new protected areas able to conserve more than 5% species of total priority species. Local or national government could create a new policy regarding active conservation for medicinal plant species in related PA. Involving local people surrounding the PA through dissemination from related scientists from government or private institutions would help the conservation action in the field, including monitoring.

Undertake cultivation intensive propagation of 3. and six species underrepresented *in situ* which have already been collected in *ex situ* areas, to support reintroduction of these species to their natural habitat (short-term conservation). Furthermore, introduction of any priority species that is already assessed as threatened with extinction according to the IUCN Red List- in particular, critically endangered species to areas that are predicted to be suitable for the species (though there are no past records that might help their conservation) (Volis, 2019). Botany researchers and plant conservationists from government or private institutions could start from the propagation research, whether conservative or advanced methods to have enough provenance, or whether seedlings for planting are best used in the natural habitat of those species.

4. Maintain priority species, including propagated plants, both vegetative or generative, in current *in situ* and *ex situ* conservation areas, to ensure their longterm conservation and sustainable use. All related stakeholders, especially producers of medicinal plant species, might commit to this maintenance, through long-term conservation for sustainable use.

Moreover, this action may meet Aichi Biodiversity targets, namely Target 12, Target 13, and Target 1 in direct and close order. Target 12, Target 13, and Target 1 respectively state "By 2020 the extinction of known threatened species has been prevented and their conservation status, particularly of those most in decline, has been improved and sustained"; "By 2020, the genetic diversity of cultivated plants and farmed and domesticated animals and of wild relatives, including other socio-economically as well as culturally valuable species, is maintained, and strategies have been developed and implemented for minimising genetic erosion and safeguarding their genetic diversity", and "By 2020, at the latest, people are aware of the values of biodiversity and the steps they can take to conserve and use it sustainably" (CBD, 2015).

CHAPTER 4. CLIMATE CHANGE IMPACT ON MEDICINAL PLANTS IN INDONESIA

Abstract

Climate change affects biodiversity around the world, including medicinal plants in Indonesia. The future greenhouse gas emission scenarios of RCP4.5 and RCP8.5 for a mid-term future projection to 2050 and a long-term future projection to 2080 were used to simulate the effect of climate change upon medicinal plants distribution within Indonesia. Due to model validity, 43 out of 139 Indonesian medicinal plant species were used for climate change impact analyses. In 2050 and 2080, under both scenarios more than half of medicinal plants area is expected to decrease in species richness and losing up to 80 % of distribution area. Papua, Java, and Sulawesi are predicted to have high reduction in species distribution area. In addition, the turnover rate suggests two-third of species will lose rather than gain distribution area under the future climate scenarios. Twenty medicinal plant species might be possible to be the most threatened by climate change in the future and are therefore the highest priority for Indonesia's conservation actions. Furthermore, we recommend areas suitable for a long term *in situ* conservation and conversely the *ex situ* conservation in Indonesia.

Keywords: medicinal plant, climate change, impact, target species, Indonesia.

4.1. Introduction

Climate change refers to any change in climate over time, whether due to natural variability or as a result of human activity (IPCC, 2007). The earth surface in particular, has been warmer during the past thirty years especially in the South Pole, which has experienced a temperature increase that was three times warmer than the equator (Stocker *et al.*, 2013; Clem *et al.*, 2020). Between 1850 and 2005, the earth's temperature had increased by 0.75°C, and further increased by 1°C in the ten years afterwards (IPCC, 2014). Recently, in the 2000s, data has shown that land and ocean temperatures are linearly increasing (Stocker *et al.*, 2013). Human activities influence rising levels of carbon dioxide (CO₂) and other heat-trapping 'greenhouse' gases (GHG) due to the use of fossil fuels as the largest source (Moss *et al.*, 2010; van Vuuren *et al.*, 2011; IPCC, 2014; Trenberth, 2018).

Predicted changes in climate and impacts on living species are correlated (Foden *et al.*, 2019). Phenology, temperature, rainfall, extreme events, and CO₂ concentration impact species-related phenomena, namely migration events, distribution range changes, habitat loss, resistance ability, competitive ability (Foden *et al.*, 2009) and vulnerability to extinction (Foden *et al.*, 2019). The Arctic and alpine plants are predicted to be the most negatively affected due to snowmelt (Cavaliere, 2009; Anthelme *et al.*, 2014) as well as tropical areas that lie in the equator due to the rise in sea level (Bellard *et al.* 2014) and rise in soil temperature (Sentinella *et al.*, 2020). In terms of climate change and medicinal plants, the compounds production in medical plants might be affected by temperature stress, for instance, St. John's Wort (*Hypericum perforatum*, cv. 'Topas') (Zobayed *et al.*, 2005) and *Crataegus* spp. (Kirakosyan *et al.*, 2003). Changes in medicinal plants

in the Central Himalaya (India) have been detected, such as changes in plant phenology, distribution of plant species, and habitat (Maikhuri *et al.*, 2018). Studies regarding climate change affecting medicinal plants have been conducted in Thailand (Tangjitman *et al.*, 2015), China (Yi *et al.*, 2016; Wei *et al.*, 2018), Pakistan (Khanum *et al.*, 2013) and Africa (Asase and Peterson, 2019).

Indonesia is an archipelagic country with seven main islands/areas (Sumatra, Java, Kalimantan, Lesser Sunda Islands/LSI, Sulawesi, Maluku, and Papua), has 1,916,906.77 km² and is located on the equator line that almost spans 1/8 of world circumference, thus it has a long coastal area (BPS Statistics Indonesia, 2020). Given this geographical condition, Indonesia is vulnerable to climate change, especially due to rising sea levels, wave heights, and ocean temperatures (Zikra et al., 2015) due to its long coastal area. An observation of big cities in Indonesia from the 1980s to 2016 the temperature and rainfall was shown to have generally increased (Suryadi et al., 2018). Sundaland, which comprises Sumatra, Java, and LSI (which is one out of thirty-six global biodiversity hotspots) (Myers et al., 2000) and where many rare plants are found (Enquist et al., 2019) is predicted to be lost by 2100 due to a rise in sea levels (Bellard et al., 2014). Furthermore, the Indonesian population reached 269 million in 2020 (Statistic Indonesia, 2020) and ranks 4th in the world for population size after China, India, and the USA (US Census Bureau, 2020). Therefore, apart from threatening the habitat where the species grow (Ma et al., 2010; Voeks, 2004), the high population might contribute to climate change through the intensive use of fossil fuels. As such, it is important that conservation planning of medicinal plants in Indonesia should take climate change into consideration.

Studies of the impact of climate change have been used to help identifying areas suitable for in situ and ex situ conservation, that is plant species habitat predicted to have no negative impact as a result of climate change and vice versa, respectively (Sanchez et al., 2011; Asase and Peterson, 2019; Vincent et al., 2019; Gaisberger et al., 2020). Following up our last studies on gap conservation of Indonesian medicinal plants to create species distribution map for detracting observation bias (Cahyaningsih et al., 2021a), we analyse the impact of climate change on medicinal plant species distribution and vulnerability in Indonesia under future climate scenarios. The objectives of this study are to estimate the richness of species under current and future scenarios for all studied medicinal plant species in Indonesia, to identify the environmental variables affecting the distribution of the species, to assess the potential impacts of climate change on the predicted distribution of the species under future scenarios, and to aid further prioritisation of species for conservation. Indonesia is a vast country with 3 out of 25 global biodiversity hotspots, including Asian and Australasian biodiversity (Myers et al., 2000). This study will contribute towards a long-term, sustainable and robust in situ and ex situ conservation strategy for medicinal plants in Indonesia and regional and global levels.

4.2. Materials and Methods

4.2.1. Medicinal plants and occurrence records

139 of 233 priority species of medicinal plants in Indonesia were used for the climate change analysis (see Chapter 2; Table Appendix 4.1). Only those with ten or more occurrence points were selected to ensure a more accurate analysis (Wisz *et al.*, 2008) resulting in 4446 presence points for the 139 species which were checked for consistency of their coordinates at the country level using DIVA GIS 7.5. Their occurrence records were gathered from GBIF (http://www.gbif.org; GBIF, 2020), BOLD database (http://www.boldsystems.org; (Ratnasingham and Hebert, 2007), Genesys (https://www.genesys-pgr.org; Genesys, 2020), and herbarium databases from Indonesia (Herbarium Bogoriense), and abroad (Royal Botanic Gardens, Kew and Royal Botanic Garden, Edinburgh in the United Kingdom, and also Naturalis herbarium in the Netherlands), and collection in Bogor Botanic Gardens–Indonesian Institute of Sciences.

4.2.2. Environmental variables for current and future analyses

A total of 19 environmental variables were used in the predictive analysis which consisted of geophysical, bioclimatic, and edaphic layers at a resolution of five arc-minutes (approx. 10 x 10 km at the equator). They were selected with the Random Forest (RF) procedure (Cutler *et al.*, 2007) implemented in the SelecVar tool of the CAPFITOGEN 2.0 tools (Parra-Quijano *et al.*, 2016, www.capfitogen.net/en) (Table 4.1). Additionally, correlation analysis with MINITAB 19 proved no significant correlation between any variables within the 19 selected variables.

Table 5.1. Environmental variables used for the analyses (generated from CAPFITOGEN 2.0 tools; Parra-Quijano *et al.*, 2016)

Variable	Code	Description	Unit	Source
	alt	Altitude, metres above sea level	М	А
	aspect	Orientation (in degrees) of the land surface	0	р
a	slope Gradient (in degrees) of the land surface		0	D
Geophysics	northness	Northness. 1 if it faces northwards, -1 if it faces southwards		
	eastness	Eastness. 1 if it faces eastwards, -1 if it faces westwards		

	bio_4	Temperature seasonality (standard deviation*100)		А
	bio_12	Annual rainfall	Mm	
Bioclimatic	bio_13	Rainfall during the wettest month	Mm	
	bio_14	Rainfall during the driest month	Mm	
	bio_16	Rainfall during the wettest quarter (three rainiest months)	Mm	
	bio_17	Rainfall during the driest quarter (three driest months)	Mm	
	bio_18	Rainfall during the hottest quarter (three hottest months)	Mm	
	bio_19	Rainfall during the coldest quarter (three coldest months)	Mm	
	s_oc	Content of organic carbon in subsoil	% weight	
	s_ph_h2			
	0	pH in subsoil in soil-water solution	-log(H+)	
Edaphic	s_teb	Total exchangeable bases in subsoil	cmol/kg	С
	t_oc	Organic carbon content in surface soil	% weight	
	t_ph_h2o	Surface soil pH in a soil-water solution	-log(H+)	
	t_teb	Total exchangeable bases in surface soil	cmol/kg	

Note: a= Worldclim Version 1.4; b= SRTM DEM Version 4; c= HWS Database Version 1.2

The current climate refers to a representation of the years 1960 to 1990 (Hijmans *et al.*, 2005). Future bioclimatic variables were collected from CCAFS (www.ccafs-climate.org), which are based on the fifth IPCC report (IPCC, 2014). The other variables are assumed not to be significantly affected by climate change (Pearson and Dawson, 2003; Phillips *et al.*, 2017). The future climatic model used was the Model for Interdisciplinary Research on Climate-Earth System Models (MIROC-ESM) (Watanabe *et al.*, 2011) for the Representative Concentration Pathways (RCP), RCP4.5 (Thomson *et al.*, 2011), and RCP8.5 (Riahi *et al.*, 2011) for a mid-term future projection of 2050 and a long-term future projection of 2080. The MIROC-ESM model has been used in plant species distribution studies individually or combined with other models (Robiansyah, 2018; Xu *et al.*, 2019; Shabani *et al.*, 2020). RCP4.5 represents a medium-range emission scenario (high mitigation scenario) that applies policies to reduce greenhouse gas emissions, so the radiative forcing stabilises at 4.5 W m⁻² (approximately 650 ppm CO2-

equivalent) in 2100. RCP8.5 represents a high range emission scenario that applies the policies to reduce greenhouse gas emissions, so the radiative forcing stabilises > 8.5 W m⁻² (>1,370 ppm CO2-equivalent) in 2100 (a possible development for high population numbers with high fossil fuel use) (Moss *et al.*, 2010; van Vuuren *et al.*, 2011).

4.2.3. Species Distribution Modeling (SDM)

Current and future climate scenarios for the potential distribution of medicinal plants in Indonesia were generated. The maximum entropy (MaxEnt) algorithm (Phillips et al., 2006) was used to generate for each species an individual distribution model, under both current and future conditions. A cross-validated method was chosen to train and test the models (Elith et al., 2011). Equal test sensitivity and specificity was used for the threshold in MaxEnt (Liu et al., 2005; Gaisberger et al., 2020). To check whether models were accurate and stable, three criteria were applied; the Area under the ROC (Receiver Operating Characteristic) Curve of the test data (AUCTest) > 0.7; standard deviation of the AUCTest data $(STAUC) < (\pm) 0.15$, and the proportion of potential distribution area with a STAUC > 0.15 below 10% (ASD15 < 10%) (Ramírez-Villegas et al., 2010; Castañeda-Álvarez et al., 2015; Contreras-Toledo et al., 2019). Maps of accurate and stable distribution models under current and future climate conditions were displayed and analysed in DIVA-GIS 7.5 (Hijmans et al., 2001). Three environmental variables that contributed most to the current models were identified in order to understand the SDM map (Tangjitman et al., 2015).

4.2.4. Impact of Climate Change

The impact of climate change on medicinal plants in Indonesia was analysed using species richness maps, as well as figures relating to the loss and gain of species, turnover, and threat level based on the IUCN Red List adopted from Thuiller *et al.* (2005), Ramirez-Villegas *et al.* (2014), and Phillips *et al.* (2017).

Gain in species richness was measured when a species was absent in the current SDM but present in the future SDM, while loss was calculated based on the species present in the current scenario but absent in the future. Gain has a positive value, while loss has a negative value. Presence and absence were calculated from the species presence or absence within the grid cells extracted in text files for each species.

The turnover rate (T) was calculated for both RCP scenarios with the formula T=100 x (L+G)/(SR+G), where SR was the current species richness, L was the loss of species per grid cell, and G was the gain of species per grid cell (Phillips *et al.*, 2017; Ramirez-Villegas *et al.*, 2014; Thuiller *et al.*, 2005). The turnover rate always ranges from 0 to 100: that is, 0 when no species are gained or lost, and therefore species composition remains the same, and 100 when complete species gain or species loss occurs and species composition has changed (Phillips *et al.*, 2017; Ramirez-Villegas *et al.*, 2014).

The threat level for each medicinal plants species in Indonesia under future scenarios was assessed using the IUCN Red List criterion A3(c): namely, Extinct (EX) when predicted a loss of 100 %, Critically Endangered (CR) when predicted a loss of >80%, Endangered (EN) when predicted a loss of >50%, and Vulnerable (V) when predicted a loss of >30%; the time frame used for Criterion A should be

3 generations or 10 years, whichever or these is longer (IUCN, 2019). Due to the varied generation length of the medicinal plants species used, the time frame used for the future climate change assessment is assumed applicable for each species. The medicinal plants included in the IUCN red list based on distribution loss percentage were the highest conservation concern species list. In addition, ten species identified with smallest projected future range size of distribution area in each future scenario was included in the list (Jarvis *et al.*, 2008).

4.3. **Results and Discussion**

4.3.1. Species Richness of Medicinal Plants in Indonesia Under Current and Future Scenarios

The species richness of medicinal plants in Indonesia is shown in Figure 4.1. It is predicted under the present climate that between 1 and 21 species of medicinal plants are found in every grid cell (around 10 km squared area). Many areas with the richest medicinal plant diversity are found in four main islands, Java, LSI, Sumatra, and Sulawesi, with few plants found in Kalimantan. The area with the highest species richness is located on Java, extends from western to eastern part, and is wider compared to previous study regarding gap analysis (see Chapter 3) regardless the studied species number used as the observation bias has been detracted therefore the map might represent species diversity (Bini *et al.*, 2006; Monsarrat *et al.*, 2019).

Forty-three out of 139 medicinal plants had valid species distribution model in the current scenario. The low stable projection map might be because of the low occurrences of studied species considering their limited distribution, that was only distributed in one or two main areas of Indonesia (see Chapter 3). Each species distribution on the current map model was influenced by a different combination of variables (Table Appendix 4.2). Nevertheless, the dominant environmental variables which have influenced the model are; altitude/alt (metres above sea level), temperature seasonality (SD*100)/bio4 and rainfall during the driest month (mm)/bio14 (Figure 4.1). Altitude as non-climatic environmental variable had an obvious impact on species richness at a large scale within this study, even though Pearson and Dawson (2003) and Blach-Overgaard *et al.*(2010) found otherwise.

Figure 4.1. The predicted species richness of 43 medicinal plants in Indonesia under the current climatic conditions with a grid cell resolution of five minutes (approximately equal to 10 x 10 km2) used

The richness of medicinal plants is predicted to increase in the future according to four predicted future conditions: two scenarios of RCP4.5 in 2050 and 2080 (Figure 4.2), and two scenarios of RCP8.5 in 2050 and 2080 (Figure 3). It is because the grid of high diversity is seen increasing in both future scenarios, although the average value of both future species richness is lower than current (Table 4.2). It is predicted that, in the future, the four islands (Sumatra, Kalimantan, Java, and Sulawesi) will have more areas containing the highest number of medicinal plant species found within 10 x 10 km², although the number of species found within is fewer than the number of species of the richest area in the present,

Table 4.2. Overall descriptive value of species richness of medicinal plants in Indonesia under different scenarios

The minimum and maximum species richness value per grid cell (10 km x 10 km) in the future was projected to change. In the RCP4.5 future scenario, the richness value was within the range 1-22 (2050) and 1-20 (2080) species per grid cell (Figure 4.2) while under the RCP8.5 scenario the value was 1-20 (2050 and 2080) species per grid cell (Figure 4.3). It is assumed that an unlimited migration scenario is applied in the future models, and therefore, species are able to move freely across the landscape in response to climate change. The species might have a chance to migrate to a suitable area/environment, so extinction might not happen (Thuiller *et al.*, 2005; Phillips *et al.*, 2017; Sentinella *et al.*, 2020).

Figure 4.2. The predicted future species richness of 43 medicinal plants in Indonesia under the RCP4.5 scenario year of 2050 (above) and 2080 (below) with a grid cell resolution of five minutes (approximately equal to 10 x 10 km2) used

Figure 4.3. The predicted future species richness of 43 medicinal plants in Indonesia under the RCP8.5 scenario year of 2050 (above) and 2080 (below) with a grid cell resolution of five minutes (approximately equal to 10 x 10 km2) used.

4.3.2. Loss and gain of the distribution area

The distribution areas of medicinal plants in Indonesia are predicted to decrease by 2050, but some areas are expected to show an increase in species richness (shown in overall average value; Table Appendix 4.2). Papua, Java and Sulawesi are predicted to have the highest loss areas. Major distribution loss of species is predicted to occur in the Sundaland area, including Java and LSI, due to sea level rise (Bellard, Leclerc and Courchamp, 2014). Major loss of species is likely to happen in all future scenarios in the areas of East Java and South Sulawesi

as they have large populations. WestJava, as the most populous province, a major loss is predicted in 2050 whilst the loss in 2080 is not as significant as in 2050 and mentioned provinces. However, the effect of climate change on small islands may be more influenced by human activity (Nurse *et al.*, 2014).

There is expected to be a noticeable change to distribution by 2080, with the gain in species spread almost equally across all islands and Sumatra showing the largest gain of species in some areas (Figure 4.4). In the future scenario of RCP8.5 in 2050 and 2080, the gain is predicted to be more widespread when compared to RCP4.5, even though the pattern of loss and gain are similar on each island (Figure 4.5). Nevertheless, the average gain and loss value in both years of RCP8.5 are smaller, while the loss value is more extensive than in RCP4.5 (Table 4.3). Under the future scenario of RCP8.5, the loss of the distribution area of species is most extensive as this scenario is the pessimistic scenario (IPCC, 2014).

Table 4.3. Overall descriptive value of loss and gain of medicinal plant's distribution area in Indonesia per future scenario

Observation	RCP4.5 2050	RCP4.5 2080	RCP8.5 2050	RCP8.5 2080	
Average	-0.30	-4.05	-0.40	-4.63	
± stdev	1.35	40.74	1.78	31.79	
Min. value	2.64	131.13	4.18	97.34	
Max. value	-4.07	-68.27	-5.09	-54.38	

Figure 4.4. The predicted loss and gain of 43 medicinal plants in Indonesia distribution under the RCP4.5 scenario year of 2050 (above) and 2080 (below) with a grid cell resolution of five minutes (approximately equal to $10 \times 10 \text{ km}^2$) used, with insert map where highest loss predicted

Figure 4.5. The predicted loss and gain of 43 medicinal plants in Indonesia distribution under the RCP8.5 scenario year of 2050 (above) and 2080 (below) with a grid cell resolution of five minutes (approximately equal to 10 x 10 km2) used, with insert map where highest loss predicted

The areas with gaining distribution area for species in the future are expected to have presence and abundance of population because the area is more suitable habitat **for** the species (Sanchez *et al.*, 2011; Robiansyah, 2018; Asase and Peterson, 2019; Vincent *et al.*, 2019; Gaisberger *et al.*, 2020), especially regarding harvesting and conservations (van Andel *et al.*, 2015). Here, *in situ* conservation with utilisation are recommended (Asase and Peterson, 2019). For the consequences, where overlapped with recommended potential reserve sites for medicinal plant conservation (see Chapter 3) and according to Vincent *et al.* (2019)

studied on global crop wild relatives, these areas are suitable for a long term *in situ* conservation site for Indonesian medicinal plant species because where high diversity are also found. On the contrary, the highest loss area where found in Papua, East Java and South Sulawesi in each future scenario (Figure 4.4 and Figure 4.5) would have habitat unsuitable for Indonesian medicinal plant species. Thus, these areas are priority for *ex situ* conservation action, that is to collect species if it has no representative in any *ex situ* site, for future use and domestication (Asase and Peterson, 2019).

4.3.3. Turnover

The overall average turnover rates for medicinal plant species in Indonesia were negative, but its value variation was different. The value of turnover rate variation in the RCP4.5 year 2050 and RCP8.5 year 2050 was high quite similarly, compared to other years under the same scenario. Despite having high species loss, some species with gain were also increased (Table 4.4). The data for each species identified more or less two-third of the turnover rates for the Indonesian medicinal plant species in all future scenarios had a negative value, which means the loss of species distribution area is expected to be larger than the gain, both under RCP4.5 and RCP8.5 scenario and occurred in 2050 and 2050 (Table Appendix 4.2).

However, based on predicted distribution gain and loss map (Figure 4.4-4.5), there were expected major gains experienced in each grid of observation (10 x 10 km² in size). The areas that experience gains are most likely a result of other species migrating into the grid. Plants species may shift to areas outside their usual favourable bioclimatic variables and thrive at different altitude or latitudes due to changing climatic conditions (Phillips *et al.*, 2017; Sentinella *et al.*, 2020; Thuiller *et al.*, 2005).

Table 4.4. Overall descriptive value of turnover rate per future scenario

Observation	RCP4.5 2050	RCP4.5 2080	RCP8.5 2050	RCP8.5 2080
Average	-4.63	-0.32	-10.03	-0.60
± stdev	31.79	1.41	43.22	1.90
Min. value	97.34	3.14	138.41	4.41
Max. value	-54.38	-3.90	-71.32	-5.33

4.3.4. Identifying target species for highest conservation

Some plant species are predicted to face a high level of distribution loss under future RCP4.5 and RCP8.5 scenarios (Robiansyah, 2018; Asase and Peterson, 2019) or only under RCP8.5 scenario (Gaisberger *et al.*, 2020). Instead, some species might have a more extensive distribution than under RCP8.5 scenario (Li *et al.*, 2019; Yi *et al.*, 2016). In case of studied Indonesian medicinal plants, similar to turnover species value, the number of species having distribution loss would be around two-third higher than species having distribution gain, similar in each future scenario and occurred in 2050 and 2080. Nevertheless, the species number that gains distribution area under future RCP4.5 scenario might be increasing from 2050 to 2080, contrary to the species number under future RCP8.5 that are decreasing.

More than half of the studied species of Indonesian medicinal plants are predicted to reduce their population size because of losing an estimated 30-80% of their distribution area (Table 4.5). This would result in them being assessed as Vulnerable and Endangered based on IUCN Redlist criteria (IUCN, 2019) (Figure 4.6). The remainder of the species are predicted to suffer <30% distribution area or gain a new distribution area (Table Appendix 4.2). In line with studies by Tangjitman *et al.* (2015) suggesting that 77% of studied medicinal plants are highly threatened by climate change and need conservation. Jarvis *et al.*, (2008) suggest that species losing distribution area of above 50% in the future should be targeted for the highest level of conservation, which is similar to Endangered and Critically Endangered Species (IUCN, 2019).

Table 4.5. Observation on all studied medicinal plant species impacted by climate changes per future scenario

Observation	RCP4.5 2050		RCP4.5 2080		RCP8.5 2050		RCP8.5 2080	
Species gaining distribution								
area	17		18		18		17	
Species losing distribution area	26		25		25		26	
IUCN Redlist		7		13		12		14
Not IUCN Redlist		19		12		13		12

Figure 4.6. The predicted number of threatened medicinal plants in Indonesia per future scenario, as determined by the IUCN category A3(c)

The target species for highest conservation was defined based on the smallest distribution area in the future (Jarvis *et al.*, 2008) and IUCN red list A3 criterion (IUCN, 2019) (Table 6). 11 Indonesian medicinal plants are predicted to have the smallest size in all studied future scenarios and these species are included in a future IUCN red list A3 criterion (IUCN, 2019), except *Barleria prionitis* L.

and *Rauvolfia serpentina* (L.) Benth. ex Kurz. The average value of the distribution area and size of their range are both decreasing (Table Appendix 4.2). The average value of species with smallest distribution area in every future scenario is RCP4.5 $2050 (554670 \pm 272712 \text{ km}2)$, RCP4.5 $2080 (498110 \pm 242999 \text{ km}^2)$, RCP8.5 2050 $(526100 \pm 261119 \text{ km}^2)$, and RCP $2080 (440990 \pm 230521 \text{ km}^2)$. Meanwhile, the range value of distribution area projected with scenarios of RCP4.5 2050, RCP4.5 2080, RCP8.5 2050 are 185800- 914000 km^2 , 162900- 878600 km^2 , 156200- 856400 km^2 , and 116300- 822800 km^2 respectively.

		Gen. Length (year)	RCP4.5	RCP4.5	RCP8.5	RCP8.5
No.	Species	(IUCN, 2021)	2050	2080	2050	2080
1	Agathis borneensis ^d (EN)	70	VU		VU	EN
2	Alstonia iwahigensis ^{abcd}	NA	EN		EN	EN
3	Anaxagorea javanica	NA	VU		VU.	VU.
4	Anisoptera costata ^{abcd} (EN)	100	VU		EN	EN
5	Aquilaria malaccensis (CR)	50-100			VU	VU
6	Barleria prionitis ^{abc}	75				
7	Castanopsis argentea (EN)	NA				VU
8	Dicksonia blumei ^{abcd}	100		EN		
9	Dipterocarpus baudii (VU)	NA			VU	EN
10	Euchresta horsfieldii ^{abcd}	NA		EN	VU	EN
11	Eurycoma longifolia	NA	VU		EN	EN
12	Eusideroxylon zwageri (VU)	NA	EN		EN	EN
13	Gentiana quadrifaria ^{abcd}	50		VU		
14	Macaranga griffithiana (VU)	NA				VU
15	Nepenthes reinwardtiana	NA	VU		VU	EN
16	Pinus merkusii ^{abcd}	NA		VU	VU	EN
17	Rauvolfia serpentina ^{abcd}	50				
18	Santalum album ^{abcd} (VU)	NA		EN		
19	Scutellaria javanica ^{abcd}	NA		EN		
20	Shorea seminis (CR)	NA				VU

Table 4.6. List of target species for highest conservation due to predicted climate changes impact

Notes: Species in grey column are included in 10 smallest distribution area according to Jarvis *et al.* (2008); a, b, c, and d refers to species included in 10 species with the smallest size in the future scenario of RCP4.5 2050, RCP4.5 2080, RCP8.5 2050, and RCP8.5 2080 respectively.

All target medicinal plant species are priority species that are rare or endemic criterion (Cahyaningsih *et al.*, 2021b) and prone to vulnerability and could become extinct due to climate change (Işik, 2011). Based on Table 6, most of them are tree species (68.18%) and shrub species (18.18%), while the rest are herb (9.09%), and climber (4.54%) (Table Appendix 2). Nevertheless, in spite of incomplete generation length data due to lack of monitoring particularly, in the long term, tree species which have longer generation length is more vulnerable to climate change (García-Valdés *et al.*, 2018; Chichorro *et al.*, 2019).

The Indonesian medicinal plant species listed in IUCN redlist composition changes are seen in each scenario (Table Appendixes 2, Table 5, and Table 6). The species included in redlist categories by IUCN currently majorly are expected to gain distribution areas due to climate change, and the other way around. Likewise, Benavides *et al.* (2020) found the same pattern on tropical cacti species distribution in Baja California Peninsula (Mexico) listed in IUCN might be benefited from climate change.

Identifying climate change impact on plant species could be overestimated because the species or population character, its biotic and abiotic interaction with habitat, and overharvesting by human were usually not considered (Thuiller *et al.*, 2005; Fordham *et al.*, 2012; Araújo and Peterson, 2012), but gain and loss patterns of the species over the distribution areas might remain (Thuiller *et al.*, 2005). Moreover, using the population size of plant with long generation length might be an inadequate predictor of population viability in the long term due to time lag in its response to habitat degradation (Colling and Matthies, 2006). However, geographic range, habitat breadth, and local abundance respectively had effects in

determining extinction and the geographic range loss will lead to extinction level increasing even though the current local population is abundant (Harnik *et al.*, 2012). Given the higher threat level seen by higher distribution loss for many Indonesian medicinal plant species, the RCP8.5 scenario negatively affects species than RCP4.5. The data shows that major medicinal plant species that grow in Indonesia might be under threat due to climate change, supporting Sentinella *et al.*'s (2020) study, which identified that more than 50% of tropical species have a declining germination rate caused by climate change.

4.4. Conclusions

This study shows that Indonesian medicinal plant species are predicted to be negatively affected in both numbers and distribution as a result of a range of climatic variables under future climate change. The major environmental variables that contributed to the SDM are altitude (metres above sea level), temperature seasonality (SD*100), and rainfall during the driest month (mm). The impact varies from species to species, however there is likely to be a negative impact on the richness and distribution of certain species. The growing population of countries such as Indonesia are arguably contributing to these negative outcomes. Our results predicted that the number of medicinal plant species listed in the threatened IUCN Red List categories would increase under all future scenarios.

Distribution areas of Indonesian medicinal plant with biggest loss and the area with highest gain, respectively are recommended for *ex situ* conservation and *in situ* conservation planning. Moreover, twenty species of Indonesian medicinal plants might be listed as the most threatened in the future, but the generation length
would need to be better understood; thus, conservation planning for these species are also recommended to assure long-term preservation and sustainability. In particular, the conservation planning starts from species that are predicted to be critically endangered in the future and might start from tree species and from the areas with the highest loss, which are found on East Java, South Sulawesi and Papua. This will guarantee their existence for utility and other research, such as ethnobotany, identification of medicinal plant compounds, clinical experiments with medicinal plants in Indonesia, and at regional and global levels.

CHAPTER 5. ROLE OF DNA BARCODING IN FACILITATING CONSERVATION AND USE OF PLANT SPECIES: A CASE OF INDONESIAN MEDICINAL PLANTS

Abstract

Over the last decade, plant DNA barcoding has emerged as a scientific breakthrough and is often used to help with species identification or as a taxonomical tool. DNA barcoding is very important in medicinal plant use, not only for identification purposes but also for the authentication of medicinal products. Here, a total of 61 Indonesian medicinal plant species and a pair of *ITS2*, *matK*, *rbcL*, and *trnL* primers for DNA barcoding were used in this study. This study aimed to provide region for DNA barcoding and investigate the effectiveness of each region to aid identification of the medicinal plants in Indonesia. We recommend *matK* as the main region for Indonesian medicinal plant region, despite no region was perfectly ideal for DNA barcoding. In addition, we herein identified new DNA barcoding sequences of Indonesian medicinal plant species accordingly for forensic studies that can support the conservation of medicinal plants and their national and global use.

Keywords: DNA barcoding; medicinal plants; conservation; forensic; Indonesia

5.1. Introduction

Plant identification used to be done only using morphological characters that can be observed visually, but today DNA can be relied on to enhance species identification and bioinventory (Miller *et al.* 2016). DNA barcoding, introduced by Hebert *et al.* (2003) based on his animal study results to identify a species through universal, short and standardised DNA regions. The process is to register the identified species DNA into a barcoding library and to match the unidentified species DNA against the DNA in the library (Kress and Erickson 2007; 2012). The library or the database can be accessed online for species identification and taxonomic clarification (Sucher *et al.* 2012), namely in the NCBI GenBank (https://www.ncbi.nlm.nih.gov/) (Sucher *et al.* 2012) and the Barcode of Life Data (BOLD) (http://www.boldsystems.org) (Ratnasingham and Hebert, 2007).

In plants, plastid DNA (*rbcL*, *matK*, *trnL*, and *trnH-psbA* region) and nucleus DNA (ITS and *ITS2* region) are often used in DNA barcoding (Taberlet *et al.*, 2007; Kress and Erickson, 2012; Fazekas *et al.*, 2012). The *rbcL* and *matK* regions are recommended by the Consortium for the Barcode of Life (CBOL) as a standard 2-locus barcode for global plant databases because of their species discrimination ability (CBOL Plant Working Group, 2009). DNA material for the barcoding can be either from living plants, herbarium specimens (Dick and Webb, 2012) and market products as well (Eurlings *et al.*, 2013; Newmaster *et al.*, 2013).

DNA barcoding has become another taxonomical tool due to accuracy, repeatability and rapidity, but can also be used to identify any species under the legislation and threatened species and to check the authenticity of biological products (Kress and Erickson, 2007). It is powerful as identification will not be

influenced by species morphology diversity, growth phase, and environmental factors (Schindel and Miller 2005; Chen *et al.* 2010; Techen *et al.* 2014; Huda *et al.* 2017). The forensic field even inexperienced user is assisted in assigning a taxonomic name to unidentified plant specimen from any casework (Paranaiba *et al.* 2019, *Ferri et al.* 2015). Thus, it is an effective conservation effort since it can prevent imitation of important commercial species and protected species from theft (Kress et al. 2014; Mishra et al. 2016) and define species richness in underexplored areas (Kress *et al.*, 2014).

Related to its use, DNA Barcoding is useful for medicinal plant conservation and use. It can help with plant identification, to assure the genuine product rather than a substitution so it can protect consumer rights (Vassou et al. 2016) and even with small and damaged plant parts used in botanical forensics (Sass et al. 2007; Eurlings et al. 2013; Ferri et al. 2015). Some studies have been done regarding DNA barcoding to medicinal plants, for example, *ITS2* and *matK* can distinguish Rauvolfia serpentina from other species in one genus (Eurlings et al. 2013, Mahadani et al. 2013) and are able to authenticate Eurycoma longifolia (Abubakar et al., 2018). MatK gave the best identification for Apocynaceae that is in line with Cabelin and Alejandro (2016). In forensics, moreover, the DNA barcoding has been studied for medicinal plants used from one specific area, for example, Chen et al. (2010) and Gong et al. (2018) used the ITS2 region as a DNA barcode for authenticating many medicinal plants and its relatives and for broader species although Chao et al. (2014) found that the ITS2 region cannot authenticate all Chinese medicinal Bupleurum L. (Apiaceae). For Indian medicinal plants (Ayurveda), Vassou et al. (2016) established DNA barcoding using rbcL region whilst for medicinal plants of the Philippines, Suba *et al.* (2019) used *rbcL*, *matK*, and *trnL-F* region gradually according to its efficiency.

Indonesia is famous for its plant diversity and richness of ethnicity, especially in medicinal plants and their uses. Different forms of medicinal plants are used, regardless of being fresh or dried, for curing illness and diseases. Thus, the valid identity of the medicinal plants will be the main purpose of having this barcoding apart from to enrich the DNA barcoding database. DNA barcoding is an advanced technology for plant diversity inventories, which is mentioned as one of the issues and challenges of biodiversity conservation in Indonesia by von Rintelen *et al.* (2017) due to the high cost. Nevertheless, Kress *et al.* (2014) argued that DNA barcodes are useful for conservation and even for commercial purposes and it will be widely used in the future as DNA sequencing technology has become simpler and more economical. Thus, this study aims to provide new DNA barcoding of medicinal plants of Indonesia to aid identification and conservation and also to investigate the effectiveness of each DNA barcoding region (*ITS2, matK, rbcL*, and *trnL*) for DNA barcoding in medicinal plants of Indonesia.

5.2. Methods

5.2.1. Sample and literature collection

The plant materials used were 61 species of Indonesian medicinal plants, consisted of 30 families and 50 genera (Table 5.1). Some of them are priority species (See chapter 1). They are collected from botanic gardens where they have taxonomically morphological identified precisely, namely Bogor Botanic Gardens and Cibodas Botanic Gardens (Indonesia), and Hortus Botanicus Leiden (Netherland). A leaf sample was collected from each species, except *Alstonia scholaris* (L.) R. Br. and *Spondias malayana* Kosterm, which had bark samples taken. This was due to *A. scholaris* and *S. malayana* Kosterm being high trees with unreachable leaves. Each sample of ± 25 g was collected and stored in a teabag with silica gel (Wilkie *et al.*, 2013; Till *et al.*, 2015; Maurin *et al.*, 2017).

No.	Scientific name (POWO, 2020)	Author	Family	Location
1	Justicia gendarussa	Burm.f.	Acanth.	BBG
2	Staurogyne elongata	(Nees) Kuntze	Acanth.	CBG
3	Pangium edule	Reinw.	Achari.	BBG
4	Spondias malayana	Kosterm.	Anacardi.	BBG
5	Toxicodendron succedaneum	(L.) Kuntze	Anacardi.	BBG
6	Ancistrocladus tectorius	(Lour.) Merr.	Ancistroclad.	BBG
7	Anaxagorea javanica	Blume	Annon.	BBG
8	Dasymaschalon dasymaschalum	(Blume) I.M.Turner	Annon.	BBG
9	Alstonia macrophylla	Wall. Ex. G.Don	Apocyn.	BBG
10	Alstonia scholaris	(L.) R. Br.	Apocyn.	BBG
11	Alyxia reinwardtii	Blume	Apocyn.	BBG
12	Hoya diversifolia	Blume	Apocyn.	HBL
13	Rauvolfia serpentina	(L.) Benth. ex Kurz	Apocyn.	BBG
14	Aglaonema commutatum	Schott	Ar.	HBL
15	Trevesia burckii	Boerl.	Arali.	BBG
16	Cibotium barometz	(L.) J.Sm.	Ciboti.	BBG
17		(Lour.) A.R.Simoes &	C 1 1	DDC
1/	Decalobanthus mammosus	Staples	Convolvul.	BBG
18	Erycibe malaccensis	C.B.Clarke	Convolvul.	BBG
19	Rhododendron macgregoriae	F.Muell.	Eric.	CBG
20	Acalypha grandis	Benth.	Euphorbi.	BBG
21	Euphorbia tirucalli	L.	Euphorbi.	BBG
22	Millettia sericea	(Vent.) Benth.	Fab.	BBG
23	Parkia timoriana	(DC.)Merr.	Fab.	BBG
24	Phanera fulva	(Korth.) Benth.	Fab.	BBG
25	Orthosiphon aristatus	(Blume) Miq.	Lami.	BBG
26	Premna serratifolia	L.	Lami.	BBG
27	Vitex glabrata	R.Br.	Lami.	BBG
28	Cinnamomum rhynchonhyllum	Mia	Laur	BBG
20 20	Ficus deltoidea	Jack	Mor	BBG
29 30	Muristica succedanca	Blume	Muristic	BBC
50	myrisiicu succeuuneu	Diume	wrymsuc.	DDO

Table 5.1. 61 Indonesian medicinal plants used in this study

31	Nepenthes ampullaria	Jack	Nepenth.	BBG
32	Nepenthes gracilis	Korth.	Nepenth.	BBG
33	Nepenthes mirabilis	(Lour.) Druce	Nepenth.	BBG
34	Nepenthes reinwardtiana	Miq.	Nepenth.	BBG
35	Acriopsis liliifolia var. liliifolia	(J.Koenig) Ormerod	Orchid.	BBG
36	Cymbidium aloifolium	(L.) Sw.	Orchid.	BBG
37	Cymbidium ensifolium	(L.) Sw.	Orchid.	HBL
38	Dendrobium crumenatum	Sw.	Orchid.	BBG
39	Dendrobium purpureum	Roxb.	Orchid.	BBG
40	Dendrobium salaccense	(Blume) Lindl.	Orchid.	BBG
41	Grammatophyllum speciosum	Blume	Orchid.	BBG
42	Nervilia concolor	(Blume) Schltr.	Orchid.	BBG
43	Nervilia plicata	(Andrews) Schltr.	Orchid.	BBG
44	Oberonia lycopodioides	(J.Koenig) Ormerod	Orchid.	BBG
4.5		(Lindl.) Schuit., Y.P.Ng	0.111	DDC
45	Strongyleria pannea	& H.A.Pedersen	Orchid.	BBG
46	Galearia filiformis	(Blume) Boerl. (Kurz) Callm & Buer	Pand.	BBG
47	Benstonea affinis	ki	Pandan.	BBG
48	Phyllanthus oxyphyllus	Miq.	Phyllanth.	BBG
49	Ardisia complanata	Wall.	Primul.	HBL
50	Ardisia crenata	Sims	Primul.	BBG
51	Ventilago madraspatana	Gaertn.	Rhamn.	BBG
52	Psychotria montana	Blume	Rubi.	CBG
53	Lunasia amara	Blanco	Rut.	BBG
54	Melicope lunu-ankenda	(Gaertn.) T.G. Hartley	Rut.	BBG
55	Kadsura scandens	(Blume) Blume	Schisandr.	BBG
56	Smilax calophylla	Wall. ex A.DC.	Smilac.	CBG
57	Smilax zeylanica	L.	Smilac.	BBG
58	Aquilaria hirta	Ridl.	Thymelae.	BBG
59	Amomum hochreutineri	Valeton	Zingiber.	CBG
60	Etlingera solaris	(Blume) R.M.Sm.	Zingiber.	CBG
		(Roxb.) Skornick. &		DDG
61	Meistera aculeata	M.F. Newman	Zingiber.	BBG

Note:	Collection	site:	BBG:	Bogor	Botanic	Gardens,	CBG:	Cibodas	Botanic
Gardens, HBL: Hortus Botanicus Leiden									

A literature study has been done to collect all scientific information regarding each sampled Indonesian medicinal plant species. Information regarding available DNA data that is whether the species already have the DNA barcoding or DNA related information that can be accessed in DNA bank was identified in BOLD and NCBI; the species origin that is whether native or introduced species, and if it is native whether it is endemic or not were collected from Plants of the

World Online (http://www.plantsoftheworldonline.org/; POWO, 2020); threatened species status that is whether listed in IUCN as red list categories, namely Vulnerable (VU), Endangered (EN), Critically Endangered (CR), Extinct In The Wild (EW), and Extinct (EX) were collected from **IUCN** (2020)https://www.iucnredlist.org; global legislation regarding trade that is whether the species is included in CITES Appendixes were collected from UNEP-WCMC (Comps.) (2020) through https://checklist.cites.org. Previous research of Indonesian medicinal prioritisation's result (Cahyaningsih et al., unpublished) was also used in this study. The plants embraced in IUCN Red List, CITES Appendix, Endemic, and Priority list are considered important species that need to be conserved in the first place.

5.2.2. DNA barcoding analysis

The molecular analysis was done in the University of Guelph's laboratory, Canada. The method starts with genomic DNA extraction, DNA amplification, DNA sequencing, and taxonomic identification against the DNA bank. For DNA extraction, genomic DNA was extracted from plant samples using the Maxwell® RSC Purefood GMO and Authentication Kit and the Maxwell® RSC Instrument (Promega). For the DNA amplification, primers targeting the *ITS2*, *matK*, *rbcL*, and *trnL* genes of plants were used to amplify the DNA (Table 5.2). The forward and reverse of each primer are mixed. Each PCR reaction mix (25 µL) contained 1x HotStarTaq master mix (Qiagen), 0.4 µM of each of the primers, 0.15 µg of BSA and 2 µL of template DNA. PCR thermal cycling was conducted using a GeneAmpTM PCR System 9700 (Applied Biosystems). The PCR cycling conditions were 95°C for 10 min for DNA denaturation, 45 cycles of 95°C for 15 sec for DNA annealing with the primer, 55°C for 30 sec and 72°C for 1 min for DNA extension, followed by 72°C for 7 min.

Table 5.2. Primers used for amplification of DNA regions of *ITS2*, *matK*, *rbcL*, and *trnL*

Primer	Name	Sequence	Reference
	<i>rbcL</i> a-F	ATGTCACCACAAACAGAGACTAAAGC	
RbcL	<i>rbcL</i> a-R	GTAAAATCAAGTCCACCRCG	Costion et al., 2011
	matK472F matK1248	CCCRTYCATCTGGAAATCTTGGTTC	
matK	R	GCTRTRATAATGAGAAAGATTTCTGC	Yu et al. 2011
	<i>matK</i> xF	TAATTTACGATCAATTCATTC	Mahadani <i>et al.</i>
$matK^{a}$	matK5R	GTTCTAGCACAAGAAAGTCG	2013
	ITS2F	ATGCGATACTTGGTGTGAAT	
ITS2	ITS3R	GACGCTTCTCCAGACTACAAT	Gu et al., 2013
	trnL-F	ATTTGAACTGGTGACACGAG	
trnL	trnL-c	CGAAATCGGTAGACGCTACG	Taberlet et al., 2007

Note: $matK^{a}$ is alternative to matK that is used when PCR reaction failed to have an amplificon

PCR products were visualised on 2% agarose gels to check whether DNA amplification succeeded. After that, PCR products were then purified using NucleoFast® 96 PCR clean-up kit (Macherey-Nagel). The purified PCR fragments were sequenced bidirectionally with the same primers as for PCR using an ABI 3730 Genetic Analyzer (Applied Biosystems). The retrieved sequences were analysed using ABI PrismTM Sequencing Analysis software (Applied Biosystems) to obtain a consensus sequence (Q>20) for each sample.

5.2.3. Sequence analyses and data interpretation

The consensus sequences were compared with the nucleotide sequences in the Barcode of Life Data (BOLD) species ID engine and the NCBI GenBank using BLASTN (https://blast.ncbi.nlm.nih.gov/; Altschul *et al.* 1990) with Program Selection "Highly Similar Sequences (Megablast)" (Morgulis *et al.* 2008) for taxonomy identification. When no result came from Megablast due to too short sequence, the sequence was queried with Program Selection "Somewhat similar sequences (nBlast) for an alternative".

PCR amplification, sequencing, and identification success rate will be counted in percentage. Only one best-matched species was collected from the BLASTN identification. If the best-matched species was more than one, the lowest E value and the highest coverage were chosen; otherwise, any species were chosen that were the closest related species to the query (species).

The BLASTN identification result was considered as the correct species if the highest percentage of identification referred to the right species or in another word when the species name from sequence identification matched the morphologically identified species. Otherwise, the result was considered an ambiguous species or ambiguous genus when respectively the sequence was identified as different species within genus or different species within family. Ambiguous identifications are counted as the correct identification (Amandita *et al.*, 2019). Sequences that have a percentage of 99% or more are included in the novel sequence data for specific DNA barcoding to a species. Novel sequence data will be put in the GenBank database to assist the identification.

Descriptive statistical and scatter plot analysis respectively to understand the different region of *ITS2*, *matK*, *rbcL*, and *trnL* and the relation within factors in BLAST analysis with the identification were done with MINITAB Statistical Software. Information regarding the species number per genus was obtained from Plants of the World Online (http://www.plantsoftheworldonline.org; POWO, 2020). In addition, sequence alignments were done with Muscle program,

100

nucleotide composition of all sequences obtained from *ITS2*, *matK*, *rbcL*, and *trnL* regions was computed, and their genetic distance was computed with Kimura 2 parameters (K2P) (Casiraghi *et al.* 2010). K2P pairwise genetic distance is the percentage nucleotide sequence divergence that was used in Hebert *et al.* (2003). All analysis was done with the software of Molecular Evolutionary Genetics Analysis (MEGA X) (Kumar *et al.* 2018). Moreover, the Venn diagram consisted of the four region group was made with online software of Bioinformatics & Evolutionary Genomics (http://bioinformatics.psb.ugent.be/cgi-bin/liste/Venn/calculate_venn.htpl).

Every medicinal plant species (MP) information collected were analysed and interpreted according to the DNA barcoding use related to conservation. Any correct identification can be used as DNA barcoding for related species; thus, it can be helpful for MP conservation. Any ambiguous identification can be used as an approach to species identification until genus or family level depending on the ability; thus, it may be helpful for MP conservation. The species included in at least one of the IUCN Red List, CITES Appendixes, priority species (Cahyaningsih *et al.*, unpublished), and or Native and Endemic would need DNA barcoding used stronger than the non listed species. The sequence could be a new sequence or new DNA barcoding if it is not available in NCBI or BOLD, and it becomes novel data.

5.3. Result and Discussion

A total of 61 species of Indonesian medicinal plants have been analysed to have DNA barcoding of their four regions (*ITS2*, *matK*, *rbcL*, and *trnL*). There was a failure in DNA amplification and sequencing with the factual result of each step

shown in Table 5.3. Instead of 244 sequences resulting from the sequencing as the last step, only 212 sequences were provided (Table Appendix 5.1).

Observed parameter	ITS2 (%)	<i>matK</i> * (%)	<i>rbcL</i> (%)	<i>trnL</i> (%)
No PCR amplicon obtained	1.64	27.87	1.64	16.39
Mixed sequences -no use	8.20	0	1.64	3.28
Sequence provided	91.80	72.13	96.72	80.33
Aligned consensus sequence	90.16	65.57	96.72	73.77
Unidirectional sequence	1.64	6.56	0	6.56

Table 5.3. Success percentage in each DNA barcoding step's result

*4 matK regions by the second primer excluded

The sequence quality is described from the easy to do alignment of both forward and reserve regions into one consensus sequence (Table 5.3). When both forward and reverse sequences were available, and of good quality, it was straightforward to have the aligned consensus sequence. If one direction of the sequence was mixed, then no alignment could occur, and then only the unidirectional sequence can be used. Kress and Erickson (2007) and Hollingsworth *et al.* (2011) mentioned the same, that *matK* has the lowest amplification success amongst the other regions that are used for DNA barcoding. Amandita *et al.* (2019) particularly showed the *matK has* lower PCR success rate then *rbcL* while amplifying DNA of Indonesian plants. The PCR amplification failure was estimated because the sequence for binding sites of the *matK* region is very varied (Hollingsworth *et al.*, 2011).

5.3.1. Description of *ITS2*, *matK*, *rbcL*, and *trnL* region of Indonesian medicinal plants

Figure 5.1. Box plots of the sequence length (left) and GC content (right) per region of *ITS2*, *matK*, *rbcL*, and *trnL* of Indonesian medicinal plants

The descriptive statistic of sequence regions *ITS2*, *matK*, *rbcL*, and *trnL* are shown in Figure 5.1. The minimum and maximum length (bp) of *ITS2*, *matK*, *rbcL*, and *trnL* region respectively varied between 473-1973, 779-2288, 767-2250 and 837-1931 for all Indonesian medicinal plant species. Whereas, the average length of them are respectively 1188.7, 1361.2, 1278.6, and 1478. In case of GC Content (%), the minimum and maximum GC Content (%) of *ITS2*, *matK*, *rbcL*, and *trnL* region respectively varied between 30.91-66.35, 27.80-64.94, 27.73-63.25 and 29.26-67.74 for all Indonesian medicinal plant species, whilst the average length of them are respectively 48.14, 41.46, 43.46, and 39.10.

The relation between identification accuracy and sequence length (bp), GC Content (%), species number per genus and percentage of identity are shown in Figure 5.2. In terms of sequence length, the longer the *ITS2* and *rbcL* sequence region the less identification accuracy, whilst other regions showed no relationships as the line almost horizontal. In terms of GC contents (%), all regions except *ITS2* tends to be less accurate for identification when the GC content increased. In terms of species number per genus, *matK*, *rbcL*, and *trnL* tends to have no correlation with the species number per genus, but ITS sequence region is more accurate in identification when the species number per genus is higher. However, this result cannot be relied on because the result will depend on the available DNA information in the bank data. Moreover, in terms of percentage of identity, all regions showed a positive relationship with the identification accuracy that is higher percentage higher the accuracy.

Figure 5.2. Scatterplot of Identification accuracy vs Sequence length (bp), GC Content (%), Species number per genus, and Percentage of Identity. Scale 0-3

represent the identification accuracy (0=incorrect, 1=correct in family level, 2=correct in genus level, 3=correct in species level)

Amongst the sequence region produced for Indonesian medicinal plants, *ITS2* generally has the shortest minimum length and smallest average sequence and highest GC contents (Figure 5.1 and Figure 5.2). *ITS2* generally has the shortest minimum length and smallest average sequence that means having the highest efficiency of identification. It is because there will be a short DNA sequence needed to get the correct identification. After *ITS2*, *matK* is following in second place in terms of the smallest average. A short length of DNA sequence may make the process of DNA barcoding technically easier and more economical from extraction to sequencing, as Kress *et al.* (2005) suggested for DNA barcoding. Meanwhile, in terms of GC contents (%), only *ITS2* has higher identification accuracy when the GC content is increasing. In some plant DNA sequences, GC contents have a positive correlation with exon sites that is the coding region (Singh *et al.* 2016). It might be mean longer exon, higher GC contents; thus, DNA regions with high GC contents are expected to have more accurate identification.

5.3.2. Identification of Indonesian medicinal plants using their sequences of *ITS2*, *matK*, *rbcL*, and *trnL* region

Identification of the sequence regions resulting from the BLAST method is shown in 1. The highest correct identification in total species is reached by the *matK* region followed by *rbcL* and *ITS2* in second place, although the percentage value amongst them may not be significantly different 31.14% compared to 29.51%. In contrast, *trnL* has the lowest correct identification with an almost 15% difference to *matK*'s correct percentage. The highest incorrect identification is reached by the *ITS2* region, followed by *rbcL* in second place. The most accurate region of the four used regions is *matK* because it is successful in having identified the highest species level, lowest in family level, and no incorrect identification is recorded.

Identification note	Region					
	ITS2 (%)	<i>matK</i> * (%)	<i>rbcL</i> (%)	trnL(%)		
Correct identification in species level	32.14	33.93	30.51	20.41		
Correct identification in genus level	35.71	51.79	54.24	60.71		
Correct identification in family level	7.14	0	10.17	10.20		
Incorrect identification	25	0	5.08	25		

Table 5.4. Identification success rates of each region through the BLAST method

*4 matK regions by the second primer excluded

Some ambiguous (correct in genus and family level) and incorrect identification to Indonesian medicinal plants species in Blast occurred. This might happen as the world plant data has more than 1.1M species names (POWO, 2020), while the DNA barcoding data for the plant is only 234,692 (BOLD, 2020). The available DNA bank data is far from completion. Also, there are only 5.942 plants from Indonesia recorded in Bold (BOLD, 2020).

Venn diagrams (Figure 5.3) describe how many unique species were correctly identified by one only region and by various combination also. *ITS2* is the most region having the unique correct identification, and second is *rbcL*, then *matK* and *trnL*. Combination of three regions gave the same number of unique correct identifications, and combination of all gave the highest correct identification. In terms of unique correct identification in genus level, *rbcL* gave the most accurate identification, then followed by *ITS2* and *trnL* in the same position, and *matK*. Combination of *matK*, *rbcL* and *trnL* gave the best unique accurate identification compared to the other three combinations, and combination of all gave the biggest

number of unique species amongst all possibilities. The unique correct species in family level were obtained from highest to lowest by *rbcL*, *ITS2*, and *trnL*.

Figure 5.3. Venn diagrams for correct identification in species level, in genus level, and in family level (from left to right)

According to Table 5.5, the overall average of each region that describes the genetic distance between two species compared is almost similar to each other, that is above 1.1% and below 1.2%, except *ITS2* with the percentage of 1.29%. The lower the taxon unit relation, the lower the percentage, while the higher the taxon unit relation, the higher the percentage. Only the minimum distance of the *matK* region can describe the same genera related species, but not with other regions. Nevertheless, all maximum distance of each region describes the different family-related species that is the highest level. In principle, the genetic distance of interspecific relation species (within genus level and above) will be greater than the intraspecific relation species (within species level).

Table 5.6. K2P pairwise genetic distances (%) of each region summary at different species levels

Region	Observation	Value (%)	Related species
	Overall average	1.29503	
ITS2	Minimum distance	0.00440	Nepenthes reinwardtiana and Nervilia concolor***
	Maximum distance	2.70903	Erycibe malaccensis and Acalypha grandis***
matK	Overall average	1.12567	

	Minimum distance	0.00615	Nepenthes mirabilis and N. ampullaria*
	Maximum distance	2.62368	Nepenthes reinwardtiana and Parkia timoriana***
	Overall average	1.19148	
rbcL	Minimum distance	0.00350	Amomum hochreutineri and Etlingera solaris**
	Maximum distance	2.62587	Phyllanthus oxyphyllus and Galearia filiformis***
	Overall average	1.11310	
trnL	Minimum distance	0.02887	Alstonia scholaris and Rauvolfia serpentina**
	Maximum distance	2.59858	Millettia sericea and Cymbidium aloifolium***

Notes: *: same genera related species; **: same family related species; ***: different family-related species

The percentage of the identity of each sequence of *ITS2*, *matK*, *rbcL*, and *trnL* region is directly proportional to identification accuracy. The higher the percentage, the more accurate the identification is. *MatK* can identify the species with the highest percentage correct, and *rbcL* is next (Table 5.4). Only the *matK* region can differentiate species in the same genus level and species in the different family in the closest and furthest genetic distances respectively compared to other regions. In contrast, *ITS2* cannot differentiate all species distance appropriately (Table 5.5). Hollingsworth *et al.* (2011) explain that actually DNA barcoding application can be divided into two purposes. The first is the DNA barcoding to provide information into the species-level taxon unit, and the second is to help identification of an unknown specimen to a known species. Thus, all regions tested are all useful, depending on the purpose.

5.3.3. Understanding the use of DNA barcoding for Indonesian medicinal plants

Out of 61 sampled Indonesian medicinal plants (MPs) species, 55 species are native to Indonesia, and 6 are introduced, of which 29 species are endemic species (POWO, 2020). Some of MPs may need to be conserved in the first place, that is two species included on IUCN Red List Categories (IUCN, 2020), 19 species listed in CITES Appendix (UNEP-WCMC (Comps.), 2020), and 26 priority MPs (see Chapter 2). The two species included in IUCN Red List are as vulnerable that are *Aquilaria hirta* Ridl. VU (Harvey-Brown, 2018) and *Etlingera solaris* (Blume) R.M.Sm. (Olander, 2019) so these species are considered to be facing the high extinction risk in the wild in the near future (IUCN, 2012). The other 19 species are listed in CITES II, which are maybe extinct if the trade is not controlled because species are collected from the wild without sufficient propagation (UNEP-WCMC (Comps.), 2020). The species listed in priority list by Cahyaningsih *et al.* (2020) were only native species with limited distribution and harvested in a destructive manner and included with the protected species by national or and global legislation. Against the DNA bank data (NCBI) and DNA barcoding data (BOLD) availability, there are 13 species have not had DNA barcoded but has DNA sequences data in NCBI, and 10 species neither has their sequences stored in NCBI nor BOLD. The detailed information is shown in Table Appendix 5.2.

Figure 5.4. Summary of DNA Barcoding Use for Medicinal Plant Conservation in Indonesia; Letter represents the DNA barcoding contribution to DNA bank data and importance to conservation in order (A=new DNA barcoding and can strongly assist MP conservation, B=can strongly assist MP conservation, C=new DNA barcoding and can assist MP conservation, D=can assist MP conservation, E=new to DNA bank data and new DNA barcoding and may strongly assist MP conservation, G=may strongly assist MP conservation, H=new to DNA bank data and new DNA barcoding and may assist MP conservation, I=new DNA barcoding and may assist MP conservation, J=may assist MP conservation, K=new to DNA bank data and new DNA barcoding and may assist MP conservation, J=may assist MP conservation, K=new to DNA bank data and new DNA barcoding, but sequences need to clarify further, L=new DNA barcoding, but sequences need to clarify further, M=sequences need to clarify further)

Figure 5.4 showed how the DNA barcoding to be useful for the conservation and use of Indonesian medicinal plants with regard to DNA bank – DNA barcoding data and identification ability. Sequences grouped in A-D can be given direct use to the conservation due to its correct identification to related medicinal plants. A-B criteria with its botanic forensic ability in casework of medicinal plants adulteration and illegal trading can be used in botanic forensic in terms of medicinal plants identification (Sass *et al.* 2007, Mahadani *et al.* 2013, Eurlings *et al.* 2013, Abubakar *et al.*, 2018), as the plants embraced are listed in the species that need to be conserved in the first place. There 19 families of Indonesian medicinal plants that consisted of 31 species were able to be identified accurately by DNA barcoding family. Major family of Indonesian medicinal plants that were successfully sequenced and correctly identified are Orchidaceae (13 sequences) and Apocynaceae (10 sequences). The MP species per criteria were served in Table Appendix 5.2.

5.4. Conclusion

Based on the study, no region is perfectly ideal for DNA barcoding. Nonetheless, according to its observed criteria, we recommend *matK* as the core DNA barcoding method for Indonesian medicinal plant identification. Also, due to its unique correct species identification, we recommend *ITS2* and *rbcL* alternatively or complementary to the core barcoding DNA. We contributed to conservation action of 33 species, especially to 21 species by offering the new botanic forensic tools that might prevent illegal trade and assuring the species identification of Indonesian medicinal plants, 3 of which are novel DNA barcoding to BOLD system.

CHAPTER 6. GENERAL DISCUSSION

6.1. Background

Medicinal plants, like other valuable plants, are part of biodiversity, and factors that threaten biodiversity subsequently threaten medicinal plants as well. Factors like population growth, deforestation, land conversion, and climate changes are all capable of contributing to biodiversity loss. Unlike deforestation and land conservation, both population growth and climate change occur gradually and slowly and could be dubbed an indirect contributor to biodiversity loss.

Medicinal plants have unique characteristics, especially because of knowledge basis and the diversity of origins. People that inhabit one particular village or a country may have a medicinal plant that is unique to their region and different from any other. For instance, China has TCM (Traditional China Medicine), India has Ayurveda, and of course, Indonesia has *Jamu*. Only specific parts of plants, and typically a small amount, are used to heal specific illnesses. For example, roots, leaves, or seeds are used to cure in the amounts of fist, 1-2 blade, and handful respectively. The use the medicinal plant depends on the illness, and can be either used directly (as a drink, or swallowed up or as a paste onto the skin) or used with prior processing (as drying, boiling, or turning it into ashes). In addition to curing illnesses, medicinal plants are also regularly used to maintain health. As a valuable plant, many people overharvest directly from its habitat and sell it at the market illegally, as many of them are wild plants, and propagation knowledge is unavailable or limited. Moreover, valuable plants are often exchanged with other species, creating a counterfeit version of the original.

In terms of the origins of medicinal plants, medicinal plants from Indonesia are unique in characteristics compared to medicinal plants from other countries. Indonesia, an archipelago country in South East Asia which is vast in size and has rich biodiversity and high population with rich ethnicity. Indonesia is home to three distinct biodiversity areas that span across a chain of thousands islands between Asia and Australia. More than 350 ethnicities possess different knowledge when it comes to the use of their medicinal plants. On the other hand, deforestation and land conversion occur very intensively for food, clothing, and houses, thus destroying the habitats of medicinal plants. Additionally, younger generations are less knowledgeable regarding the use of medicinal plants, and the resources needed to aid the transfer of knowledge between age groups are few and far between. It is a concern that the knowledge of these medicinal plants will be lost along with the presence of these plants.

6.2. Conservation strategy for Indonesian medicinal plants

Considering all the reasons mentioned above, a conservation strategy for Indonesian medicinal plants should be carried out in order to save them and guarantee sustainable, future use. However, due to limited resources and time, it would, unfortunately, be almost impossible to carry out conservation for all the medicinal plants in all areas of Indonesia. In this thesis, studies related conservation strategy were prepared as follows:

(1) Establishing a checklist and prioritising Indonesian medicinal plants

Almost 14K scientific names from the literature of medicinal plants were collated in an excel document. Any duplications were removed in excel and the rest was checked with a taxonomical tool for any typos, synonyms, and the accepted names. After defining the checklist of Indonesian medicinal plants from the proper literature, prioritisation of those species was based on criteria such as native status, rarity, part of the plant harvested, threat status, and legislations. Priority species names were matched against the Plants of the World Online (POWO, 2020). 233 priority medicinal plants have been decided. Establishing a checklist and prioritising Indonesian medicinal plants is the first step for comprehensive conservation.

(2) Conservation gap of priority Indonesian medicinal plants

Nearly 7000 plant occurrence points of priority Indonesian medicinal plants were collected from online resources, herbaria, and botanic gardens. According to species richness analysis, the area richest with medicinal plants has been identified specifically. According to the conservation gap analysis, some species are known to be under collected and need to be collected or propagated if there is already in *ex situ* site. Some *in situ* site and potential PA area that was passive conservation for Indonesian medicinal plants to be active conservation site have been identified. Conservation gap analysis is primarily done for resolving the conservation gaps in the field.

(3) Climate change analysis of priority Indonesian medicinal plants

Priority species were simulated in climate change analysis under future scenarios of RCP4.5 and RCP8.5 (year of 2050 and 2080). In 2050 and 2080, climate change was predicted to have effects on species richness and distribution area negatively, though some species are predicted to be benefited conversely. Some part in Papua, Java, and Sulawesi are predicted to have high reduction in species distribution area. Twenty medicinal plant species are identified to be target priority for Indonesia's conservation actions. In addition, areas benefited by climate change are suitable for species habitat and are recommended for a long term *in situ* conservation.

(4) DNA barcoding for supporting Indonesian medicinal plant conservation 61 medicinal plants of Indonesia were collected in order to get their DNA barcoding with four different regions of ITS2, matK, rbcL, and trnL. Those regions were analysed to discover which one was the most effective region for the DNA barcoding. Not all regions were able to provide the DNA barcoding due to failure in amplification or sequencing process. The new DNA barcoding created could help with the species identification correctly. Otherwise, at least DNA barcoding can be used as a clue for plant determination in genus or family level, from unknown species to known species. Here, we recommended matK as main DNA barcoding, with ITS2 and rbcL as alternative or complement DNA barcoding. Additionally, we identified DNA barcoding sequences that are new for DNA bank and DNA barcoding data. The DNA barcoding technology is important in helping plant identification when the sample is in incomplete or damaged form. Also, this is mainly the laboratory leap regarding the conservation of Indonesian medicinal plants, especially in offering the new botanic forensic tools that might prevent illegal trade and ensure the species authentication of Indonesian medicinal plants.

6.3. Limitation of The Research

There is no way to create perfection in anything in this world, which is true for the resulting project. The plans may be not smoothly done. A lot of information should be collected, which, in some cases, was limited due to availability, accessibility, and time.

(1) Checklist and prioritisation

Many journals regarding medicinal plants list were collected. Many journals also reported the ethnobotanical studies in several Indonesian ethnicities. However, due to limited time and resources, only a few were selected. Information was selected from the literature that was estimated to have the most lists of Indonesian medicinal plants.

13,997 plant species were manually inputted from the selected literature. 8,178 species were not completed with their authors, as in the process, the name check did not include the author. Whereas there were homonyms in species taxon unit, that is the same name different author, which is commonly different species. We found *Dalbergia ferruginea* has more than two names that is D. ferruginea Roxb., D. ferruginea Glaz. (accepted name: D. glaziovii Harms), D. ferruginea Hochst. ex Benth (Accepted name: D. horrida (Dennst.) Mabb.), and D. ferruginea Hochst. ex Benth. (Accepted name: D. horrida (Dennst.) Mabb.). The name check process assisted was by http://tnrs.iplantcollaborative.org/TNRSapp.html. By chance, the machine led to Dalbergia glaziovii Harms as the accepted name. In some cases, where no notes of use of this species as a medicinal plant in Indonesia had been found, the earliest valid name was selected.

Non-binomial names or pre-binomial name, such as "Arbor nigra" (= black tree); "Folium tinctorium" = (leaf used as dye); "Olus album" (=white oi), and other names with author citation Rumphius/Rumph./Rump. were changed into their synonym names, according to Eisai (1986) and Eisai (1995). This change should be rechecked to the primary resources which is the Rumphius book itself and the translated version (Beekman, 2010).

Prioritisation was done based on available and accessible data. Not all species have complete data such as their medicinal record use and plant part use, which is why the important species might have been opted out from the selection due to incompleteness. The value of each medicinal plant would be perfect for the prioritisation, unfortunately, the data is unavailable except for the cultivated medicinal plants.

(2) Conservation gap analysis

Concerning priority species, out of 233 species, 12 species had no occurrence points, and 38 were under-collected with less than 5 occurrences. The analysis was carried out with limited data available.

(3) Climate change analysis

93 species were excluded from the analysis due to the limited occurrence data. They have zero or less than 10 occurrence points. The analysis was carried out with limited data available.

(4) DNA barcoding for Indonesian medicinal plants

The plan was to collect all the priority species, but in the end, due to time limitations, any available medicinal plants from botanical gardens were collected. Not all priority species are available in the garden. In addition, the required paperwork for phytosanitary that was incredibly important should be done after sample collection.

6.4. Recommendations: Future Research

- (1) To update and enrich the checklist set with the recent ethnobotanical report or research from any ethnicities in Indonesia
- (2) To promote the conservation of priority medicinal plants to the public through dissemination
- (3) To conduct the threat assessment to Indonesian priority medicinal plants that have not been assessed by the IUCN
- (4) To conduct fieldwork to gain the current status of Indonesian medicinal plants that have not been collected in *ex situ* sites, as well to collect them
- (5) To enhance ethnobotany research in the area lacking medicinal plants found

6.5. Conclusions

From the work completed, the conservation action strategy of Indonesian medicinal plants including setting the checklist and priority list and inventory, conservation gap analysis, climate change analysis and DNA barcoding for Indonesian medicinal plants provided can give the foundation for further studies. Considering that Indonesian medicinal plants are valuable resources, the dissemination of knowledge and awareness of these findings have the power to enlighten the stakeholders of medicinal plants; be they pure users, farmers, traders, academics and researchers, locally or generally, in terms of how to conserve medicinal plants for sustainable use. For examples, people who use medicinal plants for livestock, especially small holdings farmers cultivating medicinal plants and might find that also conserving the plants is financially beneficial. In addition, the government, as a policymaker, hopefully, will be benefited in the first party. Especially because the result can contribute to national conservation plans through the National Priority Program and the Convention on Biological Diversity on a global level. These findings help to achieve the Global Strategy for Plant Conservation 2011-2020 objectives and its targets: Objective I ("Plant diversity is well understood documented and recognized"), II ("Plant diversity is urgently and effectively conserved"), III ("Plant diversity is used in a sustainable and equitable manner"), IV ("Education and awareness about plant diversity, its role in sustainable livelihoods and importance for all life on earth is promoted"), and V ("The capacities and public engagement necessary to implement the strategy have been developed").

Furthermore, the list of medicinal plants with some of the ethnobotanical information provided in the appendix would provide knowledge for the wider range of people in addition to the related stakeholders on the richness of Indonesian medicinal plants, and how people can help to conserve them for sustainable use.

REFERENCES

Abubakar B.M *et al.* (2018) 'Assessing product adulteration of Eurycoma longifolia (Tongkat Ali. herbal medicinal product using DNA barcoding and HPLC analysis'. *Pharm Biol.* 56: 1–10. doi:10.1080/13880209.2018.1479869

Altschul S.F. *et al.* (1990) 'Basic local alignment search tool'. *J Mol Biol.* 215: 403–410. doi:10.1016/S0022-2836(05)80360-2

Allen, D. *et al.* (2014) *European Red List of Medicinal Plants*. Luxembourg: Publications Office of the European Union. doi: 10.2779/907382.

Allkin B (2014) Communicating safely & effectively using plant names. Traditional Medicines and Globalisation: The Future of Ancient Systems of Medicine 1–15. http://www.ncbi.nlm.nih.gov/pubmed/29446907

Allkin, B. and Patmore, K. (2018) *Navigating the plant-names jungle*. WHO Uppsala Reports 78: 16–20. https://view.publitas.com/uppsala-monitoring-centre/uppsala-reports78/page/16–17.

Amandita, F. Y. *et al.* (2019) 'DNA barcoding of flowering plants in Sumatra, Indonesia', *Ecology and Evolution*, 9(4), pp. 1858–1868. doi: 10.1002/ece3.4875.

Anthelme, F., Cavieres, L. A. and Dangles, O. (2014) 'Facilitation among plants in alpine environments in the face of climate change', *Frontiers in Plant Science*, 5(AUG), pp. 1–15. doi: 10.3389/fpls.2014.00387.

Araújo, M. B. and Guisan, A. (2006) 'Five (or so) challenges for species distribution modelling', *Journal of Biogeography*, 33(10), pp. 1677–1688. doi: 10.1111/j.1365-2699.2006.01584.x.

Ardiyani, M. (2019) *Curcuma petiolata*. The IUCN Red List of Threatened Species 2019: e.T117309548A124281670. https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T117309548A124281670.en. Downloaded on 13th February 2020.

Arunkumar, A.N., Dhyani, A., and Joshi, G. (2019) *Santalum album*. The IUCN Red List of Threatened Species 2019: e.T31852A2807668. https://dx.doi.org/10.2305/IUCN.UK.2019-

1.RLTS.T31852A2807668.en. Downloaded on 13th February 2020.

Asase, A. and Peterson, A. T. (2019) 'Predicted impacts of global climate change on the geographic distribution of an invaluable African medicinal plant resource, Alstonia boonei De Wild', Journal of Applied Research on Medicinal and Aromatic Plants, 14(June), p. 100206. doi: 10.1016/j.jarmap.2019.100206.

Ashton, P. (1998a) *Anisoptera marginata*. The IUCN Red List of Threatened Species 1998: e.T33066A9754634. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33066A9754634.en. Downl oaded on 13th February 2020.

Ashton, P. (1998b) *Dipterocarpus kunstleri*. The IUCN Red List of Threatened Species 1998: e.T33076A9747934. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33076A9747934.en. Downl oaded on 13th February 2020.

Ashton, P. (1998c) *Hopea celebica*. The IUCN Red List of Threatened Species 1998: e.T33093A9750682. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33093A9750682.en. Downl oaded on 13th February 2020.

Ashton, P. (1998d) *Parashorea lucida*. The IUCN Red List of Threatened Species 1998: e.T33098A9751471. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33098A9751471.en. Downl oaded on 13th February 2020.

Ashton, P. (1998e) *Shorea lepidota*. The IUCN Red List of Threatened Species 1998: e.T33122A9759022. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33122A9759022.en. Downl oaded on 13th February 2020.

Ashton, P. (1998f) *Shorea palembanica*. The IUCN Red List of Threatened Species 1998: e.T33621A9798146. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33621A9798146.en. Downl oaded on 13th February 2020.

Ashton, P. (1998g) *Shorea selanica*. The IUCN Red List of Threatened Species e.T33146A9762519.

https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33146A9762519.en. Downl oaded on 13th February 2020.

Ashton, P. (1998h) *Shorea seminis*. The IUCN Red List of Threatened Species e.T33137A9761480.

https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33137A9761480.en. Downl oaded on 13th February 2020.

Ashton, P. (1998i) *Shorea teysmanniana*. The IUCN Red List of Threatened Species 1998: e.T33139A9761632. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33139A9761632.en. Downl oaded on 13th February 2020.

Ashton, P. (1998j) *Vatica teysmanniana*. The IUCN Red List of Threatened Species 1998: e.T33158A9755551. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33158A9755551.en. Downl oaded on 13th February 2020.

Ashton, P. (1998k) *Anisoptera megistocarpa*. The IUCN Red List of Threatened Species 1998:

e.T33067A9754704. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33067 A9754704.en. Downloaded on 10 February 2020.

Ashton, P. (2018) *Hopea mengarawan* (amended version of 1998 assessment). The IUCN Red List of Threatened Species 2018: e.T33083A136055329. https://dx.doi.org/10.2305/IUCN.UK.2018.RLTS.T33083A136055329.en. Dow nloaded on 13th February 2020.

Asian Regional Workshop (Conservation & Sustainable Management of Trees, Viet Nam, August 1996) (1998a) *Dalbergia latifolia*. The IUCN Red List of Threatened Species 1998: e.T32098A9675296. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T32098A9675296.en. Downl oaded on 13th February 2020.

Asian Regional Workshop (Conservation & Sustainable Management of Trees, Viet Nam, August 1996) (1998b) *Eusideroxylon zwageri*. The IUCN Red List of Threatened Species 1998: e.T31316A9624725. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T31316A9624725.en. Downl oaded on 13th February 2020.

Asian Regional Workshop (Conservation & Sustainable Management of Trees, Viet Nam, August 1996) (1998c) *Koompassia malaccensis*. The IUCN Red List of Threatened Species 1998: e.T33209A9765872. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33209A9765872.en. Downl oaded on 13th February 2020.

Astutik, S., Fahrurozi, I. and Priyanti, P. (2016) 'Keanekaragaman Jenis Tumbuhan Obat di Hutan Taman Nasional Gunung Gede Pangrango', *AL-Kauniyah: Jurnal Biologi*, 8(2), pp. 2013–2016. doi: 10.15408/kauniyah.v8i2.2696. Astutik, S., Pretzsch, J. and Kimengsi, J. N. (2019) 'Asian medicinal plants' production and utilization potentials: A review', *Sustainability (Switzerland)*, 11(19). doi: 10.3390/su11195483.

Badola, H. K. and Aitken, S. (2003) 'The Himalayas of India: A treasury of medicinal plants under siege', *Biodiversity*, 4(3), pp. 3–13. doi: 10.1080/14888386.2003.9712694.

Baričevič, D. (2009) *The contribution of ECPGR to global strategies for the conservation, sustainable management and use of medicinal and aromatic plants.* Lipman (editor). 2009. Report of a Working Group on Medicinal and Aromatic Plants. Second Meeting, 16-18 December 2004, Strumica, Macedonia FYR / Third Meeting, 26–28 June 2007, Olomouc, Czech Republic. Bioversity International, Rome, Italy. in Report of a Working Group on Medicinal and Aromatic Plants.

Barstow, M. (2018a) *Gonystylus bancanus*. The IUCN Red List of Threatened Species 2018: e.T32941A68084993. https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T32941A68084993.en. Downloaded on 13th February 2020.

Barstow, M. (2018b) *Gonystylus macrophyllus*. The IUCN Red List of Threatened Species 2018: e.T33226A68085123. https://dx.doi.org/10.2305/IUCN.UK.2018-

1.RLTS.T33226A68085123.en. Downloaded on 13th February 2020.

Barstow, M., and Kartawinata, K. (2018) *Castanopsis argentea*. The IUCN Red List of Threatened Species 2018: e.T62004506A62004510. https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T62004506A62004510.en. Downloaded on 13th February 2020.

Batugal, P.A. *et al.* (2004) *Medicinal Plants Research in Asia Volume I: The Framework and Project Workplans.* Serdang, Selangor DE, Malaysia. ISBN: International Plant Genetic Resources Institute – Regional Office for Asia, the Pacific and Oceania (IPGRI-APO).

Bellard, C., Leclerc, C. and Courchamp, F. (2014) 'Impact of sea level rise on the 10 insular biodiversity hotspots', *Global Ecology and Biogeography*, 23(2), pp. 203–212. doi: 10.1111/geb.12093.

Benavides, E., Breceda, A. and Anadón, J.D. (2020) 'Winners and losers in the predicted impact of climate change on cacti species in Baja California', *Plant Ecology*, 2. doi: 10.1007/s11258-020-01085-2.

BGCI (2012) Global Strategy for Plant Conservation a Guide to the GSPC, Botanic Gardens Conservation International.

BGCI, IUCN SSC Global Tree Specialist Group (2018) *Strychnos lucida*. The IUCN Red List of Threatened Species 2018: e.T136088486A136088488. https://dx.doi.org/10.2305/IUCN.UK.2018-2 RLTS T136088486A136088488 en Downloaded on 13th February 2020

2.RLTS.T136088486A136088488.en. Downloaded on 13th February 2020.

BGCI, IUCN SSC Global Tree Specialist Group (2019) *Lunasia amara*. The IUCN Red List of Threatened Species 2019: e.T146096013A146096015. https://dx.doi.org/10.2305/IUCN.UK.2019-

2.RLTS.T146096013A146096015.en. Downloaded on 13th February 2020.

Blach-Overgaard, A. *et al.* (2010) 'Determinants of palm species distributions across Africa: The relative roles of climate, non-climatic environmental factors, and spatial constraints'. *Ecography*, 33(2), pp. 380–391. https://doi.org/10.1111/j.1600-0587.2010.06273.x

Boyle, B. *et al.* (2013). 'The taxonomic name resolution service: an online tool for automated standardisation of plant names'. *BMC Bioinformatics* 14:16. https://doi.org/10.1186/1471-2105-14-16

Brockway, L. (1979). Science and Colonial Expansion: The Role of the British Royal Botanic Gardens. *American Ethnologist*, *6*(3), 449-465. Accessed on 16th May 2021, from http://www.jstor.org/stable/643776

BPS-Statistics (2019). *Statistical Year Book of Indonesia 2019*. BPS-Statistics Indonesia

Brummitt, N. (2013) *Erythrorchis altissima*. The IUCN Red List of Threatened Species 2013: e.T44392151A44426088. https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T44392151A44426088.en. Downloaded on 13th February 2020.

Burley, F.W. (1988) *Diversity for Setting Priorities in Conservation in National Academy of Sciences*. E.O Wilson (Ed.) in Biodiversity. Washington, DC: The National Academies Press. https://doi.org/10.17226/989

Cabelin, V.L.D. and Alejandro, G.J.D. (2016) 'Efficiency of *matK*, *rbcL*, trnHpsbA, and *trnL*-F (cpDNA) to molecularly authenticate Philippine ethnomedicinal Apocynaceae through DNA barcoding', *Pharmacognosy Magazine*, 12(46), pp. S384–S388. doi: 10.4103/0973-1296.185780. CAMP Workshops on Medicinal Plants, India (January 1997) (1998) *Woodfordia fruticosa*. The IUCN Red List of Threatened Species 1998: e.T39058A10160263. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T39058A10160263.en. Down loaded on 13th February 2020.

Carew-Reid, J. (2002) *Biodiversity Planning in Asia: Chapter 5*. Indonesia, (January 2002).

Casiraghi, M. *et al.* (2010) 'DNA barcoding: A six-question tour to improve users' awareness about the method', *Briefings in Bioinformatics*, 11(4), pp. 440–453. doi: 10.1093/bib/bbq003.

Castañeda-Álvarez, N. P. *et al.* (2015) *'Ex situ* conservation priorities for the wild relatives of potato (Solanum L. section petota)', *PLoS ONE*, 10(4), pp. 1–19. doi: 10.1371/journal.pone.0122599.

Cavaliere, C. (2009) 'The Effects of Climate Change on Medicinal and Aromatic Plants'. *HerbalGram.* 81: 44-57.

CBD (2010) The Strategic Plan for Biodiversity 2011-2020 and the Aichi Biodiversity Targets, Convention on Biological Diversity. http://www.cbd.int/doc/strategic-plan/2011-2020/Aichi-Targets-EN.pdf.

CBD (2015) *Aichi Biodiversity Targets*. CBD Secretariat, Ottawa, Canada. http://www.cbd.int/sp/targets/default.shtml. Accessed on 13th November 2020

CBOL Plant Working Group (2009). A DNA barcode for land plants. Proc Natl Acad Sci U S A. 106: 12794–12797. doi:10.1073/pnas.0905845106

CEPF (2020). *Biodiversity hotspot defined*. https://www.cepf.net/our-work/biodiversity-hotspots/hotspots-defined. Accessed on 31st October 2020

Chadburn, H. (2012) *Dalbergia parviflora*. The IUCN Red List of Threatened Species 2012: e.T19892025A20056788. https://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T19892025A20056788.en. D ownloaded on 13th February 2020.

Chao, Z. et al. (2014) 'DNA barcoding Chinese medicinal Bupleurum', *Phytomedicine*, 21(13), pp. 1767–1773. doi: 10.1016/j.phymed.2014.09.001.

Chen, S. *et al.* (2010) 'Validation of the *ITS2* region as a novel DNA barcode for identifying medicinal plant species', *PLoS ONE*, 5(1), pp. 1–8. doi: 10.1371/journal.pone.0008613.

Chen, S. L., *et al.* (2016). 'Conservation and sustainable use of medicinal plants: Problems, progress, and prospects'. In *Chinese Medicine (United Kingdom)* 11(1), pp 1-10. BioMed Central Ltd. doi:10.1186/s13020-016-0108-7

Chi, X. *et al.* (2017) 'Threatened medicinal plants in China: Distributions and conservation priorities', *Biological Conservation*, 210(April), pp. 89–95. doi: 10.1016/j.biocon.2017.04.015.

Chichorro, F., Juslén, A. and Cardoso, P. (2019) 'A review of the relation between species traits and extinction risk', *Biological Conservation*, 237(June), pp. 220–229. doi: 10.1016/j.biocon.2019.07.001.

Chuthaputti, A. (2010) 'Traditional Medicine in Republic of Indonesian Traditional Medicine', pp. 23–36. Available at: http://www.searo.who.int/entity/medicines/topics/traditional_medicines_in_rep ublic_of_indonesia.pdf.

Clarke, C.M. (2014) *Nepenthes mirabilis*. The IUCN Red List of Threatened Species 2014: e.T49122515A21844202. https://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T49122515A21844202.en. Downloaded on 13th February 2020.

Clarke, C.M. (2018a) *Nepenthes ampullaria* (errata version published in 2019). The IUCN Red List of Threatened Species 2018: e.T39640A143958546. https://dx.doi.org/10.2305/IUCN.UK.2018-

1.RLTS.T39640A143958546.en. Downloaded on 13th February 2020.

Clarke, C.M. (2018b) *Nepenthes gracilis* (errata version published in 2019). The IUCN Red List of Threatened Species 2018: e.T39663A143960417. https://dx.doi.org/10.2305/IUCN.UK.2018-

1.RLTS.T39663A143960417.en. Downloaded on 13th February 2020.

Clarke, C.M. (2018c) *Nepenthes rafflesiana* (errata version published in 2019). The IUCN Red List of Threatened Species 2018: e.T39689A143963510. https://dx.doi.org/10.2305/IUCN.UK.2018-

1.RLTS.T39689A143963510.en. Downloaded on 13th February 2020.

Clarke, C.M. (2018d) *Nepenthes reinwardtiana* (errata version published in 2019). The IUCN Red List of Threatened Species 2018: e.T39692A143963839. https://dx.doi.org/10.2305/IUCN.UK.2018-

1.RLTS.T39692A143963839.en. Downloaded on 13 February 2020
Clem, K. R. *et al.* (2020) 'Record warming at the South Pole during the past three decades', *Nature Climate Change*, 10(8), pp. 762–770. doi: 10.1038/s41558-020-0815-z.

Colling, G. and Matthies, D. (2006) 'Effects of habitat deterioration on population dynamics and extinction risk of an endangered, long-lived perennial herb (Scorzonera humilis)', *Journal of Ecology*, 94(5), pp. 959–972. doi: 10.1111/j.1365-2745.2006.01147.x.

Contreras-Toledo, A. R. *et al.* (2019) 'Diversity and conservation priorities of crop wild relatives in Mexico', *Plant Genetic Resources: Characterisation and Utilisation*, 17(2), pp. 140–150. doi: 10.1017/S1479262118000540.

Costion, C. *et al.* (2011) 'Plant dna barcodes can accurately estimate species richness in poorly known floras', *PLoS ONE*, 6(11), pp. 4–11. doi: 10.1371/journal.pone.0026841.

Cragg, G.M. and Newman, D.J. (2013) *Natural Products: A Continuing Source of Novel Drug Leads. Biochimica et Biophysica Acta (BBA)*—General Subjects, 1830, 36703695. http://dx.doi.org/10.1016/j.bbagen.2013.02.008

Cutler, D.R. *et al.* (2007) 'Random forests for classification in ecology'. *Ecology* 88, 2783–2792. https://doi.org/10.1890/07-0539.1

da Silva, R. and Conde, D. A. (2019) 'Data on the conservation potential of fish and coral populations in aquariums', *Data in Brief*, 22, pp. 987–991. doi: 10.1016/j.dib.2018.12.083.

Dalimartha, S. (1999) *Atlas tumbuhan obat Indonesia jilid 1 (Atlas of Indonesian Medicinal Plants Volume 1)*. Jakarta: Trubus Agriwidya, Anggota IKAPI. PT. Pustaka Pembangunan Swadaya Nusantara.

Dalimartha, S. (2000) *Atlas tumbuhan obat Indonesia jilid 2 (Atlas of Indonesian Medicinal Plants Volume 2)*. Jakarta: Trubus Agriwidya, Anggota IKAPI. PT. Pustaka Pembangunan Swadaya Nusantara.

Dalimartha, S. (2003) *Atlas tumbuhan obat Indonesia jilid 3 (Atlas of Indonesian Medicinal Plants Volume 3)*. Jakarta: Puspa Swara, Anggota IKAPI. PT. Pustaka Pembangunan Swadaya Nusantara.

Dalimartha, S. (2006) *Atlas tumbuhan obat Indonesia jilid 4 (Atlas of Indonesian Medicinal Plants Volume 4)*. Jakarta: Puspa Swara, Anggota IKAPI. PT. Pustaka Pembangunan Swadaya Nusantara.

Dalimartha, S. (2008) *Atlas tumbuhan obat Indonesia jilid 5 (Atlas of Indonesian Medicinal Plants Volume 5)*. Jakarta: Pustaka Bunda, Grup Puspa Swara, Anggota IKAPI. PT. Pustaka Pembangunan Swadaya Nusantara.

Dalimartha, S. (2009) *Atlas tumbuhan obat Indonesia jilid 6 (Atlas of Indonesian Medicinal Plants Volume 6)*. Jakarta: Pustaka Bunda, Grup Puspa Swara, Anggota IKAPI. PT. Pustaka Pembangunan Swadaya Nusantara.

Dauncey, E.A. *et al.* (2016) 'Common mistakes when using plant names and how to avoid them '. *European Journal of Integrative Medicine*, 8(5), 597–601. https://doi.org/10.1016/j.eujim.2016.09.005

de Guzman CC, Siemonsma JS (eds) (1999) *Spices*. PROSEA. Plant Resources of South-East Asia 13. 400 pp

de Kok R (2019a) *Beilschmiedia madang*. The IUCN Red List of Threatened Species 2019: e.T145282078A145297673. https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T145282078A145297673.en. Downloaded on 13th February 2020.

de Kok R (2019b) *Cinnamomum sintoc*. The IUCN Red List of Threatened Species 2019: e.T145345281A145416521. https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T145345281A145416521.en. Downloaded on 13th February 2020.

de Padua, L.S., Bunyapraphatsara, N. & Lemmens, R.H.M.J. (eds). (1999). *Medicinal and Poisonous Plants 1*. PROSEA.Plant Resources of South-East Asia 12(1).

Dery, B., Otsyina, R. and Ng'atigwa, L. (1999) Indigenous knowledge of medicinal trees and setting priorities for their domestication in Shinyanga Region, Tanzania, p. 87 p.

Dhar, U., Rawal, R. S. and Upreti, J. (2000) 'Setting priorities for conservation of medicinal plants $\pm\pm$ a case study in the Indian Himalaya', *Biological Conservation*, 95, pp. 57–65.

Dick, C.W. and Webb, C.O. (2017) *Chapter 18. Plant DNA Barcodes, Taxonomic Management, and Species Discovery in Tropical Forests.* 858. doi:10.1007/978-1-61779-591-6

Duke, N. *et al.* (2010) *Avicennia marina*. The IUCN Red List of Threatened Species 2010: e.T178828A7619457. https://dx.doi.org/10.2305/IUCN.UK.2010-2.RLTS.T178828A7619457.en. Downloaded on 13th February 2020.

Eisai (1986) Indeks Tumbuh-tumbuhan Obat Indonesia (Indonesian medicinal plant indexes). Jakarta: PT Eisai Indonesia

Eisai (1995) Medicinal Herb Index in Indonesia. 2nd Ed. PT. Eisai Indonesia.

Elfahmi, Woerdenbag, H. J. and Kayser, O. (2014) 'Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use', *Journal of Herbal Medicine*, 4(2), pp. 51–73. doi: 10.1016/j.hermed.2014.01.002.

Elith, J. *et al.* (2011) 'A statistical explanation of MaxEnt for ecologists', *Diversity and Distributions*, 17(1), pp. 43–57. doi: 10.1111/j.1472-4642.2010.00725.x.

Ellison, J. *et al.* (2010) *Phoenix paludosa*. The IUCN Red List of Threatened Species 2010: e.T178816A7615575. https://dx.doi.org/10.2305/IUCN.UK.2010-2.RLTS.T178816A7615575.en. Downloaded on 13th February 2020.

Enquist, B. J. *et al.* (2019) 'The commonness of rarity: Global and future distribution of rarity across land plants', *Science Advances*, 5(11), pp. 1–14. doi: 10.1126/sciadv.aaz0414.

Erdelen, W.R. et al. (1999) Biodiversity, traditional medicine and the sustainable use of indigenous medicinal plants in Indonesia. In: Indigenous Knowledge and Development Monitor, November 1999

Eurlings, M. C. M. *et al.* (2013) 'Forensic Identification of Indian Snakeroot (Rauvolfia serpentina Benth. ex Kurz) Using DNA Barcoding', *Journal of Forensic Sciences*, 58(3), pp. 822–830. doi: 10.1111/1556-4029.12072.

Fahrurozi, I., Priyanti and Astutik, S. (2016) 'Keanekaragaman Jenis Tumbuhan Obat Pada Plot Cuplikan', *Journal of Biology Website*, 8(2), pp. 101–106.

FAO (1995). Report of the Expert consultation on Non-Wood Forest Products, Yogyakarta, Indonesia, 17-27 January 1995. Non-wood forest products 3. FAO, Rome.

Farjon, A. (2013a) *Agathis borneensis*. The IUCN Red List of Threatened Species 2013: e.T202905A2757743. https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T202905A2757743.en. Downloaded on 13 February 2020

Farjon, A. (2013b) Pinus merkusii. The IUCN Red List of Threatened Species2013:e.T32624A2822050.https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T32624A2822050.en. Downloaded on 13th February 2020.

Farnsworth, N. R. and Soejarto, D. D. (2001) 'Global Importance of Medicinal Plants', *Conservation of Medicinal Plants*, pp. 25–52. doi: 10.1017/cbo9780511753312.005.

Fazekas, A.J. *et al.* (2012) *DNA barcoding methods for land plants*. Methods Mol Biol. 858:223-252. doi:10.1007/978-1-61779-591-6_11

Ferri, G. *et al.* (2015). 'Forensic botany II, DNA barcode for land plants: Which markers after the international agreement?' *Forensic Sci Int Genet.* 15: 131–136. doi:10.1016/j.fsigen.2014.10.005

Fielder, H. *et al.* (2015) Enhancing the Conservation of Crop Wild Relatives in England. PLoS One 10, e0130804. https://doi.org/10.1371/journal.pone.0130804

Foden, W.B. *et al.* (2009). *Species susceptibility to climate change impacts*. In: Vié, J.-C., Hilton-Taylor, C. and Stuart, S.N. (eds.). Wildlife in a Changing World – An Analysis of the 2008 IUCN Red List of Threatened Species. Gland, Switzerland: IUCN. Pp. 77-88.

Foden, W. B. *et al.* (2019) 'Climate change vulnerability assessment of species', *Wiley Interdisciplinary Reviews: Climate Change*, 10(1), pp. 1–36. doi: 10.1002/wcc.551.

Fordham, D. A. *et al.* (2012) 'Plant extinction risk under climate change: Are forecast range shifts alone a good indicator of species vulnerability to global warming?', *Global Change Biology*, 18(4), pp. 1357–1371. doi: 10.1111/j.1365-2486.2011.02614.x.

Ford-Lloyd, B. V. *et al.* (2011) 'Crop Wild Relatives—Undervalued, Underutilized and under Threat?', *BioScience*, 61(7), pp. 559–565. doi: 10.1525/bio.2011.61.7.10.

FWI (2020) JALAN DEFORESTASI INDONESIA (Deforestation road in Indonesia). https://fwi.or.id/. Accessed on14th November 2020.

Gaisberger, H. *et al.* (2020) 'Diversity Under Threat: Connecting Genetic Diversity and Threat Mapping to Set Conservation Priorities for Juglans regia L. Populations in Central Asia', *Frontiers in Ecology and Evolution*, 8(June), pp. 1–18. doi: 10.3389/fevo.2020.00171.

García-Valdés, R., Bugmann, H. and Morin, X. (2018) 'Climate change-driven extinctions of tree species affect forest functioning more than random

extinctions', *Diversity and Distributions*, 24(7), pp. 906–918. doi: 10.1111/ddi.12744.

Gaveau, D. L. A. *et al.* (2018) 'Rise and fall of forest loss and industrial plantations in Borneo (2000 – 2017)', *Conservation Letters*, (June), pp. 1–8. doi: 10.1111/conl.12622.

GBIF (2020) Biodiversity occurrence data available through the GBIF Data Portal (www.gbif.org). https://doi.org/10.15468/dl.zg078m. Accessed on 22nd January 2020.

Genesys (2020) Genesys data base. (https://www.genesys-pgr.org)

Gong, L. *et al.* (2018) 'Constructing a DNA barcode reference library for southern herbs in China: A resource for authentication of southern Chinese medicine', *PLoS ONE*, 13(7), pp. 1–12. doi: 10.1371/journal.pone.0201240.

Grosvenor, P. W. *et al.* (1995) 'Medicinal plants from Riau Province, Sumatra, Indonesia. Part 1: Uses', *Journal of Ethnopharmacology*, 45(2), pp. 75–95. doi: 10.1016/0378-8741(94)01209-I.

Gu, W. *et al.* (2013) 'Application of the *ITS2* Region for Barcoding Medicinal Plants of Selaginellaceae in Pteridophyta', *PLoS ONE*, 8(6), pp. 2–9. doi: 10.1371/journal.pone.0067818.

Hamid, A. and Sitepu, D. (1990). An understanding of native herbal medicine in Indonesia. Industrial Crops Research Journal 3(1): 11-17.

Hamidi, A. et al. (2019) Strategi Konservasi 12 Spesies Pohon Prioritas Nasional 2019-2029. LIPI Press.

Hamilton, A.C. (2004). 'Medicinal plants, conservation and livelihoods. *Biodiversity and Conservation*, Vol. 13, pp. 1477–1517. https://doi.org/10.1023/B:BIOC.0000021333.23413.42

Harish, B.S., Dandin, S.B., Umesha, K., Sasanur, A. (2012) *Impact of climate change on medicinal plants - A review*. From 5th World Ayurveda Congress 2012 Bhopal, Madhya Pradesh, India. 7-10 Dec 2012. OA01.23. Ancient Science of Life. 2012;32(Suppl 1):S23.

Harnik, P.G., Simpson, C. and Payne, J. (2012) 'Long-term differences in extinction risk among the seven forms of rarity', *Proceedings of the Royal Society B: Biological Sciences*, 279(1749), pp. 4969–4976. doi: 10.1098/rspb.2012.1902.

Harvey-Brown, Y. (2018a) *Aquilaria cumingiana*. The IUCN Red List of Threatened Species 2018: e.T38068A88301841. https://dx.doi.org/10.2305/IUCN.UK.2018-

1.RLTS.T38068A88301841.en. Downloaded on 13th February 2020.

Harvey-Brown, Y. (2018b) *Aquilaria hirta*. The IUCN Red List of Threatened Species 2018: e.T34561A2853368. https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T34561A2853368.en. Downloaded on 13 February 2020

Harvey-Brown, Y. (2018c) Aquilaria malaccensis. The IUCN Red List ofThreatenedSpecies2018:e.T32056A2810130.https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T32056A2810130.en. Downloaded on 13th February 2020.

Harvey-Brown, Y. (2019) Parkia timoriana. The IUCN Red List of ThreatenedSpecies2019:e.T153891751A153917814.https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T153891751A153917814.en. Downloaded on 13th February 2020.

Hawkins, B. (2008) *Plants for life : Medicinal plant conservation and botanic gardens Plants for life : Medicinal plant conservation and botanic gardens, Secretary.* Available at: https://www.bgci.org/files/Worldwide/Publications/PDFs/medicinal.pdf.

Hebert, P.D.N. *et al.* (2003) 'Biological identifications through DNA barcodes', *Proceedings of the Royal Society B: Biological Sciences*, 270(1512), pp. 313–321. doi: 10.1098/rspb.2002.2218.

Hermawan, I. (2015) 'The Competitiveness Level of Indonesian Spices in ASEAN Market Before and After Global Economic Crisis'. *Buletin Ilmiah Litbang Perdagangan*, 9(2), pp. 153–178.

Heyne, K. (1987) *Tumbuhan Berguna Indonesia Jilid 1-3 (The Useful Plants of Indonesia Volume 1-3).* Jakarta: Yayasan Sarana Wana Jaya. Badan Litbang Kehutanan

Hijmans, R. J. et al. (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS, Plant Genetic Resources Newsletter.

Hijmans, R. J. *et al.* (2005) 'VERY HIGH RESOLUTION INTERPOLATED CLIMATE SURFACES FOR GLOBAL LAND AREAS', 1978, pp. 1965–1978. doi: 10.1002/joc.1276.

Hill, K.D. (2010) *Cycas rumphii*. The IUCN Red List of Threatened Species 2010: e.T42081A10623127. https://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T42081A10623127.en. Downloaded on 13th February 2020.

Hollingsworth, P. M., Graham, S. W. and Little, D. P. (2011) 'Choosing and using a plant DNA barcode', *PLoS ONE*, 6(5). doi: 10.1371/journal.pone.0019254.

Hortal, J. *et al.* (2014) 'Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity', *Annual Review of Ecology, Evolution, and Systematics*, 46(1), p. annurev-ecolsys-112414-054400. doi: 10.1146/annurev-ecolsys-112414-054400.

Indonesia-FAO (2011) Country Report The State of The World's Forest Genetic Resources Indonesia.

IPCC (2007) *Climate Change 2007: Synthesis Report*. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, RK and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.

IPCC (2014) *Climate Change 2014: Synthesis Report*. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, RK Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

IPGRI (2004) Forest genetic resources conservation and management. Vol. 3. Plantations and genebanks. Biodiversity International, Rome

Iriondo, J.M. *et al.* (2012) *Quality standards for genetic reserve conservation of crop wild relatives*. In: Maxted, N. *et al.* (Eds.), Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces. CABI Publishing, Wallingford. Pp. 72–77.

Işik, K. (2011) 'Rare and endemic species: Why are they prone to extinction?', *Turkish Journal of Botany*, 35(4), pp. 411–417. doi: 10.3906/bot-1012-90.

IUCN (2012) *The IUCN Red List of Threatened Species*. Version 2020-2. https://www.iucnredlist.org. Downloaded on 9th July 2020.

IUCN (2019) *Guidelines for Using the IUCN Red List Categories and Criteria*. Version 14. Prepared by the Standards and Petitions Committee. Downloadable from http://www.iucnredlist.org/documents/RedListGuidelines.pdf.

Jarvis, A. *et al.* (2008) *Climate Change and its Effect on Conservation and Use of Plant Genetic Resources for Food and Agriculture and Associated Biodiversity for Food Security.* Thematic study for the SoW Report on PGRFA FAO Rome Italy, p. 26. Available at: http://typo3.fao.org/fileadmin/templates/agphome/documents/PGR/SoW2/Clim ate_Change_Thematic_Study.pdf.

Jenkins M., Timoshyna A., and Cornthwaite M (2018). *Wild at Home: Exploring the global harvest, trade and use of wild plant ingredients*. TRAFFIC

Jepson, P. and Whittaker, R. J. (2002) 'Ecoregions in Context: A Critique with Special\rReference to Indonesia'. Conservation Biology 16: 42–57.', *Conservation Biology*, 16(1), pp. 42–57.

Johnson, D. (1998) *Caryota no*. The IUCN Red List of Threatened Species 1998: e.T38466A10120889.

https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T38466A10120889.en. Down loaded on 13th February 2020.

Kasparek, M., Gröger, A. and Schippmann, U (1996) *Directory for medicinal plants conservation: Networks, Organizations, Projects, Information Sources.* IUCN/SSC Medicinal Plants Specialist Group. German Federal Agency for Nature Conservation. Available at: http://www.kasparek-verlag.de/MaxKasparek/PDF/Kasparek - MedPlants.pdf.

Khanum, R., Mumtaz, A. S. and Kumar, S. (2013) 'Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling', *Acta Oecologica*, 49, pp. 23–31. doi: 10.1016/j.actao.2013.02.007.

Kirakosyan, A. *et al.* (2003) 'Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (hawthorn) subjected to drought and cold stress', *Journal of Agricultural and Food Chemistry*, 51(14), pp. 3973–3976. doi: 10.1021/jf030096r.

Kochummen, K.M. (1998) i. The IUCN Red List of Threatened Species 1998: e.T31849A9664861.

https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T31849A9664861.en. Downl oaded on 13th February 2020.

Kolberg, H. and Max Piterson (1996) Indonesia : Country Report To the Fao International Technical Conference.

Kress, W. J. and Erickson, D. L. (2007) 'A Two-Locus Global DNA Barcode for Land Plants : The Coding *rbcL* Gene Complements the Non-Coding trnH- psbA Spacer Region', *PloS one*, (6). doi: 10.1371/journal.pone.0000508.

Kress, W. J. *et al.* (2005) 'Use of DNA barcodes to identify flowering plants', *Proceedings of the National Academy of Sciences of the United States of America*, 102(23), pp. 8369–8374. doi: 10.1073/pnas.0503123102.

Kress, W. J. *et al.* (2014) 'DNA barcodes for ecology, evolution, and conservation', *Trends in Ecology and Evolution*, pp. 1–11. doi: 10.1016/j.tree.2014.10.008.

Krismawati, A. and Sabran, M. (2016) 'Pengelolaan Sumber Daya Genetik Tanaman Obat Spesifik Kalimantan Tengah', *Buletin Plasma Nutfah*, 12(1), p. 16. doi: 10.21082/blpn.v12n1.2006.p16-23.

Kumar, S. *et al.* (2018) 'MEGA X: Molecular evolutionary genetics analysis across computing platforms', *Molecular Biology and Evolution*, 35(6), pp. 1547–1549. doi: 10.1093/molbev/msy096.

Lomolino, M.V. (2004) *Conservation biogeography*. In Frontiers of Biogeography: New Directions in the Geography of Nature, ed. MV Lomolino, LR Heaney, pp. 293–96. Sunderland, MA: Sinauer

Lemmens, R.H.M.J. and Bunyapraphatsara, N. (Editors) (2003) *Plant Resources* of South East Asia No. 12(3). Medicinal and poisonous plants 3. Prosea Foundation, Bogor, Indonesia. 664 pp.

Li, J. *et al.* (2019) 'Simulating the effects of climate change across the geographical distribution of two medicinal plants in the genus Nardostachys, Nardostachys jatamansi, Climate change, Nardostachys, Maxent, Potential distribution, Nardostachys chinensis', *PeerJ*, 2019(4), pp. 1–15. doi: 10.7717/peerj.6730.

Liu, C. *et al.* (2005) 'Selecting thresholds of occurrence in the prediction of species distributions', *Ecography*, 28(3), pp. 385–393. doi: 10.1111/j.0906-7590.2005.03957.x.

Ly V, Nanthavong K, Hoang VS, Vu VD, Barstow M, Nguyen HN, Pooma R, Newman MF (2017a) *Parashorea stellata*. The IUCN Red List of Threatened Species 2017: e.T32626A2822394. https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T32626A2822394.en. Downloaded on 13th February 2020.

Ly V, Nanthavong K, Pooma R, Luu HT, Nguyen HN, Barstow M, Vu VD, Hoang VS, Khou E, Newman MF (2017b) *Dipterocarpus gracilis*. The IUCN Red List of Threatened Species 2017: e.T31315A2804348. https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T31315A2804348.en. Downloaded on 13th February 2020.

Ma, K. et al. (2010) The Convention on Biological Diversity The First Asian Plant Conservation Report.

Magos Brehm, J. *et al.* (2008) 'National inventories of crop wild relatives and wild harvested plants: Case-study for Portugal', *Genetic Resources and Crop Evolution*, 55(6), pp. 779–796. doi: 10.1007/s10722-007-9283-9.

Magos Brehm, J. M. *et al.* (2010) 'New approaches for establishing conservation priorities for socio-economically important plant species', Biodiversity and Conservation, 19(9), pp. 2715–2740. doi: 10.1007/s10531-010-9871-4.

Magos Brehm, J. et al. (2017) Interactive Toolkit for Crop Wild Relative Conservation Planning version 1.0. University of Birmingham, Birmingham, UK and Bioversity International, Rome, Italy. Available at: http://www.cropwildrelatives.org/conservation-toolkit/

Mahadani, P., Sharma, G. D. and Ghosh, S. K. (2013) 'Identification of ethnomedicinal plants (Rauvolfioideae: Apocynaceae) through DNA barcoding from northeast India', *Pharmacognosy Magazine*, 9(35), pp. 255–263. doi: 10.4103/0973-1296.113284.

Maikhuri, R. K. *et al.* (2018) 'Assessment of Climate Change Impacts and its Implications on Medicinal Plants-Based Traditional Healthcare System in Central Himalaya, India', *Iranian Journal of Science and Technology, Transaction A: Science*, 42(4), pp. 1827–1835. doi: 10.1007/s40995-017-0354-2.

Margules, C. R. and Pressey, R. L. (2000) 'Systematic conservation planning', *Nature*, 405(6783), pp. 243–253. doi: 10.1038/35012251.

Margulis L, Raven P (2009) Macroscope: The Herbal of Rumphius. American Scientist. 97(1): 7-9. doi:10.1511/2009.76.7.

Maurin, O. et al. (2017) A visual guide to collecting plant tissues for DNA. 1–2.

Maxted N and Hawkes J (1997) Selection of target taxa. In: Maxted N., Ford-Lloyd B. and Hawkes J. (eds), Plant Genetic Conservation: The *In situ* Approach. Chapman & Hall, London, pp. 43–67.

Maxted, N. and Kell, S.P. (2009) Establishment of a global network for the *in situ* conservation of crop wild relatives: status and needs. FAO Commission on Genetic Resources for Food & Agriculture.

Maxted, N. *et al.* (2008) 'Towards a conservation strategy for Aegilops species', *Plant Genetic Resources: Characterisation and Utilisation*, 6(2), pp. 126–141. doi: 10.1017/S147926210899314X.

Maxted, N. *et al.* (2013b) 'Preserving diversity : a concept for *in situ* conservation of crop wild relatives in Europe Preserving diversity : a concept for *in situ* conservation of crop wild relatives in Europe', p. 21.

Maxted, N., Brehm, J. M. and Kell, S. (2013a) 'Resource book for the preparation of national plans for conservation of crop wild relatives and landraces', *FAO Global Plan of Action for PGRFA*.

Maxted, N., Hunter, D., and Rios, R.O. (2020) Plant genetic conservation. 560 pp. Cambridge University Press, Cambridge. ISBN 9781139024297

McNeely, J. A. and Mainka, S. A. (2009) *Conservation for a New Era*. IUCN, Gland, Switzerland. doi: 10.2305/IUCN.CH.2009.16.en.

Meilleur, B. and Hodgkin, T. (2004) '*In situ* conservation of crop wild relatives: statuts and trends', *Biodiversity and Conservation*, 13, pp. 663–684. doi: 10.1023/B:BIOC.0000011719.03230.17.

Millennium Ecosystem Assessment (2003). Ecosystem and Human well-being: A framework for assessment. Washington, DC. Island Press.

Millennium Ecosystem Assessment (2005) Ecosystem and Human well-being: Synthesis. Washington, DC. Island Press.

Miller, S. E. *et al.* (2016) 'Advancing taxonomy and bioinventories with DNA barcodes', *Philosophical Transactions of the Royal Society B: Biological Sciences*, 371(1702). doi: 10.1098/rstb.2015.0339.

Ministry of Agriculture (2014) Agricultural Statistics. Ministry of Agriculture Republic of Indonesia.

Ministry of Agriculture (2015) Renstra Kementrian Pertanian Pertanian Tahun 2015 – 2019 (Strategic Plan of Ministry of Agriculture 2015-2019). Ministry of Agriculture of Republic of Indonesia.

Ministry of Agriculture (2017) Agricultural Statistics. Ministry of Agriculture Republic of Indonesia.

Ministry of Environment and Forestry of Indonesia (2014) *The Fifth National Report of Indonesia to The Convention on Biological Diversity*. Indonesian Government

Ministry of Environment The Republic of Indonesia (2013) State of the Environment Report Indonesia 2012 Pillars of the Environment of Indonesia, Annual Review of Environment and Resources. doi: 10.1146/annurev.energy.28.050302.105509.

Ministry of Health (2007) *National Policy on Traditional Medicine 2017*. Ministry of Health Republic of Indonesia

Ministry of National Development Planning (2016) *Indonesian Biodiversity Strategy and Action Plan 2015-2020*. Indonesian Government

Mishra, P. *et al.* (2016) 'DNA barcoding: An efficient tool to overcome authentication challenges in the herbal market', *Plant Biotechnology Journal*, 14(1), pp. 8–21. doi: 10.1111/pbi.12419.

Mittermeier, R. A., Turner, W. R. and Larsen, F. W. (2011) 'Global Biodiversity Conservation : The Critical Role of Hotspots Chapter 1 Global Biodiversity Conservation : The Critical Role of Hotspots', (August). doi: 10.1007/978-3-642-20992-5.

Mogea, J.P. *et al.* (2001) Tumbuhan Langka Indonesia (Indonesian rare plants). Bogor: Puslitbang Biologi – LIPI.

Monsarrat, S., Boshoff, A. F. and Kerley, G. I. H. (2019) 'Accessibility maps as a tool to predict sampling bias in historical biodiversity occurrence records', *Ecography*, 42(1), pp. 125–136. doi: 10.1111/ecog.03944.

Morgulis, A. *et al.* (2008) 'Database indexing for production MegaBLAST searches'. *Bioinformatics* 24: 1757–1764. doi:10.1093/bioinformatics/btn322

Moss, R. H. *et al.* (2010) 'The next generation of scenarios for climate change research and assessment'. *Nature*, 463(7282), pp. 747–756. doi: 10.1038/nature08823.

MPNS (2020) the Medicinal Plant Names Services (MPNS) Resource is V9.0, published January 2020. https://mpns.science.kew.org/mpns-portal/version. Accessed on 25th July 2020

MPSG (2017) https://www.kew.org/science/data-and-resources/tools-andservices/medicinal-plant-names-services/mpns-resource. Accessed 19th October 2017

Myers, N. *et al.* (2000) 'Biodiversity hotspots for conservation priorities', Nature, 403(6772), pp. 853–858. doi: 10.1038/35002501.

Newman, M.F. and Pooma, R. (2017) Shorea glauca. The IUCN Red List of Threatened Species 2017: e.T33113A2832740. https://dx.doi.org/10.2305/IUCN.UK.2017-

3.RLTS.T33113A2832740.en. Downloaded on 13th February 2020.

Newman, M.F. and Pooma, R. (2017a) Shorea bracteolata. The IUCN Red List of Threatened Species 2017: e.T33105A2832597. https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T33105A2832597.en. Downloaded on 13th February 2020.

Newmaster, S.G. *et al.* (2013) 'DNA barcoding detects contamination and substitution in North American herbal products', *BMC Medicine*, 11(1), p. 222. doi: 10.1186/1741-7015-11-222.

Nguyen, H.N. *et al.* (2017) *Anisoptera costata*. The IUCN Red List of Threatened Species 2017: e.T33166A2833752. https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T33166A2833752.en. Downloaded on 13th February 2020.

Nugraha, A.S. and Keller, P.A. (2011) 'Revealing indigenous Indonesian traditional medicine: Anti-infective agents', *Natural Product Communications*, 6(12), pp. 1953–1966. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-83455210892&partnerID=tZOtx3y1.

Nurse, L.A. *et al.* (2014). "Small Islands," in Climate Change 2014 – Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report. Cambridge: Cambridge University Press, pp. 1613–1654. doi: 10.1017/CBO9781107415386.009.

Olander, S.B. and Wilkie, P. (2018) Palaquium hispidum. The IUCN Red List ofThreatenedSpecies2018:e.T61965305A61965308.

https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T61965305A61965308.en. Downloaded on 13th February 2020.

Olander, S.B. (2019) *Etlingera solaris*. The IUCN Red List of Threatened Species: e.T117324858A124282372. https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T117324858A124282372.en. Downloaded on 22nd August 2020.

Org, W. C. and Brandon, K. (2014) 'CGD Climate and Forest Paper Series #7 Ecosystem Services from Tropical Forests: Review of Current Science', *Center for Global Development*, 4164000416(202), p. 85. Available at: http://www.cgdev.org/publication/ecosystem-services-tropical-forests-reviewcurrent-science-working-paper-380%0Awww.cgdev.org.

Paranaiba, R.T.F. *et al.* (2019) 'Forensic botany and forensic chemistry working together: Application of plant DNA barcoding as a complement to forensic chemistry - A case study in Brazil'. *Genome* 62: 11–18. doi:10.1139/gen-2018-0066

Parra-Quijano, M. et al. (2016) CAPFITOGEN tools user manual version 2.0.

Paton, A. *et al.* (2016) Plant Name Resources: Building Bridges with Users. Botanists of the Twenty-First Century: Roles, Challenges and Opportunities 1– 10. http://www.ncbi.nlm.nih.gov/pubmed/29058848

Pearson, R.G. and Dawson, T.P. (2003) 'Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?', *Global Ecology and Biogeography*, 12(5), pp. 361–371. doi: 10.1046/j.1466-822X.2003.00042.x.

Phillips, J., Magos Brehm, J., van Oort, B., Asdal, Å., *et al.* (2017) 'Climate change and national crop wild relative conservation planning', *Ambio*, 46(6), pp. 630–643. doi: 10.1007/s13280-017-0905-y.

Phillips, J., Whitehouse, K. and Maxted, N. (2019) 'An *in situ* approach to the conservation of temperate cereal crop wild relatives in the Mediterranean Basin and Asian centre of diversity', *Plant Genetic Resources: Characterization and Utilization*, pp. 1–11. doi: 10.1017/S1479262118000588.

Phillips, S. B. *et al.* (2006) 'Modelling and analysis of the atmospheric nitrogen deposition in North Carolina', *International Journal of Global Environmental Issues*, 6(2–3), pp. 231–252. doi: 10.1016/j.ecolmodel.2005.03.026.

Pooma, R. and Newman, M.F. (2017a) Shorea singkawang. The IUCN Red ListofThreatenedSpecies2017:e.T33480A2837343.https://dx.doi.org/10.2305/IUCN.UK.2017-

3.RLTS.T33480A2837343.en. Downloaded on 13th February 2020.

Pooma, R. and Newman, M.F. (2017b) *Shorea sumatrana*. The IUCN Red List of Threatened Species 2017: e.T33481A2837487. https://dx.doi.org/10.2305/IUCN.UK.2017-2 PLTS T22481A2827487 or Downloaded or 12th February 2020

3.RLTS.T33481A2837487.en. Downloaded on 13th February 2020.

Pooma, R., Barstow, M. and Newman, M.F. (2017a) *Hopea sangal*. The IUCN Red List of Threatened Species 2017: e.T31314A2804189. https://dx.doi.org/10.2305/IUCN.UK.2017-

3.RLTS.T31314A2804189.en. Downloaded on 13th February 2020.

Pooma, R., Newman, M.F., and Barstow, M. (2017b) *Shorea laevis*. The IUCN Red List of Threatened Species 2017: e.T33121A2833046. https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T33121A2833046.en. Downloaded on 13th February 2020.

POWO (2020) "Plants of the World Online. Facilitated by the Royal BotanicGardens,Kew.PublishedontheInternet;http://www.plantsoftheworldonline.org/. Accessed on 5th January 2020."

Pribadi, E.R. (2009) 'Pasokan dan Permintaan Tanaman Obat Indonesia Serta Arah Penelitian dan Pengembangannya (Suply and Demand of Indonesian medicinal plants and Research Direction and Its Development)'. *Perspektif*, 8(1), 52–64.

Purnomo, D.W., Magandhi, M., Kuswantoro, F., Risna, R.A., Witono, J.R. (2015) 'Pengembangan Koleksi Tumbuhan Kebun Raya Daerah Dalam Kerangka Strategi Konservasi Tumbuhan Di Indonesia'. Buletin Kebun Raya, 18(2), pp. 111–124. Available at: http://jurnal.krbogor.lipi.go.id/index.php/buletin/article/view/99.

Rahayu, M. *et al.* (2006) 'Pemanfaatan Tumbuhan Obat secara Tradisional oleh Masyarakat Lokal di Pulau Wawonii, Sulawesi Tenggara Traditonal use of medicinal herbs by local community of Wawonii island, Southeast Sulawesi', *Biodiversitas*, 7, pp. 245–250. doi: 10.13057/biodiv/d070310.

Rakotoarinivo, M. and Dransfield, J. (2012) *Borassus madagascariensis*. The IUCN Red List of Threatened Species 2012: e.T38452A2869399.

https://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T38452A2869399.en. Downl oaded on 13th February 2020.

Ramírez-Villegas, J. *et al.* (2010) 'A Gap analysis methodology for collecting crop genepools: A case study with Phaseolus beans', *PLoS ONE*, 5(10). doi: 10.1371/journal.pone.0013497.

Randi, A., et al. (2019a) Shorea macrophylla. The IUCN Red List of ThreatenedSpecies2019:e.T33620A125629642.https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T33620A125629642.en. Downloaded on 13th February 2020.

Randi, A. et al. (2019b) Shorea splendida. The IUCN Red List of ThreatenedSpecies2019:e.T33622A149072329.https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T33622A149072329.en. Downloaded on 13th February 2020.

Randi, A. et al. (2019c) Shorea stenoptera. The IUCN Red List of ThreatenedSpecies2019:e.T33623A125629727.https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T33623A125629727.en. Downloaded on 13th February 2020.

Ratnasingham, S. and Hebert, P. D. N. (2007) 'BARCODING BOLD: The Barcode of Life Data System', *Molecular Ecology Notes*, 7, pp. 355–364. doi: 10.1111/j.1471-8286.2006.01678.x.

Rebelo, A.G. (1994) *Iterative selection procedures: centres of endemism and optimal placement of reserves*. In: Huntley, B.J. (Ed.), Botanical Diversity in Southern Africa. Pretoria: National Botanic Institute.

Riahi, K. *et al.* (2011) 'RCP 8.5-A scenario of comparatively high greenhouse gas emissions', *Climatic Change*, 109(1), pp. 33–57. doi: 10.1007/s10584-011-0149-y.

Risna, A.R. *et al.* (2010) *Spesies priositas untuk konservasi tumbuhan Indonesia*. Pusat Konservasi Tumbuhan. Kebun Raya Bogor. Lembaga Ilmu Pengetahuan Indonesia (LIPI). Bogor, Indonesia

Rivera, D. *et al.* (2014) 'What is in a name? the need for accurate scientific nomenclature for plants '. *Journal of Ethnopharmacology* 152(3), 393–402. https://doi.org/10.1016/j.jep.2013.12.022

Robiansyah, I. (2018) 'Assessing the impact of climate change on the distribution of endemic subalpine and alpine plants of new Guinea', *Songklanakarin Journal of Science and Technology*, 40(3), pp. 701–709. doi: 10.14456/sjst-psu.2018.66.

Romand-Monnier, F. (2013) Elettariopsis sumatrana. The IUCN Red List ofThreatenedSpecies2013:e.T44392454A44426836.https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T44392454A44426836.en. Downloaded on 13th February 2020.

Roosita, K. *et al.* (2008) 'Medicinal plants used by the villagers of a Sundanese community in West Java, Indonesia', *Journal of Ethnopharmacology*, 115(1), pp. 72–81. doi: 10.1016/j.jep.2007.09.010.

Rumphius, C.E. (1741–1755) *Herbarium Amboinense*. 7 vols. (Burman, J. (ed.)) Amsterdam, 's Gravenhage, Utrecht.

Sanchez, A.C., Osborne, P.E. and Haq, N. (2011) 'Climate change and the African baobab (*Adansonia digitata* L.): The need for better conservation strategies', *African Journal of Ecology*, 49(2), pp. 234–245. doi: 10.1111/j.1365-2028.2011.01257.x.

Sandifer, P. A., Sutton-Grier, A. E., & Ward, B. P. (2015). Exploring connections among nature, biodiversity, ecosystem services, and human health and wellbeing: Opportunities to enhance health and biodiversity conservation. *Ecosystem services*, 12, 1-15. doi: 10.1016/j.ecoser.2014.12.007

Sass, C. *et al.* (2007) 'DNA barcoding in the Cycadales: Testing the potential of proposed barcoding markers for species identification of Cycads'. *PLoS One.* 2: 1–9. doi:10.1371/journal.pone.0001154

Schindel, D.E. and Miller, S.E. (2005) 'DNA barcoding a useful tool for taxonomists', *Nature*, 435(7038), pp. 17–17. doi: 10.1038/435017b.

Schippmann, U., Leaman, D.J., and Cunningham, A.B. (2002) Impact of Cultivation and Gathering of Medicinal Plants on Biodiversity : Global Trends and Issues. FAO, Rome Italy, (April 2015).

Schnell, D. et al. (2000) Nepenthes boschiana. The IUCN Red List of ThreatenedSpecies2000:e.T40104A10314124.https://dx.doi.org/10.2305/IUCN.UK.2000.RLTS.T40104A10314124.en. Downloaded on 13th February 2020.

Sentinella, A.T. *et al.* (2020) 'Tropical plants do not have narrower temperature tolerances, but are more at risk from warming because they are close to their

upper thermal limits', *Global Ecology and Biogeography*, 29(8), pp. 1387–1398. doi: 10.1111/geb.13117.

Shabani, Farzin *et al.* (2020) 'Invasive weed species' threats to global biodiversity: Future scenarios of changes in the number of invasive species in a changing climate', *Ecological Indicators*, 116(May 2019), p. 106436. doi: 10.1016/j.ecolind.2020.106436.

Sharrock, S. (2012) *Global Strategy for Plant Conservation a Guide*. Botanic Gardens Conservation International, 38.

Sharrock, S. and Jackson, P.W. (2017) 'Plant Conservation and the Sustainable Development Goals: A Policy Paper Prepared for the Global Partnership for Plant Conservation,' *Annals of the Missouri Botanical Garden*, 102(2), pp. 290-302. doi: 10.3417/D-16-00004A

Sharrock, S., Hoft, R., and de Souza Dias, B. F. (2018). 'An overview of recent progress in the implementation of the Global Strategy for Plant Conservation – a global perspective', *Rodriguesia*, *69*(4), pp. 1489–1511. doi: 10.1590/2175-7860201869401

Singh, R., Ming, R. and Yu, Q. (2016) 'Comparative Analysis of GC Content Variations in Plant Genomes', *Tropical Plant Biology*, 9(3), pp. 136–149. doi: 10.1007/s12042-016-9165-4.

Soejarto, D.D. *et al.* (2012) 'An ethnobotanical survey of medicinal plants of Laos toward the discovery of bioactive compounds as potential candidates for pharmaceutical development', *Pharmaceutical Biology*, 50(1), pp. 42–60. doi: 10.3109/13880209.2011.619700.

Statistic Indonesia (2020) Total Population Projection Result by Province and
Gender (Thousand People), 2018-2020.https://www.bps.go.id/indicator/12/1886/1/jumlah-penduduk-hasil-proyeksi-
menurut-provinsi-dan-jenis-kelamin.html. Accessed on 29th October 2020

Sterling, E.J. *et al.* (2017) 'Assessing the evidence for stakeholder engagement in biodiversity conservation', *Biological Conservation*, 209, pp. 159–171. doi: 10.1016/j.biocon.2017.02.008.

Stevenson, C. (1998) *Reflections from the far east*. Complementary Therapies in Nursing and Midwifery 4(1): 1-2

Stocker, T.F. *et al.* (2013) *Technical Summary*. In: Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assess¬ment Report

of the Intergovernmental Panel on Climate Change [Stocker, T.F. *et al.* (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Suba, M.D.L. *et al.* (2019) 'Evaluation of cpDNA Barcodes in Selected Medicinal Plants of Mt. Arayat National Park, Pampanga, the Philippines', 11(2), pp. 130–135. doi: 10.5530/jyp.2019.11.29.

Sucher, N., Hennell, J. and Carles, M. (2012) *Plant DNA Fingerprinting and Barcoding*. Springer. doi: 10.1007/978-1-61779-609-8.

Suryadi, Y., Sugianto, D.N. and Hadiyanto (2018) 'Climate Change in Indonesia (Case Study: Medan, Palembang, Semarang)', *E3S Web of Conferences*, 31, pp. 3–8. doi: 10.1051/e3sconf/20183109017.

Taberlet, P. *et al.* (2007) 'Power and limitations of the chloroplast *trnL* (UAA) intron for plant DNA barcoding', *Nucleic Acids Research*, 35(3). doi: 10.1093/nar/gkl938.

Tambunan, P. (2008) 'Keanekaragaman genetik tumbuhan obat Indonesia: potensi yang terpendam (Genetic Diversity of Indonesia Medicinal Plant : Buried Treasure Potential)', *Jurnal Analisis Kebijakan Kehutanan*, 5(8), pp. 39–46.

Tangjitman, K. *et al.* (2015) 'Potential impact of climatic change on medicinal plants used in the Karen women's health care in Northern Thailand', *Songklanakarin Journal of Science and Technology*, 37(3), pp. 369–379.

Tas, N. *et al.* (2019) 'Conservation gap analysis of crop wild relatives in Turkey', *Plant Genetic Resources: Characterization and Utilization*, pp. 1–10. doi: 10.1017/S1479262118000564.

Techen, N. *et al.* (2014) 'DNA barcoding of medicinal plant material for identification', *Current Opinion in Biotechnology*, 25, pp. 103–110. doi: 10.1016/j.copbio.2013.09.010.

The National Development Planning Agency (2003) *Indonesian Biodiversity Strategy and Action Plan National document*. The National Development Planning Agency

The World Bank (2016) *The Cost of Fires in Indonesia Sustainable Landscapes Knowledge Note: 1.* https://doi.org/10.1080/09613218108550926

Thomas, P. and Farjon, A. (2011) Taxus wallichiana. The IUCN Red List ofThreatenedSpecies2011:e.T46171879A9730085.

https://dx.doi.org/10.2305/IUCN.UK.2011-2.RLTS.T46171879A9730085.en. Downloaded on 13th February 2020.

Thomson, A.M. *et al.* (2011) 'RCP4.5: A pathway for stabilization of radiative forcing by 2100', *Climatic Change*, 109(1), pp. 77–94. doi: 10.1007/s10584-011-0151-4.

Thuiller, W. *et al.* (2005) 'Climate change threats to plant diversity in Europe', *Proceedings of the National Academy of Sciences*, 102(23), pp. 8245–8250. doi: 10.1073/pnas.0409902102.

Till, B.J. *et al.* (2015) Tissue desiccation, DNA extraction and mutation discovery. Springer International Publishing, doi:10.1007/978-3-319-16259-1.

Timoshyna, A. *et al.* (2020) The Invisible Trade: Wild plants and you in the times of COVID-19 and the essential journey towards sustainability. TRAFFIC International, Cambridge, United Kingdom.

Contreras-Toledo, A.R. (2018) *A Crop Wild Relative Conservation Strategy for Mexico*. Thesis. University of Birmingham. The United Kingdom

Trenberth, K.E. (2018) 'Climate change caused by human activities is happening and it already has major consequences', *Journal of Energy and Natural Resources Law*, 36(4), pp. 463–481. doi: 10.1080/02646811.2018.1450895.

TrendEconomy (2021) 'Indonesia | Imports and Exports | World | Ginger, saffron, turmeric, thyme, bay leaves, curry, other spices | Value (US\$) and Value Growth, YoY (%) | 2010 – 2019'. Available from https://trendeconomy.com/data/h2/Indonesia/0910. Accessed 17th May 2021.

Tropicos.org (2020) *Missouri Botanical Garden, St. Louis, MO, USA*. Accessed 30th May 2020. Available from: http://www.tropicos.org"

UN (1992) Convention on Biological Diversity. 30 p

UNEP-WCMC (Comps.) (2014) *Checklist of CITES species*. CITES Secretariat, Geneva, Switzerland, and UNEP-WCMC, Cambridge, United Kingdom. Accessed on 4th December 2019.

UNEP-WCMC (Comps.) (2020) *Checklist of CITES species*. CITES Secretariat, Geneva, Switzerland, and UNEP-WCMC, Cambridge, United Kingdom. Accessed on 1st June 2020.

US Census Bureau (2020) International Data Base (demographic data). https://www.census.gov/popclock/world. Accessed on 29th October 2020

van Andel, T.R. *et al.* (2015) 'Prioritizing West African medicinal plants for conservation and sustainable extraction studies based on market surveys and species distribution models', *Biological Conservation*, 181, pp. 173–181. doi: 10.1016/j.biocon.2014.11.015.

van Vuuren, D.P. *et al.* (2011) 'The representative concentration pathways: An overview', *Climatic Change*, 109(1), pp. 5–31. doi: 10.1007/s10584-011-0148-z.

van Welzen, P.C., Parnell, J.A.N. and Slik, J.W.F. (2011) 'Wallace's Line and plant distributions: Two or three phytogeographical areas and where to group Java?', *Biological Journal of the Linnean Society*, 103(3), pp. 531–545. doi: 10.1111/j.1095-8312.2011.01647.x.

Vassou, S.L. *et al.* (2016) 'Creation of reference DNA barcode library and authentication of medicinal plant raw drugs used in Ayurvedic medicine', *BMC Complementary and Alternative Medicine*, 16(Suppl 1). doi: 10.1186/s12906-016-1086-0.

Vavilov, N.I. (1935) *Theoretical Basis for Plant Breeding, Vol. 1.* Moscow. Origin and Geography of Cultivated Plants. Pages 316-366 in The Phytogeographical Basis for Plant Breeding (D. Love, transl.). Cambridge Univ. Press, Cambridge, UK.

Veldkamp, J.F. (2011) *Georgius Everhardus Rumphius* (1627 – 1702), the blind seer of Ambon. Gardens' Bulletin Singapore 63(1 & 2): 1–15.

Vincent, H. *et al.* (2012) 'Genetic gap analysis of wild Hordeum taxa', *Plant Genetic Resources: Characterisation and Utilisation*, 10(3), pp. 242–253. doi: 10.1017/S1479262112000317.

Vincent, H. *et al.* (2019) 'Modeling of crop wild relative species identifies areas globally for *in situ* conservation', *Communications Biology*, 2(1), pp. 1–8. doi: 10.1038/s42003-019-0372-z.

Voek, R.A., (2004) 'Disturbance pharmacopoeias: medicine and myths from the humid tropics'. *Ann Assoc Am Geogr*: 94(4):868–888

Volis, S. (2019) 'Conservation-oriented restoration – a two for one method to restore both threatened species and their habitats', *Plant Diversity*, 41(2), pp. 50–58. doi: 10.1016/j.pld.2019.01.002.

Volis, S. and Blecher, M. (2010) 'Quasi *in situ*: A bridge between *ex situ* and *in situ* conservation of plants', *Biodiversity and Conservation*. doi: 10.1007/s10531-010-9849-2.

von Rintelen, K., Arida, E. and Häuser, C. (2017) 'A review of biodiversityrelated issues and challenges in megadiverse Indonesia and other Southeast Asian countries', *Research Ideas and Outcomes*, 3, p. e20860. doi: 10.3897/rio.3.e20860.

Walujo, E.B. (2008) 'Research Ethnobotany in Indonesia and the Future Perspectives', *Biodiversitas, Journal of Biological Diversity*, 9(1), pp. 59–63. doi: 10.13057/biodiv/d090114.

Watanabe, S. *et al.* (2011) 'MIROC-ESM: model description and basic results of CMIP5-20c3m experiments', *Geoscientific Model Development Discussions*, 4(2), pp. 1063–1128. doi: 10.5194/gmdd-4-1063-2011.

Watson, J.W. and Eyzaguirre, P.B. (2001) 'Home gardens and *in situ* conservation of plant genetic resources', in Watson, J. W. and Eyzaguirre, P.. (eds) *Proceedings of the Second International Home Gardens Workshop:* Contribution of home gardens to in situ conservation of plant genetic resources in farming systems, 17–19 July 2001, Witzenhausen, Federal Republic of Germany. International Plant Genetic Reso, p. 192.

Wei, B. *et al.* (2018) 'Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China', *Global Ecology and Conservation*, 16, p. e00477. doi: 10.1016/j.gecco.2018.e00477.

Wells, M. et al. (1999) Investing in biodiversity: a review of Indonesia's integrated conservation and development projects. doi: Export Date 19 June 2014.

WHO (2003) 'WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants', *World Health*, 99(1), pp. 67–73. doi: 10.1017/CBO9781107415324.004.

WHO (2009) 'The use of herbal medicines in primary health care. Report of the
regional meetings. Yangon, Myanmar 10 - 12 March 2009', WHO Drug
Information, (March). Available at:
http://apps.who.int/medicinedocs/documents/s22295en.pdf.

WHO-UICC (2003) Global Action Againts Cancer.

Wilkie, P. *et al.* (2013) 'The collection and storage of plant material for DNA extraction : The Teabag Method', *Gardens' Bulletin Singapore*, 65(2), pp. 231–234. doi: 10.1152/jn.00369.2013.

Willis, K.J. (Ed.) (2017) State of the World's Plants 2017. Report. Royal Botanic Gardens, Kew

Wilson, E.O. (1992) *The diversity of life*. Cambridge MA: Harvard Univ Pr. 424 p.

Wisz, M.S. *et al.* (2008) 'Effects of sample size on the performance of species distribution models', *Diversity and Distributions*, 14(5), pp. 763–773. doi: 10.1111/j.1472-4642.2008.00482.x.

World Conservation Monitoring Centre (1998a) *Alstonia scholaris*. The IUCN Red List of Threatened Species 1998: e.T32295A9688408. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T32295A9688408.en. Downl oaded on 13th February 2020.

World Conservation Monitoring Centre (1998b) *Horsfieldia iryaghedhi*. The IUCN Red List of Threatened Species 1998: e.T33525A9790189. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33525A9790189.en. Downl oaded on 13th February 2020.

World Conservation Monitoring Centre (1998c) *Lithocarpus indutus*. The IUCN Red List of Threatened Species 1998: e.T31990A9668174. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T31990A9668174.en. Downl oaded on 13th February 2020.

World Conservation Monitoring Centre (1998d) *Lithocarpus platycarpus*. The IUCN Red List of Threatened Species 1998: e.T31997A9669039. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T31997A9669039.en. Downl oaded on 13th February 2020.

World Conservation Monitoring Centre (1998e) *Livistona woodfordii*. The IUCN Red List of Threatened Species 1998: e.T38601A10136462. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T38601A10136462.en. Down loaded on 13th February 2020.

World Conservation Monitoring Centre (1998f) *Sindora javanica*. The IUCN Red List of Threatened Species 1998: e.T33259A9764939. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33259A9764939.en. Downl oaded on 13th February 2020. World Conservation Monitoring Centre (1998g) *Vitex parviflora*. The IUCN Red List of Threatened Species 1998: e.T33339A9777894. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33339A9777894.en. Downl oaded on 13th February 2020.

Xu, W.B. *et al.* (2019) 'Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China', *Proceedings of the National Academy of Sciences of the United States of America*, 116(52), pp. 26674–26681. doi: 10.1073/pnas.1911851116.

Yi, Y. *et al.* (2016) 'Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China', *Ecological Engineering*, 92, pp. 260–269. doi: 10.1016/j.ecoleng.2016.04.010.

Yu, J., Xue, J. H. and Zhou, S. L. (2011) 'New universal *matK* primers for DNA barcoding angiosperms', *Journal of Systematics and Evolution*, 49(3), pp. 176–181. doi: 10.1111/j.1759-6831.2011.00134.x.

Zikra, M., Suntoyo and Lukijanto (2015) 'Climate Change Impacts on Indonesian Coastal Areas', *Procedia Earth and Planetary Science*, 14, pp. 57–63. doi: 10.1016/j.proeps.2015.07.085.

Zobayed, S.M.A., Afreen, F. and Kozai, T. (2005) 'Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John's wort', Plant Physiology and Biochemistry, 43(10–11), pp. 977–984. doi: 10.1016/j.plaphy.2005.07.013.

Zuhud, E.A.M (1989) Strategi Pelestarian dan Pemanfaatan Keanekaragaman Hayati Tumbuhan Obat Indonesia (Conservation and Utilization Strategy on Biodiversity of Indonesian Medicinal Plants).

APPENDICES

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
1	Avicennia marina var. rumphiana	(Hallier f.) Bakh.	Acanth.	api-api (I)	K SI M P	Sh	Wo	fever	А	Р	6
2	Barleria prionitis	L.	Acanth.	jarong kembang landep (I)	J LSI SI	Sh	Ro Le	NA	P (N)	А	6
3	Hypoestes polythyrsa	Miq.	Acanth.	trembuku (I)	LSI	Не	St Ro Le	earache, cuts	А	А	6, 7, 5, 3
4	Pseuderanthemu m graciliflorum	(Nees) Ridl.	Acanth.	kemoja hutan (M), Blue Twilight (En)	J	Sh	Ro	diabetes, tonic	А	А	6,7
5	Pangium edule	Reinw.	Achari.	picung (I)	J LSI M P	Tr	WH	cough, body odor issue	P (N)	Р	6, 7 13, 5 2
6	Koordersiodendr on pinnatum	Merr.	Anacardi.	tabu hitam (I)	Р	Tr	Sa	Folk medicine	P (N)	А	6
7	Anaxagorea javanica	Blume	Annon.	Akar angin (I)	Sm J K Sl	Sh	Ro Se Ba	Folk medicine	P (N)	А	7,3
8	Goniothalamus giganteus	Hook.f. & Thomson	Annon.	penawar hitam (M)	Sm	Tr	Ba	back-ache	А	А	2
9	Goniothalamus tapis	Miq.	Annon.	unang-unang (I)	Sm	Sh	Ro Ba Le	scorpion stings antidote	А	Р	6,72
10	Pimpinella pruatjan	Molk.	Api.	purwaceng (I)	J	He	WH	genital disease	P (N)	А	6, 7, 5 2
11	Alstonia iwahigensis	Elmer	Apocyn.	pulai gunung (I)	K	Tr	Ro	cholera, childbirth care	А	А	2
12	Alstonia scholaris	(L.) R. Br.	Apocyn.	pulai (I)	Sm J K LSI Sl M P	Tr	Fl Le St	rheumatism, lumbago	P (N I)	Р	6, 7, 8, 5 2

Table Appendix 2.1. Indonesian priority medicinal plant species.

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
13	Alyxia halmaheirae	Miq.	Apocyn.	NA	SI M	Sh	WH	childbirth care	А	А	2
14	Alyxia reinwardtii	Blume	Apocyn.	pulasari (I)	Sm J K LSI	Cl	WH	NA	P (N)	Р	6,72
15	Alyxia rostrata	(Markgr.) Markgr.	Apocyn.	komunang (I)	Р	Cl	Ba	NA	А	А	2
16	Hunteria zeylanica	(Retz.) Gardner ex Thwaites	Apocyn.	gitan obat (I)	Sm	Sh	Ba Ro	NA	P (N)	A	6, 5, 7
17	Myriopteron extensum	(Wight & Arn.) K. Schum.	Apocyn.	wing-fruitvine (En)	J	Cl	Ro	diarrhoea, sore eyes	А	А	6
18	Rauvolfia serpentina	(L.) Benth. ex Kurz	Apocyn.	pule pandak (I)	J LSI	Sh	Ro St Le	asthma, colics	P (N)	Р	6, 7, 5, 8 1
19	Urceola laevigata	(Juss.) D.J.Middleto n & Livsh.	Apocyn.	gembor (I)	Sm J K LSI Sl	Sh	WH	aphrodisiac, cancer	P (N)	Р	6, 7, 5 2
20	Voacanga grandifolia	(Miq.) Rolfe	Apocyn.	kalak kambin (I)	J LSI SI M P	Sh	Le	cancer	P (N)	Р	2
21	Willughbeia tenuiflora	Dyer ex Hook.f.	Apocyn.	Jitah (I)	Sm	Li	Ba St	rheumatism, stomach-ache	P (N)	А	5
22	Alocasia cuprea	K.Koch	Ar.	Taro (I)	K	He	St Ro Le	Folk medicine	P (N I)	Р	6
23	Agathis borneensis	Warb.	Araucari.	bembueng (I)	Sm K	Tr	Wo	NA	P (N)	Р	6
24	Borassus flabellifer	L.	Arec.	Lontar (I)	J LSI SI	TrP	WH	aphrodisiac	P (N I)	Р	6, 7, 5
25	Caryota no	Becc.	Arec.	sarai raja (I), Giant fishtail palm (En) hartan (D)	K	TrP	Wo	diuretic, tonic	P (N I)	Р	6
26	Eugeissona utilis	Becc.	Arec.	Bornean sago palm (En)	K	TrP	Se Ro St	malarial	P (N)	Р	6,5

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
27	Iguanura wallichiana	(Mart.) Becc.	Arec.	mapau kalui (I)	Sm	TrP	Ro Le Se	NA	P (N)	Р	6, 5
28	Johannesteijsma nnia altifrons	(Rchb.f. & Zoll.) H.E.Moore	Arec.	belawan sang (I)	Sm K	Tr	Le	anaemia, stomach ache	P (N)	A	6, 5
29	Phoenix paludosa	Roxb.	Arec.	Korma rawa (I), Mangrove date palm (En)	Sm	TrP	Le Fr St	boils, sore eyes	P (N I)	Р	6,7
30	Pigafetta filaris	(Giseke) Becc.	Arec.	sagu laki-laki (I)	M P	Sh	Fr Wo	Folk medicine	P (N)	Р	6, 5
31	Saribus woodfordii	(Ridl.) Bacon & W.J.Baker	Arec.	Boda (PNG), Nggela Fountain Palm (En)	Р	TrP	St Wo	stomach issues	А	Р	6
32	Thottea tomentosa	(Blume) Ding Hou	Aristoloc hi.	singa depa (I)	J	Не	Le Rh St	cough, intestinal worms	P (N)	Р	2
33	Blumea arfakiana	Martelli	Aster.	Kwipo (PNG)	Р	Sh	Le Ro	NA	А	Р	1
34	Blumea arnakidophora	Mattf.	Aster.	kambali (PNG)	Р	Sh	LeRo	NA	А	А	1
35	Balanophora fungosa subsp. Indica	(Arn.) B.Hansen	Balanoph or.	perud puspa (I), fungus root (En)	Sm	Tr	WH	NA	А	А	6
36	Oroxylum indicum	(L.) Kurz	Bignoni.	pongporang (I)	Sm J LSI Sl	Tr	Ba Le	NA	P (N I)	Р	6, 7, 5 2
37	Mesua ferrea	L.	Calophyll	Penaga lilin (I)	LSI	Tr	Wo	snakebites, gonorrhoea	P (N)	Р	6, 7, 5
38	Gonocaryum gracile	Miq.	Cardiopte rid.	tobung-tobung (I)	Sm	Sh	Fr Le Ro	stop bleeding, rheumatic	А	Р	3
39	Cibotium barometz	(L.) J.Sm.	Ciboti.	Paku simpai (I)	Sm J P	Tr	Rh Ba	cholera	P (N)	Р	7 12
40	Garcinia amboinensis	Spreng.	Clusi.	Kayu asam besar (I)	М	Tr	Ro Le	diarrhoea, wounds	А	А	6, 7, 5

41Terminalia bellirica(Gaertn.) Roxb.Combret.jaha kebo (I)LSITrFrNAP42Rourea fulgensPlanch.Connar.Semilat (M)SmShLe RofeverA43Erycibe aeneaPrainConvolvu I.langsat hutan (M)SmLiRoheadache, feverA44Trichosanthes ovigeraBlumeCucurbit.Japanese Snake Gourd (En)JClFr Tucolic, asthmaA45Cycas rumphiiMiq.Cycad.Tandiang (I)J K LSI Sl M PTrPSe Ba Lecough, tuberculosisP46Fimbristylis falcata(Vahl) KunthCyper.malasibuias (P)PHeRhinsect bites, cancer a substituteP47Dicksonia blumei(Kunze) MooreDicksoni.paku kidang (I)Sm J LSI SlShLefor Curcuma longaP	P(N) P A A A A A P	7, 1 6, 1 3	, 5 , 7
42Rourea fulgensPlanch.Connar.Semilat (M)SmShLe RofeverA43Erycibe aeneaPrainConvolvu 1.langsat hutan (M)SmLiRosore muscles, headache, feverA44Trichosanthes ovigeraBlumeCucurbit.areuy tiwuk (I), Japanese Snake Gourd (En)JClFr Tucolic, asthmaA45Cycas rumphiiMiq.Cycad.Tandiang (I)J K LSI Sl M PTrPSe Ba Lecough, tuberculosisP46Fimbristylis falcata(Vahl) KunthCyper.malasibuias (P)PHeRhinsect bites, cancer a substitute for Curcuma longaP47Dicksonia blumei(Kunze) MooreDicksoni.paku kidang (I)Sm J LSI SlShLefor Curcuma longaP	A A A A A P	6, 3	, 7
43Erycibe aeneaPrainConvolvu l.langsat hutan (M)SmLiRosore muscles, headache, feverA44Trichosanthes ovigeraBlumeCucurbit.areuy tiwuk (I), Japanese Snake Gourd (En)JClFr Tucolic, asthmaA45Cycas rumphiiMiq.Cycad.Tandiang (I)J K LSI Sl M PTrPSe Ba Lecough, tuberculosisP46Fimbristylis 	A A A P	3	
44Trichosanthes ovigeraBlumeCucurbit.areuy tiwuk (I), Japanese Snake Gourd (En)ClFr Tucolic, asthmaA45Cycas rumphiiMiq.Cycad.Tandiang (I)J K LSI Sl 	A P		
45Cycas rumphiiMiq.Cycad.Tandiang (I)J K LSI SI< M PTrPSe Ba Lecough, tuberculosisP46Fimbristylis falcata(Vahl) KunthCyper.malasibuias (P)PHeRhinsect bites, cancer a substituteP47Dicksonia blumei(Kunze) MooreDicksoni.paku kidang (I)Sm J LSI SIShLefor Curcuma longaP		6, ⁷ 1	, 7, 5
46Fimbristylis falcata(Vahl) KunthCyper.malasibuias (P)PHeRhinsect bites, cancer a substituteP47Dicksonia blumei(Kunze) 	P(NI) P	6, '	, 7, 5
47 Dicksonia blumei (Kunze) Moore Dicksoni. paku kidang (I) Sm J LSI Sl Sh Le for Curcuma P longa	P(I) A	3	
	P(N) P	7	
48DioscoreaWall. exlaurifoliaHook.f.Dioscore.Wild yam (En)KClTufever, colicA	A A	6, '	, 7
49Dioscorea orbiculataHook.f.Dioscore.Wild Yam (En)SmClTusores, skin issuesA	A A	6, ′	, 7
50Anisoptera costataKorth.Dipteroca rp.Entenam (I)Sm J KTrWocolds, burnsP	P (N) P	6, 2	, 5
51 Anisoptera marginata Korth. Dipteroca rp. Enthenam (I) Sm K Tr Wo emmenagogu e	P(N) P	6, 2	, 5
52 Anisoptera megistocarpa Slooten Dipteroca rp. Dipteroca beurmen (I) Sm Tr Wo sores on the legs A	A A	6, ′	, 7
53 Dipterocarpus Korth. Dipteroca rp. Sm Tr Wo NA A	A P	6, 2	, 5
54 Dipterocarpus gracilis Blume Dipteroca Keruwing bulu rp. (I) Sm J K Tr Wo ulcerated wounds P	P (N) A	6, 1	, 5
55 Dipterocarpus kunstleri King Dipteroca Keruwing bunga Sm K Tr Wo scabies, fever A rp. (I)		6,	5

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
56	Dipterocarpus retusus	Blume	Dipteroca rp.	Java Palahlar (I)	Sm J LSI	Tr	Wo	boils and pimples, infected ears	P (N)	Р	6, 5
57	Hopea celebica	Burck	Dipteroca	Damar laut (I)		Tr	Wo	NA	P (N)	А	6, 5
58	Hopea mengarawan	Miq.	Dipteroca rp.	damar mata kucing (I)	Sm K	Tr	Wo	dropsy	P (N)	А	5
59	Hopea sangal	Korth.	Dipteroca	Kedemut (I)	Sm J K LSI	Tr	Wo	infected nails,	P (N)	Р	6, 5
60	Parashorea lucida	Kurz	Dipteroca rp.	damar tyirik ayam (I)	Sm K	Tr	Wo	NA	P (N)	Р	6, 5
61	Shorea bracteolata	Dyer	Dipteroca rp.	bunyau (I)	Sm K	Tr	Wo	NA	P (N)	No infor mati on	5
62	Shorea glauca	King	Dipteroca rp.	Simanto (I)	Sm	Tr	Wo	fever, sores	А	А	6, 5
63	Shorea laevis	Ridl.	Dipteroca rp.	Kumus (I)	Sm K	Tr	Wo	stop bleeding	А	Р	6, 5
64	Shorea lepidota	Blume	Dipteroca rp.	Melebekan (I)	Sm	Tr	Wo	swellings	P (N)	А	6, 5
65	Shorea macrophylla	(de Vriese) P.S.Ashton	Dipteroca rp.	Tengkawang telor (I)	K	Tr	Wo Fr	NA	А	А	6, 5
66	Shorea palembanica	Miq.	Dipteroca rp.	tengkawang majau (I)	Sm K	Tr	Wo Fr	NA	P (N)	А	6
67	Shorea selanica	(Lam.) Blume	Dipteroca rp.	Kayu bapa (I)	М	Tr	Wo	after childbirth care	P (N)	А	6, 5
68	Shorea seminis	Slooten	Dipteroca rp.	tengkawang ayer (I)	K	Tr	Fr	NA	P (N)	Р	6
69	Shorea singkawang	Burck	Dipteroca rp.	Kalimantan Sengkawang (I)	Sm	Tr	Wo	NA	P (N)	Р	6, 5
70	Shorea splendida	(de Vriese) P.S.Ashton	Dipteroca rp.	Tengkawang pinang (I)	К	Tr	Wo Fr	childbirth	P (N)	А	6,5

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
71	Shorea stenoptera	Burck	Dipteroca rp.	Tengkawang hungkul (I)	K	Tr	Fr Wo	flatulence, galactagogue	P (N)	А	6, 5
72	Shorea sumatrana	(Slooten) Desch	Dipteroca rp.	Kedawang (I)	Sm J	Tr	Wo Fr	skin itchy	P (N)	А	6, 7, 5
73	Shorea teysmanniana	Dyer ex Brandis	Dipteroca rp.	Sasak (I)	Sm	Tr	Wo	childbirth	P (N)	А	6, 5
74	Vatica pauciflora	Blume	Dipteroca rp.	resak padang (I)	Sm	Tr	Wo Ba	NA	P (N)	А	6
75	Vatica teysmanniana	Burck	Dipteroca rp.	resak paya (I)	Sm	Tr	Wo	tonic, aphrodisiac	А	А	5
76	Homalanthus longistylus	K.Schum. & Lauterb.	Euphorbi.	merom (PNG)	Р	Tr	Sa Ba Sh	NA	А	А	3
77	Macaranga griffithiana	Müll.Arg.	Euphorbi.	mahang bulan (I), Griffith's Mahang (En)	Sm	Tr	Ro	febrifuge	А	Р	3
78	Cajanus goensis	Dalzell	Fab.	NA	J	Sh	Le Ro Se	wounds, high blood pressure	А	A	6
79	Dalbergia ferruginea	Harms	Fab.	akar langsa (I)	K SI M P	Sh	Wo	swellings	P (N)	А	3
80	Dalbergia junghuhnii	Benth.	Fab.	Akar urat-urat (M)	Sm J K Sl M	Sh	Le	NA	P (N)	А	3
81	Dalbergia latifolia	Roxb.	Fab.	Sana kling (I), Bombay blackwood (En)	J K LSI SI	Tr	Wo	NA	P (N I)	Р	6, 7, 5
82	Dalbergia parviflora	Roxb.	Fab.	Bulangan (I)	Sm K	Li	Wo	leucorrhoea, aphrodisiac	P (N)	А	6, 7, 5
83	Dalbergia pinnata	(Lour.)Prain	Fab.	areuy ki loma (I)	Sm J K LSI Sl M	Sh	Le Sts	dysentery and ringworm	А	А	6, 7, 5, 3
84	Derris trifoliata	Lour.	Fab.	areuy ki tonggeret (I)	Sm J K LSI Sl M P	Sh	Ro St Le	fever, head lice	А	А	61
85	Entada spiralis	Ridl.	Fab.	Akar sintok (I)	Sm	Sh	Se Ba	NA	А	Р	7

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
86	Euchresta horsfieldii	(Lesch.)Benn	Fab.	palakiya (I)	Sm J LSI	Sh	Se	dysentery	P (N)	Р	6, 7, 5, 3
87	Intsia palembanica	Miq.	Fab.	Merbau (I)	Sm K LSI Sl M P	Tr	Se Ba Le	NA	P (N)	А	6,5
88	Koompassia malaccensis	Benth.	Fab.	Tualang ayam (I)	K	Tr	Wo	childbirth, rheumatism	P (N)	Р	6, 5
89	Parkia intermedia	Hassk.	Fab.	petai (I)	Sm J K	Tr	Se	those of G. Macrophyllus	P (N)	А	6, 7, 5
90	Parkia timoriana	(DC.)Merr.	Fab.	Kedawong (I)	Sm J K LSI Sl M P	Tr	Se Le Ba	diarrhoea, mosquito repellent	P (N I)	Р	6
91	Phyllodium elegans	(Lour.)Desv.	Fab.	NA	J	Sh	Ro Fl	headache, bruises	P (I)	А	2
92	Sindora javanica	(Koord. & Valeton)Bac ker	Fab.	Uku aka, Saprantu (I)	J	Tr	Wo	NA	A	А	6, 5
93	Castanopsis argentea	(Blume) A.DC.	Fag.	saninten (I)	Sm J K	Tr	Wo Ba Fr	asthma	P (N)	А	6, 5
94	Castanopsis inermis	(Lindl.) Benth. & Hook.f.	Fag.	berangan (I)	Sm	Tr	Se Ba	dropsy, dysentery	A	А	6, 7, 5
95	Lithocarpus indutus	(Blume) Rehder	Fag.	ataruwa (I)	J SI	Tr	Wo Ba	snakebites, scorpions sting	P (N)	А	6, 5
96	Lithocarpus platycarpus	(Blume) Rehder	Fag.	Pasang (I)	J	Tr	NA	NA	А	А	6, 5
97	Gentiana quadrifaria	Blume	Gentian.	jukut cengcang (I)	J	He	Ro	stimulant, tonic	А	А	6
98	Utania racemosa	(Jack) Sugumaran	Gentian.	kopi hutan (I); False coffe tree (En)	Sm	Sh	Le Ba Ro Fl	NA	А	Р	6,7

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
99	Gnetum tenuifolium	Ridl.	Gnet.	Dagum (I)	Sm	Li	Se Ro	NA	А	А	6, 7
100	Gunnera macrophylla	Blume	Gunner.	hariyang gede (I)	Sm J Sl P	Не	Ro	NA	P (I)	Р	6, 7, 5 3
101	Exbucklandia populnea	(R.Br. ex Griff.) R.W.Br.	Hamameli d.	hapas-hapas (I)	Sm	Tr	Wo Ba Le	intestinal issues, tonics	А	A	6
102	Galbulimima belgraveana	(F.Muell.) Sprague	Himantan dr.	White magnolia (En)	Р	Tr	Ba Le	sores	А	Р	3
103	Ixonanthes icosandra	Jack	Ixonanth.	Kayu bulus (I)	Sm	Tr	Ba	cholera, menstruation disorders	P (N)	А	6
104	Scutellaria javanica	Jungh.	Lami.	kapunten (I)	Sm J LSI Sl M P	He	NA	dysentery, pneumonia	P (N)	А	1
105	Vitex parviflora	A.Juss.	Lami.	Kayu kula (I)	LSI SI M	Tr	Le Ba	induce labour	P (I)	Р	6, 7, 5
106	Beilschmiedia madang	Blume	Laur.	huru (I)	Sm J K	Tr	Wo	NA	А	Р	6, 3
107	Cinnamomum culilaban	(L.) J. Presl	Laur.	kulitlawang (I)	М	Tr	Ba	NA	P (N)	А	6 14
108	Cinnamomum sintoc	Blume	Laur.	Huru Sintok (I)	Sm J K LSI	Tr	Ba	NA	P (N)	А	6,7
109	Cryptocarya massoy	(Oken) Kosterm.	Laur.	ai kor (I)	Р	Tr	Ba	boils	P (N)	А	6,7
110	Eusideroxylon zwageri	Teijsm. & Binn.	Laur.	ulin (I)	Sm K	Tr	Fr	intestinal worms	P (N)	Р	6,7
111	Strychnos ignatii	P.J. Bergius	Logani.	pokru (I)	Sm J K	Li	Ro	women contraceptive	P (N)	Р	6,4
112	Strychnos lucida	R. Br.	Logani.	Bidaralaut (I), Slangen hout (En)	J LSI	Sh	WH	Folk medicine	P (N I)	Р	6, 7, 5
113	Woodfordia fruticosa	(L.) Kurz	Lythr.	sidawayah (I).	J LSI	Sh	Fl Fr Se	Folk medicine	P (I)	Р	5 14
114	Grewia salutaris	Span.	Malv.	Nila (I)	LSI	Sh	Wo Ba	NA	А	А	6, 7, 5

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
115	Helicteres isora	L.	Malv.	Puteran (I)	М	Sh	Ba St Fr Le	diarrhoea, gonorrhoea	P (N)	Р	6, 7, 5 14
116	Hibiscus celebicus	Koord.	Malv.	Kelembauan in talun (I)	S1	Sh	Ba Le Ro	diarrhoea, gonorrhoea	А	А	6,5
117	Halopegia blumei	(Körn.) K.Schum.	Marant.	Daun birarut (I)	J	He	Tu Le	dysentery, coughs	А	Р	6, 5, 7
118	Dissochaeta punctulata	Hook.f. ex Triana	Melastom at.	akar meroyan busuk (M)	Sm	Li	Ro	NA	А	А	3
119	Medinilla crispata	Blume	Melastom at.	Tali morea (I)	М	Sh	Ro	Folk medicine	А	А	6, 7, 5
120	Medinilla radicans	Blume	Melastom at.	areuy manjel (I)	J	Sh	Ro	wounds	P (N)	А	6, 7, 5, 3
121	Oxyspora bullata	J.F.Maxwell	Melastom at.	Greater Allomorphia (En)	Sm	Sh	Le Ro	constipation	А	А	3
122	Oxyspora exigua	J.F.Maxwell	Melastom at.	keduduk hutan (I)	Sm	Sh	Le Ro	NA	А	А	6,7
123	Phyllagathis rotundifolia	(Jack) Blume	Melastom at.	tapak gajah (M)	Sm	He	Ro Le	NA	P (N)	А	2
124	Heynea trijuga	Roxb. ex Sims	Meli.	mamak (I)	K	Tr	Le Ba Le Ro	NA	P (N)	А	6, 3
125	Toona sureni	(Blume) Merr.	Meli.	suren (I)	LSI P	Tr	Ba Le	diarrhoea,rheu matism	P (N)	А	5
126	Stephania japonica	(Thunb.) Miers	Menisper m.	areuy geureung (I)	LSI	He	Ro Le	fever	P(NI)	Р	1
127	Tinospora glabra	(Burm.f.) Merr.	Menisper m.	pancasona (I)	LSI	Li	Le Ba	NA	P (N)	Р	1
128	Ficus chartacea	(Wall. ex Kurz) Wall. ex King	Mor.	Speckle-leafed Fig (En)	K	Sh	Ba	wounds	А	Р	6
129	Ficus deltoidea	Jack	Mor.	tabat barito (I)	Sm J K M	Sh	NA	wounds	P (N I)	А	6,71
130	Myrica javanica	Blume	Myric.	Ki tete (I)	J	Sh	Ba Fr	skin diseases	А	А	6, 7, 5

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
131	Syzygium conglomeratum	(Duthie) I.M.Turner	Myrt.	Jheling serai tatang (I)	Sm	Tr	Wo	NA	А	А	6, 5
132	Syzygium rumphii	(Merr.) Govaerts	Myrt.	Kayu merah (I)	М	Tr	Wo Ba	cough	А	А	6,5
133	Nepenthes ampullacea	Jack	Nepenth.	kantong teko (I)		Cl	St	rheumatism	P (N)	А	6
134	Nepenthes ampullaria	Jack	Nepenth.	Ketakong (I)	Sm K M P	Cl	St Ro	infected eyes, headache	P (N)	Р	6,7
135	Nepenthes boschiana	Korth.	Nepenth.	NA	К	Cl	NA	diarrhoea, fevers	А	Р	6,7
136	Nepenthes gracilis	Korth.	Nepenth.	Periuk monyet (I)	Sm K Sl	Cl	NA	tuberculosis, cough	P (N)	Р	6,7
137	Nepenthes mirabilis	(Lour.) Druce	Nepenth.	Kantong semar rawa umum (I), common swamp pitcher-plant (En)	Sm J K LSI Sl M P	Cl	NA	NA	P (N)	Р	6
138	Nepenthes rafflesiana	Jack	Nepenth.	Katakong menjangan (I)	Sm K	Cl	St	stomach-ache, eye inflammation	P (N)	А	6
139	Nepenthes reinwardtiana	Miq.	Nepenth.	Ketakong babi (I)	Sm K	Cl	St	NA	P (N)	Р	6, 7
140	Acriopsis liliifolia var. liliifolia		Orchid.	ki plengpeng (I)	Sm J K LSI Sl M P	Не	Ro Le	NA	P (N)	А	6, 7, 5, 3
141	Apostasia nuda	R.Br.	Orchid.	si sarsar bulung (I)	Sm J K	He	Ro Fr	NA	P (N)	Р	6, 7, 5, 3
142	Arundina graminifolia	(D.Don) Hochr.	Orchid.	anggrek bambu (I)	Sm J K LSI Sl M P	He	NA	NA	P (N)	Р	6,7
143	Calanthe triplicata	(Willemet) Ames	Orchid.	anggrek natal (I)	Sm J K LSI Sl M P	He	NA	skin problems	P (N)	А	6

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
144	Cleisostoma scortechinii	(Hook.f.) Garay	Orchid.	Scortechin's Cleisostoma (En)	Sm J K LSI	Не	NA	childbirth, coughs	P (N)	А	6
145	Corymborkis veratrifolia	(Reinw.) Blume	Orchid.	white cinnamon orchid (En)	Sm J K LSI Sl M P	He	Le Ro	hepatitis, pneumonia	P (N)	Р	3
146	Cymbidium aloifolium	(L.) Sw.	Orchid.	Cymbidium Daun Gaharu (I), The Aloe- Leafed Cymbidium (En)	Sm J	Не	Le	tonic	P (N I)	Р	3
147	Dendrobium crumenatum	Sw.	Orchid.	anggrak merpati (I)	Sm J K LSI Sl M P	Не	Le Fr	boils	P (N I)	Р	6, 7, 5 2
148	Dendrobium faciferum	J.J.Sm.	Orchid.	anggrek (I)	LSI SI M	Не	St	diuretic, rheumatism	P (N)	А	6, 5
149	Dendrobium hymenanthum	Rchb.f.	Orchid.	The Membranous Dendrobium (En)	К	Не	NA	snake bites, rheumatism	A	А	6
150	Dendrobium purpureum	Roxb.	Orchid.	anggrek kesumba (I)	SI M P	He	Le	skin issues	P (N I)	А	52
151	Dendrobium salaccense	(Blume) Lindl.	Orchid.	sakat harum (I)	Sm J K LSI	He	Le	childbirth, sores	P (N)	Р	6, 7, 5
152	Dendrobium utile	J.J.Sm.	Orchid.	anggrek serat (I)	SI M	He	St	fever, childbirth	P (N)	А	6, 5
153	Erythrorchis altissima	(Blume) Blume	Orchid.	Akar tulang (I)	Sm J K	Не	NA	NA	P (N)	А	6
154	Grammatophyllu m scriptum	(L.) Blume	Orchid.	anggrek boki (I)	M P	He	Se	poison antidote, cough	P (N)	А	6, 7, 5, 3
155	Grammatophyllu m speciosum	Blume	Orchid.	anggrek tebu (I), Tiger orchid (En)	Sm J K Sl	He	St	sedative	P (N)	Р	6, 3

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
156	Habenaria multipartita	Blume ex Kraenzl.	Orchid.	uwi-uwi (I)	J LSI	He	Tu	antiseptic, disinfectant	А	А	6, 7, 5
157	Habenaria rumphii	(Brongn.) Lindl.	Orchid.	stiff rein orchid (En) pokok tambak	Sm J K Sl M P	He	Tu	NA	А	А	6, 5
158	Hetaeria obliqua	Blume	Orchid.	hutan (M), The Oblique Hetaeria (En)	Sm K	He	Le	liver issue, diabetes	P (N)	A	3
159	Liparis condylobulbon	Rchb.f.	Orchid.	tapered sphinx orchid (En)	Sm J K LSI Sl M P	He	NA	colic, scabies	P (N)	А	6, 7, 5, 3
160	Liparis viridiflora	(Blume) Lindl.	Orchid.	Green-Flowered Liparis (En)	Sm J K LSI Sl M P	Не	NA	after childbirth, headache	P (N)	А	6
161	Nervilia concolor	(Blume) Schltr.	Orchid.	selembar sabulan (I), tall shield orchid (En)	Sm J K LSI Sl M P	Не	WH	NA	P (N)	Р	3
162	Nervilia plicata	(Andrews) Schltr.	Orchid.	selembar satahun (I), The Folded Nervilia (En)	Sm J K P	Не	WH	malaria, fever	P (N)	Р	3
163	Oberonia lycopodioides	(J.Koenig) Ormerod	Orchid.	sakat lidah buaya (M), The Lycopodium- Like Oberonia (En)	Sm J K Sl M	Не	Le	tooth ache	P (N)	А	3
164	Oberonia mucronata	(D.Don) Ormerod & Seidenf.	Orchid.	The Mucronate Oberonia (En)	Sm J K Sl P	He	NA	liver issues	A	A	3
165	Renanthera moluccana	Blume	Orchid.	anggrek merah (I)	SI M P	He	Le	NA	А	А	6, 7, 5, 4
No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
-----	---------------------------	--	---------	--	----------------------	----------------	----------------	-------------------------------	---------	--------------	---------------
166	Robiquetia spathulata	(Blume) J.J.Sm.	Orchid.	The Sheath- Covered Spathe Robiquetia (En)	Sm J K Sl M	Не	NA	antiseptic, disinfectant	P (N)	Р	6
167	Spathoglottis affinis	de Vriese	Orchid.	Spathoglottis (En)	J K	He	NA	NA	P (N)	А	6
168	Spathoglottis plicata	Blume	Orchid.	Philippine Ground Orchid (En)	Sm J K LSI Sl M P	Не	Le	cramped, headache	P (N)	Р	6, 5
169	Strongyleria pannea	(Lindl.) Schuit., Y.P.Ng & H.A.Pederse n	Orchid.	kura kubong (M), The Flag Eria (En)	Sm K	Не	NA	substitute for Piper betle	P (N)	A	3
170	Tropidia curculigoides	Lindl.	Orchid.	serugat (I), The Curculigo-Like Tropida (En)	Sm J K LSI Sl P	Не	WH	boils	P (N)	А	3
171	Vanda miniata	(Lindl.) Gardiner, Lauren Maria	Orchid.	The Rust Red Ascocentrum (En)	Sm J	Не	NA	eyesore, fever	A	Р	6
172	Vanilla abundiflora	J.J.Sm.	Orchid.	vanila (I), Indonesian vanilla (En)	K	He	Fr	liver issue, toothache	P (N)	A	6, 7, 5, 4
173	Vanilla griffithii	Rchb.f.	Orchid.	akar penubal (I), Griffith's Vanilla (En)	Sm K	Не	Fr Fl Sa	wounds, snakebite	P (N)	А	6, 7, 5
174	Benstonea atrocarpa	(Griff.) Callm. & Buerki	Pandan.	pandan mengkuang (I)	Sm	Sh	Le St Ro	childbirth care, tonic	А	А	6, 5
175	Pandanus lais	Kurz	Pandan.	pandan kowang (I)	Sm	Tr	Se Le Ba	skin issues, insects bites	A	А	6

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
176	Pandanus robinsonii	Merr.	Pandan.	pandan pudak (I)	М	Sh	Le St Ro Ba	after childbirth care	А	А	6, 5
177	Breynia pubescens	Merr.	Phyllanth.	Gagilamo (I)	М	Sh	Ba	care, aphrodisiac	А	А	6, 7, 5
178	Phyllanthus submollis	K.Schum. & Lauterb.	Phyllanth.	hin (PNG)	Р	Tr	Ba	high blood pressure, back pain	А	А	3
179	Pinus merkusii	Jungh. & de Vriese	Pin.	Sala (I)	Sm	Tr	Wo Ba	NA	P (N I)	Р	6, 7, 5
180	Piper attenuatum	BuchHam. ex Miq.	Piper.	Sirih dingin (I)	J	Cl	St Ba Le	wounds	А	Р	6, 7, 5
181	Piper caducibracteum	C.DC.	Piper.	Sirih kandat (I)	М	Sh	Le Ba	NA	А	А	6, 7, 5
182	Pontederia plantaginea	Roxb.	Pontederi.	eceng padi (I)	J	Не	Ro Se	stomach-ache	A	А	6
183	Ardisia odontophylla	Wall. ex A.DC.	Primul.	Pasal (I)	J	Sh	Ro Le	antiseptic, aromatherapy	А	Р	6, 7, 5, 3
184	Rafflesia arnoldi	R.Br.	Rafflesi.	padma raksasa (I)	Sm K	Ра	Fl	NA	P (N)	А	6
185	Rafflesia horsfieldii	R.Br.	Rafflesi.	padma (I)	J	Pa	Fl	stomach ache	P (N)	А	6, 7, 5, 3
186	Catunaregam spinosa	(Retz.) Lam.	Rubi.	the mountain pomegranate (En)	J	Sh	Fr Ba Ro	NA	P (N)	А	6
187	Mussaenda glabra	Vahl	Rubi.	kingkilaban (I)	J	Sh	Sa Le Ro Fl	NA	А	А	6, 3
188	Oldenlandia recurva	(Korth.) Miq.	Rubi.	Akar kemenyan hantu (I)	K	Не	Ro St Le	NA	А	А	6, 5
189	Pavetta subvelutina	Miq.	Rubi.	Jarum-jarum (I), White pavetta (En)	J	Sh	Le Ro St Ba Fr	NA	А	А	6

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
190	Prismatomeris tetrandra subsp. malavana	(Ridl.) J.T.Johanss.	Rubi.	mentulang (I)	K	Sh	Le Ro St	NA	А	A	6, 7
191	Psychotria sylvatica	Blume	Rubi.	halan (I)	J	Sh	Le Ba St Ro	NA	А	А	6
192	Rennellia morindiformis	(Korth.) Ridl.	Rubi.	akar bumi (M)	Sm	Sh	Ba	NA	А	А	3
193	Uncaria homomalla	Miq.	Rubi.	NA	Sm	Li	St Le Ba	NA	А	Р	2
194	Lunasia amara	Blanco	Rut.	kemaitan (I)	LSI	Sh	Ro Fr St Sa	NA	P (N)	Р	6,72
195	Melicope denhamii	(Seem.) T.G.Hartley	Rut.	Kisampang (I)	Р	Sh	Le Ba	NA	P (N)	А	6
196	Micromelum minutum	Wight & Arn.	Rut.	sesi (I)	LSI	Tr	Ro Sh Le	NA	P (N)	Р	6,72
197	Murraya paniculata	(L.) Jack	Rut.	Kemuning (I); Mock orang (En)	Sm LSI P	Sh	Le	NA	P (N)	Р	6, 7, 8, 5 14
198	Zanthoxylum avicennae	(Lam.) DC.	Rut.	Adas kastela (I)	LSI	Sh	Le Fr Se St Ba	NA	А	А	6,5
199	Zanthoxylum nitidum	(Roxb.) DC.	Rut.	Areuy beulit gede (I)	Р	Sh	Ba Fr Le Ro	NA	А	А	6, 7, 5
200	Santalum album	L.	Santal.	Cendana (I), Sandalwood (En)	J LSI	Tr	HeW Fr Le	diseases and skin problems	P (N I)	Р	6, 7, 5
201	Dodonaea viscosa subsp. angustifolia	(L.f.) J.G.West	Sapind.	cantigi (I)	LSI	Sh	Le Ba Fr	cholera, colic, cough	P (I)	А	6
202	Palaquium hispidum	H.J.Lam	Sapot.	Mayang serikit (En)	Sm K	Tr	Wo	NA	А	А	6, 5
203	Kadsura scandens	(Blume) Blume	Schisandr	hunyur buut (I)	Sm J LSI	Li	Rh Le	painful joints	P (N)	А	6,7

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
204	Eurycoma apiculata	A.W.Benn.	Simaroub.	pasak bumi (I)	Sm	Tr	Ro	dysentery, stomach-ache	А	Р	1
205	Eurycoma longifolia	Jack	Simaroub.	Pasak bumi (I)	Sm K	Sh	Ro Ba Le	ague, bruises	P (N)	Р	6, 7, 5 1
206	Soulamea amara	Lam.	Simaroub.	buwa hati (I)	Р	Sh	Ro Fr Le	aphrodisiac	P (N)	Р	6, 7, 5 2
207	Smilax zeylanica	L.	Smilac.	kayu cina hutan (I)	J	Li	Ro	fever, snake bites	P (N)	Р	1
208	Gomphandra quadrifida	(Blume) Sleumer	Stemonur.	kayu barik- barik(I)	Sm	Sh	Ro Le	diarrhoea, gonorrhoea	А	Р	3
209	Symplocos cochinchinensis	(Lour.) S. Moore	Symploc.	kayu dyurang (I)	J LSI P	Sh	Le Ba	aphrodisiac, diuretic	P (N)	А	6
210	Symplocos odoratissima	Choisy ex Zoll.	Symploc.	ki seriawan (I)	Sm J LSI	Sh	WH	NA	P (N)	Р	6, 7, 5, 4
211	Taxus wallichiana	Zucc.	Tax.	tampinur batu (I)	Sm Sl	Tr	Se St Ba Le	NA	P (N)	Р	3
212	Aquilaria cumingiana	(Decne.) Ridl.	Thymelae	giba kolano (I)	КМ	Sh	Ba Ro	diabetes, cough	А	А	3
213	Aquilaria hirta	Ridl.	Thymelae	karas (I)	Sm	Tr	Ba	Folk medicine	P (N)	А	7
214	Aquilaria malaccensis	Lam.	Thymelae	Alim (I), Eagle wood tree (En)	Sm K	Tr	Ba	cough, snakebite	P (N)	Р	6, 5
215	Gonystylus bancanus	(Miq.) Kurz	Thymelae	ramin (I)	Sm K	Tr	NA	nursing mothers	P (N)	А	7,5
216	Gonystylus macrophyllus	(Miq.) Airy Shaw	Thymelae	pinang bai (I)	Sm J K Sl M P	Tr	Wo	tonic, diarrhoea	P (N)	А	6
217	Maoutia diversifolia	(Miq.) Wedd.	Urtic.	beubeunteuran (I)	J	Sh	Ba	NA	А	А	85ei41 i, 7, 5
218	Nothocnide repanda	(Blume) Blume	Urtic.	leuksa (I)	LSI	Li	Le St Ba	diarrhoea, malaria	P (N)	Р	7,3
219	Pipturus asper	Wedd.	Urtic.	dalunot (P)	М	Sh	Ba	febrifuge, headache	А	Р	2

No.	Scientific name	Author	Family	Auxilary name	Dist.	Plant habit	Plant part*	Uses	Ex situ	DNA Barc.	Ref.
220	Poikilospermum amboinense	Zipp. & Miq.	Urtic.	tali ayer (M)	М	Li	Ro St Le Ba	tonic, dysentery	А	А	6
221	Ampelocissus arachnoidea	(Hausskn.) Planch.	Vit.	oyod air (I)	J	Li	Ro Fr	tonic, fever	А	А	6, 7, 3
222	Ampelocissus cinnamomea	(Wall. ex M.A.Lawson) Planch.	Vit.	Bulung kerta (I)	Sm	Li	Le Ro	NA	A	А	6, 7
223	Ampelocissus polythyrsa	(Miq.) Gagnep.	Vit.	akar lemar (I)	Sm	Li	Ro	NA	А	А	6
224	Leea aequata	L.	Vit.	ginggiyang (I)	LSI	Sh	Ro Tu St Sh	fever, hair care	P (N)	А	6, 7, 5 2
225	Amomum sumatranum	(Valeton) Skornick. & Hlavatá	Zingiber.	Puwar tenangan (I)	Sm	Не	Sa	NA	А	А	6, 7, 5 14
226	Curcuma aeruginosa	Roxb.	Zingiber.	temu hitam (I)	J	He	Rh	NA	P (N)	Р	6, 7 10, 5 1
227	Curcuma aurantiaca	Zijp	Zingiber.	koneng kalamasu (I)	J	He	Rh Fl	jaundice, dropsy	А	Р	5, 6, 7 1
228	Curcuma colorata	Valeton	Zingiber.	temu hitam (I)	J	He	Le Rh	diarrhoea, malaria	P (N)	Р	6, 7, 5
229	Curcuma euchroma	Valeton	Zingiber.	kunir kebo (I)	J	He	Rh	skin diseases	А	А	6, 7, 5 1
230	Curcuma petiolata	Roxb.	Zingiber.	temu badur (I)	J	He	Rh	diuretic, rheumatism	А	Р	6, 7, 5 1
231	Kaempferia angustifolia	Roscoe	Zingiber.	kunci menir (I)	Sm	Не	Rh Le	stomach-ache	P (N)	Р	6
232	Kaempferia undulata	Wender.	Zingiber.	kunci kunot (I)	J	Не	Ro Tu Rh	tonic, snakebites	А	А	6
233	Wurfbainia uliginosa	(J.Koenig) Giseke	Zingiber.	tepus merah (M)	Sm	He	Se Rh Fr	toothache, anthelmintic	А	Р	6,7

Notes: Auxilary name I: Indonesia, En: English, M: Malaysia, PNG: Papua New Guinea, NA: No Information; Distribution J: Java, K: Kalimantan, LSI: the Lesser Sunda Islands, Sm: Sumatera, SI: Sulawesi, M: Maluku, P: Papua; Plant habit CI: climber, He: herb, Li: liana, Sh: shrub, Tr: tree, Pa: Parasite, TrP: tree like-palm; Used plant part*: all uses, medicinal uses and others; Ba: bark, Wo: wood,

Rh: Rhizome, Tu: Tuber, Ro: root, Le: leaves, Sa: sap, St: stem, Fr: fruit, Fl: flower, Se: Seed, WH: Whole plants. NA: No Information; *Ex situ* conservation/DNA barcoding P: Present, A: Absent, N: National, I: International; References 1: de Padua *et al.* (1999) 2: van Valkenburg and Bunyapraphatsara (2002), 3: Lemmens and Bunyapraphatsara (2003), 4: de Guzman and Siemonsma (1999), 5: Heyne (1992), 6: Eisai (1986), 7: Eisai (1995), 8-13: Dalimartha (1999 2000 2003 2006 2008 2009) 14: IBSAP (Indonesia Biodiversity Strategy and Action Plan) based on Rifai *et al.* (1992) and Zuhud *et al.* (2001) in The National Development Planning Agency (2003).

N	Constant of the second s	A	Famila	CITES	HICN			Nationa	ıl Legisla	tions		References
INO.	Species	Author	Family	App.	IUCN	L1	L2	L3	L4	L5	L6	
1	Avicennia marina var. rumphiana	(Hallier f.) Bakh.	Acanth.		VU							Duke et al. 2010
2	Pangium edule	Reinw.	Achari.								\checkmark	
3	Anaxagorea javanica	Blume	Annon.								\checkmark	
4	Pimpinella pruatjan	Molk.	Api.								\checkmark	
												LC (World
5	Alstonia scholaris	(L.) R. Br.	Apocvn.								\checkmark	Conservation
			1 - 5									Monitoring Centre
6	Abuia halmahairaa	Mia	Anonyn								N	1998a)
0		Milq.	Аросуп.								N	
/	Alyxia reinwarani	Blume	Apocyn.								N	
8	Rauvolfia serpentina	(L.) Benth. ex Kurz	Apocyn.	11							N	
9	Urceola laevigata	(Juss.) D.J.Middleton & Livsh.	Apocyn.								\checkmark	
10	Voacanga grandifolia	(Miq.) Rolfe	Apocyn.								\checkmark	
11	Agathis borneensis	Warb.	Araucari.		EN			\checkmark	\checkmark			Farjon 2013a
12	Borassus flabellifer	L.	Arec.		EN							Rakotoarinivo,
												LC (Johnson
13	Caryota no	Becc.	Arec.			\checkmark		\checkmark	\checkmark	\checkmark		1998)
14	Eugeissona utilis	Becc.	Arec.			\checkmark						,
15	Johannesteijsmannia altifrons	(Rchb.f. & Zoll.)	Arec.			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
		H.E.Moore										NT (Ellison at al
16	Phoenix paludosa	Roxb.	Arec.			\checkmark						2010)
17	Pigafetta filaris	(Giseke) Becc.	Arec.			\checkmark						2010)
- /	· · · · · · · · · · · · · · · · · · ·	(Ridl.) Bacon &										World
18	Saribus woodfordii	W.J.Baker	Arec.		VU							Conservation

Table Appendix 2.2. Indonesian medicinal plants with threat status (IUCN), whether they are listed in CITES Appendix II and national legislations.

No	Spacios	Author	Family	CITES	ILICN			Nationa	al Legisla	tions		References
NO.	Species	Autnor	Family	App.	IUCN	L1	L2	L3	L4	L5	L6	
												Monitoring Centre
												1998e
19	Oroxylum indicum	(L.) Kurz	Bignoni.								\checkmark	
20	Mesua ferrea	L.	Calophyll.								\checkmark	
21	Cibotium barometz	(L.) J.Sm.	Ciboti.	II		\checkmark					\checkmark	
22	Terminalia bellirica	(Gaertn.) Roxb.	Combret.								\checkmark	
23	Cycas rumphii	Miq.	Cycad.	II								NT (Hill 2010)
24	Dicksonia blumei	(Kunze) Moore	Dicksoni.				\checkmark					
25	Anisoptera costata	Korth.	Dipterocarp.		EN							Nguyen 2017
26	Anisoptera marginata	Korth.	Dipterocarp.		EN							Ashton 1998a
27	Anisoptera megistocarpa	Slooten	Dipterocarp.		CR							Ashton 1998k
28	Dipterocarpus baudii	Korth.	Dipterocarp.		VU							Ly et al. 2017c
29	Dipterocarpus gracilis	Blume	Dipterocarp.		VU							Ly et al. 2017b
30	Dipterocarpus kunstleri	King	Dipterocarp.		CR							Ashton 1998b
31	Dipterocarpus retusus	Blume	Dipterocarp.		EN							Ly et al. 2017d
32	Hopea celebica	Burck	Dipterocarp.		EN							Ashton 1998c
33	Hopea mengarawan	Miq.	Dipterocarp.		CR							Ashton 2018
34	Honea sanaal	Korth	Dinterocarn		VII							Pooma et al.
54	nopeu sungui	Kotui.	Dipterocarp.		٧U							2017a
35	Parashorea lucida	Kurz	Dipterocarp.		CR							Ashton 1998d
36	Shorea bracteolata	Dyer	Dipterocarp.		EN							Newman, Pooma
												2017 Nouman Booma
37	Shorea glauca	King	Dipterocarp.		EN							2017a
20		D : 11										Pooma <i>et al.</i>
38	Shorea laevis	Ridl.	Dipterocarp.		VU							2017b
39	Shorea lepidota	Blume	Dipterocarp.		CR	\checkmark						Ashton 1998e
40	Shorea macrophylla	(de Vriese) PS Ashton	Dinterocarn			2						LC (Randi et al.

No	Species	Author	Family	CITES	ILICN			Nationa	l Legisla	tions		References
NO.	Species	Autnor	Family	App.	IUCN	L1	L2	L3	L4	L5	L6	
41	Shorea palembanica	Miq.	Dipterocarp.		CR							Ashton 1998f
42	Shorea selanica	(Lam.) Blume	Dipterocarp.		CR	\checkmark						Ashton 1998g
43	Shorea seminis	Slooten	Dipterocarp.		CR	\checkmark						Ashton 1998h
44	Shorea singkawang	Burck	Dipterocarp.		VU	\checkmark						Pooma, Newman 2017a
45	Shorea splendida	(de Vriese) P.S.Ashton	Dipterocarp.		EN	\checkmark						Randi et al. 2019b
46	Shorea stenoptera	Burck	Dipterocarp.		EN	\checkmark						Randi et al. 2019c
47	Shorea sumatrana	(Slooten) Desch	Dipterocarp.		EN							Pooma, Newman 2017b
48	Shorea teysmanniana	Dyer ex Brandis	Dipterocarp.		EN							Ashton 1998i
49	Vatica teysmanniana	Burck	Dipterocarp.		CR							Ashton 1998j
50	Dalbergia ferruginea	Roxb.	Fab.	II								
51	Dalbergia junghuhnii	Benth.	Fab.	II								
52	Dalbergia latifolia	Roxb.	Fab.	п	VU							Asian Regional Workshop (Conservation & Sustainable Management of Trees, Viet Nam, August 1996) 1998a. L C (Chadburn
53	Dalbergia parviflora	Roxb.	Fab.	Π								2012)
54	Dalbergia pinnata	(Lour.)Prain	Fab.	II								
55	Derris trifoliata	Lour.	Fab.	II								
56	Euchresta horsfieldii	(Lesch.)Benn.	Fab.								\checkmark	
57	Intsia palembanica	Miq.	Fab.					\checkmark	\checkmark			
58	Koompassia malaccensis	Benth.	Fab.					\checkmark				LC (Asian Regional

No	Spacios	Author	Eamily	CITES	HICN			Nationa	ıl Legisla	ations		References
INO.	Species	Author	Failiny	App.	IUCN	L1	L2	L3	L4	L5	L6	
												(Conservation &
												Sustainable
												Management of
												Trees, Viet Nam,
												August 1996)
50 P/	arkia intermedia	Hacek	Fab								2	19980)
59 10	πκια ιπιετπεαια	11855K.	1'a0.								v	I C (Harvey-
60 Pa	arkia timoriana	(DC.)Merr.	Fab.								\checkmark	Brown 2019)
												World
(1 0	· · · ·	(Koord. &			N 71 T							Conservation
61 Si	ndora javanica	Valeton)Backer	Fab.		VU							Monitoring Centre
												1998f
62 C	astanopsis argentea	(Blume) A.DC.	Fag.		EN							Barstow,
	I I I I I I I I I I I I I I I I I I I											Kartawinata 2018
												World
63 Li	thocarpus indutus	(Blume) Rehder	Fag.		VU							Monitoring Centre
												1998c
												World
<i>c</i> 4 . .												Conservation
64 <i>Li</i>	thocarpus platycarpus	(Blume) Render	Fag.		EN							Monitoring Centre
												1998d
65 G	unnera macrophylla	Blume	Gunner.								\checkmark	
66 Sc	cutellaria javanica	Jungh.	Lami.								\checkmark	
												World
67 Vi	itex parviflora	A.Juss.	Lami.		VU							Conservation
	1 5											Monitoring Centre
												1998g
68 Be	eilschmiedia madang	Blume	Laur.					\checkmark	\checkmark			LC (de Kok
												2017a)

No	Species	Author	Family	CITES	ILICN			Nationa	l Legisla	ations		References
INO.	Species	Autior	Fainity	App.	IUCN	L1	L2	L3	L4	L5	L6	
70	Cinnamomum sintoc	Blume	Laur.								\checkmark	LC (de Kok 2019b)
												Asian Regional
												Workshop
												(Conservation & Sustainable
71	Eusideroxylon zwageri	Teijsm. & Binn.	Laur.		VU			\checkmark	\checkmark			Management of
												Trees, Viet Nam,
												August 1996)
												1998b
72	Strychnos ignatii	P.J. Bergius	Logani.								\checkmark	
												LC (BGCI, IUCN
73	Strychnos lucida	R. Br.	Logani.								\checkmark	SSC Global Tree
			-									Specialist Group
												LC (CAMP
												Workshops on
74	Woodfordia fruticosa	(L.) Kurz	Lythr.								\checkmark	Medicinal Plants,
												India (January
												1997) 1998)
75	Helicteres isora	L.	Malv.								\checkmark	
76	Ficus deltoidea	Jack	Mor.								\checkmark	
77	Syzygium conglomeratum	(Duthie) I.M.Turner	Myrt.		VU							Kochummen 1998
78	Nepenthes ampullacea	Jack	Nepenth.	II								
79	Nepenthes ampullaria	Iack	Nepenth	П								LC (Clarke
17	Nepenines ampanana	JUCK	repenui.	11								2018b)
80	Nepenthes boschiana	Korth.	Nepenth.	II	EN	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		Schnell <i>et al.</i> 2000
81	Nepenthes gracilis	Korth.	Nepenth.	II								LC (Clarke 2018a)
82	Nepenthes mirabilis	(Lour.) Druce	Nepenth.	II								LC (Clarke 2014)

N-	Creation	A	Esmiler	CITES	ILICN			Nationa	l Legisla	tions		References
NO.	Species	Author	Family	App.	IUCN	L1	L2	L3	L4	L5	L6	
83	Nepenthes rafflesiana	Jack	Nepenth	П								LC (Clarke
00	repennes regressance		repentiti									2018d)
84	Nepenthes reinwardtiana	Miq.	Nepenth.	II								LC (Clarke 2018e)
85	Acriopsis liliifolia var. liliifolia		Orchid.	II								
86	Apostasia nuda	R.Br.	Orchid.	II								
87	Arundina graminifolia	(D.Don) Hochr.	Orchid.	II								
88	Calanthe triplicata	(Willemet) Ames	Orchid.	II								
89	Cleisostoma scortechinii	(Hook.f.) Garay	Orchid.	II								
90	Corymborkis veratrifolia	(Reinw.) Blume	Orchid.	II								
91	Cymbidium aloifolium	(L.) Sw.	Orchid.	II								
92	Dendrobium crumenatum	Sw.	Orchid.	II								
93	Dendrobium faciferum	J.J.Sm.	Orchid.	II								
94	Dendrobium hymenanthum	Rchb.f.	Orchid.	II								
95	Dendrobium purpureum	Roxb.	Orchid.	II							\checkmark	
96	Dendrobium salaccense	(Blume) Lindl.	Orchid.	II								
97	Dendrobium utile	J.J.Sm.	Orchid.	II								
98	Erythrorchis altissima	(Blume) Blume	Orchid.	Π								LC (Brummitt 2013)
99	Grammatophyllum scriptum	(L.) Blume	Orchid.	II								
100	Grammatophyllum speciosum	Blume	Orchid.	II		\checkmark						
101	Habenaria multipartita	Blume ex Kraenzl.	Orchid.	II								
102	Habenaria rumphii	(Brongn.) Lindl.	Orchid.	II								
103	Hetaeria obliqua	Blume	Orchid.	II								
104	Liparis condylobulbon	Rchb.f.	Orchid.	II								
105	Liparis viridiflora	(Blume) Lindl.	Orchid.	II								
106	Nervilia concolor	(Blume) Schltr.	Orchid.	II								
107	Nervilia plicata	(Andrews) Schltr.	Orchid.	II								

No	Species	Author	Family	CITES	ILICN			Nationa	al Legisla	tions		References
110.	Species	Autior	Tanniy	App.	IUCIN	L1	L2	L3	L4	L5	L6	
108	Oberonia lycopodioides	(J.Koenig) Ormerod	Orchid.	II								
109	Oberonia mucronata	(D.Don) Ormerod & Seidenf.	Orchid.	II								
110	Renanthera moluccana	Blume	Orchid.	II							\checkmark	
111	Robiquetia spathulata	(Blume) J.J.Sm.	Orchid.	II								
112	Spathoglottis affinis	de Vriese	Orchid.	II								
113	Spathoglottis plicata	Blume	Orchid.	II								
114	Strongyleria pannea	(Lindl.) Schuit., Y.P.Ng & H.A.Pedersen	Orchid.	Π								
115	Tropidia curculigoides	Lindl.	Orchid.	II								
116	Vanda miniata	(Lindl.) Gardiner, Lauren Maria	Orchid.	Π		\checkmark						
117	Vanilla abundiflora	J.J.Sm.	Orchid.	II								
118	Vanilla griffithii	Rchb.f.	Orchid.	II								
119	Pinus merkusii	Jungh. & de Vriese	Pin.		VU							Farjon 2013b
120	Rafflesia arnoldi	R.Br.	Rafflesi.			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
121	Rafflesia horsfieldii	R.Br.	Rafflesi.			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
122	Lunasia amara	Blanco	Rut.								\checkmark	LC (BGCI, IUCN SSC Global Tree Specialist Group 2019)
123	Murraya paniculata	(L.) Jack	Rut.								\checkmark	
124	Santalum album	L.	Santal.		VU							Arunkumar <i>et al.</i> 2019
125	Palaquium hispidum	H.J.Lam	Sapot.		VU							Olander, Wilkie 2018
126	Kadsura scandens	(Blume) Blume	Schisandr.								\checkmark	
127	Eurycoma longifolia	Jack	Simaroub.								\checkmark	
128	Symplocos odoratissima	Choisy ex Zoll.	Symploc.								\checkmark	

No.	Species	Author	Family	CITES	ILICN			Nationa	l Legisla	tions		References
INO.	Species	Author	Failiny	App.	IUCN	L1	L2	L3	L4	L5	L6	
129	Taxus wallichiana	Zucc	Tax	п	FN							Thomas, Farjon
12)	Tuxus wanchana	Zucc.	Tux.	11	LIN							2011
130	Aquilaria cumingiana	(Decne) Ridl	Thymelae	п	VU							Harvey-Brown
150	nquitaria caningiana	(Deene.) Run.	Thymenae.	11	•0							2018a
131	Aquilaria hirta	Ridl	Thymelae	п	VII							Harvey-Brown
151	1 <i>Лушини шни</i>	Kiui.	Thymelae.	п	٧U							2018b
132	Aquilaria malacconsis	Lam	Thymelae	п	CR							Harvey-Brown
152	Aquiuna malaccensis	Lam.	Thymelae.	п	CK							2018c
133	Gonystylus bancanus	(Miq.) Kurz	Thymelae.	Π	CR							Barstow 2018a
124	Constitute maaronhullus	(Mig.) Aim Show	Thumalaa	п								LC (Barstow
134	Gonysiyius macrophytius	(wiiq.) Airy Silaw	Thymetae.	11								2018b)
125	Amonum cumatranum	(Valeton) Skornick. &	Zingibar								2	DD (Romand-
155	Amomum sumarranum	Hlavatá	Zingibei.								v	Monnier 2013)
126	Curauma potiolata	Dovh	Zingibar								2	DD (Ardiyani
130		KUAU.	Ziligioel.								v	2019)
137	Kaempferia angustifolia	Roscoe	Zingiber.								\checkmark	

Notes: L1: Government Regulation No.7/1999; L2: Decree of Forestry Ministry No 57/MENHUT-II/2008; L3: Forestry Ministry No. P.20/MENLHK/SETJEN/KUM.1/6/2018; L4: P No 92/MENLHK/SETJEN/KUM1/8/2018; L5: P No 106/MENLHK/SETJEN/KUM1/12/2018; L6: IBSAP (Indonesia Biodiversity Strategy and Action Plan) based on Rifai *et al.* (1992) and Zuhud *et al.* (2001) *in* The National Development Planning Agency (2003); IUCN: Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT), Least Concern (LC), Data Deficient (DD)

Family	Genera	Spc. No.	Family	Genera	Spc. No.
Acanth.	Avicennia	1	Marant.	Halopegia	1
	Barleria	1	Melastomat.	Dissochaeta	1
	Hypoestes	1		Medinilla	2
	Pseuderanthemum	1		Oxyspora	2
Achari.	Pangium	1		Phyllagathis	1
Anacardi.o.	Koordersiodendron	1	Meli.	Heynea	1
	Anaxagorea	1		Toona	1
	Goniothalamus	2	Menisperm.	Stephania	1
Api.	Pimpinella	1		Tinospora	1
Apocyn.	Alstonia	2	Mor.	Ficus	2
	Alyxia	3	Myric.	Myrica	1
	Hunteria	1	Myrt.	Syzygium	2
	Rauvolfia	1	Nepenth.	Nepenthes	7
	Urceola	1	Orchid.	Acriopsis	1
	Voacanga	1		Apostasia	1
	Willughbeia	1		Arundina	1
Araucari.	Agathis	1		Calanthe	1
Arec.	Borassus	1		Cleisostoma	1
	Caryota	1		Corymborkis	1
	Eugeissona	1		Cymbidium	1
	Iguanura	1		Dendrobium	4
	Johannesteijsmannia	1		Erythrorchis	1
	Phoenix	1		Grammatophyllum	2
	Pigafetta	1		Habenaria	2
Aristolochi.	Thottea	1		Hetaeria	1
Aster.	Blumea	2		Liparis	2
Balanophor.	Balanophora	1		Nervilia	2
Bignoni.	Oroxylum	1		Oberonia	2
Calophyll.	Mesua	1		Renanthera	1
Cardiopterid.	Gonocaryum	1		Robiquetia	1
Ciboti.	Cibotium	1		Spathoglottis	2
Combret.	Terminalia	1		Strongyleria	1
Connar.	Rourea	1		Tropidia	1
Convolvul.	Erycibe	1		Vanda	1
Cucurbit.	Trichosanthes	1		Vanilla	2
Cycad.	Cycas	1	Pandan.	Benstonea	1
Dicksoni.	Dicksonia	1		Pandanus	2
Dioscore.	Dioscorea	2	Phyllanth.	Breynia	1
Dipterocarp.	Anisoptera	3	-	Phyllanthus	1
	Dipterocarpus	4	Pin.	Pinus	1
	Нореа	3	Piper.	Piper	2
	Parashorea	1	Pontederi.	Pontederia	1
	Shorea	13	Primul.	Ardisia	1
	Vatica	2	Rafflesi.	Rafflesia	2
Dioscore. Dipterocarp.	Dioscorea Anisoptera Dipterocarpus Hopea Parashorea Shorea Vatica	2 3 4 3 1 13 2	Phyllanth. Pin. Piper. Pontederi. Primul. Rafflesi.	Breynia Phyllanthus Pinus Piper Pontederia Ardisia Rafflesia	

Table Appendix 3. Priority medicinal plant species included in gap analysis study

	Macaranga	1	Rubi.	Catunaregam	1
	Cajanus	1		Mussaenda	1
	Dalbergia	5		Pavetta	1
	Derris	1		Prismatomeris	1
	Entada	1		Psychotria	1
	Euchresta	1		Rennellia	1
	Intsia	1		Uncaria	1
	Koompassia	1	Rut.	Lunasia	1
	Parkia	2		Melicope	1
	Phyllodium	1		Micromelum	1
	Sindora	1		Murraya	1
Fag.	Castanopsis	2		Zanthoxylum	2
	Lithocarpus	2	Santal.	Santalum	1
Gentian.	Gentiana	1	Sapind.	Dodonaea	1
	Utania	1	Schisandr.	Kadsura	1
Gnet.	Gnetum	1	Simaroub.	Eurycoma	2
Gunner.	Gunnera	1		Soulamea	1
Hamamelid.	Exbucklandia	1	Smilac.	Smilax	1
Himantandr.	Galbulimima	1	Stemonur.	Gomphandra	1
Ixonanth.	Ixonanthes	1	Symploc.	Symplocos	2
Lami.	Scutellaria	1	Tax.	Taxus	1
	Vitex	1	Thymelae.	Aquilaria	3
Laur.	Beilschmiedia	1		Gonystylus	2
	Cinnamomum	2	Urtic.	Maoutia	1
	Cryptocarya	1		Nothocnide	1
	Eusideroxylon	1		Pipturus	1
Logani.	Strychnos	2		Poikilospermum	1
Lythr.	Woodfordia	1	Vit.	Ampelocissus	3
Malv.	Grewia	1		Leea	1
	Helicteres	1	Zingiber.	Curcuma	5
	Hibiscus	1		Kaempferia	1
				Wurfbainia	1
					_

No.	Species and Author	Family	Presence points	Sources	Test AUC	AUC Stdev.	ASD15	Valid SDM
1	Acriopsis liliifolia var. liliifolia	Orchid.	102	BO	0.64	0.11	0.41	No
2	Agathis borneensis Warb.	Araucar i.	119	GBIF, IBG, NAT BO.	0.8	0.06	0.03	Yes
3	Alstonia iwahigensis Elmer	Apocyn	33	GBIF, NAT, RBG K	0.84	0.07	0.01	Yes
4	Alstonia scholaris (L.) R. Br.	Apocyn	111	BO	0.76	0.09	0.70	Yes
5	Alyxia halmaheirae Miq.	Apocyn	18	BO, GBIF, NAT	0.72	-0.8	3.61	No
6	Alyxia reinwardtii Blume	Apocyn	90	BO, GBIF	0.83	0.08	0.05	Yes
7	<i>Alyxia rostrata</i> (Markgr.) Markgr.	Apocyn	22	BO, GBIF, NAT	0.7	-1	0.07	No
8	Ampelocissus arachnoidea (Hausskn.) Planch.	Vit.	45	NAT	0.9	0.05	0	Yes
9	Ampelocissus polythyrsa (Miq.) Gagnep.	Vit.	29	BO, GBIF, NAT	0.58	0.13	2.96	No
10	<i>Anaxagorea javanica</i> Blume	Annon.	32	BO	0.79	0.09	0.84	Yes
11	Anisoptera costata Korth.	Diptero carp.	27	GBIF, IBG	0.79	-0.12	1.03	Yes
12	Anisoptera marginata Korth.	Diptero carp.	31	GBIF, IBG	0.77	0.11	1.24	Yes
13	Apostasia nuda R.Br.	Orchid.	27	GBIF	0.73	0.1	0.63	Yes
14	<i>Aquilaria cumingiana</i> (Decne.) Ridl.	Thymel ae.	17	BO, GBIF, NAT	0.68	-0.66	17.10	No
15	<i>Aquilaria malaccensis</i> Lam.	Thymel ae.	28	GBIF, IBG	0.78	-0.02	0.07	Yes
16	Ardisia odontophylla Wall. ex A.DC.	Primul.	12	BO	0.87	-1	0.06	No
17	<i>Arundina graminifolia</i> (D.Don) Hochr.	Orchid.	58	GBIF	0.81	0.08	0	Yes
18	Barleria prionitis L.	Acanth.	39	NAT	0.9	0.03	0.72	Yes
19	Beilschmiedia madang (Blume) Blume	Laur.	61	GBIF, NAT BO,	0.69	0.1	2.28	No
20	Blumea arfakiana Martelli	Aster.	18	GBIF, NAT, RBG K	0.6	-0.8	0.17	No
21	Borassus flabellifer L.	Arec.	15	GBIF	0.99	-1	0	No
22	Calanthe triplicata (Willemet) Ames	Orchid.	34	GBIF	0.65	0.13	1.08	No
23	Castanopsis argentea (Blume) A.DC.	Fag.	51	GBIF, NAT	0.87	0.07	0.26	Yes
24	Catunaregam spinosa (Thunb.) Tirveng.	Rubi.	10	GBIF, NAT	0.78	-1	0.79	No
25	<i>Cibotium barometz</i> (L.) J.Sm.	Ciboti.	41	GBIF, IBG	0.64	0.12	0.81	No

Table Appendix 4.1. Species used for the climate changes analysis and maxent result for its validity

26	Cinnamomum culilaban (L.) J.Presl	Laur.	15	GBIF, IBG, NAT	0.77	-1	5.01	No
27	Cinnamomum sintoc	Laur.	30	GBIF	0.84	0.1	0.25	Yes
28	Cryptocarya massoy	Laur.	24	GBIF, NAT	0.45	-0.67	8.11	No
29	Curcuma aurantiaca Zijp	Zingibe r	15	GBIF	0.78	-0.66	0.60	No
30	Curcuma petiolata Roxb.	Zingibe r.	12	BO, GBIF, NAT	0.82	-1	1.65	No
31	Cycas rumphii Miq.	Cycad.	39	GBIF, IBG	0.78	-0.03	2.46	Yes
32	Dalbergia ferruginea Roxb.	Fab.	17	GBIF	0.71	-0.78	15.46	No
33	Dalbergia latifolia Roxb.	Fab.	29	GBIF, IBG	0.81	-0.88	0.43	No
34	Dalbergia parviflora Roxh	Fab.	13	GBIF, IBG	0.52	-0.89	18.14	No
35	Dalbergia pinnata (Lour.) Prain	Fab.	94	BO, GBIF	0.82	0.08	0.17	Yes
36	Dendrobium crumenatum Sw.	Orchid.	23	GBIF	0.63	-0.66	0.01	No
37	Dendrobium purpureum Roxb.	Orchid.	33	BO, GBIF	0.8	0.11	1.42	Yes
38	<i>Dendrobium salaccense</i> (Blume) Lindl.	Orchid.	24	GBIF	0.85	-0.46	6.81	No
39	Derris trifoliata Lour.	Fab.	74	GBIF	0.7	0.1	0.72	No
40	<i>Dicksonia blumei</i> (Kunze) T.Moore	Dickso ni	39	GBIF	0.94	0.03	0.02	Yes
41	Dipterocarpus baudii Korth	Diptero carp.	30	GBIF	0.82	0.08	2.37	Yes
42	Dipterocarpus gracilis Blume	Diptero carp.	42	GBIF, IBG, NAT	0.71	0.11	0.98	Yes
43	Dipterocarpus kunstleri King	Diptero carp.	21	GBIF	0.7	-1	0.03	No
44	Dipterocarpus retusus Blume	Diptero carp.	20	GBIF	0.78	-0.45	1.53	No
45	Dodonaea viscosa subsp. angustifolia (L.f.) J.G.West	Sapind.	21	GBIF	0.83	-0.36	14.68	No
46	<i>Euchresta horsfieldii</i> (Lesch.)Benn.	Fab.	39	GBIF, NAT	0.91	0.06	0.33	Yes
47	Eurycoma longifolia Jack	Simaro ub.	37	BO	0.75	0.06	0.21	Yes
48	<i>Eusideroxylon zwageri</i> Teijsm. & Binn.	Laur.	61	GBIF, IBG, NAT	0.71	0.12	0.39	Yes
49	Ficus deltoidea Jack	Mor.	33	BO	0.69	0.09	0.36	No
50	Galbulimima belgraveana (F.Muell.) Sprague	Himant andr.	20	BO, GBIF	0.84	-0.35	25.92	No
51	<i>Gentiana quadrifaria</i> Blume	Gentian	42	BO, GBIF, NAT	0.93	0.05	0.30	Yes
52	<i>Gomphandra quadrifida</i> (Blume) Sleumer	Stemon ur.	20	NAT	0.63	-0.03	2.85	No
53	Goniothalamus giganteus Hook.f. & Thomson	Annon.	19	BO, NAT	0.57	-0.78	0.74	No
54	Goniothalamus tapis Miq.	Annon.	24	BO, GBIF, NAT	0.48	0.02	7.99	No

55	Gonocaryum gracile Miq.	Cardiop terid.	13	GBIF, NAT	0.48	-0.89	6.72	No
56	Gonystylus bancanus (Miq.) Kurz	Thymel ae.	33	GBIF	0.79	0.07	0.19	Yes
57	Gonystylus macrophyllus (Miq.) Airy Shaw	Thymel ae.	15	GBIF	0.59	-0.78	13.58	No
58	Grammatophyllum scriptum (L.) Blume	Orchid.	28	BO	0.65	0.12	0.84	No
59	Grammatophyllum speciosum Blume	Orchid.	43	BO, GBIF, IBG	0.78	0.1	2.79	Yes
60	<i>Gunnera macrophylla</i> Blume	Gunner.	27	BO	0.95	-0.27	0.40	No
61	<i>Habenaria multipartita</i> Blume ex Kraenzl.	Orchid.	20	GBIF	0.93	-0.47	0.65	No
62	Habenaria rumphii (Brongn.) Lindl.	Orchid.	20	GBIF	0.6	-1	0.11	No
63	Helicteres isora L.	Malv.	20	GBIF, IBG	0.89	-1	5.86	No
64	Hopea celebica Burck	Diptero carp.	21	GBIF, IBG	0.81	-0.87	32.40	No
65	Hopea mengarawan Miq.	Diptero carp.	27	GBIF, IBG	0.69	0.11	0.03	No
66	Hopea sangal Korth.	Diptero carp.	29	GBIF, IBG	0.61	0.1	2.37	No
67	<i>Hypoestes polythyrsa</i> Miq.	Acanth.	21	NAT	0.82	-0.15	0.42	No
68	Intsia palembanica Miq.	Fab.	13	GBIF, NAT	0.8	-0.69	12.05	No
69	Ixonanthes icosandra Jack	Ixonant h.	11	BOLD , NAT	0.76	-0.9	42.28	No
70	Kadsura scandens (Blume) Blume	Schisan dr.	26	BO, GBIF	0.95	-0.18	1.95	No
71	<i>Kaempferia angustifolia</i> Roscoe	Zingibe r.	16	BO, GBIF, NAT	0.94	-1	0.40	No
72	Koompassia malaccensis Maingay	Fab.	24	GBIF	0.91	-0.58	0.03	No
73	Koordersiodendron pinnatum (Blanco) Merr.	Anacar di.	22	GBIF	0.68	-0.15	13.16	No
74	Leea aequata L.	Vit.	67	IBG, NAT	0.67	0.1	0	No
75	<i>Liparis condylobulbon</i> Rchb.f.	Orchid.	10	BO, GBIF	0.44	-1	0.28	No
76	<i>Liparis viridiflora</i> (Blume) Lindl.	Orchid.	11	GBIF	0.79	-1	0.15	No
77	<i>Lithocarpus indutus</i> (Blume) Rehder	Fag.	15	GBIF	0.87	-0.88	2.10	No
78	<i>Lithocarpus platycarpus</i> (Blume) Rehder	Fag.	10	GBIF	0.99	-1	17,11 1 11	No
79	Lunasia amara Blanco	Rut.	115	BO	0.79	0.09	1.37	Yes
80	<i>Macaranga griffithiana</i> Müll.Arg.	Euphor bi.	22	BO	0.83	0.06	0.17	Yes
81	Maoutia diversifolia (Miq.) Wedd.	Urtic.	10	NAT	0.87	-1	0	No
82	Medinilla radicans Blume	Melasto mat.	17	BO	0.93	-0.36	13.36	No
83	Melicope denhamii (Seem.) T.G.Hartley	Rut.	30	GBIF	0.68	0.01	11.48	No
84	Mesua ferrea L.	Caloph yll.	19	GBIF	0.85	-0.79	0.23	No
85	<i>Micromelum minutum</i> (G.Forst.) Wight & Arn.	Rut.	79	IBG, NAT	0.68	0.08	0.61	No

86	<i>Murraya paniculata</i> (L.) Jack	Rut.	94	GBIF, IBG	0.81	0.07	0.01	Yes
87	Mussaenda glabra Vahl	Rubi.	33	NAT	0.86	0.05	0.64	Yes
88	<i>Nepenthes ampullaria</i> Jack	Nepent h.	24	GBIF	0.71	-0.79	10.71	No
89	Nepenthes gracilis Korth.	Nepent h.	23	GBIF	0.66	0.01	6.92	No
90	Nepenthes mirabilis (Lour.) Druce	Nepent h.	25	GBIF	0.59	-0.56	15.44	No
91	<i>Nepenthes rafflesiana</i> Jack	Nepent h.	15	GBIF	0.66	-0.45	1.03	No
92	<i>Nepenthes reinwardtiana</i> Miq.	Nepent h.	32	GBIF	0.75	0.1	0.18	Yes
93	<i>Nervilia concolor</i> (Blume) Schltr.	Orchid.	21	NAT	0.79	-0.48	1.74	No
94	Nervilia plicata (Andrews) Schltr.	Orchid.	22	BO, NAT	0.84	0.05	1.44	Yes
95	Nothocnide repanda (Blume) Blume	Urtic.	38	NAT	0.67	0.1	1.21	No
96	<i>Oroxylum indicum</i> (L.) Kurz	Bignoni	82	BO, GBIF	0.8	0.08	0.95	Yes
97	Pangium edule Reinw.	Achari.	19	GBIF	0.69	-0.9	0.48	No
98	Parashorea lucida (Miq) Kurz	Diptero carp.	14	IBG, NAT	0.59	-1	10.27	No
99	Parkia intermedia Hassk.	Fab.	13	GBIF	0.87	-1	1.03	No
100	<i>Parkia timoriana</i> (DC.) Merr.	Fab.	59	GBIF, NAT	0.75	0.11	0.18	Yes
101	<i>Phyllagathis rotundifolia</i> (Jack) Blume	Melasto mat.	10	GBIF	0.89	-1	0.43	No
102	Phyllodiumelegans(Lour.)Desv.	Fab.	12	GENE SIS	0.64	-1	4.37	No
103	<i>Pigafetta filaris</i> (Giseke) Becc.	Arec.	10	GBIF	0.63	-1	0.50	No
104	<i>Pimpinella pruatjan</i> Molk.	Api.	35	BO	1	-0.5	0	No
105	<i>Pinus merkusii</i> Jungh. & de Vriese	Pin.	28	GBIF, IBG	0.83	0.08	1.10	Yes
106	<i>Pontederia plantaginea</i> Roxb.	Pontede ri.	10	NAT	0.63	-1	160.0 1	No
107	Rafflesia arnoldi R.Br.	Rafflesi	12	GBIF	0.71	-0.77	1.87	No
108	Rafflesia horsfieldii R.Br.	Rafflesi	33	BO, GBIF, IBG, NAT	0.84	-0.46	1.76	No
109	Rauvolfia serpentina (L.) Benth. ex Kurz	Apocyn	62	BO, GBIF, IBG	0.94	0.03	0.10	Yes
110	Renanthera moluccana Blume	Orchid.	10	BO, GBIF, NAT	0.85	-1	59.76	No
111	Santalum album L.	Santal.	25	GBIF, IBG	0.86	-0.13	1.36	Yes
112	<i>Scutellaria javanica</i> Jungh.	Lami.	40	BO, RGBE	0.93	0.03	0.07	Yes
113	Shorea bracteolata Dyer	Diptero carp.	10	NAT	0.89	-1	4.99	No
114	<i>Shorea lepidota</i> (Korth) Blume	Diptero carp.	17	GBIF, NAT	0.81	-0.58	0.50	No
115	<i>Shorea macrophylla</i> (de Vriese) P.S. Ashton	Diptero carp.	10	GBIF	0.7	-1	42.76	No

116	Shorea palembanica Miq.	Diptero carp.	21	GBIF	0.75	-0.12	3.20	Yes
117	Shorea selanica (Lam) Blume	Diptero carp.	26	GBIF, IBG	0.9	-1	6.06	No
118	Shorea seminis (de Vriese) Slooten	Diptero carp.	52	GBIF, IBG, NAT	0.76	0.09	0.13	Yes
119	Shorea singkawang (Miq.) Burck	Diptero carp.	18	GBIF	0.64	-1	6.15	No
120	Shorea stenoptera Burck	Diptero carp.	21	GBIF, IBG	0.79	-0.8	1.10	No
121	Shorea teysmanniana Dyer ex Brandis	Diptero carp.	10	GBIF, IBG	0.88	-1	9.23	No
122	<i>Sindora javanica</i> (Koord & Valeton)Backer	Fab.	12	GBIF, NAT	0.91	-1	4.50	No
123	Smilax zeylanica L	Smilac.	16	NAT	0.72	-0.66	0.01	No
124	Spathoglottis plicata Blume	Orchid.	115	GBIF, IBG	0.75	0.07	1.30	Yes
125	<i>Stephania japonica</i> (Thunb) Miers	Menisp erm.	15	NAT	0.75	-0.77	0.06	No
126	Strychnos ignatii Bergius	Logani.	21	BO	0.66	-0.13	1.93	No
127	Strychnos lucida RBr	Logani.	15	BO, GBIF, RBG K	0.95	-1	0	No
128	Symplocos cochinchinensis var. sessifolia (Blume) Noot	Symplo c.	13	GBIF	0.57	-0.78	0	No
129	Symplocos odoratissima (Blume) Choisy ex Zoll	Symplo c.	23	BO, GBIF	0.57	-0.47	0	No
130	Taxus wallichiana Zucc	Tax.	12	GBIF	0.93	-0.8	0.10	No
131	<i>Terminalia bellirica</i> (Gaertn.) Roxb.	Combre t.	12	GBIF	0.7	-0.88	0.35	No
132	<i>Toona sureni</i> (Blume) Merr	Meli.	13	NAT	0.96	-1	1.92	No
133	<i>Tropidia curculigoides</i> Lindl	Orchid.	20	BO, GBIF	0.82	-0.47	1.84	No
134	<i>Urceola laevigata</i> (Juss.) D.J.Middleton & Livsh.	Apocyn	84	BO	0.84	0.08	0.15	Yes
135	<i>Utania racemosa</i> (Jack) Sugumaran	Gentian	152	GBIF, IBG, NAT	0.59	0.07	0.75	No
136	Vitex parviflora AJuss	Lami.	23	GBIF	0.95	-0.69	2.30	No
137	<i>Voacanga grandifolia</i> (Miq) Rolfe	Apocyn	75	BO	0.91	0.03	0.41	Yes
138	Woodfordia fruticosa (L) Kurz	Lythr.	10	GBIF	0.94	-1	11.33	No
139	<i>Zanthoxylum avicennae</i> (Lam) D.C.	Rut.	14	GBIF, NAT	0.86	-0.79	6.93	No

No.	Species		Maior	Presen	ce grids (≈10) km x 10 km	1)		RCP4.5	2050		RCP4.5	2080		RCP8.5	5 2050		RCP8.5	2080	
No.	(IUCN, 2020)	PH *	cont. var.	Curr ent	RCP4.5 2050	RCP4.5 2080	RCP8.5 2050	RCP8. 5 2080	%L/G	Thr. Lev.	Т	%L/G	Thr. Lev.	Т	%L/ G	Thr. Lev.	Т	%L/G	Thr. Lev.	Т
1	Agathis borneensis (EN)	Tr	bio_14 ; aspect; bio_4	2261 4	12935	11406	11908	8228	-42.80	VU	-2.25	-49.56		- 2.61	- 47.34	VU	- 2.49	-63.62	EN	-3.38
2	Alstonia iwahigensis	Tr	slope; bio_16 ; bio_4	1519 8	7032	4867	7362	4618	-53.73	EN	-1.87	-67.98		- 2.37	- 51.56	EN	- 1.79	-69.61	EN	-2.43
3	Alstonia scholaris	Tr	s_oc; alt; t_teb	2277 6	22451	21571	22632	21358	-1.43		-0.08	-5.29		- 0.28	-0.63		- 0.03	-6.23		-0.33
4	Alyxia reinwardtii	Cl	bio_4; t_oc; alt	1679 7	18332	17614	18698	17568	9.14		0.35	4.86		0.19	11.32		0.44	4.59		0.18
5	Ampelocissus arachnoidea	Li	bio_4; bio_14 ; bio_13	1422 7	25791	32883	28076	33918	81.28		2.64	131.13		4.18	97.34		3.14	138.4 1		4.41
6	Anaxagorea javanica	Sh	bio_14 ; s_teb; bio 4	2357 2	16374	13807	16327	14152	-30.54	VU	-1.68	-41.43		- 2.29	- 30.74	VU	- 1.69	-39.96	VU	-2.20
7	Anisoptera costata (EN)	Tr	bio_17 ; s_oc; bio_4	1735 0	9140	6837	7915	5304	-47.32	VU	-1.88	-60.59		- 2.43	- 54.38	EN	- 2.17	-69.43	EN	-2.79
8	Anisoptera marginata (EN)	Tr	alt; bio_14 ; slope	2556 0	25664	25431	25535	24098	0.41		0.02	-0.50		- 0.03	-0.10		- 0.01	-5.72		-0.34
9	Apostasia nuda	He	slope; alt; bio_4	2792 9	29833	25223	28551	23770	6.82		0.45	-9.69		- 0.64	2.23		0.15	-14.89		-0.99
10	Aquilaria malaccensis (CR)	Tr	s_oc; alt; s_teb	2541 5	18219	15735	17537	13561	-28.31		-1.68	-38.09		- 2.28	- 31.00	VU	- 1.85	-46.64	VU	-2.80
11	Arundina graminifolia	He	bio_14 ; t_teb; alt	2057 0	22150	23531	20980	19368	7.68		0.37	14.39		0.68	1.99		0.10	-5.84		-0.28

Table Appendix 4.2. Impacts of climate change on the predicted distribution areas of priority medicinal plants in Indonesia for two emission scenarios (RCP4.5 and RCP8.5) for 2050 and 2080

12	Barleria prionitis	Sh	t_teb; bio_4; bio_14	8314	8170	8786	8564	8894	-1.73		-0.03	5.68		0.11	3.01		0.06	6.98		0.13
13	Castanopsis argentea (EN)	Tr	alt; bio_17 ; bio_4	1513 9	14039	12649	11790	8927	-7.27		-0.25	-16.45		- 0.57	- 22.12		- 0.77	-41.03	VU	-1.44
14	Cinnamomum sintoc	Tr	alt; bio_19 ; bio_14	1223 9	11683	11193	11478	8735	-4.54		-0.13	-8.55		- 0.24	-6.22		- 0.17	-28.63		-0.80
15	Cycas rumphii	TrP	slope; bio_18 ; s_oc	1563 3	15125	14596	14498	13972	-3.25		-0.12	-6.63		- 0.24	-7.26		- 0.26	-10.62		-0.38
16	Dalbergia pinnata	Sh	; bio_4; slope	1921 5	26446	28455	26680	28963	37.63		1.67	48.09		2.12	38.85		1.72	50.73		2.23
17	Dendrobium purpureum	He	alt; bio_4; bio_18	1212 0	12643	13678	13308	13885	4.32		0.12	12.85		0.35	9.80		0.27	14.56		0.40
18	Dicksonia blumei	Sh	alt; s_oc; bio_19	2110	2094	1965	1919	1728	-0.76		-	-6.87	EN	- 0.03	-9.05		- 0.04	-18.10		-0.08
19	Dipterocarpus baudii (VU)	Tr	bio_4; s_oc; bio_18	2196 2	16018	11675	14235	9474	-27.06		-1.38	-46.84		- 2.41	- 35.18	VU	- 1.80	-56.86	EN	-2.94
20	Dipterocarpus gracilis (VU)	Tr	alt; bio_4; bio_17	2929 0	26790	25756	26688	22484	-8.54		-0.59	-12.07		- 0.84	-8.88		- 0.61	-23.24		-1.62
21	Euchresta horsfieldii	Sh	alt; bio_14 ; s_ph bio_10	2331	1858	1629	1562	1163	-20.29		-0.10	-30.12	EN	- 0.16	- 32.99	VU	- 0.17	-50.11	EN	-0.26
22	Eurycoma longifolia	Sh	bio_19 ; bio_4; bio_14	2495 5	12788	9704	12317	9169	-48.76	VU	-2.84	-61.11		- 3.59	- 50.64	EN	- 2.96	-63.26	EN	-3.72
23	Eusideroxylon zwageri (VU)	Tr	bio_4; alt; t_teb	3114 0	13952	9881	14660	8931	-55.20	EN	-4.07	-68.27		- 5.09	- 52.92	EN	- 3.90	-71.32	EN	-5.33
24	Gentiana quadrifaria	He	bio_19 ; alt; t_teb	4112	4502	4483	4034	3916	9.48		0.09	9.02	VU	0.08	-1.90		-0.02	-4.77		-0.04
25	Gonystylus bancanus (CR)	Tr	alt; bio_19 ; bio_14	2546 8	26712	25400	23793	25671	4.88		0.29	-0.27		0.02	-6.58		- 0.39	0.80		0.05

26	Grammatophyll um speciosum	He	bio_16 ; aspect; alt	2405 9	27052	29130	27158	29427	12.44		0.70	21.08		1.18	12.88		0.72	22.31		1.24
27	Lunasia amara	Sh	bio_18 ; alt; s_oc	1668 9	15384	14735	15816	13444	-7.82		-0.30	-11.71		- 0.45	-5.23		- 0.20	-19.44		-0.75
28	Macaranga griffithiana	Tr	alt; slope; s_oc bio_14	1755 7	12426	9948	11920	9875	-29.22		-1.18	-43.34		- 1.76	- 32.11	VU	- 1.30	-43.75	VU	-1.77
29	Murraya paniculata	Sh	; bio_4; bio_13	2168 5	21624	23962	21692	21846	-0.28		-0.01	10.50		0.53	0.03		-	0.74		0.04
30	Mussaenda glabra	Sh	bio_13 ; alt; bio_4	9460	13500	14712	13796	13220	42.71		0.91	55.52		1.18	45.84		0.98	39.75		0.85
31	Nepenthes reinwardtiana	Cl	bio_4; s_oc; alt bio_14	2937 2	16357	13287	17738	12282	-44.31	VU	-3.07	-54.76		- 3.82	- 39.61	VU	- 2.74	-58.18	EN	-4.07
32	Nervilia plicata	He	; slope; bio_16	7202	9997	12782	10263	12085	38.81		0.63	77.48		1.24	42.50		0.69	67.80		1.09
33	Oroxylum indicum	Tr	bio_13 ; bio_4; bio_14	2167 2	32519	33915	32653	34533	50.05		2.51	56.49		2.83	50.67		2.54	59.34		2.97
34	Parkia timoriana	Tr	bio_13 ; s_teb; s_oc	2030 7	22496	23632	24013	22363	10.78		0.51	16.37		0.77	18.25		0.85	10.12		0.48
35	Pinus merkusii	Tr	slope; s_oc; bio_17	1133 4	8020	6357	6885	4469	-29.24		-0.75	-43.91	VU	- 1.13	- 39.25	VU	- 1.01	-60.57	EN	-1.57
36	Rauvolfia serpentina	Sh	bio_14 ; s_ph; bio_4	6542	7368	7595	6979	7568	12.63		0.18	16.10		0.24	6.68		0.10	15.68		0.23
37	Santalum album (VU)	Tr	t_teb; bio_19 ; bio_14	4627	4542	4727	4731	4773	-1.84		-0.02	2.16	EN	0.02	2.25		0.02	3.16		0.03
38	Scutellaria javanica	He	alt; s_teb; bio_14	2896	2741	2565	2659	2332	-5.35		-0.03	-11.43	EN	- 0.07	-8.18		- 0.05	-19.48		-0.13

39	Shorea palembanica (CR)	Tr	bio_19 ; slope; bio_4	2409 5	22746	21954	23368	21467	-5.60	-0.31	-8.89	- 0.50	-3.02	- 0.17	-10.91		-0.61
40	Shorea seminis (CR)	Tr	bio_4; bio_14 ; alt	2732 8	19738	18732	19914	17256	-27.77	-1.78	-31.45	- 2.02	- 27.13	- 1.74	-36.86	VU	-2.38
41	Spathoglottis plicata	He	slope; s_teb; t_teb	2240 7	29087	31359	30647	33030	29.81	1.55	39.95	2.07	36.77	1.91	47.41		2.44
42	Urceola laevigata	Sh	bio_14 ; s_ph; bio_13	1263 4	15273	16935	15576	15724	20.89	0.60	34.04	0.97	23.29	0.67	24.46		0.70
43	Voacanga grandifolia	Sh	bio_14 ; s_ph; s_teb	1012 4	10039	10738	10254	10213	-0.84	-0.02	6.06	0.14	1.28	0.03	0.88		0.02

Notes: PH (Cahyaningsih *et al.*, 2021b): Plant Habit. CI: climber, He: herb, Li: liana, Sh: shrub, Tr: tree, TrP: tree like-palm; Environmental variables. alt: Altitude, metres above sea level, aspect: Orientation (in degrees) of the land surface, bio_13: Rainfall during the wettest month, bio_14: Rainfall during the driest month, bio_16: Rainfall during the wettest quarter (three rainiest months), bio_17: Rainfall during the driest quarter (three driest months), bio_18: Rainfall during the hottest quarter (three hottest months), bio_19: Rainfall during the coldest quarter (three coldest months), bio_4: Temperature seasonality (standard deviation*100), s_oc: Content of organic carbon in subsoil, s_ph: pH in subsoil in soil-water solution, s_teb: Total exchangeable bases in subsoil, slope: Gradient (in degrees) of the land surface, t_oc: Organic carbon content in surface soil, t_teb: Total exchangeable bases in surface soil; Pr. Grid: Presence grid (approximately equal 10 km x 10 km); %L/G: %Loss/Gain, Extinct (EX) if 100% presence grid loss, Critically endangered (CR) if more than 80% presence grid loss, Endangered (EN) if more than 50% to 80% presence grid loss, and Vulnerable (V) if more than 30% to 50% presence grid loss (IUCN 2001); Thr. Lev: Threat Level; T: Turnover Rate

No.	Species*	Author	Fam.	N/I	Important Sp.	Sp. no. per genus	Region	Max Score	Total Score	Query cover	E Value	Per. Ident	Best matched species	Sum.	Notes
							ITS2	562	562	0.73	5.00E- 156	0.9968	Justicia gendarussa	c	
1	Iusticia gendarussa	Burm f	Acanth	N	No	921	matK	1330	1330	0.96	0	0.9986	Justicia gendarussa	c	
1	susticia genaarassa	Dumm	/ teantii.	1	110	921	rbcL	1055	1055	0.97	0	1	Justicia gendarussa	c	
							trnL	1487	1487	0.92	0	0.9975	Justicia gendarussa	c	
							ITS2	597	597	0.89	1.00E- 166	0.9526	Ophiorrhiziphyllon macrobotryum	a**	
2	Staurogyne	(Nees) Kuntze	Acanth	N	No	148	matK	1273	1273	0.97	0	0.9821	Staurogyne concinnula	a*	
2	elongata	(1 (ees) Runze	i iounun.	1,	110	110	rbcL	939	939	0.91	0	0.9923	Staurogyne concinnula	a*	
							trnL	1013	1427	0.99	0	0.9732	Staurogyne trinitensis	a*	
							ITS2	163	163	0.15	1.00E- 35	0.9286	Celastraceae sp.	i	
3	Pangium edule	Reinw	Achari	N	Ves (P)	1	matK	1387	1387	1	0	0.9974	Pangium edule	c	
5	T ungium cuuic	Reniw.	/ tenari.	1	103(1)	1	rbcL	972	972	0.91	0	1	Pangium edule	c	
							trnL	1158	1741	0.98	0	0.982	Ryparosa kurrangii	a*	
4	Spondias malayana	Kosterm.	Anacardi.	Ν	No	19	ITS2	636	636	1	3.00E- 178	0.9332	Spondias tuberosa	a*	
							ITS2	660	660	0.75	0	1	Toxicodendron succedaneum	c	
5	Toxicodendron	(I) Kuntze	Anacardi	T	No	27	matK	1452	1452	0.99	0	1	Toxicodendron succedaneum	c	
5	succedaneum	(L.) Kunze	Allacalul.	1	NO	21	rbcL	1038	1038	0.97	0	1	Toxicodendron succedaneum	c	
							trnL	1598	1598	1	0	1	Toxicodendron succedaneum	c	1/7 is a*
							ITS2	774	774	1	0	0.9953	Ancistrocladus benomensis	c	1/3 is a*
r	Ancistrocladus		A	NT	N	21	matK	1387	1387	1	0	0.9987	Ancistrocladus heyneanus	a*	
0	tectorius	(Lour.) Merr.	Ancistrociad.	N	No	21	rbcL	1053	1053	1	0	1	Ancistrocladus tectorius	c	
							trnL	1663	1663	1	0	0.9903	Ancistrocladus tectorius	c	
7	Anaxagorea javanica	Blume	Annon.	Ν	Yes (P)	25	matK	1502	1502	0.97	0	0.9928	Anaxagorea luzonensis	a*	

Table Appendix 5.1. Summary of DNA barcoding result with related information per species

							rbcL	1013	1013	0.94	0	1	Anaxagorea luzonensis	a*	
							trnL	1423	1423	1	0	1	Anaxagorea javanica	с	
							ITS2	237	237	0.38	3.00E- 58	0.9474	Acer palmatum	i	
0	Dasymaschalon	(Blume)	A	N	N-	27	matK	1382	1382	1	0	0.9947	Dasymaschalon clusiflorum	a*	
0	dasymaschalum	I.M.Turner	Annon.	IN	NO	27	rbcL	1020	1020	0.97	0	1	Desmos dasvmaschalus	с	
							trnL	1565	1565	0.95	0	0.9965	Dasymaschalon megalanthum	a*	
							ITS2	763	763	0.98	0	0.9976	Alstonia scholaris	a*	
							matK	1386	1386	1	0	0.9987	Alstonia macrophylla	с	
9	Alstonia	Wall. Ex.	Apocyn.	Ν	No								macrophyna		13/14 is
-	macrophylla	G.Don	- F				rbcL	857	857	1	0	0.9876	Alstonia scholaris	c	a* with the same coverage
							trnL	1557	1557	1	0	0.9908	Alstonia scholaris	a*	
						44	ITS2	457	457	0.62	3.00E- 124	0.9772	Alstonia scholaris	с	
10	Alstonia scholaris	(L.) R. Br.	Apocyn.	Ν	Yes (P)		matK	1380	1380	1	0	0.9987	Alstonia yunnanensis	с	1/9 a is a* with same coverage
							rbcL	1051	1051	1	0	0.9983	Alstonia scholaris	с	
							trnL	1589	1589	1	0	0.9977	Alstonia scholaris	с	1/2 is a*
							ITS2	614	614	0.8	1.00E- 171	0.9912	Alyxia reinwardtii	с	
							matK	1317	1317	0.95	0	0.9972	Alyxia reinwardtii	c	
11	Alyxia reinwardtii	Blume	Apocyn.	Ν	Yes (P)	106	rbcL	1020	1020	0.96	0	1	Alyxia reinwardtii	с	1/2 is a* with higher coverage
							trnL	1524	1524	0.98	0	0.9929	Alyxia grandis	a*	
							ITS2	507	507	0.63	3.00E- 139	1	Hoya glabra	a*	
12	Hoya diversifolia	Blume	Apocyn.	Ν	No	521	matK	1347	1347	1	0	1	Hoya vitellinoides	a*	
							rbcL	1051	1051	0.99	0	1	Hoya pottsii	a*	

							trnL	1539	1539	0.98	0	0.9988	Hoya sp.	a*
							ITS2	617	617	0.73	1.00E- 172	1	Rauvolfia serpentina	c
10	Rauvolfia	(L.) Benth. ex		N.T.	V (II)		matK	1380	1380	0.99	0	1	Rauvolfia serpentina	c
13	serpentina	Kurz	Apocyn.	Ν	Yes (II)	/4	rbcL	1057	1057	0.99	0	1	Rauvolfia serpentina	c
							trnL	1395	1395	0.89	0	0.9873	Rauvolfia serpentina	c
							ITS2	501	805	0.59	2.00E- 137	0.9964	Thunbergia coccinea	i
14	Aglaonema	Sabott	۸	N	No	22	matK	1384	1384	1	0	0.9974	Aglaonema crispum	a*
14	commutatum	Schou	AI.	IN	INO	22	rbcL	1022	1022	0.97	0	1	Aglaonema commutatum	c
							trnL	1650	1650	1	0	0.9989	Aglaonema crispum	a*
							ITS2	745	745	0.95	0	0.988	Trevesia palmata	a*
							matK	1393	1393	1	0	1	Trevesia palmata	a*
15	Trevesia burckii	R.Br.	Arali.	Ν	No	8	rbcL	1048	1048	0.98	0	0.9982	Brassaiopsis gracilis	a*
							trnL	1668	1668	0.99	0	0.9989	Brassaiopsis ciliata	a*
16	Cibotium barometz	(L.) J.Sm.	Ciboti.	N	Yes (II)	10	ITS2	348	858	0.75	3.00E- 91	0.9896	Cucumis sativus	i
							rbcL	965	965	0.94	0	0.9872	Cyathea chinensis	a**
17	Decalobanthus mammosus	(Lour.) A.R.Simoes & Staples	Convolvul.	Ι	No	13	rbcL	1031	1031	0.97	0	0.9982	Merremia peltata	a*
		i i i					ITS2	466	466	0.95	5.00E- 127	0.8631	Erycibe obtusifolia	a*
18	Erycibe	C.B.Clarke	Convolvul.	N	No	70	matK	1389	1389	1	0	1	Erycibe cochinchinensis	a*
	matacecnsis						rbcL	1033	1033	0.96	0	1	Erycibe sp.	a*
							trnL	1347	1347	0.93	0	0.9881	Erycibe coccinea	a*
							ITS2	723	723	1	0	0.9658	Rhododendron groenlandicum	a*
19	Rhododendron	F.Muell.	Eric.	N	Yes (E)	1057	matK	1369	1369	1	0	0.9908	Rhododendron javanicum	a*
	macgregoriae				()		rbcL	1027	1027	0.98	0	0.9912	Rhododendron simsii	a*
							trnL	1629	1629	0.96	0	0.9955	Rhododendron javanicum	a*

							ITS2	272	272	0.35	1.00E- 68	0.9808	Acer tataricum subsp. theiferum	i	
20	Acalypha grandis	Benth.	Euphorbi.	Ν	No	428	rbcL	1062	1062	0.99	0	1	Acalypha grisebachiana	a*	
							trnL	1729	1729	1	0	0.9886	Acalypha hispida	a*	
21	Euphorbia tirucalli	L.	Euphorbi.	I	Yes (II)	1976	ITS2	617	617	0.71	1.00E- 172	1	Euphorbia tirucalli	с	1/12 I with higher coverage
							rbcL	1046	1046	0.98	0	1	Euphorbia rauhii	a*	
							ITS2	712	712	0.94	0	0.9571	Millettia pulchra	a*	
22	Mill dia anni ann	(Mant) Danth	E-1	N	N-	107	matK	1332	1332	0.97	0	0.988	Millettia pulchra	a*	
22	Millettia sericea	(vent.) Benth.	Fad.	N	INO	187	rbcL	1042	1042	0.97	0	0.9982	Dahlstedtia pinnata	a*	
							trnL	1543	1543	1	0	0.9819	Millettia pinnata	a*	
							ITS2	593	593	0.71	2.00E- 165	0.9909	Parkia timoriana	с	
23	Parkia timoriana	(DC.)Merr.	Fab.	N	No	40	matK	1376	1376	0.98	0	0.996	Parkia biglandulosa	a*	
							rbcL	1000	1000	0.95	0	0.9927	Magnoliophyta sp.	i	
							trnL	1814	1814	0.99	0	0.999	Parkia biglandulosa	a*	
							ITS2	475	475	0.68	7.00E- 130	0.9477	Bauhinia sp.	a*	
24	Phanera fulva	(Korth.) Benth.	Fab.	Ν	Yes (E)	90	rbcL	1016	1016	0.96	0	0.9982	Embryophyte environmental	i	
							trnL	1404	1404	0.78	0	0.9974	Phanera vahlii	a**	
25	Orthosiphon	(Blume) Mia	Lami	N	No	44	ITS2	562	562	0.69	5.00E- 156	1	Orthosiphon aristatus	c	
20	aristatus	(Brunie) wild.	Lum.	11	110		rbcL	1042	1042	0.98	0	1	Clerodendranthus spicatus	a**	
							ITS2	422	422	0.99	9.00E- 114	0.8495	Premna microphylla	a*	
26	Premna serratifolia	L.	Lami.	N	No	131	rbcL	1040	1040	0.97	0	1	Premna serratifolia	c	2/3 is a* with higher and lower
							ITS2	651	651	0.91	0	0.9558	Vitex carvalhoi	a*	coverage
27	Vitex glabrata	Gaertn.	Lami.	Ν	No	203	matK	1587	1587	1	0	0.9988	Vitex glabrata	с	
													-		

							rbcL	1050	1050	1	0	0.9982	Vitex doniana	a*	
							trnL	1411	1411	0.94	0	0.9923	Vitex triflora	a*	
							matK	1375	1375	0.99	0	0.9987	Cinnamomum camphora	a*	
28	Cinnamomum rhynchophyllum	Miq.	Laur.	Ν	No	241	rbcL	1055	1055	1	0	1	Cinnamomum dubium	a*	
							trnL	1587	1587	1	0	1	Cinnamomum pittosporoides	a*	
							ITS2	616	616	0.78	4.00E- 172	1	Ficus deltoidea	c	
29	Ficus deltoidea	Jack	Mor.	Ν	Yes (P)	874	matK	1380	1380	1	0	0.996	Ficus cf.	a*	
					. ,		rbcL	1051	1051	0.98	0	0.9983	Ficus benjamina	a*	
							trnL	1664	1664	0.99	0	0.9967	Ficus carica	a*	
							ITS2	185	185	0.17	2.00E- 42	0.9231	Rhodohypoxis milloides	i	
20	Myristica	Plumo	Muriatia	N	Voc (E)	175	matK	1476	1476	0.92	0	0.9988	Myristica fragrans	a*	
30	succedanea	Bluille	Mynsuc.	IN	Tes (E)	175	rbcL	1057	1057	1	0	1	Horsfieldia amygdalina	a*	4/11 a**
							trnL	1371	1371	0.83	0	0.9987	Myristica iners	a*	
	Nopanthas						matK	1375	1375	0.99	0	0.9973	Nepenthes mapuluensis	a*	
31	ampullaria	Jack	Nepenth.	Ν	Yes (P, II)		rbcL	1042	1042	1	0	1	Nepenthes mirabilis	a*	
							trnL	1648	1648	1	0	0.9956	Nepenthes mirabilis	a*	
							matK	1371	1371	1	0	0.9973	Nepenthes gracilis	с	
32	Nepenthes gracilis	Korth.	Nepenth.	Ν	Yes (P, II)		rbcL	1046	1046	1	0	1	Nepenthes mirabilis	a*	
			-				trnL	961	961	0.57	0	0.9962	Nepenthes ampullaria	a*	
						165	ITS2	857	857	1	0	0.9979	Nepenthes reinwardtiana	a*	
33	Nepenthes mirabilis	(Lour.) Druce	Nepenth.	Ν	Yes (P. II)		matK	1371	1371	1	0	0.9973	Nepenthes mapuluensis	a*	
			Ĩ				rbcL	1038	1038	1	0	0.9965	Nepenthes graciliflora	a*	
							trnL	959	959	0.57	0	0.9943	Nepenthes sanguinea Non on thos	a*	
34	Nepenthes	Miq.	Nepenth.	Ν	Yes (P, E,		ITS2	861	861	1	0	0.9979	vepentnes reinwardtiana Nopenthes	c	
	reinwarailana	-	-		11)		matK	1376	1376	1	0	0.996	reinwardtiana	с	

is

							rbcL	1042	1042	0.98	0	0.9965	Nepenthes mirabilis	a*	
							trnL	948	948	0.57	0	0.9924	Nepenthes alba	a*	
							ITS2	394	394	0.94	2.00E- 105	0.8428	Cymbidium ensifolium	a**	
25	Acriopsis liliifolia	(J.Koenig)	Onahid	N	Vac (D II)	10	matK	1408	1408	1	0	0.9987	Acriopsis sp.	a*	
33	var. <i>liliifolia</i>	Ormerod	Ofenia.	1	1 es (r, 11)	10	rbcL	911	911	1	0	0.9824	Acriopsis sp.	a*	
							trnL	824	1591	0.91	0	0.9265	Cymbidium erythraeum	a**	
							ITS2	468	468	0.61	1.00E- 127	0.9884	Cymbidium aloifolium	c	
36	Cymbidium	(L.) Sw.	Orchid.	Ν	Yes (P, II)		matK	1386	1386	1	0	0.9987	Cymbidium aloifolium	c	1/5 is a*
	alotfolium				,	74	rbcL	1048	1048	0.98	0	0.9982	Cymbidium aloifolium	с	1/4 is a*
							trnL	989	989	0.79	0	0.953	Cymbidium wadae	a*	
37	Cymbidium	(L) Sw	Orchid	т	Vec (II)		ITS2	387	387	0.66	4.00E- 103	0.9072	Cymbidium goeringii	a*	
57	ensifolium	(L.) Sw.	Oreniu.	1	res (II)		matK	1293	1293	0.99	0	0.9889	Cymbidium longibracteatum	a*	
							ITS2	577	577	0.7	2.00E- 160	0.9968	Dendrobium crumenatum	c	
38	Dendrobium crumenatum	Sw.	Orchid.	Ν	Yes (P, II)		matK	1400	1400	0.99	0	0.9961	Dendrobium crumenatum	c	
							rbcL	1038	1038	0.97	0	0.9982	Dendrobium pseudotenellum	a*	
							ITS2	481	537	0.86	2.00E- 131	0.9005	Dendrobium calcaratum	a*	
20	Dendrobium		0.111	N T	Yes (P, E,		matK	1360	1360	1	0	0.9947	Dendrobium faciferum	a*	
39	purpureum	Roxb.	Orchid.	N	II)	1547	rbcL	1042	1042	0.98	0	0.9965	Dendrobium aggregatum	a*	
							trnL	562	998	0.98	8.00E- 156	0.9814	Dendrobium chrysanthum	a*	
							ITS2	627	627	0.79	2.00E- 175	0.9914	Dendrobium haemoglossum	a*	
10	Dendrobium		0.111	N	V (D II)		matK	1382	1382	0.99	0	0.9987	Dendrobium salaccense	с	
40	salaccense	(Blume) Lindl.	Orchid.	N	Yes (P, II)		rbcL	1031	1031	1	0	1	Dendrobium salaccense	c	2/3 is a*
							trnL	1328	1328	0.81	0	0.9959	Dendrobium salaccense	с	

							ITS2	809	38152	1	0	1	Raphanus raphanistrum subsp. landra Grammatophyllum	i	
41	Grammatophyllum speciosum	Blume	Orchid.	Ν	Yes (P, II)	13	matK	1378	1378	0.99	0	0.996	рариапит	a*	
							rbcL	1037	1037	0.97	0	0.9947	Cymbidium faberi	a**	
							trnL	568	1103	0.93	2.00E- 157	0.9905	Cymbidium serratum	a**	
							ITS2	828	828	1	0	1	Cucumis sativus	i	
42	Nervilia concolor	(Blume) Schltr.	Orchid.	Ν	Yes (P, II)		rbcL	1062	1062	0.99	0	1	Nepenthes mirabilis	i	
							trnL	1585	1585	1	0	0.9834	Nervilia mekongensis	a*	
						77	ITS2	721	721	0.88	0	0.9741	Syzygium megacarpum	i	
							matK	1413	1413	0.97	0	0.9987	Nervilia plicata	c	
43	Nervilia plicata	(Andrews) Schltr.	Orchid.	Ν	Yes (P, II)		rbcL	1005	1005	0.94	0	1	Nervilia plicata	с	1/4 is a* with higher coverage
							trnL	1663	1663	0.99	0	0.9967	Nervilia plicata	c	
							ITS2	398	398	0.88	1.00E- 106	0.8765	Oberonia caulescens	a*	
44	Oberonia Ivoeno dioi den	(J.Koenig)	Orchid.	Ν	Yes (P, II)	305	matK	1205	1205	0.93	0	0.9732	Oberonia mucronata	a*	
	lycopoalolaes	Official					rbcL	922	922	1	0	0.9921	Ancistrochilus sp.	a**	
							trnL	592	1078	0.91	2.00E- 164	0.8734	Liparis loeselii	a**	
		(Lindl.)					ITS2	431	431	0.59	2.00E- 116	0.959	Mycaranthes pannea	с	
45	Strongyleria pannea	Schuit., Y.P.Ng &	Orchid.	Ν	Yes (P, II)	4	matK	1375	1375	1	0	0.996	Mycaranthes pannea	с	
		H.A.Pedersen					rbcL	1055	1055	1	0	0.9965	Mycaranthes pannea	c	
							ITS2	433	433	0.99	4.00E- 117	0.8552	Populus nigra	i	
46	Galearia filiformis	(Blume) Boerl.	Pand.	Ν	Yes (E)	5	matK	1393	1393	1	0	1	Galearia filiformis	c	
				-		-	rbcL	1042	1042	0.98	0	1	Galearia filiformis	c	
							trnL	1744	1744	1	0	0.9969	Galearia filiformis	с	
47	Benstonea affinis	(Kurz) Callm. & Buerki	Pandan.	Ν	No	61	ITS2	124	124	0.24	6.00E- 24	0.8611	Magnolia henryi	i	

							matK	1397	1397	0.91	0	0.9935	Pandanus oblatus	a*	
							rbcL	1057	1057	1	0	1	Pandanus adinobotrys	a*	
							trnL	1705	1705	1	0	0.9989	Pandanus baptistii	a*	
							ITS2	621	621	0.74	9.00E- 174	0.9971	Phyllanthus oxyphyllus	c	1/2 is a* with higher
48	Phyllanthus oxyphyllus	Miq.	Phyllanth.	Ν	No	1016	matK	1375	1375	1	0	0.9973	Phyllanthus oxyphyllus	c	coverage
							rbcL	1059	1059	1	0	1	Phyllanthus emblica	a*	
							trnL	989	989	0.58	0	0.9945	Phyllanthus emblica	a*	
							ITS2	667	667	0.78	0	0.9973	Ardisia dasyrhizomatica	a*	
40	Andicia complanata	Wall	Drimul	N	No		matK	1574	1574	1	0	0.9931	Ardisia mamillata	a*	
49	Araisia compianaia	w all.	Filliul.	IN	INU		rbcL	1031	1031	0.99	0	0.9965	Ardisia crenata	a*	
							trnL	1483	1483	1	0	0.9951	Ardisia dasyrhizomatica	a*	
						719	ITS2	617	617	0.74	1.00E- 172	0.997	Ardisia villosa	a*	
							matK	1404	1404	0.88	0	0.9987	Ardisia crenata	c	
50	Ardisia crenata	Sims	Primul.	Ι	No		rbcL	1048	1048	1	0	1	Ardisia cornudentata subsp. morrisonensis	c	1/2 is a*
							trnL	1476	1476	0.99	0	0.9988	Ardisia affinis	a*	
							ITS2	206	316	0.45	1.00E- 48	0.9444	Hibiscus panduriformis	i	
51	Ventilago	Boerl.	Rhamn.	Ν	No	41	matK	1347	1347	0.96	0	0.9973	Ventilago leiocarpa	a*	
	madraspatana						rbcL	1022	1022	0.96	0	0.9947	Ventilago leiocarpa	a*	
							trnL	1574	1574	1	0	0.9722	Ventilago kurzii	a*	
							ITS2	398	398	1	8.00E- 107	0.9744	Psychotria camerunensis	a*	
50	Daughotnia montana	Dhuma	Dubi	N	No	1521	matK	1376	1376	0.99	0	0.996	Psychotria asiatica	a*	
32	Psycholria moniana	Diullie	Kubi.	IN	INO	1551	rbcL	1029	1029	0.96	0	1	Psychotria adenophylla	a*	
							trnL	1504	1504	0.96	0	0.9826	Psychotria asiatica	a*	
53	Lunasia amara	Blanco	Rut.	Ν	Yes (P)	1	ITS2	579	579	0.74	6.00E- 161	0.9654	Lunasia amara	с	

							matK	1243	1243	0.88	0	0.9971	Lunasia amara	с
							rbcL	1026	1026	0.97	0	0.9947	Flindersia brayleyana	a**
							trnL	1668	1668	0.95	0	0.9946	Lunasia amara	c
							ITS2	787	787	1	0	0.9823	Melicope pteleifolia	a*
54	Melicope lunu-	(Gaertn.) T.G.	Dut	N	No	241	matK	1408	1408	1	0	0.9987	Melicope pteleifolia	a*
54	ankenda	Hartley	Kut.	IN	INO	241	rbcL	1031	1031	0.98	0	0.9965	Melicope pteleifolia	a*
							trnL	1168	1168	1	0	0.9953	Melicope grisea	a*
							ITS2	558	558	0.69	7.00E- 155	0.9967	Kadsura scandens	c
55	Kadsura scandens	(Blume) Blume	Schisandr.	Ν	Yes (P)	17	matK	1376	1376	1	0	0.9947	Kadsura philippinensis	a*
							rbcL	1050	1050	0.99	0	1	Kadsura cf.	a*
							trnL	1635	1635	0.99	0	0.986	Kadsura matsudae	a*
56	Smilar adaphulla	Wall or A DC	Smileo	N	No		ITS2	821	821	1	0	0.9933	Phaseolus vulgaris	Ι
50	<i>Smilax Calophylia</i>	wall. ex A.DC.	Similac.	IN	INU		rbcL	1048	1048	0.98	0	0.9982	Smilax cocculoides	a*
						262	ITS2	274	274	0.35	3.00E- 69	0.9809	Acer tataricum subsp. theiferum	i
57	Smilax zeylanica	L.	Smilac.	Ν	Yes (P)		matK	1371	1371	1	0	1	Smilax ovalifolia	a*
							rbcL	1044	1044	0.98	0	1	Smilax ocreata	a*
							ITS2	702	702	0.82	0	0.9948	Aquilaria microcarpa	a*
58	Aquilaria hirta	Ridl	Thymelae	N	Yes (P,	21	matK	1402	1402	1	0	0.9974	Aquilaria malaccensis	a*
20			1119111011101		Vu)		rbcL	1057	1057	0.99	0	1	Rauvolfia serpentina	c
							trnL	987	987	0.67	0	0.9945	Aquilaria microcarpa	a*
							ITS2	616	616	0.79	4.00E- 172	0.9884	Sundamomum hastilabium	a**
59	Amomum hochreutineri	Valeton	Zingiber.	Ν	Yes (E)	102	rbcL	1044	1044	0.98	0	1	Amomum villosum var. xanthioides	a*
							trnL	1568	1568	0.98	0	0.9931	Amomum fulviceps	a*
60		(Blume)	7	N	Yes (E,	1.42	ITS2	656	656	0.89	0	0.9764	Hornstedtia conica	a**
60	Ettingera solaris	R.M.Sm.	Zingiber.	IN	Vu)	145	rbcL	1053	1053	0.99	0	1	Alpinia arundelliana	a**

							trnL	1622	1622	0.99	0	0.9955	Etlingera yunnanensis	a**
61	Meistera aculeata	(Roxb.) Skornick &	Zingiber	N	No	41	ITS2	592	592	0.72	7.00E- 165	1	Amomum aculeatum	с
01	nicibier a democilia	M.F. Newman	Lingioen		110		rbcL	1020	1020	0.96	0	1	Amomum dallachyi	a*

Note: Result summary: c=correct, a*: ambiguous or correct in genus level, a**: ambiguous or correct in family level, i=incorrect; Important Species: P for priority (see chapter 2), E for Endemic, Vu for Vulnerable (IUCN Red list), and II for CITES Appendix II; N/I N=Native, I=Introduced

DNA Barcoding Use for MP Conservation in Indonesia	ITS2	matK	rbcL	trnL
new DNA barcoding and can strongly assist MP conservation	1	1	2	1
Anaxagorea javanica				1
Aquilaria hirta			1	
Strongyleria pannea	1	1	1	
can strongly assist MP conservation	11	12	8	6
Alstonia scholaris	1	1	1	1
Alyxia reinwardtii	1	1	1	
Cymbidium aloifolium	1	1	1	
Dendrobium crumenatum	1	1		
Dendrobium salaccense		1	1	1
Euphorbia tirucalli	1			
Ficus deltoidea	1			
Galearia filiformis		1	1	1
Kadsura scandens	1			
Lunasia amara	1	1		1
Nepenthes gracilis		1		
Nepenthes reinwardtiana	1	1		
Nervilia plicata		1	1	1
Pangium edule		1	1	
Parkia timoriana	1			
Rauvolfia serpentina	1	1	1	1
new DNA barcoding and can assist MP conservation	1		1	
Aglaonema commutatum			1	
Meistera aculeata	1			
can assist MP conservation	5	6	7	3
Alstonia macrophylla		1	1	
Ancistrocladus tectorius	1		1	1

Table Appendix 5.2. Summary DNA Barcoding Region Use for MP Conservation in Indonesia
Ardisia crenata		1	1	
Dasymaschalon dasymaschalum			1	
Justicia gendarussa	1	1	1	1
Orthosiphon aristatus	1			
Phyllanthus oxyphyllus	1	1		
Premna serratifolia			1	
Toxicodendron succedaneum	1	1	1	1
Vitex glabrata		1		
new to DNA bank data and new DNA barcoding and may strongly assist MP conservation	6	4	6	7
Amomum hochreutineri	1		1	1
Dendrobium purpureum	1	1	1	1
Etlingera solaris	1		1	1
Myristica succedanea		1	1	1
Oberonia lycopodioides	1	1	1	1
Phanera fulva	1			1
Rhododendron macgregoriae	1	1	1	1
new DNA barcoding and may strongly assist MP conservation	2	3	2	2
Acriopsis liliifolia var. liliifolia	1	1	1	1
Anaxagorea javanica		1	1	
Aquilaria hirta	1	1		1
may strongly assist MP conservation	3	8	12	12
Alyxia reinwardtii				1
Cibotium barometz			1	
Cymbidium aloifolium				1
Cymbidium ensifolium	1	1		
Dendrobium crumenatum			1	
Dendrobium salaccense	1			
Euphorbia tirucalli			1	
Ficus deltoidea		1	1	1

Grammatophyllum speciosum		1	1	1
Kadsura scandens		1	1	1
Lunasia amara			1	
Nepenthes ampullaria		1	1	1
Nepenthes gracilis			1	1
Nepenthes mirabilis	1	1	1	1
Nepenthes reinwardtiana			1	1
Nervilia concolor				1
Pangium edule				1
Parkia timoriana		1		1
Smilax zeylanica		1	1	
new to DNA bank data and new DNA barcoding and may assist MP conservation	2	2	3	3
Acalypha grandis			1	1
Ardisia complanata	1	1	1	1
Erycibe malaccensis	1	1	1	1
new DNA barcoding and may assist MP conservation	4	6	7	6
Aglaonema commutatum		1		1
Cinnamomum rhynchophyllum		1	1	1
Decalobanthus mammosus			1	
Hoya diversifolia	1	1	1	1
Meistera aculeata			1	
Melicope lunu-ankenda	1	1	1	1
Psychotria montana	1	1	1	1
Spondias malayana	1			
Ventilago madraspatana		1	1	1
may assist MP conservation	7	6	8	9
Alstonia macrophylla	1			1
Ancistrocladus tectorius		1		
Ardisia crenata	1			1

Danston og affinis		1	1	1	
Benstonea affinis		1	1	1	
Dasymaschalon dasymaschalum		1		1	
Millettia sericea	1	1	1	1	
Orthosiphon aristatus			1		
Phyllanthus oxyphyllus			1	1	
Premna serratifolia	1				
Smilax calophylla			1		
Staurogyne elongata	1	1	1	1	
Trevesia burckii	1	1	1	1	
Vitex glabrata	1		1	1	
new to DNA bank data and new DNA barcoding, but sequences need to clarify further	2		1		
Acalypha grandis	1				
Myristica succedanea	1				
Phanera fulva			1		
new DNA barcoding, but sequences need to clarify further	2				
Aglaonema commutatum	1				
Ventilago madraspatana	1				
sequences need to clarify further	10		2		
Benstonea affinis	1				
Cibotium barometz	1				
Dasymaschalon dasymaschalum	1				
Galearia filiformis	1				
Grammatophyllum speciosum	1				
Nervilia concolor	1		1		
Nervilia plicata	1				
Pangium edule	1				
Parkia timoriana			1		
Smilax calophylla	1				
Smilax zeylanica	1				