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Abstract

We develop a holomorphic functional calculus for first-order operators DB to solve bound-

ary value problems for Schrödinger equations − divA∇u + aV u = 0 in the upper half-

space Rn+1
+ when n ≥ 3. This relies on quadratic estimates for DB, which are proved

for coefficients A, a, V that are independent of the transversal direction to the boundary,

and comprised of a complex-elliptic pair A, a that are bounded and measurable, and a

singular potential V in the reverse Hölder class B
n
2 (Rn). The square function bounds

are also shown to be equivalent to non-tangential maximal function bounds. This allows

us to prove that the Dirichlet regularity and Neumann boundary value problems with

L2(Rn)-data are well-posed if and only if certain boundary trace operators defined by

the functional calculus are isomorphisms. We prove this property when the coefficient

matrices A and a are either a Hermitian or block structure. More generally, the set of

all complex-elliptic A for which the boundary value problems are well-posed is shown to

be open in L∞. We also prove these solutions coincide with those generated from the

Lax–Milgram Theorem. Furthermore, we extend this theory to prove quadratic estimates

for the magnetic Schrödinger operator (∇+ ib)∗A(∇+ ib) when the magnetic field curl b

is in the reverse Hölder class B
n
2 (Rn).
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CHAPTER 1

INTRODUCTION

In this thesis we will be concerned with the study of the purely electric Schrödinger

operator− divA∇+aV , and the purely magnetic Schrödinger operator (∇+ib)∗A(∇+ib),

and boundary value problems for the Schrödinger equation

− divt,xA(x)∇t,xu(t, x) + a(x)V (x)u(t, x) = 0, (1.0.1)

on the upper half-space Rn+1
+ := {(t, x) ∈ R × Rn : t > 0}, for integers n ≥ 3, where

A ∈ L∞(Rn+1;L(C1+n)) and a ∈ L∞(Rn+1;L(C)) are complex, t-independent, and elliptic

(which we will define in Section 2.6); the electric potential V is in the reverse Hölder class,

Bq(Rn); and the magnetic field associated with the magnetic potential b is also in the

reverse Hölder class. We will give definitions of these terms in Chapter 2.

By boundary value problem we mean (1.0.1) together with an additional constraint of

functions at the boundary ∂Rn+1
+ (which we identify naturally with Rn). We will consider

the Neumann an Dirichlet regularity problem in this thesis. We say u is a solution to the

Neumann problem if u satisfies (1.0.1) and its normal derivative is equal to a prescribed

function at the boundary. We say u is a solution to the Dirichlet regularity problem

(henceforth simplified to the regularity problem) if u satisfies (1.0.1) and is equal to some

prescribed function at the boundary where equality is in a particular space. We will give

precise definitions of these in Chapter 2.

These boundary value problems arise from the study of the Schrödinger equation

∆w + V w = 0 above a Lipschitz graph Ω = {(t, x) ∈ Rn+1 : t > g(x)} where g : Rn → R
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is a Lipschitz function. The change of variables u(t, x) := w(t + g(x), x) then gives

− divA∇u+V u = 0 on Rn+1
+ where A is real and symmetric and independent of t. Work

in this setting started with Shen in [48]. Here Shen studied the equation −∆u + V u =

0 above a Lipschitz curve with V ∈ B∞(Rn+1). It was shown there exists a unique

solution of the Neumann problem with Lp boundary data for p ∈ (1, 2]. Later, in [53],

Tao and Wang extended these results to include solving the Neumann problem where

V ∈ Bn(Rn+1) and with Lp boundary data for p ∈ (1, 2] or in the Hardy space Hp

for p ∈ (1 − ε, 1] where ε ∈ (0, 1
n
). Tao also proved, in [52], the solvability of the

corresponding regularity problem for boundary data in a Hardy space adapted to the

potential V ∈ Bn(Rn+1). In [55], Yang proved that for a bounded Lipschitz domain and

V ∈ Bn(Rn), the Neumann and regularity problems are well-posed in Lp, for p > 2, if

the non-tangential maximal function of the gradient of solutions satisfies an Lp → L2

weak reverse Hölder estimate. We note that these works build on the theory of boundary

value problems for the Laplacian ∆u = 0 on similar domains which have been extensively

studied in [20, 21, 22, 26, 35, 54].

More recently, boundary value problems for equations of the form

− div(A∇u+ b · u) + c · ∇u+ du (1.0.2)

have been studied. In [38], Kim and Sakellaris study Green’s functions for this equation

when b, c, d are in certain Lebesgue spaces, without any smallness condition, but with

additional conditions that d ≥ div b or d ≥ div c. Here A is assumed to be real and

uniformly elliptic. In [43], Sakellaris, considered boundary value problems for (1.0.2)

on bounded domains with Dirichlet and regularity boundary data, and the additional

condition that A is Hölder continuous. Sakellaris, then extended this to arbitrary domains

in [44], where the estimates on the Green functions are in Lorentz spaces and are scale

invariant. Also, in [42], Mourgoglou proves well-posedness for the Dirichlet problem in

unbounded domains, with coefficients in a local Stummel–Kato class. He also constructs

Green functions and proves scale invariance for them. In [23], Davey, Hill, and Mayboroda

construct Green’s matrices for complex bounded coefficients under particular conditions
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on the solutions of (1.0.1). Exponential decay of the fundamental solution to −(∇ −

ia)TA(∇− ia)u+V u = 0 was proven by Mayboroda and Poggi in [40]. Also, recent work

by Bortz, Luna Garcia, Hofmann, Mayboroda and Poggi, in [19] treats well-posedness of

these equations when the coefficients have sufficiently small Lp-norm .

In this thesis we will focus on boundary value problems for (1.0.1) when A and a are

complex-valued and elliptic. This includes the situation when ∆u+ V u = 0 on Lipschitz

domains. Unlike in [45, 52, 53], we restrict to the case when V is t-independent, however

by doing this we will be allowed to have the potential in B
n
2 (Rn) which is a more general

reverse Hölder class as Bn(Rn) ⊂ B
n
2 (Rn).

To this end, we develop methods introduced by Auscher, Axelsson, and McIntosh in

[4] for boundary value problems for the equation

divt,xA(x)∇t,xu(t, x) = 0, (1.0.3)

and adapt these methods to include the 0th order term aV in (1.0.1). These methods

rely on the bounded holomorphic functional calculus, which we will define later, of a

first-order operator DB, where D is a self-adjoint, first-order differential operator and

B is a bounded matrix-valued multiplication operator, that is elliptic on R(D). In the

case of (1.0.3), this was proved when A has a certain block-type structure, is self-adjoint,

or has constant coefficients by Auscher, Axelsson, McIntosh in [4] building on the work

on the bounded holomorphic functional calculus for Dirac-type operators by Axelsson,

Keith, and McIntosh in [13], which expanded on methods developed for the solution of

the Kato square root problem obtained by Auscher, Hofmann, Lacey, McIntosh, and

Tchamitchian in [12]. The first-order approach developed in [4] and later in [2] shows

an equivalence between the second-order elliptic equation with a first-order Cauchy–

Riemann-type system

∂tF +DBF = 0. (1.0.4)

If DB were to be a sectorial operator with angle less than π
2
, then it would generate

an analytic semigroup which would solve (1.0.4). However, DB is in fact a bisectorial
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operator. In the case V ≡ 0, the boundedness of the holomorphic functional calculus of

DB was proved in [13] and this was used to prove that DB is sectorial on a subspace

of R(D). Then, in [4], this was used along with analytic semigroup theory to generate

solutions to (1.0.4). The solvability of the boundary value problems were then reduced to

showing these solutions come from the correct spaces of boundary data, by constructing

a mapping between the initial value of (1.0.4) with the correct boundary data for (1.0.1)

and showing that this mapping is invertible. This first-order method has already been

adapted to the degenerate elliptic case by Auscher, Rosen, and Rule in [10] and to the

parabolic case by Auscher, Egert, and Nyström in [6]. The first-order method was also

used recently to prove solvability for elliptic systems with block triangular coefficient

matrices A by Auscher, Mourgoglou, and McIntosh in [7].

Thus, the operator DB having a bounded holomorphic functional calculus is pivotal

to proving solvability. Therefore, a large part of this thesis is dedicated to establishing

the functional calculus results. To do this we develop ideas from [13] and [3] by reducing

this to proving quadratic estimates. To overcome the lack of coercivity ((H8) in [13]) from

the presence of the potential, we exploit the structure of the operator DB using some

ideas introduced by Bailey in [16]. In [16], it is proved that the operator − divA∇ + V

satisfies a Kato square-root-type estimate for a large class of potentials V using the

Axelsson-Keith-McIntosh framework of [13]. However, in [16], the bounded holomorphic

functional calculus is proved for Dirac-type operators of the form Γ + Γ∗B which does

not directly imply the same results for operators of the form DB. This is because in

our setting we need our perturbation B to have a more general structure, whereas in [16]

the perturbation B is of a certain block-type. Therefore, we adapt the methods for such

operators, by considering projections onto different components of R(D), and in doing so

we restrict the class of potentials we are interested in, namely the reverse Hölder class,

B
n
2 (Rn) and L

n
2 (Rn). To establish bounds on the holomorphic functional calculus for

DB, we divide the usual dyadic cube structure of Rn into certain ‘big’ and ‘small’ cubes,

depending on a property of the potential V . We shall see that heuristically on ‘small’

cubes DB behaves similarly to the case when V ≡ 0, whereas, on ‘big’ cubes DB will be
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treated differently by using the Fefferman–Phong inequality from [5].

Extending the concept of well-posedness, we discuss the notion of compatible well-

posedness. That is we compare the solution we generate from the first-order method

with the energy solutions (also known as variational solutions) generated from the Lax–

Milgram theorem, when the boundary data is in the intersection of the respective bound-

ary spaces. To do this we develop the theory of trace spaces for the Schrödinger equation

and in doing so we discuss the notion of fractional Sobolev spaces adapted to the potential

V . We also use the fractional Sobolev spaces associated with an operator introduced by

Auscher, McIntosh, and Nahmod in [8], and their relationship with interpolation theory

and quadratic estimates. We use both of these different types of fractional Sobolev spaces

to give a semigroup representation of energy solutions for the Schrödinger equation. We

then use this and the bounded holomorphic functional calculus to prove that the solutions

from the first-order method coincide with those derived from the Lax–Milgram theorem.

We also consider the magnetic Schrödinger operator (∇ + ib)∗A(∇ + ib) and prove

quadratic estimates (and therefore the existence of a bounded holomorphic functional

calculus) for the associated first-order operator. The difficulty here, compared with the

purely electric case, is the conditions are imposed on the magnetic field curl b and not the

magnetic potential b. Therefore, we take advantage of a gauge transform, introduced by

Iwatsuka in [34], which allows us to introduce a new magnetic potential, corresponding to

the same magnetic field, which can be controlled by curl b. The drawback of this is that

the new magnetic potential is only defined locally and so we must localise the first-order

operator to attain local quadratic estimates. We do this by using a localised version of the

usual dyadic decomposition of Rn, where we perform a stopping time argument to obtain

a collection of cubes on which we can introduce the new local magnetic potentials. These

methods have evolved from the theory of Riesz transform estimates for the magnetic

Schödinger equation developed by Ben Ali in [17] and [18] which builds on Shen’s work

in [47].

This thesis consists of two broad parts. The first is establishing the quadratic estimates

and the second is the applications of these quadratic estimates to proving solvability of
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boundary value problems. The thesis is structured as follows: Chapter 2 is the preliminary

chapter with known results which we will use repeatedly throughout; Chapters 3 and 4

are dedicated to the proof of the quadratic estimates associated with the Schrödinger

and magnetic Schrödinger operators respectively; Chapter 5 is concerned with direct

consequences of the quadratic estimates including Kato square-root-type estimates and

analytic dependence on the coefficients; in Chapter 6 the connection between equations

(1.0.1) and (1.0.4) is explored; the non-tangential maximal function estimates are the

focus of Chapter 7; and finally Chapter 8 finishes the mathematical content of the thesis

with proofs of well-posedness and compatible well-posedness for the Schrödinger equation.

Much of the work is contained in the preprint [41], in particular, forming the majority

of Chapters 3, 5, 6, and 7. I also acknowledge the contribution of my collaborator Andrew

Morris.
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CHAPTER 2

PRELIMINARIES

This chapter is dedicated to giving some of the important standard results that we will

be using throughout.

2.1 Functional Calculus of Bisectorial Operators

This section gives the definitions and some important results regarding the functional

calculus of bisectorial operators and the relationship between functional calculus and

quadratic estimates. For the proofs and more details see [1] or [31]. We start by defining

the closed and open sectors as

Sω+ := {z ∈ C : | arg(z)| ≤ ω} ∪ {0},

Soµ+ := {z ∈ C : z 6= 0, | arg(z)| < µ},

where 0 ≤ ω < µ < π. Then we define the open bisector Soµ := Soµ+ ∪ (−Soµ+) and closed

bisector Sµ := Sµ+ ∪ (−Sµ+) for 0 ≤ µ < π
2
. For a closed operator T we denote σ(T ) as

the spectrum of T .

Definition 2.1.1. Let X be a Banach space. Let 0 ≤ ω < π. Then a closed operator T

on X is sectorial of type Sω+ (or ω-sectorial) if σ(T ) ⊆ Sω+ and, for each µ > ω, there

exists Cµ > 0 such that

‖(T − zI)−1‖ ≤ Cµ|z|−1, ∀z ∈ C \ Sµ+.
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Re

Im

σ(T )

Figure 2.1: The sector with spec-
trum of a sectorial operator

Re

Im

σ(T )σ(T )

Figure 2.2: The bisector with spec-
trum of a bisetorial operator

We have a similar definition for bisectorial.

Definition 2.1.2. Let X be a Banach space. Let 0 ≤ ω < π
2
. Then a closed operator

T on X is is bisectorial of type Sω (or ω-bisectorial) if σ(T ) ⊆ Sω and, for each µ > ω,

there exists Cµ > 0 such that

‖(T − zI)−1‖ ≤ Cµ|z|−1, ∀z ∈ C \ Sµ.

Let H(Soµ) be the set of all holomorphic functions on Soµ. We define the following

H∞(Soµ) = {f ∈ H(Soµ) : ‖f‖∞ <∞},

Ψ(Soµ) = {ψ ∈ H∞(Soµ) : ∃s, C > 0, |ψ(z)| ≤ C|z|s(1 + |z|2s)−1},

F(Soµ) = {f ∈ H(Soµ) : ∃s, C > 0, |f(z)| ≤ C(|z|s + |z|−s)}.

Note that Ψ(Soµ) ⊆ H∞(Soµ) ⊆ F(Soµ) ⊆ H(Soµ).

Now for ψ ∈ Ψ(Soµ+) and γ, the unbounded contour γ = {z = re±iθ : r ≥ 0}

parametrised clockwise around Sω+ such that 0 ≤ ω < θ < µ < π
2
. Then for an injective,

sectorial of type Sω+ operator T we define ψ(T ) as

ψ(T ) =
1

2πi

ˆ
γ

ψ(z)(T − zI)−1dz.

Similarly, let ψ ∈ Ψ(Soµ) and the unbounded contour γ = {z = ±re±iθ : r ≥ 0}

parametrised clockwise around Sω such that 0 ≤ ω < θ < µ < π
2
. Then for an injective,
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bisectorial of type Sω operator T we define ψ(T ) as

ψ(T ) =
1

2πi

ˆ
γ

ψ(z)(T − zI)−1dz.

Note as ψ ∈ Ψ(Soµ+) (or Ψ(Soµ)) then the integral converges and so the resolvent operators

are bounded we have ψ(T ) ∈ L(X ). Then we define the F -functional calculus for f ∈

F(Soµ+) in the following way: let ψ ∈ Ψ(Soµ+) be defined as

ψ(z) =

(
z

(1 + z)2

)s+1

,

where s > 0 is such that |f(z)| ≤ C(|z|s+ |z|−s) for some C > 0. Therefore ψf ∈ Ψ(Soµ+).

Then for an injective, bisectorial of type Sω operator T we define the closed operator f(T )

as

f(T ) = (ψ(T ))−1(fψ)(T ). (2.1.1)

One of the most important questions related to the functional calculus is whether the

operator’s functional calculus is bounded.

Definition 2.1.3. Let X be a Banach space. Let T be an injective, bisectorial operator

of type Sω in X , and 0 ≤ ω < µ < π
2
. Then we say that T has bounded holomorphic

(or H∞) functional calculus if, for all f ∈ H∞(Soµ), then f(T ) ∈ L(X ) and there exists

cµ > 0 such that

‖f(T )u‖ ≤ cµ‖f‖∞‖u‖, ∀u ∈ X .

In general it is hard to prove whether an operator has a bounded H∞ functional

calculus or not. The following theorem gives an equivalent (and somewhat easier to

prove) condition to an operator having a bounded holomorphic functional calculus.

Theorem 2.1.4. Let H be a Hilbert space. Let T be an injective operator of type Sω in

H. Then the following are equivalent:

1. T has a bounded Soµ holomorphic functional calculus for all µ ∈ (ω, π
2
);

12



2. there exists cµ > 0 such that ‖ψ(T )u‖ ≤ cµ‖ψ‖∞‖u‖ for all u ∈ H and for all

ψ ∈ Ψ(Soµ) for some µ ∈ (ω, π
2
);

3. the following estimate holds,

ˆ ∞
0

‖tT (I + t2T 2)−1u‖2
2

dt

t
h ‖u‖2

2, for all u ∈ H.

We note that in the definition of bounded holomorphic functional calculus we present

the operator T as being injective. In general we will not be dealing with injective opera-

tors, however, we will later restrict our operators to a subspace where they are injective

(see Proposition 2.5.1), and so these result will be applicable after such a restriction.

2.2 Reverse Hölder Weights

This section give the definitions and some of the important properties associated with

reverse Hölder weights. First, for a cube, Q ⊂ Rn, we denote the sidelength as l(Q) and

the Lebesgue measure as |Q|. we define −́
Q
f := |Q|−1

´
Q
f for all f ∈ L1

loc(Rn).

Definition 2.2.1. Let q ∈ (1,∞). Then a non-negative locally L1-function, V , is in the

reverse Hölder class, Bq(Rn), if there exists C > 0 such that the reverse Hölder inequality

(
−
ˆ
Q

V q dx

) 1
q

≤ C

(
−
ˆ
Q

V dx

)

for all cubes Q.

We define the best constant in the reverse Hölder inequality as

JV Kq := sup
Q⊂Rn

(
−́
Q
V q
) 1
q

−́
Q
V

<∞.

We first we note for all q > 1 we have Bq(Rn) ⊂ A∞, the set of all Muckenhoupt

weights, see [50, Chapter V Theorem 3]. We say ω ∈ A∞ if there exists constants
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γ, δ ∈ (0, 1) such that for all cubes Q and all subsets E ⊆ Q we have, if

|E| ≤ γ|Q|, then

ˆ
E

ω(x) dx ≤ δ

ˆ
Q

ω(x) dx. (2.2.1)

We call γ and δ the A∞ constants of ω. In [28] the important property that: if V ∈ Bq(Rn)

then there exists ε > 0, depending only on n and JV Kq, such that V ∈ Bq+ε(Rn). Another

key property of Bq(Rn) is that V (x) dx is a doubling measure, that is

ˆ
2Q

V (x) dx ≤ cd

ˆ
Q

V (x) dx,

where cd > 1 is the doubling constant for V .

For V ∈ Bq(Rn) we define m(x, V ), the Shen maximal function, first introduced by

Shen in [45], as

m(x, V ) := sup

{
r > 0: r2−

ˆ
Br(x)

V (y) dy ≤ 1

}
, (2.2.2)

where Br(x) is the ball of radius r and centre x. We will also use a discrete version of

m(x, V ) which we will incorporate into the dyadic mesh of Rn at each scale. Therefore,

as in [5], we will consider the following two types of cubes:

l(Q)2−
ˆ
Q

V (x) dx ≤ 1 or l(Q)2−
ˆ
Q

V (x) dx > 1,

we call the former type as small and the latter type as big. To see why we use the term

small let x ∈ Rn be a Lebesgue point of V and let {Qk}k∈N be the collection of cubes such

that limk→∞ l(Qk) = 0 and x ∈ Qk for all k ∈ N. Then by the Lebesgue differentiation

theorem (see [51, Corollary I.1]) we have

lim
k→∞

[
l(Qk)

2−
ˆ
Qk

V

]
= 0 · V (x) = 0. (2.2.3)

Note that, as V ∈ L1
loc(Rn) then, again using [51, Corollary I.1], that almost every x ∈ Rn

is a Lebesgue point of V .

A natural question to ask is: Given a small cube Q are there conditions on a subcube
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R ⊂ Q which can guarantee that R is also small? We give the following general lemma

which answers this question. The lemma expands on [45, Lemma 1.2].

Lemma 2.2.2. Let V ∈ Bq(Rn), for q > n
2
. Let C ≥ c > 0 Suppose that cubes Q and

R ⊂ Q we have

l(Q)2−
ˆ
Q

V ≤ C, and l(R)2−
ˆ
R

V ≥ c, (2.2.4)

Then, there exists c̃ > 0 such that

c̃l(Q) ≤ l(R),

where c̃ depends only on n, q, JV Kq, C, and c.

Proof. Then, using Jensen’s inequality and the reverse Hölder property of V , we have

−
ˆ
R

V ≤
(
−
ˆ
R

V q

) 1
q

≤
(
|Q|
|R|
−
ˆ
Q

V q

) 1
q

≤
(
l(Q)

l(R)

)n
q

JV Kq−
ˆ
Q

V.

Thus, by (2.2.4) we have

c < l(R)2−
ˆ
R

V ≤
(
l(Q)

l(R)

)n
q
−2

JV Kql(Q)2−
ˆ
Q

V ≤
(
l(Q)

l(R)

)n
q
−2

JV KqC.

Therefore, as n
q
− 2 < 0 we have

l(Q) ≤
(

JV KqC
c

) 1
2−nq

l(R).

Then letting c̃ =
(

JV KqC
c

) −1
2−nq completes the proof.

The contrapositive of Lemma 2.2.2 will also be very useful and so we present it as

well.

Lemma 2.2.3. Let V ∈ Bq(Rn), with q > n
2
. Let C ≥ c > 0 Let Q be a cube such that

l(Q)2−
ˆ
Q

V ≤ C.
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Then, if R is a subcube of Q with

l(R) <

(
JV KqC
c

) −1
2−nq

l(Q),

then

l(R)2−
ˆ
R

V < c.

Remark 2.2.4. If V ∈ B n
2 (Rn) then by the self improvement property of reverse Hölder

weights we have there exists q > n
2

such that V ∈ Bq(Rn). Therefore, Lemmas 2.2.2 and

2.2.3 apply to all V ∈ B n
2 (Rn) with constants depending on the exponent q.

We also include a version of the Fefferman–Phong inequality on cubes as in [5]. This

inequality is used to bound the local Lp-norm with a local Sobolev norm adapted to the

weight V , where the constant depends explicitly on the behaviour of V on Q.

Proposition 2.2.5 (Improved Fefferman–Phong Inequality). Let p ∈ [1,∞) Let w ∈ A∞.

Then there are constants C > 0 and β ∈ (0, 1) depending only on the A∞ constants of w

(as in (2.2.1)) and n, such that for all cubes Q with side-length l(Q) and u ∈ C1(Rn) we

have

Cmβ(l(Q)p avQw)

l(Q)p

ˆ
Q

|u|p ≤
ˆ
Q

|∇u|p + w|u|p,

where avQw = −́
Q
w, and mβ(x) = x for x ≤ 1 and mβ(x) = xβ for x > 1.

2.3 Sobolev Spaces Adapted to Singular Potentials

Throughout this section, suppose that n > 2 is an integer and that Ω is an open subset

of Rn. The potential V : Rn → C always denotes a locally integrable function. In most

results, it will be either complex-valued in Lp(Rn) for some p ∈ (1,∞), or nonnegative-

valued in the reverse Hölder class Bq(Rn) for some q ∈ (1,∞) so that either

‖V ‖p :=

(ˆ
Rn
|V |p

) 1
p

<∞ or JV Kq := sup
Q⊂Rn

(
−́
Q
V q
) 1
q

−́
Q
V

<∞.

16



We will need to adapt the usual Sobolev spaces to account for the potential V . The

following notation will be convenient for this purpose. If f ∈ L2
loc(Ω), then ∇µf ∈ D′(Ω)

denotes the distribution

∇µf :=

 ∇f
|V | 12f

 , (2.3.1)

where ∇f = (∂1f, . . . , ∂nf)T is the standard distributional gradient of f , whilst the

product (|V | 12f)(x) = |V (x)| 12f(x) is defined pointwise almost everywhere on Ω and

belongs to L1
loc(Ω) (and thus can be interpreted as a distribution) because f ∈ L2

loc(Ω)

and V ∈ L1
loc(Rn). We note that ∇µ depends on the dimension of the domain of the

function. In particular, we will use ∇µ for function on both Rn and Rn+1
+ and ∇µ will

have different dimensions in these two cases, n and n + 1 dimensions respectively. This

should be clear from the context.

Our starting point is a minor variant of the standard Sobolev inequality (see, for

instance, Section 2 in Chapter V of [51]): If f ∈ Lp(Rn) for some p ∈ [1,∞) and

∇f ∈ L2(Rn), then

‖f‖2∗ .n ‖∇f‖2. (2.3.2)

where 2∗ := 2n
n−2

is the Sobolev exponent for Rn. We will consider potentials that can be

controlled by this inequality as follows: If V ∈ Ln
2 (Rn), then Hölder’s inequality implies

that

‖|V |
1
2f‖2

2 ≤ ‖V ‖n2 ‖f‖
2
2∗ . (2.3.3)

If V ∈ B n
2 (Rn), then Hölder’s inequality implies the local variant

‖|V |
1
2f‖2

L2(Q) ≤ ‖V ‖Ln2 (Q)
‖f‖2

L2∗ (Q) ≤ JV Kn
2

(
l(Q)2−

ˆ
Q

|V |
)
‖f‖2

2∗ (2.3.4)

for all cubes Q ⊂ Rn. The following technical lemma provides the basis for the definition

of our adapted Sobolev spaces.

Lemma 2.3.1. Let p ∈ [1,∞) and suppose that V ∈ L
n
2
loc(Rn). If {fm} is a sequence

in Lp(Ω) that converges to some f in Lp(Ω), and {∇µfm} is a Cauchy sequence in
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L2(Ω,Cn+1), then {∇µfm} converges to ∇µf in L2(Ω,Cn+1).

Proof. Suppose that {fm} and f satisfy the hypotheses of the lemma, in which case

{∇fm} converges to some (F1, . . . , Fn)T in L2(Ω,Cn) and {|V | 12fm} converges to some

Fn+1 in L2(Ω). It suffices to prove that Fj = ∂jf when j ∈ {1, . . . , n} whilst Fn+1 =

|V | 12f . Fix ε > 0 and ϕ ∈ C∞c (Ω) arbitrarily. Let N ∈ N be such that

‖Fj − ∂jfm‖2‖ϕ‖2 <
ε

2
and ‖fm − f‖p‖∂jϕ‖p′ <

ε

2

for all j ∈ {1, . . . , n} whenever m > N . Now, if j ∈ {1, . . . , n}, then by the definition of

the distributional derivative and Hölder’s inequality imply the simple estimate

∣∣∣∣(ˆ Fjϕ

)
−
(
−
ˆ
f∂jϕ

)∣∣∣∣ ≤ ‖Fj − ∂jfm‖2‖ϕ‖2 + ‖fm − f‖p‖∂jϕ‖p′ < ε.

Therefore, as ε > 0 and ϕ were arbitrary then
´
Fjϕ = −

´
f∂jϕ and thus Fj = ∂jf . In

particular, this shows that ∇fm converges to ∇f in L2(Ω,Cn), which we shall now rely

on to complete the proof. Suppose that Q is a cube contained in Ω. Again fix ε > 0 and

ϕ ∈ C∞c (Ω) supported in Q arbitrarily. Let N ∈ N be such that

‖Fn+1 − |V |
1
2fm‖2‖ϕ‖2 <

ε

2
and ‖∇(fm − f)‖2‖ϕ‖2 <

ε

2

Then, by Hölder’s Inequality and (2.3.2), we obtain

∣∣∣∣ˆ (Fn+1 − |V |
1
2f)ϕ

∣∣∣∣ ≤ ‖Fn+1 − |V |
1
2fm‖2‖ϕ‖2 + ‖|V |

1
2 (fm − f)‖L2(Q)‖ϕ‖2

.n,Q ‖Fn+1 − |V |
1
2fm‖2‖ϕ‖2 + ‖V ‖

L
n
2 (Q)
‖∇fm −∇f‖2‖ϕ‖2

.n,V,Q ε.

Similar to before we have Fn+1 = |V | 12fm almost everywhere on Q, and thus also almost

everywhere on Ω.

We now define the adapted Sobolev space V1,2(Ω) to be the inner-product space
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consisting of the set

V1,2(Ω) := {f ∈ L2(Ω) : ∇µf ∈ L2(Ω,Cn+1)}

with the (complex) inner-product

〈f, g〉V1,2(Ω) :=

ˆ
Ω

fg +

ˆ
Ω

∇µf · ∇µg

and the associated norm

‖f‖V1,2(Ω) :=
(
‖f‖2

L2(Ω) + ‖∇µf‖2
L2(Ω,Cn+1)

) 1
2
.

If either V ∈ Ln
2 (Rn) or V ∈ B n

2 (Rn), then Lemma 2.3.1 shows that V1,2(Ω) is a Hilbert

space. We then define V1,2
c (Ω) to be the closure of C∞c (Ω) in V1,2(Ω). In the case Ω = Rn,

it holds that V1,2(Rn) = V1,2
c (Rn), since C∞c (Rn) is a dense subspace of V1,2(Rn). The

density of C∞c (Rn) in the case V ∈ B n
2 (Rn) is proved in [24, Theorem 1.8.1], which only

requires that V is nonnegative and locally integrable. In the case V ∈ L
n
2 (Rn), the

Sobolev inequality in (2.3.3) implies that ‖f‖2
V1,2 h ‖f‖2

2 + ‖∇f‖2
2 =: ‖f‖2

W 1,2 , so in fact

V1,2(Rn) is then just an equivalent normed space to the usual Sobolev space W 1,2(Rn),

for which density of C∞c (Rn) is well-known. We also define V1,2
loc (Ω) to be the set of all

f ∈ L2
loc(Ω) such that f ∈ V1,2(Ω′) for all open sets Ω′ with compact closure Ω′ ⊂ Ω

(henceforth denoted Ω′ ⊂⊂ Ω).

We also define the homogeneous space V̇1,2(Rn) to be the completion of the normed

space consisting of the set C∞c (Rn) with the norm

‖f‖V̇1,2(Rn) := ‖∇µf‖L2(Rn,Cn+1).

The precompleted space is a genuine normed space, since if f ∈ D′(Rn) and ‖∇f‖L2(Rn) =

0, then f is a constant function, so when f is also in C∞c (Rn), it must hold that f = 0.

Moreover, the Sobolev inequality (2.3.2), and Lemma 2.3.1 in the case p = 2∗, show

that there is an injective embedding from the completion into L2∗(Rn), allowing us to
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henceforth identify it as the set

V̇1,2(Rn) = {f ∈ L2∗(Rn) : ∇µf ∈ L2(Rn)}

with the norm equivalence

‖f‖V̇1,2(Rn) = ‖∇µf‖L2(Rn,Cn+1) h
(
‖f‖2

L2∗ (Rn) + ‖∇µf‖L2(Rn,Cn+1)

) 1
2
.

In particular, the set inclusion V̇1,2(Rn) ⊇ {f ∈ L2∗(Rn) : ∇µf ∈ L2(Rn)} requires

the density of C∞c (Rn), with respect to the norm ‖∇µf‖L2(Rn,Cn+1), in the latter set.

This density can be proved using the arguments in Theorem 1.8.1 of [24], as discussed

above for the space V1,2(Rn). In the case V ∈ L
n
2 (Rn), we also have the equivalence

‖f‖2
V̇1,2 h ‖f‖2

2∗ + ‖∇f‖2
2 h ‖∇f‖2

2, so V̇1,2(Rn) is then just the realisation of the usual

homogeneous Sobolev space Ẇ 1,2(Rn) in which each equivalence class of locally integrable

functions modulo constant functions [f ] ∈ L1
loc(Rn)/C is identified with a unique function

g ∈ L2∗(Rn) such that g ∈ [f ].

Now we define V̇1,2(Rn+1
+ ) to be the Banach Space consisting of the set

V̇1,2(Rn+1
+ ) := {f ∈ L2∗(Rn+1

+ ) : ∇µf ∈ L2(Rn+1
+ ,Cn+2)}

with the norm

‖f‖V̇1,2(Rn+1
+ ) := ‖∇µf‖L2(Rn+1

+ ,Cn+2),

where 2∗ := 2(n+1)
(n+1)−2

= 2(n+1)
n−1

denotes the Sobolev exponent on Rn+1, and since Rn+1
+ ⊂

Rn+1 and so following (2.3.1) then ∇µ is understood on Rn+1
+ as

∇µf(t, x) :=


∂tf(t, x)

∇‖f(t, x)

|V | 12 (x)f(t, x)


for all t > 0 and x ∈ Rn. For a function defined on Rn+1

+ we use ∇‖ to denote the
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derivatives in the transversal directions. That is

∇‖f =


∂1f

...

∂nf

 ,

where ∂k = ∂
∂xk

(we use ∂0 = ∂t).

Following [30], we define C(Rn+1
+ ) to be the set of continuous functions on Rn+1

+ and

Ck(Rn+1
+ ) to be the set of functions in Ck(Rn+1

+ ) all of whose derivatives of order less than

k have a continuous extension to Rn+1
+ . We also denote Ckc (Rn+1

+ ) to be the set of function

in Ck(Rn+1
+ ) with compact support. Note that, the support of functions in Ckc (Rn+1

+ ) can

include the boundary of Rn+1
+ . We have the following proposition about the density of

Ckc (Rn+1
+ ) in V̇(Rn+1

+ ).

Proposition 2.3.2. If V ∈ B n
2 (Rn), then C∞c (Rn+1

+ ) is dense in V̇1,2(Rn+1
+ )

Proof. If f ∈ V̇1,2(Rn+1
+ ), then f ∈ Ḣ1(Rn+1

+ ), so by [7, Lemma 3.1] the extension f̃

of f defined by reflection across the boundary of Rn+1
+ is in Ḣ1(Rn+1), further details

can be found in [30, Theorem 7.25]. The main point is that f ∈ L2
loc(R

n+1
+ ) because

f ∈ L2∗(Rn+1
+ ). In particular, this property ensures that the “translated mollifiers” used in

the proof of [30, Theorem 7.25] converge in Ḣ1(Rn+1
+ ). Meanwhile, the extension f̃ is also

in L2∗(Rn+1) with ‖f̃‖L2∗ (Rn+1) = 2‖f‖L2∗ (Rn+1
+ ) and ‖|V | 12 f̃‖L2(Rn+1) = 2‖|V | 12f‖L2(Rn+1

+ ),

hence f̃ is in V̇1,2(Rn+1).

Next, since C∞c (Rn+1) is dense in V̇1,2(Rn+1), there exists a sequence (fk)k∈N in

C∞c (Rn+1) that converges to f̃ in V̇1,2(Rn+1). This means that ∇µfk converges to ∇µf̃ in

L2(Rn+1,Cn+2), hence the restrictions to the upper half-space (∇µfk)|Rn+1
+

= ∇µ(fk|Rn+1
+

)

converge to (∇µf̃)|Rn+1
+

= ∇µf in L2(Rn+1
+ ,Cn+2). The required density follows since

fk|Rn+1
+

is in C∞c (Rn+1
+ ).

Remark 2.3.3. We define V̇1,2 on the upper half-space Rn+1
+ in a different way to how

we define it on the full space Rn+1. The density of C∞c in the full space definition was
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instrumental to the result above. In fact, the above proof actually shows that

V̇1,2(Rn+1
+ ) = {f |Rn+1

+
: f ∈ V̇1,2(Rn+1)},

since the set inclusion ⊇ is immediate.

We will translate these Sobolev spaces into the language of first-order operators. First,

We introduce notation to represent vectors v ∈ Cn+2 as follows

v =


v⊥

v‖

vµ

 =

v⊥
vr

 , that is vr =

v‖
vµ



where v⊥ ∈ C represents the normal part, v‖ ∈ Cn represents the tangential part, vµ ∈ C

represents the potential adapted part and vr ∈ Cn+1 represents the combination of v‖

and vµ.

Now, we define the self-adjoint, hence closed, operator D : D(D) ⊂ L2(Rn;Cn+2) →

L2(Rn;Cn+2) by

D :=

 0 −∇∗µ

−∇µ 0

 =


0 div −|V | 12

−∇ 0 0

−|V | 12 0 0


with its maximal domain in L2(Rn,Cn+2) being given by

D(D) := {f ∈ L2(Rn,Cn+2) : f⊥ ∈ V1,2(Rn) and (div f‖ − |V |1/2fµ) ∈ L2(Rn)}.

This domain is maximal sinceDf is well-defined as a distribution for all f in L2(Rn,Cn+2).

Indeed, recalling the requirement that f⊥ ∈ V1,2(Rn) is just that ∇µf⊥ ∈ L2(Rn), whilst

div f‖ denotes the distributional divergence of f‖, and |V | 12fµ ∈ L1
loc(Rn) when fµ ∈

L2(Rn) because V ∈ L1
loc(Rn). Also, ∇µ is interpreted as the unbounded operator from

L2(Rn) into L2(Rn,Cn+1) defined by (2.3.1) on the domain D(∇µ) := V1,2(Rn). In

particular, the operator ∇µ is closed by Lemma 2.3.1, and since C∞c (Rn) is dense in
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V1,2(Rn), its adjoint satisfies ∇∗µ = (− div, |V | 12 ) on its domain

D(∇∗µ) = {(f‖, fµ) ∈ L2(Rn,Cn+1) : (− div f‖ + |V |
1
2fµ) ∈ L2(Rn)}, (2.3.5)

where (− div f‖+|V |
1
2fµ) ∈ L2(Rn) means there exists F ∈ L2(Rn), and∇∗µ((f‖, fµ)) := F ,

such that
´

(f‖ · ∇ϕ + fµ|V |
1
2ϕ) =

´
Fϕ for all ϕ ∈ C∞c (Rn). We also note that we have

the following product rule for ∇∗µ.

Lemma 2.3.4. Let u ∈ D(∇∗µ) and η ∈ C∞c (Rn). Then ηu ∈ D(∇∗µ) and

∇∗µ(ηu) = η∇∗µu−∇η · u‖.

Proof. Note as u ∈ L2(Rn;Cn+1) and ∇∗µu ∈ L2(Rn) we have ∇η · u + η∇∗µu ∈ L2(Rn).

Now, let ϕ ∈ C∞c (Rn), then

〈η∇∗µu−∇η · u‖, ϕ〉 = 〈η∇∗µu, ϕ〉 − 〈∇η · u‖, ϕ〉

= 〈u,∇µ(ηϕ)〉 − 〈u‖, ϕ∇η〉

= 〈u‖, η∇ϕ+ ϕ∇η〉+ 〈uµ, |V |
1
2ηϕ〉 − 〈u‖, ϕ∇η〉

= 〈ηu,∇µϕ〉.

Thus, ∇∗µ(ηu) = η∇∗µu−∇η ·u‖. Therefore, ∇∗µ(ηu) ∈ L2(Rn;Cn+1) and ηu ∈ D(∇∗µ).

We introduce the definition of a topological splitting of a Banach space

Definition 2.3.5. Let X be a Banach space. Let Y ,Z ⊆ X . Then we write X = Y ⊕Z

if:

1. Y ,Z are linear subspaces of X ;

2. Y ∩ Z = {0};

3. for all x ∈ X there exists y ∈ Y , z ∈ Z, and C > 0 such that x = y + z and

‖y‖+ ‖z‖ ≤ C‖x‖
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If H is a Hilbert space and Y ,Z ⊆ H, then we write H = Y
⊥
⊕ Z if H = Y ⊕ Z and

Y = Z⊥.

The self-adjointness of D provides the orthogonal Hodge decomposition

L2(Rn,Cn+2) = N(D)
⊥
⊕ R(D). (2.3.6)

Moreover, the null space of D is the set

N(D) = {f ∈ L2(Rn,Cn+2) : f⊥ = 0 and div f‖ = |V |
1
2fµ},

whilst the closure of the range of D is characterised in the following lemma.

Lemma 2.3.6. The closure of the range of D in L2(Rn,Cn+2) is the set

R(D) = {f ∈ L2(Rn,Cn+2) : f⊥ ∈ L2(Rn) and (f‖, fµ)T = ∇µg for some g ∈ V̇1,2(Rn)}.

Proof. First, suppose that f ∈ R(D), so then f⊥ ∈ L2(Rn) and there exists a sequence

{gm} in V1,2(Rn) such that {∇µgm} converges to (f‖, fµ)T in L2(Rn,Cn+1). The Sobolev

inequality (2.3.2) then implies that {gm} is Cauchy and hence convergent to some function

g in L2∗(Rn). Therefore, by Lemma 2.3.1 in the case p = 2∗, the sequence {∇µgm} must

converge to ∇µg in L2(Rn,Cn+1), hence (f‖, fµ)T = ∇µg and g ∈ V̇1,2(Rn), as required.

For the converse, suppose that f⊥ ∈ L2(Rn) and that (f‖, fµ)T = ∇µg for some

g ∈ V̇1,2(Rn). If h ∈ N(D), then h⊥ = 0 and div h‖ = |V | 12hµ, hence

〈f, h〉L2(Rn,Cn+2) = 〈∇g, h‖〉L2(Rn,Cn) + 〈|V |
1
2 g, hµ〉L2(Rn) = 〈g, |V |

1
2hµ − div h‖〉L2(Rn) = 0,

where the last equality, which is immediate when g ∈ C∞c (Rn), relies on the density of

C∞c (Rn) in V̇1,2(Rn). The orthogonal Hodge decomposition in (2.3.6) then allows us to

conclude that f ∈ [N(D)]⊥ = R(D).
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2.4 Sobolev Spaces Adapted to Vector Potentials

In this section we aim to replicate some of the results in Section 2.3 where we replace the

operator ∇µ with ∇ + ib for some fixed b ∈ L2
loc(Rn;Rn). Here we call b the magnetic

potential and we define the magnetic field generated by b as B := curl(b), where

Bjk = curl(b)jk :=
∂bj
∂xk
− ∂bk
∂xj

.

Note that as bj ∈ L2
loc(Rn) then bjf ∈ L1

loc(Rn) for all f ∈ L2
locRn). Therefore, we can

make sense of (∂j + ibj)f in the following distributional sense

[(∂j + ibj)f ](ϕ) :=

ˆ
f(ibj − ∂)ϕ.

We then define the (∇+ ib)f := ((∂1 + ib1)f, . . . , (∂n + ibn)f)T ∈ D′(Rn). Then we define

the inner-product space

W 1,2
b := {f ∈ L2(Rn) : (∇+ ib)f ∈ L2(Rn)},

with (complex) inner-product

〈f, g〉W 1,2
b (Ω)

:=

ˆ
Ω

fg + (∇+ ib)f · (∇+ ib)g,

and norm

‖f‖W 1,2
b (Ω)

:=
(
‖f‖2

L2(Ω) + ‖(∇+ ib)f‖2
L2(Ω;Cn)

) 1
2
.

In the definition of W 1,2
b (Ω) we do not assume that ∇f or bf are in L2(Rn;Cn) separately.

That is, if f ∈ W 1,2
b (Rn) then it is not necessarily true that f ∈ W 1,2(Rn), however the

following theorem shows that if f ∈ W 1,2
b (Rn) then |f | ∈ W 1,2(Rn), see [39, Theorem

6.17] for the definition of ∇|f |. We give a pointwise bound below.

Proposition 2.4.1 (Diamagnetic Inequality). Let b ∈ L2
loc(Rn;Rn). Then, for all f ∈
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W 1,2
b (Rn), we have

|∇|f |(x)| ≤ |(∇+ ib)f(x)|,

for almost every x ∈ Rn.

Proof. See [39, Theorem 7.21].

We are able to combine the Diamagnetic Inequality with the Sobolev Inequality (2.3.2)

to obtain the following magnetic version

‖f‖2∗ = ‖|f |‖2∗ . ‖∇|f |‖2 ≤ ‖(∇+ ib)f‖2. (2.4.1)

The following lemma is the analogous to Lemma 2.3.1.

Lemma 2.4.2. Let p ∈ [1,∞] and suppose that b ∈ L2
loc(Rn). If {fm} is a sequence

in Lp(Ω) that converges to some f in Lp(Ω), and {(∇ + ib)fm} is a Cauchy sequence in

L2(Ω,Cn+1), then {(∇+ ib)fm} converges to (∇+ ib)f in L2(Ω,Cn).

Proof. Suppose that {fm} and f satisfy the hypotheses of the lemma, in which case

{(∇ + ib)fm} converges to some (F1, . . . , Fn)T in L2(Ω,Cn+1). It suffices to prove that

Fj = (∂j + ibj)f for j ∈ {1, . . . , n}. Fix ε > 0 and ϕ ∈ C∞c (Ω) arbitrarily. Let N ∈ N be

such that

‖Fj − (∂j + ibj)fm‖2‖ϕ‖2 <
ε

2
and ‖fm − f‖p‖(∂j + ibj)ϕ‖p′ <

ε

2

for all j ∈ {1, . . . , } whenever m > N . Now, if j ∈ {1, . . . , n}, then by the definition of

the distributional derivative and Hölder’s inequality imply the simple estimate

∣∣∣∣(ˆ Fjϕ

)
−
(
−
ˆ
f(ibj − ∂j)ϕ

)∣∣∣∣ ≤ ‖Fj − (∂j + ibj)fm‖2‖ϕ‖2

+ ‖fm − f‖p‖(∂j + ibj)ϕ‖p′

< ε.

Therefore, as ε > 0 and ϕ were arbitrary then
´
Fjϕ = −

´
f(ibj − ∂j)ϕ and thus

Fj = (∂j + ibj)f .
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A corollary to Lemma 2.4.2 is that W 1,2
b (Ω) is a Hilbert space. Following the notation

in Section 2.3, we define W 1,2
b,c (Ω) to be the closure of C∞c (Ω) in W 1,2

b (Ω). By [39, Theorem

7.22] we have C∞c (Rn) is dense in W 1,2
b (Rn), and so W 1,2

b (Rn) = W 1,2
b,c (Rn). We also define

W 1,2
b,loc(Ω) to be the set of all f ∈ L2

loc(Ω) such that f ∈ W 1,2
b (Ω′) for all open sets Ω′ ⊂⊂ Ω.

We define the homogeneous Ẇ 1,2
b (Rn) to be the completion of C∞c (Rn) with the norm

‖f‖Ẇ 1,2
b (Rn)

:= ‖(∇+ ib)f‖L2(Rn;Cn).

The precompleted space is again a genuine normed space as if f ∈ C∞c (Rn) is such that

‖(∇+ ib)f‖L2(Rn;Cn) = 0, then by (2.4.1) we have ‖f‖L2∗ (Rn) . ‖(∇+ ib)f‖L2(Rn;Cn)) = 0.

Hence f = 0. Now by (2.4.1) and Lemma 2.4.2, we may use a similar approach to Section

2.3 to get

Ẇ 1,2
b (Rn) = {f ∈ L2∗(Rn) : (∇+ ib)f ∈ L2(Rn;Cn)},

with the norm equivalence

‖f‖Ẇ 1,2
b (Rn) = ‖(∇+ ib)f‖L2(Rn;Cn) h

(
‖f‖2

L2∗ (Rn) + ‖(∇+ ib)f‖L2(Rn;Cn)

) 1
2
.

It is important to note that b does not uniquely determine B, since curl(b+∇ϕ) = B

for any ϕ ∈ W 1,2(Rn). This is known as the gauge invariance and is why we will impose

our conditions on B instead of b itself. We will however, be able to take advantage of

this through the following Proposition in [34, Proposition 3.2].

Proposition 2.4.3 (Iwatsuka Gauge Transform). Let b ∈ L2
loc(Rn;Rn) and Q a cube

in Rn. We assume curl b = B ∈ L
n
2
loc(Rn;Rn×n). Then, there exists h ∈ Ln(Q;Rn) and

ϕ ∈ W 1,2(Rn;R) such that curlh = B and

h = b−∇ϕ a.e. x ∈ Q,

with (
−
ˆ
Q

|h|n
) 1

n

. l(Q)

(
−
ˆ
Q

|B|
n
2

) 2
n

, (2.4.2)
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where c > 0 depends only on n.

The conditions we will impose on the magnetic field B are as follows:


|B| ∈ B n

2 (Rn)

|∇B(x)| ≤ cm(x, |B|)3,

(2.4.3)

for some c > 0, where m(·, V ) is the Shen maximal function in (2.2.2).

In [46] the following Fefferman–Phong inequality was proven.

Lemma 2.4.4 (Global Fefferman–Phong). Let b ∈ L2
loc(Rn;Rn). Also, assume that B

satisfies (2.4.3). Then

‖m(·, |B|)u‖2 . ‖(∇+ ib)u‖2,

for all u ∈ C1(Rn).

We recall the magnetic version of the Fefferman–Phong inequality (Proposition 2.2.5)

in [17].

Proposition 2.4.5. Let ω ∈ A∞ and p ∈ [1,∞). Then there exists constants c > 0 and

β ∈ (0, 1) depending only on p, n, and the A∞ constant of ω, such that for all cubes Q

and u ∈ C1(Rn), then

ˆ
Q

|(∇+ ib)u|p + ω|u|p ≥
cmβ(l(Q)p−́

Q
ω)

l(Q)p

ˆ
Q

|u|p.

where mβ(x) = x if x ≤ 1 and mβ(x) = xβ if x ≥ 1.

As with Section 2.3 we wish to use the language of first-order operators. First, We

introduce notation to represent vectors v ∈ Cn+1 as follows

v =

v⊥
v‖

 ,
where v⊥ ∈ C represents the normal part, v‖ ∈ Cn represents the tangential part. Now,

define the self-adjoint, hence closed, operator D : D(D) ⊂ L2(Rn;Cn+1)→ L2(Rn;Cn+1)
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by

D :=

 0 −(∇+ ib)∗

−(∇+ ib) 0


with its maximal domain in L2(Rn,Cn+1) being given by

D(D) := {f ∈ L2(Rn,Cn+1) : f⊥ ∈ W 1,2
b (Rn) and (∇+ ib)∗f‖ ∈ L2(Rn)}.

This domain is maximal sinceDf is well-defined as a distribution for all f in L2(Rn,Cn+1).

Indeed, recalling the requirement that f⊥ ∈ W 1,2
b (Rn) is just that (∇ + ib)f⊥ ∈ L2(Rn),

whilst (∇ + ib)∗f‖ denotes the adjoint of (∇ + ib). Here (∇ + ib) is interpreted as the

unbounded operator from L2(Rn) into L2(Rn,Cn) on the domain D(∇+ ib) := W 1,2
b (Rn).

In particular, the operator (∇+ ib) is closed by Lemma 2.4.2, and since C∞c (Rn) is dense

in W 1,2
b (Rn), its adjoint satisfies (∇+ ib)∗ = −(div +ib) on its domain

D((∇+ ib)∗) = {f ∈ L2(Rn,Cn) : −(div f + ibf) ∈ L2(Rn)}, (2.4.4)

where −(div f + ibf) ∈ L2(Rn) means there exists F ∈ L2(Rn), and (∇ + ib)∗f := F ,

such that
´
f · (∇+ ib)ϕ =

´
Fϕ for all ϕ ∈ C∞c (Rn).

As before the self-adjointness of D provides the orthogonal Hodge decomposition

L2(Rn,Cn+1) = N(D)
⊥
⊕ R(D). (2.4.5)

Moreover, the null space of D is the set

N(D) = {f ∈ L2(Rn,Cn+1) : f⊥ = 0 and − div f‖ = ibf‖},

whilst the closure of the range of D is characterised in the following lemma which is

analogous to Lemma 2.3.1.

Lemma 2.4.6. The closure of the range of D in L2(Rn,Cn+1) is the set

R(D) = {f ∈ L2(Rn,Cn+1) : f⊥ ∈ L2(Rn) and f‖ = (∇+ ib)g for some g ∈ Ẇ 1,2
b (Rn)}.
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Proof. First, suppose that f ∈ R(D), so then f⊥ ∈ L2(Rn) and there exists a sequence

{gm} in Ẇ 1,2
b (Rn) such that {(∇+ ib)gm} converges to f‖ in L2(Rn,Cn+1). The Sobolev

inequality (2.4.1) then implies that {gm} is Cauchy and hence convergent to some function

g in L2∗(Rn). Therefore, by Lemma 2.4.2 in the case p = 2∗, the sequence {(∇+ ib)gm}

must converge to (∇+ ib)g in L2(Rn,Cn+1), hence f‖ = (∇+ ib)g and g ∈ Ẇ 1,2
b (Rn), as

required.

For the converse, suppose that f⊥ ∈ L2(Rn) and that f‖ = (∇ + ib)g for some

g ∈ Ẇ 1,2
b (Rn). If h ∈ N(D), then h⊥ = 0 and − div h‖ = ibh‖, hence

〈f, h〉L2(Rn,Cn+2) = 〈(∇+ ib)g, h‖〉L2(Rn,Cn) = 〈g,−(div +ib)h‖〉L2(Rn) = 0,

where the last equality, which is immediate when g ∈ C∞c (Rn), relies on the density of

C∞c (Rn) in Ẇ 1,2
b (Rn). The orthogonal Hodge decomposition in (2.4.5) then allows us to

conclude that f ∈ [N(D)]⊥ = R(D).

2.5 The Theory of Perturbed Self-adjoint operators

In this section we discuss operators of the form DB or BD where D is a self-adjoint

operator on a Hilbert space H, and B is bounded on H and elliptic on R(D), in the sense

that there exists κ > 0 such that

Re〈Bu, u〉 ≥ κ‖u‖2
2, for all u ∈ R(D). (2.5.1)

These are the same as (H2),(H4),(H5) from [3]. We also define the angle of ellipticity of

B to be

ω := sup
u∈R(D)\{0}

| arg〈Bu, u〉| < π

2
.

We have that following proposition about the behaviour of DB in [4, Proposition 3.3].

Proposition 2.5.1. Let H be a Hilbert space. Let D be a self-adjoint operator and let B

be a bounded operator in H satisfying (2.5.1). Then the operator DB is a closed, densely
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defined ω–bisectorial operator with resolvent bounds ‖(λI −DB)−1u‖H . ‖u‖H
dist(λ,Sω)

when

λ /∈ Sω. Also

1. The operator DB has range R(DB) = R(D) and null space N(DB) = B−1N(D)

with H = R(DB)⊕ N(DB).

2. The restriction of DB to R(D) is a closed and injective operator with dense range

in R(D) with spectrum and resolvent bounds as above.

Proof. As D is closed and densely defined and B is bounded then DB and BD is closed

and densely defined. Also, (DB)∗ = B∗D, and (BD)∗ = DB∗. Therefore, we have

H = R(DB)⊕ N(B∗D) = R(B∗D)⊕ N(DB).

Then R(DB) = N(B∗D)⊥ = N(D)⊥ = R(D). Now, let v ∈ D(DB) and w ∈ N(DB).

Then, using ellipticity, Cauchy-Schwarz, and the boundedness of B∗, we have

‖DBv‖2
H ≤ κ−1|〈BDBv,DBv〉|

= κ−1|〈DBv,B∗DBv〉+ 〈B∗DBw, v〉|

= κ−1|〈DBv + w,B∗DBv〉|

= κ−1|〈B(DBv + w), DBv〉|

≤ κ−1‖B(DBv + w)‖H‖DBv‖H

≤ κ−1‖B‖op‖DBv + w‖H‖DBv‖H,

where ‖B‖op is the operator norm of B. So ‖DBv‖H . ‖DBv + w‖H with constant

depending only on κ and ‖B‖op. Thus, we have ‖DBv‖H + ‖w‖H h ‖DBv + w‖H.

Then, by a density argument we have ‖u‖H + ‖w‖H h ‖u+ w‖H for all u ∈ R(DB) and

w ∈ N(DB). A similar argument gives that ‖u+w‖H h ‖u‖H+‖w‖H for all u ∈ R(B∗D)

and w ∈ N(B∗D). Now let u ∈ R(DB)∩N(DB). Then, we have ‖u‖H h ‖u‖H+‖−u‖H h

‖u− u‖H = 0. That is, u = 0. Thus, R(DB)∩N(DB) = {0}. Again, a similar argument
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gives R(B∗D) ∩ N(B∗D) = {0}. Now

H = R(DB)⊕ N(DB)⊕
(
R(DB)⊕ N(DB)

)⊥
.

Let u ∈
(
R(DB)⊕ N(DB)

)⊥
. Then, 〈u, v+w〉 = 0 for all v ∈ R(DB) and all w ∈ N(DB).

Therefore, 〈u, v〉 = 0 and 〈u,w〉 = 0 for all v ∈ R(DB) and all w ∈ N(DB). That is,

u ∈ R(DB)
⊥
∩ N(DB)⊥. Since R(DB)

⊥
= N(B∗D) and N(DB)⊥ = R(B∗D) we have

u ∈ R(B∗D)∩N(B∗D) = {0}. That is, u = 0. Thus,
(
R(DB)⊕ N(DB)

)⊥
= {0}. Hence,

H = R(DB)⊕ N(DB).

Again, the same argument yields

H = R(B∗D)⊕ N(B∗D).

We now prove DB is bisectorial. Let µ ∈ (ω, π
2
). Let λ ∈ C \ Sµ. First, note that if

u ∈ N(DB) then ‖(λI −DB)u‖H = |λ|‖u‖H ≥ dist(λ, Sµ)‖u‖H. Now, assume u ∈ R(D).

As D is self-adjoint then 〈Bu,DBu〉 ∈ R. Therefore, Im〈Bu, (λI−DB)u〉 = Im〈Bu, λu〉.

Now, using the boundedness of B, we have | Im(λ〈Bu, u〉)| = | Im〈Bu, (λI − DB)u〉| .

‖u‖H‖(λI −DB)u‖H. Since u ∈ R(D) using the ellipticity of B we have

| Im(λ〈Bu, u〉)| ≥ |λ||〈Bu, u〉| sin(µ− ω) & ‖u‖2
H dist(λ, Sω).

Thus

‖u‖H .
1

dist(λ, Sω)
‖(λI −DB)u‖H,

which implies bisectoriality.

And for BD we have a similar result

Proposition 2.5.2. Let D be a self-adjoint operator and let B be a bounded operator

in H satisfying (2.5.1). Then the operator BD is a closed, densely defined ω–bisectorial

operator with resolvent bounds ‖(λI −BD)−1u‖H . ‖u‖H
dist(λ,Sω)

when λ /∈ Sω. Also
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1. The operator BD has range R(BD) = BR(D) and null space N(BD) = N(D) with

H = R(BD)⊕ N(BD).

2. The restriction of BD to R(BD) is a closed and injective operator with dense range

in R(BD) with spectrum and resolvent bounds as above.

Proof. Proved similarly to the DB case.

For t ∈ R with t 6= 0, we define the following operators

RB
t := (I + itDB)−1

PB
t := (I + (tDB)2)−1 =

1

2
(RB

t +RB
−t) = RB

t R
B
−t,

QB
t := tDB(I + (tDB)2)−1 =

1

2i
(−RB

t +RB
−t).

We let Pt = P I
t and Qt = QI

t to be the unperturbed versions. Now using Proposition

2.5.1 we have

‖RB
t u‖H = ‖(I + itDB)−1u‖H =

‖((−it)−1 −DB)−1u‖H
|t|

.
1

|t|
‖u‖H

dist((−it)−1, Sω)
. ‖u‖H,

uniformly in t where the implicit constants depend only on dimension and the properties

of B. Therefore, ‖PB
t u‖H . ‖u‖H and ‖QB

t u‖H . ‖u‖H uniformly in t where the implicit

constants depend only on dimension and the properties of B. Similar statements hold

when DB is replaced by BD. An key observation is that as D is self-adjoint then we

have the quadratic estimate

ˆ ∞
0

‖Qtu‖2
H

dt

t
h ‖u‖2

H, for all u ∈ R(D).

Another important property is the Calderón reproducing formula

ˆ ∞
0

(QB
t )2u

dt

t
=
u

2

for all u ∈ R(D), see [13, eqn. (17)] and [1, Section (E)] for details.

33



Now let

D =

 0 −∇∗µ

−∇µ 0

 , or D =

 0 −(∇+ ib)∗

−(∇+ ib) 0

 .
We define the bounded operator B : H → H to be multiplication by a matrix valued

function with the following structure

B :=


B⊥⊥ B⊥‖ 0

B‖⊥ B‖‖ 0

0 0 b

 ∈ L∞(Rn;L(Cn+2)), or B :=

B⊥⊥ B⊥‖

B‖⊥ B‖‖

 ∈ L∞(Rn;L(Cn+1)),

respectively. Here H = L2(Rn;Cn+1) and H = L2(Rn;Cn+1) for the electric and magnetic

operators respectively. Then, the aims of Chapters 3 and 4 are to proof the quadratic

estimates

ˆ ∞
0

‖QB
t u‖2

2

dt

t
=

ˆ ∞
0

‖tDB(I + t2DBDB)−1u‖2
2

dt

t
h ‖u‖2

2, ∀u ∈ R(D), (2.5.2)

for the first-order operator DB as defined in Sections 2.3 and 2.4 respectively. To prove

(2.5.2) we will first prove

ˆ ∞
0

‖tDB(I + t2DBDB)−1u‖2
2

dt

t
. ‖u‖2

2, ∀u ∈ H. (2.5.3)

To see that (2.5.3) implies (2.5.2) we present a duality argument. Since QB
t =

tDBPB
t = PB

t tDB, then for u ∈ N(DB) we have QB
t u = 0. Then, by Proposition

2.5.1 we have H = R(DB) ⊕ N(DB) and so now we are left to prove the quadratic

estimate on R(D) = R(DB). Now, assume DB satisfies the estimate (2.5.3). As

(I + t2BDBD)u = (BB−1 + t2BDBDBB−1)u = B(I + t2DBDB)B−1u,
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for all u ∈ R(D), then we have

(I + t2BDBD)−1u = B(I + t2DBDB)−1B−1u,

for all u ∈ R(D). Then using above, (2.5.3), and the boundedness of B and (2.5.1), we

have

ˆ ∞
0

‖tBD(I+ t2BDBD)−1u‖2
2

dt

t
=

ˆ ∞
0

‖tBDB(I+ t2DBDB)−1B−1u‖2
2

dt

t
. ‖B−1u‖2

2,

(2.5.4)

for all u ∈ H. Note that we have Re〈B∗v, v〉 ≥ κ‖v‖ for all v ∈ R(D). Therefore, by

(2.5.4), where B is replaced by B∗, we have the estimate of the dual

(ˆ ∞
0

‖(QB
t )∗v‖2

2

dt

t

) 1
2

=

(ˆ ∞
0

‖B∗D(I + t2B∗DB∗D)−1v‖2
2

dt

t

) 1
2

. ‖v‖2
2

for all v ∈ H. For the lower estimate we now follow the proof of [13, Proposition 4.8

(iii)]. Therefore, using the Calderón reproducing formula, Cauchy–Schwarz, and above,

we have

‖u‖2 = sup
‖v‖2=1

|〈u, v〉|

h sup
‖v‖2=1

∣∣∣∣〈ˆ ∞
0

(QB
t )2u

dt

t
, v

〉∣∣∣∣
= sup
‖v‖2=1

∣∣∣∣ˆ ∞
0

〈
QB
t u, (Q

B
t )∗v

〉 dt

t

∣∣∣∣
≤
(ˆ ∞

0

‖QB
t u‖2

2

dt

t

) 1
2

sup
‖v‖2=1

(ˆ ∞
0

‖(QB
t )∗v‖2

2

dt

t

) 1
2

.

(ˆ ∞
0

‖QB
t u‖2

2

dt

t

) 1
2

sup
‖v‖2=1

‖v‖2

=

(ˆ ∞
0

‖tDB(I + t2DBDB)−1u‖2
2

dt

t

) 1
2

.

for all u ∈ R(D). Therefore, to prove (2.5.2) it suffices to prove (2.5.3).
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2.6 Weak Solutions to Elliptic Equations

In Chapters 6, 7 and 8 we will discuss the solvability of the Schrödinger equation

HA,a,V u = − divA∇u+ aV u = 0, (2.6.1)

on the upper-half space Rn+1
+ where A and a are elliptic (to be defined later in (2.6.2))

and t-independent and V ∈ B
n
2 (Rn). In this section we will give the basic definitions

and concepts associated with weak solutions and the Schrödinger equation (2.6.1). We

note that, as we only have an electric potential in (2.6.1), the spaces and operators we

consider in this section are those from Section 2.3.

We start with the coefficient matrices. We define the following two matrices a ∈

L∞(Rn+1;L(C)) and A ∈ L∞(Rn+1;L(Cn+1)) as t-independent 1×1 and (n+1)×(n+1)-

dimensional matrices respectively, with complex components. We split the coefficients of

A to obtain the following

AV :=

A 0

0 aei arg V

 =


A⊥⊥ A⊥‖ 0

A‖⊥ A‖‖ 0

0 0 aei arg V

 .

where A⊥⊥(x) ∈ L(C), A⊥‖(x) ∈ L(Cn;C), A‖⊥(x) ∈ L(C;Cn), and A‖‖(x) ∈ L(Cn). In

the case when V (x) ≥ 0 for all x ∈ Rn we let A := AV to simplify notation. We will

assume that AV satisfies the following ellipticity condition: there exists κ > 0 such that

n+1∑
l=0

n+1∑
k=0

Re

ˆ
Rn
AVk,l(x)fk(x)fl(x) dx ≥ κ

n∑
k=0

ˆ
Rn
|fk(x)|2 dx, (2.6.2)

for all f ∈ {g ∈ L2(Rn,Cn+2) : g⊥ ∈ L2(Rn) and (g‖, gµ)T = ∇µh some h ∈ V̇1,2(Rn)}.

We note that this is similar to the ellipticity condition in [4] adapted to the potential V .
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We note that (2.6.2) implies the following


Re((A⊥⊥(x)ξ) · ξ) ≥ κ|ξ|2, ∀ξ ∈ C, a.e. x ∈ Rn,

Re
´
Rn
[
(A‖‖∇f) · ∇f + aV |f |2

]
dx ≥ κ

´
Rn |∇µf |2 dx, ∀f ∈ V̇1,2(Rn).

To see the second inequality above set f⊥ = 0 in (2.6.2). For the first inequality set

f = (u, 0, 0)T in (2.6.2) to get that

Re

ˆ
Rn
A⊥⊥(x)u(x)u(x) dx ≥ κ

ˆ
Rn
|u(x)|2 dx, ∀u ∈ L2(Rn).

Now let E be any measurable set and then for ξ ∈ C choose u(x) = ξ1E(x). Therefore

we have ˆ
E

(ReA⊥⊥(x)ξξ − κ|ξ|2) dx ≥ 0

Thus, as E was arbitrary we have

Re((A⊥⊥(x)ξ) · ξ) ≥ κ|ξ|2, ∀ξ ∈ C, a.e. x ∈ Rn.

We note that the ellipticity condition (2.6.2) is between the pointwise ellipticity condition

Re(AV(x)ξ · ξ) ≥ κ|ξ|2, ∀ξ ∈ Cn+1, a.e. x ∈ Rn,

and the following G̊arding-type inequality adapted to the potential V

Re

¨
Rn+1
+

(AV(x)∇µf(t, x)) · ∇µf(t, x) dt dx ≥ κ

¨
Rn+1
+

|∇µf(t, x)|2 dt dx,

for all f ∈ V̇1,2(Rn+1
+ ). There is an explicit connection between (2.6.2) and the operator

D from Section 2.3 in that using Lemma 2.3.6 we can write (2.6.2) as

Re〈AVu, u〉 ≥ κ‖u‖2
2, for all u ∈ R(D).

This will be the way in which we interpret the notion of ellipticity of A and a.
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We now turn our attention to weak solutions of HA,a,V .

Definition 2.6.1. We shall write that u is a weak solution of − divA∇u + aV u = 0 in

Ω, or simply that HA,a,V u = 0 in Ω, if u ∈ V1,2
loc (Ω) and

ˆ
Ω

A∇u · ∇v + aV uv = 0,

for all v ∈ C∞c (Ω).

We require some control at the boundary ∂Rn+1
+ . For this we introduce the non-

tangential maximal function. For F ∈ L2
loc(R

n+1
+ ) and x ∈ Rn, we define the non-

tangential maximal operator as

(Ñ∗F )(x) := sup
t>0

(
−
¨
W (t,x)

|F (s, y)|2 dy ds

) 1
2

,

whereW (t, x) := [t, 2t]×Q(t, x) is the Whitney box of scale t > 0, centred at x ∈ Rn where

Q(t, x) is the cube of side-length l(Q(t, x)) = t, centred at x. Also for F ∈ L2
loc(R

n+1
+ )

and f ∈ L2
loc(Rn), we say that F converges to f pointwise on Whitney averages if

lim
t→0
−
¨
W (t,x)

|F (s, y)− f(x)|2 dy ds = 0, for almost all x ∈ Rn. (2.6.3)

We will impose one of the following conditions on u on the boundary: Neumann,

(N )AL2


− divA∇u+ aV u = 0 in Rn+1

+ ,

Ñ∗(∇µu) ∈ L2(Rn),

limt→0 ∂νAu(t, ·) = ϕ, ϕ ∈ L2(Rn)

(2.6.4)

or Dirichlet regularity,

(R)AL2


− divA∇u+ aV u = 0 in Rn+1

+ ,

Ñ∗(∇µu) ∈ L2(Rn),

limt→0∇‖µu(t, ·) = ∇µϕ, ϕ ∈ V̇1,2(Rn)

(2.6.5)
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where the limits are taken to be in L2 and pointwise on Whitney averages and ∂νAu =

(A∇u)⊥ is the conormal derivative and ∇‖µ : V̇1,2(Rn+1
+ )→ L2(Rn;Cn) defined by

∇‖µu =

 ∇‖u
|V | 12u

 =



∂1u

...

∂nu

|V | 12u


.

That is ∇‖µu = (∇µu)r the gradient without the first component, which is the derivative

in t. We say (N )AL2 and (R)AL2 are well-posed if, for each boundary data, there exists a

unique u satisfying the above boundary value problems. We also define the sets WP (N )

and WP (R) to be the set of all A such that (N )AL2 and (R)AL2 are well-posed respectively.
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CHAPTER 3

QUADRATIC ESTIMATES FOR THE PURELY
ELECTRIC SCHRÖDINGER OPERATOR

The focus of this chapter is to prove quadratic estimates for first-order systems of the

DB-type for the electric Schrödinger operator − divA∇ + V . We follow the methods

developed [3] which were first introduced in [8] We adapt these methods to incorporate

a zeroth-order term as a singular potential. We use the framework from Section 2.3 with

Ω = Rn, since ultimately we will solve boundary value problems in the upper half-space

Rn+1
+ by applying the quadratic estimates obtained here on the domain boundary ∂Rn+1

+ ,

this will be done in Chapters 6, 7 and 8. Therefore we define the operators

D =

 0 −(∇µ)∗

−∇µ 0

 and B =


B⊥⊥ B⊥‖ 0

B‖⊥ B‖‖ 0

0 0 b


as defined in Section 2.3. Then, the aim of this chapter is to prove the following theorem.

Theorem 3.0.1. Let n ≥ 3. If V ∈ B n
2 (Rn), then we have the quadratic estimate

ˆ ∞
0

‖tDB(I + t2DBDB)−1u‖2
2

dt

t
h ‖u‖2

2, ∀u ∈ R(D),

where the implicit constants depends only on V , n, κ, and ‖B‖∞.

We also have the case when V is integrable.
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Theorem 3.0.2. Let n > 4. If V ∈ Ln
2 (Rn) with sufficiently small norm, then we have

the quadratic estimate

ˆ ∞
0

‖tDB(I + t2DBDB)−1u‖2
2

dt

t
h ‖u‖2

2, ∀u ∈ R(D),

where the implicit constants depends only on V , n, κ, and ‖B‖∞.

We specialise to the case when n ≥ 3 and V ∈ B
n
2 (Rn), as this is in fact more

difficult. However, we will summarise the differences between the case when n > 4 and

V ∈ Ln
2 (Rn) with sufficiently small norm as we move forward.

We note that by the discussion after (2.5.3) to prove Theorem 3.0.1 it suffice to prove

(2.5.3) itself. That is, we are left to prove

ˆ ∞
0

‖tDB(I + t2DBDB)−1u‖2
2

dt

t
. ‖u‖2

2, ∀u ∈ L2(Rn;Cn+2).

To do this we will reduce to a Carleson measure estimate and then use a stopping

time argument to prove the Carleson measure estimate.

3.1 Initial Estimates

We start by giving some estimates which are key for proving the quadratic estimate.

First note that we can decompose L2(Rn;Cn+2) as follows L2(Rn;Cn+2) = L2(Rn) ⊕

L2(Rn;Cn) ⊕ L2(Rn). Now define the projections on L2(Rn;Cn+2) onto each of these

spaces as

P⊥f :=


f⊥

0

0

 , P‖f :=


0

f‖

0

 , and Pµf :=


0

0

fµ

 .
Moreover, define P̃ := (P⊥ + P‖) and Pr = (P‖ + Pµ). We give the following Riesz

transform type bounds which will be important to replacing the coercivity in [13] which

our operators do not have.
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Lemma 3.1.1. If V ∈ B n
2 (Rn), then we have the following estimates

‖DBPµu‖2 . ‖Du‖2, ‖∇P̃u‖2 . ‖Du‖2, ‖|V |
1
2 P̃u‖2 . ‖Du‖2,

for all u ∈ R(D), where the constants depend only on V , n and ‖B‖∞.

Proof. First note as u ∈ R(D) then

u =

 u⊥

∇µf


for some f ∈ V̇1,2(Rn). Therefore,

Du =


div∇f + V f

−∇u⊥

−|V | 12u⊥

 .

Then by direct computations we have that

DBPµu =


bV f

0

0

 , ∇P̃u =


∇u⊥

−∇2f

0

 , and |V |
1
2 P̃u =


|V | 12u⊥

−|V | 12∇f

0

 .

Now by the boundedness of B and Riesz transform bounds, from [45] and [5], we have

that

‖bV f‖2 ≤ ‖B‖∞‖V f‖2 . ‖(− div∇+ V )f‖2.

Thus ‖DBPµu‖2 . ‖Du‖2. For the second two inequalities we use ‖∇2f‖2 . ‖(− div∇+

V )f‖2 and ‖|V | 12∇f‖2 . ‖(− div∇+V )f‖2 from [45] and [5], to obtain ‖∇P̃u‖2 . ‖Du‖2

and ‖|V | 12 P̃u‖2 . ‖Du‖2. This completes the proof.

We have a similar result for V ∈ Ln
2 (Rn) with small norm. We note that the smallness

of V is needed here when using the Riesz transform estimates.
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Lemma 3.1.2. Let n > 4. If V ∈ Ln
2 (Rn) with sufficiently small norm, then

‖DBPµu‖2 . ‖Du‖2, ‖∇P̃u‖2 . ‖Du‖2

for all u ∈ R(D), where the constants depend only on V , n and ‖B‖∞.

Proof. The proof will follow as in Lemma 3.1.1 once we have established

‖∇2f‖2 . ‖(∆ + V )f‖2 and ‖V f‖2 ≤ ‖(∆ + V )f‖2.

To this end we use Hölder’s inequality, and the Sobolev inequality to obtain

‖V f‖2 ≤ ‖V ‖n
2
‖f‖2∗∗ ≤ C2‖V ‖n

2
‖∇2f‖2, (3.1.1)

where C > 0 is the constant associated with the Sobolev inequality. Then by the classical

Reisz transform estimates and (3.1.1), we get

‖∇2f‖2 . ‖∆f‖2 ≤ ‖(∆ + V )f‖2 + ‖V f‖2 ≤ ‖(∆ + V )f‖2 + C2‖V ‖n
2
‖∇2f‖2,

Therefore, as ‖V ‖n
2

is sufficiently small we may hide the last term above as

(1− C2‖V ‖n
2
)‖∇2f‖2 . ‖(∆ + V )f‖2.

We also have

‖V f‖2 ≤ C2‖V ‖n
2
‖∇2f‖2 . ‖(∆ + V )f‖2.

Then, the proof follows that of Lemma 3.1.1 verbatim.

Denote 〈x〉 := 1+|x| and dist(E,F ) := inf{|x−y| : x ∈ E, y ∈ F} for every E,F ⊆ Rn.

We will now state the off-diagonal estimates for the operators RB
t , PB

t , and QB
t . These

estimates are important for later sections as they relate how the operators RB
t , PB

t and

QB
t are bounded on cubes.
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Proposition 3.1.3 (Off-Diagonal Estimates). Let Ut be given by either RB
t for every

nonzero t ∈ Rn, or PB
t or QB

t for every t > 0. Then for any M ∈ N there exists CM > 0,

which depends only on V , n, κ, and ‖B‖∞, such that

‖Utu‖L2(E) ≤ CM

〈
dist(E,F )

t

〉−M
‖u‖L2(F ),

for every E,F ⊆ Rn Borel sets, and u ∈ L2(Rn;Cn+2) with suppu ⊂ F .

Proof. Let u ∈ D(D) and η ∈ C∞c (Rn). Using the product rule and Lemma 2.3.4 we have

ηu ∈ D(D) and the following commutator bound

|[ηI,D]u| = |ηDu−D(ηu)| =

∣∣∣∣∣∣∣∣∣∣


η∇∗µur −∇∗µ(ηur)

∇(ηu⊥)− η∇u⊥

0


∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣


−u‖ · ∇η

u⊥∇η

0


∣∣∣∣∣∣∣∣∣∣
≤ |∇η||u|,

The proof then follows in the same manner as in [13, Proposition 5.2].

We define the standard dyadic decomposition of Rn as ∆ :=
⋃∞
k=−∞∆2k where ∆t :=

{2k(m + (0, 1]n) : m ∈ Zn} if 2k−1 < t ≤ 2k. Now we introduce the follow collection of

dyadic cubes depending on the potential V .

Definition 3.1.4. Let V ∈ B n
2 (Rn). Then define ∆V

t to be all the dyadic cubes, Q ∈ ∆t,

with

l(Q)2−
ˆ
Q

V ≤ 1. (3.1.2)

And define ∆V :=
⋃
t>0 ∆V

t .

We refer to cubes in ∆V as ‘small’ since for almost all x ∈ Rn then by (2.2.3) there

exists ε > 0 such that for all t < ε then the unique dyadic cubes containing x of scale

t will be in ∆V
t . These cubes were first introduced in [5]. We introduce the small cube

so that in the following Lemma we obtain the homogeneous estimate (3.1.3) so long as

we are on a small cube by using (2.3.4). We also note that if V ∈ Ln
2 (Rn) then we will

consider all cubes to be ‘small’. The proof of the lemma is adapted from the proofs of [13,

Lemma 5.6] and [12, Lemma 5.15] to incorporate the inhomogeneity of the operator D.
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To do this we use the fact that the Sobolev exponent 2∗ = 2
(
n
2

)′
, the Hölder conjugate

of the regularity of V .

Lemma 3.1.5. We have the estimate

∣∣∣∣−ˆ
Q

Du

∣∣∣∣2 . 1

l(Q)

(
1 +

(ˆ
Q

|V |
n
2

) 2
n

)(
−
ˆ
Q

|u|2
) 1

2
(
−
ˆ
Q

|Du|2
) 1

2

,

for all Q ∈ ∆ and u ∈ D(D). Moreover, if V ∈ B n
2 (Rn) and Q ∈ ∆V or V ∈ Ln

2 (Rn),

then we have ∣∣∣∣−ˆ
Q

Du

∣∣∣∣2 . 1

l(Q)

(
−
ˆ
Q

|u|2
) 1

2
(
−
ˆ
Q

|Du|2
) 1

2

, (3.1.3)

for all u ∈ D(D).

Proof. Let

t =

(ˆ
Q

|u|2
) 1

2
(ˆ

Q

|Du|2
)− 1

2

.

If t ≥ 1
4
l(Q) then proceed as in [13, Lemma 5.6]. By the Cauchy-Schwarz Inequality we

have

∣∣∣∣ˆ
Q

Du

∣∣∣∣2 ≤ (ˆ
Q

1

)(ˆ
Q

|Du|2
)

= |Q|
(ˆ

Q

|Du|2
) 1

2
(ˆ

Q

|Du|2
) 1

2

≤ 4|Q|
l(Q)

(ˆ
Q

|Du|2
) 1

2
(ˆ

Q

|u|2
) 1

2

.

Then dividing by |Q|2 gives

∣∣∣∣−ˆ
Q

Du

∣∣∣∣2 . 1

l(Q)

(
−
ˆ
Q

|u|2
) 1

2
(
−
ˆ
Q

|Du|2
) 1

2

≤ 1

l(Q)

(
1 + l(Q)2−

ˆ
Q

V

)(
−
ˆ
Q

|u|2
) 1

2
(
−
ˆ
Q

|Du|2
) 1

2

.

Now suppose t ≤ 1
4
l(Q). Let η ∈ C∞c (Q) such that η(x) = 1 when dist(x,Rn \Q) > t

and ‖∇η‖∞ . 1
t
. Note that ηu ∈ D(D) with compact support. We will bound each
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component of Du separately. First, we have

∣∣∣∣ˆ
Q

(Du)⊥

∣∣∣∣ =

∣∣∣∣ˆ
Q

η(Du)⊥ + (1− η)(Du)⊥

∣∣∣∣ ≤ ∣∣∣∣ˆ
Q

η∇∗µur
∣∣∣∣+

ˆ
Q

|1− η||Du|.

Then, as η has compact support and by the definition of ∇∗µ, we have

∣∣∣∣ˆ
Q

η∇∗µur
∣∣∣∣ =

∣∣∣∣ˆ
Q

∇µη · ur
∣∣∣∣ ≤ ˆ

Q

|∇µη||u| =
ˆ
Q

|∇η||u|+
ˆ
Q

|V |
1
2η|u|

For the second component we have

∣∣∣∣ˆ
Q

(Du)‖

∣∣∣∣ =

∣∣∣∣ˆ
Q

η · (Du)‖ + (1− η) · (Du)‖

∣∣∣∣ ≤ ∣∣∣∣ˆ
Q

η · ∇u⊥
∣∣∣∣+

ˆ
Q

|1− η||Du|

Since ηu⊥ has compact support in Q, then by the Fundamental Theorem of Calculus we

have ˆ
Q

∇(ηu⊥) = 0.

Using this and the product rule, we have

∣∣∣∣ˆ
Q

η · ∇u⊥
∣∣∣∣ =

∣∣∣∣ˆ
Q

η · ∇u⊥ −∇(ηu⊥)

∣∣∣∣ =

∣∣∣∣ˆ
Q

u⊥∇η
∣∣∣∣ ≤ ˆ

Q

|u||∇η|.

Also,

∣∣∣∣ˆ
Q

(Du)µ

∣∣∣∣ =

∣∣∣∣ˆ
Q

η(Du)µ + (1− η)(Du)µ

∣∣∣∣ ≤ ˆ
Q

η|V |
1
2 |u|+

ˆ
Q

|1− η||Du|.

Thus, using the Cauchy-Schwarz Inequality, ‖∇η‖∞ . 1
t
, and | supp(∇η)| = l(Q)n−1t, we

have

ˆ
Q

|∇η||u| ≤
(ˆ

Q

|∇η|2
) 1

2
(ˆ

Q

|u|2
) 1

2

≤ ‖∇η‖∞| supp(∇η)|
1
2

(ˆ
Q

|u|2
) 1

2

. l(Q)
n−1
2 t−

1
2

(ˆ
Q

|u|
) 1

2

.
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Now using the Cauchy–Schwarz inequality, Hölder’s inequality, Sobolev Embedding,

where
(
n
2

)′
= 2∗

2
, and the same argument as above we have

ˆ
Q

|V |
1
2η|u| ≤

(ˆ
Q

|V ||η|2
) 1

2
(ˆ

Q

|u|2
) 1

2

≤
(ˆ

Q

|V |
n
2

) 1
n
(ˆ

Q

|η|2∗
) 1

2∗
(ˆ

Q

|u|2
) 1

2

.

(ˆ
Q

|V |
n
2

) 1
n
(ˆ

Q

|∇η|2
) 1

2
(ˆ

Q

|u|2
) 1

2

. l(Q)
n−1
2 t−

1
2

(ˆ
Q

|V |
n
2

) 1
n
(ˆ

Q

|u|2
) 1

2

.

Now, by the Cauchy–Schwarz inequality, also |Q∩supp(1−η)| = l(Q)n−1t and |1−η| ≤ 1

by the definition of η, we have

ˆ
Q

|1− η||Du| ≤
(ˆ

Q

|1− η|2
) 1

2
(ˆ

Q

|Du|2
) 1

2

≤ l(Q)
n−1
2 t

1
2

(ˆ
Q

|Du|2
) 1

2

.

Thus, recalling the definition of t, we obtain

∣∣∣∣ˆ
Q

Du

∣∣∣∣ . l(Q)
n−1
2 t−

1
2

(ˆ
Q

|u|
) 1

2

(
1 +

(ˆ
Q

|V |
n
2

) 1
n

)
+ (l(Q)n−1t)

1
2

(ˆ
Q

|Du|
) 1

2

,

.

(
|Q|
l(Q)

) 1
2
(ˆ

Q

|u|
) 1

4
(ˆ

Q

|Du|
) 1

4

(
1 +

(ˆ
Q

|V |
n
2

) 1
n

)
.

Thus dividing by |Q| and then squaring gives

∣∣∣∣−ˆ
Q

Du

∣∣∣∣2 . 1

l(Q)

(
1 +

(ˆ
Q

|V |
n
2

) 2
n

)(
−
ˆ
Q

|u|2
) 1

2
(
−
ˆ
Q

|Du|2
) 1

2

.

Now if V ∈ Ln
2 (Rn) then the inequality (3.1.3) holds for all cubes. If V ∈ B n

2 (Rn), and

Q ∈ ∆V , we have

(ˆ
Q

V
n
2

) 2
n

= |Q|
2
n

(
−
ˆ
Q

V
n
2

) 2
n

. l(Q)2−
ˆ
Q

V ≤ 1.

Then inequality (3.1.3) holds. This completes the proof.
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3.2 Reduction to Carleson measure estimate

We start by with the approach, as developed in [13], of reducing the quadratic estimate to

proving a Carleson measure estimate. Our approach differs in that the Carleson measure

will have to be adapted to the potential V , in the sense that the measure is only a Carleson

measure on small cubes. The reason we treat the big and small cubes differently is that on

the small cubes we have inequality (3.1.3) which is an important step in proving Lemmas

3.2.7 and 3.3.4. In Lemma 3.2.1 we will prove that QB
t extends to an operator from

L∞(Rn;Cn+1) to L2
loc(Rn;Cn+2) so, as in [13], we define can γt(x)w := (QB

t w)(x) for every

w ∈ Cn. Here we view w on the right-hand side of the above equation as the constant

function defined on Rn by w(x) := w. We additionally define γ̃t := γtP̃ = γt(P⊥ + P‖),

similar to as in [16]. For fixed t > 0 we define the mapping γ̃t : Rn → L(Cn+2) by γ̃t : x 7→

γ̃t(x). We also define the dyadic averaging operator At : L
2(Rn;Cn+2) → L2(Rn;Cn+2)

given by

Atu(x) := avQ u := −
ˆ
Q

u(y) dy,

for every x ∈ Rn and t > 0, where Q ∈ ∆t is the unique dyadic cube such that x ∈ Q.

We have the following properties for γ̃t and At.

Lemma 3.2.1. We have the following:

1. The operator Q̃B
t extends to a bounded operator from L∞(Rn;Cn+2) into the space

L2
loc(Rn;Cn+2). In particular, for t > 0, we have γ̃t ∈ L2

loc(Rn;L(Cn+2)) with

−
ˆ
Q

|γ̃t(x)|2L(Cn+2) dx . 1,

for all Q ∈ ∆t

2. supt>0 ‖γ̃tAt‖op . 1.

Proof. The proof follows Lemma 3.5 in [4]. Let f ∈ L∞(Rn;Cn+2). Now define C0(Q) :=

Q and for k > 0 define Ck(Q) := (2kQ \ 2k−1Q). Then, using the off-diagonal estimates
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in Proposition 3.1.3 and the Cauchy–Schwarz inequality, we have

‖1QQ̃B
t f‖2

2 .

(
∞∑
k=0

‖1QQ̃B
t 1Ck(Q)‖‖1Ck(Q)f‖2

)2

.

(
∞∑
k=0

〈
dist(Q,Ck(Q))

t

〉−M
‖1Ck(Q)f‖2

)2

.

(
∞∑
k=0

2−kM‖1Ck(Q)f‖2

)2

≤

(
∞∑
k=0

2−kM

)(
∞∑
k=0

2−kM‖1Ck(Q)f‖2
2

)
.

Now, choosing M > n, we have

‖1QQ̃B
t f‖2

2 .
∞∑
k=0

2−kM‖12kQf‖2
2 . ‖f‖2

∞|Q|
∞∑
k=0

2−k(M−n) . ‖f‖2
∞|Q|

Therefore, we have Q̃B
t : L∞(Rn;Cn+2)→ L2

loc(Rn;Cn+2) is a bounded operator. Now, let

{e1, . . . , en+2} be an orthonormal basis for Cn+2. First note that for any w ∈ Cn+2, using
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the Cauchy–Schwarz inequality, we have

|[γ̃t(x)](w)|2 =

∣∣∣∣∣[γ̃t(x)]

(
n+2∑
k=1

wkek

)∣∣∣∣∣
2

=

∣∣∣∣∣
n+2∑
k=1

wk[γ̃t(x)](ek)

∣∣∣∣∣
2

=

∣∣∣∣∣
n+2∑
k=1

wk

(
n+2∑
l=1

〈[γ̃t(x)](ek), el〉el

)∣∣∣∣∣
2

=

∣∣∣∣∣
n+2∑
l=1

(
n+2∑
k=1

wk〈[γ̃t(x)](ek), el〉

)
el

∣∣∣∣∣
2

=
n+2∑
l=1

(
n+2∑
k=1

wk〈[γ̃t(x)](ek), el〉

)2

≤
n+2∑
l=1

(
n+2∑
k=1

w2
k

)(
n+2∑
k=1

〈[γ̃t(x)](ek), el〉2
)

≤ |w|2
n+2∑
l=1

n+2∑
k=1

|[γ̃t(x)](ek)|2|el|2

= (n+ 2)|w|2
n+2∑
k=1

|[γ̃t(x)](ek)|2.

Then, by the definition of operator norm, the above two calculations, and the definition

of γ̃t, we have

−
ˆ
Q

|γ̃t(x)|2L(Cn+2) dx = −
ˆ
Q

sup
w=1
|[γ̃t(x)](w)|2 dx

. −
ˆ
Q

sup
w=1
|w|2

n+2∑
k=1

|[γ̃t(x)](ek)|2 dx

=
n+2∑
k=1

−
ˆ
Q

|[Q̃B
t (ẽk)](x)|2 dx

.
n+2∑
k=1

‖ẽk‖∞

. 1,

where ẽk(x) = ek is the constant function. This completes the proof of part (1).

Let u ∈ L2(Rn;Cn+2). For part (2) we use part (1), the definition of At, and Jensen’s
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inequality, to get

‖γ̃tAtu‖2
2 =

∑
Q∈∆t

ˆ
Q

|[γ̃t(x)](Atu)(x)|2 dx

.
∑
Q∈∆t

ˆ
Q

|[γ̃t(x)]|2L(Cn+2)

∣∣∣∣−ˆ
Q

u(y) dy

∣∣∣∣2 dx

=
∑
Q∈∆t

(ˆ
Q

|[γ̃t(x)]|2L(Cn+2)

) ∣∣∣∣−ˆ
Q

u(y) dy

∣∣∣∣2
.
∑
Q∈∆t

|Q|−
ˆ
Q

|u(y)|2 dy

= ‖u‖2
2.

Taking supremum in t > 0 completes the proof.

Then the main result of this section is the following.

Proposition 3.2.2. Let V ∈ B n
2 (Rn). If

ˆ ∞
0

∑
Q∈∆V

t

‖1Qγ̃tAtu‖2
2

dt

t
. ‖u‖2

2, ∀u ∈ R(D), (3.2.1)

then we have ˆ ∞
0

‖QB
t u‖2

2

dt

t
. ‖u‖2

2, ∀u ∈ L2(R2).

We proceed in proving Proposition 3.2.2 by introducing and proving the required

lemmas. We will then assemble the lemmas to prove Proposition 3.2.2

Lemma 3.2.3. If V ∈ L
n
2
loc(Rn), then we have

ˆ ∞
0

‖QB
t (I − Pt)u‖2

2

dt

t
. ‖u‖2

2,

for all u ∈ R(D).

Proof. Let u ∈ R(D). We begin by proving tQB
t D is uniformly bounded in t. As ellipticity
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gives that B−1 exists on R(D), then using tQB
t DB = (I −PB

t ) and ellipticity again gives

‖tQB
t Du‖2

2 = ‖tQB
t DBB

−1u‖2
2 = ‖(I − PB

t )B−1u‖2
2 . ‖B−1u‖2

2 . ‖u‖2
2.

Then, as I −Pt = t2D2Pt and the quadratic estimates for the self-adjoint operator D, we

have

ˆ ∞
0

‖QB
t (I − Pt)u‖2

2

dt

t
=

ˆ ∞
0

‖QB
t (t2D2Pt)u‖2

2

dt

t

=

ˆ ∞
0

‖(tQB
t D)(tDPt)u‖2

2

dt

t3

.
ˆ ∞

0

‖Qtu‖2
2

dt

t

. ‖u‖2
2,

as required.

We will now exploit the structure of D to bound the third component. This follows

a similar approach to [16], however, because our perturbation B is not block-diagonal

and as B⊥⊥ is not necessarily 1 we cannot bound the first component in the same way.

Therefore, unlike in [16] we do not reduce to a homogeneous differential operator and so

we do not get Lemma 3.1.5 on all cubes, and this is why we need to introduce the big

and small cubes. We note an important consequence of Lemmas 3.1.1 and 3.1.2 is that

the projection Pµ maps R(D) into D(DB).

Lemma 3.2.4. If V ∈ B n
2 (Rn), then we have

ˆ ∞
0

‖QB
t PµPtu‖2

2

dt

t
. ‖u‖2

2,

for all u ∈ R(D).

Proof. Let u ∈ R(D). Thus by the uniform boundedness of PB
t , Lemma 3.1.1, and D
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being self-adjoint, we have

ˆ ∞
0

‖QB
t PµPtu‖2

2

dt

t
=

ˆ ∞
0

‖tPB
t DBPµPtu‖2

2

dt

t

.
ˆ ∞

0

‖tDBPµPtu‖2
2

dt

t

.
ˆ ∞

0

‖tDPtu‖2
2

dt

t

=

ˆ ∞
0

‖Qtu‖2
2

dt

t

. ‖u‖2
2

As required.

We will need to be able to use the inequality (3.1.3). However, this is only available

to us when we are on small cubes. Therefore, we need a bound on all large cubes. We

do this by using the off-diagonal estimates, the Fefferman–Phong Inequality, and Lemma

3.1.1.

Lemma 3.2.5. If V ∈ B n
2 (Rn), then we have

ˆ ∞
0

∑
Q∈∆t\∆V

t

‖1QQB
t P̃Ptu‖2

2

dt

t
. ‖u‖2

2,

for all u ∈ R(D).

Proof. Let u ∈ R(D). Define f := P̃Ptu. Let M ∈ N to be chosen later. Define

C0(Q) := Q and for k > 0 define Ck(Q) := (2kQ \ 2k−1Q). Then, using off-diagonal
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estimates, and the Cauchy–Schwarz inequality we have

∑
Q∈∆t\∆V

t

‖1QQB
t P̃Ptu‖2

2 .
∑

Q∈∆t\∆V
t

(
∞∑
k=0

‖1QQB
t 1Ck(Q)‖‖1Ck(Q)f‖2

)2

.
∑

Q∈∆t\∆V
t

(
∞∑
k=0

〈
dist(Q,Ck(Q))

t

〉−M
‖1Ck(Q)f‖2

)2

.
∑

Q∈∆t\∆V
t

(
∞∑
k=0

2−kM‖1Ck(Q)f‖2

)2

≤
∑

Q∈∆t\∆V
t

(
∞∑
k=0

2−kM

)(
∞∑
k=0

2−kM‖1Ck(Q)f‖2
2

)

.
∑

Q∈∆t\∆V
t

∞∑
k=0

2−kM‖12kQf‖2
2.

First, suppose

l(2kQ)2−
ˆ

2kQ

V > 1.

Then using the Fefferman–Phong inequality in Proposition 2.2.5, we have

‖12kQf‖2
2 <

(
l(2kQ)2−

ˆ
2kQ

V

)β
‖12kQf‖2

2 . l(2kQ)2‖12kQ∇µf‖2
2 = 22kl(Q)2‖12kQ∇µf‖2

2.

Now, suppose

l(2kQ)2−
ˆ

2kQ

V ≤ 1,

then using Q ∈ ∆t \∆V
t and the Fefferman–Phong inequality in Proposition 2.2.5 again,

we have

‖12kQf‖2
2 <

(
l(Q)2−

ˆ
Q

V

)
‖12kQf‖2

2

. 2(n−2)(k−2)

(
l(2kQ)2−

ˆ
2kQ

V

)
|12kQ∇µf‖2

2

. 2(n−2)(k−2)l(2kQ)2‖12kQ∇µf‖2
2

. 2nkl(Q)2‖12kQ∇µf‖2
2

Noting that 2nk ≤ 22nk and 22k ≤ 22nk, then using l(Q) h t, the covering inequality
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∑
Q∈∆t

12kQ(x) . 2kn for all x ∈ Rn, and choosing M > 3n, we obtain

∑
Q∈∆t\∆V

t

∞∑
k=0

2−kM‖12kQf‖2
2 .

∑
Q∈∆t\∆V

t

∞∑
k=0

2−k(M−2n)l(Q)2‖12kQ∇µf‖2
2

. t2
∞∑
k=0

2−k(M−3n)‖∇µf‖2
2

. t2‖∇µf‖2
2.

Recall that f = P̃Ptu, and that if u ∈ R(D) then Ptu ∈ R(D). Therefore, using Lemma

3.1.1 we have

ˆ ∞
0

∑
Q∈∆t\∆V

t

‖1QQB
t P̃Ptu‖2

2

dt

t
.
ˆ ∞

0

t2‖∇µP̃Ptu‖2
2

dt

t

.
ˆ ∞

0

‖tDPtu‖2
2

dt

t

.
ˆ ∞

0

‖Qtu‖2
2

dt

t

. ‖u‖2
2.

This completes the proof.

In the following lemma is where having the projection P̃ is needed, otherwise, we would

have∇|V | 12 in the last component and this would force us to assume some differentiability

on V . In [14] the coercivity ((H8) in [14]) of the operators is used, however, in the

inhomogeneous case we do not have coercivity of the operator but we do have coercivity

in the sense of Lemma 3.1.1.

Lemma 3.2.6. If V ∈ B n
2 (Rn), then we have that

ˆ ∞
0

∑
Q∈∆V

t

‖1Q(QB
t − γtAt)P̃Ptu‖2

2

dt

t
. ‖u‖2

2,

for all u ∈ R(D).

Proof. Let u ∈ R(D). Define f := P̃Ptu. Recall the definition of Ck(Q) from Lemma

3.2.5. Then, by the off-diagonal estimates in Proposition 3.1.3, the Cauchy–Schwarz
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inequality, the Poincare inequality, Lemma 3.1.1 and choosing M > n+ 2, we have

∑
Q∈∆V

t

‖1Q(QB
t − γtAt)P̃Ptu‖2

2 .
∑
Q∈∆V

t

(
∞∑
k=0

‖1QQB
t 1Ck(Q)‖‖1Ck(Q)(f − fQ)‖2

)2

.
∑
Q∈∆V

t

∞∑
k=0

2−kM‖12kQ(f − fQ)‖2
2

.
∑
Q∈∆V

t

∞∑
k=0

2−kM l(2kQ)2‖12kQ∇f‖2
2

. t2
∞∑
k=0

2−k(M−(n+2))‖∇f‖2
2

. t2‖∇P̃Ptu‖2
2

. t2‖DPtu‖2
2.

Thus, we have

ˆ ∞
0

∑
Q∈∆V

t

‖1Q(QB
t − γtAt)P̃Ptu‖2

2

dt

t
.
ˆ ∞

0

‖Qtu‖2
2

dt

t
. ‖u‖2

2.

This completes the proof.

The following Lemma is analogous to [14, lemma 5.6]. This is where Lemma 3.1.5 is

used. Therefore, it is important that we have already reduced to proving the estimate on

small cubes.

Lemma 3.2.7. If V ∈ B n
2 (Rn), then we have

ˆ ∞
0

∑
Q∈∆V

t

‖1QγtAtP̃(Pt − I)u‖2
2

dt

t
. ‖u‖2

2,

for all u ∈ R(D).

Proof. We will perform a Schur-type estimate after we have established the bound

‖1ΩVt
AtP̃(Pt − I)Qsv‖2

2 =
∑
Q∈∆V

t

‖1QAtP̃(Pt − I)v‖2
2 . min

{
s

t
,
t

s

}
‖v‖2

2 (3.2.2)

56



for all v ∈ L2(Rn;Cn+2), where ΩV
t :=

⋃
Q∈∆V

t
Q. Now (Pt − I)Qs = t

s
Qt(I − Ps) and

PtQs = s
t
QtPs. If t ≤ s we use the uniform boundedness of Qt and I − Pt to obtain

∑
Q∈∆V

t

‖1QAtP̃(Pt − I)Qsv‖2
2 . ‖

t

s
Qs(I − Pt)v‖2

2 .

(
t

s

)2

‖v‖2
2 ≤

t

s
‖v‖2

2.

If s ≤ t then using the boundedness of Pt and Qt we have

∑
Q∈∆V

t

‖1QAtP̃(Pt − I)Qsv‖2
2 . ‖PtQsv‖2

2 +
∑
Q∈∆V

t

‖1QAtP̃Qsv‖2
2

.
s

t
‖v‖2

2 +
∑
Q∈∆V

t

‖1QAtP̃Qsv‖2
2.

Then, using Lemma 3.1.5 for cubes in ∆V , the Cauchy–Schwarz inequality, and the

uniform boundedness of Pt, and Qs, we have

∑
Q∈∆V

t

‖1QAtP̃Qsv‖2
2 =

∑
Q∈∆V

t

ˆ
Q

∣∣∣∣−ˆ
Q

P̃Qsv

∣∣∣∣2

≤
∑
Q∈∆V

t

s2|Q|
∣∣∣∣−ˆ
Q

DPsv

∣∣∣∣2

.
∑
Q∈∆V

t

s2 |Q|
l(Q)

(
−
ˆ
Q

|DPsv|2
) 1

2
(
−
ˆ
Q

|Psv|2
) 1

2

.
s

t

 ∑
Q∈∆V

t

ˆ
Q

|Qsv|2
 1

2
 ∑
Q∈∆V

t

ˆ
Q

|Psv|2
 1

2

≤ s

t
‖Qsu‖2‖Ptv‖2

.
s

t
‖v‖2

2.

This proves (3.2.2).

We now use a Schur-type estimate to complete the proof. In particular, since At is

defined component-wise on L2(Rn;Cn+2), whilst both γt and γ̃t are defined pointwise as

multiplication operators on Rn, and A2
t = At maps locally to constants in Cn on each
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dyadic cube in ∆t, observe that

1Qγt(AtP̃v) = 1Qγt(P̃AtP̃v) = 1Qγ̃t(AtP̃v) = 1Qγ̃t(1QAtP̃v) = 1Qγ̃t(At1QAtP̃v)

whenever Q ∈ ∆t, t > 0 and v ∈ L2(Rn;Cn+2). We now let m(s, t) := min
{
s
t
, t
s

} 1
2 , and

combine the above observation with Lemma 3.2.1, the reproducing formula, Minkowski’s

inequality and Tonnelli’s Theorem to obtain

ˆ ∞
0

∑
Q∈∆V

t

‖1QγtAtP̃(Pt − I)u‖2
2

dt

t
=

ˆ ∞
0

∑
Q∈∆V

t

‖1Qγ̃tAt1QAtP̃(Pt − I)u‖2
2

dt

t

.
ˆ ∞

0

∑
Q∈∆V

t

‖1QAtP̃(Pt − I)u‖2
2

dt

t

=

ˆ ∞
0

‖1ΩVt
AtP̃(Pt − I)u‖2

2

dt

t

.
ˆ ∞

0

∥∥∥∥1ΩVt
AtP̃(Pt − I)

(ˆ ∞
0

Q2
su

ds

s

)∥∥∥∥2

2

dt

t

.
ˆ ∞

0

(ˆ ∞
0

‖1ΩVt
AtP̃(Pt − I)Qs(Qsu)‖2

ds

s

)2
dt

t

≤
ˆ ∞

0

(ˆ ∞
0

m(s, t)‖Qsu‖2
ds

s

)2
dt

t

.
ˆ ∞

0

sup
t>0

(ˆ ∞
0

m(s, t)
ds

s

)(ˆ ∞
0

m(s, t)‖Qsu‖2
2

ds

s

)
dt

t

. sup
s>0

(ˆ ∞
0

m(s, t)
dt

t

) ˆ ∞
0

‖Qsu‖2
2

ds

s

. ‖u‖2
2.

This completes the proof.

Combining all the previous lemmas we can now prove Proposition 3.2.2.

Proof of Proposition 3.2.2. First note that if u ∈ N(DB) then we have that

ˆ ∞
0

‖QB
t u‖2

2

dt

t
=

ˆ ∞
0

‖tPB
t DBu‖2

2

dt

t
= 0.
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Therefore, assume that u ∈ R(D), we have

ˆ ∞
0

‖QB
t u‖2

2

dt

t
.
ˆ ∞

0

‖QB
t Ptu‖2

2

dt

t
+

ˆ ∞
0

‖QB
t (I − Pt)u‖2

2

dt

t
.

Then, by Lemma 3.2.3, the second term above is bounded by ‖u‖2
2. Now as I = P̃ + Pµ

ˆ ∞
0

‖QB
t Ptu‖2

2

dt

t
.
ˆ ∞

0

‖QB
t P̃Ptu‖2

2

dt

t
+

ˆ ∞
0

‖QB
t PµPtu‖2

2

dt

t
.

Then, by Lemma 3.2.4, the second term above is bounded by ‖u‖2
2. Now

ˆ ∞
0

‖QB
t P̃Ptu‖2

2

dt

t
.
ˆ ∞

0

∑
Q∈∆V

t

‖1QQB
t P̃Ptu‖2

2

dt

t
+

ˆ ∞
0

∑
Q∈∆t\∆V

t

‖1QQB
t P̃Ptu‖2

2

dt

t
.

Then, by Lemma 3.2.5, the second term is bounded by ‖u‖2
2. Now

ˆ ∞
0

∑
Q∈∆V

t

‖1QQB
t P̃Ptu‖2

2

dt

t
.
ˆ ∞

0

∑
Q∈∆V

t

‖1Qγ̃tAtPtu‖2
2

dt

t

+

ˆ ∞
0

∑
Q∈∆V

t

‖1Q(QB
t P̃− γ̃tAt)Ptu‖2

2

dt

t
.

Then, by Lemma 3.2.6 and as γ̃tAt = γtP̃At = γtAtP̃ the second term above is bounded

by ‖u‖2
2. Now, again using γ̃tAt = γtAtP̃, Lemma 3.2.7, and the hypothesis, we have

ˆ ∞
0

∑
Q∈∆V

t

‖1Qγ̃tAtPtu‖2
2

dt

t
.
ˆ ∞

0

∑
Q∈∆V

t

‖1Qγ̃tAtu‖2
2

dt

t

+

ˆ ∞
0

∑
Q∈∆V

t

‖1QγtAtP̃(Pt − I)u‖2
2

dt

t

. ‖u‖2
2.

This completes the proof.

We note that the only part that depends on V being in the reverse Hölder class is

Lemma 3.2.5, but if V ∈ Ln
2 (Rn) then we say all cubes are small. Therefore, the key is to

note that the second inequality in Lemma 3.1.5 holds for all cubes in this case. We also
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use the smallness of the norm to obtain the Riesz Transform estimates in Lemma 3.1.2.

Hence, we have the following proposition.

Proposition 3.2.8. Let n > 4. Let V ∈ Ln
2 (Rn) with small norm. If

ˆ ∞
0

‖γ̃tAtu‖2
2 . ‖u‖2

2,

for all u ∈ R(D), then we have

ˆ ∞
0

‖QB
t u‖2

2 . ‖u‖2
2,

for all u ∈ L2(R2).

3.3 Carleson Measure Estimate

To prove the quadratic estimate we are left to prove the estimate (3.2.1). We will do this

by reducing to a Carleson measure type estimate adapted to the potential V . This will

be done in a similar manner as in [13, Section 5.3] by constructing tests functions and

using a stopping time argument.

Definition 3.3.1. Let µ be a measure on Rn+1
+ := Rn × R+. Then we will say that µ is

V -Carleson if

‖µ‖CV := sup
Q∈∆V

1

|Q|
µ(C(Q)) <∞,

where C(Q) := Q× (0, l(Q)], is the Carleson box of the cube Q.

That is µ is V -Carleson if µ is Carleson when restricted to small cubes. The following

proposition is adapted to our case from [50, p. 59], and, states that if |γ̃t(x)|2 dtdx
t

is

a V -Carleson measure then (3.2.1) is bounded above by ‖u‖2
2. We note the following

proposition, like the definition of V -Carleson, only considers small cubes.
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Proposition 3.3.2. If µ is a V -Carleson measure, then we have

ˆ ∞
0

∑
Q∈∆V

t

ˆ
Q

|Atu(x)|2 dµ(x, t) . ‖µ‖CV ‖u‖2
2,

for all u ∈ L2(Rn;Cn+2).

Proof. First, using the fact that ∆V
t = ∆V

2k
for k ∈ Z and 2k−1 < t ≤ 2k and Tonelli’s

Theorem, we have

ˆ ∞
0

∑
Q∈∆V

t

ˆ
Q

|Atu(x)|2 dµ(x, t) =
∞∑

k=−∞

ˆ 2k

2k−1

∑
Q∈∆V

t

ˆ
Q

∣∣∣∣−ˆ
Q

u(y) dy

∣∣∣∣2 dµ(x, t)

=
∞∑

k=−∞

ˆ 2k

2k−1

∑
Q∈∆V

2k

ˆ
Q

∣∣∣∣−ˆ
Q

u(y) dy

∣∣∣∣2 dµ(x, t)

≤
∞∑

k=−∞

∑
Q∈∆V

2k

(
−
ˆ
Q

|u(y)| dy
)2 ˆ 2k

2k−1

ˆ
Q

dµ(x, t).

Now let IVk ⊆ N be an indexing set such that ∆V
2k

= {Qk
α : α ∈ IVk }. We also introduce

the notation

uα,k = −
ˆ
Qkα

|u(y)| dy, and µα,k = µ(Qk
α × (2k−1, 2k]).

Therefore, rearranging and using Tonelli’s Theorem, we have

ˆ ∞
0

∑
Q∈∆V

2k

ˆ
Q

|Atu(x)|2 dµ(x, t) ≤
∞∑

k=−∞

∑
α∈IVk

u2
α,kµα,k

=
∞∑

k=−∞

∑
α∈IVk

µα,k

ˆ uα,k

0

2r dr

=

ˆ ∞
0

∞∑
k=−∞

∑
α∈IVk

µα,k1{|uα,k|>r}(r)2r dr,

where dr denotes the Lebesgue measure on (0,∞). For each r > 0 let {Rj(r)}j∈N be

an enumeration of the collection of maximal dyadic cubes Qk
α ∈ ∆V such that uα,k > r.
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Note as u ∈ L2(Rn;Cn+2), then by Jensen’s inequality

−
ˆ
Q

|u(y)| dy ≤
(
−
ˆ
Q

|u(y)|2 dy

) 1
2

≤ ‖u‖2

|Q| 12
→ 0 as l(Q)→∞.

Therefore, for all Q ∈ ∆V with

−
ˆ
Q

|u| > r

there exists a maximal Qk
α ∈ ∆V for which uα,k > r and Q ⊆ Qk

α. Define

M∆V u(x) := sup

{
−
ˆ
Q

u : Q ∈ ∆V , with x ∈ Q
}
.

We claim
∞⋃
j=1

Rj(r) = {x ∈ Rn : (M∆V |u|)(x) > r}.

Let x ∈
⋃∞
j=1Rj(r). Therefore x ∈ Q such that Q = Rj(r) for some j ∈ N, then

r < −
ˆ
Q

|u| ≤ (M∆V |u|)(x).

Now if x ∈ Rn such that (M∆V |u|)(x) > r, then there exists Q′ ∈ ∆V with x ∈ Q′ such

that

r < −
ˆ
Q′
|u|.

Then either Q′ = Rj(r) for some j ∈ N or, as the cubes in {Rj(r)}j∈N are maximal, there

exists a cube Q = Rj(r) for some j ∈ N with Q′ ⊆ Q. Therefore, x ∈
⋃∞
j=1Rj(r). This

proves the claim.

Now suppose Qk
α ∈ ∆V is such that uα,k > r. Then, as the cubes in {Rj(r)}j∈N are

maximal, eitherQk
α = Rj(r) orQk

α ⊆ Rj(r) for some j ∈ N. Therefore, using the definition

of a V -Carleson measure, the above claim, standard results for maximal functions (see

[51, p. 7]), and the fact that ‖M∆V ‖2
2 ≤ ‖M‖2

2, where M is the Hardy–Littlewood
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maximal function, we have

ˆ ∞
0

∞∑
k=−∞

∑
α∈IVk

µα,k1{|uα,k,|>r}(r)2r dr ≤
ˆ ∞

0

∞∑
j=1

∑
R∈∆V

R⊆Rj(r)

µ(R× ( l(R)
2
, l(R)])2r dr

≤
ˆ ∞

0

2r
∞∑
j=1

µ(C(Rj(r))) dr

. ‖µ‖CV
ˆ ∞

0

2r
∞∑
j=1

|Rj(r)| dr

= ‖µ‖CV
ˆ ∞

0

2r

∣∣∣∣∣
∞⋃
j=1

Rj(r)

∣∣∣∣∣ dr
= ‖µ‖CV

ˆ ∞
0

2r |{x ∈ Rn : (M∆V |u|)(x) > r}| dr

= ‖µ‖CV ‖M∆V |u|‖2
2

. ‖µ‖CV ‖u‖2
2,

where C(Rj(r)) is the Carleson box of Rj(r). This completes the proof.

Adapting the work of Bailey in [16, Section 4.1], which in turn is based on [13], we

define the space

L̃ := {ν ∈ L(Cn+2) \ {0} : νP̃ = ν},

equipped with the operator norm |ν| := |ν|L(Cn+1) for all ν ∈ L̃. We give a small technical

lemma about some of the properties of L̃

Lemma 3.3.3. Let ν ∈ L̃ with |ν| = 1. Then there exists ξ, ζ ∈ Cn+2 such that

|ξ| = |ζ| = 1, ξ = ν∗(ζ), and P̃ξ = ξ.

Proof. As |ν| = 1 there exists η ∈ Cn+2 such that |η| = 1 and |ν(η)| = 1. Then define

ξ := ν∗(ν(η)) and ζ := ν(η). Then ν∗(ζ) = ν∗(ν(η)) = ξ by definition. Now |ζ| =

|ν(η)| = 1. And |ξ| ≤ |ν∗||ν(η)| = 1. Also, 1 = |ν(η)|2 = 〈ν(η), ν(η)〉 = 〈η, ν∗(ν(η))〉 ≤

|η||ν∗(ν(η))| = |ξ|. Thus |ξ| = 1.

Let z ∈ Cn+2. Then, since ν ∈ L̃, we have 〈ξ, z〉 = 〈ν(η), ν(z)〉 = 〈ν(η), νP̃(z)〉 =

〈ξ, P̃z〉 = 〈P̃ξ, z〉. As z ∈ Cn+2 was arbitrary we have that ξ = P̃ξ. As required.
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Let σ > 0 be a constant to be chosen later. Let Vσ ⊂ L̃ be a finite set of matrices

ν ∈ L̃ with |ν| = 1, such that
⋃
ν∈Vσ Kν,σ = L̃, where

Kν,σ :=

{
µ ∈ L̃ :

∣∣∣∣ µ|µ| − ν
∣∣∣∣ ≤ σ

}
.

It suffices to prove the Carleson measure estimate on each cone Kν,σ. That is, we need

to prove

¨
(x,t)∈C(Q)
γ̃t(x)∈Kν,σ

|γ̃t(x)|2 dx dt

t
. |Q|, (3.3.1)

for every v ∈ Vσ. Using Lemma 3.3.3 we choose ξ, ζ ∈ Cn+2 with |ξ| = |ζ| = 1 such that

ξ = ν∗(ζ), and P̃ξ = ξ. Let ηQ : Rn+2 → [0, 1] be a smooth function equal to 1 on 2Q,

with support in 4Q, and ‖∇ηQ‖∞ . 1
l
, where l = l(Q). Define ξQ = ηQξ. We define the

test functions, in a similar way to those used in [10, Section 3.6], as follows, for ε > 0,

define the test functions as

f ξQ,ε := (I + (εl)2(DB)2)−1(ξQ) = PB
εl ξQ.

We now present some useful properties of the test functions f ξQ,ε. The following lemma

is adapted to accommodate the potential V from [14, Lemma 5.3] and [10, Lemma 3.16].

Lemma 3.3.4. We have the following estimates:

1. ‖f ξQ,ε‖2 . |Q|
1
2 ,

2. ‖εlDBf ξQ,ε‖2 . |Q|
1
2 ,

for all Q ∈ ∆. Also

3.

∣∣∣∣−ˆ
Q

f ξQ,ε − ξ
∣∣∣∣ . ε

1
2 for all Q ∈ ∆V if V ∈ B n

2 (Rn).

Proof. By definition, and uniform boundedness of PB
t , we have

‖f ξQ,ε‖
2
2 = ‖PB

εl ξQ‖2
2 . ‖ξQ‖2

2 . |Q|.
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Similarly we have

‖εlDBf ξQ,ε‖
2
2 = ‖QB

εlξQ‖2
2 . ‖ξQ‖2

2 . |Q|.

For (3), we use the definition of f ξQ,ε, Lemma 3.1.5, and the uniform boundedness of

PB
t − I and QB

t to obtain

∣∣∣∣−ˆ
Q

f ξQ,ε − ξ
∣∣∣∣2 =

∣∣∣∣−ˆ
Q

(f ξQ,ε − ηQξ)
∣∣∣∣2

=

∣∣∣∣−ˆ
Q

(εl)2(DB)2PB
εl ξQ

∣∣∣∣2
.

(εl)4

l

(
−
ˆ
Q

|(DB)2PB
εl ξQ|2

) 1
2
(
−
ˆ
Q

|BDBPB
εl ξQ|2

) 1
2

≤ ε‖B‖∞
|Q|

(ˆ
Q

|(PB
εl − I)ξQ|2

) 1
2
(ˆ

Q

|QB
εlξQ|2

) 1
2

.
ε

|Q|
‖ξQ‖2

2

. ε.

This completes the proof.

For each Q ∈ ∆V we consider a sub-collection of disjoint subcubes which give us the

following reduction of (3.3.1).

Proposition 3.3.5. There exists τ ∈ (0, 1) such that for all cubes Q ∈ ∆V and for all

ν ∈ L̃ with |ν| = 1, there is a collection {Qk}k∈IQ ⊂ ∆V of disjoint subcubes of Q, where

IQ is the indexing set of the collection, such that |EQ,ν | > τ |Q| where EQ,ν = Q\
⋃
k∈IQ Qk

and with ¨
(x,t)∈E∗Q,ν
γ̃t(x)∈Kν,σ

|γ̃t(x)|2 dx dt

t
. |Q|,

where E∗Q,ν := C(Q) \
⋃
k∈IQ C(Qk).

We will use a stopping-time argument to give a suitable collection of dyadic subcubes

for Proposition 3.3.5. We note that unlike in [13] we need all the bad cubes in the stopping

time argument to be small, therefore, we need to use Lemma 2.2.3 which gives a uniform

bound on the number of times we need to subdivide a small dyadic cube until we can
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guarantee that the subcubes at that scale are also small.

Define f ξQ := f ξQ,ε0 where ε0 > 0 is such that when we apply Lemma 3.3.4 part (3) we

obtain ∣∣∣∣−ˆ
Q

f ξQ − ξ
∣∣∣∣ ≤ 1

2
,

for all Q ∈ ∆V . Then the polarisation identity gives

Re

〈
ξ,−
ˆ
Q

f ξQ

〉
=

1

4

(∣∣∣∣ξ +−
ˆ
Q

f ξQ

∣∣∣∣2 − ∣∣∣∣−ˆ
Q

f ξQ − ξ
∣∣∣∣2
)

≥ 1

4

(
2 Re

〈
ξ,−
ˆ
Q

f ξQ

〉
+

∣∣∣∣−ˆ
Q

f ξQ

∣∣∣∣2 +
3

4

)
.

Therefore, using Lemma 3.3.4, we have that

Re

〈
ξ,−
ˆ
Q

f ξQ

〉
≥ 1

2

(∣∣∣∣−ˆ
Q

f ξQ

∣∣∣∣2 +
3

4

)
≥ 1

2

(
1

4
+

3

4

)
=

1

2
. (3.3.2)

We now describe the bad cubes which we will use in Proposition 3.3.5, using the above

lemma so that we can make sure there are no big bad cubes.

Lemma 3.3.6. Let Q ∈ ∆V if V ∈ B
n
2 (Rn). Then, there are constants c1, c2 > 0,

τ ∈ (0, 1) and a disjoint collection {Qk}k∈IQ ⊂ ∆V such that

• Qk ⊆ Q

• |EQ,ν | > τ |Q|

• l(Qk) < JV K
−1

2−nq
q l(Q), where q > n

2
is as in Remark 2.2.4,

satisfying

−
ˆ
S

|f ξQ| ≤ c1, and Re

〈
ξ,−
ˆ
S

f ξQ

〉
≥ c2, (3.3.3)

for all dyadic subcubes S of Q with l(S) < JV K
−1

2−nq
q l(Q) for which C(S)∩ Ẽ∗Q,ν 6= ∅, where

Ẽ∗Q,ν := (Q× [0, JV K
−1

2−nq
q l(Q))) \

⋃
k C(Qk).

Proof. Let α ∈ (0, 1). Let B1 be the collection of maximal dyadic subcubes of Q, with
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l(Qk) < JV K
−1

2−nq
q l(Q), for which

−
ˆ
Qk

|f ξQ| >
1

α
. (3.3.4)

Since Q ∈ ∆V then by Lemma 2.2.3 with C = c = 1 we have Qk ∈ ∆V for all k ∈ IQ.

Then, using the Cauchy–Schwarz inequality and (1) from Lemma 3.3.4, we have

∣∣∣⋃B1

∣∣∣ =
∑
Qk∈B1

|Qk| ≤ α
∑
Qk∈B1

ˆ
Qk

|f ξQ| ≤ α

ˆ
Q

|f ξQ| ≤ α|Q|
1
2

(ˆ
Q

|f ξQ|
2

) 1
2

≤ Cα|Q|,

where C > 0 is the implicit constant in (1) from Lemma 3.3.4. Now let B2 be the

collection of maximal dyadic subcubes of Q, with l(Qk) < JV K
−1

2−nq
q l(Q), such that

Re

〈
ξ,−
ˆ
Qk

f ξQ

〉
< α. (3.3.5)

Then, using (3.3.2), the properties of B2, the Cauchy–Schwarz inequality, and Lemma

3.3.4 part (1), we have that

1

2
≤ Re

〈
ξ,−
ˆ
Q

f ξQ

〉
=
∑
Qk∈B2

|Qk|
|Q|

Re

〈
ξ,−
ˆ
Qk

f ξQ

〉
+ Re

〈
ξ,

1

|Q|

ˆ
Q\
⋃
B2
f ξQ

〉
≤ α +

1

|Q|

ˆ
Q\
⋃
B2
|f ξQ|

≤ α + C

(
|Q \

⋃
B2|

|Q|

) 1
2

.

Making the restriction α ∈ (0, 1
2
) we have

( 1
2
− α
C

)2

|Q| ≤ |Q \
⋃
B2|.

Therefore, letting {Qk}k∈IQ := B1∪B2 where IQ is an enumeration of the cubes in B1∪B2

|EQ,ν | ≥ |Q \
⋃
B2| − |

⋃
B1| ≥

[( 1
2
− α
C

)2

− Cα

]
|Q|.
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Now, choosing α ∈ (0, 1
2
) sufficiently small, gives τ :=

[(
1
2
−α
C

)2

− Cα
]
> 0. Now, let

R be a dyadic subcube of Q with l(R) < JV K
−1

2−nq
q l(Q) and C(R) ∩ Ẽ∗Q,ν 6= ∅. Then, by

definition R ∩ (Q × [0, JV K
−1

2−nq
q l(Q))) \

⋃
k C(Qk) 6= ∅ and so we have R 6⊆ Qk for all

Qk ∈ B1 ∪ B2. Since, the cubes in B1 and B2 are maximal for conditions (3.3.4) and

(3.3.5) respectively and R 6⊆ Qk for all Qk ∈ B1 ∪B2, then R cannot satisfy either (3.3.4)

or (3.3.5). Thus, R satisfies (3.3.3). This completes the proof.

Now we choose σ = c2
2c1

. The following lemma will allow us to introduce the test

functions into our argument.

Lemma 3.3.7. Let Q ∈ ∆V if V ∈ B n
2 (Rn). If (x, t) ∈ Ẽ∗Q,ν and γt(x) ∈ Kv,σ, then

|γ̃t(x)(Atf
ξ
Q(x))| ≥ 1

2
c2|γ̃t(x)|.

Proof. As (x, t) ∈ Ẽ∗Q,ν there exists S ∈ ∆V
t such that S ⊆ Q, x ∈ S, l(S) ≤ c̃l(Q) and

C(S) ∩ Ẽ∗Q,ν 6= ∅. Then by Lemmas 3.3.6, and the definitions of ξ and ζ, we have

|ν(Atf
ξ
Q(x))| ≥ Re

〈
ζ, ν(Atf

ξ
Q(x))

〉
= Re

〈
ξ,−
ˆ
S

f ξQ

〉
≥ c2.

Then, by above and Lemma 3.3.6, we have

∣∣∣∣ γ̃t(x)

|γ̃t(x)|
(Atf

ξ
Q(x))

∣∣∣∣ ≥ |ν(Atf
ξ
Q(x))| −

∣∣∣∣( γ̃t(x)

|γ̃t(x)|
− ν
)

(Atf
ξ
Q(x))

∣∣∣∣ ≥ c2 − σc1 ≥
1

2
c2.

As required.

We are now ready to give the proof of Proposition 3.3.5 This is adapted from [13,

Proof of Proposition 5.9] to the set Ẽ∗Q,v and to the presence of the potential V .

Proof of Proposition 3.3.5. First we break up the integral as follows

¨
(x,t)∈E∗Q,ν
γ̃t(x)∈Kν,σ

|γ̃t(x)|2 dx dt

t
=

¨
(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|γ̃t(x)|2 dx dt

t
+

¨
(x,t)∈Q×[c̃l(Q),l(Q)]

γ̃t(x)∈Kν,σ

|γ̃t(x)|2 dx dt

t
.

68



Then, using the lower bound t > c̃l(Q) and the local boundedness of γ̃ as in (1) in Lemma

3.2.1, we have

¨
(x,t)∈Q×[c̃l(Q),l(Q)]

γ̃t(x)∈Kν,σ

|γ̃t(x)|2 dx dt

t
≤
ˆ l(Q)

c̃l(Q)

ˆ
Q

|γ̃t(x)|2 dx dt

t

≤ 1

c̃l(Q)

ˆ l(Q)

c̃l(Q)

(ˆ
Q

|γ̃t(x)|2 dx

)
dt

=
1

c̃l(Q)

ˆ l(Q)

c̃l(Q)

∑
R∈∆t
R⊆Q

ˆ
R

|γ̃t(x)|2 dx

 dt

.
1

c̃l(Q)

ˆ l(Q)

c̃l(Q)

∑
R∈∆t
R⊆Q

|R|

 dt

.
|Q|
c̃l(Q)

ˆ l(Q)

c̃l(Q)

dt

h |Q|.

Therefore, by Lemma 3.3.7 we introduce the test functions to obtain

¨
(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|γ̃t(x)|2 dx dt

t
.
¨

(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|γ̃t(x)(Atf
ξ
Q(x))|2 dx dt

t

.
¨

(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|(QB
t − γ̃t(x)At)f

ξ
Q|

2 dx dt

t
+

¨
C(Q)

|QB
t f

ξ
Q|

2 dx dt

t
.

Now, by the uniform boundedness of PB
t and Lemma 3.3.4, we have

¨
C(Q)

|QB
t f

ξ
Q|

2 dx dt

t
≤
ˆ l

0

(
t

ε0l

)2

‖PB
t ε0lDBf

ξ
Q,ε0
‖2

2

dt

t
.
ˆ l

0

1

ε2
0l
‖ε0lDBf

ξ
Q,ε0
‖2

2 dt .
|Q|
ε2

0

.

Also,

¨
(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|(QB
t − γ̃t(x)At)f

ξ
Q|

2 dx dt

t
.
¨

(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|(QB
t − γ̃t(x)At)(f

ξ
Q − ξQ)|2 dx dt

t

+

¨
C(Q)

|(QB
t − γ̃t(x)At)ξQ|2

dx dt

t

(3.3.6)
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Now, for the first term in (3.3.6) we have

¨
(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|(QB
t − γ̃t(x)At)(f

ξ
Q − ξQ)|2 dx dt

t

.
¨

(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|(QB
t Pt − γ̃t(x)At)(f

ξ
Q − ξQ)|2 dx dt

t

+

¨
C(Q)

|QB
t (I − Pt)(f ξQ − ξQ)|2 dx dt

t
.

(3.3.7)

As f ξQ − ξQ = (PB
ε0l
− I)ξQ = −(ε0lDB)2PB

ε0l
ξQ ∈ R(D), by Lemma 3.2.3 we have the

second term in (3.3.7) is bounded by ‖f ξQ − ξQ‖2
2. Then, by definitions of P̃ and Pµ, we

obtain

¨
(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|(QB
t Pt − γ̃t(x)At)(f

ξ
Q − ξQ)|2 dx dt

t

.
¨

(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|(QB
t P̃Pt − γ̃t(x)At)(f

ξ
Q − ξQ)|2 dx dt

t

+

¨
C(Q)

|QB
t PµPt(f

ξ
Q − ξQ)|2 dx dt

t
.

(3.3.8)

Then by Lemma 3.2.4 we have that the second term in (3.3.8) is bounded by ‖f ξQ− ξQ‖2
2.

Now using Lemmas 3.2.6 and 3.2.7 we obtain

¨
(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|(QB
t P̃Pt − γ̃t(x)At)(f

ξ
Q − ξQ)|2 dx dt

t

.
¨

(x,t)∈Ẽ∗Q,ν
γt(x)∈Kν,σ

|(QB
t P̃− γt(x)P̃At)Pt(f ξQ − ξQ)|2 dx dt

t

+

¨
(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|γt(x)P̃At(I − Pt)(f ξQ − ξQ)|2 dx dt

t

.
ˆ ∞

0

∑
R∈∆V

t

‖1R(QB
t − γt(x)At)P̃Pt(f ξQ − ξQ)‖2

2

dt

t

+

ˆ ∞
0

∑
R∈∆V

t

‖1Rγt(x)AtP̃(I − Pt)(f ξQ − ξQ)‖2
2

dt

t

. ‖f ξQ − ξQ‖
2
2.
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Therefore, by the uniform boundedness of PB
t − I we have

¨
(x,t)∈Ẽ∗Q,ν
γ̃t(x)∈Kν,σ

|(QB
t − γ̃t(x)At)(f

ξ
Q − ξQ)|2 dx dt

t
. ‖f ξQ − ξQ‖

2
2 = ‖(PB

ε0l
− I)ξQ‖2

2 . |Q|

We now start to bound the second term in (3.3.6). Now, using that ηQ = 1 on 2Q

and so At(ηQξ) = ξ on 2Q, and ξ = P̃ξ, we have

(QB
t − γ̃tAt)ξQ = QB

t (ηQξ − γtP̃At(ηQξ)) = QB
t (ηQξ − P̃ξ) = QB

t ((ηQ − I)ξ),

for all (x, t) ∈ C(Q), and so in particular x ∈ Q ⊂ 2Q. Therefore, since supp((ηQ−1)ξ)∩

2Q = ∅, using the off-diagonal estimates in Proposition 3.1.3 with M > n, we have

‖1QQB
t ((ηQ − 1)ξ)‖2

2 ≤

(
∞∑
j=1

‖1QQB
t 1Cj(Q)((ηQ − 1)ξ)‖2

)2

.

(
t

l(Q)

)M ∞∑
j=1

2−jM‖1Cj(Q)((ηQ − 1)ξ)‖2
2

.

(
t

l(Q)

)M ∞∑
j=1

2−j(M−n)|Q|

.

(
t

l(Q)

)M
|Q|.

Thus, integrating in t gives

¨
C(Q)

|(QB
t f

ξ
Q − γ̃t(x)At)ξQ|2

dx dt

t
.
ˆ l

0

tM−1|Q|
lM

dt . |Q|

Therefore, ¨
(x,t)∈E∗Q,ν
γ̃t(x)∈Kν,σ

|γ̃t(x)|2 dx dt

t
. |Q|.

This completes the proof.

Now we are finally ready to prove Theorem 3.0.1.

Proof of Theorem 3.0.1. We start by showing that Proposition 3.3.5 proves (3.3.1). Con-
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sider an arbitrary Q ∈ ∆V and fix ν ∈ Vσ. Then, for all δ ∈ (0, 1), we have

¨
C(Q)

1γ̃t(x)∈Kν,σ(x, t)1(δ,δ−1)(t)|γ̃t(x)|2 dx dt

t
≤ 1

δ

ˆ l(Q)

0

1(δ,δ−1)(t)

(ˆ
Q

|γ̃t(x)|2 dx

)
dt

≤ 1

δ

ˆ l(Q)

0

1(δ,δ−1)(t)

∑
R∈∆t
R⊆Q

ˆ
R

|γ̃t(x)|2 dx

 dt

.
1

δ

ˆ l(Q)

0

1(δ,δ−1)(t)

∑
R∈∆t
R⊆Q

|R|

 dt

.
|Q|
δ2
,

where the penultimate inequality comes from Lemma 3.2.1 part (1). Therefore, we have

that the measure µδ,ν := 1γ̃t(x)∈Kν,σ(x, t)1(δ,δ−1)(t)|γ̃t(x)|2 dxdt
t

is V -Carleson. We now

show that ‖µδ,ν‖C does not depend on δ ∈ (0, 1). Then, as each Qk ∈ ∆V , µδ,ν being

V -Carleson and by Proposition 3.3.5, we have

¨
C(Q)

1γ̃t(x)∈Kν,σ(x, t)1(δ,δ−1)(t)|γ̃t(x)|2 dx dt

t
=

¨
(x,t)∈E∗Q,ν
γ̃t(x)∈Kν,σ

|γ̃t(x)|2 dx dt

t
+
∑
k∈IQ

µδ,ν(C(Qk))

≤ C0|Q|+ ‖µδ,ν‖C
∑
k∈IQ

|Qk|

≤ C0|Q|+ ‖µδ,ν‖C|Q \ EQ,ν |,

Then using the fact that |EQ,ν | > τ |Q|, dividing by |Q| and taking the supremum over

all cubes Q ∈ ∆V , we have that

‖µδ,ν‖CV = sup
Q∈∆V

1

|Q|

¨
C(Q)

1γ̃t(x)∈Kν,σ(x, t)1(δ,δ−1)(t)|γ̃t(x)|2 dx dt

t
< C + ‖µδ,ν‖CV (1− τ).

Rearranging then gives us

‖µδ,ν‖CV .
1

τ
.

That is µδ,ν is a Carleson measure with Carleson norm independent of δ. Now, note

that 1(δ,δ−1)(t) is a pointwise increasing function. Thus, by the Monotone Convergence
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Theorem

¨
(x,t)∈C(Q)
γ̃t(x)∈Kν,σ

|γ̃t(x)|2 dx dt

t
=

¨
(x,t)∈C(Q)
γ̃t(x)∈Kν,σ

lim
δ→0

1(δ,δ−1)(t)|γ̃t(x)|2 dx dt

t

= lim
δ→0

¨
(x,t)∈C(Q)
γ̃t(x)∈Kν,σ

1(δ,δ−1)(t)|γ̃t(x)|2 dx dt

t

. |Q|.

Thus, we have proved (3.3.1). Now, since Vσ is a finite set and the size of Vσ is independent

of Q, we have

¨
(x,t)∈C(Q)

|γ̃t(x)|2 dx dt

t
≤
∑
ν∈Vσ

¨
(x,t)∈C(Q)
γ̃t(x)∈Kν,σ

|γ̃t(x)|2 dx dt

t
. |Q|.

Thus, |γ̃t(x)|2 dx dt
t

is a V -Carleson measure. Therefore, by Proposition 3.3.2 we have

proven (3.2.1); finally, applying Proposition 3.2.2 completes the proof.

For V ∈ L
n
2 (Rn) with sufficiently small norm we note that as all dyadic cubes are

small then the bounds on the length of the cubes in Lemma 3.3.6 are not needed to

remove all the big bad cubes. Therefore, the proof is similar but easier.

Proposition 3.3.8. Let V ∈ L
n
2 (Rn) with sufficiently small norm. Then we have the

square function estimate

ˆ ∞
0

‖tDB(I + t2DBDB)−1u‖2
2

dt

t
. ‖u‖2

2,

for all u ∈ L2(Rn;Cn+2).
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CHAPTER 4

QUADRATIC ESTIMATES FOR THE PURELY
MAGNETIC SCHRÖDINGER OPERATOR

Like Chapter 3 the focus of this chapter is to prove quadratic estimates for a first-order

systems of the DB-type, which we now adapt to incorporate a first-order term as a

potential. We again follow the methods in [14] and so this chapter follows in a similar

structure to Chapter 3. Again, the goal would be to prove well-posedness results for the

magnetic Schrödinger equation on the upper half-space; however, this is outside the scope

of this thesis. We use the framework from Section 2.4 and define the operators

D =

 0 −(∇+ ib)∗

−(∇+ ib) 0

 and B =

B⊥⊥ B⊥‖

B‖⊥ B‖‖


as defined in Section 2.4. Then, the aim of this chapter is to prove the following theorem.

We consider the purely magnetic Schrödinger oprator

Hb,Au = (∇+ ib)∗A(∇+ ib)u, (4.0.1)

for n > 2, where b ∈ L2(Rn;Rn) is the magnetic potential, A ∈ L∞(Rn+1;L(Cn+1)) is

complex and elliptic operator. Recall the definition of the magnetic field generated by b

as

B := curl(b),
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We will use the following notation from now on

Lu := (∇+ ib)u.

Throughout this chapter we will assume the magnetic field satisfies conditions (2.4.3),

that is: 
|B| ∈ B n

2 (Rn)

|∇B(x)| ≤ cm(x, |B|)3,

for some c > 0, where m(·, |B|) is the Shen maximal function in (2.2.2).

Remark 4.0.1. Originally in [46] the additional condition |B(x)| . m(x, |B|)2 was in-

cluded but in [47, Remark 1.8] it was observed that this is a consequence of the condition

|∇B(x)| ≤ cm(x, |B|)3.

The main theorem of the chapter is the following.

Theorem 4.0.2. If B satisfies (2.4.3), then we have the following quadratic estimate

ˆ ∞
0

‖QB
t u‖2

2

dt

t
h ‖u‖2

2, ∀u ∈ R(D),

where the implicit constants depend on B, n, κ, and ‖B‖∞.

To do this we will prove a localised quadratic estimates by reducing to a localised

Carleson measure estimate and then use a stopping time argument to prove the Carleson

measure estimate.

4.1 Initial Estimates

We start by giving some estimates which are key for proving the quadratic estimate. The

key part being the definition of the maximal dyadic mesh we will be using and the finite

overlap property. This will be the main difference between this chapter and Chapter 3

as we use the fact that we impose the reverse Hölder condition on the magnetic field B
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instead of the magnetic potential b. And because our method will involve localising the

quadratic estimate we discuss the estimates that are globally on Rn and those which are

on the maximal dyadic mesh in separately.

4.1.1 Global Estimates

We begin with the global estimates. We have the following proposition (see [39, Theorem

7.21] for details) states that the absolute value of a function with finite magnetic gradient

is a W 1,2(Rn). We give a pointwise bound below.

Proposition 4.1.1 (Diamagnetic Inequality). For all u ∈ L2(Rn) with Lu ∈ L2(Rn;Cn),

we have

|∇|u|| ≤ |Lu|.

In [46] the following Fefferman–Phong inequality was proven.

Lemma 4.1.2 (Global Fefferman–Phong). Let b ∈ L2
loc(Rn;Rn). Also, assume that B

satisfies (2.4.3). Then

‖m(·, |B|)u‖2 . ‖Lu‖2,

for all u ∈ C1(Rn).

Another important property is that the first-order operator satisfies a commutator

bound. To see this we use the product rule and the product rule for divergence to get

[ηI,D]u = ηDu−D(ηu) =

ηL∗u‖
ηLu⊥

−
L∗(ηu‖)
L(ηu⊥)

 =

u‖ · ∇η
u⊥∇η


Therefore, we have

|[ηI,D]u(x)| . |∇η||u(x)|, (4.1.1)

for a.e. x ∈ Rn. The commutator bounds allows us to prove the off-diagonal estimates

for D.
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Proposition 4.1.3. Let Ut be R̃B
t for t ∈ R \ {0} or P̃B

t or Q̃B
t for every t > 0. Then for

any M ∈ N there exists CM > 0, which depends only on B, n, κ, and ‖B‖∞, such that

‖Utu‖L2(E) ≤ CM

〈
dist(E,F )

t

〉−M
‖u‖L2(F ),

for every E,F ⊆ Rn Borel sets, and u ∈ L2(Rn;Cn+1) with supp(u) ⊆ F

Proof. The proof follows as in [13, Proposition 5.2] using (4.1.1).

We will need the Riesz transform bounds first proven in [47] and later improved in

[17].

Theorem 4.1.4. Let b ∈ L2
loc(Rn;Rn). Also, Assume B satisfies (2.4.3). Then L2H−1

b is

Lp-bounded for any p ∈ (1,∞).

We adapt Theorem 4.1.4 so that we may use them in the context of our first-order

operator D. Here we bound the magnetic gradient with D.

Proposition 4.1.5. Let b ∈ L2
loc(Rn;Rn). Also, Assume B satisfies (2.4.3). Then

‖Lu‖2 . ‖Du‖2,

for all u ∈ R(D).

Proof. Let u ∈ R(D) By Lemma 2.4.6 we have there exists f ∈ L2(Rn) and g ∈ Ẇ 1,2
b (Rn)

such that

u =

 f
Lg

 .
Therefore, we have

Lu =

L2g

Lf

 and Du =

L∗Lg
Lf

 .
Thus using Theorem 4.1.4 and H = L∗L, we have

‖Lu‖2 ≤ ‖L2g‖2
2 + ‖Lf‖2 . ‖Hf‖2 + ‖Lf‖2 =

∥∥∥∥∥∥∥
L∗Lf
Lf


∥∥∥∥∥∥∥ = ‖Du‖2.
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This completes the proof.

Combining Proposition 4.1.5 with the global Fefferman–Phong inequality, Lemma

4.1.2, and the observation in Remark 4.0.1, we get the following corollary.

Corollary 4.1.6. Let b ∈ L2
loc(Rn;Rn). Also, Assume B satisfies (2.4.3). Then

‖Lu‖2 + ‖|B|
1
2u‖2 . ‖Du‖2

for all u ∈ R(D).

Proof. Using Remark 4.0.1 and Lemma 4.1.2, we have

‖|B|
1
2u‖2 . ‖m(x, |B|)Ptu‖2 . ‖Lu‖2.

Then, using Proposition 4.1.5, we get

‖Lu‖2 + ‖|B|
1
2u‖2 . ‖Lu‖2 . ‖Du‖2.

As required

4.1.2 Maximal Dyadic Mesh Adapted to the Magnetic Field

We start by defining the notion of a dyadic decomposition of an arbitrary (not necessarily

dyadic) cube. To this end fix a cube Q. For t > l(Q) we define ∆t(Q) := ∅. For t ≤ l(Q),

there exists k ∈ N such that 2−(k−1)l(Q) < t ≤ 2−kl(Q). Then, we define ∆t(Q) to be the

set of dyadic subcubes of Q of side-length 2kl(Q). Note Q =
⋃
R∈∆t(Q) R.

We define, for each T > 0, the collection of dyadic cubes, ∆̃B
T , as follows: for each

Q ∈ ∆T if

l(4Q)2−
ˆ

4Q

|B| ≤ 1 (4.1.2)

then add Q ∈ ∆̃B
T , if not then sub-divide Q dyadically, and stop when (4.1.2) is satisfied.

To see that the subdivision stops, fix x ∈ Q and consider the collection {Qn}n∈N obtained
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from dyaically sub-dividing Q and taking Qn to be the cube of side-length 2−nl(Q) such

that x ∈ Qn. Then, by the Lebesgue differentiation theorem we have

lim
n→∞

[
l(4Qn)2−

ˆ
4Qn

|B|
]

= 0 · |B(x)| = 0.

Therefore, there exists N ∈ N such that for all n > N (4.1.2) holds. Also, note that by

construction ∆̃B
T is maximal in the sense that for every Q ∈ ∆̃B

T then either Q ∈ ∆T or

the parent, Q̂, of Q is such that

l(4Q̂)2−
ˆ

4Q̂

|B| > 1.

Thus ∆̃B
T is a maximal collection of dyadic cubes satisfying (4.1.2) and we have ∆̃B

T is a

covering of Rn. An important property of the maximal dyadic mesh ∆̃B
T is that it has a

finite overlap property which we present in the following proposition.

Proposition 4.1.7. Let T > 0. Then there exists a constant c > 0 such that

∑
Q∈∆̃B

T

12kQ(x) ≤ c2klB , ∀x ∈ Rn, (4.1.3)

where c and lB depend only on dimension and the properties of |B|.

Proof. Fix x ∈ Rn. Then there is a unique Q ∈ ∆̃B
T such that x ∈ Q. We will give a

bound on the number of Q̃ ∈ ∆̃B
T such that Q ∩ 2kQ̃ 6= ∅. First we calculate a lower

bound on l(Q̃) so we assume that l(Q̃) < l(Q). Now let R ∈ ∆l(Q) be the unique cube

such that Q̃ ⊂ R. As ∅ 6= 2kQ̃∩Q ⊂ 2kR∩Q. Thus, as l(Q) = l(R) we have R ⊂ 2k+1Q.

Therefore, using the doubling property of |B| we obtain

l(R)2−
ˆ
R

|B| ≤ 4−2l(4R)2

4−n|4R|

ˆ
2k+1Q

|B| ≤ ck−1
d 4n−2 l(4Q)2

|4Q|

ˆ
4Q

|B| ≤ ck−1
d 4n−2, (4.1.4)

where cd > 0 is the doubling constant for |B|. Now assume for contradiction, that

l(Q̃) <

(
J|B|Kpck−1

d 4n−2

2−6c−4
d

) −1
2−np

l(R).
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Then by Lemma 2.2.3 with C = ck−1
d 4n−2 and c = 2−6c−4

d , and (4.1.4), we have

l(Q̃)2−
ˆ
Q̃

|B| ≤ 2−6c−4
d .

Let ̂̃Q be the dyadic parent of Q̃, that is Q̃ ⊂ ̂̃Q and ̂̃Q ∈ ∆2l(Q̃). Then

l(4 ̂̃Q)2−
ˆ

4 ̂̃Q |B| ≤ l(8Q̃)2−
ˆ

16Q̃

|B| ≤ 26c4
dl(Q̃)2−

ˆ
Q̃

|B| ≤ 1.

Thus, ̂̃Q, Q̃ ∈ ∆̃B
T and Q̃ ⊂ ̂̃Q. Also, as l(Q̃) < l(Q) then Q̃ /∈ ∆T . Thus, by the

maximality of ∆̃B
T we also have

l(4 ̂̃Q)2−
ˆ

4 ̂̃Q |B| > 1

This is a contradiction. Hence

l(Q̃) ≥
(

J|B|Kpck−1
d 4n−2

2−6c−4
d

) −1
2−np

l(R) =
(
J|B|Kpck+3

d 22(n+1)
) −1

2−np l(Q).

Now we find an upper bound for l(Q̃). First suppose Q ∈ ∆̃B
T ∩∆T . Then for Q̃ ∈ ∆̃B

T

and l(Q̃) ≥ l(Q) then we must have Q̃ ∈ ∆T . That is l(Q̃) = l(Q). Now suppose

Q ∈ ∆̃B
T \∆T Let Q̂ be the dyadic parent of Q. As Q ⊂ Q̂, we have 2kQ̃ ∩ Q̂ 6= ∅. Then,

by the maximality of ∆̃B
T and since Q ∈ ∆̃B

T \∆T , we have

l(4Q̂)2−
ˆ

4Q̂

|B| > 1.

We also have 4Q̂ ⊆ 2k+3Q̃ and

l(2k+3Q̃)2−
ˆ

2k+3Q̃

|B| ≤ ck+1
d 42(k+1)l(4Q̃)2

2n(k+1)|4Q̃|
−
ˆ

4Q̃

|B| ≤ ck+1
d 2(k+1)(2−n).

Then, by Lemma 2.2.2 we have
(
J|B|Kpck+1

d 2(k+1)(2−n)
) −1

2−np l(2k+2Q̃) ≤ l(4Q̂). Therefore,
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if Q̃ ∈ ∆̃B
T and 2kQ̃ ∩Q 6= ∅, and as l(4Q̂) = 8l(Q), we have

l(Q̃) ≤ 2k+4
(
J|B|Kpck+1

d 2(k+1)(2−n)
) 1

2−np l(Q)

= 24
(
J|B|Kpcd22−n) 1

2−np

(
2
k+

k(2−n)
2−np c

k
2−np
d

)
l(Q).

Define d := log2 cd. To recap, we have

c12
−kd
2−np l(Q) ≤ l(Q̃) ≤ c22

k

(
1+ d+2−n

2−np

)
l(Q),

where c1, c2 > 0 depend only on dimension and the properties of |B|. Now suppose

l(Q̃) = 2jl(Q) for some j ∈ R, then

2j ∈

[
c12

−kd
2−np , c22

k

(
1+ d+2−n

2−np

)]

As 2kQ̃ ∩ Q 6= ∅, then dist(Q̃, Q) ≤ 2kl(Q̃) = 2k+jl(Q). There are at most 22kn many

dyadic cubes at scale 2jl(Q) which are a distance of at most 2k+jl(Q) from Q. Therefore

an upper bound on the number of possible cubes Q̃ ∈ ∆̃B
T for which 2kQ̃ ∩Q 6= ∅ is

k

(
1+ d+2−n

2−np

)
+c̃2∑

j= −kd
2−np

+c̃1

22kn ≤ 22kn

(
k +

k(d+ 2− n)

2− n
p

+
kd

2− n
p

+ c̃2 − c̃1

)

≤ 2c̃2−c̃12
k

(
1+2n+ 2d+2−n

2−np

)
,

where c̃1 := log2 c1 and c̃2 := log2 c2. Thus, letting lB := 1 + 2n+ (2d+2−n)
2−n

p
we have

∑
Q∈∆̃B

T

12kQ(x) . 2kl.

This completes the proof.
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4.1.3 Local Estimates

One of the most important properties of the magnetic gradient is the gauge transform in

Proposition 2.4.3. This will allow us to introduce the magnetic field B and take advantage

of the reverse Hölder properties that B satisfies. To do this we will to localise onto the

dyadic mesh ∆̃B
T . To this end we introduce the notation L2

Q(Rn; Ω) := {u ∈ L2(Rn; Ω) :

supp(u) ⊆ 4Q}. If Ω = C then we define L2
Q(Rn) := L2

Q(Rn;C). We now define the gauge

invariant magnetic gradient. Fix a cube Q. Let u ∈ L2
Q(Rn). Then, define

L̃Qu := (∇+ ihQ)u,

where hQ is as in Proposition 2.4.3 for the cube 4Q. Let u ∈ L2
Q(Rn). To see why the

gauge transform is so useful we present the following property which is called the gauge

invariance. By the product rule and the definitions of hQ an ϕQ from Proposition 2.4.3,

we have

L̃Q(eiϕQu) = ∇(eiϕQu) + ihQ(eiϕQu)

= eiϕQ∇u+ u∇eiϕQ + ih
iϕQ
Q u

= eiϕQ∇u+ uieiϕQ∇ϕQ + ihQe
iϕQu

= eiϕQ∇u+ ieiϕQ(∇ϕQ + hQ)u

= eiϕQ(∇u+ ibu)

= eiϕQLu

From above and the properties of adjoints, we also have

eiϕQL∗u = (Le−iϕQ)∗u = (e−iϕQeiϕQLe−iϕQ)∗u = (e−iϕQL̃Q)∗u = L̃∗Q(eiϕQu).

We can also define the gauge invariant first-order operator defined on the cube Q as
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D̃Q : D(D̃Q) ⊂ L2
Q(Rn;Cn+1)→ L2

Q(Rn;Cn+1), given by

D̃Q :=

 0 L̃∗Q

L̃Q 0

 .
Let u ∈ L2

Q(Rn). Then, considering eiϕQ to be multiplication by the scalar field eiϕQ to

each component, we have

eiϕQDu =

eiϕQLu⊥
eiϕQL∗u‖

 =

L̃Q(eiϕQu⊥)

L̃∗Q(eiϕQu‖)

 = D̃Q(eiϕQu) (4.1.5)

The operator B also retains the elliptic on R(D̃Q). To see this let u ∈ R(D̃Q). Then using

(4.1.5), and the ellipticity of B on R(D), we have

κ‖D̃Qu‖2
2 = κ‖eiϕQD̃Qu‖2

2

= κ‖DeiϕQu‖2
2

≤ Re〈BDeiϕQu,DeiϕQu〉

= Re〈eiϕQBD̃Qu, eiϕQD̃Qu〉

= Re〈e−iϕQeiϕQBD̃Qu, D̃Qu〉

= Re〈BD̃Qu, D̃Qu〉

Then let u ∈ R(D̃Q) and let {uu}n∈N ⊂ R(D̃Q) converging to u. Fix ε > 0 arbitrarily.
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Then, by above and the Cauchy–Schwarz inequality, we have

κ‖u‖2
2 . κ‖u− un‖2

2 + κ‖un‖2
2

≤ κ‖u− un‖2
2 + Re〈Bun, un〉

= κ‖u− un‖2
2 + Re〈Bun − u, un〉+ Re〈Bu, un〉

= κ‖u− un‖2
2 + Re〈Bun − u, un − u〉+Re〈B(un − u), u〉

+ Re〈Bu, un − u〉+ Re〈Bu, u〉

≤ κ‖u− un‖2
2 + ‖B‖∞‖u− un‖2

2 + 2‖B‖∞‖u− un‖2‖u‖2 + Re〈Bu, u〉.

As un converges to u, there exists N ∈ N such that

‖u− un‖2 < max

{√
ε

3κ
,

√
ε

3‖B‖∞
,

ε

6‖B‖∞‖u‖2

}
,

for all n > N . That is

κ‖u‖2
2 . ε+ Re〈Bu, u〉.

Thus, as ε > 0 was arbitrary we have

κ‖u‖2
2 . Re〈Bu, u〉, ∀u ∈ R(D̃Q). (4.1.6)

For t ∈ R \ {0}, we can then define

R̃B,Q
t := (I − itD̃QB)−1

P̃B,Q
t := (I + t2D̃QBD̃QB)−1 =

1

2

(
R̃B,Q
t + R̃B,Q

−t

)
= R̃B,Q

t R̃B,Q
−t

Q̃B,Q
t := tD̃QB(I + t2D̃QBD̃QB)−1 = tD̃QBPB

t =
1

2i

(
−R̃B,Q

t + R̃B,Q
t

)
.

We will now compare the resolvents of DB with the resolvents of D̃QB.

Lemma 4.1.8. Let Q be a cube. Let t ∈ R. Then we have the identity

RB
t (ηQv) = e−iϕQηQR̃

B,Q
t eiϕQv + itRB

t e
−iϕQ [ηQ, D̃

Q]BR̃B,Q
t eiϕQv,
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for all v ∈ L2(Rn;Cn+1), where ηQ ∈ C∞0 (Rn) with supp(ηQ) ⊂ 4Q.

Proof. First note ηQv ∈ L2
Q(Rn;Cn+1). Then, we have

RB
t (ηQv) = RB

t (e−iϕQeiϕQηQv)

= RB
t (e−ϕQηQe

iϕQv)− e−iϕQηQR̃B,Q
t (eiϕQv) + e−iϕQηQR̃

B,Q
t (eiϕQv).

Then, the error term is

RB
t (e−iϕQηQe

iϕQv)− e−iϕQηQR̃B,Q
t eiϕQv = RB

t e
−iϕQηQ(I + itD̃QB)R̃B,Q

t eiϕQv

−RB
t (I + itDB)e−iϕQηQR̃

B,Q
t eiϕQv

= RB
t

[
e−iϕQηQ(I + itD̃QB)

− (I + itDB)e−iϕQηQ
]
R̃B,Q
t eiϕQv

= itRB
t e
−iϕQ

[
ηQD̃

QB

− eiϕQDBe−iϕQηQ
]
R̃B,Q
t eiϕQv

= itRte
−iϕQηQD̃

QB − D̃QBηQR̃
B,Q
t eiϕQv

= itRB
t e
−iϕQ [ηQ, D̃

Q]BR̃B,Q
t eiϕQv

This completes the proof.

Using the product rule and the product rule for divergence we have the following

identity

[ηI, D̃Q]u = ηD̃Qu− D̃Q(ηu) =

ηL̃∗Qu‖
ηL̃Qu⊥

−
L̃∗Q(ηu‖)

L̃Q(ηu⊥)

 =

u‖ · ∇η
u⊥∇η


for all u ∈ L2

Q(Rn;Cn+1) ∩D(D). Thus, we have

|[ηI, D̃Q]u(x)| . |∇η||u(x)|, (4.1.7)

for all x ∈ 4Q, and all η ∈ C∞0 (Rn) with supp(η) ⊂ 4Q.
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Proposition 4.1.9. Let Ut be R̃B,Q
t for t ∈ R \ {0} or P̃B,Q

t or Q̃B,Q
t for every t > 0.

Then for any M ∈ N there exists CM > 0, which depends only on B, n, κ, and ‖B‖∞,

such that

‖Utu‖L2
Q(E) ≤ CM

〈
dist(E,F )

t

〉−M
‖u‖L2

Q(F ),

for every E,F ⊆ 4Q Borel sets, and u ∈ L2
Q(Rn;Cn+1) with supp(u) ⊆ F

Proof. The proof follows as in [13, Proposition 5.2] using (4.1.7).

We now give an analogous result to that of Lemma 3.1.5 which is based on [13, Lemma

5.6].

Lemma 4.1.10. Let Q be a cube. Then we have the estimate

∣∣∣∣−ˆ
R

D̃Qf

∣∣∣∣2 . 1

l(R)

(
1 + l(4Q)2−

ˆ
4Q

|B|
)(
−
ˆ
R

|D̃Qf |2
) 1

2
(
−
ˆ
R

|f |2
) 1

2

,

for all subcubes R ⊆ 4Q and f ∈ D(D̃Q).

Proof. Let

t =

(ˆ
R

|f |2
) 1

2
(ˆ

R

|D̃Qf |2
)− 1

2

.

If t ≥ 1
4
l(R) then proceed as in Lemma 3.1.5 or [13, Lemma 5.6]. Now suppose t ≤ 1

4
l(R).

Let η ∈ C∞c (R) such that η(x) = 1 when dist(x,Rn \ R) > t and ‖∇η‖∞ . 1
t
. We now

bound both components separately. First, using the definition of L̃∗Q as the adjoint of L̃Q

and η having compact support gives

∣∣∣∣ˆ
R

(D̃Qf)⊥

∣∣∣∣ =

∣∣∣∣ˆ
R

η(D̃Qf)⊥ + (1− η)(D̃Qf)⊥

∣∣∣∣
≤
∣∣∣∣ˆ
R

ηL̃∗Qf‖

∣∣∣∣+

ˆ
R

|1− η||(D̃Qf)⊥|

=

∣∣∣∣ˆ
R

L̃Qη · f‖
∣∣∣∣+

ˆ
R

|1− η||D̃Qf |

≤
ˆ
R

|∇η||f |+
ˆ
R

|hQη||f |+
ˆ
R

|1− η||D̃Qf |.
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And for he second component we have

∣∣∣∣ˆ
R

(D̃Qf)‖

∣∣∣∣ =

∣∣∣∣ˆ
R

η(D̃Qf)‖ + (1− η)(D̃Qf)‖

∣∣∣∣ ≤ ∣∣∣∣ˆ
R

ηLf⊥

∣∣∣∣+

ˆ
R

|1− η||D̃Qf |

Then, by the compact support of ηf⊥, the Fundamental Theorem of Calculus and the

product rule we have

∣∣∣∣ˆ
R

ηLf⊥ −∇(ηf⊥)

∣∣∣∣ ≤ ˆ
R

|η∇f⊥ −∇(ηf⊥)|+
ˆ
R

|hQη||f⊥|

=

ˆ
R

|f⊥∇η|+
ˆ
R

|hQη||f |

≤
ˆ
R

|f ||∇η|+
ˆ
R

|hQη||f |

Thus, using the Cauchy-Schwarz Inequality, ‖∇η‖∞ . 1
t
, and | supp(∇η)| = l(R)n−1t, we

have

ˆ
R

|∇η||f | ≤
(ˆ

R

|∇η|2
) 1

2
(ˆ

R

|f |2
) 1

2

≤ ‖∇η‖∞| supp(∇η)|
1
2

(ˆ
R

|f |2
) 1

2

. l(R)
n−1
2 t−

1
2

(ˆ
R

|f |
) 1

2

.

Now, by the Cauchy–Schwarz inequality, also |R∩supp(1−η)| = l(R)n−1t and |1−η| ≤ 1

by the definition of η, we have

ˆ
R

|1− η||D̃Qf | ≤
(ˆ

R

|1− η|2
) 1

2
(ˆ

R

|D̃Qf |2
) 1

2

≤ l(R)
n−1
2 t

1
2

(ˆ
R

|D̃Qf |2
) 1

2

.

We now bound the last term above by using the Cauchy–Schwarz inequity, Hölder’s

inequality, R ⊆ 4Q, the Sobolev inequality, the gauge transform inequality (2.4.2), the
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reverse Hölder inequality for |B|, and the definition of η, to get

ˆ
R

|ηhQ||f | ≤
(ˆ

R

|ηhQ|2
) 1

2
(ˆ

R

|f |2
) 1

2

≤
(ˆ

4Q

|hQ|n
) 1

n
(ˆ

R

|η|2∗
) 1

2∗
(ˆ

R

|f |2
) 1

2

. l(4Q)2

(
−
ˆ

4Q

|hQ|n
) 1

n
(ˆ

R

|∇η|2
) 1

2
(ˆ

R

|f |2
) 1

2

. l(4Q)2

(
−
ˆ

4Q

|B|
n
2

) 2
n

‖∇η‖∞| supp(∇η)|
1
2

(ˆ
R

|f |2
) 1

2

.

(
l(4Q)2−

ˆ
4Q

|B|
)

(l(R)n−1t−1)
1
2

(ˆ
R

|f |2
) 1

2

.

Therefore, by the definition of t, we have

(ˆ
R

|f |2
) 1

2

.

(
l(4Q)2−

ˆ
4Q

|B|
)

(l(R)n−1t−1)
1
2

(ˆ
R

|f |2
) 1

2

≤ l(R)
n−1
2

(
l(4Q)2−

ˆ
4Q

|B|
)(ˆ

R

|D̃Qf |2
) 1

4
(ˆ

R

|f |2
) 1

4

Finally, combining the above, squaring, and dividing by |R|, we have

∣∣∣∣−ˆ
R

D̃Qf

∣∣∣∣2 . 1

l(R)

(
1 + l(4Q)2−

ˆ
4Q

|B|
)(
−
ˆ
R

|D̃Qf |2
) 1

2
(
−
ˆ
R

|f |2
) 1

2

,

as required.

4.2 Localisation

The aim of this section is to localise the quadratic estimate in Theorem 4.0.2. This is

where we will take advantage of the gauge transform in Proposition 2.4.3 to introduce B,

and then exploit the local properties of B.

Now, for all t ≤ T define ET
t := {R ∈ ∆t : there exists Q ∈ ∆̃B

T such that Q ⊂ R},

the set of dyadic cubes of scale t which contain a cube in the maximal dyadic mesh ∆̃B
T .

We note that the set inclusion in ET
t is strict and so Q /∈ ET

t for all Q ∈ ∆̃B
T . Then, by
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maximality of ∆̃B
T we have if Q ∈ ET

t then

l(4Q)2−
ˆ

4Q

|B| > 1.

The collection ET
t corresponds to the big cubes at scale t in the electric case in Chapter

3 and the proof for bounds follows in a similar fashion.

Lemma 4.2.1. Fix T > 0. Then we have

ˆ T

0

∑
Q∈ETt

‖1QQB
t u‖2

2

dt

t
. ‖u‖2

2,

for all u ∈ R(D) independently of T .

Proof. First consider

ˆ T

0

∑
R∈ETt

‖1RQB
t u‖2

2

dt

t
.
ˆ T

0

∑
R∈ETt

‖1RQB
t Ptu‖2

2

dt

t
+

ˆ T

0

∑
R∈ETt

‖1RQB
t (I − Pt)u‖2

2

dt

t
.

Then, as I − Pt = t2D2Pt, the boundedness of tQB
t D and the self-adjointness of D, gives

ˆ T

0

∑
R∈ETt

‖1RQB
t (I − Pt)u‖2

2

dt

t
≤
ˆ ∞

0

‖QB
t t

2D2Ptu‖2
2

dt

t

=

ˆ ∞
0

‖(tQB
t D)(tDPt)u‖2

2

dt

t

.
ˆ ∞

0

‖Qtu‖2
2

dt

t

. ‖u‖2
2.

Now, using off diagonal estimates, dist(Q,Ck(Q)) h 2kt, and the Cauchy–Schwarz in-

89



equality, we have

∑
R∈ETt

‖1RQB
t Ptu‖2

2 ≤
∑
R∈ETt

[
∞∑
k=0

‖1RQB
t 1Ck(R)‖‖1Ck(R)Ptu‖2

]2

.
∑
R∈ETt

[
∞∑
k=0

2−kM‖12kRPtu‖2

]2

.
∑
R∈ETt

∞∑
k=0

2−kM‖12kRPtu‖2
2.

Suppose 2kR is such that

l(2kR)2−
ˆ

2kR

|B| ≥ 1.

Then, using the Fefferman–Phong inequality, we have

‖12kRPtu‖2
2 ≤

(
l(2kR)2−

ˆ
2kR

|B|
)β
‖12kRPtu‖2

2

. l(2kR)2
(
‖12kRLPtu‖2

2 + ‖12kR|B|
1
2Ptu‖2

2

)

Now suppose 2kR is such that

l(2kR)2−
ˆ

2kR

|B| ≤ 1.

Firstly, if k ∈ {0, 1, 2} then using the doubling property of |B|, k ≤ 2, and cd ≥ 1, we get

1 ≤ l(4R)2−
ˆ

4R

|B| = 22(2−k)l(2kR)2 c
2−k
d |2kR|
|4R|

−
ˆ

2kR

|B| ≤ 24c2
dl(2

kR)2−
ˆ

2kR

|B|.

That is, for k ∈ {0, 1, 2} we have

‖12kRPtu‖2
2 ≤ mβ

(
24c2

dl(2
kR)2−
ˆ

2kR

|B|
)
‖12kRPtu‖2

2

. 24c2
dl(2

kR)2
(
‖12kRLPtu‖2

2 + ‖12kR|B|
1
2Ptu‖2

2

)
.

Now let k > 2. Then, as R ∈ ET
t there exists Q ⊂ R such that Q ∈ ∆̃B

T . Therefore,
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by the maximality of ∆̃B
T we have

l(4R)2−
ˆ

4R

|B| ≥ 1.

As k > 2, and so 4R ⊂ 2kR, and using the Fefferman–Phong inequality, we have

‖12kRPtu‖2
2 ≤

(
l(4R)2−

ˆ
4R

|B|
)
‖12kRPtu‖2

2

= 2(n−2)(k−2)

(
l(2kR)2−

ˆ
2kR

|B|
)
‖12kRPtu‖2

2

. 2(n−2)(k−2)l(2kR)2
(
‖12kRLPtu‖2

2 + ‖12kR|B|
1
2Ptu‖2

2

)
. 2knl(R)2

(
‖12kRLPtu‖2

2 + ‖12kR|B|
1
2Ptu‖2

2

)
.

Therefore, as 2k ≤ 2kn and l(R) h t, we have

‖12kRPtu‖2
2 . 2knt2

(
‖12kRLPtu‖2

2 + ‖12kR|B|
1
2Ptu‖2

2

)
,

for all R ∈ ET
t . Thus, by using the covering inequality

∑
R∈∆t

12kR(x) . 2kn, the global

Fefferman–Phong inequality in Proposition 4.1.2, choosing M > 2n, and Corollary 4.1.6,

we have

∑
R∈ETt

∞∑
k=0

2−kM‖12kRPtu‖2
2 .

∑
R∈ETt

∞∑
k=0

2−k(M−n)t2
(
‖12kRLPtu‖2

2 + ‖12kR|B|
1
2Ptu‖2

2

)

.
∞∑
k=0

2−k(M−2n)t2
(
‖LPtu‖2

2 + ‖|B|
1
2Ptu‖2

2

)
. t2‖DPtu‖2

2.

Finally, we have

ˆ T

0

∑
R∈ETt

‖1RQB
t Ptu‖2

2

dt

t
.
ˆ T

0

‖tDPtu‖2
2

dt

t
≤
ˆ ∞

0

‖Qtu‖2
2

dt

t
. ‖u‖2

2.

As required.
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We now begin to localise the problem. Firstly we have

ˆ T

0

‖QB
t u‖2

2

dt

t
.
ˆ T

0

∑
R∈ETt

‖1RQB
t u‖2

2

dt

t
+

ˆ T

0

∑
R∈∆t\ETt

‖1RQB
t u‖2

2

dt

t
, (4.2.1)

and so by Lemma 4.2.1 we have the first term above is bounded by ‖u‖2
2. If Q ∈ ∆̃B

T

then ∆t(Q) ∩ET
t = ∅ by the definition of ET

t . Therefore
⋃
Q∈∆̃B

T
∆t(Q) ⊆ ∆t \ET

t . Also,

by definition of ET
t we have for every R ∈ ∆t \ ET

t then there exists Q ∈ ∆̃B
T such that

R ⊆ Q. In particular, as ∈ ∆t we have R ∈ ∆t(Q). Thus,
⋃
Q∈∆̃B

T
∆t(Q) = ∆t \ ET

t .

Therefore

ˆ T

0

∑
R∈∆t\ETt

‖1RQB
t u‖2

2

dt

t
=

ˆ T

0

∑
Q∈∆̃B

T

∑
R∈∆t(Q)

‖1RQB
t u‖2

2

dt

t

=
∑
Q∈∆̃B

T

ˆ T

0

1(0,l(Q))(t)
∑

R∈∆t(Q)

‖1RQB
t u‖2

2

dt

t

=
∑
Q∈∆̃B

T

ˆ l(Q)

0

‖1QQB
t u‖2

2

dt

t
.

(4.2.2)

Now we define the test function ηQ ∈ C∞0 (Rn), such that ηQ(x) ∈ [0, 1] for all x ∈ Rn,

ηQ ≡ 1 on 2Q, supp(ηQ) ⊆ 4Q, and ‖∇ηQ‖∞ . 1
l(Q)

. Now, we introduce the test function

ηQ as follows

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖1QQB
t u‖2

2

dt

t
.
∑
Q∈∆̃B

T

ˆ l(Q)

0

‖1QQB
t (ηQu)‖2

2

dt

t

+
∑
Q∈∆̃B

T

ˆ l(Q)

0

‖1QQB
t ((1− ηQ)u) ‖2

2

dt

t
.

(4.2.3)

The following lemma allows us to localise the quadratic estimate so that we can break

up Rn and work on each Q ∈ ∆̃B
T separately.

Lemma 4.2.2. Fix T > 0. Let ηQ be as defined above. Then we have the following

estimate ∑
Q∈∆̃B

T

ˆ l(Q)

0

‖1QQB
t ((1− ηQ)u)‖2

2

dt

t
. ‖u‖2

2
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for all u ∈ R(D).

Proof. To begin with we use the fact that supp(1− ηQ) ⊂ Rn \ 2Q, and so dist(supp(1−

ηQ), Q) ≥ l(Q), off diagonal estimates, and then the Cauchy–Schwarz inequality, to get

‖1QQB
t ((1− ηQ)u)‖2

2 ≤

(
∞∑
k=1

‖1QQB
t 1Ck(Q)‖‖1Ck(Q)u‖2

)2

.

(
∞∑
k=1

(
t

dist(Q,Ck(Q))

)M
‖12kQu‖2

)2

.

(
∞∑
k=1

(
t

2kl(Q)

)M
‖12kQu‖2

)2

.

(
t

l(Q)

)M ( ∞∑
k=1

2−kM‖12kQu‖2
2

)(
∞∑
k=1

2−kM

)

.

(
t

l(Q)

)M ∞∑
k=1

2−kM‖12kQu‖2
2.

Thus, integrating and using Proposition 4.1.7 we have

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖1QQB
t (1− ηQ)u‖2

2

dt

t
.
∑
Q∈∆̃B

T

∞∑
k=1

2−kM
‖12kQu‖2

2

l(Q)M

ˆ l(Q)

0

tM−1 dt

=
∑
Q∈∆̃B

T

∞∑
k=1

2−kM
‖12kQu‖2

2

l(Q)M
l(Q)M

M

.
∞∑
k=1

2−k(M−l)‖u‖2
2

. ‖u‖2
2,

where lB is as in (4.1.3). This completes the proof.

The reason for localising is so that we may take advantage of the gauge invariance of

the magnetic gradient and we may only use the gauge invariance on cubes and not the

whole of Rn. Now we want to replace QB
t with Q̃B,Q

t and then control the error terms

that appear from Lemma 4.1.8 using the commutator bounds (4.1.7).
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Proposition 4.2.3. If

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖14Qe
−iϕQQ̃B,Q

t eiϕQηQu‖2
2

dt

t
. ‖u‖2

2 (4.2.4)

for all u ∈ L2(Rn;Cn+1), independently of T , then

ˆ ∞
0

‖QB
t u‖2

2

dt

t
. ‖u‖2

2,

for all u ∈ L2(Rn;Cn+1).

Proof. First, using the monotone convergence theorem, we have

ˆ ∞
0

‖QB
t u‖2

2

dt

t
=

ˆ ∞
0

lim
T→∞

1(0,T )(t)‖QB
t u‖2

2

dt

t
= lim

T→∞

ˆ T

0

‖QB
t u‖2

2

dt

t
.

Now fix T > 0. Then, by (4.2.1) and (4.2.2), Lemma 4.2.1, (4.2.3), Lemma 4.2.2, and

supp ηQ ⊂ 4Q, we have

ˆ T

0

‖QB
t u‖2

2

dt

t
.
∑
Q∈∆̃B

T

ˆ l(Q)

0

‖1QQB
t u‖2

2

dt

t
+

ˆ T

0

∑
R∈ETt

‖1RQB
t u‖2

2

dt

t

.
∑
Q∈∆̃B

T

ˆ l(Q)

0

(
‖1QQB

t ηQu‖2 + ‖1QQB
t ((1− ηQ)u)‖2

)2 dt

t
+ ‖u‖2

2

.
∑
Q∈∆̃B

T

ˆ T

0

‖1QQB
t ηQ14Qu‖2

2

dt

t
+ 2‖u‖2

2.

Now, by Lemma 4.1.8, the uniform boundedness of resolvents and the properties of ηQ,
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we have

‖1QQB
t ηQu‖2

2 . ‖1Q(RB
−t −RB

t )ηQu‖2
2

. ‖e−iϕQηQ(R̃B,Q
−t − R̃

B,Q
t )eiϕQηQu‖2

2

+ t2‖RB
t e
−iϕQ [ηQ, D̃

Q]BR̃B,Q
t eiϕQ14Qu‖2

2

+ t2‖RB
−te
−iϕQ [ηQ, D̃

Q]BR̃B,Q
−t e

iϕQ14Qu‖2
2

. ‖e−iϕQηQQ̃B,Q
t eiϕQηQu‖2

2

+ t2(‖Rt‖2 + ‖R−t‖2)|[ηQ, D̃]|2‖B‖∞(‖R̃t‖2 + ‖R̃−t‖2)‖14Qu‖2
2

. ‖e−iϕQηQQ̃B,Q
t eiϕQηQu‖2

2 +
t2

l(Q)2
‖14Qu‖2

2.

Therefore, using the above, (4.2.4), and Proposition 4.1.7, we have

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖1QQB
t ηQu‖2

2

dt

t
.
∑
Q∈∆̃B

T

ˆ l(Q)

0

‖e−iϕQ14QQ̃
B,Q
t eiϕQηQu‖2

2

dt

t

+
∑
Q∈∆̃B

T

ˆ l(Q)

0

t2

l(Q)2
‖14Qu‖2

2

dt

t

. ‖u‖2
2 +

∑
Q∈∆̃B

T

‖14Qu‖2
2

l(Q)2

ˆ l(Q)

0

t dt

. ‖u‖2
2 +

∑
Q∈∆̃B

T

‖14Qu‖2
2

l(Q)2

l(Q)2

2

. ‖u‖2
2

Thus, combining the above four calculations gives

ˆ ∞
0

‖QB
t u‖2

2

dt

t
= lim

T→∞

ˆ T

0

‖QB
t u‖2

2

dt

t
. lim

T→∞
‖u‖2

2 = ‖u‖2
2.

As required.

Thus to prove the quadratic estimate Theorem 4.0.2 it suffices to prove (4.2.4).
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4.3 Reduction to Carleson measure estimate

Define the following averaging operator

AQt u(x) := −
ˆ
R

u(y) dy

where R ∈ ∆t(4Q) is the unique cube such that x ∈ R. Also, for each (t, x) ∈ (0, 4l(Q))×

4Q we define the following multiplication operator γ̃Qt (x) ∈ L(Cn)

γ̃Qt (x)w := 14Q(x)[Q̃B,Q
t (14Qw

∗)](x)

for all w ∈ Cn+1, where w∗(x) := w for all x ∈ Rn. For fixed t > 0 we also define the

mapping γ̃Qt : Rn → L(Cn+1) by γ̃Qt : x 7→ 14Q(x)γ̃Qt (x).

Lemma 4.3.1. Let Q be a cube. Then we have the following:

1. The operator Q̃B,Q
t extends to a bounded operator from L∞Q (Rn;Cn+1) into the

space L2
Q,loc(Rn;Cn+1). In particular for t > 0, then γ̃Qt ∈ L2

Q,loc(Rn;L(Cn+1)) with

−
ˆ
R

|γ̃Qt (x)|2L(Cn+1) dx . 1,

for all R ∈ ∆t(4Q).

2. sup
t∈(0,4l(Q))

‖γ̃Qt A
Q
t ‖ . 1.

Proof. Let f ∈ L∞Q (Rn;Cn+1). Let M > n. Define C̃Q
0 (R) := R and for k > 0 de-

fine C̃Q
k (R) := (2kR \ 2k−1R) ∩ 4Q. Therefore, C̃Q

k (R) ∩ C̃Q
j (R) = ∅ if k 6= j and

there exists K̃Q such that
⋃K̃Q
k=0 C̃

Q
k (R) = 4Q. Also, as dist(R, (2kR \ 2k−1R)) = 2kl(R)

then dist(R, C̃Q
k (R)) ≥ 2kl(R). Then, by the off-diagonal estimates in Proposition 4.1.9,
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dist(R, C̃Q
k (R)) ≥ 2kl(R) h 2kt, the Cauchy–Schwarz inequality, and M > n, gives

‖1RQ̃B,Q
t f‖2

2 ≤

 K̃Q∑
j=0

‖1RQ̃B,Q
t (1C̃Qj (R)f)‖2

2

≤

 K̃Q∑
j=0

‖1RQ̃B,Q
t 1C̃Qj (R)‖‖1C̃Qj (R)f‖2

2

.

 K̃Q∑
j=0

〈
dist(R, C̃Q

k (R))

t

〉−M
‖1C̃Qj (R)f‖2

2

.

(
∞∑
j=0

2−jM

) K̃Q∑
j=0

2−jM‖1C̃Qj (R)f‖
2
2


.

∞∑
j=0

2−jM‖f‖2
∞‖12jR‖2

2

. ‖f‖2
∞|R|

∞∑
j=0

2−j(M−n)

. ‖f‖2
∞|R|.

Then a similar argument to the one in Lemma 3.2.1 gives

|[γ̃t(x)](w)|2 =

∣∣∣∣∣[γ̃t(x)]

(
n+1∑
k=1

wkek

)∣∣∣∣∣
2

. |w|2
n+1∑
k=1

|[γ̃t(x)](ek)|2,

for all w ∈ Cn+1, where {e1, . . . , en+1} is an orthonormal basis for Cn+1. Then combining

the above gives

−
ˆ
R

|γ̃Qt (x)|2L(Cn+1) dx .
n+1∑
k=1

−
ˆ
R

|[γ̃t(x)](ek)|2 dx =
n+1∑
k=1

−
ˆ
R

|[Q̃B,Q
t (ẽk)](x)|2 dx .

n+1∑
k=1

‖ẽk‖∞. 1,

where ẽk(x) = ek is the constant function. Thus, γ̃Qt ∈ L2
Q,loc(Rn;L(Cn+1)), which com-

plete the proof od part (1)
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For part (2) we use part (1), the definition of AQt , and Jensen’s inequality, to obtain

‖γ̃Qt A
Q
t u‖2

2 =
∑

R∈∆t(4Q)

ˆ
R

|[γ̃Qt (x)](AQt u)(x)|2 dx

.
∑

R∈∆t(4Q)

ˆ
R

|γ̃Qt (x)|2L(Cn+1)

∣∣∣∣−ˆ
R

u(y) dy

∣∣∣∣2 dx

=
∑

R∈∆t(4Q)

(ˆ
R

|γ̃Qt (x)|2L(Cn+1) dx

) ∣∣∣∣−ˆ
R

u(y) dy

∣∣∣∣2
.

∑
R∈∆t(4Q)

|R|−
ˆ
R

|u|2

= ‖14Qu‖2
2.

Now taking supremum in t ∈ (0, 4l(Q)) completes the proof.

Fix Q ∈ ∆̃B
T and t > 0. Then, we have

Q̃B,Q
t eiϕQηQu = (Q̃B,Q

t − γ̃Qt At)eiϕQηQu+ γ̃Qt Ate
iϕQηQu, (4.3.1)

on 4Q. In this section we will bound the first term on the right-hand side above, giving

the following proposition

Proposition 4.3.2. If B satisfies (2.4.3), then we have the following estimate

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖14Q(Q̃B,Q
t − γ̃Qt At)eiϕQηQu‖2

2

dt

t
. ‖u‖2

2, ∀u ∈ R(D),

where the implicit constants depend on B, n, κ, and ‖B‖∞.

To this end we consider the following terms to bound

(Q̃B,Q
t − γ̃Qt At)eiϕQηQu = Q̃B,Q

t eiϕQηQ(I − Pt)u

+ (Q̃B,Q
t − γ̃Qt At)eiϕQηQPtu

+ γ̃Qt Ate
iϕQηQ(Pt − I)u.

(4.3.2)

We begin by estimating the first term in (4.3.2), we give a lemma we will use here
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and later in the Carleson measure estimate.

Lemma 4.3.3. Let Q ∈ ∆̃B
T and R a cube with R ⊆ Q. Define ηR ∈ C∞0 (4R) such that

ηR(x) ∈ [0, 1] for all x ∈ 4R, and ηR ≡ 1 on 2R. Then

‖14RQ̃
B,Q
t eiϕQηR(I − Pt)u‖2

2 .

(
t2

l(R)2
+ 1

)
‖14RQtu‖2

2,

for all t > 0 and all u ∈ R(D).

Proof. Firstly, using the splitting in Proposition 2.5.1, by the ellipicity of B, as in (4.1.6),

we have the existence of B−1 on R(D̃Q), the uniform bounds for tQ̃B,Q
t D̃QB = I − P̃B,Q

t ,

and again by (4.1.6), we have

‖tQ̃B,Q
t D̃Qu‖2

2 = ‖tQ̃B,Q
t D̃Q

(
P
R(D̃Q)

+ PN(D̃Q)

)
u‖2

2

= ‖tQ̃B,Q
t D̃QBB−1P

R(D̃Q)
u‖2

2

. ‖B−1P
R(D̃Q)

u‖2
2

. ‖u‖2
2,

(4.3.3)

for all t > 0. Now, using the identity I − Pt = t2D2Pt, then the uniform bounds on

Q̃B,Q
t , (4.3.3), the gauge invariance (4.1.5), the commutator bounds (4.1.1), and that

supp([ηR, D]) ⊂ 4R to obtain

‖14RQ̃
B,Q
t eiϕQηR(I − Pt)u‖2

2 = ‖14RQ̃
B,Q
t eiϕQηRt

2D2Ptu‖2
2

= ‖t14RQ̃
B,Q
t eiϕQ(ηRD −DηR +DηR)tDPtu‖2

2

. t2‖14RQ̃
B,Q
t eiϕQ [ηR, D]Qtu‖2

2

+ ‖14R(tQ̃B,Q
t D̃Q)eiϕQηRQtu‖2

2

. t2‖∇ηR‖∞‖14RQtu‖2
2 + ‖ηRQtu‖2

2

.

(
t2

l(R)2
+ 1

)
‖14RQtu‖2

2.

As required.

We now bound the first term in (4.3.2).
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Lemma 4.3.4. we have the estimate

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖14QQ̃
B,Q
t eiϕQηQ(I − Pt)u‖2

2

dt

t
. ‖u‖2

2

for all u ∈ R(D) independently of T .

Proof. Using Lemma 4.3.3 (with R = Q), t ≤ l(Q), Proposition 4.1.7, and the quadratic

estimate for self-adjoint operators, we have

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖14QQ̃
B,Q
t eiϕQηQ(I − Pt)u‖2

2

dt

t
.
∑
Q∈∆̃B

T

ˆ l(Q)

0

(
t2

l(Q)2
+ 1

)
‖14QQtu‖2

2

dt

t

.
ˆ ∞

0

∑
Q∈∆̃B

T

‖14QQtu‖2
2

dt

t

.
ˆ ∞

0

‖Qtu‖2
2

dt

t

. ‖u‖2
2.

As required.

We now begin to estimate the second term in (4.3.2), but first we prove an important

lemma. This is where we see the need for the localisation so that we can use the gauge

invariance.

Lemma 4.3.5. Let Q ∈ ∆̃B
T and R a dyadic cube with R ⊆ Q. Then

‖14R(Q̃B,Q
t − γ̃Qt At)eiϕQηRf‖2

2 . ‖14RLηRf‖2
2 + ‖14R|B|

1
2ηRf‖2

2,

for all t ∈ (0, l(Q)) and all f ∈ R(D), independently of T and Q.

Proof. Let g = eiϕQηRf . For cubes R, S with S ⊂ R, define C̃R
k (S) as in Lemma 4.3.1.

Then, as γ̃Qt A
Q
t u = Q̃B,Q

t AQt u for all S ∈ ∆t(4R), the off diagonal estimates in Proposition
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4.1.9, and the Cauchy–Shwarz inequality, we have

‖14R(Q̃B,Q
t − γ̃Qt At)g‖2

2 =
∑

S∈∆t(4R)

‖1SQ̃B,Q
t (g − gS)‖2

2

.
∑

S∈∆t(4R)

 K̃Q∑
k=0

‖1SQ̃B,Q
t 1C̃Rk (S)‖‖1C̃Rk (S)(g − gS)‖2

2

.
∑

S∈∆t(4R)

K̃Q∑
k=0

2−kM‖1C̃Rk (S)(g − gS)‖2
2.

We now give a telescoping argument, by using the Poincaré inequality in [30, Equation

(7.45)] noting for the constants that 1
2

diam(2kS) ≤ diam(2kS ∩ 4R) ≤ diam(2kS), to get

‖1C̃k(S)(g − gS)‖2
2 .
ˆ

2kS∩4R

|g − g2kS∩4R|2 +

ˆ
2kS∩4R

|g2kS∩4R − gR|2

. 22kt2
ˆ

2kS∩4R

|∇g|2 + |2kS ∩ 4R|

∣∣∣∣∣
k∑
j=1

(g2jS∩4R − g2j−1S∩4R)

∣∣∣∣∣
2

Fix j ∈ {1, . . . , k}. Then, again using the Poincaré inequality in [30, Equation (7.45)]

noting for the constants that diam(2kS ∩ 4R) h diam(2kS), we have

∣∣∣∣∣
k∑
j=1

(g2jS∩4R − g2j−1S∩4R)

∣∣∣∣∣
2

≤

[
k∑
j=1

−
ˆ

2j−1S∩4R

|g2jS∩4R − g|

]2

.

[
k∑
j=1

|2jS ∩ 4R|
|2j−1S ∩ 4R|

−
ˆ

2jS∩4R

|g − g2jS∩4R|

]2

.

[
k∑
j=1

|2jS|
|S ∩ 4R|

(
−
ˆ

2jS∩4R

|g − g2jS∩4R|2
) 1

2

]2

.

[
k∑
j=1

2jn|S|2jt
|S|

(
−
ˆ

2jS∩4R

|∇g|2
) 1

2

]2

.

[
t2
ˆ

2kS∩4R

|∇g|2
][ k∑

j=1

2j(n+1)

|2jS ∩ 4R| 12

]2
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Then using j ≤ k and the identity
∑k

j=0 2j = 2k+1 − 1, we have

k∑
j=1

2j(n+1)

|2jS ∩ 4R| 12
≤ 2kn

k∑
j=1

2j

|S ∩ 4R| 12
≤ 2kn2k+1

|S| 12
=

2k(n+2)+1

|S| 12

Thus, combining the above three calculations we have

‖1C̃Rk (S)(g − gS)‖2
2 . t2

22k + |2kS ∩ 4R|

(
2k(n+2)+1

|S| 12

)2
[ˆ

2kS∩4R

|∇g|2
]

. t222kn(1 + 2kn22k+1)2

[ˆ
2kS∩4R

|∇g|2
]

. 2k(4n+2)t2
ˆ

2kS∩4R

|∇g|2.

Therefore, choosing M > 5n + 2 and using the covering inequality
∑

S∈∆t(4Q) 12kS(x) .

2kn, we have

∑
S∈∆t(4R)

∞∑
k=0

2−kM‖12kS∩4R(g − gS)‖2
2 . t2

∑
S∈∆t(4R)

∞∑
k=0

2−k(M−(4n+2))‖12kS∩4R∇g‖2
2

. t2
∞∑
k=0

2−k(M−(5n+2))‖∇g‖2
L2(4R)

. t2‖∇g‖2
L2(4R)

Recall g = eiϕQηRf . Then, using the product rule, chain rule, the identity ∇ϕ = b− hQ

on 4Q, and the definition of L, we have

‖∇g‖2
L2(4R) = ‖(∇eiϕQ)(ηRf) + eiϕQ∇(ηRf)‖2

L2(4R)

= ‖(i∇ϕQ)(eiϕQηRf) + eiϕQ∇(ηRf)‖2
L2(4R)

= ‖i(b− hQ)(eiϕQηRf) + eiϕQ∇(ηRf)‖2
L2(4R)

= ‖eiϕQ(∇+ ib)(ηRf)− ieiϕQhQ(ηRf)‖2
L2(4R)

. ‖eiϕQL(ηRf)‖2
L2(4R) + ‖hQg‖2

L2(4R)

Now, to estimate the last term, we use Hölder’s inequality, the Poincaré-Sobolev inequal-
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ity (see (7.45) in [30]), and l(R) ≤ l(4Q), to get

(
−
ˆ

4R

|hQg|2
) 1

2

≤
(
−
ˆ

4Q

|hQ|n
) 1

n
(
−
ˆ

4R

|g|2∗
) 1

2∗

. l(4Q)

(
−
ˆ

4Q

|B|
n
2

) 2
n

(−ˆ
4R

∣∣∣∣|g| − (−ˆ
4R

|g|
)∣∣∣∣2∗

) 1
2∗

+−
ˆ

4R

|g|


. l(4Q)

(
−
ˆ

4Q

|B|
)[

l(R)

(
−
ˆ

4R

|∇|g||2
) 1

2

+−
ˆ

4R

|g|

]

≤ l(4Q)2

(
−
ˆ

4Q

|B|
)(
−
ˆ

4R

|∇|g||2
) 1

2

+ l(4Q)

(
−
ˆ

4Q

|B|
)
−
ˆ

4R

|g|.

To estimate the first term we use the smallness of 4Q and the diamagnetic inequality

with L̃Q, to obtain

l(4Q)2

(
−
ˆ

4Q

|B|
)(
−
ˆ

4R

|∇|g||2
) 1

2

≤
(
−
ˆ

4R

|∇|g||2
) 1

2

.

(
−
ˆ

4R

|L̃Qg|2
) 1

2

Now, as 4Q is small, we have

l(4Q)

(
−
ˆ

4Q

|B|
)

=

(
l(4Q)2−

ˆ
4Q

|B|
) 1

2
(
−
ˆ

4Q

|B|
) 1

2

≤
(
−
ˆ

4Q

|B|
) 1

2

Then, by Jensen’s inequality, the Fefferman–Phong inequality for L̃Q, and then the sup-

port conditions on ηR, we have

l(4Q)

(
−
ˆ

4Q

|B|
)
−
ˆ

4R

|g| . l(4Q)

(
−
ˆ

4Q

|B|
)(
−
ˆ

4R

|g|2
) 1

2

.

[(
−
ˆ

4Q

|B|
)(

1

|R|

ˆ
4Q

|g|2
)] 1

2

.
1

|R| 12

(ˆ
4Q

|L̃Qg|2 +

ˆ
4Q

||B|
1
2 g|2

) 1
2

=

(
−
ˆ

4R

|L̃Qg|2 +−
ˆ

4R

||B|
1
2 g|2

) 1
2

Thus, by the above calculations, squaring, multiplying by |4r|, and the gauge invariance,
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we get

ˆ
4R

|hQg|2 .
ˆ

4R

|L̃QeiϕQηRf |2 + |B||eiϕQηRf |2

=

ˆ
4R

|eiϕQLηRf |2 + |B||ηRf |2

=

ˆ
4R

|LηRf |2 + |B||ηRf |2.

Therefore, by collecting the above estimates together, we have

‖14R(Q̃B,Q
t − γ̃Qt At)g‖2

2 . t2‖∇g‖2
L2(4R)

. t2‖eiϕQL(ηRf)‖2
L2(4R) + t2‖hQg‖2

L2(4R)

. t2‖14RLηRf‖2 + t2‖14R|B|
1
2ηRf‖2.

This completes the proof.

Now we give the estimate for the second term in (4.3.2) using the above lemma.

Proposition 4.3.6. We have the estimate

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖14Q(Q̃B,Q
t − γ̃Qt At)eiϕQηQPtu‖2

2

dt

t
. ‖u‖2

2

for all u ∈ R(D), independently of T .

Proof. We now use Lemma 4.3.5 with R = Q and f = Ptu, and the product rule, we have

‖14Q(Q̃B
t − γ̃

Q
t At)ηQe

iϕPtu‖2
2 . t2‖14Qe

iϕLηQPtu‖2
2 + t2‖14Qe

iϕ|B|
1
2ηQPtu‖2

2

. t2‖14QLPtu‖2
2 + t2‖(∇ηQ)Ptu‖2

2 + t2‖14Q|B|
1
2Ptu‖2

2

. t2
[
‖14QLPtu‖2

2 + ‖14Q|B|
1
2Ptu‖2

2 +
1

l(Q)2
‖14QPtu‖2

2

]
.

The last term above is bounded using off-diagonal estimates in Proposition 4.1.9, the

Cauchy–Schwarz inequality, Proposition 4.1.7, and choosing M > l where lB is as in
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(4.1.3), we have

∑
Q∈∆̃B

T

ˆ l(Q)

0

t2

l(Q)2
‖14QPtu‖2

2

dt

t
.
∑
Q∈∆̃B

T

1

l(Q)2

ˆ l(Q)

0

t

[
∞∑
k=0

‖14QPt1Ck(4Q)u‖2

]2

dt

.
∑
Q∈∆̃B

T

1

l(Q)2

[
∞∑
k=0

‖12k+2Qu‖2
2

ˆ l(Q)

0

(
t

2kl(Q)

)M
t dt

]

=
∞∑
k=0

∑
Q∈∆̃B

T

2−kM
‖12k+2Qu‖2

2

l(Q)M+2

ˆ l(Q)

0

tM+1 dt

=
∞∑
k=0

∑
Q∈∆̃B

T

2−kM
‖12k+2Qu‖2

2

l(Q)M+2

l(Q)M+2

M + 2

. ‖u‖2
2

∞∑
k=0

2−k(M−l)

. ‖u‖2
2,

(4.3.4)

Then, using Proposition 4.1.7, Corollary 4.1.6, and using the quadratic estimate for the

self-adjoint operator D, we have

∑
Q∈Q̃BT

ˆ l(Q)

0

t2
[
‖14QLPtu‖2

2 + ‖14Q|B|
1
2Ptu‖2

2

] dt

t

=
∑
Q∈Q̃BT

ˆ ∞
0

1(0,l(Q)(t)t
2
[
‖14QLPtu‖2

2 + ‖14Q|B|
1
2Ptu‖2

2

] dt

t

≤
ˆ ∞

0

∑
Q∈Q̃BT

t2
[
‖14QLPtu‖2

2 + ‖14Q|B|
1
2Ptu‖2

2

] dt

t

.
ˆ ∞

0

t2
[
‖LPtu‖2

2 + ‖|B|
1
2Ptu‖2

2

] dt

t

.
ˆ ∞

0

t2‖DPtu‖2
2

dt

t

=

ˆ ∞
0

‖Qtu‖2
2

dt

t

. ‖u‖2
2.
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By the above calculation and (4.3.4), we have

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖14Q(Q̃B,Q
t − γ̃Qt At)ηQeiϕPtu‖2

2 . ‖u‖2
2

As required.

Now we estimate the last term in (4.3.2). Here it is important that we are able to

use Lemma 4.1.10 and this is why we needed to work on the maximal dyadic mesh ∆̃B
T

instead of arbitrary dyadic cubes.

Proposition 4.3.7. We have the estimate

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖γ̃Qt A
Q
t e

iϕQηQ(Pt − I)u‖2
dt

t
. ‖u‖2

2

for all u ∈ R(D), independently of T .

Proof. We first establish

∑
Q∈∆̃B

T

‖14QA
Q
t e

iϕQηQ(Pt − I)Qsu‖2
2 . min

{
t

s
,
s

t

}
‖u‖2

2, (4.3.5)

for all u ∈ L2(Rn;Cn+1). For t ≤ s we use the uniform boundedness of AQt and ηQ, the

fact that (Pt− I)Qs = t
s
Qt(Ps− I) and the the uniform boundedness of Ps and Qt to get

∑
Q∈∆̃B

T

‖14QA
Q
t e

iϕQηQ(Pt − I)Qsu‖2
2 .

∑
Q∈∆̃B

T

(
t

s

)2

‖14QQt(Ps − I)u‖2
2

.
t

s
‖Qt(Ps − I)u‖2

2

≤ t

s
‖u‖2

2.

Fix Q ∈ ∆̃B
T . Now, let s ≤ t. Note that when t > 4l(Q) we have ∆t(4Q) = ∅ and so we

may assume t ≤ 4l(Q). Using the uniform boundedness of At, the fact that PtQs = s
t
QtPs,

106



Propostion 4.1.7, and the uniform boundedness of Ps and Qt, we get

∑
Q∈∆̃B

T

‖14QA
Q
t e

iϕQηQ(Pt − I)Qsu‖2
2

.
∑
Q∈∆̃B

T

‖ηQPtQsu‖2
2 +

∑
Q∈∆̃B

T

∑
R∈∆t(4Q)

‖1RAteiϕQηQQsu‖2
2

.
(s
t

)2

‖QtPsu‖2
2 +

∑
Q∈∆̃B

T

∑
R∈∆t(4Q)

ˆ
R

∣∣∣∣−ˆ
R

eiϕQηQQsu

∣∣∣∣2

.
s

t
‖u‖2

2 +
∑
Q∈∆̃B

T

∑
R∈∆t(4Q)

s2|R|
∣∣∣∣−ˆ
R

eiϕQ(ηQD −DηQ +DηQ)Psu

∣∣∣∣2

For the second term above we use the gauge invariance in (4.1.5), the commutator bounds

in (4.1.1), and t ≤ 4l(Q), to get

∑
R∈∆t(4Q)

s2|R|
∣∣∣∣−ˆ
R

eiϕQ(ηQD −DηQ +DηQ)Psu

∣∣∣∣2

.
∑

R∈∆t(4Q)

[
s2|R|

∣∣∣∣−ˆ
R

D̃QeiϕQηQPsu

∣∣∣∣2 + s2|R|
(
−
ˆ
R

|[ηQ, D]Psu|2
)]

.
∑

R∈∆t(4Q)

[
s2|R|

∣∣∣∣−ˆ
R

D̃QeiϕQηQPsu

∣∣∣∣2 +
s2

t2
‖14QPsu‖2

]

Now by Lemma 4.1.10, the gauge invariance, adding and subtracting eiϕQηQDPsu, the
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commutator bounds, t ≤ 4l(Q), and the Cauchy–Schwarz inequality, we have

∑
R∈∆t(4Q)

s2|R|
∣∣∣∣−ˆ
R

D̃QeiϕQηQPsu

∣∣∣∣2

.
∑

R∈∆t(4Q)

s2|R|
l(R)

(
−
ˆ
R

|D̃QeiϕQηQPsu|2
) 1

2
(
−
ˆ
R

|ηQPsu|2
) 1

2

.
s2

t

∑
R∈∆t(4Q)

[(ˆ
R

|ηQDPsu|2
) 1

2

+

(ˆ
R

|[ηQ, D]Psu|2
) 1

2

](ˆ
R

|ηQPsu|2
) 1

2

.
s

t

∑
R∈∆t(4Q)

[(ˆ
R

|ηQQsu|2
) 1

2

+
s

l(Q)

(ˆ
R

|14QPsu|2
) 1

2

](ˆ
R

|ηQPsu|2
) 1

2

.
s

t

∑
R∈∆t(4Q)

[(ˆ
R

|ηQQsu|2
) 1

2
(ˆ

R

|ηQPsu|2
) 1

2

+
s

l(Q)

(ˆ
R

|14QPsu|2
)]

.
s

t

 ∑
R∈∆t(4Q)

ˆ
R

|ηQQsu|2
 1

2
 ∑
R∈∆t(4Q)

ˆ
R

|ηQPsu|2
 1

2

+
s2

t2

∑
R∈∆t(4Q)

ˆ
R

|14QPsu|2

.
s

t

(ˆ
4Q

|ηQQsu|2
) 1

2
(ˆ

4Q

|ηQPsu|2
) 1

2

+
s2

t2

ˆ
4Q

|Psu|2

We collect the previous estimates and sum over all Q ∈ ∆̃B
T . We use Cauchy–Schwarz,

Proposition 4.1.7, s ≤ t, and the uniform boundedness of Qt and Pt we have

∑
Q∈∆̃B

T

‖14QA
Q
t e

iϕQηQ(Pt − I)Qsu‖2
2

.
s

t
‖u‖2

2 +
∑
Q∈∆̃B

T

[
s

t

(ˆ
4Q

|ηQQsu|2
) 1

2
(ˆ

4Q

|ηQPsu|2
) 1

2

+
(s
t

)2
ˆ

4Q

|Psu|2
]

.
s

t
‖u‖2

2 +
s

t

 ∑
Q∈∆̃B

T

ˆ
4Q

|ηQQsu|2
 1

2
 ∑
Q∈∆̃B

T

ˆ
4Q

|ηQPsu|2
 1

2

+
s

t
‖Psu‖2

2

.
s

t
‖u‖2

2 +
s

t
‖Qsu‖2‖Psu‖2 +

s

t
‖Psu‖2

2

.
s

t
‖u‖2

2.

Thus, we have established (4.3.5). Now we begin the Schur-type estimate by letting

m(s, t) := min
{
t
s
, s
t

} 1
2 . Then, we use the uniform boundedness of γ̃Qt A

Q
t in Lemma 4.3.1,

the Calderón reproducing formula, Minkowski’s inequality, (4.3.5), the Cauchy–Schwarz
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inequality, and Tonneli’s theorem

∑
Q∈∆̃t

ˆ l(Q)

0

‖14Qγ̃
Q
t A

Q
t e

iϕQηQ(Pt − I)u‖2
2

dt

t

=
∑
Q∈∆̃B

T

ˆ l(Q)

0

‖14Qγ̃
Q
t A

Q
t 14QA

Q
t e

iϕQηQ(Pt − I)u‖2
dt

t

.
∑
Q∈∆̃B

T

ˆ l(Q)

0

‖γ̃Qt A
Q
t ‖
∥∥∥∥14QA

Q
t e

iϕQηQ(Pt − I)

(ˆ ∞
0

Q2
su

ds

s

)∥∥∥∥2

2

dt

t

.
ˆ T

0

∑
Q∈∆̃B

T

[ˆ ∞
0

‖14QA
Q
t e

iϕQηQ(Pt − I)Qs(Qsu)‖2
ds

s

]2
dt

t

≤
ˆ ∞

0

ˆ ∞
0

 ∑
Q∈∆̃B

T

‖14QA
Q
t e

iϕQηQ(Pt − I)Qs(Qsu)‖2
2

 1
2

ds

s


2

dt

t

.
ˆ ∞

0

ˆ ∞
0

[
m(s, t)‖Qsu‖2

ds

s

]2
dt

t

≤
ˆ ∞

0

(ˆ ∞
0

m(s, t)
ds

s

)(ˆ ∞
0

m(s, t)‖Qsu‖2
2

ds

s

)
dt

t

.
ˆ ∞

0

‖Qsu‖2
2

ds

s

. ‖u‖2
2

This completes the proof.

Combining Lemma 4.3.4, and Propositions 4.3.6 and 4.3.7 we have

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖14Q(Q̃B,Q
t − γ̃Qt At)eiϕQηQu‖2

2 . ‖u‖2
2,

for all u ∈ R(D) and we are left to estimate the second term of (4.3.1).

4.4 Carleson Measure Estimate

We now begin to estimate the second term in (4.3.1), that is we need to prove the following

proposition.
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Proposition 4.4.1. If B satisfies (2.4.3), then we have the following estimate

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖14Qγ̃
Q
t Atu‖2

2

dt

t
. ‖u‖2

2, ∀u ∈ R(D),

where the implicit constants depend on B, n, κ, and ‖B‖∞.

Firstly, we fix Q ∈ ∆̃B
T . We will do this by proving a localised Carleson measure

estimate for |γ̃Qt (x)|2 dx dt
t

.

Definition 4.4.2. Let µ be a measure on 4Q× (0, l(Q)]. Then we say µ is Carleson on

4Q× (0, l(Q)] if

‖µ‖C := sup
R∈∆(4Q)

1

|R|
µ(C(R)) <∞,

and ‖µ‖C is independent of Q, here C(R) := R × (0, l(R)], the Carleson box of the cube

R.

The following propositions proves that if |γ̃Qt (x)|2 dx dt
t

is a Carleson measure estimate

then the second term in (4.3.1) is bounded and thus the quadratic estimate is established.

Lemma 4.4.3. If µ is Carleson on 4Q× (0, l(Q)], then

ˆ l(Q)

0

ˆ
4Q

|AteiϕQηQu| dµ(x, t) . ‖µ‖C‖ηQu‖2
2

for all u ∈ L2(Rn;Cn+1) where the implicit constant is independent of Q.

Proof. First, using the fact that ∆t(4Q) = ∆2k(4Q) for k ∈ Z∩(−∞, KQ] where 2KQ−1 <

l(Q) ≤ 2KQ , and 2k−1 < t ≤ 2k and Tonelli’s Theorem, we have

ˆ l(Q)

0

ˆ
4Q

|AteiϕQηQu(x)|2 dµ(x, t) =

KQ∑
k=−∞

ˆ 2k

2k−1

∑
R∈∆

2k
(4Q)

ˆ
R

∣∣∣∣−ˆ
R

eiϕQηQu(y) dy

∣∣∣∣2 dµ(x, t)

≤
KQ∑

k=−∞

∑
R∈∆

2k
(4Q)

(
−
ˆ
R

|ηQu(y)| dy
)2 ˆ 2k

2k−1

ˆ
R

dµ(x, t).

Now let Ik ⊆ N be an indexing set such that ∆2k(4Q) = {Rk
α : α ∈ Ik}. We also introduce
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the notation

uα,k := −
ˆ
Rkα

|ηQu(y)| dy, and µα,k := µ(Rk
α × (2k−1, 2k]).

Therefore, rearranging and using Tonelli’s Theorem, we have that

ˆ l(Q)

0

ˆ
4Q

|AteiϕQηQu(x)|2 dµ(x, t) ≤
KQ∑

k=−∞

∑
α∈Ik

u2
α,kµα,k

=

KQ∑
k=−∞

∑
α∈Ik

µα,k

ˆ uα,k

0

2r dr

=

ˆ ∞
0

KQ∑
k=−∞

∑
α∈Ik

µα,k1{uα,k>r}(r)2r dr,

where dr denotes the Lebesgue measure on (0,∞). For each r > 0 let {Rj(r)}j∈N be an

enumeration of the collection of maximal dyadic cubes Rk
α ∈ ∆(4Q) such that uα,k > r.

Define

MQ
∆u(x) := sup

{
−
ˆ
R

u : R ∈ ∆(4Q), with x ∈ R
}
.

We claim that
∞⋃
j=1

Rj(r) = {x ∈ Rn : (MQ
∆|ηQu|)(x) > r}.

Let x ∈
⋃∞
j=1Rj(r). Therefore x ∈ R such that R = Rj(r) for some j ∈ N, then

r < −
ˆ
R

|ηQu| ≤ (MQ
∆|ηQu|)(x).

Now if x ∈ Rn such that (MQ
∆|ηQu|)(x) > r, then there exists R′ ∈ ∆(4Q) with x ∈ R′

such that

r < −
ˆ
R′
|ηQu|.

Then either R′ = Rj(r) for some j ∈ N or, as the cubes in {Rj(r)}j∈N are maximal, there

exists a cube R = Rj(r) for some j ∈ N with R′ ⊆ R. Therefore, x ∈
⋃∞
j=1Rj(r). This

proves the claim.

Now suppose that Rk
α ∈ ∆(4Q) is such that uα,k > r. Then, as the cubes in {Rj(r)}j∈N
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are maximal, either Rk
α = Rj(r) or Rk

α ⊆ Rj(r) for some j ∈ N. Therefore, using the

definition of a Carleson measure on 4Q, the above claim, and standard results for maximal

functions (see [51, p. 7]), we have

ˆ ∞
0

KQ∑
k=−∞

∑
α∈Ik

µα,k1{uα,k>r}(r)2r dr ≤
ˆ ∞

0

∞∑
j=1

∑
S∈∆(4Q)
S⊆Rj(r)

µ(S × ( l(S)
2
, l(S)])2r dr

≤
ˆ ∞

0

2r
∞∑
j=1

µ(C(Rj(r))) dr

≤ ‖µ‖C
ˆ ∞

0

2r
∞∑
j=1

|Rj(r)| dr

= ‖µ‖C
ˆ ∞

0

2r

∣∣∣∣∣
∞⋃
j=1

Rj(r)

∣∣∣∣∣ dr
= ‖µ‖C

ˆ ∞
0

2r
∣∣∣{x ∈ Rn : (MQ

∆|ηQu|)(x) > r}
∣∣∣ dr

= ‖µ‖C‖MQ
∆|ηQu|‖

2
2

. ‖µ‖C‖ηQu‖2
2,

where C(Rj(r)) is the Carleson box of Rj(r). This completes the proof.

To see that Lemma 4.4.3 implies Proposition 4.4.1 we use Lemma 4.4.3, the Carleson

norms independence of Q, and then Proposition 4.1.7, to get

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖14Qγ̃
Q
t Atu‖2

2

dt

t
=
∑
Q∈∆̃B

T

ˆ l(Q)

0

ˆ
4Q

|AteiϕQηQu||γ̃Qt (x)|2 dx dt

t

.
∑
Q∈∆̃B

T

‖µ‖C‖ηQu‖2
2

.
∑
Q∈∆̃B

T

‖ηQu‖2
2

. ‖u‖2
2,

(4.4.1)

where ‖µ‖C is the Carleson norm of |γ̃Qt (x)|2 dx dt
t

for all Q, noting that by definition if

|γ̃Qt (x)|2 dx dt
t

is a Careson measure on 4Q×(0, l(Q)] then the Carleson norm is independent

of Q.
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The rest of this section will be dedicated to proofing that |γ̃Qt (x)|2 dx dt
t

is a Carleson

measure on 4Q × (0, l(Q)]. To begin we will fix a subcube R, of 4Q, and construct a

test function which is support on 4R. To do this we will need consider the case when

4R ∩ (Rn \ 4Q) 6= ∅ separately and follow the ideas in [14] to prove a Carleson measure

estimate on such cubes. To this end, consider the measure χQ(x, t)dx dt
t

where

χQ(x, t) =


0 if the cube R ∈ ∆t(4Q) such that x ∈ R satisfies 4R ⊆ 4Q,

1 otherwise,

for all (x, t) ∈ Q×(0, l(Q)]. We will then prove that |γ̃Qt (x)|2χQ(x, t)dx dt
t

and |γ̃Qt (x)|2(1−

χQ(x, t))dx dt
t

are Carleson measures on 4Q × (0, l(Q)] separately. First we consider

|γ̃Qt (x)|2χQ(x, t)dx dt
t

.

Lemma 4.4.4. χQ(x, t)dx dt
t

and |γ̃Qt (x)|2χQ(x, t)dx dt
t

are Carleson measures on 4Q ×

(0, l(Q)].

Proof. Let R ∈ ∆(4Q) and fix KR := l(R). Then

ˆ l(R)

0

ˆ
R

χQ(x, t)
dx dt

t
=

KR∑
k=−∞

ˆ 2k

2k−1

∑
S∈∆

2k
(R)

ˆ
S

χQ(x, t)
dx dt

t
.

Now χQ(x, t) = 1 on S if and only if 4S ∩ (Rn \ 4Q) 6= ∅. That is χQ(x, t) = 1 if and

only if dist(S,Rn \ 4Q) ≤ 3
2
l(S), that is at most a depth of 2 cubes of l(S) away from the

boundary of Q. Therefore, there are at most 2× 2−(n−1)(k−KR) such cubes. Thus

∑
S∈∆

2k
(R)

ˆ
S

χQ(x, t) dx =
∑

S∈∆
2k

(R)

4S∩(Rn\4Q)6=∅

|S| . 2kn2−(n−1)(k−KR) . 2kl(R)n−1.
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As, 2k

t
. 1 on each integral, then

ˆ l(R)

0

ˆ
R

χQ(x, t)
dx dt

t
.

KR∑
k=−∞

ˆ 2k

2k−1

2kl(R)n−1 dt

t

. l(R)n−1

KR∑
k=−∞

ˆ 2k

2k−1

dt

= l(R)n−1

ˆ l(R)

0

dt

= |R|.

Thus χQ(x, t)dx dt
t

is a Carleson measure on Q × (0, l(Q)]. Then by a similar argument

and using Lemma 4.3.1, we have

ˆ l(R)

0

ˆ
R

|γ̃Qt (x)|2χQ(x, t)
dx dt

t
=

KR∑
k=−∞

ˆ 2k

2k−1

∑
S∈∆

2k
(R)

4S∩(Rn\4Q)6=∅

ˆ
S

|γ̃Qt (x)|2 dx dt

t

.
KR∑

k=−∞

ˆ 2k

2k−1

∑
S∈∆

2k
(R)

4S∩(Rn\4Q)6=∅

|S|dt
t

.
KR∑

k=−∞

ˆ 2k

2k−1

2kl(R)n−1 dt

t

. l(R)n−1

KR∑
k=−∞

ˆ 2k

2k−1

dt

= l(R)n−1

ˆ l(R)

0

dt

. |R|.

This completes the proof.

Next, to prove |γ̃Qt (x)|2(1 − χQ(x, t))dx dt
t

is a Carleson measure on 4Q, it suffices to

prove that ˆ l(R)

0

ˆ
R

|γ̃Qt (x)|2 dx dt

t
. |R|

for all R ∈ ∆(4Q) with 4R ⊆ 4Q independently of Q. Now fix R ∈ ∆(4Q) with

4R ⊆ 4Q and set σ > 0 to be chosen later. Choose a finite set Vσ of non-zero matrices,
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ν ∈ L(Cn+1) \ {0}, with |ν| = 1 such that
⋃
ν∈Vσ Kν,σ = L(Cn+1) \ {0} where

Kν,σ :=

{
µ ∈ L(Cn+1) :

∣∣∣∣ µ|µ| − ν
∣∣∣∣ ≤ σ

}
.

Then, we may prove the Carleson measure estimate for each cone Kν,σ separately. That

is, ¨
(x,t)∈C(R)

|γ̃Qt (x)|2 dx dt

t
.
∑
ν∈Vσ

¨
(x,t)∈C(R)

γ̃Qt (x)∈Kν,σ

|γ̃Qt (x)|2 dx dt

t
.

Therefore we are left to prove

¨
(x,t)∈C(R)

γ̃Qt (x)∈Kν,σ

|γ̃Qt (x)|2 dx dt

t
. |R|, (4.4.2)

for every ν ∈ Vσ independently of Q. Let ζ, ξ ∈ Cn+1 with |ζ| = |ξ| = 1 and ν∗(ζ) = ξ.

Let ηR ∈ C∞0 (Rn) supported on 4R, with ηR ≡ 1 on 2R and ηR(x) ∈ [0, 1] for all x ∈ 4R

with ‖∇ηR‖∞ . 1
l
, where l := l(R). Define ξR := ηRξ. We define the test functions as

follows, for ε > 0 to be chosen, define

f ξR,ε := (I + (εl)2(D̃QB)2)−1ξR = P̃B
εl ξR

Some of the important properties of f ξR,ε are stated in the following lemma.

Lemma 4.4.5. We have the following estimates

1. ‖f ξR,ε‖2 . |R|
1
2 ,

2. ‖εlD̃QBf ξR,ε‖2 . |R|
1
2 ,

3.

∣∣∣∣−ˆ
R

f ξR,ε − ξ
∣∣∣∣ . ε

1
2 ,

for all R ∈ ∆(4Q) with 4R ⊆ 4Q.

Proof. By the uniform boundedness of P̃B
εl we have

‖f ξR,ε‖
2
2 = ‖P̃B

εl ξR‖2
2 . ‖ξR‖2

2 . |R|.
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Similarly, using the the uniform boundedness of Q̃B
εl, we have

‖εlD̃QBf ξR,ε‖
2
2 = ‖Q̃B

εlξR‖2
2 . ‖ξR‖2

2 . |R|.

For (3) we use the fact that t2(D̃QB)2P̃B
t = I − P̃B

t , Lemma 4.1.10 with Q ∈ ∆̃B
T , the

uniform boundedness of I − P̃B
t and Q̃B

t

∣∣∣∣−ˆ
R

f ξR,ε − ξ
∣∣∣∣2 =

∣∣∣∣−ˆ
R

(P̃B
εl − I)ξR

∣∣∣∣2
= (εl)4

∣∣∣∣−ˆ
R

(D̃QB)2P̃B
εl ξR

∣∣∣∣2
.

(εl)4

l

(
−
ˆ
R

|(D̃QB)2P̃B
εl ξR|2

) 1
2
(
−
ˆ
R

|BD̃QBP̃B
εl ξR|2

) 1
2

= ε‖B‖∞
(
−
ˆ
R

|(εlD̃QB)2P̃B
εl ξR|2

) 1
2
(
−
ˆ
R

|εlD̃QBP̃B
εl ξR|2

) 1
2

. ε

(
−
ˆ
R

|(P̃B,Q
εl ξR|2

) 1
2
(
−
ˆ
R

|Q̃B,Q
εl ξR|2

) 1
2

.
ε

|R|
‖ξR‖2

2

. ε

As required.

We prove (4.4.2) below by introducing a sub-collection of disjoint subcubes of each

R ⊂ Q with 4R ⊆ 4Q as below.

Proposition 4.4.6. There exists τ ∈ (0, 1) such that for all cubes R ∈ ∆(4Q) and

ν ∈ L(Cn+1)\{0} with |ν| = 1 there is a collection {Rk}k∈IR ⊂ ∆(R) of disjoint subcubes

of R, where IR ⊆ N is an indexing set for the collection, such that |ER,ν | > τ |R|, where

ER,ν := R \
⋃
k∈IR Rk and with

¨
(x,t)∈E∗R,ν
γ̃Qt (x)∈Kν,σ

|γ̃Qt (x)|2 dx dt

t
. |R| (4.4.3)

where E∗R,ν := C(R) \
⋃
k∈IR C(Rk).

We may fix ε0 > 0, defining f ξR := f ξR,ε0 , such that when we apply Lemma 4.4.5 we
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have ∣∣∣∣−ˆ
R

f ξR − ξ
∣∣∣∣ ≤ 1

2
,

for all R ∈ ∆(4Q), with 4R ⊆ 4Q. Therefore,

Re

〈
ξ,−
ˆ
R

f ξR

〉
≥ 1

2
. (4.4.4)

We will now give the stopping time argument to construct the collection of bad cubes

described in Proposition 4.4.6.

Lemma 4.4.7. Let R ∈ ∆(4Q). Then, there exists constants c1, c2 > 0, and τ ∈ (0, 1),

and a disjoint collection {Rk}k∈IR ⊂ ∆(R) such that

• Rk ⊆ R,

• |ER,ν | ≥ τ |R|,

satisfying

−
ˆ
S

|f ξR| ≤ c1 and Re

〈
ξ,−
ˆ
S

f ξR

〉
≥ c2 (4.4.5)

for all S ∈ ∆(R) for which C(S) ∩ E∗R,ν 6= ∅, where E∗R,ν := C(R) \
⋃
k∈IR C(Ck).

Proof. Let α ∈ (0, 1) to be chosen. Let B1 be the set maximal cubes S ∈ ∆(R), for which

−
ˆ
S

|f ξR| >
1

α
.

Then using the Cauchy–Schwarz inequality and (1) from Lemma 4.4.5, we have

∣∣∣⋃B1

∣∣∣ =
∑
S∈B1

|S| < α
∑
S∈B1

ˆ
S

|f ξR| ≤ α

ˆ
R

|f ξR| ≤ α|R|
1
2

(ˆ
R

|f ξR|
2

) 1
2

. Cα|R|,

where C > 0 is the implicit constant in (1) from Lemma 4.4.5. Now let B2 be the set of

maximal cubes S ∈ ∆(R), such that

Re

〈
ξ,−
ˆ
S

f ξR

〉
< α.
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Now by (4.4.4), the Cauchy–Schwarz inequality, and (1) from Lemma 4.4.5, we have

1

2
≤ Re

〈
ξ,−
ˆ
R

f ξR

〉
=
∑
S∈B2

|S|
|R|

Re

〈
ξ,−
ˆ
S

f ξR

〉
+

1

|R|
Re

〈
ξ,

ˆ
R\
⋃
B2
f ξR

〉

< α +
1

|R|

(ˆ
|f ξR|

2

) 1
2

|R \
⋃
B2|

1
2

≤ α + C

(
|R \

⋃
B2|

|R|

) 1
2

.

Making the restriction α ∈ (0, 1
2
), we have

|R \
⋃
B2| ≥

( 1
2
− α
C

)2

|R|

Therefore, letting {Rk}k∈IR := B1∪B2, where IR is an enumeration of the cubes in B1∪B2,

we have

|ER,ν | ≥ |R \
⋃
B2| − |

⋃
B1| ≥

[( 1
2
− α
C

)2

− Cα

]
|R|.

Now, choosing α ∈ (0, 1
2
) sufficiently small, gives τ :=

[(
1
2
−α
C

)2

− Cα
]
> 0. Now let

S ∈ ∆(R) with C(S) ∩ E∗R,ν 6= ∅. By the maximality of the cubes in B1 and B2 then a

similar argument to Lemma 3.3.6, we have S /∈ B1 ∪ B2. Therefore, S satisfies (4.4.5).

This completes the proof.

Now we choose σ := c2
2c1

and will use the following lemma to introduce the test function

into our argument.

Lemma 4.4.8. Let ν ∈ L(Cn+1) \ {0}. There exists σ > 0 such that if (x, t) ∈ E∗R,ν and

γ̃Qt (x) ∈ Kν,σ, then

|γ̃Qt (x)(Atf
ξ
R)| ≥ 1

2
c2|γ̃Qt (x)|,

where c2 > 0 is the constant from (4.4.5).

Proof. As (x, t) ∈ E∗R,ν , there exists S ∈ ∆t(R), such that x ∈ S and C(S) ∩ E∗R,ν 6= ∅.
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Then, recalling ν∗(ζ) = ξ and Lemma 4.4.7, we have

|ν(Atf
ξ
R(x))| ≥ Re〈ζ, ν(Atf

ξ
R)〉 = Re

〈
ξ,−
ˆ
S

f ξR

〉
≥ c2.

Now, by above and Lemma 4.4.7, we have

∣∣∣∣∣ γ̃Qt (x)

|γ̃Qt (x)|
(AQt f

ξ
R(x))

∣∣∣∣∣ ≥ |ν(AQt f
ξ
R(x))| −

∣∣∣∣∣
(
γ̃Qt (x)

|γ̃Qt (x)|
− ν

)(
−
ˆ
S

f ξR

)∣∣∣∣∣ ≥ c2 − c1σ ≥
1

2
c2.

As required.

Proof of Proposition 4.4.6. Let ER,ν and τ be as constructed in Lemma 4.4.7. By Lemma

4.4.8 and as (AQt f
ξ
R)(x) = (AQt ηRf

ξ
R)(x) for all (x, t)inC(R), we have

¨
(x,t)∈E∗R,ν
γ̃Qt (x)∈Kν,σ

|γ̃Qt (x)|2 dx dt

t
.
¨

(x,t)∈E∗R,ν
γ̃Qt (x)∈Kν,σ

|γ̃Qt (x)(Atf
ξ
R)(x)|2 dx dt

t

≤
¨
C(R)

|γ̃Qt (x)(AtηRf
ξ
R)(x)|2 dx dt

t
.

Now, we introduce Q̃B,Q
t ηRf

ξ
R to perform the reverse principal part approximation in

reverse, to get

¨
C(R)

|γ̃Qt (x)(AtηRf
ξ
R)|2 dx dt

t
.
¨
C(R)

|(Q̃B,Q
t − γ̃Qt At)ηRf

ξ
R|

2 dx dt

t

+

¨
C(R)

|(Q̃B,Q
t ηRf

ξ
R)|2 dx dt

t
.

(4.4.6)

Now we estimate the error term in (4.4.6), by using the uniform boundedness of P̃B,Q
t ,

the gauge invariance in (4.1.5), the commutator bounds in (4.1.7), and Lemma 4.4.5, to
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get

¨
C(R)

|(Q̃B,Q
t ηRf

ξ
R)(x)|2 dx dt

t
=

ˆ l

0

‖1RP̃B,Q
t tD̃QBηRf

ξ
R‖

2
2

dt

t

.
ˆ l

0

t‖ηRD̃QBf ξR‖
2
2 + t‖[ηR, D̃Q]Bf ξR‖

2
2 dt

.
ˆ l

0

t

(ε0l)2
‖ε0lD̃

QBf ξR‖
2
2 +

t

l2
‖f ξR‖

2
2 dt

. |R|
(

1

ε2
0

+ 1

) ˆ l

0

t

l2
dt

. |R|.

Our aim now is to perform the principal part approximation in reverse on the remaining

term in (4.4.6). In order to do this we need to be on R(D) so we introduce ξR and

note that, using the gauge invariance, we have e−iϕQ(f ξR − ξR) = e−iϕQ(P̃B,Q
εl − I)ξR =

e−iϕQ(ε0D̃
QB)2P̃B,Q

ε0l
ξR = D[e−ϕQε2

0BD̃
QBP̃B,Q

ε0l
ξR]. That is e−iϕQ(f ξR − ξR) ∈ R(D).

Therefore

¨
C(R)

|(Q̃B,Q
t − γ̃Qt At)ηRf

ξ
R|

2 dx dt

t

.
¨
C(R)

|(Q̃B,Q
t − γ̃Qt At)ηR(f ξR − ξR)|2 dx dt

t
+

¨
C(R)

|(Q̃B,Q
t − γ̃Qt At)ηRξR|2

dx dt

t

.
¨
C(R)

|(Q̃B,Q
t − γ̃Qt At)eiϕQηRPte−iϕQ(f ξR − ξR)|2 dx dt

t

+

¨
C(R)

|Q̃B,Q
t (ηR − eiϕQηRPte−iϕQ)(f ξR − ξR)|2 dx dt

t

+

¨
C(R)

|γ̃Qt At(ηR − eiϕQηRPte−iϕQ)(f ξR − ξR)|2 dx dt

t

+

¨
C(R)

|(Q̃B,Q
t − γ̃Qt At)ηRξR|2

dx dt

t

= I + II + III + IV

Let g := e−iϕQ(f ξR − ξR). Now, by Lemma 4.3.5 since Pt preserves R(D), we have

‖1R(Q̃B,Q
t − γ̃Qt At)eiϕQηRPtg‖2

2 . t2‖14RLηRPtg‖2
2 + t2‖14R|B|

1
2ηRPtg‖2

2.
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Then, the product rule, Corollary 4.1.6, and the uniform boundedness of Pt, gives

‖14RLηRPtg‖2
2 + ‖14R|B|

1
2ηRPtg‖2

2 . ‖LPtg‖2
2 + ‖|B|

1
2Ptg‖2

2 + ‖14R(∇ηR)Ptg‖2
2

. ‖DPtg‖2
2 +

1

l(R)2
‖g‖2

2.

Therefore, using above, the quadratic estimates for the self-adjoint operator D, and

Lemma 4.4.5, we have

I .
ˆ l(R)

0

‖tDPtg‖2
2

dt

t
+

ˆ l(R)

0

t2‖g‖2
2

l(R)2

dt

t
.
ˆ ∞

0

‖Qtg‖2
2

dt

t
+
‖g‖2

2

l(R)2

ˆ l(R)

0

t dt . ‖g‖2
2 . |R|.

Now, by Lemma 4.3.3, the quadratic estimates for the self-adjoint operatorD, and Lemma

4.4.5, we have

II =

¨
C(R)

|Q̃B,Q
t eiϕQηR(I − Pt)g|2

dx dt

t

.
ˆ l

0

(
t2

l(R)2
+ 1

)
‖Qtg‖2

2

dt

t

.
ˆ ∞

0

‖Qtg‖2
2

dt

t

. ‖g‖2
2

. |R|.

For the third term we follow the proof of Proposition 4.3.7 an so the estimate will follow

once we have established

‖1RAteiϕQηR(I − Pt)Qs‖ . min

{
s

t
,
t

s

}

for s ∈ (0,∞) and t ∈ (0, l). We note that we need to reprove this as the localisation

here is different to that of Proposition 4.3.7. Firstly, suppose t < s then by the uniform

boundedness of At and ηR, the fact that (I − Pt)Qs = t
s
Qt(I − Ps) and the the uniform
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boundedness of Ps and Qt to get

‖1RAteiϕQηR(I − Pt)Qsu‖2 .

(
t

s

)2

‖Qt(I − Ps)u‖2
2 .

t

s
‖Qt(I − Ps)u‖2

2 ≤
t

s
‖u‖2

2.

For s ≤ t ≤ l, we use the uniform boundedness of At, the fact that PtQs = s
t
QtPs, and

the uniform boundedness of Ps and Qt to get

‖1RAteiϕQηR(I − Pt)Qsu‖2
2 .

(s
t

)2

‖QtPsu‖2
2 + ‖1RAteiϕQηRQsu‖2

2

.
s

t
‖u‖2

2 +
∑

S∈∆t(R)

‖1SAteiϕQηRQsu‖2
2.

Now we interchange the ηR and D and use the gauge invarince and Jensen’s inequality,

to obtain

∑
S∈∆t(R)

‖1SAteiϕQηRQsu‖2
2 =

∑
S∈∆t(R)

ˆ
S

∣∣∣∣−ˆ
S

eiϕQηRQsu

∣∣∣∣2
=

∑
S∈∆t(R)

s2|S|
∣∣∣∣−ˆ
S

eiϕQ(ηRD −DηR +DηR)Psu

∣∣∣∣2

.
∑

S∈∆t(R)

s2|S|

[∣∣∣∣−ˆ
S

D̃QeiϕQηRPsu

∣∣∣∣2 +

(
−
ˆ
S

|[ηR, D]Psu|2
)]

Now using the commutator bounds and t < l, we get

∑
S∈∆t(R)

s2|S|−
ˆ
S

|[ηR, D]Psu|2 .
s2

t2
‖Psu‖2

2

Now by Lemma 4.1.10, the gauge invariance, commutator bounds, and the Cauchy–
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Schwarz inequality, we have

∑
S∈∆t(R)

s2|S|
∣∣∣∣−ˆ
S

D̃QeiϕQηRPsu

∣∣∣∣2

.
∑

S∈∆t(R)

s2|S|
l(S)

(
−
ˆ
S

|D̃QeiϕQηRPsu|2
) 1

2
(
−
ˆ
S

|ηRPsu|2
) 1

2

.
s2

t

∑
S∈∆t(R)

[(ˆ
S

|ηRDPsu|2
) 1

2

+

(ˆ
S

|[ηR, D]Psu|2
) 1

2

](ˆ
S

|ηRPsu|2
) 1

2

.
s

t

∑
S∈∆t(R)

[(ˆ
S

|ηRQsu|2
) 1

2

+
s

l

(ˆ
S

|Psu|2
) 1

2

](ˆ
S

|ηRPsu|2
) 1

2

.
s

t

∑
S∈∆t(R)

[(ˆ
S

|Qsu|2
) 1

2
(ˆ

S

|Ptu|2
) 1

2

+
s

l

(ˆ
S

|Psu|2
)]

.
s

t

(ˆ
R

|Qsu|2
) 1

2
(ˆ

R

|Psu|2
) 1

2

+
s2

t2

ˆ
R

|Psu|2

Combining the above and using and the uniform boundedness of Qt and Pt, we have

‖1RAteiϕQηQ(I − Pt)Qsu‖2
2 .

s

t

[
‖u‖2

2‖Qsu‖2‖Psu‖2 + ‖Psu‖2
2

]
.
s

t
‖u‖2

2

Thus, we will replicate the Schur estimate in Proposition 4.3.7. First, let m(s, t) :=

min
{
t
s
, s
t

}
. Then, we use the uniform boundedness of γ̃Qt A

Q
t in Lemma 4.3.1, the Calderón

reproducing formula, Minkowski’s inequality, Tonneli’s theorem, and Lemma 4.4.5, we
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have

III .
ˆ l

0

‖γ̃Qt At1RAteiϕQηR(I − Pt)g‖2
2

dt

t

.
ˆ l

0

(ˆ ∞
0

‖1RAteiϕQηR(I − Pt)Q2
sg‖2

ds

s

)2
dt

t

.
ˆ l

0

(ˆ ∞
0

‖1RAteiϕQηR(I − Pt)Qs‖‖Qsg‖2
ds

s

)2
dt

t

.
ˆ ∞

0

(ˆ ∞
0

m(s, t)
ds

s

)(ˆ ∞
0

m(s, t)‖Qsg‖2
2

ds

s

)
dt

t

.
ˆ ∞

0

‖Qsg|22
ds

s

. ‖g‖2
2

. |R|.

Now we begin the last estimate. Then, as γ̃Qt Atξ = (Q̃B,Q
t ξ) and as ηR ≡ 1 on 2R then

AQt (η2
Rξ)(x) = ξ for all (x, t) ∈ C(R). Thus, we have

(Q̃B,Q
t − γ̃Qt At)ηRξR = Q̃B,Q

t

(
η2
Rξ − At(η2

Rξ)
)

= Q̃B,Q
t (η2

Rξ − ξ)

on C(R). Recall the definition of C̃4Q
k (R) from the proof of Lemma 4.3.1. Then, by off-

diagonal estimates in Proposition 4.1.9 noting that supp(η2
R − 1) ∩ 2R = ∅, the Cauchy–

Schwarz inequality, and choosing M > n, we obtain

‖1RQ̃B,Q
t (η2

R − 1)ξ‖2
2 ≤

K4Q
R∑

k=1

‖1RQ̃B,Q
t 1C̃4Q

k (R)‖‖1C̃4Q
k (R)(η

2
R − 1)ξ‖2

2

.

(
t

l

)M ∞∑
k=1

2−kM‖12kR(η2
R − 1)ξ‖2

2

.

(
t

l

)M
|R|

∞∑
k=1

2−k(M−n)

.

(
t

l

)M
|R|

124



Thus, integrating in t gives

IV =

¨
C(R)

|(Q̃B,Q
t − γ̃Qt At)ηRξR|2

dx dt

t
.
|R|
lM

ˆ l

0

tM−1 dt .
|R|
lM

lM

M
. |R|

This completes the proof.

Thus we are able to prove the last term we need to estimate.

Proof of Proposition 4.4.1. As Proposition 4.4.6 implies (4.4.2) which then implies the

measure |γ̃Qt (x)|2 dtdx
t

is a Carleson measure on 4Q× (0, l(Q)]. Then by Lemma 4.4.3 and

(4.4.1), we have ∑
Q∈∆̃B

T

ˆ l(Q)

0

‖14Qγ̃
Q
t Atu‖2

2

dt

t
. ‖u‖2

2,

for all u ∈ R(D), as required.

We are finally able to prove our main theorem of the chapter.

Proof of Theorem 4.0.2. We start by showing that Proposition 4.4.6 implies (4.4.2). Con-

sider an arbitrary R ∈ ∆(4Q) and fix ν ∈ Vσ. Then, for all δ ∈ (0, 1), using Lemma 4.3.1

gives

¨
C(R)

1γ̃Qt (x)∈Kν,σ(x, t)1(δ,δ−1)(t)|γ̃Qt (x)|2 dx dt

t
≤ 1

δ

ˆ δ−1

0

ˆ
R

|γ̃Qt (x)|2 dx dt

≤ 1

δ

ˆ δ−1

0

∑
S∈∆t(R)

(ˆ
S

|γ̃Qt (x)|2 dx

)
dt

.
1

δ

ˆ δ−1

0

 ∑
S∈∆t(R)

|S|

 dt

.
|R|
δ2
,

where the implicit constant does not depend on Q. That is

µδ := 1γ̃Qt (x)∈Kν,σ(x, t)1(δ,δ−1)(t)|γ̃Qt (x)|2 dx dt

t

is a Carleson measure on 4Q × (0, l(Q)]. We now show that ‖µδ‖C does not depend on
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δ ∈ (0, 1). Therefore, as C(R) = E∗R,ν∪
(⋃

k∈IR C(R)
)
, and using (4.4.3), µδ being Carleson

on 4Q× (0, l(Q)], and the definition of {Rk}k∈IR we have

¨
C(R)

1γ̃Qt (x)∈Kν,σ(x, t)1(δ,δ−1)(t)|γ̃Qt (x)|2 dx dt

t
=

¨
(x,t)∈E∗R,ν
γ̃Qt (x)∈Kν,σ

|γ̃Qt (x)|2 dx dt

t

+
∑
k∈IR

µδ(C(Rk))

≤ C0|R|+ ‖µδ‖C
∑
k∈IR

|Rk|

≤ C0|R|+ ‖µδ‖C|R \ ER,ν |,

where C0 > 0 depends only on the constants in (4.4.3) and n. Note that the above is true

for all ν ∈ Vσ. Also, as |ER,ν | > τ |R| then |R \ ER,ν | < (1 − τ)|R|. Therefore, dividing

by |R| and taking supremum over R ∈ ∆(4Q) with 4R ⊂ 4Q, we have

sup
R∈∆(4Q)
4R⊂4Q

1

|R|
µδ(C(R)) ≤ sup

R∈∆(4Q)
4R⊂4Q

1

|R|

¨
(x,t)∈C(R)

γ̃Qt (x)∈Kν,σ

1(δ,δ−1)(t)|γ̃Qt (x)|2 dx dt

t
≤ C0+(1−τ)‖µδ‖C

Then using Lemma 4.4.4 and above we have

‖µδ‖C = sup
R∈∆(4Q)

1

|R|
µδ(C(R))

≤ sup
R∈∆(4Q)

4R∩(Rn\4Q)6=∅

1

|R|
µδ(C(R)) + sup

R∈∆(4Q)
4R⊂4Q

1

|R|
µδ(C(R))

≤ sup
R∈∆(4Q)

4R∩(Rn\4Q)6=∅

1

|R|
µ0(C(R)) + C0 + (1− τ)‖µδ‖C

≤ C1 + C0 + (1− τ)‖µδ‖C,

where C1 > 0 is the constant coming from Lemma 4.4.4. Therefore, rearranging gives

‖µδ‖C <
C

τ

Thus µδ is a Carleson measure on 4Q × (0, l(Q)] independent of δ. Also, 1(δ,δ−1)(t) is a
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pointwise increasing function, by the monotone convergence theorem we have

¨
(x,t)∈C(R)

γ̃Qt (x)∈Kν,σ

|γ̃Qt (x)|2 dx dt

t
=

¨
(x,t)∈C(R)

γ̃Qt (x)∈Kν,σ

lim
δ→0

1(δ,δ−1)(t)|γ̃Qt (x)|2 dx dt

t

= lim
δ→0

¨
(x,t)∈C(R)

γ̃Qt (x)∈Kν,σ

1(δ,δ−1)(t)|γ̃Qt (x)|2 dx dt

t

. |R|,

where the implicit constant does not depend on Q. Therefore, as Vσ is finite, we have

¨
(x,t)∈C(R)

|γ̃Qt (x)|2 dx dt

t
.
∑
ν∈Vσ

¨
(x,t)∈C(R)

γ̃Qt (x)∈Kν,σ

|γ̃Qt (x)|2 dx dt

t
. |R|,

where the implicit constant does not depend on Q. That is, |γ̃Qt (x)|2 dx dt
t

is Carleson on

4Q× (0, l(Q)]. Thus by Lemma 4.4.3 we have

∑
Q∈∆̃B

T

ˆ l(Q)

0

‖14Qγ̃
Q
t Atu‖2

2

dt

t
.
∑
Q∈∆̃B

T

‖ηQu‖2
2 . ‖u‖2

2,

for all u ∈ R(D). This proves Proposition 4.4.1. Thus combining this with Proposition

4.3.2 proves (4.2.4) and thus using Proposition 4.2.3 completes the proof.
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CHAPTER 5

APPLICATIONS OF QUADRATIC ESTIMATES

In this chapter we will discuss applications of an operator of the form DB, where D is

self-adjoint operator on a Hilbert space H and B is bound on H and elliptic on R(D) as

in Section 2.5, satisfying the quadratic estimate

ˆ ∞
0

‖tDB(I + (tDB)2)−1u‖2
2

dt

t
h ‖u‖2

2, (5.0.1)

for all u ∈ R(D). These will include the famed Kato square root type estimate, per-

turbation results, and applications to initial value problems for a Cauchy–Riemann type

equation. We first prove the operators of the form DB have a bounded holomorphic

functional calculus. We note that in order to invoke Theorem 2.1.4 we need to restrict to

an injective operator; however, by Proposition 2.5.1 the operators we will be considering

will be injective on R(D).

Theorem 5.0.1. Let µ ∈ (ω, π
2
), where ω ∈ [0, π

2
) is the angle of ellipticity of B. Let

DB satisfy the quadratic estimate (5.0.1). Then, there exists cµ > 0 which depends only

on n, κ, and ‖B‖∞, for all f ∈ H∞(Soµ)

‖f(T )u‖2 ≤ cµ‖f‖∞‖u‖2,

for all u ∈ R(D), where T is the restriction of DB to R(D). That is, T : R(D) → R(D)

defined by Tu := DBu.

Proof. By Proposition 2.5.1 we have that T is a densely defined, closed, and injective
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operator. Also, by the hypothesis, we have

ˆ ∞
0

‖tT (I + t2T 2)−1u‖2
2

dt

t
h ‖u‖2

2, for all u ∈ R(D).

Thus by Theorem 2.1.4 this is equivalent to T having bounded holomorphic functional

calculus, as required.

5.1 Kato Square Root Type Estimates

In this section we discuss the application of quadratic estimates to Kato square root type

estimates. In particular, we give as a corollary the Kato square root type estimate for

the Schrödiger operator and the purely magnetic Schrödinger operator. We note that the

Kato result was proven for V with small L
n
2 -norm in [29] and the results have recently

been expanded in [16] to include B2(Rn) and L
n
2 (Rn) for n ≥ 4. We reproduce these

results

In order to give the Kato square root estimate we need to define the square root of

an operator, to this we define the following sesquilinear form

JA,a,V (u, v) :=

ˆ
Rn
A∇u · ∇v +

ˆ
Rn
aV uv =

ˆ
Rn
AV∇µu · ∇µv,

for all u, v ∈ V̇1,2(Rn). If Re JA,a,V (u, u) & ‖u‖2
V̇1,2(Rn)

for all u ∈ V1,2
c (Rn), then JA,a,V is

an accretive sesquilinear form, and we define HA,V to be the associated maximal accretive

operator whereby JA,a,V (u, v) = 〈HA,V u, v〉 for all u in a dense domain D(HA,V ) in L2

(see, for instance, Chapter 6 in [37] for details on how this is done). We are now able

to define the square root operator,
√
HA,V , of HA,V as the unique maximal accretive

operator such that
√
HA,V

√
HA,V = HA,V , see [37, Theorem V.3.35] for more detail.

Now the form satisfies

|JA,a,V (u, v)| ≤ ‖AV‖∞
ˆ
Rn
|∇µu||∇µv| ≤ max{‖A‖∞, ‖a‖∞}‖∇µu‖2‖∇µv‖2.
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Also, by (2.6.2) we have

|JA,a,V (u, u)| ≥ Re〈A∇u,∇u〉+ 〈aV 1/2u, V 1/2u〉 ≥ κ‖∇µu‖2
2.

We now give a Kato square root type estimate for reverse Hölder potentials as a corollary

of Theorem 5.0.1.

Corollary 5.1.1. Let V ∈ B n
2 (Rn). Let A ∈ L∞(Rn;L(Cn)) and a ∈ L∞(Rn;L(C)) be

such that there exists κ > 0 satisfying

Re〈A∇u,∇u〉+ Re〈a|V |
1
2u, |V |

1
2u〉 ≥ κ(‖∇u‖2

2 + ‖|V |
1
2u‖2

2),

for all u ∈ V1,2(Rn). Then we have

‖
√
− divA∇+ aV u‖2 h ‖∇u‖2 + ‖|V |

1
2u‖2,

for all u ∈ V1,2(Rn).

Proof. Let µ ∈ (ω, π
2
), where ω is the angle of ellipticity of A Note that f : Sµ → C

defined by f(z) =
√
z2

z
is bounded and holomorphic. Then, define the operators

D :=


0 div −|V | 12

−∇ 0 0

−|V | 12 0 0

 , B =


I 0 0

0 A 0

0 0 a

 .

Now, let u ∈ R(D) and so using Lemma 2.3.6 we have

u =

 u⊥

∇µv

 ,
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for some v ∈ V̇1,2(Rn). Then by the ellipticity of A and a we have

Re〈Bu, u〉 = 〈u⊥, u⊥〉+ Re〈A∇v,∇v〉+ Re〈a|V |
1
2v, |V |

1
2v〉

≥ min{1, κ}(‖u⊥‖2
2 + ‖∇v‖2

2 + ‖|V |
1
2v‖2

2)

= min{1, κ}‖u‖2
2.

Therefore, by Theorem 3.0.1 we have that DB satisfies the quadratic estimate (5.0.1).

Thus, by Theorem 5.0.1 we have

‖f(DB)u‖2 . ‖f‖∞‖u‖2 = ‖u‖2.

We also have

(DB)2 =


− divA∇+ aV 0 0

0 −∇ divA ∇|V | 12a

0 −|V | 12 divA |V |a

 .
Therefore, square rooting the above and restricting u to the first component, that is

letting u = (u⊥, 0, 0)T , we have

‖
√
− divA∇+ aV u⊥‖ = ‖

√
(DB)2u‖2 . ‖DBu‖2 = ‖Du‖2 = ‖∇u⊥‖2 + ‖|V |

1
2u⊥‖2,

where in the penultimate equality we use B⊥⊥ = I. The reverse estimate comes from

considering g(z) = z√
z2

. This completes the proof.

We also get a Kato square root type estimate when V ∈ Ln
2 (Rn) without the restric-

tion of small norm. We remove this restriction by hiding the size of the norm in the

perturbation a and proceeding as if V has small norm.

Corollary 5.1.2. Let V ∈ Ln
2 (Rn). Let A ∈ L∞(Rn;L(Cn)) and a ∈ L∞(Rn;L(C)) be

such that there exists κ > 0 satisfying

Re〈A∇u,∇u〉+ Re〈a|V |
1
2u, |V |

1
2u〉 ≥ κ(‖∇u‖2

2 + ‖|V |
1
2u‖2

2),
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for all u ∈ W 1,2(Rn). Then,

‖
√
− divA∇+ aV u‖2 h ‖∇u‖2,

for all u ∈ W 1,2(Rn).

Proof. Define Ṽ (x) := ε|V (x)|
‖V ‖n

2

and ã := ei arg(V (x))
a(x)‖V ‖n

2

ε
where ε > 0 is such that ‖Ṽ ‖n

2
=

ε is sufficiently small. Therefore, ãṼ = aV . Then, define the operators

D =


0 div −Ṽ 1

2

−∇ 0 0

−Ṽ 1
2 0 0

 , B =


I 0 0

0 A 0

0 0 ã

 .

Now, let u ∈ R(D), then by the ellipticity of A and a we have that

Re〈Bu, u〉 = 〈u⊥, u⊥〉+ Re〈A∇v,∇v〉+ Re〈ãṼ
1
2v, Ṽ

1
2v〉

= 〈u⊥, u⊥〉+ Re〈A∇v,∇v〉+ Re〈a|V |
1
2v, |V |

1
2v〉

≥ min{1, κ}(‖u⊥‖2
2 + ‖∇v‖2

2 + ‖|V |
1
2v‖2

2)

= min{1, κ}‖u‖2
2.

Then the same argument as in Corollary 5.1.1 and then Hölder’s inequality, gives

‖
√
− divA∇+ aV u‖2 = ‖

√
− divA∇+ ãṼ u‖2 h ‖∇u‖2 + ‖Ṽ

1
2u‖2 h ‖∇u‖2.

for all u ∈ W 1,2(Rn). As required.

We also have a Kato square root type estimates associated with the purely magnetic

Schrödinger operator.

Corollary 5.1.3. Let b ∈ L2
loc(Rn;Rn) with curl b = B satisfying the conditions (2.4.3).

Let A ∈ L∞(Rn;L(Cn)) be such that there exists κ > 0 satisfying

Re〈A(∇+ ib)u, (∇+ ib)u〉+ ≥ κ‖(∇+ ib)u‖2
2,
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for all u ∈ W 1,2
b (Rn). Then we have that

‖
√

(∇+ ib)∗A(∇+ ib)u‖2 h ‖(∇+ ib)u‖2,

for all u ∈ W 1,2
b (Rn).

Proof. Again we apply Theorem 5.0.1 to the operators

D =

 0 (∇+ ib)∗

(∇+ ib) 0

 , B =

I 0

0 A

 .
Then the result follows in a similar fashion to Corollaries 5.1.1 and 5.1.2.

5.2 Analytic Dependence and Lipschitz Estimates

Here we show that the functional calculus depends analytically on the perturbation B

equipped with the L∞-norm. We follow the same method as in [13, Section 6] by first

showing that the resolvents depend analytically on B and then building up to functions

in the class Φ(Soµ), and finally to all functions in H∞(Soµ), where µ ∈ (ω, π
2
) and ω ∈ [0, π

2
)

is the angle of ellipticity of B. Let H := L2(Rn;CN) for some n,NN, for the rest of this

section.

Theorem 5.2.1. Let D : H → H, be a self-adjoint operator. Let U ⊆ C be open. Let

B : U → L∞(Rn;L(CN)) be holomorphic, such that B is uniformly bounded in U and

there exists κ > 0 such that

Re〈Bzu, u〉 ≥ κ‖u‖2
2, ∀u ∈ H, ∀z ∈ U.

Let µ ∈ (ω, π
2
) where ω ∈ [0, π

2
) is the angle of ellipticity of B. Then

1. z 7→ (I + tDBz)
−1 is holomorphic in U for all t ∈ C \ Soµ;

2. z 7→ PN(DBz) is holomorphic in U , where PN(DBz) is the projection onto the subspace

N(DBz);
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3. z 7→ ψ(DBz), for all ψ ∈ Ψ(Soµ) is holomorphic in U .

Moreover, if there exists Cµ > 0 such that ‖f(DBz)u‖2 ≤ Cµ‖f‖∞‖u‖2 for all f ∈

H∞(Soµ), uniformly in z ∈ U , then z 7→ f(DBz) is holomorphic in U for all f ∈ H∞(Soµ).

Proof. Let z ∈ U and t ∈ C \ Soµ. Then we have

d

dz
(I + tDBz)

−1u = −(I + tDBz)
−1tD

(
d

dz
Bz

)
(I + tDBz)

−1u.

Then, using the fact that Qt = PttDB is uniformly bounded and H = R(D)⊕N(D), we

have

‖ d

dz
(I + tDBz)

−1u‖2 = ‖(I + tDBz)
−1tD

(
d

dz
Bz

)
(I + tDBz)

−1u‖2,

= ‖(I + tDBz)
−1tD(PR(D) + PN(D))

(
d

dz
Bz

)
(I + tDBz)

−1u‖2,

= ‖
(
(I + tDBz)

−1tDBz

) (
B−1
z PR(D)

)( d

dz
Bz

)
(I + tDBz)

−1u‖2,

. ‖u‖2,

here the bound is independent of z ∈ U . Therefore, z 7→ (I + tDBz)
−1 is holomorphic on

U . In particular, we have that z 7→ (I + inDBz)
−1 is holomorphic for all n ∈ N.

We claim that PN(DBz)u = limn→∞(I+tDBz)
−1u in H for all u ∈ H. Let u ∈ N(DBz).

Then

(I + inDBz)
−1u = (I + inDBz)

−1(u+ inDBzu) = u,

for all n ∈ N. Now, let u ∈ R(DBz). Then, there exists v ∈ D(DBz) such that u = DBzv.

Therefore,

‖(I + inDBz)
−1u‖2 =

1

n
‖(I + inDBz)

−1inDBzv‖2

≤ 1

n

(
‖(I + inDBz)

−1(v + inDBzv)‖2 + ‖v‖2

)
.

1

n
‖v‖2,

where the implicit constant is independent of n and z. That is, limn→∞(I+inDBz)
−1u = 0
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for all u ∈ R(DBz). Now, let u ∈ R(DBz). Then, there exists {um}m∈N ⊆ R(DBz) such

that um → u as m→∞ in L2. Let ε > 0. Then

‖(I + inDBz)
−1u‖2 ≤ ‖(I + inDBz)

−1(u− um)‖2 + ‖(I + inDBz)
−1um‖2

. ‖u− um‖2 + ‖(I + inDBz)
−1um‖2,

where the implicit constant is independent of n, m, and z. Now choose m ∈ N be such

that ‖u − um‖2 ≤ ε
2
. Now, let N ∈ N be such that ‖(I + inDBz)

−1um‖2 ≤ ε
2

for all

n > N . Thus ‖(I + inDBz)
−1u‖2 . ε for all n > N . This proves the claim. As PN(DBz)u

is the limit of holomorphic operators and so is holomorphic itself (see for example [37]).

Let ψ ∈ Ψ(Soµ). Then

ψ(DBz) =

ˆ
γ

ψ(λ)(λ−DBz)
−1 dλ.

Using the approximation of the contour integral by Riemann sums and the fact that the

Riemann sums are holomorphic gives the desired result.

Now assume further that ‖f(DBz)u‖2 ≤ Cµ‖f‖∞‖u‖2 for all f ∈ H∞(Soµ). Let

f ∈ H∞(Soµ). Then, choose a uniformly bounded sequence {ψn} ⊆ Ψ(Soµ) which converges

uniformly on compact sets to f (to see that we may choose such a sequence, see [1, Lecture

3]). Then, by the convergence lemma we have that f(DBz)u = limn→∞ ψn(DBz)u in L2.

Thus, f(DBz) is holomorphic on U . This completes the proof

Theorem 5.2.2. Let D : H → H, be a self-adjoint operator and let B ∈ L∞(Rn;L(CN))

be elliptic as in (2.5.1). Suppose further that DB has a bounded holomorphic functional

calculus. Let µ ∈ (ω, π
2
) where ω ∈ [0, π

2
) is the angle of ellipticity of B. Let 0 < δ < κ,

and B̃ ∈ L∞(Rn;L(CN)) such that ‖B − B̃‖∞ < δ. Then

‖f(DB)u− f(DB̃)u‖2 . ‖B − B̃‖∞‖f‖∞‖u‖2, ∀f ∈ H∞(Soµ),

where the implicit constant depends only on n, κ, ‖B‖∞, and δ.
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Proof. Let f ∈ H∞(Soµ). Define B : {z ∈ C : |z| < δ} → L∞(Rn;L(Cn)), given by

B(z) := Bz := B +
z(B̃ −B)

‖B − B̃‖∞

Then Bz is holomorphic and we have that

Re〈Bzu, u〉 = Re〈Bu, u〉 − Re

〈
z

‖B − B̃‖∞
(B̃ −B)u, u

〉
≥ κ‖u‖2

2 − δRe〈u, u〉

≥ (κ− δ)‖u‖2
2.

We also have that

‖Bz‖ ≤ ‖B‖∞ + |z| < ‖B‖∞ + δ.

Thus, Bz is uniformly bounded and uniformly elliptic. Therefore, by Theorem 5.0.1

we have ‖f(DBz)u‖2 . ‖f‖∞‖u‖2 uniformly in z. Thus, by Theorem 5.2.1 we have

z 7→ f(DBz) is holomorphic. Now fix u ∈ R(D) and define Gu : {z ∈ C : |z| < δ} →

L(L2(Rn)), given by

Gu(z) :=
f(DB)u− f(DBz)u

2c‖f‖∞‖u‖2

,

where c is the uniform constant such that ‖f(DBz)u‖2 ≤ c‖f‖∞‖u‖2. By Theorem 5.2.1

and the bounded holomorphic functional calculus of DBz, we have Gu is is holomorphic

and

‖Gu(z)‖ ≤ 1

2c‖f‖∞‖u‖2

‖f(DB)u− f(DBz)u‖2 ≤ 1.

As Gu is holomorphic then the pairing (Gu(z), f) is holomorphic as a function, for all

f ∈ L2(Rn;Cn+2)′. In particular, we have for all f ∈ L2(Rn;Cn+2)′ with ‖f‖ ≤ 1 then

|(Gu(z), f)| ≤ ‖f‖‖Gu(z)‖2 ≤ 1
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Therefore, by Schwarz’s lemma we have that

‖Gu(z)‖2 = sup
‖f‖=1

|(Gu(z), f)| ≤ |z|.

Thus, choosing z = ‖B − B̃‖∞ < δ gives

‖f(DB)u− f(DB̃)u‖2 ≤ 2c‖f‖∞‖B − B̃‖∞‖u‖2.

Here we note that u ∈ R(D) was arbitrary and the constants are all independent of u.

This completes the proof.

5.3 The Global Well-Posedness for First-Order Ini-

tial Value Problems

In this section we discuss the applications quadratic estimates and bounded holomorphic

functional calculus to solving initial value problems to first-order Cauchy–Riemann type

equations of the following form


∂tF +DBF = 0, in R+,

F (t) ∈ R(D), ∀t > 0,

where D : D(D)→ H is a self-adjoint operator, B is a bounded operator onH and elliptic

on R(D) as in Section 2.5, we also make the additional assumption that H = L2(Rn;CN)

for some n,N ∈ N. To begin, we make precise the definition of a weak solution of

∂tF +DBF = 0 in Rn+1
+ . (5.3.1)

We will adopt the convention for functions φ : Rn+1
+ → CN and t ∈ R+, whereby

φ(t) : Rn → CN is defined by (φ(t))(x) := φ(t, x) for all x ∈ Rn.

Definition 5.3.1. We shall write that F is a weak solution of ∂tF + DBF = 0 in R+,
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or simply ∂tF +DBF = 0 in R+, if F ∈ L2
loc(R

n+1
+ ;CN) and

ˆ ∞
0

〈F (t), ∂tϕ(t)〉 dt =

ˆ ∞
0

〈BF (t), Dϕ(t)〉 dt,

for all ϕ ∈ C∞c (Rn+1
+ ;CN).

To solve these equations we will use the theory of analytic semigroups to generate

solutions. However, it is well known that analytic semigroups are generated by sectorial

operators (see [25] for details) but, the operator DB is ω-bisectorial for some ω ∈ [0, π
2
).

To resolve this we restrict to a subspaces on which DB is sectorial and then the theory of

analytic semigroups states that on this domain DB will generate an analytic semigroup.

This is where the bounded holomorphic functional calculus of DB is seen to be critical

as this provides a splitting of R(D). For µ ∈ (ω, π
2
) we start by defining the following

holomorphic functions on Soµ in a similar manner as in [4]:

χ±(z) :=


1 if ± Re(z) > 0

0 if ± Re(z) ≤ 0.

, sgn(z) := χ+(z)− χ−(z), and [z] := z sgn(z),

for all z ∈ Soµ. Then let E±DB := χ±(DB) be the generalised Hardy-type projections

of DB. Let EDB := sgn(DB) = E+
DB − E−DB. Let H0

DB := R(D), and define H0,±
DB :=

E±DBR(D) = {E±DBf : f ∈ R(D)}. Note χ+(z) + χ−(z) = 1 for all z ∈ Soµ. Then for

f ∈ H0
DB we have f = E+

DBf + E−DBf so

‖f‖2 ≤ ‖E+
DBf‖2 + ‖E−DBf‖2.

Now as DB has bounded H∞ functional calculus, then

‖E+
DBf‖2 + ‖E−DBf‖2 . (‖χ+‖∞ + ‖χ−‖∞)‖f‖2 = 2‖f‖2.

Therefore we have the topological splitting H0
DB = H0,+

DB⊕H
0,−
DB. We use the F -functional

calculus (as defined in (2.1.1)) to define the operator [DB] = DB sgn(DB). We see that

138



for f ∈ H0,±
DB

[DB]f = DB(χ+(DB)− χ−(DB))χ±(DB)f = ±DBχ±(DB)f = ±DBf.

We give a notion of the Cauchy problem for the first-order equation so that we can

solve the first-order initial value problems on H0,±
DB.

Definition 5.3.2. We shall write that (5.3.2) is globally well-posed in H0,+
DB if for each

f ∈ H0,+
DB, there exists a unique F ∈ C1(R+;H0,+

DB) such that



∂tF +DBF = 0 in R+

sup
t>0
−
ˆ 2t

t

‖F (s)‖2
L2(Rn,CN ) ds <∞,

limt→0 F (t) = f,

(5.3.2)

where the limit converges pointwise on Whitney averages as in (2.6.3) (and in L2).

We will do this by constructing an analytic semigroup which solves (5.3.2). First note

that as ft(z) := e−t[z] is a bounded holomorphic function for all t ∈ Rn. Therefore, we can

define the family of bounded operators
(
e−t[DB]

)
t>0

by using the bounded holomorphic

functional calculus of DB.

Lemma 5.3.3. Let µ ∈ (0, ω). Then the family of operators
(
e−z[DB]

)
, where z ∈ So(π

2
−µ)+

forms an analytic semigroup on L2(Rn;CN) with generator [DB]. Moreover, [DB] is a

sectorial operator on L2(Rn;CN) of type Sµ+.

Proof. First notice that z sgn(z) = (z2)
1
2 . Then by [8, Proposition 8.2] we have [DB] =

DB sgn(DB)((DB)2)
1
2 is sectorial of type Sµ+. Then as [DB] is sectorial we have(

e−z[DB]
)
, where z ∈ So(π

2
−µ)+ is an analytic semigroup from classical semigroup theory

(see [25, Theorem 4.6] for details).

We now give a proposition which shows that the semigroup is a solution of (5.3.1)

and satisfies some important estimates.
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Proposition 5.3.4. Let f ∈ H0,+
DB and define F (t, x) := e−t[DB]f(x). Then we have

F ∈ C∞(R+;H0,+
DB) and ∂tF +DBF = 0 on Rn+1

+ in the strong sense with bounds

sup
t>0
‖F (t)‖2

2 h ‖f‖2
2 h sup

t>0
−
ˆ 2t

t

‖F (s)‖2
2 ds,

and limits, where the convergence is in the L2 sense,

lim
t→0

F (t) = f, lim
t→∞

F (t) = 0.

Proof. That fact that ∂tF + DBF = 0 on Rn+1
+ in the strong sense and the limits at

0 and infinity come from the theory of analytic semigroups. Now using the bounded

holomorphic functional calculus we have

sup
t>0
‖F (t)‖2 . sup

t>0
‖e−tz‖∞‖f‖2 ≤ ‖f‖∞.

Similarly, we have

sup
t>0
−
ˆ 2t

t

‖F (s)‖2
2 ds . ‖f‖2

2.

Let ε > 0, and T > 0 be such that ‖f − F (s)‖2 < ε for all s < 2T . Then

‖f‖2
2 = −
ˆ 2T

T

‖f‖2
2 ds ≤ −

ˆ 2T

T

‖f − F (s)‖2
2 ds+−

ˆ 2T

T

‖F (s)‖2
2 ds < ε+ sup

t>0
−
ˆ 2t

t

‖F (s)‖2
2 ds.

Then as ε > 0 was arbitrary we have

‖f‖2
2 ≤ sup

t>0
−
ˆ 2t

t

‖F (s)‖2
2 ds.

A similar argument gives

‖f‖2 ≤ sup
t>0
‖F (t)‖2.

This completes the proof.

From this point on we will specialise to the case in Chapter 3 and Section 2.3. That
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is

D =

 0 −(∇µ)∗

−∇µ 0

 and B =


B⊥⊥ B⊥‖ 0

B‖⊥ B‖‖ 0

0 0 b


as defined in Section 2.3. We will work to prove the converse of Proposition 5.3.4 following

the methods in [2]. We require a lemma that is analogous to [2, Proposition 4.4]. But,

first we have the following lemma about the test functions we will use in Lemma 5.3.7.

Lemma 5.3.5. Let ψ ∈ R(D). Let t > 0 and η+ ∈ C∞c (0, t). For s ∈ (0, t), define ϕ(s) :=

η+(s)
(
e−(t−s)[DB]E+

DB

)∗
ψ. If F ∈ L2

loc(R+;R(D)) is a weak solution to ∂tF + DBF = 0

in R+, then we have the following

ˆ t

0

〈F (s), ∂sϕ(s)〉 ds =

ˆ t

0

〈BF (s), Dϕ(s)〉 ds.

Proof. Let ψ ∈ R(D). Let t > 0 and consider a test function η+ ∈ C∞c (0, t). For s ∈ (0, t),

define ϕ(s) := η+(s)
(
e−(t−s)[DB]E+

DB

)∗
ψ. Then by the properties of semigroups we have

ϕ ∈ C1
c (R+; D(D)). We aim to use Definition 5.3.2, and so we construct smooth functions

ϕk,r,δ ∈ C∞c (Rn+1
+ ) for which ∂sϕ

k,r,δ → ∂sϕ and Dϕk,r,δ → Dϕ in L2((0, t) × Rn;Cn+2))

as k → ∞, r → ∞, and δ → 0. To this end, let η ∈ C∞c (Rn) with η(x) = 1 on a

neighbourhood of 0 and
´
Rn η = 1, then define

ϕk,r,δ(s) :=
[
ηδ ∗

(
η
( ·
r

)
gk(η+(s)(e−(t−s)[DB]E+

DB)∗ψ)
)]

(x),

where ηδ(x) := δ−nη(x
δ
) and

gk(x) := k tanh
(x
k

)
,

where tanh is the hyperbolic tangent. We note that the convolution and gk are applied

componentwise. Note that, tanh: R→ (−1, 1) is smooth and tanh′(x) = 1− tanh2(x) ∈

(0, 1]. Therefore by the mean value theorem, for all x, y ∈ R, we have

| tanh(x)− tanh(y)| ≤ |x− y|.
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In particular, as tanh(0) = 0, for all x ∈ |R, we have

| tanh(x)| ≤ |x|.

Thus we have the following two bounds for all x ∈ R

|gk(x)| ≤ k| tanh
(x
k

)
| ≤ k and |gk(x)| ≤ k

∣∣∣x
k

∣∣∣ ≤ |x|.
We aim to prove that limk→∞ gk(x) = x for all x ∈ R. Therefore, fix x ∈ R. Recall the

definition for the hyperbolic tangent as

tanh(x) =
ex − e−x

ex + e−x
.

Then, we have the following

|gk(x)− x| =
∣∣∣∣k(e

x
k − e−xk )

e
x
k + e−

x
k

− x
∣∣∣∣ =

1

e
x
k + e−

x
k

|k(e
x
k − e−

x
k )− x(e

x
k + e−

x
k )|

Now using the Taylor expansion we have

k(e
x
k − e−

x
k ) =

∞∑
l=0

2x2l+1

k2l(2l + 1)!
and x(e

x
k + e−

x
k ) =

∞∑
l=0

2x2l+1

k2l(2l)!
.

Now, as e
x
k + e−

x
k ≥ 1 for all x ∈ Rn and k ∈ N, and note that the zeroth order terms in

the Taylor series cancel. Thus, we have

|gk(x)− x| ≤

∣∣∣∣∣
∞∑
l=1

2x2l+1

k2l

(
1

(2l + 1)!
− 1

(2l)!

)∣∣∣∣∣→ 0, as k →∞.

We now begin to prove that Dϕk,r,δ → Dϕ in L2((0, t)×Rn;Cn+2)) as k →∞, r →∞,

and δ → 0. Let f := ϕ⊥ ∈ C∞c (R+; V̇1,2(Rn)) and h := ϕr ∈ C∞c (R+; D((∇‖µ)∗)). We will
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use a triangularisation argument. First consider

∥∥∥∇‖µ (f − [ηδ ∗ (η ( ·r) gk(f)
)])∥∥∥

L2((0,t)×Rn)

≤ ‖∇‖µ (f − gk(f)) ‖L2((0,t)×Rn) + ‖∇‖µ
(
gk(f)− η

( ·
r

)
gk(f)

)
‖L2((0,t)×Rn)

+
∥∥∥∇‖µ (η ( ·r) gk(f)−

[
ηδ ∗

(
η
( ·
r

)
gk(f)

)])∥∥∥
L2((0,t)×Rn)

,

Note, using Theorem 7.8 in [30] and the bounds on g′k, we have

|∇‖gk(f)| = |g′k(f) · ∇‖f | ≤ |∇‖f |,

again, where g′k is applied componentwise. Thus, we get

|∇‖(f − gk(f))|2 ≤ 22(|∇‖f |2 + |∇‖gk(f)|2) ≤ 23|∇‖f |2 ∈ L1((0, t)× Rn),

for all k ∈ N, and, similarly

||V |
1
2 (f − gk(f))|2 ≤ 23|V ||f |2 ∈ L1((0, t)× Rn),

for all k ∈ N. Here the integrability is because f ∈ C∞c (R+; V̇1,2(Rn)). Hence, by the

dominated convergence theorem we have

‖∇‖µ(f − gk(f))‖L2((0,t)×Rn) → 0,

as k → ∞. The second term follows similarly using Theorem 6.13 [39], η ∈ L∞(Rn),

and then the dominated convergence theorem. To prove the last term converges to 0 we

will use a standard mollifying argument. To this end let f̃ := η
( ·
r

)
gk(f). Notice that

from the definition of η we have supp(f̃(s)) ⊆ Br(0) and the definition of gk and η gives

‖f̃‖∞ ≤ ‖η‖∞k. Then

|(ηδ ∗ f̃(s))(x)| =
∣∣∣∣ˆ δ−nη

(
x− y
δ

)
f̃(s, y) dy

∣∣∣∣ ≤ ˆ
Br(0)∩Bδ(x)

∣∣∣∣η(x− yδ
)
f̃(s, y)

∣∣∣∣ dy.
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Now making the additional restriction δ ∈ (0, 1) we see

|(ηδ ∗ f̃(s))(x)| ≤


0, if x ∈ Rn \Br+1(0)

−́
Bδ(x)

‖η‖∞‖f̃‖∞, if x ∈ Br+1(0)

≤ ‖η‖2
∞k1Br+1(0)(x).

Therefore,

|V ||(ηδ ∗ f̃)|2 ≤ |V |‖η‖4
∞k

21B1+1(0)(x)1(0,t)(s) ∈ L1((0, t)× Rn),

Thus, by the dominated convergence theorem and Theorem 7.6 in [39], we have

∥∥∥∇µ

(
η
( ·
r

)
gk(f)−

[
ηδ ∗

(
η
( ·
r

)
gk(f)

)])∥∥∥
L2((0,t)×Rn)

→ 0

as δ → 0.

Next we will consider

∥∥∥(∇‖µ)∗
(
h−

[
ηδ ∗

(
η
( ·
r

)
gk(h)

)])∥∥∥
L2((0,t)×Rn)

≤ ‖(∇‖µ)∗ (h− gk(h)) ‖L2((0,t)×Rn) + ‖(∇‖µ)∗
(
gk(h)− η

( ·
r

)
gk(h)

)
‖L2((0,t)×Rn)

+
∥∥∥(∇‖µ)∗

(
η
( ·
r

)
gk(h)−

[
ηδ ∗

(
η
( ·
r

)
gk(h)

)])∥∥∥
L2((0,t)×Rn)

,

Now

|(∇‖µ)∗ (h− gk(h)) |2 ≤ 22|(∇‖µ)∗h|2 + |(∇‖µ)∗gk(h)|2 ≤ 2|(∇‖µ)∗h|2 ∈ L1((0, t)× Rn),

as h ∈ C∞c (R+; D((∇‖µ)∗)). Then the dominated convergence theorem gives

‖(∇‖µ)∗ (h− gk(h)) ‖L2((0,t)×Rn) → 0
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as k →∞. Next, using the product rule for the divergence and the chain rule gives

‖(∇‖µ)∗
[
η
( ·
r

)
gk(h)

]
− (∇‖µ)∗gk(h)‖L2((0,t)×Rn)

≤ ‖ div‖

[
η
( ·
r

)
gk(h)

]
+ |V |

1
2

[
η
( ·
r

)
gk(h)

]
− (∇‖µ)∗gk(h)‖L2((0,t)×Rn)

= ‖∇
[
η
( ·
r

)]
+ η

( ·
r

)
(∇‖µ)∗gk(h)− (∇‖µ)∗gk(h)‖L2((0,t)×Rn)

≤ ‖1

r
(∇η)

( ·
r

)
· gk(h‖)‖L2((0,t)×Rn) + ‖η

( ·
r

)
(∇‖µ)∗gk(h)− (∇‖µ)∗gk(h)‖L2((0,t)×Rn).

Since η = 1 on a neighbourhood of 0 then ∇η = 0 on a neighbourhood of 0. Thus

1
r
(∇η)

(
x
r

)
→ 0 as r →∞ for all x ∈ Rn. Also, for all r ∈ N

∣∣∣∣1r (∇η)
(x
r

)
· gk(h‖)(x)

∣∣∣∣ ≤ ‖∇η‖∞|h‖| ∈ L2((0, t)× Rn).

Moreover,

∣∣∣η (x
r

)
(∇‖µ)∗gk(h)(x)− (∇‖µ)∗gk(h)(x)

∣∣∣ ≤ ‖η‖∞|(∇‖µ)∗gk(h)(x)|

≤ ‖η‖∞|(∇‖µ)∗h(x)| ∈ L2((0, t)× Rn).

Then, the dominated convergence theorem gives

‖(∇‖µ)∗
[
η
( ·
R

)
gk(h)

]
− (∇‖µ)∗gk(h)‖L2((0,t)×Rn) → 0,

as r → ∞. Now for the final term we let h̃ := η
( ·
r

)
gk(h). Now we differentiate under

the integral sign and then use the chain rule to get

(∇‖µ)∗(h̃(s) ∗ ηδ)(x) =
n∑
j=1

∂xj

ˆ
Rn
h̃j(s, y)ηδ(x− y) dy + |V |

1
2 (x)(h̃n+1(s) ∗ ηδ)(x)

=

ˆ
Rn
h̃j(s, y)

n∑
j=1

∂xjηδ(x− y) dy + |V |
1
2 (x)(h̃n+1(s) ∗ ηδ)(x)

= −
n∑
j=1

ˆ
Rn
h̃j(s, y)∂yjηδ(x− y) dy + |V |

1
2 (x)(h̃n+1(s) ∗ ηδ)(x)
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Then as h̃(s) ∈ D((∇‖µ)∗), we use the definition of weak derivative to get

−
n∑
j=1

ˆ
Rn
h̃j(s, y)∂yjηδ(x− y) dy

=

ˆ
Rn

n∑
j=1

∂yj h̃j(s, y)ηδ(x− y) dy + (|V |
1
2 h̃n+1(s) ∗ ηδ)(x)

− (|V |
1
2 h̃n+1(s) ∗ ηδm)(x)

=

ˆ
Rn

(∇‖µ)∗h̃(s, y)ηδ(x− y) dy − (|V |
1
2 h̃n+1(s) ∗ ηδ)(x)

= ((∇‖µ)∗h̃(s) ∗ ηδ)(x)− (|V |
1
2 h̃n+1(s) ∗ ηδ)(x).

Therefore,

‖(∇‖µ)∗(h̃ ∗ ηδ)− (∇‖µ)∗h̃‖L2((0,t)×Rn)

≤ ‖((∇‖µ)∗h̃ ∗ ηδ)− (∇‖µ)∗h̃‖L2((0,t)×Rn)

+ ‖|V |
1
2 (h̃n+1 ∗ ηδ)− (|V |

1
2 h̃n+1 ∗ ηδ)‖L2((0,t)×Rn).

As h̃(s) ∈ L∞c (Rn) then |V | 12 h̃n+1 ∈ L2(Rn). Therefore, by [30, Lemma 7.2], we have

‖|V |
1
2 h̃n+1 − (|V |

1
2 h̃n+1 ∗ ηδ)‖L2((0,t)×Rn) → 0,

as δ → 0. As before we have |h̃n+1(s) ∗ ηδ| ≤ ‖η‖2
∞k1r+1(0) and

|V ||h̃n+1 ∗ ηδ|2 ≤ |V |‖η‖4
∞k

21r+1(0) ∈ L1((0, t)× Rn).

Thus, by the dominated convergence theorem we have

‖|V |
1
2 (h̃n+1 ∗ ηδ)− |V |

1
2 h̃n+1‖L2((0,t)×Rn) → 0,

as δ → 0. Hence

‖(∇‖µ)∗(h̃ ∗ ηδ)− (∇‖µ)∗h̃‖L2((0,t)×Rn) → 0,

as δ → 0.
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Now fix m ∈ N. Then, there exists km ∈ N such that

‖∇µ(f − gkm(f))‖L2((0,t)×Rn) <
1

6m
, and ‖(∇‖µ)∗ (h− gkm(h)) ‖L2((0,t)×Rn) <

1

6m
.

Then, there exists rm ∈ N (depending on km) such that

‖∇µ(gkm(f)− η
(
·
rm

)
gkm(f))‖L2((0,t)×Rn) <

1

6m
, and

‖(∇‖µ)∗
[
η

(
·
rm

)
gkm(h)

]
− (∇‖µ)∗gkm(h)‖L2((0,t)×Rn) <

1

6m
.

Finally, there exists δm ∈ (0, 1) (depending on Km and Rm) such that

∥∥∥∥∇µ

(
η

(
·
rm

)
gkm(f)−

[
ηδm ∗

(
η

(
·
rm

)
gkm(f)

)])∥∥∥∥
L2((0,t)×Rn)

<
1

6m
,

and

∥∥∥∥(∇‖µ)∗
(
η

(
·
rm

)
gkm(h)−

[
ηδm ∗

(
η

(
·
rm

)
gkm(h)

)])∥∥∥∥
L2((0,t)×Rn)

<
1

6m
.

Now, define ϕm := ηδm ∗
(
η
(
·
rm

)
gkm(f)

)
. Now define fm := (ϕm)⊥ and hm := (ϕm)r.

Therefore ϕm ∈ C∞c ((0, t)× Rn;Cn+2) for all m ∈ N. Thus, for all ε > 0, choose M ∈ N

to be M > 1
ε
. Therefore,

‖D(ϕm − ϕ)‖L2((0,t)×Rn) ≤ ‖∇‖µ(fm − f)‖2 + ‖(∇‖µ)∗(hm − h)‖L2((0,t)×Rn) <
1

m
< ε

for all m > M . That is {ϕm}m∈N ⊂ C∞c ((0, t) × Rn;Cn+2) such that Dϕm converges to

Dϕ as m→∞. A similar mollifier argument yields ∂sϕm converges to ∂sϕ as m→∞.

Now we have a sequence of smooth functions which converges to ϕ we proceed to

prove the identity. Fix ε > 0 and choose M ∈ N such that

‖∂s(ϕm − ϕ)‖L2((0,t)×Rn) <
ε2

2‖F (s)‖L2((0,t)×Rn)
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and

‖D(ϕm − ϕ)‖L2((0,t)×Rn) <
ε2

‖BF (s)‖L2((0,t)×Rn)

,

for all m > M . Since ϕm ∈ C∞c (Rn+1
+ ;Cn+2) and F is a weak solution to − divA∇F +

DBF = 0 in R+ we use Definition 5.3.2 and the Cauchy–Schwarz inequality, to get

∣∣∣∣ˆ t

0

〈F (s), ∂sϕ(s)〉 − 〈BF (s), Dϕ(s)〉 ds
∣∣∣∣

=

∣∣∣∣ˆ t

0

〈F (s), ∂s(ϕ(s)− ϕm)〉+ 〈F (s), ∂sϕm)〉 − 〈BF (s), Dϕ(s)〉 ds
∣∣∣∣

=

∣∣∣∣ˆ t

0

〈F (s), ∂s(ϕ(s)− ϕm)〉+ 〈BF (s), Dϕm)〉 − 〈BF (s), Dϕ(s)〉 ds
∣∣∣∣

=

∣∣∣∣ˆ t

0

〈F (s), ∂s(ϕ(s)− ϕm)〉+ 〈BF (s), D(ϕm(s)− ϕ(s))〉 ds
∣∣∣∣

=

ˆ t

0

‖F (s)‖2‖∂s(ϕ(s)− ϕm)‖2 + ‖BF (s)‖2‖D(ϕm(s)− ϕ(s))‖2 ds

< ε.

As ε > 0 was arbitrary then we must have

ˆ t

0

〈F (s), ∂sϕ(s)〉 − 〈BF (s), Dϕ(s)〉 ds = 0.

This completes the proof.

The following result is similar to above.

Lemma 5.3.6. Let ψ ∈ R(D). Let t > 0 and η− ∈ C∞c (t,∞). For s ∈ (t,∞), define

ϕ(s) := η−(s)
(
e−(s−t)[DB]E+

DB

)∗
ψ. If F ∈ L2

loc(R+;R(D)) is a weak solution to ∂tF +

DBF = 0 in R+, then we have the following

ˆ ∞
t

〈F (s), ∂sϕ(s)〉 ds =

ˆ ∞
t

〈BF (s), Dϕ(s)〉 ds.

Proof. The proof is similar to Lemma 5.3.5.

Lemma 5.3.7. Let t > 0 and consider non-negative functions η+ ∈ C∞c ((0, t);R) and

η− ∈ C∞c ((t,∞);R). If F ∈ L2
loc(R+;R(D)) is a weak solution of ∂tF +DBF = 0 in R+,
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then

ˆ t

0

η′+(s)e−(t−s)[DB]E+
DBF (s) ds =

ˆ ∞
t

η′−(s)e−(s−t)[DB]E−DBF (s) ds = 0.

Proof. Let ψ ∈ R(D) and define ϕ(s) := η+(s)
(
e−(t−s)[DB]E+

DB

)∗
ψ. Now, as F is a

solution of the first-order equation (5.3.1) we have from Lemma 5.3.5 that

ˆ t

0

〈∂sϕ(s), F (s)〉 ds =

ˆ t

0

〈Dϕ(s), BF (s)〉 ds (5.3.3)

Now, by the definition of ϕ, the self-adjointness of D, and the algebra homomorphism

property of the functional calculus, we have

ˆ t

0

〈Dϕ(s), BF (s)〉 ds =

ˆ t

0

η+(s)〈ψ, e−(t−s)DBE+
DBDBF (s)〉 ds

=

ˆ t

0

η+(s)〈ψ,DBe−(t−s)DBE+
DBF (s)〉 ds.

As DB has bounded holomorphic functional calculus, then e−tDB ∈ L(H) and therefore

(e−tDB)∗ = e−tB
∗D (see [25, Section I.3.15]). Therefore,

ˆ t

0

〈∂sϕ(s), F (s)〉 ds

=

ˆ t

0

η′+(s)
〈(
e−(t−s)DBE+

DB

)∗
ψ, F (s)

〉
ds+

ˆ t

0

η+(s)
〈
∂s
(
e−(t−s)DBE+

DB

)∗
ψ, F (s)

〉
ds

=

ˆ t

0

η′+(s)
〈(
e−(t−s)DBE+

DB

)∗
ψ, F (s)

〉
ds+

ˆ t

0

η+(s)
〈
∂se
−(t−s)B∗Dψ,E+

DBF (s)
〉

ds

=

ˆ t

0

η′+(s)
〈
ψ, e−(t−s)DBE+

DBF (s)
〉

ds+

ˆ t

0

η+(s)〈ψ,DBe−(t−s)DBE+
DBF (s)〉 ds.
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Using (5.3.3) and the above two calculations, we have

0 =

ˆ t

0

〈∂sϕ(s), F (s)〉 ds−
ˆ t

0

〈Dϕ(s), BF (s)〉 ds

=

ˆ t

0

η′+(s)
〈
ψ, e−(t−s)DBE+

DBF (s)
〉

ds+

ˆ t

0

η+(s)〈ψ,DBe−(t−s)DBE+
DBF (s)〉 ds

−
ˆ t

0

η+(s)〈ψ,DBe−(t−s)DBE+
DBF (s)〉 ds

=

ˆ t

0

η′+(s)
〈
ψ, e−(t−s)DBE+

DBF (s)
〉

ds

Therefore, using Fubini’s Theorem, we have that

0 =

ˆ t

0

η′+(s)
〈
ψ, e−(t−s)DBE+

DBF (s)
〉

ds =

ˆ
Rn
ψ(x)

(ˆ t

0

η′+(s)e−(t−s)[DB]E+
DBF (s) ds

)
dx.

Then as ψ was arbitrary, we have

ˆ t

0

η′+(s)e−(t−s)[DB]E+
DBF (s) ds = 0.

A similar argument using ϕ(s) := η−(s)
(
e−(s−t)DBE−DB

)∗
ψ as the test function, gives

that ˆ ∞
t

η′−(s)e−(s−t)[DB]E−DBF (s) ds = 0.

This completes the proof.

Now let ε > 0 and construct the functions η±ε , in the same way as in [2], as follows:

First define η0 : [0,∞) → [0, 1] to be a smooth function supported in [1,∞), where

η0(t) = 1 for all t ∈ (2,∞); then define ηε(t) := η0( t
ε
)(1− η0(2εt)); finally we define

η±ε (t, s) := η0

(
±(t− s)

ε

)
ηε(t)ηε(s).

Then η+
ε is uniformly bounded and compactly supported in the set {(s, t) ∈ R2 : 0 < s <

t} and approximates the characteristic function of this set. Similarly η−ε approximates

the characteristic function of the set {(s, t) ∈ R2 : 0 < t < s}.
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Theorem 5.3.8. If F ∈ L2
loc(R+;R(D)) is a weak solution of ∂tF +DBF = 0 in R+ such

that

sup
t>0
−
ˆ 2t

t

‖F (s)‖2
2 ds <∞,

then there exists f ∈ H0,+
DB such that limt→0 F (t) = f in L2 and F (t, x) = e−tDBf(x).

Proof. As F ∈ L2
loc(R+;R(D)) is a weak solution of ∂tF + DBF = 0 in Rn+1

+ , using

Lemma 5.3.7 with η±ε used instead of η±, we obtain

ˆ t

0

(∂sη
+
ε )(t, s)e−(t−s)[DB]E+

DBF (s) ds+

ˆ ∞
t

(∂sη
−
ε )(t, s)e−(s−t)[DB]E−DBF (s) ds = 0.

We can then follow the abstract approach in [2, Theorem 8.2 (i)], to complete the proof

verbatim.

We are now ready to return to discuss the global well-posedness of (5.3.2). The

following corollary is a consequence of Theorem 5.3.8 and Proposition 5.3.4.

Corollary 5.3.9. We have (5.3.2) is globally well-posed in H0,+
DB with convergence in L2.

Moreover, solutions to (5.3.2) are of the form e−tDBf for t > 0 for initial data f ∈ H0,+
DB.

Proof. We have existence of solutions from Proposition 5.3.4. We also have a clasification

of all solutions from Theorem 5.3.8.

We remark that Theorem 5.3.8 and Proposition 5.3.4 give a classification of the solu-

tions for (5.3.2) as those that arise from the semigroup applied to the initial data. We

now give a Fatou type result for the first-order equation.

Proposition 5.3.10. If F is a solution of the first-order equation (5.3.1) such that

sup
t>0
−
ˆ 2t

t

‖F (s)‖2
2 ds <∞,

then there exists f ∈ H0,+
DB such that

lim
t→0
−
ˆ 2t

t

‖F (s)− f‖2
2 ds = 0 = lim

t→∞
−
ˆ 2t

t

‖F (s)‖ ds.
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Proof. Fix ε > 0. Then by Theorem 5.3.8, there exists f ∈ H0,+
DB such that limt→0 F (t) =

f in L2, in particular, we have F (t) = e−tDBf . Now let δ > 0 be such that ‖F (s)−f‖2 < ε

whenever 0 ≤ s < δ. If t < δ
2
, then

−
ˆ 2t

t

‖F (s)− f‖2
2 ds < −

ˆ 2t

t

ε ds = ε.

Thus

lim
t→0
−
ˆ 2t

t

‖F (s)− f‖2
2 ds = 0.

The other limit is proved similarly.
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CHAPTER 6

BOUNDARY VALUE PROBLEMS FOR THE
ELECTRIC SCHÖDINGER EQUATION

From this Chapter onward we will focus on solving boundary value problems for the

Schrödinger equation (2.6.1) where the potential is in the reverse Hölder class i.e. V ∈

B
n
2 (Rn). This Chapter is dedicated to discovering the connection between second-order

equation HA,a,V u = 0, and the first-order equation

∂tF +DBF = 0,

as discussed in Section 5.3. Once this connection has been established we will introduce

boundary mappings which will map the initial data for the first-order system of equations

to boundary data for the second order equation. Thus, solvabilty will be be reduced to

inverting these mappings. The majority of the rest of this thesis will focused on proving

the following two theorems. The first theorem is about the well-posedness of the the

second-order equation, see (2.6.4) and (2.6.5) for the definitions of well-posedness of the

Neumann and Dirichlet regularity problems respectively, when the matrixA is self-adjoint

or block-type, where A is considered block-type if it is of the form

AV =


A⊥⊥ 0 0

0 A‖‖ 0

0 0 aei arg V (x)

 .
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Theorem 6.0.1. Let V ∈ B n
2 (Rn) and let A ∈ L∞(Rn+1

+ ;L(Cn+2)) be elliptic s in (2.5.1).

Then the following are true:

1. The boundary value problems (R)AL2 and (N )AL2 are well-posed if A is self-adjoint

or block-type;

2. The sets WP (R) and WP (N ) are open;

3. If A ∈ WP (R), then for each ϕ ∈ V̇1,2(Rn) we have the estimates

ˆ ∞
0

‖t∂t(∇µu)‖2
2

dt

t
h ‖Ñ∗(∇µu)‖2

2 h ‖∇µϕ‖2
2

where u is the solution for the initial data ϕ ∈ V̇1,2(Rn);

4. If A ∈ WP (N ), then for each ϕ ∈ L2(Rn) we have the estimates

ˆ ∞
0

‖t∂t(∇µut)‖2
2

dt

t
h ‖Ñ∗(∇µu)‖2

2 h ‖ϕ‖2
2,

where u is the solution for the initial data ϕ ∈ L2(Rn).

The following theorem is a Fatou-type theorem. That is, if a solution to the second-

order equation has non-tangential control of its gradient then there exists some boundary

data which solves the Neumann or Dirichlet boundary problem.

Theorem 6.0.2. Let V ∈ B
n
2 (Rn) and let A ∈ L∞(Rn+1

+ ;L(Cn+2)) be elliptic. Let

u ∈ V1,2
loc (Rn+1

+ ) be such that HA,a,V u = 0 with Ñ∗(∇µu) ∈ L2(Rn). Then we have:

1. There exists ϕ ∈ L2(Rn) such that limt→0 ∂νAu(·, t) = ϕ in L2 and pointwise on

Whitney averages;

2. There exists ϕ ∈ V̇1,2(Rn) such that limt→0∇‖µu(t, ·) = ∇µϕ in L2 and pointwise on

Whitney averages.
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6.1 Reduction to a First-Order System

We now work towards showing that there is some equivalence between the first-order

system and second-order equation. The fist step is to choose the correct perturbation

matrix B depending on AV . We do this in a similar way as in [4] where it was shown

that if A is bounded and elliptic then a transformed matrix, Â, is also bounded and

elliptic. We replicate these results using the bounded operators AV , A and AV defined

on L2(Rn,Cn+2) by

AV :=


A⊥⊥ A⊥‖ 0

A‖⊥ A‖‖ 0

0 0 aei arg V (x)

 , A :=


A⊥⊥ A⊥‖ 0

0 I 0

0 0 I

 ,

and

AV :=


I 0 0

A‖⊥ A‖‖ 0

0 0 aei arg V (x)

 .
Note that since A and a are bounded then so are AV , A and AV . Also, as A⊥⊥ is pointwise

strictly elliptic then A⊥⊥ is invertible, and so A is invertible with inverse,

A−1
=


A−1
⊥⊥ −A

−1
⊥⊥A⊥‖ 0

0 I 0

0 0 I

 .

Now define

ÂV = AVA−1
=


A−1
⊥⊥ −A−1

⊥⊥A⊥‖ 0

A‖⊥A
−1
⊥⊥ A‖‖ − A‖⊥A−1

⊥⊥A⊥‖ 0

0 0 aei arg V (x)

 .
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Let u ∈ R(D). Then, as A−1
⊥⊥(u⊥ − A⊥‖u‖) ∈ L2(Rn), we have

v =


A−1
⊥⊥(u⊥ − A⊥‖u‖)

u‖

uµ

 ∈ R(D).

Then Av = u. That is A : R(D)→ R(D) is surjective. Also, A is invertible and therefore

is injective. Thus A : R(D)→ R(D) is an isomorphism. We now prove the result that Â

preserves the important properties of boundedness and ellipticity from AV .

Proposition 6.1.1. We have that AV is bounded and elliptic on R(D) if and only if the

matrix ÂV is bounded and elliptic on R(D).

Proof. We first prove that if AV is bounded and elliptic on R(D) then so is ÂV . Now for

any f ∈ R(D), let g ∈ R(D) such that Ag = f recalling that A : R(D) → R(D) is an

isomorphism. Then

Re〈ÂVf, f〉 = Re〈ÂVAg,Ag〉

= Re〈AVg,Ag〉

= Re

〈
g⊥

A‖⊥g⊥ + A‖‖g‖

aei arg V (x)gµ

 ,

A⊥⊥g⊥ + A⊥‖g‖

g‖

gµ


〉

= Re(〈g⊥, A⊥⊥g⊥ + A⊥‖g‖〉+ 〈A‖⊥g⊥ + A‖‖g‖, g‖〉+ 〈aei arg V (x)gµ, gµ〉

= Re(〈A⊥⊥g⊥ + A⊥‖g‖, g⊥〉+ 〈A‖⊥g⊥ + A‖‖g‖, g‖〉+ 〈aei arg V (x)gµ, gµ〉.
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We also have

Re〈AVg, g〉 = Re

〈
A⊥⊥g⊥ + A⊥‖g‖

A‖⊥g⊥ + A‖‖g‖

aei arg V (x)gµ

 ,

g⊥

g‖

gµ


〉

= Re(〈A⊥⊥g⊥ + A⊥‖g‖, g⊥〉+ 〈A‖⊥g⊥ + A‖‖g‖, g‖〉+ 〈aei arg V (x)gµ, gµ〉

= Re〈ÂVf, f〉.

Now as AV is elliptic we have

κ‖g‖2
2 ≤ Re

〈
AVg, g

〉
= Re〈ÂVf, f〉.

Then

‖f‖2
2 = ‖AV(AV)−1f‖2

2 ≤ ‖A
V‖2‖g‖2

2 . Re〈ÂVf, f〉.

That is ÂV is elliptic. Also as AV is bounded then AV and AV are bounded and as AV

is invertible then (AV)−1 is bounded. Then ÂV = AV(AV)−1 is bounded.

Note that (̂ÂV) = AV . Therefore, if ÂV is bounded and elliptic then so is AV , by the

above argument. This completes the proof.

From now on we let B = ÂV , and by Proposition 6.1.1 we have B is elliptic and

bounded. We now show that this is indeed the correct B to obtain the correspondence

between the first-order system and the second-order equation. We recall the notation

∇‖µu :=

 ∇‖u
|V | 12u

 and ∇µu :=

 ∇u
|V | 12u

 =


∂tu

∇‖u

|V | 12u

 , for u ∈ V̇1,2(Rn+1
+ )

so to make it clear whether we are referring to the tangential adapted gradient or the full

adapted gradient.
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Proposition 6.1.2. Let u be such that HA,a,V u = 0 in Rn+1
+ . Assume further that

∇A,µu :=


∂νAu

∇‖u

|V | 12u

 ∈ L2
loc(R+;L2(Rn;Cn+2)),

then F := ∇A,µu is a weak solution of ∂tF +DBF = 0 in R+, with F ∈ L2
loc(R+;R(D)).

Conversely, if F ∈ L2
loc(R+;R(D)) is a weak solution of ∂tF +DBF = 0 in R+, then there

exists u such that HA,a,V u = 0 in Rn+1
+ with F = ∇A,µu.

Proof. Let u be such that HA,a,V u = 0 where ∇A,µu ∈ L2
loc(R+;L2(Rn;Cn+2)). Define

F := ∇A,µu. Then for all ϕ ∈ C∞c (Rn+1
+ ) we have

¨
Rn+1
+

A∇u · ∇ϕ+ aV uϕ dx dt = 0.

Note that for each fixed t > 0, by Lemma 2.3.6, we have

F (t) =


(∂νAu)(t)

(∇‖u)(t)

(|V | 12u)(t)

 ∈ R(D).

Therefore, F ∈ L2
loc(R+;R(D)). Also, the definition of F and ∂νA , we have

(BF )‖ = A‖⊥A
−1
⊥⊥F⊥ + (A‖‖ − A‖⊥A−1

⊥⊥A⊥‖)F‖

= A‖⊥A
−1
⊥⊥∂νAu+ (A‖‖ − A‖⊥A−1

⊥⊥A⊥‖)∇‖u

= A‖⊥A
−1
⊥⊥(A⊥⊥∂tu+ A⊥‖∇‖u) + (A‖‖ − A‖⊥A−1

⊥⊥A⊥‖)∇‖u

= A‖⊥∂tu+ A‖‖∇‖u

= (A∇u)‖.

We also have aei arg V (x)|V | 12u = (BF )µ. Now, for any ϕ ∈ C∞c (Rn+1
+ ;Rn+2), as HA,a,V u =
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0 and the above, then

ˆ ∞
0

〈F⊥, ∂tϕ⊥〉 dt =

ˆ ∞
0

〈(A∇u)⊥, ∂tϕ⊥〉 dt

= −
ˆ ∞

0

〈(A∇u)‖,∇‖ϕ⊥〉 − 〈aei arg V (x)|V |
1
2u, |V |

1
2ϕ⊥〉 dt

=

ˆ ∞
0

〈(BF )‖, (Dϕ)‖〉+ 〈(BF )µ, (Dϕ)µ〉 dt.

A direct calculation gives us that ∂tu = (BF )⊥. Therefore, integrating by parts and

using that (Dϕ)⊥ = div‖ ϕ‖ − |V |
1
2ϕµ, we have

ˆ ∞
0

〈F‖, ∂tϕ‖〉 dt =

ˆ ∞
0

〈∇‖u, ∂tϕ‖〉 dt,

=

ˆ ∞
0

〈∂tu, div‖ ϕ‖〉 dt,

=

ˆ ∞
0

〈∂tu, div‖ ϕ‖ − |V |
1
2ϕµ〉+ 〈∂tu, |V |

1
2ϕµ〉 dt,

=

ˆ ∞
0

〈(BF )⊥, (Dϕ)⊥〉 dt+

ˆ ∞
0

〈∂tu, |V |
1
2ϕµ〉 dt.

Also, ˆ ∞
0

〈Fµ, ∂tϕµ〉 dt =

ˆ ∞
0

〈|V |
1
2u, ∂tϕµ〉 dt = −

ˆ ∞
0

〈∂tu, |V |
1
2ϕµ〉 dt.

Combining these gives ˆ ∞
0

〈F, ∂tϕ〉 dt =

ˆ ∞
0

〈BF,Dϕ〉 dt.

Thus F is a weak solution of ∂tF +DBF = 0 in R+.

Now let F ∈ L2
loc(R+;R(D)) be a weak solution of ∂tF +DBF = 0 in R+. Then, for

each t > 0 there exists gt ∈ V̇1,2(Rn) such that

F‖(t, x)

Fµ(t, x)

 =

 ∇‖gt(x)

|V | 12 gt(x)

 .
Define g(t, x) := gt(x). Fix 0 < c0 <∞. Now define

u(t, x) :=

ˆ t

c0

(BF )⊥(s, x) ds+ g(c1, x), ∀t > 0, and a.e. x ∈ Rn.
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Then, for fixed x0 ∈ Rn we have u(t, x0) is absolutely continuous in t and, by the

Fundamental Theorem of Calculus, (∂tu)(t, x0) = (BF )⊥(t, x0). Let ψ ∈ C∞c (R+),

η ∈ C∞c (Rn;Rn) and

ϕ(t, x) :=


0

ψ(t)η(x)

0

 ∈ C∞c (Rn+1
+ ;Rn+2).

As F is a weak solution of ∂tF +DBF = 0 in R+ we have

ˆ ∞
0

〈F (t), (∂tϕ)(t)〉 dt =

ˆ ∞
0

〈(BF )(t), (Dϕ)(t)〉 dt (6.1.1)

Therefore, the structure of ϕ gives

ˆ ∞
0

〈F (t), (∂tϕ)(t)〉 dt =

ˆ ∞
0

ˆ
Rn
F‖(t, x) · η(x)(∂tψ)(t) dx dt.

Also, using the structure of ϕ, Fubini’s Theorem and integrating by parts, we have

ˆ ∞
0

〈(BF )(t), (Dϕ)(t)〉 dt =

ˆ ∞
0

ˆ
Rn

(BF )⊥(t, x)ψ(t)(div‖ η)(x) dx dt

=

ˆ
Rn

(ˆ ∞
0

(∂tu)(t, x)ψ(t) dt

)
(div‖ η)(x) dx

= −
ˆ
Rn

(ˆ ∞
0

u(t, x)(∂tψ)(t) dt

)
(div‖ η)(x) dx.

Then, by (6.1.1), we get

ˆ ∞
0

ˆ
Rn
F‖(t, x) · η(x)(∂tψ)(t) dx dt = −

ˆ
Rn

(ˆ ∞
0

u(t, x)(∂tψ)(t) dt

)
(div‖ η)(x) dx.

Then using Fubini’s Theorem and rearranging gives

ˆ ∞
0

(ˆ
Rn
F‖(t, x) · η(x) + u(t, x)(div‖ η)(x) dx

)
(∂tψ)(t) dt = 0.

Then as ψ was arbitrary we use integration by parts to deduce that there exists a constant
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c such that

c =

ˆ
Rn
F‖(t, x) · η(x) + u(t, x)(div‖ η)(x) dx.

Also, using (6.1.1) gives

ˆ ∞
0

(ˆ
Rn
F‖(t, x) · η(x)

)
(∂tψ)(t) dt =

ˆ ∞
0

(ˆ
Rn

(BF )⊥(t, x)(div‖ η)(x) dx

)
ψ(t) dt

Then, by the definition of a weak derivative, we get

∂t

(ˆ
Rn
F‖(t, x) · η(x) dx

)
= −
ˆ
Rn

(BF )⊥(t, x)div‖ η(x) dx,

in the weak sense. Recall that a function is weakly differentiable if and only if it is locally

absolutely continuous (see [30]). Therefore, c1 is a Lebesgue point for

ˆ
Rn
F‖(t, x) · η(x) dx for a.e. x ∈ Rn and ∀η ∈ C∞c (Rn;Rn).

Let ε > 0. Let δ ∈ (0, c0). Thus, using the Lebesgue differentiation Theorem we may

choose δ > 0 such that

∣∣∣∣−ˆ c0+δ

c0−δ

(ˆ
Rn
F‖(t, x) · η(x) dx

)
dt−

ˆ
Rn
F‖(c1, x) · η(x) dx

∣∣∣∣ < ε

2
, and∣∣∣∣−ˆ c0+δ

c0−δ

ˆ t

c0

(BF )⊥(s, x) ds dt

∣∣∣∣ < ε

2‖ div‖ η‖1

.

Recalling the definition of u, we have

c = −
ˆ c0+δ

c0−δ

ˆ
Rn
F‖(t, x) · η(x)−∇‖g(c1, x) · η(x) +

(ˆ t

c0

(BF )⊥(s, x) ds

)
(div‖ η)(x) dx dt.
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Using integration by parts, the definition of g, and Fubini’s Theorem we get

∣∣∣∣ˆ
Rn

(
−
ˆ c0+δ

c0−δ
F‖(t, x) · η(x) dt

)
−∇‖g(c0, x) · η(x) dx

∣∣∣∣
=

∣∣∣∣ˆ
Rn

(
−
ˆ c0+δ

c0−δ
F‖(t, x) dt−∇‖g(c1, x)

)
· η(x) dx

∣∣∣∣
=

∣∣∣∣−ˆ c0+δ

c0−δ

(ˆ
Rn
F‖(t, x) · η(x) dx

)
dt−

ˆ
Rn
F‖(c0, x) · η(x) dx

∣∣∣∣
<
ε

2
.

Similarly, we have that

∣∣∣∣ˆ
Rn

(
−
ˆ c0+δ

c0−δ

ˆ t

c0

(BF )⊥(s, x) ds dt

)
(div‖ η)(x) dx

∣∣∣∣
≤
ˆ
Rn

∣∣∣∣−ˆ c0+δ

c0−δ

ˆ t

c0

(BF )⊥(s, x) ds dt

∣∣∣∣ |(div‖ η)(x)| dx

<
ε

2
.

Thus |c| < ε. As ε > 0 was arbitrary we have that c = 0. We now proceed in a similar

manner for the third component. Redefine η ∈ C∞c (Rn) and

ϕ(t, x) :=


0

0

ψ(t)η(x)

 ∈ C∞c (Rn+1
+ ;Rn+2).

Then, using that F is a solution of ∂tF + DBF = 0, ∂tu = (BF )⊥, and integration by

parts, we have

ˆ ∞
0

(ˆ
Rn
Fµ(t, x)η(x) dx

)
(∂tψ)(t) dt =

ˆ ∞
0

(ˆ
Rn
u(t, x)(|V | 12η)(x) dx

)
(∂tψ)(t) dt.

Therefore, we have

c =

ˆ
Rn

(
Fµ(t, x)− |V |

1
2u(t, x)

)
η(x) dx

As before, let ε > 0. Let δ ∈ (0, c0). Then, using the Lebesgue differentiation Theorem

162



we may choose δ > 0 such that

∣∣∣∣−ˆ c0+δ

c0−δ

(ˆ
Rn
Fµ(t, x)η(x) dx

)
dt−

ˆ
Rn
Fµ(c1, x)η(x) dx

∣∣∣∣ < ε

2
, and∣∣∣∣−ˆ c0+δ

c0−δ

ˆ t

c0

(BF )⊥(s, x) ds dt

∣∣∣∣ < ε

2‖|V | 12η‖1

.

Replicating the argument for F‖, we obtain |c| < ε for all ε > 0. Hence c = 0. That is

(BF )⊥(t, x) = ∂tu(t, x), F‖(t, x) = ∇‖u(t, x), and Fµ(t, x) = |V | 12u(t, x). Then, rearrang-

ing gives F⊥ = ∂νAu. Therefore,

F (t, x) = ∇A,µu(t, x).

We proceed by proving HA,a,V u = 0. To this end, let ψ ∈ C∞c (Rn+1
+ ), and define

ϕ =


ψ

0

0

 ∈ C∞c (Rn+1
+ ,Cn+2).

A direct calculation leads to (BF )‖ = (A∇u)‖ and (BF )µ = aei arg V (x)|V | 12u. Therefore,

using (6.1.1), we obtain

ˆ ∞
0

ˆ
Rn
∂νAu ∂tψ dx dt = −

ˆ ∞
0

ˆ
Rn

(BF )‖ · ∇‖ψ − (BF )µ|V |
1
2ψ dx dt

= −
ˆ ∞

0

ˆ
Rn

(A∇u)‖ · ∇‖ψ − aV uψ dx dt.

Thus ˆ ∞
0

ˆ
Rn

(A∇u) · ∇ψ + aV uψ dx dt = 0.

Hence, HA,a,V u = 0. This completes the proof.

Note that to go from a second-order solution of a first-order solution we need to

assume some kind of control on the adapted gradient. A natural estimate to have is L2

control on the non-tangential maximal function of the adapted gradient. We give the
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proof of that this is sufficient in Proposition 8.1.1.

6.2 Boundary Isomorphisms for Block Type Matri-

ces

To recap, the setH0,+
DB is the set of all initial data for the solutions satisfying the first-order

Cauchy problem (5.3.2) on Rn+1
+ . We also have solutions satisfying (5.3.2) arise from an

analytic semigroup generated by DB applied to the initial data in H0,+
DB, and that these

solutions are equal to the adapted gradients of a solution of second order equation (2.6.1).

That is F = e−tDBf = ∇A,µu for some u such that HA,a,V u = 0. We define the mappings

ΦN : H0,+
DB → L2(Rn), given by ΦN(f) := f⊥,

ΦR : H0,+
DB → {∇µu : u ∈ V̇1,2(Rn)}, given by ΦR(f) :=

f‖
fµ

 = fr.
(6.2.1)

These mappings are seen to be sending the initial values for the Cauchy problem ∂tF +

DBF = 0 to the boundary conditions for equation HA,a,V u = 0. Therefore, if the

mappings are isomorphisms we will be able to invert them and uniquely assign any given

boundary data for the boundary value problem with a solution of the first-order equation.

Then using Proposition 6.1.2 will give a solution u such that HA,a,V u = 0. In other words,

if ΦN and ΦR are isomorphisms then the second-order equating is well-posed. We will

formalise this in Section 8.1

We now proceed by proving that the mappings ΦR and ΦN from (6.2.1) are isomor-

phisms in the case when AV is block-type, that is

AV =


A⊥⊥ 0 0

0 A‖‖ 0

0 0 aei arg V (x)

 , and so ÂV = B =


A−1
⊥⊥ 0 0

0 A‖‖ 0

0 0 aei arg V (x)

 .

We do this in a similar way to the methods used in [4]. Define the bounded linear operator
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N : R(D)→ R(D) given by

N :=


−1 0 0

0 I 0

0 0 1

 .
Note that N−1 = N . We start with a lemma from the theory of functional calculus so

that we may take advantage of the symmetry of the operator EDB.

Lemma 6.2.1. Let ω ∈ (0, π
2
). If T is a closed densely defined ω-bisectorial operator with

bounded holomorphic functional calculus, then S := NTN , is a closed densely defined ω-

bisectorial operator with bounded holomorphic functional calculus and f(S) = Nf(T )N

for all f ∈ H∞(Soµ) and all µ ∈ (ω, π
2
).

Proof. First we prove σ(T ) = σ(S). Let λ ∈ ρ(T ). Then we have that λI − S =

λNN −NSN = N(λI − T )N . As N and λI − T are invertible then λI − S is invertible.

That is λ ∈ ρ(S). Now suppose λ ∈ ρ(S). Then λI−T = NN(λI−T )NN = N(λI−S)N .

Then as N and λI − S are invertible so is λI − T . Thus λ ∈ ρ(T ). Thus ρ(T ) = ρ(S).

Equivalently, we have σ(T ) = σ(S). Now let µ ∈ (ω, π/2).

Now we prove resolvent bounds for S. Note that T satisfies the resolvent bounds and

consider

‖(λI − S)−1u‖2 = ‖(λI −NTN)−1u‖2

= ‖N(λI − T )−1Nu‖2

. ‖(λI − T )−1Nu‖2

≤ Cµ
|λ|
‖Nu‖2

.
Cµ
|λ|
‖u‖2,

for all λ /∈ Soµ. Thus S is closed densely defined ω-bisectorial operator.

To prove the functional calculus of S let ψ ∈ Ψ(Soµ). Then by the Dunford–Riesz
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functional calculus we have that

ψ(S) =
1

2πi

ˆ
γ

ψ(z)(zI − S)−1 dz

=
1

2πi

ˆ
γ

ψ(z)N(zI − T )−1N dz

= N

(
1

2πi

ˆ
γ

ψ(z)(zI − T )−1 dz

)
N

= Nψ(T )N.

Now as T has bounded holomorphic functional calculus we have

‖ψ(S)u‖2 = ‖Nψ(T )Nu‖2 . ‖ψ(T )Nu‖2 . ‖ψ‖∞‖Nu‖2 . ‖ψ‖∞‖u‖2.

Thus we have that there exists µ ∈ (ω, π/2) such that ‖ψ(S)u‖2 . ‖ψ‖∞‖u‖2 for all

ψ ∈ Ψ(S0
µ) and u ∈ H. Hence, S has bound holomorphic functional calculus by Theorem

2.1.4. Then there exists a sequence {ψn}n∈N ⊆ Ψ(Soµ) such that limn→∞((fψn)(S)u) =

f(S)u for all f ∈ H∞(Soµ) and u ∈ H. Then

f(S)u = lim
n→∞

((fψn)(S)u) = lim
n→∞

(N(fψn)(T )Nu) = N lim
n→∞

((fψn)(T )Nu) = Nf(T )Nu.

This completes the proof.

Now as DB has bounded holomorphic functional calculus and sgn ∈ H∞(Soµ), then

the previous lemma gives

NEDB = N sgn(DB)NN = sgn(NDBN)N = sgn(−DB)N = − sgn(DB)N = −EDBN.

(6.2.2)

Now define the bounded linear operators N± : R(D)→ R(D) given by

N− :=


1 0 0

0 0 0

0 0 0

 =
1

2
(I −N), N+ :=


0 0 0

0 I 0

0 0 1

 =
1

2
(I +N).
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We can see that if f ∈ H0,+
DB, then N±f corresponds to the Neumann and Regularity

boundary conditions respectively. The next lemma formalises this idea.

Lemma 6.2.2. If N+ : H0,+
DB → N+R(D) is an isomorphism, then ΦR : H0,+

DB → {∇µu :

u ∈ V̇1,2(Rn)} is an isomorphism. Also, if N− : H0,+
DB → N−R(D) is an isomorphism, then

ΦN : H0,+
DB → L2(Rn) is an isomorphism.

Proof. Suppose N+ is an isomorphism. Note by Lemma 2.3.6 we have

N+R(D) =


 0

∇µu

 : for some u ∈ V̇1,2(Rn)

 .

Then let F ∈ N+R(D). Therefore F = (0,∇µu)T for some u ∈ V̇1,2(Rn). Then as N+ is

an isomorphism we have there exists a unique f ∈ H0,+
DB such that N+f = F . Therefore,

ΦR(f) = ∇µu. That is ΦR is surjective. Now assume that there exists f, g ∈ H0,+
DB such

that ΦR(f) = ΦR(g) = ∇µu. Then N+f = N+g. Thus as N+ is an isomorphism (and

therefore injective) we have f = g. Then ΦR is injective. Thus ΦR is an isomorphism.

The second statement is proved similarly.

We now prove that these mappings are indeed isomorphisms, in the block case.

Proposition 6.2.3. If A is block type then the mappings ΦR : H0,+
DB → {∇µu : u ∈

V̇1,2(Rn)} and ΦN : H0,+
DB → L2(Rn) are isomorphisms.

Proof. By Lemma 6.2.2 it suffices to show N+ : H0,+
DB → N+R(D) and N− : H0,+

DB →

N−R(D) are isomorphisms.

To prove surjectivity, let g ∈ N+R(D) so g = (0, g‖, gµ)T and Ng = g. We have

2E+
DBg = (χ+(DB)− χ−(DB))g + (χ−(DB) + χ+(DB))g = EDBg + g.
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Therefore, using the above calculation and (6.2.2), we have

N+(2E+
DBg) = N+(EDB + I)g

=
1

2
(I +N)(I + EDB)g

=
1

2
(g +Ng) +

1

2
(EDBg − EDBNg)

= g.

Then, for any g ∈ N+R(D) we have N+(2E+
DBg) = g. That is N+ : H0,+

DB → N+R(D) is

surjective.

To prove injectivity let f ∈ H0,+
DB with N+f = 0, so Nf = −f and f‖ = fµ = 0. Then,

as EDBf = f and (6.2.2), we have

0 = EDBNf +NEDBf = −EDBf +Nf = −f − f = −2f.

Thus f = 0. That is N+ is injective and so bijective. Thus, by Lemma 6.2.2 we have

ΦR : E+
DB → {∇µu : u ∈ V̇1,2(Rn)} is an isomorphism.

The case for ΦN : H0,+
DB → L2(Rn) is similar.

6.3 Boundary Isomorphisms for Self-Adjoint Matri-

ces

We now move to the self adjoint case, that is A∗ = A. Then we have

A∗ =

A 0

0 a


∗

=


A∗⊥⊥ A∗‖⊥ 0

A∗⊥‖ A∗‖‖ 0

0 0 a∗

 =


A⊥⊥ A⊥‖ 0

A‖⊥ A‖‖ 0

0 0 a

 = A

Then, by a direct computation we have

(Â)∗ = B∗ = NBN. (6.3.1)
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We now aim to establish a Rellich type estimate. This will be used to prove that

the mappings ΦN and ΦR from (6.2.1) are injective. We will then use the method of

continuity to prove the surjectivity of the mappings.

Proposition 6.3.1. If A is self-adjoint then the mappings ΦR : H0,+
DB → {∇µu : u ∈

V̇1,2(Rn)} and ΦN : H0,+
DB → L2(Rn) are injective. Moreover, they satisfy the estimate:

‖ΦN(f)‖2 h ‖ΦR(f)‖2

for all f ∈ H0,+
DB.

Proof. Let f ∈ H0,+
DB. Then by Corollary 5.3.9 we have there exists a unique solution,

F ∈ C1(R+;R(D)) satisfying (5.3.2), and in particular, F (t, x) = e−tDBf(x) Then using

the Fundamental Theorem of Calculus to get

ˆ ∞
0

∂t〈NBF (t), F (t)〉 dt = lim
t→∞
〈NBF (t), F (t)〉 − lim

t→0
〈NBF (t), F (t)〉 = −〈NBf, f〉.

Now

DN +ND =

 0 (−∇‖µ)∗

−∇‖µ 0


−1 0

0 I

+

−1 0

0 I


 0 (−∇‖µ)∗

−∇‖µ 0


=

 0 (−∇‖µ)∗

∇‖µ 0

+

 0 −(−∇‖µ)∗

−∇‖µ 0


= 0

(6.3.2)
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Now, using ∂tF = −DBF , N2 = I, (6.3.1), and (6.3.2), we have

−
ˆ ∞

0

∂t〈NBF (t), F (t)〉 dt = −
ˆ ∞

0

(〈NB∂tF (t), F (t)〉+ 〈NBF (t), ∂tF (t)〉) dt

=

ˆ ∞
0

(〈NBDBF (t), F (t)〉+ 〈NBF (t), DBF (t)〉) dt

=

ˆ ∞
0

(〈(NBN)NDBF (t), F (t)〉+ 〈DNBF (t), BF (t)〉) dt

=

ˆ ∞
0

(〈NDBF (t), BF (t)〉+ 〈DNBF (t), BF (t)〉) dt

=

ˆ ∞
0

〈(ND +DN)BF (t), BF (t)〉 dt

= 0.

That is 〈NBf, f〉 = 0. Or, equivalently 〈(Bf)⊥, f⊥〉 = 〈(Bf)‖, f‖〉 + 〈(Bf)µ, fµ〉. Then

as B is elliptic on R(D), as in (2.5.1), we have

‖f‖2
2 . Re〈Bf, f〉 = 2 Re〈(Bf)⊥, f⊥〉 . ‖(Bf)⊥‖2‖f⊥‖2 ≤ ‖f‖2‖ΦN(f)‖2.

Thus ‖f‖2 . ‖ΦN(f)‖2 and so ΦN is injective. We also have

‖f‖2
2 . Re〈Bf, f〉 = 2 Re

(
〈(Bf)‖, f‖〉+ 〈(Bf)µ, fµ〉

)
. ‖f‖2‖ΦR(f)‖2.

Hence ‖f‖2 . ‖ΦR(f)‖2 and so ΦR is injective. Together, this gives the Rellich estimate

‖ΦN(f)‖2 = ‖f⊥‖2 h

∥∥∥∥∥∥∥
f‖
fµ


∥∥∥∥∥∥∥

2

= ‖ΦR(f)‖2,

as required.

We now turn to surjectivity where we will use the method of continuity. It is important

to note that this depends on the analytic dependence of the functional calculus of the

operator DB as in Theorem 5.2.1. Define the self-adjoint matrix Aτ := τA+ (1− τ)I for
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τ ∈ [0, 1]. Also, define Bτ = Âτ For all u ∈ R(D), we have

Re〈Bτu, u〉 = τ Re〈Bu, u〉+ (1− τ)〈u, u〉 ≥ κτ‖u‖2
2 + (1− τ)‖u‖2 ≥ min{κ, 1}‖u‖2

2,

and,

‖Bτ‖∞ ≤ τ‖B‖∞ + (1− τ)‖I‖∞ ≤ ‖B‖∞ + 1,

So Bτ is uniformly bounded and uniformly elliptic on R(D) for all τ ∈ [0, 1]. If 0 < ω < µ,

then by Theorems 3.0.1 and 2.1.4, we have there exists cµ > 0, depending only on n, κ,

and ‖B‖∞, such that

‖f(DBτ )‖ ≤ cµ‖f‖∞, (6.3.3)

for all f ∈ H∞(Soµ) and for all τ ∈ [0, 1]. Here we use the fact that the constant in

Theorem 3.0.1 depends only on n, κ, and ‖B‖∞. Now, for every τ ∈ [0, 1] define the

spectral projection associated with DBτ by E+
τ := χ+(DBτ ). Also, define the bounded

linear operator

Φτ
N : E+

τ R(D)→ L2(Rn) given by Φτ
N(f) := f⊥,

Φτ
R : E+

τ R(D)→ {∇µu : u ∈ V̇1,2(Rn)} given by Φτ
R(f) :=

f‖
fµ

 ,
for all τ ∈ [0, 1], so ΦN = Φ1

N .

Lemma 6.3.2. There exists ε > 0 such that, if |τ−σ| < ε, then E+
τ : E+

σ R(D)→ E+
τ R(D)

is bijective.

Proof. We claim (I −E+
σ (E+

σ −E+
τ ))−1E+

σ and E+
σ (I −E+

τ (E+
τ −E+

σ ))−1 are the left and

the right inverse respectively. First, by the quadratic estimate in Theorem 3.0.1 we have
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the bounded holomorphic functional calculus in Theorem 5.0.1, and so

‖E+
τ (E+

τ − E+
σ )f‖2 ≤ cµ‖χ+‖∞‖(E+

τ − E+
σ )f‖2

≤ c‖Bτ −Bσ‖∞‖f‖2

= c|τ − σ|‖B − I‖∞‖f‖2.

where c > 0 depends on the constant from the analytic dependence in Theorem 5.2.1 and

on cµ > 0 from (6.3.3). Thus, if |τ − σ| < 1
c‖B−I‖∞ , then the Neumann series gives us

I − E+
τ (E+

τ − E+
σ ) is invertible. Using a direct computation we see

E+
τ E

+
σ = E+

τ (I − E+
τ (E+

τ − E+
σ )).

And so, for all f ∈ E+
τ R(D), we have

E+
τ E

+
σ (I − E+

τ (E+
τ − E+

σ ))−1f = E+
τ f = f.

Thus, E+
σ (I − E+

τ (E+
τ − E+

σ ))−1 is the right inverse of E+
τ : E+

σ R(D)→ E+
τ R(D), that is

E+
τ : E+

σ R(D)→ E+
τ R(D) is surjective. Similarly, if |τ −σ| < 1

c‖B−I‖∞ , then I−E+
σ (E+

σ −

E+
τ ) is also invertible, again using the Neumann series. Now, another computation gives

E+
σ E

+
τ E

+
σ = (I − E+

σ (E+
σ − E+

τ ))E+
σ .

Then, for all f ∈ E+
σ R(D), we have

(I − E+
σ (E+

σ − E+
τ ))−1E+

σ E
+
τ f = (I − E+

σ (E+
σ − E+

τ ))−1E+
σ E

+
τ E

+
σ = E+

σ f = f.

Thus (I − E+
σ (E+

σ − E+
τ ))−1E+

σ is the left inverse of E+
τ : E+

σ R(D) → E+
τ R(D). That is

E+
τ : E+

σ R(D)→ E+
τ R(D) is injective. Thus, E+

τ : E+
σ R(D)→ E+

τ R(D) is a bijection.

Lemma 6.3.3. If E+
τ : E+

σ R(D)→ E+
τ R(D) is a bijection, then

• Φτ
N : E+

τ R(D) → L2(Rn) is bijective if and only if ΦNE
+
τ : E+

σ R(D) → L2(Rn) is
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bijective.

• Φτ
R : E+

τ R(D)→ {∇µu : u ∈ V̇1,2(Rn)} is bijective if and only if ΦRE
+
τ : E+

σ R(D)→

{∇µu : u ∈ V̇1,2(Rn)} is bijective.

Proof. Suppose that Φτ
N : E+

τ R(D)→ L2(Rn) is bijective. Therefore, ΦNE
+
τ : E+

σ R(D)→

L2(Rn) is the composition of two bijective operators and so is a bijection.

Suppose that ΦNE
+
τ : E+

σ R(D) → L2(Rn) is bijective. Let f ∈ L2(Rn). Then as the

mapping ΦNE
+
τ : E+

τ R(D) → L2(Rn) is bijective we have there exists g ∈ E+
σ R(D) such

that ΦNE
+
τ g = f . Then there exists h ∈ E+

τ R(D) (namely h = E+
τ g) such that Φτ

Nh = f .

Thus, Φτ
N : E+

τ R(D)→ L2(Rn) is surjective. Let f ∈ E+
σ R(D) be such that Φτ

Nf = 0. As

E+
τ : E+

σ R(D)→ E+
τ R(D) is a bijection, so invertible, we have 0 = Φτ

Nf = ΦNE
+
τ E

+−1

τ f .

then as ΦNE
+
τ : E+

σ R(D) → L2(Rn) is bijective we have E+−1

τ f = 0. Thus f = 0 and

Φτ
N : E+

τ R(D)→ L2(Rn) is injective, and thus bijective.

The case for Φτ
R : E+

τ R(D)→ {∇µu : u ∈ V̇1,2(Rn)} is similar.

Lemma 6.3.4. Let σ ∈ [0, 1]. The following hold:

• If Φσ
N : E+

σ R(D) → L2(Rn) is bijective, then there exists ε > 0 such that for all

|τ − σ| < ε we have Φτ
N : E+

τ R(D)→ L2(Rn) is bijective.

• If Φσ
R : E+

σ R(D) → {∇µu : u ∈ V̇1,2(Rn)} is bijective, then there exists ε > 0 such

that for all |τ − σ| < ε we have Φτ
R : E+

τ R(D)→ {∇µu : u ∈ V̇1,2(Rn)} is bijective.

Proof. Consider Φτ
NE

+
τ : E+

σ R(D) → L2(Rn). Then fix ε > 0 such that E+
τ : E+

σ R(D) →

E+
τ R(D) is a bijection for all |τ −σ| < ε. Let f ∈ E+

σ R(D) such that Φτ
NE

+
τ f = 0. Then,

using the Rellich estimates in Proposition 6.3.1 (as Aτ is self-adjoint), we have

0 = ‖Φτ
NE

+
τ f‖2 & ‖E+

τ f‖2.

Thus, E+
τ f = 0 and as E+

τ : E+
σ R(D) → E+

τ R(D) is a bijection then f = 0. Hence,

Φτ
NE

+
τ : E+

σ R(D)→ L2(Rn) is injective.
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Let g ∈ L2(Rn). Then as Φσ
N : E+

σ R(D) → L2(Rn) is bijective we have there exists

h ∈ E+
σ R(D) such that Φσ

Nh = g. Therefore

g = Φσ
Nh = (E+

τ h+ (I − E+
τ )h)⊥ = Φτ

NE
+
τ h+ ((I − E+

τ )h)⊥.

Now using the fact that E+
τ and E+

σ are projections and h ∈ E+
σ R(D) we have

(I − E+
τ )h = E+−1

τ E+
τ (E+

σ − E+
τ )h = E+−1

τ (E+
τ E

+
σ − E+

τ E
+
σ )h = 0.

Thus Φτ
NE

+
τ h = g. That is ΦNE

+
τ : E+

σ R(D) → L2(Rn) is surjective and so bijective.

Then by Lemma 6.3.3 we have that Φτ
N : E+

τ R(D)→ L2(Rn) is a bijection.

A similar argument proves that Φτ
R : E+

τ R(D)→ {∇µu : u ∈ V̇1,2(Rn)} is a bijection.

Proposition 6.3.5. If A is self-adjoint, then the mappings ΦR : H0,+
DB → {∇µu : u ∈

V̇1,2(Rn)} and ΦN : H0,+
DB → L2(Rn) are isomorphisms.

Proof. By Proposition 6.3.1 we have ΦR : H0,+
DB → {∇µu : u ∈ V̇1,2(Rn)} and ΦN : H0,+

DB →

L2(Rn) are injective.

Now as Φ0
N corresponds to A = I and I is a block type matrix then by Proposition

6.2.3 we have Φ0
N : E+

0 R(D) → L2(Rn) is an isomorphism. Now by Lemma 6.3.4 we

have there exists ε > 0 such that for all |τ | < ε then Φτ
N : E+

τ R(D) → L2(Rn) is an

isomorphism. We then iterate this argument a finite number of times to give us Φ1
N =

ΦN : H0,+
DB → L2(Rn) is a bijection.

A similar argument gives that Φτ
R : E+

τ R(D)→ {∇µu : u ∈ V̇1,2(Rn)} is also surjective

and so an isomorphism. This completes the proof.
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CHAPTER 7

NON-TANGENTIAL MAXIMAL FUNCTION
BOUNDS

We are now ready to prove the non-tangential maximal function bounds in Theorem 6.0.1

parts 3 and 4. These are needed to show that the second-order equation HA,a,V u = 0 is

well-posed, as in (2.6.4) and (2.6.5), by proving N∗(∇µu) ∈ L2(Rn) and the convergence

to the boundary data is pointwise on Whitney averages. We do this by estimating the

non-tangential operator by a quadratic estimate term and a term involving the Hardy–

Littlewood maximal function. However, in order to do this we need to reduce the exponent

from 2 to some p ∈ (1, 2), since otherwise we will end up trying to bound the Hardy–

Littlewood maximal function on L1. But the Hardy–Littlewood maximal function is not

a bounded operator on L1. Therefore we need to prove a weak reverse Hölder estimate

on ∇µu. We note when V = 0 then this is easy as HA,a,V (u − c) = 0 for all constants

c ∈ C. Then for a fixed cube we choose c to be the average of u on the cube. Thus,

using the Caccioppoli inequality and then the Sobolev–Poincaré lemma gives the desired

result. We aim to replicate this approach with the zeroth-order term V included.

Hence, we start by giving a Caccioppoli inequality adapted to the potential V in the

sense that we bound ∇µ rather than ∇, and the inhomogeneous term on right-hand side

depends on (∇µ)∗ not− div. The result is proved similarly to the standard inhomogeneous

Caccioppoli inequality. We will adapt the method from the parabolic equation in [6] to

our case with a potential. From this point on we specialise to the case when V ∈ B n
2 (Rn)

as in Section 2.3. Therefore we have A = AV .
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7.1 Reverse Hölder Estimates for Solutions

Throughout this section, suppose that d > 2 is an integer and that Ω is an open subset

of Rd. We begin with the following version of Caccioppoli’s inequality to account for the

presence of an inhomogeneity f ∈ L2(Ω,Cd+1) from the domain D(∇∗µ) in (2.3.5). In

particular, we shall say that u is a weak solution of − divA∇u + V u = ∇∗µf in Ω, or

simply that HA,a,V u = ∇∗µf in Ω, if u ∈ V1,2
loc (Ω) and

´
Ω
A∇u · ∇v + aV uv =

´
Ω
f · ∇µv

for all v ∈ C∞c (Ω).

Proposition 7.1.1. Suppose that V ∈ L1
loc(Rd). If f ∈ D(∇∗µ) and HA,a,V u = ∇∗µf in

Ω, then ˆ
Q

|∇u|2 +

ˆ
Q

|V ||u|2 . 1

l(Q)2

ˆ
2Q

|u|2 +

ˆ
2Q

|f |2,

for all cubes Q ⊂ 2Q ⊂⊂ Ω, where the implicit constant depends only on κ, ‖A‖∞ and

d.

Proof. Let η ∈ C∞c (Ω) be supported in 2Q ⊂⊂ Ω such that 0 ≤ η(x) ≤ 1 for all x ∈ Ω and

η(x) = 1 for all x ∈ Q whilst ‖∇η‖∞ . 1
l(Q)

. If HA,a,V u = ∇∗µf in Ω, then uη2 ∈ V̇1,2
c (Ω),

so by the definition of a weak solution we have

ˆ
Ω

A∇µu · ∇µ(uη2) =

ˆ
Ω

f · ∇µ(uη2), (7.1.1)

since C∞c (Ω) is dense in V̇1,2
c (Ω). Now let ε ∈ (0, 1) to be chosen. The product rule gives

ˆ
Q

|∇µu|2 ≤
ˆ

Ω

|∇µu|2η2 .
ˆ

Ω

|∇µ(ηu)|2 +

ˆ
Ω

|u|2|∇η|2.

From Lemma 2.3.6 we have ∇µ(ηu) ∈ R(D). Then, using the ellipticity, the product rule
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repeatedly, and (7.1.1), gives

ˆ
Ω

|∇µ(ηu)|2 .
∣∣∣∣ˆ

Ω

A∇µ(ηu) · ∇µ(ηu)

∣∣∣∣
=

∣∣∣∣ˆ
Ω

uA∇η · ∇(uη) + ηA∇u∇(uη) + a|V |
1
2u|V | 12 (uη2)

∣∣∣∣
=

∣∣∣∣ˆ
Ω

uuA∇η · ∇η + uηA∇η · ∇u+ A∇µu∇µ(uη2) + uηA∇u · ∇η
∣∣∣∣

=

∣∣∣∣ˆ
Ω

uuA∇η · ∇η + uηA∇η · ∇u+ f · ∇µ(uη2) + uηA∇u · ∇η
∣∣∣∣

Now, the above two calculations, the boundedness ofA, the product rule and the ε-version

of Young’s inequality, we have

ˆ
Ω

|∇µu|2η2 .
ˆ

Ω

|u|2|∇η|2 + |u||η||∇η||∇u|+ |f ||∇µ(uη2)|

.
ˆ

Ω

|∇u||η∇η||u|+
ˆ

Ω

|f |
(
|u||η∇η|+ |∇u|η2 + ||V |

1
2u|η2

)
. ε

ˆ
Ω

|∇u|2η2 +

(
1

ε
+ ε

)ˆ
Ω

|u|2|∇η|2 + ε

ˆ
Ω

||V |
1
2u|2η2 +

1

ε

ˆ
Ω

|f |2η2.

Combining the above estimates gives

ˆ
Ω

|∇µu|2η2 . ε

ˆ
Ω

|∇µu|2η2 +
1

ε

ˆ
Ω

|u|2|∇η|2 +
1

ε

ˆ
Ω

|f |2η2,

where the implicit constant depends only on κ, ‖A‖∞ and d.

We now choose ε ∈ (0, 1) sufficiently small, and recall the properties of η, to obtain

ˆ
Q

|∇µu|2 ≤
ˆ

Ω

|∇µu|2η2 .
1

l(Q)2

ˆ
2Q

|u|2 +

ˆ
2Q

|f |2,

as required.

We can use the Caccioppoli inequality to lower the exponent of a weak solution. We

recall that 2∗ := 2d/(d− 2) denotes the Sobolev exponent for Rd.
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Proposition 7.1.2. Suppose that V ∈ L1
loc(Rd). If δ > 0 and HA,a,V u = 0 in Ω, then

(
−
ˆ
Q

|u|2∗
)1/2∗

.δ

(
−
ˆ

2Q

|u|δ
)1/δ

,

for all cubes Q ⊂ 2Q ⊂⊂ Ω, where the implicit constant depends only on κ, ‖A‖∞, d

and δ.

Proof. As u ∈ W 1,2(Q), then using the Sobolev–Poincaré inequality (see (7.45) in [30])

we have

(
−
ˆ
Q

|u|2∗
)1/2∗

.

(
−
ˆ
Q

|u− (−́
Q
u)|2∗

)1/2∗

+−
ˆ
Q

|u| . l(Q)

(
−
ˆ
Q

|∇u|2
)1/2

+

(
−
ˆ
Q

|u|2
)1/2

.

Therefore, by the version of Caccioppoli’s inequality in Proposition 7.1.1 in the case

f = 0, we have the weak reverse Hölder estimate

(
−
ˆ
Q

|u|2∗
)1/2∗

.

(
−
ˆ

2Q

|u|2
)1/2

,

for all cubes Q ⊂ 2Q ⊂⊂ Ω whenever HA,a,V u = 0. The self-improvement of the exponent

in the right-hand side of such estimates (see [33, Theorem 2]) completes the proof.

To prove the non-tangential maximal bounds we need to be able to lower the expo-

nent, on the adapted gradient ∇µ, from 2 to some p < 2. In the homogeneous case (when

V = 0) this is relatively straight forward as if u is a solution then divA∇(u− uW ) = 0.

Therefore, we can use Caccioppoli’s inequality on u − uW followed by the Poincare In-

equality. However, in the inhomogeneous case we need to control the potential term. To

do this we will use the Fefferman–Phong inequality (Proposition 2.2.5) with exponent

1. Moreover, we will make crucial use of the right-hand side self-improvement property,

proved by Iwaniec and Nolder in [33, Theorem 2], for reverse Hölder inequalities. Specif-

ically, if δ ∈ (0,∞) and V ∈ Bq(Rd) for some q ∈ (1,∞), then (−́
Q
V q)1/q .δ (−́

Q
V δ)1/δ

for all cubes Q in Rd. Hence, if V ∈ A∞(Rd) = ∪q>1B
q(Rd), then V s ∈ B 1

s (Rd) for each

s ∈ (0, 1) and

−
ˆ
Q

V h
(
−
ˆ
Q

V
1
2

)2

, (7.1.2)
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for all cubes Q in Rd. To see this we use Jensen’s Inequality and the reverse Hölder

inequality, to get

l(Q)−
ˆ
Q

V
1
2 ≤ l(Q)

(
−
ˆ
Q

V

) 1
2

=

(
l(Q)2−

ˆ
Q

V

) 1
2

= l(Q)

(
−
ˆ
Q

(V
1
2 )2

) 1
2

. l(Q)−
ˆ
Q

V
1
2 .

We are now able to give a weak reverse Hölder type inequality for the ∇µ of a solution

of the second-order equation.

An inspection of the proofs above provides for the following routine extension. This

will be used henceforth without further reference.

Remark 7.1.3. The results in Propositions 7.1.1 and 7.1.2 also hold when 2Q is replaced

by αQ for any α > 1, except then the implicit constants in the estimates will also depend

on α.

Proposition 7.1.4. Suppose that V ∈ A∞(Rd). If δ > 0 and HA,a,V u = 0 in Ω, then

(
−
ˆ
Q

|∇µu|2
) 1

2

.δ

(
−
ˆ

2Q

|∇µu|δ
)1/δ

,

for all cubes Q ⊂ 2Q ⊂⊂ Ω, where the implicit constant depend only on κ, ‖A‖∞, d and

δ.

Proof. Suppose that HA,a,V u = 0 in Ω and let Q denote an arbitrary cube such that

2Q ⊂⊂ Ω. If l(2Q)−́
2Q
V

1
2 ≥ 1, then by Caccioppoli’s inequality in Lemma 7.1.1 with

f = 0, followed by the reverse Hölder estimate in Proposition 7.1.2 with δ = 1, we have

(
−
ˆ
Q

|∇µu|2
)1/2

.
1

l(Q)

(
−
ˆ

(3/2)Q

|u|2
)1/2

.
1

l(Q)
−
ˆ

2Q

|u|

.
1

l(2Q)

(
l(2Q)−

ˆ
2Q

V
1
2

)β
−
ˆ

2Q

|u|

. −
ˆ

2Q

|∇µu|,

where β ∈ (0, 1) denotes the constant from the Fefferman–Phong inequality in Proposi-
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tion 2.2.5 applied here with p = 1 and ω = V
1
2 ∈ A∞(Rd).

If l(2Q)−́
2Q
V

1
2 ≤ 1, then we set uQ := −́

2Q
u and write

−
ˆ
Q

|∇µu|2 . −
ˆ
Q

|∇µ(u− uQ)|2 +−
ˆ
Q

V |uQ|2.

For all ϕ ∈ C∞c (Ω), since HA,a,V u = 0 in Ω, we have

ˆ
Ω

A∇µ(u− uQ) · ∇µϕ =

ˆ
Ω

A∇µu · ∇µϕ−
ˆ
V uQϕ.

Thus, HA,a,V (u−uQ) = −V uQ in Ω. We now define f = (f1, . . . , fd+1) ∈ L2(Ω;Cd) by set-

ting f1 = . . . = fd ≡ 0 and fd+1 := −V 1
2uQ, so −V uQ = (− div‖, V

1
2 )(0, . . . , 0,−V 1

2uQ) =

(∇µ)∗f and HA,a,V (u− uQ) = (∇µ)∗f in Ω. The inhomogeneous version of Caccioppoli’s

inequality in Proposition 7.1.1 can then be applied to show that

−
ˆ
Q

|∇µu|2 .
1

l(Q)2
−
ˆ

2Q

|u− uQ|2 +−
ˆ

2Q

V |uQ|2 .
(
−
ˆ

2Q

|∇u|2∗
)2/2∗

+−
ˆ

2Q

V |uQ|2,

where we used the Sobolev–Poincaré inequality (see (7.45) in [30]) in the second estimate

with 2∗ := 2d/(d + 2). Using (7.1.2) followed by the Fefferman–Phong inequality in

Proposition 2.2.5, applied again with p = 1 and ω = V
1
2 but now in the case when

l(2Q)−́
2Q
V

1
2 ≤ 1, we have

(
−
ˆ

2Q

V |uQ|2
)1/2

≤
(
−
ˆ

2Q

V

)1/2

−
ˆ

2Q

|u| .
(
−
ˆ

2Q

V
1
2

)
−
ˆ

2Q

|u| . −
ˆ

2Q

|∇µu|.

Combining these estimates with Jensen’s inequality we get

(
−
ˆ
Q

|∇µu|2
)1/2

.

(
−
ˆ

2Q

|∇µu|2∗
)1/2∗

,

since 1 < 2∗ < 2.

We can now conclude that the preceding weak reverse Hölder estimate holds for all

cubes Q ⊂ 2Q ⊂⊂ Ω. The self-improvement of the exponent in the right-hand side of

such estimates (see [33, Theorem 2]) completes the proof.
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We note that Remark 7.1.3 also applies to Proposition 7.1.4.

7.2 Off-Diagonal Estimates

The next step to proving the non-tangential maximal bounds is to show that DB has

Lq → Lq off-diagonal estimates for some q < 2. First we need to know that DB is

bisectorial in Lq and so we need to prove the Lq-resolvent bounds for DB. To do this we

follow the methods of [2] and [10], adapting them to the potential V .

Lemma 7.2.1. There exists 1 < p1 < 2 < p2 such that for q ∈ (p1, p2) we have the

Lq → Lq resolvent bounds

‖(I + itDB)−1f‖q . ‖f‖q,

for all f ∈ L2(Rn;Cn+2) ∩ Lq(Rn;Cn+2).

Proof. Let f ∈ L2(Rn;Cn+2)∩Lq(Rn;Cn+2) where q is to be chosen later. Then define f̃

such that (I + itDB)f̃ = f . Define

g =


(Bf)⊥

f‖

fµ

 , g̃ =


(Bf̃)⊥

f̃‖

f̃µ

 then f =


(Ag)⊥

g‖

gµ

 , f̃ =


(Ag̃)⊥

g̃‖

g̃µ

 .

Now let ψ ∈ C∞c (Rn;Cn+2). Then

ˆ
f · ψ =

ˆ
(I + itDB)f̃ · ψ =

ˆ
f̃ · ψ +

ˆ
Bf̃ · (itDψ). (7.2.1)

Now let ψ = (ϕ, 0, 0)T , where ϕ ∈ C∞c (Rn) . Noting that (Bf̃)‖ = (Ag̃)‖ and (Bf̃)µ =
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(Ag̃)µ = ag̃µ, then, by (7.2.1), we obtain

ˆ
(Ag)⊥ϕ =

ˆ
f̃⊥ϕ+

ˆ
(Bf̃)‖ · (it∇‖ϕ) +

ˆ
(Bf̃)µ(it|V |

1
2ϕ)

=

ˆ
Rn

(Ag̃)⊥ϕ+

ˆ
(Ag̃)‖ · (it∇‖ϕ) +

ˆ
(Ag̃)µ(it|V |

1
2ϕ)

=

ˆ


(Ag̃)⊥

(Ag̃)‖

(Ag̃)µ

 ·


ϕ

it∇‖ϕ

it|V | 12ϕ


(7.2.2)

Letting ψ = (0, ϕ, 0)T , where ϕ ∈ C∞c (Rn;Rn), in (7.2.1). Then we have that

ˆ
g‖ · ϕ =

ˆ
g̃‖ · ϕ+

ˆ
(Bf̃)⊥(it div‖ ϕ) =

ˆ
g̃‖ · ϕ−

ˆ
it∇‖g̃⊥ · ϕ. (7.2.3)

Similarly, letting ψ = (0, 0, ϕ)T , where ϕ ∈ C∞c (Rn), in (7.2.1), we obtain

ˆ
gµϕ =

ˆ
g̃µϕ−

ˆ
(Bf̃)⊥(it|V |

1
2ϕ) =

ˆ
g̃µϕ−

ˆ
(it|V |

1
2 g̃⊥)ϕ. (7.2.4)

Therefore, we have g‖ = g̃‖ − it∇‖g̃⊥ and gµ = g̃µ − it|V |
1
2 g̃⊥. For t > 0 we define the

space V1,q
t (Rn) to be V1,q(Rn) equipped with the norm ‖u‖q + t‖∇µu‖q. Also, define

(V1,q
t (Rn))∗ to be the dual space equipped with the dual norm. Define the operator

Lt,V : V1,q
t (Rn) → (V1,q′

t (Rn))∗ such that for u ∈ V1,q
t (Rn) we define the linear functional

Lt,V u ∈ (V1,q′

t (Rn))∗ defined, for all ϕ ∈ V1,q′

t (Rn), by

(Lt,V u)(ϕ) :=

ˆ
A


u

it∇‖u

it|V | 12u

 ·


ϕ

it∇‖ϕ

it|V | 12ϕ

 .
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Now, using Hölder’s inequality, we have

|(Lt,V u)(ϕ)| ≤ ‖A‖∞
ˆ
|u||ϕ|+ t2|∇µu||∇µϕ|,

≤ ‖A‖∞
(
‖u‖q‖ϕ‖q′ + t2‖∇µu‖q‖∇µϕ‖q′

)
,

≤ ‖A‖∞ (‖u‖q + t‖∇µu‖q) (‖ϕ‖q′ + t‖∇µϕ‖q′) ,

= ‖A‖∞‖u‖V1,q
t
‖ϕ‖V1,q′

t
.

Therefore, ‖Lt,V u‖(V1,q′
t

)∗ ≤ ‖A‖∞‖u‖V1,q
t

. That is, Lt,V is bounded for q ∈ (1,∞)

independently of q. Now recall

R(D) =




h

∇‖g

|V | 12 g

 : h ∈ L2(Rn), g ∈ V̇1,2(Rn)

 , then


u

∇‖(itu)

|V | 12 (itu)

 ∈ R(D).

Therefore, by the ellipticity of A, since V1,2
t ⊆ V̇1,2, and so for any u ∈ V1,2

t (Rn), we have

|(Lt,V u)(u)| ≥ Re


ˆ
Rn
A


u

∇‖(itu)

|V | 12 (itu)

 ·


u

∇‖(itu)

|V | 12 (itu)


 & κ(‖u‖2

2+t2‖∇µu‖2
2) h κ‖u‖2

V1,2
t
.

That is ‖Lt,V u‖(V1,2
t )

∗ & ‖u‖V1,2
t

. There exists ε > 0 such that |V | 12 ∈ B2+ε, therefore using

[15] we have V1,q
t (Rn) is an interpolation space for q ∈ (1, 2 + ε). Then by Šněıberg’s

Lemma in [49] we have there exists p1, p2 with 1 < p1 < 2 < p2 < 2 + ε such that

‖Lt,V u‖(V1,q
t )

∗ &q ‖u‖V1,q
t

for all q ∈ (p1, p2). That is Lt,V is invertible for q ∈ (p1, p2). For
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ϕ ∈ V1,q′

t (Rn) use (7.2.3) and (7.2.4), and then (7.2.2) to obtain

(Lt,V g̃⊥)(ϕ) =

ˆ
Rn
A


g̃⊥

it∇‖g̃⊥

it|V | 12 g̃⊥

 ·


ϕ

it∇‖ϕ

it|V | 12ϕ



=

ˆ
Rn


A⊥⊥g̃⊥ + itA⊥‖∇‖g̃⊥

A‖⊥g̃⊥ + itA‖‖|V |
1
2 g̃⊥

a(g̃µ − gµ)

 ·


ϕ

it∇‖ϕ

it|V | 12ϕ



=

ˆ
Rn


A⊥⊥g̃⊥ + A⊥‖(g̃‖ − g‖)

A‖⊥g̃⊥ + A‖‖(g̃‖ − g‖)

a(g̃µ − gµ)

 ·


ϕ

it∇‖ϕ

it|V | 12ϕ



=

ˆ
Rn


(Ag̃)⊥ − A⊥‖g‖

(Ag̃)‖ − A‖‖g‖

(Ag̃)µ − agµ

 ·


ϕ

it∇‖ϕ

it|V | 12ϕ



=

ˆ
Rn


(Ag̃)⊥

(Ag̃)‖

(Ag̃)µ

 ·


ϕ

it∇‖ϕ

it|V | 12ϕ

−

A⊥‖g‖

A‖‖g‖

agµ

 ·


ϕ

it∇‖ϕ

it|V | 12ϕ



=

ˆ
(Ag)⊥ϕ−


A⊥‖g‖

A‖‖g‖

agµ

 ·


ϕ

it∇‖ϕ

it|V | 12ϕ



=

ˆ
Rn


A⊥⊥g⊥

−A‖‖g‖

−agµ

 ·


ϕ

it∇‖ϕ

it|V | 12ϕ

 .

Define F : Lq(Rn;Cn+2)→ (V1,q′

t (Rn))∗ such that for u ∈ Lq(Rn;Cn+2) and ϕ ∈ V1,q′

t (Rn)

then

(Fu)(ϕ) :=

ˆ
Rn


A⊥⊥u⊥

−A‖‖u‖

−auµ

 ·


ϕ

it∇‖ϕ

it|V | 12ϕ

 .
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Therefore, Lt,V g̃⊥ = Fg. Now for any ϕ ∈ V1,q′

t (Rn), we have

|(Fu)(ϕ)| ≤ ‖A‖∞
ˆ
Rn

(
|u⊥||ϕ|+ t|u‖||∇‖ϕ|+ t|uµ|||V |

1
2ϕ|
)

≤ ‖A‖∞ (‖u‖q‖ϕ‖q′ + t‖u‖q‖∇µϕ‖q′)

= ‖A‖∞‖u‖q‖ϕ‖V1,q′
t
.

Thus

‖Fu‖(V1,q′
t

)∗ ≤ ‖A‖∞‖u‖q. (7.2.5)

Therefore, using (7.2.2), (7.2.3), (7.2.4), the ellipticity of Lt,V , (7.2.5), and the definition

of g, we obtain

‖f̃‖q h ‖g̃‖q . ‖g̃⊥‖V1,q
t

+‖g‖q . ‖Lt,V g̃⊥‖V1,q
t

+‖g‖q = ‖Fg‖(V1,q
t )∗+‖g‖q . ‖g‖q h ‖f‖q.

Recalling the definition of f̃ , gives

‖(I + itDB)−1f‖q . ‖f‖q.

Now as L2(Rn)∩Lq(Rn) is dense in Lq(Rn) a density argument completes the proof.

Therefore, we have the off-diagonal estimates

Proposition 7.2.2. Let E,F ⊂ Rn and f ∈ R(D) with supp(f) ⊂ F . Then, there exists

1 < p1 < 2 < p2 such that for q ∈ (p1, p2), we have the following estimate

‖(I + itDB)−1f‖Lq(E) ≤ CM

(
1 +

dist(E,F )

t

)−M
‖f‖Lq(F ),

where CM does not depend on E,F, f , and t.

Proof. By Lemma 7.2.1 we have there exists 1 < p1 < 2 < p2 such that, for p ∈ (p1, p2),

we have

‖(I + itDB)−1f‖Lp(E) ≤ Cp‖(I + itDB)−1f‖p ≤ Cp‖f‖p = Cp‖f‖Lp(F ),

185



where Cp is independent of E,F, f , and t. We also have, from Proposition 3.1.3, for any

N ∈ N then

‖(I + itDB)−1f‖L2(E) ≤ CN

(
1 +

dist(E,F )

t

)−N
‖f‖L2(F ),

where CN is independent of E,F, f , and t. Then by Riesz–Thorin interpolation we have

for any θ ∈ (0, 1) and 1
q

= 1−θ
p

+ θ
2

then

‖(I + itDB)−1f‖Lq(E) ≤ C1−θ
p Cθ

N

(
1 +

dist(E,F )

t

)−Nθ
‖f‖Lq(F ).

Now choosing N ∈ N such that Nθ ≥M gives the required result.

7.3 Non-Tangential Estimates

Now that we have weak reverse Hölder estimates for the gradient of solutions and Lq →

Lq off diagonal estimates we are ready to prove the non-tangential maximal function

estimates. We first give the following lemma.

Lemma 7.3.1. If F ∈ L2
loc(R+;L2(Rn;Cn+2)), then

sup
t>0
−
ˆ 2t

t

‖F (s)‖2
2 ds . ‖Ñ∗F‖2

2 .
ˆ ∞

0

‖F (s)‖2
2

ds

s
.

Proof. Firstly, by the definition of the non-tangential maximal function we have

|Ñ∗F (x)|2 h sup
t>0

ˆ 2t

t

−
ˆ
Qt(x)

|F (s, y)|2 dy ds

s
.
ˆ ∞

0

1

sn

ˆ
Rn
1Qs(y)(x)|F (s, y)|2 dy ds

s
,

where Qt(x) is the cube with side-length l(Qt(x)) = t, centred at x. By integrating in x
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and then using Tonelli’s Theorem, we obtain

‖Ñ∗F‖2
2 .
ˆ
Rn

ˆ ∞
0

1

sn

ˆ
Rn
1Qs(y)(x)|F (s, y)|2 dy ds dx

s

=

ˆ ∞
0

1

sn

ˆ
Rn
|Qs(y)||F (s, y)|2 dy ds

s

h
ˆ ∞

0

‖F (s)‖2
2

ds

s
.

For the lower inequality let t0 > 0 be fixed and arbitrary. Therefore, by definition of

supremum, we have

sup
t>0

ˆ 2t

t

−
ˆ
Qt(x)

|F (s, y)|2 dy ds

s
≥
ˆ 2t0

t0

−
ˆ
Qt0 (x)

|F (s, y)|2 dy ds

s

h
ˆ 2t0

t0

1

sn

ˆ
Rn
1Qs(y)(x)|F (s, y)|2 dy ds

s
.

Again, integrating in x and then using Tonelli’s Theorem gives

‖Ñ∗F‖2
2 &
ˆ 2t0

t0

1

sn

ˆ
Rn
|Qs(y)||F (s, y)|2 dy ds

s

h −
ˆ 2t0

t0

ˆ
Rn
|F (s, y)|2 dy ds

= −
ˆ 2t0

t0

‖F (s)‖2
2 ds.

Finally, noting that t0 was arbitrary so the above is true for all t0 > 0. Thus, taking

supremum over t0 > 0 completes the proof.

We are finally ready to prove the non-tangential maximal function estimates and

square function estimates for first-order solutions when V ∈ B n
2 (Rn).

Theorem 7.3.2. If F ∈ L2
loc(R+;R(D)) is a weak solution of ∂tF + DBF = 0 in R+

such that

sup
t>0
−
ˆ 2t

t

‖F (s)‖2
2 ds <∞,

then ˆ ∞
0

‖t∂tF‖2
2

dt

t
h ‖f‖2

2 h ‖Ñ∗F‖2
2,
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where f ∈ E+
DBH and F (t) = e−tDBf as in Theorem 5.3.8.

Proof. The ω-bisectorial operator DB has a bounded H∞(Soµ)-functional calculus on

R(D) for all µ > ω by Theorem 5.0.1. Therefore, applying the equivalence in property 4

of Theorem 2.1.4 with ψ ∈ Ψ(Soµ) defined by ψ(z) := [z]e−[z], where [z] := z sgn z, for all

z ∈ Soµ, we have

ˆ ∞
0

‖t∂tF‖2
2

dt

t
=

ˆ ∞
0

‖t∂t(e−t[DB]f)‖2
2

dt

t

=

ˆ ∞
0

‖t[DB]e−t[DB]f‖2
2

dt

t

=

ˆ ∞
0

‖ψ(tDB)f‖2
2

dt

t

h ‖f‖2
2,

where the differentiation in the second equality is justified because (e−t[DB])t>0 is an

analytic semi-group on R(D) by Lemma 5.3.3.

It remains to prove that ‖Ñ∗F‖2
2 h ‖f‖2

2. To begin, by Lemma 7.3.1 and Proposition

5.3.10, we have

‖Ñ∗F‖2
2 & sup

t>0
−
ˆ 2t

t

‖F (s)‖2
2 ds ≥ lim

t→0
−
ˆ 2t

t

‖F (s)‖2
2 ds = ‖f‖2

2.

To prove the reverse estimate, consider a Whitney box W (t, x) := [t, 2t]×Qt(x) ⊂ Rn+1
+

for some x ∈ Rn and t > 0. Using Proposition 6.1.2, since F ∈ L2
loc(R+;R(D)) is a weak

solution of ∂tF +DBF = 0 in R+, there exists a weak solution u such that HA,a,V u = 0

in Rn+1
+ and F = ∇A,µu. We now choose p ∈ (p1, 2), where p1 is the exponent from

Lemma 7.2.1. Applying Proposition 7.1.4 onW , since 2W = [t/2, 5t/2]×Q2t(x) ⊂⊂ Rn+1
+ ,
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and the fact that A is bounded and invertible on R(D), we have

(
−
¨
W

|F |2
) 1

2

=

(
−
¨
W

|∇A,µu|2
) 1

2

.

(
−
¨
W

|∇µu|2
) 1

2

.p

(
−
¨

2W

|∇µu|p
) 1

p

.

(
−
¨

2W

|F |p
) 1

p

.

Now, using F (t) = e−t|DB|f for some f ∈ R(D), recalling that Rs = (I + isDB)−1, then

we have

(
−
¨

2W

|F (s, y)|p dy ds

) 1
p

=

(
−
¨

2W

|e−s|DB|f(y)|p dy ds

) 1
p

.

(
−
¨

2W

|(e−s|DB| −Rs)f(y)|2 dy ds

) 1
2

+

(
−
¨

2W

|Rsf(y)|p dy ds

) 1
p

.

Therefore,

‖Ñ∗F‖2 .
∥∥∥Ñ∗ ((e−t|DB| −Rs)f

)∥∥∥
2

+

∥∥∥∥∥sup
t>0

(
−
¨

2W (t,x)

|Rsf(y)|p dy ds

) 1
p

∥∥∥∥∥
2

.

Then, by Lemma 7.3.1, letting ψ(z) := e−[z]− (1 + iz)−1 so ψ ∈ Ψ(Soµ), and the quadratic

estimates for DB in Theorem 3.0.1, we have

∥∥∥Ñ∗ ((e−t|DB| −Rs)f
)∥∥∥2

2
.
ˆ ∞

0

‖(e−t|DB| −Rs)f‖2
2

dt

t
=

ˆ ∞
0

‖ψ(tDB)f‖2
2

dt

t
. ‖f‖2

2.

Now (
−
¨

2W (x,t)

|Rsf(y)|p dy ds

) 1
p

h

(ˆ 5t
2

t
2

ˆ
Rn
12Qt(x)(y)|Rsf(y)|pdy ds

sn+1

) 1
p
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If s ∈ ( t
2
, 5t

2
), then using the off-diagonal estimates in Proposition 7.2.2, we have

‖12Qt(x)Rsf‖p ≤
∞∑
j=0

‖1Q2t(x)Rs1Cj(Q2t(x))f‖p

.
∞∑
j=0

(
1 +

dist(Q2t(x), Cj(Q2t(x))

s

)−M
‖1Cj(Q2t(x))f‖p

.
∞∑
j=0

2−jM(2jt)
n
p

(
−
ˆ

2j+1Qt(x)

|f |p
) 1

p

. t
n
p (M(|f |p)(x))

1
p

∞∑
j=0

2−j(M−
n
p

)

where C0(Q2t(x)) := Q2t(x) and Cj(Qt(x)) := Q2j+1t(x) \ Q2jt(x) for all j ∈ N. Then

taking M > n
p

gives

‖12Qt(x)Rsf‖pp . tnM(|f |p)(x), ∀s ∈
(
t

2
,
5t

2

)
.

Thus, using the above calculations, we have

(ˆ 5t
2

t
2

ˆ
Rn
12Qt(x)(y)|Rsf(y)|pdy ds

sn+1

) 1
p

=

(ˆ 5t
2

t
2

‖12Qt(x)(y)Rsf‖pp
ds

tn+1

) 1
p

.

(ˆ 5t
2

t
2

(M(|f |p)(x))
ds

t

) 1
p

h (M(|f |p)(x))
1
p .

Therefore by the boundedness of the Hardy–Littlewood maximal function on L
2
p , where

2
p
> 1, we have

∥∥∥∥∥sup
t>0

(
−
¨

2W (x,t)

|Rsf(y)|p dy ds

) 1
p

∥∥∥∥∥
2

. ‖ (M(|f |p))
1
p ‖2

= ‖ (M(|f |p)) ‖
1
p
2
p

. ‖|f |p‖
1
p
2
p

= ‖f‖2.
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Thus

‖Ñ∗(F )‖2 . ‖f‖2.

This completes the proof.

We are now left to prove that first-order solutions, F , converge pointwise on Whitney

averages to the initial data f .

Proposition 7.3.3. If F (t, x) = e−t|DB|f(x) for some f ∈ R(D), then we have almost

everywhere convergence of Whitney averages to f as t→ 0. That is

lim
t→0
−
¨
W (t,x)

|F (s, y)− f(x)|2 dy ds = 0,

for almost every x ∈ Rn.

Proof. We proceed as in [6] by proving the estimate on a dense subspace of R(D), namely

{h ∈ R(DB) ∩ D(DB) : DBh ∈ Lp(Rn;Cn+2)}, for some p ∈ (2, p2) where p2 is as in

Proposition 7.2.2. To prove that this set is dense let m ∈ N. Define Tm ∈ L(L2(Rn;Cn+2))

by

Tmh := R 1
m
imDBRmh,

for each h ∈ R(D) where Rk := (I + ikDB)−1. As DB is densely defined and bisectorial

then the Tm are uniformly bounded with respect to m ∈ N. Now as h ∈ D(DB) we have

‖(I −R 1
m

)h‖2 = ‖ i
m
DBR 1

m
h‖2 .

1

m
‖DBh‖2 → 0,

as m → ∞. Also, as h ∈ R(DB) then there exists u ∈ D(DB) such that h = DBu.

Then

‖(I − imDBRm)h‖2 = ‖Rmh‖2 = ‖im
im

DBRmu‖2 =
1

m
‖(I −Rm)u‖2 .

1

m
‖u‖2 → 0,
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as m→∞. Therefore

‖(I − Tm)h‖2 ≤ ‖(I −R 1
m

)h‖2 + ‖R 1
m
h−R 1

m
imDBRmh‖

. ‖(I −R 1
m

)h‖2 + ‖(I − imDBRm)h‖2.

Thus ‖(I −Tm)u‖2 → 0, as m→∞. Hence we have proved Tm converges strongly to the

identity as m→∞. Now let h ∈ R(D). Let hm ∈ L2(Rn;Cn+2)∩Lp(Rn;Cn+2) such that

hm → h in L2 and p ∈ (2, p2). Now, as Tm is uniformly bounded in m and converges to

the identity we have

‖Tmhm − h‖2 ≤ ‖Tmhm − Tmh‖2 + ‖Tmh− h‖2 . ‖hm − h‖2 + ‖Tmh− h‖2 → 0,

as m→∞. Now by Lemma 7.2.1 we have that there exists p > 2 such that

‖DBTmhm‖p = ‖DBR 1
m

(I −Rm)hm‖p = m‖(R 1
m
− I)(I −Rm)hm‖p . m‖hm‖p <∞.

Thus DBTmhm ∈ Lp(Rn+1;Cn+2). Hence {h ∈ R(DB)∩D(DB) : DBh ∈ Lp(Rn;Cn+2)}

is a dense subspace of R(D).

Now let f ∈ {h ∈ R(DB) ∩ D(DB) : DBh ∈ Lp(Rn;Cn+2} and let x ∈ Rn be a

Lebesgue point. Then

−
¨
W (t,x)

|F (s, y)− f(x)|2 dy ds .−
¨
W (t,x)

|e−tDBf(y)−Rtf(y)|2 dy ds

+−
¨
W (t,x)

|Rtf(y)− f(y)|2 dy ds

+−
¨
W (t,x)

|f(y)− f(x)|2 dy ds.

Now the third term above converges to 0 as t→ 0 by the Lebesgue differentiation theorem.

For the first term let ψ ∈ Ψ(Soµ) given by ψ(z) := e−z − (1 + iz)−1. Now define

h(t, x) :=

¨
W (t,x)

|ψ(sDB)f(y)|2 dy ds

sn+1
.
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Note for almost all x ∈ Rn we have that 0 ≤ h(t0, x) ≤ h(t1, x) for 0 ≤ t0 ≤ t1. Also by

Proposition 7.3.1 the quadratic estimates for DB we have that

ˆ
Rn
h(t, x) dx .

ˆ t

0

‖ψ(sDB)f‖2
2

ds

s
. ‖f‖2

2.

Therefore, by the monotone convergence theorem and h being continuous in t, we have

0 ≤
ˆ
Rn
h(0, x) dx = lim

t→0

ˆ
Rn
h(t, x) dx . lim

t→0

ˆ t

0

‖ψ(sDB)f‖2
2

ds

s
= 0.

Thus, h(0, x) = 0 for almost every x ∈ Rn. Therefore

lim
t→0
−
¨
W (t,x)

|e−tDBf(y)−Rtf(y)|2 dy ds h lim
t→0

h(t, x) = 0,

for almost every x ∈ Rn. Now for the second term we use the off diagonal argument used

in the proof of Theorem 7.3.2 to obtain

−
¨
W (t,x)

|Rtf(y)− f(y)|2 dy ds =−
¨
W (t,x)

|sRtDBf(y)|2 dy ds

h t2−
¨
W (t,x)

|RtDBf(y)|2 dy ds

. t2
(
M(|DBf |2)(x)

)2
.

As there exists p > 2 such that DBf ∈ Lp(Rn+1;Cn+2) we have that M(|DBf |2) ∈

Lp(Rn). ThusM(|DBf |2)(x) <∞ almost everywhere. Then, asM(|DBf |2) is indepen-

dent of t, we have that

lim
t→0
−
¨
W (t,x)

|Rtf(y)− f(y)|2 dy ds .
(
M(|DBf |2)(x)

)2
lim
t→0

t2 = 0,

for almost every x ∈ Rn.

Now let f ∈ R(D) and ε > 0. Let {fk}k∈N ⊂ {h ∈ R(DB) ∩ D(DB) : DBh ∈

Lp(Rn;Cn+2} such that fk → f as n → 0. Now choose K ∈ N and t > 0 (depending on
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K ∈ N) such that

‖f − fK‖2
2 <

tnε

3
and −

¨
W (t,x)

|FK(s, y)− fK(y)|2 dy ds <
ε

3

Now defining FK(t) := e−t[DB]fK . Then using the bounded holomorphic functional cal-

culus of DB we have

−
¨
W (t,x)

|F (s, y)− f(x)|2 dy ds .−
¨
W (t,x)

|e−t[DB][f(y)− fK(y)]|2 dy ds

+−
¨
W (t,x)

|FK(s, y)− fK(y)|2 dy ds

+−
¨
W (t,x)

|fK(y)− f(y)| dy ds

. −
ˆ 2t

t

t−n‖e−t[DB][f(y)− fK(y)]‖2
2 dt+

ε

3
+ t−n‖fK − f‖2

2

. t−n‖fK − f‖2
2 +

ε

3
+
ε

3

< ε.

As required

Combining Proposition 7.3.3 with Theorem 5.3.8 and Proposition 5.3.4 we gain the

following corollary, which is the same as Corollary 5.3.9 with convergence on Whitney

averages as in (2.6.3) instead of in L2.

Corollary 7.3.4. We have (5.3.2) is globally well-posed in E±DBH with pointwise con-

vergence on Whitney averages. Moreover, solutions to (5.3.2) are of the form e−tDBf for

±t > 0 for initial data f ∈ E±DBH
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CHAPTER 8

SOLVABILITY RESULTS FOR THE ELECTRIC
SCHÖDINGER EQUATION

In this chapter we discuss results concerning the solvbility of the second-order equation

HA,a,V u = 0. We are finial in a position to prove Theorems 6.0.1 and 6.0.2 which

will resolve the problems of well-posedness of the boundary value problems in the sense

of (2.6.4) and (2.6.5). We will also consider the notion of compatible well-posedness,

where we will prove that the solutions from Theorem 6.0.1 are equivalent the energy

solutions, which are constructed from the Lax–Milgram theorem. To do this we will need

to know the trace space of V̇1,2(Rn+1
+ ) which will rely on the construction of the fractional

counterpart V̇s,2(Rn).

8.1 Well-posedness of the Second-Order Equation

We now are ready to transfer results about well-posedness from the first-order setting in

Chapter 6 to the second order setting as in Theorem 6.0.1. We first show the equivalence

between the invertability of the mappings (6.2.1) and the well-posedness of the first-order

equation as in definition 5.3.2.

8.1.1 Equivalences of well-posedness

We first show that non-tangential control is sufficient to give a correspondence between

the first-order and the second-order solutions.
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Proposition 8.1.1. If HA,a,V u = 0 with Ñ∗(∇µu) ∈ L2(Rn), then F := ∇A,µu is a weak

solution of ∂tF +DBF = 0 in R+.

Proof. By Proposition 6.1.2, it suffices to prove that ∇A,µu ∈ L2
loc(R+;L2(Rn+1;Cn+2)).

Now let K ⊂ R+ be compact. Then, there exists an interval (t0, t1) such that K ⊆ (t0, t1).

Then, letting l = log2(t1)− log2(t0) and using Lemma 7.3.1, we have

ˆ
K

ˆ
Rn
|∇A,µu|2 dx ds .

ˆ t1

t0

ˆ
Rn
|∇µu|2 dx ds,

≤
l∑

k=0

ˆ 2k+1t0

2kt0

‖∇µu‖2
2 ds,

=
l∑

k=0

2kt0−
ˆ 2k+1t0

2kt0

‖∇µu‖2
2 ds,

≤
l∑

k=0

2kt0 sup
t>0
−
ˆ 2t

t

‖∇µu‖2
2 ds,

.
l∑

k=0

2kt0‖Ñ∗(∇µu)‖2
2,

<∞.

Thus ∇A,µu ∈ L2
loc(R+;L2(Rn+1;Cn+2)), as required.

Remark 8.1.2. If V ∈ L
n
2 (Rn) then we have V̇1,2(Rn+1

+ ) = Ẇ 1,2(Rn+1
+ ). That is,

‖∇µu‖2 h ‖∇u‖2. Therefore, in the case when V ∈ Ln
2 (Rn) we may replace the condition

Ñ∗(∇µu) ∈ L2(Rn) with Ñ∗(∇u) ∈ L2(Rn).

Now we show that the notions of well-posedness transfer across from the first-order

system to the second-order equations.

Proposition 8.1.3. (R)AL2 is well-posed if and only if ΦR : H0,+
DB → {∇µu : u ∈ V̇1,2(Rn)}

is an isomorphism.

Proof. First suppose (R)AL2 is well-posed. Let ϕ ∈ V̇1,2(Rn). Let u be the unique solution

of the Regularity problem with boundary data ϕ. AsHA,a,V u = 0 and Ñ∗(∇µu) ∈ L2(Rn),

then by Proposition 8.1.1, we have F := ∇A,µu is a weak solution of ∂tF +DBF = 0 in
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R+. Thus, by Theorem 5.3.8 we have there exists f ∈ H0,+
DB such that limt→0+ F (t) = f

in L2. Now ∥∥∥∥∥∥∥
F‖(t, ·)
Fµ(t, ·)

−∇µϕ

∥∥∥∥∥∥∥
2

= ‖∇‖µu(t, ·)−∇µϕ‖2 → 0,

as t → 0. That is (f‖, fµ)T = ∇µϕ. That is ΦR : H0,+
DB → {∇µu : u ∈ V̇1,2(Rn)} is

surjective as for every ϕ ∈ V̇1,2(Rn) there exists f ∈ H0,+
DB such that ΦR(f) = ∇µϕ.

Suppose there exists f ∈ H0,+
DB such that ΦR(f) = 0. By Corollary 5.3.9 we have (5.3.2)

is globally well-posed and so there exists a unique F which satisfies (5.3.2) with initial data

f . Also, let u be the unique solution of the regularity problem with initial data 0. Since

HA,a,V 0 = 0 and the solution 0 satisfies the boundary data 0, therefore, by uniqueness,

we have u = 0. Then, G = ∇A,µu = 0 satisfies (5.3.2) with initial data 0. Hence, by

uniqueness, F = G = 0. Thus, f = 0. That is ΦR : H0,+
DB → {∇µu : u ∈ V̇1,2(Rn)} is

injective.

Conversely, suppose ΦR : H0,+
DB → {∇µu : u ∈ V̇1,2(Rn)} is an isomorphism. Let

ϕ ∈ V̇1,2(Rn). Then we have a unique f ∈ H0,+
DB such that ΦR(f) = ∇µϕ. By corollary

5.3.9 there exists a unique F ∈ L2
loc(R+;R(D)) satisfying (5.3.2) with initial data f . Then,

by Proposition 6.1.2 there exists u such that HA,a,V u = 0 and F = ∇A,µu. Therefore

‖u(t, ·)− ϕ‖V̇1,2 =

∥∥∥∥∥∥∥
F‖(t, ·)
Fµ(t, ·)

−∇µϕ

∥∥∥∥∥∥∥
2

→ 0,

as t→ 0. We also have convergence pointwise on Whitney averages

lim
t→0
−
¨
W (t,x)

|∇‖µu−∇µϕ|2 dy ds = lim
t→0
−
¨
W (t,x)

∣∣∣∣∣∣∣
F‖
Fµ

−∇µϕ

∣∣∣∣∣∣∣
2

dy ds = 0.

That is for each ϕ ∈ V̇1,2(Rn) there exists u a solution to HA,a,V u = 0. Now by Theorem

5.3.8 we have F (t) = e−tDBf . Thus, by Theorem 7.3.2 we have Ñ∗(F ) ∈ L2(Rn). There-

fore, as |∇µu| = |A−1||∇A,µu| . |F |. And so we have Ñ∗(∇µu) ∈ L2(Rn). Thus, there

exists u solving the problem (R)AL2 .
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Now we prove uniqueness. Let ϕ ∈ V̇1,2(Rn) be such that there exists u, v satisfying

HA,a,V u = HA,a,V v = 0, where Ñ∗(∇µu), Ñ∗(∇µv) ∈ L2(Rn), and u and v converge to the

boundary data ∇µϕ. Now, by Proposition 8.1.1 we have G = ∇A,µu ∈ L2
loc(R+;R(D))

and H = ∇A,µv ∈ L2
loc(R+;R(D)) are weak solutions to ∂tF + DBF = 0. Thus, by

Theorem 5.3.8, there exists g, h ∈ H0,+
DB such that G(t) = e−tDBg and H(t) = e−tDBh.

Now ∥∥∥∥∥∥∥
G‖(t, ·)
Gµ(t, ·)

−∇µϕ

∥∥∥∥∥∥∥
2

= ‖∇‖µu(t, ·)−∇µϕ‖2 → 0,

and ∥∥∥∥∥∥∥
H‖(t, ·)
Hµ(t, ·)

−∇µϕ

∥∥∥∥∥∥∥
2

= ‖∇‖µv(t, ·)−∇µϕ‖2 → 0,

as t → 0. Hence ΦR(g) = ΦR(h) = ∇µϕ. Then, as ΦR : H0,+
DB → {∇µu : u ∈ V̇1,2(Rn)}

is an isomorphism, we have g = h. Thus, G = H. Therefore, ∇A,µu = ∇A,µv. That is

u = v. Hence, (R)AL2 is well-posed.

Proposition 8.1.4. (N )AL2 is well-posed if and only if ΦN : H0,+
DB → L2(Rn) is an isomor-

phism.

Proof. Proved similarly to the regularity case.

8.1.2 Proofs of Main Theorems

We now give the proofs of the main theorems. We start with the well-posedness theorem

Proof of Theorem 6.0.1. LetA be a block type matrix. Then by Lemma 6.2.3 we have the

mappings ΦR : H0,+
DB → {∇µu : u ∈ V̇1,2(Rn)} and ΦN : H0,+

DB → L2(Rn) are isomorphisms.

Thus, by Propositions 8.1.3 and 8.1.4 we have (N )AL2 and (R)AL2 are well-posed.

Now let A be self-adjoint. Then by Proposition 6.3.5 we have that ΦR : H0,+
DB →

{∇µu : u ∈ V̇1,2(Rn)} and ΦN : H0,+
DB → L2(Rn) are isomorphisms. Thus, by Propositions

8.1.3 and 8.1.4 we have (N )AL2 and (R)AL2 are well-posed.

To prove openness first let A0 ∈ WP (N ). Let A ∈ L∞(Rn;Cn+2) with ‖A−A0‖∞ < ε

for some ε ∈ (0, κ), to be chosen later, where κ is the ellipticity constant of A0. Now
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define

A(z) := A0 −
z(A0 −A)

‖A0 −A‖∞
,

for z ∈ Ω := {w ∈ C : |w| < ε}. Then z 7→ A(z) is holomorphic in Ω. A(z) is bounded

and elliptic (with ellipticity constant κ−ε > 0) uniformly in Ω. Now define B(z) := Â(z).

As A(z) is elliptic uniformly in Ω then A⊥⊥(z) is invertible and A⊥⊥(z)−1 is holomorphic

in Ω. Therefore B(z) is holomorphic in Ω. Note

B0 −B(z) = A0A0
−1 −A(z)A0

−1
+A(z)A0

−1 −A(z)A(z)
−1

= (A0 −A(z))A0
−1

+A(z)A0
−1

(A(z)−A0)A(z)
−1
,

where B0 = Â0. Therefore, we have ‖B0 − B(z)‖∞ ≤ C0‖A0 − A(z)‖∞, where C0 > 0

depends only on n, κ, and the bounds of A0
−1

, A(z)
−1

, and A(z). Note that, as A =
̂̂A

we have the lower bound as well so ‖B0 − B(z)‖∞ h ‖A0 − A(z)‖∞. Now choose

z0 = ‖A0 − A‖∞, A = A(z0), and ε < κ
C0

. Thus ‖B0 − B‖ < C0ε < κ, where B = Â.

Therefore, by Theorem 5.2.2, we have

‖f(DB0)u− f(DB)u‖2 . ‖B0 −B‖∞‖f‖∞‖u‖2 . ‖A0 −A‖∞‖f‖∞‖u‖2,

for all f ∈ H∞(Soµ). Choosing f = χ+ gives

‖E+
DBu− E

+
DB0

u‖∞ . ‖A −A0‖∞‖u‖2.

That is the projections E+
DB depend continuously on A. Then as A0 ∈ WP (N ) we

have ΦN : H0,+
DB0
→ L2(Rn) is an isomorphism. Therefore, by [4, Lemma 4.3] we have

for A sufficiently close to A0 then ΦN : H0,+
DB → L2(Rn) is an isomorphism as well. The

Regularity case is identical.

We now prove the equivalence of norms for the Regularity problem. Let A ∈ WP (R).

Let ϕ ∈ V̇1,2(Rn) be the boundary data. Then, as (R)AL2 is well-posed we have Ñ∗(∇µu) ∈

L2(Rn). Therefore, from Proposition 8.1.1, we have F = ∇A,µu a solution of the first-

order equation ∂tF + DBF = 0. By Theorem 5.3.8 we have there exists f ∈ H0,+
DB such
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that Ft = e−tDBf . Then by Theorem 7.3.2 we have

‖Ñ∗F‖2
2 h
ˆ ∞

0

‖t∂tF‖2
2

dt

t
h ‖f‖2

2

As A ∈ WP (R), then by Proposition 8.1.3, we have ΦR : H0,+
DB → {∇µu : u ∈ V̇1,2(Rn)}

is an isomorphism and in particular ΦR(f) = ∇µϕ. Also, we have ‖ΦR(f)‖2 ≤ ‖f‖2 and

as {∇µu : u ∈ V̇1,2(Rn)} is a closed subspace of L2(Rn) and so is a Banach space. Thus,

by the bounded inverse theorem we have Φ−1
R : {∇µu : u ∈ V̇1,2(Rn)} → R(D) is bounded.

That is ‖Φ−1
R (f)‖2 . ‖f‖2. Therefore, ‖f‖2 . ‖ΦR(f)‖2. Hence, we have

‖f‖2 h ‖ΦR(f)‖2 =

∥∥∥∥∥∥∥
f‖
fµ


∥∥∥∥∥∥∥

2

.

Then, recalling that f ∈ R(D), we have

‖Ñ∗(∇µu)‖2
2 h
ˆ ∞

0

‖t∂t∇µu‖2
2

dt

t
h ‖∇µϕ‖2

2.

The proof is similar for the Neumann problem.

Proposition 8.1.5. Let A ∈ L∞(Rn+1
+ ;L(Cn+2)) be elliptic. Now let u be such that

HA,a,V u = 0, with ‖Ñ∗(∇µu)‖2 <∞. Then, there exist ϕ ∈ L2(Rn;Cn+2), such that

lim
t→0
−
ˆ 2t

t

‖∇µu(s)− ϕ‖2
2 ds = 0 = lim

t→∞
−
ˆ 2t

t

‖∇µu(s)‖2
2 ds.

Proof. This follows from Proposition 8.1.1 and Proposition 5.3.10.

Proof of Theorem 6.0.2. Let u be a weak solution ofHA,a,V u = 0 in Rn+1
+ with Ñ∗(∇µu) ∈

L2(Rn). By Proposition 8.1.1, there exists F a weak solution of ∂tF + DBF = 0 in R+

with F = ∇A,µu. Note, as F is a solution of the first-order equation ∂tF + DBF = 0

using Theorem 5.3.8 we have there exists f ∈ H0,+
DB such that F (t, x) = e−tDBf . Then by
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Proposition 7.3.3 we have

lim
t→0
−
¨
W (t,x)

|F (s, y)− f(x)|2 dy ds = 0,

for almost every x ∈ Rn. Note as f ∈ R(D) then for some ϕ ∈ L2(Rn) and φ ∈ V̇1,2(Rn),

we have that

f =


ϕ

∇‖φ

|V | 12φ

 ,
Therefore,

lim
t→0
−
¨
W (t,x)

|∂νAu(t, x)− ϕ(x)|2 dx dt = lim
t→0
−
¨
W (t,x)

∣∣∇‖µu(t, x)−∇µφ(x)
∣∣2 dx dt = 0.

As required.

8.2 Trace Spaces for Adapted Sobolev Spaces

We now turn our attention to compatible well-posedness. But, first we need to construct

the trace space for V̇1,2(Rn+1
+ ) and the definition of the trace operator.

Define the Schrödinger operator

H := −∆‖ + V : D(H) ⊂ L2(Rn)→ L2(Rn).

We use the Schrödinger operator to define adapted fractional Sobolev spaces in a

similar fashion to the fractional Sobolev spaces defined via the Laplacian. First, note

that as H is self-adjoint then H has a bounded Borel functional calculus and so we may

define H
α
2 .

Definition 8.2.1. Let α > 0. We define the fractional homogeneous Sobolev spaces,

V̇α,2(Rn), as the completion of C∞c (Rn) under the norm ‖H α
2 u‖2. We define the norm as
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follows

‖u‖V̇α,2 := ‖H
α
2 u‖2.

we also define V̇−α,2(Rn) := (V̇α,2(Rn))∗, the dual space of V̇α,2(Rn).

Now, as H, ∆, and V
1
2 are all self-adjoint, we have

‖H
1
2u‖2

2 = 〈H
1
2u,H

1
2u〉

= 〈Hu, u〉

= 〈∆‖u, u〉+ 〈V u, u〉

= 〈∆
1
2

‖ u,∆
1
2

‖ u〉+ 〈V
1
2u, V

1
2 〉

= ‖∇u‖2
2 + ‖|V |

1
2u‖2

2

= ‖∇µu‖2
2,

(8.2.1)

for all u ∈ V̇1,2(Rn). We would like similar equivalence for H
1
4 . It is conjectured in [5]

that the following inequality holds for all α ∈ (0, 1) and a range of p, but we only require

the one direction in the case when α = 1
4

and p = 2. To prove this we use the Heinz–Kato

inequality, see [32] and [36].

Theorem 8.2.2 (Heinz–Kato). Let H be a Hilbet space and T : H → H be a bounded

linear operator. If A and B are positive operators with ‖Tx‖ ≤ ‖Ax‖ and ‖T ∗y‖ ≤ ‖By‖

for all x, y ∈ H, then for all x, y ∈ H we have

|〈Tx, y〉| ≤ ‖Aαx‖‖B1−αy‖

for all α ∈ (0, 1).

Lemma 8.2.3. Let V (x) ≥ 0 for all x ∈ Rn. Then we have the following bound

‖∆
1
4

‖ f‖
2
2 + ‖V

1
4f‖2

2 . ‖H
1
4f‖2

2,

for all f ∈ V̇ 1
2
,2(Rn).
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Proof. As V is a positive operator we have the following

‖∆
1
2

‖ f‖
2
2 = 〈∆

1
2

‖ f,∆
1
2

‖ f〉

= 〈∆‖f, f〉

≤ 〈∆‖f, f〉+ 〈V f, f〉

= 〈(∆‖ + V )f, f〉

= 〈H
1
2f,H

1
2f〉

= ‖H
1
2f‖2

2,

for all f ∈ V̇ 1
2
,2(Rn). Also, as ∆

1
2

‖ is self-adjoint then ‖(∆
1
2

‖ )∗f‖2
2 ≤ ‖H

1
2f‖2

2. Thus, by

the Heinz-Kato inequality with α = 1
2
, we have

‖∆
1
4

‖ f‖
2
2 = |〈∆

1
4

‖ f,∆
1
4

‖ f〉| = |〈∆
1
2

‖ f, f〉| ≤ ‖H
1
4f‖‖H

1
4f‖2 = ‖H

1
4f‖2

2,

for all f ∈ V̇ 1
2
,2(Rn).

A similar argument gives that ‖V 1
2f‖2

2 ≤ ‖H
1
2f‖2

2. for all f ∈ V̇ 1
2
,2(Rn). Therefore

again by the Heinz–Kato inequality we have ‖V 1
4f‖2 ≤ ‖H

1
4f‖2 for all f ∈ V̇ 1

2
,2(Rn).

This completes the proof.

We now introduce the trace operator and trace space for V̇1,2(Rn+1
+ ). We define the

trace operator in the classical way by defining it on smooth functions and using density

to extend to the whole of V̇1,2(Rn+1
+ ). We define the trace operator on C∞c (Rn+1

+ ) by the

linear operator Tr: C∞c (Rn+1
+ ) → V̇ 1

2
,2(Rn), given by (Tru)(x) := u(0, x). We have the

following bound on the trace operator

Lemma 8.2.4. We have the following

‖Tru‖
V̇

1
2 ,2(Rn)

. ‖u‖V̇1,2(Rn+1
+ ).

Moreover, there exists a continuous extension Tr: V̇1,2(Rn+1
+ )→ V̇ 1

2
,2(Rn).

Proof. Let u ∈ C∞c (Rn+1
+ ). Now using the Fundamental Theorem of calculus, the self-
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adjointness of H
1
4 , the Cauchy–Schwartz inequality, and (8.2.1), we have

ˆ
Rn
|H

1
4u(0, x)|2 dx = −

ˆ
Rn

(ˆ ∞
0

∂t|H
1
4u(t, x)|2 dt

)
dx

= −
¨

Rn+1
+

H
1
4u(t, x)∂tH

1
4u(t, x) +H

1
4u(t, x)∂tH

1
4u(t, x) dx dt

= −
¨

Rn+1
+

H
1
4u(t, x)H

1
4∂tu(t, x) +H

1
4u(t, x)H

1
4∂tu(t, x) dx dt

= −
¨

Rn+1
+

H
1
2u(t, x)∂tu(t, x) +H

1
2u(t, x)∂tu(t, x) dx dt

.

(¨
Rn+1
+

|H
1
2u(t, x)|2 dx dt

) 1
2
(¨

Rn+1
+

|∂tu(t, x)|2 dx dt

) 1
2

≤
¨

Rn+1
+

|∇µu(t, x)|2 dx dt.

The remaining part follows from the density of C∞c (Rn+1
+ ) in V̇1,2(Rn+1

+ ) in Proposition

2.3.2.

We are now able to define V̇1,2
0 (Rn+1

+ ) as the set of functions in V̇1,2(Rn+1
+ ) with zero

trace and so V̇1,2
0 (Rn+1

+ ) ⊂ V̇1,2(Rn+1
+ )

It is important that we are able to extend functions in V̇ 1
2
,2(Rn) to the upper half-

space. To do this we prove that the trace operator Tr is a surjection and so for each

function f ∈ V̇ 1
2
,2(Rn) there exists an extension F ∈ V̇1,2(Rn+1

+ ) such that TrF = f . We

note such an F may not be unique.

Lemma 8.2.5. The trace map Tr: V̇1,2(Rn+1
+ )→ V̇ 1

2
,2(Rn) is surjective.

Proof. Let f ∈ V̇ 1
2
,2(Rn). Let {fn}n∈N ⊆ C∞c (Rn) be a sequence converging to f in V̇ 1

2
,2-

norm. Then define Fn(t, x) := e−t
√
Hfn(x) for t > 0. As

√
H is a self-adjoint operator

we have {e−t
√
H}t>0 is an analytic semi-group and so limt→0 Fn(t) = fn in V̇1,2 (see [25]

for more detail on analytic semi-groups). As H is a self-adjoint operator then H has a

bounded holomorphic functional calculus and satisfies quadratic estimates. Now, splitting

the components of ∇µ, the semi-group properties, (8.2.1), and the quadratic estimates
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for H with ψ(z) := z
1
2 e−z, we have

‖Fn‖2
V̇1,2(Rn+1

+ )
=

¨
Rn+1
+

|∇µe
−t
√
Hfn(x)|2 dx dt

=

ˆ ∞
0

‖∂te−t
√
Hfn‖2

2 dt+

ˆ ∞
0

‖∇‖µe−t
√
Hfn‖2

2 dt

.
ˆ ∞

0

‖
√
He−t

√
Hfn‖2

2 dt

=

ˆ ∞
0

‖(t
√
H)

1
2 e−t

√
HH

1
4fn‖2

2

dt

t

. ‖H
1
4fn‖2

2.

Thus ‖Fn‖V̇1,2(Rn+1
+ ) . ‖fn‖V̇ 1

2 ,2(Rn)
with TrFn = fn. A standard density argument

shows that {Fn}n∈N ⊆ V̇1,2(Rn+1
+ ) converges to some F ∈ V̇1,2(Rn+1

+ ) with TrF = f

and ‖F‖V̇1,2(Rn+1
+ ) . ‖f‖V̇ 1

2 ,2(Rn)
. This completes the proof.

We now investigate how the adapted gradient ∇µ behaves on the fractional adapted

Sobolev space V̇ 1
2
,2(Rn). To do this define the linear operator

∇µ : V̇
1
2
,2(Rn)→ V̇−

1
2
,2(Rn;Cn+1) given by ∇µf =



∂1f

...

∂nf

V
1
2f


.

where for fixed k ∈ {1, . . . , n} we define the functionals

∂kf : V̇
1
2
,2(Rn)→ C by (∂kf)(ϕ) := −

ˆ
Rn
f∂kϕ,

and V
1
2f : V̇

1
2
,2(Rn)→ C by (V

1
2f)(ϕ) := −

ˆ
Rn
fV

1
2ϕ.

We describe the boundedness properties of ∇µ is the following lemma.

Lemma 8.2.6. Let u ∈ V̇ 1
2
,2(Rn). Then ∇µu ∈ V̇−

1
2
,2(Rn;Cn+1) and ∇µ : V̇ 1

2
,2(Rn) →

V̇− 1
2
,2(Rn;Cn+1) is an injective and bounded operator.
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Proof. Let f, ϕ ∈ C∞c (Rn). Then by Parseval’s Identity we have

|(∂kf)(ϕ)| =
∣∣∣∣ˆ

Rn
f̂(ξ)∂̂kϕ(ξ) dξ

∣∣∣∣
≤
ˆ
Rn
|f̂(ξ)||ξ||ϕ̂(ξ)| dξ

≤
(ˆ

Rn
|ξ||f̂(ξ)|2 dξ

) 1
2
(ˆ

Rn
|ξ||ϕ̂(ξ)|2 dξ

) 1
2

.

(8.2.2)

That is |(∂kf)(ϕ)| ≤ ‖f‖
Ḣ

1
2
‖ϕ‖

Ḣ
1
2
, where Ḣ

1
2 (Rn) is the standard fractional Sobolev

space of order 1
2
. Then using the fact that ‖f‖

Ḣ
1
2
h ‖∆

1
4

‖ f‖2 and Lemma 8.2.3 we have

|(∂kf)(ϕ)| ≤ ‖f‖
Ḣ

1
2
‖ϕ‖

Ḣ
1
2
≤ ‖f‖

V̇
1
2 ,2
‖ϕ‖

V̇
1
2 ,2

. Thus, by the density of C∞c (Rn) in V̇ 1
2
,2(Rn)

we have (∂kf) is a bounded linear functional on V̇ 1
2
,2(Rn) and ‖∂kf‖V̇− 1

2 ,2
≤ ‖f‖

V̇
1
2 ,2

for all

f ∈ C∞c (Rn). Another density argument gives that (∂kf) is a bounded linear functional

on V̇ 1
2
,2(Rn) for all f ∈ V̇ 1

2
,2(Rn). Similarly we have

|(V
1
2f)(ϕ)| ≤

ˆ
Rn
|V

1
4f ||V

1
4ϕ| ≤

(ˆ
Rn
|V

1
4f |2

) 1
2
(ˆ

Rn
|V

1
4ϕ|2

) 1
2

≤ ‖f‖
V̇

1
2 ,2
‖ϕ‖

V̇
1
2 ,2
,

(8.2.3)

for all f, ϕ ∈ V̇ 1
2
,2(Rn). Thus, V

1
2f ∈ V̇− 1

2
,2(Rn). From (8.2.2) and (8.2.3) we have

that |(∇µf)(ϕ)| . ‖f‖
V̇

1
2 ,2
‖ϕ‖

V̇
1
2 ,2

for all f, ϕ ∈ V̇ 1
2
,2(Rn). Therefore, ∇µ : V̇ 1

2
,2(Rn) →

V̇− 1
2
,2(Rn;Cn+1) is a bounded operator.

To prove injectivity, let u ∈ V̇ 1
2
,2(Rn) with ∇µu = 0. That is, for all ϕ ∈ V̇ 1

2
,2(Rn) the

(∇µu)(ϕ) = 0. In particular, we have

0 = (∇µu)(ϕ) =

ˆ
Rn
u · (∇µ)∗ϕ ∀ϕ ∈ C∞c (Rn).

Thus u = 0 and ∇µ : V̇ 1
2
,2(Rn)→ V̇− 1

2
,2(Rn;Cn+1) is injective.

8.3 Sobolev Spaces Associated to an Operator

In this section we will give a description of fractional Sobolev spaces associate with an

bisectorial operator. The results in this section are from [8]. For a Hilbert space H and
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a closed ω-bisectorial operator T we first introduce the Hilbert space HT defined to be

the completion of {f ∈ H : ‖f‖T <∞} of the norm ‖ · ‖T where

‖f‖T :=

ˆ ∞
0

‖ψt(T )f‖2
2

dt

t
,

for some ψ ∈ Ψ(Soµ), where µ ∈ (ω, π
2
). Note that the choice of µ and ψ give rise to

equivalent norms, see [1] for more detail. We now introduce the following definition.

Definition 8.3.1. Let s ∈ R and ω ∈ (0, π
2
). Let T be a closed ω-bisectorial operator

of type Sω. Then, define the space Ḣs
T to be the completion of HT under the quadratic

norm

‖f‖2
T,s :=

ˆ ∞
0

t−2s‖ψt(T )f‖2
2

dt

t

where ψ ∈ Ψ(Soµ) such that zsψ ∈ Ψ(Soµ) and µ ∈ (ω, π
2
).

Note, by Theorem 4.1 in [8] we have that different choices of ψ and µ give rise to

equivalent norms. We also have T is a natural isomorphism between Ḣs
T and Ḣs−1

T .

Proposition 8.3.2. Let s ∈ R. Let T be a closed ω-bisectorial operator. Then T extends

to an isomorphism from Ḣs
T to Ḣs−1

T .

Proof. Similar to Proposition 5.2 in [8] or Proposition 6.4.1 in [31].

The following interpolation result is from [8, Theorem 5.3].

Proposition 8.3.3. Let s, t ∈ R, with s 6= t. Let T be a closed ω-bisectorial operator.

Let α ∈ (0, 1). Then

Ḣs+α(t−s)
T = (Ḣs

T , Ḣt
T )α

Another important result is that the intersection of two fractional Sobolev spaces is

dense in the fractional Sobolev spaces in the intermediate regularities.

Proposition 8.3.4. Let s, t ∈ R, with s < t. Let T be a closed ω-bisectorial operator.

Then Ḣs
T ∩ Ḣt

T is dense in Ḣα
T for all α ∈ (s, t).
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Proof. Note that by construction we have HT is dense in Hs
T for all s ∈ R, and by the

interpolation in Proposition 8.3.3 we have Ḣs
T ∩ Ḣt

T ⊆ Ḣα
T . Thus ḢT ⊆ Ḣs

T ∩ Ḣt
T ⊆ Ḣα

T .

The result follows by properties of closures.

From [8, Theorem 4.1 (ii)] we have the following

Proposition 8.3.5. Let s ∈ R. Let T be a closed ω-bisectorial operator. If µ > ω and

s ∈ R then we have

‖f(T )u‖T,s ≤ Cµ,s‖f‖∞‖u‖T,s for all f ∈ H∞(Soµ) and for all u ∈ Ḣs
T .

Now we have collected some of the important abstract results for fractional Sobolev

spaces we turn our attention to the operator DB. We start by defining our base Hilbert

space as H = R(D). As DB has a bounded holomorphic functional calculus we have

HDB = R(D). In particular, we obtain the following.

Corollary 8.3.6. The bounded holomorphic functional calculus for DB defined on R(D)

extends to a bounded holomorphic functional calculus on Ḣs
DB. In particular, we have

the topological splitting

Ḣs
DB = Ḣs,+

DB ⊕ Ḣ
s,−
DB,

where Ḣs,+
DB := χ+(DB)Ḣs

DB and Ḣs,−
DB := χ−(DB)Ḣs

DB.

Now define the Hilbert space DT,s to be the completion of D(T s) under the norm

‖T su‖2. If s ∈ (−1, 0) then by [8, Theorem 8.3] we have Ḣs
DB = D[D],s with ‖u‖DB,s h

‖[D]su‖2. We also have the following lemma

Lemma 8.3.7. If s ∈ [−1, 0], then Ḣs
DB = Ḣs

D with equivalent norms.

Proof. Similar to [7, Proposition 4.5 (4)].

Lemma 8.3.8. We have (Ḣs
D)⊥ = V̇s,2(Rn) and (Ḣs

D)r = ∇µH
− 1

2 V̇s,2(Rn).

Proof. Define the operator U : L2(Rn;C2)→ R(D) by

U :=

I 0

0 −∇µH
− 1

2

 .
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Notice that U is an isometry and has inverse U−1 : R(D)→ L2(Rn;C2) given by

U−1 :=

I 0

0 −H− 1
2 (∇µ)∗

 .
Moreover, recalling that (∇µ)∗∇µ = H gives

U−1DU =

I 0

0 −H− 1
2 (∇µ)∗


 0 −(∇µ)∗

−∇µ 0


I 0

0 −∇µH
− 1

2


=

I 0

0 −H− 1
2 (∇µ)∗


 0 H

1
2

−∇µ 0


=

 0 H
1
2

H
1
2 0

 .
Then D = UTU−1 where T : L2(Rn;C2)→ L2(Rn;C2) is given by

T :=

 0 H
1
2

H
1
2 0

 .
Then by Theorem 4.1 in [8] we have Ḣs

D = UḢs
T and ‖u‖T,s h ‖Uu‖D,s for all u ∈ Ḣs

T .

Now as

T 2 =

H 0

0 H

 .
Then as T 2 is diagonal we have

[T ]s = (T 2)
s
2 =

H s
2 0

0 H
s
2

 .
As U is an isomorphism we have for all f ∈ Ḣs

D there exists u ∈ Ḣs
T such that f = Uu.
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Now using the comparison in norm and Theorem 8.3 in [8], we have

‖f‖D,s = ‖Uu‖D,s

h ‖u‖T,s

h ‖[T ]sUu‖2

=

∥∥∥∥∥∥∥
H s

2 0

0 H
s
2


u1

u2


∥∥∥∥∥∥∥

= ‖H
s
2u1‖2 + ‖H

s
2u2‖2.

Therefore, f⊥ = u1 and fr = −∇µH
− 1

2u2 where u1, u2 ∈ V̇s,2(Rn). That is (Ḣs
D)⊥ =

V̇s,2(Rn) and (Ḣs
D)r = ∇µH

− 1
2 V̇s,2(Rn), as required.

8.4 Energy Solutions

In this section we will construct the variational or energy solutions to the Schrödinger

equation. This follows [7] which in turn is based on [4].

Definition 8.4.1. We say u is an energy solution of − divA∇u + aV u = 0 in Rn+1
+ if

u ∈ V̇1,2(Rn+1
+ ) and ¨

A∇µu · ∇µϕ = 0,

for all ϕ ∈ C∞c (Rn+1
+ ). That is u is globally in V̇1,2(Rn+1

+ ) and a weak solution.

We make the following definition for the trace of the conormal derivative, ∂νA , in the

case of energy solutions

Definition 8.4.2. Let u ∈ V̇1,2(Rn+1
+ ) such that HA,a,V u = 0. Then we define Tr(∂νAu) ∈

V̇− 1
2
,2(Rn+1

+ ) defined by

[Tr(∂νAu)](ϕ) :=

¨
A∇µu · ∇µΦ

for all ϕ ∈ V̇ 1
2
,2(Rn+1

+ ) and where Φ is an extension of ϕ.
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We note that this definition is well-posed as by Lemma 8.2.5 the trace operator is

surjective so there exists Φ ∈ V̇1,2(Rn+1
+ ) such that Tr(Φ) = ϕ. Also, for any Φ,Φ′ ∈

V̇1,2(Rn+1
+ ) such that Tr(Φ) = Tr(Φ′) = ϕ, then Tr(Φ − Φ′) = 0 so Φ − Φ′ ∈ V̇1,2

0 (Rn+1
+ ).

Therefore, as HA,a,V u = 0, we have

¨
A∇u · ∇(Φ− Φ′) = 0.

That is Tr(∂νAu)(ϕ) is independent of our choice of extension for ϕ.

We have the following propositions concerning the well-posedness of the boundary

value problems for solutions in the energy class. We say u is an energy solution to the

Neumann problem for data ϕ ∈ V̇− 1
2
,2(Rn) if:


HA,a,V u = 0,

u ∈ V̇1,2(Rn+1
+ ),

Tr(∂νAu) = −ϕ.

The following proposition states the Neumann problem with data in V̇− 1
2
,2(Rn) is well-

posed.

Proposition 8.4.3. For each ϕ ∈ V̇− 1
2
,2(Rn), there exists a unique u ∈ V̇1,2(Rn+1

+ ) such

that HA,a,V u = 0 and

[Tr(∂νAu)](φ) = −ϕ(φ) for all φ ∈ V̇
1
2
,2(Rn).

That is u is an energy solution for the boundary data ϕ.

Proof. Let ϕ ∈ V̇− 1
2
,2(Rn). Define the linear functional Fϕ : V̇1,2(Rn+1

+ )→ C, given by

Fϕv := −ϕ(Tr v).
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Then Fϕ is a bounded linear functional since using Lemma 8.2.4, we have

|Fϕv| = |ϕ(Tr v)| ≤ ‖ϕ‖
V̇−

1
2 ,2
‖Tr v‖

V̇
1
2 ,2

. ‖ϕ‖
V̇−

1
2 ,2
‖v‖V̇1,2 ,

for all v ∈ V̇1,2(Rn+1
+ ). As JA is a coercive and bounded sesquilinear form on V̇1,2(Rn+1

+ ),

using the Lax–Milgram Theorem there exists a unique u ∈ V̇1,2(Rn+1
+ ) such that

JA(u, v) = −ϕ(Tr v) for all v ∈ V̇1,2(Rn+1
+ ).

Now, recall by definition [Tr(∂νAu)](Tr v) = JA(u, v). Then, Lemma 8.2.5 gives

[Tr(∂νAu)](φ) = −ϕ(φ) for all φ ∈ V̇
1
2
,2(Rn).

As required.

We say u is an energy solution to the regularity problem for data ϕ ∈ V̇ 1
2
,2(Rn) if:


HA,a,V u = 0,

u ∈ V̇1,2(Rn+1
+ ),

∇µ(Tru) = ∇µϕ.

We have the analogous proposition for the well-posedness of the regularity problem.

Proposition 8.4.4. For each f ∈ V̇ 1
2
,2(Rn), there exists a unique u ∈ V̇1,2(Rn+1

+ ) such

that HA,a,V u = 0 and Tru = f in V̇− 1
2
,2(Rn).

Proof. Now, let f ∈ V̇ 1
2
,2(Rn). Then by Lemma 8.2.5 we have e−t

√
Hf ∈ V̇1,2(Rn+1

+ ).

Define the functional Ff : V̇1,2
0 (Rn+1

+ )→ C

Ff (v) := −
¨

Rn+1
+

A∇µ(e−t
√
Hf) · ∇µv.

Then, Ff is a bounded linear functional and since JA is a coercive and bounded sesquilin-

ear form on V̇1,2
0 (Rn+1

+ ) ⊂ V̇1,2(Rn+1
+ ). Therefore, by the Lax–Milgram Theorem there

212



exists a unique w ∈ V̇1,2
0 (Rn+1

+ ) such that

JA(w, v) = −
¨

Rn+1
+

A∇µ(e−t
√
Hf) · ∇µv for all ϕ ∈ V̇1,2

0 (Rn+1
+ ).

Now define u = w + e−t
√
Hf . Note, u is an energy solution and Tru = f in V̇ 1

2
,2(Rn).

Suppose there exists another solution, u′ ∈ V̇1,2(Rn+1
+ ), for the boundary data f . Then,

as u− u′ ∈ V̇1,2
0 (Rn+1

+ ) and u and u′ are energy solutions, we have

JA(u− u′, u− u′) =

¨
Rn+1
+

A∇µu · ∇µ(u− u′)−
¨

Rn+1
+

A∇µu
′ · ∇µ(u− u′) = 0

and so by the coercivity of JA, we have

‖u− u′‖V̇1,2 . JA(u− u′, u− u′) = 0.

Thus, u is unique.

We define the Neumann to Dirichlet operator as

Γ+
ND : (Ḣ−

1
2

D )⊥ → (Ḣ−
1
2

D )r by Γ+
NDf := ∇µ(Tru),

where u ∈ V̇1,2(Rn+1
+ ) is the unique energy solution with Neumann data f . Also, define

the Dirichlet to Neumann operator

Γ+
DN : (Ḣ−

1
2

D )r → (Ḣ−
1
2

D )⊥ by Γ+
DNg := Tr(∂νAv),

where v ∈ V̇1,2(Rn+1
+ ) is the unique energy solution with regularity data g.

Proposition 8.4.5. The operator Γ+
ND : (Ḣ−

1
2

D )⊥ → (Ḣ−
1
2

D )r is bounded and invertible

and has inverse Γ+
DN : (Ḣ−

1
2

D )r → (Ḣ−
1
2

D )⊥.

Proof. Let f, f ′ ∈ (Ḣ−
1
2

D )⊥ be such that Γ+
NDf = Γ+

NDf
′. Then by definition Γ+

NDf =

∇µ(Tru) and Γ+
NDf

′ = ∇µ(Tru′) where u, u′ ∈ V̇1,2(Rn+1
+ ) are the unique energy solutions

with Neumann data f and f ′ respectively. By assumption ∇µ(Tru) = Γ+
NDf = Γ+

NDf
′ =
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∇µ(Tru′). That is, u and u′ are energy solutions with the same regularity data. Thus,

by the uniqueness property in Proposition 8.4.4 we have u = u′. Hence f = f ′. That is

Γ+
ND : (Ḣ−

1
2

D )⊥ → (Ḣ−
1
2

D )r is injective.

Now let g ∈ (Ḣ−
1
2

D )r. By Lemma 8.3.8 we have (Ḣ−
1
2

D )r = ∇µ(V̇ 1
2
,2(Rn)). Then

g = ∇µϕ for some ϕ ∈ V̇ 1
2
,2(Rn). Then by Proposition 8.4.4 we have there exists a

unique u ∈ V̇1,2(Rn+1
+ ) with regularity data ∇µϕ. That is ∇µ(Tru) = ∇µϕ = g. As

HA,a,V u = 0 then Tr(∂νAu) exists and is well defined and Tr(∂νAu) ∈ V̇− 1
2
,2(Rn). There-

fore, Γ+
ND[Tr(∂νAu)] = g and Γ+

ND : (Ḣ−
1
2

D )⊥ → (Ḣ−
1
2

D )r is surjective.

Note that the inverse is Γ+
DN : (Ḣ−

1
2

D )r → (Ḣ−
1
2

D )⊥. Thus, we have Γ+
ND : (Ḣ−

1
2

D )⊥ →

(Ḣ−
1
2

D )r is an isomorphism

Now we have defined energy solutions we give a presentation in terms of semi-groups.

This is based on [7, Proposition 4.7].

Proposition 8.4.6. Let u ∈ V̇1,2
loc (Rn). Then

1. If u ∈ V̇1,2(Rn) with HA,a,V u = 0 in Rn+1
+ (u is an energy solution of − divA∇u+

aV u = 0), then there exists f ∈ Ḣ−
1
2
,+

DB such that ∇A,µu = e−tDBf .

2. If f ∈ Ḣ−
1
2
,+

DB , then there exists u ∈ V̇1,2(Rn) with HA,a,V u = 0 in Rn+1
+ (u is an

energy solution of − divA∇u+ aV u = 0) such that ∇A,µu = e−tDBf .

Moreover, f is unique and ‖f‖DB,− 1
2
h ‖u‖V̇1,2 .

Proof. We prove (2) first. Let u ∈ V̇1,2
loc (Rn). Suppose there exists f ∈ Ḣ−

1
2
,+

DB such that

∇A,µu = e−tDBf . Define fε := e−εDBf ∈ Ḣ−
1
2
,+

DB for all ε > 0. Then by [8, Theorem 8.3]

and using the bounded holomorphic functional calculus of DB, we have

‖fε‖DB, 1
2

= ε−
1
2‖[εDB]

1
2 e−εDBf‖2 . ε−

1
2‖f‖2 <∞, for all ε > 0.

Therefore, fε ∈ Ḣ
− 1

2
,+

DB ∩ Ḣ
1
2
,+

DB . Thus, by Proposition 8.3.4, we have fε ∈ Ḣs,+
DB for all

s ∈ [−1
2
, 1

2
]. So, in particular fε ∈ Ḣ0,+

DB = χ+(DB)R(D). Hence, by the Theorem

6.0.1 there exists a weak solution uε ∈ V̇1,2
loc (Rn+1

+ ) such that e−tDBfε = ∇A,µuε. As DB is

sectorial on Ḣ−
1
2
,+

DB we have {e−εDB}ε>0 is an analytic semigroup and thus fε → f as ε→ 0
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in Ḣ−
1
2
,+

DB . Now, using the ellipticity of A, the extension of DB : Ḣ
1
2
,+

DB → Ḣ
− 1

2
,+

DB being an

isomorphism in Proposition 8.3.2, the property ψ(DB)D = Dψ(BD), and Proposition

8.3.2 again, we have

¨
Rn+1
+

|∇µu−∇µuε|2 dx dt .
ˆ ∞

0

t‖∇A,µ(u− uε)‖2
2

dt

t

=

ˆ ∞
0

t‖e−tDB(f − fε)‖2
2

dt

t

=

ˆ ∞
0

t‖e−tDBDB(DB)−1(f − fε)‖2
2

dt

t

≤
ˆ ∞

0

t−1‖ψ(tDB)(DB)−1(f − fε)‖2
2

dt

t

. ‖(DB)−1(f − fε)‖DB, 1
2

= ‖f − fε‖DB,− 1
2

→ 0, as ε→ 0,

(8.4.1)

where ψ(z) = ze−z. Thus, uε → u as ε → 0 in V̇1,2(Rn+1
+ ). Let ϕ ∈ C∞c (Rn+1

+ ) not

identically zero. Fix δ > 0 arbitrarily. Let ε > 0 be such that ‖u − uε‖V̇1,2 < δ
‖∇µϕ‖2 .

Therefore, as uε is an energy solution and Cauchy–Schwarz inequality, we have

∣∣∣∣∣
¨

Rn+1
+

A∇µu · ∇µϕ

∣∣∣∣∣ ≤
¨

Rn+1
+

|A∇µ(u− uε) · ∇µϕ|

.

(¨
Rn+1
+

|∇µ(u− uε)|2
) 1

2
(¨

Rn+1
+

|∇µϕ|2
) 1

2

< δ.

As δ > 0 was arbitrary we have that HA,a,V u = 0. Thus u is an energy solution.

Now we prove (1). Let u be an energy solution. Let f ∈ Ḣ−
1
2

DB be defined by

f := (∇A,µu)(0) =

Tr(∂νAu)

∇µ(Tru)

 .

Now, using Lemma 8.3.7, we have Ḣ−
1
2

D = Ḣ−
1
2

DB = Ḣ−
1
2
,+

DB ⊕ Ḣ−
1
2
,−

DB , and so splitting f as

follows f = f+ +f−, where f± ∈ Ḣ±
1
2

DB. Then, by [8, Theorem 8.3] and using the bounded
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holomorphic functional calculus of DB, we have

‖e−tDBf+‖DB, 1
2

= t−
1
2‖|tDB|

1
2 e−tDBf+‖2 . ‖f+‖2 <∞, for all t > 0.

That is e−tDBf+ ∈ Ḣ0,+
DB for all t > 0, and by the Theorem 6.0.1 there exists u+ ∈

V̇1,2
loc (Rn+1

+ ) such that e−tDBf+ = ∇A,µu+ with HA,a,V u
+ = 0 in Rn+1

+ . Also as f+ ∈ Ḣ−
1
2

DB

a similar argument to (8.4.1) gives

¨
Rn+1
+

|∇µu
+|2 dx dt <∞.

That is u+ ∈ V̇1,2(Rn+1
+ ), and so is an energy solution. Using a similar argument there

exists u− ∈ V̇1,2(Rn+1
− ) such that e−tDBf− = ∇A,µu− with HA,a,V u

− = 0 in Rn+1
− . Now,

define

v =


u− u+ in Rn+1

+

u− in Rn+1
−

.

Now notice by construction that u is the weak solution with Neumann data f and u± are

the weak solutions with Neumann data f±. Therefore

¨
Rn+1

A∇µv · ∇µϕ =

¨
Rn+1
+

A∇µu · ∇µϕ−
¨

Rn+1
+

A∇µu
+ · ∇µϕ+

¨
Rn+1
−

A∇µu
− · ∇µϕ

= −f(Trϕ) + f+(Trϕ) + f−(Trϕ)

= −f(Trϕ) + f(Trϕ)

= 0,

for all ϕ ∈ C∞c (Rn+1). Thus,

¨
Rn+1

A∇µv · ∇µϕ = 0
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for all ϕ ∈ C∞c (Rn+1). Hence, by density and coercivity, we have

0 =

¨
Rn+1

A∇µv · ∇µv & ‖∇µv‖2
2.

Thus, v = 0. That is u− = 0 and u = u+. Hence, e−tDBf = e−tDBf+ + e−tDBf− =

∇A,µu+ +∇A,µu− = ∇A,µu. This completes the proof.

We are now able to use the Neumann to Dirichlet and Dirichlet operators to describe

the class Ḣ−
1
2
,+

DB .

Lemma 8.4.7. We have the characterisation

Ḣ−
1
2
,+

DB = {h ∈ Ḣ−
1
2

D : hr = Γ+
NDh⊥} = {h ∈ Ḣ−

1
2

D : h⊥ = Γ+
DNhr}.

Proof. Let f ∈ Ḣ−
1
2
,+

DB . Then, by Proposition 8.4.6 we have there exists an energy solution

u ∈ V̇1,2(Rn+1
+ ) such that e−tDBf = ∇A,µu. Thus ΓNDf⊥ = ∇µ(Tru) = fr. Thus

Ḣ−
1
2
,+

DB ⊆ {h ∈ Ḣ−
1
2

D : hr = Γ+
NDh⊥}.

Now let g ∈ {h ∈ Ḣ−
1
2

D : hr = Γ+
NDh⊥}. As (Ḣ−

1
2

D )⊥ = V̇− 1
2
,2(Rn) then g⊥ ∈ V̇−

1
2
,2(Rn)

and so by the well-posedness of energy solutions in Proposition 8.4.3, there exists a weak

solution u ∈ V̇1,2(Rn) with Tr(∂νAu) = g. Therefore, by definition the Neumann-to-

Dirichlet operator we have Γ+
NDg = ∇µ(Tru). Also, by Proposition 8.4.6 there exists

f ∈ Ḣ−
1
2
,+

DB such that e−tDBf = ∇A,µu. Thus

 g

Γ+
NDg

 =

Tr(∂νAu)

∇µ(Tru)

 = f.

That is [g,Γ+
NDg]T ∈ Ḣ−

1
2
,+

DB .

The second equality is proven in a similar way.

Then as for f ∈ Ḣ−
1
2
,+

DB we have sgn(DB)h = h and hr = Γ+
NDh⊥. Therefore, combin-
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ing the two characterisations gives,

h = sgn(DB)h

=

s⊥⊥(DB) s⊥r(DB)

sr⊥(DB) srr(DB)


 h⊥

Γ+
NDh⊥


=

s⊥⊥(DB)h⊥ + s⊥r(DB)Γ+
NDh⊥

sr⊥(DB)h⊥ + srr(DB)Γ+
NDh⊥

 .
Thus, equating the first component followed by equating the second component gives

Γ+
ND = s⊥r(DB)−1(1− s⊥⊥(DB)) = (I − srr(DB))−1sr⊥(DB) (8.4.2)

A similar argument gives

Γ+
DN = (1− s⊥⊥(DB))−1s⊥r(DB) = sr⊥(DB)−1(I − srr(DB)) (8.4.3)

8.5 Compatible Well-Posedness

In this section we prove the compatible well-posedness of the purely electric Schrödinger

equation.

Definition 8.5.1. We say (N )AL2 (or (R)AL2) is compatibly well-posed if (N )AL2 (or (R)AL2)

is well-posed and the solution agrees with the energy solution when the data is in L2(Rn)∩

V̇− 1
2
,2(Rn) (or V̇1,2(Rn) ∩ V̇ 1

2
,2(Rn)).

We start by introducing the following decomposition of sgn(DB),

EDB := sgn(DB) =

s⊥⊥(DB) s⊥r(DB)

sr⊥(DB) srr(DB)


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Using the identity χ±(DB) = 1
2
(I ± sgn(DB)) we obtain

E±DB := χ±(DB) =
1

2

I ± s⊥⊥(DB) ±s⊥r(DB)

±sr⊥(DB) I ± srr(DB)

 .
We are now ready to explore the relationship between the above representation of

E±DB and the well-posedness of boundary value problems.

Proposition 8.5.2. (R)AL2 is well-posed if and only if sr⊥(DB) : (Ḣ0
D)⊥ → (Ḣ0

D)r is an

isomorphism. Also, (N )AL2 is well-posed if and only if s⊥r(DB) : (Ḣ0
D)r → (Ḣ0

D)⊥ is an

isomorphism.

Proof. Note that sr⊥(DB) = 2ΦRχ
+(DB)P⊥, where ΦR is as in 6.0.1. Then as ΦR and

P⊥ are a pair of complimentary projection, as are χ±(DB). Therefore, by [9, Lemma

13.6] we have 2ΦRχ
+(DB)P⊥ is an isomorphism if and only if both ΦRχ

± : Ḣ0
D → (Ḣ0

D)r

are isomorphisms. This is true by the well-posedness of (R)AL2 in Theorem 6.0.1. Hence,

sr⊥(DB) : (Ḣ0
D)⊥ → (Ḣ0

D)r is an isomorphism.

The Neumann problem is similar.

We have the same when the solutions are energy solutions.

Proposition 8.5.3. sr⊥(DB) : (Ḣ−
1
2

D )⊥ → (Ḣ−
1
2

D )r and s⊥r(DB) : (Ḣ−
1
2

D )r → (Ḣ−
1
2

D )⊥ are

both invertible.

Proof. As the energy problem is always well-posed then the proof is the same as Propo-

sition 8.5.2.

We now give a condition for compatibly well-posedness of the Neumann problem in

terms of srr.

Proposition 8.5.4. We have the following:

1. If I − srr : (Ḣ0,+
D )r → (Ḣ0,+

D )r is invertible and the inverse agrees with when I − srr

is restricted to (Ḣ−
1
2
,+

D )r, then (N )AL2 is compatibly well-posed.
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2. If I − s⊥⊥ : (Ḣ0,+
D )⊥ → (Ḣ0,+

D )⊥ is invertible and the inverse agrees with I − s⊥⊥

when restrited to (Ḣ−
1
2
,+

D )⊥ then (R)AL2 is compatibly well-posed.

Proof. Define the operator

T : (Ḣ0,+
D )⊥ ∩ (Ḣ−

1
2
,+

D )⊥ → Ḣ0,+
D ∩ Ḣ−

1
2
,+

D given by Th :=

 h

Γ+
DBh

 .
Note, as I − srr : (Ḣ0,+

D )⊥ → (Ḣ0,+
D )⊥ is invertible and the inverse agrees with the case

when on (Ḣ−
1
2
,+

D )⊥ then by (8.4.2) we have Γ+
ND, and therefore T , are well defined on

(Ḣ0,+
D )⊥ ∩ (Ḣ−

1
2
,+

D )⊥. Clearly ΦNTh = h. Let f ∈ Ḣ0,+
D ∩ Ḣ−

1
2
,+

D . Then by Lemma

8.4.7 we have f = [f⊥,Γ
+
NDf⊥]T . Therefore, TΦNf = f . That is, ΦN : Ḣ0,+

D ∩ Ḣ−
1
2
,+

D →

(Ḣ0,+
D )⊥ ∩ (Ḣ−

1
2
,+

D )⊥ is an isomophism with inverse T . Then (N )AL2 is compatibly well-

posed.

The case for the regularity problem is proved similarly to the Neumann case.

We are now in a position to prove compatible well-posedness results. We start with

the case when A is block-type.

Theorem 8.5.5. If A is block-type, then (N )AL2 and (R)AL2 are both compatibly well-

posed.

Proof. Since EDBN +NEDB = 0 and E2
DB = I we must have

EDB = sgn(DB) =

 0 sr⊥(DB)−1

sr⊥(DB) 0

 . (8.5.1)

Therefore I−s⊥⊥(DB) = I−srr(DB) = I which is invertible and agree with the inverses

on (Ḣ−
1
2
,+

D )⊥ and (Ḣ−
1
2
,+

D )r respectively. Thus (N )AL2 and (R)AL2 are both compatibly well-

posed.

We now consider the more general structure of lower triangular matrices. The proof

uses the interpolation of the Ḣs
DB spaces even in the case for just well-posedness. There-

fore, both well-posedness sand compatible well-posedness are new for lower triangular
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matrices. The case of the Laplace equation was proven in [7] but we adapt the proof of

[6].

Theorem 8.5.6. If A is lower triangular, then (N )AL2 is compatibly well-posed, and

therefore, also well-posed.

Proof. To prove that (N )AL2 is compatibly well-posed we will use Proposition 8.5.2 and

prove s⊥r(DB) : (Ḣ0
D)r → (Ḣ0

D)⊥ is an isomorphism. Let AB be the diagonal block

matrix associated with A. That is

AB :=


A⊥⊥ 0 0

0 A‖‖ 0

0 0 a

 then BB := ÂB =


A−1
⊥⊥ 0 0

0 A‖‖ 0

0 0 a

 .

Then DBB acts independently on the ⊥-components and r-components. Therefore, using

Proposition 8.3.2 we have

DBB : (Ḣs
DBB

)⊥ ⊕ {0} → {0} ⊕ (Ḣs−1
DBB

)r, and (8.5.2)

DBB : {0} ⊕ (Ḣs
DBB

)r → (Ḣs−1
DBB

)⊥ ⊕ {0}, (8.5.3)

are isomorphisms. Then s⊥r(DB) : (Ḣ0
D)r → (Ḣ0

D)⊥ being an isomorphism is equivalent

to

Tr(DB) : (Ḣ0
D)r → (Ḣ−1

D )r given by Trf = ΦRDBB

s⊥r(DB)f

0


being an isomorphism. Now by Proposition 8.5.3 we have

Tr(DB) : (Ḣ−
1
2

D )r → (Ḣ−
3
2

D )r given by Trf = ΦRDBB

s⊥r(DB)f

0


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is an isomorphism. Now for f ∈ (Ḣ−
1
2

D )r ∩ (Ḣ
1
2
D)r we have

Tr(DB)f = ΦRDBB

s⊥r(DB)f

0


= ΦRDBBPr sgn(DB)

0

f


= ΦRDB sgn(DB)

0

f


= ΦR sgn(DB)DB

0

f


= ΦR sgn(DB)P⊥DBB

0

f


= sr⊥(DB)ΦNDBB

0

f

 .

Then, as ΦNDBB

0

f

 ∈ (Ḣ−
1
2

D )⊥, using Proposition 8.5.3 and density we have that the

operator Tr(DB) : (Ḣ
1
2
D)r → (Ḣ−

1
2

D )r is an isomorphism. Now using the boundedness of

Tr(DB) on both spaces and the bounded inverse Theorem we have

‖Tr(DB)f‖
(Ḣ
− 3

2
DBB

)r
+ ‖Tr(DB)f‖

(Ḣ
− 1

2
DBB

)r
h ‖f‖

(Ḣ
− 1

2
DBB

)r
+ ‖f‖

(Ḣ
1
2
DBB

)r
, (8.5.4)

for all f ∈ (Ḣ−
1
2

D )r ∩ (Ḣ
1
2
D)r. Define Aτ := τAB + (1 − τ)A for τ ∈ [0, 1]. Note that for

τ ∈ (0, 1] then Aτ is lower triangular and so by similar reasoning we have that Tr(DBτ ) is

both bounded and bounded below as in (8.5.4). We know Tr(DBB) : (Ḣ
1
2
D)r ∩ (Ḣ−

1
2

D )r →

(Ḣ−
1
2

D )r ∩ (Ḣ−
3
2

D )r is injective. To see that Tr(DBB) is surjective, recall (8.5.1), and so we
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have  0

TR(DBB)f

 = DBB sgn(DBB)

0

f

 .
For g ∈ (Ḣ−

1
2

D )r ∩ (Ḣ−
3
2

D )r we have g ∈ (Ḣ−1
D )r and so we may define

0

f

 := (DBB)−1 sgn(DBB)

0

g

 .

Then Tr(DBB)f = g. That is Tr(DBB) : (Ḣ
1
2
D)r∩(Ḣ−

1
2

D )r → (Ḣ−
1
2

D )r∩(Ḣ−
3
2

D )r is surjective.

Thus, by the method of continuity we have Tr(DB) : (Ḣ
1
2
D)r∩ (Ḣ−

1
2

D )r → (Ḣ−
1
2

D )r∩ (Ḣ−
3
2

D )r

is also an isomorphism.

Then, by Lemma 8.3.4, we have (Ḣ
1
2
D)r∩(Ḣ−

1
2

D )r is dense in (Ḣ0
D)r and (Ḣ−

1
2

D )r∩(Ḣ−
3
2

D )r

is dense in (Ḣ−1
D )r. Let g ∈ (Ḣ−1

D )r then there exists {gn} ⊂ (Ḣ−
1
2

D )r ∩ (Ḣ−
3
2

D )r converging

to g. Then as Tr(DB) : (Ḣ
1
2
D)r ∩ (Ḣ−

1
2

D )r → (Ḣ−
1
2

D )r ∩ (Ḣ−
3
2

D )r is an isomorphism so there

exists {fn} ⊂ (Ḣ
1
2
D)r ∩ (Ḣ−

1
2

D )r such that fn = Tr(DB)−1gn. Then

‖fn − fm‖DB,0 = ‖Tr(DB)−1(gn − gm)‖DB,0 . ‖gn − gm‖DB,−1 → 0,

as {gn} is convergent and so Cauchy. Thus, {fn} is a Cauchy sequence and as (Ḣ0
D)r is

complete then {fn} is convergent. Let f := limn→∞ fn. Then, for arbitrary n ∈ N, we

have

‖Tr(DB)f − g‖DB,−1 ≤ ‖Tr(DB)(f − fn)‖DB,−1 + ‖Tr(DB)fn − g‖DB,−1

. ‖f − fn‖DB,0 + ‖gn − g‖DB,−1.

Note that this converges to 0 as n→∞. Thus, Tr(DB)f = g. Thus, Tr(DB) : (Ḣ0
D)r →

(Ḣ−1
D )r is an isomorphism. As required.

Theorem 8.5.7. If A is upper triangular, then (R)AL2 is compatibly well-posed.
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Proof. Similar to the lower triangular case where we use

T⊥ : (Ḣ−
1
2

D )⊥ → (Ḣ−
3
2

D )⊥ given by T⊥f = ΦNDBB

 0

sr⊥(DB)f

 ,
instead.

We also consider the self-adjoint case.

Theorem 8.5.8. If A is self-adjoint, then (N )AL2 and (R)AL2 are both compatibly well-

posed.

Proof. Define the self-adjoint matrix Aτ = τA+(1−τ)I for τ ∈ [0, 1] and define Bτ = Âτ .

Then from Section 6.3 we have Bτ is uniformly elliptic on R(D) and uniformly bounded

for all τ ∈ [0, 1]. We also have the Rellich estimate

‖f‖2 h ‖f⊥‖2 h ‖fr‖2 for all f ∈ Ḣ0,+
DBτ

,

where the constants are independent of τ ∈ [0, 1]. Therefore, the bounded linear operators

Φ0,τ
N : Ḣ0,+

DBτ
→ (Ḣ0

DBτ )⊥ given by Φ0,τ
N f := f⊥,

Φ0,τ
R : Ḣ0,+

DBτ
→ (Ḣ0

DBτ )r given by Φ0,τ
R f := fr,

are bounded below. Also, from the well-posedness in the energy class we have the bounded

linear operators

Φ
− 1

2
,τ

N : Ḣ,− 1
2

+

DBτ
→ (Ḣ−

1
2

DBτ
)⊥ given by Φ

− 1
2
,τ

N f := f⊥,

Φ
− 1

2
,τ

R : Ḣ−
1
2
,+

DBτ
→ (Ḣ−

1
2

DBτ
)r given by Φ

− 1
2
,τ

R f := fr,

are isomorphisms for all τ ∈ [0, 1]. Thus, by the bounded inverse Theorem we have Φ
− 1

2
,τ

N

and Φ
− 1

2
,τ

R are bounded below.
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We proceed with the Neumann problem. Define the bounded linear operator

Φτ
N : Ḣ0,+

DBτ
∩ Ḣ−

1
2
,+

DBτ
→ (Ḣ0

DBτ )⊥ ∩ (Ḣ−
1
2

DBτ
)⊥ given by Φτ

Nf := f⊥.

Note that Φτ
N is bounded below and so is injective. As Ḣ0

DBτ
∩ Ḣ−

1
2

DBτ
is dense in both

Ḣ0
DBτ

and Ḣ−
1
2

DBτ
, then invertablity of Φτ

N is equivalent to compatibility of the inverses of

Φ0,τ
N and Φ

− 1
2
,τ

N . Note that as A0 = I so by Theorem 8.5.5 we have Φ0
N is invertable. Then

following the procedure in Section 6.3 we have Φτ
N : Ḣ0,+

DBτ
∩Ḣ−

1
2
,+

DBτ
→ (Ḣ0

DBτ
)⊥∩(Ḣ−

1
2

DBτ
)⊥

is an isomorphism. Hence, (N )AL2 is compatibly well-posed.

The regularity problem follows by a similar argument.
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CHAPTER 9

CONCLUDING REMARKS

We will conclude by summarising some of the key results and then provide some possible

generalisations of the work conducted in this thesis.

9.1 Summary of Key results

This thesis was focused on solving boundary value problems for the Schrödinger equation

HA,a,V u(t, x) := − divt,xA(x)∇t,xu(t, x) + a(x)V (x)u(t, x) = 0

on the upper half-space Rn+1
+ := {(t, x) ∈ R× Rn : t > 0}, for integers n ≥ 3, where A ∈

L∞(Rn+1;L(C1+n)) and a ∈ L∞(Rn+1;L(C)) are complex, t-independent, and elliptic,

and where V is in the reverse Hölder class with exponent n
2
. The main theorem is

Theorem 6.0.1 which states that Neumann and Dirichlet regularity problems are well-

posed if A and a are self-adjoint, or the A is of block-type; and the sets of matrices A

and a for which the Neumann problem is well-posed and the Dirichlet regularity problem

is well-posed, are both open.

To prove this theorem we showed that equation (1.0.1) is equivalent to the first-order

system of equations

∂tF +DBF = 0,

where D : D(D) ⊂ L2(Rn;Cn+2)→ L2(Rn;Cn+2) is a first-order operator associated with
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∆ + V , the unperturbed Schrödinger operator, B : L2(Rn;Cn+2) → L2(Rn;Cn+2) is a

multiplication operator derived from the perturbations A and a, and F ∈ L2
loc(R+;R(D)),

given by F = ∇A,µu. In this way, it was possible to solve boundary value problems for

the operator HA,a,V by studying the associated initial value problem for the operator DB.

One of the most important properties proven in this thesis was Theorem 3.0.1, which

implied that the operator DB has a bounded holomorphic functional calculus, which is

equivalent to the following quadratic estimates

ˆ ∞
0

‖tDB(I + t2DBDB)−1u‖2
2

dt

t
h ‖u‖2

2, ∀u ∈ R(D).

Here we used a dyadic decomposition which differentiates between big and small cubes,

at each scale, depending on the potential V . For small cubes, the arguments from [13]

can be adapted. However, as both the reduction to the Carleson measure estimate and

the stopping time argument needed to be done on small cubes, a new approach for big

cubes was developed based on the Fefferman–Phong inequality.

We also adapted the methods we developed for the electric Schrödinger equation to the

magnetic Schrödinger in Theorem 4.0.2. This was done by using a localisation argument

on a more sophisticated collection of dyadic cubes which took advantage of the Iwatsuka

Gauge transform and allowed the introduction of the magnetic field.

As DB is a bisectorial operator with a bounded holomorphic functional calculus on

R(D), it was possible to restrict to a subspace of R(D) for which DB is sectorial. There-

fore, DB generates an analytic semigroup (e−tDB)t>0 on this subspace. We also proved

this characterises the solutions to the first-order system. Next, it was shown that well-

posedness of the boundary value problem is equivalent to showing that certain mappings

into the boundary data space are invertible. We then proved these mappings are indeed

invertible.

Another important result was Theorem 7.3.2, which allowed for the control of the
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non-tangential maximal function of the gradient of solutions

ˆ ∞
0

∥∥∥∥∥∥∥t∂t
∇t,xu

|V | 12u


∥∥∥∥∥∥∥

2

2

dt

t
h ‖ϕ‖2

2 h

∥∥∥∥∥∥∥Ñ∗

∇t,xu

|V | 12u



∥∥∥∥∥∥∥

2

2

,

where u is the solution to HA,a,V u = 0 for the Neumann boundary data ϕ ∈ L2(Rn). An

analogous result holds for the Dirichlet regularity problem. The key proposition here was

the weak reverse Hölder inequality of the gradient of solutions in Proposition 7.1.4.

The last key result was that these solutions are unique, in the sense that the solutions

which arise from the first-order method are equivalent to the classical (energy) solutions

which come from the Lax–Milgram Theorem. Since there is an adapted Sobolev space

being used, new trace spaces for this problem were defined and analysed. Then, it was

proven that the energy solutions can also be characterised in terms of a semigroup and

this allowed us to use the bounded holomorphic functional calculus to prove that these

solution coincide.

9.2 Further Work

A main focus for future work would be to consider the boundary value problems for the

equation

(∇+ ib)∗A(∇+ ib)u+ aV u = 0, (9.2.1)

with both first-order and zeroth-order terms. This would be done by combining the

projections from Chapter 3, which are used to proved the quadratic estimates for the

purely electric Schrödinger operator, with the localisation onto the set of maximal dyadic

cubes from Chapter 4. Once the quadratic estimates have been established then the

solvability results and non-tangential maximal function estimates will be the next step.

This will include: reducing from the second-order equation to another first-order system;

the weak reverse Hölder estimates of the magnetic gradient ∇+ ib of solutions to (9.2.1);

and the trace space theory for the adapted Sobolev space ·W 1,2
b (Rn+1

+ ) defined in Section
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2.4.

A further generalisation is to prove the boundary value problem for systems of equa-

tions rather than a single equation. This would follow the original first-order paper [4]

by Auscher, Axelsson, and McIntosh. The results would be new for all the equations

considered in this thesis.

Another extension to this work, would be to allow for t-dependence in the matrix

A. This would involve adapting the work in [2] by Auscher and Axelsson to include the

potentials V and b. In [2] the coefficients A satisfies Dahlberg’s small Carleson condition.

The methods build upon that of [4] by using the t-independent solution and Duhamel’s

principle to represent a solution to the t-dependent equation as an integral equation and

then use operational calculus to estimate the integral operator.

A final idea for future work based on this thesis, would be to consider boundary data

in Lp-spaces for p 6= 2. In [27], Frey, McIntosh, and Portal, establish Lp-conical square

function estimates for perturbed Hodge–Dirac operators using methods developed from

[13]. Here the Lp-conical square function estimate will take the place of the quadratic

estimate. Therefore, we would need to adapt the work in [27] to accommodate the po-

tential terms. Once this has been established then we would need to prove the solvability

results and non-tangential maximal function estimates in the Lp setting. To do this we

would follow the work of Auscher and Stahlhut in [11].

Thus, we see that this thesis can be considered as a prototype for considering other

inhomogeneous boundary value problems with singular potentials.
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