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Abstract

We develop a holomorphic functional calculus for first-order operators DB to solve bound-
ary value problems for Schrodinger equations — div AVu + aVu = 0 in the upper half-
space R’frl when n > 3. This relies on quadratic estimates for DB, which are proved
for coefficients A, a,V that are independent of the transversal direction to the boundary,
and comprised of a complex-elliptic pair A, a that are bounded and measurable, and a
singular potential V in the reverse Hélder class Bz (R"). The square function bounds
are also shown to be equivalent to non-tangential maximal function bounds. This allows
us to prove that the Dirichlet regularity and Neumann boundary value problems with
L?(R")-data are well-posed if and only if certain boundary trace operators defined by
the functional calculus are isomorphisms. We prove this property when the coefficient
matrices A and a are either a Hermitian or block structure. More generally, the set of
all complex-elliptic A for which the boundary value problems are well-posed is shown to
be open in L>*. We also prove these solutions coincide with those generated from the
Lax—Milgram Theorem. Furthermore, we extend this theory to prove quadratic estimates
for the magnetic Schrédinger operator (V 4 ib)* A(V + ib) when the magnetic field curl b

is in the reverse Holder class B2 (R™).
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CHAPTER 1

INTRODUCTION

In this thesis we will be concerned with the study of the purely electric Schrodinger
operator — div AV+aV'| and the purely magnetic Schrodinger operator (V+ib)* A(V+ib),

and boundary value problems for the Schrodinger equation
—divy, A(x) Ve u(t, z) + a(x)V(z)u(t,z) =0, (1.0.1)

on the upper half-space R} == {(t,2) € R x R" : ¢t > 0}, for integers n > 3, where
A€ LR L(CH™)) and a € L>®(R™"!; £(C)) are complex, ¢-independent, and elliptic
(which we will define in Section 2.6); the electric potential V' is in the reverse Holder class,
B?(R"™); and the magnetic field associated with the magnetic potential b is also in the
reverse Holder class. We will give definitions of these terms in Chapter 2.

By boundary value problem we mean (1.0.1) together with an additional constraint of
functions at the boundary R (which we identify naturally with R™). We will consider
the Neumann an Dirichlet regularity problem in this thesis. We say u is a solution to the
Neumann problem if u satisfies (1.0.1) and its normal derivative is equal to a prescribed
function at the boundary. We say wu is a solution to the Dirichlet regularity problem
(henceforth simplified to the regularity problem) if u satisfies (1.0.1) and is equal to some
prescribed function at the boundary where equality is in a particular space. We will give
precise definitions of these in Chapter 2.

These boundary value problems arise from the study of the Schrédinger equation

Aw + Vw = 0 above a Lipschitz graph Q = {(t,z) € R"™! : ¢ > g(x)} where g: R" — R



is a Lipschitz function. The change of variables u(t,z) = w(t + g(x),z) then gives
—div AVu+Vu = 0 on R where A is real and symmetric and independent of ¢. Work
in this setting started with Shen in [48]. Here Shen studied the equation —Au + Vu =
0 above a Lipschitz curve with V' € B>*(R"!). It was shown there exists a unique
solution of the Neumann problem with L? boundary data for p € (1,2]. Later, in [53],
Tao and Wang extended these results to include solving the Neumann problem where
V € B"(R"™) and with L? boundary data for p € (1,2] or in the Hardy space H?
for p € (1 — ¢,1] where ¢ € (0, %) Tao also proved, in [52], the solvability of the
corresponding regularity problem for boundary data in a Hardy space adapted to the
potential V' € B"(R™*1). In [55], Yang proved that for a bounded Lipschitz domain and
V € B"(R"™), the Neumann and regularity problems are well-posed in L, for p > 2, if
the non-tangential maximal function of the gradient of solutions satisfies an LP — L?
weak reverse Holder estimate. We note that these works build on the theory of boundary
value problems for the Laplacian Au = 0 on similar domains which have been extensively
studied in [20, 21, 22, 26, 35, 54].

More recently, boundary value problems for equations of the form

—div(AVu+b-u)+c-Vu+du (1.0.2)

have been studied. In [38], Kim and Sakellaris study Green’s functions for this equation
when b, c,d are in certain Lebesgue spaces, without any smallness condition, but with
additional conditions that d > divb or d > dive. Here A is assumed to be real and
uniformly elliptic. In [43], Sakellaris, considered boundary value problems for (1.0.2)
on bounded domains with Dirichlet and regularity boundary data, and the additional
condition that A is Holder continuous. Sakellaris, then extended this to arbitrary domains
in [44], where the estimates on the Green functions are in Lorentz spaces and are scale
invariant. Also, in [42], Mourgoglou proves well-posedness for the Dirichlet problem in
unbounded domains, with coefficients in a local Stummel-Kato class. He also constructs
Green functions and proves scale invariance for them. In [23], Davey, Hill, and Mayboroda

construct Green’s matrices for complex bounded coefficients under particular conditions
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on the solutions of (1.0.1). Exponential decay of the fundamental solution to —(V —
ia)T A(V —ia)u+Vu = 0 was proven by Mayboroda and Poggi in [40]. Also, recent work
by Bortz, Luna Garcia, Hofmann, Mayboroda and Poggi, in [19] treats well-posedness of
these equations when the coefficients have sufficiently small LP-norm .

In this thesis we will focus on boundary value problems for (1.0.1) when A and a are
complex-valued and elliptic. This includes the situation when Au + Vu = 0 on Lipschitz
domains. Unlike in [45, 52, 53], we restrict to the case when V' is t-independent, however
by doing this we will be allowed to have the potential in Bz (R"™) which is a more general
reverse Holder class as B"(R") C Bz (R").

To this end, we develop methods introduced by Auscher, Axelsson, and McIntosh in

[4] for boundary value problems for the equation

divy , A(2)Vzu(t,x) =0, (1.0.3)

and adapt these methods to include the 0" order term aV in (1.0.1). These methods
rely on the bounded holomorphic functional calculus, which we will define later, of a
first-order operator DB, where D is a self-adjoint, first-order differential operator and
B is a bounded matrix-valued multiplication operator, that is elliptic on W In the
case of (1.0.3), this was proved when A has a certain block-type structure, is self-adjoint,
or has constant coefficients by Auscher, Axelsson, McIntosh in [4] building on the work
on the bounded holomorphic functional calculus for Dirac-type operators by Axelsson,
Keith, and Mclntosh in [13], which expanded on methods developed for the solution of
the Kato square root problem obtained by Auscher, Hofmann, Lacey, McIntosh, and
Tchamitchian in [12]. The first-order approach developed in [4] and later in [2] shows

an equivalence between the second-order elliptic equation with a first-order Cauchy—

Riemann-type system

&,F + DBF = 0. (1.0.4)

If DB were to be a sectorial operator with angle less than 7, then it would generate

an analytic semigroup which would solve (1.0.4). However, DB is in fact a bisectorial



operator. In the case V = 0, the boundedness of the holomorphic functional calculus of
DB was proved in [13] and this was used to prove that DB is sectorial on a subspace
of m Then, in [4], this was used along with analytic semigroup theory to generate
solutions to (1.0.4). The solvability of the boundary value problems were then reduced to
showing these solutions come from the correct spaces of boundary data, by constructing
a mapping between the initial value of (1.0.4) with the correct boundary data for (1.0.1)
and showing that this mapping is invertible. This first-order method has already been
adapted to the degenerate elliptic case by Auscher, Rosen, and Rule in [10] and to the
parabolic case by Auscher, Egert, and Nystrom in [6]. The first-order method was also
used recently to prove solvability for elliptic systems with block triangular coefficient
matrices A by Auscher, Mourgoglou, and McIntosh in [7].

Thus, the operator DB having a bounded holomorphic functional calculus is pivotal
to proving solvability. Therefore, a large part of this thesis is dedicated to establishing
the functional calculus results. To do this we develop ideas from [13] and [3] by reducing
this to proving quadratic estimates. To overcome the lack of coercivity ((H8) in [13]) from
the presence of the potential, we exploit the structure of the operator DB using some
ideas introduced by Bailey in [16]. In [16], it is proved that the operator —div AV + V
satisfies a Kato square-root-type estimate for a large class of potentials V' using the
Axelsson-Keith-McIntosh framework of [13]. However, in [16], the bounded holomorphic
functional calculus is proved for Dirac-type operators of the form I' + I'*B which does
not directly imply the same results for operators of the form DB. This is because in
our setting we need our perturbation B to have a more general structure, whereas in [16]
the perturbation B is of a certain block-type. Therefore, we adapt the methods for such
operators, by considering projections onto different components of W, and in doing so
we restrict the class of potentials we are interested in, namely the reverse Holder class,
B3 (R") and Lz (R"). To establish bounds on the holomorphic functional calculus for
DB, we divide the usual dyadic cube structure of R™ into certain ‘big’ and ‘small’ cubes,

depending on a property of the potential V. We shall see that heuristically on ‘small’

cubes DB behaves similarly to the case when V' = 0, whereas, on ‘big’ cubes DB will be



treated differently by using the Fefferman—Phong inequality from [5].

Extending the concept of well-posedness, we discuss the notion of compatible well-
posedness. That is we compare the solution we generate from the first-order method
with the energy solutions (also known as variational solutions) generated from the Lax—
Milgram theorem, when the boundary data is in the intersection of the respective bound-
ary spaces. To do this we develop the theory of trace spaces for the Schrodinger equation
and in doing so we discuss the notion of fractional Sobolev spaces adapted to the potential
V. We also use the fractional Sobolev spaces associated with an operator introduced by
Auscher, McIntosh, and Nahmod in [8], and their relationship with interpolation theory
and quadratic estimates. We use both of these different types of fractional Sobolev spaces
to give a semigroup representation of energy solutions for the Schrédinger equation. We
then use this and the bounded holomorphic functional calculus to prove that the solutions
from the first-order method coincide with those derived from the Lax—Milgram theorem.

We also consider the magnetic Schrodinger operator (V + ib)*A(V + ib) and prove
quadratic estimates (and therefore the existence of a bounded holomorphic functional
calculus) for the associated first-order operator. The difficulty here, compared with the
purely electric case, is the conditions are imposed on the magnetic field curl b and not the
magnetic potential b. Therefore, we take advantage of a gauge transform, introduced by
Iwatsuka in [34], which allows us to introduce a new magnetic potential, corresponding to
the same magnetic field, which can be controlled by curlb. The drawback of this is that
the new magnetic potential is only defined locally and so we must localise the first-order
operator to attain local quadratic estimates. We do this by using a localised version of the
usual dyadic decomposition of R", where we perform a stopping time argument to obtain
a collection of cubes on which we can introduce the new local magnetic potentials. These
methods have evolved from the theory of Riesz transform estimates for the magnetic
Schédinger equation developed by Ben Ali in [17] and [18] which builds on Shen’s work
in [47].

This thesis consists of two broad parts. The first is establishing the quadratic estimates

and the second is the applications of these quadratic estimates to proving solvability of



boundary value problems. The thesis is structured as follows: Chapter 2 is the preliminary
chapter with known results which we will use repeatedly throughout; Chapters 3 and 4
are dedicated to the proof of the quadratic estimates associated with the Schrodinger
and magnetic Schrodinger operators respectively; Chapter 5 is concerned with direct
consequences of the quadratic estimates including Kato square-root-type estimates and
analytic dependence on the coefficients; in Chapter 6 the connection between equations
(1.0.1) and (1.0.4) is explored; the non-tangential maximal function estimates are the
focus of Chapter 7; and finally Chapter 8 finishes the mathematical content of the thesis
with proofs of well-posedness and compatible well-posedness for the Schrodinger equation.

Much of the work is contained in the preprint [41], in particular, forming the majority
of Chapters 3, 5, 6, and 7. I also acknowledge the contribution of my collaborator Andrew

Morris.



CHAPTER 2

PRELIMINARIES

This chapter is dedicated to giving some of the important standard results that we will

be using throughout.

2.1 Functional Calculus of Bisectorial Operators

This section gives the definitions and some important results regarding the functional
calculus of bisectorial operators and the relationship between functional calculus and
quadratic estimates. For the proofs and more details see [1] or [31]. We start by defining

the closed and open sectors as

Suy = {2z € C: Jarg(z)| < w} U {0},

Shy={2€C:2#0,|arg(z)] < pu},

where 0 < w < p < 7. Then we define the open bisector ¢ := 57, U (—57,) and closed
bisector S, = S, U (—S,4) for 0 <y < 7. For a closed operator T we denote o(T') as

the spectrum of T

Definition 2.1.1. Let X be a Banach space. Let 0 < w < m. Then a closed operator T
on X is sectorial of type S, (or w-sectorial) if o(T") C S,,; and, for each p > w, there

exists C), > 0 such that

(T =D <Culel",  VzeC\ S
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Im Im

Figure 2.1: The sector with spec-  Figure 2.2: The bisector with spec-
trum of a sectorial operator trum of a bisetorial operator

We have a similar definition for bisectorial.

Definition 2.1.2. Let X be a Banach space. Let 0 < w <

ol

Then a closed operator

T on X is is bisectorial of type S, (or w-bisectorial) if o(7T)

N

S, and, for each p > w,
there exists €, > 0 such that

T =D <G, ¥zeC\ S,
Let H(Sf) be the set of all holomorphic functions on S,. We define the following

H>=(57) = {f € H(S)) : | flleo < 00},
W(Sy) = {v € H*(S)) :35,C > 0, [(2)| < Cla" (1 + [[*) '},

F(5p) ={f € H(S5;) - 35,C >0, [f(2)] < C(|2" + [2] )}

Note that W(S7) € H>(S) C F(S;) € H(S)).
Now for ¢ € W¥(S9,) and ~, the unbounded contour v = {z = re*? : r > 0}
parametrised clockwise around S,,; such that 0 <w < 6 < pu < 5. Then for an injective,

sectorial of type S, operator T we define ¢(T') as

W) = o / B(2)(T - 21)d.

Similarly, let ¢ € ¥(S9) and the unbounded contour v = {z = +re*? : r > 0}

parametrised clockwise around S, such that 0 <w < 6 < pu < §. Then for an injective,
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bisectorial of type S, operator T we define ¥(T') as

w(l) = o [ 0T - 2D

Note as ¢ € W(S7,) (or ¥(S7)) then the integral converges and so the resolvent operators
are bounded we have (T") € L(X). Then we define the F-functional calculus for f €
F(55,) in the following way: let ¢ € W(S7,) be defined as

where s > 0 is such that | f(z)| < C(|z|°+|2|7*) for some C' > 0. Therefore ¢ f € W(S7,).
Then for an injective, bisectorial of type S,, operator T we define the closed operator f(T")

as

F(T) = (@(T)) " (f)(T). (2.1.1)

One of the most important questions related to the functional calculus is whether the

operator’s functional calculus is bounded.

Definition 2.1.3. Let X be a Banach space. Let T' be an injective, bisectorial operator
of type S, in X, and 0 < w < p < . Then we say that 7" has bounded holomorphic
(or H®) functional calculus if, for all f € H*(S}), then f(T') € L(X) and there exists
¢, > 0 such that

1f (@l < cull fllsollull,  Vu e X.

In general it is hard to prove whether an operator has a bounded H* functional
calculus or not. The following theorem gives an equivalent (and somewhat easier to

prove) condition to an operator having a bounded holomorphic functional calculus.

Theorem 2.1.4. Let H be a Hilbert space. Let T" be an injective operator of type S, in

‘H. Then the following are equivalent:

1. T has a bounded S}, holomorphic functional calculus for all y € (w, %)

12



2. there exists ¢, > 0 such that ||[¢(T)u|| < cul|¢]loollu| for all w € H and for all

Y € U(Sy) for some p € (w, 5);

3. the following estimate holds,

&0 dt
/ 47+ 2T S S July, for all w e A
0

We note that in the definition of bounded holomorphic functional calculus we present
the operator T' as being injective. In general we will not be dealing with injective opera-
tors, however, we will later restrict our operators to a subspace where they are injective

(see Proposition 2.5.1), and so these result will be applicable after such a restriction.

2.2 Reverse Holder Weights

This section give the definitions and some of the important properties associated with
reverse Holder weights. First, for a cube, @ C R", we denote the sidelength as I(Q) and
the Lebesgue measure as |Q|. we define f, f = |Q|™! [, f for all f € Lj,,(R").

loc

Definition 2.2.1. Let ¢ € (1,00). Then a non-negative locally L'-function, V, is in the

reverse Holder class, B(R"), if there exists C' > 0 such that the reverse Hélder inequality

(]{qudx)lz <C (]éde)

for all cubes Q.

We define the best constant in the reverse Holder inequality as
1

(fove)”

Vi, = sup ———F— < o0.
[[ ]]q OCR™ J(’QV

We first we note for all ¢ > 1 we have BI(R") C A, the set of all Muckenhoupt

weights, see [50, Chapter V Theorem 3]. We say w € A, if there exists constants
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7,8 € (0,1) such that for all cubes @ and all subsets £ C () we have, if

|E| <~v|Q|, then /Ew(x) dz < 5/Qw(x) dz. (2.2.1)

We call v and § the A, constants of w. In [28] the important property that: if V' € BI(R")
then there exists € > 0, depending only on n and [V],, such that V' € BI*¢(R"). Another

key property of B?(R") is that V' (z)dz is a doubling measure, that is

/2Q V(z)de < Cd/QV(iL’) dz,

where c¢; > 1 is the doubling constant for V.
For V' € BY(R") we define m(z, V'), the Shen maximal function, first introduced by
Shen in [45], as

m(x, V) =sup {r > 0: 7“2]{9 V(y)dy < 1} : (2.2.2)

r(x)
where B,(z) is the ball of radius r and centre z. We will also use a discrete version of
m(x, V) which we will incorporate into the dyadic mesh of R" at each scale. Therefore,

as in [5], we will consider the following two types of cubes:

Z(Q)Q]é Viz)dz <1 or l(Q)2]é Viz)dz > 1,

we call the former type as small and the latter type as big. To see why we use the term
small let 2 € R™ be a Lebesgue point of V and let {Qy }ren be the collection of cubes such
that limg o [(Qx) = 0 and x € Qi for all k£ € N. Then by the Lebesgue differentiation
theorem (see [51, Corollary 1.1]) we have

lim [Z(Qk)Q]{Qk V} =0-V(z)=0. (2.2.3)

k—o0

Note that, as V' € L (R™) then, again using [51, Corollary 1.1}, that almost every z € R"

is a Lebesgue point of V.

A natural question to ask is: Given a small cube @ are there conditions on a subcube

14



R C @ which can guarantee that R is also small? We give the following general lemma

which answers this question. The lemma expands on [45, Lemma 1.2].

Lemma 2.2.2. Let V € BY(R"), for ¢ > 5. Let C' > ¢ > 0 Suppose that cubes ) and

R C ) we have
l Q 27[ V C and (R 2% V 2.2.4
( ) 0 < ’ ( ) > c, ( )

Then, there exists ¢ > 0 such that

Q) < U(R),

where ¢ depends only on n, ¢, [V],, C, and c.

Proof. Then, using Jensen’s inequality and the reverse Holder property of V', we have

frs(f)' < (v < (i) maf v

Thus, by (2.2.4) we have

c<MRY£§/§(}%%)ZQHVLMinbfg(}%g)Z_HVLC.

Therefore, as % — 2 < 0 we have

x@g(ﬂMggﬂmy

C

Then letting ¢ = (W) e completes the proof. H

The contrapositive of Lemma 2.2.2 will also be very useful and so we present it as

well.

Lemma 2.2.3. Let V € BY(R"), with ¢ > §. Let C' > ¢ > 0 Let Q be a cube such that

mwévSa
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Then, if R is a subcube of ) with

then

1(3)2]£v <e.

Remark 2.2.4. If V € B2 (R") then by the self improvement property of reverse Holder
weights we have there exists ¢ > 4 such that V' € B(R"). Therefore, Lemmas 2.2.2 and

2.2.3 apply to all V € B2 (R") with constants depending on the exponent q.

We also include a version of the Fefferman—Phong inequality on cubes as in [5]. This
inequality is used to bound the local LP-norm with a local Sobolev norm adapted to the

weight V', where the constant depends explicitly on the behaviour of V' on Q.

Proposition 2.2.5 (Improved Fefferman—Phong Inequality). Let p € [1,00) Let w € A..
Then there are constants C' > 0 and 5 € (0,1) depending only on the A, constants of w
(as in (2.2.1)) and n, such that for all cubes @ with side-length [(Q) and u € C'(R") we

have

Cmg(l(Q)P avg w) » » »
o < [ eur sl

where avg w = wi, and mg(z) = z for x < 1 and mg(x) = 2 for z > 1.

2.3 Sobolev Spaces Adapted to Singular Potentials

Throughout this section, suppose that n > 2 is an integer and that {2 is an open subset
of R™. The potential V : R — C always denotes a locally integrable function. In most
results, it will be either complex-valued in LP(R™) for some p € (1,00), or nonnegative-

valued in the reverse Holder class B(R™) for some ¢ € (1,00) so that either

1

IVl = </Rn ’V’p>p <oo or [V]; = sup GQ vqy < o0.

QCR™ JCQ 4

=
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We will need to adapt the usual Sobolev spaces to account for the potential V. The
following notation will be convenient for this purpose. If f € L2 (), then V,f € D'(Q)

loc

denotes the distribution
Vf
V,.f = e (2.3.1)
V]2 f
where Vf = (0if,...,0,f)T is the standard distributional gradient of f, whilst the
product (|V|2f)(z) = |V(z)|2f(z) is defined pointwise almost everywhere on € and
belongs to LL (2) (and thus can be interpreted as a distribution) because f € L2 (Q)

loc loc

and V € LL _(R"). We note that V, depends on the dimension of the domain of the
function. In particular, we will use V, for function on both R" and ]R’}r+1 and V, will
have different dimensions in these two cases, n and n + 1 dimensions respectively. This
should be clear from the context.

Our starting point is a minor variant of the standard Sobolev inequality (see, for
instance, Section 2 in Chapter V of [51]): If f € LP(R") for some p € [1,00) and
Vf e L*(R"), then

I1f

2+ S IV 2 (2.3.2)

where 2* = % is the Sobolev exponent for R”. We will consider potentials that can be
controlled by this inequality as follows: If V € Lz (R"), then Holder’s inequality implies
that

5. (2.3.3)

IVIZFIS < IVI2lf

If V € B2 (R"), then Holder’s inequality implies the local variant

o (2.3.4)

IVE Iy < VI3 1 < VI3 (1<@>2]{2 Vi) s
for all cubes ) C R™. The following technical lemma provides the basis for the definition
of our adapted Sobolev spaces.

Lemma 2.3.1. Let p € [1,00) and suppose that V' € L (R™). If {fm} is a sequence

loc

in LP(Q2) that converges to some f in LP(12), and {V,f,} is a Cauchy sequence in
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L*(Q,C™1), then {V,fn} converges to V. f in L*(Q, C"t1).

Proof. Suppose that {f,,} and f satisfy the hypotheses of the lemma, in which case
{Vfn} converges to some (F, ..., F,)T in L2(Q,C") and {|V|2fm} converges to some
F,y1 in L*(Q). Tt suffices to prove that F; = 9;f when j € {1,...,n} whilst F,;; =

V|2 f. Fix ¢ > 0 and ¢ € C°(Q) arbitrarily. Let N € N be such that

g g
IF; = 0ifmllallel < 5 and |1 = FlpI05ly < 5

for all j € {1,...,n} whenever m > N. Now, if j € {1,...,n}, then by the definition of

the distributional derivative and Holder’s inequality imply the simple estimate

([ 50) = (- [ 10) | < 155 = Outlaliole + L = T, 0001 <=

Therefore, as ¢ > 0 and ¢ were arbitrary then [ Fjo = — [ f0;¢ and thus F; = 9;f. In
particular, this shows that V f,, converges to Vf in L?(Q, C"), which we shall now rely
on to complete the proof. Suppose that ) is a cube contained in 2. Again fix ¢ > 0 and

© € C(9) supported in @ arbitrarily. Let N € N be such that

1 £ £
1Fes = VIZ funllzllpllz < 5 and [IV(fm = Hll2liell < 5

Then, by Holder’s Inequality and (2.3.2), we obtain

1 1 1
‘/(Fn—&-l - !V|2f)30‘ < Fir = V2 fmll2lloll + V]2 (fn = D2 @)l ll2

1
Sn@ [Enrr = [V fulloll@llz + VI 5 o) IV = V2]l

SnvqQ €

Similar to before we have F,,; = |V|% fm almost everywhere on (), and thus also almost

everywhere on (). O

We now define the adapted Sobolev space V'?(Q) to be the inner-product space
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consisting of the set
VE2(Q) = {f € L*(Q) : V.f € L*(Q,C"™)}
with the (complex) inner-product

(f. gy = /Q 7+ /Q V,f Vg

and the associated norm

-

2
1l = (11320 + IV e )

If either V € L3 (R"™) or V € B2 (R"), then Lemma 2.3.1 shows that V12((2) is a Hilbert
space. We then define V1}?(Q2) to be the closure of C3°(€) in V?(Q). In the case ) = R",
it holds that V?(R") = V12(R"), since C°(R") is a dense subspace of V'2(R™). The
density of C°(R"™) in the case V € B2 (R") is proved in [24, Theorem 1.8.1], which only
requires that V is nonnegative and locally integrable. In the case V € Lz (R"), the
Sobolev inequality in (2.3.3) implies that || f[|3i. ~ [[f]3 + |V I3 = || f][f1.2, so in fact
VL2(R™) is then just an equivalent normed space to the usual Sobolev space W12(R"),
for which density of C2°(R") is well-known. We also define V,'?(Q) to be the set of all
f € L% (Q) such that f € VY3(Q') for all open sets € with compact closure ' C 0
(henceforth denoted ' CC Q).

We also define the homogeneous space VLQ(R”) to be the completion of the normed

space consisting of the set C2°(R"™) with the norm

||f||]')172(]Rn) = ||Vuf||L2(R”,(C”+1)~

The precompleted space is a genuine normed space, since if f € D'(R") and ||V f||L2gn) =
0, then f is a constant function, so when f is also in C°(R™), it must hold that f = 0.
Moreover, the Sobolev inequality (2.3.2), and Lemma 2.3.1 in the case p = 2*, show

that there is an injective embedding from the completion into L?" (R"), allowing us to
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henceforth identify it as the set

VIAR") = {f € L (R") : V,.f € L*(R")}

with the norm equivalence

-

2
[ Fllsagaey = 1V lzzencony = (10 oy + 19 f ez )

In particular, the set inclusion VY3(R") D {f € L*(R") : V,f € L*(R™)} requires
the density of C:°(R™), with respect to the norm ||V, fl/r2n crs1y, in the latter set.
This density can be proved using the arguments in Theorem 1.8.1 of [24], as discussed
above for the space V'2(R"). In the case V € L3(R"), we also have the equivalence

1Az = 1S

homogeneous Sobolev space WI’Z(R") in which each equivalence class of locally integrable

2.+ IV£I12 = [V £]3, so VV2(R™) is then just the realisation of the usual

functions modulo constant functions [f] € L _(R™)/C is identified with a unique function

g € L¥ (R") such that g € [f].

Now we define V12(R"H) to be the Banach Space consisting of the set
VAR = {f € L¥ (RM) : V, f € L*(R}M,C"2)}

with the norm
”f||v172(R1+1) = ||vuf||L2(]R1+1,(C”+2)a

where 2* := (721?;;1_)2 = 2(:_+11) denotes the Sobolev exponent on R™™, and since Ri“ C

R™*! and so following (2.3.1) then V,, is understood on R’ as

o f(t,x)
Viftz):=| Vv ft =)
V|2 (2) f(t, )

for all t > 0 and z € R". For a function defined on ]R’frl we use V| to denote the
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derivatives in the transversal directions. That is

o f

where 0y, = % (we use Jy = 0y).

Following [30], we define C (@) to be the set of continuous functions on R and
Ck(@) to be the set of functions in C*(R"™!) all of whose derivatives of order less than
k have a continuous extension to R’_ﬁT We also denote C* (@) to be the set of function
in C¥ (@) with compact support. Note that, the support of functions in C* (@) can
include the boundary of @ We have the following proposition about the density of
CERTT) in V(R).

Proposition 2.3.2. If V € B3 (R"), then C®(R"™) is dense in V"2(R"H)

Proof. If f € VY2(R™), then f € H'(R™™), so by [7, Lemma 3.1] the extension f
of f defined by reflection across the boundary of R%™ is in H LR, further details
can be found in [30, Theorem 7.25]. The main point is that f € L%OC(@) because
fel” (Rﬁlfl). In particular, this property ensures that the “translated mollifiers” used in
the proof of [30, Theorem 7.25] converge in H'(R"™!). Meanwhile, the extension f is also
in L2 (R41) with | ety = 20l ey and (V] Flzaganssy = 20VIE e,
hence f is in VV2(R™H1),

Next, since C°(R™1) is dense in V'2(R™!), there exists a sequence (fi)rey in
C°(R™1) that converges to f in VV2(R™1). This means that V, fi converges to V,,f in
L?(R™1 C"*2), hence the restrictions to the upper half-space (Vufk”Ri“ = vu(fk|R1“)
converge to (V, f)|R1+1 = V,.f in L3R C"*2). The required density follows since

fk‘Riﬂ is in CEO(RT_T_JA) O

Remark 2.3.3. We define V' on the upper half-space R in a different way to how

we define it on the full space R"™. The density of C>° in the full space definition was
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instrumental to the result above. In fact, the above proof actually shows that
VIR = {flgnss s f € VPR,

since the set inclusion D is immediate.

We will translate these Sobolev spaces into the language of first-order operators. First,

We introduce notation to represent vectors v € C"*? as follows

v
v : Y|
v= |y | = , that is v, =
Uy v,
Up

where v, € C represents the normal part, v € C" represents the tangential part, v, € C
represents the potential adapted part and v, € C"*! represents the combination of )|
and v,,.

Now, we define the self-adjoint, hence closed, operator D: 2(D) C L*(R";C"*?) —
L*(R™; C"™2) by

0 div —|V]2
D= =l -v o0 o0

—[Vlz 0 0

with its maximal domain in L*(R™, C""?) being given by
2(D) = {f € L*(R*,C™™?) : f, € V"*(R™) and (div f; — |V|"/*f,) € L*(R™)}.

This domain is maximal since D f is well-defined as a distribution for all f in L*(R", C"2).
Indeed, recalling the requirement that f; € VM?(R™) is just that V, f, € L*(R™), whilst
div f| denotes the distributional divergence of fj, and V|2 fu € Li.(R") when f, €

loc

L*(R™) because V € LL (R™). Also, V,, is interpreted as the unbounded operator from

loc
L*(R™) into L*(R",C"*') defined by (2.3.1) on the domain 2(V,) = V'*(R"). In

particular, the operator V, is closed by Lemma 2.3.1, and since C;°(R™) is dense in
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VE2(R"), its adjoint satisfies V= (—div, IV|2) on its domain
2(V;) ={(f1. fu) € PR C™Y) : (—div fy + VI3 f) € PR}, (235)

where (— div f||+|V|%fu) € L?(R") means there exists F' € L*(R"), and Vi, ((f}, fu)) = F,
such that [(f| - Vo + fu|V]2¢) = [ Fp for all ¢ € C*(R™). We also note that we have

the following product rule for V7.

Lemma 2.3.4. Let u € 2(V}) and n € C°(R™). Then nu € Z(V},) and
Vi (nu) = nViu—Vn-u.

Proof. Note as u € L*(R";C"*") and Viu € L*(R") we have Vi -u +nViu € L*(R").
Now, let ¢ € C°(R™), then

(MVu— V-, 9) = (V,u, o) — (V- 9)
= (u, Vu(n9)) = (uy,Vn)
= (), NV + @Vn) + (w, |V [210) — (uy, V)
= (1, Vyup).
Thus, Vi, (qu) = nViu—Vn-u). Therefore, V¥ (nu) € L*(R*;C"*') and nu € 2(V}). O
We introduce the definition of a topological splitting of a Banach space

Definition 2.3.5. Let X’ be a Banach space. Let Y, Z C X. Then we write X =Y ® Z
if:

1. Y, Z are linear subspaces of X’;
2. YN Z={0};

3. for all x € X there exists y € V), z € Z, and C' > 0 such that x = y + z and

Iyl + Izl < Cll]i
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1
If H is a Hilbert space and Y, Z C H, then we write H =Y ® Z it H =) & Z and
Yy =2zt

The self-adjointness of D provides the orthogonal Hodge decomposition

1
L*(R™ C"*?) = N(D) @ R(D). (2.3.6)
Moreover, the null space of D is the set
N(D) = {f € L*(R",C™*?) : f, = 0 and div fj = |V|2 f,},

whilst the closure of the range of D is characterised in the following lemma.

Lemma 2.3.6. The closure of the range of D in L*(R™, C"*?) is the set

R(D) = {f € L*(R",C"™?): f, € L*R") and (fy, f.)" = V,g for some g € V**(R™)}.

Proof. First, suppose that f € R(D), so then f; € L*(R") and there exists a sequence
{gm} in V1*(R™) such that {V,g,} converges to (fj, f,)" in L*(R™, C"*'). The Sobolev
inequality (2.3.2) then implies that {g,,} is Cauchy and hence convergent to some function
g in L?" (R™). Therefore, by Lemma 2.3.1 in the case p = 2*, the sequence {V g, } must
converge to V,g in L*(R",C™™), hence (f), fu)" = V,g and g € VL2(R™), as required.

For the converse, suppose that f, € L?*(R™) and that (fy, f,)" = V,g for some
g € VI2(R™). Tf h € N(D), then h; = 0 and div by = |V|2h,, hence

(f. B o@n o2y = (Vg by a@ncny + ([VI2g, ) ragey = (9, [V IZhy, — div by g2geny = 0,

where the last equality, which is immediate when g € C>°(R™), relies on the density of
C®(R™) in V“2(R™). The orthogonal Hodge decomposition in (2.3.6) then allows us to

conclude that f € [N(D)]* = R(D). O
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2.4 Sobolev Spaces Adapted to Vector Potentials

In this section we aim to replicate some of the results in Section 2.3 where we replace the

operator V,, with V + b for some fixed b € L} (R";R"). Here we call b the magnetic

loc

potential and we define the magnetic field generated by b as B := curl(b), where

ob;  0Ob
Bjk = Curl(b)jk = a—z‘; — a_xk
J

Note that as b; € L _(R") then b;f € L} .(R") for all f € L2 R"). Therefore, we can

loc loc loc

make sense of (0; + ib;) f in the following distributional sense

[0+ iby) f]() = / F(ib; — 0.

We then define the (V +ib) f == ((0y +1ib1) [, ..., (O +iby)f)T € D'(R™). Then we define

the inner-product space
W, = {f € L*(R") : (V+ib)f € L*(R")},
with (complex) inner-product

(f, g>Wbl72(Q) = /Qfﬁ + (V+ib)f-(V+ib)g,
and norm
1
1 w2y = (1 By + 7 + ) B )

In the definition of W,"*(Q2) we do not assume that V f or bf are in L?(R"; C") separately.
That is, if f € W,"*(R") then it is not necessarily true that f € W1H2(R"), however the
following theorem shows that if f € W,"*(R") then |f| € WL(R"), see [39, Theorem

6.17] for the definition of V| f|. We give a pointwise bound below.

Proposition 2.4.1 (Diamagnetic Inequality). Let b € L _(R™;R"). Then, for all f €

25



W, ?(R™), we have
IVIfI(@)] < IV + i) f ()],

for almost every x € R".

Proof. See [39, Theorem 7.21]. O

We are able to combine the Diamagnetic Inequality with the Sobolev Inequality (2.3.2)

to obtain the following magnetic version

1/

2 = [ f]

> S VISl < IV + D) f2. (2.4.1)

The following lemma is the analogous to Lemma 2.3.1.

Lemma 2.4.2. Let p € [1,00] and suppose that b € L _(R"). If {f,} is a sequence
in LP(Q2) that converges to some f in LP(Q2), and {(V +ib) f,,} is a Cauchy sequence in
L3(Q,C™Y), then {(V +1b)fm} converges to (V +b)f in L?(Q2,C").

Proof. Suppose that {f,,} and f satisfy the hypotheses of the lemma, in which case
{(V +1ib) f} converges to some (Fy,..., F,)T in L2(2,C"™). It suffices to prove that
F; = (0;+1b;)f for j € {1,...,n}. Fix e > 0 and ¢ € C*(Q2) arbitrarily. Let N € N be
such that

3

. £ :
185 = (0 +abj) funl2llpllz < 5 and [l f = Fllp (05 +3by)elly < 3

2

for all j € {1,...,} whenever m > N. Now, if j € {1,...,n}, then by the definition of

the distributional derivative and Holder’s inequality imply the simple estimate

([ 7e) = (= [ s =090) | < 15 = 0 i)t

+ 1 fm = Flloll(8; + ibs)epll

Therefore, as ¢ > 0 and ¢ were arbitrary then [ Fjp = — [ f(ib; — 9;)¢ and thus
Fy = (9; +1bj) f. O
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A corollary to Lemma 2.4.2 is that Wbl’Q(Q) is a Hilbert space. Following the notation
in Section 2.3, we define Wb{f(Q) to be the closure of C°(Q) in W,"*(Q). By [39, Theorem
7.22] we have C2°(R") is dense in W,"*(R"), and so W,*(R") = Wb{f(R”). We also define
Wb{iic(Q) to be the set of all f € L3 () such that f € W,"*(Q') for all open sets Q' CC €.

loc

We define the homogeneous W,"*(R") to be the completion of C2°(R™) with the norm

1f i 2my = IV +0) fl 2 @nicmy.

The precompleted space is again a genuine normed space as if f € C2°(R") is such that
I(V +ib) fl[ 2rnicmy = 0, then by (2.4.1) we have || fl| e @n) S |(V + i) || 12(rniem)) = 0.
Hence f = 0. Now by (2.4.1) and Lemma 2.4.2, we may use a similar approach to Section
2.3 to get

Wy (R*) = {f € L* (R") : (V +ib)f € L*(R";C")},

with the norm equivalence

1
. . 2
£l = 17 + ) fllzzncn = (£ 13 ny + 1V +8) fpaqunscn)
It is important to note that b does not uniquely determine B, since curl(b+ Vy) = B
for any ¢ € W12(R™). This is known as the gauge invariance and is why we will impose
our conditions on B instead of b itself. We will however, be able to take advantage of

this through the following Proposition in [34, Proposition 3.2].

Proposition 2.4.3 (Iwatsuka Gauge Transform). Let b € L (R™;R") and @ a cube

loc

in R®. We assume curlb = B € L%

loc

o € WH2(R™; R) such that curlh = B and

(R™; R™*™). Then, there exists h € L™(Q;R™) and

h=b—Vy ae x€Q,

with

1

(]{zlh!”)n <UQ) (]{2|B’g>37 212
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where ¢ > 0 depends only on n.

The conditions we will impose on the magnetic field B are as follows:

IB| € B%(R") _

[VB(z)| < em(z, |BJ)?,

for some ¢ > 0, where m(-, V') is the Shen maximal function in (2.2.2).

In [46] the following Fefferman—Phong inequality was proven.

Lemma 2.4.4 (Global Fefferman—Phong). Let b € L _(R";R"). Also, assume that B
satisfies (2.4.3). Then
lm (-, [Bl)ulla S [(V + ib)ulls,

for all u € C*(R™).

We recall the magnetic version of the Fefferman—Phong inequality (Proposition 2.2.5)

in [17].

Proposition 2.4.5. Let w € A* and p € [1,00). Then there exists constants ¢ > 0 and
p € (0,1) depending only on p, n, and the A* constant of w, such that for all cubes @
and u € C*(R™), then

DYy lP p prQ P
/Q\(VJrzb)u| ol > T /|u|

where mg(z) = z if x <1 and mg(x) = 27 if > 1.

As with Section 2.3 we wish to use the language of first-order operators. First, We

introduce notation to represent vectors v € C**! as follows

Y|

where v, € C represents the normal part, vy € C" represents the tangential part. Now,

define the self-adjoint, hence closed, operator D: 2(D) C L*(R™;C**1) — L*(R";C"*1)
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0 —(V + ib)*
—(V +ib) 0

with its maximal domain in L?(R", C"™!) being given by
P(D) = {f € L*(R",C"™") : fL € W,*(R") and (V +ib)" f;i € L*(R")}.

This domain is maximal since D f is well-defined as a distribution for all f in L?(R™, C"*1).
Indeed, recalling the requirement that f, € W,"*(R") is just that (V +1ib)f, € L*(R™),
whilst (V 4 ib)* f| denotes the adjoint of (V +ib). Here (V +ib) is interpreted as the
unbounded operator from L*(R") into L*(R™, C") on the domain 2(V +ib) = W,"*(R").
In particular, the operator (V +ib) is closed by Lemma 2.4.2, and since C2°(R") is dense

in W,"*(R"), its adjoint satisfies (V +ib)* = —(div +ib) on its domain
PD((V +ib)*) = {f € L*(R*,C") : —(div f +ibf) € L*(R")}, (2.4.4)

where —(div f + ibf) € L?(R") means there exists F' € L*(R"), and (V + ib)*f = F,
such that [ f-(V +ib)p = [ Fy for all p € C*(R™).

As before the self-adjointness of D provides the orthogonal Hodge decomposition

1
L*(R™, C"™) = N(D) @ R(D). (2.4.5)
Moreover, the null space of D is the set
N(D) = {f € L*(R",C"™"): f, =0 and — div fi = ify},

whilst the closure of the range of D is characterised in the following lemma which is

analogous to Lemma 2.3.1.

Lemma 2.4.6. The closure of the range of D in L*(R™,C"*!) is the set

R(D) = {f € L*R",C""): f, € L*(R™) and Ji = (V +ib)g for some g € Wbl’Q(R")}.
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Proof. First, suppose that f € R(D), so then f; € L?(R") and there exists a sequence
{gm} in W, *(R") such that {(V + ib)g,,} converges to fj in L?*(R",C"*'). The Sobolev
inequality (2.4.1) then implies that {g,,} is Cauchy and hence convergent to some function
g in L? (R"™). Therefore, by Lemma 2.4.2 in the case p = 2*, the sequence {(V + ib)g,, }
must converge to (V + 4b)g in L?(R", C"*'), hence f| = (V +ib)g and g € W, *(R"), as
required.

For the converse, suppose that fi € L*(R") and that f; = (V + ib)g for some
g € W2 (R"). If h € N(D), then h; = 0 and — div hy = ibh, hence

(fs 1) 2@n cnvzy = ((V 4+ i0)g, hy) 2@ ey = (g, —(div +ib) ) r2(em) = 0,

where the last equality, which is immediate when g € C>°(R™), relies on the density of
C>(R") in W,"*(R™). The orthogonal Hodge decomposition in (2.4.5) then allows us to

conclude that f € [N(D)]* = R(D). O

2.5 The Theory of Perturbed Self-adjoint operators

In this section we discuss operators of the form DB or BD where D is a self-adjoint

operator on a Hilbert space H, and B is bounded on ‘H and elliptic on R(D), in the sense

that there exists k > 0 such that

Re(Bu,u) > kl|ull3, for all u € R(D). (2.5.1)

These are the same as (H2),(H4),(H5) from [3]. We also define the angle of ellipticity of
B to be

w:= sup |arg(Bu,u)| < iy
ueR(D)\{0} 2

We have that following proposition about the behaviour of DB in [4, Proposition 3.3].

Proposition 2.5.1. Let H be a Hilbert space. Let D be a self-adjoint operator and let B

be a bounded operator in ‘H satisfying (2.5.1). Then the operator DB is a closed, densely
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defined w-bisectorial operator with resolvent bounds ||(AI — DB) ™ ul|z < —Lulx

S Ty When

A ¢ S,. Also

1. The operator DB has range R(DB) = R(D) and null space N(DB) = B~'N(D)

with H = R(DB) @ N(DB).

2. The restriction of DB to R(D) is a closed and injective operator with dense range

in R(D) with spectrum and resolvent bounds as above.

Proof. As D is closed and densely defined and B is bounded then DB and BD is closed
and densely defined. Also, (DB)* = B*D, and (BD)* = DB*. Therefore, we have

# = R(DB) ® N(B*D) = R(B*D) @ N(DB).

Then R(DB) = N(B*D)* = N(D)* = R(D). Now, let v € 2(DB) and w € N(DB).

Then, using ellipticity, Cauchy-Schwarz, and the boundedness of B*, we have

|IDBv|%, < k' |(BDBuv, DBv)]
=k '{DBv, B*DBv) + (B*DBuw, v)|
— k Y(DBv +w, B*DBv)]
=1 {B(DBv + w), DBv)|
< K B(DBv +w)||u[| DBl

< & Bllopl DBv + wll | DBv]

where ||B||op is the operator norm of B. So |[[DBv|y < ||DBv + w|y with constant

~Y

depending only on s and ||B|lop- Thus, we have |DBvl|ly + [[w|]lx = ||[DBv + w||x.

Then, by a density argument we have |uly + ||w|» = ||u + w||y for all w € R(DB) and

w € N(DB). A similar argument gives that ||u+w||y =~ |Jul|l3 + ||w]|% for all w € R(B*D)

and w € N(B*D). Now let u € R(DB)NN(DB). Then, we have ||ull% = ||ul|x+]|—ullx =

|lu —ull% = 0. That is, u = 0. Thus, R(DB) NN(DB) = {0}. Again, a similar argument

31



gives R(B*D) NN(B*D) = {0}. Now
# =R(DB) ® N(DB) ® (R(DB) & N(DB))L .

Let u € (W@ N(DB))L. Then, (u, v+w) = 0 for allv € R(DB) and allw € N(DB).
Therefore, (u,v) = 0 and (u,w) = 0 for all v € R(DB) and all w € N(DB). That is,
u € R(DB) NN(DB)*. Since R(DB) = N(B*D) and N(DB)* = R(B*D) we have
u € R(B*D)NN(B*D) = {0}. That is, u = 0. Thus, (W@ N(DB))L = {0}. Hence,

H=R(DB)@® N(DB).
Again, the same argument yields
H =R(B*D) @ N(B*D).

We now prove DB is bisectorial. Let pu € (w,5). Let A € C\ S,. First, note that if
u € N(DB) then ||(M — DB)ull» = |A||Jull > dist()\, S,)|Jull%. Now, assume u € R(D).
As D is self-adjoint then (Bu, DBu) € R. Therefore, Im(Bu, (A — DB)u) = Im(Bu, \u)
Now, using the boundedness of B, we have |Im(A(Bu,u))| = |Im(Bu, (A — DB)u)| <

|w||3]| (M — DB)ul|3. Since v € R(D) using the ellipticity of B we have
[ Im(M(Bu, u))| = [N[(Bu, w)| sin(p — w) 2 [Jull3, dist(A, S.,).

Thus
1

ulln S WH(M — DB)ully,

which implies bisectoriality. O
And for BD we have a similar result

Proposition 2.5.2. Let D be a self-adjoint operator and let B be a bounded operator
in H satisfying (2.5.1). Then the operator BD is a closed, densely defined w—bisectorial

operator with resolvent bounds ||[(Al — BD) 'u|ly < % when A\ ¢ S,,. Also

32



1. The operator BD has range R(BD) = BR(D) and null space N(BD) = N(D) with

# =R(BD) @ N(BD).

2. The restriction of BD to R(BD) is a closed and injective operator with dense range

in R(BD) with spectrum and resolvent bounds as above.
Proof. Proved similarly to the DB case. O]

For t € R with ¢t # 0, we define the following operators

RP = (I +itDB)™*
1
Pl = (I+(tDB))"" = J(R} + R,) = RUR?,,

1
QP =tDB(I + (tDB)*)~! = 5(—}%? + RP)).
?
We let P, = P! and Q; = Q! to be the unperturbed versions. Now using Proposition

2.5.1 we have

[(=it)"" = DB)ully _ 1 [l

RPully = |(I +itDB) 'ully =

) S llullw

uniformly in ¢ where the implicit constants depend only on dimension and the properties
of B. Therefore, || PPull3 < ||lully and |QPull3 < |lully uniformly in ¢ where the implicit
constants depend only on dimension and the properties of B. Similar statements hold
when DB is replaced by BD. An key observation is that as D is self-adjoint then we

have the quadratic estimate

o dt
| 1QulE S = el for all v € ROD).
0
Another important property is the Calderén reproducing formula
o dt  wu
By2, 4t U
| @ =3
for all u € R(D), see [13, eqn. (17)] and [1, Section (E)] for details.
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Now let

0 =V, 0 —(V 4+ ib)*
D= , or D=
-V, 0 —(V +1ib) 0

We define the bounded operator B: H — H to be multiplication by a matrix valued

function with the following structure

B, By 0

B, By

€ L®(R™; L(C™1)),
ByL By
0 0 b
respectively. Here H = L*(R™; C™™!) and H = L*(R"; C"™) for the electric and magnetic

operators respectively. Then, the aims of Chapters 3 and 4 are to proof the quadratic

estimates

> dt > dt
| 1aruS = [ 1B+ eDEDE) MBS < ul, YueRD), (252
0 0

for the first-order operator DB as defined in Sections 2.3 and 2.4 respectively. To prove
(2.5.2) we will first prove

> dt
/ |tDB(I + zeQDBDB)—luug7 S lull3, Vu e H. (2.5.3)
0

To see that (2.5.3) implies (2.5.2) we present a duality argument. Since QP =
tDBPP = PPtDB, then for v € N(DB) we have QPu = 0. Then, by Proposition

2.5.1 we have H = R(DB) & N(DB) and so now we are left to prove the quadratic

estimate on R(D) = R(DB). Now, assume DB satisfies the estimate (2.5.3). As

(I +t*BDBD)u = (BB~ '+ t*BDBDBB ")u = B(I + *DBDB)B 'u,
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for all u € R(D), then we have

(I +t*BDBD) *u = B(I +t*DBDB) 'B u,

for all w € R(D). Then using above, (2.5.3), and the boundedness of B and (2.5.1), we

have

o dt > dt
/ HtBD(I+t2BDBD)‘1uH§7:/ ||tBDB(I+t2DBDB)‘lB‘1uH§75||B‘1u|\§,
0 0
(2.5.4)

for all u € H. Note that we have Re(B*v,v) > k|v|| for all v € R(D). Therefore, by

(2.5.4), where B is replaced by B*, we have the estimate of the dual

1 1
> . 0dt 2 RO o o dt 2
([T mepros) = ([ 1o+ empe )y wgS) < ik

for all v € H. For the lower estimate we now follow the proof of [13, Proposition 4.8
(iii)]. Therefore, using the Calder6n reproducing formula, Cauchy—Schwarz, and above,

we have

i = sup [{u.0)
([ @)
o dt
= s /0 (@7, (thB)*v> 7‘ |
< ([ TrerupT)” e ([Tn@reg)

1
e dt\ 2
5(/ ll@qu%;) sup [olla
0 lvfl2=1

> dt
= (/ ||tDB(I+t2DBDB)‘1u||§?)
0

~ sup
[vll2=1

1
2

for all w € R(D). Therefore, to prove (2.5.2) it suffices to prove (2.5.3).
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2.6 Weak Solutions to Elliptic Equations

In Chapters 6, 7 and 8 we will discuss the solvability of the Schrodinger equation
Hyqovu=—divAVu+aVu =0, (2.6.1)

on the upper-half space R"™ where A and a are elliptic (to be defined later in (2.6.2))
and t-independent and V € B2(R"). In this section we will give the basic definitions
and concepts associated with weak solutions and the Schrodinger equation (2.6.1). We
note that, as we only have an electric potential in (2.6.1), the spaces and operators we
consider in this section are those from Section 2.3.

We start with the coefficient matrices. We define the following two matrices a €
L® (R £(C)) and A € L>®(R™; £L(C™)) as t-independent 1x 1 and (n+1) x (n+1)-
dimensional matrices respectively, with complex components. We split the coefficients of

A to obtain the following

Al Ay 0
AV = 40 = 4. A 0
: o e Ay
0 ae'?e '
0 0 aezargV

where A, | (x) € L(C), A j(xz) € L(C™;C), Aj(x) € L(C;C™), and Ay (xz) € L(C"). In
the case when V(z) > 0 for all z € R™ we let A := AY to simplify notation. We will

assume that AV satisfies the following ellipticity condition: there exists x > 0 such that

n+1 n+1

ZZRe/ AL (@) [l ) fi(z) dx>/<;z |fk )|? da, (2.6.2)

1=0 k=0
for all f € {g € L*(R",C"*?) : g, € L*(R") and (g, 9,)" = V,h some h € V'2(R")}.

We note that this is similar to the ellipticity condition in [4] adapted to the potential V.
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We note that (2.6.2) implies the following
Re((ALL(2)§) - &) > kl¢[, VEEC, ae. x €R",
Re [on [(AyV ) - VE+aV|f? de >k [ [VufPde,  Vf e VR(R).

To see the second inequality above set f; = 0 in (2.6.2). For the first inequality set
f=(u,0,0)T in (2.6.2) to get that

Re [ Al ()u(@)u(x)dr >« | |u(z)|*dz, Yuc L*R").

R™ R™

Now let £ be any measurable set and then for £ € C choose u(z) = {lg(x). Therefore

we have

/ (Re A, L (2)€E — Kl€?) da > 0
FE

Thus, as E was arbitrary we have
Re((ALy(2)€)-€) > k|¢]?, VE€C, ae x€R™
We note that the ellipticity condition (2.6.2) is between the pointwise ellipticity condition
Re(AY(2)€ - &) > k¢, VE€C™™, ae 2 € R,
and the following Garding-type inequality adapted to the potential V'
Re //RTl(AV(:U)Vuf(t,x)) -V, f(t,z)dtde > K//Ri“ \V,.f(t,z)?dt du,

for all f € VV2(R™™). There is an explicit connection between (2.6.2) and the operator

D from Section 2.3 in that using Lemma 2.3.6 we can write (2.6.2) as

Re(AYu,u) > kljul|?, for all u € R(D).

This will be the way in which we interpret the notion of ellipticity of A and a.
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We now turn our attention to weak solutions of H, v .

Definition 2.6.1. We shall write that u is a weak solution of —div AVu +aVu =0 in

€2, or simply that Hq,vu=01in Q, if u € VLQ(Q) and

loc
/AVu-W+aVuU: 0,
Q

for all v e C2°(9).

We require some control at the boundary ORZ“. For this we introduce the non-

tangential maximal function. For F € L2 _(R7'') and 2 € R", we define the non-

tangential maximal operator as

(N.F)(x) = sup ( i L Fe Ry ds)2 ,

t>0

where W (t, x) = [t, 2t]| x Q(t, x) is the Whitney box of scale t > 0, centred at z € R" where
Q(t,z) is the cube of side-length I[(Q(t, 7)) = t, centred at z. Also for F € L} (R:M)

loc

and f € L2 _(R™), we say that F' converges to f pointwise on Whitney averages if

loc

lim |F(s,y) — f(z)|*dyds =0, for almost all z € R™. (2.6.3)
t—0 W(t,z)

We will impose one of the following conditions on u on the boundary: Neumann,

(

—divAVu +aVu =0 in Rﬁ“,

M7t §  N(V,u) € LAR™), (2.6.4)

limy 0 0, u(t, ") = p, p € L*(R™)

\

or Dirichlet regularity,

—divAVu+aVu =0 in RTFI,

(R)f2  N.(V,u) € LAR"), (2.6.5)

limy o Viu(t,) = Vg, ¢ € VV2(R")

\
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where the limits are taken to be in L? and pointwise on Whitney averages and 0,,u =

(AVu), is the conormal derivative and V),: V22(R7F) — L2(R"; C") defined by

81u
VHU
Vﬂbu =
V0zu Opu
14
VI

That is Vﬂu = (V,u), the gradient without the first component, which is the derivative
in t. We say (N )fg and (72)f2 are well-posed if, for each boundary data, there exists a
unique u satisfying the above boundary value problems. We also define the sets W P(N)

and W P(R) to be the set of all A such that (N)7, and (R)7, are well-posed respectively.
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CHAPTER 3

QUADRATIC ESTIMATES FOR THE PURELY
ELECTRIC SCHRODINGER OPERATOR

The focus of this chapter is to prove quadratic estimates for first-order systems of the
D B-type for the electric Schrédinger operator —div AV 4+ V. We follow the methods
developed [3] which were first introduced in [8] We adapt these methods to incorporate
a zeroth-order term as a singular potential. We use the framework from Section 2.3 with
) = R", since ultimately we will solve boundary value problems in the upper half-space
RTFI by applying the quadratic estimates obtained here on the domain boundary 8R7}r+1,

this will be done in Chapters 6, 7 and 8. Therefore we define the operators

B, By 0
0 —(Vur©
D= and B=|B, By 0
vV, 0
0 0 b

as defined in Section 2.3. Then, the aim of this chapter is to prove the following theorem.

Theorem 3.0.1. Let n > 3. If V € B2(R"), then we have the quadratic estimate
> 2 Cedt o =Yg}
|tDB(I + t*DBDB) u||27 ~ ||lull5, Vue€R(D),
0

where the implicit constants depends only on V', n, k, and || B||s.

We also have the case when V' is integrable.
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Theorem 3.0.2. Let n > 4. If V € L3 (R") with sufficiently small norm, then we have

the quadratic estimate
= 2 1 edt 2 BN
[tDB(I + 2 DBDB) "ul}— = ull3, Vu € R(D),
0

where the implicit constants depends only on V', n, &, and || B||s-

We specialise to the case when n > 3 and V € B2(R"), as this is in fact more
difficult. However, we will summarise the differences between the case when n > 4 and
V € L3 (R") with sufficiently small norm as we move forward.

We note that by the discussion after (2.5.3) to prove Theorem 3.0.1 it suffice to prove

(2.5.3) itself. That is, we are left to prove

> dt
/ |tDB(I + tQDBDB)—luug7 Sull3,  Yu € L*(R™C"2).
0

To do this we will reduce to a Carleson measure estimate and then use a stopping

time argument to prove the Carleson measure estimate.

3.1 Initial Estimates

We start by giving some estimates which are key for proving the quadratic estimate.
First note that we can decompose L?(R";C""?) as follows L*(R";C"™?) = L*(R") @

L*(R™;C") & L*(R™). Now define the projections on L*(R"; C"*?) onto each of these

spaces as
J1 0 0
P f=10]|, Pf= fil and P, f = |0
0 0 fu

Moreover, define P = (P, + Py) and P, = (P + P,). We give the following Riesz
transform type bounds which will be important to replacing the coercivity in [13] which

our operators do not have.
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Lemma 3.1.1. If V € B2 (R"), then we have the following estimates

IDBB,ulls S | Dulla,  [VPullz S [Dull2,  [IIV]2Pullz S || Dulla,

for all u € R(D), where the constants depend only on V', n and || B||-

Proof. First note as u € R(D) then

Uj
u =

Vu.f

for some f € VV2(R™). Therefore,
divVf+Vf
Du = —Vu,
—[V|2u,
Then by direct computations we have that
be VUL
DBPu=| 0o |, VPu = —V2f|, and |V|%I§’u =

0 0

1

V]z2uy
— V|2V
0

Now by the boundedness of B and Riesz transform bounds, from [45] and [5], we have

that

16V fll2 < [ Blloc IV fll2 S I(=divV + V) f]2.

Thus || DBP,ul]2 < |[Dull2. For the second two inequalities we use ||V f|ls < ||(— div V+

V) fll2 and |||V|%Vf||2 < [(= div V4V) f]|2 from [45] and [5], to obtain ||VIP’U||2 < || Dul|2

and |||V|2Pul|; < ||Duljs. This completes the proof.

]

We have a similar result for V' € L2 (R") with small norm. We note that the smallness

of V is needed here when using the Riesz transform estimates.
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Lemma 3.1.2. Let n > 4. If V € L3 (R") with sufficiently small norm, then

IDBPulls S | Dulla,  [[VEullz S [|Dull5

for all u € R(D), where the constants depend only on V', n and || B||-

Proof. The proof will follow as in Lemma 3.1.1 once we have established

IV2flla SNA+V)fllz and  [[Vf]l2 < (A +V)fl2.

To this end we use Holder’s inequality, and the Sobolev inequality to obtain

IV Al < VI llf

g < CP[V |2 V2 fl2, (3.1.1)

where C' > 0 is the constant associated with the Sobolev inequality. Then by the classical

Reisz transform estimates and (3.1.1), we get
IV fllz S HAfllz < NA+ V) flla + [V Fllz < 1A+ V) fllz + CHV 2 [V fl2,
Therefore, as ||V|[= is sufficiently small we may hide the last term above as
(L= C*IVI)IVfllz S N(A + V) fle.

We also have

VA2 < CEIVI IV fll2 S 1A+ V) fl2.
Then, the proof follows that of Lemma 3.1.1 verbatim. ]

Denote (z) = 1+|z| and dist(E, F') = inf{|x—y| : x € E,y € F} forevery E, FF C R".
We will now state the off-diagonal estimates for the operators R, PP, and QF. These
estimates are important for later sections as they relate how the operators RP, PP and

QP are bounded on cubes.
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Proposition 3.1.3 (Off-Diagonal Estimates). Let U; be given by either RZ for every
nonzero t € R", or PP or QP for every t > 0. Then for any M € N there exists Cj; > 0,

which depends only on V', n, k, and || B||«, such that

dist(E, F)\ "
%> [ullz2 (),

|Usu|| 225y < CM<

for every E, F C R™ Borel sets, and v € L*(R™; C"*2) with suppu C F.

Proof. Let u € 2(D) and n € C°(R™). Using the product rule and Lemma 2.3.4 we have

nu € Z(D) and the following commutator bound

nViu, — Vi (nu,) —uy - V)
|01, Dju| = [nDu — D(nu)| = || V(quy) —nVuy || =|| urVn || <|Vnllul,
0 0
The proof then follows in the same manner as in [13, Proposition 5.2]. ]

We define the standard dyadic decomposition of R™ as A = (J; __ Agx where A, =
{28(m + (0,1]") : m € Z"} if 281 < ¢ < 2%, Now we introduce the follow collection of

dyadic cubes depending on the potential V.

Definition 3.1.4. Let V € B2 (R"). Then define A} to be all the dyadic cubes, Q € A;,
with

Z(Q)Z][ V<1 (3.1.2)
Q
And define AV = J,., A/

We refer to cubes in AV as ‘small’ since for almost all x € R" then by (2.2.3) there
exists € > 0 such that for all £ < ¢ then the unique dyadic cubes containing x of scale
t will be in A}". These cubes were first introduced in [5]. We introduce the small cube
so that in the following Lemma we obtain the homogeneous estimate (3.1.3) so long as
we are on a small cube by using (2.3.4). We also note that if V € L2 (R") then we will
consider all cubes to be ‘small’. The proof of the lemma is adapted from the proofs of [13,

Lemma 5.6] and [12, Lemma 5.15] to incorporate the inhomogeneity of the operator D.
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To do this we use the fact that the Sobolev exponent 2* = 2 (%)/, the Holder conjugate

of the regularity of V.

Lemma 3.1.5. We have the estimate

‘][ Dil % <1+ (/Q|v|)) (f |u|2)§ (]éwup)%,

for all Q € A and u € 2(D). Moreover, if V € B2(R") and Q € AV or V € L3(R"),

o <o (fr) (for) -

then we have

for all u € 2(D).

Proof. Let

_1

() ()

If t > 21(Q) then proceed as in [13, Lemma 5.6]. By the Cauchy-Schwarz Inequality we

have

'/QDu2

(L)L)
SAVEE) ( | Du)

Then dividing by |Q|* gives

o < () ()
ity ) () (o)

Now suppose t < 11(Q). Let n € C°(Q) such that n(x) = 1 when dist(z,R™\ Q) >t

and ||[Vnllc S 1. Note that nu € Z(D) with compact support. We will bound each
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component of Du separately. First, we have

[ 0w <| [ %+ [ 1=l
Q Q Q

Then, as 1 has compact support and by the definition of V7, we have

\ / WV, / V| < / V] = / Vil + / Vil
Q Q Q Q Q

For the second component we have

_ ‘ /Q n(Du)s + (1= ) (Du).

’/Q(D‘””‘ ) ‘/Q”'(D“Nl = <D“>n‘ < \/Qn-w +/Q|1 ~nl|Du

Since nu, has compact support in ), then by the Fundamental Theorem of Calculus we

have

/QV(nul) = 0.

Using this and the product rule, we have

‘/W'VUL
Q

_ \/ wn\ < / ][ V.
Q Q

= ’/ n-Vuy —V(nuy)
Q
Also,

1
]/(Du» < [Vl + [ = nliDal
Q Q Q

Thus, using the Cauchy-Schwarz Inequality, || V1o < 2, and |supp(Vn)| = 1(Q)" ', we

~ t)

- ‘/Qn(Du)u + (1 =n)(Du),

have

s (o) ()

< [Vl supp(V) ( / o)
i@k ( / |u|)5.
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Now using the Cauchy-Schwarz inequality, Holder’s inequality, Sobolev Embedding,

!/
where (ﬂ) = 2 , and the same argument as above we have

[ it < ([ mW)l (/ \u|2); |
() (o) ([

() (o) ()
ser(fme) ()

Now, by the Cauchy—Schwarz inequality, also |QNsupp(1—n)| = 1(Q)" 't and |1—n| < 1

by the definition of 1, we have

[ 1= lipu < (/Qu—nr?) (/ |Du\2) <@ ( |Du|2)

Thus, recalling the definition of ¢, we obtain

\/QDu sm)"ﬁtl% (/Qu) <1+(/ V3 )) t(/ wu\)
() () ([ (- (o))

Thus dividing by |@Q| and then squaring gives

ool < <1+(/ viE) )(JQW)%(@DUF)%

Now if V € Lz (R") then the inequality (3.1.3) holds for all cubes. If V € B3 (R"), and

Q € AV, we have

(/QV) ~lQp? (]év) 51<Q>2]{2v <1

Then inequality (3.1.3) holds. This completes the proof. O
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3.2 Reduction to Carleson measure estimate

We start by with the approach, as developed in [13], of reducing the quadratic estimate to
proving a Carleson measure estimate. Our approach differs in that the Carleson measure
will have to be adapted to the potential V', in the sense that the measure is only a Carleson
measure on small cubes. The reason we treat the big and small cubes differently is that on
the small cubes we have inequality (3.1.3) which is an important step in proving Lemmas
3.2.7 and 3.3.4. In Lemma 3.2.1 we will prove that QP extends to an operator from

L=(R™; C"*1) to L?

2 (R™;C™?) so, as in [13], we define can v, (z)w = (QPw)(x) for every

w € C". Here we view w on the right-hand side of the above equation as the constant
function defined on R" by w(z) = w. We additionally define 5, = %P = (P, + Py),
similar to as in [16]. For fixed t > 0 we define the mapping 7;: R" — L(C""2) by 3;: z
3:(z). We also define the dyadic averaging operator A;: L*(R™;C"*?) — L*(R™;C"*?)
given by

Awu(x) = avgu = ]{2 u(y) dy,

for every x € R" and ¢t > 0, where () € A, is the unique dyadic cube such that x € Q.

We have the following properties for 4, and A,.
Lemma 3.2.1. We have the following:

1. The operator QtB extends to a bounded operator from L>(R™; C"?) into the space

L2

loc

(R™; C"*2). In particular, for ¢ > 0, we have 3, € L2 (R"; £L(C"*?)) with

loc

][ [36(2) | Z(cnzy dz S 1,
Q

for all Q € Ay

2. supyq [ 7eAdllop S 1-

Proof. The proof follows Lemma 3.5 in [4]. Let f € L>(R"; C"*?). Now define Cy(Q) =
Q and for k > 0 define Ci(Q) == (2¥Q \ 2871Q). Then, using the off-diagonal estimates

48



in Proposition 3.1.3 and the Cauchy-Schwarz inequality, we have

0o 2
1R fII5 S (Z HﬂQQf]lck(Q)H||]10k(Q)f||2>

dlstQC'k(Q)) M ’
> e/l

S

IA

(=)
< <Z2 M1, >f|!z>
(fy ’“”) (Zz - |ﬂck<@f||2).

Now, choosing M > n, we have

1L0QF I3 S Y27 ot f 115 S IFIIIQI Y 27 S 11 1Q)
k=0 k=0

Therefore, we have QF: L®(R™; C"?) — L2

loc

(R™; C"*?) is a bounded operator. Now, let

{e1,...,€ens2} be an orthonormal basis for C"™2. First note that for any w € C"*2, using
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the Cauchy-Schwarz inequality, we have

e (@) (w)]* = |[Fe()] <Z wk€k>

I
3
+
(V]
3
M+
(V]
S
R‘
:g
Q

< (zwk) (z S@le >el>)
< |wl]? ZZI Fe(x)] (ex) || er?

= (n+2)|w* Y |Fe()](ex)

Then, by the definition of operator norm, the above two calculations, and the definition

of 7;, we have

F et o = f sup ol as

n+2

][suprm (ex)]? dz
n+2
=3 f @FE@r o
n+2
DI CAN
k=1
<1,

where é(x) = ey is the constant function. This completes the proof of part (1).

Let u € L*(R";C"*?). For part (2) we use part (1), the definition of A;, and Jensen’s
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inequality, to get

Y Aul|3 = () (Ap) (2)]? dx
|5 Agul| Q%;t/QHV( )J(Asu) ()]

S Z / |56 ()] 2 cnt2) ][U(y) dy| dz
QEAt Q Q
2
= 5 ([ Iz ) [f ut o
QGAt Q Q
S S 1l )l dy
QeA, Q@
= [|ull3-
Taking supremum in ¢t > 0 completes the proof. O

Then the main result of this section is the following.

Proposition 3.2.2. Let V € B3 (R"). If

> N dt
| Y Ienawy < . e RD), 3.2
0

QeAY
then we have

> dt
| 1QPuBT S Il vu e ).
0

We proceed in proving Proposition 3.2.2 by introducing and proving the required

lemmas. We will then assemble the lemmas to prove Proposition 3.2.2

Lemma 3.2.3. If V € L2

loc

(R™), then we have

o dt
| 1eea - Pyl < ul,
0

for all u € R(D).

Proof. Let u € R(D). We begin by proving tQF D is uniformly bounded in . As ellipticity
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gives that B~! exists on R(D), then using tQP DB = (I — PP) and ellipticity again gives

[tQ7’ Dull; = tQ7 DBB " ully = (I — B)B ™ ull3 S 1B~ ull3 < [lull:.

Then, as I — P, = t?D?P, and the quadratic estimates for the self-adjoint operator D, we

have
o dt °° dt
P o ey A o
0 0
o R
0
> dt
S [ lQuips
0
<l
as required. O

We will now exploit the structure of D to bound the third component. This follows
a similar approach to [16], however, because our perturbation B is not block-diagonal
and as B, is not necessarily 1 we cannot bound the first component in the same way.
Therefore, unlike in [16] we do not reduce to a homogeneous differential operator and so
we do not get Lemma 3.1.5 on all cubes, and this is why we need to introduce the big
and small cubes. We note an important consequence of Lemmas 3.1.1 and 3.1.2 is that

the projection P, maps R(D) into 2(DB).

Lemma 3.2.4. If V € B2 (R"), then we have

o dt
| IQPR Pl Sl

for all uw € R(D).

Proof. Let u € R(D). Thus by the uniform boundedness of PP Lemma 3.1.1, and D
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being self-adjoint, we have

o dt o dt
| nere i = [ e pR, Rl
0 0 t
o dt
S [ IepBe,Pul
0

< dt
S [ leopuly
0

~J

o dt
- [ Qi
0

< lull3

As required. O]

We will need to be able to use the inequality (3.1.3). However, this is only available
to us when we are on small cubes. Therefore, we need a bound on all large cubes. We
do this by using the off-diagonal estimates, the Fefferman—Phong Inequality, and Lemma
3.1.1.

Lemma 3.2.5. If V € B> (R"), then we have

o - dt
[ IeerRralS <l

QeEANAY

for all u € R(D).

Proof. Let w € R(D). Define f = PPu. Let M € N to be chosen later. Define
Co(Q) = Q and for k > 0 define C(Q) = (2*Q \ 2¥71Q). Then, using off-diagonal
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estimates, and the Cauchy-Schwarz inequality we have

0o 2
S Je@BRas Y zan@tBnck(Q)uunck(@fuz)
k=0

QGAt\AY QEAt\AY

< Z Z<dist(Q,tCk(Q))>_ ||]lck(Q)fH2>

QeANAY \k=0

o0

2
S Y DY 2_kMH]1ck(Q>f|l2>

QEANAY \k=0

< > kZ_O?’“M> <kz_02kMHllck<Q>fH§)

QeANAY

S D DMLl

QEANAY k=0

First, suppose

l(sz)2][ Qv > 1.
2k

Then using the Fefferman—Phong inequality in Proposition 2.2.5, we have

B
ILarofI2 < (umvf v) a0/ S U2 QMoo 12 = 241(Q) gV, fI.

2kQ

Now, suppose

5(2’%2)2][ QV <1,
2k

then using Q@ € Ay \ A} and the Fefferman—Phong inequality in Proposition 2.2.5 again,

we have

T (l(@f]é v) Iy fI2
< 922 (uzk@?f v) a0V, 12
2kQ
S Q(n_Q)(k_Q)l(QkQ)2”]I%Qvufng

< 2MUQ) a1V f 13

Noting that 2"% < 2% and 22¢ < 22" then using I(Q) =~ t, the covering inequality
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> 0en, Larg(®) S 20 for all z € R™, and choosing M > 3n, we obtain

SO Mo fIBS Y 22 FMEEQ) g VS 13

QGAt\AX k=0 QEAt\AV k=0

SEEY 27 I, fS

k=0

S EIVLfIE

Recall that f = PPu, and that if u € R(D) then Pu € R(D). Therefore, using Lemma

3.1.1 we have

> ~ dt
| imeeieralp < [ eIV, Eraig
0

QeANAY
> dt
sA JtDPul3

< [ leus
0

< Julls.

This completes the proof. O

In the following lemma is where having the projection P is needed, otherwise, we would
have V|V|% in the last component and this would force us to assume some differentiability
on V. In [14] the coercivity ((H8) in [14]) of the operators is used, however, in the
inhomogeneous case we do not have coercivity of the operator but we do have coercivity

in the sense of Lemma 3.1.1.

Lemma 3.2.6. If V € B2 (R"), then we have that

~ dt
|3 Ie@? —nA)BRali T S lulf

QeAY

for all v € R(D).

Proof. Let u € R(D). Define f == PPu. Recall the definition of C}(Q) from Lemma

3.2.5. Then, by the off-diagonal estimates in Proposition 3.1.3, the Cauchy—-Schwarz
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inequality, the Poincare inequality, Lemma 3.1.1 and choosing M > n + 2, we have

0o 2
> 11e(@F = %A)PPal; S ) (ZII]lQQtB]lck(@IIIIﬂck(Q)(f—f@)lb)

QeAY QeAY \k=0

S D0 > 2 MLag(f ~ fo)ll3

QeAY k=0

SO0 2R 1V 13

QeAY k=0

Sy 2 HMEe)|v |3

k=0

< | VPPl

< | DPull3.
Thus, we have

> - dt > dt
|3 Imet@¥ —v0pRalpT < [T IQuIET S lulf

QeAY
This completes the proof. n

The following Lemma is analogous to [14, lemma 5.6]. This is where Lemma 3.1.5 is
used. Therefore, it is important that we have already reduced to proving the estimate on

small cubes.

Lemma 3.2.7. If V € B> (R"), then we have

o ~ dt
| Itenad - nulpS <l
0 QeAY

for all u € R(D).

Proof. We will perform a Schur-type estimate after we have established the bound

- - . s t
|Loy AB(P, = DQuI3 = ||1QAtP<a—f>v||3,smm{;,;}||v||% (3:22)
QeAY
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for all v € L*(R";C"™?), where Q) = UQEAX Q. Now (P, — 1Q, = tQ:(I — P,) and

s

PQs = $QPs. It t < s we use the uniform boundedness of Q); and I — P; to obtain

2
~ t t t
> IR - D@l S 150 - Povl 5 (2) el < Lol
QeAY

If s <t then using the boundedness of P, and ); we have

Y 11APE = Dl S I1PQIE+ Y 11eAPQwIS

QeAY QeAY

W3+ ) IMeAPQwl3.
QeAy

S

| »

Then, using Lemma 3.1.5 for cubes in AY, the Cauchy-Schwarz inequality, and the

uniform boundedness of P, and @),, we have

2

S Ioakouli= Y- [ \]{2 PQ.v

QeAY QeAY

<& <ty (foeet) (fieer)

ZLWMQZQMQ

QeAy QeAY

24\
|

S
~1Qsulla[| Prvll

IN
~

v

A
| ®

This proves (3.2.2).
We now use a Schur-type estimate to complete the proof. In particular, since A; is
defined component-wise on L?*(R™; C"*?), whilst both 7; and ¥; are defined pointwise as

multiplication operators on R”, and A? = A; maps locally to constants in C" on each
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dyadic cube in A, observe that

]].Q’yt(AtI?)/U) = HQ’yt(fEbAtI’p)U) = HQ;}}t(AtfP)v) = ]].Q;}(/t(]lQAt]fDU) = ]]-Q’?t(At]]-QAtI@U)

whenever Q € Ay, t > 0 and v € L*(R"; C"*?). We now let m(s,t) ==

1
min{f, 112 and
S

combine the above observation with Lemma 3.2.1, the reproducing formula, Minkowski’s

inequality and Tonnelli’s Theorem to obtain

o dt
|Y ienaBr - nulpS

QeAY

This completes the proof.

,dt
~ 3 ItgidtoAB(r - DulpF

QeAY
dt
S [ 75 el - Dul§
QeAY
dt
~ [ oy - i}
0
o) [e’s) 2
</ ‘nQvAtxf»(Pt—I) < / Qiuﬁ) de
0 k 0 5 1
</ (/ Loy AB(P — DQu(Quu >|r2—) dr
0 0 t

< [T meoneant) ¥
< [Tsup ([0S ([ Cmtsoioa)
s ([ <s,t>‘f) I

s>0
S Ml

Combining all the previous lemmas we can now prove Proposition 3.2.2.

Proof of Proposition 3.2.2. First note that if u € N(DB) then we have that

JCE

dt > dt
1Y / 1tP? DBuY =
t 0

o8



Therefore, assume that u € R(D), we have

,dt > dt o dt
| ek s [ 1erras + [ 108 - Pyl T

Then, by Lemma 3.2.3, the second term above is bounded by [u|3. Now as I =P + P,

o dt o ~ dt o dt
| nerralsS < [T 1QrBRulT + [ 10PR P

Then, by Lemma 3.2.4, the second term above is bounded by ||u||3. Now

o ~ dt dt dt
| nerrrals < [ S Io@iRralp + [T S Ie@iEruS

QeAY QeAN\AY

Then, by Lemma 3.2.5, the second term is bounded by |lu||3. Now

dt
|3 meetpral < [T S Ienaralis

QeAay QeAay

- dt
[T 3 IalQPB - Ay Pu
QeAY

Then, by Lemma 3.2.6 and as 74, = v,PA4; = AP the second term above is bounded

by |lu||2. Now, again using %, 4; = 1 A,P, Lemma 3.2.7, and the hypothesis, we have

|3 mevaras s [T onauls

QeAY QeAY

,dit
/ Z H]IQ’YtAt (P — )U||2

QeAY
< [lull3-
This completes the proof. O

We note that the only part that depends on V' being in the reverse Holder class is
Lemma 3.2.5, but if VV € L2 (R") then we say all cubes are small. Therefore, the key is to

note that the second inequality in Lemma 3.1.5 holds for all cubes in this case. We also
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use the smallness of the norm to obtain the Riesz Transform estimates in Lemma 3.1.2.

Hence, we have the following proposition.

Proposition 3.2.8. Let n > 4. Let V € L2 (R") with small norm. If

o0
/ e Acll? < Jull?,
0

for all u € R(D), then we have

o0
B
/ 1QPu3 < Jlull,
0

for all u € L*(R?).

3.3 Carleson Measure Estimate

To prove the quadratic estimate we are left to prove the estimate (3.2.1). We will do this
by reducing to a Carleson measure type estimate adapted to the potential V. This will
be done in a similar manner as in [13, Section 5.3] by constructing tests functions and

using a stopping time argument.

Definition 3.3.1. Let p be a measure on R’ffl = R" x R,. Then we will say that p is

V-Carleson if

1
[ielley = sup =u(C(Q)) < oo,
QeAV |Q|

where C(Q) = @ x (0,1(Q)], is the Carleson box of the cube Q.

That is p is V-Carleson if i is Carleson when restricted to small cubes. The following

|2dttﬁ is

proposition is adapted to our case from [50, p. 59|, and, states that if |7,(x)
a V-Carleson measure then (3.2.1) is bounded above by |lul|3. We note the following

proposition, like the definition of V-Carleson, only considers small cubes.
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Proposition 3.3.2. If i is a V-Carleson measure, then we have

/0 3 /Q Au(@)]? dpa(, 1) < [aley Tl

QeAY
for all u € L*(R"™; C"*?).

Proof. First, using the fact that A} = A}, for k € Z and 2*~' < ¢ < 2* and Tonelli’s

Theorem, we have

[ % [aeran= 3 [0 5 []f woran

QeAy QeAY

2
du(, t)

kf:ooéi@e%zvk/ﬁ? ]éu(y) dy 2du(ar:,lt)
< X (fronw) [ [ o

k=—o00 QEA;/k

Now let I}” C N be an indexing set such that AY, = {Q% : a € I}/}. We also introduce

the notation

Un,k :]{Qk |u<y)’ dy7 and Hak = 'U’(QI; X (2]671’ 2k])

Therefore, rearranging and using Tonelli’s Theorem, we have

/OOO > /Q AP ) < S 3 w2 atten

% — v
QGAzk k=—00 acly

= i Z Mok /u‘%’“ 2r dr
0

k=—o0 aelz/

= /OOO Z Z ua,k]lﬂua’km}(r)% d?“,

k=—00 ae[,‘!

where dr denotes the Lebesgue measure on (0,00). For each r > 0 let {R;(r)};en be

an enumeration of the collection of maximal dyadic cubes Q* € AV such that Ug g > 7.
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Note as u € L*(R™; C"™2), then by Jensen’s inequality

JQIU(y)Idy < (é IU(y)IQdy)é < % — 0 as (Q) — .

Therefore, for all Q € AV with

][\u]>7"
Q

there exists a maximal Q% € AV for which u, ), > r and Q C QF. Define

Mavu(x) == sup {]éu Qe AV, withz e Q}

We claim

U R;(r) = {z € R" : (Muv]ul)(z) > r}.

Let x € ;2 R;(r). Therefore x € Q such that Q = R;(r) for some j € N, then

r < ]{2 ] < (Mav ul)(x).

Now if x € R™ such that (Mav|u|)(z) > r, then there exists Q' € AV with x € Q' such
that

r <4 |ul
Q/

Then either Q' = R;(r) for some j € N or, as the cubes in {R;(r)}jen are maximal, there
exists a cube ) = R;(r) for some j € N with Q" C Q. Therefore, z € |J;Z, R;(r). This
proves the claim.

Now suppose Q¥ € AV is such that u,x > r. Then, as the cubes in {R;(r)} ey are
maximal, either QF = R;(r) or Q% C R;(r) for some j € N. Therefore, using the definition
of a V-Carleson measure, the above claim, standard results for maximal functions (see

[51, p. 7]), and the fact that |[Mav|3 < ||M]|3, where M is the Hardy-Littlewood
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maximal function, we have

[ Y S restiunzrars [T3 5 ptrx (i)

k=—c0 acIV Jj=1 ReAV
RCR;(r)

< / ”zrzu<c<Rj<r>>>dr
< lles / 2rZ|R )| dr

~ il / o

U R;(r)|dr

— ey / T orl{e e R (Mavlul)(@) > r}|dr

= llelley [Mavulll3

S lelley lull3,

where C(R;(r)) is the Carleson box of R;(r). This completes the proof. O

Adapting the work of Bailey in [16, Section 4.1], which in turn is based on [13], we
define the space
L:={veLC*)\{0}:vP=0v},

equipped with the operator norm |v| = |v|cn+1) for all v € L. We give a small technical

lemma about some of the properties of £

Lemma 3.3.3. Let v € £ with lv| = 1. Then there exists £, € C"*? such that

|§| = |C| =1, 5 - Vk(()? and I@é - 5

Proof. As |v| = 1 there exists n € C"*2 such that |n] = 1 and |v(n)| = 1. Then define
¢ = v*(v(n)) and ¢ = v(n). Then v*(¢) = v*(v(n)) = & by definition. Now |¢| =
w(m)| = 1. And [¢] < |v*||v(n)] = 1. Also, 1 = |v(n)[2 = (w(n),v(m)) = (n,v"(v(n))) <
[nl[v*(v(n))] = [¢]. Thus |¢] = 1.

Let z € C"™. Then, since v € L, we have (£,2) = (v(n),v(2)) = (v(n),vP(z)) =

(€,Pz) = (P€, ). As z € C"2 was arbitrary we have that & = P€. As required. O
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Let 0 > 0 be a constant to be chosen later. Let V, C L be a finite set of matrices

v € L with |v| = 1, such that Uvey, Kio = L, where

KW,::{uEﬁ: ﬁ—1/
|l

<o}

It suffices to prove the Carleson measure estimate on each cone K, ,. That is, we need

to prove

dx dt
//gx,t)ec@) [Fe()] ; o~ QI (3.3.1)

'Yt(x)EKu,cr
for every v € V,. Using Lemma 3.3.3 we choose £, ¢ € C"™ with |¢| = || = 1 such that
€ = v*((), and P¢ = €. Let ng: R™2 — [0,1] be a smooth function equal to 1 on 2Q,

with support in 4Q, and [|[Vnglle < 7, where [ = [(Q). Define &g = no&. We define the

~ [
test functions, in a similar way to those used in [10, Section 3.6], as follows, for € > 0,

define the test functions as

fo. = I+ (e1)*(DB)*) (&) = Pl
We now present some useful properties of the test functions féa. The following lemma
is adapted to accommodate the potential V' from [14, Lemma 5.3] and [10, Lemma 3.16].
Lemma 3.3.4. We have the following estimates:
L1l S 1Q12,
2. |[elDBfG Il S 10,
for all @ € A. Also

3.

][ffg,a —f' S e2 for all Qe AVifV € B2(R").
Q

Proof. By definition, and uniform boundedness of P?, we have

155115 = 1PZéall3 S léell3 S 1Q.
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Similarly we have

1tDB f. 115 = 1Q5G¢0ll3 < ligell3 S 1Q-

For (3), we use the definition of J‘és7 Lemma 3.1.5, and the uniform boundedness of

PP — T and QP to obtain

’][ (e)*(DB)? gQ
- (f jwnpr @P) (][ |BDBP55Q|2>§
<P ([ e near) ([ 1otea)

€all3

<=
Q)

Se.

This completes the proof. n

For each Q € AV we consider a sub-collection of disjoint subcubes which give us the

following reduction of (3.3.1).

Proposition 3.3.5. There exists 7 € (0, 1) such that for all cubes Q € AV and for all
v € L with |v| = 1, there is a collection {Qr}rer, C AV of disjoint subcubes of @, where

I is the indexing set of the collection, such that [Eq,| > 7|Q| where Eq, = Q\Uye;, @k

dz dt
~ 2
Jfieoes, @S < 10l

e (2)EKy,o

and with

where EG, = C(Q)\ UkeIQ C(Qr)-

We will use a stopping-time argument to give a suitable collection of dyadic subcubes
for Proposition 3.3.5. We note that unlike in [13] we need all the bad cubes in the stopping
time argument to be small, therefore, we need to use Lemma 2.2.3 which gives a uniform

bound on the number of times we need to subdivide a small dyadic cube until we can
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guarantee that the subcubes at that scale are also small.

Define f5 = ff‘g,so where gy > 0 is such that when we apply Lemma 3.3.4 part (3) we

1
Q
for all Q € AY. Then the polarisation identity gives
1
re(e.f 1) =5 (‘u][fg frs-¢
Q Q Q
1 23
> |2 : 5+
=7 ( Re<§a]éf@>+‘]éfg +4)
Therefore, using Lemma 3.3.4, we have that
1 23\ _1/1 3\ 1
£y > - ¢ -1 >=-|-4+-) == 3.2
o) aD s e

We now describe the bad cubes which we will use in Proposition 3.3.5, using the above

obtain

2

)

lemma so that we can make sure there are no big bad cubes.

Lemma 3.3.6. Let Q € AV if V € B>(R"). Then, there are constants c;,cy > 0,

7 € (0,1) and a disjoint collection {Q}rer, C A such that
o QrCQ
* |[Equ|>T|Q
=%
o [(Qr) < [[V]];_? [(Q), where ¢ > 2 is as in Remark 2.2.4,

2

satisfying

][Iffgl <c, and Re <§,][f§> > ¢y, (3.3.3)
S S

for all dyadic subcubes S of @ with [(S) < [[V]];Zi%l(Q) for which C(S)N EZ?V +£ (), where
By, = (Qx 0, [VIs Q) \ Uy CQw).

Proof. Let a € (0,1). Let B; be the collection of maximal dyadic subcubes of @, with
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—1
2

1(Qx) < [V]s *1(Q), for which

1
f5l > = (3.3.4)
Qk «
Since @ € AV then by Lemma 2.2.3 with C' = ¢ = 1 we have Q; € AV for all k € Ig.

Then, using the Cauchy—Schwarz inequality and (1) from Lemma 3.3.4, we have

S ledsa X [ sgi< e i <aiat ([15F) < col

QrEB1 QrEB

Us|-

where C' > 0 is the implicit constant in (1) from Lemma 3.3.4. Now let By be the

—1

collection of maximal dyadic subcubes of @, with I(Q}) < [[V]];_ig [(Q), such that

Re <§,]{gk f5> < a. (3.3.5)

Then, using (3.3.2), the properties of By, the Cauchy—Schwarz inequality, and Lemma

3.3.4 part (1), we have that

% < Re <§][ f§2>

Tai e f,8) 2o e )
-2 a1, 1) rre(e g Qs '

1 ¢
a+\QV Q\UB: al
|@\UBQ|)é
O l1v W 4l
sat ( Q

Making the restriction a € (0, 3) we have

L_
2
(2

Therefore, letting {Qx }rer, = B1UB, where I is an enumeration of the cubes in B, UB;

1 2
2 — @ — Cuo
(=)

O‘) QI <10\ Bl

QI

Eoul > 1Q\JB = 1 UBil =
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1 2
Now, choosing o € (0, 1) sufficiently small, gives 7 = {(QCLY) — C&] > 0. Now, let
—1

R be a dyadic subcube of @ with I(R) < [[V]]j_%l(Q) and C(R) N EZQV # (). Then, by
definition R N (Q x [0, [[V]]ﬁl(@))) \ U,C(Qk) # 0 and so we have R € @ for all

Qr € By UB,. Since, the cubes in By and B, are maximal for conditions (3.3.4) and
(3.3.5) respectively and R Z @, for all Q € B U By, then R cannot satisfy either (3.3.4)
or (3.3.5). Thus, R satisfies (3.3.3). This completes the proof. O

Now we choose o = 72. The following lemma will allow us to introduce the test

functions into our argument.

Lemma 3.3.7. Let Q € AV if V € B5(R"). If (z,t) € E};, and 7(z) € K, ,, then

@) (A ()] > seslu(a)].

Proof. As (z,t) € EZQV there exists S € AY such that S C Q, z € S, I(S) < ¢&l(Q) and
C(9)Nn E'zgy # (). Then by Lemmas 3.3.6, and the definitions of £ and (, we have

A ()] = Re {Grefbie) =Re (e f 1) > e

Then, by above and Lemma 3.3.6, we have

Fi () £ (x v S| — A () _ € o — o lc
2 o) 2 i)~ | (252 =) (s 2 = oer 2
As required. .

We are now ready to give the proof of Proposition 3.3.5 This is adapted from [13,

Proof of Proposition 5.9] to the set Eav and to the presence of the potential V.

Proof of Proposition 3.3.5. First we break up the integral as follows

dz dt dz dt dx dt
~ 2 o ~ 9 ~ )
/ﬁwe%,u @) === /ﬁw,t)e%,y @) ==+ /[m,t)ech[él(Q),l(Q)] (@)l ==

Yt (x)EKy,o Yt (z)EKy, o t(z)EKv,0
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Then, using the lower bound ¢ > ¢l(Q) and the local boundedness of 4 as in (1) in Lemma

3.2.1, we have

(@
/%x peox@u@) | t<x)’2dxtdt < / / |%(:z:)|2dxtdt
Q) Ja

’Yt(w)eKuo'
o L ([ o
e e d:z:) dt
Q) Ja) \Jo '

IN

1 /I(Q) Z /| ) de | d
== A x| dt
cl(Q) @) \ fea,
RCQ
1 /l(Q)
Sz IR| | dt
(@) Q) RGZ;t
RCQ
Q)
< ~|Q\ / &
Q) Q)
~ Q|-

Therefore, by Lemma 3.3.7 we introduce the test functions to obtain

dx dt dx dt
2 2
/[m)eﬁau ()] ﬂ ney, AL

;?t(x)eKu,a 'Yt(ff GKUU

S/ﬂx,t)eﬁé,y ’(Qt — Y )At)fQ‘zdxdt // |Qt fQ|2dxdt

:yt(x)eKV,o

Now, by the uniform boundedness of PP and Lemma 3.3.4, we have

B g 20T Al 2\ \PBa1DB S 2_</_ pB 12 < 19
Il eesertt < [( ) imeainnss b5 s [ oo, o<

Also,

dx dt . dx dt
ﬂxt)eEQy (QF — Al )At)fQ|2 x;f S/ﬂm)e%,y ( f‘%(m)At)(fé—EQ)F xt

Yt (2)€Kv,0 V()€K 0

(3.3.6)
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Now, for the first term in (3.3.6) we have

dxd
o, 1@ =32 - &)
:Yt(I)EKV,U
dzxd
S ffuorcss, @R =304 ~ €0l

Yt (2)EKv,0

B i 13 . le’dt
/R

(3.3.7)

As fQ o = (P o — 1éq = (EOZDB)QPBlfQ € R(D), by Lemma 3.2.3 we have the

second term in (3.3.7) is bounded by ||fé — &oll3. Then, by definitions of P and P, we

obtain
- A dxd
/ﬁwt)e%y ‘(Qt P, —7 (x) lt)(f£ £ )|2 xdt
Ft(z)eKy o 2 ?
E Q PP, — dxd
//wte o t %(x)At)(fé_f )|2 xdt

)€Ko

ﬂ‘@Pam fP
(@)

Then by Lemma 3.2.4 we have that the second term in (3.3.8) is bounded by ||ff2 —

Now using Lemmas 3.2.6 and 3.2.7 we obtain

= dz dt
/[w pers, QPP = 5u(@) A)(fg = &)l &
Ft(z)EKv,0
dx d
//zteE* QtB]P) ’}’t( )]P’At)Pt(fQ 6Q)|2 vdt
x)EKuU
dx dt
- ﬂx t)EE, [ve( )PAt(I - Pt)(fQ - fQ)|2 &
’Yt(x)GKua
~ dt
< [ Ia@? 0BRSS - o)l
ReAY
[T 3 Imn@AR - R - Sl T
ReAY
S5 = oll3-
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Therefore, by the uniform boundedness of PP — I we have

dx dt

/ﬁx,t)e%y (QF = Fu(2)A)(f§ — &a I'—5 176 = allz = I(PE, — Déalls S 1€

;/t(l')eKu,cr

We now start to bound the second term in (3.3.6). Now, using that ng = 1 on 2Q)
and so A, (no€) = € on 2Q, and ¢ = P¢, we have

(QF — #A)&o = QF (noé — 1PA(ng€)) = QF (neé — PE) = Q7 ((ng — 1)§),

for all (z,t) € C(Q), and so in particular x € @) C 2Q). Therefore, since supp((ng —1)&) N

2Q = (), using the off-diagonal estimates in Proposition 3.1.3 with M > n, we have

QY ((ne — DOz < <Z 110Q¢ L@ (1o — 1)§)||2>

< (ﬁ)Mjf;sznncj@((nQ g2
(l ) Z2JM">|@|
S (ﬁ)M@!

Thus, integrating in ¢ gives

e - dr dt tM=11Q|
I, 1@k =5 Al S 5 [zl

Therefore,
dx dt

S QI

(zt)EEY, ”yt(m)‘z
:Yt(I)EKV’,o
This completes the proof. O

Now we are finally ready to prove Theorem 3.0.1.

Proof of Theorem 3.0.1. We start by showing that Proposition 3.3.5 proves (3.3.1). Con-
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sider an arbitrary Q € AV and fix v € V,. Then, for all § € (0,1), we have

dedt 1 [1@ _
// Lsiyerine (2, 1o (O1(@) = 5/ (551 ( I%(x)Ide) dt
Cc(Q) 0 Q

(Q

1 -
sa/ s ® | S [ Fula)Pde |
Ren, 1
RCQ
1
5/ Lss-1y Z |R| | dt
ReAy
RCQ
< 1@l

where the penultimate inequality comes from Lemma 3.2.1 part (1). Therefore, we have
that the measure 5, = L5,(@)ek,. (T, 1) Lss-1)(t)|7(2)]?9%9E is V-Carleson. We now
show that ||us,|lc does not depend on § € (0,1). Then, as each Qx € A, us, being

V-Carleson and by Proposition 3.3.5, we have

dz dt dz dt
I, et s @R @ E ﬂmw 0P S (@)

EKD - kEIQ

< Col Q| + llpsullc > 1@l

kGIQ

< ColQl + llmswllel@Q\ Equl,

Then using the fact that |Eg,| > 7|Q|, dividing by |@| and taking the supremum over

all cubes Q € AV, we have that

dx dt

< O+ sulley (1= 7).

1 »
HmMﬂW@%JW%%MWwWW

QeAV

Rearranging then gives us

1

||M6,V||Cv ~ ;

That is ps, is a Carleson measure with Carleson norm independent of . Now, note

that 1;5-1)(f) is a pointwise increasing function. Thus, by the Monotone Convergence
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Theorem

dz dt dx dt
)7 = 2
/ﬁxtec | | //xtGC 6—)0 55 )( )|’Yt($)| n

'Yt(x)EKua ’Yt(l' eKlIU

do dt
— |5 o 2
=i /ﬁm)ea@) Lo A=

’% (m)GKW,

S 1@l

Thus, we have proved (3.3.1). Now, since V, is a finite set and the size of V, is independent

of ), we have

//xtec dedt_ Z// ec |2dxdt<‘Q’-

Thus, |%(z)[?424 is a V-Carleson measure. Therefore, by Proposition 3.3.2 we have

proven (3.2.1); finally, applying Proposition 3.2.2 completes the proof. ]

For V € L2(R") with sufficiently small norm we note that as all dyadic cubes are
small then the bounds on the length of the cubes in Lemma 3.3.6 are not needed to

remove all the big bad cubes. Therefore, the proof is similar but easier.

Proposition 3.3.8. Let V € L3 (R") with sufficiently small norm. Then we have the

square function estimate
* 2 —1 24t 2
[EDB(I +t"DBDB) " ully— S |lullz,

0

for all u € L*(R"™; C"2).
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CHAPTER 4

QUADRATIC ESTIMATES FOR THE PURELY
MAGNETIC SCHRODINGER OPERATOR

Like Chapter 3 the focus of this chapter is to prove quadratic estimates for a first-order
systems of the D B-type, which we now adapt to incorporate a first-order term as a
potential. We again follow the methods in [14] and so this chapter follows in a similar
structure to Chapter 3. Again, the goal would be to prove well-posedness results for the
magnetic Schrodinger equation on the upper half-space; however, this is outside the scope
of this thesis. We use the framework from Section 2.4 and define the operators

0 —(V +1ib)* B B
. (veivy| o |Bu By

—(V +ib) 0 By By

as defined in Section 2.4. Then, the aim of this chapter is to prove the following theorem.

We consider the purely magnetic Schrédinger oprator
Hp qgu = (V4 ib)*A(V +ib)u, (4.0.1)

for n > 2, where b € L*(R™;R") is the magnetic potential, A € L®(R""!; £(C"*1)) is
complex and elliptic operator. Recall the definition of the magnetic field generated by b
as

B = curl(b),
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We will use the following notation from now on
Lu = (V +ib)u.

Throughout this chapter we will assume the magnetic field satisfies conditions (2.4.3),

that is:
IB| € B%(R”)

[VB(z)| < em(z, [B])?,

for some ¢ > 0, where m(-, |B|) is the Shen maximal function in (2.2.2).

Remark 4.0.1. Originally in [46] the additional condition |B(z)| < m(z,|B]|)? was in-
cluded but in [47, Remark 1.8] it was observed that this is a consequence of the condition

[VB(z)| < em(z, |BJ)®.
The main theorem of the chapter is the following.

Theorem 4.0.2. If B satisfies (2.4.3), then we have the following quadratic estimate
o dt —
| IQPuS = g, v € ROD)

where the implicit constants depend on B, n, &, and || B||so-

To do this we will prove a localised quadratic estimates by reducing to a localised
Carleson measure estimate and then use a stopping time argument to prove the Carleson

measure estimate.

4.1 Initial Estimates

We start by giving some estimates which are key for proving the quadratic estimate. The
key part being the definition of the maximal dyadic mesh we will be using and the finite
overlap property. This will be the main difference between this chapter and Chapter 3

as we use the fact that we impose the reverse Holder condition on the magnetic field B
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instead of the magnetic potential b. And because our method will involve localising the
quadratic estimate we discuss the estimates that are globally on R™ and those which are

on the maximal dyadic mesh in separately.

4.1.1 Global Estimates

We begin with the global estimates. We have the following proposition (see [39, Theorem
7.21] for details) states that the absolute value of a function with finite magnetic gradient

is a WH2(R™). We give a pointwise bound below.

Proposition 4.1.1 (Diamagnetic Inequality). For all u € L*(R") with Lu € L*(R™;C"),
we have

Vlul| < |Lul.
In [46] the following Fefferman—Phong inequality was proven.

Lemma 4.1.2 (Global Fefferman-Phong). Let b € L (R";R"). Also, assume that B

satisfies (2.4.3). Then
(-, Blullz S [ Lull2,

for all u € C*(R™).

Another important property is that the first-order operator satisfies a commutator

bound. To see this we use the product rule and the product rule for divergence to get

nI, Dju = nDu — D(nu) = ki _ L*(nuy) _ u) - Vn
nLu, L(nuy) u, Vn
Therefore, we have
|01, DJu(z)| < |Vnlu(z)], (4.1.1)

for a.e. x € R™. The commutator bounds allows us to prove the off-diagonal estimates

for D.
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Proposition 4.1.3. Let U, be RE for t € R\ {0} or PP or QP for every ¢t > 0. Then for

any M € N there exists Cy; > 0, which depends only on B, n, k, and || B||~, such that

dist(E, F)\ "
e

rmwmmsm«

for every E, F C R" Borel sets, and u € L*(R"; C"*!) with supp(u) C F

Proof. The proof follows as in [13, Proposition 5.2] using (4.1.1). O
We will need the Riesz transform bounds first proven in [47] and later improved in

[17].

Theorem 4.1.4. Let b € L2 _(R™ R"). Also, Assume B satisfies (2.4.3). Then L2H, ' is

loc

LP-bounded for any p € (1, 00).

We adapt Theorem 4.1.4 so that we may use them in the context of our first-order

operator D. Here we bound the magnetic gradient with D.

Proposition 4.1.5. Let b € L _(R™;R"). Also, Assume B satisfies (2.4.3). Then

loc

[Lulls S [ Dull2,

for all u € R(D).

Proof. Let u € R(D) By Lemma 2.4.6 we have there exists f € L?(R") and g € W,*(R")

such that

Therefore, we have
L? L*L
Lu = g and Du = g
Lf Lf
Thus using Theorem 4.1.4 and H = L*L, we have

L*Lf
[Lulls < [|L%g]13 + |1 Lflla S 1H fllz + 1L f]l2 = = || Dull,.
L
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This completes the proof. O]

Combining Proposition 4.1.5 with the global Fefferman-Phong inequality, Lemma

4.1.2, and the observation in Remark 4.0.1, we get the following corollary.

Corollary 4.1.6. Let b € L2 (R™;R"™). Also, Assume B satisfies (2.4.3). Then

loc

1
[ Lullz + IBl2ullz < | Dull2

for all u € R(D).

Proof. Using Remark 4.0.1 and Lemma 4.1.2, we have
IIB2ulls S [lm(e, [Bl) Pala S || Luls.
Then, using Proposition 4.1.5, we get
1Zull + [[[Bl>ull> S ([ Lulls S [|Dull2.

As required O

4.1.2 Maximal Dyadic Mesh Adapted to the Magnetic Field

We start by defining the notion of a dyadic decomposition of an arbitrary (not necessarily
dyadic) cube. To this end fix a cube Q. For t > I(Q) we define Ay(Q) := 0. For ¢t <1(Q),
there exists k € N such that 2=*~D](Q) < t < 27%](Q). Then, we define A;(Q) to be the
set of dyadic subcubes of @ of side-length 2¥1(Q). Note Q = Ureag) -

We define, for each T" > 0, the collection of dyadic cubes, A?, as follows: for each

Q€ Arif

l(4Q)2]£Q Bl <1 (4.1.2)

then add @ € AB, if not then sub-divide Q dyadically, and stop when (4.1.2) is satisfied.

To see that the subdivision stops, fix € @ and consider the collection {Q, },en Obtained
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from dyaically sub-dividing ) and taking @,, to be the cube of side-length 27"1(Q) such

that = € @,. Then, by the Lebesgue differentiation theorem we have

i (160, 1BI] =082 <0

Therefore, there exists N € N such that for all n > N (4.1.2) holds. Also, note that by
construction A? is maximal in the sense that for every @) € A? then either () € Ar or

the parent, @, of () is such that

l(4@)2]{© IB| > 1.

Thus A? is a maximal collection of dyadic cubes satisfying (4.1.2) and we have A? is a
covering of R”. An important property of the maximal dyadic mesh A? is that it has a

finite overlap property which we present in the following proposition.
Proposition 4.1.7. Let T" > 0. Then there exists a constant ¢ > 0 such that

D lpglr) <2, vz eRY, (4.1.3)
QGAB

where ¢ and g depend only on dimension and the properties of |B|.

Proof. Fix x € R™. Then there is a unique ) € A? such that z € Q). We will give a
bound on the number of Q € A? such that Q N 2*Q # (). First we calculate a lower
bound on 1(Q) so we assume that [(Q) < [(Q). Now let R € Ayq) be the unique cube
such that Q C R. As 0 # 2*QNQ C 2"RN Q. Thus, as [(Q) = I(R) we have R C 2¢1Q.

Therefore, using the doubling property of |B| we obtain

472(4R o 1(4Q)? e
][|B|— ”\4R)! /2k+1Q|B|§CZ e (|4Q? /4Q|B|§C§ 1y

where ¢4 > 0 is the doubling constant for |B|. Now assume for contradiction, that

1Q) < ([“BH]” A 2) lgl(R).

—6,.—4
275¢,
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Then by Lemma 2.2.3 with C' = c& 14772 and ¢ = 275¢;*, and (4.1.4), we have
QP 1Bl < 20"
Q
Let Q be the dyadic parent of @, that is Q C Q and Q € AZl(Q)' Then
110} Bl <UsQPf Bl <2 i@>f Bl <1
40 160 Q

Thus, Q,Q € AB and Q c Q. Also, as [(Q) < I(Q) then Q ¢ Ap. Thus, by the

maximality of AB we also have

1(452)2]{65 B| > 1

This is a contradiction. Hence

—1
2N —

1@ = (B0 aim) - i) = )

—6,.—4
275¢,

Now we find an upper bound for Z(Q) First suppose Q € ABNAyp. Then for Q e A?
and 1(Q) > 1(Q) then we must have Q € Ap. That is 1(Q) = I(Q). Now suppose
Q € ATB \ Ar Let @ be the dyadic parent of Q. As Q C @, we have 2FQ N @ # (). Then,

by the maximality of A:Ep’ and since @ € A? \ Az, we have

l(4®2]£@ IB| > 1.

We also have 4Q C 2¥3Q and

l(2k+3Q)2][ B| < c’§+142(k+1)l(4(2)2

- ][ |B|<C§+12(k+1)(2—n)‘
2k+30) 20 D14Q Jag

Then, by Lemma 2.2.2 we have ([|B|],ci20+D@=m) =5 | (2k+2()) < 1(4Q). Therefore,
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if Q e AB and 2°Q N Q # 0, and as l(4@) = 81(Q), we have

Q) < 2 ([IBI], ™20 7F Q)

ot I
=2 ([IB][pca2®™)* % (2 *7% ¢, " | UQ).

Define d := log, ¢4. To recap, we have

w27H10) < 10) < 2 @),

where ¢1,¢c2 > 0 depend only on dimension and the properties of |B|. Now suppose

1(Q) = 271(Q) for some j € R, then

) —kd k(1+d+25n)
2 € |c1277P, 2 T

As 2°Q N Q # 0, then dist(Q, Q) < 2¥1(Q) = 2¥9(Q). There are at most 22*" many

dyadic cubes at scale 2/1(Q) which are a distance of at most 2¥77[(Q) from Q. Therefore

an upper bound on the number of possible cubes Q € A? for which 2’“@ NQ #0is

k(1+d2+35")+62
< k(d+2— kd
S 22’€”§22’f"<k+ (; nn)+2 n+ég—él>
j=21kg +é1 p T p
P
7 2d+21;n
< 2627612k(1+2 +7275 )7

2d4+2—
(2d+2-n) o have

7_7
P

where ¢; := log, ¢; and ¢y := log, c5. Thus, letting lg =1+ 2n +

D dyrg(z) S 2%

QeAE

This completes the proof.
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4.1.3 Local Estimates

One of the most important properties of the magnetic gradient is the gauge transform in
Proposition 2.4.3. This will allow us to introduce the magnetic field B and take advantage
of the reverse Holder properties that B satisfies. To do this we will to localise onto the
dyadic mesh AB. To this end we introduce the notation L3H(R™ Q) = {u € L*(R"; Q) :
supp(u) C 4Q}. If Q = C then we define L) (R") = L (R"; C). We now define the gauge

invariant magnetic gradient. Fix a cube Q. Let u € L3 (R™). Then, define
Lou = (V +ihg)u,

where hq is as in Proposition 2.4.3 for the cube 4Q). Let u € Lé(R”). To see why the
gauge transform is so useful we present the following property which is called the gauge
invariance. By the product rule and the definitions of hg an ¢¢g from Proposition 2.4.3,

we have

Lo(e%2u) = V(e"¥u) + ihg(e2u)
= €"PVu + uVe'#? + ihgoQu
= PV u + uie"*? Vg + ihge'¥?u
= €"PeVu + ie'?? (Vg + hg)u
= €°Q(Vu + ibu)

From above and the properties of adjoints, we also have
ePe Ly = (Le Q) u = (e7¥2e¥Q Le~"Q) "y = (e 7 L) u = fJ*Q(ei‘pQu).

We can also define the gauge invariant first-order operator defined on the cube @) as
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D®: 9(D°) LG (R™ CHY) — L (R™; C*), given by

0 L
Lo 0

Let u € L3 (R™). Then, considering ¢¥? to be multiplication by the scalar field e*¢ to

each component, we have

, e Lu Lo(et?ey - ,
¢%a Dy = = f?( L) — D(e%ay) (4.1.5)

€' Lruy Ly (e*ou)

The operator B also retains the elliptic on R(D®). To see this let « € R(D?). Then using

(4.1.5), and the ellipticity of B on R(D), we have

k)| D%l3 = &l D%ll3
= I Deau?
< Re(BDe"*Qu, De"¥Qu)
— Re(e'*@ BD%u, ¢'#2 D)
— Re(e~"@¢e™¥2 BD%y, D)

— Re(BD®u, D%u)

Then let u € R(D?) and let {u,}nen € R(D?) converging to u. Fix ¢ > 0 arbitrarily.
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Then, by above and the Cauchy-Schwarz inequality, we have

llully S sllw = wall3 + Kllunll2
< kl|u — up || + Re(Buy, u,)
= k||u — up||? + Re(Bu, — u, u,) + Re(Bu, u,)
= klju — u,||3 + Re(Bu,, — u, u, — u) + Re(B(u, —u),u)
+ Re(Bu, u,, — u) + Re(Bu, u)

< kllu = unllz + | Blloollu = wnllz + 2] Blloo |t — unll2][ull> + Re{Bu, u).

As u,, converges to u, there exists N € N such that

€ € €
(T <max{\/—,\/ ’ }
2 367\ 3|1Blloo” 6] Blloolull2

for all n > N. That is

k||ull3 < e + Re(Bu, u).

Thus, as € > 0 was arbitrary we have

kl|ull3 < Re(Bu,u), Yu & R(D9). (4.1.6)
For t € R\ {0}, we can then define

RPQ = (I —itD®B)™!
PPQ = (I +2DBDOB)~! = (RtB’Q + RZQ) = RP9RPC

Qr? =tDB(I +*DBDYB) ' =tD?BPF = (—RtBQ - RthQ> .

| —

1
21
We will now compare the resolvents of DB with the resolvents of D?B.

Lemma 4.1.8. Let () be a cube. Let t € R. Then we have the identity
RE(ngv) = e’i“"QnQng’Qeimv +itRPe™2(ng, D@ BRP“eivay,
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for all v € L*(R™; C™*1), where ng € Cg°(R™) with supp(ng) C 4Q.

Proof. First note ngu € L (R™; C**'). Then, we have

RP (nqu) = R (e ¥2e"¥2ngu)

= RP (e #2nqe’tav) — e g Ry (e'¥2v) + e Pang R ('),
Then, the error term is

RE(e7%apge¥Qu) — Qg RPQei?ay = RBe™%ey, (I + it DO B)RP “ ¥y
— RB(I +itDB)e ¥ang R ei¥ey
= RP[e""9no(I +itDYB)
— (I + itDB)e’i‘PQnQ]éf’Qei“’Qv
= itRPe @ [nQDQB
— €@ DBe g REQeivay
= ithe_i@Qan)QB — ﬁQBnQRf’QeWQU

— itRPe™2[no, D9 BR“e*ey

This completes the proof. O

Using the product rule and the product rule for divergence we have the following

identity

. . . Liu L (nu u -V
il D9 = nD% — Dy = | Q| QUmuy) | Jwy- Vi

nLou, Lo(nuy) u; Vn

for all u € Lg(R™; C*™) N Z(D). Thus, we have
02, Du(z)| < [Vnllu(z)|, (4.1.7)
for all z € 4Q), and all n € C3°(R™) with supp(n) C 4Q.
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Proposition 4.1.9. Let U; be RP9 for t € R\ {0} or PP or QP for every ¢t > 0.
Then for any M € N there exists Cy; > 0, which depends only on B, n, x, and || B||~,

such that

dist(E, F)\
||Utu||Lz?(E) < Cy <f> HUHL%(F)a

for every E, F C 4Q Borel sets, and u € L (R"™; C"*') with supp(u) C F
Proof. The proof follows as in [13, Proposition 5.2] using (4.1.7). O

We now give an analogous result to that of Lemma 3.1.5 which is based on [13, Lemma

5.6].

Lemma 4.1.10. Let Q be a cube. Then we have the estimate

for] = (1 0rf, ) (, pese) (f1se)

for all subcubes R C 4Q and f € 2(D9).

() (o)

If ¢ > 1I(R) then proceed as in Lemma 3.1.5 or [13, Lemma 5.6]. Now suppose ¢ < 1I(R).

Proof. Let

Let 7 € C2°(R) such that n(z) = 1 when dist(z,R"\ R) > ¢ and |V7|ls < 1. We now
bound both components separately. First, using the definition of EE) as the adjoint of EQ

and 7 having compact support gives

oo,

_ / n(D2f)L + (1= (D).
< Lniaf||'+éll—nl|(ﬁQf)L|
_ /Ricgn-fn‘Jr/RH—nHDQf!

_ NQ
S/RIW||f|+/R|hQn||f|+/RI1 Dl D).
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And for he second component we have

om0 om0 < s [

Then, by the compact support of nf,, the Fundamental Theorem of Calculus and the

product rule we have

/ nLfL — Vnf)| < / VL — V)l + / hanllfo]
R R R

- /R V] + /R honllf]
< / IVl + / honll ]

Thus, using the Cauchy-Schwarz Inequality, [|[Vn||w < 1, and [supp(Vn)| = I[(R)""'t, we

have

o< (fro) ([ )

< [ Vn]lc] supp(Vip) ( / |f|2>2

SUR)F (/R|f|)%-

Now, by the Cauchy—-Schwarz inequality, also |RNsupp(1—n)| = (R)" 't and |1—n| < 1

Jun

by the definition of 1, we have

/R”_’?”DQﬂ < (/Rll—nl2)é (/R!DQfP); <I(R)*Tt (/Ry[)czf,z)é_

We now bound the last term above by using the Cauchy—Schwarz inequity, Holder’s

inequality, R C 4@, the Sobolev inequality, the gauge transform inequality (2.4.2), the
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reverse Holder inequality for |B|, and the definition of 7, to get

[ (funet) ([1s7)
< (AQ’hQ’”)}l (/ W*)Q& (/ W); 1
st (£, |hQ|") ([ro) ([ 1)
<1(4Q)? <]£Q|B|2> V|| supp(Vn)|2 (/R|f|2)é
< (i@rf. 1) acwrei ([ W)é

Therefore, by the definition of ¢, we have

(/RIfP)é < (l(4Q)2]£Q |B|) (U(R)™ 1)} (/Rf2) |
<U(R)™ <Z(4Q)2]£Q\B|> (/R‘[)Qf‘z>4 (/le’2)4

Finally, combining the above, squaring, and dividing by |R|, we have

ety (rvsarf ) (o) ()

as required. N

4.2 Localisation

The aim of this section is to localise the quadratic estimate in Theorem 4.0.2. This is
where we will take advantage of the gauge transform in Proposition 2.4.3 to introduce B,
and then exploit the local properties of B.

Now, for all ¢t < T define Ef := {R € A,: there exists Q € AB such that Q C R},
the set of dyadic cubes of scale ¢ which contain a cube in the maximal dyadic mesh AB.

We note that the set inclusion in ET is strict and so Q ¢ ET for all Q € AB. Then, by
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maximality of AB we have if Q € ET then

l(4Q)2]£Q B| > 1.

The collection E! corresponds to the big cubes at scale ¢ in the electric case in Chapter

3 and the proof for bounds follows in a similar fashion.

Lemma 4.2.1. Fix T > 0. Then we have

dt
[ i@t < i

QeET

for all u € R(D) independently of T

Proof. First consider

/ > ePulpS < / > QP Pl / > 1aQP (7~ Pyl

ReET ReET ReE]

Then, as [ — P, = t?D?P,, the boundedness of tQP D and the self-adjointness of D, gives

dt ° dt
/ > IRQF I—Pt)qu? S/O HQtBtZDQPtqu?

ReET
t

= [T leeppyenR)als

0

s [ lQuipd
0

S lullz-

Now, using off diagonal estimates, dist(Q, Cx(Q)) =~ 2%t, and the Cauchy—Schwarz in-
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equality, we have

- 00 2
> IRQFPulz < Y7 | D I1eQP Lewm Loy Pullz
ReET Rerl Lk=0

- 00 2

S D[22 Mg Prully
Rerl Lk=0

S Z ZQ_ICMH]I%RPWH%'
ReET k=0

Suppose 2*R is such that
1(2‘“1%)2][ IB| > 1.
2" R

Then, using the Fefferman—Phong inequality, we have

B
Lol < (1CRL, [BI) Ianrul
2FR

1
S U2 RY? (| yenLPatll3 + | e B2 Pul3)
Now suppose 2*R is such that
l(2"’R)2][ Bl < 1.
2k R
Firstly, if £ € {0, 1,2} then using the doubling property of |B|, k < 2, and ¢4 > 1, we get

2—k|ok
1< l(4R)2][ IB| = 22<2*’f>1(2k3)2M

Bg24c212k32][ Bl.
. AR [, Bl S 2R 1Bl

2kR

That is, for k € {0,1,2} we have

ItanPrul} < my (2 R?L 1B Il
2FR

1
S 22 R)? (e n L Patlld + | 1en|BIE Prull3)

Now let k& > 2. Then, as R € E! there exists Q C R such that Q € AB. Therefore,
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by the maximality of A% we have

z(4R)2][ IB| > 1.
4R

As k > 2, and so 4R C 2*R, and using the Fefferman-Phong inequality, we have

| Lyen Pl < (Z<4R>2][ |B|) e P2
4R
— 2(n—2)(k—2) (Z(QkR)Q][ ‘B‘) HHQ’“RPtqu
2kR
< 2020202 R)? (| g L P + [ B P}

S 2U(R)? (s nL Pl + 1L/BIE Pull3)
Therefore, as 2% < 2" and [(R) =~ t, we have
1Pl S 27 (1[1enLPul3 + |[1oeplBIE Pil3)

for all R € Ef. Thus, by using the covering inequality Y . Torg(z) S 2, the global
Fefferman—Phong inequality in Proposition 4.1.2, choosing M > 2n, and Corollary 4.1.6,

we have

00 ~ 00 - . B
Z 22 kMHﬂszPtUH%fJ Z 22 HMn) g2 <||]l2kRLPtu||g+||]l2kR|B|2Ptu||§>

ReET k=0 ReET k=0
oo
1
< 3027 (Ll + [|[BIE Pal})
k=0

S P DPall;.
Finally, we have

T T %)
dt dt dt
|3 @rra$ < [ inralS < [T1Qui S g

ReET

As required. n
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We now begin to localise the problem. Firstly we have

/ orulzS / > Ia@fuls / > eePulrS, (21

ReE] ReANET

and so by Lemma 4.2.1 we have the first term above is bounded by [ju?. If Q € AB
then A,(Q) N E! = () by the definition of E}. Therefore Ugeas A:(@) € A\ ET. Also,
by definition of EI we have for every R € A, \ El then there exists Q € AB such that

R C @. In particular, as € A; we have R € Ay(Q). Thus, UQgA? AQ) = A\ ET.

Therefore
[ merad=[ Y 3 QP
REANET QEAB ReA(Q
dt
-y / oan® Y IRQFUET  (429)
QeAB ReA(Q)
Q)

-3 [ et
QeAB

Now we define the test function ng € C3°(R"), such that ng(z) € [0,1] for all x € R™,
g = 1 0n 2Q, supp(ng) € 4Q, and [|Vigll« < 15 ) Now, we introduce the test function

ng as follows

(Q) B 2 dt
3 / el < 3 / 16 (ngu) 3
QeAEB 0

QeAB

dt
o3 [ ieep 0 - nom Y

QeAB

(4.2.3)

The following lemma allows us to localise the quadratic estimate so that we can break

up R"™ and work on each @) € A? separately.

Lemma 4.2.2. Fix T" > 0. Let g be as defined above. Then we have the following

estimate

3 / [16Q8 (L~ ngu) B < ful3

QeAB
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for all u € R(D).

Proof. To begin with we use the fact that supp(l —ng) C R™\ 2@Q, and so dist(supp(l —

no), Q) > 1(Q), off diagonal estimates, and then the Cauchy—Schwarz inequality, to get

NE

2
Q7 (1 = no)u); < ||11QQf]lck<Q>||||]lck<Q)U\|2>

k=1

1 (dist(Q,tCk(Q))>M |’12kQUI!2>
. (leléQ)>M ||112;€Qu||2>2

: (@)M (2 kM!\ﬂszuy@) (i 2_kM>
- <@)M§32‘Wllﬂmun;

1
Thus, integrating and using Proposition 4.1.7 we have

2

A
NE

£
Il

A
NE

ES
Il

[Larqully ("9 5
> [ ieern -t £ 3 Selirarli [
0

QeAB QEeAB k=1
-y 22 kMH]kaUHz (@"
M
QEeAB k=1
$ D273
k=1
< Jlull3,
where g is as in (4.1.3). This completes the proof. O

The reason for localising is so that we may take advantage of the gauge invariance of
the magnetic gradient and we may only use the gauge invariance on cubes and not the
whole of R". Now we want to replace QP with QtB ‘% and then control the error terms

that appear from Lemma 4.1.8 using the commutator bounds (4.1.7).
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Proposition 4.2.3. If

> / [Lige 92 QP? wn@u||2—<||u||% (4.2.4)

QeAB

for all u € L?*(R™; C"*!), independently of T', then

/ QPulS <
0

for all uw € L*(R™; C"*1).

Proof. First, using the monotone convergence theorem, we have

> U di
[ 1@z = [ im ton@IQPuly = im [ 1@fulES
0 0 7 Jo t

Now fix " > 0. Then, by (4.2.1) and (4.2.2), Lemma 4.2.1, (4.2.3), Lemma 4.2.2, and

supp g C 4@, we have

T
/0 RIS / [10@PulRS / > rQPul3Y

QeAB ReET

Q) o dt
<> / (M@ nqullz + [1Q7 (1 — ng)u)|2) —+|| [
QeAB
53 / I16@PniqullS + 2full3
QEAB

Now, by Lemma 4.1.8, the uniform boundedness of resolvents and the properties of 7,
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we have

1@ moully S 1g(RE, — R )nqull;
< lem%eng(RES — RP9)eenqul
+t||RPe "2 [ng, DY) BR Ve Lyqull3
+ || RE,e 2 g, DY BRECee1,4qul;
< lle 9@ Y enqul3

+ (| Rell* + 1Rl @, DIPIB oo (1 Rel* + [ R-el*) | Lagull3

2

i ~B,Q i t
< lleenoQr e engul|? + WHMQUH%-

Therefore, using the above, (4.2.4), and Proposition 4.1.7, we have

Q) dt
3 / 6@t < 3 / e #21,0GP 26 engul3 T

QeAB 0 QeAB
- / ol
QeAB
1
NH H2+ Z || 4QuH2/ tdt
e HQ? Jo
[[Laqull3 1(Q)*
<ful+ 3
PO
< 3

Thus, combining the above four calculations gives
> e T dat .
| 1epui = im [ 10T < Jim ful} = ul
0 —o0 /g t T—o0

As required.

Thus to prove the quadratic estimate Theorem 4.0.2 it suffices to prove (4.2.4).
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4.3 Reduction to Carleson measure estimate

Define the following averaging operator

QUZE = u
A%u(z) ﬁ<y>dy

where R € A;(4Q) is the unique cube such that x € R. Also, for each (¢,z) € (0,41(Q)) x

4Q we define the following multiplication operator 52 (z) € £(C™)
7 (@)w = Lag(2)[Q° (Ligu)](x)
for all w € C"*', where w*(z) == w for all z € R". For fixed ¢ > 0 we also define the
mapping 72 : R” — L(C") by 3% : x — Tyuo(x)52 (2).
Lemma 4.3.1. Let @ be a cube. Then we have the following:

1. The operator (:Qf @ extends to a bounded operator from Lg’(R”;C"“) into the

space L 1,.(R™; C"*1). In particular for ¢ > 0, then A2 € L2 1o (R™; £L(C™HY)) with

Ji 52 (0) 2 ey dz < 1,

for all R € A(4Q).
2 sup 5249 S 1.
t€(0,41(Q))
Proof. Let f € Ly(R™C*"). Let M > n. Define CE(R) = R and for k > 0 de-
fine CP(R) == (2R \ 2""'R) N 4Q. Therefore, CZ(R) N CP(R) = 0 if k # j and
there exists K¢ such that Uffo C?(R) = 4Q. Also, as dist(R, (2"R \ 2""'R)) = 2*I(R)

then dist(R, CZ(R)) > 2¥I(R). Then, by the off-diagonal estimates in Proposition 4.1.9,
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dist(R, CZ(R)) > 2*I(R) ~ 2¥t, the Cauchy-Schwarz inequality, and M > n, gives

ILRQSIS <

KQ

~B.
Z 11 RrQ; Q(]ICYJ_Q(R)JC>H2
j=0

2

< (ZnR@f%CQ Lo 1

7=0

Kq . ~Q -M 2
s(Z<dISt<R’fk<R”> g o I

=0
s( 2 ) BRI

7=0

<SS 2 M FIP Lyl
Jf

S|fI%IR Zz—ﬂM—”)
j=0

S IFI%IRI

Then a similar argument to the one in Lemma 3.2.1 gives

n+1 n+1
|3 ()] (w) ? = | [F:()] (wa) S |w|22\ Yie(w ,
k=1
for all w € C"*!, where {ey,...,€e,.1} is an orthonormal basis for C"™!. Then combining

the above gives

n+1 n+1

n+1
][m ), dx<2][|% (e0)P dz Z][| D dr £ 3 el 1

where é;(z) = e is the constant function. Thus, 72 € L3 10¢(R™; L(C™)), which com-

plete the proof od part (1)
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For part (2) we use part (1), the definition of A2, and Jensen’s inequality, to obtain

FeARulz = /|% Q) (x)|? da

REAL(4Q)
2

D)) / 52 yenen ][ uly) dy| da
REA(
2
= (/ |% |L Cnt1) ) u(y) dy
REAL(4Q)
s 3 1AL
REA
= [ Laqull;
Now taking supremum in ¢ € (0,4(Q)) completes the proof. ]
Fix Q € AR and ¢ > 0. Then, we have
Q7 e enqu = (Q7? — AP A Onqu + 32 A nqu, (4.3.1)

on 4@). In this section we will bound the first term on the right-hand side above, giving

the following proposition

Proposition 4.3.2. If B satisfies (2.4.3), then we have the following estimate

1 Q4 i o dt 2 ST
> [ 1@ - P a)e nult < Julf, v e RD),
QeAB

where the implicit constants depend on B, n, , and || B||co-
To this end we consider the following terms to bound
(Q7 =37 Aeenqu = QY *ng(I — Pu

+(QP9 — 32 A% eng Pu (4.3.2)

+ A2 A (P, — D).

We begin by estimating the first term in (4.3.2), we give a lemma we will use here
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and later in the Carleson measure estimate.

Lemma 4.3.3. Let Q € AB and R a cube with R C Q. Define i € C°(4R) such that
nr(x) € [0,1] for all x € 4R, and ngr = 1 on 2R. Then

1L20PCenn(l = Pl < ( . 1) | an et

l(R)?

for all t > 0 and all u € R(D).

Proof. Firstly, using the splitting in Proposition 2.5.1, by the ellipicity of B, as in (4.1.6),

we have the existence of B~ on R(D®), the uniform bounds for tQ>?DeB = I — PP,

and again by (4.1.6), we have

NB, B,
16Q7 2 D23 = 11QP D2 (Prizas + Papey ) ul3

= |[tQ;°DBB~'P

2
ool (4.3.3)

5 ||B_1PR(ﬁQ)uH§

< Jull3,

for all t > 0. Now, using the identity I — P, = t*D?P,, then the uniform bounds on
29 (4.3.3), the gauge invariance (4.1.5), the commutator bounds (4.1.1), and that

supp([ngr, D]) C 4R to obtain

11422Q7 “ena(I — Pull3 = [14pQ¢ “e#9npt> D* Pull3
= |[t14:Q; %2 (ng D — Dngr + Dng)tD Pul|?
S )L4rQ7 €9 [, D]Quul3
+[Lar(tQF D) e Quul3

< 2V nilloo [ LarQeull? + [meQeul
< (1) Qe

As required. O]

We now bound the first term in (4.3.2).
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Lemma 4.3.4. we have the estimate

> / 1@ Ceiweng (I — B)U||2 b < 2

QeAB

for all v € R(D) independently of T

Proof. Using Lemma 4.3.3 (with R = Q), t < [(Q), Proposition 4.1.7, and the quadratic

estimate for self-adjoint operators, we have

HQ) (&) 2
> [ et g - ratiy £ X [ (15 >||]14QQtUHz

QeAB Q AB

Z ||]14QQtUI|2

QeAB

o dt
< / QIS
0

S lulls.

As required. O]

We now begin to estimate the second term in (4.3.2), but first we prove an important
lemma. This is where we see the need for the localisation so that we can use the gauge

invariance.

Lemma 4.3.5. Let Q € AB and R a dyadic cube with R C Q. Then

N ) i .
1Lir(Q7° — A2 A)e®onp fl3 S | LanLnrfll3 + || LarBlZnr fII3,

for all t € (0,1(Q)) and all f € R(D), independently of T" and Q.

Proof. Let g = e*@npf. For cubes R, S with S C R, define é’,f(S) as in Lemma 4.3.1.

Then, as 52 A%u = QPP A%y for all S € A,(4R), the off diagonal estimates in Proposition
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4.1.9, and the Cauchy-Shwarz inequality, we have

ILar(@79 =37 A0glls = D 1@ (g — 9s)II3
S€EA+(4R)
_ 2

S D ZH]lthBQﬂcR M enes) (9 = gs)ll2

SeA(4R) \ k=0

< D> ZNMH]IR (9 — gs)I3-

SEAt 4R) k=0

We now give a telescoping argument, by using the Poincaré inequality in [30, Equation

(7.45)] noting for the constants that 1 diam(2*S) < diam(2"SN4R) < diam(2*5), to get

H]IC‘,C(S)(Q - 95)”3 N / lg — 92k5m4R|2 + / |gorsnar — 9R|2
2kSN4R 2kSN4R
& 2
S 22kt2/ [Vgl® + 255 N 4R Z(ngsmz% — G2i-15r4R)
2kSN4R =1

Fix 7 € {1,...,k}. Then, again using the Poincaré inequality in [30, Equation (7.45)]

noting for the constants that diam(2%S N4R) =~ diam(2*S), we have

2

k
Z<g2jSﬁ4R — g2i-15n4R)

— k 2
< |92i s0ar — 9|

Z |2]Sm4Ry
129715 N4R| J9isrur

AN

2
’9 - g2jSﬂ4R|]

[k

R 192
Z—'”' L o mmsonl?)
SRR g !~ 2s0aR

192
20m|S|27¢ (][ 2)2
> ST Unsoun VY

Lj=1

k (n 2
t2/ W9|2] ZQJ(—H)l
2kSM4R ‘o 1278 NA4RJ2

N

A

AN
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Then using j < k and the identity Z?:o 2/ =281 _ 1. we have

j(n+1) k 9J oknok+1  9k(n42)+1

Z 2knz 1 < T 1
|2JSﬂ4R\2 Z1Sn4RF — ISP 5|5

J=1

Thus, combining the above three calculations we have

2

1~ — 2 <42 92k L 19kS N 4R M Val?

| cg(s)(g 9s)l2 S + [2°S N 4R T Vgl
|52 2k SP4R

S, t222kn(1 + 2kn22k+1)2 |:/
2

kESN4R
5 2k(4n+2)t2/ |Vg]2.
2kSN4R

Therefore, choosing M > 5n + 2 and using the covering inequality > Au(aq) Lox s(z) S

!Vg|2]

2kn we have

Z 22_ Lo 5mar(9 — gs) ||2<t2 Z ZQ ~(nt2) ||]12kSm4RV9||2

SEA¢(4R) k=0 SeA¢(4R) k=0

St Z 2 HM=(on+2) IVll72(4m)
k=0

< PlIValzaur)

Recall g = e™#enrf. Then, using the product rule, chain rule, the identity Vi = b — hg

on 4(), and the definition of L, we have

IVl 2ur) = (Ve2)(nrf) + €2V (nrf)| 724
= [[(iVpQ)(e¥nrf) + 92V (nrf)l|72wr
= [[i(b — ho)(e*enrf) + €NV (naf) |22
= [[e"2(V + ib)(nrf) — e hq(nrf)|72r)

S e Lnr)Iizar) + 1hQgllLe )

Now, to estimate the last term, we use Holder’s inequality, the Poincaré-Sobolev inequal-
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ity (see (7.45) in [30]), and I(R) < 1(4Q), to get

o)< ()
<) (f B’ (][R ol - (][R )| ) +f 1
<i) (f ml) jum (£ 1910) "+ £, |g|]

<uaor (£, 1) (f, |vwg\|2)§ w100) (£ 181) £ 1ol

To estimate the first term we use the smallness of 4¢) and the diamagnetic inequality

with ZQ, to obtain

140y (f, mi) (ﬁR\vmrP); < (]£R|vxgu2>§ S (]éR!ngP);

Now, as 4@ is small, we have

o f )= (o) (£, ) )

Then, by Jensen’s inequality, the Fefferman—Phong inequality for ZLQ, and then the sup-

port conditions on 7ng, we have

140) (f, 181){ 1ol <160) (f m1) (£ 10) 21
<|(F=) G L o))
S (/4QEQ92+/4Q|Bfg2)
~(f 1og+ f il

Thus, by the above calculations, squaring, multiplying by |47|, and the gauge invariance,

[N
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we get

/ lhqgl® 5/ |Lgeenpf|* + [Blleonp f|?
4R 4R
B / 2 Lng f1* + |B|Inef|?
4R

- / \LnwfP + Blinafl®
4R

Therefore, by collecting the above estimates together, we have

~B, ~
114r(QF° — 42 Agll3 < 11V gl 22y
N t2||€wQL(77Rf)||%2(4R) + t2||th||%2(4R)

1
< Pl LarLnpfl® + || LarB|2na f].

This completes the proof. O
Now we give the estimate for the second term in (4.3.2) using the above lemma.

Proposition 4.3.6. We have the estimate

Q) “BO  ~Q A ,dt )
S [ Mie(@P9 - 38 eng Pl S ful?
QeAB 0

for all u € R(D), independently of T'.

Proof. We now use Lemma 4.3.5 with R = ) and f = P,u, and the product rule, we have

A = i i i 1
1240(QF = 37 Adnge™ Pall3 S 12| Lage™ Lng P} + | Lage™ Bl Zng Poul 3
1
S 1 LagLPaull; +#2[(Vng) Paull; + [ ag| B> Prul;
1

1
St ||]14QLPtU||§+||]14Q|B|2PtU||§+WHMQHUHS

The last term above is bounded using off-diagonal estimates in Proposition 4.1.9, the

Cauchy—Schwarz inequality, Proposition 4.1.7, and choosing M > [ where Ig is as in
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(4.1.3), we have

2
1 uQ) o
> [ imateral £ 3 b / > PG aquls|
0 k=0

QeAB QeAB
Z Q) ¢ M
||]].2k+2 u|| / (—) tdt
= *) \F@)
@)
k:MH]IQ’“*QQuHQ M+1
= Z > 2 Tope J, T

k=0 QeAB
:Z Z 9- kMH]12k+2QU||2 ( )M+2
= OQEAB M+2 M+2
N HuHSZT“M‘”
k=0
< lull3,

(4.3.4)

Then, using Proposition 4.1.7, Corollary 4.1.6, and using the quadratic estimate for the

self-adjoint operator D, we have

@ dt
> [ [ItoLPal}+ I LeiBlE Pul]

QeQf
dt
= > | Towa @2 [l Pl + [ LiglBJ* Pail] -
QQT
2 dt
> ¢ IaQLPull3 + || Li/BI* Pull3] S
QeQR

1 dt
< / 2 [Pl + 11812 R3]

dt

[ee]
s [ eIpra
0

> dt
- [ 1QuiE$
0

S Julls.
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By the above calculation and (4.3.4), we have
1@ ABQ _ ~Q ‘ 2 2
S [ 110@P0 - 30 A)nae Pl 5 ul?
QeAB 0
As required. O
Now we estimate the last term in (4.3.2). Here it is important that we are able to

use Lemma 4.1.10 and this is why we needed to work on the maximal dyadic mesh A¥

instead of arbitrary dyadic cubes.

Proposition 4.3.7. We have the estimate

Q) -0 40 dt )
S [ IRgaRe (B - Dby S lul
QeAB 0

for all u € R(D), independently of 7T'.

Proof. We first establish

; . [t s
> IigA?e“eng(P, ~ D@l S min{ £, | Julf (43.5)
QeAB
for all u € L2(R™;C"*). For t < s we use the uniform boundedness of A? and 7, the

fact that (P, — 1)Qs = iQt(PS — I) and the the uniform boundedness of P, and @, to get

% t ?
> ItigAfeang(R - NQuIES Y (%) Ii@u(P - Dul

QeAB QeAP
t
< LjQup - Dl

t
< Zull2.
< < flulf

Fix Q € AB. Now, let s < t. Note that when ¢t > 4/(Q) we have A,(4Q) = () and so we

may assume ¢ < 4/(Q). Using the uniform boundedness of A;, the fact that P,Q, = Q. F,
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Propostion 4.1.7, and the uniform boundedness of P, and @)y, we get

S ILigALe@ng (P — 1)Qqul3

QeAB

< D InePQuuls+ Y Y e *ngQuul’

QeABR QeAB ReA(4Q)

< (5) @l

2

upQ NQ qu

QeAB ReA:(4Q)

S %
Sl Y Y Qrm][ %a(ng D — Dng + Drg) P

QEAB ReA(4Q)

2

For the second term above we use the gauge invariance in (4.1.5), the commutator bounds

n (4.1.1), and t < 41(Q), to get

2

>, SR

][ €2 (11D — Drq + Dig) Psu
R

ReA(4Q)
B 2
< ¥ +52\R!( rm,mauﬁ)
ReA(4Q) L R
< X | posenoral + SitgRal?
ReA(4Q) L R

Now by Lemma 4.1.10, the gauge invariance, adding and subtracting e*?@ngD Pu, the
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commutator bounds, ¢ < 4[(Q), and the Cauchy—Schwarz inequality, we have

2

>, SR

ReA:(4Q)

][ DRc¥Q noPsu
R

I )
‘1—2 [(/ mopral?) + ([ lna.» Pu|2)2] (f nQPSuQ)j

AN

AN

REA(4Q)

Ny oo
I [Umear) gy (fmerar)

Re;w) :(/RlnczQSUF)é (/R|77stu|2>2 + % (

Q
: b
S
SHX @) | X [ meral) +5 > | ioPal
REAL(4Q)

AN
~+~| ®»

AN
~+~| ®»

~+~| ®»

REA, 4@)

sj(AanQ@suP) (/. mm) = [

We collect the previous estimates and sum over all ) € ATB. We use Cauchy—Schwarz,

Proposition 4.1.7, s < t, and the uniform boundedness of (); and P, we have

> AP e eng (P — 1)Quul3

QeAB
1 1 9
S S 2 2 S
—||ul|5 + - / nQSu2> </ nPSu2> ~|—(—>/ P.ul?
< 2l Z[t(mm 2) () marak) + (5)" [P

QeAZ

=
VI

S S S
SN ot | [ 3 [ imaPalt | Supal

QeAB QeAB

S S
S lullz + IIQSUIlz\IPsUIbJr;IIPsUIlg

S
< 2l
S 7l

Thus, we have established (4.3.5). Now we begin the Schur-type estimate by letting
m(s,t) == min { } Then, we use the uniform boundedness of 7% A? in Lemma 4.3.1,

the Calderén reproducing formula, Minkowski’s inequality, (4.3.5), the Cauchy—Schwarz
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inequality, and Tonneli’s theorem

Q) . . ,dt
a7 Afe#onq(P — Iull3— .
QeA,
~Q QZGDQ dt
Z ||1L4Q% AP i AP g (P — Dull2—
QGAB
Z/ ] e A )
QeAB
ds |~ dt
<[ % [ imearerenar - na@un] &
QeAR
1 2
> °° , ds| dt
< [T Iaagemnn - na.@ui| ©f &
0 0 QEAB
ds|” dt
/ / [ (s,t)] |qu”2—] 7
ds e ds dt
< t HQ.ul3— | =
< [T msoZ) ([ me o) g
*° ds
S [ IS
0
< llull3
This completes the proof. O

Combining Lemma 4.3.4, and Propositions 4.3.6 and 4.3.7 we have

Z/ ig(QP2 — 32 A)eenqul2 < flul2,

QeAB

for all u € R(D) and we are left to estimate the second term of (4.3.1).

4.4 Carleson Measure Estimate

We now begin to estimate the second term in (4.3.1), that is we need to prove the following

proposition.
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Proposition 4.4.1. If B satisfies (2.4.3), then we have the following estimate

3 / i@ A3 < 3, Vu e ROD)

QEAB
where the implicit constants depend on B, n, &, and || B||so-

Firstly, we fix Q) € A? We will do this by proving a localised Carleson measure

estimate for |5, ()[>424L.

Definition 4.4.2. Let p be a measure on 4Q x (0,1(Q)]. Then we say u is Carleson on
4Q x (0, 1(Q)] if

lulle == sup p(C(R)) < oo,

ReA(4Q) |R|
and ||| is independent of @, here C(R) := R x (0,{(R)], the Carleson box of the cube
R.

2dedt
t

The following propositions proves that if HtQ (x) is a Carleson measure estimate

then the second term in (4.3.1) is bounded and thus the quadratic estimate is established.

Lemma 4.4.3. If p is Carleson on 4Q x (0,1(Q)], then

1) ,
/ / A nguldpa, 1) 5 lilelingul
0

for all u € L?*(R™; C"*') where the implicit constant is independent of Q.

Proof. First, using the fact that A, (4Q) = Ay (4Q) for k € ZN(—o0, Kg|] where 2521 <

1(Q) < 2Ke, and 2871 <t < 2% and Tonelli’s Theorem, we have

/ /\AternQu )P dp(z, t) = Z/Qk Z /R‘]éeim”@u(y)dy2du(ﬂf,t)
Z > (][ mautlan) [ [ auten,

Now let I;, C N be an indexing set such that Ay (4Q) = {R* : a € I},}. We also introduce
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the notation

o = Inouy)|dy. and o= (R x (27,27
R

(e

Therefore, rearranging and using Tonelli’s Theorem, we have that

(Q) , Ko
[ jaeengu) P ante < 30 3 e
0 4Q

k=—o00 a€l}
Kq

=3 Sh

u
k=—oc0 acl 0

o Ko
:/O Z Zﬂa,kﬂ{ua,pr}(?")zr dr,

k=—00 ae]k

a,

k
2r dr

where dr denotes the Lebesgue measure on (0, 00). For each r > 0 let {R;(r)};en be an
enumeration of the collection of maximal dyadic cubes R* € A(4Q) such that ugy > 7.

Define
MEu(x) = sup {][ u: R e A4Q), with x € R} .
R

We claim that

U Ry(r) = {z € R" : (MZ|nqu|)(x) > r}.

Let x € J;2, R;(r). Therefore x € R such that R = R;(r) for some j € N, then

r < ]i Ingul < (MSngul) (x).

Now if z € R” such that (M%|ngu|)(z) > r, then there exists R’ € A(4Q) with z € R’

r <][ Inoul.
R/

Then either R’ = R;(r) for some j € N or, as the cubes in {R;(r)};en are maximal, there

such that

exists a cube R = R;(r) for some j € N with R* C R. Therefore, » € |J;Z, R;(r). This
proves the claim.

Now suppose that R% € A(4Q) is such that u, j > 7. Then, as the cubes in {R;(r)};en

111



are maximal, either R = R;(r) or R C R;(r) for some j € N. Therefore, using the

definition of a Carleson measure on 4(), the above claim, and standard results for maximal

functions (see [51, p. 7]), we have

|75 S hestpentizars [TY S us < (s

k=—o00 acly j=1 SEA(4Q)
SCR;(r)

< [ S uem e
<l [ 2 Y IR0 dr

—llle [ 2| U R ar
0 o1

=il |2l e B MBinguia) >} ar

= [lulle MEZInqull

S lullelinguls,

where C(R;(r)) is the Carleson box of R;(r). This completes the proof.

]

To see that Lemma 4.4.3 implies Proposition 4.4.1 we use Lemma 4.4.3, the Carleson

norms independence of (), and then Proposition 4.1.7, to get

HQ) . dx dt
/ / | A nqul |37 ()]
0 4Q t

uQ) dt
> [ et = 3
0

QeAB QeAB
< D lelelnoul’s
QeAB
S D lneull3
QeAB

< lull3,

(4.4.1)

where ||u|l¢ is the Carleson norm of |’~yf)(x)\2@ for all @, noting that by definition if

32 () |2424 ig o Careson measure on 4Q x (0, 1(Q)] then the Carleson norm is independent

t

of Q.
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The rest of this section will be dedicated to proofing that |7 ()[*924 is a Carleson
measure on 4Q x (0,1(Q)]. To begin we will fix a subcube R, of 4Q), and construct a
test function which is support on 4R. To do this we will need consider the case when
4R N (R™\ 4Q) # 0 separately and follow the ideas in [14] to prove a Carleson measure

dedt where

estimate on such cubes. To this end, consider the measure x¢(z,?)%

0 if the cube R € A;(4Q) such that x € R satisfies 4R C 4Q),
XQ (J:a t) =
1 otherwise,

for all (z,¢) € @x (0,1(Q)]. We will then prove that |7, ()[>xq(z, t) 929 and |7 (x)[*(1-

Xo(z,1))424d are Carleson measures on 4Q x (0,1(Q)] separately. First we consider

177 (2) P xale, ) 452,

da dt dx dt

are Carleson measures on 4¢) x

Lemma 4.4.4. xo(z,t)%4 and |32 (2)|*xo(x, t)%2

(0, /(Q)].

Proof. Let R € A(4Q)) and fix K == [(R). Then

(B) dz dt dz dt
/ /Xth Z/ Z /Xth .

SeA

Now xg(z,t) = 1 on S if and only if 45 N (R™\ 4Q) # 0. That is xo(z,t) = 1 if and
only if dist(S, R™\ 4Q) < 2I(S), that is at most a depth of 2 cubes of [(S) away from the

boundary of Q. Therefore, there are at most 2 x 2-"~D(¢=Kr) such cubes. Thus

2 / Xq(w,t)d > S| S 2R <ok (Rt

S€A2k S€A2k (R)
4SN(R™\4Q)£0
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As, % < 1 on each integral, then

Kgr ok

B dz dt L dt
| [ewo=S sy [ ume
0 R k 2

k—1

Kgr ok
SRS /2 dt
k=—o00

I(R)
= |(R)"! / dt
0

= |R].

Thus xo(z, )94 is a Carleson measure on @ x (0,1(Q)]. Then by a similar argument

and using Lemma 4.3.1, we have

H(R) dx dt il 2 dx dt
~Q 2 ~Q 2
Y (x)|"xolx,t = E / E / ¥ (@
/0 /’t()| Q( ) + = o ) S|t()‘ +

SEZ&2k(1%
4SN(R™\4Q)#0

Sroor?t dt
SN N SN
2k—1
k=—o00 Se(R)
4SN(R™\4Q) 40

This completes the proof. O

Next, to prove |52(z)[2(1 — xo(z, t))924 is a Carleson measure on 4Q), it suffices to

R dzdt
| [ rtwrts <im
0 R

for all R € A(4Q) with 4R C 4@ independently of . Now fix R € A(4Q) with

prove that

4R C 4@ and set ¢ > 0 to be chosen later. Choose a finite set V, of non-zero matrices,
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v € L(C"1)\ {0}, with |v| =1 such that |

vEV,

K,y = {ueﬁ(@‘“

<o}

‘IM

= L(C"™)\ {0} where

Then, we may prove the Carleson measure estimate for each cone K, , separately. That

is,

))? 2
//a:t €C(R 7 ~ Z// t)eC(R) ’ % ()] P

veVs GKV o

Therefore we are left to prove

da dt

(z,t)EC(R) [ ()2 SR

A2 (2)€Ky. o

(4.4.2)

for every v € V, independently of Q. Let ¢,& € C"™! with |¢| =[] = 1 and v*({) = £.

Let ng € C3°(R™) supported on 4R, with ng = 1 on 2R and ng(x) € [0,1] for all z € 4R

with [|[Vnrle S %, where [ == [(R). Define g = nr&. We define the test functions as

follows, for € > 0 to be chosen, define

fhe = I+ ()*(D?B)*) " én = Pltr

Some of the important properties of ff% . are stated in the following lemma.

Lemma 4.4.5. We have the following estimates

L Iffelle S IRI2,

2. |elDB SN2 S IRI,

- 5‘ S; 6%7

for all R € A(4Q) with 4R C 4Q).

Proof. By the uniform boundedness of P? we have

If%e N3 = I1P€RlS < l€rll3 < IRI.
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Similarly, using the the uniform boundedness of Qfl, we have

|1elDB fr, |3 = 1Q5€RIS S I€rIIE S RI-

For (3) we use the fact that *(D9B)?PP = I — PP, Lemma 4.1.10 with Q € AB, the

uniform boundedness of I — PP and QP

]{%fé,s—f: ]{%@5—%

= (el)*

2

2
(DQB) PBeg

1 1
2 - - 2
( (DOB)2PEe |2) ( |BDQBP5§R|2)
R

1
—<|BIl. ( [ |<szﬁQB>2P553|2) ( [ rezDQBP;?gRP)

<e ( |<155%|2)2 ( [ |@5’Q53|2)2

< [yl

< e

Y

As required. n

We prove (4.4.2) below by introducing a sub-collection of disjoint subcubes of each

R C @ with 4R C 4(Q) as below.

Proposition 4.4.6. There exists 7 € (0,1) such that for all cubes R € A(4Q) and
v € L(C")\ {0} with |v]| = 1 there is a collection { Ry trer, C A(R) of disjoint subcubes

of R, where Ip C N is an indexing set for the collection, such that |Eg,| > 7|R|, where

Ery, = R\ Upe, Bx and with

lzdx dt

(z.)EET, , 3¢ (2) < |R| (4.4.3)

32 (2)eK .0

where E% , = C(R) \ Urer, C(Ri)-

We may fix ¢p > 0, defining fé = f}%’ao, such that when we apply Lemma 4.4.5 we
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have

]{%fé—f'ﬁé,

for all R € A(4Q), with 4R C 4Q). Therefore,

Re <§]{2 g> > % (4.4.4)

We will now give the stopping time argument to construct the collection of bad cubes

described in Proposition 4.4.6.

Lemma 4.4.7. Let R € A(4Q). Then, there exists constants ¢1,co > 0, and 7 € (0,1),

and a disjoint collection { Ry }rer, C A(R) such that
o Rk - R7
o |Ery| = 7|R],

satisfying

][]ff{] <¢; and Re <§,][ f§> > ¢y (4.4.5)
s s

for all S € A(R) for which C(S) N Ef, # 0, where £}, == C(R) \ Uye;, C(Cr).

Proof. Let a € (0,1) to be chosen. Let B; be the set maximal cubes S € A(R), for which

1

£
> —.
s>

Then using the Cauchy—Schwarz inequality and (1) from Lemma 4.4.5, we have

=Y isl<a X [Uil<a [ 1l <alr <L|f§|2)2SCaIR|,

SeBy SeBy

Us

where C' > 0 is the implicit constant in (1) from Lemma 4.4.5. Now let B be the set of

maximal cubes S € A(R), such that

Re <§,][Sf§> < a.

117



Now by (4.4.4), the Cauchy-Schwarz inequality, and (1) from Lemma 4.4.5, we have

1 ¢
éﬁRe@Ji R>
S {efa) (e
Re (e £ )+ g Re(
1 2 ;
<a+|ﬁ(/\f§\2> R\ B,?

caro (BB

Making the restriction a € (0, 1), we have

L a\?2
mUsl> (20 1n
Therefore, letting { R }rer, = B1UBsy, where I is an enumeration of the cubes in B;UB,,
1 2
(2 c a) —Cua

1

2
Now, choosing a € (0, 1) sufficiently small, gives 7 = {(2—a> — Ca} > 0. Now let

we have

|Eru| > |R\U52|—|UB1|Z R

12 C
S € A(R) with C(S) N Ey,, # (. By the maximality of the cubes in B; and B, then a
similar argument to Lemma 3.3.6, we have S ¢ By U B,. Therefore, S satisfies (4.4.5).

This completes the proof. n

Now we choose o := 20721 and will use the following lemma to introduce the test function

into our argument.

Lemma 4.4.8. Let v € £L(C*™)\ {0}. There exists o > 0 such that if (z,t) € E},, and
32(x) € K, 4, then

- .
7 (@) (AfR) = ealif (@),
where ¢ > 0 is the constant from (4.4.5).

Proof. As (x,t) € E},,, there exists S € Ay(R), such that x € S and C(S) N Ef, # 0.
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Then, recalling v*({) = £ and Lemma 4.4.7, we have

A (o) 2 Relgr(Auff) = Re (& f 15) 2 o

Now, by above and Lemma 4.4.7, we have

> [W(A2 5] - ‘ (g o ) (£.4)

As required. ]

1
> Ccy—ClO > 502.

:Y (x) AQ
Ja (AR5

Proof of Proposition 4.4.6. Let Egr, and T be as constructed in Lemma 4.4.7. By Lemma
4.4.8 and as (AL f5)(z) = (APnpfs)(x) for all (z,t)inC(R), we have

drd d d
Jioers @RS t<//<m)eE AL

32 (@)€K, (@)€K

/ R ) (A ) () P

Now, we introduce Qf ’QnR ff% to perform the reverse principal part approximation in

reverse, to get

dz dt . dz dt
I, e Am s s ] @80 - A
~ dz dt
+ // (@GP L
C(R)

Now we estimate the error term in (4.4.6), by using the uniform boundedness of P>%,

(4.4.6)

the gauge invariance in (4.1.5), the commutator bounds in (4.1.7), and Lemma 4.4.5, to
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get

- dedt (' ~po, - dt
I @@ P = [ R0 Bun I
C(R) 0

l
< / HnrDOBLSIE + tllnr, DB dt

l
t ~ t
< / el DB + s at
0

() [ 4o

S Rl

Our aim now is to perform the principal part approximation in reverse on the remaining
term in (4.4.6). In order to do this we need to be on R(D) so we introduce &5 and
note that, using the gauge invariance, we have e_WQ(f5 €r) = e‘“"Q(PBQ —1)ép =
e ¥a(5,D9B)* PP %, = Dle#eclBD?BPY%¢p]. That is e #e(ff — &r) € R(D).
Therefore

dx dt
// _% At)anR|2

dz dt dmdt

// (OP2 — 58 A mn( s — en)? // @ _ 594, \nménl?
N i i dxdt

<. )\(@?’Q—V?A»e%ae a(fs - e’
C(R

dz dt

// Q(np — e*anpPe ) (15 — £p)

C(R)

4 // 524, (nr — E¥enpPie ) (£5 — £x)?
C(R)

odx dt
# ] @0 =5 Al
C(R)

=I+1I+1IT+1V

dx dt

Let g = e~a(f5 — £g). Now, by Lemma 4.3.5 since P, preserves R(D), we have

. . 1
ILR(Q7° — A2 A))e®onrPgl3 S || LarLnr Pogll3 + ¢2|| Lar[B|2nr Poglf3-
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Then, the product rule, Corollary 4.1.6, and the uniform boundedness of P;, gives

1 1
[LarLnrPigl3 + 1 LarBl2nePygll3 S [ILPgll3 + [BIZ Piglls + [ Lar(Vir) Pl

1
< ||DPgll; + WHQH%-

Therefore, using above, the quadratic estimates for the self-adjoint operator D, and

Lemma 4.4.5, we have

1) dt ! )t2||g||2dt dt  |lgll3 1)
0 || tg||2 ¢ o Z(R)2 ¢ o ||th||2 n Z(R)z o ||9||2 | |

Now, by Lemma 4.3.3, the quadratic estimates for the self-adjoint operator D, and Lemma

4.4.5, we have

- ) dz dt
Uz// Qe eng(I — Py)gl* "
C(R)

! 2
t dt
< - 41 277
o dt
S [ el
0

< lgllz

S R

For the third term we follow the proof of Proposition 4.3.7 an so the estimate will follow

once we have established

. . st
ILrdeenn(r = R)Q.] S win {2, 1

for s € (0,00) and t € (0,1). We note that we need to reprove this as the localisation
here is different to that of Proposition 4.3.7. Firstly, suppose ¢t < s then by the uniform
boundedness of A; and ng, the fact that (I — P,)Q, = ﬁQt(I — P;) and the the uniform
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boundedness of P, and (); to get

t\” t
ILrdeena(r - PIQulP S (£) 10T = Ryl € QU1 = Pl < ull

For s <t <[, we use the uniform boundedness of A;, the fact that P,Q, = $Q;P;, and

the uniform boundedness of P, and (), to get

[tn el = POQuull: £ (3) 19 Pl + ™ol

Sl + D IsAeenaQulf,
SeA¢(R)
Now we interchange the nz and D and use the gauge invarince and Jensen’s inequality,

to obtain

2

> sAeonaQqull; =

SeA¢(R) SeA(

= Z 5?1 ‘][ e'?2(nrD — Dnr + Dngr)Pou
s

SeA¢(R)
2
. ( r[nR,D}PsuP)
S

Z s%| 9] U][ DPe%enp P
R) s

SeA(

eenrQsu

2

AN

Now using the commutator bounds and t < [, we get

2
S
> 151 o DIPal S Pl

SeA¢(R)

Now by Lemma 4.1.10, the gauge invariance, commutator bounds, and the Cauchy—
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Schwarz inequality, we have

2

>SS
SeEA(R)
<Y o ][\DQei“’Qn P’ : [ Peul? :
NSGAt(R) Z(S) S RL s S RL s
<2 3 (o) ([ )
SEA( s
S 9 5 S 9 % ) %
S </ ’URQSU|> +—(/ |Psu|) (/ \T)RPSUI)
t s 1\ s .
<3 [0 () o)
s

S 2 : 2 2 57 2
2 |qu| |Psu| +t_2 |Psu|
R R

][ INDQei‘anRPsu
S

Combining the above and using and the uniform boundedness of (); and FP;, we have

[MrAe oI — P)Qsull3

| »

S
Hull3llQsullall Powlla + [ Poulls] < —llulls

Thus, we will replicate the Schur estimate in Proposition 4.3.7. First, let m(s,t) =
min } Then, we use the uniform boundedness of 7, A? in Lemma 4.3.1, the Calderén

reproducing formula, Minkowski’s inequality, Tonneli’s theorem, and Lemma 4.4.5, we
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have

l

B i dt

11 < / 5240 R A na(T ~ P)gIRS
0

l 00
dt
< [ ([ ateonts - pocil, ) &
0 0
! o0 ds\ * dt
</ (/ 1A ena(l — PYQQugls )
0 0

t

< [T([ meo) ([ me et ) §
< [ 10k

< llgllz

S Rl

Now we begin the last estimate. Then, as 72 A4,& = (QP?€) and as nz = 1 on 2R then

AL (n38)(z) = € for all (z,t) € C(R). Thus, we have

QP9 — 32 A)nrér = Q7% (e — Anie)) = QP2 (ke — ¢€)

on C(R). Recall the definition of C{“(R) from the proof of Lemma 4.3.1. Then, by off-
diagonal estimates in Proposition 4.1.9 noting that supp(n% — 1) N 2R = ), the Cauchy—

Schwarz inequality, and choosing M > n, we obtain

I1RQP P (i, — 1813 < ZHIRQBQHCW I ey (17 = DE2

) > 2 o~ 161

)M|R|22 =)

AN

<(i
g
(i) !
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Thus, integrating in ¢ gives

dz dt R R| M
IV // _,yt At)anRF < ‘ | tM ldt < ‘ ’ <| |

~ M ~OM oA
This completes the proof. O

Thus we are able to prove the last term we need to estimate.

Proof of Proposition 4.4.1. As Proposition 4.4.6 implies (4.4.2) which then implies the
measure |3 (x )|?4442 is a Carleson measure on 4Q x (0,1(Q)]. Then by Lemma 4.4.3 and

(4.4.1), we have

3 / [ioAR AR < full

QeAER

for all u € R(D), as required. O
We are finally able to prove our main theorem of the chapter.

Proof of Theorem 4.0.2. We start by showing that Proposition 4.4.6 implies (4.4.2). Con-
sider an arbitrary R € A(4Q) and fix v € V,. Then, for all § € (0,1), using Lemma 4.3.1

gives

dedt 1 [
// L 32 (2)eK .o (@, 1) Ls6-1) (¢ )|% (z)P—— ; < 5/ /|% (z)|? dz dt
C(R)

AT (e

SeA(
<1 / N REIE
SeA¢(R)
||
~Y 52 )

where the implicit constant does not depend on ). That is

dx dt

s = ]lﬂ?tcg(m)emﬁ(x,15)1(5,5*1)(t)ﬁ’?(ﬂﬁ)|2

is a Carleson measure on 4Q x (0,1(Q)]. We now show that ||us]|¢c does not depend on
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§ € (0,1). Therefore, as C(R) = Ej, ,U(Uye;, C(R)), and using (4.4.3), s being Carleson
on 4Q x (0,1(Q)], and the definition of { Ry }xer, we have

N dz dt ~ dz dt
// Liewer,. (@ t)]l(a,a—l)(t)hf)(x)lz—t = //(x,t>eE* "th(x)]QT
c(r) o

32 (@)€K L,0

+ Y ps(C(Ry))

kelr

< Co|R| + lpslle Y 1Bsl

kelpr

< Col B[ + [[uslle| R\ Erul,

where Cjy > 0 depends only on the constants in (4.4.3) and n. Note that the above is true
for all v € V,. Also, as |Eg,| > 7|R| then |R\ Eg,| < (1 — 7)|R|. Therefore, dividing
by |R| and taking supremum over R € A(4Q) with 4R C 4@, we have

1 5 dx dt
woatig A CH) = 200 TR // soeean Los ORI < Gt (=l
4ERC4Q 4ERC4Q EK v,o

Then using Lemma 4.4.4 and above we have

lwslle = sup — ps(C(R))

ReA(4Q) |R|
1 1
< sup us(C(R)) + sup  —pus(C(R))
ReA(4Q) ’R‘ ReA(4Q) ’R’
ARN(R™\4Q)#£0 4RC4Q

1
< sup = uo(C(R)) + Co+ (1 —7)|uslle
ren(Q) |R|

ARN(R™\4Q)#£0

< Ci+Co+ (L=7)[luslle,
where C > 0 is the constant coming from Lemma 4.4.4. Therefore, rearranging gives
C
luslle < =
-

Thus ps is a Carleson measure on 4Q x (0,1(Q)] independent of §. Also, 1(55-1)(t) is a
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pointwise increasing function, by the monotone convergence theorem we have

dx dt dx dt
//(xt ceqmy 17 (@ )|2 //(mec (ry B D51y (¢ )3 (= )|2

Yt (m)eKua Ve (l‘)GKUG
. - dx dt
=im //(:c,t)EC(R) Lo (O]F2 () "
:YtQ(I)EKV,U
S |R|,

where the implicit constant does not depend on (). Therefore, as V, is finite, we have

dx dt dx dt
I FEOPE NZ//MGC RS S IR,
z,t)€

IJEV (CE EKV o

where the implicit constant does not depend on Q. That is, |52 (z)[*924t is Carleson on

4@Q x (0,1(Q)]. Thus by Lemma 4.4.3 we have

> [P e an® 3 nouls 5 ol

QeAB QeAB

for all uw € R(D). This proves Proposition 4.4.1. Thus combining this with Proposition

4.3.2 proves (4.2.4) and thus using Proposition 4.2.3 completes the proof. O

127



CHAPTER 5

APPLICATIONS OF QUADRATIC ESTIMATES

In this chapter we will discuss applications of an operator of the form DB, where D is

self-adjoint operator on a Hilbert space H and B is bound on H and elliptic on R(D) as

in Section 2.5, satisfying the quadratic estimate

> dt
| IeDB@ + @DBP) R < ulf, (5.0.0
0

for all u € R(D). These will include the famed Kato square root type estimate, per-
turbation results, and applications to initial value problems for a Cauchy-Riemann type
equation. We first prove the operators of the form DB have a bounded holomorphic
functional calculus. We note that in order to invoke Theorem 2.1.4 we need to restrict to
an injective operator; however, by Proposition 2.5.1 the operators we will be considering

will be injective on R(D).

Theorem 5.0.1. Let p € (w, ), where w € [0, 7) is the angle of ellipticity of B. Let
DB satisfy the quadratic estimate (5.0.1). Then, there exists ¢, > 0 which depends only

on n, £, and || Bl|s, for all f € H>(S)

1F(T)ulle < cull Flloollull2;

for all u € R(D), where T is the restriction of DB to R(D). That is, T: R(D) — R(D)

defined by Tu := D Bu.

Proof. By Proposition 2.5.1 we have that T is a densely defined, closed, and injective
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operator. Also, by the hypothesis, we have

/ It (1 + t2T2)_1u||%% ~ ||ul|3, for all u € R(D).
0

Thus by Theorem 2.1.4 this is equivalent to 7" having bounded holomorphic functional

calculus, as required. O

5.1 Kato Square Root Type Estimates

In this section we discuss the application of quadratic estimates to Kato square root type
estimates. In particular, we give as a corollary the Kato square root type estimate for
the Schrodiger operator and the purely magnetic Schrodinger operator. We note that the
Kato result was proven for V with small Lz-norm in [29] and the results have recently
been expanded in [16] to include B*(R") and Lz (R") for n > 4. We reproduce these
results

In order to give the Kato square root estimate we need to define the square root of

an operator, to this we define the following sesquilinear form

Jaav(u,v) = AVU-WJr/ aVuww= | A'V,u-V,o,

Rn n Rn

for all u,v € VV2(R™). If Re Ja 0y (u,u) = ||ull , for all u e VI2(R™), then Juqv is

2
vl,Q(Rn
an accretive sesquilinear form, and we define H 4y to be the associated maximal accretive
operator whereby Ja v (u,v) = (Hayu,v) for all u in a dense domain Z(Hy) in L?
(see, for instance, Chapter 6 in [37] for details on how this is done). We are now able
to define the square root operator, /H 4y, of Hy as the unique maximal accretive

operator such that \/Hay+/Hayv = Hayv, see [37, Theorem V.3.35] for more detail.

Now the form satisfies

|[Jaav(u,0)] < HAVHOO/R |Vl [V o] < max{|[Alloo, [[allo HIV wull2[V]l2-
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Also, by (2.6.2) we have
| Jaav(u,u)| > Re(AVu, Vu) + (aV'2u, VVu) > k||V ull2.

We now give a Kato square root type estimate for reverse Holder potentials as a corollary

of Theorem 5.0.1.

Corollary 5.1.1. Let V € B2(R"). Let A € L=(R"; £L(C")) and a € L>®(R™; L(C)) be

such that there exists x > 0 satisfying
Re(AVu, Vau) + Re(a|V[2u, |V |2u) > s(||Val? + [|[V]2u])2),

for all u € VH?(R™). Then we have

IV=div AV + aVulls = | Vulls + [|V]Zul2,

for all u € VM2(R™).

Proof. Let p € (w, %), where w is the angle of ellipticity of A Note that f: S, — C

defined by f(z) = V2 i bounded and holomorphic. Then, define the operators

z

0 div —|V]2 I 00
D=|-v 0 0 |, B=l0o A0
—Vlz 0 0 00 a

Now, let u € R(D) and so using Lemma 2.3.6 we have
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for some v € V"2(R™). Then by the ellipticity of A and a we have

Re(Bu,u) = (uy,uy) + Re(AVv, Vo) + Re(a|V|2v, |V|20)
. 1
> min{1, i} ([ul3 + [Voll5 + [|[V]20])3)

= min{l,n}”u”%.

Therefore, by Theorem 3.0.1 we have that DB satisfies the quadratic estimate (5.0.1).

Thus, by Theorem 5.0.1 we have

IF(DB)ulla S [1flloollullz = [lull2-

We also have

—div AV + aV 0 0
(DB)* = 0 ~VdivA V|V|ia
0 —|V|zdivA  |V]a

Therefore, square rooting the above and restricting u to the first component, that is

letting v = (uy,0,0)7, we have

|V=div AV +aVu. || = [/ (DB)ulls S | DBulls = | Dulls = [ Vur |l + [[[V]2uL]s,

where in the penultimate equality we use B, | = I. The reverse estimate comes from

considering ¢(z) = —=- This completes the proof. O

22"
We also get a Kato square root type estimate when V' € L2 (R") without the restric-

tion of small norm. We remove this restriction by hiding the size of the norm in the

perturbation a and proceeding as if V' has small norm.

Corollary 5.1.2. Let V € Lz(R"). Let A € L®(R™; £L(C")) and a € L>=(R™; L(C)) be

such that there exists k > 0 satisfying

Re(AVu, Vu) + Re(a|V|2u, [V]2u) > w(||Vu|? + [||V]|24]3),
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for all u € WH*(R™). Then,

V= div AV + aVul|s = ||Vl

for all u € WH2(R™).

~ . a(x)||V||n o
Proof. Define V(z) = ]‘Kﬁx)l and @ = e’ @&(V(®)) @IVl where £ > 0 is such that [|V|[z =
2

¢ is sufficiently small. Therefore, aV = aV. Then, define the operators

0 div —-Vz I 0
D=|-v 0 0|, B=|0 4 0
Vi 0 0 0 0 a

Now, let u € R(D), then by the ellipticity of A and a we have that

Re(Bu,u) = (uy,uy) + Re(AVv, Vo) + Re(@Vzv, Viv)
= (uy,u1) + Re(AVv, Vo) + Re(a|V|2v, |V|20)
. 1
> min{1, i} ([ul3 + [Voll5 + [|[V]2v])3)

= min{L, r}||ulf3.

Then the same argument as in Corollary 5.1.1 and then Holder’s inequality, gives

IV=div AV + aVulls = |V — div AV + aVulls = [|[Vauls + |V 2ulls = [|Vulfs.

for all u € WH(R™). As required. O

We also have a Kato square root type estimates associated with the purely magnetic

Schrodinger operator.

Corollary 5.1.3. Let b € L _(R™;R") with curl b = B satisfying the conditions (2.4.3).

loc

Let A € L>(R™; L(C")) be such that there exists x > 0 satisfying

Re(A(V + ib)u, (V + ib)u)+ > ||(V + ib)ul 2,
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for all u € W,*(R™). Then we have that

VAV +ab)* AV + ibJullz = [[(V + b)ulls,

for all u € W,*(R™).

Proof. Again we apply Theorem 5.0.1 to the operators

0 (V +ib)* I 0
D — s B —=
(V +ib) 0 0 A
Then the result follows in a similar fashion to Corollaries 5.1.1 and 5.1.2. OJ

5.2 Analytic Dependence and Lipschitz Estimates

Here we show that the functional calculus depends analytically on the perturbation B
equipped with the L*-norm. We follow the same method as in [13, Section 6] by first
showing that the resolvents depend analytically on B and then building up to functions
in the class ®(S7), and finally to all functions in H>°(S7), where y1 € (w, 5) and w € [0, 5)

is the angle of ellipticity of B. Let H := L?(R"; C") for some n, NN, for the rest of this

section.

Theorem 5.2.1. Let D: H — H, be a self-adjoint operator. Let U C C be open. Let
B : U — L*®(R"™ L(CY)) be holomorphic, such that B is uniformly bounded in U and

there exists k > 0 such that
Re(B,u,u) > kljul|3, Yu € H,VzeU.

Let p1 € (w, §) where w € [0, §) is the angle of ellipticity of B. Then

1. 2= (I +tDB.)~" is holomorphic in U for all t € C\ S;

2. z +— Pn(pg.) is holomorphic in U, where Pn(pp,) is the projection onto the subspace

N(DB.);
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3. 2= Y(DB,), for all ¢ € ¥(S}) is holomorphic in U.

Moreover, if there exists C,, > 0 such that ||f(DB,)uls < C,|/fl|lellull2 for all f €

H*>(S57), uniformly in z € U, then 2 — f(DB.) is holomorphic in U for all f € H*(S}).

Proof. Let z € U and t € C\ S;;. Then we have

d d
d—([ +tDB,)'u=—(I +tDB,)"'tD <d—Bz) (I +tDB,) tu.
z z

Then, using the fact that @, = P;tDB is uniformly bounded and H = R(D) & N(D), we

have

z

d d
|-+ tDB.) ulla = || (I + tDB.) "D (d—Bz> (I+tDB.) " ulls,
d
= H(I +tDBz)71tD(Pm+PN(D)) <&Bz) (I"—tDBZ)iluHQ,
—1 -1 d -1
= || (1 +tDB.) ™ tDB.) (B "Parpy) ( - B- ) (I + tDB.) " ull,

S lull,

here the bound is independent of z € U. Therefore, z — (I +¢DB,)~" is holomorphic on
U. In particular, we have that z — (I +inDB,)™! is holomorphic for all n € N.

We claim that Py(pp,yu = lim, o (I +tDB.)'uin H for all u € H. Let u € N(DB,).
Then
(I +inDB,) v = (I +inDB,)  (u + inDB.u) = u,
for alln € N. Now, let w € R(DB.,). Then, there exists v € Z(DB,) such that u = DB, v.

Therefore,

—_

(I +inDB,)  ully = E||(I +inDB,) linDB.v||,
1
< - (H([ +inDB.) (v + inDB.v)||s + HUHQ)
1
< —llvll,
n

where the implicit constant is independent of n and z. That is, lim,,_,o (I+inDB,)'u = 0
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for all u € R(DB,). Now, let u € R(DB,). Then, there exists {uy, }men € R(DB,) such

that u,, — u as m — oo in L?. Let € > 0. Then

(I +inDB,) ulls < ||[(I +inDB.) (u— up)|l2 + (I +inDB.) "l

S lw = wnll2 + [1(Z + inDB.) ™ |2,

where the implicit constant is independent of n, m, and z. Now choose m € N be such
that ||u — unlls < 5. Now, let N € N be such that |[(I + inDB.) 'yl < 5 for all
n > N. Thus ||(I +inDB.) 'ul]s < ¢ for all n > N. This proves the claim. As Pypp,)u
is the limit of holomorphic operators and so is holomorphic itself (see for example [37]).

Let ¢ € W(S7). Then

w(DB.) = [ 6\~ DB ax

Using the approximation of the contour integral by Riemann sums and the fact that the

Riemann sums are holomorphic gives the desired result.

Now assume further that [[f(DB.)ulla < Oy flcollullz for all f € H>(S). Let
f € H*(S}). Then, choose a uniformly bounded sequence {¢,} C W(S5) which converges
uniformly on compact sets to f (to see that we may choose such a sequence, see [1, Lecture

3]). Then, by the convergence lemma we have that f(DB,)u = lim, . ¥,(DB,)u in L.

Thus, f(DB,) is holomorphic on U. This completes the proof O

Theorem 5.2.2. Let D: H — H, be a self-adjoint operator and let B € L>*(R"; £L(CY))
be elliptic as in (2.5.1). Suppose further that DB has a bounded holomorphic functional

calculus. Let p € (w, %) where w € [0, §) is the angle of ellipticity of B. Let 0 < § < &,

and B € L™(R"; £L(CN)) such that ||B — B||s < . Then
If(DB)u — f(DB)ullz S 1B = Bl fllollulle.  Vf € HX(S),

where the implicit constant depends only on n, &, || B||, and 4.
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Proof. Let f € H*(S;,). Define B: {z € C: |z] <} — L=(R"; L(C")), given by

z(é — B)

B(z) =B, =B+ =
||B o BHoo

Then B, is holomorphic and we have that

Re(B.u,u) = Re(Bu,u) — Re <;~(B - B)u,u>
HB - B”oo

> kllull — 0 Re(u, u)

> (k= 0)[ull3.

We also have that

[B:]] < 1Blloc + |2] < [ Blloo + 0.

Thus, B, is uniformly bounded and uniformly elliptic. Therefore, by Theorem 5.0.1

we have ||f(DB))ulla S ||flloollull2 uniformly in z. Thus, by Theorem 5.2.1 we have

z — f(DB,) is holomorphic. Now fix u € R(D) and define G, : {z € C: |z] < §} —

L(L*(R")), given by
f(DB)u — f(DB.)u
2| flloollulla

where ¢ is the uniform constant such that || f(DB,)ulls < ¢||f]loo|ltt|l2. By Theorem 5.2.1

Gu(z) =

and the bounded holomorphic functional calculus of DB,, we have G, is is holomorphic
and

1Gu(2)] < (DB)u— f(DB:)ull2 < 1.

1
s
2¢]| flloolull2

As G, is holomorphic then the pairing (G,(2), f) is holomorphic as a function, for all

f € L*(R™;C"*2)". In particular, we have for all f € L?(R"; C"*?)" with || f|| < 1 then

(Gu(2), N < FINGu(2)]l2 <1
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Therefore, by Schwarz’s lemma we have that

1Gu(2)]l2 = sup [(Gu(z), ) < [2].

Thus, choosing z = ||B — B|os < 0 gives

1F(DB)u = f(DB)ulls < 2¢ fllool| B = Blloo|lu]l5-

Here we note that u € R(D) was arbitrary and the constants are all independent of w.

This completes the proof. O

5.3 The Global Well-Posedness for First-Order Ini-
tial Value Problems

In this section we discuss the applications quadratic estimates and bounded holomorphic
functional calculus to solving initial value problems to first-order Cauchy-Riemann type

equations of the following form

O,F + DBF =0, inR,,

F(t) € R(D), vt > 0,

where D: Z(D) — H is a self-adjoint operator, B is a bounded operator on H and elliptic

on R(D) as in Section 2.5, we also make the additional assumption that H = L*(R"; C")

for some n, N € N. To begin, we make precise the definition of a weak solution of

OF + DBF =0 inR}™. (5.3.1)

We will adopt the convention for functions ¢: R’fl — CV and t € Ry, whereby

é(t): R* — CV is defined by (¢(t))(x) == ¢(t, z) for all z € R".

Definition 5.3.1. We shall write that F' is a weak solution of O,F + DBF =0 in R,
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or simply &,F + DBF =0 in Ry, if F € L2 _(R7™;C") and

loc

/OOO<F(t)7atSD(t)> dt = /OOO<BF(t),D90(t)>dt7

for all ¢ € C(R™H; CN).

To solve these equations we will use the theory of analytic semigroups to generate
solutions. However, it is well known that analytic semigroups are generated by sectorial
operators (see [25] for details) but, the operator DB is w-bisectorial for some w € [0, 7).
To resolve this we restrict to a subspaces on which DB is sectorial and then the theory of

analytic semigroups states that on this domain DB will generate an analytic semigroup.

This is where the bounded holomorphic functional calculus of DB is seen to be critical

™

as this provides a splitting of R(D). For u € (w, %) we start by defining the following

holomorphic functions on S} in a similar manner as in [4]:

1 if + Re(z) >0
YE(2) = ,osgn(z) = x"(2) = x (), and [z] == zsgn(z),
0 if £ Re(2) <0.

for all z € S;. Then let E%, = xT(DB) be the generalised Hardy-type projections
of DB. Let Epp = sgn(DB) = E}, — Epy. Let H% 5 = R(D), and define HY5 =
Ej5R(D) = {Epf : f € R(D)}. Note x™(z) + x(z) = 1 for all z € S5. Then for

f€HY, wehave f = Efpf + Epgpf so
1fll2 < 1Eppfllz + 1 Epgfll.
Now as DB has bounded H* functional calculus, then

IESs 2 + 1Eppfll2 S (X lloo + X Nloo) 1fll2 = 211 fl2-

Therefore we have the topological splitting H},, = H 5@ H 5. We use the F-functional
calculus (as defined in (2.1.1)) to define the operator [DB] = DB sgn(DB). We see that
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for f € HYp
[DB]f = DB(x*(DB) — x™ (DB))x*(DB)f = £DBx*(DB)f = +DB.
We give a notion of the Cauchy problem for the first-order equation so that we can

solve the first-order initial value problems on H%g.

Definition 5.3.2. We shall write that (5.3.2) is globally well-posed in H);5 if for each

f € Hy%, there exists a unique F € C'(R,; H%5) such that

O.F + DBF =0 in R,

2t
sip £ 1P(6) e vy s < o (5.32)
t

t>0

limt_>() F(t) = f,

\

where the limit converges pointwise on Whitney averages as in (2.6.3) (and in L?).

We will do this by constructing an analytic semigroup which solves (5.3.2). First note
that as f;(z) := e~¥l is a bounded holomorphic function for all ¢+ € R™. Therefore, we can
define the family of bounded operators (e‘t[DB]) 4~o Py using the bounded holomorphic

functional calculus of DB.

Lemma 5.3.3. Let 1 € (0,w). Then the family of operators (e*Z[DB}), where z € S(Oﬁqu
2
forms an analytic semigroup on L?*(R"; C") with generator [DB]. Moreover, [DB] is a

sectorial operator on L?(R™; C") of type S, .

Proof. First notice that zsgn(z) = (22)2. Then by [8, Proposition 8.2] we have [DB] =
DBsgn(DB)((DB)?)z is sectorial of type S,+. Then as [DB] is sectorial we have
(e7#IPBl), where z € S{x_ . 18 an analytic semigroup from classical semigroup theory

(see [25, Theorem 4.6] for details). O

We now give a proposition which shows that the semigroup is a solution of (5.3.1)

and satisfies some important estimates.
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Proposition 5.3.4. Let f € H%% and define F(t,z) == e "B f(z). Then we have
DB

F € C®(Ry;HyE) and 9,F + DBF = 0 on R™! in the strong sense with bounds

2t
sup [ E(4)[I; = [[f1I2 = Sup][ 1F(s)]3 ds,
t>0 t>0 J¢t

and limits, where the convergence is in the L? sense,

lim F(t) = f, lim F(t) =0.

t—0 t—00

Proof. That fact that 9,F + DBF = 0 on R™ in the strong sense and the limits at
0 and infinity come from the theory of analytic semigroups. Now using the bounded

holomorphic functional calculus we have

sup | F(t)]l2 < sup [le™[loo | fll2 < [Iflloc-
t>0 t>0

Similarly, we have

2t
sup][ IF(s)I2ds < £
t

t>0

Let € > 0, and T' > 0 be such that || f — F(s)||2 < ¢ for all s < 2T. Then

2T 2T 2T 2t
1B =F IfBds < f UF = FlBds+f  IFIRds <e+suf [P s
t

T T

Then as € > 0 was arbitrary we have

2t
I£1I5 < sup][ | F(s)]|2 ds.
t>0 J¢

A similar argument gives
[f]l2 < sup [|F(£)]]2-
>0

This completes the proof. O

From this point on we will specialise to the case in Chapter 3 and Section 2.3. That
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1S
B, By 0
0 —(Vpr*
D= and B=|Bj, By 0
-V, 0
0 0 b

as defined in Section 2.3. We will work to prove the converse of Proposition 5.3.4 following
the methods in [2]. We require a lemma that is analogous to [2, Proposition 4.4]. But,

first we have the following lemma about the test functions we will use in Lemma 5.3.7.

Lemma 5.3.5. Let ¢» € R(D). Let t > 0 and n, € C°(0,t). For s € (0,t), define o(s) =

04 (s) (emEIPBIEE ) . If F e L2 (Ry;R(D)) is a weak solution to 9, F + DBF = 0

loc

in Ry, then we have the following

/0<F(8)73590(8)>d8:/O(BF(s),Dgp(s»ds.

Proof. Let ¢ € R(D). Let t > 0 and consider a test function n; € C°(0,t). For s € (0,1),
define ¢(s) = n.(s) (e"¢=PBIEE )" 4. Then by the properties of semigroups we have
p € CHR,; 2(D)). We aim to use Definition 5.3.2, and so we construct smooth functions
P € C (R for which 9,0%™ — 9,0 and Dk — Dy in L2((0,t) x R™; C"2))
as k — oo, r — o0, and § — 0. To this end, let n € C(R") with n(z) = 1 on a

neighbourhood of 0 and [;, = 1, then define

P00(s) = s+ (n () geln ()PP EE ) )| (@),

where 7s(z) = d~"n(%) and
T
gr(x) = ktanh (E>’

where tanh is the hyperbolic tangent. We note that the convolution and ¢, are applied
componentwise. Note that, tanh: R — (—1,1) is smooth and tanh’(z) = 1 — tanh®(z) €

(0,1]. Therefore by the mean value theorem, for all z,y € R, we have

| tanh(x) — tanh(y)| < |z — y|.
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In particular, as tanh(0) = 0, for all z € |R, we have

[ tanh(z)] < |a].

Thus we have the following two bounds for all x € R
90(@)] < Kltank (2) | <k and [gu(@)| < k|7| < ol

We aim to prove that limy_, gr(z) = x for all x € R. Therefore, fix z € R. Recall the

definition for the hyperbolic tangent as

tanh(z) = c-c
Then, we have the following
k G - k 1 T z T
gy 2l = |FE ) L et By et 1o )
ek +e & ek +e k&

Now using the Taylor expansion we have

. . 00 2$2l+1 ; . 00 2.1'2l+1
k’(@k—G k):lz:m and ﬂf(@k+6 k):ZW
=0

=0

Now, as ek +e % > 1 for all z € R” and k € N, and note that the zeroth order terms in

the Taylor series cancel. Thus, we have

g (7) — x| <

& 2:L,2l+1 1 1
— k .
2. T ((21+1)! (25)!) =0, as k= o

=1

We now begin to prove that Dyp*™0 — Dy in L?((0,t) x R™; C"*2)) as k — oo, 7 — 00,
and 6 — 0. Let f == ¢, € C®(R,; V¥2(R™)) and h == ¢, € C®(Ry; 2((V1)*)). We will
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use a triangularisation argument. First consider

AR UG EIC])] -

< VL (F = 9l D lezomern + 194 (905 = (=) 90D 20

o6 ) - e 0 ) i) )]

Note, using Theorem 7.8 in [30] and the bounds on g;,, we have

L2((0,6)xR™)

Vige(HI = 1gx () - VifI < V)£,
again, where g, is applied componentwise. Thus, we get
Vi (f = g (DI < 220V P+ Vige(HIP) < 21V £ € LH((0,8) x R™),
for all £ € N, and, similarly
VIS = gD < VISP € LH(0,1) x RY),

for all k € N. Here the integrability is because f € C=°(Ry; V'?(R")). Hence, by the

dominated convergence theorem we have

”Vﬂb(f — ()l 2200 xRmy — 0,

as k — oo. The second term follows similarly using Theorem 6.13 [39], n € L>(R"),
and then the dominated convergence theorem. To prove the last term converges to 0 we
will use a standard mollifying argument. To this end let f = 7 (£) gx(f). Notice that
from the definition of 7 we have supp(f(s)) € B.(0) and the definition of g, and n gives
1 lloe < lInllock. Then

3
N
&
Sl
<
~__
—

o F)@ = | [0 (S5 Fama] < [ )| o
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Now making the additional restriction § € (0, 1) we see

f 0 if z € R"\ B,41(0) ,
(15 % F(5))(@)] < ~ < AL or(e)
JCBa(w) INllooll flloos if € Byy1(0)

Therefore,
V15 % HIF < IVIInllZk* Lo, (2) Loy (s) € LH((0,) x R?),
Thus, by the dominated convergence theorem and Theorem 7.6 in [39], we have

[9: (1 (5 out = [ (0 (2) )]

—0
L2((0,t)xR™)

as 0 — 0.

Next we will consider

oo (o= s (0 (2) 960 ] e

< VD (= gu () lzzoaerny + IV (90 (h) =1 (=) 96(h)) leaqoareiny

% (1)~ [ (o))}

+

L2((0,t)xR7)

Now
(V)" (h = gu(h)) 7 < 22|(V) R + (V) ge(R)” < 2|(V})*hI* € LY((0,1) x R"),
as h € CX(Ry; @((Vﬂ)*)) Then the dominated convergence theorem gives

(V)" (h = gi(h)) || 20 xrm) — O
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as k — o0o. Next, using the product rule for the divergence and the chain rule gives

190" [0 (5) 9] = (T0)* e 12008
< || divy [77 (T) 9 ] +|V]z [ (;) gk(h)} — (V) gk (W) | 20, xmm)
||v[ (7)) +2(5) (Va0 = (T au) 20178
<127 () - ) lezqoneeny + n () (0 Gu(h) = (V1) () 20y

Since n = 1 on a neighbourhood of 0 then V1 = 0 on a neighbourhood of 0. Thus
1(Vn) (£) = 0 as r — oo for all z € R™. Also, for all € N

~(70) (£) - e )@)] < [199llcliy] € L2((0,8) x R,

Moreover,

7 (%) (L @ m)@) = (V1) ge () (@)] < el (V1) g1 @)

< 10l (V) h(2)] € L2((0, 1) x R).
Then, the dominated convergence theorem gives

10V0)* [1(5) 0] = (T1)* ge) 20y = 0

as r — oo. Now for the final term we let h == 7 ( )gk(h). Now we differentiate under

the integral sign and then use the chain rule to get

(V1) (hs) ) Z%/nh (5,050 = ) Ay V13 0) (s 5) 5 75) 0)
~ [ i) Za 50 = ) dy + V1A @) G (5) #739)(0)

:—Z/nhjsy 15(x = ) dy - V1 2) (o () % ) ()
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Then as h(s) € .@((Vﬂ)*), we use the definition of weak derivative to get

- Z/n 51(571/)8%776(37 - y) dy
= /n Zayjﬁj(&y)??é(x —y)dy + (|V|%71n+1(3) * 1) (x)

— (V|2 hns1(5) * 05, ) (@)

= [T e =) dy = (VEhia(s) < 5) (0

= (VI h(s) # 1s) (@) = (IV ]2 oy (s) = ms) ().

Therefore,

H(Vﬂa)*(ﬁ * 15) — (Vﬂ)*ﬁnﬂ((o,t)xuxn)
< H((Vll)*ﬁ *15) — (Vﬂ)*BHH((O,t)an)

VI s 15) = (V2R 35) | 20
As h(s) € L®(R") then |V|2h,41 € LA(R™). Therefore, by [30, Lemma 7.2], we have
V2P = (VI s 505 | 200y = 0,
as 6 — 0. As before we have |41 (s) * 75| < 1|2 k1L, 4100y and
V[ Bsr 05l < V015K T 410) € LH((0,8) x R™).
Thus, by the dominated convergence theorem we have
NV (g % 16) = (V]2 Bl |20y = O,

as 0 — 0. Hence

(VI (B ms) — (V)R 20,0 xm) — 0,
as 0 — 0.
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Now fix m € N. Then, there exists k,, € N such that

1 1
19 = g (D) i20aainy < == and - (TL)” (h = g, (0) 2oy < =

Then, there exists r,, € N (depending on k,,) such that

m 6m

: 1
IV (9 (f) — <T—> G (I 22¢(0,) xRy < =, and

178" 1 (=) 9] = (O )0 < e

m

Finally, there exists 0,, € (0,1) (depending on K,, and R,,) such that

(o2 () 0)])

1

L2((0,t)xR™) 6m

)

and

1

L2((0,t)xR") 6m

o o) - o o) )

Now, define @, = ns, * (7] (H) gkm(f)). Now define f,, == (¢m)1L and hy = (©m)r-
Therefore p,, € C2°((0,t) x R™; C"*?) for all m € N. Thus, for all € > 0, choose M € N

to be M > % Therefore,

. 1
ID(m — @)l 20 yxrny < IV Fm = Pllz + 1YL (hrn = B) | 20,0 xrmy < <e

for all m > M. That is {¢m tmen C C°((0,t) x R™; C""2) such that Dy, converges to
Dy as m — oo. A similar mollifier argument yields 0y, converges to ds¢ as m — o0.
Now we have a sequence of smooth functions which converges to ¢ we proceed to

prove the identity. Fix ¢ > 0 and choose M & N such that

52

<
)7 20 F ()| 20,0y xmm)

||as(<Pm - @)HL?((O,t)an
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and

62

Do — o)1 ny < ’
|D( M r2((0,6)xrn) | BE(5)22((0,6)x )

for all m > M. Since @, € C*(R;C"2) and F is a weak solution to —div AVF +

DBF =0 in R, we use Definition 5.3.2 and the Cauchy—Schwarz inequality, to get

‘A<F®%&w@»—%BF@%D¢@»dS

= /O(F(S)ﬁs(w(S)—som)>+(F(S),0s<pm)>—(BF(S),DsO(S»dS

= /O(F(S)ﬁs(w(S)—wm))+(BF(8),D90m)>—<BF(S),D90(S)>dS

= /O(F(S)ﬁs(w(S)—wm))+(BF(8)7D(90m(S)—90(8))>d8

= /0 1E(9)ll2]105((s) = pm)ll2 + [[BE ()2 D(@m(s) = ¢(s))l|2 ds
<é€

As € > 0 was arbitrary then we must have

A<F@L@w@»—43F@»Dw@»ds=a

This completes the proof. O

The following result is similar to above.

Lemma 5.3.6. Let v € R(D). Let t > 0 and n_- € C°(t,00). For s € (t,00), define
p(s) = n_(s) (e"CIPBIEE ) . If F e L2 (Ri;R(D)) is a weak solution to 0,F +

loc

DBF =0 in R, then we have the following

/too<F(8),0s¢(s)>ds = /tOO<BF(s),D<p(3)>d3_

Proof. The proof is similar to Lemma 5.3.5. O]

Lemma 5.3.7. Let t > 0 and consider non-negative functions 7, € C((0,t¢);R) and

n- € C((t,00);R). If F € L} _(R,;R(D)) is a weak solution of 9;F + DBF =0 in R,

loc
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then

o0

t
/ i, (s)e IPPIES L F(s) ds = / i (s)e COPPIE, L F(s)ds = 0.
0

t

Proof. Let ¢ € R(D) and define ¢(s) = n4(s) (e*(t*s)[DB]E’gB)*@/J. Now, as F' is a

solution of the first-order equation (5.3.1) we have from Lemma 5.3.5 that

/0 (0sp(s), F(s))ds = /0 (Dyp(s), BF(s))ds (5.3.3)

Now, by the definition of ¢, the self-adjointness of D, and the algebra homomorphism

property of the functional calculus, we have

[ (Dol B ds = [ nis)tv.e PP B, DEF(9)ds

= /Ot 1+ () (1, DBe"UIPB L F(s)) ds.

As DB has bounded holomorphic functional calculus, then e ‘P8 € £(#H) and therefore

(e7tPB)* = 718D (gee [25, Section 1.3.15)). Therefore,

t

= /0 ' (s) <(e_(t_S)DBEgB)* 1), F(s)> ds + /0 N (s) <8Se_(t_s)B*D1/1, EfbpF(s))ds

:/O 1, (8) (¢, e IPBEL R (S)>ds—|—/ +(s) (¥, DBe""=9PBEF [ (s)) ds.
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Using (5.3.3) and the above two calculations, we have

0= / (Oup(s), F(s)) ds — / (De(s), BF(s)) ds

= /0 0 (s) (¢, e IPPES L F(s)) ds + /0 1+ (s) (¢, DBe” ""IPPEL L F(s)) ds

— /Ot 14 ()¢, DBe~"=PB L F(s)) ds

- /ot 0. (s) (¥, e " TIPPES R P(s)) ds

Therefore, using Fubini’s Theorem, we have that

o= [t P pre s = vt ([ BP0 )

Then as ¢ was arbitrary, we have

t
/ 1, (s)e IPBIEE F(s)ds = 0.
0

A similar argument using (s) = n_(s) (e_(s_t)DBEBB)*w as the test function, gives
that

/ 0 (s)e”CIPBIE- F(s)ds = 0.
t
This completes the proof. O

Now let € > 0 and construct the functions 7=, in the same way as in [2], as follows:
First define 7°: [0,00) — [0,1] to be a smooth function supported in [1,00), where

n°(t) =1 for all t € (2,00); then define 7.(t) = n°()(1 — n°(2¢et)); finally we define

£

+(t—s)

s =1 ) (o (o).

Then 1t is uniformly bounded and compactly supported in the set {(s,#) € R?: 0 < s <
t} and approximates the characteristic function of this set. Similarly n- approximates

the characteristic function of the set {(s,t) € R? : 0 < t < s}.
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Theorem 5.3.8. If F' € L (R, ;R(D)) is a weak solution of 9, + DBF = 0 in R, such

loc

that

2t
sup][ IF(s)[12ds < oo,
t>0 J¢

then there exists f € H)5 such that lim,_,o F(t) = f in L? and F(t,2) = e *P5 f(x).

Proof. As F € L} _(R,;R(D)) is a weak solution of 0,F + DBF = 0 in R}™, using

Lemma 5.3.7 with nF used instead of 7., we obtain
t 00
/ (0 (t, s)e” IPBIEE F(s)ds + / (02 (t, s)e” CIIPBIES F(s)ds = 0.
0 t
We can then follow the abstract approach in [2, Theorem 8.2 (i)], to complete the proof

verbatim. O

We are now ready to return to discuss the global well-posedness of (5.3.2). The

following corollary is a consequence of Theorem 5.3.8 and Proposition 5.3.4.

Corollary 5.3.9. We have (5.3.2) is globally well-posed in H%5 with convergence in L2.

Moreover, solutions to (5.3.2) are of the form e *P5 f for t > 0 for initial data f € H%5.

Proof. We have existence of solutions from Proposition 5.3.4. We also have a clasification

of all solutions from Theorem 5.3.8. OJ

We remark that Theorem 5.3.8 and Proposition 5.3.4 give a classification of the solu-
tions for (5.3.2) as those that arise from the semigroup applied to the initial data. We

now give a Fatou type result for the first-order equation.

Proposition 5.3.10. If F' is a solution of the first-order equation (5.3.1) such that

2t
sup [ 17 (s) s < oc,
t

t>0

then there exists f € H);5 such that

2t

2t
1 — 2 = = |
i 1F() = Sl ds =0 = Jim £ 75 ds.
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Proof. Fix e > 0. Then by Theorem 5.3.8, there exists f € H%E such that lim; o F'(t) =
fin L?, in particular, we have F(t) = e *PP f. Now let § > 0 be such that ||F'(s)— f|l» < €

whenever 0 < s < 4d. If t < g, then

2t 2t
£ - sigas < [ cas ==
¢ t

Thus
2t
lim |F(s) — fll5ds = 0.
=0/,
The other limit is proved similarly. ]
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CHAPTER 6

BOUNDARY VALUE PROBLEMS FOR THE
ELECTRIC SCHODINGER EQUATION

From this Chapter onward we will focus on solving boundary value problems for the
Schrodinger equation (2.6.1) where the potential is in the reverse Holder class i.e. V' €
Bz (R"). This Chapter is dedicated to discovering the connection between second-order

equation H4,y u = 0, and the first-order equation
oF + DBF =0,

as discussed in Section 5.3. Once this connection has been established we will introduce
boundary mappings which will map the initial data for the first-order system of equations
to boundary data for the second order equation. Thus, solvabilty will be be reduced to
inverting these mappings. The majority of the rest of this thesis will focused on proving
the following two theorems. The first theorem is about the well-posedness of the the
second-order equation, see (2.6.4) and (2.6.5) for the definitions of well-posedness of the
Neumann and Dirichlet regularity problems respectively, when the matrix A is self-adjoint

or block-type, where A is considered block-type if it is of the form

A, 0 0

VvV _

AT=10 4y 0
0 0 aeiargV(a:)
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Theorem 6.0.1. Let V € B2(R") and let A € L®(R}*!; £(C"*?)) be elliptic s in (2.5.1).

Then the following are true:

1. The boundary value problems (R)7, and (N)7, are well-posed if A is self-adjoint

or block-type;
2. The sets WP(R) and W P(N) are open;

3. If A € WP(R), then for each ¢ € VV2(R") we have the estimates
> At~ 2 _ 2
i 180 (Vo = INA(Vw)lls = Vil

where u is the solution for the initial data ¢ € VV2(R™);

4. If A € WP(N), then for each p € L?*(R") we have the estimates

o dt ~
/0 110,V ) 3= = [NV 5 = [l

where u is the solution for the initial data ¢ € L*(R"™).

The following theorem is a Fatou-type theorem. That is, if a solution to the second-
order equation has non-tangential control of its gradient then there exists some boundary

data which solves the Neumann or Dirichlet boundary problem.

Theorem 6.0.2. Let V € B2(R") and let A € L®(R:"; £L(C"*2)) be elliptic. Let
u € Vo2 (R™™) be such that Hyqy u = 0 with N*(Vuu) € L*(R™). Then we have:

loc
1. There exists ¢ € L*(R™) such that lim;_,00,,u(-,t) = ¢ in L? and pointwise on
Whitney averages;

2. There exists ¢ € VV2(R") such that lim,_ Vhu(t,-) = V,¢ in L? and pointwise on

Whitney averages.
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6.1 Reduction to a First-Order System

We now work towards showing that there is some equivalence between the first-order
system and second-order equation. The fist step is to choose the correct perturbation
matrix B depending on AY. We do this in a similar way as in [4] where it was shown
that if A is bounded and elliptic then a transformed matrix, E, is also bounded and
elliptic. We replicate these results using the bounded operators AY, A and AY defined
on L*(R™, C"*?) by

Al Ay 0 Ay Ay 0
AV = A”J_ A”H 0 ) A= 0 I 0],
0 0 ae®#eV() 0 0 I
and
I 0 0
V.
A=A Ay 0
0 0 aeiargV(:r)

Note that since A and a are bounded then so are A, A and AY. Also, as A | | is pointwise

strictly elliptic then A | is invertible, and so A is invertible with inverse,

ATy —ATTAL 0

A= ¢ I 0
0 0 I
Now define
A7) —ATT AL 0
vV vl _ _
A" =A"A = |ALAT] Ay — AjLAT Ay 0
0 0 aeiarg\/(x)
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Let u € R(D). Then, as A7} (ui — Ayjuy) € L*(R"), we have

AT (ug — Aqjuy)
v = uj| S R( )

Uy,

Then Av = u. That is A: R(D) — R(D) is surjective. Also, A is invertible and therefore

is injective. Thus A: R(D) — R(D) is an isomorphism. We now prove the result that A

preserves the important properties of boundedness and ellipticity from AY.

Proposition 6.1.1. We have that A" is bounded and elliptic on R(D) if and only if the

matrix AY is bounded and elliptic on R(D).

Proof. We first prove that if A is bounded and elliptic on R(D) then so is AV Now for

any f € R(D), let g € R(D) such that Ag = f recalling that A: R(D) — R(D) is an

isomorphism. Then

Re(A"f, f) = Re(A¥ Ag, Ag)

= Re(A"g, Ag)
g1 Aligr + Ay g
= Re < Ajigr + Ao | 9 >
aei arg V(m)g# 9y

=Re({g1, AL1g1 + Avygy) + (AyLge + Aygps 91) + (ae'#V P g, g,)

=Re((ALig1 + A9, 90) + (Ayige + Apgy, 91) + (ae'™8V @) g g,).
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We also have

Aiigl + Ay g gL
Re(AYg,g) = Re< AjLgr +Angr | |9 >

et V(ac)g‘u 9

=Re((ALigr + Avygy 90) + (Aygr + Aygys 91 + (a5 @, g,)

= Re(A"f, /).
Now as AV is elliptic we have
wlgll3 < Re (AVg,g9) = Re(AVf, f).

Then
1112 = A AT 112 < 1A 1219)12 S Re(AVS, f).

That is A is elliptic. Also as AY is bounded then A" and A" are bounded and as A"
is invertible then (Ilv)_1 is bounded. Then AY = AV(ZV)_I is bounded.

Note that (.Zl\V) — AY. Therefore, if A is bounded and elliptic then so is AY, by the

above argument. This completes the proof. O

From now on we let B = .ZV

, and by Proposition 6.1.1 we have B is elliptic and
bounded. We now show that this is indeed the correct B to obtain the correspondence

between the first-order system and the second-order equation. We recall the notation

8{&
Vi = Viu — Vu _ 91,2 (mpn+1
pU = ) and V,u = =V |, forueVy (RY)
V2w V2w .
V2w

so to make it clear whether we are referring to the tangential adapted gradient or the full

adapted gradient.
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Proposition 6.1.2. Let u be such that H4 .,y v =0 in R’ffl. Assume further that

Oy, u
VA:#U = V”U S LIQOC(R+; L2<Rn7 Cn+2))7

V|zu

then F := V4 ,u is a weak solution of O,F + DBF =0 in Ry, with F' € L (R;R(D)).

loc

Conversely, if F € L2 (Ry;R(D)) is a weak solution of 9,F + DBF = 0 in R, then there

exists u such that Hq o,y u =0 in Rﬁ“ with F' =V 4 ,u.

Proof. Let u be such that Ha,yvu = 0 where V4 ,u € L} _(Ry; L*(R";C"?)). Define

loc

F =V 4,u. Then for all p € C®(R™) we have
/ AV -V + aVupdedt = 0.
R+

Note that for each fixed ¢ > 0, by Lemma 2.3.6, we have

(O, u)(t)
F(t)= | (Vju)(t) | €R(D).
(IV]zu)(t)

Therefore, F' € L} (R, ;R(D)). Also, the definition of ' and 4,

e we have

A

(BF) = AL ATLFL + (A — AL AT AR
= AL AL Op,u+ (A — A LATL AL V)u
= AL AT (ALiGu + Ay Vi) + (Ay — AL AT A Viu
= A0+ Ay Vyu

= (AVu)).

We also have ae!®2V®|V |2y = (BF),. Now, for any ¢ € C°(R" R"™?2), as Hy oy u =
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0 and the above, then

/ <FL, atQDL> dt = / ((AVu)l, 8t(,DL> dt
0 0

- _/ (AV)), Vipr) — (ac 8V @V 50, [V[3p, ) dt
0

- /OOO«BF% (D)) + ((BF),, (Dg),) dt.

A direct calculation gives us that d,u = (BF),. Therefore, integrating by parts and

using that (Dy), = divj ¢ — ]V]%gou, we have

/0 <F||,3t90||>dt=/0 (Vu, dwpy) dt,
:/0 <8tu,diVH g0H>dt,
- / (v, divy oy — |V IE@,) + (0 [V, dt,

= [P wa s [ omvig)d

Also,
/ (F Bip,) df = / (IVIFu, o) dt = — / (O, [V 5 ,) dt.
0 0 0

Combining these gives

/ (F,0,p) dt — / (BF, Dy) dt.
0 0

Thus F is a weak solution of O;F + DBF =0 in R,.

Now let F' € L (R, ;R(D)) be a weak solution of &;F + DBF = 0 in R,. Then, for

loc

each t > 0 there exists g, € V"*(R") such that

Fy(t,x) V)g:(x)

Fu(t,x) V]2 gi()

Define ¢(t,z) == ¢g:(x). Fix 0 < ¢y < co. Now define

t
u(t,x) = / (BF)(s,z)ds+ g(c1,x), Vt>0, and a.e. z € R"™.

€0
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Then, for fixed zyp € R™ we have u(t,zy) is absolutely continuous in ¢ and, by the
Fundamental Theorem of Calculus, (Qyu)(t,z0) = (BF).(t,z9). Let ¥ € C*(R,),
n € CX(R™;R") and

o(t.7) = |(tn(a)| € CxRYR2),

As F'is a weak solution of 0,F'+ DBF =0 in R, we have

/0 T ), (010)(1)) d = / T(BF)(1), (D)(1)) dt (6.1.1)

Therefore, the structure of ¢ gives

/0<() (Bup)(t)) dt = //nan () (0)(t) dz dt.

Also, using the structure of ¢, Fubini’s Theorem and integrating by parts, we have

/O<(BF)() (D) () dit // (BF). (¢, )5 (0) (v 7)(a) de dt

- [ ([ @aaima) @mma
_ / n ( /0 RTRSTEROI0) dt) (v 1) (@) de.

Then, by (6.1.1), we get

/ / Bt 2) 1(w)(9)(t) d At = / ) ( /0 ) u(t, ) (i) (t) dt) (divyn)(z) dz.

Then using Fubini’s Theorem and rearranging gives

[ ([ At 5+ e ofi@ i an ) G a -
0 n
Then as 1) was arbitrary we use integration by parts to deduce that there exists a constant
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¢ such that

- / Fi(t,) - (@) + ult, 2)(div n) (@) da.

Also, using (6.1.1) gives

/OOO (/n Ey(t,x) - n(x)) (0p)(t) dt = /Ooo </n(BF)L(t,x)(diV” n)(z) dx) D(1) dt

Then, by the definition of a weak derivative, we get

O (/ F(t,z) -de) = —/n(BF)l(t,m)de,

in the weak sense. Recall that a function is weakly differentiable if and only if it is locally

absolutely continuous (see [30]). Therefore, ¢; is a Lebesgue point for
/ Fy(t,z)-n(z)dx for a.e. € R" and Vn € C°(R™;R").

Let ¢ > 0. Let 6 € (0,¢p). Thus, using the Lebesgue differentiation Theorem we may

choose § > 0 such that

co+9d
][ (/ Fy(t,x) - n(x) dm) dt — / Fy(cr,x) -n(x)dz| < g, and
co—6 n
’ Co+§ c
(BF),(s,z)dsdt| < ———.
]{ / ) = 2 divy ]l
Recalling the definition of u, we have
co+90 t
= [ At 3@ - igten) 1@+ ([ B (s00as) Tyt dede
co n co
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Using integration by parts, the definition of g, and Fubini’s Theorem we get

/n (][:6 Fit, o) 'Wdt) — Vig(eo,x) - n(z) dz
/n (][00:6 Fy(t, ) dt — V“g(cl,x)) (@) da
]{:Oj (/n Bt z) de) dt — /n Fi(co, @) - n(z) da

3
5%

<

Similarly, we have that

< v /:(BF)L(S,;C) ds dt> (divy n)(z) da

005

<J.

€
2 .

]€CO+6/ BF). Sm)det’Kleun)( )| d

Thus |¢| < e. As e > 0 was arbitrary we have that ¢ = 0. We now proceed in a similar

manner for the third component. Redefine n € C*(R") and

Then, using that F' is a solution of O;F + DBF = 0, 0yu = (BF),, and integration by

parts, we have

/OOO (/ Fu(t, x)n(x) dx) (D) () dt = /000 (/ u(t,z)(|V|2n)(z) dx) @) dt

Therefore, we have

- / (Fult. ) — VIHu(t.2)) nia) da

As before, let € > 0. Let 0 € (0,¢). Then, using the Lebesgue differentiation Theorem

162



we may choose d > 0 such that

]{:Oj (/n Fu(taf)mdx) dt _/ Fo(cr, 2)(z) da

co+90 c
][ / (BF), (s, ) dsdt‘ —
<o 2V 1zl

Replicating the argument for Fj;, we obtain |¢| < € for all € > 0. Hence ¢ = 0. That is

19
< = d
2, an

(BF) L (t,x) = Qwu(t,x), Fj(t,z) = Vju(t,z), and F,(t,z) = IV|2u(t, z). Then, rearrang-

ing gives F'| = 0,,u. Therefore,
F(t,z) =V ,u(t, ).
We proceed by proving H 4,y u = 0. To this end, let ¢ € C°(R:™!), and define

¥
p=|0| €CE®I,C™).

0

A direct calculation leads to (BF)| = (AVu) and (BF), = ac'*eV( )|V |2u. Therefore,

using (6.1.1), we obtain

//&,Auatwdxdt / V¢ — (BF),|V|7¢ dz dt
/ / (AVu), Hzﬁ—a‘/uzbdxdt
0

n

Fe

Thus
/ / (AVu) - Vip + aVurp do dt = 0.
0 n

Hence, H4, v v = 0. This completes the proof. O]

Note that to go from a second-order solution of a first-order solution we need to
assume some kind of control on the adapted gradient. A natural estimate to have is L?

control on the non-tangential maximal function of the adapted gradient. We give the
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proof of that this is sufficient in Proposition 8.1.1.

6.2 Boundary Isomorphisms for Block Type Matri-
ces

To recap, the set H'% 5 is the set of all initial data for the solutions satisfying the first-order
Cauchy problem (5.3.2) on R, We also have solutions satisfying (5.3.2) arise from an
analytic semigroup generated by DB applied to the initial data in H%E, and that these
solutions are equal to the adapted gradients of a solution of second order equation (2.6.1).

That is F = e tPBf = V 4w for some u such that Hy . u = 0. We define the mappings

Dy ’H%E — L2(R"), given by ®n(f) == f1,

. 740+ ) V1,2 (Tpn : . fi . (6.2.1)
Qp: Hpp = {Vyu:ueV(R")}, given by ®p(f) = = fr.

Ju

These mappings are seen to be sending the initial values for the Cauchy problem 0, F +
DBF = 0 to the boundary conditions for equation Hy,yu = 0. Therefore, if the
mappings are isomorphisms we will be able to invert them and uniquely assign any given
boundary data for the boundary value problem with a solution of the first-order equation.
Then using Proposition 6.1.2 will give a solution u such that H4 , v u = 0. In other words,
if & and ® are isomorphisms then the second-order equating is well-posed. We will
formalise this in Section 8.1

We now proceed by proving that the mappings ®r and @ from (6.2.1) are isomor-

phisms in the case when AY is block-type, that is

A, 0 0 ATV 0 0
AV =1 o Ay 0 , and so A=B=| o Ay 0
0 0 qetare V(x) 0 0 qetars V(x)

We do this in a similar way to the methods used in [4]. Define the bounded linear operator
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N:R(D) — R(D) given by

-1 0 0
N=1|0 10
0 0 1

Note that N~! = N. We start with a lemma from the theory of functional calculus so

that we may take advantage of the symmetry of the operator Epp.

Lemma 6.2.1. Let w € (0, 7). If T'is a closed densely defined w-bisectorial operator with
bounded holomorphic functional calculus, then S := NT'N| is a closed densely defined w-
bisectorial operator with bounded holomorphic functional calculus and f(S) = Nf(T)N

for all f € H>®(S,) and all p € (w, ).

Proof. First we prove o(T) = o(S). Let A € p(T). Then we have that A\ — S =
ANN — NSN = N(AM —T)N. As N and A\ — T are invertible then AI — S is invertible.
That is A € p(S). Now suppose A € p(S). Then \[-T = NN(AM-T)NN = N(A[—-S)N.
Then as N and Al — S are invertible so is A\l —T. Thus A € p(T'). Thus p(T) = p(5).
Equivalently, we have o(T) = 0(S). Now let p € (w,7/2).

Now we prove resolvent bounds for S. Note that T satisfies the resolvent bounds and

consider

1AL = 8) " ulla = (AT = NTN) ™l

= [N\ = T)""Nul

for all \ ¢ Sy- Thus S is closed densely defined w-bisectorial operator.

To prove the functional calculus of S let ¢ € W(S7). Then by the Dunford-Riesz
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functional calculus we have that

9(8) = 5 / b(2)(=] - §)Vdz

= % [yw(z)N(ZI ~T)'Ndz
=N (%Lwam -1t dz> N
= Ny (T)N.

Now as T has bounded holomorphic functional calculus we have

[(S)ulla = ING(T)Nullz S [P(T)Nulla S ¢ lleo[[Null2 S 1140l llull2-

Thus we have that there exists p € (w,n/2) such that ||¢(S)ullz S ||¢]|collull2 for all
(NS \II(SE) and u € H. Hence, S has bound holomorphic functional calculus by Theorem
2.1.4. Then there exists a sequence {, fney € W(S7) such that lim, oo ((f¢n)(S)u) =
f(S)u for all f € H*(S7) and u € H. Then

F(S)u = lim ((f6,)(S)u) = lim (N(fe2) (T)Nu) = N lim ((f:)(T)Nw) = Nf(T)Nu.

n—o0

This completes the proof. O

Now as DB has bounded holomorphic functional calculus and sgn € H>(Sy), then

the previous lemma gives

NEpg = Nsgn(DB)NN = sgn(NDBN)N = sgn(—DB)N = —sgn(DB)N = —EpgN.
(6.2.2)

Now define the bounded linear operators N*: R(D) — R(D) given by

100 0 0 0
1 1
N =10 0 0 :Q(I—N), Nt=1o 7T 0o :§(I+N).
0 00 0 01
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We can see that if f € H%E, then N*f corresponds to the Neumann and Regularity
boundary conditions respectively. The next lemma formalises this idea.
Lemma 6.2.2. If N*: ), — NTR(D) is an isomorphism, then ®g: H)55 — {V,u :

u € VI’Q(R”)} is an isomorphism. Also, if N~ : H%E — N~R(D) is an isomorphism, then

Oy HYL — L2(R™) is an isomorphism.

Proof. Suppose N1 is an isomorphism. Note by Lemma 2.3.6 we have

- 0 .
N*R(D) = . for some u € V" (R")

V,u

Then let F € N*R(D). Therefore F = (0, V,u)7” for some u € VY?(R"). Then as Nt is
an isomorphism we have there exists a unique f € H%E such that N*f = F. Therefore,
®r(f) = V,u. That is @ is surjective. Now assume that there exists f,g € HJ5 such
that ®r(f) = ®r(g) = V,u. Then N*f = N*g. Thus as N* is an isomorphism (and
therefore injective) we have f = g. Then ®p is injective. Thus ®p is an isomorphism.

The second statement is proved similarly. O
We now prove that these mappings are indeed isomorphisms, in the block case.

Proposition 6.2.3. If A is block type then the mappings ®r: Hyp — {V,u : u €

vl’z(Rn)} and Py : H%E — L*(R™) are isomorphisms.

Proof. By Lemma 6.2.2 it suffices to show N*: H}5 — N*R(D) and N~: H}h —

N~R(D) are isomorphisms.

To prove surjectivity, let g € NTR(D) so g = (0, g/, 9,)" and Ng = g. We have

2Ef 39 = (x"(DB) —x™(DB))g + (x (DB)+x*(DB))g = Eppg + g
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Therefore, using the above calculation and (6.2.2), we have

N+(2E$B‘g) = N+(EDB + ])g

= U+ NI+ Bon)g

1 1
= é(g + Ng) + Q(EDBQ — EpgpNy)

Then, for any g € N*R(D) we have N*(2E},,9) = g. That is N*: H); 5, — N*R(D) is
surjective.

To prove injectivity let f € H%’}; with N*f =0,s0 Nf = —f and f = f, = 0. Then,
as Eppf = f and (6.2.2), we have

0=FEppNf+ NEppf=—Eppf+Nf=~—f—f==-2f.

Thus f = 0. That is Nt is injective and so bijective. Thus, by Lemma 6.2.2 we have
Op: By — {V,u:uc V2(R")} is an isomorphism.

The case for ®y: H%55 — L*(R") is similar. O

6.3 Boundary Isomorphisms for Self-Adjoint Matri-
ces

We now move to the self adjoint case, that is A* = A. Then we have

* Aii Aﬁj_ 0 Al AJ_” 0
a0
A= =AY Af 0] = A 4y of =A
0 a
0 0 a 0 0 a

Then, by a direct computation we have

-~

(A)* = B* = NBN. (6.3.1)
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We now aim to establish a Rellich type estimate. This will be used to prove that
the mappings &y and ®r from (6.2.1) are injective. We will then use the method of

continuity to prove the surjectivity of the mappings.
Proposition 6.3.1. If A is self-adjoint then the mappings ®g: H%E — {V,u:ue

VI2(R™)} and @y H%E — L*(R™) are injective. Moreover, they satisfy the estimate:

1Pn ()2 = 12R(f)]2

for all f € H%55.

Proof. Let f € ’H%E. Then by Corollary 5.3.9 we have there exists a unique solution,
F € C'(Ry;R(D)) satisfying (5.3.2), and in particular, F(¢,z) = e *PP f(x) Then using
the Fundamental Theorem of Calculus to get

/ T OUNBE®), F(1) dt — lim (NBF(t), (1)) — im(NBE(1), F(t)) — —(NBJ, f).

t—o00 t—0

Now

| Iy Iy
0 (-V ~1 0 —1 0| | 0 v

DN +ND = (V) + (=vi)
S v 0 I o I||-vl o0
0 (=Vh)* 0 —(=Vl (6.3.2)

= +

vl —v! 0
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Now, using O;F = —DBF, N> =1, (6.3.1), and (6.3.2), we have

_ / T OUNBE(t), F() dt = — / T(NBOF(L), F() + (NBF(t), 9,F(1))) dt
- / “(INBDBF(), F(t)) + (NBF(t), DBF(1))) dt
_ / T(((NBN)NDBF(t), F(t)) + (DNBF(t), BF (1)) dt

oo

((NDBF(t), BF(t)) + (DNBF(t), BF(t))) dt

o0

((ND + DN)BF(t), BF(t)) dt

0

=0.

That is (NBJ, f) = 0. Or, equivalently {(Bf)1. f1) = {(Bf)j, fi) + (B f,). Then

as B is elliptic on R(D), as in (2.5.1), we have

1£13 S Re(Bf. f) = 2Re((Bf) 1, f1) S (Bl fellz < [F 1l @x(F)ll2-

Thus || f]l2 S [|Pa(f)|l2 and so @y is injective. We also have

I£13 S Re(Bf, f) = 2Re (B i) + (B fu)) S W Fll2I@RCF) -

Hence || fll2 < |Pr(f)]]2 and so ®g is injective. Together, this gives the Rellich estimate

f
1ox(H)lls = IFlla= ||| I = 1@R(F)]a,

Fu
2

as required. O]

We now turn to surjectivity where we will use the method of continuity. It is important
to note that this depends on the analytic dependence of the functional calculus of the

operator DB as in Theorem 5.2.1. Define the self-adjoint matrix A, == 7 A+ (1 —7)I for
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€ [0,1]. Also, define B, = fTT For all u € R(D), we have
Re(Bou,u) = 7 Re{Bu,u) + (1 7){u, u) > wrlfulld + (1 — 7)Jul®® > min{s, 1}l

and,

[Brlloo < TlIBlloc + (1 = T)[[{]lcc < [Bllo + 1,

So B, is uniformly bounded and uniformly elliptic on R(D) for all 7 € [0,1]. If0 < w < p,
then by Theorems 3.0.1 and 2.1.4, we have there exists ¢, > 0, depending only on n, s,
and || Bl|, such that

IS (DB < cull fllses (6.3.3)

for all f € H>(S7) and for all 7 € [0,1]. Here we use the fact that the constant in
Theorem 3.0.1 depends only on n, x, and ||Bl|~. Now, for every 7 € [0,1] define the
spectral projection associated with DB, by E! = xT(DB,). Also, define the bounded

linear operator

®%: ESR(D) — L*(R™) given by ®%,(f) = f1,

O EXR(D) — {V,u:u e V2(R")} given by ®7(f) = an

Fu

for all 7 € [0,1], so ®y = Y.

Lemma 6.3.2. There exists € > 0 such that, if [T—o| < ¢, then E: EfR(D) — EfR(D)

T

is bijective.

Proof. We claim (I — EX(EX — EY))'Ef and EX (I — Ef (Ef — E))™! are the left and

the right inverse respectively. First, by the quadratic estimate in Theorem 3.0.1 we have
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the bounded holomorphic functional calculus in Theorem 5.0.1, and so

IEFES = ED) flla < cullx ool (B = ES) fl2
< ¢||Br — Byl f]]2

= ¢t = ol[| B =]l fll2-

where ¢ > 0 depends on the constant from the analytic dependence in Theorem 5.2.1 and

on ¢, > 0 from (6.3.3). Thus, if |7 — 0| < , then the Neumann series gives us

__1
cl|B=I]loo

I — EX(Ef — EY) is invertible. Using a direct computation we see

BB} = EX(I - B (B} — E}))

And so, for all f € EXR(D), we have

EFES(I - EXNES - EJ) ' f=Eff=f.

Thus, Ef (I — EX(EF — EF))~! is the right inverse of Ef: EXYR(D) — EFR(D), that is

Ef: EFfR(D) — EfR(D) is surjective. Similarly, if |7 —o| < , then I — EX (Ef —

__1
Bl

E7) is also invertible, again using the Neumann series. Now, another computation gives

BB — (I - B} (B — BB

Then, for all f € EXR(D), we have

(I = EJ(Ef — ED)'EJElf= (I - EJ(E; — E})) ' EjEE; =E[f = f.

Thus (I — Ef(Ef — E))"'Ef is the left inverse of EY: EfR(D) — EFR(D). That is

T

Ef: EXR(D) — EXR(D) is injective. Thus, Ef: EXYR(D) — EXR(D) is a bijection. [

Lemma 6.3.3. If E: EXfR(D) — ER(D) is a bijection, then

e O%: ETR(D) — L*(R™) is bijective if and only if ®yE}: EFR(D) — L*(R") is
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bijective.

o O EXR(D) — {V,u:u € V"2(R")} is bijective if and only if ®zEF: EfR(D) —
{V,u:u € VW2(R)} is bijective.

Proof. Suppose that ®%: EXR(D) — L*(R") is bijective. Therefore, ®yE+: EfR(D) —
L?(R™) is the composition of two bijective operators and so is a bijection.

Suppose that ®yEf: EfR(D) — L*(R") is bijective. Let f € L*(R"). Then as the
mapping ®yE+: EXR(D) — L?(R") is bijective we have there exists ¢ € EXR(D) such
that &y E+g = f. Then there exists h € EXR(D) (namely h = Ei g) such that ®3h = f.
Thus, ®%: EFR(D) — L*(R") is surjective. Let f € EfR(D) be such that ®%, f = 0. As
Ef: EXR(D) — ESR(D) is a bijection, so invertible, we have 0 = &3 f = OyEFES f.
then as ®yE;: EXR(D) — L*(R™) is bijective we have Ef f = 0. Thus f = 0 and
®7,: EXR(D) — L*(R") is injective, and thus bijective.

The case for ®%: EXR(D) — {V,u: u € VX*(R™)} is similar. O
Lemma 6.3.4. Let o € [0,1]. The following hold:

o If % : EFR(D) — L?*(R™) is bijective, then there exists & > 0 such that for all

|7 — 0| < & we have ®},: ESR(D) — L*(R") is bijective.

o If ®%: EXR(D) — {V,u : u € VY?(R™)} is bijective, then there exists ¢ > 0 such

that for all |7 — o] < & we have ®%: EfR(D) — {V,u:u € VY*(R")} is bijective.

Proof. Consider ® E+: EfR(D) — L*(R"™). Then fix € > 0 such that Ef: EfR(D) —
EFR(D) is a bijection for all |7 —o| < e. Let f € EXR(D) such that ®3ES f = 0. Then,

using the Rellich estimates in Proposition 6.3.1 (as A, is self-adjoint), we have

0=[IOREL fll2 2 17 fll2-

Thus, Eff = 0 and as Ef: EXR(D) — EFR(D) is a bijection then f = 0. Hence,
oL E+: EfR(D) — L*(R") is injective.
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Let g € L*(R™). Then as ®%: EXR(D) — L*(R") is bijective we have there exists

h € EXR(D) such that ®%;h = g. Therefore

g=0Vh=(ETh+ (I —EN)h)L = E h+ (I - EN)h)..

Now using the fact that EF and E are projections and h € EfR(D) we have

(I - EDh=Ef"ENE} - EDh=El " (EJE} -~ EIE})h =0.

Thus ®LESh = g. That is ®yEF: EXR(D) — L2(R") is surjective and so bijective.

Then by Lemma 6.3.3 we have that ®%: EFR(D) — L*(R") is a bijection.

A similar argument proves that ®%: EFR(D) — {V,u: u € V'?(R")} is a bijection.

]

Proposition 6.3.5. If A is self-adjoint, then the mappings ®p: ’H%E — {V,u:u e

VEA(R™)} and @y H%E — L?(R™) are isomorphisms.

Proof. By Proposition 6.3.1 we have ®r: Hyyh — {V,u:u € VI2A(R™)} and Oy : Hjh —
L?*(R™) are injective.
Now as ®%; corresponds to A = I and [ is a block type matrix then by Proposition

6.2.3 we have ®%: EfR(D) — L*(R") is an isomorphism. Now by Lemma 6.3.4 we
have there exists ¢ > 0 such that for all |7| < & then ®%: EfR(D) — L*(R") is an
isomorphism. We then iterate this argument a finite number of times to give us ®% =
Dy: HYEL — L2(R™) is a bijection.

A similar argument gives that ®%,: EXR(D) — {V,u : u € V'?(R™)} is also surjective

and so an isomorphism. This completes the proof. O]
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CHAPTER 7

NON-TANGENTTAL MAXIMAL FUNCTION
BOUNDS

We are now ready to prove the non-tangential maximal function bounds in Theorem 6.0.1
parts 3 and 4. These are needed to show that the second-order equation Hj,y v = 0 is
well-posed, as in (2.6.4) and (2.6.5), by proving N*(V,u) € L*(R™) and the convergence
to the boundary data is pointwise on Whitney averages. We do this by estimating the
non-tangential operator by a quadratic estimate term and a term involving the Hardy—
Littlewood maximal function. However, in order to do this we need to reduce the exponent
from 2 to some p € (1,2), since otherwise we will end up trying to bound the Hardy—
Littlewood maximal function on L!. But the Hardy-Littlewood maximal function is not
a bounded operator on L'. Therefore we need to prove a weak reverse Holder estimate
on V,u. We note when V' = 0 then this is easy as Ha,v(u — ¢) = 0 for all constants
c € C. Then for a fixed cube we choose ¢ to be the average of u on the cube. Thus,
using the Caccioppoli inequality and then the Sobolev—Poincaré lemma gives the desired
result. We aim to replicate this approach with the zeroth-order term V' included.
Hence, we start by giving a Caccioppoli inequality adapted to the potential V' in the
sense that we bound V, rather than V, and the inhomogeneous term on right-hand side
depends on (V,)* not — div. The result is proved similarly to the standard inhomogeneous
Caccioppoli inequality. We will adapt the method from the parabolic equation in [6] to
our case with a potential. From this point on we specialise to the case when V € B? (R™)

as in Section 2.3. Therefore we have A = AV.
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7.1 Reverse Holder Estimates for Solutions

Throughout this section, suppose that d > 2 is an integer and that {2 is an open subset
of R?. We begin with the following version of Caccioppoli’s inequality to account for the
presence of an inhomogeneity f € L*(Q,C*') from the domain 2(V%) in (2.3.5). In
particular, we shall say that u is a weak solution of —div AVu + Vu = V3 f in Q, or
simply that Ha,yu = V5f in Q, if u € Vi2(Q) and [, AVu- Vo +aVuv = [, f -V,

for all v € C2°(2).

Proposition 7.1.1. Suppose that V € L (RY). If f € 2(V}) and Hyoy u = Vi f in

loc

vt [ vt < g [ w [ s

for all cubes Q C 2Q CC €, where the implicit constant depends only on &, ||Al|. and
d.

), then

Proof. Let n € C2°(£2) be supported in 2Q) CC € such that 0 < n(x) < 1for allz € Q and
n(z) =1 for all x € Q whilst [|V7]|s < @ If Hyqyu=V}fin€Q, then un® € V12(Q),

so by the definition of a weak solution we have

[ AV Tt = [ 1, (7.1.1)

since C°(Q) is dense in V2(22). Now let £ € (0,1) to be chosen. The product rule gives

/ IVl < / VP < / IV, () + / 2| V]2,
Q Q Q o)

From Lemma 2.3.6 we have V,(nu) € R(D). Then, using the ellipticity, the product rule
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repeatedly, and (7.1.1), gives

/ IV, ()P < / AV, (10) - ¥, (1)
Q Q

= / wAVY -V (un) + nAVuV (un) + a|V|2u|V |z (un?)
0

= / wa AV - V1 +unAvVn - Vu + AV ,uV ,(un?) + unAVu - V_n‘
Q

= / wa AV - V1 +unAVn - Vu + f -V, (un?) + unAVu - V_n’
Q0

Now, the above two calculations, the boundedness of A, the product rule and the e-version

of Young’s inequality, we have

[ e S [ P19+ el 9Vl + LAV, )|
S [ valinValtel + [ 171 (tlinVal + (9ulg? [Vl

1 1 1
56/ Vuln® + (—+6) / W!VWH/ \\V\Qu\2n2+—/ FiR/E
0 € Q 9 €Jo

Combining the above estimates gives

1 1
/ |V ul*n? 58/ \Vuu!2772+—/ |ul*[Vn]? + —/ |fIPn?,
Q Q € Jo € Jo

where the implicit constant depends only on &, || Al and d.

We now choose € € (0, 1) sufficiently small, and recall the properties of 7, to obtain

1
/ IVl < / VP S / uf? + / 5P,
Q Q Z(Q) 2Q 2Q

as required. 0

We can use the Caccioppoli inequality to lower the exponent of a weak solution. We

recall that 2* := 2d/(d — 2) denotes the Sobolev exponent for RY.
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Proposition 7.1.2. Suppose that V € L (R?). If § > 0 and Ha oy u =0 in ©, then

loc
1/6
(][ u / |u|5) ,
Q 2Q

1/2*
)l
for all cubes Q C 2Q) CC €2, where the implicit constant depends only on &, ||A|s, d

and 9.

Proof. As u € WH%(Q), then using the Sobolev-Poincaré inequality (see (7.45) in [30])

we have

<J€; . >/ S (]{2 u = (f UW*)W AL <]é mr?)m n (]{2 |u|2)1/2.

Therefore, by the version of Caccioppoli’s inequality in Proposition 7.1.1 in the case

f =0, we have the weak reverse Holder estimate

()= ()

1/2*
)A(

for all cubes @@ C 2Q) CC Q2 whenever Hy , v u = 0. The self-improvement of the exponent

in the right-hand side of such estimates (see [33, Theorem 2]) completes the proof.  [J

To prove the non-tangential maximal bounds we need to be able to lower the expo-
nent, on the adapted gradient V,, from 2 to some p < 2. In the homogeneous case (when
V' = 0) this is relatively straight forward as if u is a solution then div AV (u — uy) = 0.
Therefore, we can use Caccioppoli’s inequality on u — uy, followed by the Poincare In-
equality. However, in the inhomogeneous case we need to control the potential term. To
do this we will use the Fefferman—Phong inequality (Proposition 2.2.5) with exponent
1. Moreover, we will make crucial use of the right-hand side self-improvement property;,
proved by Iwaniec and Nolder in [33, Theorem 2], for reverse Holder inequalities. Specif-
ically, if § € (0,00) and V' € BY(R?) for some ¢ € (1,00), then (f, V)¢ S5 (f, VO)'/°
for all cubes @ in R%. Hence, if V € Ay (R%) = U, BI(R?), then V* € B (RY) for each

]évfc (]{2 v§>2, (7.1.2)

178

s € (0,1) and



for all cubes ) in R? To see this we use Jensen’s Inequality and the reverse Holder

inequality, to get

@f vi<io (]{2 v) - (l(@)z]é V)é ~1(Q) (][Q <v%>2)§ si@f vt

We are now able to give a weak reverse Holder type inequality for the V,, of a solution

N

of the second-order equation.
An inspection of the proofs above provides for the following routine extension. This

will be used henceforth without further reference.

Remark 7.1.3. The results in Propositions 7.1.1 and 7.1.2 also hold when 2(@) is replaced
by a@ for any a > 1, except then the implicit constants in the estimates will also depend

on .

Proposition 7.1.4. Suppose that V € A (RY). If § > 0 and Ha, v u =0 in ©, then

1 1/6
(][ rvuuﬁ) <, (][ muﬁ) |
Q 2Q

for all cubes @ C 2Q CC Q, where the implicit constant depend only on &, ||Al|«, d and

J.

Proof. Suppose that Hy,yu = 0 in Q and let ) denote an arbitrary cube such that
2Q cc Q. If Z(ZQ)sz Vz > 1, then by Caccioppoli’s inequality in Lemma 7.1.1 with

f =0, followed by the reverse Holder estimate in Proposition 7.1.2 with § = 1, we have

(]{2 \vMuP)m S5 (]{3/2)Q W)w

where g € (0,1) denotes the constant from the Fefferman—Phong inequality in Proposi-
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tion 2.2.5 applied here with p =1 and w = V2 € A (R%).

If Z(QQ)JCZQ V2 < 1, then we set ug = szu and write

FVal s f 19uw= w0 + f Vgl
Q Q Q

For all ¢ € C°(R2), since Hy oy u =0 in 2, we have

/ AV (v —ug) - Vo = / AV -V 0 — /Vquo.
Q Q

Thus, Ha ey (u—ug) = —Vug in Q. We now define f = (fi1, ..., fay1) € L*(€; C?) by set-
ting fi =...= fg=0and f4,1 = —V%uQ, so —Vug = (—divy, V%)(O, ..., 0, —V%uQ) =
(Vo) fand Haov(u—ug) = (V,)*f in Q. The inhomogeneous version of Caccioppoli’s

inequality in Proposition 7.1.1 can then be applied to show that

Lrvat s sgaf -+ f vinol s (L 1vup) 4 f Vgl
Q Q)% )2 20 20 2Q

where we used the Sobolev—Poincaré inequality (see (7.45) in [30]) in the second estimate

with 2, == 2d/(d + 2). Using (7.1.2) followed by the Fefferman—Phong inequality in
Proposition 2.2.5, applied again with p = 1 and w = V2 but now in the case when

12Q)fy0 V2 <1, we have

1/2 1/2 )
(][ vw) s(][ v) / |u|s(][ vQ) Luisf v
2Q 2Q 2Q 2Q 2Q 2Q

Combining these estimates with Jensen’s inequality we get

1/2 1/2.
(][ mm?) < (][ MuP*) |
Q 2Q

since 1 < 2, < 2.
We can now conclude that the preceding weak reverse Holder estimate holds for all
cubes () C 2Q CC €. The self-improvement of the exponent in the right-hand side of

such estimates (see [33, Theorem 2]|) completes the proof. ]

180



We note that Remark 7.1.3 also applies to Proposition 7.1.4.

7.2 Off-Diagonal Estimates

The next step to proving the non-tangential maximal bounds is to show that DB has
L% — L9 off-diagonal estimates for some ¢ < 2. First we need to know that DB is
bisectorial in LY and so we need to prove the Li-resolvent bounds for DB. To do this we

follow the methods of [2] and [10], adapting them to the potential V.

Lemma 7.2.1. There exists 1 < p; < 2 < po such that for ¢ € (p1,p2) we have the
L% — L1 resolvent bounds

I(1 +tDB)™ fllg S 1/ lla,
for all f € L*(R™;C"2) N LI(R™; C"+2).

Proof. Let f € L*(R™;C"2) N L4(R"; C**?) where ¢ is to be chosen later. Then define f

such that (I +itDB)f = f. Define

(Bf)L (Bf)1 (Ag)L (Ag)L
g=\ fi |+ 9= fi then f=1| g |, f=] g
Ju fu Iu 9

Now let ¢ € C°(R™; C"*2). Then
/f-zp:/(I+¢tDB)f-¢:/f'“-¢+/Bf-(z'tsz). (7.2.1)

Now let 1) = (,0,0)7, where ¢ € C°(R") . Noting that (Bf); = (Ag)| and (Bf), =
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(Ag), = agy,, then, by (7.2.1), we obtain

[tae= [ For [ @90+ [BDUHVIEY)
— [ g+ [y @vie)+ [(Agvie)

(Ag)L ©
= / (A | - | itVye
(Ag)u it|V|%g0

Letting ¢ = (0, ¢, 0)7, where ¢ € C*(R™;R"), in (7.2.1). Then we have that

/9 '%02/!?” '90+/(Bf)¢(itdiv ) :/g 'w—/itvnm's&

Similarly, letting ¢ = (0,0, )7, where ¢ € C°(R"), in (7.2.1), we obtain

[oe= [ oo~ [Biravio = [ae- [aviae

(7.2.2)

(7.2.3)

(7.2.4)

Therefore, we have gy = g — itV gL and g, = g, — z't]V|%§L. For t > 0 we define the

space V//(R™) to be V14(R™) equipped with the norm |ull, + || V,ull,. Also, define

(VHI(R™)* to be the dual space equipped with the dual norm. Define the operator

Liy: VY(R™) — (V7 (R™)* such that for u € V}*/(R") we define the linear functional

Liyvu € (V7 (R™)* defined, for all ¢ € V7 (R™), by
o

(L Vu /-A itVyu | - | itVe

itlV)zu| |it|V]2e
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Now, using Holder’s inequality, we have

[(Leyu)(p)] < ||«4||oo/IUI|90| + |V, [V,
< [l (lullgllelly + 21 VaullgIVaglly)
< [|Afloo (Nullg + IV yullg) (lelle + IV uella)

= [l Alloollullyzallellyra

Therefore, ”Lt,VUH(V}q’Y < HAHOOHuHVtLq. That is, Ly is bounded for ¢ € (1,00)

independently of q. Now recall

h U
R(D)=< | Vg | :heL’(R"),geV*R") 5, then v, (itu) | € R(D).
V]zg V|2 (itu)

Therefore, by the ellipticity of A, since V"> C V12, and so for any u € V}*(R"), we have

u u
|(Lyyu)(u)| = Re / AL wy(itu) | | Vytitw) | | 2 sUlulla+21Veul3) = sllullle..
VIaGitu) | | [V[2 (itu)

That is ||Lt7vu||<vl,2)* 2 llullyr2. There exists e > 0 such that V|2 € By,., therefore using
[15] we have V}“(R") is an interpolation space for ¢ € (1,2 +¢). Then by Sneiberg’s
Lemma in [49] we have there exists pj,ps with 1 < p; < 2 < py < 2 + ¢ such that

HLt,V“”(Vﬁ”)’“ Zq llullyra for all g € (p1,p2). That is Lyy is invertible for g € (py, p2). For
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¢ € VM (R™) use (7.2.3) and (7.2.4), and then (7.2.2) to obtain

gL @
(Lt,VgL)(QO):/ A Vg | - | itVye

itlVIEgL | |itlV]re

ALigr+itA Vg 0
- /IR{ AjLge +itAylVIzge| - | itVye
| (s —9u) it|V]2 e
Ar1ge+ Ay Gy —91) @
- /R Apge + Ay =g | - | Ve
i (G = gp) it|V |z
(Ag)L — Auyg) o
- /R (Ag)y — Aygy | - | Ve
| (A9)u—ag, | itV
(Ag)1 ¥ ALy @
- /Rn (A | | itVye | — [ A | - | Ve
((A9) | [itVIe| | age | [itIVIFe
ALygy v
- /(Ag)“”_ Apgy | - | Ve
agu it|V]zg
Al1g1 ©
- /]R =Aygi| | itV
—ag, | [itlVIee

Define F': L4(R™; C"*2) — (V7 (R™))* such that for u € LI(R™; C™2) and ¢ € V"7 (R")

then
Ajjug 2
Pu)(e) = [ |~y - | 19y
—au,, it|V)2p
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Therefore, L; g, = Fg. Now for any ¢ € v (R™), we have

[(Fu)(p)] < HAHOO/R <|UL||§0| +t|uH||V||90| +t|uu|||V|%(p|>

< [l Afloo (llullgllpllg + tllellq 1V uspllar)

= [lAllool[ellglloll o

Thus

||FU||(V3,4')* < [l Allscllullq- (7.2.5)
Therefore, using (7.2.2), (7.2.3), (7.2.4), the ellipticity of Ly, (7.2.5), and the definition

of g, we obtain

1fllg = 11gllq S Ngellyre +llglly S M1evgrllyra+lglls = 1Fgll ey +1lglla < lglle = 1 llg-

Recalling the definition of f, gives
I(1 +itDB) " fllg S [1fllg-

Now as L?(R") N LY(R™) is dense in L¢(R™) a density argument completes the proof. [
Therefore, we have the off-diagonal estimates

Proposition 7.2.2. Let F, F' C R" and f € R(D) with supp(f) C F. Then, there exists

1 < p1 <2 < py such that for g € (p1,p2), we have the following estimate

. _ dist(E, F)\
(I +itDB) " f]| o) < Cut (1 + %) 1fllzocey,
where C'y; does not depend on E, F, f, and t.

Proof. By Lemma 7.2.1 we have there exists 1 < p; < 2 < py such that, for p € (p1, p2),

we have

||(] + itDB)_lfHLP(E) < CPH(I + itDB)_lpr < Cp”pr - Op“fHLP(F)7
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where (), is independent of E, F| f, and t. We also have, from Proposition 3.1.3, for any
N € N then

. _ dist(E, F)\ Y
(I +itDB) ™ f|l2(s) < Oy (1 - %) £ 1122,

where C'y is independent of E, F), f, and . Then by Riesz—Thorin interpolation we have

for any 6 € (0,1) and % = % + £ then

o B dist(E, F)\
I+ itDB) ™ fluey < €% (14 X2 ) e

Now choosing N € N such that N§ > M gives the required result. O]

7.3 Non-Tangential Estimates

Now that we have weak reverse Holder estimates for the gradient of solutions and L? —
L9 off diagonal estimates we are ready to prove the non-tangential maximal function

estimates. We first give the following lemma.

Lemma 7.3.1. If F € L (R,; L?(R";C"*?)), then

loc

2t ) . ) [e'e) dS
sup][ IF(s)|2ds < |N.FI2 < / 1F(s) 22,
t>0 J¢ 0 S

Proof. Firstly, by the definition of the non-tangential maximal function we have

dyds dyds
[N F ()] NSJQE)/ ]é( y)I? / / 1g.q) s,y)[?

where Q;(x) is the cube with side-length I(Q:(x)) = t, centred at x. By integrating in x
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and then using Tonelli’s Theorem, we obtain

I%.FES [ / N T
/ /!Qs )| F (s, )|2¥
= [ ireEs

For the lower inequality let t; > 0 be fixed and arbitrary. Therefore, by definition of

supremum, we have

2t )2 dy ds 2to % dy ds
=0 )i V) v
e Q1o
2t0
/ : / 1,0 ()| F (s, )P L

Again, integrating in x and then using Tonelli’s Theorem gives

N 2t dyd
INFEZ 5 ] mIFe Pt

2to
][ / (s,y)|* dy ds
tO n

2to
- ][ IF(s)]12 ds.

to

Finally, noting that ¢ty was arbitrary so the above is true for all £, > 0. Thus, taking

supremum over ty > 0 completes the proof. O

We are finally ready to prove the non-tangential maximal function estimates and

square function estimates for first-order solutions when V € B3 (R").

Theorem 7.3.2. If ' € L2 (R,;R(D)) is a weak solution of &;F + DBF = 0 in R,

such that

2t
sup ][ |F()|I2 ds < oo,

t>0 J¢
then
> 2dt _ 2 _ |IAT 2
i [EOE 2= = [1£12 = [1NF1f2,
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where f € Ef,;H and F(t) = e P8 f as in Theorem 5.3.8.

Proof. The w-bisectorial operator DB has a bounded H>(Sf)-functional calculus on
R(D) for all ;1 > w by Theorem 5.0.1. Therefore, applying the equivalence in property 4
of Theorem 2.1.4 with ¢ € ¥(S59) defined by 1(z) = [z]e "), where [2] := zsgn z, for all

z € 5;, we have

/ o FIS = / Jtan(e P8 IS
0 0

> dt
— [ 1B
0 t
> dt
- [ 1eeoB)sET
0
< 1113

where the differentiation in the second equality is justified because (e7'PBl),o; is an
analytic semi-group on R(D) by Lemma 5.3.3.
It remains to prove that |N,F|2 = | f||2. To begin, by Lemma 7.3.1 and Proposition

5.3.10, we have

2t 2t
INEI 2z sup £ IFGRds >l [ 1F()Bds = 115
t>0 J¢ -0/,

To prove the reverse estimate, consider a Whitney box W (t, x) = [t,2t] x Q;(z) C R’
for some x € R™ and ¢ > 0. Using Proposition 6.1.2, since F' € L (R, ;R(D)) is a weak
solution of O,F + DBF = 0 in R, there exists a weak solution u such that Hy,y u =0

in RT™ and F = V4,u. We now choose p € (pi1,2), where p; is the exponent from

Lemma 7.2.1. Applying Proposition 7.1.4 on W, since 2W = [t/2, 5t /2] x Qq(z) CC RTH,
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and the fact that A is bounded and invertible on R(D), we have

(4 |F|2)é -(# |vA,uu\2?
s(ﬁgmMﬁi

b (]%W |vuu|1p)”

s(f )

Now, using F(t) = e Pl f for some f € R(D), recalling that R, = (I +isDB)~!, then

N

we have
S (]%w (e=DB _ Rs)f(y)|2dydi)2
+ (ﬁgw lef(y>|pdde>P |
Therefore,

+
2

sup (ﬁ[ IR, f(y)" dy ds>
t>0 2W (t,z)

Then, by Lemma 7.3.1, letting 1(2) == e ¥l — (1 4+iz) "' so 4 € W(S7), and the quadratic

INFlls < va’ ((e71PPl — R,)f)

2

estimates for DB in Theorem 3.0.1, we have

|7 (oo = o)

2 © dt > de
L5 [T - mopS = [T lwenmigS < 118

Now

3=

p ’ _ : pdyds
(ﬁW(r,t) ‘Rsf(y” dy dS) ~ <ﬁ /n ﬂQQt(x)(Q)’Rsf(y” gntl )

2
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If s e (%, %), then using the off-diagonal estimates in Proposition 7.2.2, we have

2@ Bafllp <D M@ Rellcy@u flln

7=0

<Z( QU2 CALAD ) 16, guion 1

1
<Y oMt (][ |f|p)”
Z e
M(|fIP)(x ZQ J(M—=2)

where Co(Q2 (7)) = Qu(z) and Cj(Qi(x)) = Qai+1,(x) \ Qair(x) for all j € N. Then

taking M > % gives

t 5t
g Rufl} S MU, s (5.5),

Thus, using the above calculations, we have

7 dyds)” 7
(/ /nant<z><y>|Rsf<y>|pSZJ) =</ 20,6 <>Rf||ptn+1>

2

< </< (1£17)@) i)

2

= (M(|fP) ()7 .

SIS

=

Therefore by the boundedness of the Hardy—Littlewood maximal function on L%, where

I% > 1, we have

sup (ﬁ[ |Rsf(y)\pdyd5)p < MAFP)7 |
>0 2W (,t)

2

= MU 1
S 1P
=1/
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Thus

N2 S (£
This completes the proof. O

We are now left to prove that first-order solutions, F', converge pointwise on Whitney

averages to the initial data f.

Proposition 7.3.3. If F(t,z) = e !IPBlIf(x) for some f € R(D), then we have almost

everywhere convergence of Whitney averages to f as ¢t — 0. That is

lim |F(s,y) — f(z)]? dyds =0,
t—0 W(t,CE)

for almost every x € R".

Proof. We proceed as in [6] by proving the estimate on a dense subspace of R(D), namely
{h € R(DB) N 2(DB) : DBh € L*(R™;C"*?)}, for some p € (2,py) where p, is as in
Proposition 7.2.2. To prove that this set is dense let m € N. Define T}, € £(L*(R™; C"*?))
by

T,uh = RyimDBRh,

for each h € R(D) where Ry, == (I +ikDB)™'. As DB is densely defined and bisectorial

then the T, are uniformly bounded with respect to m € N. Now as h € Z(DB) we have
l 1
I(I = R1)hllz = [[=DBR1h|2 S —[[DBh[ls =0,
m m ™ m

as m — oo. Also, as h € R(DB) then there exists u € Z(DB) such that h = DBu.

Then

, im 1 1
I(I —imDBRy)h|s = [[Rimhlls = [|==DBRuyully = —[[(I = Bn)ull2 S —[lulla =0,
m m m
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as m — 0o. Therefore

I(Z = T)hlls < (I = Ra)hlls + [ Roh — RoimDBRA

ST = R1)hllz + [[(I = imDBRy, )hl|s.

Thus |[(I —Ty,)ul|s — 0, as m — co. Hence we have proved T, converges strongly to the

identity as m — oo. Now let h € R(D). Let h,, € L*(R™; C""?) N LP(R™; C"*?) such that
By — hin L? and p € (2,p2). Now, as Ty, is uniformly bounded in m and converges to

the identity we have
[ Tonhan = hll2 < [[Thim — Tohll2 4+ [ Tonh = bll2 S (lhn = hll2 + [|Th = hlj2 = 0,
as m — 0o. Now by Lemma 7.2.1 we have that there exists p > 2 such that
IDBTmhimllp = |1DBR 1 (I = Rp)hillp = ml[(R2 = I)(I = By )hunlp S ml[ e[|, < 00

Thus DBT,,h,, € LP(R": C"*2). Hence {h € R(DB) N 2(DB) : DBh € LP(R™; C"*+2)}

is a dense subspace of R(D).
Now let f € {h € R(DB)N 2(DB) : DBh € L*(R";C""} and let x € R" be a
Lebesgue point. Then

]§[ |F<s,y>—f<x>|2dyds57§[ PP £(y) — Ry (y)? dy ds
W(t,z)

W (t,z)
_ 2
n ]%V VB~ ) dyds
. 2
T 7% )~ J@Fdyas

Now the third term above converges to 0 as t — 0 by the Lebesgue differentiation theorem.

For the first term let ¢ € W(S7) given by 9(2) = e¢™* — (1 4+ iz)~". Now define

dyd
= Jf - wepBmPE
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Note for almost all z € R™ we have that 0 < h(ty,z) < h(ty,z) for 0 < tg < t;. Also by

Proposition 7.3.1 the quadratic estimates for DB we have that

¢ ds
/ (o) de S / lo(sDB)FI2E < 172

S

Therefore, by the monotone convergence theorem and h being continuous in ¢, we have

t
d
0< / h0,2)de =lim [ h(t,z)de < yn%/ I (sDB)f[2= = 0.
n — 0 S

t—0 R

Thus, h(0,2) = 0 for almost every x € R™. Therefore

lim PP f(y) — Ref(y)* dy ds = lim h(t, ) = 0,

for almost every x € R™. Now for the second term we use the off diagonal argument used

in the proof of Theorem 7.3.2 to obtain

# R - rwPayds = sRDBIWP s
W (t,z) W(tz)
:tzﬁ[ |R.DBf(y)|*dyds
W (t,z)
< (M(DBS) ()"
As there exists p > 2 such that DBf € LP(R™"';C"*?) we have that M(|DBf|*) €

LP(R™). Thus M(|DBf|*)(x) < oo almost everywhere. Then, as M(|DBf|?) is indepen-

dent of ¢, we have that

lim [Rif(y) — f)]* dyds S (M(IDBFP)(x))" lim¢* = 0,
t—0 W(t,z) t—0

for almost every x € R".

Now let f € R(D) and ¢ > 0. Let {fi}tren C {h € R(DB)N 2(DB) : DBh €

LP(R™; C"™2} such that fi — f as n — 0. Now choose K € N and ¢t > 0 (depending on
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K € N) such that

t"e €
If =il <5 and |l - S dyds <
3 W(t,z) 3

Now defining Fy(t) := e IPBl f;. Then using the bounded holomorphic functional cal-

culus of DB we have

]§[ |F<s,y>—f<x>|2dyds5]§[ e PBIF(y) — fe(y)]P dy ds
W (t,z)

W (t,z)
s B - )P dyas
W (t,z)
s et - ) avas
W(t,z)
2t c
S e PPG) - eIt + S+ e 1B
t
. e €
St\UK—ﬂ@+§+§
< €.

As required n

Combining Proposition 7.3.3 with Theorem 5.3.8 and Proposition 5.3.4 we gain the
following corollary, which is the same as Corollary 5.3.9 with convergence on Whitney

averages as in (2.6.3) instead of in L%

Corollary 7.3.4. We have (5.3.2) is globally well-posed in Eg pH with pointwise con-
vergence on Whitney averages. Moreover, solutions to (5.3.2) are of the form e *PB f for

4+t > 0 for initial data f € E5zH
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CHAPTER 8

SOLVABILITY RESULTS FOR THE ELECTRIC
SCHODINGER EQUATION

In this chapter we discuss results concerning the solvbility of the second-order equation
Hjqovu = 0. We are finial in a position to prove Theorems 6.0.1 and 6.0.2 which
will resolve the problems of well-posedness of the boundary value problems in the sense
of (2.6.4) and (2.6.5). We will also consider the notion of compatible well-posedness,
where we will prove that the solutions from Theorem 6.0.1 are equivalent the energy
solutions, which are constructed from the Lax—Milgram theorem. To do this we will need
to know the trace space of VH2(R+!) which will rely on the construction of the fractional

counterpart V52(R").

8.1 Well-posedness of the Second-Order Equation

We now are ready to transfer results about well-posedness from the first-order setting in
Chapter 6 to the second order setting as in Theorem 6.0.1. We first show the equivalence
between the invertability of the mappings (6.2.1) and the well-posedness of the first-order

equation as in definition 5.3.2.

8.1.1 Equivalences of well-posedness

We first show that non-tangential control is sufficient to give a correspondence between

the first-order and the second-order solutions.
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Proposition 8.1.1. If Hy,y u = 0 with ]V*(Vuu) € L*(R™), then F := V 4 ,u is a weak
solution of O,F + DBF =0 in R,.

Proof. By Proposition 6.1.2, it suffices to prove that V4 ,u € L _(Ry; L*(R™; C"*?)).

Now let K C R, be compact. Then, there exists an interval (¢, t;) such that K C (g, t;).

Then, letting | = log,(t1) — logy(ty) and using Lemma 7.3.1, we have

t1
// |VA7Mu|2dxds§/ IV, ul? dx ds,
K n to Rn

2k+1t0

l
<y / IV a2 ds,
k=0

kt()

2k+1t0

I
- Ztho][ IV ,ull3 ds,
k=0 2

kto
l 2t
<Y Pt [Vulids
—0 t>0 J¢

l
< D 25| INL(V )3,

k=0

< Q.

Thus V 4 ,u € LE (Ry; L*(R™; C"1?)), as required. O

Remark 8.1.2. If V € L3(R") then we have VW*(RTM) = W'2(R™™). That is,
|V, ulla = ||Vull2. Therefore, in the case when V' € L2 (R") we may replace the condition

N,(V,u) € L2(R") with N,(Vu) € L2(R™).

Now we show that the notions of well-posedness transfer across from the first-order

system to the second-order equations.

Proposition 8.1.3. (R)7, is well-posed if and only if ®5: Hp5 — {V,u: u € VH3(R™)}

is an isomorphism.

Proof. First suppose (R)7, is well-posed. Let ¢ € V12(R™). Let u be the unique solution
of the Regularity problem with boundary data ¢. As Hg .,y v = 0 and N*(Vuu) e L*(R"),

then by Proposition 8.1.1, we have F' := V 4 ,u is a weak solution of 0;F'+ DBF = 0 in
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R, . Thus, by Theorem 5.3.8 we have there exists f € H%E such that lim; .o+ F(t) = f

in 2. Now

= Vel =IIVyult,-) — Vel = 0,

Fu<t7') )

as t — 0. That is (fj, )7 = Vup. That is ®g: Hpp — {Veu 1 u € V2(R")} is
surjective as for every ¢ € V2(R") there exists f € H);5 such that ®g(f) = V.

Suppose there exists f € H% 5 such that ®g(f) = 0. By Corollary 5.3.9 we have (5.3.2)
is globally well-posed and so there exists a unique F' which satisfies (5.3.2) with initial data
f. Also, let u be the unique solution of the regularity problem with initial data 0. Since
Hy oy 0 =0 and the solution 0 satisfies the boundary data 0, therefore, by uniqueness,
we have u = 0. Then, G = V4 ,u = 0 satisfies (5.3.2) with initial data 0. Hence, by
uniqueness, F = G' = 0. Thus, f = 0. That is ®r: Hph — {V,u : u € VR2(RY)} is
injective.

Conversely, suppose ®r: Hyh — {V,u : u € V'2(R™)} is an isomorphism. Let
@ € VY2(R"). Then we have a unique f € Hyg such that ®z(f) = V,@. By corollary
5.3.9 there exists a unique F € L2 (R; W) satisfying (5.3.2) with initial data f. Then,

loc

by Proposition 6.1.2 there exists u such that H4,v v =0 and F' = V 4 ,u. Therefore

Fi(t.-
lult, ) = ¢llyr = — V| =0,

2
as t — 0. We also have convergence pointwise on Whitney averages

2

il
lim IVlu — V,p|?dyds = lim — V| dyds =0.
t—0 W(t,ac) K ® t—0 W(t,l‘) FH ®

That is for each ¢ € V1?(R") there exists u a solution to Hy 4y u = 0. Now by Theorem
5.3.8 we have F(t) = e *PP f. Thus, by Theorem 7.3.2 we have N,(F) € L?*(R"). There-
fore, as |V, u| = |Z_1||VA7MU| < |F|. And so we have N,(V,u) € L*(R"). Thus, there

exists u solving the problem (R)7%.
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Now we prove uniqueness. Let ¢ € VLQ(R”) be such that there exists u, v satisfying

Hapoyt= Haqyv =0, where N,(V,u), N.(V,v) € L*(R"), and u and v converge to the

boundary data V,p. Now, by Proposition 8.1.1 we have G = V 4 ,u € L{ _(R;;R(D))

loc

and H = V0 € L} (R;R(D)) are weak solutions to 9,F + DBF = 0. Thus, by

loc

Theorem 5.3.8, there exists g, h € H)5 such that G(t) = e *PPg and H(t) = e tPPh.

Now
GH(tv )
— V| =IViut,) = Vuella =0,
G#(t7 9
and
H\|<t7 )
— Vel = IVio(t,) = Vuplla = 0,
(1, 2

as t — 0. Hence ®g(g) = ®r(h) = V,p. Then, as ®r: H55 — {V,u : u € V2(R?)}
is an isomorphism, we have g = h. Thus, G = H. Therefore, V 4 ,u = V 4,v. That is

u = v. Hence, (R)7, is well-posed. O

Proposition 8.1.4. (NV)7, is well-posed if and only if ®y: HY5 — L*(R™) is an isomor-

phism.

Proof. Proved similarly to the regularity case. O]

8.1.2 Proofs of Main Theorems

We now give the proofs of the main theorems. We start with the well-posedness theorem

Proof of Theorem 6.0.1. Let A be a block type matrix. Then by Lemma 6.2.3 we have the
mappings ®r: Hyh — {V,u :u € VR2(R™)} and ®y: Hyh — L*(R™) are isomorphisms.
Thus, by Propositions 8.1.3 and 8.1.4 we have (N)7, and (R)7, are well-posed.

Now let A be self-adjoint. Then by Proposition 6.3.5 we have that ®z: H)L —
(V,u:ue V2(RY} and ®y: Hyp — L*(R?) are isomorphisms. Thus, by Propositions
8.1.3 and 8.1.4 we have (N)7, and (R)7, are well-posed.

To prove openness first let Ay € WP(N). Let A € L>®(R™; C"?) with || A— Al < €

for some € € (0,k), to be chosen later, where « is the ellipticity constant of Ay. Now
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define

Z(Ao — A)

A(z) = Ay — ———7—,
Ao — All

for z € Q= {w € C: |w| < e}. Then z — A(z) is holomorphic in 2. A(z) is bounded

and elliptic (with ellipticity constant k—e > 0) uniformly in Q. Now define B(z) = ,I(;)

As A(z) is elliptic uniformly in  then A, | (z) is invertible and A, | (z)~" is holomorphic

in 2. Therefore B(z) is holomorphic in 2. Note

— 1 —1

By~ B(z) = AcAy | —AR)Ay  + AR) A, — AR)A(Z)

(A(z) — Ag)A(z)

= (Ao — A(2)Ag ' + A(2) Ay

where By = Ag. Therefore, we have ||By — B(2)||so < Coll Ao — A(2)]|sc, where Cy > 0
depends only on n, x, and the bounds of Io_l, A(z)_l, and A(z). Note that, as A = A

we have the lower bound as well so ||By — B(2)|leo ~ |40 — A(2)]|o- Now choose
z0 = [ Ao — Alloo, A = A(20), and € < &. Thus ||By — B < Coe < k, where B = A.

Therefore, by Theorem 5.2.2, we have
[F(DBo)u — f(DB)ullz S [[Bo = Bllsc || fllscllull2 S A0 = Allsol[.flloc[[]l2;
for all f € H>(S). Choosing f = x™ gives
IED st — Efp,ullse < A = Aolloo [ ull2.

That is the projections E},; depend continuously on A. Then as Ay € WP(N) we
have @y : ”H%EO — L*(R") is an isomorphism. Therefore, by [4, Lemma 4.3] we have
for A sufficiently close to Ay then ®y: H)%E — L*(R") is an isomorphism as well. The
Regularity case is identical.

We now prove the equivalence of norms for the Regularity problem. Let A € WP(R).
Let » € V"2(R") be the boundary data. Then, as (R)7, is well-posed we have N.(V,u) €
L*(R™). Therefore, from Proposition 8.1.1, we have F = V 4 ,u a solution of the first-

order equation 9,F + DBF = 0. By Theorem 5.3.8 we have there exists f € Hy5 such
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that F, = e7'PBf. Then by Theorem 7.3.2 we have
~ > dt
I%.FE= [ 1aFIES < 1112
0

As A € WP(R), then by Proposition 8.1.3, we have ®5: Hyh — {V,u : u € VV}(R™)}
is an isomorphism and in particular ®x(f) = V,p. Also, we have |[|®xr(f)||2 < ||f|2 and
as {V,u:u € V"2(R")} is a closed subspace of L?(R") and so is a Banach space. Thus,
by the bounded inverse theorem we have ®5': {V,u : u € V"2(R")} — R(D) is bounded.

That is ||®%" (f)ll2 S || fll2- Therefore, || flla < [|®&(f)]|2- Hence, we have

f
Iflle = 1®a(A)l2 = ||

Ju
2

Then, recalling that f € R(D), we have
\T 2 [T pdt 2
IN(Vlla = [ [tV ulla— = [Vl

0

The proof is similar for the Neumann problem. O

Proposition 8.1.5. Let A € L=(R%™; £(C"*2)) be elliptic. Now let u be such that

H oy u =0, with | N,(V,u)|]s < co. Then, there exist ¢ € L2(R"; C*2), such that

2t

2t
fim £ (V,(s) ol ds =0 = Jim £ V,u(s) .
> Jt

t—0 ¢

Proof. This follows from Proposition 8.1.1 and Proposition 5.3.10. O

Proof of Theorem 6.0.2. Let u be a weak solution of Hy oy u = 0in R with N, (V,u) €
L*(R™). By Proposition 8.1.1, there exists F' a weak solution of 9;F + DBF = 0 in R
with F' = V4 ,u. Note, as I is a solution of the first-order equation 0,F + DBF = 0

using Theorem 5.3.8 we have there exists f € H)5 such that F(t,z) = e *?B f. Then by
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Proposition 7.3.3 we have

lim |F(S,y)—f(l')|2dyd820,

for almost every = € R". Note as f € R(D) then for some ¢ € L*(R") and ¢ € V"2(R"),

we have that

¥
f= VH¢ )
Vi
Therefore,
lim Oy u(t, ) — o(z)|? de dt = lim Viut, z) — V,o(x “dadt = 0.
i ff o) — (o) g ff  Viultn) ~ Vio(o)
As required. O]

8.2 Trace Spaces for Adapted Sobolev Spaces

We now turn our attention to compatible well-posedness. But, first we need to construct
the trace space for VM2(R"™!) and the definition of the trace operator.

Define the Schrodinger operator
H:=-A\+V:2(H)C L*(R") — L*(R").

We use the Schrodinger operator to define adapted fractional Sobolev spaces in a
similar fashion to the fractional Sobolev spaces defined via the Laplacian. First, note
that as H is self-adjoint then H has a bounded Borel functional calculus and so we may

define H?.

Definition 8.2.1. Let o > 0. We define the fractional homogeneous Sobolev spaces,

V*2(R"), as the completion of C2°(R™) under the norm ||HZu||,. We define the norm as
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follows

lullyoz = 1 HZull2.
we also define V~*2(R") :== (V*2(R"))*, the dual space of V*2(R™).

Now, as H, A, and V3 are all self-adjoint, we have

|H3u|2 = (Hiu, Hau)
= (Hu, u)
= (Ayu, u) + (Vu, u) (8.2.1)
- <Aﬁu,AEU> + (Vi V2)
= [Vull3 + IIV]>ul)3

= ||V,uull3,

for all u € V22(R™). We would like similar equivalence for Hi. It is conjectured in [5]

that the following inequality holds for all « € (0,1) and a range of p, but we only require

1

the one direction in the case when oo = 1

and p = 2. To prove this we use the Heinz—Kato

inequality, see [32] and [36].

Theorem 8.2.2 (Heinz—Kato). Let H be a Hilbet space and T': H — H be a bounded
linear operator. If A and B are positive operators with || Tz|| < ||Az|| and [|T*y|| < ||By||

for all z,y € H, then for all x,y € H we have
(T, y)| < [[A%||| By

for all @ € (0,1).

Lemma 8.2.3. Let V(z) > 0 for all € R”. Then we have the following bound
IAFAIZ+IVEFIE S IHf3,
for all f € V22(R™).
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Proof. As V is a positive operator we have the following

IA2 FI13 = (AF £, AR f)
= (A f, f)
< (AW ) V)
= (A +W)1. 1)
= (H3f H> f)
= ||H3 £,

-1 1 1 1
for all f € V22(R"). Also, as A} is self-adjoint then [[(Af)*f[3 < [|[H=2f||3. Thus, by

the Heinz-Kato inequality with o = %, we have
1 1 1 1 1 1 1
IAFFIB = AT £, AT ) = (AR £, 1)) < [ FIED £l = 7 £,

for all f € V22(R™).

A similar argument gives that ||V2f||2 < |[Hzf||2. for all f € V2%(R"). Therefore

again by the Heinz Kato inequality we have ||Vif|ly, < |Hiflly for all f € V22(R™).

This completes the proof. O

We now introduce the trace operator and trace space for VLQ(R?}FH). We define the
trace operator in the classical way by defining it on smooth functions and using density
to extend to the whole of V'2(R"™!). We define the trace operator on C°(R”*1) by the
linear operator Tr: C?(@) — V22(R), given by (Tru)(z) = u(0,2). We have the

following bound on the trace operator

Lemma 8.2.4. We have the following

Il g g S Ntllpegr)-

. . . . 1
Moreover, there exists a continuous extension Tr: VR2(RTH) — V2:2(R").

Proof. Let u € C®(R:™'). Now using the Fundamental Theorem of calculus, the self-
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adjointness of H %, the Cauchy—Schwartz inequality, and (8.2.1), we have

|H3u(0,2)? dz = —/ (/ at|Hiu(t,m)|2dt) dz
R® r* \Jo
=— / Hiult, x)@tHiu(t, T) + Hiu(t, 2)0Hiu(t, z) dz dt
R+

= — / Hiult, x)Hiatu(t, x) + Hiu(t, 2)Hidu(t, z) dz dt
R+

= — / Heu(t, 2)0pu(t, z) + H%u(t, x)Owu(t, x) dedt
R+

} :
< (// |Héu(t,x)12da;dt> (// latu(t,a:)|2da:dt>
R+ RO+
+ +
S// IV, u(t, z)|* dz dt.
R7H!

The remaining part follows from the density of C°(R"*!) in V'2(R™™!) in Proposition

2.3.2. [l

We are now able to define Vy?(R"™) as the set of functions in VH2(R?H) with zero
trace and so Vy (R C VDR

It is important that we are able to extend functions in V22(R™) to the upper half-
space. To do this we prove that the trace operator Tr is a surjection and so for each
function f € V22(R™) there exists an extension F € V22(R™!) such that Tr F = f. We

note such an F' may not be unique.
Lemma 8.2.5. The trace map Tr: VY2(R™!) — V22(R") is surjective.

Proof. Let [ € V%Q(Rn). Let {fn}nen C CX(R™) be a sequence converging to f in Va2
norm. Then define F,(t,z) = e ™VH f,(z) for t > 0. As VH is a self-adjoint operator
we have {e~™VH}, ¢ is an analytic semi-group and so limy_,g F,,(t) = f, in V2 (see [25]
for more detail on analytic semi-groups). As H is a self-adjoint operator then H has a
bounded holomorphic functional calculus and satisfies quadratic estimates. Now, splitting

the components of V,, the semi-group properties, (8.2.1), and the quadratic estimates
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for H with 1(z) = z2e~*, we have

2 — —tvVH 2
||FN||V1,2(R7+L+1) = //R’_f_“ |Vu€ fn(l‘)l dz dt

- / 10V f |2 dt + / IV 5, 2t

0 0

S [ IVESTg Rt
0
< g
= [ NevEe T RS
0

1
S H fll3.

Thus HF"HVI’Q(MH) < an||\‘/%’2(R”) with TrF,, = f,. A standard density argument
shows that {F,},en C VV2(R™) converges to some F € VYR with Tr F = f

and HFH]‘)LQ(R1+I) S S . This completes the proof. O

V32 ()
We now investigate how the adapted gradient V,, behaves on the fractional adapted

Sobolev space V%Q(R") To do this define the linear operator

of
V. VEHRY) — V7 22(RY:C™Y)  given by V,f =
Onf
Vaf
where for fixed k € {1,...,n} we define the functionals
Of: VI2(RY) = C by (Of)(p) == | fokp,

R’ﬂ
and Vaf: Va2(R") = C by (Vif)(p):=— [ fViep.

Rn

We describe the boundedness properties of V, is the following lemma.

Lemma 8.2.6. Let u € V22(R"). Then V,u e V=22(R"; C**) and Vi Vz2(R") —

V-22(R™; C™) is an injective and bounded operator.
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Proof. Let f, ¢ € C3°(R™). Then by Parseval’s Identity we have

< [ 1©leleoa (522

< ([ e '2df) (/[ ttiote |2d§>

That is [(Oxf) ()] < [ fll 41 llell 1, Where H=(R") is the standard fractional Sobolev
space of order 3. Then using the fact that 1Nl 1 = ||A%f||2 and Lemma 8.2.3 we have
OO < 17153 2l5 < 1F1pallplly . Thus, by the density of C2(R) in VE2(R")
we have (0, f) is a bounded linear functional on V22(R") and ||8kf||v,%,2 < Hf”v%Q for all
f € C*(R™). Another density argument gives that (0 f) is a bounded linear functional
on V2 2(R) for all f € V=2(R"). Similarly we have

i< [ wivie s ([ wie) ([ viee) < islslelse
(8.2.3)
for all f,¢ € V=2(R"). Thus, V2f € V"22(R"). From (8.2.2) and (8.2.3) we have
that [(V,/)()] S [1fllp32lellpy. for all f,¢ € VE2(R"). Therefore, V,: V22(R") —
V=22(R™: C™) is a bounded operator.
To prove injectivity, let u € V22(R") with V,u = 0. That is, for all p € V22(R™) the

(V,u)(p) = 0. In particular, we have

0= (Vu)(0) = / w0 Ve e CERY.

Thus v =0 and V,: Va2(R") — V=22(R™ C™Y) is injective. O

8.3 Sobolev Spaces Associated to an Operator

In this section we will give a description of fractional Sobolev spaces associate with an

bisectorial operator. The results in this section are from [8]. For a Hilbert space H and
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a closed w-bisectorial operator T" we first introduce the Hilbert space Hr defined to be

the completion of {f € H : || f||z < oo} of the norm || - || where

o d
£l = [ DB

0

for some ¢ € V(S7), where u € (w,3). Note that the choice of 1 and ¢ give rise to

equivalent norms, see [1] for more detail. We now introduce the following definition.

Definition 8.3.1. Let s € R and w € (0,7). Let T" be a closed w-bisectorial operator

of type S,,. Then, define the space Hrfp to be the completion of Hr under the quadratic

norm

Sl dt
= [ IS
where ¢ € W(S7) such that z°¢ € ¥(57) and p € (w, ).

Note, by Theorem 4.1 in [8] we have that different choices of ¥ and p give rise to

equivalent norms. We also have T is a natural isomorphism between H3. and H5 '

Proposition 8.3.2. Let s € R. Let T' be a closed w-bisectorial operator. Then T extends

to an isomorphism from 5 to 5L
Proof. Similar to Proposition 5.2 in [8] or Proposition 6.4.1 in [31]. O
The following interpolation result is from [8, Theorem 5.3].

Proposition 8.3.3. Let s,t € R, with s # t. Let T be a closed w-bisectorial operator.
Let a € (0,1). Then
Hy Y = (M H)a

Another important result is that the intersection of two fractional Sobolev spaces is

dense in the fractional Sobolev spaces in the intermediate regularities.

Proposition 8.3.4. Let s,t € R, with s < t. Let T be a closed w-bisectorial operator.

Then M5 N HY is dense in HG for all o € (s,1).
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Proof. Note that by construction we have Hy is dense in H7. for all s € R, and by the
interpolation in Proposition 8.3.3 we have #5 N ML C . Thus Hy C HE N HY C HE.

The result follows by properties of closures. O

From [8, Theorem 4.1 (ii)] we have the following

Proposition 8.3.5. Let s € R. Let T be a closed w-bisectorial operator. If y > w and

s € R then we have
N f(T)ullrs < Cousllflloollullrs for all f e HOO(SZ) and for all u € HZ}

Now we have collected some of the important abstract results for fractional Sobolev
spaces we turn our attention to the operator DB. We start by defining our base Hilbert

space as H = R(D). As DB has a bounded holomorphic functional calculus we have

Hpp = R(D). In particular, we obtain the following.

Corollary 8.3.6. The bounded holomorphic functional calculus for DB defined on R(D)
extends to a bounded holomorphic functional calculus on 7—[% - In particular, we have
the topological splitting

7‘6)3 - 7"[;)’; D 7'.[%_37
where H35 = xT(DB)H3 5 and H3p = x (DB)YH5) 5.

Now define the Hilbert space Dr, to be the completion of 2(7*) under the norm
|Tul|2. If s € (—1,0) then by [8, Theorem 8.3] we have H%z = Dip)s With |||l pp,s =~
|[D]?u]|2. We also have the following lemma
Lemma 8.3.7. If s € [—1,0], then H3, = H3, with equivalent norms.

Proof. Similar to [7, Proposition 4.5 (4)]. O
Lemma 8.3.8. We have (H3), = V*2(R") and (H3), = V,H 2V*2(R").

Proof. Define the operator U: L?(R™; C?) — R(D) by



Notice that U is an isometry and has inverse U~': R(D) — L*(R"; C?) given by

. 0 0 —(V,)*| |1 0
0 —H 2(V,)*| |-V, 0 0 —V,H :
I 0 0 H:
0 —H 2(V,)*| |-V, 0

Then by Theorem 4.1 in [8] we have H3, = UHS and ||ullrs ~ ||[Uul|p.s for all u € H.

Now as
. H 0
0 H
Then as T? is diagonal we have
. H: 0
[T = (T%)2 =
0 H3

As U is an isomorphism we have for all f € H$, there exists u € Hj such that f = Uu.
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Now using the comparison in norm and Theorem 8.3 in [8], we have

1fllps = |Uul[p,s
~ [lullr,s
~ [T Uull
B Hz 0| |y
- 0 Hz| |uy

= |[H2wils + | H2 us 2.

Therefore, fi = u; and f, = —VHH’%UQ where uq,uy € VS’Q(R"). That is (’,'-[SD)L =
V#2(R") and (H3), = VuH_%VS’Q(]R”), as required. O

8.4 Energy Solutions

In this section we will construct the variational or energy solutions to the Schrodinger

equation. This follows [7] which in turn is based on [4].

Definition 8.4.1. We say u is an energy solution of —div AVu + aVu = 0 in R if
u € VW2(R™) and

/ AV, u -V, =0,
for all ¢ € C°(R™™). That is u is globally in V52(R%H!) and a weak solution.

We make the following definition for the trace of the conormal derivative, 0,,, in the

case of energy solutions

Definition 8.4.2. Let u € V'2(R"™) such that H 4,y u = 0. Then we define Tr(9,,u) €
V_%’2(Ri+1) defined by

(Te(8y,0)) () = / AV, V8

for all p € V%’Q(RTFI) and where @ is an extension of .
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We note that this definition is well-posed as by Lemma 8.2.5 the trace operator is
surjective so there exists ® € V(R such that Tr(®) = ¢. Also, for any ®, &' €
VU2(R™1) such that Tr(®) = Tr(®') = ¢, then Tr(® — &) = 0 so & — &' € V2 (RTH).

Therefore, as Ha oy u = 0, we have
/ AVu-V(® — ') =0.

That is Tr(0,,u)(¢p) is independent of our choice of extension for ¢.
We have the following propositions concerning the well-posedness of the boundary
value problems for solutions in the energy class. We say u is an energy solution to the

Neumann problem for data ¢ € V=2:2(R") if:

(
Hyovu=0,

w e VIR

Tr(0,,u) = —e.
\

The following proposition states the Neumann problem with data in V_%’z(R") is well-

posed.

Proposition 8.4.3. For each ¢ € V~22(R"), there exists a unique u € VI2(R™H) such

that Hp oy v =0 and
[Te(0,,u))(¢) = —p(¢) for all ¢ € V22(R").

That is u is an energy solution for the boundary data .

Proof. Let ¢ € V"22(R™). Define the linear functional F,,: VV2(R"!) — C, given by

F v = —p(Trv).
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Then F,, is a bounded linear functional since using Lemma 8.2.4, we have

[Fov] = lp(Tro)| < floll -1l Troll e S llell,-gellollpe,

for all v € VYR, As J 4 is a coercive and bounded sesquilinear form on WV2(R7),

using the Lax-Milgram Theorem there exists a unique u € VLQ(RTI) such that
Ja(u,v) = —p(Trv) for all v € YRR,

Now, recall by definition [Tr(9,,,u)](Trv) = J4(u,v). Then, Lemma 8.2.5 gives
[Tr(0,,u)](@) = —¢(0) for all ¢ € V=2(R")

As required. n

We say wu is an energy solution to the regularity problem for data ¢ € V%’z(R”) if:

/

Hypovu=0,

u € VIR,

V. (Tru) =V, .

\

We have the analogous proposition for the well-posedness of the regularity problem.

Proposition 8.4.4. For each f € V22(R"), there exists a unique u € V-2(R"*1) such

that Haovu =0 and Tru = f in V_%’Q(R”).
Proof. Now, let f € V22(R"). Then by Lemma 8.2.5 we have e VA f € VI2(RUH),

Define the functional Fj: V;*(R™!) — C

Fw=— [ AV T

Then, Fy is a bounded linear functional and since J 4 is a coercive and bounded sesquilin-

ear form on V&Q(R?}fl) C VLZ(RTLI). Therefore, by the Lax—Milgram Theorem there
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exists a unique w € VS’Q(RTLI) such that

Ja(w,v) = — / " AV, (eI f) . Vo for all o € VE2(R™MH),
+

Now define u = w + e‘t\/ﬁf. Note, u is an energy solution and Tru = f in V%’2(R”).
Suppose there exists another solution, v’ € V(R for the boundary data f. Then,

‘1o :
as u —u' € Vy¥(RTH!) and u and o are energy solutions, we have

Ja(u—u';u—u) :/

n+1
R+

AV, u -V, (u — ') —/ AV ' -V, (u—u)=0

R+
and so by the coercivity of J,, we have

lu—ul[pre S Jalu —u',u—u') =0.

Thus, u is unique. ]

We define the Neumann to Dirichlet operator as
Dip: (Hp')e = (Hp*)r by Dipf = V(Tru),

where u € VV2(R™) is the unique energy solution with Neumann data f. Also, define

the Dirichlet to Neumann operator

[

Thy: (Hp)r = (Hp?)1 by Thyg = Te(d,,v),

where v € Vl’Z(RTFI) is the unique energy solution with regularity data g.

Proposition 8.4.5. The operator T'},: (Hp2)1 — (Hp?). is bounded and invertible

1 1
and has inverse I'} v : (Hp?)r — (Hp?).1.

1
Proof. Let f,f' € (Hp?)L be such that TN, f = ['\pf’. Then by definition I'Y,f =
V. (Tru) and T, f' = V,(Tru) where u, v’ € V'2(R"™) are the unique energy solutions

with Neumann data f and f’ respectively. By assumption V,(Tru) =T}, f =Thpf =
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V,(Tru'). That is, v and «’ are energy solutions with the same regularity data. Thus,
by the uniqueness property in Proposition 8.4.4 we have u = u’. Hence f = f’. That is
I'hpy: (%B%)L — (HB%)T is injective.

Now let g € (7-'[,;%)7,. By Lemma 8.3.8 we have (%B%)T = V,(V22(R")). Then
g = V,p for some ¢ € V%’Z(R”). Then by Proposition 8.4.4 we have there exists a
unique u € VW2(RTH) with regularity data V,p. That is V,(Tru) = V,o = g. As
Huqvu =0 then Tr(d,,u) exists and is well defined and Tr(d,,u) € V~22(R"). There-
fore, '} 5 [Tr(9,,u)] = g and T} p: (QB%)L — (7-'[55),, is surjective.
Note that the inverse is ['} : (H;%)T — (HB%)L. Thus, we have T'},: (H;%)L —

o1
(Hp?), is an isomorphism O

Now we have defined energy solutions we give a presentation in terms of semi-groups.

This is based on [7, Proposition 4.7].
Proposition 8.4.6. Let u € V2*(R"). Then

1. If u € VY2(R™) with Ha,yp u =0 in R™™ (u is an energy solution of — div AVu +

o1
aVu = 0), then there exists f € HD%’JF such that V 4 ,u = e PP f.

L1 .
2. If f € HD%’+, then there exists u € VY2(R") with Haoyu = 0 in RTM (u is an

energy solution of —div AVu + aVu = 0) such that V4 ,u = e "P5f.

Moreover, f is unique and || f[|pp,—1 = [ullyr..

: 1
Proof. We prove (2) first. Let u € V2*(R"). Suppose there exists f € H Dif such that

loc

1
Vauu=ePBf Define f. = e PBf € ”HDfB’Jr for all € > 0. Then by [8, Theorem 8.3]

and using the bounded holomorphic functional calculus of DB, we have
Ifellpps =2 [[eDBJ2e PP flly S 72| f]l» < 00, forall e > 0.

Therefore, f. € Hp4 N HE,. Thus, by Proposition 8.3.4, we have f. € H3% for all

1

s € [—3

1,31, So, in particular f. € Hp, = xT(DB)R(D). Hence, by the Theorem

6.0.1 there exists a weak solution u. € Vl’Q(Rﬁlfl) such that e P8 f, = V4 ,u.. As DB is

loc

. =t _ . . .
sectorial on H %" we have {e *PP}__ is an analytic semigroup and thus f. — fase — 0
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L1 1 o1
in HD]23’+. Now, using the ellipticity of A, the extension of DB: H%’g — ”HD%’JF being an
isomorphism in Proposition 8.3.2, the property ¢(DB)D = Dy(BD), and Proposition

8.3.2 again, we have

& dt
// |Vuu—VMua|2dxdt§/ t||VA,M(u—uE)||§7
Ry

0

> dt
= [ tler s - BT

0

— [ e pBDE) - DB

< /Oo tY(tDB)(DB)~ (f — ﬁ)l@% (8.4.1)

0
<IDB)(f = )by
=11/ = F-llps,

— 0, ase—0,

where 9(2) = ze™*. Thus, u. — u as ¢ — 0 in VR2(RT). Let ¢ € C®(RT™) not

identically zero. Fix § > 0 arbitrarily. Let ¢ > 0 be such that ||u — uc|[yr. < HWL@OM'

Therefore, as u. is an energy solution and Cauchy-Schwarz inequality, we have

/ AV, u -V | < // |AV ,(u —uz) - V0|
R1+1 Rz+1

S ( A w)é < I.. wz)%

< 0.

As § > 0 was arbitrary we have that H4 .y u = 0. Thus u is an energy solution.

o1
Now we prove (1). Let u be an energy solution. Let f € H % be defined by

Tr(0,,u)
f=(Vauu)(0) =
V. (Tru)
L1 L1 L1 L1
Now, using Lemma 8.3.7, we have H > = Hp; = HD§’+ ® Hpp , and so splitting f as

follows f = f¥+ f~, where f* € 7—{;53. Then, by [8, Theorem 8.3] and using the bounded
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holomorphic functional calculus of DB, we have
™5 ¥ pp s = =2 [[tDB[2e™ PP f* |l S || f ]|z < 00, for all £ > 0.

That is e PP f+ e H%E for all t > 0, and by the Theorem 6.0.1 there exists u* €
. 1
V2R such that e P8 f+ = V4 ut with Hyaput =0in R7L Also as f+ € H,3

a similar argument to (8.4.1) gives

// IV, ut)? dz dt < co.
R+

That is u™ € VYR, and so is an energy solution. Using a similar argument there
exists u~ € VV2(R™) such that e PP f~ = V4 ,u™ with Hy,pvu™ = 0 in R, Now,

define
: +1
u—ut in RY
v =
u” in R™*!
Now notice by construction that u is the weak solution with Neumann data f and u® are

the weak solutions with Neumann data f*. Therefore

/ AV, v -V, = / AV, u -V, 0 — / AV, ut -V, o+ / AV, u™ -V,
Rn+1 Ri+1 Ri“

= —f(Tro) + [T (Tre) + f(Try)
= —f(Tro) + f(Try)

for all ¢ € C>°(R™!). Thus,

/ AV, v-V,0 =0
Rn+1
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for all ¢ € C>°(R™*!). Hence, by density and coercivity, we have
0= J| AV V2 V0l
Rn+1

Thus, v = 0. That is v~ = 0 and u = u™. Hence, e PBf = e PBft+ 4 o7tPB = —

Vauut 4+ Va,u” =V ,u. This completes the proof. O

We are now able to use the Neumann to Dirichlet and Dirichlet operators to describe

o1
the class Hp5 .

Lemma 8.4.7. We have the characterisation
.1 .1 L1
Hor ={heM? hy=Thphiy ={heH,?: hy =Thyh}.

Proof. Let f € 7—[;%# Then, by Proposition 8.4.6 we have there exists an energy solution
u € V(R such that e PPf = V,,u. Thus Typfy = V,u(Tru) = f,. Thus
Hort C{hety: hy =T h.).

Now let g € {h € Hp?: hy = Thphi ). As (Fp?)L = V32(R") then g1 € V- #2(R")
and so by the well-posedness of energy solutions in Proposition 8.4.3, there exists a weak
solution u € V'?(R") with Tr(d,,u) = g. Therefore, by definition the Neumann-to-
Dirichlet operator we have I'f,g = V,(Tru). Also, by Proposition 8.4.6 there exists

L1
f €My such that e P8 f = V4 ,u. Thus

g Tr(0y,u) ;
Y Vu(Tru)
. ot ThE
That is [g, % pg]” € HpE .
The second equality is proven in a similar way. O

1
Then as for f € /HDJ297+ we have sgn(DB)h = h and h, = I'},,h, . Therefore, combin-
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ing the two characterisations gives,

h =sgn(DB)h

SJ_J_(DB) SJ_T(DB) hJ_
STL(DB) S,,«T(DB) FEDhL

SLL(DB>}LL + SLT(DB)F_]‘\_,DhL

SM_(DB)hJ_ + SM<DB)F;DhJ_

Thus, equating the first component followed by equating the second component gives
I'hp=s51.(DB)*(1-s,.(DB)) = (I — $.,(DB)) 's,. (DB) (8.4.2)
A similar argument gives

'ty =(0-s.1(DB)) s, (DB) = s,..(DB)"*(I — s,.(DB)) (8.4.3)

8.5 Compatible Well-Posedness

In this section we prove the compatible well-posedness of the purely electric Schrodinger

equation.

Definition 8.5.1. We say (N)7, (or (R)7,) is compatibly well-posed if (AV)7% (or (R)7%)
is well-posed and the solution agrees with the energy solution when the data is in L?(IR")N

V=22(R™) (or VV2(R™) N V22(R™)).

We start by introducing the following decomposition of sgn(DB),

SLL<DB) SLT(DB>
Epp =sgn(DB) =
$,.(DB)  s,.(DB)
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Using the identity x*(DB) = 2(I £ sgn(DB)) we obtain

1
2

1|l +xs.,(DB) =+s,,.(DB
By = yi(pp) = L | 1T PD) DD
+s.,(DB) I+s,.,.(DB)

We are now ready to explore the relationship between the above representation of

E# 5 and the well-posedness of boundary value problems.

Proposition 8.5.2. (R)7, is well-posed if and only if s,, (DB): (%), — (H%), is an
isomorphism. Also, (N)7, is well-posed if and only if s,,.(DB): (H3), — (H%). is an

isomorphism.

Proof. Note that s, (DB) = 2®rx"(DB)P,, where @ is as in 6.0.1. Then as ®p and
P, are a pair of complimentary projection, as are xy*(DB). Therefore, by [9, Lemma

13.6] we have 2@\ (DB)P, is an isomorphism if and only if both ®px*: HY — (HY),
are isomorphisms. This is true by the well-posedness of (R)f2 in Theorem 6.0.1. Hence,

s, (DB): (HY)1 — (H%), is an isomorphism.

The Neumann problem is similar. O
We have the same when the solutions are energy solutions.

Proposition 8.5.3. s, (DB): (%B%)L — (7—15%)7« and s,.,.(DB): (ﬂ;%)r — (’H;ﬁ)l are

both invertible.

Proof. As the energy problem is always well-posed then the proof is the same as Propo-

sition 8.5.2. O

We now give a condition for compatibly well-posedness of the Neumann problem in

terms of s,,.
Proposition 8.5.4. We have the following:

1. If I —s,,: (’H%ﬂr — (7—.[(1))’+)T is invertible and the inverse agrees with when I — s,.,.

1

is restricted to (H;’Jr)r, then (N7, is compatibly well-posed.
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2. f I — s, (”F[%Jr)l — (7-.[%+)L is invertible and the inverse agrees with [ — s |

o1
when restrited to (H D2’+) 1 then (R)7, is compatibly well-posed.

Proof. Define the operator

. 1 . 1
T: (H%H N (HDTJF)L — HY N HD2’+ given by Th =
| )

Note, as I — s,,: (7_'[%+) = (7{%+) | is invertible and the inverse agrees with the case
when on (H;,%’+)L then by (8.4.2) we have '}, and therefore T, are well defined on
(HE")L N (7-.[,;%’+)L. Clearly ®yTh = h. Let f € H}™ N 7{5%’+. Then by Lemma
8.4.7 we have f = [f, TN pf1]". Therefore, T®yf = f. That is, Py : 7:[%+ N ”HB%’+ —
(H%H) N (H;é’+) | is an isomophism with inverse 7. Then (N)7, is compatibly well-
posed.

The case for the regularity problem is proved similarly to the Neumann case. O]

We are now in a position to prove compatible well-posedness results. We start with

the case when A is block-type.

Theorem 8.5.5. If A is block-type, then (N)7, and (R)7, are both compatibly well-

posed.

Proof. Since EpgN + NEpp = 0 and E% 5 = I we must have

0 s, (DB)~!
EDB = sgn(DB) = . (851)
s, (DB) 0

Therefore I —s, | (DB) = [ —s,,.(DB) = I which is invertible and agree with the inverses
. 1

1 1
on (H D2’+) 1 and (H D2’+)T respectively. Thus (N)7, and (R)7% are both compatibly well-

posed. O]

We now consider the more general structure of lower triangular matrices. The proof
uses the interpolation of the H3,; spaces even in the case for just well-posedness. There-

fore, both well-posedness sand compatible well-posedness are new for lower triangular
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matrices. The case of the Laplace equation was proven in [7] but we adapt the proof of
[6].

Theorem 8.5.6. If A is lower triangular, then (N)7} is compatibly well-posed, and

therefore, also well-posed.

Proof. To prove that (N )“L“2 is compatibly well-posed we will use Proposition 8.5.2 and
prove s1,.(DB): (H}), — (H%), is an isomorphism. Let Ag be the diagonal block

matrix associated with A. That is

A, 000 ATV 000
Ap = 0 A|||| 0 then Bp = -ZB = 0 A||H 0
0 0 a 0 0 a

Then D Bpg acts independently on the | -components and r-components. Therefore, using

Proposition 8.3.2 we have

DBg: (Hpp,) . ® {0} — {0} & (Hpa,)r and (8.5.2)

DBg: {0} & (H3p,)r — (Hps,)L @ {0}, (8.5.3)

are isomorphisms. Then s,,(DB): (H%), — (H%). being an isomorphism is equivalent

to
0 © 1 . SJ_T(DB)f
T.(DB): (Hp)r = (Hp )r given by T, f = ®rDBp
0
being an isomorphism. Now by Proposition 8.5.3 we have
L1 ._3 SM(DB)f
T.(DB): (Hp®)r = (Hp®)r given by T,.f = ®rDBp
0
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is an isomorphism. Now for f € (H,?), N (H3), we have

SLT(DB>f
0

T.(DB)f = ®zrDBp

= O DBgP, sgn(DB)

= drDBsgn(DB)

= drsgn(DB)DB

= (I)R SgH(DB)PJ_DBB
f

= STJ_(DB)(I)NDBB
f

1

0 1
Then, as $yDBpg € (Hp?)L, using Proposition 8.5.3 and density we have that the
f

.1 . 1

operator T.(DB): (H3), — (Hp?), is an isomorphism. Now using the boundedness of

T.(DB) on both spaces and the bounded inverse Theorem we have

LBy s +ITDB s =y 41l o (854)

2
DBg/T DBp DBB)7' DBB)7'

1 1

for all f € (Hp?), N (HE),. Define A, == 7Ap + (1 —7)A for 7 € [0,1]. Note that for
7 € (0, 1] then A, is lower triangular and so by similar reasoning we have that 7,.(DB,) is
both bounded and bounded below as in (8.5.4). We know T.(DBg): (H2), N (H,2), —

o1 .3
(Hp?)r N (Hp?), is injective. To see that T,(DBp) is surjective, recall (8.5.1), and so we
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have

= DBB SgH(DBB)
Tr(DBg)f f

L1 ._3

For g € (H,2), N (H,?), we have g € (H5'), and so we may define

0 0
.= (DBg) 'sgn(DBp)

f 9
Then T,(DBg)f = g. Thatis T,,(DBp): (ﬂl%))rﬂ(%l_)%)r — (7{5%)Tﬂ(7{5%)T is surjective.
Thus, by the method of continuity we have T,.(DB): (H%)T N (ﬁ;é)r — (”HB%)T N (H,;%)T
is also an isomorphism.
Then, by Lemma 8.3.4, we have (’H%)m(?igé)T is dense in (HY), and (%gé)m(ﬂgg)r
is dense in (Hp'),. Let g € (Hp'), then there exists {g,} C (7-.[,;%)7, N (Hgg)r converging
to g. Then as T,(DB): (7—[%,)7« N (HB%)T — (7-'[1_7%),« N (H;g)r is an isomorphism so there

exists {f,} C (H2), N (H,?), such that f, = T,(DB) 'g,. Then

an - meDB,o = HTT(DB>71<gn - Qm)HDB,o 5 ”gn - gmHDB,fl — 0,

as {gn} is convergent and so Cauchy. Thus, {f,} is a Cauchy sequence and as (H9), is
complete then {f,} is convergent. Let f = lim,, . f,. Then, for arbitrary n € N, we

have

|T-(DB)f — gllpp,—1 < | T.(DB)(f — fu)llpp,—1 + | T-(DB) fr — gllpB,—1

S W= falloso + lgn — 9llpB,—1-

Note that this converges to 0 as n — oo. Thus, T,,(DB)f = g. Thus, T,(DB): (H}), —

(%Bl)r is an isomorphism. As required. O

Theorem 8.5.7. If A is upper triangular, then (72)“1‘}2 is compatibly well-posed.
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Proof. Similar to the lower triangular case where we use

.1 ._3 0
TJ_: (HD2)J- — (HDz)J_ given by TJ_f = (I)NDBB ,
SM_(DB)f

instead. O
We also consider the self-adjoint case.

Theorem 8.5.8. If A is self-adjoint, then (N)7, and (R)7, are both compatibly well-

posed.

Proof. Define the self-adjoint matrix A, = 7.A+(1—7)1 for 7 € [0,1] and define B, = A,.
Then from Section 6.3 we have B, is uniformly elliptic on R(D) and uniformly bounded

for all 7 € [0, 1]. We also have the Rellich estimate
11l = I fills = [ lla - forall f e Hpp
where the constants are independent of 7 € [0, 1]. Therefore, the bounded linear operators

O Hph, = (Mbp)L given by &7 f = f1,

T 7-'[D’J]§ — (HY5 )r given by % f = f,,

are bounded below. Also, from the well-posedness in the energy class we have the bounded

linear operators

1. .,_% ,_% ) _%77_
(I)NQ’ : HDB+ — (HDB )J_ given by (I)N f = fJ_,
1, 1 ' i
®R27 HDB+ — <HDB ) given by CI>R2 f = fT7

are isomorphisms for all 7 € [0,1]. Thus, by the bounded inverse Theorem we have &>

1.
and ®,?" are bounded below.
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We proceed with the Neumann problem. Define the bounded linear operator

T . | 717"' . Y—3 : T
oY H%ET NHpp — (’HODBT)L N(Hpp )L given by @ f == f).
. 1
Note that ®% is bounded below and so is injective. As HYp N HpZ% is dense in both
. 1

HY . and H %, then invertablity of ®F is equivalent to compatibility of the inverses of

1, .
<I>?\’,T and ®,2". Note that as Ay = I so by Theorem 8.5.5 we have ®Y; is invertable. Then

. o1 . .1

following the procedure in Section 6.3 we have @7, : H%ET F‘IHD%’:F — (Hpp )L N(Hpp )L
is an isomorphism. Hence, (A7}, is compatibly well-posed.

The regularity problem follows by a similar argument. ]
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CHAPTER 9

CONCLUDING REMARKS

We will conclude by summarising some of the key results and then provide some possible

generalisations of the work conducted in this thesis.

9.1 Summary of Key results

This thesis was focused on solving boundary value problems for the Schrodinger equation
Hyovu(t,z) = —dive, A(z)Vigu(t, ) + a(z)V(x)u(t,x) =0

on the upper half-space R == {(t,x) € R x R" : ¢ > 0}, for integers n > 3, where A €
L>®(R™ L(CH™)) and a € L®(R™"!; £(C)) are complex, t-independent, and elliptic,
and where V' is in the reverse Holder class with exponent 7. The main theorem is
Theorem 6.0.1 which states that Neumann and Dirichlet regularity problems are well-
posed if A and a are self-adjoint, or the A is of block-type; and the sets of matrices A
and a for which the Neumann problem is well-posed and the Dirichlet regularity problem
is well-posed, are both open.

To prove this theorem we showed that equation (1.0.1) is equivalent to the first-order
system of equations

0,F + DBF =0,

where D: 9(D) C L*(R"; C""?) — L*(R™; C"*?) is a first-order operator associated with
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A + V, the unperturbed Schrodinger operator, B: L*(R";C""?) — L*(R";C"*?) is a
multiplication operator derived from the perturbations A and a, and F € L2 (R, ;R(D)),
given by ' = V 4 ,u. In this way, it was possible to solve boundary value problems for
the operator H4 , 1 by studying the associated initial value problem for the operator DB.

One of the most important properties proven in this thesis was Theorem 3.0.1, which

implied that the operator DB has a bounded holomorphic functional calculus, which is

equivalent to the following quadratic estimates
= 2 —1 24t _ 2 B
[tDB(I + #*DBDB) "ull3— = [Jull3, Yu € R(D).
0

Here we used a dyadic decomposition which differentiates between big and small cubes,
at each scale, depending on the potential V. For small cubes, the arguments from [13]
can be adapted. However, as both the reduction to the Carleson measure estimate and
the stopping time argument needed to be done on small cubes, a new approach for big
cubes was developed based on the Fefferman—Phong inequality.

We also adapted the methods we developed for the electric Schrodinger equation to the
magnetic Schrodinger in Theorem 4.0.2. This was done by using a localisation argument
on a more sophisticated collection of dyadic cubes which took advantage of the Iwatsuka
Gauge transform and allowed the introduction of the magnetic field.

As DB is a bisectorial operator with a bounded holomorphic functional calculus on

R(D), it was possible to restrict to a subspace of R(D) for which DB is sectorial. There-

—tDB),_, on this subspace. We also proved

fore, DB generates an analytic semigroup (e
this characterises the solutions to the first-order system. Next, it was shown that well-
posedness of the boundary value problem is equivalent to showing that certain mappings
into the boundary data space are invertible. We then proved these mappings are indeed

invertible.

Another important result was Theorem 7.3.2, which allowed for the control of the

227



non-tangential maximal function of the gradient of solutions

2 2
> Vigu| | dt ~ [ | Viau
| e T=IvlE = |,
0

Vizul| V|zu

2 2

where u is the solution to Ha .y u = 0 for the Neumann boundary data ¢ € L*(R"). An
analogous result holds for the Dirichlet regularity problem. The key proposition here was
the weak reverse Holder inequality of the gradient of solutions in Proposition 7.1.4.

The last key result was that these solutions are unique, in the sense that the solutions
which arise from the first-order method are equivalent to the classical (energy) solutions
which come from the Lax—Milgram Theorem. Since there is an adapted Sobolev space
being used, new trace spaces for this problem were defined and analysed. Then, it was
proven that the energy solutions can also be characterised in terms of a semigroup and
this allowed us to use the bounded holomorphic functional calculus to prove that these

solution coincide.

9.2 Further Work

A main focus for future work would be to consider the boundary value problems for the
equation

(V+ib)"A(V +ib)u+aVu =0, (9.2.1)

with both first-order and zeroth-order terms. This would be done by combining the
projections from Chapter 3, which are used to proved the quadratic estimates for the
purely electric Schrodinger operator, with the localisation onto the set of maximal dyadic
cubes from Chapter 4. Once the quadratic estimates have been established then the
solvability results and non-tangential maximal function estimates will be the next step.
This will include: reducing from the second-order equation to another first-order system,;
the weak reverse Holder estimates of the magnetic gradient V + b of solutions to (9.2.1);

and the trace space theory for the adapted Sobolev space -Wb1’2(]Ri+1) defined in Section
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2.4.

A further generalisation is to prove the boundary value problem for systems of equa-
tions rather than a single equation. This would follow the original first-order paper [4]
by Auscher, Axelsson, and McIntosh. The results would be new for all the equations
considered in this thesis.

Another extension to this work, would be to allow for ¢-dependence in the matrix
A. This would involve adapting the work in [2] by Auscher and Axelsson to include the
potentials V' and b. In [2] the coefficients A satisfies Dahlberg’s small Carleson condition.
The methods build upon that of [4] by using the ¢-independent solution and Duhamel’s
principle to represent a solution to the t-dependent equation as an integral equation and
then use operational calculus to estimate the integral operator.

A final idea for future work based on this thesis, would be to consider boundary data
in LP-spaces for p # 2. In [27], Frey, Mclntosh, and Portal, establish LP-conical square
function estimates for perturbed Hodge—Dirac operators using methods developed from
[13]. Here the LP-conical square function estimate will take the place of the quadratic
estimate. Therefore, we would need to adapt the work in [27] to accommodate the po-
tential terms. Once this has been established then we would need to prove the solvability
results and non-tangential maximal function estimates in the LP setting. To do this we
would follow the work of Auscher and Stahlhut in [11].

Thus, we see that this thesis can be considered as a prototype for considering other

inhomogeneous boundary value problems with singular potentials.
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