
PRECONDITIONING TECHNIQUES FOR

ELLIPTIC PARTIAL DIFFERENTIAL

EQUATIONS WITH RANDOM DATA

by

RAWIN YOUNGNOI

A thesis submitted to

The University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

Supervisor: Dr. Daniel Loghin

Co-Supervisor: Dr. Alex Bespalov

School of Mathematics

College of Engineering and Physical Sciences

The University of Birmingham

August 2020

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

UNIVERSITYDF
BIRMINGHAM

Abstract

The stochastic Galerkin �nite element method (SGFEM) is a well-established numerical

method for approximating solutions of partial di�erential equations with parametric or

random data. The advantage of SGFEM over traditional sampling methods is its conver-

gence rate. However, this approach yields large-scale, often intractable systems of linear

equations. Therefore, a powerful iterative solver equipped with a suitable preconditioner

is required to approximate the solution for such linear systems.

In this thesis, we focus on designing preconditioners for stochastic Galerkin matrices

that arise when solving the steady-state di�usion equation with random data. We consider

two parametric representations of the di�usion coe�cient: a�ne and non-a�ne.

For the case of a�ne-parametric di�usion coe�cient, we present two preconditioners.

Truncation preconditioners for a�ne-parametric di�usion problems form a new class of

preconditioners that generalise the mean-based preconditioner by including additional

information from the di�usion coe�cient. Next, the domain decomposition technique for

the parametric domain is introduced. This technique provides a framework for designing

preconditioners which are capable of parallelism. We present a new concept of parametric

mesh to represent the structure of the parametric space. Moreover, a so-called even-odd

partitioning strategy for the parametric mesh is introduced. This strategy results in three

versions of the even-odd preconditioners.

We provide spectral analyses of the preconditioned systems both for the truncation

preconditioners and domain decomposition preconditioners, which con�rm the optimality

of the preconditioners with respect to discretisation parameters.

For the case of non-a�ne parametric di�usion coe�cient, the truncation precondi-

tioners and domain decomposition preconditioners are presented. They generalise the

idea of truncation preconditioners and domain decomposition preconditioners for a�ne-

parametric coe�cients by capturing the important terms and �nding a structure which

can utilise parallelism. We also design a preconditioner for log-transformed coe�cients.

Finally, the performance of each preconditioner is illustrated by numerical experi-

ments. We compare the e�ciency (in terms of iteration counts and total complexity) of

our purposed preconditioners with some existing preconditioners such as the mean-based

preconditioner and the Kronecker product preconditioner.

2

Acknowledgments

I would like to express my sincere gratitude to two supervisors, Daniel Loghin and Alex

Bespalov, for their invaluable suggestions and patience throughout my PhD study at the

University of Birmingham. Without their knowledgeable and consistent guidance, my

research would never go this far, and this thesis would never be successfully completed.

Finishing this thesis is very important, but all the invaluable research experience at the

University of Birmingham is more meaningful. I am very grateful to their attentiveness

and support, particularly during the pandemic of COVID 19, which is a very di�cult time

for everyone.

I would like to extend my thanks to Thammasat University for providing me with

the scholarship throughout this PhD study. This also includes the O�ce of Educational

A�airs in London for supporting Thai students in many aspects.

I would like to express my great gratitude to my parents and Worasak Charungrat-

tanapong for encouragement and supporting through thick and thin during my doctoral

study and the pandemic. If this is one of my achievement, this is also theirs.

Last but not least, I would like to thank Jay Vicker, who listened to my rehearsals

several times before my �rst talk. Thanks should also go to Pilantarat Allen, some

colleagues at Thammasat University and ex-colleagues in London from Reuters Software

Thailand Limited. I sincerely appreciate for always standing by me and supporting me

during the di�cult moments.

Finally, I also wish to thank Simon Bulleyment for the support during the hardest

time when I was writing the MRes thesis.

1

CONTENTS

1 Introduction 5

1.1 Statement of the Problem . 9

1.2 Research Objective and Scope . 13

1.3 Thesis Organisation . 15

2 Elliptic PDEs with Random Data 17

2.1 Random Fields . 18

2.1.1 The Karhunen-Loève Expansion . 20

2.1.2 Generalised Polynomial Chaos Expansion 22

2.2 Elliptic Partial Di�erential Equations with Random Data 27

2.3 Variational Formulation . 28

2.4 Discrete Formulation . 31

2.5 The Stochastic Linear System . 35

3 The Conjugate Gradient Method 42

3.1 The Conjugate Gradient Method . 43

3.2 Preconditioned Conjugate Gradient Method 46

4 Truncation Preconditioners for A�ne Parametric Di�usion Coe�cients 51

4.1 The A�ne Parametric Di�usion Coe�cient 52

4.2 Some Existing Block Preconditioners . 55

4.2.1 Mean-based Preconditioners . 56

4.2.2 Kronecker Product Preconditioners 58

2

CONTENTS

4.3 Truncation Preconditioners . 61

4.4 Modi�ed Truncation Preconditioners . 66

4.4.1 Computational Costs . 67

4.5 Analysis of Modi�ed Truncation Preconditioners 71

4.6 Numerical Experiments . 74

5 Domain Decomposition Methods on Parametric Domain 83

5.1 Parametric Mesh . 84

5.2 Matrix Structure . 92

5.3 Domain Decomposition Preconditioners . 96

5.3.1 Block Preconditioners . 97

5.3.1.1 Computational Costs . 98

5.3.1.2 Spectral Analysis . 100

5.3.2 Block-diagonal Preconditioners . 101

5.3.2.1 Computational Costs . 102

5.3.2.2 Spectral Analysis . 103

5.4 Even-odd Partition and Its Preconditioners 104

5.4.1 Schur Complement Approximation 107

5.4.1.1 Block-diagonal Approximation of the Schur Complement . 108

5.4.1.2 Symmetric Block Gauss-Seidel Approximation of the Schur

Complement . 112

5.4.2 Even-odd Preconditioners . 115

5.5 Numerical Experiments . 122

6 Block Preconditioners for SPDEs with Non-a�ne Parametric Coe�-

cients 130

6.1 Non-a�ne Parametric Di�usion Coe�cients 132

6.2 Truncation Preconditioners . 133

6.3 Modi�ed Truncation Preconditioners . 134

3

CONTENTS

6.3.1 Computational Cost . 137

6.4 Domain Decomposition Preconditioners . 138

6.4.1 Parametric Mesh . 139

6.4.2 Even-odd Partition for Non-a�ne Parametric Di�usion Coe�cients 141

6.4.3 Computational Cost . 144

6.5 Special Case: log-transformed Di�usion Coe�cients 145

6.5.1 Parametric Mesh . 147

6.5.2 Computational Cost . 151

6.5.3 Spectral Analysis . 153

6.6 Numerical Experiments . 155

7 Concluding Remarks 165

Bibliography 169

4

CHAPTER 1

INTRODUCTION

Large-scale simulations are crucial for understanding complex physical processes and phe-

nomena, e.g., in weather forecasting or subsurface hydrology. These simulations of these

phenomena are usually associated with sophisticated mathematical models and employ

numerical algorithms combined with powerful computing resources to approximate the

solution of the model. In general, the mathematical models are usually represented via

partial di�erential equations (PDEs) and an approximation of outcomes or quantities of

interest is calculated via the solution of the PDEs to describe the underlying phenom-

ena. The higher resolution mathematical models require more computational resources

[8, 84, 7] and more e�cient numerical methods such as parallel algorithms to reduce the

discretisation error. In many cases, the inputs of the model, such as initial conditions or

coe�cient functions, are uncertain due to lack of knowledge or inherent variability. Uncer-

tainties due to incomplete knowledge are referred to as being epistemic [113, 70], whereas

the others are referred to as aleatoric uncertainties [113, 70]. The uncertain inputs are

called random data and PDEs with random data are often called stochastic partial dif-

ferential equations (SPDEs) which can be represented in a probabilistic framework. The

randomness of the inputs adversely a�ects the accuracy of predictions.

Uncertainty quanti�cation (UQ) deals with identifying, quantifying and reducing un-

certainties in both computational simulations and real-world applications [61]. It helps to

improve the accuracy in estimating the quantities of interest [84, 94, 53, 64]. Probability

5

theory provides a mathematical framework for UQ. To analyse uncertainties in the inputs,

random variables represent the uncertainties in the input and the input with uncertainties

are represented via stochastic processes or random �elds with some statistical quantities

of input data such as probability density functions (pdf), expected values [8, 94, 64]. In

the SPDE setting, the quantities of interest are usually derived from the solution to an

SPDE, for example, the spatial average or variance of the solution to an SPDE over the

spatial domain. As a result, e�ective numerical methods are crucial in order to obtain the

solution of an SPDE, in particular, they have to be adapted to the type of the problem

under consideration [8, 94, 7].

In the past decades, many e�cient numerical methods for SPDEs were introduced.

These methods can be categorised into sampling methods and non-sampling methods

[84, 94, 131, 133, 7]. Another approach to categorising the methods is based on how they

are implemented [70]. Intrusive methods [8, 64, 62, 37, 7, 60] are the methods where

the existing implementations cannot be used directly, e.g., the associated code needs a

modi�cation. On the other hand, numerical methods are called non-intrusive [102, 129, 9]

if the existing code can be utilised without modi�cation.

Monte Carlo methods (see [84, 131, 81, 105]) are some of the most popular sampling

methods because they are simple and can be easily parallelised. They are non-intrusive

methods. However, the main drawback of these methods is the rate of convergence, i.e.,

the statistical error, which is the error from the sampling, is proportional to Q−1/2 where Q

denotes the number of samples. Consequently, the approximate solution by Monte Carlo

methods converges to the solution of the SPDE very slowly. As a result, they are not

suitable for large-scale problems [136, 96]. Multilevel Monte Carlo methods ([11, 35, 66,

123]) perform the sampling on physical meshes with di�erent mesh sizes. They result in

faster convergence rate than Monte Carlo methods. More importantly, multilevel Monte

Carlo methods require fewer samples on a �ner grid. Therefore, multilevel Monte Carlo

methods are more e�cient for large-scale problems than Monte Carlo methods. Other

numerical methods for SPDEs include quasi-Monte Carlo methods (see [38, 68, 67, 82, 30])

6

or multi-index Monte Carlo methods (see [72]).

Perturbation methods and Neumann series expansions are examples of non-sampling

methods. While the former approximate the input and the solution of an SPDE by Taylor

expansion [94, 64, 131, 6], the latter approximate the inverse of the stochastic sti�ness

matrix by the Neumann series expansion. Both these methods suit problems with small

variations of uncertainties [94, 9, 64, 6, 76], due to properties of Taylor series and Neumann

series.

Recently, stochastic spectral methods (SSMs) [64, 62, 7, 70], such as stochastic Galerkin

methods or stochastic collocation methods, have gained considerable attention, particu-

larly in mechanical engineering [57, 109, 65, 117], �uid dynamics [84, 80, 39, 92, 114, 135]

and transport in porous medium [57, 58]. Furthermore, they are also successfully applied

to many applications in chemistry [101, 93], biomedical engineering [56], acoustic scatter-

ing [47], deep excavations [31], earthquake engineering [3], civil engineering [1], medical

imaging [86] and electromagnetics [18]. Each random variable representing the random-

ness in the model adds another dimension [63] to the problem. Furthermore, a vector of

random variables induces a parametric space which is a Hilbert space associated with a

random vector [84, 81, 59]. SSMs transform the stochastic problem into a coupled deter-

ministic problem [2, 113]. The deterministic problem associated with the spatial domain

can be approximated by any standard numerical method such as �nite element methods

[28, 27] or �nite di�erence methods whereas a global polynomial approximation is em-

ployed in the parameter domain. The main disadvantage of SSMs is the computational

e�ort required to solve the resulting large coupled system of linear equations.

Stochastic Galerkin methods (SGMs) are projection methods which are non-sampling

and intrusive. These methods transform the SPDE to a variational formulation. To

obtain an approximate solution, the parametric space and spatial space are represented

by �nite dimensional subspaces. The Galerkin methods approximate the solution of the

SPDE by a function in the coupled �nite dimensional subspaces [45, 131]. Moreover, the

approximate solution by SGMs converges to the solution very fast [7, 84, 23] which is a

7

key advantage of these methods.

Stochastic collocation methods [9, 132] are sampling and non-intrusive methods. The

sampling is performed at the collocation points selected in the parameter domain. It

can be done in parallel which is one bene�t of stochastic collocation methods. The ap-

proximate solution of the SPDE is then obtained using interpolation techniques. To be

precise, the solution is approximated by an interpolant based on those samples. The con-

vergence rates of stochastic collocation methods depend on the choice of polynomial basis

[84, 131, 92, 10] and the computational cost may be higher than for intrusive methods

[48, 130]. Nevertheless, they are non-intrusive methods that can achieve the fast con-

vergence rate as intrusive methods such as SGMs. Note that solving the large coupled

system of linear equations in the case of stochastic collocation methods may be avoided

if Lagrange polynomials are employed. Thus, the solutions at the collocation points are

the coe�cients of the basis functions [45, 132, 48, 9].

Other techniques can be employed to reduce the computational cost or improve the ac-

curacy of SSMs, such as stochastic reduced basis methods (SRBMs) and adaptive stochas-

tic Galerkin �nite element methods. The purpose of SRBMs [91, 107, 108, 90] is to reduce

the computational cost of solving a large coupled linear system which arises from SSMs

while maintaining the accuracy of the approximate solution. These methods represent

the solution by a linear combination of basis vectors of preconditioned stochastic Krylov

subspace. The Bubnov-Galerkin projection scheme is applied to obtain the coe�cients of

the approximate solution. The computational cost to obtain the approximate solution is

much lower than that for SSMs because the dimension of basis vectors of preconditioned

stochastic Krylov subspace is usually selected to be much smaller than the number of

polynomial basis elements associated with the parametric space.

An adaptive stochastic Galerkin �nite element method [22, 21, 36, 41, 42, 43] is a

technique designed to achieve the desired accuracy with minimum of computational cost.

Adaptive techniques rely on a posteriori error estimation, and they can be applied to both

the spatial (�nite element) and the parametric (polynomial) components of the SGFEM

8

1.1. STATEMENT OF THE PROBLEM

approximations. An adaptive algorithm consists of four main procedures: solve, estimate,

mark and re�ne. The algorithm will start by solving for the approximate solution. Then,

the error estimators are utilised as indicators to mark the components of the approximate

solution that require re�nement. These procedures will be repeated until the prescribed

tolerance is met.

1.1 Statement of the Problem

In this thesis, we are interested in preconditioning techniques for stochastic Galerkin

matrices that arise when solving the steady-state di�usion equation with random data as

follows:

−∇ · (a(x, ω)∇u(x, ω)) = f(x) in D × Ω,

u(x, ω) = 0 on ∂D × Ω,

where D ⊂ Rd, d = 1, 2, 3 is a bounded spatial domain, Ω is a sample space and f ∈

L2(D). The two representations of di�usion coe�cient a are explored: a�ne and non-

a�ne parametric.

This research focuses now just on SGFEM. SGFEM discretisation of the elliptic prob-

lems with random data generates an approximating tensor product spaces X ⊗ S, where

X is a �nite element space associated with the domain D and S is a space of com-

plete polynomial. This yields a linear system with a block coe�cient matrix A, i.e., (see

[89, 113])

A =



A11 A12 · · · A1Ny

A21 A22 · · · A2Ny

...
...

. . .
...

ANy1 ANy2 · · · ANyNy


,

where Aij denotes an Nx ×Nx matrix. Nx and Ny are the dimensions of the spatial and

parametric spaces. Moreover, the system matrix can be written as the sum of Kronecker

9

1.1. STATEMENT OF THE PROBLEM

products

A =
L∑

m=0

Gm ⊗Km

where Gm and Km denote Ny × Ny sparse stochastic Galerkin matrices (see [51]) and

Nx ×Nx sti�ness matrices, respectively. The number of terms L in the system matrix A

depends on the representation of the di�usion coe�cient.

The dimension of the linear system depends on three discretisation parameters: the

mesh size, the number of active random variables and the degree of polynomial basis.

Generally, the approximating space in the physical domain is represented by the space

of piecewise polynomials. In contrast, there are two typical choices to represent the

approximating space in the parameter domain: the space of complete polynomials and

the tensor product polynomial space. The space of complete polynomials of degree n is a

set of all polynomials with the total degree less or equal than n, whereas tensor product

polynomial space of degree n is a set of all polynomials of degree less or equal than n in

each parameter. The cardinality of the basis for both polynomial spaces, i.e., Ny, increases

rapidly with the degree of polynomials and the number of parameters. Consequently, the

dimension of the linear system grows exponentially with these discretisation parameters.

In turn, the growth in the dimension of the linear system as the number of parameters

increases leads to an ill-conditioned system which a�ects signi�cantly the computational

e�ort to obtain the approximate solution. This situation is referred to as the curse of

dimensionality.

Solving the coupled linear system which arises from the SGFEM is very challeng-

ing. Due to complexity of the problem, a direct solver is not an option for this type

of problem. There are three types of iterative solvers for this task: multigrid methods

[83, 46, 103, 29, 85, 100, 49], domain decomposition methods and Krylov subspace meth-

ods [111, 126, 127]. Multigrid methods are iterative solvers for solving a linear system

that arises in the discretisation of partial di�erential equations, including SGFEM. The

idea of multigrid methods is to reduce the error in some components of the approximate

solution by projecting the error in the approximate solution to the grids of di�erent sizes.

10

1.1. STATEMENT OF THE PROBLEM

Then, the multigrid methods smoothen the approximate solution and project back to the

original grid. Moreover, the approximate solution is obtained by a direct solver if the grid

is su�ciently coarse. Theoretically, the convergence rate of multigrid methods does not

depend on the mesh size. However, the parameters in the methods need to be selected

carefully to achieve a fast convergence rate.

Domain decomposition methods [106] represent a powerful technique for large-scale

problems. The domain decomposition approach is a divide and conquer algorithm by

dividing the problem into many subproblems. The subproblems should be su�ciently

small so that they can be solved by a direct method in parallel. Then, the solutions from

each subproblem are merged by solving a linear system with a certain Schur complement.

However, solving a linear system with the Schur complement is very challenging due to the

structure of the Schur complement. By construction, this approach is suitable for parallel

computing. Typically, the domain decomposition methods are not a popular choice to

use as a solver.

Krylov subspace methods [106] are projection methods for solving linear systems.

These methods are constructed by projecting the residual vector to a suitable subspace.

They approximate the inverse of the coe�cient matrix by constructing a polynomial of

the coe�cient matrix. The choices of the subspace give a variety of methods, such as

conjugate gradient method (CG), minimal residual method (MINRES) or generalized

minimal residual method (GMRES) which suit di�erent situations. In many problems,

Krylov subspace methods converge to the solution very fast, but the e�ciency of the

methods deteriorates when solving ill-conditioned system.

Preconditioning techniques are techniques aimed at improving the e�ciency and ro-

bustness of a Krylov solver by solving an equivalent linear system. To improve the perfor-

mance of the solvers, the complexity for solving a linear system with the preconditioner

should not be high while the number of Krylov subspace iteration is reduced. Moreover,

optimality of the preconditioner is also important, so the performance of the solver is in-

dependent of the problem size. More importantly, good preconditioner is a key to improve

11

1.1. STATEMENT OF THE PROBLEM

the e�ciency of the solver when solving the ill-conditioned system. For SGFEM, there are

several preconditioners to apply with Krylov subspace methods [63, 95, 97, 73, 104, 125].

The mean-based preconditioner was introduced more than two decades ago in [63].

It was analysed in [97]. The mean-based preconditioner is one of the popular choices

employed to improve the e�ciency of a Krylov solver such as the CG method. It employs

the mean of the random �eld to design the preconditioner. In addition, the block-diagonal

structure of the mean-based preconditioner provides opportunities for parallelism. It

was shown in [63] that the performance of the solver equipped with the mean-based

preconditioner does not depend on the size of the problem.

The Kronecker product preconditioner was introduced and analysed in [125]. The

preconditioner employs all the components arising in the stochastic Galerkin matrix. It

preserves the Kronecker product structure as the mean-based preconditioner. The idea of

the Kronecker product preconditioner is to �nd the best approximation of the coe�cient

matrix in the Frobenius norm while the right Kronecker factor is chosen to be the sti�ness

matrix associated with the mean term of the di�usion coe�cient. Although the spectral

analysis of the Kronecker product preconditioner cannot re�ect its performance, it still

outperforms the mean-based preconditioner.

Although the mean-based preconditioner and the Kronecker product preconditioner

are studied for the steady-state di�usion problem, they can successfully apply to other

problems. For example, they have been applied to the saddle point problems in [50, 99]

and the steady-state Navier�Stokes equations in [98, 114]. In addition, they also perform

very well in optimal control problems [19], for the nearly incompressible linear elasticity

problem [78] and for the steady-state di�usion problem where the di�usion coe�cient is

the exponent of a random �eld [126].

There are other techniques to design an e�cient preconditioner such as the domain

decomposition or the hierarchical approach. It is possible to use domain decomposition

as a solver but in many applications, the domain decomposition methods can be used

to design a preconditioner for Krylov subspace methods [118, 121, 74, 120, 124, 119].

12

1.2. RESEARCH OBJECTIVE AND SCOPE

As a result, the preconditioner suits parallelism, which is the bene�t of the domain de-

composition methods. When it comes to the preconditioner design, approximating the

Schur complement is thus the main challenge in designing a preconditioner via the do-

main decomposition technique. In addition, hierarchical approach [95, 115, 116] utilises

the hierarchical structure of the problem by using a certain lower-order approximation.

The solution from the lower-order approximation can be used to obtain the solution of the

higher-order approximation, or it can be used as an initial guess of the iterative methods.

Furthermore, hierarchical matrices (H-matrices) [71, 15, 14, 26] is another hierarchical

technique to approximate a sparse or dense matrix. A cluster tree is built and used to

form a hierarchical structure of the matrix and ensure that each block's rank in the struc-

ture is less than a certain number. This low-rank approximation leads to reducing the

usage of memory to store the matrix and also reduce the complexities for matrix-matrix

operations. H-matrices can be used to design a preconditioner and approximate the Schur

complement for domain decomposition [13, 12, 54, 16, 17, 69].

1.2 Research Objective and Scope

The main aim of the thesis is to design fast iterative solvers for linear systems that arise

from SGFEM discretizations with the space of complete polynomials of elliptic partial

di�erential equations with random coe�cients. We consider the random coe�cient to

be a�ne-parametric and non-a�ne-parametric, which are inspired, respectively, by the

Karhunen-Loève expansion and the generalised polynomial chaos expansion of random

�elds. The elliptic partial di�erential equations with random data can be found in many

real-world applications such as groundwater �ow [79, 32, 4, 122] or biomedical engineering

[56].

The choice of iterative solver is the CG method equipped with a preconditioner. We are

interested in e�cient preconditioners for the stochastic Galerkin linear system designed

to improve the e�ciency of the solver and thus reduce the total computational cost for

13

1.2. RESEARCH OBJECTIVE AND SCOPE

approximating the solution of the SPDE. Furthermore, we aim to make the convergence

rate of the solver independent of the discretisation parameters of SGFEM.

Our �rst class of preconditioners comprises the truncation preconditioners and the

modi�ed truncation preconditioners (see [20]). Both preconditioners are designed for the

case of a�ne-parametric di�usion coe�cients. The truncation preconditioner is designed

and analysed via a truncation of the di�usion coe�cient. Our analysis shows that conver-

gence rate is independent of the size of the problem. Due to the high complexity of solving

a linear system with truncation preconditioners, the modi�ed truncation preconditioners,

which are approximations of the truncation preconditioner, are introduced. Their spectral

analysis shows optimality with respect to discretisation parameters.

Next, we introduce the domain decomposition technique on the parametric domain

for a�ne-parametric di�usion coe�cients. The key idea of this technique is to identify

a permutation so that the system matrix can be written as a 2-by-2 block matrix with

the (1, 1)-block having a diagonal block structure. This leads to the preconditioners

which are suitable for parallelism. Additionally, we present a procedure for designing a

suitable permutation. The new concept of a parametric mesh is introduced to represent

the structure of the system matrix. The parametric mesh is de�ned via graph theory.

We introduce the even-odd partitioning strategy which is one strategy to partition the

parametric mesh. It results in several versions of the so-called even-odd preconditioners.

Moreover, we also perform the spectral analysis of these preconditioners which indicates

optimality with respect to problem size.

For the case of non-a�ne-parametric di�usion coe�cients, we introduced several pre-

conditioners by extending the above ideas from the preconditioners for a�ne-parametric

di�usion coe�cients. First, the di�usion coe�cient is truncated and the truncation pre-

conditioner for non-a�ne-parametric di�usion coe�cients is introduced. It is de�ned by a

bilinear form via the truncated coe�cient. We then discuss the modi�ed truncation pre-

conditioner aimed at preserving the symmetry and positivity and reducing the complexity

when solving a linear system with the preconditioner. In addition, we also generalise the

14

1.3. THESIS ORGANISATION

idea of domain decomposition preconditioner to the case of non-a�ne parametric coe�-

cients to enhance the suitability for parallel computing. Speci�cally, we design a precon-

ditioner for log-transformed di�usion coe�cients and provide the spectral analysis for the

case of the bounded parametric domain.

Finally, we report on the results from numerical experiments to compare the perfor-

mance of our preconditioners with that of some existing preconditioners. We also perform

the experiments to con�rm the optimality of our preconditioners.

1.3 Thesis Organisation

This thesis is organised into seven chapters. In the �rst three chapters, we provide some

background materials. Next, we present our main results in Chapters 4-6. The conclusions

of this research are summarised in the last chapter of this thesis. The outlines for each

chapter are included below.

In Chapter 1, we provide an introduction to UQ. The problem that we are interested

in is discussed here, and we give the scope and objectives of the research.

The background concepts and results, such as random �elds and their representations,

are given in Chapter 2. The model problem is also stated together with the SGFEM

formulation including the stochastic Galerkin linear system.

In Chapter 3, we review the Conjugate Gradient method and some properties related

to our problem.

In Chapter 4, we review some existing preconditioners and their spectral analysis. Our

�rst proposed preconditioning technique is introduced in this chapter. We outline our

truncation preconditioners and present results for the case of a�ne-parametric di�usion

coe�cients. The complexity and spectral analysis of these preconditioners are provided.

Next, a domain decomposition technique on the parameter domain is presented in

Chapter 5. This technique is outlined for the case of a�ne-parametric di�usion coe�-

cients. Moreover, the concept of parametric mesh is introduced. We also describe how to

15

1.3. THESIS ORGANISATION

design a preconditioner based on this technique. Furthermore, we present three versions

of even-odd preconditioners based on the domain decomposition technique on the param-

eter domain. The computational cost and the eigenvalue bounds of the preconditioned

system for even-odd preconditioners are reported.

In Chapter 6, the preconditioners for the case of non-a�ne-parametric coe�cients

are introduced. They generalise the idea of truncation preconditioners and domain de-

composition for a�ne-parametric coe�cients. In addition, we present preconditioners for

log-transformed di�usion coe�cients. Again, the complexities for each preconditioner are

also derived.

Finally, we summarise the present work and provide some suggestions for future re-

search in Chapter 7.

16

CHAPTER 2

ELLIPTIC PDES WITH RANDOM DATA

Elliptic PDEs with random data represent a model that can be found in many research

areas. In this case, random data means uncertainty in input data such as di�usion coe�-

cients, boundary conditions, or forcing terms. In a probabilistic framework, uncertainties

in the model can be represented via statistical quantities such as random �elds or random

variables.

The stochastic Galerkin �nite element method is a powerful tool to approximate the

solution of the model due to its fast convergence rate. The spatial space and parametric

space are represented by �nite-dimensional subspaces, i.e., piecewise polynomial space and

the space of complete polynomials, respectively. This leads to a large coupled stochastic

Galerkin linear system.

In this chapter, we provide some preliminary knowledge in connection with our prob-

lem. First, the de�nition of second-order random �elds and some relevant properties are

stated in section 2.1. Then, we discuss the representations of random �elds, namely the

Karhunen-Loève expansion and the generalised polynomial chaos expansion. In section

2.2, our model problem is stated, which is an elliptic PDE with random data. Subse-

quently, we derive a variational formulation for the model problem and then transform

it to the variational formulation in parametric space in section 2.3. In order to discretise

the variational formulation, the space of complete polynomials is introduced; we then

construct orthogonal polynomials via a three-term recurrence relation before obtaining

17

2.1. RANDOM FIELDS

the discrete formulation in section 2.4. Finally, in section 2.5, we discuss some basic

properties of the linear system arising from our discretisation.

2.1 Random Fields

In this section, several de�nitions and relevant properties of random �elds ([89, 87]) are

introduced. Random �elds extend the idea of random variables by taking values in Eu-

clidean space Rd with d = 1, 2, 3. Let (Ω,F (Ω) ,P) be a complete probability space,

where Ω is a set of all outcomes, F (Ω) is a σ-algebra of events and P : F (Ω) → [0, 1] is

a probability measure, i.e., P(Ω) = 1. Before introducing the de�nition of random �elds,

let us introduce a useful de�nition of almost surely. Its concept is exactly the same as the

concept of almost everywhere in measure theory, but almost surely is used in probability

theory.

De�nition 2.1. Let F ∈ F be an event. If P(F) = 1, we say the event F happens almost

surely (a.s. or P-a.s.) with respect to a probability measure P.

If an event F happens almost surely, there might be an event F ′ in the sample space

Ω but P(F ′) = 0. We will use this to state our problem in the next section.

Now, we de�ne random �elds as follows.

De�nition 2.2. Let D ⊂ Rd be a bounded spatial domain with d = 1, 2, 3. A set

{a(x, ·) | x ∈ D} is called a random �eld if it is a set of real-valued random variables on

a probability space (Ω,F ,P). Note that the function a maps D × Ω to R.

According to the de�nition of random �elds, we can see that if x ∈ D is �xed, a(x, ·)

can be viewed as a random variable in Ω. However, if ω ∈ Ω is �xed, a(·, ω) is a realisation

of the random �eld a in D.

Additionally, there are some statistical quantities such as mean or variance, which are

used to describe the behaviour of random �elds. To ensure that these two quantities are

well de�ned, we need the following de�nition.

18

2.1. RANDOM FIELDS

De�nition 2.3. ForD ⊂ Rd, a random �eld a is said to be second-order if a(x, ·) ∈ L2(Ω),

for all x ∈ D, i.e., ∫
Ω

|a(x, ·)|2 dP(ω) <∞ for all x ∈ D.

The mean and covariance functions of the random �eld a are well de�ned if a is

second-order. That is, the mean function of the random �eld a is

E [a(x, ·)] :=

∫
Ω

a(x, ω)dP(ω) for each x ∈ D,

and its covariance function is

Cov(x1,x2) := E [(a(x1, ·)− E [a(x1, ·)]) (a(x2, ·)− E [a(x2, ·)])] for all x1,x2 ∈ D.

Moreover, the variance of the random �eld a is denoted by σ2 and is de�ned by

σ2 = Cov(x,x).

Next, we introduce a Bochner space which is related to second-order random �elds. If

W (D) is a Banach space of real-valued functions, we de�ne the Bochner space by

L2
P (Ω,W (D)) =

{
v : Ω→ W (D) |

∫
Ω

‖v(·, ω)‖2
W (D) dP(ω) <∞

}
,

with the corresponding norm ‖·‖L2
P(Ω,W (D)) de�ned by

‖v‖L2
P(Ω,W (D)) =

(∫
Ω

‖v(·, ω)‖2
W (D) dP(ω)

) 1
2

for all v ∈ L2
P (Ω,W (D)) .

In our case, we want all realisations of a to be functions in L2(D). Consequently, the

random �eld a is a member of L2
P (Ω, L2(D)). Note also that L2

P (Ω, L2(D)) is a Banach

space.

In the next section, we use all these de�nitions to establish representations of random

19

2.1. RANDOM FIELDS

�elds, i.e., the Karhunen-Loève expansion and the generalised polynomial chaos expan-

sion. These representations are important because they separate the physical domain's

data and the information on the stochastic part. The key di�erence between these two

expansions is the choice of basis functions. The Karhunen-Loève expansion employs an or-

thogonal basis of the Bochner space L2
P (Ω, L2(D)) while the other employs an orthogonal

basis of L2
P (Ω).

2.1.1 The Karhunen-Loève Expansion

The Karhunen-Loève expansion (KL expansion) [87, 89] is a popular representation of

second-order random �elds. However, the random �eld a can be expanded by KL expan-

sion if the mean value and covariance function of the random �eld a are provided. The

KL expansion is obtained through the spectral theorem for compact operators.

Let a0(x) and Cov(x1,x2) be the mean and the covariance function of the random

�eld a, respectively. We start with the Fredholm integral operator C : L2(D) → L2(D)

whose kernel is the covariance function of the random �eld a. The integral operator C is

de�ned by

[Cu] (x) =

∫
D

Cov(x, x̃)u(x̃)dx̃. (2.1)

The following theorem shows the relation between the integral operator C and the

covariance function via the eigenpairs for the operator C.

Theorem 2.4 (Mercer [89, Theorem 1.80]). Let D be a bounded spatial domain in Rd with

d = 1, 2, 3 and Cov : D×D → R be a symmetric and non-negative de�nite function. Let C

be the corresponding integral operator de�ned by (2.1). If {λm}∞m=1 and {φm}∞m=1 are the

eigenvalues and eigenfunctions of the integral operator C with λm > 0 and ‖φm‖L2(D) = 1

for all m = 1, 2, . . ., then, for all x1,x2 ∈ D,

Cov(x1,x2) =
∞∑
m=1

λmφm(x1)φm(x2).

20

2.1. RANDOM FIELDS

Additionally, the series absolutely and uniformly converges on D ×D.

By Mercer's theorem, there exist positive eigenvalues λm and normalised eigenfunc-

tions φm, m = 1, 2, 3, ... for the operator C. Hence, the covariance function Cov can be

expanded in a convergent series. The Karhunen-Loève expansion utilises the eigenpairs

of the integral operator C as stated in the following theorem.

Theorem 2.5 (Karhunen-Loève Expansion [89, Theorem 7.52]). Let D ⊂ Rd be a bounded

spatial domain and a ∈ L2
P (Ω, L2(D)) be a second-order random �eld. Then, there exist

{φm}∞m=1 ⊂ L2(D) and {λm}∞m=1 ⊂ R+ such that

a(x, ω) = a0(x) +
∞∑
m=1

√
λmφm(x)Ym(ω), (2.2)

where a0(x) = E [a(x, ·)] and Ym are random variables with zero mean and unit variance,

Ym(ω) =
1√
λm

(a(x, ω)− a0(x), φm(x))L2(D).

Moreover, {Ym}∞m=1 are pairwise uncorrelated.

Note that {φmYm}∞m=1 is an orthogonal set with respect to the inner product 〈·, ·〉

de�ned by

〈u, v〉 = E
[∫

D

u(x, ·)v(x, ·)dx
]
, for u, v ∈ L2

P
(
Ω, L2(D)

)
.

Also note that if the random �eld a is Gaussian, then the random variables Ym are

independent and identically distributed (iid) Gaussian distributions N (0, 1). In practice,

a truncated KL expansion is used for computational purposes. Therefore, if we choose

M ∈ N, then we have

a(x, ω) ≈ aM(x, ω) = a0(x) +
M∑
m=1

√
λmφm(x)Ym(ω), (2.3)

21

2.1. RANDOM FIELDS

and the error from the truncation is

‖a− aM‖2
L2
P(Ω,L2(D)) = E

∫
D

(
∞∑

m=M+1

√
λmφm(x)Ym

)2

dx

 =
∞∑

m=M+1

λm.

Thus, to reduce the error from the truncation, it is reasonable to reorder the terms in

the random �eld by the magnitude of λm.

2.1.2 Generalised Polynomial Chaos Expansion

The polynomial chaos expansion (or Wiener chaos expansion) was introduced several

decades ago by N. Wiener in [128]. It utilised Hermite polynomials in Gaussian ran-

dom variables with zero mean and unit variance to expand a second-order random �eld

X ∈ L2
P(Ω, L2(D)) with normal distribution. Note that we call Hermite polynomials in

Gaussian random variables the Hermite chaos [134, 128]. One has

X(x, ω) =c0(x)H0 +
∞∑

m1=1

cm1(x)H1 (Ym1(ω))

+
∞∑

m1=1

m1∑
m2=1

cm1m2(x)H2 (Ym1(ω), Ym2(ω))

+
∞∑

m1=1

m1∑
m2=1

m2∑
m3=1

cm1m2m3(x)H3 (Ym1(ω), Ym2(ω), Ym3(ω)) + . . . ,

where cm1···mk(x) is a real-valued coe�cient and Hn (Ym1(ω), . . . , Ymk(ω)) denotes the

Hermite chaos of exact degree n in the random variables Ym1(ω), . . . , Ymk(ω). Moreover,

Ym are independent Gaussian random variables with zero mean and unit variance. The

Hermite chaos Hn is a multivariate polynomial

Hn (Ym1(ω), . . . , Ymk(ω)) =
k∏
i=1

hni (Ymi) ,

22

2.1. RANDOM FIELDS

where hni is the univariate Hermite polynomial of degree ni with n =
∑k

i=1 ni. For

convenience, we rewrite X(x, ω) in the following form

X(x, ω) =
∞∑
m=0

ĉmψm (Y (ω)) ,

where Y (ω) = (Y1(ω), Y2(ω), . . .) and there is a one to one correspondence between

ψm (Y (ω)) and Hn (Ym1(ω), . . . , Ymk(ω)). Furthermore, {ψm}∞m=0 forms a complete or-

thogonal basis in L2
P (Ω).

Note that the polynomial chaos expansion converges in L2
P(Ω, L2(D)). Moreover, we

can expand a random �eld by the polynomial chaos expansion without providing the

mean and the covariance of the random �eld, which is the bene�ts of the polynomial

chaos expansion over the KL expansion.

In 2002, the polynomial chaos expansion was generalised by D. Xiu and G. Karniadakis

in [134] to generalised polynomial chaos expansion (gPC) or Wiener-Askey chaos, in order

to deal with general random inputs such as random �elds with uniform distribution. They

employ orthogonal polynomials which are generated by the probability density functions

of the random �elds as shown in Table 2.1.

Distribution Wiener-Askey chaos Support

Gaussian Hermite chaos (−∞,∞)
uniform Legendre chaos [a, b]
beta Jacobi chaos [a, b]

gamma Laguerre chaos [0,∞)

Table 2.1: The correspondence between the type of distribution and the set of orthogonal
polynomials.

The polynomial chaos forms a basis for the space L2
P (Ω) which is orthogonal with

respect to the inner product 〈·, ·〉P de�ned by

〈u, v〉P = E [uv] ;

23

2.1. RANDOM FIELDS

thus, a second-order random �eld a can be represented in the form

a(x, ω) =
∞∑
m=0

am(x)ψm (Y (ω)) ,

where ψm are orthogonal polynomials corresponding to the distribution of the random

�eld a and am can be obtained by

am(x) = E [a(x, ω)ψm (Y (ω))] .

However, in practice, the gPC expansion needs to be truncated to �nite summation.

There are several truncation schemes for the gPC expansion such as the total order expan-

sion or the tensor-product expansion (see [44]). The total order expansion is a traditional

truncation strategy for gPC expansion. It considers M random variables and orthogonal

polynomials up to degree k. Thus, the random �eld a can be approximated by

aMk (x, ω) =
N∑
m=0

am(x)ψm (Y (ω)) ,

where Y (ω) = (Y1(ω), Y2(ω), . . . , YM(ω)) and ψm are orthogonal polynomials whose de-

grees are less than or equal to k. Additionally, the truncated polynomial chaos expansion

has N + 1 terms where

N + 1 =

 M + k

k

 .

Another truncation strategy is the tensor-product expansion. This strategy also selects

M random variables but the degree of the orthonormal polynomials in the ith random

variable does not exceed ki for i = 1, 2, ...,M . Thus, the number of terms by tensor-

product expansion is

N + 1 =
M∏
i=1

(ki + 1) .

We can see that the number of terms in the truncated polynomial chaos expansion grow

rapidly with the number of random variables and the maximum degree of orthonormal

24

2.1. RANDOM FIELDS

polynomials.

Note that there are more truncation schemes to reduce the number of terms in gPC

expansion such as the sparse gPC expansion based on the least angle regression (see [25]).

1 2 3 4 5 6
100

101

102

103

polynomial degree, k

n
u
m
b
er

o
f
te
rm

s

Total order expansion

1 2 3 4 5 6

100

101

102

103

104

105

106

107

polynomial degree, k

n
u
m
b
er

o
f
te
rm

s

Tensor-product expansion

M = 1 M = 2 M = 3 M = 4

M = 5 M = 6 M = 7 M = 8

Figure 2.1: The number of terms in a truncated polynomial chaos expansion by total
order expansion and tensor-product expansion grows rapidly with respect to M and k.
(We assume k = k1 = ... = kM for tensor-product expansion.)

Mean and Variance of Generalised Polynomial Chaos Expansion

Mean and variance are two important quantities in statistics. In this section, we will show

how to �nd the mean and the variance of a random �eld via the gPC expansion. Suppose

the random �eld a is represented by a gPC expansion as

a(x, ω) =
∞∑
m=0

am(x)ψm (Y (ω)) ,

where ψm are orthogonal polynomials and assume that ψ0 = 1.

We start with the mean value of the random �eld a. That is

E [a] =
∞∑
m=0

am(x)E [ψm (Y (ω))] = a0(x),

25

2.1. RANDOM FIELDS

since E [ψm (Y (ω))] = 0 for all ψm with degree greater than 0.

Subsequently, before moving to the variance of the random �eld a, let us consider

E
[
a2
]

= E

[
∞∑
m=0

∞∑
m′=0

am(x)am′(x)ψm (Y (ω))ψm′ (Y (ω))

]

=
∞∑
m=0

∞∑
m′=0

am(x)am′(x)E [ψm (Y (ω))ψm′ (Y (ω))] .

Again, by the orthogonality of {ψm}∞m=0, we have

E
[
a2
]

=
∞∑
m=0

∞∑
m′=0

am(x)am′(x)δmm′ =
∞∑
m=0

a2
m(x). (2.4)

Hence,

Var(a) = E
[
a2
]
− E [a]2 =

∞∑
m=0

a2
m(x)− a2

0(x) =
∞∑
m=1

a2
m(x). (2.5)

To summarise, KL-expansion requires the mean and covariance of the random �eld.

After that, we need to solve an eigenvalue problem to obtain the expansion. Solving this

eigenvalue problem consumes high computational e�ort, which is the main drawback for

KL-expansion. Also, KL-expansion cannot represent some random �elds. For example,

if a lognormal random �eld is expanded by KL expansion, the random variables will not

be iid. However, the advantage of KL-expansion is that the truncated KL-expansion is

optimal in the L2 sense. On the other hand, gPC expansion does not need the mean or

covariance of the random �eld. The number of terms in truncated gPC expansion grows

rapidly with the truncation parameters, which could a�ect computation performance.

26

2.2. ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM DATA

2.2 Elliptic Partial Di�erential Equations with Ran-

dom Data

Let D ⊂ Rd be a bounded spatial domain with d = 1, 2, 3 and let (Ω,F ,P) be a complete

probability space. To state our model problem, let a ∈ L2
P (Ω, L2(D)) be a second-order

random �eld and assume that a(·, ω) is strictly positive, bounded and has a positive lower

bound for almost all ω ∈ Ω. That is, there exist positive real numbers amin and amax such

that

0 < amin ≤ a(x, ω) ≤ amax <∞ a.e. in D × Ω. (2.6)

In particular, a ∈ L∞P (Ω, L2(D)). Note that there are some cases that the assumption

(2.6) does not hold but there exists a unique solution (see Section 6.1 for more details).

Now, we consider the steady-state di�usion problem with uncertainty in the di�usion

coe�cient a. We assume f to be a forcing term without uncertainty, i.e., f ∈ L2(D),

and also assume homogeneous Dirichlet boundary conditions on ∂D. We want to �nd the

function u : D̄ × Ω→ R such that P-a.s.

−∇ · (a(x, ω)∇u(x, ω)) = f(x) in D × Ω,

u(x, ω) = 0 on ∂D × Ω.
(2.7)

If ω ∈ Ω is �xed in (2.7), the problem becomes a deterministic elliptic problem for

which we can �nd the approximate solution by numerical methods for PDEs such as

the �nite element method. By the Lax-Milgram theorem, it is well known that the

variational formulation of the elliptic partial di�erential equation (2.7) for �xed ω has a

unique solution u(·, ω), if assumption (2.6) holds.

In the next section, we derive the variational form of problem (2.7) and then change

it to parametric form. Furthermore, we provide an existence and uniqueness theorem for

the variational form before applying the stochastic Galerkin �nite element methods to the

problem.

27

2.3. VARIATIONAL FORMULATION

2.3 Variational Formulation

Let H1
0 (D) be the Sobolev space of the functions in H1 which vanish on ∂D and let v be

a function in L2
P(Ω, H1

0 (D)). In order to obtain the variational form of problem (2.7), we

multiply both sides of the equation in (2.7) by the function v and then integrate by parts

over the spatial domain D before taking expectations. It leads to the variational form

 Find u ∈ L2
P(Ω, H1

0 (D)) such that

B(u, v) = F(v) for all v ∈ L2
P (Ω, H1

0 (D)) ,
(2.8)

where the bilinear form B and the linear functional F are de�ned by

B(u, v) = E
[∫

D

a(x, ·)∇u(x, ·) · ∇v(x, ·)dx
]
,

F(v) = E
[∫

D

f(x)v(x, ·)dx
]
.

Theorem 2.6 ([89, Theorem 9.25]). For f ∈ L2 (D), assume that the di�usion co-

e�cient a is positive and bounded as in (2.6). Then, there exists a unique solution

u ∈ L2
P (Ω, H1

0 (D)) which satis�es the variational formulation (2.8).

Theorem 2.6 shows that the variational formulation of our problem has a unique

solution in L2
P(Ω, H1

0 (D)). However, this variational form is still not convenient in order

to �nd an approximation of u, because it involves integration over the set of outcomes Ω

and also the probability measure P. Recall that, by the representations of a random �eld,

the second-order random �eld a can be expanded by either the KL expansion

a(x, ω) = a0(x) +
∞∑
m=1

√
λmφm(x)Ym(ω),

or by the generalised polynomial chaos expansion

a(x, ω) =
∞∑
m=0

am(x)ψm (Y1(ω), Y2(ω), . . .) .

28

2.3. VARIATIONAL FORMULATION

Thus, the random �eld a can be represented as a function of independent random variables

Ym(ω) form ∈ N. Hence, we replace these random variables by parametric variables which

represent the range of random variables.

Let ym = Ym(ω) and Γm := Ym (Ω) ⊆ R for allm ∈ N. Let πm be a probability measure

on (Γm,B(Γm)) and ρm be the probability density function for the random variable Ym,

i.e., πm(B) =
∫
B
ρm(ym)dym for any B ∈ B(Γm). Additionally, ρm are assumed to be even

for all m ∈ N. By our assumption on random variables, Ym is a function from the sample

space Ω to Γm, and ym ∈ Γm for all m ∈ N. As a result, the random �eld a can be written

in terms of y = (y1, y2, . . .) as follows

a(x,y) = a0(x) +
∞∑
m=1

√
λmφm(x)ym,

or using the generalised polynomial chaos expansion

a(x,y) =
∞∑
m=0

am(x)ψm (y) .

Let Γ :=
∏∞

m=1 Γm and π :=
∏∞

m=1 πm be a probability measure on (Γ,B(Γ)). Recall

that {Ym}∞m=1 are pairwise uncorrelated. The joint density function ρ : Γ → R of the

associated multivariate random variable y ∈ Γ is de�ned by

ρ(y) =
∞∏
m=1

ρm(ym). (2.9)

Additionally, it is obvious that if the random �eld a satis�es condition (2.6), then

0 < amin ≤ a(x,y) ≤ amax <∞ a.e. in D × Γ. (2.10)

Next, de�ne a weighted space L2
ρ(Γ,W (D)) by

L2
ρ (Γ,W (D)) =

{
v : D × Γ→ R |

∫
Γ

ρ(y) ‖v(·,y)‖2
W (D) dy <∞

}
,

29

2.3. VARIATIONAL FORMULATION

and the norm ‖·‖L2
ρ(Γ,W (D)) by

‖v‖2
L2
ρ(Γ,W (D)) =

∫
Γ

ρ(y) ‖v(·,y)‖2
W (D) dy.

Note that for a function v(x, ω) ∈ L2
P (Ω,W (D)), where W (D) is a Banach space, if v can

be represented in x and Ym(ω), where Ym(ω) are independent for m ∈ N, we have

‖v‖L2
P(Ω,W (D)) = ‖v‖L2

ρ(Γ,W (D)) .

Next, we replace a(x, ω) and L2
P (Ω, H1

0 (D)) by a(x,y) and V := L2
ρ (Γ, H1

0 (D)), respec-

tively, in the variational formulation (2.8) and get the variational formulation on D × Γ:

 Find u ∈ V such that

B(u, v) = F (v), ∀v ∈ V,
(2.11)

where the bilinear form B : V × V → R and the functional F : V → R are de�ned by

B(u, v) =

∫
Γ

ρ(y)

∫
D

a(x,y)∇u(x,y) · ∇v(x,y)dxdy, (2.12)

F (v) =

∫
Γ

ρ(y)

∫
D

f(x)v(x,y)dxdy. (2.13)

Theorem 2.7 ([89, Theorem 9.43]). Assume that condition (2.10) holds for the random

�eld a. If f ∈ L2(D) then there exists a unique solution u ∈ L2
ρ (Γ, H1

0 (D)) which satis�es

problem (2.11).

In the next section, we provide the discrete formulation of the weak formulation (2.11).

After that, the stochastic Galerkin �nite element method is applied to the discrete formu-

lation. We also introduce the space of complete polynomials in the variable y and explain

how to construct a �nite dimensional subspace of the Bochner space L2
ρ (Γ, H1

0 (D)) to

obtain a fully-discrete �nite-dimensional problem.

30

2.4. DISCRETE FORMULATION

2.4 Discrete Formulation

Let Ṽ ⊂ L2
ρ (Γ, H1

0 (D)) be a �nite dimensional subspace. A stochastic Galerkin solution

ũ of problem (2.7) is a function in Ṽ . Thus, we get the discrete formulation as follows.

 Find ũ ∈ Ṽ such that

B(ũ, v) = F (v) for all v ∈ Ṽ ,
(2.14)

where the bilinear formB and the functional F are stated in (2.12) and (2.13), respectively.

Theorem 2.8 ([89, Theorem 9.50]). Let f ∈ L2(D) and Ṽ be a �nite subspace of the

space L2
ρ (Γ, H1

0 (D)). If assumption (2.10) holds, then there exists a unique solution ũ ∈ Ṽ

satisfying the fully-discrete weak problem (2.14).

In order to apply the stochastic Galerkin FEM to our model problem, we approximate

the solution u by using a gPC expansion with M random variables and the degree of the

orthogonal polynomials no greater than k. Each term of the polynomial chaos expansion

consists of a coe�cient function in the spatial domain and an orthogonal polynomial in

the parameters. Consider now the weighted space L2
ρ (Γ, H1

0 (D)). It is known that the

space L2
ρ (Γ, H1

0 (D)) is isometrically isomorphic to the space L2
ρ (Γ) ⊗ H1

0 (D) (see [110,

Remark C.24]) where L2
ρ (Γ) denotes

L2
ρ (Γ) =

{
v : Γ→ R |

∫
Γ

ρ(y) |v(y)|2 dy <∞
}
,

with the associated inner product

〈u, v〉ρ =

∫
Γ

ρ(y)u(y)v(y)dy.

We need a �nite dimensional subspace of the space L2
ρ (Γ) ⊗ H1

0 (D). Firstly, de�ne the

space Xh of continuous piecewise linear polynomials de�ned on a shape-regular and con-

forming triangulation Th of the domain D, where h denotes mesh size. More precisely, we

31

2.4. DISCRETE FORMULATION

de�ne

Xh :=
{
v ∈ H1

0 (D) | v|K ∈ P1 (K) for all K ∈ Th
}
,

where P1 (K) denotes the set of all polynomials of degree 1 or less on K. We choose nodal

basis functions φj for Xh. Therefore,

Xh := span {φ1, φ2, . . . , φNx} ⊂ H1
0 (D).

We now need to generate a subspace of L2
ρ (Γ). First, we start with the de�nition of

multi-indices.

De�nition 2.9. A multi-index α ∈ NN
0 is a sequence of non-negative integers α =

(α1, α2, α3, . . .) with compact support, that is max (suppα) < ∞, where suppα :=

{m ∈ N | αm 6= 0}.

Additionally, we de�ne

|α| :=
∑

m∈suppα

αm, α! :=
∏

m∈suppα

αm!

and

IMk :=
{
α ∈ NN

0 | max (suppα) ≤M and |α| ≤ k
}
.

We choose as a subspace of L2
ρ(Γ) the space of complete polynomials SMk , which is the

set of all polynomials of total degree less than or equal to k in M variables. That is;

SMk := span

{
M∏
m=1

yαmm | α ∈ IMk

}
.

Note that the dimension of the space of complete polynomials is

Ny := dim(SMk) =
(M + k)!

M !k!
.

Consequently, SMk ⊗Xh is a �nite subspace of L2
ρ (Γ)⊗H1

0 (D).

Let us now introduce an orthogonal basis of L2
ρm (Γm) and recall that the probability

32

2.4. DISCRETE FORMULATION

density function ρm is assumed to be even for all m = 1, 2, ...,M . We construct a sequence

of orthonormal polynomials Pj with respect to the inner product

〈u, v〉ρm =

∫
Γm

ρm(ym)u(ym)v(ym)dym,

via a three-term recurrence, as shown in the following theorem.

Theorem 2.10 ([55, Theorem 1.29]). Let Pm
j , j = 0, 1, 2, ..., be orthonormal polynomials

with respect to the inner product 〈·, ·〉ρm. Then,

cmj+1P
m
j+1(ym) =

(
ym − bmj

)
Pm
j (ym)− cmj Pm

j−1(ym), for j = 0, 1, 2, . . . , (2.15)

with Pm
−1 = 0 and Pm

0 = 1. The constant cmj is a normalising factor such that
∥∥Pm

j

∥∥2

ρm
=〈

Pm
j , P

m
j

〉
ρm

= 1.

Now, multiply the equation (2.15) by Pm
j and then apply the inner product 〈·, ·〉ρm . It

results in

bmj = −
〈
ymP

m
j , P

m
j

〉
ρm
.

Since ρm is assumed to be an even function and Γm is symmetric, so bmj = 0. Hence,

the three-term recurrence can be simpli�ed to

cmj+1P
m
j+1(ym) = ymP

m
j (ym)− cmj Pm

j−1(ym), for j = 0, 1, 2, . . . , (2.16)

with Pm
−1 = 0 and Pm

0 = 1.

Example 2.1. Let Γ = [−1, 1]. Suppose y is a uniform random variable from a sample

space Ω to Γ with mean zero and unit variance. Thus, the probability density function of

the random variable y is ρ(y) = 1
2
. The three-term recurrence (2.16) yields an orthogonal

polynomials sequence {Lj}∞j=0 de�ned by

cj+1Lj+1(y) = yLj(y)− cjLj−1(y), for j = 0, 1, 2, . . . ,

33

2.4. DISCRETE FORMULATION

with L−1 = 0 and L0 = 1 where cj = j√
2j+1

√
2j−1

. Therefore,

L1(y) =
√

3y, L2(y) =

√
5

2

(
3y2 − 1

)
, L3(y) =

√
7

3

(
5y3 − 3y

)
, · · ·

c1 =
1√
3
, c2 =

2√
15
, c3 =

3√
35
. · · ·

The polynomials Lj(y) are called the normalized Legendre polynomials.

Furthermore, for k ∈ N and j = 1, ..., k − 1, we have

ymP
m
j (ym) = cmj P

m
j−1(ym) + cmj+1P

m
j+1(ym).

If v = [Pm
0 (ym) Pm

1 (ym) · · · Pm
k−1(ym)]T , the three-term recurrence gives the follow-

ing identity,

ymv = Tmk v + cmk P
m
k (ym)ek,

where

Tmk =



0 cm1

cm1 0 cm2
.

cmk−2 0 cmk−1

cmk−1 0


and ek =



0

...

0

1


. (2.17)

The above identity provides a connection between the roots of Pm
k and the matrix Tmk ,

that is the eigenvalues of Tmk are the roots of Pm
k .

De�ne ψα for α ∈ I by

ψα(y) =
∞∏
m=1

Pm
αm(ym).

We can see that {ψα}α∈I is an orthonormal set of polynomials with respect to the

inner product 〈·, ·〉ρ. That is 〈ψα, ψβ〉ρ = 1 if α = β, otherwise 〈ψα, ψβ〉ρ = 0. Thus, we

de�ne an orthonormal basis {ψα}α∈I for the space L2
ρ (Γ) and use {ψα}α∈IMk as the basis

for SMk ⊂ L2
ρ (Γ).

It is obvious that there exists a bijection q : {1, 2, . . . , Ny} → IMk . Let us illustrate

34

2.5. THE STOCHASTIC LINEAR SYSTEM

this with an example.

Example 2.2. Consider the space of complete polynomials of degree less or equal to 2

(k = 2) with 3 uniform random variables (M = 3) with zero mean and unit variance on

Γm = [−1, 1], m = 1, 2, 3. The dimension of S3
2 is Ny = dim(S3

2) = (3 + 2)!/(3!2!) = 10.

To be precise,

I3
2 = {(0, 0, 0) , (1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (1, 1, 0) ,

(1, 0, 1) , (0, 1, 1) , (2, 0, 0) , (0, 2, 0) , (0, 0, 2)} .

Hence, all the orthogonal basis functions for S3
2 can be written as

ψ(α1,α2,α3)(y1, y2, y3) = Lα1(y1)Lα2(y2)Lα3(y3), for all α ∈ I3
2.

Remark. Theorem 2.10 is used to create a set of orthogonal polynomials when a random

�eld's distribution law or probability density function is provided. Because the random

�eld's distribution law induces the orthogonal polynomials (see Table 2.1) in its repre-

sentation and we also use this distribution law to de�ne the basis of the space SMk . As

a result, the orthogonal polynomials in the random �eld's representation are the same

orthogonal polynomials in the basis for the space of complete polynomials.

2.5 The Stochastic Linear System

First, we assume that the random �eld a can be written as

a(x,y) =
∑
α∈I

aαψα

where {ψα}α∈I is the orthonormal polynomial basis of L2
ρ (Γ). It is clear that this rep-

resentation of a is in the form of a gPC expansion. De�ne Ik := {α ∈ I | |α| ≤ k}. This

representation of a can also represent the KL expansion by setting aα = 0 for each α

35

2.5. THE STOCHASTIC LINEAR SYSTEM

outside I1.

In this section we derive the stochastic linear system corresponding to the discrete

formulation (2.14). De�ne

V M
hk := SMk ⊗Xh = span

{
ϕij(x,y) := φi(x)ψq(j)(y) for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny

}
,

and choose Ṽ in discrete formulation (2.14) to be V M
hk . Since ũ ∈ SMk ⊗Xh ⊂ L2

p (Γ, H1
0 (D)),

we denote an approximate solution ũ corresponding to the space V M
hk by uMhk. Thus,

uMhk(x,y) =
Nx∑
i=1

Ny∑
j=1

uijϕij(x,y) (2.18)

and select the test function v(x,y) = ϕrs(x,y) for r = 1, 2, . . . , Nx and s = 1, 2, . . . , Ny.

The discrete formulation (2.14) leads to

∑
α∈I

Nx∑
i=1

Ny∑
j=1

uij

∫
D

aα(x)∇φi(x) · ∇φr(x)dx

∫
Γ

ρ(y)ψα(y)ψq(j)(y)ψq(s)(y)dy

=

∫
D

f(x)φr(x)dx

∫
Γ

ρ(y)ψq(s)(y)dy.

By the representation of a, the left hand side of the above equation is an in�nite summation

over I. Fortunately, since q(j), q(s) ∈ IMk , one has
∫

Γ
ρ(y)ψα(y)ψq(j)(y)ψq(s)(y)dy = 0 if

suppα > M . Moreover, by [77, Theorem 4.1],

∫
Γ

ρ(y)ψα(y)ψq(j)(y)ψq(s)(y)dy = 0, if |α| > 2k.

Hence, the in�nite summation is implicitly truncated to the �nitely many terms as follows

∑
α∈IM2k

Nx∑
i=1

Ny∑
j=1

uij

∫
D

aα(x)∇φi(x) · ∇φr(x)dx

∫
Γ

ρ(y)ψα(y)ψq(j)(y)ψq(s)(y)dy

=

∫
D

f(x)φr(x)dx

∫
Γ

ρ(y)ψq(s)(y)dy.

36

2.5. THE STOCHASTIC LINEAR SYSTEM

This yields the linear system Au = b. The coe�cient matrix A and also vectors u and b

are written in block form as follows

A =



A11 A12 · · · A1Ny

A21 A22 · · · A2Ny

...
...

. . .
...

ANy1 ANy2 · · · ANyNy


, u =



u1

u2

...

uNy


and b =



b1

b2

...

bNy


,

where

Ajs =
∑
α∈IM2k

〈
ψαψq(j), ψq(s)

〉
ρ
Kα, j, s = 1, 2, . . . , Ny,

[Kα]ir =

∫
D

aα(x)∇φi(x) · ∇φr(x)dx, α ∈ IM2k and i, r = 1, 2, . . . , Nx,

and

uj = [u1j u2j · · · uNxj
]T , j = 1, 2, . . . , Ny,

[bs]r =

∫
Γ

ρ(y)ψq(s)(y)dy ·
∫
D

f(x)φr(x)dx, r = 1, 2, . . . , Nx, and s = 1, 2, . . . , Ny.

If we de�ne the matrix Gα for α ∈ IM2k by

[Gα]js :=
〈
ψαψq(j), ψq(s)

〉
ρ
, j, s = 1, 2, . . . , Ny, (2.19)

the coe�cient matrix A can be expressed as the summation of Kronecker products

A =
∑
α∈IM2k

Gα ⊗Kα. (2.20)

Note that, by (2.4) and (2.5), if ψq(1) = 1, the mean and variance of the solution u are

given by

E
[
uMhk(x, ·)

]
= u1(x), Var(uMhk(x, ·)) =

Ny∑
j=2

u2
j(x),

respectively, where uj(x) :=
∑Nx

i=1 uijφi(x).

37

2.5. THE STOCHASTIC LINEAR SYSTEM

It is obvious that the stochastic Galerkin matrix A is symmetric. Moreover, by (2.10),

the matrix A is positive de�nite. Generally, the matrix A is block dense; however, in the

case of KL expansions, the matrix A can be written as a summation over the set IM1 whose

cardinality is M + 1. For convenience, we use natural numbers instead of multi-indices,

i.e.

A =
M∑
m=0

Gm ⊗Km. (2.21)

Moreover, the following theorem guarantees that the Galerkin matrix A is a block-sparse

matrix as there are no more than 2M + 1 block matrices per row.

Theorem 2.11 ([89, Theorem 9.58, 9.59]). Suppose that ρ satis�es (2.9), and ρm is even

for m = 1, 2, . . . ,M . Then,

G0 = INy ,

while for m = 1, 2, . . . ,M , the matrix Gm whose entries are (cf. (2.19)) has 2 non-zero

entries per row. More precisely,

〈
ymψq(j), ψq(s)

〉
ρ

=


cmβm+1, βm′ = β′m′ for all m

′ ∈ {1, . . . ,M} \ {m} and βm = β′m − 1,

cmβm , βm′ = β′m′ for all m
′ ∈ {1, . . . ,M} \ {m} and βm = β′m + 1,

0, otherwise,

where β = q(j),β′ = q(s) and cmβm is a normalising constant in (2.15).

Example 2.3. Consider the space SMk of complete polynomials of degree less than or

equal to 2 in 2 uniform random variables. That isM = k = 2 and ρ(ym) = 1
2
for m = 1, 2.

Therefore,

I2
2 = {(0, 0) , (1, 0) , (0, 1) , (1, 1) , (2, 0) , (0, 2)} .

Since Pm
1 (ym) =

√
3ym and

[Gm]js =

〈
1

cm1
ymψq(j), ψq(s)

〉
ρ

=
√

3
〈
ymψq(j), ψq(s)

〉
ρ
,

38

2.5. THE STOCHASTIC LINEAR SYSTEM

for m = 1, 2, we obtain G1 and G2 as follows,

G1 =
√

3



0 1√
3

0 0 0 0

1√
3

0 0 0 2√
15

0

0 0 0 1√
3

0 0

0 0 1√
3

0 0 0

0 2√
15

0 0 0 0

0 0 0 0 0 0


, G2 =

√
3



0 0 1√
3

0 0 0

0 0 0 1√
3

0 0

1√
3

0 0 0 0 2√
15

0 1√
3

0 0 0 0

0 0 0 0 0 0

0 0 2√
15

0 0 0


.

Since Gm induces the sparsity pattern of the matrix A, in order to observe the sparsity

pattern of the matrix A (see [89, p. 409]), we can consider the pattern of the matrix

M∑
m=0

Gm.

Example 2.4. Consider the spaces of complete polynomials S3
3 , S

3
5 , S

5
3 and S5

5 . The

patterns of the stochastic Galerkin matrix A in these cases are shown in Figure 2.2. Each

plot represents the block pattern of the Galerkin matrix A of size Ny ×Ny, where a blue

dot is a non-zero block matrix of size Nx ×Nx.

Furthermore, according to Theorem 2.11, the pattern of the Galerkin matrix A also

(a) (b) (c) (d)

Figure 2.2: These four �gures illustrate the pattern of the stochastic Galerkin matrix
A when the complete polynomial space SMk is constructed by an orthonormal basis. The
�gures (a) and (b) correspond to the case M = 3, k = 3 and M = 3, k = 5, respectively,
and the �gures (c) and (d) correspond to the case M = 5, k = 3 and M = 5, k = 5,
respectively.

39

2.5. THE STOCHASTIC LINEAR SYSTEM

depends on the bijection map q. Thus, if the map q is changed to a new bijection map q′,

then the pattern of the matrix A will also be di�erent.

Example 2.5. Consider the space SMk of complete polynomials degree 2 with 3 random

variables, i.e., M = 3 and k = 2, so that A is a block matrix of size 10× 10. De�ne maps

q1, q2 and q3 from {1, 2, ..., 10} to I3
2 as in Table 2.2.

n q1(n) q2(n) q3(n)

1 (0, 0, 0) (0, 0, 0) (2, 0, 0)
2 (0, 0, 1) (1, 0, 0) (1, 0, 0)
3 (0, 1, 0) (2, 0, 0) (1, 0, 1)
4 (1, 0, 0) (0, 1, 0) (0, 0, 2)
5 (0, 0, 2) (1, 1, 0) (0, 2, 0)
6 (0, 1, 1) (0, 0, 1) (0, 1, 0)
7 (0, 2, 0) (1, 0, 1) (1, 1, 0)
8 (1, 0, 1) (0, 2, 0) (0, 0, 0)
9 (1, 1, 0) (0, 1, 1) (0, 1, 1)
10 (2, 0, 0) (0, 0, 2) (0, 0, 1)

Table 2.2: The maps q1, q2 and q3 from {1, 2, ..., 10} to I3
2.

Each plot in Figure 2.3 represents the pattern of the matrix A for a di�erent map q

but with the same number of non-zero entries.

(a) (b) (c)

Figure 2.3: The �gures (a), (b) and (c) show the patterns of the Galerkin matrix A for
the case of the complete polynomial space S3

2 for the maps q1, q2 and q3, respectively.

We can see that the function q plays a vital role to manipulate the pattern of the matrix

A. Some patterns of the coe�cient matrix such as block-diagonal or block-tridiagonal can

improve the e�ciency of a solver. For instance, parallel computing can be applied to solve

a linear system with block-diagonal coe�cient.

40

2.5. THE STOCHASTIC LINEAR SYSTEM

Generally, applying a numerical method such as the �nite element method to a de-

terministic problem leads to a linear system with a sti�ness matrix that contains the

information from the physical domain. We have seen in this chapter that the SGFEM

combines stochastic Galerkin matrices, which include the data from the stochastic part,

with sti�ness matrices and introduces a large coupled linear system. The dimensions of

these stochastic matrices and sti�ness matrices grow exponentially with the discretisation

parameters. As a result, the linear system that arises from SGFEM is much larger than

the linear system from the deterministic problem. Consequently, this adversely a�ects

the computational e�ort for solving such a linear system. Additionally, the pattern of

the coupled linear system is very complex. For the case of KL expansions, the coe�cient

matrix is block-sparse, whereas the coe�cient matrix is block-dense in the case of gPC

expansions. Hence, to deal with this problem, a powerful solver equipped with an e�cient

preconditioner is needed.

41

CHAPTER 3

THE CONJUGATE GRADIENT METHOD

According to the construction of the stochastic Galerkin matrix A, the matrix A is sym-

metric and positive de�nite. Additionally, the matrix A is block-sparse by Theorem 2.11 if

the random �eld a is given in the form of the KL expansion. Thus, the conjugate gradient

method is a suitable option for solving a linear system with our symmetric and positive

de�nite coe�cient matrix A. The important feature of the conjugate gradient method is

that it guarantees convergence of the solution.

In this chapter, we present the conjugate gradient method (CG) together with its

preconditioned version ([106]). They are iterative methods for solving a linear system

Ax = b where A ∈ Rn×n is symmetric and positive de�nite and x,b ∈ Rn. We choose an

iterative method as a solver for our problem because of the sparsity and size of matrix

A which is usually large because it is a summation of the Kronecker product between

stochastic matrices and sti�ness matrices. First, we provide a brief review of Krylov sub-

space methods and the de�nition of the Krylov subspace in section 3.1. Next, we review

the conjugate gradient method and its algorithm. We also provide some properties, and

most importantly, a well-known convergence theorem. Finally, we discuss the precondi-

tioned CG in section 3.2 and why preconditioners are important to our problem. The

preconditioned CG algorithm is also provided.

42

3.1. THE CONJUGATE GRADIENT METHOD

3.1 The Conjugate Gradient Method

Krylov subspace methods are iterative methods based on a projection technique for solving

the linear system

Ax = b, (3.1)

where A ∈ Rn×n and x,b ∈ Rn with initial guess x0. Let Km and Lm be subspaces of Rn

with dimKm = dimLm = m. A projection technique will �nd an approximation xm to x

as a member of x0 +Km and with residual vector rm := b−Axm orthogonal to Lm. That

is

xm ∈ x0 +Km,

and

b− Axm ⊥ w for all w ∈ Lm.

For Krylov subspace methods, di�erent choices of the subspace Lm yield a variety of

Krylov subspace methods. However, the subspace Km is �xed and is de�ned as follows.

De�nition 3.1. The Krylov subspace associated with or generated by A and r0 is denoted

by Km(A, r0) and is de�ned by

Km(A, r0) = span
{
r0, Ar0, A

2r0, . . . , A
m−1r0

}
where r0 = b− Ax0. Note that Km (A, r0) will be denoted by Km.

The conjugate gradient method, which is probably the best-known Krylov subspace

method, employs Lm = Km where Km is themth Krylov subspace introduced in De�nition

3.1.

Since the approximate solution xm ∈ x0 +Km , then xm = x0 + qm−1(A)r0 where qm−1

is a polynomial of degree m − 1. Since x = x0 + A−1r0, the choice of approximation xm

indicates that A−1 is approximated by qm−1(A).

Assuming the coe�cient matrix A in (3.1) is symmetric and positive de�nite, it induces

43

3.1. THE CONJUGATE GRADIENT METHOD

the so-called A-inner product (·, ·)A de�ned via

(u,v)A = (Au,v) u,v ∈ Rn,

where (·, ·) denotes the Euclidean inner product.

Note that we can de�ne the A-norm ‖·‖A by ‖v‖2
A = (v,v)A for v ∈ Rn. We now

set p0 = r0 and construct a set of vectors {pi}mi=0 orthogonal with respect to the inner

product (·, ·)A by choosing the next search direction to be

pm+1 = rm+1 + βmpm.

Hence, xm can be written as

xm+1 = xm + αmpm = x0 +
m∑
i=0

αipi,

where α0, α1, . . . , αm ∈ R. Since rm+1 = rm − αmApm, we choose αm such that rm+1 is

orthogonal to rm with respect to the standard inner product (·, ·). Thus,

αm =
(rm, rm)

(pm,pm)A
.

Again, since pm+1 is orthogonal to pm with respect to the A-inner product, we have

βm =
(rm+1, rm+1)

(rm, rm)
.

We combine these results and get the pseudocode for the CG algorithm in Algorithm 1.

As we can see, each iteration of the the CG algorithm mainly consists of an inner

product and a matrix-vector multiplication. As a result, the cost of matrix-vector multi-

plication dominates the cost of one iteration of the CG algorithm. The CG method has

some important properties as the following theorem shows.

44

3.1. THE CONJUGATE GRADIENT METHOD

Algorithm 1 The CG algorithm for solving the linear system Ax = b

r0 = b− Ax0

p0 = r0

For m = 0, 1, 2, . . . until convergence
αm = (rm, rm) / (pm,pm)A
xm+1 = xm + αmpm
rm+1 = rm − αmApm
βm = (rm+1, rm+1) / (rm, rm)
pm+1 = rm+1 + βmpm

End For

Theorem 3.2 ([106, Proposition 6.20]). Let {rm} be the set of residual error vectors and

{pm} be the set of auxiliary vectors produced by Algorithm 1 for m = 0, 1, 2, ..., n. Then,

(rm1 , rm2) = 0 and (pm1 ,pm2)A = 0 for all m1 6= m2.

An immediate consequence of this result is that the conjugate gradient algorithm

will terminate or converge within n iterations. However, we expect the Algorithm 1

is terminated in m iterations where m � n. In addition, the sequence (xm)m∈N0
in

Algorithm 1 converges to the exact solution with the rate of convergence as shown in the

following results.

Theorem 3.3 ([106, Theorem 6.29]). Let xm be the approximate solution obtained at the

mth step of the CG algorithm and let x be the exact solution. Then

‖x− xm‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)m

‖x− x0‖A

where κ(A) = λmax(A)/λmin(A).

By Theorem 3.3, it is easy to see that the rate of convergence depends on the eigen-

values of the coe�cient matrix A. If λmin is close to λmax, then the number of iterations

is likely to be small. Moreover, to ensure that the relative error with respect to the norm

45

3.2. PRECONDITIONED CONJUGATE GRADIENT METHOD

‖·‖A is less than a given tol� 1, it is su�cient to require that

2

(√
κ(A)− 1√
κ(A) + 1

)m

≤ tol.

m log

(√
κ(A)− 1√
κ(A) + 1

)
≤ log

tol

2
.

Since log

(√
κ(A)−1√
κ(A)+1

)
≈ −2√

κ(A)
, we have

m ≥ 1

2

√
κ(A)

∣∣∣∣log
tol

2

∣∣∣∣ .
Remark. tol can be any positive real numbers. However, a discretisation of the model

problem causes an approximation error that cannot be removed. Thus, it is su�cient to

solve the linear system from the discretisation formulation with an accuracy in the same

order as the discretisation error. If tol is too small, it may cause an over�tted model.

To conclude, we can see that the number of iterations appears to grow linearly with√
κ(A). However, it will not exceed the dimension of the matrix A due to x being

approximated by a linear combination of orthogonal vectors {pi}mi=0.

3.2 Preconditioned Conjugate Gradient Method

If the coe�cient matrix A is ill-conditioned, i.e., λ(A) is close to zero or very large,

it results in requiring many iteration counts of the CG algorithm before convergence.

A preconditioner plays a vital role in the convergence of iteration methods. Generally

speaking, a preconditioner is needed to improve convergence of the CG algorithm if the

coe�cient matrix A is ill-conditioned.

Moreover, according to the convergence Theorem 3.3 of the CG algorithm, the rate of

convergence depends only on the coe�cient matrix A. Then, the linear system Ax = b

46

3.2. PRECONDITIONED CONJUGATE GRADIENT METHOD

Algorithm 2 PCG algorithm for solving Ax=b with a preconditioner P .

r0 = b− Ax0

z0 = P−1r0

p0 = z0

For m = 0, 1, 2, . . . until convergence
αm = (rm, zm) / (pm,pm)A
xm+1 = xm + αmpm
rm+1 = rm − αmApm
zm+1 = P−1rm+1

βm = (rm+1, zm+1) / (rm, zm)
pm+1 = zm+1 + βmpm

End For

can be changed to a preconditioned linear system

Âx̂ = b̂. (3.2)

such that κ(Â) < κ(A). Since the CG method requires the coe�cient matrix Â to be

symmetric and positive de�nite, we set

Â = P−
1
2AP−

1
2 , x̂ = P

1
2 x and b̂ = P−

1
2 b,

where the matrix P is a symmetric and positive de�nite matrix such that the condi-

tion number is smaller. Hence, the number of iterations of the CG algorithm might be

decreased if the CG is applied to the preconditioned linear system instead.

If the CG method is applied to the preconditioned linear system (3.2), we can derive

the CG algorithm with a preconditioner P as shown in the Algorithm 2.

The preconditioned Conjugate Gradient algorithm (PCG) performs an inner-product

and a matrix-vector multiplication but also solves the linear system

Pzm = rm (3.3)

at each iteration. Therefore, the cost for solving such a linear system should not be very

high. Additionally, there is one important feature required in a preconditioner: optimality

47

3.2. PRECONDITIONED CONJUGATE GRADIENT METHOD

with respect to problem size. This concept is described below.

De�nition 3.4. Let {An}, {Pn} be the sets of n × n matrices with n ∈ {n1, n2, ..., nf}

and let θ, Θ be positive real numbers independent of n such that for all n ∈ {n1, n2, ..., nf}

θ ≤ λ
(
P−1
n An

)
≤ Θ.

We call the set {Pn} an optimal preconditioning set for {An} with respect to the size n.

If the matrix P is an optimal preconditioner, then the condition number κ(Â) is

bounded by a constant independent of n. As a result, the iteration counts by PCG are

also bounded with respect to the problem size.

Equivalent Bilinear Forms and Optimal Preconditioners

Optimal preconditioners may be designed via equivalent operators (see [40], [52]) or equiv-

alent norms (see [88]). It is well known that operators and bilinear forms are connected.

Thus, we introduce the following de�nitions.

De�nition 3.5. Let V be a vector space and B,B̃ : V × V → R be positive de�nite

symmetric bilinear forms. The bilinear forms B and B̃ are said to be equivalent if there

exist positive numbers θ,Θ such that

θB̃(v, v) ≤ B(v, v) ≤ ΘB̃(v, v) for all v ∈ V.

De�nition 3.6. Let A, P ∈ Rn×n be symmetric and positive de�nite matrices. The

matrices A and P are spectrally equivalent if there exists positive numbers θ,Θ such that

θvTPv ≤ vTAv ≤ ΘvTPv for all v ∈ Rn.

The following proposition shows a connection between spectrally equivalence of ma-

trices A and P and boundedness of eigenvalues of P−1A.

48

3.2. PRECONDITIONED CONJUGATE GRADIENT METHOD

Proposition 3.7. Let A, P ∈ Rn×n be symmetric and positive de�nite matrices. If the

matrices A and P are spectrally equivalent, then

θ ≤ λ(P−1A) ≤ Θ,

where θ and Θ are the constants of equivalence.

Proof. Let v ∈ Rn\ {0}. Since A and P are spectrally equivalent, we have

θ ≤ vTAv

vTPv
≤ Θ.

Since P is symmetric and positive de�nite, we set w = P
1
2 v and get

θ ≤ wTP−
1
2AP−

1
2 w

wTw
≤ Θ.

By Rayleigh quotient, we have

θ ≤ λ
(
P−

1
2AP−

1
2

)
≤ Θ.

We �nish the proof by applying the fact that λ
(
P−

1
2AP−

1
2

)
= λ(P−1A).

Since the coe�cient matrix A in (2.20) is induced by the bilinear form (2.12), we may

design an optimal preconditioner by �nding an equivalent bilinear form as shown in the

following proposition.

Proposition 3.8. Let B,B̃ : V × V → R be positive de�nite symmetric bilinear forms

which are equivalent. Let Ṽ = span{ϕ1, . . . , ϕn} ⊂ V . De�ne matrices A and P by

Aij = B(ϕi, ϕj) and Pij = B̃(ϕi, ϕj).

Then, A and P are spectrally equivalent.

49

3.2. PRECONDITIONED CONJUGATE GRADIENT METHOD

Additionally, P is an optimal preconditioner for A.

Proof. Since the bilinear forms B and B̃ are equivalent and Ṽ is a subspace of V , there

exist positive numbers θ,Θ such that

θB̃(v, v) ≤ B(v, v) ≤ ΘB̃(v, v) for all v ∈ Ṽ .

Let v ∈ Rn and set v =
∑n

i=1 viϕi. Then, B(v, v) = vTAv and B̃(v, v) = vTPv. We

have

θvTPv ≤ vTAv ≤ ΘvTPv for all v ∈ Rn.

Hence, P is spectrally equivalent to the matrix A and also an optimal preconditioner for

A.

To summarise, the CG method is a powerful iterative method for the symmetric and

positive de�nite linear system due to a fast convergence rate and guarantee convergence. A

preconditioner is key to improving the e�ciency of Krylov subspace methods. In the case

of the CG method, a preconditioner should cluster the eigenvalues of the preconditioned

linear system, and the cost of the action of its inverse on a vector should not be very high.

Additionally, optimality of a preconditioner is also important in order to bound the PCG

iteration counts. In the next chapter, we will introduce a class of optimal preconditioner

for SGFEM to improve the e�ciency of the CG method.

50

CHAPTER 4

TRUNCATION PRECONDITIONERS FOR

AFFINE PARAMETRIC DIFFUSION

COEFFICIENTS

The SGFEM is a powerful method for PDEs with random data. However, the method

results in a large coupled linear system of equations which can be represented in block

form with a speci�c structure. Additionally, the coe�cient matrix is ill-conditioned with

respect to the spatial and parametric discretisation parameters (see [97, Lemma 3.7]).

Consequently, this a�ects the e�ciency of the Conjugate Gradient method. Thus, a

preconditioning strategy is mandatory.

Block preconditioning is a natural technique for a block matrix. An e�ective precon-

ditioner should be similar to the matrix A in some sense, and the computational cost of

the action of its inverse on a vector should not be expensive. Moreover, if the size of the

problem is very large, applying parallel computing when solving a linear system with the

system matrix as a preconditioner would be bene�cial.

Truncation preconditioners are one of the possible generalisations of the mean-based

preconditioner (see [97]). The mean-based preconditioner employs the most important

term, which is the block diagonal part corresponding to the mean of the di�usion coef-

�cient. In contrast, truncation preconditioners are constructed via the most signi�cant

r + 1 terms of the coe�cient function where r ∈ N0.

This chapter will introduce a family of truncation preconditioners for the stochastic

51

4.1. THE AFFINE PARAMETRIC DIFFUSION COEFFICIENT

Galerkin matrix A for the case where a is an a�ne parametric di�usion coe�cient. First,

we introduce the representation of the di�usion coe�cient and some necessary conditions

in section 4.1. Then, we will review some existing preconditioners such as the mean-based

preconditioner and the Kronecker product preconditioner in section 4.2. Furthermore,

their spectral analysis is also provided to compare with truncation preconditioners. Next,

in section 4.3, we de�ne a family of bilinear forms and show that the bilinear forms are

equivalent to the bilinear form B in (2.12). We use these equivalent bilinear forms to

construct a family of preconditioners. In section 4.4 we present an approximation of the

preconditioner by a symmetric block Gauss-Seidel preconditioner, so that the compu-

tational cost is acceptable and we also show that our preconditioners are optimal with

respect to discretisation parameters. Finally, the performance of the truncation precon-

ditioner is compared with other preconditioners in section 4.6.

4.1 The A�ne Parametric Di�usion Coe�cient

Assume Γm := [−1, 1] for all m ∈ N. Let a be a random �eld represented as

a(x,y) = a0(x) +
∞∑
m=1

am(x)ym, x ∈ D,y ∈ Γ, (4.1)

where am ∈ L∞(D) for all m ∈ N.

In order to preserve positivity of the random �eld a, we also assume that there exist

positive numbers amin
0 and amax

0 such that (see [110, Proposition 2.22])

0 < amin
0 ≤ a0(x) ≤ amax

0 for almost all x ∈ D (4.2)

and

τ :=
1

amin
0

∥∥∥∥∥
∞∑
m=1

|am|

∥∥∥∥∥
L∞(D)

< 1. (4.3)

52

4.1. THE AFFINE PARAMETRIC DIFFUSION COEFFICIENT

This implies that the random �eld a satis�es the assumption (2.10) with

amin := amin
0 (1− τ) and amax := amax

0 + amin
0 τ. (4.4)

By the representation of the random �eld a, applying SGFEM to the SPDE (2.7) leads

to the linear system Au = b, where

A =
M∑
m=0

Gm ⊗Km (4.5)

and, for m = 1, 2, ...,M ,

[Gm]js =
〈
ymψq(j), ψq(s)

〉
ρ
, j, s = 1, 2, . . . , Ny,

[Km]ir =

∫
D

am(x)∇φi(x) · ∇φr(x)dx, i, r = 1, 2, . . . , Nx.
(4.6)

Unfortunately, the following theorem shows that the stochastic Galerkin matrix A

associated with the mesh size h as de�ned in (4.5) is ill-conditioned if h is very small.

In order to study the eigenvalue bounds of the system matrix A, we de�ne

η(x) =
1

a0(x)

∞∑
m=1

|am(x)|

and note that

1− η(x) ≤ a(x,y)

a0(x)
≤ 1 + η(x), for all (x,y) ∈ D × Γ,

and obviously, by the de�nition of τ , we have 0 < η(x) ≤ τ < 1 for all x ∈ D. Addition-

ally, we de�ne the bilinear form B0 : V × V → R by

B0(u, v) =

∫
Γ

ρ(y)

∫
D

a0(x)∇u(x,y) · ∇v(x,y)dxdy. (4.7)

Theorem 4.1. Let a be a function in the form (4.1) and satisfying the assumption (4.2)

53

4.1. THE AFFINE PARAMETRIC DIFFUSION COEFFICIENT

and (4.3). Suppose the matrices Gm are de�ned as in (4.6) with normalised Legendre

polynomial in uniform random variables on a bounded interval [−1, 1], and a piecewise

linear approximation is used for the spatial domain. If the matrix A is the stochastic

Galerkin matrix de�ned in (4.5), then

Λ(A) ⊂ [α1aminh
2, α2amax],

where amin and amax are de�ned in (4.4), h is the discretisation parameter for the spatial

domain, and α1 and α2 are constants which are independent of h, M and k.

Proof. Let v ∈ V M
k and consider

B(v, v) =

∫
Γ

ρ(y)

∫
D

a(x,y)∇v(x,y) · ∇v(x,y)dxdy

≤
∫

Γ

ρ(y)

∫
D

a0(x) (1 + η(x))∇v(x,y) · ∇v(x,y)dxdy

≤ (1 + τ)B0(v, v).

On the other hand, we consider

B0(v, v) =

∫
Γ

ρ(y)

∫
D

a0(x)∇v(x,y) · ∇v(x,y)dxdy

≤
∫

Γ

ρ(y)

∫
D

1

(1− η(x))
a(x,y)∇v(x,y) · ∇v(x,y)dxdy

≤ 1

1− τ
B(v, v).

Therefore, we get

(1− τ)B0(v, v) ≤ B(v, v) ≤ (1 + τ)B0(v, v). (4.8)

Since the bilinear forms B and B0 induce the matrices A and G0⊗K0, respectively, then

we have

(1− τ) vT (G0 ⊗K0) v ≤ vTAv ≤ (1 + τ) vT (G0 ⊗K0) v,

54

4.2. SOME EXISTING BLOCK PRECONDITIONERS

where the vector v corresponds to the function v. By [97, Lemma 3.5], we know that

Λ(G0 ⊗K0) ⊂ [amin
0 α1h

2, amax
0 α2],

where α1 and α2 are constants which are independent of h, M and k. As a result,

(1− τ) amin
0 α1h

2vTv ≤ vTAv ≤ (1 + τ) amax
0 α2v

Tv.

We can see from Theorem 4.1 that if the mesh size is too small, the minimum eigenvalue

of the coe�cient matrix A approaches 0. This results in a deterioration of the bound on

convergence of the CG method in Theorem 3.3, in practice, CG requires many iterations

before convergence. For example, reducing the mesh size by half will double the number

of CG iterations approximately. Therefore, a preconditioner is needed.

4.2 Some Existing Block Preconditioners

In this section, we review some important preconditioners for the stochastic Galerkin

matrix, which are the mean-based preconditioner [63, 97] and the Kronecker product pre-

conditioner [125]. These preconditioners can also be applied with other iterative methods

such as multigrid methods or domain decomposition methods as we discuss in section 1.2.

The mean-based preconditioner uses only the most dominant term in the coe�cient ma-

trix as a preconditioner, whereas the Kronecker product preconditioner approximates the

coe�cient matrix in Kronecker product form and uses all the data, i.e., all the matrices

Gm and Km, to construct a preconditioner.

55

4.2. SOME EXISTING BLOCK PRECONDITIONERS

4.2.1 Mean-based Preconditioners

By the KL expansion, the random �eld a can be written as an in�nite series by starting

with the mean value of the random �eld a, namely a0(x) = E [a(x, ·)]. The key idea of

mean-based preconditioners is to choose the most signi�cant term in the coe�cient matrix

A. We can obtain the mean-based preconditioner, which is denoted by P0, via the bilinear

form B0. The mean-based preconditioner is de�ned by

P0 = G0 ⊗K0.

Note that the assumption (4.2) on a0 leads to the positivity of the preconditioner P0. We

can see that P0 is also the �rst term of the stochastic Galerkin matrix A. It implies that

P0 is also the most important term of the matrix A.

For mean-based preconditioners, the eigenvalue bounds of the matrix P−1
0 A are pro-

vided in the following theorem.

Theorem 4.2. Let a be a random di�usion coe�cient in the form (4.1). Suppose that the

random variables are pairwise uncorrelated with even probability density functions. Then,

the following eigenvalue bounds hold

Λ
(
P−1

0 A
)
⊆ [1− τ, 1 + τ] ,

where τ denotes the constant in (4.3).

Proof. Since we have that the bilinear forms B and B0 are equivalent in (4.8) and the

bilinear forms B and B0 induce the matrices A and P0, respectively, then we have that

1− τ ≤ λ
(
P−1

0 A
)
≤ 1 + τ.

According to the above theorem, the eigenvalue bounds are independent of discretisa-

56

4.2. SOME EXISTING BLOCK PRECONDITIONERS

tion parameters, that is, the mesh size h, the number of active random variables M and

the degree k of the space of complete polynomials. Thus, P0 is an optimal preconditioner.

The eigenvalues of the preconditioned linear system cluster around one. Therefore, we can

expect the number of iterations by the CG method to be reduced. In each CG iteration,

it is required to solve a system with P0 as a coe�cient matrix.

To analyse its complexity, we denote the number of �ops for a sequential operation and

a parallel operation by F` (operation) and F`p (operation), respectively. Furthermore,

nnz(A) denotes the number of non-zeros in the matrix A.

Due to the structure of G0 which is a diagonal matrix, i.e., G0 = INy , P0 is a block

diagonal matrix with K0 along the main diagonal. Thus, we need to solve Ny linear

systems with the coe�cient matrix K0. Hence,

F`
(
P−1

0 v
)

= NyF`
(
K−1

0 b
)
.

Moreover, we may tackle these linear systems in parallel, which would require Ny proces-

sors. For instance, for v ∈ RNxNy , we solve P0x = v by

K0xi = vi,

where vi = v (((i− 1)Nx + 1) : iNx) and xi = x (((i− 1)Nx + 1) : iNx) for i = 1, 2, . . . , Ny.

For this reason, the parallel complexity for solving a linear system with the system matrix

P0 is

F`p
(
P−1

0 v
)

= F`
(
K−1

0 b
)
.

Overall, the mean-based preconditioner is an e�cient preconditioner for many reasons.

First, it is an optimal preconditioner. Thus, the number of PCG iterations does not

depend on any discretisation parameters in the system. More importantly, the spectral

bounds show that the eigenvalues of the preconditioned system P−1
0 A are packed around

one if τ is small. That results in reducing the number of CG iterations. Moreover, the

57

4.2. SOME EXISTING BLOCK PRECONDITIONERS

computational cost of solving systems with P0 is not high. Nevertheless, P0 uses only very

limited information. Hence, if the remainder terms, i.e., A − P0, are signi�cantly large,

then P0 may be unsuitable.

4.2.2 Kronecker Product Preconditioners

The main disadvantage of mean-based preconditioners is omitting information about both

the matrices Gm and the matrices Km for all m = 1, 2, . . . ,M by using only the �rst term

of the Galerkin matrix A. The Kronecker product preconditioner introduced in [125] is

constructed by using all the matrices Gm and also Km. The main idea of the Kronecker

product preconditioner is to �nd the best approximation of the matrix A by preserving

the Kronecker product form. That is, suppose the positive de�nite matrices A and B are

given. We can then �nd a positive de�nite matrix C to minimise ‖A− C ⊗B‖F , where

‖·‖F denotes the Frobenius norm. For the Kronecker product preconditioner denoted by

P⊗, the matrix B is chosen to be K0, and P⊗ is de�ned by

P⊗ = G⊗K0,

where

G =
M∑
m=0

tr(KT
mK0)

tr(KT
0 K0)

Gm,

and tr(A) =
∑n

i=1 aii for A = (aij)n×n ∈ Rn×n.

Note that, as a result of symmetry and positivity of G, P⊗ is symmetric and positive

de�nite. Hence, the CG method can be used as a solver for the preconditioned system

with preconditioner P⊗. Furthermore, the author of [125] also mentions the relations

between the Kronecker product preconditioner P⊗ and the mean-based preconditioner

P0 in 2 ways. Firstly, if P⊗ is expanded, it can be seen that the matrix G is a linear

combination of all the Galerkin matrices Gm for m = 0, 1, 2, . . . ,M whereas P0 is formed

58

4.2. SOME EXISTING BLOCK PRECONDITIONERS

by using only G0 = IN . Hence, we can view P0 as an approximation of P⊗ as follows,

P⊗ = G⊗K0 = INy ⊗K0 +
M∑
m=1

tr(KT
mK0)

tr(KT
0 K0)

Gm ⊗K0.

Secondly, by a property of Kronecker products, P0 can be seen as a factor of P⊗:

P⊗ = G⊗K0 = (G⊗ INx)
(
INy ⊗K0

)
= (G⊗ INx)P0. (4.9)

Moreover, the following lemma shows that P⊗ is the best approximation of the stochas-

tic Galerkin matrix A under some additional conditions.

Lemma 4.3 ([125, Lemma 5.2]). Let a be a random di�usion coe�cient in the form

(4.1). Assume that am are constant for each m = 0, 1, 2, . . . ,M . Then, the Kronecker

preconditioner P⊗ is identical to the Galerkin matrix A, that is P⊗ = A.

Therefore, if the conditions of Lemma 4.3 hold for the di�usion coe�cient function a,

then we can obtain the solution in just one iteration of the CG method. Most importantly,

an eigenvalue analysis is available.

Theorem 4.4 ([125, Corrollary 5.4]). Let a be a random di�usion coe�cient in the form

(4.1). Suppose that the random variables are pairwise uncorrelated with even probability

density functions. Then, the following eigenvalue bounds hold

λmin(P−1
⊗ A) ≥ 1

1 + τ2

− τ1

1− τ2

, 0 < τ2 < 1,

λmax(P−1
⊗ A) ≤ 1 + τ1

1− τ2

,

where

τ1 =
1

amin
0

M∑
m=1

µ̄
(m)
k+1 ‖am‖L∞(D) ,

τ2 =
M∑
m=1

µ̄
(m)
k+1

‖Km‖F
‖K0‖F

,

59

4.2. SOME EXISTING BLOCK PRECONDITIONERS

µ̄
(m)
k+1 denotes the largest root of the (·, ·)ρm-orthogonal polynomial Pk+1.

Unfortunately, the theoretical eigenvalue bounds of P−1
⊗ A are not su�ciently sharp,

therefore, they cannot re�ect or predict the performance of P⊗. Moreover, they are worse

than those established for the mean-based preconditioned Galerkin matrix in Theorem 4.2.

However, according to experiments in [125, section 6], the Kronecker product precondi-

tioner reduces the number of iterations when compared to the mean-based preconditioner

in many test problems. This is because the spectrum of the preconditioned matrix P−1
⊗ A

clusters around one more than that of P−1
0 A. Moreover, the setup time for the precon-

ditioner P⊗ depends on the dimension of SMk , i.e., Ny, whereas the construction time

of P0 remains virtually constant. However, the setup time for the preconditioner P⊗ is

negligible compared to the time taken by the iterative solver.

In terms of computational cost of the action of P−1
⊗ , it can be seen that the solution

of a linear system with the coe�cient matrix P⊗ is more expensive than solving with the

preconditioner P0 due to the relation between P0 and P⊗ in (4.9). For the action of P−1
⊗

on a vector v ∈ RNxNy , we start by solving Nx linear systems with the system matrix G.

For example, we solve the linear system (G⊗ INx) x = v by splitting into subsystems

Gxi = vi,

where vi = v(i : Nx : NxNy) and xi = x(i : Nx : NxNy) for i = 1, 2, . . . , Nx. We may

assign each linear system to a processor. We can then obtain P−1
⊗ v by solving a linear

system with the system matrix P0 which takes NyF`
(
K−1

0 b
)
operations. To conclude,

the action of P−1
⊗ has the following complexities

F`
(
P−1
⊗ v

)
= NxF`

(
G−1d

)
+NyF`

(
K−1

0 b
)

and

F`p
(
P−1
⊗ v

)
= F`

(
G−1d

)
+ F`

(
K−1

0 b
)
.

60

4.3. TRUNCATION PRECONDITIONERS

Since G is a linear combination of Gm for m = 0, 1, 2, . . . ,M , G has the same pattern

as the stochastic Galerkin matrix A. Consequently, there are 2M + 1 nonzero entries per

row. Thus, linear systems with the matrix G can be solved in O
(
(2M + 1)2) operations

by assuming that Cholesky factorisation of G is provided (see [125, Section 5.5]).

4.3 Truncation Preconditioners

Truncation preconditioners are a generalisation of the mean-based preconditioner. We

start by �nding a bilinear form B̃, which is equivalent to the bilinear form B in (2.12).

Thus, a preconditioner P which is de�ned via the bilinear B̃ is optimal. That is the

preconditioned Conjugate Gradient converges in a number of iterations independent of

the size of the coe�cient matrix A. To begin with, we will show that conditions (4.2) and

(4.3) guarantee that a truncated coe�cient of a(x,y) is positive and uniformly bounded

away from zero. This allows us to design an optimal preconditioner via a bilinear form

which is de�ned via the truncated coe�cient of a(x,y).

As was done for the random �eld a, we de�ne a quantity related to the truncated

coe�cient a by

τ0 := 0, τr :=
1

amin
0

∥∥∥∥∥
r∑

m=1

|am|

∥∥∥∥∥
L∞(D)

, r ∈ N. (4.10)

Note that (τr)r∈N0
is an increasing sequence and bounded by 1 (see Figure 4.1). That is

0 = τ0 ≤ τ1 ≤ · · · ≤ τr ≤ τr+1 ≤ · · · ≤ τ < 1.

We will use this quantity to �nd a bound for the truncated random �eld a.

Lemma 4.5. Let a be a parametric di�usion coe�cient in the form (4.1) which satis�es

conditions (4.2) and (4.3). De�ne a truncated expansion of the random �eld a by ar :

61

4.3. TRUNCATION PRECONDITIONERS

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

r

τ r

Figure 4.1: τr. is a non-decreasing sequence bounded by τ < 1.

D × Γ→ R

ar(x,y) = a0(x) +
r∑

m=1

am(x)ym. (4.11)

Then, for any r ∈ N0, ar is positive and bounded in D × Γ.

Proof. It is obvious that a0 is positive and bounded, by condition (4.2). Let r ∈ N, since

|ym| ≤ 1 for all m ∈ N, we have

|ar(x,y)− a0(x)| =

∣∣∣∣∣
r∑

m=1

am(x)ym

∣∣∣∣∣ ≤
r∑

m=1

|am(x)| ≤

∥∥∥∥∥
r∑

m=1

|am|

∥∥∥∥∥
L∞(D)

= amin
0 τr.

Therefore, we get

a0(x)− amin
0 τr ≤ ar(x,y) ≤ a0(x) + amin

0 τr.

By condition (4.2) on a0,

amin
r := amin

0 − amin
0 τr ≤ ar(x,y) ≤ amax

0 + amin
0 τr =: amax

r . (4.12)

Since τr < 1, then amin
r = amin

0 (1− τr) > 0.

62

4.3. TRUNCATION PRECONDITIONERS

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

r

a
m
in

r
,a

m
a
x

r
amin
r

amax
r

Figure 4.2: amin
r is a non-increasing sequence whereas amax

r is a non-decreasing sequence.

We now use Lemma 4.5 to de�ne a family of bilinear forms equivalent to the bilinear

form B.

Theorem 4.6. Let ar be a function in (4.11). De�ne the bilinear form Br : V × V → R

by

Br(u, v) =

∫
Γ

ρ(y)

∫
D

ar(x,y)∇u(x,y) · ∇v(x,y)dxdy. (4.13)

Then, the bilinear form Br is equivalent to the bilinear form B in (2.12) for all r ∈ N0.

To be precise, there exist positive numbers θr and Θr such that

θrBr(v, v) ≤ B(v, v) ≤ ΘrBr(v, v), for all v ∈ V,

where

θr =
1

1 + εr
, Θr = 1 + ε′r, (4.14)

with

εr =
1

amin

∥∥∥∥∥
∞∑

m=r+1

|am|

∥∥∥∥∥
L∞(D)

and ε′r =
1

amin
r

∥∥∥∥∥
∞∑

m=r+1

|am|

∥∥∥∥∥
L∞(D)

.

63

4.3. TRUNCATION PRECONDITIONERS

Proof. Consider

|B(v, v)−Br(v, v)| =

∣∣∣∣∣
∫

Γ

ρ(y)

∫
D

(
∞∑

m=r+1

amym

)
∇v(x,y) · ∇v(x,y)dxdy

∣∣∣∣∣
≤
∫

Γ

ρ(y)

∫
D

∣∣∣∣∣
∞∑

m=r+1

amym

∣∣∣∣∣∇v(x,y) · ∇v(x,y)dxdy

≤
∫

Γ

ρ(y)

∫
D

(
∞∑

m=r+1

|am|

)
∇v(x,y) · ∇v(x,y)dxdy.

For the lower bound, we have

Br(v, v)−B(v, v) ≤ |B(v, v)−Br(v, v)|

≤
∫

Γ

ρ(y)

∫
D

a(x,y)

amin

(
∞∑

m=r+1

|am|

)
∇v(x,y) · ∇v(x,y)dxdy

≤ 1

amin

∥∥∥∥∥
∞∑

m=r+1

|am|

∥∥∥∥∥
L∞(D)

∫
Γ

ρ(y)

∫
D

a(x,y)∇v(x,y) · ∇v(x,y)dxdy

≤ 1

amin

∥∥∥∥∥
∞∑

m=r+1

|am|

∥∥∥∥∥
L∞(D)

B(v, v).

Hence,

1

1 + εr
Br(v, v) ≤ B(v, v)

where

εr =
1

amin

∥∥∥∥∥
∞∑

m=r+1

|am|

∥∥∥∥∥
L∞(D)

.

64

4.3. TRUNCATION PRECONDITIONERS

Next, we �nd an upper bound by considering

B(v, v)−Br(v, v) ≤ |B(v, v)−Br(v, v)|

≤
∫

Γ

ρ(y)

∫
D

ar(x,y)

amin
r

(
∞∑

m=r+1

|am|

)
∇v(x,y) · ∇v(x,y)dxdy

≤ 1

amin
r

∥∥∥∥∥
∞∑

m=r+1

|am|

∥∥∥∥∥
L∞(D)

∫
Γ

ρ(y)

∫
D

ar(x,y)∇v(x,y) · ∇v(x,y)dxdy

≤ 1

amin
r

∥∥∥∥∥
∞∑

m=r+1

|am|

∥∥∥∥∥
L∞(D)

Br(v, v).

Therefore, we get

B(v, v) ≤ (1 + ε′r)Br(v, v)

where

ε′r =
1

amin
r

∥∥∥∥∥
∞∑

m=r+1

|am|

∥∥∥∥∥
L∞(D)

.

Remark. Theorem 4.6 generalises Theorem 4.2 and the result in [21, eq. (2.5)]. That is,

if we set r = 0, we get the eigenvalue bounds for the mean-based preconditioner.

We can see from the above theorem that εr and ε′r tend to 0 as r increases. As a

result, θr and Θr approach 1. Hence, the constants of equivalence are tighter around one

as r increases. Most importantly, these constants do not depend on any discretisation

parameters such as mesh size or the degree of the space of complete polynomials. We

now know that the bilinear forms B and Br are equivalent. Hence, we utilise the bilinear

form Br to generate a class of optimal preconditioners. Speci�cally, let Pr be induced by

the bilinear form Br. By Proposition 3.8, the eigenvalue bounds for the preconditioned

system P−1
r A are

Λ
(
P−1
r A

)
⊆ [θr,Θr] , (4.15)

where θr and Θr are de�ned in (4.14).

Additionally, we obtain eigenvalue bounds for P−1
0 Pr in the following corollary.

65

4.4. MODIFIED TRUNCATION PRECONDITIONERS

Corollary 4.7. Let ar be a truncated random di�usion coe�cient in the form (4.11). Let

Pr and P0 be induced by the bilinear form Br in (4.13) and B0 in (4.7), respectively. Then

Λ
(
P−1

0 Pr
)
⊆ [1− τr, 1 + τr] ,

where τr is de�ned in (4.10).

Proof. By Lemma 4.5, ar is positive and bounded. If we set am = 0 for m > r, the result

of Theorem 4.2 will hold with τ replaced by τr

(1− τr)B0(v, v) ≤ Br(v, v) ≤ (1 + τr)B0(v, v).

Since the bilinear forms Br and B0 induce the preconditioners Pr and P0, respectively, by

Proposition 3.8, we have

1− τr ≤ λ
(
P−1

0 Pr
)
≤ 1 + τr.

However, to construct a preconditioner Pr, there are a few issues to consider such

as the speed of the convergence of the preconditioned system and the complexity of the

action of the inverse of the preconditioner Pr on a vector.

4.4 Modi�ed Truncation Preconditioners

To design an e�cient preconditioner, there are some features that we have to take into

account. The preconditioner should be optimal and also capture the main features of the

coe�cient matrix. Additionally, the complexity of the action of its inverse on a vector

should not be expensive.

In the previous section, we have seen that the truncation preconditioners Pr induced

by the bilinear Br are optimal. Next, in order to keep the key features of the coe�cient

matrix A, we need to ensure that the parametric function a is properly approximated.

66

4.4. MODIFIED TRUNCATION PRECONDITIONERS

Because the coe�cient function a in (4.1) is de�ned via a KL expansion, we sort am by

their magnitudes. That is

‖a1‖L∞(D) ≥ ‖a2‖L∞(D) ≥ ‖a3‖L∞(D) ≥ · · · .

As a result, a is well represented by ar and Pr captures the most signi�cant r + 1 terms

of the matrix A.

Lastly, we replace the preconditioner Pr by its symmetric block Gauss-Seidel (SBGS)

approximation:

P̃r =

(
G0 ⊗K0 +

r∑
m=1

Lm ⊗Km

)
(G0 ⊗K0)−1

(
G0 ⊗K0 +

r∑
m=1

LTm ⊗Km

)
,

where Lm is the strictly lower triangular part of the matrix Gm. By the structure of

the block-triangular and block-diagonal matrices in P̃r, the multiplication of P̃−1
r with a

vector is acceptable in terms of computational cost.

Remark. With a certain permutation, the truncation preconditioner Pr can be in the

form of a block-diagonal matrix. However, the number of blocks reduces when r increases.

In the case r = 1, we can employ a speci�c permutation so that P1 is a block-diagonal

matrix where each block is a block-tridiagonal matrix, as shown in Figure 4.3. This

structure of P1 could be bene�cial if an e�cient block-tridiagonal solver is provided.

4.4.1 Computational Costs

As we mentioned in the previous chapter, the stochastic Galerkin matrix A in (4.5) is sym-

metric and positive de�nite. Then PCG is a suitable linear solver. One iteration of PCG

requires one matrix-vector multiplication and solving a linear system with a preconditioner

as a coe�cient matrix. Hence, to compare the e�ciency with other preconditioners, we

need to analyse its complexity for solving the linear system with a preconditioner.

Since the modi�ed truncation preconditioners are decomposed into two block-triangular

67

4.4. MODIFIED TRUNCATION PRECONDITIONERS

Figure 4.3: The sparsity pattern of the preconditioner P1 when M = 5 and k = 3 based
on [89, Theorem 9.62].

matrices and one block-diagonal matrix, in order to solve P̃rz = r, we need to solve two

block-triangular linear systems as follows.

1. Solve for z′ by forward substitution from

(
G0 ⊗K0 +

r∑
m=1

Lm ⊗Km

)
z′ = r.

2. Solve for z by backward substitution from

(
G0 ⊗K0 +

r∑
m=1

LTm ⊗Km

)
z = (G0 ⊗K0) z′.

The computational cost for solving such a linear system involves two main operations, i.e.,

matrix-vector multiplication and solving a linear system with sti�ness matrix K0. For the

former, we know that if A is a sparse matrix and v is a vector, then F` (Av) = nnz(A). In

the latter case, we leave it to the reader to decide on a suitable approach such as multigrid

or domain decomposition. Each method has a di�erent key feature. For example, a

multigrid method provides optimality or a domain decomposition method is capable of

parallelism.

For the �rst step, forward substitution requires solving Ny linear systems with sti�ness

68

4.4. MODIFIED TRUNCATION PRECONDITIONERS

matrix K0 and rNy matrix-vector multiplications because Pr have at most 2r + 1 non-

zero block matrices per row. Therefore, the complexity is rNynnz(K0) + NyF`
(
K−1

0 v
)
.

Similarly, for backward substitution, it takes another rNynnz(K0) + NyF`
(
K−1

0 v
)
�ops

plus the complexity for multiplication on the right hand side of the equation which requires

Nynnz(K0). As a result,

F`
(
P̃−1
r r
)
≈ (2r + 1)Nynnz(K0) + 2NyF`

(
K−1

0 v
)
.

Generally, the structure of P̃r does not facilitate parallelism. However, using a certain

permutation technique, the preconditioner Pr can be a block-diagonal matrix, although

each block may have a di�erent size. Furthermore, the parallel computing suitability of

Pr deteriorates when r increases. Thus, we interested in cases when r is small.

Case r = 0: In this case, P0 is a mean-based preconditioner which is a block-diagonal

matrix. Recall that

F`
(
P−1

0 r
)

= NyF`
(
K−1

0 v
)
, F`p

(
P−1

0 r
)

= F`
(
K−1

0 v
)
.

Case r = 1: As mentioned earlier, by the permutation technique in [89, Theorem 9.62],

we have

G1 =



T 1
k+1

T 1
k

. . .

T 1
k

. . .

T 1
1

. . .

T 1
1


where Tmj is a j × j tridiagonal matrix de�ned in (2.17) for j = 1, ..., k + 1 and

Tm1 = 0. Hence, P1 = G0⊗K0 +G1⊗K1 is a block-diagonal matrix whose block at

69

4.4. MODIFIED TRUNCATION PRECONDITIONERS

the main diagonal is a block-tridiagonal, and the complexity for P̃−1
1 r is

F`
(
P̃−1

1 r
)
≈
(
2F`

(
K−1

0 v
)

+ 3nnz(K0)
) k+1∑
j=2

njj + n1F`
(
K−1

0 v
)
,

where, if M ≥ 2,

nj =

 k +M − j − 1

M − 2

 .

Note that if M = 1, then nj = 0 for j = 1, 2, ..., k but nk+1 = 1. Furthermore, the

parallel complexity depends on the largest block which is Tk+1. Therefore,

F`p
(
P̃−1

1 r
)
≈ (k + 1)

(
2F`

(
K−1

0 v
)

+ 3nnz(K0)
)
.

Note that,

k+1∑
j=1

nj =
k+1∑
j=1

 k +M − j − 1

M − 2

 =
k+M−2∑
j=M−2

 j

M − 2

 .

By the Hockey-stick identity (see [75])

n∑
i=k

 i

k

 =

 n+ 1

k + 1

 ,

we have that
k+1∑
j=1

nj =

 k +M − 1

M − 1

 =
k

k +M
Ny.

Therefore, we require at most k
k+M

Ny processors on a parallel machine.

70

4.5. ANALYSIS OF MODIFIED TRUNCATION PRECONDITIONERS

4.5 Analysis of Modi�ed Truncation Preconditioners

In this section, we aim to derive spectral bounds for P̃−1
r A and show that P̃r is an optimal

preconditioner. We know that Pr is optimal for the stochastic Galerkin matrix A. If

Pr and P̃r are spectrally equivalent, so are P̃r and A by transitivity of the equivalence

relation. For convenience, we let Sr and D0 be the strictly lower block-triangular part

and the block-diagonal part of the matrix A. That is

Sr =
r∑

m=1

Lm ⊗Km, D0 = G0 ⊗K0,

so that

Pr = D0 + Sr + STr .

Additionally, we assume that the ordering of multi-indices in the index set IMk by

lexicographic, anti-lexicographic, ascending or descending ordering. This ordering results

in the matrices Lm have at most one nonzero entry per row and per column. Recall that

P̃r is the SBGS approximation of Pr, in particular,

P̃r = (D0 + Sr)D
−1
0

(
D0 + STr

)
= Pr + SrD

−1
0 STr .

Let v ∈ RNxNy\ {0}. Consider

vT P̃rv

vTPrv
= 1 +

vTSrD
−1
0 STr v

vT (D0 + Sr + STr) v
.

The minimum eigenvalue of P−1
r P̃r is

λmin

(
P−1
r P̃r

)
= min

v 6=0

vT P̃rv

vTPrv
= 1. (4.16)

The last equality is obtained from the fact that SrD
−1
0 STr is a positive semi-de�nite matrix.

Next, let

S̃r = D
− 1

2
0 SrD

− 1
2

0 (4.17)

71

4.5. ANALYSIS OF MODIFIED TRUNCATION PRECONDITIONERS

and apply the change of variable by setting w = D
1
2
0 v to get

max
v 6=0

vTSrD
−1
0 STr v

vT (D0 + Sr + STr) v
= max

w 6=0

wT S̃rS̃
T
r w

wT
(
I + S̃r + S̃Tr

)
w

≤ max
w 6=0

wT S̃rS̃
T
r w

wTw
·max

w 6=0

wTw

wT
(
I + S̃r + S̃Tr

)
w

(4.18)

=
σ2

max

(
S̃r

)
λmin

(
I + S̃r + S̃Tr

) ,
where σmax (A) is the largest singular value of A.

Thus, in order to obtain the upper bound for the eigenvalues of P−1
r P̃r, we need an

upper bound for σmax

(
S̃r

)
and a lower bound for λmin

(
I + S̃r + S̃Tr

)
; these are derived

in the following lemma.

Lemma 4.8. Let S̃r be de�ned by (4.17). Then,

λmin

(
I + S̃r + S̃Tr

)
≥ 1− τr,

and

σmax

(
S̃r

)
≤ 1

amin
0

r∑
m=1

‖am‖L∞(D) ,

where amax
r and amin

r are de�ned by (4.12).

Proof. Since I + S̃r + S̃Tr = D−
1
2PrD

− 1
2 , by Corollary 4.7, then we get

λmin

(
D−

1
2PrD

− 1
2

)
= λmin

(
P−1

0 Pr
)
≥ 1− τr.

Next, consider

S̃r =
(
INy ⊗K

− 1
2

0

)(r∑
m=1

Lm ⊗Km

)(
INy ⊗K

− 1
2

0

)
=

r∑
m=1

Lm ⊗ K̃m,

72

4.5. ANALYSIS OF MODIFIED TRUNCATION PRECONDITIONERS

where K̃m = K
− 1

2
0 KmK

− 1
2

0 . Thus,

σmax

(
S̃r

)
≤

r∑
m=1

σmax (Lm)σmax

(
K̃m

)
. (4.19)

Since σ2
max (Lm) = λmax

(
LmL

T
m

)
and LmL

T
m is a diagonal matrix because Lm has only

one nonzero entry per row and per column by Theorem 2.11, we �nd

σmax (Lm) = max
i,j

[Gm]ij = max
l
cml .

By [55, Theorem 1.28], we have cml ≤ 1 for all l,m ∈ N0 because Γm = [−1, 1] is bounded.

Consequently,

σmax (Lm) ≤ 1. (4.20)

Now, σmax

(
K̃m

)
= maxi

∣∣λi (K−1
0 Km

)∣∣. In order to �nd a spectral bound for K−1
0 Km,

we let v ∈ RNx\ {0} and set v(x) =
∑Nx

i=1 [v]i φi(x). Thus,

∣∣∣∣vTKmv

vTK0v

∣∣∣∣ =

∫
D
am(x)∇v(x) · ∇v(x)dx∫

D
a0(x)∇v(x) · ∇v(x)dx

≤
‖am‖L∞(D)

amin
0

.

Therefore,

σmax

(
K−1

0 Km

)
= λmax

(
K−1

0 Km

)
≤
‖am‖L∞(D)

amin
0

. (4.21)

Combine the results from (4.19), (4.20) and (4.21) to �nish the proof.

We combine all the results from (4.16) and (4.18) with Lemma 4.8 to obtain spectral

bounds for P−1
r P̃r in the following theorem.

Theorem 4.9. Let Pr be a truncation preconditioner and P̃r be the symmetric block

Gauss-Seidel approximation of Pr. Then, the spectral bounds for the generalized eigenvalue

problem P̃rv = λPrv are

Λ(P−1
r P̃r) ⊆ [1, 1 + δr] ,

73

4.6. NUMERICAL EXPERIMENTS

where

δr :=
1

1− τr

(
1

amin
0

r∑
m=1

‖am‖L∞(D)

)2

. (4.22)

Theorem 4.9 shows the e�ciency of the modi�ed truncation preconditioner P̃r com-

pared to the original truncation preconditioner. Moreover, Pr and P̃r are spectral equiv-

alent. Recall that A and Pr are also spectral equivalent by (4.15). Finally, we will merge

these results and get the following theorem.

Theorem 4.10. The condition number of P̃−1
r A is bounded independently of the degree

of complete polynomial space, number of random variables and the mesh size. In other

words, the preconditioner P̃r is spectrally equivalent to the stochastic Galerkin matrix A,

i.e.,

Λ
(
P̃−1
r A

)
⊆
[

θr
1 + δr

,Θr

]
where θr and Θr are the constants de�ned in (4.14) and δr is de�ned in (4.22).

In conclusion, truncation preconditioners generalise the idea of the mean-based precon-

ditioner. They are designed by the property of equivalent bilinear forms via the truncated

coe�cient function a. Therefore, they are optimal for the stochastic Galerkin matrix.

However, the action of their inverse on a vector is expensive. This leads to modi�ed

truncation preconditioners. Thus, the complexity for solving a linear system with the

preconditioner as a system matrix is acceptable.

4.6 Numerical Experiments

In this section, we investigate the behaviour of truncation preconditioners and modi�ed

truncation preconditioners, i.e., spectrum equivalence and performance, to support the

theoretical results obtained earlier. Furthermore, we compare the e�ciency of our pro-

posed preconditioners with other preconditioners such as the mean-based preconditioner

and the Kronecker product preconditioner. All the experiments in this thesis were imple-

74

4.6. NUMERICAL EXPERIMENTS

mented by S-IFISS [112], which is a MATLAB package to construct a stochastic Galerkin

approximation for PDE with uncertainty.

All test problems in this section solve the model problem in (2.7) where the di�usion

coe�cient a(x, ω) is assumed to be

a(x, ω) = a0(x) +
∞∑
m=1

am(x)Ym(ω)

and to satisfy the assumptions (4.2) and (4.3) with Ym : Ω → [−1, 1] independent and

uniformly distributed. Thus, the corresponding parametric representation of a(x,y) is

a�ne-parametric in the form (4.1) with ym ∈ [−1, 1]. Moreover, the forcing function f is

set to be f(x) = 1.

In these experiments, we vary the discretisation parameters in SGFEM. L2 (Γ) is

represented by the space of complete polynomials SMk from 1 to 8 random variables (M =

1, ..., 8) with the degree 1 to 6 (k = 1, ..., 6). We used square elements inD with size h from

2−4 to as �ne as 2−7. These parameters lead to the dimension of V M
hk , where dimV M

hk =

NxNy, as shown in Figure 4.4. Moreover, the dimension of the �nite dimensional subspace

V M
hk re�ects the sizes of linear system arising from SGFEM. Next, PCG is applied to the

linear system with initial guess x0 = 0 and terminates within tol = 10−6.

Note that Figure 4.4 is plotted on a semilog scale. Thus, it can be seen that the size

of linear system grows rapidly with discretisation parameters.

Example 4.1. In this test problem, we use the problem in [41, Section 11] which repre-

sents planar Fourier sine modes in increasing total order. That is a0 = 1 and

am(x) = ᾱm−σ̃ cos (2πβ1(m)x1) cos (2πβ2(m)x2) , x = (x1, x2) ∈ D,

where ᾱ and σ̃ are constants with σ̃ > 1 and 0 < ᾱζ(σ̃) < 1. Here, ζ is the Riemann zeta

function. Additionally, β1 and β2 are de�ned by

β1(m) = m− 1

2
k(m) (k(m) + 1) , β2(m) = k(m)− β1(m)

75

4.6. NUMERICAL EXPERIMENTS

1 2 3 4 5 6

103

104

105

106

polynomial degree, k

d
im

(V
M h
k
)

h = 2−4

1 2 3 4 5 6

105

106

107

108

polynomial degree, k

d
im

(V
M h
k
)

h = 2−7

M = 1 M = 2 M = 3 M = 4

M = 5 M = 6 M = 7 M = 8

Figure 4.4: The dimension of �nite dimensional subspace V M
hk with di�erent discretisation

parameters.

m 0 1 2 3 4 5 6

fast decay
σ̃ = 4

1.0000 0.9239 0.0577 0.0114 0.0036 0.0015 0.0007

slow decay
σ̃ = 2

1.0000 0.6079 0.1520 0.0675 0.0380 0.0243 0.0169

Table 4.1: Amplitudes of am in fast and slow decay cases.

with k(m) =
⌊
−1/2 +

√
1/4 + 2m

⌋
. Note that

∑∞
m=1 |am| ≤ ᾱ

∑∞
m=1m

−σ̃ = ᾱζ(σ̃) < 1.

Thus, the coe�cient a satis�es conditions (4.2) and (4.3) with amin
0 = amax

0 = 1.

In this experiment, we tested two cases: fast decay and slow decay of amplitude of

am with σ̃ is set to be 4 and 2, respectively. In both cases, we choose ᾱ such that

ᾱζ(σ̃) = 0.9999. Therefore, σ̃ = 4 and ᾱ = 0.9239 for fast decay whereas σ̃ = 2 and

ᾱ = 0.6079 for slow decay. The magnitude of the coe�cient am in the case of fast decay

drops sharply, whereas the magnitude of coe�cient am drops slower compared to the case

of fast decay.

Table 4.1 illustrates the magnitudes of ‖am‖L∞(D) in both cases. Although the mag-

nitude of a1 for fast decay is larger than the one for slow decay, the magnitudes of the

expansion coe�cients am in fast decay drop very sharply. For example, ‖a1‖L∞(D) ≈

76

4.6. NUMERICAL EXPERIMENTS

16 ‖a2‖L∞(D) in fast decay whereas ‖a1‖L∞(D) ≈ 4 ‖a2‖L∞(D) in slow decay. Consequently,

the magnitude of ‖a2‖L∞(D) in fast decay is only one third of the magnitude of ‖a2‖L∞(D)

in slow decay. This implies that a1(x,y) in the case of fast decay gives a better approxi-

mation of a. Since the truncation preconditioner is induced by the bilinear form via the

truncated expansion of a, this indicates that the performance of P1 in fast decay should

outweigh P1 in the case of slow decay. This is con�rmed by the results in Table 4.2.

For this experiment, we set the discretisation parameters h = 2−4, M = 8 and vary k.

According to Table 4.2, for a �xed k, we can see that the iteration counts for the fast decay

coe�cient sharply decease from P0, which represents the mean-based preconditioner, and

then remain stable when r increases. These iteration counts behave in the same way as

the magnitudes in Table 4.1. Furthermore, it is obvious that the numbers of iterations in

Table 4.2 do not depend on the degree k. Thus, Pr is optimal with respect to k.

Next, we investigate the performance of the modi�ed truncation preconditioners which

are the symmetric block Gauss-Seidel approximations of Pr and compare their iteration

counts with the mean-based preconditioner and also the Kronecker product precondi-

tioner. The results are shown in Table 4.3. Overall, the modi�ed truncation precondi-

tioners outperform the other preconditioners in term of iteration counts, especially in the

fast decay case. The iteration counts by P1 are only 1/3 to 1/4 of those for the mean-based

preconditioner in the fast decay case while the iteration counts for P1 are about half of

those for the mean-based preconditioner in the other case. Recall that the complexity

of the mean-based preconditioner is about half of the complexity of the modi�ed trun-

cation preconditioner. Therefore, in both cases, the modi�ed truncation preconditioners

fast decay slow decay
P0 P1 P2 P3 P4 P5 P6 P0 P1 P2 P3 P4 P5 P6

k = 1 13 4 3 3 2 2 2 10 6 4 4 4 3 3
2 16 5 4 3 3 2 2 12 7 5 5 4 4 3
3 21 6 4 3 3 2 2 14 7 6 5 4 4 4
4 24 6 4 3 3 3 2 15 8 6 5 4 4 4

Table 4.2: The numbers of PCG iterations with the mean-based preconditioner and the
truncation preconditioners Pr in the cases of fast decay and slow decay.

77

4.6. NUMERICAL EXPERIMENTS

fast decay slow decay

P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6 P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6

k = 1 12 13 7 6 6 6 6 6 9 10 6 5 5 5 5 5
2 16 16 8 7 7 7 7 7 12 12 7 6 6 6 5 5
3 20 21 9 9 8 8 8 8 14 14 8 7 6 6 6 6
4 24 24 10 9 9 9 9 9 15 15 9 7 7 6 6 6
5 26 27 11 10 10 10 10 10 16 16 9 7 7 7 6 6
6 29 29 12 11 11 11 11 11 17 17 10 8 7 7 7 7

Table 4.3: The numbers of PCG iterations with the mean-based preconditioner, the
Kronecker product preconditioner and the modi�ed truncation preconditioners in fast
decay and slow decay.

are more e�cient in general.

However, according to Figure 4.5, PCG with a mean-based preconditioner consumes

less time than other preconditioners in general. Moreover, modi�ed truncation precondi-

tioners spend more time before convergence. This probably due to the sti�ness matrices

are not su�ciently large. Note also that improving the function for solving a linear sys-

tem with symmetric block Gauss-Seidel by utilising the sparsity pattern of the matrix can

signi�cantly speed up the solver's performance.

Additionally, the numbers of iterations by P̃r increase as compared to the numbers

in Table 4.2. This can be explained by Theorem 4.10 as the eigenvalue bounds of P̃−1
r A

are not as tight as those for P−1
r A. The spectral bounds in the case of fast decay by

truncation preconditioners and modi�ed truncation preconditioners are shown in Figure

4.4.

Although the eigenvalue bounds in Theorem 4.6 are not sharp, we can see that increas-

ing the number of terms in the truncation preconditioner results in the tighter eigenvalue

bounds of P−1
r A around one as described in Theorem 4.6. Moreover, the maximum eigen-

values of the preconditioned system P̃−1
r A are less than the ones for the system P−1

r A

in all tests. These give us the tighter upper eigenvalue bounds, but the lower bounds

deteriorate signi�cantly due to the symmetric block Gauss-Seidel approximation of Pr.

In addition, for a �xed k, the lower eigenvalue bounds of P̃−1
r A are improved sharply as

compared to those for the mean-based preconditioner but stay the same when increasing

78

4.6. NUMERICAL EXPERIMENTS

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
0

20

40

60

0
.4
1

0
.4
1

0
.6
9

1
.3
8

3
.3
7

7
.3
2

0
.4
7

0
.3
7

0
.8
6

1
.6
8

3
.0
7

5
.9
9

0
.2
5

0
.7 2
.3
3

7
.3
4

2
0
.6
4

5
1
.9
4

0
.2
2

0
.5
7

2
.2
2

5
.8
7 1

6
.9

4
7
.0
2

0
.2
5

0
.5
7

1
.9
4

6
.1
2 1

7
.3
4

4
8
.1
6

0
.2
5

0
.5
9

1
.9
9

6
.3
9

1
8
.8
5

4
9
.5
5

0
.2

0
.6
1

2
.0
7

6
.9
2

1
9
.8
9

5
3
.7
3

0
.2
5

0
.6
2

2
.1
6

7
.2
1

2
0
.7
6

5
9
.4
1

T
im

e
(s
ec
)

Fast Decay

P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
0

10

20

30

40

0
.3
3

0
.3
7

0
.5
1

1
.0
4

2
.0
7

4
.3
3

0
.3
3

0
.4
9

0
.5 0
.9
5

1
.8
3

3
.3
9

0
.2
1

0
.5
7

2
.1
1

6
.3
4

1
6
.2
7

4
3

0
.2
9

0
.6
3

2
.1
5

5
.0
3 1
2
.4

3
1
.7
7

0
.2
1

0
.5
2

1
.6
4

5
.2
6 1

3
.1
1

2
9
.1
7

0
.1
8

0
.5
4

1
.6
2

4
.7
4

1
3
.1
4

3
0
.6
3

0
.1
7

0
.4
6

1
.6
9

5
.1
2 1
2
.2

3
2
.7
6

0
.2

0
.4
7

1
.9
2

5
.4

1
2
.7
6

3
4
.7
6

T
im

e
(s
ec
)

Slow Decay

Figure 4.5: The runtimes of PCG iterations (in seconds) with the mean-based precondi-
tioner, the Kronecker product preconditioner and the modi�ed truncation preconditioners
in fast decay and slow decay.

r. These behaviours can be explained by Theorem 4.9. That is, the symmetric block

Gauss-Seidel approximation of Pr gives an accurate approximation with a small r such

as r = 1, 2 because δr in (4.22) is small. What is more, if r is �xed, τr in the fast decay

problem is larger than that in the slow decay case. By Theorem 4.9, this implies that P̃r

in the slow decay case is more accurate with respect to Pr than that in the other case.

This is re�ected in the iteration counts by P̃r in Table 4.3, which moderately increase in

the fast decay problem from those in Table 4.2. Based on these facts, we suggest choosing

r = 1 or r = 2 in most cases.

Before ending the discussion of this experiment, we observe the optimality of the

modi�ed truncation preconditioners with respect to the mesh size h and the number of

random variables M . We range the mesh size h from 2−3 to 2−7 and M = 4, 8 with P0,

P̃1 and P̃2. Note that, as discussed above, there is no signi�cant change in the iteration

counts for P̃r when r ≥ 2. We have seen that truncation preconditioners are optimal

with respect to the degree k, so the degree of the space of complete polynomials is �xed

79

4.6. NUMERICAL EXPERIMENTS

k = 1 k = 2 k = 3
P−1
r A λmin λmax λmin λmax λmin λmax

r = 0 0.4718 1.5281 0.2886 1.7113 0.2036 1.7963
1 0.9607 1.0392 0.9124 1.0875 0.8530 1.1469
2 0.9922 1.0077 0.9822 1.0177 0.9693 1.0306
3 0.9974 1.0025 0.9940 1.0059 0.9896 1.0103
4 0.9989 1.0010 0.9975 1.0024 0.9957 1.0042
5 0.9994 1.0005 0.9988 1.0011 0.9979 1.0020
6 0.9997 1.0002 0.9993 1.0006 0.9988 1.0011

k = 1 k = 2 k = 3

P̃−1
r A λmin λmax λmin λmax λmin λmax

r = 0 0.4718 1.5281 0.2886 1.7113 0.2036 1.7963
1 0.7210 1.0339 0.5750 1.0481 0.4675 1.0561
2 0.7210 1.0066 0.5810 1.0096 0.4803 1.0114
3 0.7210 1.0022 0.5812 1.0032 0.4810 1.0039
4 0.7210 1.0009 0.5812 1.0013 0.4810 1.0016
5 0.7210 1.0004 0.5812 1.0006 0.4810 1.0008
6 0.7210 1.0002 0.5812 1.0003 0.4810 1.0004

Table 4.4: The extreme eigenvalues of the preconditioned system P−1
r A (the �rst table)

and P̃−1
r A (the second table) for the fast decay case.

at k = 3. The results are shown in Table 4.5. It is obvious that the iteration counts

for the modi�ed truncation preconditioners do not depend on M as the iteration counts

for M = 4 are the same as the results for M = 8 in both cases. Moreover, as the mesh

is re�ned, the iteration counts increase very slowly and remain stable when the mesh is

su�ciently re�ned.

As we have seen in the previous experiment, the modi�ed truncation preconditioners

are very e�cient in the case of the fast decay a�ne-parametric coe�cient. On the other

hand, they may struggle with the coe�cient whose magnitude of expansion coe�cients

gradually reduce very slowly.

Example 4.2. LetD = (−1, 1)2. De�ne a covariance model in geostatistics, for x,x′ ∈ D,

Cov(x,x′) = σ2 exp

(
−|x1 − x′1|

l1
− |x2 − x′2|

l2

)
,

where l1 and l2 are correlation lengths and σ denotes the standard deviation. The eigen-

80

4.6. NUMERICAL EXPERIMENTS

h
fast decay slow decay

M = 4 M = 8 M = 4 M = 8

P0 P̃1 P̃2 P0 P̃1 P̃2 P0 P̃1 P̃2 P0 P̃1 P̃2

2−3 18 8 8 18 8 8 13 7 6 13 7 6
2−4 21 9 9 21 9 9 14 8 7 14 8 7
2−5 23 10 9 23 10 9 14 8 7 14 8 7
2−6 24 10 10 24 10 10 15 8 7 15 8 7
2−7 24 10 10 24 10 10 15 8 7 15 8 7

Table 4.5: The iteration counts for the mean-based preconditioner and the modi�ed trun-
cation preconditioners when h and M are varied.

m 0 1 2 3 4 5 6

‖am‖L∞(D) 1 0.2943 0.1572 0.1572 0.0938 0.0938 0.0840

Table 4.6: The magnitudes of the expansion coe�cients am in Example 4.2.

pairs {(λm, ϕm)}∞m=1 of the Fredholm integral operator in (2.1) are de�ned in [64, pp 28

- 29]. We set l1 = l2 = 2 and σ = 0.2. The mean of the coe�cient a is set to be one, i.e.,

a0 = 1, and the expansion coe�cients are de�ned by

am(x) = σ
√

3λmϕm(x)ym, x ∈ D.

In this experiment, we set h = 2−4, M = 8 and note that τ8 = 0.8054. The magnitudes

of am are displayed in Figure 4.6.

We can see that there is a signi�cant di�erence between a0 and a1 (‖a0‖L∞(D) ≈

3 ‖a1‖L∞(D)). In general, the magnitudes of the expansion coe�cients gradually decrease

except for a2 and a4, i.e., ‖a2‖L∞(D) = ‖a3‖L∞(D) and ‖a4‖L∞(D) = ‖a5‖L∞(D). This in-

dicates that the importance of each term is not very di�erent. Thus, we expect that the

iteration counts for the truncation preconditioners will also reduce very slowly. The results

are shown in Table 4.7 and Figure 4.6. The truncation preconditioners and the modi�ed

truncation preconditioners perform well in terms of iteration counts. Moreover, as dis-

cussed in the previous experiment, there are only a few cases that the iteration counts

by modi�ed truncation preconditioners increase from those by truncation preconditioners

due to small τr. However, the overall performance by the modi�ed truncation precon-

81

4.6. NUMERICAL EXPERIMENTS

P0 P1 P2 P3 P4 P5 P6

k = 1 5 6 6 5 5 5 5
2 8 7 7 6 6 5 5
3 9 8 8 7 6 6 5
4 10 9 8 7 7 6 6

P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6

k = 1 6 5 6 6 5 5 5 5
2 7 8 7 7 6 6 5 5
3 8 9 8 8 7 6 6 6
4 9 10 9 8 7 7 6 6
5 10 11 9 9 8 7 6 6
6 10 11 10 9 8 7 7 6

Table 4.7: The PCG iteration counts for the mean-based preconditioner, and the trun-
cation preconditioners in the �rst table and the PCG iteration counts for the Kronecker
product preconditioner, the mean-based preconditioner and the modi�ed truncation pre-
conditioners in the second table.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
0

10

20

30

40

0
.1
6

0
.2
4

0
.2
8

0
.5
1

1
.3 2
.4
7

0
.1
1

0
.2

0
.3
5

0
.7
6

1
.1
5

2
.0
5

0
.2
4

0
.5
8

1
.9
9 6
.3
9

1
6
.4
1

4
3
.0
9

0
.1
8

0
.5
9

1
.8
5

5
.2
8

1
5
.1
8

3
5
.7
2

0
.1
5

0
.5
9

1
.6
4

4
.8
1

1
4
.2
3

3
3
.8
7

0
.1
6

0
.5
1

1
.4
9

5
.1

1
3
.2
1

3
1
.2
9

0
.1
6

0
.4
2

1
.5
6

4
.5
7 1
2
.0
8

3
3
.9
3

0
.1
6

0
.4
3

1
.6
3

4
.8
5 1

2
.7
2

3
1
.1
9

T
im

e
(s
ec
)

P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6

Figure 4.6: The runtimes of PCG iterations (in seconds) with the mean-based precondi-
tioner, the Kronecker product preconditioner and the modi�ed truncation preconditioners.

ditioners is less e�cient than that of the mean-based preconditioner or the Kronecker

product preconditioner. This is due to the cost per iteration by the modi�ed truncation

preconditioner is more expensive than that for the other preconditioners.

Overall, truncation preconditioners and modi�ed truncation preconditioners are e�-

cient preconditioners. They perform very well in term of PCG iteration counts. For the

case of fast decay, the experiment showed that modi�ed truncation preconditioners can

improve the e�ciency of the solver. However, they are still less e�cient than existing

preconditioners in the case of slow decay. In the next chapter, we will introduce another

preconditioning technique to deal with both cases.

82

CHAPTER 5

DOMAIN DECOMPOSITION METHODS ON

PARAMETRIC DOMAIN

Domain decomposition is a preconditioning technique designed to improve the perfor-

mance of an iterative solver for the case where the matrix A arises from a FEM discreti-

sation. Its goal is to manipulate the pattern of the coe�cient matrix A to a 2× 2 block

matrix such that

A =

 AII AIF

AFI AFF

 , (5.1)

where the indices I and F correspond to interior nodes and interface nodes of all subdo-

mains, respectively, and AII is a block diagonal matrix. By the structure of AII , we can

gain the bene�t of parallelism. However, the main challenge in domain decomposition is

to approximate the Schur complement, denoted by

S := AFF − AFIA−1
II AIF ,

so that the action of S−1 on a vector is not expensive.

Given a problem posed on a physical domain D, in order to get 2 × 2 block matrix

structure, we partition the spatial domain into subdomains. Reordering the basis func-

tions by subdomain leads to the block diagonal matrix structure of AII , while the basis

functions along the boundary of each subdomain are assigned to a so-called interface set.

In this chapter, we introduce a domain decomposition method for the parametric

83

5.1. PARAMETRIC MESH

domain Γ for the case of a�ne parametric di�usion coe�cients. Thus, we want to group

the orthogonal basis functions in the space of complete polynomials, so that A is a 2× 2

block matrix. To achieve this, since the pattern of the stochastic matrix A is induced by

the matrices Gm, the pattern of the matrix Gm is studied in section 5.1. In the following,

we will introduce the concept of parametric mesh and explain how to create it for the space

SMk from the multi-indices in IMk . Moreover, the connection between parametric mesh

and the sparsity pattern of the matrix A is discussed. Next, the concepts of submesh and

interface for parametric mesh are de�ned. We indicate how the parametric mesh can be

partitioned into many non-overlapping submeshes which are separated by the interface. In

section 5.2, grouping the basis functions for the space of complete polynomials by submesh

leads to the block-diagonal structure of AII . This procedure results in the 2 × 2 block

matrix structure (5.1) of the coe�cient matrix A, which motivates the preconditioner

matrix structures presented in section 5.3. Our partitioning strategy, namely, the even-

odd partition, is introduced in section 5.4. We discuss how the actions of the inverse of the

Schur complement on a vector are approximated. We combine all the results and present

several versions of the preconditioner based on our partitioning strategy, together with

the corresponding complexities and the spectral analyses. Finally, numerical experiments

comparing the e�ciency of all the versions of the even-odd preconditioners with the other

preconditioners are presented in section 5.5.

5.1 Parametric Mesh

Recall that Γm = [−1, 1] and the a�ne parametric coe�cient di�usion a is de�ned in (4.1)

with the assumptions (4.2) and (4.3). The Galerkin projection on the �nite dimensional

space SMk ⊗Xh yields a linear system with coe�cient matrix

A =
M∑
m=0

Gm ⊗Km,

84

5.1. PARAMETRIC MESH

where the matrices Gm andKm are de�ned in (4.6). Consequently, the stochastic Galerkin

matrix A for the a�ne di�usion coe�cient case can be represented in block form with

blocks

Ajs = [G0]jsK0 +
M∑
m=1

[Gm]jsKm, j, s = 1, 2, . . . , Ny .

De�ne the matrices G and Ḡ to be

G =
M∑
m=1

Gm, (5.2)

and

Ḡ = G0 +G. (5.3)

We would like to study the pattern of the matrix A via the following theorem.

Theorem 5.1. Let Ḡ be a Ny ×Ny matrix as de�ned in (5.3) and q be a bijection from

{1, 2, . . . , Ny} to IMk . Let j, s ∈ {1, 2, . . . , Ny} and β,β′ ∈ IMk such that β = q(j) and

β′ = q(s). Then, Ḡjs 6= 0 if and only if one of the following holds

1. β and β′ are identical, i.e.,

β = β′, (5.4)

2. There exists m′ ∈ {1, . . . ,M} such that

|βm′ − β′m′ |=1 and βm=β
′
m for m ∈ {1, . . . ,M} \ {m′}. (5.5)

Proof. Suppose Ḡjs 6= 0. Then, [G0]js 6= 0 or [G]js 6= 0. If [G0]js 6= 0, this implies that

j = s and β = β′ because G0 is the identity matrix. If [G]js 6= 0, we have that there

exists m′ ∈ {1, . . . ,M} such that [Gm′]js 6= 0. By Theorem 2.11, we have |βm′ − β′m′| = 1

and βm = β′m for all m ∈ {1, . . . ,M} \ {m′}.

Conversely, if β = β′, then

[G0]js = 1 but [Gm]js = 0 for all m ∈ {1, 2, . . . ,M} .

85

5.1. PARAMETRIC MESH

Then, Ḡjs 6= 0. Next, if condition (5.5) holds, then [G0]js = 0 and, by Theorem 2.11,

there exists m′ ∈ {1, 2, . . . ,M} such that [Gm′]js 6= 0. Moreover, if [Gm′]js 6= 0, then we

have [Gm]js = 0 for m ∈ {1, . . . ,M} \ {m′} . We have Ḡjs 6= 0.

According to the proof in Theorem 5.1, the coe�cient matrix A has K0 along the main

diagonal and [Gm]jsKm for some m ∈ {1, 2, . . . ,M} o� the main diagonal. Recall that

the sparsity pattern of the matrix A can be investigated via the matrix Ḡ. In order to

obtain a 2 × 2 block matrix structure as in (5.1), we need a rule to �nd if the block Ajs

is a zero matrix.

Corollary 5.2. Let A be a Ny ×Ny block matrix as de�ned in (4.5) and q be a bijection

from {1, 2, . . . , Ny} to IMk . Let j, s ∈ {1, 2, . . . , Ny} and β,β′ ∈ IMk such that β = q(j)

and β′ = q(s). Then, Ajs 6= 0 if and only if conditions (5.4) or (5.5) hold.

Changing the bijection map q causes the change in the pattern of the matrix A except

K0 is always on the main diagonal of A (see Figure 2.3). To have the 2-by-2 block matrix

structure in (5.1), a suitable map q is required and the corollary shows the link between

the map q and the multi-indices in IMk . Hence, any pairs of multi-indices in IMk which

yield non-zero blocks in A need to satisfy conditions (5.4) or (5.5). To achieve this, the

concept of a parametric mesh for a parametric elliptic PDE problem is introduced via

graph theory. To this aim, let us review some necessary de�nitions.

De�nition 5.3. A graph G is a pair (V,E) where V is a set and E is a set of subsets

with two elements in V . The members in the set V are called vertices or nodes of the

graph G and the members in the set E are called edges of the graph G. We call a graph

with V = E = ∅ an empty graph.

For simplicity, we write an edge {v1, v2} ∈ E as v1v2 or v2v1.

De�nition 5.4. Let G = (V,E) be a graph. For e ∈ E, if v ∈ V and v ∈ e, we say

e is an edge at v and v is an end-vertex or end of the edge e. Moreover, if v1, v2 ∈ V

and v1v2 ∈ E, we say v1 and v2 are adjacent or neighbours. The degree dG(v) of a node

86

5.1. PARAMETRIC MESH

v ∈ V in the graph G is the number of adjacent nodes of v or the number of edges at v.

Additionally, δ(G) := min {dG(v) | v ∈ V } and ∆(G) := max {dG(v) | v ∈ V } denote the

minimum degree and maximum degree of the graph G.

De�nition 5.5. Let G = (V,E) be a graph where V = {v1, v2, ..., vn}. The adjacency

matrix A = (aij)n×n of the graph G is de�ned by

aij =


1 , vivj ∈ E

0 otherwise.

De�nition 5.6. Let G = (V,E) and G′ = (V ′, E ′) be graphs.

� G′ = (V ′, E ′) is called a subgraph of G if V ′ ⊆ V and E ′ ⊆ E.

� The union and intersection of two graphs are de�ned by G∪G′ := (V ∪ V ′, E ∪E ′)

and G ∩G′ := (V ∩ V ′, E ∩ E ′).

� G and G′ are disjoint if G ∩G′ is an empty graph.

Next, a parametric mesh for a parametric elliptic PDE problem is de�ned as follows.

De�nition 5.7. A parametric mesh M associated with the set of multi-indices IMk for

the a�ne parametric di�usion coe�cient is a graph whose nodes are multi-indices in IMk

with edges between any two nodes which satisfy condition (5.5).

Precisely,M = (V,E) where

V = IMk and E = {{β1,β2} ⊆ V | β1 and β2 satisfy condition (5.5).} .

By the de�nition of the parametric mesh, for q(j) = β and q(s) = β′ and j 6= s, the

nodes β and β′ in the parametric mesh are adjacent if Ajs is a non-zero block matrix.

Consequently, the degree of the node β is the number of non-zero block matrices outside

the main diagonal at block row or column j of the matrix A. The maximum and minimum

87

5.1. PARAMETRIC MESH

degrees mean the maximum and minimum numbers of the non-zero block matrices per

row or column outside the main diagonal of the matrix A, respectively.

Moreover, the matrix G in (5.2) can be viewed as an adjacency matrix of the mesh

M. For example, [G]js = 0 means the multi-indices q(j) and q(s) are not linked whereas

[G]js 6= 0 means there is an edge between the nodes q(j) and q(s).

Remark. The maximum degree of the parametric meshM is 2M , since each node in IMk

has M entries and each entry may be increased or decreased by one. This is consistent

with the fact that the coe�cient matrix A has at most 2M + 1 non-zero blocks per block

row. Since G has at most 2M non-zero entries per row with zeros along the main diagonal.

Ḡ in (5.3) which represents the pattern of the matrix A has at most 2M + 1 non-zero

entries per row.

Moreover, the minimum degree of the parametric meshM is 1, for example, the node

β with |β| = k. Thus, the matrix A has at least two non-zero matrices per row (include

the main diagonal).

Example 5.1. The set of all nodes of the parametric mesh for the space S3
2 , i.e., M = 3

and k = 2, is

I3
2 = {(0, 0, 0) , (1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (1, 1, 0) ,

(1, 0, 1) , (0, 1, 1) , (2, 0, 0) , (0, 2, 0) , (0, 0, 2)} .

In this example, we modify the notation slightly and write the nodes as α1α2α3 instead

of (α1, α2, α3), for convenience. Recall that any two nodes are connected if they satisfy

condition (5.5). The following multi-index pairs satisfy this condition:

(000, 100) (100, 101) (010, 020)

(000, 010) (100, 200) (001, 101)

(000, 001) (010, 110) (001, 011)

(100, 110) (010, 011) (001, 002)

88

5.1. PARAMETRIC MESH

200

100

110 101

000

010 001

020 011 002

Figure 5.1: The parametric mesh associated with the set I3
2.

The resulting parametric mesh associated with the set I3
2 is shown in Figure 5.1.

Submeshes and Interface in a Parametric Mesh

Before introducing the de�nitions of submeshes and interface of the parametric mesh, we

need additional de�nitions from graph theory.

De�nition 5.8. A non-empty graph P = (V,E) is called a path if V = {v0, v1, ..., vi}

and E = {v0v1, v1v2, ..., vi−1vi}. We denote the path P by P = v0v1...vi.

De�nition 5.9. A non-empty graph G is called connected if there exists a path in G

linking any two vertices in G. Additionally, G is called disconnected if G is not connected.

De�nition 5.10. Let G = (V,E) be a graph where V and E are sets of nodes and edges,

respectively. Let G′ = (V ′, E ′) be a subgraph of G. G′ is called an induced subgraph of G

if all edges in E whose both ends are in V ′ are in E ′.

The following de�nitions of submeshes and interface are crucial in order to de�ne a

partition for the parametric mesh.

De�nition 5.11. A submesh of the parametric mesh M is a connected subgraph ofM

and is denoted by Pi. Additionally, IPi denotes the set of all nodes of the submesh Pi and

ni denotes the cardinal number of the set IPi .

89

5.1. PARAMETRIC MESH

De�nition 5.12. Let {P1,P2, ...,PNP} denote a set of submeshes of a parametric mesh

M. The interface of the parametric mesh M, denoted by I, is an induced subgraph of

the parametric meshM. The set of nodes of I is a set of multi-indices which are adjacent

to any submesh Pi and may include nodes that are not connected to any submeshes. II

denotes the set of nodes in the interface I. That is

II = IMk −
NP⋃
i=1

IPi .

Remark. It is possible to partition a parametric mesh and obtain the interface I of the

parametric mesh with no edge.

Note that a submesh of the mesh for the spatial domain D can be associated with a

subdomain in D because all the nodes in a spatial mesh are represented in a Cartesian

coordinate system. However, in the case of a submesh of the parametric mesh, nodes

in the parametric mesh are represented by multi-indices which are not associated with

points in parametric domain Γ. As a result, a submesh in the parametric meshM is not

associated with a subdomain in Γ.

Suppose the parametric mesh is partitioned into NP submeshes. Then, Pi ∪ Pj is

disconnected for i 6= j, as the following example illustrates.

Example 5.2. The parametric mesh in Example 5.1 can be partitioned in several ways.

On the one hand, it can be partitioned into two submeshes, namely, P1 and P2. That is,

IP1 = {200, 100, 101, 001} , IP2 = {010, 020}

and the set of nodes on the interface is

II = {110, 000, 011, 002} ,

as shown in Figure 5.2. In the �gure, double circle nodes denote interface nodes and

the edges which link between submesh and interface nodes are removed to show how the

90

5.1. PARAMETRIC MESH

200

100

110 101

000

010 001

020 011 002

Figure 5.2: Partition of the parametric mesh associated with I3
2: all the interface nodes

are disconnected.

parametric mesh is partitioned.

In addition, this �gure shows a partition for the case where interface nodes do not link

to each other and all interface nodes are adjacent to a submesh in the original parametric

mesh. In this case, we can see that all the nodes in the set I are connected to at least

one submesh before partitioning.

It is also feasible to partition the parametric mesh such that there is a node on the

interface not adjacent to any submeshes. Figure 5.3 shows how the parametric mesh is

partitioned. That is

IP1 = {200, 100, 000, 101} , IP2 = {020} and IP3 = {002} ,

and the set of nodes on the interface is

II = {110, 010, 011, 001} .

We can see that the interface node 011 is connected to the nodes 010 and 001 but the

node 011 does not connect to any submeshes.

Remark. The original coe�cient matrix A in (4.5) corresponds to the case II = IMk .

91

5.2. MATRIX STRUCTURE

200

100

110 101

000

010 001

020 011 002

Figure 5.3: Partition of the parametric mesh associated with I3
2: all the interface nodes

are connected.

5.2 Matrix Structure

Recall that the domain decomposition technique permutes rows and columns of the coef-

�cient matrix A to obtain the 2-by-2 block matrix in (5.1) where AII is a block-diagonal

matrix. Suppose the parametric mesh M associated with IMk is partitioned into NP

submeshes, namely P1, P2, . . . , PNP . Since each submesh does not overlap with other

submeshes, i.e., their respective sets of nodes are disjoint, we obtain a particular structure

of the matrix.

Let S(i) and SI be the subspaces of S
M
k associated with the nodes in Pi and I, respec-

tively, de�ned by

S(i) = span {ψα | α ∈ IPi} ,

SI = span {ψα | α ∈ II} .

Then,

SMk =

NP⊕
i=1

S(i) ⊕ SI .

92

5.2. MATRIX STRUCTURE

Let V (i) := S(i) ⊗Xh. Consider now the following discrete formulation

 Find u(i) ∈ V (i) such that,

B(u(i), v) = F (v) for all v ∈ V (i),
(5.6)

where the bilinear form B and the functional F are de�ned in (2.12) and (2.13), respec-

tively. Since the di�usion coe�cient a is strictly positive, bounded and has a positive

lower bound, the bilinear form B : V (i) × V (i) → R is bounded and coercive. By the

Lax-Milgram theorem, the discrete formulation (5.6) is well-posed. That is there exists

a unique u(i) ∈ V (i) satisfying the discrete formulation (5.6), which results in the linear

system

A(i)u(i) = b(i). (5.7)

The coe�cient matrix A(i) is a ni-by-ni block matrix with

A
(i)
js =

〈
ψq(i)(j), ψq(i)(s)

〉
ρ
K0 +

M∑
m=1

〈
ymψq(i)(j), ψq(i)(s)

〉
ρ
Km, j, s = 1, 2, . . . , ni,

where q(i) is a bijection between {1, ..., ni} and IPi and Km, m = 0, 1, ...,M are de�ned in

(4.6). Note that A(i) is symmetric and positive de�nite.

The vectors u(i) and b(i) are vectors in RNxni , in particular,

u
(i)
j = [u1j u2j · · · uNxj

]T j = 1, 2, . . . , ni,[
b

(i)
s

]
r

=

∫
Γ

ρ(y)ψq(i)(s)dy ·
∫
D

fφrdx r = 1, 2, . . . , Nx, s = 1, 2, . . . , ni.

The following result indicates the pattern of the coe�cient matrix A(i).

Proposition 5.13. Let Pi be a submesh in the parametric mesh associated with IMk . As-

sume that Pi is a path which is the sequence of nodes in Pi, denoted by Pi = α(1)α(2) · · ·α(ni).

De�ne q(i) : {1, 2, ..., ni} → IPi by q(i)(j) = α(j). Then, A(i) in (5.7) is a block-tridiagonal

matrix.

Proof. Let j ∈ {1, 2, ..., ni − 1} and s ∈ {j + 2, ..., ni}.

93

5.2. MATRIX STRUCTURE

It is obvious that
〈
ψq(i)(j), ψq(i)(s)

〉
ρ

= 0. Since the multi-indices q(i)(j) and q(i)(s)

are not adjacent in the parametric mesh, they do not satisfy condition (5.5). That is〈
ymψq(i)(j), ψq(i)(s)

〉
ρ

= 0. Consequently, A
(i)
js = 0. By symmetry of the matrix A(i), we

have A
(i)
sj = A

(i)
js = 0. Therefore, A(i) is a block-tridiagonal matrix.

Proposition 5.13 is very useful and could improve the performance of the solver if an

e�cient block-tridiagonal solver is provided.

Example 5.3. Suppose the parametric mesh in Example 5.1 is partitioned as in Figure

5.2. That is,

IP1 = {200, 100, 101, 001} , IP2 = {010, 020}

and the set of nodes on the interface is

II = {110, 000, 011, 002} .

Then, we have the coe�cient matrices A(1) and A(2) as follows

A(1) =



K0 c1
2K1

c1
2K1 K0 c3

1K3

c3
1K3 K0 c1

1K1

c1
1K1 K0


, A(2) =

 K0 c2
2K2

c2
2K2 K0

 ,

where cmj is de�ned in (2.10).

Note that if
〈
ymψq(i)(j), ψq(i)(s)

〉
ρ
6= 0 where q(i)(j) = β and q(i)(s) = β′, by Theorem

2.11, we have βm′ = β′m′ for all m′ ∈ {1, . . . ,M} \ {m} and |βm − β′m| = 1. Thus,〈
ymψq(i)(j), ψq(i)(s)

〉
ρ

= cmmax{βm,β′m}
.

In general, a submesh Pi in a parametric mesh may not be associated with a block-

tridiagonal matrix A(i) as the follow example shows.

94

5.2. MATRIX STRUCTURE

Example 5.4. Suppose the parametric mesh in Example 5.1 is partitioned as in Figure

5.3. That is,

IP1 = {200, 100, 000, 101} , IP2 = {020} and IP3 = {002} ,

and the set of nodes on the interface is

II = {110, 010, 011, 001} .

We choose the map q(1) : {1, 2, 3, 4} → IP1 to be

q(1)(i) =



200 i = 1,

100 i = 2,

000 i = 3,

101 i = 4.

Then, we have the coe�cient matrices A(1), A(2) and A(3) as follows

A(1) =



K0 c1
2K1

c1
2K1 K0 c1

1K1 c3
1K3

c1
1K1 K0

c3
1K3 K0


and A(2) = A(3) = K0.

where cmj is de�ned in (2.10).

We would like to characterise the partitions that yield a block diagonal matrix AII . We

permute the orthonormal basis of SMk corresponding to the partition. Since one submesh

Pi in a non-overlapping partition yields a block matrix A(i), we have the block diagonal

matrix AII in (5.1) to be

AII =

NP⊕
i=1

A(i).

95

5.3. DOMAIN DECOMPOSITION PRECONDITIONERS

Let NyP be the total number of nodes in all submeshes, i.e., NyP :=
∑NP

i=1 ni, and

IP :=
⋃NP
i=1 IPi be a set of all nodes in all submeshes. So, NyP = #IP . The block-diagonal

matrix AII is induced by bijection qP which is a map to group the basis elements of SMk in

the same order as P1, P2, . . . , PNP , respectively. That is, we let qP :
{

1, 2, . . . , NyP
}
→ IP

be de�ned by

qP(j) =



q(1)(j) for 1 ≤ j ≤ n1,

q(2)(j − n1) for n1 + 1 ≤ j ≤
∑2

i=1 ni,

...
...

q(NP)(j −
∑NP−1

i=1 ni) for
∑NP−1

i=1 ni + 1 ≤ j ≤ NyP ,

where q(i) is a bijection map from {1, ..., ni} to IPi .

The stochastic Galerkin matrix A in (5.1) can be constructed by permuting the nodes

in IMk . In other words, we need to choose a suitable bijection q : {1, 2, ..., Ny} → IMk .

Let NyI be the total number of nodes on the interface I, i.e., NyI := #II and qI be any

bijection from
{

1, 2, ..., NyI
}
to II . We choose the bijection q to be

q(j) =


qP(j) for 1 ≤ j ≤ NyP ,

qI(j −NyP) for NyP + 1 ≤ j ≤ Ny.

By this choice of the map q, the stochastic Galerkin matrix A can be permuted to the

2× 2 block matrix (5.1) with AII a block-diagonal matrix, as required.

5.3 Domain Decomposition Preconditioners

We have seen how the coe�cient matrix A can be permuted to a 2-by-2 block matrix.

In this section, we will discuss how to design a preconditioner, which is required to be

symmetric and positive de�nite, based on the structure of the matrix A. Moreover, we

96

5.3. DOMAIN DECOMPOSITION PRECONDITIONERS

discuss its complexity and analyse its spectrum.

5.3.1 Block Preconditioners

In order to design a preconditioner, the matrix A is factorised as follows

 AII AIF

AFI AFF

 =

 I

AFIA
−1
II I


 AII

S


 I A−1

II AIF

I


where S = AFF − AFIA−1

II AIF is the Schur complement.

Note that since the matrix A is symmetric and positive de�nite, so is S.

In order to obtain an e�cient preconditioner, AII and S need to be approximated so

that the actions of A−1
II or S−1 on a vector are not expensive.

Suppose AII and S are approximated by symmetric and positive de�nite matrices ÃII

and S̃, respectively. Thus, a 2-by-2 block preconditioner for the matrix A can be de�ned

by

PB =

 I

AFIÃ
−1
II I


 ÃII

S̃


 I Ã−1

II AIF

I

 .
Under the assumption of positivity of ÃII and S̃, PB is symmetric and positive de�nite.

Remark. Let IIi ⊆ II be the set of nodes on the interface that are adjacent to the

submesh Pi for i = 1, 2, . . . , NP . Denote NIi to be the number of nodes in IIi . Next,

de�ne a stochastic restriction matrix RIi ∈ RNIi×NI which maps a vector in RNI to a

vector corresponding to the multi-indices in IIi . Additionally, we de�ne a global restriction

matrix RIi to be

RIi := RIi ⊗ INx .

Because AFF arises from the interface nodes, we may assume that

AFF =

NP∑
i=1

RT
IiA

(i)
FFRIi ,

97

5.3. DOMAIN DECOMPOSITION PRECONDITIONERS

where A
(i)
FF are matrices of size NIiNx×NIiNx. They represent actions between interface

nodes adjacent to the submesh Pi. As a result, the Schur complement S can be viewed

as a summation of the Schur complement S(i) from each submesh, i.e.,

S =

NP∑
i=1

RT
IiS

(i)RIi .

Thus, S−1 can be approximated by

S̃−1 :=

NP∑
i=1

RT
Ii

[
S̃(i)
]−1

RIi , (5.8)

where S̃(i) is an approximation of S(i).

This preconditioning technique is similar to some classical domain decomposition pre-

conditioners such as FETI methods or balancing domain decomposition if S̃ can be rep-

resented in the form in (5.8).

5.3.1.1 Computational Costs

Consider r ∈ RNxNy under the same permutation used for A:

r =

 rI

rF

 ,
where rI ∈ RNyP and rF ∈ RNyI . Solving the linear system

PBz = r (5.9)

requires the solution of three linear systems in the following steps.

98

5.3. DOMAIN DECOMPOSITION PRECONDITIONERS

1. Solve for z(1) =

[
z

(1)
I z

(1)
F

]T
 I

AFIÃ
−1
II I


 z

(1)
I

z
(1)
F

 =

 rI

rF

 .

2. Solve for z(2) =

[
z

(2)
I z

(2)
F

]T
 ÃII

S̃


 z

(2)
I

z
(2)
F

 =

 z
(1)
I

z
(1)
F

 .

3. Solve for z =

[
zI zF

]T
 I Ã−1

II AIF

I


 zI

zF

 =

 z
(2)
I

z
(2)
F

 .

We summarise these steps in Algorithm 3.

Algorithm 3 The algorithm to solve the linear system PBz = r.

z
(2)
I = Ã−1

II rI
z

(1)
F = rF − AFIz(2)

I

zF = S̃−1z
(1)
F

zI = z
(2)
I − Ã

−1
II AIFzF

According to Algorithm 3, we need to solve three linear systems: two systems with ÃII

as a system matrix and one with the matrix S̃. In addition, we require two matrix-vector

multiplications involving AFI and AIF . By Theorem 2.11, the coe�cient matrix A has

at most 2M + 1 non-zero block matrices per row. Thus, the matrix AIF has at most 2M

non-zero block matrices per row because it is a certain that K0 is in AII and AFF . As a

99

5.3. DOMAIN DECOMPOSITION PRECONDITIONERS

result, the sequential complexity for the action of P−1
B on a vector is

F`
(
P−1
B r
)
≈ 2F`

(
Ã−1
II v
)

+ F`
(
S̃−1v

)
+ 4MNyPnnz(K0).

Furthermore, due to the structure of AII , we can solve the linear system with AII in

parallel which is the main advantage of our domain decomposition technique. On the

other hand, its parallel complexity depends on how the parametric mesh is partitioned,

i.e., the size of the largest submeshes. Moreover, the parallel complexity for S̃−1v depends

on the choice of S̃. Thus, we have

F`p
(
P−1
B r
)
≈ 2F`p

(
Ã−1
II v
)

+ F`p
(
S̃−1v

)
+ 2nnz(K0).

5.3.1.2 Spectral Analysis

To derive bounds for the generalised eigenvalue problem Av = λPBv, i.e.,

 AII AIF

AFI AFF

v = λ

 I

AFIÃ
−1
II I


 ÃII

S̃


 I Ã−1

II AIF

I

v, (5.10)

the following proposition is essential.

Proposition 5.14 ([5, Proposition 2.1]). The eigenvalues of the generalised eigenvalue

problem in (5.10) are the same as the eigenvalues of the matrix

 Ã−1
II AII

S̃−1S


 I

EFI I


 I EIF

I

 ,

where EFI =
(
A−1
II − Ã

−1
II

)
AIF and EFI = S−1AFI

(
I − Ã−1

II AII

)
.

Proposition 5.14 is a very useful tool to analyse the eigenvalues bounds for problem

100

5.3. DOMAIN DECOMPOSITION PRECONDITIONERS

(5.10) in the next section.

5.3.2 Block-diagonal Preconditioners

One of the factors of the matrix A is a block-diagonal matrix which is symmetric and

positive de�nite, i.e.,  AII

S

 .
As a result, it is feasible to design a block-diagonal preconditioner PD for the matrix A

from such a factor ofA. Again, assume thatAII and S are approximated by symmetric and

positive de�nite matrices ÃII and S̃, respectively. Thus, the block-diagonal preconditioner

for the matrix A can be de�ned by

PD =

 ÃII

S̃

 , (5.11)

which is symmetric and positive de�nite.

Remark. The preconditioner PD can be viewed as a Schwarz preconditioner. That is let

RPi ∈ Rni×Ny and RI ∈ RNI×Ny be stochastic restriction matrices which map a vector

in RNy to a vector corresponding to the multi-indices in IPi and II , respectively. Next,

de�ne a global restriction matrices RPi and RI to be

RPi := RPi ⊗ INx and RI := RI ⊗ INx .

Suppose Ã(i) is an approximation to the matrix A(i) in (5.7) for i = 1, 2, . . . , NP and S̃

is an approximation for the Schur complement S. Then, the preconditioner PD can be

rewritten as

PD =

NP∑
i=1

RT
PiÃ

(i)RPi +RT
I S̃RI .

101

5.3. DOMAIN DECOMPOSITION PRECONDITIONERS

5.3.2.1 Computational Costs

Block-diagonal preconditioners are very convenient to use due to their structure. Let

r ∈ RNxNy have the block structure

r =

 rI

rF

 ,
where rI ∈ RNyP and rF ∈ RNyI . To solve the linear system

PDz = r, (5.12)

requires the solution of two linear subsystems with the system matrices ÃII and S̃, as

z :=

 zI

zF

 =

 Ã−1
II rI

S̃−1rF

 .
The sequential complexity for PD is

F`
(
P−1
D r
)

= F`
(
Ã−1
II v
)

+ F`
(
S̃−1v

)
.

Given the structure of PD, we can solve for zI and zF in parallel. Thus, we have

F`p
(
P−1
D r
)

= max
{
F`p

(
Ã−1
II v
)
,F`p

(
S̃−1v

)}
.

Note that the computational cost in parallel for S̃−1v tends to increase the closer S̃

is. To avoid this bottleneck, we should balance the parallel computational cost for Ã−1
II v

and S̃−1v by adjusting the size of submeshes or the interface.

102

5.3. DOMAIN DECOMPOSITION PRECONDITIONERS

5.3.2.2 Spectral Analysis

Bounds for the eigenvalues of the preconditioned system P−1
D A are derived in the following

proposition.

Proposition 5.15. Let A be the 2-by-2 block matrix

A =

 AII AIF

AFI AFF

 .
Let PD be de�ned in (5.11) with ÃII = AII . Assume that

Λ
(
S̃−1S

)
⊆ [θ1,Θ1] and Λ

(
S̃−1AFF

)
⊆ [θ2,Θ2] ,

where (1 + θ2)2 ≥ 4Θ1. Then, the eigenvalue bounds of the generalised eigenvalue problem

Av = λPDv are

2θ1

γ
≤ λ ≤ γ

2
,

where γ = 1 + Θ2 +
√

(1 + Θ2)2 − 4θ1.

Proof. Let λ and v be an eigenvalue and an eigenvector of the generalised eigenvalue

problem Av = λPDv. We write v as

v =

 vI

vF

 .
So, we get

AIIvI + AIFvF = λAIIvI , (5.13)

AFIvI + AFFvF = λS̃vF . (5.14)

It is clear that the vector v with vI 6∈ ker (AFI) and vF = 0 is not an eigenvector of the

generalised eigenvalue problem Av = λPDv because the equation (5.14) is not satis�ed.

103

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

Suppose vF = 0 and vI ∈ ker(AFI). We have that λ = 1.

Suppose vF 6= 0. From (5.13), we obtain

(1− λ)AFIvI + AFIA
−1
II AIFvF = 0. (5.15)

Substitute (5.14) in (5.15) and get

(1− λ)
(
λS̃vF − AFFvF

)
+ AFIA

−1
II AIFvF = 0.

This leads to

vTFSvF

vTF S̃vF
= λ(1− λ) + λ

vTFAFFvF

vTF S̃vF
.

Hence, we solve for λ and get

λ =
1

2

1 +
vTFAFFvF

vTF S̃vF
±

√(
1 +

vTFAFFvF

vTF S̃vF

)2

− 4
vTFSvF

vTF S̃vF

 .

Note that, since (1 + θ2)2 ≥ 4Θ1, then λ is real.

By the eigenvalue bounds of S̃−1S and S̃−1AFF , we obtain bounds as follows,

2θ1

1 + Θ2 +
√

(1 + Θ2)2 − 4θ1

≤ λ ≤ 1

2

(
1 + Θ2 +

√
(1 + Θ2)2 − 4θ1

)
.

If the assumption in the above theorem holds, the theorem provides tight eigenvalue

bounds of P−1
D A. We will use this result later.

5.4 Even-odd Partition and Its Preconditioners

We introduce in this section a certain partitioning strategy and the preconditioner asso-

ciated with it. Generally, for domain decomposition on spatial domain, the number of

104

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

subdomains is chosen depending on the resources we have such as the number of proces-

sors or memory. Each subdomain should have roughly the same size and be su�ciently

small to be solved by a direct solver. This is because when solving a linear system with

AII in parallel, its parallel complexity is dominated by the complexity on the largest

subdomain. In addition, if we consider the parallel complexity of the block-diagonal pre-

conditioner PD, the size of the interface should not be very di�erent from the size of the

largest subdomain due to the number of nodes on the interface inducing the size of the

Schur complement. However, our partitioning strategy is one of the extreme cases with

each submesh having only one node. It aims to maximise the number of submeshes to

maximise the capability of parallelism. Typically, the number of subdomains in a spatial

mesh is related to the size of the interface. Although this also occur in parametric mesh,

some characteristics of parametric mesh and spatial mesh are di�erent. Before moving to

the main result, the following de�nitions are required.

De�nition 5.16. Let S be a set of vertices of a graph G. The set S is called an inde-

pendent set if no two vertices in S are adjacent.

De�nition 5.17. Let G be a graph. G is a bipartite graph if the set of vertices can be

divided into two disjoint and independent sets such that every edge in graph G connects

a vertex from one set to the other set.

The following result is a property of the parametric mesh associated with IMk .

Theorem 5.18. Let M be the parametric mesh associated with IMk for the discrete for-

mulation (2.14) with a�ne-parametric di�usion coe�cient. Then,M is a bipartite graph.

Proof. Let α ∈ IMk and let β be an adjacent node to α. This means that there exists

m ∈ {1, ...,M} such that |αm − βm| = 1 and αm′ = βm′ for all m
′ ∈ {1, ...,M} \ {m}.

Suppose that |α| is even, then |β| is odd and vice versa. That is every edge in parametric

mesh connects an even and an odd node together. Thus, the parametric mesh is bipartite.

105

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

Theorem 5.18 indicates that the set of multi-indices IMk can be divided into two disjoint

and independent sets. That is every edge links a node in one set to another node in the

other set and no any pair of nodes are adjacent in each set.

Example 5.5. Consider the even-odd partition described in Theorem 5.18 for the case

M = 3 and k = 2.

200

100

110 101

000

010 001

020 011 002

Figure 5.4: The parametric mesh associated with I3
2 is partitioned based on the property

of bipartite graph. Each submesh has only one node. Additionally, no two nodes on the
interface are adjacent.

Note that this partitioning strategy does not minimise the number of nodes on the

interface. For instance, in the case M = 1, the parametric mesh is a path from index

with the degree 0 to the degree k. Suppose we want to partition the parametric mesh

into 2 submeshes for 2 processors. We can choose the node with the index bk/2c, where

b·c denotes the �oor function, to be the interface. Thus, this partition has only one node

on the interface. On the other hand, even-odd partitioning strategy gives k + 1 − bk/2c

submeshes. We may assign half of the number of submeshes to one processor and the rest

to another processor. However, this partition produces bk/2c nodes on the interface.

Note also that, in practice, IP can be chosen to be the smaller set. For instance, we

may choose IP and II to be

IP = {200, 110, 101, 000, 020, 011, 002} and II = {100, 010, 001}

106

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

0 1 2 3 4

0 1 2 3 4

Figure 5.5: The parametric mesh when M = 1 and k = 4 is partitioned in two di�erent
ways. The �rst mesh is partitioned in two submeshes with the same size and has only one
node on the interface. The other is the even-odd partition. It partitions the parametric
mesh by choosing odd nodes to be the interface.

or

IP = {100, 010, 001} and II = {200, 110, 101, 000, 020, 011, 002} .

This type of partitioning strategy provides the desired structure of the coe�cient

matrix A. Due to no two nodes being adjacent on both sets IP and II , it results in the

diagonal block structure of AII and AFF with K0 along the main diagonal. This implies

that all non-zeros block matrices outside the main diagonal are put in AIF and AFI as

shown in Figure 5.6. That is

A =

 INyP
⊗K0 AIF

AFI INyI
⊗K0

 , (5.16)

or

 AII

AFF

 = INy ⊗K0 and

 AIF

AFI

 =
M∑
m=1

Gm ⊗Km.

The advantage of this structure is the form of AII and AFF , so that the action of A−1
II

and A−1
FF on a vector is not expensive. Thus, an approximation of AII is not required but

an approximation of the action of the inverse of the Schur complement is still needed.

5.4.1 Schur Complement Approximation

As we have seen in the previous section, the Schur complement S is one important com-

ponent in the diagonal factor of the matrix A. If we could solve the linear system with

107

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

Figure 5.6: The sparsity pattern of the coe�cient matrix A whenM = 5 and k = 3 based
on the partitioning outlined in Theorem 5.18.

the Schur complement exactly, the PCG using the preconditioner PB will converge in one

iteration. Unfortunately, the complexity of applying the inverse of the Schur complement

to a vector is high.

As seen in Algorithm 3, in one iteration of PCG, it is required to solve the linear

system

S̃z = r (5.17)

for a given vector r. This operation usually is a bottleneck in the process because the

structure of S̃ or S does not facilitate parallelism. As a result, a suitable approximation

of the Schur complement is required.

In this subsection, we will discuss some approximations of the Schur complement.

Moreover, its complexity and the eigenvalue bounds for S̃−1S are also provided.

5.4.1.1 Block-diagonal Approximation of the Schur Complement

Recall that S = AFF −AFIA−1
II AIF is symmetric and positive de�nite. We may approxi-

mate the Schur complement S by its �rst term. That is

S ≈ S̃1 := AFF .

108

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

Remark. Since AFF =
∑NP

i=1RT
IiA

(i)
FFRIi is a diagonal block matrix in even-odd partition,

so

A−1
FF =

NP∑
i=1

RT
IiDi

[
A

(i)
FF

]−1

DiRIi , (5.18)

where Di = Di ⊗ INx and Di ∈ RNIi×NIi are diagonal weighting matrices such that

NP∑
i=1

RT
IiDiRIi = INyI

.

Hence, S̃1 can be written in the form in (5.8).

The diagonal structure of AFF bene�ts the parallelism. Consequently, its sequential

complexity and parallel complexity are

F`
(
S̃−1

1 r
)

= NyIF`
(
K−1

0 v
)
and F`p

(
S̃−1

1 r
)

= F`
(
K−1

0 v
)
.

Before we study the spectrum of S̃−1
1 S, the following lemma is required.

Lemma 5.19. Let the coe�cient matrix A have the 2-by-2 block structure in (5.16).

De�ne

Q = A
− 1

2
FFAFIA

−1
II AIFA

− 1
2

FF .

Then, the spectrum of Q satis�es

Λ (Q) ⊆
[
0, τ 2

]
,

where τ is de�ned by

τ =
1

amin
0

∥∥∥∥∥
∞∑
m=1

|am|

∥∥∥∥∥
L∞(D)

.

Proof. We split the matrix A as A = A0 + A1 where

A0 =

 AII

AFF

 and A1 =

 AIF

AFI

 ,
109

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

or

A0 = INy ⊗K0 and A1 =
M∑
m=1

Gm ⊗Km.

Let v ∈ RNxNy\{0}. By Theorem 4.2 and Proposition 3.8, we have that

1− τ ≤ vTAv

vTA0v
≤ 1 + τ, for all v ∈ RNxNy\{0}.

Then,

−τ ≤ vTA1v

vTA0v
≤ τ, for all v ∈ RNxNy\{0}.

or

Λ
(
A
− 1

2
0 A1A

− 1
2

0

)
⊆ [−τ, τ] .

Since the eigenvalues of
(
A
− 1

2
0 A1A

− 1
2

0

)2

are the squares of the eigenvalues of A
− 1

2
0 A1A

− 1
2

0 ,

0 ≤
vT
(
A
− 1

2
0 A1A

− 1
2

0

)2

v

vTv
≤ τ 2, for all v ∈ RNxNy\{0}.

Next, by the change of variable u = A
− 1

2
0 v and

(
A
− 1

2
0 A1A

− 1
2

0

)2

= A
− 1

2
0 A1A

−1
0 A1A

− 1
2

0 , we

obtain

0 ≤ uTA1A
−1
0 A1u

uTA0u
≤ τ 2, for all u ∈ RNxNy\{0}.

Since

A1A
−1
0 A1 =

 AIFA
−1
FFAFI

AFIA
−1
II AIF

 ,
by setting uT =

[
0T wT

]
where w ∈ RNyI \{0}, we obtain

min
w 6=0

wTAFIA
−1
II AIFw

wTAFFw
≥ 0,

max
w 6=0

wTAFIA
−1
II AIFw

wTAFFw
≤ τ 2.

110

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

Finally, we set z = A
1
2
FFw and get that

0 ≤ zTQz

zTz
≤ τ 2, for all z ∈ RNyI \{0}.

Next, we derive bounds for the spectrum of S̃−1
1 S.

Proposition 5.20. Let the coe�cient matrix A have the 2-by-2 block structure in (5.16)

and let S be the Schur complement of AII in the matrix A. De�ne

S̃1 = AFF .

Then, the spectrum of S̃−1
1 S satis�es

Λ
(
S̃−1

1 S
)
⊆
[
1− τ 2, 1

]
.

Proof. Let v ∈ RNyI \{0}. Consider the generalised Rayleigh quotient

vTSv

vT S̃1v
=

vT
(
AFF − AFIA−1

II AIF
)
v

vTAFFv

= 1− vTAFIA
−1
II AIFv

vTAFFv
.

By the change of variable v1 = A
1
2
FFv, we have

vTSv

vT S̃1v
= 1− vT1 Qv1

vT1 v1

,

where Q = A
− 1

2
FFAFIA

−1
II AIFA

− 1
2

FF . Since Q is symmetric and positive semi-de�nite, this

leads to

1−max
v1 6=0

vT1 Qv1

vT1 v1

≤ vTSv

vT S̃1v
≤ 1− min

v1 6=0

vT1 Qv1

vT1 v1

.

111

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

By Lemma 5.19, we have

1− τ 2 ≤ vTSv

vT S̃1v
≤ 1.

5.4.1.2 Symmetric Block Gauss-Seidel Approximation of the Schur Comple-

ment

Let r ∈ RNyI and consider the linear system

Sz = r, (5.19)

where S denotes the Schur complement. It is easy to see that the vector z in (5.19)

satis�es the following linear system

 AII AIF

AFI AFF


 zI

z

 =

 0

r

 . (5.20)

Since the action of inverse of AII and AFF on a vector are inexpensive, we utilise this

advantage of AII and AFF by approximating the system matrix in equation (5.20). The

system matrix is replaced by its corresponding symmetric block Gauss-Seidel approxima-

tion. Then, we have

 AII AIF

AFF


 A−1

II

A−1
FF


 AII

AFI AFF


 z̃I

z̃

 =

 0

r


which leads to

z̃ = A−1
FF

(
AFF + AFIA

−1
II AIF

)
A−1
FF r. (5.21)

112

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

Thus, z̃ is an approximation of z and the Schur complement S can be approximated by

S̃2 which is de�ned by

S̃2 := AFF
(
AFF + AFIA

−1
II AIF

)−1
AFF .

Note that S̃2 is symmetric and positive de�nite.

Remark. By (5.18), S̃2 can be represented in the form in (5.8).

We can see in (5.21) that, to obtain z̃, we need to apply A−1
II and A−1

FF to vectors,

which are not expensive to compute.

Next, we rewrite the equation (5.21) as

z = A−1
FF r + A−1

FFAFIA
−1
II AIFA

−1
FF r,

and get the algorithm for solving the linear system (5.17) as shown in Algorithm 4.

Algorithm 4 Algorithm to solve linear system S̃2z = r.

z1 = A−1
FF r

z2 = A−1
II AIFz1

z3 = A−1
FFAFIz2

z = z1 + z3

According to Algorithm 4, to solve the linear system (5.17) requires solving three linear

system with AII or AFF as coe�cient matrices and two matrix vector multiplications.

Consequently, we obtain the sequential complexity for solving linear system (5.17) as

follows,

F`
(
S̃−1

2 r
)

= NyF`
(
K−1

0 v
)

+NyIF`
(
K−1

0 v
)

+ 4MNyPnnz(K0).

For parallel complexity, we gain the bene�t from the structure of AII and AFF , thus

F`p
(
S̃−1

2 r
)

= 3F`
(
K−1

0 v
)

+ 2nnz(K0).

113

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

The eigenvalue bounds for S̃−1
2 S are derived as follows.

Proposition 5.21. Let the coe�cient matrix A have the 2-by-2 block structure in (5.16)

and let S be the Schur complement of AII in the matrix A. De�ne

S̃2 = AFF
(
AFF + AFIA

−1
II AIF

)−1
AFF .

Then, the spectrum of S̃−1
2 S satis�es

Λ
(
S̃−1

2 S
)
⊆
[
1− τ 4, 1

]
.

Proof. Let v ∈ RNyI \{0}. Consider the generalised Rayleigh quotient

vTSv

vT S̃2v
=

vT
(
AFF − AFIA−1

II AIF
)
v

vTAFF
(
AFF + AFIA

−1
II AIF

)−1
AFFv

.

By the change of variable v1 = A
1
2
FFv, we have

vTSv

vT S̃2v
=

vT1
(
INyI

−Q
)

v1

vT1
(
INyI

+Q
)−1

v1

where Q = A
− 1

2
FFAFIA

−1
II AIFA

− 1
2

FF . Since the matrix Q is symmetric and positive semi-

de�nite, INyI
+ Q is symmetric and positive de�nite. We set v2 =

(
INyI

+Q
)− 1

2 v1 and

obtain

vTSv

vT S̃2v
=

vT2
(
INyI

−Q2
)

v2

vT2 v2

= 1− vT2 Q
2v2

vT2 v2

.

Again, since Q is positive and semi-de�nite, we get

0 < 1− λ2
max(Q) ≤ λ(S̃−1

2 S) ≤ 1− λ2
min(Q). (5.22)

114

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

Combine the results from (5.22) with Lemma 5.19 to obtain the eigenvalue bounds for

S̃−1
2 S as follows

λmax

(
S̃−1

2 S
)
≤ 1,

λmin

(
S̃−1

2 S
)
≥ 1− τ 4.

5.4.2 Even-odd Preconditioners

In this section, we will gather all knowledge from the previous sections to construct

practical preconditioners based on the even-odd partition. Recall that the coe�cient

matrix A is a 2-by-2 block matrix, i.e.,

A =

 AII AIF

AFI AFF

 ,
and there are two possible structures of preconditioners for the matrix A. That is

PD =

 ÃII

S̃

 and PB =

 I

AFIÃ
−1
II I


 ÃII

S̃


 I Ã−1

II AIF

I

 .
where ÃII and S̃ are approximations of AII and the Schur complement S, respectively.

By the even-odd partitioning strategy, we have

AII = INyP
⊗K0 and AFF = INyI

⊗K0,

which are block diagonal matrices with the sti�ness matrix K0 along the main diagonal

on both AII and AFF . Thus, the application of the inverse of AII should be inexpensive.

We assume that we invert AII exactly and that the Schur complement S is approximated

115

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

by

S̃1 = AFF or S̃2 = AFF
(
AFF + AFIA

−1
II AIF

)−1
AFF .

The combination of preconditioner structures and Schur complement approximations leads

to four versions of the even-odd preconditioners. However, one of them is the mean-based

preconditioner when the preconditioner is block-diagonal and the Schur complement is

approximated by AFF .

We will consider each of the three preconditioners in detail. Additionally, we will

combine the result from section 5.3 and subsection 5.4.1 to analyse the complexity and

also to derive the eigenvalue bounds of the preconditioned system for the all three versions

of the even-odd preconditioners.

Version I: Block-diagonal Preconditioner with the Schur Complement Approx-

imation S̃2

We de�ne the �rst version of our even-odd preconditioners by

PD2 =

 AII

S̃2

 . (5.23)

Given its structure, the complexities of applying P−1
D2 to a vector are

F`
(
P−1
D2 r
)

= 2NyF`
(
K−1

0 v
)

+ 4MNyPnnz(K0),

and

F`p
(
P−1
D2 r
)

= 3F`
(
K−1

0 v
)

+ 2nnz(K0).

Before we derive the eigenvalue bounds for P−1
D2A, we need the following lemma.

Lemma 5.22. Let the coe�cient matrix A have the 2-by-2 block structure in (5.16) and

116

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

S denote the Schur complement. De�ne

S̃2 = AFF
(
AFF + AFIA

−1
II AIF

)−1
AFF .

Then, the spectrum of S̃−1
2 AFF satis�es

Λ
(
S̃−1

2 AFF

)
⊆
[
1, 1 + τ 2

]
.

Proof. Let v ∈ RNyI \ {0} and u = A
1
2
FFv. Consider

vTAFFv

vT S̃2v
=

uTu

uT (I +Q)−1u
,

where Q = A
− 1

2
FFAFIA

−1
II AIFA

− 1
2

FF .

Setting z = (I +Q)−
1
2 u, we have

vTAFFv

vT S̃2v
=

zT (I +Q)z

zTz
= 1 +

zTQz

zTz
.

By Lemma 5.19, we obtain

1 ≤ vTAFFv

vT S̃2v
≤ 1 + τ 2.

Next, combining the results from Proposition 5.21 and Lemma 5.22 with Proposition

5.15 we get the spectral bounds of P−1
D2A in the following theorem.

Theorem 5.23. Let the coe�cient matrix A have the 2-by-2 block structure in (5.16)

and PD2 be the even-odd preconditioner version I de�ned in (5.23). Then, the spectrum

of P−1
D2A satis�es

Λ
(
P−1
D2A

)
⊆
[(

1− τ 4
) 2

γ
,
γ

2

]
,

where γ = 2 + τ 2 + τ
√

4 + 5τ 2.

117

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

Additionally, PD2 is an optimal preconditioner with respect to the SGFEM discretisa-

tion parameters.

Proof. By Proposition 5.21 and Lemma 5.22, we have the constants in Proposition 5.15

to be

θ1 = 1− τ 4, Θ1 = 1 and θ2 = 1, Θ2 = 1 + τ 2.

Thus, by Proposition 5.15, we obtain

Λ
(
P−1
D2A

)
⊆
[(

1− τ 4
) 2

γ
,
γ

2

]
,

where γ = 2 + τ 2 + τ
√

4 + 5τ 2.

The lower eigenvalue bound of P−1
D2A is improved from the case of mean-based pre-

conditioner whereas the upper bound of P−1
D2A from the analysis deteriorates rapidly

compared with the one for the mean-based preconditioner.

Moreover, we would like to compare even-odd preconditioner version I with the ideal

preconditioner PD0 de�ned by

PD0 =

 AII

S

 , (5.24)

where S denotes the Schur complement.

Theorem 5.24. Let the coe�cient matrix A have the 2-by-2 block structure in (5.16) and

PD0 be de�ned in (5.24). Then, the spectrum of P−1
D0A satis�es

Λ
(
P−1
D0A

)
⊆
[
γ′ − τ
γ′ + τ

,
γ′ + τ

γ′ − τ

]
,

where γ′ =
√

4− 3τ 2.

118

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

Additionally, PD0 is an optimal preconditioner with respect to the SGFEM discretisa-

tion parameters.

Proof. By Lemma 5.20 and using the fact that the eigenvalues of the inverse matrix are

the inverses of the eigenvalues of the matrix, we identify the constants in Proposition 5.15

to be

θ1 = 1, Θ1 = 1 and θ2 = 1, Θ2 =
1

1− τ 2
.

Thus, by Proposition 5.15, we obtain

Λ
(
P−1
D0A

)
⊆
[
γ′ − τ
γ′ + τ

,
γ′ + τ

γ′ − τ

]
,

where γ′ =
√

4− 3τ 2.

According to the analyses, the lower bounds of the preconditioned system with block-

diagonal preconditioners based on the even-odd partition are slightly improved if S̃ is close

to the Schur complement. In contrast, the upper bounds of the preconditioned system

deteriorate signi�cantly when τ is close to one and S̃ is close to the Schur complement.

Figure 5.7: Eigenvalue bounds of the preconditioned systems P−1
0 A, P−1

D2A and P−1
D0A.

119

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

Version II: Block Preconditioner with the Schur Complement Approximation

S̃1

In this version, we employ the block preconditioner and the Schur complement approxi-

mation S̃1. Thus, we de�ne the even-odd preconditioner version II by

PB1 =

 I

AFIA
−1
II I


 AII

S̃1


 I A−1

II AIF

I

 . (5.25)

Note that the preconditioner PB1 can be viewed as a symmetric block Gauss-Seidel ap-

proximation of the matrix A in (5.1). The complexities of P−1
B1 r are

F`
(
P−1
B1 r
)

=
(
Ny +NyP

)
F`
(
K−1

0 v
)

+ 4MNyPnnz(K0),

and

F`p
(
P−1
B1 r
)

= 3F`
(
K−1

0 v
)

+ 2nnz(K0).

We analyse the spectrum of the preconditioned system P−1
B1A as follows.

Theorem 5.25. Let the coe�cient matrix A have the 2-by-2 block structure in (5.16) and

PB1 be the even-odd preconditioner version II de�ned in (5.25). Then, the spectrum of

P−1
B1A satis�es

Λ
(
P−1
B1A

)
⊆
[
1− τ 2, 1

]
.

Additionally, PB1 is an optimal preconditioner with respect to the SGFEM discretisa-

tion parameters.

Proof. By Proposition 5.14, the eigenvalues for the generalised eigenvalues problem

Av = λPB1v

120

5.4. EVEN-ODD PARTITION AND ITS PRECONDITIONERS

are identical to the eigenvalues of the matrix

 INyP

S̃−1
1 S

 . (5.26)

Finally, by Lemma 5.20, we have

Λ
(
P−1
B1A

)
= {1} ∪ Λ

(
S̃−1

1 S
)
⊆
[
1− τ 2, 1

]
.

Version III: Block Preconditioner with the Schur Complement Approximation

S̃2

We de�ne the even-odd preconditioner version III for the coe�cient matrix A in (5.16)

by

PB2 =

 I

AFIA
−1
II I


 AII

S̃2


 I A−1

II AIF

I

 , (5.27)

where S̃2 = AFF
(
AFF + AFIA

−1
II AIF

)−1
AFF .

Using the results from the section 5.3.1.1 with F`
(
S̃−1

2 r
)
and F`p

(
S̃−1

2 r
)
, the com-

putational cost for solving the linear system with PB2 is

F`
(
P−1
B2 r
)

=
(
2Ny +NyP

)
F`
(
K−1

0 v
)

+ 8MNyPnnz(K0),

and

F`p
(
P−1
B2 r
)

= 5F`
(
K−1

0 v
)

+ 4nnz(K0).

The spectral analysis of PB2 is provided in the following theorem.

Theorem 5.26. Let the coe�cient matrix A have the 2-by-2 block structure in (5.16) and

PB2 be the even-odd preconditioner version III de�ned in (5.27). Then, the spectrum of

121

5.5. NUMERICAL EXPERIMENTS

P−1
B2A satis�es

Λ
(
P−1
B2A

)
⊆
[
1− τ 4, 1

]
.

Additionally, PB2 is an optimal preconditioner with respect to the SGFEM discretisa-

tion parameters.

Proof. By Proposition 5.14, the eigenvalues for the generalised eigenvalue problem

Av = λPB2v

are identical to the eigenvalues of the matrix

 INyP

S̃−1
2 S

 . (5.28)

It is obvious that 1 ∈ Λ
(
P−1
B2A

)
is a repeated eigenvalue and Λ

(
S̃−1

2 S
)
⊆ Λ

(
P−1
B2A

)
.

Hence, we have that

Λ
(
P−1
B2A

)
= {1} ∪ Λ

(
S̃−1

2 S
)
.

The result follows by applying Proposition 5.21.

5.5 Numerical Experiments

In this section, we present the numerical experiments for the even-odd preconditioners.

Firstly, the sizes of the sets of even nodes and odd nodes in IMk are observed. We com-

pare the performance of the even-odd preconditioners with other preconditioners such as

the mean-based preconditioner, the Kronecker product preconditioner and the modi�ed

truncation preconditioners. The test problems in this section are chosen to be the case

of fast decay in Example 4.1 and the test problem in Example 4.2. The spectral bounds

and optimality of the preconditioned system are investigated to con�rm our analysis.

122

5.5. NUMERICAL EXPERIMENTS

It is worth recalling that

F`
(
P−1

0 r
)
<

 F`
(
P−1
⊗ r
)

F`
(
P−1
B1 r
)
 < F`

(
P̃−1
r r
)
,

and

F`
(
P̃−1
r r
)
≈ F`

(
P−1
D2 r
)
< F`

(
P−1
B2 r
)
,

by assuming that F`
(
K−1

0 v
)
dominates the cost of one PCG iteration.

We begin by observing the proportions of IP to IMk for M = 1, ..., 8 and k = 1, ..., 6.

These numbers are important because the complexity per iteration by PCG depends on

the size of IP . Recall that one PCG iteration by the even-odd preconditioners requires to

solve 2Ny, Ny +NyP and 2Ny +NyP linear systems with coe�cient matrix K0 for version

I, II and III, respectively. For �xed k and M , de�ne IE and IO to be the sets of even

multi-indices and odd multi-indices, respectively, i.e.,

IE =
{
α ∈ IMk | |α| is even.

}
and IO =

{
α ∈ IMk | |α| is odd.

}
.

Since the spectral analyses of the three versions of the even-odd preconditioners say that

they are optimal, i.e., the numbers of PCG iterations are bounded, IP should be selected

to be the smaller set between IE and IO to reduce the cost per PCG iteration. The

other set is set to be II . Thus, it is obvious that the ratios between the size of IP and

Ny are bounded between 0 and 0.5. For instance, in the case of M = 1, if k is odd,

then #IE = #IO. As a result, NyP/Ny = 0.5. On the other hand, if k is even, then

#IE = #IO + 1. Thus, NyP/Ny = #IO/ (#IO + #IE) = 0.5k/(k + 1). These ratios are

illustrated in Figure 5.8 with 1 ≤ k ≤ 6 and 1 ≤M ≤ 8.

To compare the performance of the even-odd preconditioners with the other precon-

ditioners in later experiments, the sizes of IO and IE for M = 8 with k = 1, ..., 6 and also

the ratio between NyP and Ny are observed in Table 5.1. According to Figure 5.8 and

Table 5.1, we can see that the computational cost tends to increase with the parameter k

123

5.5. NUMERICAL EXPERIMENTS

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

k

N
y
P
/N

y

the proportion of IP to IMk

M = 1

M = 2

M = 3

M = 4

M = 5

M = 6

M = 7

M = 8

Figure 5.8: The proportion of the set IP to IMk with the parameters M and k, where IP
is chosen to be the smaller set between IE and IO.

k 1 2 3 4 5 6

#IE 1 37 37 367 367 2083
#IO 8 8 128 128 920 920

NyP/Ny 0.1111 0.1778 0.2242 0.2586 0.2852 0.3064

Table 5.1: The numbers of even multi-indices and odd multi-indices in IMk for M = 8
and k ranging from 1 to 6.

whereas increasing M reduces the cost for one PCG iteration.

Thus, the costs per PCG iteration for PB1 and PB2 depend on the parameter k and

M . For instance, according to Table 5.1, for M = 8, k = 3, we have NyP/Ny ≈ 0.2242

and then F`
(
P−1
B1 r
)
≈ 1.2242F`

(
P−1

0 r
)
and F`

(
P−1
B2 r
)
≈ 2.2242F`

(
P−1

0 r
)
.

All the experiments were implemented in S-IFISS. In each case we solved for the

variational formulation (2.11) with the di�usion coe�cient a(x,y) assumed to be as in

(4.2) and satisfying conditions (4.2) and (4.3). The forcing function f is set to be f(x) =

1. Recall that the spaces L2
ρ(Γ) and H1

0 (D) are discretised by the space of complete

polynomials SMk and the space of continuous piecewise linear functions Xh, respectively.

The number of parameters for the space SMk ranged from 1 to 8 (M = 1, ..., 8) with

the degree 1 to 6 (k = 1, ..., 6) and the mesh size ranges from 2−4 to as �ne as 2−7.

The linear system, which is obtained by SGFEM, is solved using PCG for the symmetric

preconditioners, i.e., P0, P̃1, P̃2, PD2, PB1, PB2, P⊗, with initial guess x0 = 0 and stopping

124

5.5. NUMERICAL EXPERIMENTS

P⊗ P0 P̃1 P̃2 PD2 PB1 PB2

k = 1 12 12 7 6 13 7 4
2 16 16 8 7 17 8 6
3 20 21 9 9 22 11 7
4 24 24 10 9 25 12 8
5 26 27 11 10 28 14 9
6 29 29 12 11 30 14 10

Table 5.2: PCG iteration counts for Example 5.6.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
0

20

40

0
.3
1

0
.3
3

0
.7
6

1
.6
6

3
.1
7

7
.1
8

0
.2
3

0
.3
3

0
.6
8

1
.6
8

2
.8
4

5
.5
7

0
.2
4

0
.6
6

2
.3
3

7
.1
5

2
0
.2

5
2
.0
1

0
.1
9

0
.5
5

2
.1
3

5
.8
7

1
6
.6
7

4
2
.9
9

0
.2
8

0
.4
2

0
.9 1
.8
6

4
.2
3 9
.5
6

0
.1
3

0
.2
1

0
.3
9

0
.8
3

1
.6
9

4
.0
2

0
.1

0
.1
8

0
.3
5

0
.7
2

1
.6
8

3
.9
5

T
im

e
(s
ec
)

P⊗ P0 P̃1 P̃2 P̃D2 P̃B1 P̃B2

Figure 5.9: PCG runtimes (in seconds) for Example 5.6.

criterion given by the relative residual norm being brought below tol = 10−6.

Example 5.6. In this experiment, the di�usion coe�cient a is assumed to be as given in

Example 4.1 but here, we consider only the case of fast decay, i.e., σ̃ = 4 and ᾱ = 0.9239.

These settings give τ = 0.9999 and τ8 = 0.9995. We set the discretisation parameters to

be h = 2−4, M = 8 and vary k from 1 to 6.

We compare the performance of the mean-based preconditioner, the Kronecker product

preconditioner, the three versions of the even-odd preconditioners and also the modi�ed

truncation preconditioner. For the later, only P̃1 and P̃2 are included. By the spectrum

analysis, we expect PB2 outperform the others in terms of the PCG iteration counts. This

is con�rmed in Table 5.2 and Figure 5.9.

It is clear that the even-odd preconditioner versions II and III are more e�cient than

the mean-based preconditioner and the Kronecker product preconditioner whereas the

iteration counts by PD2 are in the same level as the mean-based preconditioner and Kro-

necker product preconditioner. Moreover, in most cases, the performance by PB2 is still

125

5.5. NUMERICAL EXPERIMENTS

k = 1 k = 2 k = 3
λmin λmax λmin λmax λmin λmax

P−1
⊗ A 0.4902 1.5498 0.3042 1.7491 0.2160 1.8408
P−1

0 A 0.4718 1.5281 0.2886 1.7113 0.2036 1.7963

P̃−1
1 A 0.7210 1.0339 0.5750 1.0481 0.4675 1.0561

P̃−1
2 A 0.7210 1.0066 0.5810 1.0096 0.4803 1.0114
P−1
D2A 0.5261 1.7528 0.3441 2.1619 0.2508 2.3833
P−1
B1A 0.7211 1.0000 0.4940 1.0000 0.3659 1.0000
P−1
B2A 0.9222 1.0000 0.7440 1.0000 0.5979 1.0000

Table 5.3: The eigenvalue bounds of preconditioned system P−1
D2A, P

−1
B1A and P−1

B2A for
k = 1, 2, 3 and τM = 0.9995.

superior to that of the modi�ed truncation preconditioner, except for the case k = 6

where the overall complexity of P̃2 is lower than the one of PB2 because the complexity

per PCG iteration of PB2 increases with the parameter k. Furthermore, although the

iteration counts by PB1 are higher than the ones by P̃r and PB2, in term of overall per-

formance, PB1 is the most e�cient in every case due to the low cost per PCG iteration.

However, the experiment shows that solving the linear systems with PB1 or PB2 consume

signi�cantly less time than other preconditioners. In addition, Table 5.2 shows the mild

dependence of the three versions of even-odd preconditioners on the parameter k.

We also observe the eigenvalue bounds for the cases k = 1, 2, 3. These bounds are

presented in Table 5.3. We can see that the upper bounds by PB1 and PB2 remain

stable for all k = 1, 2, 3. In fact, they are identical to those in Theorem 5.26 but there

are signi�cant decreases in lower bounds of eigenvalue due to τM being very close to 1.

Nevertheless, the spectrum of the preconditioned system by PB2 is tighter than the other

preconditioned systems whereas the eigenvalue bounds for PD2 are not as tight as the ones

for the mean-based preconditioner. This is consistent with Table 5.2 where the iteration

counts by PB2 are the lowest for all k. Note also that the eigenvalue bounds for the even-

odd preconditioner version II and III can be improved if we have sharp eigenvalue bounds

for the mean-based preconditioner. For example, according to Table 5.3 when k = 1, we

have the eigenvalue bounds for the mean-based preconditioner to be [1 − τM,k, 1 + τM,k],

where τ8,1 = 0.5282 with M = 8 and k = 1. This τ8,1 gives the lower eigenvalue bound for

126

5.5. NUMERICAL EXPERIMENTS

P⊗ P0 P̃1 P̃2 PD2 PB1 PB2

k = 1 6 5 6 9 5 3 2
2 7 8 7 7 8 4 3
3 8 9 8 8 9 5 3
4 9 10 9 8 10 5 4
5 10 11 9 9 11 6 4
6 10 11 10 9 12 6 4

Table 5.4: PCG iteration counts for Example 5.7.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
0

10

20

30

40

0
.1
5

0
.1
6

0
.2
9

0
.5
2

1
.1
6

2
.5
4

0
.1
1

0
.2
2

0
.3
5

0
.6
6

1
.1
3

2
.1
1

0
.2

0
.5
8

2
.1
3

6
.3
2

1
6
.4
5

4
3
.2
9

0
.1
9

0
.5
3

1
.8
4

5
.2
2

1
5
.3
3

3
5
.6
1

0
.1
1

0
.2

0
.3
3

0
.6
9

1
.6
5

3
.7
3

7
·1

0
−

2

0
.1

0
.2

0
.3
7

0
.6
1

1
.5
8

7
·1

0
−

2

9
·1

0
−

2

0
.1
3

0
.3
5

0
.7
8

1
.5
5

T
im

e
(s
ec
)

P⊗ P0 P̃1 P̃2 P̃D2 P̃B1 P̃B2

Figure 5.10: PCG runtimes (in seconds) for Example 5.7.

PB1 and PB2 to be 1 − τ 2
8,1 ≈ 0.7211 and 1 − τ 4

8,1 ≈ 0.9222, respectively, which are very

close to the bounds we obtain from the experiment.

Next, we will observe the results by the three versions of even-odd preconditioners

with Example 4.2.

Example 5.7. We set the di�usion coe�cient a as in Example 4.2 with τ8 = 0.8054.

The discretisation parameters are set to be M = 8, h = 2−4 and k ranging from 1 to 6.

Again, the performance of P0, P⊗, PD2, PB1, PB2 and P̃r for r = 1, 2 are compared and

the results are displayed in Table 5.4 and Figure 5.10.

The experiment shows that the even-odd preconditioners version II and III outperform

the other preconditioners in terms of PCG iteration counts, runtimes and also overall

performance except the �rst version of even-odd preconditioner. Since τ8 is not close to 1,

by Theorem 5.26, the spectral bounds for the even-odd preconditioner version II and III

are clustered around one as shown in Table 5.5. Again, the upper bounds of preconditioned

systems are constant at one for all k = 1, 2, 3 but the lower bounds deteriorates slowly

127

5.5. NUMERICAL EXPERIMENTS

P−1
D2A P−1

B1A P−1
B2A

λmin λmax λmin λmax λmin λmax

k = 1 0.8256 1.2098 0.9647 1.0000 0.9988 1.0000
2 0.7250 1.3674 0.9078 1.0000 0.9915 1.0000
3 0.6529 1.4972 0.8502 1.0000 0.9778 1.0000

Table 5.5: Eigenvalue bounds for the preconditioned systems P−1
D2A, P

−1
B1A and P−1

B2A
for k = 1, 2, 3 and τM = 0.8054.

h
Example 5.6 Example 5.7

M = 4 M = 8 M = 4 M = 8
PD2 PB1 PB2 PD2 PB1 PB2 PD2 PB1 PB2 PD2 PB1 PB2

2−3 18 9 7 18 9 8 9 4 3 9 5 3
2−4 22 10 8 22 10 8 9 4 2 9 5 3
2−5 23 11 8 23 11 8 9 4 3 9 5 3
2−6 25 12 8 25 12 8 9 4 3 9 5 3
2−7 25 12 8 25 12 8 9 4 3 9 5 3

Table 5.6: The iteration counts by the even-odd preconditioners when h andM are varied.

with k in the case of PB1 and PB2. This results in a signi�cant decrease in the number of

iterations for the other preconditioners which is consistent with the spectral analysis. On

the other hand, the eigenvalue bounds for PD2 are not as tight as the bounds for PB1 or

PB2. As a result, the iteration counts for PD2 are higher than those in PB1 and PB2.

Finally, as we have seen that the even-odd preconditioners are optimal with respect

to the parameter k, the following experiment aims to con�rm optimality of the even-odd

preconditioners with respect to the parameters M and k.

Example 5.8. There are two cases in this experiment. One is the di�usion coe�cient a

in Example 5.6 and another one is in Example 5.7. The parameter k is �xed at k = 3

with M ranging from 4 to 8 and h from 2−3 to 2−7. The iteration counts by the three

versions of the even-odd preconditioners for both test cases are shown in Table 5.6.

We can see that the numbers of iterations by the even-odd preconditioners are vir-

tually constant in both cases with di�erent h and M . This shows that the even-odd

preconditioners are also optimal preconditioners for the stochastic Galerkin matrix A in

(5.16).

To conclude, in this chapter, we introduced a domain decomposition technique on

128

5.5. NUMERICAL EXPERIMENTS

the parametric domain for the a�ne-parametric di�usion coe�cients. We introduced the

concept of parametric mesh and then partitioned the mesh into submeshes. Moreover, we

presented three versions of the even-odd preconditioners based on the even-odd partition.

The numerical experiments indicate that version II and version III of the even-odd pre-

conditioners are more e�cient than the others. In addition, the even-odd preconditioners

are optimal with respect to discretisation parameters.

129

CHAPTER 6

BLOCK PRECONDITIONERS FOR SPDES WITH

NON-AFFINE PARAMETRIC COEFFICIENTS

Elliptic problems with non-a�ne parametric di�usion coe�cient are very challenging prob-

lems due to the representation of the di�usion coe�cient a. In this chapter, the di�usion

coe�cient a is assumed to be expanded by a generalised polynomial chaos expansion.

After applying the SGFEM to the problem, we obtain a linear system with system matrix

A written as a sum of Kronecker products as in (2.20), i.e.,

A =
∑
α∈IM2k

Gα ⊗Kα.

Recall that the matrix A is symmetric and positive de�nite but block dense. Thus,

devising a preconditioning technique for this type of problem is very challenging.

The mean-based preconditioner and Kronecker product preconditioner are two possi-

ble choices to tackle this problem. The structure of these two preconditioners is in the

Kronecker product form, whose the right Kronecker product factor is chosen to be the

sti�ness matrix K0. Our experiments with truncation preconditioners for a�ne di�usion

coe�cients have shown that the other sti�ness matrices in the coe�cient matrix A are

vital to improving the convergence rate of PCG. Moreover, the matrices Gα are useful to

change the pattern of the coe�cient matrix to a 2-by-2 block matrix. This new pattern is

utilised to design preconditioners as we have seen in the case of even-odd preconditioners

130

(see section 5.3).

Our aim is to design preconditioners for non-a�ne parametric coe�cients by combining

the ideas used in the design of truncation preconditioners and of domain decomposition

preconditioners for a�ne parametric coe�cients. Recall that the domain decomposition

technique is a permutation technique to generate the 2-by-2 block matrix structure of

the system matrix. The main challenge to design an e�cient preconditioner for this

problem is that the system matrix is block dense due to the representation of the di�usion

coe�cients. Thus, no permutation can achieve the structure in (5.1). To obtain a block-

sparse preconditioner, we truncate the di�usion coe�cient to capture its main feature. We

use this truncated coe�cient to design a preconditioner, and it leads to a sparse version

of the system matrix, which we can use as a preconditioner. As a result, we apply the

domain decomposition technique to the sparse preconditioner instead of the dense system

matrix.

The outline of this chapter is as follows. We review non-a�ne parametric di�usion co-

e�cients in section 6.1. We generalise the truncation preconditioners for a�ne-parametric

di�usion coe�cients to the case of non-a�ne parametric di�usion coe�cients in section

6.2. Then the practical preconditioners and their computational cost are presented in

section 6.3. In section 6.4 we introduce the parametric mesh for non-a�ne di�usion coef-

�cients and describe how to partition it. We also present another technique to approximate

the truncation preconditioners based on the partitioning and discuss its complexity. Next,

the preconditioners for log-transformed di�usion coe�cients are introduced in section 6.5,

and we end this chapter with numerical results in section 6.6.

131

6.1. NON-AFFINE PARAMETRIC DIFFUSION COEFFICIENTS

6.1 Non-a�ne Parametric Di�usion Coe�cients

Assume the di�usion coe�cient a to be non-a�ne parametric, i.e., not all ψα(y) for α ∈ I

are linear functions, and a can be written as

a(x,y) =
∑
α∈I

aα(x)ψα(y),

where {ψα}α∈I is an orthonormal polynomial basis of L2 (Γ). Also, assume that the

coe�cient a satis�es condition (2.10). Note that the mean of the coe�cient a correspond

to the term with α = 0 ∈ I. This leads to the mean of the coe�cient a, i.e., a0, to be

bounded and positive. Thus, there exist positive real numbers amin
0 and amax

0 such that

0 < amin
0 ≤ a0(x) ≤ amax

0 , for all x ∈ D. (6.1)

After we apply the SGFEM to the variational formulation (2.11), we obtain a linear

system with coe�cient matrix

A =
∑
α∈IM2k

Gα ⊗Kα,

where Gα and Kα are de�ned by

[Gα]js =
〈
ψαψq(j), ψq(s)

〉
ρ
, j, s = 1, 2, . . . , Ny,

[Kα]ir =

∫
D

aα(x)∇φi(x) · ∇φr(x)dx, i, r = 1, 2, . . . , Nx,
(6.2)

for α ∈ IM2k.

Note that the matrix A is symmetric and positive de�nite. Since the matrix A is

a summation over the set IM2k, it leads to the matrix A being block-dense although the

matrices Gα are all sparse.

Furthermore, there are some cases where the solution of the variational formulation

(2.11) uniquely exists although the di�usion coe�cient a is not bounded away from zero

132

6.2. TRUNCATION PRECONDITIONERS

or from above. This means that there do not exist positive numbers amin and amax such

that condition (2.10) holds. For example, let a be a lognormally distributed random �eld,

i.e.,

a(x, ω) = exp

(
b0 +

N∑
m=1

bm(x)Ym(ω)

)
, (x, ω) ∈ D × Ω,

where Ym(ω) ∈ Γm := (−∞,∞) for all m = 1, 2, ..., N . We can see that the coe�cient a

is positive but unbounded. However, we can prove the existence and uniqueness of the

solution to the variational formulation (2.11) (see [34] and [9, Lemma 1.2]).

6.2 Truncation Preconditioners For Non-a�ne Di�u-

sion Coe�cients

Our truncation preconditioners for a�ne di�usion coe�cients have shown that the ma-

trices Km are important to improve the rate of convergence of the solver. To design a

preconditioner for non-a�ne coe�cients, a sparse gPC expansion such as in those [24, 25]

is needed. Essentially, we generalise the idea of truncation preconditioner for a�ne para-

metric coe�cients. That is, we aim to �nd an approximation of the di�usion coe�cients

a by choosing a set of multi-indices Ĩ ⊆ I\ {0}; then a can be approximated by

ã(x,y) = a0(x) +
∑
α∈Ĩ

aα(x)ψα(y). (6.3)

Therefore, we reorder the terms of a based on magnitudes ‖aα‖L∞(D) but always start

with a0. Suppose Ir ⊆ IM2k\ {0}, where #Ir � #IM2k − 1, is the set of multi-indices of the

�rst r terms after the reordering. De�ne ar by

ar(x,y) = a0(x) +
∑
α∈Ir

aα(x)ψα(y).

Note that ar is not necessarily positive on D × Γ.

133

6.3. MODIFIED TRUNCATION PRECONDITIONERS

Next, de�ne a bilinear form Br : V × V → R by

Br(u, v) =

∫
Γ

ρ(y)

∫
D

ar(x,y)∇u(x,y) · ∇v(x,y)dxdy.

Consequently, the bilinear form Br induces the truncation preconditioner Pr via

Pr = G0 ⊗K0 +
∑
α∈Ir

Gα ⊗Kα.

Since we cannot guarantee that ar(x,y) is positive for all (x,y) ∈ D × Γ, the precondi-

tioner Pr is symmetric but may not be positive de�nite.

6.3 Modi�ed Truncation Preconditioners for Non-a�ne

Di�usion Coe�cients

Since PCG requires the preconditioner to be symmetric and positive de�nite, we need to

�nd a symmetric and positive de�nite matrix based on the above matrix Pr which is likely

to be symmetric and inde�nite. In this section, we modify Pr by using its symmetric

block Gauss-Seidel approximation. De�ne P̃r to be the symmetric block Gauss-Seidel

approximation of Pr, i.e.,

P̃r = (D + L)D−1
(
D + LT

)
,

where D is the block-diagonal matrix of Pr and L is the strictly lower block-triangular

matrix of Pr.

To ensure that the modi�ed version of Pr is symmetric and positive de�nite, it is

required only that the blocks along the main diagonal of Pr, i.e., D, are symmetric and

positive de�nite.

In the following, we introduce an additional assumption on the di�usion coe�cient a.

134

6.3. MODIFIED TRUNCATION PRECONDITIONERS

Let

Ie = {α ∈ Ir | αm is even for all m = 1, ...,M} .

Assume that aα is non-negative and bounded on the domain D for any α ∈ Ie. That is,

for α ∈ Ie,

aα(x) ≥ 0, for all x ∈ D. (6.4)

The assumption (6.4) causes the sti�ness matrices Kα to be symmetric and positive semi-

de�nite for all α ∈ Ie. With assumption (6.4), our goal is to show that the preconditioner

Pr can be written as

Pr = D + L+ LT , (6.5)

where D is the block-diagonal matrix whose blocks are symmetric and positive de�nite

and L is the strictly lower block-triangular matrix.

To show that Pr can be split as in (6.5), we need to refer to the following corollary.

Corollary 6.1 ([51, Corollary 24]). Let Pi be an orthonormal polynomial of degree i

generated by an even probability of density function. Let i, j, k ∈ N0. Then, 〈PkPi, Pj〉ρ =

0 if one of the following condition holds

1. |i− j| > k,

2. k > i+ j,

3. i+ j + k is an odd number.

In addition, it is reasonable to assume

〈
Pm
k , (P

m
i)2〉

ρm
≥ 0, for k, i ∈ N0 and m = 1, ...,M . (6.6)

This assumption holds, for example, if Pk is a Hermite polynomial or a Legendre polyno-

mial (see [51, Appendix A] for other orthogonal polynomials). The following result shows

that the main diagonal of Pr is symmetric and positive de�nite.

135

6.3. MODIFIED TRUNCATION PRECONDITIONERS

Lemma 6.2. Assume conditions (6.6) and (6.4) hold. Then, the preconditioner Pr can

be represented as in (6.5), where D is symmetric and positive de�nite.

Proof. Let α ∈ Ir\Ie and β ∈ IMk . Consider

〈
ψα, ψ

2
β

〉
=

M∏
m=1

〈
Pm
αm ,
(
Pm
βm

)2
〉
ρm
.

Since α 6∈ Ie, there exists an odd index αm∗ . Thus, αm∗ +βm∗ +βm∗ is odd. By Corollary

6.1, we have
〈
Pm∗
αm∗

,
(
Pm∗

βm∗

)2
〉
ρm∗

= 0 and then,
〈
ψα, ψ

2
β

〉
= 0. As a result, all the blocks

along the main diagonal of Gα ⊗Kα are zero matrices. In other words, Gα ⊗Kα can be

written as

Gα ⊗Kα = Lα + LTα,

where Lα is a strictly lower block-triangular matrix of Gα ⊗Kα.

On the other hand, if α ∈ Ir ∩ Ie, then the main diagonal of Gα⊗Kα is
〈
ψα, ψ

2
β

〉
Kα,

for β ∈ IMk . Since
〈
Pm
αm ,
(
Pm
βm

)2
〉
ρm
≥ 0 for all m = 1, ...,M and Kα is symmetric and

positive semi-de�nite, then
〈
ψα, ψ

2
β

〉
Kα is also a symmetric and positive semi-de�nite

matrix for all β ∈ IMk . Hence, the matrix Gα ⊗Kα can be written as

Gα ⊗Kα = Dα + Lα + LTα,

where Dα is block-diagonal, symmetric and positive semi-de�nite and L is strictly lower

block-triangular matrix of Gα ⊗Kα.

Therefore,

Pr =

(
G0 ⊗K0 +

∑
α∈Ir∩Ie

Dα

)
+

(∑
α∈Ir

Lα

)
+

(∑
α∈Ir

Lα

)T

,

where G0 ⊗K0 +
∑
α∈Ir∩Ie Dα is block-diagonal and symmetric and positive de�nite.

136

6.3. MODIFIED TRUNCATION PRECONDITIONERS

Recall that

P̃r = (D + L)D−1
(
D + LT

)
.

Since D is symmetric and positive de�nite, so is P̃r.

Although Pr is a symmetric and inde�nite matrix, the blocks on its main diagonal of

Pr are symmetric and positive de�nite. We can utilise its main diagonal to construct a

suitable preconditioner, i.e., symmetric and positive de�nite. Thus, we can use P̃r as a

preconditioner for non-a�ne parametric cases.

6.3.1 Computational Cost

At each PCG iteration, we need to solve a linear system with P̃r. Let r ∈ RNxNy . Consider

the linear system

P̃rz = r. (6.7)

The following procedure may be used to obtain the solution z of linear system (6.7).

1. Solve for z1

(D + L)z1 = r.

2. Solve for z

(D + LT)z = Dz1.

Since the pattern and the numbers of non-zero entries in the matrices Gα are di�erent

from the case of a�ne-parametric di�usion coe�cients, to determine the complexity of

the action of P̃−1
r on the vector r, the number of non-zero entries in these matrices is

needed.

Lemma 6.3 ([51, Lemma 28]). For even probability density functions, the number of

non-zero entries of the matrix Gα de�ned in (6.2) is bounded by

nnz(Gα) ≤ 2
k

M + k
Ny.

137

6.4. DOMAIN DECOMPOSITION PRECONDITIONERS

Each step requires to solve Ny linear systems with sti�ness matrices in the matrix D

and the number of multiplication depends on non-zero block matrices in the preconditioner

Pr. Thus. the sequential complexity of P̃−1
r r is bounded as

F`
(
P̃−1
r r
)
≤ 2NyF`

(
K−1

0 v
)

+
2kr

M + k
Nynnz(K0).

On the other hand, the parallel complexity of P̃−1
r r is not obvious because the pattern

of Pr does not facilitate parallelism.

6.4 Domain Decomposition Preconditioners For Non-

a�ne Parametric Di�usion Coe�cients

Since the stochastic Galerkin matrix A is block dense, any permutation of orthogonal

polynomials cannot ensure the AII in (5.1) has a block diagonal structure. So we cannot

apply the domain decomposition technique to the matrix A directly but we can apply

it to the block sparse preconditioner instead. In this section, we want to partition the

preconditioner Pr as a 2-by-2 block matrix, i.e.,

Pr =

 PII PIF

PFI PFF

 ,
where PII is a non-singular block diagonal matrix. This can be done by extending the idea

of even-odd partitioning for a�ne parametric coe�cients to non-a�ne cases. We start

by studying the pattern of the preconditioner Pr. Next, we introduce the parametric

mesh associated with IMk for the case of non-a�ne parametric di�usion coe�cients. We

then partition the parametric mesh to many small submeshes and obtain a 2-by-2 block

structure of Pr.

138

6.4. DOMAIN DECOMPOSITION PRECONDITIONERS

6.4.1 Parametric Mesh

We represent Pr in block form by

[Pr]js = [G0]jsK0 +
∑
α∈Ir

[Gα]jsKα, j, s = 1, 2, . . . , Ny .

Recall that we can observe the sparsity pattern of the preconditioner Pr by considering

the pattern of the matrix

Gr = G0 +
∑
α∈Ir

Gα.

Theorem 6.4. Let q be a bijection from {1, 2, . . . , Ny} to IMk . Let j, s ∈ {1, 2, . . . , Ny}

and β,β′ ∈ IMk such that β = q(j) and β′ = q(s). If [Gr]js 6= 0, then one of the following

conditions holds

1. The multi-indices β and β′ are identical, i.e.,

β = β′. (6.8)

2. There exists α ∈ Ir such that

|βm − β′m| ≤ αm ≤ βm + β′m and αm + βm + β′m is even for all m = 1, ...,M. (6.9)

Proof. Suppose conditions (6.8) and (6.9) do not hold. If condition (6.8) does not hold,

then j 6= s and we must have [G0]js = 0 because G0 is the identity matrix. If condition

(6.9) does not hold, for any α ∈ Ir, there exists m∗ ∈ {1, ...,M} such that |βm∗ − β′m∗| >

αm∗ or αm∗ > βm∗ + β′m∗ or αm∗ + βm∗ + β′m∗ is odd. By Corollary 6.1, it results in

139

6.4. DOMAIN DECOMPOSITION PRECONDITIONERS

〈
Pm∗
αm∗

Pm∗

βm∗
, Pm∗

β′
m∗

〉
ρm∗

= 0 and then

〈
ψαψβ, ψβ′

〉
ρ

=
M∏
m=1

〈
Pm
αmP

m
βm , P

m
β′m

〉
ρm

=
〈
Pm∗

αm∗
Pm∗

βm∗
, Pm∗

β′
m∗

〉
ρm∗

M∏
m=1,m 6=m∗

〈
Pm
αmP

m
βm , P

m
β′m

〉
ρm

= 0.

Thus, [Gα]js = 0 for all α ∈ Ir and [Gr]js = 0, which is a contradiction.

The sparsity pattern of the preconditioner Pr can be identi�ed by the following corol-

lary.

Corollary 6.5. Let q be a bijection from {1, 2, . . . , Ny} to IMk . Let j, s ∈ {1, 2, . . . , Ny}

and β,β′ ∈ IMk such that β = q(j) and β′ = q(s). If [Pr]js 6= 0, then either condition

(6.8) or condition (6.9) holds.

Recall that the multi-indices in IMk represent the nodes of the parametric mesh asso-

ciated with IMk . There is an edge linking the nodes β,β′ ∈ IMk if they satisfy condition

(6.9). It is easy to see that the number of edges in the parametric mesh will increase with

the size of the set Ir.

Note that, for convenience, we ignore self-loops in the parametric mesh.

Example 6.1. Let r = 3 and Ir = {100, 200, 010} ⊆ IM2k. The multi-indices in the set

I3
2 represent the nodes of the parametric mesh associated with IMk . To construct the

parametric mesh, we �nd the edges in the mesh for each multi-index α ∈ Ir before we

combine all the edges to get the parametric mesh.

The edges for each α ∈ Ir are shown in Table 6.1.

Thus, we combine all the edges for each multi-indices in Ir but do not include self-loops

and obtain the parametric mesh associated with IMk as shown in Figure 6.1. Note that we

label the edges to show which multi-index or multi-indices in Ir induce that edge.

140

6.4. DOMAIN DECOMPOSITION PRECONDITIONERS

α Edges

(1, 0, 0) (000, 100) (100, 200) (010, 110) (001, 101)
(2, 0, 0) (000, 200) (200, 200)
(0, 1, 0) (000, 010) (010, 020) (100, 110) (001, 001)

Table 6.1: List of edges for each α ∈ Ir.

200
α1

α2

100

α1

α3

110

α1

101

α1000

α3

010

α3

001

α3

020 011 002

Figure 6.1: The parametric mesh associated with I3
2 and Ir = {(1, 0, 0), (2, 0, 0), (0, 1, 0)}.

6.4.2 Even-odd Partition for Non-a�ne Parametric Di�usion Co-

e�cients

Recall that domain decomposition techniques aim to partition the matrix Pr as a 2-by-2

block matrix, i.e.,

Pr =

 PII PIF

PFI PFF

 .
where the block matrix PII is required to be non-singular. Since PII is induced by sub-

meshes, then we have to ensure that, after the partitioning, each block matrix correspond-

ing to a submesh is invertible. If we know that

a0 +
∑
α∈Ir

aα(x)ψα(y) > 0, for all (x,y)∈ D × Γ

or the preconditioner Pr is symmetric and positive de�nite, then each submesh always

yields a symmetric and positive de�nite block matrix which is invertible.

To obtain a 2-by-2 block structure for Pr, we permute the nodes in the parametric

141

6.4. DOMAIN DECOMPOSITION PRECONDITIONERS

mesh in such a way that PII is invertible. This partition utilises the positivity of the

block-diagonal matrix of Pr.

To ensure that each block on the main diagonal matrix of PII is invertible, we partition

the parametric mesh into many submeshes which contain only a single node. Since the

structure of the parametric mesh for non-a�ne parametric di�usion coe�cients depends

on the set Ir, it may not be a bipartite graph. Consequently, we cannot obtain the unit

submeshes by even-odd partitioning (partitioning of the set of multi-indices IMk by even

nodes or odd nodes) and we need an algorithm to partition the parametric mesh for the

case of non-a�ne parametric coe�cients.

Algorithm 5 Algorithm to partition the parametric mesh.

IP = ∅, II = ∅
while IP ∪ II 6= IMk

add a node α ∈ IMk \ (IP ∪ II) which has the lowest degree to the set IP
add all the adjacent nodes of α to the set II

end while

Algorithm 5 partitions the parametric mesh into many submeshes with one node and

tries to maximise the number of submeshes. The algorithm starts by initialising the set

IP and II to be ∅. It will choose an available node in the set IMk \ (IP ∪ II) with the lowest

degree to be a new submesh and then mark all the adjacent nodes to be the nodes on

the interface. This process will be repeated until all the nodes in IMk are assigned to be

a submesh or interface. Note that Algorithm 5 does not guarantee that [Pr]FF will be a

block-diagonal matrix because of the structure of the parametric mesh.

Example 6.2. From Example 6.1, recall that Ir = {(1, 0, 0), (2, 0, 0), (0, 1, 0)}. Apply

Algorithm 5 to the parametric mesh associated with IMk and obtain the following partition

as shown in Figure 6.2. Therefore, we have

IP = {110, 000, 101, 020, , 011, 002} and II = {010, 001, 100, 200} .

We de�ne the map q from {1, ..., Ny} to IMk corresponding to the partition to obtain

a 2-by-2 block matrix of the preconditioner Pr. After the truncation preconditioner Pr is

142

6.4. DOMAIN DECOMPOSITION PRECONDITIONERS

200

100

110 101

000

010 001

020 011 002

Figure 6.2: The partition of the parametric mesh associated with IMk and Ir =
{(1, 0, 0), (2, 0, 0), (0, 1, 0)} by Algorithm 5.

permuted to 2-by-2 block form, we factorise the preconditioner Pr, i.e.,

Pr =

 I

PFIP
−1
II I


 PII

SP


 I P−1

II PIF

I

 ,
where SP = PFF − PFIP−1

II PIF denotes the Schur complement of PII in Pr.

Suppose PII and SP are approximated by symmetric and positive de�nite matrices

P̃II and S̃P , respectively. We can de�ne a preconditioner by

 I

PFIP̃
−1
II I


 P̃II

S̃P


 I P̃−1

II PIF

I

 . (6.10)

Remark. This procedure can be viewed as an approximation technique for the truncation

preconditioners Pr for a�ne parametric di�usion coe�cients. Recall that the stochastic

Galerkin matrix for a�ne parametric di�usion coe�cients can be written as

A =
∑
α∈IM1

Gα ⊗Kα.

Selecting Ir =
{
α ∈ IM1 |

∑r
m=1 αm = 1

}
leads to the truncation preconditioner Pr which

143

6.4. DOMAIN DECOMPOSITION PRECONDITIONERS

is symmetric and positive de�nite. Thus, the truncation preconditioner Pr for a�ne

parametric di�usion coe�cients can be represented by the block matrix in (6.10).

Recall that the block matrices along the main diagonal of PFF are symmetric and

positive de�nite. Therefore, the matrix P̃FF , which denotes the symmetric block Gauss-

Seidel approximation of PFF , is symmetric and positive de�nite. So we approximate SP by

P̃FF . As a result, we can de�ne the preconditioner with domain decomposition technique

by

P̂r =

 I

PFIP
−1
II I


 PII

P̃FF


 I P−1

II PIF

I

 .
Note that P̂r is symmetric and positive de�nite.

6.4.3 Computational Cost

Let r ∈ RNxNy such that

r =

 rI

rF

 ,
where rI ∈ RNyP and rF ∈ RNyI . Consider now the linear system

P̂rz = r.

We apply Algorithm 3 to solve the linear system. In Algorithm 3, it is required to solve

the linear system with P̃FF which does not facilitate parallelism.

Let D be the block-diagonal matrix of PFF and L be the strictly lower block-triangular

matrix of PFF . The solution of the linear system P̂rzF = rF can be obtained as follows

1. Solve the linear system (D + L)z1 = rF .

2. Solve the linear system (D + LT)zF = Dz1.

144

6.5. SPECIAL CASE: LOG-TRANSFORMED DIFFUSION COEFFICIENTS

Thus, the complexity for solving the linear system with P̂FF is

F`
(
P̃−1
FF rF

)
≈ 2NyIF`

(
K−1

0 v
)

+ nnz(PFF).

Combine the complexity of P̃−1
FF rF with the complexity from Algorithm 3. As a result,

the sequential complexity of P̂r is

F`
(
P̂−1
r r
)
≈ 2NyF`

(
K−1

0 v
)

+
2kr

M + k
Nynnz(K0),

and parallel complexity of P̂r is

F`p
(
P̂−1
r r
)
≈ 2

(
1 +NyI

)
F`p

(
K−1

0 v
)

+ 2nnz(K0).

6.5 Special Case: log-transformed Di�usion Coe�cients

Suppose the di�usion coe�cient a is a log-transformed coe�cient, i.e.,

a(x,y) = exp

(
b0(x) +

N∑
m=1

bm(x)ym

)
, (6.11)

where bm ∈ L∞(D) for all m = 0, 1, ..., N . Then, we represent a by using the gPC

expansion as follows

a(x,y) =
∑
α∈I

aα(x)ψα(y),

where

aα(x) =

∫
Γ

ρ(y)a(x,y)ψα(y)dy. (6.12)

In the case of log-transformed di�usion coe�cients, we approximate the coe�cient a

by a truncation of a. The following result shows that a truncation of a preserves positivity.

Lemma 6.6. Let a be a log-transformed coe�cient in the form (6.11). De�ne I1 =

145

6.5. SPECIAL CASE: LOG-TRANSFORMED DIFFUSION COEFFICIENTS

{α ∈ I | αm = 0 for all m ≥ 2} and a truncated expansion of a by ae1 : D × Γ→ R by

ae1(x,y) =
∑
α∈I1

aα(x)ψα(y), (6.13)

where aα are de�ned in (6.12).

Then, ae1 is positive on D × Γ.

Proof. Consider aα for α ∈ I1,

aα = exp(b0(x))aα1(x)
N∏
m=2

Em [exp (bm(x)ym)] ,

where

aαm =

∫
Γm

ρ(ym) exp (bm(x)ym)Pm
αm(ym)dym

and

Em [F (ym)] =

∫
Γm

ρ(ym)F (ym)dym

with Pm
n (ym) a generic orthonormal polynomial de�ned in (2.16).

Thus, we substitute back in ae1 and obtain

ae1(x,y) = exp(b0(x))
N∏
m=2

Em [exp (bm(x)ym)]

(
∞∑
n=0

an(x)P 1
n(y1)

)
.

Using the gPC expansion, we get

exp (b1(x)y1) =
∞∑
n=0

an(x)P 1
n(y1).

This leads to

ae1(x,y) = exp(b0(x) + b1(x)y1)
N∏
m=2

Em [exp (bm(x)ym)] .

Since Em [exp (bm(x)ym)] are positive for all m = 2, ..., N , ae1(x,y) is positive for all

(x,y) ∈ D × Γ.

146

6.5. SPECIAL CASE: LOG-TRANSFORMED DIFFUSION COEFFICIENTS

We de�ne a bilinear form Be1 : V × V → R via ae1 by

Be1(u, v) =

∫
Γ

ρ(y)

∫
D

ae1(x,y)∇u(x,y) · ∇v(x,y)dxdy. (6.14)

We use the bilinear form Be1 to de�ne a preconditioner Pe1

Pe1 :=
∑
α∈I12k

Gα ⊗Kα. (6.15)

where I1
2k = {α ∈ I1 | |α| ≤ 2k} .

Lemma 6.7. Let Pe1 be de�ned in (6.15). Then, Pe1 is symmetric and positive de�nite.

Proof. It is clear that the bilinear Be1 is symmetric, therefore so is Pe1 .

Let v ∈ RNxNy\ {0} and let v ∈ SMk correspond to v. Consider

vTPe1v = Be1(v, v).

Since ae1(x,y) > 0 for all x ∈ D and y ∈ Γ, then Be1(v, v) > 0 for all v ∈ SMk . Thus, Pe1

is symmetric and positive de�nite.

6.5.1 Parametric Mesh

Since all multi-indices α ∈ I1
2k have αm = 0 for m = 2, ...,M , we partition the set of

multi-indices IMk into many subsets, namely I1,..., IN , by grouping the multi-indices with

the same second index to the last index together. That is, for l = 1, ..., N and for any β,

β̃ ∈ Il,

βm = β̃m, for all m ≥ 2,

147

6.5. SPECIAL CASE: LOG-TRANSFORMED DIFFUSION COEFFICIENTS

and for any Il1 6= Il2 and for each β ∈ Il1 , β
′ ∈ Il2 , there exists m∗ ≥ 2 such that

βm∗ 6= β′m∗ .

Additionally, since the multi-indices in the sets Il, l = 1, ..., N , are grouped by second

index to the last index of the multi-indices in IMk , then

N =

 M + k − 1

M − 1

 .

Furthermore, the number of multi-indices in set Il is between 1 to k + 1, inclusive. For

instance, Il = {(0, k, 0, ..., 0)} or Il =
{
α ∈ IMk | αm = 0 for all m ≥ 2

}
. Moreover, the

number of the set Il with j members is

nj =

 k +M − j − 1

M − 2

 .

In practice, we need to balance the size of each submesh to avoid a bottleneck. We may

combine some small submeshes and assign to one processor.

Next, to study the property of the induced subgraphs whose set of nodes is Il, the

following de�nition is required.

De�nition 6.8. A graph is called a complete graph if there exists an edge linking each

pair of distinct nodes.

Lemma 6.9. LetM be a parametric mesh associated with IMk induced by the set I1
2k. For

l = 1, ..., N , let Gl = (Il, El) be an induced subgraph ofM. Then, Gl is a complete graph.

Proof. Let β,β′ ∈ Il such that β 6= β′. Choose α = (β1 + β′1, 0, ...0) ∈ I1
2k. We can see

that

|β1 − β′1| ≤ α1 ≤ β1 + β′1 and α1 + β1 + β′1 is even

148

6.5. SPECIAL CASE: LOG-TRANSFORMED DIFFUSION COEFFICIENTS

and

0 = |βm − β′m| ≤ αm ≤ βm + β′m and αm + βm + β′m is even, for all m ≥ 2.

Thus, β and β′ satisfy condition (6.9) and then there exists an edge linking β and β′.

The following lemma shows that the parametric mesh induced by the set I1
2k can be

partitioned into many submeshes corresponding to the sets I1,..., IN .

Lemma 6.10. Let M be a parametric mesh associated with IMk induced by the set of

multi-indices I1
2k. Let G = (Il1 ∪ Il2 , E) be an induced subgraph inM where Il1 and Il2 are

disjoint. Then, G is disconnected.

Proof. Let β ∈ Il1 and β′ ∈ Il2 . By the de�nition of the set Il, for l ∈ {1, ..., N}, there

exists m∗ ≥ 2 such that βm∗ 6= β′m∗ . Thus, 0 < |βm∗ − β′m∗| and then β and β′ do not

satisfy condition (6.9). Therefore, there is no edge linking the multi-indices β and β′.

Consequently, no node in Il1 is linked with a node in Il2 . Hence, there is no path to

connect a node in Il1 to a node in Il2 .

As a result of Lemma 6.10, the parametric mesh induced by the set I1
2k can be par-

titioned into many non-overlapping submeshes, namely P1, P2, ..., PN , and the sets Il,

for l = 1, ..., N , are the set of nodes of each submesh. Note that there is no node on the

interface, i.e., II = ∅. In addition, each submesh is a complete graph.

If the parametric mesh is a complete graph, then it means that each pair of multi-

indices in IMk satisfy condition (6.9). So, the preconditioner P is a block dense matrix.

Example 6.3. For M = 3, k = 2, letM be the parametric mesh induced by the set I1
2k

where

I1
2k = {(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0)} .

149

6.5. SPECIAL CASE: LOG-TRANSFORMED DIFFUSION COEFFICIENTS

200
α1,α3

α2

100

α1110

α1

101

α1000

010 001

020 011 002

Figure 6.3: The parametric mesh associated with I3
2 induced by I1

2k =
{αi := (i, 0, 0) | i = 1, 2, 3, 4}.

By Lemma 6.10, the set of multi-indices IMk is partitioned into

I1 = {000, 100, 200} I2 = {010, 110} I3 = {001, 101}

I4 = {020} I5 = {011} I6 = {002}

The edges for each α ∈ I1
2k are shown in Table 6.2.

α Edges

(1, 0, 0) (000, 100) (100, 200) (010, 110) (001, 101)
(2, 0, 0) (000, 200) (200, 200)
(3, 0, 0) (100, 200)
(4, 0, 0) (200, 200)

Table 6.2: List of edges for each α ∈ I1
2k.

Again, we combine all the edges in Table 6.2 but do not include self-loops and get the

parametric mesh as shown in Figure 6.3. We can see that there is no node on the interface

and each submesh is a complete graph.

150

6.5. SPECIAL CASE: LOG-TRANSFORMED DIFFUSION COEFFICIENTS

6.5.2 Computational Cost

In the previous subsection, we have seen that partitioning the parametric mesh induced by

the multi-indices set I1
2k gives many complete submeshes with no interface. As a result,

the preconditioner for log-transformed di�usion coe�cients can be presented by block

diagonal structure where each block is block dense as shown in Figure 6.4. The largest

block in the preconditioner Pe1 has block size (k + 1)-by-(k + 1) and the smallest blocks

are single block matrices.

Figure 6.4: Block pattern of a preconditioner for log-transformed di�usion coe�cient with
M = 5 and k = 3.

In the following, let n = 1, ..., NP and S(n) be a vector subspace of SMk associated with

the set In, i.e.,

S(n) = span {ψα | α ∈ In} .

Let V (n) := S(n) ⊗ Xh. Since V (n) is a subspace of V M
hk and Be1(v, v) is positive for

all v ∈ V M
hk and v 6= 0, each block in the preconditioner Pe1 is symmetric and positive

de�nite.

If the discretisation parameter k is not too high, we may assign one block matrix to

one processor which requires
∑k+1

j=1 nj = k
k+M

Ny processors or less and solve by a direct

solver.

On the other hand, we may apply symmetric block Gauss-Seidel approximation to each

block in the preconditioner Pe1 . However, we choose to approximate the preconditioner Pe1

151

6.5. SPECIAL CASE: LOG-TRANSFORMED DIFFUSION COEFFICIENTS

by an inner-outer iteration technique. This technique is useful if the preconditioner has a

block diagonal structure, and the cost of solving the linear system with the preconditioner

is high. For each block in Pe1 , we apply one PCG iteration with its symmetric block

Gauss-Seidel as a preconditioner and we denote the preconditioner Pe1 with one PCG

inner iteration by P̃e1 .

As a result, the sequential complexity of P̃e1 is

F`
(
P̃−1
e1

r
)
≈ F`

(
K−1

0 v
)(

2
k+1∑
j=2

jnj + n1

)
+ nnz(K0)

k+1∑
j=2

j2nj,

≤ 2NyF`
(
K−1

0 v
)

+

(
1 +

2k

M + 1

)
Nynnz(K0),

and parallel complexity of P̃e1 depends on the largest block which has the size of k + 1.

Thus,

F`p
(
P̃−1
e1

r
)
≈ 2 (1 + k)F`p

(
K−1

0 v
)

+ 2nnz(K0).

Remark. Consider

k+1∑
j=1

j2nj =
k+M−2∑
i=M−2

(k +M − 1− i)2

 i

M − 2

 .

Let N = k +M − 2 and r = M − 2. Then,

k+1∑
j=1

j2nj =
N∑
i=r

(N + 1− i)2

 i

r


= (N + 1)2

N∑
i=r

 i

r

− 2(N + 1)
N∑
i=r

i

 i

r

+
N∑
i=r

i2

 i

r

 .

Recall that, by the hockey stick identity,

N∑
i=r

 i

r

 =

 N + 1

r + 1

 .

152

6.5. SPECIAL CASE: LOG-TRANSFORMED DIFFUSION COEFFICIENTS

Moreover, by mathematical induction, we can prove the generalised extended hockey stick

identities [75]

N∑
i=r

i

 i

r

 =

(
Nr +N + r

r + 2

) N + 1

r + 1

 ,

N∑
i=r

i2

 i

r

 =

(
N2(r + 1)(r + 2) +N(2r + 1)(r + 1) + r(r − 1)

(r + 2)(r + 3)

) N + 1

r + 1

 .

Thus,

k+1∑
j=1

j2nj =

(
2N − r + 3

r + 3

) N + 2

r + 2

 =

(
1 +

2k

M + 1

)
Ny.

6.5.3 Spectral Analysis

We analyse the bilinear equivalence between bilinear forms Be1 and B in the case of a

bounded parametric domain, such as loguniform coe�cient, as follows.

Theorem 6.11. Assume that Γm = [−1, 1] for all m = 1, ..., N . Let a be the log-

transformed coe�cient in (6.11). Let ae1 be the function in (6.13) and Be1 be the bi-

linear form in (6.14). Then, the bilinear form Be1 is equivalent to the bilinear form B in

(2.12). To be precise, there exist positive numbers θ and Θ independent of discretisation

parameters, i.e., h, k and M , such that

θBe1(v, v) ≤ B(v, v) ≤ 1

θ
Be1(v, v), for all v ∈ V

where

θ = exp

(
−2

N∑
m=2

‖bm‖L∞(D)

)
. (6.16)

Proof. It is easy to see that for m = 1, ..., N ,

exp
(
−‖bm‖L∞(D)

)
≤ exp (bm(x)ym) ≤ exp

(
‖bm‖L∞(D)

)
153

6.5. SPECIAL CASE: LOG-TRANSFORMED DIFFUSION COEFFICIENTS

and then

exp
(
−‖bm‖L∞(D)

)
≤ Em [exp (bm(x)ym)] ≤ exp

(
‖bm‖L∞(D)

)
.

Therefore, for any v ∈ V ,

B(v, v) =

∫
Γ

∫
D

ρ(y)

(
N∏
m=2

exp (bm(x)ym)

Em [exp (bm(x)ym)]

)
ae1(x,y) (∇v)2 dxdy

≤

max
x∈D

N∏
m=2

exp
(
‖bm‖L∞(D)

)
Em [exp (bm(x)ym)]

Be1(v, v)

≤ exp

(
2

N∑
m=2

‖bm‖L∞(D)

)
Be1(v, v).

The lower bound can be achieved in the same manner.

Remark. For the case of an unbounded parametric domain such as lognormal coe�-

cient, we cannot prove the bilinear equivalence or the bilinear forms Be1 and B are not

equivalent.

This leads to the optimality of the preconditioner Pe1 in the case of a bounded para-

metric domain.

Corollary 6.12. Assume that Γm = [−1, 1] for all m = 1, ..., N . Let a be the log-

transformed coe�cient in (6.11) and ae1 be the function in (6.13). Let Pe1 and A be

induced by the bilinear form Be1 in (6.14) and B in (2.12), respectively. Then

Λ
(
P−1
e1
A
)
⊆
[
θ,

1

θ

]
,

where θ de�ned in (6.16) is independent of discretisation parameters h, k and M .

154

6.6. NUMERICAL EXPERIMENTS

6.6 Numerical Experiments

In this section, we compare the performance of modi�ed truncation preconditioners P̃r,

truncation preconditioners with domain decomposition technique P̂r and preconditioners

for log-transformed di�usion coe�cients P̃e1 with the performance of existing precondi-

tioners such as the mean-based preconditioner and the Kronecker product preconditioner.

We consider test problems with the lognormal and loguniform di�usion coe�cients in the

form

a(x,y) = exp(b0(x) +
N∑
m=1

bm(x)ym). (6.17)

We employ a gPC expansion for the di�usion coe�cients a, i.e., the coe�cient a can be

written as

a(x,y) =
∑
α∈I

aα(x)ψα(y).

Recall that the lognormal di�usion coe�cient a does not satisfy condition (2.10) but

the solution of the variational formulation (2.11) exists. On the other hand, if we let

Γm = [−1, 1] for all m = 1, ..., N , the loguniform di�usion coe�cient satis�es condition

(2.10) with

amin = exp

(
−‖b0‖L∞(D) −

N∑
m=1

‖bm‖L∞(D)

)
,

amax = exp

(
‖b0‖L∞(D) +

N∑
m=1

‖bm‖L∞(D)

)
.

The coe�cients aα in the case of a lognormal distribution are calculated in [125, p. 926],

aα(x) = E [a(x,y)]
N∏
m=1

aαmm (x)√
αm!

, for α ∈ I

and the mean of the lognormal coe�cient a is

E [a(x,y)] = a0(x) = exp

(
b0(x) +

1

2

N∑
m=1

b2
m(x)

)
.

155

6.6. NUMERICAL EXPERIMENTS

In the case of loguniform coe�cients, for α ∈ I,

aα(x) =

∫
Γ

ρ(y) exp(b0(x) +
N∑
m=1

bm(x)ym)ψα(y)dy

= exp(b0(x))
N∏
m=1

∫
Γm

ρm(ym) exp(bm(x)ym)Pαm(ym)dym

= exp(b0(x))
N∏
m=1

aαm(x).

By the properties of Legendre polynomials in [33, p 215], we have that, for x ∈ D such

that bm(x) = 0,

aαm(x) =


1, αm = 0,

0, αm 6= 0,

and, otherwise,

aαm(x) =
αm∑
i=0

√
2αm + 1

(−2bm(x))i+1

(αm + i)!

i!(αm − i)!
(
(−1)αm+i exp(−bm(x))− exp(bm(x))

)
.

As a result, the mean of a loguniform coe�cient is

E [a(x,y)] = a0(x) = exp (b0(x))
N∏
m=1

a0,m(x),

where

a0,m(x) =


1, bm(x) = 0,

sinh (bm(x))
bm(x)

, bm(x) 6= 0.

Next, we review the complexity of each preconditioner for non-a�ne di�usion coe�-

cients. The mean-based preconditioner P0 is still the mean term of the coe�cient matrix

A, i.e.,

P0 = INy ⊗K0.

Thus, by the structure of P0, the computational cost of P0 for non-a�ne di�usion coe�-

156

6.6. NUMERICAL EXPERIMENTS

cients is identical to the case of a�ne di�usion coe�cients and the computational costs of

P̃r, P̂r and P̃e1 are higher than the cost of P0 by a factor of 2. Additionally, the Kronecker

product preconditioner P⊗ is de�ned by

P⊗ = G⊗K0.

Note that in the case of non-a�ne di�usion coe�cients, the matrix G is dense. As a

result, the computational cost of P⊗ is

F`
(
P−1
⊗ r
)
≈ NyF`

(
K−1

0 v
)

+NxF`
(
G−1v

)
,

= NyF`
(
K−1

0 v
)

+NxN
2
y,

if the Cholesky factorisation of G is provided.

To conclude, we have that

F`
(
P−1

0 r
)
< F`

(
P̃−1
r r
)
≈ F`

(
P̂−1
r r
)
≈ F`

(
P̃−1
e1

r
)
,

and

F`
(
P−1
⊗ r
)
≈ F`

(
P−1

0 r
)

+NxN
2
y,

by assuming that F`
(
K−1

0 v
)
dominates the cost of one PCG iteration. Note that the

preconditioners P⊗, P̃r and P̂r require a one time setup before we apply PCG. For the

Kronecker product preconditioner, it is required to construct the matrix G and apply the

Cholesky factorisation to the matrix G. In the case of P̃r and P̂r, we need ordering the

terms in a to obtain the set Ir.

Example 6.4. In this experiment, the di�usion coe�cient a is assumed to be a log-

transformed coe�cient in (6.17) with N = 20 where bm are chosen to be the coe�cients

in Example 4.1 with σ̃ = 2 and ᾱ = 0.547.

Before comparing the performance of our preconditioners, P̃r and P̂r with r = 1, ..., 6

157

6.6. NUMERICAL EXPERIMENTS

and P̃e1 , with the mean-based preconditioner and the Kronecker product preconditioner,

the �rst eight largest magnitudes of aα and corresponding multi-indices in IM2k with M =

k = 6 are illustrated in Table 6.3. We can see that the magnitudes of aα in both cases

(lognormal and loguniform) drop fairly fast. Although there is no clear pattern of multi-

indices in Table 6.3, we can see that the magnitude of aα tends to be large with small |α|.

Note that the multi-index (3, 0, 0, 0, 0, 0) can not be a member in Ir with k = 1 because

it is not in the set IM2k.

In the following, we want to check the condition (6.4) for lognormal and loguniform

di�usion coe�cients. It is easy to see that aα(x), for α ∈ Ie, is non-negative on D in the

case of lognormal coe�cients. Thus, condition (6.4) holds for lognormal coe�cients.

In the case of loguniform coe�cients, consider aαm(x). For x ∈ D such that bm(x) = 0,

we have

aαm(x) =


1, αm = 0,

0, otherwise.

For x ∈ D such that bm(x) 6= 0,

case αm = 0: we get

aαm(x) =
exp(bm(x))− exp(−bm(x))

2bm(x)
=

sinh (bm(x))

bm(x)
.

Since the hyperbolic sine is an odd function, aαm(x) > 0 for all x ∈ D.

Lognormal Loguniform
α ‖aα‖L∞(D) α ‖aα‖L∞(D)

(0, 0, 0, 0, 0, 0) 3.1960 (0, 0, 0, 0, 0, 0) 2.8675
(1, 0, 0, 0, 0, 0) 1.7482 (1, 0, 0, 0, 0, 0) 0.8880
(2, 0, 0, 0, 0, 0) 0.6762 (0, 1, 0, 0, 0, 0) 0.2261
(0, 1, 0, 0, 0, 0) 0.4371 (2, 0, 0, 0, 0, 0) 0.1244
(1, 1, 0, 0, 0, 0) 0.2391 (0, 0, 1, 0, 0, 0) 0.1006
(3, 0, 0, 0, 0, 0) 0.2135 (1, 1, 0, 0, 0, 0) 0.0700
(0, 0, 1, 0, 0, 0) 0.1942 (0, 0, 0, 1, 0, 0) 0.0566
(0, 0, 0, 1, 0, 0) 0.1093 (0, 0, 0, 0, 1, 0) 0.0362

Table 6.3: First 8 terms of lognormal and loguniform di�usion coe�cients in Example
6.4.

158

6.6. NUMERICAL EXPERIMENTS

P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6 P̂1 P̂2 P̂3 P̂4 P̂5 P̂6 Pe1 P̃e1
k = 1 12 12 6 7 6 6 6 6 6 7 7 6 6 6 6 7

2 18 19 8 10 9 9 8 8 13 10 10 10 9 9 8 9
3 25 26 10 12 11 11 10 10 17 14 13 12 12 12 9 11
4 32 34 13 15 13 13 12 11 27 17 17 16 14 14 10 12
5 40 43 17 19 16 17 13 12 37 20 21 20 17 17 10 14
6 49 52 24 22 19 20 14 14 53 25 23 24 19 19 11 15

Table 6.4: The numbers of iteration by PCG with lognormal di�usion coe�cient in Ex-
ample 6.4.

k = 1 k = 2 k = 3

1

2

3

4

0
.4
3

0
.7
1

3
.0
3

0
.3
9 0
.7
8

3
.2
2

0
.2
6

0
.6
3

2
.4
1

0
.2
8 0
.8
7

2
.8
6

0
.2
2 0
.7
3

2
.5
9

0
.2
6 0
.7
9

2
.7

0
.2
2 0
.6
5

2
.5
1

0
.2
3 0
.6
6

2
.5
6

0
.3
2 1

3
.9
4

0
.2
6 0
.7
4

3
.1
9

0
.2
5 0
.6
6

2
.9
3

0
.2
6

0
.6

2
.8

0
.2
8

0
.6
3

2
.8
5

0
.2
2 0
.6
7

2
.4
5

0
.1
8

0
.4
7

1
.6
9

0
.2
7

0
.6
4

2
.4
6

T
im

e
(s
ec
)

P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6

P̂1 P̂2 P̂3 P̂4 P̂5 P̂6 Pe1 P̃e1

k = 4 k = 5 k = 6
0

500

1,000

1,500

1
8
.8
3

2
4
4
.0
8

1
,4
6
1
.7
3

2
1
.1
9

1
9
6
.1
5

1
,4
4
0
.9
1

1
1
.6
6

6
7
.4
9

7
7
6
.9
5

1
3
.4
8

9
1
.0
7

6
5
0
.4
4

1
1
.9
7

7
6
.5
5

5
7
4
.3
3

1
2
.0
9

8
3
.2
9

5
8
1
.9
8

1
1
.5
4

6
4
.5
5 3
7
0
.5
3

1
0
.9
3

5
9
.7

3
7
7
.0
2

2
2
.9
2

1
5
8
.8
8

1
,5
6
9
.1
6

1
5
.0
1

9
6
.2
3

7
7
0
.9
3

1
5
.3
6

1
0
2
.9
6

5
8
7
.7
7

1
6
.0
3

1
0
3
.9
2

6
5
2
.6
6

1
6
.5
7

1
1
1
.3
8 5
5
7
.6
1

1
6
.0
5

1
1
5
.7
2 5
2
8
.4
8

8
.7
8

5
4
.4
3 3
4
9
.9
1

1
1
.7
3

7
5
.5
1 4

4
8
.3

T
im

e
(s
ec
)

Figure 6.5: The runtimes by PCG with lognormal di�usion coe�cient in Example 6.4.

case αm = 2: we get

aαm(x) =

√
5

b3
m(x)

(
(b2
m(x) + 3)sinh (bm(x))− 3bm(x)cosh (bm(x)

)
.

By basic calculus, we can check that aαm(x) ≥ 0 for all x ∈ D.

Hence, we know that for α ∈ Ie where αm ≤ 2 for all m ≤ M , aα(x) ≥ 0 on D and

the test problem with loguniform coe�cient satis�es condition (6.4).

Table 6.4 and Figure 6.5 show the PCG iteration counts and PCG runtimes, respec-

tively, in the case of lognormal di�usion coe�cient. The discretisation parameters are

159

6.6. NUMERICAL EXPERIMENTS

P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6 P̂1 P̂2 P̂3 P̂4 P̂5 P̂6 Pe1 P̃e1
k = 1 9 9 5 4 5 5 5 5 5 5 5 5 5 5 5 5

2 11 11 6 5 5 5 5 5 6 6 6 5 5 5 6 6
3 12 12 6 5 5 5 5 5 7 6 6 5 5 5 6 6
4 12 12 7 6 6 5 5 5 7 6 6 6 6 6 6 7
5 13 13 7 6 6 5 5 5 7 7 6 6 6 5 6 7
6 13 13 7 6 6 5 5 5 7 7 6 6 6 6 7 7

Table 6.5: The numbers of iteration by PCG with loguniform di�usion coe�cient in
Example 6.4.

k = 1 k = 2 k = 3

0.5

1

1.5

0
.2
5 0
.4
7

1
.5
1

0
.2
6 0
.5
4

1
.4
7

0
.1
9

0
.5

1
.5

0
.1
5 0
.4
3

1
.2
2

0
.1
9 0
.4
3

1
.2
5

0
.2

0
.4
4

1
.3
3

0
.2
2 0
.4
4

1
.3
6

0
.2
1 0
.4
6

1
.4

0
.1
9 0
.4
6

1
.7
4

0
.1
8 0
.4
6

1
.4
6

0
.1
8 0
.4
7

1
.4
4

0
.1
8 0
.4
4

1
.2
7

0
.1
8 0
.4

1
.3
4

0
.1
9 0
.4
2

1
.3
7

0
.1
7 0
.3
8

1
.2
9

0
.1
8 0
.4
4

1
.4
4

T
im

e
(s
ec
)

P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6

P̂1 P̂2 P̂3 P̂4 P̂5 P̂6 Pe1 P̃e1

k = 4 k = 5 k = 6
0

200

400

8
.4

6
8
.5
5

5
1
0
.8
8

8
.2
7 6
3
.8
1

4
5
3
.6
7

6
.9
1

3
2
.9
7

2
2
7
.5
8

6
.0
2

2
9
.1
5

2
1
3
.0
6

6
.1
5

2
8
.1
2

2
2
5
.7
7

5
.3
9

2
3
.9
8

2
0
1
.4
6

5
.4
4

2
4
.3
5

1
8
1
.5
2

5
.6
7

2
5
.8

1
8
8
.3

7
.3
3

4
2
.3
2

2
4
0
.9
5

6
.8
4

3
7
.6

2
8
9
.9
7

7
.2
4

3
8
.0
7

2
2
0
.9
2

7
.6
7

3
1
.9
4

2
5
4
.2

8
.8
3

2
9
.8
6

2
1
0
.0
9

9
.2
3

3
1
.1

2
5
3
.1
7

8
.3
3

3
3
.7
5

2
6
1
.9
3

1
0
.3
8

4
3
.8
6

2
6
6
.5
9

T
im

e
(s
ec
)

Figure 6.6: The runtimes by PCG with loguniform di�usion coe�cient in Example 6.4.

set to be h = 2−4, M = 6 and the range of k is from 1 to 6. The results show that our

preconditioners, i.e., P̃r, P̂r and P̃e1 , outperform P0 and P⊗ in term of iteration counts,

runtimes and total complexity. More precisely, P̃e1 and P̃r are more e�cient than P̂r and

there are small improvements for P̃r and P̂r with increasing r. Moreover, for all precondi-

tioners, the results show that the PCG iteration counts rise with the parameter k. This is

more pronounced for the mean-based preconditioner and the Kronecker product precondi-

tioner, whereas the iteration counts by Pe1 go up very slowly with k. The preconditioner

Pe1 seems to be independent of the parameter k.

160

6.6. NUMERICAL EXPERIMENTS

h
Lognormal Loguniform

M = 3 M = 6 M = 3 M = 6

P̃6 P̂6 P̃e1 P̃6 P̂6 P̃e1 P̃6 P̂6 P̃e1 P̃6 P̂6 P̃e1
2−3 8 10 10 9 10 10 4 5 6 5 5 6
2−4 9 11 10 10 12 11 5 5 6 5 5 6
2−5 9 12 11 10 12 11 5 5 6 5 5 7
2−6 10 12 11 10 13 11 5 5 6 5 5 7
2−7 10 12 11 10 13 11 5 5 6 5 5 7

Table 6.6: PCG iteration counts for lognormal and loguniform di�usion coe�cients with
various h and M and k = 3.

The results in the case of loguniform di�usion coe�cient are displayed in Table 6.5

and Figure 6.6 with the same discretisation parameters as in the case of the lognormal

coe�cient. The results shows that the PCG iteration counts and PCG runtimes by P̃r,

P̂r and P̃e1 are only about a half of the iteration counts and runtimes by P0 or P⊗.

However, only P̃r and P̂r are more e�cient than P0 and P⊗ in term of total complexity.

Additionally, all preconditioners show optimality with respect to the parameter k in the

case of the loguniform coe�cient.

Table 6.6 shows that no signi�cant increase of PCG iteration counts with discretisation

parameters h and M . This means that our preconditioners are optimal with respect to h

and M .

Example 6.5. Here, we assume that the di�usion coe�cient a is the log-transformed

coe�cient in (6.17) with N = 20 where bm are chosen to be the coe�cients in Example

4.2. The �rst eight largest terms of aα with corresponding multi-indices in IM2k with

M = k = 6 are shown in Table 6.7.

Table 6.7 displays the magnitudes of aα in the cases of lognormal and loguniform. The

magnitudes of aα decay slower than the magnitudes of aα in the previous test problem.

In the case of the lognormal coe�cient, the PCG iteration counts and PCG runtimes

are shown in Table 6.8 and Figure 6.7, respectively. The iteration counts by P̂r , P̃e1

and P⊗ are about the same or more than half of those corresponding to P0. Thus, the

total complexities by P̂r and P̃e1 are higher than those for the mean-based preconditioner.

However, all of our preconditioners increase the e�ciency of the solver in terms of com-

161

6.6. NUMERICAL EXPERIMENTS

Lognormal Loguniform
α ‖aα‖L∞(D) α ‖aα‖L∞(D)

(0, 0, 0, 0, 0, 0) 2.8759 (0, 0, 0, 0, 0, 0) 2.7663
(1, 0, 0, 0, 0, 0) 0.8461 (1, 0, 0, 0, 0, 0) 0.4674
(0, 0, 1, 0, 0, 0) 0.4518 (0, 1, 0, 0, 0, 0) 0.2506
(0, 1, 0, 0, 0, 0) 0.4518 (0, 0, 1, 0, 0, 0) 0.2506
(0, 0, 0, 1, 0, 0) 0.2696 (0, 0, 0, 1, 0, 0) 0.1497
(0, 0, 0, 0, 1, 0) 0.2696 (0, 0, 0, 0, 1, 0) 0.1497
(0, 0, 0, 0, 0, 1) 0.2414 (0, 0, 0, 0, 0, 1) 0.1340
(2, 0, 0, 0, 0, 0) 0.1761 (1, 0, 1, 0, 0, 0) 0.0367

Table 6.7: The �rst 8 terms of lognormal and loguniform di�usion coe�cients in Example
6.5.

P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6 P̂1 P̂2 P̂3 P̂4 P̂5 P̂6 Pe1 P̃e1
k = 1 7 6 7 7 6 6 5 2 7 7 6 6 6 5 7 7

2 10 9 9 9 7 7 6 5 9 9 7 7 7 6 9 10
3 11 13 11 10 8 8 7 6 11 10 8 8 8 7 11 11
4 13 16 13 11 9 8 7 6 13 11 10 10 10 10 13 13
5 14 18 14 13 10 9 8 7 14 12 11 11 11 10 14 14
6 15 21 15 13 10 10 9 8 15 14 14 14 14 14 15 15

Table 6.8: PCG iteration counts: lognormal di�usion coe�cient in Example 6.5.

putational time. Furthermore, the modi�ed truncation preconditioners outperform the

others in term of iteration counts, runtimes and also the total computational cost. Also,

note that the iteration counts by P̃r, P̂r, Pe1 , and P̃e1 show mild dependence with the

parameter k.

On the other hand, for the loguniform coe�cient, the PCG iteration counts and PCG

runtimes are displayed in Table 6.9 and Figure 6.8, respectively. It indicates that P̃r and

P̂r are more e�cient than P0 in terms of iteration counts and time consumption whereas

the numbers of PCG iterations and PCG runtimes for P̃e1 are virtually identical to those

for P⊗.

In this chapter, we presented preconditioners for non-a�ne-parametric di�usion coe�-

cients. We extended the ideas from the case of a�ne-parametric di�usion coe�cients. The

truncation preconditioners for non-a�ne-parametric di�usion coe�cients aim to capture

the main features of the coe�cient matrix but preserve the sparsity. The modi�ed trun-

cation preconditioners are an approximation of the truncation preconditioners to ensure

162

6.6. NUMERICAL EXPERIMENTS

k = 1 k = 2 k = 3

1

2

0
.2
3

0
.4
1

1
.3
5

0
.1
6

0
.3
7

1
.5
7

0
.2
4 0
.6
7

2
.4
7

0
.2
6 0
.7
2

2
.3
4

0
.2
6 0
.5
5

1
.9
1

0
.2
5 0
.5
7

2
.0
4

0
.2

0
.5

1
.7
5

0
.1

0
.4
3

1
.5
6

0
.2
4 0
.6
6

2
.4
5

0
.2
4 0
.6
6

2
.2
3

0
.2

0
.5
2

1
.8
2

0
.2
1 0
.5
3

1
.9
4

0
.2

0
.5
8

2
.2
9

0
.1
7 0
.4
5

1
.8
6

0
.2
1 0
.5
9

2
.2
2

0
.2
6

1
.0
5

2
.6
1

T
im

e
(s
ec
)

P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6

P̂1 P̂2 P̂3 P̂4 P̂5 P̂6 Pe1 P̃e1

k = 4 k = 5 k = 6
0

200

400

8
.4 5
0
.9
6

3
9
7
.9
7

9
.9
8 6
5
.1
7

5
5
2
.1
9

1
1
.6
7

6
1
.2
7

4
6
8
.3

1
0
.0
6

5
5
.1
5

4
0
1
.8

8
.4
3

4
2
.3
5

2
9
4
.2
5

7
.6
8

3
8
.6
9

2
9
6
.3
3

6
.9
8

3
4
.7
4

2
6
4
.5
9

6

3
0
.9
3

2
3
4
.0
3

1
1
.6
3

5
8
.4

5
4
0
.2
5

1
0
.3
7

5
1
.5
6

4
6
9
.3

9
.4
1

5
0
.2
8

4
7
4
.0
4

9
.5 4
9
.8
8

5
1
6
.5
8

9
.5
8

5
0
.2
2

4
7
6
.6
1

9
.5
2

4
5
.8
8

4
2
5
.6
6

1
1
.2
7

6
0
.3
7

5
4
6
.1
1

1
2
.0
2

6
2
.7
3

4
5
2
.2
7

T
im

e
(s
ec
)

Figure 6.7: PCG runtimes: lognormal di�usion coe�cient in Example 6.5.

P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6 P̂1 P̂2 P̂3 P̂4 P̂5 P̂6 Pe1 P̃e1
k = 1 6 6 6 6 5 5 4 3 6 6 5 5 4 4 6 6

2 7 8 7 7 6 5 5 4 7 7 6 5 5 4 7 7
3 8 9 8 7 6 6 5 4 8 7 6 6 5 4 8 8
4 8 10 8 7 6 6 5 4 8 7 6 6 5 4 8 8
5 9 10 8 8 7 7 5 4 8 8 6 6 5 5 8 8
6 9 11 9 8 6 6 5 4 9 8 7 6 6 5 9 9

Table 6.9: PCG iteration counts: loguniform di�usion coe�cient in Example 6.5.

that the practical preconditioners are symmetric and positive de�nite. We also gener-

alised the ideas of the domain decomposition on parametric domain for a�ne-parametric

coe�cients to enhance the parallelism of the preconditioner. Furthermore, we designed

a preconditioner for log-transformed di�usion coe�cients. The experiments indicate that

the performance of our preconditioners are at least as good as those for the mean-based

preconditioner and the Kronecker product preconditioner.

163

6.6. NUMERICAL EXPERIMENTS

k = 1 k = 2 k = 3

0.5

1

1.5

0
.2 0
.3

0
.9
7

0
.1
9

0
.3
5

1
.0
6

0
.2
4 0
.5
5

1
.8
3

0
.2
4 0
.5
6

1
.6
3

0
.2
2 0
.4
8

1
.4
7

0
.1
9 0
.4
2

1
.6
4

0
.1
8 0
.4
2

1
.4

0
.1
3 0
.3
5

1
.1
2

0
.2
1

0
.6
1

1
.9
3

0
.2

0
.5
8

1
.7
9

0
.1
8 0
.4
4

1
.5
4

0
.1
8 0
.3
8

1
.5
4

0
.1
7 0
.3
9

1
.3
1

0
.1
4 0
.3
2

1
.0
8

0
.1
8 0
.4
4

1
.6
5

0
.2
3

0
.5
8

1
.9
3

T
im

e
(s
ec
)

P⊗ P0 P̃1 P̃2 P̃3 P̃4 P̃5 P̃6

P̂1 P̂2 P̂3 P̂4 P̂5 P̂6 Pe1 P̃e1

k = 4 k = 5 k = 6
0

100

200

300

5
.5
4

3
4
.6
5

2
3
2
.5
3

6
.8
5

3
8
.5
1

3
2
9
.1
5

7
.7 3

7
.1
6

2
5
7
.7
4

6
.8
9

3
8
.4
9

2
2
0
.7
4

6
.0
6

3
1
.1

1
7
2
.4
1

6
.1
6

3
0
.4
4

1
7
4
.1
3

5
.4
1

2
5
.4
7

1
4
2
.2
3

4
.4
1

1
9
.4
7

1
1
6
.5
4

7
.7
9

3
9
.3
2

2
8
4
.3
1

6
.8
9

3
4
.4
6

2
2
5
.6
9

5
.9
4

2
7
.5
9

2
1
3
.1
1

5
.8
8

3
0
.3

1
9
2
.9
4

4
.9
1

2
3
.1

1
7
2
.9
7

4
.9
4

2
7
.0
4

1
8
7
.2
1

7
.0
7 4
0
.6
5

3
1
0
.7
9

7
.5
5 4
1
.5
5

2
5
6
.5
4

T
im

e
(s
ec
)

Figure 6.8: PCG runtimes: loguniform di�usion coe�cient in Example 6.5.

164

CHAPTER 7

CONCLUDING REMARKS

In this thesis, we designed and analysed e�ective preconditioners for stochastic Galerkin

linear systems which arise when solving elliptic partial di�erential equations models with

random data. We considered in the cases of a�ne and non-a�ne parametric representa-

tions of di�usion coe�cients.

Truncation preconditioners for a�ne-parametric di�usion coe�cients rely on trunca-

tions of the di�usion coe�cient. We establish a class of equivalent bilinear forms via

truncated di�usion coe�cients. This implies that the truncation preconditioners, which

are constructed via the bilinear forms, are optimal with respect to discretisation parame-

ters. However, the complexity of applying their inverses on a given vector is very high. To

reduce the complexity, modi�ed truncation preconditioners are obtained by approximat-

ing the truncation preconditioners using the symmetric block Gauss-Seidel approximation.

The computational cost per iteration of modi�ed truncation preconditioners is twice the

computational cost of the mean-based preconditioner. Moreover, we also provided a spec-

tral analysis of the modi�ed truncation preconditioners to guarantee their optimality with

respect to all discretisation parameters. The limitation of the modi�ed truncation pre-

conditioners is that, in general, their structure does not facilitate parallelism. However,

parallelisation is possible for a very small number of terms in the preconditioners by

permuting the unknowns corresponding to the parametric space in a certain way.

We also considered domain decomposition methods on the parametric domain for

165

a�ne-parametric di�usion coe�cients. We developed and used a certain permutation

technique so that the system matrix has a particular structure which is useful for paral-

lel computing. We studied the pattern of the stochastic Galerkin matrix for the case of

a�ne-parametric di�usion coe�cient. Using graph theory, we introduced the concept of

parametric mesh, including submesh and the interface of the parametric mesh as a tool

for devising our permutation. This procedure leads to a 2-by-2 block matrix structure

of the system matrix. According to the structure of the system matrix, we present two

types of domain decomposition preconditioners: block preconditioners and block-diagonal

preconditioners. Our study of the parametric mesh leads to the even-odd partitioning

technique. The Schur complement is approximated in two ways: block-diagonal approxi-

mation and symmetric block Gauss-Seidel approximation. We introduced three versions

of the even-odd preconditioners. Their complexities and spectral analyses were also pre-

sented. Additionally, the analyses indicate the optimality of the even-odd preconditioners

with respect to discretisation parameters.

We also provided experiments to show that our preconditioners are promising choices

due to their e�ciency. All the experiments in the thesis were implemented using the MAT-

LAB toolbox S-IFISS [112]. The experiments show that modi�ed truncation precondi-

tioner is an improvement over existing choices. It reduces the iteration counts signi�cantly

from those for the mean-based preconditioner and the Kronecker product preconditioner,

especially in the case of fast decaying terms in the parametric representation of the dif-

fusion coe�cient. However, increasing the number of terms in the modi�ed truncation

preconditioners appears to improve their e�ciency only negligibly. Therefore, we recom-

mend choosing only two or three terms in the representation of the system matrix to

be included in the truncation preconditioner to balance the e�ciency and the computa-

tional cost. The even-odd preconditioners outperform the other preconditioners in terms

of iteration counts and overall complexity. To be precise, the third version of the even-

odd preconditioner, which is a combination of the block-structured preconditioner and

a symmetric block Gauss-Seidel approximation of the Schur complement, has the least

166

iteration counts compared with the other preconditioners. In contrast, the second version

of the even-odd preconditioners, which is a combination between a block-structured pre-

conditioner and a block-diagonal approximation of the Schur complement, has the lowest

computational cost due to its lower complexity per iteration. The numerical experiments

also con�rm the optimality of the modi�ed truncation preconditioners and the even-odd

preconditioners with respect to discretisation parameters.

For the case of non-a�ne parametric di�usion coe�cient, we extended the two ideas

from truncation preconditioners and domain decomposition preconditioners for the a�ne

di�usion coe�cients. Since the stochastic Galerkin matrix for the case of non-a�ne co-

e�cient is block-dense, we introduced the truncation preconditioners in this case as a

sparse approximation of the system matrix. Next, we modify the truncation precondi-

tioners using symmetric block Gauss-Seidel approximation and obtain modi�ed trunca-

tion preconditioners for non-a�ne parametric coe�cients. We also studied the pattern

of the truncation preconditioners with a view to parallelism and generalised the concept

of parametric mesh to the case of non-a�ne coe�cients. This lead to domain decompo-

sition preconditioners for the case of non-a�ne parametric coe�cients. In particular, we

considered log-transformed coe�cients, e.g., lognormal and loguniform coe�cients. We

employed the techniques developed in this chapter to derive another preconditioner and

its spectral analysis for log-transformed coe�cients. We also calculated the complexities

of these preconditioners.

According to our experiments, the performance of the truncation preconditioners is

superior in the case of lognormal and loguniform coe�cients. The preconditioners for

log-transformed coe�cients perform very well only in the case of lognormal coe�cients

but still less e�cient than truncation preconditioners. Although the e�ciency of domain

decomposition preconditioners is not outstanding, they perform at least on the same level

as the mean-based preconditioner and the Kronecker product preconditioner. Moreover,

the experiments show that these preconditioners, e.g., truncation preconditioners, domain

decomposition preconditioners and preconditioner for log-transformed coe�cients, are

167

optimal with respect to at least two discretisation parameters, i.e., the mesh size and the

number of random variables.

Future research on this topic could include improvements to the modi�ed truncation

preconditioners for a�ne coe�cients by devising other approximation techniques in or-

der to decrease the complexity per iteration and improve the accuracy. For the domain

decomposition method on the parametric domain, there are several possible extensions.

Since the parametric mesh is de�ned via a graph, we need a sophisticated graph parti-

tioning algorithm to partition the parametric mesh but minimise the size of the interface.

The algorithm will lead to a new partitioning strategy. Moreover, the Schur complement

approximation could be improved, for example, by using norm-equivalence and other

techniques. To achieve optimal performance, we need to balance between the accuracy of

the Schur complement approximation and the complexity per iteration. For the case of

non-a�ne parametric coe�cients, a sparse gPC expansion, which is positive on the spatial

domain and the parametric domain, is important. Similarly to the domain decomposition

methods for the case of a�ne-parametric coe�cients, we could also consider the exten-

sion of the partitioning strategy and the Schur complement approximation to the case of

non-a�ne parametric coe�cients in order to improve the e�ciency of the preconditioners.

Finally, once could also consider extending our results to other model problems such as

optimal control problems, incompressible elasticity equations, Navier-Stokes equations,

saddle point problems.

168

BIBLIOGRAPHY

[1] S. Adhikari, Doubly Spectral Stochastic Finite-Element Method for Linear Struc-
tural Dynamics, Journal of Aerospace Engineering, 24 (2011), pp. 264�276.

[2] N. Agarwal and N. R. Aluru, Stochastic Modeling of Coupled Electromechani-
cal Interaction for Uncertainty Quanti�cation in Electrostatically Actuated MEMS,
Computer Methods in Applied Mechanics and Engineering, 197 (2008), pp. 3456�
3471.

[3] M. Anders and M. Hori, Three-Dimensional Stochastic Finite Element Method
for Elasto-Plastic Bodies, International Journal for Numerical Methods in Engineer-
ing, 51 (2001), pp. 449�478.

[4] A. Atangana and P. Vermeulen, Analytical Solutions of a Space-Time Frac-
tional Derivative of Groundwater Flow Equation, in Abstract and Applied Analysis,
vol. 2014, Hindawi, 2014.

[5] O. Axelsson and R. Blaheta, Preconditioning of Matrices Partitioned in 2 Ö
2 Block Form: Eigenvalue Estimates and Schwarz DD for Mixed FEM, Numerical
Linear Algebra with Applications, 17 (2010), pp. 787�810.

[6] I. Babu²ka and P. Chatzipantelidis, On Solving Elliptic Stochastic Partial
Di�erential Equations, Computer Methods in Applied Mechanics and Engineering,
191 (2002), pp. 4093�4122.

[7] I. Babuska, R. Tempone, and G. E. Zouraris, Galerkin Finite Element Ap-
proximations of Stochastic Elliptic Partial Di�erential Equations, SIAM Journal on
Numerical Analysis, 42 (2004), pp. 800�825.

[8] I. Babu²ka, R. Tempone, and G. E. Zouraris, Solving Elliptic Boundary Value
Problems with Uncertain Coe�cients by the Finite Element Method: the Stochastic
Formulation, Computer methods in applied mechanics and engineering, 194 (2005),
pp. 1251�1294.

169

BIBLIOGRAPHY

[9] I. Babu²ka, F. Nobile, and R. Tempone, A Stochastic Collocation Method for
Elliptic Partial Di�erential Equations with Random Input Data, SIAM J. Numer.
Anal., 45 (2007), pp. 1005�1034.

[10] J. Bäck, F. Nobile, L. Tamellini, and R. Tempone, Stochastic Spectral
Galerkin and Collocation Methods for PDEs with Random Coe�cients: a Numerical
Comparison, in Spectral and high order methods for partial di�erential equations,
Springer, 2011, pp. 43�62.

[11] A. Barth, C. Schwab, and N. Zollinger, Multi-Level Monte Carlo Finite
Element Method for Elliptic PDEs with Stochastic Coe�cients, Numerische Math-
ematik, 119 (2011), pp. 123�161.

[12] M. Bebendorf, E�cient Inversion of the Galerkin Matrix of General Second-order
Elliptic Operators with Nonsmooth Coe�cients, Mathematics of Computation, 74
(2004), pp. 1179�1200.

[13] M. Bebendorf, Approximate Inverse Preconditioning of Finite Element Dis-
cretizations of Elliptic Operators with Nonsmooth Coe�cients, SIAM journal on
matrix analysis and applications, 27 (2006), pp. 909�929.

[14] , Why Finite Element Discretizations Can Be Factored by Triangular Hierar-
chical Matrices, SIAM Journal on Numerical Analysis, 45 (2007), pp. 1472�1494.

[15] M. Bebendorf, Low-Rank Approximation of Elliptic Boundary Value Problems
with High-Contrast Coe�cients, SIAM Journal on Mathematical Analysis, 48
(2016), pp. 932�949.

[16] M. Bebendorf, M. Bollhöfer, and M. Bratsch, Hierarchical Matrix Ap-
proximation with Blockwise Constraints, BIT Numerical Mathematics, 53 (2013),
pp. 311�339.

[17] , On the Spectral Equivalence of Hierarchical Matrix Preconditioners for Elliptic
Problems, Mathematics of Computation, 85 (2016), pp. 2839�2861.

[18] K. Beddek, Y. Le Menach, S. Clenet, and O. Moreau, 3-D Stochastic
Spectral Finite-Element Method in Static Electromagnetism Using Vector Potential
Formulation, IEEE Transactions on Magnetics, 47 (2011), pp. 1250�1253.

170

BIBLIOGRAPHY

[19] P. Benner, A. Onwunta, and M. Stoll, Block-Diagonal Preconditioning for
Optimal Control Problems Constrained by PDEs with Uncertain Inputs, SIAM Jour-
nal on Matrix Analysis and Applications, 37 (2016), pp. 491�518.

[20] A. Bespalov, D. Loghin, and R. Youngnoi, Truncation Precondition-
ers for Stochastic Galerkin Finite Element Discretizations, arXiv preprint
arXiv:2006.06428, (2020).

[21] A. Bespalov, D. Praetorius, L. Rocchi, and M. Ruggeri, Convergence
of Adaptive Stochastic Galerkin FEM, SIAM Journal on Numerical Analysis, 57
(2019), pp. 2359�p2382.

[22] A. Bespalov and D. Silvester, E�cient Adaptive Stochastic Galerkin Meth-
ods for Parametric Operator Equations, SIAM Journal on Scienti�c Computing, 38
(2016), pp. A2118�A2140.

[23] M. Bieri, R. Andreev, and C. Schwab, Sparse Tensor Discretization of Elliptic
SPDEs, SIAM Journal on Scienti�c Computing, 31 (2010), pp. 4281�4304.

[24] G. Blatman and B. Sudret, An Adaptive Algorithm to Build Up Sparse Poly-
nomial Chaos Expansions for Stochastic Finite Element Analysis, Probabilistic En-
gineering Mechanics, 25 (2010), pp. 183�197.

[25] G. Blatman and B. Sudret, Adaptive Sparse Polynomial Chaos Expansion
Based on Least Angle Regression, Journal of Computational Physics, 230 (2011),
pp. 2345 � 2367.

[26] S. Börm, L. Grasedyck, and W. Hackbusch, An Introduction to Hierarchical
Matrices with Applications, Engineering analysis with boundary elements, 27 (2003),
pp. 405�422.

[27] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Me-
chanics, Cambridge University Press, 2007.

[28] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods,
vol. 15, Springer Science & Business Media, 2007.

[29] M. Brezina, A. Doostan, T. Manteuffel, S. McCormick, and J. Ruge,
Smoothed Aggregation Algebraic Multigrid for Stochastic PDE Problems With Lay-
ered Materials, Numer. Linear Algebra Appl., 21 (2014), pp. 239�255.

171

BIBLIOGRAPHY

[30] R. E. Caflisch, Monte Carlo And Quasi-Monte Carlo Methods, in Acta numerica,
1998, vol. 7 of Acta Numer., Cambridge Univ. Press, Cambridge, 1998, pp. 1�49.

[31] A. Cañavate-Grimal, A. Falcó, P. Calderón, and I. Payá-Zaforteza,
On The Use Of Stochastic Spectral Methods In Deep Excavation Inverse Problems,
Computers & Structures, 159 (2015), pp. 41�60.

[32] J. Carrera, An Overview of Uncertainties In Modelling Groundwater Solute
Transport, Journal of contaminant hydrology, 13 (1993), pp. 23�48.

[33] Y. Cengel and M. Ãzi³ik, Integrals Involving Legendre Polynomials That Arise
in The Solution Of Radiation Transfer, Journal of Quantitative Spectroscopy and
Radiative Transfer, 31 (1984), pp. 215�219.

[34] J. Charrier, Strong and Weak Error Estimates For The Solutions Of Elliptic Par-
tial Di�erential Equations With Random Coe�cients, Research Report RR-7300,
INRIA, June 2010.

[35] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel
Monte Carlo Methods and Applications To Elliptic PDEs with Random Coe�cients,
Computing and Visualization in Science, 14 (2011), p. 3.

[36] A. J. Crowder, C. E. Powell, and A. Bespalov, E�cient Adaptive Multilevel
Stochastic Galerkin Approximation Using Implicit A Posteriori Error Estimation,
SIAM Journal on Scienti�c Computing, 41 (2019), pp. A1681�A1705.

[37] M. K. Deb, I. M. Babu²ka, and J. T. Oden, Solution of Stochastic Partial Dif-
ferential Equations Using Galerkin Finite Element Techniques, Computer Methods
in Applied Mechanics and Engineering, 190 (2001), pp. 6359�6372.

[38] J. Dick, F. Y. Kuo, and I. H. Sloan, High-Dimensional Integration: The Quasi-
Monte Carlo Way, Acta Numerica, 22 (2013), pp. 133�288.

[39] P. Dostert, Y. Efendiev, and T. Y. Hou, Multiscale Finite Element Methods
for Stochastic Porous Media Flow Equations And Application To Uncertainty Quan-
ti�cation, Computer Methods in Applied Mechanics and Engineering, 197 (2008),
pp. 3445�3455.

[40] Y. D'Yakonov, The Construction of Iterative Methods Based on The Use of Spec-
trally Equivalent Operators, USSR Computational Mathematics and Mathematical
Physics, 6 (1966), pp. 14�46.

172

BIBLIOGRAPHY

[41] M. Eigel, C. J. Gittelson, C. Schwab, and E. Zander, Adaptive Stochastic
Galerkin FEM, Computer Methods in Applied Mechanics and Engineering, 270
(2014), pp. 247�269.

[42] M. Eigel, C. J. Gittelson, C. Schwab, and E. Zander, A Convergent Adap-
tive Stochastic Galerkin Finite Element Method with Quasi-Optimal Spatial Meshes,
ESAIM: Mathematical Modelling and Numerical Analysis, 49 (2015), pp. 1367�
1398.

[43] M. Eigel, M. Pfeffer, and R. Schneider, Adaptive Stochastic Galerkin FEM
With Hierarchical Tensor Representations, Numerische Mathematik, 136 (2016),
pp. 765�803.

[44] M. Eldred, Recent Advances in Non-Intrusive Polynomial Chaos and
Stochastic Collocation Methods for Uncertainty Analysis and Design, in 50th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, American Institute of Aeronautics and Astronautics, may 2009, p. 2274.

[45] M. Eldred and J. Burkardt, Comparison of Non-Intrusive Polynomial Chaos
and Stochastic Collocation Methods for Uncertainty Quanti�cation, in 47th AIAA
aerospace sciences meeting including the new horizons forum and aerospace expo-
sition, 2009, p. 976.

[46] H. Elman and D. Furnival, Solving the Stochastic Steady-State Di�usion Prob-
lem Using Multigrid, IMA J. Numer. Anal., 27 (2007), pp. 675�688.

[47] H. C. Elman, O. G. Ernst, D. P. OâLeary, and M. Stewart, E�cient
Iterative Algorithms for The Stochastic Finite Element Method with Application to
Acoustic Scattering, Computer Methods in Applied Mechanics and Engineering, 194
(2005), pp. 1037�1055.

[48] H. C. Elman, C. W. Miller, E. T. Phipps, and R. S. Tuminaro, Assessment
of Collocation and Galerkin Approaches to Linear Di�usion Equations with Random
Data, International Journal for Uncertainty Quanti�cation, 1 (2011).

[49] H. C. Elman and T. Su, A Low-Rank Multigrid Method for The Stochastic Steady-
State Di�usion Problem, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 492�509.

[50] O. G. Ernst, C. E. Powell, D. J. Silvester, and E. Ullmann, E�cient
Solvers for A Linear Stochastic Galerkin Mixed Formulation of Di�usion Problems
with Random Data, SIAM J. Sci. Comput., 31 (2008/09), pp. 1424�1447.

173

BIBLIOGRAPHY

[51] O. G. Ernst and E. Ullmann, Stochastic Galerkin Matrices, SIAM Journal on
Matrix Analysis and Applications, 31 (2010), pp. 1848�1872.

[52] V. Faber, T. A. Manteuffel, and S. V. Parter, On the Theory of Equivalent
Operators and Application to the Numerical Solution of Uniformly Elliptic Partial
Di�erential Equations, Adv. Appl. Math., 11 (1990), pp. 109�163.

[53] J. Faragher, Probabilistic Methods for the Quanti�cation of Uncertainty and Error
in Computational Fluid Dynamic Simulations, (2004).

[54] M. Faustmann, J. M. Melenk, and D. Praetorius, Existence of H-matrix
Approximants to the Inverses of BEM Matrices: The Simple-layer Operator, Math-
ematics of Computation, 85 (2015), pp. 119�152.

[55] W. Gautschi, Orthogonal Polynomials : Computation and Approximation, Nu-
merical Mathematics and Scienti�c Computation, Oxford University Press, Oxford
New York, 2004. Oxford Science Publications.

[56] S. E. Geneser, R. M. Kirby, and R. S. MacLeod, Application of Stochastic
Finite Element Methods to Study the Sensitivity of ECG Forward Modeling to Organ
Conductivity, IEEE Transactions on Biomedical Engineering, 55 (2008), pp. 31�40.

[57] R. Ghanem, Ingredients for A General Purpose Stochastic Finite Elements Imple-
mentation, Computer Methods in Applied Mechanics and Engineering, 168 (1999),
pp. 19 � 34.

[58] R. Ghanem and S. Dham, Stochastic Finite Element Analysis for Multiphase Flow
in Heterogeneous Porous Media, Transport in porous media, 32 (1998), pp. 239�262.

[59] R. Ghanem, G. Saad, and A. Doostan, E�cient Solution of Stochastic Sys-
tems: Application to The Embankment Dam Problem, Structural safety, 29 (2007),
pp. 238�251.

[60] R. Ghanem and P. D. Spanos, Polynomial Chaos in Stochastic Finite Elements,
Journal of Applied Mechanics, 57 (1990), pp. 197�202.

[61] R. G. Ghanem, Uncertainty Quanti�cation in Computational and Prediction Sci-
ence, International Journal for Numerical Methods in Engineering, 80 (2009),
pp. 671�672.

174

BIBLIOGRAPHY

[62] R. G. Ghanem and A. Doostan, On the Construction and Analysis of Stochastic
Models: Characterization and Propagation of The Errors Associated with Limited
Data, Journal of Computational Physics, 217 (2006), pp. 63�81.

[63] R. G. Ghanem and R. M. Kruger, Numerical Solution of Spectral Stochas-
tic Finite Element Systems, Comput. Methods Appl. Mech. Engrg., 129 (1996),
pp. 289�303.

[64] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Ap-
proach, Springer-Verlag, New York, 1991.

[65] D. Ghosh, P. Avery, and C. Farhat, A FETI-Preconditioned Conjugate Gradi-
ent Method for Large-Scale Stochastic Finite Element Problems, International jour-
nal for numerical methods in engineering, 80 (2009), pp. 914�931.

[66] M. B. Giles, Multilevel Monte Carlo Methods, Acta Numerica, 24 (2015), pp. 259�
328.

[67] I. G. Graham, F. Y. Kuo, J. A. Nichols, R. Scheichl, C. Schwab, and
I. H. Sloan, Quasi-Monte Carlo Finite Element Methods for Elliptic PDEs With
Lognormal Random Coe�cients, Numerische Mathematik, 131 (2015), pp. 329�368.

[68] I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan,
Quasi-Monte Carlo Methods for Elliptic PDEs With Random Coe�cients and Ap-
plications, Journal of Computational Physics, 230 (2011), pp. 3668�3694.

[69] L. Grasedyck, R. Kriemann, and S. L. Borne, Parallel Black Box H-LU Pre-
conditioning for Elliptic Boundary Value Problems, Computing and Visualization
in Science, 11 (2008), pp. 273�291.

[70] M. D. Gunzburger, C. G. Webster, and G. Zhang, Stochastic Finite Element
Methods for Partial Di�erential Equations with Random Input Data, Acta Numer.,
23 (2014), pp. 521�650.

[71] W. Hackbusch, A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Intro-
duction to H-Matrices, Computing, 62 (1999), pp. 89�108.

[72] A.-L. Haji-Ali, F. Nobile, and R. Tempone, Multi-Index Monte Carlo: When
Sparsity Meets Sampling, Numerische Mathematik, 132 (2016), pp. 767�806.

175

BIBLIOGRAPHY

[73] C. Jin and X.-C. Cai, A Preconditioned Recycling GMRES Solver for Stochastic
Helmholtz Problems, Commun. Comput. Phys., 6 (2009), pp. 342�353.

[74] C. Jin, X.-C. Cai, and C. Li, Parallel Domain Decomposition Methods for
Stochastic Elliptic Equations, SIAM Journal on Scienti�c Computing, 29 (2007),
pp. 2096�2114.

[75] C. H. Jones, Generalized Hockey Stick Identities and n-Dimensional Blockwalking,
Fibonacci Q., 34 (1996), pp. 280�288.

[76] A. Keese, Review of Recent Developments in the Numerical Solution of Stochastic
Partial Di�erential Equations (Stochastic Finite Elements), Informatik-Berichte der
Technischen Universität Braunschweig, 2003-06 (2003).

[77] , Numerical Solution of Systems with Stochastic Uncertainties: A General Pur-
pose Framework for Stochastic Finite Elements, PhD thesis, 2004.

[78] A. Khan, C. E. Powell, and D. J. Silvester, Robust Preconditioning for
Stochastic Galerkin Formulations of Parameter-Dependent Nearly Incompressible
Elasticity Equations, SIAM Journal on Scienti�c Computing, 41 (2019), pp. A402�
A421.

[79] P. K. Kitanidis, Groundwater Flow in Heterogeneous Formations, Subsurface
Flow and Transport: A Stochastic Approach, (2005), p. 83.

[80] O. Knio and O. Le Maitre, Uncertainty Propagation In CFD Using Polynomial
Chaos Decomposition, Fluid dynamics research, 38 (2006), p. 616.

[81] O. M. Knio, H. N. Najm, R. G. Ghanem, et al., A Stochastic Projection
Method for Fluid Flow: I. Basic Formulation, Journal of computational Physics,
173 (2001), pp. 481�511.

[82] F. Y. Kuo, C. Schwab, and I. H. Sloan, Quasi-Monte Carlo Finite Element
Methods for A Class of Elliptic Partial Di�erential Equations with Random Coe�-
cients, SIAM Journal on Numerical Analysis, 50 (2012), pp. 3351�3374.

[83] O. Le Ma�tre, O. Knio, B. Debusschere, H. Najm, and R. Ghanem, A
Multigrid Solver for Two-Dimensional Stochastic Di�usion Equations, Computer
Methods in Applied Mechanics and Engineering, 192 (2003), pp. 4723�4744.

176

BIBLIOGRAPHY

[84] O. Le Maître and O. M. Knio, Spectral Methods for Uncertainty Quanti�cation:
With Applications to Computational Fluid Dynamics, Springer Science & Business
Media, 2010.

[85] B. Lee, Parallel Preconditioners and Multigrid Solvers for Stochastic Polynomial
Chaos Discretizations Of the Di�usion Equation at The Large Scale, Numer. Linear
Algebra Appl., 23 (2016), pp. 5�36.

[86] M. Leinonen, H. Hakula, and N. Hyvönen, Application of Stochastic Galerkin
FEM to The Complete Electrode Model of Electrical Impedance Tomography, Journal
of Computational Physics, 269 (2014), pp. 181�200.

[87] M. Loeve, Probability Theory II, Springer New York, 1994.

[88] D. Loghin and A. J. Wathen, Analysis of Preconditioners for Saddle-Point
Problems, SIAM Journal on Scienti�c Computing, 25 (2004), pp. 2029�2049.

[89] G. J. Lord, C. E. Powell, and T. Shardlow, An Introduction to Compu-
tational Stochastic PDEs, Cambridge Texts in Applied Mathematics, Cambridge
University Press, 2014.

[90] P. S. Mohan, P. B. Nair, and A. J. Keane, Multi-Element Stochastic Reduced
Basis Methods, Computer Methods in Applied Mechanics and Engineering, 197
(2008), pp. 1495�1506.

[91] P. B. Nair and A. J. Keane, Stochastic Reduced Basis Methods, AIAA journal,
40 (2002), pp. 1653�1664.

[92] H. N. Najm, Uncertainty Quanti�cation and Polynomial Chaos Techniques in Com-
putational Fluid Dynamics, Annual review of �uid mechanics, 41 (2009), pp. 35�52.

[93] H. N. Najm, B. J. Debusschere, Y. M. Marzouk, S. Widmer, and
O. Le Maître, Uncertainty Quanti�cation in Chemical Systems, International
journal for numerical methods in engineering, 80 (2009), pp. 789�814.

[94] A. Nouy, Recent Developments in Spectral Stochastic Methods for The Numerical
Solution of Stochastic Partial Di�erential Equations, Archives of Computational
Methods in Engineering, 16 (2009), pp. 251�285.

177

BIBLIOGRAPHY

[95] M. Pellissetti and R. Ghanem, Iterative Solution of Systems of Linear Equa-
tions Arising in The Context of Stochastic Finite Elements, Advances in Engineering
Software, 31 (2000), pp. 607 � 616.

[96] C. E. Powell, Robust Preconditioning for Second-Order Elliptic PDEs with Ran-
dom Field Coe�cients, (2006). Technical report, Manchester Institute for Mathe-
matical Sciences,School of Mathematics, University o f Manchester.

[97] C. E. Powell and H. C. Elman, Block-Diagonal Preconditioning for Spectral
Stochastic Finite-Element Systems, IMA Journal of Numerical Analysis, 29 (2008),
pp. 350�375.

[98] C. E. Powell and D. J. Silvester, Preconditioning Steady-State Navier�Stokes
Equations with Random Data, SIAM Journal on Scienti�c Computing, 34 (2012),
pp. A2482�A2506.

[99] C. E. Powell and E. Ullmann, Preconditioning Stochastic Galerkin Saddle
Point Systems, SIAM Journal on Matrix Analysis and Applications, 31 (2010),
pp. 2813�2840.

[100] I. Pultarová, Block and Multilevel Preconditioning for Stochastic Galerkin Prob-
lems with Lognormally Distributed Parameters and Tensor Product Polynomials,
Int. J. Uncertain. Quantif., 7 (2017), pp. 441�462.

[101] M. Reagan, H. Najm, B. Debusschere, O. Le Maître, O. Knio, and
R. Ghanem, Spectral Stochastic Uncertainty Quanti�cation in Chemical Systems,
Combustion Theory and Modelling, 8 (2004), pp. 607�632.

[102] M. T. Reagana, H. N. Najm, R. G. Ghanem, and O. M. Knio, Uncertainty
Quanti�cation in Reacting-Flow Simulations Through Non-Intrusive Spectral Pro-
jection, Combustion and Flame, 132 (2003), pp. 545�555.

[103] E. Rosseel, T. Boonen, and S. Vandewalle, Algebraic Multigrid for Station-
ary and Time-Dependent Partial Di�erential Equations with Stochastic Coe�cients,
Numerical Linear Algebra with Applications, 15 (2008), pp. 141�163.

[104] E. Rosseel and S. Vandewalle, Iterative Solvers for The Stochastic Finite
Element Method, SIAM J. Sci. Comput., 32 (2010), pp. 372�397.

178

BIBLIOGRAPHY

[105] R. Y. Rubinstein and D. P. Kroese, Simulation and The Monte Carlo Method,
vol. 10, John Wiley & Sons, 2016.

[106] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and
Applied Mathematics, Philadelphia, PA, second ed., 2003.

[107] S. K. Sachdeva, P. B. Nair, and A. J. Keane, Comparative Study of Projection
Schemes for Stochastic Finite Element Analysis, Computer Methods in Applied
Mechanics and Engineering, 195 (2006), pp. 2371�2392.

[108] , Hybridization of Stochastic Reduced Basis Methods with Polynomial Chaos
Expansions, Probabilistic Engineering Mechanics, 21 (2006), pp. 182�192.

[109] M. Schevenels, G. Lombaert, and G. Degrande, Application of The Stochas-
tic Finite Element Method For Gaussian And Non-Gaussian Systems, in ISMA2004
International Conference on Noise and Vibration Engineering, KATHOLIEKE
UNIV LEUVEN, DEPT WERKTUIGKUNDE, 2004, pp. 3299�3314.

[110] C. Schwab and C. J. Gittelson, Sparse Tensor Discretizations of High-
Dimensional Parametric and Stochastic PDEs, Acta Numer., 20 (2011), pp. 291�
467.

[111] D. Silvester and Pranjal, An Optimal Solver for Linear Systems Arising from
Stochastic FEM Approximation of Di�usion Equations with Random Coe�cients,
SIAM/ASA Journal on Uncertainty Quanti�cation, 4 (2016), pp. 298�311.

[112] D. J. Silvester, A. Bespalov, and C. E. Powell, Stochastic IFISS (S-IFISS),
version 1.04, October 2017. Available online at http://www.manchester.ac.uk/
ifiss/sifiss.html.

[113] R. C. Smith, Uncertainty Quanti�cation: Theory, Implementation, and Applica-
tions, vol. 12, SIAM, 2013.

[114] B. Sousedík and H. C. Elman, Stochastic Galerkin Methods for The Steady-State
Navier�Stokes Equations, Journal of Computational Physics, 316 (2016), pp. 435�
452.

[115] B. Sousedík and R. G. Ghanem, Truncated Hierarchical Preconditioning for The
Stochastic Galerkin FEM, Int. J. Uncertain. Quantif., 4 (2014), pp. 333�348.

179

http://www.manchester.ac.uk/ifiss/sifiss.html
http://www.manchester.ac.uk/ifiss/sifiss.html

BIBLIOGRAPHY

[116] B. Sousedík, R. G. Ghanem, and E. T. Phipps, Hierarchical Schur Comple-
ment Preconditioner for The Stochastic Galerkin Finite Element Methods, Numer.
Linear Algebra Appl., 21 (2014), pp. 136�151.

[117] G. Stefanou, The Stochastic Finite Element Method: Past, Present and Future,
Computer methods in applied mechanics and engineering, 198 (2009), pp. 1031�
1051.

[118] W. Subber and S. Loisel, Schwarz Preconditioners for Stochastic Elliptic PDEs,
Comput. Methods Appl. Mech. Engrg., 272 (2014), pp. 34�57.

[119] W. Subber and A. Sarkar, Domain Decomposition of Stochastic PDEs: A Novel
Preconditioner and Its Parallel Performance, in International Symposium on High
Performance Computing Systems and Applications, Springer, 2009, pp. 251�268.

[120] , Dual-Primal Domain Decomposition Method for Uncertainty Quanti�cation,
Computer Methods in Applied Mechanics and Engineering, 266 (2013), pp. 112�124.

[121] W. Subber and A. Sarkar, A Domain Decomposition Method of Stochastic
PDEs: An Iterative Solution Techniques Using A Two-Level Scalable Precondi-
tioner, Journal of Computational Physics, 257 (2014), pp. 298�317.

[122] D. M. Tartakovsky, Assessment and Management of Risk in Subsurface Hydrol-
ogy: A Review and Perspective, Advances in Water Resources, 51 (2013), pp. 247�
260.

[123] A. L. Teckentrup, R. Scheichl, M. B. Giles, and E. Ullmann, Further
Analysis of Multilevel Monte Carlo Methods for Elliptic PDEs with Random Coef-
�cients, Numerische Mathematik, 125 (2013), pp. 569�600.

[124] R. Tipireddy, P. Stinis, and A. M. Tartakovsky, Basis Adaptation and
Domain Decomposition for Steady-State Partial Di�erential Equations with Random
Coe�cients, Journal of Computational Physics, 351 (2017), pp. 203�215.

[125] E. Ullmann, A Kronecker Product Preconditioner for Stochastic Galerkin Finite
Element Discretizations, SIAM Journal on Scienti�c Computing, 32 (2010), pp. 923�
946.

[126] E. Ullmann, H. C. Elman, and O. G. Ernst, E�cient Iterative Solvers for
Stochastic Galerkin Discretizations of Log-Transformed Random Di�usion Prob-
lems, SIAM Journal on Scienti�c Computing, 34 (2012), pp. A659�A682.

180

BIBLIOGRAPHY

[127] E. Ullmann and C. E. Powell, Solving Log-Transformed Random Di�usion
Problems by Stochastic Galerkin Mixed Finite Element Methods, SIAM/ASA Jour-
nal on Uncertainty Quanti�cation, 3 (2015), pp. 509�534.

[128] N. Wiener, The Homogeneous Chaos, American Journal of Mathematics, 60
(1938), pp. 897�936.

[129] D. Xiu, E�cient Collocational Approach for Parametric Uncertainty Analysis,
Communications in computational physics, 2 (2007), pp. 293�309.

[130] , Fast Numerical Methods for Stochastic Computations: A Review, Communi-
cations in computational physics, 5 (2009), pp. 242�272.

[131] , Numerical Methods for Stochastic Computations: A Spectral Method Ap-
proach, Princeton university press, 2010.

[132] D. Xiu and J. S. Hesthaven, High-Order Collocation Methods for Di�erential
Equations with Random Inputs, SIAM Journal on Scienti�c Computing, 27 (2005),
pp. 1118�1139.

[133] D. Xiu and G. E. Karniadakis, Modeling Uncertainty in Steady State Di�u-
sion Problems Via Generalized Polynomial Chaos, Computer Methods in Applied
Mechanics and Engineering, 191 (2002), pp. 4927�4948.

[134] D. Xiu and G. E. Karniadakis, The Wiener�Askey Polynomial Chaos for
Stochastic Di�erential Equations, SIAM Journal on Scienti�c Computing, 24 (2002),
pp. 619�644.

[135] D. Xiu, D. Lucor, C.-H. Su, and G. E. Karniadakis, Stochastic Modeling of
Flow-Structure Interactions Using Generalized Polynomial Chaos, J. Fluids Eng.,
124 (2002), pp. 51�59.

[136] X. Zhu, Uncertainty Simulation Using Domain Decomposition and Strati�ed Sam-
pling, PhD thesis, Carleton University, 2006.

181

	Introduction
	Statement of the Problem
	Research Objective and Scope
	Thesis Organisation

	Elliptic PDEs with Random Data
	Random Fields
	The Karhunen-Loève Expansion
	Generalised Polynomial Chaos Expansion

	Elliptic Partial Differential Equations with Random Data
	Variational Formulation
	Discrete Formulation
	The Stochastic Linear System

	The Conjugate Gradient Method
	The Conjugate Gradient Method
	Preconditioned Conjugate Gradient Method

	Truncation Preconditioners for Affine Parametric Diffusion Coefficients
	The Affine Parametric Diffusion Coefficient
	Some Existing Block Preconditioners
	Mean-based Preconditioners
	Kronecker Product Preconditioners

	Truncation Preconditioners
	Modified Truncation Preconditioners
	Computational Costs

	Analysis of Modified Truncation Preconditioners
	Numerical Experiments

	Domain Decomposition Methods on Parametric Domain
	Parametric Mesh
	Matrix Structure
	Domain Decomposition Preconditioners
	Block Preconditioners
	Computational Costs
	Spectral Analysis

	Block-diagonal Preconditioners
	Computational Costs
	Spectral Analysis

	Even-odd Partition and Its Preconditioners
	Schur Complement Approximation
	Block-diagonal Approximation of the Schur Complement
	Symmetric Block Gauss-Seidel Approximation of the Schur Complement

	Even-odd Preconditioners

	Numerical Experiments

	Block Preconditioners for SPDEs with Non-affine Parametric Coefficients
	Non-affine Parametric Diffusion Coefficients
	Truncation Preconditioners
	Modified Truncation Preconditioners
	Computational Cost

	Domain Decomposition Preconditioners
	Parametric Mesh
	Even-odd Partition for Non-affine Parametric Diffusion Coefficients
	Computational Cost

	Special Case: log-transformed Diffusion Coefficients
	Parametric Mesh
	Computational Cost
	Spectral Analysis

	Numerical Experiments

	Concluding Remarks
	Bibliography

